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Geometry, at once ancient and modern, is the

science of Euclid, Archimedes and Apollonius, of

Kepler, Desargues, Newton and Poncelet. Geome-
^.^

vj trical processes have indeed been simplified and

their applications greatly extended in recent times,

but the modern methods may be traced to the

ancient as their germ and source, and thus it

remains in a sense still true that there is but

one road for all,
v rf} yewpeTpia Trda-iv eariv 0809 pia.

The modern infinitesimal calculus is an adaptation

of the ancient method of exhaustions, the method of

Descartes differs only in the manner of its appli-

cation from that of Apollonius, the idea of perspective

was already formulated by Serenus, and the principle

of anharmonic section with the leading properties

of transversals are found in the lemmas of Pappus

to the lost three books of Porisms of Euclid. There

is not however in the works of the Greek geometers
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any distinct foreshadowing of Kepler's doctrine of

the infinite, of his principles of analogy and con-

tinuity, or of the theory of ideal chords and points,

at length completed by Poncelet's discovery of the

so-called circular points at infinity in any plane.

In the present as in a former work (1863) I

have commenced with an elementary treatment

of the general conic in piano, following out a

suggestion made by Professor Adams in a course

of lectures on the Lunar Theory delivered in 1861.

This department of the subject has now been made

more complete with the help of the Eccentric

Circle, the characteristic feature of a masterly

though neglected work of Boscovich. In the chapter

on the Cone the focal spheres are more fully

discussed, and the angle-properties of the sections

as well as their metric properties are deduced.

The chapter on Orthogonal Projection contains

proofs of Lambert's theorem* in elliptic motion.

To the chapter on Conical Projection is appended

some account of the homographic method of Rever-

sion, which springs out of the above mentioned con-

struction of Boscovich.

* It has been remarked that, so far as relates to the parabola, Lambert's theorem

is implicitly contained in Newton's Principia lib. in. lemma 10. See Lagrange

Micanique Analytique tome II. p. 28, ed. 3 (18535) ; Brougham and Routh An
analytical view of Sir Isaac Kercton'i Principia p. 430 (Lond. 1855).
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Abundant references will be found to the works

of authors to whom I am indebted. Suffice it here

to add that my warmest thanks are due to the

Keverend Professor Richard Townsend, F.R.S.,

Fellow of Trinity College, Dublin, who has been

at all times ready, in the midst of pressing

engagements, to aid me with his criticism and

advice, and has from first to last shewn as great

an interest in the work now brought to a close

as if it had been his own.

C. TAYLOR.
St. John's College,

December 31, 1880.

ERRATA.

Page 42, Ex. 73 for is read varies as.

Page 82, line 25 1657 1710.

Page 136, note* Le SuGUF Le SeUF.

Page 194, Scholium Erastosthenes Eratosthenes.

Page 206, Ex. 545 two or more two.

Page 257, line 29 ., Dynamics Dynamic.
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PKOLEGOMENA.

SECTION I.

GEOMETET BEFOKE EUCLID.

N.B. References within square brackets [ ] occurring in the

Prolegomena are to the pages of the present work.

1. The science of Geometry, as its name suggests, was

developed from the art of land surveying, to which ancient

testimony likewise refers us for its origin. The practice of

systematic land measurement is said to have been forced upon
the Egyptians by the annual rise and fall of the river Nile,

which from time to time left portions of land that had been

high and dry submerged, or vice versa, so that the owners

were unable to distinguish what belonged to each. Thus

writes Hero* the elder, of Alexandria, and to the same effect

Herodotus (il. 109), Diodorus Siculus and Strabo, as cited by
Bretschneider in his excellent monograph on the history of

geometry before Euclid.f Whether the Nile altogether played
the part attributed to it in the advancement of science is matter

of question, but it may be conceded to the concurrent testimony
of ancient writers that the Egyptians had laid the foundation

of concrete fact upon which the superstructure of Greek abstract

geometry was to be reared.

* Heronis Alexandrini Geometricorum et Stereometricarvm reliquice, p. 138 ed.

Hultsch (Berlin 1864). He flourished within the period B.C. '285-222, or later.

t Die Geometric vnd die Geometer tor Eu'.lides (Leipzig 1870). See also

Dr. Allman's paper on Greek Gkometry from Thales to Euclid, in ttermathena

vol III. 160-J07 (Dublin 1877).

b
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2. Eudemus of Khodes (a disciple of Aristotle and an

immediate predecessor of Euclid) was the primary authority

on the early history of mathematics;* but his writings on the

history of geometry and astronomy, which appear to have

been composed in a philosophical spirit, now no longer survive,

except so far as they are embodied in the still extant works

of his successors. The important list of early geometers given

by Proclus Diadochusf (A.D. 412-485) in his commentary on

the first book of Euclid's elements is not unreasonably thought
to have been derived from Eudemus. The following is the

substance of the passage, of which the original Greek with a

German rendering may be found in the above mentioned work

of Bretschneider, pp. 2731. It is taken from lib. II. cap 4

of the commentary, which was written in four books :

"
Geometry is said by many to have taken its rise from the

measurements rendered necessary by the obliteration of land-

marks by the Nile. And it is nothing strange that this and

other sciences should have arisen from practical needs, since

there is a general tendency in things from imperfection to

perfection, in accordance with which law we pass naturally

from perception to reflection and thence to intellectual insight.

As then the Phoenicians were led on from trade and barter to

systematic arithmetic, so the Egyptians discovered geometry in

the manner aforesaid.

First Thales went to Egypt and brought over this science

to Greece. He made many discoveries himself and suggested
the beginnings of many to his successors, apprehending some

things more in the abstract but others in a limited and percep-
tional way. Next Ameristus, brother of the poet JStesichorus,

became famed in geometry, as Hippias of Elis relates. Pytha-

goras, who succeeded them, transformed it into a liberal science,

investigating its first principles and regarding theorems from

the immaterial and intellectual standpoint. He it was who

* His contemporary Theophrastus also wrote something about mathematics,

amongst a multitude of other subjects, according to the statement of Diogenes
Laertius (lib. v. cap. 2).

f Notice the editions mentioned on p. [82], and the latin edition of Barocius

(Patavii 15CO).
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discovered the theory of irrational quantities and the construction

of the regular solids. After him came Anaxagoras of Clazo-

mense and Oenopides of Chios, who are mentioned by Plato

as famed in mathematics. After them Hippocrates of Chios,

who quadrated the lunule and was the earliest writer on the

Elements, and Theodoras of Cyrene became eminent in

geometry. Plato, who succeeded Hippocrates, greatly encour-

aged the study of mathematics and geometry by the frequent
use of mathematical considerations in his philosophical writings.

To this age also belong Leodamas of Thasos, Archytas of

Tarentum and Theaetetus of Athens. Younger than Leodamas
were Neocleides and his disciple Leo, who added much to

the work of their predecessors. Leo also composed a work
on the Elements characterised by the greater number and

importance of its propositions, and he assigned the limits within

which a construction was possible. Eudoxus of Cnidus, an

associate of the school of Plato and somewhat junior to Leo,
increased the number of general theorems, added three new

proportions to the three already known, and developed Plato's

doctrine of the section (of a line), making use in his investi-

gations of the method of geometrical analysis. Amyclas of Analysis.

Heraclea, Menaechmus (a pupil of Eudoxus and contemporary
with Plato) and his brother Dinostratus made geometry as a

whole still more complete. Theudius of Magnesia, a writer

on the Elements, and Athenaeus of Cyzicus were greatly

distinguished especially in geometry. These lived and worked

together in the Academy. Hermotimus of Colophon carried

on the discoveries of Eudoxus and Thesetetus, and also wrote

some things upon loci. Philip of Mende was led by Plato Loci,

to study mathematics in relation to the Platonic philosophy.

Thus far do the writers on the history of geometry bring the

science.*

Not much junior to the above was Euclid, who compiled
the Elements, putting in order many discoveries of Eudoxus,

* If the history of Eudemus breaks off before Aristaeus, whose writings preceded

Euclid's, we may conjecture that it was completed before 320 B.C. It is impossible

to determine the precise dates of the early geometers.
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completing many of Theaetetus, and replacing the former lax

demonstrations by incontrovertible proofs. He lived in the

reign of the first Ptolemy, in answer to whom he is reported

to have said that there was no royal road to geometry.* He
was therefore yonnger than the disciples of Plato, but elder

than the contemporaries Eratosthenes and Archimedes. Being
a Platonist, he made the construction of the Platonic bodies

(or regular solids) the goal of his work upon the Elements."

Thaies 3. Of the above mentioned early geometers Thales
r

640 MS. Pythagoras, Hippocrates, Mensechrnns and some others deserve

to be noticed more particularly. Thaies of Miletus, of Pho3-

nician ancestry and the founder of the Ionian school of philo-

sophy, was the first to naturalise the study of geometry amongst
the Greeks. Visiting Egyptf as a trader, he brought back

thence late in life to his native place such knowledge of

geometry and astronomy as he had been able to pick up from

the priests. He was born about the commencement of the

35th Olympiad, and died (according to one account) at the

great age of 90 years, or upwards. His reputation was made

once for all by the prediction to what degree of accuracy we
know not of an eclipse of the sun, which duly came to pass

(28th May, 585 B,c.)f; and this well attested fact corroborates

the statement of Diogenes Laertius (lib. I. cap. 1) that he

first came to be styled erodes in the archonship of Damasias,

Although he is said by Proclus in general terms to have made

many discoveries in geometry, the following alone are ex-

pressly attributed to him.ll (1) The circle is bisected by its

* The saying referred to (Bretschneider p. 163) is also attributed to Mensechmnsr

who is said to have replied to Alexander :
" In the country, king, there are roads-

ISiwTLKal xal pa(Ti\iKai, but in geometry there is one road for all."

t The foreign travels of the early Greek philosophers are however sometimes

thought to be attested by insufficient evidence. Cf. Renoufs Hibbert Lectures Lect. vi.

p. 246 (London 1880).

J The Egyptians had doubtless supplied him with the facts on which his cal-

culation was based. Diogenes Laertius states that they had observed more than

1200 eclipses of the sun or moon. See Bretschneider pp. 39, 52.

||
See Proclus on Euclid I. def. 17 and props. 5, 15, 26 (Thos. Taylor's Proclns

vol. I. 165
;
n. 54, 96, 143) ; Diogenes Laertiua lib. I. cap. I. 3, 6,
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diameter. (2) The angles at the base of an isosceles triangle

are equal to one another. (3) When two straight lines cut one

another the vertical angles are equal. (4) A method of de-

termining the distance of a ship at sea from the land, implying
the knowledge of a theorem equivalent to Euclid I. 26. (5)

The angle in a semicircle is a right angle.* And (6) a method

for determining the heights of the pyramids from the lengths of

their shadows, viz. at the moment when the sun is at an eleva-

tion of 45 above the horizon.f

The fact that a theorem was attributed to Thales by his suc-

cessors does not altogether exclude the supposition that he had

himself received it from the Egyptians ;
and accordingly it has

been thought that the second only of the above theorems was

in reality discovered by him. The theorem (5) may have been

arrived at by the Egyptian geometers by supposing first a

square and then any rectangle inscribed in a circle to be turned

about within it; and it is impossible to lay much stress on (1) or

(3). The method (4) if actually known to Thales was probably
discovered by him, but if (as has been conjectured) he was

acquainted only with the case of the right-angled triangle,}: his

knowledge of this, as also of (6), may very well have been

derived from the Egyptians. On the whole we may conclude

that he probably made some advance towards that abstraction

by which the Greek geometry, in contrast with the Egyptian,
was to be characterised

;
but more than this cannot safely be

affirmed until we are better informed as to the "
many things"

which he is said to have discovered for himself. Thales was

acquainted with the globular form of the earth, which was held

by his school to be at the centre of the world.

* This is of course the meaning of the statement that he was the first to inscribe a

right angled triangle in a circle.

f-
Plutarch in his Symposium states the method in a form requiring a knowledge

of similar triangles and applicable at any time of the day. The most trustworthy

part of the story is that the method in its simpler form was used in Egypt. It would

aerve for an obelisk, but scarcely for a pyramid.

J This view is taken by Bretschneider (p. 43), who attributes (2) only to Thales

himself. For a more appreciative estimate of his contributions to geometry see

Uermathena vol. III. 173.
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Pythagoras 4. The name of Pythagoras of Samoa next arrests our
680-500. attention. Although the date of his birth and his age at his

death are variously given, he was doubtless a young man when

Thales, of whom he was regarded as the successor, died. At
the instigation of Thales he visited Egypt, where he resided

many years, learned the Egyptian language and received in-

struction from the priests. After this he is said to have visited

or been carried captive to Babylon. Eeturning to Samos at a

time when Ionia had lost her independence, he migrated thence

to Crotona in Magna Graecia, where he gathered round him his

exclusive brotherhood and became the founder of the famed

Italian school
;
but in course of time he was banished by the

democratic party, and died shortly afterwards at Metapontum.
We proceed to notice some of the chief discoveries in mathe-

matics attributed to him, remarking however that it is impossible

to distinguish with certainty between the discoveries of the

master and his scholars, since the doctrines of the sect were in

the first instance communicated only to its members, and when

they came at length to be divulged it was the practice to

attribute everything to Pythagoras himself. Hippasus, who

offended against this rule, was lost at sea for his impiety

(lamblichus Vit. Pythag. cap. 18). He had taken credit to him-

self for the construction of the sphere circumscribed to a regular

dodecahedron (TTJV etc TQJV So>Sea TrevTayobvwv), whereas every-

thing belonged to Him (elvat Se Trdvra 'E/cet'vou),
"
for so they

call Pythagoras, and not by his name."

a. The square on the hypotenuse of a right angled triangle

is equal to the sum of the squares on the sides containing the

right angle.

In honour of this great discovery, as also on some other

occasions, Pythagoras is related to have offered a sacrifice.

There is no evidence to support the conjecture that the theorem

was known in its generality to the Egyptians, although it must

be allowed to partake of an Egyptian character,* and may have

* The Egyptian geometry had very little that was of an abstract or general

character, but consisted mainly in the computation of areas or volumes, and in such

special constructions as are required for geometrical drawing. Cf. Eisenlohr's edition

of the Rhind papyrus, published under the title Eirt mathematisches Hundbuch der
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been first proved by an application of the Egyptian method.

The Egyptians were acquainted with the fact that the triangle

whose sides contain 3, 4, and 5 units of length respectively is

right angled (Plutarch De Iside ef^Osiride cap. 56), which

is a special case of the theorem of Pythagoras ;
and they must

also have been familiar with the still simpler case in which

the right angled triangle is isosceles. To prove it for]^this

case, let one square be supposed to be inscribed symmetrically

in another. Then it is easily seen that the four triangles at

the corners may be fitted together so as to form two squares,

the sum of which is equal to the area of the inscribed square ;

whence the theorem at once follows for the case in question.

By some such method of dissection of figures the general

theorem also was perhaps arrived at; and that it was not in

the first instance proved by the method of Euclid might have

been taken for granted, even without the express statement of

Proclus in his comments upon Euclid I. 47. To prove the

theorem generally,* let one square inscribed in another divide

each side of the latter into segments equal to a and b respec-

tively, and let the side of the inscribed square be equal to A.

Then the whole figure, being made up of A* and the four

triangles, is evidently equal to A* + 2ab. Next, by considering
the figure of Euclid II. 4 (omitting the diagonal), we see that

the outer square may also be cut up into two rectangles, each

equal to a>, and two squares equal to a* and 6
s

respectively.

Hence it follows that

A
2 + 2ab = a* -f ft* + 2ab,

and therefore A" is equal to a2 + &*, or the square on the hypote-
nuse of one of the triangles is equal to the sum of the squares

upon its sides. Thus the theorem is shewn to be true for

any right angled triangle. Pythagoras added a rule for finding

triads of integers a, 6, A satisfying the relation a
8
4- b

2 = A". The

problem of the three squares would naturally suggest an analo-

gous problem relating to cubes; and to a special case of the

ahen Aegypter (Leipzig 1877), and accompanied with a German translation in a

separate volume.
* The proof here given is taken from Bretscbneider's Die Geometric $c. pp. 81 2.
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latter, the Duplication of the Cube, we shall see that the

further progress of mathematics was indirectly to a very great
extent due.

b. The three angles of a triangle are together equal to two

right angles.

Eudemus, according to a statement of Proclus on Euclid I. 32,

ascribes the discovery of this theorem to the Pythagoreans,

together with a general proof of it not unlike that given by
Euclid. But since Eutocius,* on the authority of Geminus,
asserts that the ancients were accustomed to prove it separately
for the equilateral, isosceles and scalene triangles, whilst only
the later geometers proved it generally once for all, it has been

conjectured that its truth may have been known even to the

Egyptians, the general proof only being Pythagorean. Although
the fact that the area about a point can be filled up by equi-

lateral triangles, squares or regular hexagons, and by no other

regular figures, is said by Proclus (on Euclid I. 15, Cor.) to

be a Pythagorean discovery, the positive part of it must have

been observed by the Egyptians, who must therefore have

known that the three angles of an equilateral triangle are

together equal to two right angles. They may also have

inferred the same for any right angled triangle regarded as

the half of a rectangle; and it would then remain only to

observe that an isosceles or scalene triangle may be divided

into two right angled triangles. By some such process the

theorem (by whomsoever discovered) may have been first

arrived at; or it may have been shewn experimentally that

the six angles of any two triangles exactly fit into the area

about a point.

c. The regular polyhedra.

We have seen that the construction of the regular solids

was attributed to Pythagoras by Proclus, doubtless upon the

authority of Eudemus. Of these five figures the tetrahedron,

the cube and the octahedron were known to the Egyptians
and occur in their architecture; but it does not appear that

*
Halley's Apollonius p. 9

;
Bretschneider's Die Geometric $c. p. 14.
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they were acquainted with the icosahedron or the dodecahedron.

In the construction of the last mentioned solid the regular

pentagon is required ;
and with this the Pythagoreans were

familiar, since they used the starred pentagram,* formed by

producing its alternate sides to meet, as a secret token of

recognition symbolical of vyieia, the letters i, 7, t,
6 (= et),

a being written at the five angles of the figure. Moreover

we have seen [p. xxii] that the knowledge of the dodecahedron

was said to have been possessed and divulged by the Pytha-

gorean Hippasus. The regular solids were also called the
u cosmic figures," the dodecahedron being taken to represent

the material world, and the remaining four its elements of

earth, air, fire, and water,f

d. The application of areas.

The irapa@o\ri or application of areas is attributed in general

terms to the Pythagoreans (Proclus on Euclid I. 44), and also

to Pythagoras in particular, who is said to have sacrificed

an ox, rrrt TU> oia<ypdfj,fjiaTi,$ where the reference is either to

this discovery or to that of the theorem of the three squares

(Euclid I. 47). An area, according to Proclus, was said to

be applied to a right line when an equal area was described

upon the line as base; but the term was also used more

generally to include the cases in which the base of an area

placed upon a given line was in excess (vTrepftoXrj) or defect

(e\\ei\/rt9) of the line to which it was "applied." Although
it has not been made out wherein consisted the importance
of the discovery in the hands of the Pythagoreans, we shall

see that it played a great part in the system of Apollonius,

and that he was led to designate the three conic sections by
the Pythagorean terms Parabola, Hyperbola, Ellipse. It is

not however to be thought that Pythagoras or his school had any

acquaintance with these curves, although, through a misunder-

standing and consequent misreading of the term Trapaj3o\rj of

* On the Polygons etoiles see Chasles Aperqu historique pp. 476 87 (1875).

f See Boeck's Platonica corporis mundanifalrica <fc. (Heidelberg 1809).

J Plutarch on Epicureanism, cap. 11. See Plut. Op. iv. 1338, ed. Diibner (Paria

1841), where the misreading irtpl TUU \<apiou TJj_7ra/>a/3oAT? occurs.
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areas, he has been supposed to have anticipated Archimedes

(whose name, as it happens, follows in the immediate context)

in his discovery of the quadrature of the parabola.

e. Incommensurability and proportion.*

To Pythagoras, as we have seen [p. xixj, was attributed the

theory of incommensurable magnitudes, which may be regarded
as a corollary from his theorem of the three squares (Euclid I. 47).

He was also acquainted with the doctrine of proportion, and

is related by Plutarch to have solved the problem, to describe

a rectilinear figure equal to one and similar to another given

figure (Euclid VI. 25), and on this occasion also to have offered

a sacrifice
;
but whether he completed the theory of proportion

by extending it to the case of incommensurable magnitudes
we are unable to say. lamblichus states that in the time of

Pythagoras three kinds of proportion only were known, viz.

"the arithmetic, the geometric, and in the third place the

subcontrary, as it was then called, but which was afterwards

called the harmonic by the associates of Archytas and Hippias."

Further on he remarks of the so called " most perfect
"

or

"musical" proportion,

a + b 2ab
a : = r : o,.2 a + b

which combines in itself the three former, that it was said to

be a discovery of the Babylonians and to have been brought

by Pythagoras to Greece. To him belongs the credit of com-

bining the Eastern science of arithmetic, which he esteemed

so highly, with the Egyptian science of geometry.

/. The circle.

lamblichuSjf giving however no details, says that although

Aristotle may not have squared the circle the problem was

at any rate solved by the Pythagoreans. This problem, as

we learn from the Rhind papyrus (ed. Eisenlohr vol. I. 98, 117),

had already engaged the attention of the Egyptians, who

estimated the circle on a diameter of nine units to be equal

* See Bretschneider pp. 75, 83.

t See the extract from Simplicius on Aristotle given by Bretachneider, p. 108.
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to the square on a line containing eight, thus making IT equal
to 3f . Having regard to the perfect symmetry of the sphere
and the circle, Pythagoras speaks of the one as the most

beautiful of solids and the other of plane figures (Diogenes
Laertius lib. viu. cap. 1) ;

but there is no ground for the

statement sometimes made that he speaks of the circle as the

maximum plane figure having a given perimeter and of the

sphere as the maximum solid having a given surface.*

5. The further development of geometry was due in great Loci,

measure to repeated attempts to square the circle, to trisect

an angle and to duplicate the cube, which led to the discovery

of various geometrical loci. Thus Pappusf ascribes to Dinos-

tratus and Nicomedes the use of the quadratrix for squaring
the circle

;
and Proclus (on Euclid I. 9) relates that Nicomedes

trisected a given angle by means of the conchoid (of which

he had himself discovered the genesis and investigated the

properties), others used the quadratrix of Hippias or Nicomedes

for the same purpose, whilst others by means of the spiral of

Archimedes divided a given angle in any given ratio. The

problem of the duplication of the cube, as we shall see, was

solved by the intersections of parabolas or other conies, and

perhaps actually led to the discovery of the sections of the

cone. It is to be noticed that the construction of such a curve

as, for example, the quadratrix implies the conception of the

idea of a Locus, of which before the time of the above mentioned

Hippias of Elis, a contemporary of Socrates, there is no trace,

although the idea must have presented itself in a rudimentary
form in the construction of a circle by the most obvious method.

The earliest writer on loci was Hermotimus of Colophon, one

of the successors of Eudoxus [p. xix].

6. Hippocrates of Chios is referred to by Aristotle (Ethica Hippocrates

Eudem. VII. 14) in illustration of the fact that there are persons 450-430.

who are wanting in intelligence in some respects although not

* For an actual mention of these theorems see Pappus Collectio lib. v. (vol. I.

pp. 316, 350 ed. Hultsch).

t Collectio lib. iv. prop. 25 (vol. I. 251. ed. Hultsch).
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in others. The geometer shewed his simplicity by allowing
himself to be defrauded by the douaniers of Byzantium ; or,

according to Johannes Philoponus, he was robbed by pirates,

went to Athens to obtain redress, there frequented the schools

of the philosophers and made such progress in geometry that

he ventured to attack the problem of the quadrature of the

circle. It is related by lamblichus that Hippocrates was

expelled from the school of the Pythagoreans for having taught
for hire.

Hippocrates is celebrated as having reduced the problem
of the duplication of the cube to the simpler form in which

it was thenceforth attempted by geometers. By the duplication

of the cube was signified the construction of a cube of twice

the volume of a given cube: a problem which may possibly

have first presented itself in architecture, or may have arisen

speculatively in the course of an attempt to find an analogue
in space to the Pythagorean property of squares (Euclid T. 47).

Eutokius, commenting upon the second book of Archimedes

De Sphcera et Cylindro, adduces a series of solutions of the

problem, including the solution of Eratosthenes given in his

letter to king Ptolemy II. together with a twofold tradition as

to the origin of the problem (Archimedis Op. p. 144, ed.

Torelli). Minos of Crete, according to one of the ancient

tragedians, ordered a sepulchre for his son Glaucus, and then,

deeming the proposed dimensions of the (cubical) structure

inadequate, directed the architect to make it exactly twice as

large. At a later period so the story runs the people of

Delos, in time of pestilence, were commanded to construct a

new cubical altar twice as large as one already existing, and

accordingly at their request the philosophers of the Academy
set to work to solve this "solid problem" [p. xxxiii], which

was found to transcend the power of the known geometry of

the straight line and circle. It involved in effect the extraction

of a cube root, or the solution of the cubic equation x3 = 2a
8
.

Hippocrates reduced it to the problem of finding a pair of mean

proportionals to two given magnitudes a and 5, that is to say,

of determining x and y so as to satisfy the relations,

a :x=x:y=y : 5,
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which evidently imply also the relation x9 = a
y
b. It does not

appear that he himself carried the solution any further, but the

problem was afterwards attacked in this form by geometers,

and in particular it was solved by Menaechmus in two ways with

the help of the conic sections, of which he was the discoverer.

The problem of the duplication of the cube went by the name of

the Delian Problem owing to the above mentioned tradition con-

necting it with one of the altars at Delos.

Hippocrates is also celebrated as having, in his attempts to Quadrature

i -i i TII i -11 i
oflnnules.

square the circle, quadrated the lunule contained by the cir-

cumscribed semicircle of an isosceles right angled triangle and

the semicircle described outwards on one of its shorter sides as

diameter. By an extension of his method it may be shewn

that the circumscribed semicircle of a scalene right angled

triangle contains with the semicircles described in like manner

on its two shorter sides two lunules which are together equal

to the area of the triangle ;
but it does not clearly appear that

the theorem in this more general form is rightly ascribed to him.

In his further attempts to square the circle, he succeeded only in

shewing that the problem could be solved if the lunule bounded

by an arc equal to a sixth part of the circumference and the

semicircle described outwards upon the chord of the arc as

diameter could first be squared. All this is fully discussed in a

passage of Simplicius,* a commentator on Aristotle, which is

given at length by Bretschneider, pp. 100121. Simplicius

gives a long extract from Eudemus, interspersed with references

of his own to Euclid, from which it appears that Hippocrates
made use of the following propositions in his researches. (1)

Circles are to one another as the squares of their diameters.

(2) Similar segments (defined as those which are the same

fractional part of the circumference) contain equal angles. And

(3) similar segments are to one another as the squares of their

bases. It is possible, as has been suggested, that by the angle
in a segment he means the angle subtended by the chord of the

segment at the middle point of its arc, not knowing that the

angle subtended at any point of the arc is constant and equal to

*
Simplicius, on Aristotle Dephysica auscultatione, fol. 12a (Yenetiis 1526).
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half the angle at the centre
; although prima facie it would

appear that, knowing already so much, he must have been

acquainted with this also.

7. The same passage of Simplicius contains an account

of the method by which Antipho, perhaps the well known

opponent of Socrates, attempted the quadrature of the circle.

He first inscribed say a square in the circle, then (bisecting

each quadrant) an octagon, then a 16-gon, and so on continually,

till at length he supposed a regular inscribed polygon to be

arrived at, having an infinity of infinitesimal sides, which was

to be regarded as coincident with the circle. Although hi&

principles were regarded as unsound by the ancient critics, he

had in fact introduced the fundamental idea of infinitesimals

into the geometry of curves, and had virtually proved (1) that

the areas of circles are as the squares of their diameters as

his contemporary Hippocrates had also somehow arrived at
;

and (2) that their circumferences are proportional to their

diameters. On the quadrature by Bryso, a contemporary

sophist, who regarded the circle as intermediate to an inscribed

and a circumscribed w-gon, and then applied the method of

Antipho, see Bretschneider's Die Geom. vor Eukl. pp. 126 ff.

8. Plato, although not greatly distinguished for his own

discoveries in geometry, became the founder of a school which

was soon to carry the science to unknown heights. He indeed

devised an organic solution of the problem of the two mean

proportionals, depending upon a double application of a pro-

perty of the right angled triangle, and gave a rule of his own

for constructing right angled triangles having their sides com-

mensurable (Proclus on Euclid I. 47) ;
but he rendered far

greater service to geometry by his systematic treatment of its

definitions and primary ideas, and by the impulse which he gave
to the study amongst his disciples by insisting upon a knowledge
of it as a prerequisite for metaphysical speculation, writing up

(as it is said) before his vestibule, /t^Sa? ayetofierpijTO^ etVtVw

fiov rr)v a-Teyrjv. To Plato are attributed the propositions

Euclid Till. 11, 12. One of his disciples Theastetus, who had
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been led by him to the study of incommensurable quantities

in connexion with proportion, became the author of the propo-

sitions Euclid x. 9, 10. Another, Menaechmus, developed the

germs of stereometry received from him and was led, in what

way we can only conjecture, to the discovery of the conic

sections, which is sometimes erroneously attributed to Plato

himself, owing to a misunderstanding of the term rrjv IQ^V 3

the section, in a passage quoted above from Proclus [p. xix],

where it refers not to the cone but to the right line. Archytas
of Tarentum, a contemporary of Plato, propounded a solution of

the Delian problem, and is said to have been the first to apply
the method of organic description to geometrical figures; a

method which Plato (notwithstanding his own application of it

as above mentioned) condemned, as tending to materialise

geometry and bring it down from the region of eternal and

incorporeal ideas. It was one of his sayings, rbv 0ebv del

yewjAeTpelv, which Plutarch discusses in his Qucest. Conviv.

lib. vin. q. 2. Plato is said (Diogenes Laert. lib. ill. cap. 1) ^/
to have introduced the method of geometrical analysis, and to Analysis.

have communicated it to Leodamas of Thasos.

9. Menaachmus,* a hearer of Eudoxus and contemporary Menaechm

with Plato, is expressly said by Proclus (on Euclid I. def. 4), 350-330.

upon the authority of Geminus, to have been the discoverer

of the conic sections, which were accordingly at first named -,

after him the " Menaechmian triads" [p. 194]. He also applied

them in two ways to the solution of the problem of the two

mean proportionals [pp. 45, 189], to which the Delian problem
had been reduced by Hippocrates of Chios. It remains to

consider whether he in the first instance regarded the curves

in question as plane loci or as sections of a cone. In favour

of the former view it may be urged that, as geometers before

and after him were led to the discovery of the quadratrix,
the conchoid and other plane loci in their attempts to square
the circle or trisect the angle, so Menajchmus may have dis-

* The anecdote which brings Mensechmus into relation with Alexander the Great

[p. xx] is consistent with the supposition that he was a younger contemporary of

Plato.
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covered his triad of curves in considering bj means of what
loci* the construction of a pair of mean proportionals to two

given magnitudes might be effected. This implies the use of

the method of geometrical analysis, which was said to have

been discovered by Plato [p. xxxi] ;
and accordingly we find that

Eutokius, who gives in detail the two solutions by Menaachmus

of the problem of the two means (Archimed. Op. pp. 1412,
ed. Torelli), represents him as having employed the method

in both cases. But it is more important to notice that it was

used by Eudoxus, of whom Mensechmus was a hearer [p. xix].

(1) The problem being to find the two magnitudes x and y
which with two given magnitudes a and b constitute the con-

tinued proportion

a : x = x '. y = y i b,

it was seen that the relations x* = ay and y*
= bx were to be

satisfied. Being then, as we have seen reason to conclude,

already familiar with the idea of a locus, Menaechmus had

virtually discovered the parabola regarded as the plane locus

determined by the relation x* = ay, and it was evident that

by the intersection of two such curves the required construction

could be effected [p. 45].

(2) In his second solution of the problem he makes use of

a parabola and a rectangular hyperbola [p. 189], the latter curve

being regarded as possessing the property that the product

of the distances of any point on it from the asymptotes is

constant
;

whence it is inferred by Bretschneider (Die Geom.

vor Eukl. p. 162) that the asymptotes of the hyperbola must

have been discovered very soon after the curve itself became

known. But when we consider that the assumed relations,

a : x = x :y = y : J,

are evidently equivalent to xy = ab and x* = ay, it commends

itself as a not less simple hypothesis that, having already formed

the conception of the curve x* = ay, Menaechmus was further

led by the conditions of the problem to attempt the construction

* We have seen, from his acquaintance with the quadratrix, that Dinostratus, the

brother of Menaechmua not to mention Hippias of Elis in the preceding century

must have been familiar with the idea of a locus [p. xxvii].
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of the curve satisfying the relation xy = ab. This at any rate

seems to be the only property of the hyperbola with which he

cau be safely assumed to have been acquainted. The ellipse

does not occur in either of his solutions. To construct his loci

he may now have had recourse in the first instance to the

organic methods reprehended by Plato,* not at first perceiving
that they could be more simply constructed by cutting the right

cone by planes. It is less natural to supposef that after the

discovery of their genesis from the cone Menaechmus, or his

followers, should have thought it necessary to trace them by
mechanical appliances, of such a nature as to be almost immedi-

ately rejected and forgotten. But even if he never so traced

them, he may still have discovered them as plane loci. Their

actual description}: was felt to be a difficulty many centuries

later.

10. The conic sections, in whatsoever way first discovered,

soon came to be regarded as "
solid loci," and problems which 82

required them for their solution were called " solid problems."
The first writer on the subject was Aristaeus the Elder, who

distinguished the three conies as the sections of the acute-angled,

right-angled and obtuse-angled right cones respectively by

planes drawn at right angles to their sides [p. 195]. He is

said by Pappus|| to have written five books of Conic Elements,
and five (in continuation ?) upon Solid Loci, thus preparing the

way for the work of Euclid on Conies. He also instituted a

comparison of the regular polyhedra,H to which Euclid may
have been indebted in the thirteenth and last book of his Elements.

We assign to Aristaeus the date B.C. 320, to indicate that he

was intermediate to Euclid and Menaechmus.

* Plutarch Qucest. Conviv. lib. vm. q. 2; Vita Marcelli, cap. 14.

f Bretschneider Die Geom. vor Eukl. p. 143.

J Eutocius (on Apollonii Conica I. 20, 21) remarks that it was often necessary,

i& Tr\v iiroplav rtov opyuvwv, to describe a conic by points, and that this might be

done by means of the relations y
2 = px, &c.

||
Collect lib. vn. 29 Ac. (vol. n. 6726, ed. Hultsch).

Viviani [p. 221], in a Secunda divinatio $c. (Florent. 1701), attempted to restore

the Loco. Solida of Aristaeus.

^ See prop. 2 of the so-called 14th book of Euclid's Elements.

c
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SECTION II.

FEOM EUCLID TO SEEENUS.

Euclid 1. The birthplace of the geometer Euclid, sometimes

soo'. confounded with his namesake of Megara, is unknown. He
lived under the first Ptolemy (B.C. 323284), about two centuries

after the death of Pythagoras ;
and we find him established at

Alexandria,
" etwa im Jahre 308, als den ersten Mathematiker

seiner Zeit."* Of the various lost works attributed to him we

may mention (1) his treatise on Conies, which formed the

nucleus of the great work of Apollonius, and (2) the three

books of PorismS) to which we shall again refer in speaking of

Pappus. His 2rot^;eta or Elements was written in thirteen

books, to which a fourteenth and a fifteenth (by Hypsicles of

Alexandria) are sometimes appended. The books 16 are too

well known to need description. Books 79 are on the pro-

perties of numbers
;
book 10 on incommensurable magnitudes ;

and books 1113 on stereometry. Book 10 commences with

the proposition, that If from the major of two given magnitudes

more than its half be taken away, and from the remainder more

than its half, and so on continually ; a remainder will at length

be arrived at which is less than the minor given magnitude.

Since the minor given magnitude may be assumed to be as

small as we please, the proposition is seen to embody the idea

of convergent series and the principle of the "method of ex-

haustions." The book ends with the proposition that the

diagonal and the side of a square are incommensurable. The

12th book contains applications of the method of exhaustions

to plane and solid figures, and it is shewn that the areas of

* See Moritz Cantor's Euclid und tein Jahrhundert p. 2 (Zeitschrift. f. Math, n,

Physik. Suppl r. 1867).
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circles are as the squares of their diameters (prop. 2), every cone

is the third part of a cylinder having the same base and altitude*

(prop. 10), and the volumes of spheres are as the cubes of their

diameters (prop. 18). In the 13th book, which is a sequel to

the 4th, it is shewn that there are but five regular polyhedra,

such as can be inscribed or circumscribed to a sphere. The
editio princeps of the Srot^eta was published at Basel in 1533

[p. 82] : the Arabic version at Rome in 1594. The Oxford

Grseco-latin edition, by David Gregory, of the extant works of

Euclid was issued in 1703 : it contains the Elements, Data,
Introductio Harmonica, Sectio Canonis, Phenomena, Optica,

Catoptrica, De Divisionibus Liber, De Levi et Ponderoso

fragmentum. Notice also Peyrard's Les (Euvres d" Euclide, en

grec, en latin et enfrangais (Paris 181418).
To what extent Euclid was himself a discoverer we are

unable to say, but in his Elements he is to be regarded mainly
as a compiler. His system as a whole must however have been

more or less original in its conception ;
and the best testimony

to its superior method and completeness is the subsequent

neglect and disappearance of the cognate works of his pre-

decessors. But his work, although the most ancient on the

STo^eta still surviving, must not be supposed always to

preserve the most ancient methods of proof. Thus the theorem

of Thales (Euclid I. 5) cannot have been first proved in the

manner of Euclid ;f whilst Proclus expressly states that the

theorem of Pythagoras was not originally proved as in

Euclid I. 47. It was also perhaps first shewn more briefly than

by Euclid that circles are as the squares and spheres as the

cubes of their diameters.

2. Archimedes of Syracuse was born in the year 287 B.C.J
Archimedes

According to Plutarch
(
Vita Marcelli cap. 14) he was related 287212.

* This theorem, as we shall see, was discovered by Eudoxus [p. xxxriii].

f The more direct way of deducing it from prop. 4 is mentioned by Proclus, in

connexion with the name of Pappus.

J Notices of the life and works of Archimedes (and of Apollonius) are contained

in Cantor's Euclid u. s. Jahrhundert. See also Heilberg's article on his knowledge
of the KegelschniUe in the Zeitschr.f. Math. u. Physik (April 1880).

c2
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to king Hiero, whilst Cicero on the other hand speaks of him

as "humilem homunculum" (Tusc. Disp. lib. Y. cap. 23). He
was a master not only of geometry, but also of theoretical and

applied mechanics. By his scientific conduct of the defence of

Syracuse against the Romans the siege was protracted for two

years, till at length the city was carried by a surprise from the

land side, and Archimedes fell by the hand of a soldier (212 B.C.).

His grave was marked by the figure of a sphere inscribed in a

cylinder, in commemoration of his most cherished discoveries,

and by that sign it was recognised by Cicero in the course of

his quaestorship in Sicily. His works, according to the Graeco-

latin edition of Torelli (Oxon. 1792), are as follows:

(1) De Planorurn ^Equilibriis* Two books, with the tract

Quadratura Paraboles placed between them (pp. 160).

(2) De Sphcera et Cylindro. Two books (pp. 61-201).

(3) Circuit Dimensio (pp. 203-216).

(4) De Helicibus (pp. 217-255).

(5) De Conoidibus et Spheeroidibtts (pp. 257318).

(6) Arenarius (pp. 319-332).

(7) De Us quce in Humido vehuntur. Two books, in Latin

only (pp. 333-354).

(8) Lemmata, translated from the Arabic (pp. 355-361).

(9) Opera mechanica, ut cuj usque mentio ab antiqnis scrip-

toribus facta est (pp. 363-370).

We learn also from one of the scattered notices of Archimedes

in the Colhctio of Pappus (lib. V. 34 vol. I. p. 352, ed. Hultsch)

that he discovered thirteen semi-regular polyhedra, bounded by

regular but not similar polygons one of them, for example,

by 20 triangles and 12 pentagons, another by 30 squares, 20

hexagons and 12 decagons. But his greatest achievements in

geometry were his approximate quadrature and rectification of

the circle, his quadrature of the parabola, and his applications of

the method of exhaustions to the quadrics of revolution.

* To this treatise and to (2) and (3) are appended the commentaries of Eutociua

of Ascalon (510 A.D.).
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3. In the introduction to his treatise

ria/ja/3oX?}?, as later scribes have entitled it,
Archimedes q

remarks that none before him, so far as he knows, has attempted
to quadrate the segment cut off by a right line from the " section

of a right-angled cone," for so he calls the parabola [p. 195].

His theorem, which was first arrived at by mechanical con-

siderations and afterwards proved by pure geometry, is stated

as follows :

The segment contained by any right line and the section of a

right-angled cone is equal to four-thirds of the triangle which has

the same base and altitude as the segment.

a. In the mechanical proof he shews first that a triangle

CDE suspended from a lever of equal arms AB and BC, so as

to have its side DE vertical and in a line with the fulcrum B,
is balanced by an area equal to one-third of its own suspended
from A (prop. 7) ;

and that the parallel sided trapezium cut off
'

from the triangle CDE by two vertical lines drawn at horizontal

distances h and k from B is balanced by an area suspended at A
h k

intermediate to ^-T
and -77^ of the trapezium (prop. 13).

Lastly, supposing a parabolic segment on BD as base to be

suspended with its vertex downwards, he arrives at the required

quadrature by successive applications of the foregoing theorems

after the manner of the method of exhaustions.

b. The following is a summary of his second and purely

geometrical proof of the same theorem (props. 2024). If P
be the vertex [fig. p. 58] and QQ' the base of a segment of a

parabola, the triangle QPQ' is greater than half the segment.
Take away this triangle from the segment, and from the

remaining segments PQ and PQ' take away their corresponding

triangles, and from the four remaining segments their corre-

sponding triangles, and so on continually. Thus at length

(Euclid x. 1) we arrive at a remainder less than any assignable

magnitude.* Now the sum of all the above mentioned triangles

* By this continual subtraction the area of the segment is at length exhausted,

Hence the term " method of exhaustions."
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is (1 + 7+ 75 +...+ TS) &PQQ', and the limit of this when n
\ 4 4 4 /

is infinite is $&PQQ\ which is accordingly the area of the

segment. Notice that at the end of prop. 3 he alludes to an

existing treatise on Conies :
" These things are proved ev rots

Row/ecu? 2roi^e/ot<?," as he does again in De Conoid, et

Sphceroid. props. 3, 4. There is no reason to think, as some

have done, that he is referring to a treatise of his own.*

The sphere. 4. In the introductions to some of his treatises, Archimedes

refers to what had been done by earlier geometers. Thus in

the introduction to the Quadratura Paraboles (p. 18), having
stated as his primary lemma,f that the excess of one magnitude
over another may be continually added to itself till the sum exceeds

any assigned magnitude, he remarks that it had been applied by
those before him, viz. to prove that circles and spheres are as

the squares and the cubes respectively of their diameters, and

that any pyramid or cone (Euclid xii. 7, 10) is the third part of

the prism or cylinder having the same base and altitude. In the

introduction to De Sphcera et Cylindro lib. T. (p. 64), he gives

the important information that the cubatures of the pyramid and

Eudoxus the cone (Euclid xn. 7, 10) were discovered by Eudoxus.J
sea'. These properties preexisted in the figures, but (though many

notable geometers lived before Eudoxus) no one had discovered

them. In like manner, none before Archimedes had discovered

that the surface of a sphere is equal to four times the area of

one of its great circles (prop. 35) ; the volume of a sphere to two

thirds of the circumscribed cylinder having the same altitude,

and its surface to two thirds of that of the cylinder (prop. 37) ;

the surface of any segment of a sphere to the area of the circle

whose radius is the line from the vertex of the segment to any

point on its base (props. 489); and the volume of the solid

sector determined by any segment to the cone whose base and

* Compare the introductory remarks of Eutocius on Apollonii Conica (p. 8, ed

Halley).

f See also De Helicibvs (p. 220).

J Eudoxus of Cnidus flourished in the 103rd Olympiad, and died about 357 B.C.,

according to Bretschneider Die Geom. vor Eukl. p. 163.
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altitude are severally equal to the surface of the segment and

the radius of the sphere (prop. 50).

In lib. II. it is proved that the volume of any segment of a

sphere is equal to that of a cone of certain altitude described

upon its base (prop. 3) ;
and the theorems now established are

applied to solve the problems : to find a plane area equal to the

surface of a given sphere (prop. 1), to describe a sphere equal
to a given cone or cylinder (prop. 2),* and to divide a given

sphere into segments whose surfaces or volumes shall be in a

given ratio (props. 4, 5).

8 5. In the Circuit Dimcnsio it is shewn, that any circle is circuit

dimeiibio*

equal to the right angled triangle whose sides about the right

angle are equal to the radius and the circumference of the circle

(prop. 1) 5
a circle is to the square on its diameter as 11 to 14,

approximately (prop. 2) ;
and that the circumference exceeds

thrice the diameter by a fraction of it less than f and greater

than U (prop. 3). These last results are obtained by regarding
the circumference of a circle as intermediate in length to those

of its circumscribed and inscribed 96-gons. Thus we see that

Archimedes treated the problem both as a quadrature and a

rectification of the circle; and he shewed, not only that IT is

nearly equal to 3f ,
but that it is less than 3 j and greater 3f .

We may therefore fairly say that his approximation was exact

to three places of decimals, since the mean of his two limits

gives TT equal to 3.1418 &c. The approximation in the Ixhind

papyrus makes it greater than 3.16 [p. xxvi].

6. In the treatise De Helicibus he defines his helix or spiral of

m
Archimedes.

spiral (r
= ad) as generated by the double motion of a point,

which moves uniformly outwards from a fixed origin, in the

direction of a radius vector which itself rotates uniformly about

that origin. Supposing the generating point to start from the

* A solution of the problem of the two mean proportionals being here pre-

supposed, Eutocius (pp. 135149) gives the methods of Plato, Hero, Philo of

Byzantium, Apollonius, Diocles, Pappus, Sporus, Mensechmus, Archytas, Eratosthenes

and Nicomedes, rejecting that of Eudoxus (pp. 135, 149), perhaps for insufficient

reason (Bretschneider Die Geom. vor Eukl. p. 166).
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origin and to arrive at the point A after n complete revo-

lutions of the radius vector, he shews that the intercept made

by the tangent at A upon the radius vector at right angles to

OA is equal to n times the circumference of the circle described

with OA as radius (prop. 19), thus effecting the rectification and

quadrature of the circle with the help of his spiral; and in

prop. 20 he proves the corresponding theorem for any other

position OR of the radius vector.* The quadrature of the

spiral is determined in props 24-28. From the introduction to

this treatise we learn that there were other able geometers in

the time of Archimedes, with whom he was in correspondence ;

and that there were also pretenders addicted to claiming more

than their due, for whose discomfiture he propounded false

theorems, of which examples are given (p. 218).

His spiral affords the simplest illustration of the generation

of curves by an angular compounded with a linear motion,

according to the idea of Plato, who "establishing two most

simple and principal species of lines, the right and the circular,

composes all the rest from the mixture of these" (Proclus on

Euclid I. def. 4). Desargues (1639 A.D.) threw out the sug-

gestion that a conic might be thus described, but assigned no

law of movement.t On Roberval's rule for drawing the

tangent to a curve at any point, regarded as the line of the

resultant of all the movements of the point, see Chasles' Apergu

Tiistorique p. 58 (1875).

The conoids. 7. The book De Conoidibus et Sphceroidibits contains

various theorems on the cubature of the quadrics of revolution,

the sphere having been already dealt with in a separate work.

The figure generated by the rotation of a " section of the right

angled cone" about its axis, that is to say, the paraboloid of

revolution, is called the right angled conoid
;

the hyperboloid

of revolution is called the obtuse angled conoid
;
but the " acute

angle conoid," as it should be called, is more briefly termed the

* Thus in effect he determines the trigonometrical tangent of the angle between

OK and the tangent to the curve at R.

t Poudra (Euvre* de Desargues yol I. 227, 298.
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spheroid. It is shewn that the areas of ellipses are as the

products of their axes (prop, 7) ;
that an infinity of right cones

or cylinders can be drawn so as to contain a given ellipse

(props. 8 -10) ;
and that the plane sections of the conoids and

and spheroids are conies (props. 1215). The book concludes

with a series of propositions on their cubature (props. 21-34),
which are proved by a process closely related to the method

of integration.

8. The method of exhaustions employed by Euclid

Archimedes involved a tedious reductio ad absurdum^ and was

perhaps first elaborated as a means of verification rather than of

discovery. The idea of regarding a curve as a limiting form of

polygon was propounded, for the case of the circle, by Antipho

[p. xxx], in the fifth century B.C.
;
and the fact that circles are

as the squares of their diameters was thus rendered intuitive,

presupposing only a well known relation between the areas of

similar rectilinear figures. As regards this property of circles

and the analogous property of spheres, the proofs given by
Euclid may be supposed merely to have established more rigidly

what had been already divined by a summary process ;
but the

use of the method of exhaustions was more apparent in the

actual evaluation of volumes and areas. Granted, for example,
that a curvilinear plane area might be regarded as divided into

rectilinear elements by an infinity of consecutive ordinates, the

summation of its elements could not well have been effected

directly before the invention of some form of algebraical calculus.

Instead of regarding the small elements of a curve as ulti-

mately rectilinear, the ancients would (in the case supposed) have

proceeded somewhat as follows. Project every ordinate upon
the next before and the next after it by parallels to the axis of

abscissae : thus two sets of parallelograms are constructed, to

which the area of the curve is intermediate: suppose the difference

between the two sets to be indefinitely diminished by increasing

the number of ordinates, and then apply the method of reductio

ad absurdum, as above mentioned. For actual cases of the

subdivision of surfaces by parallel planes, and their cubature

by this method, see De Conoid, et Sphceroid. props. 2124. The
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stereometrical work of Archimedes was revived and continued

by Kepler, whose Nova Stereometria prepared the way for the

modern forms of the infinitesimal calculus.

9. Apollonius of Perga was born in the reign of Ptolemy
247-205.

Euergetes (247-222 B.C.), studied at Alexandria under the

successors of Euclid, and flourished in the reign of Ptolemy

Philopator (222-205 B.C.). Of his various works* the most

famous was the Kcovitcd, which gained for him (according to

Geminus)f the title of the Great Geometer. In the account of

this work given by Pappus,| it is divided into two tetrads of

books, the former founded on Euclid's four books of Conies, and

the latter supplementary to them. Apollonius in like manner,
in his introductory letter to Eudemus, draws a distinction

between books 14, which he describes as elementary, and the

remainder, which were jrepiovcriaaTitca>Tpa) at the same time

pointing out that the former also contained very much that was

new. The Oxford edition by Halley (1710) contains books

14 with the commentary of Eutocius, in Greek and Latin

(pp. 1250); and in a second part, books 57 translated from,

the Arabic and lib. viil. "restitutus" (pp. 1-171). The volume

concludes with the two books of Serenus on the Cylinder and

the Cone, in Greek and Latin (pp. 188). The contents of the

several books of the Conies of Apollonius are specified below.

The most striking evidence of his geometrical power is afforded

by the fifth book, in which he solves the problem of drawing
normals to a conic from an arbitrary point in its plane, and

evaluates the coordinates of what we call the Centre of

Curvature at any point of a conic. To have worked out such

results with the means at his disposal is an achievement not

unworthy of the greatest of geometers in any age.

(a) Book I. A conical superficies is defined as the surface

generated by an infinite right line, which passes through a

fixed vertex and moves round the circumference of a given

* See the notices in the Collectio of Pappus; and cf. Cantor's Euclid . s.

Jahrhundert pp. 4464.

f Halley's Apollonii Conica p. 9. Geminus lived about 150 B.C. (Cantor p. 52).

J Colleetio lib. vn. 30 (vol n. p. 672, ed. Hultsch).
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circle : the term Cone is used specially of the finite portion of

the superfices between the vertex and the circle or base. The

Axis is the line from the vertex to the centre of the base. The

plane through the axis at right angles* to the base cuts the

cone and its base in a triangle, which is called " the triangle

through the axis ;" and every chord of the cone at right angles
to the plane of this triangle is bisected by it (prop. 5). Any
plane at right angles to the plane of the triangle through the

axis meets the conical surface in general in one of the three

curves formerly distinguished as the sections of the right, obtuse

and acute angled cones respectively. These names being thus

found to be inappropriate, others have to be suggested in their

place. The new names may be briefly explained as follows

[p. 82], The Parabola is so called because at every point of
it, v/

ifp be the parameter, ?/

2
is equal to px', the Hyperbola because

y* is greater than px ;
and the Ellipsef because y* is less than

px (props. 11-13). He is now practically independent of the

cone, and starts afresh from the relation between the ordinate

and the abscissa. See also props. 2021. It is shewn later in

the book, that the tangent to a conic at any point and the

ordinate of the point to any diameter divide the diameter

harmonically (props. 34-38) ;
and lastly a construction is given

for describing two conjugate hyperbolas with a given pair of

conjugate diameters (prop. 56).

In the use of coordinates! by the ancients, as for example Application
of areas.

by Apollonius in this book, and in a more striking way in his

fifth book the form of procedure *was strictly geometrical

throughout. Hence we see more clearly the importance of the

* After prop. 5 this plane is called briefly
" a plane through the axis." There is

the same laxity of statement in def. 10, where the right line bisecting a system of

parallel chords of any curve line
(ird<rjs Ko/uiruA.?;? ypummfi^) in one plane is defined

as a diameter
; whereupon Eutocius remarks that he rightly adds in piano, to exclude

the cylindrical helix and the sphere.

f If the three conies were first discovered in the order in which Apollonina

(perhaps following Euclid and Aristaeus) here introduces them, this tends rather to

support the conjecture that they were discovered in piano [p. xxxii], since the

contemplation of the cone, which was regarded as a finite figure (Euclid xi. def. 18),

would have revealed the ellipse first instead of last. Geminus (Proclus on Euclid I.

def. 4) called the ellipse Qvpt6?, from its shape. Cf. cissoid, conchoid, cardioid.

J The term ordinate was derived by translation from the Greek.
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7rapa/3o\ij of areas [p. XXV.]. In its simplest form this

amounted to finding the line which in conjunction with a given
line determines a rectangle, or other parallelogram (Euclid I. 44),

of given area, which corresponds to the algebraical division of a

given product by one of its factors. A further use of the term

occurs in the determination of the foci of a central conic which

Apollonius calls "the points arising e'/c T?}? Trapa/SoA,?}?," puncta
ex applicatione facta. Here the problem is to divide the axis

into segments whose product is equal to the fourth part of " the

figure" [p. 82], or to determine x and y from the relations

x + y 2a and xy H*. The application to a given line of a

parallelogram deficient or exceeding by a parallelogram similar

to a given one is the subject of the propositions Euclid VI.

2729. For an extension of the method to an indefinite series

of magnitudes, see Archimedes De Conoid, et Sphceroid. prop. 3.

Thus the "
application" of areas, so far as it went, was to the

ancient geometry what algebra, which deals with products and

factors, is to the geometry of Descartes.

(b) Book II. The asymptotes are thus defined: on the

tangent to a hyperbola at any point P take PT and PI7

',
each

equal to the parallel semi-diameter
;
then the lines CT and GI7

',

and these alone, being produced to infinity, do not meet but

approach indefinitely near to the curve (props. 1, 2, 14).

Through a given point a hyperbola can be drawn so as to have

a given pair of lines for asymptotes (prop. 4). The opposite

intercepts made on any straight line by the curve and its

asymptotes are equal to one another, and the product of two

adjacent intercepts is equal to the square of the parallel semi-

diameter (props. 811). The product of the distances of any

point on the hyperbola from its asymptotes is constant (prop. 12).

A line parallel to an asymptote meets the curve in one point

only (prop. 13). The tangents to conjugate hyperbolas at the

extremities of any two conjugate semi-diameters meet on one

or other of the asymptotes (prop. 21). The diameter through
the point of concourse of any two tangents to a conic bisects

their chord of contact (props. 29-30). Supplemental chords of

a hyperbola are parallel to conjugate diameters (prop. 37).
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Given a central conic, to find its centre and axes (props. 45-8) ;

and to draw a tangent making a given angle with the axis

(prop. 50), or with the diameter through its point of contact

(props. 51-3).

(c) Book in. The diameters through any two points of a

conic contain equal triangles with the tangents at those points

(prop. 1). The rectangles contained by the segments of any
two intersecting chords of a conic are as the squares of the

parallel tangents (props. 1623). Any chord through the inter-

section of two tangents to a conic is cut harmonically* by their

point of concourse and their chord of contact (props. 3740) : the

special case of any chord through the intersection of a tangent
and an asymptote is treated separately in props. 3436. Thus

a substantial contribution is made to the theory of polars,

afterwards completed by Desargues. Any three tangents to a

parabola cut one another proportionally (prop. 41). Two

tangents being drawn at the extremities of any diameter, the

product of their segments by any third tangent is equal to the

square of half the conjugate diameter (prop. 42). The tangent

to a hyperbola cuts off a constant area from the space between

the asymptotes (prop. 43). The foci of a central conic, or

"
puncta ex applicatione facta," are determined and their

principal properties proved in props. 4552 [p. Ill]; but

since the process of "
application" fails when the axes become

infinite, he does not detect the existence of the focus of the parabola.

This third book is said by Apollonius, in his preface to the

entire work (p. 8), to contain many wonderful theorems, for

the most part new
;
and he adds that Euclid was not able to

construct the Locus ad tres et quatuor lineas generally,! but only

some special case of
it,

and that indifferently ;
for in fact it was

not possible to complete the construction " without our further

discoveries," where the allusion is doubtless to props. 16-23

[p. 266]. From the extant works of Apollonius we learn

nothing about the nature of this Locus, and even the com-

* The expression
"
harmonically" is however not used by Apollonius. On polars

with respect to a circle see 13 (f).

t The proof for the case of the circle presents no difficulty [p. 235] .
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mentator Eutocius cannot explain the allusion (p. 12). Pappus
however informs us what the problem really was, and states

"tlearly that the locus in question is a conic. He then speaks

of the locus analogously related to more than four given lines

(Collectio^. 680, ed. Hultsch). Considering the distances of a

point from six given lines, we may say that the solid contained

by three of the distances varies as that contained by the re-

mainining three
;
but we cannot go on to more than six given

lines, and say :
"

if the ratio of the content of four of the

distances to the content of the remainder be given, since there

is not anything that is contained by more than three dimensions.

Nevertheless, men a little before our time have allowed them-

selves to interpret such things, signifying nothing at all

comprehensible, speaking of the product of the content of such

and such lines by the square of this or the content of those. These

things might however be stated and shewn generally by means

of compounded proportions &c." These predecessors of Pappus,

a?gltaic
w^ were n t to be confined to three dimensions, were evidently

geometry. aigebraic geometers, who considered lines not directly as such,

but only in their numerical relations to a unit of length.

(d) Book IV. No two conies can have more than four

points of concourse (props. 25, 36, 404, 53), or two of concourse

and one of contact (props. 26, 458, 54), or two of contact

/ (props. 27, 38, 4951, 55). Two parabolas can only touch one

another in one point (prop. 28).

If the earliest writers on conies had not dealt with the

subject of this book (p. 217), and if the principal part of book 3

was also new, we may conclude that the Conies of Euclid

contained little or nothing that is not to be found in books 1

and 2 of Apollonius and that the earlier Elements of Aristaeus

were meagre, or " somewhat concisely written." Their treatises

would have contained elementary propositions on the right cone^

the relation of the ordinate to the abscissa in each section, the

property of a diameter, some construction of a tangent with the

determination of its intercept on any diameter, and the leading

properties of the asymptotes ;
but nothing about foci, or normals,

or the metric relations of conjugate diameters, or of intersecting

chords of the general conic drawn arbitrarily.
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(e) Book V. Under the title De Maximis et Minimis, this

book treats of the four Normals (regarded as greatest or least

lines) that can be drawn to a conic from a given point in its*

plane, and establishes the complete analogue of Euclid in. 7, 8

for the general conic. If P be any point on a conic, N its

projection upon the axis, A the nearer vertex, AL parallel to

NP and equal to half the latus rectum, and Q the point in which

the diameter CL meets PN, then

PNZ = 2 trapezium ANQL.

From this relation between the coordinates PN and AN the

following results are elaborated.

If the abscissa AN be less than AL, the least right line from

N to the curve is NA, and the greatest is NA' the remainder

of the axis (props. 4-6); but ifAN be greater than AL, the

least line from N to the curve is such that its projection upon
the axis is equal to AL in the case of the parabola, and in other

V
cases to -, ON (props. 810), which is the property of the

a

subnormal. The greatest lines from given points on the minor

axis of an ellipse to the curve are then considered (props. 1622),
and it is shewn that the intercepts upon them between the

curve and the points in which they meet the major axis are

the least lines that could be drawn from those points to the

curve (prop. 23). All such greatest and least lines meet the

conic at right angles (props. 27-33) ;
and if be any point on

one of them and N be the point at which it meets the curve

normally, then ON is also a greatest or least line from to

the curve (props. 12, 21, 34). Four normals (as we shall now
call them) to a semi-ellipse, or three normals to an elliptic

quadrant, cannot meet in one point (props. 478). If be any

point in the plane of a conic whose abscissa AN is not greater
than AL, no normal can be drawn to the conic from so as to

fall within the angle AON (props. 49, 50); but if AN be

greater than AL, then according as ON is greater than, equal

to, or less than a certain length X no normal, or one, or two can

be drawn to the conic from so as to fall within the angle
AON (props. 51-2).
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To determine the length X, divide the semi-axis CA in H
so that

CH:NH=CA:AL;
between CH and CA find two mean proportionals* CL and

CK, so that

CH: CL=CL: CK=CK: CA]

and lastly, supposing CK to be an abscissa measured towards

A, and P the point on the curve (on the opposite side of the

axis to 0} having CK for its abscissa, take X to PK in the

compound ratio of CN to CH and HK to CK, so that

X : PK= CN.HK: NH.CK.

Hence, writing a and b for the semi-axes, we find that

X _ a'- J* / CH\ _ aP-y /-^' " 1 -
04V'

X
a'- J'W*.or A, = TJ JrJL

j

and therefore CiV and X are equal to the coordinates of the

centre of curvature at P, which is here virtually regarded as

the point of the ultimate intersection of consecutive normals, since

if the ordinate of be diminished however slightly, at once

becomes a point from which two normals can be drawn. The

locus of is the evolute of the conic [p. 221].

When ON is less than X, he determines a certain point S

having CH for its abscissa and a certain point I on PK, and

through / he describes one branch of a rectangular hyperbola

(pp. 39, 40), having for asymptotes the parallels through 2 to the

axes of the given conic. This semi-hyperbola intersects the

conic in two points X and Y, the normals at which are OX

* The Arab interpreter givea a construction (p. 40) for two mean proportionals

identical with that of Ex. 630 [p. 189].
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and OY [p. 265].* To determine the positions of 2 and /,

produce ON to a point M such that

OM: MN=a*:b2

;

through M draw a parallel to the transverse axis, meeting the

ordinate through H in 2, and PK in G
;
and upon PG take

the point /, such that GI.G^^^M.MO. The rectangular

hyperbola may then be described. Afterwards he considers

other positions of the point from which the normals are to be

drawn, making use of the same hyperbola of construction

(props. 55, 58-63). In prop. 75 (the last but two) it is shewn,

that if the normals at three points PQR on the same side of the

axis of an ellipse cointersect in 0, the normal OP nearest to

the vertex remote from is the longest line from to the

semi-ellipse, and the normal OH nearest to the vertex A
adjacent to is the longest line that can be drawn from to

the arc A Q.

(/) Book vi. Similar conies being those in which corre-

sponding ordinates and abscissa? are proportional, it is shewn

that all parabolas are similar (prop. 11); as also are central V
conies the figures upon whose axes are similar (props. 12, 13).

At the end of the book it is shewn how to cut a section of

given form and magnitude from a given right cone (props. 2830),
and conversely, how to draw a right cone similar to a given
one through a given conic (props. 31-3).

(g) Book vn. In props. 6, 7 use is made of supplemental
chords drawn from the vertices. Cf. lib. II. 37. The sum or

difference of the squares of conjugate diameters is constant

(props. 12, 13) |
and in the equilateral hyperbola conjugate

diameters are equal (prop. 23). The conjugate parallelogram
is equal to the rectangle contained by the axes (prop. 31). The
relative magnitudes of conjugate diameters in various special

cases are then discussed.

(k) Book vm. Of this book there is only a conjectural

restitution. Thirty-three propositions are given, containing

* HALLEY, in a Scholion on Serenus De Sect. Coni prop. 39 (p. 69), gives a

construction for the three normals to a parabola from a given point, by means of a
certain circle through the vertex [p. 224].

d



1 PROLEGOMENA.

various special constructions, such as: given the axis and the

latus rectum of a central conic, to draw a pair of conjugate
diameters whose ratio, or sura, or difference is given

(props. 712).

10. In continuation of the account of the most brilliant

8 -

period of ancient geometry, the century of Euclid, Archimedes

and Apollonius, recourse must again be had to the Gollectio of

the much later writer Pappus, for information about the lost

three books of Porisms of Euclid. But two other names

meanwhile demand at least a passing allusion. In the Sphcerica

of Menelaus, a geometer and astronomer of the first century A.D.,

is found the theorem (lib. III. lemma 1 p. 83, Oxon. 1758) :

If the sides 07, gd, da of a plane triangle be met by any
transversal in the points erb respectively, then

ge : ea=gr.db : rd.ba,

or the product of three non-adjacent segments of the sides

of the triangle by any transversal is equal to the product of
the remaining three. This was also extended to spherical

triangles, and served as a basis for the spherical trigonometry
of the ancients. But the property of the six segments in piano
is here noticed on account of the great results to which it led

long after, especially in the hands of Desargues. See also

Chasles Aperqu historique Note VI. p. 291, 1875; Les Porismes

p. 107. Menelaus is mentioned in the fourth and sixth books

of the Collectio of Pappus (pp. 270, 476, 600-2 ed. Hultsch).

rtoiemy 11. Claudius Ptolemseus was "le plus ce"lebre, sans con-

i25-li39. tredit, mais non le plus veYitablement grand astronome de toute

1'antiquiteV' 'Thus writes Delambre in the Biographie Uni-

verselle (vol. 36. Paris 1823). In a work on the three dimensions

of bodies, Ptolemy introduced the idea of determining the

position of a point in space by referring it to three rectangular
axes of coordinates (ibid. p. 272). His chief work, which he

called a mathematical Syvra^t?, was further described by his

admirers as
1} fieydXt}, and by the Arabs as Almagest (17 fieyivrrj).
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In it* (Dictio Prima, cap. 12. fol. 95. Venet. 1515) he repro-

duces the theorem of the six segments ( 10), which has ac-

cordingly been ascribed to Ptolemy and founds upon it a

system of trigonometry, plane and spherical. For a full account

of his works see tome II of Delambre's Hist, de VAstronomic

ancienne (Paris 1817), comparing the Prcpfatio to the third

volume of Hultsch 's Pappus.

12. The Swaywyrj of Pappus was formerly best known Pappus

in the Latin version of Commandinus, but a complete Greek soo!

text of its Reliquice (with a Latin rendering) has at length been

edited by Hultsch.f It is a miscellany of mathematics and

mathematical history, to which we here refer chiefly to supple-

ment our account of Euclid by some notice of his great work,

the lost three books of Porisms. It is customary to place

Pappus near the end of the fourth century of our era; but

Hultsch, following Usener (Rheinisches Museum vol. XXVIII. 403),

considers him to have flourished under Diocletian, 284305 A.D.

A general account of the Porisms is given in lib. VII (pp. 636,

64860), where it is said, that the three books were an ex-

ceedingly skilful compilation, serving for the solution of the

more difficult problems: the doctrine of porisms was subtle

and general, and very delightful to persons of insight and

resource : nothing had been added to what Euclid wrote upon

them, except that some dull persons had given their second

redactions of a few of his propositions. Twenty-nine genera
of porisms are specified, and it is stated that the three books

contained 38 lemmas and 171 theorems. The 38 lemmas con-

stitute props. 127-164 of lib. VII of the Collectio (vol. II. pp.

866-918). Their enunciations are curt and unfinished, being
like private memoranda of the writer rather than complete

statements, and the whole doctrine of porisms long remained an

impenetrable secret. The first great step towards their inter-

* For his property of a trapezium abgd inscribed in a circle, viz. ag.bd=ab.gd+ ad.bg,
see cap. 9, fol. 5*.

t Pappi Alexandrini Collectionis qua supersunt, e libris MSS. edidit $c. Frid.

Hultsch (Berol. 187&-8). Lib. I. is lost, but portions of ir.-vm. remain. The
edition is in three volumes, in which the text has one pagination throughout. On
earlier editions see Pref. to vol. I.
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pretation was made by Simson (Phil. Trans. May 1723), and

the most complete work upon 'the subject is Chasles' Les trois

livres de Porismes d' Euclide retablis...conformement au sentiment

de R. Simson sur la forme des enonces (Paris 1860), which

contains a historical resume, an analysis (pp. 73-84) and enunci-

ation (pp. 87-98) of the lemmas, and a conjectural restitution of

the Porisrns.

13. Passing by the lemmas 18, 20, 21, 29-33, 36-38, we

may group the remainder as below, adhering (except in one

particular) to the classification of Chasles.

(a). Four fixed radiants cut any transversal in a constant

cross ratio.

Lemmas 3, 10, 11, 14, 16, 19. Props. 129, 136, 137, 140,

142, 145.

Lemma 3 (p. 870) affirms, that if any two straight lines

ABCD and AB'C'D' be drawn across three straight lines OB,

00, OD [p. 253], then

AB.DC : AD.BC = AB'.D'C' : AD'.B'C'.

Here we have, not quite directly stated, the theorem (a). In

lemmas 10 and 16 it is shewn conversely, that if {ABCD}
= {AB'C'D'}, the line DD' passes through the intersection

of BB and CC'. Lemma 19 is simply, that if [ABCD} = \,

then [AB'C'D'} = 1. Lemmas 11 and 14 follow from 3 and 10

respectively by taking one of the two transversals, as aBb in

Art. 103 [p. 251], parallel to one of the three radiants.

These Lemmas are used in the proof of lemmas 12, 13, 15, 17.

(ft).
The opposite sides and the two diagonals of any quadri-

lateral meet any transversal in three pairs ofpoints in involution.

Lemmas 1, 2, 4-7. Props. 127, 128, 130-3.

Lemma 4 (p. 872) will serve as an example of the obscure

enunciations of Pappus. The statement is as follows :

The figure ABCDEFGHKL, and as AF.BG to AB.CF
so let AF.DE be to AD.EF. (I say] that the line through the

points IIOF is straight.

This is in reality a converse of (b] [p. 26 1]. In lemmas 1

and 2 the transversal is parallel to a side of the quadrilateral.
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In lemma 5 it is drawn through the points of concourse A and

C of the opposite sides of the quadrilateral, and the line AC
is divided harmonically by the two diagonals, or if parallel to

one of them (lemma 6), is bisected by the other.

(c). Theorem reciprocal to the above.

Lemma 9. Prop. 135.

Lemma 9 (p. 878) is that, if AD and AE be drawn from

the vertex A to the base BC of a triangle, FO a parallel to

the base meeting AB in F and A C in G, and H a point on

DE such that

BH'.IIC=DH:HE,
the lines FH, OH meet AB and AC respectively in points

K and L lying on a parallel to BC.

This is the converse of a special case of the theorem, that

the three pairs of summits of a quadrilateral FGKL subtend a

pencil in involution at any point A in its plane ; the point H in

the case supposed being the centre of the involution in which

BE and CD are segments.

(d). If a hexagon be inscribed in a line-pair ,
its three pairs of

opposite sides meet in three points lying in a straight line.

Lemmas 8, 12, 13, 15, 17. Props. 134, 138, 139, 141, 143.

Lemma 13 (p. 886) is to the effect, that if AEB and CFD
be triads of points on a straight line, the three intersections

(AF, CE}, (FB, ED], (BC, DA],

are in a straight line. The figure AFBCED may be regarded
as a hexagon inscribed in a line-pair. Lemma 12 is the case

in which AB and CD are parallel. Lemmas 15 and 17 are

converse forms of 12 and 13.

Lemma 8* (p. 878) is thus enunciated :

Let ABCDEFG be a fiapio-KO?, and let DE be parallel to

BC, and EG to BF. Then DF is parallel to CG.

That is to say, if BC be the base of a triangle, DE (termin-

ated by the sides through B and C} a line parallel to BC, and

EG, BF a pair of parallels terminated by BD and CE
respectively or their complements, then DF, CG are parallel.

* This lemma is isolated in Chasles' classification (p. 78).
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In other words, ifFBCGED be a hexagon inscribed in a line-

pair BDG, CEF, the intersections (FB, GE], (BC, ED],

(CGf, DF] are in the case supposed at infinity ,
and in general

in one straight line.

(e). Harmonic section of a right line.

Lemmas 22-27, 34. Props. 148-153, 160.

These Lemmas are on the metric relations of the segments
of a harmonic range ;

but the term harmonic, although coined

long before [p. xxvi], is not employed.

(/). Property ofpolars with respect to a circle.

Lemmas 28, 35. Props. 154, 161.

These Lemmas (pp. 904, 914) are to the effect, that any
chord of a circle drawn through a fixed point without or within

it is divided harmonically by the point and a certain fixed

straight line. Of this proposition, which in its entirety is the

foundation of the theory of polars with respect to a circle, the

former part only was extended by Apollonius to the conies

(lib. in. 37).

FOCUS and 14. To Pappus we are further indebted for the earliest
directrix/

>/ trace of a focus of the parabola, and of a directrix of any conic.

In the Collectio lib. VII. prop. 238 (p. 1013) is the theorem, that

the locus of a point in piano, whose distance from a fixed point

varies as its perpendicular distance from a fixed straight line,

is a conic. Thus one focus of the parabola is at length found
;

but it was reserved for Kepler to complete the theory of the

real
" foci" of conies, and to give them their name.

serenus. 15. The two books of Serenus of Antissa De Sect. Cylindri

and De Sect. Coni respectively form a sequel to the Conies of

Apollonius in Halley's edition. Serenus was also a com-

mentator on Apollonius, and he lived before Marinus, a disciple

of Proclus.* Many geometers in his day imagining that the

sections of the cylinder were not identical with the elliptic

sections of the cone, he sets to work to remove this mis-

apprehension. (De Sect. Cyl. props. 16-18). He then shews

* The date 450 A. D. for Serenus may serve as a conjectural lower limit. Baldi,

Cronica de Matematici p. 59 (Urbino 1707), boldly assigns to him the precise date 462.

Suter Gtsch. der math.Wissenscha/len I. p. 92 (Zurich 1873) prefers the date 200-100 B.C.
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how to construct a cylinder and a cone on coplanar bases, so as

to be cut by one plane in the same ellipse or in similar ellipses

(props. 1923) ;
and further, given a cylinder and a plane

cutting it,
he describes a cone having the same base and

altitude, which is cut by the given plane in a section similar

to that of the cylinder (prop. 25). Props. 2630 shew how
to cut a cylinder or cone in subcontrary pairs of similar

ellipses. The remaining propositions De Sect. Cylindri, although
of still greater interest and importance, are sometimes overlooked.

The property of a harmonic pencil, indirectly stated, is applied

in space to prove that all the tangents to a cone from one point

have their points of contact on two generating lines (props.

33, 34), and the idea of projection by rays emitted from a

luminous point is suggested and illustrated by a simple case

(prop. 35). In the book De Sect. Coni he breaks (as he tells us)

new ground, in thoroughly discussing the triangular section

determined by an arbitrary plane through the vertex. Thus

he makes a step towards the generalisation of Desargues, who
drew his planes of section without reference to the fixed
"
triangle through the axis."

16. The writings of Serenus suggest an answer to the Perspective,

question (Chasles Apergu historique p. 74, 1875), Was the

method of perspective* known and used by the ancients?

Certainly not by those who doubted whether the sections of a

cylinder were also sections of a cone. But Serenus now shews

that the property of a harmonic range may be transferred by
central projection from plane to plane, and hence that any

tangent to a conic section and its point of contact project into

a tangent and its point of contact on any plane. The principle

of perspective had thus been laid down, as the modern reader

clearly sees; but if the ancients had still (as in the time of

Apollonius) no complete theory of polars with respect to a

conic, and if they had not learned to look upon parallel straight

lines as concurrent (Chasles Les Porisrnes p. 104), the method

could not have been applied by them to much effect, had it

been even more distinctly formulated than by Serenus.

* For some information about perspective see Poudra's Histoire de la Perspective

ancienne et moderne (Paris 1864).
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KEPLER. DESARGUES. NEWTON.

1. In the interval between the decadence of the Greek

school of mathematics and the revival of learning in Europe,
the Arabs preserved and commented upon the works of the old

masters in geometry, and also applied themselves with effect

to the new science of Algebra,* which was so greatly to enlarge

the domain of geometry itself in the hands of the followers

of Descartes. Referring for supplementary information from

this point onward to Montucla's Histoire des Mathematique$\
and Chasles' Aperqu historique des Methodes en Geometric, we

pass at once to the astronomer Kepler, who by his contributions

to the doctrine of the infinite and the infinitesimal and his firm

grasp of the principle of continuity is entitled to the foremost

rank amongst the founders of the modern geometry.

2. Kepler was born at Weil in the duchy of Wiirtemberg

(whither his parents had migrated from Niirnberg) on the 27th

of December 1571, and died at Ratisbon in the sixtieth year

of his age in 1630. A full account of his life is appended to

Frisch's edition of his collected worksj (vol. vill. 669 1028).

A famous contemporary's description makes him a man of varied

ability but superficial and never incubating long over one

discovery, "ingenii optimi, nee uni tantum rei dediti, sed

universim plura complectentis, ut et pluribus sese tradidit.

Neque diu et constanter, plures ob causas, tanquam ovis gallina

For the literature of this subject see Elementary Algebra with brief notices of its

history (Lond. 1879) by Mr. E. Potts, the editor of Euclid's Elements.

f A work in two volumes 4to (Paris 1758), afterwards expanded by De la Lande

into four (Paris 1799-1802).

J Joannia Kepleri astronomi Opera Omnia (Francof. a. M. 185870).
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uni invento incubare ipsi licuit
;

inde fieri potuit id quod in

proverbio dicitur, pluribus intentus, minor ad singula sensus
;

et

sic quaedam, prsesertim autem Archimedearura demonstrationum

vim minus accurate judicio perpendisse videri possit" (Kepleri

Op. IV. 647). It is interesting to pass from this to the evidence

of his profound insight into the abstract principles of geometry,
and the indomitable perseverance with which he established the

laws of planetary motion that have immortalised his name.

Though his work might not be recognised in his lifetime, it

could afford to wait " centum annos" for an interpreter.*

3. The principle of Analogy.
The work of Kepler entitled Ad Vitellionem^ paralipomena

quibus Astronomies pars Optica traditur (Francofurti 1604)

contains a short discussion De Coni sectionibus (cap. IV. 4 pp.

92 6) from the point of view of analogy or continuity. The
section of a cone by a plane

" aut est Recta, aut Circulus,

aut Parabole aut Hyperbole aut Ellipsis." Of all hyper-
bolas " obtusissima est liuea recta, acutissima parabole ;

"

and of all ellipses "acutissima est parabole, obtusissima circulus."

The parabola is thus intermediate in its nature to the hyperbola
and " recta" (or line-pair) on the one hand, and the closed curves

the ellipse and the circle on the other;
"

infinita enim & ipsa est,

sed finitiouem ex altera parte affectat." He then goes on to

speak of certain points related to the sections,
"
quas definitionem

certam habent, nomen nullum, nisi pro nomine definitionem aut

proprietatem aliquam usurpes." The lines from these points to any

point on the curve make equal angles with the tangent thereat : V
"]Sos lucis causa & oculis in Mechanicam intentis ea puncta The foci

named.

FOCOS appellabimus." He would have called them centres if

that term had not been already appropriated. In the circle there

is one focus, coincident with the centre
;

in the ellipse or hyper-
bola two, equidistant from the centre : in the parabola one

within the section,
"
alter vel extra vel intra sectionem in axe

* See lib. v. Ilarmonices Hundi, with Chasles' account of the work (Aper9u his-

torique p. 482).

t OpticcB Thesaurus. ALHAZENI Arabis libri VII. item VlTELLlONlS libri X
(Basil. 157-.').
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jingendus est infinite intervallo a priore remotus, adeo ut educta

HG vel IG* ex illo ccecofoco in quodcunque punctum sectionis G
sit axiDK parallelos."

In the circle the focus recedes as far as possible from the

nearest part of the circumference, in the ellipse somewhat less,

in the parabola much less
;

whilst in the line-pair the "
focus,"

as he still calls it to complete the analogy, falls upon the line

itself. Thus in the two extreme cases of the circle and the

line-pair the two foci coincide. He then goes on to compare
the latus rectum and its intercept on the axis, or as he calls

them the chorda and sagitta, in the several sections, concluding

with the case of the line-pair, in which the chord coincides with

its arc, "abusive sic dicto, cum recta linea sit." But our

geometrical expressions must be subject to analogy, "plurimum

namque amo analogias, fidelissimos meos magistros, omnium

natures arcanorum conscios." And especial regard is to be had

to these analogies in geometry, since they comprise, in however

paradoxical terms, an infinity of cases lying between opposite

extremes, "totamque rei alicujus essentiam luculenter ponunt
ob oculos." Lastly he shews how to describe an ellipse by
means of a string fixed at the foci, without the use of the

clumsy compasses [p. 178], "quibus aliqui cudendis admira-

tionem horn inurn venantur," and gives the corresponding con-

structions for the hyperbola and the parabola.

continuity. (l) Hereupon be it remarked, that the principle of Analogy
on which he insists so fervently is the archetype of the principle

of Continuity. The one term expresses the inner resemblance

of contrasted figures A and 1?,
which are connected by innu-

merable intermediate forms; whilst the other expresses the

possibility of passing through those intermediate forms from

A to J9, without any change per saltum. Geometry was not

indebted to Algebra for the suggestion of the law of continuity.

second focus
(2) Having traced the transition from the line-pair to the

circle through the three standard forms of conies, he completes

* The figure indicates that the line from the farther focus may be considered to

lie either within or without the parabola.
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the theory of the points henceforth named Foci by the discovery

of the " caecus focus
"

of the parabola, which is to be taken

at infinity on the axis either without or within the curve. The

parabola may therefore be regarded indifferently as a hyperbola,

having (relatively to either of its branches) one external and

one internal focus, or as an ellipse, having both foci within

the curve.

(3) The further focus of the parabola being taken at infinity opposite

, ....... . . . infinities

on the axis in either direction, the two opposite extremities adjacent.

of every infinite straight line are thus regarded as coincident

or consecutive points a conception which has been shewn to

conduct logically to the idea of imaginary points [p. 311].

(4) Every straight line from the " caecus focus
"

of the Parallels
*

. concurrent.

parabola to a point on the curve being said to be parallel

to the axis, the idea of the concurrence of parallel lines at

a point at infinity has at length been formed and announced.*

It is to be noticed that the new doctrine of parallels is here

presented in relation to one plane, and not as springing out of

the consideration of figures in perspective in space.

Such were Kepler's most original contributions to pure

geometry, although he is better known by his continuation of

the work of Archimedes in stereometry.

4. Nova Stereometria doliorum vinariorum.

Of this work (anno 1615, Lincii. Op. IV. 545-646 ed. Frisch)
we notice chiefly the former part, which contains a new and

abbreviated redaction of the work of Archimedes on the circle

and in stereometry, followed by Supplementum ad Archimedem

(p. 574). The circuitous method of exhaustions is here trans-

formed into the method of infinitesimals. Thus in theor.
1, on

the approximation to
TT, he treats an infinitesimal arc as a

straight line :
" Licet autem argumentari de EB ut de recta

* It was in the course of an attempt to trace the origin of the term Focus of a
conic that I came upon the passage quoted from the Paralipomena. Chasles (Let
Porismes p. 104) attributes the discovery of the concurrence of parallels to Desargues
and when he says (Aperqu p. 56. Cf. pp. 15, 16, 61) that Kepler first introduced

"1'usage de finfini" into geometry, he is referring
" anx methodes infinitesimalee."
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quia vis demonstrationis secat circulum in arcus minimos qui

cequiparantur rectis" In theor. 2 in like manner he regards
the circle as an aggregation of triangular elements, having a

common vertex at the centre, and their bases coincident with

successive small arcs of the circumference. So the sphere is

considered in theor. 11 to be made up of small cones, having
their vertices at the centre and their bases,

"
quaruua vicem

sustinent puncta" on the surface of the sphere. He then passes

on to the conoids &c., and thence to the solids generated in

a certain way by conies, the generating curve being attached

at right angles to a plane, which turns about one of its own

points without change of place. He gives a slight rSsumS of

his doctrine of the foci, mentioning the further focus and

likewise the centre of the parabola, but not in such a way
as bring out the idea of the concurrence of parallels (p. 577).

5. Guldinus, quoted by Frisch (Kepleri Op, IV. 647),

stoutly opposed Kepler's cequiparatio of an arc to a chord, as

not permissible
"
per ullam ullius demonstrationis geometricae

vim"; precisely as it was objected to Antipho [p. xxx], who

had made bold to do likewise some 2000 years earlier, that
" he did not start from geometrical principles." It could not

however be denied that Kepler's method was of service in

discovering theorems, although by no means to be recommended

as a method of proof at least, if any better could be found,

"si alia suppetant geometris jam probata media"
(p. 653). Kepler

had in reality grasped the idea of the infinitesimal, although a

calculus remained still to be discovered. The law of continuity

is now applied by him not only to the infinitely great but to the

infinitely small. He has formed the conception of the continuous

change of a variable: "crescit a quantita nulla continue &c,"
and discovered the law of its variation in the passage through a

maximum value (Pt. II. theor. 16 22); thus laying a firm founda-

tion for the fluxional calculus of Newton, better kuown by the

name and with the notation proposed by Leibnitz.

Desargrnes 6. The name of Girard Desargues of Lyons (1593 1662)
'

had fallen into oblivion, when early in the present century his
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genius was recognised by Brianchon (1817) and Poncelet (1822).

A further appreciative notice in the Aperqu historique of his

apparently lost works was followed by Chasles' own discovery

of the chief of them, Brouillon Protect etc., which with others

afterwards discovered was published by Poudra in his (Euvres

de Desargues (Paris 1864). This edition contains a biographical

notice of Desargues, his recovered works with an analysis of each,

and an analysis of those of his pupil Abraham Bosse, themselves

founded upon the ideas of the master. He proclaims himself not

in the first instance a pure mathematician, avowing that he had

never a taste for study or research except with a view to some

practical application,
" au bien et coramodite de la vie." He

was an architect and engineer, and in the latter capacity served

under Cardinal Richelieu at the siege of La Rochelle (1628).

After the war he retired to Paris, where he devoted himself to

geometry and its applications, frequenting a weekly gathering of

savants for the discussion of mathematical topics, which preceded

the foundation of the Academic des Sciences ((Euvres 1. 14). He
was esteemed by the ablest of his contemporaries as a geometer
second to none, but virulently attacked by some important per-

sons* of smaller calibre, who were confounded by the novelty

and abstraction of his ideas. The subsequent neglect of his works

was due partly to the form in which they were written, but in

far greater measure to the counter-attraction of the algebraic

geometry of his contemporary and friend Descartes. For full

information about his works, which include Perspective, Coupe
des Pierres, Gnomonique, a fragment on gravitation (l. 239) &c.,

we can only refer to Poudra's excellent edition
;
but it will be

seen from the following slight account of some portions of them

that the Geometric Projectivc of the present day is in fact the

geometry of Desargues.

7. In his earliest work, Methode Universelle de mettre en

Perspective &c. (1636), he notices the cases in which concurrent

lines are seen as parallels on the tableau (tome I. pp. 83, 94),

* The hostile critique of M. de Beanjrrand. secretaire du Roi, "est le premier ecrit

qui a servi au general Poncelet a reconnaitre le merite de Desargues" ((Eucret II. 353).
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and concludes with the problem, to find the lines in a conic

which correspond to the axes of its projection. Purposing to

return to this work shortly, we pass on to the BROUILLON

PROJECT etc. [p. 261], or rough sketch of a theory of the inter-

section of a cone by a plane (pp. 97242, and 243302). He
commences with the new doctrine of infinity.* The opposite

points at infinity on a right line are coincident, parallel lines

meet at a point at infinity, and parallel planes on a line at

infinity (pp. 103-6, 229, 245-6). A straight line may be

regarded as a circle whose centre is at infinity (pp. 108, 224),

The theorem of the six segments found in the Almagest and

elsewhere is stated in a converse form (p. 256). The theory
of Involution de six points, with its special cases, is fully laid

down, and the projective property of pencils in involution is

establishedf (pp. 24661). The theory of polar lines is ex-

pounded, and its analogue in space suggested (pp. 2636, 2717,
214, 291). A tangent is a limiting case of a secant (pp. 262,

274, 277), and an asymptote is a tangent at infinity (pp. 197,

210). The joins of four points in a plane determine three

couples in involution on any transversal (p. 266), and any conic

through the four points determines a couple in involution with

any two of the former (p. 267). The points of concourse of

the diagonals and the two pairs of opposite sides of any quadri-

lateral inscribed in a conic are a conjugate triad with respect

to the conic, and when one of the three points is at infinity

its polar is a diameter (pp. 188-9) ;
but he does not explain

the case in which the quadrilateral is a parallelogram, although
he had formed the conception of a straight line wholly at

infinity (p. 265).

"Mais voicy dans une proposition comme un assemblage

abrege de tout ce qui precede
"

(pp. 195, 277). Thus he intro-

duces the general theory of projection, which is the main subject

of the Brouillon. Given any conic and a cone through it,

let 0' be any section of the cone. Through the vertex F

* He must have been acquainted with Kepler's theory of the foci. Notice his use

of Kepler's term "
foyers

"
(pp. 210, 222).

f Notice his form of expression (p. 104),
"
Rangce de points alignez" [p. 249].
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[p. 314] draw a plane parallel to that of 0' meeting the plane

of in a>, and let P be the pole of ab with respect to 0.

Then the system of planes through VP determine the diameters

of 0', the centre being considered, as we should say, to be the

pole of the line at infinity ;
and any two such planes drawn

through points on ab conjugate with respect to determine

conjugate diameters of 0', the tangents at the extremities of

which,
" a distance ou finie ou infinie

"
are also known (p. 197).

Since a point at which meets ab coincides with its own

conjugate, an asymptote of 0' (besides being a tangent at

infinity) is a double or self-conjugate diameter. He concludes :

" Comme entr' autre, que sur la quelconque de ces coupes de

rouleau peut estre construit un rouleau qui sera coupe selon

quelconque espece de coupe donnee" (p. 198). The ancients

had always taken a circle for the base of their cone, and had

drawn all planes of section at right angles to one and the same

fixed plane.

The Foci of a conic are determined in piano as the inter-

sections of the axis with a certain circle, which may have for

diameter the intercept on any tangent (or on an asymptote,

p. 288) by the tangents at the vertices, in accordance with

Apollonii Cornea m. 45 [p. 111]. He determines the axes and

foci of a conic in the cone by a process (pp. 21523, 293) which

Chasles summarises as follows :*

The line ab being drawn as above, take any point t upon it,

and let the chord of contact of the tangents from t to meet ab

in t'. Also let rr be any segment of ab which subtends a right

angle at V. The two sets of points tt' and rr' constitute

two involutions, having one segment cc in common. The polars

A", X' of the points c, c correspond to the AXES of 0'.

The tangents to from the points r and the lines from r

to their several points of contact determine upon AT an involution,

whose double points correspond to the Foci of 0', since every

tangent and its normal are harmonic conjugates to the focal

distances of the point of contact.

*
Rapport sur les progrls de la Giomr'trie p. 305.
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8. A sequel to Desargues' Perspective of 1636, found in the

Perspective of Bosse (1648), contains some explanations of the

principles of the former work.

a. Proposition fondamentale de la pratique de la Perspective.

The statement and proof by Desargues ((Euvres I. 403 7)

are analysed by the editor, who reduces his fundamental propo-
sition to the anharmonic property of a pencil of four rays (p. 425),

which cut any transversal in a constant cross ratio.

b. Figures in homology.

Three other geometrical propositions are given, which embody
the principle of perspective in one plane (pp. 413 22, 430 5),

The tirst is on triangles in homology [p. 307, 321], the second

and third on quadrilaterals in homology. On the second he

remarks generally that a like reduction of the figure to one plane

may be used "en semblable cas" (p. 417); and in the third

he gives a metrical relation between a system of corresponding

segments (p. 435). Notice that he passes from solid to plane

figures in the manner afterwards used by the school of Monge
(Chasies' Apergu historigue p. 87).

school of 9- Although the roughly sketched essays of Desargues
Desargues. themselves fell into neglect, his ideas were preserved by an

illustrious school of disciples, numbering amongst its members

Bosse, Pascal and De la Hire. The writings of the engraver

Abraham Bosse (1643 1667) are analysed by Poudra in vol. II.

of the (Euvres de Desargues. The famous Hexagrammum
Mysticum of Pascal was a corollary from what he had learned

from Desargues. The theory of polars was brought into

prominence by De la Hire (1685), and forthwith supposed
to have been discovered by him. The reader of Brianchon's

MSmoire sur les Lignes du Second Ordre (Paris 1817), and

Poncelet's Traiti des Proprietes Projectives will not need to

be reminded how great a part of modern geometry is actually

and confessedly founded on the work of Desargues.

Newton 810. Newton was born at Woolsthorpe near Grantham in
164'' 1727

1642, the year of the death of Galileo, and died in the eighty-

fifth year of his age in 1727. The first edition of his Philosophies
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naturalis Principia mathematical was published 1687, the second,

edited by Eoger Cotes, in 1713, and the third, by Henry
Pemberton in 1726. His Opticks was published in English

in 1704 and in Latin in 1706, in each case with an Apptndix in

Latin containing the Enumeratio Linearum Tertii Ordinis and

a tract De Quadratura Curvarum. For an account of his life

and writings see Brewster's Memoirs of the Life etc. of Sir Isaac

Newton (Edinburgh 1855), and Edleston's Correspondence of

Sir Isaac Newton and Professor Cotes (London 1850
;
and for

the works themselves see Horsley's five volumes, 177985

[p. 264], and the Newtoni Opuscula (3 vols.) of Job. Castillioneus

(Laus. et Geuevae 1744). Presupposing a general acquaintance

with his geometrical discoveries, we shall confine our attention

to a few particulars.

11. In the fourth and fifth sections of the first book of the

Principia he solves various forms of the problem, to describe

a conic subject to the equivalent of five conditions, (1) when

a focus is given, and (2) when neither focus is given. It will

suffice to allude briefly in passing to the former case. The title,

of lib. I. sect. 4 is De inventione orbium ellipticorum, parabolicorum
& hyperbolicorum ex umbilico dato. In it he makes much
use of the simple property (lemma 15), that the perpendicular
from one focus of a conic to any tangent intercepts a length

equal to the axis on the further focal distance of the point

of contact. The section concludes with the construction of

an orbit of which one focus and three points are given, a problem
which had been solved,

" Methodo baud multum dissimili
"

by de la Hire, Sect. Conic, lib. vill. prop. 25. In this construction

and in prop. 20 Newton assumes that the focal distance of a

point on a fixed conic varies as its distance from the directrix,

a theorem proved in the Arithmetica Universalis prob. 24 (Cantab.

1707), and sometimes attributed to Newton as its first discoverer,

although in reality known to Pappus.

12. Inventio orbium ubi umbilicus neuter datur.

A.

The 5th section of the first book of the Principia, under

the above title, treats with the utmost geucrality of the point"
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properties and the tangent-properties of conies. It commences

with the problem of the Locus ad quatuor lineas (lemmas 17

19), of which no geometrical solution was extant [p. 266]. Then

follows a theorem (lemma 20) which may be thus stated : If AB
PC be four fixed points on a given conic, the chords from B and

C to a variable point on the curve meet the parallels through P
to AB and AG respectively in points T and R, such that PT
varies as PR, and conversely. From a limiting case of this

lemma he deduces his organic description of a conic by means

of two rotating angles* (lemma 21), giving somewhat later (prop.

27 Scholium) his construction for the centre and asymptotes

of the conic thus generated. By means of the above mentioned

lemmas he shews how to describe a conic when five points

on it are given,f or four points and a tangent, or three points

and two tangents (props. 22 4). Next follows lemma 22,

Fiquras in alias ejusdetn generis mutare, in which it is shewn

that any curve may be transformed into another of the same

order by substitutions of the form X= and Y= [p. 330],
C X

and two applications of the lemma follow. (1) In order to

describe a conic passing through two given points and touching

three given lines, he transforms two of the given lines into

parallels, and the third given line and the join of the given points

into parallels (prop. 25) ;
and (2) to describe a conic passing

through a given point and touching four given lines, he transforms

the four lines into the sides of a parallelogram (prop. 26).
i

B.

The lemmas next following lead up to some important

properties of the tangents to conies, the discovery of which

by Newton is commonly overlooked. First it is shewn that

if AC and BD be lines given in position, terminated at A and B,

and having a given ratio to one another, the locus of the point

which divides CD in a given ratio is a straight liuej (lemma 23).

* Cf. Ex. 853 [p. 358]. The equation to the locus in lemma 21 is given in the

Arithmetica Universalis prob. 53 (Cantab. 1707).

t A solution of this case is found in Pappi Collectio (p. 1077 ed. Hultsch).

J It also divides AB in the same ratio, since AC and BJJ vanish together.
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Next, if two given parallel tangents viz. at A and B to a conic

be cut by any third tangent in M and I respectively, the semi-

diameter parallel to the two tangents is a mean proportional to

AM and BI (lemma 24). From this, which is identical with lib.

III. prop. 42 of the Conies of Apollonius, he deduces two corol-

laries: (1) if any fourth tangent meet AM, BI, MI in F
t Q, E

respectively, then

AM-. BQ = AF: BI= MF: IQ = ME: El;

from the first of which proportions it follows (2) that FI and MQ
intersect upon AB.* The next lemma and its corollaries are of

peculiar importance in relation to the modern geometry.

LEMMA xxv.

If ML, LK, KI, IM be the sides of a parallelogram touching
a conic in A, C, B, D respectively, and if any fifth tangent cut

them in F, H. Q, E respectively, then by lemma 24 cor. 1,

ME : EI=AM : BQ =BK : BQ;
or

In like manner

KB : HL = BK : AF=AM: AF,

or KH:KL = AM: AF- AM=AM : MF.

* It is easy to generalise this result by transforming the parallel tangents into

non-parallels by Newton's method. Cf. Art. 121 Cor. [p. 276] .

62
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Corollary \.

If the parallelogram and the conic be fixed and the fifth

tangent variable, then

KQ.ME=.MI.BK= a constant,

and KH.MF has the same constant value. The result may
be expressed in words as follows : given two tangents to a fixed

conic, the product of the intercepts upon them between the diameter

parallel to their chord of contact and any third tangent is constant.

The relation between the intercepts IE and IQ is of the form

(IM-IE}(IK- IQ} = a constant, or

a.IE.IQ+b.IE+c.IQ + d=0,
which is the "

tangential equation
"

to any conic referred to any
two fixed tangents, and also expresses that any two given tangents

are cut homographically by a variable third tangent.

Corollary 2.

If eq be any other position of the tangent E, it follows that

KQ : Me = Kq : ME= Qq : Ee.

Corollary 3.

Since QK is to eM as Qq to eE, it follows by lemma 23 that

the middle points of KM and qE &YQ in a straight line with the

middle point of Qe. Hence, the middle point of KM being the

centre of the conic, if a conic be inscribed in a quadrilateral, its

centre lies on the straight line bisecting any pair of the diagonals

of the quadrilateral* This theorem suggested to Brianchon and

Poncelet the investigation of the centre-locus of a conic passing

through four given points [p. 282], and prepared the way for

the general consideration of systems of conies subject to four
conditions.

C.

In prop. 27 the conic touching five given lines is described,

* It may or may not have occurred to Newton that this theorem might be

generalised by projection ;
but in any case he would not have turned aside to notice

results so distantly related to his Inventio orbium. It may be shewn that he must

have been acquainted with the theoiy of Polars.
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its centre being first determined as the point of concourse of

the diameters of any two of the five quadrilaterals formed by the

given tangents. In a Scholium he remarks that an asymptote
is a tangent at infinity, and also shews how to determine the axes

and foci of a conic described by the organic method of lemma 21.

There are also other lemmas which he might have used for the

construction of conies, such as that the locus of the middle point
of a chord drawn through a fixed point to a conic is a parallel

conic: " sed propero ad magis utilia." In lemma 26 and a

corollary it is shewn how to describe a triangle of given species

and magnitude having its vertices severally on three given lines,

and how to draw a transversal the intercepts upon which by
three given lines shall be of given lengths. This lemma is used

in prop. 28. In lemma 27 and a corollary it is shewn how to

describe a trapezium of given species having its vertices

severally on four given lines, arid how to draw a transversal

which shall be cut in given ratios by four given lines, which is

a special case of section in a constant cross ratio [p. 296].

An application follows in prop. 29, and the section concludes :

" Hactenus de orbibus inveniendis. Superest ut motus corporuin
in orbibus inventis determinemus."

13. Curvarum Descriptio Organica.

A well known generalisation of Newton's description of a conic

by angles would certainly have been passed by in the Principia
with a "propero ad magis utilia," since it merely shews how to

describe a conic by assuming that a conic is already described.

AVhen however he is treating of pure mathematics, he extends

his method to the utmost, applying it not merely to cubics, as in

Ex. 760, but to curves of all orders having "double" points. In

the case of a cubic, of which a double point A and six other

points BGDEFO are given, let the angle CAB turn about A
and the angle ABC about B\ then as the intersection C of

the arms AC, BC assumes the new positions DEFG, the inter-

section / of the other arms determines four other points, say

PQRS. Draw the conic APQRS, and let / move round its

circumference: then G traces the cubic as required (Opticks,

li. IGl), 1701).
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If instead of the point C a tangent BC be given, the angle
CAB vanishes, and the curve is described by means of one

finite angle and a straight line, which latter moves parallel

to itself when the fixed point through which it passes is at

infinity.* How was Newton led to his organic description of

conies and other curves ? Possibly he took a suggestion from

Euclid in. 21 [p. 172], and first described a circle by means

of an angle and a line parallel to one of its arms, or by
two angles having one pair of their arms constantly parallel.

14. Proof and extension of Newton's Descriptio Organica.

Let two angles AOB and AwB of given magnitudes turn

about and co respectively, and let the intersection A trace a

curve of the nth order. For a given position of the arm OB
there are n positions of A and therefore n of B. When OB is in

the position Oca the n B's coincide with
<o,

which is therefore

an rz-fold point on the locus of B, as is also the point ;
and

since any line through (or o>) meets the locus of B in n other

points, the locus is of the order 2n. Its order is the same when

AcoB is a zero-angle or straight line.

Let a given trihedral angle (ABC] or a plane OBC and

a line OA rigidly attached to it turn about 0, and let a

variable plane through a fixed point o> meet OA in A and the

plane OBC in BC] then if the line BC describes a ruled surface

of the order n the point A describes a surface of the order 4n.f

For a given position of the line BC the locus of A is a conic,

and when the director surface is a cone of the nih order every

plane through CD and its vertex meets the surface which is the

locus of A in n conies.

When the director is a plane, BC must be made to pass

through a fixed point or touch some curve in
it, except in the

case in which OA is normal to the plane OBC. In the last

case the locus of A is a quadric, which becomes a sphere when

the director is at infinity.

* For some earlier essays at Descriptio Organica see Chasles' Apergu p. 100.

f For the determination of the order of the surface described by the point A
I am indebted to Professor Cayley.
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15. Colin MacLaurin developed Newton's theory of curves

in his Geometrica Organica, sive descriptio curvarum universalis

[p. 345]. He also wrote a treatise on Fluxions* (Edinb. 1742).

The work Algebra with an Appendix etc [p. 128] was first

published, after the death of the author, in 1748, and in the same

year An Account of Sir Isaac Newton's Philosophical Discoveries.

The Appendix to the Algebra (pref. p. xi) was founded on

Cotes' theorem of harmonic means, of which further use has

been made by Poncelet and other modern geometers (Salmon's

Higher Plane Curves 132 1879).

16. The property of the focus, directrix and determining
ratio remaining buried in the Collectio of Pappus, modern

writers looked to later works for the first notice of the focus of

the parabola and the directrix of the general conic. Thus

Robertson in his Sect. Conic, pp. 340, 363 (Oxon. 1792) refers

for the focus of the parabola to an anonymous work De Speculo

Ustorio known to Roger Bacon, and perhaps translated from

the Arabic which was published at Louvain in 1548. Gregory
St. Vincent knew the property of the directrix for the case

of the parabola, and virtually arrived at it for the ellipse (Opus
Geomet. lib. IV. prop. 139, p. 317, 1647), in the form of Ex. 16

[p. 35] ;
as did De la Hire for the hyperbola, measuring dis-

tances from the directrix parallel to an asymptote [p. 155

Ex. 397], in his Sect. Conic lib. VIII. prop. 18 (1685). In

prop. 25 De la Hire introduces the directrix as the polar of the

focus : in props. 234 he had proved that the tangents at the

extremities of any focal or other chord subtend equal angles

at the focus. It remained for Newton to bring the property of

the determining 'ratio fully to light, and for Boscovich, with

* On the rival claim of Leibnitz to the first discovery of the differential calculus

see Montucla Hist, aes Math. vol. II. 330-343 (1758); Gerhardt's Hist, et Origo Calc.

Diff. (Hannover 1846) and other publications; Brewster's Life of Newton II. 2347
(1855); "Weissenborn Die Principitn der hiiheren Analysis (Halle 1859); Sloman
The claim of Leibnitz to the invention of the Differential Calculus, translated

from the German (Cambridge 1860). It is disputed to what extent Leibnitz

was indebted to the letters and MS3. of Xevrton. Leibnitz several times discovered

things already in print (Biographic Univvselle xxin. 627 8, 634); and it is a

striking fact that the leading propositions of the PEiscieiA reappeared under the

name of G. G. L. in the Ada Eruditorum pp. 8290 (cf. p. 30), 1689.
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the help of it, to compose the first really complete Sectionum

Conicarum Elementa. The term Directrix, formerly used in the

case of the parabola, is now used of the general conic (p. viii.) ;

as iii the following year also (1758) by Hugh Hamilton, who
added a construction for the focus and directrix in the Cone

[p. 204] ;
but the term was still used only for the parabola by

Le Seur and Jacquier (1760) in their edit. 2 of the Principia

(l. 134, 179), and the characteristic property of the line itself

in the general conic was not familiarly known even some years

later, to judge from Lexell's elaborate discovery of the simplest

of corollaries from it in the Nova Acta Petropol, I. (1'47), 1787.

Later works founded upon the properties of the determining
ratio and the eccentric circle [p. 3] were those of Thos. Newton

(Camb. 1794), G. Walker of Nottingham (Lond. 1794), and

John Leslie (Edinb. 1821), who describes Thos. Newton's work

as "
clear, neat, and concise," whilst Walker's "

though in-

genious and strictly geometrical, is unfortunately so prolix and

ponderous as to damp the ardour of the most resolute student."

Walker was under the impression that he was the first dis-

coverer of what he called the Generating Circle,* but Thos.

Newton rightly referred it to Boscovich. Leslie's account of

the work of Boscovichf is that it consisted " of only a few

propositions, but drawn out into a string of corollaries." It is

nevertheless a clear and compact treatise, which for simplicity,

depth and suggestiveness will not readily be surpassed.

* Compare Mr. S. A. Renshaw's The Cone and its Sections pp. 26-8 (Lond. 1875) ;

Messenger ofMathematics vol. II. 97 (1873). Walker's complete treatise was to be in

five books, but one only appeared.

f From the preface to vol. in. of the Elementa Univ. Math. (1757) we gather

that Boscovich's scheme of Conies was first published
" in Romano litteratorum diario

ad annum 1746," in the form of a short article,
" schediasma brevissimum"

;
and that

several years elapsed before the complete work, after repeated delays, was given to

the world. Leslie says that it was published in 1744, and Walker's in 1795. Walker

had discovered the generating circle "near thirty years" before publication. An
edition of Boscovich's Elementa seems to have been published at Rome in his name
in 17523 ;

but I have only seen the " editio prima Veneta."
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SECTION IV.

MODEEN GEOMETEY.

1. ALTHOUGH the law of Continuity, the vital principle of continuity.

the modern geometry, had been decisively laid down by Kepler,

it was not until the great discovery by Poncelet of the circular

points at infinity in any plane that it came to be universally

acknowledged. The principle as enunciated by Kepler was

wholly independent of algebraical considerations, but its later

developments were suggested by the occurrence of negative

and imaginary roots in equations applied to geometry, whilst

the discovery of the differential calculus gave a new zest to

speculations De infinite and De nihilo. The earliest thorough
and geometrical treatment of the subject with which we are

acquainted is found in Boscovich's appendix* to his Sectionum

Conicarum Elementa [p. 311], of which a slight account is given
below. The complete dissertation occupies more than two-

thirds as much space as is devoted to the entire subject of

conies in piano. The writer cautiously abstains from the too

bold assertion of novelty in his speculations, but remarks that

the essay contains many things which "
ego quidem nusquam

alibi offendi," and many which, although found elsewhere,
"
nusquam ego quidem ad certos reperi redacta canones, et

geometrica inethodo pertractata."

2. His first principle is, that every member of a geome- mt^mr.

trically defined locus must have the same nature and properties,!

* Elementa Unit-. Math. torn. III. 228-356 (Venet. 1757).

t See Chasles' Aperqu historique p. 197 on Monge's use of the principle of contingent
relations.
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which are wrapped up in the definition itself, so that whatsoever

is demonstrable of one part of the locus should be demonstrable

in like manner of every other. On this principle we conclude

a priori from the nature of the problem, to trisect a given
circular arc, that any construction must give a series of solutions,

three of them geometrically distinct [p. 141]. In geometrical
demonstrations a determinate configuration is present to the

senses, but the reasoning applies to an infinity of cases. This

is clearly seen when, for example, we bisect a given finite

straight line
;
but it is true none the less in cases in which

a new configuration seems to render the proof nugatory,

although some artifice may be required,
" ad servandam

analogiam, et retinendam solutionis ac demonstrationis vim"

(p. 229). Notice his use of the term Analogy, by which the

idea of geometrical continuity was first expressed.

The correspondence of change of sign with change of direc-

tion in lines carries with it the idea of negative rectangles and

squares, and thus of imaginary magnitudes (pp. 234, 308).

Change of sign implies a transition through zero or infinity,

and never takes place per saltum (p. 250). To illustrate this,

take an indefinite line AE and a point C without
it,

draw

CH perpendicular to AB, and let a line turning continuously
about C meet AB in P. As CP passes through H, the sign of

HP changes, say from positive to negative : when CP becomes

parallel to AB, the point P is at infinity on the negative side

of H, and the next instant it is at infinity on the positive

side of H. Thus the passage through infinity carries with it a

change of sign and, like the passage through zero, is effected

by the continuous rotation of CP, and not per saltum. The

opposite extremities of an infinite straight line are thus in

a manner joined, as if the line were an infinite circle (p. 254),

whose centre may be considered to be at infinity on either

side of the line. In illustration of the principle that opposite

infinities are thus adjacent, take the case of an infinite double

ordinate to the axis or any diameter of the parabola, regarded
as a closed curve (pp. 265, 343).

The consideration of a circle of infinite radius leads to the

idea of a " veluti plus quarn infinita extensio" (pp. XV, 281).
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Through fixed points A C on an indefinite straight line MA CN
draw a circle, and bisect its minor segment AIO in / and its

major segment in /'. If now the centre be removed to infinity,

the arc AIG becomes the line AC, whilst of the arc AI'C

part coalesces with the infinite segments AM and CN, and

the rest recedes to infinity with the point /',
" ut nusquam jam

sit ;" or as we may say, the circle degenerates into the endless

line MACN together with the line at infinity* [p. 344]. Hence

it is deduced that whilst the line A C is bisected in a point /,

its complement AMco NC is bisected at a point I' at infinity

(p. 274) ;
which might also have been arrived at by dividing AC

harmonically, and making one point of section coalesce with

the middle point of AC (pp. 6, 344).

If A C be a segment of an infinite right line, the remainder

A co C may be regarded as its
"
complementum ad quendam

veluti infiuitum circulum" (pp. 276, 280, 292, 297 &c.). The

hyperbola, regarded as a quasi-ellipse, has for its axis A oo A'

the complement of AA (pp. 264, 276, 289, 292). The further

developments of this idea already given [pp, 18, 22, 102, 153,

311] are in accordance with the views of Boscovich
;

but

the note on Art. 13 was written, and a Scholium in continua-

tion planned [p. 102], before his dissertation on continuity

had been consulted.f

The change from the real to the imaginary state is con-

tingent upon the transition of some element of a figure through

zero or infinity, and never takes place per saltum (p. 277).

Examples of imaginaries are the exterior diameters of a

hyperbola, whose squares are negative ;
for the so-called

"secondary" axis and diameters have no real analogy to the

minor axis and conjugate diameters in the ellipse, although

the unwary geometer may be imposed upon by the conjugate

* Although the arc AFC seems to lie wholly on one side of the line AS, it is to be

remembered that opposite infinities are adjacent. Thus every line-circle passes through

all points at infinity in its plane.

t Without reference to the idea of an infinite line-circle, I had used the term

COMPLEMENT of a straight line several years before I was acquainted with any work

of Boscovich. See Oxf. (Jamb. Uubl. Messenger of Mathematics iv. 140 (1867).



1XXVI PROLEGOMENA.

hyperbola, and persuaded to think that there can be a curve

of the second order which a straight line meets in four points

(pp. 311-317). In comparing properties related to diameters

in the ellipse and in the hyperbola, we should endeavour to

bring in the squares of the diameters, the signs of certain

of which will merely have to be changed in passing from the

one curve to the other (p. 320). The general method of

procedure in dealing with a geometrical figure one or more

of whose elements is evanescent, infinite or imaginary is

summed up in eleven CANONS, formally stated and fully illus-

trated (pp. 284-339). The 5th relates to negative angles,

and the llth to the ratios of infinite magnitudes. He might
have added a Canon 12 on the ratios of the Newtonian -nascent

or evanescent quantities, but promises another volume when

time permits (p. 348) ;
whilst on p. 353 he refers to his

former dissertation De Natura et usu infinitorum et infinite

parvorum (1741). In the course of the essay now under con-

sideration he treats of curves of all orders, their infinite branches

and asymptotes, their curvature, cusps, points of inflexion,

and the tangents thereat (pp. 245, 267, 270-3, 325).

3. The general solution of the problem, given the focus

directrix and determining ratio, to find the intersections of an

arbitrary line with the conic, completely determines by im-

plication the nature and properties of the curve (p. 286). His

construction is as follows. Take a point to exterior to the

given line, instead of a point upon it [p. 10] ;
draw taZ

parallel to PQ meeting the directrix in Z, and let the parallel

through Z to SR meet the eccentric circle of o> in p and q.

Then the focal radii parallel to o>p and taq meet the given

line at its intersections with the conic (p. 39j. This construc-

tion failing (1)
when PQ is parallel to the directrix, in which

case the line Zp'q is indeterminate, and (2) when PQ passes

through S, in which case the parallels through S to cop' and

toq coalesce with PQ, instead of cutting it each in one point ;

he shews how to meet the difficulties thus arising. The former

case however leads only to a simplification when the centre

of the circle is taken upon PQ, as in the present work. Con-
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sidering the second case in relation to Art. 16 Cor. 1 [p. 29],

let a fixed chord drawn through the focus S be intersected in 2

by a variable chord containing a given angle with the axis.

Then the products of the segments of the two chords are as

the squares of the parallel tangents, however near 2 be taken

to S, and therefore in the limit the products of the segments
of any two focal cliords are as the squares of the parallel

tangents.

A line stilt meets a conic in two points, even though, for

example, one of them should disappear at infinity. In the

parabola, any two chords as they become infinite are in a ratio

of equality. In the hyperbola, if from any two points LL'

parallels be drawn meeting the curve in PP' and its adjacent

asymptote in hh' respectively, then as the latter points recede

to infinity the intercepts Ph and P'h' remain finite [p. 146],

and the ratios of LP to Lh and L'P' to L'h' tend to equality

as their limit. The infinite segments LP and L'P' are as the

distances ofL and L' respectively from the asymptote hh'
(p. 347).

4. It is remarkable that Boscovich enters upon these

abstruse speculations in an elementary treatise for beginners,

and even several times touches upon the subject of the appendix
in the text itself, as for example when he notices that the

properties of chords of a conic may be transferred to one of

its limiting forms, the line-pair (p. 100). The preface to the

volume contains an earnest plea for the introduction of the

modern ideas into the schools. He had taught the appendix
viva voce to his own tyros with the happiest results. The
mind of the tyro is commonly overwhelmed with a multitude

of details not reduced to any system ;
demonstrations are put

before him in an unsuggestive form which gives no play to

his inventive faculty ;
and thus it comes to pass that of the

many students so few turn out genuine geometers. Let the

learner be furnished with principles, and not alone with fully

explained facts, and be continually stimulated to exertion by
the intense pleasure of finding something left to discover for

himself.
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5. The newly founded Ecole Polytechnique led the way
in the geometrical revival of the nineteenth century. From this

source issued first the works of Carnot and Monge, which

further illustrated the principles of continuity above described.

The leading conception of Carnot's Geometric de position (Paris

1803) is the doctrine of quantities
"
dites positives et negatives"

(p. ii),
to which he recurs in his Essai sur la theorie des Trans-

versales &c. p, (96), Paris 1806. This essay is in great measure

based upon the ancient theorem of the six segments [p. l.J.

Referring to the Apergu historique for a good description

of the works of Monge, we pass from the master to one of his

most illustrious scholars, whose short incisive essays in pur-

suance of the ideas of Desargues, Pascal and Newton were the

prelude to their fuller development by Poncelet, Steiner and

Chasles.

6. Second in importance only to the principle of Continuity

is the principle of Duality, of which Brianchon's hexagram

(1806) occasioned the discovery [p. 290]. Noticing again the

important article of Brianchon and Poncelet on the Equilateral

Hyperbola [pp. 175, 282], we next come to the separate

publications :*

(1) Memoire sur les lignes du Second Ordre, faisant suite aux

recherches publiles dans les journaux de V Ecole royale polytech-

nique. Par C. J. Brianchon, capitaiue d'artillerie, ancien eleve

de P Ecole Polytechnique. Paris 1817.

(2) Application de la theorie des Transversales (Brianchon.

Paris 1818).

The latter memoir consisted of Legons donnies h Vecole

d'artillerie de la garde royale en mars 1818. The former, which

is of greater interest, must be described in detail. A line of

the Second Order is defined as the section of any circular cone

by an arbitrary plane : the term projection is introduced in

relation to perspective : poles and polars are defined : as also is

the expression Geometric de la rfyle. The term polar had

been introduced by Gergonne as correlative to "
pole," an old

* It would be worth while to republish Brianchon's articles and memoirs in

one volume.



SECTION IV. 1XX1X

expression for a fixed point, which was beginning to be used

in its restricted modern sense (Gergonne's Annales I. 337
;

ill. 297).

Pp. 7-10. The property (afterwards called anharmonic) of

four radiants is enunciated, the case of the harmonic pencil

specially noticed the term faisceau harmonique being intro-

duced apparently as new and it is noticed that the harmonic

property holds "
pour toutes les projections de la figure," a

reference being given to Gregory. St. Vincent's Opus Geome-

tricum p. 6, prop. 10 (1647). A fourth harmonic to three given

points in a straight line is found " avec la regie seule" by the

property of the complete quadrilateral, and a reference for this

is given to De la Hire's Sectiones Conicce p. 9, prop. 20 (1685).

Pp. 10-16. Any transversal is cut in involution (1) by the

sides and diagonals of a quadrilateral, regarded as the projection

of a parallelogram : and (2) by these and any circumscribed

conic regarded as the projection of a circle. The latter theorem

( xi) was due to Desargues and had been preserved by Pascal.

The case in which a conic degenerates into a line-pair is noticed.

In a note (p. 14) he refers, on the theory of transversals, to

the works of the ancients the Almagest for example ;
to Fr.

Maurolycus Opuscula Mathematica p. 281, 1575
;
and to Schubert

in the Nova Acta PetropoL tome xii. ann. 1794.

Pp. 17 28. Pascal's theorem is proved by considering the

six points of concourse of a conic with any triangle, and in a

note is added the property of triangles in homology. The

extension of the theory of polars to quadrics is ascribed to

Monge (p. 19), although in reality due to Desargues [p. 329],

who would however have thought definitely only of the quadrics

of revolution. The theorem that the joins of four points on a

conic determine a self-polar triangle with respect to it [p. Ixii]

is proved, and the reciprocal property of four tangents deduced.

Hence follows " une propriety bien remarquable des lignes du

second ordre," viz. that the intercepts on any two fixed tangents

by the diameter MN parallel to their chord of contact and a

variable tangent El have their product EM.NI constant (xxvm).
He does not seem to be aware that this is one of Newton's

theorems [p. Ixviii] although he refers to Newton more than
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once (pp. 38, 45), has a general acquaintance with lib. I. sect 5

of the Principia from which it is taken, and knows the third

corollary of the lemma to which it is the first corollary.

Pp. 28 53. He draws conies passing through n points (one

or more of which may be at infinity) and touching 5 n lines

(where n is 0, 1, 2, 3, 4 or 5), referring also to Newton's

methods, and in one case to Maclaurin's Algebra. He makes

use in these constructions of his own property of the hexagram,
the reciprocal of Pascal's

;
and from the two together deduces

(p. 35), that the six summits of two triangles touching a conic

lie on a conic, and conversely.

Pp. 53 60. The theorem of Desargues (xi) "va nous

ddcouvrir de nouvelles proprie'te's des coniques a branches

infinies." Take four points UXYZ on a conic, of which XY
are at infinity and U variable, then any fixed chord AB is met

by UX and UY in points C and F, such that the cross ratio

: ~D~cris constant (p. 54). If AXYZ be fixed points on aT^TAr
parabola or hyperbola, of which Z only is at infinity, and U a

variable point on the curve, the lines UX and UY meet AZ
at distances from A which are in a constant ratio. By making
U coincide with each of the points XY, he deduces Ex. 429

[p. 159] and its analogue for the parabola; as also Ex. 427,
that the arms of any angle in a fixed segment of a hyperbola

intercept a constant length on either asymptote. By means of

these results he shews how to describe a hyperbola, having

given an asymptote, and in addition three points or a point

and two tangents or two points and one tangent. All that

remained to bring the anharmonic point-property of conies fully

to light was a simple application of the method of projection,

which the writer had already used with such effect. Knowing
so well the importance of the projective property of the an-

harmonic pencil, it is remarkable that he should have left it

for others to take the final step.

"Toutes les proportions contenues dans ce Memoire se

rattachent au the*oreme xi" (p. 61). Thus the name of

Desargues is brought effectually into notice. He also refers

to Lambert (Perspective ed. 2, 1774), Blondel, Muller &c.
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Pp. 61 65. He deduces from Pascal's hexagon the pro-

perties of similar central conies, and concludes with some new

properties of the tangent cones to quadrics. If a conic passes

through two fixed points AB and touches two given lines, the

chord of contact passes through a fixed point on the line AB
(p. 20). Hence, if a quadric passes through two fixed points

AB and has a given enveloping cone, the plane of contact

passes through a fixed point on the line AB. A construction

is deduced for a quadric passing through four given points and

having a given enveloping cone.

7. To Poncelet as a geometer belongs the double honour

of supplying what was lacking in the theory of Continuity by
his discovery of the focoids [p. 311],* and bringing to light the

principle of Duality by his method of reciprocal polars [p. 346] ;

whilst, like Desargues and Archimedes before him, he was no

less a master of the principles and practice of mechanics. Born

at Metz on the first of July 1788, he was allowed to grow up
almost without instruction at St. Avoid, until in his seventeenth

year, at the end of 1804, he entered the Lyce'e imperial de

Metz. Three years later he gained his admission to the Ecole

Polytechnique, was employed in 1811 upon the fortifications of

Rammekens in the island of Walcheren, marched in 1812 with

Napoleon to Moscow, and was taken prisoner and interned at

Saratov on the Volga until the general peace of 1814. In his

captivity he set to work, in spite of all hindrances, to reconstruct

for himself a course of mathematics, and entered upon those

bold speculations which are the characteristic of his famous works

on geometry. For a full list of his scientific publications see

Didion's Notice sur la Vie et les Ouvrages du Gen. J. V. Poncelet

(Paris 1869). The appearance of his Cours de Mecanique

appliquee, dating in part from 1826, is described as having
"

fait sensation dans le monde de la science et de 1' industrie"

(p. 33). The dominating idea of his geometrical works was to

increase the resources of pure geometry, to generalise its con-

* Poncelet, before Pliicker, spoke of a conic as having four foci (Proprietes

Projectivtt p. -271. is-j-J).
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ceptions and language, and thus to raise it to the level of

analysis. See the Introduction to his Traiti des Proprietes

Projectivcs des Figures edit. 1 p. xxxiii. (1822); edit. 2 tome I

p. xxii (1865-6). At the end of the year following he died

(Dec. 23 1867), with his thoughts turned again to mechanics:

"3Iatete est bonne, etj'espere bien pouvoir cet hiver publier

ma Mecanique (p. 45)."

Bteiner. 8. One of the leading contributors to the further syste-

matisation and development of geometry was Jacob Steiner,

the author of numerous mathematical articles and of the works :

(a) Systematische Entwickelung etc. 1832 [p. 262].

(b) Die geometrischen Konstructionen, ausgefiihrt mittelst der

geraden Linie und einesfesten Kreises (Berlin 1833).

The work (a) was a first instalment of a treatise in five

parts, of which no further part appeared iu the author's life-

time
;

but his Vorlesungen iiber synthetische Geometrie were

edited posthumously by Geiser and Schroter (Leipzig 1867,

1876). Of the second part of the Vorlesungen, containing the

projective geometry of conies, the third section is on Kegel-

scJinittbilscJiel and Kegelschnittschaar.

chasics. R9. Michel Chasles, the most famous of living* geometers,
17931880. a

is perhaps best known as the author of the Aperqu historique

sur Vorigine et le d&veloppement des Methodes en Geometrie etc.

(Paris 1837, 1875), which contains an invaluable series of notes

on the history of geometry from the earliest times, followed

by a Memoire de Geometrie (pp. 573848) devoted to the ex-

position of the two general principles of Duality and Homo-

graphy. Supplementary to the Apergu was his Rapport sur les

progrZs de la Geomitrie (1870), forming one of a series of

official reports on the various branches of literature and science.

He is also author of treatises on the Geometrie Supfoieure (1852,

1880), Porismes d'Euclide (1860), Sections Coniqucs^ premiere

partie (18G5), and of a multitude of separate articles, several of

which relate to Maclaurin's theorem in attractions (Comptes

* These pages were already in type when the death of Chasles took place, on the

18th December, 1880.
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Rendus V. 842. VI. 808-812, 902-915. 1837-8, &c.). At this

point we may fitly offer some remarks upon the history of

the " anharmonic" properties of conies and the general principle

of "
homography," with which the name of Chasles is so

intimately associated.

(a) The anharmonic point-property of conies.

From the Collectio of Pappus we are led to infer that

Euclid was acquainted with a form of the theorem (1) that the

cross ratios of four fixed radiants are constant, and Apollonius
with the theorem (2) that the locus a.y

= k.f38 is a conic. From
the union of these two at once arises the well-known " Pro-

prie"te auharinonique des points d'une couique," which never-

theless remained unnoticed for upwards of 2000 years longer.

Although the theorem (1) was rediscovered by Desargues and

taken as his fundamental property in Perspective, whilst (2)

was brought into notice by Descartes and afterwards proved

synthetically by Xewton, the combination of the two was not

yet thought of.* The third and last stage in their history was

inaugurated by Brianchon, who proved that, if AB be a fixed
chord of a conic and XY its points at infinity ,

the chordsfrom a

variable point on the curve to ABXY cut AB in constant cross

ratios. Chasles shewed, in course of an account of his " Trans-

formation Parabolique," that the same is true when X and Y
are any two fixed points on the conic; and he deduced that

the locus of the point at which four given points subtend a

harmonic pencil is a conic through the four points. See

Quetelet's Correspondance Math, et Physique tome V. 2934,
301 (1829): Chasles Rapport etc. p. 268. All that was still

wanting was a familiarity with the " thdorie complete des

rapports anharmoniques,"f which might have been found in the

Barycentrische Calcul of Mobius (1827). The property of

conies now under consideration is fully stated, and its impor-

*
Although it is convenient to deduce Newton's description of a conic by angles

from the four-point property [p. 264], we ought, historically speaking, rather to

reverse the process, and say that the anharmonic property is evidently contained in

his Descriptio Onjanicn.

t See the Preface to Cremona's Geometrie Projtctire p. XV (Paris 1875). In thia

work, originally written in Italian, the reader will find references to many of the

leading treatises and historical facts of geometry.
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tance pointed out in the Apergu historique (pp. 80, 334-341),
which was presented to the Brussels Academy in a rudimentary
form in 1829, and ultimately published in 1837 : it is also

found in Steiner's Systematische Entwiclcelung, published in

1832 [p. 262].

(b}. The anharmonic tangent-property of conies.

It was shewn by Newton that, if .D/and IK be certain fixed

segments of two given tangents to a conic, any third tangent

cuts them in points E and Q respectively such that the

rectangle (IM IE] (IK IQ] is of constant magnitude; and

the same theorem was reproduced by Brianchon in 1817

[p. Ixxix]. Poncelet, who refers to Brianchon's Memoire, proves*

that, if the opposite sides AB and CD of a fixed quadrilateral

circumscribed to a given conic be met by any fifth tangent in

L and N respectively, and if J5(7, DA be met by any sixth

tangent in M and P, then

DP BMRL DN^_
AP' CM~ AL' CN'

and by fixing the tangent MP he deduces that the cross-ratio

JOT flff

of the segments ofAB and CD by any fifth tangent

is constant.^ In the case of the parabola this cross ratio is equal
to unity [p. 295] a theorem which he believes to be due to

Halley (p. 118)4 Chasles gave a second proof of Poncelet's

generalisation, regarding the tangents to a conic as projections

of the generators of a ruled hyperboloid, and shewed how to

pass from it to Newton's theorem, which however he ascribed

only to Brianchon (Quetelet's Correspondance IV. 364-70. Cf.

Chasles Rapport p. 239). He afterwards proved it again in

the form, that the ratio of the products of the distances of the

fifth tangent from A, C and B, D respectively is constant

(ibid. V. 289, 1829); and also shewed that the envelope of a

*
Proprietes prqjectives p. 115 (1822) ;

vol. I. p. Ill (1865).

f This is obvious from Newton's figure p. [Ixvii] for the case of two pairs of

parallel tangents : it then follows by projection for any two pairs of tangents, the
" cross-ratio" having different but constant values for different planes. See Art. 133

(ii) [p. 312].

I Apollonii Pergsei J)e Sectione Rationis $c. lib. I. pp. 645, ed. Halley

(Oxon. 170C).
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line cut harmonically by four fixed lines is a conic touching
them (p. 294). The property of which this last is a special

case was at length completely stated, simultaneously with its

reciprocal (a), by Steiner and Chasles. It might have been

deduced at once by projection from Lambert's solution of

Sir Christopher Wren's problem [p. 296].

(c). A conic regarded as the projection of a circle.

Chasles, in his Sections Coniques (at the suggestion of

M. J. Delbalat), defines a conic as the projection of a circle

(p. 7), deduces its anharmonic properties, and founds his treatise

upon them. The effectiveness of this method and the ability

with which he applies it are knowu to all. Nevertheless,

however excellent in a supplementary course of geometry,
it is less suited for beginners, owing to the difficulty of proving

conversely that every conic secondarily defined by the an-

harmonic properties can be placed in perspective with a circle.

The problem is indeed solved concisely on p. 5, but not without

references to a later paragraph and a separate work for further

reasoning in justification of the construction. It naturally

presents some difficulty to the tyro, being in fact a form of a

problem which no geometer was able to solve generally before

Desargues.

(d) Homographicfigures in two and in three, dimensions.

The general principle of "
homographie" as it was named

by Chasles is somewhat obscurely set forth in the works of

Desargues, who regarded figures in homology as special cases

of figures in perspective in space, at the same time taking for

his Proposition Fondamentale de la pratique de la Perspective

a form of the property of the anharmonic pencil.* The idea of

transforming solid figures also is briefly hinted at by Desargues

[p. 329]. Poncelet studied the relations of figures in "
homology"

(to use his own expression), and devoted a supplement of his

Traite des Propr. Projectives pp. 369-416 (1822) to the pro-

jective properties of figures in space. Not the least valuable

part of the Apergu historique is the full exposition of the

* Poudra (Euvret de Luargues I. 425.
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principle of Homographie, as applied to plane and to solid

figures, with which it concludes.

10. The following works may be mentioned as having
advanced the knowledge of the new geometry in this country.
The essay on Transversals in the 12th edition of Button's

Course of Mathematics, by T. S. Davies, also an editor of the

journal the Mathematician
;

Salmon's compendious works on

the various geometrical and other methods, to which we have

so often referred
;
Gaskin's Geometrical Construction of a Conic

Section; Mulcahy's Principles of Modern Geometry; and

Townsend's two volumes on the Modern Geometry of the

Point, Line and Circle, which within their prescribed limits are

as complete an exposition of the principles of the subject as

could be desired. We must not omit to notice also Prof.

H. J. S. Smith's article on the Focal Properties of Homographic

Figures in vol. II. 196 248 of the Proceedings of the London

Mathematical Society, some of the results of which are given

below, with especial reference to the case of reverse figures.

properties
H If MPN be any angle which is EQUAL to its reverse

flgu

e

re
e

r.

se

mpn, it must be equal to MON [p. 323]. Hence (1) for a

given position of P there are an infinity of angles MPN, each

of which reverses into an equal (or supplementary) angle ;
and

the arms of such a system of angles constitute a pencil in

involution, since the points MN always lie on a circle of the

coaxal system through and P. (2) If 0' and &>' be the

points such that the base-line bisects 00' and o>a>' orthogonally,

every angle subtended at or 0' reverses into an equal

angle subtended at (a or &>'. (3) Every conic which has or

O for a focus reverses into a conic having w or to' for a focus

[p. 317 (i)]. (4) An ellipse (or hyperbola) having an.d 0' for

foci reverses into a hyperbola (or ellipse) having o> and to' for

foci; their normals at reverse points Pp correspond being
fourth harmonics to the focal distances and tangents at P and

p respectively ;
and therefore their centres of curvature and their

evolutes correspond. (5) The coaxal circles of which 00' are

the limiting points reverse into those of which <oo>' are the
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limiting points. (6) The parallels through G> and &>' to the

base-line are such that every segment of either reverses into

an equal segment. And (7) on any two reverse lines MP and

mp there are two sets of equal corresponding segments, which

determine two pairs of involutions having their centres on the

base-line as may readily be deduced from the constancy of

the product MP.mp [p. 328] for given positions of the two

lines. These results apply mutatis mutandis to homographic

plane figures in general, however placed.

12. The organic description of curves has within the last Linkages,

few years received developments of the greatest theoretical

interest and practical importance, consequent upon the dis-

covery (1864) by Peaucellier, an officer of engineers in the

French army, of an apparatus for the Inversion of circular

into rectilinear motion. Let A OB be an angle of equal arms,
and ACBP a rhombus whose sides are less than the arms

of the angle. Then OCP is a straight line, and the product

OC. OP, being equal to OA*-AC\ will be constant if the

sides of the rhombus and of the angle be constant. Let these

be now replaced by bars or " links" jointed at the five points

OABCP, then the whole linkage is called a Peaucellier cell.

If this linkage be moved about a fixed pivot at in any

possible manner in one plane, then whatever be the locus

of C the point P will trace its inverse with respect to 0, on

account of the constancy of the product OC.OP. To make

P describe a straight line we must make C describe a circle

through 0; which is at once effected by joining C to an
" extra link" CQ, whose end Q works about a fixed point

at a distance equal to its own length from 0. This apparatus

may evidently be applied also to produce Parallel Motion
;
and

\ve may make P describe an arc of a circle of as great a radius

as we please by making the distance OQ sufficiently nearly

equal to the length of the " extra link." The principle of

linkages is well explained by Mr. A. B. Kempe in his concise

work How to draw a Straight Line, a lecture on Linkages

(London 1877), and references are given in it to the chief

articles that had been written upon the subject. To conclude,
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in the words of Sylvester,* to whom Peaucellier's method of

linkages owes so much of its further development: "It is

possible, by means of an apparatus consisting exclusively of rigid

rods, compass joints, and pivots, to convert circular into linear,

hyperbolic, elliptic, and parabolic motion; and, in general, to

describe any curve of the form x$ (a?, y*] + ty (x*, y*}
=

0, where

<f>, ifr are homogeneous forms offunctions of any degree respec-

tively in x*, yV

* Educational Times Reprint vol. xxi. 58 (1874). Later information is to be

sought in the same and other scientific periodicals.

NOTE.

In continuation of Note f p. Ixx.

The order of the surface is thus determined by Professor

Townsend. For a given position of OA, the plane OBC envelopes
a quadric cone, 2n of whose tangent planes pass each through
a generator of the director scroll. These generators give 2n

positions of the plane wB C and 2n of the point A ;
and when OA

coincides with Ow all the A's coalesce at w, which is therefore

a 2w-fold point on the locus. Again, every line through w meets
the scroll in n points, through each of which passes a generator ;

and these generators severally determine n conies, cutting the

line through w in 2n points, all of which, when the line is wO,
coalesce af 0. Thus also is a 2-fold point ;

and every line

through or w passes through 2n other points on the locus, which
is accordingly of the order 4n.



THE GEOMETRY OF CONIOS.

DEFINITIONS.

A CONIC SECTION, or, briefly, a Conic, is a curve traced by
a point which moves in a plane containing a fixed point and

a fixed straight line in such a way that its distance from the

fixed point is in a constant ratio to its perpendicular distance

from the fixed straight line. The Conic Sections were so named
from the circumstance that they are, and were originally defined

as, the plane sections of a cone.

The fixed point is called the Focus
;
the fixed straight line

the Directrix', and the constant ratio the Eccentricity, or the

Determining Ratio.

A Conic is called an Ellipse, a Parabola, or a Hyperbola^

according as its eccentricity is less than, equal to, or greater

than unity.

Similar Conies are such as have the same eccentricity.

The Axis is the straight line through the focus at right

angles to the directrix, and the point between the focus and

the directrix in which it cuts the conic is called the Vertex.

When the eccentricity is either greater or less than unity,

the conic cuts its axis in a second point, which is also called

a vertex. In such cases the term Axis may denote the finite

straight line which joins the vertices. Its middle point is called

the Centre of the conic, and the conic is called a Central Conic.

The Latus Rectum, or, as it is sometimes called, the Para-

meter, is the chord through the focus at right angles to the axis

B
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Other uses of these terms will be noticed in the course of the

work.

A Diameter is the locus of the middle points of a system of

parallel chords. It will be shewn that the diameters of conies

are straight lines. The points in which diameters and chords

meet the curve are called their ends or Extremities. The

extremities of diameters which do not meet the curve will be

defined in the chapter on Central Conies. The diameter at

right angles to the axis of a central conic is called the Minor^
or Conjugate^ Axis.

Two diameters are said to be Conjugate when each bisects

the chords parallel to the other; and two chords are said to

be conjugate when they are parallel to conjugate diameters.

Supplemental Chords are such as join the extremities of a

diameter to a point on the curve.

A Tangent to a conic is the limiting position of a secant,

whose two points of intersection with the curve have become

coincident. Thus, if P, Q be adjacent points on the curve,

and if the chord joining them be turned about P until its

further extremity Q coincides with P, the chord in its limiting

position will have become the tangent at P. Hence a tangent
is said to be a straight line which passes through two consecutive

or coincident points on the curve.

If the point of contact of a tangent to a hyperbola be

removed to infinity the tangent will coalesce with one of two

straight lines through the centre, which are called Asymptotes.
The Normal at any point of the curve is the straight line

drawn through that point at right angles to the tangent.

The perpendicular upon the axis from any point is called

absolutely the Ordinate of that point ;
but the ordinates of a

specified diameter are the segments of the chords which that

diameter bisects. The term Abscissa will be defined later.

The portion of the axis intercepted between the tangent at

any point of the curve and the ordinate of that point is called

the Subtanejent.

The portion of the axis intercepted between the normal at

any point of the curve and the ordinate of that point is called

the Subnormal.
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A straight line is said to be divided harmonically at four

points P, $, Q, R, when PQ, and PQ produced, are cut in the

same ratio by S and R, so that

RP-.RQ=SP: SQ = RP-RS:RS-RQ,
since, when this is the case, the lengths RP, US, RQ are in

harraonical progression, the extremes
'

being to one another as

their differences from the mean. In the case in which S is the

middle point of PQ, the point R is at infinity, or PSQ oo is

divided harmonically.
The locus of intersection of the tangents at the extremities

of a chord which passes through a fixed point, or Pole, is called

the Polar of the point. It will be shewn that the polar of any

point with respect to a conic is a straight line; and that the

polar of an external point coincides with the chord of contact

of the tangents to the conic from that point.

If about any point in the plane of a conic, other than the

centre of the conic, a circle be described, such that the ratio

of its radius to the perpendicular distance of its centre from

the directrix is equal to the Eccentricity, the circle may be

called the Eccentric Circle of the Conic with respect to that

point, or, briefly, the Eccentric Circle* of the point. It is evident

that the circle will cut, touch, or fall short of the directrix,

according as the conic is a hyperbola, a parabola, or an ellipse.

The circle which is described according to the same law

of magnitude about the centre of an ellipse or hyperbola is called

the Auxiliary Circle of the curve. This latter is commonly
defined as the circle described upon the axis as diameter, but

it will be seen that the two definitions are coincident. The
circle described upon the Minor Axis as diameter is called the

Minor Auxiliary Circle.

In a central conic, the locus of intersection of tangents at

right angles to one another is a circle, which is called the

* The properties of this circle form the groundwork of the treatise of Boscovich,

Sectionum Cvnicarum Elementa nova quadam methodo concinnata, contained in hia

Ekmenta Unii-ema- ^[ntheteos, TENETIIS, 1757. Boscovich gave no name to his circle,

but some later writers have called it the Generating Circle, since it affords a ready
means of tracing a conic whose elements are given.

B2
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Director Circle. The corresponding locus in the parabola is

the directrix.

The Order, or Degree, of a curve is determined by the

number of points in which it can be met by a straight line
;

and the Class of a curve by the number of tangents which can

be drawn to it from a point. Thus, a curve of the second

order, or degree, is one which a straight line meets generally
in two, and never in more than two, points; and a curve of

the second class is one to which generally two, and never more

than two, tangents can be drawn from a point.



CHAPTER I.

DESCRIPTION OF THE CURVE.

1. To trace a conic whose focus , directrix^ and eccentricity

are given.

Let S be the focus,* MM' the directrix, and X the point

in which the axis meets the directrix. In SX take a point A

such that the ratio of SA to AX may be equal to the eccen-

tricity. Then A is the vertex.

Let a straight line cut the axis at right angles in JV. About

S as centre, with radius /SP, such that

SP:NX=SA:AX,
describe a circle cutting the straight line in P, P'. From these

points draw perpendiculars PM, P'M' to the directrix. Then

evidently

SP:PM=SA:AX,

* The planets describe approximately ellipses about the sun in one focus. For
this reason the first letter of SOL is here used, as by Newton, to denote the Foctu, or

as he called it, the Umbilicus,
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or P is a point on the curve. And in like manner P' is a

point on the curve.

If now we suppose the straight line PNP' to move parallel

to itself, the points P, P' upon it will trace out the entire curve.

From this construction it is evident that the curve is symme-
trical with respect to its axis, since its points are always
determined in pairs, as P, P', which are symmetrically situated

with respect to the axis. It appears also that the tangent
at the vertex is at right angles to the axis, since when the point

N coincides with the vertex, SP=SA = SP'; that is to say,

the points P, P' coalesce at A, and the chord joining them,
which is always at right angles to the axis, becomes the tangent
at A.

In order that pairs of real points may be determined by
the above construction, it is necessary and sufficient that SN
should be less than SP, and therefore

SN: NX<SA:AX,
a condition which enables us to discriminate between the three

species of conies as follows :

(i) The Parabola.

If the eccentricity be equal to unity, we must have SN<NX,
a condition which is satisfied by taking N anywhere in XA
produced. The point N therefore may be supposed to start

from A, and to move in the direction AS to infinity, so that

the extremities of the chord PP' trace out a single infinite

branch.

(ii) The Ellipse.

If the eccentricity be less than unity, the curve will have

a second vertex A' in XA produced, and in order that the

condition

SN:NX<SA:AX
may be satisfied, it may be shewn that the point N must be

taken between A, A'. Hence the ellipse consists of one oval

branch, as in the figure of Art. 3.

(Hi) The Hyperbola.
If the eccentricity be greater than unity, the curve will
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have a second vertex A' lying in AX produced beyond the

directrix
;
and the point N may lie anywhere in AA' produced

either way, but not between A, A'. Hence, the hyperbola
consists of two infinite branches situated on opposite sides of

the directrix.

A point is said to lie WITHIN a conic when it lies between

the extremities of a chord perpendicular to the axis; and all

other points in the plane of the conic, with the exception of

those which are upon the curve itself, are said to lie WITHOUT
the conic.

Let ON be the ordinate of an internal point 0, and let NO
be produced to meet the conic in P, then evidently

SO:NX<SP:NX,
< SA : AX.

Next let be an external point. Then if N, the foot of

its ordinate, fall within the curve, it may be shewn in like

manner that

SO:NX>SA:AX.
But ifN fall without the curve, then

SN:NX>SA:AX,
and a fortiori SO : NX> SA : AX.

Hence, in every case, a point will lie within or without a

conic according as the ratio of its focal distance to its per-

pendicular distance from the directrix is less or greater than

ihe eccentricity.

SCHOLIUM.

THE CIRCLE is the limiting form of an ellipse whose eccentricity
is indefinitely diminished, and whose directrix is removed to an
infinite distance from the focus. For if, in the next figure,

PM, P'M' be perpendiculars on the directrix from any two points
P, P on a conic, and if the distance of the directrix from S be
'increased indefinitely whilst SP, SP' remain finite, then (i) the ratio

SP : PM is diminished indefinitely ; and (ii) the ratio PJf : P'M'
tends to equality. But

SP: SP' = PM'.P'U'.

Therefore ultimately SP : -SP' is a ratio of equality, and the conic

tecomes a circle about S as centre.
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2. The focal distances of all points on a conic are to one

another as their parallel distancesfrom the directrix.

Let S be the focus; P, P
1

any two points on the curve;

Mj M' their projections upon the directrix. Then from the

definition

8PiPM=SPiPMt

.

From P, P draw a pair of parallels meeting the directrix

in Rj R'. Then by similar triangles,

Therefore SP:PR = SP -.PR'.

Hence the focal radii $P, SP' are to one another as the

parallels PR, PR' ; and, whatever be the position of the point

P on the curve, the ratio of SP to PR will be constant if

PR be drawn to meet the directrix at a constant angle.

3. A conic is a curve of the second order.

For if P, Q be any two points on a conic, as in the figure

of Art. 4, and if the straight line joining them meet the directrix

in Rj then, drawing perpendiculars PJJ/, QN to the directrix,

we have

SP:SQ =PM: QN
= Pfl: QR.

Hence SR makes equal angles with SPj SQ; and, con-

versely, if P be a point on the curve, and SQ be drawn

meeting RP, and equally inclined with SP to SR, then Q will

be a point on the curve.

It is evident from this construction that no third point can

be found on the conic in the same straight line with P, Q.
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Hence a straight line which meets a conic will in general meet

it in two points, and no straight line can meet a conic in more

points than two. It is for this reason that conies are called

curves of the second order, or of the second degree.

Let a straight line parallel to the axis meet the directrix

in M and the curve in P. Make the angle HSR equal to

MSP, and let US meet MP in Q; then, from above, the

point Q lies on the curve. In the case of the ellipse the

points P, Q will lie on the same side of the directrix; for,

since SP is less than PM, the angle SMP is less than MSP,
and therefore the alternate angle MSX is less than MSP or

MSB. Hence the straight line SR falls without the angle

MSX, and meets MP on the same side of the directrix with P.

By similar reasoning it may be shewn that a straight line

parallel to the axis of a hyperbola intersects the curve in two

points on opposite sides of the directrix. In the case of the

parabola, SB coincides with the axis, to which MP is parallel.

Hence a straight line parallel to the axis of a parabola meets

the curve in one point only.

4. To describe a conic of given focus, directrix, and eccen-

tricity by means of the eccentric circle of any given point.

Describe the eccentric circle of any point in the plane
of the conic, and let a straight line through S meet the circle

in p and the directrix in R. Let RO meet the focal radius

parallel to p in P, and let OD, PM be the perpendiculars from

0, P to the directrix.
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Then by parallels,

SP: Op =PR : OR
= PM:OD,

SP : PM= Op : OD
= the eccentricity.

moves round the circle, P traces the conic which

or

Hence,
was to be described.

In the case of the hyperbola* it may be seen that the

directrix divides the circle into two parts, each of which cor-

responds to one branch of the curve.

5. To determine the points in which a given straight line

intersects a conic ofgiven focus, directrix, and eccentricity.

Let the given straight line meet the directrix in E. Describe

the eccentric circle of any point on the straight line, and

let it cut SR in p, q. Let the focal radii parallel to pO, qO

* Since the locus of p is a continuous curve, the conic, which is the locus of P,
is also to be regarded as in all cases a continuous curve. In the case of the hyperbola,
as the pointp crosses the directrix, the point P passes from infinity on one side of the

axis to infinity on the other side of the axis. Hence the two branches of the

hyperbola may be conceived of as connected diagonally at infinity.
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meet the straight line in P, Q. Then, as above, if OD, P3I

be perpendiculars on the directrix,

8P : PM= Op : OD
= the eccentricity,

or P is a point on the conic.

Similarly it may be shewn that Q is a point on the conic.

From this construction it follows that a conic is a curve

of the same order as the circle; that is to say, it is a curve

of the second order, as was shewn in Art. 3.

6. A conic is a curve of the second class.

If the points^, q become coincident, the points P, Q likewise

become coincident, since 0/?, Oq are always parallel to SP, SQ
respectively; that is to say, if SB touches the circle, RO
touches the conic.

Hence the problem of drawing tangents to a conic from

a point is reduced to that of drawing tangents from S to

the eccentric circle of 0\ for if the tangents from S to the

circle meet the directrix in
.ff, 7?', then RO, RO will be the

required tangents to the conic.
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Since the same number of tangents can be drawn from

to the conic as from S to the circle, it follows that a conic

is a curve of the same class as the circle; that is to say, it

is a curve of the second class.

In order that two real tangents to the conic may be deter-

mined by the above construction, it is necessary and sufficient

that S should lie without the circle. The point must therefore

be so situated that SO may be greater than the radius of the

circle, and therefore

SO: OD>Op\ OD

> the eccentricity,

where D is the projection of upon the directrix.

When is on the curve the circle passes through S
t
and

the two tangents coalesce.

No tangent can be drawn to a conic from any point between

the curve and its axis, since at every such point

SO : OD < the eccentricity.

Hence no tangent can pass between the curve and its axis,*

and the curve is therefore concave at all points to its axis.

EXAMPLES.

1. If an ellipse, a parabola, and a hyperbola have the

same focus and directrix, the ellipse will lie wholly within the

parabola, and the parabola wholly within the hyperbola; and

DO two conies which have the same focus and directrix can

intersect one another.

2. If parallels from the focus and any point P on a conic

meet the directrix in Z>, It, and if L be equal to half the

latus rectum, then

* In particular it ia to be noticed that no tangent can be drawn to either branch

of a hyperbola from any point within the other branch.
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3. If the focus and two points of a conic be given, the

directrix will pass through one of two fixed points.

4. If PN be the ordinate of any point P on a conic, then

SP+L: SN= the eccentricity.

Hence shew that if PSP be any focal chord, then

J- + J- .2
SP SF~ L

5. Determine the condition that the chord of a conic may
be greater than, equal to, or less than the diameter of the

eccentric circle of its middle point.

6. In the figure of Art. 4, if OpSP be a quadrilateral formed

by drawing through 0, S a pair of parallels, and a pair of

straight lines which intersect on the directrix, then p will lie

without or within the eccentric circle of 0, according as the

ratio of SP to PM is greater or less than the eccentricity.

'Prove also by means of this construction that a tangent at

any point to a conic cannot meet the curve in any other point.

7. If p be made to describe a series of circles about as

centre, P will describe a series of. ponies having a common focus

and directrix
;
and the eccentricities of the conies will be to one

another as the radii of the circles.

8. If p be made to describe a curve of any degree, P will

describe a curve of the same degree; and the corresponding
arcs of the two curves will subtend equal angles at the points

0, S respectively.

'9. If pm be the perpendicular from p to the directrix, then

PM.pm = OD . SX. Hence shew that the sum of the reciprocals

of the segments of a focal chord of a conic is constant, and any
focal chord is divided harmonically by the focus and the direc-

trix. Shew also that if OP=OQ, then RySp is divided

harmonically.

10. Shew from the construction of Art. 6 that the tangents

OP, OP' subtend equal angles, and that HP
y
RP subtend right

angles, at the focus.



CHAPTER II.

THE GENERAL, CONIC.

IN this chapter we shall prove some of the principal

properties which are common to the Parabola, the Ellipse,

and the Hyperbola, reserving for future consideration the

properties which are distinctive of the three species of conies.

PKOPERTIES OF TANGENTS.

PROPOSITION I.

7. The tangents to a conic from any point on the directrix

subtend right angles at the focus.

Let P, Q be adjacent points on the curve, and let PQ
produced meet the directrix in R. Then, as in Art. 3,

= PR: QR,SP:

p.

and SR bisects the angle which SQ makes with PS produced.
Let PS produced meet the conic in 0. Then since the

angles RSQ, RSO are always equal, therefore in the limit,

when SQ coincides with SP, each of these angles becomes a
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right angle, and RP
t
which becomes the tangent at P, subtends

a right angle at S.

Hence, (i)
to draw the tangent to a conic at a given point

P on the curve, make PSR a right angle, and draw PR to

the point in which SR meets the directrix
;
and (ii)

to draw

tangents to a conic from a given point R on the directrix, draw

the focal chord OSP&t right angles to SR, and join RP, RO.

Corollary.

Hence it appears that the tangents at the extremities of

any focal chord PO meet at a point R on the directrix
;
and

conversely, if tangents be drawn from any point R on the

directrix their chord of contact PO will pass through the focus.

i The Directrix is therefore the Polar of the Focus.

PROPOSITION II.

o 8. Iffrom, any point T on the tangent at P perpendiculars

TL, TN be drawn to SP and the directrix respectively^ then

SL : TN= the eccentricity.*

(i) For if the tangent at P meet the directrix in R, and

if PM be a perpendicular to the directrix, then, since SR is

at right angles to /SP, and is therefore parallel to TLj we have

SL : SP = TR : PR

* It will be shewn at the end of the chapter that this theorem, which, with its

applications a in the text, was discovered by Prof. Adams, is the geometrical
analogue of the polar equation between ST and its inclination to the axia.
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Therefore SL : TN= SP : PM
= SA : AX,

where A is the vertex, and X the foot of the directrix.

(ii)
It appears from the above proof, that this proposition

may be regarded as a corollary from the preceding; but the

two may be proved at once, as follows, if we consider the

tangent to be defined mutatis mutandis after the manner of

EUCLID.

Let P be a point on the curve, and Ii a point on the directrix,

such that PR subtends at right angle at 8. Take any point T
in the same straight line with P, R, and let fall the perpen-
diculars PM) TN on the directrix, and the perpendicular TL
on SP. Then, as before,

SL : TN= SA : AX.

Hence ST : TN> SA : AX,
and the point T lies without the curve in every case except that

in which it coincides with P. The straight line PR is therefore

the tangent at P.

Corollary.

It is evident that if L, N be the projections of a point T
upon a fixed focal chord and the directrix respectively, and if

SL : TN= SA : AX,
the point T will lie on the tangent at one or other of the

extremities of the fixed focal chord.

Hence, a second construction analogous to that of Art. 6,

for drawing tangents to a conic from a given point T. About

S describe a circle equal to the eccentric circle of T, and

draw TL, TM touching the circle at L, J/; then SL, SM
will pass through the points of contact of the two tangents

which can be drawn to the conic from T. There is an apparent

ambiguity in this construction, since each of the focal chords

through L, M meets the conic in two points ;
but to determine

the actual tangents, draw SR at right angles to SL to meet

the directrix, and join RT; and draw SR' at right angles

to SM to meet the directrix, and join R'T.
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PROPOSITION III.

17

9. The two tangents which can be drawn to a conic from

any external point subtend equal or supplementary angles at

the focus.

For if TP, TQ be the two tangents, and 7Z, TM, TN be

perpendiculars upon SP, SQ, and the directrix respectively,

then since T lies on the tangent at P,

8L : TN= SA : AX.

In like manner

8M: TN=SA:AX,
since T lies on the tangent at Q. Therefore in the right-angled

triangles STL, STM, the sides SL, SM are equal; and the

hypotenuse ST is common to the two triangles ;
therefore

LTSL=TSM.

Now (i)
if TP, TQ touch the same branch of the conic, the

angles which they subtend at S will be either equal to TSL
and TSM, as in the above figure, or supplementary to TSL
and TSM. In either case TP, TQ will subtend EQUAL angles
at .9.

But
(ii)

if IP, TQ touch opposite branches of a hyper-

bola, so that one, and one only, of the radii SL, SM has

C
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to be produced backwards to P or Q, then the angles TSL,
TSM being equal as before, the tangents TP, TQ will subtend

SUPPLEMENTARY angles at S.*

Corollary 1.

If the chord of contact PQ of a pair of tangents TP, TQ meet

the directrix in R, then ST, SR bisect supplementary angles

at S, and are therefore at right angles to one another. And
the chord of contact PQ is divided internally and externally in

the same ratio SP: SQ, that is to say, it is divided harmonically,
at the points at which it meets ST and the directrix. Since

the straight line ST is evidently the polar of J?, it follows

that the chord PQ is cut harmonically by the point JR, and

the polar of B.

* But in this case also, we may say that they subtend EQUAL angles, if, in

accordance with the principle of the Note on Prop, vn, we regard TQ as subtending
at S, not the angle TSQ, but its supplement.
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Corollary 2.

If be any point on PQ, or PQ produced, and M the

projection of upon the directrix, and if the perpendicular
from to STmeet P, or SQ, in L\ then, since this perpen-
dicular is parallel to SR, it follows, precisely as in Prop. II.,

that

SL : OM= the eccentricity.

THE NORMAL.

PROPOSITION IV.

10. If the normal at P meet the axis in G
:
then SG : SP=the

eccentricity.

For if the tangent at P meet the directrix in J?, the circle on

PR as diameter will pass through S, since the angle PSR ia

a right angle; and likewise through J/, the projection of P
upon the directrix

;
and PG, which ia at right angles to PR,

will touch the circle.

Therefore L SPG = SMP, in the alternate segment.
Also L PSG = SPM, by parallels.

Hence the triangles SGP, P/S'J/are similar, and

SG : SP= SP : PJ/= 8A : AX.

Conversely, if in AS produced a point G be taken such that

SG : SP= SA : AX,
then will PG be the normal at P.

This suggests an obvious method of drawing a normal to a

conic at a given point on the curve, or from a given point
on the axis.

C2
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PROPOSITION V.

11. The perpendicular let fall upon the focal radius to any

point of a conicfrom thefoot of the normal at that point meets

the focal radius at a distance equal to half the latus rectum from
its extremity.

Let G be the foot of the normal at a point P whose ordinate

is PN, and let a perpendicular GK be drawn to SP. Then

by similar right-angled triangles

SK: SG=SN: SP.

Therefore by the preceding proposition

SK: SA = SN:AX.

But, from the definition of the curve,

SP: SA =NX:AX.
Therefore SP~ SK : SA = SX : AX.

Therefore SP~ SK, or PK, is constant, and equal to half

the latus rectum.

ANGLE PROPERTIES OF SEGMENTS.

PROPOSITION VI.

12. The chords containing the angles in a focal segment of
a conic intercept on the directrix lengths ivhich subtend right

angles at the focus.

Let PSp be a focal chord, and PQp an angle which it

subtends at the circumference. Let PQ, Qp meet the directrix

in .R, r respectively. Produce QS to q.

Then since SP : SQ =PE : QR,

and Bp : SQ= pr : Qr,
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therefore SB and Sr bisect the supplementary angles which Sp
makes with Qq, and consequently the angle RSr is a right

angle, or Rr subtends a right angle at 8.

Corollary.

The opposite sides of a quadrilateral whose vertices are at

the ends of a pair of focal chords PSp, QSq intersect upon the

directrix, and the portion of the directrix which they intercept

subtends a right angle at the focus. For, proceeding as above,
we see that each of the straight lines PQ, qp meets the directrix

on the bisector of the angle pSQj and each of the straight

lines Pq, Qp meets the directrix on the bisector of the sup-

plementary angle pSq\ that is to say, the two pairs of opposite

sides of the quadrilateral intersect upon the directrix at points

It, r, such that Rr subtends a right angle at 8.

PROPOSITION VII.

13. The chords containing the angles in a faced segment of a

conic intercept on the directrix lengths which subtend constant

angles at the focus, the constant angles being equal or supple-

mentary to half the angle which the chord of the segment subtends

at the focus.

Let PQ be a fixed arc of a conic, and PR Q a variable angle
at the circumference. Let PR, QR meet the directrix in p, q

respectively.

Then since SP : SR = Pp : Rp,
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the straight line Sp bisects the angle ESP, and likewise the

straight line Sq bisects the angle ESQ, externally or internally.

Hence, by addition or subtraction, as the case may be, the

angle pSq is equal or supplementary* to ^PSQ. For example,
in the figure drawn,

L ESq = % supplement of ESQ,
and L ESp = \ supplement of ESP}

whence, by subtraction,

= \PSQ.

Corollary.

In like manner it may be shewn, by successive applicatloas

of Prop, in., that if the tangents at P, Q meet the tangent
at E in p and q, the angle p'Sq will be equal or supplemen-

tary to pSfr or \PSQ.

SCHOLIUM A.

THE ANGLE PROPERTIES of conies comprise some simple gene-
ralisations of fundamental theorems in the geometry of the circle,

as may be seen by removing the directrix to infinity, when, as has
been already shewn, the conic becomes a circle about S as centre.

(i) Removing the directrix to infinity, we have, referring to the

figure of Art. 8, the tangent PR parallel to SR, and therefore at

right angles to SP. That is to say, at any point P on a circle the

tangent is at right angles to the radius.

* The theorem appears to fail when P, Q are on opposite branches of a hyperbola,

in which case L pSq = complement of %PSQ. But in this case the chord of

the segment is not the finite straight line PQ, which lies without the conic, but the

portion of the unlimited straight line through P, Q which falls within the conic. The

angle subtended at S by the chord of the segment is therefore not PSQ, but the

supplement of PSQ.
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(ii) Removing the directrix to infinity in Art. 12, we have PQ
parallel to SJ%, since JR. is at infinity ;

and Qp parallel to Sr, since

r is at infinity. Therefore PQ, Qp contain an angle equal to JKSr,
or the angle in a semicircle is a right angle.

(iii) Proceeding similarly with reference to Art. 13, we have
PR parallel to 8p, since p is at infinity ;

and QR parallal to Sq,
since q is at infinity. Therefore the angle PRQ, or its supplement,
is equal to ^PSQ. Hence, by varying the positions of the points

upon the circumference, we come to the properties of the circle,

that the angle at the centre is double of the angle subtended by
the same arc at the circumference

;
that angles in the same segment

are equal to one another
;
and that the opposite angles of an.

inscribed quadrilateral are together equal to two right angles.

Lastly, by making JR. coalesce with P, we deduce that the tangent
at P makes with a chord PQ an angle equal to PItQ in the alter-

nate segment.

DIAMETERS.

PROPOSITION VIII.

14. The locus of the middle points of any system of parallel

chords of a conic is a straight line which meets the directrix

on the straight line through the focus at right angles-to the chords.

Let PQ be any one of a system of parallel chords, and V the

point in which the focal perpendicular upon them meets the

directrix. Let PQ meet SVin Y
t
and the directrix in B.

X AS
Then since SP:PR = SQ: QR ;

therefore SP* ~ SQ* : PR* ~ QR2 = SP* : PR',

or, subtracting SY* from each of the magnitudes 5P* and

PY> ~QY*:PR'^ QRy = SP* : PR*.
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But, if be the middle point of PQ, the sura of PFand Q Y
will be equal to 2 Y, and their difference to PQ, or vice versa.

Therefore PY* ~ Q Y* = 2 Y.PQ,

and in like manner PE* ~ QJT = 2 OK . P<2*

Therefore OY:OR= SP* : Pfl2

,

which, by Art. 2, is a constant ratio for all parallel chords.

Hence the locus of is a straight line through V.*

Corollary 1.

The tangents at the extremities of diameters are parallel to the

ordinates of those diameters, since a bisected chord as PQ may
be supposed to move parallel to itself until its segments vanish

together, and its extremities coalesce, viz. at the end of

its diameter. Hence the diameter through the point of contact

of any tangent meets the directrix at a point V such that SV is

perpendicular to the tangent. If a diameter meets the curve in

two points, the tangents at those points are parallel to one

another, and to the ordinates of that diameter. Conversely,

the chord of contact of any two parallel tangents is a diameter.

Corollary 2.

If POQ, poq be double ordinates of a given diameter 00,

then since PQ, pq are both bisected by the same diameter,

* This may also be proved by means of the eccentric circle of 0. For in Art. 16,

if 01' be made equal to OQ, then Sp : Sq = pR : qR, or JtpSq is divided harmonically ;
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the directions of Pp, Qq will intersect at some point T on that

diameter. Hence, making pq coalesce with PQ, so that PT,

QT become the tangents at P, Q, we see that the tangents at

the extremities of any chord meet upon the diameter which bisects

the chord ; and conversely, that the diameter through an external

point bisects the chord of contact of the tangents from that

point.

Corollary 3.

If the chord PQ be parallel to the axis, so that SY the

focal perpendicular upon it is parallel to the directrix, then,

proceeding as before, and supposing PQ to meet the directrix

in J/, we have

OY: Oir=SP*: PIP;

and, the ratio of Y to OM being thus constant, the locus of

X AS HA W H X A S

is a straight line perpendicular to the axis. Let it meet the

axis in 0, which (Def. p. 1) is the Centre of the conic. Then,

evidently, CO divides the curve symmetrically, since it bisects

every chord PQ to which it is at right angles ;
and the conic

has therefore a second focus H, and directrix NW^ which are

the exact counterparts of the original focus and directrix with

reference to which the curve was considered to be described.

From the symmetry of the curve, it is manifest that every
chord through the centre is bisected at that point, and hence

that all diameters pass through the centre.* Other immediate

and therefore the focal perpendicular SYis the polar of R with respect to the circle,

and OY . OR, being equal to the square of the radius, is in a constant ratio to OR2
,

if the inclination of PQ to the directrix be invariable. Therefore OY : OR is a

constant ratio, and the locus of is a straight line through V.

* A diameter is sometimes defined as a straight line through the centre.
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consequences of the twofold symmetry of Bifocal Conies will

be assumed as self-evident in the course of the work.

In the case of the parabola, since SP* : PJ/ 2
is a ratio

of equality, Y : 0J/ and CS : CX are likewise ratios of

equality. Hence the parabola may be regarded as a conic

whose centre is at infinity. Its diameters are straight lines

parallel to the axis, since they all co-intersect at the infinitely

distant point G on the axis
;

and conversely, every straight

line parallel to the axis is a diameter.

Corollary 4.

In a central conic, if one diameter bisect chords parallel to a

second, the second will bisect chords parallel to the former.

For if the two diameters meet the directrix in F, F', and if

$Fbe perpendicular to CV
; then, CS being perpendicular to

FF', the focus is the orthocentre of the triangle OFF', or SV
is perpendicular to OF. That is to say, if CV bisects chords

parallel to OF', then OF' bisects chords parallel to OF.

If OF, OF' be thus related, it is easily seen that

VX.V'X=CX.SX.

THE SEGMENTS OF CHORDS.

PROPOSITION IX.

15. TJie semi-Iatus rectum is a harmonic mean between the

segments ofany focal chord.

Let a focal chord PSQ meet the directrix in R
t
and let

PM, SX} QN be perpendiculars to the directrix.
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Then 8P-.8Q-PM:
= PR : QR,

or PQ is divided harmonically at S and R.

But by parallels, and from the definition of the curve, if L
be the semi-latus rectum,

PR: SR: QR = PM: SX : QN
= SP : L : SQ.

And, from above, PR, SR, QR are in harmonical progression.

Therefore also SP, L, SQ are in harmonical progression.

Corollary.

^ '

This result may also be written in the forms
\_s7

* 1
1. _ a

~SP
+ SQ~L'

and

Hence, if PQ, pq be any two focal chords,

PQ:p2=SP.SQ: Sp.Sq,

or focal chords are to one another as the rectangles contained by
their segments.

PROPOSITION X.

16. A chord of a conic being divided at any point, to determine

the magnitude of the rectangle contained by its segments.

Let be jfny point ou a chord PQ of a conic, or on the

chord produced ;
it is required to determine the magnitude of

the rectangle OP.OQ.
Let the chord, produced if necessary, meet the directrix

in R, and let OD be a perpendicular to the directrix. Describe

the eccentric circle of 0, and let it cut SR mp and q. Then, as

in Art. 5, the radii Op, Oq are parallel to PS, QS respectively.

Therefore OP : Sp = OR : Rp,

and OQ: Sq=OR:Rq.
Hence OP.OQ : Sp.S<i= OR* : Rp.Rq,

= OR2
: Rt\
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if Rt be a tangent from R to the circle
;

or (Euclid ill., 35}

if it be a semi-chord at right angles to the diameter through

ft, in the case in which R falls within the circle.*

In this result it is to be noticed
(i) that the magnitude

Sp . Sq depends only upon the position of 0, since when is

given, its eccentric circle being given, Sp.Sq is constant; and

(ii)
that the ratio OR' : fit* depends only upon the direction^ of

PQ, since when the angle ORD is given, OR* varies as OD'\
and therefore as Of, and therefore as OR* ~ #*, or Rt*.

Corollary 1.

If through any other point 0' there be drawn a chord P'Q'

parallel to PQ, and if_p', q
f

be the points corresponding top, g,

viz. on the eccentric circle of #', then, the ratio OR* : Rt* being
the same for any two parallel chords, it follows that,

OP. Q : Sp . Sq = O'F. 0'Q : Sp'. Sf,

where the consequents depend only upon the positions of 0, 0'.

If therefore any second pair of parallel chords be drawn through
the same points 0, (7, we have the general theorem thai :

* This happens when P, Q are on opposite branches of a hyperbola, since p, q

then lie on opposite sides of the directrix.

f This follows most readily in the case of the parabola, since then the circle

touches the directrix in D, and the ratio in question becomes that of RO2 to RD*
which is constant for a given inclination of the chord.
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The ratio of the rectangles contained by the segments of any
two intersecting chords of a conic is equal to that of the rect-

angles contained by the segments of any otJier two chords parallel

to the former, each to each.

Taking special cases, we see that this ratio is equal to

that of the parallel focal chords (Prop. IX., Cor.) ;
and to

that of the squares of any pair of tangents parallel to the

chords
; and, in a central conic, to the ratio of the squares of

the semi-diameters parallel to the chords.

Hence also, any two intersecting tangents are to one another

in the subduplicate ratio of the parallel focal chords
; and, in a

central conic, they are in the ratio of the semi-diameters to which

they are parallel.

Lastly, to take a case which will be made use of in Prop, xil.,

if OTO' touch a conic in T, and if OPQ, O'P'Q be a pair

of parallel chords, then

: O'P'.O'Q'.

-^Corollary
2.

If a circle and a conic intersect in four points, their common
chords will be equally inclined, two and two, to the axis of

the conic.* For if POQ, pOq be one of the three pairs of

common chords of a circle and a conic, the rectangles PO. OQ
and pO.Oq will be as the focal chords parallel to PQ, pq-
aud the same rectangles will be equal to one another, by a

property of the circle. Therefore the focal chords will be equal,

and therefore equally inclined to the axis.

Corollary 3.

Let the conic be a parabola,f so that the eccentric circle

touches the directrix in D
;
and let SD meet the circle again

in Z. Then, for a given inclination of the chord, the rectangle

OP.OQ varies as SD.SZ. Let V be the extremity of the

* That is to say, each pair of chords will form an isosceles triangle with the axis
;

but they will not be parallel to one another, except when they are parallel or perpen-
dicular to the axis.

t Another proof will be given in the chapter on the Parabola.
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diameter through D. Then, since OZ is equal to OD and

parallel to VS, it is easily seen that

0V: SZ=VD: SD=SD:2SX.
Hence OP.OQ varies as 2SX. 07, and is equal to F. 0V,
where Fis the focal chord parallel to PQ.

This may also be deduced as a special case from Cor. 1,

by regarding any two diameters as chords V cc and V oo
,
whose

further extremities are at infinity ; for, if the parallel chords

PQ, P' Q' meet the two diameters in and 0', then

OP.OQ: O'P'.O'Q^OV.Ott-.O'V'.O'cv =OV: O'V,

since it may be shewn that Oco : 0'co is a ratio of equality;

and therefore OP.OQ varies as 0V.

POLAR PROPERTIES *

PROPOSITION XI.

17. If a chord of a conic pass through a fixed point, the

tangents at its extremities will intersect on a fixed straight

line; and conversely, if pairs of tangents be drawn to a conic

from points on a fixed straight line, their chords of contact

will pass through a fixed point.

If be any point on the chord of contact of the tangents
from T to a conic, and if TL be a perpendicular to SO, and

* The theory of Polars, although the name is of later origin, was known to

Desargues. See Poudra's CEitrrei de Desargues, vol. I., p. 263, (PARIS, 1864).
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OM, TN be perpendiculars to the directrix, then will the

rectangle SO, SL be in a constant ratio to OM. TN.

Draw SP to one of the points in which the chord meets

the conic, and let TL' be a perpendicular to SP.* Upon ST let

fall the perpendicular OK, and produce it to meet SP in L".

Then, since each of the ratios SL' : TN, and SL" : OM
(Prop. III., Cor. 2), is equal to the eccentricity, the rectangle

SL'. SL" is in a constant ratio to OM. TN.

And because the angles at K, L, L are right angles, the

points K, T, L, 0, and the points K, T, L, L", are concyclic.

Therefore

SO.SL = SK. ST= SL'. SL",

which has been shewn to vary as OM. TN. Hence, if be a

fixed point, SL varies as TN, and the locus of T becomes a

straight line,f which meets the directrix at a point R, such that

OSR is A RIGHT ANGLE. Conversely, if T be taken on the

fixed straight line TR, the chords of contact will co-intersect

at 0.

When the POLE lies without the conic, its POLAR, the

locus of T, is the chord of contact of the tangentsfrom 0, since

these points of contact are evidently points on the locus.

Corollary 1.

From the above investigation it is evident that, if a point T
lies on the polar of 0, then lies on the polar of T. Take

any two straight lines A, B, and let a, b denote their poles.

Then the polar of any point on A passes through a, and the

polar of any point on B passes through b, and therefore the

polar of the intersection of A, B passes through both a and b.

That is to say, the intersection of any two straight lines is the

Pole of the straight line whichjoins their two Poles.

Corollary 2.

Since every point at infinity in the plane of a central conic

is the point of intersection of a pair of tangents whose chord of

* See the lithographed figure, No. 1.

t See Scholium B.
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contact, being a diameter (Prop, viil, Cor. 1), passes through
the centre, all such points at infinity are on the polar of the

centre, and may therefore be regarded as lying on a straight

line, which is called the Straight Line at Infinity.

Corollary 3.

Since when is a fixed point SL varies as TN, the straight

line which is the locus of T is a tangent (Art. 8), viz. at the

point in which it meets /SO, to a conic having the same focus

and directrix, and whose determining ratio is that of SL to TN;
and further, it will be a tangent to the same conic if be

no longer fixed, but subject only to the condition that the ratio

of SO to OM is constant. Hence, if a point lie on a conic,

the envelope of its polar with respect to a conic having the

same focus and directrix will be a third conic having the same

focus and directrix, and conversely ;
and the eccentricities of the

three conies will be proportionals.

PROPOSITION XII.

18. All chords drawn through any point to a conic are

cut harmonically by that point^ and its polar with respect to

the conic.

Let NT, HT' be a pair of tangents to a conic, and PP'

a chord which passes through 77, and cuts the chord of contact

TT' in K; so that H is on the polar of -ZT,
and K on the polar

of H. Through P, P' draw parallels to TT
',

and let them

meet the curve in Q, Q\ and the two tangents in 0, 0' and

R, R respectively.
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Then since the straight line which bisects TT' and passes

through //bisects also OR and O'R
;
and since, by Prop. VIII.,

Cor. 2, the same straight line is the diameter which bisects

the chords PQ, P'Q'j therefore the intercepts OQ, PR are

equal, and likewise the intercepts O'Q', P'R.

Hence, and by Prop, x., Cor. 1,

OT* : OT* = OP.OQ : O'P'.O'Q

= OP.PR: OP'.PR
= OH9

: O'H*,

by similar triangles. That is to say, ROTO is cut harmo-

nically, and therefore HPKP' is cut harmonically.

Corollary.

The diameter through H is divided harmonically at that

point, and the point in which it meets the double ordinate TT.
Let it meet the latter in F, and the curve in D and D'. Then,
if C be the centre of the conic, and therefore the middle point

of Z>/>', it follows from the nature of harmonic section that

CV.CH= CD*. But in the case of the parabola, if D and QO be

the extremities of the diameter through H, then HV is divided

harmonically at D and co
,
and therefore HV is bisected at D.

SCHOLIUM B.

IN Prop, xi, having shewn that SL, the projection of ST on a
fixed straight line SO, varies as the perpendicular distance of T
from another fixed straight line, the directrix, we inferred that the
locus of T was a straight line

;
and that it met the directrix at a

point R such that L OSR = a right angle. This is virtually proved
in Art. 8, where, leaving the curve out of consideration, we may
regard the eccentricity as any constant ratio. In Prop. xi. there is

the same ambiguity as in Prop, n, Cor., the locus of T apparently
consisting of tico straight lines through R. This arises from the

circumstance that when the magnitude only of the ratio S : OM is

given, the point is not completely determined, but the choice

lies between two points 0, 0' collinear with the focus, each of

which has its own polar. If, however, the actual position of b )

given, as in the proposition, then taking into consideration the

tign of the ratio SL : TX as well as its magnitude, let the direction

S be regarded as positive, and that of OS negative ;
and let

perpendiculars to the directrix from its ^-side be positive, and
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those from the further side negative. Then, SL, TN being
positive or negative together, the locus of T is seen to be the single

straight line TR.
The polar of is the straight line through R parallel to the

ordinates of the diameter throiigh ; for if oo be the pole of that dia-

meter, and V its point of concourse with the directrix, then

(Prop, in., Cor. 1) 00 is at right angles to SV, and is therefore

(Prop, vin.) parallel to the ordinates of the diameter 0V. In
the case of central conies this follows at once from Prop, vin.,
Cor. 1.

If e denote the eccentricity, then, referring to the proof of

Prop. XL, we see that

SO.SL = e*. OM.TN.

Hence (i) if SO be less than e. OM, then will SL, and a fortiori ST,
be greater than e. TN; but (ii) if SO be greater than e. OM, then
will SL be less than e . TN, and ST, which may have any magnitude
not less than SL, may be either less or greater than e . TN. It

follows that the polar of will cut or not cut the conic according as

lies without or within the conic.

SCHOLIUM C.

THE POLAR EQUATION of a conic referred to its focus and axis

may be seen, from Example 4, to be of the form

- = 1 -f e cos0,

where r denotes SP; 6 the angle ASP; and e, I denote the eccen-

tricity and the semi-latus rectum. The corresponding equations of

the Tangent, the Normal, of any Chord, and of the Polar of any
point, may be deduced, as below, from geometrical theorems which
we have already proved.

(i) The Tangent.
In Prop, ii., let r, be the coordinates of T, and let a be the

angular coordinate of the point of contact P.

Then SL = ST cos TSL = r cos (0
-

a),

and e.TN=eSX-STco&AST = l-e.r cos0.

Hence - =e cos0 + cos(0-a).

(ii) The Normal.
In Prop, rv., let a parallel to the axis cut SP in Z, and PG in

Q. Denote L ASP by a, and let r, be the coordinates Q.

Then ZQ~c.ZP-e(SP-SZ},
or e.SP = ZQ\e.SZ;
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unu

Hence

or
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17. The directions of any two tangents to a circle are

equally inclined to the diameter through their point of inter-

section. State this theorem in a form applicable to all conies.

1 8. Given the focus of a conic and a focal chord, the locus

of the extremities of the latus rectum is a circle.

19. Given the focus, the length of the latus rectum, a

tangent, and its point of contact, shew how to construct the

conic.

20. When the focus and three points of a conic are given,

shew how to construct the curve.

21. Given the focus of a conic inscribed in a triangle,

determine the points of contact.

22. Given a chord of a conic and the angle which it

subtends at the focus, shew that the focal radius to the pole

of the chord passes through a fixed point.

23. With given focus and eccentricity construct a conic

which shall pass through two given points.

24. Determine in what cases a chord of a conic will be a

maximum or a minimum.

25. The portion of any tangent intercepted between the

tangents at the ends of the parallel focal chord is divided at

its point of contact into segments whereof each is equal to the

focal distance of that point.

26. If the tangent at any point of a conic meet the directrix

in Z>, and the latus rectum in L, then

SL: SD=SA: AX.

27. If PMj QN be the ordinates of the extremities of a

focal chord PQ, and if the direction of the chord meet the

directrix in J?, then will EN meet HP at a distance from the

axis equal to 2PM.

28. IfM be the projection upon the directrix of any point

P on a conic, then will SM meet the tangent at the vertex upon
the bisector of the angle SPM. If a focal chord of central
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conic meet the tangents at the vertices in F, F', give a con-

struction for determining the points in which the circle on W
as diameter meets the conic.

29. Prove the following construction for drawing tangents

to a conic from a given point T. Divide ST in
,
so that

8t: ST=AX: TN,

where TN is a perpendicular to the directrix; about S as

centre describe a circle touching the conic, and from t draw

tangents to the circle, and let them meet the tangent at the

vertex in F, F'; draw TF, TF', which will be the tangents

required.

30. If a chord of a conic subtend a constant angle at the

focus, the locus of its pole will be a conic having the same focus

and directrix. Shew also that the envelope of the chord will

be another conic having the same focus and directrix, and that

the eccentricities of the three conies will be proportionals.

31. The vertex of a triangle which circumscribes a conic,

and whose base subtends a constant angle at the focus, lies on a

conic.

32. Two sides of a triangle being given in position, if the

third subtends a constant angle at a fixed point, determine

its envelope.

33. If a fixed straight line intersect a series of conies which

have the same focus and directrix, the envelope of the tangents

to the conies at the points of section will be a conic, have the

same focus, and touching both the fixed straight line and the

directrix of the series of conies.

34. The focal perpendicular upon any tangent to a conic is

a mean proportional to the segments into which it divides the

portion of that tangent intercepted between the tangents at the

extremities of any focal chord.

35. If I
r
be the focal perpendicular on the tangent at any

point P to a conic, and X the point in which the axis meets

the directrix, then

SY: YX=SA : AX.

( J
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Determine the locus of F, and shew that it is the envelope
of the circle on SP.

36. If PN be the perpendicular from any point P on a

conic to the latus rectum, the straight line connecting N with

the point in which the axis meets the directrix will pass through
the foot of the perpendicular let fall from the focus upon the

tangent at P.

37. If the diameter at a point P on a conic bisects the

chord normal at Q, the diameter at Q bisects the chord normal

at P.

38. In Art. 10, shew that the normal PG becomes equal
to the semi-latus rectum when P coincides with the vertex

of the conic.

39. The perpendicular from G on SP varies as the ordinate

of P; and the foot of this perpendicular lies upon the straight

line which passes through the foot of the ordinate of P, and

is parallel to SM.

40. If Q be any point on the normal at P, and L and M be

its projections on SP and the ordinate of P, shew that

QL : PM= SA : AX.

41. The perpendicular upon a focal chord from the inter-

section of the normals at its extremities meets the chord at

a distance from one extremity which is equal to the focal

distance of the other; the locus of the foot of this perpen-
dicular is a conic

;
and the straight line drawn parallel to the

axis through the intersection of the normals passes through
the middle point of the chord.

42. If P be the pole of a normal chord which meets the

directrix in Q, shew that the circle SPQ passes through an

extremity of the chord.

43. If a circle touch a conic on opposite sides of its axis

it will intercept a constant length upon the focal chords through
the points of contact. When the circle passes through the

focus, determine the focal radii to the points of contact.
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44. The rectangle contained by the focal perpendicular upon
the tangent at any point to a conic and the portion of the

normal intercepted between the curve and its axis is equal
to the rectangle contained by the semi-latus rectum and the

focal distance of the point.

45. If QQ' be a focal chord of a conic, and if the normal at

P be at right angles to the chord and meet the axis in G, then

46. Shew also that, if a parallel to the chord be drawn

through G and meet the direction of PS in
7,

then PU= \QQ'.

47. If the normal to a conic at P meet the axis in G, and

if SY the focal perpendicular upon the tangent meet the

directrix in F, shew that

PG: SY=SV: VY.

48. The ratio of the normals, terminated by the axis, at any
two points of a conic is equal to that of the tangents at those

points.

49. Given an arc of a conic, shew how to construct the

curve.

50. The parallel diameters of two similar and similarly

situated conies bisect the same systems of parallel chords. If

the two conies be concentric ellipses or hyperbolas, or equal

parabolas whose axes are coincident, shew that any chord of

the exterior conic is divided into pairs of equal segments by
the interior, and that any chord of the former which touches

the latter is bisected at the point of contact.

51. The angle between any two chords of a conic is equal

to the angle subtended at the focus by the portion of the

directrix intercepted by the diameters which bisect the chords.

52. The arms of the angle which a focal chord of a conic

subtends at any point on the circumference meet the directrix

upon diameters through the points of contact of tangents at

right angles.

53. The polar of any point with respect to a conic meets

the directrix on the diameter which bisects the focal chord

through that point.
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54. The diameter through any point, and the polar of that

point, meet the directrix and the axis respectively on a straight

line parallel to the focal distance of the point. Hence shew

that the foot of the ordinate of any point in the plane of a

central conic is at a distance from the centre which varies

inversely as the distance therefrom of the intersection of the

polar of the point with the axis.

55. From the preceding example deduce a construction for

drawing tangents to a conic from a given point.

56. The triangle whose angular points are the focus of a

coiiic and the intersections of the tangent and the diameter at

any point with the axis and the directrix respectively has its

orthocentre at the point in which the tangent meets the directrix.

57. Given the focus and the directrix of a conic, shew that

the polar of a given point with respect to it passes through a

fixed point.

58. If the polar of a point with respect to a conic intersect

a conic having the same focus and directrix in P, and if SQ be

drawn at right angles to SP to meet the directrix in Q, the

locus of the intersection of Q and SP will be a conic.

59. Deduce from Art. 16 that the square of the ordinate at

any point of a conic varies either as the distance of the foot

of the ordinate from the vertex, or as the rectangle contained

by the segments into which it divides the axis.

60. A focal chord of a conic and the diameter which bisects

it meet any fixed straight line perpendicular to the axis at

points whose ordinatea contain a constant rectangle; and the

square of the ordinate of the middle point of the chord varies

either as the distance of the foot of the ordinate from the focus,

or as the rectangle contained by its distances from the focus

and the centre of the conic.

6 1 . If a chord of a conic passes through a fixed point in the

axis, determine the locus of its middle point, and in the case

of a central conic, the locus of its intersection with another

chord which passes through a fixed point in the axis and ia

parallel to the diameter which bisects the former.
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62. If a tangent be drawn parallel to any chord of a conic,

the portion of it terminated by the tangents at the ends of the

chord is bisected at its point of contact.

63. Two tangents being applied to a line of the second

order, if from any point in one of them a straight line be drawn

parallel to the other, the portion of it intercepted by the chord

joining the points of contact will be a mean proportional to

its segments made by the curve. Examine the case in which

the secant becomes a tangent.

64. In Art. 16, investigate the case in which coincides

with $, and shew that SX is then a mean proportional to the

distances of P and p from the directrix.

65. Shew also that, if SZ be drawn parallel to PQOfi to

meet the directrix, then

OP.OQ: Sp.Sq^SZ*
2

: SZ*-L\
where L denotes the semi-latus rectum.

66. If a chord of a conic subtends equal angles at the

extremities of another chord, it likewise subtends equal angles
at the extremities of any chord parallel to the latter.

67. If ABC be a triangle whose sides touch a conic at the

points a, &, c, then

Ab.Bc.Ca = Ac.Ba.Cb.

68. If any conic be drawn through four given points, and

if a fixed straight line meet the conic in P, Q, and one of the

pairs of straight lines joining the four points in A, B, then will

the ratio of the rectangle PA.AQ to the rectangle PB.BQ
be constant.

69. Any tangent to a conic is divided harmonically by its

point of contact and the three points in which it meets any two

other tangents and their chord of contact. Examine the cases

in which two of these four straight lines become parallel.

70. If from any point on a conic parallels be drawn to two

adjacent sides of a given inscribed quadrilateral figure, the

rectangles under the segments intercepted by those adjacent
and by the other two opposite sides will have a given ratio.
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71. If AEG be a triangle inscribed in a conic, and if from

any point on the curve there be drawn a parallel to BA
meeting BO and the tangent at A in P, Q, and a parallel to

BC meeting AB, AC in P, <)'; then will OP.OQ be to

OP'.OQ' in a constant ratio, viz. that of the focal chords

parallel to BA and BC respectively.

72. If from any point on a conic pairs of perpendiculars
be drawn to the opposite sides of a given inscribed quadrilateral,

the rectangle contained by the one pair of perpendiculars will

be in a constant ratio to the rectangle contained by the other

pair.

73. The perpendicular from any point on a conic to a fixed

chord is a mean proportional to the perpendiculars from that

point to the tangents at the extremities of the chord.

74. If from any point on a conic straight lines be drawn

at given angles to two adjacent sides of a given inscribed

quadrilateral figure, the rectangle under the segments inter-

cepted by those adjacent and by the other two opposite sides

will have a given ratio.

75. Hence shew that, if from a given point M there be

drawn two fixed straight lines meeting a conic, in A, B and

(7,
D

;
and likewise a variable straight line meeting the curve

in Ej E'j and the straight lines A C, BD in K, L ;
then

EM* : E'M* = LE.EK: LE'.E'K-,

and investigate the form which this relation assumes when the

fixed straight lines become tangents to the conic.

76. Deduce from the preceding example that, if A
t
B

t C, D
be any four points on a conic, the three straight lines joining

the intersections of AB, CD
; BC, DA ;

and CA, BD, are cut

harmonically by the curve, and that each of these points is the

pole of the straight line which joins the other two.

77. Hence shew how to draw tangents to a conic from any
external point with the help of the ruler only.

78. If PVP' and QVQ
1

be any two intersecting chords of a

conic, and if the circle through Q, P, Q meet PP 1

in JR, then
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will the ratio of VP 1

to VB be equal to that of the focal chords

parallel to PP' and QQ. Examine the cases in which two or

all of the points P, $, Q' coalesce.

79. If PQ be any chord of a conic, and Fihe parallel focal

chord, and if the direction of F meet the tangent at P in T^

then

PQ.ST=F.SP.

80. If there be a quadrilateral figure inscribed in a conic

section, and if from one of its angular points there be drawn

parallels to the sides about the opposite angle ;
and if from the

two remaining angles there be drawn straight lines to any point

in the curve to meet the parallels ;
the intercepted portions

of the parallels, estimated from their common point, will have

a given ratio, wherever in the curve the fifth point be taken.



CHAPTER III.

THE PARABOLA.
./

19. The parabola being a conic whose determining ratio

is one of equality, some of its properties may be at once

deduced by equating SA : AX to unity from properties of the

general conic already proved; thus SL becomes equal to TN
in Art. 8, and SO- equal to SP in Art. 10. The semi-latus

rectum of the parabola is equal to SX] that is, to SA + AX,
or 2SA.

Other properties of the parabola may be derived from those

of central conies by regarding it as a conic whose centre* and

second focus are at infinity, and the further extremities of whose

diametersf are likewise at infinity |
but in the present chapter

we shall give independent proofs of such properties, commencing
with the original definition of the parabola.

The portion of any diameter intercepted between the curve

and the ordinate of any point with respect to that diameter is

called the Abscissa or Absciss of the point ;
and any focal chord

of a parabola is called the Parameter of the diameter which

bisects it.

CHORD PROPERTIES *

PROPOSITION I.

20. The ordinate of any point on the parabola is a mean

proportional to the abscissa and the latus rectum.

* See Art. 14, Cor. 3.

f See Art. 16, Cor. 3.

J Under this head are included such propositions only as can be proved ante-

cedently to the definition of a tangent j
but the restriction does not apply to the

Corollaries from those Propositions.
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Let AN be the abscissa of any point P on the curve, and X
the point in which the directrix meets the axis. Then, by

Euclid I. 47, and from the definition of the parabola,

P.V +

Hence PN* + (AN- AS)* = (AN+ AS)*.

Therefore PN*= AS.AN, or PN is a mean proportional

to AN and 4.4
,
which latter, by Art. 19, is equal to the

latus rectum.

Conversely, if the square of the ordinate of any point P
vary as its abscissa, the locus of the point will be a parabola.

The above proposition suggests an obvious method of tracing

the curve, since for any assumed magnitude of AN the

magnitude of PN and the position of P are determined.

Corollary.

Hence, to find two mean proportionals between a given pair

of straight lines,* with latera recta equal to the given lines

describe two parabolas, having a common vertex, and their

axes at right angles ;
then will the ordinates of either of their

points of intersection be mean proportionals to their latera recta,

as required ;
for it is evident that the ordinate in either parabola

will be a mean proportional to its own latus rectum and the

ordinate in the other.

* This problem, which is of great historical interest, was solved as abore by

Mensechmus, according to the statement of Eutokius. Compare Bretechneiders,

Lit Geometric und die Geometer tor Euklides, p. 160 (LEIPZIG, 1870).
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PROPOSITION II.

21. The locus of the middle points of any system of parallel

chords ofa parabola is a straight line parallel to the axis ; and

the bisecting line meets the directrix on the straight line through
the focus at right angles to the common direction of the chords.

Take QQ', any one of a system of parallel chords, and let

M and M' be the projections of its extremities upon the directrix.

Let the focal perpendicular upon the chords meet Q Q' in Y",

and the directrix in
;
and through draw a parallel to the

axis meeting QQ' in F. Then will V be the middle point

of QQ'.

For OM* = 0<? - QM* = OQ* - SQ*

and OM" may be shewn to have the same value.

Therefore OM, OH' being equal, the straight line through

parallel to the axis bisects QQ'; that is to say, it bisects

every chord which is at right angles to OS.

Hence it is evident that every straight line parallel to the

axis of a parabola is a diameter of the curve, and that all

diameters are parallel to the axis and to one another.

Corollary.

It follows, as a particular case of the above proposition, that

the direction of the focal perpendicular SY on the tangent at P
to a parabola meets the directrix at a point M such that PM
is parallel to the axis.
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Hence it appears that the tangent at P bisects the angle

f,
as will be otherwise proved in Art. 25

;
and it may also

be deduced, independently of Art. 7, that the intercept on the

tangent made by the curve and the directrix subtends a right

angle at S.

PROPOSITION III.

22. To find the length of any focal chord of a parabola.
Let QQ' be any focal chord; M and M' the projections

of its extremities upon the directrix
;
and the point in which

the focal perpendicular upon the chord meets the directrix.

Let a parallel through to the axis meet QQ' in v, which,

by Prop. II, will be the middle point of the chord.

Hence, and from the definition of the curve,

And because OSv is a right angle, and SP= PO
;
therefore

Pv=SP= PO, and therefore vO = 2SP.
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Hence QQ' = ^SP, or the parameter of any diameter of a

parabola is equal to four times the focal distance of the ex-

tremity of that diameter. In particular, as we have already

seen, the latus rectum is equal to

PROPOSITION IV.

23. The ordinate of any point on a parabola with respect

to any diameter is a mean proportional to its parameter and
the abscissa of the point.

Let $Fand PFbe the ordinate and abscissa of any point Q
on the curve

;
let VP meet the directrix in

(9,
and the focal

chord parallel to QV'mv; and let 08, which (Prop, n.) is at

right angles to Sv and Q F, meet the latter in Y.

Then, as in Art. 21, if/) and M be the projections of Q on

the diameter PF, and on the directrix,

And since, by similar triangles, the lengths QD, OY, SY
are proportional to Q F, F, v V, therefore, from above,

And since Pv=SP=PO, as in Art. 22, the sum of OF and

vFis equal to 2PF, and their difference to 2/SP, or vice versa;

and therefore, in either case, the difference of their squares

is equal to 2&P.2PF.
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Therefore QV* = 4&P. PF, or the ordinate QVla a mean pro-

portional to the parameter 4&P (Prop, in), and the abscissa PV.

Corollary \.

It may be shewn that QD* = 4AS.PV; and further, that

if a straight line QD' be drawn in any direction from Q to the

diameter PF, it will be a mean proportional to the parallel

focal chord and the abscissa PF. This follows most readily

with the help of the theorem (Art. 30, Cor. 1), that if the base

of a triangle be parallel to the axis of a parabola the squares

of its remaining sides will be as the parallelfocal chords.
1*

Corollary 2.

If the tangent at P meet QM in R, then the figure PVQR
being a parallelogram, it follows that RP* = SP.RQ. Hence,
if R be any point on the tangent at a given point P to a

parabola, and if the diameter through R meet the curve in Q,
then will HP* vary as RQ.

Corollary 3.

On the tangent at a given point P to a parabola take any
two points T and R

;
and let the diameters through them meet

in curve in E and Q, and let the former diameter meet PQ
in F. Then, by Cor. 2, and by similar triangles,

TE : RQ = TP* : RP* = TF* : RQf.

Hence TE : TF = TF : RQ =PF : PQ,

or, the portion of any diameter intercepted by any chord and the

tangent at either extremity of the chord is divided at the curve in

the same ratio as that in which it divides the chord.

PROPOSITION V.

24. A chord of a parabola being divided at any point, to

determine the magnitude of the rectangle contained by its segments.

Let any chord QR be divided internally or externally at the

point ;
and let the diameters through and the middle

* This may be deduced without the help of tangent-properties from the second

note on p. 28, or from Art. 22, where QQ' varies as SQ.SQ', that is to say, as SO1
,

the angle QOQ' being a right angle. It follows that the focal chords of a parabola

vary inversely as the squares of the sines of their inclinations to the axis.

E
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point V of the chord meet the parabola in M and P. Then

by Prop. IV, and by Euclid n. 5, Cor., if MU be the ordinate

ofM with respect to the latter diameter,

QO.OR =

or the rectangle whereof the magnitude was to be found varies

as MOj which depends only upon the position of the point j

and as the parameter 4/SP, which depends only upon the

direction of the chord QR.

Corollary.

Hence, if Q'E be any second chord through 0, and 4/SP'

the corresponding parameter,

QO.OR: Q'O.OR' = SP'.SP',
or these rectangles are proportional to the focal chords parallel

to QR) Q'R'i as was proved also for the general conic in

Art. 16. Hence also, the squares of any two intersecting

tangents are as the focal distances of their points of contact.

TANGENT PEOPERTIES.*

PROPOSITION VI.

25. The tangent to a parabola at any point is the bisector

of the angle which the focal radius makes with the diameter

produced.

* See also the Corollaries in Articles 21, 23, 24.
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(i)
Let the tangent at any point P meet the directrix in R,

and let the diameter produced beyond the curve meet the

directrix in M.

M

Then since PR subtends a right angle at
/S>,

and since

SP=PM, and PR is common to the right-angled triangles

SPR, MPR, therefore their angles at P are equal, or the

tangent PR bisects the angle SPM.
It is likewise evident that SP and HP make equal angles

with RP produced towards
,
as in the figure of Art. 21, Cor.

;

and that if PR, or PR produced, meet the axis in T, the

angles at P and T in the triangle SPT, and therefore also

the sides SP and ST, will be equal to one another.

(ii) Or we may proceed as follows, taking EUCLID'S

definition of a tangent.
Draw the straight line bisecting the angle SPM, and take

any point upon it. The distance of any such point from S is

equal to its distance from Jf, and therefore greater than its

distance from the directrix, except when the point coincides

with P. Hence every point except P on the bisector of the

angle SPM lies without the curve, and the bisector of SPM
is therefore the tangent at P.

Corollary 1.

It is evident from the above that the tangent at P bisects

the angle SRM between the directrix and the focal distance of

the point R in which it meets the directrix
; and, in like

manner, that the second tangent RQ from R bisects the

E2
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supplementary angle SEN between SR and the directrix.

Hence the two tangents to a parabola from any point on its

directrix, or at the extremities of any focal chord, are at right

angles ;
and conversely, the directrix of a parabola is the locus

of the intersection of tangents at right angles.

Corollary 2.

To draw tangents to a parabola from any external point E,
with centre E and radius ES describe a circle cutting the

directrix in M and N, and let the diameters through those

points meet the curve in P and Q, which will be the points

of contact of the tangents required ; since, as readily appears,
EP bisects the angle SPM and EQ bisects the angle SQN. .

Corollary 3.

The subtangent at any point is double of the abscissa
; since,

in the next figure, 8T= SP=NX=AN+AS, and therefore

AN= ST-AS=ATj or NT the subtangent is equal to 2AN.

PKOPOSITION VII.

26. The normal at any point of a parabola bisects the interior

angle between the diameter and the focal distance of the point.

If the normal at P meet the axis in 6r, then, by Art. 19,

10

SG = SP; and therefore PO makes equal angles with SP and

the axis, and bisects the angle which SP makes with the

diameter through P.

The same might have been deduced as a corollary from the

preceding proposition.
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Corollary.

If AN be the abscissa of P, then since SG = SP= NX,
therefore NG =NX- SN= SX=2SA, or the subnormal is

equal to the semi-latus rectum.

PROPOSITION VIII.

27. The tangent at the vertex of a parabola is the locus of the

foot of the focal perpendicular upon the tangent at any point ;

and the focal perpendicular is a mean proportional to the focal
distances of the vertex and of the point of contact of the variable

tangent.

(i) Let the diameter at any point P of a parabola be pro-
duced to meet the directrix in M, and let the tangent at A
meet SMin Y.

. . . Then, SY being evidently equal to MY, and SP being

equal to PM, and PY common to the triangles SPY, MPY;
therefore PY is at right angles to SM, and it bisects the angle

8PM, and is therefore the tangent at P.

Hence Y, which by construction lies on the tangent at A,
is the foot of the focal perpendicular upon the tangent at P;
and conversely, the locus of the foot of the focal perpendicular
on the tangent at P is the tangent at A.

This suggests an obvious method of drawing a second tangent
to a parabola from a given point on the tangent at its vertex.

(ii) Again, since the two tangents from Y to the parabola
subtend equal angles at 8, the right-angled triangles SAY,
SYP are similar, so that

8A:'8Y=8Y: SP
t

or SY*=SA.SP.

Since (Art. 24, Cor.) any two intersecting tangents to a

parabola are in the subduplicate ratio of the focal distances of

their points of contact, they are in the same ratio as the focal

perpendiculars upon them.
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PROPOSITION IX.

28. The exterior angle between any two intersecting tangents

to a parabola is equal to the angle which either of them subtends

at thefocus / and the inclination of either tangent to the axis is

equal to that of the other to the focal distance of their common

point.

(i)
Let the tangents at P and Q intersect in R, and meet

the axis in !Tand Z7; and let be a point in AS produced.

Then the exterior vertex angle PSO of the isosceles triangle

PST being double of the interior base angle STP, and the

angle QSO in like manner being double of SUQ, therefore by

subtraction, in the figure drawn,

Therefore, since the two tangents subtend equal angles at

$, the angle subtended by either is equal to the exterior angle
TRU between them.

Hence L TRU will be acute or obtuse according as the

focus lies without or within the segment of the curve cut off

by PQ. In either case it will be seen that the acute angle

between the tangents is equal to half the angle which their

chord of contact subtends at the focus.

(ii) Since the angle TRU is equal to PSRj therefore

L SRU=PSR + PRS= SPT

or the angles which QR makes with SR are equal to those

which TR makes with the axis.



THE PARABOLA. 55

Hence also, subtracting the angle TRU
t

L SRP= STP- TRU= SUQ
= SQU.

Corollary 1.

If from any point E on the tangent at a fixed point P the

second tangent RQ be drawn, the angle SRQ will be constant^

since the equal angle SPR is fixed. If one of the tangents

be the tangent at the vertex, SR will be the focal perpendicular

upon the other.

Corollary 2.

The triangles SPR, SRQ are similar, having their angles at

S equal, and likewise those opposite to SP and SR respectively.

Hence SR* = SP. SQ, or the focal distance of the intersection of

any two tangents to a parabola is a mean proportional to the

focal distances of their points of contact; and each tangent
is to the other as SR to the focal distance of the point of

contact of the latter.

Corollary 3.

If two fixed tangents be cut by any third in points P
and Q, as in the next figure, the triangle SPQ will have

its angles constant, since, by Cor. 1, its angle at Pis constant,

and likewise its angle at Q. Again, in the same figure, if

the three tangents be fixed, and if any fourth cut them in points

L, M, N, then, the angles of the triangles SLN, SMN,
being constant by the former case, the ratio of LN to MN
is constant. Conversely, the envelope of a straight line which

is cut in a constant ratio by three fixed straight lines is a

parabola touching the three fixed lines.

PROPOSITION X.

29. The circumscribed circle of any triangle whose three sides

touch a parabola passes through the focus.

Let PQR be any triangle whose three sides touch a parabola,
and let PR meet the axis in T. Then, by Art. 28,
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Therefore the points S, P, B, Q are concyclic ;
that is to say,

the focus S lies on the circumscribed circle of the triangle

PQE.
Corollary 1.

Let pj <?,
r* be the points of contact of the tangents QB,

HP, PQ, and let PQ meet the directrix in D, so that LrSD
is a right angle. Let the perpendicular drawn from R to PQ
meet the directrix in (9, and SD in N. Then the angles PQR
and QSr are equal by Prop. IX., and therefore their com-

plements are equal, so that

or N lies on the circle QBS, which also circumscribes the

triangle PQE. Moreover, PQ bisects the angle ODN (Art. 25),

and therefore also the line ON, to which it is at right

angles. Hence is the orthocentre of the triangle PQB, or

if any parabola be inscribed in a triangle, its directrix will pass

through the orthocentre.

Corollary 2.

If four tangents to a parabola be given, its focus is de-

termined by the intersection of the circumscribed circles of any
two of the triangles formed by the four tangents, and its

directrix is the straight line joining the orthocentres of any two

of them. Hence it appears that one parabola can in general

be described touching four given straight lines.

* See the lithographed figure, No, 2.
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Corollary 3.

Since (Art. 13, Cor.) RQ and Pq subtend equal angles at $;
and since, in the circle, L SPq = SQR ;

therefore the triangles

SQjR are similar, so that

.

Hence, and by Art. 28, Cor. 2,

QR : Pq = Rp : R$ = Qp : PR;

or, if two tangents to a parabola be cut by any third, their

alternate segments will have the same ratio, and this ratio

will be constant if the two tangents be fixed.

SCHOLIUM.

The above proposition, with several deductions therefrom, is

found in Section I. 15 24 of I. H. LAMBERT'S Imigniores Orbitce

Cometarum Proprietatet (Augustse Vindelicorum, 1761). The pro-
position itself, together with Cor. 1, may be applied to prove
certain properties of the straight line and circle, as below.

(i) In any given triangle, and with any point on its circum-
scribed circle as focus, suppose a parabola to be inscribed. Then,
since the sides of the triangle are tangents to the parabola, the
feet of the three focal perpendiculars upon them must lie on the

tangent at the vertex. Hence, if from any point on the circum-
scribed circle of a triangle perpendiculars be let fall upon its thre*

sides, the feet of the three perpendiculars will be collinear.

(ii) Supposing a parabola to be described touching four given
straight lines, its focus must lie on the circumscribed circle of the

triangle formed by any three of the said lines. Hence the circum-
scribed circles of the four triangles formed by any four straight
lines meet in a point.

(iii) The directrix of the parabola touching four given straight
lines passes through the orthocentres of the four triangles formed

by those lines. Hence the orthocentres of the four triangles formed

by any four straight lines are collinear.

For the proof of Cor. 1 given above I am indebted to Mr.
Rawdon Levett, of St. John's College, Cambridge. Another

elementary proof, based upon the property that the feet of the
focal perpendiculars on the three tangents are collinear, was given
in No. 160, p. 63, of the Lady's and Gentleman' i Diary (1863).
The theorem in question, which is in reality a particular case

of Brianchou's theorem (Salmon's Conic Sections, Art. 268), was

propounded by J. STELNER in Crelle's Journal fur die reine und

angewandte Mathematik, vol. n. p. 191 (Berlin, 1827), and was
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demonstrated by him in Gergonne's Annales de MatMmatiques pures
et appliquees, vol. xix. p. 59 (Paris, 1828), with the help of Pascal's

theorem, as follows. If S be any point on a conic, PQR an in-

scribed triangle, and PP', QQ' chords through any point 0; then
in the hexagon PP'SQQR the points (P'S, QR) and (SQ', HP)
will lie on a straight line through 0. If the conic be a circle, and

the orthocentre of the triangle, the straight line through will

evidently meet the continuations of the perpendiculars from S to

the sides of the triangle at distances from S which are respectively
double of those perpendiculars, and will therefore be the directrix

of the parabola drawn with S as focus to touch the sides. Steiner

himself likewise applied his theorem as in iii. (Crelle, 11. 97 j

Gergonne, xix. 59).

PROPOSITION XI.

30. The portion of any diameter intercepted by any tangent

and the ordinate of its point of contact with respect to that

diameter is bisected at the curve.*

Let the diameter at P be met by the tangent at Q in T7

,

and by the ordinate of Q in Vj and let the tangent at P meet

that at Q in It.

Complete the parallelogram QRPO by drawing PO parallel

to EQ. Then the diagonal RO bisects the diagonal PQ, which

is also the chord of contact of the tangents RP, RQ. Therefore

RO is a diameter of the parabola, and hence, all diameters

being parallel,
PV=RO = PT,

or FT is bisected at P.

* This is included in Art. 23, Cor. 3, See also Art. 18, Cor., and Art. 25, Cor. 3.
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Corollary 1.

Any triangle whose base is parallel to the axis of a parabola

has its remaining sides in the ratio of the parallel tangents;
for supposing those sides parallel to the tangents in the figure,

their ratio will be that of BP to R T, whereof the latter is equal
to SQ.

Corollary 2.

If from any external point R there be drawn a tangent

meeting the curve in P, and a chord meeting the curve in

Mj JV, and the diameter through P in F, then by Cor. 1, and

by Art. 16, Cor. 1, it is easily shewn that RV* = RM.RN.

Corollary 3.

It may be deduced from the proposition that the intercepts

upon any diameter made by any two tangents and the ordinates

of their points of contact are equal ;
Vand hence, that the area

between the two tangents and themameter is equal to half the

area between their chord of contact, the ordinates of its ex-

tremities, and the diameter
;
and hence, that the triangle made

by any three tangents is equal to half the triangle formed by

joining their points of contact.

QUADRATURE.

PROPOSITION XII.

32. The area of the parabolic segment upon any chord as

base ts equal to once and one-third of a triangle having the same

base arid altitude.*

Take RR' as the base of the segment, and suppose it parallel

to the tangent at P.

Let the diameters through R and through an adjacent

point Q on the curve meet the tangent at P in M and 0;
and let the diameter through P meet RQ in T, and RR' in U\

* This theorem, one of the great discoveries of ARCHIMEDES, was the first

example of the exact quadrature by infinitesimals of a continuous curvilinear area.

It forms the twenty-fourth and last proposition in his special treatise on the Quad-
rature of the Parabola. See the Oxford edition of his works, p. 33 (1792).
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and let PV be the abscissa of Q. Complete the parallelogramUTLR by drawing TL parallel to the base of the segment
to meet RM produced.

Let Q coalesce with R, so that the chord QR becomes a

tangent, and P becomes the middle point of VT, and therefore

PM bisects the parallelogram QL.

L IM.

Hence, and by Euclid I. 43,

the parallelogram QU= QL = 2 QM.

Through any number of points on the arc PR draw parallels

to RR and PZ7, so as to form with PU two series of paral-

lelograms, the one corresponding to QU and the other

to QMj and let the number of the points be increased and

their successive distances diminished indefinitely.

Then, as above, the several parallelograms in the former

series become double of those in the latter, and the sum of

the former, which is ultimately the parabolic area RPU, becomes

double that of the latter, or of the parabolic area RPM.
Hence the semi-segment RPU is equal to two-thirds of the

parallelogram MU, or to four-thirds of the triangle RPU; and

the whole segment RPR' is equal to four-thirds of the triangle

RPR', which has the same base and altitude.

Corollary.

Let the tangents at R, R' meet in T. Then the area of

the segment is equal to two-thirds of the triangle formed by
these tangents and its base, or the portion of the triangle on the

concave side of the arc is double of that on its convex side.
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This might have been proved by connecting the points R, R by
an infinity of consecutive chords, drawing the tangents at their

extremities, and shewing, after the manner of Prop. XI., Cor. 3,

that the area between the successive chords and RR' is double

of that between the corresponding tangents and the tangents

at H, K.

EXAMPLES.

81. The radius of the circle through the vertex and the

extremities of the latus rectum of a parabola is equal to five-

eighths of the latus rectum.

82. A point on a parabola being given, if the focus also

be given the envelope of the directrix will be a circle
;

or if

the directrix be given the locus of the focus will be a circle.

83. If two parabolas have a common focus their common
chord passes through the intersection of their directrices and

bisects the angle between them.

84. The common chord of two parabolas which have a

common directrix bisects the straight line joining their foci

at right angles.

85. Deduce from Prop. I. that the ordinate of the middle

point of a chord whose direction is given is of constant magni-
tude.

86. The perpendicular to a chord of a parabola from its

middle point and the ordinate of that point intercept on the

axis a length equal to the semi-latus rectum. Hence shew

that the locus of the middle point of a focal chord, or of any
chord which meets the axis in a fixed point, is another parabola.

87. Prove the following construction. Let AN be the

abscissa of any point P on a parabola, and let MP be equal

and parallel thereto. Divide NP into any number of equal

parts and through the points of section draw parallels j9,, p2, pt
...

to the axis, and divide MP into the same number of equal parts
in points 1, 2, 3 Then will the lines p^ p^ pt

... meet

Al, A2, A3... respectively on the parabola.
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88. If PQ be a focal chord of a parabola, SA.PQ = SP. SQ.

89. If the ordinates or the focal distances of all points on

a parabola be cut in a given ratio the locus of the points of

section will in either case be a parabola.

90. Circles whose radii are in arithmetical progression touch

a given straight line on the same side at a given point. If to

each circle a tangent parallel to the given line be drawn it

will cut the circle next larger in points lying on a parabola.

91. Find the locus of the centre of a circle which passes

through a given point and touches a given straight line; or

which touches a given circle and a given straight line.

92. If a parabola be made to roll upon an equal parabola,

their vertices being initially coincident, the locus of the focus of

the former will be the directrix of the latter.

93. Find the locus of a point which moves so that its

shortest distance from a given circle is equal to its perpendicular
distance from a given diameter of that circle.

94. The circle described on any focal chord of a parabola
as diameter touches the directrix

;
and the circle on any focal

radius touches the tangent at the vertex.

95. Given the focus, or the directrix, and two points of a

parabola, shew how to construct the curve, and state the number

of solutions in each case.

96. The diameters through the extremities of any focal

chord of a parabola meet the chords joining them to the vertex

upon the directrix and intercept upon it a length which subtends

a right angle at the focus.

97. Two circles whose centres are on the axis of a parabola
touch the parabola and one another. Prove that the difference

of their radii is equal to the latus rectum.

98. Semicircles being described upon the segments of a

focal chord, shew that the squares of their common tangents

vary as the length of the chord.
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99. The arms of any angle in a focal segment of a parabola

meet the directrix at distances from the axis to which the semi-

latus rectum is a mean proportional.

100. Shew how to place in a given parabola a focal chord of

given length.

101. A parabola being given, find its axis, focus, vertex,

and directrix.

1 02. If a chord be drawn to a parabola from the foot of

its directrix, the rectangle contained by its segments will be

equal to the rectangle contained by the segments of the parallel

focal chord.

103. If A Q be a chord drawn from the vertex A of a

parabola, and QR be a perpendicular to it at its extremity

Q meeting the axis in R, then will AR be equal to the focal

chord parallel to A Q.

104. If PQ be a focal chord of a parabola, and R any point
PR2

on the diameter through Q, then will
-^-^ be equal to the focal
* W

chord parallel to PR.

105. Find the locus of the points which divide parallel

chords of a parabola into segments containing a constant

rectangle.

1 06. The latus rectum is a mean proportional to the ordi-

nates of the extremities of any chord which passes through the

focus or through the foot of the directrix
;
and the rectangle

contained by the abscisses of the extremities of the chord is

equal to the square of the focal distance of the vertex.

107. If a chord subtends a right angle at the vertex, shew
that it passes through a fixed point on the axis, and that

the latus rectum is a mean proportional to the ordinates, and
likewise to the abscisses, of its extremities.

1 08. Shew that the absciss cut off by any chord from any
diameter is a mean proportional to the abscisses of its ex-

tremities with respect to that diameter, and that the corre-

sponding ordinates are proportionals.
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log. The distances from the focus at which the straight

lines joining the ends of a focal chord to the vertex meet

the latus rectum are alternately equal to the ordinates of

the ends of the chord.

no. In a given parabola inscribe, and about it circumscribe,

a triangle whose sides shall be parallel to three given straight

lines.

in. A chord of a parabola and the chord joining the two

points on the curve at which it subtends right angles intercept

on the axis a length equal the latus rectum.

112. Deduce from Ex. 54 that the intercept on the axis

made by any polar and the ordinate of its pole is bisected

at the vertex.

113. The intercepts upon any diameter by any two polars

and the ordinates of their poles with respect to that diameter

are equal.

114. On a chord through a fixed point a mean pro-

portional OM is taken to the segments of the chord. Shew
that the locus ofM is a diameter.

115. A circle being described on a chord of a parabola

which is parallel to a given line, shew that its centre is at a

constant distance from the middle point of its opposite chord

of intersection with the parabola.

1 1 6. If a circle cut a parabola in four points the ordinates

of the points of section on one side of the axis will be together

equal to the ordinate or ordinates of the point or points of

section on the other side.

117. If three of the points of section coalesce their common
ordinate will be equal to one-third of the ordinate of the fourth

point; and the common chord of the circle and the parabola

will be equal to four times their common tangent measured

from its point of contact to the axis.

1 1 8. Three chords of a parabola drawn at right angles to

a focal chord through its extremities and the focus are pro-

portionals.
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119. If from the vertex of a parabola a pair ef chords be

drawn at right angles, find the locus of the further vertex of

the rectangle of which they are adjacent sides.

1 20. If a chord perpendicular to the axis be produced to

meet the tangent at an extremity of the latus rectum, the

rectangle contained by its segments will be equal to the square

of its distance from the focus.

121. A chord of a parabola drawn from a given point on

the curve is intersected by any ordinate of the diameter through

that point and by the diameter through the extremity of the

ordinate. Shew that the chord is a third proportional to its

segments estimated from the given point to the ordinate and

the diameter through its extremity respectively.

122. The ordinate of a point Q on the curve being inter-

sected by its diameter in F, by any other diameter in 7?, and

by the straight line joining the vertices of those diameters in R'
t

shew that

123. The straight lines joining any point on a parabola

to the extremities of a given chord meet any diameter at

distances from its extremity which have the same ratio as

the segments into which it divides the chord.

124. If from the point of contact of any tangent straight

lines be drawn to two points on the curve, each to intersect

the diameter through the other point, the two points of inter-

section will lie on a parallel to the tangent.

125. If the diameter through any point P of a parabola
meet a given chord in a, and the tangents at its extremities

in bj c, shew that Pa* = Pb . PC, and deduce the theorem of

Ex. 73* for the case of the parabola.

126. Three fixed points and a variable point being taken on

a parabola, shew that the chords joining the latter to two of

the fixed points cut off abscisses from the diameter through the

remaining fixed point which are in a constant ratio.

* In the example referred to. for "is
"
read varies as.
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127. Shew that the preceding theorem is a special case of

Ex. 80.

128. If a parabola which bisects the sides of a triangle

ABC meet its sides again in a, b, c, then will Aa, b, Cc be

parallels.

129. Through a given point within a parabola draw a chord

which shall be divided in a given ratio at that point.

130. Describe a parabola through four given points; or

through three given points, and having its axis in a given

direction; and shew that the latter is a particular case of the

former.

131. Shew that a circle can be described touching any two

diameters of a parabola and the focal radii to their extremities
;

and hence, that any two intersecting tangents to a parabola
subtend equal angles at the focus.

132. The four points of intersection of two parabolas whose

axes are at right angles lie on a circle, and the sums of the

ordinates of their points of intersection on opposite sides of the

axis of either are equal.

133. If ACPbe a sector of a circle of which CA is a fixed

radius, and if a circle be drawn to touch CA, CP and the arc

AP
y
the locus of its centre will be a parabola.

134. If a circle and a parabola touch at one point and

intersect in two others, the diameters of the parabola at the

latter points will meet the circle again on a parallel to the

tangent at the former.

135. If a straight line be drawn from a fixed point on

a circle to bisect any chord parallel to the diameter through
that point, find the locus of its intersection with the diameter

through an extremity of the variable chord.

136. If the two tangents from any point on the axis of

a parabola be cut by any third tangent, their alternate segments
will be equal.
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137. If OP, OQ be the tangents at P and Q to a parabola,

and P/?, Qq chords parallel thereto, the distances of from

pq and PQ will be in the ratio of five to one.

138. If there be three tangents to a parabola, whereof one

is parallel to the chord of contact of the other two, shew that

the three tangents contain an area equal to half the area of

the triangle whose vertices are at their points of contact, and

apply this result to prove Prop. xii.

139. The locus of the vertex of a parabola which has a

given focus and a given tangent is a circle.

140. If the tangents at P and Q intersect in 7?, the circle

through P touching QE in R passes through the focus.

141. The tangent at any point meets the directrix and

the latus rectum at equal distances from the focus.

142. A chord of a parabola being drawn through a given

point, determine when the rectangle contained by its segments
will be a minimum.

143. Two equal parabolas have the same axis and directrix,

and from a point on one of them two tangents are drawn to

the other
;
shew that the perpendicular from that point to the

chord of contact of the tangents is bisected by the axis.

144. If a leaf of a book be folded so that one corner moves

along an opposite side the line of the crease will envelope a

parabola.

145. The three straight lines drawn through the points of

intersection of three tangents to a parabola at right angles to

their respective focal distances meet in a point.

146. The centre of the circle through any two points on a

parabola and the pole of the straight line joining them lies upon
the focal chord at right angles to the focal distance of the

said pole.

F2
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147. Any two parabolas which have a common focus and

their axes in opposite directions intersect at right angles.

148. The portion of any tangent intercepted by the tangents

at two fixed points subtends a constant angle at the focus. Ll

what case will the subtended angle be a right angle ?

149. If QV be the ordinate of any point Q on a parabola,

and if the diameter bisecting QV meet the curve in P, then

will VP meet the tangent parallel to Q V at a distance from its

point of contact equal to f Q V.

150. The tangent from the vertex of a parabola to the

circle round SPN, where PN is the principal ordinate of a

point P on the curve, is equal to

151. The focal vectors to the points of contact of a common

tangent to a parabola and the circle on its latus rectum as

diameter are equally inclined to the axis. Express the distance

between the points of contact in terms of the latus rectum.

152. Describe an equilateral triangle about a given parabola ;

and shew that the focal distances of its vertices pass each

through the opposite point of contact, and that the centre of

gravity of the triangle must lie upon a certain fixed straight

line perpendicular to the axis.

153. The segments of the sides of a regular polygon cir-

cumscribing a circle subtend equal angles at the centre. State

an analogous property of the parabola.

154. Find the envelope of a straight line which cuts the

sides OA, OS of a given triangle OAB in points P, Q such

that the rectangle OP.OQ is equal to AP.BQ.

155. Find the envelope of the straight line connecting the

feet of the perpendiculars let fall from any point of a parabola

upon the axis and the tangent at the vertex.

156. If PQ be a -chord at right angles to the axis of a

parabola, the perpendicular from P to the tangent at Q will
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cut off from the diameter at Q a length equal to the latus

rectum.

157. A circle being drawn through the focus of a parabola

to cut the curve in two points, compare the angles between

the tangents to the parabola and the tangents to the circle at

those points.

158. If the tangents to a parabola at P and Q meet in O
t

and if the diameter through meet PQ in F, shew that

OP.OQ=20S.OV.

159. If the tangents at P, Q intersect in and meet the

tangent at R in P', Q', then will OH pass through the inter-

section of PQ' and P' Q.

1 60. A parabola being inscribed in a triangle so as to bisect

one of its sides, shew that the perpendiculars from the vertices

of the triangle upon any tangent are in harmonical progression.

161. The vertex of a constant angle whose sides envelope
a parabola traces a hyperbola having the same focus and

directrix.

162. In Art. 29, if PB and QM be perpendiculars to QR
and the directrix, the point in which the perpendicular from

Q to PR meets the directrix, and PP' a diameter of the circle,

shew that

SQ : QM= QB:PQ=QO: PP',

and deduce Steiner's theorem.

163. To two parabolas which have a common focus and

axis, two tangents are drawn at right angles. {Shew that

the locus of their intersection is a straight line perpendicular

to the axis; and examine the case in which the directrices

of the two parabolas coincide.

164. Chords of a parabola being drawn to touch an equal

parabola having the same vertex, their axes being in opposite

directions, shew that the locus of the middle points of the chords

is a parabola, whose linear dimensions are one-third of those

of the original parabola.



70 EXAMPLES.

165. Two parabolas have a common vertex, and their axes

are in opposite directions. If the latus rectum of one of them

be eight times that of the other, the intercept on any tangent
to the former made by their common tangent and the axis

will be bisected by the latter.

1 66. If the vertex of an angle of constant magnitude move
on a fixed straight line, and one of its arms pass through a

fixed point, the other will envelope a parabola of which the

fixed point and line are the focus and a tangent.

167. If a focal chord meet any tangent at a given angle*

determine the locus of their point of intersection.

1 68. If the tangents to a parabola at points P and Q
intersect in and meet the tangent at any point R in P'
and Q'}

and if OR meet PQ in Z^ then

PZ: QZ=P'*: Q'E*.

169. The locus of the foot of the focal perpendicular upon
a normal chord of a parabola is a parabola.

170. If PQ be a chord normal at P and parallel to the

focal chord FF', then

PQ:FF' = SY: SA,

where A is the vertex and SY the focal perpendicular upon
the tangent at P.

171. If from a given point on a parabola any two chords

be drawn making equal angles with the normal at that point,

the focal distances of their further extremities will contain

a constant rectangle.

172. The intercept on any tangent made by the curve

and the tangent at the further extremity of the normal at

its point of contact is bisected by the directrix.

173. If T be the pole of a chord PQ normal at P, and

AN be the abscissa of P, shew that

PQ:PT=PN:AN.
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174. The perpendicular to a normal to a parabola at the

point in which the normal meets the axis envelopes an equal

parabola, and the focal vector of the point at which the normal

is drawn meets the envelope at the point in which the per-

pendicular touches it.

175. The normals at the ends of a focal chord intersect

upon its diameter, and the locus of their intersection is a

parabola.

176. The normal, terminated by the axis, is a mean pro-

portional to the segments of the focal chord to which it is

at right angles.

177. The squares of the normals at the extremities of a

focal chord are together equal to the square of twice the

normal perpendicular to the chord.

178. The normal at any point is equal to the ordinate

which bisects the subnormal at that point.

179. The locus of the centre of the circle circumscribing

the triangle SYP, where SY is the focal perpendicular on the

tangent at any point P, is a parabola.

1 80. All circles which have their centres on a parabola and

touch the tangent at its vertex are cut orthogonally by a circle

which touches the parabola at its vertex and whose diameter

is equal to the latus rectum.

1 8 1. From a point on any double ordinate QQ' a per-

pendicular is drawn to its polar to meet the polar in M and

the axis in N. Shew that J/, jV, Q, Q', and the point in which

the polar meets the axis are concyclic with the focus.

182. The continued products of the focal vectors to any
three points on a parabola and of those to the poles of the

chords joining the three points are equal.
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183. If the tangents at
^>, <?,

r intersect in P, Q, jR, as iu

Art. 29, and if be the point in which the diameter through r

meets pq, shew that

pQ : QR = HP : Pq = <?r : rP=pO : ^0*
Shew also that

PQ.PR=Qr.Rq', Qfi.QP=Rp.Pr; RP.EQ = Pq.Qp;

and

184. Prove that in general two parabolasf and any number

of central conies can be drawn through four given points ;
and

that no two parabolas or other conies can intersect in more

than four points ;
and that no two parabolas can touch one

another in more than one point.

185. If one triangle can be inscribed in a given circle

(or ellipse) so that its three sides touch a given parabola,

shew that any number of triangles can be so inscribed, and

that the locus of their centroids is a straight line.

1 86. Any number of parabolas being described with the

same vertex and axis, the polars with respect to them of all

points on a fixed ordinate to the axis will meet in a point.

187. If a polygon be described about a parabola the

continued products of the abscissas of its vertices and of its points

of contact respectively will be equal.

1 88. If T be the point of concourse of the tangents to a

parabola at P and Q, and if p, q be the points in which any
third tangent intersects them, then

# + -&-!TP + TQ

189. If from any point on the chord of contact of any
two tangents to a parabola parallels to them be drawn each

to intersect the other tangent, the points of intersection will lie

* This is proved by APOLLONIUS in Lib. III., Prop. 41, of his Conies.

t Two chords of a parabola being given, it may be deduced from Art. 30, Cor. 2

that there are two possible directions of its axis.
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on the tangent at the extremity of the diameter through the

assumed point.

190. If P and Q be any two points on a parabola, and if

PM, QN be the principal ordinates of P, Q, and AL the principal

abscissa of the pole of PQ, shew that PM.QN=A8.AL*
Shew also that if 0' be the pole of any chord drawn through

any point 0, and 0' V'
t

V be the ordinates of 0' and with

respect to the diameter at any point P on the curve, then

19 1. If two parabolas be described each touching two sides

of an equilateral triangle at the points in which it meets the

third side, prove that they have a common focus and that

the tangent to either of them at their point of intersection

is parallel to the axis of the other.

192. If two parabolas be described each touching two

sides of any triangle at the points in which it meets the third

side, determine the area common to the two curves; and if

three parabolas be so described, determine the area common
to the three.

193. Any two tangents to a parabola intercept on two fixed

tangents lengths which are in a constant ratio.

194. If P and Q be fixed points on a parabola, and RR'

any double ordinate of a given diameter, then will HP and

R' Q meet that diameter at distances from the curve which

will be in an invariable ratio.

195. The projections of any two tangents upon the

directrix by lines radiating from the vertex are equal.

196. A triangle is revolving round its vertex in one plane;

prove that at any instant the directions of motion of all the

points of its base are tangents to a parabola.

* This follows with the help of Examples 108 and 112, whereof the former may
be deduced from Art. 30. Cor. 2. or from Prop. iv.
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197. If three parabolas be inscribed in a given triangle,

when will the area of the triangle formed by joining their

foci be a maximum ?

198. The area of the parabolic sector cut off by any two

focal radii is equal to half the area bounded by the arc of

the segment, the diameters through its extremities, and the

directrix.

199. The difference of the ordinates of two points on a

parabola being equal to QD^ shew that the chord joining them

QD3

will cut off a segment whose area is equal to . What

is the envelope of a straight line which cuts off an area of

given magnitude from a given parabola ?

200. If the foci of four parabolas whereof each touches

the straight lines joining the foci of the other three lie on a

circle, the tangents at the vertices of the four parabolas will

meet in a point.
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CHAPTER IV.

CENTRAL CONICS.

In this chapter we shall deal with the common properties

of the Central Conies, and in the next chapter with certain

properties, viz. those of its asymptotes, which are peculiar to

the Hyperbola.
The Abscisses or Abscisses of any point with respect to any

diameter of a central conic are the segments of that diameter

made by the ordinate of the point; and the Central Abscissa

is the distance of the foot of the ordinate from the centre

of the conic.

THE ORDINATE.

^ PROPOSITION I.

33. The square of the principal ordinate of any point on a

central conic varies as the rectangle contained by its abscisses.

Let the straight lines connecting the vertices A, A' of a

central conic with any point P on the curve meet the directrix

in Z and Z' ;* and let PN be the ordinate of P, and X the point
in which the directrix meets the axis.

* For the hyperbola, use the figure on p. 80, supplying the lines PAZ, PZ'A',
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Then (Art. 12) the intercept ZZ' subtends a right angle
at S

:
and therefore ZX.Z'X has the constant magnitude /SLY*.

And since PN : AN = ZX : AX,
and PN :A'N =Z'X : AX

;

therefore P^ 2
: AN. A'N=ZX . Z'X : AX . A'X

= SX* i AX. A'X,
which is an invariable ratio.

Let N be taken at the centre C of the conic, and let PN,
in virtue solely of the above proportion, and without reference

to the form of the curve, become equal to CB, so that

CB* : CA* = SX< : AX. A'X.

Then PN* : AN.A'N=PN* : CA*~ CN*= CB* : CA\

In the ellipse it is evident that CB is equal to half the

conjugate axis. In the hyperbola the conjugate axis does not

meet the curve
; nevertheless, for the sake of uniformity of

expression, we shall define CB as the half of its length,* and

the point B and a corresponding point B' equidistant from the

axis as its extremities.

Corollary 1.

, If the ordinate of P be divided in the ratio of the transverse

to the conjugate axis at the point p, then pN*= AN.A'N.

* The conjugate axis of any central conic is occasionally called its Minor Axis,

although not necessarily less than the transYerse axis, unless the curve be an

ellipse.
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Hence, when P lies on an ellipse, the locus of p is the circle

described upon its major axis as diameter, and when P lies

on a hyperbola, the locus of p is the hyperbola whose transverse

axis is AA', and whose conjugate axis is equal to AA'.

Corollary 2.

If Pn be the ordinate of P with respect to the conjugate axis,

it follows from the proposition that

PN* : CA*~Pn* = CB'
2

; CA\
and Pn" : CB* ~ Cn2 = CA* : CB ".

Hence also it may be shewn, after the manner of Cor. 1,

that the locus of the point which divides Pn in the ratio of the

conjugate to the transverse axis is either the circle on BB as

diameter, or the hyperbola whose transverse axis is BB', and

whose conjugate axis is equal to BB'. Some of the uses of

this corollary and the preceding will be pointed out in the

chapter 011 Orthogonal Projection.

Corollary 3.

From Cor. 1 it appears, conversely, that if the ordinates of

any number of points lying on the circle upon AA' as diameter

be cut in any given ratio of minority CB : CA, the points of

section will lie on an ellipse whose transverse axis is AA
',
and

whose conjugate axis is equal to 2(7.5. Tfre smaller CB in

comparison with CA
y
the less nearly circular is the ellipse ;

and

ultimately, when CB vanishes, the ellipse becomes coincident

with its major axis AA'. In like manner, the "
complement"*

of AA' is the limit to which the hyperbola described upon it as

transverse axis tends when its conjugate axis is indefinitely

diminished.

PROPOSITION II.

34. The square of the ordinate of any point on a central

conic with respect to any diameter is in a constant ratio to the

rectangle contained by its abscisses on that diameter.

* It may sometimes be convenient to speak of the remainder of an unlimited

straight line from which any part has been taken away as the Complement of that

part.
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For by Art. 16, if QQ' be any chord parallel to a fixed

. straight line, and PP' be a fixed diameter meeting the chord*
in V, then the ratio QV.VQ : PV.VP 1

is constant. It follows

as a special case that, if QQ' be a double ordinate of the

diameter PP', then QV* : PV.VP' is a constant ratio.

It is evident in the case of the ellipse that this result is

equivalent to

QV* : PV.VP' = QV* :CP*-CV* = CD* :CP2

,

where CD is the semi-diameter parallel to the ordinate Q V.

In the case of the hyperbola, supposing that CP meets and

CD does not meet the curve, we might define the length of the

semi-diameter CD and the position of its extremity D by the

condition that CD* must be to CP* in the above-mentioned

constant ratio, viz. that of the focal chords parallel to CD
and CP, so that

QV3
: PV.VP' = QV* : CV*-CP* = CD* : CP*,

and therefore QV* + CD* : CD* =CV : CP 2

;

but we shall at present merely remark that such a definition

would be in accordance with the conventions usually adopted
*

THE SECOND FOCUS AND DIRECTRIX.

PROPOSITION III.

35. Every central conic has a second focus and directrix ;

and the sum of the focal distances of any point on the curve

in the case of the ellipse, or the difference of the same in the

case of the hyperbola, is constant and equal to the transverse

axis.

The existence of a second focus and directrix has been

proved in Art. 14, Cor. 3
;

but it may also be deduced from

the relation

PN* : CA*~Pn* = CB* : CJT,

* Upon thia subject, see Scholium C.
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where PN and Pn are the ordinates of any point P on the curve

with respect to its transverse and conjugate axes. -^
For since the ordinates with respect to either axis d the

points in which a parallel to that axis meets the curve are

equal, and since, from the above proportion, the corresponding
ordinates with respect to the other axis must consequently be

equal, it is evident that points on a central conic may be

determined in pairs as P, P' or p, p on opposite sides of and

equidistant from the one axis, and likewise in pairs as P, p
or P', p on opposite sides of and equidistant from the other

axis.

The curve is therefore divided symmetrically by its con-

jugate axis as well as by its transverse axis, and it has a

second focus S' equidistant with S from the centre, and a

corresponding directrix meeting the axis at a point X' whose

distance from the centre is equal to CX.

Hence, if P be any point on the curve,

S'P : NX' = S'A : AX' = SA:AX=SP: NX.

Therefore SP + S'P : NX + NX' = SA:AX.

Hence, in the ellipse, since NX+NX' or XX' is constant,
therefore SP+ S'P is equal to a constant length, viz. to

SA + S'A. or AA
;
that is to say, the sum of the focal distances

of any point of the curve is equal to the major axis.

In the hyperbola, in like manner, NX^NX' is constant,
and therefore SP~ SP' is constant and equal to SA <- S'A or
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']
that is to say, the difference of the focal distances of

any point on the curve is equal to the transverse axis.

\ Corollary 1.

Since 8A :AX= SA' :A'X = ^ (SA t SA'} : | (AX+ AX] ;

and since the latter ratios are equal respectively to CA : CX
and CS : CA, or vice versa

;
therefore

C8: CA = CA : CX= SA : AX,

and CS.CX=CA\

Corollary 2.

It

C, lU.p ui". .

may now be shewn, as in the next proposition, that

CB' = CS*~ CA* = AS.A'S.

Hence, in the hyperbola, CS'' = CA' + CB*, or CS is equal to

the distance AB between two adjacent extremities of the axes;
and in the ellipse, CS* + CB* = CA*, or SB is equal to the

semi-axis major. In the case of the ellipse it follows more

directly that, SB= S'B =CA
;
and hence, conversely, that

CB'' = CA* -CS2 = A S.AS.
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Corollary 3.

Hence 08. SX= CS*~ CS.CX=CS*~ CA' = CJ?,

and SX : CX= OS. SX : CS. CX= CB* : CA\

THE LATUS KECTUM.

PROPOSITION IV.

36. The latus rectum is a third proportional to the transverse

and conjugate axes.

Since CS:CA = SA : AX= SA : AX;
therefore CS+ CA : CA = SA -f AX : AX = SX : AX,
and C8~CA : CA = SA~AX: A'X=SX: AX.

Hence, and by Art. 33,

CS* ~ CA* : CA* = SX3
: AX . AX= CB* : CA\

and therefore

CS*~CA*, or AS.A'S, is equal to CB\*

Hence, by Prop. I.,
if 8L be either of the ordinates corre-

sponding to AS and AS as abscissas,

SL* : AS. A'S= SL* : CB* = CB* : CA\
or the semi-latus rectum SL is a third proportional to CA and

CB, and therefore the whole latus rectum is a third propor-

tional to AA and BB'.

Corollary.
>

If FF' be any focal chord, CD the parallel radius, and LU
the latus rectum, then by the proposition, and by Art. 34,

FF 1

: LL' =CDZ
: CB'^CW : \LL.CA,

or

* The axis being a focal chord, it follows, from Art. 15, Cor., that SL . CA is

equal to AS.A'S, which in the ellipse may be shewn to be equal to CB2
. In

the case of the hyperbola, the length CB may then be defined as a mean proportional
to CA and SL. APOLLONIUS (Lib. in. 45) denned the points which we call

the foci of central conies as certain points dividing the axis into segments whose

rectangle is equal to SL. CA : but he nowhere mentions the focus of the parabola.
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that is to say, any focal chord is a third proportional to the

transverse axis and the diameter parallel to the chord.

SCHOLIUM A.

THE LATUS EECTTTM of the axis, according to APOLLOSTUS, was
a certain straight line drawn at right angles to it from the vertex,

equal to the double focal ordinate but denned without reference

to the focus. The axis being regarded as UXayia, the transverse

Bide of the "
figure," the straight line drawn as above was taken as

its 'Op0m, or erect, side; the term "figure" being used to denote

the rectangle contained by those lines.

If AL be the latus rectum, and if the ordinate PN in Prop. i.

meet A'L in Q, then

PN* : AN.A'N=AL : AA 1'= QN: A'N= QN.AN: AN.AN.

It follows that the square of the ordinate PN is greater than the

rectangle AL .AN contained by the latus rectum and the abscissa

in the case of the hyperbola, and less than the same rectangle in

the case of the ellipse; and hence the name HYPERBOLA, which

signifies excess, and the name ELLIPSE, which signifies deficiency.

The PARABOLA was so called from the equality of the square of the

ordinate of any point upon it to the rectangle contained by its

abscissa and the latus rectum. The names of the three conies have
indeed been otherwise explained, but the interpretations of them

given above are in accordance with the manner in which

Apollonius introduces them. See Halley's edition of his works,
Lib. i., props., xi., xn., xin., pp 31 37(0xon., 1657). Moreover,
it is reported by Proclus in his Commentaries on the first book of

Euclid, at the commencement of the fourty-fourth proposition,

upon the authority of " the Familiars of Eudemus," that the

terms parabola, hyperbola, and ellipse had been used by the

Pythagoreans to express the equality or inequality of areas, and
were subsequently transferred to the conic curves for the reason

given above. The passage is quoted in the original Greek on

page 13 of E. F. August's Zur Kenntniss der geometrischen Methode der

Alien in besonderer Beziehung auf die Platonische Stelle im Meno 22d

(Berlin, 1 843), and it may be seen in English in Thomas Taylor's
translation of the Commentaries of Proclus, Vol. n. p. 198 (London,

1789). The whole work in the original Greek was printed at the

end of editio princeps of Euclid's Elements (ed. Simon Grynseus,
BASIL., 1533); and it has also been edited separately by Godfr.

Friedlein (Teubner, LEIPZIG, 1873).
More generally, the Latus Rectum of any diameter was a length

measured from its extremity upon the tangent thereat, equal in

the case of the parabola to the parallel focal chord (although
defined without reference to the focus), and in other cases a third

proportional to the said diameter and its conjugate. Some later

writers, as Mydorge, used the term Parameter for Latus Eectum in
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all cases, that of the axis being distinguished as Recta Parameter.
Hamilton gave the alternative, "Latus Rectum sive Parameter
istius diametri, &c."

;
but these expressions are now seldom used

in geometrical treatises otherwise than as defined above on pages 1

and 44.

THE TANGENT.

PROPOSITION V.

37. The tangent at any point of a central conic makes equal

angles with the twofocal distances of that point.

Let the tangent at any point P to an ellipse, or a hyper-

bola, whose foci are 8 and $', meet the directrices in R and R'
;

and let a parallel through P to the axis meet the directrices

in M and M 1

.

Then since

SP:

and since PR and PR' subtend right angles at S and S' re-

spectively, therefore the triangles SPR, S'PR are similar,

having their angles at P equal; that is to say, the tangent
at P makes equal angles with SP and S'P.

In the ellipse, the tangent lies without the angle SPS' and

bisects it externally.

In the hyperbola (fig. p. 80), the tangent must cut the axis

between A and A (since otherwise it could not lie wholly
G2
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without the curve), and therefore between S and S'
;

it must

therefore bisect the angle SPS' internally.*

Corollary.

iff P be one of the four points of intersection of an ellipse

and a hyperbola which have the same foci S and S', their

tangents at P, being the two bisectors of the angle SPS', will

be at right angles to one another. Hence confocal conies in-

tersect at right angles.

PROPOSITION VI.

38. The projections of the foci upon -the tangent at any point

of a central conic lie on its auxiliary circle ; and the semi-axis

conjugate is a mean proportional to the distances of the foci from
their respective projections.

Let S and H be the foci, Y and Z their respective pro-

jections upon the tangent at any point P. Then will Y and Z

l\to.

To

lie on the circle described upon the axis AA' as diameter, and

the rectangle ^r.^will be equal to CB*.

(i) For let a parallel to HP through Y meet SP in 0.

Then the tangent makes equal angles with SP and the parallel

*
If, in accordance with the principle of the note on p. 22, the distance of any

point P on a hyperbola from S' be estimated within the curve, in which case it will be

the "
complement" of S'P, we may say of the hyperbola, as of the ellipse, that the

Ungent bisects the angle between the focal distances txternally.
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to -HP, viz. the angles OP I
7

, OFP, and the complements of

these angles, viz. OSY
t
OY8 are equal, therefore

OP=OY=OS.

Hence, the parallel to HP bisects SH
}
viz. at the centre C

of the conic, and

CY= CO i OY=$HP ^SP= CA*
the upper signs being taken in the case of the ellipse, and

the lower in the case of the hyperbola.

Hence, the auxiliary circle is the locus of the foot of the

perpendicular from either focus to the tangent at any point

of the conic; and, conversely, the straight lines drawn from

any point on the auxiliary circle at right angles to the two

focal distances of that point are tangents to the conic.

(ii) Let ZH meet the circle again in F; then, the angle
at Z being a right angle, VY passes through the centre C.

Hence, evidently SY, is equal to HV\ and therefore,

SY.HZ=HV.HZ=HA.HA'=CB\
or CB is a mean proportional to the focal perpendiculars upon

any tangent.f

* This result might also have been arrived at by supposing SY, HP to meet in a

point S', and shewing that CY = $HS'=CA.
t In the figure on p. 88, if T be the point of concourse of any two tangents, then

SY : HZ' = SY' : HZ. It follows that angle STY = HTZ'
; or, conversely, from

Prop. xvin. it may be deduced that SY . HZ = CB*.



86 CENTRAL CONICS.

*
Corollary 1.

This proposition enables us to draw a tangent to the conic

which shall be parallel to any given straight line, viz. by

drawing 8Y (to a point Y on the auxiliary circle) at right

angles to the given straight line, and drawing YP at right

angles to SY.

-
Corollary 2.

The points F, Z in which any focal chord meets the auxiliary

circle lie upon parallel tangents to the conic, and the semi-axis

conjugate is a mean proportional to the perpendiculars HV, HZ
from either focus H upon any two parallel tangents.

^
Corollary 3.

The diameter parallel to the tangent at P intercepts on

either focal distance JZPa length Pk equal to CFor CA.

PBOPOSITION VII.

39. The distance from the centre at which any tangent meets

a given diameter varies inversely as the central abscissa of its

point of contact with respect to that diameter.

Let the tangent at any point Q meet a given diameter in T,

and let CV be the abscissa of Q with respect to that diameter;
then will the rectangle CV.CTln of constant magnitude.

(i) Let CT meet the curve in JP, and let the tangents at

Pand Q intersect in 72; complete the parallelogram QEPO.
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Then since, in the parallelogram, RO bisects PQ, and since

PQ is the chord of contact of the tangents from R^ therefore R
passes through the centre C.

Hence, by parallels,

CV: CP=CO: CR=CP: CT,

or CV.CT has the constant magnitude CP'\ and CT varies

inversely as the abscissa CV.

(ii) Next, let t be the point of concourse of QT with any
diameter of a hyperbola which does not meet the curve ; and let

the ordinate QV in the former case of the proposition be

supposed an ordinate of the conjugate diameter, and therefore

parallel to Ct.

Then since Ct : CT= QV: VT,

therefore QV.Ct : CV.CT= QV : CV.VT.

And since, by the former case, CV.CT is equal to CP1

,

therefore

QV.Ct: CP* = QV 1
: CV* - CP 2

;

and therefore (Art. 34) QV.Ct is equal to the square of the
" semi-diameter

" CD parallel to Q T7
;

that is to say, Ct varies

inversely as QV, or as the abscissa of Q with respect to the

diameter on which Ct is estimated.

/ Corollary 1.

The relation CV.CT= CP* implies that any diameter PP'
which meets the conic is divided harmonically (Art. 18, Cor.)



88 CENTRAL CONICS.

at V and T. This likewise involves the equality of the rect-

angle TO. TV to TP. TP 1

,
which may also be deduced indepen-

dently from the evident parallelism of P'Q and CR, thus

TP : TV= TR: TQ=TG: TP'.

Or again, supposing the tangents at Q and P' to meet in ft',

we might have inferred from Art. 16, Cor. 1, that

and thence that TP, TV, TP' are in harmonic progression.

Corollary 2.

If CV and CT be estimated on the transverse axis, their

product will be equal to CA*', or if on the conjugate axis, it

will be equal to CB*.

THE DIRECTOR CIRCLE.

C[
PROPOSITION VIII.

40. The locus of the vertex of a right angle whose sides

envelope a central conic is a circle.

Let T be the point of concourse of a pair of tangents at

right angles; Y and Z the projections of the foci upon one

of them
;
Y' and Z' their projections upon the other.

o

(i)
Draw the auxiliary circle through F, Z, F', Z',- and

first, if T lie without it (that is to say, in the case of the ellipse),

let TO be drawn touching it in 0.
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Then
TO2 = TY'. TZ' = SY.HZ= CB\

and therefore CT* = CO* + CB* = CA* + CB\
or the locus of T is a circle concentric with the conic, and whose

diameter is equal to the diagonal of the rectangle contained by
the axes.

(ii)
Next let T lie within the circle, as may happen in the

case of the hyperbola. Then it may be shewn in like manner

that

CA* - CT* = TY. TZ= GB\
or CT*=CA'-CB\

Hence, provided that the transverse be greater than the

conjugate axis, the locus of T will be a circle, the square of

whose radius is equal to CA* OB*
;

but if the conjugate axis

be the greater, the locus will be imaginary, or an " obtuse
"

hyperbola can have no real tangents at right angles.*

Corollary 1.

In like manner it may be shewn that, if the sides of a right

angle envelope two confocal conies whose semi-axes are CA, CB
and COL, (7/8 respectively, its vertex will lie on a concentric

circle the square of whose radius is equal to CA* +
Cf3\ or

.Co? t^CB*. When (7/3 vanishes, one arm of the right angle

passes through a focus, and its verfcex Y (Art. 38) lies on the

* In this case it will be seen that the theorem is applicable to the Conjugate
Hyperbola. In the limiting case in which the axes are equal the locus reduces to a

point, the only tangents at right angles being the Asymptotes.
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auxiliary circle. In the proposition itself, if CB be supposed
to vanish, the director circle becomes the circle on SH as

diameter.

Corollary 2.

A conic and its director circle are so related that any

rectangle circumscribing the former is inscribed in the latter.

SCHOLIUM B.

The term DIRECTOR CIRCLE has been used of late years to

denote the locus of intersection of tangents at right angles to a

conic, with reference to the circumstance that when the conic

degenerates into a parabola this locus becomes coincident with
the directrix (Art. 25). The analogous term " Director Sphere

"

was introduced by Professor Townsend in the Quarterly Journal of
Pure and Applitd Mathematics, vol. vin. p. 10 (1867). DE LA
HIRE proved in his Sectiones Conica (PARIS, 1685), Lib. vm.
props. 27, 28, that the tangents to a conic from any point on a
concentric circle whose radius is equal to V( CA~ + GIF} meet the
circle again at the ends of a diameter, and therefore contain a right

angle. He also gave the equivalent of Cor. 2.

In some treatises the term Director Circle is used to denote the
circle described about the further focus H with radius equal to the

transverse axis, which possesses a property analogous to that of

the directrix of the parabola ; for if T be any point on the circum-
ference of the circle, and if ^BTFmeet the conic in P, then SP= PY,
or the focal distance of P is equal to its normal distance from the
circle. This circle affords a construction, analogous to that in

Art. 25, Cor. 2, for drawing tangents to a central conic from any
external point. Nevertheless it scarcely deserves a distinctive

name; whereas the "director circle," according to the former

definition, is of considerable importance in the higher geometry
of conies. The analogy of the circle in question to the directrix of

the parabola was pointed out by BOSCOVICH, (Sectionum Conicarum

JElementa, 102), but he did not give it a name.

POLAR PROPERTY.

*
PROPOSITION IX.

41. The tangents at the extremities of any chord drawn

through a given point intersect on a fixed straight line parallel

to the ordinates of the diameter through that point.

(i) Through a given point within or without the conic

draw any chord, and let the tangents at its extremities meet
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in t. Draw Ct bisecting the chord in o, and meeting the curve

in p, and let pU and tT be ordinates of the diameter through 0.

Let CO meet the curve in P, and let it meet the tangent

at p, which is parallel to o 0, in V.

Then CO : CV= Co : Cp,

and CU: CT=Cp: Gt\

and therefore, the lengths Co, Cp, Ct being continued pro-

portionals (Art. 39),

CO.CT=CU.CV=CP*.

Hence T is a fixed point, and tT, which was ordinately

applied to the diameter CP, is a fixed straight line.

Conversely, the chord of contact of the tangents drawn to

a conic from any point t on a fixed ordinate passes through
a fixed point situated on the diameter of that ordinate.

(ii)
In the case of the hyperbola, either or both of the

diameters Co, CO may not meet the curve.

If Co only do not meet the curve, let Pu be the ordinate of

P with respect to it,
and let the tangent at P meet it in

t?j

then, Co . Ct being equal to Cu . Cv (Art. 39, ii),

CO : CP=Co : Cu= Cv : Ct=CP: CT,

as in the first case. But if CO only do not meet the curve,
the first proof is applicable as far as CO.CT=CU.CV', and
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it is known from Art. 39, ii. that the latter rectangle is of

constant magnitude.
In the case in which neither Co nor CO meets the curve,

if Cp be taken a mean proportional to Co and Ct, and ifpVbe
drawn parallel to oO,* it will be seen that CU.CV is still

constant, and tT will be a fixed straight line as in the cases

previously considered.

THE NORMAL.

PROPOSITION X.

42. The normal at any point of a central conic bisects the

angle between the two focal distances of that point.

If P be any point on a conic whose foci are S and H, it

follows as a corollary from Prop. V. that the normal at P
bisects the angle SPH in the case of the ellipse, and its

supplement in the case of the hyperbola. The same may
also be deduced from Art. 10 (where 8 may be either focus)

as follows.

If the normal meet the axis in
,
then

SQ : SP= CS: CA = HG: HP-,

and therefore PG bisects the angle SPH internally or ex-

ternally, according as G lies in SH, as in the case of the

ellipse, or in the "
complement" of SH

t
as in the case of the

* The line thus drawn is the tangent at p to the Conjugate Hyperbola, which will

be defined in the next chapter. For another proof of the proposition, see Art. 17.

Th proof in Art. 41, i. applies, with obvious modifications, to the Parabola.
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hyperbola. In either case the normal bisects the angle between

those portions of the focal distances which fall within the curve.

If the circle round SPH meet the conjugate axis in g and
t,

it is evident that Pg and Pt will be the two bisectors of the

angle SFH; that is to say, they will be the tangent and the

normal at P. This suggests an obvious method of drawing the

two tangents or normals to a conic from any point on its

conjugate axis.

Corollary 1.

The tangent and normal to a conic whose foci are S and H
divide the straight line SH harmonically, and OS is a mean

proportional to the lengths CG, CT which they intercept on

the axis.

Corollary 2.

It is likewise evident by similar triangles that

and it will be shewn that each of these rectangles is equal to

the square of the semi-diameter parallel to the tangent at P.

PROPOSITION XI.

43. At any point of a central conic the normal, terminated by
either axis, varies inversely as the central perpendicular upon
the tangent, and directly as the radius parallel to the tangent.

Let the tangent and the normal at P meet the transverse

M
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axis in T and #, and the conjugate axis in t and g, respectively ;

draw perpendiculars PJV, Pn to those axes, and let them meet

the diameter parallel to the tangent in M and m
;
and let the

normal meet that diameter in F.

(i) Then (Art. 39, Cor. 2), the angles at N and F being

right angles,

PG.PF= PN.PM= Cn.Ct= C5";

and, in like manner, the angles at n and F being right angles,

Pg.PF=Pn.Pm = CN.CT= CA*;

that is to say, PG and Pg vary inversely as PF, which is equal

to the central perpendicular upon the tangent at P.

(ii) It will be proved in the section on conjugate diameters

that

PG : CD= CD : Pg=CB: CA,

where CD is the semi-diameter parallel to the tangent at P.

Corollary.

It is hence evident that

NG : CN=NG : Pn = PG : Pg= CB> : GA\
or the, subnormal varies as the abscissa. In like manner it may
be shewn that the subnormal ng on the conjugate axis varies

as the abscissa Cn.
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CONJUGATE DIAMETERS.

* PROPOSITION XII.

44. Supplemental chords are parallel to conjugate diameters.

Let OP, OP be any two supplemental chords, and CQ, CR
the diameters to which they are parallel ;

then will CQ, CR be

conjugate. For it is evident that these diameters bisect OP
and OP' respectively; that is to say, each of them bisects a

chord parallel to the other.

This enables us to determine the relation between the

directions of any two conjugate diameters, for, in Art. 33,

PN* : AN.NA' = Cff : CA*,

where the supplemental chords AP, A'P may be supposed

parallel to any assumed pair of conjugate diameters. Hence,
if the ratio of PN to AN (or the direction of one of the

diameters) be given, the ratio ofPN to AN (or the direction

of the conjugate diameter) is determined.*

Corollary 1.

It readily follows that if P and D be points on two diameters

of a central conic whose ordinates PN and DR (as in Art. 45)

are so related that

PN: CR = DR-. CN=CB: CA,

* An equivalent result may be deduced from Art. 14, Cor 4 and Art. 35, Cor. 3.

b 2

If 6 and < be the inclinations of two conjugate diameters to the axis, tan0 tan< = + -j

(where a, b are the semi-axes), the negative sign being taken for the ellipse and the

positive for the hyperbola.
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then will CP and CD be conjugate, provided that they lie in

adjacent quadrants in the case of the ellipse, or in the same

quadrant or in opposite quadrants in the case of the hyperbola.

If the ordinates of P and D, in the case of the ellipse, be pro-

duced to meet the auxiliary circle in p and J, as in the next

figure, the angle p Cd will a right angle, as will be noticed more

particularly in the chapter on Orthogonal Projection.

Corollary 2.

In the hyperbola it is evident that of every two supplemental
chords one must lie wholly within and the other wholly without

the curve
;
and hence that one and one only of every two conjugate

diameters meets the curve.

Corollary 3.

To draw a pair of conjugate diameters inclined at a given

angle, let a segment of a circle containing the given angle, and

described on any diameter PP' as base, meet the conic again in

;
then will the diameters parallel to OP and OP' be inclined

at the given angle.

PROPOSITION XIII.

45. The sum of the squares of any two conjugate diameters is

constant in the ellipse^ and the difference of the same is constant in

the hyperbola.

(i)
If OP, CD be any two radii of an ellipse, and CN, CR

the central abscisses of their extremities P and D respectively,

then, by Art. 33,

PN* : CA*- CN* = DR? : CA*- Ctf^CB1
: CA*.

Let CP and CD be supposed to lie in adjacent quadrants,
and let

then the above proportions reduce to

PN: CR =DR : CN= CB : CA*

* The same proportions will hold when the ordinates are oblique, if CA and CB
be the lengths of the corresponding semi-diameters.
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and therefore (Art. 44, Cor. 1) OP, CD are conjugate, and

conversely.

> T

Hence also PN* + DR> = CB",

and CP* + CD* = CN* + PN* + CE* + DE* = CA* -f GW
;

or the sura of the squares of any two conjugate semi-diameters

of an ellipse is constant and equal to the sum of the squares
of the semi-axes.

(ii) In the case of the hyperbola, let P be a point on the

curve, and D a point on the hyperbola whose transverse and

conjugate axes are BB' and AA respectively ; then, by Art. 33,

PN Z
: ON 2 - CA* = DR* : GIF + CA 2 = CB3

: CA\

Let OP and CD be supposed to lie in the same quadrant
or in vertically opposite quadrants, and let CD be regarded as

terminated at the point D.*

Let CN*-CE>=CA*;

then the above proportions reduce to

PN: CR = DR: CN=CB: CA,

* The radius CD which does not meet the curve (Art. 44, Cor. 2) is here regarded
as terminated by the Conjugate Hyperbola. For another proof of the proposition, in

which the length of CD is defined as suggested in Art. 34, the reader is referred to

the next chapter; and for a third proof, to the chapter on Orthogonal Projection.

It will be seen that the above conventions with regard to the length of CD are

consistent with one another, but the true definition of the lengths of diameters which
do not meet the curve is that given in Scholium C.
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and therefore (Art. 44, Cor. 1) (7P, CD are conjugate, and

conversely.

Hence also DR* - PN* = CB*,

and CP*

or the difference of the squares of any two conjugate
" semi-

diameters
"
of a hyperbola is constant and equal to the difference

of the squares of the semi-axes.

Corollary 1.

Let the normal at P, which is at right angles to CD, meet

the transverse and conjugate axes in G and g respectively ;
then

it may be shewn by similar triangles that

PG-. CD = PN: CE=CB: CA,

and Pg : CD=CN: DR = CA : CB.

Hence CD is a mean proportional to PG and Pg.

Corollary 2.

If P be any point on a conic whose foci are S and H, then

since C is the middle point of S3,

Hence CP ' SP.HP= CA9 + CA*- CS*= CA* CB*,

and therefore, by the proposition, SP.HPis equal to CD1
.

PROPOSITION XIV.

46. The area of any parallelogram whose sides are equal
and parallel to two conjugate diameters of a central conic is equal
to the area of the rectangle contained by the axes.
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(i)
Let a parallelogram be formed by drawing parallels to

two conjugate diameters PP'
:
DD' of a central conic through

their extremities, and let the normal at P meet DD' in F, and

let it meet the axis in G.

Then since (Art. 45, Cor. 1),

PG-. CD=CB: CA,

therefore PF,PG : PF.CD = OS9
: CA.CB

But, by Art. 43, the antecedents of this proportion are equal.

Therefore PF.CD=CA. CB,

and the area of the whole parallelogram is equal to 4JRF. (7Z>,

that
is, to 2 CA.2CB, or to the rectangle contained by the axes.

H2
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In the case of the ellipse the parallelogram described as

above completely envelopes the curve; but in the case of the

hyperbola two of its sides only touch the curve (Art. 44, Cor. 2).

(ii)
The proposition might also have been proved by shewing

that, with the construction of Art. 45,

which last expression reduces to | CA . CB.

PROPOSITION XV.

47. The intercept upon any tangent by any two conjugate

diameters is divided at the curve into segments to which the

parallel radius is a mean proportional.

Let the tangent at P meet any two conjugate diameters

m T and
f,
and let CD be the radius parallel to the tangent.

Let PVj Dv be ordinates of the diameter CT, and PM an

ordinate of Ctj and let the tangent at D meet the former

diameter in t'.

Then, by similar triangles, the tangent at D being parallel

to CP.
PT: CT=CD: Ct',

and Pt : CV= Ft : PM= CD : Cv.

Therefore* PT.Pt : CV.CT= CD1
: Cv.Ct';

and the consequents in this proportion being equal by Art. 39,

therefore PT.Pt= CD1

,

* More briefly, the condition that CT, Ct should be conjugate (note, p. 96) gives
at once the relation FT.rt:CF* = CD2

: CP1
.
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or CD is a mean proportional to PT and Pt; and when the

point Pis given the rectangle Pt.PTis constant.

Corollary.

If the tangent at any point Q meet any two parallel tangents

in li and R, then will the radius parallel to the tangent be a

mean proportional to QR and QR'. For, in the figure of

Art. 39, it is evident that CR and CR are parallel to the

supplemental chords P' Q, PQ, and are therefore conjugate
diameters. Moreover, if RC meet R'P' in r, the semi-diameter

parallel to RP will be a mean proportional to P'r, P'R'j and

therefore to P#, PR.
SCHOLIUM C.

Although the conjugate axis of a hyperbola and its other

diameters which do not meet the curve are commonly regarded
as terminated by the conjugate hyperbola, this convention is by
no means accurate, but the true account of the matter is that given
below.

Given the relation (Art. 33) between the coordinates of any
point on the hyperbola

PN* : CN2 - CA- = CB2
: CA3

,

the true length of the semi-axis conjugate is found, by making CN
vanish, to be v/(- 1) CB. Let this be denoted by Cfi, so that

PX> : CA2 -CN 2 = - CB* : CA2 =
Cft

2
: CA,

which shews that the hyperbola may be regarded as an ellipse whose
minor axis is a certain imaginary quantity. In like manner the true

length of the semi-diameter conjugate to CP, in the second case of

Art. 34, is V(- 1) CD ;
and if this be denoted by C, we may write

QV* : CP 2 - CF 2 = Ctf : CP2
,

as in the case of the ellipse. Now, treating /3 and S as if they were
real points on the curve and supposing p to be the projection of 5

upon the axis, we have, precisely as in Art. 45, i,

CN 2 + Cp"-
= CA2

;
P.V 2 + Dp* = C(P ;

CP2 + Clz = CA2 + C(? ;

which will be seen to be equivalent to the results of Art. 45, ii,

CN 2 - CR2 = CA 2
;
P.V 2 - DR 2 =-CB2

;
CP 2 - CD"- = CA 2 - CB2

.

And so in other cases (cf. Art. 40) we may pass at once to

properties of the ellipse, in so far as they involve CB2 and CD2
, by

writing in place thereof C/3* and C<)
3

,
that is to say, by changing the

signs of CB
2 and CD 2

.

Next consider the hyperbola as a particular form of ellipse
whose determining ratio has become one of majority. When this

ratio has increased up to unity the further focus and vertex are at
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infinity ;
but as soon as it exceeds unity they at once come back

from infinity to H and A' on the opposite of A. The true length
of the axis of the hyperbola is therefore A <x> A 1

,
the complement

of AA', and the distance between its foci is S oo H, the complement
of SH. In like manner the distance of any point P on the curve

from the further focus H is to be regarded as H co P, the comple-
ment of HP ;

and thus the fundamental bifocal property assumes
the indeterminate form SP + Hcc P = A oo A'. In order to pass
to the determinate form of the bifocal property of the hyperbola
from the property of the ellipse, we may remark that a point

moving in a straight line from the further focus H of the former
to a point P on ^-branch of the curve may be supposed to move
either (1) within the curve, from H to oo and from oo to P, always
in the same direction, or (2) along the finite length HP in the

opposite direction ; and we may therefore regard HP, drawn towards
the convexity of the ^-branch, as essentially negative, and the finite

axis AA as likewise negative. The ellipse property, SP+HP=AA',
thus becomes, in the case of the hyperbola, SP + (- HP) = (- AA).
So in Art. 15, Cor., in the case in which the focal chord meets the

nearer branch of a hyperbola in Q and its further branch in P, we
1 12

must write : 5-^ + 777:= -? . In accordance with the same prin-
^ BJT ) toy LI

ciple the normal to a hyperbola at P bisects the interior angle
between PS and P oo H; and if two tangents TO, TO' be drawn
from Tto the same branch of a hyperbola, the angle STO will be

equal to the angle between TO' and Tec H.

Combining the results of the two preceding paragraphs, we
infer from the property ST.HZ = CB* in the ellipse, that

SY. (- HZ) = (- CB>) in the hyperbola ;
and from SP.HP= CD*

in the former, that SP . (- HP )
=

(- CD2

} in the latter. On the
same principle, Prop. r. assumes the form

PN1
: AN. (- AN) = (- CXF) : CA*

in the case of the hyperbola. In Art. 36, Cor., if the focal chord
F!" be positive CD* will be negative, and vice versa. From the
result PF . CD = CA . CB, obtained in evaluating the conjugate
circumscribing parallelogram of the ellipse, we deduce in the case
of the hyperbola that (- PF).<J(- 1) CD = (- CA).J(- 1) CB;
and the final result is independent of the factor - \J(- 1).

THE BIFOCAL DEFINITION *

PROPOSITION XVI.

48. The tangent to a bifocal conic makes equal angles with

the focal distances of its point of contact.

* The theorems in this section have for the most part been already proved in

other ways; but they are here derived from the bifocal property, SP HP = A A',
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(i)
Let TPQt be a chord which meets the conic in the

aSjacent points P and Q, and let SM be taken equal to SP

upon SQ, and Hn equal to HQ upon HP, so that

Pn =HP~HQ=SQ~SP=Qm.
Now in the isosceles triangles SmP, HnQ, as the angles at

S and H are diminished indefinitely, each of the remaining

angles becomes very approximately a right angle; and hence

ultimately, when Q coalesces with P, the triangles PmQ, PnQ
become right-angled at m and n.

And since these triangles have the common hypothenuse

PQ) and it has been shewn that Pn, Qm are equal, therefore

the angle SQT of the one triangle is equal to the angle HPt of

the other. That is to say, the point Q being supposed to have

coalesced with P, the angle SPT is equal to HPt, or the

tangent at P makes equal angles with the focal distances of

that point.

(ii) Or, conversely, taking EUCLID'S definition of a tangent,

we may proceed as follows.

In the case of the ellipse, P being any point on the curve,

and S, S' the foci, in SP produced take Ps equal to P/S",

draw the bisector of the angle S'Ps, and take any point Y
upon it.

Then since S'Y is evidently equal to s F,

SY+S > Y=SY+sY>Ss>SP+ S'P-,

that is to say, the sum of the focal distances of any point other

than P upon the bisector of the angle SPs is greater than the

by which the ellipse and hyperbola are sometimes defined. From this property it

is evident that an ellipse may be traced with the point of a pencil moved along a

string, whereof the ends are fixed, so as to keep it stretched.
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transverse axis; every such point therefore lies without the

curve, and the bisector of the angle S'Ps is the tangent at P.

The proof applies mutatis mutandis to the hyperbola.

Corollary.

The normal at P bisects the angle between the focal

distances of P, estimated within the curve; and hence it easily

follows that 6r being the point in which it meets the axis

SG : SP=HG : HP= CS : CA.

PROPOSITION XVII.

49. The two tangents to a bifocal conic from any external

point subtend equal or supplementary angles at either focus.

This may be deduced from the LEMMA that a circle can be

inscribed in any quadrilateral which is such that the sum or

difference of two of its sides is equal to the sum or difference

of its other two sides.

If four straight lines touch a circle at points a, J, c, J, and

if they form by their intersections the quadrilaterals POQR,
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SPHQ, SOHR, as in the diagram, it readily follows, .from

the equality of the two tangents (as Oa, Ob] from any external

point to a circle, that

OP+QR=OQ + PR; SP+HP=SQ + HQ-,

and SO-HO = SR-HR',

and, conversely, if one of these relations be given, a circle

can be drawn touching the four straight lines.

The LEMMA being assumed, if P, Q be points on a conic

whose foci are S and H
t
then since

8P+HP-8QZHQ,
a circle can be described touching P, SQ, HP, HQ, and

having its centre T at the point of concourse of the external

or internal bisectors of the angles SPff, SQH] that is to say,

at the point of concourse of the tangents at P and Q.*

And since SP and SQ touch a circle whose centre is T,

therefore ST bisects the angle between them; and in like

manner NT bisects the angle between HP and HQ. That

is to say, the tangents TP, TQ to the conic subtend equal (or

supplementary) angles at either focus.

Corollary.

One or other of the angles between any two tangents to a

conic is equal to half the sum or difference of the angles which

their chord of contact subtends at the foci.f Taking the case

of a pair of tangents ZP, TQ to an ellipse whose chord of

contact (as in the next figure) does not pass between the foci,

we may shew, by equating the angles of the quadrilaterals

TPSQj TPHQ to eight right angles, that the exterior angle

between the tangents is an arithmetic mean to PSQ and PHQ.

* If with S and // as foci an ellipse be drawn through P, Q and a hyperbola

through 0, R, their common diameter through T will bisect PQ in the one curve

and OR in the other. Hence the middle points of the three diagonals of any
quadrilateral in which a circle can be inscribed lie upon one diameter of the circle.

t This theorem, with its analogue for the parabola (Art. 28), was proved by
BoscoviCH (Sectionum Conicarum Elemtnta, 184). In a slightly different form it

will be noticed again in Scholium D.



106 CENTRAL CONICS.

PROPOSITION XVIII.

50. The two tangents to a bifocal conic from any external

point are equally inclined to its two focal distances
,
each to each.

Let TP, TQ be the tangents at P, Q to a conic whose

foci are 8 and 5"; then will the angles STQ, HTP be equal

to one another, unless P and Q lie on the same branch of a

hyperbola, in which case they will be supplementary.

(i)
In the case of the ellipse, produce HP to any point F,

and let SP, HQ intersect in 0.

Then since the tangent at P bisects the angle SPY, and

HT bisects the angle PHQ, therefore

L HTP= TPV- THP= \SPV- \PHQ = \POH-,

and in like manner it may be shewn that the angle STQ is

equal to %QOS or \POH.
Hence TP and TQ make equal angles with the focal

distances of T.*

(ii) If the tangents be drawn to opposite branches of a

hyperbola, they will still make equal angles with ST and HT.

(iii) If both tangents be drawn to the /S-branch of a

hyperbola, and if HT be produced to a point H', it will be

* In Art. 37 the points S, P, M, R and S', P', M', K are ooncyclic, as will

likewise be the case (Art. 9, Cor. 1) if RR be any straight line, and P its polar.

Hence, if X, X' be the feet of the directrices, SPR = SMX = S'M'X' = SPK.
It follows by the proposition that the intercepts on any chord made by the curve and
its directricei subtend equal (or s^plementary) angles at the pole of the chord.
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seen that they make equal angles with ST and H'T respectively,

which is in accordance with the principles of Scholium C.

Corollary 1.

The bisectors of the angles between any two tangents to a

bifocal conic are the tangent and normal to the two confocals

through their point of concourse.

Corollary 2.

The triangle whereof the base is equal to the transverse axis

of a conic and its remaining sides to the focal distances of any
external point has its vertex angle equal to the angle between the

tangents to the conic from that point and its remaining angles

to the angles which either tangent subtends at the foci. For in

the first figure, if SP produced to a point H' be equal to the

transverse axis, it is evident that the triangle TH'P is identically

equal to THP, and hence that the triangle STH' is of the

specified linear and and angular dimensions.

SCHOLIUM D.

The theorem of Cor. 2 may be expressed as follows. If the

straight lines in either diagram be regarded as a framework

jointed at their ends, and if S and H be drawn apart (or brought
together) until the distance between them is equal to AA', then
will <SP.ZZ"and SQR become straight lines, and the angles at the

joints (except SPH and SQH] will be equal to the angles at
the same points in the original figure, the inner and outer angles
at T being interchanged. The angle STH in the deformed figure
is in general equal to the angle between the tangents, but in
the third case of the proposition it becomes supplementary thereto.
The following are some applications of this theorem.
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(i) If the angle between the tangents be a right angle, then

ST* +HTz = AA' t
,

whence the property of the director circle

readily follows. In any case, the angle 6 between the two

tangents from any given point T satisfies the relation

ST* + HT Z - 2ST. HT cos e = AA.

(ii) Since the exterior vertex angle of the triangle is equal to

the sum of its angles at S and IT, therefore the supplement of

the angle between any two tangents to an ellipse is equal to

the sum of the angles which either tangent subtends at the foci. In the

hyperbola, as may be proved in like manner, the difference of the

angles which either tangent subtends at the foci will be equal or

supplementary to the angle between the tangents, according as

they are drawn to opposite branches of the curve or to the

same branch. In the one case, P and Q in the deformed figure
will lie on opposite sides of SH, and in the other case on the

same side of it.

(iii) It may be shewn from the deformed figure that

TP': TQ=SP.HP: SQ.HQ.

Hence, having deduced (Art. 45, Cor. 2) from the bifocal

definition that

SP. HP + CP* = CA* + CS'^SQ.HQ + CQ3
,

we infer, taking the case in which CP, CQ are conjugate, and
therefore equal and parallel to the tangents at Q and P, that

'; CP'

and hence, that in all cases the tangents are as the parallel radii.

PROPOSITION XIX.

51. At any point of a bifocal conic the projection of the

normal terminated by the conjugate axis upon the distance of the

pointfrom either focus is equal to the semi-axis transverse.

Let the normal at P meet the conjugate axis in g, and draw

gk and gl perpendicular to SP and HP respectively. Then
since the normal bisects the angle kPl, therefore

Pk = PL and qk ql.*j /
i

And since also the hypothenuses of the right-angled

triangles gkS, glH are equal, therefore the side Sk of the one

is equal to the side HI of the other.
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Hence, in the first figure,
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and in the second figure,

SP+ Pk = HP- PI = HP- PL

Therefore Pk = \ (SP + HP) = CA.

Corollary 1.

If OK be drawn, as in Art. 11, it follows from this pro-

position, together with Art. 52, Cor. 2, that PK.CA=CB\

Corollary 2.

By the converse of Art. 38, Cor. 3, the diameter Ck is

parallel to the tangent at P, or perpendicular to the normal;
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if therefore it meet the normal in F,

and PG.PF=PK.Pk=CB\

PROPOSITION* XX.

52. The distance of any point on a bifocal conic from either

focus varies as its distance from a corresponding fixed directrix

perpendicular to the axis.

Bisect the angle between the focal distances of any point P
of the locus, estimated within the curve, and let the bisecting

line meet the axes in O and g. Let a parallel to the transverse

axis through P meet gS in M and gH in N\ and let per-

pendiculars be drawn to the axis through those points, meeting
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it in X and W. We shall shew that these perpendiculars

are directrices.

Since L SMP=gSH=gHS= OPS,

the points g, S, P, H being evidently concyclic; therefore,

in the similar triangles SPM, SGP,

SP: PM=SG: SP=SG+GH: SP + PH=CS: GA\

and therefore SP is in a constant ratio to PM.

And since SH: MN= SG : PM= CS* : CA\
therefore MN, or 2 CX, is constant, and MX is a fixed straight

line.

The curve may therefore be described with S and MX, or,

in like manner, with H and NW, as rocus and DIRECTRIX.

Corollary 1.

The line PG in the above construction being evidently the

normal at P, it follows that the focal distances of the point in

which the normal at any point of the curve meets the conjugate

axis pass through the feet of the perpendiculars from that point

to the directrices. Hence an obvious construction for the

normals from g with the help of the ruler only.

Corollary 2.

Since Gg:Pg = SG: PM= CS* : CA\
therefore PG:Pg= CA*~ CS* : CA*= CB* : CA'.

SCHOLIUM E.

The name FOCTJS has reference to the optical property in

relation to the conic of the points to which it is now commonly
applied, viz. that rays proceeding from one of them and reflected

at the curve would converge to or diverge from the other (Art. 37),
or become parallel to the axis (Art. 25).

APOLLONITJS, who introduces the foci somewhat late in his

treatise, proves their properties in the following order (Lib. in.

props. 45 52). Starting with the property, AS. A'S = CB*
t
he

shews that the intercept on the tangent at any point P by the

tangents a the vertices subtends right angles at the foci; that

the tangent at P and either of the fixed tangents make equal
angles with the focal vectors to their point of concourse (a special
case of Art. 50) ;

that a pair of the focal vectors to its points of

concourse with the two fixed tangents intersect on the normal at
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its point of contact ;
that it makes equal angles with the focal

distances of that point ;
that the axis subtends a right angle at

the foot of the focal perpendicular ST upon the tangent; that

the diameter parallel to HP meets the tangent upon the cir-

cumference of the circle on AA', viz. in the same point T; and

lastly, that SP + HP=AA.
The property of the focus and directrix by which we denned

the general conic is given in the Mathematical Collections of

PAPPUS, Lib. vn. prop. 238 (vol. n. p. 1012, ed. Hultsch,
BEROL., 1877).

NEWTON, to whom some later writers were indebted for their

acquaintance with the property, mentions it in the Principia, at

the end of Lib. i., Sect, rv., in connexion with his construction (a
modification of De la Hire's Lib. vin. 25, to which he refers) for

an orbit whereof a focus and three points are given, viz. by
determining a point of the directrix upon the chord joining each

pair of given points on the curve.

EXAMPLES.

201. If .4.B and CD be equal portions of two straight bars,

and if they be connected by hinges with two equal bars AD,
BC in such a manner that initially AB and CD form opposite

sides of a rectangle and AD and BC its diagonals ;
then (1)

if a side of the rectangle be fixed, the remaining parts of the

framework being moved about in any way in a plane, the inter-

section of the cross bars will trace an ellipse; or (2) if a

diagonal be fixed, the continuations of AB and CD will cross

one another upon the arc of a hyperbola.

/2O2. The sides AD, DC of a. rectangle ABCD are divided

into the same number of equal parts, and straight lines are

drawn from B and A respectively to the points of section.

Shew that the corresponding lines of the two series meet on

an ellipse whose axes are equal to the sides of the rectangle.

203. A parallelogram ABCD has its diagonal A C at right

angles to, the side AB. If CD be divided into any number of

equal parts and straight lines be drawn from A to the points
of section, and if AC be divided into the same number of

equal parts and straight lines be drawn from B to the points
of section, then will the corresponding lines in the two series

meet on a hyperbola.
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'204. The straight lines joining the vertices of a conic to

opposite ends of any segment of the directrix which subtends

a right angle at the focus intersect on the curve. Hence shew

how to trace an ellipse or hyperbola, and prove that the ellipse

is a closed curve giving wholly between the perpendiculars to

the axis at its vertices.

^205. The locus of the point at which the distances of either

vertex from a focus and directrix subtend equal angles is the

auxiliary circle. Hence shew that the ellipse cuts the ordinates

of its auxiliary circle in a constant ratio.*

206. IfAM and AM be taken on the axis of a conic equal
to the focal distances of any point P on the curve, shew that

and deduce that the square of the ordiuate of P varies as the

rectangle contained by its abscisses.

207. If a circle be drawn through the vertices of a conic

and any point on the curve, find the locus of the second point
in which it meets the ordinate of the former.

208. If two ellipses whose major axes are equal have a

common focus, they will intersect in two points only ;
and their

common chord will be at right angles to the straight line

joining their centres.

209. Given a chord of a parabola and the direction of its

axis, the locus of the focus is a hyperbola whose foci are at the

extremities of the chord.

210. The straight lines from either focus of a conic to the

ends of a diameter make equal angles with the tangents thereat.

211. A circle can be drawn through the foci and the

intersections of any tangent with the tangents at the vertices.

212. The intercept on any tangent by the tangents at the

extremities of a focal chord subtends a right angle at the focus.

* Ifp be a point on the locus, then Sp : PX SA : AX = SA' : A'X, and therefore

A'p is the outer bisector of the angle SPX, and is at right angles to Ap. Hence

pN* - PN* -
Sp

2 - SP* = ei (PX* - NX*) - e* . PJV 2
,
and P.V 2 varies as pN*, or

as AN. A''X.

I
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^213. The major axis is the maximum chord of an ellipse^

and the minor axis is its least diameter. "When is the angle

subtended at the curve by the straight line joining the foci a

maximum ?

214. The focal vectors to any two points on a conic meet

in two other points lying on a confocal conic, and the tangents

at the two pairs of points cointersect. Examine the case in

which the focal vectors are drawn to opposite extremities of

a diameter.

215. Find the locus of the centre of a circle which touches

two fixed circles. Also, if two circles, the sum or difference

of whose radii is constant, be described about fixed points,

find the locus of the centre of a circle of given magnitude

which touches both of them.

2 1 6. If PQ be a chord of an ellipse, and if the ordinates

of its extremities to either axis be produced to meet the cor-

responding auxiliary circle in p and q, then will PQ and pq
meet on that axis; and if the tangent at p meet the same

axis in T, then will TP touch the ellipse at P, and the

abscissa of P will be a third proportional to CT and CA.

217. If any tangent to an ellipse meet the axes in T and
t,

the tangents from those points to the major and minor auxiliary

circles respectively will be parallel two and two, and their

four points of contact will lie on two diameters of the ellipse.

218. The perpendiculars to the axes from the points in

which a common diameter meets the two auxiliary circles of

an ellipse intersect two and two on the curve. Hence shew

how to construct an ellipse with the help of two fixed con-

centric circles.

219. If two points on a straight line move along the arms

of a right angle, any other point on the line will trace an

ellipse whose semi-axes are equal to the segments of the line

between that point and the former two.*

* The moving line may be supposed parallel to the "common diameter" in

Ex. 218. This theorem explains the construction of the Elliptic Compasses.
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220. The ordinates of the points in which any tangent to

an ellipse or hyperbola meets the curve the tangents at its

vertices and the conjugate axis are proportionals, and the

product of the extremes or the means is equal to the square

of the semi-axis conjugate.

221. If any ordinate to either axis be bisected in 0, and

AO, A meet the tangents at A and A in T and T re-

spectively, then will TT' be the tangent at the extremity of

the ordinate
;
and the straight line joining the intersections of

ST, HT' and 81"
t
HTwitt be the normal at that point.

222. If two ellipses with equal axes be placed vertex to

vertex, and one of them then roll upon the other, each of

its foci will describe a circle about a focus of the latter.

223. Given a central conic, shew how to find its centre,

axes, foci, and directrices.

224. Given a focus and two points of an ellipse, the locus

of the other focus will be a hyperbola. If instead of one of

the two points the length of the axis be given, determine the

loci of the centre and of the second focus.

-'225. Given one focus of a conic inscribed in a triangle, da

shew how to determine the other focus. If an ellipse inscribed ur

in a triangle have one focus at the orthocentre, its other focus

will be at the centre of the circumscribed circle, and its

auxiliary circle will be the nine-point circle of the triangle.

Examine the case in which a focus of the inscribed conic is at

the centre of the inscribed circle of the triangle.

226. The angular points and the sides of a triangle being
taken as the centres and directrices of three ellipses which have

a common focus at the orthocentre, shew that the sum of the

squares of their major axes is double of the sum of the squares
of the sides of the triangle ;

their minor axes are equal to one

another, the square of each being equal to the sum of the

squares of the three latera recta; the sum of the squares of

the eccentricities is equal to two
;

the intercepts made by the

ellipses upon the sides of the triangle are conjugate diameters
;

12
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the perpendiculars of the triangle are the common chords of

the ellipses, and their six poles lie on three focal chords parallel

to the sides of the triangle.

227. If CP be any radius of a conic, and if a parallel to

it be drawn from the vertex A to meet the curve in Q and

the conjugate axis in 7?, shew that AQ.AR is equal to 2(7P*.

228. A straight line equal to the radius of a circle slides

with one end on a fixed diameter and the other end on the

convexity of the circumference. Shew that any intermediate

point on the line traces an arc of an ellipse.

229. From a fixed point a straight line OP is drawn to

a given circle. Find the envelope of a straight line drawn

through P at a constant inclination to OP.

230. The straight line joining the foci of a conic subtends

at the pole of any chord an angle equal to half the sum or

difference of the angles which it subtends at the extremities

of the chord.

231. If CR be the projection of any radius CD upon the

axis of the conic, and OL the ordinate of the middle point O
of any chord* parallel to CD, prove that

OL.DR : CL.CR= CB* : CA\

Hence shew that the diameters of conies are straight lines,

and obtain the relation between the inclinations of any two

conjugate diameters to the axis.

232. The ellipse has a pair of equal conjugate diameters,

which coincide in direction with the diagonals of the rectangle
formed by the tangents at the ends of its axes, and which are

equal to the sides of a square whose diagonals are equal to

those of the said rectangle.

What is the corresponding property of the hyperbola ?f

* Art. 33 gives PN* ~ QAf* in terms of CW 2 ~ CJ/2
;
whence the required

result readily follows.

t It has two pairs of (infinite) conjugate diameters which are in a ratio of equality,
and each pair coincide in direction with one of the equi-conjugate diameters of the

ellipse which has the same axes.
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233. The common diameters of equal similar and concentric

ellipses are at right angles to one another.

234. Find the loci of the centres of the four circles which

touch the axis of a conic and the two focal vectors to any

point on the curve.

235. A chord of a conic which subtends a right angle at

the vertex passes through a fixed point on the axis.

236. If a hyperbola touch the sides of a quadrilateral in-

scribed in a circle, and if one focus lie on the circle, the other

will also lie on the circle.

237. If three circles be described on the transverse axis

and the two focal distances of any point of a conic as diameters,

determine their radical centre.

238. If the tangent at a point P whose ordinate to either

axis is PN meet the corresponding auxiliary circle in Y and Z,
shew that C

1
N

t F, Z lie on a circle, and that PN bisects the

angle YCZ.

239. If an ellipse and a hyperbola have the same axes,
the director circle of the one will pass through the foci of

the other.

240. The diagonals of any rectangle circumscribing a conic

are conjugate diameters.*
#

241. The diagonals of any parallelogram circumscribing a

conic are conjugate diameters, and the sides of any inscribed

parallelogram are parallel to conjugate diameters.

242. The sum or difference of the reciprocals of any two

focal chords at right angles, or of the squares of any two

diameters at right angles, is constant.

243. The locus of the centre of an ellipse which slides be-

tween two straight lines at right angles is a circle.

244. The circle described upon the straight line joining the

foci of a conic meets the conjugate axis in two points such that

* This appears from De la Hire's original proof of the property of the director

circle, in which he assumed the theorems of Arts. 39, 45.
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the sum of the squares of the perpendiculars therefrom to any

tangent is equal to half the square upon the transverse axis.

245. Determine the positions of a chord of an ellipse which

subtends a right angle at each of the foci
;
and also the locus

of the pole of a chord which subtends supplementary angles

at the foci.

246. The opposite sides of a quadrilateral described about

an ellipse subtend supplementary angles at either focus.

247. The angle which a diameter of an ellipse subtends

at an extremity of the major axis is supplementary to that

which its conjugate subtends at an extremity of the minor

axis.

248. If a focal chord of a conic be drawn to meet at a

given angle any tangent, or any chord subtending a constant

angle at one of the foci, the locus of the point of intersection

will be a circle.

249. To what does the theorem that confocal conies intersect

at right angles reduce when the two foci coalesce ?

250. The circle described about any point on the axis of

a hyperbola so as to cut its auxiliary circle orthogonally meets

the ordinate through that point upon the circumference of an

equilateral hyperbola.

251. The pole of any straight line with respect to a central

conic may be found by joining the points in which it meets

the directrices to the nearer foci, and drawing perpendiculars

through the latter to the joining lines.

252. The straight lines joining any point to the intersections

of its polar with the directrices touch a confocal conic.

253. In Art. 4, if the centre of the circle be taken midway
between the vertices of the conic, shew that the directrix will

be the polar of the focus with respect to the circle. Hence
shew that every chord of an ellipse or hyperbola which passes

through its centre is bisected at that point, and that the curve is

consequently symmetrical with respect to its conjugate axis.
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254. The locus of the vertex of a triangle whose base

and the ratio of whose sides are given is a circle, whereof

a diameter is determined by dividing the base of the triangle

externally and internally in the given ratio. Hence shew that

a straight line parallel to the axis of a conic meets the curve

in general in two points, and that the two points are equi-

distant from a fixed straight line parallel to the directrix.*

255. Apply the same method to determine the points in

which any assumed straight line meets the conic ;f and also

to shew that the diameters of conies are straight lines.

256. Prove the following construction for drawing tangents
to a conic whose foci are S and H from a given external point

O. About with radius OS describe a circle, and about H
with radius equal to the transverse axis describe a circle

;
then

will the required points of contact lie upon the straight lines

drawn from Hto the points in which the two circles intersect.

Prove also that the two tangents as thus determined subtend

equal or supplementary angles at either focus.

257. If the diagonals of a quadrilateral circumscribing an

ellipse meet at its centre the quadrilateral must be a paral-

lelogram.

258. If a principal ordinate meet an ellipse in P and its

auxiliary circle in <?, the distance of the former point from

either focus will be equal to the perpendicular from that focus

to the tangent at Q.

259. The locus of the middle point of a focal chord of a

conic is a similar conic. In what other cases will the locus

of the middle point of a chord of a conic be a similar conic ?-

* The two points are determined as follows. Let the parallel meet the directrix

in Q, and let Z and Z' divide SQ in a ratio equal to the eccentricity. Describe the

circle on ZZ', and let it cut the parallel in P and P". The projection of the centre

of this circle upon the axis of the conic evidently lies midway between the projections

of Z and Z' upon the same, that is to say, midway between the vertices of the conic.

t If the assumed line meet the directrix in Q and make an angle a with the axis,

divide SQ in the ratio e cos o, and upon the intercept between the two points thus

determined describe a circle cutting the assumed line in P and P', which will be the

points required.
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260. If tangents be drawn to a conic at the extremities

of a pair of conjugate radii, the focal vectors to their point

of concourse will meet those diameters in four points lying

on a circle.

261. If SY be a focal perpendicular upon the tangent
at P and CD the radius parallel to the tangent,

SY* : C* = SP* :CD*=SP:2CA SP.

262. The feet of the perpendiculars from one focus of a

conic to a pair of tangents are on a straight line at right angles

to the distance of their point of intersection from the other

focus.

263. Find the greatest or least value of the sum of the

squares of the focal perpendiculars on any tangent.

264. The normal at any point of an ellipse is a harmonic

mean to the focal perpendiculars upon the tangent at that point.

265. If one focus of a conic which touches the sides of a

triangle be at its centroid, the distances of the other focus from

its sides will be as the lengths of those sides.

266. If the normal at P meet either axis in G, shew that

any circle through those points will intercept on the focal

distances of P chords whose sum or difference has one or other

of two constant values.

267. The diameters parallel to the tangent and normal at

P intercept on SP a length equal to HP] and the latter dia-

meter meets SP on the circumference of a circle.

268. The circle described upon the central abscissa of the

foot of the normal at any point is cut orthogonally by a circle

described about that point and equal to the minor auxiliary

circle.

269. The intercepts on the focal vectors to the points of

contact of a conic with any circle which touches it in two

points have one or other of two constant values.
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270. Any tangent and its normal meet either axis in points

T and G such that CG.CT=CS\ In what cases does the

normal meet the conjugate axis without within or upon the

curve ? If a circle touch an ellipse in two points and also touch

its directrices, its centre will be at an end of the minor axis.

271. The intercept made by the directrices upon any
normal chord of a conic subtends at the pole of the chord an

angle equal to half the sum or difference of the angles which

the distance between the foci subtends at the extremities of

the chord.*

272. If two chords be drawn from any point of a conic

equally inclined to the normal at that point, the tangents at

their further extremities will intersect upon the normal.

273. Supplemental chords of a conic which are equally

inclined to the curve at their common point have their poles

upon the director circle, and their sum or difference is equal

to the diameter of the same.f

274. The normals at the extremities of any two conjugate

radii meet on the diameter which is at right angles to the

chord joining those points ;
and any two normals at right angles

to one another intersect on the diameter which bisects the chord

joining the points at which the normals are drawn.

275. If on the normal at P a length PQ be taken equal

to the semi-diameter conjugate to CP, the locus of Q will be a

circle of radius CA + CB.

276. If normals be drawn to an ellipse at the ends of

any chord parallel to one of its equal conjugate diameters,

the locus of their intersection will be a line perpendicular to the

conjugate diameter.

* If the normal at P meet the S-directrix in R, and be the pole of the normal,

the circle on OR will pass through S and P.

f See Wolstenholme's Book of Mathematical Problems, No. 493 (London and

Cambridge, 1867). If PQ, PQ' be two such chords they will evidently touch a

confocal, and the parallel chords will also touch the same. Hence the tangent at Q
will make equal angles with PQ and a parallel to PQ', and will be at right angles to

the tangent at P. Otherwise thus : the tangent and normal at P divide QQ' har-

monically, and the normal is an ordinate of QQ' and parallel to the tangent at Q.
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277. With the construction of Art. 52, shew that

Sg:Pg = PG: 8M= Pg : gM= CS : CA.

Shew also that the loci of the middle points of PG and Pg are

conies.

278. If ^be the projection of any point Pon a conic upon
the tangent at a given point 0, find the relation between the

lengths of ON and PN.*

279. If PQ be a chord of a conic which subtends a right

angle at a given point on the curve, and MN be the pro-

jection of the chord upon the tangent at 0, shew that

PM
J QN

OP* ~OQ*
= a constant

>

and that PQ passes through a fixed point on the normal at O.f

280. If PG be the normal at any point P on an ellipse,

Q the point in which the ordinate of P meets the auxiliary

circle, and R the point in which CQ meets the ellipse, then

will QG l)e parallel to the normal at R. Moreover, if any
two chords of an ellipse be at right angles, its diameters

conjugate to the corresponding chords of its auxiliary circle will

be conjugate diameters of a certain concentric ellipse.

281. If N be the projection of any point in the plane of

a conic upon its transverse or conjugate axis, and T the point
in which its polar meets the same, shew that CN. CT is equal

to CA* in the former case and to CZ?
2
in the latter.J

282. If P, P' be any two points whereof the one lies on

the polar of the other, and N, N' be their projections on the

transverse axis, then

CN.CN' PN.P'N' _
CA* CS*

~

* Let the normal at meet the curve again in H, and let NP meet the tangent
at H in M; then ON varies as a mean proportional to PN and PM (Ex. 73, and note

p. 65), and also as PN + PM - OH.

f The intercept on the normal varies as the diameter conjugate to CO,

J Let the diameter through the assumed point meet the directrix in F, and let

its polar meet the directrix in R, which will be the orthocentre (Art. 14) of the

triangle STV. Then, TV being parallel to SO (Art. 17), CN : CX = CO : CV
= CS : CT.



EXAMPLES. 123

283. If P and Q be any two points on a conic, M and

N their projections on either axis, and T the point in which

PQ meets the same, shew that

CT(PM - QN} = PM.CN- QN.CM*

284. Shew also that if CL be the central abscissa upon
either axis of the point of concourse of the normals at P and

<2,f then CL.CT varies as CM.CN.

285. If the normals at four points of a conic cointersect,

and if the three pairs of chords joining those points meet either

axis in T, T'; Z7,
U'

', F, F'; shew that

286. If the normals at four points of an ellipse or hyperbola

cointersect, each pair of chords joining the four points will

be parallel to a pair of conjugate diameters of the hyperbola
or ellipse which has the same axes, and will meet either axis in

points which are conjugates in an involution determined by
the latter curve4

287. The sum or difference of the squares of the perpen-
diculars from the extremities P and D of any two conjugate

semi-diameters of a conic upon a fixed diameter of the same

is constant
;
and if CN and CR be the abscissas of P and D

upon that diameter, and 2CP' be its length and 2 CD' the

length of its conjugate, then

CN* Ctf = CP'2

;
PN* DE* = CD'*

;

and PN -.CR = DR : CN= CU : CP'.

* Equate the areas (CPT'- CQT) and (CPM + PMNQ - QCN).
f If L be the projection npon either axis of any point on the normal at P, and

G be the point in which the normal meets that axis, then OL : PM= CG ~ CL : MG
;

and CG and MG vary as CM.

J The pairs of points in Ex. 285 determine an involution whose centre is C, and to

which the ends of the axis in question likewise belong. If these points be on the

transverse axis, CT. CT' = &c. = CA . CA' = CA* ;
and if on the conjugate axis,

CT . CT '

is equal to - CB2 in the case of the ellipse, and to 4- CJf in the case of the

hyperbola.
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288. The vertices of the conjugate circumscribing parallelo-

gram of a conic lie on a similar conic, and their polars envelope
another similar conic.

289. The inscribed parallelogram whose diagonals are at

right angles envelopes a circle, the reciprocal of the square

of whose radius is equal to -^-^ ^
C.4 G.D

290. If the polar of any point on an ellipse with respect

to its minor auxiliary circle meet the major and minor axes

in H and K
t
shew that

CB* CA* _ CA*

CH* + CK*~ CB*
'

291. Supplemental chords being drawn to a conic from

its vertices, the perpendiculars to them at their common point
make an intercept equal to the latus rectum upon the axis.

292. If an ordinate of any diameter meet the curve in P^
the diameter in 3/, and any two supplemental chords drawn

from its extremities in Q and JB, shew that PH is a mean

proportional to QM and RM, and that QR is bisected by the

tangent at the intersection of the chords.

293. If two conjugate semi-diameters (7P, CDj or their

prolongations, make an intercept P'D' upon a line which is

parallel to PD and meets the conic in Q, shew that

QP* QD'
Z = PD'1

.

294. From extremities of two conjugate diameters of an

ellipse a pair of parallels are drawn to any tangent; if any
diameter meet these parallels in P and Q and the tangent in

It, shew that

295. If PP' and DD' be conjugate diameters of a hyper-
bola and Q any point on the curve, then will QP*+QP'*
exceed QD'+QW by a constant quantity.
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296. Find the axes of a given conic by means of Art. 44,

Cor. 3.

297. Given two conjugate diameters of an ellipse, shew that

the locus of the centre of the circle through their common

point and the points in which a tangent parallel to one of them

meets any two conjugate diameters is a straight line perpen-
dicular to the other.

298. Given two conjugate semi-diameters CP, CD of an

ellipse or hyperbola, prove the following construction for its

axes. In the direction CP or in the opposite direction take

PQ a third proportional to CP and CD
;
draw the tangent at

P, and through (7, Q draw a circle having its centre upon it
;

join C with the points in which the circle cuts the tangent.

The directions of the axes being thus determined, shew how
to find their extremities.

299. Given two conjugate diameters CP, CD of an ellipse,

with centre C and radius CP describe a circle, and let KK'
be its diameter at right angles to CP; then will the axes of

the ellipse be equal to KD K'D, and parallel to the bisectors

of the angle KDK'*

300. Shew also that, if DN be taken equal to CP and

be placed so as to cut it at right angles in a point Z, and

if AB be that diameter of the circle round CLN which passes

through Z>, then will (7-4, CJB be the directions and DB, DA
the lengths of the semi-axes of the ellipse.

301. Any point of or in the same straight line with a rod

which slides between two fixed straight lines describes an arc

of an ellipse.f

* See the Oxford, Cambridge, and Dublin Messenger of Mathematics, vol. III.

pp. 151, 227 (18G6) ;
and the Messenger of Mathematics (New Series), TO!. V. p. 122

(1876).

f Of two conjugate radii of an ellipse let CP be the shorter and CD the longer ;

draw a perpendicular DE to CP, and in the prolongation of or within ED take DQ
equal to CP. Then if a straight line KM equal to EQ slides between CP and CQ,
the point which divides it into segments KO and OJ/ equal to CP and DE will be a

point on the curve, viz. one whose abscissa on CD is terminated by the perpendicular
from 31 to CP. As in the special case of Ex. 219, KO.OM= CA . CB. See Leslies

Geometrical Analysit, and Geometry nf Curve Lines, p. 257 (Edinburgh, 1821).
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302. The chords joining the extremities of two diameters

of a conic and of their conjugates respectively are either parallel

or conjugate in direction. If a series of chords pass through
a fixed point, the chords of the corresponding conjugate arcs

have the same property ;
and the diameters through the two

fixed points are at right angles.

303. With the orthocentre of a triangle as centre two

ellipses are described, the one touching its sides and the other

passing through its angular points; prove that these ellipses

are similar, and that their homologous axes are at right angles.

304. The perpendiculars from opposite foci of a conic upon
two conjugate diameters intersect on a concentric conic passing

through the foci.

305. If a chord AP drawn from the vertex A be divided

in such a manner that A Q : PQ = CA* : CZ?
2

,
shew that the

perpendicular from Q to the line joining Q to the foot of the

ordinate of P divides the transverse axis in the same ratio.

306. From the foot of the ordinate of any point P on a

conic a parallel is drawn to AP to meet the diameter through
P in Q ;

shew that A Q is parallel to the tangent at P. Shew
also that the bisectors of the angles ASP and AHP intersect

on the tangent at P.

307. If two conies whose transverse axes are equal be

inscribed in the same parallelogram, their foci will be at the

corners of an equiangular parallelogram.

308. Any one of a series of conterminous circular arcs may
be trisected by drawing a pair of hyperbolas whose determining
ratio is equal to two, and whose centres and vertices trisect

the chord of the arc. How doea it appear from this construc-

tion that the problem, to trisect a given angle, admits of three

solutions ?

309. If any two conies have a common focus, one pair of

their common chords cointersect with the corresponding direc-

trices, and the other pairs subtend equal or supplementary

angles at that focus.
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310. A diameter meets the conic in P, its auxiliary circle

in Q, and the tangent at either vertex in T. Prove that when

the diameter through T coalesces with the axis PTand QT a.rQ

in the duplicate ratio of the axes.

311. The perpendicular drawn through any point of a conic

to one of its focal distances and terminated by the conjugate

diameter varies inversely as the principal ordinate of the said

point, and the perpendiculars from the vertices upon the

tangent at any point meet its focal distances upon fixed circles.

312. A parabola of given linear dimensions being drawn

to touch any two conjugate diameters of a conic symmetrically,

find the locus of its focus.

313. The tangent at P meets any two conjugate diameters

in T7

, ,
and TS, tH meet in Q ; prove that the triangles SPT,

BPt, TQt are similar, and also that the area of the triangle

CPT varies inversely as CPt.

314. The two points of a conic at which a given chord

subtends the greatest and least angles are at the extremities

of a diameter equal to that which bisects the chord.*

315. If an ellipse touch a given ellipse at adjacent ex-

tremities A, B of its axes and also pass through its centre,

the tangent at the latter point will be parallel to AB.

316. With the normal and tangent at any point of a conic

as axes a conic is described touching an axis of the former

at its middle point; shew that the foci of the conic so drawn

lie on fixed circles, whose diameters are equal to the sum

and difference of the axes of the given conic.

317. Two fixed points being taken in given parallel lines,

a straight line revolves about each point and meets the opposite

parallel. If the envelope of the line joining the points of

* The chord must subtend equal angles at either point and a consecutive point on
the curve. The two points therefore lie on segments of circles described upon the

chord so as to touch the conic.
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concourse be a conic touching the parallels at the fixed points,

determine the locus of the point in which the revolving lines

intersect.

318. A chord of a circle which subtends a right angle at a

fixed point envelopes a conic whose foci are the fixed point and

the centre of the circle.

319. A straight line being drawn through a fixed point

S to meet a given pair of parallels in Y and Z, shew that the

envelope of the circle on YZ as diameter is a conic, of which

the parallels are directrices and 8 is a focus.

320. On the axis of a hyperbola whose determining ratio

is equal to two a point D is taken at a distance from the focus

S equal to the distance of 8 from the further vertex A', and

A'P is drawn through any point P on the curve to meet the

latus rectum in K. Prove that DK and SP intersect on a

certain fixed circle.

321. The parallelograms whose diagonals are any two

diameters of a conic and their conjugates respectively are

of equal area.

322. If tangents TP and TQ be drawn to an ellipse whose

foci are S and H, and CP and (7(X be the parallel semi-

diameters,

<y= TS.TH*

323. Find the locus of a point such that the tangents there-

from to a central conic contain with the semi-diameters to

their points of contact an area of constant magnitude ;
and the

locus of a point such that the product of its focal distances

varies as the product of the tangents.

324. The distance between any point and any point on

its polar is cut harmonically by the tangents at the extremities

of any chord through either point.f

* We have to shew that the triangle STH' (Art.50,Cor.2)isequaltoP7
7

Q + P'C'Q';
which follows from Ex. 321, taking into account that PCQ = i (PSQ + PHQ).

f In the tractate, De Linearwn Geometricarum Proprietatibus Generalibus, forming
the Appendix to A Treatise on Algebra, $c., by COLIK MACLAUKIX, late Professor of
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325. If and Pbe any two points in the plane of a conic

whose centre is
(7,

the perpendiculars from and C to the

polar of P are to one another as the perpendiculars from P
and C to the polar of 0.

326. If two conies be concentric and similarly situated, the

pole of any tangent to the one with respect to the other will

trace a concentric conic
;
and if the two conies be also similar

the third will be similar to both. If the axes of the two be

identical, the pole of any tangent to the one with respect to

the other will lie on the former.

327. Find a point which has the same polar, and a line

which has the same pole, with respect to three conies, whereof

one has double contact with the other two.

328. An ellipse has double contact with each of two

circles, whereof one lies within the other. Shew that its

chords of contact with them meet in a fixed point on the line

joining their centres
;
the locus of its centre is a circle passing

through their centres
;

its eccentricity is constant
;
and the locus

of its foci is a circle concentric with the outer given circle.

329. Any diameter of an ellipse varies inversely as the per-

pendicular focal chord of its auxiliary circle.

330. If a parallelogram circumscribing a conic have two

of its angular points on the directrices, the other two will lie on

the auxiliary circle.

331. If two parallelograms be constructed, the one by join-

ing the ends of two parallel focal chords of a conic, and the

other by drawing tangents to it at those points ;
the area of the

Mathematics in the University of Edinburgh (LONDON, 1779), it is shewn (Sect. i.

9-11. Cf. Salmon's Higher Plane Curves, Art. 60), that if a straight line revolving
about a fixed point P meet a curve of the nth order in n points, and the tangents at

those points meet any assumed straight line through P in K, L, M, &c., then will

p-g.
+

-p^
-f -n + &c. the constant

; jind if the assumed line through P meet the

curve, viz. in the n points A, B, C, (fee., this constant will be equal to -. + =- + -~^,f A Jj f
+ Ac. In the particular case of Ex. 324, it is evident that the point P, its polar, and
the tangents at the extremities of any chord through P divide any straight line from
P harmonically.

K
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one will vary directly, and that of the other inversely, as the

projection of one of the focal chords upon the conjugate axis.

332. If $Y, HZ be the focal perpendiculars upon the tan-

gent at P to an ellipse, and SY', HZ
f

perpendiculars upon the

tangents from P to a confocal ellipse, then will the rectangle

YY'.ZZ' be equal to the difference of the squares of their

major (or minor) semi-axes.

333. Determine the condition that the intercept on any

tangent to a bifocal conic by two fixed tangents may subtend

equal angles at the foci.

334. The tangents to a conic from any point on a circle

through its foci meet the circle again in two points such that

the second tangents therefrom intersect upon the circle.

335. Given an ellipse and a circle through its foci
; prove

that their common tangents touch the circle in points lying

upon the tangent to the ellipse at an extremity of its conjugate

axis.

336. If the tangent to a conic at a given point be met by

any two parallel tangents, the focal distances of the points of

concourse will meet on a fixed circle, whose centre will be on

the normal at the given point.

337. The product of the tangents to a conic from any point

is to the product of its focal distances as the distances of the

point from the centres of the chord of contact and of the conic

respectively. If the tangents from any point to a conic be

in a constant ratio to the parallel diameters, determine the locus

of the point.

338. Given an ellipse and one of its "cercles directeurs,"*

shew that an infinity of triangles can be described about the

one and inscribed in the other, and that all will have the same

orthocentre.

339. An ellipse may be described by means of an endless

string passing round two fixed points. If one focus be taken

* See the second paragraph of Scholium B (p. 90) and compare Ex. 225.
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anywhere on a given straight line whilst the other remains

constantly fixed, the envelope of all the ellipses described with

a given string will consist of two arcs of parabolas.

340. Shew that the line joining any point outside a conic

to its centre, and the radical axis of a pair of circles through the

point, ythe one passing through the points of contact of the

tangents from the point, and the other passing through the

foci, are equally inclined to the focal distances of the point.

341. If a normal to a conic meet the curve again in Q and

the directrices in R, R'
;
and if be the pole of the chord and

S, S' the foci
; prove that SR, OR' and S'R, OR intersect on

the normal at Q. In the case of the parabola, any normal

chord produced to meet the directrix subtends a right angle
at the pole of the chord

;
and the polar of the middle point of

the chord meets the focal vector to its point of concourse with

the directrix upon the normal at its further extremity.

342. At any point P on the auxiliary circle of an ellipse a

tangent is drawn meeting the axis in T, and PA, PA are drawn

to the vertices meeting the ellipse again in D and E] prove
that the chord DE passes through T.

343. The polar of any point with respect to a conic and

the perpendicular to it from meet either axis in points T
and G such that

CG.CT=CS\*

344. If a point be taken anywhere on a fixed perpendicular

to either axis of a conic, the perpendicular from it to its polar

will pass through a fixed point on that axis.

345. If perpendiculars SY, HZ, CM, PN be drawn to the

polar of any point P, and if PN meet the axis in G, shew that

SY.BZ=CM.NG; CM.PG=CB*; and that the normal at

a point on the curve which has the same central abscissa as P
is a mean proportional to NG and PG.

*
Comparing Ex. 281 (note), CG : CS = CO : CV = CS : CT.

K2
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346. The poles of a given straight line with respect to a

series of confocal conies lie upon a second straight line perpen-
dicular to the former. Hence shew that if a chord of one conic

touch another conic having the same foci, the tangents at its

extremities will meet on the normal at its point of contact, and

conversely the foot of the perpendicular from their intersection

to the chord will be its point of contact.

347. If a triangle inscribed in a conic envelope a confocal,

its points of contact will lie severally on three of the four circles

which touch the sides of the triangle.

348. If a chord of an ellipse be drawn touching a confocal

ellipse, the tangents at its extremities meet the diameter parallel

to the chord on the circumference of a fixed circle, and the

intercept on the chord by the diameter parallel to either tangent
is of constant length ;* the chord varies as the parallel focal

chord of the outer ellipse, and conversely a chord which so

varies envelopes a confocal; the projection upon the chord of

the normal (terminated by either axis) at an extremity thereof

is of constant length ;
if any circle touch a given ellipse in two

points, the chords which can be drawn to the circle from either

point of contact so as to touch a fixed confocal are of constant

length, and conversely the envelope of a chord of constant

length drawn to the circle from either point of contact is a

confocal ellipse. Examine the case in which the minor axis of

the inner ellipse is evanescent.

349. If the arms of a right angle envelope two confocal

ellipses the line joining the points of contact will envelope a

third ellipse confocal with the former two
;
and if two parallel

positions of each arm be taken, the perimeter of the parallelo-

gram formed by joining the points of contact will be constant,

* If a, b and a', b' be the semi-axes of the outer and inner ellipses and

X1 = a* - a'2 = 6J b'2
,
the intercept on the chord is

;
the projections upon it of

A

the normals are and -r- ;
and its length in terms of the parallel focal chordfis -~-

.

See the Oxford, Cambridge, and Dtiblin ^fe&tenger of Mathematics, vol. IT. pp. ll--_>2

(1868), in which article several of the examples following are likewise solved.
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and each pair of its adjacent sides will make equal angles with

the tangent at their point of concourse.

350. An ellipse which has double contact with each of two

fixed confocals has a fixed director circle
;
and an ellipse which

has double contact with one of two fixed confocal ellipses, and

has its foci at the ends of any diameter of the other, has a

fixed auxiliary circle.

351. Four tangents being drawn to a conic, if one pair of

their points of intersection lie on a confocal each of the

remaining two pairs will lie on a confocal. If TP and TQ
be a pair of tangents to a conic, and tangents be drawn from

P and Q to a confocal and intersect in points S and 77, then TP
and TQ subtend equal or supplementary angles at S and 7J;

the four tangents from P and Q touch one and the same circle
;

and

SPHP=SQHQ*
352. Given two confocal ellipses, shew that the latus rectum

of any ellipse which has its foci on the inner fixed ellipse and

touches the outer is of constant length.f

353. The locus of the centre of a conic which has four-point

contact with a given conic at a given point is a straight line

through the centre of the fixed conic.

354. Prove Graves' Theorem, that the sum of the tangents
from any point on an ellipse to a fixed confocal ellipse exceeds

the intercepted arc of the latter by a constant quantity.}: Prove

also that the difference of the tangents to an ellipse from any

point on a confocal hyperbola is equal to the difference of the

segments into which the intercepted arc of the ellipse is divided

by the hyperbola.

* See the article referred to in the note on Ex. 348.

2\3
t With the notation used above, its length is T .

ao

J See Salmon's Conic Sections, Art. 399. The theorem may also be deduced from
Ex. 351 as hi the article referred to in the note. Adding the perimeter of the inner

ellipse, we see that the outer confocal may be described with the help of a loop of

string placed round the inner curve, a construction which becomes equivalent to that

of the note on Art. 48 when the inner ellipse reduces (by the evanescence of its minor

axis) to the line joining its foci.
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355. If three ellipses be described as in Ex. 352, having
their six foci at three points on the inner confocal, the sum

of the areas of their minor auxiliary circles will be constant.

Moreover, if any number of ellipses be described with the same

number of points on a given ellipse as foci (every such point

being a focus of two of them), and if the several ellipses touch

as many fixed coufocals, the areas of their minor auxiliary

circles will be connected by a linear relation.*

356. If every vertex but one of a polygon circumscribing a

conic trace a confocal conic, its remaining vertex will likewise

trace a confocal, and the perimeter of the polygon will be

constant.

357. If two points trace an ellipse (in the same direction)

with velocities which are always as the focal chords parallel

to the tangents at those points, the tangents will intersect on

a fixed confocal ellipse, and their angular velocities about their

points of contact will be as the central perpendiculars upon them.

358. If a parallelogram can be inscribed in an ellipse whose

semi-axes are A and B so as to envelope a coaxal ellipse whose

semi-axes are a and b,

359. If a single quadrilateral can be described about one

of two given conies and inscribed in the other, any number of

quadrilaterals can be so described, and they will have one

diagonal in common.f

360. If the normal at any point P to an ellipse meet the

two perpendicular tangents to a confocal ellipse in K and
Z/,

shew that PK.PL is constant and equal to the difference of the

squares of their major or minor semi-axes.

* If ft be the minor semi-axis of one of the variable ellipses and <j>
the arc joining

ita foci, then /3
1 = c (<f> + c

7

), where e and c' are certain constants (Exx. 352, 354).

f The quadrilateral and its circumscribing conic can be projected into a rectangle
and a circle, which latter mast be the director circle of the projection of the inscribed

conic. See also Ex. 382,
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361. If from the intersections of any two parallel tangents
to an ellipse with the tangent at a fixed point four tangents be

drawn to a given confocal ellipse, the four intersections of the

latter will lie on a certain circle having its centre on the normal

at the fixed point ;
and the radius of the circle and the intercept

made by its centre upon the normal will vary as the perpen-
dicular diameter of the outer conic.*

362. If a tangent to a conic (or other curve) cuts off a

constant area from another, it will be bisected at its point of

contact, and conversely.f

363. A central conic which passes through four given points
has a pair of conjugate diameters parallel to the axes of the two

parabolas which can be drawn through the same four points.^

364. Give a construction for finding a point P such that

if straight lines PQ, PR, PS, PT be drawn from it to meet four

given straight lines AB, CD, AC, BD at given angles, the

rectangle PQ.PR may be in a specified ratio to PS.PT. Hence

shew how to draw the tangent at any given point on the locus

of P; and determine a pair of conjugate diameters of the same.

365. If a parallelogram ASPQ has its opposite vertices A
and P on a conic, and its sides AQ, AS meet the curve in

* The four tangents in any assumed position will intersect on a circle (Art. 50) .

Any other quadrilateral inscribed in the same circle so as to envelope the inner

ellipse will have the intersections of its opposite sides at points P and Q on the

fixed tangent (Ex. 359) ;
and it may be shewn conversely that the second tangents

from P and Q to the outer ellipse are parallel. Making one of the parallel tangents

coincide with the tangent at the fixed point, we see that the centre of the circle

must lie on the normal. Let M now be the intersection of the diagonals of the

quadrilateral, A" the fUed point, CD the semi-diameter conjugate to CN, and p the

;
then (Ex. 348) NO =

"^CD;
MX= ^ CD ; p* - (^ - 1\ CD1

.

See also Mathematical Questions, Qc.from the EDUCATIONAL TIMES, vol. XIII. p. 31.

t See SALMON'S Conic Sections, Art. 396.

J Let TP, TQ be tangents to an ellipse, and OAB, OCD chords parallel to

TP, TQ. Determine a diameter of each of the two parabolas through A, B, C, D
(Ex. 184) ;

then it is easily seen that PQ and the diameter through T in the ellipse

are parallel to the diameters of the parabolas.

See NEWTON'S Principia, Lib. I. sect. v. lemma 19. The next ten examples
are mostly solved in the same Section, which will repay a careful study. See also

Book II. of Leslie's Geometry of Curve Lines.

radius of the circle



136 EXAMPLES.

B and (7; the straight lines joining any point on the curve to

B and G will meet PS and PQ in points T and R such that PR
varies as PT, and conversely. Hence shew how to draw a

tangent to the conic at any point; and shew how to draw a

conic through five given points, and prove that one conic only
can be so drawn.

366. If two straight lines BM, CM turn about fixed poles
B and C so that their intersection M moves along a fixed

straight line or directrix, and if BD and CD be drawn at given

angles to BM and CM respectively, the point of concourse D of

the second pair of lines will trace a conic passing through the

poles B) C) and conversely.*

367. By the foregoing construction (or otherwise) determine

any number of points on a conic passing through five given

points.f

368. Describe a conic passing through four points, three

points, two points, or one point, and likewise touching one, two,

three, or four straight lines respectively. Examine the cases in

which two or more of the given points or lines coalesce.

* For distinctness of conception let the points B, D, A, P in the following solution

be supposed to lie (in the order specified) on one branch of a hyperbola and C on

the other branch, as in NEWTON'S figure (lemma 21). Now when the moving point

M has an assumed position N on the directrix let P be the corresponding fixed point

on the locus of D. Draw BDT, CDR through any other position of D, and make

the angle BPT equal to BNM and CPR equal to CNM
;
then it may be shewn

that PT : NM = PB : NB, and PS : NM= PC : NO. Hence PT varies as PR,
and therefore by the preceding lemma (Ex. 365) as NBWTON abruptly concludes

the locus of D is a conic through the points B, C, P. The last step (see Le Sueur

and Jacquier's edition of the Principle!,) is explained as follows : when NM becomes

infinite, let D assume the position A
;
then it may be proved that BA is parallel

to PT and CA to PR. Let PT, CA meet in S and PR, BA in Q. Then ASPQ
is the parallelogram of Ex. 365, and PThas been shewn to vary as PR.

f Still using the same figure, let A, B, C, P, D be the given points. Take ABC
and ACB as the given angles which are to rotate about B and C as poles. The

other two points P and D enable us to determine two points M and N on the

directrix, and the whole curve can then be described. Or again, if A, B, C, D, E
be five points on a conic, let AC, BE meet in F, and draw from D a parallel to

CA to meet BE in G
;
then to determine the point H in which the parallel meets

the curve again, we have DG.GH : EG. GH = AF.FC : BF.FE. The diameter

bisecting the parallels can now be drawn, and in like manner a second diameter

eun be determined. Hence the centre is known, &c.
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369. If AFP, BQG be the tangents to a conic at the ends

of a diameter AB, and FG and PQ be tangents to the same and

intersect in 0, shew that

AF: BQ = FP: GQ = FO : OG,
and that PG, FQ, AB cointersect.

370. If in a parallelogram LMIK any conic be inscribed

touching the sides ML, IK, KL, IM in A, B, C, D, any fifth

tangent to the conic will meet those sides in points F, Q, H, E
such that

and KH:KL = AM : MF.

371. If the inscribed conic in the preceding example be fixed,

KQ . ME= KH. MF= a constant.

Moreover, if a sixth tangent be drawn to meet DE in e and IQ
in q, then

KQ : Me = Kq : ME= Qq : Ee.

372. Hence shew that the diagonals of the quadrilateral

EqQe are bisected by one and the same diameter of the conic,

and that the locus of the centre of a conic inscribed in a given

quadrilateral is a straight line bisecting its three diagonals.

373. If IB, ID be the tangents at given points B, D of &

conic, and EQ the intercept made by them on any other tangent

to the same, shew that IE.IQ varies as ED. QB* Hence, if from

two fixed points in a given pair of straight lines any other two

lines be drawn, each to meet the opposite fixed line, shew that if

the straight line joining the points of concourse envelopes a

conic touching the fixed lines at the fixed points, the locus of

the intersection of the variable lines will be a conic satisfying

the same condition, and conversely. Examine the case in which

the fixed lines are parallel.

* By making the sixth tangent in Ex. 371 coincide successively with IE and IB
we deduce that the two rectangles are as MI to MD. When M is at infinity they
become equal (Ex. 183).
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374. Given five tangents to a conic, determine its five points

of contact with them j* and given five points on a conic, deter-

mine the five tangents thereat.

375- Given the centre of a conic and a self-conjugate triangle,

shew how to determine the diameters conjugate to its sides and

to describe the curve. Hence (or otherwise) shew how to

describe a conic touching five given straight lines.

376. Given a tangent to an ellipse, its point of contact, and

the director circle, shew how to construct the ellipse.

377. Two ellipses have a common focus and equal major

axes, and one of them revolves about this focus in its own plane

whilst the other remains fixed : prove that their chord of inter-

section envelopes an ellipse confocal with the fixed ellipse.

378. The condition that a straight line which makes inter-

cepts CB and CD on two fixed straight lines should envelope a

conic touching the fixed lines is of the form

where the ratios of a, 5, c, d are constant. Determine the points

of contact of the envelope with the fixed lines
;
and explain the

result when the intercepts are connected by a relation of

the form

CB.CD = a constant.

* If ABCD be the pentagon formed by the five tangents, the straight line joining

D to (A C, BE) passes through the point of contact of AB, as appears most simply

by supposing two sides of the enveloping hexagon in Brianchon's theorem to coalesce.

When five points are given, the tangents thereat may be drawn and number of points

on the curve may be found with the help of Pascal's hexagon. See Salmon's

Conic Sections, Art. 269.

t Call the straight line bisecting the three diagonals of a quadrilateral its

DIAMETER.. The diameters of any two of the quadrilaterals formed by the five

tangents determine the centre of the conic, and any one of the quadrilaterals gives

a self-conjugate triangle. For another solution, in which the five points of contact

are first found, see LIB. I. Sect. v. of the Principia (prop. 27, prob. 19) ;
and see

Ex. 374 (note), and Besant's Conic Sections treated Geometrically, Art. 229 (1875).

It is evident that the diameters of the five quadrilaterals formed by five straight
lines meet in one point, viz. the centre of the conic touching the five lines.
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379. In order that the envelope in Ex. 378 may be a

parabola the ratio of a to the other constants must vanish.*

Hence shew that the polars of a fixed point with respect to a

series of confocal conies, and likewise the normals appertaining

to the tangents drawn to them from that point, envelope a

parabola touching the axes of the coufocals.

380. If OP and OQ be the tangents from a fixed point

to any conic which has two given points for foci, each of the

corresponding normals is the polar of with respect to a conic

having the same foci
;
and the circle about OPQ passes through

a second fixed point F, such that CF and CO lie on opposite

sides of the transverse axis and make equal angles therewith,

381. A tangent being drawn from an extremity of one axis

of an ellipse to a coaxal ellipse, find the length of its intercept

on the other axis and the ordinate of its point of contact to

either axis.

382. Deduce from Ex. 356 that, if a single w-gon can be

described about a given conic and inscribed in a given confocal,

any number of w-gons can be so described.

383. If a triangle can be circuminscribed to two confocal

ellipses, the straight lines joining the extremities of the axes

of the outer must pass through the intersections of the tangents
at the extremities of the axes of the inner ellipse.f

384. If PQR be a triangle circuminscribed to a pair of con-

focal ellipses and P' be the point of contact of QR, shew that

the confocal hyperbola through P passes through P and the

* The general condition of Ex. 378 is implied in Ex. 373, and the condition that

the envelope may be a parabola is inferred from Ex. 183. In what follows, supposing

h, k to be the coordinates of the fixed point, we see from Ex. 343 (or Ex. 270) that,

if the enveloping line make intercepts CL and CM on the transverse and conjugate

axes, h . CL k . CM CS*
;
and consequently that the envelope is a parabola which

. CS1 CS2

makes intercepts -r and T on the axes.

t The proof may be simplified by considering the special case iu which a side

of the triangle is parallel to an axis of the ellipses. The semi-axes a, b and a', V of

the outer and inner ellipses are connected by the relation 4- r = 1.
a o
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point diametrically opposite thereto, and that if the outer ellipse

be regarded as traced by means of a loop PP'P passed round

the inner, the loop will be bisected at P'.

385. The area of an ellipse is a mean proportional to the

areas of its auxiliary circles.

386. A quadrilateral can be circuminscribed to two confocal

ellipses if the common difference of the areas of their major and

their minor auxiliary circles be equal to the area of the inner

ellipse ;
the locus of the pole of any chord of the outer ellipse

which touches the inner is a circle whose diameter is equal to

the sum of the axes of the latter
;
the tangents to the inner from

any point on the outer ellipse are as the parallel focal chords

of the latter; the chord joining Hie ends of a pair of semi-axes

of the outer touches the inner ellipse and is divided at its point

of contact into segments equal to the semi-axes of the latter.

387. Prove Fagnani's theorem, that a quadrant of an ellipse

can be divided into segments which differ by the difference

of its semi-axes, the greater segment being that which is termi-

nated by the minor axis.*

388. If C be the common centre of an ellipse and a circle

of equal area, P the point in which the circle meets a quadrant

AQPB of the ellipse, and CQ be equal to radius conjugate to

CPj shew that the middle point of the quadrantal arc AB lies

within the arc PQ.

389. If a hexagon can be circuminscribed to two confocal

ellipses, and AP, BQ be the tangents to a quadrant A'B1

of

the inner from the extremities of the semi-axes CA, CB of the

outer ellipse, and F be Fagnani's point of division of the quad-
rantal arc AB, shew that

arc B1

Q - arc A'P= arc BF- arcAF= CA -

* The point of contact last mentioned (Ex. 386) divides the inner ellipse in the

manner specified. For another geometrical proof see Salmon's Conic Sections, Art. 400.

t If \ = CA9 - CA'* -CB1 - CB"1,
and if the tangent at B' meet the outer

ellipse in 0, it may be shewn that L= + ; BO- CA - X
;
OP-\

;
AO- CJ.ic.
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390. Any circle through the focus S and the further vertex

A' of a hyperbola whose eccentricity is two meets the curve

in three points P, Q, R which determine an equilateral triangle,*

and conversely the circumscribing circle of any equilateral

triangle inscribed in a hyperbola whose eccentricity is two passes

through a focus and the further vertex
;
the focal vectors SP,

SQj SR meet the curve in three other points which likewise

determine an equilateral triangle ;
if P be any point on the

/S-branch of the curve the angle A'SP is double of the angle

SAP, and if Q be any point on the opposite branch the supple-

ment of A'SQ is double of the supplement of SA'Q] any chord

through S subtends a right angle at A'
;
the equilateral triangle

PQR envelopes a fixed parabola having S and the ^-directrix

for focus and directrix
;
the tangents to the hyperbola at P, Q, R

form a triangle P'Q'R' inscribed in a fixed hyperbola of eccen-

tricity four; the tangents to the latter at P', Q', R' form a

triangle inscribed in a fixed hyperbola of eccentricity eight, and

so on continually.

* This hyperbola whose directrix bisects SA' is one of the TRISECTORS (Ex. 308)
of any circular arc whereof A'S is the chord

;
and the meaning of the remarkable

property that PQR is an equilateral triangle is that the problem of bisecting a given

angle a admits of the three dittlnct solutions Ja, J (2ir + a). Since the solution must in

any case be threefold, it is evident a priori that it cannot be effected by means of a

straight line and circle, which can intersect in two points only. All this is fully

pointed out by BoscovicH in his Sectionum Conicarum Elementa, 274279.
NEWTON shewed (Arithmetics I'liirersnlix, prob. 36) that the locus of the vertex of

a triangle on a given base and having one base angle differing from twice the other

by a constant angle is a cubic curve, which reduces to the hyperbola in question when
the constant angle vanishes

;
and he remarked that (P being a point on the ^-branch)

the angle at A' in the triangle A'SP is equal to ONE THIRD of the exterior angle at P.

NOTE.

The undermentioned Examples and others are solved wholly or
in part in vols. i-xxix of Mathematical Quettions with their Solutions

from the EDUCATIONAL TiMBe (London, 1864 78) :

Ex. 79 (vol. xxn.); 174, 222, 226 (i.); 324 (xxii.) ;
328 (n.)j

331,332(111.); 334 (xn.); 336(xm.); 338 (xxi.); 339, 340 (xxn.) ;

341 (xxvi.); 347, 348 (iv.); 361 (xm.).
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CHAPTER V.

THE ASYMPTOTES.

53. THE Asymptotes of a hyperbola are two diameters

equally inclined to the axis and such that, if E be any point

on either of them and CN its central abscissa, then

EN: CN=C:CA-,
in other words, the asymptotes are the diagonals of a certain

rectangle which is determined by the two axes of the hyperbola.
If any two conjugate diameters meet EN and its prolongation

in L and J/, it follows from Art. 44
fc
and the above relation that

NL.NM: CN* = CB* : CA* = EN* : CN*;

and hence that in the limiting case in which the diameter CL
coalesces with an asymptote CE its conjugate CM coalesces

with the same, or an asymptote may be regarded as a diameter

conjugate to itself.

Two hyperbolas are said to be conjugate when the tranverse

axis of each is coincident with the conjugate axis of the other;

thus, the transverse and conjugate axis of a hyperbola being
AA and BB', those of the Conjugate Hyperbola will be BB'

and AA. It is evident that a pair of conjugate hyperbolas

have the same asymptotes but lie on opposite sides thereof.

54. Limiting positions of Tangents.

The asymptotes are so called because, being produced, they

continually approximate to the curve (Art. 56) but without

actually meeting it until produced infinitely. We shall shew

that such lines may be regarded as tangents whose points of
contact are at infinity.

The tangent at any point P meets the axis in a point T such

that CT varies inversely as CN the abscissa of P (Art. 39)

and therefore vanishes when CN is infinite. To determine the
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position of a pair of tangents which pass through the centre

of the hyperbola, draw the tangents from S to the Auxiliary

Circle (Art. 6), and draw the diameters through the points in

which they meet the ^-directrix. The points in question will

lie on the circle, since the diameter AA' of the circle is divided

harmonically at 8 and X, and the directrix is therefore the

polar of S with respect to the circle. The tangents to a

hyperbola from its centre are therefore those diameters which

pass through the intersections of the directrices with the Auxiliary
Circle.

It is easily seen that the said diameters possess the property

ENiCN=CB:CA,
and {ire therefore identical with the asymptotes.

It is likewise evident that they possess the property,

- C- V GN^6E= CS:CA = the eccentricity ;

and hence that all hyperbolas which have the same (or parallel)

asymptotes and lie on the same sides thereof are SIMILAR

conies; and the asymptotes themselves taken together are the

limiting form to which the curve tends when its axes are
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diminished indefinitely, and they may be regarded as constituting

a similar hyperbola*
The hyperbola may be called Acute or Obtuse according

as the interior angle between its asymptotes is less or greater

than a right angle; that is to say, according as its conjugate

axis is less or greater than its transverse axis. In the in-

termediate case, when they are equal, it is called Rectangular.

It is easily seen that any two tangents to the same branch

of the hyperbola intersect within the interior angle between

the asymptotes and themselves contain a greater angle ;
and

likewise that any two tangents to opposite branches contain an

angle less than the exterior angle between the asymptotes;
and hence that an obtuse hyperbola can have no real tangents

at right angles.

55. A construction for the Normal.

If P be a point on the curve whose ordinate to either axis

meets the nearer asymptote in E, and if the normal at P meet

the axis in r, then (Art. 43, Cor.) in the case of the transverse

axis,
CN.NG : CN* = CB* : CA* = EN* : Off1

;

and therefore CN.NG is equal to EN* and the angle CEG is a

right angle, as may be shewn likewise for the case of the conju-

gate axis. Hence the following construction for the normal

at a given point P:

Let the ordinate ofP to eitlier axis meet the nearer asymptote

in Ej and through E draw a perpendicular to CE to meet the

same axis in G ; then will PG be the normal at P.

When ON is infinite the normal itself coincides with EG and

is perpendicular to the asymptote.

* Notice in Art. 38 that when SY touches the cirtle its diameter through Y
should be the tangent to the hyperbola ;

and also that in this case SY = CB = HZ
Moreover (Art. 14, Cor. 1) the diameter conjugate to Coo must' be parallel to the

tangent at ao, and must therefore coalesce with C oe itself. The HYPERBOLA is

distinguished aa the conic which has a pair of tangents whose points of contact are

at infinity and whose chord of contact is therefore the Straight Line at Infinity

(Art. 17, Cor. 2) ; and the PARABOLA is distinguished as the conic to which the

line at infinity is a tangent, since (Art. 27) SY 1 = SA . SP = SA . ST, and therefore

when SP becomes infinite the tangent TY is removed wholly to infinity.
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PROPOSITION I.
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56. If a parallel to either axis of a hyperbola be drawn

through any point on the curve to meet the asymptotes, the product

of its segments between the point and the asymptotes will be equal

to the square of the semi-axis to which it is parallel.

First let a principal double ordinate PF be produced to

meet the asymptotes in E and E'
^

then will PE.PE' or

P'E.P'E' be equal to GB\
For by Art. 33 and by a property of the asymptotes, if PP'

meet the transverse axis in N
t

PN> + Off : CN*=CB* : CA* = EN* : CN*,

or

and therefore

PE.PE' = P'E.P'E' = EN* ~

In like manner it may be shewn that CA is a mean pro-

portional to the segments Pe and Pe of a straight line drawn

through P parallel to the transverse axis to meet the asymptotes.
Hence it appears that the distance of P (or P') from the

nearer asymptote varies inversely as its distance from the

L
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other, and when the latter distance is increased indefinitely

the former is diminished indefinitely; the curve therefore as

it branches out continually approximates to its asymptotes,

but without actually meeting them at any finite distance from

the centre.

It is easy to shew by a reductio ad absurdum that no

diameter other than CE or CE1

have the above property,

or in other words, that the hyperbola cannot have more than

two asymptotes.

x Corollary.

If PO be drawn parallel to one asymptote E'C to meet

the other asymptote EC, then will PO vary as PE and CO
asPE', and therefore PO.CO (fig. Art. 60) will be constant;

and it may be shewn by taking P at the vertex that it is

equal to
'
or i (CA*+ CB*}.

PROPOSITION II.

57. The intercepts on any tangent to a hyperbola between

the curve and its asymptotes are equal to one another and to

the parallel semi-diameter ; and the opposite intercepts on any
chord between the curve and its asymptotes are equal to one

another.*

(i)
Let the tangent at P, supposed parallel to the semi-

diameter CD, meet any two conjugate diameters in L and L'
;

then by Art. 47

PL. PL' = CD*.

Hence in the case in which L' coalesces with L and CL
therefore becomes an asymptote, PU is equal to CD*

;
and in

like manner, if the same tangent meet the other asymptote in M,
PM8

is equal to CD\

Therefore PL = PM=CD.

* The hyperbola and its Asymptotes being similar conies (Art. 54), the above is

a special case of Ex. 50. The latter follows at once from Art. 14 since, when
the direction of CX and the magnitude of CS : CX are given, if the direction of CV
be assumed that of SV (which is perpendicular to the ordinates of CV) is determined.

It is evident that a pair of conjugate hyperbolas also make equal intercepts

QQ', qif on anyhord.
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(ii)
Next let Qq be any chord of the hyperbola meeting the

asymptotes in R, r, and let LPM be one of the tangents to

which it is parallel.

Then the diameter CP bisects the chord Qq t
and from above

it is evident that it likewise bisects Rr
;
whence it follows that

QR =
qr, and Qr = qR.

PROPOSITION III.

58. The product of the segments into which any chord of the

asymptotes is divided by either of the points in which it meets the

curve is equal to the square of the parallel radius.

(i) Using the same construction as in Prop, n., let F be the

middle point of the chord Qq. Then by Art. 34 and by parallels

(first taking the case in which Q and q lie on the same branch

of the curve),

QV+CD* : CV* = C1? : CP* =PU : OP"

or

Hence RQ. Qr = Rq.qr = RV*- QV*=CD*,
or CD is a mean proportional to RQ and Qr^ and to Rq and qr.

The above proof may be adapted to the case in which Q^ q

*
Conversely, if this relation be assumed the point R must always lie on one

of two straight lines which continually approach the curve, that is to say, on one
of the asymptotes.

L2
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lie on opposite branches of the hyperbola by writing CP* for

CD* and - CD1
for CP".

(ii)
These results may also be deduced as follows from

Prop. i.

From any point Q on the curve draw QRR in any given
direction to meet the asymptotes, and draw QEE' parallel to

the transverse or the conjugate axis to meet the same. Then

QR varies as QE and QR' as QE', and therefore, QE. QE'

being constant, QR. QR' is likewise constant.

Supposing RR to become a diameter or a tangent, according
as its direction cuts both branches of the curve or one only,

we see that QR. QR' is equal to the square of the parallel

semi-diameter or of the intercept on the tangent between the

curve and either asymptote.

Corollary 1.

If the tangent at P meet the asymptotes in L, M (fig.

Art. 60), and if be the middle point of CZ/, and OP be there-

fore parallel to CM, then (Prop. I. Cor.) -; (v> Vo & * C

CL.CM=2C0.2PO= C';
and therefore the area LCM is constant, that is to say, the area

of the triangle bounded by the asymptotes and any tangent is of
constant area, and it is equal to CA . CB. It is otherwise evident

that the triangle in question is one-fourth of the conjugate cir-

cumscribing parallelogram (Art. 46).

Corollary 2.

Moreover, if PK be drawn perpendicular to CZ-,
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where OK varies directly as OP and therefore inversely as CO.
Hence another proof that the difference of the squares on two

conjugate diameters is constant (Art. 45).

Corollary 3.

So long as the chord RQr is drawn in a specified direction

Qr varies inversely as QR. If the chord be taken constantly

parallel to the asymptote CM, so that the point r recedes to co
,

it follows that $00 varies inversely as QR, or directly as CR]
and moreover, that if QO be any finite portion of the chord,

then 0co likewise varies as CR, and the rectangle QO.Oco
varies as CR.QO. If YOZ be a chord drawn in any other

specified direction and meeting the chord parallel to the asymp-
tote in 0, then (Art. 16, Cor. 1) OY.OZ varies as $0.0oo, or

as CR.QO', and in the special casein which Q oo is a fixed

chord Y. OZ varies as the length Q 0.

SCHOLIUM A.

If the hyperbola be defined as the locus of a point P such that

if be its projection upon one of two fixed straight lines CL, CU
(the asymptotes) by a straight line parallel to the other, CO.PO = a
constant c

1

,
we may proceed to investigate the properties of the

curve as follows.

If LM be drawn in a specifitd direction through any position of
the tracing point P, it is evident that PL . PJf is constant, and also

that in the case in which LM becomes a tangent it is bisected at its

point of contact P. In this case CL. CM= 2 C0.2PO = 4c2
, and the

triangle CLM is of constant area. It may now be shewn that (with
the notation of Art. 57) QR = qr; CP bisects Qq and all other

chords parallel to the tangent at P; QF2 varies as CV*-CP-; and
that the difference of the squares of any two conjugate diameters is

constant (Art. 58, Cor. 2).
A straight line parallel to either'asymptote CM meets the curve

in one point only, since (figure of Art. 60) if CO be supposed
constant, CO . PO vanishes when P is at 0, and increases con-

tinuously up to oo as P recedes from 0, and is therefore equal
to c

2
for one position of P only. Hence at any point P between

the curve and its asymptotes CO.PO is less than c*. Moreover,
for any assumed positiun of the intercept LM it is evident that
PL.PM is a maximum, and therefore PO CO is a maximum, when
PL - PM. Hence at the point of concourse P' of any two tangents
to the same branch of the curve P'O CO is less than <r, and
P' therefore lies between the curve and its asymptotes, or the curve
is convex to its asymptotes.
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Lastly, if the hyperbola be regarded as the envelope of a

straight line LM which contains a triangle of constant area with

two fixed straight lines CL and CJ/", it may be shewn by the

following method (which applies also to Ex. 362) that LM is

bisected at its point of contact. If P be the point of concourse

of the tangent line in any two positions LM, L'M', the areas LPL'
and MPM' are equal, and PL.PL' = PM.PM' ;

and therefore in the

case in which L'M' and LM coalesce, PL* = PM*, or LM is

bisected at the point P of the envelope. The hyperbola may also

be regarded as a special case of the envelope in Ex. 378, which
d ~ d

makes intercepts -j- and upon the fixed tangents, and therefore
o t

touches them at infinity when 5 and c vanish.

PROPOSITION IV.

59. Any tangent and its normal meet the asymptotes and the

axes respectively in four points lying on a circle which passes

through the centre of the hyperbola.

The circle whose diameter is the intercept Og made by the

axes on any normal passes through the centre, since the angle

gCG is a right angle.

Let this circle meet the asymptotes in L, M, and let LM
meet Gg in P. From any point E in CL draw EN perpen-
dicular to CG.

Then LECN= GCM= GLP, in the same segment,

and L CEN= ECg LGP^ in the same segment;
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and therefore the triangles CNE, LPG are similar, so that the

angle at P is a right angle, and

PG : PL = EN: CN= CB : CA.

Similarly PL:Pg=CBi CA.

Hence PGiPg=CB': CA\
or P is the point at which Gg is normal to the curve (Art. 52,

Cor. 2) ;
and LM, which is at right angles to Gg, is the tangent

at P.

Corollary.

From this construction it appears again the tangent LM
is bisected at its point of contact

;
and that

PG : CD=CD:Pg=CB: CA,

where CD is the semi-diameter parallel to the tangent.

PROPOSITION V.

60. The diameters of a hyperbola being regarded as terminated

at the points in which they meet the curve or its conjugate,

any two conjugate diameters are the diagonals of a parallelogram
whose sides are parallel to and are bisected by the asymptotes,
the tangents at their extremities meet on the asymptotes, and the

difference of their squares is constant.

(i)
From a point L on either asymptote of a pair of

conjugate hyperbolas let a tangent be drawn to each, the one

tangent meeting its curve in P and the second asymptote in M,
and the other meeting its curve in D and the second asymptote
in M'. Then will CP, CD be conjugate semi-diameters, and

PD will be parallel to MM', and will be bisected at the point

in which it meets CL.

For since (Art. 57) the tangent LM is bisected at P, and

LM' at D, therefore PD is parallel to the asymptote MM', und

it also bisects CL. ^

Moreover (Art. 56, Cor.),

PO. CO = i(CA
9 + CB1

}
= DO. CO,

or PO is equal to DO', that is to say, PD is bisected by the

asymptote CL. But PD likewise bisects CL, and therefore CD
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is parallel to the tangent at P and is conjugate to CP. And
if the parallel tangents touch the curves in P and J7, as in

the diagram, the one will evidently pass through M' and the

other through M ;
and P'D will likewise be parallel to one

asymptote and bisected by the other.

(ii) Lastly, if PN be the ordinate of P to the transverse

axis, and if it meet CL in Q, it is easily seen that Q = OP.

And in like manner the ordinate DR to the conjugate axis

meets CL in a point Q such that OQ'=OD= 0P= OQ] that

is to say, it meets it in the same point Q.

and C<$-CI?=. QR*-DR* = CA';

and therefore CP* -CD* = CA* - CB\

Corollary.

To describe a pair of conjugate hyperbolas with given

straight lines CP and CD as conjugate semi-diameters : draw

CO to the middle point of DP and draw CM parallel to DP\
then will CM and CO be the asymptotes, and the axes will

be the bisectors of the angles between them, and the foci will

be the points in which the axes are cut by a circle whose radius

CS is a mean proportional to PO and 2 CO.
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SCHOLIUM B.

CONJUGATE HYPERBOLAS are by no means to be regarded as

organically related and together making up one continuous curve;
but the one is a sort of auxiliary curve to the other, as the circle on
its major axis is, for example, to the Ellipse.

(i) The two branches of a single hyperbola are to be regarded
as constituting one continuous curve as was pointed out on p. 10,
and as may be further illustrated in the following way. Let the

hyperbola be considered to be traced by the extremity P of a focal

vector SP (see fig. p. 145) moving lound in the direction of the
hands of a watch from the initial position SA. As SP turns

through an infinitesimal angle its extremity passes to a consecutive

point on the curve, till at length by the continuous rotation of the
focal vector the point P recedes to infinity, SP having become

parallel to the asymptote CE: it then passes instantaneously to

the opposite position at infinity, that is to say (SP revolving
gradually as before) the point P passes at once from the extremity
of the line CE oo to the extremity of the line EC oo : at this

infinitely distant point the curve crosses its asymptote, and P
proceeds to trace the opposite branch in the direction p'A', and
so forth. The two infinitely distant extremities of an asymptote
or of any straight line may therefore be regarded as consecutive

points, which likewise results from considering any straight line

as (1) a circle of infinite radius in its own plane, or (2) as one of
the great circles of a sphere whose radius has become infinite.

Carrying on the latter illustration, we see that (since the length
of a great circle on any sphere is constant) any finite straight line

in a given plane together with its complement (p. 77) may be

regarded as making up a constant infinite length ;
as was implicitly

assumed in Chap. iv. Scholium C (p. 102), for if the bifocal pro-
perty of the hyperbola,

ffP-SP=AA',
be equivalent to -2"co P + SP = A<x> A',

then

(ii) It may be useful at this stage to give a conspectus of the
several ways of viewing those diameters of the hyperbola which
are not geometrically terminated by the curve.

a. By introducing the conception of imaginary points we may
treat the hyperbola as a quasi-ellipse, and ignore the distinction

between intersecting and non-intersecting diameters of the curve.

b. If we assign certain real magnitudes to the non-intersecting
diameters (Art. 34) arbitrarily, indeed, but in accordance with a

partial analogy we may then proceed to shew (Art. 57) that any
such diameter is equal to the intercept on the parallel tangent
made by the asymptotes, and may prove as in Art. 58, Cor. 2 that
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the difference of the squares of any two conjugate diameters is of

constant magnitude.

c. The non-intersecting diameters may also be treated as ter-

minated by the conjugate hyperbola, as in Arts. 45 and 60. The

objection to this mode of treatment is that it not only proceeds

upon an artificial analogy but tends to obscure the fact of the

essential continuity and oneness of the two branches of the

hyperbola.

d. Another method very simple in practice, but presenting
of course the same difficulties at the outset is to start with the

Equilateral Hyperbola (some of the properties of which can be

proved in terms applicable likewise to the circle or Equilateral

Ellipse) and to transfer the results thus obtained to the general

hyperbola by the method of Orthogonal Projection.

(iii) APOLLONIUS, in Lib. i. prop. 14 of his Conies, defines the

two branches of a hyperbola as Opposite Sections ('ArriKEi^vai).
At the end of the same book (prop. 56) he shews, quite indepen-
dently of the asymptotes, how to construct two pairs of opposite
sections with one and the same given pair of conjugate diameters,
and he defines the curves so drawn as Conjugate (Svfvyele). He
afterwards proves in Lib. n. prop. 15 that opposite sections have
the same asymptotes, and in Lib. n. prop. 17 that conjugate
opposite sections have the same asymptotes. The term Conjugate
has also been sometimes applied to the two branches of a single

hyperbola, as for example in prob. 36 of the Arithmetica Universalis,
where the words "conveniant ad conjugatam Hyperbolam" refer

to the further branch.

EXAMPLES.

391. The eccentric circle of any point with respect to a

hyperbola cuts the directrix at two points lying upon radii

which are parallel to the asymptotes. Trace the hyperbola

by the method of Art. 4, shewing that the two points in

which the circle cuts the directrix correspond to the points

at infinity upon the asymptotes, and the segment of the circle

beyond the directrix to the further branch of the hyperbola.

392. The circle described about either focus of a hyperbola
so as to bisect the semi-latus rectum cuts the hyperbola at points

whose focal distances are parallel to the asymptotes; and the

concentric circle which touches the asymptotes has its diameter

equal to the conjugate axis.
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393. Express the eccentricity of a hyperbola as a function

of the angle between its asymptotes. If the eccentricity and

two points on the curve be given, and if one asymptote pass

through a third fixed point in the same straight line with the

former two, the locus of the centre will be a circle.

394. If the abscisses upon either asymptote of any number

of points on a hyperbola be in arithmetical progression, their

ordinates will be in harmouical progression, and conversely.

395. The ordinates to either asymptote of the extremities

of any chord of a hyperbola and the point of contact of a parallel

tangent are proportionals.

396. The intercept made by the directrices of a hyperbola
on either asymptote is equal to the transverse axis.

397. A hyperbola being regarded as the locus of a point

whose distance from a given point is equal to its distance from

a fixed straight line estimated in a given direction, prove that

the given direction is that of an asymptote. Shew also that

the straight line drawn from a focus to the nearer directrix

parallel to an asymptote of a hyperbola is equal to the semi-

latus rectum and is bisected by the curve.

398. The distance of any point on a hyperbola from either

focus is equal to the intercept on either asymptote between the

ordinate of the point and the corresponding directrix. Hence

prove in Art. 60 that if S and H be the foci,

SRHP= CQ*- CA* = CD*.

Also prove that the difference of the distances of the ends of

two conjugate radii of a pair of conjugate hyperbolas from their

nearer foci is equal to the difference of the semi-axes.

399. Every chord drawn to a hyperbola from a fixed point

on one asymptote is divided harmonically by that point and a

fixed parallel to the said asymptote, and is bisected by a fixed

parallel to the other.

400. The tangents at the vertices of a hyperbola meet its

asymptotes on the circumference of the circle of which the

straight line joining the foci is a diameter.
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401. For what position of the tangent to a hyperbola is its

intercept between the asymptotes a minimum ?

402. The tangent to a hyperbola from the intersection of

an asymptote with a directrix touches the curve upon a focal

vector which is parallel to that asymptote.

403. The intercept on any tangent between the asymptotes

subtends at the further focus an angle equal to half the angle

between the asymptotes: it also subtends a constant angle at

the intersection of the corresponding normal with either axis

of the curve.

404. Every chord of a branch of a hyperbola which subtends

at its focus an angle equal to the angle between the asymptotes
touches a certain fixed parabola.

405. Find the relation between the intercepts made by any

tangent to a hyperbola on two fixed straight lines parallel to the

asymptotes.* If OA and OB be two straight lines given in

position and AB the intercept which they make on any tangent

to a fixed conic which touches them, deduce from Ex. 378 that

the locus of the point P which completes the parallelogram

OAPB is a hyperbola whose asymptotes are parallel to OA
and OJSy and examine the case in which the fixed conic is a

hyperbola having its centre at 0. Also find the locus of Q if

A and B be the points of contact of the given lines with any

parabola which likewise touches a third given line.

406. The chords of intersection of any circle with the asymp-
totes of a hyperbola are equally inclined to eitber axis; the

products of the segments of any two intersecting chords of the

asymptotes are as the parallel focal chords
;
and if be any

* If and v be the reciprocals of the intercepts made by a variable straight line

on two fixed axes, the general condition that the variable line should envelope a conic

is that and v shonld be connected by an equation of the second degree. This

system of "
tangential coordinates

"
is fully developed in A Treatise on some Nero

Geometrical Methods (vol. I., 1873) by the late Dr. James Booth, who had also given
an account of his method in a separate tract published thirty years earlier. His

discovery had however been anticipated by Prof. Pliicker of Bonn, whose method

given in CreUe's Journal, vol. vi. pp. 107146 (1830), and dated Oct. 1829, is in reality

identical with the above. See the obituary notice of Dr. Booth in the Monthly Notices

of the Royal Attronomkal Society, vol. XXXlX.pp. 219225 (Feb. 1879).
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point on a chord PQ parallel to the radius CD of the hyperbola,

and Lj J/the points in which it meets the asymptotes, then

OL.OM~OP.OQ=CD\

407. The tangent to a hyperbola at P meets one asymptote
in T and TQ is drawn parallel to the other to meet the curve

in Q ; prove that if PQ meet the asymptotes in L and Jf, the

line LM will be trisected at P and Q.

408. The straight lines joining the points in which any two

tangents to a hyperbola meet the asymptotes are parallel ;
and

the intercepts which the tangents make upon the asymptotes are

bisected by their chord of contact.

409. If one diagonal of a parallelogram whose sides are

parallel to the asymptotes of a hyperbola be a chord of the

curve, the other diagonal will lie upon the conjugate diameter;
and conversely if the three sides of a triangle be taken as

diagonals of three parallelograms whose sides are parallel to

two given straight lines, their other three diagonals will pass

through the centre of a hyperbola which circumscribes the tri-

angle and whose asymptotes are parallel to the given lines.

410. In Art. 39, if CM and CN be the central abscissas of

the points in which the tangent meet the asymptotes, then

CV.CT= CM.CN= CP1
.

411. If the ordinate of a point on the hyperbola to a given
diameter be equal to the conjugate semi-diameter, the product

of the corresponding abscissae will be equal to the square of

half the given diameter.

412. Given the asymptotes of a variable hyperbola and a

line parallel to one of them, if from the point in which it meets

the curve a parallel to the other asymptote be drawn equal

to either of the semi-axes1

,
the locus of its extremity will be

a parabola.

413. If an ellipse and a branch of a confocal hyperbola
intersect in P and Q, the asymptotes of the hyperbola pass

through the points on the auxiliary circle of the ellipse which

correspond to P and Q.
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414. A variable ellipse having its centre on a hyperbola and

touching its asymptotes has in every position the maximum
area: shew that its chord of contact with the asymptotes will

envelope a similar hyperbola having the same asymptotes.

415. A parabola being drawn to touch the axes of a hyper-
bola at an extremity of each, prove that one asymptote is a

diameter of the parabola and that the other is parallel to its

ordinates.

416. If a parallelogram be formed by drawing two pairs of

parallels to the asymptotes of a hyperbola, its sides will meet

the curve at the extremities of two chords which intersect upon
a diagonal of the 'parallelogram ;

and further, if any three

hyperbolas have their asymptotes parallel, three and three, their

three common chords will cointersect.

417. The tangents to an ellipse at P and Q being the

asymptotes of a hyperbola, prove that a pair of their common
chords are parallel to PQ, and that if the tangent to the hyper-
bola at an extremity of one of these chords pass through P the

tangent at its other extremity will pass through Q.

418. With two conjugate diameters of an ellipse as asymp-
totes a pair of conjugate hyperbolas are drawn

; prove that if

one of them touch the ellipse the other will touch
it,

and that

the diameters through the points of contact will be conjugate.

419. If from any point P on a hyperbola whose centre is O
straight lines PM and PN be drawn parallel to and terminated

by the asymptotes, and if an ellipse be drawn having CM and

CN for conjugate radii, the direction conjugate to CP will be

the same in both curves.

420. Given the base of a triangle and the difference of its

base angles, or given the base of a triangle one of whose base

angles is double of the other, it may be shewn that the locus

of the vertex is a hyperbola. Determine the asymptotes and

the eccentricity of each by supposing the vertex of the triangle

to be at infinity.
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421. If tangents be drawn to a hyperbola from any point

on the conjugate hyperbola, their chord of contact will touch

the opposite branch of the latter and be bisected at its point

of contact.

422. The four normals to a hyperbola and its conjugate at

points lying upon a perpendicular to either axis meet one another

upon that axis.

423. Find the locus of the centre of gravity and the locus

of the centre of the circumscribing circle of a triangle of con-

stant area contained by one variable and two fixed straight

lines.

424. A parabola and a hyperbola have a common focus and

the asymptotes of the latter touch the former
; prove that the

tangent at the vertex of the parabola is a directrix of the

hyperbola, and the tangents to the parabola where it meets

the hyperbola pass through the further vertex of the latter.

425. Any two semi-diameters of a hyperbola contain the

same area with the tangent at the extremity of either.

426. The asymptotes and any two conjugate diameters of

a hyperbola divide any straight line harmonically.

427. The chords joining any point on a hyperbola to two

given points on the same intercept a constant length on either

asymptote ;
and the intercepts on a given parallel to an asymp-

tote between the curve and two such chords are in a constant

ratio.

428. If parallels to the asymptotes of a hyperbola be drawn

from any point on the curve, any diameter will meet the

parallels and either branch of the curve in three points whose

central distances are in continued proportion.

429. If any two tangents to a hyperbola and their chord

of contact intersect any parallel to either asymptote, the square
of the intercept on the parallel between the curve and the chord

of contact will be equal to the product of its intercepts between

the curve and the tangents.
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430. On a straight line drawn in a given direction to meet

the three sides of a triangle a point is taken whose distances

from the three sides are in continued proportion ; prove that the

locus of the point is a parabola or a hyperbola touching the

two sides from which the extremes are measured at the extre-

mities of the third side.

431. On a Btraight line drawn through a fixed point C to

intersect two given straight lines a length CD is estimated

a mean proportional to the intercepts between the fixed point

and the two points of section
; prove that the locus of D is

a hyperbola whose asymptotes are the parallels through C to

the fixed lines.

432. A diameter of a parabola and the tangent at its

extremity being taken as the asymptotes of a hyperbola, what

are the magnitudes to which the ordinate and abscissa of their

point of concourse with respect to that diameter are a pair

of mean proportionals? Conversely shew how to find a pair

of mean proportionals to two given magnitudes.

433. The intercept on any parallel to an asymptote of a

hyperbola (or to the axis of a parabola) between any point upon
it and the polar of that point is bisected by the curve.

434. The intercept made upon any straight line through
either vertex of a hyperbola by parallels drawn to the asymp-
totes through the other vertex is bisected at the point in which

the straight line meets the curve again ;
the locus of the middle

point of the intercept made upon any straight line through

a fixed point by two given straight lines is a hyperbola to

whose asymptotes they are parallel ;
and further, if the latter

intercept be cut in any other constant ratio,* the locus of the

point of section will still be a hyperbola. In what case will

the eccentricity of the locus be independent of the ratio in which

this intercept is divided?

435. If Q be a point on a hyperbola and N a point on

the nearer asymptote, and if QE be drawn parallel to that

* See the Arithmetica Universally, prob. 25.
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asymptote to meet the diameter conjugate to QN in E, then will

the area of the quadrilateral CEQN be equal to half the triangle

cut off by any tangent from the asymptotes ;
and if the diameter

parallel to QNmeet QE in F and. QI be drawn in the conjugate
direction to meet the same asymptote in /, the quadrilateral

CIQF-wi\\ have the same constant magnitude.

436. If be any point in a chord QQ' of a hyperbola

parallel to the tangent at P and CE an asymptote meeting that

tangent in E, and if QE and OT be drawn parallel to the

asymptote to meet the diameter which bisects the chord, prove
that

QO.OQ' : PE* = quadrilateral QETO : triangle CEP.

437. If P be any point on a hyperbola and CD be con-

jugate to CP, shew that a pair of straight lines PZ/, PF drawn

parallel to the axes or to any other pair of conjugate diameters

meet CD in points E and F such that

CE.CF^CD*.

438. A parabola which has an asymptote of a hyperbola for

one of its diameters meets the hyperbola in general in three

points such that the ordinates of two of them to that diameter

are together equal to the ordinate of the third.

439. From any point P on a hyperbola a parallel is drawn

to one asymptote to meet the other in M, and an ellipse is

drawn through P and M having its diameter which bisects PM
parallel to the latter asymptote and in a constant ratio to its

conjugate diameter, viz. in the ratio of PE to PJ/, where PE
is a perpendicular to the latter asymptote ; prove that the ellipse

meets the hyperbola again in three points such that the distances

of two of them from the latter asymptote are together equal to

the distance of the third point from the same.*

440. If two ellipses touch a hyperbola and have its asymp-
totes for conjugate diameters, any straight line whose pole with

* For Examples 425, 435 9 and others see De la Hire's Sectionea Conicoe, libb. IV., v.

The references are given in detail in Walton's Problems in illustration of the principles

ofPlane Coordinate Geometry, pp. 276292 (CAMBRIDGE, 1851).

M
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respect to one of them lies on the hyperbola has it pole with

respect to the other on the hyperbola.

441. If ABCD be a convex quadrilateral, and AD be pro-
duced to K and BG to L so that KL may be parallel to AB,
then will DL and CK be parallel to the asymptotes of a certain

hyperbola described about the quadrilateral; and if a.5/9, fiCy,

yDS, BAy. be the sides of a parallelogram and be parallel to

the asymptotes, the straight lines drawn from a, , 7, 5 to

bisect AB, BC, CD, DA respectively will cointersect at the

centre of the hyperbola.

442. If an ellipse pass through the centre and have its

foci on the asymptotes of a hyperbola, and if the hyperbola

passes through the centre of the ellipse, the axes of each curve

are a tangent and normal to the other, and the two axes which

are normals are of equal length.

443. If a diameter be taken at right angles to one asymp-
tote of a hyperbola and parallels be drawn to the other

asymptote from its extremities, any two supplemental chords

from those points will make intercepts whose difference is

constant upon the parallels.

444. The axes of the two parabolas which have a common
focus and pass through two given points are parallel to the

asymptotes of the hyperbola which passes through the common
focus and has the given points for foci.

445. Any circle which touches both branches of a hyper-
bola makes an intercept equal to the transverse axis on either

asymptote; the tangents to it where it meets the asymptotes

pass through one or other of the foci, and those which pass

through the same focus contain a constant angle equal to the

angle between the asymptotes ;
and two of the chords of inter-

section of the circle with the asymptotes are tangents one to

each of two fixed parabolas whose foci are at the foci of the

hyperbola.

446. If two conjugate diameters of a hyperbola be equal,

every two conjugate diameters must be equal and the asymp-
totes must be at right angles.
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447. If two parallel chorda of a conic meet any tangent
to the same in T and

,
and if any straight line meet the

chords in and o and the tangent in L, then

OT: ot=OL:oL.

Hence shew that the ratio of any two infinite parallel chords

of a conic is finite, being a ratio of equality in the case of

the parabola, and being equal to the ratio of the distances

of the chords from the parallel asymptote in the case of the

hyperbola.*

448. From two points and o parallels are drawn to the

asymptotes of a hyperbola, the parallels to one asymptote

meeting the curve in M and m and the parallels to the other

meeting the curve in N and n
;
shew that if

OM: ON=om : on,

the points 0, o must lie either on one diameter or on a pair of

conjugate diameters.

449. Prove by the Cartesian method or otherwise that if

CA, CB and (7a, (7/3 be semi-axes of a fixed and a variable

confocal ellipse respectively, P a point of contact of the latter

with an ellipse drawn through the four extremities of the axes

of the former, and PN the principal ordinate of P, then

CN: PN= CA.Cz : CB.CjS.

Deduce that the locus of P is a hyperbola ;
and likewise deter-

mine its foci and asymptotes by considering special cases of

the theorem.

450. Every ellipse drawn through the four extremities of

the axes of a given ellipse is cut orthogonally by a hyperbola
confocal with the given ellipse and having its equal conjugate
diameters for asymptotes.!

* See the notes on Geometrical Evaluations by R. W. Genese, M.A., in the

Messenger of Mathematics, vol. IV. pp. 1546 (1875).

t See Wolstenholme's Mathematical Problems, No. 1182 (ed. 2, 1878).

M2
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451. Find the locus of a point whose polar with respect

to a conic cuts off a constant area from the space between two

given conjugate diameters; and find the envelope of the polar

of a point whose ordinates cut off a constant parallelogram from

the same.

452. Having given the asymptotes of a hyperbola and a

point on the curve, determine its foci and directrices.

453. Having given a focus and two points of a hyperbola
and the direction of one of its asymptotes, or having given a

focus and one point and the directions of both asymptotes,

shew how to construct the curve.*

454. Given the centre of a hyperbola and three points on

the curve, determine the directions of its asymptotes.

455. Having given the centre of a hyperbola and a self-

conjugate triad, determine the directions of its asymptotes.

- 456. Having given four points and the eccentricity of a

hyperbola, or four points and the direction of an asymptote, or

three points and the direction of an asymptote and the eccen-

tricity, shew how to construct the curve.

457. If three straight lines be drawn from three given

poles and two of their intersections lie on fixed directrices,

their third intersection will trace a curve of the second order.

By the above system of radiants or otherwise describe a

hyperbola having given one asymptote and three points or the

directions of both asymptotes and three points on the curve,t

* Five data in general determine a conic. An asymptote is equivalent to two

data, viz. to a tangent and its point of contact or two coincident points on the curve :

having given the direction only of an asymptote we have one of the two points at

infinity on the curve : a focus will be seen to be equivalent to two conditions.

Compare the note at the end of Salmon's Conic Sections,
" On the Problem to describe

a Conic under Five conditions."

f See Leslie's Geometry of Curve Lines, Book II. props. 10, 21, 22.
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458. Having given four points on any conic and one point
on its director, or having given four tangents to an equilateral

hyperbola, shew how to construct the curve.*

459. The area of the sector of a hyperbola made by joining

any two points on it to the centre is equal to the segment
cut off from the space between the curve and its asymptotes by
the ordinates of the same two points to either asymptote ; any
other two ordinates in the same ratio as the formerf cut off an

equal segment ;
and the segment cut off by any two ordinates

is bisected by the ordinate which is a mean proportional to

them. Prove also that if two equal hyperbolas have two of

their asymptotes coincident and the other two parallel, any
parallel to their common asymptote will cut off from the space
between two adjacent branches produced to infinity an area

equal to the parallelogram contained by the said parallel and

the three asymptotes.

460. If 0, P, Qj jR... be any number of points on a branch

of a hyperbola whose abscissae CK, CL, (7J/, CN... on either

asymptote are in continued proportion, the hyperbolic sectors

j OCQ, OCR... will be in arithmetical progression, and

* The first case of Ex. 458 may be made to depend upon the second by recipro-

cating the conic with respect to the point on its director, as is done in GASKIN'S

The Geometrical Construction of a Conic Section subject to Five Conditions of pasting

through given points and touching gicen straight lines, deducedfrom the properties

of Involution and Anharmonic Ratio, with a variety ofgeneral Properties of Curcet of
the Second Order, p. 53 (Cambridge, 1852). It is in this very able tract that the term .

DIRECTOR seems to have been first used to denote the locus of intersection of tangents

at right angle? to a conic. The term is defined on p. 26, and in the Preface we read :

"
By a well known property of conic sections, the locus of the point of intersection

of two tangents at right angles to one another is in general a circle concentric with

the conic section, and when the curve is a parabola the locus is the directrix. There

are several remarkable properties of this locus which, as far as the author is aware,

have not been hitherto noticed, and he has found it convenient to denominate it the

DIRECTOR of the conic section, which in the case of the parabola coincides with the.

directrix."

t It is easily seen that the four ordinatea to either asymptote o" the xtremities

of any two parallel chords are proportionals, and that the ordinal of the point of

contact of any tangeni is a mean proportional to the ordinates Oi the extremities of

any parallel chord.
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the segments OKLP, OKMQ, OKNR... will be in arithmetical

progression. Given any three terms of a geometrical series

and the logarithms of two of them, shew how to determine

geometrically the LOGARITHM of the third.*

* For the first part of Ex. 460 see GREGORII A. S. VINOBNTIO Opus Geome>

trieum Quadrature Circuli et Sectionum Coni, lib. vi. prop. 125, p. 594 (Antverpise,

1647), and his Opus Geometricum Posthumum ad Mesolabium, prop. 24, p. 252 (Gandavi,

1668). The second part may be solved by taking hyperbolic segments in arithmetical

progression to represent the logarithms of a corresponding aeries of abscissae which are

in geometrical progression, as was shewn by Alf . Ant. de Sarasa in a tract published

(Antv. 1649) in vindication of Greg, de St. Vincent against some aspersions of

Marinus Mersenntm. Logarithms may also be represented by the " residual arcs" of

a parabola (Booth's New Geometrical Methods, vol. I. p. 293).
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CHAPTER VI.

THE EQUILATERAL HYPERBOLA.

61. The Equilateral Hyperbola is a hyperbola whose latus

rectum is equal to its axis or latus transversum ;* it is also

called Rectangular since its asymptotes are at right angles.

This curve and the circle, which is an equilateral ellipse, may
be together designated the Equilateral Conies.

The properties of the equilateral hyperbola may for the most

part be derived from those of the general hyperbola by equating
its axes to one another and to the latus rectum, or by sup-

posing the angle between its asymptotes to become a right

angle; but since several of the special results thus obtainable

may also be proved independently with peculiar ease, some of

them in terms equally applicable to the circle also, we shall

here treat the hyperbola in question to a great extent ab initio,

leaving it to be shewn in the sequel how certain of the

properties of the equilateral conies may be transferred to central

conies in general by the method of Orthogonal Projection.

62. The latus rectum being supposed equal to the axis,

it follows from Art. 33 that

PN* = AN.A'N= CN* - GA\
which will however be proved independently in Art. 63.

The axes being equal, the radius of the director circle

vanishes (Art. 40), or the equilateral hyperbola has no tangents
at right angles except its asymptotes. Again, it follows from

Art. 45 that every diameter is equal to its conjugate, which

leads to many further simplifications; but in this chapter we

* In other words, this hyperbola is called equilateral because the sides of the

FIGURE npon its tu-is (Schol. A, p. 82) are o/uul.
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shall commence by defining any diameter which does not meet

the curve as equal in length to its conjugate, in pursuance
of the analogy between the equilateral hyperbola and the

circle or equilateral ellipse.

It is to be noted at the outset (Arts. 35, 54) that the eccen-

tricity of the equilateral hyperbola is the ratio of the diagonal

to the side of a SQUARE, that the foot X of the directrix bisects

CS
t
and that

PROPOSITION I.

63. The principal ordinate of any point on an equilateral

hyperbola is a mean proportional to its abscisses.

IfX be the foot of the /S-directrix and therefore the middle

point of CS, and if PN be the principal ordinate of any point

P on the curve, then

and CN*

therefore CN* - PN'= 2CT = CA\
or PN* is equal to CN*-CA* or AN. A'N.
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It is further evident from the figure that if Pn be an ordiuate

to the conjugate axis,

Pn*=Cn*+CA*,
v

as might also have been inferred from the consideration that the

square of the conjugate semi-axis is CA*.

PROPOSITION II.

64. Any two conjugate diameters of an equilateral hyperbola
make complementary angles with either axis and make equal

angles with either asymptote.

(i)
If V be any point on the directrix and SZ be at right

angles to SV, it is evident that CV and SV are equally
inclined to the axis and CV and SZ make complementary

angles with the axis. The proposition then follows at once

as a special case of Art. 14; it may also be proved inde-

pendently as below.

(ii)
Let Q and q be any two points on the curve, QM and

qm their principal ordinates, the middle point of Qq and

OL its ordinate, qK a parallel to the axis meeting QM in K
t

and n the point in which Qq meets the axis.

Then since QM* + CA* is equal to CM* and qm* + CA*
to Cm*j

s js:

therefore QM* ~ qm* = CM* ~ Cm*,

or QN~ qm : CM-}- Cm = CM~ Cm : QM+ qm ;

that is to say,

or the angle OCL is equal to the angle qQK.



170 THE EQUILATERAL HYPERBOLA.

Hence if the chord Qq be parallel to a fixed diameter, the

locus of its middle point will be a second fixed diameter,

and the inclinations of the two diameters to either axis will

be complementary, and their inclinations to either asymptote
will therefore be equal, and conversely.

Corollary 1.

It is evident that any two diameters which are either

conjugate or at right angles must lie on opposite sides of an

asymptote, and therefore that one of the two and one only

meets the curve. It is likewise evident that if two equal

diameters be taken on opposite sides of either axis, the one

will be equal and at right angles to the conjugate to the other,

and conversely that any two diameters at right angles are equal.

Corollary 2.

If the normal at P meet the axes in G and g and the

conjugate diameter in F, it is evident that PCG is an isosceles

.
. -? C t

cmJftfX't*'

Fc^f PCf, \
P '

fC * TCr, ^t$C
. U-JUM A

triangle having each of its angles at C and G complementary
to FCG, and hence that PG = PC=Pg, or P is in this case

the centre of the circle of Art. 59. Hence or by Art. 45, Cor. 1

the normal is also equal to CD.

Corollary 3.

The angles between any two diameters or chords are equal to

the angles between the diameters conjugate thereto. For example,
if PQ and PQ' be any two chords drawn from the same point P
on the curve and P'Q and P'Q' be the chords supplemental
to the former from the further extremity P of the diameter

through P, the angles between the former will be equal to
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angles between the latter (Art. 44), or any chord QQ' of an

equilateral hyperbola subtends at the extremities of any diameter

PP' angles which are either equal or supplementary. It will be

seen that the angles subtended are supplementary when the

diameter and the chord intersect WITHIN the curve (as in the

figure of Prop. IV.) and equal when they intersect WITHOUT
the curve.

Corollary 4.

The locus of the centre of an equilateral hyperbola circum-

scribing a given triangle is its nine-point circle, since the

diameters to the middle points of its sides contain two and two

the same constant angles as the sides to which they are

conjugate.* More generally it may be shewn that the circum-

scribed circle of any self-conjugate triangle passes through, the

centre, since the diameters to its angular points are conjugate

to the directions of its opposite sides.

PROPOSITION III.

65. The projections of any two conjugate semi-diameters upon
the axes are alternately equal to one another, and the triangle of

which they are adjacent sides is of constant area.

(i)
If CP and CD be conjugate semi-diameters, and PN

and DR be principal ordinates and Dn. an ordinate to the

* Since each side and its perpendicular constitute a hyperbola (Art. 54), their

intersections belong to the above locus: hence a fresh proof that the feet of the

perpendiculars lie on the circle which bisects the sides.
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conjugate axis, we have to shew that Cn or DR is equal to CN
and that OR is equal to PN', which follows at once from the

equality of the radii CP, CD and of the angles PCN, DCn
(Prop. II.).

Hence also by Prop. I.,

CN*- CI? = Dir-PN* = CN*-PN*= CA\

(ii)
The triangles DCR and PCN being equal, therefore

&(DCR + DOP- COR)=PCN+DOP- COR,
or APCD = RNP=$(CN+ CR](CN- CR]

which is an equivalent of the theorem that the conjugate

circumscribing parallelogram of an equilateral hyperbola is

equal to CA* (Art. 46).

PROPOSITION IT.

66. The base ef a triangle and the sum or difference of its

base angles being given, the locus of its vertex is an equilateral

conic.*

(i)
If the base and the sum of the base angles of a triangle

be given, the third angle is constant and the locus of the vertex

is a circle.

(ii)
Let P'OPbe a fixed diameter of an equilateral hyper-

bola, F any point in CP produced, and Q any point on the

curve. Then since QP and QP' are supplemental chords,

the sum of the acute angles which these make with the

axis is equal to a right angle (Prop. II), and the sum of

their inclinations to the fixed diameter PP' is therefore

constant.

The latter constant is at once seen, viz. by removing Q
to infinity, to be equal to twice the angle which the nearer

asymptote makes with PP'

* This proposition forms prob. 35 of the Arithmetica Universalis, and was sug-

gested by Eucl. in. 21, as is shewn by the preamble :
" Ubi angulus ad verticem, sive

(quod perinde est) ubi summa angulorum ad basem datur, docuit Euclides locum

verticis esse circumferentiam circuli; proposuimus igitur invcutionem loci ubi

differentia angulorum ad basem datur." NEWTON also stated the corollary given

above in the text for the case in which the subtended angles are equal.
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It follows that the angle at P or its supplement, in the

triangle QPP', exceeds the angle at P' or its supplement by a

constant quantity; and conversely, that if the base PP' of

a triangle be given and the angle at P or its supplement
exceed the angle at P' or its supplement by a constant quantity,

the locus of the vertex Q of the triangle will be an equilateral

hyperbola whereof PP' is a diameter, as was to be proved.

Corollary.

Hence it may be deduced that the angles which any
chord of an equilateral hyperbola subtends at the extremities

of any diameter are either equal or supplementary, as was

shewn independently in Art. 64, Cor. 3.

PROPOSITION V.

67. At any point of an equilateral hyperbola the ordinate

to any diameter which meets the curve is a mean proportional
to the abscisses on that diameter.

Let Q V be the ordinate of any point Q on the curve to the

diameter PP'; then since the directions of PV and QV and

likewise the directions of PQ and P' Q are conjugate, the

angle PQVis equal to <?P'F(Art. 64, Cor. 3), and the triangles

P^Fand QP'Vare similar, so that

PV: QV=QV:P'V;
therefore QV 3

is equal to PF.P'For CV*-CP\
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By changing the sign of CP* we obtain the corresponding

property, viz.

of a diameter which does not meet the curve in real points.

PROPOSITION VI.

68. The product of the segments of any chord drawn through

a faced point to an equilateral hyperbola varies as the square of

the parallel radius.

Let QQ' be any chord drawn through a fixed point and

F the middle point of QQf, and let CP be the semi-diameter

parallel to the chord, q the point in which CO meets the curve

or the conjugate rectangular hyperbola, and qv the ordinate of

q to the diameter CV.

Then by Prop. V., taking for example the case in which

CP and Cq are terminated by the curve,

Hence 0F- <?F
2 + CP* : CP' = 0V : qv*

= CO* : Cq\

which is a constant ratio since and q are fixed points.

It follows that 0V*- QV* or OQ.OQ varies as CP*, and

if ROR be any second position of the chord and CP' the radius

parallel thereto,

OQ.OQ' : OR. OR' = CP* : CP".
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PROPOSITION VII.

175

69. // an equilateral hyperbola circumscribes a triangle it

passes through its orthocentre, and conversely ;* and every conic

which passes through the four points of concourse of two equi-

lateral hyperbolas is itself an equilateral hyperbola.
If ABC be any triangle and AD one of its perpendiculars,

any equilateral hyperbola which circumscribes the triangle will

have its diameters parallel to AD and BC equal to one another.

D

The hyperbola therefore meets AD again in a point
such that

= BD.DC-,

that is to say, it passes either through the orthocentre of the

triangle or through the point in which AD produced meets its

circumscribing circle.

* This theorem was derived from Pascal's hexagram in a memoir by MM. BRI-

ANCHO.V et PONCELET contributed to Gergonne's Annales (tome XI. pp. 205220)
at the commencement of the year 1821, under the title : Recherches sur la determination

(Fune Hyperbole Equilatere, au moytn de quatre conditions donnees viz. thus. Let a

hyperbola be described through A, B, C, and the orthocentre 0, and let E and F
be the two points at infinity on the curve

;
let H, 7, K denote the three points of

concourse (AB, OE), (EF, CB), (AF, CO) ;
then HIKis a straight line parallel to BC

(since I is at infinity) or perpendicular to A O, whence it readily follows that H is the

orbhocentre of the triangle AOK and that OE the direction of one asymptote is at

right angles to AK or OF the direction of the other. The remainder of Prop. Til.

follows independently from the fact that by adding together two equations of the

form (x
1

y-) + bx + cy + d=Q we arrive at a third equation of the same form :

the property of the orthocentre of any triangle is a special case of this latter theorem

(Art. 54). See Prof. Cayley's Note on the Rectangular Hyperbola in the Oxford,

Cambridge, and Dublin Messenger oj .Mathematics, vol. I. p. 77 (1862).
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But it cannot pass through the latter point, for if so AD and

BC would be equally inclined to its axes (Art. 16, Cor. 2) and

parallel to its asymptotes, and either B or G would be at infinity :

it therefore passes through the orthocentre.

Conversely, any conic which passes through the three angular

points and the orthocentre of a triangle must be an equilateral

hyperbola.

Moreover, if three of the points of intersection of any two

equilateral hyperbolas be taken as the vertices of a triangle,

both curves will pass through its orthocentre; and therefore

every conic through their four points of concourse must likewise

be an equilateral hyperbola.

From this proposition it is manifest that when three points

of an equilateral hyperbola are given a fourth can be found
;

and hence that when four points are given the curve is in

general determined.

Corollary.

If BA C be a right angle, the points A and coalesce and

AD touches the curve at A. Hence the tangent at any point

A on an equilateral hyperbola may be determined by drawing

any two chords AB and A G at right angles and drawing AD
perpendicular to BC. If A be a fixed point, BC is constantly

parallel to the normal thereat.*

PROPOSITION VIII.

70. The product of the distances from the centre at which any

tangent and the ordinate of its point of contact to any diameter

meet the same is constant; and the product of the intercepts on

any tangent between the curve and any two conjugate diameters is

equal to the square of the parallel radius.

(i)
Let the tangent at Q meet any diameter CP in

T",
and

Let QV be an ordinate to that diameter.

Then since CP and CQ are conjugate to QV and QT
respectively, they contain equal angles (Art. 64, Cor. 3), so that

* The fixed point on the normal (Ex. 279) through which BC passes is otherwise

seen to be at infinity since when AB and AC are parallel to the asymptotes BC
becomes the straight line at infinity.
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CV:QV=QV: VT.

Therefore CV.CT= CV* ~ CV.VT= CV ~ Q V*

= CP*.

(ii)
If the tangent at Q makes intercepts CT and Ct on any

two conjugate diameters, it may be shewn in like manner that

or

where CD is the radius conjugate to CQ.

SCHOLIUM.

An excellent machine for describing any number of RECTAN-
GTTLAR HYPERBOLAS having the same asymptotes was constructed

by Mr. H. H. S. Cunynghame, of St. John's College (1873), on the

following principle. Let a fixed straight line meet the axis of a

rectangular hyperbola at right angles in H; from any point P on
the curve draw PM and PN perpendicular to the fixed line and the

axis; and on CH produced take HO equal to CA. Then

OM +PM= CN+ PM= CH-,

and conversely if be a fixed point and MP a variable perpen-
dicular to the fixed line HM, then provided that the length OMP
is constant the point P will describe a rectangular hyperbola, and
its centre C, which is determined by taking HC equal to OJlfP,
will be independent of the distance OH. The machine itself consists

of a fixed bar HM and a sliding cross bar placed in a horizontal

plane : a string fixed at is kept stretched by a weight in the
direction OMP : and a pencil attached at a point P to the string
traces an arc of a rectangular hyperbola by the motion of the
cross bar. By varying the length OH any number of rectangular

N
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hyperbolas having the same asymptotes can be traced with the

same length of string.
In a note On the Mechanical Detcription of the Cartesian, by J.

Hammond, Bath, England (American Journal of Mathematics, pure
and applied, vol. i. no. 3, p. 283, 1878), the following, applicable to

the HYPERBOLA, is given. Suppose two thin circular discs A and

B rigidly attached to each other to rotate about their common

centre, and suppose the opposite ends of a fine string (which passes

through small rings at C and D and is kept stretched by the point
of a pencil at P} to be unwound from the two discs. Then wiU the

increments of the lengths CP and DP be as the radii a and 4 of the

discs, and P will describe a curve having the property

a . DP - 1 . CP = a constant,

which becomes a hyperbola when the discs are equal. If one end
of the string be wound on to its disc whilst the other is unwound
the curve traced will have the property

a .\DP + I . CP= a constant,

and will become an ellipse when the discs are equal.
The mechanical description of the ellipse by the property of

Ex. 219 was effected by Guido Ubaldi,* who was considered to have
made an important discovery; but the property is mentioned by
Proclus (on Eucl. i. def. 4) as was remarked in the first volume
of the JErarium Philosophies Mathematics, auctore Mario Bettino,
Lib. i. pp. 38 45 (Bononiffi, 1648).

EXAMPLES.

461. Trace the locua of the middle point of a straight line

which cuts off a constant area from a corner of a square.

* Guidiubaldi Planisphaeriorum Universalium Theorica, Lib, II, end (Pisauri,

1579).
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462. Place in a rectangular hyperbola a chord which shall

be equal to and be bisected by a diameter of given length.

463. The chords connecting the ends of a fixed diameter

of a circle and of any double ordinate of the same intersect

upon an equilateral hyperbola.

464. In the rectangular hyperbola the diameter conjugate
to the normal at any point is at right angles to the diameter

through the point; any two diameters at right angles bisect

chords at right angles, and conversely; and any chord sub-

tends equal or supplementary angles at the extremities of

a perpendicular chord.

465. The centre of an equilateral hyperbola circumscribing

an equilateral triangle is upon the inscribed circle of the

triangle, and the centre of the circle is on the hyperbola.

466. The tangents drawn from opposite foci of a hyperbola
to any circle which touches both branches intersect upon one

of two rectangular hyperbolas, each of them having one asymp-
tote in common with the original hyperbola and having the

line joining the foci of the latter for a diameter
;
and these

two rectangular hyperbolas will coalesce if the original hyper-
bola be rectangular.

467. If two points P and Q move with equal velocities

along the arms AB and BO of a right angle, the one starting

from A and the other simultaneously from B, and if AAf

be

drawn equal to AB and in the direction opposite to BQ, shew

that A'P and AQ intersect upon a branch of a rectangular

hyperbola, and determine its centre and asymptotes.

468. The circles described upon the six common chords of

any two rectangular hyperbolas as diameters cut one another

orthogonally in opposite pairs.

469. If a parallel to either asymptote of a rectangular

hyperbola meet any principal double ordinate PQ in and

the curve in B
:
shew that

N2
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470. Of two chords at right angles or conjugate in direction

in an equilateral hyperbola one and one only is a chord of a

single branch. Explain the apparent failure of the proof of

Art. 16, Cor. 2 which arises from the equality of diameters which

are conjugate or at right angles in the equilateral hyperbola;*
and shew that no circle can intersect the curve or its asymptotes
at the extremities of a pair of chords which are parallel to two

such diameters.

471. The foci of an ellipse being situated at any two diame-

trically opposite points of a rectangular hyperbola, shew that

the tangents and normals to the ellipse at the points in which it

meets the hyperbola are parallel to the asymptotes of the latter 5

and shew that the tangents to the ellipse from any point of the

hyperbola are parallel to conjugate diameters of the latter.

472. If CA be a semi-axis of a rectangular hyperbola, and

a perpendicular CYbe drawn to the tangent at P, the triangles

AGP and ACY will be similar.

473. Prove that the feet of the perpendiculars of any triangle

are a conjugate triad with respect to any equilateral hyperbola

which circumscribes the triangle ;
and shew that the same result

may also be deduced from Example 76.

474. Given a chord of an equilateral hyperbola and the

polar of a given point on the chord, shew how to determine

two other points on the curve.f

475. The circle described on the line joining the foci of an

equilateral hyperbola as diameter meets the asymptotes at points

lying upon the tangents at the vertices
;
and the circle described

about any point on the conjugate axis as centre so as to pass

* It is only in accordance with a convention which is not strictly accurate that

such diameters are said to be equal. See Chap, iv, Scholium C, p. 101. If ABC" be

a triangle simultaneously inscribed in a circle and an equilateral hyperbola, and if

the perpendicular from A to EC meet the circle in D, the hyperbola in
,
and BC

itself in /', then FB.FC = FA .FD--FA. FE.

t On the given chord AS as diameter describe a circle cutting the polar of the

given point in A' and F; then will the points (AX, BY) and (AY, BX) be the

extremities of the chord through at right angles to AB.
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through the vertices meets the curve again at the extremities

of one of its own diameters.

476. If PQ and P'Q be any pair of supplemental chords of

a rectangular hyperbola, and if the tangent at Q and its ordinate

to PP' meet that diameter in T and F, shew that the bisectors

of the angle PQP' are parallel to the asymptotes, the segments
CP and TP subtend equal angles at @, and the circle around

CQT touches QV. Shew also that any chord subtends supple-

mentary angles at its pole and the centre of the curve, and that

the inclinations of any two tangents to their chord of contact

are equal or supplementary to the angles which they subtend

at the centre.

477. If a conic pass through the centres of the four circles

which touch the sides of a triangle it must be a rectangular

hyperbola, and its centre will lie on the circumscribed circle of

the triangle.

478. The foci of all the ellipses which can be inscribed in a

given parallelogram lie on a rectangular hyperbola passing

through its four vertices.

479. The lines connecting the extremities of any two chords

drawn through a focus parallel to conjugate diameters of an

equilateral hyperbola pass through fixed points on the asymptotes.
Examine the cases in which the focal chords coalesce or are

parallel to the axis.

480. The axis of the rectangular hyperbola which touches

an ellipse and has its axes for asymptotes is a mean proportional
to the axes of the ellipse.

481. Construct a rectangular hyperbola having given the

centre and a tangent and a point on the curve, or having given
an asymptote and a tangent and its point of contact, or having

given a diameter and one other point on the curve.

482. The common tangents to the circles described on any
two parallel chords of opposite branches of a rectangular hyper-
bola as diameters subtend right angles at the extremities of the

diameter which bisects the chords.
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483. If two right angles revolve about opposite extremities

of a diameter of a rectangular hyperbola so that the point of

concourse of two of their arms is always a point on the curve,

their other two arms will make equal intercepts on the normal

at that point, and will themselves intersect upon the curve.

484. Tangents (or normals) are drawn in a given direction

to a series of confocal conies : prove that the points of contact

lie on a rectangular hyperbola passing through the foci and

having an asymptote in the given direction.

485. The lines connecting the extremities of any chord and

any diameter of a rectangular hyperbola intersect in two points

which are concyclic with the extremities of the diameter : deter-

mine the condition that they may intersect on a fixed circle.

486. Find the points on an equilateral hyperbola at which

the normal is parallel to a given chord.

487. The locus of the pole of any chord of a parabola which

subtends a right angle at the focus is a rectangular hyperbola.

488. The subnormal at any point of an equilateral hyperbola
is equal to the central abscissa; the tangent from the foot of

the ordinate to the auxiliary circle is equal to the ordinate
;
the

projection of the normal (terminated by either axis) upon either

focal vector is equal to the semi-axis; and the intercept made

on any tangent by the asymptotes subtends a right angle at the

point in which the normal meets either axis.

489. Any two supplemental chords of a rectangular hyper-
bola form an isosceles triangle with either asymptote, and con-

versely.

490. Any two conjugate diameters of an equilateral hyper-
bola contain equal and similar triangles with the ordinates and

abscissae of their extremities to any other diameter.

491. The sum or difference of the inclinations of any two

conjugate diameters of an equilateral conic to a fixed diameter

is constant : distinguish between the several cases.
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492. Any circle drawn through the extremities of a diameter

of a rectangular hyperbola meets the curve again at the extre-

mities of a diameter of the circle, and its tangents at those points

are ordinates of the diameter of the hyperbola,

493. The circles described on parallel chords of a rectangular

hyperbola as diameters have a common radical axis.

494. The ends of the equal conjugate diameters of a series

of confocal ellipses lie on the confocal rectangular hyperbola.

495. The straight line joining the feet of the perpendiculars
from any point of a rectangular hyperbola to two conjugate
diameters is parallel to the normal at the point.

496. The opposite arcs cut off by any two diameters of a

rectangular hyperbola subtend equal angles at any point on

the curve.

497. Any two rectangular hyperbolas so placed that the

axes of the one coincide with the asymptotes of the other inter-

sect at right angles, and each of their common tangents subtends

a right angle at the centre
;

and if two tangents to a pair of

conjugate rectangular hyperbolas be at right angles, the straight

line joining their points of contact subtends a right angle at the

centre.

498. If on opposite sides of any chord of a rectangular

hyperbola equal segments of circles be described, the four points
in which the completed circles meet the hyperbola again will

be the angular points of a parallelogram ;
and if parallels be

drawn from any point on a rectangular hyperbola to the sides

of an inscribed parallelogram, they will meet its opposite sides

in two pairs of points lying on a circle.

499. The foot of the focal perpendicular upon any chord of

a rectangular hyperbola which subtends a right angle at the

focus lies on a fixed straight line.

500. The normal at any point P of a rectangular hyperbola
meets the curve again in Q, and RR' is a chord parallel to the
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normal: prove that PS, QR and PS', QR intersect on the

diameter at right angles to CP.*

501. In any right angled triangle inscribed in an equilateral

hyperbola the perpendicular upon the hypotenuse is the tangent
at the right angle. Hence shew how to find a third point on

the curve when two points and the tangent at one of them are

given ;
and shew that the curve is determined when two points

and the tangents thereat are given, or three points and the

tangent at one of them, or two points and the tangent at one

of them and a second tangent.

502. Given the middle points and the directions of two

chords of an equilateral hyperbola, the two points and the

intersection of the parallels through each point to the opposite

chord determine a circle which passes through the centre of

the hyperbola.

503. If through each of two points a parallel be drawn to

the polar of the other with respect to an equilateral hyperbola,
the circle through the two points and the intersection of the

parallels
will pass through the centre of the hyperbola.

504. Given the centre of a rectangular hyperbola and a

self-conjugate triad, determine its asymptotes.f

505. Two equilateral hyperbolas can be inscribed in a given

quadrilateral, and their centres are at the points in which

the diameterj of the quadrilateral meets the circumscribed circle

of the triangle formed by its three diagonals.

Examples 471, 482, 484, 492500 and others are from Wolstenholme's Matht*

matical Problems.

t If C be the centre and PQR the conjugate triad, let CP meet QR in V, and

upon QR take points Q' and R' such that Q'V = RV~ CV; then will CQ' and CK
be the asymptotes. The following method applies to the general hyperbola (Ex. 455).

Draw CP
', CQ', CR' parallel to QR, RP, PQ, and find the two double lines of the

Involution determined by the pairs of conjugate rays CP, CP '

; CQ, CQ' ; CR, CR".

J By a theorem of NEWTOH (Principia, Lib. I. sect. v. lemma 25, cor. 3) the

centres of all the conies inscribed in a quadrilateral lie upon the straight line (Ex. 372)

Which we hare called the DIAMETER of the quadrilateral (p. 138). Bee also Ex. 513.
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506. The three pairs of chords connecting any four points

on an equilateral hyperbola intersect upon the circumference

of a circle which passes through its centre.

507. The nine-point circles of the four triangles determined

by four given points cointersect at the centre of the equilateral

hyperbola which passes through the four points.*

508. Four points being taken at random in a plane, there

exists in general one other point in the same and one only
such that the lines radiating therefrom to the middle points

of the six lines connecting the four points are inclined at the

same angles as the lines which they severally bisect.

509. Given any two points in the plane of an equilateral

hyperbola and the directions conjugate to the diameters passing

through them, determine a circle on which the centre lies.

If a chord and the direction of the polar of a point upon it

be given, this circle passes through the point and bisects the

chord and has its tangent at the middle point of the chord

in the given direction.

510. Determine the centres of the four equilateral hyperbolas
which pass through two given points and touch two given lines.f

511. Given two points of an equilateral hyperbola and

two tangents to the same, determine the four positions of the

chord of contact.^

* Three other circles may be determined by Ex. 502 and another by Ex. 606,

making in all EIGHT, which pass through the same point.

f If A and A' be the given points, C the intersection of the tangents, and X and
Y the points in which they meet AA', the points A, A' and X, Y determine an
involution through one of whose foci P or Q the chord of contact of the two tangents
must pass : let it pass through P, of which CQ will be the Polar. Bisect AA' in /
and XY in C, and draw a circle through P and 7 having its tangent at / parallel to

CQ (Ex. 509). Through the second intersection of CI with the circle draw Px meeting
CK in x, and draw the tangent to the circle and let it meet CQ in y : then the

intersections of xy with the circle determine two of the required centres, and the

other two are determined by interchanging P and Q, This construction is given by
POHCELET in Gergonne's Annaks, tome zu., where he corrects (p. 244) the mis-

Btatement of the joint article by Brianchon and Poncelet (xi. 218) that theJour centres

lie on ONE circle.

J Determine as before the point P on the chord of contact and its polar CQ
find a third point D on the curve (Ex. 474) ;

and let F and F' be the foci of the
involution determined by A, D and the pair of points in which the tangents meet
AD. Then will PFand PF' be two positions of the chord of contact.
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512. Given that the centres of all the equilateral hyperbolas

circumscribing a triangle lie on a circle, deduce the fundamental

property of the nine-point circle of any triangle.

513. The three circles whose diameters are the diagonals
of any quadrilateral belong to a coaxal system,* whose limiting

points are the centres of the two inscribed equilateral hyper-
bolas.

514. The director circles of all the central conies touching
the same four lines have a common radical axis,f which is

also the directrix of the inscribed parabola; and if the conies

touch but three lines, their director circles have a common
radical centre.

515. The circumscribed circle of any triangle which is self

conjugate with respect to a conic cuts its director circle ortho-

gonally :J if the conic be an equilateral hyperbola the circle

passes through its centre : if it be a parabola its directrix passes

through the centre of the circle.

516. The base of an isosceles triangle being upon a fixed

straight line and each of its equal sides passing through a fixed

point, whereof one is on the fixed line, shew that the locus

of the vertex of the triangle is an equilateral hyperbola passing

through the fixed points and having an asymptote parallel to

the fixed line.

* See TOWNSEND'S Chapters on the Modern Geometry of the Point, Line, and Circh,

Art. 189 (vol I. p. 253).

t This follows from Prop, vn by reciprocation, as in the Oxford, Cambridge and

Dublin Messenger of Mathematics, vol. I. p. 159. A direct proof by involution is

given in voL in. p. 31 of the same, by
" W. K. C." [CLIFFORD.]

J It may be shewn that the circumscribed circle of the triangle formed by the

three diagonals of a quadrilateral is orthogonal to the circles on its three diagonals

as diameters. Ex. 515 then follows with the help of Ex. 514 by regarding the sides

of any self conjugate triangle as the diagonals of a quadrilateral which envelopes

the conic. This theorem is due to GASKIK, who proved it by the Cartesian method

in his work (p. 33) already referred to in the note on Ex. 458. Eight years later

the equivalent theorem :
" On donne un triangle conjugtie a vne ellipse...la tangentt

menee du centre de I'ellipse au cercle circonscrit au triangle est egale a la corde du

quadrant d'ellipse," was proposed by Cap. Faure as Quest. 524 in the NouveUet

Annalet, tome Xtt. p. 234 (I860). See also xix, 290, 345; XX. 25, 77; v. 308

(2me aerie).
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517. If through five concyclic points taken in fours five

equilateral hyperbolas be drawn, their centres will lie on a

second circle of diameter equal to the radius of the former.

518. The locus of the centres of all the conies which pass

through four given points is a conic. Prove that the locus

will reduce to a circle if any two of the conies through the

four points bs equilateral hyperbolas, and to an equilateral

hyperbola if the four points lie on a circle.

519. The angular points and the centroid and orthocentre

of any triangle determine ten triangles whose nine-point circles

meet in a point; and this point lies on the circumference of

the maximum ellipse that can be inscribed in the original

triangle.*

520. Shew that the centre of any equilateral hyperbola
inscribed in an obtuse angled triangle lies upon the circle

with respect to which the triangle is self conjugate.

521. The angular points of a triangle and the extremities

of any diameter of its circumscribing circle, taken four together,
determine five equilateral hyperbolas whose centres lie on the

nine-point circle of the triangle.

522. A variable triangle circumscribes an equilateral hyper-
bola and its nine-point circle passes through the centre of the

curve: prove that the locus of the centre of its circumscribed

circle is the hyperbola in question.

523. Prove that the opposite sides AB and CD of a paral-

lelogram inscribed in a rectangular hyperbola subtend either

equal or supplementary angles at any point P on the curve;

the circumscribed circles of the triangles PAB, PBG, PGD^
PDA are equal; and the product of the perpendiculars from

P to each pair of opposite sides of the parallelogram is the same.

524. With the extremities of any diameter of the circum-

scribed circle of a triangle as foci two parabolas are drawn

* See Mathematical Questions, Qc.from ikt EDUCATIONAL TIMES, TO!, iv. p. 89.
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touching the sides of the triangle; prove that the tangents at

their vertices are the asymptotes of one of the series of rect-

angular hyperbolas which pass through the vertices of the

triangle.

525. Given the base of a triangle, prove that if the bisectors

of its vertical angle be parallel to fixed lines, or if its two

sides make equal angles with two fixed straight lines, the

locus of its vertex will be a rectangular hyperbola whose

asymptotes bisect the base of the triangle and are parallel to

the bisectors of its vertical angle.

526. Given two fixed tangents to a variable parabola and

a fixed point on its axis, prove that the locus of its focus la

a rectangular hyperbola having its asymptotes parallel to the

bisectors of the angle between the fixed tangents and its centre

at the bisection of the line joining their point of concourse to

the fixed point on the axis.

527. If a rectangular hyperbola has double contact with

a parabola, the line joining the intersection of their common

tangents with the centre of the hyperbola is bisected by the

directrix of the parabola.

528. The circle described with any diameter of an equi-

lateral hyperbola as radius meets the curve again in three

points which determine an equilateral triangle ;
and conversely,

the circumscribed circle of any equilateral triangle inscribed

in an equilateral hyperbola has one of its radii coincident

with a diameter of the hyperbola. If OA and OB be the

bounding radii of a circular arc AB, shew that a point of

trisection of the arc lies upon the rectangular hyperbola which

has OA for a diameter and passes through the point of con-

course of OB with the tangent at A to the circle. Deduce

from the above that the problem, to trisect a given angle, admits

of three solutions. Prove also that that if points P and Q be

taken on AB such that

arc AP=2 arc BQ,

the intersection of -<4Pand OQ will lie on the hyperbola.
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529. A pair of mean proportionals to two given magnitudes
in and n may be found as follows. Describe a parabola of latus

rectum equal to TW, and with its axis and the tangent at its

vertex as asymptotes describe a hyperbola whose semi-latus

rectum is a mean proportional to m and 2w
;

then will the

distances of their point of concourse from the asymptotes be

the two mean proportionals which were to be found.*

530. The circle described on any radius of a rectangular

hyperbola as diameter meets the curve in two points whose

distances from the asymptotes are in continued proportion;

and conversely, the hyperbola drawn through the point of

concourse of two sides of a rectangle so as to have the other

two sides for asymptotes meets the circle circumscribing the

rectangle in a second point whose distances from the asymptotes
are a pair of mean proportionals to the sides of the rectangle.

Hence shew how to find a pair of mean proportionals to two

given magnitudes.!

531. The difference of the ordinates of the points in which

any tangent to an equilateral hyperbola meets the directrices is

to the difference of their distances from the centre as the diagonal

to the side of a square ;
and their distances from the centre are

to one another as the focal perpendiculars upon the tangent.}:

* This construction also (cf. Art. 20, Cor.) is ascribed to Menaechmus.

f The Delian problem of the DUPLICATION OF THE CUBE (i.e. the construction

of a cube of twice the volume of a given cube), which so exercised the ancient

geometers, was reduced by Hippocrates of Chios to the problem of finding a pair

of mean proportionals to two given magnitudes (Art. 20, Cor. and Exx. 432, 529, 530).

See Reimer's Uistoria Problematis de CUBI DUPLICATIONS (Gottingse, 1798) ;
Walton's

Problems in {(lustration of the principles of Plane Coordinate Geometry, p. 157 ;

Bretschneider's Die Geometrie und die Geometer vor EUKLIDKS, 78. The method

of Ex. 530 is employed in Gregoire de St Vincent's Opus Geometricum Quadratures

Circuit (Lib. vr. prop. 138, p. 602), and elsewhere. The TRISECTION OP THE ANGLE

(Exx. 308, 390, 528) like the former problem is equivalent to the solution of a cubic

equation, and either may be effected by the intersection of a circle with a parabola

as was proved, in the third book of his Geometria, by DBS CARTES ;
who further shews

that solid problems in general can be reduced to the same two constructions, and

gives his reasons for concluding a priori that " Problemata SoHda construi non possint

absque Sectionibus Conicis, nee qua mayis composita sunt sine aliis lineis, mugis

compositis."

J Exx. 5317 are from Booth's New Geometrical Methods, i. 2912 and i. 343
;

Exx. 538 40 from Gregory St. Vincent's Opus Geom. Quadrat. Circuit, Lib. vi.

props. 146, 156, 1G6 (pp. 606-16).
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532. The auxiliary circle of an equilateral hyperbola is the

envelope of the lines joining the points in which any two diameters

at right angles meet the curve and its directrices respectively.

533. If tangents be drawn to an equilateral hyperbola from

a point on one of its directrices and their chord of contact be

produced to meet the directrix, the intercept upon it between

the chord and the point will subtend a right angle at the centre ;

and if the tangents be drawn from any point not on the directrix,

the focal distance and the polar of the point will intercept on the

directrix a length which subtends a right angle at the centre.

534. The intercepts on either directrix of an equilateral

hyperbola between any chord and the tangents at its extremities

subtend equal angles at the centre.

535. The chords drawn from any two fixed points on an

equilateral hyperbola to a variable point on the same intercept

on either directrix a length which subtends a constant angle at

the centre, the constant angle being a right angle in the case in

which fixed points are the vertices
;
and the angles subtended

at the centre by the intercepts on the two directrices are together

equal to the angle subtended by the chord joining the fixed

points.

536. If a right angle revolve about the centre of an equi-

lateral hyperbola, the abscissa of any point on either arm varies

inversely as the abscissa of the point in which its polar meets

the other arm.

537. If a diameter of a parabola meet the curve in P and

the directrix in M and a length MPQ be taken on it equal to

the normal at P, the locus of Q will be a rectangular hyperbola

having its centre at the vertex of the parabola. If M'P'Q'
be any second position of MPQ, shew that the hyperbolic area

QMM'Q' is equal to the product of the arc PP' of the parabola

and its semi-latus rectum.*

* When the diameters are consecutive the distance between them is to the arc

PP1
as the subnormal at P to the normal, whence the required result readily follows.

Thus the QUADRATURE of the Hyperbola ia reduced to the RECTIFICATION of the

Parabola,
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538. A hyperbola having for asymptotes the axis of a

parabola and the tangent at its vertex cuts the parabola in O,
and APQ is drawn from the vertex of the parabola to meet it

in Q and to cut the hyperbola in P; prove that if the ordinate

of Q cut the hyperbola in R, the segment A OP is equal to one-

third of the segment APM-, and if from the latter segment
A O'P be cut off equal to one-third of its area, then will A 0'

and the ordinate of O' meet QR and AQ respectively on a

parallel through to the axis of the parabola.

539. If from any two points Q and Q on the above hyper-
bola parallels be drawn to its asymptotes meeting the curve in

M, M' and N
t
N r

,
the areas OQM, OQN, OQ'M', OQ'N' will

be proportionals.

540. If through the point Q a second parabola be drawn

having the asymptotes for its axis and the tangent at its vertex,
the arcs of the two parabolas will trisect the area QMN.

NOTE ON THE NINE-POINT CIRCLE.

The property of the Nine-point Circle was stated and proved by
Brianchon and Poncelet in Gergonne's Annales, xi. 215 (1821).
See above, p. 175, note. The property may be verified as suggested
in Ex. 512, viz. thus. Each of the six chords connecting a triad

ABC and its orthocentre (Art. 69) is a diameter of one of the
series of equilateral hyperbolas which can be drawn through
A, S, C: these six chords are therefore bisected by the locus of
centres (a circle), which also contains the three intersections

D, E, F of the chords taken in opposite pairs (Art. 54 and p. 171,

note). A short proof by inversion of the theorem (Salmon's Conic

Sections, Art. 131, Ex.), that the nine-point circle of a triangle touches

its inscribed and exscriled circles, was given by Mr. J. P. Taylor,
Fellow of Clare College, in the Quarterly Journal of Mathematics,
vol. XHI. p. 197. The same nine-point circle touches the SIXTEEN
inscribed and exscribed circles of the four triangles determined by
a triad and its orthocentre.
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CHAPTER VII.

THE GONE.

71. An unlimited straight line which passes through a fixed

point in space and moves round the circumference of a fixed

circle generates a surface which is called a Cone.* The line in

any of its positions is called a Side or a Generating Line of the

cone
;
the fixed point is called the Vertex^ and the straight line

joining it to the centre of the circle is called the Axis of the

cone.f

When the axis is at right angles to the plane of the circle

the surface generated is a Right Circular cone : in other cases

the cone is called Oblique or Scalene. In this chapter we shall

shew that the curve of intersection of a cone with a plane is a

parabola, an ellipse, or a hyperbola ;
and we shall derive their

elementary properties from the cone
itself, confining our attention

in general, for the sake of simplicity, to the right circular cone.

In the particular case in which the section of a right

circular cone is taken at right angles to its axis, it is evident

that the section is a circle. Any circular section may be

regarded as the Base of the cone.

The Focal Spheres of any plane section of a right circular

cone are the spheres which can be inscribed in the cone so as

to touch the plane of section. Their points of contact may be

defined as the Foci, and the intersections of their planes of

contact with the plane of the section as the Directrices of the

* The complete cone consists of two infinite portions on opposite sides of the

vertex. The (right) cone as denned by EUCLID (Book xr. def. 18) is the finite

figure (p. 193) described by the revolution of a right-angled triangle about one of

the sides containing the right angle.

t The cone and its axis are thus defined by APOLLONIUS at the beginning of his

TTpl K.IDVIKUV (p. 13, ed. Halley). In the oblique cone, which has two sets of

circular sections, this definition gives two lines, either of which may be called the
" axis." In analytical treatises on Solid Geometry the term axis is not used as above.
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section. We shall shew that these points and lines are identical

with the foci and directrices as hereinbefore defined.

In what follows suppose a plane through the axis and at

right angles to the base of the cone to be taken as the Plane

of Reference and the Section to be made by a plane at right

angles thereto.

THE ORDINATE.

PROPOSITION I.

72. The square of the principal ordinate in any section varies

as the product of the corresponding abscissae.

(i)
Let A and A' be the vertices of the section, PF a

principal double ordinate meeting AA' in N
t
and let the plane

of circular section through PF meet OA' in Z, and OA in M
t

the point being the vertex of the cone.

Then in the circle PN* is equal to LN.MN. And as LM
moves parallel to itself, MN varies as AN and LN varies as

AX. Therefore PX~ varies as AN.A'N, or the square of the

ordinate varies as the product of the abscisses.

"When the section cuts all the generating lines on the same
side of the vertex it is an Ellipse, and when it cuts both

branches of the cone (fig. p. 199) it is a Hyperbola.
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(ii)
If the axis AN of the section be parallel to the side OL

of the cone, then, in the figure of Art. 74, since the length LN
is constant whilst NR varies as the abscissa AN, therefore PN 3

(or LN. NJR) varies as AN, and the section is a Parabola.

Hence it appears that whatever be the vertical angle of the

cone the section is a parabola, a hyperbola or an ellipse according

as the angles LOA and OAN are together equal to or greater

or less than two right angles.

Corollary 1.

Since in the former part ofthe proposition

PN* : AN. A'N= LN.MN : AN. A'N= AH. A'K : AA",

where AH and A'K are the diameters of circular sections, it

follows that the conjugate axis of the section is a mean proportional

to the diameters of the circular sections through its vertices, and

the semi-axis conjugate is a mean proportional to their radii

or to the perpendiculars from the vertices of the section upon
the axis of the cone.

Corollary 2.

Hence it readily follows that the orthogonal projection of the

section upon a plane of circular section is a conic having a focus

upon the axis of the cone.*

SCHOLIUM A.

MEN^CHMUS (or Menechmus) is said to have been the discoverer

of the conic sections, which have been accordingly called after him
the jfrenachmian Triads. Thus Proclus in the second book of his

commentaries on the First Book of Euclid, writing on Def. 4, states

upon the authority of Geminus :
" But with respect to these

sections, tho conic were invented by Mcenechmus
(tic.'], which also

Erastosthenes relating says, Nor in a cone Manechmian ternaries

divide
1 '

(Thos. Taylor's Proclus, i. 134); and see the end of the

letter of Erastothenes to Ptolemy, given by Eutokius in his com-

mentary on Archimedes, De Sphar. et Cyl. (Archim. Op., p. 146,
ed. Torelli), where the same verse,

prfe Mevixfj.tiovc KWOTOpelv rpiddac,

* This property was given by \V. H. Talbot, of Cambridge, in Gergonne's

Annakf, xiv. 126.
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appears in its original context. The authorities are given as above
in Bretschneider's, Die Geometer und die Geometric vor Euklides,

116, p. 155.

The parabola, the ellipse, and the hyperbola were anciently

regarded as the sections of right circular cones of different angles
by planes at right angles to their sides, and were accordingly known
as the sections of the right-angled, the acute-angled, and the

obtuse-angled cones respectively. APOLLOXIUS shewed that they
could all be cut from one and the same right or scalene cone, and
he gave them their names Parabola, Ellipse, Hyperbola, for the
reason assigned above in Chap. rv. Scholium A, p. 82. See Pappi
Alex. Collectio, lib. vn. 30 (p. 672, ed. Hultsch) ;

and J. H. T.
Miiller's Beitrdge zur Terminologie der Griechischen Mathematiker,

p. 25 (Leipzig, 1860). ARCHIMEDES is sometimes wrongly sup-

posed to have employed the term Parabola, for the reason that one
of his treatises came to be known by the title, 'Apxi/jui$ove TrPa-

ywj'tffyuoj IlapafioXfjs, whereas throughout the treatise the author
uses only the periphrasis, y rov opQoyuviov KWVOV ropd. In like

manner he calls the ellipse / rov o^vywvt'ov KWVOU 7-0/10,
and the

exceptional occurrence ol the term Ellipse itself in his work De
Conoid, et Sphceroid. (lib. i. cap. 9, &c.) is rightly attributed to an
error of transcription.

Eutokius, at the commencement of his commentary on the Conies

of APOLLONIUS (p. 9, ed. Halley) explains the names of the three

conies as follows.* Let LOR be the angle of the cone, ^^Vthe axis

of the section supposed at right angles to the side OR, and A the

vertex of the section, which will be a Parabola, a Hyperbola, or an

Ellipse, according as the angle of the cone is equal to, or greater or

less than a right angle. The Parabola is accordingly said to be BO

called because AN is parallel to OL : the Hyperbola because the

angles LOA and OAN together exceed two right angles, or because
NA falls beyond the vertex and meets the side L produced : and
the Ellipse because the angles LOA and OAN are together less

than two right angles, or because it is a defective circle (KVK\OV

e'XAjiTTTJ).
It however the names in question were first introduced

by APOLLONIUS, it is clear that they are to bo explained as on p. 82.

The property of the ordinate there given is used by him to discri-

minate between the three conies and forms the actual basis of his in-

vestigations, so that having once obtained it he makes in reality

very little further use of the cone.

THE ASYMPTOTES.
PROPOSITION II.

73. The sections of a cone by parallel planes are similar

curves ; and the asymptotes of the hyperbolic sections made by

* The passage is given in the Greek at the end of Walton's geometrical Problems

(see above, Ex. 530. note).

02
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parallel planes are parallel to the sides of the cone ichich lie

on the parallel plane through its vertex.

If any fixed straight line through the vertex of the cone

meet a pair of parallel planes in M and N, and if a variable

plane through OMN meet the sections made by those planes in

P and Q, then

MP-.NQ=OM: ON;
or the parallel vectors MP and NQ are in a constant ratio, and

the sections are therefore similar.

X IfM and N be the centres of a pair of hyperbolic sections

the vectors MP and NQ become infinite together : hence the

asymptotes of any two parallel hyperbolic sections are

parallel to one another, and therefore also to the sides of the

cone determined by the parallel plane through the vertex, since

this is a limiting position of one of the planes of section.

Corollary.

The angle between the asymptotes of a hyperbolic section

cannot exceed the vertical angle of the cone; and conversely

in order to cut a hyperbola of given eccentricity from a cone

we must take a cone whose vertical angle is not less than that

between the asymptotes.

THE FOCAL SPHEEES.

PROPOSITION III.

74. The distance of any point of a section from the point of

contact of its plane with either focal sphere is in a constant ratio

to the distance of the point from the plane of contact of the sphere

with the cone, or to its distance from the line in which that plane

meets the plane of section.*

Let S be the point in which the plane of the section touches

* The reader who prefers to define a conic as the section of a cone by a plane

may define its foci and directrices by means of the focal spheres (p. 192), as Pierce

Morton (Schol. B) proposed to do. The proposition will then take the form that
" The distance of any point on a conic from either focus is in a constant ratio to its

distance from the corresponding directrix."
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either of its focal spheres, and MX the line in which it meets

the plane of contact of the sphere with the cone.

Take any point P on the section, and let Q be the point
in which the side of the cone through P touches the sphere,
and let PM be supposed parallel to the aods of the section.

(i) Then the tangent PS to the sphere is equal to the

tangent PQ, and the perpendicular from P to the plane of

contact varies as PQ, and likewise, as PM\ and therefore SP
varies as that perpendicular, and likewise as PM.*

Hence the point of contact S and the line MX are a Focus

and Directrix in accordance with their definition on p. 1.

(ii) This result is usually obtained, rather less directly, as

follows.

Having made the same construction, let the side of the cone

through the vertex A of the section touch the sphere in E

and meet the plane of circular section through P in B
;

let PN
be the ordinate of P to the axis AN of the section, and let X
be supposed to lie in the plane of reference.

* If a and /3 be the inclinations of the axis of the cone to the axis of the section
and to a side of the cone respectively, then SP = cos a . sec /3 . PM; or the eccentricity
is equal cos a . sec p, and is therefore limited by the vertical angle of the cone and
cannot exceed sec ft.
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Then since SP is equal to PQ, and PQ is equal to RE,
therefore SP is equal to HE.

Hence and by parallels,

SP : NX= RE : NX=AE : AX
= AS'.AX,

or SP is to PM or NX in the constant ratio of 8A to AX.
In the case of a bifocal conic the second focus and directrix

are determined in like manner, as is indicated in the diagrams
of Art. 75.

PROPOSITION IV.

75. The sum or difference of the distances of any point on

a section from the points of contact of its plane with the focal

spheres is constant^ being equal to the intercept made by the planes

of contact of the spheres upon any side of the cone.

Let 8 and H be the foci, or points of contact of the focal

spheres, and Q aiid E the points in which the spheres meet

the generating line through any point P of the section.
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(i) Then since the tangents from P to either sphere are

equal, therefore by addition in the case of the ellipse,

8P+HP= PQ + PR = QR,
which ia the same for all positions of P on the section,

(ii) And by subtraction in the case of the hyperbola,

which is constant, as in the former case.

Corollary.

In the first figure if OA and OA', drawn from the vertex

of the cone to the vertices of the section, touch the $-sphere
in E and

',
then

OA'-A'S=OE'=OE=OA-AS
J

or OA ~ OA is equal to SH. In the second figure it may be

shewn in like manner that OA' + OA is equal to SH. Hence
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the eccentricity is the ratio of OA' OA to AA'^ and the

distance of the foci from the centre is \ (
OA' OA}.

PROPOSITION V.

76. The tangent at any point of a section makes equal angles

with the focal distances and with the side of the cone*

Let TPt be the tangent at any point P to the section, and

let the side OP of the cone meet the focal spheres in p and p.
Then since the tangents PS and Pp to the ^-sphere are

equal, and likewise the tangents TS and Tp, therefore the

* This property and its applications were pointed out by me in an article on

An Angle-property of the Right Circular Cone contributed in June 1871 to the

Messenger of Mathematics (vol. I. p. 67), and in subsequent articles. The same

methods were employed in Booth's Treatise on Conies published some years later in

the second volume of his New Geometrical Methods; but from the introduction to

that volume we learn (p. x) that the substance of the treatise had been read before

the Royal Irish Academy in 1837, although not published till forty years after.
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triangles TSP and TpP are equal in all respects, having their

angles at T equal and their angles at P and their supplements

equal.

In like manner it may be shewn that the angles at T and

those at P in the triangles THP and TpP are equal.

Hence L SPt =pPt =p'PT= HPT,
or the tangent TPt makes equal angles with the focal distances

SP and HP and with the side OP of the cone.*

PROPOSITION VI.

77. If tangents be drawn to a section from any point in its

plane, and a side of the cone be drawn through either point of

contact, the intercept upon it between the focal spheres subtends

at the point of concourse of the tangents an angle equal to the

angle between them.

It may be shewn as in Art. 76 that the angles STP and ^> TIP

are equal, where T is any point on the tangent at P; and in

like manner that the angles HTP and p TP are equal.

Hence LpTp' = STP+ HTP= STH+ 2STP.

If TR be the second tangent from T to the section, and

if the side of the cone through R meet the spheres in q and q',

it may be shewn in like manner that

L qTq' = STR + HTR = STH+ 2STR.

And since the triangles p Tp and q Tq' have their sides which

touch the spheres equal and their bases pp and qq equal, their

angles at T are equal. Hence a fresh proof that the angle STP
is equal to HTR (Art. 50) ;

and it follows that

as was to be proved.f

Corollary.

If PTR be a right angle, pTp is a right angle and T lies

on a certain sphere. The locus of T is therefore the section

* This may also be proved by the method of Art. 48 (i), since OP ~ SP is

constant.

t Observe that the triangle Tpp' is identically equal to the triangle STH' of

Art. 50 (Cor. 2 and Scholium D).
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of a sphere by a plane; that is to say, it is the circle which

is called the Director Circle.

PROPOSITION VII.

78. The conjugate axis of any section is a mean proportional
to the diameters of its focal spheres^ and its latus rectum varies

as the perpendicular to the plane of section from the vertex of
the cone.

Let AA1 be the axis of the section and / and F the centres

of its focal spheres.

(i) Then since fA and FA bisect the supplementary angles

between AA' and the side of the cone through A, therefore

by similar trianglesfSA y FHA,

fS'.AS=AH:FH,
and therefore fS.FH= AS. AH= CB*,

or CB is a mean proportional to the radii of the spheres, and

2 CB to their diameters.
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(ii)
Draw OL perpendicular to AA'

,
and draw fk and FK

to the points of contact of the spheres with the side OA of

the cone.

Then since OK is equal to the semi-perimeter of the triangle

OAA',

fk.OK=& OAA = \OL. AA',

where OK varies as the radius FK.

Therefore OL . AA' varies asfk . FK or CB*
;
that is to say,

OL is in a constant ratio to the latus rectum.

Corollary.

If a sphere be described about the vertex of the cone as

centre, the latus rectum of the section made by any plane

touching it will be constant, and will be equal to the diameter

of the circular sections whose planes touch the sphere.

PROPOSITION VIII.

79. The sphere of which the line joining the centres of the

focal spheres of any section is a diameter contains the auxiliary

circle of the section.

(i) Since fF (in Art. 78) subtends right angles at A and A',

the sphere on fF as diameter cuts the plane of section in the

circle on AA as diameter, which is the auxiliary circle of the

section.

The annexed duplicate proof further establishes the relation

between the auxiliary circle and the tangent.

(ii) Through any tangent YZ to the section draw a plane

through / and likewise a plane through F. These bisect the

supplementary angles between the plane of section and the

tangent plane through YZ to the cone, and are therefore at

right angles.

If SY and HZ be the focal perpendiculars upon the tangent,

fY is at right angles to YZ and to the plane FYZ.
Hence fY is at right angles to FY, and the sphere on fF

as diameter passes through F, and its trace on the plane of

section is a circle, whereof AA is evidently a diameter.
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Corollary.

The right angled trianglesfSY and FEZ being similar,

8Y. HZ=fS. FH= CB\

or the product of the focal perpendiculars upon the tangent is

constant.

SCHOLIUM B.

The constructions for the Foci and Directrices of the sections of
the cone are due to Hamilton, Dandelin, and others.

HUGH HAMILTON of Dublin, in Lib. n. prop. 37 of his work
entitled De Sectionibus Contois Tractatus Geometries in quo ex natura

iptius Coni Sectionum Affectiones facillime deducuntur mtthodo nova

(Londini, 1758), establishes the following properties. In the

figures of Art. 75 (supposing the spheres to be omitted) if S be a
focus and AE be taken equal to AS, then (1) the ^-directrix is

determined by the intersection of the plane of the conic with the

plane of circular section EQE 1

;
and (2) the vector SP to any point

P of the conic is equal to the segment PQ cut off by the same
circular section from the side OP of the cone

;
and (3) when the

conic is bifocal two circular sections are thus determined which

intercept on any side of the cone a length QR equal to the
transverse axis. Having thus established the equality of AS, AE
and of A'S, AE', as well as the equality of OE and OE', he had

virtually proved that the focus S might be determined as the point
of contact of AA' with the inscribed circle or one of the escribed

circles of the triangle OAA', or in other words as the point of
contact of a Focal Sphere with the plane of section. He did not
however state his conclusion in this form, but presupposed the

determination of S by the relation AS . A'S = CB~, and then proved
MX to be the directrix by shewing that CS : CA = SA : AX.

QUETELET contributed a M&moire sur une nouvelle Theorie des

Sections Coniques considtr&es dans le Solide (presented Dec. 23, 1820)
to the Nouveaux Mtmoires de VAcademie Royale des Sciences et Belles-

lettres de Bruxelles (tome n. pp. 123 153, 1822), in which he
shewed inter alia (1) that the foci of a section are determined by
the relation OA i OA' = SIT; and (2) that in an elliptic section

OP - SP is constant and equal to OB - CA. These results, so far

as they go, are identical with Hamilton's
;
but Quetelet (unlike

Hamilton) gives no construction for the directrices. In the course

of the above Mimoire he refers to his tract on the Curva Focalit, or

"Focale" (Gandavi, 1819).

DANDELIN, in a Memoire sur quelgues proprieth retnarquables de la

Focale Parabolique published in the same volume of the Nouveaux
Mtmoires (n. 171 202), begins by inscribing the FOCAL SPHERES
and thus determining the foci of the sections. In tome in. (1826)
ho extends the same construction to the Hyperboloid of revolution,
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but in neither case does he make any mention of the directrices.

See also tome iv. 77 ; Quetelet's Correspondance tnathematique et

physique, i. 82 ; Gergonne's Annales, xv. 392.

A complete determination of the Foci and Directrices of the

sections of the cone by means of the Focal Spheres was at length
proposed by PIERCE MOHTON (B.A., 1825) before the Cambridge
Philosophical Society in 1829 (Transactions, vol. in. pp. 185 190,

1830; and see pp. 228 9 of the anonymous Geometry, Plane Solid

and Spherical, in the Library of Useful Knowledge, London, 1830).
From his introductory remarks it would seem that ho was not

acquainted with the investigations of Hamilton and Dandelin.

THE SEGMENTS OF CHORDS.

PROPOSITION IX.

80. A chord of a cone being divided at any point^ to determine

the rectangle contained by its segments.

Upon the surface of a right or scalene cone take any two

points A and A' (figures of Art. 75), and in the line AA' or

its complement take any point A': it is required to determine

the magnitude of the rectangle XA . XA'.

Take any fixed circular section KRK', and from the vertex

of the cone draw a parallel to AA' to meet its plane in Z
and let the plane AOZA' meet the fixed circular section in

K and K' and the parallel section made by a plane through X
in E and E'.

Then by similar triangles AEX, ZKO and A'E'X, ZK'O,
XA . XA' : XE. XE' = ZO* : ZK . ZK',

where (1) the latter ratio depends only upon the direction of

AA', since when this is given the point Z is known and the

product ZK.ZK' is determined, and (2) the magnitude of

XE . XE' depends only upon the position ofX in space.

By taking A and A' on a given plane of section we deduce

the results of Art. 16.

SCHOLIUM c.

The method of Prop. ix. is frequently attributed to Hamilton,
in whose treatise it holds a prominent place (Sectiones Conioa, 1768,
Lib. i. props, x. XL). He supposed that he had thereby settled

the old controversy about the cone and the piano in favour of the

ancients, who derived the "sections" from the cone; not being



206 EXAMPLES.

aware that the property in question could be proved in piano with
at least equal ease (Art. 16). Hamilton's proposition had appeared
in the preceding century in the Tractatus xxrv. De Sectionibus

Conicis, props. 48, 49 (pp. 419 20) appended to EUOLIDES
ADAUCTTJS Sfc. auctore D. Guarino Guarino (Augustce Taurinorum,
1671) ;

where in prop. 48 the case of two parallel chords cut by a

single chord is considered, and the property of two pairs of parallel
chords is deduced in prop. 49. See also Synopsis Palmariorum
Matheseos : or A New Introduction to the Mathematics, by W. Jones

(London, 1706), Part n. 69 (3), p. 255 : "In any Conic Section,
if two Parallels are cut by two others, and all terminate at the

Curve, the Rectangles of the Segments shall be Proportional."
These references are given by Abr. Robertson, Sectionum Conicanim
libri septem, p. 348 (Oxon. 1792).

EXAMPLES.

541. The latus rectum of a parabola cut from a given

right cone varies as the distance between the vertices of the

section and of the cone.

542. The foci of all similar sections of a given right cone

lie upon two other right cones.

543. Prove by means of Art. 75, Cor. that the parallel

sections of a cone have the same eccentricity; and give a

construction for cutting an ellipse of given eccentricity from

a given right cone.

544. The eccentricity of a section is a ratio of majority
or minority according as the acute angle between the axes

of the cone and of the section is less or greater than half the

vertical angle of the cone.

545. If two or more plane sections have the same direc-

trix, the corresponding foci lie on a straight line through
the vertex of the cone.

546. Shew how to cut from a given right cone an ellipse

whose axes shall be of given lengths, or whose latus rectum

and area shall be of given magnitude.

547. The area of the triangle through the axis*, in the right

* APOLLONIUS supposed his sections to be made by planes at right angles to the

plane drawn through the axis of the cone (denned as on p. 192) at right angles to its

base. The triangle through the axis (viz. of the cone) was the triangle determined

by the vertex of the cone and the trace of the conic upon the plane through the

axis. See Chasles, Aperyu ZTistorique, p. 18 (ed. 2, Paris, 1875).
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cone, varies as the square of the minor axis of the section,

and the volume cut off from the cone by the plane of the section

varies as the cube of its minor axis, and is of constant magnitude
so long as the minor axis is constant. Is the same true of the

scalene cone?

548. If the minor axis of a section be given in length and

direction, the locus of the centre of the section is a hyperbola.
"

549. Given a right cone and a point within
it,

construct

the two sections which have the point for a focus
;

and shew

that their planes make equal angles with the straight line

joining the point to the vertex of the cone.

550. The vertical angle of a right cone being a right angle,

the perpendicular from the vertex to any plane is equal to

the semi-latus rectum of the section made by that plane.

551. Shew how to cut a section of maximum eccentricity

from a given cone. Under what conditions is it possible to

cut a rectangular hyperbola from a cone ?

552. Shew how to place a given section (when possible)

in a given cone.

553. If from the centre C of a hyperbolic or elliptic section

a line CVV be drawn at right angles to the axis to meet the

sides of the triangle through the axis, the square of the semi-axis

conjugate is equal to CV.CV
;

and the semi-axis conjugate is

equal to the distance of C from the vertex of the cone in the

case in which the transverse axis of the section is parallel to

the axis of the cone.

554. Two right cones of supplementary vertical angles

being placed with their axes at right angles and their vertices

coincident, shew how to cut from them a pair of conjugate*

hyperbolas. Shew also that if the two cones be cut by a plane

perpendicular to their common generating line, the directrices

of one of the sections will pass the foci of the other.

* That is to say, conjugate in form and dimensions, but not lying in the same

plane.
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555. The locus of the centres of the elliptic sections whose

major axes are equal is a prolate or oblate spheroid.

556. If F be the vertex of a right angled cone, and PN
the ordinate of P in a parabolic section whose vertex is A,
shew that the semi-latus rectum is equal to VP AN.

557. An ellipse and a hyperbola lying in planes at right

angles are so situated that the foci of each are at the vertices

of the other. Shew that if S be the vertex and A the focus

and P any point upon a branch of the hyperbola, and if Q
be any point on the ellipse, then

AS+ PQ = AP+SQ.
558. If two cones be described touching the same two

spheres, the eccentricities of their sections by identical planes

are in a constant ratio.

559. The vertex of a right circular cone which contains

a given ellipse lies on a certain hyperbola, and its axis touches

the hyperbola, and conversely.

560. Two parallel tangents to a section of a right cone

meet in M and M '

a plane which touches the focal spheres

in points Q and Q' on a generating line : shew that a circle

goes round MQM'Q.

561. Determine the asymptotes of a given section of a

scalene cone.

562. Assuming that one focus of the shadow of a sphere

standing on a horizontal plane and exposed to the light of

the sun is its point of contact with the plane ;
find the envelope

of the corresponding directrix, and the locus of the remaining

focus, for a given day and place.

563. By properties of the cone, or otherwise, find the locus

of the extremity of the shadow of a vertical gnomon erected

on a horizontal plane, on a given day and in a given latitude.

564. The centre of a sphere moves in a room a vertical

plane which is equidistant from two candles of the same height

from the floor: determine its locus if the shadows upon the

ceiling be always in contact.
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565. If a point move in a plane in such a way that the sum
or difference of its distances from two fixed points, one of which

lies in the plane and the other without
it,

is constant, its locus

will be a plane section of a right circular cone whose vertex

is at the external given point.

566. Prove in Art. 75 that 8E and SE 1

bisect the diameters

of the circular sections through A' and A respectively ;
and that

SO, AE', A'E cointersect, and hence that S and E'E produced
divide AA harmonically.

567. Prove from the cone that the intercept on any tangent
to a conic between the curve and a directrix subtends a right

angle at the corresponding focus.

568. Prove also that the tangents from any point to a

section subtend equal or supplementary angles at either focus.

569. A tangent to a right cone being drawn, there may
always be drawn through it pairs of planes cutting the cone in

sections which have equal parameters.

570. The section of maximum parameter which can be

drawn through a given point on a right cone has its piano
at right angles to the generating line through the point, and

has its tangent at that point parallel to the base of the cone.

571. Through a given point on a right cone there may be

drawn any number of planes making sections which have equal

parameters ;
and the envelope of these planes is another right

cone, having its vertex at the given point and its axis coincident

with the side of the original cone through that point.

572. In a given right cone, the locus of the foci of all

equal parabolas is a circle whose plane is parallel to the base
;

the locus of the foci of all the parabolas whose planes arc

parallel is a straight line through the vertex of the cone
;
and

the locus of the foci of all the parabolas that can be drawn

in the cone is another right cone having the same axis.

573. The sphere inscribed in a right cone so as to pass

through a vertex of a section intercepts upon the axis of the

section a length equal to its latus rectum.

P



210 EXAMPLES.

574. If sections of a right cone be made having one of their

vertices at a fixed point on the cone, their circles of curvature

at that vertex lie upon a sphere inscribed in the cone.

575. The sum or difference of the tangents from any point

on a conic to the circles of curvature at its vertices is constant.

576. Prove from the right cone that a conic section may
be regarded as the locus of a point such that the sum or

difference of the tangents therefrom to two fixed circles is

constant.

577. Prove from the right cone that a conic section is the

locus of a point such that the tangent therefrom to a fixed circle

is in a constant ratio to its perpendicular distance from a fixed

straight line
;
and prove that in the case in which the straight

line cuts the circle it is the chord of real double contact of the

circle with the conic;* and pcove that the above-mentioned

constant ratio or modulus is equal to the eccentricity of the conic.

578. Two circles have double internal contact with an

ellipse,! and a third circle passes through the four points of

contact. If
tj t'j

T be the tangents from any point on the

ellipse to these three circles, prove that T a = tt'.

579. Notice the forms assumed by the several properties

of the acute-angled cone when its vertical angle is diminished

indefinitely, so that the surface becomes a cylinder.

580. An oblique cone or cylinder being described upon a

circular base, shew that its subcontrary sections are likewise

circular.:}:

* Hence it appears that a focus ofa conic may be regarded as an evanescent circle

having double contact with the conic at the two imaginary points in which it is

intersected by the corresponding directrix
;

and it may be inferred that the lines

joining the focus to the two imaginary points at infinity through which all circles

pass are tangents to the conic, and hence that all conies which have the same two foci

may be regarded as inscribed in the quadrilateral which has the two foci and the two

circular points at iiifiniti/ for its opposite vertices. See SALMON'S Conic Sections,

chap. Xiv, on Methods ofAbridyed Xotation.

t If CM be the central abscissa of a point of contact, and CN the abscissa of any
CM

point on the conic, the tangent from that point to the circle is equal to e .CN.

J Two sections are said to be subcontrary when the traces of their planes

upon the plane of reference are inclined to the sides of the cone or cylinder at angles

which are alternately equal.
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581. Extend the theorems of Art. 72 to the oblique cbne;
and shew that if through any point on a side of the triangle

through the axis there be drawn two planes of circular section

and any other plane between them, the third plane will cut

the cone in an ellipse, having its minor axis in the plane of

reference.

582. If AA' be the axis of a section of a scalene cone,
and AD and Ad be diameters of its circular sections through

A, shew that the square of the distance between the foci is

equal to AD. Ad. Shew also in the right cone, with the

construction of Art. 72, that the circle drawn with the middle

point of AA as centre to bisect AH and A'K passes through
the foci.

583. If a scalene cone be cut by any plane at a given
distance from its vertex, the latus rectum of the section will

be constant.*

584. The transverse axis of a section of an oblique cone

being supposed to lie in
v
the plane of reference, prove that the

circle which touches the axis and passes through the centres

of the two circular sections which can be drawn through
either vertex determines the nearer focus.f

585. If the conjugate axis lie in the plane of reference,

and if two circular sections be drawn through either of its

* This extension of Art. 78, Cor. may be proved as follows. Supposing the

transverse axis to lie in the plane of reference, let DH be the diameter (in that

plane) of the section which is parallel to the base and equidistant with the plane of

the conic from the vertex (fig. Art. 72) of the cone. Draw OYZ parallel to AA' to

meet All in Fand DD' in Z. Then it may be shewn that AY= OZ, and hence

that DD' : AH- A'K : AA'. The latus rectum is therefore equal to DD'. This

theorem is due to James Bernouilli. See the Leipzig Acta Eruditorum, aim. 1689,

pp. 5868; and Chasles' Ajiercu Historujue, p. 19.

t Exx. 584 and 585 are from Chasles' Apcryi Historiqne, Note iv, p. 285, where

it is added that the Eccentricity is a mean proportional (Ex. 582) to the distances

of the centre of the conic from the centres of the two circular sections through either

of its vertices. It is to be noted that (before the directrix came into general use) the

eccentricity was sometimes defined (1) as the distance of the foci from the centre,

or (2) as the ratio of that distance to the semi-axis, or (3) as the ratio
, where 6

denotes the seini-latus rectum and a the perihelion distance of the orbit (Euler's

Theoria Motuum Planetumm ct Cometarum, prob. vin. cor. 1, p. 36).

P2
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extremities, the circle upon the line joining their centres as

diameter passes through the foci.

586. Every tangent plane to a cone cuts the cyclic planes

in a pair of lines making equal angles with the line of contact
;

and every plane through two sides of the cone cuts the cyclic

planes in two lines which make equal angles with those sides.

587. The sum or difference of the angles which any tangent

plane makes with the cyclic planes is constant.

588. The sum or difference of the lines drawn from the

vertex of a right cone to the extremities of any diameter of

a section is double of the line from the vertex to an extremity

of the conjugate axis.

589. If a sphere drawn through the vertex of an oblique

cone cuts the cone in a circle, the plane of a section sub-

contrary thereto cuts the planes of any two great circles

of the sphere in a pair of lines inclined at the same angles as

their planes.

590. The lines of intersection of any tangent plane to a

scalene cone with its two cyclic planes are such that the product
of the tangents of the angles which they make with the inter-

section of the cyclic planes is constant.

591. The product of the sines of the angles which any side

of a cone makes with the two cyclic planes is constant.

592. If a section of a cone be made by a plane which cuts

the planes of two subcontrary circular sections and the sphere

containing them in two right lines and a circle respectively,

and if a chord be drawn to the circle from any point of the

section; the product 'of the segments of the chord is to

the product of the perpendiculars from the assumed point to the

subcontrary planes in a constant ratio.*

* For tliis very general theorem and its corollaries see the article by Mr.
JOHN WALKER on Geometrical Propositions relating to Focal Properties of Surfaces
and Curves of the Second Order in the Cambridge and Dublin Mathematical Journal,
vol. vii. pp. 16 28 (1852). The special case of Ex. 594 is also proved in the Messenger

of Mathematics, vol. IX. pp. 33, 31. See also Mr. S. A. Renshaw's treatise on The Cone

and its Sections (London, 1875).
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593. The above-mentioned constant ratio is the ratio of the

product of the sines of the angles which the cyclic planes make
with the plane of the section to the product of the sines of the

angles which they make with any side of the cone.

594. A sphere being drawn through two subcontrary circular

sections of a cone, and the planes of those sections being pro-
duced to meet

; prove that their line of intersection is a directrix

of the section made by either plane drawn through it to touch

the sphere, and that the point of contact is the corresponding
focus.

595. From the above construction deduce that any tangent
to a conic (from the curve to either directrix) subtends a right

angle at the corresponding focus.

596. All the right cones which have the same conic section

for their base have their vertices upon another conic
sectionj

lying in a plane at right angles to that of the former, the

foci of each curve being at the vertices of the other.

597. If a hyperboloid of revolution and its asymptotic cone

be cut by a plane, their two sections will be similar.*

598. If two spheres be inscribed in a conoidf so as to

touch a given plane of section, the two points of contact will

be the foci of the section.

599. All sections of a conoid made by planes through
one its foci have that point for one of their foci, and they

have the intersections of those planes with the directrix plane

of the conoid for their corresponding directrices.

Coo. The cone whose vertex is at a focus and whose base

is any plane section of a conoid is a right cone.

* For proofs of the theorems of Exx. 5974500 see Button's A Course of Mathe-

matics, composed for the use of the Royal Military Academy, vol. n. pp 196 203

(12th edition, ed. Thomas Stephens Davies, 1843) ;
and see Besant's Conic Sections

treated geometrically, chap. xn.

f A coiwid is the surface generated by the revolution of a conic about one of

its axes.
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CHAPTER VIII.

CUBVATUEB.

81. If PQ be a small arc of a curve and PT its tangent

at P, the angle QPT is called the Angle of Contact of the

arc PQ.
If PQ' be an arc of a second curve touching the former at P,

and if QQ' meet the common tangent in T; then will the

curvature of PQ at P be equal to or greater or less than the

curvature of PQ' at P according as the limiting ratio of the

angle of contact QPT to the angle of contact Q'PT (when PQ
and PQ' are diminished indefinitely) is a ratio of equality j

majority, or minority.

The Circle of Curvature of a conic at any point P is the

circle which has the same curvature as the conic at P: it is

therefore the limiting position of the circle which touches the

curve at P and meets it again at an adjacent point which

ultimately coalesces with P: it is also the limiting position of

the circle which meets the curve at P and at two other points

which ultimately coalesce with P. The centre, radius and

diameter of this circle are called the Centre of Curvature, the

Radius of Curvature, and the Diameter of Curvature of the

conic at P, and its chord in any direction through P is called

the Chord of Curvature of the conic in that direction.

It is easily seen that a circle which cuts a conic must cut

it in two or four points, and hence that the circle of curvature

at any point P of a conic will in general cut as well as touch

it at P, and will also cut it in one other point. Any other

circle touching the conic at P must lie wholly within or without

the former, and since it cannot cut the conic at P it is easily
seen that it cannot pass between the curve and its circle of

curvature at that point. The circle of curvature is therefore
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the circle of closest contact with the conic at P, and is called

its Osculating Circle at that point.

A circle which touches a conic at an extremity of either axis

will in general meet it again at the two extremities of a chord

parallel to the other axis; whence it readily follows that the

circle of curvature at an extremity of an axis is to be regarded
as meeting the conic in four coincident points. It may also

be regarded as having double contact with the conic at two

coincident points,* and it does not cut the curve at its point of

contact. It is easy to determine the points in which any other

circle touching the conic at the same point meets it again,
and hence to shew that no such circle can pass between the

conic and its circle of curvature at that point.

PROPOSITION I.

82. The focal chord of curvature at any point of a conic is

equal to the focal chord of the conic parallel to the tangent at

that point.

Let PSP be any focal chord of a conic, PT the tangent
at P, and HSR the focal chord parallel to PT.

* By regarding the centre of curvature at the vertex as the ultimate position of

the foot of the normal at P when P coalesces with A, we deduce from the property

SG = e.SP (Art. 10) that the radius of curvature at A is equal to AS (1 + e), or

to the semi-latus rectum. By like considerations it may be shewn that the radius of

CA-
curvature at B in tire ellipse is equal to -

.
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Describe a circle touching the conic at P and cutting it at

an adjacent point Q t
and let TQ be taken parallel to PP', and

let it be produced to meet the circle again in H and the conic

in Q'. Then by Art. 16 and by a property of the circle,

TQ.TH: TQ.TQ' = TP* : TQ.TQ'^RR : PF,
or TH: TQ' = ER': PP1

.

Let PS meet the circle again in Uj and let the point Q
coalesce with P, so that the circle becomes the circle of curvature

at P.

Then T likewise coalesces with P, and TQ' with PP', and

TH with PU; and therefore (from the above proportion) the

chord of curvature PU (being the limit of TH} is equal to

the focal chord RR' parallel to PI7

,
as was to be proved.*

Corollary 1.

^\
It follows that in a central conic the chord of curvature at P W.t

through either focus is equal to - -
(Art. 36, Cor.) : in the

G-4

parabola the chord of curvature through the focus, or parallel

to the axis,f is equal to 4/SP: and in the general conic the focal

chord of curvature is equal to ^- (Art. 15, Cor. and Ex. 45).

Corollary 2.

Given the chord of curvature at P in any one direction, the

chord in any other direction can be determined. For let PU
be the given chord and PV any other, and let a parallel to the

tangent at P meet PU in K and PF in F; then it is evident W,

from the circle that

PV:PU=PK:PF,
* This proof is due to Professor TOWNSKND (Salmon's Conic Sections, Art. 397) :

a variation of it will be given in Prop, n., where the circle of curvature is regarded as

the limit of a circle which cuts the conic in three points, two of which ultimately
coalesce with the third.

f Draw a circle touching the parabola iii P and cutting it in R (fig. Art. 32), and
let MR meet the circle again in E. Then MR.MK= MP1 = ISP.MR (Art. 23,

Cor. 2), or MK = 4SP. Hence another proof of the result given above in the text.

It is to be noted that any two chords of the circle of curvature equally inclined

to the normal at P are equal.
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u

or the ratio of PV to the given chord PU is known. If K be

supposed to coincide with S, then

PV.PF=SP.PU=SP.RR,
which gives an expression for the chord of curvature PV in any
direction in terms of the focal chord RR (of the conic) parallel

to the tangent at P. For example, in the parabola it follows

at once that the Diameter of Curvature is equal to

where SYls the focal perpendicular upon the tangent. In the

central conies, supposing KF to pass through (7,
we deduce that

PU'

. CA
the Diameter of Curvature is equal to :

pV, (PU being

. .

drawn through S), or-^ ,
or

CA CB ,
or

PROPOSITION II.

83. At any point of a conic the chord of curvature in any
direction is to the chord of the conic in the same direction as the

focal chords (of the conic] parallel to the tangent and to the chord

of curvature.

Let a circle meet a conic in three adjacent points Q, P, Q'*
and let PU be a chord of the circle, and let it meet QQ' in V
and the conic again in P.

*
Complete the chord Q VQ' in the figure of Prop. i.
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Then by a property of the circle and by Art. 16,

PV.VU:PV.VP'=QV.VQ':PV.VP' = q:p,
where p and q are the focal chords of the conic parallel to

PP and QQ.

Therefore VU : VP = q : p.

Hence, if Q and Q' (and therefore also F) be supposed to

coalesce with P, so that the circle becomes the circle of curva-

ture and QQ' becomes the tangent at P, it follows that the

chord of curvature PU is to the chord of the conic PP' in the

same direction as its focal chord parallel to the tangent at

P to its focal chord parallel to PP', as was to be proved.*

PROPOSITION III.

84. To determine the length of the central chord of curvature

at any point of an ellipse or hyperbola^ and likewise*the length

of the chord of curvature drawn in any other direction.

(i) Let POP be any diameter of a central conic, QV a

double ordinate of that diameter adjacent to its extremity P:

we have to evaluate the central chord of curvature of the conic

'at P.

H.

* If any focal chord meet the tangent at P in T, it follows at once by Ex. 79

(cf. Ex. 447, note) that the chord of curvature at P parallel to it is equal to
op 7? /X

^ ,
as was virtually shewn in Art. 82, Cor. 2. It will be observed that

Prop. it. alone completely determines the curvature of a conic at any point, but

it seemed desirable to regard the subject from different points of view.
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Draw a circle touching the conic at P and cutting it at <2,

and let it meet PP' again in U, and let its chord HQ parallel

to PP' meet the tangent at P in T.

Then since Q V* = TP* = TQ . TH,
therefore TQ.TH-. PV. VP' = CD1

: <7P
2

, >C

or TE:VF=CDy

:CP\
where CD is the semi-diameter conjugate to CP.

By making Q coalesce with P, sp that the circle becomes the

circle of curvature at P, we deduce that

where PU is the central chord of curvature at P.

(ii)
More generally, if QH and PU be parallel chords of

the circle drawn in any direction, and if QV meet PU in JR
Jfcu* 11 /

and CDjn E, then since QR : QVis a ratio of equality when Q
coalesces with P,* it is easily seen, as in the former case, that

ultimately

and it follows by parallels that

PE. TH: CP.VP' = 'CD* : OP',

* See NEWTON'S Prineipia, Lib. I. Sect. I. lemma 7, cor. 2. Also, upon curvature

in general, see lemma 11 with the notes in the edition by Mr. P. T. Main (after

J. II. Evans) of Sections l-lll. IX. XI; and see the Appendix, pp. 131-141, in that

edition (Cambridge, 1871).
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or (Til being now coincident with the chord of curvature PC/)

The Diameter of Curvature at P is equal to r )
where PF

(defined as in Art. 46) is equal to the central perpendicular upon
the tangent.*

PROPOSITION IV.

85. To evaluate the common chord of a conic, and its circle of

curvature at any point.

If three of the four points in which a circle meets a conic

coalesce at P and their fourth common point be Q, it follows

from Art. 16, Cor. 2 that the chord PQ and the tangent at P
are equally inclined to the axis

;
th;xt is to say, the common chord

of a conic and its circle of curvature at any point and their

common tangent at that point are equally inclined to the axis.

(i)
In the Parabola, let the common chord PQ meet the axis

in R, arid let the common tangent at P meet the axis in T.

Then it is easily seen that the second tangent TP' from T
is parallel to PQ, and that PP' is a double ordinate to the axis,

and that PQ is equal to four times PR or TP.f

(ii)
In the Ellipse, let the diameter CD parallel to the

tangent at P meet the common chord PQ in X" then will

PX . PQ be equal to 2 CD\
Take a circle of radius CA, and take any diameter of the

same, and draw the chord PQ making the same angle therewith

as the tangent at P, and let the diameter parallel to that tangent
meet the chord in X.

* The radius of curvature of the general conic may be evaluated by regarding the

centre of curvature as the ultimate intersection of two consecutive normals, and

assuming that SG = e.SP (Art. 10), and PK = & latus rectum (Art. 11). The ex-

PC3

pression
-=^- (Art. 82, Cor. 2) for the radius of curvature has been obtained in this

direct manner by Professor ADAMS (Off. Camb. DM. Messenger of Mathematict,
vol. in. pp. 97-99).

f The chord of curvature in any other direction may be deduced. For example,
it may be shewn by angle-properties that the circle meets PS produced in a point V
lying on the diameter through Q in the parabola, and hence that PI' is equal to iSP.
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Then if PC meet the circle again in P',

It follows by Orthogonal Projection that in the Ellipse (the

same letters being used) PX.PQ is equal to twice the square
of the semi-diameter parallel to PQ: therefore, the diameters

parallel to PQ and the tangent at P being equal,

PX.PQ = 2 CD*.

It is left to the reader to obtain the same result by a method

applicable to the hyperbola also.*

SCHOLTtrM.

APOLLONIUS in treating of maxima and minima takes a point on
the axis of a conic at a distance equal to the semi-latus rectum from
its vertex (Conies, Lib. v. props. 4 6, &c.), which is in fact the
centre of curvature at the vertex, although he does not in any
direct manner touch upon the subject of curvature. Cf. Vincentio
Viviaui's treatise, De Maximis et Minimis geometrica divinatio in

fjuhitum Conicorum Apollonii Pergcei adhuc desideratum (Florent.

1659); and see Abr. Robertson's Sectionum Conicarum lilri septem,

p. 372 (Oxon. 1792).
HUYGHEXS came very near to the subject of curvature when

he propounded his theory
" De linearum curvarum evolutione et

dimensione" (Horologium Oscillatorhim, Pars in. Paris. 1673),
since the evolute of a cu ve is the envelope of its normals and the
locus of its centres of cu vature. The first case of rectification of a
curve was that of the < ubical parabola by William NEIL:| the

cycloid was rectified soon after by Christopher WREST. Huyghens
had previously (1657) reduced the rectification of the parabola
QEx. 535, note] to the quadrature of the hyperbola (Horolog. O&eill.

pp. 72, 77;.

* The proof in the text is given to indicate the applicability of Orthogonal

Projection (chap. IX.) to the treatment of curvature. If any two lines (as PQ and

the tnngent at P) equally inclined to the axis of the ellipse be projected on to its

auxiliary circle, the projected lines will be equally inclined to the axis; or if the

term equally inclined be restricted to parallels, we must say that if two lines make

equal or supplementary angles with the axis, their projections will make equal

or supplementary angles with the axis.

t This was suggested by the Arithmetlca Infinltorum of WALLIS (Oxon. 1G56) :

Van-Heuraet seems to have rectified the same curve independently (1659) very soon

after Neil. See Montucla's Ilhtoire des Mathimatiques, Part IV. lav. vi. 11, tome II.

p. 303. Huyghens awards the palin to the later djscoverer, considering that Neil's

investigation was incomplete (Hot-ofay, p. 72).
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The Osculating Circle received its name from LEIBNITZ: see

Meditatio nova de natura Anguli Contactus*
<$f

Osculi by G. GK L. in

the Acta Eruditorum for 1686 (pp. 289 292, by misprint 489 292).
See also pp. 292300, and the Acta for 1692, pp. 3035,
110 116, 440 6. The subject of curvature was considered by
NEWTON in the seventh and eighth chapters of his Geometria

Analytica.

EXAMPLES.

601. Prove the following construction for the centre of

curvature at any point P of a conic. From the point in which

the normal meets the axis draw a perpendicular to the normal

meeting SP in Q, and from Q draw a perpendicular to SP
meeting the normal in 0. Then is the centre of curvature

at P.

602. The circle which touches a conic at P and intercepts

upon the diameter through P a length equal to its parameter!"

is the circle of curvature at P.

603. The circle of curvature at any point of a conic being
the circle through that point and two others which ultimately

coalesce with it,
shew that the centre of curvature may be

regarded as the point of ultimate intersection of two consecu-

tive normals to the conic.

604. The circle of curvature at any point of a conic may
be regarded as touching three consecutive tangents to the

conic J

605. Determine the position of the common chord of a

parabola and its circle of curvature at an extremity of the

latus rectum.

606. The diameter at either extremity of the latus rectum

of a parabola passes through the centre of curvature at its

other extremity.

* For earlier controversies on the nature of the angle of contact see WALLIS, De

Angola Contactus et Semicircull disquisitio geometrica (Oxon. 1656).

t The parameter of any diameter of a central conic is defined as a third propor-

tional to that diameter and its conjugate.

J For proofs of Exx. 603-4. see the section on curvature in Main's NEWTON,
Appendix (see above p. 219, note).
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607. The radius of curvature at any point of a parabola
is double of the portion of the normal intercepted between the

curve and the directrix.

608. At any point of a parabola the intercept made by
the circle of curvature upon the axis is a third proportional
to the latus rectum and the parameter of the diameter to the

point.

609. At any point Pof a parabola, if Pr"be the projection
of SP upon the tangent, the chord of curvature through the

vertex is a third proportional to AP and 2PY.

610. If R be the middle point of the radius of curvature

at P in a parabola, PR subtends a right angle at S.

6 1 1 . If the normal to a parabola at P be produced to any

point 0, express the radius of curvature at P in terms of tire

line OP and its inclinations to the tangents from 0.

612. The radius of curvature at an extremity of the latus

rectum of a parabola is equal to the projection upon the direc-

trix of the focal chord parallel to the tangent at that point.

613. Given a circle and a straight line, it is required to

find a parabola (see Ex. 607) having the line for its directrix

and the circle for a circle of curvature.

614. The envelope of the common chords of a parabola and

its several circles of curvature is a parabola, and the locus

of their middle points is a parabola.

615. The tangent from any point of a parabola to the circle

of curvature at its vertex is equal to the abscissa of the point.

6 1 6. If tangents TQ and TQ' be drawn to a parabola

from any point T on the fixed diameter which meets the

curve in P and the directrix in M, the centre of the circle

round TQQ' lies at a constant distance 2PJ/ from the directrix.

If be the centre of the circle, I) the projection of upon
the fixed diameter V the middle point of QQ\ and X the

foot of the directrix, shew that

OD : TM= OD-.DV = MX: SX.

Shew also that the radius of the circle varies as ST.
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617. If from the vertex of a parabola chords AR and AR
be drawn equally inclined to the axis, the normals at the

extremities of any chord parallel to AR intersect upon the

normal at R ;* and the centre of the curvature at the ex-

tremity of the diameter which bisects AR lies upon the normal

at#.

6 1 8. Triads of points can be found on a parabola such that

the normals thereat cointersect. The circle through any three

such points passes through the vertex of the parabola, and

the centroid of the triangle which they determine lies on the

axis.

619. In Ex. 616 shew that the ordinate of the point of

concourse of the normals at Q and Q' is to the ordinate of V
as the product of the ordinates of Q and Q' to the square of the

semi-latus rectum. Hence determine the ordinate of the centre

of curvature at P, and likewise the length of the radius of

curvature.

620. Give a geometrical method of drawing normals to

a parabola from a point on the curve.

621. Determine a point on a given conic at which the

circle of curvature is of given magnitude; and in the case of

the ellipse determine the limits of its magnitude.

* Let QQ' in Ex. 616 be supposed parallel to AR. Produce TO to meet the circle

again in N (the point of concourse of the normals at Q, Q'), draw the perpendicular

KH to the fixed diameter, and take HK equal to TM upon Mil produced. Then

it is easily seen that K is a fixed point (the position assumed by N when QQ' passes

through S), and NH : HK=1MX : SX. Therefore N lies on a fixed straight line

through A", which may be proved (from the property of the subnormal) to be the

normal at If. For the above I am indebted to the Rev.- A. F. Torry, Fellow of

St. John's College. The following method may also be suggested : since the angle

0S7'is a right angle (Ex. 146), we have an intercept TO between two fixed straight

lines DO and DT at right angles subtending a right angle at a fixed point S, and we
have to shew that the extremity N of TO produced to double its length lies upon a

fixed straight line. Or again, taking three positions of P in Art. 20 P and P' on

one side and P" on the other side of the axis, and supposing the normals at the

three points to cointersect at a point whose projection upon ths axis is Z, we easily

prove that PN.ZG = P'N'. ZG' - P"N".ZG"; whence it follows, after some re-

ductions, that PN +'P'N' - P"X". On the tetrads of concurrent normals to a

central conic see Ex, 286.
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622. If the osculating circle at a vertex of an ellipse passes

through the further focus, determine the eccentricity.

623. The circle of curvature at a point on an ellipse passes

through a vertex : find the point.

624. The circle of curvature at an extremity of one the

equal conjugate diameters of an ellipse passes through its other

extremity. Explain the corresponding result in the hyperbola.

625. The circles of curvature at the extremities of two

conjugate radii CP and CD of an ellipse meet the curve again
in Q and R: shew that PR is parallel to DQ.

626. Find the points on a central conic at which the diameter
of curvature is a mean proportional to the axes.

627. Express the chord of curvature perpendicular to the axis

at any point of an ellipse in terms of the ordinate of the point.

628. From the point in which the tangent to an ellipse

at P meets the axis a straight line is drawn bisecting one of

the focal distances and meeting the other in Q. Prove that

PQ is one fourth of the focal chord of curvature at P.

629. If the circle of curvature at P in an ellipse passes

through a focus, then P lies midway between the minor axis

and the further directrix, and the parallel to the tangent through
the focus divides the diameter at P in the ratio of three to

one. The circle of curvature cannot pass through either of

the foci if the semi-axis exceed the distance between them.

630. Shew that a conic can be described with a given focus

so as to have a given circle of curvature at a given point.*

63 1. The foci of all the ellipses which have a common maxi-

mum circle of curvature at a given point lie on a circle.

632. The tangent at P in an ellipse meets the axes in H
and

jfiT,
and CP is produced to meet the circle round CHK

in L : prove that 2PL is equal to the central chord of curvature

at P, and that CL . CP is constant.

* This is a limiting case of the problem to describe a conic of which a focus and

three points are given.
'

Q
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633. A hyperbola which touches an ellipse and has a pair

of its conjugate diameters for asymptotes has the same curva-

ture* as the ellipse at their points of contact.

634. At any point P of a rectangular hyperbola, if PN
be a perpendicular to an asymptote, the chord of curvature

C'P*
in the direction PN is equal to

635. At any point of a rectangular hyperbola the radius

of curvature varies as the cube of the radius of the curve.

636. At any point of a rectangular hyperbola the normal

chord is equal to the diameter of curvature.

637. At any point of a rectangular hyperbola the diameter

of the curve is equal to the central chord of curvature.

638. If from a given point on an ellipse there be drawn

a double ordinate to either axis, and if to the diameter through
its further extremity a double ordinate be applied from the

given point, it will be a chord of the circle of curvature at

the given point.

639. The normal chord which divides an ellipse most

unequally is a diameter of curvature,! and is inclined at half

a right angle to the axis.

640. A chord of constant inclination to the arc of a

closed curve divides its area most unequally when it is a

chord of curvature.

641. Every chord of a conic which touches the circle of

curvature at its vertex is divided harmonically by that circle

and the tangent at the vertex.J

642. The radius of curvature at any point of a parabola
is bisected by the circle which touches the parabola at that

point and passes through the focus.

* Curvature is measured by the reciprocal of the radius of curvature.

t The normal in two consecutive positions must cut off equal areas,

iccted at the centre of curvature.

J Exx. 641- 3 are from the Mathematician, vol. I. 290 (London, 1845).



EXAMPLES. 227

643. The radius of curvature at any point of a central

conic is cut harmonically by the two circles which touch the

conic at that point and pass one through each focus.

644. If T be the point of concourse of the common tangents
of an ellipse and its circle of curvature at P, and if be the

centre of the circle, C the centre and S either focus of the

ellipse ;
then T lies on the confocal hyperbola through P, and

OG bisects P77

,
and SPand SFare equally inclined to OS.

645. A circle through the vertex of a parabola cuts the

curve in general in three other points, the normals at which

cointersect. If the point of cointersection of the three normals

describe a coaxal conic having its centre at the vertex of the

parabola, the locus of the centre of the 'circle will be a conic

having its centre at the focus of the parabola, and the ratio

of its axes will be twice as great as the ratio of the axes of the

former conic.

646. Find a point P on an ellipse at which the common

tangents of the ellipse and its circle of curvature are parallel.

Shew that their common tangents and common chord are

parallel to the asymptotes of the confocal hypei'bola through P;
and that their finite common tangent is bisected by the common

chord.

647. The common chord of an ellipse and its circle of

curvature at any point and their common tangent thereat divide

their further common tangent harmonically.

648. On the normal at P to an ellipse PO is measured out-

wards equal to the radius of curvature : shew that PO is divided

harmonically at the points Q and Q' in which it meets the

director circle, and that

1 1 2

PQ PQ' OP'

649. The angle between the normals at adjacent points P
and Q of an ellipse whose foci are $ and S' is equal to

$(P8Q + PS'Q). Deduce that, if PR be the focal chord of

curvature at P,

PR~ S~P* WP'
Q2
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650. Three points can be found on an ellipse whose oscu-

lating circles meet at a given point on the curve :* the three

points determine a maximum inscribed triangle, and the four

points lie on a circle.

* Let BCD be a maximum inscribed triangle, and A the point in which the

osculating circle at B meets the ellipse again. If B' be a consecutive position of S,
the triangles BCD and B'CD must lie between the same parallels. Hence the

tangent at B is parallel to CD, which is therefore equally inclined to the axis with

AB (Art. 85), so that a circle goes through ABCD (Art. 16, Cor. 2). Ex. 650 (except

as regards the area of the triangle) is due to STEINER, who stated the theorem

without proof in Crelle's Journal, vol. xxxn. 300 (1846) : it was proved in vol.

xxxvi. 95, by JOACHIMSTAL, who further shewed that the centroid of the three

points is at the centre of the ellipse, and that the normals at the three points

cointersect.
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CHAPTER IX.

ORTHOGONAL, PROJECTION.

86. THE foot of the perpendicular from any point in space

upon a plane is called the Orthogonal Projection, or briefly the

Projection, of the point upon the plane. The projection of any
line or figure upon a plane is the aggregate of the projections

of its several points thereupon. The term Plane Projection is

defined in Art. 90.

The Parallel Projection of any figure upon a plane is the

aggregate of the points in which a system of parallels from all

points of the figure meet the plane : when the parallels are

taken at right angles to the plane of projection we come back

to the special case of orthogonal projection, to which our atten-

tion will be in the first instance confined.

PROPOSITION I.

87. The projections ofparallel straight lines upon any plane
are parallel straight lines, and each line or segment is in the same

ratio to ite projection.

(i)
The projection of a straight line upon a plane is the

common section of that plane with the plane drawn at right

angles to it through the line, since their common section

evidently contains the projections of all points on the line.

The projections of parallel straight lines, being the common

sections of the plane of projection with a system of planes at

right angles thereto, are themselves parallel straight lines.

(ii)
If any two parallel straight lines AP and BQ meet a

plane in A and B (fig. Art. 89), and if AC and BD be

their projections upon it,
then by similar triangles

AP: AG=BQ : BD,
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or each of the parallels is in the same ratio to its projection,

and in like manner it may be shewn that any segment of either

is in the same ratio to its projection. This ratio is the trigono-

metrical secant of the angle between any of the parallels and its

projection.

Hence it is evident that parallel straight lines (and the

segments of one and the same straight line) are to one another

as their projections upon any plane.

If two or more systems of parallels be projected orthogonally,

each line in any system will be in a constant ratio to its

projection, but this ratio will change as we pass from one

system to another.

PROPOSITION II.

88. The points of concourse of straight lines or curves

correspond to the points of concourse of their projections: tangents

project into tangents: and a curve of any degree or class projects

into a curve of the same degree or class.

(i) Since figures are projected by projecting their several

points, if two or more figures have a point in common their

projections must have the projection of the point in common.

Thus if a variable lino pass through & fixed point, the projection

of the line will pass through a fixed point.

(ii) If P and Q be adjacent points on a curve, and p and q

be the feet of the perpendiculars from them to the plane of

projection, then if Q be made to coincide with P the per-

pendicular Qq must coincide with Pp, and the point q with p ;

in other words, of PQ become the tangent at P, then in the

projection pq will become the tangent at p.

(iii)
It is hence evident that a curve and any straight line

in its plane intersect in the same number of points as their

projections, and hence that a curve and its projection must always
be of the same degree or order

;
and further, that the number

of tangents which can be drawn from any point to a curve is

the same as the number which can be drawn from the projection

of the point to the projection of the curve, and hence that a

curve and its projection arc always of the same class.
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PROPOSITION III.
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89. The areas of all figures in one plane are in, the same

ratio to the areas of their projections on a given plane.

Let AB be the common section of the primitive plane and

the plane of projection, and let PA and QB be drawn from

B D

any two points P and Q in the former plane at right angles to

AB, and let PC and QD be perpendiculars to the plane of

projection. Then since AP and BQ are in a constant ratio to

their projections A C and BQ, the rectilinear figure APQB is in

the same constant ratio to its projection A CDB.
In like manner, if PP' be any segment of AP and QQ' any

segment of BQ, the rectilinear area PPQ Q is in a constant

ratio to its projection ;
and hence the aggregate of any number

of figures as PP'Q Q is in the same ratio to the aggregate of

their projections.

But any rectilinear area in the primitive plane may be

divided into elements as PPQ Q by drawing planes at right

angles to AB, and any curvilinear area may be regarded as

the limit of a rectilinear area. Hence every area is to its

projection in a constant ratio, which is easily seen to be equal
to the secant of the angle between its plane and the plane of

its projection.

90. Plane Projection.

The above propositions all follow from the constancy of the

ratio of AP to its projection, where PA is the perpendicular
from any point P in the primitive plane to its common section

with the plane of projection. The relations between the locus

of P and its projection will evidently still be of the same kind
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if the former plane be turned about AB into coincidence with

the latter, the situation of P in its own plane being supposed
to remain undisturbed. The new position of P will. lie in AC
produced, and will be such that its projection now divides AP
in a constant ratio. Since all points and their projections are

thus brought into one plane, we shall speak of the point C
which divides AP in a constant ratio as the orthogonal Plane

Projection of P.

The relations between a figure and its plane projection may
of course be obtained directly by plane geometry. Thus if PN
be an ordinate to a fixed axis, and if it be divided (externally

f

N M N' M' T'

or internally) in a constant ratio at p, it is easily proved by
similar triangles that if the locus of P be a straight line meeting
the axis in T, the locus ofp will be a straight line meeting the

axis in the same point: parallels as PT^ P'T' correspond to

parallels pT,p'T: and the results of Props. I. in. in general

may be similarly established in piano.

It may be proved also that if two straight lines make

supplementary angles with the axis their projections make

supplementary angles with the axis.

The following examples will serve to illustrate the method

of orthogonal projection.

91. The Ellipse.

A cylinder being regarded as a cone whose generating lines

are parallel, it follows from Art. 72 that the plane sections of a

right circular cylinder are ellipses, which may be of any eccen-

tricity. It follows that an. ellipse of any eccentricity may be
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projected orthogonally into a circle having its plane at right

angles to the axis of the cylinder. This circle will evidently

be equal to the minor auxiliary circle of the ellipse.

An ellipse may also be projected orthogonally in piano into

a circle by producing its principal ordinates in the ratio of CA
to CBj or by diminishing the ordinates to its minor axis in the

ratio of CB to CA
;
and conversely a circle may be projected

in piano into an ellipse by increasing or diminishing every
ordiuatepN in a constant ratio. [Art. 33.

a. Let an ellipse and a circle be projectively related. Let

PQ be any one of a system of parallel chords in the ellipse:

pq the corresponding chord of the circle, which will itself belong
to a system of parallels.

The middle point of PQ corresponds to the middle point o

of pq ;
and if the locus of the one be a straight line, the locus

of the other will be a straight line. But the locus of o in the

circle is a straight line, and therefore in the ellipse the locus of

the middle points of any system of parallel chords is a straight

line. From this it is further evident that conjugate diameters

in the ellipse correspond to diameters at right angles in the

circle.

b. Next let be a fixed point and PQ any chord of the

ellipse passing through it : then pq in the circle will pass

through the corresponding fixed point o.

Let CD be the radius of the ellipse parallel to PQ, and Cd
the corresponding radius of the circle, which will be parallel

to pq. Then by Prop. I.

OP : OQ : CD = op : oq : Cd.

Therefore OP.OQ: CD* = op.oq: Cd\
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or (op.oq and Cd in the circle being constant) OP.OQ varies as

the square of the parallel semi-diameter CD.

c. Since the ordinates PxY and pN in the second figure of

Art. 33 are as CB to CA, the area of any segment or sector

of the ellipse is to the area of the corresponding segment or

sector of the circle as CB to CA, and the area of the whole

ellipse is to that of the circle in the same ratio. The area

of the ellipse is therefore equal to TT.CA.CB, and it is a mean

proportional to the areas of its major and minor auxiliary

circles.

d. Any maximum or minimum or constant area related to

the ellipse projects into an area similarly related to the circle.

Thus, the greatest triangle which can be inscribed in a circle

being equilateral, the greatest triangle which can be inscribed

in an ellipse may be shewn to be that which has its sides

parallel to the tangents at its angular points and its centroid

at the centre of the ellipse.

92. The Equilateral Conies.

Any hyperbola can be projected into an equilateral hyper-
bola in the same way that an ellipse can be projected into a circle

(Art. 33) ;
and thus from certain properties of the equilateral

conies (Art. 61) we can deduce corresponding properties of

central conies in general. For example, having proved for the

equilateral hyperbola (Art. 65) as well as for the circle, that

the conjugate parallelogram is equal to 4(7-4", we infer that

in any central conic the conjugate parallelogram is equal to

AA'.BB'. In like manner other projective properties which

have been established for the two equilateral conies are at once

seen to be capable of extension to central conies in general.

93. Properties of Polars.

Using the same letters as in Art. 41 but supposing the curve

to be a circle, we have the angles at o and T right angles, and

therefore

CO.CT=Co.Ct=CA*,
or Tis a fixed point and tT a fixed straight line.
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111 other words, If a chord of a circle pass through a fixed

point the tangents at its extremities intersect on a fixed

straight line tT, and conversely. The same follows at once

for the ellipse by orthogonal projection.

94. Property of a Quadrilateral.

If ABCD be a fixed quadrilateral inscribed in a circle, PQ a

variable diameter of the circle, Pa, Pb, PC, Pd perpendiculars
to AB, CD, AC, BD respectively; then by Euc. VI. C the

rectangle Pa.PQ is equal to PA.PB, and thus

p p, PA.PB.PC.PD
Pa . Pb = -

p ?)
= PC Pd.

"\&

Project the circle into an ellipse. Then (still using the same

letters) Pa.Pb in the ellipse varies as Pc.Pd, and the lines

Pa, Pb, PC, Pd meet the sides of ABGD at constant angles,

and therefore vary severally as the perpendiculars from P to

those sides.

The theorem is inferred to be true for the hyperbola regarded
as a quasi-ellipse (Scholium C, p. 101), as also for the parabola.

Hence the products of the perpendiculars from any point on a

conic to the sides of a fixed inscribed quadrilateral, taken in

opposite pairs, are in a constant ratio; and conversely, if a

point be thus related to a fixed quadrilateral, its locus will be

a conic circumscribing the quadrilateral.

It follows by supposing two opposite sides of the quadri-

lateral to vanish that the product of the perpendiculars to any two

fixed tangents to a conicfrom a variable point on the curve varies

as the square of the perpendicular from that point to their chord

of contact.

95. Curvature.

The common chord of an ellipse and its circle of curvature

at any point and their common tangent at that point make

supplementary angles with the axis (Art. 85), and may there-

fore be projected into a chord and tangent at a point of a

circle making supplementary angles with a given diameter.

[Art. 90.
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Given a point on a circle, three positions may be found

on the curve of the point P such that OP and the tangent at P
make supplementary angles with a given diameter, and the

three positions of P determine an equilateral triangle.

Hence it may be deduced that there are three points on an

ellipse, lying at the vertices of a maximum inscribed triangle,

whose osculating circles cointersect at a given point on the

circumference of the ellipse. [Ex. 650.

PAEALLEL PROJECTION.

96. The parallel projections of straight lines, being the

common sections of parallel planes drawn through them with

the plane of projection, are themselves parallel straight lines and

it is easily deduced that Props. I. in. in general are applicable

to parallel projection. Moreover it is to be noted that in the

figure of Art. 90 the ordinate PN .may be supposed to meet

the axis at any constant angle and not necessarily at right

angles. We may therefore "
project" a point obliquely also

in piano by increasing or diminishing its ordinate (drawn in

any given direction) in a constant ratio.

Although parallel projection is not essentially more general
than orthogonal projection, it enables us to effect some con-

structions with greater ease and directness, as will appear from

the next article.

97. Any two angles of a triangle may be projected into angles

ofgiven magnitude.

(i)
Given the angles SHP and HSP, it is required to project

them into angles equal to SHg and ffSg respectively. This

may be effected most simply by parallel projection (in piano or

in space) as follows.

Take SH as the axis of projection, and let it meet gP in

Gr. Then (1) if gQ : PO be taken as the projecting ratio, the

triangle SPH may be projected in piano by ordinates parallel to

PG into the triangle SgH ;
or (2) if the triangles be situated

in different planes (having SH for their common section), the

one may be projected into the other by lines parallel to Pg.
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It is hence evident that any triangle may be projected by

parallel lines into an equilateral triangle; and in like manner

that any parallelogram may be projected into a square.

(ii)
To project any triangle SPH orthogonally into an equi-

lateral triangle, let an ellipse be described about it so as to

have its centre at the centroid of the triangle. Then if the

ellipse be projected into a circle, SPH will at the same time

project into an equilateral triangle inscribed in the circle, since

each side of the projected triangle will be parallel to the tangent

at the opposite vertex.

LAMBERT'S THEOREM*

98. The intercept on any focal vector of an ellipse between the

curve and any chord parallel to the tangent at its extremity is

equal to the diametral sagitta of the arc cut off by the corre-

sponding chord in the auxiliary circle.

In an ellipse take any focal vector SP, let the diameter

conjugate to CP meet SP in A", and let any chord QQ' parallel

to CK meet SP in 0.

Produce the ordinates of P, Qy Q' outwards to meet the

auxiliary circle in p, q, q', and let m and o be the middle points

of QQ' and qq', which will lie on a common ordinate omM.

* This name is given to the theorem in elliptic motion deduced below in the

Scholium from Art. 99.
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PO : PK=Pm : PC=po : pC

by parallels; and PK is equal to pC (Art. 38, Cor. 3); and

therefore PO and po are equal, as was to be proved.
If 0' and o be any second positions of and o, it follows

that 00' is equal to oo : thus by taking 0' at S we infer that

SO is equal to the altitude of the triangle Sqq'. If the parallel

from S to qq' meet Cp in s, it is thus evident that every

segment of the line KSOP is equal to the corresponding

segment of the radius Csop. Hence

KS.KO = Cs . Co = CS. CM,

since the angles at s and M are right angles.

99. If in two ellipses described on equal major axes there be

taken equal chords QQ' such. that SQ+SQ' is of the same

magnitude in both ellipses, the areas of the two focal sectors SQQ'
will be in the subduplicate ratio of the latera recta of their ellipses.

In each of two ellipses having equal major axes make the

same construction as in Art. 98, with the proviso that SP* and

PO shall be of the same lengths in both ellipses; then will QQ'
and SQ + SQ' be of the same lengths in both ellipses, and the

areas SQQ' will be in the subduplicate ratio of the latera recta

of their ellipses, and conversely.

(i)
For the semi-diarneter CD parallel to QQ', being a mean

proportional to SP and AA SP, is of the same length in

* Take SP at random in the less eccentric ellipse, and find an equal SP in

the other.
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both ellipses ; and, the sagittse po in the two circles being equal

(Art. 98), the chords qq are equal ;
whence it follows in virtue

of the projective relation

QQ': CD = qq : CA,

that the chords QQ are equal in the two ellipses.

(ii)
And since CM is the abscissa of the middle point of

QQ', therefore

where CS.CM, or KS.KO (Art. 98), is the same in both

ellipses; and therefore also SQ + SQ' is of the same magnitude
in both.

(iii)
It is further evident that the segments qpq are equal

and the triangles Sqq are equal in both circles, and hence

that the two sectors Sqq are equal. It follows by projection

that (the major axes of the two ellipses being equal) the focal

sectors SQQ' are in the ratio of the minor axes of their ellipses,

or in the subduplicate ratio of their latera recta. Conversely,
if two focal sectors SQQ' of any pair of ellipses described on

equal major axes be thus related, then will QQ' and SQ+ SQ'
be of the same lengths in both ellipses.

100. TJie area of any focal sector SQQ' of a central conic

divided by the square root of its latus rectum may be expressed

in terms of QQ', SQ+SQ', and the tranverse axis, and is

independent of the magnitude of the conjugate axis.

This may be inferred from Art. 99 for the ellipse : or it may
be proved by the following method, which will be seen to be

applicable to the hyperbola as well as to the ellipse.

In an ellipse whose axes are AA' and BB' take any diameter

PGP', and let PS meet the conjugate diameter CD in K and

the tangent at P in H, so that PK is equal to CA and PII

to AA'.

* Assume that at any point P on the curve SP CA + e . CIV. Notice also in

Art. 100 (ii) that NA' = PA" - SP - CA - SP - e .
'
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P

With 8 as focus and P and H as vertices describe a second

ellipse, and let KL be its semi-axis conjugate. Then if S'

be the further focus of'the first ellipse,

CD* = SP. PS' = 8P. SH= KL\

(i)
Let QOQ' be any double ordinate to PP', let it meet PH

in
<?,

and let qoq be a double ordinate to PH in the second

ellipse. Then by the nature of ordi nates,

QO* : CDZ = PO.OP' : CP* = Po.off: KP*
=

qo* : KL\
or QO is equal to qo and QQ to qq.

(ii)
And since SK : CN = CS : CA = OS : PK,

and CN: CM=CP: CO = PK:Ko-,
therefore 8K : CM= CS : Eo,

or in terms of the eccentricities e and
e',

e.CM=e'.Ko-,
and therefore

8Q + SQ' = AA' + 2e .CM= PH+ 2e.Ko

= Sq+Sq'.

(Hi) Let a line through S at right angles to QQ' meet QQ'
in m and the tangent at P in n

;
then will the equal chords

QQ' and qq' in any two consecutive positions cut off elements

of area which, being as their own breadths, are in the constant
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ratio of Sin to Soj and this is also the ratio of the triangles

SQQ' and Sqq on equal bases.

Therefore the whole segments QP'Q' and qRq, as also the

sectors SQQ' and Sqq, are as Sm to So, or as $n to SP,
or as (75 to CD or .KX; that is to say (the transverse axes

being equal) the sectors SQQ' and Sqq are in the subduplicate

ratio of the latera recta of their ellipses,

Lastly (calling the second ellipse described as above the

auxiliary ellipse) if any two ellipses having equal major axes

be placed so as to have a common focal vector SP, they will

have the same auxiliary ellipse ;
and it is inferred by comparing

each of the two ellipses with their auxiliary ellipse that their

corresponding focal sectors SQQ' will be in the subduplicate

ratio of their latera recta provided that QQ' and SQ + SQ' be

equal in both. Hence, when the three lengths QQ', SQ+ SQ',

AA are given the area of the focal sector SQQ' divided by the

square root of the latus rectum is determined.

SCHOLIUM.

The substance of the preceding section may be found in

LAMBERT'S Insigniorcs Orbitce Cometanun Proprieties* (pp. 102-125),
where it is deduced that the time in any arc QQ' of an elliptic orbit

described about S is a function of SQ + SQ', the chord QQ, and the

major axis, and does not depend upon the minor axis. For an,

investigation of the expression for the time the reader may consult

the Messenger of Mathematics, vol. vu. p. 97: the result may also

be obtained in the same form by the following process, which has
the advantage of giving a more direct geometrical interpretation to

some of the symbols employed.
Assuming the results of Arts. 98, 99, and noticing further that

tf is equal to CD (Ex. 651), let a denote the angle oCq, and /3 the

angle sCf. Then

Co.Cs CM. OS SQ + SQ
os^=-^r--^-=l-- AA ,

sin a . sin p =

and therefore 1 -
cos(/3 a)

CA3 CA* A A!
'

SQ+ SQ QQ
1

* See above, p. 57
;
and for a further account of the work see the Messenger of

Mathematics, vol. IX. p. 63.

li
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Let n denote the mean motion in the ellipse : t the time in

the arc QQ', which is proportional to the sectorial area SQQ'
CB

(or -~-j sect.Sqq'} divided by the square root of the latus rectum

(NEWTON'S Principia, Lib. i. Sect. in. prop. 14, theor. 6). Then
since in the circle

sect. Sqq'
**

sect.Cqq'
- A (Cqq

-
Sqq')

= CA* (a
- sin a . cos/3),

it may be deduced that

nt = {ft + a - sin (ft
+ a)}

-
{/3

- a - sin (|3
-

a)},

where /3 + a and /3
- a are known functions of AA', QQ, and

SQ + SQ'.
The corresponding theorem in parabolic motion had been given

by EULER in the Miscellanea lierolinensia, torn. TII. pp. 19, 20 (1743).
LAMBERT (1761) extended it to the central conies generally ; although
Lexell in his elaborate article {Nova Ada Academic Scientiarum

Imperial!* Petropolitana, torn. i. pp. (140) (183), 1787) overlooks

Lambert's references in Preface and text (57, 95, 213, &c.) to

the hyperbola. On the parabola see Examples 691 and 692.

EXAMPLES.

65 1 . The diameter parallel to any focal chord of an ellipse

is equal to the projectivelj corresponding chord of its major

auxiliary circle.

652. The orthogonal or parallel projection of a parabola is a

parabola ;
and an ellipse or hyperbola may be projected into an

ellipse or hyperbola of any eccentricity.

653. Shew how to project a parabola and a given point

within it so that the projection of the point may be the focus
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of the projection of the curve :* and thus deduce (from a pro-

perty of the directrix) that the tangents to a parabola at the

extremities of any chord drawn through a fixed point within

it intersect upon a fixed straight line.

654. Any two similar and coaxal ellipses may be projected
into concentric circles. Hence shew that a chord of an ellipse

which always touches a similar and coaxal ellipse is bisected

at its point of contact, and that it cuts off a constant

area from the outer ellipse ;
and shew that the portions of any

chord intercepted between the two curves are equal.

655. Shew how to project any two coaxal ellipses or hyper-
bolas into confocal ellipses or hyperbolas; and extend the

theorem of Ex. 382 to any pair of coaxal conies of the same

species.

656. If a chord of an ellipse and the tangents at its ex-

tremities contain a constant area, the chord cuts off a constant

area from the ellipse and touches a similar ellipse, and the

tangents at its extremities intersect on another similar ellipse.

657. If CP and CD be conjugate radii of an ellipse, and

if the lines connecting P and D with opposite ends of the major
axis intersect in 0] then will DOP and an extremity of the

minor axis determine a parallelogram. When is its area least

or greatest ?

658. The least triangle circumscribing a given ellipse has

its sides bisected at the points of contact.

659. The greatest ellipse which can be inscribed in a given

parallelogram is that which bisects its sides.

660. An ?j-gon described about an ellipse so as to have

its sides bisected at their points of contact is of constant area,

and the w-gon formed by joining every two successive points

of contact is of constant area.

* Let TP and TQ be the tangents whose chord of contact PQ passes through

and is bisected by the given point ;
and let TPQ be projected into an isosceles triangle

right-angled at the projection of T(Art. 97).

K2
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66 1. If a triangle be inscribed in an ellipse, the parallels

through its vertices to the diameters bisecting the opposite

sides meet in a point.

662. Parallel chords drawn to an ellipse through the ex-

tremities of conjugate diameters meet the curve again at the

extremities of conjugate diameters.

663. Two ellipses of equal eccentricities and parallel major
axes can have only two points in common

;
and the common

chords of three such ellipses meet in a point.

664. P, Q, H being three points on an ellipse, a diameter

ACA' bisects PQ and meets RP in N and EQ in T', prove

that CN.CT=CA\

665. Through the centre of an ellipse and the points of

concourse and contact of any two tangents a similar and

similarly situated ellipse can be drawn.

666. A, B, C are similar and similarly situated ellipses,

and B is concentric with A and passes through the centre of

C. Shew that the common chord of A and C is parallel

to the tangent to B at the centre of C.

667. Through a given internal point draw a straight line

cutting off a minimum area from a given ellipse.

668. If the tangent at the vertex A of an ellipse meets

a similar coaxal ellipse in T and J", any chord of the former

drawn from A is equal to half the sum or difference of the

parallel chords of the latter through T and T'.

669. Determine the greatest triangle that can be inscribed

in an ellipse with one angular point at a given point on the

circumference.

670. Given an ellipse, if a parallelogram be inscribed in

it so that one side divides the diameter conjugate thereto in

a constant ratio; or if a parallelogram be described about it so

that one of its diagonals is divided in a constant ratio by the

curve
;
the area of the parallelogram will be constant.
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671. The tangents to an ellipse at P and P' are parallel,

any two conjugate diameters meet them in D and D\ and any
third tangent meets them in Tand T"; shew that

PD: PT=PT :P'D'.

672. A triangle ABC inscribed in an ellipse has its centroid

at the centre of the ellipse ;
shew that the tangents at the

opposite extremities of the diameters through A, J3, .C form

a triangle similar to and four times as great as triangle ABO.

673. If two conjugate hyperbolas having a pair of conjugate
diameters of an ellipse for asymptotes cut the ellipse at points

lying on four diameters 1, 2, 3, 4 taken in order: then will

1, 3 and 2, 4 be conjugate in the ellipse, and 1, 4 and 2, 3

in the hyperbolas.

674. The locus of the middle point of a chord of an ellipse

drawn through a fixed point is a similar ellipse, having its

centre midway between the fixed point and the centre of the

given ellipse.

675. Determine the greatest isosceles triangle that can bo

inscribed in an ellipse with its base parallel to either axis.

676. Any two radii of a circle and any pair of the radii

at right angles thereto determine equal triangles: what is

the corresponding property of the ellipse ?

677. Any double ordinate to a given diameter of an ellipse

being divided into segments whose product is constant, the

point of section traces a similar coaxal ellipse.

678. If the tangents at T and T' to an ellipse meet on

a similar coaxal ellipse having AA' for major axis, shew that

the loci of the points (AT, AT') and (AT
1

, AT) are ellipses

similar to the former.

679. If PP' be a diameter of an ellipse and Q, R be

any two points on the curve, shew that the line joining the

intersections of PQ, P'R and PR, P' Q passes through the

intersection of the tangents at Q and R and is conjugate in

direction to PP 1

.
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680. In a given ellipse shew how to place a chord passing

through a given point in the axis which shall contain with

the radii to its extremities a maximum triangle.

68 1. From the extremities of any diameter of an ellipse

straight lines are drawn to either focus; shew that the radii

parallel thereto in the auxiliary circle meet the circle at points

lying on a chord through the focus.

682. A triangle of constant area being inscribed in an

ellipse, find the locus of its centroid.

683. If Pand Q be projectively corresponding points on an

ellipse and its major auxiliary circle, the radius of the ellipse in

the direction CQ is equal to the perpendicular from C to the

tangent at P.

684. AA being a diameter of a conic and Q any point

on the tangent at A, shew that the line A' Q cuts the conic

in a point B such that the tangent thereat bisects A Q.

685. If CP, CP' be semi-diameters of an ellipse, Q and

Q the points in which the conjugate diameters meet the

tangents at P' and P respectively ;
the triangle determined

by a pair of its semi-axes is a mean proportional to the triangles

CPP' and CQQ.

686. If a triangle inscribed in an ellipse have its sides

parallel to the diameters
Z>', Z>",

b"' and the focal chords
c', c",

c'"
;
and if a, b be the axes and p the parameter of the ellipse,

and J) the diameter of the circle circumscribing the triangle-

shew that

D= Vb"V"*
_

ab

687. The square root of the continued product of the six

focal chords of an ellipse parallel to its six chords of inter-

section with a circle is equal to the parameter of the ellipse

multiplied by the square of the diameter of the circle.

* The theorem is due to MAO CULLAGH. (Salmon's Conic Sections, Art. 3G9).
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688. Shew that S'B (fig. p. 79) is perpendicular to the

tangent from X to the auxiliary circle. If Z be the point

of contact of this tangent and G its intersection with S'B,
determine the eccentricity of the ellipse so that the lines CZ,

SG, XB may meet in a point.

689. Two particles describe the same ellipse subject to the

same force at the centre : shew that their directions of motion at

any time intersect on a similar ellipse.

690. A given triangle may be orthogonally projected from

an equilateral triangle; or it may be orthogonally projected
into an equilateral triangle. Determine by a geometrical con-

struction the magnitudes of these equilateral triangles.

691. Prove by the
t
method of Art. 100 that the area of

any focal sector SMN of a parabola divided by the square
root of its latus rectum may be expressed in terms of SM^+ SN
and JAY.

692. Prove also that if PV be the diametral sagitta of the

arc MNj then

and from this last result deduce that

3
^ c ,.,

7
sector SMN=--- - -

693. If in any two ellipses or hyperbolas on equal trans-

verse axes there be taken equal focal vectors /SP, and if chords

QQ' be drawn in them parallel to the tangents at P and so

as to make equal intercepts on the equal focal vectors; shew

that the chords thus drawn are equal in the two conies, and

that SQ + SQ' is of the same length in both, and that the

* This is here suggested as perhaps the most direct way of establishing geome-

trically the theorem in parabolic motion commonly ascribed to LAMBEBT but

previously discovered by ETLER (Scholium, p. 242).
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focal sectors SQQ' are in the subduplicate ratio of the latera

recta of their ellipses or hyperbolas.*

694. Given, in a conic orbit described about the focus S
under the action of a given force, a chord QQ', the parallel focal

chord, and the sum of the terminal focal vectors SQ+SQ';
the time of describing the arc QQ' is coustant.f

695. Given the directions of two sides of a triangle inscribed

in a given ellipse, determine the envelope of its third side.

* The proof is very much as in Art. 100 ;
but the two conies are thus compared

directly and without the interposition of an auxiliary conic in which the chord qq' of

the sector is at right angles to the principal axis.

t This extended enunciation of LAMBERT'S theorem (as I am informed by Prof.

TOWNSEND) was given in a lecture in the year 1845 by the late Prof. MAC CULLAGH
of Dublin, who proved that the sectorial area SQPQ' and the square root of the

latus rectum of the orbit vary severally as the sine of the angle between SP and QQ',

having previously shewn that OP is constant, and that every chord parallel to QQ7

which cuts SP in a constant ratio is of constant length.
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CHAPTER X.

CROSS RATIO AND IITVOLUTIO2ST.

101. A SET of points on a straight line constitute a Range*
or row, of which the line is called the base or axis

;
and a set

of straight lines radiating from a point constitute a Pencil, of

which the point is called the Vertex or the centre and the lines

are called Rays or radiants.

The ratio of the ratios in which the straight line joining
two points is divided by any other two points in its length
is called a Double Section Ratio, or an Anharmonic Ratio, or

a Cross Ratio of the four points. If two ranges of four points
have one cross ratio of the one equal to one cross ratio

of the other, it may be shewn that every cross ratio of the

one is equal to the corresponding cross ratio of the other:

we may therefore in practice speak of a tetrad as having
one cross ratio only, although its four points determine six

segments to each of which belong a reciprocal pair of cross

ratios.f

102. If a line BD be divided at A and O, the ratio

AB . CD : AD . CB (which is a cross-multiple of the ratios

AB , CB. , i .....
= and -77^0 may be taken as the cross ratio of the pointsAD CD'

ABCD, and it is expressed by the notation {ABCD}. It may

* Collinear points are-(or were) sometimes said to "range on a straight line" for

an example see Booth's New Geometrical Methodt, vol. I. 48.

f For a farther exposition of the principles of Anharmonic Section see

TowssEKD'a Modern Geometry of the Pouit Line and Circle, vol. II. The purpose
of this chapter is not so much to establish these principles as to apply them to

conies.
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be shewn that this ratio is unaltered by the interchange of any
two points of the range provided that the remaining two points

be at the same time interchanged. In other words, it may be

shewn that

{ABCD} = [BADC] = { CDAB] = {DCBA}.

The cross ratio of a pencil of four rajs is that of the range
which it determines on any transversal : this ratio will be shewn

to be independent of the position of the transversal (Art. 103).

The cross ratio of four radiants ABCD is expressed by {ABCD},
and the cross ratio of four radiants 0a, Ob, Oc, Od by [abed]

or {O.abcd}.
Tetrads of points and rays are said to be equal or equian-

harmonic when their cross ratios are equal ;
and ranges and

pencils of any number of constituents are said to be homo-

graphic* when every tetrad of the one system and the corres-

ponding tetrad of the other have equal cross ratios. The

notation

{ABODE &c.}
= [A'B'C'D'E

1

&c.}

is used to express that two systems whose constituents corre-

spond in pairs are homographic. More briefly, if A and A' be

a variable pair of homologous (i.e. corresponding) constituents

of two homographic systems, the equation {A} = {A
1

} may be

used to signify that every four positions of A and the correspond-

ing positions of A' have equal cross ratios. The corresponding

notation for a pencil having its vertex at is {A}.

Thus far we have spoken only of collinear points and of

concurrent lines, but the following definitions may be added

in anticipation of Art. 113. The cross ratio of Four Points on a

Conic is that of the pencil which they subtend at any fifth point

on the curve
;
and the cross ratio of Four tangents to a Conic is

that of the range which they determine on any fifth tangent

thereto. In the special case of the Circle it is at once evident

* This term is sometimes confined to systems of more than four constituents, but

it may be used with equal fitness for the special cause of tetrads, in place of the

longer -word equianharmonic. The still shorter term equal (although not in general

so used) may often be employed with advantage as an abbreviation for "
equal as

regards cross ratio" for which the term equicross is suggested by Prof. TOWNSEND.
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that these ratios are independent of the position of the fifth point
or tangent, since four given points on a circle subtend a pencil

of constant angles at any fifth point on the curve, and since

the segments, of any fifth tangent by four fixed tangents
subtend constant angles at the centre. It will be shewn in

Art. 113 that the cross ratios of four given points on (or

tangents to) any conic are likewise constant.

We proceed to establish certain Lemmas relating mainly

(1) to Cross Ratio in general, and (2) to the special case of

homography called Involution, with a view to their eventual

application to some of the fundamental properties of conies.

CROSS RATIO.

103. The cross ratio of the points in which four fixed

radiants are met by a variable transversal is constant.*

(i) Let four lines radiating from be met by any trans-

versal in the points A, B, (7, D, and let the parallel through B
to OD meet OA in a and OC in b.

Then by similar triangles,

AB:AD= aB -.DO

and CD: CB = DO:Bb.

u r JII/-.TM AB.CD aB
Hence

which is constant for all positions of ab parallel to OD] and

therefore {ABCD} is constant for all positions of ABCD without

restriction.
.

* It is to be noted that this very important theorem of the ancients implicitly
contains the method of Conical Projection.
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"We have thus proved that

where co denotes the point at infinity in which aBb meets OD.
It is to be noted that the transversal may be drawn so as

to cut the radiants (produced through 0} upon either side of

0. Thus in the figure of Art. 107
(i), considering the pencil

whose vertex is and supposing QO to meet AB in E and

CD in F, we have

{DMAQ} = [BPAE] = [BRCQ] = [DPCF],

the rays of the pencil being taken in the same order in every
case.

(ii)
It is further evident that different pencils have equal

cross ratios when their corresponding angles are equal or

supplementary.
For example, if SB and ST turn about S (Art. 9, Cor. 1)

so as to be always at right angles, the pencils S {R} and S {T}
are equiangular and therefore homographic. Or again, if TS
and TH in Art. 50 remain fixed whilst the conic varies (so

that the tangents from T always make equal or supplementary

angles with TS and TH respectively), the pencils T [P] and

T
{ Q] are homographic.

104. Condition that a variable straight line should pass

through a fixed point.

Four rays determine equal ranges upon any two transversals

(Art. 103) ;
and conversely, if two equal tetrads of points on

different axes be such that three of the lines joining them

in homologous pairs meet in a point, the join* of the fourth

pair must pass through the same point.

In particular, if A be a point on one of the four rays, they
determine equal ranges [ABCD] and {AB'C'D

1

}
on any two

transversals through A.

* This term is used by some writers as an abbreviation for the line joining two

points. See for example HENRIOI'S Elementary Geometry, Congruent Figures, 47

(London, 1879). The "join" of two lines is their common point.
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Conversely, if BB' and CC' be any two assumed positions of

a variable straight line, their point of concourse and A that

of BC and B'C', and if OA be a third position and DD' any
other position of the variable line, the condition that DD'
should pass through the fixed point is that \ABCD] should

be always equal to {ABG'D
1

}.

105. Condition that a variable point should lie on a fixed

straight line.

A range of four points subtends equal pencils at any two

vertices; and conversely, if two equal pencils having different

vertices be such that three pairs of their corresponding rays

intersect on one straight line, the fourth pair must intersect

on the same straight line.

In particular, if and 0' be the vertices of two pencils

which have 00'A for a common ray, and if B, C, D be the

intersections of their remaining three pairs of rays, then will

BCD be a straight line provided that

0\ABCD} = 0'{ABCD}.

If now (supposing the rays of the two pencils to be variable)

the intersections of two pairs of homologous rays be at given

points B and
(7, the remaining intersection D will lie on the

fixed straight line BC.
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This result and that of Art. 104 may be together expressed
as follows :

If two tetrads of points or rays ABCD and A'B'C'D' be

equianharmonic, then if one pair (A, A
1

}
coalesce the remaining

three pairs (B, B'), (C, C'), (D, D") are in perspective.

106. Condition that a tetrad of points or rays may be har-

monic.

(i)
If BD be divided harmonically at A and C, and if the

signs be used to denote opposite directions, then it is easily

seen that

AB CD _AD CB__OB AD _
AD' CB~AB' ~CD~ ~CD'AB~ ly

or {ABCD} = [ADCB] = { CBAD] = - 1.

The condition that the range ABCD should be harmonic

is therefore that the points A and C or the points B and D
should be separately interchangeable. Each pair of inter-

changeable points are said to be harmonically conjugate to each

other with respect to the remaining pair.

(ii) A pencil {ABCD} will be harmonic if a transversal

drawn parallel to one of its rays OD be cut in equal and opposite

segments Ba and Bb (fig. Art. 103} by the remaining three

rays. For example, since DP in Art. 60 is parallel to one

asymptote and is bisected by the other, it follows that the

asymptotes and any two conjugate diameters of a hyperbola con-

stitute a harmonicpencil.

(iii)
A pencil will also be harmonic if two of its rays be

the bisectors of the angles between the other two. For ex-

ample, the tangent and normal and the focal distances at any

point of a conic constitute a harmonic pencil.

107. Properties of a complete quadrilateral.

Let ABCD be a quadrilateral, and let 0, P, Q be the

intersections of (AC, BD), (AB, CD), (AD, BC) respectively.

Then the figure as thus completed is called a Complete Quad-

rilateral, and PQ is called its third Diagonal.
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(i)
Let the ray PO meet AD in M and BC in E. Then

by the properties of radiants (Art. 103),

DMAQ =

and therefore the range [DMAQ], in which the conjugate points

A and D have been shewn to be interchangeable, is harmonic.

[Art. 106
(i).

Thus it appears that the two pencils whose vertices are

and P are harmonic, and in like manner that the pencil Q
is harmonic

;
and hence that each of the three diagonals of the

complete quadrilateral is divided harmonically by its remaining
two diagonals.

(ii) Let the sides AB, DC of a. quadrilateral meet in P
and the sides DA, CB in 0. Complete the parallelograms

BODE andAOCQ, and let BR, PD meet in F and AQ, PD
in T.
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Then by parallels

PC : CT= PB : BA = PV : VD,

or PC: PV=CT: VD=CQ: VR.

Hence PQR is a straight line, and therefore the middle

points of OP, OQ, OR lie on a straight line parallel to PQR.
But the middle point of OQ is also the middle point of

A 0, since the diagonals of parallelograms bisect one another

and for the same reason the middle point of OR is also the

middle point of BD.
Therefore the middle points of the three diagonals AC, BD^

OP of a complete quadrilateral lie on a straight line.

The straight line bisecting the three diagonals of a com-

plete quadrilateral may be called the DIAMETKR of the quad-
rilateral (Ex. 375, note).

SCHOLIUM A.

The fundamental anharmonic property of a pencil of four rays
constitutes prop. 129 of the seventh book of the 2twiywy/ of

PAPPUS (vol. it. p. 871, ed. Hultsch), which affirms that if two

straight lines ABCD and AB'C'D' be drawn across three radiants OB,
00', OD (fig. Art. 104), then

AB.DC: AD. CB = AB.D'C' : AD'.B'C
1

.

This property is introduced (pp. 867 919) under the head of

Lemmas on EUCLID'S three books of Porisms, a subject treated at

length by HOB. SIMSOX in the work De Porismatibus contained in his

Opera quadam reliqua (Glasguae, 1776), where some things that were
obscure in Pappus are made clear. In the same section of the

2uvaywy) (prop. 131) is contained in substance the theorem of

Art. 107, that either diagonal of a quadrilateral is cut harmonically by
its other diagonal and thejoin of the joins Qnote, p. 252] of its opposite
sides (Chasles Aperqu Historique p. 36, 1875). And further, it will

appear (Schol. C) that a theorem in Pappus implicitly contains the

fundamental anharmonic property of four points on a conic.

The ancient theory of transversals was revived and largely de-

veloped in the first half of the seventeenth century by DESARGUSS,
to whom PONCELET, in the introduction to his Traitt de* Proprietis

Projeetives des Figures (Paris, 1822), applies the title of honour " le

MONGE de son siecle" (p. xxxviii). For some further bibliographical
information on the subject see Poncelet loo. cit. and Chasles

Aper^u ITistorique. Of CARNOT'S Geomitrie de Position (Paris, 1803)
Poncelet remarks (p. xliv) that in that work "se trouve exposee
pour la premiere fois et dans toute sa ge'neralite cette belle The"orie
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des transversales dont nous avons deja si souvent par!6 dans ce qui
precede, et dont les Anciens n'avaient fait qu'entrevoir les principes
et la fecondite." This method has been still further developed by
CHASLES "qui a mis en oeuvre d'une rnaniere tres-heureuse lua

principes de la Theorie des transversales pour de*montrer la plupart
des theoremes de MOXGE" (ibid. p. xlv). A good section on Trans-

versals was contained in the 12th edition of Hutton's Course of
Mathematics, vol. n. 214-46 (London, 1843).

For the cross ratio or as he called it
"
Doppelschnittsver-

hiiltniss" (ratio bi^ectionaUn}* of four points MOEBIUS introduced the

notation (A, B, C, D} in his celebrated Baryccntrische Calcul, 183,

p. 246 Leipzig, 1827) ; and he used the notation e

(c, d, b, a) for the

cross ratio of the range determined by four lines c, d, b, a upon any
transversal e (p. 256). Chasles (Traite des Sections Coniques Pt. i.

p. 7, 1865), following the example of Mobius, adopts the notation

(a, b, c, d} for a point-tetrad, and uses O (a, b, c, rf), an abbrevia-

tion by separation of symbols for (Oa, Ob, Oc, Od], to denote the

anharrnonic ratio of a tetrad of radiants. More generally, whether
the letters denote points or lines, we may write 0{abcd} for the

cross ratio of the
"joins"

of (0, ), (0, b), (0, c}, (0, d}. The
form {0 . alcd], used in SALMON'S Conic Sections, is a convenient sub-

stitute for [alcd\ in cases in which cross ratios are compounded
with one another (Mobius, p. 257).

The term Anharmonic was invented by Chasles and has been

widely used
;
but it is an artificial word and wanting in brevity,

and perhaps ought rather to mean non-harmonic. The short and

significant term Cross Ratio (which expresses the result of com-

pounding two simple ratios crosswise) was coined by the late Prof.

CLIFFORD, and may be found in his Elements of Dynamics (p. 42)

published some four or five years later (London, 1878). It may be
used also with a secondary reference to the transversal or cross-line

on which the ratio is estimated.

INVOLUTION.

108. If three or more pairs of points A, A ; J3, B'
; (7,

C'
;

&c. be taken on a straight line at such distances from a point

O thereon that

they are said to constitute a system in Involution. The point

is called the Centre and the points (A, A'}, (#, 7?'), (C
1

, <?'),

&c. are called Conjugate Points or Couples of the involution.

The centre is evidently conjugate to the point at infinity upon
the axis.

* STEINER called it
"
Doppelverhaltuiss."
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If the several points of an involution lie on the same side of

the centre as their conjugates respectively, the products OA.OA,
&c. are to be regarded as positive, and the involution is said

to be positive; but if conjugate points lie on opposite sides

of the centre the involution is said to be negative. In a positive

involution there are two points Fand F' (on opposite sides of the

centre) each of which coincides with its own conjugate : these

are called the Double Points or Foci of the involution. In a

negative involution the foci are imaginary.
When two pairs of conjugate points A, B and A', B' are

given the involution is completely determined. For if two

pairs of parallels be drawn through A, A' and B, B' respectively,

and if they intersect in P and Q, the line PQ evidently meets

the axis of the involution in a fixed point such that

OA : OA'= OP: OQ = OB' : OB,

or OA.OB=OA'.OB.

Thus the centre and the constant of the involution are known,
and the system is completely determined.*

A Pencil of lines in involution is a pencil which determines a

row of points in involution on any transversal: every such

pencil has one pair of Double Rays, on which lie the double

points of all its transversals. [Art. 1 12.

109. A system of circles having a common radical axis de-

termine pairs ofpoints in involution on any transversal.

For if a system of circles be drawn through two points P

* The six lines joining any four points FQP'Q' determine an involution on any
transversal : the construction in the text results from taking P' and Q' at infinity.
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and Q, and if a transversal meet PQ in and meet any two of

the circles in A, A' and P, P/, it is evident that

OA . OA 1 = OB. OB' = OP. Q.

Conversely, if circles be drawn through the several pairs of

conjugate points of an involution and through a common ex-

ternal point P, they will all meet at a second fixed point Q,
such that PQ passes through the centre of the involution. The
Foci of the involution are the points of contact of the two

circles which can be drawn through P and Q so as to touch

the transversal : these points are imaginary when P and Q lie

on opposite sides of the transversal.

110. A pencil of rays in involution has in general two conju-

gate rays only at right angles ; but if two pairs of conjugate rays
be at right angles every two conjugate rays are at right angles.

Let P be the vertex of a pencil in involution, and let a

transversal meet two pairs of conjugate rays in A, A and P, B'.

Then the circles APA' and BPB' determine by their intersection

a second fixed point Q, and every circle through P and Q meets

the transversal in points G and G' such that P(7, PC' are con-

jugate rays. [Art. 109.

Now in order that the angle CPC' may be a right angle
the centre of the circle CPC' must lie on the axis of involution.

In general one circle only can be drawn through P and Q so

as to have its centre upon a given transversal
;
but if two circles

can be so drawn the transversal must bisect PQ at right angles,

and must therefore be the locus of the centres of all the circles

that can be drawn through P and Q.

It is hence evident that a right angle turning about its

vertex generates a pencil of rays in negative involution: for

example, the conjugate diameters of a circle constitute a negative

involution.

It is further evident that there are two points (one on each

side of the axis) at which all the segments of a range in

negative involution subtend right angles.

111. If a row ofpoints be in involution any four of them and

theirfour conjugates are equicross, and conversely.

82
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(i)
For if (A, A'), (B, B'), (<7, <7), (D, D'} be conjugate

points in an involution of which is the centre, then since by

definition,
OA': OB'=OB: OA,

therefore A'B' : OB' = AB : OA
;

and similarly G'D' : OD' = CD: OC.

Hence A'B'. C'D' : OB'. OD' = AB.CD: OA.OC;
and in like manner (or by merely interchanging B and Z>,

and B' and />'),

A'D'.C'B' : OB'.OD' = AD.CB: OA.OC;

and therefore {A'B' C'D'} is equal to [ABCD], or every four

points and their conjugates are equicross, as was to be proved.

From the general relation {ABCD} = {A'B' C'D'}, where the

several couples may be taken arbitrarily, we deduce as one

form of the relation between three couples in involution (by

substituting A' for D and A for D'}, that

which readily reduces to

AB.B'C'. CA' = AB. BC.C'A.

Another form of the relation between the three couples is

AB.A'C _A'B.AC'
AC.A'B~ A'C'.AB"

or AB.AB' : AC. AC' = A'B. A'B' : A C.AC'.

Conversely, when one of these relations is established the

three couples AA', BB', CC' are proved to be in involution.

(ii)
Otherwise thus. Let circles be drawn each through two

conjugate points of an involution so as to cointersect at points

P and Q (Art. 109). Join P to any four of the points and join

Q to their conjugates. Then it may be easily shewn that the

two pencils thus formed have their angles equal (or supple-

mentary) each to each,* and are therefore equianharmonic.

* For this proof see Me Dowell's Exercises on Euclid and in Modern Geometry,
Arts. 20(5, 7 (Cambridge, 1878).
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112. The foci and any two conjugate points of an involution

constitute a harmonic range.

This is evident from Art. 35, Cor. 1, where A and A' may
be taken as the foci of an involution of which S and X are any
two conjugate points.

Conversely, any two points S and X which form a harmonic

range with a pair of fixed points A and A' are conjugate points

in an involution whereof -.I and A' are the foci.

SCHOLIUM B.

The theory of Involution was laid down by DESARGUES (1593
1662), the friend ot Descartes and teacher of Pascal, in his BROTJ-
ILLOX PROJECT iVune atteinte aux euenemens des rencontres (Tun Cone
auec un Plan, discovered in manuscript by M. Chasles in 1845, and

printed in Poudra's two volume edition of the (Eavres de Desarguet,
vol i. pp. 97 230 (Paris, 1864); an analysis of the work being
also given, in which its strange and embarrassing terminology is

replaced by the expressions now in use.

The germ of the theory is contained in lib. vn. prop. 130 of the
Collect io of PAPPUS (p. 873, ed. Hultsch), which may be stated

conversely as follows :

If the sides of a triangle PQR meet a transversal in A, B, C, and

if the three radiants from any point to its opposite vertices meet tho

transversal in F, E, D respectively, then

AF.CB: AB. CF= FA . DE : FE. DA.

That is to pay, the opposite sides and the two diagonals of any
quadiilateral OPQR meet any transversal in pairs of points (A, F),
(B, }, (C, I)) in involution, the cross ratio {AFCJB} being'equal
to {FADEI

DESARGUES, having defined and established some properties of

his Involution de six Points, and having enunciated the so-called

theorem of Ptolemy in a new form, next shews that the pencil sub-

tended at any vertex by six points in involution is cut in points in

involution by any transversal (Poudra, pp. 247, 256 8) ; he fully
establishes the theory of poles and polars (sometimes wrongly
attributed to de La Hire), shewing inter alia that the three pairs
of chords joining four points on a conic determine a self-conjugate
triangle, and not omitting to notice also the case of polar planes
(pp, 263, 72, 90) ;

and he proves that any conic and the sides of an
inscribed quadrilateral determine points in involution on any
transversal (p. 268). It is to be observed that he regards six

points as constituting a complete involution (which however does
not really detract from the generality of his conclusions), and that
he uses the term Inrvlution de qnatre Points to denote the two double

points or foci together with a single pair of conjugate points ; that
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is to say, he regards a harmonic range as an involution of four

points.
It may be well to quote from Poudra's vocabulary of terms

used by Desargues ((Euvres, i. 101) the explanation of the still

surviving term Involution, which signifies
" Trois couples de points

tels que oa x oa = ob x oV = oc x oo et que tous les points conj ague's
sont tous meles ou demeles entr' eux."

ANHARMONIC PROPERTIES OF CONICS.

PROPOSITION I.

113. The cross ratios of four fixed points on a conic and of

the tangents thereat are constant and equal to one another*

(i) From four fixed points A, B, (7,
1) on a conic draw

chords to any point P on the curve, and produce them to meet

the ^-directrix in abed respectively, so that

P{ABCD] = P{abcd] = S {abed}.

Then since the angles aSb, bSc, cSd, being equal or

supplementary to the halves of the constant angles ASB
t

BSC, CSD respectively (Art. 13), are themselves constant,

it follows that S{abcd] and P{ABCD] are constant, whatever

be the position of P on the curve. Conversely, a conic can

in general be drawn through six pointsf PP'ABCD so related

* The reciprocal properties (i) and (ii) were stated in their direct and converse

forms in STBINEII'S Systematische Entwickelung der Abhangirjkeit geometrischer

Gestalten von einanuer, pp. 156, 7 (Berlin, 1832), -where it is remarked that: "Die

Satze links [= (ii)] sind, unter anderer Form abgefasst, bekannt." The property

(iii) was given (for the circle) in CHASLES' Geometrie Superieure, 663 (Paris, 1852).

t The six points in Art. 105 may be regarded as lying on a conic which has

degenerated into a pair of straight lines.
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that P{ABCD}=P'{ABCD}-, or if ABCD be fixed points,

and P a variable point such that P{ABCD] is constant, the

locus of P is a conic through ABCD.

(ii) Next let the tangents to a conic at four fixed points

ABCD meet the tangent at any fifth point in the range abed.

Then since the angles a Sb, bSc, cSd, being equal or

supplementary to the halves of the constant angles ASB,
BSC, CSD respectively (Art. 13, Cor.), are themselves

constant, it follows that S{abcd} or {abed} is constant. Con-

versely, a conic can in general be described touching six

straight lines so related that four of them determine ranges

of equal cross ratios {abed} and {a'b'c'd

1

}
on the remaining

two; or if four fixed straight lines meet a variable straight

line in a range of constant cross ratio, the variable line envelopes

a conic touching the four fixed lines.

(iii) Lastly let P be a fixed point on a conic, PQ a variable

chord meeting the /S-directrix in R, and let T be the point

of concourse of the tangents at P and Q.

Then since the angle RST is always a right angle (Art. 9,

Cor. 1),

or the pencil subtended at P by any four positions of Q on the

curve is equal to the range in which the tangents at the $'s

intersect the tangent at P.

Corollary 1.

If two angles MBD, MCD of given magnitudes turn about

B
t
C as poles in such a manner that the intersection M of two
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of their arms describes a straight line, the intersection D of their

remaining arms describes (in general) a conic passing through

B and C ;* for since

a conic can be drawn through B, G and any four positions

of D
;
and three assumed positions of D together with B and C

determine a single conic on which every other position of D
must lie. But if the straight line described by M passes

through B or
(7,

or if the pencils B{D] and C {D} have a

common ray, the locus of D is a straight line. The general
case affords a ready means of drawing a conic through five given

points. [Ex. 367.

Corollary 2.

If three straight lines md, dr, rm turn about given poles

By C, Z>, whilst m and r move along fixed straight lines PG
and PQ, the point d describes a conic passing through B and C ;

for it is evident that

It appears (by taking special cases) that the point P and

the intersections of BD, PQ and CD, PG likewise belong to

the locus : and conversely, if these three points and B and G
be given, the lines PG and PQ can be drawn, and the locus

of d, which is the conic through the five given points, can

be traced.f

* This is NEWTON'S method of generating conic sections. The theorem is proved

in the Principia, Lib. I. Sect. v. lemma 21, where it ia deduced from lemma

20 [= Ex. 80], and this again from the theorem Ad quatuor tineas (Scholium C).

It is also stated, with generalisations and limitations, in Ids Ennmeratio Linearum

Tertli Ordlnis, Cap. vir. (see p. 26 in Talbot's translation, London 1861
;
or NEWTONI

Opera qua exstant omnia, vol. I. 556, ed. Horsley, London 1779), under the head :

De Curvarum Descriptione Oryanica.

t This method of drawing a conic through five given points was discovered by
HACLADRIN in 1722 althoughjiot published by him till 1735. In the Philosophical

Transactions of the Royal Society of London (vol. vin. p. 50, 1809) he shews how to

deduce it by elementary geometry from the above mentioned lemma 20 of the

Principia,
' which itself is a case of this description" (p. 43). Braikenridge, who had

already published Maclaurin's construction, is said to have Iteen in communication

with him and to have been made acquainted with his theorems in 17-J7 (Ibid. pp. 6, 43).
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PROPOSITION II.

114. The diameters of a conic form a pencil in involution

in which conjugate diameters are conjugate rays.

(i) For since any two conjugate diameters meet the

^-directrix in points V and V such that

XV.XV'= CX.SX= a constant, [Art. 14, Cor. 4.

therefore CV and GV are conjugate rays in a pencil in in-

volution. This involution is negative in the ellipse, and positive

in the hyperbola: in the latter case the asymptotes are the

double rays. [Art. 53.

(ii)
The centre of the involution determined by the pencil

of diameters on any tangent is at its point of contact, since

this is evidently conjugate to the point at infinity upon the

tangent. This is in accordance with Art. 47, from which a

second proof of the proposition may be derived.

Corollary 1.

From a fixed point draw the perpendicular OP to a

variable diameter 67P, and produce it to meet the conjugate
diameter in D: then since

the locus of D is a conic through and
(7, and it evidently

has real points at infinity on the axes of the original conic.

At the four points of concourse of the conies the positions of

OD are normal at D to the original conic. Hence we infer that

there are four points on a given conic such that the normals

thereat cointersect at a given point 0, and the four points lie on

an equilateral hyperbola ,
which passes through and through

the centre of the given conic, and has its asymptotes parallel to

the axes of the latter.*

* This method of drawing a normal OD to a conic from a given point 0, with

the help of an equilateral hyperbola, is given by APOLLONIUS in his Conies, Lib. v.

props. 58-G3, where he regards the normal as a line drawn from so that the

: upon it between D and the axis of the given conic is a minimum. For
another treatment of normals see Prof. CKKMONA'.S article On \ormalg to Cunics, in the

Off. Camb. and Dublin Jfe.<stnyi.r f Mdlhtmutict, vol. III. p. 88. See also Ex. 286,
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Corollary 2.

By drawing OP to meet CP (Cor. 1) at any other given

angle and in a given
" sense" or direction of rotation, and

proceeding as above, we determine a conic passing through
and C and having its asymptotes (real or imaginary) parallel

to those conjugate diameters of the given conic which contain

an angle equal to the given angle ;
and the two conies intersect

at four points D such that OD meets the given conic at the

given angle'. If the sense of rotation be not given, four other

positions of OD (making in all eight), which meet the given
conic at the given angle, can be in like manner determined.

SCHOLIUM 0.

The celebrated problem of the "Locus ad quatuor lineas" (-OTTOS

eVt 3' ypafjifjidc}
handed down by PAPPUS from his predecessors

without solution (Collectio Lib. vii
,
vol. n. pp. 677 9, ed. Hultsch),

solved only by his new method of coordinates by DESCARTES

(Geometria Libb. i. 11. 7 16, 24 34, ed. Schooten, 1659), and at

length completely solved by NEWTON (Principia Lib. i. Sect. v.

lemm. 17 19) by the elementary geometry of Apollonius im-

plicitly contains the fundamental anharmonic property of four

points on a conic (Art. 113). The problem and its Newtonian
solution are as follows.

(i) If P be any point of a conic and ABDC a given inscribed

trapezium, and if straight lines PQ, PR, PS, PT meet the sides AB,
CD, AC, DB respectively at given angles : the rectangle PQ x PR is to

the rectangle PS x PT in a given ratio.

a. First let PQ and PR be parallel to A C, and PS and PT
parallel to AB; and let the side BD be also parallel to AC. Then
since PQ .QK varies as AQ.QB, "per prop. 17, 19, 21 & 23

lib. in. conicorum Apollonii" (Art. 16, Cor. 1), ifK be the point in

which PQ meets the conic again ;
and since the diameter of the

chords AC, BD, KP bisects also the intercept QR, so that

QK=PR; it follows that PQ.PR varies as AQ.QB or PS.PT, as

was to be proved.

b. Next let BD be not parallel to A C.* Draw Bd parallel to

AC meeting STin T and the conic in d. Join Cd cutting PQ in r,

note, where if Tand U be given T' and V can be at once determined
;
and thus

from the intersection of any two normals to a conic two other normals can be drawn.

Corollaries 1 and 2, as they stand, are taken from CHASLKS' Traite des Sections

Coniques, chap. vii. pp. 1424. On the parabola see Ex. 617, note.

* See the lithographed figure No. 3.
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and draw DM parallel to PQ cutting Cd in Jfand AS in JV". Then

by similar triangles, and by parallels, Bt (or PQ) is to Tt as D^f
to NB; and Rr is to AQ (or PS] as DM to AX; and therefore

.PQ.P-r : PS.7V = rect. XDM : rect. ^.tfT?,*

= PQ.Pr : PS.Ft, by case o,

= PQ.PR : PS.PT, dividendo.

c. Having thus shewn that this last ratio has the constant

value DX.DM: AN.NB, we see at once that PQ.PR will still vary
as PS.PT if PQ, PR, PS, PT be drawn each at its own constant

inclination to AB, CD, A C, DB respectively. It is further evident

that if PX. and PY be drawn to meet the diagonals AD and BC at

constant angles, each of the ratios PX.PY: PQ.PR : PS.PT is

constant. Conversely (lemma 18), if PQ.PR varies as PS.PT, the

locus of P is a conic circumscribing ABCD. In lemma 19 and its

two corollaries NEWTON completes the solution of the problem by
shewing how to determine the actual locus of P for a given value
of the ratio PQ.PR : PS.PT; and he concludes by remarking with
evident satisfaction : "Atque ita problematis veterum de quatuor
lineis ab Euclide inccepti & ab Apollonio continuati non calculus,
sed compositio geometrica, qualem veteres quserebant, in hoc
corollario exhibetur."

(ii) The anharrnonic property of four points on a conic follows

immediately from the above theorem Ad quatuor lineas. For if

PQ, PP., PS, PT be perpendiculars to AB, CD, AC, BD re-

spectively (cf. Art. 94), so that PQ.A=PA.PsmAPjB, &c.,
and thus

PQ.PR.AB. CD sin APB _
PS.PT.AC.BD

=
sin^PC

'

^.BPD~ {ABCI>] >

and if the ratio PQ.PR : PS PT and the trapezium ABDC be

given ; the cross ratio P{ABCD] will be constant.

(iii) CHASLES and others have proved the constancy of the cross

ratios of four given points on or tangents to a conic by projection
from the circle, and have taken the properties thus proved as the

foundation of their treatises on conies : but the most elementary
proofs of the properties in question are those which we have

adopted in Art. 113 from the Geometrical Demonstration of the

Anharmonic Properties of a Conic contributed by Mr. B. W. HORNE,
Fellow of St. John's College, to the Quarterly Journal of Mathematics,
vol. iv. 278 (1861): his proofs assume only those simple angle-

properties of the focus of a conic which reduce, when the directrix

is removed to infinity, to the fundamental angle-properties of the

circle (Scholium A, p. 22).

* This notation was formerly in use for the rectangle .-1.V..V/?.
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RECIPROCAL POLARS.

PROPOSITION III.

115. The polar of any point with respect to a 'conic is a

straight line, and conversely*

(i)
Let a variable chord be drawn to a conic through a

given point 0, and let the tangents at its extremities intersect

in T\ then will the locus of I
7
be a straight line.

For if the variable chord and its diameter CT meet the

directrix in R and V respectively, then since SR*
t
ST and

OR, SV are at right angles (Arts. 9, 14), therefore

S[T] = S{R] = {R}
= 8{V} = C{T}.

And since the homographic pencils S{T] and C [T] have

a common ray CS (the point T lying on the axis when OR
is a principal ordinate), the locus of T

7
is a straight line.

[Art. 105.

Conversely, if T be any point on a straight line, it may
be shewn in like manner that its chord of contact determines

homographic ranges {R} and {oo }
on the directrix and the

straight line at infinity, and hence that it passes through a

fixed point. [Art. 104.

(ii) Otherwise thus. Let PL and PN be given tangents
to a conic, PMR any chord through P, and its intersection

* For other proofs of the properties of polors see Arts. 17, 18, 41, 93.



CROSS RATIO AND INVOLUTION. 269

with LN] and let A and B be the intersections of the tangents
at Nj M and N

t
R.

Then since the cross ratios of the tangents at L, M, N, R

and of their points of contact are equal (Art. 113), therefore

(estimating the former on the tangent at AT and the latter on

the transversal MR) we have

[PANS] = L {LMNR} = [PMOR] ;

whence it follows that the tangents AM and BR intersect on

the fixed straight line NO, and conversely. [Art. 104.

PROPOSITION IV.

116. A row of points on any axis and their polars with

respect to a conic are homographic, and they determine an

involution on that axis.

(i)
It follows at once from the construction of Art. 115

(i),

where R8T is a right angle, that if T be taken on the polar

of a given point 0, then

or the points T and their polars OR are homographic.

(ii)
Otherwise thus. In the preceding figure, if the equal

cross ratios L {LMNR} and N {LMNR} be estimated on the

transversal MR, then

,

or and Pare harmonic conjugates with respect to J/and R.

[Art. 106.
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Hence, as P moves along J/Z?, the points and P are

couples in the involution of which M and R are the foci

(Art. 112); that is to say, if P be a variable point on the

polar of any given point Q, and QO be the polar of P, the

range {P} is homographic with the pencil Q {0}, and the two

together determine an involution on the polar of Q.

Corollary 1.

If a pair of points divide a chord of a conic harmonically,
each point lies on the polar of the other, and the two are

said to be conjugate with respect to the conic. From the reci-

procity of the relation between such points it is easy to deduce

the theorem of Art. 17, Cor. 1, that the intersection of any two

straight lines is the pole of the line which joins their poles. It is

evident that a system of conies having a common self-polar

triangle (note, p. 272) determine an involution on any transversal

drawn through a vertex of the triangle.

Corollary 2.

Two straight lines are said to be conjugate with respect to a

conic when they pass each through the polar of the other, or in

other words, when they are harmonic conjugates with respect

to the two tangents (real or imaginary) that can be drawn to

the conic from their point of concourse. From a given point

there can in general be drawn one pair only of straight lines

at right angles to one another and conjugate to a given conic

(Art. 110) ;
but if the given point be a focus, every two conjugate

lines drawn through it are at right angles (Art. 7) j
and con-

versely it may be shewn that no other real point is so related

to the conic. Notice that conjugate diameters are also conjugate

lines in the sense of this corollary.

PROPOSITION V.

117. If the locus of a point be a conic the envelope of its polar
with respect to a conic is a conic, and conversely.

Take four fixed points ABCD and their polars with respect

to a conic: and take a variable point P and its polar with
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respect to the same conic: and let the fixed polars meet the

polar of P in the points a, 5, c, d respectively.

Then by Art. 116, the points a, &, c, d are the poles of

PA, PJ3, PC, PD ;
and P{ABCD] is equal to [abed] ;

and if

the one be constant the other is constant.

Hence, if the locus of P be a conic passing through the

points ABCD, the envelope of the polar of P will be a conic

touching the polars of ABCD, and conversely. [Prop. I.

Corollary.

To any figure generated by points or poles corresponds a

reciprocal figure generated by their polars with respect to

any assumed auxiliary conic; and any property of the one

figure implies a reciprocal property of the other. The method

of deducing reciprocal properties from one another will form

the subject of Chapter xil. Notice, as a special case of

the proposition, that any conic may be regarded as its own

reciprocal, its several points being the poles of the tangents

thereat. Also see Scholium E at the end of this chapter.

THE TRIANGLE.

PROPOSITION VI.

118. // two triangles circumscribe a conic their six vertices

lie on a conic, and conversely.

Let ABC and DEFbe two triangles whose six sides touch

the same conic : let BG meet DF in d and EF in e : and let

DE meet AB in I and A C in c.
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Then by Prop. I,
since the four tangents AB, A C, FD, FE

are homographic with respect to the tangents BC and ED,
therefore

\BCde] = [bcDE],

or F{BCDE] = A {BCDE} ;

and therefore the six points ABCDEFlie on one conic.

Conversely, if the six vertices of two triangles lie on a conic,

it may be shewn in like manner that their six sides touch a

conic.

Corollary 1.

If the enveloped conic be a parabola, and if D be taken at

its focus and E and F &i the circular points at infinity (Chap, xi),

the conic through ABCDEF becomes a circle. Hence the

circumscribed circle of any triangle ABC whose sides touch a

parabola passes through the focus (Art. 29).

Corollary 2.

If two conies be so related that a single triangle can be in-

scribed in the one and circumscribed to the other, an infinity of

triangles can be so circuminscribed to the two conies. For let ABC
be the first triangle, and ab any chord of the outer conic which

touches the inner: complete the triangle abc by drawing the

second tangents from a and b to the inner conic: then the

point c must always lie on the same fixed conic with the points

ABCab.

PROPOSITION VII.

119. If two triangles be self-polar* with respect to a Iconic,

their six vertices lie on a conic, and their six sides touch a conic.

Let ABC and DEFbe two triangles self-polar with respect

to a conic :f then evidently the join of any two of their six

sides is the pole of the join of the opposite vertices. [Art. 116.

* A triangle may be called self-polar with respect to a conic- cf. the French term
"
autopolaire" when each vertex is the pole of the opposite side. Such triangles are

usually termed self-conjugate, and some writers call them self-reciproal. The vertices

of a self-conjugate triangle constitute what is called a Conjugate (or self-conjugate)

Triad of points.

f See the lithographed figure No. 4.
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Let BC meet AD in d and EF in d' : then d' is the pole

of AD, and d and d' are therefore conjugate points (Art. 116)

with respect to the conic.

Also let BG meet AE in e and DF in e' : then e and e' are

likewise conjugate points with respect to the conic: and it is

evident that B and C are conjugate with respect to it.

It follows that the points BC, dd
',

ee are couples in in-

volution, and hence (Arts. Ill, 102) that

[BCde] = {CBd'e] = [BCe'd'},

or A {BCDE} =F{BCDE}.
Therefore a conic goes through the six points ABCDEF"

and therefore another conic (Prop, vi) touches the six sides of

the two triangles.

Corollary 1.

If upon a given conic one triad of points self-conjugate with

respect to a second given conic can be determined, an infinity of
such triads can be determined upon it. For if ABC be the

first triad, R any other point on the first conic, S one of the

points in which the polar of R with respect to the second conic

meets the first, and T the pole of RS with respect to the

second conic
;
the point T must always lie on the same conic

with ABCRS. By taking R at the centre of an equilateral

hyperbola, and S and T at the circular points at infinity

(Chap. XI.), we deduce that the circle through any conjugate triad

with respect to an equilateral hyperbola passes through its centre.

[Art. 64, Cor. 4.

Corollary 2.

Let the first conic become a circle, and let Q be one of its

points of concourse with the second conic. !Next let the points

R and S coalesce at Q, so that the inscribed self-polar triangle

RST degenerates into the vanishing triangle QQT: then T
becomes the pole with respect to the conic of the tangent to the

circle at Q. Conversely, if QQ' be any chord of a conic and

Tits pole, the circle drawn through T so as to touch QQ' at Q
(or Q'} is such that an infinity of triangles self-polar with respect

to the conic can be inscribed in it.
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Corollary 3.*

Let the circle described as above meet the diameter CT of

the conic in a second point t,
and let V be the middle point of

QQ, and (7P, CD the semi-diameters conjugate and parallel

to QQ. Then since

VT.Vt =

it follows that CT. Vt is equal to CD'*, and hence that

CT. Ct = CP* CD* = CA* CB*

and hence that the circumscribed circle of any triangle self-polar

iffith respect to a conic is orthogonal to its director circle. In the

case of the parabola every such circle is orthogonal to the

directrix, or has its centre upon the directrix. Otherwise thus :

let any circle in which self-polar triangles with respect to a

conic can be inscribed meet the director circle in and the

chord of contact of the tangents OQ, OQ to the conic in P and

P
;
and let V be the middle point of QQ'. Then since the

points Pand P' are conjugate, and since the angle QOQ is a

right angle,

and therefore the line VO, which is normal to the director circle

at 0, is the tangent at to the circle OPP.

THE QUADRILATERAL.

PROPOSITION VIII.

120. TJie intersections of the opposite sides and of the

diagonals of a quadrilateral are a conjugate triad with respect to

every conic circumscribing tlie quadrilateral.

* The former of the two proofs of GASKIN'S theorem (note, p. 186) in Cor. 3 ia

due to M. Pan! Serret (Nourelles Annales XX. 79, 1861). The theorem may also be

proved independently of Prop, vn., as follows : let QQ' be any chord of an ellipse,

Fand Tits middle point and pole, and P, JR any two conjugate points upon it, so

that VP.VR = QV*. Let the circle round TPR meet VT again in : then it may
be shewn that VO.VT= Q.V*, and hence that CO.CT - CA* + C& (\oui:
Ann. XX. 25). See also the Quarterly Journal of Mathematics x. 129.
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If ABCD be any four points on a conic, and OPQ the

intersections of (AC, BD), (AB, CD], (AD, BC}', then since

the line OP and the point Q divide both AD and BG
harmonically (Art. 107), therefore OP is the polar of Q.

In like manner OQ is the polar of P: and therefore is

the pole of PQ, and the points OPQ are a conjugate triad, as

was to be proved.

Corollary 1.

To draw tangents to a conic from a given point Q icith

the ruler only, draw any two chords QAD and QBC from the

given point: let the line PO (the join of the joins of AB, CD
and AC, BD} cut the conic in T and T : draw QT and QT',
which will be the tangents required.

Corollary 2.

From a given point P draw a fixed chord PAB and a

variable chord PDC to a conic. Then since AC, BD and AD,
BC meet on the polar of P, therefore

A{C} = B[D} = A{D], [Prop. I.

where C (or D) may be either extremity of the variable chord.

Hence, taking any three positions of CD, we have

and therefore any variable chord CD drawn through a fixed

T2
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point determines an involution at any point A on ilie conic*

and conversely. For example, a chord of a conic which

subtends a right angle (Art. 110) at a given point on the

curve passes through a fixed point on the normal thereat.f

PROPOSITION IX.

121. The three diagonals of a complete quadrilateral deter-

mine a triangle which is self-polar with respect to every conic

inscribed in the quadrilateral.

Let a, b, c,
d denote the tangents at any four points

A, B, Cj D on a conic, and ab the join of any two of them

a and b.

Then (in the preceding figure), since AB and CD pass

through P, their poles ab and cd lie on OQ the polar of P.

And in like manner ad and be lie on (?P, and ac and bd

on PQ4
That is to say, the three diagonals of the circumscribed

quadrilateral abed lie upon the sides of the self-polar triangle

OPQ.

Corollary.

In the reciprocal quadrilaterals abed and ABCD determined

by any four tangents to a conic and their points of contact

respectively, two pairs of diagonals cointersect and form a

harmonic pencil [PAQB] (Art. 107) ;
and the third diagonals

lie in one straight line, and their extremities form a harmonic

range {ac, P, Jo
7

, Q}. [Prop. IV.

* Otherwise thus : if PE and PF be the tangents to the conic from the given

point P, then E {ECFU} is harmonic (Art. 18), and therefore A [ECFD] is

harmonic, or AC&nd AD are conjugate rays in the involution of which AE and AF
are the double rays. Note that four points on a conic are said to be harmonic when

they subtend a harmonic pencil at every fifth (Prop, i.) j
and the tangents at four

such points are said to be harmonic.

t This theorem is due to Frgier (Gergonne's Annales vr. 231, 1816).

% This was proved by MAOLATJRIN in Sect. II. 35, 36 of the Appendix to his

work on algebra above referred to (Ex. 324, note), in which he applied COTKS'

theorem of harmonic means to curves of the second order. He thus virtually recipro-
cated a theorem of Desargues (Prop. Tin.), although reciprocation, as a method, was

only discovered in the century following.
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PROPOSITION X.

122. Any conic and the three pairs of chords joining any

four points upon it meet every transversal in four pairs ofpoints
in involution.*

(i)
For if any transversal meet a conic in the points AA',

and any two of the three pairs of chords joining four points

on the curve in the points BB' and (7C", then by the theorem

Ad quatuor lineas (Scholium C),

AB'.AB' . AC.AC'=AB.AB \ AG.AG'\
and therefore AA, BB', CO' are couples in an involution

(Art. Ill); and the third pair of connecting chords determine

a fourth couple in the same involution.

(ii)
Otherwise thus. Let any transversal meet a conic in

the points AA'
t
and any two chords ab and cd in BB

',
and

the chords ad and be in CO.
Then since the points AdbA' on the conic are equicross with

respect to a and c, therefore (estimating a {AdbA} and c [AdbA'\
on the transversal) we have

{ACBA} = {AB'C'A} = [A'C'B'A] ;

and therefore AA', BB\ CO' are couples in an involution

(iii) The four sides of a given trapezium suffice to determine

an involution on any transversal (Art. 108), and every conic

circumscribing the trapezium passes through an additional

couple in such involution
;
and no conic which does not circum-

scribe the trapezium can pass through a couple in such involu-

tion for every position of the transversal. For if the transversal,

as it turns about any point A of a conic, meets it again always

* This is one of the fundamental theorems of DESARODBS. Having first proved
it for the circle he extended it to the general conic by projection, leaving to others

to devise some direct proof applicable to the general case (Poudra's (Euvres de

Desargues I. 174, 193). The proof given above in Art. 122 (i) shews that the theorem

is an immediate corollary from the ancient theorem Ad quatuor lineas. For the

second proof (with a diagram) see Salmon's Conic Sections, Art. 344. The theorem

seems to have been first stated for the case of three conies, instead of one conic and

an inscribed quadrilateral, by Sturm (Gergonne's Annales XVII. 180). At the end of

the same memoir (p. 198) Sturm alludes to the reciprocal theorem of Prop. XI. See

also i'oucelet Traitc dtas rrtyrittiu Projecting II. 149.
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in the conjugate point A', this conic must have an infinity of

points A' in common with the conic through A and the four

summits of the trapezium. Hence the proposition may be

stated as follows :

A system of conies through four common points (icith their

three pairs of common chords)* meet every transversal in pairs

ofpoints in involution, and conversely.
*

Each of the two double points belonging to any transversal

must be at its point of contact with one of the conies of the

system, or at an intersection of a pair of their common chords.

There can therefore in general be drawn two conies through
four given points to touch a given straight line.

Corollary 1.

The foci of any transversalf with respect to a quadrilateral are

evidently conjugate points with respect to every conic circum-

scribing it. Hence the polar of a given point F with respect

to a system of conies through four given points ABCD passes

through a fixed point F' which is determined as the second focus

of the transversal which' touches the conic ABCDF at F.

Corollary 2.

Through three given points ABC draw two conies touching

a given line at its extremities F and F' respectively. These

conies intersect at a fourth point D, through which must pass

every conic through ABC which has F, F' for a pair of conjugate

points. Hence we are led to infer generally that, in describing

conies subject to given conditions, the condition that two specified

points F and F' should be conjugate with respect to a conic is

equivalent to having given one point D on the curve.

* Each pair may be regarded as a degenerate hyperbola of the system.

f We use this expression as an abbreviation for " the foci of the involution deter-

mined upon any transversal by the sides of the quadrilateral, taken in opposite

pairs."

J It was proved analytically by Lam6 (Examen des di/i-rentes methodes employee*

pour resoudre lex problemes de Geometric pp. 34 38, Paris, 1818) that if a system of
conies (or quadrics) have the same points of intersection, their diameters (or diametral

planes} severally conjugate to a sy&em ofparallel diameters meet in a point.

For example, if F and /" be the circular points at infinity, the conies are

equilateral hyperbolas, and tl-ey pass through the orthocentre of the triangle ABC.
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Corollary 3.

Each common tangent FF" to two conies is cut harmonically

by every other conic (or pair of chords) through their four

common points. By supposing three of the four common points

to coalesce, and one of the conies to become a circle, we deduce

that the common chord of a conic and its circle of curvature at

any point and their common tangent thereat divide their further

common tangent harmonically. [Ex. 647.

Corollary 4.

A system of conies having double contact cut every trans-

versal in pairs of points in an involution, having one focus

upon their common chord of contact CC'. In particular, if a

transversal meet one of the conies in AA, and their fixed

common tangents (which themselves constitute a degenerate
conic of the system) in BB1

,
then CC' passes through a focus

of the involution AA, BB'* Hence, if two points AA' on

a conic and also two tangents to it be given, their chord of

contact passes through one or other of two fixed points on the

line AA'
|
and if a third point A" on the conic be given, the

same chord of contact passes also through one of two fixed

points on the line A A", and may therefore have any one

of four positions. There are therefore four solutions of the

problem, to draw a conic through three given points so as to

touch two given lines.

Corollary 5.

If one focus of an involution be at infinity its other focus

bisects every segment of the involution (Art. 112). Hence

and from Cor. 4, any two conies having double contact make equal

and opposite intercepts on every transversal parallel to their

common chord, and therefore on every transversal without ex-

ception in the case in which their common chord is the straight

line at infinity (Art. 57). Conversely, we are led to infer from

Ex. 50 that every two similar and coaxal conies are to be

regarded as having double contact with one another upon the line

at infinity.

* Notice the special case of Ex. 69.
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PROPOSITION XI.

123. The pairs of tangents from any point to a system of

conies inscribed in the same quadrilateral form a pencil in

involution, and conversely.

Let four tangents to a conic intersect in the three pairs

of points aa'j bb', cc
;
and let any transversal meet their polars

in AA', BB', CC' and the conic in DU
;

and let be the

point of which the transversal is the polar.

Then each ray of the pencil [aa'bb'cc'DD'} is the polar

of the corresponding point in the range [AA'BB
1

CC'DD'}, and

the two systems are therefore homographic (Prop, iv) ;
and

since the latter is in involution (Prop, x) the former is also

in involution.

If now we suppose the four tangents to remain fixed whilst

the conic varies, the pairs of tangents OD, OD' from any
assumed point to every conic of the system are conjugate

rays in the involution {aa'bb'cc}, as was to be proved.

Conversely it may be shewn (Art. 122
iii) that if the

tangents from every point to a conic belong to the involution

{aa'bb'cc}) the conic must be one of the system inscribed in

the quadrilateral whose summits are aa, bb', cc.

Corollary 1.

The director circles of all conies inscribed in the same quadri-

lateral are coaxal.* For if be taken at either point of con-

course of any two of these circles, the tangents from it to

their two conies will be at right angles, and therefore the

tangents from it to every conic of the system will be at right

* This is one of GASKIN'B theorems, for the reciprocal of which see Art. 69. It

may also be deduced from Art. 119, Cor. 3. combined with Prop, xit., which require

that the limiting points of every two of the director circles should lie upon a fixed

straight line, and also upon the circle through the intersections of the three diagonals

of the quadrilateral, and should therefore be two fixed points. Prof. TOWNSEND
has established the analogous theorem in three dimensions, that the director spheres

of the system of quadrics touching eight fixed plants (and therefore inscribed in the

tame developable surface) have a common radical plane. See the Quarterly Journal

of Mathematics vol. viir. 10 14. The same theorem appears to have been proved

independently by M. PICQUET (Chasles Rapport sur let progres de la Geometric p. 370,

Pains, 1870). It occurs to me that the director circle and sphere might have been
called the ORTHOCYCLK and ORTHOSPHERE.
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angles (Art. 110). To the same coaxal system belong the

circles on the three diagonals of the quadrilateral as diameters.

[Art. 33, Cor. 3.

Corollary 2.

If one side of the quadrilateral be at infinity, its three

diagonals become the parallels through the vertices to the

opposite sides of a triangle ;
and the circles upon these diagonals

become the perpendiculars of the triangle, whose intersection

must therefore be a point on the directrix of every parabola
inscribed in the triangle. [Art. 29, Cor. 1.

Corollary 3.

It may be shewn by reciprocation* from Art. 122 (or directly,

by the kind of reasoning there employed), that the pole of a

(jiven straight line with respect to a system of conies inscribed

in a quadrilateral lies upon a faced straight line ; and that to

have given that a specified pair of straight lines are conjugate
with respect to a conic is equivalent to having given one tangent to

the curve
;
and that two conies can in general be drawn through

one given point so as to touch four given lines
;
and that four

conies can be drawn through two given points so as to touch

three given lines.

Corollary 4.

Every pair of tangents TP, TQ to a conic whose foci are

8 and // are harmonic conjugates with respect to the bisectors

of the angle STH (Art. 50), as are also the lines from T to

the circular points at infinity <f>
and

</>' (Chap. xi). The

tangents TP, TQ are therefore a couple in the same involution

with T{SH(j><f>'}, and every conic which has S and H for foci

may accordingly be regarded as inscribed in the trapezium S<f>H<f>'.

On account of this affinity of the points $, <' to the foci of

every conic in their plane we shall sometimes speak of them

as the FOCOIDS, comparing the use of the term centroid^ or

quasi-centre.

* Notice that the proof of Prop. xi. is itself an example of reciprocation.
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PROPOSITION XII.

124. The locus of the centres of all conies inscribed in a given

quadrilateral is a straight line* which also bisects its three

diagonals.

(i) Since the director circles of the system of inscribed conies

are coaxal (Art. 123, Cor. 1), their centres, which are also

the centres of their conies, lie on a straight line. This line

is evidently the diameter of the quadrilateral (Art. 107), since

the middle points of the three diagonals (regarded as flat conies

inscribed in the quadrilateral) belong to the locus of centres.

The proposition also follows as a special case from Art. 123,

Cor. 3 by regarding the centre of every conic as the pole of
the line at infinity with respect to it.

(ii) In the following proof the parallelogram of forces is

assumed.

Let any conic touch four fixed lines AB, BC, CD, DA in

N, It, L, M respectively. Then the resultant of AM and AN,
regarded as representing forces, bisects the chord of contact MN,
and therefore passes through the centre of the conic.

Q

* This important theorem of NEWTON (Ex. 505, note), which was originally

proved by the elementary method of Exx. 370-2, served as a starting point for

later researches into the properties of systems of conies subject to less than five

conditions. Notice the use made of it by BRIANCHON and PONCELET hi Gergonne's
Annales XI. 219. It might have been deduced from it by projection a method not

unknown to NEWTON that there are an infinity of pairs of straight lines conjugate
to the entire system of conies touching four given lines, which is the equivalent of

Prop. XI. on involution.
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Thus the centre is a point on the resultant of each of the

pairs (AM, AN), (NB, EB), (CE, CL), (LD,MD); that is

to say, it is a point on the resultant of AB, CB, AD, CD, and

its locus is therefore a straight line.* It is evident that the

resultant of these forces bisects the two diagonals A C and BD
5

and by resolving them severally into

PB + AP, CQ+QB, QD + AQ, CP+PD,
we see that it bisects the third diagonal PQ also.

Corollary.

One conic and one only can be inscribed in a given quadri-
lateral so as to have its centre upon any given straight line,

since this line by its intersection with the diameter of the

quadrilateral determines a single position of the centre of the

conic. Hence we are led to infer that to have given a diameter

of a conic is equivalent to having given a tangent to it, since

either datum alike (when four other tangents are given) deter-

mines one conic and one only. This is in accordance with

Art. 123, Cor. 3, since every diameter of a conic is conjugate
to the line at infinity.

PROPOSITION XIII.

125. The centres of all the conies which circumscribe a given

quadrilateral lie upon its eleven-point conic.

(i) Through four given points two conies can be drawn so

as to have their centres (real or imaginary) upon any given

straight line. [Prop. XII. Cor.

The locus of the centres of all the conies through four given

points ABCD is therefore of the second order, since every

straight line meets it in two points and two only.

The join AB of any two of the four points meets this conic

of centres in two points, which must evidently be the middle

point of AB and its intersection with CD.

(ii) Otherwise thus. If be the centre of any conic through

ABCD, the radiants from parallel to the six joins of the

* Xourelles Annales i. 24 (18G2). For a proof dependiag upon the dynamical

principle of moments see the Quarterly Journal nf Mathematics vi. 215.
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points ABCD are homographic with the radiants from to

their middle points (Prop, n) ;
and the locus of is therefore

a conic through those middle points. And it is obvious that the

three intersections (AB, CD], (AC, BD], (AD, BC} are also

points on the locus.

(iii)
The conic of centres will have two real points at infinity

or one, or none according as two real parabolas or one or none

can be circumscribed to the quadilateral ABCD. The locus

will therefore be in general a hyperbola if this quadrilateral be

convex (Ex. 184), or a parabola if two of its sides be parallel,

and an ellipse if the quadrilateral be reentrant.

(iv) Let either of the two parabolas (real or imaginary) which

pass through ABCD touch the line at infinity in K, which will

accordingly be the pole of that line with respect to the parabola,

and therefore the centre of the parabola.

The conic of centres therefore passes through the two points

on the line at infinity which are conjugate with respect to all

the conies through ABCD (Art. 122, Cor. 1), as well as

through the six middle points and the three intersections of

their three pairs of common chords
;
and we have therefore

called it the Eleven-Point Conic of the quadrilateral ABCD.
Its centre is at the centroid of the points ABCD, since at that

point the joins of the middle points of (AB, CD), (AC, BD},

(AD, BC} meet and bisect one another.*

It is evident that the polars of any point on the eleven-point

conic ofABCD with respect to all the conies round ABCD are

parallel, since they all meet in a point (Art. 122, Cor. 1), and

one of them is the line at infinity.

Corollary 1.

Since the eleven-point conic E contains a conjugate triad

(Art. 120) with respect to every conic F through ABCD,

* This is at once evident, since four equal particles at ABCD balance two and two

about the middle points of any pair of the above lines
;
and therefore the centroid

of the four particles is at the middle point of the line joining any such pair of middle

points. In the Quarterly Journal of Mathematics vi. 127 I have shewn how to

verify a simple construction for the centroid of the area of any quadrilateral by au

extension of the barycentric principle.
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therefore if be an intersection of E and F
y
the tangent to

E at has its pole with respect to F on E. [Art. 119, Cor. 3.

Corollary 2.

The eleven-point conic of any quadrilateral ABCD in-

scribed in a conic touches the diameter of the quadrilateral

formed by the tangents to it at ABCD, since the complete
locus of centres of the system of conies inscribed in the latter

quadrilateral is its diameter (Prop, xii.), and the locus of

centres of all conies round ABCD is its eleven-point conic, and

one conic only can be both inscribed in the one quadrilateral

and circumscribed to the other.

Corollary 3.

When the two points at infinity which are conjugate to all

the conies round ABCD are the circular points the eleven-point

conic becomes the nine-point circle, and the points ABCD
become a triad and their orthocentre. The nine-point circle

really belongs to this form of tetrastigm, and not specially to

any one of the four triangles determined by its vertices; in

the same way that the system of equilateral hyperbolas cir-

cumscribing any one of these four triangles is a system of

conies circumscribing the tetrastigm.

SCHOLIUM D.

tW nn
ellipse or a, hyperbola may degenerate

into a straight line AA' or its complement (Art. 33, Cor. 3). For

example, the diagonals of a quadrilateral may be regarded as flat

conies inscribed in it, and accordingly their middle points belong
to the locus of centres of all conies inscribed in it (Prop. xn). This

agrees with the bifocal definition SP + HP = a constant, in

accordance with which the point P may in the limit lie anywhere
upon the line SIT; or upon the complement of SH, if the lower

sign be taken.

Again, if TP, TQ and TP', TQ' be the tangents from any
point Tio two ellipses whose common foci are S and If, the angles
PTP' and QTQ' are always equal ;

and hence when the inner ellipse
assumes the line-form SH the angles STP and HTQ, are equal.
But since this is also the case when the second ellipse is left out
of consideration, and the lines TS and TH are simply drawn
through the fixed points S and JI, the point-pair S and IT are
so far indistinguishable from the flat conic SH.

Again, let the ellipse be regarded as the envelope of a straight
line subject to the relation X^t

=
b*, where X and

p.
are the perpen-
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diculars upon it from S and IT. When b vanishes the ellipse again

appears to coincide with the points S and IT, which are represented

by X = and
p.
= taken separately ; but by taking X = and

/j.
=

simultaneously we find that (besides the tangents whose points .of

contact are at S and 11} the limiting conic has an infinity of

tangents which ultimately coincide with the line joining S, H and
have their points of contact distributed along SH.* We may therefoye

say (1) that an ellipse degenerates into the line SH joining its fbqi

when its minor axis vanishes, meaning that SH is an actual

limiting form of the curve ;f or (2) we may say that it "degenerates
into

" the point-pair S, H, understanding that at the instant at

which it does so degenerate it ceases to belong properly speaking
toTtTie class conic, although the point-pair S, TTaud the line joining
them may be, as regards some properties, indistinguishable.

In like manner the hyperbola may be said to degenerate into

its asymptoj;ea-J GiS!--aiid--E'!e'-(Art. 54) ; but strictly speaking., it

becomes the pair of vertically opposite angles ECE and eCe', and
then has for its tangents at C those lines only through C which lie

within the said angles. The conjugate hyperbola at the same time

becomes coincident with the two supplementary angles, and has

for its tangents at C all the lines through C which fall within those

angles. It is therefore practically sufficient to say that either of

the two conjugate hyperbolas "degenerates into" the line-pair

ECe, E'Ce' and has for tangents every straight line through C',

but the theoretical difference between these two views of the limit

becomes apparent when we observe that the one makes the cur-

vature at C zero whilst the other makes itjnjinite.
For some further discussion of these matters see the Quarterly

Journal of Mathematics viu. 126, 235, 343. x. 93
; Oxf. Camb. Dull.

Messenger of Mathematics rv. 86, 129, 140, 148; Chasles Sections

Coniques pp. 30 33; Salmon's Higher Plane Curves pp. 377, 383

(ed. 3, 1879).

HEXAGRAMMUM MYSTICUM.
PROPOSITION XIV.

126. The three pairs ofopposite sides ofany hexagon inscribed

in a conic have their intersections in one straight line.

(i) Let ABCDEF be any six points on a conic, and let

Oj P, Q be the intersections of (AB, DE), (BC, EF], ( CD, AF}.

* This appears also by projecting the conic upon any plane from any vertex in its

own plane.

t If X, ft, v be the perpendiculars from three points upon a straight line, the

envelope of a line subject to the relation \/ui/ c3 assumes a corresponding line-form

when c' vanishes. By supposing each coordinate to become equal to a perpendicular

of the triangle of reference whilst the product of the remaining two coordinates

vanishes, we see that the limit of the curve is made up of three parts each of

which constitutes a side of the triangle of reference or its complement. See also

Mathematical Questions from the EDUCATIOKAL TliiES, vol. XVI. 43.
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O

Then since the four points ACDE are equicross with respect

to B and F, therefore

[OEDE] = B{ACDE] = F{ACDE] = [QCDL],

if K be the intersection of BP, DO and L the intersection of

FP, DQ.
And since the ranges [OKDE] and {QCDL} are thus equal

and have a common point Z>, therefore the lines OQ, EL, KG
meet in a point, or the points OPQ lie in a straight line,* as was

to be proved.

(ii) Otherwise thus. Let and Q be the intersections

of AB, DE and AF, CD respectively. And let OQ meet AD
in P, and BC in P, and EF in P'. Then will F coincide with

P.

For the points 0, Q and the conic determine upon the trans-

versal OQ an involution to which, by a property of the inscribed

quadrilateral ABCD, the couple PR belong (Prop, x) ;
and

by a property of the quadrilateral ADEFihe couple P'R belong
to the same involution,! and therefore P' coalesces with P.

(iii) Otherwise thus.J Consider the surface generated by

* This line changes its position when the points ABCDEF are taken in a different

order. On the various Pascal-lines OPQ see the note on Pascal's theorem at

the end of Salmon's Conic Sections; and see Townsend's Modern Geometry chap. 17.

f The proposition is thus virtually a corollary (Art 122 i) from the theorem

Ad quatuor lineas. See also Salmon's Conic Sections, Art. 267.

J This proof, as it stands, is taken from Math. Questionsfrom the EDUCATIONAL
TIMKS XTIII. 83 (1873). For the corresponding proof of Prop. xv. see vol. xix. 65.

Both theorems had been treated in this way by DANDELIN in vol. III. of the Nouveavx
Memoires de FAcademie $c. de Bruxelles (1826).
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a straight line which always meets three fixed non-intersecting

straight lines in space.

Let 1, 2, 3, be the fixed lines and
1', 2', 3' any three positions

of the moving line. Then the common section of the two planes

through 3', 1 and 2, 2' respectively passes through the points

(3', 2) and (I, 2').

In like manner the common section of the planes through

1',
2 and 3, 3' passes through the points (!', 3) and (2, 3'); and

the common section of the planes through (2', 3) and (1, 1')

passes through the points (2', 1) and (3, 1'). The three common

sections therefore form a triangle, and consequently lie in one

plane.

Now let the surface be cut by any arbitrary plane. This

plane will be met by the planes through 3',
1

; 2, 2'
;

&c. in

a hexagon 1, 1', 2, 2', 3, 3'
;
and by the three common sections

(since they are co-planar) in three collinear points PQR, which

are also the intersections of the opposite sides of the hexagon.
The proposition is thus true for any plane section of the ruled

quadric, and therefore for any conic.

Corollary 1.

Five points BCDEF on a conic being given, we may now
find any number of sixth points A on the curve, viz. by drawing

arbitrary lines BO through one of the given points B, and then

determining successively the points OPQ, and the line QF,
and its intersection with BO. Notice that A is a vertex of

the variable triangle AOQ, the extremities of whose side

OQ slide along fixed lines ED and CZ>, whilst its three

sides pass through three fixed points PBF respectively.

[Prop. I. Cor. 2.

Corollary 2.

If ABCEF be five given points on a conic, the tangent

at any one of them C may be constructed by this proposition ;

for we have only to make D coincide with C, in which case

the line CQ becomes the tangent at C. Again, by supposing
C to coincide with B and E with F, we deduce that the tangents
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at the vertices B and .Fof a quadrilateral ABDF inscribed

in a conic intersect upon the straight line which joins the points

of concourse of its sides AB, DF and AF, BD.

PROPOSITION XV.

127. The joins of the three pairs of opposite vertices of any

hexagon circumscribing a conic meet in a point.

(i) Let the tangents at A, B, &c. in the preceding figure he

a, b, &c.
5
and let ab denote the intersection of any two of them

a and b.

Then the join of ab and de is the polar of
;

the join of be

and efis the polar of P; and the join of cd and fa is the polar

of Q. And these three joins meet in a point, since their polea

OPQ are in one straight line.

(ii) Otherwise thus. Let AA', BB', CC' be the opposite

vertices of any hexagon circumscribing a conic; and let the

four tangents AB, BC, A'B', C'A determine the range

{ECA'F} on the tangent CA, and the range [GKB'G'} on

the tangent B'C'.

These ranges being equal (Prop, i), we have

A {BCA C'}
= {ECA'F} = {

GKB 1

C'}
= B{A CB' C'} ;

and therefore, AB being common to the two pencils, their rays

(AC, BC}, (AA, BB'}, (AC
1

, BC') meet on a straight line

(Art. 105), or the diagonals AA, BB', CC' of the hexagon
meet in one point.

U
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Corollary 1.

Having given five tangents to a conic we may determine

their points of contact by this proposition ;
for if the summit C'

of the circumscribing hexagon be on the curve, the tangents

AC' and B' C' being supposed to coalesce, then the line joining

the opposite summit C to the intersection of AA' and BB'

determines by its intersection with AB' the required point of

contact C'. We may also determine an infinity of other

tangents to a conic when five tangents AB, BC, CA, A'B',

B'C' are given; for if we draw any line through the given

point A' to meet AB in A, the point C' may be determined as

above.

Corollary 2.

The. orthocentre of any triangle is a point on the directrix

of every parabola inscribed in it. For if abc be any three

tangents to a parabola, a'c the tangents at right angles to

a and c respectively, and co the line at infinity, which together

make up a hexagon abcc'<x> a circumscribing the parabola, then

the joins of aZ>, c'ao and be, a'co are two of the perpendiculars

of the triangle abc
;

and the join of the joins of the orthogonal

tangents ad and cc is the directrix
; and, by the proposition,

these three joining lines cointersect.*

SCHOLIUM E.

PASCAL'S theorem (Prop, xiv) elsewhere called by him the

theorem of the Mystic Hexagram was enunciated without proof in

his Essais pour les Coniques (1640) as a property of the circle, which

might be generalised by projection, and then used as the foundation

of a complete treatise on conies. See (Euvres de Blaise Pascal, iv.

1 g (nouv ed. Paris, 1819) ; Chasles' Apergu ITistorique, pp. 68 74.

BBIANCHON'S theorem (Prop, xv) was deduced from Pascal's by
means of Desargues' properties of what are now called polars

(Scholium B). The author's proof of his theorem, given in his

Memoirs sur les Surfaces courles du second Degri (Journal de V Ecole

polytechnique, tome vi. 297 311, 1806), was as follows.

* This proof is given, as by Mr. John C. Moore, in Salmon's Conic Sections (Art.

268, Ex. 3, sixth ed. 1879). See also Scholium p. 57. Brianchon and Poncelet had

deduced the reciprocal theorem of Art. 69 from Pascal's hexagram.
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Take any three concurrent straight lines PAA', PBB', PCC'
in space, and let LNMlnm denote the six intersections

(AS, A'B'}, (BC, B'C'\ (CA, C'A'\

(AS
1

, A'B\ (BC
1

, B'C\ (CA', C'A)

respectively. Then the four triads of points ZJI/L.V, Lmn, IMn, ImN
are evidently collinear, since they lie severally upon the common
sections of the four pairs of planes

(ABC, A'B'C'), (ABC
1

, A'B'C}, (AB'C, A'BC'\ (A'BC, AB'C'}.

And since every two of these triads have one point in common the

four common sections and therefore the six points LlfNlmn lie in

one plane, which also together with point P divides each of the

segments AA, BB', CC' harmonically. [Art. 107.

If the whole figure be now projected orthogonally upon any
plane, then (with the same notation) the six points LJINlmn will

in general still lie by threes upon four separate straight lines, in

the order above-mentioned
;

but if any other three of them as LmN
be also collinear the six points will then lie in one straight line,

since the plane of projection must be at right angles to the plane
of the original six points ;

and this line together with the point P
will divide the segments AA, BB', CC' harmonically.

This is the case when AA, BB', CC' are concurrent chords

of a conic, since their extremities may be taken in any order

to form an inscribed hexagon (Prop. xiv). For example, the

hexagon ABC'AB'C has for its Pascal-line Llln, on which the

remaining three points //wJVmust also lie. Brianchon then observes

that two of the three concurrent chords suffice to determine this

line, whilst the third CC' may be supposed to turn about P, and to

coincide with either of the former, or to become itself a tangent
(if P be an external point). Having thus virtually given a fresh

proof of the properties of polars,* he at once deduces his own
theorem (Prop, xv.) from the reciprocal theorem of Pascal, which
he takes from the Geometric de position (Carnot), probably not

knowing to whom it was due. See also Gergonne's Annales iv.

196, 379 (181314).
This brilliant application of Desargues' theory of polars, in

conjunction with the property that the polar planes of all points on

one quadric with retpect to a second envelope a third, which Brianchon

proved in the same article (as an extension from the case of similar

and coaxal quadrics), served as a basis for the method of Reciprocal
Polars, the full development of which was so largely due to

POXCELET (Crelle's Journal iv. 1 71, 1829).

* Pascal himself also had doubtless deduced the properties of polars (which he

would have learned from Desargues) from his hexagram.

U2
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696. If ABC, DEF be two triangles such that AD, BE,
CF meet in a point, the intersections of (BC, EF], (CA, FD),

(AB, DE] lie in one straight line, and conversely*; and

every tetrad of radiants or collinear points in the figure is

harmonic.

697. If the vertices of a triangle slide severally on three

fixed radiants, and if two of its sides pass through fixed points,

the third side passes through a third fixed point in a line

with the former two, and conversely.

698. If one quadrilateral be divided into two others

by any straight line, the diagonals of the three intersect in

three collinear points.

699. Prove for the case of the circle that any four points

on the curve and the tangents thereat are equicross; and

that the cross ratio of any four points ABCD on the curve is

AB.CD

700. Prove that the sides and diagonals of a quadrilateral

determine an involution on any transversal; and that its six

summits subtend a pencil in involution at any point in its

plane.

701. The circles on the three diagonals of a complete

quadrilateral as diameters are coaxal
;
and they are orthogonal

to the circle through the three intersections of its diagonals;

and they determine an involution on any transversal.

702. Any two triangles which are reciprocal polars with

respect to a circlef are in homology.

703. Find the locus of intersection of tangents to two

given circles whose lengths are in a constant ratio.

* Two such triangles are said to be in perspective or in homology. Solutions of

Exx. 696-702, 705 are given in McDowell's Exercises in Euclid and in Modern

Geometry, pp. 134-187, 227, 239 (new edit. 1878).

t The same may be proved for any conic, us (for example) in Cremona's Element*

de Geometric Protective, p. 227 (1875).
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- 704. The pairs of radiants from any point to the vertices

of a triangle and parallel to its opposite sides respectively

form a pencil in involution.

705. Deduce by reciprocation from the property of the

orthocentre that, if from any point radiants be drawn to the

summits of a triangle, the radiants at right angles to them

meet the opposite sides of the triangle in three collinear points.

706. The nine-point circle N of the tetragon determined

by a triad of points and their orthocentre (Art. 125, Cor. 3)

touches the sixteen circles inscribed or escribed by fours

to the four triangles determined by the summits of the tetragon

(note, p. 391). If ABC and be the points of contact of

any of these sixteen circles with its triangle and with N
respectively, the sixteen sets of lines OA, OB, OC, making
in all forty-eight lines, pass by fours through the extremities

of the six diameters of N parallel to the sides and diagonals

of the tetragon ;
and every two tetrads which pass through

opposite extremities of the same diameter have equal cross

ratios.*

707. Prove by reciprocation from the theorem Ad quatuor

tineas (or otherwise), that if a quadrilateral be circumscribed

to a circle, the ratios of the products of the distances of

its three pairs of opposite summits from any fifth tangent are

invariable.!

708. From the anhannonie paint-property of a conic deduce

the theorem Ad quatuor lineas
;
and thence deduce the theorems

of Art. 16, and the property of any principal or oblique

ordinate. Shew also how to deduce the anharmouic property

of four tangents from that of four points |

* See Dr. Casey's article in the Quarterly Journal of Mathematics, iv. 245.

t See Mulcahy's Principle* of Modern Geometry, p. 43 (ed. 2, 1862).

J All the chords PQ drawn to a conic from a given point P upon it are bisected

by a similar conic touching the former at P and passing through its centre 0. Let

the tangent at Q meet that at P in R. Then OH meets PQ in a point q lying on

the inner conic
;
and by the point-property of th latter,

P{Q}=P{q} = 0(q} = 0(R}=(Xl.
This proof is from GABKIX'S Geometrical Construction of a Conic Section p. 26

(1858).
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709. From the anharmonic tangent-property of a conic

deduce the relation between the intercepts made upon a pair

of parallel tangents by any third tangent.*

710. From the point-property of a conic, A [ABCD]
= J5 {ABCD}, deduce that if from any point K on the chord

AB a transversal be drawn meeting the tangents at A^ B
in Tand T

7

',
and the conic in C and D, then

KG.KT . TD =*KD . TK. T C.

711. Deduce elementary properties of the hyperbola from

the relation.

oo

where ao and co
'

are its two points at infinity, and AB any
other two points on the curve.

712. Deduce Art. 23, Cor. 3 from the relation

where oo is the point at infinity on the parabola.

713. Shew also by cross ratio that three fixed tangents to

a parabola divide any fourth in a constant ratio.

714. Deduce from Prop. VI. that, if a conic touches the

sides of a triangle and passes through the centre of its

circumscribed circle, this circle touches the orthocycle (note,

p. 280) of the conic.

715. Deduce from Prop. ix. that the nine-point circle of

every triangle self-polar with respect to a parabola passes

through the focus
;
and construct a triangle self-polar to every

parabola inscribed in a given triangle.

716. If OP and OQ be tangents to a conic, the circle

through P which touches OQ in Q is such that triangles

self-polar with respect to the conic can be circumscribed to it,

* CIIASLKS has founded his Traite des Sections Coniques upon the .inharmonic

properties of conies (cf. Apergu Historique, pp. 39, 334-344). The properties of

diameters and of the foci are deduced in chaps, vi. and X. The same general method
is followed by Cremona; and it is given as an alternative by Rouche and De
Cornberousse (Traite de Geometric 1125, 4me ed. Paris 1879).
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717. Shew how to inscribe in a given conic a triangle

(or fl-gon) whose sides pass severally through given points.*

7 1 8. Having proved the properties of polars by cross ratio,

deduce the fundamental property of a diameter of a conic.

719. Prove Prop. II. by the same method, and deduce

the elementary properties by which it was proved in the text.

720. From the properties of quadrilaterals inscribed or

circumscribed to a conic, deduce that the diagonals of every

inscribed parallelogram are diameters of the conic; and that

supplemental chords are parallel to conjugate diameters; and

that the diagonals of every circumscribed quadrilateral are

conjugate diameters.

721. If a variable tangent to a conic meet the tangents from

a given point L in F and H, and if M and K be a certain

pair of fixed points on the fixed tangents ;
shew that MF.KH

is constant,t and deduce that a variable tangent to a conic

divides any two fixed tangents hornographically.

722. If ABODE be a pentagon circumscribing a parabola,

the parallels from B to GD and from A to DE intersect

upon CE.

723. If ABCD be a quadrilateral circumscribing a parabola,

the parallels from A to CD and from C to AD intersect on

the diameter through B] and every other tangent divides

AD and BC (or AB and CD] proportionally.^: Consider also

the limiting case in which ABC is a straight line.

* On EXT. 717 ic. see Salmon's Conic Sections 297, 326-8, EXT, where

Townsend's solution is given; Rouche et De Comberousse Traite de Geometric

1134. The problem for a simple case of which see Pappus Collect, lib. vir,

prop. 117 was solved by POSCELKT, and analytically by GASKIX. See Historical

Notices respecting an Ancient Problem in The Mathematician vol. III. pp. 75, 140,

225, 311, 42 (suppl.).

t See XiiWTON's theorem Ex. 371, with Ex. 364, note
;
and compare Ex. 726, note.

See also CHASLES < -

-/pi-rieure 120; Sections Coniques 56.

j Exx. 7 L'2 3 having been deduced from Brianchon's hexagon in Quetelet's Corre-

tj>oji
fin nee mattn mnt'xjue et physique iv. 155, Chasles was led (ibid. iv. 364, v. 289)

from Ex. 723 to Ex. 724 (which is equivalent to the anharmonic property of four

tangents to a conic), apparently without being aware that an equivalent theorem

(Ex. 721, note) had been proved by NEWTOX. See also Apercu Hittoriqtte pp. 341-4

(Note xvj. .
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724. In a quadrilateral ABGD circumscribed to a conic,

the ratio of the ratios in which any fifth tangent divides either

pair of its opposite sides is constant.

725. If the fifth tangent meet AB, CD in M and N,
and if a sixth meet AD, BC in P and Q, then

AM.BQ. CN.DP=AP.DN. CQ.DM.

726. Quatuor rectis BL, BI, DK, DH positione datis, ducere

quintam LH talem, ut partes abscisses HI, IK, KL sintin ratione

data.*

727. If a fixed conic /Sand a variable conic 8' be inscribed

in the same quadrilateral, the four points in which S' intersects

S subtend at any point on S' a pencil whose cross ratio is constant,

being equal to that of the range in which the sides of the quadri-

lateral meet any fifth tangent to jS.f

728. If the tangent at to a conic meet any other

three tangents in the points abc, and meet their three

chords of contact in a'b'c, prove that [Oabc] = {Oa'b'c}.

729. If AB be a given chord of a conic, and PQ a

variable chord such [APQB] is constant, the envelope of PQ
is a conic touching the former at A and B.

730. If the chords AB and CD of a conic be conjugate,

and ACB be a right angle, and a chord DP meet AB
in Q ; prove that the angle PCQ is bisected by CA or CB.

731. If ABC be a triangle circumscribing a parabola

and abc the points at infinity on its sides, the tangents from

* LAMBERT Insigniores Orbitce Cometarum Proprietates sect. I. lemma 18 5153

(17C1). The envelope of LH is shewn to be the parabola touching the four given

lines (Art. 28, Cor. 3). [The problem had been solved in another way in the

Arithmetica Universalis prob. 52 (ed. 1707) al. prob. 56]. Here we have obviously

the anharmonic property of four tangents to a parabola ;
and by stating the result

/// , KI
in the projective form that the ratio of the ratios jjj

and ==- is constant we at once

shew the property to be true for all conies. [See also the Principia lib. I. sect. v.

lemma 27 Cor., where WREN and WALLIS are referred to for earlier solutions.]

t Briefly thus : the cross ratio of the common points of any two conies in the one

js equal to that of their common tangents in the other.
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any point to the parabola belong to the involution

(AaBb Cc}. Hence shew that the directrix of every parabola

inscribed in a triangle passes through its orthocentre. [Art. 110.

732. The joins of four points on a conic meet any
transversal in three pairs of points in an involution, to which

the intersections of the transversal with the conic also belong.

Hence deduce (by removing the transversal to infinity) that

every conic through a triad of points and their orthocentre is

a rectangular hyperbola.

733. If AEB and CDF be two triads of collinear points,

the intersections of (AFt CE), (BF, ED), (BC, DA) are in

one straight line.*

734. In a hexagon inscribed in a conic, if two pairs of

alternate sides are parallel the third pair are parallel.

735. In every hexagon inscribed in a conic the two triangles

determined by the two sets of alternate sides are in homology.
State the reciprocal theorem.

736. The Pascal lines of the sixty hexagons determined by
a Pascal hexastigm pass by threes through twenty points;

and the Brianchon points of the sixty hexagons determined by
a Brianchon hexagram lie by threes on twenty straight lines,f

737. If two conies touch one another at A and B, and if

L^l be a chord of the outer which touches the inner conic
;
find

the loci of the intersections of AL, BM and AJ/, BL.

738. The chords joining four points on a conic to any
fifth P and to any sixth Q intersect in four points lying on

a conic through P and Q.

* PAPPUS Collectio lib. vn. prop. 139 (vol. n. p. 887, ed? Hultsch) ; Simson De
Poritmatibtis p. 414; Chasles Porismes p. 77. Note that AFBCED is a hexagon
inscribed in a line-pah*, so that Pascal's theorem is a generalisation of this lemma
of Pappus.

t See TOWNSEXD'S Modern Geometry II. 172. The terms hexastigm and hexa-

gram are here very appropriately used to denote the figures determined by six points
and lines respectively, taken in any order. In the text however I have retained the

term hexagram as a designation of Pascal's figure out of regard for historical

considerations.
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739. If a conic S be inscribed in a triangle self-polar

with respect to a conic S', shew that triangles self-polar with

respect to S can be inscribed in S'.

740. Given the sum of the squares of the axes of a conic

inscribed in a given triangle, the locus of its centre is a

circle concentric with the polar circle of the triangle.*

741. Given five points on a conic, find (by cross ratio or

involution) its second intersection with any straight line through
one of the five points, and its two intersections with any other

straight line; and determine its points at infinity and its

asymptotes, real or imaginary.

742. Prove by cross ratio that five tangents determine

a conic; and determine other tangents and their points of

contact
;

and shew how to construct the tangents from any

given point, real or imaginary.

743. Prove by involution that if three sides of a quadrilateral

inscribed in a conic turn about three points in a straight line,

the fourth side turns about a point in the same straight line
;

and hence shew how to inscribe in a conic a triangle whose three

sides pass severally through three collinear points.

744. Prove Carnot's theorem, that if aa', bb', cc', be the

three pairs of points in which a conic meets the sides BC,
CAj AB of a triangle, then

Ab.Ab'.Bc.Bc'.Ca.Ca=Ac.Ac'.Ba.Ba'.Cb.Cb'.}

Prove also that the same relation subsists when A, B, C denote

the sides of a triangle ; a, a', &c. the tangents from its vertices

to a conic; and Ab denotes the sine of the angle between

any two lines A and b.

745. The distances pqr of any point on (or tangent to) a

given conic from three fixed lines (or points) are connected

* Seethe Quarterly Journal of Mathematics*. 130.

t This is an obvious corollary from Art. 16. It is given in Carnot's Geomctrie

deposition 236 (Paris, 1803) as a case of a more general theorem.
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by a relation of the form

Pp* + Q<? + Rr* 4- P'gr + Q'rp -f R'pq
=

0,

where P, Q, &c. are constant coefficients.

746. If four tangents to a conic parallel to four chords

abed through either focus meet any fifth tangent in points ABCD,
then

[ABCD] =
[abed]

&
,

22

where p, p and
<?, q are the perpendiculars upon the fifth tangent

from two pairs of opposite intersections of the four tangents.

If the latter be fixed pp varies as qq. Hence deduce that

the product of the focal perpendiculars upon any tangent to

a conic is constant.*

747. If three summits of a quadrilateral circumscribing

a conic slide severally on three rays of a pencil, the fourth slides

on a fourth ray. Hence shew how to circumscribe to a

conic a triangle whose three vertices lie on three given radiants.

748. If upon a given arc AB of a circle whose centre is

there be taken any arc Am, and likewise an arc Bn

equal to 2Am, then 0{m} = J3{n}. Hence deduce a solution

of the problem, to trisect a given angle AOB. [Ex. 528.

749. The product of the distances of any point on a hyper-
bola from a given pair of parallels to the asymptotes varies

as its distance from the chord intercepted by the parallels :

and the product of the distances of any point on a parabola from

two fixed diameters varies as its distance from the chord joining
their extremities.

* The distances of any two tangents from either focoid (Art. 123, Cor. 4) being
in a ratio of equality, the products of the focal perpendiculars upon any two tangents

are in a ratio of equality. The cross ratio of the range in which any tangent meets
_ j p \r TJ 7

the sides of the quadrilateral S<j>JI<}>' is equal to-sWj
-

i where SY and HZ are

the focal perpendiculars upon the tangent (Oxf. Camb. Dubl. Messenger of
Mathematics TV. 94). Chasles calls the points of concourse of common tangents to

two conies "points ombilicaux" (Sections Coniques chap. XIV.), with reference to the

use of the term Umbilicus for focus noticed above on p. 5.
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750. From Ex. 744 deduce a construction for a conic

passing through four given points and touching a given straight

line : and shew that the lines joining the vertices of a

triangle circumscribing a conic to the opposite points of contact

cointersect: and when four points on a conic and the

tangent at one of them are given, shew how to draw the

osculating circle at that point.

751. Through the centre of a conic and any conjugate triad

with respect to it a hyperbola can be described having its

asymptotes parallel to any given pair of conjugate diameters.

752. The system of radiants from any point parallel to the

tangents to a parabola is homographic with the range in which

these tangents meet any fixed tangent.*

753. If from a series of collinear points pairs of perpen-
diculars be drawn to two fixed straight lines, the joins of the

feet of the several pairs of perpendiculars envelope a parabola

touching the two fixed lines.

754. If any chord of a conic drawn from a fixed point

upon it meets the sides of a given inscribed triangle in points

ABC and the conic again in P, shew that [ABCP] is constant;

and deduce a construction for the tangent at a given point to

a conic of which four other points are likewise given.

755. If ABC be the intersections and abc the points of

contact of three fixed tangents to a conic, the product of the

distances of any tangent from A and a varies as the product of

its distances from B and C: the product of its distances from

b and c varies as the square of its distance from A : the pairs

of radiants from any point to BC and Aa determine an

involution to which the tangents from to the conic belong:

and these tangents with Ob and Oc determine an involution

having OA for one of its double rays.

756. Deduce from Brianchon's hexagon that when a quadri-

lateral circumscribes a conic the joins of its opposite points of

* For solutions of Exx. 741759, 765-800 see Chasles' Sections Coniques

pp. 8-C7, 72-109, 137145, 160, 204, 209, 211299, 321 Jcc.
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contact pass through the intersection of its two diagonals ;
and

that in a triangle circumscribing a conic, the three lines joining

its vertices to the opposite points of contact meet in a point.

757. The three pairs of lines from the vertices of a triangle

to the intersections of its opposite sides with a conic are tangents
to one conic : and the lines from any two points to the vertices

of a triangle meet its opposite sides in six points lying on one

conic. Reciprocate these two theorems; and from the second

of them deduce the property of the nine-point circle.

758. The ratio of the products of the distances of any point

on a conic from the odd and even sides respectively of a given
inscribed 2tt-gon is constant : and the products of the intercepts

on any chord made by the odd and even sides are in the same

ratio from whichever extremity of the chord the intercepts are

measured.

759. The ratio of the products of the distances of any tangent
to a conic from the odd and even summits respectively of a

given circumscribed 2/z-gon is constant
;
and the ratio of the

products of its distances from the summits and from the points
of contact of any given circumscribed n-gon is constant.

760. If two angles of given magnitudes PAD and PSD
turn about A and B as poles given in position, then if the inter-

section P of one pair of their arms be made to describe a conic,

the intersection D of the other pair will in general describe

a curve of the fourth order, having double points at A and B
and at the limiting position of D when the angles BAP and

ABP vanish together: but the locus of D will be of the third

order if the angles BAD and ABD vanish together. If P
describes a conic passing through A, then D describes a cubic

having a double point at A and passing through B* This cubic

* This is NEWTON'S Curvarum Descriptio Organica (note p. 264). The case at

the end of Ex. 7GO follows from the principle that a cubic proper canuot have two
double points (Salmon's Higher Plane Curves 42). This special case is given by
Chasles (Aper^u hittorique, p. 337) as a generalisation of NEWTON'S construction in

the Pnncipia.
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degenerates into the line AB and a conic through A and B
in the case in which the original conic passes through both

A and B.

761. The nine-point circle of a triangle touches its inscribed

and escribed circles at points lying on the ellipse which touches

the sides of the triangle at their middle points.*

762. Reciprocate Maclaurin's description of a conic given in

Art. 113, Cor. 2.

763. The sides of a quadrilateral inscribed in a conic meet

the tangents at its opposite angles in four pairs of points lying

on one conic,f

764. If a quadrilateral be circumscribed to a conic, the four

pairs of lines joining its vertices to the opposite points of contact

touch one conic.

765. If the sides of an n-gon turn severally about fixed

points, whilst n 1 of its summits slide each on a fixed line;

the n
th
summit describes a conic passing through the fixed points

on the two adjacent sides.

766. Shew also that any two sides not adjacent intersect

on a fixed conic through the points about which they turn.

767. If the arms A and B of an angle pass each through
a fixed point, whilst its summit slides on a fixed line

;
shew lhat

the join of the points in which A meets one fixed line and

B another envelopes a conic touching the join of the fixed

points.

768. If each summit of an n-gon slides on a fixed line,

whilst n 1 of its sides pass severally through (or subtend given

angles at) fixed points ;
the n

h
side envelopes a conic touching

the lines on which its extremities slide; and every diagonal
of the w-gou envelopes a conic.

769. Any two pairs of conjugate lines from a point to

a conic determine an involution whose double rays are the

tangents from to the conic. State the reciprocal theorem.

* See Salmon's Conic Section*, 345, Exx.

t Mobiua Barycentritche Calcnl 281.
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770. One point and one only of every conjugate triad with

respect to a conic lies within the conic
;

and two sides of every

self-polar triangle meet the conic.

771. The lines drawn from any point on a conic to two

conjugate points A and B meet the conic at the extremities

of a chord which passes through the pole of AB. State the

reciprocal theorem.

772. If a quadrilateral be circumscribed to a conic, the

extremities of any chord through the intersection of two of

its diagonals lie on a conic passing through the extremities

of both.

773. Any three pairs of points which divide the three

diagonals of a quadrilateral harmonically lie on one conic.

774. If the extremities of two diagonals of a quadrilateral

be conjugate points with respect to a conic, the extremities of

the third will be likewise conjugate.

775. If two of the three pairs of joins of four points be

conjugate lines with respect to a conic, the third pair will be

conjugate with respect to it.

776. The pairs of chords drawn from a fixed point on a

conic so as to make equal angles with a given line intercept

a variable chord which passes through a fixed point.

777. The pairs of tangents to a conic from points on a

straight line determine an involution on any transversal through
its pole, or on any tangent to the conic.

778. The pairs of tangents to a parabola from points in the

same straight line are parallel to conjugate rays of a pencil

in involution.

779. Two tangents being drawn to a conic from any point

on a fixed straight line, if x and x be their distances from its

pole, and y and y their distances from a fixed point, shew that

x
,

x = a constant.

y
~

y
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780. Any two ranges in involution on the same axis have

one segment in common.

781. The locus of the middle point of a chord drawn from

a fixed point to a conic is a conic through the point, and

through the points of contact of the tangents from it to the

original conic, and through the two points at infinity on that

conic.

782. Find the envelope of a line which meets two fixed

lines in a pair of conjugate points with respect to a given conic.

783. The envelope of the parallel from any point on a fixed

straight line to the polar of the point with respect to a conic

is a parabola touching the fixed line.

784. The locus of the intersection of a pair of conjugate

lines with respect to a given conic, drawn each through a fixed

point, is a conic, which passes through the two fixed points, and

through the points of contact of the tangents from them to

the original conic.

785. If two angles be circumscribed to a conic their two

summits and their four points of contact lie on one conic.

786. Any transversal being drawn to a conic from a fixed

point 0, the perpendicular to it from its pole envelopes a

parabola, which touches the polar of and the tangents to

the conic at.the feet of the normals to it from 0.

787. Circumscribe to a given conic a polygon having each

of its summits upon a given straight line.

788. The poles of a given straight line L with respect to

the system of conies through four given points is a conic, which

with the line L divides the six joins of the four points har-

monically, and passes through their three intersections, and

through the two points on L which are conjugate with respect

to every conic of the system : it also touches the sixteen conies

which pass through the said conjugate points and touch by
fours the sides of the four triangles determined by the given

points.
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789. If four conies pass through the same four points, the

polars of any point with respect to them form a pencil whose

cross ratio is constant, being equal to that of the tangents

to the four conies at any one of their points of concourse : and

reciprocally, if four conies touch the same four lines, the poles

of any straight line with respect to them form a range whose

cross ratio is constant, being equal to that of the points in

which the four conies touch any one of their common tangents.

790. If two conies osculate at 0, their tangents at the

further extremities of any chord through intersect on the

tangent at 0, and conversely : and every two equal and coaxal

parabolas osculate at infinity.

791. Two conies which have two pairs of conjugate diameters

of the one parallel to two pairs of conjugate diameters of the

other must be similar and similarly situated.

792. Deduce from Art. 114
(i)

that parallel conies* have a

common chord (real or imaginary) at infinity ;
and if also

concentric they have double contact at infinity. Shew how
to draw a conic which shall be parallel to a given conic, and

shall also pass through three given points or touch three given
lines.

793. Three fixed conies having four points in common, shew

that if a variable pair of transversals be drawn from fixed

points and to to meet the three conies in triads of points mAB
.

, , /- i
OA.OB , wa.fob

and mau respectively, the ratio or the ratios ^ and
mA.inn ma.mb

is constant.f Hence deduce that a conic may be regarded as

the locus of a point the square of the tangent from which to

a fixed circle varies as the product of its distances from two

fixed lines, which are common chords of the conic and the

circle.

* Similar and similarly situated conies may be called parallel since their curves

are everywhere parallel at corresponding points : they have also been called

"homothetic" (Chasles Sections Coniques 373), which should rather mean "placed

together." For another use of the term parallel see Gergonne's Antwles xn. 1.

t Exx. 793 A-c. have been extended to quadrics by Mr. Martin Gardiner in the

Quarterly Journal of Mathematics x. 132 147.

X
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794. If from any point on one of three conies which have

four points in common a tangent be drawn to each of the

remaining two, the ratio of the ratios of these tangents to the

parallel diameters of their conies is constant : and if OPQ be

the middle points of the intercepts made by the three conies

on any transversal, then OP and OQ are in the ratio of the

parallel focal chords of the second and third conies.

795. Four fixed conies having four points in common being
met by a variable transversal, viz. two of them in the pairs

of points aa and bb'
t
and the third in two points of which m

is one, and the fourth in two points of which n is one
;
shew

., , . ma.ma , na.na .

that the ratio ot the ratios ; ^r and ; ^. is constant.
mo . mo no . no

796. If ABCD be four conies such that the eight points

of concourse of AB and CD lie on one conic, the eight points

of concourse of AC and BD (or AD and BC] lie on one conic.

797. When a point has the same polar with respect to

three conies ABC, three pairs of the common chords of AB,
BC, CA respectively pass through and form a pencil in

involution : and when two conies A and B have each double

contact with a third conic C, a pair of the common chords of

A and B are harmonic conjugates with respect to their chords

of double contact with C.

798. The common tangents to three conies taken in pairs

form three quadrilaterals: shew that the three parabolas

inscribed in them have a common circumscribed triangle.

799. If through the intersections of two given conies A
and B a third conic C be drawn, and if from any point

on C there be drawn tangents Oa, Oa to A and Ob, Ob' to B',

the lines db, ab', ab, a'b' and the four common tangents of

A and B touch a fourth conic.

800. The locus of the point the pairs of tangents from which

to two given conies form a harmonic pencil is a third conic,

on which lie the eight points in which the given conies touch

their common tangents. State the reciprocal theorem.
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CHAPTER XL

CONICAL PROJECTION.

128. Two figures A and B in any two planes are said

to be in Perspective when a point can be found in space

such that every radiant from it to a point on A passes through
a point on B, and conversely. Either figure is then said to

be the Central or Conical Projection of the other on the plane
of the former, the point being called the Vertex or the Centre

of projection. When is at infinity the projection becomes

parallel or orthogonal. [Art. 86.

Let P and Q be any two points in the plane of A, and P1

and Q' their projections from the vertex upon the plane
of B. Then evidently the lines PQ and P' Q' intersect upon
a fixed straight line, viz. the common section of the planes
of A and B. Now by projecting the whole figure orthogonally

upon any one plane, or by supposing the planes of A and B
to become coincident, we see that if to every point P of one

figure corresponds a single point P' of another figure in the

same plane, and conversely, and if PP' passes through a fixed

point; then every line PQ in the one figure meets the cor-

responding line P Q' in the other upon a fixed straight line.

For example, if the joins of the vertices of two triangles meet

in a point, the joins of their opposite sides lie in one straight

line. [Ex. 696.
Two figures thus related in one plane are said to be in

Perspective or in Homoloyy. We shall in general use the

former term for this kind of correspondence, aud the term

Projection for the case of figures in perspective in space. The
terms Reversion and Homographic Transformation will be

explained in their place.

X2
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129. It is evident that Art. 88 applies to central as well

as to parallel projection. Parallel lines however do not project

from any vertex into parallels, except in the case in which

they are parallel to the common section of the primitive plane
with the plane of projection.

If through the vertex V of projection (fig. p. 314) there

be drawn the plane Vab parallel to the plane of projection

AO'B, and so as to meet the plane of the figure to be projected

in the line db
j

it is evident that all points on ab will be

projected to infinity, or in other words they will remain unpro-

jected. For this reason ab is called the Unprotected Line, and

it is also said to be projected to infinity.

Since every point at infinity in the plane A O'B corresponds

protectively to some point on ai, we come again to the con-

clusion that all points at infinity in one plane lie in a straight

line (Art. 17 Cor. 2). The straight line at infinity is to be

regarded as parallel to every other straight line in its plane, since

it intersects every such line at infinity : it is in fact coincident

with the circle of infinite radius* described about any point

whatever in its plane. The line at infinity and the two focoids

(Art. 1'23 Cor. 4) or circular points at infinity so called because

every circle in their plane passes through them will be seen

to be of peculiar importance in the projection and transforma-

tion of curves.

THE FOCOIDS.f

PROPOSITION I.

130. Every circle in a given plane passes through the focoids,

and conversely ; and every two concentric circles in the same

plane touch one another at the focoids.

* For a tangential equation to this circle, which is sometimes inadequately

said to represent the focoids only, see Whitworth's Trilinear Coordinates <fc

Art. 382 (Cambridge 1866).

f This term is open to the objection that it combines a Latin word with a Greek

ending: but we may perhaps be allowed to treat both as naturalised English

expressions. In speaking of the focoids Ac. we tacitly refer to a specified plane.

Every plane not at infinity has its two focoids and its one line at infinity.



CONICAL PROJECTION. 309

(i) Any number of right angles turning about their summits

in one plane generate similar pencils in involution (Art. 110))

whose imaginary double rays form two sets of parallels; that

is to say, each set pass through one of two fixed imaginary

points 0, $' on the line at infinity.

These are accordingly the foci of the involution which the

arms of all right angles in one plane determine upon the line

at infinity in that plane ;
and conversely every right angle A OB

is divided harmonically by the lines 0$ and 0<j>'.

If therefore be a variable point at which a fixed line AB
subtends a right angle, it follows from the harmonicism of

O {A<f>B(f)'} that the locus of is a conic through the points

AB(j>(f>' (Art. 113). That is to say, every circle A OB passes

through the focoids, and conversely every conic through the

focoids is a circle.

(ii) The centre C being the pole of the line at infinity

(which is the join of the focoids), it follows that the lines

from C to the focoids touch the circle at those points; and

hence that all circles in one plane which have any point G
for their common centre touch one another at the focoids of

that plane.

(iii) Or, by i and Art. 122 Cor. 5, all concentric circles in

one plane touch one another at the focoids. This also follows

from the consideration that any two diameters CX and CY
of a circle which are at right angles are conjugate lines with

respect to the circle, and the lines C<f>
and Cfi* with respect

to which they are harmonic conjugates must therefore touch the

circle and all circles having C for centre must touch one

another at
<f>

and
</>'.

Corollary.

Every rectangular hyperbola has for a pair of conjugate

points with respect to it the focoids of its plane, since its points
at infinity lie on two straight lines at right angles.

* These lines may be regarded as the atymptotet of the circle (Art. 114).
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PROPOSITION II.

131. Every conic may be regarded as inscribed in the

quadrilateral which has for opposite summits the real and

imaginary foci of the curve and the focoids, and for diagonals

the two axes of the conic and the line at infinity.

(i)
This is proved by the method of Art. 123 Cor. 4, where

S and H may be either the real or the imaginary foci.

[Scholium A.

(ii) Otherwise thus. Every two lines through S which

are conjugate with respect to the conic being at right angles

(Art. 7), the lines 8$ and S& which divide them harmonically

are tangents to the conic (Art. 116 Cor. 2). That is to say,

the lines joining the real or imaginary foci to the focoids touch

the conic, as was to be proved.

PROPOSITION III.

132. Any two straight lines drawn at a given angle in a given

plane and the lines joining their point of concourse to the focoids

form a pencil of constant cross ratio.

For if ab be a fixed straight line, and a> any point at which

it subtends an angle of given magnitude a, then by a property

of the circle wab, the pencil subtended by ab and the focoids

at co is of constant cross ratio
;
and the rays &>a, cab may be

parallel to any two lines OA and OB inclined at an angle

a in the same plane.

Corollary.

Any plane figure may be moved about in any way in its

own plane without changing its relation to the focoids, since

every angle in the figure has an invariable relation to the

focoids.

SCHOLITTM A.

DESARGTJES regarded the opposite extremities of an infinite line

as coincident or consecutive points, and the asymptotes of a hyper-
bola as its tangents at infinity (Poudra's (Euvres de Desargues i. 103,

197, 210, 245). Hence we deduce (Scholium B, p. 153) that the

hyperbola is a single curve, which spreads completely across its

plane without breach of continuity. It follows logically that no
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transversal can. be drawn in the same plane so as not to meet
the hyperbola. Nevertheless it is obvious that some lines its

conjugate axis for example do not (however far produced) meet
the curve in geometrical points. Thus we are driven to the con-

ception of ideal or imaginary points and chords of intersection, and
are led to say that every straight line meets any hyperbola (or
other conic) in two points real or imaginary, which coalesce in the

case of tangency. Although this is here given merely by way of

inference, the words of Desargues himself (used in another con-

nexion) are very appropriate to this subject:
" L' entendement ne

pent comprendre comment sont les proprietez que h raisonnement luy en

fait conclure" (CEuvres i. 195).
BOSCOVICH has a very remarkable appendix to his treatise on

conies, entitled De Transfortnatione Locorum Geomutricorum, ubi de

Continuitatis legeacde quilusdam Infiniti wy.s/fT?Ys(Univer6eMatheseos
Elementa, torn. in. pp. 228 356), in which he brings out clearly
and with an abundance of geometrical illustration the notions of

positive and negative in direction : of geometrical continuity : of the

transition from positive to negative through zero or infinity : of the

imaginary chords of the hyperbola, whose squares are negative :

and of the quasi-elliptic nature of the hyperbola, certain of the

properties of which follow from properties of the ellipse by change
of sign ( 678, 715, 758, 770, 808, 812, &c.). See also Scholium C,

p. 101.

The discussion of these matters having been revived in the

present century (Chasles Rapport sur les progres de la Geom&trie

chap. I. 19, p. 60), PONCELET at length worked out his theory of

cordes ideales (1820) ;
and he shewed that all circles in one plane pass

through the same two imaginary points <f>
and

<p'
on the line at

infinity, and that a focus <S common to any two conies in one plane
is a "centre of homology" or intersection of common tangents
to the two conies. Hence it follows, by supposing one of the two
conies to become a circle, that S<p and Sty' are tangents to every
conic of which S is a focus. See Grergonne's Annales xi. 73, xn. 234

;

Poncelet Traite des Proprietes Projectives des Figures 89 98, 258,

367, 453 (Paris, 1822). Pliicker extended this conception to plane
curves of all orders, regarding as a " focus" of any curve the point
of concourse of any two tangents drawn to it from the focoids, one

from each (Crelle's Journal x. 84 91
;

Salmon's Higher Plane

Curves 138).

According to Pliicker's definition, the tangents from the focoids

^ and
(/>'

to an ellipse (or other conic) determine by their opposite
intersections two pairs of "foci." If S be any one of the four,

every pair of conjugate lines from S to the conic form a harmonic

pencil with
S<j>

and
S<j>' (Art. 116, Cor. 2), and are therefore at right

angles. This, which is of course a corollary from Desargues' theory
of polars was proved for the real foci by De la Hire (Sectiones
Conicce Lib. vm. prop. 23, p. 189. Paris, 1685). The two points
on the transverse axis at distance t V( CA* -

CjB*) from the centre C
have been shewn to possess the property in question (Art. 7, Cor.) ;
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and by symmetry, the two points on the conjugate axis at distance

v/( CJ3
Z - CA*} from C must be the remaining two (or imaginary)

foci. In order to prove that a point S is a focus of a given conic,

it suffices to prove that TWO pairs of conjugate lines at right angles can

be drawn to the conic from S. Art. 110.

PROJECTION.

PROPOSITION IV.

133. All rows of points and pencils of rays are homographic

with their projections.

({)
For if ABCD be any row of four points in the primitive

plane, and A'B'C'D' their projections from a vertex V upon

any other plane, it is evident that {A'B'C'D'}
= {ABCD}. And

if be any fifth point in the primitive plane and 0' its projection,

then

0' {A'B'C'D'} = {A'B'C'D'} = {ABCD] = {ABCD],

C' D'

Thus every tetrad of radiants OA, OB, OC, OD or of

collinear points ABCD is equicross with its projection ;
a result

which may be briefly expressed by saying that figures in per-

spective are homographic.

(ii).
More generally,* let the joins of any number (say six)

of points ABCDEF be connected by a homogeneous and

symmetrical relation

LAB.CD.EF+m.AC.BE.DF+n.AD.BE.CF=0,
in which the terms differ from one another only in their

* See Salmon's Conic Sections, Art. 351.
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coefficients and in the order in which the letters ABCDEF
occur in them. And first let all the points lie in one straight

line, and let VP be the perpendicular upon it from the vertex

of projection.

Then since

VA.VB . VC.VD . m,nAB =
TTp

. sm A VB
;
CD = . sin CVD

;
&c.

the above relation reduces, by the omission of a common factor,

to a relation between the sines of the angles which the joins

of the six points subtend at V. It therefore still subsists

when the points in question are replaced by their projections

upon any plane.

And further, if any number of points ABCDEF &c. lie

on different straight lines, the perpendiculars upon which from V
are FP, FP', FP', &c., then any symmetrical and homo-

geneous relation between the joins of the points will still be

projective, provided that it implicitly involves in every term

VA . VB. VC. VD . &c.
the same factor ^ -'

. Thus Carnot's theorem
FP. VP . FP .&c.

(Ex. 744) is projective, so that when proved for the circle

it is may be extended to all conies by projection.

Corollary.

The properties of harmonic section, of poles and polars.

and of involution are projective ;
so that it suffices to prove them

for the simplest figure into which any figure to which they belong
can be projected.

134. Any straight line in the primitive plane can be projected

to infinity, and any tioo angles in that plane can at the same time

be projected into angles ofgiven magnitudes.

(i)
Draw any straight line ab in the primitive plane, and take

any plane Vab through ab for the u
vertex-plane," in which

the vertex F of projection is to lie. Then it is evident that the

line ab projects to infinity upon any assumed plane of projection
ABO' parallel to the vertex-plane.
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(ii) Two conditions now suffice to fix the position of V
in the vertex-plane.

To project a given angle A OB in the primitive plane into

an angle of given magnitude a, let the arms of AOB meet

the unprojected line in a and b
;
and upon ab describe in the

vertex-plane a circular segment aVb containing an angle equal

to a. Then the vertex V may be taken at any point on

this segment.
For the vertex-plane and the plane of projection (being

parallel) are met by the plane VOa in parallel lines Va and A (7,

and by the plane VOb in parallel lines Vb and BO'. Therefore,

0' being the projection of 0,

L AO'B = aVb =
<i,

or the projection AO'B of the angle AOB is of the assigned

magnitude a.

To project a second given angle in the primitive plane into

an angle of given magnitude /S,
let its arms meet the unprojected
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line in a and V : then the vertex V must lie also on a segment
described upon a'b' in the vertex-plane so as to contain an angle

equal to ft: and the intersection of this with the segment
on ab completely determines the position of V.

Corollary 1.

Project any four collinear points ABCD into points abed.

Then in the special case in which one of the latter d is at

infinity,

( A r>/^r>i r T 71
ab.Ctt ab

{ABCD} = [abed] = - = = -= .

ace .cb co

If therefore we determine the point D on a given straight

line ABC so that {ABCD} may be equal to a given ratio,

and if any straight line through D be taken as the unprojected

line, the projections of AB and GB will be in the given ratio.

In like manner a second point D' on the unprojected line is

determined by the condition that the segments of a second line

A'B'C' shall project in another given ratio.

Corollary 2.

Any pencil of rays in involution may be projected into

a rectangular pencil in involution by projecting the angles
between any two pairs of its conjugate rays into right

angles. [Art. 110.

Corollary 3.

Any two points F and F' may be projected into the focoids

of a given plane. For if AB and CD be any two segments
in the involution of which F and F are the foci, we have

only to project the line FF' to infinity and any two angles

AOB and CPD in the primitive plane into right angles

(Art. 130 i). This construction is imaginary when JPand F'

are real points.

PROPOSITION VI.

135. Any quadrilateral may be projected into any other

quadrilateral of given form and magnitude.

(i) To project a given quadrilateral ABCD into a square,
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project one of its angles BAD and the angle AOD between
its two diagonals into right angles, and its third diagonal
PQ to infinity. Thus the projection ofABCD becomes a square,
whose magnitude is determined by the distance of its plane from
the vertex-plane.

(ii)
To project a given quadrilateral ABCD into another

of given form, it suffices to project one of its angles BAD

and the angle AOD between its two diagonals into angles
of certain given magnitudes, and the segments AO, OC and

BO, OD into segments which are in certain given ratios.

[Art. 134 Cor. 1.

For in the projection the same letters being used if AO
AO

be taken arbitrarily, the point is determined by the ratio -^7=, ;

UL>

and the position of the line BOD is known
;
and from the angle

fiO
BAD and the ratio ~. the points B and D are determined.

The form of the projection being thus determined, its magnitude

may be increased or diminished at pleasure by moving the plane
of projection towards or away from the vertex-plane.

Corollary.

Any four points or lines in one plane may be projected into

any other four points or lines in one plane. .

PROPOSITION VII.

136. A given conic may be projected into a conic having
the projections of two given points for foci, or the one for centre

and the other for a focus.
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(i)
To project a given conic Q and a given point S within

it into Q' and S' respectively so that S' may be a focus of Q' :

draw from S any two pairs of lines conjugate with respect

to Q, and project the angles contained by them into right angles.

Thus S' becomes a focus of Q', being a point such that every

pair of conjugate lines drawn from it to Q' are at right angles.

[Art. 134 Cor. 2.

We may at the same time project a given point C in the

plane of Q into the centre C' of
(?',

VIZ - by taking the polar

of C with respect to Q for the uuprojected line.

(ii) Otherwise thus. Let CS and the tangent at any assumed

point P to the conic Q meet the polar of S in X and R

respectively. Then if the polar of C be projected to infinity and

each of the angles RXS and R8P into a right angle, the points

C and S will be projected into a centre and focus of Q', as before.

(Hi) By properly choosing the point C in the foregoing

constructions, we may project Q so that any two points S and H
within it project into S' and H' the real foci of Q'.

For if SH meets Q in A and B, and if the double points

of the involution determined by the couples AB and SH be

the point C on SH and the point G on its complement;
then in the projection, the double point C' bisects every segment

S'H', A'B', &c. of its involution, since in conjunction with

the second double point (in this case at infinity) it divides every
such segment harmonically. [Art. 1 12.

Hence -S" and H' are equidistant from the centre C' of Q'y

and since S' is a focus H' is likewise a focus, as required.

(iv) The system of conies inscribed in a given quadrilateral

SFIIF' may be projected into confocal conies by projecting
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F' into tbe focoids of the plane of projection (Art. 134 Cor. 3).

This construction is imaginary when the quadrilateral FSHF'
is real : but the foregoing constructions are always real, the

points S and H being taken within Q.

PROPOSITION VIII.

137. A given conic may be projected into a circle having
the projection of a given pointfor centre : a system of conies through

four given points may be projected into coaxal circles: or a system

of conies touching one another at two given points into concentric

circles.

(i) By taking the point C at 8 in Art. 136 we project

the given conic into a conic having the same point (not at infinity)

for both centre and focus; that is to say, we project it into

a circle having the projection of a given point for centre.

(ii) Otherwise thus. Take the polar of any point C for

the unprojected line: through C draw any chord ACA', and

project the angles which it subtends at two assumed points
P and Q on the given conic into right angles. Then in the

projection, the same letters being used,

CA=CA=CP=CQ,
or the projection is a circle about C as centre.

Thus the two angles determine the species of the projection,
and the unprojected line may be taken arbitrarily.*

(iii) Hence, by projecting any conic into a circle and one

of its chords FF into the line at infinity, we may project

* This may also be deduced from a consideration of the circular sections of a cone

described arbitrarily on any given conic as base (Salmon's Conic Sections Art. 365).
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any two points F and F' on a conic into the focoids, as was

otherwise shewn in Art. 134 Cor. 3.

It follows that all conies through two given points may
be projected into circles, and all conies through four given points

into coaxal circles, and all conies touching one another at two

given points into concentric circles. [Art. 130 ii.

PROPOSITION IX.

138. The arms of any angle of constant magnitude in a given

plane may be projected into rays of a pencil of constant cross ratio,

whose other two rays pass each through a fixed point.

For the arras of a constant angle and the lines joining their

intersection to the focoids form a pencil of constant cross ratio

(Prop. Hi.), which projects upon any plane into a pencil of

constant cross ratio, two of whose rays pass through the projec-

tions of the focoids. Note that this pencil is harmonic when

the constant angle is a right angle. [Art. 130 i.

139. In the following examples of the projection of angle-

properties* the theorem to the right follows in each case from

that opposite to it on the left, as appears conversely by pro-

jecting the points FF' into the focoids.

The tangent to a circle is at right Any chord FF' of a conic is cut bar-

angles to the radius to its point of con- monically by any tangent and the line

tact. joining its point of contact to the pole C
of FF'.

Confocal conies intersect at right If two conies be inscribed in a quadri-

angles. lateral of which FF' are a pair of opposite

summits, the tangents at any one of their

common points cut FF' harmonically.

The locus of the point of concourse of The locus of the point of concourse of

two tangents to a conic which intersect two tangents to a couic which divide a

at right angles is a concentric circle
;
or given line FF' harmonically is a conic

in the case of the parabola the locus is the touching the former at FF'; or if FF'
directrix. touches the original conic, the locus is

the join of the points of contact of the

second tangents to it from F and F'.

The locus of the intersection of tan- The locus of the intersection of tan-

gents to a parabola which meet at a gents to a conic which divide a given

* See Salmon's Conic Sections 3 JC-!S
;
Rouche et de Conibcrousse

H75.
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given angle is a hyperbola having the finite line FF' touching the conic in a

same focus and directrix. constant cross ratio is a conic touching
the former at the points of contact of the

second tangents to it from F and F '.

The envelope of a chord of a conic If tangents SF and SF' be drawn to

which subtends a constant angle at one of a conic from given points F and F', the

the foci is another conic having the same envelope of a variable chord AB such

focus and directrix. that S {AFBF'} is constant is a conic

touching the former at its points of con-

tact with SFand SF'.

If P be any point on a given conic, If SFF' be fixed points, and P a

S any fixed point, and SPT an angle of variable point on a conic through, and

constant magnitude, the envelope of TP F', the envelope of a line PT such that

is a conic having 5 for a focus. P {SFTP*} is constant is a conic touching
SFandSF'.

If the point P be taken on a given If P be taken on a given straight line

straight line (instead of a conic), the (instead of a conic), the envelope of TP

envelope of TP becomes a parabola becomes a conic inscribed in the triangle

having S for focus. fSF'.

PERSPECTIVE.

140. The relation of Perspective in one plane may be treated

either as a limiting case of the protective relation (Art. 128),

or independently as follows.*

From a fixed centre of perspective S in the plane of a given

figure draw radiants to all points p of the figure, and let these

radiants meet a fixed axis of perspective in the same plane

in points R (fig. p. 10). Then if on every radiant SR there

be taken a point q such that

{SpRq} = a constant,

the locus of q is said to be in Perspective with the locus ofp.

Taking any two positions of SR, we have

and therefore pp and qq' always intersect on the axis of

perspective RR' (Art. 104). Hence also we see that to every

straight line pp in the one figure corresponds a straight line

qq in the other; and to every range {p} in the one a homo-

graphic range {q} in the other. Figures in perspective in piano
are therefore homographic, and they possess the same properties

as figures projectively related in space.

* See Chasles Sections Coniques p. 169.



CONICAL PROJECTION. 321

It may be shewn that if two figures in perspective in relief

be turned about the line of intersection of their planes, their

centre of perspective describes a circle in a plane perpendicular

to that line.* [Ex. 850.

8CHOLITIM B.

The method of Projection which is implicitly contained in the

ancient theorem of Art. 103 was freely used by DESARGTJES. It

was used also by NEWTOX, under the name Gcneratio curvarum per
Umbras, in his Enumeration of Lines of the Third Order, where
he remarks (p. 25, ed. Talbot) : "And in the same manner as the

circle, projecting its shadow, generates all the conic sections, so

the five divergent parabolas, by their shadows, generate all other

curves of the second genus. And thus some of the more simple
curves of other genera might be found, which would form all

curves of the same genus by the projection of their shadows on. a

plane."

Desargues also proved the fundamental property (Ex. 696) of

triangles in perspective, whether in relief or in piano ((Euvres i.

413, 430). The term "
homologie," for perspective in one plane,

was introduced by Poncelet, and is now generally used by French
writers. But since the term is in itself inexpressive, an incon-

venient distinction has to be made between homologue and homo-

(Rouche" et De Comberouase Geometric 1094, 1167).

REVERSION.

141. Take fixed points /S,
and a fixed straight line MNi

and through the fixed points draw any two straight lines

intersecting at some point R on MN^ and also a pair of parallels

meeting RO and RS in P and p respectively (p. 10). Then

P, p may be called Reverse Points: and S the Origins of
reversion : and MN the Base Line. When the locus of P is a

conic having S and MN for focus and directrix, we have seen

that the locus of the reverse point p is the eccentric circle of

0] and we have derived properties of the conic from pro-

perties of this circle.f We now proceed to treat the subject

of reversion more generally. The original figure from which

a reverse figure is derived may be called its Obverse.

* Chasles Geometric Superieure 3G8-9
;
Cremona Geometric Prqjective 90.

t See Arts. 4-6. 16 and Exx. 6-10.
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PROPOSITION X.

142. To any straight line drawn in a given direction cor-

responds a reverse line passing through a fixed point on the base

line.

Let and to be the origins of reversion : P and p any two

reverse points : tarn and PM a pair of parallels, meeting the

base line in M and m.

Then, if E be the point on the base line at which Pea and Op
intersect,

OP : cop
= PR : <oR =PM : com,

and therefore OM and pm are parallel.

Hence, if eyi be a fixed line and P a variable point on

any assumed line parallel to o>?n, the locus of p is the straight

line drawn through the fixed point m on the base line parallel

to OM.

Corollary 1.

The point at infinity on any system of parallels PM cor-

responds to a reverse point m on the base line. All points

at infinity in the same plane are therefore to be regarded as lying

in one straight line, of which the base line is the reverse.

Furthermore the direction of the line at infinity is indeter-

minate. For, as pm turns about the same point m on the
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base line, the reverse line PM remains parallel to tarn: and

ultimately, when pm coalesces with the base line, PM becomes

the line at infinity, which may accordingly be regarded as

parallel to any assumed line win.

Corollary 2.

If the arms of any angle MPN and of the reverse angle

mpn meet the base line in M, N and m, n respectively, then

L man = MPN', and L MON= mpn.

Notice that to every angle PSQ subtended at either origin S

(fig. Art. 4) corresponds an equal reverse angle pOq subtended

at the other. For example, the angles PSO, pOS are equal,

in the figure of Art. 6.

PROPOSITION XI.

143. Any straight line being taken as base line, any two given

angles may be reversed into angles ofgiven magnitudes.

For the angle MPN (Prop. x. Cor. 2) reverses into an angle

of given magnitude a, if the origin be taken on the circular

segment MON described on MN so as to contain an angle equal

to a. By a like construction a second angle may be reversed

into an angle of given magnitude /3. And if be taken

at the intersection of the two segments, the two angles will reverse

simultaneously into angles equal a and /3 respectively.

The applications of this general theorem are precisely

analogous to those of the corresponding theorem in Conical

Projection, [Prop. V.

Corollary.

From any origin a given conic may, by properly choosing
the base line, be reversed into a conic through two given points

at infinity, whose magnitude is then determined by the position

of the reverse origin o>. Or if the base line be given, the origin

may be determined by reversing the angles between two

assumed pairs of lines PA, PB and PC, PD which may be

drawn conjugate with respect to the given conic into angles
a and /3 respectively. By properly determining the origins

Y2
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and the base line together we may reverse any conic and point

U and P into any conic and point U' and P'. For example,
if a and /3 be right angles and the polar of P with respect

to U be taken as base line, V becomes a circle whose centre

is P'. [Prop. YIII.

144. The following are some applications of the property
of reverse figures that all angles subtended at the origin in the

one figure correspond to equal angles subtended at the reverse

origin in the other. [Art. 142 Cor. 2.

a. A variable chord of a conic which subtends a right angle

at a given point envelopes a conic having that point for a focus.

For if the given point and its polar be taken as origin

and base line, the reverse conic has its centre at the reverse

origin o> (Art. 142 Cor. 1) ;
and a variable chord of the latter

conic which subtends a right angle at w envelopes a concentric

circle (Ex. 289), of which the obverse is a conic having and

the base-line for a focus and directrix.

b. A variable chord of a conic which subtends a right angle

at a given point on the curve passes through a fixed point on the

normal thereat.*

For if a conic through be reversed into a circle through

GJ, every chord of the former which subtends a right angle at

has for its reverse a diameter of the circle, and therefore passes

through the fixed point which is the obverse of the centre of

the circle. Note that the tangents and also the normals at

and <o are reverse lines.

Hence, to reverse a conic from any point upon it as origin

into a circle, we must have as base line the polar BC of the

point of concourse of all chords which subtend right angles at 0.

c. Let DOE be a fixed angle inscribed in a conic, P any

point on the curve, B and C the points in which PD and PE
meet the polar of the point of concourse of all chords which

* This theorem of Friigier p. 276, note, and Correspondance svr r Ecole Royale

Polytechnique tome III p. 394, 1816 -is a limiting case of . See Scholium D,

p. 285.
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subtend right angles at 0: then will the angle BOG le equal

or supplementary to the angle D OE*
For if with as origin and BC as base line the conic be

reversed into a circle, then (with the same notation) the points

B and C are removed to infinity, and the theorem follows at

once from the equality of the angles DOE and DPE in the

same segment of the circle.

d. If a straight line PDB turning about a fixed point P
meet the arms of a constant angle BOD, which turns about a

fixed point 0, in B and 7); then if the point B moves along

a straight line BC, the point D describes a conic through and P.

For when BC is the line at infinity the locus of D is evidently a

circle through and P; and therefore by reversion, the locus

of D in the general case is a conic through and P.

This is a limiting form of Newton's Descriptio Organica

(Art. 113 Cor. 1), since the line through P may be regarded as

a vanishing angle BPD.

e. Every range [ABCD] and its reverse {abed} subtend

similar pencils {ABCD} and to {abed} at the origins, and are

therefore homographic. All the properties of cross ratio may
therefore be extended from the circle to the general conic by
reversion.

145. The Orthocentre.

a. Let the sides of a triangle ABC, the reverse of A'B' C',

* See Mathematical Questions from the EDUCATIONAL TIMES, vol. I. pp. 83, 40

(Question 1409).
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meet the base line in points D, E, F, and let aD, bE, cF be seg-

ments of the base line which subtend right angles at to. Then

^a, Bb, Cc are reverse to the perpendiculars of the triangle

A'B'C' (Art. 142 Cor 2) and cointersect at the reverse P of

its orthocentre.

It is hence evident that the sides of any triangle ABC and

the radiants from any point to its vertices determine an involu-

lution {aD, bE, cF} on any transversal. [Art. 110.

b. If the triangle ABC envelopes a fixed conic touching
the base line, the obverse of which is a parabola, the point P
traces a straight line, the reverse of the directrix of the

parabola. [Art 29 Cor. 1.

Or
if, starting with the parabola and taking its directrix

as base line, we reverse it into a circle about o> as centre,

the point P is removed to infinity. Hence, if the sides of a

triangle ABC touch a circle, and meet any fourth tangent
to it in abc, and if the diameters parallel to the polars of ale

meet the fourth tangent in DEF, the lines AD, BE, CF are

parallel. In other words :

If the sides of a triangle ABC touch a circle, and if the

parallel tangents meet any seventh tangent in DEF, the lines

AD, BE, CF are parallel
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More generally :

Iffrom three, collinear points XYZpairs of tangents be drawn

to a conic, and if ABC be the triangle formed by one tangentfrom
each pair and DEF the points in which the remaining three

tangents meet any seventh tangent, the lines AD, BE, CF meet at

a point in a straight line with XYZ.

146. The Normal

The reverse of the normal at any point P to a conic is the

line through the reverse point p which with the tangent at p
intercepts on the base line a length which subtends a right angle
at the reverse origin o>. [Art. 142 Cor. 2.

147. Conjugate Diameters.

If a conic be reversed into the eccentric circle of w, it

may be seen that a pair of its conjugate diameters inclined at

angles a and TT a, reverse into lines through the pole of

the base line with respect to the circle and which contain angles

TT a and a.

148. The Asymptotes.
If a conic meets the base line in M and N, the asymptotes

of its reverse correspond to the tangents at M and JV, and

are therefore parallel to MO and NO, where is the origin

(Art. 142). We may therefore determine the eccentricity of

the reverse conic by making the angle MON of any assumed

magnitude, real or imaginary.

SCHOLIUM 0.

EEVERSE lines OP and pw through the origins (which may
be supposed to lie on the same side of the base line) being reverse
in direction, figures are consequently, in a manner, turned over

in this transformation, so that an original figure and its derivative

may be regarded as obverse and reverse respectively. Thus
in Art. 4, if the circle be divided by axes through parallel
and at right angles to the base line, its first and third quadrants
must be turned over or interchanged, and likewise its second
and fourth, in order that they may become similarly situated with
the sectors of the conic to which they severally correspond.

If reverse points P and p be referred to rectangular axes
of coordinates, the base lino being the common axis of x and
the axes of y being drawn through and w respectively, then
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if X, T be the coordinates of P and r, y those of p, and if OD
and wd be the ordiuates of and o>. it may be shewn that

Ty = wd . OD, and X : x = Y : <u^. Hence an equation of any
degree between x and y implies an equation of the same degree
between X and Y.

Reversion is a special case of the following transformation.

Take fixed origins and w, and a fixed director line (or plane)

corresponding to each : from any point P draw POD to meet
the 0-director and Pwd to meet the w-director: then the point
of concourse of wD and Od corresponds to P. The construction

in the text results from supposing one of the directors to be
at infinity. The analysis for the general case is fully given
in a section by Prof. Cayley contributed to my article on the

Homographic Transformation of Angles in the Quarterly Journal

of Mathematics xiv. 25 39.

HOMOGRAPHIC TRANSFORMATION.

PROPOSITION XII.

149. Any two plane homographic figures of the same species

are capable of being placed in perspective.

We have seen that any two plane figures in perspective

are so related that to every range in the one corresponds a

homographic range in the other (Prop. iv). Conversely,

any two plane figures thus related are capable of being placed

in perspective.

(i)
For if ABCD be four fixed points and P a variable point

in a plane figure, and A'B' C'D'P' the corresponding points in a

homographic figure, it is evident from the relation,

P \ABCD] =P {A'B'C'D'},

that by projecting the points ABCD into A'B'C'D' (Art. 135)

we at the same time project every point P into its corre-

spondent P'.

(ii) The same result may also be arrived at as follows.

Let A be a given plane figure, regarded as moveable in

any way in its plane, and B a fixed homographic figure in

the same plane. Then to the focoids < and <', regarded as

belonging to A, correspond fixed points F and F1

related to B.

[Art. 132.



CONICAL PROJECTION. 329

Let F<f> and F'<f>' meet in the point related to B, and

let 0' be the corresponding point in A. Also let P and Q
be any two points in J5, and P' and Q' the corresponding points

in A.

Move the figure A a certain distance in a certain direction

until 0' coincides with 0, and then turn it about until

the points POP' are brought into one straight line.* TheDj
since A and B are homographic,

0{PQFF'}=0{P'Q'FF'}',

and therefore, since three rays in the one pencil coalesce

severally with three in the other, the fourth ray OQ coalesces

with the fourth OQ', or every two corresponding points Q, Q'

are in a straight line with 0, the required centre of perspective

of A and B. It then follows from Art. 140 that A and B may
be placed perspective in space.

Corollary.

Since figures homographic with the same figure are homo-

graphic with one another, and since any conic and an assumed

point in its plane may be projected into a circle and its centre

(Art. 137), and conversely; it follows that arty conic and point

in one plane may be projected into any other conic and point

in one plane. [Prop. XL Cor.

SCHOLIUM D.

Transformation is a convenient (if not strictly accurate) ex-

pression for the derivation of one figure from another in accordance

with an assigned law of correspondence. The general idea of

homographic transformation may be found in a passing remark
of DESARQUES (CEiures i. 214), who, having enunciated the funda-
mental property of the polar planes of a sphere, concludes by
stating curtly that it may be extended to surfaces which are related

to the sphere as the ellipse is to the circle: " Semblable propriete"
se trouve a 1'egard d'autres massifs qui ont du rapport & la boule,
comme les ouales autrement ellipses en ont au cercle, mais il

y a trop a dire pour n'en rieu laisser."

In the tract on Plani-coniques appended to his Nouvelle methode
en Geometric ~c. (Paris 1673), De la Hire derived the general conic

* See Salmon's Higher Plane Curves Art. 330.
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from the circle by a geometrical transformation in piano. A
similar transformation appears to have been arrived at by Le
Poivre about thirty years later (Chasles Sections Coniques p. 174).
NEWTON shewed how to transform curves of all orders (Principia

Lib. i. sect. v. lemma 22) by substitutions of the form X= and
x

Y= (cf. Schol. C), and added two examples of the application
x

of his method (loc. cit. props. 25, 26). The "collinear" figures
ofMobius "sont aussi des figures homographiques les plus gene"rales"

(Chasles Sections Coniques p. 165). Mobius proved inter alia that

any four points in a plane may be projected into any other four

points in a plane (Barycentrische Calcul p. 327, 1827). For a

general exposition of the principle of Homography see Chasles'

Memoirs on duality and homography, at the end of his Aper<;u

historique. See also his Geometric Superieure pp. 362 412, and
Townsend's Modern Geometry chaps. 19 22.

EXAMPLES.
[It is left to the reader in some cases to modify the enunciations of the pairs of

theorems in the double columns so as to bring them into exact correspondence].

801. The diagonals of a parallelogram

and the lines bisecting its two pairs of

opposite sides form a harmonic pencil.

802. If two triangles be similar and

similarly placed, the joins of their corre-

sponding vertices meet in a point.

803. Any two pairs of parallels through

points P and Q meet any transversa! in

an involution having its centre on PQ.

804. The centres of the diagonals of a

complete quadrilateral are in one straight

line. [p. 256.

Each diagonal of a complete quadri-

lateral is divided harmonically by the

remaining two diagonals.

If the intersections of the three pairs

of sides of two triangles He in one straight

line, the joins of the opposite vertices

cointersect.

The three pairs of joins of any four

points in a plane determine an involution

on any transversal.

An infinity of pairs of straight lines

can be found which divide the three dia-

gonals of a quadrilateral harmonically.

805. Parallel chords of a circle are Concurrent chords of a conic are

bisected by a straight line through its divided harmonically by their common

centre. point and its polar.

806. If two of the three pairs of op-

posite sides of a hexagon inscribed in a

circle are parallel, the third pair are

parallel.*

The three pairs of opposite sides of any

hexagon inscribed in a conic have their

intersections in one straight line.

tfcj it. i.

807. A system of coaxal circles meet All the conies through four given points

r transversal in pairs of points in an meet any transversal in pairs of points inpoints

[Art. 109 an involution.

* See Gergonne's Annales iv. 79.
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808. Four circles can be drawn touch-

ing three given straight lines.

809. Four conies can be drawn through
three given points so as to have a given

point for a focus.

810. The diameters of a circle eubtend

a pencil in involution at any point on the

circumference.

811. Given two paira of lines conju-

gate with respect to a circle, the locus of

its centre is the rectangular hyperbola

circumscribing the quadrilateral of which

the conjugate lines are opposite sides.*

812. Given three pairs of lines conju-

gate with respect to a circle, the positions

of its centre constitute an orthocentric

tetrastigm.

813. Every circle through the centre

of a rectangular hyperbola circumscribes

an infinity of triangles self-polar with

respect to the hyperbola.

814. If a triangle PQ.R right angled

at P be inscribed in a rectangular hyper-

bola, the perpendicular from P to Q.R is

the tangent at P.

815. The directions of twD sides of a

triangle inscribed in a circle being given,

the envelope of the third side is a concen-

tric circle.

816. The envelope of the polar of any

point on a circle with respect to a con-

centric circle is a concentric circle.

Four conies can be drawn through two

given points and touching three given
lines.

Four conica can be drawn through
three given points so as to touch two

given lines.

A system of concurrent chorda of a

conic subtend a pencil in involution at

any point on the curve. [p. 276.

Given a chord FF' of a conic and two

pairs of lines conjugate with respect to it,

the locus of the pole of FF' is a conic with

respect to which F and F' are a pair of

conjugate points.

Through two given points four conies

can be drawn so as to have three given

pairs of lines conjugate with respect to

them
;
and their common chord is divided

harmonically by every conic through its

four poles with respect to them.

If two triangles be self-polar with

respect to a conic, their six angular points

lie on a conic.

If .Fand F' be conjugate points with

respect to a conic, PQ, and PR any two

chords which divide FF '

harmonically ;

then QR and the tangent at P divide

FF' harmonically.

If two sides of a triangle inscribed in

a conic pass each through a given point,

the envelope of the third side is a conic

touching the former at two points on the

join of the given points.

The envelope of the polar of any point
on a conic with respect to a second having
the same focus and directrix is a third

having the same focus and directrix.

* From the centre of the circle draw a perpendicular OP to one of the lines, and

let it meet the conjugate line in Q ;
and draw OP' perpendicular to one of the second

pair of lines, and let it meet the fourth line in Q.'. Then since OP . OQ = (radius)*

= OP". OQ', the locus of is a conic through the four vertices of the quadrilateral ;

and it ia easily seen that the orthocentre of any three of them is a point on the locus.
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817. Parallel chords of a circle are cut

in a constant ratio by a concentric ellipse

touching the circle at the extremities of

the perpendicular diameter.

818. Every parallelogram inscribed in

a circle is rectangular.

819. The diagonals of every parallelo-

gram circumscribed to a circle meet at

right angles at its centre.

820. The centres of all the rectangular

hyperbolas circumscribed to a given tri-

angle lie on its nine-point circle.

821. The circumscribed circle of every

triangle which circumscribes a parabola

passes through its focus.

822. The envelope of the polar of a

given point with respect to a system of

confocal conies is a parabola touching

their axes and having the given point* for

a point on its directrix. [Ex. 379.

823. If from a fixed point tangents

OP and OQ be drawn to any one of a

system of confocal conies, the circle through

OPQ passes through a second fixed point.

[Exx. 340, 380.

824. Given three concentric circles,

any tangent to one of them is divided into

segments of constant lengths by the re-

maining two.

825. Four fixed tangents to a parabola

divide any fifth tangent into segments

whose ratios are constant. [Ex. 726.

Concurrent chords of a conic are divided

in a constant cross ratio by every conic

having double contact with the former

upon, the polar of the point of concur-

rence.

The intersections of the two diagonals

and of the opposite sides of any quadrila-

teral are a conjugate triad with respect to

every conic circumscribing the quadrila-

teral.

The diagonals of a complete quadri-

lateral are a conjugate triad with respect

to every conic inscribed in it.

Given four points on a conic, the locus

of the pole of a given line is a conic, &c.

[Ex. 788.

If two triangles circumscribe a conic,

their six summits lie on a conic.

The envelope of the polar of a given

point with respect to the system of conies

inscribed in a quadrilateral is a conic

touching its three diagonals ;
and the

chord of contact of the second tangents to

this conic from the extremities of any dia-

gonal of the quadrilateral is the line join-

ing the given point to the point of con-

course of the remaining two diagonals.

If from a fixed point tangents OP
and OQbe drawn to any one of a system
of confocal conies, the conic through their

foci and OPQ passes through a fourth

fixed point,f

If three conies touch one another at

the same two points, any tangent to one

of them is divided in a constant cross

ratio by the remaining two.

Four fixed tangents to a conic divide

any fifth tangent in a constant cross ratio.

* The tangents at this point to the two confocals through it touch the parabola.

t Project the common foci of the first system into the focoids of the plane of the

second. Bee the Quarterly Journal of Mathematics X. 287.
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826. Any two pairs of points which If the extremities of each of two dia-

divide the diagonals of a rectangle har- gonals of a quadrilateral are conjugate

monically lie on a circle. points with respect to a conic, the extre-

mities of the third are conjugate with

respect to it.*

827. If POp, QOq, ROr, 80s be any four concurrent

chords of a conic, the conies through OPQRS and Opqrs have

a common tangent at 0.

828. If FF1

be a common chord of two given conies, its

pole with respect to any conic which touches both of them

and passes through F and F' has for its locus a conic touching
the tangents at -Fand F' to the given conies.

829. If a conic touches the sides SF and SF' of a given

triangle and also two other given lines, the second tangents
to it from F and. F' meet on a fixed straight line.

830. Given, in addition to a chord of a conic, two tangents,

or one tangent and one point, find in each case the locus of

the pole of the given chord.

831. If two conies have double contact, the cross ratio of

four of the points in which any four tangents to the one

meet the other is equal to that of the remaining four points,

and also to that of the points of contact taken in the same sense

of rotation.f

832. Extend by projection Newton's theorem, that the

diameter of a quadrilateral is the centre-locus of all conies

inscribed therein.}: [p. 282.

833. The circle through any triad of points conjugate with

respect to a conic is orthogonal to its orthocycle (pp. 274, 280).

Is this theorem projective ?

* This theorem and its reciprocal are due to HKSSK (Crelle's Journal XX. 301,

1840).

f See Salmon's Conic Sections Arts. 276, 354.

J Its analogue in space was given in Gergonne's Annakt xvu. 200.
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834. From a fixed point tangents OP and OQ are drawn

to any conic inscribed in a given quadrilateral, and through P
and Q are drawn the straight lines which with PO and QO
respectively divide the three diagonals of the quadrilateral har-

monically. Shew that the lines so drawn touch the fixed conic

which is the envelope of PQ. [Ex. 822.

835. It' AB be one of the diagonals of this quadrilateral,

the conic through ABOPQ passes through a fourth fixed point

O'j such that AO, AO' and BO, BO divide the remaining two

diagonals harmonically. Shew also that the three positions of

O corresponding to the three diagonals of the quadrilateral lie

in one straight line.

836. If from a fixed point O tangents OP and OQ be

drawn to any one of a system of confocal conies, and if the

normals at P and Q meet in JV; the locus of the orthocentre

of the triangle NPQ is a straight line, and the locus of the

orthocentre of OPQ is a rectangular hyperbola having one

asymptote parallel to the central distance of 0.* What do

these theorems become by projection?

837. Given the orthocentre of a triangle inscribed (or cir-

cumscribed) to a given conic, the product of the segments of

its perpendiculars is constant. Hence shew that if one solid

angle contained by three planes mutually at right angles can be

inscribed (or circumscribed) to the surface of a given cone of the

second degree, an infinity of such angles can be inscribed (or

circumscribed) to it.

838. The locus of the point in space from which triads of

lines mutually at right angles can be drawn to triads of points

on a given conic is a sphere.

839. If the conic be supposed to vary, yet so as always
touch the sides of a given quadrilateral, the sphere will pass

* See the Quarterly Journal of Mathematics x. 289.
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through a fixed circle in a plane at right angles to the plane of

the quadrilateral.*

840. ABO is a triangle inscribed in a conic: Aa, Bb, Cc

are chords drawn through a point 0: and Ab, Be, Ca meet

the polar of in PQR respectively. Shew that the lines from

any point on the conic to the points PQR respectively meet the

sides of ABC in three collinear points.

841. Rays being drawn from a fixed point on a conic, shew

that the intercepts upon them between the conic and a fixed

tangent may all be projected upon a given line through the

fixed point, from another point on the conic, into segments of

the same length.

842. If a point P on a conic be connected with two fixed

points F and F' in its plane, all the chords which are divided

harmonically by FP and F'P are concurrent
;
and the locus of

their point of concourse, as P varies, is a conic touching the

first at two points on FF'.

843. If a conic passes through two given points and touches

a given conic at a given point, its chord of intersection with

the given conic passes through a fixed point.

844. ABCD being four points on a conic, E and F are the

poles and is the point of concourse of AB and CD. Through
E is drawn a straight line meeting CD in M and the conic

in Q and 12] and upon this line a point P is taken a fourth

harmonic to QMR. Shew that the locus of P is the conic

through ABCDEF, the tangents to which at E and F pass

through ;
and that the tangents from to the first conic

pass through the four points in which the common tangents to

the two conies touch the second.

* On Exx. 837-9 see Picquet's Etude geometrique des Systemes Ponctuels tt Tan-

gentieh de Sections Coniques 72, 73, 85, 86. Picquet now uses the term orthoptic

circle (p. 4'2) to denote the orthocycle, and the term orthoptic summits (p. 41) of the
"
pencil" of conies inscribed in a quadrilateral to denote the two fixed points on their

orthocycles. Gaskin's discovery of these points was anticipated by Plucker (Analy

tiseh-geometrisch-e Entwicklungen II. 198, 1831).
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845. If a variable conic has double contact with each of two

fixed conies, find the loci of the points of concourse of its

common tangents with the fixed conies.

846. If aa'j W, cc be parallel chords of a conic and p any
seventh point on the curve, prove that the three points (ap, &'c'),

(bp, c'a'), (cp, a'b'} lie on a straight line parallel to the chords.

847. If from each of four points on a circle perpendiculars
be drawn to the joins of the remaining three, the feet of these

perpendiculars lie by threes on four concurrent lines. Gene-

ralise this theorem by reversion, or otherwise.

848. Any two conies may be regarded as homographic

figures in which any three points on the one correspond to

three points taken arbitrarily on the other.*

849. Shew how to place reverse figures in perspective, and

adapt the constructions of Arts. 141148 to the case of figures

in perspective in one plane.

850. The construction in Art. 134
(ii)

for fixing the position

of F in the vertex-plane is independent of the angle between

that plane and the primitive plane: as this angle varies the

vertex remains fixed in its plane : it therefore describes a circle

in a plane perpendicular to
>,

or to the intersection of the

plane of projection with the primitive plane.

* Chasles Sections Coniques p. 167.

NOTE.

The undermentioned Examples (cf. p. 141) are taken from the

EDUCATIONAL TIMES Reprint :

Ex. 441 (I. 52); 442 (xi. 31); 443 (v. 101); 444 (vn. 49); 445

(xxx. 90); 450 (xn. 27) ;
454 (vin. 72) ;

455 (in. 35) ;
466 (xxx. 90) ;

516(1.55); 517 (v. 56): 518 (i. 53); 520 (v. 36) ;
521 (vn. 96) ;

522 (xi. 59) ;
523 (xvin. 32) ;

524 (xvm. 54) ;
526 (xxi. 35) ; 527

(xxiv. 87); 560 (xvir. 35); 562 (xvm. 52); 563 (xvm. 98); 578

(vi. 71); 607 (xv. 88); 611 (xxv. 23); 612 (xxv. 21); 613 (iv. 70);
620 ,xxiv. 43); 638 (iv. 97) ;

640 (xm 60) ;
644 (v. 87) ; 645 (xi.

104); 680 (iv. 69) ; 681 (x. 32) ; 682 (xvn, 60) ; 684 (xxn. 22) ;

685 (xxn. 51) ;
687 (xxiv. 101) ; 688 v

xxvi. 69) ;
689 (xxvm. 95) ;

690 (xxxi. 18) ;
714 (xi. 60); 727 (xm. 26) ; 737 (xxv. 61) ; 738

(n. 6) ;
835 xm. 61) ;

840 (in. 39); 841 (ix. 79) ;
842 (xi. 100) ;

843 (xn. 54) ;
844 (xiv. 80) ;

845 (xix. 101) ;
846 (XXIH. 94) ; 847

(xxx. 64. xxviii. 57).
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CHAPTER XII.

RECIPROCATION AND INVERSION.

150. WE now return to the method of Reciprocal Polars,

of which some account was given in Chapter X. [p. 268.

Take any fixed conic as Director, and let any straight line

or point be said to correspond or be reciprocal to its pole or

polar with respect to the director. It is evident that to the

intersection of any two lines corresponds the join of the

reciprocal points, and that to a system of concurrent lines

correspond a system of collinear points. [Art. 17 Cor. 1.

To any curve, regarded as the envelope of its tangents,

corresponds the locus of their poles with respect to the director
;

and to the join of any two consecutive points on either curve

corresponds the join of two consecutive tangents to the other.

Hence, to every tangent and its point of contact in either figure

correspond a point and the tangent thereat in the other.

It is hence evident that if two curves touch one another in

one or more points, their reciprocals touch one another in the

same number of points.

Notice that the tangents to the director at its intersections

with any curve are also tangents to the reciprocal curve.

PROPOSITION I.

151. The degree of any curve not having singular points

is equal to the class of its reciprocal with respect to a conic,

and conversely.

(i)
For if U be any curve and u its reciprocal, A any

straight line and a its reciprocal ;
then to every point in

which A meets U corresponds a tangent to u, and every such

z
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tangent passes through a. The number of points in which

an arbitrary line A meets U is therefore equal to the number

of tangents that can be drawn from any one point to w, as

was to be proved.

It follows that the reciprocal of a conic is a conic, as was

otherwise shewn in Art. 117; and that the reciprocals of all

conies touching the same four lines, or having the same foci, are

conies passing through the same four points. [Prop. VI.

PROPOSITION II.

152. To every point and its polar with respect to a conic

correspond a straight line and its pole with respect to the reciprocal

conic : to every conjugate triad of points in the one figure a

conjugate triad of lines in the other : and to every pencil or range
in the one a homographic range or pencil in the other.

(i)
For if ab and ac be the tangents from any point a to a

conic, then to their points of contact b and c correspond a

pair of tangents AB and A C to the reciprocal conic
;
and to-

the points of contact B and C correspond reciprocally the

tangents at b and c to the original conic. [Art. 150.

It follows that the join of B, C corresponds to a, and the

join of &, c to the point of concourse A of the tangents at

B and C.

Hence to any point a and its polar be in the one figure

correspond a line BC and its pole A in the other
;
and there-

fore to every conjugate triad of points in either corresponds

a conjugate triad of lines in the other.

(ii)
It has been shewn in Art. 116 that every row of points

and their polars with respect to any director are homographic.

Corollary.

Since the points of concourse of a conic and its reciprocal

correspond to their common tangents, the cross ratio of the four

common points of any two conies in either is equal to that of their

common tangents in the other. [Ex. 727.
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PROPOSITION III.

153. Given in a plane two straight lines and their poles

with respect to a conic^ the ratio of the distances of any point

in the plane from the given lines varies as the ratio of the

distances of its polar from their poles*

(i) Let the polars of any two points and P with respect

to a conic whose centre is C meet CO in L and M respectively,

and let PiVbe an ordinate to the diameter CO.

D'

Then since CL.CO= CM. CNfi
or CM+ OM-. CM= CL+NL: CL

;

therefore OM : CM= NL : CL = PR: CL,

if PR be drawn parallel to CL to meet the polar of 0. That

is to say, the distances of and C from the polar of P are as

the distances of P and Cfrom the polar of 0. [Ex. 325.

(ii)
If OX and CH be perpendiculars to the polar of P, it

follows that

PR-. CL=OX: CH;
and the same proportion will hold if PR and CL be now

supposed perpendicular to the polar of 0.

In like manner, taking any second position o of whilst

P remains as before, we have

Pr : Cl = ox : CH.

* Chasles Aperqu historique p. 590, 1875.

f If CM meets the conic in D and D', and if oo be the polar of DD', the point
M and its polar Poo divide DD' harmonically. Hence CM.CN = CD2

, whatever

be the position of P. This follows also by orthogonal projection from Ex. 281.

Z2



340 RECIPROCATION.

PR
Hence, whatever be the position of P, the ratio -

p-
is equal

CL OX
to ~-n . , where CL and Cl are constant for given positions

Cl ox 7

of and o
;
that is to say, the ratio of the perpendiculars from

a variable point P to the polars of two fixed points and o varies

as the ratio of the perpendicularsfrom and o to the polar of P.

We may of course, as a special case, suppose either point and

its polar to become a point on the curve and the tangent thereat.

Corollary.

It is hence evident that any homogeneous relation between

the distances of a variable point P from any number of fixed

straight lines implies a homogeneous relation of the same

degree between the distances of the polar of P with respect to

a conic from the poles of the fixed lines. Thus from the Locus

ad quatuor lineas, PQ.PR = k.PS.PT (Scholium C, p. 266),

we deduce a relation of the same form between the distances

of the tangent at P from two pairs of fixed points, opposite

vertices of a quadrilateral circumscribed to the conic. [Ex. 707.

POINT KECIPROCATION.

154. If be the centre of a circle, OA the perpendicular

from it to any straight line L and a the point on OA or its

prolongation such that OA . Oa =
(radius)

2

;
then a is the pole

or reciprocal of L with respect to the circle. The same point

a may also be determined by regarding merely as a fixed

point, without reference to the circle, and taking OA. Oa equal

to a constant quantity c*. This last construction is called

reciprocation with respect to a point, the point being called the

origin. When c'
2

is negative every line or point and its

reciprocal lie on opposite sides of the origin. The construction

is then equivalent to reciprocating with respect to an imaginary
circle. [Prop. V.

(ii).

Notice that to the foot of the perpendicular A from the

origin to any straight line L corresponds the line through
the reciprocal point a parallel to L or at right angles to Oa j
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and that to each line in a system of parallels corresponds a

point on the common perpendicular to them from the origin.

PROPOSITION IV.

155. Any two straight lines contain an angle equal to that

subtended by their point-reciprocals at the origin ; and the distance

of any straight line from the origin varies inversely as the

distance of its reciprocal therefrom.

The first part of the proposition follows immediately from

the perpendicularity of every straight line to the line joining

its reciprocal to the origin.

The second part is merely another way of stating that the

product OA.Oa, in the construction of Art. 154, is equal to a

constant c
2
.

Corollary 1.

g
From the relation Oa = we deduce, that to any straight

\Ja.

line L through corresponds the point at infinity in the

direction at right angles to X, and conversely. All points at

infinity in the same plane therefore lie on the reciprocal of the

origin, and are consequently to be regarded as collinear. To
the polar of the origin with respect to the original conic

corresponds the centre of the reciprocal conic, the polar of the

line at infinity with respect to it. [Art. 17 Cor. 2.

Corollary 2.

To the tangents OP and OP' from the origin to any conic

correspond the points at infinity in the directions at right

angles to OP and OP'
;
the eccentricity of the reciprocal conic

is therefore determined by the angle POP', the supplement
of the angle between its asymptotes. Hence the reciprocal

will be a hyperbola, an ellipse or a parabola according as is

taken without, within or upon the original conic. Thus we see

again that every parabola touches the line at infinity, the reci-

procal of the origin. The reciprocal of a conic with respect

to any point at which it subtends a right angle is a rectangular

hyperbola. In any case the axis of the reciprocal conic is parallel

to the bisector of the angle POP'.
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Corollary 3.

From either point of concourse of their orthocycles as origin

any two conies ZJand V reciprocate into rectangular hyperbolas

u and v
;
and conversely every conic through the four inter-

sections of u and v, being itself a rectangular hyperbola (Art. 69),

is reciprocal to a conic subtending a right angle at the origin

and touching the four common tangents to U and V. Hence

the orthocycles of all the conies which touch four given lines have

two points in common. [Art. 123 Cor. 1.

PROPOSITION V.

156. The reciprocal of a circle icith respect to any point is

a conic having that pointfor afocus^ and conversely.

(i).
If the director be a circle about the origin as centre,

any other circle C meets it at the focoids
<f>

and $', and there-

fore has for its reciprocal a conic touching 0<f> and $$', the

tangents to the director at the focoids. [Art. 130.

This conic therefore has for a focus
;
and its 0-directrix

(the polar of 0) corresponds to the pole of the line at infinity

with respect to 0, that is to say, it corresponds to the centre

ofC.

(ii).
Otherwise thus. Reciprocate a conic from either focus

H as origin, and let V be the point corresponding to any tangent

to the conic, and Z the projection ofH upon that tangent.
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Then if CB be the conjugate semiaxis, and CB* be taken

as the constant of reciprocation,

HV.HZ=- CB\

or V lies on the major auxiliary circle, which is accordingly
a reciprocal of the conic with respect to either focus. Hence,
whatever be the constant of reciprocation, the reciprocal of a

conic with respect to either focus is a circle, and conversely.*

In the limiting case of the parabola, produce /Sl^and 8A
(fig. Art. 26) to Z and B, so that SY.SZ= SA.8B=a, constant.

Then Z lies on the circle upon SB as diameter, which is accord-

ingly a reciprocal of the parabola with respect to S, and con-

versely.

(iii).
In the diagram, the eccentricity of the conic is equal to

CH ... 2CB*
-j*ni

and its latus rectum to . .

Moreover, if X be the foot of the ZT-directrix,

HC. HX= - CB\ [Art. 35 Cor. 3

and therefore (1) the .H-directrix is reciprocal to the centre of

the circle, and (2) the polar of H with respect to the circle

which in this case coincides with the ZT-directrix (Art. 35 Cor. 1)

is reciprocal to the centre of the conic.

If the constant of reciprocation be changed the relative

magnitude of the conic and the circle will alter, but the following
relations will still be found to subsist. The origin is now
denoted by 0, and the centre of the circle which will in

general be distinct from that of the conic by C.

distance of C from
eccentricity = r. ^. .

radius or circle

constant of reciprocation
k latus rectum = r .. : . .

radius ot circle

centre of circle = reciprocal of 0-directrix.

centre of conic = reciprocal of polar of with respect to circle.

* Another proof has been given by LaquieTe, Nouvellts Annales zz. 42, 1861
;
and

another by Salmon, Conic Sections Art. 308.
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Corollary 1.

One inscribed and three escribed circles can be drawn to

a given triangle, and their radii are connected by the relation,

Hence, by reciprocation with respect to any point 0, four conies

can be described having a given point for a focus and passing

through three given points, and the latera recta of three of

them are together equal to the latus rectum of the fourth.

Corollary 2.

The point Fin the diagram corresponds to the tangent YZj
the point C to the IZ-directrix

;
the line VC to the point of

concourse D of YZ with the .fl-directrix
;
the point of concourse

Y of VC and YZ to the line DV. But Y lies on the circle;

therefore D V touches the conic. The second point V in which

DV meets the circle corresponds to the second tangent from

Y to the conic. This tangent is evidently parallel to the oppo-
site tangent DV] therefore YHV is at right angles to jDFand

H\a the orthocentre of the triangle DYV. [Ex. 330.

PROPOSITION VI.

157. All the circles of a coaxal system reciprocate from
either of their limiting points into confocal conies.

(i). Whatever be the position of the origin in the plane
of the circles, their reciprocals have for a common focus.

If the origin be taken at either limiting point* of the system
of circles, it has the same polar with respect to them all, and

therefore the line at infinity has the same pole with respect

to all their reciprocals. That is to say, the latter have a

common centre as well as one focus in common. They are

therefore confocal, as was to be proved.

* These points are the limits of the system "par rapport a F infiniment petit"

and the radical axis and the line at infinity are its limits "
par rapport a Tinfiniment

grand." When a circle becomes infinite it degenerates in general into a straight line

at a finite distance together with the line at infinity. See Poncelet's Traitc des Propr.

Pry'ectivet p. 49 (1822) ;
Townsend's Modern Geometry I. 199.
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(ii). The system of conies through four given points reci-

procate with respect to any one of the system as director into

conies touching the tangents to the director at the given points.

The construction i. corresponds to the case in which the

focoids are two of the four given points, and the director reduces

to a point-circle.

Corollary.*

The further limiting point 0' of the circles corresponds to

the minor axis of the confocals, and the line bisecting 00' at

right angles to their further focus. The orthogonal circles

through and 0' reciprocate at the same time into parabolas

touching the minor axis of the confocals^ and whose directrices

pass through the further focus of the confocals ; and every common

tangent to one of the confocals and one of the parabolas sub-

tends a right angle at 0.

SCHOLIUM A.

RECIPROCATION presupposes the idea of an envelope, which

originated, according to Montucla (Hist, des Mathematiques tome n.

120, 1758), with Florimond DE BEAUNE (1601 1651), a zealous

advocate of the new Cartesian geometry. In a letter to De Beaune
dated 20 fev. 1639, Descartes writes: "Pour vos lignes courbes,
la propriety dont vous m'envoyez la demonstration me paroit si

belle que je la preTere a la quadrature de la parabole trouvee par
Archimede ;

car il examinoit une ligne donnee, au lieu que vous

determinez I'espace contenu dans une qui n'est pas encore donnee. Je
ne crois pas qu'il soit possible de trouver generaleruent la converse

de ma regie pour les tangentes, &c." ((Euvres de Descartes, ed.

Cousin, tome vin. p. 105, Paris 1824). Huyghens was the

discoverer of evolutes (Scholium, p. 221) : Tschirnhausen of caustics

(Chasles Aperqu historique p. 110, 1875).
MACLAURIN (Geometria Organica, sect. in. pp. 94 &c., London,

1720) propounded the theory of pedal and negative pedal curves.

Notice, as a converse of Art. 38, that a conic may be regarded
as the envelope of the arm TZ of a right angle inscribed in its

auxiliary circle, whose other arm VZ passes through a focus H.
Hence by projection, if two sides of a triangle inscribed in a

given conic pass through fixed points C and II respectively, the

envelope of the third side is a conic having double contact with
the former on the line Clf.

This corollary was suggested by Mr. B. R. Webb, Fellow of St. John's College.
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We have seen that NEWTON proved the general tangent-property
of conies, which was eventually presented in a new form, as a

property of "double" or " Enharmonic" ratio, by Steiner and
Chasles" (pp. 262, 295. Of. Ex. 726, note). Chasles' second proof
of Ex. 724 (Quetelet's Correspondance fyc. v. 289), viz. by recipro-
cation with respect to a parabola, is interesting as an application
of reciprocation to metric properties. See also Bobillier in

Gergonne's Annales xvm. 185; Poncelet, Proprietes Projectivet n.
431 (1866); Booth, New Geometrical Methods vol. i. chap. 29.

The Principle of Duality was first fully brought out by Poncelet's
method of reciprocal polars (Scholium E, p. 290). For some
controversies on the discovery of the principle see his Proprietes

Projectiles n. 351 396. It has since been illustrated by the
coordinate methods of Hobius, Pliicker, Booth, &c. See also

Chasles' Apergu historique pp. 572 694, 1875; Townsend's Jlodern

Geometry chap. 23. Figures which correspond according to the
law of duality have been called by Chasles (p. 587) Correlative

figures. They may also be called Dual figures. Any two dual

figures are such that to every point in either corresponds a straight
line in the other, and to every range in either a homographic pencil
in the other, as is the case, for example, with reciprocal figures.

MINOR DIRECTRICES.

PROPOSITION VII.

158. With either focus and directrix of an ellipse as origin

and base line the major auxiliary circle reverses into a similar

ellipse having for its minor auxiliary circle the reverse of the

original ellipse.

(i).
For in Art. 4 it is evident that the major auxiliary

circle of the ellipse reverses into an ellipse having the circle

about for its minor auxiliary circle
;
and by comparing the

segments of the latus rectum of the obverse with the segments
CB 8

of the major axis of the reverse we see that ^-j- -f- CB in the
. O-^i

CB
one is equal to

-~-j
in the other. The two ellipses are therefore

similar.

(ii). Let the annexed diagram represent the reverse figure,

and let CA
Q
be the major semiaxis of the obverse ellipse, and F

the point on the minor axis of the reverse corresponding to C.

Then F and its polar (the base line) are said to be a Minor

Focus and Directrix of the reverse.
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It is evident by parallels that

OF: OB : OD = CS : CA : CX,

or

where e is the common eccentricity of the two ellipses.

(iii).
In the case of the Hyperbola, if TT 2^; and be the

angles of the obverse and reverse hyperbolas respectively, and F
as before the point corresponding to the centre C of the obverse,

it may be shewn in like manner that F now lies on the major
OA

axis* of the reverse at a distance equal to . from its centre 0.
sin %

In the Kectangular Hyperbola the "
major" and minor foci

and directrices are coincident. In the Circle the minor foci

coincide with the centre and the minor directrices are at infinity.

(iv). The properties of the minor directrices may also be

arrived at by Reciprocation. It is easily seen that the reciprocal

of an ellipse with respect to its major auxiliary circle is a similar

ellipse having that circle for its minor auxiliary circle, &c.

*
Notice, in justification of the term minor axis in the general hyperbola, that the

square of this axis, being negative, is always less than that of the transverse axis.
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Notice, in illustration of this remarkable identity of results

arrived at by reciprocation and reversion, that if an ellipse and

a hyperbola have the same axes, each is its own reciprocal with

respect to the other. [Ex. 326.

Corollary 1.

From S in the obverse draw SY to meet the major auxiliary

circle and draw 00 at right angles to SY; then Yco touches

the conic (Art. 38). Hence, in the reverse figure, if OP be any
radius of the conic and OR be drawn at right angles to it

to meet the minor directrix, the envelope of PR is the minor

auxiliary circle.

Corollary 2.

Every chord drawn through S to the major auxiliary circle

of the obverse has its pole on the base line and makes equal

angles with the tangents to the circle at its extremities. Hence

any two parallel tangents Q3f, Q'-N drawn to the reverse

conic and terminated by the minor directrix subtend equal

angles at 0.

SCHOLIUM B.

The theory of Minor Directrices* is due to BOOTH (New Geome-
trical Methods vol. i. 269), who investigated their properties by the

method of reciprocation. In some cases he makes use of a double

reciprocation, first reciprocating a figure A into B and then B
into A'. But since figures reciprocal to the same figure are

homographic with one another, it should be possible to derive

the properties of A' directly from those of A. Take for example
the property that if a fixed straight line and the tangents from any
point P upon it to an ellipse about as centre meet one of its minor
directrices in Q and T, T' respectively, then tau| TOQ. tan^T'OQ it

constant. Regard the conic as the reverse of a circle, as in

Prop, vn ,
and let qtt' be (he points at infinity corresponding to

QTT'. Then the angles TOQ, T'OQ are equal to tSq, t'Sq or

tpq, t'pq respectively ;
and it remains only to prove for the circle that

tan typq . tanfy'pq is constant. Compare the longer method of

double reciprocation by which Booth establishes the proposition

(loc. cit. p. 276). Similar remarks apply to his double recipro-
cation of umbilical quadrics (p. 208).

Taking and w as origins, let it be required to reverse three

given points PQR in space into given points pqr respectively

*
They have also been called secondary directrices (Proc. Royal Irish Academy

III. 503).
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(Scholium, p. 328), each pair of points Pp, &c, being supposed to

lie in a plane through the origins. Each pair Pp determine a

point (OP, up] on the 0-director and a point (Op, uP] on the

w-director
;

and thus the three pairs Pp, Qq, Rr completely
determine the two director planes. This construction is equivalent
to reversing five given points OuPQR into five given points

uOpqr. Cf. Chasles, Apergu $c. p. 754. If one director-plane be
now removed to infinity, every two corresponding lines through
the origins become parallel, as in piano (Art. 142).

From a given point on an ellipsoid draw triads of chords

OA, OB, C at right angles, and let the fixed point of concourse
of the planes ABC (cf. p. 324, note) and its polar plane be called

the Fregier point and plane of 0. Then, if be taken as origin
and its Fregier plane as director, the ellipsoid reverses into a

sphere. If be not on the surface, we may reverse the ellipsoid
into a spheroid about o> as centre, and thus shew that the envelope
of the planes ABC (Booth i. 97) is a quadric of revolution having

for a focus. [Art. 144.

159. Examples of Reciprocation.

AVe shall now give some illustrations of the method of

applying the principles established above. The following

theorems will be seen to be reciprocal :

\ If two vertices of a triangle slide If two sides of a triangle pass through
on fixed straight lines whilst the, sides fixed points whilst the vertices slide each

pass each through a fixed point, the locus on a fixed straight line, the third side

of the third vertex is a conic passing envelopes a conic touching the lines on

through the fixed points on the adjacent which its extremities slide,

sides. [p. 264.

X If two sides of a triangle inscribed in If two vertices of a triangle circum-

a conic pass each through a fixed point, scribed to a conic slide each on a fixed

the envelope of the third side is a conic line, the third describes a conic having

having double contact with the former on double contact with the former upon the

the join of the fixed points.* tangents to it from the intersection of the

fixed lines.

'<)
The diameter of a quadrilateral is the Given four points on a conic, the polar

centre-locus of all conies inscribed therein, of a fixed point passes through a fixed

[Ex. 832. point conjugate to the former with re-

spect to every conic through the four

given points. [p. 278.

^7 The envelope of the polar of a given Given four points on a conic, the locus

point with respect to a system of confocal of the pole of a fixed straight line is a

conies is a parabola touching their axes, conic, <tc. [Art. 125.

<tc. [Ex. 822.

* This is easily proved by projecting the conic and one of the fixed points into

a circle and its ceutre (Art. 38).
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The six centres of similitude of three If three conies have two common tafN

arbitrary circles lie by threes on four gents (or a common focus), their six chords

straight lines. of intersection pass by threes through the

same four points.

The locus of the centre of a circle The polar of the centre of a circle

which touches two given circles is a touching two given circles with respect to

conic having their centres for foci. either of them envelopes another circle.

The centre of any one of the eight The polar of the centre of a circle

circles which touch three given circles touching three given circles with respect

may be determined as a point of concourse to any one of the three may be determined

of two conies, each of which has for as a common tangent of two other circles.

foci the centres of two of the given cir- The centre itself may then be determined

cles.* from its polar.

A variable chord drawn through a Parallel tangents to a conic (or tan-

fixed point to a conic subtends a pencil gents from points on a given straight

in involution at any point on the curve. line) determine an involution on any fixed

[Art. 120. tangent.

The product of the focal perpendi- The square of the distance of any
culars upon any tangent to a conic is point on a conic from a fixed origin varies

constant. as the product of its distances from two
fixed right liues.

For if the polars of any two points P and F be taken with

respect to a circle whose centre is (?, and if Pf be a perpen-
dicular to the polar of F and Fp a perpendicular to the polar of

P, it is easily seen (Art. 153 I.) that OF. Pf= OP.Fp.} If

therefore F and F' be the foci of a conic and P any point on the

curve, it follows that OF.Pf.OF'.Pf' = OP\Fp.F'p, or OP*
varies as the product of the perpendiculars from P to the reci-

procals of F and F'.

160. Angles. Confocal Conies.

We shall next give some examples of the reciprocation of

angles (Art. 155), and of coufocal conies.

/ At any point on a circle the tangent Any point on a conic and the intersec-

is at right angles to the radius. tion of the tangent thereat with the direc-

trix subtend a 'right angle at the focus.

The polar of any point with respect to The pole of any straight line with

a circle is at right angles to the diameter respect to a conic and the point of con-

through the point. course of the line with the directrix sub-

tend a right angle at the focus.

* See Salmon's Conic Sections Art. 317.

f For an independent proof see Macdowell's Exercites in Euclid $c. Art. 256.



RECIPROCATION. 351

<* Orthogonal tangents to a conic inter-

sect on a concentric circle.

Confocal conies intersect everywhere

at right angles, and the tangents to two

confocals from any point, taken alter-

nately, include equal angles. [Art. 50.

If XX' and YY' be two pairs of col-

linear points on two circles, the tangents

at XX' intersect those at YY' in four

points lying on a third coaxal circle.*

Given three pairs of lines conjugate

with respect to a circle, every conic

through the four positions of its centre is

a rectangular hyperbola. [Ex. 812.

Tangents being drawn in a given

direction to a system of confocal conies,

their points of contact lie on a rectangular

hyperbola.

A chord of a conic which subtends a

right angle at any fixed point envelopes a

conic having that point and its polar for

a focus and directrix.

Every common tangent of two circles

subtends a right angle, and the opposite

intercepts on any transversal subtend

equal angles, at either limiting point.

If tangents be drawn from any point
to two confocal conies, the four joins of

the alternate points of contact touch a

third confocal.

Given a focus of a conic and three

pairs of points conjugate with respect to

it, there are four positions of the 0-direc-

trix, and the orthocycle of every conic

touching the four passes through 0.

The tangents to the circles of a coaxal

system at their points of concourse with

a given transversal through either limiting

point envelope a conic, whose ortho-

cycle passes through 0.

161. The Parabola.

a. The reciprocal of a parabola with respect to any point
is a conic through 0, and if be the focus of the para-

bola the reciprocal is a circle through 0, and conversely.
Hence the following theorems are reciprocal:

The locus of the vertex of a right

angle circumscribed to a parabola is the

directrix.

A chord of any given conic which

subtends a right angle at a fixed point O
on the curve passes through a fixed point
F on the normal at 0.

Thus by a double reciprocation we deduce Fregier's theorem

(Art. 144 b) from a property of the circle. Notice that the

Fregier-point F corresponds to the directrix of the parabola, the

normal at to the point at infinity on the parabola, the further

extremity of the normal at to the tangent at the vertex

of the parabola, and that the tangent at is parallel to the

directrix.

U*If AOB be a right angle inscribed in

a circle the hypotenuse AB passes through
the centre.

^tTbe locus of the vertex of a right

angle circumscribed to a parabola is the

directrix.

* See Townsend's Modern Geometry I. 264.
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b. A triad of points ABC reciprocate with respect to their

orthocentre into a triad of lines parallel to BC, CA, AB, and

having the same orthocentre. Also a parabola reciprocates

from any point on its directrix into a rectangular hyperbola

through 0. Hence the following are reciprocal theorems :

"^ The orthocentre of any triangle cir- The orthocentre of any triangle in-

cumscribed to a parabola lies on the scribed in a rectangular hyperbola lies on

directrix. the curve.

The former is a special case of Brianchon's theorem (p. 290),

the latter of Pascal's (p. 175).

c. If the reciprocals of three points ABC with respect to

be the lines aZ>c, then to any point A on BC corresponds the

line through be making an angle equal to A OA with a. Hence

^ The perpendiculars of any triangle If from a fixed point on a conic

circumscribed to a parabola meet on the there be drawn any three chords OA, OB,
directrix. OC and the three lines at right angles to

them, and if the latter meet BC, CA,
AB in A',' B', C' respectively, then A',

B', C' lie on a straight line passing

through the Fregier point of 0.

162. The Minor Directrices.

a. Let the tangent at Q to a conic meet the minor directrices

in M and M
',
and let Fp and F'p be perpendiculars to this

tangent and QT and QT' perpendiculars to the minor directrices.

Then the angle QOM is equal to QOM' (Art. 158 Cor. 2), and

therefore

OM : OM'=QM: QM'= QT: QT' = Fp : F'p',

QT QT'
=r being to -^n in a constant ratio (Prop, in.) which is

evidently a ratio of equality when Q is taken on either axis.

b. It may be seen that at any point Q on the conic,

QT.QT : OQ* = OB'1
: e\OA\

QT.QT' .

since if Q be a point such that nrp~ *s constant the locus of

Q is a conic (Art. 159), and the above proportion requires that

this conic should meet the axes in the same points as former.

It then follows that

Fp.F'p : 0(?=OY*: CA\
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if Y be the central perpendicular to MM'.

c. If C be the pole of MM' with respect to the minor

auxiliary circle, so that OM is at right angles to FC and OM'
to F'C, and FC+F'C=20B (Art. 158 iv), then, with the

help of similar triangles, it may be shewn that, if X be the

intersection of MM' with the major axis,

FC: OM= OF: OX=F'C: OM'
;

and therefore DM+D'M 1 = 20X=e (OM+ OM'}, D and D'

being the points in which the minor directrices meet the minor

axis.

d. The following are examples of reversion, or the same

results may be obtained by reciprocation.

Any chord of a circle is at right angles Any chord of a conic and the line

to the diameter through its pole. joining the minor focus F to the pole of

the chord meet the F-directrix in points

which subtend a right angle at the centre.

If AB be fixed points on a circle and The arms of any angle ACB inscribed

Cany other point upon it, the angle ACB in given segment of a conic intercept on

has one of two constant and supplemen- the minor directrices lengths which sub-

tary values. tend constant and supplementary angles

at the centre.

In like manner it may be shewn that the two pairs of

opposite sides of a quadrilateral inscribed in a conic make

intercepts on either minor directrix which subtend supplementary

angles at the centre.

e. The major auxiliary circles of a system of conies having
a focus S and its directrix in common may be reversed into

concentric conies having the same minor directrices (Prop. vii.).

Hence, the circles being coaxal and having S for a limiting

point :*

The opposite intercepts made by any The opposite intercepts made by any
two circles on any transversal subtend two concentric conies having the same

equal angles at either limiting point. minor directrices upon any transversal

[Art. 1GO. subtend equal angles at the centre.

/. Each focus and directrix of a Rectangular Hyperbola being
at the same time a minor focus and directrix (Art. 158

iii),

* See Macdowell's Exercises in Euclid cj-c. Art. 251.

AA
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we obtain in this case the following property, corresponding

to that of the ellipse in Art. 158 Cor. 1 :

If PD'DP' be a chord of a rectangular hyperbola touching

its auxiliary circle and meeting the directrices in D and D',

the diameters through P and D (or P' and D'} are at right

angles. Hence it follows also that PD and P'D' subtend equal

angles at the centre.

INVERSION.

163. We shall conclude with a slight sketch of the method

of Inversion.

If be a fixed point and P a variable point in a given

plane, and if a point p be taken on OP or its complement
such that OP. Op is equal to a constant c

a

,
then p is said to be

an inverse of P with respect to the pole 0, and the locus of p
is said to be the inverse of the locus of P. It is evident that

a straight line through the pole is its own inverse.

To curves intersecting in points PQR &c. correspond curves

intersecting at the inverse points pqr &c.
;

and therefore to

curves having contact of any order at P correspond inverse

curves having contact of the same order at the inverse point p.

164. The inverses of any two curves intersect at the same

angles as the original curves.

For if PQ be any two points on a curve and pq the inverse

points, then OP.Op= OQ.Oq, and therefore the angles OPQ
and Oqp are equal. Hence, supposing P and Q to coalesce,

the tangents at the inverse points P and p are equally inclined

(on opposite sides) to the radius vector OPp. It then follows

that the tangents to any two curves at a common point P are

inclined at the same angles as the tangents to the inverse

curves at p.

165. Tlie inverse of a straight line not passing through the

pole is a circle through the pole, and conversely ; and the inverse

ofa circle not passing through the pole is a circle.

(i). To a given line draw a perpendicular OX from the

pole of inversion, take any point D on the given line, and let



INVERSION. oOO

the point x be inverse to A' and d to D. Then since

Ox.OX= Od.OD, and since OXD is a right angle, therefore

Odx is a right angle, or the locus of d is a circle having its

diameter through at right angles to the given line.

Conversely the inverse of a circle through is a straight line

at right angles to its diameter through 0.

It is further evident that the tangent to any curve at P
inverts into a circle through touching the inverse curve at

the inverse point p ;
unless P coincides with 0, in which case

the tangent at that point is also an asymptote to the inverse

curve.

(ii). The inverse of a circle not passing through is a

circle. For if OPQ be drawn to meet the given circle in P
and Q, and if the point p be inverse to P, and q to Q, then

since OP.OQ is constant and OP. Op is likewise constant;
therefore Op varies as OQ, or the locus of p is similar to the

locus of Q, which is a circle.

(iii). Notice that by making the constant of inversion equal
to OP.OQ we may invert the given circle into itself. If QQ'
be a common tangent to two circles and M its middle point,

then with J/ as pole and MQ* as the constant of inversion

each of the circles inverts into itself. Again, if be the

centre and c the radius of a circle orthogonal to a set of coaxal

circles, then with as pole and c
l
as the constant of inversion

the whole system inverts into itself.

166. The nine-point circle of any triangle touches the in-

scribed and escribed circles.

Let ABC be a triangle, / the inscribed circle touching
BG in Q, and E the escribed circle opposite to A touching
BC in Q'. Bisect BC, CA in M and M' respectively,* draw

AP perpendicular BC, and let the nine-point circle N meet

AP in /), which will be the further extremity of its diameter

through M. Then, with J/ as pole and MQ* (equal to MQ'
y

)

as the constant of inversion, 7 inverts into itself, E into itself,

and ^V into a straight line at right angles to MD.

* See the lithographed figure No. 5. On the above proof see p. 191, note.

A A '2,
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This straight line meets BC in a point R such that

3LP.MR = MQt

,
that is to say, in the point of concourse of

BC with the line joining the centres of I and E\* and it

makes an angle with BC equal to MDP, or MM'P, or

B-^C, and may therefore be shewn to coincide with the second

tangent from R to / and E.

And since the inverse of N thus touches the inverse of /

and the inverse of E, therefore N touches / and E, which are

their own inverses; that is to say, it touches the inscribed

circle and each of the escribed circles of the triangle ABC^ as

was to be proved.

To determine the points of contact, let RS be the second

tangent from R to I (or J7), produce MS to meet the circle

again in /S", then S' (the inverse of S) is the required point

in which A7
"

touches / (or E}.

167. The Cardioid.

The inverse of a parabola with respect to its focus is a car-

dioid having its cusp at the origin. Hence the following are

inverse theorems :

The sum of the reciprocate of the The length of any cuspidal chord of a

segments of any focal chord of a para- cardioid is constant,

bola is constant.

Every focal chord of a parabola is The locus of the middle points of the

divided harmonically by the focus and cuspidal chords of a cardioid is a circle

the directrix. through the cusp.

The tangents to a parabola at the ex- The tangents to a cardioid at the ex-

tremities of a focal chord which makes tremities of a cuspidal chord inclined at

an angle a with the axis are inclined at an angle a to the axis make angles equal

angles
- and ---to the chord. to f and - "

with the chord. [Art. 164.
X m m m

Hence the tangents to a cardioid at the extremities of any

cuspidal chord intersect at right angles; and it may now be

shewn that the locus of their intersection is the circle concentric

with the bisector of all cuspidal chords and of thrice its radius.

The tangents to a parabola at the ex- The two circles through the cusp
tremities of any focal chord intersect at which touch a cardioid each at one ex-

right angles on the directrix. tremity of any cuspidal chord meet at

right angles on a fixed circle through the

cusp.

* See Macdowell's Exercises in Euclid $c. Art. 86.
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From a fixed point draw OF to any From a fixed point on a given circle

point Y on a given straight line
;

then draw any chord Oy ;
then the envelope of

the envelope of the line through Y at the circle on Oy as diameter 13 a cardioid

right angles to OF is a parabola. having its cusp at 0.

The intersections of any three tan- Any three circles touching a cardioid

gents to a parabola lie on a circle through and passing through its cusp meet in

the focus. three other points lying on a straight

line.

If ABCA'RC' be any six points on a If abca'b'c' be any six points on a

parabola, the intersections of (AB, A'B'), cardioid whose cusp is at 0, the intersect-

(BC, B'C'), (CA, C'A') lie in a straight ions of the three pairs of circles (Oab,

line. Oa'b'}, (Obc, Ob'c'), Oca, Oc'a') lie on one

circle.

If ABCA'B'C' be any six tangents to If abca'b'c' be any six circles touching

a parabola, the joins of (AB, A'B'), (BC, a cardioid and passing through its cusp,

'C'), (CA, C'A'} meet in a point. the three circles through the intersections

of (ab, a'b'), (be, b'c'), (ca, c'a') are coaxal .

168. Circles of Curvature.

The osculating circle at any point P on a curve inverts

from any point into the circle (Art. 165) which osculates the

inverse curve at the inverse pointy. [Art. 163.

But if the former circle passes through it inverts into

a straight line, and^j becomes a point of zero curvature, or of

inflexion. Hence the following are inverse theorems :

Three points can be found on an The inverse of an ellipse with respect

ellipse whose osculating circles meet at to any point upon it is a curve having
a given point on the curve, and these three points of inflexion, which lie in a

three points lie on a circle through 0. straight line.

It may be added that a parabola inverts from' its vertex

as pole into a cissoid ; a central conic from either focus into a

limagon, and from its centre into an oval of Cassini or, if an

equilateral hyperbola, into a lemniscate of Bernoulli ; a conic

from any point upon it into a circular cubic having a node at the

pole; and a conic from any other point in its plane into a

trinodal quartic having its nodes at the focoids and the pole.

SCHOLIUM o.

For the principle of Inversion Chasles (Rapport pp. 140 2)
refers to Ptolemy, and to Quetelet (1827); and for a general state-

ment of the method to Bellavitis (1836). In 1843 4 it was pro-

pounded afresh by Ingram and Stubbs (Transactions of the Dublin
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Philosophical Society vol. I. 68, 145, 159
; Philosophical Magazine

xxin. 338, xxv. 208). It has been applied by Dr. Hirst to attrac-

tions (Phil. Mag. 1858), and embodied by Peaucellier in his linkages.
Cf. also Camb. and Dublin Math. Journal vui. 47 ; Oxf. Camb. Diibl.

Messenger of Mathematics in. 228; Booth's New Geometrical Methods
vol. i. chap. 30

; Salmon's Higher Plane Curves, Arts. 348 &c.
;

Proc. London Math. Soc.'V. 105, vn. 91. And for a complete exposi-
tion of the method as applied to the straight line and circle see

Townsend's Modern Geometry, chaps. 9, 24. This method, unlike

projection and reciprocation, enables us to deduce properties of the

higher curves from those of a lower order, and is thus peculiarly
effective as an instrument of discovery and research.

MISCELLANEOUS EXAMPLES.

[851. If a triangle is self-polar to a parabola (p. 281), the

three lines joining the middle points of its sides touch the

parabola, and conversely. [Ex. 715.

852. Two rectangular hyperbolas being such that the axes

of the one are parallel to the asymptotes of the other, and the

centre of each lies on the other
;
shew that any circle through

the centre of either meets the other again in a conjugate triad

with respect to the former.

853. If two angles of given magnitudes turn about their

summits A and B as poles, then (1) if one pair of their arms

remain constantly parallel, the other pair intersect at a constant

angle and thus describe a circle C through the poles ;
and (2)

if one pair of their arms intersect on a fixed straight line D as

director, the other pair by their intersection describe in general
a conic through the poles. The points at infinity on the conic

correspond to the intersections of C and D\ the axes of the

conic are parallel to the positions which the parallel arms in

case (1) assume when the arms describing the circle intersect

at the extremities of the diameter at right angles to D\ and

if the director be any line in a system of parallels the axes

of the conies described are parallel.

854. If the tangent at to a rectangular hyperbola be

met at right angles in P by a chord QR, the diameters
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bisecting OQ and OR bisect the angles between the diameters

to and P.*

855. If AA, BB
1

,
CC' be the three pairs of summits of a

quadrilateral circumscribed to a parabola whose focus is S
t
then

SA . SA' = SB. SB' = SC. SC'.

856. Reciprocate the theorem that the feet of the focal

perpendiculars upon the tangents to a parabola are colliuear.

857. Given two conies, find a conic with respect to which

they are polar reciprocals.

858. The tangent to a circle at any point makes with any
chord through the point an angle equal to the angle in the

alternate segment. What does this proposition become by

reciprocation with respect to any origin?

859. The problem, to inscribe in a given conic a 2/j-gon

whose n pairs of opposite sides shall pass in any ass'rgned order

through n given points, is always indeterminate or impossible.f

860. If two circles be drawn meeting a conic in OABC and

OA'B'C' respectively, every two of the vertices of the triangles

ABC and A'B'C' subtend at an angle equal to that between

the opposite sides. Conversely, if the vertices of two triangles

inscribed in a conic be thus related to a point 0, then lies

on the conic.

* The nine-point circle (Art. 64 Cor. 4) of OQR passes through 0.

t This question and its solution were suggested by Prof. TOWNSEHD. Starting
from an arbitrary point P on the conic as one vertex, draw n successive sides of the

polygon through the n points taken in the assigned order, and the other n side*

through the same points taken in the reverse order
;

and let the points on the conic

thus arrived at be Q and Q! respectively. As f varies, the three systems of points

F, Q, (f are homographic (Art. 120 Cor. 2), and therefore also the two systems
P + Q aud y + P. If Q and Q' once coincide, one pair of homologous points in the

two homographic systems P + Q and y' + P are interchangeable, and therefore every

pair are interchangeable (Townsend's Modern Geometry n. 360). or Q and (J always
coincide. If then Q and Q' coincide for any one position of P the solution is inde-

terminate, and if not it is impossible.
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86 1. The circumscribed circles of any two triangles PQR
and P' Q'R circumscribing a parabola meet in a point (other

than the focus) such that the angle subtended at by any
two of the vertices of the triangles is equal to that between

the opposite sides.* Hence shew that the seven points

OPQRP'Q'R lie on a conic.

862. If three conies have one point in common, their nine

common chords which do not pass through it touch one conic.f

Conversely, if three triangles circumscribe a conic, the three

conies which circumscribe them by pairs have one point in

common. [Ex. 861.

863. Any three parabolas, taken in pairs, have three triads

of common tangents, whose nine intersections lie on a conic.

What does this become by projection and reciprocation ?

864. If ABC be the triangle formed by three tangents to

a parabola whose focus is S, the inclination of BC to the axis

is equal to the angle subtended by SA at the circumference

of the circle. Hence shew that the square of the radius of the

circle is equal to -
,
ifp be the parameter and abc the

points of contact of the tangents.

865. Two triangles ABC and A'B'C' inscribed in a circle

being such that every two of their vertices subtend at the cir-

cumference an angle equal to that between the opposite sides,

shew that, if be the centre and OS a given radius of the circle,

L SOA + SOB + SOC= SOA' + SOB' + SOC',

and conversely. Hence deduce that, if ABC be a variable

triangle circumscribed to a given parabola whose focus is S,

and inscribed in a fixed circle whose centre is 0, the sum of

the angles SOA, SOB, SOC, measured in the same sense

* If be a point on the arc SP (p. 56) and r the point of contact of PQ, the

angle ROS is equal to RPQ + SPr, and therefore to SrQ. In like manner R'OS is

equal to Sr'Q' and therefore ROR' is equal to the angle (PQ. P'Q').

f I'icquct, Etwlf ij/'oimtriqite des Xysti-mts Ponctuels <fr. pp. 27, 51 (Paris 1872).
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of rotation is constant
;

and the sum of the angles which

BC, CA, AB make with the axis is constant. Shew also that

the product SA.SB.SC, or Sa.Sb.Sc (Ex. 864), is constant,

and that the product of the focal perpendiculars upon the three

tangents is constant.

866. If a triangle ABC inscribed in a given ellipse

envelopes a fixed parabola, the sum of the eccentric angles

of its vertices is constant ;* and the circles ABC pass through
a fixed point on the ellipse and have a common radical axis.

867. A variable conic through four given points ABCD
meets a fixed conic through D at the vertices of a variable

triangle, which envelopes a fixed conic inscribed in ABC.
State the reciprocal theorem.

868. The tangents to an ellipse from any point on a minor

directrix intercept on the major axis a length which varies as

the central distance of the point.

869. Any chord PQ of an ellipse and the tangents at P
and Q meet the minor directrices in pairs of points RR, MM'
and NN' respectively such that, if be the centre, the angle

ROR is equal to \ (MOM' + NON') ;
and the central distances

of the points MM'NN' and their perpendicular distances from

PQ are to one another severally in the same ratio.

870. Prove by reciprocation with respect to a point, that

the sum of the reciprocals of the perpendiculars from any

point within a circle to the tangents from any point on the

polar of is constant. Also prove that the reciprocals of

equal circles with respect to the same point have equal

parameters, and the reciprocals of coaxal circles with respect

to any point on the radical axis have equal minor axes.f

* This theorem, which is due to Mr. R. Pendlebuiy, Fellow of St. John's College,

follows from Ex. 865 by orthogonal projection.

f If OAB be drawn from the origin to meet a given circle in A and B, then
* c-

and -r- are equal to the perpendiculars from a focus of the reciprocal conic to a

pair of parallel tangents. The length of the minor axis is therefore determined bv
the product OA.OB.
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871. Deduce the property of the focus and directrix of a

conic from the Locus ad quatuor lineas.*

872. If P and Q be opposite intersections of the common

tangents to two conies, any two lines OA and OB which are

conjugate with respect to both conies are harmonic conjugates

with respect to the lines OP and OQ. Deduce this from

Newton's property of the diameter of a quadrilateral (Art. 124),

viz. by projecting OA or OB to infinity. Also state the

reciprocal theorem.f [i. 19.

873. An ellipse being drawn through the centre of a

circle, shew that the lines from to a pair of opposite

intersections of their common tangents are equally inclined

to the tangent to the ellipse at 0. [i.
33.

874. Find the locus of the centre of a conic which cuts

four given finite straight lines harmonically, or which passes

through two given points and cuts two given finite straight

lines harmonically. [i. 62.

875. If a given polygon be moved about in its plane so

that two of its sides touch each a fixed circle, every side of

the polygon touches a fixed circle.
[i. 68.

876. Deduce from Ex. 738, that if a curve has one tetrad

of foci (p. 311) lying on a circle it has three other such tetrads,

and the four circles cut one another orthogonally. [u. 10.

877. If four circles be mutually orthogonal, their centres

form an orthocentric tetrastigm, and one at least of the circles

is imaginary. [li. 10.

* First deduce the Locus ad tres lineas a/3 = Icy*, and let the two tangents be

drawn from the focus S. These are represented by the Cartesian equation z2+ y*= 0,

and the perpendiculars to them from (x, y) are proportional to x + J( 1
) y. Therefore

a? + y* varies as y'
1
,
or the distance of (x, y) from S varies as its distance from the

polar of /S.

f Exx. 872 &c. are taken from the EDUCATIONAL TIMES Reprint, the volume and

page of which are specified in each case. See also pp. Ill, 33C.
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878. Find the locus of the pole of a common chord of two

fixed conies with respect to a conic having double contact with

each of them. [n. 46.

879. If two triangles circumscribed (or inscribed) to a conic

be in perspective, every radiant through their centre of per-

spective meets their sides in three pairs of points in involution.

Keciprocate this theorem, and point out its relation to Steiner's

property of the directrix of a parabola inscribed in a triangle.

[n. 50.

880. If two conies meet any transversal in pairs of points

AB and A'B' respectively, the foci of the involution determined

by AA and BB' (or AB' and A'B] lie on a third conic passing

through the intersections of the former two. [n. 91.

88 1. Given that one focus of a conic to which a given

triangle is self-conjugate lies on a given straight line, find the

locus of its second focus, and deduce Ex. 715. [in. 33.

882. Given two points P and Q on a conic, find a third

point upon it such that OP and OQ may divide a given
finite straight line in a given cross ratio.

[ill. 47.

883. Let abc be the middle points of the sides of a triangle,

the centre of its circumscribing circle and 0' its orthocentre.

Then if Oa, Ob, Oc be produced to ABC respectively so that

OA = 2 Oa, OB=2 Ob, OC=20c, the sides of the triangle

ABC and of the original triangle touch one conic, which has

their common nine-point circle for its major auxiliary circle and

the points and 0' for foci. [in. 53.

884. Through four given points draw a conic such that the

chord which it intercepts on a given line shall be of given

length, or shall subtend a given angle at a given point, [ill. 84.

885. If p, p be variable points collinear with a fixed point A,
and so situated that the segment pp always subtends a right

angle at another fixed point J/, prove the following properties

of corresponding loci of p and p. Right lines equidistant from

the middle point of AM correspond to similar conies passing
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through A and cutting AM perpendicularly at M. These

conies are similar ellipses, or parabolas, or similar hyperbolas

according as the common distance of the primitive lines from

the middle point of AM is greater than, equal to, or less than

^A^f. The circles which pass through A and J/, taken in

pairs, are corresponding loci, as also are the circles which pass

through J/and have their centres on AM. [in. 91.

886. The critical conic of a quadrilateral being defined as

the circumscribed conic which projects into a circle when the

quadrilateral is projected into a square, shew that, if AA, BE
1

,

CC' be the three pairs of summits of a quadrilateral, a conic

can be found having double contact at points lying on AA with

the critical conic of BB' CC', double contact at points on BB'
with the critical conic of CC'AA, and double contact at points

on CC' with the critical conic of AABB'. [in. 92.

887. If a straight line meet the sides BC, CA, AB of a

triangle in PQR respectively, and be any point in the same

plane, the tangents at to the conies OAPBQ and OAPCR
are harmonic conjugates with respect to OA and OP. [iv. 44.

Shew how to prove the principal properties of the

lemniscate by inversion. [iv. 47.

889. Prove that the " characteristics" of a system of conies

satisfying four conditions are unaltered when, in place of passing

through a given point, each conic is required to divide a given
finite segment harmonically. [iv. 56.

890. Given four straight lines in a plane, we may project

one of them to infinity and the remaining three into the sides

of an equilateral triangle. Is it possible to project two given

triangles at once into equilateral triangles, or a conic and a

triangle into a circle and an equilateral triangle ? [iv. 88.

891. The envelope of the circles on a system of parallel

chords of a conic as diameters is a conic having its foci at the

extremities of the diameter conjugate to the chords. Find

where any circle touches the envelope. [v. 40.
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892. A variable conic being drawn touching three given

conies, if the normals at the three points of contact cointersect

investigate the locus of their point of concourse. [v. 50.

893. Four conies being drawn through the same four points

so that their tangents thereat form four harmonic pencils, shew

that if one conjugate pair of the conies be a circle and an

equilateral hyperbola the other pair must have equal eccen-

tricities, [v. 103.

894. Through a given point on a hyperbola two chords

are drawn each at right angles to an asymptote, and from a

variable point P on the curve perpendiculars PM and PN are

drawn to the two chords through 0. Shew that MN passes

through a fixed point F\ find the locus of F for different

positions of on the hyperbola ;
and determine the hyperbola

for which the locus reduces to a point. [vi. 45.

895. Three conies being described so that each of them

passes through the same point and through the extremities

of two of the diagonals of the same complete quadrilateral,

prove that the remaining three points of concourse of the conies

lie upon their tangents at 0. [VI. 54.

896. If ABCD be four points on a conic, the intersections

of AB and CD with any two tangents lie on a conic touching
AC&ndBD. [vi. 56.

897. The axes of every conic circumscribed to a quadrangle,

which is itself inscribed in a circle, are parallel to two fixed

right lines, viz. the asymptotes of the equilateral hyperbola

(Ex. 518) which is the centre-locus of all conies circumscribed

to the quadrangle.* [VI. 88.

898. If P be any point on a circle, A and B fixed points

on a diameter and equidistant from the centre, the envelope
of a transversal which is cut harmonically by the circles

* If ABC be the common self-polar triangle of all the circumscribed conies
;

Ox and Ox '

the axes of any one of them, so that Ox, oo
'

is a self-polar triangle with

to it; the points ABCO' lie on a conic, which in this case is the rect-

angular hyperbula ASCO.
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described with A and B as centres and AP and BP respectively

as radii is the conic which has A and B for foci and touches

the circle. [vii. 34.

899. Draw the minimum chord of a given angle which

can be cut in a given ratio by a given line. [vn. 41.

900. If Q and R be the foci of any ellipse inscribed in a

triangle ABC, deduce from Ex. 322 that,

AQ.AR.BC + BQ.BR.CA+CQ.CR.AB= BC.CA.AB.

[vii. 43.

901. If Q be the intersection of the polars of any point P
with respect to two given parallel conies (Ex. 792, note),

the locus of the middle point of PQ .is their radical axis.

Hence shew that, if DEF be the feet of the perpendiculars
of any triangle ABC, and AL, BM, CN be parallels to EF,
FD, DE, meeting BC, CA, AB in the points LMN respectively,

then the axis of perspective of the triangles ABC and DEF
bisects each of the segments AL, BM, CN. [vii. 78.

902. Construct geometrically the four chords of contact

with a given conic of the four inscribed conies which pass

through three given points. [vii. 92.

903. Triads of parallels being drawn through the vertices

ABC of a given triangle to meet the opposite sides in abc,

shew that the envelope of the axis of perspective of the triangles

ABC and abc is the maximum ellipse that can be inscribed

in ABC. [vii. 94.

904. If from any point on a conic parallels be drawn to

the diameters bisecting the sides of any inscribed triangle, the

lines so drawn meet the corresponding sides of the triangle

in three collinear points. Extend this theorem by projection,

and also reciprocate it. [vm. 44.

905. Prove by inversion, that the circles having for

diameters three chords AB, AC, AD of a circle intersect again

by pairs in three collinear points. [vill. 48.
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906. If through a pair of opposite intersections AA' of

four fixed tangents to a given conic there be drawn a pair

of lines conjugate to the conic, the locus of their point of

concourse is a conic passing through AA' and through the

points of contact of the four tangents. [vill. 62.

907. If A be any point within or without a conic, B any

point on its polar, CD a fixed straight line, BG and BD
tangents cutting CD in C and D respectively; shew that the

intersections of AD, BC and AC, BD lie on a fixed straight

line, which meets CD on the polar of A. [vill. 63.

908. If DP and DQ be a pair of tangents to a conic and

ABC a self-polar triangle, any conic through ABCD cuts PQ
harmonically. Hence shew that the perpendicular DM to either

axis bisects the angle PMQ. [vill. 110.

909. Deux droites qui divisent harmoniqueraent les trois

diagonalcs d'un quadrilatere rencoutrent en quatres points har-

mouiques toute conique iuscrite dans le quadrilatere.

[ix. 62, XII. 50.

910. La condition qu'une conique divise harmoniquernent
les trois diagonales d'un quadrilatere circonscrit a une autre

conique, coincide avec la condition que la premiere conique soit

circonscrite a un triangle conjugue a 1' autre. [ix. 74.

911. The degree of the locus of the foci of a system of

conies subject to four conditions is three times as great as that

of the locus of their centres. [x. 63.

912. If A and B are fixed points with regard to a conic

of which A CD is a variable chord, shew that the polar of A
meets BC and BD in points E and F such that AB, DE, CF
eointersect. [x. 81.

913. Given three points ABC and a straight line through

each, shew how to cut the three lines by a fourth in points PQR
such that the lengths AP, BQ, CR may be equal. [xi. 19.

914. If three equidistant lines parallel to an asymptote of

a hyperbola meet the curve iu ABC, prove by involution (or
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otherwise) that any parallel to the other asymptote is divided

harmonically by the sides of the triangle ABG and the curve.

[xi. 20.

915. The six points which, in conjunction with any common

transversal, divide harmonically the six sides of a tetrastigm,

lie on a conic passing also through the three intersections of

the opposite sides of the tetrastigm ;
and the three straight lines

which join the six points in opposite pairs cointersect at the pole

of the transversal with respect to the conic. [xi. 21.

916. Reciprocate the theorem, that if the orthocentre of a

triangle inscribed in a parabola lies on the directrix, the circle

to which the triangle is self-polar passes through the focus.

[XI. 32.

917. Extend by projection and also reciprocate the following

theorem. Given two parallel conies (Ex. 792, note) A and 13,

two circles can be drawn having double contact with A and B
respectively and meeting their common chord in the same two

points. [xi. 43.

918. If and 0' be the limiting points of a system of

coaxal circles, and if with and 0' respectively as one focus

two conies be described osculating any circle of the system
at one and the same point, their corresponding directrices will

coincide. [xi. 74.

919. Given three points ABC and a conic, the envelope
of a chord PQ such that A [BPQC] is harmonic is a conic

touching AB and A C at points lying on the polar of A. [xi. 83.

920. Find the envelope of a transversal on which two

given conies intercept segments having a common middle

point J/, and find the locus of M. [xi. 84.

921. Any tangent to a conic is divided in involution by
three other tangents and the radiants to their intersections

from either focus S. Prove that the double points of this

involution, as the tangents vary, subtend a pencil in involution

at S. [xi. 105.
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922. PQ being a chord of a conic equally inclined to the

axis with the tangent at P, a circle is drawn through PQ
cutting the conic again in US. Shew that the point on the

circle harmonically conjugate to P with respect to R and S
lies upon the chord of the conic supplemental to QP. What
does this become by inversion? [xil. 90.

923. Any two parallel tangents to a conic meet the tangents
from a given point in points T and T' respectively such

that OT.OT1

is constant. [XIII. 44.

924. Prove by inversion, that if three circles meet two and

two in AA\ BB'j CO', and be any point in their plane,

the circles OAA', OBB', OCC' are coaxal. [xiv. 102.

925. Given in a conic two tetrastigms PQRS and pqrs
whose corresponding chords pass by fours through the same

three points, shew that a conic may be drawn touching Pp t

Qq, Pr, Ss Sit pqrs respectively. [xiv. 104.

926. Find the constant ratios which five fixed radiants in

space determine on a variable transversal plane ;* and deduce

the anharmonic property of four radiants in one plane, [xv. 26.

927. Prove, generalise and reciprocate the theorem, that

the bisectors of the angles between the two pairs of opposite

sides of a trapezium inscribed in a circle are at right angles.

[XV. 36.

928. The envelope of a transversal cut harmonically by
two given similarly situated parabolas is a third parabola

(Ex. 800). [xv. 86.

929. The tangents to a conic from a variable point on a

fixed straight line L meet the tangent at a given point A in

It and R. Shew that the relation between AR and AR is

of the form a.AR.AR+l.AR + c.AR + d=Q (Ex. 777) ;
and

determine the positions of L in order that (1) the sum of the

intercepts AR and AR', or (2) the sum of their reciprocals may
be constant. [xvi. 59.

See the Messenger of Mathematics vol. v. 94 (1876).

BB
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930. Two sides of a triangle circumscribed to a given circle

being fixed, the three lines joining its angles severally to the

points of contact of the escribed circles with the opposite sides

meet in a point, whose locus is a hyperbola having the fixed

sides for asymptotes. [xvi. 62.

931. Given three fixed straight lines Imn and three fixed

points LMN in a straight line, the lines from a current point on

I to M and N meet m and n in four points, the conic through
which and L envelopes a conic touching m and n at their

intersections with L [XVT. 98.

932. The first positive and negative pedals of an equilateral

hyperbola are reciprocal polars with respect to it. [xvi. 106.

933- Given a point on one arm of a constant angle in-

scribed in a circle, find the envelope of the other arm.

[xvi. 110.

934. Circles being described on the two halves of a diameter

of a given circle as diameters, shew that the perpendicular
radius of the given circle is trisected by the centre and cir-

cumference of a fourth circle' touching the three
j
and deduce

a new theorem by reciprocation. [xvil. 23.

935. Deduce from Ex. 785, that if BC be a chord of a circle

and A its pole, the conic through ABC which touches the

circle at a point D has its curvature at D twice as great as

that of the circle. [xvn. 109.

936. An ellipse having double contact with a fixed ellipse E
has one focus F fixed: shew that the other focus describes

an ellipse confocal with E and passing through F. [xvill. 70.

937. The area of the triangle formed by the polars of the

middle points of the sides of a triangle with respect to any
inscribed conic is equal to the area of the given triangle.

[xvill. 107.

938. From two fixed points on one of a series of confocal

conies tangents are drawn to a variable conic of the series : if

they meet the fixed conic again in QR and Q'R\ shew that

the locus of the point (QR, @R') is a conic. [xix. 51.
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939. The ratio of the product of the diameters of two

circles to the square of one of their common tangents inverts

into an equal ratio when the circles are inverted from any point

as pole. Hence deduce Feuerbach's property* of the nine-

point circle. [xix. 54.

940. In a quadrilateral whose diagonals intersect at right

angles shew how to inscribe a conic having their intersection

for a focus. [xix. 69.

941. A point C being taken on the diameter AB of a

semicircle, semicircles are described on AC and BC as dia-

meters. Also a series of circles are described, the first touching
the three semicircles, and every wth circle touching the n 1th

and the semicircles on AB and A C. Prove that, as C varies,

the loci of the centres of the several circles are ellipses having
a common focus. [xix. 88.

942. A line being drawn from the focus of a conic to

meet the tangent at a constant angle, find where the locus

of the point of concourse touches the conic. [xix. 111.

943. The tangent at any point of a cardioid meets the

curve again in two points PQ the tangents at which divide

the double tangent AB harmonically ;
and the locus of the

point of concourse of the tangents at PQ is a conic passing

through AB and touching the cardioid at one real and two

imaginary points. [xx. 34.

944. If a lamina moves in its own plane so that two given

points of it describe each a fixed straight line, any other point

of the lamina describes an ellipse. [xx. 89.

945. If ABC be three points on a parabola, A'B'C' the

intersections of the tangents thereat, and abc the centres of the

circles BGA, CAB', ABC'] prove that the circle abc passes

through the focus. [xxi. 72.

* On this see Schroter in Neumann's Afathematische Annalen vol. vn. 517530

(Leipzig 1874), where the property is cited from Feuerbach's Eigenschaften einiger

merkwilrdigen Punkte des geradlinigen Dreiecks (Niirnberg 1822). The nine-point
circle itself has been improperly called Feuerbach's by Baltzer and others.

BB2
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946. The tangent to the evolute of a parabola where it cuts

the parabola is also a normal to the evolute. [xxi. 79.

947. Find at what points on a conic the angle between the

tangent and the chord drawn to a fixed point on the curve

is greatest or least. [xxn. 29.

948. If OP and OQ be tangents to a conic, E the middle

point of PQ, and 0' the point harmonically conjugate to with

respect to the foci on the circle through and the foci, shew

that OP.OQ = OR.OO'\ and deduce that if and the foci be

fixed the circles OPQ are coaxal.* [xxm. 17.

949. If DD' be a fixed diameter of a conic and AD any
two conjugate points in an involution on the tangent at U,
then DA and DB meet the conic again upon a chord which

passes through a fixed point. [xxm. 55.

950. If AB be the base of a segment of a parabola and P
any point on the curve, the locus of the orthocentre of APB
is a line parallel to AB. Hence shew how to describe a para-

bolic segment of given base and height by points. [xxm. 61.

951. A plane figure moves so that two fixed straight lines

in it always pass through two fixed points : find the envelope
of any straight line in the figure. [xxm. 67.

952. One focal chord of a conic meets the tangents at the

extremities of another in A and B. If straight lines ACD
and BEF be drawn perpendicular to AB and meeting the curve

in CDEF, prove that CE and DFmeet AB at a point P on the

directrix
;
that CF and DE, AF and DB, AE and BG meet

on the polar of P; that the intercepts CD and EF subtend

equal angles at the focus S; that SA : SC: SD = SB: RE: SF-,

that CF and DE meet AB in two points G and H, having

properties like those of A and B; and that of the four inter-

sections of the tangents from A and B two lie on the polar

of P and two on the directrix. [xxiv. 21.

*
Compare Exx. 322, 337, 340, 380.
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953. Given a conic inscribed in a parallelogram, if any

tangent to the conic meets the sides opposite to an angle A
in B and

(7, prove that the triangle ABG is of constant area.

[xxiv. 51.

954. Six circles pass through twelve points on a conic in

the order,

(a) A^AA, (b} B&B&, (c) qc.c.c,,

prove that the circles abc meet the circles def in six new points

which lie on the circumference of another circle. [xxiv. 75.

955. Prove that there are eight chords of an ellipse normal

to the curve at one extremity and to the central radius vector

at the other. [xxiv. 83. XXV. 73.

956. If ABCD be a quadrilateral inscribed in a conic, F
and G the intersections of its opposite sides

; prove that every
conic through ACFG has with the given conic a chord of

intersection which passes through a fixed point, viz. the pole

ofBD. [xxiv. 93.

957. If PP r
be points on equal circles whose centres are

and 0' respectively, and if the lines OP', O'P be parallel,

find the envelope of the line bisecting both. [xxv. 53.

958. What is the condition that the conic a/3 = ky
!l

may
touch the conic a/3 = <f externally ? [xxv. 88.

959. Given five points ABODE on a conic, shew that there

is a sixth point on it the parallel through which to AB passes

through the fourth point of concourse of the circle CDE vr'ith

the conic. [xxvi. 17, 103.

960. If six lines taken in the orders 1231'2'3', 123T2'3,

12'31'23', 12'3'1'23 respectively form hexagons each inscribed

in a conic, each pair of the conies have a common chord in the

same straight line with a common chord of the opposite pair;
and nine of the common chords are the sides and the joins
of the opposite vertices of two triangles in perspective, one

of which is inscribed in the other. [xxvi. 21.
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961. If two points be such that the tangents to a parabola

from the one are at right angles to the tangents from the

other, the loci of the two points are in perspective. What does

this become by projection and reciprocation ? [xxvi. 94.

962. The joins of n points on a conic intersect again in

three times as many points as there are combinations of n things

taken four together, and of these intersections one third lie

within and two thirds without the curve. [xxvi. 101.

963. If the three pairs of opposite summits of a quad-
rilateral be severally conjugate with respect to a conic, the

joins of the poles of its diagonals cut the conic in a hexagon to

which the sides of the quadrilateral are Pascal lines.

[xxvil. 105.

964. Shew that there are in general eight positions of

a chord of an ellipse which meets the curve at given angles

at its two extremities. [xxvill. 63.

965. Three conies S^^ being such that the polar reci-

procal of any one with respect to another is the third, a

triangle ABC is inscribed in S
l
and circumscribed to S

a
.

Prove that the triangle determined by the points of contact

is self-polar to S
l
and circumscribes S

3 ;
and that the tangents

to S
l
at ABC form a triangle self-polar to S

t
inscribed in S

3
.

[xxvtil. 97.

966. If S be the focus of a conic inscribed in a triangle

ABC, and any tangent meet the focal chords perpendicular

to SA, SB, SC in PQE respectively, prove that AP, BQ, CR
meet in a point. [xxvill. 99.

967. A variable circle being drawn through two given

points, through one of which pass two given lines; find the

envelope of the chord joining the other points in which the

circle meets them. [xxix. 24.

968. If four conies SABC have one focus and a tangent D
in common, and if a common tangent to each of the pairs

(SA) t (SB), (SC) meet a directrix of ABC respectively upon
the tangent D ;

the common tangents of BC, CA
t
AB meet

at three points in a straight line. [xxix. 43.
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969. If three conies touch one another and have a common

focus, the common tangent of any two cuts the directrix of the

third in three points on one straight line. [xxix. 69.

970. Prove the following pairs of reciprocal properties of a

system of two conies :

a. When two conies are such that two of their four common

points subtend harmonically the angle determined by the tan-

gents at either of the remaining two, they subtend harmonically

that determined by those at the other also.

b. When two conies are such that two of their four common

tangents divide harmonically the segment determined by the

points of contact of either of the remaining two, they divide

harmonically that determined by those of the other also.

c. The associated conic, envelope of the system of lines

divided harmonically by the two original conies, breaks up in

the former case into the point-pair determined by the eight

tangents to them at their four common points.

d. The associated conic, locus of the system of points sub-

tended harmonically by the two original conies, breaks up in

the latter case into the line-pair determined by their eight

points of contact with their four common tangents, [xxix. 88.

97 1. If the sides of a variable triangle pass severally through
three fixed points in a straight line, whilst one vertex moves

on a straight line and a second describes a given curve
; prove

that the locus of the third vertex is homographic with the

given curve. [xxix. 96.

972. The triangles whose vertices are two triads of points

on a conic intersect in nine points, such that the join of any
two not on the same side is a Pascal line of the six vertices.

[xxx. 25.

973. If a system of conies having a common focus envelop
a given curve, and have their eccentricities proportional to the

focal distances of the poles of their directrices with respect to a

circle about the common focus as centre, the locus of the poles
is a parallel of the reciprocal of the given curve with respect to

the circle. [xxx. 93.
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974. Prove and also reciprocate the following theorem.

If a circle A touches a circle B internally at P, and if the

tangent to A at any point Q meets B in E^ and 7?
2 ,

then

L EfQ = L EJPQ. [xxxi. 65.

975. Two lines being drawn through any point P on an

ellipse to meet the major axis in A, B and the minor axis

in a, b respectively ;
shew that if PA = PB= \ minor axis, the

intersection of Ab and Ba is the Fregier-point of P. [xxxn. 48.

976. If a circle and a rectangular hyperbola intersect

in four points, the line joining their centres is bisected by
the centroid of the four points. [xxxn. 48.

977. If PQ is a cljord normal at P to an ellipse, and ^"the

intersection of the normal at Q with the tangent at P, then

PN is to the projection of the semi-diameter CP upon it as

the square of PQ to the square of the conjugate semi-diameter.

[xxxn. 58.

978. The focal radii to the points in which a fixed tangent

to an ellipse meets a variable pair of conjugate diameters in-

tersect on a fixed circle. [xm. 33. xxxn. 81.

979. If four parallel chords of an ellipse a./3y8 he met by a

straight line in abed respectively, shew that

[xxxill. 27.

980. If P be a current point on a given segment AB, the

ellipses of given eccentricities described with AP and BP respec-

tively as foci intersect upon a fixed ellipse whose foci are A
and B. [xxxni. 52.

981. If Pp and Qq be chords of a parabola parallel to the

tangents at q and p respectively, and Oo the poles of PQ and

pq; shew that &OPQ = 27&opq, and that, if pq be parallel to a

fixed line, the locus of the intersection of PQ with the tangents
at p and q is a similarly situated parabola. [xxxill. 58.

982. The locus of the foot of the perpendicular from any

point on a given diameter of a conic to its polar is a rectangular

hyperbola. [xxxni. 76.
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983. Any focal chord being drawn to a hyperbola, the circle

on the portion of it intercepted by the tangents at the vertices

as diameter touches the hyperbola. [xxxiil. 110.

984. The envelope of the axes of a conic which touches

four fixed tangents to a circle is a parabola.*

985. Shew how to solve the problems of the two mean

proportionals and of the trisection of an angle by the intersec-

tions of a circle and a parabola.f

986. The axes of a conic, any chord and the normals at its

extremities touch one parabola. Deduce a construction for

the centre of curvature at any point.J

987. If the tangent and normal at any point of a conic

meet the major and minor axes in TQ and tg respectively, the

radius of curvature at the point subtends a right angle at

(Gt, gT}. To what does this reduce in the case of the para-

bola?

988. If from any point of a conic a line equal to the radius

of curvature be drawn normally outwards, the circle upon it

as diameter is orthogonal to the orthocycle. What does this

become in the case of the parabola? and what in the case of

the rectangular hyperbola ?||

* One triangle ABC is self-polar to every conic inscribed in the given quadrila-

teral
;
and the axes of any one of them produced to infinity determine a second such

triangle w ' with respect to it. The conic inscribed in ABC and oo QO' is a

fixed parabola, whose directrix is easily seen to be the diameter of the quadrilateral,

since the orthocentre of ABC is the centre of the circle.

t See Descartes Geometria lib. Ill p. 91 (ed. Schooten, 1659).

J Exx. 862, 986-992, &c. are to be found, with or without solutions, in Steiner's

posthumous work Vorhsungen tiber synthetische Geometrie, Theil. II pp. 80, 206212,

222-3, 242 (ed. 2, 1876). On his theorem Ex. 993 see Nouvelks Annales XIT. 103

(1855) ;
Housel Introd. a la Geometrie Superieure p. 231 (Paris 1865).

||
In the rectangular hyperbola the diameter of curvature at any point is equal to

the normal chord, as Mr. Wolstenholme thus proves. Take on the curve three points

ABC and their orthocentre
;
then OA produced to meet the circle through ABC

again is bisected by BC, and its halves, when ABC coalesce, become the normal chord

and the diameter of curvature at A.
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989. If aa, b/3, cy be three couples in an involution, shew

that

[aabc] . {jSbca} . {ycab}
=

[aajSy] . {b/3ya} . {cyafi}
= -

1,

where Ictabc] denotes the cross ratio -j : . Also if abcde be
ab ac

any five lines in a plane, shew that

{e . abed] . [c . abde] . [d.abec]
= 1.

990. If OA, OB, OC, OD are concurrent normals to a

conic, the parabola which touches the tangents at ABCD touches

the axes and the polar of 0, has the diameter through for its

directrix,* and is the polar reciprocal of the rectangular hyper-
bola through ABCD (Art. 114 Cor. 1) with respect to the

original conic. Determine the focus of the parabola.f [Ex. 379.

991. The tangents from any point of an ellipse to its

auxiliary circles are equal to the real and imaginary semi-axes

of the confocal hyperbola through the point.

992. If abed and a/3y$ be two tetrads of points on a conic,

the joins of (ab, a/3) and (cd, 78) ; (ac, 017) and (bd, /3S) ; (ad, aS)

and (be, fty) meet in a point. And if act, &/?, cy be concurrent

chords of a conic, then

{aaby} + {/35ccc} + {yca@}
= 1.

993. If aa, b@, cy are the foci of three conies inscribed in

the same quadrilateral, then

ac.ac : ay.ay = bc./3c : by.fty.

994. If a conic A circumscribes a conic B harmonically,
then B is harmonically inscribed to A

;
the reciprocals of A are

* Aa a second proof that lies on the directrix, Mr. Pendlebury remarks that the

normals are also normals at points abed to the reciprocal of the conic with respect

to 0, so that the parabola has for its reciprocal the rectangular hyperbola Oabcd, and

therefore subtends a right angle at (Art. 155 Cor. 2). Thus also we see that the

normals meet the original conic again in points A'B'C'D' which lie on a rectangular

hyperbola through 0; since the reciprocals of ABCD touch a parabola having for

directrix the diameter through to the reciprocal of the original conic, and (by

symmetry) the reciprocals of A'B'CD' touch a parabola having the same directrix.

t The parabola is the same for all confocal conies.
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harmonically inscribed to the reciprocals of B'
}
and the centre

of perspective of any triangle inscribed in A and its reciprocal

with respect to B lies on A.*

995. A conic is harmonically inscribed to every circle ortho-

gonal to its orthocycle ;
and a rectangular hyperbola harmoni-

cally circumscribed to a circle passes through its centre.

996. The asymptotes of a conic are conjugate lines with

respect to any parabola harmonically inscribed to it.

997. Given that a focus of one conic is a point on the

orthocycle of another, if one of the conies be harmonically in-

scribed to the other, it touches the polar of with respect

to the latter.

998. Describe the conic with respect to which five given

pairs of lines are conjugate ;
and the conies which pass through

4, 3, 2, 1 or given points and are harmonically circumscribed

to 1
, 2, 3, 4 or 5 given conies.

999. The orthocycles of the conies which touch two given
lines SA and SB at given points A and B, including the circle

on AB as diameter and the point-circle at $, are coaxal.f

1000. The number of conies touching five given conies is

32644

* On Exx. 994-8 see Picquet's Etude geometrique &c. pp. 58, 91, 108, 131-3
;

Prof. H. J. S. Smith On some Geometrical Constructions (Proceedings of the London

Mathematical Society vol. n. 85100). One conic is said to be harmonically in-

scribed or circumscribed to another when it ia inscribed or circumscribed to a triangle

self-polar with respect to the latter.

f Graskin Geometrical Construction $c. p. 31. Hence (Ex. 577 note) the theorem,

lately pointed out by Mr. R. W. Genese and Mr. Torry, that the directrix of a conic

is a common chord of the conic, its orthocycle and a point-circle at thefocus. Notice

that every straight line through a focoid, as being an asymptote or self-conjugate

diameter of a circle (pp. 142, 309), is at right angles to ittelf.

J See Salmon's Conic Sections (end) ; Halphen Proc. London Math. Soc. vol. IX.

149 and X. 87
;

and the original memoir by Chasles, Determination du nombre des

sections coniques qui doivent toucher cinque courbes donnees dordre quekonque, on

satisfaire a diverses autrts conditions (Comptes Rendus LVIII. 225, 1864).
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Adams, vi, 15, 220.

Algebraic geometry, xlvi, Ivi, Ixi, Ixxiii.

Almagest, 1, Ixii, Ixxix.

Analogy, Kepler's principle of, Iviii
;

Boscovich on, Ixxiv.

Analysis, geometrical, xix, xxxi, xxxii.

Angle. See Trisection.

Anglea, projection of, 319; reciprocation
of, 341, 350 ; reversion of, Ixxxvi,
3238.

Anharmonic properties of conies, linnriii,
2627. See Cross ratio.

Antipho, fx-x, xli, Ix.

Apollonius, xlii 1, Ixxxiv, 72, 82, 154,
195; on foci, 81, 111; on concurrent

normals, xlvii, 265.

Application of areas, xxv, xliii.

Archimedes, xxxv xlii, lix, 59.

Archytas, xxxi.

Aristaeus, xxxiii, xlvi.

Asymptotes, xliv, 143 154, 327
;
known

to Menaechmus, xxxii
; tangents at in-

finity, Ixii, Ixix. 142
;
of the equilateral

hyperbola, 169
;
of the circle, 309, 379.

Auxiliary circles of conies having a
common focus and directrix are coaxal.
353.

Axes, of the projection of a conic, 1*iii T

See Self-polar triangle.

Bellavitis, on inversion, 357.

Bernoulli, on the latus rectum of a section
of the scalene cone, 211.

Besant, 138, 213.

Booth, 156, 166, 189, 346
;
on the right

cone, 200
; on minor directrices, 348.

Boscovich, vi, Ixxi Ixxvii, 3, 90, 105, 311.

Bosse, Ixi, Ixiv.

Brianchon, Ixxviii ITTTI
;
his hexagram,

289291, 295, 352; and Poncelet, 175,
191, 282, Ixviii.

Brougham, vi.

Cantor, xxxiv, xlii.

Cardioid, 356, 371.

Carnot, Ixxviii, 256, 291, 298
;
his theorem

projective, 313.

Cartesian, mechanical description of the,
178.

Casey, 293.

Caustics, 345.

Cayley, Ixx, 175, 328.

Central conies, 75 112.

Centre, the pole of the line at infinity,
Ixiii

;
of the parabola, Ix, 26, 44.

Centre-locus of a conic, given four tan-

gents, Ixviii, 282, 333
; given four

points, 283, 365
;

of an equilateral

hyperbola, given three points, 171.

Centroid of a quadrilateral, 284.

Chasles, lii, Ixxxii Ixxxv, 266, 320, 330,
339, 379; problems from his Sections

Coniques, 300, 336.

Circle, a conic whose directrix is at in-

finity, 7, 22
;
focus of a conic regarded

as a point-circle, 210; line-circle in-

cludes the line at infinity, Ixxv, 344;
or coincides with it, 308

; every circle

passes through the focoids, 309
;
reci-

procal of a circle with respect to a

point, 342. See Quadrature.
Circular points at infinity, 308. See

Focoids.

Circuminscribed polygons, 139, 140, 243.

Clifford, 186, 257.

Coaxal circles, transformed into other
coaxal circles, Ixxxvi

;
determine an in-

volution on any transversal, 258 ; conies

through four points project into, 318
;

confocals reciprocate into, 344, 351.
See Orthocycle. Auxiliary circles.

Complement of a line, Ixxv, 77.

Concentric circles, touch at the focoids,
309

;
conies having double contact pro-

ject into, 319.

Concurrent, chords of a conic subtend an
involution at any point on the curve,
276. See Fregier.

Cone, sections of the, 192 206
; problems

on the scalene. 211 3, 334. See
Sections.

Confocal conies, intersect at right angles,

84, 351
;
locus of vertex of right angle

which touches two, 89
; problems on,

132140, 163
;

conies touching four

lines project into, 317
; reciprocate into

coaxal circles, 344, 351
;
transformed

into other confocals, Ixxxvi, 332.
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Conic, the general, 1435
;

Newton's

organic description of a, Ixvi, Ixxxiii,

136, 264, 325, 358; Maclaurin's de-

scription of a, 264
;

determined from
five data, Ixv, Ixxx, 136, 164, 175, 279

283, 288290, 379; subject to four

conditions, Ixviii, 275 285
;
conic and

point projected into a circle and its

centre, 318; or into any other conic
and point, 329.

Conjugate diameters, xlix, 95102, 233.

827; of hyperbola, 149, 151, 169; con-
struction of a conic from given pair of,

125, 152
;
determine a pencil in involu-

tion, 259, 265.

Conjugate hyperbola, Ixxv, 101, 153.

Conjugate lines and points with respect to

a conic, Ixiii, 270, 278, 281
; every two

conjugate lines through a focus are at

right angles, 270, 310, 312. See Hesse.

Conjugate triads with respect to a conic,
273

;
lie on circles orthogonal to the

orthocycle, 274
;
or which pass through

the centre, 171, 273. See Self-polar.

Conoids, xl, 213.

Continuity, history of, Iviii, Ix, Ixxiii,

Ixxxi, 311.

Coordinates, used by Apollonius, xliii
j

in space, 1.

Correlative figures, 346.

Cotes, edits Newton's Principia, Ixv
;
his

theorem of harmonic means, Ixxi, 276.

Cremona, Lxxxiii, 265, 292 4, 321.

Cross ratio, 249 290
; projectivity of,

251, 312, 328; history of, lit, Ixiv,
Ixxxiii Ixxxv. See Anharmonic.

Cube, its duplication reduced to the

problem of the two mean proportionals,
xxviii, 189.

Cubics, New-ton on, 301, 321.

Cunynghame, 177.

Curvature, 214222, 279, 377; coordi-

nates of the centre of, xlii, xlviii
;

Steiner's property of concurrent circles

of, 228, 236, 357
;
circles of curvature

invert into circles of, 357.

Curves, generated by compounded motions,
xl

; regarded as limits of polygons, xxx,
Ix ; organic description of, Ixx, Ixxxvii,
178.

Dandelin, discovers the focal spheres, 204
;

his proofs of Pascal's and Brianchon's

theorems, 287.

Davies, Ixxxvi, 213, 257.

De Beaune, on envelopes, 345.

Degeneration, of conic into line or line-

pa.ii.OT) 144,. 171
f 278, 285. See Circle.

De la Hire. Ixiv. Ixxi. 112, 161, 311
;
the

orthocycle discovered by, 90, 117; on

transformation, 329.

Delambre. li.

Delian problem, xxviii, 189. See Cube.

Desargues, Ix Ixiv, Ixxx
;
on involution,

''til.277; polars, 291; transformation,329.'

tc?. Ixi, 189, 206, 345, 377.

Dining ratio, Ixxi, 1. See Directrix.

Diameter, of a conic, 23
;
of a quadri-

lateral, 138, 256. See Centre-locus.

Director circle, two uses of the term, 90,
165. See Orthocycle.

Directrix, history of the, liv, Ixv, Ixxi
;
the

polar of the focus, Ixxi, 15
;
a conic, its

orthocycle and a point-circle at either

focus intersect on the corresponding,
379

;
of parabola inscribed in a triangle,

57. See Steiner.

Double contact, conies having, 279. See
Concentric circles.

Double reciprocation, 348.
Dual figures, 346.

Duality, discovery of the principle of,

Ixxviii, 290, 346.

Eccentric circle, 3, 9, 28, 321, Ixxvi;
works founded upon the, Ixxii.

Eccentricity, use of the term, 211
;

of
conies in the cone, 197.

Educational Times, problems from, 141,
336, 362377.

Egyptian geometry, xvii, xxii, xxvi.

Eisenlohr, xxii, xxvi.

Eleven-point conic, 284, 365
; degenerates

into nine-point circle, 171, 285.

Ellipse, names of the, xliii, 195
;
area of

the, xli, 234. See Central conies.

Elliptic compasses, Iviii, 114, 178.

Envelopes, 345.

Equicross, the term, 250.

Equilateral hyperbola, 167177, 342, 352
;

conjugate to the focoids, 278, 309.

Euclid, xix, xxxv ;
on conies, xlvi

;
Euc.1.47

proved by dissection, xxiii. See Porisms.

Eudemus, xviii, xxiv, xxix.

Eudoxus, xix, xxxii
;
his cubature of the

cone, xxxviii.

Euler, 211, 242, 247.

Eutocius, xxxiii, xxxvi, xxxix, xlii, 45, 194.

Evolutes, xlviii, 221
; homographic pairs

of, Ixxxvi, 358.

Exhaustions, xxxiv, xxxvii, xli, lix.

Fagnani's theorem, 140.

Faure, 186.

Feuerbach's property of the nine-point
circle, 355, 371.

Figure on the axis, 82.

Fluxions, Ix, Ixxi.

Focal spheres, 196 205.

Foci, Apollonius on, xlv, 111
;
named by

Kepler, liv, Ivii
; Desargues on, bail

;

regarded as point-circles, 210; Poncelet

on, Ixxxi, 311
;
of the projection of a

conic, Ixiii
;

Pliicker's definition of,
311

; foci of an involution, 259, 261,309.
See Conjugate lines. Confocal conies.

Directrix.

Focoid, the term, 281, 308.

Focoids, Poncelet's discovery of the, Ixxxi,
311

;
their relation to the foci of conies,

281, 299, 310
;
and other curves, 311; pro-

jection of any two points into, 315
;
all

circles pass through and concentric circles

touch at the, 309
;
constant relation of a

figure moving in itsown plane to the, 310.
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Focus of parabola, liv, Ixxi ;
not discovered

by Apollonius, xlv, 81. See Kepler.

Fregier, theorem that a chord which
subtends a right angle at a given point
on a conic passes through a fixed point
on the normal, 122, 176, 276, 324, 351

;

its analogue in space, 349.

Fregier-point, 349, 351, 376.

Frisch, Ivi.

Gardiner, 305.

Gaskin, 165, 280, 293, 295, 335, 379;
theorem that the circle through any con-

jugate triad with respect to a conic is

orthogonal to the orthocycle, 186, 274.

Geminus, xxiv, xliii, 194.

Genese, 163, 379.

Geometry, no royal road to, xx.

Graves' theorem, 133.

Gregory St. Vincent, Ixxi, Ixxix, 166, 189.

Halley, on the parabola, xlix, Ixxxiv;
editions by, xlii, Ixxxiv.

Halphen, 379.

Hamilton, 206
;
his determination of the

focus and directrix in the cone, Ixxii,
204.

Hammond, 178.

Harmonic, the term, xxvi, xlv, liv
; ranges

and pencils, liv, Iv, Ixxix, 254, 313
;

property of a quadrilateral, 254 6
;

points on or tangents to a conic, 276.

Harmonically inscribed and circumscribed

conies, 379.

Heilberg, xxxv.

Henrici, 252.

Hesse, theorem that if two pairs of sum-
mits of a quadrilateral are conjugate to

a conic the third are conjugate, 333.

Hexagon, inscribed in a line-pair, liii,

297; Pascal's, 2868; Brianchon's,
289291.

Hexastigm, 297.

Hippocrates, xix, xxvii xxx, 189.

Hirst, 358.

Homographic, the term, btxxv, 250.

Homographic, figures may be placed in

perspective, 312, 328; correspondence
of points and lines in reciprocal figures,

269, 338. See Cross ratio.

Homology, Ixiv, Ixxxv, 292, 307, 321.

Homothetic conies, 305. See Parallel.

Home, proof of the anharmonic proper-
ties of conies, 267.

Hultsch, li.

Huyghens, 221, 345.

Hyperbola, why so called, 82, 195
;
a

continuous curve, 10, 310; a quasi-

ellipse, Ixxv, 101, 153, 235; degenerate
forms of, Ivii, 285. See Central conies.

Ideal chords, 311.

Imaginary, transition from the real to the,

Ixxv; diameters of a hyperbola, 101,

153, 180
;

circular points at infinity,

308; foci, 310, 312.

Infinite chords of a conic, ratios of the,

Ixxvii, 149, 163.

Infinitesimals, method of, Ix.

Infinity, the line at, 32, 308, 322
; parallels

meet at, lix, Ixii
; change of sign on

passing through, Ixxiv. See Opposite
infinities.

Ingram, 357.

Inversion, 354-8, 364, 371.

Involution, lii. Ixii, 257 281.

Joachimstal, 228.

Join of points or lines, 252.

Kempe, on linkages, Ixxxvii.

Kepler, vi, Ivi Is
;
on the further focus

and the centre of the parabola, Iviii, Ix
;

his doctrine of the infinite, lix
;
of the

infinitesimal, Ix; of continuity, Iviii,
Ixxiii.

Lagrange, vi.

Lambert, on the parabola, Ixxxv, 57, 296
;

theorem in elliptic motion, 237, 248
;

in parabolic motion, vi, 247.

Lame, 278.

Laquidre, 343.
Latus rectum, according to Apollonius,

82
;
in the scalene cone, 211.

Leibnitz, Ix, Ixxi, 222.

Lemniscate, 357, 364.
Le Poivre, 330.

Leslie, Ixxii, 125, 135, 164.

Levett, 57.

Limiting forms of conies. See Degenera-
tion.

Line at infinity, 32: parallel to every
straight line in its plane, 308, 322

;

a factor of every line-circle, Ixxv, 344
;

its relation to the conies, 144, 310, 341.

Linkages, Ixxxvii.

Loci, the earliest writer on, xxvii.

Locus ad quatuor lineas, xlv
;
Newton's

proof of the, Ixvi, 266
; proof by ortho-

gonal projection, 235
;

theorems of

Desargues and Pascal deduced from
the, 277, 287

; property of focus and
directrix deduced from the, 362

;
reci-

procal of the, Ixxxiv, 293, 340, 346.

Logarithms, geometrical representation
of, 166.

Lunes of Hippocrates, xxix.

Maccullagh, 246, 248.

Macdowell, 260, 292, 3508.
Maclaurin, Ixxi, Ixxx, 128, 276

;
his con-

struction of a conic, 264; theory of

pedal curves, 345
;

on attractions,
Ixxxii.

Main, 219, 222.

Maxima and minima, Apollonius on,
xlvii.

Mean proportionals, problem of the two,
xxviii, xxxi, xxxix, xlviii, 45, 189,
377.

Mechanical proofs of geometrical theorems,
xxxvii, 2834.

Menaechmus, xxix, xxxi, 45, 194.

Menelaus, theorem of the six segments, L
Minor axis of hyperbola, 76, 347.
Minor directrices, 346 8, 352.

Mbbius, Ixxxiii, 257, 302, 330. mt'

Monge, Ixxiii, Lxxviii, 256. .orn?
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Montucla, Ivi.

Moore, 290.

Mulcahy, Ixxxvi, 293.

Neil, his rectification of the semi-cubical

parabola, 221.

Newton, Ixiv Ixxi; his property of the

tangents to conies, Ixviii, Isxix, Ixxxiv,
34C

; organic description of curves, bdx,
Ixxxiii, 136, 301

; property of the dia-

meter of a quadrilateral, Ixviii, 282,
333

;
on the Locus ad quatuor lineas,

Ixvi, 266
;
rational transformation, Ixvi,

330
;

the equilateral hyperbola, 172
;

the projection of cubics, 321.

Nine-point circle, 191
;
Feuerbach's pro-

perty of the. 302, 357, 371
; Casey on

the, 293 : of a right-angled triangle,
355. See Eleven-point conic.

Normals, concurrent, xlii, xlvii, xlix, 123,

224, 228, 2G5, 378.

Ombilic, 299.

Opposite infinities adjacent, lix, Ixii, Ixxv,
310.

Organic description, earliest use of the
method of, xxxi; of curves, xxxiii,

Ixix, Ixxxvii, 30 1
;

of surfaces, Ixx
;

of the rectangular hyperbola, 177
;
of

Cartesian ovals, 178. See Conic.

Orthocycle, the term, 280
;
characteristic

property of the, 8890, 351
;
Gaskin's

theorem that the circle through any
conjugate triad with respect to a conic
is orthogonal to the, 186, 274

;
Pliicker's

theorem that the orthocycles of all conies

touching the same four lines are coaxal,

280, 335, 342. See Directrix.

Orthogonal projection, 229 242; applied
to curvature. '2'2\, 235.

Orthoptic summits of a quadrilateral,
335.

Orthosphere. 280.

Osculating circle, the term, 222. See Cur-
vature.

Pappus, li liv.

Parabola, 44 61
; why so called, xliii,

82, 195
;
touches the line at infinity,

144, 341
; properties of triads of tan-

gents to the, xlv, 557, 72, 272, 360 1
;

conjugate triads with respect to the,
.'74, 281, 294, 358; point-reciprocal of

the, 343, 3512. See Focus.
Parallel conies, 3^5.

Parallel projection, 236.

Parallels meet at infinity, lix, Ixii.

Pascal, Ixiv. Ixxix, 286 8
; applications

of his hexagram, 58, 175, 290, 352.

Peaucellier, Ixxxvii, 358.

Pedal curves. 370. See Maclaurin.

Pendlebury, olil, 378.

Perspective, 307, 820. 336
; homographic

plane figures may be placed in, 328
;

Serenus on, Iv
; Desargues on, Ixi

;

Bosse on, Ixiv.

Peyrard, xxxv.

Picquet, 280, 335. 360, 379.
Pierce Morton, 196, 205.

Plato, six, TTT, xl.

Pliicker. on tangential coordinates, 156
;

his definition of foci, Ixxxi, 311. See

Orthocycle.
Pole and polar, the terms, Ixxviii.

Polar equations, 34.

Puljirs, 30, 90
;
with respect to the circle,

liv; Apollonius on, xlv. liv; Desargues'
theory of, Ixii, 329

; reciprocal, 2ii8

271, 346: metric relation of any point
and its polar to two fixed points and

their, 339. See Reciprocation.

Polygon, inscribed or circumscribed to a
conic so that its sides pass through
given points, 295, 302, 349, 359; cir-

cuminscribed to confocal conies, 139,
140. See Curves.

Polyhedra. See Solids.

Poncelet, Ixxiii, Ixxxi, Ixxxiv, 277, 295,

344, 346
;
on homology, Ixxxv

;
on the

four foci of a conic, Ixxxi, 311. See
Brianchon.

Porisms, Euclid's three books of, li, liv.

Potts, Ivi.

Poudra, xl, Iv, Ixi.

Proclus Diadochus, his list of early geo-
meters, xviii.

Projection, orthogonal, 229 242
; parallel,

236; central or conical, 307320; of

cubics, 32 1
;
of solids, Ixxxv ;

Brianchon

on, Ixxix
;
Mbbius on, 330. See Per-

spective.

Ptolemy, 357
;
theorem of the six segments

ascribed to, li. See Almagest.
Pythagoras, xviii, xxii xxvii.

Quadrature, of the circle, xxvi, xxix, xxx,
xxxix

;
of the parabola, xxvi, xxxvii,

59
;
of the hyperbola, 166, 190, 221.

Quarries, Ixxxi, 280, 305, 333; ruled,

Ixxxiv, 288
;

of revolution, xl, 213
;

polar properties of, Ixii. 291, 329; in

homology, Ixxxv
; reversion of, 349.

Quadrilateral, properties of the complete,
lii, 254 6

;
in relation to conies, Ixii,

Ixvii, 274285, 304, 333, 338 ; projected
into a parallelogram, Ixxix; or other

quadrilateral, 316.

Quetelet, Ixxxiii, 204, 295, 346, 357.

Range, the term, Ixii, 249.

Reciprocation, 337354. See Duality.
Polars.

Rectangular hyperbola, xxxii, xlviii. See

Equilateral.

Rectification, of the circle, xxxix, xl
;
of

the semi-cubical parabola and the

cycloid, 2^1
; quadrature of the hyper-

bola reduced to the rectification of the

parabola, 190. 221.

Renouf, xx.

Renshaw, Ixxii, 212.

Reversion, Ixxxvi, 321 8; properties of
minor foci and directrices proved by,
34i'. 8. 353

;
of quadrics, 349.

Rhind papyrus, xxii, xxvi.

Robertson, Ixxi, 2U6,

Roberval, xl.
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Rouche and de Comberousse, 294 5,

319, 321.

Routh, vi.

Salmon, Ixsxvi, 133, 140, 164, 210, 277.

7, 290, 29?, 302, 312, 319, 333,
343.

Sections, the conic, how discovered, xxxi
;

why named parabola, ellipse, hyperbola,
xliii, 82, 195

;
of any cone by an arbi-

trary plane, Iv, Ixiii. See Cone.
Self-conjugate. See Self- polar.

Self-polar triangle, conies having four

common points or tangents have a

common, Ixii, 2746, 332
;
inscribed or

circumscribed to a second conic, 272 4,

331, 379; the axes of a conic and the

line at infinity determine a, 365, 377.

See Orthocycle.
Serenus, liv.

Serret, proof of Gaskin's theorem, 274.

Simplicius, xxix, xxx.

Simson, lii. 256.

Smith, H. J. S., Ixxxvi, 379.

Solid loci and problems, xxviii, xxxiii,
189.

Solids, the five regular, xx, xxiv, xxxiii
;

semi-regular, xxxvi.

Steiner, Ixxxii, 377
;

theorem that the
directrix of a parabola inscribed in a

triangle passes through the orthocentre,

57, 281, 290, 326, 352
;
on cross ratio,

Ixxxv, 257, 262
;
on triads of concurrent

osculating circles, 228, 236, 357.

Stubbs, 357.

Sturm. '277.

Subcontrary sections, 2102.

Supplemental chords, xliv, xlix, 95.

Sylvester on linkages, Ixxxviii.

Talbot, 194, -204. 3->l.'

Tangential coordinates, Ixviii, 156, '346.

Taylor, J. P., proof of Feuerbach's

theorem, 191, 355.

Thales. xviii, xx. xxxv.
Thesetetus. xix, xxxi.

Torry, 224', 379.

Townsend, Ixxxviii, 216, 249, 280, 287,

2957, 330. 344, 351, 3589.
Transformation, homographic, Ixvi, 329.

See Homographic.
Triangle, through the axis, Iv, Ixiii, 206

;

inscribed or circumscribed to a conic,
271 4; orthogonal projection of any
triangle into an equilateral, 237. See

Self-polar.
Trisection of .an angle, xxvii, Ixxiv, 141,

189, 299. 377.

TTbaldi, 178.

Umbilicus, 5. . 5ae Ombilic.

Viviani, xxxiii:*^
Walker. G., Ixxii

; J., 212.

Wallis, 2212, 296.

Walton, geometrical problems, 161, 189,
195.

Webb, 345.

Whitworth. 308.

Wolstenhoime, problems by, 121, 163,
184

; proof that the diameter of curva-
ture at any point of a rectangular

hyperbola is equal to the normal chord,
377.

Wren, property of the parabola, Ixxxv,
296

;
rectification of the cycloid, 221.

THE END.
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