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PREFACE

These introductory chapters in the Infinitesimal Calculus were

lithographed and issued to the students of the First Year in

Science and Engineering of the University of Sydney at the

beginning of last session. They form an outline of, and were

meant to be used in conjunction with, the course on The Elements

of Analytical Geometry and the Infinitesimal Calculus, which leads

up to a term's work on Elementary Dynamics.

The standard text-books amply suffice for the detailed study

of this subject in the second year, but the absence of any dis-

cussion of the elements and first principles suitable foi- the first

year work, was found to be a serious hindrance to the work of

the class. For such students a separate course on Analytical

Geometry, Avithout the aid of the Calculus, is not necessary, and

the exclusion of the methods of the Calculus from the analytical

study of the Conic Sections is quite opposed to the present

unanimous opinion on the education of the engineer. It has

been our object to present the fundamental ideas of the Calculus

in a simple manner and to illustrate them by practical examples,

and thus to enable these students to use its methods intelli-

gently and readily in their Geometrical, Dynamical, and Physical

work early in their University course. This little book is not

meant to take the place of the standard treatises on the subject,

and, for that reason, no attempt is made to do more than give

the lines of the proof of some of the later theorems. As an

introduction to these works, and as a special text-book for such

208534



vi PREFACE

a " short course
"
as is found necessary in the engineering schools

of the Universities and in the Technical Colleges, it is hoped that

it may be of some value.

In the preparation of these pages I have examined most of

the standard treatises on the subject. To Nernst and Schonflies'

Lehrbuch der Differential- und Integral
-
Reclmung, to Vivanti's

Complementi di Matematica ad uso dei Chemici e del Naturalisti, to

Lamb's Infinitesimal Calculus, and to Gibson's Elementary Treatise

on the Calculus, I am conscious of deep obligations. I should

also add that from the two last-named books, and from those

of Lodge, Mellor, and Murray, many of the examples have been

obtained.

In conclusion, I desire to tender mj' thanks to my Colleagues

in the University of Sydney, Mr. A. Xewham and Mr. E. M.

Moors, for assistance in reading the proof-sheets ;
to my students,

Mr. D. R. Barry and Mr. R. J. Lyons, for the verification of

the examples ;
also to my old teacher, Professor Jack of the

University of Glasgow, and to Mr. D. K. Picken and Mr. R. J.

T. Bell of the Mathematical Department of that University, by

whom the final proofs have been revised.

H. S. CARSLAW.

The University of Sydney,

Jime 1905.
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CHAPTEE I

THE ANALYTICAL GEOMETRY OF THE STRAIGHT LINE*

§ 1. Cartesian Co-ordinates.

The position of a point on a plane may be fixed in ditt'erent

ways. In particular it is determined if its distances from two

fixed perpendicular lines in the plane are known, the usual con-

ventions with regard to sign lieing adopted. These two line.^

Ox and 0^ are called the axes of x and y ;
and the lengths OM

and OX, which the perpendiculars from the point P cut off from

the axes, are called the co-ordinates of the point P and denoted

by X and
//.

OM and OX are taken positive or negative accord-

ing as they are measured along Ox and Oij, or in the opposite

directions.

Ex. 1. ilark on a piece of squared paper the position of the points

(±2, ±3).
2. Prove that the distance between the points (2, -3), and (-2, -3) is

2\/l3.

3. Prove that tlie distance d between the points {xi, t/i), (.v.i, 2/2) i'' given

by d-= {Xi- x^f 4- (yj
-

y.,f.

4. Prove that the co-ordinates of any point (.r, y) upon the circle whose

centre is at the point (a, h) and whose radius is r, satisfy the equation

^ 2. The Co-ordinates of a Point dividing the Line joining two

given Points in a given Ratio 1 : m.

Let P^ and 1'., be the two given points {j\, y^, (./.„ //.,) ; and

let P
(.r, y) divide P^P., in the ratio / : m (see Fig. 1).

* The student is recommended to read pp. 1-25 of Hall's Introduction to

Graphical Algebra (2nd ed.) before commencing this work.



THE ANALYTICAL GEOMETRY

Draw P^Mp PM, and P^Mo perpendicular to Ox
; P^HK and

PL parallel to O.i', meeting PJNI and P^M^ in H, K, and L.

Since

Similarly

M,

y

Fig. 1.

P,H _ P^P
PL ~PP, m

ItK' tC-i

x^- X m

x(l -t- m) =
lx.2

+ mx^,

lx„ + nix.
x =

I + m

I + m

M Mj

These are the co-ordinates of the internal point of section.

Those of the external point may he found in the same way to be

IXnX=^ mx-,

l-m



OF THE STRAIGHT LINE

and y =
^2

-
m/i

I - m
Ex. 1. Prove that the co-ordinates of the middle point of the line whicii

cuts off unit length from Oa; and 0// are h and |.

2. Find the co-ordinates of the jioints of trisection of this line, and also of

the points which divide it externally in the ratio 1 : 2.

3. Prove that the C.G. of the triangle whose angular ]ioints are (2, 1),

(4, 3), (2, 5) is the point (-, 3);
and give the general theleorem.

§ 3. The Equation of the First Degree represents a Straight

Line.

If the point P move along a curve the co-ordinates of the

point are not independent of each other. In mathematical

language
"
y is a function of z," and we speak of y =/('') as the

equation of the curve, meaning that this equation is satisfied by

the co-ordinates (x, y) of any point upon the curve. For example,

the equation of the circle whose centre is at the origin and

whose radius is a is *- + y^
= a-. The properties of curves may

often be obtained by discussing their equations.

The simplest equation is that of the first degree, ax + hy + r -0,

It, b, and c being constants.

For example, take the equation

X +2y=4:.

By assigning any value to x and solving

the equation for y we obtain, as in the

accompanying table, the co-ordinates of any
number of points upon the locus. Plotting

these points on the diagram we see that

all lie upon a straight line.

AVe proceed to prove that this is true

in general ;
in other words, that all the

points whose co-ordinates satisfy the equation

ax + by + c =

lie upon a straight line.

Let P^ (Xp y^ and
P.^ {x.^, y.,) be two points upon the locus.

Then we have ax^ + by^ + c = . . .
(
1

)

aXo + by^ + c^O ... (2)

X
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Multiplying (1) by in and (2) by I, and adding, we obtain

a{b:, + m,i\) + h{ly.^ + mii^)
+ ((/ + m) = 0,

\ I + 7n / \ I + m /

-^ ^ Ix^'rmx^ ly„ + my, . .. .
,

i5ut —
^ -,

~ — are the co-ordinates of the point
/ + III I + m

dividing P-^P^ in the ratio I : in, and /, /// may be chosen at

random. It follows that if Pp P.^ are two fixed points on the

locus given by

a:c + by + c ==
0,

any other point on the unlimited straight line P^P., is also upon
the locus

;
and it can easily be shown that no point off this line

lies upon the curve.

Therefore the equation

a.r + by + c =

represents a straight line.

Ex. Prove this theorem by showing that if PQR are any three points

whose co-ordinates satisfy the given equation, the triangle PQR has zero area.

^ 4. In the last article we have shown that the equation of

the first degree represents a straight line. It is not then

necessary in plotting the locus given by such an equation to

proceed as we did above in the example x + 2y - 4. Two points

fix a straight line. Therefore we have only to find two points

whose co-ordinates satisfy the equation. The most convenient

points are those where the line cuts the axes, and these are

found by putting x = and y = 0, respectively, in the equation.

Ex. 1. Draw tlie lines (i.) ^' = 0, x= l, ;r= - 1

(ii.) 7/
= 0, y= 2, y=-2

(iii.) r + y=0, x + y^l
(iv.) y= 2x, //=2,r-r3

2. Determine whether the point (2, 3) is on tlie line

4x + 3y=l5.
3. What is the condition that the point («, h) should lie upon the line

ax + by= 2ab '{
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§ 5. The Gradient of a Line.

When we speak of "the gradient" of a road being 1 in 200

we usually mean that the ascent is 1 foot vertical for 200 feet

horizontal. This might also be called the slope of the road.

The same expression is used with regard to the straight line.

The "gradient" or the "slope" of a straight line is its rise per

unit horizontal distance
;
or the ratio of the increase in y to the

increase in x as we move along the line. This is evidently the

same at all points of the

straight line, and is equal

to the tangent of the angle

the line makes with the

axis of ;'; measured in the

positive direction.

To save ambiguity it

is well to fix upon the

angle to be chosen, and

in these pages it will be

convenient to consider

the line as always drawn

upward in the direction

of the arrow (Fig. 2), and thus to restrict the angle (/>
to lie

between 0° and 180^

Wiien 0<(^<^ the gradient is positive.

When ^ <(/)<- the gradient is negative.

Ex. 1. Write down the values of <p for the lines in § 4 (i.).

2. Prove that tlie gradient of the line y= m.v + c is m, and interpret the

constant c.

§ 6. Different forms of the Equation of the Straight Line.

In the preceding articles we have shown that the equation

ax +
1)1/ + c =

represents a straight line, and we have seen how the line may
be drawn when its equation is given. We have now to show

how to obfain the equation of the line when its position is given.

(A) The equation of the line fhrouf/h two given points.

Fig. 2.
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Let
(a-p //^), (.7;.,, y.^ be the two given points. Let

(.';, y) be

the co-ordinates of any jjoint upon the line. Then it is clear

(cf. Fig. 1) that

•^—^1 = the gradient of the line,

and that Vilih =
.Xg
—

X-^

Thus we have the equation

yjlllJ-hZll
«//

^~
tC-i •^o t'j-*

between the co-ordinates
(a-, y) of the representative point and

the co-ordinates
(.r^ y^ (.r.,, y,^ of the fixed points. This is the

equation of the straight line through these points. It is more

conveniently written

X - x^_ y
-

y^

^1
-

^2

~
Vi- y-2

It folloAvs that

(B) The equation of the line through [u-^, y^), making an angle ^
with the axis of x, is

qc /yi
' ^

and that

(C) The equation of the line which cuts off a length c from the axis

of y, and is inclined at an angle whose tangent is in to the axis ofx, is

y = mx + c,

and that

(D) The equation of the line which cuts
off' intercepts a and h from

the axis of x and y is

%f=l.a b

Ex. 1. Write down the equations of the lines through the following pairs
of points : (1, 1) (1,

-
1) ; (1, 2) (

-
1,
-

2) ; (3, 4) {5, 6) ; {a, b) {a,
-

h).

'

2. Find the equations of the lines tlirough the point (3, 4) with gradient
±5, and draw the lines.

3. The lines y= x and y = 2x form two adjacent sides of a parallelogram,
the <)2)posite angular point liciiig (4, 5). Find the equations of the other two
sides

;
and of the diagonals.
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4. Write down the equations of the lines making angles 30°, 45°, 60°,

120°, 135°, and 150° with the axis of x, which cut this axis at unit distance

from the origin in the negative direction.

§7. The "Perpendicular" Form of the Equation of the

Straight Line.

A straight line is determined when the length of the perpen-

dicular upon it from the

origin, and the direction

of this perpendicular are

given.

Let ON be the perpen-

dicular, ]), upon the line.

Let the angle between

ON and Ox be a, this

angle lying between

and 27r (cf. Fig. 3).

Then N is the point
, •

X Fig. 3.

(|> cos a, p Sin a).

Using the form (B) of § 6 the equation of the line becomes

y
- V sm a

-— = tan d) = tan a + „
x-p cos a \ 2

cos a

sin a

This reduces to

(E) X cos a + y sin a =7/.

N.B.—The quantity p is to be taken always positive, and the

angle a is the angle between 0.^ and ON.

§ 8. The Point of Intersection of Two Straight Lines.

Since the point of intersection of the two lines

ax + by + ( -

ax + b'y + c -

lies on both lines, its co-ordinates x, y satisfy both equations.

Solving the equations we have

X V 1

ic' - h'r m — c'a ah' — a'l
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It is clear that if

ah' - ah =
0,

and neither of the other two denominators vanish, the co-ordinates

.T, y are infinite, and the lines are parallel.

If in addition

ca' - c'a =

, a h c
we have - = - = -

a b c

and the third denominator he - h'c also vanishes.

In this case the two equations are not independent, and they

really represent the same straight line.

Ex. 1. Find the co-ordinates of the point of intersection of the line.s

.c+ 2y=&.

Illustrate your result by a diagram.
2. Find the equations of the lines through (2, 3) parallel to

3. Find the co-ordinates of the angular points of the triangle whose sides

are given by
^+ y= 2 . . . . . (1),

Sx-2y=l (2),

ix+Bi/=2-l (3).

Also find the equations of the medians of this triangle and the co-ordinates

of its C.G.

§ 9. The Angle between Two Straight Lines whose Equations

are given.

The equations of the lines may always be reduced to the forms

(
1
) If

= inx + c,

(2) y=m'.r + c',

and in this case the angles they make with the axis of x are
f/j

and (^' where
tan (^

= m, (cf. Fig. 4)

tan
</)'

= m'.

Hence

tan ((^
-

(/,
= r = tan d,

1 -f- mm

and the angle 6 between the lines is tan ( ,
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Unless care is shown in taking for the line (1) that with the

greatei^ slope, Ave would obtain a negative value for the tangent

of the an trie between the lines. The reason for this is obvious.

Fig. 4.

It follows that

(i.) The lines are parallel if m = m
;

(ii.) The lines are perpendicular if mm +1 = 0.

When the equations are

ax + hij + c —

a'x + h'!J + r,' =

(i.) The lines are parallel if
— = p .; -y

(ii.) The lines are perpendicular if aa + hh' = 0.

Ex. 1. Write down the equation of the straight liue through (1, 2)

perpendicular to x-y = 0.

2. Find the angles between the lines

..•-2y+l=0}
x + By + 2 = 0)

and 4a; + 3j/=12)
3,'+ 4?/ =12/'

and draw the lines.
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3. Write down the equation of the straight line through (a, b) perpen-
dicular to bx-ay= a^ + IP'.

4. Write down the equation of the line bisecting the line joining (1, 2)

(3, 4) at right angles, and the equations of the perpendiculars upon both lines

from the origin.

5. Prove that l{x-a)-^m{y-h) = () is a line through (a, &) parallel to

lc + viij
=

; and write down the equation of the line through (a, h) perpen-
dicular to lx + my= 0.

6. AVrite down the equations of the lines through the C.G. of the triangle
whose angular points are at (4, -5) (5, -6) (3, 1) parallel and perpendicular
to the sides.

§ 10. The Length of the Perpendicular from a Point
(.i^, v/^,)

upon a Straight Line whose Equation is given.

(i.) If the equation of

the straight line is given
in the "

perpendicular
"

form

X cos a + y sill u =J) (1),

the line through P (.Tq, y^)

parallel to it is given

Fio.5.
(^^ (2) by

{x
-

.Tq)
cos a-T (y

-
y^ sin a =

or X cos a + y sin a = Xq cos a + yQ sin a.

(2),

But if Pq is the perpendicular ONq from upon the line (2),

and if N, Nq are on the same side of 0, the equation of PN^ may
be written

X cos a + //
sin a =2\r

Therefore

X(^
cos a +

v/p
sin a =2\y

Also the perpendicular from P upon the line (1) is

ONp - ON, (cf. Fig. 5)

ie. i>^-p,

i.e. Xq cos a + ^0 sin a -p.

In the case when N^ lies between and N we have to take

P-Po
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and when N, Nq lie on opposite sides of 0, ON^^ makes angle

(a +
tt)

with O'', and we have to take

In both these cases the length of the perpendicular is given by
-

Xq cos a -
y^ sin a + p.

(ii. ) If the equation of the line is given as

ax + bj/^c (r>0) . . . (1),

we have first to throw this into the "
perpendicular

"
form.

Suppose it becomes
X cos a + // sin a = 'p . . . (2).

Then, by equating the values we find from these two equa-

tions for the intercepts upon the axes, we obtain

cos a sin a p
a be

Therefore c cos a = ap,

c sin a = bp,

and c- = (a- + b^)p- ;

,-. c= \/(T- + b^^ p,

where there is no ambiguity in the square root, as both j' ^md c

are positive.

Hence cos a =

sin a =
b

c
and p — —r .

,^
'Ja? + b^

and the
"
perpendicular

"
form of the line

ax + by = c (O 0)

. ax by c

vPTP
"^

s/wTp
~
'slWTW

Hence the length of the perpendicular from {x^, i/q) upon

ax + bi/
- c =

s/a^ + b'-
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And the positive sign is taken when
{x^, y^) is upon the opposite

side of the h'ne from the origin, the negative sign when it is on

the same side of the line as the origin.-'

This result holds for the equation of the straight line,

in Avhatever form it is given. The reason for the change of

sign in the expression for the length of the perpendicular is

that the equation of the first degree Ix + my + n = divides the

plane of xy into two parts, in one of which Ix + my + n is positive :

and in the other it is negative. Upon the line the expression
vanishes.

Ex. 1. Tiausforni the equations

(i. ) 3.r ± 4?/
= 5 (ii, )

3./; + 4?/
= - 5

into the perpendicular form, and from your tables write down tlie value of

a for each.

2. "Write down the length (if the iperpendicular from the origin upon the

line joining (2, 3) (6, 7).

3. Write down the length of the perpendicular from the point (2. 3) upon
the lines

\jc + iy^l, 5x+\2y= 2Q, 3.r + 4(/ = S.

4. P'ind the inscrilied and escribed centres of the triangle whose sides are

Zx + 4?/= 0, 5x-12y= 0, y=\5,
and the equations of the internal and external bisectors of the angles of

this triangle, distinguishing the different lines.

[The student is referred for a fuller discussion of the subject matter of this

chapter to (i.) Briggs and Bryan's Elements of Co-ordinate Geometry, Part I.

chapters i.-x.
; (ii. ) Louey's Co-ordinate Geometry, chapters i.-vi.

;
and (iii.)

to C. Smith's Elementary Treatise on Conic Sections, chapters i. and ii.

In all these hoolcs a large number of examjiles will be found illustrating
the points we have discussed.]

EXAMPLES ON CHAPTER I

1. Find the equation of the locus of the point P which moves so that

(i.) AP2+PB-^= c2

(ii.) AP2-PB2= c-^

(iii.) AP.PB = c-,

A and B being the points (-«, 0), {a, 0).

Ride.—To find the length of the perpendicular from a given point (o:„, y^)

upon a given straight line

lx-\-my-\-n = Q,

insert tlie values (,r„, ?/„) in place of {x, y) in the linear exjiression and divide by
the square root of the sum of the squares of the coefficients of x and y in this

expression.
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2. Find the equation of the straight line through (
-

1, 3), (3, 2), ami

show that it passes through (11, 0).

3. Show that the lines

3.>'- 2?/H-7--=0

ix+ 2/ + 3 =
19./;+ 13?/ =0

all pass through one point, and lind its co-ordinates.

4. Find the equations of the lines through the origin parallel and perpen-
dicular to the lines of Ex. 3

;
also those through the point (2, 2).

.5. Find the equation of the line joining the feet of the perpendiculars
from the origin u]ion tlie lines

4x+ il=\1
x + 2y= o.

6. Draw the lines

4?/ + 3a-= 12

Sy + ix=2i.

Find the equations of the bisectors of the angles between them, distinguish-

in£c the two lines.

7. The sides of a triangle are

,,:- ?/+ 1=0

X-ilf+ 7 =
x + 2ij-U=0.

Find (i. ) the co-ordinates of its angular points,

(ii.) the tangents of its angles,

(iii. ) the e(|uations of the internal and external bisectors of these

angles.

8. The angular points of a triangle are at (0, 0) (2, 4) (
- 6, 8). Find

(i.) the equations of the sides,

(ii.) the tangents of the angles,

(iii. ) the equations of the medians,

(iv.) the equations and lengths of the perpendiculars from the angular

points on the opposite sides,

(v.) the equations of the lines through the angular points parallel to

the opposite sides,

(vi.) the co-ordinates of the C.G.,

(vii.) the co-ordinates of the centres of the inscribed, circumscribed,

and nine-points circles.



CHAPTER II

THE MEANING OF DIFFERENTIATION

§ 11. The Idea of a Function.

If two variable quantities are related to one another in such

a way that to each value of the one corresponds a definite

value of the other, the one is said to be a function of the other.

The variables being x and
i/,
we express this by the equation

y =f{x) ;
in Avhich case z and y are called the independent and

dependent variables respectively. Analytical Geometry furnishes

us with a representation of such functions of great use in the

experimental sciences. The variables are taken as the co-

ordinates of a point, and the curve, whose equation is

gives us a picture of the way in which the variables change.

So far as we are concerned in these chapters the equation

y -f{x) may be assumed to give us a curve. There are, how-

ever, some peculiar functions which cannot thus be represented.

v^ 12. Examples from Physics and Dynamics.

If a quantity of a perfect gas is contained in a cylinder

closed by a piston the volume of the gas Avill alter with the

pressure upon the piston. Boyle's Law expresses the relation-

.?hip between the pressure p upon unit area of the piston,

and the volume r of the gas, when the temperature remains

unaltered. This law is given by the equation

pv=]>^>\0'

where p^, l^^
are two corresponding values of the pressure and

14
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the volume. When the volume v for unit pressure is unity,

this equation becomes

2w= 1,

and the rectangular hyperbola, Avhose equation is

X1J
=

1,

will show more clearly than any table of numerical values of p
and V the way in which these quantities change.

When the pressure is increased past a certain point Boyle's

Law ceases to hold, and the relation between p and v in such a

case is given by van der Waals's equation :
—•

a and b being certain positive quantities which have been

determined by experiment for different gases. Inserting the

values of a and h for the gas under consideration, and drawing
the curve

with suitable scales for x and
//,

the Avay in which ^; and v vary
is made evident.

Such illustrations could be indefinitely multiplied. We add

only two, taken from the case of the motion of a particle in

a straight line.

When the velocity is constant, the distance s from a fixed point

in the line to the position of the particle at time t is given by

s = rt +
Sq,

where s^
is the distance to the initial position of the particle,

and V is the constant velocity.

The straight line

y = vx +
s^

then represents the relation between s and t.

When the acceleration is constant, the corresponding equation is

s = 1/^2 + ^_j^
^

,^^

where / = the acceleration,

Vq
= the initial velocity,

5,5
= the distance to the initial position.



f

16 THE MEANING OF DIFFERENTIATION

In this case we have the parabola

y = h'^x- + r^x +
Sy.

Also in both these cases we might obtain an approximate value

of s for a given value of /, or the value of / for a given value

of s, by simple measurements in the figures representing the

respective curves.

i^ 13. The Fundamental Problem of the Differential Calculus.

The aim of the Differential Calculus is the investigation of

the rate at which one variable quantity changes with regard to

another, when the change in the one depends upon the change

I in the other, and the magnitudes vary in a continuous manner,

y The element of time does not necessarily enter into the idea of

a rate, and we may be concerned with the rate at which the

pressure of a gas changes with the volume, or the length of a

metal rod with the temperature, or the temperature of a con-

ducting wire with the strength of the electric current along it,

or the boiling point of a liquid with the barometric pressure, or

I
the velocity of a wave with the density of the medium, etc. etc.

The simplest cases of rates of change are, however, those in

* which time does enter, and we shall liegin our consideration of

the subject with such examples.

§ I i. Rectilinear Motion.

In elementary dynamics the velocity of a point, which is

moving uniformly, is defined as its rate of change of position,

and this is equal to the quotient obtained by dividing the

distance traversed in any period by the duration of the period,

the distance being expressed in terms of a unit of length, and

the period in terms of some unit of time.

When equal distances are covered in equal times this fraction

is a perfectly definite one and does not depend upon the time,

1)ut when the rate of change of position is gradually altering,

as, for instance, in the case of a body falling under gravity, the

value of such a fraction alters with the length of the time con-

sidei-ed. If, however, we note the distance travelled in difterent

intervals measured from the time t, such intervals beinir taken

smaller and smaller, we find that the values we obtain for what we
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might call the average velocity in these intervals are getting
nearer and nearer to a definite quantity.

For example, in the case of the body falling from rest we have

s=^hgf.

Let (s + &) be the distance which corresponds to the time

{f + 8f).

These quantities 8s and 8i added to s^ and f ave called the
" increments

"
of these variables.

Then .s + 8s - hg{t + 8t)"
= hgt- + gt . 8t + hg(8ty',

8s
and .-. ~- -^ qt + }jg8f.

8t

It is clear that as 8t gets smaller and smaller, the "
average

velocity
"
in the interval 8f approaches nearer and nearer to the

value gt. This value towards which the average velocity tends

as the interval diminishes is called the velocitij at the instant t, on

the understanding that wo can get an "average velocity" as

near this as we please by taking the interval sufficiently small.

The actual motion with these average velocities in the successive

intervals would be a closer and closer approximation to the con-

tinually changing motion in proportion to the minuteness of the

subdivisions of the time. The advantage of the method of the

Dirt'erential Calculus is that it gives us a means of getting

these "instantaneous velocities," or rates of change, at the time

considered, and that, when the mathematical formula connecting
the quantities is given, we can state what the rate of change of

the one is with regard to the other, without being dependent

upon an approximation obtained by a set of observations in

gradually diminishing intervals.

§ 15. Limits. Differential Coefficient.

If a variable which changes according to some law can be

made to approach some fixed constant value as nearly as we please,

but can never become exactly equal to it, the constant is called

the limit of the variable under these circumstances. Now if

this variable is
.'•,

and the limiting value of x is a, the dependent
variable y (where y^f{o')) may become more and more nearly

equal to some fixed constant value h as x tends to its limit '/,
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and we may be able to make y difter from h by as little as we

please, by making x get nearer and nearer to a. In this case

h is called the limit of the function as x approaches its limit a, or

more shortly, the limit of the function for x = a, and this is

written Lt^^,, (y)
= h.

„ X .
sin a;

E.g. {I.)
It y=~r^

(li.) If /y
=

1

or, more correctly, y has no limit for x = Q.
'^

In this last example the function increases without limit as x

approaches its limit. AVe might have the corresponding case

of x increasing without limit and the function having a definite

limit : e.g. if

y = a^ where < ft< 1,

M.= oo(y)
= o.

This idea of a limit has already (§ 14) been employed, and

when s = hgt~, the velocity at the time t of the moving point is

what we here define as

In the general case of motion when the relation between

s and t is s —f(t), we take the distance at the time
(/
+ o^) as

(s + 8s), and we have

s + 8s^f{t + 8t),

8s _ /(/ + 8t) -fi t)

8f~ 8t

Hence the velocity at the time t is given by

''-^^''=\8t)-^^"='\'~ 8t /•

"

P^or a full discussion of the idi-a of /irnit, see Gibson's Calculus, chapter iv.

or
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This limiting value of the ratio of the increment of .s to the

increment of t as the increment of t approaches zero is called the

differential coefficient of s with regard to t. Instead of tcriling

Lt&t=J'v;], '^'<^ use the symbol —,,for this limiting value. It must,
\6t J at

hoioever, he carefully noticed that in this symbol ds and dt cannot,

ds
so far as we are here concerned, be taken separately, and that -y,

stands for the result of a definite mathematical operation, viz. the

evaluation of the limiting value of the ratio of the corresponding

increments of s and t, as the increment of t gets smaller and smcdler.

We shall see later in § 38 that there is another notation in

which ds and dt are spoken of as separate quantities, but until

that section is reached, it will be Avell always to think of the

differential coefficient as the result of the operation we have just

described. It is clear that if 8t is very small, the corresponding
increment of s, namely 8s, will be very approximately given

by -7-
• St. Still it is not a true statement, but only an approxi-

mation, to say that in this ease

This approximation may, however, be employed in finding

the change in the dependent variable due to a small change in

the independent variable, or the error in the evaluation of a

function due to a small error in the determination of the

variable, provided Ave know the differential coefficient of the

function.

We add some examples in which the differential coefficients

are to be obtained from the above definition, viz.—

If ^_f,f. ds_ ffit + 8t)-f(t) ~^

Ex. 1. Us= at + b, -rr= a.
dt

1. If s= «<2 + 2W + c,
~ = 2(«< + h).

3. Ife=< '5^
= w.

at

4. lia;= «sinwc, -;- = aaj cos u/.
dt
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i; IG. Geometrical Illustration of the Meaning of a

Differential Coefficient.

In the last sections we have been led to the idea of a limiting

value by the consideration of a moving particle, and have thus

been brought to define the

y



THE MEANING OF DIFFERENTIATION 21

Since the slope of the tangent is known when
-y

is found, we can

at once proceed to write dotvn the equation of the tangent at a 'point on

the curve y ^f(x), when the value of
'- at that point is known.

Ex. 1. If/(a') = c""', write down /(.r + /i) ;
and show that

Zt fi.r)-f{x-hy
h

Interpret this result geometrically.

2. Find the value of
-p

at the point (2, 1) on the curve 4y= x^, and show

tliat the equation of the tangent at that point to this parahola is

^ 17. Approximate Graphical Determination of the Differ-

ential Coefficient.

When the equation connecting x and
//

is such that the curve

may be easily drawn, the slopes of the various positions of the

secants PQ, as Q is made to move nearer and nearer to P, will

give a series of values more and more nearly approximating to

the value of ^r ^t that point. An instructive example is the

case of the curve

in which the following table of values of 8x, 8// and can
ox

readily be obtained, and the way in which ; approaches its
ox

limiting value 2 at the point where x = 1 be made evident.

6a;
jl
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§ 18. In the chapters which immediately follow Ave shall

show how to obtain the differential coefficients of the most

important functions. This process of obtaining the differential

coefficient is called differentiating the function. We shall see

that in very many cases there is little difficulty in differentia-

tion, and that the knowledge of the differential coefficients is

of great value not only in geometry, but in the application of

mathematics to physics.
clv

From Fig. 7 it is obvious that when -f- is positive the^ ax

tangent is inclined at an acute angle to the axis of x, and y

increases there with an increase of x, or decreases with a

decrease in .'•. When -f- is negative, the tangent is inclined
do'

^

at an obtuse angle to the axis of x, and ?/ decreases as x

fry

increases, or vice versa. When
-^

=
0, the tangent is parallel

to this axis. Let us imagine the curve ABC to be a road,

and that a traveller is marching along it in the positive direction

of the axis of
,'•,

which is horizontal. When the traveller ascends.

dy '('/

j^
is positive ;

when he descends, ~ is negative ;
and if the

road is properly rounded off and no sharp corners occur, when

he passes from ascending to descending, or the reverse,

changes sign by passing through zero.

dy

dx
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The acceleration of a moA'ing point is defined in Dynamics
as the rate of change of its velocity. Therefore, if we write

V for the velocity at time t, the acceleration at that instant is

dv

-J-.-
If the position of the point at time / is given by 5; =f{t),

ds
then the velocity v

and the acceleration

dt

dc d /ds-^

dt^df' [dt

s =
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8. Find apjiroximately the error made in tlie volume of a sphere by
making a small error 5?- in the radius r. Tiie radius is said to lie 20 ins. ;

give approximate vahies of the errors made in the computed surface and
volume if there Ije an error of -1 in. in the length assigned to tiie radius.

Also calculate the ratio of the errors in the radius, the surface, aud the \-olume.

9. The area of a circular plate is expanding by lieat. When tlie radius

passes tlirough the value 2 ins. it is increasing at the rate of -01 in. per sec.

Show that the area is increasing at tlie rate of •047r sq. in. per sec. at that
time.

10. The length of a bar at temperature 0" is unity. At temperature t° its

length I is given by the equation

l = l+at + bt~,

find the rate at which the bar increases in length at temperature f, and give
an approximation to the increase in length due to a small rise in temperature.

11. If the diameter of a spherical soap-bubble increases uniformly at the
rate of "1 centimetre per second, show that the volume is increasing at the
rate of -277 cub. cent, per second when the diameter becomes 2 centimetres.

12. A ladder 24 feet long is leaning against a vertical wall. The foot of

the ladder is moved away from the wall, along the liorizontal surface of the

ground aud in a direction at right angles to the wall, at a uniform rate of 1

foot per second. Find the rate at which tlie top of the ladder is descending
on the wall, when the foot is 12 feet from the wall.



CHAPTER III

DIFFERENTIATION OF ALGEBRAIC FUNCTIONS; AND SOME
GENERAL THEOREMS ON DIFFERENTIATION

,5^
19. The Differential Coefficient of r".

Let ij
= x":

Then //
+ 5?/

=
(a;

+ Sx)"-

Sx\
"

= a;"
(

1

dx

+ —
X

8// X,

8x 8x

But by the Binomial Theorem, when h<\,

Therefore

(1 +/;.)» =.1 +;,//+ ^^-1 /,2 + . . .

„/, n ^ 71.72.
- 1 (&j)"-' \

hy^_
\ X 1.2 ij;2 )

Sx &r
'

Si/ , n.u - 1 ,,
. . /^ nx"

- 1 + -r--~ x>'
-
-8x + . . .

•-

8x 1.2

The fact that we have an iiitinite series on tlie right hand sometimes causes

difficulty to the student, as he imagines tliat what he calls the summing of the

infinite number of small terms involving 8:c, [dx)-, etc. . . . may give rise to a

finite sum. The answer to tliis difficulty in general is to lie fouml in a true view

of the meaning of a convergent infinite series, l>ut in the particular case of the

Binomial Series we are able to say what the possible error by stopping after a

25
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provided that 8x is so small that

X

Hence
Lk,=o(^^^

=nx''-\

and the differential coefficient of x" is «x''~^

This is true whatever value n may have, provided it is in-

dependent of X.

Thus ^('^)-A^S
dx
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Then y + Sy
—
a{u + 811),

- 8y 8u
and ^ = a— •

8x 8x

Therefore
Ltsx=o\j-,J

= <^Ltsx=o ( v-,j
,

dy du
or -f-

= a-j--
dx dx

.'. The differential coefficient of the ^^Toduct of a constant and a

function is equal to the product of the constant and the differential

coefficient of the function.

The geometrical meaning of this theorem is that if all the

ordinates of a curve are increased in the same ratio, the slope of

the curve is increased in the same ratio.

Proposition III. Differentiation of a Sura.

Let y = ";/ + r.

Then, as before, y + 8y
=

{u + 8u) + (r + 8v),

8y 8u 8v

8x 8.r 8x

Proceeding to the limit,

dy du dr

dx dx dx

The same argument applies to the sum (or difference) of

several functions, and we see that the differenticd coefficient of such

a sum is the sum of the several differential coefficients.

Ex. Differentiate the following functions :
—

(i.) x{2 + ,-f

(ii.) {a + b.>: + cx-)\'x

,... ,
x^ .7'3 ,->;2 X , \ \ 1

2 + 2x+Zx'
(iv.)

\x

Proposition IV. Differentiation of the Product of Tv:o Fvnctions.

Let y — uv,

Then, as before, y + 8y
= {u + 8u)(v + 8v).
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Thus hy - vSu + uSr + 8u . 8v,

J St/ 8u 8v „ 8v
and

^i
= v +u^ + 8^l.^bx 8x bx 8x

Proceeding to the limit,

dy d'U dv
_

dx dx dx
'

since as 8x approaches its limiting value zero, 8u approaches

,
, 8u 8v - du , dv

zero also, and ^, ^^^ become^- and -5--
bx 8x dx dx

This result may l^e written

1 dy 1 du 1 dv

y dx u dx V dx

and when y
—

uvw, we Avould obtain in the same Avay,

1 dy 1 du 1 dv 1 dw~ ^ = - •

:r + ~ T + - ^- (Cf. ^31.)
y dx u dx V dx w dx

In the case of two functions it is easy to remember that the differ-

ential coefficient of the product of ttvo functions is equal to the first

function x the differential coefficient of the second + the secondfunction x

the differential coefficient of the first.

Ex. Differentiate the following functions :
—

(i.) (l+ic2)(2a;'-^-l)

(ii.) (2a;2+l)(a; + 2)2

(iii.) iax + bf{cx + df-

(iv.) x{x+ l){x + 2),

and show that the results are the same if the expressions be multiplied
out and then differentiated.

Proposition V. Differentiation of a Quotient.

Let y = ujv.

u + 8u
Then y + 8y =

V + 8v

u. + 8u u vSu - uSv

and ^^^vV + bo V , / , bV
L-\\ +

V V
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the functions being such that for a small change in r, Ave have a

definite and small change both in u and
i/.

-n, j_ 81/ 8y Su
But ^ = ^ • ^>

dx 6u 8x

.-. proceeding to the limit,

Thus djj^dy^(lu^
dx du dx

Ex. 1. When y=
___^,,

we may put

and u = x + a)

1^

dy "\?i-/ du'<.i)
, —

,
-

, -, where w= a; + a,dx du dx

= -4.1

{x + af

2. When
2/
= (a^ + ^)", prove

-- =
?ia(aa; + &)»-i.

3. When ?y
=

(1
-

x) \/r+^2

g=(l-.)|(^/^^w^:^^(l-.).

•D 4.
'^

/, .,
d\lu du ,

^ .,

but -3- rjl+x-— —,— •
-;—,

where u = l+ x^,dx du dx

= (~^)i2x)V2\/l+a;V'

>Jl+x^

di/ _ (1
-
x)x .

_ -Ix'-x+l

. ^,71. /ax+b dy ad -be
4. When y= ^ ^^^, prove

^=2V(ax4-fc)(c.. + rff
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EXAMPLES ON CHAPTER III

Find V^ in the followinc' cases :-

(Ix

(i
/=(,v'x-^'-)"

(vii.)^=
,Cb + ft.!-'"

(ii.) 2/= n/2^^:^^^P (viii-) 2/=(l+.r")'

(iii. ) ?/
= \/(.r + 1 )(a' + 2) (ix. ) y = N-'x-^ + a2 + sV^ -

a'-^

(iv. ) y = {x + a)H,r. + by (x. ) 7/
= -,-== + ,-

:^
\' X' + a- \ix- - a''

/l+x , .
. a^

,
. , {a-x)p ,

..
, /T+x + a?

2. Find the gradient at the point (./„, 2/„)
in the following curves :

—
(i.) y-= 4ax

(ii.) x- + y'= a-

(iii.)j±i:^i

(iv.) 2j'2/
= c-.

3. Prove that the equations of the tangents at {Xq, */„)
to these curves are

respectively
(i-) 2/2/0

=
2«(.'' + a-o).

(ii.) xXn + yijn^aA

,iu.,?±t=>.

(iv.) xy^ + y.r^^c-.

4. A boy is running on a horizontal plane in a straight line towards the

base of a tower 50 yards high. How fast is he approacliing the top, when he

is 500 yards from the foot, and he is running at 8 miles per hour ?

5. A light is 4 yards above and directly over a straight horizontal patli on

which a man six feet high is walking, at a sjieed of 4 miles per hour, away
from the light.

Find (i.) The velocity of the end of his shadow ;

(ii.) The rate at which his shadow is increasing in length.

6. A man standing on a wharf is drawing in the painter of a boat at the

rate of 4 feet per second. If his hands are 6 feet above the bow of the boat,

prove that the boat is moving at the rate of 5 feet per second when it is 8

feet from the wharf.

7. A vessel is anchored in 10 fathoms of water, and the cable passes over a

sheave in the bowsprit which is 12 feet above the water. If the cable is hauled

in at the rate of 1 foot per second, prove that the vessel is moving through
the water at a rate of 1^ feet per second when there are 20 fathoms of cable

outt

^tra:

UNIVERSITY )
OF
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8. If a volume r of a gas, contained in a vessel luitler pressure jr;,
is com-

pressed or expanded without loss of heat, the law connecting the pressure and

volume is given by the formula

y^v''^ constant,

where 7 is a constant.

Find the rate at which the i)ressure changes with the volume.

7 .2

9. In Boyle's Law. where iiv— c-, show that -r-= —.,. What does the'
dp p'

negative sign in this exjuession mean ?

10. In van der Waals's equation

I ;;+„](''
-

//)

— constant.

Prove that

dv _ {v
-

h)

dp ( a 2ab\



CHAPTEE IV

THE DIFFERENTIATION OF THE TRIGONOMETRIC FUNCTIONS

{The angles are supposed to he measured in Radians)

§ 21. The Differential Coefficient of the Sine.

Let y = sin x.

Then y + % = sin (.'
+ 6x),

and S'/
= sill (.' + ?>:<)

- sin x

8x
= 2 cos ( ;r + — ) sin

/ 8x

8y ( ^4^^Therefore
&7.

=
^°H'''

"
o") 1 "l|r"

Proceeding to the limit, and remembering that

/sin d'
Lt.A-^

)

=
1, it follows that

dil

-f
= cos .'•.

(I.r

K.li.—When y = sin iinx + u)

dii dii da .

-^ -^ •

-T- where u = mx + v
dx dii dx

d(sm u) du

d\L dx

- cos ?« . m
= m cos {mx +

ii).

Ex. Prove from the detinitiou of —, that when 7/
= sin {mx + n),

CLdb

(III , .

-^=vi COS {m.y + n).
ax

4 33
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§ 22. The Differential Coeflacient of the Cosine.

Let y = cos X.

Then y + % = cos
(;*•

+ 8x)

and 8y
= cos

(.f
+ 8x)

- cos x

( h\ . &
= - 2 sin \x. + -J

sm -.

i
2

Proceeding to the limit,

di/
,

= - sin z.
ax

k
N.B.—When y = cos {mx + n), -y

- -in sin (i/w;
+ n)

Ex. Prove from the definition of
-f-, that wlien y — cos, {iax+ it),

-3-= -msm {mx + n).

§ 23. The Differential Coefficient of the Tangent.

_ sin z
Let y = tan x =

cos a:;

c/(sni x) . d(cos x)
n., 7

cos x ^—^ sin X—
Then dy _ dx dx

dx
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From these three results it is easy to deduce the following :
—

—- . cot .* = - cosec-.r : -r- cot hm: + n) = - m cosec-(m.r + n)
ax ax

I sin z d
,

, sin {mx + n)
sec ;'; = —5- ;

— • sec \inx + n)
= in

dx
'

cos'' r
'

(/.'

'

co^\mx + n)

d cosx d . . cos (mx + n)
-r • COSeC X= r-TT ', ^^

' COSCC (lltX + '11)-
-

111 .
., ^.

dx sm^x' dx ^ '

sm-{mx+n)

§ 24. Geometrical Proofs of these Theorems.

All these cases of differentiation may be discussed geometri-

cally. The method will be followed

easily from the case of the tangent,

which we now examine.

Let Z.MOP be the angle radians,

and let OM be 1 unit in length.

Let zlPOQ be 86, and let QPM be

perpendicular to the line OM from

which 6 is measured.

Let PN be perpendicular to OQ.

Then 8(tan 0)
= PC^
= PN sec ZINPQ
= PN sec {$ + 86)

= OP sec (6 + 86) sin 86

- sec 6 sec (6 + 86) sin 86.

rvv. 8{iiin6) /n , sa\/^^^\Thus ^-^
—^ = sec ^ sec (^ + S^)f

—
r^ j,

and proceeding to the limit,

c/(tau 6) ,^,

-d6
='"''^-

Examples. Find —- in the following cases :
—

(i.) y = 2a sin {hx + c) sin [hx
-

c).

(ii. ) y = X' cos 2x.

(iii. ) y = tan 3a;+ cot 3a,'.

,
. , sin 2x - sin x

(iv. ) y= •

'^
cos a;

(v.) y= x"^sm'^x.

(vi.) y= x"^ sin 7ix.

(vii.) ?/
= sin-^ aj COS' a'.

(viii. ) y= sec- {ax +b) + cosec- (ex + d).
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§ 25. The Inverse Trigonometrical Functions.

Since the sine of an angle varies continuously from - 1 to +1

as the angle passes from - -
through zero to + ^ ,

it is convenient

to take the inverse sine as lying in these two quadrants. In

other words, for

^ = sin
"

^,'

we take that part of the curve

sin
//
=

a',

which lies between
//
= -

-^

and y = -^
-

In this case, when
•

1 / ^ ^\
?/
= sm \r

V o^.'^<2/
sin y = a;

and difterentiating, ,-(sin //)
= -r ('')

ax
'

(l.r

„, , (/(sin y) ihf ^Iherefore
,

•^' .-^=1
ciy ax

or

But

and therefore

XT ^
Hence ^(om .. ,

-
,
—

do->
' + v'l -,r-

§ 26. The DiflFerentiation of the Inverse Cosine.

In the case of //
= cos~\'-,

it is convenient to take
//

as lying between <» and tt, and in this

case the equation
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d;,

(0 <//<-)

or,
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EXAMPLES ON CHAPTER IV

1. Differentiate the following functions :
—

(i.) sin-'x + cos'',''.

(ii. ) tan ;>• + - tan" ,vj.

o

(iii.) sec- a; + tan- :)'.

(iv. cosec- X + cot- o:

1 + sin X
(v.)

VI.

1 - sin X

1 - cos X

1 + cos X

, Ti- sm a dii cos^ a; - sm" a;
2. It */

=
:,

—
, prove that -r- = , . -„.

1 + tan X ^ ax (cos x + sm xy

S. If ?/
= cos

(.'-'), prove that ~= - 3x- sin (a/), and find ^ when
ax ^ ax

(i.) 2/=a;™sina-".

(ii.) y= x''"'Cosx".

(iii.) 2/
= a:™ tana".

4^. Differentiate the following functions :
—

(i.) (a!2 + l) tan-la; -a;,

(ii. )
X .sin-i x + \/T^^.

(iii.) tan-'( ^''"'"^ )
. . (Put \'.r= tan 0, v'« = taiia.)

(iv. ) tan-''
^-X-rX'

(V.) cot-i(l±yLL^)
. . (Put a-= tan e.)

5. A particle P is revolving with constant angular velocity w in a circle of

radius a. The line PM is drawn from P perpendicular to the line from the

centre to the initial position of the particle. Find tlie velocity and accelera-

tion of M.

6. If the position of a point is given at time t by the equations

a;= a(ct;^ + sin w<),

y= a{l
- cos ut),

where a and w are constants, find its component velocities and accelerations,
and its direction of motion at the time t.

7. Prove that when

ax
3. y/,,.^

_ I

and that when

^ 1
^

/ 1 ^
1

dx xsix^-l'

and illustrate your results from tlie graph of the inverse secant.
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8. Prove that when

^>'^r ^^ (cosec-' X) :-

die xfja^ — l'

and that when

a;< -
1, -y- (cosec"' x)—dx .vsV-i'

and illustrate your results from the graph of the inverse cosecant.



CHAPTEE V

THE EXPONENTIAL AND LOGARITHMIC FUNCTIONS—PARTIAL

DIFFERENTIAL COEFFICIENTS—DIFFERENTIALS

§ 28. In this chapter we assume a knowledge of the properties

of the following series :
—

e« = 1 + .!• + —- + ...
A,

a* = 1 + ,' log « + 1^ (log of + . . .

which hold for all values of .', and

fi .7-3

log(l+.0 =
:i--^

+-- . . .

which holds Avhen - 1<.'< + 1, using "log .':" for "logg.''."

We shall now show how to differentiate e^, «^, log ;'',
and other

functions whose differential coefficients may thus be obtained.

§29.
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Proceeding to the limit,
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4. Prove the result of (3) from the definition of the differential coefficient.

5. If ^= log -y , prove that -r =^^—w, —
^•

\o- X)
^

rlx [a
-
X) {b

-
x)

6. If 7/
= log {x+ ^x~±a-), prove that

-j-
=—= .

^ tj. ,
ta-b cos Q

,
, ^ dy ab sin 6

I. If w= lo£f . / 5 T , prove that --^ = „ ,„ „„^ ^ V a + b cose' ' dd a^-b- cos^ 6

v^ 31. Logarithmic Differentiation.

We have already obtained a general rule for the differentia-

tion of a product or quotient. We are now able to prove

another method which often leads more quickly to the result.

This method is called Loi/arifhmk Differenfidfion.

Let y/= nnc.

Then log y - log n + log r + log tr,

d ,- , dy d ,. . du d ,. , dv

d dw

d2o dx'

1 dy 1 du 1 dv 1 die

y dx u dx V dx w dx

In other words, before differentiation of an exjjression involving the

irrodud or quotient or poioers of other expressions, take logarithms of

both sides of the given equation.

T- -, 1,- {ax+bY{cx + dy' 1 dy an qr se
Ex. 1. It //

= ' - • - '
'

^

{ex+fY y dx ax + b cx + d cx-\-f

2x
2 If,,- ./^±^ ^-

/^- 112/- V i_^,... ,fo.- ^/(l+:^^2)(l_^2)a-

^ _ /(i. + 2bx + cx'^ ^^y _ b{a-cx')
V (I - 'Ibx + ex- dx (a -{a

- 2bx + ca;2)»(a + 2bx + cx'')i

S 32. Important Example.

If y = c-'
"' sin hx,

dv ,
d

, ^ . „>. ^
/ • 7 X

-f-
= sni bx -r (e~'^^) + e~""^ -y- (sin bo-)

dx dx dx '

= e ""•'"(- a .sin bx + b cos bx).
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NoAv if a = tan ~^{^), o. and b being positive,

a
cos a =

Sin a =
b

/7y/

and -r- = -
x^ft"-^ + b- . e~^^ (sin fo cos a - cos bx . sin a),

= -
v^'?' + b- . e'"-^ sin (fe

-
a).

Thus the tangent to y = r-""^ sin fo' is parallel to the axis of x

when bx = n-n- + a,

and the equation defines an oscillating curve with continually

diminishing amplitude in the waves as we proceed along Ox.

It is easy to show that when

y
-

gaX gj,;^
Qjj.

_L
,.^^

-1 = v/o^T- f"^ sin (bx + c + a),
ax

and that here the waves increase in amplitude ;
and corre-

sponding results hold for the case of the cosine.

v? 33. Maxima and Minima Values of a Function of one

Variable.

The student is already familiar with the graphical and

aloebraical discussion of the maxima and minima of certain

simple algebraical expressions. The methods of the Differential

Calculus are well adapted to the solution of such problems,

since, if the graph of the function is supposed drawn, the

turning -points, or places where the ordinate changes from

increasing to decreasing, or vice versa, can only occur where

the tangent is parallel to the axis of x, as in the points

Ap A2 . . . of Fig 9, or where it is parallel to the axis of y as

in the points B^, B., . . ., except in such cases as the points

Cp C.3
. . ., where, although the curve is continuous, the gradient
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suddenly changes sign, without passing through the value zero

or becoming infinitely great.

In case (A) : . is zero at the turning-point; and if this point

is one at Avhich the curve ceases to ascend and begins to descend,

dy

dx
-
changes from being positive just before that point to being

Fici. 9.

negative just after. At such a point the function is said to

have a maximum value. In the other case, where the curve

ceases to descend and begins to ascend, y- changes from nega-

tive to positive, and we have a minimum. In Fig. 9, at A^
there is a inaximnm

;
at A., there is a minimum.

In case B :

-r_
is, infinitely great at the turning-point, and

ftJy

at Bj, where there is a viaxim,um, it changes from positive to

negative, while at Bo, where there is a minimum, it changes from

negative to positive.

The other turning-points Cj, C^ in Fig. 9 correspond to dis-
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continuities in ~, but it can be shown that these will not
a,r.

occur in the functions with which we are dealing.

.^34. Points of Inflection.

Althoue;h the vanishini*; of ^ is a necessari/ condition for a
'^^ '^ dx

maximum or minimum, it is not a sufficient condition, since

the gradient of the curve may become zero Avithout changing
its sign as we pass through that point. Examples of such

points are to be found in Dj, D.^ of Fig. 9. In the case of I)^

the gradient is positive before and after the zero A^alue
;

in the

case of D^ it is negative. At these points the curve crosses its

tangent, and when this occurs, whethei' the tangent is horizontal

or not, the point is called a point of inflection.

We cannot here discuss the analytical conditions for such a

point in general ;
but in the cases of horizontal tangent (case D)

we see that -— vanishes and does not change sign ;
and in the case

if,
of vertical tangent (case E), y^

is infinitely great at the point,

and does not change sign as we pass through it.

Ex. 1. Show that ij
= a.i'- + 2h.i' + c has always one turning-point; and

point out when it is a maximum and when it is a uiinimuni.

2. Find the maximum and nunimum ordinates of tlie curve //
= ;r^ -

6.'''-+ 12,

and also find the points of maximum gradient.

3. Find the turning-points of the curve 1/ =(;>• + !)'(,'•- 2 j'', and show that

(
-

1, 0) is a point of inflection.

(,v-l)
4. Find the turning-points ot y = -rr,

—
^/

§ 35. Partial Differentiation.

So far we have been considering functions of only one

independent variable, y =/(•'). Cases occur in Geometry and

in all the applications of the Calculus where the quantities

which vary depend upon more than one variable. For instance,

in (xeometry the co-ordinates of any point (.r, ?/, :) upon the

sphere of radius a, whose centre is at the origin, satisfy the

relation .'- -f //- -f :- = a'.

Hence we have z' = a- - .'- -
//"-,
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and if we cut the sphere by a plane parallel to the //: plane,

along the circle where this plane cuts the sphere x is constant

and the change in z is due to a change in
// only. In the

section by a plane parallel to the zx jDlane, the change in z

would be due to a change in .'; only. Similar results hold for

other surfaces.

Again, the area of a rectangle whose sides are x in. and // in.

is xji sq. in., and we may imagine the sides x and y to change in

length independently of each other
; while the volume of a

rectangular box whose edges are x, y, and ,:; in. is o-yz cub. in.,

and x, y, z may be supposed to change here independently.

The ordinary gas equation

pv
jt;^

= constant

is another example of the same sort of relation, and it would

be easy to multiply these instances indefinitely.

§ 36. Let the equation

express such a relation between two independent variables .'• and

v/,
and a dependent variable „.

Let us suppose that the independent variable y is kept

constant, and that ./ changes.

Then the rate at which z changes with regard to
,/•,
when

//

is kept constant, will be given by

(f(x + 8x,y)-f(x,y)]

In the second case let ;/; be kept constant and let // change.

Then the rate at which z changes in this case is

^fh =
Oy ^^ }

These two differential coefficients are called the Partial

Differential Coefficients of ~; with regard to x and y respectively,
7)~ Pi

and are written ^ and ^ respectively.*
ox dy

'>

cz*
It is hardly necessary to point that this symbol 5— stands for an operation,

and that ds, dj/ are not to lie considered separately ;
also that this is a different

notation from the d.c of our earlier work.
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Oz oz
Ex. 1. When z = .a/, prove from the definition that ^ = v, and t^^ — x.'

oa; dy

2. When 2as= a;- + y-, i)rove from the definition that ^^ = -, and 7^^= '
.

3. If ii — jnjz, prove from the definition that—= ?/c.

§ 37. Total Differentiation.

When the variables x and
//

in the above examples Ijoth

depend upon a third variable t, say, ,:: will vary in value as ,/• and

// change with t.

In the case z = xy

z + Si' =
(,/•

+
8./:)(v/

+
8//)

and ^z 8x 8// 8x

8t^^^ ¥"-'¥ "-81
"'

so that, proceeding to the limit,

dz dx dii

dt
'

dt dt

But dz , dz
,

y = 7r and X ~ ~ when ~ = xy,

therefore, in this case

(h dz dx dz dy

7t~ dj-' dt^dji
'

Tif

'

In the second example,

2az = X- +
,//-,

we find
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As a special case, when z =/(', y) and v/ is a function of
,', we

obtain
dz dz dz cly

d.r dx dy dx

and the left-hand side is called the Total Differential Coefficient

of z with regard to x.

Also the result that when z =f(x, y) and ,'-, y are functions of t,

dz dz dx d: dy

df
~
dx df

"^

dy dt

may be used to obtain an approximation to the small change 6~

in z due to the small changes 8x and ?>y in ,' and
//,

when t

becomes t + 8f.

For, as we have seen already (p. 19),

dx

di

dy

Jt

dz

dt

and we thus have, on multiplying the above equation by M,

8x will be approximately

8z

8t,

Si,

8t

8z = ^- 8x + ^^ 8//.
dx

38. Differentials.*

r)y

In the case of the curve

y=f{x) the increment 8y of y

which corresponds to the in-

crement 8x of .' is given in

Fig. 10 by HQ.
Also

HQ = HT -f TQ = 8x '^ + TQ,
(IX

.

•

. 8/1 = 8x
dy

dx
TQ.

M
Fk;. in

N

As 8x ffets smaller and

smaller, TQ gets smaller and

smaller, at least in the neigh-

*
§ 38 may be omitted on first iviidiiig.
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boiirhood of P
;
and the " small quantity

"
TQ is a smallei-

" small quantity
"
than S.i; since

Sy _ dy T(^)

1 . 1 ,. . S'/ .
, (hi ,

TU ..

and ni the limit — is equal to ,, so that — must disappear in
&r

^
(It Ac

^^

the limit. In mathematical language, if 8x is an infinitesimal (or

small quantity) of the first order, TQ will be at least an infini-

tesimal of the second order.

It is convenient to ha^e a name and syml;»ol for this quantity

dy

tr

symbol is
"
dy."

Hence with this dehnition of the term "
differential,"

Y Sx. The name adopted is the "differential of y," and the

where we have enclosed ~ in l)rackets on the right-hand side
d.r

SO that it may Ite clear that this stands for the differential

coefhcient ol)tained by the processes we have been developing
in the preceding pages.

By the above definition

'^(/('))=/V)-S-', where ,/>) = ':^^

and dx = 8x.

So that dy =/'(•') • '^'''i when // =/(')•

Hence we may restate our definition as follows :

—
The differential of fhe independent variable is the actual increment

of th(d variable.

The differenticd of a function i>> the differential coefficient of tlic

function multiplied by the differential of the independent variable.

In this definition it is not necessary to assume that the

differentials are small quantities or infinitesimals, but in all the

applications of this notation this assumption is made. In that

case the equation

dy=f'{x)dx
5
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will give the increment of y, if small quantities of the second

order be neglected.

Such an equation as

dy =f{x)cb;

a differential equation as it is called, may be used in this

way to give the approximate change in the dependent variable,

and from this point of view it saves the trouble of writing down
the equation between the increments, and then cutting out the

terms whose smallness is such that they may be neglected.

Ex. 1. Write down a table of differeutials corresponding to the standard

differential coefficients.

e.g. d{x") = )i:e"-''dx.

du
2. If a,'= a cos 6, y = a sin 6, prove by differentials that -^=

- cot 0.

.-> Tf I X ^s /I ^\ ii i dy sin ojt
6. It x= a[M + sixi ut), t/

= a[l -cos wt), prove that
-f-
=

]dx 1 + cos ut

4. If ~=
xij, prove that dz — ~dx +~ dy.

cx cy

EXAMPLES ON CHAPTER V

1. Find the differential coefficients of

(i.).™-^, (ii. ) a;'»e»^, (iii.) (aa;- + 6)c''^+'', (iv.) c^«"~^^.

2. Find the differential coefficients of

(i.)ci+-^", (ii.) a-V^", (iii.) ./-'"C"", (iv.) .f'"a^".

3. Find the differential coefficients of

{\.)x-nogx,
(ii.)log(^'^^),

(iii.)log(v'.^^+V-^l), (iv.) log (^^^j,

4. Differentiate the following expressions logarithmically :
—

(i.) n/(2.^ + 1)(,«-2), (ii.) v^+^.'
(iii-)

^2(^)3.
(iv.)^-,

^ '

cos'^wa;'
'

\ x)

and point out why we cannot apply our formula for the differential co-

efficient of a;" to the case of ,r^.

1 f ax + b \ ., , di/ 1 , ,„ ,

5. I{v= I tan~M , , prove that ~= —5
—

--, (acyb^.)

. ,,
1

, {x + lf 1
^ ,

/2,c-l\
^, ^dy 1
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7. If
2/
= 2 cos-i V ^^, pi-ove that ^= ^^

^
_ . (a > a- > ^.)

8. If 2/
= ,1_ cos-J ^ Z'' r_^', prove that 5^= ^=^ .

(cc < a < ,S.)

^ T„ , /b + atiosx+ sjb- - ofi sin x\ ^i ^dy Jb'^ - a^
9. If w = log ( T , prove that ^ = -—^ .

\ a + beosx J ax a + b cos x

10. it / -——-== tan-i{ A /
,
tan -

,-, prove that -ts
=—-, -. •

sja- -b- l^ a + b 2 J
^ dd a+b cos d

{a^>b-\)

11. Ill the curves whose equations in polar co-ordinates are (i.) )-= ae9cota,

(ii.) r"-a" sin nd, (iii.) r" = a" cos n6, (iv.) ?•" = «« sec 7id, (v.) r" = «" cosec«^,

find r-T- • Can you give any geometrical meaning to this expression ?

12. If 2/
= e-'-^sin(2.r+l), prove that

-^
= 2 ^''2

• e-^-^ cos (2./-+1 -f
^).

13. Find the value of V in the following curves ; discuss the way in which
dx

it changes as x passes along the axis
;
and find the turning-points, if there

are any, of each curve ;
—

{i.)y = x(x-lf.

(n.)y = x'{x-lf.

{m.)y = (x-mx-2r.

,. ,
x^+x+\

(IV.) y= —
, , x~-x + \

(vi.),=
(--l)(--2)

(vii.) ?/
=

(viii.) y=

(^^•)^=
(x-4)

. . ^,? + \

[These curves are discussed algebraically and drawn to scale in Chrystal's

Jntroduction to Algebra, pp. 391-404. The student is recommended to com-

pare his results with those to be deduced from these figures.]

14. It c =—
, -f ^„ prove that x— + y^= 2z.

a- b~
' ex

•"

cy

X-
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16. The formula for the index of refraction // of a j^as at temperature 6"

and pressure ?. is ^_i=^._^_,
where /Xp^^the index of refraetion at O'^,

a^the coefficient of expansion of the gas.

Prove tliat the etl'ect of small variations 5^ and bp of the temperature and

pressure on the index of refraction is to cause it to varj^ by an amount

- _ /X||
- 1 / bp paSe \

"'^^
760^ U + a^ (14 ai9)-/"(l4a(?)-

17. U pv='\id is the ordinary gas equation, where d = l + al, writedown

the values of

. vv

... , dp
(n.).|'

(iii.) The approximate increase in the pressure due to a small decrease in

the volume, the temperature being unchanged,

(iv.) The ap[)roximate increase in the volume due to a small increase in

the tem])erature, the pressure remaining the same,

(v.) The approximate increase in the pressure due to a small increase in

both temperature and volume.

18. Assuming that the H.P. required to pro}icI a steamer of a given design
varies as the square of the length and the cube of the speed, prove that a '2%

increase in length, with a 7% increase in H.P., will result in a 1% increase

in speed.

19. The area of a triangle is calculated from measurements of two sides and

their included angle. Determine the error in the area arising from small

errors in these measurements.

20. Assuming that the area of an ellijise whose semiaxes are o and b inches

is wah sq. in., and that an elliptical metal plate is exj)anded by heat or

pressure, so that when tlie semiaxes are 4 and 6 inches, each is increasing at

the rate "1 in. per .second, prove that the area of the plate is increasing at the

rate of tt
.s(|.

in. pei' second.



CHAPTER VI

THE CONIC SECTIONS "-''

i^ 39. Ill this chapter we shall very briefly examine the pro-

perties of the Conic Sections, or the curves in Avhich a plane

cuts a Right Circular Cone. It is shown in the Geometry of

Conies that these curves are the loci of a point which moves in

a plane so that its distance from a fixed point is in a constant

ratio to its distance from a fixed straight line. The fixed point

S is called the focus
;

the fixed line, the directrix
;
and the

constant ratio, c, the eccentricity.

When e< 1, the curve is called an Ellipse ;

when e ^ 1, the curve is called a Parabola
;

when '>], the curve is called a Hyperbola ;

and the circle is a special case of the ellipse, the eccentricity

being zero, and the directrix at infinity.

I5
40. The Parabola («

=
1).

(i.) To Jiiid its equation.

Let the focus S be the point [a, 0), and the directrix the line

X + (( = (Fig. 11).

Let P be the point (.'•, //).

Then since SP- = PM^

(,,
_ af + ,/

=
(,r

+ a)\

if-
= ia.r.

* The stuilent is referred for a fuller discussion of the properties of the conic

sections to the books mentioned on p. 12.

5:j
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This is the equation of the parabola Avith the origin at the

point where the curve cuts the perpendicular from S on the

directrix. This point is called the vertex of the curve
;
the

Fig. 11.

axis of X is called the axis of the curve
;
and the ordinate L'SL

through the focus is called the Latus Rectum.

(ii.) The shape of the curve.

From the form of the equation of the curve we see that the

curve lies wholly to the right of the axis of
//, and that it is

sjmmetrical with regard to the axis of o:

Also since

(If/ -la a
^ = — =

/
- when // > 0.

It follows that the tangent at the vertex coincides with the

axis of y, and that as we move along the curve in the direction

of o: increasing, the curve continually ascends, the slope getting
less and less the greater x becomes.

(iii.) The equations of the tangent and normal at
(^x^, ?/q).
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fl il ^ ft

Since the value of — at
(.',-,, ?/,.)

is ~, the equation of the
iix 11Q

tangent there is

y
- % _ 2a^

X - .1'

;'/o

or
;Vo(.'/

-
//o)

= 'M^'
-

'o)>

which l:)ecomes
////q

= 2a{x + x^), since
i/^-

=
4«3q.

Also the normal is the line

//o(.?;

-
,ro)

+ -lad/
-

>/q)
= 0,

since this passes through (.>\^, ;//q)
and is perpendicular to the

tangent.

EXAMPLES OX THE PARABOLA

1. Show that the curves x^— +4?/ are parabolas, and plot the curves.

'2. Show that the equation y= ax- + '2bx + c always represents a parabola,

and plot the curves

(i.) y= x^+'ix+ B,

(ii.) 4Ly
= x^+ Ax- 8,

(iii.) x= i/+ 7j.

Find also

(i.) The co-ordinates of their foci
;

(ii. ) The co-ordinates of their vertices
;

(iii.) The equations of their latera recta ;

(iv. )
The lengths of their latera recta ;

(v.) The equations of their axes
;

(vi.) The equations of the tangents at their vertices.

3. Find algebraically and graphically the minimum value of the expres-

sion X" - 2x -
4, and the maximum value of 5 + 4a; - 2x^.

4. The tangent at P meets the axis of the pai'abola of Fig. 11 in T, and the

normal meets the axis in G. Prove the following properties :
—

(i.) AN = AT,

(ii.) SP =ST= SG,

(iii.) NG = 2AS,

and show that the tangents at the ends of a focal chord meet at right angles
on the directrix.

5. Prove that the line y=x+l touches the parabola y~= ix, and that the

line y= mx-{— touches the parabola y- = ia.r. Find the point of contact in

each case.

6. Find the equations of the tangent and normal at the point where the

line x=2 cuts the parabola x- = iy.

7. Find the equations of the tangents and normals at the extremities of

the latus rectum of the parabola y-—ia,r, and show that they form a square.
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8. Prove that the locus of the middle points of the chords of the parabola

y-= 4a,i-, wliich make an angle 6 with the axis of a', is the straight line

y= 2acot 0.

9. The chord PQ meets the axis of the parabola of Tig. 11 in 0. PM and

QN are the ordinates of P and Q. Prove tliat AM • A]Sr = AO^, by finding the

equation of the chord in its simplest form.

10. Tlie position of a moving point is given by the equations

.','= V cos a . t,

y—v sin a. t- hgt'-.

Interpret the equations, and prove that the point moves on a parabola
whose axis is parallel to the axis of i/ ;

'
X- sin a cos a c- sin- a

'

9
whose vertex is at the point

whose directrix is the line 7/
= —-

;

and whose latus rectum is of length

S 41. The Ellipse (^<1).

(i.)
To find its rijiiatidii.

2^

2v^ cos- a

9

Kin. V2.

Let the axis of ,'• be the axis of the ellipse {i.e.
the line through

the focus perpendicular to the directrix) ;

and S the point (d, 0) ;

the axis of y the directrix.

Let 1' (x, if)
be any point upon the curve.

Then SP2 = e^VMK

(.r-iJy + !/'=^e^A
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.-.
,f'-^(l

-
(T)

- 2xd + If'
^ -d\

d Y 'I' <-l' '^^ 'i'c^
' -

-- J +
\-<^' l-e" (1

-
r'f 1-^2 (1

-
e'r

Now change the origin to the point (
—

^—^, j keeping the

axes parallel to their original directions.

The equation of the ellipse then becomes

[j-
d^e-

x' +
(l-e2) (1-.^)^

I.e.

9 O

il-e- ti-c-

a^ =
dh^

and b- = 5,
1 - e^

Putting

we have ., + 'f^= 1, where //- =
((-^(l

-
e^).

In this form the origin C is called the centre of the curve,

since it bisects every chord which passes through it. This is

clear, since if
(x^, 1/^)

lies on ^ + — =
1, so does (

-
x^,

-
//^).

d de^
Also we notice that CS =

^ ;

- d =
,
- ae,

i - e- \ - e-

and t^at CX =
;; :,

= •

\
- e- e

From the symmetry of the equation

'- '/- ,

tt- 0-

it is clear that there is another focus, namely, the point {ae, 0) ;

and another directrix, the line .*;
= -, with reg-ard to the axes

through the point C.
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The axis of x is in this case called the major axis, and the

axis of y the minor axis. The one is of length 2a
;
the other of

length 1h. If h had l)een greater than a, the foci would have

lain upon the axis of
//, and this axis would have been the major

axis. When a and // are given the eccentricity e is given by

//2 = „^(1 -,<^). {a>h.)

In the circle a - b, and e = 0.

(ii.)
The shape of the nirre.

Since the equation involves only the terms ^'- and //-,
the

curve is symmetrical about both the axes of ;< and
//.

Also, since //-
= l)-{ 1 —5

j,
we see that x must lie between

- a and + a, and that as ,r passes from - a to + a the positive

value of y gradually increases from zero to h, and then diminishes

again to zero.

The curve is thus a closed curve, lying altogether within the

rectangle x= ± a, y = ± h.

This is also evident from the property of Ex. 3, p. 59, where it

is stated that the curve may be drawn by fixing the two ends of

a string of length 2a to the points S and S', and holding the

string tight by the point P of the tracing pencil.

(iii.) The equations of the tangent and normal at
(./q, y^,).

Since -^ + Vi = 1

a^ 0-

^ ' ^1 =
a- b'' dx

Therefore the equation of the tangent at
(.>„, y^^ is

?/^ % ^ _ ^%
X -

.r^, ((%
which becomes

(^-'o),e+(//-//o)^^o,

2 ^,2

or ^-^ =
1, since ^ + §>,= 1.

a- b- a- 0-
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It follows that the equation of the normal is

or ^-^l^ = ryl'^^

«% h-ij ^
or — = «- - 0-.

^'o Ho

EXAMPLES ON THE ELLIPSE

1. Trace the ellipses (i.) 3a;2 + 4i/=12 ;

(ii.) 3(x- 1)2+ 4(2/- 2y-'
= 12;

(iii. ) x^+iy^=Sjj ;

(iv.) 4y-^ + 3y^=12;
and find the co-ordinates of the foci and of the extremities of the axes, the

length of the latiis rectum, and the eccentricity of each.

2. In the ellipse
— + |s=l, show that the co-ordinates of any point may

be expressed as ,v = a cos d,y = b sin d
;
and interpret the result geometrically.

3. P is the point {.'\, y-^) on the ellipse ^+r^ = l. Prove that SP = « + f.ri,

and S'F= a-eXi, and deduce that the curve is the locus of the point which

moves so that the sum of its distances from two fixed points is constant.

4. The tangent at P meets the major axis in T, and PN is the ordinate of

P, prove that CN . CT= CA2.

5. The normal at P meets the major axis in G. Prove that SG :SP = e,

and deduce that PG bisects the angle SPS'.

6. Prove that the middle point of the chord y = x + l lies u[)on //=
—

5 a',

and that the middle points of chords jiarallel to y= mx lie upon the chord

,
''" .

?/
— m X, where mm + -

.,
= 0.

a-

7. If CP bisects chords parallel to CD, prove that CD bisects chords parallel

to CP (CP and CD ai'e then said to be conjiigaie diameter!^) ; and prove that

the tangents at P and D form with CP and CD a parallelogram.
8. If P is the point {a cos 0, h sin 6). prove that CD is the line «sin d.y

-f 6 cos e . X = 0, and deduce that CP- + CD- = a- + V^.

§ 42. The Hyperbola (ol). (i.) To find its equation.

Proceeding as in § 41 (i.) we obtain the equation
9 o

f/2g2
where we have written a- for

,- r-,?

{'"
-

1)-
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h- for
., ,

i.e. for d-^n-
-

1),

and d is the distance from the focus S to the directrix.

Fi<!. 13.

a
It follows that CS =

nc, CX = ,
and that there are two foci

(',

and two directrices.

The line joining the foci S, S' is called the transverse axis of

the hyperbola.

(ii.) The shape of the curve.

The form of the equation shows that the curve is symmetri-

cal about both axes, and since //-
= //-'(

—
,

- 1
)

it is clear that .

cannot lie Ijetween -
(( and + a, while since ,''-* = <i'{ 1 + p ), // can

have any value Avhatsoever.

If we write the ecpiations as

X- a'- X-

we see that, when .'• is numerically very great,
'

:,
is less than, but
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/ -

very nearly equal to
.; ; and that for all points on the curve

'f .
1 t,

^'

-, IS less than —
,

.(•"- fl-

Also the value of // decreases as .' passes from - x to -
a,

where it vanishes, and it increases without limit from the value

zero at x = a as .'• passes along the positive axis of ,'•.

The shape of the ciu've is thus as in the figui'e. The lines

//
= ± - ./ are called the asymptotes, and the curve lies whollv

a

between those lines; while, as the numerical \'alue of x gets greater

and greater, it approaches more and more nearly to these lines

without ever actually reaching them.

(iii.)
The eqvdtioiis of the tanrjent and normal at

(,/;„ y^^ are easily

shown to be

and
|(.'

-
.;,)

+ 'p
-

„,)
= 0.

(iv.) The product of the perpendiculars from any point on the

curve to the asymptote's is constant.

The asymptotes are the lines
//
= ± -

.'. Then if PM, PX

are the perpendiculars to these lines from the point (.r^, //^j,

/; b

PM = —-r——, PN = —,-—- •

\ 1 + -, \^ 1 + ~>

Therefore PM . PN = ^^f "J^ = 4^-,^

since ^ -'^- 1 .

a- ir

Hence PM . PN = constant.

Now when //- = a"', the asymptotes are at right angles, and

the eccentricity is \/2. In this case, by taking the asymptotes
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as axes, the equation x^ -
if-
= a~ is transformed to

2:nj
= a-.

This equation is of the form
.///
=

';-, a relation which is of the

greatest importance in Physics. We could obtain an equation
of the same form for any hyperbola referred to its asymptotes
as oblique axes.

EXAMPLES ON THE HYPERBOLA

1. Trace the hyperbolas :

(i.) •ix^-iy-=l2,

(ii.) 3(a;- 1)2-4(2/ -2)2 =12,
(iii. ) a;2- 4i/2=8i/,

(iv.) 4x'- 3i/=12;

and tincl tlie co-ordinates of the foci and of tlie points where each curve cuts

its transverse axis, tlie length of the latus rectum, and the eccentricity
of each.

2. Trace the rectangular hyperbolas :

(i.) rij=±4,

(ii.)
u='i-±l,

and find the co-ordinates of the foci and of the points where the transverse

axis meets each curve.

3. Prove that the tangent at (x^, )/„) to the hyperbola .17/
= c^ is

a^2/o + 2/-^o
= 2c2, and that the point of contact bisects the part of the tangent

cut off by the asj^mptotes.
2 ^

4. Pis the point (.'„ //j) on the hyperbola whose equation is —,-^=1.

Prove that ^?= cx-^-a, and 8'V=
ex-^ + a, and deduce that the curve is the

locus of a ]ioint which moves so that the difference of its distances from two
fixed points is constant.

5. The tangent at P on the hyperbola ^-fr,= l meets the transverse axis

in T, and FN is the ordinate of P. Prove that CN . CT= a2.

6. The normal at P meets the major axis in G
;
show that SG = eSP, and

deduce that PG bisects the angle SPS'.
o

'J

7. Prove that, in the hyperbola '-2-10
=

1, the middle point of the chord

y=x+\ lies ujion the line y = —,x, and that the locus of the middle points of

chords parallel to y — mx is the line y= in'x, where vivi' — —.
a-
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o >
X" if

8.' If OP and CD are two coiijiicrate diameters of the liyperbola —-'— = 1
•' ' a- b^

[i.e. if each bisects chords parallel to the other), prove that if P lies upon
this curve, CD does not meet the curve, and that if D is the point wliere CD

meets the hyperbola -o-Vo^ -
1,



CHAPTEE YIl

THE INTEGRAL CALCULUS—INTECHATION

§ 4:3. Ix considering the motion of a point along a straight line,

we saw that if

is the relation l^etween the distance and the time, the velocity v

is given by ' =
^^=/'(0,

and, in general, that the problem of the DitFerential Calcnlus is,

given the law in obedience to which two related magnitudes

vary, to find the rate at which the one changes with I'egard to

the other. The problem of the Integral Calculus is the inverse

one : given the rate at which the magnitudes change with regard
to each other, to find the law connecting them. In other words,

in the Differential Calculus we determine the infinitesimal change
in the one magnitude which corresponds to an infinitesimal

change in the other, when we know wliat function the one is of

the other. In the Integral Calculus we determine Avhat function

the one is of the other when the corresponding infinitesimal

changes are known. We have thus to find the function of
.'•,

denoted by //, which is such that

The A^ilue of // which satisfies this equation is written y/(.r)</,r

and is called the iiifnjral ('//{'') witk rcj/ard fa ./'.

d
E.I/. {i.)/.rd.r

= ~, since
^-^('0ax \ •! /
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(ii.) y*sec-,rf/.''
= tan

a;, since (tan a;)
= sec-.*'.

In each of these cases we might have added any constant to

the right-hand side, since the differential coefficient of the

constant is zero, and the complete result would be

Jxclx
=

'^^
+ C

/&QC?xdx = tan x + C,

where C is called the constant of integration.

It is thus evident that the equations

and F(.) =//{.)d.r

represent the same thing, and that the fuller statement of the

second would be

F(,r) + C =/f{x)dx.

Owing to the presence of the arbitrary constant ff{x)dx is

called the Indefinite Integral of J\x).

The geometrical meaning of the constant of integration is

that there is a family of curves all having the same slope as a

given curve, or parallel to it
;
thus the curves

//
=
FOr) + C

are all parallel, when C is given different constant values.

§ 44. Table of Standard Integrals.

From this point of view of integration, as the process of find-

ing the integral is called, the first recpiisite is a table of the more

important forms. This table is obtained from the corresponding

results in differentiation, and any result in integration can always
be verified by differentiation. Later we shall see that there are

certain general theorems on integration which correspond to the

general theorems of dift'erentiation. These will help us to

decide upon the most likely ways of finding an answer to the

question which the symbol of integration puts to us
; namely,

What is the function whose differential coefficient is the given

expression l To answer this question is in very many cases

6
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impossible ;
but practice soon makes it easy to recognise the

cases which can be treated with success.

The following is the table of Standard Forms :
—

(i.) fxMx =
-, smce — = .c" (h 4= -

1)^ ' -^ % + 1 ax \n+\J

(ii.) j^ =
^°g ^'' ^^"^® ^ (^°g '')

=
^

(iii.) Je'^Hx a

1

(iv.) faHx = .
^ ' -^

loga

(v.) ycos xdx = sin x

(vi.) ysin 2'&' = - cos x

(vii.) ytan xdx - log (sec x)

(viii. ) ycosec iC(?a; = log ( tan-
j

(ix.) /sec"xdx = tan x

(x. ) /cosech:dx — - cot x

/ . V f dx .
-1 X / -ly\ \

XI.) ===^ = sin -or -cos -) (a2>a;2) L ,.^ ^
.' \/a2 - X" " V «/

^ ^
I Radian

f dx 1 -1 .> 1 -1 .-c
I

Measure,
(xii.) -i x = -tan -or cot

./ a-^ + .^^ a a a a
)

(xiii-)
I =^, =

log(.^•+ Va;-^ ± a^)

(Unless otherwise stated, the logarithms are supposed to be to

the base
e.)

The student is recommended to draw up a corresponding table

for the cases ivhere mx + n takes the pilace of x in this list.

§ 45. Two General Theorems.

(i.) f{cu)dx^cfiuh;

(ii. ) f{u + v)dx =J'udx +J-vdx,

c being a constant, and u, v functions of .t.

To prove these theorems it is sufficient to show that the

differential coefficients of the two sides of the equations are the

same, since in that case the answers to the questions which the

sign of integration puts to us are the same for both sides of the

equation.
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They may be proved directly as follows :
—

(i.) Let
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This important result, which allows us to change an integral

with regard to x into an integral in terras of another variable, may
be deduced at once from the rule for difterentiating a function

of a function.

Let y =/jlx)dx, and x =
<f)(t).

From the relation between x and
f, // is a function of t.

dy dy dx

dt dx dt

dji dx . dy ,

•'•

irf^^'^dt^ «"^ce^-^.=/0.)

11
= ffix) — -df, bv the definition of an

integral.

The expressions under the sign of integration are supposed

given in terms of t.

This result may be written

(A.) Jf(x)dx ^ff{x)
.

'1^

. dt
=/^[</>(/)]-|[<^(0]rf/.

The simple rule for
"
changing the variable

"
from .'• to / is :

Replace dx hi/ -^ . dt, and hi/ means of the equation connectinq x
dt

' -L

and t, exp'ess f(x) as a function of t.

The advantaares of this method will be evident from the

following examples :
—

Ex. (i.) J{a:i- + h)"dx. Vwt n.i- + h = u.

dx _1
du a

r r I if ?t"+'^ 1 "+^
and J(a.r + byd:r=Ju" . -. du=-\u"du = ~ ztt^-, ^Aax + b)

if. , cos n 1

Similarly (ii. ) y sin {ax + h)dx = --
I sin udu = = - - cos {ax + h),

f dx
(ill-) / . o ,o

• Vut ax= ii.
-' \' a-x- - ir

. dx _\
dv a

J f dx / 1 ]
,

1
j"

du
and / , - =

/ /
- • • du = -

-,
J >y«V _ 1-2 J V?t^ - 63 a a j ^'„-i _ b-i

1 ,

= -
log {ax + \'aV- -

b").
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(iv.) P^g'^-.,^,^, Vnt.r = c".
X

dx

clu

and
/
-? '^clx =

/
- • c« • dii = fudic = ^ u^

J X J e" J 2

=
\\o^xf.

^^•^ \a-X^Y^ Put,.=co.s(^.
{\-x)i

dx

d0= -''''''

f dx f 1
, . .^ ,,

j(l-a')Vl-j;'2 j (1
- cos ^) sin ^

^

_ _ 1
f

dd

•'

sin-;5

.6= cot-,

_ V ]
- X'

l-x

(vi. ) Integrate the following exi^ressions :
—

, x"

(a) x^'-^iax'^ + h); x\la\+ x^; ^^j-^.

^^)
x^+ lx + 2

'

..-^r2"J+ 2'
P"""'S ^' + ^ = "•

(3)
-

7^^-r
-

., ; z-^'^^, ^ . putting .,_• + 2 =. M.

(^) / 9 „^
=

; /-

'
o ^ ,

-
' Pitting aa; + h= u. {ac)h-.)

s'ax^ + 2bx+ c \'ax^ + 2o.r + c

1 COS CtJ

(f) sin^ :<: cos^ a; :
,

—
-.

—
: cot .'•, putting sin x = 7i.

iv) -2 5 ur-^^r ;

--
o --o . putting tan a;= i(.

§ 47. Integration l)y Substitution—continued.

Although there are certain general principles that guide us

in the choice of a suitable substitution, the second form (B.),

p. 70, of the theorem of § 46 Avill often suggest what the

transformation should be. We have seen that

ffW)] ^^^W)¥t=/f(x)dx,
where x =

<f.{t),
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and we may write this result in the form

(B.)
//L>(.r)]^[</)(.v)]rf.; =ff{v)

.

du, where ^t = ^(x),*

as the particular symbol we employ is immaterial.

Thus in the case of the examples of last article Ave obtain our

results immediately
—

e.g. (i.) /(ax + Hydx = -
I (ax + i)"

•

-^ (ax + h)dx

= - u'hh, w
a J

here ax + h — u
a J

1 u»+^ 1

71 + 1 a
-, -. (ax

+
/0"+'-

a(%+ 1)
^ ^

(ii.) ysin- X cos xdx =y*sin- x -r;(sin x')dx

-/ifidti, where sin x = u

= - sin"* X.
o

(ill.) -. dx = -
.

• T- •

(1 + -'^0
• d-^^ ^

; 1 + x^ 5J I + x;' dx ^ ^

--] -

,
where m = 1 + x^

5.' u

= -\ogu

=
l\og(l+o:^).

(iv.) jm^^^^iogM.

In this way it is easy to see that

f ax + h
, 1

1 / o ^,
/ 9 ^j dx = -

log (ax- + 2bx + c),
J ax^ + 2bx + c 2

*= ^ ^

* This can be verified ]>y starting with

//{vyiu,

ami putting u— <p(x), as in (A.)
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since the integral may be written as

1 fdU , o ^7
i.e. -

1
—

,
where w = ax- + 2bx + c.

2.1 u

Also
/

—
2
—-. = I

;; ^, T^
• —

(aa + h)
• dx.

J ax^ + 2ox + c .' {ax + b)- + ac -¥ ax '

=
I -s rz^ du, where ii — ax + h,
J u^ + ac - b^

and this is one of the standard forms.

It follows that amj expression of the form

Ix + m
ax" + 2hx + c

may he easily integrated, since we can rewrite the numerator as

P(aa; + 6) + Q,

, ^ I
,^

am - lb
where P = -

; Q =
.

a a

If higher powers of x occur in the numerator, we must first of

all divide out by the denominator till we ol>tain a remainder of

the first degree or a constant.*

The expression . may he reduced in a similar
fJax? + 2hx + c

way.

Ex. Integrate the following expressions
—

1 1 1 x+1 2x + Z
(i.)

(ii.)

x^±4:
'

a?x^±b'^
'

4.r2 + 4x-+ 3
'

4a;2 + 4a;±3
'

3 + 4x-a:2
'

X^
_
X'-X + l

_
x-\

_
x^ + x + \

a;2 + 1
'

.x-2 + a; + 1
'

x- - 5x + 6
'

(.r -!)(./- 2)"11 1 a;+l 2x+ 3

v/a;2 + 4
'

sld'x"±lr
'

\/4a;^ + 4« + 3
'

v'4.>j- + 4a; ± 3
'

x/5 + 4.T-a;2'

* When the factors of the denominator are real, the method of Partial Fractions

should be employed.
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§ 48. Integration by Parts.

The second important method in integration is called

integration by parts, and can he used only when the function

to be integrated is the product of two functions, one of which

can be expressed as a differential coefficient. This method

follows at once from the rule for the differentiation of a product.

^. (/ . , dv da
omce -r (uv) = u ^ + v ^,

ax dx dx

uv - \(u + V
j-jdx, by the definition of integration,

r dv
,

r du
, , . , _

r dv . f du
,

JU-— dx = uo -J r -- -dx.
dx dx

This result Avill be of use only if fv - dx can be more easily

evaluated than fu —- dx.
dx

For example
—

(i. ) fx log X dx =
;^ I log

« ^ (a;2)
• didx

=
~{x' log X -Jx^

~
(log x)d.

= - ix- log X -fxdx)

=
-(^o:'\ogx-'^)

(2 1ogr.-l).
_x-

(ii.) y.'r
• cos X • dx =Jxr % (sin x)dx

= x'^ sin 9:;
-

/"sin .'•
(.*•-')

• dx

= x^ sin X -
2ysin x x • dx

= J? sin X + 2fx •

-7-(cos x)dx

= X- sin ;*; + 2 /; cos X -fcos, X
-^ (x)

• dx)
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= X- sin X + 2{x cos x -J'cos xdx)

= .)? sin X + 2;/; cos x - 2 sin x.

In both of these examples this artifice allows us gradually

to reduce the integral to one of a simpler form, and in such

cases where powers of o: are associated with a trigonometrical,

exponential, or logarithmic term, it is of great value.*

An important expression which can be integrated by this

method is \';';- + a-.

We have

f ^'^V^' dx = j \/:r^Va^ • J (./•)
dx

r rl

= X v^,T- + a- - I X — 'Jx- + d^ • dx.
J dx

-

I \^x- + a- dx = .(- six- + a- -
\

-
/ „ „

• dx
J J v.T^ + fr

dx
/./^ + a^- a-

X \'x? + ft-
-

I

-

, ^ q
i \- a;-^ + ft^

/"

^
c dx

= ,/: V .r- + a?-
-

I s/ x? \- c? dx + ft- I /
., o'

; ; \'x^ + ft-

. •. 21 sJo? + ft"^ dx - X \/,i'- + ft"^ + ft- log (.}
+ V.;;- + d^)

I V a;- + ft- ft.v =
-_

4-
—

log (.>
+ \'x" + cr).

Ex. Integrate the following expressions :
—

a'- log X ;
a;^ e*^

;
.<; tan~^ x

;
x- sin aa; ; Va'-^ - a" ; v'.-c^ - «^.

EXAMPLES ON CHAPTER VII

1. Integrate the following expressions
—

N/aa; + & \/a; « + 3

,.. , 1 •-'' - 1 a^ X*
(11.)

(iii.)

x{\-x)'' x-~-6x + -z' a;- + a; + l' x^-x + \'

1 2a; -1 x + 1

'Jx(\^x)' 'Jx^-Zx + 2' VaT^Tai + l"

Cf. p. 74 ;
Exs. 11, 12, 13, 14, and 15.
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2. Integrate the following expressions by parts
—

sin"^./-, d? tan~^a', a;^ sin 4.'', o-} cos 3:/;,
a:'" log x, x-c~^.

3. Prove that

1 1 a;-2

ar*+l 3(.r+l) 3(.r2-a- + l)'

and hence integrate the expression.

4. Prove that

1 111
+

(.j- + l)(a;-l)2 2(a;-l)- 4(,''-l) 4(a;+l)'

and hence integrate the expression.

5. Prove that

x-\ 2 1

(a;-2)(.Y-8) :>-^ «-2'

and hence integrate the expression.

6. Integrate the expressions x V 1 + x and— , by putting ,i- + 1 = v.-.

7. Prove that

dx 1^1 x\^'l
r =—r= tan~'

/,-(1 + a;-) N^l - x^ \'2
"""

s'l - x-

(pnt a;= sin 0).

8. Integrate the following trigonometrical expressions-

sin X

sin e' sin {6 + a)' sin ^ + cos d' cos"'* ^ s,/a^ tan- 9 + 6'-^'
cos"^ a;(4 tan^^a:; + 3)

9. Show that, when a^b^,

f dx 2 _j/ /ci-h ^ x\

J a + b cos X- ^/„2—6^
*^"

^V a + ^,

^an -
j.

Put a + b cos a; into the form {c + h) cos"
'|
+ («

-
Z*) sin-

1
•

Also integrate the expressions

1 1

5 ± 4 cos a; 4 + 5 cos a; 3 ± 2 sin .^; 2 + 3 sin x

10. Prove, by integration by parts, that

i; \ Car 17 & sin 5a;+ « cos &a: „^
(1. ) /c"^ cos bxdx = 5

—
rs e ,

r \ r OT I 7 a sin 6a; - & cos bx
(11. ) /c"" sin bxdx = 5

—
,„ ef".

11. Prove, by integration by parts, that

/ • « ojo cos ^ sin"-^ ^ n -if. „ ^ ,
I am" Odd= + /sin"--6>(i?•^ n n J

and hence show that

f i n,a sin^^cos^ 3 . , n 3^7 sill-' Bi/d = sin e cos ^ + s ^•
4 o o
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12. Prove, by integration by parts, that

r r, nja sin 6 cos"-i d {n -I) f „ , ^ ,^
/ cos" ed0 = + cos"-2 ddd,

-' 71 11 J

and thus obtain the value of/cos'' dd9
andy'cos-' ddd.

13. Prove that

Jai^'c^dx
- ,7;"e=^

-
nfx''-'^e''dx,

and explain how this result may be used in evaluating such integrals as

fu^e^dx, Jx?e~'^dx, etc.

14. Prove that

y^n-i(iog xY^dx —Jif^c^ydij,

where x=ey, and explain how this result may be used in evaluating integrals

such as

fr'^{\og xfdx, J'x~\\og xfdx.

15. Prove that

x^ sin mxdx= - '— cos mx -\
—

/ a;""^ cos mxdxm mj
a;" n

,. ,
. n.7i-l f „ <,

. ,= cos 7nx -\
—s a-""' sin mx 5

—
I ^ sm mxdx,m m- m'' J

and show how this may be used in evaluating such integrals.* Obtain a corre-

sponding result in the case of

fx" cos mxdx.

*
Examples 3, 4, 5 are cases of the use of the method of Partial Fractions

in the integration of algebraic functions
; 11-15, of the method of Successive

Reduction. Cf. Lamb's Infinitesimal Calculus, §§ 80, SI.



CHAPTEE YIII

THE DEFINITE INTEGRAL AND ITS APPLICATIONS

i^ 49. In the last chapter we have considered the process of

integration as the means of answering the question : What is

the function whose difierential coefficient is a given function ?

There is another and a more important way of regarding the

subject, in which integration appears as an operation of sum-

mation, or of finding the limit of the sum of a number of terms,

Avhen these terms increase in number and diminish indefinitely
ill size. We shall examine integration from this standpoint in

the following sections.

§50. Areas of Curves. The Definite Integral as an Expression

for the Area.

Let //=,/(.'•) be the equation of an ordinary continuous curve,

and let us consider the

area enclosed between

the ordinates at
P^C'^'o) ^o)'

and P(.r, y), the axis of

X and the curve Avhere

PqP is above that axis.

This area is obviously a

function of
.r, since to

every position of P cor-

responds a value of the

area.

Let A stand for the

area PoMqIMP ;
A + SA

for the area P^M^NQ ;

and let Q be the point (.'•
+ h\ //

+ %). Then if the slope is

76
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l)Ositive from P to the neighbouring point Q, we see by con-

sidering the inner and outer rectangles at P and the element

of area there, that

v/5.r<SA<(y + 8i/) 8.r,

and if the slope is negative the signs are reversed.

Hence in each case, when we let 8x approach its limit zero,

we have

thus A =/f{'i)dx + const. =
F(.';)

+ C, sa}^

Also, since A vanishes when x =
x^^,

C = -
F(.)'(,) ;

.-. A =
F(,r)

-
F(.g.

This expression F(.'')
-

F(,*'p)

is an important one, and the symbol

J Xn

is used to denote it.

/ f(x)dx is called the definite integral of f{x) with regard to x
J Xq

between the liviits x^ and x, and its value is obtained by siibtracting the

value of the indefinite integral—ff{x)dx—for x ^ x^from thatfor x = x.

AVith this notation the area of the curve y =f(x) included

between the ordinates at (iq, y^) and
{x^, //j),

the axis of .'• and the

curve is equal to I f{x)dx, and it is clear that if the curve cuts

J .'ij

the axis between the limits x^ and
,r^,

the definite integral gives

the algebraical sum of the areas, those above being taken positive,

those below the axis negative.

Ex. 1. To find the area of the part of the circle x~+i/ = a'-^ cut off Ijy the

lines ,T= 0, and x = Xi.

The required area = 2 / Ja'^
- x- dx.

J ^n

Now it is easy to show that

j
s'^i^' djx^'^'^'^ +\ sin-i

(^)
(cf. § 48) :

the area = x \'a^ - .'/- + a- sin-^ (
-

j
,
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where we iise these square brackets to denote tliat we subtract the value for

x= Xq from that for ci:= xi.

If we take X(j
= and Xi

= a we find the area of the semicircle as 7 ctr.

1. To find the area of the part of the parabola y-=\ax cut off by the

lines x — Xq and x=x-^.

Here the required area= 2 / \/4aa- dx,
J ^0

/- /^^ n= 4 N ft / \X dx,

9
and it follows that the area cut off by the latus rectum is ^ of the rectangleo

upon LL' as base, with AS for its altitude.

3. Prove that the area of the ellipse -2+ |^
= l is wab.

«2
'

62

4. Prove the followingO '

(1.) / =log(\/2 + l)= / -^—
J o^osx

° '

./ 77 sm ;

4

W IT

(ii.) / sin-x.dx=j= I
cos-x dx.

Jo 4 J „

... , /"'J dx _jr^_ j'2
dx

J a a"^ sivP'X + b"^ cos^^c
~

'lab
~

J q a- cos'-u; + 6^ sin'^

(iv. )
/ sin-^a; fte= '^ecosedd = ^~l

(V.) f'P--''^'

sm-a;

/dx
_ TT

.5. Prove that when ?n and n are positive integers

TT TT

(iii. ) /

'"'

sin'" d cos" ^f/^ = '^^——
i

^
sin'"-'- B cos" ^rf^.

^0 ''( + "-'0
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(iv.) I"
sin^ecos^ede=— ^

{y) /

^
sin« ^ cos« ^f^^ = ^^' ^' I",

/

"
cos* edd =^,14. 12. 10./ '-^l'^

In cases where integration is not possible there are various

approximate methods of finding the area. The expressions for

the area of a trapezium or a portion of a paral)ola give the

trapezoidal and parabolic rules, and we shall see more fully in

§§ 51-52 how the inner and outer rectangles may be applied.

The value of a definite integral may also be obtained by
mechanical means by the use of difterent instruments, of which

the planimeters are perhaps the best known.

Ex. Evaluate the following integrals by the trapezoidal method, i.e. find

the sum of the inscribed trapeziums instead of the inner or outer rectangles

as above :
—

,12

(i. )
I .i'hlx, dividing the interval into 11 ecpial parts, and compare with

-
1

tlie result of integration.

Answers, 577i ; 575f .

.32°

(ii. ) I
cos d.r, by dividing the interval into 6 equal parts, and compare

^
31°

as above.

Answers, -0148
;

"0149.

§ 51. The Definite Integral as the Limit of a Sum.

We have in the last article shown that the symbol I f(j:)dx
J

,-'0

represents the area between the curve y=f{x), the axis of x, and

the bounding ordinates. We shall now obtain an expression for

this area as the limit of a sum, and thus see in Avhat Avay the

process of integration may be viewed as a summation.

Let PqPi be any portion of the curve on which the slope

remains positive.

Divide the interval M^M^ into n equal parts S.t, so that

erect the ordinates
m-^p-^, ni^'p.^, etc., and construct inner and

outer rectangles as in Fig. 15.

Then the difference of the sum of these outer rectangles and
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the sum of the inner rectangles is
{//^

-
^q)o'',

and this may be

made as small as we

please by increasing
the number of inter-

vals and decreasing
their size.

Also the area of the

curve lies between

these two sums, and

tlierefore this area is

the limit of either sum
ss 8x approaches zero.

Now the sum of

the inner set of rect-

angles

M(^m, mj rrij

Fin. 15.

= 2 f(x^ + r8x)8x.

-f./(.r,
+ w-1.8,r).fe]

But the area is [F(;r^)
-

F{.'\^^)]
Avhere F(,/') =/f{x)dx, and we agreed

/'I

to denote this by / /(.')'/'.

... r f{.^)dx
= Lts,=o

X
'^"

./(.'o
+ rSx) . &r,

.'
,()

nSx= Xi-Xof )= ()

=
lJs^^Q'Sf(x)8x, written shortly.

It is easy to remove the restriction placed upon /(.') that the

slope of the curve should be positive from P^ to P^ ;
and to show

that this result holds for any ordinary continuous curve whether

it ascends or descends, and is above or below the axis in the

interval .'v to x^.

It is only necessary to point out that in the case of such a

portion of the curve y=f(x) as is given in Fig. 16, the area of the

portion of the curve marked 11 will appear as a negative area,

andif//(r>/r = F(4
'

f{.r)d.r, or [Vih)
-
F{a)lf
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is equal to

(I)
-

(II) + (III).

Fig. 10.

Tlie importance of this result lies in the fact that many geo-

metrical and physical quantities {e.g. volumes and surfaces of

solids, centres of gravity and pressure, total pressure, radius of

gyration, etc.) may be expressed in terms of the limits of certain

sums. The problem of obtaining these quantities is thus reduced

to a question of integration. The symbol of
integrationy' really

stands for the large S of summation, and it was in the attempts

to calculate areas bounded by curves that the Infinitesimal

Calcuhis was discovered.

It is also possible to start with the definition of the symbol

f{x)dx
J Xo

as the limit of a sum, and then obtain its value in terms of the

indefinite integral.*

§ 52. The Evaluation of a Definite Integral from its Defini-

tion as the Limit of a Sum.

It is instructive to see how, by algebraical methods, the values

of certain definite integrals may be obtained direct from this

summation.
*

Cf. Lariil)'s Calculus, §§ 90, 91.

7
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For example, in the case of the parabola

y = A
we can obtain the area, or the Definite Integral, as follows :

—

y, Sx{Xq + rSxf
r=

=
S4;<-o'

+
(^0

+
^''-y'

+ (^0
+ 25,>f + {X,

+ n-l. a,>f ]

-
i,x\nx^^^

^-n . {n-\) . x^h: +
—

r-^
y^'')")

using the results for

1 + 2 + 3 + . . . + {n
-

1), and 1- + 2^ + . . . + («
-

1)2.

Therefore, since nhx = (x^
-

x^),

''

2
'

8x(x, + r8^f = x^ix,
-

X,) + x,{x,
- x^ (l

-
1)

r= n-l
Lt 2 8x{x^ + rhf

fix= ) ?-=

J-'^
ft = c»

fix= )

/i6x= xi-.ro )

=
x^\x^

-
x^) + .ro(.r,

-
.ro)2

+
^(:r,

-
x^f

o J '•'1 *'0
x-dx = —^ .

"
•

Ex. Prove in the same way that

fim 1

/
COS mxdx=

j^^

•
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§ 53. Properties of f{x)d:r.

J -('O

The following properties of the Definite Integral may be

deduced from either of the definitions of this symbol :
—

I. Mdx = -
f{x)dx.

J Xq J Xi

II. ( f{x)dx = { f{r)dx + (
/(..>/,r.

J 'J:o J .'0 -' f

III. The integral of an even function between the limits - a and

+ a = twice the integral of the function between and a.

E.g.
I

xMx=2{
x}dx='^a^

ain-e . de = 2 sin-Ode = TT-

IV. The integral of an odd function between the limits - a and
+ a is zero.

E.g. 1 xHx =
0,

I

sin^dd = 0.

Similarly 1 sin"' 6 cos'^''+^ ede = 0,

m, n being positive integers.

V. In applying the method of
"
change of variable

"
to the

evaluation of definite integrals, we need not express the result

in terms of the original variable. We need only give the

new variable the values at its limits which correspond to the

change from x^ to x^ in the variable x, care being taken in the

case of a many-valued function that the values we thus alhjt are

those which correspond to the given change in x.
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E.g. I ^W^^.dx

*2

a^ cos-OdO, putting x = a sin d,

Jo

2(2

2 V 2
,,

§ 54. Application to Areas in Polar Co-ordinates.

AYhen the equation of the curve is given in polar co-ordinates,

the area of the sector bounded bj'
=

6^ and 0-9^ may be

sho's\ai to be

with the same notation as before. Hence if the curve is r =f(B),

the sectorial area is

If''

"J 9o

Polar co-ordinates offer the most convenient method of finding

the area of a looji of a curve.

For example, the lemniscate

r^ = a^ cos 20

has a loop between - -
^

and 6 = -.

1 ('
The area of this loop = - f-dd
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rt^

COS 26(16.

J

4

the area of the loop = a^ cos 26cW (Cf. § 53, III)

a-

a-

sin2(?

Similarly, in the Folium of Descartes, whose equation is

a;3 + yZ
=3 3axy,

there is a loop in the first quadrant ;
and transferring to polar

co-ordinates we find that the area of the loop

1

7-m

n

JfSa

cos 6 sin ^V^ /^

I ws¥T"sin¥/

n

9
2
r^ cos^^ sin^^

2'' (cos^^^^ + sin=*^)2

'^^

9 .

3
...

f-

J 11

l + f

r, df, putting tan 6 = t, (Cf. § 53, V.)

3 o

3a2
~

2
3

Ex.—Prove that the area of the cardioide r= «(l
- cos 6) is n'^a^-

§ 55. Applications to Lengths of Curves.

The length of an arc PgP^ of the curve //-./(«) may be

regarded as the limit of the sum of the different chords into
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which PgP^ is divided by the ordinates at m^, ???.,, . . . (cf. Fig.

15).

Hence

arc PqP,
= L/5,=o

'^\f(8x)^'T'(8i/Y

, dx= I'
^14-

m'-dy,
J 3/0

since / 1 +
rjl]

will differ from / 1 + f^j
"

by a very small

quantity when &x is very small, and the sum of these differences

multiplied by 8x will vanish in the limit.

If polar co-ordinates are used, we obtain in the same way for

the curve r =f{0) the two expressions

since the chord is in this case \^'{8r)" + (rSd)-.

Owing to the presence of the radical sign under the sign of

integi^ation, the problem of finding the length of the curve has

been solved in only a limited number of cases.

Ex. 1. Prove that the length of the arc of the jjarabola y-= 4ax from the

vertex to the end of the latus rectum is equal to a[\^2 + log(\^2 + l)]

2. Prove that the length of the cardioide r= a{l
- cos 6) is 8a.

§ 56. Volume of Solid, whose Cross-section is given.

If the section of a solid by planes perpendicular to the axis

of X is given and denoted by A, the volume of the portion of

this solid cut off by two such planes may be obtained by

integration, since this volume is readily seen to be "'

x=xn

or

* With the notation of § 49 we have

A8x<:dy<(A+dA)dx
and d\'

ax
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As a special case, the volume of such a portion of the solid

formed by the revolution of the curve
ij =f(x) about the axis of

o: IS rr[f(x)fd.r, or -
i/cb;

J J-O

and for revolution about the axis of
//,

we have in the same way
>n

77 oMy.
yo

Ex. 1. The portion of the parabola if=^ax from the vertex to the point

P(a;, y) revolves aljout Ox. Prove that the volume of the cup we thus obtain

is 2aTrx'.

2. Obtain the volume of a sphere by considering the rotation of the

semicircle x^ + y-= a^ aliout O.v.

3. Find the volume (i.) of aright circular cone and (ii.) of a cone in

which the base is any plane figure of area A, and the perpendicular from the

vertex upon the base is h.

4. Prove that the volume of a spherical cap of height h is irh\r
-

^),
where

r is the radius of the sphere.

§ 57. Surface of Solid of Revolution.

It is easy to show that the surface of a right circular cone

whose verticalangle is 2 aand whose

generators are of length I is tt/- sin a,

and we can deduce from this that

the surface of the slice of a cone

obtained by revolving a line PQ
about Ox is equal to

27r . PQ . NR,

where NR is the ordinate from

the middle point of PQ.

Suppose then that an arc P^P^ of the curve y=f{^') rotates

about Ox, the area of the surface generated by P^P^ is the

limiting value of the sum of the areas of the surfaces generated

by the chords into which we suppose this arc divided. That is,

the area of the surface generated by PqPi

N
Fig. 17.

1 + . 6x

di/\
-

do:
. dx, where ?/=/('')•
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n
This may be written 27r yds, by changing the variable from

J So

X to s, Avhere s is the length of the arc from a fixed point to the

point (./•, y).

When the axis of revolution is the axis of y, we obtain in

the same way the expression 27r I xds.

Ex. 1. Obtain the expression for the surface of a sphere of radius a.

Here we take the curve y= va- -
x'^,

and the surface =47r| s'a^-x^ '\/^ + ~o'
I y

,j
dx

dx
r

a

iira
I

2. Prove that the area of the portion of a sphere cut off by two parallel

planes is equal to tiie area which they cut off from tlie circumscribing cylinder
whose generators are perpendicular to these planes.

3. Prove that the area of the surface formed by rotating the circle of radius

a, whose centre is distant d from the axis of x, about that axis is Att-cuI.

§ 58. The Centre of Gravity of a Solid Body.

If a number of particles of masses m^, ?«.„ . . . are situated

at the points (x-^, ?/j, z^) . . . their C.G. is given by

_ 2(m^^) _ 2(r/? ,.//,) . _ S(m^g^)

and as we may suppose a continuous solid l)ody broken up into

small elements of mass 8711 whose centres are (x, y, z), we may
write these results for a solid body in the form

""=—M
—

' y=—j.r— ' '=—M
—

In many cases we can transform these expressions into

integrals which we can evaluate by the methods already

employed, though in general they involve integration with

regard to more than one variable, and these cannot be dis-

cussed here.
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We add some illustrative examples :
—

Ex. 1. The Centre of Gravity of a Semi-circular Plate.

Take the boundary of the plate along the axis of y, and suppose the

semicircle divided bj' a set of lines parallel

to that axis and very near one another. The

C.G. of each of these strips PQ' lies on the

axis of X, and therefore the C.G. of the semi-

circle lies on 0./;.

We thus have

X—-

2/ xydx
J

ira-

~2"

4 r=—9 I X Ja^ - X? . dx
-'

[-i(«-.^)'T
_4^
TTff

4a

OTT Fig. is.

and */
= 0.

2. The Centre of Gravity of a uniform Solid Hemisphere.
Let the axis of .' be the radius to the pole of the hemisphere, and suppose

the solid divided up into thin slices by a

set of planes perpendicular to this axis.

Then the C.G. of each of these slices

lies on this axis, and therefore the C.G.

of the hemisphere does so also.

Then

I xyHx
J ft•_•'

- 7r«'
3

. 3
x= -a

3
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3. Prove that the C.G. of any cone or pyramid upon a plane base is one

fourth of the way up the line from the vertex to the C.G. of the base.

4. Prove that the C.G. of the upper portion of the ellipse —+%= l is at
a'

'

62-

ib
the point ( 0,

--
' OTT

§ 59. Moments of Inertia.

The moment of inertia, I, of a set of particles ?n^, m.-,, ....
with respect to an axis from which they are distant

i\, ?•<,, etc., is

the expression

m-^r^"
+ m.^r.-,' + . . . .

and in the case of a continuous solid body we may express this as

I = Ltsm=o ^r-8m.

The radius of gyration k is defined by the equation

I = M/;2.

In many cases we may obtain the values of I and F by the

use of the methods of integration we have been discussing.

We add some illustrative examples.

Ex. 1. To find the radius of gyration of a thin rod of mass M and length

21, about an axis at right angles to the rod and passing through its centre.

Here
I = i/<5,„ _ ^^^ • ^^'

= p
I

x-dx,
-
-1

where 2Ip = 'M

=
2/3 /

x'^dx

^
2

_M.P
3

•

2. To find the moment of inertia of a solid circular cylinder about its

axis.

Here I = Lf^y^-Q 2r^5?n,

where din = ph {7r(?' + 8r)-
-
wr-\

= irph{2r8r+{dr)-}, where p is the vol. density.

A-

Fig. 20.
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Therefore I = ivph I ?•- . 2

ra

= 2Trph
I

r

•^ it

'2rdr

(1

r^dr

But 7rpA«2= M;

i=mJ'

3. Prove that the radius of gyration of a thin circular plate of radius a.

about a diameter as axis is - «-.
4

EXAMPLES ON CHAPTER VIII

1. Find the areas bounded by

(i. ) 2/
= sin 2a3, a;= 0, x= -.

(ii. ) y= e~^ sin 1x, a;= 0, .r= -.

(iii.) The hyperbola onj
=

a?, x= x\, x= x^.

(iv.) y= x^, a;= 0, :/;= 4.

(v.) 2/
=

2a-^, the axis of y, and the lines 7/
= 2 and y=^i.

2. Find the area of the part of the parabola ii
— x--Zx + 2 ci;t off by the

X axis. What does / ydx here represent ?

•^

3. Trace the parabola (?/
- aj - 3)- = a; + ?/, and find the area of the part of the

curve cut off by the lines x— and cC= 4i.

4. Find the areas in polar co-ordinates of

(i.) The part of r= a^ included between ^ = and d = 2Tr
;

(ii. )
A loop of each of the curves ?-= a sin Id, a sin 2>d, etc. ;

(iii.) A loop of each of the curves r= a cos 26, a cos 3^, etc.
;

(iv.) The part of the hyperbola r- sin ^ cos ^ = a'^ included between 9 = di

and =
6.2 >

(v.) A sector of the ellipse -^+^= 1 and of the hyperbola —2-fo
—

'^, the

centre being the pole.

(vi. ) Prove that the area between the two parabolas y'^
= ^ax and x^=iay is

16ft-

3
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(vii.) Prove that the area between the two ellipses ^, +^= 1 and ^ + '^=1

is 4aJ tan~^-.
a

5. By substituting x-a cos, 6, 7j
= b ain 9, show that the [lerimeter of the

ellipse of semiaxes a, b is given by 4a P ^/l
- c- sin-^ . dd, and deduce that for

-

an ellipse of small eccentricity the perimeter is apjiroximately 2ira
(

1 - -

6. Find the lengths of the following curves :
—

(i.) The equiangular spiral r = ae^ '^°* " from d = <) to d = 2w
\

(ii.) The spiral of Archimedes r= ad from ^ = to ^ = 27r
;

X X

(iii. ) The catenary y=
'~^(e"

+ e
"j

from a;= to a-= a ;

(iv. ) And show that the length of a complete undulation of the curve

II — b sin -
^ a

is equal to the perimeter of an ellipse whose axes are 2n'«- + 6^ and la.

7. Find the volumes of the following solids :
—

(i.) The solid formed by revolving the jjart of the line rc + i/=l cut off by
the axes, about the axis of x, and verify your result by finding tlie volume of

the cone in the usual way ;

(ii.) The spheroid formed by rotating the ellipse 9a:-+16?/'^= 144: about tlie

axis of X
;

(iii.) The cup formed by the revolution of a quadrant of a circle about the

tangent at the end of one of its bounding radii
;

(iv.) The cup of height h formed by the revolution of the curve a^y— u?

about the axis of y ;

(v.) The ring formed by the revolution of the circle {x-a)~ + y-=b^ about
the axis of y ;

^2 y2 ;~2

(vi.) The ellipsoid -2+t2+-2==1.

And show that if Sg, Sj, S^ are the areas of three parallel sections of a sphere
at equal distances a, the volume included between Sq, S, and the spherical

boundary is -
(S0 + 4S1 + S2).

8. The ellipse whose eccentricity is e rotates about its major axis. Prove

that the area of the surface of the prolate spheroid thus formed is

27r6(& + -sin-^c).

X _x
9. The catenary 2/

= - f (;" + g
"

j
rotates about the axis of?/ ; prove that the
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area of the surface of the cup formed by the part of the curve from a = to

r
a; = a is 2Tra- 1

\ ^

10. The cardioide ?- = a(l
- cos 0) revolves about the initial line ; prove that

32
the surface of the solid thus formed is -r- tto^.

11. Find the C.G. of the following :—

(i.) A thin straight rod of length I in which the density varies as the

distance from one end.

(ii.) An arc of a circle of radius a which subtends an angle 2a at the centre.
o o

(iii.) A quadrant of the ellipse —, +
'-jT,=

1-

(iv.) A circular sector as in (ii.)

(v.) The segment of the sector of (iv.) bounded by the arc and its chord.

(vi. )
A thin hemispherical shell of radius a.

12. Find the moments of inertia of each of the following :
—

(i.) A thin straight rod, about an axis through an end, perpendicular to

its length.

(ii. )
A fine circular wire of radius a, about a diameter,

(iii.) A circular disc of radius a, about an axis through its centre perpen-

dicular to the plane of the disc.

(iv.) A hallow circular cylinder of radii a, b and height h, about its axis,

(v.) A sphere of radius a, about a tangent line.

(vi.) (a) A rectangle whose sides are 2«and 2b, about an axis through its

centre in its plane perpendicular to the side 2a ;

(/3) about an axis through its centre perpendicular to its plane,

(vii.) An ellipse whose axes are 2a and 2b,

(a) about the major axis a
;

{j3) about the minor axis b
;

(7) about an axis perpendicular to its plane through the centre.

iV.5.—The case of the circle follows on putting a = b.

(viii.) An ellipsoid, semiaxes a, b, c, about the axis a.

JS\ B.—For the sphere a = b = c.

(ix.) A right solid whose sides are 2a, 2b, 2c, about an axis through its

centre perpendicular to the plane containing the sides b and c.

A^.^.—Routh's Rule for these last four important cases can be easily

remembered :
—

/ sum of squares of perpendicular \

Moment of Inertia about an axis\ _ \ semiaxes /
'

of symmetry ^
-mass

3, 4, or 5

The deno7ninator is to be 3, 4, or 5 according as the body is rectangular,

elliptical, or ellipsoidal.

Cf. Routh's Eigid Dyna.mics, vol. i. p. 6.





ANSWERS

CHAPTER I. (p. 12)

1. (i.) x^-\-f-='^^. (ii.)
..-=!^^.

(iii. )
ar* + 2.«Y + y* + 2a'^{y'^ -x-) + a* - c^= 0.

2. x'+ 4j/-ll = 0.

13 19^
^- •

11' 11

4. The parallel lines through are

3a'-2?/=:z0, ix + y^Q, 19;/;+13j/= 0.

The perpendicular lines through are

2a' + 3i/ = 0, a;-42/= 0, 13^'-19?/ = 0.

The parallels through (2 . 2) are

3.«-2!/= 2, 4a; + 2/
= 10, 19.i' + 13?/ = 64.

The perpendiculars through (2 . 2) are

2./' + 3?/=10, ;(;-47/ + 6 = 0, IS.-.-- 19y+ 12 = 0.

5. a; + 3//-7 = 0.

6. 7a; + 7?/ -36 = is the bisector of the acute angle.

a; -y- 12 = is the liisector of the obtuse angle.

7. (i.) (1.2), (3, 4), (5, 3).

Si.) I -3, I

(iii.) The internal bisectors are

x-y+1 _-x-\-iy-7 x-y + l_-x-2ij + \l x- 4y + 7_ .>J + 2y- 11

\J2 s'l7
'

n'2 VF
'

n'17 ^5
The external bisectors are

x-y+l _x-iy+7 x ~y+l _x-{-2y -11 x -iy + T _ - x - 2y + 11

n/2

~
\'l7

'

\/2

~
V5

'

v^r7

~
Jl

8. If the points (0, 0), (2, 4), (-6, 8) be called A, B, C respectively, the

equation to

(i.) BO is a' + 2?/ -10 = 0,

to CA is 4a3+32/=0,
*

to AB is 2x-y = 0.

(ii.) tan A = 2, tanB = oo, tan C= --

95
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(iii.) Median through A is y + 8x~0,
Median through Bis ?/

- 4 = 0,

Median through C is 6.>' + 7y~ 20 = 0.

(iv.) The perpendicular from A on BC is the line AB
;

its length is 2 ^'5.
The perpendicular from B on CA is the line 3x-iy+ll = 0; its

length is 4.

The perpendicular from G on AB is the line CB
; its length is
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(x. )
-
x{(x- + a^)

-i + (a;2
-
a^)

"
^}-

. . . 3.x,'-'

(^1-) Ti'

(Xll.) -3-
{l+x + x^)^{l-x + x^)^-

2/0

(ii.)
--«.

2/0

(lU. +-:3— •

«"2/o

(iv.)
-^.

ii'O

4. 7 '96 miles per hour.

5. 8 miles per hour
;

4 miles per hour.

'

dv V

9. When the pressure decreases, the volume increases, and conversely.

CHAPTER IV. (p. 38)

1. (i. )
3 sin a; cos a;(sin a;

- cos cc).

(ii. )
sec *x.

.... . 4 sin a;

(in.)

(iv.)

(V.)

^'^^•^
(l + cosxf

3. (i. ) x^-\m sin (a;") + «,<;" cos (a;»)].

(ii. ) x"^~\tn cos (a;")
- nx'^ sin (a;")].

(iii. ) af^-\m tan (.«") + ?ia;" sec ^(.x")].

4. (i.) 2ajtan-^a'.

(ii.) sin ~'a'.

1

cos
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CHAPTER V. (p. 50)

1. (i.) e'(l+,r). (ii.) x"'-h"^{m + nx). (iii.) {a + be + cax)e'^+<'.

(iv.) e''^'''~^^( sm-h'.-r—;^=^].^ '

\ Vl-W
2. (i.)2a'ci+^. (ii.) 2.i'e«^"(l+aa;2). (iii.) «'"-^e''^''(m + Ma«").

(iv. ) a-™-^a^"('»i + ?ia;" log a).

3. (i.)x"-(l+mlog.).
(ii.)^^^i~-

(iii-) 2;^.
-6a; ^/x'^+l+a- . 1

^^^•^l-a=2)(4-a;2)-
^^-^

a;x/^;vr" ^"^''^l -a;) Vi"

,
... 4a;-3 .... a^ ..... 2-5a;

2V(2a;+l)(a;-2)' (a2 + a;2)f'
V(a;-1)'''

(iv.) .7:^(1+ log a;).

(^•)
'

..»»+L^ (^1-) log—-- -^ 1+ ^

cos'^+^Tia;
^ ''

\
^ X x + 1 X

11. (i.) tan a.

(ii. ) tan n0.

(iii.) -cotnd.

(iv. ) cot n6.

(v.) -tan n9.

r-r- is the tangent of the angle between the radius vector to the point

(r, Q), and the tangent to the curve at that point.

13.
(i.) g=(3a--l)(a;-l)

. Max. at
Q, ^.

llin. at (1, 0).

(ii.) V^ = a;(5a;-2)(a;-l)2 . Max. at origin.

Min. at ("4, -03456).

(iii.) ^==2(a;-l)(a;-2)(2a;-3)
. Min. at (1, 0) ; (2, 0).

Max. at
(I ^

^^''•)£
=
^"|2-Max.at(-L -1).

Min. at (1, 3).

(v.) $=2t-£^-^^. Max. at(-l, 3).

Min. at ( 1
'

3y"

Min. at (1-4, --06) nearly.
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dx (.r-l)V-'-2)2
(vii.) J- -/,^"!'-,^|^fj2 • Min. at (

-
-9, -16) nearly

Max. at (1-4, 18-2) nearly.

(""•)
7ir='jt-Wi^-i?

^"^ *"^'°^"S points.

IX.) -f-= , -TTij— . Max. at (l-o, '1) nearly.
dx {x -\y

'\l\\\. at (6-45, 9-9) nearly.

(X.) '^
= ^-'1.

. Min. at (1-26, 1-89) nearly.

,., 4'.

<") I
.... , . R^-
(ill.) op = ^^ov.

(iv.) Sv^—8t.
P

, , ^ R(H-a<)^ aK^,
(v.) 5»= -

5^-i
—-Iv^—U.

EXAMPLES ON THE PARABOLA (p. 55)
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EXAMPLES ON THE ELLIPSE (p. 59)

1. The foci, extremities of the axes, length of latus rectum, and eccen-

tiicity are for

(i.)[±1.0], [±2.0], [0+N% 3, I

(ii.)[2.2], [0.2], [3.2], [-1,2], [1,2+^/3], [1,2-^^3], 3, ~.

(ill.) [± ^/3, 1], [±2,1], [0.2], [0.0],
^, ^.

(iv.) [0±1], [.)±2], [±v'3.0], 3,
1

EXAMPLES ON THE HYPERBOLA (p. 62)

1. (i.) (±v'7, 0):(±2, 0) :3:^.

(ii.) (1 ± v'7, 2) : (3, 2):(-l, 2):3:^.

(iii.) (0,
- 1 ± V5) : (0, 0) : (0,

-
2) : S : ^'5.

(iv.) (±n'7, 0) :(±V3, 0):i|^: -^-|\

2. (i.) (±2^2, ±2\/2) : (±2, ±2).

(ii.) (±2^/2, +2x/2):( + 2, +2).

CHAPTER VIL (p. 73)

1. ,. ,(a;-a)* 2sJax'-^'b 2 ,-,„ ^

(1-) —i~ '-^-a
=

3
V.^'(3 + a:) : «-log(a;+ 3).

,.. , , X . {x~2f (x-lf 2 -i/2,7-+l\

(iii.) sin-i(2a;-l); 2 Vcc'^- 3.7J + 2 + 2 log
(.r-^+

Va;—3a.-+
2)

;

V(a;2 + .'• + 1) +
^
log

('a;

+
^
+ \/x^+ .r + l \

2. a,-.sin-b + v^r^'';
'^ts^n'^x-^.

x^ +
^log{l+x') cos4c>/m^')

+

sm ix . -^ ;

o

/9,7;--2\ . „ 2x .^™+i .r'«+i



ANSWERS 101

3-
;t log ,

———2 + ^5 tau

'
-2

5. log

2a;-l 4 ^
\.r-l,

(a; -3)2
a;-2

6.

(i.)2(l+,)»{|-A}. (ii.)log-^|

Va; + 1 - 1

Vx + 1 + 1

8. log tan -. log tan ^ . —77: log tan ~ +

1 — 1
•,

2 sec X - 1

-log(atan^+ ^Han^^ +n 4l°g2sec^-+ l'

f dx 2._,fl.x

[^^^^ =
1
tan-

fa tan:;j5-4cosa;3 \ 2

/cfa'
_ 1 ,

4 + 5cosa;~3 °^

j 4 - 5 cos a; 3 ^

,7'

3 + tan ^

3 - tan -

X
1 + 3 tan

2

1 - 3 tan -
2

f_^_= 2

tan-\/ltanf'|-'^yj 3 + 2sina; ^5 V 5 \2 ^j

/"
cgx _ 2 /^). ^\

J3-2sina;-V!*^''"'^^*^^i2~4J-

i dx ^2^^
v/5 +

tan(|-^)
J 2+ 3 sin a; ,^5

°
,- /a; 7r\

v5-tan\^2~ 4

i 2 - 3 sin a;

/- / a; TT

_^ ^ l+v^5tan(^2"4
v/5

* ,- (x V
1 + v5 tan I 9

~ T

10 1 2a • a ,

2 . a cos 3^ sin ^ 3 „ •
/I

3
12. 5 cos 2^ sin ^ + - sin ^ .

^ + t cos ^ sin ^ + k '

o 3 4 4 8

^" „;. ^^ _,_
"

.,„-! .„„ „„^ «(?l^ Ln-2
,15. — sin mx -\

—
r, a'""^ cos mx—^—

^
—-

\ a;"~- cos mxdx.m m~ m-
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CHAPTER VIII. (p. 91)

1. (i.) 1.

(ii.)
jlye

•^ + 1

(iii.) a- log -.

(iv.) 64.

(v.) 3f2§-J

2. -: the difference between the area bounded by the rc-axis, the //-axis

and the curve, and the area which lies on the negative side of the aaxis.

o 343
^-

l2'-

4.
(i.)^-^^
.... 7r«- TTrt'-^ 7ra-
("•^

^;
T^' 4,r

.... . TTtt" TTrt'^ ira?

o 1- 4'/6

,. . o 1 tan p-7

(iv. ) fr log ,

-".
^ ' '= tan

6-^

(y \
— tan-i

^^ ^^'^^ ^o^an^)

ah .

^^
{b + a tan O^) (b

- a tan 9^)

4 °
{b + a tan ^J (6

- « tan ^2)

'

,. /. ! / 2 TT cot a , ,

0. (1.) a sec a (c -1).

(ii.) ^('(27rv'r+4^+log (27r + \/r+45f-)Y

(iii.)|(€-0.

(ii.) 487r.

..... 57r«* ir'^ci?

(iv.)
'- irh^a^.

(v.) -laV-Tr-.

(vi.)
- 7ra6c.
o

2
11. (i.) ,-.-: from that end.

•J

(ii.) On the radius bisecting the arc at a distance from the

centre.



ANSWERS 103

(ni.) x=—, y=-^-
TV OTT

,. ^ 2a sin a .

(iv.) On the radius bisecting the sector at a distance — trora
o a

the centre.
O SlU OL

(v.) On the bisector of the chord at a distance ^a -.

^ ' 3 a- sm a cos a

from the centre,

(vi.) The middle point of the radius perpendicular to the base.

12. (i.) I M~^ . (rod of length '2z).

(ii.)
~ Ma^-.

(iii.) ~Ma2.

(iv.)
^^{a^

+ b%

(v.) ^Ma2.

(VI.)
(a)-g-:(/3)M(^—g— j.

(vii.) (a)M|':(/3)M~:(7)M(^

(viii.)M(^^).

(i.)M(-±^).

4

THE END

Of

Printed by R. & R. Clark, Limited, Edinburgh.
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