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PREFACE. 

THE  design  of  beams,  in  relation  to  strength,  stiffness  and  con- 
venience of  construction,  is  a  study  that  appeals  to  all  classes  of 

engineers  and  architects.  For  in  all  machines  and  structures 
beams  appear  in  one  form  or  another  ;  and  little  progress  can  be 
made  in  scientific  designing  without  a  proper  understanding  of  the 
principles  or  fundamental  facts  underlying  their  construction. 
Hence  great  prominence  is  rightly  given  to  this  subject  in  all 
courses  of  applied  mechanics,  machine  and  building  construction, 
and  naval  architecture. 

The  following  chapters,  based  on  articles  originally  contributed 
to  The  Mechanical  World,  deal  in  an  elementary  manner  with  the 
main  principles  and  considerations  involved  in  designing  beams 
and  columns  of  such  forms  and  materials  as  commonly  occur  in 
machines  and  structures. 

Although  points  of  mathematical  intricacy  have  been  inten- 
tionally avoided,  my  aim  has  been  to  make  the  treatment  thorough, 

within  the  limits  prescribed,  and  the  mode  of  presentation  such 

as  can  be  easily  understood.  On  questions  of  fundamental  im- 
portance I  have  aimed  at  going  to  the  root  of  the  matter,  giving 

full  proofs  of  the  leading  formulae  :  while  on  points  of  less  signifi- 
cance I  have  touched  but  lightly.  The  diagrams  interspersed 

throughout  the  text  are  very  numerous,  and  include  examples 
illustrative  of  the  graphical  method  of  estimating  the  stresses  in 
the  several  members  of  braced  girders. 

A  long  experience,  not  only  in  the  lecture-room  but  also  in  the 
designing  and  estimating  offices  of  several  large  engineering  works, 
has  taught  me  the  great  value  of  numerical  examples  in  imparting 
clearness  of  view  and  facility  in  applying  principles  to  practice. 
Accordingly  I  have  introduced  a  liberal  number  of  fully  worked 
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out  examples,  of  a  kind  that  will  be  found  helpful  to  young 
engineers  and  draughtsmen,  whether  engaged  in  the  mechanical 
or  the  structural  branches  of  engineering.  For  in  the  drawing 

office  the  problems  presented  to  the  estimator  and  the  draughts- 
man are  always  special  or  particular,  never  general.  In  other 

words,  each  problem  refers  to  a  particular  case,  and  must  be  solved 
numerically,  in  response  either  to  a  definite  inquiry  or  a  definite 
order.  Hence  a  draughtsman  always  prefers  numerical  examples 
to  general  investigations,  though  the  latter  are  more  important  in 
college  work. 

As  denoted  by  its  title,  this  book  is  strictly  introductory  in  its 
aim  and  scope.  Consequently  no  attempt  has  been  made  to 
exhaust  the  subject,  which  may  be  pursued  much  further  in 

several  larger  books,  such  as  Anglin's  "  Design  of  Structures  " 
and  Fidler's  "  Bridge  Construction."  For  a  brief  summary  of 
beam  formulae  and  data,  reference  may  be  made  to  that  convenient 

little  drawing-office  companion,  "  The  Mechanical  World  Pocket 

Diary,"  which  still  contains,  in  a  slightly  abridged  form,  the 
section  on  "  Beams  and  Girders  "  contributed  by  me  in  the  year 
1897.  Lastly,  an  account  of  some  recent  laboratory  experiments 
on  the  strength  of  columns  will  be  found  in  the  paper  on  that 
subject  by  Prof.  W.  E.  Lilly,  read  before  the  Institution  of 
Mechanical  Engineers  in  February  1905. 

W.  H.  ATHERTON. 
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THE  DESIGN  OF  BEAMS. 

CHAPTER  I. 

INTRODUCTORY. 

Definition  of  Beam. — In  everyday  English  the  term  "  beam  "  has 
many  widely  different  meanings.  Thus  we  speak  of  a  beam  of 

sunlight,  of  the  beam  of  a  ship,  and  of  a  weaver's  beam,  as  well  as 
of  any  large  and  straight  piece  of  timber  or  iron  serving  to  support 
some  part  of  a  building. 

In  the  technology  of  engineering,  however,  the  term  "  beam  "  has 
a  very  definite  significance,  and  refers  to  any  detail  whatever  of  a 
machine  or  structure  that  is  subjected  to  bending  action,  by  being 
loaded  transversely  or  obliquely  at  some  distance  from  its  support 
or  supports.  The  characteristic  feature  of  every  beam  is  that  the 
forces  acting  on  it  tend  to  bend  or  deflect  it,  and  finally  to  break 
it  crosswise. 

A  Girder  is  a  large  or  main  beam  of  iron  or  steel  supported  at 
both  ends,  and  is  usually  a  composite  structure,  built  up  of 
several  parts  riveted  or  otherwise  secured  together.  The  term 

"truss"  is  also  used  to  denote  a  large  pin-jointed  girder  or  roof 
principal. 

The  distinction  between  a  beam  and  a  girder  is  not  very  rigidly 
observed  in  practice,  however ;  many  engineers  regarding  the  two 
terms  as  synonymous.  At  the  same  time  the  construction  of 
riveted  girders,  as  a  branch  of  engineering,  is  always  referred  to 
as  girder-work,  and  never  as  beam-work. 

Engine  Beams. — A  good  example  of  the  kind  of  beam  that 
occurs  in  machinery  is  the  main  beam  (Fig.  1 )  of  a  large  compound 
pumping-engine  of  the  rotative  type.  This  is  a  single  heavy  iron 
casting,  28ft.  long  by  oft.  9in.  deep  at  the  centre,  of  I  section  ; 
consisting  of  broad  top  and  bottom  flanges  connected  by  a  thin 
web  and  by  cross  ribs  at  the  bosses.  The  outline  of  the  engine 
beam  is  tapered,  not  for  the  sake  of  appearance  merely,  but  chiefly 

A 
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to  secure  uniformity  of  strength,  most  metal  being  put  where  the 
bending  action  is  greatest. 

In  the  year  1876  an  exceptionally  large  wrought-iron  riveted 
beam  was  constructed  for  a  Cornish  pumping-engine  at  the  Hull 
Corporation  Waterworks,  having  a  steam  cylinder  of  96  inches 
diameter  and  a  stroke  of  12  feet.  This  beam  was  40  feet  long 
from  centre  to  centre,  8  feet  deep,  and  weighed  40  tons.  It  was 
found  to  be  quite  satisfactory  in  every  respect,  though  many 

engineers  at  that  time  objected  to  the  use  of  built-up  engine 
beams.  Probably  the  best  material  now  available  for  engine 

beams  of  moderate  dimensions  is  Siemens'  cast  steel,  while  those 
of  very  large  size  are  best  built  up  of  steel  plates  and  angles. 

Fig.  1. 

Gun  Beams. — Another  instructive  example  of  the  mechanical 

engineer's  beam  is  the  so-called  "  slide  beam  "  shown  in  Fig.  2  ; 
which  is  one  of  a  pair  of  cast  steel  slides,  30  inches  deep,  forming 
the  recoil  ways  of  a  68-ton  gun,  as  fitted  on  many  first-class 
battleships.  The  two  beams  are  spaced  4  feet  apart,  and  between 
them  is  situated  the  hydraulic  recoil  buffer,  which  ties  them 
secuiely  together.  The  whole  system  of  gun,  carriage,  slide 
beams  and  gear  swings  about  9-inch  pins  fastened  to  the  turntable 
structure,  the  movement  being  controlled  by  a  powerful  hydraulic 
elevating  ram. 

A  still  more  interesting  illustration  of  the  varied  forms  and 
uses  of  beams  is  seen  in  Fig.  3,  showing  the  mode  of  supporting 
and  handling  a  ponderous  68-ton  gun,  by  slinging  it  between  a 
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pair  of  levers  or  beams  technically  known  as  elevators.  This  is  the 
method  of  mounting  adopted  in  all  hydraulic  and  hydro-pneumatic 
disappearing  gun-carriages,  ranging  in  size  from  the  6-inch  5-ton 
mounting  up  to  that  for  the  13'5-inch  gun  illustrated.  The  gun 

Fig.  3. 

is  embraced  by  a  trunnion-hoop,  whose  two  trunnions  are  carried 
by  the  pair  of  heavy  cast  steel  elevators  of  I  section.  In  the  posi- 

tion here  represented,  the  gun  is  supposed  to  have  just  fired  a  shot 
at  the  enemy,  to  have  then  immediately  disappeared  from  view 
behind  a  parapet,  and  now  to  be  on  the  point  of  coming  to  rest  in 
the  position  for  reloading. 

Cranes. — The  20-ton  foundry  crane  jib  outlined  in  Fig.  4  is  an 
example  of  the  special  type  of  beam  known  as  the  cantilever,  which 
is  the  generic  name  for  all  beams  secured  at  one  end  and  free  at 
the  other.  This  curved  form  of  jib  is  designed  to  give  as  much 
headway  as  possible  round  the  crane,  and  is  built  up  of  steel 
plates  and  angle  bars.  The  side  frames  are  double,  and  support  a 

traversing  carriage  or  "  monkey,"  from  which  the  load  is  hung ; 
the  hoisting  being  done  by  a  pair  of  cylinders,  6  in.  diameter  by 
12  in.  stroke,  bolted  to  the  pillar. 

The  girders  of  travelling  cranes,  as  commonly  used  in  engineer- 
ing workshops,  are  also  familiar  examples  of  beams.  They  are 

usually  either  of  I  or  of  box  section,  as  shown  in  Fig.  5,  and  are 

"  fish-bellied  "  in  elevation ;  that  is,  deepest  at  the  centre  of  the 
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span,  where  the  bending  action  is  greatest.  Their  ends  are  sup- 

ported on  "end-carriages,"  which  run  on  the  elevated  "  roadway  " 
or  "runway  "  down  the  shop.  A  steel  box  girder  of  the  given 
section,  and  of  28  foot  span,  will  carry  safely  a  live  load  of  18  tons 
at  the  centre,  allowing  for  its  own  weight.  Any  desired  increase 
of  strength  can  be  got  by  increasing  the  depth  and  adding  extra 
plates  to  the  top  and  bottom  flanges. 

Sundry  Examples. — Iron  and  steel  beams  are  of  extensive  and 

increasing  application  in  all  structural  work,  such  as  bridges,  roofs, 
large  buildings,  railway  stations,  pit-head  frames,  and  ships. 
Many  recent  buildings,  displaying  handsome  stonework  exteriors, 
are  essentially  steel- work  structures,  the  stone- work  being  little 
more  than  a  thin  shell  covering  the  steel  skeleton. 

Many  parts  of  machines  are  really  beams  in  a  more  or  less  dis- 
guised form  ;  such  as  the  crank-shaft  of  a  pair  of  coupled  engines 

carrying  a  heavy  fly-wheel  and  driving  by  teeth,  ropes  or  belt 
(Fig.  G).  Here  are  six  transverse  forces  tending  to  bend  the 

Fig.  6. 

shaft,  namely  :  the  weight  of  the  fly-wheel,  the  pull  or  thrust  on 
two  crank-pins,  the  reactions  of  two  bearings,  and,  finally,  the 
pull  of  the  ropes  or  other  drive.  But  this  is  a  complicated  example, 
because  several  of  the  forces  are  continually  changing  in  direction 
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and  amount,  besides  which  the  shaft  is  subjected  to  torsion  as 
well  as  to  bending. 

Amongst  other  examples  of  beams  we  may  mention  : — The 
cross-slide  and  uprights  of  a  metal-planing  machine  ;  a  lathe, 
planing  or  other  machine  bed  supported  on  feet ;  most  machine 
frames,  as  those  of  hydraulic  riveters,  punching  and  shearing 
machines ;  all  cranks  and  levers,  as  those  of  engines  and  testing 
machines  ;  overhanging  crank-pins,  brackets  and  hangers ;  the 
arms  of  fly-wheels,  pulleys,  and  gearing ;  the  teeth  of  wheels ;  plate 
springs;  the  girder  stays  of  boilers;  bicycle  and  raotor-car 
frames  ;  the  entire  hull  of  a  ship,  and  a  vast  variety  of  other 
details  and  structures. 

General  Remarks. — From  a  consideration  of  these  examples  it 
is  manifest  that  beams  constitute  a  class  of  engineering  details  so 
numerous  and  important  as  to  make  it  well  worth  our  while  look- 

ing carefully  into  the  elementary  theory  of  their  strength  and 
stiffness,  so  as  to  become  quite  familiar  with  the  fundamental 
principles  on  which  they  are  designed.  For  it  is  not  possible  to 
design  beams  properly  and  with  confidence  by  simply  looking  at 

existing  examples,  or  even  by  copying  them,  though  this  is  cer- 
tainly a  useful  exercise.  It  is  necessary  to  reason  about  them, 

starting  with  first  principles,  and  to  work  through  many  numer- 
ical examples.  In  this  way  only  is  it  possible  to  get  to  the  root  of 

the  matter,  and  to  acquire  facility  in  the  application  of  scientific 
principles  to  practical  designing. 

In  the  drawing-office  the  problem  before  us  is  either  to  de- 
sign a  beam  to  stand  a  certain  load,  or  to  examine  some  pro- 

posed or  existing  beam  to  see  if  it  is  strong  enough  for  its  work, 
by  calculating  the  stress  likely  to  come  on  the  material.  We  shall 
not  concern  ourselves  here  with  workshop  processes,  except  as 
influencing  design  ;  nor  with  the  problem  of  the  erection  of  the 
completed  beam  in  position,  which  is  not  always  a  simple  one. 



CHAPTER  II. 

APPLIED   FORCES   AND   REACTIONS. 

Force. — As  we  shall  very  often  have  occasion  to  use  the  term 

"  force,"  a  few  words  about  it  will  be  in  season.  Force  may  be 
regarded  from  either  the  statical  or  the  dynamical  point  of  view. 
For  the  statical  problems  with  which  we  shall  chiefly  have  to  do 
it  is  sufficient  to  regard  a  force  as  any  push,  pull,  pressure,  thrust, 
or  resistance — terms  whose  meaning  is  brought  home  to  us  in 
our  daily  experience,  and  needing  no  formal  definition.  The 

modern  dynamical  definition  of  force  is  "  time  rate  of  change  of 

momentum,"  but  for  our  present  purpose  this  is  quite  needlessly 
mystifying. 

So  far  as  we  are  concerned,  force  is  measured  in  terms  of  some 

unit  of  weight,  as  that  of  a  ton  of  iron.  There  are  only  two 
units  of  force  that  will  be  of  much  use  to  us — namely,  a  pound 
for  light  work  and  a  ton  for  heavy  work.  We  could  do  very  well 
without  hundredweights  and  quarters,  and,  in  fact,  it  is  rather  a 
pity  that  such  units  exist  at  all.  We  have  far  too  many  units. 
Unfortunately,  also,  there  are  three  different  tons  to  bear  in 
mind.  The  English  ton  contains  2240  Ibs.,  the  American  ton 
2000  Ibs.,  and  the  French  ton  of  1000  kilos.,  about  2205  Ibs. 
Bridge  engineers  occasionally  find  it  convenient  to  measure  forces 
in  hundredweights.  Continental  engineers  usually  express  forces 
in  kilogrammes  (kgs.). 

It  is  commonly  said  that  we  know  all  about  a  force  when  we 

know  (1)  its  amount  or  magnitude  in  tons  or  other  unit ;  (2)  its 
point  of  application,  or  where  it  acts ;  (3)  how  it  acts — i.e.,  its 
direction  up  or  down,  to  right  or  left,  or  otherwise.  But  practi- 

cally there  is  at  least  one  other  thing  that  must  be  known  before 

the  force  is  completely  specified ;  namely,  whether  it  is  "  live  "  or 
"  dead  " — an  important  distinction  which  we  now  proceed  to consider. 

Relative  Effect  of  Live  and  Dead  Loads. — From  a  considera- 
tion of  the  various  examples  of  beams  already  presented,  it  will 

have  now  become  clear  that  we  have  to  distinguish  between  two 
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kinds  of  applied  forces,  differing  widely  in  their  nature  and  effect. 
These  are  usually  styled  live  and  dead  loads  respectively.  A 

"  live  "  load  is  a  suddenly  applied  force  or  shock,  as  that  due  to 
the  recoil  of  a  gun  or  the  pressure  of  a  gust  of  wind  on  an  exposed 
structure.  Also  forces  suddenly  reversed  in  direction,  as  the  alter- 

nating force  on  the  crosshead  of  a  double-acting  engine,  are  live 
loads,  and  require  special  consideration.  A  "  dead"  load,  on  the 
other  hand,  is  a  gradually-applied  force  or  steady  pressure,  never 
changing  in  any  respect,  like  the  weight  of  a  building  or  bridge. 

The  destructive  effect  of  a  live  load,  it  is  important  to  observe, 
is  twice  that  of  a  dead  load  of  the  same  nominal  amount.  This 

statement  admits  of  exact  proof,  and  as  the  proof  is  easy  and  con- 
vincing, we  now  give  it,  so  as  to  clear  up  any  uncertainty  that  may 

exist  on  the  matter.  A  little  thoughtful  experimenting  with  a 
spring  balance  or  a  piece  of  elastic  is  instructive  in  this  connection. 

Case  1. — Consider  the  effect  of  a  load  of  lib.  applied  gradually 
to  a  helical  spring  S  (Fig.  7).  As  the  support  is  carefully  re- 

moved from  the  pound  weight  the  tension  on  the  spring  increases 
from  nothing  up  to  1  lb.,  and  therefore  the  opposing  elastic  force  or 
elasticity  of  the  spring  will  also  increase  from  nothing  up  to  lib. 

But  the  pull  of  a  spring  is  proportional  to  its  extension,  so  that 
S  will  stretch  a  certain  distance  AB,  and  remain  extended  as  long 
as  the  load  is  applied.  Draw  BF  to  represent  to  scale  the  maxi- 

mum pull  of  S  thus  set  up — viz.,  lib. — and  join  AF.  The  series 
of  horizontals  parallel  to  BF  show  the  gradual  increase  of  spring 
tension,  and  the  area  of  the  triangle  ABF  represents  the  work 
done  by  gravity  in  extending  the  spring.  For,  work  done  =  mean 
pull  x  extension  =  ̂ BF  x  AB  =  area  ABF. 

Case  2. — Next  suppose  the  load  to  be  applied  suddenly.  Then 
gravity  at  once  acts  with  the  full  force  of  lib.,  whereas  the  ten- 

sion of  the  spring  starts  at  nothing  and  increases  gradually  as 
W  falls  lower  and  lower.  Set  off  AC  to  represent  the  constant 
force  of  gravity,  and  complete  the  triangle  ABF  and  the  rectangle 
ABFC. 

Consider  the  state  of  affairs  when  W  has  fallen  through  the 
former  total  distance  AB.  The  work  done  by  gravity  equals  the 
constant  force  AC  into  the  distance  AB,  and  is  thus  represented 
by  the  area  of  the  rectangle  ABFC.  Similarly,  the  work  done 
by  the  varying  elasticity  of  the  spring  is  shown  by  the  area  ABF. 
And  since  the  work  done  by  gravity,  up  to  the  point  B,  exceeds 
that  done  by  elasticity,  the  body  W  will  continue  to  fall  until  its  store 
of  energy  has  been  absorbed  by  the  spring.  Completing  the  diagram 
of  work,  we  see  that  this  will  be  the  case  when  the  work  done  by 
gravity  equals  the  work  done  by  elasticity,  and,  therefore,  when 
area  ADGC  =  area  ADEA,  or  triangle  GEF  =  triangle  CAF, 
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or  AB  =  FG,  or  AD  =  2AB,  or  DE  =  2BF,  by  proportion. 
This  result  conclusively  proves  that  the  greatest  pull  which  comes 
on  the  spring  due  to  the  live  load,  as  shown  by  DE,  is  double  the 
greatest  pull  induced  by  the  dead  load,  as  shown  by  BF. 

Pull  of  Spring 

Fig.  7. 

In  Case  2  the  spring  will  oscillate  for  a  time,  finally  coming  to 
rest  when  the  tension  on  it  is  lib. 

This  proof,  although  for  clearness  we  have  only  spoken  of  a 

spring,  is  evidently  true  of  any  elastic  body  whose  resistance  in- 
creases proportionally  to  the  deformation.  But  all  metals  and 

alloys  used  in  engineering  may  be  regarded  as  perfectly  elastic 
within  the  range  of  stress  comprised  between  their  limits  of 
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elasticity,  experiments  showing  that  specimens  of  them  return 
approximately  to  their  old  positions  after  being  palled  out  or  com- 

pressed slightly.  Hence  this  investigation  applies  to  all  engineer- 
ing details  and  structures,  and  fully  explains  why  a  live  load  is  so 

much  more  destructive  than  a  dead  load.  It  also  teaches  us  that  if 
both  live  and  dead  loads  act  simultaneously  on  a  structure,  in  order 
to  find  their  combined  effect  we  must  add  twice  the  live  loads  to 
the  dead  loads.  In  designing  machinery  we  have  in  nearly  all 
cases  to  consider  the  forces  as  live,  and  use  a  correspondingly  high 
factor  of  safety. 

Determination  of  External  Forces. — In  the  preceding  figures  of 
engine  beam,  gun  beams,  and  others,  it  will  have  been  noticed  that 
the  external  forces  acting  on  the  beam  are  indicated.  Now,  in  de- 

signing a  beam  scientifically,  the  first  thing  to  do  is  to  find  these 
forces,  both  as  regards  magnitude  and  direction.  Occasions,  unfor- 

tunately, arise  when  it  is  not  possible  to  calculate  the  external  forces 
with  any  approach  to  exactness,  by  reason  of  want  of  exact  infor- 

mation, or  the  uncertainty  and  variability  of  the  conditions  of 
operation.  The  framing  of  machine  tools  forms  an  example  to 
the  point.  Then  the  beam  cannot  be  designed  scientifically  at  all, 
but  must  be  proportioned  according  to  individual  judgment,  or 
from  experience  or  precedent,  or  by  the  sure  but  expensive  method 
of  trial  and  error.  But  in  many  important  cases,  fortunately,  there 
is  no  great  difficulty  in  estimating  the  loads  with  tolerable  ac- 

curacy ;  and  it  is  with  these  cases  alone  that  we  shall  concern 
ourselves. 

Consider  a  few  instances.  In  crane  work  the  greatest  load  to 
be  lifted  is  always  known,  and  a  rough  estimate  can  be  made  of 
the  weight  of  the  structure.  This  information,  taken  along  with 
a  general  arrangement  of  the  machine,  suffices  to  determine  the 
external  forces  completely.  In  designing  a  bridge,  again,  the 
test  load  forms  one  of  the  items  of  the  specification,  and  the 
weight  of  the  structure  itself  admits  of  estimation ;  while  the 
maximum  wind  pressure  to  which  it  is  likely  to  be  exposed  is 
fairly  well  known  from  experimental  observation.  In  the  case  of 
engine  beams,  and  in  steam  and  hydraulic  work  generally,  the 
required  load  can  be  readily  calculated  from  a  knowledge  of  the 
areas  of  pistons  or  rams  and  the  intensity  of  the  steam  or  water 
pressure.  Lastly,  in  estimating  the  forces  which  act  on  details 
that  are  rapidly  set  in  motion  and  stopped,  such  as  engine  cross- 
heads  and  gun  trunnions,  the  extremely  important  influence  of  the 
inertia  of  matter  must  not  be  lost  sight  of.  Knowing  the  mass 
of  the  moving  parts  and  their  acceleration  at  any  instant,  correc- 

tions for  the  inertia  reaction  can  be  made  by  applying  Newton's 
Second  Law  of  Motion,  viz  ,  that  Force  =  Mass  x  Acceleration. 
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We  shall  find  it  convenient  to  divide  external  forces  into  two 

kinds — namely,  applied  forces  and  reactions  or  dead  resistances. 
An  example  will  best  show  the  distinction.  The  weight  of  a  train 
passing  over  a  bridge  is  an  applied  force;  while  the  upward 
thrusts  of  the  two  abutments,  which  oppose  and  balance  the 
weight  of  the  bridge  and  train,  are  reactions.  Reactions  are 
always  mutual,  never  occurring  as  solitary  forces.  We  have  seen 
that  in  designing  machinery  the  applied  forces  cannot  in  all  cases 
be  estimated  ;  but  if  known,  the  corresponding  reactions  can  be 
found  by  invariable  rules.  Assuming,  then,  that  the  applied  forces 
have  already  been  ascertained  by  a  preliminary  calculation  or 
otherwise,  we  now  proceed  to  consider  the  question  of  how  to  find 
the  balancing  forces  or  reactions. 

EXAMPLES. 

Case  of  Parallel  Forces. — To  take  a  simple  example,  suppose 
we  have  a  beam  or  lever  with  equal  arms  (Fig.  8),  weighing  2  tons, 
having  a  force  of  10  tons  acting  at  each  end  :  What  is  the  reaction 

X  Tons 

I 
10  Tons 10  Tons 

or  back-thrust  of  the  bearings  supporting  it  ?  The  lever  may  be 
regarded  as  the  scale  beam  of  a  large  balance  or  weighing-machine. 

The  universal  rule  for  vertical  forces  is  that  the  sum  of  the 

upward  forces  is  equal  to  the  sum  of  the  downward  forces.  Here 
there  is  only  one  upward  force — namely,  the  required  reaction  R  ; 
and  there  are  three  known  downward  forces. 

.-.  R  =  10  +  10  +  2  =  22  tons. 
Note  that  the  length  of  the  beam  has  nothing  to  do  with  the 
mutter,  except  as  influencing  its  own  weight. 
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To  modify  this  problem  a  little,  so  as  to  show  the  relation 
between  two  modes  of  loading  and  supporting,  take  the  case  of  a 
beam  of  2  tons  weight,  resting  on  supports  at  the  ends,  and 
carrying  a  load  of  20  tons  at  the  middle,  as  in  Fig.  9.  What  are 
the  pressures  on  the  supports  ? 

30  Tom 

W 

Fig.  9. 

The  downward  pressures  on  the  supports  are  equal  and  opposite 

to  the  reactions  or  upthrusts  of  the  supports,  say  R  and  R'. Hence 

R  +  R'  =  20  +  2  =  22  tons. 

But  since  the  load  is  in  the  middle,  and  the  beam  itself  is  sup- 

posed to  be  symmetrical,  R  must  equal  R'. 
/.  2R  =  22,  or  R  -  11  tons. 

Thus  the  pressure  on  each  support  is  11  tons. 
When  the  arms  are  unequal  (Fig.  10),  as  in  the  case  of  an  air- 

F 
Fig.  10. 
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pump  lever,  where  the  stroke  of  the  engine  piston  is  generally 
twice  that  of  the  pump  bucket,  we  still  have 

R  =  P  +  Q, 

disregarding  the  weight  of  the  lever,  as  we  can  always  safely  do 
in  light  work.  With  the  given  ratio  of  arms  Q  must  equal  twice 
P  in  order  to  balance. 

In  the  corresponding  case  of  a  beam  supported  at  both  ends 

(Fig.  11),  we  find  the  reactions  R  and  R'  by  applying  the  prin- 

fc   lOFt—,  f 
J*   4    30  ft     J 
R1  R 

I        2  Turn 
IS  Tons 

Fig.  11. 

ciple  of  the  lever — that  is,  by  taking  turning-moments  about 
either  end,  say  A,  and  forming  an  equation  thus — 

Moments    tending    to    turn"!          [Moments    tending    to    turn the  beam  one  way  round  the  beam  the  opposite  way 

[     round. 
This  principle  is  plainly  true,  seeing  that  the  beam  neither 
turns  in  one  direction  nor  the  other,  but  remains  at  rest  under 
the  action  of  the  forces.  Hence,  in  the  present  case, 

R  x   30ft.  =  18  tons  x  10ft.  =  180  foot-tons. 

.-.  R  =  6  tons;  and  R'  =  18  -  6  =  12  tons. 

Thus,  disregarding  the  beam's  own  weight,  the  reactions  are 
inversely  proportional  to  their  distances  from  the  load.  The 
weight  of  the  beam  is  taken  into  account  by  adding  1  ton  to 
each  reaction,  the  beam  being  symmetrical. 

In  the  same  way,  taking  another  instance,  if  a  40-ton  loco- 
motive is  standing  on  a  bridge  of  400ft.  span,  at  a  distance  of 

100ft.  from  one  end,  we  find  that  the  part  of  the  engine's 
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weight  borne  by  the  near  abutment  is  30  tons,  while  the  other 
takes  10  tons  only. 

These  are  simple  but  most  important  examples,  because  the 
same  principle  applies  in  every  case,  no  matter  how  many 
forces  may  act  on  the  beam  together.  An  interesting  applica- 

tion of  the  principle  of  moments  is  seen  in  the  100-ton  lever- 
testing  machine  (Fig.  12).  The  test  bar  A  is  placed  between 

Fig.  12. 

an  hydraulic  press  and  a  lever  acting  as  a  steelyard,  along 
which  can  be  rolled  a  counterpoise  or  jockey  weight  of  2  tons. 
The  load  is  applied  to  the  specimen  by  the  hydraulic  press,  and 
measured  by  the  steelyard,  its  amount  being  deduced  from  the 
position  of  the  weight.  In  order  to  gain  sufficient  sensitiveness, 
the  fulcrum  of  the  lever  and  the  supports  of  the  shackles  are 

hard  steel  knife-edges,  bearing  on  khard  steel  planes.  The 
figure,  of  course,  is  purely  diagrammatic.  Actually  there  are 
crossheads  above  and  below  the  cylinder. 

Taking  the  jockey  weight  at  160  in.  from  the  fulcrum,  and  the 
leverage  of  the  hydraulic  press  as  4  in.,  let  us  find  the  pull  on  the 
specimen  and  the  reaction  of  the  fulcrum,  neglecting  the  weight 
of  the  lever. 

The  equation  of  moments  is  : 
P  x  4in.  =»  2  tons  x   160  in. ; 

.-.  P  =  80  tons,  and  R  =  82  tons. 
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Examples  of  levers  "  centred  "  at  one  end  and  loaded  at  two  other 
points  are  very  common  in  practice,  as  in  the  case  of  lever  safety 
valves,  lever  handles,  and  connections  generally.  An  illustration 
on  a  large  scale  is  seen  in  the  68-ton  gun  beam  (Fig.  :»).  In  the 
typical  example  represented  in  Fig.  13  the  reaction  of  the  pin  11 

Fig.  13. 

is  the  difference  between  P  and  W.  The  nearer  P  is  to  W  the 

smaller  is  R,  and  when  the  two  are  directly  opposite,  the  reaction 
vanishes  entirely.  There  is  no  need,  therefore,  to  fit  such  a  large 
fulcrum  pin  as  when  P  and  W  act  on  opposite  sides  of  the  fulcrum, 
if  we  have  strength  alone  in  view.  For  this  reason  the  fulcrum 
pin  in  Fig.  3  has  been  made  comparatively  small. 

Culmann's  Graphical  Method. — The  above  is  usually  the 
readiest  and  most  accurate  mode  of  proceeding,  using  a  slide-rule 
for  the  arithmetical  work ;  but  if  drawing  instruments  are  at 
hand  an  interesting  graphical  method  is  also  available,  due  to 
Professor  Culmann  of  Zurich.  It  is  especially  useful  when  the 
forces  are  not  parallel.  To  apply  it,  letter  the  spaces  between 

the  external  forces,  as  in  Fig.  14,  according  to  Mr.  Bow's  excellent 
system.  Set  off  ab  =  i  tons,  and  be  =  3  tons,  to  any  convenient 

scale.  Select  any  point  0,  called  the  "  pole,"  and  join  Oa,  Ob, 
Oc.  Produce  the  vertical  lines  of  action  of  the  forces,  and, 
beginning  on  any  of  these  lines,  draw  OA,  OB,  OC  in  the  link 
polygon  parallel  to  the  corresponding  lines  in  the  polar  diagram. 
Draw  the  closing  side  of  the  polygon  OD,  and  the  dotted  polar 
line  Od  parallel  to  it.  Then  the  required  reactions  are  cd  and 
da  to  the  force  scale.  Also  the  intersection  of  OA  and  OC,  in 
the  link  polygon,  fixes  the  line  of  action  of  the  resultant  of  the 
loads.  A  feature  to  be  noted  is  the  relationship  of  the  three 
diagrams  as  regards  lettering. 

We  shall  see  later  that  the  shaded  link  polygon  is  a  bending 
moment  diagram,  to  a  certain  scale,  which  depends  on  the  length 
of  06  chpsen.  Remembering  this,  it  is  generally  advisable  to 
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make  the  polar  distance  Ob  equal  to  ten  linear  units  on  the  same 
scale  as  the  beam.  Thus,  if  the  beam  is  drawn  to  a  scale  of  an 
inch  to  a  foot,  then  06  should  be  10  in.  But  sometimes  it  is 
more  convenient  to  make  06  =  20  linear  units,  as  here,  in  order 
to  economise  height  on  the  paper.  Apart,  however,  from  ease  of 
drawing  and  multiplying,  the  polar  distance  may  be  anything. 

1'ole 

Fig.  14. 

Intersecting  Forces. — In  continuing  the  question  of  how  to  find 
the  external  forces  acting  on  a  beam,  we  have  next  to  consider  how 
to  proceed  when  the  lines  of  action  of  the  forces  are  not  parallel, 
but  meet  at  a  point,  as  in  the  case  of  a  jib  crane  (Fig.  4)  or  the 
bell-crank  lever  (Fig.  15)  which  we  may  assume  drives  a  pump. 

Suppose  we  have  already  estimated  that  the  load  on  the  pump 
rod  will  be  2  tons ;  and  now,  as  a  necessary  preliminary  to 
designing  the  L  lever,  pins,  and  supporting  bracket,  we  want  to 
find  the  pull  P  required  to  drive  the  pump,  and  the  reaction  R  of 
the  bearings. 

Since  the  arms  are  in  the  ratio  2  to  1 ,  the  force  P  must  be  half 
of  W,  and  therefore,  disregarding  friction,  equal  to  1  ton.  If  we 
took  into  account  the  friction  of  the  bearings,  we  should  have  to 
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increase  P  by,  say,  10  per  cent.     For  any  other  ratio  of  arms  we 
should  have : 

P  x  P's  arm  =  W  x  Ws  arm, 
just  as  for  a  straight  lever. 

To  find  the  reaction  R,  produce  P  and  W  to  meet  at  D,  and  join 
CD.  Measure  off,  to  some  force  scale,  DM?  =  2  tons,  and  com- 

plete the  rectangle  Divrp.  Then  rD  represents  the  reaction  of 

W  T  e  Tons 
Fig.  15. Fig.  16. 

the  bearing  in  direction  and  magnitude,  by  the  well-known  pro- 
position of  the  parallelogram  of  forces.  Also  Dp  represents  P, 

which  is  thus  found  by  another  method. 
A  second  way  of  finding  the  magnitude  of  R  is  to  use  arith- 

metic and  Euclid  I.  47,  by  which  we  have  : 
R2    =     P2    +    W2    =     1     +    4 

.-.  R  =    ̂ 5  =  2-24  tons. 
Incidentally  we  learn  from  this  result  that  the  brasses  support- 

ing the  rocking-shaft  or  gudgeon  should  be  divided,  not  horizon- 
tally, but  at  right  angles  to  the  line  CD  ;  because  it  is  a  funda- 

mental principle  of  machine  designing  that,  as  far  as  possible,  all 
bearings  should  be  adjustable  in  the  direction  in  which  they  wear, 
which  is  the  line  of  resultant  thrust.  In  the  present  example, 
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however,  this  line  is  not  quite  inclined  at  a  constant  angle,  owing 
to  the  motion  of  the  lever.  Further,  the  effect  of  the  weight  of 
the  lever  and  connections  would  be  to  make  the  actual  line  of 

thrust  more  nearly  vertical. 
Occasionally  we  have  to  deal  with  forces  meeting  at  an  angle 

greater  or  less  than  90°,  as  in  Fig.  16.  In  this  case,  given  the 
load  W,  say  1  ton,  and  the  direction  of  P,  our  object  is  to  find  the 
balancing  forces  completely.  Produce  the  lines  of  action  of  P 
and  W  to  meet  at  D,  and  join  CD.  We  have  now  3  forces 
meeting  at  a  point  and  keeping  the  lever  in  equilibrium.  Hence 
these  forces  can  be  represented  in  magnitude  and  direction  by  the 
sides  of  a  triangle  taken  in  order.  Draw  this  triangle  by 
setting  off  W  equal  to  1  ton  and  drawing  parallels  to  the  other 
forces.  This  fixes  P  and  R  in  both  magnitude  and  direction. 

The  final  case  is  when  we  have  to  find  the  reactions  due  to  any 
number  of  intersecting  forces,  some  of  which  may  be  parallel. 

This  can  readily  be  done  by  means  of  Culmann's  graphic  method 
already  described  for  the  special  case  of  parallel  forces. 

Pressure  on  Guide  Bar. — The  following  is  an  interesting  exam- 
ple of  the  mode  of  finding  the  load  which  comes  on  a  beam :  A 

large  rolling  mill  engine  has  a  pair  of  cylinders  60^  in.  diameter 
and  6  ft.  stroke.  The  connecting-rods  are  15  ft.  centres  in  length. 
The  pressure  due  to  the  obliquity  of  the  connecting-rod  will  come 
on  either  top  or  bottom  guide  bars,  according  to  the  direction  of 
rotation  of  the  crankshaft.  The  bottom  bars  are  probably  sup- 

ported throughout  their  entire  length,  but  the  top  bars  may  be 
taken  as  supported  only  at  the  ends.  Assuming  that  the  steam 
pressure  at  half-stroke  is  801b.  per  square  inch  effective,  what  will 
be  the  transverse  pressure  or  thrust  of  one  pair  of  slide-blocks  on 
the  top  bars  ?  (See  Fig.  17.) 

Load  on  piston  =  area  x  steam  pressure, 
=  2875  sq.  in.  x  801bs.  persq.  in. 
=  230,0001bs.  =  102  tons. 

The  thrust  on  the  guide  bar  will  be  greatest  when  the  connect- 
ing-rod is  most  inclined  to  it — that  is,  when  the  crank  is  vertical. 

This  is  not  quite  at  half -stroke,  but  the  difference  is  negligible 
for  our  present  purpose. 

Taking  the  coefficient  of  friction  as  0-1,  the  angle  of  friction 
will  be  that  whose  tangent  is  0-1,  or  say  6°  ;  which  is  therefore 
the  inclination  of  the  guide-bar  reaction. 

On  drawing  to  scale  a  triangle  (Fig.  17)  whose  sides  represent 
the  forces  meeting  at  G,  we  find  that  the  reaction  of  the  top  guide 

bar,  and  consequently  the  equal  and  opposite  thrust,  is  20-4  tons, 
which  is  the  required  total  force.  The  weight,  however,  of  the 
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crosshead,  motion-block,  and  rod  would  reduce  this  by  a  few  tons. 
As  there  are  two  top  bars  to  each  cylinder,  the  load  is  equally 
divided  between  them.  On  the  return  stroke  of  the  piston,  the 

thrust  will  slope  6°  on  the  other  side  of  the  vertical,  because 
friction  always  opposes  the  motion.  Hence,  in  designing  the  guide 
bars,  one  should  take  the  thrust  as  vertical  ;  but  the  end  pressure 
due  to  the  slide  friction  must  be  provided  for  in  the  supports.  In 
the  force  triangle  as  drawn,  the  thrust  of  the  connecting-rod 
happens  to  scale  the  same  as  the  force  on  the  piston. 

If  we  choose  to  neglect  friction,  it  is  quicker  to  find  the  pres- 
sure on  the  guide  bars  by  arithmetic  than  by  drawing  a  triangle 

of  forces.  Thus,  taking  moments  about  the  crankpin  C,  we 
have  : 

Reaction  of  guide  x  its  arm  =  piston  load  x  its  arm  ; 
or,  R  x  GO  =  102  tons  x  3  ft. 

But  GO  = =  14-7  ft. 

Hence,  R  =          =  20'8  tons. 

Forces  on  a  Bracket.  —  As  another  instructive  exercise,  let  us 
find  the  external  forces  acting  on  a  bracket  required  to  balance  a 

pull  P  of  1000  Ibs.  inclined  at  30°  to  the  vertical  (Fig.  18),  arising 

HZJOSO 

Vis.  18. 

from  the  tension  of  a  belt.  Looking  at  the  figure  we  see  that  to 
balance  P  there  must  be  a  horizontal  pull  S  on  the  wall  or  column 
at  the  top  row  of  bolts ;  also  a  horizontal  thrust  H  at  the  bottom, 
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and  lastly  a  vertical  force  V  coming  on  either  the  bolts  or  a  lip 
on  the  column  carrying  the  bracket.  Now  H  and  V  have  a 
diagonal  resultant  R,  which  must  pass  through  the  intersection  J 
of  the  directions  of  P  and  S.  We  then  have  three  balancing 
forces  at  J,  and  therefore  easily  find  R  and  S  by  drawing  to  scale 
a  triangle  of  forces.  Resolving  R  horizontally  and  vertically,  as 
shown  in  the  force  polygon,  we  finally  get  H  and  V,  as  shown. 

A  large  part  of  all  books  on  "  Statics  "  consists  of  investigations 
and  examples  relating  to  the  determination  of  forces  required  to 
balance  certain  given  forces ;  which  examples,  however,  are  for 
the  most  part  of  a  remarkably  academic  or  unpractical  character, 
useful  only  as  mental  drill.  The  present  part  of  our  subject, 
therefore,  might  easily  be  extended  to  great  length  ;  but  sufficient 
practical  examples  have  been  now  worked  out  to  show  how  to 
proceed  in  the  most  commonly  occurring  cases. 

Laws  of  Equilibrium. — Before  leaving  this  matter,  however, 
it  will  be  useful  to  summarise  the  so-called  general  conditions  or 
laws  of  equilibrium  of  a  rigid  structure  or  detail  acted  on  by  any 
number  of  forces  in  one  plane.  These  are  as  under : — 

(1)  The  geometrical  or  vector  sum  of  all  the  external  forces 
must  be  nothing. 

(2)  The  algebraic  sum  of  all  the  turning  moments,  taken  about 
any  centre  of  rotation  whatever  in  the  plane  of  the  forces,  must 

also  be  nothing ;  opposite  directions  being  considered  of  unb'ke 
sign. 

Under  these  circumstances  the  beam  or  other  body  will  remain 
at  rest  or  move  without  acceleration. 

Condition  (1)  is  satisfied  if  a  closed  polygon  can  be  drawn  to 
represent  the  forces,  or  if  the  algebraic  sums  of  the  vertical  and 
horizontal  components  of  the  forces  are  severally  nought,  according 
as  we  choose  to  work  graphically  or  analytically. 

The  commonest  particular  case  of  all  is  when  a  body  is  kept 
in  equilibrium  by  three  forces  only.  Then  the  force  lines,  if  not 
parallel,  are  bound  to  meet  at  a  common  point  (a  useful  fact  to 
note),  and  the  force  polygon  degenerates  to  a  simple  triangle  of 
forces. 

We  have  already  made  some  use  of  these  important  principles 
to  find  the  reactions  induced  by  given  load?,  and  numerous  other 
applications  will  appear  as  we  proceed. 



CHAPTER  II I. 

COUPLES.     THE  EQUILIBRIUM  OF  A  BEAM. 
EXAMPLES. 

Couples. — A  pair  of  forces  may  act  on  a  lever  or  other  detail  in 
such  a  way  as  to  produce  only  a  turning  effect.     Suppose,  for 
instance,     we    have     a 
pulley   round   which  is 
coiled  a  rope  kept  taut 
by     equal    weights,    as 
in   Fig.   19.       It   needs 
little  reflection  to  per- 

ceive that  the  two 

equal  pulls,    acting    on 
opposite    sides    of    the 
pulley,  tend   simply  to 
rotate  the  latter,  with- 

out causing  any  lateral 
pressure   on   the  shaft. 
The  effect  is  similar  to 
that   produced   by  two  Fig.  19. 
equally      strong      men 
pushing  at  the  ends  of  opposite  capstan  bars  on  board  a  ship.  Such 

a  pair  of  equal  forces,  acting  on  a  body  in  op- 
posite directions  along  parallel  lines  any  dis- 

tance I  apart,  forms  what  is  called  a  "  statical 
couple  "  or  a  "  pure  torque,"  the  perpendicular distance  between  the  lines  of  action  of  the 

forces  being  known  as  the  "  leverage "  or 
"  arm "  of  the  couple.  If,  however,  we  cut 
away  one  half  of  the  rope,  as  in  Fig.  20,  and 
make  fast  the  cut  end  of  the  other  to  the 
pulley,  we  still  have  a  turning  effect ;  but  the 

Fig.  20. 

lob-sided  or  uusymmetrical  action  of  the  single  applied  force  causes 
a  pressure  equal  to  it  on  the  shaft  bearings.    The  pull  of  the  rope 
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and  the  reaction  of  the  bearings  now  constitute  a  new  couple  of 
half  the  former  valne,  which  tends  to  rotate  the  pulley  about  a 
new  axis. 

In  considering  the  strength  of  beams,  couples  are  of  paramount 
importance;  so  that  it  is  essential  to  secure  clear  ideas  about 

them  before  going  further.  A  couple  is  measured  by  the  product 
of  either  force  P  and  the  arm  I,  the  value  P£  being  styled  the 

"  moment  of  the  couple."  The  word  moment  is  here  used  in  the 
sense  of  importance,  as  in  the  sentence,  "  It  is  a  matter  of  no 
moment."  This  product  is  the  same  as  the  moment  of  either 
force  about  any  point  in  the  line  of  action  of  its  mate. 

A  peculiarity  of  a  couple  is   that  the  algebraic  sum  of  the 
moments  of  its  two  forces,  taken  about  any  chosen  point  in  their 
plane  of  action,  is  always  the  same,  and  equal  to  the  moment  PI 

of  the  couple.     From  this  it  appears  that  a  couple 
may  be  shifted  anywhere  in  its  plane  without 
altering  its  rotational  effect  on  a  rigid  body.  Thus 
in  Fig.  21  no  difference  is  made  in  the  turning 
effect  by  shifting  the  couple  from  position  Fig.  20 
to  position  Fig.  21.     A  further  fact  worth  re- 

membering is  that  any  number  of  unbalanced 
forces  acting  in  one  plane  are  either  equivalent 

Fig.  21.  to  a  single  force  or  to  a  couple,  this  result  being 
arrived  at  by  successively  combining  the  forces. 

As  regards  the  sign  of  couples,  it  is  customary  amongst  physi- 
cists to  consider  a  couple  negative  when  it  tends  to  rotate  clock- 

hand-wise  the  body  on  which  it  acts,  and  positive  when  it  has  the 

opposite  effect.  But  Rankine,  in  his  "  Civil  Engineering,"  p.  139, 
says  :  "  The  turning  of  a  body  is  said  to  be  right-handed  when  it 
appears  to  a  spectator  to  take  place  in  the  same  direction  with 
that  of  the  hands  of  a  watch,  and  left-handed  when  in  the 
opposite  direction ;  and  couples  are  designated  as  right-handed 
or  left-handed  according  to  the  direction  of  the  turning 
which  they  tend  to  produce."  So  that  Rankine's  right-handed 
couple  is  the  physicist's  negative  couple.  (See  Thomson  and  Tait's 
"  Elements  of  Natural  Philosophy,"  p.  204.)  Thus  the  matter  is  as 
yet  in  an  unsettled  state,  no  uniformity  of  practice  prevailing. 

Couples  on  a  Crane. — A  single  couple  cannot  keep  anything  in 
equilibrium,  because  its  two  forces,  though  equal,  are  not  directly 
opposed.  Tivo  couples,  however,  may.  A  very  good  example  of 
the  balance  of  two  couples  is  presented  by  the  jib  crane  shown  in 
Fig.  4.  Here  the  applied  couple,  tending  to  overturn  the  crane, 
consists  of  the  20-ton  load  at  the  end  of  the  jib  and  the  equal 
vertical  reaction  of  the  footstep,  disregarding  the  weight  of  the 
crane  itself.  The  arm  of  this  couple  is  30  ft.,  and  therefore  its 
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moment  is  20  tons  x  30  ft.  =  600  foot-tons,  or  ton -feet,  as  some 
modern  writers  prefer  to  say. 

The  righting  couple,  of  opposite  sign,  is  made  up  of  the  hori- 
zontal reaction  of  the  footstep  and  the  equal  reaction  of  the  top 

bracket.  To  preserve  equilibrium,  its  moment  must  be  GOO  foot- 
tons  also.  If  we  take  the  arm  of  the  righting  couple  as  20  ft., 
the  magnitude  of  each  horizontal  reaction  will  be  600  -r-  20  = 
30  tons  ;  the  same  result  as  we  got  by  drawing  a  triangle  of  ex- 

ternal forces. 

Graphic  Representation  of  Couples. — A  statical  couple  can  be 
represented  graphically  in  exactly  the  same  way  as  a  force  can ; 
for,  like  the  latter,  it  is  a  directed  quantity  or  vector.  This  is 
done  by  drawing  a  line  at  right  angles  to  the  plane  of  its  two 
forces,  through  any  chosen  point  of  reference,  as  in  Fig.  22. 
Make  the  length  of  this  line  represent  the  moment  of  the  couple, 
to  some  scale,  and  make  its  direction  indicate  the  sign  of  the 

Fig.  22. 

rotational  effect.  The  line  so  drawn  is  termed  the  axis  of  the 

copule.  To  remember  the  proper  direction  in  which  to  set  off  the 
axis,  think  how  a  right-hand  screw  travels  through  its  nut  when 
rotated  in  the  direction  of  the  couple. 

The  moment  of  a  couple  can  also  be  pictured  to  the  eye  very 
well  by  twice  the  area  of  a  triangle  (Fig.  23),  whose  base  is  draivn 
to  represent  one  of  the  forces  P,  and  whose  height  is  the  arm  of 
the  couple.  That  is,  the  area  of  a  rectangle  of  base  P  and  height 
I  represents  the  moment. 

A  final  fact  concerning  couples,  having  an  important  bearing 
on  graphic  methods,  is  that  any  number  of  unbalanced  couples 
acting  on  the  same  body  can  be  reduced  to  a  single  resultant 
couple,  just  as  forces  can ;  the  axes  of  the  couples  being  taken 
instead  of  the  lines  used  to  represent  forces. 

Bending  Moment  and  Resisting  Moment. — The  equilibrium  of 
a  loaded  beam  resembles  a  strife  between  two  equal  antagonists. 

The  name  of  the  assailant  is  "  Bending  Moment,"  and  his  opponent 
is  known  as  "  Resisting  Moment."  As  these  two  antagonists  are 
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of  exactly  equal  strength,  neither  prevails  over  the  other;  the 
result  being  a  deadlock.  The  harder  B.M.  presses,  the  hanlrr 
R.  M.  resists,  though  he  is  never  the  aggressor.  Should,  however, 
Bending  Moment  happen  to  be  stronger  than  his  opponent,  the 
inevitable  result  will  be  yielding  on  the  part  of  Resisting  Moment, 
and  finally  total  collapse  or  failure. 

The  "resisting  moment"  at  any  section  of  a  beam  is  the  true 
measure  of  the  strength  of  the  beam  at  that  section,  since  it 

represents  the  beam's  ability  to  resist  its  foe,  the  "bending 
moment."  It  might,  then,  be  equally  well  styled  the  "  strength 
moment " ;  but  it  is  commonly  referred  to  as  the  "  moment  of 
resistance  of  the  section  to  bending  " 

In  scientific  language  the  bending  moment  on  a  beam  at  a 
given  transverse  section  is  defined  as  the  algebraic  sum  of  the 

Fig.  24. 

moments  of  all  the  external  forces  acting  on  one  side  of  that 
section.  It  represents  the  influence  tending  to  bend  or  deflect, 
and  ultimately  to  rupture  the  beam.  This  bending  moment  is 
wholly  external  to  the  beam,  its  magnitude  being  governed  only 
by  the  nature  of  the  loads  and  their  position  along  the  beam.  It 
has  no  reference  to  the  cross-section  or  to  the  material  of  the  beam. 

On  the  other  hand,  the  moment  of  resistance  with  respect  to 
banding  of  a  stated  section  of  a  beam,  being  the  measure  of  the 
capacity  of  that  section  to  resist  the  bending  moment,  is  wholly 
internal.  Its  value  depends  on  the  size  and  shape  of  the  cross- 
section,  and  on  the  kind  of  material  composing  the  beam.  It  has 
nothing  to  do  either  with  the  length  of  the  beam  or  the  external 
forces,  except  indirectly.  Thus  the  bending  moment  at  a  section 
measures  the  tendency  of  the  beam  to  break  there,  while  the 
resisting  moment  measures  its  tendency  to  stand. 

Beam  Model. — The  forces  acting  on  a  beam  can  be  very  well 
illustrated  and  made  more  tangible  by  a  simple  model,  as  indicated 
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Fig.  25. 

in  Fig.  24 ;  the  pulleys  being  fixed  to  uprights  or  to  a  wall. 
Here,  small  w  denotes  the  weight  of  each  half  of  the  beam,  and 
large  W  the  central  load.  The  width  of  the  gap  is  much  ex- 

aggerated. Working  with  such  a  model,  it  is  found  that  a  chain 
or  string  at  the  lower  part  of  the  section  suffices  to  maintain 
equilibrium  ;  while  at  the  upper  part  a  stiff  block  or  packing  piece 
is  necessary,  a  chain  being  quite  useless  to  prevent  collapse.  It 

is  thus  experimentally  proved  that  the  lower 
internal  force  P  connecting  the  fibres  must 

be  a  pull,  and  the  upper  internal  force  P1 
must  be  a  thrust.  Hence  the  lower  part  of 
a  beam  loaded  at  the  middle  and  supported 
at  the  ends  is  in  tension,  and  the  upper  part 
is  in  compression. 

This  fact  is  also  clearly  brought  out  by 
bending  a  substantial  square  bar  of  mild  steel 
on  a  testing  machine.  When  the  originally 

straight  bar  has  assumed  a  U  shape,  it  is  seen  that  the  upper 
part  of  the  section  is  distinctly  bulged  out,  as  in  Fig.  25,  while 
the  lower  part  is  thinned.  The  figure  was  sketched  from  an 
actual  mild -steel  bar 
1  in.  square  originally, 
which  had  been  so  bent 
double.  A  similar  effect 

is  easily  observed  by 
bending  a  square  piece 
of  india-rubber. 

Ideal  Example.  —  In 
order  to  form  a  proper 
conception  of  the  rela- 

tion between  bending 
moment  and  resisting 
moment  it  will  be  ad- 

visable, in  the  first 
instance,  to  consider  a 
very  simple  hypothetical 
case  of  the  strength  of 
a  loaded  beam.  Imagine, 
then,  a  girder  (Fig.  26) 
10ft.  deep  and  40ft. 
span,  with  equal  top  and 

bottom  flanges  composed  of  mild-steel  plates  2  ft.  wide  and  1  in. 
thick,  connected  by  a  web  so  thin  that  its  strength  may  be  left 
entirely  out  of  account.  The  problem  before  us  is  to  ascertain 
what  load,  say  W  lb.,  this  girder  will  safely  carry  at  the  middle 

Fig.  26. 
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of  its  span ;  allowing  a  safe  stress  of  10,0001b.s.  per  square  inch 
on  the  material  both  for  tension  and  compression,  and  regarding 
the  weight  of  the  girder  itself  as  negligible. 

As  one-half  of  the  load  is  necessarily  transferred  to  each  abut- 
ment, by  the  principle  of  symmetry,  we  isolate  in  imagination  the 

right-hand  half  of  the  girder,  as  shown,  and  consider  what  forces 
keep  it  in  equilibrium.  These  forces  form  two  pairs.  The  first 
pair  consists  of  ̂ W,  acting  downwards  at  the  centre,  and  its 
comrade  the  equal  upward  reaction  of  the  abutment.  These  two 
forces  together  constitute  an  overturning  couple  whose  moment 
is  £W  x  20ft.  =  10Wft.-lbs.  This  is  the  moment  of  the 
bending  couple,  or,  shortly,  the  bending  moment  at  the  centre  of 
the  girder.  The  second  pair  of  forces  consists  of  a  horizontal 
thrust  of  Plb.  on  the  top  flange,  and  an  equal  horizontal  pull  on 
the  bottom  flange.  These  two  constitute  a  righting  couple  whose 
moment  is  very  nearly  P  x  10ft. ;  which  is  the  moment  of  the 
resisting  couple,  or  the  moment  of  resistance. 

Now,  in  order  to  preserve  equilibrium,  the  righting  couple 
must  be  numerically  equal  to  the  overturning  couple,  and  of 
opposite  sign ;  so  that  the  required  relation  between  P  and  W 
is  given  by  the  equation  P  x  10  =  10W,  from  which  P  =  W  ; 
a  first  important  result  that  could  not  readily  have  been 
foretold. 

Further,  we  know  that  the  horizontal  force  P  must  be  equal  to 
the  cross-section  in  square  inches  of  either  flange,  multiplied  by 
the  stress  per  square  inch  allowed  on  the  material ;  consequently — 

W  or  P  =  width  x  thickness  x  stress. 
=  24in.  x  lin.  x  10,0001bs.  per  square  inch. 
=  240,0001bs. 
=  120  American  tons,  or  107  English  tons. 

This  is  the  safe  central  load  sought.  It  is  plain  that  the 
moment  of  resistance  might  be  greatly  increased  by  deepening  the 
girder,  without  using  any  more  material  in  the  flanges. 

This  mode  of  calculation  gives  a  close  enough  approximation 
when  applied  to  deep  girders  which  have  nearly  all  the  material 
concentrated  in  the  flanges,  such  as  lattice  girders,  the  arm  of  the 
resisting  couple  being  taken  as  the  distance  between  the  centres 
of  gravity,  or  centroids,  of  the  flanges,  and  the  stress  per  square 
inch  regarded  as  uniform  all  over  the  flange  section. 

Practical  Examples. — (1)  A  road  bridge  over  the  Danube  at 
Vienna  has  four  spans,  each  of  about  2(!0ft.  The  main  girders 
are  of  the  lattice  type,  24ft.  deep,  each  flange  consisting  mainly 
of  four  wrought-iron  plates  |in.  thick  nnd  44in.  iwide.  We 
propose  to  get  a  lough  idea  of  what  tending  moment  each  gilder 
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Fig.  27. 

will  safely  withstand,  taking  the  safe  maximum  stress  at  SOOOlbs. 
per  square  inch. 

nw.s«t*m  The  area  of  each  flange  (Fig.  27)  is 
44  x  3  =  132  sq.  in.  This  section  of 
metal  will  safely  stand  a  pull  of 
132  x  SOOOlbs.  -  470  tons,  say. 
The  arm  of  the  resisting  couple  is, 
say,  24ft.,  though  really  3in.  less. 
Hence  the  moment  of  resistance  is 

470  tons  x  24ft.  =  11,280  foot-tons. 
In  smaller  work  it  is  usually  advisable 
to  reduce  such  moments  to  inch -tons 
rather  than  to  leave  them  in  foot- 
tons. 

The  value  of  the  resisting  moment  just  found  must  evidently 
also  be  that  of  the  bending 
moment  which  the  section  can 

safely  withstand,  the  one  be- 
ing always  equal  to  the  other. 

Observe  that  the  span  of  the 
girder  has  not  entered  into 
the  question  at  all. 

(2)  As  another  instructive 
example,  we  shall  next  calcu- 

late the  approximate  moment 
of  resistance  to  bending  of  a 
beam  having  the  section 
shown  in  Fig.  28,  the  angle 
irons  being  3  J  x  3  J  x  ̂ in.  A 
stress  on  the  metal  of  3  tons 

per  square  inch  is  allowed. 
We  shall  neglect  the  un- 

shaded part  of  the  web 
altogether,  and  regard  the 
thrust  on  the  top  flange  and 
the  pull  on  the  bottom  one  as 

concentrated  at  the  respec- 
tive centres  of  figure  or  cen- 

troids  of  the  flange  sections. 
To  find  the  position  of  the 

centroid  of  either  flange  sec- 
tion, we  reduce  the  actual 

shape  to  the  more  simple 
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Fig.  28. 

geometrical  form  shown   in  the  lower   diagram,   and  take  area 
moments  about  the  axis  AB,  thus  : — 
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x  x  whole  area  =  (^in.  x  area  of  upper  rectangle) 
+  (2in.  x  area  of  lower  rectangle) 

Now,  upper  area  =  7'4  x  0*5  =  3'7  sq.  in. 
And  lower  area    =  1-4  x  3-0  =-  4-2  sq.  in. 

So  that  whole  area  of  each  flange  =  79  sq.  in. 

It  is  hardly  worth  while  using  a  planimeter  to  find  these  areas 
in  a  simple  case  like  the  present. 

Putting  these  values  in  the  above  equation  gives 

x  x  7-9  =  (0-25  x  3-7  +  2  x  4-2)  =  9-32, 9*32 

.-.  x  =  -=7g-  =  1-18  inches. 

To  get  the  length  of  the  resistance  arm  we  subtract  twice  this 
distance  from  the  depth  of  the  beam,  thus: 

Arm  of  couple  =  16  -  2'3Gin.  =  13'64in. 
If  now  we  assume  that  the  stress  on  the  metal  is  uniform  over 

the  shaded  areas,  then  the  total  thrust  on  the  top  flange  and  the 
pull  on  the  lower  flange  will  each  be  equal  to :  Area  x  stress 

=  7-9  x  3  tons  =  23-7  tons.  And  the  approximate  moment  of 
resistance  will  be 

Horizontal  force  x  arm  =  23-7  tons  x  13-Gin. 
=  322  inch-tons. 

The  accurate  value,  calculated  by  a  more  elaborate  method,  is 
288  inch-tons;  so  that  this  is  only  to  be  regarded  as  a  very 
rough  approximation. 

Taking  the  value  of  the  resisting  moment  as  320  inch-tons,  let 
us  next  find  roughly  what  load  this  beam  would  safely  carry  at 
the  centre  of  a  24ft.  span. 

The  moment  of  the  bending  couple,  or  the  bending  moment  at 
the  centre,  is  half  the  length  of  the  beam  multiplied  by  either 
reaction.  As  this  product  must  be  equal  to  the  resisting  moment 
just  found,  the  equation  of  moments  is  £W  x  12  x  12in.  = 
320  inch-tons. 

320 
.*.  W  =  —=^-  =  4-4  tons,  say. 

(Z This  handy  method  is  near  enough  for  some  purposes ;  but 
before  leaving  it,  a  word  of  caution  is  necessary.  It  should  only 
be  adopted  in  cases  where  the  flanges  are  thin  relatively  to  the 
total  depth  of  the  beam.  When  applied  to  solid  beams,  the 
method  gives  results  which  are  altogether  erroneous ;  because  in 
their  case  the  assumption  that  the  stress  is  uniform  all  over  the 
section  is  far  from  being  true. 



CHAPTER   IV. 

STRESS,  STEAIN  AND  ELASTICITY. 

Stress  and  Strain. — There  are  still  a  good  many  engineers  who 
fail  to  discriminate  between  the  technical  meanings  of  the  oft- 
recurring  words  stress  and  strain  ;  the  result  being  great  ambiguity 
and  often  confusion  of  ideas.  In  popular  language,  no  doubt, 
these  terms  are  used  indifferently  the  one  for  the  other ;  but  to 
the  mind  of  a  scientific  man  they  convey  entirely  different  ideas, 
the  essential  distinction  between  which  it  will  be  wise  to  point  out 
and  emphasise  before  attempting  to  deduce  a  formula  for  the 
strength  of  solid  beams  of  rectangular  or  any  other  section. 

As  a  scientific  term  the  word  stress  is  regularly  used,  unfortu- 
nately, in  at  least  two  distinct  senses,  as  determined  by  the  con- 
text. Having  in  mind  the  first  of  these,  an  engineer,  in  speaking 

of  the  stress  on  the  tie-rod  of  a  jib  crane,  for  instance,  refers  to 
the  whole  internal  action  on  the  tie,  regarded  in  its  complete  dual 
aspect  of  a  pull  inclining  upwards  towards  the  jib  head,  and  an 
equal  and  opposite  pull  inclining  downwards  towards  the  attach- 

ment of  the  tie  to  the  pillar.  Much  the  same  is  meant  in 
speaking  of  a  stress  diagram  for  a  loaded  bridge  girder ;  such 
a  diagram  being  a  geometrical  figure  made  up  of  straight  lines 
whose  lengths  represent  to  scale  the  total  pulls  and  thrusts  on  the 
several  members  of  the  girder.  The  stress  diagram  of  a  particular 
structure  might  be  more  fully  called  "  the  diagram  of  the  ex- 

ternal and  internal  balanced  forces  acting  upon  and  within  that 

structure."  Sometimes  this  figure  is  referred  to  simply  as  the 
force  diagram,  but  the  name  stress  diagram  is  far  more  common. 

As  used  in  this  primary  sense,  a  formal  definition  of  the  term 
under  consideration  maybe  framed  as  follows: — "  Stress  is  the 
mutual  action  between  two  bodies  or  portions  of  matter,  taking 

into  account  the  whole  action  between  them."  It  is  variously 
described  as  attraction,  repulsion,  tension,  pressure,  and  shearing, 
according  to  the  mode  of  action.  This  is  the  most  comprehensive 
meaning  of  the  term.  It  includes  what  appears  to  be  (but  probably 
is  not)  action  at  a  distance,  as  gravitation  and  magnetic  attraction. 
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The  definition  of  the  term  given  by  Unwin  *  in  relation  to  the 
strength  of  materials,  reads : — "  Stresses  are  the  molecular  actions 
within  the  material  which  are  called  into  existence  by  external 

forces  or  loads,  and  which  resist  deformation." 
Both  the  above  definitions  are  rather  academic,  as  exact  defini- 

tions usually  are.  For  practical  purposes  it  will  be  sufficient,  so 
far,  to  regard  the  stress  on  a  bar  as  the  whole  resistance  of  the  bar 
to  external  forces.  If  there  are  no  external  forces,  then  there 
is  no  stress. 

The  second  sense  in  which  engineers  employ  the  word  stress 

is  "resistance  per  unit  area  of  cross-section."  Thus,  in  saying 
that  the  safe  stress  for  steel  bars  in  tension  is  about  10,000 
pounds  per  square  inch,  one  uses  the  term  in  this  sense.  To 
distinguish  the  present  from  the  first  named,  we  may  speak  of 

"  intensity  of  stress  "  or  "  stress  intensity,"  but  as  a  matter  of 
fact  the  word  intensity  is  usually  omitted. 

A  similar  double  usage  exists  with  regard  to  the  term  "  pres- 
sure," which  may  mean  either  the  total  pressure  on  a  piston, 

say,  or  only  the  intensity  of  pressure,  measured  in  pounds  per 
square  inch. 

The  collateral  term  "  strain  "  is  also  scientifically  used  in  two 
entirely  distinct  senses.  The  first  of  these  is  "  any  alteration  of 
size  or  shape  of  a  body  subjected  to  a  stress,"  or  in  one  word,  "  any 
deformation."  The  second  sense  is  "  the  change  of  length  per 
unit  length."  Both  of  these  meanings  are  correct,  though  the 
former  is  much  the  more  comprehensive  of  the  two.  Some 
writers,  however,  refer  to  the  latter  as  the  more  exact  definition 
of  longitudinal  strain ;  but  it  is  preferable  to  regard  it  merely 
as  the  more  restricted  usage.  It  is  one  much  in  favour  among 

physicists. Professor  Rankine  introduced  the  modern  distinction  between 

stress  and  strain.  In  an  essay  on  the  strength  and  qualities  of 
wood  and  metals,  written  in  1868,  that  illustrious  investigator 

says :  "  Stress  means  at  once  the  intensity  of  the  load  tending  to 
alter  the  shape  of  a  solid  body,  and  the  intensity  of  the  equal  and 
opposite  resistance  which  the  body  opposes  to  that  load.  The 
word  strain  is  commonly  used,  sometimes  in  the  same  sense  with 
the  word  stress,  and  sometimes  to  denote  the  measure  of  the  altera- 

tion of  shape  corresponding  to  a  given  stress.  In  precise  language 
it  is  necessary  that  each  word  should  have  but  one  meaning ; 
and  therefore  in  the  present  essay  the  word  strain  will  be  used  to 

denote  alteration  of  shape." 
It  appears  then  that  stress  and  strain  stand  to  one  another  in 

*  "  Machine  Design,"  p.  25. 
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the  relation  of  cause  and  effect,  longitudinal  strain  being  the 
alteration  of  length  caused  by  a  longitudinal  or  direct  stress.  In 
the  language  of  a  useful  colour  convention,  one  may  say  that 
stress  belongs  to  the  red  order  of  ideas,  and  strain  to  the  blue. 

Elastic  Limit. — To  illustrate  this  matter,  consider  the  so-called 
stress-strain  diagram  for  a  mild-steel  bar  pulled  asunder  in  a 
testing  machine,  as  drawn  by  an  autographic  test-recorder.  The 
ordinary  form  of  stress-strain  diagram  for  tension  specimens  is 
shown  in  Fig.  29.  Autographic  diagrams  for  compression  tests  are 
seldom  drawn.  In  studying  the  elastic  properties  of  a  material, 

f  i-s Extension  in  lnch:t 

however,  it  is  convenient  to  consider  an  ideal  combined  diagram, 
as  in  Fig.  30,  showing  both  tension  and  compression  features. 

The  first  effect  of  the  pull  on  the  bar  is  to  cause  a  state  of 
stress,  tending  to  separate  the  particles ;  which  is  accompanied  by 
a  definite  small  increase  of  length  or  stretch,  easily  seen  by  experi- 

menting on  a  piece  of  india-rubber,  though  invisible  in  the  case 
of  a  steel  bar.  For  clearness,  therefore,  part  of  the  curve  is  re- 

drawn in  dotted  lines  to  a  greatly  exaggerated  horizontal  scale. 
As  the  line  OE,  in  Figs.  29  and  80,  is  practically  straight,  it 
follows  that  the  pulls  and  stretches  are  proportional  within  a 
certain  range  of  load  whose  upper  boundary  is  the  ordinate  of  the 

point  E,  which  marks  the  "elastic  limit"  with  regard  to  tension 
of  the  steel  bar  being  tested.  An  alternative  name  for  this 

C 
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notable  stress  is  the  "  limit  of  elasticity."  The  lower  elastic  limit 
point  «  in  Fig.  30  refers  to  compression.  Thus  there  are  two 
limits  of  elasticity  for  each  kind  of  material.  The  fact  here 
graphically  shown,  that  stress  varies  directly  as  strain  within  the 

limits  marked  by  E  and  e,  is  known  as  Hooke's  law,  after  an 
investigator  of  that  name,  contemporaneous  with  Newton. 
Numerically  stated,  this  law  asserts  that  if  1  ton  stretches  the 
test-bar  y^in.,  then  2  tons  will  stretch  it  twice  that  amount, 
and  so  on. 

Thus  the  elastic  limit  of  any  material,  as  regards  either  tension 
or  compression,  is  the  greatest  stress  per  square  inch  that  it  will 

stand  without  permanent  deformation  or  "  set."  So  long  as  the 

Compression 

O  Extension 

Fig.  30. 

stress  does  not  exceed  this  limit,  the  bar  springs  back  to  its 
original  length  as  soon  as  the  load  is  removed.  It  is  a  curious 
experimental  fact,  however,  that  the  tensile  elastic  limit,  though 
fairly  constant  for  a  particular  material  under  normal  conditions, 
can  yet  be  artificially  raised  to  almost  any  extent  short  of  the 
breaking  stress  by  subjecting  the  material  for  several  hours  to  a 

stress  exceeding  the  normal  or  "  primitive  "  elastic  limit  prepara- 
tory to  a  fresh  application  of  the  load.*  But  of  course  in  ordinary 

commercial  testing  this  is  never  done,  the  whole  test  only  occupy- 
ing a  few  minutes.  One  should  remember  that  the  normal  tensile 

elastic  limit  for  mild  steel  in  tension  is  about  1 5  tons  per  square 
inch,  and  for  untempered  tool  steel  it  is  about  38  tons  on  the  inch. 

*  This  peculiarity  is  sometimes  referred  to  as  the  phenomenon  of  elastic 
hysteresis,  being  somewhat  analogous  to  that  of  magnetic  hysteresis  or 
'  'lag." 
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Referring  again  to  Figs.  2!)  and  30,  it  will  be  noticed  that  the 
line  curves  slightly  between  E  and  Y.  This  indicates  a  deviation 
from  the  proportionality  of  stress  to  strain.  There  appears  a 
marked  jump  or  singularity  in  the  curve  at  Y,  this  being  styled 

the  "  yield  point."  But  in  diagrams  actually  drawn  by  the  testing- 
machine,  the  yield  point  Y  is  much  more  clearly  defined  than  the 
elastic  point  E,  and  differs  in  position  very  little  from  it.  Hence, 
in  commercial  testing,  Y  is  commonly  regarded  as  the  elastic  limit 
point.  The  elastic  limit  of  the  material  is  then  defined  as  the 

load  represented  by  the  ordinate  of  Y,  divided  by  the  original  cross- 
section  of  the  bar.  #•••."">*» 

After  E  is  passed,  the  material  is  said  to  be  stressed  beyond  its 
elastic  limit,  the  elongation  being  partly  plastic  and  partly  elastic 
— that  is  to  say,  on  releasing  the  bar  from  its  load,  it  only  partly 
springs  back.  The  precise  extension  for  any  increase  of  load  now 
depends  to  a  great  extent  upon  the  length  of  time  during  which 
the  load  is  allowed  to  act.  The  more  rapid  the  loading,  the 
steeper  the  curve. 

The  point  P,  where  the  maximum  load  is  reached,  marks  the 
plastic  limit.     About  this  point  begins  the  final  local  contraction, 
which     immediately    pre- 

cedes the  fracture  of  the  ong*nai \si& 
bar,  as  shown  in  Fig.  31. 
Then     the      bar      loudly 
break?,  even   though    the 
load    is   relieved  by   run- 

ning   back     the     jockey  Fig.  31. 
weight,    as    indicated    by 
the  drooping  end  of  the  curve.  This  instructive  diagram  vividly 

teaches  the  important  lesson  that  stress  is  decidedly  ffo's-propor- tional  to  strain,  outside  of  the  elastic  limits  of  the  material. 

Stress  and  Strain  (Resumed). — Now,  in  calling  Fig.  29  a  stress- 
strain  diagram,  what  do  we  signify  by  the  terms  stress  and 
strain  ?  Evidently  by  stress  we  mean  either  the  total  pull  on  the 
specimen  or  the  entire  resistance  at  any  instant  of  the  latter  ;  and 
by  strain  we  mean  the  total  extension  in  inches  of  the  test-piece 
up  to  that  instant.  Thus  the  terms  are  used  in  their  broader 
senses,  or,  as  some  would  perhaps  prefer  to  say,  in  their  cruder 
senses. 

There  yet  remain  for  more  detailed  consideration  the  other 

significations  already  mentioned  which  this  rather  ill-used  pair 
of  technical  terms  may  properly  bear.  These  meanings  are  more 
subtle,  and  need  some  nicety  of  discrimination.  The  stress  on  a 
bar  at  any  instant,  in  the  sense  of  resistance  per  unit  area,  is 
found  by  dividing  the  whole  pull  in  tons  or  pounds  by  the  area  in 
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square  inches  of  the  cross-section.  It  is  thus  easy  to  deduce  a 
new  scale  of  stresses  in  any  stress  diagram  to  accord  with  the  new 
definition. 

Strain  is  rather  less  easy  to  realise  and  to  measure.  It  is  the 
ratio  of  the  extension  of  the  bar  under  the  pull  to  the  original 
length  of  the  bar,  and  is  therefore  always  a  small  fraction.  Put 
another  way,  strain  is  the  fraction  of  its  length  by  which  a  bar 
lengthens  under  a  given  tensile  stress.  So  defined,  strain  is  not 
measured  in  inches,  nor  in  any  other  linear  unit,  because  the  ratio 
of  one  length  to  another  is  simply  a  pure  fraction.  But  strain  can 
be  expressed  as  so  much  per  cent.,  like  any  other  fraction,  such  as 
efficiencies. 

It  finally  appears,  then,  that  to  speak  of  a  strain  of  a  hundredth 
of  an  inch  is  to  talk  nonsense,  according  to  the  latest  definition  of 
strain  ;  and  there  are  not  a  few  scientific  men  who  would  ignore 
any  other  meaning,  labelling  as  ignoramuses  all  those  who  measure 
strains  in  inches.  Nevertheless,  engineers  and  shipbuilders  find 
the  word  strain  a  very  handy  one  to  express  any  sort  of  deforma- 

tion, and  many  of  them  ignore  the  more  restricted  academic  usage 
of  the  term  altogether  ;  which,  however,  is  more  convenient  for 
calculation.  In  the  midst  of  this  chaos  it  is  therefore  necessary,  as 
yet,  always  to  scan  thoughtfully  the  context  or  setting  of  the  word 
before  one  can  decide  what  a  man  exactly  means  when  he  chooses 
to  use  this  much  -abused  term,  strain. 

By  looking  at  the  exaggerated  stress-strain  diagram  dotted  in 
Fig.  29  it  is  readily  seen  that  the  value  of  the  strain,  due  to  a 
fixed  increase  of  load,  changes  continuously  after  the  elastic  limit 
is  passed,  and  that  the  extension  increases  enormously  faster  than 
the  load. 

Thus,  for  the  first  5  tons  of  load  put  on  to  the  test-bar, 
,  ,  .         increase  of  length       e, 
the  strain  =    _____  3  —  =  -1  ; initial  length  L 

and  for  the  next  5  tons  put  on, 
stretch  due  to  second  increment          e 

the  strain  =  -  :  -    -  =  _  «_  • 
previous  length  L  +  e, 

and  similarly  for  the  third  5  tons, 

the  strain  =  -  ?  -  ;  and  so  on. 

We  thus  get  the  values  of  the  average  strain  for  increments  of 
5  tons.  These  values,  being  very  small  fractions,  are  not  plotted 
to  scale  in  diagrams. 

Ultimate  Strength.  —  The  conventional  ultimate  strength  of  a 
piece  of  material  is  found  by  dividing  the  load  at  which  the  test- 
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bar  breaks  by  the  original  section  of  the  bar;  but  in  finding  the 
actual  ultimate  strength,  the  divisor  is  the  final  or  reduced  section 
at  the  point  of  fracture.  In  the  case  of  ductile  materials  like 
wrought  iron  and  mild  steel,  the  difference  between  the  true  and 
the  conventional  strengths  is  very  great,  the  local  contraction  of 
area  before  fracture,  as  shown  in  Fig.  81,  being  as  much  as  50  to 
60  per  cent,  of  the  original  area.  There  is  no  visible  contraction 
in  the  case  of  cast-iron. 

Factor  of  Safety. — Practical  experience  shows  that  the  ordinary 
working  load  on  any  detail  must  be  a  good  deal  less  than  the 
breaking  load.  Now  it  is  easy  to  find  the  latter,  but  often 
impossible  to  fix  the  former  with  much  attempt  at  precision. 
Partly  because  of  this  uncertainty,  it  is  necessary  to  divide  the 
actual  breaking  stress  by  some  number  to  get  the  safe  working 
stress.  This  number  is  the  factor  of  safety. 

A  variety  of  definitions  of  the  factor  of  safety,  however,  may 
be  given  ;  according  as  the  ultimate  or  only  the  elastic  strength 
of  the  material  is  considered,  and  also  the  mean  or  the  maximum 
working  load.  Primarily  the  factor  of  safety  is  the  divisor  found 
necessary  to  provide  a  sufficient  margin  of  strength  for  unknown 
contingencies  and  uncertainties,  arising  from  imperfect  materials 
and  workmanship,  deterioration,  and  unforeseen  or  accidental 
forces.  The  actual  factor  is  thus  the  ratio  of  the  ultimate 
strength  of  the  piece  to  the  greatest  load  on  it.  But  in  designing 
machinery  it  is  often  very  troublesome  to  find  the  gn-atest  load 
that  comes  on  a  detail — as,  say,  the  piston  rod  of  an  engine 
suddenly  started.  It  is  far  easier  to  calculate  the  statical  load, 
or  the  load  when  running  steadily.  Hence  an  apparent  factor  of 
safety  is  generally  used,  which  is  the  ratio  of  the  breaking  strength 
to  the  steady  working  load. 

The  use  of  a  too  high  factor  of  safety  means  waste  of  material, 
increase  of  first  cost,  and  excessive  weight.  Too  low  a  factor 
means  breakdowns.  We  have,  therefore,  to  steer  between  two 
evils.  The  proper  factor  to  adopt  in  designing  details  of  a 
particular  class  can  only  be  found  by  the  method  of  trial  and 
error.  But  the  present  generation  of  engineers  has  to  thank 
preceding  generations  for  having  already  found  out  the  right 
factors  to  use  in  all  ordinary  cases.  Using  the  term  factor  of 
safety  in  the  sense  of  the  statical  breaking  stress  divided  by  the 
ordinary  working  stress,  Professor  Unwin  gives  the  annexed 
values  of  this  factor  as  suitable  for  the  different  materials  and 
classes  of  loads  named  : — 
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Live  Loads. 

Material. 
Dead 
Loads. 

Shocks. 
Case  1. Case  2. 

Cast  iron 4 8 10 15 

Wrought  iron  and  steel   . 3 5 8 12 
Timber     .... 7 10 

15 20 

As  regards  the  live  loads,  Case  1  applies  to  stress  of  one  kind 
only,  either  tension  or  compression  ;  while  Case  2  applies  to  equal 
alternate  stresses  of  different  kinds.  The  piston  rod  of  a  double- 
acting  steam-engine  is  an  example  of  a  detail  subject  to  such 
alternating  stresses.  The  shocks  referred  to  in  the  last  column 
are  probably  such  as  those  that  come  on  the  teeth  of  wheels  of 

rolling-mill  trains,  approaching  the  nature  of  blows.  The  usual 
factor  of  safety  for  machine  details  is  G. 

Modulus  of  Elasticity.— This  is  another  technical  term  often 
used,  the  meaning  of  which  had  better  be  explained  here  once  for 

all.  The  name  co-efficient  of  elasticity  is  sometimes  employed 
instead.  The  word  modulus  literally  means  "  measure ;  "  and  the 
whole  expression  means,  in  general  terms,  the  measure  of  the 
force  with  which  a  sample  of  material  tends  to  spring  back  to  its 
original  position  after  having  been  stretched  or  otherwise 
deformed  within  the  elastic  limits.  If  the  tendency  to  spring 
back  is  very  great,  the  modulus  is  high,  and  if  small  the  modulus 
is  relatively  low. 

The  orthodox  definition  of  modulus  of  elasticity  is  the  ratio  of 
the  increase  of  stress  to  the  resulting  increase  of  strain,  within  the 
elastic  limits.  Hence,  knowing  the  values  of  the  stress  and  the 
strain,  the  elastic  modulus  of  a  stated  material  is  got  by  simple 
division.  Its  value  is  nearly  constant  for  the  same  sort  of  material. 

The  modulus  of  elasticity  of  a  substance  is  sometimes  said  to 
be  the  stress  required  to  double  the  length  of  a  bar  of  that 
substance,  on  the  supposition  that  stress  remains  proportional  to 
strain  until  the  extension  reaches  the  extraordinary  value 
named.  But  as  that  hypothesis  is  absurd,  this  definition  had 
better  be  avoided.  It  is  no  use  in  finding  the  actual  value  of  the 
modulus. 

To  distinguish  the  ordinary  modulus  from  other  elastic  moduli 
with  which  we  are  not  now  concerned,  it  is  referred  to  as  the 

modulus  of  direct  elasticity,  or  simply  as  Young's  modulus,  after 
its  first  investigator,  Dr.  Thomas  Young.*  The  use  of  this 

*  A  distinguished  natural  philosopher  who  died  in  1829. 
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modulus  is  to  enable  us  to  calculate  beforehand  the  strain  that 
will  be  produced  by  a  certain  stress,  and  so  to  design  beam  springs 

Material. Modulus  of  Direct  Elasticity. 

Pounds  per  square Tons  per  square 
inch. inch. 

Tempered  steel  . 3fi.000,000 1«,000 
Mild  steel  ... 30,000,000 13,400 

Wrought  iron    . 29,000,000 1H.OOO 

Cast  iron  ... 17,000,000 7,600 Fir  and  oak 
1,500,000 

(570 

with  some  exactness,  and  also  to  estimate  the  deflection  of  beams 
in  general. 
The  figures  above  given  may  be  taken  as 

average  values  of  Young's  modulus  for  some 
common  materials  ;  but  different  specimens  of 
nominally  the  same  sort  of  stuff  differ  in  elastic 
value  by  quite  5  per  cent. 

It  is  possible  to  find  the  modulus  of  elasticity 
of  a  material  from  a  so-called  stress-strain  dia- 

gram, if  its  scales  are  known.  For  this  purpose 
we  need  only  the  elastic  or  straight-line  part  of 
the  diagram.  Let  A  square  inches  be  the  sec- 

tion of  the  bar,  L  inches  its  initial  length,  and 
e  inches  the  elongation  for  a  pull  of  P  tons,  e 
and  P  being  found  from  the  diagram  ;  then 

Young's  modulus  =  stress  -j-  strain, P      e 
or  E  tons  per  square  inch  =  —  -r  -^ . A.        \  * 

Two  methods  of  finding  Young's  modulus 
experimentally  are  in  common  use.  The  first 
of  these  is  applicable  only  to  long,  slender  wires 
made  of  the  material  whose  modulus  is  sought. 
It  consists  in  measuring  the  extension  of  the 
wire  under  the  influence  of  a  known  load  by 
means  of  the  arrangement  shown  in  Fig.  32. 
A  and  B  are  wires  of  iron,  steel,  copper,  or 
other  material,  from  10  to  20  ft.  long,  hung 
side  by  side  from  the  same  secure  support. 
A  is  kept  taut  by  a  constant  weight  W, Fig.  32. 

while   B  carries   a  tray   for   the  reception    of   the   weights    re- 
quired to  stretch  it.     A  has  clamped  to  it  an  engraved  plate, 
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and  B  is  fitted  with  a  brass  slide  on  which  is  engraved  a 

vernier,  by  which  readings  can  be  taken  to  one-tenth  of  a  scale 
division.  The  value  of  the  modulus  is  calculated  in  the  manner 

above  described,  the  data  being  the  diameter  of  the  wire,  it* 
length  above  the  slide,  and  the  observed  stretch  of  the  wire  due 
to  a  definite  increase  of  load  beyond  that  needed  to  keep  the  wire 
Btaut. 

In  chap.  iii.  we  have  clearly  shown  that  on  bending  a  beam 
there  is  a  shortening  of  the  top  fibres  and  an  extension  of  the 
bottom  ones.  On  this  fact  is  based  the  second  method  of  deter- 

mining Young's  modulus  of  elasticity.  It  consists  in  observing 
the  deflection  of  a  light  beam,  made  of  the  desired  material,  due 
to  a  definite  load  placed  at  its  centre.  From  this  deflection  and 
the  dimensions  of  the  beam,  the  value  of  E  is  found  by  aid  of  the 
formula  : 

T,  a     ,.  WL3 

=  i8ET 

which  will  be  fully  explained  in  due  course.  (See  chap,  xiv.) 
Thus,  the  long  wire  aflbrds  a  direct,  and  the  elastic  beam  an 

indirect,  method  of  evaluating  the  modulus  E.     Both  methods 
should  give  the  same  result ;  provided  that  the  material  be  not  in 
either  case  stressed  beyond  its  elastic  limits. 

Examples. — In  order  to  get  exact  ideas  on  the  relation  between 
stress,  strain,  and  elasticity,  it  will  be  advisable  at  this  stage  to 
work  through  a  few  simple  numerical  examples. 

(1)  A  vertical  wire  lOOin.  long  is  found  to  stretch  lin.  under 
a  certain  load.     Find  the  strain  due  to  that  load. 

0,     .         increase  of  length 
Strain  =    — — —   f- 

original  length 

=    — -  =  0-01  =  1  per  cent. lOOin.        100 

(2)  A  bar  of  copper  lOin.  long  is  found  to  crush  up  O'lin. 
under  a  heavy  load.     Calculate  the  strain  due  to  that  load. 

Strain  =  — — '  =  O'Ol  =  1  per  cent. 10m. 

(3)  Calculate  what  load  is  required  to  stretch  100ft.  of  wrought- 
iron  wire,  -Jin.  diameter,  to  the  extent  of  lin. 

c,,     .  lin.  1 Strain  =    =   . 
100   x    12in.        1200 

Stress  =  strain   x   modulus  of  elasticity 

x  29,000,000  =  24,1671bs.  per  square  inch. 1200 
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(This  is  about  the  tensile  elastic  limit  of  wrought -iron.)     Hence 
the  load  sought 

=  stress  x  area  of  section 

=  24,167lbs.  per  square  inch  x  0'049in. 
=  1184  pounds. 

(4)  A  wrought-iron  tie,  20ft.  long,  is  loaded  to   17,0001bs.  per 

square  inch  of  section  by  a  dead  load.     How  much  will  it  stretch 
under  this  load  ? 

Stress  =  17,0001bs.  per  square  inch. 

stretch  e 
Strain  =   —    ..,.. — . 

length        240m. 

But  ̂ 5??  -  modulus  =  29,000,000, strain 

...  17,000  -=-  -?-  =  29,000,000  ; 240 

17  x  24  = 
2900 

which  is  the  required  extension. 

(5)  The  front  pillars  of  a  vertical  engine  are  of  wrought-iron, 
Sin.  diameter.     The  back  pillars  are  of  cast-iron,  with  a  minimum 
section  of  18  sq.  in.     All  are  8ft.  long.     Each  pillar  has  to  sustain 
a  working  live  load  of  25,0001bs.     Calculate  the  elongation  of  each 
pillar  under  this  load. 

Note. — As  the  load  is  live  we  must  double  the  nominal  load  : 

(1)  For  the  front  pillars  : — 
load        25,0001bs.  x  2 

Stress  =  -  —r— 
area  7'0/  sq.  in. 

=  70701bs.  per  square  inch ; 
,         .          stretch          e 

and  strain  —   -       —  =   . 
length       9  Gin. 

Now,  strain  =  stress  -r  modulus ; 

JL  7070 '  9~6        29/300,000 ' 
/.  Stretch  e  =  0'0234in. 

(2)  For  the  back  pillars  : — 
„.  25,0001bs.  x  2 
Stress  =  —      =  2/80l»>s.  per  square  inch  ; 

18  bq.  in. 
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also  strain  =  - 96in. 

e  2780 

'  96        17,000,000 ' 
.-.  Stretch  e    =  0'0157in. 

The  full  consideration  of  the  relation  between  stress  and  strain 
is  a  difficult  subject,  and  for  our  present  purpose  unnecessary. 
Our  attention  has  therefore  been  confined  to  direct  longitudinal 
stress,  strain,  and  elasticity.  We  have  next  to  show  the  bearing 
of  this  preliminary  matter  on  the  question  of  the  strength  and 
stift'ness  of  beams. 



CHAPTER   V. 

STRENGTH    OF    RECTANGULAR    BEAMS. 

IN  chap.  iii.  it  was  shown  how  to  calculate  the  resistance 

to  bending  offered  by  a  deep  girder  composed  of  thin  flanges  con- 
nected by  a  web  of  negligible  strength,  as  in  Fig.  33.  It  was 

there  explained  that  the  moment  of  resistance  of  any  section  of 
such  a  girder  is  got  by  first  finding  the  safe  resultant  pull  (P) 
on  the  fibres  composing  the  lower  flange  (which,  from  the  nature 

of  a  couple,  must  also  equal  the  resultant  thrust  on  the  top  flange), 

Load 

Top  Flange 

Thin   Web 

Flange 

Fig.  33. 

and  then  multiplying  this  force  by  the  length  of  the  resistance 
arm  (1} — namely,  the  distance  betwen  the  two  forces  just  named, 
acting  at  the  centres  of  area  of  ithe  respective  flanges.  This  dis- 

tance (I)  is  sometimes  called  the  effective  depth  of  the  girder. 
There  is  no  advantage  in  designing  one  flange  stronger  than  the 

other,  since  a  girder  is  sure  to  fail  at  the  weaker  flange  before  any 
demand  can  be  made  on  the  surplus  strength  of  the  other.  But 
it  does  not  follow  that  the  two  flanges  should  have  exactly  equal 

areas,  even  if  the  material  be  equally  strong  in  tension  and  com- 
pression, because  the  compression  flange  must  be  stiff  enough  to 
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resist  buckling.  The  aim  should  be  to  make  the  top  flange  as 
capable  of  sustaining  a  thrust  as  the  bottom  flange  is  able  to  resist 
a  pull  of  equal  magnitude. 

Preliminary  Assumptions. — So  far  the  matter  looks  simple 
enough.  We  next  pass  on  to  investigate  the  resisting  capacity 
of  solid  beams  of  rectangular  cross-section.  This  is  more  difficult. 
The  question  at  once  arises,  How  are  we  to  find  the  magni- 

tude and  positions  of  the  resultant  thrust  and  pull  when  the 
girder  has  very  thick  flanges  or  no  web  at  all  ?  In  this,  as  in 
all  physical  investigations  of  some  difficulty,  the  problem  must 
be  simplified  and  brought  within  the  range  of  practical  mathe- 

matics by  making  certain  assumptions  and  reasoning  from  them. 
Then,  if  our  premises  are  quite  correct,  our  conclusions  will  be 
absolutely  true ;  but  if  our  hypotheses  are  only  roughly  true,  then 
will  our  inferences  be  in  error  to  at  least  an  equal  extent.  Con- 

sequently, it  is  of  the  greatest  importance  to  realise  the  exact 
nature  of  the  assumptions  made  to  simplify  the  theory  of  bending, 
and  to  see  how  far  they  are  justifiable. 

In  the  first  place,  we  assume  or  make  the  proviso  that  the  ma- 
terial composing  the  beam  shall  not  be  stressed  beyond  its  elastic 

limits,  so  ensuring  that  the  stress  may  be  always  proportional  to 
the  strain.  Experiments  on  test- pieces  show  that  this  proviso  is 
easily  satisfied  by  allowing  a  suitable  factor  of  safety,  say  not  less 
than  3,  for  a  steady  load. 

Another  fundamental  assumption  is  that  the  modulus  of  elas- 
ticity of  the  material  with  regard  to  compression  has  the  same 

value  as  the  modulus  with  respect  to  tension — or,  in  other  words, 
that  the  ratio  of  stress  to  strain  is  constant  throughout  the  entire 
elastic  range  of  the  material. 

Further,  in  the  theory  of  bending  it  is  taken  for  granted  that 
the  section  of  the  beam  is  symmetrical  about  a  vertical  line  through 
its  centre  of  gravity,  as  in  Fig.  34,  and  not  as  in  Fig.  34A.  So  long 
as  this  condition  is  observed,  the  section  of  the  beam  may  be  of 
any  shape  whatever. 

In  the  absence  of  any  statements  to  the  contrary,  the  vertical 
plane  is  taken  to  be  the  plane  of  bending  of  a  beam,  as  in  the  case 
of  ordinary  girders. 

Neutral  Surface  and  Axis. — Since  the  upper  fibres  of  a  beam, 
as  ordinarily  supported  and  loaded,  are  undoubtedly  crushed  up  a 
little,  and  the  lower  fibres  pulled  out  a  trifle,  it  does  not  seem  a 
very  unlikely  supposition  that  somewhere  between  the  top  and 
bottom  fibres  there  is  a  certain  layer  which  is  not  strained  at  all. 
For  it  stands  to  reason  that  the  self-same  fibres  cannot  possibly 
be  both  shortened  and  pulled  out  at  the  same  time  ;  and  so,  be- 

tween the  compressed  and  extended  fibres,  there  must  be  some 
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sort  of  line  of  demarcation,  either  sharp  or  ill-defined  :  a  region 
of  no  longitudinal  strain,  and  therefore  of  no  longitudinal  stress. 
The  vertical  or  shearing  stress  we  leave  out  of  account  for  the 
present,  reserving  it  for  future  consideration  in  chap.  viii. 

Fig.  34. Fig.  34A. 

Obviously  true  as  this  argument  appears  to  ordinary  mortals, 
there  are  yet  certain  individuals  who  deny  it.  But,  whether  true 
or  not,  it  is  the  custom  of  engineers  to  assume  the  existence  of  such 
a  layer  of  unstressed  fibres.  It  is  called  indifferently  the  "  neutral 
layer"  or  the  "  neutral  surface  "  of  the  beam. 

The  neutral  layer  of  a  straight  beam  is  usually  regarded  as  a 
plane  surface,  the  separation  between  the  shortened  and  lengthened 

Ceomelrital 

***l\ 
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^^r^^o^^*y ̂ 

Fig.  35. 

fibres  being  quite  sharply  defined.  Then  the  transverse  section 
of  this  unique  surface  is  a  straight  line,  which  is  styled  the 
"  neutral  axis  "  of  the  section,  not  of  the  beam.  (See  Fig.  35.) The  line  of  intersection  of  the  neutral  surface  with  the  neutral 

axis  of  the  section  is  referred  to  by  some  writers  as  the  "  neutral 
axis  of  the  beam"  and  by  others  as  its  " geometrical  axis." 
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The  idea  of  a  sharp  surface  of  division  is  adopted  rather  as  a 
mathematical  convenience  than  as  a  physical  fact.  But  even  grant- 

ing the  clear  separation  of  compressed  and  extended  fibres,  it  must 
not  be  forgotten  that  in  a  loaded  beam  the  neutral  surface  is  not 
quite  a  plane,  nor  is  the  neutral  axis  exactly  a  straight  line,  though 
the  deviation  is  so  slight,  for  ordinary  amounts  of  deflection,  that 
it  may  be  safely  neglected  in  questions  of  strength. 

Location  of  the  Neutral  Axis. — We  have  next  to  locate  or 
find  the  position  of  the  imagined  neutral  axis,  the  problem  being  ; 
Given  a  certain  plane  transverse  section  of  a  beam,  symmetrical 
about  a  vertical  axis,  to  draw  the  neutral  axis.  There  is  a  practical 
rule  that  enables  us  to  do  this  easily — namely, find  the  "  centre  of 
gravity  "  of  the  section  (otherwise  known  as  the  "  centre  of  area," 
the  "  centre  of  figure,"  and  the  "  centroid,")  and  through  it  draw 
a  straight  line  perpendicular  to  the  direction  of  loading.  The  line 
so  drawn  is  the  conventional  neutral  axis  of  the  section. 

This  rule  is  much  too  often  stated  without  the  slightest  explana- 
tion or  qualification.  But  we  require  a  reason  for  it,  as  the 

justice  of  the  rule  is  not  obvious  on  the  face  of  it.  Why  should 
the  neutral  axis  pass  through  the  centroid  of  the  section  of  the 
beam  ?  The  reason  assigned  by  one  writer  is,  "  Because  there  is 
then  just  as  much  metal  above  the  neutral  axis  as  below  it.''  He 
adds  that  "  this  can  only  hold  when  the  material  is  as  strong  in 
tension  as  in  compression  "  ;  thus  implying  that,  for  beams  made 
of  such  a  material  as  cast-iron — which  is  far  stronger  in  compres- 

sion than  in  tension — the  neutral  axis  does  not  pass  through  the 
centre  of  area  of  the  section. 

As  the  assertion  that  the  neutral  axis  does  pass  through  the 
centroid  of  every  section  lies  at  the  very  root  of  the  regular 
strength  formulae  for  beams,  and  as  so  many  engineers  seem  to 
have  no  idea  why  it  does,  but  are  content  to  take  the  rule  on  trust, 
without  troubling  themselves  about  the  rationale  of  the  matter,  it 
will  surely  be  worth  while  looking  carefully  into  the  grounds  of 
this  assumption.  Mere  rules,  divorced  from  principles,  are  to  be 
distrusted,  especially  if  they  seem  to  be  opposed  to  common  sense. 

If  the  assumption  be  allowed,  then  the  position  of  the  neutral 
axis  must  depend  only  upon  the  geometrical  form  of  the  section, 
and  be  entirely  independent  of  the  character  of  the  material  com- 

posing the  beam.  It  cannot  therefore  matter  in  the  least  whether 
the  section  refers  to  a  steel,  a  cast-iron,  a  lead,  a  wood,  or  an 
india-rubber  beam.  Bearing  in  mind  the  diverse  elastic  qualities 
of  these  several  materials,  one  is  led  to  ask,  Is  this  reasonable  ? 
Hardly  so;  indeed,  it  seems  most  unlikely.  The  statement  can 
scarcely  be  universally  true ;  it  surely  needs  some  qualification. 
But  still,  the  error  will  not  be  rectified  by  saying  that  the  location 
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of  the  neutral  axis  depends  simply  upon  the  ratio  of  the  ultimate 
tensile  and  com  press!  ve  strengths  of  the  material ;  because  in 
practice  we  have  only  to  deal  with  material  unstressed  beyond  its 
elastic  limits,  and  therefore  far  removed  from  its  breaking-point. 

The  exact  statement  of  the  case  is  this :  The  neutral  axis  of  a 
stated  plane  transverse  section  of  a  loaded  beam  will  pass  through 
the  centroid  of  that  section,  provided  that  the  tensile  modulus  of 
elasticity  of  the  material  composing  the  beam  is  exactly  equal  to 
its  compressive  modulus  of  elasticity,  but  not  otherwise.  In  other 
words,  the  material  must  be  such  that 

pull  per  unit  area  thrust  per  unit  area 
extension  per  unit  length         compression  per  unit  length 

In  the  case  of  materials  for  which  the  tension  modulus  is  less 
than  the  compression  modulus,  the  neutral  axis  should  be  placed 
rather  nearer  to  the  compressed  face  of  the  beam  than  the  centre 
of  area  of  the  section.  But,  as  a  matter  of  fact,  the  shifting  of 
the  neutral  axis  due  to  this  inequality  is  so  small  that  it  is  com- 

monly neglected  altogether  in  practice.  The  whole  question  of 
the  proper  location  of  the  neutral  axis  is  one  of  considerable  diffi- 

culty, and  has  given  rise  to  much  contention.  (See,  for  example, 
a.  discussion  in  The  Engineer  extending  over  March,  April,  and 
May  of  the  year  1897.) 

In  a  small  work  on  Solid  Beams  and  Girders,  published  in  1872, 
Mr.  W.  Donaldson  combats  the  ordinary  theory  of  beams,  and 
undertakes  to  prove  that  "  the  neutral  axis  does  not  necessarily 
in  all  materials  ever  pass  through  the  centre  of  gravity,  and  does 
not  maintain  an  invariable  position,  but  that  it  is  continuously 
changing  its  position  with  every  change  in  the  magnitude  of  the 

stress."  He  further  shows  mathematically  that  the  true  relation 
existing  between  the  distance  (hc)  of  the  neutral  axis  from  the 
top  of  the  beam  and  its  distance  (ht)  from  the  bottom,  the  stress  (ft) 
that  actually  comes  on  the  top  fibres  and  the  stress  (ft)  on  the 
bottom  fibres,  the  compressive  modulus  of  elasticity  (Ec)  of  the 
material  and  the  tensile  modulus  (Et),  is  as  follows  : 

- 

ht      ft       Ec' which  holds  good  both  for  rectangular  and  flanged  sections.     For 
rectangular  sections  alone  it  simplifies  to 

*« 

Reliable  experimental   data  as  to  the  relative    values  of   the 
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tensileand  compressive  moduli  of  elasticity  for  theordinary  materials 
of  construction  appear  to  be  wanting.  Authorities  like  Rankine, 
Unwin,  and  Lord  Kelvin  give  only  one  value  of  the  modulus 
of  direct  elasticity  for  each  material.  They  do  not  discriminate 
between  tensile  and  compressive  values.  Donaldson,  however, 
says  that  for  wrought  iron  E,  =  28  millions,  and  Ec  =  22  millions 
of  pounds  per  square  inch.  Concerning  cast  iron  he  says,  in  one 
place,  that  E^  =  Ec,  and  in  another  place  that  the  maximum  value 
of  Et  is  about  14  millions,  and  of  Ec  about  13  millions  of  pounds 
per  square  inch. 

Further,  in  Lanza's  Applied  Mechanics  there  is  a  table  of  ex- 
periments on  cast  iron,  showing  that  for  stresses  up  to  two  tons 

per  square  inch  the  tensile  modulus  is  greater  than  the  compressive 
modulus,  but  that  for  a  stress  of  about  three  tons  per  square  inch 
the  two  moduli  are  equal  in  value ;  and  finally,  that  for  a  stress 
of  seven  tons  to  the  inch,  the  values  of  Et  and  Ec  are  about  9^ 
and  12  millions  of  pounds  per  square  inch  respectively,  thus 
showing  a  curious  reversal  as  the  stress  is  increased. 

As  regards  wrought  iron  and  steel,  it  is  generally  understood 
that  the  values  of  Ef  and  Ec  are  practically  equal.  Still,  the  need 
for  further  experiment  and  research  is  evident.  The  truth  is  that 

it  is  so  much  easier  and  cheaper  to  determine  Young's  modulus 
by  stretching  a  long  wire  than  by  compressing  a  thick  bar 
that  experiments  of  the  latter  kind  appear  to  have  been  sadly 
neglected. 

Example. — To  find  the  position  of  the  neutral  axis  in  the  case 
of  a  wrought-iron  beam  of  rectangular  section  10  in.  deep,  assum- 

ing E,  =  28  millions  and  Ec  =  22  millions  of  pounds  per  square 
inch  (Fig.  36) : 

From  the  last  formula  we  have 

hc         728,000,000 _    /-jToy  _-,.-, 90         m _  =   A  /         —     ../  J.    &  4    —  J    J.  £O        .         \  *  I 

ht      v  22,000,000 

Also  depth  of  section  =  hc  +  ht  =  lOin.     .     (2) 
Substituting  from  (1)  in  (2)  givas 

1-128  ht  +  h   =10 
.-.2-128  ht  =  10 

ht  =     4-7  in., 
which  locates  the  neutral  axis.  This  example  is  given  only  for 
the  sake  of  illustrating  the  use  of  the  formula,  and  so  impressing 
an  important  theoretical  point.  Henceforth,  according  to  custom, 
we  shall  suppose  that  the  tensile  modulus  of  elasticity  has  the 
same  value  as  the  other,  and  consequently  that  the  neutral  axis 
passes  through  the  centroid  of  the  section.  The  proof  that  it 
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Thrust 

10"
 

Neutral 
Axis 

then  does  so  needs  careful  consideration,  but  the  following  demon- 
stration will  perhaps  make  the  matter  intelligible. 

Proof  that  the  Neutral  Axis  of  a 
Section  Passes  through  the  Centre  of 

Area. — (1)  Take  a  small  rectangular 
bar  of  i rid ia  rubber  (Fig.  37),  and  bend 
it  sliyhtly  by  placing  the  forefingers 
F,  F  at  the  ends,  and  the  thumbs  T,  T 
a  little  distance  from  the  ends  (Fig. 
38).  The  equal  pressures  of  the 
right-hand  finger  and  thumb  now 
form  a  couple,  and  those  of  the  left 
hand  form  an  equal  and  contrary 
couple,  the  forces  being  supposed  to 
remain  practically  parallel.  The  de- 

flection is  greatly  exaggerated  in  the 
figure.  Under  these  circumstances 
the  bending  moment  at  any  section 
between  T  and  T  is  uniform,  and  equal 
to  the  moment  of  either  couple.  Con- 

sequently the  curvature  is  uniform 
also ;  or,  in  other  words,  TT  is  an  arc  of  a  circle.  Further,  there 

is  no  shearing  stress. 

i(2)  Let  us  regard  the  little [T  india-rubber  bar  as  a  small  frac- 
tion, say  the  100th  part,  of  a  long 

bar,  which  is  imagined  to  be  bent 
round  by  the  external  forces  so 
as  to  form  a  complete  ring  of  the 

same  large  radius  as  before.* 
This  long  bar,  after  the  imaginary 
bending,  is  shown  in  elevation 

and  section   by   Fig.  39.     In  looking  at  this  rather  misleading 
figure,  however,    one    has   to 
bear   in    mind  that  it  is  not 

T\  r 

Compressed 

PuU 

Fig.  36. 

F 

Fig.  37. 

Neutral  Axis 

Extended 

-  Fig.  38. 

drawn  to  scale,  the  thickness 
of  the  beam  being  magnified, 
let  us  say,  1000  times.  An- 

other difficulty  in  admitting 
this  step  arises  from  the  fact 
that  it  does  not  seem  possible 
to  bend  round  a  bar,  how- 

ever long,  in  this  way  by  the 

*  This  imaginary  process  is  performed  by  Unwin  in  his  "  Machine  Design," vol.  i.  p.  50. 
D 
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action  of  a  pair  of  couples,  as  theory  requires.  Hence  it  seems 

preferable  to  regard  the  ring  either  as  merely  the  geometrical  con- 
tinuation of  the  outline  of  the  material  between  T  and  T,  or  else 

as  made  up  of  a  large  number  of  small  beams  bent  in  exactly  the 
same  way. 

The  magnitudes  and  nature  of  the  stresses  in  the  bar  will  not 
be  in  the  least  altered  by  the  supposed  formation  of  the  entire 
ring,  so  that  we  can  safely  reason  on  the  ring  as  a  whole. 

(3)  Now  dismiss  the  introductory  idea  of  an  india-rubber  bar, 
and  substitute  the  metal  or  wood  beam  which  it  has  served  to 

exemplify.     Let  r  be  the  radius  of  the  layer  of  fibres  unaltered  in 

length  by  bending  the  beam — that  is,  the  neutral  layer.     Before 
the  long  beam  was  bent  every  fibre  was  the  same  length  as  this 
neutral   layer — namely,   the  circumference   of  a  circle  r  inches 
radius.     Hence, 

~.  .  .     ,  ,       ,,          ,.  circumference 
Original  length  =  diameter  x      diameter 

=  2r  x  3-1416  =  2irr  inches. 

(4)  Consider  the  alteration  in  the  length  of  a  layer  of  fibres 
situated  y  inches  beyond  the  neutral  surface — that  is,  at  a  radius 
of  (?•  +  y)  inches.     After  bending,  the  new  length  of  these  fibres 
will  be  2ir  times  the  new  radius — that  is,  2?r  (r  +  y)  inches. 

The  amount  of  stretching,  being  the  new  length  minus  the  old 

length,  is  therefore  "2-x  (r  +  y)  —  2irr  =  2iry  inches. 
Similarly,  the  amount  of  shortening  of  the  fibres  situated  at  the 

same  distance,  y  inches,  within  the  neutral  surface,  being  the  old 
length  minus  the  new  length,  is 

27iT  —  2ir  (r  —  y)  =  2iry  inches. 
(5)  From  the  definition  of  the  tensile  modulus  of  elasticity  (E,), 

the  relation  between  the  tensile  stress  and  strain  is 

,-,        stress  on  fibres         ,.    .    alteration  of  length 
_Cj .  ̂            =     J .    —     .   .   

strain  of  fibres  original  length 

=  ft  -T-  -~~,  from  steps  (3)  and  (4), ZTTT 

—  ft  x  -  pounds  per  square  inch. 

Similarly,  the  expression  for  the  compressive  modulus  of 

elasticity  is  Ec  =  f  x  -  pounds  per  square  inch. 
i/ 

(6)  If  we  assume  that  Et.  =  Eft  then  from  step  (5)  the  com- 
pressive  stress  (fc  )  will  equal  the  tensile  stress  (ft )  in  magnitude. 
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Granting  this,  we  can  drop  subscripts  and  say  that  the  common 
modulus  of  direct  elasticity 

E  =  /  x   -,  or  that/  =  E  -  pounds  per  square  inch. 
y  r 

This  equation  shows  that  the  stress  on  any  layer  is  proportional 
to  its  distance,  y  inches,  from  the  neutral  surface  ;  whose  position, 
however,  is  not  yet  fixed.  Any  value  may  be  given  toy  compati- 

ble with  the  size  of  the  beam.  It  appears,  then,  that  to  assume 
the  equality  of  the  moduli  is  equivalent  to  assuming  that  the  stress 
varies  as  the  distance  from  the  neutral  axis. 

Rxteniied 
Fvtt 

Fig.  39. 

(7)  Looking    now     at    the    transverse    section  of   the    beam 
(Fig.  ;>9),  and  calling  a  square  inches  the  area  of  a  strip  y  inches 
from  the  neutral  axis,  we  have  total  pull  on  strip  =  stress  x  area 
=  f  x  a,  which,  by  the  last  result, 

=  E  -    x  a  pounds. 
T 

(8)  Regarding  compressive   stresses  as    positive,    and   tensile 
stresses  as  negative,  the  total  combined  stress  over  the  entire 
section  of  the  beam  is  the  algebraic  sum  of  the  stresses  on  every 
strip.     This  is  conveniently  expressed  as 

/      ?/  \ 
I  E  £   x  a     pounds. 
\       r  / 

But  the  resultant  thrust  and  pull  together  constitute  a  couple 
which  balances  the  bending  couple.  Also,  the  algebraic  sum  of 
the  two  equal  and  oppositely  directed  forces  composing  any  couple 
is  zero.  Consequently,  the  last  expression  =  o. 
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Stress  / 

(9)  Now  E  and  r  are  the  same  for  all  the  strips  of  the  section, 
and  so  may  be  placed  outside  the  brackets  thus : — 

E 
-  Say  =  o. r 

And  as  E  and  r  are  neither  of  them  nothing,  it  must  follow 
that  the  other  term  Say  =  o. 

(10)  This  final  step  is  the   crux  of  the  whole  question.     The 
sole  condition  that  a  line  may  pass  through  the  centre  of  area  of  a 
plane  figure  is  that  the  turning  moment  of  the  figure  about  that 
line  shall  be  nothing.     This  only  amounts  to  saying  that  the  sum 

of  all  the  products,  got  by  multiplying  each 
little  part  by  the  distance  of  that  part  from 
the  line  in  question,  must  be  zero.  But  this 
is  precisely  what  the  last  equation  states  to  be 
the  case  here.  It  therefore  shows  that  the 
neutral  axis  must  pass  through  the  centre  of 
area  of  the  transverse  section  of  the  beam, 
which  is  what  we  set  out  to  prove. 

But  remember  that  this  result  is  only  true 

if  Ec  =  ~Et.  On  this  point  Professor  Cotterill 
remarks  that  "  in  perfectly  elastic  material 
the  value  of  E  is  the  same  for  compression  as 

for  tension  ; "  and  he  goes  on  to  regard  all 
materials  of  construction  as  perfectly  elastic 
within  their  limits  of  elasticity. 

Resistance  Areas. — It  is  a  matter  of  some 
interest  to  see  how  the  effective  resistance 
of  a  transverse  section  of  a  loaded  beam 

can  be  graphically  represented.  Let  us  confine  our  attention  for 
the  present  to  the  simple  rectangular  section  A  BCD  (Fig.  40). 
Through  the  centroid  G  of  the  figure  draw  the  neutral  axis  NN. 
Let  us  agree  that  there  is  no  stress  along  the  central  layer  of 
fibres,  also  that  the  stress  is  a  safe  maximum  of /tons  per  square 
inch  at  the  top  edge,  and  is  equal  in  value  at  the  bottom  edge. 
The  question  now  arises,  How  does  the  stress  vary  between  AB 
and  DC ;  or,  in  o  ther  words,  is  it  possible  to  predict  the  stress  on 
any  intermediate  layer  ? 

This  question  has  already  been  answered  algebraically  in  the 
preceding  demo  nstration ;  but  it  will  also  be  advisable  to  obtain 
the  same  resul  t  geometrically,  which  may  be  clearer  to  some. 
Fig.  41  shows,  in  an  exaggerated  fashion,  how  the  two  sections  at 
ab  and  cd  of  the  beam,  though  quite  parallel  (and,  say,  lin. 
ap  art)  before  the  beam  is  bent,  are  afterwards  inclined  to  one 
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Fig.  40. 
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another  at  a  perceptible  angle ;  owing  to  the  material  crushing  up 
slightly  along  ac  and  stretching  along  the  edge  bd. 

This  deformation  of  the  beam  can  be  beautifully  seen  by  bend- 
ing a  piece  of  india-rubber  of  square  section,  after  marking  it  at 

ab  and  cd  with  a  penknife.  Or  of  course  a  large  india-rubber 
bar,  3  or  4in.  square  and  2  or  3ft.  long,  if  available,  will  exhibit 
the  features  of  interest  even  better.  Experimenting  thus,  we 
observe  with  our  own  eyes  that  the  lines  ab  and  cd  do  not 
remain  straight  when  the  bar  is  bent  nearly  double,  but  that  for 
a  slight  amount  of  bending,  the  deviation  from  straightness  is  not 
visible.  We  therefore  conclude  that  the  cross-sections  whose 
elevations  are  ab  and  cd  remain  plane  or  flat  for  such  small 
deflections  as  occur  in  actual  beams. 

Fig.  41. 

From  these  observations,  together  with  the  assumptions 
already  stated,  we  can,  by  the  aid  of  a  little  reasoning,  deduce 
the  stress  on  any  layer  whatever  between  the  extremes  ac  and 
bd.  Through  the  point  n  (Fig.  41)  draw  the  line  c'd1  parallel  to 
cd.  Next,  for  clearness,  isolate  the  pair  of  triangles  anc1,  bnd1, 
and  draw  them  in  Fig.  42,  alongside  of  cross-section  ABCD. 
Then  ac1  represents  the  shortening  of  the  top  fibres  of  the  unit 
block  abdc,  and  bd1  represents  the  extension  of  the  bottom 
fibres  per  unit  length  of  the  beam.  The  strain  of  any  other  layer 
of  fibres,  such  as  ST  in  section,  is  represented  by  the  length  of 
the  horizontal  st  opposite  to  it  in  the  strain  triangle  (Fig.  42). 
So  we  have  now  ascertained  how  the  strain  varies  between  AB 
and  CD,  the  strain  of  any  layer  being  directly  proportional  to  the 
distance  of  the  layer  above  or  below  the  neutral  axis. 

But  we  are  less  concerned  with  the  variation  of  the  strain  than 
with  the  distribution  of  the  stress.  This  information  is  given  by 
one  more  step  in  the  reasoning.  As  we  have  agreed  not  to  tres- 

pass beyond  the  elastic  limits  of  the  material,  we  can  safely  say 
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that  the  stress  is  proportional  to  the  strain.  Applying  this  fact, 
we  finally  conclude  that  the  stress  on  any  strip  like  ST  is  exactly 
proportional  to  the  distance  of  that  strip  from  the  neutral  axis. 
This  result  is  clearly  set  forth  in  the  stress  triangles  of  Fig.  43  ; 
the  compressive  stresses,  or  pressures  per  square  inch,  being  set 
off  on  the  right,  and  the  tensile  stresses,  or  pulls  per  square  inch, 
on  the  left  of  the  vertical  line.  From  this  pair  of  stress  triangles 
we  can  readily  construct  what  is  called  the  "  resistance  area  of  the 
section  ;  "  in  fact,  these  triangles  actually  do  form  the  resistance area  of  the  section  of  a  beam  1  in.  broad. 

The  "  safe  resistance  area  of  a  section  of  a  beam  "  may  be  defined 
as  a  geometrical  figure  which  is  drawn  to  represent,  in  magnitude 

Thrust    • 

Pull 
Fig.  42. Fig.  43. 

and  sign,  the  resistance  exerted  by  every  layer  of  the  beam  at  the 
section  in  question,  when  the  extreme  fibres  on  one  side  of  the 
neutral  axis  are  stressed  to  the  greatest  safe  extent.  It  may  be 
briefly  styled  the  stress  diagram  of  the  section. 

This  geometrical  figure  is  divided  into  two  equal  parts  at  the 
neutral  axis.  The  upper  area  represents  the  resultant  thrust 
on  the  section  on  the  beam,  and  the  lower  area  the  resultant 
pull.  Hence 

\  (xesist.  area)  x  resist,  arm  =  mom.  of  resist,  of  section. 
It  would  be  more  consistent  with  the  usual  geometrical  meanings 

of  the  terms  area  and  figure  to  call  this  diagram  the  "figure  of 
resistance  "  of  the  section.  Then  we  could  conveniently  define 
the  resistance  area  as  "  half  the  area  of  the  figure  of  resistance," 
and  we  should  have  the  simple  relation, 
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It  is  usual  to  draw  the  resistance  area  or  diagram,  not  exactly 
as  in  Fig.  43,  but  symmetrical  about  a  vertical  line,  as  in  subsequent 
figures.  This  is  merely  a  matter  of  convenience  however.  The 
method  of  drawing  such  a  figure  for  any  given  breadth  and 
depth  of  beam  can  be  bast  explained  by  reference  to  a  particular 
example. 

Example. — To  draw  from  first  principles  the  resistance  diagram 
of  a  section  12in.  deep  and  4in.  wide  of  a  steel  beam  in  which  the 
maximum  stress  allowed  on  the  top  and  bottom  fibres  is  (5  tons  per 
square  inch  ;  also  to  deduce  the  moment  of  resistance  of  the 
section. 

As  an  aid  to  clear  thinking,  let  us,  in  imagination,  isolate  the 
right-hand  half  of  the  beam,  and  consider  what  forces  keep  it  at 

f 

„  Fig.  44. 

rest  (see  Fig.  44).  These  are  (1)  half  the  central  load,  (2)  half 
the  weight  of  the  beam,  (3)  the  reaction  of  the  abutment,  and  (4) 
the  resistance  of  the  left-hand  half  of  the  beam.  We  are  at 
present  concerned  only  with  the  last  of  these. 

The  forces  constituting  the  resistance  of  the  beam  are  innumer- 
able. Every  fibre  above  the  neutral  axis  of  the  imaginary  central 

section  is  sh'jving,  to  a  greater  or  less  extent,  to  prevent  bend- 
ing ;  and  below  that  axis  every  fibre  is  pulling,  with  the  same  aim. 

But  those  fibres  near  to  the  neutral  axis  are  much  less  stressed 

than  those  remote  from  it,  arid  are  far  from  doing  all  they  are 
capable  of.  How  is  it  possible,  then,  to  take  account  of  all  these 
pushes  and  pulls,  giving  due  credit  to  each  ? 

first  Method. — Several  methods  are  available.  Perhaps  the 
easiest  of  these  to  understand,  and  also  a  very  instructive  one,  is 

the  following : — Draw  the  section  to  a  large  scale  (Fig.  45),  find 
its  centre,  and  through  it  draw  the  neutral  axis.  Divide  up  the 
whole  section  into  a  number  of  rectangles  (the  more  the  better  for 
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accuracy),  and  find  the  resisting  moment  of  each  pair  separately, 
in  the  manner  already  described  for  deep  flanged  girders.  Adding 
all  these  moments  together  gives  the  moment  of  resistance  of  the 
entire  section.  In  this  method  the  stress  is  assumed  to  be  uniform 

over  each  pair  of  rectangles  symmetrically  situated  with  respect 
to  the  neutral  axis. 

In  applying  this  method  to  find  the  resisting  moment  of  a 
section  1 2in.  deep,  six  is  a  convenient  number  of  rectangles  to  use 
for  the  purpose  of  illustration.  Remembering  that  the  stress  on 
any  strip  varies  as  the  distance  of  the  strip  from  the  neutral  axis, 
we  then  get,  from  Fig.  45  and  simple  multiplication,  the  values 
tabulated  below : — 

Rectangles. Area. Stress. Force. Arm. Moment. 

Tons  per 

Pair- Sq.  in. sq.  in 
Tons. Inches. Inch-tons. 

Outer  .     . 8 6 40 10 
400 

Middle     . 8 a 
24 

6 
144 

Inner  .     . 8 i 8 2 16 

560 

Thus  the  resisting  moment  of  the  whole  section  works  out  to 
be  560  inch-tons.  But  this  is  not  a  very 

close  approximation.  The  regular  for- 
mula gives  the  figure  576.  If,  however, 

we  take  12  rectangles,  instead  of  only  6, 

we  get  the  very  close  result  572  inch-tons. 
This  method  is  applicable  to  any  sec- 

tion whatever,  even  the  most  irregular ; 
but  it  is  rather  laborious,  because  a  large 
number  of  rectangles  must  be  taken. 
It  has  the  great  merit,  though,  of  being 
perfectly  obvious  in  principle,  even  to 
non  -  mathematical  men,  and  is  ex- 

tremely easy  to  keep  in  mind. 
As  a  further  test  of  the  accuracy  of 

the  method  here  proposed,  it  was  ap- 
plied to  find  the  moment  of  resistance 

of  a  circular  section  1 2in.  diameter,  the 

section  being  drawn  half-size  and 
divided  up  into  six  pairs  of  rectangles. 

Without  special  care  the  result  came  out  to  be  1026  inch-tons, 
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allowing  a  stress  of  6  tons  per  square  inch  on  the  extreme  fibres. 
The  figure  1018  was  obtained  by  the  use  of  the  exact  formula. 
Comparing  these,  the  error  is  seen  to  be  only  about  £  per  cent.; 
which  is  of  no  account  in  practic.il  work,  as  the  strength  of  different 
samples  of  mild  steel  varies  at  least  5  per  cent.  Nevertheless,  the 
moments  of  resistance  of  regular  sections  can  be  calculated  much 
quicker  by  aid  of  the  standard  formula?  and  a  slide-rule. 

Second  Method. — Returning  now  to  the  example  in  hand,  a 
second  mode  of  ascertaining  the  moment  of  resistance  of  the  given 

section  consists  in  finding  the  resistances  of  several  separate  por- 
tions of  the  section,  and  multiplying  their  sum  by  the  average 

resistance  arm,  as  described  in  detail  below. 
Having  found  the  neutral  axis  NN  (Fig.  46),  divide  the  section 

into  strips  lin.  thick,  say.  To  the  right  of  the  section  draw  a 
vertical  centre  line  and  the  indefinite  horizontals  ab,  cd,  fe,  &c. 
Now  the  resistance  offered  by  the  top  strip  ABEF  =  its  area  x 

average  stress  over  it  =  (4  x  1)  inch2  x  |  (C  +  5)  tons  per  square 
inch  =  22  tons.  This  is  also  the  resistance  of  the  bottom  strip. 

Similarly,  the  resistance  offered  by  each  of  the  second  pair  of 

strips  is  4  x  4'5  =  18  tons ;  and  so  on  for  the  rest. 
Represent  these  values  by  the  areas  of  the  shaded  rectangles  in 

Fig.  47,  assuming  a  convenient  scale.  Each  half  of  the  stepped 
resistance  area  so  drawn  represents  a  resistance  of 

22  +  18  +  14  +  10  +  6  +  2  =  72  tons. 

Now  if  the  strips  had  been  taken  only  •j'gin.  thick  instead  of 
lin.,  the  projecting  steps  in  the  resistance  diagram  would  have 
been  only  one-tenth  of  their  present  width  ;  and  finally,  on  taking 
the  strips  extremely  thin,  the  figure  would  become  a  pair  of 
triangles,  as  shown  in  Fig.  48.  The  area  of  each  triangle  repre- 

sents one  of  the  equal  forces  composing  the  resistance  couple. 
These  triangles  are  the  true  resistance  areas,  showing  how  the 

resistances  of  adjacent  horizontal  layers  of  the  beam  change,  by 
imperceptible  stages,  from  a  maximum  at  the  top  and  bottom,  to 
nothing  at  the  central  layer.  The  comparative  uselessness  of  the 
material  in  the  region  of  the  neutral  axis  of  the  section  is  thus 
displayed  in  a  striking  manner ;  at  least,  as  regards  its  share  in 
resisting  the  bending  moment.  This  central  material,  however, 
has  subordinate  duties  to  perform,  as  will  appear  hereafter. 

It  may  not  yet  appear  how  the  actual  width  of  the  resistance 
triangles  is  arrived  at.  This  is  best  ascertained  by  reasoning  from 
Figs  46  and  47.  Consider  a  very  thin  outermost  strip,  say  T^in. 
thick.  Its  resistance  =  its  area  x  mean  stress  on  it  =  4in.  x 

j-^yin.  x  6  tons/inch2  -  /.-  ton. 
This  force  must  be  represented  by  a  portion  of  the  resistance 
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area  x  inches  wide,  and  therefore  of  area  —  x  inch  x  T^in.  =  r-rr: 

sq.  in.     So  that  we  must  have  an  area  of  _  '-  sq.  in.  representing 100 

a  resistance  of  ̂   ton,  and  consequently  x  =  100  x  ̂   =  24, 
Thus  the  extreme  width  of  the  present  figure  of  resistauca  will  be 
24in.,  to  the  same  scale  as  that  to  which  the  beam  section  is 
drawn. 

More  generally,  the  extreme  width  of  the  resistance  figure  for 
a  rectangular  section  will  be  numerically  equal  to  the  breadth  of 
the  section  multiplied  by  the  stress  allowed  on  the  extreme  tibres. 
If  drawn,  for  convenience,  either  narrower  or  wider  than  this,  as 
here,  then  the  number  of  units  of  area  in  it  will  not  be  equal  to 
the  number  of  units  of  resistance  of  the  section,  but  only  propor- 

tional thereto. 
In  spite  of  what  is  elsewhere  stated,  it  is  not  wholly  correct  to 

say  that  the  extreme  width  of  the  resistance  area  is  the  product  of 
the  breadth  of  the  section  into  the  stress  on  the  extreme  layers 
of  fibres,  and  that  it  represents  so  many  units  of  resistance.  For, 

using  dimensional  equations,  breadth    x    stress  =  inches  x  - 

inch2 

— ,  so  that  width  really  represents  tons  per  linear  inch. 

But  areas,  on  the  contrary,  really  do  represent  forces,  both 
numerically  and  dimensionally,  for  in  Fig.  47  area  abef  =  width 

ab   x   height  af  =     x    inches  =  tons  of  force. inch 
The  moment  of  resistance  of  the  section  is  the  whole  thrust 

(P  tons)  multiplied  by  the  length  (I  inches)  of  the  resistance  arm. 
The  thrust  has  been  foun-l  to  be  seventy-two  tons,  but  the  arm 
yet  remains  to  be  discovered.  To  find  it,  we  inquire,  "At  what 
point  of  the  upper  triangle  must  a  single  force  act  in  order  to  have 
the  same  effect  as  the  whole  lot  of  forces  acting  at  the  several 

parts  of  the  beam  section  ? "  A  little  reflection  will  make  it 
clear  that  this  point  must  be  none  other  than  the  centre  of 
gravity  (or  centroid)  of  the  triangle  abO  (Fig.  48).  So  also  for 
the  lower  tri  ingle. 

Now,  the  ceutroid  of  any  triangle  is  known  to  be  situated  on  a 
straight  line  joining  the  vertex  to  the  middle  point  of  the  base, 
and  at  a  distance  of  one-third  the  length  of  this  line  from  the 
base.  This  fact  fixes  y  and  g't  the  points  of  application  of  the 
resultant  pulls  and  pushes  of  the  fibres.  From  Fig.  48  the  re- 

quired resistance  arm  is  then  seen  to  be  gg',  whose  length  is — 
A-2x=A  inches. 
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In  the  present  case  this  is  §  x  12  in.  =  8  in.  Hence  the  mo- 
ment of  resistance  of  the  section  =  72  tons  x  8  in.  =  570  inch- 

tons. 

Case  of  Unequal  Limiting  Stresses. — Consider  next  a  beam 
(Fig.  41))  of  cast-iron,  which  may  be  stressed  to  0  tons  per  square 
inch  in  compression,  but  only  to  T5  ton  in  tension. 

In  Fig.  50  the  areas  of  the  upper  and  lower  triangles  represent 
the  resistances  which  the  corresponding  halves  of  the  section  are 
capable  of  sustaining.  But  clearly,  on  applying  an  increasing  load 
to  the  beam,  the  stress  on  the  bottom  layer  would  reach  its  limit- 

ing safe  value  of  1'5  ton  per  square  inch  long  before  the  stress  on 
the  top  layer  could  reach  the  limiting  safe  value  of  G  tons  per 
square  inch. 

4tR«  6  Toot  ptr  Sy  in  -24  Unitt 

ti  Units 

Fig.  50. 

Also,  if  the  load  were  increased  to  such  an  extent  as  to  induce 
a  stress  of  6  tons  per  square  inch  on  the  top  layer  of  fibres,  then 
the  bottom  layer  would  be  stressed  to  the  same  intensity  :  as- 

suming that  the  stress  varies  as  the  distance  from  the  neutral  axis. 
But  this  value,  being  dangerously  high,  is  not  allowable.  Instead, 
therefore,  of  utilising  to  the  full  the  superior  compressive  strength 
of  cast-iron,  the  stress  is  unavoidably  kept  down  to  the  same  low 
value  as  the  tensile  stress.  Henco  the  actual  safe  resistance  area 

can  only  consist  of  the  two  equal  shaded  triangles,  these  repre- 
senting the  two  equal  resultant  forces  forming  the  resisting 

couple,  whose  moment  is  100  inch-tons. 
Apparently,  then,  the  surplus  strength  of  the  top  half  is  of  no 

benefit  whatever,  the  beam  being  not  a  bit  stronger  than  if  made 
of  a  material  only  as  strong  in  withstanding  thrust  as  pull.  Of 
course,  in  making  this  statement,  we  disregard  for  the  moment  all 
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lateral  and  shearing  forces,  as  well  as  all  considerations  of  stiff- 

ness. A  solid  rectangular  section  is  thus  shown  to  be  even  less 

economical  for  a  cast-iron  beam  than  for  one  of  wrought-iron, 
and  is,  therefore,  quite  unsuitable  for  heavy  work. 

Equivalent  Areas. — Take  a  section  ABCD  (Fig.  51)  of  a  rect- 
angular beam,  and  draw  the  diagonals  crossing  at  G ;  then  the 

shaded  area  between  them  is  known  as  the  "  equivalent  area  "  of 
the  section,  or  sometimes  as  the  effective  area.  It  is  so  called 
because  it  represents  a  section  (Fig.  52)  of  an  imaginary  beam 
(Fig.  53)  having  all  its  layers  stressed  to  the  same  extent  as  the 
extreme  top  or  bottom  layer,  and  equivalent  in  value  to  the  actual 

Fig.  53. 

beam  so  far  as  regards  its  resistance  to  pure  bending.  In  this 
equivalent  beam  all  the  apparently  useless  material  is  cut  away  ; 
on  the  principle  that  if  a  chain  is  only  as  strong  as  its  weakest 
link,  it  is  useless  to  make  the  middle  links  stronger  than  the  end 
ones. 

The  equivalent  area  of  a  section  must  not  be  confused  with  the 
resistance  area  previously  discussed.  By  the  sole  use  of  equivalent 
areas  it  is  only  possible  to  compare  beams  of  the  same  material 
equally  stressed  ;  but  by  means  of  resistance  areas  we  can  compare 
beams  of  different  materials  unequally  stressed. 

The  equivalent  area  of  any  section  of  a  beam  is  that  area 
which,  when  taken  along  with  a  hypothetical  uniform  stress,  has 
the  same  moment  of  resistance  as  the  actual  section  when  taken 

along  with  the  actual  varying  stress.  The  equivalent  area  is 
drawn  to  the  same  scale  as  the  actual  section,  and  is  such  that 
half  its  area  multiplied  by  the  length  of  the  resistance  arm,  and 
also  by  the  maximum  safe  stress  on  the  material,  gives  the 
moment  of  resistance  of  the  section  to  bending. 

Thus,  referring  to  any  beam,  the  resisting  moment  of  a  section 
may  be  indifferently  expressed  either  as 

\  equivalent  area  x  resistance  arm  x  stress, 
or  as 

Effective  flange  area  x  effective  depth  of  beam  x  stress, 
expressions  which  have  exactly  the  same  meaning. 
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Strength  Formula. — To  deduce  from  this  statement  a  con- 
venient formula  for  the  moment  of  resistance  of  a  rectangular 

section  of  any  given  material,  we  put  out  of  sight  the  actual 
section  of  the  beam,  and  consider  only  the  equivalent  section 
(Fig.  52).  The  stress  on  it  being  uniform  all  over,  the  total 
thrust  on  the  upper  half  (which  equals  the  pull  on  the  lower  half) 

is: — Area  ABG  x  the  uniform  stress  allowed. 
That  is, 

Force  P  =  £6  x  \h  x  / 
=  $bhxf      .         .  .     (1) 

(In  the  case  of  a  general  beam  this  may  be  called  the  effective 
flange  resistance.)  Also,  from  the  rule  for  the  position  of  the 
centre  of  area  of  a  triangle  : — 

Resistance  arm  I  =  |A  .         .         .     (2) 
But 

Moment  of  resistance  =  force  x  arm  of  couple. 
.-.  M  =  P  x  I. 

Inserting  (1)  and  (2)  in  this,  we  have 
M  =  (±bh  x  f)  x  §A 

.-.  M  =  i&A*  x  /  .     (3) 
which  is  the  formula  sought. 

Modulus  of  a  Section. — Tbis  extremely  useful  formula  for  the 
resisting  moment  of  a  rectangular  section  may  be  split  up  into 
two  part-*.  The  part  f  refers  to  the  safe  stress  per  square  inch 
allowed  on  the  material,  and  has  nothing  to  do  with  the  shape  of 
the  section.  The  other  part  takes  account  of  the  shape  and  size 
of  the  section,  and  is  conveniently  referred  to  as  the  strength 
modulus  of  the  section  with  respect  to  bending,  a  term  introduced 
bv  Professor  Unwin.  This  quantity  is  symbolised  by  the  letter  Z. 
Hence,  for  any  section  of  a  beam, 

Moment  of  resistance  =  modulus  of  section  x  stress ; 
or,  M  =  Z  x  /. 

Each  shape  of  section  has  its  own  particular  strength  modulus, 
according  to  the  disposition  of  the  material  with  respect  to  the 
neutral  axis.  But  it  is  rather  troublesome  to  deduce  from  first 

principles  the  moduli  of  sections  other  than  those  of  solid  rect- 
angular beams  and  deep-flanged  girders  with  very  thin  webs.  As 

regards  the  latter  important  case,  we  know  that  the  moment  of 
resistance  is : — 

P  x  /  =  (f  x  area  of  flange)  x  L 
But  M  =  /  x  Z. 
Hence  Z  =  area  of  flange  x  L 
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Here  I  may  be  taken  as  the  total  depth  of  the  girder,  without 
material  error,  though  it  really  refers  to  the  distance  between  the 
centres  of  area  of  the  flanges — i.e.,  the  effective  depth  of  the  beam 
(see  Fig.  33). 

It  thus  appears  that  the  ability  of  a  beam  to  resist  a  bending 
moment  at  a  stated  section  depends  only  on  two  things — (1)  the 
pending  modulus  of  that  section  as  found  by  calculation  from  a 
drawing ;  and  (2)  the  greatest  safe  stress  which  the  material  will 
bear,  as  determined  by  experiments  with  a  testing-machine, 
combined  with  the  use  of  a  factor  of  safety. 

Much  confusion  prevails  as  regards  the  proper  units  in  which 
strength  moduli  should  be  measured.  The  unit  of  measurement 
may  be  found  in  two  ways.  We  know,  from  previous  work,  that 
stress  is  measured  in  either  tons  per  square  inch  or  pounds  per 
square  inch,  and  consequently  the  moment  of  resistance  in  either 
inch-tons  or  inch-pounds.  Hence  to  find  the  dimensions  of  the 
third  quantity  we  write  the  equation 

M  (inch  x  ton)  =  Z  x  / . — -  , 

inch2 

which  transposes  to 

Z  =  (M  inch  x  ton)  -=-  (f- 

\  inch2 

M.     ,, 

-  7  mch ' We  therefore  conclude  that  the  strength  modulus  of  a  section 
is  a  geometrical  quantity  of  the  nature  of  length  raised  to  the 
third  power,  like  volume.  Some  people  object  to  this,  but  any- 

thing more  rational  has  yet  to  be  proposed.  The  same  method  is 
regularly  applied  to  ascertain  the  physical  dimensions  of  much 
more  intangible  electrical  quantities. 

Another  way  is  to  reason  directly  from  the  formula, 
Z  =  $tf, 

from  which,  since  b  and  h  both  refer  to  linear  magnitudes,  it  at 
once  follows  that  Z  has  the  dimensions  (length)3. 

General  Conclusions. — From  the  preceding  result  and  the 
fundamental  relation  that  the  bending  moment  equals  the  working 
resisting  moment,  we  get,  for  the  particular  case  of  a  rectangular 
beam  supported  at  both  ends  and  loaded  at  the  centre,  the  im- 

portant equation 

£WL  =  %btf  x  /; 
which  concisely  sums  up  the  whole  question.  It  may  also  be 
written  as — 
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where 

W  tons    =  greatest  safe  central  load, 
b  inches  =  breadth  of  beam, 
h  inches  —  depth  of  beam, 
L  inches  —  span  of  beam, 

f  °ns       =  safe  stress  on  extreme  fibres. J  inch2 

The  general  conclusions  to  be  inferred  from  this  formula  are 

the  following : — 
(1)  The  resisting  capacity  or  strength  of  a  rectangular  beam  is 

directly  proportional  to  its  breadth  ;  so  that  doubling  the  breadth 
of   a   beam   also   doubles   its   strength,   all   other   things    being 
unaltered. 

(2)  The  strength  of  a  beam   is  directly  proportional  to  the 
square  of  its  depth;  so  that  doubling  the  depth  quadruples  the 
strength.     Increase  of  strength  is  therefore  most  economically 
gained  by  increase  of  depth.     (The  question  of  stiffness  will  be 
considered  hereafter.) 

(8)  The  load  which  a  beam  will  safely  carry  is  inversely 
proportional  to  its  span;  so  that  doubling  the  span  of  a  beam 
halves  the  load  it  will  carry. 

(4)  The  resistance  of  a  beam  is  directly  proportional  to  the 
stress  put  on  the  outside  fibres,  so  long  as  this  stress  does  not 
exceed  the  elastic  limits  of  the  material. 

The  solid  rectangular  form  is  not  an  economical  section ;  but 
it  is  much  used  for  wood  beams  and  for  such  forged  details  of 
machinery  as  cranks,  levers,  wheel  teeth,  and  plate  springs. 
Ribbed  and  box  sections  are  in  every  way  preferable  for  large 
work,  such  as  engine  columns  and  bedplates. 



CHAPTER  VI. 

APPLICATIONS. 

Example  1. — A  beam  15ft.  long  by  lOin.  deep  by  lOin.  broad 
sustains  a  certain  central  load.  It  is  proposed  to  substitute  for  it 
another  beam  of  like  material,  the  length  of  the  new  beam  being 
18ft.  and  the  breadth  Sin.  What  should  be  its  depth  to  enable 
it  to  carry  the  same  load  as  the  first  beam,  with  the  same  factor 
of  safety  ? 

-lu"- 

Fig.  54. 

Considering  the  first  beam  A  (Fig.  54): 

Resisting  moment  =  ̂ bh2  x  f  =  ̂   x  10  x  100  x  /. 
W       L       W 

Bending  moment  =  —  x  —  =  —  x  15  x  12. 
3*          2v          4 

Hence 

£  x  1000/=  45W   (1) 
Similarly,  for  the  second  beam  B  we  have 

i  x  Sh2  x  /  =  54W   (2) 
With  the  same  factor  of  safety,  the  stress  /  is  the  same  in  each 

case.     Dividing  (2)  by  (1)  gives 
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8#         54       6 

TOGO  ~  45       5' 
.-.  h2  =  -  x  125  =  150 

5 

.-.  h   =  12-25. 

Thus  the  required  depth  is  12^  inches. 
Example  2.  —  Determine  the  necessary  depth  of  the  rectangular 

section  of  the  guide  bar  of  an  engine  (Fig.  55),  in  order  that  the 
stress  on  the  extreme  fibres  may  not  exceed  5  tons  per  square 
inch.  The  length  of  the  connecting-rod  is  twice  the  stroke  of  the 
piston,  and  the  width  of  the  guide  bar  is  6  in.  The  greatest 

obliquity  of  the  connecting-rod  may  be  taken  to  occur,  without 
much  error,  when  the  guide  block  is  at  the  centre  of  the  4  ft.  span. 
It  has  already  been  estimated  that  the  total  steam  pressure  on 
the  piston  will  amount  to  25  tons,  and  will  cause  a  normal  reaction 

of  the  guide  bar  of  6-5  tons. 

Fig.  55. 

Greatest  bending  moment  =  ̂   WL 
=  ̂   x  6'5  x  48  =  78  inch-tons. 

Equating  this  to  the  moment  of  resistance  gives 

£  x  Gin.  x  h2  x  5  tons  =  78  inch-tons: 
.-.  h2  =  15-6,  and  h  =  3'95. 

Hence  the  requisite  depth  is,  say,  4  inches. 
Example  3. — A  cast-iron  bar  l£  in.  diameter,  when  tested  in 

direct  tension,  broke  under  a  load  of  9 '85  tons.  Another  bar, 
4in.  square  and  40in.  span,  made  of  the  same  kind  of  iron,  is 
loaded  as  a  beam.  What  safe  central  load  will  it  carry,  allowing 
a  factor  of  safety  of  6  ? 

Tensile  stress  on  test  bar  =    ; area 

,  .  9-85  tons 
.-.  breaking  stress  =  ,-— —   : —  =  9-91  tons  per  sq.  in. 0-994  sq.  in. 9'91 

Working  stress  (/)  allowed  is  — ; —  =  1'65  tons  per  sq.  in. 

Resisting  moment  =  ̂ bh2  x  / 
-      x  4  x  1C  x  1-65  =  17-G  inch-tons. 
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But 

Bending  moment  =  resisting  moment ; 
.'.  £W  x  40in.  =  17-6  inch-tons; 

.-.  W  =  1-76  tons. 

Example  4. — Estimate  what  distributed  load  a  uniform  rect- 
angular beam,  lOin.  by  Sin.  section  (Fig.  56),  would  safely  carry 

over  a  span  of  lOOin.,  both  when  set  on  the  flat  and  when  placed 

11111111111 

T  T 

10 

•5"\- 
Fig.  56. 

on  edge.    The  material  and  the  factor  of  safety  are  the  same  as  in 
Example  3  ;  also  the  weight  of  the  beam  is  to  be  allowed  for. 

(1)  To  estimate  the  weight  of  the  beam  : — 
Volume  of  metal  =  section  x  length. 

=  10  x  5  x  100  cub.  in. 

Now  a  cubic  inch  of  cast-iron  weighs  0-26  of  a  pound. 
.-.  weight  of  beam  =  5000  x  0'26  =  13001b. 

In  the  present  case  the  beam's  own  weight  is  of  little  import- 
ance, but  in  the  case  of  very  long  span  beams  it  is  all-important. 

(2)  To   estimate   the    resisting  moment  of  the  section   when 
the  beam  is  on  the  flat  (Fig.  56,  a) : — 

Resisting  moment  =  ̂   x  breadth  x  depth2  x  stress 
=  |  x   10  x  52  x  (£  x  9-9); 

or,  M  =  41-6in.3  x  1-65  tons/in.* =  68-7  inch-tons. 

(3)  When  set  on  edge  (Fig.  56,  b)  :— 
M  =  $  x  5  x  102  x  1-65  =  137-5  inch-tons, 

which  is  double  the  former  value. 
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(4)  In  each  case,  from  Fig.  56  : — 
/W       L\     /W      L 

Bending  moment  =  I  -~   x  <7  )  ~  (  1>    XT \     &  /          \ 

=  1^?W  inch-tons. 8 

(5)  Hence,  in  the  first  case, 

12-5W  =  68-7  ;    .-.  W  =  5-5  tons; 
and  in  the  second  case  W  =  1 1  tons. 

But  each  of  these  values  has  to  be  diminished  by  ISOOlbs.,  on 
account  of  the  weight  of  the  beam  itself. 

Example  5. — A  cast-iron  cantilever   (Fig.  57)    10  ft.  long,  is 
loaded  with  a  uniform  load  of  1  ton  per  foot  run.     Its  width  is 

/  Ton  Per  Ft 

l  1  1  1  lil  1  1  1  11 

Fig.  57. 

6in.     Estimate  a  suitable  depth  at  the  wall,  allowing  a  stress  of 
l£  tons  per  square  inch. 

Total  load  =lCxlton  =  10  tons. 

Now  a  load  uniformly  distributed  over  the  whole  length  of  the 
beam  produces  the  same  bending  moment  at  the  wall  as  a  single 
load  of  the  same  amount  concentrated  at  the  centre.  (That  this 
is  so  can  be  convincingly  shown  by  integrating,  between  the 
limits  zero  and  L,  the  several  bending  moments  due  to  each 
element  of  length.) 

Hence, 

B.M.  at  wall  =  total  load  x  ̂   length 
=  10  tons  x  60in.  =  600  inch-tons. 

Also, 

Moment  of  resistance  =  fflh?  x  f 

=  ̂   x  6in.  x  h?  x  l'5ton  per  square  inch. 
Equating  these  results  gives 

l-5#=  600;    .-.A2  =  400. 
Hence  the  required  depth  is  20  inches. 

Such  a  beam  would  doubtless  carry  the  load  safely,  but  the 
form  of  section  is  uneconomical. 
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Example  6. — It  is  estimated  that  the  total  pressure  on  the 
teeth  of  the  pinion  designed  to  rotate  the  turret  of  a  battleship 
carrying  two  67-ton  guns  will  amount  to  20,000  Ibs.  under  the 
most  severe  conditions  likely  to  occur.  The  driving  pinion  and 
the  rack  embracing  the  turret  are  of  steel,  and  have  cut  teeth. 
Allowing  a  safe  stress  of  SOOOlbs.  per  square  inch,  estimate 
a  suitable  pitch  and  breadth  of  face,  assuming  that  the  teeth  bed 
well  across  the  whole  width  of  the  gearing. 

The  pitch  of  the  teeth  is  governed  partly  by  the  diameter  of 
pinion  that  can  be  got  in  the  available  space,  the  teeth  being 
kept  as  few  in  number  as  will  ensure  satisfactory  working.  The 
breadth  of  face  is  less  restricted.  In  this  case  it  is  not  safe  to 
assume  that  more  than  one  pair  of 
teeth  is  simultaneously  in  gear.  The 
wear  on  these  teeth  is  but  trifling, 
as  they  are  only  in  occasional  use. 
Consequently  it  is  needless  to  make 
any  allowance  for  wear. 

Here,  as  in  all  designing,  one  has 
to  work  tentatively :  making  cer- 

tain assumptions,  seeing  to  what 
results  they  lead,  and  then,  if  neces- 
ary,  going  back  and  altering. 

From  previous  experience,  assume 

4"- 

9*8 

a  pitch  of  Gin.     The  thickness  of 
the  tooth  of  the  pinion  at  the  root  pig.  53. 
will  then  be  2'8in.,  say.     The  length 
of  the  tooth  will  be  0'65  x  Gin.  =  3-9in.,  or,  say,  4in. 

Treating  the  tooth  as  a  rectangular  cantilever  (Fig.  58)  loaded 
at  the  end,  as  is  usual, 

Bending  moment  =  force  x  arm. 
=  20,0001bs.  x  4in. 
=  80,000  inch-pounds. Also, 

Resisting  moment  =  ̂ bh2  x  / 
=  y  x  b  x  (2-8)2  x  5000. Hence, 

%b  x  7-82  x  5000.=  80,000; 
.-.  b  =  12-3  in.,  nearly. 

As  this  is  a  reasonable  width,  the  pitch  need  not  be  altered.  The 
pinion  may  have  from  12  to  15  teeth,  and  therefore  a  diameter  of 
from  23  to  28'6in.  The  hydraulic  training  engines  and  the 
gearing  are  in  duplicate,  as  a  safeguard  against  the  breakdown  or 
disablement  of  one  set. 
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The  most  important  factor  in  the  strength  of  a  wheel  tooth  is 
its  thickness  at  the  root.  For  this  reason  the  slope-backed  form 

of  tooth  shown  in  Fig.  59  is  occasionally 
adopted  for  heavy  gearing  whose  direc- 

tion of  rotation  is  never  reversed.  Such 
teeth,  while  50  per  cent,  stronger  than 
those  of  ordinary  form  of  the  same  pitch, 
are  no  more  expensive  to  make,  after 
once  a  properly  shaped  wheel-block  or 
segment  pattern  has  been  prepared  for 
the  foundry. 

Example  7.— Fig.    60  represents  the 
largest  section  of  the  arm  of  a  spur  wheel,  its  length  from  boss 
to   rim  being   20in.     The  wheel 
has  six  arms  (Fig.  61).     Calculate 
what  driving  pressure  the  wheel 
will  stand  at  the  rim,  assuming 
that  each  arm  takes  one-sixth  of 
the  whole  load. 

The   corners  are  well-rounded 

Fig.  59. 

Fig.  60. 

or  filleted,  in  order  to  in- 
crease the  strength  and  im- 

prove the  appearance.  The 
feathers  are  also  tapered 

slightly,  to  facilitate  mould- 
ing. But  these  features  may 

safely  be  disregarded  for 
purposes  of  calculation.  It 
is  also  usual  to  neglect  the  in- 

fluence of  the  lateral  feathers 
or  stiffeners,  which  impart  but 
little  additional  strength  in 

Fig.  61.  the  plane  of  bending  (indi- 
cated by  the  arrow),  and  are 

often  cast  thinner  than  the  rest  of  the  wheel. 
Regarding  each  arm  (Fig.  61)  as  a  cantilever  fixed  at  the  boss 

and  free  at  the  rim,  the  bending  moment  on  each  is — 
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Driving  pressure   x  length  of  arm        ,  „        ~A. —*—  _  =  ip  x  20m. 
Number  or  arms 

The  modulus  of  the  section,  omitting  feathers,  is— 

£  x   lin.  x  42  =,  2-67in.3, 
and  including  feathers  is  2'79in.3,  so  that  their  influence  is  very 
slight.     This  arises  from  their  proximity  to  the  neutral  axis. 

Allowing  a  working  stress  of  SOOOlbs.  per  square  inch,  the  mo- 
ment  of  resistance  of  the  section  of  the  arm  is — 

The  strength  modulus  x  the  stress 
=  2-7  x  3000  =  8100  inch-pounds. 

Equating    the    bending     and 
resisting  moments  gives 

£P  x  20  =  8100 
.-.  P  =  2430  pounds, 

which  is  the   driving    pressure 
sought.      Conversely,  using  the 
same  equations,  we   can   design 
the  arms  of  a  wheel  to  stand  any 
desired  driving  pressure. 

Example  8.  —  Two  wooden 
beams  are  required  to  carry  a 
water  tank  10ft.  square  and  3ft. 
deep  over  a  10ft.  span  (Fig.  62). 
Estimate  a  suitable  section. 

(1)  To  find  the  weight  of  the 
tank  itself,  which  is  assumed  »to 
be    built   up    of     wrought-iron 
plates  |in.  thick. 

Area  of  plates  =  area  of  bottom  +  sides. 
=     102  +  4  (10  x   3). 
=  100    +  120  =  220  sq.  ft. 

Now,  tjin.  plate  weighs  201bs.  per  square  foot, 
weight  is  220  x  201bs.  =  44001bs. 

(2)  To  find  the  weight  of  the  greatest  volume  of  water 
tank  can  hold. 

Capacity  =  area  of  base  x  depth. 
=  102  x   3  -  300  cub.  ft. 

Now,   1  cub.  ft.  of  fresh  water  weighs  62-51bs.      Hence   the 
weight  of  water  is  300  x  62'51bs.  =  18,7501bs. 

(3)  Neglecting  the  weight  of  the  beams,  the  total  uniformly 
distributed  load  is,  therefore — 

4400  +  18,750  =  23,1501bs. 
Allowing  the  odd  8501bs.  for  rivet  heads,  overlapping  of  plates 

Fig.  62. 

Hence  the 

the 
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and    weight  of   beams,   we   may  call   this   24,0001bs. — that   is, 
12,0001bs.  per  beam. 

(4)  Taking  the  effective  span  as  12ft.,  the  bending  moment 
at  the  centre  of  each  beam  is 

|WL  =  I  x   12,000  x   144in. 

=  216,000  inch-pounds. 
Any  beam  having  this  value  for  its  central  moment  of  resistance 

will  answer  the  purpose. 
(5)  Take  a  trial  breadth  of  l()in.     Then  to  find  the  depth  h 

we  say — 
Resisting  moment  =  ̂ bh2  x  /  =  bending  moment. 
Allowing  a  stress  of  SOOlbs.  per  square  inch,  this  becomes — 

I  x  10  x  A2  x  800  =  216,000. 
.-.  h2  =  162. 

/.  h  =  13in.,  say. 

Thus  a  strong  enough  section  for  each  beam  is  IGin.  x  13in. 
Whether  this  would  be  the  best  section  to  use  under  the  cir- 

cumstances depends  011  what  scantlings  of  timber  are  available. 

,"        i   V 
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Fig.  63. 

(6)  Taking  the  density  of  the  timber  (fir)  as  401bs.  per 
cubic  foot,  the  weight  of  each  beam  is 

lOin.  x   13in.        10C,          AM,  ,10011-   x   12tt.   x  401bs.  =  4331bs. 
144 

Example  9. — A  fir  beam,  of  13ft.  effective  span,  is  loaded  in 
the  manner  shown  by  Fig.  63,  a  distributed  load  of  5  tons  being 
applied  between  the  two  concentrated  loads.  Calculate  the  bending 
moment  at  C,  midway  between  the  points  of  application  of  the 
two  local  loads,  and  estimate  a  suitable  section. 

(1)  To  find  the  reactions.  Taking  moments  about  A,  we 
have 

R  x  13ft.  =  (3  tons  x  7ft.)  +  (5  tons  x  5-5ft.)  +  (2  tons  x  4ft.). 
=  21  +  27-5  +  h  =  56-5ft.-tou8. 
,-.  R  =  56-5  -i-  13  =  4-35  tons. 
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The  other  reaction  is  the  total  load  minw  R,  or 

Ri  »  (2  +  5  +  3)  -  4-35  =  5-65  tons. 
(2)  To  find  the  bending  moment  at  <J.     Taking  the  moments 

of  the  forces  acting  to  the  left  of  C,  we  get — 

M  =  (5-65  tons    x    5'5ft.)    -    (2    tons    x    l-5ft.)  -    (2-5  tons 
x  0-75ft.). 

-  31-1   -  3  -  1-87  =»  26-2  foot-tons. 

(3)  To  choose  a  suitable  stress.     We   find  from    Molesworth 
that  the  ultimate  tensile  strength  of  spruce  fir  is  10,100lbs.  per 
square  inch,  and  the  crushing  strength  65001bs.  per  square  inch. 
The  tensile  strength  need  not  further  concern  us ;  because,  if  the 
beam  breaks  at  all,  it  will  break  in  the  weakest  part — viz.,  by  the 
crushing  of  the  extreme  top  fibres.     Allowing  a  factor  of  safety 
of  8,  the  safe  compressive  strength  will  be — 

£  x  65001bs.  =  SOOlbs.  per  square  inch,  say. 

(4)  To  find  a  suitable  section.      Assume  tentatively  a  breadth 
of  12in.     Then,  as  the  resisting  moment  must  equal  the  bending 

moment  of  26'2ft.-tons,  we  have — 

£  x  12in.  x  h2  x  SOOlbs.  =-  26'2  x  12  x  2240  inch-pounds. 
/.A2  =  441,  andA  =  21in. 

Thus  the  ratio  of  depth  to  breadth  is  21  in.  -r-  12  in.  =  T75. 
If  for  any  reason  this  section  should  be  thought  unsuitable,  or, 

if  we  have  any  difficulty  in  obtaining  such  a  beam,  then  a  different 
value  of  b  may  be  chosen  and  h  calculated  afresh.  Here  a  better 
breadth  would  be  14  in.  If  a  likely  piece  of  timber  happens  to 
be  available,  its  moment  of  resistance  should  be  calculated,  in 
order  to  see  whether  the  same  can  be  worked  in. 

Ratio  of  Depth  to  Breadth  in  Rectangular  Beams.— It  is 
worth  noticing  here  that  the  strongest  beam  which  can  be  cut 

from  a  round  log  (Fig.  64)  is  one  whose  depth  is  v/2  or  1'41 
times  its  breadth,  and  that  the  stiffest  beam  has  a  depth  of  ̂ 3  or 

1-73  times  its  breadth.  Geometrically  put,  the  perpendiculars 
from  the  corners  cut  off  from  3  and  ̂   the  diameter  in  the  respec- 

tive cases.  Hence,  when  a  single  rectangular  beam  has  to  be  cut 
out  of  a  cylindrical  log,  the  depth  should  be  from  1^  to  If  times 
the  breadth. 

As  timber  beams,  however,  are  not  usually  cut  singly  out  of 
round  logs,  the  above  ratios  are  not  of  great  value.  The  most 
scientific  mode  of  designing  a  beam  is  to  fix  the  ratio  of  depth  to 
span  with  a  view  to  stiffness,  and  then  compute  the  breadth  with  a 
view  to  strength.  But  the  need  for  lateral  stiffness  and  stability, 
as  well  as  the  limitations  imposed  by  the  market  sizes  of  timber 
obtainable,  must  not  be  lost  sight  of. 
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Notes  on  Timber.— Though  mechanical  engineers  have  little  to 
do  with  timber  beams,  the  following  brief  notes,  condensed  from 
Rankine  and  other  sources,  are  not  without  interest : 

Pine  timber  of  the  best  sort  is  the  produce  of  the  red  pine,  or 
Scottish  fir,  grown  in  Norway,  Sweden,  Russia,  and  Poland.  The 
best  is  exported  from  Riga,  the  next  from  Memel  and  Dantzic. 
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Fig.  04. 

The  same  species  of  tree  grows  also  in  Britain,  but  is  inferior  in 
strength.  This  Baltic  fir  is  the  best  of  all  timber  for  straight 
beams,  ties,  and  straight  pieces  in  framework  generally. 

The  length  of  Baltic  fir  logs  varies  from  25  to  45  ft.      The 
section  is  square,  and  of  the  following  sizes : 

Name. Size. Characteristics. 

Stettin  (Prussian)  . 

Dantzic      „ 

Meniel        „ 

Riga  (Russian) 

Swedish 
Norwegian     .         .         , 

Inches. 
18  to  20 

13  to  16 

12  to  14 

10  to  12 

10  to  12 
8  to    9 

/Longest  logs  ;  coarse,  but  strong, 

\     large  knots. 
Uniform  and  durable. 

f  Best  and  most  uniform  ;  small 

\     hard  knots. 

Pine  timber  for  use  as  beams  and  framework  is  also  obtained 
from  various  other  species,  chiefly  North  American,  of  which  the 
best  are  the  yellow  pine  and  white  pine.  It  is  softer  and  less 
durable  than  the  red  pine  of  Northern  Europe,  but  lighter,  and 
can  be  had  in  larger  logs, 
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White  fir,  or  deal  timber  of  the  best  kind,  is  the  produce  of  the 
spruce  fir,  grown  in  Norway,  Sweden,  and  Russia.  The  best  is 
that  known  as  Christiana  deal.  Much  of  this  timber  is  sawn  up 
for  sales  into  pieces  of  various  thicknesses  suited  for  planking. 
Boards  Tin.  wide  are  known  as  battens,  those  9in.  wide  as  deals, 
and  those  11  or  12in.  wide  as  planks.  They  are  to  be  had  of 
various  lengths,  but  the  most  usual  length  is  about  12ft.  This  is 
an  excellent  kind  of  timber  for  planking,  light  framing,  and 

joiners'  work. 
Example  10. — The  top  of  the  combustion  chamber  of  a  marine 

boiler  is  supported  by  a  number  of  similar  girder  stays  (Fig.  65) 
28in.  span,  Sin.  deep,  and  8|in.  apart;  each  carrying  three 

Fig.  65. 

l^in.  bolts,  spaced  equally.  The  steam  pressure  is  1801bs.  per 
square  inch,  and  the  stress  permissible  on  the  extreme  fibres  of 
the  stays  is  90001bs.  per  square  inch.  Estimate  the  breadth  of 
each  stay. 

The  function  of  the  girder  stays  is  to  prevent  sagging  of  the 
combustion  chamber  top  or  crown,  under  the  steam  pressure. 
The  ends  of  the  flat  crown  plate  are  supported  directly  by  the 
front  and  back  plates  of  the  chamber,  and  the  central  portion  by 
means  of  the  suspension  bolts. 

(1)  To   find  the   pull   on   each  bolt.      A  little  reflection  will 
show  that  each  bolt  has  to   support  an  area  of  8|  by  7in.  of  flat 
plate.     Hence  the  pull  (w)  =  8-5  x  7  x  1801bs.  =  10,710lbs. 

(2)  To  find  the  equal  reactions  of  the  front  and  back  plates — 
R  =  £x3w  =  fx  10,710  =  16,0651bs. 

(3)  To  find  the  greatest  bending  moment,  which  is  at  centre 
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of  span,  take  moments  about  C  of  the  forces  on  the  right-hand 
half  of  the  stay,  thus — 

M  =  (16,0651bs.  x  Uin.)  -  (10,7101bs.  x  7in.). 
=  150,000  inch-pounds,  say. 

(4)  To  find  the  breadth  of  a  girder,  equate  the  resisting  and 
bending  moments,  thus — 

£6  x  82  x  9000  =  150,000. 
.-.b  =  l-56in.  =  !TVn- 

Each  stay  may  be  a  solid  bar,  with  drilled  bosses,  or  it  may 
consist  of  two  plates  riveted  together,  and  distance  pieces.  The 
girder  stays  of  mercantile  marine  boilers  are  in  practice  neces- 

sarily designed  in  accordance  with  the  hard-and-fast  rules  of  one 

or  other  of  the  registration  societies — Lloyd's  or  the  Board  of Trade.  Not  so  in  naval  and  locomotive  work. 

•8, 

A  f  late 

Fig   66. 

Example  11. — The  screwed  stays  supporting  the  back  and  sides 
of  the  combustion  chamber  of  a  marine  boiler  are  spaced  as  shown 
in  Fig.  66.  The  plates  are  fin.  thick,  and  the  steam  pressure  is 
ISOlbs.  per  square  inch.  Determine  the  maximum  stress  on  the 
flat  plates  induced  by  this  pressure. 

Each  square  piece  of  plate  like  abed  may  be  mentally  isolated 
and  regarded,  with  fair  accuracy,  as  a  beam  fixed  all  round  and 
loaded  uniformly.  The  bending  moment  caused  by  a  uniformly- 
distributed  load  acting  on  a  beam  fixed  at  both  ends  is  commonly 
taken  as — 

T^2  (total  load  x  span). 
In  the  case  of  a  beam  fixed  on  four  sides  it  seems  reasonable  to 

assume  that  the  bending  moment  will  be  only  one-half  of  this 
amount.    Making  this  assumption,  the  equation  of  moments  is— 

^  x  breadth  x  (thickness)2  x  stress  =  Jj  x  load  x  span. 
.'.  £  x  9  x  (|)2  x  stress  —  Jj  x  92  x  150  x  9. 
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Whence  the  stress  =  7 77 Gibs,  per  square  inch. 
Working  with  symbols,  this  method  gives  the  formula — 

L2 

Stress  =  £  x  —  x  p; 

where  L  is  the  pitch  of  the  stays,  t  the  plate  thickness,  and  p  the 

steam  pressure.  Unwin's  rule  (p.  93,  "  Machine  Design  ")  is  the 
same  in  form  as  this,  but  the  constant  is  there  taken  as  0-222 
instead  of  O25. 

The  necessary  diameter  of  the  stays  at  the  bottom  of  the  threads 
may  be  readily  estimated  from  the  consideration  that  each  sustains 

a  direct  pull  of  92-  x  1501bs. 
Example  12. — A  lever  safety  valve  A  (Fig.  67)is2£in.  diameter. 

The  lever  is  estimated  to  weigh  lOlbs.,  its  centre  of  gravity  being 
about  19in.  from  the  fulcrum  (knife-edge).  The  valve  weighs 
21bs.  Estimate  what  load  W  is  required  for  the  steam  to  blow 
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Fig.  67. 

off  at  a  pressure  of  901bs.  per  square  inch,  and  also  what  should 
be  the  greatest  depth  of  the  lever,  if  the  thickness  is  £in.  The 
stress  on  the  metal  must  not  exceed  50001bs.  per  square  inch. 

(1)  Total  pressure  P  =  area  x  pressure. 
=  4-91  x  901bs.  =  4421bs. 

(2)  Taking  moments  about  the  fulcrum — 

(W  x  40in.)  -r  (lOlbs.  x  19in.)  =  (442-2)  3fin. 
.-.  40W  +  190  =  1650, 

.-.  W  =  1460  -f  40  =  36;51bs. 

(3)  The  bending  moment  is  greatest  directly  over  the  valve, 
and  is — 

W  x  (40in.-3fin.)  +  lOlbs.  x  (19in. -3fin.) 
=  (36-51bs.  x  36-25in.)  +  (lOlbs.  x  15-25in.) 

=  1323  +  153  =  1476  inch-pounds. 

(4)  Equating  the  resisting  and  bending  moments  gives — 

5000  x  £  x  0-5  x  h*  =  1476 
/.  h*  =  3-55,  and  h  =  1-9  in. 

The  lever  should   therefore  have  a  maximum   depth  of,  say 
2  inches. 



78  THE  DESIGN  OF  BEAMS. 

A  Caution.  —  In  working  the  preceding  practical  examples,  liberal 
use  has  been  made  of  the  fact  that  the  moment  of  resistance  of  a 
rectangular  section  is  given  by  the  formula 

Now  it  has  to  be  particularly  observed  that  the  stress  /  here 
referred  to  is  not  the  breaking  stress,  but  some  chosen  safe  stress 
well  within  the  elastic  range  of  the  material  composing  the  beam. 
If  we  were  innocently  to  substitute  for  f  the  tensile  breaking  stress 
of  the  material,  and  multiply  out,  the  value  of  M  so  found  would 
not  be  the  ultimate  moment  of  resistance  of  the  beam  at  the  sec- 

tion under  consideration  ;  or,  in  other  words,  it  would  not  be  equal 
to  the  bending  moment  that  would  break  the  beam,  but  a  good  deal 
less.  How  much  less  cannot  be  stated  very  exactly  ;  but  Sir  B. 

Baker,  in  his  paper  on  "  The  Practical  Strength  of  Beams  "  (Proc. 
I.C.E.,vo\.  Ixii.,  part  iv.),  says  that  the  actual  ultimate  moment 
of  resistance  of  the  rectangular  section  of  a  beam  (presumably  of 

.36"- 
Fig.  68. 

mild  steel)  is  found  by  experiment  to  be  about  70  per  cent,  greater 
than  the  so-called  theoretical  value. 

This  apparent  discrepancy  between  experiment  and  reasoning 
does  not,  however,  prove  that  the  ordinary  formula  for  the  strength 
of  a  rectangular  beam  is  quite  wrong,  and  therefore  useless,  as 
some  have  stated.  It  merely  shows  that  if  we  ignore  or  lose  sight 
of  the  assumptions  on  which  it  is  founded,  and  use  the  formula 
rashly,  it  will  of  course  yield  totally  unexpected  and  seemingly 
erroneous  results.  To  every  formula  built  on  an  experimental 
basis  the  same  remark  applies. 

The  following  example  will  serve  to  exemplify  a  common  error 
and  to  point  a  moral : — 

A  cast-iron  bar  (Fig.  68)  which  calipered  l-03in.  wide  by  2'OGin. 
deep  was  tested  for  transverse  strength  in  a  testing-machine.  The 
span  was  36in.  The  bar  broke  suddenly  with  a  load  of  1*2  tons 
applied  at  the  centre.  Calculate  from  these  data  the  greatest 
tensile  stress  induced  in  the  material  : — 

The  bending  moment  at  the  centre  is 

=  \  x  1-2  tons  x  3din.  =  1O8  inch-tons. 
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The  resisting  moment  is  ̂ bh2  x  _/, 

=  £  x  1-03  x  (2-06)2  x  /, 
=  0'73  /inch-tons. 

Equating  these  moments,  we  have 

0-73/  =  10-8 ; 
.*.  /  =  14-8  tons  per  square  inch. 

Now  as  cast-iron  is  weaker  in  tension  than  in  compression,  a 
uniform  beam  is  sure  to  give  way,  if  at  all,  primarily  by  failure  of 
the  stretched  side.  Hence  many  people  would  conclude  that  14'8 
tons  per  square  inch  was  the  greatest  tensile  stress  induced  in  the 
sample  of  cast-iron  tested.  This  conclusion  seems  all  right,  but 
as  a  matter  of  fact  it  is  all  wrong.  The  real  maximum  stress  is 
less  than  14'8  tons  per  square  inch. 

The  mistake  lies  in  the  tacit  assumption  that  stress  varies  as 
strain  right  up  to  the  breaking-point,  which  is  not  true.  For  a 
non-plastic  material  like  cast-iron  the  result  may  not  be  much 
wrong ;  but  in  the  case  of  a  metal  that  draws  out  visibly  before 
fracture,  like  wrought-iron  or  mild  steel,  the  result  thus  found 
would  certainly  be  wide  of  the  mark. 

The  true  use  of  the  above  formula  has  already  been  shown  in 
previous  examples.  By  its  aid  we  can  rapidly  calculate  what  load 
a  beam  will  safely  carry  when  the  top  and  bottom  layers  of  material 
are  subjected  to  a  chosen  stress  that  is  well  within  the  elastic 
limits.  And  this  is  all  we  want  in  practice ;  because  engineers 
design  beams,  not  to  break,  but  to  stand  with  a  liberal  margin  of 
safety.  The  exact  breaking  load  of  a  solid  beam  does  not  admit 
of  calculation  from  first  principles,  or  at  any  rate  not  of  simple 
intelligible  calculation.  Moreover,  its  value  is  rather  a  matter  of 
curiosity  or  of  scientific  interest  than  of  practical  service  in  de- 

signing machines  and  structures. 
Plastic  Bending. — It  is  instructive  to  consider  why  the  actual 

breaking  load  of  a  beam  is  greater  than  the  hypothetical 
breaking  load,  as  calculated  by  the  elastic  formula.  It  is  because 
the  plastic  yielding  of  the  material  more  remote  from  the  neutral 
axis  throws  a  higher  stress  on  the  material  nearer  to  that  axis  than 
the  ordinary  theory  takes  account  of,  and  so  tends  to  equalise  the 
stress  over  the  section,  as  shown  in  Fig.  69.  Instead,  therefore,  of 
the  pair  of  dotted  triangles,  showing  that  the  extension  or  com- 

pression of  any  layer  of  fibres  is  proportional  to  the  distance  of 
that  layer  from  the  neutral  layer,  we  have  a  pair  of  figures  more 
nearly  resembling  parabolas  (Fig.  69).  If  we  only  knew  the  exact 
form  of  these  curves,  we  could  calculate  readily  enough  the  true 
moment  of  resistance  of  the  section  just  before  the  rupture  of  the 
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beam  ;  but  it  is  not  easy  to  see  how  we  are  to  obtain  that  infor- 
mation. 

This  simple  explanation  seems  sufficient ;  but  a  further  reason 
why  the  elastic  formula  fails  to  give  the  correct  breaking  loads 
is  often  put  forward.  It  is  that  the  simple  theory  of  bending 
takes  no  account  of  the  adhesion,  or  horizontal  and  vertical  attach- 

Fig.  69. 

ment  to  one  another,  of  the  successive  layers  of  material  composing 
the  beam,  as  shown  in  section  by  Fig.  70,  By  mathematical 

reasoning  (as  in  Cotterill's  "  Applied  Mechanics,"  p.  402)  it  can be  shown  that  when  the  beam  is  bent  within  the  elastic  limits,  the 
lateral  connection  of  the  parts  can  have  but  a  very  trifling  influ- 

ence on  its  resistance  to  bending,  unless  the  ratio  of  breadth  to 

Fig.  70. Fig.  71. 

depth  be  great,  as  in  the  case  of  a  wide  thin  plate.  But  when 
the  breaking  stress  is  approached,  similar  reasoning  shows  that  the 
connection  of  the  layers  may  greatly  increase  the  resisting  moment. 
Fig,  71  is  intended  to  show,  in  an  exaggerated  manner,  the  nature 
of  the  deformation  of  the  horizontal  and  vertical  layers  due  to  the 
elastic  bending  of  the  beam. 
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Assumptions. — It  will  now  be  advisable  to  summarise  and  note 
carefully  the  various  assumptions  made  in  framing  the  ordinary 
theory  of  bending.  These  are  as  follow : — 

(1)  The  beam  is  of  uniform  section  from  end  to  end.    But  many 
actual  beams  are  not  uniform. 

(2)  The  forces  are  applied  in  such  a  way  as  to  cause  only  a 
bending  moment,  and  no  other  kind  of  straining  action.     But  all 
actual  beams  have  to  withstand  shearing  forces,  in  addition  to 
bending  moments. 

(3)  The  material  of  the  beam  is  perfectly  uniform  in  composi- 
tion]) throughout ;    or,  in  a  word,  is   homogeneous.     But  actual 

materials  of  construction  are  only  nearly  so. 
(4)  The  material  is  perfectly  elastic ;  or,  in  other  words,  stress 

is  proportional  to  strain, 
(5)  Sections  of  the  beam  that  are  plane  or  flat  before  bending 

remain  so  after  bending.     This  is  true  only  for  a  limited  range  of 
stress. 

(6)  The  very  thin  layers  into  which  the  whole  beam  is  imagined 
to  be  split  up  in  establishing  the  formulae  are  unattached  to  one 
another. 

These  are  six  large  assumptions,  no  doubt ;  but  without  making 
them  it  is  not  possible  to  bring  the  subject  within  the  range  of 
practical  mathematics,  so  great  is  the  simplification  they  bring 
about.  Moreover,  sufficient  evidence  that  the  simplified  theory  of 
bending  is  not  so  very  far  wrong  is  afforded  by  the  fact  that  the 
modulus  of  elasticity  of  a  material,  as  ascertained  by  experiments 
on  the  deflection  of  a  beam,  comes  out  practically  the  same  as  the 
tensile  modulus  determined  by  the  direct  stretching  of  a  bar  of 
like  material,  provided  always  that  the  stress  be  kept  well  within 
the  elastic  range  of  the  material  experimented  upon. 



CHAPTER  VII. 

MOMENT   OF    RESISTANCE   OF    X,    CHANNEL,   AND 
CIRCULAR   SECTIONS. 

Moment  of  Resistance  of  X  Sections. — Leaving  rectangular 
beams,  we  next  pass  on  to  consider  the  strength  of  the  much 
more  economical  form  of  section  shown  in  Fig.  72.  Hitherto,  in 
finding  the  resisting  moment  of  flanged  beams  at  a  given  section, 
we  have  been  content  to  neglect  the  influence  of  the  web  entirely. 
This  procedure  is  usual,  and  is  quite  legitimate  as  regards  deep 
girders ;  but  it  will  not  do  for  comparatively  shallow  beams  with 
thick  webs,  except  as  a  first  approximation.  The  method  to  be 
then  adopted,  or  rather  choice  of  methods,  will  be  made  clear  by 
the  aid  of  an  example. 

Fig.  72  is  the  section  of  a  steel  locomotive  coupling  rod.  The 
greatest  safe  stress  on  the  material  is  six  tons  per  square  inch.  It 
is  required  to  ascertain  its  moment  of  resistance  as  a  beam,  dis- 

regarding entirely  the  rounding  of  the  corners. 
The  transverse  load  is  here  the  centrifugal  force  arising  from 

the  rapid  rotation  of  the  rod,  and  acts  alternately  up  and  down. 
This  is  increased  slightly  during  half  a  revolution  by  the  weight 
of  the  rod.  There  is  also  a  longitudinal  load,  but  this  does  not 
immediately  concern  us. 

Method  /. — Several  ways  of  determining  the  moment  of  resist- 
ance of  the  rod  are  available,  and  it  will  be  instructive  to  compare 

them.  The  easiest  to  grasp  is  the  "  bit-by-bit  method,"  which 
consists  in  dividing  the  whole  section  into  symmetrical  slices 
(Fig.  73),  then  finding  the  resistance  of  each  pair  separately, 
multiplying  these  by  their  respective  resistance  arms,  and 
finally  adding  all  the  results  together,  as  detailed  on  p.  84  ;  the 
product  of  the  first  two  columns  (area  x  stress)  is  a  force  in  each 
case. 

Thus  the  moment  of  resistance  of  the  entire  section  is  32' 5 
inch-tons.  This  result  is  quite  accurate  enough  ;  but  a  practical 
objection  to  the  method  is  its  slowness,  owing  to  the  necessity  of 
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drawing  the  section  carefully  to  scale  and  of  making  a  good  many 
measurements.  Nevertheless,  it  is  a  good  general  method  to  be 
able  to  fall  back  upon. 

Area. Stress. Arm. /.  Momont. 

Tons  per  sq.  in. Inches. Inch-tons. 

2'5in.  x  0-21  in. 5-7 
4-05 

12-12 
2'5in.  x  0  21  in. 5-1 

3-68 9-73 

2'5in.  x  0-21in. 4-5 

3-21 7-58 

O'oin.  x  0'5in. 3-5 
2-5 

2-19 

O'Shi.  x  O'oin. 2-1 
1-5 

0-79 

O'oin.  x  0'5in. 0-7 0-5 

0-09 

32-50 

Method  II. — By  means  of  a  resistance  area,  the  several  opera- 
tions being  described  in  complete  detail  below  : — 

(1)  The  centre  of  area  or  centroid  of  this  symmetrical  section 
is  at  once  placed  at  the  centre  of  its  depth,  and  the  neutral  axis 
drawn  through  it. 

Fig.  74. 

(2)    Draw   the   centre    line  cl  of    the    figure    of    resistance 
(Fig.  74)  at  right  angles  to  the  neutral  axis,  and  set  off  op  equal 
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to  the  breadth  of  the  flange  multiplied  by  the  stress  allowed  at 
the  top  edge — that  is, 

2'5in.   x  G  tons  per  square  inch  =  15  units, 
any  convenient  scale  of  representation  being  chosen.  Join  pn, 
and  project  dq  from  the  lower  edge  of  the  top  flange.  Then  cdgp 
is  the  resistance  area  of  the  top  flange.  We  can  find  its 
numerical  value  either  by  the  use  of  a  planimeter  (being  careful  as 
to  the  scales)  or  preferably  by  arithmetic,  as  follows : — 

Since  the  stress  varies  as  the  distance  from  the  neutral  axis, 
we  can  find  what  dq  represents  by  the  proportion 

dq  :  cp  =  nd  :  nc, 

which,  on  substituting  the  known  values,  becomes 

dq  :  15  «=  1-5  :  2-125; 
whence 

dq  =  10-58  units. 

Now,  as  the  area  of  a  trapezoid  is  half  the  sum  of  the  parallel 
sides  multiplied  by  the  height,  the  area  cdqp  represents 

£  (15  +  10-58)  x  0-625  -  8  tons. 
This  is  the  resistance  of  the  top  flange.  It  is  sometimes  called 
the  total  stress  on  the  top  flange.  By  working  in  this  way  it  is 
not  absolutely  necessary,  so  far,  to  draw  an  accurate  figure  of  the 

section  ;  though  it  is  advisable  to  do  so,  as  a  check  on  the  arith- 
metical work. 

(3)  To  draw  the  resistance  area  for  the  web,  make  cw  equal  to 
the  thickness  of  the  web  multiplied  by  the  stress  allowed  at  the 
top  edge  of  the  section — that  is, 

£  in.  x   6  tons  per  square  inch  »=  3  units. 
Join  wn,  so  finding  e.  Then  de  is  a  measure  of  the  resistance 
of  the  top  layer  of  fibres  of  the  web,  and  den  is  the  resistance 
area  of  the  top  half  of  the  web. 

To  find  how  much  thrust  the  area  den  represents,  we  write 
the  proportion 

de  :  dq  —  thickness  of  web  :  width  of  flange  ; 

which,  on  inserting  the  known  values,  becomes 

de  :  10-58  -  0-5  :  2-5  ; 
consequently 

,        10-58  x  0-5       0  11C       ., de  —   =-  2-116  units. 
2-5 

An  alternative  way  is  to  measure  de  directly  from  a  large  figure 
drawn  strictly  to  scale. 
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Now,  as  the  area  of  any  triangle  is  half  the  base  into  the 
height,  the  triangle  den  represents 

\dn  x  de=  |  of  1-5  x  2-116  =  1-59  tons. 
(4)  By  adding  together  the  last  two  results,  we  find  that  the 

entire  thrust,  say,  of  the  part  of  the  section  above  the  neutral  axis 

is  8  +  1*59  =  9-59  tons,  as  represented  by  the  shaded  area.     The 
resistance  area  of  the  lower  half  is  similar,  and  represents  the 
total  pull  over  the  section. 

(5)  It  is  now  necessary  to  find  the  centroid  G1  of  the  upper 
shaded  area,  which  is  the  most  troublesome  part  of  the  whole 
process.     For  this  step  we  need  an  accurate  figure,  and  to  avoid 
confusion  the  construction  is  given  separately  in  Figs.  75  and 
76. 

Bisect  cp  at  m,  and  dq  at  m1  (Fig.  75).  Join  mm1.  Produce 
cp,  making  pt  =  dq.  Also  produce  qd,  making  db  =  cp.  Join 
bt,  cutting  mm1  at  g.  This  point  is  the  centroid  of  the  trape- 
zoid  cdqp. 

To  find  the  centroid  of  the  triangle  den,  bisect  de  at  a,  and 

en  at  /.  Join  an,  df.  Their  intersection  g1  is  the  point 
sought. 

Lastly,  to  find  G1  we  must  divide  the  line  glg  into  segments 
inversely  proportional  to  the  areas  of  the  trapezoid  and  triangle, 
thus : — 

gGl :  ̂ G1  =  area  den  :  area  cdqp. 

From  steps  (2)  and  (3)  we  know  that 

Area  of  den  :  area  cdqp  =  1'59  :  8  ; 
so  that 

gG1  :  0'G1  =  1-59  :  8 
=  1  :  5-03. 

To  divide  the  line  glg  in  this  proportion,  along  any  line  gk 
drawn  from  g  at  any  angle  to  gg1,  as  in  Fig.  76,  set  off  gh  =  lin. 
or  other  convenient  unit,  and  hk  =  5-03  of  such  units.  Join  kg1 
and  draw  hGl  parallel  to  it.  Thus  the  centroid  G1  of  the  upper 
resistance  area  is  determined.  The  centroid  G2  of  the  lower 
resistance  area  (Fig.  74)  is  similarly  situated,  and  is  at  once 
located  by  direct  measurement. 

(6)  The  next  step  is  to  measure  the  length  of  the  resistance 
arm.     This   is   the  vertical    distance   between   G1  and   G2.     It 

measures  3'38in.     From  this  and  step  (4),  the  moment  of  resist- 
ance to  bending  of  the  section  is 

Resistance  of  half  of  section  x  resist,  arm 

=  9-59  tons  x  3'38in.  =  32-43  inch-tons, 
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a  result  which  agrees  remarkably  well  with  the  32- 5  inch-tons 
arrived  at  by  the  first  method. 

This  second  method  is  both  more  difficult  and  occupies  more 
time  than  the  first. 

Method  III. — By  means  of  an  equivalent  area  (Fig.  77)  : — 
(1)  Locate  the  centroid  G  of  the  entire  section.     Join  AG, 

BG,  CG,  and  DG,  thus  finding  the  points  E,  F,  H,  J.     To  take 
account  of  the  web,  join  also  K,  L, 
M,  N,  to  G.  The  shaded  figure  thus 
determined  is  the  section  of  an  ima- 

ginary beam  of  equivalent  value  to 
the  actual  beam  in  resisting  a  bending 
moment,  having  every  layer  stressed 
to  the  same  extent  as  the  outer  layers 
of  the  actual  beam. 

(2)  The  centroids  G1  and  G2  of  the 
upper  and  lower  parts  are  located  by 
the  geometrical  process  already  de- 

scribed under  Method  II.  Another 
way,  mechanical,  is  to  cut  out  a  stiff 
paper  or  sheet-metal  template,  and 
find  the  point  about  which  it  will 
balance.  This  can  be  done  either  by 
trial  and  error,  or  by  suspending  the 
template  from  two  corners  in  succes- 

sion and  using  a  plumb-line  to  locate 

G1. Fig.  77  .  (3)  The  area  of  each  shaded  part 
is  also  found,  in  the  manner  already 

described,  to  be   l-598sq.   in.      Hence  the  moment  of  resistance 
of  the  section  is 

£  shaded  area  x 
=  1-598  x  3-38  x 

lever  arm  x  stress 
6  =  32'42  inch-tons. 

This  method  is  slightly  less  cumbrous  than  that  of  resistance 
areas. 

Method  IV.  —  By  the  use  of  a  formula.  —  In  previous  chapters 
it  has  been  stated  that  the  moment  of  resistance  of  any  section 
of  a  beam  is  got  by  multiplying  the  modulus  of  that  section  by 
the  stress  allowed  on  the  extreme  layers  of  the  material.  Now 
for  the  present  we  simply  assert  that  the  modulus  of  an  I  section, 
like  Fig.  72,  is  given  by  the  formula 

„        BH3  -  bh3 
~6H  -  ' 

which,  for  the  case  in  hand,  becomes 
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Z  =  2-5  x  (4-25)3  -  2  x  33 
6  x  4-25 

(2-5  x  76-77)  -  (2  x  27)     .  ,.,. =  X   JL   5   f  =  D'izinch8. 
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25-5 Hence  the  moment  of  resistance  is 
tons M  =  6 

inch5 

x  5'42inch3  =  82' 5  inch-tons. 

This  last  is  by  far  the  shortest  and  least  laborious  way  of 
proceeding,  a  slide-rule  being  used,  if  at  hand.  It  is  also  the 
most  accurate,  and  does  not  need  the  section  to  be  drawn  to 
scale.  But  one  must  remember  that,  as  we  have  not  yet  proved 
the  formula  made  use  of,  the  result  has  been  found  rather  by 
faith  than  by  the  more  intellectual  and  satisfying  process  of 
reasoning  from  first  principles.  Still,  the  close  agreement  of  the 
results  obtained  by  processes  so  different  is  in  itself  strong  evidence 
of  the  truth  of  each  method  employed. 

BEAMS  OF  CHANNEL  SECTION. 

Strength  of  an  Unsymmetrical  Section. — Fig.  78  is  a  section 
of  a  beam  unsymmetrical  about  the  neutral  axis,  and  therefore 
different  from  any  hitherto  considered  in  the  preceding  pages. 
It  is  required  to  estimate  its  moment  of  resistance  to  bending. 
The  following  method  of  proceeding  is  easy  to  understand,  and 
has  the  great  advantage  of  being  applicable  to  any  section  what- 

ever. It  is  based  on  the  now  familiar  fact  that  the  stress  on  any 
part  of  a  section  varies  directly  as  the  distance  of  that  part  from 
the  neutral  axis  of  the  section. 

(1)  After  drawing  the  section  to  scale,  reduce  it  to  the  simple 
equivalent  section  (Fig.  79),  putting  on  all  needful  dimensions. 
For  simplicity  the  rivet  holes  will  be  disregarded. 

(2)  Find  the  areas  of  the  three  rectangles,  also  their  moments 
about  the  top  edge  of  the  section.     Arrange  these  values  in  tabular 
form,  add  them  up,  and  by  division  locate  the  centre  of  area  G  of 
the  figure.     Thus : — 

Area. Arm. Moment. 

Inch2. 

Inch. 

Inch3. 
lOin.       x      0'5in.      = .     5 

0-25 

1-26 

3  -"/in.  x      2in.        = 
.     7 

2-25 

15-75 
lin.      x    lOin.        = .  10 

9-0 

90 

22 
107 
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Hence  x  =  107  -r  22  =  4-87in.      Set    off   this    distance,  and 
through  G  draw  the  neutral  axis. 

(3)  At  that  edge  of  the  section  which  is  the  farther  from  the  neu- 
tral axis — viz.,  the  bottom  edge  (Fig.  80) — set  off  ab  to  represent  the 

limiting  stress  on  the  extreme  fibres,  say  six  tons  per  square  inch. 
Join  6G,  and  produce  it  to  cut  the  top  edge.  Ordinates  to  this 

Fig.  78. 

diagonal  line  represent  the  varying  stress  over  the  section  due  to 
bending. 

(4)  Divide  the  section  into  a  number  of  strips — the  more  the 
better  for  accuracy,  the  fewer  the  better  for  speed.  The  lengths 
of  the  ordinates  at  the  centres  of  area  of  the  several  strips  repre- 

sent the  average  stresses  over  them.  Measure  all  these  ordinates 
with  a  decimal  scale,  and  set  them  down  as  shown  in  Fig.  80,  also 
their  distances  from  the  neutral  axis. 
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(5)  Arrange  the  areas,  stresses,  and  arms  in  tabular  form  ; 
multiply  each  row  of  figures  together  ;  add  the  resulting  moments, 
and  so  get  the  total  resistance  which  the  upper  and  lower  parts 
are  separately  capable  of  exerting  without  anywhere  exceeding 
the  stress  allowed.  Thus  : — 

Area. Stress. 
Arm. Moment. 

Inch2. 
Upper  part  — 

lOin.  x  0-oin.  —  5 
Ton/inch2. 3-00 

Inch. 

4-6 

Inch-tons. 

69-0 

2in.  x  0'5in.  —  1 

2-65 
4-1 

10-9 

2in.  x  lin.      =  2 

2-20 
3-4 

15-0 

2 
2 

lin.  x  0-87in.  =0'87 

1-55 
0-85 
0-25 2-4 1-4 

0-4 

7-45 
2-38 

0-09 

104-8 

Lower  part  — 
lin.  x  lin.    =  1 

0-35 

0-5 

0-18 

1 

1-00 

1-5 

1-50 

1 
1-65 

25 

4-13 

1 
2-3 

3-5 

8-05 

1 
2-95 

4-5 

13-29 
1 

3-6 
5-5 19-80 1 

4-3 
6-5 

27-95 1 

4-93 

7-5 
37-00 

lin.  x  riin.  =  I'l 

5-63 

8-5 52-60 

164-5 

Hence  the  required  total  amount  of  resistance  is  104-8 +  164-5 
=  269-3,  or,  say,  270  inch-tons. 
An  alternative  mode  of  proceeding,  styled  the  "moment  of 

inertia  method,"  will  be  discussed  later.  It  givesthe  same  result  as 
the  above  process,  and  is  shorter  in  application  ;  but  it  demands 
considerably  more  mathematical  knowledge  for  its  proper 
understanding. 

BEAMS  OF  CIECULAR  SECTION. 

Example  1. — To  find  the  moment  of  resistance  of  a  beam  12in. 
diameter,  when  the  stress  on  the  extreme  fibres  is  six  tons  per 
square  inch. 

First  Method. — Divide  the  section  (Fig.  81)  into  twelve  strips 
lin.  broad,  and  reduce  them  by  the  eye  or  the  planimeter  to  rect- 

angles of  equal  area.  Then,  beginning  with  the  outermost  pair 
of  strips,  multiply  each  area  by  the  average  stress  over  the  strip 
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and  by  the  distance  between  the  centres  of  rectangles  equally 
distant  from  the  neutral  axis  ;  thus  finding  the  moment  of  the 
resisting  couple  for  each  pair  of  strips.  Tabulate  the  products  and 
add  them,  as  below  : — 

Area. Stress. Arm. Moment. 

Inch2. Ton/inch2. 
Inch. Inch-tons. 

4-5 5-5 11 273 

8-0 4-5 9 
324 9-6 

3-5 

7 
235 

10-8 2-5 5 135 

11-6 1-5 
8 52 

11-9 0-5 
1 6 

1025 

81. 
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Second  Method.  —  It  is  instructive  to  compare  this  result  with 
that  given  by  the  following  very  useful  formula,  which  can  be 
directly  deduced  only  by  the  aid  of  the  integral  calculus,  viz.  :  — 

M  =   ?-  x  D3  x  /  =  0-0982  D3/, 

the  symbols  having  the  meanings  given  below  :  — 
M  inch-tons  =  moment  of  resistance  to  bending  of   a  circular 

section. 
D  inches       =  diameter  of  section. 

/ton/inch2    =  stress  on  extreme  fibres. 
IT  or  3*1416  =  circumference  -j-  diameter  of  section. 

Of  course,  if  f  be  expressed  in  pounds  per  square  inch,  M  will 
be  expressed  in  inch-pounds.  For  a  12in.  section  and  a  stress  of 
6  tons  per  square  inch,  this  rule  gives  — 

M  =  0-0982  x  1728  x  6  =  1020  inch-tons. 

Thus  the  two  methods  agree  very  well,  and  the  agreement 
could  be  made  even  closer  by  taking  more  strips  ;  but  so 
slight  a  difference  is  of  no  practical  importance.  The  formula  can 
be  further  verified  by  taking  a  large  number  of  circles  of  different 
sizes,  treating  them  like  Fig.  81,  and  comparing  the  results  with 
those  obtained  by  the  use  of  the  formula.  The  latter  can  be 
slightly  simplified  for  practical  use,  thus  :  — 

M  - 
This  is  amply  accurate  enough,  because  0*1  is  so  near  to 

0-0982  that  it  may  always  be  used  in  place  of  the  latter,  without 
material  error.  It  must  be  remembered  that  the  other  factor  / 
has  very  far  from  an  absolutely  fixed  value,  different  engineers 
allowing  widely  different  working  stresses. 

Crank-pins.  —  A  suitable  stress  to  allow  for  steel  crank-pins  and 
shafts  subjected  to  fluctuating  forces  is  50001bs.  per  square  inch, 
which  should  not  be  exceeded,  unless  lightness  is  specially  desir- 

able, as  in  the  engines  of  warships.  An  ample  margin  of  safety  is 
thereby  secured,  and  the  formula  for  the  moment  of  resistance  of 
the  cross-section  of  a  crank-pin  becomes  — 

M  =  500D3  inch-pounds. 

In  the  case  of  crank-pins  and  like  details,  where  the  stress  on  the 
metal  is  continually  changing  in  value  between  wide  limits,  an  un- 

usually high  factor  of  safety  is  essential  for  longevity.  Crank- 
pins  are  not  designed  simply  to  be  strong  enough,  but  rather  with 
a  view  to  durability  and  freedom  from  heating  during  long  runs. 
Hence  ample  bearing  surface  is  necessary.  In  high-speed  engines 



MOMENT  OF  RESISTANCE.  95 

it  is  best  to  make  the  crank-pins  long,  and  not  excessively  large  in 
diameter ;  but  if  the  length  be  unduly  restricted,  then  sufficient 

bearing  area  must  be  given  by  increasing  the  diameter,  as  in  loco- 
motives. Lightness  is  best  attained  by  the  use  of  hollow  pins ; 

the  holes  in  which  also  increase  the  radiating  surface,  and  there- 
fore promote  cool  running. 

Example  2. — It  needs  little  reflection  to  see  that  a  solid  circular 
section  cannot  be  an  economical  one  as  regards  weight ;  because 
most  of  the  material  is  situated  near  to  the  neutral  axis,  where  it 
has  very  little  leverage  in  resisting  the  bending  moment.  Weight 

Fig.  82. 

for  weight,  a  hollow  beam  is  much  stronger ;  because  the  material 
is  placed  farther  away  from  the  neutral  or  unstressed  layer  of 
fibres.  This  is  the  secret  of  the  lightness  of  modern  bicycle  frames, 
and,  in  fact,  of  all  tubular  girders. 

If  we  were  to  make  a  hollow  beam,  like  Fig.  82  in  section, 
of  the  same  weight  as  a  12in.  solid  beam,  but  of  metal  only 
lin.  thick,  we  should  find  its  moment  of  resistance  to  be  sur- 

prisingly greater  than  in  the  former  case.  The  following  cal- 
culation shows  the  exact  gain  in  strength  : — 

Let  finches  be  the  diameter  of  the  hole.     Then  (d  +  2)  inches 
is  the  outside  diameter  of  the  beam,  say  D.     Now,  as  the  weight 
is  the  same  as  that  of  a  12in.  solid  beam,  we  must  have — 

Area  of  hollow  section  =  area  of  solid  section, 



96  THE  DESIGN  OF  BEAMS. 

or,  |(D2       d2)  -  -  x   122. 

Cancelling  out  and  substituting  for  D  in  terms  of  d,  we  get  — 

(d  +  2)2  -  d2  =  144, 
.-.  (p  +  u  +  4  -  (P  •=  144, 

and  finally,  d    =     35. 
Hence  the  internal  diameter  is  35in.,  and  the  external  size  35  +  2 
-  37in. 
Now  the  moment  of  resistance  of  a  tubular  or  hollow  circular 

section  is  given  by  the  important  formula— 

,,  7T  D4    -    d1  , 

as  can  be  proved  by  the  aid  of  the  calculus. 
Applying  this  formula  to  the  case  in  hand,  we  find  that 

074    _    QK4 
M  =  0-098  x  —  -  —  x  6  -  5936  inch-tons. 37 

Comparing  [this  result  with  that  of  Example   1,  preceding,  we 
see  that  the  strength  of  the  hol- 
low  beam  is  to  the  strength  of 
the  solid  beam  as  5936  is  to  1020, 
or  as  5  -8  to  1.  The  gain  of 
strength  is  thus  very  great  ;  and 
it  can  be  shown  that  the  gain  in 
stiffness  by  this  more  rational \>.    X    X    V    >. \T\N    JLf    IV^°°  *-*J  ViliO          A_U.VJ.  V/  A.  l«Ul.VA-IC«.K. 

B       i          distribution  of   material  is  still 
Fig.  83.  greater. 

Example  3. — The   journal   of 
an  axle  (Fig.  83)  is  3in.  diameter  and  6in.  long,  the  wheel  boss  B 
coming  close  up  to  it.  Estimate  what  distributed  load  W  the 
journal  will  bear  safely,  allowing  a  maximum  stress  of  80001bs. 
per  square  inch. 

Since  the  maximum  bending  moment  equals  the  resisting 
moment,  we  have — 

W  x  3in.  =  TV  x  3s  x  8000,  say, 
.-.  W  =  9  x  800  =  7200lbs. 

7200 
Bearing  pressure  =   —  =  4001bs.  per  sq.  in. 

Example  4- — -A-  travelling  crane  axle  (Fig.  84)  has  to  be  made 
strong  enough  to  carry  a  load  of  12  tons.  Calculate  its  diameter 
for  a  safe  stress  of  4  tons  per  square  inch. 

The  wheel  or  "  runner  "  is  supposed  to  be  keyed  on  the  middltt 
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of  the  axle,  but  when  this  is  not  the  case  the  reactions  of  the 
bearings  will  be  unequal.  The  maximum  bending  moment  is 
usually  calculated  as  if  the  load  or  reaction  of  the  rail  were  con- 

centrated at  the  centre  of  the  wheel,  though  actually  distributed 
over  a  considerable  length  of  the  axle.  On  this  assumption  the 
equation  of  moments  is — 

x  4  tons  =  6  tons  x  5in. 

,-.d3  =  75,  and  d  =  4^in. 

.4- 

Fig.  84. 

This  is  the  necessary  diameter  at  the  centre  of  the  span. 
Beyond  the  wheel  seating  the  axle  may  be  tapered  without  loss  of 
strength  ;  but  such  tapering  is  not  usual,  as  it  would  add  to  the 
cost  of  turning  the  axle  in  the  lathe.  The  journals  are  made 
large  enough  to  resist  the  shearing  force,  and  to  provide  suffi- 

cient bearing  area. 
Example  5. — A  solid  wrought-iron  shaft,  9  in.  diameter,  is  sup- 

ported at  each  end  in  a  horizontal  position  (Fig.  85).  Calculate 
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for  what  span  the  material  would  be  stressed  to  the  elastic  limit 
of  30,0001bs.  per  square  inch  merely  by  its  own  weight. 

Weight  of  shaft  =  volume  x  weight  of  1  cub.  in. 

...  W  =  ̂ d2  x  L  x  0-28    .         .         .         .       (1) 

Treating  the  weight  as  a  distributed  load,  the  maximum  or  central 
bending  moment  is 

M  =  £WL         ....       (2) 

Inserting  in  (2)  the  value  of  W  given  by  (1),  we  get 

M  =        d2L  x  0- 

=  ̂ 2L2  x  0-28  .         .         .         .      (3) 

I1  L  1 $  Shaft  9  in.  dia.  $ 

Fig.  85. 

Equating  this  bending  moment  to  the  resisting  moment  of  a  cir- 
cular section,  we  have  the  general  equation 

|>L'x  0-28=  *d»  x/. OA  •  •  _ 

Removing  the  common  factors,  there  results 

I/  -  /  x  d 

0-28 

Substituting  the  highest  elastic  value  of  the  stress  /  and  also  the 
given  diameter,  9in.,  this  becomes 

V  =  =  9C4.300. 
0'28 

Extracting  roots,  the  required  length  is  982in.,  or  nearly  82ft. 
Beyond  this  length  the  shaft  would  take  a  permanent  set  under 

the  influence  of  the  earth's  attraction  or  gravity. 



CHAPTER  VIII. 

SHEARING  ACTION  IN  BEAMS. 

HITHERTO  we  have  strictly  confined  our  attention  to  the  betiding 
action  caused  by  loads  acting  transversely  on  a  beam,  and  to  the 
mode  in  which  this  action  is  resisted  in  certain  important  cases. 
But  before  we  can  proceed  to  design  beams  scientifically,  the  shear- 

ing action  which  always  accompanies  bending  must  likewise  receive 
consideration. 

Probably  the  simplest  example  of  shearing  action  is  that  pre- 
sented by  the  pins  of  a  flat-link  chain  (Fig.  86)  subjected  to  a  pull 

8  tons 

Fig.  87. 

of  P  tons.  Here  the  tendency  of  the  two  opposing  forces  is  to 
produce  the  effect  shown  in  the  lowest  view — that  is,  to  shear  the 
pin  across  in  two  planes  parallel  to  the  plane  containing  P.  Of 
course,  this  effect  will  not  actually  occur  unless  the  pin  be  made 
disproportionately  weak  ;  but  the  tendency  to  shear  exists,  never- 
theless. 

The  nature  of  the  shearing  action  in  a  beam  is  not  so  easily 
realised  as  in  the  above  simple  case.  It  is  best  understood  by  con- 

sidering, in  the  first  instance,  a  very  short  cantilever  (Fig.  87). 
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Here,  as  the  leverage  is  so  short,  there  is  clearly  very  little  bending 
action,  the  main  tendency  of  the  load  being  to  shear  the  beam 
bodily  across.  This  tendency  is  referred  to  as  the  "  vertical 
shearing  force."  The  equal  and  opposite  resistance  which  the 
material  offers  to  this  force  is  often  called  the  "  shearing  stress," 
The  word  "  stress,"  however,  is  frequently  used  so  ambiguously 
that  it  seems  better  to  speak  of  the  "  shearing  resistance  "  as  an 

•      w\ A        B             vly i i i i i 

\ 
\ 
1 
1 
1 

D c 

Fig.  88. 

L 

alternative  to  the  "  total  shearing  stress."  The  term  "  stress  "  is 
then  available  for  expressing  the  resistance  of  the  material  per 
unit  area  of  cross-section.  Adopting  this  nomenclature,  the  re- 

lation between  shearing  force  and  shearing  resistance  is  analogous 
to  that  between  bending  moment  and  moment  of  resistance. 

Thus,  if  the  transverse  load  is  8  tons  (Fig.  87),  and  the  section 
of  the  bar  2in.  by  4in.,  then  the  shearing  force  is  -8  tons,  the 

Fig.  89. 

negative  sign  showing  that  the  force  acts  downwards.  The  shear- 
ing resistance  is  +  8  tons,  because  it  acts  upwards.  Lastly,  the 

shearing  stress  is  the  shearing  resistance  -f-  the  area  of  cross  sec- 
tion =  8  tons  -i-  (2in.  x  4in.)  =  1  ton  per  square  inch. 

Equilibrium  of  a  Cantilever. — Passing  from  the  case  of  a  very 
short  cantilever  to  that  of  a  long  one,  the  true  relation  between  the 
several  forces  acting  on  a  loaded  cantilever  (Fig.  88)  may  be 
brought  out  very  clearly  by  supposing  a  piece  to  be  cut  out  and  a 
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system  of  three  sets  of  pin-jointed  bars  substituted  for  it,  as  in 
Fig.  89.  To  preserve  lateral  stability  there  must  be  at  least  two 
bars  in  each  set.  The  load  is  then  just  as  well  supported  as  by 
the  original  beam,  provided  that  the  bars  are  properly  propor- 

tioned. Let  us  examine  the  several  effects  caused  by  removing  the 
bars  one  set  at  a  time,  and  by  that  means  ascertain  their  individual 
functions. 

In  the  first  place,  the  disastrous  effect  of  taking  away  the  upper 

Fig.  90. 

links  is  graphically  shown  in  Fig.  90,  where  the  free  part  of  the 
beam  is  now  rotating  about  the  pin  D  as  a  pivot.  The  function 
of  the  set  A  B,  is  therefore  to  prevent  turning  about  D,  by 
maintaining  a  constant  distance  between  A  and  B.  Since  this 
distance  tends  to  increase,  the  upper  set  of  links  must  be  in  tension. 
The  measure  of  the  tendency  of  the  free  or  right-hand  part  of  the 
beam  to  turn  round  D  (that  is,  the  turning  moment  about  D) 
is  W  times  the  arm  WA  (Fig.  89). 

Fig.  91. 
This  product  is  what  we  are  already  quite  familiar  with  as  the 

bending  moment  at  the  section  AD.  Further,  so  long  as  the 
ties  prevent  the  rotation  about  D,  the  opposing  turning  moment, 
which  maintains  stability,  must  be  the  pull  P  on  all  the  ties  mul- 

tiplied by  the  leverage  I.  This  .product  also  we  have  become 
familiar  with  as  the  moment  of  resistance  of  the  section  AD. 

Secondly,  the  no  less  calamitous  effect  of  removing  the  lower  set 
of  bars  is  shown  in  Fig.  91 ,  the  free  part  of  the  beam  now  rotating 
about  the  pin  B.  Hence  the  precise  duty  of  the  bars  C  D  is  to 
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prevent  angular  motion  about  B.  Since  the  distance  CD  tends 
to  diminish,  the  lower  bars  must  be  in  compression,  or,  in  a  word, 

they  are  struts.  The  initial  turning-moment  about  B  is  W  x  L1 

B 
W 

(Fig.  89),  and  this  is  numerically  equal  to  the  total  thrust  on  the 
bars  D  C  multiplied  by  the  leverage  I,  from  which  relation  the 
thrust  is  readily  found.  Thus  the  united  function  of  the  upper 
and  lower  sets  of  bars  is  to  resist  the  rotative  tendency  of  the  load. 

Fig.  93. 

Lastly,  Fig.  92  shows  the  peculiar  effect  of  removing  the 
diagonal  bars — namely,  a  vertical  displacement  or  bodily  drop  of 
the  free  part,  in  parallel  ruler  fashion.  Accordingly  the  function 
of  the  set  of  diagonals  B  D  is  to  prevent  one  part  of  the  beam 
sliding  bodily  relatively  to  the  other,  simply  by  keeping  the  distance 
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between  the  pins  B  and  D  constant.  And  since  this  distance  tends 
to  lessen  under  the  influence  of  the  load,  it  follows  that  the  bars 
B  D  must  be  struts. 

It  should  be  observed  that  the  equilibrium  could  be  equally  well 
preserved  by  substituting  for  the  struts  B  D  a  set  of  diagonal  ties 
connecting  A  to  C,  which  would  effectually  prevent  the  distance 
AC  from  increasing. 

In  a  solid  beam  these  diagonal  shearing-stress  actions  still 
exist,  though  their  mode  of  action  is  less  clearly  defined.  In  the 
case  of  a  rectangular  beam  the  whole  body  of  metal  is  available 
for  resisting  them  ;  in  a  plate  girder,  the  web  performs  this  office  ; 
and  lastly,  in  the  familiar  lattice  girder  the  diagonal  bars  resist 
the  shearing  forces. 

Vertical  and  Horizontal  Shearing  Forces. — In  Fig.  93  the  total 
thrustTontheassumed  single 
diagonal  strut  is  shown  re- 

solved into  its  horizontal  and 
vertical  components  Q  and  S. 
These  may  be  found  either  by 
graphic  construction  or  by 
calculation,  knowing  that 

Q  =  T  cos  0,  and  S  =  T  sin  0. 
The  vertical  component  S 

alone  resists  the  sliding 
action  and  keeps  the  right- 
hand  part  of  the  beam  in 
position.  The  effect  of  the  Fig.  94. 
horizontal    component  Q   is, 
at  the  point  B,  to  increase  the  tension  on  the  tie  AB ;  and  at 
the  point  D  to  diminish  the  thrust  on  the  strut  CD  to  an  equal 
extent. 

The  tendency  of  the  right-hand  part  of  the  beam  to  slide  down- 
wards is  the  vertical  shearing  force  at  the  section  BC.  The  holding- 

up  force,  or  resistance  to  shearing,  is  numerically  equal  to  this, 
though  of  opposite  sign. 

The  vertical  shearing  force  at  a  given  section  of  a  beam  loaded 
in  any  manner  is  more  precisely  defined  as  the  resultant  of  all  the 
forces  acting  on  one  (either)  side  of  the  section  resolved  vertically, 
upward  forces  being  regarded  as  positive,  and  downward  forces  as 
negative.  To  preserve  consistency  of  sign,  however,  the  right-hand 
side  of  the  section  should  always  be  chosen.  For  instance,  in  the 
simple  case  represented  by  Fig.  94,  the  load  W  is  negative,  and  so 
is  the  shearing  force  W  +  w  at  the  section  AB.  But  the  shearing 
resistance  S  is  positive.  Unless  this  convention  of  signs  be  care- 
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fully  observed,  confusion  is  sure  to  arise  in  dealing  with  difficult 
cases. 

The  effect  that  the  vertical  shearing  force  tends  to  produce  in  a 
solid  beam  can  be  illustrated  by  reference  to  a  model  composed  of 

Fig.  96. 

Fig.  95. 

a  large  number  of  segments  or  short  blocks  strung  tightly  together, 
as  in  Fig.  95.  When  such  a  beam  is  loaded  sufficiently  these  blocks 

slip  past  one  another,  as 
shown  in  the  lower  view.  In 
an  actual  solid  beam,  this 

tendency  of  adjacent  seg- 
ments to  slide  past  one 

another  still  exists,  though 
it  cannot  take  place  owing 

to  the  cohesion  of  the  par- 
ticles. 

Accompanying  the  vertical 
shearing  force  in  a  solid  beam 

there  is  invariably  a  horizontal  shearing  force  of  equal  amount. 
Fig.  96  shows  a  beam  cut  into  a  number  of  thin  planks,  say  four. 
When  a  load  is  applied,  these  planks  slide  over  each  other  slightly, 
as  in  the  lower  view.  The  cause 

of  this   sliding  is    the    horizontal  Q 
shearing  force. 

To  prove  that  at  any  point  in  a 
beam  the  horizontal  shearing  force 
is  numerically  equal  to  the  vertical 
shearing  force,  imagine  a  very  small 
cube  of  material  situated  at  the 

neutral  layer  of  an  unloaded  rect- 
angular beam.  The  elevation  of 

this  cube  is  a  square,  shown  greatly  magnified  in  Fig.  97.  On  load- 
ing the  beam,  the  cubic  block  is  distorted  slightly,  and  its  elevation 

becomes  a  rhombus,  as  shown  greatly  exaggerated  in  the  figure. 

Fig.  97. 
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To  what  forces  is  this  distortion  due  ?  Since  there  is  no  direct 
thrust  or  pull  at  the  neutral  layer  of  a  beam,  the  distortion  must 
be  solely  due  to  the  vertical  shearing  couple  SS  acting  on  the 
very  small  block.  This  couple  is  opposed  by  the  originally 
horizontal  couple  QQ.  And  since  there  is  equilibrium,  and  the 
arms  of  the  couple  are  horizontal,  it  necessarily  follows  that  Q 
equals  S ;  that  is,  the  horizontal  shearing  force  numerically 
equals  the  vertical  shearing  force  at  the  place  considered. 



CHAPTER  IX. 

CONSTRUCTION  OF  SHEARING  FORCE  AND  BENDING 

MOMENT  DIAGRAMS. 

Diagrams  of  Shearing  Force  and  Bending  Moment  show  very 
clearly  how  the  shearing  force  and  the  bending  moment  vary  from 
point  to  point  in  the  length  of  a  beam.  In  turning  our  attention 
to  these,  it  will  be  best,  in  the  first  instance,  to  consider  numeri- 

cally a  few  simple  but  oft-recurring  cases,  and  to  regard  the  weight 
of  the  beam  itself  as  negligible  in  comparison  with  the  magnitude 
of  the  load  applied. 

Example  1. — The  simplest  case  of  all  is  that  of  a  cantilever 
loaded  at  one  end  with  a  single  load,  as  shown  in  Fig.  98.  To 
construct  the  shearing  force  (or  S.F.)  diagram,  draw  a  base  or 
zero  line  AjBj  and  measure  downwards  from  it  at  a  distance  AjS 
representing  the  load  of  10  tons,  to  any  convenient  scale.  Com- 

plete the  rectangle  AXF.  The  equal  ordinates  to  the  line  SF 
indicate  that  the  vertical  shearing  force  at  any  section  between  A 
and  B  is  uniformly  equal  to  10  tons  in  magnitude,  and  acts  down- 

wards, or  in  the  negative  direction.  There  is  no  shearing  force 
on  the  short  length  of  beam  to  the  right  of  the  load. 

Before  starting  to  draw  the  bending  moment  diagram,  we  first 
decide  that  moments  which  tend  to  rotate  the  beam  about  the 
root  A,  in  the  same  direction  as  that  travelled  by  the  hands  of  a 
clock,  shall  be  regarded  as  negative,  and  be  measured  downwards 
from  the  base  line  A2B2.  Though  this  is  in  accordance  with  the 
best  mathematical  usage,  some  writei'S  prefer  to  adopt  a  different 
convention  of  signs,  regarding  upivard  forces  as  negative,  and 
watch-hand  rotation  as  positive — that  is,  precisely  contrary  to 
the  practice  we  shall  here  adopt. 

As  regards  the  magnitude  of  t,he  bending  moment,  we  have  to 
reflect  that  the  value  will  increase  uniformly  from  the  point  of 
application  B  of  the  load  to  the  point  of  support  A,  in  exact  pro- 

portion as  the  leverage  or  arm  of  the  force  increases. 
To  proceed  with  the  diagram,  therefore,  set  off  a  distance  A2M 

to  represent  in  magnitude  and  sign  the  greatest  bending  moment 
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of  -  10  tons  x  lOOin.  =  -  1000  inch-tons,  to  any  convenient 
scale  of  moments ;  and  join  MB2.  Then  any  ordinate  to  this 
sloping  line  represents  the  value  of  the  bending  moment  at  the 
section  of  the  beam  directly  over  that  ordinate. 

Fiorn  this  simple  B.M.  diagram  it  is  evident  that  a  cantilever, 
loaded  at  the  end,  should  not  be  made  parallel  or  of  uniform 
depth,  if  economy  of  material  is  desired,  but  rather  of  tapering 

10   Tons 

S     Curve  of  Shearing  Force       F 

-1000 

Fig.  98. 

profile ;  the  thinnest  part  being  made  of  sufficient  section  to  with- 
stand the  shearing  force,  and  the  thickest  part  strong  enough  to 

resist  the  greatest  bending  moment. 
Example  2. — Consider  next  the  case  of  a  beam  (Fig.  99)  loaded 

at  the  ends  A,  B,  and  supported  on  a  fulcrum  at  some  interme- 
diate point  C ;  like  the  beam  of  a  lever  testing-machine  or  of  a 

pumping-engine.  Such  a  beam  may  be  regarded  as  two  canti- 
levers united  at  C. 

The  total  reaction  or  upthrust  of  the  bearings  is  the  sum  of  the 
downward  loads — that  is,  6  tons.  The  shearing  force  between  A 
and  G  is  the  algebraic  sum  of  the  forces  to  the  right  of  A — 
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namely,  +  6-2=4  tons,  which  is  set  off  at  A,,  above  the  base 
line  AjBj.  The  S.F.  between  G  and  B  is  -  2  tons,  which  is  set  off 
downwards  at  Cr  Gomplete  the  shearing  force  rectangles  as  shown . 

The  bending  moment  at  C  is  -  2  tons  x  lOOin.  =  -  200  inch- 
tons,  which  is  the  moment  tending  to  turn  the  beam  clockwise. 
The  equal  opposing  moment  is  -  4  tons  x  -  50in.  =  200  inch- 
tons,  distances  to  the  left  of  C  being  regarded  as  negative. 

Further,'the  B.M.  at  A  is  (6  tons  x  50in.)  -  (2  tons  x  150in.) 
=  300  inch-tons  -  300  inch-tons  =  0,  which  is  also  the  B.M.  at 
B.  Similarly,  the  moment  at  D  is  (6  x  25)  -  (2  x  125)  = 

Fig.  99. 

150  -  250  =  -  100  inch-tons,  and  at  E  is  -  2  tons  x  60in.= 
-  120  inch-tons.  All  these  results  are  fully  represented  in  the 
bending  moment  triangle  of  Fig.  99. 

It  should  be  borne  in  mind  that,  in  designing  actual  beams,  the 
construction  of  shearing  force  and  bending  moment  diagrams  is 
quite  a  preliminary  process,  useful  only  as  a  means  to  an  end. 

The  designer's  ultimate  aim  is  to  determine  the  proper  shape and  size  of  the  beam,  both  as  a  whole  and  in  detail.  But  this  he 
is  unable  to  do  with  absolute  certainty  without  first  of  all  finding 
out  what  each  section  of  the  beam  really  has  to  stand — informa- 
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tion  which  is  most  clearly  expressed  by  means  of  S.F.  and  B.M. 
diagrams. 

Example  3.  —  Fig.  100  shows  the  shearing  force  and  bending 
moment  diagrams  for  an  ordinary  cantilever  loaded  with  two 
forces.  After  drawing  the  upper  part  of  the  S.F.  diagram  as 
before,  produce  the  line  of  action  of  the  8-ton  force,  and  set  off  a 

8   Tons TOTIS 

1000 

Fig.  100. 

further  distance  downwards  of  8  units.  Then  SE,  drawn  parallel 
to  the  zero  line,  completes  the  figure,  which  is  merely  the  sum  of 
the  two  rectangles  arising  from  the  separate  forces.  Similarly,  if  n 
loads  act  on  any  beam,  then  the  S.F.  diagram  is  the  sum  of  all 
the  n  rectangles  due  to  the  several  loads. 

To  construct  the  bending  moment  diagram,  set  off  A2N  to 
represent  a  moment  of  -  6  tons  x  lOOin.  =  -  600  inch-tons, 
and  join  NB2.  This  disposes  of  the  outer  load.  Then  make 
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NM  represent  -  8  tons  x  50in.  =  -  400  units,  and  join  MK. 
The  triangle  NMK  thus  formed  is  the  addition  due  to  the  8-ton 
load.  Thus  the  B.M.  diagram  is  simply  the  sum  of  the  triangles 
due  to  the  two  separate  loads.  In  the  same  way,  to  generalise,  if 
there  are  n  loads,  the  bending  moment  diagram  is  the  sum  of  all 
the  n  triangles  arising  from  the  separate  action  of  those  loads, 
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Fig.  101. 

and  may  be  drawn  by  the  method  of  superposition.  One  lesson 
taught  by  the  B.M.  diagram  of  Fig.  100  is  that,  for  economy  of 
material,  the  cantilever  should  be  well  splayed  out  at  the  root. 
When  a  beam  is  so  designed  that  at  each  section  the  greatest 

safe  moment  of  resistance  is  precisely  proportional  to  the  bending 
moment,  the  beam  is  rather  curiously  said  to  be  of  uniform 
strength,  because  it  is  equally  likely  to  give  way  at  each  section. 
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A  beam  of  uniform  strength  is  not  one  whose  moment  of  resist- 
ance is  the  same  at  every  cross-section,  in  conventional  language. 

Example  4. — Fig.  101  indicates  a  pumping-engine  beam  200in. 
long.  A  double-acting  pump,  having  a  resistance  of  10  tons,  has 
to  be  worked  from  it.  It  is  undecided  whether  to  drive  the  pump 
from  the  pin  D  or  from  E.  Show,  by  constructing  S.F.  and  B.M. 
diagrams,  which  is  the  better  position. 

First :  Let  the  pump  be  driven  from  E.  For  simplicity,  we  may 
neglect  the  obliquity  of  the  connecting-rod,  the  pull  R  along 
which  is  got  by  taking  moments  about  C,  thus — 

(R  x   lOOin.)  +  (10  tons  x   50in.)  =  6  tons  x   lOOin. 
/,  100  R  +  500  =  600  inch-tons. 

.-.  R  =  1  ton. 

This  is  the  pull  on  the  rod  at  the  instant  considered,  when 
part  of  the  driving  effort  is  being  expended  in  accelerating  the 
fly-wheel  of  the  engine.  But  the  pull  changes  to  a  thrust  at  a 
later  period  of  the  stroke,  when  a  demand  is  made  on  the  fly- 

wheel's store  of  energy  for T-S  Tons 

A  D  1  s,  B C 

1  —  r?  —  ry~ t—  50  I—  50'-«l 8 
•     10  Tons  ®°° 
6  Tons 

1   Ton 

the  maintenance  of  motion. 
The  upthrust  T  of  the 

beam  gudgeon  bearings  at 
C  is  the  sum  of  all  the 
downward  forces  acting 
on  the  beam,  and  equals 
6  +  10  +  1  =  17  tons.  The 
shearing  force  diagram  is 
now  easily  drawn,  as  indi- 

cated, the  greatest  S.F. 
being  -  11  tons. 

As  to  the  bending  mo- 
ment, at  B  it  is  plainly 

nothing.  At  E  it  is  -  1 
ton  x  50in.  =  -  50  inch- 
tons.  At  C  it  is  (  -  1  ton 
x  lOOin.)  -  (10  tons  x 
50in.)  =  -  600  inch-tons. 
At  D,  again,  the  bending 
moment  is  (  -  1  ton  x  150 
in.)-  (10  tons  x  lOOin.) 
+  (17  tons  x  50in.), 
which  items  add  up  to 
-  300  inch-tons.  Lastly,  at  A  the  B.M.  vanishes.  By  drawing 
straight  lines  through  the  points  thus  found,  the  B.M.  diagram 
is  determined. 
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Fig.  103. 

Secondly:  Let  the  pump  be  driven  from  D,  as  in  Fig.  1  <>:.'. 
Then  the  vertical  reaction  T  of  the  bearings  at  C  is  such  that 

T-   6  +  10  -1  =  0; 

and  therefore  T  =  3  tons,  showing  that  the  pressure  now 
comes  on  the  caps  of  the  bearings,  which  react  downwards.  Com- 

pared with  the  former  case,  the  magnitude  of  the  reaction  is 
reduced  to  the  extent  of  17  -  3  =  14  tons,  a  very  considerable 

improvement. 
A      ,-t     g     i     C  B  The  shearing  force  diagram 

is  readily  drawn,  in  the  man- 
ner already  described.  The 

greatest  S.F.  is  now  only  6  tons 
instead  of  -  11  tons. 

The  bending  moment  at  C 
is  -  1  ton  x  lOOin.  =  -  100 
inch-tons,  and  at  D  it  is  (  -  1 
x  150)  -  (3  x  50)  =  -  300 
inch-tons.  Hence  the  greatest 

bending  moment  has  changed  from  -  600  inch-tons  to  -  300 
inch-tons.  It  finally  appears,  then,  that  the  second  arrangement 
is  decidedly  the  better  of  the  two ;  for  not  only  is  the  load  on  the 
gudgeons  greatly  relieved,  but 
the  beam  scantlings  may  also 
be  materially  reduced.  Further, 
owing  to  the  diminished  fric- 

tion, the  mechanical  efficiency 
of  the  engine  would  undoubt- 

edly be  higher  in  the  second 
case  than  in  the  first. 
How  to  Draw  a  Parabola. — 

A  simple  method  of  drawing  a 
parabolic  curve  of  a  given  height 
on  a  given  base  will  now  be 
described,  as  we  shall  require  it 
immediately.  After  drawing  the  enclosing  rectangle  ABED 
(Fig.  103),  draw  the  centre  line  CL,  then  divide  AC  into  any 
number  of  equal  parts — say  four — and  AD  into  the  same  number. 
Figure  the  points  as  shown,  and  draw  radial  lines  to  C.  The 
intersections  of  similarly-named  radial  and  vertical  lines  are 
points  on  the  parabola  sought,  and  through  these  the  curve  is 
drawn  freehand,  or  by  the  aid  of  a  suitable  template. 

Another  useful  method  of  drawing  a  parabola  through  three 
points,  A,  B,  and  D,  is  that  of  tangents,  as  shown  in  Fig.  104, 
where  CD  is  the  given  height  of  the  curve,  Produce  CD  to  F, 
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making  DF  equal  to  CD.  Join  AF  and  BF.  Divide  these  lines 
into  a  similar  number  of  parts,  number  the  points  as  shown, 
and  join  points  numbered  alike.  The  series  of  tangents  thus 
drawn  determine  the  shape  of  the  curve  very  accurately. 

Example  5.  —  The  important  case  of  a  cantilever  loaded  uni- 
formly (Fig.  105)  next  demands  attention.  A  uniformly-  distri- 

buted load,  however  great,  may  always  be  regarded  as  a  large 
number  of  small  equal  loads  acting  at  a  short  distance  apart. 
Thus  an  8-ton  load  may,  with  fair  accuracy,  be  split  up  into  eight 
1-ton  loads,  and  the  boundaries 
of  the  shearing  force  and  bend- 
ing-moment  diagrams  then 
drawn,  in  the  manner  already 
described,  as  a  series  of  stepped 
straight  lines. 

But  happily  a  much  shorter 
method  is  available.  The 
greater  the  extent  to  which 
the  subdivision  of  the  distri- 

buted load  is  carried,  the  nearer 
will  the  S.F.  curve  approach  a 
single  straight  line,  and  in  the 
limit  the  steps  disappear  en- 

tirely, and  we  get  the  dotted 
straight  line. 

Reasoning  in  the  same  way, 
we  find  that  the  shape  taken 
by  the  bending-moment  curve,  Fig.  105. 
when   the  subdivision   of    the 
load  is  carried  on  indefinitely,  is  a  parabola  with  axis  vertical  and 
vertex  at  the  free  end  of  the  beam.  It  requires  a  slight  know- 

ledge of  co-ordinate  geometry  to  see  that  this  necessarily  follows 
from  the  form  of  the  equation  of  the  B.M.  curve,  namely, 

Moment  = 

where  w  pounds  per  inch  run  is  the  load,  and  x  inches  the  distance 
of  any  section  from  the  free  end  of  the  beam.  The  greatest  bend- 

ing moment  is  ̂ wL?  inch-pounds,  which  is  got  by  multiplying  the 
total  load  wL  by  the  mean  leverage  £L. 

Example  6.  —  Fig.  106  illustrates  the  instructive  case  of  a  canti- 
lever uniformly  loaded  with  four  tons  over  half  its  length  only. 

The  shearing  force  is  uniform  over  the  unloaded  half,  and  dwindles 
down  to  nothing  at  the  free  end. 

The  greatest  bending  moment  is  the  same  as  that  due  to  a  load 
of  four  tons,  concentrated  at  the  mean  leverage  75in.  from  the 
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wall,  and  therefore  equals  -  4  tons  x  75in.  =  -  300  inch-tons. 
Also  the  B.M.  at  the  centre  of  the  beam  is  -  4  tons  x  2f>in.  = 
-  100  inch-tons.  The  curve  of  moments  is  completed  by  a  para- 

bolic arc. 

Example  7. — Passing  from  cantilevers  to  beams  supported  at  both 
ends,  or  girders,  the  simplest  case  is  that  shown  in  Fig.  107,  where 
the  entire  load  is  supposed  to  be  concentrated  at  the  very  centre, 
though  in  reality  it  is  spread  over  an  appreciable  area. 

To  get  a  right  view  of  the  magnitude  and  sign  of  the  shearing 

I 
£  -300- 

Fig.  106. 

force  at  any  section,  we  find  the  resultant  of  the  vertical  forces 
acting  on  the  right-hand  side  of  that  section.  Thus  the  S.F.  any- 

where between  A  and  C  is  -  10  tons  +  5  tons  =  -  5  tons,  and 
anywhere  between  G  and  B  is  +  5  tons.  The  S.F.  therefore 
changes  sign  at  C  ;  or,  in  other  words,  there  is  no  shearing  force 
at  the  very  centre  of  the  beam. 

By  taking  moments  about  A,  the  bending  moment  at  that  point 
is  found  to  be 

(  -  10  tons  x  50in.)  +  (5  tons  x  lOOin.)  =  0  ; 
and,  by  taking  moments  about  C,  the  greatest  B.M.  is  seen  to  be 
5  tons  x  50in.  =  250  inch-tons.  Lastly,  the  B.M.  at  D,  half  way 
between  A  and  C,  is 
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(  -  10  tons  x  DC)  +  (5  tons  x  DB) 
=  (-  10  tons  x  25in.)  +  (5  tons  x  75in.) 

=    -  250  +  375  =  125  inch-tons. 

Or  it  may  be  found  by  dealing  with  the  forces  to  the  left  of  D, 
thus:  5  tons  x  -  25  in.  =  -  125  inch-tons.  This  differs  in  sign 
only,  as  is  always  the  case  when  opposite  sides  of  the  section  are 
considered. 

Example  8. — In  the  case  of  a  single  local  load,  not  at  the  centre, 
as  in  Fig.  108,  the  vertical  shearing  forces,  on  the  two  parts  of 
the  beam  right  and  left  of  the  load,  are  of  opposite  sign,  and  in 
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magnitude  equal  to  the  respective  reactions.  This  is  evident  from 
the  definition  of  vertical  shearing  force.  The  bending  moment  at 
D  is  4  tons  x  30in.  =  120  inch-tons.  The  common  case  of  a  lever 
centred  at  D,  and  loaded  unequally  at  A  and  B,  can  be  treated 
similarly. 

Example  9. — A  rather  peculiar  case,  illustrated  by  Fig.  109,  is 
that  where  two  equal  loads,  say  of  5  tons,  are  situated  so  as  to 
divide  the  span  into  three  equal  parts  The  S.F.  and  B.M.  curves 
can  be  got  by  adding  together  the  curves  due  to  each  load,  due 
regard  being  paid  to  sign.  There  is  no  shearing  force  between 
the  two  loads — the  zone  of  uniform  bending  moment — as  the 
shearing  effect  of  one  load  is  counteracted  by  that  due  to  the  other 
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load.  This  is  an  illustration  of  the  general  rule  that  where  the 
B.M.  curve  is  parallel  to  the  zero  line,  the  S.F.  vanishes. 

Example  10. — In  Fig.  110  is  represented  the  case  of  two  unequal 
loads.  The  reactions  are  first  found  by  taking  moments  about  A. 
The  shearing  forces  and  bending  moments  at  the  various  points 
are  then  calculated,  ordinates  representing  them  set  up,  and  the 
diagrams  drawn  through  the  summits  of  these.  The  details  will 
now  present  no  difficulty. 

Example  1 1 . — The  common  case  of  a  beam  loaded  uniformly  is 
dealt  with  in  Fig.  111.  The  shearing  force  at  C  is  the  upward 

Fig.  110. Fig.  111. 

reaction  at  B,  less  the  downward  load  between  C  and  B,  and 
equals  +  lOOlbs.  -  lOOlbs.  =  0.  The  S.F.  at  A  is  the  sum  of  all  the 
forces  to  the  right  of  A,  and  equals  +  lOOlbs.  -  2001bs.  =  -  lOOlbs. 
The  S.F.  at  B  is  +  lOOlbs. ;  as  may  be  seen  by  considering  the 
forces  acting  to  the  right  of  a  section  D,  situated  a  very  short 
distance  from  B. 

The  bending  moment  at  C  is  the  sum  of  the  moments  of  all  the 
forces  to  the  right  of  C,  and  equals 

(lOOlbs.  x  50in.)  -  (lOOlbs.  x  25in.) 
=  5000  inch-lbs.  -  2500  inch-lbs.  =  2500  inch-pounds. 

The  bending  moment  curve  is  a  parabola,  drawn  in  the  manner 
already  fully  described.  (See  Fig.  10:!.) 
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Example  12. — Reserving  for  future  consideration  the  peculiar 
case  of  a  be&mjixed  at  both  ends,  instead  of  merely  supported, 
we  shall  now  consider,  as  a  crowning  example  of  the  value  of 
shearing-force  and  bending-moment  diagrams  in  imparting  clear- 

ness of  view,  the  rather  complex  case  of  a  beam  or  girder  sup- 
ported and  loaded  in  the  way  shown  by  Fig.  112.  If  the  preceding 

examples  have  been  carefully  followed,  this  will  be  easily  under- 
stood ;  but  otherwise  it  will  appear  mysterious. 

(1)  Make  a  skeleton  sketch  of  the  beam,  inserting  all  the 
loads  and  distances,  as  in  Fig.  112.  This  is  essential. 

K- 10  Totu 

Fig.  112. 

(2)  To  find  the  reactions  of  the  supports,  take  moments  about 
B.  Since  the  beam  is  in  equilibrium  the  algebraic  sum  of  the 
turning  moments  must  be  nothing,  thus : 

(R  x  IGOin.)  -  (4  tons  x  175in.)  -  (5  tons  x  120in.) 
-  (8  tons  x  50in.)  +  (5  tons  x  20in.)  =  0. 

Multiplying  out,  this  equation  becomes 

160R  -  700  -  GOO  -  400  +  100  =  0; 

from  which  we  get 

IGOR  =  1600,  or  R  =  10  tons. 

This  is  the  reaction  of  the  right-hand  support.     Again, 

Sum  of  4  reactions  =  sum  of  -f-  loads*. 
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and  so 
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B,1  +  10  tons  =  22  tons ; 

R1  =  22  -  10  =  12  tons. 

Show  these  values  in  the  sketch. 

(3)  To  calculate  the  shearing  force  at  any  vertical  section,  it 
is  best  to  isolate  the  part  of  the  beam  on  the  right-hand  side  of 
that  section,  and  to  consider  only  the  external  forces  acting  on 
this  part.  Choosing  the  sections  marked  K,  H  .  .  .  B,  A  in 
succession  and  proceeding  thus,  we  get  the  following  results : — 

Just  to  Right  of  the 
Section  Lettered. The  Shearing  Force  is 

Tons. 

K 0        ... 0 
H -    2        . 

=   -  2 

G 

-   4 

=  -  4 

F -4+10      . 
=  +  <> 

E -4+10-5       . 

=  +  1 

D -4  +  10-5-4 
=   -  3 

C -    4  +  10-5-8 

—     __    7 

B The  same 
             n 

A -   4+10-5-8+12 
=   +  5 

Set  up  or  down  these  values  from  a  base  line  to  any  convenient 
scale  and  sign  convention.  Join  the  points  thus  found  by  straight 
lines  parallel  to  the  base  line,  between  the  lines  of  action  of  the 
concentrated  loads,  and  by  sloping  straight  lines  beneath  the 
parts  uniformly  loaded.  Note  that  at  three  points  the  shearing 
force  changes  sign,  and  therefore  passes  through  zero  value. 

(4)  To  calculate  the  bending  moment  at  any  vertical  section, 
regard  only  the  turning  moments  acting  on  the  part  of  the  beam 
to  the  right  of  that  section.  In  this  way  we  arrive  at  the  results 
in  the  table  on  p.  119. 

Set  up  or  down  these  values  from  a  zero  line,  in  accordance 
with  any  chosen  scale  and  sign  convention.  The  points  thus 
located  connect  by  sloping  straight  lines  between  the  lines  of 
action  of  concentrated  loads,  and  by  parabolic  arcs  beneath  the 
parts  uniformly  loaded.  Observe  that  the  varying  ordinate  to  the 
bending-moment  curve  passes  through  one  maximum  value  and 
two  minima  values,  these  occurring  at  the  points  of  zero  shearing 
force. 
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Just  to  Right  of  the 
Section  Lettered The  Bendiiig  Momout  is 

Inch-tons. 
K 0 

H -   2  tons  x      7'5in.         .         .         .    = 

-      15 

G -    4  tons  x    15in.   .         .         .         .    = 

-      60 

F -(4  tons  x     55in.)  +  (10  tons  x  40in.)  — 180 
E -(4tonsx  105iu.)  +  (10  tons  x  90in.) 

-  (5  tons  x  50in.  )  = 
230 

D. 
-(4  tons  x  125in.)  +  (10tonsxllOin.) 

-(5  tons  x  70in.)\ 

-(4  tonsxlOin.)/  ~ 

210 

C Similarly,  or  working  on  the  left  and 
changing  sign        .         .         .         .  = 

110 

B      . Similarly,  or  working  on  the  left  and 
changing  sign         .         .         .         .  = 

--   100 

A. — 0 

Eelations  between  S.F.  and  B.M.  Curves. — A  careful  com- 
parison of  the  foregoing  curves  will  make  it  clear  that  in  every 

beam  the  trigonometrical  tangent  of  the  angle  of  slope  to  the 
zero  line  of  the  bending-moment  curve  is  numerically  proportional 
to  the  shearing  force,  and  opposite  in  sign  :  a  connection  which 
enables  us  to  derive  one  curve  from  the  other. 

This  extremely  important  fact  is  perhaps  best  brought  home  to 

one's  mind  by  imagining  a  point,  such  as  a  pencil  point,  to  move 
along  each  curve.  Referring  to  Fig.  112,  let  M  be  the  point  \vhich 
travels  along,  the  bending-moment  curve,  and  S  the  associated  point 
which  travels  along  the  shearing-force  curve,  S  being  always 
directly  above  M.  Out  of  the  infinite  number  of  possible  posi- 

tions of  the  pair  of  moving  points,  two  only  are  shown  in  the 
figure.  Then  so  long  as  the  point  M  preserves  its  straight  course 
along  the  B.M.  curve,  the  point  S  moves  along  the  S.F.  curve 
parallel  to  the  zero  line.  But  as  soon  as  M  changes  its  direction 
of  motion  and  inclines  upwards,  S  also  alters  its  path,  instantly 
passing  to  the  other  side  of  the  zero  line  and  then  continuing  to 
move  as  before.  Hence,  when  the  shearing  force  changes  sign, 
the  bending  moment  is  a  maximum  or  a  minimum,  as  shown  in 
Fig.  112. 

When  the  point  M  travelling  along  the  B.M.  curve,  reaches  the 
parabolic  hill,  the  point  S  immediately  answers  by  rising  along  a 
uniform  slope  until  that  hill  is  left  behind.  While  M  is  on  the 
parabola,  the  direction  of  its  motion  is  continually  changing ;  the 
tangent  of  the  angle  of  slope  being  proportional  to  the  horizontal 
distance  from  the  summit  of  the  hill. 
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It  would  be  tedious  to  continue  this  comparison  further ;  but 
however  far  pursued,  it  will  be  found  that  if  6  be  the  angle  of  slope 
of  the  bending  moment  curve,  and  0  some  number  depending  on 
the  scales  of  the  diagrams,  the  relation 

Shearing  force  —  C  x  tan  6 

always  holds  good,  at  least  as  regards  magnitude.  Readers  who 
are  familiar  with  the  differential  calculus  will  at  once  recognise  the 
analytical  expression  of  this  fact,  but  it  need  not  be  introduced 
here. 

A  further  important  connection  between  the  curves  of  S.F.  and 
B.M.  should  be  noted.  The  difference  between  the  areas  of  the 

positive  and  negative  parts  of  the  shearing-force  diagram  lying 
directly  below  any  length  of  the  beam  represents  the  change  of 
bending  moment  in  that  length. 

For  instance,  working  from  the  shearing-force  diagram  in  Fig. 
112,  the  area  of  that  diagram  below  the  part  AC  represents  to  some 
scale  the  bending  moment  at  C  ;  thus : — 

(5  tonsx20in.)  ~  (7  tons  x  30in.)-=  100  •*.  210  =  110 inch-tons; 

this  being  also  represented  by  the  ordinate  of  the  bending-moment 
curve. 

Again,  to  find  the  greatest  bending  moment  on  the  beam  we  can 
measure  the  distance  B:  Nj  from  the  diagram  drawn  to  scale,  and 
then  say  that  the  area  of  the  triangle  on  the  base  C,  Nj  measures 
the  increase  of  moment  between  C  and  N — namely, 

£(7  tonsx  34'7in.)  =  121*5  inch-tons. 
Hence  the  greatest  bending  moment  is — 

B.M.  at  C  +  increase  between  C  and  N 
=  110  +  121-5  =  231  inch-tons. 

This  interesting  principle  therefore  affords  a  second  way  of  de- 
riving the  bending-moment  curve  from  the  curve  of  shearing  force. 

Tabular  Mode  of  Calculating  Bending  Moments. — In  connec- 
tion with  Fig.  112  it  will  be  convenient  to  describe  a  method  of 

proceeding  that  has  the  advantage  of  materially  reducing  the 
labour  of  calculation,  as  well  as  the  number  of  figures  employed. 
It  fails,  however,  when  distributed  loads  have  to  be  dealt  with,  and 
therefore  all  the  loads  will  be  regarded  as  concentrated  ones.  The 
entire  calculation  is  included  in  the  following  table,  the  method  of 
obtaining  it  being  described  below. 

(1)  Write  down  the  external  forces  acting  on  the  beam,  begin- 
ning at  either  end  (say  A),  and  paying  due  attention  to  the  signs 

of  the  forces  (up  or  down). 



S.F.  AND  B.M.  DIAGRAMS. 121 

(2)  In  column  (2)  insert  the  uniform  shearing  forces  between 
each  two  external  forces.     These  are  got  by  continued  addition 
from  column  (1).     If  we  had  started  at  the  other  end  of  the  beam, 
we  should  have  got  the  opposite  signs,  as  in  Fig.  112. 

(3)  In    the   next   column   place   the    distances    between   the 
forces  tabulated  in  column  (1). 

(4)  Multiply  together   each   row  in  columns  (2)  and  (3),  and 
so  get  column  (4),  which  consists  of  the  increments  of  bending 
moment  between  each  two  external  forces. 

(5)  The    bending    moments  in  the   last  column  are  obtained 
from  column  (4)  by  repeated  addition. 

Nothing  could  be  neater  than  this  handy  method. 

(1) 
(2) (3) (4) 

(5) 

External  Force. 
Shearing 
Force. 

Distance 
Between 
Forces. 

Product  of 

(2)  and  (3). 

Bending 

Moment. 

Tons. Tons. Inches. Inch-tons. Inch-tons. 

At  A,  —      5 0 

-    5 

20 

-    100 

At  B,  +    12 

-    100 

+   7 

50 

+   350 
At  D,  -     8 +   250 

-    1 

70 70 

At  F,    -      5 +    180 

-    6 

40 

-    240 

AtG,  +    10 

-      60 

+   4 
15 +      60 

AtH,  -     4 0 



CHAPTER  X. 

STRENGTH  OF  ROLLED  JOISTS. 

Rolled  Joists. — A  beam  of  uniform  I  section,  having  both  its 
flanges  and  its  web  formed  in  the  rolling  mill  out  of  a  single  steel 

ingot,  as  shown  in  Fig.  113,  is  techni- 

cally known  as  a  "  rolled  joist."  The 
flanges,  it  will  be  noticed,  are  placed 
well  away  from  the  neutral  surface  (or 
zone  of  minimum  usefulness) ;  the 
bulk  of  the  material  is  thereby  much 

more  advantageously  situated  for  re- 
sisting a  bending  moment  than  is  the 

case  either  in  a  rectangular  beam  or 
in  a  beam  of  circular  section.  The 

flanges  are  rolled  at  an  angle  of  about 

98°  to  the  web,  to  which  they  are 
united  by  generous  fillets.  The  taper 
and  rounds  render  the  joist  easier  to 

roll,  stronger,  and  of  neater  appear- ance. 

Rolled  joists  may  be  obtained  up  to 
60  ft.  in  length  and  24  by  7^  in.  in 
section.  They  were  formerly  made  of 
wrought  iron,  but  are  now  usually  of 
mild  steel ;  because  that  material  is 
stronger,  more  uniform  in  quality, 
and  no  dearer  than  iron.  Of  recent 

years  their  use  has  greatly  extended, 
and  they  are  now  applied  to  many 
purposes  for  which  wood  beams  were 

Fig.  113.  formerly  employed.  This  extended 
application  of  rolled  steel  joists  is  due 

to  their  cheapness,  convenience,  and  relatively  fireproof  nature. 

Unlike  wood,  such  joists  will  not  burn  •  and,  unlike  cast-iron,  they 
will  not  crack  ;  but  they  will  warp  and  bend  under  intense  heat. 
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Still,  with  all  their  advantages,  rolled  joists  are  not  suitable  for 
beams  of  long  span ;  because  from  their  mode  of  manufacture 
they  are  necessarily  of  uniform  section  from  end  to  end,  and 
therefore  a  good  deal  heavier  at  the  ends  than  is  required.  In 
other  words,  a  rolled  girder  is  not  of  uniform  strength  in  the  same 
sense  that  a  built-up  girder  can  be  made ;  and  this  drawback 
leads  to  considerable  waste  of 
material. 

The  depth  of  a  rolled  joist  should        
not,  as  a  rule,  be  less  than  ̂ -th  of  ̂ ^//^^^///^ 
the  span  to  be  bridged  over,  lest 
the  deflection  or  sag  should  be  ex- 

cessive. It  is  true  that  the  depth 
of  the  joists  used  for  supporting 
the  floors  of  buildings  is  occasion- 

ally less  than  this  ;  but  still  it  is 
best,  wherever  feasible,  to  select  a 
joist  whose  depth  is  about  TV^h  or 
-j-Vth  of  the  span. 

Some  of  the  varied  purposes  to 
which  rolled  steel  joists  are  applied 
are  the  following: — (1)  The  main 
girders  of  foot  bridges  and  the 
cross  girders  of  somewhat  larger 
bridges.  (2)  The  girders  of  light 
overhead  travelling  cranes  and  the 
roadways  (or  runways)  of  heavier 
cranes,  say  up  to  20  tons  lifting 
capacity.  (3)  The  jibs  of  cheap 
jib  cranes ;  but  it  must  be  confessed 
that  the  appearance  of  these  is  not 
good.  (4)  The  framework  or  skele- 

ton of  large  public  buildings,  ware- 
houses, hotels,  and  offices ;  such  as 

the  twelve  to  thirty-storey  "sky- 

scrapers "  which  are  now  so  prevalent  in  the  large  cities  of  the 
United  States  and  in  other  places  where  ground  is  very  valuable. 
(5)  Lastly,  rolled  joists  find  considerable  application  in  the  con- 

struction of  large  workshops,  piers,  and  towers. 
The  Strength  of  Joists. — In  order  to  gain  definite  ideas  on  the 

strength  of  joists,  let  us  calculate,  by  several  rival  methods,  what 
uniformly  distributed  dead  load  can  safely  be  put  on  a  rolled  steel 
joist  of  the  section  shown  in  Fig.  113,  and  weighing  751bs.  per lineal  foot. 

I.  First  of  all  reduce  the  given  section  to  the  equivalent  but 

Fig.  114. 
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simpler  geometrical  form  shown  in  Fig.  114,  and  express  the 
dimensions  in  decimal  notation.  Great  refinement  is  not  only 
quite  unnecessary  here,  but  positively  absurd,  as  steelmakers 
cannot  guarantee  to  roll  sections  without  an  allowance  of  2|  per 
cent,  over  or  under  standard  dimensions.  Moreover,  the  working 
stress  permitted  by  different  engineers  varies  at  least  25  per  cent, 
even  on  similar  work.  Still,  for  the  sake  of  comparing  different 
modes  of  calculation,  the  dimensions  in  Fig.  114  have  been  given 
to  two  decimal  places,  even  though  a  rather  less  degree  of  accuracy 
would  suffice  in  practice. 

In  the  next  place,  the  modulus  of  the  section  (which  is  some- 
times strangely  confounded  with  the  moment  of  resistance  of  the 

section)  is  most  accurately  calculated  by  the  aid  of  the  formula 

„       BH3-6A3 

-6H— ' the  symbols  being  explained  in  Fig.  114.  On  substituting  the 
given  dimensions  in  this  formula,  it  becomes 

z      (7  x  18*)- (6-45  x  16-123)  .    3 6  x  18 
which  works  out  to  127 '7  inch  units  as  the  modulus  of  the  section 
with  respect  to  the  bending. 

So  far  we  have  regarded  only  the  shape  and  size  of  the  trans- 
verse section ;  but  we  have  now  to  consider  the  strength  of  the 

material  composing  the  joist.  The  tensile  breaking  stress  or 
ultimate  strength  of  mild  steel  is  28  to  30  tons  per  square  inch, 
so  that,  allowing  a  factor  of  safety  of  5,  we  may  take  6  tons  per 
square  inch  as  a  working  stress,  and  still  be  well  on  the  safe  side, 
as  the  load  is  steady.  Then  the  safe  moment  of  resistance  to 
bending  of  the  joist  section  is 

M=/xZ  =  6^?x  127-7  in.3  =  766  inch-tons. 

in.2 

It  is  assumed  that  the  joist  is  so  well  stayed  sideways  that  the 
compression  flange  will  not  fail  by  crippling  or  buckling.  This 
action,  which  consists  in  a  lateral  bending  and  wrinkling  of  the 
fibres,  has  to  be  carefully  guarded  against  in  long  girders  and 
columns. 

To  proceed  with  the  example — the  bending  moment  on  a 
uniformly  loaded  beam  of  28ft.  span  is 

£WL  =  |xWx28xl2=  42  W  inch-tons. 
Hence,  equating  the  bending  and  resisting  moments,  we  have 

42W  =  766 ;    .-.  W  =  18-2  tons, 
so  that  a  steel  joist  18  x  7  in.  will  safely  carry  18  tons  under  the 
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stated  conditions.  But  it  musb  not  be  forgotten  that  this  includes 
the  weight  of  the  beam  itself,  and  therefore  a  correction  has  to  be 
applied  before  the  residual  or  effective  load  can  be  stated. 

As  the  joist  weighs  751bs.  per  foot  run,  its  weight  between  the 
supports  is  28  x  75  =  21001bs.,  or,  say,  a  ton.  Deducting  this, 
it  finally  appears  that  the  useful  distributed  load  that  can  be  safely 
borne  by  a  joist  18  x  7in.  is  17  tons.  This  weight-correction 
becomes  of  much  greater  importance  in  the  case  of  a  long-span 
girder,  the  weight  of  which  may  exceed  the  useful  load.  This 
factor,  therefore,  puts  a  practical  limit  to  the  span  of  a  bridge. 
For  instance,  it  would  not  be  feasible  to  construct  a  bridge  with  a 
clear  span  of  five  miles  ;  because  it  would  be  incapable  of  support- 

ing its  own  weight. 
II.  Safe  Load  on  a  Joist  in  terms  of  its  Weight.  —  The  above- 

described  exact  method  of  calculating  what  load  a  given  joist  will 
safely  carry  is  rather  laborious,  especially  in  the  absence  of  a  slide- 
rule  or  tables  ;  for  which  reason  certain  formulae  of  a  less  refined 
or  rough-and-ready  nature  are  much  used  in  practice,  and  are 
well  worth  knowing. 

One  of  these  is  a  neat  empirical  formula  for  estimating  the  safe 
load  that  may  be  put  on  a  rolled  steel  joist  when  given  the 
principal  dimensions  and  the  weight  per  foot.  Thus, 

, 
L 

in  which 
Wtons  —  safe  distributed  dead  load. 
w  Ibs.     =  weight  of  joist  per  lineal  foot. 
B  inch  =  breadth  of  flange. 
H  inch  =  total  depth  of  joist. 
L  feet    =  clear  span. 

Applying  this  formula  to  the  case  of  a  joist  18  by  7in.  by  751bs. 
per  foot,  and  of  28ft.  span,  we  get 

W  =  0-7(75-0-3  x  7  x  18)^j, 
which  works  out  to  16  '74  tons. 
Now  by  the  usual  laborious  method  we  found  that  18  tons 

could  be  borne,  including  the  weight  of  the  joist,  and  17  tons 
exclusive  of  that  weight  ;  so  that  the  result  is  about  right,  even 
without  correcting  for  the  weight  of  the  beam  itself.  This  is  also 
the  case  for  all  reasonable  spans,  but  not  for  spans  much  greater 
than  twenty  times  the  depth  of  the  joist.  To  emphasise  this 
point  let  us  see  how  the  two  methods  will  agree  for  a  joist  of  the 
same  section  as  that  last  considered  (Fig.  113),  but  having  the 



126  THE  DESIGN  OF  BEAMS. 

extreme    span  of  100ft.       We  disregard,  for  the   present,  the 
question  of  stiffness. 

The  bending  moment  on  a  uniformly  -loaded  beam   of    100ft. 
span  is 

x  100  x  12  =  150W  inch-tons. 

Also  the  moment  of  resistance  of  the  section  shown  in  Fig.  113 

has  been  already  found  to  be  766  inch-tons.  Equating  the  move- 
ments gives 

150W  =  766;    .-.  W  =  5-11  tons. 

It  remains  to  correct  for  the  weight  of  the  beam.  This  is 

751bs.  per  foot,  or  75001bs.  altogether  —  that  is,  3-3;")  tons.  Hence the  safe  useful  load  is  only 
5-11-3-35  =  1-76  tons. 

Next,  trying  the  short  practical  rule,  we  get 

W  =  0-7  (751bs.-0-3  x  Tin.  x  18m.)—1  5i 

'  100ft. 

which  amounts  to  4-68  tons.  This  is  the  total  distributed  load. 

Deducting  3-35  tons  for  the  weight  of  the  joist  itself,  there  re- 
mains only  1-33  tons  as  the  greatest  useful  or  net  load  it  would 

be  advisable  to  put  on  the  beam.  Evidently,  then,  the  weight 
correction  is  of  essential  importance  in  the  case  of  beams  of 
abnormal  span. 

III.  Second  Approximate  Formula  for  Joists.  —  Another  very 
handy  method  of  dealing  with  the  strength  of  a  rolled  joist  is  to 

neglect  the  web  entirely,  and  confine  one's  attention  to  the  flanges  ; 
knowing  that,  if  these  alone  are  able  to  withstand  the  bending 
moment,  then  the  whole  beam  will  certainly  be  strong  enough  in 
that  respect.  The  theory  of  this  method  has  already  been  fully 
gone  into  in  former  pages,  where  it  was  shown  that  the  moment  of 
resistance  is 

/Area  of  one  flangeA          /mean  stress  over  flange,  \ 

I   in  square  inches   /    '      y  in  tons  per  square  inch  / 
/effective  depth  of  beam,\ 

\  in  inches  i' 
Instead  of  the  effective  depth  of  the  joist,  which  is  the  distance 

between  the  centres  of  area  of  the  flanges,  we  may,  in  this  type  of 
beam,  substitute  the  total  depth,  without  introducing  much  error. 
Also,  in  place  of  the  mean  flange  stress  we  may  safely  take  the 
stress  on  the  extreme  fibres.  Then,  on  making  these  approxima- 

tions, the  formula  for  the  moment  of  resistance  of  an  I  section 
becomes 

M  =  /  x  A   x  H, 
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the   letters   being  explained   in   Fig.    115.     Assuming   uniform 
loading,  the  equation  of  moments  will  then  be 

I r  W  x  L  =  /  x  A  x  H, 
and  therefore 

w_8/x  A  x  H 

the  span  L  and  depth  H  being  in  inches, 
simple  formula  it  is  easy  to  calculate, 
with  fair  accuracy,  what  uniformly- 
distributed  load  a  joist  of  given  dimen- 

sions will  carry  safely.  If  the  beam 
is  loaded  at  the  centre,  instead  of  all 
over,  then  only  half  the  load  found 
by  the  above  formula  can  be  carried. 

The  last-named  formula  will  now 
be  applied  to  calculate  the  uniform 
load  that  a  steel  joist  7  x  18in. 
(Fig.  113)  is  capable  of  carrying  with 
safety.  The  stress  (/)  allowed  is  six 
tons  per  square  inch,  the  flange  area 

(A)  is  about  7  x  0'94in.  =  6-58  sq.in., 
the  depth  (H)  of  the  joist  is  18in., 
and  the  span  (L)  is  28  x  12=  336in. 
Inserting  these  values  in  the  formula, 
it  becomes 

By  the  aid  of  this 

=  8  x  6 ton x  6-58in.2  x  18in. 

/,ion 

in  .Stress
 

Y//////AA//////A 

Neutral Axis -     -         n 

V/////,  //////A    , 

-r  336in., 

which  works  out  to  very  nearly  17 
tons.     The  accurate  value  of  the  safe 

distributed  load  is  18'2  tons,  as  we 
have    already   found    by   the    usual 
scientific  method,  so  that  the  error  is  Fig.  115. 
not  great,  and  moreover  it  is  on  the 
right  side.    The  approximate  formula  may  therefore  be  used  with 
every  confidence.     But  of  course  it   is  still  necessary  to  make  a 
correction  for  the  weight  of  the  joist  itself,  especially  if  of  long 
span.     In  the  present  case,  however,  this  weight  is  less  than  one 
ton,  and  therefore  is  not  of  much  consequence. 

IV.  Third  Approximate  Formula  for  the  Strength  of  I  Beams. 
— The  last -mentioned  method  of  finding  the  safe  load  ignores 
the  web  entirely,  and  therefore  gives  results  somewhat  too  low. 
The  method  to  be  now  described  takes  into  account  the  web,  but 
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gives  it  rather  undue  credit,  so  that  the  results  obtained  are  a 
trifle  too  high. 

Referring  to  the  half-section  shown  in  Fig.  116,  the  respective 
resisting  powers  of  the  flange  and  the  half-web  are  proportional  to 
the  areas  ABCD  and  abG,  as  fully  explained  in  ch.  vii.  Now 
the  area  abG  is  very  nearly  one-fourth  the  area  of  the  web, 

and  may  conveniently  be  taken  as  exactly  so  when  the  web  is 
thin.  Also  the  distance  of  the  centroid  of  this  triangle  from 
the  neutral  axis  is  two-thirds  of  the  depth  of  the  half-web,  and  it 
may  be  regarded  with  no  great  error  as  one-third  of  the  total 
depth  of  the  beam  H.  Hence,  the  amount  of  resistance  of  the 
half-web  alone  is  approximately 

/      stress  on     \       area  of  web      depth  of  beam 
\extreme  fibres/  4  3 

or  in  symbols 
H 
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and  therefore  the  moment  of  resistance  of  the  whole  web  is  twice 

this  —  namely 

£/  x  a  x  H. 

This  is  simply  the  web  correction.  And  it  has  already  been 
shown  that  the  moment  of  resistance  of  the  flanges  is  approxi- 
mately 

/  x  A  x  H. 

Hence  the  approximate  moment  of  resistance  of  the  whole  section 
is  the  resisting  moment  of  the  flanges  plus  the  resisting  moment 
of  the  web,  or 

M  =/AH 

Now,  for  a  joist  uniformly  loaded,  the  bending  moment  is 
and  therefore 

JWL-/HJA+I), 
whence 

This  formula  is  highly  esteemed  and  much  used  by  some 
engineers,  and  not  at  all  by  others.  Applying  it  to  the  case 

of  a  joist  18  x  7in.,  having  a  flange  area  of  6-58  sq.  in.,  a  web 
area  of  8'87  sq.  in.,  and  a  span  of  28ft.,  we  get,  by  substituting 
the  given  values,  the  expression — 

-ITT      8  x  6  x 
28  x  12 

which  simplifies  to  20*7  tons,  including  the  weight  of  the  joist 
itself.  As  this  result  is  too  high,  and  the  second  approximate 
result  too  low,  the  mean  of  them  should  be  almost  exact — viz., 

J  (17  tons  +  20-7  tons)  =  18-85  tons. 
The  true  value  of  the  safe  load,  as  calculated  in  the  standard 

way,  was  found  to  be  18'2  tons,  inclusive  of  the  joist's  own 
weight. 

On  considering  the  comparative  merits  of  the  two  last-described 
formulae,  we  on  the  whole  prefer  the  simpler  one ;  because  its 
error  is  on  the  safe  side  and  also  of  less  amount  than  the  error  of 
the  more  complex  formula. 

i 
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Ultimate  Strength  of  I  Joists. — In  treating  of  rectangular 
beams,  it  was  stated  that  the  breaking  strength  of  such  beams 
could  not  be  calculated  in  any  rational  manner.  The  same  is 
true  of  rolled  joists,  though  in  their  case  much  less  error  is 
introduced  by  forgetting  that  rational  strength  formulae  only  hold 
good  so  long  as  the  elastic  limits  of  the  material  are  not  exceeded. 
Nevertheless,  it  will  be  interesting  to  calculate  what  result  will 
be  obtained  by  the  use  of  a  rule  which  Sir  Benjamin  Baker  gave 
many  years  ago  for  calculating  the  breaking  strength  of  beams. 
This  rule  was  tested  and  verified  by  numerous  experiments 
of  his,  in  which  a  close  agreement  between  the  calculated  and 
the  experimental  results  was  exhibited. 

In  Baker's  original  paper  on  "The  Practical  Strength  of 
Beams,"  read  before  the  Institution  of  Civil  Engineers  in  the  year 
1880,  the  following  passages  occur,  and  will  no  doubt  be  read  with 
interest : — 

"  The  theory  of  transverse  stress  has  engaged  the  attention  of 
mathematicians  for  many  years,  and  certain  hypotheses  have  been, 
and  still  are,  generally  accepted,  although  every  practical  engineer 
knows  that  in  the  majority  of  cases  the  calculated  results  based 
upon  these  hypotheses  are  widely  at  variance  with  those  obtained 
by  experiment.  Engineers,  however,  cannot  afford  to  wait  until 
a  rational  theory  of  transverse  stress  is  agreed  upon,  and  no  doubt 
many  engineers  besides  the  author  have  framed  certain  rules  for 
their  own  guidance,  which  have  given  results  agreeing  with 
experiment,  and  otherwise  answered  their  purpose  as  well  as  if  an 
unassailable  theory  had  been  arrived  at.  A  comparison  of  these 
practical  rules  can  hardly  fail  to  be  useful,  both  to  the  scientific 
experimentalist  who  has  leisure  to  make  special  tests  to  elucidate 
a  theory,  and  to  the  engineer  whose  first  object  is  to  make  sure 
that  his  structure  possesses  the  required  strength.  The  author, 
therefore,  proposes  to  illustrate  the  method  of  calculation  which 
he  has  found  during  the  past  fifteen  years  to  give  satisfactory 
results  in  the  instance  of  many  thousands  of  tons  of  beams  of 

every  variety  of  cross-section.  .  .  ." 
"  The  average  results  of  a  very  large  number  of  experiments 

show  that,  as  regards  deflection  under  transverse  stress,  a  rail  as 
a  beam  behaves  exactly  in  accordance  with  the  ordinarily- 
accepted  theory,  with  this  important  distinction  :  that  the  maxi- 

mum deflection  within  the  elastic  limit  is  greater  than  theory 
would  indicate  by  an  amount  ranging  from  5  to  50  per  cent., 
according  to  the  cross-section  of  the  rail.  Experiments  by  Mr. 
W.  H.  Barlow,  F.R.S.,  President  Inst.  C.E.,  on  other  descrip- 

tions of  beams  would  have  indicated  such  a  conclusion,  and  that 
the  increase  in  the  elastic  deflection,  as  in  the  elastic  and  ultimate 
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strength,  must  necessarily  be  included  within  the  limits  of  0  and 
70  per  cent.,  because  the  increase  is  nil  in  the  instance  of  a  steel- 
plate  girder  with  a  thin  web,  and  averages  70  per  cent,  in  a  solid 
bar  of  rectangular  cross-section.  In  estimating  the  probable 
increase  in  the  case  of  a  beam,  such  as  a  rail,  having  a  cross- 
section  between  these  two  extremes  of  girder  and  bar,  the  first 
impulse  naturally  would  be  to  assume  that  it  would  approach  the 
limit  of  70  per  cent,  in  the  same  proportion  as  the  section  of  the 
rail  approached  the  solid  rectangular  bar  ;  that  is  to  say,  that  the 
increase  would  be  70  per  cent,  multiplied  by  the  sectional  area  of 
the  rail,  and  divided  by  the  area  of  the  enclosing  rectangle.  This 
simple  assumption  the  author  has  found  to  be  sufficiently  near  the 

truth  for  all  practical  purposes." 
These  words,  coming  from  a  man  who  has  attained  eminence 

in  his  profession,  and  become  famous  as  the  joint  engineer  of  the 
stupendous  Forth  Bridge,  are  deserving  of  thoughtful  considera- 

tion. Let  us,  therefore,  apply  Baker's  method  to  the  case  of  a 
joist  18  by  7in.  by  28ft.  span,  weighing  751bs.  per  foot. 

Let  M  inch-tons  be  the  moment  of  resistance  calculated  in  the 
ordinary  way,  but  using  the  ultimate  tensile  stress,  say  30  tons 
per  square  inch,  in  place  of  the  safe  working  stress.  Thus  M  is 
the  ultimate  moment  of  resistance,  as  ordinarily  understood. 
Now,  in  preceding  pages  it  has  been  shown  that  the  modulus  of 
the  section  in  question  is  127"7in.3,  so  that  the  ultimate  moment 
M  =  127-7  x  30  =  3831  inch-tons. 

Next,  let  a  sq.  in.  be  the  area  of  the  entire  section  of  the 
beam  —  namely,  22  sq.  in.,  —  and  A  sq.  in  the  area  of  the  enclos- 

ing or  circumscribing  rectangle  —  namely,  18  x  7in.  =  126  sq.  in. 
Then,  according  to  Baker,  the  true  ultimate  moment  of  resistance 
will  not  be  M  simply,  but 

M    +   70  per  cent,  of  M  x  —  ; 
that  is, 

On  substituting  the  known  values  in  this  formula  we  get 
/  22  \ 

3831(1  +  0-7  x  —\  =  3831   x   1-122  =  4300  inch-tons,    sny, \  126/ 

and  as  the  bending  moment  under  a  distributed  breaking  load  W 
is  £WL,  we  must  have 

^  x  W  x  28  x  12  -=  4300, 
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from  which 

w       4300  x  8 ,__-  10*8  tons. 

This  is  the  breaking  load  according  to  Baker's  rule.  But  some 
other  engineers  would  make  use  of  the  approximate  formula 
already  deduced  namely, 

w_8/x  A  x  H 
Li 

to  determine  with  sufficient  accuracy  the  probable  uniformly 
distributed  breaking  load,  A  being  here  the  flange  area.  This 
rule  gives,  for  the  same  joist, 

™-      8  x  30  x  6-58  x  18 
28x12 

However,  the  precise  load  that  will  break  a  given  beam  is  not  of 
great  interest  in  practice  ;  the  important  question  rather  is,  What 
will  the  beam  safely  carry  ?  This  question  has  been  fully 
answered. 

Trade  Catalogues.  —  Before  leaving  this  important  matter  of 
the  strength  of  single  joists,  it  should  be  mentioned  that  most 
steel  makers  issue  lists  of  the  sections  rolled  by  them,  which  are 
gladly  furnished  to  customers  and  prospective  buyers  as  being 
likely  to  facilitate  business.  These  lists  contain  tables  of  safe 
loads  for  various  sections  and  spans  of  joists,  which  have  been 
calculated  for  stresses  of  £,  £,  and  ̂   of  the  breaking  stress  of  the 
steel  employed  in  their  manufacture.  When  such  tables  are 
available  there  is  no  need  to  enter  into  strength  calculations  at 
all,  save  as  a  check  ;  the  nearest  section  usually  kept  in  stock 
being  simply  picked  out  from  the  list  of  standard  sections.  Some 
men,  however,  prefer  entirely  to  ignore  tables  of  this  kind  and  to 
make  their  own  calculations.  We  do  not  advise  this  altogether, 
as  it  is  possible  to  use  tables  intelligently  :  but  it  may  be  necessary 
to  warn  the  inexperienced  that  unless  they  know  what  factor  of 
safety  has  been  allowed  in  calculating  standard  tables,  and  unless 
the  nature  of  the  load  be  taken  into  account  in  the  selection  of  a 

section,  very  serious  errors  are  likely  to  arise.  At  any  rate, 
there  is  no  doubt  that  every  engineer  and  architect  should  be 
readily  able  to  ascertain  for  himself  the  size  of  beam  required 
for  a  definite  purpose  without  any  assistance  whatever  from 
standard  tables. 

The  tableof  British  standard  beams  on  pp.  134-135is  based  on  the 
list  of  Messrs.  Dorman,  Long  and  Co.,  Ltd.,  and  that  issued  by  the 
Engineering  Standards  Committee  :  but  the  arrangement  has  been 
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considerably  modified,  useless  decimals*  omitted,  and  minor  features 
passed  over — all  with  a  view  to  securing  greater  clearness  and 
suitability  for  drawing-office  use.  The  loads  have  also  been  re- 

calculated. The  standard  angle  between  the  flange  and  the  web 
of  I  beams  is  98°. 

*  It  is  absurd  to  write  such  a  value  as  2654'769  inch  units  as  the  moment 
of  inertia  of  a  beam  section.  It  should  be  remembered  that  it  is  not  com- 

mercially practicable  to  roll  steel  joists  to  a  closer  degree  of  accuracy  than 
2£  per  cent,  of  the  nominal  weight  per  foot.  Hence  the  absurdity  of  too 
many  significant  figures. 
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Ref.  No. SIZE. 
Wei-flit 

per 

Area  of 
Section. 

Mean 
Thickness. 

Centres 

of 

Flange Modu- 
lus of 

Section for 

Mo- 

ment of 
Inertia 

loot. 

lloll-S. U('Ii:l- 
N.A. 

Web. Flange. 

ing. 

BSB. Inches. Lba. 
Sq.  in. 

Inch. Inch  . Inch. 

Inch.3 
Inch4. 

30 24x7$ 
100 

29-4 

•6 

1-1 

4-5 
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2655 29 20x74 

89 

26-2 

•6 

1 

4-5 
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28 18x7 
75 
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•55 

•93 
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•55 

•85 
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26 15x6 

59 
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3-5 
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19 

12x5 
10x8 
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70 

9  '4 
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•6 
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2  '75 
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69 
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42 
12-4 

•4 

•74 
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14 

66 
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677 4 4x3 
9-5 

2-8 

•22 

•34 

1-5 

3-76 

7T)3 

3 
4xlf 

5 I  47 

•17 

•24 

1-84 
3-07 

2 3x3 
8-5 2-5 

•2 

•33 

IT, 

2-52 3-79 

1 
3xU 

4 

1-18 

•16 

•25 

I'll 
1-66 

H      B w A t T 0 Z I 

1 2 3 4 5 6 7 8 9 



STRENGTH  OF  ROLLED  JOISTS. 

STANDARD  BEAMS. 
135 

SAFE  DISTRIBUTED  DEAD  LOAD,  for  various  spans,  with  an  extreme 
fibre  stress  of  7^  tons  per  sq.  in. 

4ft. eft. 8ft. 10ft. 12ft. 14ft. 16ft.     18ft. 20ft. 24ft. 28ft. 
32ft. 

Ton. Ton. Ton. Ton. Ton. Ton. Ton.    Ton. Ton. 
Ton. 

Ton. Ton. 

110 
92 79 

69       61 55 
46 

39 

34 
104 84 

70 60 
52        46 

42 35 

30 26 
80 

64 
53 45 40        35 32 

26 

22 

20 

56 
45 

38 
32 

28        25 22 19 16 
52 42 

35 30 

26 
23 

21 
17 

36 28 
23 

20 18 
16 

14 12 

64 48 38 32 27 24        21 

19 

16 
52 38 31 26 22 

19 
17 15 13 

52 

38 

31 
26 22 19 

17 

15 

44 32 
26 

22 19 16 14 13 

30 
22 18 15 13 11 10 9 

56 42 34 
28 

24 21 

36 26 21 18 15 13 
24 18 14 

12 

10 
9 

42 32 25 21 18 

22 15 11 9 
7-5 6-4 34 24 17 14 12 

28 18 14 17 9 

17-5 
11 

8-7 
7 5-8 

14 9-4 7 5-6 4-7 
18 12 9 

7-2 

14-5 9-6 7-2 
5-8 

8-4 5-6 4-2 3'4 
11-3 7-6 5-7 

6-8 4-5 3-4 
3-6 2-4 1-8 
4-7 3-1 

2-3 1-5 
3-2 
1-4 

W 

10 11 12 13 14 15 16 

17 

18 

19 

20 21 



CHAPTER  XI. 

L 

I 

MOMENT  OF  INERTIA. 

Moment    of  Inertia  is  a  term,  much  used  by  writers   on  the 
theory  of  beams,  which  may  now  be  advantageously  explained.    It 

has  already  been  made  clear,  in  former 
pages,  that  the  modulus  of  a  cross- 
section  of  a  beam — also  spoken  of  as 
"the  strength  modulus"  and  "the 
section  modulus  " — is  a  geometrical 
quantity  whose  value  depends  solely 
on  the  shape  and  size  of  the  section, 
and  that,  when  multiplied  by  the  safe 
stress  on  the  extreme  fibres,  it  gives 
the  moment  of  resistance  of  the  sec- 

tion. This  is  symbolically  expressed 

thus — Z  x  /  =  M, 

ff 

i.fi 

2"
 

In
 

the  corresponding  dimensional  equa- 
tion being — 

Inch8  x  E^ —  =  inch-pound. 

inch2 
Now,  the  moment  of  inertia  of  a 

section  is  a  geometrical  quantity  also, 
since  it  has  no  reference  to  mass  or 
time ;  but  it  is  of  one  dimension  higher 
in  length  than  the  section  modulus,  to 
which  it  is  related  in  the  following 
way : — The  moment  of  inertia  of  a 
section,  relative  to  the  neutral  axis, 
is  a  quantity  which,  when  divided  by 

the  distance   of   the   extreme  fibres  from  that  axis,   gives    the 
strength  modulus  of  the  section  in  question. 

Thus,  in  a  symmetrical  section,  as  Fig.  117, 

Fig.  117. 
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the  actual  numerical  values  here  being — 

1152in.4  -h  9in.  =  128inA 

In  the  case  of  a  section  unsymmetrical  about  the  neutral  axis 

"<*. 

t 

? 

«f 

u 
^ 
• 

*^ 

( 

i. 

5 

i 

*-/"-• 

A, ulral. 
/laris 

3 
3 
*                         • 

•*• 

L 
4 

1 r                i 1 r 

10" 

Fig.  118. 

as  Fig.  118,  there  are  iwo  strength  moduli,  one  compressive  and 
the  other  tensile.     Then  we  have  the  two  relations — 

and 
I  4-  yc  =  Zc=  compressive  modulus, 

I  -r  yt  =  Zt  =  tensile  modulus. 

In  the  section  figured,  for  instance,  these  become  — 

462in.4  -=-  7-375in.  =  62-6in.3, 
and 

462in.4  -r  4-625in.  =  lOOin.3; 
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the  lesser  of  these  values  being  taken  as  the  effective  modulus  of 
the  section. 

So  far  the  moment  of  inertia  of  a  given  section  has  been  merely 
connected  with  the  strength  modulus  of  that  section.  In  actual 
calculations,  however,  the  moment  of  inertia  is  not  usually  derived 
from  the  modulus,  but  the  latter  from  the  former.  It  is  neces- 

sary, therefore,  to  be  able  to  find  the  moment  of  inertia  of  a  figure 
without  reference  to  the  section  modulus ;  and  this  can  always  be 

done  by   the   aid   of    the 

a  Axis  /,     following    fundamental rule,  which  will  also  serve 
to  define  the  quantity  in 

question : — Rule. — To  find  the  mo- 
ment of  inertia  of  a  given 

plane  figure,  with  respect 
to  an  assigned  axis,  divide 
the  figure  into  narrow 
strips  parallel  to  that  axis, 
multiply  the  area  of  one 
strip  by  the  squa/re  of  its 
mean  distance  from  the 

axis,  and  repeat  this  opera- 
tion time  after  time  until 

the  entire  figure  has  been 
dealt  with  piecemeal.  The 
sum  of  all  the  resulting 

products  is  the  moment 
of  inertia  of  the  section  : 

approximately  if  a  limited 
number  of  strips  have  been 
taken,  accurately  only 
when  an  infinite  number 

of  strips  have  been  taken. 
In  the  latter  case,  the 
3  axis  must  always  be 

specified. 
A  few  numerical  examples  will  make  clear  the  application  of 

this  important  rule. 
Example  1. — To  find  the  moment  of  inertia  of  a  rectangle 

4in.  x  8in.  (Fig.  119),  relatively  to  one  short  edge  ab.  Divide 
the  figure  into,  say,  eight  equal  strips,  measure  the  distances  of 
their  centres  of  area  from  ab,  square  them,  multiply  across,  and 

add  the  products,  arranging  the  work  as  follows : — 

T-I-J 

T     ' 

i 

1  .-  « 

•o  v  '? 

1  ]
 

1 

;l 

d 

tegral     cal< 

^ 

> < 

> 

•f 

> <: 

B 

Fig.  119. 

;ulus    is    required.       rJ 
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Area  of  strip. Distance  from  a&. Square  of  Distance. Product. 

In.2 

In. 

In.2 

In.4 

1x4 

0-5 

0-25 

1 
4 1-5 

2-25 

9 
4 

2-5 

6-25 

25 
4 

3-5 12-25 49 
4 

4-5 
20-25 

81 
4 55 30-25 121 
4 

6-5 42-25 169 
4 

7-5 
56-25 225 

32 680 

Hence  the  approximate  moment  of  inertia  of  the  given  rectangle 
about  the  axis  ab,  is  680in.4 

On  taking  an  infinite  number  of  strips,  instead  of  only  eight, 
and  performing  the  summation  by  the  aid  of  the  integral  calculus, 
the  general  result  obtained  for  the  moment  of  inertia  of  a  rec- 

tangle about  one  edge  is  — 

which  in  the  present  case  becomes  — 

|  x  4  x  8J  =  682-7in.4, 
so  that  our  approximate  result  is  a  trifle  too  low. 

Closer  agreement,  if  desired,  can  be  attained  by  more  minute 
subdivision  ;  but  it  is  much  quicker  to  use  the  above  simple 
formula  rather  than  the  fundamental  rule. 

Similarly,  the  moment  of  inertia  of  the  same  rectangle,  about 
the  long  edge  be,  is  — 

£  x  8  x  43  =  I70-7in.4. 
Example  2.  —  To  find  the  moment  of  inertia  of  a  rectangular 

section,  4in.  by  8in.,  about  the  neutral  axis,  proceed  as  indicated 
in  Fig.  120  and  the  following  table  :  — 

Area  of  Strip. Distance  from  Axis. 
Distance.2 

Product. 

In.  a 
In. 

In.2 

In.4 

4 
3-5 

12-25 49 
4 

2-5 

6-25 

25 4 
1-5 

2-25 

9 
4 

0-5 

0-26 
1 

84 
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Hence  the  inertia- moment  of  the  part  of  the  section  above  the 
neutral  axis  is  about  84in.  units.  Also,  that  of  the  part  below 
the  axis  is  the  same  in  magnitude  and  sign,  since  the  square  of  a 
negative  quantity  is  itself  positive.  The  moment  of  inertia  of  the 
entire  section  is  therefore  about  168  inch  units. 

We  can  test  this  result  by  means  of  a  general  rule  or  formula, 
easily  found  from  the  consideration  that  the  moment  of  inertia  of 

Neutral 111 

Fig.  120. 

the  whole  figure,  relatively  to  the  neutral  axis,  is  twice  that  of 
half  the  figure  about  the  same  axis,  thus — 

x  B  x   I  - 

which  is  a  very  useful  formula.     Hence,  in  the  present  example, 
the  accurate  value  is — 

TV  x  4  x  8s  =  170-7in.4. 
This,  again,  differs  but  slightly    from   the    above   approximate 
result.     Similarly,  the  moment  of  inertia  of  the  same  rectangle, 
with  respect  to  the  vertical  axis  through  G,  Fig.  120,  is — • 

TV  x  8  x  43  =  42-7iu,4, 
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Fig.  121. 

Geometrical  and  Dynamical  Moments  of  Inertia  Compared. 

— Before  proceeding  to  deal  with  less  simple  sections,  it  appears 
advisable  to  say  something  about  the  use  of  the  term  "  moment  of 
inertia"  in  this  connection.  One  may  very  reasonably  ask, 
"  How  can  a  mere  geometrical  figure  have  a  moment  of  inertia  at 
all,  since  it  has  no  mass,  and  therefore  no  inertia  ?  Is  not  inertia 

a  property  of  tangible  bodies  only  ?  " 
The  objection  is  a  just  one.  Strictly 
speaking,  it  is  undoubtedly  absurd 
to  speak  of  the  moment  of  inertia  of 
a  figure  necessarily  devoid  of  inertia; 
and  the  practice  of  so  doing  may 
seem  to  suggest  a  strange  forgetful- 
ness  of  the  fundamental  meaning  of 
the  term  inertia.  0 

A  similar  usage,  however,  exists 
in  regard  to  the  term  "  centre  of 
gravity,"  which  is  commonly  em- 

ployed— instead  of  the  less  familiar  "  centroid  " — in  reference  to 
mere  weightless  figures  ;  though  well  known  to  be  strictly  applic- 

able only  to  bodies.  And  in  precisely  the  same  way,  by  analogy 
with  the  dynamical  term,  we  have  come  to  speak  conventionally 
of  the  moment  of  inertia  of  a  plane  figure,  because  no  better  name 

has  been  agreed  on. 
Some  people,  it  is  true, 
prefer  to  speak  always  of 
the  "geometrical  moment 
of  inertia,"  but  that  name 
is  rather  cumbrous  ;  while 

others  justify  the  conven- 
tional term  by  regarding 

a  plane  figure  as  a  very 
thin  sheet  of  heavy  mate- rial. 

For  the  sake   of   com- 
parison,   a   definition    of 

the     "   dynamical  "      or 
"  mass  moment  of  inertia  "  will  now  be  given  and  exemplified. 

The  moment  of  inertia  of  an  indefinitely  small  body  or  particle 
P  (Fig.  121),  relatively  to  a  given  axis  or  straight  line  OX,  is  the 
product  of  the  mass  m  of  the  body  by  the  square  of  its  perpendi- 

cular distance  r  from   the  axis.     Thus,  if  P  weighs  lib.  and  r 
measures  lOin.,  then  the  moment  of  inertia  of  P  is — 

1  pound  x  (10  inches)2  =  100  pound-inch2. 
Further,  the  moment  of  inertia  of  an  extended  body  (Fig.  122) 

Fig.  122. 
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about  a  given  axis  is  the  sum  of  the  moments  of  inertia  of  all  its 
parts  ;  and  is  approximately  found  by  dividing  the  body  into  a 
good  many  small  parts,  multiplying  the  mass  of  each  of  these  by 
the  square  of  its  mean  distance  from  the  axis,  and  finally  adding 
the  products  together.  Accurately,  however,  the  moment  of 
inertia  is  the  limiting  value  of  the  sum  of  the  products  when  the 
small  parts  are  made  infinitely  numerous.  The  calculus  method 
of  finding  the  moment  of  inertia,  based  on  the  latter  definition, 
is  applicable  only  to  regular  bodies,  while  the  approximate  method 
can  be  used  for  any  body  whatever,  and  is  therefore  more  generally 
useful. 

For  instance,  if  a  rectangular  block  of  cast-iron,  Fig.  122, 
measuring  10  x  6  x  4in.,  weighs  62|lbs.,  its  moment  of  inertia 
about  a  vertical  axis  passing  through  its  centre  of  gravity  is  — 

=        .  (10»  +  62)  =  708  pound-inch2. iZ 

The  formula  is  arrived  at  by  the  process  of  integration. 
The  units  here  made  use  of  have  been  selected  merely  for 

convenience  of  illustration.  But  in  solving  technical  problems 
involving  the  use  of  the  dynamical  moment  of  inertia,  such  as 

fly-wheel  calculations,  engineers  commonly  use  32-2lbs.  as  the 
unit  of  mass,  and  1ft.  as  the  unit  of  length,  the  force  unit  being 
1  pound. 

Unit  moment  of  inertia  is  then  —    '    x  1ft.2. 
o2  a 

The  dynamical  or  true  moment  of  inertia  will  not  further 
concern  us  in  these  pages  however.  In  future,  then,  whenever 
the  moment  of  inertia  is  spoken  of  without  qualification,  the 
geometrical  quantity  will  be  meant,  the  unit  being  an  inch  raised  to 
the  fourth  power. 
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NUMERICAL   APPLICATIONS. 

ANY  one  who  can  find  the  moment  of  inertia  of  any  plane  figure 
whatever  has  made  an  important  step  towards  being  able  to  inves- 

tigate the  transverse  strength  and  the  deflection  of  any  beam  that 
admits  of  mathematical  treatment.  Hence  it  will  be  advisable  to 
dwell  sufficiently  long  over  this 
important  question  to  render  abso- 

lutely clear  the  method  of  procedure 
in  the  case  of  every  type  of  beam 
section  usually  met  with  in  practice. 
Most  of  the  sections  in  general  use 
are  made  up  of  rectangles,  and  can 
be  rapidly  dealt  with  by  the  succes- 

sive application  of  the  formula 
already  given  for  the  simple  rectan- 

gular section.  The  method  of  de- 
signing a  beam,  it  should  be  re- 

membered, is  largely  tentative — that 
is  to  say,  we  assume  a  likely  section 
and  then  examine  into  its  sufficiency, 
in  the  manner  illustrated  by  the 
following  examples : — 

Example  1.  —  A  wrought-iron 
beam  of  the  given  T  -section  (Fig. 
123)  is  loaded  uniformly  over  the 
upper  flange  and  supported  at  both 
ends.  Find  the  moment  of  inertia 
about  the  neutral  axis  of  the  section,  also  the  strength  moduli. 
What  dead  load  will  the  beam  safely  carry  over  an  8ft.  span  ? 

(1)  Locate   the    neutral   axis  NX  (Fig.  123)  by  taking  area 
moments  about  the  top  edge  AB  of  the  section,  thus  : — 

Moment  of  flange  =  area  x  mean  distance  from  AB 

=  2in.  x   |in.  x  £in.  =  0'25in.3 
Also  moment  of  web  =    in    y  4in.  x  ?in.  ==  5in.f 

X 
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Fig.  123. 
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Now  the  entire  area  of  the  section  is  3  sq.  in.,  and  the  moment  of 
the  whole  figure  about  AB  is  the  sum  of  the  moments  of  the 

parts;  hence — 
3yc  =  5-25,  .-.yc=  l-75in., 

which  fixes  the  position  of  the  centre  of  area  G  and  the  neutral 
axis. 

(2)  The  moment  of  inertia  of  the  part  of  the  section  above  NX 
about  that  axis  is  the  same  as  the  moment  of  inertia  of  the  large 
rectangle  ABXN  about  one  edge  NX,  lessened  by  the  collective 
moment  of  inertia  of  the  two  side  rectangles  outside  of  the  section. 
We  have  already  seen  that  the  moment  of  inertia  of  a  rectangle 

about  one  edge  is — 

J  x  base  x  height.3 

Applying  this  rule  to  the  case  in  hand  gives — 

I,  =  £  x  2in.  x  (l-75in.)3  =  3-572in." 
Ia  =  £  x  l'5in.  x  (l-25in.)3  =  0'976 

Difference  =  2-596 

This  is  the  inertia  moment  of  the  upper  part  of  the  section  ; 
that  of  the  lower  part,  taken  about  NX  is — 

I3  =  £  x  0-5in.  x  (2-75in.)3  =  3'466in.4 
Adding  together  these  two  results,  the  moment  of  inertia  of  the 

entire  section  is  6'062in.4 
(3)  The  modulus  of  the  section  as  regards  compression  is — 

Zc  =  I  -r  yc  =  6'06in.4  -j-  l'75in.  =  3'4Gin.3, 

and  with  respect  to  tension  is — 

Zt  =  I  -r  yt  =  6-06in.4  -5-  2'75in.  =  2'2in.3 
In  the  case  of  a  cantilever  these  values  would  be  interchanged, 

but  in  both  cases  the  moment  of  resistance  of  the  section  is — 

Zc  x  /c  =  Zt  x  /t, 

where  fc  and  ft  are  the  compressive  and  tensile  stresses  actually 
induced  in  the  extreme  layers  of  the  material.  If  /t  must  not 

exceed  5  tons  per  square  inch,  then — 

Zt  /t  =  2'2in.3  x  5  = — ^  =11  inch-tons, 

and  f,  will  be — 

—    =    =3-18  tons  per  square  inch. 

Zc       3'46 
As  this  compressive  stress  is  considerably  lower  than  the  tensile 

stress,  it  is  certain  that  such  a  beam,  if  loaded  to  destruction,  would 
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fail  by  the  tearing  asunder  of  the  part  in  tension.  The  flange  not 
only  gives  an  excess  of  direct  compressive  strength,  but  also  affords 
ample  security  against  failure  by  buckling,  to  which  the  compressed 
part  of  every  beam  is  liable.  For  this  reason  the  material  is  not 
so  uneconomical ly  disposed  as  might  at  first  sight  appear. 

(4)  The  greatest  bending  moment  induced  by  a  distributed 

load — namely,  ̂ WL — is  now  to  be  put  equal  to  the  above  moment 
of  resistance,  thus : — 

from  which — 
x  96in.  =  11  inch-tons, 

W  =  0-92  ton. 

Thus  the  required  uniform  load  maybe  taken  as  1  ton. 
Example  2. — To  find  the  moment  of  inertia  of  the  given  un- 

symmetrical  section  (Fig.  124)  with 
regard  to  the  neutral  axis.  This 
style  of  section,  when  provided  with 
generous  fillets  and  feathers,  is  that 
adopted  for  beams  of  cast-iron ;  a 
material  which  is  from  four  to  six 

times  stronger  in  compression  than 
in  tension. 

The  tensile  breaking  strength  of 
average  cast-iron  is  given  by  Unwin 
as  17,5001bs.  per  square  inch,  and  the 
compressive  as  95,0001bs.  per  square 
inch ;  so  that,  from  the  point  of  view 
of  ultimate  strength,  the  tensile 

flange  should  have  about  5'4  times 
the  area  of  the  compressive  flange. 
But  as  beams  are  not  loaded  to  their 

breaking-point,  this  proportion  is  not  the  best. 
The  elastic  limit  of  cast-iron  in  tension  (if  it  can  properly  be 

said  to  have  any,  which  Unwin  doubts)  is  about  10,5001bs.  and 
in  pressure  is  about  21,0001bs.  per  square  inch.  Hence,  from  the 
point  of  view  of  elastic  strength,  the  tension  flange  should  appa- 

rently have  twice  the  area  of  the  compression  flange.  On  the  whole, 

however,  a  ratio  of  4  to  1  seems  best  to  satisfy  practical  require- 
ments, and  is  that  usually  adopted. 

(1)  To  proceed  with  the  example  in  hand,  first  locate  the  neutral 
axis  NX  (Fig.  124)  by  taking  moments  about  the  top  edge  of  the 
section,  in  the  manner  already  described. 

(2)  The  moment  of  inertia  of   the  upper  part  of  the  section 
about  the  line  NX  is — 

Fig.  124. 
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£  x  4in.  x  (7-375in.)3  -  £  x  3in.  x  (6'375in.)3 
=  £  (1600  -  777)  =  274  inch.4 

(3)  The  moment  of  inertia  of  the  lower    part  about  NX  is — 

(£  x  10  x  4-625*) -(£  x  9  x  3'6253) 
=  £(990-427)=  188  inch.4 

(4)  Adding  these  two  results,  the   moment  of  inertia  of  the 
whole  section  is  274  +188 

=  462  quartic  inches. 
Example  3. — Fig.  125 

shows  the  section  of  a  plate 
girder  with  a  single  £in. 
web  and  3  x  3  x  £in.  angle 
irons.  Find  its  moment  of 
inertia  about  the  neutral 

axis,  and  also  the  safe  load 

that  the  girder  will  sup- 
port. The  span  is  28ft., 

and  the  stress  allowed  is  5 

tons  per  square  inch.  The 
rivet  holes  and  the  rounds 

in  the  angle  irons  may  here 
be  neglected. 

(1)  The  moment  of  in- 
ertia of  a  symmetrical  sec- 
tion like  the  present  may 

be  found  at  one  operation 

by  the  formula — 

1  = which,  on  substituting  the 
values  marked  on  the  sec- 

tion, becomes — 

I  =  ̂ y  (10  x  363  -  3  x 
353-6  x  34s -1  x  283)  = 

^  of  80,160  =  6680in.4 

(2)  The  strength  mo- 
duli  are  equal  in  value, 

viz. : — 
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(3)  For   a   uniform  load   the  maximum  bending  moment   is 
.    Equating  this  to  the  moment  of  resistance  gives  — 

x  28  x  12  =  5  x  371, 

the  stress  being  5  tons  per  square  inch. 

,         1855 —  —  - 

42 
=  44  tons, 

44 
or  the  load  per  lineal  foot  is  ̂   =  r»7  tons. <6O 

Example  4.  —  A  wrought-iron  box  girder  of  30ft.  span  has  the 
uniform  section  shown  in  Fig.   126.     Required  the  moment  of 

•  16— 

-4- 

-      N. 
  X 

Fig.  126. 

inertia  of  the  section  and  the  distributed  live  load  the  girder  will 
safely  carry,  neglecting  rivets. 

(1)  Draw  the  equivalent  solid  section  (Fig.  127),  by  simply 
closing  up  the  web  plates  and  the  angles.  This  section  will  have 
the  same  moment  of  inertia  about  the  neutral  axis  NX  as  the 

original  box  section,  but  a  much  less  moment  about  the  vertical 
axis  CD.  In  other  words,  an  I  beam  has  less  lateral  stability,  and 
is  more  liable  to  buckle  under  a  heavy  load  than  a  box  beam  of 
equal  section. 

This  method  of  reducing  the  actual  section  to  a  simpler  equi- 
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valent  section  is  a  very  valuable  artifice  ;  its  utility  being  specially 
marked  in  dealing  with  complex  sections,  such  as  the  midship 
section  of  a  ship. 

(2)  The  moment  of  inertia  of  the  equivalent  section  can  now 
be  accurately  found  as  described  in  Example  3  above,  or  approxi- 

mately as  follows ;  the  latter  method,  though  not  quite  correct  in 
principle,  having  the  advantage  of  clearly  bringing  out  the  relative 
importance  of  the  different  parts  of  the  section. 

Consider  in  succession  the  approximate  moments  of  inertia  of 
the  four  rectangles  composing  the  upper  half  of  the  section  about 
the  neutral  axis  NX. 

i 
E 

t  ̂ 
i  / 

=      i 
*«. 

i'  < 
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'•3 

F      '"
 

t     r 
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n 
4 

***       HE* 

,-L.r 

Fig.  127. 

I  of  1st  rectangle  =  area  x  (mean  distance)2 
=   16     x     £  x  (8f)2  =  612in.4 

I  of  2nd  rectangle  =      7     x     |  x   (8|)2  =  238 
2     x  2}  x  (6|)2  =  228 
^     x    1     x  (5|)J  =  55 
of   inertia  of   the          

I  of  3rd  rectangle  = 
I  of  4th  rectangle  = 
Hence  the   moment 

upper  half =  1133in.4 

The  moment  of  inertia  of  the  lower  half  of  the  section  about 

NX  is  the  same,  and,  therefore,  the  total  moment  is  about  2266in.< 
The  result  obtained  by  using  the  formula  given  in  Example  3, 

p.  146,  is  2273in.4,  the  difference  being  quite  insignificant. 
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F. 

(3)  The  strength  modulus  is  the    moment  of  inertia    -j-   the 
half -depth ;  that  is — 

2270m.4  +  9in.  =  252in.3 
Hence  the  moment  of  resistance  for  a  safe  compressive  stress  of 
GOOOlbs.  per  square  inch  is — 

252in.3  x  60001b./m.2 
Also,  the  bending  moment  at  the  centre  of  a  beam  uniformly 
loaded  is — 

£  of  load  per  inch   x  length2, 
or — 

^w  x   (30   x   12)2  inch-pounds. 
On  equating  the  two  moments,  we 

get— \w  x  900  x  144  =  252  x  6000, 
from  which  we  find  that  the  load  per 
inch,  or  w,  is  93'3  Ibs.  The  safe  load 
per  foot  is,  therefore, 

12   x   93-3  =  1120H*. 
(4)  Lastly,  the  girder  itself  is  esti- 

mated   to    weigh   about    1501bs.   per 
lineal  foot,  so  that  the  net  safe  load 
which  may  be  put  on  the  beam  will  be 
1120  -  150  =   9701bs.    per    foot   of 
length. 

Example  5. — A  beam  of  the  given 
cruciform  section  (Fig.  128)  is  15  ft. 
long,  and  is  supported  at  both  ends, 
the  material  being  cast-iron.  State 
the  inertia  moment  and  the  resisting 
moment  of  the  section.  Also  estimate  the  greatest  safe  distributed 
load  that  the  beam  will  sustain. 

(1)  The    section  is  most  conveniently  divided  up  into  three 
rectangles,  and  treated  as  follows : — 

Moment  of  inertia  of  main  rectangle  ABCD  about  NX  is 

T\.  x  1-5  x   123  =  216in.4 
The  collective  moment  of  inertia  of  the  two  remaining  rect- 

angles is — 
TV  x  4-5  x  1-53  =  l-26in.4 

Hence  the  moment  of  inertia  of  the  entire  section  is  217in.4 
This  calculation  shows  that  the  side  feathers  are  not  much  use  in 
resisting  the  bending  moment,  though  of  service  in  imparting 
lateral  stiffness.  Fig.  128  graphically  illustrates  this  fact,  the 

L. 

Fig;,  128. 
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shaded  area  being  the  hypothetical  section  of  an  equivalent  beam, 
all  the  fibres  of  which  are  stressed  to  the  same  extent. 

(2)  The  resisting    moment  of  the  section    is    the  safe  stress 
multiplied  by  the  section  modulus,  thus : — 

M  -  f       ̂      -  1-5  to11        217in.4 Gin.  in.2          Gin. 
=  54-2  inch-tons. 

(3)  Equating  the  bending  and  resisting  moments  gives — 

x  15  x   12  =  54-2. 
W  =  2-4  tons. 

Example  6. — Compare  the  weights  and  the  strengtfts  of  two 
round  steel  beams,  one  of  them  being  12in.  diameter  solid,  and 
the  other  12in.  diameter  outside  and  lin.  thick,  as  in  Fig.  129. 

(1)  Weight  of  A  per  inch   =   volume  of  slice  x  density  of 

material  =  -   x   144  x  0'291b. 4 

Weight  of  B  per  inch  =  -  (144  -  100)  x  0'291b. 

Fig.  129. 

Hence  the  weights  are  as  144  to  44,  or  as  3-3  to  1,  say. 
(2)  The   moment  of  inertia  of  a  circular   section   about    the 

neutral  axis  is  easiest  found  by  aid  of  the  formula — 

—  x  diameter4  =  -0491  D4. 

The  strength  modulus  of  such  a  section  is  therefore 

(3)  The    moment    of   inertia  of  a  tubular   section    like  B  is 

given  by  the  formula — 

G4 

(D4  -  d*). 
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Dividing  this  by  half  the  diameter  gives  the  strength  modulus 
of  the  hollow  section  thus — 

_7T      D4     -     d* 

32       
 D~~ 

Fig.  130. 

(4)  The  external  diameter  of  the  two   sections   being  equal, 
their  relative  strengths  are  in  the  ratio — 

I)4 
124 

D4  - 124  -  104 

=  1-93  to  1. 

Comparing  this  result  with  the  relative  weights,  we  see  that 
the  hollow  beam  is  much  more  economical  of  material  than  the 
solid  beam. 

In  Fig.  130  the  shaded  parts  are  the  equivalent  areas  for  solid 
and  hollow  circular  sections.  These  diagrams  show  very  clearly 
the  small  reduction  of  strength  caused  by  a  considerable  saving 
of  material,  but  are  otherwise  valueless  in  practice. 

Example  7 . — Fig.  131  represents  the  section  of  a  cast-iron  tube 
12in.  diameter,  having  a  9in.  hole  cored  out  of  it.  During  the 
process  of  casting,  however,  the  core  has  become  displaced,  so  that 
the  metal,  instead  of  being  of  uniform  thickness,  is  only  fin. 
thick  on  the  top  side,  and  2^in.  thick  on  the  bottom.  Notwith- 

standing this  peculiarity  the  tube  is  erected  as  a  beam  and  carries 
a  load  of  six  tons  at  the  centre  of  a  25ft.  span.  It  is  required  to 
ascertain  the  moment  of  inertia  of  this  eccentric  section,  and  also 
the  greatest  stress  to  which  the  metal  is  exposed,  leaving  out  of 
account  the  weight  of  the  beam  itself. 

(1)  Let  A  denote  the  area  of  the  larger  circle,  with  centre  C, 
and  a  the  area  of  the  smaller  circle ;  also  let  x  be  the  distance  of 
C  from  the  neutral  axis,  the  unit  being  lin.  The  position  of  the 
neutral  axis  is  readily  found  by  applying  the  principle  of  moments, 
thus : — 

A  x  its  arm  =  a  x  its  longer  arm, 
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the  point  G  being  regarded  as  a  fulcrum,  and  the  two  areas  as  of 
opposite  sign.  Now,  as  the  areas  of  circles  vary  as  the  squares  of 
their  diameters,  we  may  write 

122  x  x  =  W(x  +  |). 
Dividing  by  9  gives  — 

16a;  =  9sc 
27 

—  . 

4 

.-.  x  =  l-  x  ̂ =  0-964in. 
Hence  x  +  f  =  0-964  +  0-75  -  l'714in., 
which  locates  the  centroid  G,  and  therefore  the  neutral  axis. 

Fig.  131. 

(2)  To  find  the  moment  of  inertia  of  the  section  we  make  use 
of  the  important  fact  that  the  moment  of  inertia  of  a  given  area 
about  any  axis  (or  straight  line)  is  equal  to  its  moment  of  inertia 
about  a  parallel  axis  through  its  centroid,  plus  the  product  of  the 
area  by  the  square  of  the  distance  between  the  two  axes.  Thus, 
for  the  12in.  circle,  we  have — 

TNX  =  lc  +  A*2 

-/£  x   12* 

-(-  x   12' 

1      * 

-r     X 

144 
16 

+  0-9642 
=  113-1  (9  +  0-93)  =  1123in.4 

Similarly,  for  the  9in.  hole,  we  have — 

T  _   ""  Q2  f  **      .      ]-7142\ INX  -  4~y   \I6  4  j 
=  63-6  (5-06  +  2-94)  =  509in.4. 
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The  difference  between  these  results — viz.,  614in.4 — is  the 
moment  of  inertia  of  the  whole  section  about  the  neutral  axis. 

(•»)  Accordingly,  the  strength  modulus  of  the  section  with 
respect  to  compression  is,  from  Fig.  131 — 

Zc  =  —  =  Jill  =  88-lin  3 

ye       6-964 and  with  regard  to  tension  is — 

Z,  =  1  =  _^Ii   =  122in.3 

yt       5-036 
(4)  Lastly,  as  the  bending  moment  at  the  centre  of  the  beam  is 

450  inch-tons,  the  greatest  stress  on  the  material  is — 

M       450 
=  5 '11  tons  per  square  inch  in  compression. 

and — 

M  _  450 

Z,  "T22 
=  3f  6 8  tons  per  square  inch  in  tension. 

Example  8. — A  pair  of  cast-iron  beams  are  required  to  carry  an 
estimated  central  load  of  40  tons  across  a  span  of  15ft.  The  load 

consists  of  a  heavy  fly-wheel,  gearing,  pump  work,  and  a  water 
column.  It  is  proposed  to  use  two  beams  of  the  section  shown  in 
Fig.  132,  the  ends  being  bolted  down.  Are  they  of  sufficient 
strength  and  stiffness  ? 

As  the  load  is  not  altogether  statical,  but  of  varying  intensity, 
and  therefore  causing  vibration,  it  should  be  considered  as  a  live 
load,  and  equivalent  to  a  statical  or  dead  load  of  80  tons.  Each 
beam,  therefore,  should  be  capable  of  safely  carrying  at  its  centre 
a  dead  load  of  40  tons. 

(1)  Reduce  the  proposed  section  to  the  equivalent  form, 
Fig.  133,  and  locate  the  neutral  axis  by  taking  moments  about  the 
top  edge,  thus : — 

Area. Arm. Moment. 

Sq.  in. 
Inch. 

Inch3. 
12in.  x     lin 

=  12 

0-5 

6 
2in.  x  21in. 

=  42 

11-5 
484 IGin.  x     2in 

=  32 
23 736 

86 1226 
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Hence,  referring  to  Fig.  133,  and  using  c  to  denote  the  distance 
of  the  centroid  of  the  section  from  the  top  edge,  we  have  — 

c  x  86  =  1226,     .-.  c  =  14-2in. 
Consequently, 

t  =  24in.  -  14-2in.  =  9'8in. 

(2)  The  moment  of  inertia  of  the  upper  part  of  the  section 
about  NX  is  — 

=  £(12  x  14-23  -  10  x  13-23) 
=  |(34,400  -  23,000)  =  3800in.4. 

Fig.  132. 

The  moment  of  inertia  of  the  remaining  part  of  the  section 
about  NX  is — 

£(16  x  9-83  -  14  x  7-83), 

which  works  out  to  2780in.3 ;  so  that  the  moment  of  inertia  of  the 
entire  section  is  6580  quartic  inches. 

(3)  The  modulus  of  the  section  as  regards  compression  is — 

Zc  =  6580  -r  14-2  =  467in.3 ; 

and  in  respect  to  tension  is — 

Z,  =  6580  -r  9-8  =  673in.3. 

(4)  The  greatest  bending  moment  is — 

£WL  =  I  x  40  tons  x  180in.  =  1800  inch-tons. 

(5)  Since  resisting  moment  =  bending  moment, 

fe  x  467  =  1800,     .'.fc  =  3-86  tons/in.2 and 

ft  x  673  «=  1800,     /./,=  2-68  tons/in.2. 
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A  tensile  stress  of  2'68  tons  per  square  inch  is  too  high  for 
cast-iron,  so  that  it  will  be  advisable  to  increase  the  depth  of  the 
beam  to,  say,  30in.,  and  the  width  of  the  tension  flange  to  18in. 
The  result  will  be  a  great  gain  in  stiffness,  as  the  stiffness  of  a 
beam  varies  as  the  cube  of  its  depth. 

If  economy  of  metal  is  desired,  the  beam  should  be  made 
deepest  at  the  middle,  where  the  bending  moment  is  greatest ; 
but  the  ends  must  be  of  sufficient  section  to  withstand  the 

shearing  force.  It  is  left  to  the  reader,  as  an  instructive  exer- 
cise, to  calculate  the  maximum  stresses  of  tension,  pressure,  and 

shearing,  in  the  case  of  a  strengthened  beam,  allowing  for  its  own 
weight. 

Fig.  135. 

Example  9. — Fig.  134  represents  the  section  of  a  compound  joist 
steel  girder,  weighing  5821bs.  per  foot  of  length,  this  being  one  of 

Messrs.  Dorman,  Long  and  Co.'s  heaviest  stock  sections.  The 
clear  span  is  30ft.,  and  the  effective  span  may  be  taken,  for  safety, 
as  32ft.  Calculate  the  magnitude  of  the  uniformly  distributed 
statical  load  that  the  girder  will  carry  when  the  stress  on  the  steel 
farthest  from  the  neutral  axis  is  6 '4  tons  per  square  inch.  Allow- 

ance must  be  made  for  the  loss  of  strength  due  to  the  rivet-holes, 
as  well  as  the  increase  of  stress  due  to  the  girder's  own  weight. 
The  three  fin.  rivet-holes  in  the  plane  of  section  of  the 

bottom  flange  constitute  a  direct  loss  of  valuable  sectional  area, 
which  must  evidently  be  deducted  from  the  gross  section.  The 
rivet-holes  in  the  upper  or  compression  flange,  however,  cause  no 
appreciable  loss  of  strength,  provided  that  the  rivets  fill  them 
completely ;  so  that  no  deduction  need  apparently  be  made  for 
them.  But  as  there  is  always  the  possibility  of  imperfect 
workmanship,  and  as  the  calculation  is  also  simplified  by  keep- 

ing the  section  symmetrical  about  the  neutral  axis,  it  is  better 
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to  allow  for  the  rivet-holes  in  both  flanges.     The  several  steps 
of  the  calculation  are  then  as  follows : — 

(1)  Draw  the  equivalent  solid  section,  Fig.  135.     The  effective 

width  of  the  flange  plates  is  24in.  -  3  x  O'Sin.  =  21 -Gin.,  and 
that  of  the  joists  is  3  (7'5in.  -  O'Sin.)  =  20'lin.     Also  the  com- 

bined web  thickness  is  3  x  OCin.  =  1'Sin.     The  neutral  axis  of  a 
symmetrical  section  passes  through  the  centre  of  its  depth,  and 
is  therefore  located  without  calculation. 

(2)  The   next   step  is  to  find    the  moment  of  inertia   of   the 
whole  section  about  the  neutral  axis  NX.     That  of  the  web  is — 

^  x  l-8in.  x  (18in.)3  =         875in.4, 
and  of  the  joist  flanges  is — 

TV  x  20in.  x  (203  -  183)in.3  -      361 7in.4, 
and  of  the  plates  is — 

^  x  21-6in.  x  (23'753  -  203)in.3  =      9740in.4. 

Total     U,232in.4. 

(3)  The  bending  modulus  of  the  section  with  respect  to  either 
tension  or  pressure  is — 

„  _  moment  of  inertia  _  14,232in.4  _  -,9™-    3 

half  depth          ~  ll'875in.    = 
(4)  Hence  the  resisting  moment  is — 

M  =/  x  Z  =  6-4  ̂   x  1200in.3  =  7680  inch-tons, 

m.- 

(5)  Equating  the  bending  and  the  resisting  moments  gives — 

£W  x  32  x  12  =  7680, 
from  which  the  gross  load  W  that  can  be  borne  is  found  to  be  160 
tons. 

(6)  The  weight  of  such  a  girder,  32ft.  long,  is — 

32  x  5821bs.  =  18,G001bs.  =  8-3  tons. 
Making  this  deduction,  the  safe  uniformly  distributed  net  load  is 
152  tons. 

Example  10. — A  proposed  beam  is  loaded  and  supported  as  shown 
in  Fig.  112,  p.  117,  where  the  shearing  force  and  bending-moment 
diagrams  were  fully  explained.  From  these  it  appears  that  the 
greatest  shearing  force  is  7  tons,  and  the  greatest  bending 
moment  about  240  inch-tons.  Let  us  in  the  first  instance  design 
a  cast-iron  beam  of  uniform  section,  capable  of  withstanding  this 
moment,  and  then  afterwards  see  how  material  can  be  saved  by 
reducing  the  section  where  less  strength  is  called  for. 
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(1)  Taking  the  loads  as  statical,  or  steady,  a  tensile  stress  of 
1|  tons  per  square  inch  may  be  allowed  on  cast-iron,  and  a  shear- 

ing stress  of  two  tons  per  square  inch. 
The  cross-section  may  be  either  of  the  box  or  the  ribbed  form,  the 

latter  being  chosen  in  the  present  case,  as  the  expense  of  a  core- 
box  will  be  saved.  A  beam  of  box  section,  however,  looks  heavier 
and  more  substantial  than  an  equally  strong  beam  of  flanged  sec- 

tion ;  which  is  sometimes  an  advantage. 
(2)  The  proper   depth   to    be   given  to   the  beam    is  an  im- 

portant consideration.     The  strength  of  a  beam  varies  as  the 
square  of  its  depth,  and  the  deflection  inversely  as  the  cube  of 
the  depth.     Hence  great   depth  is    highly  advantageous  where 
height  is   available.     Choose   tentatively,  or  as  a  trial   value,  a 
depth  of  one-tenth  the  span — viz.,  16in. 

(3)  A  suitable   mean  breadth  of  flange  for  a 
cast-iron  girder  is  about  half  the  depth  of  beam 
— that  is,  Sin.  ;  and  the  compression  flange  may 
be  taken  as  about  one-third  of  the  width  of  the 
tension  flange.     This  proportion  makes  the  top 
flange  4in.  and  the   bottom   flange  12in.  wide. 
Insert  these  dimensions  on  the  sketch,  Fig.  136. 

(4)  "We  have  next  to  determine  the  thickness of  the  flanges  and  the  web.     In  parallel  beams 
the  web  should  be  designed  strong  enough  to  bear 
the  whole  shearing  force  without  aid  from  the          Fig.  136. 
flanges.     In  all  cases  the  shearing  stress  over  the 
section  is  greatest  at  the  region  of  the  neutral  axis,  and  vanishes 
at   the   flanges.     The   minimum  section  of  the   web    should   be 
equal  to  the   shearing    force   divided   by    the   shearing   stress, 
that  is — 

7  tons  -r  2  tons  per  square  inch  «=  3'5  sq.  in. 
Now  the  depth  of  the  web  is  about  14in.,  so  that  the  least 

thickness  necessary  for  strength  is — 

3-5  sq.  in.  -r  14in.  =  0-25in. 
But  there  are  other  considerations  besides  strength  to  be 

kept  in  view:  The  web  must  be  of  sufficient  thickness  to  en- 
sure a  sound  casting  and  also  to  allow  ample  margin  for  corro- 

sion. We  have  therefore  to  fall  back  on  practical  experience. 
Engineers  know  that  in  the  case  of  a  cast-iron  girder  IGin.  deep, 
^in.  thickness  of  metal  is  not  enough  to  satisfy  foundry  require- 

ments ;  and  so  they  employ  some  empirical  rule  based  on  former 
successful  practice.  A  fair  proportion  for  the  web  thickness  of  a 
cast-iron  girder  is  about  three-quarters  of  the  thickness  of  the 
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bottom  flange ;  but  this  rule  is  of  no  avail  when  the  latter  is 
unknown,  as  here. 

(5)  We  proceed,  then,  to  find  the  necessary  thickness  of  the 
bottom  flange  from  a  consideration  of  the  bending  moment  to  be 
rasisted.     This  process  is  tentative,  especially  when   the  web  is 

taken  into  account,  but  is  much  sim- 
plified by  neglecting  the  web  and  the 

fillets.  Let  a  be  the  area  of  the  top 
flange,  4a  that  of  the  bottom  flange, 
and  I  the  effective  depth  of  the  sec- 

tion, the  unit  being  the  inch  (see  Fig. 
137).  Then  the  resisting  moment  of 
the  section  is  P  x  I,  which  equals 

either — 
a  x  fc  x  I,  or  4a  x  ft  x  I, 

each  of  which  must  equal  the  bend- 
ing moment.  Now  I  is  really  rather 

less  than  16in. ;  but  for  convenience 
of  calculation,  and  also  to  allow  some 
credit  to  the  web,  the  full  depth  of 

the  beam  should  be  taken.     Hence  we  have  the  equation — 

4a  x  1-5  ton/in.2  x  16in.  =  240  inch-tons, 

from  which  the  area  a  of  the  top  flange  is  found  to  be  2-5  sq.  in., 
and  of  the  bottom  flange  10  sq.  in.     Hence  the  required  thickness 

of  the  top  flange  is  2*5  sq.  in.  -f-  4in.  =  0'625in., 
and  of  the  bottom  flange  10  sq.  in.  -f-  12in.  = 

0'833in.     Practical  experience,  however,  tells  us 
that  these  thicknesses  are  too  little  for  a    safe 

casting ;  and  so  we  had  better  reduce  our  depth 
and  width  and  increase  our  thicknesses. 

(6)  Assume  Fig.  138  as  a  likely  section, 
though  the  flanges  are  still  rather  thin,  and  let 
us  find  the  actual  stresses  by  the  moment  of  inertia 

method.     To  locate  the  centre  of  area,  take  mo-      (•   »>' — ^- 
ments  about  the  top  edge,  thus  : —  Fig.  138. 

Fig.  137. 

r, 

Area. 
Arm. 

Moment. 

3  -Sin.     X 
0-75in.  X 

lOin.        X 

0'75in. 

12-25in. 
lin. 

Inch2. =    2-63 
=    9-19 
=  10-00 

Inch. 0-375 
6-875 

13-500 
Inch3. 

0-987 

63-2 

135 

21-82 199'187 
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Let  c  be  the  distance  of  the  centroid  from  the  top  edge  of  the 
section ;  then — 

21-82c=  199-19,     .-.  c  =  9-12in. 

(7)  The   moment   of  inertia  about   NX   of  the   part   of  the 
section  in  compression  is — 

£  (3-5  x  9-12'  -  2-75  x  8'373), 
which  reduces  to  343in.4.     Also  the  moment  of  inertia  about  NX 
of  the  remaining  part  of  the  section  is — 

£  (10  x  4-883  -  9-25  x  3'883), 
which  reduces  to  420in.4.     Hence  the  total  moment  of  inertia  is 
343  +  420  =  763  quartic  inches. 

(8)  The  compressive  modulus  of  the  section  is — 

y-12 

and  the  tensile  modulus  is 

763 

'4-88 

=  156in.3. 

Finally,  the  maximum  bending  moment  being  240  inch-tons,  we 
have  for  the  required  stresses  — 

83-6  x  fe  =  240,     .-./c  =  2-87  tons/in.2, and 

156  x  ft  =  240,     .-.ft  =  1-54  tons/in.2. 

(9)  To  keep  within  the  limit  of  1|-  tons  per  square  inch,  the 
bottom  flange  should  be  made  l^in.  thick.  The  web  may  also 
with  advantage  be  tapered  from  |in. 
thick  at  the  top  to  lin.  at  the  bottom, 
but  this  tapering  causes  more  trouble 

in  pattern-making.  The  top  flange 
is  of  ample  compressive  strength. 
The  corners  should  be  well  rounded, 
as  in  the  final  section,  Fig.  139,  to 
avoid  weak  planes  of  crystallisation, 
and  the  flanges  slightly  tapered,  both 
for  the  sake  of  appearance  and  ease 

of  moulding.  Also  "  feathers  "  or 
"  stifieners,"  fin.  thick,  should  be 
arranged  at  intervals  of  40in.,  in 
order  to  tie  the  flanges  together  better 
and  to  prevent  buckling  of  the  web, 

In  Fig.  140  is  given  an  elevation  of  this  parallel  or  uniform 
cast-iron  beam,  auitable  for  carrying  the  loads  indicated.      The 

Fig.  139. 
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vertical  scale,  it  should  be  noted,  is  twice  the  horizontal.  Such  a 
beam  is  simple  to  make,  but  the  material  is  not  used  to  the  best 
advantage,  because  there  is  an  excess  of  strength  at  the  ends.  We 
now  proceed  to  show  how  the  design  may  be  so  modified  as  to 
effect  a  saving  of  metal. 

Alternative  Design. — A  beam  is  conventionally  said  to  be  of 
uniform  strength  when  at  every  section  the  resisting  moment  is 
proportional  to  the  bending  moment.  But  of  course  the  ends, 
where  the  bending  moment  is  usually  nothing,  must  still  be  made 
of  sufficient  section  to  withstand  the  shearing  force,  and  the 
general  appearance  of  the  beam  cannot  be  entirely  disregarded. 
In  the  present  case  a  sufficient  approach  to  uniform  strength  will 
be  secured  by  retaining  the  section  already  designed  (Fig.  1 89)  at 
the  place  of  greatest  bending  moment,  making  the  ends  of  the 
beam  equal  in  depth  and  parallel  (for  the  sake  of  symmetry),  and 
completing  the  elevation  by  a  fair  curve,  as  in  Fig.  141.  Each 
flange  will  then  be  of  uniform  section  throughout,  the  web  alone 
varying. 

To  find  the  depth  of  the  beam  at  the  left-hand  support  B,  where 
the  bending  moment  is  100  inch-tons,  we  write 

/       Area  of       \      /  tensile  stress  \      /      length  of       \ 

y  bottom  flange  J     y      allowed      J     \  resistance  arm  / 
=  bending  moment, 

.-.  (lOin.  x  l£in.)  x  1-5  ton/in.2  x  I  =  100. 
10 

1-125  x  1-5 

=  5-9in. 

This  is  the  effective  depth.  The  total  depth  is  about  lin.  more, 
and  may  be  taken  as  7in.  at  both  supports.  Then,  if  we  regard 
the  shearing  force  as  taken  solely  by  the  web,  the  shearing  stress 
at  B  will  be  7  tons  -r  (0'75in.  x  5in.)  —  1-86  ton  per  square 
inch,  which  is  not  too  great. 

For  the  sake  of  appearance  and  ease  of  manufacture  the  depth 
of  the  beam  in  the  present  case  is  best  made  greatest  at  the  centre 
of  the  span,  instead  of  at  the  section  of  maximum  bending  moment. 
By  drawing  a  circular  arc  to  pass  through  the  point  P,  and  allow- 

ing a  sufficient  seating  at  each  end  of  the  beam,  we  get  the  outline 
shown  in  Fig.  141,  the  greatest  depth  being  rather  less  than  14|in. 
The  vertical  scale  of  the  figure,  it  should  be  observed,  is  again 
twice  the  horizontal  scale.  The  vertical  stiffeners  or  feathers  are 
placed  symmetrically  40in.  apart,  and  of  the  same  thickness  as 
the  web. 

The  length  of  the  bearing  surface,  assumed  as  12in.  at  each  end, 
L 
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depends  on  the  material  of  the  support,  the  magnitude  of  the 
reaction,  and  the  bearing  pressure  allowed,  thus: 

-P,      .  reaction  of  support 
Bearing  area  =  — —  — . 

bearing  pressure 
If  the  beam  were  intended  to  rest  on  brickwork  it  would  be 

necessary  to  increase  the  bearing  area  by  casting  feet  on  the 
bottom  flange.  The  following  are  safe  values  for  the  bearing 

pressures  on  various  materials: — 

Cast-iron   200  tons  per  square  foot. 
Wrought  iron  and  mild  steel 
Granite 
Sandstone 
Brick  set  in  cement  and  cappec 

a  stone  template     . 
The  same  set  in  mortar 
Plain  brickwork 

with 

80 
15 
12 

6 
4 
2 

The  ends  of  girders  resting  on  masonry  are  bedded  on  either  sheet 
lead  or  roofing  felt. 

Example  11. — Fig.  142  shows  the  section  of  a  steel  flange  rail, 
weighing  701bs.  per  yard.     It  is  required  to  find  its  moment  of 

inertia   both  by   calcula- 

<_|   J  tion  and  graphically  ;  also — I — * — »==— r         r      the  moment  of  resistance 
of  the  section  correspond- 

ing to  a  stress  on  the  ex- 
treme fibres  of  five  tons 

per  square  inch. 
Sir  Benjamin  Baker,  in 

his  paper  already  alluded 
to  on  "The  Practical 

Strength  of  Beams,"  re- 
marks that:  "Of  all 

classes  of  iron  and  steel 
beams,  rails  hold  the  most 
important  position,  for 

not  only  do  they  outnum- 
ber all  other  descriptions 

of  beams  by  hundreds  of 
millions,  but  at  least  a 
thousand  pieces  of  rails 
are  tested  to  destruction, 

purposely  and  in  actual  work,  for  every  single  specimen  of  rolled 

joist  or  riveted  girder."     Rails,  therefore,  are  justly  entitled  to some  consideration. 

Fig.  142, 
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It  is  difficult,  if  not  impossible,  to  calculate  the  actual  stress  on 
a  rail  caused  by  the  passage  of  a  train  over  it.  As  Sir  Benja- 

min Baker  remarks :  "  The  stress  occurring  upon  a  rail  in  actual 
work  is  a  matter  outside  the  limits  of  theoretical  investigation. 
.  .  .  On  paper,  the  problem  presented  by  a  cross-sleeper  road 
appears  to  be  identical  with  that  of  a  continuous  girder  bridge  of 
seven  or  eight  spans ;  and  the  late  Mr.  Heppel  and  many  others 
have  so  treated  it.  As  a  matter  of  fact  this  method  is  entirely 
wrong,  both  on  theoretical  and  practical  grounds.  Theoretically 
so,  because  the  rail  rests  upon  elastic  supports  in  the  form  of 
compressible  wooden  sleep- 

ers ;  and  practically  so, 
because  of  the  uncertainty 
as  regards  packing  of  bal- 

last and  state  of  decay  of 
the  timber.  The  experi- 

ments of  Baron  von  Weber, 
M.  Inst.  C.E.,  have  shown 
that  an  average  wooden 
sleeper  compresses  about 
one-fifth  of  an  inch  under 
a  pressure  equivalent  to  the 
weight  on  a  heavy  driving- 
wheel  ;  and  as  an  ordinary 
rail  would  deflect  only  that 
amount  if  the  sleeper  were 
entirely  removed  and  the 
rail  supported  by  the  ad- 

joining ones,  it  will  be  seen 
at  once  how  utterly  mis- 

leading must  be  any  con- 
clusions based  upon  the 

hypothesis  of  rigid  supports."  Notwithstanding  the  difficulty 
stated,  it  is  still  desirable  for  an  engineer  to  be  able  to  ascertain 
quickly,  and  without  the  aid  of  expensive  testing  apparatus,  the 
transverse  strength  of  a  rail  of  given  section,  and  to  compare  the 
merits  of  one  section  with  those  of  another.  Hence  we  will  now 
proceed  to  solve  the  example  proposed. 

(1)  Reduce  the  section  to  the  approximately  equivalent  simple 
shape  shown  in  Fig.  143.    In  this  process  a  piece  of  tracing  paper 
laid  over  the  section  is  a  valuable  aid. 

(2)  Find  the  centre  of  area  of  the  figure  by  taking  moments 
about  either  the  top  or  the  bottom  edge— say  the  latter  in  the 
present  example,  thus : — 

«a  ̂  

y 

Fig.  148. 
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Area. 
Arm. 

Moment  . 

Sq.  In. 

In. 

In.3 

2  "4  in. 
X   l'4in. =  3-3(5 

4-3 
14-44 0'4in. 

X  3in. =  1-20 
2-1 

2-r>2 

1  -Gin. 
X  0-2in. =  0-32 

0-5 

0-16 

4-3in. 
X  0'4in. =  1-72 

0-2 

0-34 

6-60 

17-46 

Consequently,  the  distance  of  the  centre  of  area  of  the  section 

from  its  lower  edge  is  17'46in.3  +  G'Gin.2  =  2'64in.  This  fixes 
the  neutral  axis  NX  of  the  section. 

(3)  The  moment  of  inertia  about  NX  of  the  top  rectangle  is 
equal  to  its  moment  of  inertia  about  a  parallel  axis  through  its 
centre  of  area,  plus  its  area  multiplied  by  the  square  of   the 
distance  between  the  two  axes,  or  in  figures 

*?  x  2-4in.  x  (l-4in.)3  +  3'36in.2  x  (l'65in.)2  = 
0-55in.4  +  9-15in.4  =  9'7in.4. 

Moment  of  inertia  about  NX  of  upper  part  of  web  = 

£  x  0-4in.  x  (O96in.)3  =  M8in.4. 

The  moment  of  inertia  about  NX  of  the  lower  part  of  the  web  is 

£  x  0-4in.  x  (2-04in.)3  =  M3in.4; 

and  that  of  the  smallest  rectangle  is 

^  x  l-6in.  x  (0-2in.)3  +  0'32in.2  x  (2-14in.)2  = 
0-OOllin.4  +  l-466in.4  =  l-467in.4; 

and  that  of  the  bottom  rectangle  similarly  is 

^  x  4-3  x  0-43  +  1-72  x  2-442  =  10'27in.4. 

Totalling  all  these  items,  the  moment  of  inertia  about  NX  of 

the  entire  section  is  23-75  quartic  inches. 

(4)  Modulus  of  section  for)      23-75in.4 

part  above  NX   .     ./=  T36in7=  10'05in'  ' 

Modulus  of  section  for\  _  23-75in.4 

part  below  NX  .     . /  ~     2'64in. =  9in.3. 
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Taking  the  smaller  of  these  values,  the  moment  of  resistance  of 
the  entire  section  is — 

9  in.3  x  5  ton/in.2  =  45  inch-tons. 

The  bending  moment  cannot  safely  exceed  this  amount. 
The  graphic  method  of  finding  the  moment  of  inertia  of  the 

same  rail  section  next  claims  attention. 

(1)  Draw   the    section   full  size  (Fig.   144),  and  divide   it  as 
shown  into  a  convenient  number  of  parts  or  layers — the  more 
the  better  for  accuracy.     Find  their  areas  and  add  them.     The 
total  area  thus  found  is  6*5  sq.  in. 

(2)  Draw  the  horizontal  line  aX  (Fig.  144 A)  to  represent  the 
total  area  of  the  section,  and  along  it  measure  the  lengths  ab,  be, 
etc.,  proportional  to  the  areas  of  the  several  layers.     Any  con- 

venient scale  may  be  used,  such  as  lin.  to  1  sq.  in.      Thus  ab 

represents  the  area  of  the  top  layer — viz.,  2-lin.  x  ̂ in.  =  0'52 
sq.  in.,  and    the  last  division  nX.   represents   the  area   of    the 
bottom  layer — viz.,  4'4  in.  x  0'3  in.  =  l'32sq.  in. 

(3)  Draw  the  perpendicular  XO  (Fig.  144A)   equal   to  |aX. 
Join  O  to  the  points  a,  b,  c,  etc.,  thus  forming  a  polar  diagram. 

(4)  In  Fig.  144,  draw  a  series  of  indefinite  horizontals,  passing 
through  the  centre  of  area   of  every  layer.      Then,  starting  at 
any  point  in  the  first  horizontal,  draw  a  sloping  line  parallel  to 
60  in  the  polar  diagram,  stopping  it  at  the  horizontal  through  b. 
Continue  the  construction  of  Fig.  144B  with  a  sloping  line  drawn 
parallel  to  cO,  then  with  another  parallel  to  dO,  and  so  on  until 
the  last  horizontal  is  reached.     Complete  the  polygon  by  drawing 
a  vertical  line  from  the   bottom  horizontal,  and  a  sloping  line 
parallel  to  «0  from  the  top  horizontal.     The  point  of  intersection 
of  these  two  closing  lines  fixes  the  height  of  the  centre  of  area  of 
the  rail  section,  and  a  horizontal  through  it  is  the  neutral  axis  of 
the  section. 

(5)  By  means  of  a  planimeter,  or  otherwise,  measure  the  area 
of  the  polygon  (Fig.  144fi).     It  is  3-3  sq.  in. 

(6)  Then  the  moment  of  inertia  of  the  section  is — 
Area  of  section  x  area  of  polygon 
=  6-5in.2  x  3-3in.2=  21'5in.4 

This  graphic  process  is  inferior  to  calculation  on  several 
grounds.  It  occupies  far  too  much  time  for  practical  use,  and 
needs  too  much  apparatus.  The  section  must  be  accurately  drawn, 
and  a  planimeter  is  almost  a  necessity.  In  the  rival  method  it  is 
not  absolutely  necessary,  though  desirable,  to  draw  the  section  to 
scale.  Further,  owing  to  an  accumulation  of  small  inaccuracies  to 
construction,  the  final  result  is  not  likely  to  be  very  accurate. 
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On  the  other  hand,  not  much  arithmetic  is  needed  in  applying 

the  graphic  method,  and  in  the  absence  of  a  slide-rule  this  is  a 
consideration.  The  process  is  also  very  easy  to  remember,  no 
complex  formulae  being  used.  On  the  whole,  however,  the  graphic 

method  described,  though  deemed  worthy  of  a  place  in  "  Moles- 
worth,"  is  of  more  academic  interest  than  technical  value. 



CHAPTER  XIII. 

COMPARATIVE  STRENGTHS  OF  CIRCULAR,  RECTANGU- 

LAR, AND  ELLIPTICAL  TUBES  OF  EQUAL  WEIGHT. 

SOME  important  experiments  on  the  transverse  strength  of 
wrought-iron  welded  tubes  were  made  fifty  years  ago  for  Mr. 
Robert  Stephenson  by  Mr.  John  Hosking,  particulars  of  which 
are  not  without  interest  and  profit  even  to  this  generation  of 
engineers. 

The  tubes  experimented  on  were  identical  in  everything  except 
shape,  and  in  each  case  ̂   in.  thick,  the  other  dimensions  being 
shown  in  Fig.  145.  The  tubes  B  and  C  were  made  from  round 

tubes  similar  to  A,  by  hammering  them  while  hot  with  mallets  on 
a  prepared  anvil,  so  as  not  to  thin  the  iron.  The  three  tubes  were 
finally  put  in  a  furnace  and  annealed. 

In  each  experiment  a  saddle  Gin.  wide  was  placed  at  the  middle 
of  the  tube,  and  from  this  the  load  was  hung.  The  length  between 
the  supports  was  6ft.  The  weights  were  laid  on  quietly,  a  little 
at  a  time,  and  the  deflection  thereby  produced  at  the  centre  of  the 
span  carefully  measured.  The  results  are  given  in  Mr.  Edwin 

Clark's  voluminous  work  on  "The  Britannia  and  Con  way  Tubular 
Bridges,"  from  which  the  following  table  has  been  prepared  : — 
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Load  in 
Tons. 

Deflection  in  Inches. 

Circular  Tube. Recta  nu'ular Tube. Elliptic  si  Tube. 

0-35 0-0:>7 
0-065 

0-065 

0-7 
0-14 

0-12 
0-122 

1-05 0-215 
0-177 

0-187 

1-4 
0-285 

0-232 0-245 

1-5 
0-31 

0-255 
0-262 

1-6 
0-335 

0-272 0-277 

1-7 
0-367 

029 

0-295 

1-8 
0-442 

0-31 
0-317 

1-9 
0-845 

0-33 0-34 

2-0 Not  measured. 
0-36 

0-37 

2-1 
— 

0-405 0-392 

2-2 — 

0-485 

0  435 
2-3 — 

0-625 
0-482 

2-4 
— 

0-9 

0-58 

2-5 
— 

1-45 
0-73 

2-6 Failed  suddenly. — 
1  -035 

2-65 — 
2-2 

1-23 

3-15 — Tube  failed. — 
8-46 — — Tube  failed. 

, 

The  general  trend  of  the  experiments  is  best  seen  by  plotting 
the  loads  and  deflections  to  scale  on  squared  paper,  the  curves  in 
Fig.  146  being  thus  obtained.  It  will  be  noticed  that  the  deflec- 

tion of  the  circular  tube  increases  much  more  rapidly  than  that  of 
the  others,  owing  to  its  smaller  depth.  The  sudden  bend  marks 
the  elastic  limit  of  the  material. 

All  the  tubes  gave  way  by  the  top  or  compression  part  becom- 
ing first  distorted.  In  the  case  of  tubes  A  and  C  the  sides  were 

forced  outwards,  and  the  tubes  became  flattened  at  the  place  of 
application  of  the  load.  In  the  case  of  the  rectangular  tube,  one 
side  buckled  inwards,  the  tube  yielding  sideways  and  becoming 
much  twisted.  No  injury  to  the  tubes  could  be  detected  near  the 
bearing  ends. 

As  the  elliptical  tube  stood  the  heaviest  load — viz.,  3'46  tons — 
its  section  would  appear  to  be  the  best.  But  the  merits  of  the 
three  shapes  of  section  cannot  be  fairly  compared  until  they  have 
been  reduced  to  the  same  depth ;  since,  though  the  area  of  each 
section  is  the  same,  the  leverage  of  the  resistance  increases  with 
increase  of  depth,  quite  apart  from  the  geometrical  form  of  the 
section.  The  correction  for  unequal  depth  was  made  by  deducing 
the  several  values  of  a  coefficient  C  from  the  formula — 
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C  = 

load  x  length 
area  x  depth 

Thus,  in  the  case  of  the  round  tube, 

0  =     2'6  x  72  =  20.9. 2-246  x  4 

Similarly,  for  the  so-called  oval  tube,  C  =  22-25 ;  and  for  the 
box  section,  C  =  23-53 ;  where  C  gives  the  relative  value  of  the 
form,  independent  of  the  depth.  It  therefore  appears  that  the 
rectangular  tube  is  the  strongest  form. 

Tubes  of  elliptical  section  find  some  application  in  cycle  con- 
struction, but  they  are  very  little  used  in  large  structures.  It 

was  once  intended,  however,  that  the  Britannia  Bridge  should  be 

built  of~  two  such  tubes;  but  the  oval  section  was  finally  aban- 
doned in  favour  of  the  box  section,  owing  to  the  greater  ease  of 

construction  and  superior  strength  of  the  latter  with  a  given 
depth  and  the  same  weight  of  iron. 

Experiments  on  Box  Girders. — Prior  to  the  construction  of  the 
Britannia  and  Conway  tubular  bridges,  some  highly  instructive 
preliminary  experiments  were  carried  out  with  a  view  to  deter- 

mining the  best  form  of  section  for  the  tubular  girders  proposed 
to  be  used  in  their  construction.  In  the  light  of  the  lessons  thus 
learnt,  more  elaborate  experiments  were  afterwards  made  on  a 
large  model  one-sixth  the  size  of  the  final  girders  of  the  Britannia 
Bridge.  A  brief  account  of  one  set  of  the  preliminary  experiments 
will  serve  to  confirm  and  emphasise  the  general  principles  of 
strength  enunciated  in  preceding  chapters.  For  the  particulars 
of  these  experiments  we  are  indebted  to  Mr.  Edwin  Clark,  the 
resident  engineer  of  the  Britannia  Bridge,  whose  own  words  have 
been  made  use  of  to  some  extent. 

The  preliminary  experiments  on  the  transverse  strength  of 
wrought-iron  girders  were  devised  by  Mr.  Stephenson  without  any 
other  object  than  to  test  generally  the  properties  of  such  struc- 

tures— to  discover  in  what  manner  they  might  be  expected  to  fail, 
and  to  ascertain  practically  their  applicability  to  purposes  of  con- 

struction. They  furnished  valuable  practical  hints  on  the  best 
methods  of  construction,  pointed  out  the  road  for  future  investi- 

gation, and  supplied  some  data  for  deductive  reasoning.  More- 
over, they  confirmed  Mr.  Stephenson's  view,  that  "  a  wrought- iron  tube  is  the  most  efficient  as  well  as  the  most  economical 

description  of  structure  that  can  be  devised  for  a  railway  bridge  of 

450ft.  span  across  the  Menai  Straits."  This  opinion,  it  should  be 
remembered,  was  expressed  over  fifty  years  ago  by  the  most 
eminent  railway  engineer  of  the  day.  Since  then  the  art  of  bridge 
building  has  advanced  greatly. 
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The  rectangular  tubes  experimented  on  varied  in  length  from 
17£  to  24ft.,  and  in  depth  from  ̂   to  ̂   of  the  length,  or  from 
8  to  18^  in.  The  thickest  plates  used  were  £in.  thick.  Weights 
were  hung  either  from  a  hole  in  the  bottom  of  the  tube  under 
test,  or  from  a  bar  passing  through  the  sides  and  resting  on  a 
cushion  on  the  bottom  plates,  the  part  pierced  being  strengthened 
by  a  plate  riveted  around  the  hole.  As  shown  in  Fig.  147,  the 

web  plates  were  flanged  (or  bent  over) 
and  united  to  the  flange  plates  by 
rivets,  no  angle  irons  being  used.  This 
mode  of  connection,  it  may  be  re- 

marked, is  much  employed  in  modern 
ship-building,  and  also  in  boiler  work, 
on  account  of  the  saving  of  weight  and 
labour  effected;  the  bending-over  of 
the  plates  being  rapidly  and  cheaply 
performed  by  special  flanging  machines. 

Strangely,  however,  the  method  of  flanging  seems  never  to  be 
used  in  ordinary  girder  work. 

The  model  tubes  were  first  of  all  tested  with  the  thickest  plates 
at  the  bottom,  and  loaded  until  failure  took  place.  Subsequently 
the  same  girders  were  repaired,  inverted,  and  re-tested  with  the 
thickest  plates  at  the  top;  when  much  better  results  were  got 
than  before,  thick  plates  being  far  less  liable  to  buckle  than  thin 
ones.  The  following  table  gives  the  results  of  some  of  the  experi- 

ments : 

Web 

Fig.  147. 

Thickness  of  Plate. 

Clear 
Span. 

Depth  . Width. Ultimate 
Deflection. 

Breaking 

Load. Top. 
Bottom  . 

Ft. In. In. In. 
In. In. Lb. 

17-5 9-6 9-6 

0-075 
0-075 

rio 

3,738 17-5 9-6 
9-6 

0-272 0-075 
1-13 

8,273 17-5 9-6 9-6 

0-075 
0-142 0-94 

3,788 17-5 9'6 

9-6 
0-142 0-075 1-88 

7,148 17-5 18-25 

9-25 0-059 0-149 0-95 

6,812 17-5 18-25 
9-25 

0-149 0-059 1-73 

12,188 
18 13-25 

7-5 

0-142 0-142 1-71 

13,680 19 

15-4 

7-75 0-23 
0-18 1-59 

22,469 
i 

It  is  highly  interesting  to  learn  what  Robert  Stephenson  had 
to  say  about  these  results.  In  his  official  report  to  the  directors 
of  the  Chester  and  Holyhead  Railway,  dated  1846,  we  read  as 
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follows  :  "  In  the  first  series  of  experiments,  this  remarkable  and 
unexpected  fact  was  brought  to  light — viz.,  that  in  such  tubes  the 
power  of  wrought  iron  to  resist  compression  was  much  less  than 
its  power  to  resist  tension,  being  exactly  the  reverse  of  that  which 
holds  with  cast-iron.  In  cast-iron  beams  for  sustaining  weight 
the  proper  form  is  to  dispose  of  the  greater  portion  of  the  material 
at  the  bottom  side  of  the  beam ;  whereas  with  wrought  iron  these 
experiments  demonstrate  beyond  any  doubt  that  the  greater 
portion  of  the  material  should  be  distributed  on  the  upper  side  of 
the  beam.  We  have  arrived,  therefore,  at  a  fact  having  a  most 
important  bearing  upon  the  construction  of  the  tube — viz.,  that 
rigidity  and  strength  are  best  obtained  by  throwing  the  greatest 

thickness  of  material  into  the  upper  side." 
Examining  the  figures  in  detail,  we  notice  that  in  the  first 

experiment  on  a  tube  9'6in.  square,  with  top  and  bottom  plates 
of  equal  thickness,  the  breaking  load  was  37381bs. ;  but  on  rivet- 

ing a  thicker  plate  to  the  top  side,  the  load  necessary  to  break  the 
beam  advanced  to  82731bs,,  the  strength  being  more  than  double 
the  original. 

The  next  experiment  was  made  on  a  tube  in  which  the  bottom 
plate  was  about  twice  the  thickness  of  the  top  plate.  The  gain 
in  strength  due  to  simply  turning  the  beam  upside  down  is  very 
noticeable.  The  same  is  true  of  the  deeper  tube  having  the 
section  18J  by  9 Jin.,  in  regard  to  which  Sir  William  Fairbairn, 
in  his  report  to  the  directors,  remarks : 
"  Loading  this  tube  with  68121bs.  (the  thin       I    *      j 
plate  being  uppermost),  it  becomes  wrinkled,       [_       ̂    _[ 

with  a  hummock  rising  on  the  top  side,  so       ̂ *>=a<^'T ' 
as  to  render  it  no  longer  safe  to  sustain  the 
load.     Take,  however,  the  same  tube,    and 
reverse  it  with  the  thick  plate  upwards,  and 
you  not  only  straighten  the  part  previously 
injured,  but  you  in  crease  the  resisting  powers 

from  6812  to  12,1881bs." 
"  Let  us  now  examine,"  continues  Fail-- 

bairn, "  the  tube  in  the  last  experiment, 
where  the  top  is  composed  of  corrugated 

iron" — as  Fig.  148 — "  forming  two  tubu- 
lar cavities.  This  presents  the  best  form  Fig.  148. 

for  resisting  the  'puckering'  or  crushing 
force.  Having  loaded  the  tube  with  increasing  weights,  it  ultimately 
gave  way  by  tearing  the  sides  from  the  top  and  bottom  plates,  at 
nearly  the  instant  after  the  last  weight  was  laid  on.  The  greatly 
increased  strength  indicated  by  this  form  of  tube  is  highly  satis- 

factory. The  results  here  obtained  are  so  essential  to  this 

•07" 

•18 
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inquiry,  and  to  our  knowledge  of  the  strength  of  materials  in 
general,  that  I  have  deemed  it  essential  to  direct  attention  to 
facts  of  immense  value  in  the  proper  and  judicious  application  of 
the  material  of  the  proposed  structure.  Strength  and  lightness 
are  desiderata,  of  great  importance,  and  the  circumstances  above 
stated  are  well  worthy  the  attention  of  the  mathematician  and 

engineer." After  these  comments  of  the  leading  authorities  of  their  day  on 
bridge  building,  it  is  fitting  to  introduce  here  some  critical  remarks 
of  the  distinguished  engineer,  the  late  Sir  William  Anderson, 
taken  from  his  excellent  lecture  on  "  The  Interdependence 
of  Abstract  Science  and  Engineering,"  delivered  before  the  Insti- 

tution of  Civil  Engineers  in  1893.  These  remarks  reveal  the  vast 
advance  of  scientific  bridge  designing  during  the  last  half-century. 
Alluding  to  the  history  of  the  development  of  iron  and  steel 
bridge  building,  which  necessarily  followed  the  introduction  of 
railways,  Anderson  says : 

"  The  principles  which  underlie  the  determination  of  stresses  in 
braced  structures,  such  as  roofs  and  frameworks  of  various  kinds, 
as  well  as  those  in  solid  bars  subjected  to  the  action  of  transverse 
forces  (i.e.,  beams),  have  long  been  known,  and  early  in  this 
century  Navier  made  them  the  subjects  of  lectures  at  the  Ecole 
des  Fonts  et  Chauss^es ;  yet  engineers  in  this  country  seem  to 
have  been  but  dimly  aware  of  them,  or,  at  any  rate,  to  have  made 
but  little  use  of  the  knowledge  at  their  disposal.  It  is  difficult, 
from  the  published  histories  of  such  enterprises  as  the  Con  way 
and  Britannia  bridges,  to  arrive  at  any  conclusion  as  to  the  extent 
of  knowledge,  or  rather  ignorance,  which  existed  among  engineers 
before  these  works  were  commenced.  It  is  probable  that  some,  of 
a  specially  scientific  turn  of  mind,  but  who  were  not  in  conspicuous 
practice,  had  a  deeper  insight  into  principles  than  the  men  whose 
great  natural  genius  and  knowledge  of  affairs  placed  them  in 
prominent  positions  in  the  great  railway  enterprises  of  the  day. 
It  is  sufficiently  evident,  however,  from  the  long  series  of  purely 
tentative  experiments  by  which  the  proportions  of  the  Conway 
and  Britannia  bridges  were  determined,  as  well  as  from  the 
singular  vagaries  to  be  noticed  in  the  smaller  bridges  of  that  day, 
that  only  the  haziest  ideas  of  the  disposition  of  stresses  and  of  the 
functions  of  the  component  members  of  girders  existed.  This 
naturally  led  to  timidity  as  to  the  capacity  of  girders  to  carry, 
unaided,  the  loads  it  was  sought  to  impose,  and  induced  a  prefer- 

ence for  masonry  or  for  suspension  bridges,  with  respect  to  which 
much  wider  experience  was  at  command. 

"  In  the  experimental  investigations  of  the  time,  the  function 
of  the  web  or  vertical  member  of  a  girder  was  completely  ignored, 
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for  it  was  looked  upon  merely  as  the  means  of  keeping  the  top 
and  bottom  flanges  in  their  relative  positions,  while  the  essential 
difference  in  effect  of  a  uniformly  distributed  load,  or  of  a  rolling 
load,  as  compared  with  a  load  concentrated  at  the  centre,  on  the 
vertical  member  of  a  girder,  and  even  on  the  flanges,  appears  to 
have  been  overlooked  till  made  evident  by  the  results  of  experi- 

ment ;  and  the  grave  doubts  which  arose  as  to  whether  the  girders 
of  the  two  great  tubular  bridges  could  be  made  self-supporting  are 
apparent  to  this  day  in  the  preparations  made  in  the  piers  and 
abutments  for  the  introduction  of  auxiliary  chains.  Yet  the 
principle  that  a  force  cannot  change  its  direction  unless  combined 
with  another  force  acting  in  a  direction  inclined  to  it,  was  perfectly 
well  known,  and  should  have  led  to  the  discovery  that  it  is  only 
by  diagonal  stresses  in  the  vertical  members  that  the  load  resting 
on  a  beam  can  be  transmitted  to  the  abutments,  or  be  made  to 
produce  effects  at  right  angles  to  its  own  direction  in  the  flanges, 
and  that  the  stresses  due  to  loads  concentrated  at  the  centre  were 
very  different  to  those  arising,  both  in  the  vertical  web  and  in  the 
flanges,  from  the  action  due  to  a  load  distributed  in  a  given  manner 
along  the  top  or  the  bottom  flanges,  and  that  a  rolling  load  would 
produce  effects  peculiar  to  itself. 

"  Since  1848  the  supremacy  of  theory  over  rule-of-thumb  has 
gradually  but  surely  asserted  itself,  though  at  times  the  want  of 
common  sense  and  experience  in  the  application  of  abstract  prin- 

ciples, as  well,  perhaps,  as  ill-judged  efforts  to  produce  cheap 
structures,  has  led  to  disasters  quite  as  serious  as  those  which 
arose  from  want  of  theoretical  knowledge ;  and  in  this  respect  the 
competent  and  successful  engineer  will  still  show  himself  as  the 
man  who  in  his  work  is  careful  to  make  theory  and  practice  walk 
side-by-side,  the  one  ever  aiding  and  guiding  the  other,  neither 
asserting  undue  supremacy.  This  course,  in  its  highest  develop- 

ment, we  may,  I  think,  assert  is  that  adopted  by  our  leading 
engineers,  with  the  result  that  this  country  may  claim  the  honour 
of  such  a  structure  as  the  Forth  Bridge,  for  the  design  and  con- 

struction of  which  no  tentative  experiments  were  needed,  though 
the  form  and  mode  of  construction  were  very  special,  if  not 
absolutely  new,  and  the  dimensions,  both  in  span  and  height,  so 
gigantic  that  the  authors  of  the  design  could  have  derived  but 

little  aid  from  previous  experience." 



CHAPTER  XIV. 

THE  DEFLECTION  OF  BEAMS. 

LEAVING,  for  the  present,  the  consideration  of  the  strength  of 
beams,  we  now  pass  on  to  the  question  of  their  stiffness,  which,  in 
many  cases,  is  equally  important. 
When  an  originally  straight  beam  (Fig.  149)  is  loaded  by  a 

force  of  sufficient  magnitude,  the  beam  visibly  bends  or  assumes  a 
curved  form,  and  the  load  falls  through  a  certain  height.  This 
vertical  movement  is  styled  the  deflection  of  the  beam.  The 
amount  of  deflection  varies  from  point  to  point,  but  its  greatest 
value  is  alone  important,  and  this  is  what  is  ordinarily  meant  by 
the  deflection  of  the  beam. 

The  general  question  of  the  deflection  of  beams  of  any  section 
and  profile,  loaded  in  any  manner  whatever,  is  one  of  considerable 

Fig.  149. 

mathematical  difficulty,  so  that  only  the  more  common  cases  will 
be  here  considered. 

The  general  formula  for  calculating  the  maximum  deflection  of 
any  beam  of  uniform  section,  when  loaded  in  any  simple  or  standard 

manner,  is  the  following  : — 

WL3 

Deflection  =  C  x El 

The  deflection  is  expressed  in  inches,  the  usual  symbols  oeing 
A  (delta)  and  d  ;  but  there  is  no  universal  agreement.  Rankine 

uses  v.  Sometimes  y'\&  used.  L  is  the  length  of  the  beam  unsup- 
ported, in  inches.  W  is  the  load  or  force  applied,  either  in  tons 
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or  pounds.  The  formula  ceases  to  be  true  when  W  exceeds  the 
elastic  limit  load,  the  stress  due  to  a  given  load  being  calculated  by 
the  equation — 

Bending  moment  =  stress  x  modulus  of  section. 

I  is  the  geometrical  moment  of  inertia  of  the  section  with  respect 

to  its  neutral  axis,  expressed  in  quartic  inches  (inch4).  E  is  the 
modulus  of  elasticity  of  the  material,  or  ratio  of  stress  to  strain 
within  the  elastic  limits.  This  is  a  measure  of  the  stiffness  of 
the  material.  Approximate  values  of  E  for  various  materials  of 
construction  are  tabulated  below  : — 

Material. Modulus  of  Elasticity, Tensile  Elas- tic Limit. 

Lbs.  per  sq.  in. 
Tons  per 

sq.  in. 

Lbs.  per 

sq.  in. Cast-iron  (average) 17,000,000 

7,600 
10,500 

Riveted     wrought  -  iron 
girder  . 18,000,000 

8,000 

— 

Wrought  iron  . 29,000,000 13,000 30,000 Mild  steel 30,000,000 13,400 40,000 
Tool  steel 30,000,000 13,400 80,000 
Tempered  steul 36,000,000 16,000 190,000 
Oak 

1,500,000 
670 

5,000(?) 

Pine 
1,600,000 715 

4,000(?) 

C  is  a  numerical  coefficient  whose  value  depends  on  the  mode  of 

supporting  and  loading  the  beam,  as  under : — 

Case. How  Supported. Position  of  Load, C. 

1 Fixed  at  one  end. At  free  end. * 
2 ditto. Uniformly  distributed. i 
3 Supported  at  both  ends. At  centre. A 
4 ditto. Uniformly  distributed. ixA 
5 Fixed  at  both  ends. At  centre. 1    s/      1 

~5  x   1? 

6 ditto. Uniformly  distributed. txA 

Deflection  of  Rectangular  Beams. — Since  the  moment  of  inertia 
of  a  rectangular  section  about  the  neutral  axis  is — 
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for  a  beam  of  this  shape  supported  at   both  ends  the  general 
deflection  formula  becomes — 

W        /L\3      1 

;   4E    X  U/  X  B 
WL3        12 

E         BH3 
This  important  formula  shows  that  the  deflection  of  a  beam 

under  a  given  load  varies  inversely  as  the  breadth  of  the  beam 
and  directly  as  the  cube  of  the  ratio  of  the  span  to  the  depth. 
Hence  to  secure  sufficient  stiffness  long  beams  require  to  be  made 
very  deep. 

It  is  highly  instructive  to  compare  the  stiffness  formula  with  the 
strength  formula  for  uniform  beams  of  rectangular  section.  Re- 

garding the  strength  of  a  beam  as  measured  by  the  load  it  will 

support,  we  may  say  that  — 

H2 

Strength  varies  as/  x   --  x  B. Li 

Again,  taking  the  numerical  measure  of  stiffness  as  the  inverse 
or  reciprocal  of  deflection,  we  may  write— 

/HV 
Stiffness  varies  as  E  x  (  —  -)  x  B. w 

From  these  two  expressions  it  is  clear  that  the  effect  of 
doubling  the  breadth  of  a  beam  is  simply  to  double  both  its 
strength  and  its  stiffness,  whereas  the  effect  of  doubling  the  depth 
alone  is  to  quadruple  the  strength  and  to  increase  the  stiffness  no 
less  than  eight-fold,  the  span,  of  course,  being  kept  constant. 
Thus  depth  is  a  much  more  potent  factor  than  breadth. 

If  we  have  two  beams  of  the  same  material,  one  being  4in. 
wide,  Gin.  deep,  and  10ft.  span,  and  the  other  4in.  wide,  12in. 

deep,  and  20ft.  span,  they  will  be  of  equal  stiffness  —  i.e.,  they  will 
deflect  equally  under  the  same  load,  although  the  longer  beam  will 
carry  twice  as  heavy  a  load  as  the  other,  and  therefore  will  be 
twice  as  strong. 

A  common  allowance  for  the  deflection  of  a  beam  that  is  intended 

to  be  fairly  rigid  is  from  T^TT  *°  TOTT  °f  *ne  span. 
Beams  designed  with  the  express  object  of  yielding  considerably 

under  working  conditions  —  i.e..  plate  springs  —  are  much  used  as 
cushioning  devices  for  the  prevention  of  shock,  as  well  as  in 
certain  instruments  for  measuring  forces. 

I>efore  giving  the  mathematical  proof  of  the  general  deflection 
formula,  a  few  numerical  examples  of  its  use  will  be  introduced. 
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Example  1. — A  steel  spring  (Fig.  150)  of  lOin.  free  length  is 
loaded  with  lOOlb.  at  the  end.  The  uniform  section  is  2in.  by 
^in.  Calculate  the  greatest  stress  and  the  deflection. 

Bending  moment  =  lOOlbs.  x  lOin.  =  lOOOin.-lb. 
Strength  modulus  =  ̂   x  2in.  x  (^in.)2  =  yVn'3 

But  bending  moment  =  stress  x  modulus, 

.-.  stress  -  1000  -f  ̂   =  48,000  lb./in.2 
As  this  is  well  within  the  elastic  limit  of  tempered  steel,  the 

spring  is  safe, 
Moment  of  inertia  of  section  about  neutral  axis  is — 

J^  x  2in.  x  (£in.)3  =  ̂ in.4 
According  to  Unwin,  the  modulus  of  elasticity  of  tempered 

steel  is  36,000,0001bs.  per  square  inch,  though  of  course  it  varies 

IWttt. 

-to"-- \ 
Fig.  150.  Fig.  161. 

more  or  less  with  every  sample  of  steel.     Substituting  the  known 
values  in  the  formula — 

El we  get 

,       ,       100  x  1000 d  =  4  x     x  384, 
36,000,000 

or  deflection  —  0*356  inch. 

The  question  of  the  superposition  of  spring  plates  is  one  of  con- 
siderable interest  and  importance.  If  we  had  two  perfectly  smooth 

and  identical  plates  (Fig.  151),  the  deflection  under  a  given  load 
would  be  halved.  But  actual  plates  never  are  very  smooth,  and 
so  they  rub  on  each  other  with  considerable  friction.  Hence  the 
actual  deflection  for  the  case  of  two  plates  is  somewhat  less  than 
half  that  for  one  plate.  How  much  less  is  not  calculable,  but 
must  be  found  by  experiment.  It  is  customary,  however,  in  spring 
calculations,  to  take  the  deflection  as  inversely  proportional  to 
the  number  of  plates. 

Experiment. — The  author  once  made  an  experiment  on  Ihe 
deflection  of  a  small  pitch-pine  beam,  measuring  O'OOin.  wide  by 
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l'18in.  deep,  the  span  being  36in.  Its  total  volume  was  49  cub. 
in.,  and  its  weight  l'21bs. ;  so  that  the  density  of  this  particular 
sample  of  pitch-pine  was  42-31bs.  per  cubic  foot.  The  deflection 
of  the  centre  of  the  beam  was  measured  by  a  dial  arrangement,  the 
finger  being  actuated  by  a  small  drum,  round  which  was  coiled  a 
cord,  and  one  end  of  the  latter  was  fastened  to  the  beam.  The 
following  readings  were  taken,  the  uniform  increment  of  load 

being  28  pounds : — 

Load. Deflection  . Increment. 

Lb. In. 
In. 

28 
0-075 0-100 

56 
0-175 0-115 

84 

0-290 0-122 

112 
0-412 0-118 

140 
0-530 0-130 

168 
0-660 0-120 

196 
0-780 0-140 

224 

0-920 0-130 

252 
1-05 0-180 

280 1  23 
0-210 

308 
1-44 

336 Broke. 

These  observations  have  been  plotted  in  Fig  152.  It  will  be 
seen  that  the  deflection  remains  fairly  proportional  to  the  load 
until  the  breaking-point  is  approached. 

Example  2. — Calculate  the  modulus  of  elasticity  of  the  sample 
of  pitch-pine  used  in  the  above  experiment,  the  deflection  caused 
by  an  addition  to  the  load  of  281bs.  being  taken  as  0*12in. — 

W/T  \  J        1 

Li\ 

Since  (L  =  —  x  (  —  )  x  --, 
4E      \H/       B 

•    012=  ?!x^Yx-l- 

4E      \]'1*V       0-96 



THE  DEFLECTION  OF  BEAMS. 181 

\ 

\ 

\ 

to  Ci 
G-J  °o 

R 
o 

VS        <M 

to 
•pvoj 



182  THE  DESIGN  OF  BEAMS. 

from  which  we  find — 

7  v  30- V 
E  =     '  *     V.Q  ,  =  l,720,0001bs.  per  square  inch. 

Example  3. — A  wrought-iron  girder  of  the  section  given  on 
page  147,  Fig.  126,  and  of  30ft.  span,  weighs  "2  tons,  and  carries 
a  uniform  load  of  13  tons.  Calculate  the  probable  deflection  at 
the  centre. 

If  there  were  no  joints  in  this  girder,  we  should  take  13,000  tons 
per  square  inch  as  the  modulus  of  elasticity  of  wrought  iron ;  but 
for  a  riveted  girder  like  the  present,  the  usual  value  taken  is 
8000  tons,  to  allow  for  the  inevitable  yielding  of  the  joints. 

The  moment  of  inertia  of  the  section  about  the  neutral  axis  is 

2273  inch4  units.  Inserting  the  proper  values  in  the  deflection 
formula — 

,51  WL3 a  =  -  x   , 
8        48  El 

we  get 

,        5          15        3603  ' a  =  —  x    x   =  0'5m. 
384      8000      2273 

This  is  also  the  amount  of  initial  camber  that  should  be  given  to 
the  be.am  during  construction. 

Example  4. —  A.  beam  of  uniform  section  is  supported  at  both 
ends  and  loaded  in  the  middle.  Find  the  ratio  of  depth  to  span, 
in  order  that  the  deflection  may  not  exceed  y^V^  of  the  span, 
when  the  stress  is  SOOOlbs.  per  square  inch,  and  the  modulus  of 
elasticity  is  28,000,0001bs.  per  square  inch. 

Step  1. — By  the  conditions  of  the  question, WL3   Ij_ 

48  El  ~  1000' Dividing  by  L,  and  substituting  the  given  value  of  E,  we  get — 
WL2  1 

0) 
48x28,000 

a  beam   of 

Moment  of  inertia  of  section      depth 

Step  2.  —  Again,  for  a  beam   of  any  symmetrical  section,   we 
know  that  — 

Modulus  of  section 
or 

a 
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Now  Z  =  moment  of  resistance  -7-  stress, 
=  M-/. 

Hence,  substituting  for  Z, 

T       M      H I  =  7XT 
But  for  a  beam  loaded  at  the  centre, 

M  =  i  WL. 
WL        H 

•••i- V»T  •  <*) 
Step  3. — Combining  results  (1)  and  (2),  we  have 

WL2         =  WLH 

48x28,000          8/  ' L         =H 

'  6  x  28,000      /  " 
The  given  stress  being  80001bs.  per  square  inch,  this  becomes— 

:L  =  6  x  28,000  =  21 

H          8000         "   1 ' 
Hence  the  depth  of  a  uniform  wrought-iron  beam  must  not  be 
less  than  JT  of  the  span,  if  the  deflection  has  not  to  exceed  y^^ 
of  the  span. 

Proof  of  the  Deflection  Formula. — Sufficient  examples  having 
been  given  of  the  use  of  the  formula  for  calculating  the  deflection 
of  beams,  it  remains  to  show  on  what  basis  it  is  framed.  Under 
one  aspect  it  may  be  regarded  simply  as  a  convenient  general 
statement  of  the  results  of  numerous  experiments  on  the  stiffness 
of  beams  of  various  lengths,  sections,  and  materials.  The  formula 
has  been  experimentally  verified  over  and  over  again,  and  is 
generally  taken  to  be  approximately  true,  so  long  as  the 
material  is  not  stressed  beyond  its  elastic  limits. 

But  as  a  matter  of  fact  the  deflection  formula  has  really  been 
deduced  by  mathematical  reasoning  from  first  principles  ;  and  as 
the  process  of  deduction  is  both  instructive  and  interesting,  we 
propose  to  consider  its  leading  steps,  taking  care,  however,  to 
dwell  more  on  the  physical  ideas  involved  than  on  the  symbolical 
expression  of  those  ideas.  The  mathematical  reader  will  have  no 
difficulty  in  supplying  the  complete  symbolism. 

(1)  Consider  a  cantilever  of  rectangular  section  (Fig.  158)  bent 
by  a  heavy  load  W,  but  not  so  heavy  as  to  cause  a  permanent  set. 
The  thickness  of  the  beam  and  the  deflection  are  both  greatly 
exaggerated  in  the  figure,  for  the  sake  of  clearness.  Choose  two 
transverse  sections  of  the  beam  AB,  CD,  very  near  to  each  other, 
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so  as  to  isolate  in  imagination  a  thin  slice  of  material.  Before 
the  beam  is  bent,  the  faces  of  this  slice  are  parallel  to  each  other, 
but  after  bending  they  radiate  to  a  common  centre  and  include  a 
very  small  angle,  say  i.  In  the  figure  the  thickness  of  the  slice  is 
enormously  exaggerated,  and  also  the  magnitude  of  the  angle. 

(2)  Because  of  the  bending,  the  top  fibres  of  the  slice  under 
consideration  pull  out  by  a  very  trifling  amount,  which  we  may 

Fig.  153. 

call  e.     The  bottom  fibres  are  crushed  up  to  the  same  extent,  if 
the  neutral  axis  is  at  the  middle  of  the  depth  of  the  beam. 

(3)  We  find  an  expression  for  the  strain  at  the  top  edge  by 
dividing  the  extension  e  by  the  original  thickness  of  the  slice  I. 

(4)  Another  expression  for  the  same  strain  is  found  by  apply- 
ing Hooke's  law,  that  stress  is  proportional  to  strain.    Calling  the 

ratio  of  stress  to  strain,  or  modulus  of  elasticity  of  the  material, 
E,  and  the  stress  on  the  top  fibres  /,  it  follows  that  the  strain  is 
the  stress  /  divided  by  the  modulus  E.     We  make  the  assumption 
that  the  compressive  modulus  of  elasticity  has  the  same  value  as 
the  tensile  modulus. 
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(5)  Having  thus  got  two  statements  of  the  same  thing  from 
different  points  of  view,  we  equate  them,  and  so  get  an  expression 
for  the  unknown  very  small  extension  e  in  terms  of  three  better- 
known  quantities,  the  stress/,  the  modulus  E,  and  the  thickness 
of  the  slice  t,  thus — 

(6)  Looking  at  the  small  upper  shaded  triangles  (Fig.  153),  and 
remembering  that  the  short  arc  e  is  found  by  multiplying  the 
radius  y  by  the  circular  or  radian  measure  of  the  angle  t,  we 
introduce  into  our  work  the  known  or  calculable  distance  of  the 
top  of  the  beam  from  the  neutral  axis,  and  also  the  unknown 
factor  i. 

(7)  In  order  to  get  rid  of  the  objectionable  angle  i,  we  draw 
tangents  to  the  top  surface  of  the  beam  at  the  points  A  and  C  ; 
which  tangents  then  include  the  angle  i.     Our  aim  is  now  to 
express  this  angle  in  terms  of  two  other  quantities — viz.,  the 
distance  L  of  the  thin  slice  AC  from  the  free  end  of  the  beam, 
and  the  small  deflection  or  drop  3  of  the  end  due  to  the  bending 
of  this  slice  alone. 

This  we  do  by  again  applying  the  useful  relation  that  arc  -= 
radius  x  angle. 

We  are  compelled,  however,  to  make  the  assumptions  that  the 
tangents  are  of  equal  length,  and  that  the  end  of  the  cantilever 
moves  in  an  arc  so  short  as  to  be  practically  a  vertical  line. 
Since  the  deflection  is  always  extremely  small  compared  with  the 
length  of  the  beam,  and  the  slice  is  also  very  thin,  these  assump- 

tions are  perfectly  valid. 
(8)  We  have  now  found  two  expressions  for  the  same  quantity 

i — namely, 

i  =  — ,  and  t  =  — 

y  L 
by  equating  which  we  eliminate  i  and  get  a  formula  for  the  small 
deduction  3  in  terms  of  the  length  of  the  beam  L,  the  distance  y, 
and  the  small  extension  of  the  top  edge  e,  thus — 

~  y 

Of  these  three  quantities  the  first  two  may  remain,  being 
easily  measurable ;  but  the  third  item  e  must  be  got  rid  of  with- 

out delay,  as  being  much  too  intangible.  Hence,  in  place  of  the 
infinitesimal  extension  e,  we  substitute  the  value  of  e  in  terms  of 
the  stress  /,  the  modulus  E,  and  the  short  length  t,  as  already 
found  in  step  (5),  thus — 
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*-&x.*f 

E  y 

We  then  have  a  formula  for  the  small  deflection  in  terms  of  five 
quantities,  all  of  which  are  measurable  save  t. 

(9)  The  next  move  is  to  get  rid  of  the  distance  y,  and  bring  in 
the  moment  of  inertia  I  of  the  section,  so  as  to  make  the  formula 
apply  to  any  shape  of  section  whatever.  We  do  this  by  making 
use  of  the  proportion  that 

Moment  of  resistance  of  section 
Moment  of  inertia  of  section 

Stress  on  material  at  top  edge 

Distance  of  neutral  axis  from  top  edge' 
or  M  =  f 

I        y 

On  writing  —  in  place  of  -   in  the  last  formula,   and  then 
I  y 

inserting  the  bending  moment  WL  in  place  of  M,  we  get 
WL         L 

w 

This  formula  gives  the  deflection  for  which  the  slice  nearest 
the  wall  is  responsible  ;  expressed  in  terms  of  the  load  W  on  the 
end  of  the  beam,  the  modulus  of  elasticity  E  of  the  material  of 
the  beam,  the  moment  of  inertia  I  of  the  uniform  section  of  the 
beam,  the  total  length  L,  and  finally  the  infinitesimal  length  t. 

Of  course  if  we  had  been  considering  a  slice  at  the  middle  of  the 
beam,  instead  of  close  up  to  the  wall,  then  our  L  would  have  had 
only  half  its  value  in  this  formula. 

(10)  So  far  we  have  reasoned  on  the  distortion  of  only  a  single 
slice  of  the  beam,  of  thickness  t.  The  next  question  is  :  Know- 

ing the  deflection  at  the  end  due  to  this  microscopic  length,  how 
are  we  to  find  the  total  deflection  due  to  the  bending  of  the  entire 
beam? 

Two  methods  are  available,  one  approximate  and  the  other 
exact.  In  the  first,  we  divide  up  the  beam  into  short  lengths, 
calculate  the  deflection  at  the  end  for  each  piece  separately  by  the 
above  formula,  and  then  add  the  results  together.  Unfortunately 
this  method,  though  instructive,  is  very  laborious,  and  is  there- 

fore never  used. 
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By  the  very  ingenious  mathematical  process  of  the  addition  of 
infinitesimals  known  as  integration,  the  summation  can  be 
rapidly  done  at  one  operation,  and  once  for  all.  The  rule  is  very 
simple  :  add  one  to  the  index  of  the  varying  quantity,  and  divide 
by  the  new  index,  the  constants  remaining  unchanged.  So, 
applying  to  the  case  in  hand  this  handy  method  of  adding 
together  all  the  small  effects,  we  finally  get  the  total  deflection  — 

The  last  bit  of  work  is  probably  the  only  part  that  will  not  be 
quite  intelligible  to  the  majority  of  readers,  after  writing  down 
all  the  algebraic  steps  and 
doing  a  little  thinking. 
The  full  working  of  this 

step  is  given  below.* 
It  remains  to  adapt  the 

deflection  formula  for  a 
cantilever  to  the  more 
common  case  of  a  beam 
supported  at  the  ends  and 

Fig.  154. 

loaded  centrally  (Fig.  154).  Such  a  beam  may  be  regarded  as  loaded 
at  both  ends  by  the  reactions  and  fixed  in  the  middle ;  or,  in  other 

W 
words,  as  two  inverted  cantilevers.     Hence,  writing  —  in  place Z 

of  W,  and  —  instead  of  L,  in  the  last  result,  we  get — z 

Deflection  — 

W       /LV 
T  I  2; 

3  El 
or 

A  - 

WL3 

48  El 

which  is  the  required  expression. 

*  Using  standard  notation,  let  dx  be  the  thickness  of  any  vertical  slice 
of  the  beam,  and  x  its  distance  from  the  free  end,  then 

Deflection  = W    fx  =  L ion  =  —  /  , 
•r      r.  =  n 

x'2dx, 

3  E  I    ? 



CHAPTER  XV. 

TYPES  OF  GIRDERS. 

CAST-IKON,  as  a  material  for  girders,  is  cheap,  and  has  the  ad- 
vantage of  being  easily  moulded  to  any  desired  shape,  whether 

plain  or  ornamental.  But  it  has  several  serious  drawbacks. 

On  account  of  the  low  tensile  strength  of  cast-iron,  girders  of  this 
material  are  very  heavy,  and  therefore  quite  unsuited  for  long 
spans.  They  are  also  liable  to  contain  dangerous  flaws  which 
cannot  be  perceived,  and  they  give  no  warning  before  fracture. 
This  unreliability  is  especially  marked  when,  after  being  heated, 

cast-iron  girders  are  suddenly  cooled  by  water,  as  might  happen  in 
the  case  of  a  building  on  fire.  Further,  the  expense  of  a  wood 
pattern  is  a  considerable  item,  when  only  a  single  girder  is  required. 
For  these  reasons  cast-iron  girders  are  very  little  used  now  in 
structural  work,  having  been  displaced  by  rolled  joists  and  built- 
up  steel  girders.  Malleable  cast-iron  is  suitable  for  light  levers. 

Moulded  beams  of  cast-steel  find  some  application  in  heavy 
machinery,  as  in  the  case  of  the  slide-beams  carrying  the  heavy 
guns  of  battleships  and  forming  the  recoil  path  (Fig.  2).  Cast- 
steel  is  never  used  for  bridge  girders,  however ;  as  very  large  steel 
castings  are  difficult  to  cast,  and  are  also  less  reliable  than  mild- 
steel  built-up  girders.  The  latter  are  moreover  much  more  con- 

venient to  transport  and  erect. 
The  largest  market  size  of  rolled  I  beam  has  a  depth  of  24in. 

and  a  width  of  7£in.  Single  joists,  however,  are  often  strengthened 
by  riveting  to  each  flange  a  broad  plate,  which  need  not  extend 
the  full  length  of  the  beam.  When  a  beam  is  required  to  have  a 
stronger  section  than  a  rolled  joist,  we  may  use  either  a  compound 
joist  girder,  such  as  that  shown  in  Fig.  134,  or  else  a  compound 
channel  girder,  as  shown  in  Fig.  155.  These  can  be  rapidly  built 
up,  from  rolled  sections  and  flat  bars,  with  a  minimum  amount  of 
riveting. 

A  plate  girder  is  very  commonly  used  when  the  span  exceeds 

20ft.  Such  a  girder  (Fig.  156)  consists  of  a  thin  continuous  ver- 
tical member  or  web,  connected  at  the  top  and  bottom  by  angle 
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bars  and  rivets  to  two  or  more  thicker  plates  forming  the  flanges 
or  booms.  The  bulk  of  the  material  being  thus  situated  at  the 
greatest  distance  from  the  neutral  axis  is  well  placed  for  with- 

standing the  horizontal  thrust  and  pull. 
Flam 

Fig.  155. Fig.  156. 

While  the  flanges  of  a  plate  girder  oppose  the  bending  moment, 
the  web  connecting  them  resists  the  shearing  force  ;  and  as  this  is 
greatest  at  the  ends  of  the  girder,  the 
web  plates  near  the  abutments  are  some- 

times made  thicker  than  at  the  centre. 

To  prevent  the  web  buckling  or  crump- 
ling up,  it  is  stiffened  at  intervals  of 

about  4ft.  by  means  of  vertical  T  or  L 
bars  spaced  closer  near  the  supports. 
These  bars  also  serve  to  cover  the  joints 
in  the  web  plates.  The  deeper  the  girder 
the  greater  the  tendency  of  the  web  to 
buckle.  Hence  a  deep  girder  should  have 
either  thicker  plates  or  more  vertical 
stiffeners  than  a  shallow  girder. 

The  web  stiffeners  are  usually  either 
bent  outwards  to  clear  the  angle  bars,  as 
shown  in  Fig.  156.  or  else  cranked  and 
fitted  close  to  the  angles,  as  in  Fig.  157, 
the  former  method  being  preferable  when 
the  width  of  the  flanges  admits  of  it.  A 
third  method  is  to  use  straight  stifleners, 
kept  clear  of  the  angles  by  means  of  packing  pieces  ;  which,  how- 

ever, add  to  the  weight  of  the  girder  without  increasing  its 
strength. 

The  joints  in  the  flanges  of  plate  girders  are  generally  made  by 

Fig.  157. 
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cover  plates,  as  shown  in  the  perspective  sketch  Fig.  158,  an 
equal  number  of  rivets  being  symmetrically  placed  on  each  side  of 
the  joint.  In  designing  such  a  joint  the  aim  is  to  keep  its 
strength  as  nearly  as  possible  equal  to  that  of  the  original 
plate.  When  there  are  several  layers  of  plates  it  is  convenient 

to  group  the  joints,  and  cover 
them  by  one  pair  of  plates,  as 
shown  in  Fig.  159. 

A  plate-girder  bridge  is  con- sidered to  be  the  best  form  of 
road  or  railway  bridge  for  spans 
not  exceeding  60ft. ;  while  above 
that  span  lattice  and  braced 
girders  are  preferable.  Plate 
girders  are  also  largely  used  in 
the  construction  of  modern  work- 

shops and  city  buildings,  as  well 
as  for  the  cross-girders  of  overhead  travelling  cranes,  and  for  the 
roadways  (or  runways)  supporting  such  cranes,  when  the  pitch 
of  the  columns  exceeds  about  15ft. 

A  plate-girder  with  two  vertical  webs  (Fig.  126)  is  termed  a  box 
plate  girder,  or  simply  a  box  girder.  Such  a  girder  is  stiffer 
laterally  than  a  single- web  girder,  and  is  used  for  the  larger  spans. 
One  practical  objection  to  a  box  girder  is  that  it  cannot  be  painted 
inside,  after  erection,  unless  made  so  large  as  to  admit  of  the  pas- 

sage of  a  man.  Further,  for  a  given  weight  of  metal  in  the  web, 

Fig.  158. 

Fig.  159. 

the  surface  exposed  to  corrosion  is  greater  than  in  the  case  of  a 
single-web  girder. 

The  structural  weight  of  a  small  girder  is  unimportant  compared 
with  the  load  it  can  carry  ;  so  that  for  small  spans  cast-iron 
girders  are  practicable.  But  as  the  span  increases  the  structural 
weight  becomes  relatively  more  and  more  important,  and  it  is 
necessary  to  use  plate  girders  ;  then  lattice,  bow-string,  and  other 
braced  girders.  Finally,  when  we  reach  such  enormous  spans  as 
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those  of  the  Brooklyn  (1595ft.)  and  Forth  (1710ft.)  bridges, 
engineers  are  compelled  to  resort  to  either  suspension  chains  or 
double  cantilevers  to  enable  them  to  bridge  over  such  distances  at 
all. 

Since  the  bending  moment  on  a  uniformly-loaded  girder  is  greater 
at  the  centre  than  elsewhere,  the  cross-section  should  not  be  uni- 

form from  end  to  end,  if  it  is  desired  to  economise  material. 
Most  girders  are  therefore  constructed  either  of  uniform  depth, 
with  the  flanges  of  variable  section,  or  else  of  variable  depth  and 
uniform  flange  section.  The  former  are  broadly  classed  as  parallel 
girders,  and  the  latter  as  parabolic  girders ;  because  the  outline 
of  the  curved  flange  is  approximately  a  parabola. 

In  properly-designed  parallel  girders,  with  flanges  of  variable 
thickness,  the  total  flange  stress  is  everywhere  nearly  propor- 

tional to  the  bending  moment ;  so  that  the  bending  moment 
diagram  also  represents,  to  a  certain  scale,  a  diagram  of  flange 
stress. 

In  parabolic  girders  the  depth  at  any  section  in  made  roughly 
proportional  to  the  bending  moment  induced  by  a  uniform  load  ; 
and  when  this  is  the  case  the  total  horizontal  stress  in  each 
flange  is  nearly  uniform  throughout  the  span,  as  can  be  seen 
from  the  well-known  relation — 

/Resistance\        /effective  depthA  _   /moment  of  resist-\  , 

I    of  flange  I        I      of  section      I  ~~  (    ance  of  section    J  ' 
or,  in  symbols, 

A  x  /  x  Z  -  M. 

Such  girders  as  are  used  for  the  overhead  travelling  cranes  of 
workshops,  with  straight  top  flanges  and  curved  bottom  flanges, 
are  often  referred  to  as  fish-bellied  girders ;  and  those  of  the  in- 

verted form  are  known  as  hog-back  or  saddle-back  girders.  In  the 
latter  type  the  depth  at  the  ends  is  commonly  half  the  depth  at 
the  centre;  and  in  the  former  it  is  half  the  central  depth  plus 
3in. 

For  a  given  span,  girders  with  curved  flanges  are  both  lighter 
and  more  elegant  than  those  with  parallel  flanges,  but  they  are 
more  costly  to  construct,  and  where  the  head-room  is  very  limited, 
parallel  girders  must  often  of  necessity  be  employed. 



CHAPTER  XVI. 

BRACED   GIRDERS   AND   STRESS  DIAGRAMS. 

IN  addition  to  ordinary  plate  girders,  which  are  characterised  by 
continuous  webs,  there  are  in  general  use  many  types  of  parallel 
girders  with  open  webs,  some  of  which  will  now  be  briefly  described, 
and  their  merits  compared. 

The  Zig-zag  Truss,  or  the  Warren  Girder,  as  it  is  more  com- 
monly styled,  after  the  name  of  its  originator,  Captain  Warren,  is 

perhaps  the  best-known  type  of  parallel  braced  girder.  It  was 
first  introduced  about  the  year  1850.  Though  regarded  with  dis- 

favour by  some  eminent  engineers  of  that  period,  as  Sir  William 
Fairbairn,  who  preferred  the  plate  girder,  it  has  since  been  much 
used  in  bridge-work  ;  owing  to  ibs  being  more!  economical  of 
material  than  a  plate  girder,  when  the  span  is  considerable. 

Fig.  160  shows  the  usual  form  of  Warren  girder,  having  in  this 
case  eight  sections,  bays  or  panels.  Instead  of  a  continuous  web 

we  have  a  number  of  bracing  bars  or  diagonals,  inclined  at  60°. 

Fig.  160. 

Fig.  161. 

These  diagonals  are  connected  to  the  upper  and  lower  flanges  or 
booms  either  by  pins  or  rivets,  thus  forming  a  single  system  of 
equilateral  triangles.  The  thick  bars  are  in  thrust,  and  the  others 
in  tension. 

In  Fig.  161  is  shown  a  modified  style  of  Warren  girder,  suitable 
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for  a  "  through  "  bridge,  its  diagonals  being  inclined  at  an  angle 
of  45°.  Here  the  upper  joints  are  loaded  by  vertical  ties  or 
suspenders,  which  divide  the  girder  into  ten  panels.  The  vertical 
posts  merely  serve  to  support  and  stiffen  the  upper  flange  of  the 
girder.  But  if  the  load  were  to  be  carried  on  the  upper  flangej 
instead  of  on  the  lower,  then  the  posts  referred  to  would  act  as 
struts,  and  become  more  actively  employed.  • 

A  third  type  of  Warren  girder,  illustrated  in  Fig.  162, is  suitable 

for  a  so-called  "  deck  "  bridge — that  is,  one  in  which  the  load  is 

Fig.  162. 

carried  by  the  top  flanges  of  the  girders.  It  is  derived  from  Fig. 
101  by  inverting  the  latter  and  removing  one  set  of  verticals.  In 
this  case  the  verticals  act  as  struts  instead  of  as  ties,  and  the 
stresses  in  the  diagonals  are  also  reversed. 

If  we  were  to  leave  out  altogether  the  verticals  from  Figs.  161 
and  162,  the  omission  would  make  no  difference  to  the  stresses, 
provided  the  load  were  equally  divided  bet  ween  all  the  joints.  But, 
as  a  rule,  the  division  is  not  equal,  the  roadway  and  the  live  load 
being  carried  by  the  joints 
of  one  flange,  while  the 
other  flange  is  loaded  with 
only  half  the  weight  of  the 
main  girder.  Hence,  as  a 
matter  of  fact,  the  stresses 
would  be  somewhat  modified 

by  omitting  the  verticals. 
As   seen  from  Fig.  163,  Fig.  163. 

makers  of   modern    cycles 

have  taken  a  hint  from  the  Warren  girder  in  designing  multi- 
cycle frames,  thus  securing  great  rigidity,  combined  with  light- ness. 

Example  of  a  Warren  Girder  Bridge. — Many  fine  examples  of 
Warren  girder  bridges  exist,  such  as  the  elegant  Crumlin  Viaduct, 
which  carries  the  Taff  Vale  Railway  at  a  level  of  about  200  ft. 
above  the  valley  of  the  Ebbw,  in  South  Wales.  The  spans  of  this 
bridge  are  150  ft.  The  top  booms  of  the  main  girders  are 
rectangular  cells  of  the  section  shown  in  Fig.  164,  the  bottom 
booms  consisting  of  chains  of  wrought-iron  plates,  set  on  edge  and 
riveted  together.  The  diagonal  ties  are  flat  links.  The  struts 
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f /it  eels  5  Puck 

164. 

are  built  up  of  wrought -iron  plates  and  angle-irons  to  form  the 
cruciform  section  shown  in  Fig.  165.  Pins,  3£  in.  diameter,  con- 

nect the  bracing  bars  to  the  booms,  assisted  by  riveted  gusset  plates 
in  the  case  of  the  bottom  boom.  In  order  to  increase  the  lateral 

stability,  it  has  been  found  desirable  to 
connect  the  four  booms  of  the  girders  by 
a  deck  or  platform  of  iron  plates. 

Some  Warren  girders  have  been  made 

with  the  top  boom  of  cast-iron,  circular 
in  section,  the  diagonal  struts  being  also 
of  cast-iron.  But  this  construction  is 

now  obsolete.  Cast-iron  is  certainly 
strong  in  compression,  but  its  range  of 
elasticity  is  so  small  as  to  render  it  ill- 
adapted  for  resisting  sudden  forces. 
Hence,  when  cast-iron  is  used  for  rail- 

way bridges  a  very  high  factor  of  safety 
is  necessary. 

To  Find  the  Stresses  on  a  Warren  Girder  Carrying  a  Dead 

Load. — The  graphical  method  of  finding  the  total  stresses  on  the 
several  members  of  a  Warren  girder,  when  carrying  only  a  dead 

load,  is  very  simple,  being  an  application  of  the  well-known 

theorems  of  the  "  triangle  "  and  "polygon  of  forces."  It  should 
be  borne  in  mind  that  each  member  of  a  perfect  or  ideal  braced 
girder,  other  than  fastenings,  is  subject  only  to  either  direct  pull 
or  to  direct  thrust, 
there  being  no 
transverse  force, 
except  at  the  joints. 
Hence  the  pull  or 
thrust,  in  tons, 

across  every  trans-  Fig.  1G5. 
verse  section  of  any 
chosen  member  is  the  same ;  also  the  stress,  in  tons  per  square 
inch,  is  uniform  all  over  any  such  section.  In  the  case  of  actual 
braced  girders  it  is  assumed,  for  convenience,  that  there  are 

frictionless  pin  joints  at  the  meeting-points  of  the  axes  of  the 
bars,  which  are  supposed  to  meet  on  the  centre  lines  of  the  pins. 
Although  the  practical  conditions  are  rather  different,  the  results 
are  approximately  correct. 

Fig.  166  is  the  frame  diagram  of  a  Warren  girder  of  50  feet 
span,  made  up  of  five  bays  each  of  10  ft.,  and  forming  one  of  a 
pair  of  girders  carrying  a  double  line  of  rail.  The  weight  of  one 
girder  and  half  of  the  platform  is  taken  as  one  ton  per  lineal  foot 
of  Sjwn.  This  is  the  dead  load.  There  is  also  a  travelling  load  of 
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l£  tons  per  foot  run  ;  but  to  simplify  matters  this  is  neglected 
for  the  present.  The  joints  of  the  lower  boom,  at  each  of  which 
there  is  a  cross  girder,  carry  the  entire  load. 

After  transferring  the  distributed  load  to  the  joints,  letter  the 

frame  diagram  as  shown  in  Fig.  166 — Bow's  system  of  lettering 
or  notation  being  used — placing  a  capital  letter  between  the  line 
of  action  of  each  two  external  forces,  and  also  in  each  triangular 
space.  Then,  in  this  system,  the  bar  joining  the  points  marked 
1  and  2  is  called  the  bar  SH  or  HS  ;  and  so  for  the  rest. 

To  construct  the  stress  or  force  diagram  (Fig.  167)  choose  a. 
convenient  scale,  and  set  off  the  line  of  loads  abcdefg.  The 
upward  reactions  are  then  represented  by  the  lines  gh  and  ha, 
the  sum  of  the  upward  forces  being  equal  to  the  sum  of  the 
downward  forces.  Starting  at  a  joint  where  only  three  bars 
meet,  as  that  marked  1,  draw  a  line  through  b  parallel  to  BS, 
in  Fig.  166,  and  another  through  h  parallel  to  SH,  so  finding 
the  s  in  Fig.  167.  Then  bs  represents  the  total  stress  or  force 
on  the  first  bay  of  the  lower  boom,  and  sh  that  on  the  first 
diagonal  bracing  bar.  The  arrows  show  that  BS  is  a  tie,  since  it 
putts  from  the  joint,  and  SH  a  strut,  since  it  pushes  on  the  pin. 
The  auxiliary  diagram  marked  (1)  clearly  shows  the  first  step  of 
the  construction. 

Passing  next  to  the  joint  marked  2,  draw  the  horizontal  hr  and 
the  diagonal  sr  to  intersect  it  at  r.  In  placing  arrow-heads  on  the 
bars,  take  care  to  go  round  the  joint  in  the  watch-hand  direction, 
and  round  the  triangle  of  forces  in  the  direction  srh.  We  thus  find 
that  RH  is  a  strut  and  SR  is  a  tie. 

Turning  our  attention  now  to  the  joint  marked  3,  we  place 
opposing  arrows  on  the  bars  already  dealt  with,  and  then  com- 

plete the  polygon  of  forces  bcqrs,  representing,  in  magnitude  and 
direction,  all  the  forces  acting  at  the  point  in  question.  For  the 
sake  of  clearness,  detached  force  diagrams  have  been  drawn  for 
three  of  the  joints,  though  unneceesary  in  practice.  In  the  same 
way  we  might  deal  with  every  remaining  joint ;  but  as  the  loading 
is  symmetrical,  it  is  quite  sufficient  to  draw  one-half  of  the  com- 

plete diagram  of  forces,  the  other  being  similar.  The  construction 
of  the  diagram  for  an  unsymmetrical  load  has  been  left  as  an  in- 

structive exercise  to  the  reader. 
The  magnitudes  of  the  forces  and  the  nature  of  the  stresses 

on  the  several  members  are  best  given  in  the  form  of  a  table, 
as  that  on  p.  198.  This  table  is  a  valuable  guide  in  proportion- 

ing the  various  members  of  the  girders.  Observe  that  the  thrust 
on  the  upper  boom  and  the  pull  on  the  lower  boom  increase  from 
the  ends  of  the  girder  to  the  middle,  while  the  stress  on  the  end 
diagonals  i«  the  greatest.  In  fact,  a  uniform  statical  load  causes 
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no  stress  at  all  on  the  two  middle  diagonals,  though  a  travelling 
load  would. 

It  is  worth  noticing  that  the  stress  in  any  segment  of  either 
boom  is  equal  to  the  sum  of  the  horizontal  components  of  the 
stresses  in  all  the  diagonals  between  that  segment  nndthe  nearest 
abutment. 

This  important  fact  is  evident  from  the  force  diagram,  since, 
for  example,  cq  is  equal  to  the  projection  on  it  of  Jis  +  sr  +  rq. 
Or,  we  may  put  it  this  way  : — 

cq  =  Ascos.600  +  s?-cos.GO°  +  rq  cos.600. 
=  23  x  1  +  23  x  £  +  Jl-G  x  £. 
=  |  x  57-6  =  28-8, 

which  verifies  the  graphical  work. 
Most  writers  denote  a  compressive  stress  by  a  plus  (  +  )  sign, 

and  a  tensile  stress  by  a  negative  (  -  )  sign.  To  remember  this 
convention,  we  reflect  that  a  cross-section  is  a  good  form  for  a 
strut,  and  that  a  flat  bar  makes  a  good  tie. 

— Bar. Force  . Stress  . 

Tons. 

Upper  boom       .         .   •! RH PH 

23 

34  •« 

Compressive 

i) 

f 
BS 

11-5 

Tensile 

Lower  boom      .         .  \ 

CQ 

28-8 
\ DN 

34-7 

)j 

f 
HS 28 Compressive 

SR 
23 Tensile 

Diagonals  .        .         .  -{ 

RQ 

11-6 

Compressive 

QP 

11-6 

Tensile 

I PN 0 Neutral 

In  designing  a  braced  girder  for  a  bridge  of  small  or  moderate 
span,  from  few  data,  we  first  of  all  find  the  stresses  in  the  several 
members,  neglecting  the  structural  weight  entirely.  The  re- 

quired dimensions  of  the  parts  are  next  approximately  calculated 
and  the  weights  estimated.  The  revised  stresses,  allowing  for  the 

girder's  own  weight,  can  then  be  found,  and  the  scantlings  in- 
creased as  may  be  necessary. 

This  method  is  too  slow,  however,  for  general  application. 
Bridge  designers  have  available  numerous  practical  rules  and 
tables  giving  the  approximate  weights  of  all  ordinary  types  of 
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bridges,  which  much  facilitate  the  work  of  designing  and  save  a 
great  deal  of  time.  In  the  case  of  long-span  bridges  the  weight 
of  the  structure  itself  forms  so  large  a  proportion  of  the  total 
load  to  be  borne  that  rules  for  determining  the  theoretical  weight 
of  the  main  girders  are  indispensable.  In  all  cases  such  rules 
are  very  convenient  when  estimating  the  probable  cost  of  a  pro- 

posed bridge  and  comparing  the  economic  merits  of  different  de- 
signs. The  interesting  subject; of  the  theoretical  weight  of  bridges, 

however,  -is  too  large  to  be  intelligibly  treated  here ;  and  the 
reader  who  desires  information  upon  it  is  referred  to  Fidler's  ex- 

tensive "  Treatise  on  Bridge  Construction,"  or  to  Baker's  "  Long- 
span  Railway  Bridges." 

Lattice  Girders. — The  lattice  girder  is  an  important  type  of 
parallel  braced  girder.  Its  web  consists  of  diagonal  bars  inclined 

at  an  angle  of  about  45°,  and  forming  two  or  more  systems  of 
triangles.  The  girder  diagrammed  in  Fig.  168  has  four  systems; 
one  set  of  diagonals  being  thickened,  to  show  this  arrangement 
more  clearly. 

Fig.  168. 

The  perspective  view  Fig.  169  will  give  a  good  idea  of  the  general 
appearance  and  construction  of  a  light  riveted  lattice  girder  road 
bridge  of  rather  longer  span  (200ft.)  than  usual,  especially  for  so 
small  a  width  as  14ft.  The  bridge  illustrated  was  constructed  by 
the  Berlin  Iron  Bridge  Company,  Connecticut.  A  careful  exami- 

nation of  the  diagonals  of  one  girder  will  show  that  there  are  four 
systems  of  triangles  in  the  web.  The  manner  of  bracing  together 
the  two  girders  overhead  should  be  noticed. 

Fig.  170  is  a  very  clear  view  of  a  riveted  lattice  girder  bridge 
of  143ft.  span,  with  a  roadway  16ft.  wide.  This  is  an  example  of 

the  so-called  "  single-intersection  "  type  of  web,  in  which  there  are 
only  two  systems  of  triangles.  For  medium  spans  this  type  of  girder 
is  very  economical,  and  it  is  well  adapted  for  a  light  highway 
bridge. 

The  distinction  between  a  lattice  and  a  trellis  girder  does  not 
appear  to  be  very  clearly  defined.  The  majority  of  engineers  regard 
the  two  as  identical.  Others  hold  that  a  trellis  girder  differs  from 
a  lattice  girder  of  the  same  span  in  having  more  numerous  and 
lighter  bracing  bars,  so  as  to  form  a  comparatively  close  network. 
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A  convenient  distinction  is  to  say  that  a  trellis  girder  has  more 
than  two  systems  of  triangles. 

The  designers  of  the  earlier  lattice  bridges  considered  it  an  advan- 
tage to  use  a  great  many  bracing  bars,  riveted  together  at  every 

intersection  ;  this  mode  of  construction  enabling  stock  sections  of 
iron  and  steel — such  as  channels  and  tees — to  be  used  for  the  struts 
of  quite  large  girders.  This  was  the  case  in  the  Blackfriars  Rail- 

way Bridge  across  the  Thames,  which  was  finished  in  1864,  and 
cost  £28  per  ton  of  ironwork.  The  superstructure  of  this  bridge 
is  arranged  for  four  lines  of  rails.  The  extreme  width  over  the 
girders  is  53  Jffr.  There  are  three  main  girders,  the  centre  one  being 
double  the  strength  of  the  others,  and  each  girder  has  three  sets  of 
diagonals.  The  platform  and  tracks  are  carried  by  cross  girders 
secured  to  the  bottom  flanges  of  the  main  girders.  The  central 
span  is  202ift.,  the  height  of  the  main  girders  15jft.,  and  their 
width  4|ft.  The  top  and  bottom  flanges  or  booms  are  of  trough 
section,  with  side  plates  21in.  deep  and  fin.  thick,  riveted  by  5  by 
5  by  fin.  angle-irons  to  the  top  and  bottom  tables,  in  which  there 
are  from  one  to  four  plates  in  the  outer  girders,  and  from  one  to 
five  in  the  middle  girder.  The  ties  of  the  lattice  work  connecting 
the  flanges  are  made  of  flat  bar,  decreasing  from  10  by  lin.  at  the 
ends  to  5  by  fin.  at  the  centre  of  the  span.  The  struts  are  made 
of  double  channel  irons,  set  some  distance  apart, and  braced  together 
by  light  zigzag  bracing  and  pipe  stays.  They  are  riveted  to  the 
inside  of  the  vertical  trough  plates,  while  the  ties  are  riveted  to 
the  outside. 

According  to  Professor  Unwin,*  the  riveting  of  the  struts  to  the 
ties  of  a  lattice  girder  at  every  intersection  certainly  stiffens  the 
bars  against  bending  in  the  vertical  plane,  but  at  the  same  time 
the  multiplication  of  the  number  of  diagonals  and  the  reduction 
of  their  section  weaken  them  as  regards  transverse  bending. 
Further,  the  smaller  the  section  of  the  individual  struts  and  ties, 
the  greater  is  the  proportionate  waste  of  material  near  the  centre 
of  the  girder,  where  there  is  no  shearing-force ;  because  the  diago- 

nals cannot  in  practice  be  reduced  below  certain  fixed  dimensions, 
partly  owing  to  the  necessity  of  providing  a  margin  of  thickness 
to  allow  for  corrosion.  For  these  reasons  in  the  best  practice  the 
number  of  systems  of  triangles  in  the  bracing  is  reduced  as  much 
as  possible,  the  limit  being  the  practical  conditions  that  fix  the 
largest  size  of  a  single  strut. 

The  well-known  Charing  Cross  Bridge  across  the  River  Thames 
is  still  a  notable  example  of  lattice  girder  work.  It  was  designed 
by  Sir  John  Hawkshaw,  and  completed  in  18G3  ;  but  since  then  it 

*  "  Wrought-iroii  Bridges  and  Roofs,"  p.  72. 
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has  been  widened.  The  principal  spans  are  154ft.  clear.  Origi- 
nally, over  each  span  there  were  two  main  girders  of  the  single- 

intersection  type,  each  weighing 
190  tons.  The  extreme  depth  of 
the  girders  is  14ft.,  and  the  effec- 

tive depth  TV  of  the  clear  span. 
Below  the  main  girders  are  fixed 
cross  girders,  forming  a  platform 
carrying  four  lines  of  railway. 
Fig.  171  shows  in  section  the  top 
and  bottom  booms,  which  consist 
of  five  thicknesses  of  fin.  plates, 
and  four  vertical  ribs,  which  are 
strengthened  round  the  pin  holes 
by  lin.  cover  plates.  The  lin. 
rivet  holes  were  drilled.  The 

diagonal       ties 
have  the  form 
shown  in    Fig. 
172.  They  vary 
in  section  from  Fig.  171. 

Fig.  172.  12     by     2|in. 
over  the  piers  to  6  by  2in.  at  the  middle  of  the 

span,  where  the  shearing-force  is  least.  The  struts  (Fig.  173)  are 
built-up  of  forged  bars,  fastened  together  by  bolts  passing  through 

cast-iron  distance-pieces,  and  by  light  diagonal  bracing.  The 
steel  pins  connecting  the  main  booms  to  the  diagonals  vary  in 
diameter  from  5in.  at  the  centre  of  the  span  to  7in.  over  the  piers, 
where  the  shearing  force  is  greatest.  In  addition  to  the  diagonal 
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struts  and  ties  a  series  of  vertical  suspension  bars  connect  the 
joints  of  the  upper  and  lower  booms,  dividing  each  girder  into 
fourteen  panels.  These  transfer  part  of  the  load  from  the  lower  to 
the  upper  joint,  but  precisely  what  part  is  not  easy  to  determine. 
The  end  pillars  over  the  abutments  are  plate- work  boxes,  the  sides 
being  stiffened  with  T-irons.  At  the  abutments,  or  shore  supports, 
the  girders  rest  on  roller  bedplates ;  over  the  piers  they  are  carried 
by  granite  blocks.  The  greatest  deflection  at  the  middle  of  the 
girder  permitted  by  the  specification  was  -g^  of  the  span. 

Plate  Girders  versus  Lattice  Girders. — It  is  interesting  to  com- 
pare the  respective  advantages  and  drawbacks  of  two  types  of 

girders  much  used  in  the  construction  of  railway  bridges — namely, 
the  plate  girder  with  one  or  two  webs,  and  the  lattice  girder ;  a 
subject  which  in  the  past  has  been  keenly  discussed  by  eminent 
engineers. 

Both  Sir  William  Fairbairn  and  Robert  Stephenson  were  dis- 
tinctly in  favour  of  plate  girders,  arguing  that — 

1.  The  plate  girder  is  more  rigid  than  the  braced  girder. 
2.  The  continuous  web  assists  the  booms  in  resisting  horizontal 

forces,  and  therefore  adds  to  the  strength  of  the  girder. 
3.  The  booms  being  of  the  same  weight,  whatever  the  type  of 

girder,  the  only  advantage  of  the  braced  girder  over  the  plate 
girder  must  be  a  small  saving  in  the  weight  of  the  web  only. 

In  answer  to  these  arguments,  Professor  Unwin  *  remarks  :  "  If 
it  were  true  that  the  economy  of  braced  girders  is  confined  to  a 
fractional  saving  in  the  weight  of  the  web,  many  engineers,  admit- 

ting the  more  simple  and  homogeneous  construction  of  the  plate 
web,  would  consider  its  superiority  established.  But  a  saving  of 
weight  in  any  part  implies  that  the  dead  load  to  be  carried  is  les- 

sened, and  therefore  involves  a  cumulative  saving  in  the  weight  of 
every  part  of  the  girder.  .  .  .  The  braced  girder  is  not  necessarily 
less  rigid  than  the  plate  girder.  The  most  important  source  of 
economy  in  the  braced  girder,  however,  is  the  greater  depth  which 
may  be  given  to  it.  The  depth  of  plate  web  girders  is  practically 
limited  to  from  ̂   to  -^  of  the  span ;  but  in  braced  girders  a 
greater  depth  is  constantly  and  successfully  adopted.  ...  In 
America  a  proportion  of  depth  of  £  the  span  in  large  bridges,  and 
^  in  small  bridges,  is  a  usual  allowance.  The  stress  on  the  booms, 
and  consequently  their  sectional  area,  is  in  the  inverse  ratio  of  the 
depth ;  and  the  saving  of  weight  in  the  booms  much  more  than 

compensates  for  the  increased  weight  of  the  web." 
Again,  according  to  Sir  Benjamin  Baker,  the  amount  of  metal 

in  the  shape  of  stiffen  ers  required  to  prevent  the  buckling  of  the 

*  "  Wrought-irou  Bridges  aiid  Roofs,"  p.  82. 
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deep  thin  plates  of  a  plate  girder  of  large  spau  is  sufficient  to  form 
the  struts  of  a  lattice  girder :  so  that  the  effective  duty  of  a  plate 
web  is  little  more  than  the  resistance  offered  to  tensile  forces.  But 
these  forces  are  more  economically  resisted  by  lattice  bars  than  a 
solid  plate ;  because  the  section  of  a  bar  can  always  be  made  pro- 

portional to  the  pull  on  it,  whilst  in  the  case  of  the  plate  web  a 
certain  minimum  thickness  of  plate  must  be  provided  at  all  points. 

On  account  of  corrosion  this  limiting  thickness  of  web  plates  is 
never  less  than  £in.;  and  in  places  not  easily  accessible  for  painting, 
it  should  be  fixed  at  fin.  Material  is  thus  wasted  throughout  a 
great  part  of  the  length  of  the  girder ;  and,  as  the  influence  of 
the  web  on  the  weight  of  a  large  plate  girder  is  considerable,  the 
economical  depth  of  such  a  girder  is  less  than  that  of  a  lattice 
girder  designed  to  curry  the  same  load  across  the  same  span. 
Hence  the  sectional  area  of  the  flanges  of  the  plate  girder  needs  to 
be  made  greater  than  the  area  of  the  flanges  of  the  deeper  lattice 
girder. 

It  therefore  appears  that  the  practical  advantage  of  the  lattice 
girder  over  the  other  for  long  spans  is  due  to  the  greater  depth  that 
may  be  economically  adopted  in  the  case  of  the  former,  and  not  to 
the  smaller  quantity  of  metal  needed  to  construct  girders  of  equal 
depth,  but  different  types.  The  lattice  construction  of  web  un- 

doubtedly enables  the  section  of  the  metal  to  be  more  closely  pro- 
portioned to  the  varying  stress  than  does  a  continuous  plate  web. 

And  since  this  reduction  of  weight  in  the  web  somewhat  lessens 
the  total  load  on  the  girder,  the  weight  of  metal  in  the  flanges  must 
be  to  some  extent  affected  by  the  design  of  web.  But  this  saving 
is  important  only  in  the  case  of  fairly  long  spans  ;  for  the  weight 
of  the  girder  itself,  when  the  span  is  short,  is  but  a  small  fraction 
of  the  gross  load. 

Stress  Diagram  for  a  Lattice  Grirder. — A  skeleton  diagram  of  a 
lattice  girder  of  the  single-intersection  type  is  given  in  Fig.  174. 
Assuming  the  girder  to  be  loaded  with  five  unequal  loads,  acting 
at  the  joints  shown,  and  the  weight  of  the  girder  itself  to  be 
neglected,  it  is  required  to  determine,  by  graphic  construction, 
the  total  stresses  in  the  several  members. 

After  lettering  the  frame  diagram  as  shown,  find  the  reactions 
by  taking  moments  about  one  end,  thus  : 

R  x  40ft.  =  (2  tons  x  40ft.)  +  (8  tons  x  30ft.)  + 
(6  tons  x  20ft.)  +  (4  tons  x  10ft.)  +  (2  tons  x  0) 

=  (80  +  240  +  120  +  40)  foot-tons. 
480ft. -tons 

•'•R=    -soar-     =12tons- 
Hence,  R    =  22  tons  -  1 2  tons  =  10  tons. 
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These  reactions  may  also  be  found  graphically  by  drawing  a 
polar  diagram  and  a  polygon  of  bending  moments,  but  the  method 
is  slower  than  that  adopted. 

Consider,  now,  the  joint  marked  1.     Of  the  four  forces  acting 

Fig.  174. 

there,  only  one  is  known,  viz.,  R ;  and  as  it  is  impossible  to  draw 
a  polygon  of  forces  when  but  a  single  force  is  known  completely, 
and  the  directions  of  three  others,  we  must  try  if  some  other 
joint  is  not  easier  to  attack.  On  looking  at  all  the  other  joints 
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where  a  known  force  acts,  however,  the  same  difficulty  is  encoun- 
tered. Some  special  artifice  is  therefore  necessary  to  overcome 

the  difficulty.  We  must  turn  our  attention  again  to  the  joint 
marked  1,  and  as  a  preliminary  step  ascertain  by  general  reasoning 
the  thrust  on  the  end  pillar  IJF,  before  it  will  be  possible  to  make 
any  progress  with  the  stress  diagram. 

Consider,  then,  the  load  BC  of  4  tons.  The  assumption  is  often 
made  that  half  of  this  force  will  be  transmitted  down  each  diagonal. 
But  this  assumption  is  hardly  justifiable;  for  it  by  no  means  fol- 

lows that  because  two  jointed  bars  are  equally  inclined,  therefore 
the  stresses  on  the  bars  are  equal.  A  much  more  reasonable 
procedure  is  the  following : — 

We  know  that  the  structure  is  rigid,  because  it  cannot  possibly 
deform  without  straining  some  of  the  bars.  And  since  it  is  rigid, 
the  part  of  any  vertical  load  that  is  transmitted  to  either  abut- 

ment is  inversely  proportional  to  the  distance  of  the  load  from 
the  abutment  considered,  just  as  if  the  beam  were  solid.  Hence, 
of  the  4  tons  applied  at  joint  No.  10,  a  force  of  3  tons  passes  down 
the  bar  JL  to  the  left-hand  support,  and  1  ton  is  transmitted 
down  LM,  up  OQ,  and  finally  down  RS  to  the  right-hand  support. 
The  stress  is  bound  to  be  transmitted  in  this  roundabout  way, 
because  a  vertical  force  cannot  be  transmitted  by  horizontal  bars, 
arranged  as  in  Fig.  174.  Thus  we  see  that  the  vertical  com- 

ponent of  the  stress  in  JL  due  to  the  4-ton  load  is  3  tons,  and  in 
the  bars  LM,  OQ,  and  RS,  it  is  1  ton. 

Reasoning  in  exactly  the  same  way,  we  find  that  the  pressure 
on  the  right-hand  support  due  to  the  8-ton  load  is  6  tons,  and  on 
the  left-hand  support  is  2  tons  ;  also  that  the  vertical  component 
of  the  stress  in  RS  due  to  this  load  is  6  tons,  and  in  the  bars  QR, 
MO,  and  KL  is  2  tons. 

As  regards  the  effect  of  the  central  load  of  6  tons,  it  is  plain 
that  the  vertical  component  of  the  stress  due  to  it  will  be  3  tons 
in  the  diagonals  OP  and  RT.  Summing  up,  then,  the  left-hand 
end  pillar  UF  takes  no  part  of  the  force  AB,  no  part  of  BC,  3  tons 
.of  CD,  no  part  of  DE,  and  2  tons  of  EF,  or  a  total  of  5  tons. 
Similarly,  AH  takes  5  tons  in  all.  This  equality,  however,  is 
only  a  coincidence. 

After  the  stress  in  one  of  the  end  pillars  has  been  found  in  this 
way,  the  stress  diagram  can  be  completed  in  the  ordinary  manner; 
taking  the  joints  in  the  order  figured,  and  drawing  parallels  to 
the  bars  meeting  at  each  joint.  Then  scale  off  the  stresses  and 
tabulate  them,  distinguishing  between  ties  and  struts.  On  some 
of  the  bars  the  stresses  have  been  marked.  A  detached  force 
polygon  for  one  joint  has  also  been  drawn,  to  make  the  method 
of  proceeding  quite  clear. 
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It  is  remarkable  that  the  total  stresses  on  the  several  members 
of  a  braced  girder  would  not  in  the  least  depend  on  the  actual 
lengths  of  the  bars,  if  \ve  could  neglect  their  weights ;  but  would 
depend  only  on  the  loads  and  the  inclination  of  the  bars,  for  a 
given  general  arrangement.  In  other  words,  the  scale  of  the 
girder  would  not  influence  the  magnitude  of  the  forces ;  so  that 
the  same  stresses  would  be  found  whether  the  span  were  taken 
to  be  40  or  400ft.  The  explanation  of  this  apparent  paradox 
is  that  the  depth  of  the  girder,  and  therefore  the  length  of  the 
resistance  arm  (or  the  arm  of  the  resisting  couple)  increases  pro- 

portionally to  the  effort  arm  (or  the  arm  of  the  bending  couple),  as 
the  span  is  increased.  But  of  course  every  one  knows  that,  as  a 
matter  of  fact,  the  stresses  on  the  parts  depend  a  very  great 
deal  on  the  span  ;  because  the  parts  have  weight,  and  therefore 
greatly  add  to  the  load,  at  least  in  the  case  of  long-span  girders. 

The  Linville  Girder. — We  have  now  to  deal  with  another  type 
of  parallel  braced  girder,  diagrammed  in  Fig.  175,  which  has  been 
largely  adopted  in  bridge  work.  This  type  of  girder  has  received 
a  good  many  names,  being  variously  known  as  the  N  girder,  the 
Linville  girder,  the  Whipple-Murphy  girder,  and  the  Pratt  truss. 
At  any  rate,  if  there  is  any  difference  at  all  between  the  forms  of 
girder  so  named,  it  is  in  comparatively  insignificant  details. 

As  shown  in  Fig.  175,  the  N  girder  consists  mainly  of  a  stiff 
upper  boom  adapted  to  resist  a  thrust,  a  bottom  boom  or  chord 
which  resists  a  pull,  a  number  of  vertical  posts  or  struts,  and  two 
sets  of  oppositely-inclined  diagonal  ties,  the  inclination  being 
about  45°.  The  special  feature  of  this  style  of  girder  is  that  the 
struts  are  the  shortest  possible  for  a  given  depth  of  girder,  and 
are  therefore  very  economical.  It  is  most  suitable  for  medium 

spans. 
When  the  Linville  truss  is  intended  to  support  a  rolling  load, 

the  more  central  panels  must  be  counterbraced,  as  indicated  by 
the  dotted  lines.  The  extra  bracing  bars  are  introduced  to  avoid 
putting  some  of  the  diagonals  in  compression  in  certain  positions 
of  the  rolling  load,  due  to  the  reversal  of  the  shearing  force. 
Whether  a  given  panel  needs  to  be  counterbraced  or  not  depends 
upon  the  relative  magnitude  of  the  dead  and  rolling  loads.  When 
the  dead  load  forms  a  large  proportion  of  the  total  load,  only  a 
few  of  the  central  panels  or  bays  need  be  counterbraced  ;  but 
when  the  dead  load  is  small  compared  with  the  rolling  load,  all 
the  bays  must  be  counterbraced  save  the  two  end  ones. 

The  Linville  truss  or  girder  is  suitable  for  either  a  "deck" 
bridge  or  a  "  through  "  bridge.  It  is  also  well  adapted  for  use  in 
abridge  of  the  "  half-deck  "  type,  an  excellent  example  of  which  is 
represented  in  Fig.  176  (p.  210).  This  is  an  American  single-track 
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railway  bridge,  by  the  Berlin  Iron  Bridge  Company.  Notice  the 
counterbracing  of  the  four  bays  remote  from  the  abutments,  and 
the  lightness  of  the  linked  tension  chord. 

Example. — A  Linville  girder  of  60fb.  span  and  10ft.  depth  has 

Fig.  177. 

six  equal  spans,  and  is  loaded  with  8  tons,  applied  as  shown  in 
Fig.  177.     It  is  required  to  draw  the  stress  diagram. 

(1)  Calculate  the  reactions  R  and  S  thus : 
R  x  60ft.  =  8  tons  x  40ft. 

.'.    R  =  5^  tons, 
and    S  =  8-5J=2§  tons. 

A  little  thought  will  now  make  it  plain  that  the  thrust  on  the 
vertical  post  GH  directly  under  the  load  must  be  8  tons ;  also 

Fig.  178. 

that  the  thrust  on  the  post  to  the  left  of  GH  is  5£  tons,  and  the 
thrust  on  the  posts  to  the  right  of  GH  is  2§  tons. 

(2)  Draw  ah  (Fig.  1 78)  to  represent  8  tons  to  a  large  scale,  and 
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set  off  be  to  represent  2§  tons  to  the  same  scale.  Measuring  off 
on  this  load  line  a  distance  ad  equal  to  5J  tons,  d  coincides  with  c; 
which  informs  us  that  there  is  no  stress  in  DC,  the  first  member 
of  the  tension  chord.  The  same  applies  to  the  final  member  PC. 
Thus  the  girder  is  theoretically  complete  without  these  bars  and 
the  two  end  posts.  But,  for  convenience  of  support,  they  are 
retained  in  the  case  of  the  girders  of  through  bridges,  though 
omitted  from  the  girders  of  deck  bridges,  as  in  Fig.  175. 

(3)  Passing  on  now  to  the  joint  marked  2,  draw  ae  parallel  to 
AE,  and  de  to  DE,  thus  fixing  e.  Then  ae  represents  the  thrust 
in  the  first  section  of  the  boom,  and  de  the  tension  in  the  first 
diagonal.  Place  the  significant  arrow  heads  on  both  ends  of  each 
bar,  and  then  turn  to  the  joint  3. 

It  would  be  tedious  to  follow  all  the  joints  through  in  detail, 
and  it  is  quite  unnecessary  ;  as,  when  once  fairly  started,  the 
process  of  constructing  the  stress  diagram  is  very  easy  and  quite 
mechanical.  Fig.  178  shows  the  complete  diagram,  from  which 
the  stresses  can  be  scaled  off  and  tabulated,  as  under : 

Top  Boom. Lower  Chord. Verticals. 
Diagonals. 

Bar. Tons, Bar. 
Tons. Bar. Tons. 

Bar. 
Tons. 

AE 5-33 
CD 0 AD 

5-33 

DE 

7-54 

AG 10-66 CF 

5-33 
EF 

5-33 

FG 

7-54 

BIT 10-66 CI 8 
GH 

8 HI 

8-77 

BJ 8 CK 

5-33 
IJ 

2-66 

JK 

3-77 

BL 
5-33 

CM 

2-66 
KL 

2-66 
LM 

3-77 

BN 
2-66 CP 0 MN 

2-66 

NP 

3-77 

PB 2-66 

It  is  desirable  to  know  how  to  find  the  stresses  on  the  members 
of  a  Linville  girder  by  calculation,  as  well  as  graphically.  Take 
the  simple  case  of  a  girder  with  a  single  load  W  placed  unsym- 
metrically,  as  in  Fig.  179  (p.  209).  Let  6  be  the  angle  between 
the  diagonals  and  the  horizontal,  R  and  S  the  reactions.  Then 
the  stress  on  each  vertical  post  to  the  left  of  W  is  R,  and  on 
those  to  the  right  of  W  it  is  S.  The  stress  on  the  diagonals  to 
the  left  of  W  is  R  sec  6,  and  on  those  to  the  right  is  S  sec  6. 
The  stress  on  the  first  member  of  each  boom  is  R  tan  0,  and  on 
the  last  is  S  tan  d.  On  the  second  member  of  each  boom  the 
stress  is  2R  tan  d,  and  on  the  last  but  one  2S  tan  0  ;  and  so 

on  until  the  post  below  the  load  is  reached.  When  0  is  45°, 
tan  0  is  1  and  sec  0  is  1*414,  the  stresses  becoming  those  indi- 

cated in  Fig.  179, 
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Linville  Girder  with  Duplex  Bracing. — The  skeleton  diagram 
Fig.  180  shows  in  half-elevation  a  form/  of  Linville  truss  with  in- 

clined terminal  struts  and  duplex  bracing,  which  is  largely  used 
in  through  bridges  of  long  span.  The  counterbraces  are  shown 
dotted.  Compared  with  the  simple  form  of  Linville  girder  of 
equal  span,  the  number  of  diagonal  and  vertical  bars  is  doubled, 
and  the  stress  on  each  reduced  to  one-half.  With  the  duplex 
bracing,  a  vertical  section  taken  anywhere,  as  at  AB,  intersects 
one  or  more  of  the  diagonals,  and  the  tensile  stress  in  the  lower 

Fig.  180. 

chord  is  less  than  the  compressive  stress  in  the  upper  boom  by  the 
sum  of  the  horizontal  components  of  the  stresses  in  the  diagonals 
cut  through. 

Ohio  River  Bridge. — Fig.  181  is  an  elevation  in  outline  of  a 
single-track  railway  bridge  over  the  river  Ohio,  at  Beaver, 
Pennsylvania  ;  which  will  give  a  good  idea  of  the  application 
of  the  Linville  girder  or  Pratt  truss,  and  also  serve  to  emphasise 
the  distinction  between  a  through  bridge  and  a  deck  bridge.  The 
length  of  the  bridge  proper  is  nearly  1378ft.,  and  of  the  iron 
approach  viaduct  1 080ft.  Beginning  at  the  left-hand  abutment  B, 
there  is  first  of  all  a  short  span  of  nearly  31ft.,  for  which  plate 
girders  are  used.  The  next  span,  of  about  181ft.,  is  bridged  by  a 
pair  of  Pratt  deck  trusses  Y,  fully  counterbraced.  The  fifth  and 
sixth  spans  Y  are  similar.  The  440ft.  between  the  piers  CC  is 
spanned  by  two  double-intersection  Pratt  through  trusses  Z, 
partially  counterbraced.  This  type  of  girder  is  also  utilised  for 
the  fourth  span  Z.  The  approach  viaduct  consists  of  36  spans, 
each  of  30ft.,  for  which  plate  girders  are  employed,  supported  by 
ironwork  trestles. 

An  elevation  of  the  longest  Pratt  truss,  to  a  larger  scale,  is 
given  in  Fig.  182.  It  has  twenty-one  panels  of  21ft.  lin.  each, 
making  a  total  length  of  442ft.  9in.  between  the  centres  of  the 
end  pins.  The  depth  of  the  girder  or  truss  between  the  centres 
of  the  chords  or  booms  is  42ft.  2in.  The  distance  between  the 
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centres  of  the  trusses  is  only  18ft.,  so  that  the  bridge  is  quite 
narrow. 

The  upper  boom  of  each  main  girder  is  built  up  of  a  top  plate 
42in.  wide,  with  three  lines  of  web  plates  24in.  deep,  joined 
together  and  stiffened  by  eight  lines  of  4in.  angle- irons.  The 
lower  chord  is  formed  of  Bin.  links,  with  forged  eyes  for  the  recep- 

tion of  the  pins. 
Each  end-post  is  inclined,  and  similar  in  construction  to  the 

upper  boom.  The  intermediate  posts  or  verticals  are  double, 
each  half  being  made  up  of  an  Sin.  beam,  with  plates  varying 
from  12  to  9in.  wide,  riveted  to  each  flange.  All  these  posts 
are  stiffened  longitudinally  at  their  centres  by  a  strut  which 
extends  the  full  length  of  the  girder  from  one  end-post  to  the 
other.  It  consists  of  two  Gin.  channels,  stiffened  with  straps. 

The  main  tie-bars  and  the  counterbracing-bars  are  in  two 
lengths,  each  line  of  ties  being  joined  together  by  means  of  two 
splice-plates  and  pins.  The  links  composing  the  main  ties  vary  from 
Gin.  wide  at  the  ends  of  the  truss  to  3in.  wide  at  the  centre  of 
the  span,  where  the  shearing  force  is  least.  The  counterbracing 
ties  are  square  bars.  All  the  pins  in  the  lower  chord  are  Gin. 
diameter ;  those  in  the  upper  boom  vary  in  diameter  from  6  to 
4in.,  the  centre  ones  being  the  smallest.  The  pins  used  for 
coupling  the  ties  have  each  a  diameter  equal  to  at  least  three- 
fourths  of  the  width  of  the  bars  coupled. 

To  allow  for  expansion  the  free  end  of  the  main  span  rests  on 
eleven  turned  rollers  Sin.  diameter,  set  in  a  frame  having  a  planed 
base  l^in.  thick.  At  one  end  of  the  truss  the  roller  frame,  and  at 
the  other  end  the  baseplate  of  the  post,  rests  on  a  wrought-iron 
deadplate  oft.  wide  and  l£in.  thick,  which  extends  the  full  width 
of  the  pier  in  order  to  receive  the  ends  of  the  adjoining  spans. 

Bowstring  Girders. — The  essential  features  of  an  ordinary 
bowstring  girder  (Fig.  183)  are: — A  stiff  parabolic  arch,  spring- 

ing from  two  shoes,  tied  together  by  a  horizontal  tie  which  is  slung 

from  the  arch  by  vertical  bars.  The  resemblance  to  the  archer's bow  is  obvious. 
The  inverted  bowstring  girder  has  the  general  form   shown  in 
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Fig.  184,  the  lower  boom  being  arched,  and  the  verticals  struts. 
In  both  forms  of  girder  the  arched  boom  relieves  the  web  of 
part  of  the  shearing  force.  In  fact,  when  the  curve  is  a  para- 

bola, and  the  load  uniformly  distributed  over  the  span,  the  entire 
shearing  force  at  any  section  is  balanced  by  the  vertical  part  of  the 
stress  on  the  boom.  In  that  case  no  diagonal  bracing  is  necessary. 

Tie 

Fig.  184. 

But  when  a  bowstring  girder  has  to  carry  a  rolling  load,  the 
shearing  force  is  no  longer  entirely  transmitted  through  the 
arched  boom,  and  one  of  three  methods  of  bracing  is  adopted  to 
give  the  necessary  stiffness — viz.,  (1)  vertical  struts  and  diagonal 
ties  (Fig.  183) ;  (2)  vertical  struts  and  gusset  stays;  and  (3)  lat- 

tice bracing,  as  in  Fig.  185. 

Rankine,  in  his  "  Civil  Engineering,"  page  563,  says  : — "  The 
proper  figure  for  the  centre  line  or  neutral  curve  of  the  bow  is 
a  parabola  ;  but  a  circular  segment  is  often  used  in  practice. 
The  cross-section  of  the  bow,  like  that  of  the  upper  boom  of  a 

Fig.  185. 

lattice  girder,  must  be  of  a  form  suited  for  resisting  thrust.  A 
cylindrical  tube  is  the  strongest  form  ;  an  inverted  trough  shape, 
either  cast  or  built  of  plates  and  angle-bars,  is  convenient  for  the 
attachment  of  the  suspending  pieces.  These  have  usually  an 
X  -shaped  section,  with  the  greatest  breadth  transverse,  to  give 
them  lateral  stability;  and  for  the  same  purpose  they  widen 
towards  the  bottom,  where  they  are  riveted  to  the  ends  of  the 
plate  or  box  beams  that  form  the  cross  joists.  The  main  tie  is 
best  made  of  parallel  flat  bars  on  edge,  and  is  made  fast  to  the 
shoes  at  each  end  by  gibs  and  cotters.  The  diagonal  braces  are 

round  or  flat  rods." 
Apart  from  its  more  elegant  appearance,  one  great  advantage 

of  a  bowstring  over  a  parallel  girder  is  that  the  stress  on  its 
members  is  nearly  uniform  from  the  centre  to  the  abutments. 
In  a  parallel  girder  it  is  difficult  to  distribute  the  material  to  the 
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greatest  advantage,  because  the  flange  stress  varies  so  much.  But 
in  the  bowstring  construction,  the  stress  being  nearly  uniform, 
there  is  little  need  to  vary  the  section  of  the  parts. 

According  to  Unwin,  all  the  bars  and  plates  of  a  bowstring 
girder  loaded  uniformly  might  be  made  uniform  in  section  from 
end  to  end  of  the  span,  without  sensible  waste  of  material  ;  be- 

cause the  stress  on  the  arched  boom  increases  from  the  centre  to 
the  ends  by  only  8  per  cent,  when  the  ratio  of  span  to  depth  is  1  0, 
and  by  1  2  per  cent,  when  that  ratio  is  8  ;  while  the  tension  on  the 
horizontal  boom  and  on  the  vertical  ties  is  quite  uniform.  A 
bowstring  girder  costs  more  per  ton  than  a  parallel  girder,  how- 

ever ;  a  practical  drawback  that  limits  its  adoption. 
The  stresses  on  the  members  of  a  bowstring  girder  loaded  uni- 

formly are  readily  calculated  by  the  following  simple  formulae  :  — 
Let  L  feet  be  the  effective  span,  H  feet  the  effective  depth,  n 

the  number  of  bays,  and  w  tons  the  load  per  foot  run.  Then  the 
thrust  on  the  arched  rib  at  the  centre  of  the  span,  and  also  the 
uniform  pull  on  the  straight  boom,  is  — 

The  thrust  in  tons  at  any  point  of  the  curved  boom,  at  a 
horizontal  distance  of  x  feet  from  the  centre,  on  a  section  normal 
to  the  curve,  is  — 

JP'-  +  vto*. 
The  tension  in  tons  on  each  of  the  suspending  rods  is  — 

The  Bowstring  Suspension  Girder  is  diagrammed  in  Fig.  18G. 
The  tie  hangs  in  a  catenary  curve,  and  helps  the  bow  to  support 
the  verticals.  The  light  bracing  is  needed  to  transmit  the  load 

Fig.  186. 

to  the  booms  and  to  resist  the  distortion  due  to  a  rolling  load. 

In  Brunei's  bowstring  suspension  bridge,  over  the  Tamar  at 
Saltash,  with  spans  of  445ft.,  the  bow  is  a  wrought -iron  oval 
tube,  stiffened  by  transverse  diaphragms,  and  the  tie  consists  of  a 
pair  of  chains.  The  depth  of  the  girders  is  one-eighth  of  the 
span. 
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In  a  girder  of  this  form  it  is  possible  to  secure  uniformity  of 
stress  on  any  normal  section  of  the  booms  throughout  the  entire 
span,  by  adopting  a  suitable  curvature.  The  horizontal  thrust 
due  to  the  weight  of  the  bow  or  arch  should  balance  the  hori- 

zontal pull  due  to  the  weight  of  the  chain. 

The  Bollman  Truss. — Fig.  187  is  the  frame  diagram  of  a 
Bollman  bridge  truss  of  three  bays.  This  is  an  American  form 
of  girder,  seldom  seen  in  England.  The  span  is  divided  into  an 
equal  number  of  bays  by  two,  three,  or  more  vertical  struts,  each 
of  which  is  independently  stayed  by  its  own  pair  of  tie-rods. 
Thus  each  load  is  supported  by  a  separate  triangular  truss, 

6*°™ 

extending  the  whole  length  of  the  span.  The  top  or  compression 
boom  is  common  to  all  the  triangular  elements,  and  the  stress  on 
it  is  the  sum  of  the  horizontal  stresses  induced  by  each  loaded 
triangular  frame.  Usually  the  load  is  not  concentrated  at  the 

joints,  but  distributed  over  'part  of  the  beam;  and  before  the stresses  can  be  found  the  case  must  be  reduced  to  that  of  a  truss 

loaded  at  the  joints  only.  The  loads  on  the  struts  may  be  found 

by  supposing  the  beam  to  be  pin- jointed  at  the  points  of  junction 
with  the  struts. 

One  method  of  finding  the  stresses  on  the  several  members  of  a 
Bollman  truss  is  to  draw  a  separate  stress  diagram  for  each 
triangular  frame,  and  then  to  add  the  results  in  order  to  get  the 
total  thrust  on  the  top  boom ;  which  thrust,  it  should  be  observed, 
is  uniform  throughout  the  span.  This  is  termed  the  method  of 
superposition. 

Another  way  is  to  construct  a  complete  stress  diagram,  as  in 
Fig.  188.  To  do  this,  letter  the  frame  diagram  as  in  Fig.  187, 
and  calculate  the  reactions  or  supporting  forces  by  the  method  of 
moments.  The  next  move  is  peculiar.  Neither  of  the  supporting 
points  can,  for  the  moment,  be  successfully  attacked ;  because 
four  forces  meet  at  each,  and  one  force  only  is  known.  Start, 
therefore,  at  the  lower  joint  marked  1 ,  where  only  three  forces  act, 
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of  which  the  vertical  one — namely,  the  six  tons  transmitted  by 
the  strut — is  known.  Draw  jl  to  represent  this  force,  and  from 
its  extremities  draw  the  lines  marked  2  and  3,  their  intersection 

Fig.  188. 

fixing  d.  Next  set  off  on  the  vertical  through  d  the  known 
reactions,  thus  fixing  a  and  c.  The  order  of  the  remaining  opera- 

tions necessary  to  complete  the  stress  diagram  is  clearly  indicated 
by  consecutive  numbers. 

An  alternp.tive  method  of  drawing  the  complete  stress  diagram 
for  a  loaded  Bollman  truss  is  to  employ  a  special  artifice  known  as 
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a  substituted  frame  ;  a  simpler  arrangement  of  bars  being  substi- 
tuted for  the  actual  arrangement,  with  the  object  of  facilitating 

the  initial  steps.  The  method  is  shown  in  Figs.  189  and  190. 
The  dotted  strut  and  ties  are  temporarily  disregarded,  and  a 

Fig.  190. 

single  inclined  strut  substituted.  Then  we  can  begin  the  stress 
diagram  in  the  usual  way  by  drawing  the  load-line  and  setting  off 
the  reactions.  The  point  x  is  next  found,  and  then  g.  The  sub- 

stituted frame  is  now  dispensed  with,  having  served  its  purpose. 
The  stress  diagram  can  be  completed  with  ease,  the  steps  being 
all  numbered  in  the  figures.  A  small  freehand  sketch  will  suffice 

Fig.  191. 

to  represent  the  substituted  frame,  and  the  exact  inclination  of 
the  extra  bar  can  be  taken  from  the  original  frame  diagram. 

The  Fink  Truss. — The  object  of  combining  several  triangular 
trusses,  as  in  the  Bollman  girder,  is  to  support  the  roadway  of  a 
bridge  at  a  sufficient  number  of  points  to  prevent  undue  deflection 
of  any  part.  The  same  end  may  be  attained  by  the  use  of 
secondary  trusses,  as  shown  in  Fig.  191,  the  whole  forming  a 
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braced  girder  known  as  the  Fink  truss.  In  the  United  States, 
girders  of  this  type  have  been  constructed  exceeding  200ft.  in 
length.  The  usual  number  of  divisions  or  bays  is  either  eight 
or  sixteen.  Both  the  thrust  on  the  central  strut  and  the  pulls 
on  the  long  tie-rods  are  the  same  as  if  the  secondary  trusses 
were  absent.  The  Fink  truss  hardly  finds  a  place  amongst  modern 
engineering  structures,  and  is  practically  obsolete.  Indeed,  on 
this  side  of  the  Atlantic  examples  are  decidedly  scarce.  A  good 
drawing  of  a  long-span  Fink  truss,  however,  may  be  found  in  the 
article  on  "  Bridges"  in  Spon's  *'  Dictionary  of  Engineering." 

Cost  of  Girders. — The  cost  of  steel  girders  varies  a  good  deal 
from  time  to  time,  according  to  the  price  of  material  and  the 
current  rate  of  wages.  Thus  in  1894  steel  plates  cost  £5  5s.  per 
ton,  whereas  in  January  1900  the  cost  was  £8  per  ton.  Still,  a 
few  rough  figures  may  be  useful. 

Medium  sections  and  lengths  of  rolled  steel  joists  cost  about  £9 
a  ton,  and  heavy  sections  and  long  lengths  about  £1  a  ton  extra. 
Plain  girder-work  can  be  had  at  as  low  as  £10  a  ton,  which  is 
about  the  bottom  limit.  This  includes  the  cost  of  erection. 

Lattice  girders  cost  more  per  ton  than  plate  girders,  and  bow- 
string girders  still  more.  But  girder-work  seldom  costs  more 

than  £16  a  ton,  including  erection  ;  unless  the  site  is  unusually 
inaccessible,  and  skilled  labour  very  costly,  as  in  the  centre  of 
India  and  Africa. 



CHAPTER  XVII. 

THE  STRENGTH  OF  COLUMNS. 

THE  vertical  compression  members  of  structures  are  variously 
styled  columns,  pillars,  posts,  struts,  and  stanchions ;  the  term 
strut  being  also  applicable  to  inclined  members  subjected  to 
thrust.  Crane  jibs  and  sheer  poles  are  examples  of  inclined 
struts.  Piers  are  columns  of  great  size  and  structural  complexity, 
as  a  rule,  used  for  supporting  the  superstructures  of  bridges.  In 
architecture,  every  column  consists  of  a  base  or  foot;  a  shaft, 
which  forms  the  main  body  ;  and  a  capital  or  head.  The  capital 
is  often  highly  ornamented,  and  is  distinctly  characteristic  of  the 
style  of  architecture  to  which  the  building  belongs.  A  column  is 
distinguished  from  a  pier  by  the  shaft  being  either  cylindrical  or 
polygonal,  and  in  but  few  pieces ;  a  pier  often  consisting  of  a 
group  of  shafts  substituted  for  a  column.  A  pilaster  is  a  square 
column,  usually  attached  to  a  wall. 

The  least  transverse  dimension  of  a  column  is  termed  the 

diameter  (i.e.,  "  measure  across  "),  regardless  of  the  shape.  Short 
columns,  or  those  whose  length  differs  little  from  8  to  12  diameters, 
according  to  the  nature  of  the  material,  fail  chiefly  by  crushing, 
but  partly  by  bending.  Long  columns,  or  those  whose  length 
exceeds  about  30  diameters,  fail  by  bending ;  one  side  being 

crushed  or  "  crippled,"  and  the  other  torn  asunder,  as  in  the  case of  a  beam. 
The  resistance  of  a  long  column  depends  on  the  material,  on 

the  ratio  of  its  length  to  its  diameter,  on  the  shape  and  size  of  the 
cross-section,  on  the  form  and  mode  of  supporting  the  ends,  and 
on  the  direction  in  which  the  load  acts  with  reference  to  the  axis 
of  the  column. 

Cast-iron  and  mild  steel  are  the  materials  commonly  used  by 
engineers  for  columns.  Timber  struts  are  occasionally  useful, 
as  in  the  case  of  crane  jibs,  and  for  temporary  purposes.  Stone 
columns  are  less  used  than  formerly  in  engineering  structures. 

Cast-iron  pillars  are  most  commonly  of  the  hollow  cylindrical 
form,  where  appearance  is  considered ;  but  many  have  an  H  or  -|- 
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section,  these  being  cheaper  to  make.  Rolled  steel  joists  are 
often  used  for  light  columns  where  appearance  is  no  object,  as  in 
boiler  houses.  The  following  table  gives  the  calculated  breaking 
loads  in  tons  of  rolled  steel  joists,  when  used  as  columns  with  the 

ends  fixed.  The  working  load  should  not  exceed  one-fourth  the 
tabulated  value  for  stationary  loads,  and  one-sixth  for  moving 
loads : 

Section. Weight  per 
Foot. 

Length  of  Column. 

8ft. 10ft. 12ft. 15ft. 20ft. 

In. Lbs. Tons. Tons. Tons. Tons. Tons. 
20  x  7£ 

89 
607 563 514 

435 

309 

18  x  7" 
75 508 

467 
423 352 

245 
16  x  6 

62 
394 

346 301 230 

155 

15  x  6 
59 

377 333 
292 226 

152 
14  x  6 

57 
356 321 283 225 

150 

14  x  fi 
46 293 259 

224 
171 

115 12  x  6 
54 

350 321 283 222 153 
12  x  6 44 

286 
260 

230 
182 124 

12  x  5 
32 

188 160 
131 

99 63 

12  x  5 39 226 
189 

155 

115 73 
10  x  (i 45 

292 
267 

236 
185 

127 

10  x  5 
35 203 

172 
143 

105 68 
10  x  5 29 173 

149 
124 

90 60 
9x7 

58 
397 

370 
338 

283 
201 

8x6 
35 228 208 

183 
8x4 

19 

93 

72 58 

7  x  3J 16 
73 

55 44 
6  x  5 25 151 133 112 6x3 

13 

44 
32 24 

5  x  5 24 150 

133 

115 5x3 11 
43 32 

24 
4x3 

9* 

37 

27 
20 

3x3 10 42 31 

24 

Two  joists,  braced  together  by  light  diagonal  lattice  bars,  make 
an  excellent  column.  Figs.  192  to  199  show  the  usual  forms  of 
sections  of  riveted  steel  columns  manufactured  by  Messrs. 
Dorman,  Long  and  Co.,  Limited. 

In  Fig.  200  is  shown  an  exceptionally  heavy  steel  column, 
32ft.  9in.  long,  to  carry  400  tons.  The  section  is  worthy  of  note. 

Gordon's  Formula. — No  entirely  satisfactory  formula  has  yet 
been  proposed  for  calculating  the  greatest  load  that  a  given 
column  will  support.  The  best  for  practical  use  is  probably  that 
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known  as  Gordon's,  which  was  originally  proposed  by  Tredgold. 
The  values  of  the  constants  were  deduced,  however,  by  Gordon, 

from  an  analysis  of  Hodgkinson's  experiments  on  columns. 
The  formula  in  question,  for  columns  with  fiat  or  fixed  ends, 

is: — 

P_    /A 

1   +  cr2' 

Where 

P  =  the  axial  breaking  load  (Ibs.  or  tons). 
f   =  the  corresponding  maximum  stress. 
A  =  the  area  of  cross-section  (square  inches). 
r    =  the  ratio  of  length  to  diameter. 
c    =  a  constant,  its  value  depending  on  the  material  and  shape 

of  section. 

Gordon  gave  the  following  values : — 

Material. Section. / 
Breaking  Stress. 

c. 

Wrought-iron 
Cast-iron     . 

ESSJ 

0 
libs,  per  sq.  in. 

36,000 

80,000 

7555 

•gW 

Cast-iron     . 0 80,000 
Ttfl 

For  columns  rounded  or  jointed  at  both  ends,  as  connecting-rods, 
write  4c  instead  of  c  in  the  above  formula. 

For  columns  rounded  at  one  end  and  fixed  at  the  other,  write  2c 
instead  of  c.  Piston  rods  come  under  this  head. 

In  designing  a  column,  a  probable  value  of  the  length-diameter 
ratio  r  must  be  provisionally  assumed,  and  afterwards  altered  if 
found  necessary. 

The  factor  of  safety  should  be  about  6.  In  practice,  however,  it 
is  better  to  deal  with  working  loads  and  stresses  than  with  ultimate 
or  breaking  loads,  as  in  the  convenient  table  on  p.  227. 

Example.  —  A  hollow  cylindrical  cast-iron  column,  with  well- 
spread  flat  ends,  is  20ft.  high  and  12in.  diameter,  the  metal  being 
lin.  thick.  What  is  the  greatest  live  load  it  will  safely  carry  ? 

Here  f  =  16,0001bs.  per  square  inch. 
A  =  TT  x   llin.   x   lin.  =  34-5  sq.  in. 

r  =  20ft.  -f  1ft.  =  20. 
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16,000  x  34-5 Hence  P  =  — '—   x 
1   +  <*frx  20>) 

=  368,0001bs.  =  164  tons. 

If  the  length  were  increased  to  40  ft.,  the  column  ought  by 

Gordon's  rule  to  stand  80  tons  safely.  But  having  regard  to  the 
possibility  of  inferior  metal  and  flaws  in  casting,  it  would  be 
advisable  to  keep  well  within  that  load. 

VALUES  OF  /  AND  c  FOR  COLUMNS  FLAT  AT  BOTH  ENDS. 

Material. Shape  of  Section. Safe  Stress  /for 
Live  Load. 

Cast-iron. 

Lbs.  per.  sq.  inch. 

16,000 

Wrought 
Iron. 7,000 

6,000 
6,000 
6,000 

WKD 

Mild  Steel. 
10,000 

jj_B_ — Gordon's  formula  is  strictly  applicable  only  to  columns  of  uniform 
section  from  top  to  bottom. 

Hodgkinson's  Rules. — From  his  own  experiments  on  cast-iron 
columns  or  pillars,  Hodgkinson  deduced  the  following  formulas, 

applicable  to  circular  sections  only  : — 
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Case  I. — When  the  length  is  at  least  thirty  times  the  diameter. 

(a)  For  solid  cylindrical  pillars — 

P  =  c .  D3'6  -r  L1'7. 
(b)  For  hollow  cylindrical  pillars — 

P  =  c(Ds'6  -  d3'6)  +  L1'7. Where 

P  tons  =  breaking  load,  statical. 
D  in.     =  diameter  of  pillar,  external. 
d   in.    =  diameter  of  pillar,  internal. 
L  ft.     =  length  of  pillar. 

=  a  coefficient,  whose  values  are  as  under : 

Type  of  Pillar. 

c. 

Solid,  with  flat  ends 
Hollow,  with  flat  ends    . 
Solid,  with  rounded  ends 
Hollow,  with  rounded  ends     . 

44-2  tons. 44-2     „ 

15        „ 
13        „ 

Case    II.  —  When    the   length    is   less   than  thirty   times  the 
diameter,  the  crushing  load  of  the  pillar  is 

P  = 

x  c 

6  +  f  c 

where  b  tons  is  the  breaking  load  of  the  pillar,  calculated  by  the 
appropriate  formula  in  Case  I.,  and  c  is  the  crushing  load  of  a 
short  block  of  the  same  sectional  area  —  viz., 

c  =  A  x  49  tons. 

Hodgkinson's  formulae  are  adapted  for  logarithmic  computation 
only,  on  account  of  the  fractional  indices.  A  3-figure  log.  table 
or  a  slide-rule  will  suffice. 

Example.  —  To  calculate  the  breaking  load  on  a  hollow,  flat-ended, 
cylindrical  column  12  in.  diameter,  1  in.  thick,  and  40  ft.  high,  the 
material  being  cast-iron. 

Here  log.  D3'6  =  3'6  log.  12  =  3-6  x   1-079  =  3-88  ; 
and  log.  d3'6  =  3-6  log.  10  =  3-6  x   1          =  3'6; 
and  log.  L1  7  =  1-7  log.  40  =  1-7  x   1-602  =  2-724. 

Therefore,  Ds-6  =  7600;  d8'6  =  4000,  say;  and  L1'7  =  530. 
Hence,  by  Hodgkinson's  formula, 

-p       44-2(7600  -  4000) —  i  —  •  —  '-  =  300  tons. 
o«>0 
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This  is  the  "  dead  "  or  statical  breaking  load,  allowing  a  factor  of 

safety  of  4,  the  safe  dead  load  =  --—  =  75  tons.      By  Gordon's 

formula  the  breaking  load  of  this  column  is 

80,000  x  34-5,, P  =   —  ?  -  Ibs.  =  410  tons. 

1  +  x  4<>2 

Thus,  the  two  formulae  made  use  of  do  not,  in  this  case,  agree  very 
well. 

Timber  Struts.  —  For  the  ultimate  strength  of  oak  and  red-pine 
struts  or  posts,  fixed  at  both  ends,  Rankine  gives  the  rule  — 

P  =  3,000,000  (JY2A. 
V8/ Where 

A  sq.  in.  =  sectional  area. 
/*  in.         =  least  transverse  dimension. 

L  in.          =  length. 

Using  a  factor  of  safety  of  10,  the  formula  for  square  timber  struts 
becomes 

P  =  300,000-A*. 

In  the  case  of  struts  freely  jointed  at  both  ends,  the  strength  is 

reduced  to  one-fourth.  The  resisting  to  crushing  of  green  timber 
is  only  about  half  that  of  well-seasoned  timber. 

The  breaking  strength  of  timber  struts  may  also  be  computed 

by  Gordon's  formula,  /  being  taken  as  72001bs.  per  square  inch, 

Euler's  Formula.  —  The  above  formulae  are  semi-empirical. 
Euler,  however,  investigated  the  strength  of  long  columns  mathe- 

matically, assuming  perfectly  elastic  material,  and  deduced  the 
following  rational  formula  for  the  breaking  load  of  a  column  fixed 
at  both  ends  :  — 

in  which 

P  =  breaking  load  (pounds). 
*•   =  3-1416. 
E  =  modulus  of  elasticity  of  the  material  (pounds  per  square 

inch). 
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I   =  least  moment  of  inertia  of  the  section  about  au  axis 
through  its  centre  of  area  (quartic  inches). 

L  =-  length  of  column  (inches). 

For  a  column  rounded  at  both  ends  take  P  =  £  the  above 

value.     The  formula  is  to  be  applied  only  when  the  ratio  —  or h 

—  exceeds  the  values  given    below,  h  being  the  least   side  of  a d 

rectangular  section  and  d  the  diameter  of  a  circular  section  : — 

Case. Material. L  -f  h. L  +  d. 

Both  ends  rounded      .   \ 
Wrought  iron 
Cast-iron 
Wood  . 

28 

11-5 
13-5 

24 
10 

11-5 

Both  ends  fixed  .         .   -! 
Wrought  iron 
Oast-iron 

56 

23 

48 
20 

1 Wood  . 
27 

23 

Experiments  on  the  strength  of  cast-steel  columns  are  wanted. 
Example.  —  A  mild  steel  column,  fixed  at  both  ends,  is  50ft. 

high,  12in.  diameter,  and  |in.  thick.  Find  the  statical  breaking 
load. 

Here  E  =  30,000,0001bs.  per  square  inch. 

.        (D*  - 
~ 

-  800in.« 
L  =  50  x   12  =  600in. 

Hence,  by  Euler's  formula, 
4  x  9-85  x  30,000,000  x  300,, 

600  x   600  -lbs.=  «Utan.. 4.4-0 
The  safe  load  will  be  about  -=f-   =  88  tons. 

Conclusion. — For  further  information  on  the  strength  and  de- 
sign of  columns  and  struts,  the  reader  should  consult  Professor 

T.  Claxton  Fidler's  "  Treatise  on  Bridge  Construction,"  chaps,  x, 
and  xi. :  where  it  is  shown  that  the  strength  of  columns  cannot 
be  defined  by  any  hard-and-fast  line,  even  when  the  average 
elasticity  of  the  column  arid  the  ultimate  strength  of  the  material 
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are  accurately  known ;  but  that  the  strength  may  have  any  value 
less  than  that  of  the  ideal  column  within  certain  limits.  Hence 
the  strength  of  columns  must  be  represented  by  an  area  within 
which  the  results  of  individual  experiments  will  fall  at  haphazard. 
In  Fig.  201,  for  example,  the  upper  limit  is  the  ideal  or  Euler 

Timber  Strut, 
Rectangular  Sectim 
Ends  Bounded. 

Ratio. 

Fig.  201. 

column  line  ABC,  resembling  a  theoretical  indicator  diagram, 
The  other  curve  gives  the  lower  limit,  which  must  be  regarded  as 
the  greatest  reliable  strength  of  the  column  in  practice.  The 
Gordon  formula  gives  a  rough  approximation  to  the  lower  curve, 
when  ordinates  represent  pounds  per  square  inch  of  sectional  area, 
and  abscissae  represent  the  ratio  of  length  to  diameter. 
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ABSURDITY  of  too  many  significant 
figures,  133 

Abutments  or  supports,  12 
Air-pump  lever,  13 
Alternative     design     of     cast-iron 

beam,  161 
Anderson,  on  bridge  building,  174 
Angle  of  I  beams,  133 
Applications,  numerical,  65,  143 
Applied  forces  defined,  12 
Approximate  strength  of  joists,  126 
Arm  of  couple,  22 
Arm  of  wheel,  strength  of,  70 
Assumptions  in  theory  of  bending, 

44,  81 
Autographic  stress-strain  diagrams, 

33 

B 

BAKER,    on    breaking  strength  of 
beams,  78,  130 

on  economy  of  braced  girders, 
204 

on  strength  of  rails,  162 
Baker's  "Railway  bridges,"  199 
Battleship  turret,  69 
Beam  defined,  1 
Beam  model,  26 
Beams,  examples  of,  7 

list  of  British  standard,  134 
of  I  section,  82 
of  channel  section,  89 
of  circular  section,  92 
of  tubular  section,  95 
rectangular,  43 

Bearing  pressures   for  various  ma- 
terials, 162 

Bending   moment,    calculation  of, 
by  Tabular  mode,  120 

Bending  moment  defined,  25 
diagrams,  106 

Bending  of  a  steel  bar,  27 
Bending,  plastic,  79 

failure  of  columns  by,  '222 
Bending    moment,    calculation  of, 

118,  121 
Blackfriars  Bridge,  202 
Bollman  truss,  218 
Boom  or  flange  of  girder,  215 
Bow's  notation,  16,  196 
Bowstring  girders,  215 
Bowstring  suspension  girder,  217 
Box  beam,  cast-iron,  154 
Box  girder,  4,  171,  190 
Braced  girders,  192 
Bracket,  forces  on,  21 
Breadth,  influence  of,  64,  178 
Bridge,  bowstring  suspension,  217 

Brooklyn,  span  of,  191 
Charing  Cross,  202 
Forth,  span  of,  191 
half-deck  railway,  210 
lattice  road,  199 
Ohio  river,  213 
over  the  Danube,  28 
Warren  girder,  193 

Brunswick  dock  warehouse  column, 225 

Buckling,  failure  by,  124 

CANTILEVER,  defined,  4 
strength  of,  68 
S.  F.  and  B.  M.  diagrams  for. 

106,  109,  113 
Cast-iron  box  beam,  design  of,  153 

flanged  beam,  design  of,  156 
factor  of  safety  for,  38 
modulus  of  elasticity  of,  39 
safe  stress,  159 
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233 Catalogues,  trade,  132 
Caution  as  to  use  of  strength  for- 

mula, 78 
Centroid  or  centre  of  gravity,  28 
Channel  section,  strength  of,  89 
Circular  section,  beams  of,  92 

Columns,  Euler's  formula  for,  229 
Gordon's  formula  for,  223 
strength  of,  223 
types  of,  222 

Combustion     chamber    of    marine 
boiler,  75 

Comparative  strengths  of  tubes,  168 
Complex  case  of  S.  F.  andB.  M.,  117 
Compound  joist,  strength  of,  155 
Conclusions,  general,   as    to    rect- 

angular beams,  63 
Convention  of  signs,  106 
Cost  of  girders,  221 
Counterbracing    for    rolling    load, 

208,  216 
Couple,  definition  of,  23 
Couples  acting  on  a  crane,  24 
Couples,  graphic  representation  of, 25 

Coupling  rod,  strength  of,  82 
Crane  axle,  strength  of,  97 
Crane  girders,  4 
Crane  jib,  4 
Crankshaft,  6 
Crank-pins,  strength  of,  94 
Crippling,  failure  by,  124 
Cruciform  section,  moments  of,  149 
Crumlin  viaduct,  193 
Crushing,  failure  of  columns  by,  222 

Culmann's  graphical  method,  1(5 
Cycle  frame,  193 

D 

DEAD  load  defined,  9 
Deck  bridge,  193 
Deflection,  influence  of   depth  on, 157 

formula,  176,  183 
of  rectangular  beams,  177 
of  tubes,  172 

Deformation    of    layers    in   elastic 
bending,  80 

Depth  of  beams,  123,  126,  157,  191, 217 

Diagrams  of  S.  F.  and  B.  M.,  106 
Diameter  of  a  column  defined,  222 
Donaldson   on   position   of  neutral 

axis,  47 

Duplex  bracing  of  girder,  213 
Dynamical  moment  of  inertia,  141 

E 

ECCENTRIC    section,    strength    of, 152 

Effect  of  live  and  dead  loads,  9 
Effective  depth  of  a  girder,  43,  63, 

126 
Elastic  hysteresis,  34 
Elastic  limit,  33,  177 
Elastic  supports,  influence  of,  163 
Elasticity,  modulus  of,  38,  177,  180 
Elevators  for  disappearing  guns,  4 
End  pillars  of  lattice  girder,  207 
End  post  of  Linville  girder,  215 
Engine  beams,  1 

guide  bar,  66 
Equilibrium  of  forces,  laws  of,  22 

of  a  beam,  25 
of  a  cantilever,  100 

Equivalent  area  defined,  61 
of  X  section,  88 
of  a  cruciform  section,  149 
of    solid    and     hollow     round 

beams,  151 

Euler's  formula  for  columns,  229 
Examples  on  elasticity,  40 

deflection,  179 
moment  of  inertia,  143 
rectangular  beams,  65 

Experiments  on  tubes,  168 
box-girders,  171 
with  pitch  pine  beam,  179 

External  forces,  determination  of, 11 

FACTOB  of  safety,  37,  38 
Fairbairn  on  tube  experiments,  173 
Feathers  in  cast-iron  beams,  159 
Fidler  on  columns,  230 

Fidler's     "  Bridge     Construction," 199 
Fink  truss,  220 
Fir  beam,  strength  of,  72 
Flange  rail,  moments  of,  162 
Flanging  of  plates,  172 
Flat  plates,  strength  of,  76 
Force  defined,  8 
Forces,  intersecting,  17 
Forces  on  a  bracket,  21 
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Forces,  equilibrium  of,  22 
Formula  for  rectangular  beams,  32, 

64 

Forth  Bridge,  span  of,  191 
Frame  diagram  of  a  Warren  girder, 

195 
Fulcrum  pin,  16 

GENERAL  conclusions  as  to  rectan- 
gular beams,  63 

General  remarks,  7 
Geometrical  moment  of  inertia,  141 
Girder  defined,  I 
Girders,  types  of,  188 

Bowstring,  216 
box,  4,  171,  190 
cost  of,  221 
fish-bellied,  191 
hog-back,  191 
lattice,  199 
Linville,  208 
parabolic,  191 
parallel,  191 
plate,  189 
Warren,  192 
Whipple-Mnrphy,  208 

Girder  stays  for  boiler,  75 

Gordon's  formula  for  columns,  223 
Graphic  determination  of  reactions, 16 

of  moment  of  inertia,  166 
representation  of  couples,  25 

Guide  bar,  pressure  on,  19 
Gun  beams,  2 

H 

HALF-DECK  railway  bridge,  208 

Hodgkinson's  rules  for  pillars,  227 
Hollow  beams,  strength  of,  95 
Hooke's  law,  34 
Hosking's  experiments    on    tubes, 168 

Hull    waterworks   pumping-engine 
beam,  2 

Hysteresis,  elastic,  34 

I-8ECTION,  resistance  area  of,  84 
Ideal  example  of  a  beam,  27 

India-rubber  bar,  b/snding  of,  49,  r>:5 
Inertia,  moment  of,  136 
Integration,  rule  for,  187 
Intersecting  forces,  17 
Inverted  bowstring  girder,  215 

JOINT  pin  in  Warren  girder,  194 
Joints  riveted  in  plate  girders,  190 
Joists,  as  columns,  223 

list  of  British  standard,  134 
safe  load  on,  125 
ultimate  strength  of,  130 
uses  of,  122 

LATTICE  girders,  199 
Laws  of  equilibrium,  22 
Lever  of  air  pump,  13 
Lever  of  safety  valve,  77 
Lever  testing  machine,  15 
Leverage  defined,  22 
Limit  of  elasticity,  34 
Limiting  strusses,  case  of  unequal, 

60 

Link  polygon,  16 
Linville  girder,  208,  213 
Live  load,  effect  of,  8,  153 
Load  on  standard  joists,  135 
Location  of  neutral  axis,  46 
Locomotive  coupling  rod,  strength 

of,  82 
M 

MATERIAL  of  beams,  2, 188 
Methods  of  calculating-  strength  of 

joists,  123 Model  of  beam,  26 
Moduli  of  standard  beam  sections, 

134 
an  eccentric  section,  153 

Modulus  of  section,  62,  124 
elasticity,  38,  177,180 

Moment  of  a  couple,  24 
of  resistance  defined,  26 

of  I  section,  82 
of  inertia  explained,  136 

how  to  find,  138 
of  a  plate  girder,  146 
of  a  rectangle,  139 
of  an  eccentric  section,  152 

Moments,    equality    of    for  equili- 
brium, 14 
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Moments,  equation  of,  15 
Multicycle  frame,  193 

N 

N  girder,  208 
Neutral  axis  defined,  45 

location  of,  46 
proof   that   it    passes  through 

centre  of  area,  47 
Neutral  surface  or  layer,  45 

Newton's  second  law  of  motion,  11 

O 

OHIO  River  Bridge,  213 

PARABOLA,  how  to  draw,  112 
Parabolic  girders,  191 
Parallel  girders,  191 
Pillars,  elongation  of  engine,  41 

Hodgkinson's  rules  for,  227 
Pinion  teeth,  strength  of,  69 
Pins  in  braced   girders,  192,   194, 

215 

Pitch-pine  beam,  deflection  of,  179 
Plastic  bending,  79 

limit,  35 
Plate  girders,  188 
Plate  vertui  lattice  girders,  204 
Plate  springs,  deflection  of,  179 
Polar  diagram,  16 
Polygon  of  forces,  196 
Pratt  truss,  208 
Preliminary  assumptions,  44 
Pressure  on  engine  guide  bar,  19 
Principle  of  the  lever,  14 
Proof  of  deflection  formula,  183 
Pump  beams,  strength  of,  153 
Purn ping-engine  beam,  1 

diagrams  of  S.  F.   and  B.  M 
for,  111 

Q 

QUARTIC  inch,  the  unit  of  moment 
of  inertia,  137,  146,  177 

R 

RAIL,  strength  of,  162 
Rankine,  on  bowstring  girders,  216 

Rankine  on  stress  and  strain,  32 
on  timber,  74 

Ratio  of  depth  to  breadth  in  beams, 

73 

Reactions  defined,  12 
determination  of,  12 

Rectangular  beams,  43 
deflection  of,  177 
ratio  of  depth  to  breadth  in,  73 
strength  formula,  62 

Relations  between  S.  F.  and  B.  M. 
curves,  119 

Resistance  area  defined,  54 
arm,  54,  59 
diagrams,  construction  of,  55 

Resisting  moment  defined,  25 
Rivet  holes  in  flanges,  156 
Road  bridge,  199 
Rolled  joists,  122 
Rolling    load,   counterbracing    for, 

208,  216 
Rolling  mill  engine,  19 

SAFETY,  factor  of,  37,  38 
Sections  of  columns,  224 
Shaft,  stress  due  to  its  weight,  98 
Shearing  action,  99 1 

force,  calculation  of,  118 
force  diagrams,  106 
forces,  vertical  and  horizontal, 103 

stress  for  cast  iron,  157 
Sign  convention,  106,  198 
Sleeper,  compression  of,  163 
Slide  beam  for  a  gun,  2 
Span,  influence  of,  64 

of  bridges,  191,193,  203 
Springs,  deflection  of,  179 
Steel,  factor  of  safety,  38 

modulus  of  elasticity,  39 

Stephenson,  Robert,  on   beam   ex- 
periments, 172 

Stiffeners  in  beams,  159,  189 
Stiffest  beam  from  a  round  log,  73 
Stiffness  of  beams,  178 
Strain  defined,  31 

how  measured,  36 
Strength,  formula   for  rectangular 

beam,  62 
modulus,  63 

of  an  unsymmetrical  section,  89- 
Strength  of  columns,  223 

of  rolled  joists,  122 
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Strength  of  solid  and  hollow  beams 
compared,  150 

ultimate,  36 
Stress  defined,  31 
Stress  diagrams  for  lattice  girder, 

205 
Bollman  truss,  219 
Linville  girder,  211 

Stresses  on  Warren  girder,  194 
Struts  of  bridges,  194,  203 

timber,  strength  of,  229 
Substituted  frame,  220 
Supporting  forces,  177 

TABULAR  mode  of  calculating  B.  M., 
120 

Tank,  method  of  carrying,  71 
Teeth,  strength  of  wheel,  69 
Tensile  strength  of  cast  iron,  155, 157 
Testing  machine  lever,  15 
Through  bridge,  193 
Tie,  stretching  of  a,  41 
Ties,  193 
Timber,  notes  on,  74 

factor  of  safety,  38 
Ton,  various  values  of  the,  8 
Torque  defined,  23 
Trade  catalogues,  132 
Travelling  load,  194 
Trellis  girder,  199 
Truss  defined,  1 

the  Bollman,  218 
the  Fink,  220 
the  Zig-zag,  192 

Truss  on  girder,  192,  208,  218,  220 
T-section,   moment    of    inertia  of, 

143 
Turret  of  battleship,  69 
Types  of  girders,  188 

U 

ULTIMATE  strength,  finding  the,  37 
Unequal  limiting  stresses,  32 

Uniform   section,   design   of    beam 
with,  156 

strength,  conventional  meaning 
of,  161, 

Unit  of  moment  of  inertia,  136 
Units  of  force,  8 

Unsymmetrical    section,     strength 
of,  89,  145 

Unwin  on  riveting  of  struts,  202 
economy  of  braced  girders,  204 

Un win's  definition  of  stresses,  32 
Uses  of  rolled  joists,  123 

VERTICAL  shearing  forces,  103 

W 

WARREN  girder,  197 
method  of  finding  stresses  on, 

194 
Web  stiffeners,  189 

thickness  of  in  cast-iron,  157 
Weight  of  a  beam,  67,  125,  190 
Weight  of  solid  and  hollow  beams 

compared,  150 
Weight  of  bridges,  199 
Wheel  arm,  strength  of,  70 

teeth,  strength  of,  69 
Whipple-Murphy  girder,  208 
Wires,  stretching  of,  39 
Wooden  beams,  71 
Wrought  iron,  factor  of  safety,  38 

modulus  of  elasticity,  39 

YIELD  point,  35 

Young's  modulus,  38 
determination  of,  39 

ZIG-ZAG  truss,  192 
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INTRODUCTORY  SCIENCE*  SERIES.  19 

"  Boys  COULD  HOT   HAVE  A   MORE   ALLURING   INTRODUCTION    to   Scientific  pursuits 
than  these  charming-looking  volumes."  —  Letter  to   the   Publishers  from  the  Head- toaster  of  one  of  our  great  Public  Schools. 

Handsome  Cloth,  7s.  6d.     Gilt,  for  Presentation,  8s.  6d. 

STUDIES  Ifl  BOTAflY: 
SKETCHES    OP    BRITISH    WILD    FLOWERS 

IN  THEIR  HOMES. 

BY  R.   LLOYD   PRAEGER,  B.A.,  M.R.I.A. 
illustrated  by  Drawings  from  Nature  by  S.  Rosamond  Praeger, 

and  Photographs  by  R.  Welch. 
GENERAL  CONTENTS.  —  A  Daisy-Starred  Pasture  —  Under  the  Hawthorns 

—  By  the  River  —  Along  the  Shingle  —  A  Fragrant  Hedgerow  —  A  Connemara 
Bog  —  Where  the  Samphire  grows  —  A  Flowery  Meadow  —  Among  the  Corn 
{&  Study  in  Weeds)  —  In  the  Home  of  the  Alpines  —  A  City  Rubbish-Heap  — 
Glossary. 

"A  FRESH  AND  STIMULATING  book    .    .    .    should  take  a  high  place    .    .    .    The 
Illustrations  are  drawn  with  much  skill."—  The  Times. 

"BEAUTIFULLY    ILLUSTRATED.       .       .       .       One    Of  the   MOST    ACCURATE    as  Well  at 
INTERESTING  books  of  the  kind  we  have  seen."—  Athenceum. 

"Redolent  with  the  scent  of  woodland  and  meadow."  —  The  Standard. 

With   12  Full-Page  Illustrations  from  Photographs.     Cloth. 
Second  Edition,  Revised.      8s.    6d. 

OPEJWUH  STUDIES  Ifl  GEOLOGY: 
An  Introduction  to  Geology  Out-of-doors. 

BY    GRENVILLE    A.   J.   COLE,   F.G.S.,   M.R.I.A., 
Professor  of  Geology  in  the  Royal  College  of  Science  for  Ireland, 

and  Examiner  in  the  University  of  London. 

GENERAL  CONTENTS. — The  Materials  of  the  Earth — A  Mountain  Hollow 
— Down  the  Valley — Along  the  Shore — Across  the  Plains — Dead  Volcanoes 
—A  Gianite  Highland— The  Annals  of  the  Earth— The  Surrey  Hills— The 
Folds  of  the  Mountains. 

"The  FASCINATING  ' OpBN-AiB  STUDIES '  of  PROF.  COLE  give  the  subject  a  GLOW  OF 
ANIMATION  .  .  .  cannot  fail  to  arouse  keen  interest  in  geology."— Geological  Magazine. 

1 '  A  CHARMING  BOOK,  beautiful ly  i llustrated." — A thenseum. 

Beautifully  Illustrated.     With  a  Frontispiece  in  Colours,  and  Numerous 
Specially  Drawn  Plates  by  Charles  Whymper.     7s.  6d. 

SKETCHES  OF  BRITISH  BIRDS  IN  THEIR  HAUNTS. 
BY    CHARLES    DIXOK 

The  Spacious  Air.  —  The  Open  Fields  and  Downs.  —  In  the  Hedgerows.  —  On 
Open  ;Heath  and  Moor.  —  On  the  Mountains.  —  Amongst  the  Evergreens.  — 
•Copse  and  Woodland.  —  By  Stream  and  Pool.  —  The  Sandy  Wastes  and  Mud- 

flats.— Sea-laved  Rocks.—  Birds  of  the  Cities.—  INDEX. 
"Enriched  with  excellent  illustrations.  A  welcome  addition  to  all_  libraries."  —  Wist- minsier  Review. 

IONDON:  CHARLES  GRIFFIN  &  CO,,  LIMITED-  EXETER  STREET,  STRANB 



CHARLES  GRIFFIN  &  GO.'S  PUBLICATIONS. 

THIRD  EDITION,  Revised  and  Enlarged.    Large  Crown  8vo,  with  numerous 
Illustrations.     35.  6d. 

THE    FLOWERING    PLANT, 
WITH  A  SUPPLEMENTARY  CHAPTER  ON  FERNS  AND  MOSSES. 

As    Illustrating    the    First    Principles    of    Botany. 

BY  J.  R.  AINSWORTH  DAVIS,  M.A.,  F.Z.S., 
Prof,  of  Bioloev.  University  College.  Aberystwyth  ;  Examiner  in  Zoology, 

University  of  Aberdeen. 

"  It  would  be  hard  to  find  a  Text-book  which  would  better  guide  the  student  to  an  accurate 
knowledge  of  modern  discoveries  in  Botany.  ...  The  SCIENTIFIC  ACCURACY  of  statement, 
and  the  concise  exposition  of  FIRST  PRINCIPLES  make  it  valuable  for  educational  purposes.  In 
the  chapter  on  the  Physiology  of  Flowers,  an  admirable  resume,  drawn  from  Darwin,  Hermann 

M tiller,  Kerner,  and  Lubbock,  of  what  is  known  of  the  Fertilization  of  Flowers,  is  given. "- 
Journal  of  Botany. 

POPULAR  WORKS   ON  BOTANY  BY  MRS.   HUGHES-GIBB. 

With  Illustrations.    Crown  8vo.    Cloth.    28.  6d. 

HOW  PLANTS  LIVE  AND  WORK: 
A  Simple  Introduction  to  Real  Life  in  the  Plant-world,  Based  on  Lessons 

originally  given  to  Country  Children. 

BY    ELEANOR    HUGHES-GIBB. 
*,*  The  attention  of  all  interested  in  the  Scientific  Training  of  the  Young  is  requested  to  thi» DELIGHTFULLY  FRESH  and  CHAKMiNO  LITTLE  BOOK.  It  ought  to  be  in  the  hands  of  every  Mother 

and  Teacher  throughout  the  land. 

"  The  child's  attention  is  first  secured,  and  then,  in  language  SIMPLE,  YET  SCIESTIFICALLT 
ACCURATE,  the  first  lessons  in  plant-life  are  set  before  it." — Natural  Science. 
"In  every  way  well  calculated  to  make  the  study  of  Botany  ATTRACTIVE  to  the  young." — Scotsman 

With   Illustrations.     Crown   8vo.     Gilt,   2s.   6d. 

THE    MAKING    OF    A    DAISY; 
"WHEAT    OUT    OF    LILIES;" 

And  other  Studies  from  the   Plant  World. 

A  Popular  Introduction  to  Botany. 

BY    ELEANOR     HUGHES-GIBB, 
Author  of  How  Plants  Live  cmd  Work. 

"  A  BRIGHT  little  introduction  to  the  study  of  Flowers."—  Journal  of  Botany. 
"  The  book  will  afford  real  assistance  to  those  who  can  derive  pleasure  from  the  study  of 

Nature  in  the  open.    .    .    .    The  literary  style  is  commendable."— Knowledge. 
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26  CHARLES  GRIFFIN  &   CO.'S  PUBLICATIONS. 

THIRD    EDITION,  Revised,     with  an  Additional  Chapter  on  Foundations* 

Numerous  Diagrams,  Examples,  and  Tables.     Large  8v0.     Cloth.     i6s. 

THE  DESIGN  OF  STRUCTURES: 
A  Practical  Treatise  on  the  Building:  of  Bridges, 

Roofs,  dec. 

BY    S.    ANGLIN,   C.E., 
Master  of  Engineering,  Royal  University  of  Ireland,  late  Whitworth  Scholar,  &c 

"We  can  unhesitatingly  recommend  this  work  not  only  to  the  Student,  as  the  BEST 
TBXT-BOOK  on  the  subject,  but  also  to  the  professional  engineer  as  an  EXCEEDINGLY 
VALUABLE  book  of  reference.  "—Mechanical  World. 

THIRD    EDITION,    Thoroughly   Revised.      Royal  8vo.       With   numerous 
Illustrations  and  13  Lithographic  Plates.     Handsome  Cloth.     Price  30*. 

A    PRACTICAL    TREATISE    ON 

BRIDGE-CONSTRUCTION: 
Being  a  Text-Book  on  the   Construction  of  Bridges  in 

Iron  and  Steel. 

FOR  THE  USE  OF  STUDENTS,  DRAUGHTSMEN,  AND  ENGINEERS. 

BY   T.    CLAXTON     FIDLER,    M.  INST.  C.E.. 
Prof,  of  Engineering,  University  College,  Dundee. 

"The  new  edition  of  Mr.  Fidler's  work  will  again  occupy  the  same  CON- SPICUOUS POSITION  among  professional  text-books  and  treatises  as  has  been 
accorded  to  its  predecessors.  SOUND,  SIMPLE.  AND  FULL."—  The  Engineer. 

In  Medium  %vo.     Handsome  Cloth.     Pp.  i-xv  +  248,  with  ovet 
IOO  Illustrations.     Price  los.  6d.  net. 

CONSTRUCTIONAL  STEELWORK : 
Being  Notes  on  the  Practical  Aspect  and  the  Principles  of 

Design,  together  with  an  Account  of  the  Present 
Methods  and  Tools  of  Manufacture. 

BY  A.   W.   FARNSWORTH, 
Associate  Member  of  the  Institute  of  Mechanical  Engineers. 

"Will  be  found  of  value  to  all  Architects  and  Engineers  engaged  in  steelwork  construc- 
tion."— Building  News. 

IONDON :  CHARLES  GRIFFIN  &  GO,,  LIMITED,  EXETER  STREET.  STRAND, 



ENGINEERING  AND  MECHANICS.  27 

In  Large  8vo.     Handsome  Cloth,  Gilt,  Uniform  with  Stability  of  Ships 
and  Steel  Ships  (p.  38).      With  34  Folding  Plates  and  468 

Illustrations  in  the  Text.     30s.  net. 

The  Principles  and  Practice  of 
DOCK    ENGINEERING. 
BY  BRYSSON  CUNNINGHAM,  B.E.,  Assoc.M.lNST.C.E., 

Of  the  Engineers'  Department,  Mersey  Docks  and  Harbour  Board. 
GENERAL   CONTENTS. 

Historical  and  Discursive. — Dock  Design. — Constructive  Appliances. — 
Materials, — Dock  and  Quay  Walls. — Entrance  Passages  and  Locks. — 
Jetties,  Wharves,  and  Piers. — Dock  Gates  and  Caissons. — Transit  Sheds 
and  Warehouses. — Dock  Bridges. — Graving  and  Repairing  Docks. — 
Working  Equipment  of  Docks.  — INDEX. 

"  We  have  never  seen  a  more  profusely-illustrated  treatise.  It  is  a  most  important 
standard  work,  and  should  be  in  the  hands  of  all  dock  and  harbour  engineers." — Steamship. 

"Will  be  of  the  greatest  service  to  the  expert  as  a  book  of  reference." — Engineer. 

FOURTH  EDITION.     In  Two  Parts,  Published  Separately. 

A    TEXT-BOOK    OF 

Engineering  Drawing  and  Design. 
VOL.  I. — PRACTICAL  GEOMETRY,  PLANE,  AND  SOLID.     4s.  6d. 
VOL.  II. — MACHINE  AND  ENGINE  DRAWING  AND  DESIGN.    4s.  6d. 

BY 

SIDNEY  H.  WELLS,  Wn.Sc.,  A.M.I.C.E.,  A.M.I.MECH.E., 
Principal  of  the  Battersea  Polytechnic  Institute,  <fec. 

With  many  Illustrations,  specially  prepared  for  the   Work,  and  numerous 
Examples,  for  the  Use  of  Students  in  Technical  Schools  and  Colleges. 

"  A  CAPITAL  TEXT-BOOK,  arranged  on  an  BXCBLLBNT  SYSTEM,  calculated  to  give  an  intelligent 
grasp  of  the  subject,  and  not  the  mere  faculty  of  mechanical  copying.  .  .  .  Mr.  Wells  showa 
how  to  make  COMPLETE  WOBKING-DBAWINGS,  discussing  fully  each  step  in  the  design."— Electrical Review 

In  Large  Crown  8vo.     Handsome  Cloth.     With  201  Illustrations.     6s.  net. 
AN  INTRODUCTION  TO 

THE    DESIGN   OF  BEAMS, 
GIRDERS,  AND   COLUMNS 

IN  MACHINES  AND  STRUCTURES. 

With  Examples  in  Graphic  Statics. 

BY  WILLIAM  H.  ATHERTON,  M.Sc.,  M.I.MECH.E. 

"  There  should  be  a  strong  demand  for  this  concise  treatise." — Page's  Weekly. 

LONDON :  CHARLES  GRIFFIN  &  CO.,  LIMITED,  EXETER  STREET,  STRAND 



28  GHARLE8  GRIFFIN    <fe  CO.'S  PUBILVATIONS. 

Works  by  BRYAN  DONKIN,  M.Inst.C.E.,  M.Inst.Meeh.E.,  &e 

Now    READY.      FOURTH    EDITION,    Revised   and    Enlarged.     With 
additional  Illustrations.     Large  8vo,  Handsome  Cloth.     255.  net. 

GAS,  OIL,  AND  AIR  ENGINES: 
A    Practical   Text  -  Book   on    Internal    Combustion    Motors 

without  Boiler. 

BY  BRYAN  DONKIN,  M.INST.C.E.,  M.INST.MECH.E. 

GENERAL  CONTENTS.— Gas  Engines :— General  Description— History  and  Develop- 
ment— British,  French,  and  German  Gas  Engines — Gas  Production  for  Motive  Power — 

Theory  of  the  Gas  Engine — Chemical  Composition  of  Gas  in  Gas  Engines— Utilisation  of 
Heat— Explosion  and  Combustion.  Oil  Motors  :— History  and  Development— Various 
Types  Priestman's  and  other  Oil  Engines.  Hot- Air  Engines :— History  and  Develop- 

ment— Various  Types :  Stirling's,  Ericsson's,  &c.,  &c. 
"  The  BEST  BOOK  NOW  PUBLISHED  on  Gas,  Oil,  and  Air  Engines.  .  .  .  Will  be  of 

VERY  GREAT  INTEREST  to  the  numerous  practical  engineers  who  have  to  make  themselves 
familiar  with  the  motor  of  the  day.  .  .  .  Mr.  Donkin  has  the  advantage  of  LONG 
PRACTICAL  EXPERIENCE,  combined  with  HIGH  SCIENTIFIC  AND  EXPERIMENTAL  KNOWLEDGE, 

and  an  accurate  perception  of  the  requirements  of  Engineers." —  The  Engineer. 
"  A  thoroughly  RELIABLE  and  EXHAUSTIVE  Treatise." — Engineering. 

In  Quarto,  Handsome  Cloth.     With  Numerous  Plates.     255. 

THE  HEAT  EFFICIENCY  OF  STEAM  BOILERS 
(LAND,    MARINE,   AND    LOCOMOTIVE). 

With  many  Tests  and  Experiments  on  different  Types  of 
Boilers,  as  to  the  Heating  Value  of  Fuels,  &e.,  with 
Analyses  of  Gases  and  Amount  of  Evaporation, 

and  Suggestions  for  the  Testing  of  Boilers. 
BY    BRYAN    DONKIN,    M.INST.C.E. 

GENERAL  CONTENTS. — Classification  of  different  Types  of  Boilers — 
425  Experiments  on  English  and  Foreign  Boilers  with  their  Heat  Efficiencies 
shown  in  Fifty  Tables — Fire  Grates  of  Various  Types — Mechanical  Stokers — 
Combustion  of  Fuel  in  Boilers — Transmission  of  Heat  through  Boiler  Plates, 
and  their  Temperature — Feed  Water  Heaters,  Superheaters,  Feed  Pumps, 
&c. — Smoke  and  its  Prevention — Instruments  used  in  Testing  Boilers — 
Marine  and  Locomotive  Boilers — Fuel  Testing  Stations — Discussion  of  the 
Trials  and  Conclusions — On  the  Choice  of  a  Boiler,  and  Testing  of  Land, 
Marine,  and  Locomotive  Boilers — Appendices — Bibliography — Index. 

With  Plates  illustrating  Progress  made  during  recent  years, 
and  the  best  Modern  Practice. 

"  Probably  the  MOST  EXHAUSTIVE  resume  that  has  ever  been  collected.     A  PRACTICAL 
BOOK  by  a  thoroughly  practical  man."— Iron  and  Coal  Trades  Review. 

BY    WILLIAM     NICHOLSON. 

S   WI   O   JK    E         ABATEMENT. 

(See  page  76  General  Catalogue) 

10NDON :  CHARLES  GRIFFIN  &  CO..  LIMITED,  EXETER  STREET,  STRANDc 
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FOURTH  EDITION,  Revised  and  Enlarged.     Pocket-Size,  Leather,  12*.  6d.;  also  Larger  Size 
for  Office  Use,  Cloth,  12s.  6d. 

Boilers,  Marine  and  Land: 
THEIR  CONSTRUCTION  AND  STRENGTH. 

A  HANDBOOK  OF  RULES,  FORMULAE,  TABLES,  &c.,  BELATIVE  TO  MATERIAL, 
SCANTLINGS,  AND  PRESSURES,  SAFETY  VALVES,  SPRINGS, 

FITTINGS  AND  MOUNTINGS,  &o. 

FOR  THE   USE   OF   ENGINEERS,  SURVEYORS,   BOILER-MAKERS, 
AND  STEAM  USERS. 

BY  T.   W.    TRAILL,    M.  INST.  0.  E.,    F.  E.  R  N., 
Late  Engineer  Surveyor-in-Chief  to  the  Board  of  Trade. 

*»*  To  THE  SECOND  AND  THIRD  EDITIONS  MANY  NEW  TABLES  for  PRESSURE, 
up  to  200  LBS.  per  SQUARE  INCH  have  been  added. 

THB  MOST  VALUABLE  WORK  on  Boilers  published  in  England."— Shipping  World. 
Contains  an  ENORMOUS  QUANTITY  OF  INFORMATION  arrranged  in  a  very  convenient  form. 

A  HOST  USEFUL  VOLUME    .    .    .    supplying  information  to  be  had  nowhere  else." — The  Engineer. 

Fourth  Impression.      Large   Crown  8vo.      With   numerous 
Illustrations.    6s. 

ENGINE-ROOM    PRACTICE : 
A  Handbook  for  Engineers  and  Officers  in  the  Royal  Navy 

and  Mercantile  Marine,  Including-  the  Managemer.  t 
of  the  Main  and  Auxiliary  Engines  on 

Board  Ship. 
BY  JOHN  G.  LIVERSIDGE,  A.M.I.C.E., 

Commander  Engineer,  Malta. 
Contend.— General  Description  of  Marine  Machinery. — The  Conditions  of  Service  and 

jJuties  of  Engineers  of  the  Royal  Navy. — Entry  and  Conditions  of  Service  of  Engineers  of 
the  Leading  S.S.  Companies.— Raising  Steam —Duties  of  a  Steaming  Watch  on  Engines 
and  Boilers.— Shutting  off  Steam.— Harbour  Duties  and  Watches.— Adjustments  and 
Repairs  of  Engines.— Preservation  and  Repairs  of  "Tank"  Boilers.— The  Hull  and  its 
Fittings. — Cleaning  and  Painting  Machinery. — Reciprocating  Pumps,  Feed  Heaters,  and 
Automatic  Feed  -  Water  Regulators.  —  Evaporators.  —  Steam  Boats.  —  Electric  Light 
Machinery. — Hydraulic  Machinery.— Air-Compressing  Pumps.— Refrigerating  Machines. 
—Machinery  of  Destroyers.— The  Management  of  Water-Tube  Boilers.— Regulations  foi 
Kntry  of  Assistant  Engineers,  R.N.— Questions  given  in  Examinations  for  Promotion  of 
Engineers,  H.N.— Regulations  respecting  Board  of  Trade  Examinations  for  Engineers,  &c. 

•'  The  contents  CANNOT  FAIL  TO  BK  APPRECIATED." — The  Steamship. 
"  This  VERY  USEFUL  BOOK.  .  ,  .  ILLUSTRATIONS  are  of  GREAT  IMPORTANCE  in  a  worh 

of  this  kind,  and  it  is  satisfactory  to  find  that  SPECIAL  ATTENTION  has  been  given  in  this 
respect."— Engineers'  Gazette. 

In  Large  Crown  8vo,  Cloth.     Fully  Illustrated.     5s.  net. 

OIL        FUEL: 
ITS    SUPPLY,    COMPOSITION,    AND    APPLICATION. 

BY    SIDNEY    H.    NORTH, 
LATE    EDITOR    OF    THE    "PETROLEUM    REVIEW." 

CONTENTS.— The  Sources  of  Supply.— Economic  Aspect  of  Liquid  Fuel.— Chemical 
Composition  of  Fuel  Oils. — Conditions  of  Combustion  in  Oil  Fuel  Furnaces. — Early 
Methods  and  Experiments.— Modern  Burners  and  Methods.— Oil  Fuel  for  Marine  Pur- 

poses.—For  Naval  Purposes. — On  Locomotives.— For  Metallurgical  and  other  Purposes. 
— Appendices.  —INDEX. 

"  Everyone  interested  in  this  important  question  will  welcome  Mr.  North's  excellent 
text-book." — Nature. 

LONDON:  CHARLES  GRIFFIN  &  CO.,  LIMITED,  EXETER  STREET,  STRAND. 



30  CHARLES  GRIFFIN  &  CO.'S  PUBLICATIONS. 

SECOND  EDITION,  Revised.      With  numerous  Plates  reduced  from 
Working  Drawings  and  280  Illustrations  in  the  Text.     21s. 

A      MANUAL     OF 

LOCOMOTIVE    ENGINEERING; 
A  Practical  Text-Book  for  the  Use  of  Engine  Builders, 

Designers  and  Draughtsmen,  Railway 
Engineers,  and  Students. 

BY 

WILLIAM  FRANK  PETTIGREW,  M.lNST.C.E. 
With  a  Section  on  American  and  Continental  Engines. 

BY  ALBERT  F.   RAVENSHEAR,   B.Sc., 
Of  His  Majesty's  Patent  Office. 

Contents.  —  Historical  Introduction,  1763-1863.  —  Modern  Locomotives  :  Simple.  — 
Modern  Locomotives:  Compound.  Primary  Consideration  in  Locomotive  Design. — 
Cylinders,  Steam  Chests,  and  Stuffing  Boxes. — Pistons,  Piston  Bods,  Crossheads,  and) 
Slide  Bars. — Connecting  and  Coupling  Rods. — Wheels  and  Axles,  Axle  Boxes,  Hornblocks, 
ind  Bearing  Springs. — Balancing. — Valve  Gear. — Slide  Valves  and  Valve  Gear  Details. — 
Framing,  Bogies  and  Axle  Trucks,  Radial  Axle  Boxes. — Boilers. — Smokebox,  Blast  Pipe, 
Firebox  Fittings. — Boiler  Mountings. — Tenders.- Railway  Brakes. —  Lubrication.— Con- 

sumption of  Fuel,  Evaporation  and  Engine  Efficiency. — American  Locomotives. — Con- 
tinental Locomotives.— Repairs,  Running,  Inspection,  and  Renewals.— Three  Appendices. —Index. 

"Likely  to  remain  for  many  years  the  STANDARD  WORK  for  those  wishing  to  learn 
Design."— Engineer. 

"  A  most  interesting  and  valuable  addition  to  the  bibliography  of  the  Locomotive."— Railway  Official  Gazette. 
"  We  recommend  the  book  as  THOROUGHLY  PRACTICAL  in  its  character,  and  MERITING  A. 

PLACE  IN  ANT  COLLECTION  of  ...  works  on  Locomotive  Engineering."— Railway  Seas. 
"The  work  CONTAINS  ALL  THAT  CAN  BE  LEARNT  from  a  book  upon  such  a  subject.  It 

will  at  once  rank  as  THE  STANDARD  WORK  UPON  THIS  IMPORTANT  SUBJECT."— Railway  Magazint 

In  Large  Svo.     Handsome  Cloth.      With  Plates  and  Illustrations.     16s. 

LIGHT        RAILWAYS 
AT  HOME  AND  ABROAD. 

BY   WILLIAM   HENRY   COLE,   M.lNST.C.E., 
Late  Deputy-Manager,  North- Western  Railway,  India. 

Contents. — Discussion  of  the  Term  "Light  Railways." — English  Railways,. 
Rates,  and  Farmers. —  Light  Railways  in  Belgium,  France,  Italy,  other 
European  Countries,  America  and  the  Colonies,  India,  Ireland. — Road  Trans- 

port as  an  alternative. — The  Light  Railways  Act,  1896. — The  Question  of 
Grange. — Construction  and  Working. — Locomotives  and  Rolling- Stock. — Light 
Railways  in  England,  Scotland,  and  Wales. — Appendices  and  Index. 

"Mr.  W.  H.  Cole  has  brought  together  ...  a  LARGE  AMOUNT  of  VALUABLE  INFORMA- 
TION .  .  .  hitherto  practically  inaccessible  to  the  ordinary  reader.  '—Times. 

"  Will  remain,  for  some  time  yet  a  STANDARD  WORK  in  everything  relating  to  Light 
Railways." — Engineer. 

"  The  author  has  extended  practical  experience  that  makes  the  book  lucid  and  useful. 
It  is  EXCEEDINGLY  well  done." — Engineering. 

"  The  whole  subject  is  EXHAUSTIVELY  and  PRACTICALLY  considered.  The  work  can  be 
cordially  recommended  as  INPISPKNSABLE  to  those  whose  duty  it  is  to  become  acquainted 
with  one  of  the  prime  necessities  of  the  immediate  future." — Railway  Official  Gazette. 

"THERE  COULD  BE  NO  BETTER  BOOK  of  first  reference  on  its  subject.  All  classes  of 
Engineers  will  welcome  its  appearance." — Scotsman. 

LONDON :  CHARLES  GRIFFIN  &  CO.,  LIMITED,  EXETER  STREET,  STRAND. 
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FOURTH  EDITION,  Thoroughly  Revised  and  Greatly  Enlarged. 
With  Numerous  Illustrations.     Price  10s.  6d. 

VALVES  AND  VALVE-GEARING: 
A   PRACTICAL   TEXT-BOOK  FOR    THE    USE   OF 

ENGINEERS,  DRAUGHTSMEN,  AND  STUDENTS. 

BY    CHARLES    HURST,    Practical    Draughtsman. 

PART  I.— Steam    Engine   Valves. 
PART  II.— Gas   Engine   Valves   and   Gears. 
PART  III.  -Air   Compressor  Valves   and   Gearing. 

PART  IV.-Pump   Valves. 

"MB.  HURSTS  VALVBS  and  VALVB-GBAKING  will  prove  a  very  valuable  aid,  and  tend  to  the 
production  of  Engines  of  SCIENTIFIC  DESIGN  and  ECONOMICAL  WOEKING.  .  .  .  Will  be  largely 
sought  after  by  Students  and  Designers." — Marine  Engineer. 

•'  Almost  EVERT  TYPE  of  VALVE  and  its  gearing  is  clearly  set  forth,  and  illustrated  in 
such  a  way  as  to  be  READILY  UNDERSTOOD  and  PRACTICALLY  APPLIED  by  either  the  Engineer, 
Draughtsman,  or  Student.  .  .  .  Should  prove  both  USEFUL  and  VALUABLE  to  all  Engineers 
seeking  for  RELIABLE  and  CLEAR  information  on  the  subject.  Its  moderate  price  brings  it 
within  the  reach  of  all"— Industries  and  Iron. 

Hints  on  Steam  Engine  Design  and  Construction.  By  CHARLES 

HURST,  "Author  of  Valves  and  Valve  Gearing."  SECOND  EDITION, 
Revised.  In  Paper  Boards,  8vo.,  Cloth  Back.  Illustrated.  Price 
Is.  6d.  net. 

CONTENTS.— L  Steam  Pipes.— II.  Valves.— 111.  Cylinders.— IV.  Air  Pumps  and  Con- 
densers.—V.  Motion  Work.— VI.  Crank  Shafts  and  Pedestals.— VII.  Valve  Gear.— VIII 

Lubrication. — IX.  Miscellaneous  Details  — INDEX. 

"  A  handy  volume  which  every  practical  young  engineer  should  possess."— The  Model Engineer.    

Strongly  Bound  in  Super  Royal  8vo.      Cloth  Boards.      7s.  6d.  net. 

FOP  Calculating  Wages  on  the  Bonus  or  Premium  Systems. 
For  Engineering,  Technical  and  Allied  Trades. 

BY   HENRY    A.    GOLDING,    A.M.IxsT.M.E., 
Technical  Assistant  to  Messrs.  Bryan  Donkin  and  Clench,  Ltd.,  and  Assistant  Lecturer 

in  Mechanical  Engineering  at  the  Northampton  Institute,  London,  E.C. 

"Cannot  fail  to  prove  practically  serviceable  to  those  for  whom  they  have  been 
designed." — Scotsman. 

SECOND  EDITION,  Cloth,  8s.  6d.     Leather,  for  the  Pocket,  8s.  6d. 

GRIFFIN'S  ELECTRICAL   PRICE-BOOK :    For  Electrical,  Civil, 
Marine,  and  Borough  Engineers,  Local  Authorities,  Architects,  Railway 
Contractors,  &c.,  &c.     Edited  by  H.  J.  DOWSING. 

"  The  ELECTRICAL  PRICE-BOOK  REMOVES  ALL  MYSTERY  about  the  cost  of  Electrical 
Power.  By  its  aid  the  EXPENSE  that  will  be  entailed  by  utilising  electricity  on  a  large  or 
small  scale  can  be  discovered." — Architect. 

LONDON:  CHARLES  GRIFFIN  &  CO.,  LIMITED,  EXETER  STREET,  STRAND. 
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SHORTLY.     SECOND  EDITION.     Large  8vo,  Handsome  Cloth.     With 
Illustrations,  Tables,  &c. 

Lubrication  &  Lubricants: 
A    TREATISE    ON    THE 

THEORY  AND  PRACTICE  OF  LUBRICATION 

AND    ON    THE 

NATURE,    PROPERTIES,    AND   TESTING    OF   LUBRICANTS. 

BY  LEONARD  ARCHBUTT,  F.I.O.,  F.O.S., 
Chemist  to  the  Midland  Railway  Company, 

R.    MOUNTFORD   DEELEY,    M.I.MECH.E.,    F.G.S., 
Chief  Locomotive  Superintendent,  Midland  Railway  Company. 

CONTENTS.—  I.  Friction  of  Solids.— II.  Liquid  Friction  or  Viscosity,  and  Plastic 
Friction.— III.  Superficial  Tension.— IV.  The  Theory  of  Lubrication.— V.  Lubricants, 
their  Sources,  Preparation,  and  Properties.— VI.  Physical  Properties  and  Methods  of 
Examination  of  Lubricants. — VII.  Chemical  Properties  and  Methods  of  Examination 
of  Lubricants. — VIII.  The  Systematic  Testing  of  Lubricants  by  Physical  and  Chemical 
Methods.— IS.  The  Mechanical  Testing  of  Lubricants. — X.  The  Design  and  Lubrication 
of  Bearings. — XI.  The  Lubrication  of  Machinery. — INDEX. 

"  Destined  to  become  a  CLASSIC  on  the  subject." — Industries  and  Iron. 
"Contains  practically  ALL  THAT  is  KNOWN  on  the  subject.  Deserves  the  carefu 

Attention  of  all  Engineers." — Railway  Official  Guide. 

FOURTH  EDITION.     Very  fully  Illustrated.     Cloth,  4».  6d. 

STEAM  ~  BOI  LERSs 
THEIR    DEFECTS,    MANAGEMENT,    AND    CONSTRUCTION, 

BY    R    D.    MTJNRO, 
Chief  Engineer  of  the  Scottish  Boiler  Insurance  and  Engine  Inspection  Company 

GENERAL  CONTENTS. — I.  EXPLOSIONS  caused  (i)  by  Overheating  of'P'ates — (2)  By 
Defective  and  Overloaded  Safety  Valves — (3)  By  Corrosion,  Internal  or  External— (4)  By 
Defective  Design  and  Construction  (Unsupported  Flue  Tubes  ;  Unstrengthened  Manholes  ; 
Defective  Staying  ;  Strength  of  Rivetted  Joints;  Factor  of  Safety)— II.  CONSTRUCTION  OF 
VERTICAL  BOILERS  :  Shells — Crown  Plates  and  Uptake  Tubes — Man-Holes,  Mud-Holes, 
and  Fire-Holes — Fireboxes  —  Mountings  —  Management  —  Cleaning  —  Table  of  Bursting 
Pressures  of  Steel  Boilers — Table  of  Rivetted  Joints — Specifications  and  Drawings  of 
Lancashire  Boiler  for  Working  Pressures  (a)  80  Ibs. ;  (6)  200  Ibs.  per  square  inch  respectively. 

"  A  valuable  companion  for  workmen  and  engineers  engaged  about  Steam  Boilers,  ought 
to  be  carefully  studied,  and  ALWAYS  AT  HAND." — Coll.  Guardian. 

"The  book  is  VERY  USEFUL,  especially  to  steam  users,  artisans,  and  young  Engineers."— 
Engineer.    

By  THE  SAME  AUTHOR. 

KITCHEN    BOILER    EXPLOSIONS:    Why 
they  Occur,  and  How  to  Prevent  their  Occurrence.  A  Practical  Hand- 

book based  on  Actual  Experiment.  With  Diagram  and  Coloured  Plate. 
Price  35. 

LONDON:  CHARLES  GRIFFIN  &  CO.,  LIMITED,    EXETER  STREET,  STRAND. 
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hi   Crown  8vo,   Handsome   Cloth.      With  Numerous 

Illustrations.     $s.  net. 

EMERY  GRINDING  MACHINERY. 
A  Text-Booh  of  Workshop  Practice  in  General  Tool  Grinding, 

and  the  Design,  Construction,  ana  Application 
of  the  Machines  Emoloyed. 

BY 

R.  B.  HODGSON,  A.M.lNsx.MECH.E., 

Author  of  "Machines  and  Tools  Employee1  in  the  Working  of  Sheet  Metals." 
INTRODUCTION. — Tool  Grinding. — Emery  Wheels. — Mounting  Emery  Wheels. 

— Emery  Rings  and  Cylinders.  —  Conditions  to  Ensure  Efficient  Working. — 

Leading  Types  of  Machines. — Concave  and  Convex  Grinding. — Cup  and  Cone 

Machines.  —  Multiple  Grinding.  —  "Guest"  Universal  and  Cutter  Grinding 
Machines. — Ward  Universal  Cutter  Grinder. —  Press. — Tool  Grinding. — Lathe 

Centre  Grinder. —Polishing. — I N DEX. 

"  Deals  practically  with  every  phase  of  his  subject." — Ironmonger 
1 '  Eminently  practical    .     .     .     cannot  fail  to  attract  the  notice  of  the  users  of  this  class  of 

machinery,  and  to  meet  with  careful  perusal." — Chem.  Trade  Journal. 

SIXTH  EDITION.     Folio,  strongly  half-bound,  21  s. 

TRAVERSE  TABLES: 
Computed  to  Four  Places  of  Decimals  for  every  Minute 

of  Angle  up  to  100  of  Distance. 
For  the  use  of  Surveyors  and  Engineers. 

BY 

RICHARD   LLOYD   GURDEN, 
Authorised  Surveyor  for  the  Governments  of  New  South  Wales  and 

Victoria. 

%*  Published  with  the  Concurrence  of  the  Surveyors- General  for  New  South Wales  and  Victoria. 

"  Those  who  have  experience  in  exact  SURVEY-WORK  will  best  know  how  to  appreciate 
the  enormous  amount  of  labour  represented  by  this  valuable  book.  The  computations 
enable  the  user  to  ascertain  the  sines  and  cosines  for  a  distance  of  twelve  miles  to  within- 
half  an  inch,  and  this  BY  REFERENCE  TO  BUT  ONE  TABLE,  in  place  ot  the  usual  Fifteen 
minute  computations  required.  This  alone  is  evidence  of  the  assistance  which  the  Tables 
ensure  to  every  user,  and  as  every  Surveyor  in  active  practice  has  felt  the  want  of  such 
assistance  FEW  KNOWING  OF  THEIR  PUBLICATION  WILL  REMAIN  WITHOUT  THEM." — Engineer 

LONDON:  CHARLES  GRIFFIN  &  CO.,  LIMITED,  EXETER  STREET.  STRAND 
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WORKS     BY 

ANDREW  JAMIESON,  M.lNST.C.E.,  M.I.E.E.,  F.R.S.E., 
Formerly  Professor  of  Electrical  Engineering,  The  Glasgow  and  West  of  Scotland 

Technical  College. 

PROFESSOR  JAMIESON'S  ADVANCED  TEXT-BOOKS. 
In  Large  Crown  8vo.     Fully  Illustrated. 

STEAM  AND  STEAM-ENGINES,  INCLUDING  TURBINES 
AND  BOILERS.  For  the  Use  of  Students  preparing  for  Competitive 
Examinations.  With  over  700  pp.,  over  350  Illustrations,  10  Folding 
Plates,  and  very  numerous  Examination  Papers.  FOURTEENTH  EDITION. 
Revised  throughout.  IDS.  6d. 

"  Professor  Jamieson  fascinates  the   reader  by   his  CLEARNESS  OF  CONCEPTION   AND 
SIMPLICITY  or  EXPRESSION.     His  treatment  recalls  the  lecturing  of  Faraday." — Athen&um. 

"  The  BEST  BOOK  yet  published  for  the  use  of  Students." — Engineer, 

APPLIED  MECHANICS  &  MECHANICAL  ENGINEERING. 
Vol.  I. — Comprising  Part  I.,  with  568  pages,   300  Illustrations,  and 

540  Examination  Questions :    The  Principle  of  Work  and  its  applica- 
tions; Part  II.:  Friction;  Gearing,  &c.    FIFTH  EDITION.     8s.  6d. 

"  FULLY  MAINTAINS  the  reputation  of  the  Author." — Pract.  Engineer. 

Vol.  II. — Comprising  Parts  III.  to  VI.,  with  782  pages,  371  Illus- 
trations, and  copious  Examination  Questions :  Motion  and  Energy ; 

Graphic  Statics;  Strength  of  Materials;  Hydraulics  and  Hydraulic 
Machinery.  FOURTH  EDITION.  123.  6d. 

"WELL  AND  LUCIDLY  WRITTEN."— The  Engineer. 
*»*  Each  of  the  above  volumes  is  complete  in  itself,  and  sold  separately. 

PROFESSOR  JAMIESON'S  INTRODUCTORY  MANUALS 
Crown  8v0.      With-  Illustrations  and  Examination  Papers. 

STEAM    AND    THE    STEAM-ENGINE    (Elementary 
Manual  of).  For  First-Year  Students.  TENTH  EDITION,  Revised.  3/6. 

"  Should  be  in  the  hands  of  EVERY  engineering  apprentice." — Practical  Engineer. 

MAGNETISM  AND   ELECTRICITY  (Elementary  Manual 
of).     For  First-Year  Students.     SIXTH  EDITION.     3/6. 

"  A  CAPITAL  TEXT-BOOK   .    .   .  The  diagrams  are  an  important  feature."— Schoolmaster. 
"  A  THOROUGHLY  TRUSTWORTHY  Text-book.     PRACTICAL  and  clear." — Nature. 

APPLIED    MECHANICS    (Elementary    Manual   of). 
Specially  arranged  for  First-Year  Students.  SIXTH  EDITION, 
Revised  and  Greatly  Enlarged.  3/6. 

"  The  work  has  VERY  HIGH  QUALITIES,  which   may  be  condensed  into  the  one  word 
•'  CLHAR.'  " — Science  and  Art. 

A  POCKET-BOOK  of  ELECTRICAL  RULES  and  TABLES. 
For  the  Use  of  Electricians  and  Engineers.  By  JOHN  MUNRO,  C.E., 
and  Prof.  JAMIESON.  Pocket  Size.  Leather,  8s.  6d.  SEVENTEENTH 
EDITION.  [See  p.  48. 
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WORKS      BY 

W.  J.  MACQDORN  RANKINE,  LL.D.,  F.R.S, 
Late  Regius  Professor  of  dull  Engineering  in  the  University  of  Glasgow. 

THOROUGHLY   REVISED   BY 

W.     J.     MIL  LAB,     C.E., 
Late  Secretary  to  the  Institute  of  Engineers  and  Shipbuilders  In  Scotland. 

A  MANUAL  OF  APPLIED  MECHANICS : 

Comprising  the  Principles  of  Statics  and  Cinematics,  and  Theory  of 
Structures,  Mechanism,  and  Machines.  With  Numerous  Diagrams. 
Crown  8vo,  cloth.  SEVENTEENTH  EDITION.  12s.  6d. 

A  MANUAL  OF  CIVIL  ENGINEERING : 

Comprising  Engineering  Surveys,  Earthwork,  Foundations,  Masonry,  Car- 
pentry, Metal  Work,  Roads,  Railways,  Canals,  Rivers,  Waterworks, 

Harbours,  &c.  With  Numerous  Tables  and  Illustrations.  Crown  8vo. 
oloth.  TWENTY-SECOND  EDITION.  16s. 

A  MANUAL  OF  MACHINERY  AND  MILL  WORK : 

Comprising  the  Geometry,  Motions,  Work,  Strength,  Construction,  and 
Objects  of  Machines,  &c.  Illustrated  with  nearly  300  Woodcuts, 
Crown  8vo,  cloth.  SEVENTH  EDITION.  12s.  6d. 

A  MANUAL  OF  THE  STEAM-ENGINE  AND  OTHER 
PRIME  MOVERS : 

With  a  Section  on  GAS,  OIL,  and  AIR  ENGINES,  by  BRYAN  DONKIN, 
M.Inst.C.E.  With  Folding  Plates  and  Numerous  Illustrations. 
Crown  8vo,  cloth.  SIXTEENTH  EDITION.  12s.  6d. 

10NDON:  CHAHLES  GRIFFIN  &  CO.,  LIMITED,  EXETER  STREET,  STRAND 
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PROF.  RANKINB'S  WORKS— (Continued}. 

USEFUL  RULES  AND  TABLES : 

For  Architects,  Builders,  Engineers,  Founders,  Mechanics,  Shipbuilders, 
Surveyors,  &c.  With  APPENDIX  for  the  use  of  ELECTRICAL  ENGINEERS. 
By  Professor  JAMIESON,  F.R.S.E.  SEVENTH  EDITION.  10s.  6d. 

A  MECHANICAL  TEXT-BOOK : 

A  Practical  and  Simple  Introduction  to  the  Study  of  Mechanics.  By 

Professor  RANKINE  and  E.  F.  BAMBEB,  C.E.  With  Numerous  Illus- 
trations. Crown  8vo,  cloth.  FIFTH  EDITION.  9s. 

V  The  "  MECHANICAL  TEXT-BOOK  "   was  designed  by  Professor  HANKINE  at  an  ISTBO- DOOTION  to  the  above  Series  of  Manuals. 

MISCELLANEOUS  SCIENTIFIC  PAPERS. 

Royal  8vo.     Cloth,  31s.  6d. 

Part  I.  Papers  relating  to  Temperature,  Elasticity,  and  Expansion  of 

Vapours,  Liquids,  and  Solids.  Part  II.  Papers  on  Energy  and  its  Trans- 
formations. Part  III.  Papers  on  Wave-Forms,  Propulsion  of  Vessels,  &o. 

With  Memoir  by  Professor  TAIT,  M.A.  Edited  by  W.  J.  MILLAR,  C.E. 
With  fine  Portrait  on  Steel,  Plates,  and  Diagrams. 

"  No  more  enduring  Memorial  of  Professor  Ranlcine  could  be  devised  thau  the  publica- 
tion of  these  papers  in  an  accessible  form.  .  .  .  The  Collection  is  most  valuable  o» 

Account  of  the  nature  of  his  discoveries,  and  the  beauty  and  completeness  of  his  analysis. 
.  .  .  The  Volume  exceeds  in  importance  any  work  in  the  same  department  published 
ia  our  time."— Architect. 

SHELTON-BEY  (W.  Vincent,   Foreman  to  the 
Imperial  Ottoman  Gun  Factories,  Constantinople) : 

THE  MECHANIC'S  GUIDE :  A  Hand-Book  for  Engineers  and 
Artizans.  With  Copious  Tables  and  Valuable  Recipes  for  Practical  Use. 
Illustrated.  Second  Edition,  Crown  8vo.  Cloth,  J/6. 

LONDON :  CHARLES  GRIFFIN  &  CO.,  LIMITED,  EXETER  STREET,  STRAND, 
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THIRD  EDITION,   Thoroughly  Revised  and  Enlarged.     With  60  Plates  and 
Numerous  Illustrations.     Handsome  Cloth.     ̂ 4S" 

HYDRAULIC   POWER 
AND 

HYDRAULIC   MACHINERY. 
BY 

HENRY    ROBINSON,    M.    INST.   C.E.,   F.G.S., 
FELLOW   OF   KING'S   COLLBGH,    LONDON;   PROF.    EMERITUS  OF   CIVIL  ENGINEERING, 

KING'S   COLLEGE,    ETC.,    ETC. 

CONTENTS — Discharge  through  Orifices. — Flow  of  Water  through  Pipes. — Accumulators. 
— Presses  and  Lifts. — Hoists. — Rams. — Hydraulic  Engines. — Pumping  Engines. — Capstans. 
—  Traversers.  —  Jacks.  —  Weighing  Machines.  —  Riveters  and  Shop  Tools.  —  Punching, 
Shearing,  and  Flanging  Machines. — Cranes. — Coal  Discharging  Machines.  —  Drills  and 
Cutters. — Pile  Drivers,  Excavators,  &c. — Hydraulic  Machinery  applied  to  Bridges,  Dock 
Gates,  Wheels  and  Turbines.— Shields.  —  Various  Systems  and  Power  Installations, — 
Meters,  &c. — INDEX. 

"The  standard  work  on  the  application  of  water  power." — Gassier  s  Magazine. 

Second  Edition,  Greatly  Enlarged.      With  Frontispiece,  several 
Plates,  and  over  250  Illustrations.     21s.  net. 

THE  PRINCIPLES  AND  CONSTRUCTION  OF 

PUMPING  MACHINERY 
(STEAM   AND  WATER   PRESSURE). 

With  Practical  Illustrations  of  ENGINES  and  PUMPS  applied  to  MINING, 
TOWN  WATER  SUPPLY,  DRAINAGE  of  Lands,  &c.,  also  Economy 

and  Efficiency  Trials  of  Pumping  Machinery. 

BY    HENRY    DAYEY, 
Member  of  the  Institution  of  Civil  Engineers,  Member  of  the  Institution  of 

Mechanical  Engineers,  F.G.S.,  <fcc. 

CONTENTS  — Early  History  of  Pumping  Engines — Steam  Pumping  Engines — 
Pumps  and  Pump  Valves — General  Principles  of  Non-Rotative  Pumping 
Engines — The  Cornish  Engine,  Simple  and  Compound — Types  of  Mining 
Engines — Pit  Work— Shaft  Sinking — Hydraulic  Transmission  of  Power  in 
Mines — Electric  Transmission  of  Power — Valve  Gears  of  Pumping  Engines 
—  Water  Pressure  Pumping  Engines  —  Water  Works  Engines  —  Pumping 
Engine  Economy  and  Trials  of  Pumping  Machinery — Centrifugal  and  other 
Low-Lift  Pumps — Hydraulic  Rams,  Pumping  Mains,  &c.— INDEX.  . 
"By  the  'one  English  Engineer  who  probably  knows  more  about  Pumping  Machinery 

than   AST    OTHER.'      ...      A    VOLUME    RECORDING    THE    RESULTS    OF  LONG  EXPERIENCE  AND 
STUDT." — The  Engineer. 

"  Undoubtedly  THE  BEST  AND  MOST  PRACTICAL  TREATISE  on  Pumping  Machinery  THAT  HAS 
YET  BEEN  PUBLISHED." — Mining  Journal. 

UJNDON:  CHARLES  GRIFFIN  &  CO.,  LIMITED,  EXETER  STREET.  STRAND 
o 
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Roual  800.  Handsome  Cloth.     With  numerous  Illustrations  and  Tables.     25s. 

THE    STABILITY  OF   SHIPS. 
BY 

SIR  EDWARD   J.   REED,    K.C.B.,   F.R.S.,   M.P., 
1NIGHT   OF    THK    IMPERIAL    ORDERS    OF    ST.    STANILAUS    OF    RUSSIA  ;     FRANCIS    JOSEPH     OF 

AUSTRIA  ;     MRDJIDIB    OF    TURKEY  ;     AND    RISING    SUN    OF     JAPAN  ;     VIC*- 
PRESIDENT   OF  THE   INSTITUTION  OF   NAVAL  ARCHITECTS. 

In  order  to  render  the  work  complete  for  the  purposes  of  the  Shipbuilder,  whether  at 
home  or  abroad,  the  Methods  of  Calculation  introduced  by  Mr.  F.  K.  BARNES,  Mr.  GRAY, 
M.  REKCH,  M.  DAYMARD  and  Mr.  BENJAMIN,  are  all  given  separately,  illustrated  by 
Tables  and  worked-out  examples.  The  book  contains  more  than  200  Diagrams,  and  u 
Illustrated  by  a  large  number  of  actual  cases,  derived  from  ships  of  all  descriptions. 

"  Sir  EDWARD  REED'S  '  STABILITY  OF  SHIPS  '  is  INVALUABLE.  The  NAVAL  ARCHITECT 
will  find  brought  togetner  and  ready  to  his  hand,  a  mass  of  information  which  he  would  other- 

wise have  to  seek  in  an  almost  endless  variety  of  publications,  and  some  of  which  he  would 
possibly  not  be  able  to  obtain  at  all  elsewhere."— Steamship. 

THE  DESIGN  AND  CONSTRUCTION  OF  SHIPS.  By  JOHN 
HARVARD  BILES,  M.lNST.N.A.,  Professor  of  Naval  Architecture  in  the 
University  of  Glasgow.  [In  Preparation. 

THIRD   EDITION.      Illustrated  with  Plates,  Numerous  Diagrams,  and 
Figures  in  the  Text.     i8s.  net. 

STEEL    SH  IPS: 
THEIR    CONSTRUCTION    AND     MAINTENANCE. 

A  Manual  for  Shipbuilders,  Ship  Superintendents,  Students, 
and  Marine  Engineers. 

BY  THOMAS   WALTON,   NAVAL  ARCHITECT, 
AUTHOR    OF     "  KNOW    YOUR    OWN    SHIP." 

CONTENTS. — I.  Manufacture  of  Cast  Iron,  Wrought  Iron,  and  Steel. — Com- 
position of  Iron  and  Steel,  Quality,  Strength,  Tests,  &c.  II.  Classification  of 

Steel  Ships.  III.  Considerations  in  making  choice  of  Type  of  Vessel — Framing 
of  Ships.  IV.  Strains  experienced  by  Ships. — Methods  of  Computing  and 
Comparing  Strengths  of  Ships.  V.  Construction  of  Ships. — Alternative  Si  odes 
of  Construction. — Types  of  Vessels. — Turret,  Self  Trimming,  and  Trunk 
Steamers,  &c. — Rivets  and  Rivetting,  Workmanship.  VI.  Pumping  Arrange- 

ments. VII.  Maintenance. — Prevention  of  Deterioration  in  the  Hulls  of 
Ships. — Cement,  Paint,  &c. — INDEX. 

"  So  thoroueh  and  well  written  is  every  chapter  in  the  book  that  it  is  difficult  to  select 
any  of  them  as  being  worthy  of  exceptional  praise.  Altogether,  the  work  is  excellent,  and 
will  prove  of  great  va'ne  to  those  for  whom  it  is  intended." — The  Engineer. 
P»~  "  Mr.  Walton  has  written  for  the  profession  of  which  he  is  an  ornament.  His  work 
will  be  read  and  appreciated,  no  doubt,  by  every  M.LN.A.,  and  with  great  benefit  by  the 
majority  of  them."— Journal  of  Commerce. 

UNIFORM     WITH     THE    ABOVE. 

THE    PRINCIPLES    AND    PRACTICE    OF 

DOCK    ENGINEERING. 
BY  BRYSSON  CUNNINGHAM,  B.E.,  M.lNST.C.E. 

See  p.  27. 

LONDON:  CHARLES  GRIFFIN  &  CO.,  LIMITED,  EXETER  STREET,  STRAND. 
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GRIFFIN'S    NAUTICAL    SERIES. 
EDITED    BY     EDW.     BLACKMORE, 

Master  Mariner,  First  Class  Trinity  House  Certificate,  Assoc.  Inst.  N.A. ; 
AND  WRITTEN,  MAINLY,  by  SAILORS  for  SAILORS. 

"THIS  ADMIRABLE  SERIES."— Fairplay.         "A  VERY  USEFUL  SERIES."— Nature. 
"The  volumes  of  MESSRS.  GRIFFIN'S  NAUTICAL  SERIES  may  well  and  profitably  be 

•lead  by  ALL  interested  in  our  NATIONAL  MARITIME  PROGRESS.  "—Marine  Engineer. 
"EVERY  SHIP  should  have  the  WHOLE  SERIES  as  a  REFERENCE  LIBRARY.  HAND- 

SOMELY BOUND,  CLEARLY  PRINTED  and  ILLUSTRATED." — Liverpool  Journ.  of  Commerce. 

The  British  Mercantile  Marine :  An  Historical  Sketch  of  its  Rise 
and  Development.    By  the  EDITOR,  CAPT.  BLAOKMORE.    THIRD  EDITION.    3s.  6d. 
"  Captain  Blackmore's  SPLENDID  BOOK  .  .  .  contains  paragraphs  on  every  point 

of  interest  to  the  Merchant  Marine.  The  243  pages  of  this  book  are  THE  MOST  VALU- 
ABLE to  the  sea  captain  that  have  EVER  been  COMPILED."— Merchant  Service  Review. 

Elementary  Seamanship.     By  D.  WILSON-BARKER,  Master  Mariner, 
F.R.S.E.,   F.R.G.S.    With   numerous    Plates,  two   in   Colours,   and    Frontispiece. 
FOURTH  EDITION,  Thoroughly  Revised.    With  additional  Illustrations.    6s. 

"This  ADMIRABLE  MANUAL,  by  CAPT.  WILSON  BARKER,  of  the  '  Worcester,'  seems 
to  us  PERFECTLY  DESIGNED."— Athenaeum. 

KnOW  Your  Own  Ship  :  A  Simple  Explanation  of  the  Stability,  Con- 
struction, Tonnage,  and  Freeboard  of  Ships.    By  THOS.  WALTON,  Naval  Architect. 

With  numerous  Illustrations  and  additional  Chapters  on  Buoyancy,  Trim,   and 
Calculations.    EIGHTH  EDITION.    7s.  6d. 

"  MR.  WALTON'S  book  will  be  found  VERY  USEFUL." — The  Engineer. 

Navigation  :  Theoretical  and  Practical.     By  D.  WILSON-BABKER 
and  WILLIAM  ALLINGHAM.   SECOND  EDITION,  Revised.    3s.  6d. 
"PRECISELY  the  kind  of  work  required  for  the  New  Certificates  of  competency. 

Candidates  will  find  it  INVALUABLE."— Dundee  Advertiser. 

Marine    Meteorology  :    For    Officers    of    the   Merchant   Navy.       By 
WILLIAM  ALLINQHAM,  First  Class  Honours,  Navigation,  Science  and  Art  Department. 
With  Illustrations,  Maps,  and  Diagrams,  and  facsimile  reproduction  of  log  page. 7s.  6d. 

"Quite  the  BEST  PUBLICATION  on  this  subject."— Shipping  Gazette. 

Latitude  and  Longitude :  How  to  find  them.    By  W.  J.  MILLAR, 
C.E.    SECOND  EDITION,  Revised.    2s. 

"  Cannot  but  prove  an  acquisition  to  those  studying  Navigation."— M arine  Engineer. 

Practical  Mechanics  :  Applied  to  the  requirements  of  the  Sailor. 
By  THOS.  MACKENZIE,  Master  Mariner,  F.R.A.S.  SECOND  EDITION,  Revised.  3s.  6d. 
"  WELL  WORTH  the  money  .  .  .  EXCEEDINGLY  HELPFUL."— Shipping  World. 

Trigonometry  :  For  the  Young  Sailor,  &c.     By  RICH.  C.  BUCK,  of  the 
Thames  Nautical  Training  College,  H.M.S.  "  Worcester."   THIRD  EDITION,  Revised. Price  3s.  6d. 

"This  EMINENTLY  PRACTICAL  and  reliable  volume."— Schoolmaster. 

Practical  Algebra.      By  RICH.  C.  BUCK.     Companion  Volume  to  the 
above,  for  Sailors  and  others.    SECOND  EDITION,  Revised.    Price  3s.  6d. 
"  It  is  JUST  THE  BOOK  for  the  young  sailor  mindful  of  progress."— Nautical  Magazine. 

The  Legal  Duties  of  Shipmasters.    By  BENEDICT  WM.  GINSBUBG, 
M.A.,  LL.D.,  of  the  Inner  Temple  and  Northern  Circuit:  Barrister-at-Law.    SECOND 
EDITION,  Thoroughly  Revised  and  Enlarged.    Price  4s.  6d. 

"  INVALUABLE  to  masters.    .    .    .    We  can  fully  recommend  it." — Shipping  Gazette. 

A  Medical  and  Surgical  Help  for  Shipmasters.    Including  First 
Aid  at  Sea.    By  WM.  JOHNSON  SMITH,  F.R.C.S.,  Principal  Medical  Officer,  Seamen's 
Hospital,  Greenwich.    THIRD  EDITION,  Thoroughly  Revised.    6s. 
"SOUND,  JUDICIOUS,  REALLY  HELPFUL."— The  Lancet. 

LONDON:  CHARLES  GRIFFIN  &  CO.,  LIMITED,  EXETER  STREET,  STRAND. 
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GRIFFIN'S   NAUTICAL  SERIES. 

Introductory   Volume.     Price  Ss.  6d. 

T  ZHIIE 

British  Mercantile  Marine. 
BY  EDWARD    BLACKMORE, 

MASTER  MARINER;  ASSOCIATE  OF  THE  INSTITUTION  OF  NAVAL  ARCHITECTS; 
MEMBER  OF  THE  INSTITUTION  OF  ENGINEERS  AND  SHIPBUILDERS 

IN  SCOTLAND;  EDITOR  OF  GRIFFIN'S  "NAUTICAL  SERIES." 

GENERAL  CONTENTS. — HISTOBICAL  :  From  Early  Times  to  1486— Progress- 
under  Henry  VIII. — To  Death  of  Mary — During  Elizabeth's  Reign — Up  to 
the  Reign  of  William  III. — The  18th  and  19th  Centuries — Institution  of 
Examinations  —  Rise  and  Progress  of  Steam  Propulsion  —  Development  of 
Free  Trade— Shipping  Legislation,  1862  to  1875— "  Locksley  Hall"  Case- 
Shipmasters'  Societies — Loading  of  Ships — Shipping  Legislation,  1884  to  1894 — 
Statistics  of  Shipping.  THE  PERSONNEL  :  Shipowners— Officers— Mariners — 
Duties  and  Present  Position.  EDUCATION  :  A  Seaman's  Education :  what  it 
should  be — Present  Means  of  Education— Hints.  DISCIPLINE  AND  DUTY — 
Postscript — The  Serious  Decrease  in  the  Number  of  British  Seamen,  a  Matter- 
demanding  the  Attention  of  the  Nation. 

'  INTERESTING  and  INSTRUCTIVE    .    .    .    may  be  read  WITH  PROFIT  and  ENJOYMENT."- 
low  Herald. 
•EVERY  BRANCH  of  the  subject  is  dealt  with  in  a  way  which  shows  that  the  writer 

'knows  the  ropes'  familiarly."—  Scotsman. 
"This    ADMIRABLE  book    .    .    .    TEEMS   with  useful  information— Should  be  in  the 

hands  of  every  Sailor."—  Western  Morning  News. 

FOURTH  EDITION,  Thoroughly  Revised.     With  Additional 
Illustrations.     Price  6s. 

OF 

ELEMENTARY     SEAMANSHIP, 
BY 

D.  WILSON-BARKER,  MASTER  MARINER;  F.R.S.E.,  F.R.G.S..&C.,  &o. 
YOUNGER  BROTHER  OF  THE  TRINITY  HOUSE. 

With  Frontispiece,  Numerous  Plates  (Two  in  Colours),  and  Illustrations 
in  the  Text. 

GENERAL  CONTENTS.  —  The  Building  of  a  Ship;  Parts  of  Hull.  Masts, 
&c.—  Ropes,  Knots,  Splicing,  &c.  —  Gear,  Lead  and  Log,  &c.  —  Rigging, 
Anchors  —  Sailmaking  —  The  Sails,  &c.  —  Handling  of  Boats  under  Sail  — 
Signals  and  Signalling—  Rule  of  the  Road—  Keeping  and  Relieving  Watch- 
Points  of  Etiquette—  Glossary  of  Sea  Terms  and  Phrases  —  Index. 

*»*  The  volume  contains  the  NEW  RULES  OF  THE  ROAD. 

"This  ADMIRABLE  MANUAL,  by  OAPT.  WILSON-  BARKER  of  the  '  Worcester,'  seems  to  us 
PERFECTLY  DESIGNED,  and  holds  its  place  excellently  in  'GRIFFIN'S  NAUTICAL  SERIES/  .  .  . 
Although  intended  for  those  who  are  to  become  Officers  of  the  Merchant  Navy,  it  will  be  • 
found  useful  by  ALL  YACHTSMEN."—  A  thenseum. 

%*  For  complete  List  of  GRIFFIN'S  NAUTICAL  SERIES,  see  p.  39. 

LONDON  :  CHARLES  GRIFFIN  &  CO.,  LIMITED,  EXETER  STREET,  STRAND. 
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GRIFFIN'S  NAUTICAL  SERIES. 
SECOND  EDITION,  Revised  and  Illustrated.     Price  3s.  6d. 

NAVIGATION: 
PftJ&CITXClULi      JUNTO      'mEOrtETICAl-. 

&Y  DAVID  WILSON-BARKER,  R.N.R.,  F.R.S.E.,  &c.,  <fco., 
AND 

WILLIAM   ALLINGHAM, 
FIRST-CLAS8  HONOURS,   NAVIGATION,   SCIENCE  AND  ART  DEPARTMENT. 

Hflitb  numerous  Jllustrations  anD  Examination  (Sluestfons, 
GENERAL  CONTENTS. — Definitions — Latitude  and  Longitude — Instruments 

•of  Navigation — Correction  of  Courses — Plane  Sailing — Traverse  Sailing — Day's 
Work  —  Parallel  Sailing  —  Middle  Latitude  Sailing  —  Mercator's  Chart — 
Mercator  Sailing — Current  Sailing — Position  by  Bearings — Great  Circle  Sailing 
—The  Tides— Questions— Appendix :  Compass  Error— Numerous  Useful  Hints, 
<&c. — Index. 

"  PRECISELY  the  kind  of  work  required  for  the  New  Certificates  of  competency  in  grades 
from  Second  Mate  to  extra  Master.  .  .  .  Candidates  will  flnd  it  INVALUABLE. "—Dundee Advertiser. 

"  A  CAPITAL  LITTLE  BOOK  .  .  .  specially  adapted  to  the  New  Examinations.  The 
Authors  are  OAPT.  WILSON-BARKER  (Captain-Superintendent  of  the  Nautical  College,  H.M.S. 
1  Worcester,'  who  has  had  great  experience  in  the  highest  problems  of  Navigation),  and 
<MR.  ALLINGHAM,  a  well-known  writer  on  the  Science  of  Navigation  and  Nautical  Astronomy." 
— Shipping  World. 

Handsome  Cloth,     Fully  Illustrated.     Price  7s.  6d. 

MARINE    METEOROLOGY, 
FOR  OFFICERS  OF  THE  MERCHANT  NAVY. 

BY  WILLIAM  ALLINGHAM, 
Joint  Author  of  "Navigation,  Theoretical  and  Practical." 

With  numerous  Places,  Maps,  Diagrams,  and  Illustrations,  and  a  facsimile 
Reproduction  of  a  Page  from  an  actual  Meteorological  Log-Book. 

SUMMARY   OF   CONTENTS. 

INTRODUCTORY. — Instruments  Used  at  Sea  for  Meteorological  Purposes. — Meteoro- 
logical Log-Books. — Atmospheric  Pressure. — Air  Temperatures. — Sea  Temperatures. — 

"Winds.— Wind  Force  Scales.— History  of  the  Law  of  Storms.— Hurricanes,  Seasons,  and 
Storm  Tracks. — Solution  of  the  Cyclone  Problem.— Ocean  Currents. — Icebergs.— -Syn- 

chronous Charts.— Dew,  Mists,  Fogs,  and  Haze.— Clouds.— Rain,  Snow,  and  Hail.— 
Mirage,  Rainbows,  Coronas,  Halos,  and  Meteors. — Lightning,  Corposants,  and  Auroras. — 
•QUESTIONS.— APPENDIX.— INDEX. 

'Quite  the  BEST  publication,  AND  certainly  the  MOST  INTERESTING,  on  this  subject  ever 
.presented  to  Nautical  men."— Shipping  Gazette. 

*,*  For  Complete  List  of  GRIFFIN'S  NAUTICAL  SERIES,  see  p.  39. 
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GRIFFIN'S   NAUTICAL   SERIES. 
SECOND  EDITION,  REVISED.     With  Numerous  Illustrations.     Price  3s.  6d, 

Practical  Mechanics: 
Applied  to  the  Requirements  of  the  Sailor. 

BY    THOS.    MACKENZIE, 
Master  Mariner,  F.R.A.S. 

GENERAL  CONTENTS. — Resolution  and  Composition  of  Forces — Work  done 
by  Machines  and  Living  Agents — The  Mechanical  Powers :  The  Lever ; 
Derricks  as  Bent  Levers — The  Wheel  and  Axle :  Windlass  ;  Ship's  Capstan  ; 
Crab  Winch — Tackles:  the  "Old  Man" — The  Inclined  Plane;  the  Screw — 
The  Centre  of  Gravity  of  a  Ship  and  Cargo  —  Relative  Strength  of  Rope  : 
Steel  Wire,  Manilla,  Hemp,  Coir — Derricks  and  Shears—  Calculation  of  the- 
Cross-breaking  Strain  of  Fir  Spar — Centre  of  Effort  of  Sails — Hydrostatics: 
the  Diving-bell ;  Stability  of  Floating  Bodies  ;  the  Ship's  Pump,  &c. 

"  THIS  EXCELLENT  BOOK   .   .    .   contains  a  LARGE  AMOUNT  of  information." — Nature. 

"  WELL  WORTH  the  money  .  .   .  will  be  found  EXCEEDINGLY  HELPFUL." — 
Shipping  World. 

No  SHIPS'  OFFICERS'  BOOKCASE  will  henceforth  be  complete  without 
CAPTAIN  MACKENZIE'S  '  PRACTICAL  MECHANICS.  '  Notwithstanding  my  many 
years'  experience  at  sea,  it  has  told  me  how  much  more  there  is  to  acquire." — (Letter  to  the  Publishers  from  a  Master  Mariner). 

"  I  must  express  my  thanks  to  you  for  the  labour  and  care  you  have  taker 
In  'PRACTICAL  MECHANICS.'    .    .    .    IT  is  A  LIFE'S  EXPERIENCE.    .    . 
What  an  amount  we  frequently  see  wasted  by  rigging  purchases  without  reason, 
and  accidents  to  spars,  &c.,  &c. !     'PRACTICAL  MECHANICS'  WOULD  SAVB  ALL 
THIS." — (Letter  to  the  Author  from  another  Master  Mariner). 

WORKS  BY  RICHARD  C.  BUCK, 
of  the  Thames  Nautical  Training  College,  H.M.S.  '  Worcester.' 

A  Manual  of  Trigonometry: 
With  Diagrams,  Examples,  and  Exercises.    Price  3s.  6d. 

THIRD  EDITION,  Revised  and  Corrected. 

*»*  Mr.  Buck's  Text-Book  has  been  SPECIALLY  PREPARED  with  a  view 
to  the  New  Examinations  of  the  Board  of  Trade,  in  which  Trigonometry 

an  obligatory  subject. 
"This  EMINENTLY  PRACTICAL  and  RELIABLE  VOLUME." — Schoolmaster. 

A  Manual  of  Algebra. 
Designed  *n  meet  the  Requirements  of  Sailors  and  others. 

SECOND  EDITION,  Revised.     Price  3s.  6d. 
*»*  These  elementary  works  on  ALGEBRA  and  TRIGONOMETRY  are  written  specially  for 

those  who  will  have  little  opportunity  of  consulting  a  Teacher.  They  are  books  for  "BELT- 
HELP."  All  but  the  simplest  explanations  have,  therefore,  been  avoided,  and  ANSWERS  to 
the  Exeidses  are  given.  Any  person  may  readily,  by  careful  study,  become  master  of  their 
contents,  and  thus  lay  the  foundation  for  a  further  mathematical  course,  if  desired.  It  is 
hoped  that  to  the  younger  Officers  of  our  Mercantile  Marine  they  will  be  found  decidedly 
serviceable.  The  Examples  and  Exercises  are  taken  from  the  Examination  Papers  set  for 
the  Oadets  of  the  "  Worcester.1' 

"Clearly  arranged,  and  well  got  op.         .     .    A  first-rate  Elementary  Algebra.  — 
tfautical  Magazine. 

  *,*For  complete  List  of  GRIFFIN'S  NAUTICAL  SERIES,  see  p.  39   
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GRIFFIN'S   NAUTICAL   SERIES. 
SECOND  EDITION,  Thoroughly  Revised  and  Extended.     In  Crown  8vo. 

Handsome  Cloth.     Price  4s.  6d. 

THE  LEGAL  DUTIES  OF  SHIPMASTERS. 
BY 

BENEDICT  WM.    GINSBURG,   M.A.,   LL.D.  (CANTAB.), 
Of  the  Inner  Temple  and  Northern  Circuit ;  Barrister-at-Law. 

General  Contents.— The  Qualification  for  the  Position  of  Shipmaster— The  Con- 
tract with  the  Shipowner— The  Master's  Duty  in  respect  of  the  Crew  :  Engagement ; 

Apprentices ;  Discipline  ;  Provisions,  Accommodation,  and  Medical  Comforts  ;  Payment 
of  Wages  and  Discharge— The  Master's  Duty  in  respect  of  the  Passengers— The  Master's 
Financial  Responsibilities— The  Master's  Duty  in  respect  of  the  Cargo — The  Master'* 
Duty  in  Case  of  Casualty — The  Master's  Duty  to  certain  Public  Authorities — The 
Master's  Duty  in  relation  to  Pilots,  Signals,  Flags,  and  Light  Dues — The  Master's  Duty 
upon  Arrival  at  the  Port  of  Discharge — Appendices  relative  to  certain  Legal  Matters : 
Board  of  Trade  Certificates,  Dietary  Scales,  Stowage  of  Grain  Cargoes,  Load  Line  Regula- 

tions, Life-saving  Appliances,  Carriage  of  Cattle  at  Sea,  <fcc.,  <fec. — Copious  Index. 
"  No  Intelligent  Master  should  fail  to  add  this  to  his  list  of  necessary  books.  A  few  lines 

of  it  may  SAVE  A  LAWYER'S  FEE,  BESIDES  ENDLESS  WORRY." — Liverpool  Journal  of  Commerce. 
"  SENSIBLE,  plainly  written,  in  CLEAB  and  NON-TECHNICAL  LAKGUAGK,  and  will  be  found  of 

MUCH  SERVICE  by  the  Shipmaster."— Britis h  Trade  Review. 

SECOND  EDITION,  Revised.     With  Diagrams.     Price  2s. 

Latitude  and  Longitude: 
Hoiar    to     Find    them.. 

BY    W.    J.    MILLAR,    C.E., 
Late  Secretary  to  the  Inst.  of  Engineers  and  Shipbuilders  in  Scotland. 

"  CONCISELY  and  CLEABLY  WRITTEN  .  .  .  cannot  but  prove  an  acquisition 
to  those  studying  Navigation." — Marine  Engineer. 

"  Young  Seamen  will  find  it  HANDY  and  USEFUL,  SIMPLE  and  CLEAR."— The 
Engineer.   

FIRST   AID    AT   SEA. 

THIRD  EDITION,  Revised.     With  Coloured  Plates  and  Numerous  Illustra- 
tions, and  comprising  the  latest  Regulations  Respecting  the  Carriage 

of  Medical  Stores  on  Board  Ship.     Price  6s. 

A  MEDICAL  AND  SURGICAL  HELP 
FOR  SHIPMASTERS  AND  OFFICERS 

IN    THE   MERCHANT   NAVY. 
BY 

WM.      JOHNSON      SMITH,     F.R.O.S., 
Principal  Medical  Officer,  Seamen's  Hospital,  Greenwich. 

*»*  The  attention  of  all  interested  in  our  Merchant  Navy  is  requested  to  this  exceedingly 
useful  and  valuable  work.  It  is  needless  to  say  that  it  is  the  outcome  of  many  years 
PRACTICAL  EXPERIENCE  amongst  Seamen. 
"SOUND,  JUDICIOUS,  REALLY  HELPFUL." — The  Lancet. 

*»*  For  Complete  List  of  GBEFFIN'S  NAUTICAL  SERIES,  see  p.  39. 
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GRTFFI1TS   NAUTICAL   SERIES. 

EIGHTH  EDITION.    Revised,  with  Chapters  on  Trim,  Buoyancy,  and  Calcula- 
tions. Numerous  Illustrations.  Handsome  Cloth,  Crown  8vo.  Price  7s.  6d. 

KNOW    YOUR    OWN    SHIP. 
BY  THOMAS  WALTON,  NAVAL  ARCHITECT. 

Specially  arranged  to  suit  the  requirements  of  Ships'  Officers,  Shipowners Superintendents,  Draughtsmen,  Engineers,  and  Others, 
This  work  explains,  in  a  simple  manner,  such  important  subjects  as :— Displacement. 

— Deadweight. —  Tonnage. —  Freeboard. —  Moments. —  Buoyancy.—  Strain. —  Structure. — 
Stability. — Rolling. — Ballasting. — Loading.— Shifting  Cargoes. — Admission  of  Water. — 
Sail  Area. — <fcc. 

"  The  little  book  will  be  found  EXCEEDINGLY  HANDY  by  most  officers  and  officials  connected 
with  shipping.  .  .  .  Mr.  Walton's  work  will  obtain  LASTING  SUCCESS,  because  of  its  unique 
fitness  for  those  for  whom  it  has  been  written."— Shipping  World. 

BY    THE    SAME    AUTHOR. 

Steel  Ships:  Their  Construction  and  Maintenance, 
(See  page  38.) 

FIFTEENTH  EDITION,  Tliorougldy  Revised,  Greatly  Enlarged,  and  Reset 
Throughout.  Large  8vo,  Cloth,  pp.  i-xxiv  +  708.  With  280  Illustra- 

tions, reduced  Jrom  Working  Drawings,  and  8  Plates. ,.  21s.  net. 

A    MANUAL    OF 

MARINE   ENGINEERING: 
COMPRISING  THE  DESIGNING,  CONSTRUCTION,  AND 

WORKING  OF  MARINE  MACHINERY. 

By  A.E.  SEATON,  M.I.C.E.,  M.I.Meeh.E.,  M.I.N.A. 
GENERAL  CONTENTS.  —  PART  I. — Principles  of  Marine  Propulsion. 

PART  II.  —  Principles  of  Steam  Engineering.  PART  III.  —  Details  of 
Marine  Engines  :  Design  and  Calculations  for  Cylinders,  Pistons,  Valves, 
Expansion  Valves,  &c.  PART  IV.— Propellers.  PART  V. — Boilers. 
PART  VI. — Miscellaneous. 

"The  Student,  Draughtsman,  and  Engineer  will  find  this  work  the  HOST  VALUABLE 
HANDBOOK  of  Reference  on  the  Marine  Engine  now  in  existence."— Marine  Engineer. 

EIGHTH  EDITION,  Thoroughly  Revised.     Pocket-Size,  Leather.     8s.  6d. 
A  POCKET-BOOK   OF 

MARINE  ENGINEERING  RULES  AND  TABLES, 
FOR  THE   USE   Of 

Marine  Engineers,  Naval  Architects,  Designers,  Draughtsmen, 
Superintendents  and  Others. 

BY  A.  E.  SEATON,  M.I.O.E.,  M.I.Meeh.E.,  M.I.N.A., 
AND 

H.  M.  ROUNTHWAITE,  M.I.Mech.E.,  M.I.N.A. 
"ADMIRABLY  FULFILS  its  purpose." — Marine  Engineer. 

10NOON:  CHARLES  GRIFFIN  &  CO.,  LIMITED,  EXETER  STREET,  STRAND. 
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WORKS  BY  PROF.  ROBERT  H.  SMITH,  Assoc.M.I.C.E., 
M.I.M.E.,  M.I.E1.E.,  M.I.Mln.E.,  Whit.  Sch.,  M.Ord.Meiji 

THE     CALCULUS     FOR     ENGINEERS 
AND     PHYSICISTS, 

Applied  to  Technical   Problems. 
WITH   EXTENSIVE 

CLASSIFIED  BEFERENCE  LIST  OF  INTEGRALS. 

By  PROF.  ROBERT  H.  SMITH. 
ASSISTED  BY 

R.    F.    MUIRHEAD,    M.A.,    B.Sc., 
Formerly  Clark  Fellow  of  Glasgow  University,  and  Lecturer  on  Mathematics  at 

Mason  College. 

In  Crown  8vo,  extra,  with  Diagrams  and  Folding- Plate.     8s.  6d. 
"  PROF.  R.  H.  SMITH'S  book  will  be  serviceable  in  rendering  a  bard  road  AS  BAST  AS  PRACTIC- 

ABLE for  the  non-mathematical  Student  and  Engineer."— Athenieum,. 
"  Interesting  diagrams,  with  practical  illustrations  of  actual  occurrence,  are  to  be  found  here 

in  abundance.  THE  VERY  COMPLETE  CLASSIFIED  REFERENCE  TABLE  will  prove  very  useful  In 

saving  the  time  of  those  who  want  an  integral  in  a  hurry." — The  Engineer. 

MEASUREMENT    CONVERSIONS 
(English    and    French) : 

28   GRAPHIC    TABLES    OB   DIAGRAMS. 

Showing  at  a  glance  the  MUTUAL  CONVERSION  of  MEASUREMENTS 
in  DIFFERENT  UNITS 

Of  Lengths,  Areas,  Volumes,  Weights,  Stresses,  Densities,  Quantities 
of  Work,  Horse  Powers,  Temperatures,  &o. 

For  the  use  of  Engineers,  Surveyors,  Architects,  and  Contractors. 

!n   4to,   Boards.      7s.   6d. 

%*  Prof.  SMITH'S  CONVERSION-TABLES  form  the  most  unique  and  com- 
prehensive collection  ever  placed  before  the  profession.  By  their  use  much 

'iiine  and  labour  will  be  saved,  and  the  chances  of  error  in  calculation 
diminished.  It  is  believed  that  henceforth  no  Engineer's  Office  will  be 
considered  complete  without  them. 

"  The  work  la  INVALUABLE."—  Colliery  Ovardmn. 
"  Ought  to  be  in  EVERT  office  where  even  occasional  conversions  are  required.  .  .  .  Prof. 

SMITH'S  TABLES  form  very  EXCELLENT  CHECKS  on  results."  —  Electrical  Review. 
"  Prof.  Smith  deserves  the  hearty  thanks,  not  only  of  the  ENGINEER,  but  of  the  COMMERCIAL 

WORLD,  for  having  smoothed  the  way  for  the  ADOPTION  of  the  METRIC  SYSTEM  of  MEASUREMENT, 
&  subject  which  is  now  assuming  great  importance  as  a  factor  in  maintaining  our  HOLD  upon 

TRADB."—  The  Machinery  Market. 

LONDON  :  CHARLES  GRIFFIN  &  CO.,  LIMITED,  EXETER  STREET,  STRAND. 
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SECOND  EDITION.     In  Large  8vo.     Handsome  Cloth.     16s. 

CHEMISTRY    FOR    ENGINEERS. BY 

BERTRAM  BLOUNT,       AND  A.  G.  BLOXAM, 
F.I.C.,  F.C.8.,  A.I.C.E.,  F.I.C.,  F.C.8., 

Consulting  Chemist  to  the  Crown  Agents  for  Consulting  Chemist,  Head  of  the  Chemistry 
the  Colonies.  Department,  Goldsmiths'  Inst., 

New  Cross. 

GENERAL  CONTENTS.— Introduction— Chemistry  of  the  Chief  Material* 
of  Construction— Sources  of  Energy— Chemistry  of  Steam-raising— Chemis- 

try of  Lubrication  and  Lubricants— Metallurgical  Processes  used  in  the 
Winning  and  Manufacture  of  Metals. 

"  The  authors  have  SUCCEEDED  beyond  all  expectation,  and  have  produced  a  work  which 
should  give  FRESH  POWER  to  the  Engineer  and  Manufacturer."— The  Times. 

"PRACTICAL  THROUGHOUT  ...  an  ADMIKABLB  TEXT-BOOK,  useful  not  only  to  Students, 
but  to  ENGUNBBRS  and  MANAGERS  OP  WORKS  in  PREVENTING  WASTE  and  IMPROVING  PROCESSES."— Scotsman. 

For  Companion  Volume  by  the  same  Authors,  see  "  CHEMISTRY 
FOR  MANUFACTURERS,"  p.  71  General  Catalogue. 

Pocket  Size,  Leather  Limp,  with  Gilt  Edges  and  Rounded  Corners,  printed  on  Special 
Thin  Paper,  with  Illustrations,  pp.  i-xii  +  834.    Price  18s.  net. 

(THE    NEW    "  NYSTROM  ") 

THE    MECHANICAL    ENGINEER'S    REFERENCE    BOOK 
A  Handbook  of  Tables,  formulas  and  Methods  for  Engineers, 

Students  and  Draughtsmen. 

BY  HENRY  HARRISON  STJPLEE,  B.Sc.,  M.E. 
Tables,  Formulas,  and  Reference  Data  for  Mechanical  Engineers,  comprising  machine 

design  and  information  relating  to  the  drawing  office  and  the  designing  department; 
ntended  as  a  successor  to  the  well-known  Pocket-Book  written  many  years  ago  by  the 
late  JOHN  W.  NYSTROM. — Publishers'  Note. 

WORKS  BY  WALTER  R.  BROWNE,  MA,  M.lNST.C.E., 
Late  Fellow  of  Trinity  College,  Cambridge. 

THE  STUDENT'S  MECHANICS: 
An  Introduction  to  the  Study  of  Force  and  Motion. 

With  Diagrams.     Crown  8vo.     Cloth,  45.  6d. 

"  Gear  in  style  and  practical  in  method,  *THK  STUDENT'S  MECHANICS'  is  cordially  to  b» 
recommended  from  all  points  of  view." — Athenteum. 

FOUNDATIONS  OF  MECHANICS. 
Papers  reprinted  from  the  Engineer.     In  Crown  8vo,  is. 

Demy  8vo,  with  Numerous  illustrations,  $s. 

FUEL    AND    WATER: 
A  Manual  for  Users  of  Steam  and  Water. 

BY    PROF.    FRANZ    SCHWACKHOFER  OF  VIENNA,   AND 
WALTER   R.    BROWNE,   M.A.,  C.E. 

GENERAL  CONTENTS.— Heat  and  Combustion— Fuel,  Varieties  of- Firing  Arrange- 
ments :   Furnace,    Flues,   Chimney  — The   Boiler,  Choice  of— Varieties— Feed-watei 

Heaters— Steam  Pipes— Water :  Composition,  Purification— Prevention  of  Scale,  &c.,  &c. 

"The  Section  on  Heat  is  one  of  the  best  and  most  lucid  ever  written."— Engineer. 
"  Cannot  fail  to  be  valuable  to  thousands  using  steam  power." — Railway  Engineer. 

LONDON:  CHARLES  GRIFFIN  &  CO,,  LIMITED,  EXETER  STREET,  STRAND. 



CHEMISTRY  AND  TECHNOLOGY.  47- 

SKCOND  EDITION,  REVISED  AND  ENLARGED. 
With  Tables,  Illustrations  in  the  Text,  and  37  Lithographic  Plates.     Medium 

8vo.     Handsome  Cloth.     305. 

SEWAGE   DISPOSAL  WORKS  \ 
A  Guide  to  the  Construction  of  Works  for  the  Prevention  of  the 

Pollution  by  Sewage  of  Rivers  and  Estuaries. 
BY   W.  SANTO    CRIMP,    M.lNST.C.K,   F.G.S., 

Late  Assistant-Engineer,  London  County  Council. 

"Probably  the  MOST  COMPLETE  AND  REST  TREATISE  on  the  subject  which  has  appeared 
in  our  language."— Edinburg h  Medical  Journal. 

Beautifully  Illustrated,   with  Numerous  Plates,    Diagrams,   and 
Figures  in  the  Text.     21s.  net. 

TRADES'    WASTE: ITS    TREATMENT    AND    UTILISATION. 
A  Handbook  for  Borough  Engineers,  Surveyors,  Architects,  and  Analysts. 

BY    W.    NAYLOR,    F.C.S.,    A.M.lNST.C.E., 
Chief  Inspector  of  Kivers,  Kibble  Joint  Committee. 

CONTENTS. — I.  Introduction.— II.  Chemical  Engineering. — III. — Wool  De-greasing 
and  Grease  Recovery. — IV.  Textile  industries;  Calico  Bleaching  and  Dyeing. — V.  Dyeing 
and  Calico-Printing. — VI.  Tanning  and  Fellmongery.— VII.  Brewery  and  Distillery 
Waste.— VIII.  Paper  Mill  Befuse.— IX.  General  Trades'  Waste.— INDEX. 
"There  is  probably  no  person  in  England  to-day  better  fitted  to  deal  rationally  with 

such  a  subject." — British  Sanitarian. 
"  The  work  is  thoroughly  practical,  and  will  serve  as  a  handbook  in  the  future  for  those 

who  have  to  encounter  the  problems  discussed." — Chemical  Trade  Journal. 

Now  READY.     In  Handsome   Cloth.     With  59  Illustrations.     6s.  net. 

SMOKE       ABATEMENT. 
A  Manual  for  the  Use  of  Manufacturers,  Inspectors,  Medical  Officers  of 

Health,  Engineers,  and  Others. 

BY    WILLIAM    NICHOLSON, 
Chief  Smoke  Inspector  to  the  Sheffield  Corporation. 

CONTENTS. —  Introduction.  —  General  Legislation  against  the  Smoke  Nuisance. — 
Local  Legislation. — Foreign  Laws. — Smoke  Abatement. — Smoke  from  Boilers,  Furnaces, 
and  Kilns. — Private  Dwelling-House  Smoke. —  Chimneys  and  their  Construction. — 
Smoke  Preventers  and  Fuel  Savers.  —  Waste  Gases  from  Metallurgical  Furnaces.  — 
Summary  and  Conclusions.— INDEX. 

"The  production  of  an  expert.     Should  command  the  attention  of  all  interested  in  the 
subject." — County  and  Municipal  Record. 

SECOND  EDITION.     In  Medium  8vo.     Thoroughly  Revised  and  Re-Written. 

155.  nel> 

CALCAREOUS    CEMENTS: 
THEIR  NATURE,  PREPARATION,  AND  USES. 

VVitl-*     some     Rexn£tx>lcs    upon.     Cem.en.-t     Testing. 

BY    GILBERT    R.    REDGRAVE,    Assoc.    INST.    C.E., 
Assistant  Secretary  for  Technology,  Board  of  Education,  South  Kensington, 

AND  CHARLES  SPACKMAN,  F.C.S. 
"  INVALUABLE  to  the  Student,  Architect,  and  Engineer."— Building  News. 
"Will  be  useful  to  ALL  interested  in  the  MANUFACTURE,  UHK,  and  TESTING  of  Cements."— 

Engineer. 

LOKDON:  CHARLES  GRIFFIN  &  CO.,  LIMITED,  EXETER  STREET,  STRAND. 
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ELECTRICAL    ENGINEERING. 
SECOND  EDITION,  Revised.     In  Large  Svo.     Handsome  Cloth,      Profusely 

Illustrated  with  Plates,  Diagrams,  and  Figures,     24$.  net. 

CENTRAL  ELECTRICAL  STATIONS: 
Their  Design,  Organisation,  and  Management. 

BY  CHAS.  H.  WORDINGHAM,  A.K.C.,  M.lNST.C.E.,  M.INST.MECH.E., 
Late  Memb.  of  Council  Inst-E.  E.,  and  Electrical  Engineer  to  the  City  of  Manchester  ; 

Electrical  Engineer-in-Chief  to  the  Admiralty. 
ABRIDGED     CONTENTS. 

Introductory. — Central  Station  Work  as  a  Profession. — As  an  Investment. — The  Estab- 
lishment of  a  Central  Station  — Systemsof  Supply. — Site. — Architecture. — Plant. — Boilers  — 

Systems  of  Draught  and  Waste  Heat  Economy. — Coal  Handling,  Weighing,  and  Storing.— 
The  Transmission  of  Steam.  —  Generators.  —  Condensing  Appliances.  —  Switching  Gea. 
'Instruments,  and  Connections. — Distributing  Mains. — Insulation,  Resistance,  and  Cost. — 
Distributing  Networks.  —  Service  Mains  and  Feeders.  —  Testing  Mains.  —  Meters  and 
Appliances. — Standardising  and  Testing  Laboratory — Secondary  Batteries. — Street  Light- 

ing. —  Cost.  —  General  Organisation  —  Mains  Department.  —  Installation  Department.  — 
Standardising  Department. —  Drawing  Office. — Clerical  Department.  —  The  Consumer. — 
Routine  and  Main  Laying. — INDEX. 

"  One  of  the  MOST  VALUABLE  CONTRIBUTIONS  to  Central  Station  literature  we  have  had 
•for  some  time." — Electricity. 

In  Large  8vo.     Handsome  Cloth.     Profusely  Illustrated.     1 2s.  6d.  ne •. 

ELECTRICITY    CONTROL, 
A  Treatise  on  Electric  Switehgear  and  Systems  of  Electric  Transmission. 

BY    LEONARD    ANDREWS, 
Associate  Member  of  the  Institution  of  Civil  Engineers,  Member  of  the  Institution  of 

Electrical  Engineers,  &c 

General  Principles  of  Switehgear  Design.— Constructional  Details. — Circuit  Breakers  or 
Arc  Interrupting  Devices. — Automatically  Operated  Circuit-  Breakers. — Alternating  Reverse 
Current  Devices.  —  Arrangement  of  'Bus  Bars,  and  Apparatus  for  Parallel  Running.— 
General  Arrangement  of  Controlling  Apparatus  for  High  Tension  Systems.  —  General 
Arrangement  of  Controlling  Apparatus  for  Low  Tension  Systems. — Examples  of  Complete 
Installations. — Long  Distance  Transmission  Schemes. 

"  Not  often  does  the  specialist  have  presented  to  him  so  satisfactory  a  book  as  this.  .  .  . 
vVe  recommend  it  without  hesitation  to  Central  Station  Engineers,  and,  in  fact,  to  anyone 
interested  in  the  subject." — Power. 

SEVENTEENTH  EDITION,  Thoroughly  Revised  and  Enlarged.     8s.  6d. 

A    POCKET-BOOK OF 

ELECTRICAL   RULES    &  TABLES 
FOR  THE  USE  OF  ELECTRICIANS  AND  ENGINEERS. 

BY  JOHN  MUNRO,  C.E.,  &  PROF.  JAMIESON,  M.lNST.C.E.,  F.R.S.B. 
With  Numerous  Diagrams.     Pocket  Size.     Leather,  8s.  6d. 

GENERAL      CONTENTS. 
Units  of  Measurement.  —  Measures.  —  Testing.  —  Conductors.  —  Dielectrics.  —  Submarine 

Cables. — Telegraphy. — Electro-Chemistry. — Electro-Metallurgy. — Batteries. — Dynamos  and 
Motors. — Transformers. — Electric  Lighting. — Miscellaneous. — Logarithms. — Appendices. 

"WONDERFULLY  PERFECT.  .  .  .  Worthy  of  the  highest  commendation  we  can 
give  it."— Electrician. 

"The  STERLING  VALUE  of  Messrs.  MUNRO  and  JAMIBSON'S  POCKET-BOOK."— Electrical  Review. 

LONDON:  CHARLES  GRIFFIN  &  CO.,  LIMITED,  EXETER  STREET,  STRAND. 
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AT  PRESS.     In  Handsome  Cloth.     Profusely  Illustrated. 

WIRELESS    TELEGRAPHY, 
BY 

DR.     GUSTAVE    EICHHORN. 

CONTENTS. — Oscillations. — Closed.  Oscillation  Systems. — Open  Oscillation 
Systems. — Coupled  Systems. — The  Coupling  Compensating  the  Aerial  Wire. — 
The  Receiver. — Comparative  Measurement  in  the  Sender.  — Theoretical  Results 
and  Calculations  in  respect  of  Sender  and  Receiver. — Closely- Coupled  Sender 
and  Receiver. — Loose-Coupled  Sender  and  Receiver. — Principal  Formulse. — 
The  Ondameter. — Working  a  Wireless  Telegraph  Station. — Modern  Apparatus 
and  Methods  of  Working. — Conclusion. — Bibliography. — INDEX. 

AT  PRESS.     In  Large  8vo,  Handsome  Cloth.     Very  Fully  Illustrated. 

ELECTRICITY     METERS, 
BY 

HENRY     G.     SOLOMON,    A.M.I.E.E. 

CONTENTS.  —  Introductory.  —  General  Principles  of  Continuous  -  Current 
Meters. — Continuous-Current  Quantity  Meters.— Continuous-Energy  Motor 
Meters — Different  Types. — Special  Purposes,  i.e.,  Battery  Meters,  Switchboard 
Meters,  Tramcar  Meters. — General  Principles  of  Single-  and  Polyphase  Induc- 

tion Meters.—  Single -phase  Induction  Meters. —  Polyphase  Meters.  —  Tariff 
Systems. — Prepayment  Meters. — Tariff  and  Hour  Meters. — Some  Mechanical. 
Features  in  Meter  Design. — Testing  Meters. — INDEX. 

ELECTRIC  SMELTING  AND  REFINING, 
BY  DR.    W.    BORCHERS   AND   W.    G.    McMILLAN. 

SECOND  EDITION,  Revised  and  Enlarged.      21s.  net. 

ELECTRO-METALLURGY,    A   Treatise  on. 
BY  WALTER  G.  McMILLAN,  F.I.C.,  F.C.S. 

SECOND  EDITION,  Revised  and  in  Part  Re-Written.     10s.  6d. 

ELECTRICAL   PRACTICE    IN  COLLIERIES. 
BY  D.  BURNS,  M.E.,  M.lNST.M.E. 

(See   page  58   General   Catalogue.) 

GRIFFIN'S   ELECTRICAL  PRICE-BOOK. 
EDITED  BY   H.    J.    DOWSING. 

(See  page  31.) 

LONDON:  CHARLES  GRIFFIN  &  CO.,  LIMITED,  EXETER  STREET,  STRAND, 
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THIRD  EDITION,  Revised,  Enlarged,  and  Re-issued.     Price  6s.  net. 

A   SHORT   MANUAL   OF 

INORGANIC  CHEMISTRY, 
BY 

A.    DUPRE,   Ph.D.,  F.R.S., 

WILSON    HAKE,  Ph.D.,  F.I.O.,  F.C.S., 
Of  the  Westminster  Hospital  Medical  School. 

"  A  well-written,  clear  and  accurate  Elementary  Manual  of  Inorganic  Chemistry.  .  .  . We  agree  heartily  with  the  system  adopted  by  Drs.  Dupr6  and  Hake.  WILL  MARK  EXPERI- 
MENTAL WORK  TREBLY  INTERESTING  BECAUSE  INTELLIGIBLE."— Saturday  Review. 

"There  is  no  question  that,  given  the  PERFECT  GROUNDING  of  the  Student  in  his  Science, 
the  remainder  comes  afterwards  to  him  in  a  manner  much  more  simple  and  easily  acquired. 
The  work  is  AN  EXAMPLE  OF  THE  ADVANTAGES  OF  THE  SYSTEMATIC  TREATMENT  of  * 
Science  over  the  fragmentary  style  so  generally  followed.  BY  A  LONG  WAY  THE  BEST  of  the 
imall  Manuals  for  Students.'  — Analyst. 

LABORATORY  HANDBOOKS  BY  A.   HUMBOLDT   SEXTON, 
Professor  of  Metallurgy  in  tha  Glasgow  and  West  of  Scotland  Technical  College. 

OUTLINES    OF    QUANTITATIVE    ANALYSIS. 
FOR  THE  USE  OP  STUDENTS. 

With  Illustrations.     FOURTH  EDITION.     Crown  8vo,  Cloth,  3s. 

"  A  COMPACT  LABORATORY  GUIDE  for  beginners  was  wanted,  and  the  want  has 
been  WELL  SUPPLIED.     ...     A  good  and  useful  book." — Lancet. 

OUTLINES   OF   QUALITATIVE   ANALYSIS. 
FOR  THE  USE  OF  STUDENTS. 

With  Illustrations.    FOURTH  EDITION,  Revised.    Crown  8vo,  Cloth,  3s.  6d. 

"  The  work  of  a  thoroughly  practical  chemist." — British  Medical  Journal. 
"  Compiled  with  great  care,  and  will  supply  a  want. " — Journal  of  Education. 

ELEMENTARY   METALLURGY: 
Including   the  Author's   Practical  Laboratory   Course.      With   many 

Illustrations.       [See  p.  66  General  Catalogue. 

THIRD  EDITION,  Revised.     Crown  8vo.     Cloth,  6s. 

"  Just  the  kind  of  work  for  students  commencing  the  study  of  metallurgy." — 
Practical  Engineer. 

LONDON :  CHARLES  GRIFFIN  &  CO.,  LIMITED,  EXETER  STREET,  STRAND, 
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