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PREFACE.

TN an introductory course on the Differential and Integral Calculus

the subject of Infinite Series forms an important topic. The

presentation of this subject should have in view first to make tlie

beginner acquainted with the nature and use of infinite series and

secondly to introduce him to thi' theory of these series in such a way
that he sees at each step precisely what the question at issue is and

never enters on the proof of a theorem till he feels that the theorem

actually requires proof. Aids to tlu' attainment of these ends are :

(a) a variety of illustrations, taken from the cases that actually arise

in practice, of the application of series to computation both in pure

and applied mathematics
; (b) a full and careful exposition of the

meaning and scope of the more ditlicult theorems
; (c) the use of

diagrams and graphical illustrations in the proofs.

The pamphlet that follows is designed to give a presentation of

the kind here indicated. The references are to Byerly's Differential

Calculus, Integral Calculus, and Problems in Differential Calculus;

and to B. O. Peirce's Short Table of Integrals; all published by

Ginn & Co., Boston.

WM. F. OSGOOD.

Cambridge, April 1897.
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introductio:n".

1. Examj^le.
— Consider the successive values of the variable

s,.
r= 1 4-r+r2+ _^,.n-:

for w = 1, 2, 3, Let r have the value ^. Then

s,= l =i
s, = 1 + -^ =1^
S3 = 1 + J + i =1^

•••••
If the values be represented by points on a line, it is easy to see the

S,
=

I S^ S, 3^2.—H 1 1

—r i ll
Fiu. 1.

law by which any s„ can be obtained from its predecessor, s„_i,

namely : .s„
lies half way between s„_i and 2.

Hence it appears that wlien )i increases without limit,

Lim .s„
= 2.

The same result could have been obtained arithmetically from the

formula for the sum s„ of the first n terms of the geometric series

a-\- ar-\- ar^ -\- + ar"-\

a(l— r")
'" -

1 — 7-

Here a =; 1, r = i,

1-i
2" , 1= 2 —

" 1 9'i
— 1

^ ~2
When /( increases without limit,

^^i^^i
approaches as its limit,

and hence as before Lim s„ == 2.



2 INTRODUCTION. § 2.

2. Definition of an Infinite Series. Let ?<o? ''^i? "^a? be

any set of values, positive or negative or both, and form the series

^0 + ^<l + ^2 + (1)

Denote the sum of the first n terms by s„ :

s„ = Uo + Ui-\- + ti„_i.

Allow n to increase without limit. Then either a) s„ will approach

a limit U:
Lim s„ = U;
W= CO

or b) s„ approaches no limit. In either case we speak of (1) as an

Infinite Series, because n is allowed to increase without limit. In

case a) the infinite series is said to be convergent and to have the

value* U ov converge towards the value U. In case h) the infinite

series is said to be divergent.

The geometric series above considered is an example of a con-

vergent series.

1+2+3+ ,

1-1+1-
are examples of divergent series. Only convergent series are of use

in practice.

The notation

r/.Q + ?'i + ad inf. (or to infinity)

is often used for the limit U", or simply

U = Uq-\- u^-\-

* U\s often called the sum of the series. But the student must not forget

that U is 7iot a sum, but is the limit of a sum. Similarly the expression "the sum

of an infinite number of terms" means the limit of the sum of n of these terms,

as n increases without limit.



I. COXYERGENCE.

a) SERIES, ALL OF WHOSE TERMS ARE POSITIVE.

3. Example. Let it be required to test the convergence of the

series

' + ' + F2 + riT3+ +^+ (^)

where ?i ! means 1-2-3 n and is read ^^
factorial n".

Discarding for the moment the first term, compare the sum of the

next n terms_1 1 1

°'"
~ ^ •" F2 "^

1
• 2 • 3

~^ ~^ i-2-3 n

with the corresponding sum

1 1 1

2
' 2-2 ' '

2 -2 -2

n — 1 factors

= 2-^,<2 (Cf. §1),

Each term of a,, after the first two is less than the corresponding

term in S,,^ and hence the sum

or, inserting the discarded term and denoting the sum of the first n

terms of the given series by s„,

s„ + i=l-hl + p^ + YT2T3-+ + 1-2-3 n<^'

no matter how large n be taken. That is to say, s„ is a variable

that always increases as n increases, but that never attains so large

a value as 3. To make these relations clear to the eye, plot the

successive values of s„ as points on a line.
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This limit, U, is not greater than A :

U<A.

S. Sa Sa S. U A
i \ 1 I Mil \

Fio. 3.

The value A may be the limit itself or any value greater than the

limit.

Exercise. State the Principle for a variable that is always de-

creasing, but is always greater than a certain fixed quantity, and

draw the coiTesponding figure.

5. First Test for Convergence. Direct Comparison. On the prin-

ciple of the preceding paragraph is based the following test for the

convergence of an infinite series.

Let Kq + "i + ^2 + (a)

be a series ofpositive terms, the convergence of which it is desired to

test. If a series ofpositive terms already known to he convergent

<'0 + ^'l + «2 + (/?)

can he found lohose terms are never less than the corresponding terms

in the series to he tested (a), then (a) is a convergent series, and its value

does not exceed that of the series (fi).

For let

S„= a^-j- a,-\- -f «,._!,

Lim S„ = A.
n = 00

Then since S„ <^ A and s„ ^ S„ ,

it follows that s„ <^ A

and hence by §4 s„ approaches a limit and tliis limit is not greater

than A.

Remark. It is frequently convenient in studying the convergence
of a series to discard a few terms at the beginning (»i, say, when m
is Vi fixed number) and to consider the new series thus arising. That

the convergence of this series is necessary and sufficient for the

convergence of the original series is evident, since

S« = ("O -f + "„.-l) + ("« + -f- «n-l)
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u is constant and hence s„ will converge toward a limit if s„_„ does,
and conversely.

Examples. Prove the following series convergent.

(1) 1+^4-^ + ^4+

(2) r + r" + r« + r^' -f...... 0<r<l
1,1,1.

^'^ 31+5! + ^+
1,1,1,W 1^2 + 2^3 + 3^+

Solution. Write s„ in the form

1\ , /I 1\ , , /I 1 \
^"-^1-2 + 2-3 + +U
-1 ^.~

n + 1
'

then

Lim s„ = 1.

W = 00

1-2 ^ 3-4 ^ 5-6 ^

1 + 1 + 1
22
^

32
^

4-^

^
I 02 I 02 1 /12 1

1+^ + ^+ ' P>^-

6. A New Test-Series. It has just been seen that the series

1 + ^ + ^.
+ ^+ (3)

converges when the constant quantity p ^ 2. We will now prove

that it also converges whenever p ^ 1. The truth of the following

inequalities is at once evident :

- + -<- =—
2?

'

3?
^

2^ 2^~ 1

I Kp I

fip
I

7/>
^^ /i/' AP-14P

I

5?
'

gp
I

7/'
^

4/- 4,

i+i+ +i<l = _
gp

I

9P
I '

IS''
^

8" 8
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Hence, adding m of these inequalities togetlier, we get

1,1 I 4.__L__^J__L_L+J_4.
2*" 6'' (2'"'^^ 1)'' 2''""^ 4^-1 "^

8''"^

+ '

Denote 1/2''"^ by r
; then, since ^>

— 1 ^ 0, r <^ 1 and the series

converges toward the hmit . Consequently no matter how

many terms of the series

i + l + i+
be taken, their sum will always be less than

,
and this series is

therefore convergent, by the principle of § 4.

Series (3) is useful as a test-series, for many series that could not

be shown to be convergent by the aid of the geometric series, can

be so shown by reference to it. For example.

7. Divergent Series. The series (3) has been proved convergent

for every value of j9 ^ 1. Thus the series

1 + -^ +^+^-+
2 'V 2 3-^3 A'^ 4:

is a convergent series, for j7 := 1.01. Now consider what the nu-

morioal values of these roots in the denominators are :

'7 2=1.007, '7 3 = 1.011, '7 4=1.014.

In fact '7 100= 1.047 and '7 1000= 1.071; that is, when a

thousand terms of the series have been taken, the denominator of the

last term is multiplied by a number so slightly different from 1 that

the first significant figure of the decimal part appears only in the

second place. And wlu'u one considers that these same relations will

be still more strongly marked when j) is set equal to 1.001 or 1.0001,

one may well ask whether the series obtained by putting jj
=^ 1,

' +
l
+

l
+ \+ w

is not also convergent.
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This is however not the case. For

1,1, J 1 ^ 1 1

^ n -\- n ^ 2 n 2
'

since each of the n terms, save the last, is greater than 1/2 n. Hence

we can strike in in the series anywhere, add a definite number of

terms together and thus get a sum greater than h, and we can do

this as often as we please. For example,

1
I

1 ^ 1
'' = '^

3
+ 4>2

''=^^
5
+

6
+

7
+ 8>2

" = ^'
9
+ To

+ +
1-6
>

2

Hence the sum of the first n terms increases without limit as n

increases without limit,

or Lim
.S,,

rrr 30

The series (4) is called the harmonic series.

How is the apparently sudden change from convergence for p ^ 1

in series (3) to divergence when p = 1 to be accounted for? The

explanation is simple. When p is only slightly greater than 1,

series (3) indeed converges still, but it converges towards a large

value, and this value, which is of coui'se a function of p, increases

without limit when j>, decreasing, approaches 1. When p = 1, no

limit exists, and the series is divergent.

8. Test for Divergence. Exercise. Establish the test for diver-

gence of a series corresponding to the test of §5 for convergence,

namely : Let

^'o + ^'i + (a)

he a series of positive terms that is to be tested for divergence. If a

sev'es ofpositive terms already knoiun to be divergent

"0 + «i + (/8)

can be found vjhose terras are never greater than the corresp)onding

terms in the series to be tested (a), then (a) is a divergent series.

Examjjles.
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14-l-f- + -+ p<l

This last series can be proved divergent by reference to the series

2
^

4
^

G
^

Let ^—
2
+ 4

+
6
+ + 2^

=K^+^^ +^
The series in parenthesis is tlie harmonic series, and its sum in-

creases without limit as n increases
;
hence .s„ increases without limit

and the series is divergent.'O^

9. Second Test for Convergence. The Test-Ratio. Let the series

to he tested be

Wo + ^'i + + ^K +
and form the test-ratio

n

When n increases without limit, this ratio will in general approach a

definite fixed limit (or increase without limit). Call the limit t.

Then if t <^ 1 the series is convergent, if t > 1, it is divergent, if

T := 1 there is no test :

Lim ^K+i _ ^ ^ 1 Convergent;
n

" T > 1
, Divergent ;

(( T = 1, No Test.

First, let T <; 1. Then as n increases, the points corresponding

to the values of ii„ + ^/u„ will cluster about the point t, and hence if

r y I—
I \ 1 Y—

Vu;. 4.

a fixed point y be chosen at pleasure between t and 1, the points

w« + i/'^i ""'ill^ fo^' sutiiciently large values of n, i.e. for all values of n

equal to or greater than a certain fixed number m, lie to the left

of y, and we shall have



10 CONVERGENCE. § 9.



§§10,11. CONVERGENCE. 11

10. A Further Test-Ratio Test. The following test for conver-

gence and divergence is sometimes useful
;
the proof of the rule is

omitted. If

approaches a limit, let this limit be denoted by a-. Then the series

Uo + Wi -f

converges, if o" ^ 1 (o^ if a- = oo) ;

diverges, if a <^ 1 (or if a- = — oo) ;

if o- = 1
,
there is no test.

Example.

1-2 ^ 3-4 ^

nf l_!l^^A- >.^ (2n — l)2n ^_ 4 -f
i^n-fA_ /^ (2n — l)2n \

''n J V (2// +l)(2n + 2)y' 2 + ^+(;-)^

and o- = 2
;
the series converges.

Test the following series :

11-3 1-3-5

2
'~ 2^ ' 2'4-6 '

^-^m^im^
22 — a

~
32 — a '

4''^
— a ^

Apply any of the foregoing tests to determine the convergence or

the divergence of the series on pp. 45, 46 of Byerly's Problems in

Differential Calculus.

b) SERIES WITH BOTH POSITIVE AND NEGATIVE TERMS.

11. Alternating Series. Theorem. Let the terms of the given

series \) he alternately x>ositive and negative:

«o
—

"1 + «j
—

''3 + ; (5)

2) let each u he less than (or equal to) its predecessor :

w„ + i<«„;

8) let Lim
»,,
= 0.

n ^ cc

Then the series is convergent.
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The following series may serve as an example.

2^3 4

1.1 1
,

1-9 + 5^-7+ (6)

Proof. Let

\ = ^h
—

'^'l-\-^h + (— ly-^u^-i

and plot the points Si, Sg, Sg, Then we shall show that the

points Si, S3, S5, s-2m + \i always move to the left,

s^ s^ Se Ua u; S5 S3 s,

—\ \

—\M \^
—

\ \

—
Fig. 5.

but never advance so far to the left as So, for example. Hence by
the principle of § 4 they approach a limit, Ui :

TO ^ 00

Similarly, the points s,^ ^ii H^ ^-zmi always move
to the right, but never advance so far to the right as s^, for example ;

hence by the same principle they also approach a limit, U2 :

Lim .S2,,
z= U^ .

TO = 00

Finally, since

lim S2„, + i
= lim

.s\,,„ + lim ru^ ;

TO ^ 00 m ^ <xi m = 00

but lim ?<2m = i

— hei"e the third hypothesis of the theorem comes

into play for the first time
;

— hence

Ui = Uo
,

or simply U. Thus s„ approaches a limit, U, continually springing

over its limit.

Ss S4 Se U So S.3 Si

Fig. 6.

Such is the reasoning of the proof. It remains to supply the

analytical establishment of the facts on which this reasoning depends.

rU'St, •''2m + 1 _;:; ^2m — 1 ^^^t' ^'Zm ^ ^2m-2'

ForSo,„+ i
=

?(o
—

O'l
—%)— (M2™-3— «2,«-2)

—
(«2,«-l

—
Wo™)

-^
•^2jn — 1 v'-2m — 1 '"2w) i

S2,n= (''O
—

Ml) + + ("2,«-4
—

«2,«-3)+ (^2^-2
—

«2,«-l)

s. + (^<2,»,-2 M2»-l) ;2m — 2 1^ V,'-''2rti,
— 2

and the parentheses are all positive (or null).



§§ 11, 12. CONVKIUJEXCE. 13

^Xt S2„, + l>-«2 1111(1 -v. < Si.

For S2„. + i
=

.Sj,,, -\- «2,„ > «2 + M2». > «2»

«2m ==
''2mM "2,,. ^ ^1 "2,,, <C ^l'

The proof is now complete.

- + ---
32

-r
52 7!

Q2 I K2 72 I

'

+
'

log 2 log 3 log 4

13. r/^e Limit of Error in the Alternating Series. Suppose it be

required to find the value of series (5) eoi-reet to fc, say, to 3 places

of decimals.

For tills purpose it is not enough to know merely that tlic series

converges, and hence that enough terms can be taken so that their

sum
.s,,

-will differ fnjin the limit U by less than .001, for n might be

so great, say greater than 10,000, that it would be out of the question

to compute s„. And in any case one must know when it is safe to

stop adding terms.

The rule here is extremely simple. The sum of the first n terms

of series (5), s,^, differs from the value of the series, U, by less than

the numerical value of the (n -j- l)st term. In other words, we may
stop adding terms as soon as we come to a term which is numerically
smaller than the proposed limit of error.

For, consider Fig. (fi). Tlic transition from
.s„

to s^^i consists in

the addition to s^ of a quantity nuinericall}^ greater than the distance

from
.s^^

to U. This quantity is precisely the (n -\- l)st tenn of the

series. Hence the rule.

For example, let it be required to compute the value of the series

(7)
1 1 1

1

3 2
*

3-"^
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Examples. 1. Show that the value of the series ••

1_1J^1J^_1 1,1 1

2 22^~^32^ 42*~'5P
to three places of decimals is .405.

2. How many terms of the series

1-1+1-^+. ....
2^3 4 ^

would have to be taken that the sum might represent the value of

the series correct to 3 places of decimals?

13. A General Theorem. J.et

^'o + "i +
he any convergeyit series ofpositive and negative terms. Then

Lim
^(„

:= .

More generally,

irhere p is any integer., either constant or varying with n.

The proof of this theorem flows directly out of the conception of a

limit. Let

•\
=

^'o H- ^'i + + "„-i

and plot the points s^, .S2, 83, Then what we mern when

we say "s^^ ajyjroaches a limit U" is that there is a point / al)Out

which the s^'s cluster, as n increases. This does not necessaiily re-

quire that (as in the series hitherto considered) 8^ should ahvny-^ come

steadily nearer to U, as n increases. Thus Sr, may lie further away
from U than s^ does. But it does mean that ultimately t'ne s^'s will

\ 1 1 Mill 1 1 1

—
Fig. 7.

cease to deviate from U by more than any arbitrarily assigned quan-

tity, 8, however small. In other words, let 8 be taken at pleasure

(=z 1/1,000,000, say) and lay off an interval extending to a dis-

tance 8 from U in each direction, (Jj
—

8, U -\- 8); then for the

larger values of n, more precisely, for all values of n greater than

a certain fixed number m, s will lie within this interval. This

can be stated algebraically in the following form :

U— ^ <C ^n ^ ^" ~f" ^» when n. ^ 771.
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Having thus stated what is meant by s^'s approaching a limit CT",

we now turn to the proof of llic theorem. The sum

If H ^ V}, both
.s,^

and n_^^, will lie in the interval (U— 8, C^ -\- 8).

The distance between these points is therefore less than 2 8. Hence

no matter what vahie p may have. But if u (piantity depends on n

and can be made to remain numerically as small as is desired by

increasing n, then it approaches as its limit, when n = y: . Thus

the proposition is established.

It is to be noticed that while the condition Lim m^ rr is necessary^

if the series is to converge, it is in no wise sufficient for the conver-

gence. Thus in the harmonic series (4) the general term approaches

as its limit, but still the series diverges. The harmonic series

however does not satisfy the more general condition of the theorem
;

for if we put j) :=. n,

''"+""-^+ + "«+^^-^=
,-rjri+;7^>+ +^7+^>2

and does not converge toward as its limit. This fact affords a

now proof of the divergence of the harmonic series.

It may be remarked that the more general condition

Lim
[;/,, + »„ + i + + "„ + ,.-i] = 0>

where j> may vary with n in nuy icise ice choose, is a sutlicient con-

dition for the convergence of the series. See Appendix.

14. Convergence. The General Case. Let

be an}^ series and let

-^'o + '"i +
denote the series of positive terms,

—
?(\,
—

>r,
—

the series of negative terms, taken respectively in the order in which

they occur in (a). For example, if the »-series is

i_i+i_i+
2

'

2- 2*
'
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then the ti-series is

1 -I-

22
I

2^
1 + ^. + ^4 +

and the — to-series is

_1_1_1_
2 2^ 2^

Let s^= Uo-\- Vi-\- -\- w„_i,

«,«= ^'o + ''i + + %n-i^

^
= ic^ -\- IVi -\- + ?«^_i,T

Then, whatever value n may have, 5^ can be written in the form

•5«
=

<^,n
—

'^p-

Here m denotes the number of positive terms in s , o- their sum,

etc. When n increases without limit, both m and p increase without

limit, and two cases can arise.

Case I. Both
a^^^

and
t^, approach limits :

Lim
o-„^
= V, Lim

t^,
=: W;

m ^ OO jp
:^ 00

so that both the r-series and the t«-series are convergent. Hence

the u-series will also converge,

Lim 8^
= U,

n ^ <xi

and
U= V— W.

The above example comes under this case. Case I will be of

principal interest to us.

Case II. At least one of the variables
o-,,^, t^, approaches no limit.

For example, suppose the w-series were

1,1 1,1 1,1
' - 5 + 3

-
i
+

3
-

6
+

7
-

As these examples show, the w-series may then be convergent and

it may be divergent.

Exercise. Show that if the n-series converges and one of the

V-, w-series diverges, the other must also diverge.

Let us now form the series of absolute values* of the terms of the

* By the absolute value of a real number is meant the numerical value of that

number. Thus the absolute value of — H is 3
;
of 2^ is 24- Graphically it

means the distance of the point representing that number from the point 0.



§§ 14, 15. CONVERGENCE. 17

w-series and write this series as

"o 4- '<'i H-

u'^ will be a certain v, if
«,,

is positive ;
a certain w, if u^ is negative.

If we set

it is clear that

•s'.. = o- + Tp.

From this relation wc deduce at once that in Case I the ?t'-serie8

is a convergent series.

Conversely, if the u'-series converges^ then both the v-series and

the ic-series converge, and tee have Case I.

For both the t'-series and the ?r-serie8 are series of positive terms,

and no matter how many terms be added in either series, the sum
cannot exceed the limit U' toward which s' converges. Hence bv

the piinciple of § 4 each of these series converges.

Definition. Series whose absolute value series are convergent

(i.
e. M-series wdiose '/'-series converge) are said to be absolutely or

unconditionally convergent ;
other convergent series are said to be

not absolutely convergent or conditionally convergent. The reason

for the terminology unconditionally and conditionally convergent will

appear in § 34.

15. Test for Convergence. Since the u-serios surely converges
if the ?t'-series converges

— it is then absolutely convergent
— and

since the w'-series is a series made up exclusively of positive terms,

the tests for convergence obtained in I. a) can be applied to the

w'-series and from its convergence the convergence of the ^-series can

thus be inferred. The series that occur most frequently in elementary

analysis either come under this head and can be proved convergent
in the manner just indicated, or they belong to the class of alternat-

ing series considered in §11.

The test of § 9 can he thrown into simpler form whenever the test-

ratio "„ + i/»„ approaches a limit, t\ the rnle being that when t is

numerically less than 7, the series converges absolutely; u:hen t is

numerically greater than 1, the series diverges ; when t is numerically

equal to 1, there is no test:

lim 'i!i±i — t

7i = 00 ^<„

— 1 <^ ^ <^ 1 , Convergence;

t ^ I or t <^
— 1 , Divergence;

t = \ ov t = — \ , Xo Test.
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For, the test-ratio
i<„ + i/?<„ is numerically equal to the test-ratio of

the series of absolute values, u\^ + i/u'^. Now if a variable /(w)

approaches a limit, H^ when n ^ cc
, its numerical value, being the

distance of the point representing /(?i) from the point 0, approaches

a limit too, namely the numerical value of if (distance of if from 0).

Hence

lira ^'« + i

1

=
"^5M = CO

u\^

where t equals the numerical value of t. If then — 1 <:^ ^ <^ 1, it

follows that T <^\ and the ^t'-series converges. The w-series is

then absolutely convergent.

The second part of the rule will be proven in the next paragraph.

Example. Consider the series
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Hence w'„.^i > m',„,

^^'-. +2> "',,+ 1 >^^'„.,

<,. + 3 >«'„, + 2 >m'„,

or u'„ > «'„,,
n > m

;

that is, all the u'^'s from n := m on are greater than a certain positive

quantity p = w',,^
and hence

u\^
and

?<^
cannot approach as their

limit, when n ^ co.

Example. In the series of § 15, < =r — x-; hence this series di-

verges for all values of x numerically greater than 1. These results

may be represented graphically as follows :
—

Divergent — 1 1 Divergent

Conrergmt

Exercise. For what values of x are the following series conver-

gent, for what values divergent ? Indicate these values by a diagram
similar to the one above.

x"^ x^

Ans. — 1 ^ a; <^ 1
,
Conv.

; x^\^x<^— 1
,
Div.

x^
,

x^ x''
,

^-3 + 5-7 +

l+x- + ^ + 3^+

10a; + 102.1-2 + 10«.»-3 -|-

1 + .r -|- 2 ! a-2 -|- 3 ! x^ -\-

17. Theorem. Let

«0 + «1 + «2 H-

be any ahsoluteUj convergent series; po^ pi- p>i (^^^y set of

quantities not increasing numerically indejinitely. Then the series

converges absolutely.

For, let
a',,, p\^ be tlie aiisolute vahics of

k^^, p_^ respectively, fl a

positive quantity greatt'r than any of the q^iantities p\^,
and form the

series

«'op'o + <'\p\ + ^f'.p'. -h
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The terms of this series are less respectively than the terms of the

convergent series

and each series is made up exclusively of positive terms. Hence the

first series converges and the series

converges absolutely.

Examples. 1. The series

sin a; sinS.i' sin 5 a;

12 g2
"I T2

converges absolutely for all values of x. For the series

converges absolutely and sin nx never exceeds unity nmnerically.

2. If Oq + «! + «o + and &i + &2 + are

any two absolutely convergent series, the series

f'o ~\- f^i cos X -\- tto cos 2.1; 4-

and bi sin x -(- 63 sin 2 a; -|-

converge absolutely.

3. Show that the series

e~^ cos X -|- e^^^ cos 2x -\-

converges absolutely for all positive values of x.

4. What can j'ou say about the convergence of the series

1 + r cos ^ -|- r^ cos 2 ^ + ?

18. Convergence and Divergence of Power Series. A series of

ascending integral powers of
a,',

a,, -\- a^x -\- a.x- -f- ,

where the coefficients Oq, «i, «25 ^^'^ independent of x, is

called a jwiver series. Such a series may converge for all values of

X, but it will in general converge for some values and diverge for

others. In the latter case the interval of convergence extends equal

distances in each direction from the point x = 0, and the series con-

Divergent — r r Divergent

Convergent

verges absolutely for every point x lying ivithin this interval, but not

necessarily for the extremities of the interval.
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Tlie proof is as follows. Let Xq be any value of x for which the

terms of the power series a^x^ do not increase without limit
; a'^, x'^,

the absolute values respectively of a„, x„. Then
a'^x',"

is less than

some fixed positive quantity C, independent of j(, for all values of n.

For X =^ a'o, the power series may converge and it may diverge.
—

Let h be any value of x numerically less than x'q ;
h' its numerical

vahic. Then the power series converges absolutely for x = h. For

a\^''^ = a'^xV C'yX < Cr"
,

wdiere r =
Ji'/x'q <^ 1. Hence the t(Mnis of the absolute value series

a'oH- a\h' -\- <i',h''-\-

are less respectively than the terms of the convergent geometric series

C + Cr -\- Cr^ -f-

and the series
•

converges absolutely.

From this theorem it follows that if the power series converges for

X =. .To, it converges absolutely for all values of x within an interval

stretching from to x^ and reaching out to the same distance on the

other side of the point a; =
;
and if diverges for x = x^, it diverges

for all values of x lying outside of the interval from Xi to — x^. If

now the series ever diverges, consider the positive values of x for

which it diverges. They fill a region extending down to a point

X z= r, where r in general is greater than and such that the series

converges absolutely for all values of x numerically less than r
;
and

this is what was to be proved.

A simpler proof of this theorem can be given for the special case

that a„ + i/a„ approaches a limit, L, when n =: x) . For then

Lini "« + i lim ^^n + 1
•^" __ r^

TC = 00 u^ 71 = CO
a,, x"

'

or t =: Lx. Hence when Jj = 0, the power scries converges abso-

lutely for all values of x* (H'J) ;
while if L dr 0, the series converges

absolutely when x is numerically less than \ L, and diverges when x

is numerically greater than 1/L. This proves the proposition.
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«) THE LOGARITHMIC SERIES.

19. One of the most important applications of infinite series in

analysis, and the one that chiefly concerns us in this course, is that

of computing the numerical value of a complicated analytic expres-

sion, for example, of a definite integral like

i:
,— x2 dx

,

when the indefinite integral cannot be found. In fact, the values of

the elementary transcendental functions, the logarithm, sine, cosine,

etc., are computed most simply in this way. Let us see how a table

of logarithms can be computed from an infinite series.

A series for the function log^ (1 -|- h) can be obtained as follows.

Begin with the formula

log(l + /0
_ r'^ cix~

Jo rrX

The function (1 -{- x)~'^ can be represented by the geometric series

=: 1 X -\- .^^ — x^ -\-
1 + x

Integrate each side of this equation between the limits and h :

—^-— ^ I \ • dx — I xdx -\- I
x'^dx —

1 i" -^^ Jo Jo Jo

Evaluating these integrals we are led to the desired formula :

log(l-h70==/^-2-+ 3- (8)

In deducing the above formula it has been assumed that the theo-

rem that the integral of a sum of terms is equal to the sum of the

integrals of the terms can be extended to an infinite series. Now
an infinite series is not a sum, but the limit of a sum, and hence the

extension of this theorem requires justification, v. §§39, 40.
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Exercise. Obtain the formula

tan ^ h := h r + ^
;3 5

Hence evaluate the series

'-a + o-
20. In the examples of § 12 the value of series (8) was computed

to three places of decimals for h =: ^ and // =r i ;
and it thus appears

that

log li = .287 (5), log U = .405 (5).

To find log 2 we could sulistitute in («) the value h ^ 1 :

But this series is not well adai)ted to numerical computation.* In

fact to get the value of log 2 correct to the third place of decimals, it

would be necessary to take 1000 terms. A simple device however

makes the computation easy. Write

•> — 4 . 3-
3 ?

and then take the logarithm of each side :

log 2 = log
A + log I

= .287
(;-)) -f- .405 (5) = .693 (O);

Hence, to three places, log 2 =^ .693.

Next, to find log 5. Here the series must be applied in still a

different way, for if 1 -{- h be set equal to 5, /i == 4, and the series

does not converge. We therefore set

5 = 4+ 1 =4(1 +i),

log 5 =r 2 log 2 -|- log IJ

=: 1.386 (0) + .223 (2) = 1.609 (2),

where log 1^ is computed directly from formula (8).

From the values of log 2 and log 5, log 10 can at once be found.

log 10 = log 2 4- log 5 = .693 (0) -f 1.609 (2) = 2.302 (2)

or to 3 places.

This latter logarithm is of great importance, for its value must be

known in order to compute the denary logaritlim from the natural

* The formula is nevertheless useful as showing the value of a familiar

series, (0). We could not find by direot conipntation the value of this series to,

say, seven places, because the work would be too long.

log 10 = 2.302.
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logarithm. By the formula for the transformation of logarithms

from the base c to the base ?>,

,
. log, J.

we have ^^S-^ =
log:iO

'

Hence for example
.693

">«-' = 2m = '''

Examples. Compute

log 20, logio20,

log 9, logio9,

log 13, logiol3. .

21. Series (8) is thus seen to serve its i>uipose well when only a

few places of decimals are needed. Suppose however we wished to

know log 2 correct to 7 places of decimals. Series (8) would then

give less satisfactory results. In fact, it would require 16 terms of

the series to yield log li to 7 places.

From (8) a new series can be deduced as follows. Let h z= — x.

Then (8) becomes

log (l—x) = —x—- — ~—
Next replace h in (8) by x :

x'-
,

x^

log (1 +.«) = + X — - + - —

Subtracting the former of these series from the latter and combining
the logarithms we get the desired formula :

iJi5= , (, + 1 + ^'

We have subtracted on the right hand side as if we had sums.

We have not
;
we have limits of sums. This step will be justified

in §35.

"We will now apply series (9) to the determination of log 2 to seven

places. X must be so chosen that

~——
;

=. 2, 1. e. ^ =^ ^ and

,
1 + i /I

,

1 1
,

1 1
,

1 1
,

\

^^^1-^=1=^3 + 3 3^
+

5 3^+7 3^+ )
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The advantage of this series over (8) is twofold : first, it suflices to

compute tlie value of the series for one value of .r, x = ^, and

second, the series converges more rapidly than (H) for a given

value of X, since only the odd powers of x enter.

(i) =
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Examples. Show that

log li = .223 143 (4)

log 5 = 1.609 437 (8).

Compute log 2 by aid of the formula

log 2 = — log ^ = — log I
—

log |.

Knowing log 2 and log 5 we can find log 10 :

log 10 = 2.302 585.

Exam2)le. Compute

logio 2
, logio 9

to six places.

Series (9) is thus seen to be well adapted to the computation of

logarithms. If y denote any positive number and x be so deter-

mined that

1 + .^; . .V
— 1—!— = y ,

I.e. X =1 —
,

—-
,

then X always lies between — 1 and -j- 1 and series (9) converges

towards the value log y. For values of y numerically large the

convergence will be less rapid and devices similar to those above

explained must be used to get the required result.

In the actual computation of a table, not all the values tabulated

are computed directly from the series. A few values are computed

in this way and the others are found by ingenious devices.

b) THE BINOMIAL SERIES.

22. In elementary algebra the Binomial Theorem for a positive

integral exponent :

7)z ( ')yh 1 1

(a + hy = a'" + ma'"-i6 -] ^—-^
—La'^-'^h^ -\-

i.
• ^

(to m -\- 1 terms)
is established.

Consider the series

1 -h /^^ + 1.2 ^
1 • 2 • 3

^

If /a
is a positive integer, this series breaks off with /a + 1 terms, for

then, from this point on, each numerator contains as a factor.

Thus if /A
r= 2, we have

2-1 2 • 1 •

1 _j_ 2x -^
x^

-\
—- x^ -f" 6tc. (subsequent terms all 0),
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or simply 1 -\- 'Ix -\- x^. In this case the series is seen by compari-
son with the binomial formula (a := I, h z= x, m z=z

fj.)
to have the

value (I -\- x)f:

\ I '' ^ ^ ^
1 2

' 1-2-.3 '

If however
/a

is any nuinlter not a positive inte<!;er or zero (negative

number, fraction, etc.) the series never breaks olf, i.e. it becomes an

infinite series. Let us see for what vahies of x it converges, for

only for such values will it have a meaning. The general term of

the series is

Hence

fxjfx— 1) {fi.
—

2) (fi
— n -\- \)

1-2 . 3- • n

H-JH-—^) {/^
— n -\- 1) (i^

— n) ^^^^

u^ + 1 1 • 2 • n •

{n -{- I)

w„

~
fj.(ti—l) (/x

— n+ 1) ^
1 • 2 '. n

"^

a — n 1 — a/n
"~

n 4- 1
~

l + l/n
and

Lim ^^, + 1 __ ^ ^

n = oa u
n

Consequently the series converges for all values of x numerically less

than unity. (§ 15.) For the values x = 1,
— 1 special investiga-

tion is necessary, which we will not go into here.

Divergent — 1 T Dirergenl

Convergent

We may note in passing that when <^ x* <^ 1 the series finally

becomes an alternating series, a fact that is useful when the series

is used for computation.

Toward what value does the series converge when x lies between
— 1 and -|- 1 ? The answer to this question is as follows : For all

values of x for which (he binomial series converges, its value is

(1 + xr :

(1 + xy = 1 4- ^.r + ^^^~^^ x'-\- (10)

The proof of this theorem will not be considered here (v. Chap.

III). Let us first see whether the series is of any value for the pur-

poses of computation.

Example I. Let it be required to compute <^ 35 correct to five

places.
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We must throw the radicand into a form adapted to computation

by the series. We do this as follows. Since 2^ = 32 we write

35 = 32 + 3 = 2^1 +^),

^35 = 2- (1 + 3%)^-

The second factor can be computed by aid of the series.

= 1 -f .018 750 — .000 703 + .000 040 — .000 003

= 1.018 08(4)

and -^ 35 = 2.036 17.

Exercise. Show that in the above computation we are justified in

breaking off, as we did, with the fifth term.

Example II. Find s/ 15 to five places.

Here we have a choice between the expressions

15= 8+ 7 = 2^1 + 1)

and 15=27 — 12 = 3^(1—1)

In the first case (1 -\- |^)j,
in the second (1

—
|)s would be com-

puted by aid of the series. In practice however there is no question

as to which expression to use, for the second series converges more

rapidly than the first.

Examples. 1. Complete the computation of -^ 15.

2. Show that ^ 9 = 2.080 09 and
-</

2000 = 2.961 94.

3. Compute \J 2 first by letting /a
:= —

|^,
a; = —

|^ ;

then by writing 2 =: f
•

f .

4. Find ^ 2 to five places by any. method.

5. Obtain from (10) the following formulas :

1

1
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23. Series for sxn~'^h and tan~^li. Tlic Co mputation of n.

The method set forth in § 19 is applicable to the representation of

8in~^/i and tan~^/i (v. Exercise, § 19) by series.

Jr*h

dx 1 /<3 1.3 7,6

tan-i/( = h— -\- y
—

(12)

From these series the value of ir can be computed. If in series

(12) wo set /; r= 1, we get the equation :

4 3^5 7
^

This series, like series (6), is not well adapted to computation. A
better series is obtained by putting h ^ ^ \\\ series (11) :

6 2
'

2 ;} \'>) '2-4 f) \->)
^

This series yields readily three or four places of decimals; but if

greater accuracy is desired, more elaborate methods are necessary,

(v. Jordan, Cours d'Analyse^ Vol. I, § 2r)2
; 1893).

Exercise. If the radius of the Earth were exactly 4000 miles, to

how many places of decimals should you need to know v in order to

compute the circumference correct to one inch? Determine ir to this

number of places by Jordan's method.

24. The Length of the Arc of an Ellipse. Let the equation of

the ellipse be given in the form :

X ^= a sin <^ , y = b cos <^ .

Then the length of the arc, measured from the end of the minor axis,

will be

VI — e^ sin-^
<f> dcji ,s

where (a^
—

b'^)/a-
= e^ <^ 1. The integral that here presents itself

is known as an Elliptic Integral and its value cannot be found in the

usual way, since the indefinite integral cannot be expressed in terms

of the elementary functions. Its value can however be obtained by

the aid of infinite series. The substitution of esin<^ for x in the

last example of § 22 gives the formula

V 1 — e^ sin^ = l — -e^ sin^ <^
— —— e* siu^

</>
—
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Hence (v. § 40)

s=z aTcfi
—

^e^ f'^sm^cj>dcf>

— ^e* I
sm'<j>d<i> 1

These integrals can be evaluated by the aid of the formulas of IV of

Peirce's Short Table of Integrals. In particular, the length of a

quadrant S will be found by putting (ji
= ^ n and using the formula

(No. 483 of the Tables, 1899, or later, edition)

TT

J~-

1 • 3 • 5 {n~ 1) TT

sin" d) dA = -—-— ^
^ , n, an even integer.2-4-6 n 2

The elliptic integral then becomes the integral known as the Complete

Elliptic Integral of the Second Kind
;

it is denoted by E :

TT

E = j^ 1 — e^sin-^c^ r?<^ .

(No. 248 of the Tables).

- aE .

If e =: the ellipse reduces to a circle and S = ^-na.

Examples. 1. Compute the perimeter of an ellipse whose major

axis is twice as long as the minor axis, correct to one tenth of

one percent.

2. A tomato can from which the top and bottom have been removed

is bent into the shape of an elliptic cylinder, one axis of which is

twice as long as the other. Find what size to make the new top and

bottom. If the original can held a quart, how much will the new

can hold ?

25. The Period of Oscillation of a Pendulum. It is shown in

Mechanics (v, Byerly's Int. Cal., Chap. XVI) that the time of a

complete oscillation of a pendulum of length I is given by the formula

\9 Jo V 1 — k''sm'<l>

sin-,

where a denotes the initial inclination of the pendulum to the vertical.

K is known as the Complete Elliptic Integral of the First Kind and

its value is computed as follows. The substitution of Z:sin<^ for a;

in the series for (1
—

a;^)~i gives the formula (v. Exs., § 22).

^1 — k^.s'm'^<t)
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Integrating and reducing as in § 24, we obtain the formula

If the angle through which the pendulum oscillates is small, an

approximation for T suflicicntly accurate for most purposes will be

obtained by putting k =i {). Then K ^z ^tt and

--j;.
the usual pendulum formula.

Exercise. Show that if a <^ 5°, this approximation is correct to

less than one tenth of one percent.

c) APPROXIMATE FORMULAS IN APPLIED MATHEMATICS.

36. It is often possible to replace a complicated formula in applied

mathematics by a simpler one which is still correct within the limits

of error of the observations.*

The Coefficient of Expansion. By the coefficient of linear expan-
sion of a solid is meant the ratio

where I is the length of a piece of the substance at temperature ?°, V
the length at temperature t'°. The coefficient of cubical expansion
is defined similarly as

V — V
/3
=—

p-/(^'-0,

where F, V stand for the volumes at temperature t°, t'° respectively.

Then

V — V V^ — P

V I'
'

as is at once clear if we consider a cube of the substance, the length
of an edge being / at t°. The accurate expression for a in terms of ^
is as follows.

* See Kohlrausch, Phygtca/ .Ueastirenients, §§ 1-G.

• • •
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Since /3 is small,
—

usually less than .0001,— the error made by

neglecting all terms of the series subsequent to the first is less than

the errors of observation and hence we may assume without any loss

of accuracy that

a ^ ^ /? , )8
^ 3a .

Double Weighhig. Show that if the apparent weight of a body
when placed in one scale pan is j)^, when placed in the other scale

pan, p.2 (the difference being due to a slight inequality in the lengths

of the arms of the balance) ,
the true weight p is given with sufficient

accuracy by the formula :

P = i(i?i +i?2)-

37. Errors of Observation. In an experimental determination of

a physical magnitude it is important to know what effect an error in

an observed value will have on the final result. For example, let it

be required to determine the radius of a capillary tube by measuring
the length of a column of mercury contained in the tube, and weigh-

ing the mercury. From the formula

where w denotes the weight of the mercury in grammes, I the length

of the column in centimetres, p the density of the mercury (=: 13.6),

and r the radius of the tube, we get

T= \—,— .1530
w

1530 ly

Now the principal error in determining r arises from the error in

observing I. Let I be the true value, V ^ I -\- e the observed value

of the length of the column
;
r the true value, r' ^ r -\- E the com-

puted value of the radius. Then E is the error in the result arising

from the error of observation e, the error in observing to being

assumed negligible. Hence

^ =
--J|---Jf

=
-3jL»((.

+
;)-'_.)

_
1 e 3 e\ _ _

Since e is small we get a result sufficiently accurate by taking

only the first term
;
and hence, approximately,

E = —^r-~-e'
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Thus for a given error in obsorvin<>; /, the error in the computed value

of r is inversely proportional t(; tlie length of the column of mercury

used,
— a result not a priori obvious, for r itself is inversely propor-

tioned only to V '•

Exercise. An engineer surveys a field, using a chain that is

incorrect by one tenth of one percent of its length. Show that the

error thus arising in the determination of the area of the fieM will be

two tenths of one percent of the area.

28. Pendulum Problems. A clock regulated Ity a pendulum is

located at a point (A) on the earth's surface. If it is carried to a

neighboring point (B), h feet above the level of
(^-1),

show that it

will lose ^5^ h seconds a day, i. e. one second for every 244 feet of

elevation.

The number of seconds N that the clock registers in 24 hours is

inversely proportional to the period T of the oscillation of the pen-

dulum. Hence (cf. §25)

N
where the unpriraed letters refer to the location (A) ,

the primed letters

to (B). If the clock was keeping true time at (A), thenN =i 86,400.

g- {R + hy'

where R denotes the length of the radius of the earth. (Cf. Byerly's

Diff. Cal., §117.) Hence

A^— ^y := .V ( 1 — ]- ] = N '^Mh 7? + 7/

R R' ^ R^

If h does not exceed 4 miles, h/R < .001, h^/R- < .000 001, and

the first term of the series gives N— N' correct to seconds :

Examples. 1. The summit of Mt. AVashington is G226 feet above

the sea level. How many seconds a day will a clock lose that keeps

accurate time in Boston Harbor, if carried to the summit of the

Mountain ?

2. A pendulum that beats seconds on the surface of the earth is

observed to gain one second an hour when carried to the bottom of a

mine. How deep is the mine? Assume the attraction at interior

points of the earth to vary as the distance from the centre.
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29. Exercises. 1. Show that the correction for expansion and

contraction due to heat and cold is given by the formula

71 = 43,200 a ^,

where a denotes the coefficient of linear expansion, t the rise in

temperature, and w the number of seconds lost in a day.

For brass, a =^ .000 019, t being measured in degrees centigrade.

Thus for a brass pendulum » = .82 t, and a rise in temperature of

5° causes the clock to lose a little over 4 seconds a day.

2. A man is standing on the deck of a ship and his eyes are h ft.

above the sea level. If D denotes the shortest distance of a ship

away whose masts and rigging he can see, Ijut whose hull is invisible

to him, hi the height, measured in feet, to which the hull rises out of

the water, show that, if refraction can be neglected,

D = 1.23 (V ^^ + V ^^i) miles.

If // z=
/^i
= 16 ft., /> = 10 miles (nearly).

3. Show that an arc of a great circle of the earth, 2 J miles long,

recedes 1 foot from its chord.

4. Assuming that the sun's parallax is 8". 76, prove that the dis-

tance of the sun from the earth is about 94 million miles.

5. Show that in levelling the correction for the curvature of the

earth is 8 in. for one mile. How much is it for two miles?

6. The weights of an astronomical clock exert, through faulty

construction of the clock, a greater propelling force when the clock

has just been w^ound up than when it has nearly run down, and thus

increase the amplitude of the pendulum from 2° to 2° 4' mi each side

of the vertical. Show that if the clock keeps correct time when it

has nearly run down, it will lose at the i-ate of about .4 of a second

a day when it has just been wound up.

7. Two nearly equal, but unknown resistances, A and B, form

two arms of a Wheatstone's Bridge. A standard box of coils and

a resistance x to be measured form the other two arms. A balance

is obtained when the standard rheostat has a resistance of r ohms.

When however A and B are interchanged, a balance is obtained

when the resistance of the rheostat is r' ohms. Show that, ap-

proximately,
x= .H>-+ '•')•

8. The focal length /of a lens is given by the formula

--- + -
/ 2h

^
P-2

'
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where Pi and p, denote two conjugate focal distances. Obtain a

simpler approximate formula for
./"

that will answer when p, and jh

are nearly equal.

•). "A ranchman 6 feet 7 inches tall, standing on a level plain,

agrees to buy at S7 an acre all the land in sight. How much nuist

he pay? Given 640 acres make a square mile." Admission Exam,

in Sol. Geom., June, 1895.

Show that if the candidate had assumed the altitude of the zone

in sight to be equal to the height of the ranchman's eyes above the

ground and had made no other error in his solution, his answer would

have been 4 cents too small.

10. Show that for small values of h the following equations are

approximately correct {h may be either positive or negative)

(1 -J- h)"' = 1 -1- mil . .

Hence {1 -\- hy = I -\- 2Ji
; ^ 1 -\- h = 1 -\- ^h;

1 . _; 1_

1 + /^-
''

(1 + /0'

^ = 1 — f^h .

V 1 -f /i

If h, Ic, I, p, are all numerically small, then, approximately,

(1 +/r) (1 + 70 (1 + /) = 1 +^' + ^- + /+ ,

(1 + (i-hp)
^ ^

= 1-/'; 7^-r-M2 = i-2'^;



III. TAYLOR'S THEOREM.

30. It is not the object of this chapter to prove Taylor's Theorem,
since this is done satisfactorily in any good treatise on the Differ-

ential Calculus
;
but to indicate its bearing on the subject under con-

sideration and to point out a few of its most important applications.

It is remarkable that this fundamental theorem in infinite series

admits a simple and rigorous proof of an entirely elementary nature.

Rolle's Theorem, on which Taylor's Theorem depends, and the Law
of the Mean lie at the very foundation of the differential calculus.

From Rolle's Theorem follows at once the theorem contained in the

equation

fix,+ 70 =/(-^o) +/' (^o) A +/" (xo) ^+
• • • • +r" (a-o+ eh) ^'

, (13)

< ^ < 1.

This latter theorem is frequently refen'ed to as Taylor's Theorem

with the Remainder i?„ =: /<"' (Xq -\- Oh) —^ • It includes the Law

of the Mean

/(o-o + ^0
—

./'(-^o)
= Kf O^-o + Oh) (14)

as a special case and thus affords a proof of that Law. If in (13),

when n increases indefinitely, R^ converges towards as its limit,

the series on the right hand side of (13) becomes an infinite power

series, representing the function fix, -\- h) throughout a certain

region about the point X(^ :

fix, + h)=fix,) J^fix,)h+r{x,) 1^ + (15)

This formula is known as Taylor's Theorem and the series as Taylor's

Series.

The value x, is an arbitrary value of x which, once chosen, is held

fast. The variable x is then written as x, -\- h. The object of this

is as follows. It is desired to obtain a simple representation of the

function /(x) in terms of known elements, for the purpose of com-

puting the value of the function or studying its properties. One of

the simplest of such forms is a power series with known coefficients.
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Now it is usually impossible to represent /(a;) by one and the same

power series for all values of
a,',

and oven when this is possible, the

series will not converge rapidly enough for large values of the argu-

meijt to 1)6 of use in computation. Consequently wo confine our

attention to a limited domain of values, choose an Xq in the midst of

this (loniaiii, and roplaco the independent variable x by A, where

X = x^, -\- h, h = X Xq.

The vahies of .)• for the domain in (luestion may not be small, but the

vahies of // will l)c, // = corresponding to x =z Xq. If x^ is so

chosen that /(Xq), /'(a'o), /"(a'o), ad in/, are all finite, then

the value of f(x) for values of x near to .Tq, i. e. for values of h

numerically small, will usually* be given by Taylor's Theorem.

An example will aid in making clear the above general statements.

Let

f(x) = log X.

Then it is at once clear that f(x) cannot be developed l)y Taylor's

Theorem for Xq =z 0, for/(0) = log := — x . It is just at this

point that the freedom that we have in the clioice of .fy stands us in

good stead; for if we take x^ greater than 0, then /(a-'o), /' (x^),

/"(Xq), will all be finite and /(.ro -|- /i)
can be developed by

Taylor's Theorem, the series converging for all values of h lying

between x^ and — Xq. The proof is given for Xq =: 1 in the Dijf'.

CuL, § 130. Thus we have a second proof of the development of

log (1 + h), (formula (8) of § 19).

31. Ttco Applications of Tuijlofs Theorem with the Remainder,

(13). This theorem, it will i)e observed, is not a theorem in infinite

series. Any function whose first n derivatives are continuous can l)e

expressed in the form (13), while the expression in the form (15)

requires the proof of the possibility of passing to the limit when

?l zz= X .

Thus (13) is a more general theorem than (15) and it avoids the

necessity of a proof of convergence.! It is because of the applica-

tions that (13) and (15) have in common, that it seemed desirable to

treat some applications of (13) here. *

*
Exceptions to this rule, though possible, are extremely rare in ordinary

practice.

t It is desirable that (13) should be applied much more freely th;in has

hitiierto been the custom in works on the Infinitesimal Calculus, both bi'cau<e

it att'onls a simple means of proof in a vast variety of cases and because many

proofs usually given by the aid of (15) can be simplified or rendered rigorous

by the aid of (13). The applications given in this section are cases in point.
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First Aj^plication : Maxima, Minima and Points of Inflection;

Curvature. Let it be required to study the function f(x) in the

neighborhood of the point x ^z x^.

f(Xo + ^0 = /(-^'o) + /' (•^•o)
h + ^ /" (a-o + eh) h\

Plot the function as a cui*ve :
*

.2/1 =/(•'•) =/(-«o + h)^

and plot the cui've

The latter curve is a right line. Consider the difference of the ordi-

nates, ?/i and ?/., :

Hence it appears that y^
—

y^ is an infinitesimal of the second order.

This property characterizes the line in question as the tangent to the

curve in the point .^o, and thus we get a new proof that the equation

of the tangent is

y = f(xo) -\- f'(xo) (x Xo).

Next, suppose

/'(xo) = 0, r"'-'H^o) = 0, /^^"H^o) > 0.

Then f(x, + h) = f(x,) + /(^") (x, + Oh) ^^ •

The equation of the tangent is now

2/2
= f(Xo)

and 2/1
—

2/2
= f'"' (^o + Oh) ^|^

f-^"^ (x) vn.\\ in general be continuous near the point x z= Xq and

it is positive at this point ;
it will therefore be positive in the

neighborhood of this point and hence

2/i
—

2/2 >
both for positive and for negative values of h, i. e. the curve lies

above its tangent and has therefore a minimum at the point x = Xq.

Similarly it can be shown that if /(^'O (^o) < 0, all the earlier deri-

vatives vanishing, f(x) has a maximum in the point a'o.

Lastly, let

f'(Xo)*= 0, P'-H^'o) = 0, /^^"^"(^•o) H= 0.

* The student should illustrate each case in tliis § by a figure.
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Then y,
—

y, = f^"
+ '^

(./•„ + 6h)
^'"'^'

(2n-\- 1)!

y(2,.
+

i)^^-j
Avill ill general he conliiiuoiis near x := Xq and it will

therefore preserve the same sign for small values of /i, positive or

negative; but /i^" + ^

changes sign witii //. Hence the curve lies on

opposite sides of its tangent on opposite sides of the point x^ and

this is then a point of inflection.

Exercises. 1 . Show that the condition for a point of inflection not

parallel to the a'-axis is

/"(.^•o)
=: 0, r'"^(x,) z= 0, r'"^'^(xo) dp 0,

/ 2« + i)

^^^ being continuous iieur r = Xq.

2. Show that a perpendicular drawn to the tangent from a point

P' infinitely near to a point of inflection P is an infinitesimal of

higher order than the second.

Curvature. The osculating circle was defined (Diff. Cal. § 90) as

a circle tangent to the given curve at P and having its centre on the

inner normal at a distance p (the radius of curvature) from P. We
will now show that if a point P' be taken infinitely near to P and a

perpendicular P'M be dropped from P on the tangent at P, cutting

the osculating circle at P", then P'P" is in general an infinitesimal

of the third order referred to the arc PP as principal infinitesimal.

Let P be taken as the origin of coordinates, the tangent at P being

the axis of x and the inner normal the axis of // ;
and let the ordinate

y be represented by the aid of (13). Here

a-o=0, x=h, f(0)=f\0)=0, /"(0)>0,
and y = ^f" (0) .r^ + }/'" (Ox) x'^.

The radius of curvature at P is

a

p -
DJ'y /"(O)

and the equation of the osculating circle is

^''' + (.'/

— Pf = P-

Hence the lesser ordinate y' of this circle is given by the formula

X*

y' = p
- ^ p^

- x^ = p
-

p (1
- I --

l- -^^ )

* Instead of the infinite series, formula (13) might have been used here, with

n = 4. But we happen to know in tliis case that the function can be developed

by Taylor's Tlieorcni (15). ..
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and y-y'^ -c'

(^if"'{ex)

-
i
i -'^

)
•

From this result follows that (y
—

y')/x^ approaches in general

a finite limit different from 0, and hence that y — y' is an infini-

tesimal of the third order, referred to P'M = a; as principal infini-

tesimal. But P'M and PP' are of the same order. Hence the

proposition.

Exercise. Show that for any other tangent circle y — y' is an

infinitesimal of the second order.

Second Application : Error of Observation. Let x denote the magni-

tude to be observed, ?/
= / (x) the magnitude to be computed from

the observation. Then if .Jo be the true value of the obseived magni-

tude, X ^ Xq -\- h the value determined by the observation, h will be

the error in the observation, and the error H caused thereby in the

result will be (c/, (14))

H = fix, + h)
—

/(a-o)
= /' (X, + Oh) h.

In general f'(x), will be a continuous function of x and thus the

value of f(xo -\- 6h) will be but slightly changed if x^ -^ Oh is

replaced by x. Hence, approximately,

H = f'{x)h

and this is the formula that gives the error in the result due to the

error in the observation.

32. The Principal Apx>lications of Taylor's Theorem icithout the

Remainder, i. e. Taylor's Series (15) consist in showing that the

fundamental elementary functions: e"^, sina:;, cos.r, log.i;, x^, sin~^.^*,

tan~^.c can be represented by a Taylor's Series, and in determining

explicitly the coefficients in these series. It is shown in Ch. IX of

the Diff. Col. that these developments are as follows.*

e'-"

x^
.

x°
1 + -^^ + 9T + sT +

^.3 ^.5

sinxr. ...--+_,

X^
,

X*
COS .T = 1 — - +

4 ,

These developments hold for all values of x.

* The developments for sin~'x and tan- 'a; are to be sure obtained by in-

tegration ;
but the student will have no difficulty in obtaining them directly

from Taylor's Theorem.
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loga; =\og(l -\- h)= h — ~
-\- ^—

x^^ = (!-{- hy z.. 1 + ;x/. + '"\~^^^
/^^ +

'

2 3
'

2 • 4 .5
'

x^
,

x-^

tan-i.t; = .x — - + - —

These developments hold for all values of h (or, in the case of the

last two formulas, of x) numerically less than 1.

Exercise. Show that sin a; can be developed aliout anj' point x,, by

Taylor's Theorem and that the series will converge for all values of h.

Hence comi)ute sin 46° correct to eight places of decimals.

33. As soon however as we pass beyond the simple functions and

try to apply Taylor's Theorem, we encounter a ditliculty that is

usually insurmountable. In order namely to show that f{x) can be

expanded by Taylor's Theorem it is necessary to investigate the

general expression for the n-i\\ derivative, and this expression is

usually extremely complicated. To avoid this difHculty recourse

is had to more or less indirect methods of obtaining the expansion.
For example, let it be required to evaluate

X
1 ef — e~'' ,

ax.
X

The indefinite integral cannot be obtained and thus we are driven to

develop the integrand into a series and integrate term by term. Now
if we try to apply Taylor's Tlieorem to the function {f — e~'')/x,

the successive derivatives soon become complicated. We can how-

ever proceed as follows :

X- x^
e^ = 1 + .r +

., , -f .. , + ,

o—x
X^ X^= '-^+2-!-3! +e- — . ..

, ^^

/ .)« x^ \
e- _,-X = 2

(^.r

4-
_.,,
+ _.,+ j;

and hence, dividing through by x, wo have
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X^^'"-^=K'+3^+^+ )
= 2.114 502.

Examples. Do the examples on p. 50 of the Problems.

General Method for the Expansion of a Function. To develop a

function /(•'c),
made up in a simple manner out of the elementary

functions, into a power series, the general method is the following.

The fundamental elementary functions having been developed by

Taylor's Theorem, § 32, we proceed to study some of the simplest

operations that can be performed on series and thus, starting with

the developments already obtained, pass to the developments de-

sired.



IV. ALGEBRAIC TRANSFORMATION'S
OF SERIES.

34. It has been pointed out repeatedly (§§19, 21, 24) that since

an infinite series is not a sum, ])nt a limit of a sum, processes appli-

cable to a sum need not be applicable to a series
;

if applicable, this

fact requires proof.

For exanii)le, the value of a sum is independent of the order in

which the terms are added. Can this interchange in the order of the

terms be extended to series? Let us see. Take the series

1 - i + ^-
-

i +
Its value is less than 1 — A -)-

a z

terms as follows :

1 + i
- i H- i + I

- i + i -f

The general formula for throe successive terms is
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till enough have been taken so that their sum will just exceed C.

This will always be possible, since this series of positive terms

diverges. Then begin with the negative terms

1 1 1
9 44 E"

and add just enough to reduce the sum below C. As soon as this

has been done, begin again with the positive terms and add just

enough to bring the sum above C; and so on. The series thus

obtained is the result of a rearrangement of the terms of (a) and its

value is C.

In the same way it can be shown generally that if

?/0 + «1 + «2 +
is any convergent series that is not absolutely convergent, its terms

can be so rearranged that the new series will converge toward the pre-

assigned value C. Because of this fact such series are often called

conditionally convergent, Theorem 1 of § 35 justifying the denoting
of absolutely convergent series as uncoyiditionally convergent.

There is nothing paradoxical in this fact, if a correct view of the

nature of an infinite series is entertained. For a rearrangement of

terms means a replacement of the original variable s^ by a new vari-

able
.s',^ ,

in general unequal to s^ ,
and there is no a x>Tiori reason why

these two variables should approach the same limit.

The above example illustrates the impossibility of extending a

priori to infinite series processes applicable to sums. Most of such

processes are however capable of such Q-s.ie.nB\o\\ under ^rroper restric-

tions, and it is the object of this chapter to study such extension for

some of the most fundamental processes.

35. Theorem 1. In an absolutely convergent series the terms can

be rearranged at j:)leasure without altering the value of the series.

First, suppose all the terms to be positive and let

Sn
= '^0 -{- ^h -\- + w„-i ;

lim s„
= U.

n = CO

After the rearrangement let

S'„'
= < + u\ -\- + u\^,_i .

Then s'„. approaches the limit U when n' = co . For
s\^. always in-

creases as n' increases
;
but no matter how large n' be taken (and then

hold fast), n can (subsequently) be taken so large that
s^^

will include

all the terms of
s\^'

and more too
;
therefore



§ 35. ALGEBRAIC TRANSFORMATIOXS OF SERIES. 45

or, no matter liuw hirgu a' be taken,

S'n' < U'

Hence
.s'^^, approaches a limit U' <C U.

"We may now turn thintrs al)oiit and regard the w-series as gener-

ated by a rearrangement of the teiiiis of the w'-series, and the above

reasoning shows that U^ U' \ hence U' = U. q. e. d.

Exercise. The second step in the above proof was abbreviated

by an ingenious device. Replace this dcNice by a direct line of

reasoning.

Secondly, let the series

«o + '<i + ''2 H-

be any absolutely convergent series and let

^,
=

cr,,,

-
r„ , (Cf. § 14)

U=V— w.

Let ii'q -\- v\ -|- "'2

be the series after the rearrangement and let

U' = V — w .

But V = V and W = W; hence U' — U.

Exercise. Find the value of the series

l-Ll_l-Ll_J_l_ill.jL_l_L .

91 I 08
'2'^ •>5 '

2'' 9* 99 '

'2^^ 9* '

• • •

Theorem 2. Jf

U= ?/o + "i +
V=v,-^v,-\-

are any two convergent series, tlieij can he added term by term, or

U^ V= vo + r, + », + ,., + ..,+

If they are absolutely convergent, the third series ivill also be abso-

lutely convergent and hence its terms can be rearranged at pleasure.

Let

^.
= "o -h "i + 4- ",.-1.

Then

•*'„ + fn
= («0 + ^-o) + ("1 -f ^'0 4- + (»„-! 4- i'„-l).
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When n =z CO
,
the left baud side converges toward U -{- V\ hence

U+ V= («o + ^'o) + (^h + t'l) +
It remains to show that the parentheses may be dropped. This is

shown in the same way as in the case which arose in § 34.

The proof of the second part of the theorem presents no difficulty

and may be left to the student.

Exercise. Show that if

U = "o + wi + "2 +
is any convergent series, c any number,

CU =^ CUq -^ CUi -{- c n^ -\-

Theorem S. If

U = »„ + "1 -f ?'2 +
y = ''o -r '"i + '"2 -r

are any two absolutely convergent series, they can he multiplied together

like sums; i. e. if each term in the Jirst series be multiplied into each

term in the second and the series of these 2^>'oducts formed, this series

will converge absolutely toward the limit UV. For example

UV= UqVq -\- «o^'l + "I'V + "o'"2 + »l''l + ''2'-"0 +
This theorem does not in general hold for series that are not

absolutely convergent.

Let
.s„
= ?/o H- »i + + ^/„_i ,

K = ''0 + ''i + + ^„-i ;

then liin .s t = UV.
n li

W = 00

The terms of the product s^t^^
are advantageously displayed in the

following scheme. They are those terms contained in a square n

terms on a side, cut out of the upper left hand corner of the scheme.

-••'
i

.-•''
' ••''^

I .-;''

/""^ ,-' .--' I .

'

I

~

.•" I -•' '

The theorem asserts that if any series be formed by adding the

terms of this scheme, each term appearing in this series once and
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only once,— for example, the terms that lie on the oblique lines, the

successive lines being followed fiom top to Ijottom :

Wo^'o + "o^'l + "i^'u + "o''2 + , (a)

this series will converge absolutely toward the limit UV.
It is siitllcient to show that one series formed in the prescribed way

from the terms of the scheme, for example the series formed by fol-

lowing the successive boundaries of the squares from top to bottom

and then from right to left, namely the series

converges absolutely toward the limit UV. For any other series

can then be generated by a rearrangement of the terms of this series.

Let S_y denote the sum of the tirst N terms in
(/3).

First suppose all the terms of the /(-series and the v-series to be

positive.* Then, if n^ < iVr< (n + 1)^,

^nK S ^'' S ^'' + l^n + l-

Hence lim 8^= UV.
N= 00

Secondly, if the w-series and the v-series are any absolutely con-

vergent series, form the series of absolute values

«'o + «'. + "'. +
v\ + v\ + c', -h

The product of these series is the convergent series

w>''o + "'o*"'i 4- "'it"'u + "'o«''2 +
But this series is precisely the series of absolute values of (a), and

therefore (a) converges absolutely. It remains to show that the

value toward which it converges is UV. Since Sy approaches a

limit when jV, increasing, passes through all integral values, S^ will

continue to approach a limit, and tiiis will l)e the same limit, if ^^

passes only through the values }r :

lim Sy = lim S„2 .

JV= CO n = 00

But

S„, = .-?,.^.
and lim S„, = UV.

n = x>

This proves the theorem.

The case that some of the terms are must not however be exchided ; hence

the double sign ( ^ )
in the inequality below: Sy "^ s„ + \t„ + \.
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For example, let

f{x) = tto + a^x -\- a^x"^ -f ,

^(x) = &o + ^1-^' + ^2^^ +
be two convergent power series, x any point lying at once within the

region of convergence of both series. Then the product of these

series is given by the formula

This formula can be used to give the square, or by repeated appli-

cation, any power of a power series. Thus it gives as the square of

the geometric series

1 + •-« + ^^ +
the series

1 4- 2 X- -f- 3 x'2 -(-
. . . .

.
,

a result agreeing with the binomial expansion of (1 -j- x)~^.

Exercise. Find the first four terms in the expansion of

X , log (\ -\- x')
and »v -r y

V 1 — .^' 1 + ^

Square the series for e-^ and show that the result agrees ^ith the

expansion of e^.

36. One more theorem is extremely useful in practice. Its proof

would carry us beyond the bounds of this chapter.

Let

^niy) = &0 + Wy + hy' + + Ky"

be any polynomial in y and let y be given by the convergent power
series in x :

Then the powers of y : ?/'^, y^, y" can be obtained at once as

power series in x by repeated multiplications of the .r-series by itself,

the terms of the polynomial <f>^^ (y) then formed by multiplying these

power series respectively by the cofficients 6, and the polynomial

<f>^^ (y) thus represented as a power series in x by the addition of these

terms.

Suppose however that instead of the polynomial <}>^ (y) we had an

infinite series :

<l> {y) = h-\- Ky + ^2y'' +
Under what restrictions can the above process of representing

<f)^^ (y) as a power series in x be extended to representing <^ (y) as a

power series in cc?
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One restriction is imniediutely obvious. Since a power series

represents a continuous function (y. § 38) the values of y corre-

sponding to small values of x will lie near to cIq and thus the 2:)oint %
must sureli/ lie tvithin the interval of convergence (

— t <^y <^ r) of

the series cf>(y). Suppose a^ = \
then this condition is always

satisfied. And now our theorem is precisely this, that no further

condition is necessary.

Theorem 4. If «o = 0» '"-' fether restriction is necessary; i.e.

the above process of rejjresenting <f> (y) as a jyoiver series in x is alicays

applicable.*

Remark. The point of the theorem just quoted is this. We know

from § 35 that each term in the y series can be expressed as a power

series in x :

b„y" =fix) z= ao^") + a,^"^x + a^C'^x'' +
and hence that

<f> (y) can be expressed in the form

^(^y)=f^(x)-\-f{X)+f,ix)-j-

It remains to prove (and it is precisely this fact that the theorem as-

serts,
— a fact not true in general of a convergent series of the form

fo{x)-{-A{x)+f{x)-\- ,

where f„(x) denotes a power series) that if we collect from these

series all the terms of common degi-ee in x and then rearrange them

in the form of a single power series, first, this series will converge,

and secondl3% its value will l»e <^ (,'/)•

Examples. 1. Let it be required to develop e*»'"^ according to

powers of x.t Let y = x sin.r. Then

cl^U,) = e" = 1 + ,/ + hir + i/ 4- iii/' 4-

,, ,.2 1 )•! _1_ 1 1-6 1 r* -4-

il/'= ^^'
— tV^'+

^y'= ^^'-^

The case n„ = is the oni' tliat usually arises in practice. But the theorem

still holds provided only that — r <^ a„ < r, the only difference being that the

coettifionts in the final scries will then be infinite series instead of sums. Cf.

Stolz. Allgemeine Aritlimfiik. Vol. I, Cli. X, §25.

t Even wlien it is known tliat a function can be developeii by Taylor's

Theorem (v. Ch 111: Diff. Cal., Ch. IX; Ini. Cat.. Ch. XVin it is usually

simpler to dt'ltrinini' the coefficients in the series by the method hero set forth

than l)y performing the successive differentiations requisite in the application of

Taylor's formula. The example iu liand illustrates the truth of this statement.
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2. Find the first 4 tei-ms in the expansion of sin
(Zc

sin
a;).

3 . Obtain a few terms in the development of each of the following

functions according to powers of x.

log cos a;.

Suggestion. Let cos a- =z I -\- y- then

y = — i -^"^ + 2T •'^^ —
and log cos x = ^ ^x^

—
t^^*

—
4T -*^^ "l~

1 1

V 1 — 2.t; cos ^ -t- a;2 ^ i _ A:2 sin2a;

Theorem 4 gives no exact information concerning the extent of

the region of convergence of the final series. It merely asserts that

there is such a region. This deficiency is supplied by an elementary
theorem in the Theory of Functions.*

But for many applications it is not necessary to know the exact

region of convergence. For example, let it be required to determine

the following limit.

log COSX -j- 1 =^===:
lim V 1 + ^^ + '^

x = sin.x — X

Both numerator and denominator can be developed according to

powers of x. The fraction then takes on the form

^ x^ -\- higher powers of x

—
^x^ -\- higher powers of x

Cancel x^ from numerator and denominator and then let x approach
as its limit. The hmit of the fraction is then seen to be — 3. The

usual method for dealing with the limit 0/0 is applicable here, but

the method of series gives a briefer solution, as the student can

readily verify.

Example. Determine the limit

lim s/ a^ — ^^ — V «^ + ^'^

x = 1 — cosa;

An important application of Theorem 4 is to the proof of the

following theorem.

* Cf. Int. CaL, §220; Higher Mathematics, Ch.VI, Functions of a Complex
Variable, by Thos. S. Fiske

;
John Wiley & Sons.
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Theorem. The (jnotient of two power series can he represented

as a poicer seiies, jn-oridcd the constant term in the denominator series

is not :

60 + b^x. -\- boX- -f _ ^

j j o
—

i

—
(^0 ~\~ Cl^ ~\~ C2X -4-

,

fto + "i-c + Wo'*- +
if fto -|=

0.

It is sufliciciit to show that

1

can lie so represented, for tlien the power series that represents it

can be multiplied into the numerator seiies

Let y = a^x -\- a.^x"^ -{-

1 _1 1 _l_J/__i_l^_^_l_

provided y/uo is numerically less than unity, i. e. y numerically less

than a^). Thus the conditions of Theorem 4 are fulfilled and the func-

tion l/(ao -|- y) can be expressed as a power series in x by develop-

ing each term (
—

1)" 2/"A^, + 1
i'^to such a series and collecting from

these series the terms of like degree in x.

CoROLLARV. //' the coefficients of the Jirst m poicers of x in the

denominator series vanish, the quotient can be expressed in the form

/... + i^ .,• + i, .r^ + _ C'_ (7-,„^x 4.^ _U
a 0(^4- a .10;"'

+ ^
-h iC"

'

.T"'-i
' ' X

For

b^ -\- b^x -\- b^x^ -\- _ 1 61 -(- ^1 •^' + ^2'^'2 +

1

(Co-[-Cx.i-+o,.r+ )
X"

and it only remains to set c^
=1 ^„-m ^"^ divide x"' into each term.

Examples. Show that

1 2
tana; = x -t-

^
.i-^ + ^ .r^ + ,

ctn.r =z .1-
— T^ .t +

.r 3 4o

and develop sec x and esc x to three terms.

A more convenient mode of determining the coetlicients in these

expansions will be given in § 38 .



y. conti:n^uity, integration and
DIFFERENTIATION OF SERIES.

37. Continuity. We have had numerous examples in the fore-

going of continuous functions represented by power series. Is the

converse true, namely, that every power series represents, within its

interval of convergence, a continuous function? That this question

is by no means trivial is shown by the fact that while the continuous

functions of ordinary analysis can be represented (within certain

limits) by trigonometric series, i. e. b}^ series of the form

(/o -|- «i cos X -\- a^ cos 2 a; -|-

-|- &iSina; -f- ^2 sin 2 cc -|-

a trigonometric series does not necessarily, conversely, represent a

continuous function throughout its interval of convergence.

Let us first put into precise form what is meant by a continuous

function. <^(a:) is said to be continuous at the point x^ if

lim ^ {x) z=.
(J3 (Xq) ;

i. e. if, a belt being marked off bounded by the hues y = (I>(xq) -|- e

and y =^
<fi (xq)

—
e, where e is an arbitrarily small positive quantity,

Fig. 8.

an interval (Cj
—

8, ;«,, 4~ ^)» ^ ^ 0, can then ahva3^s be found such

that, when x lies within this interval, <j>(x) will lie within this belt.

These conditions can be expressed in the following form :



§ 37. CONTINUITY, INTEGRATION, Diri'KKENTIATION. 53

or *
I

<^ (x)
—

«^ (a-o) I < c
,

\

x — Xo\ < 8.

A simple sulKcient condition that the series of continuous functions

?<„ (x) -\- 7ii{x)-\-

represent :i contimious function is given by the following theorem.

Theorkm 1. If

"o (x) -h iiii^) -{- •.
a < X < /8 ,

is a .series of cuntiniious functions couceryent throuyhout the interval

(a, /?),
then the function f (x) represented by this series will be con-

tinuous throuyhout this inferral, if a set ofpositive numbers, Mq, J/^,

M2, , independent of x, can be found such that

1)
I a,^(x) I

< 3/
, a<x<(3, n = 0,1,2, ;

2) ^A. + 3/, -\-M,-^

is a converyent series.

We have to show that, Xq being any point of the interval, if a posi-

tive quantity c be chosen at pleasure, then a second positive quantity
8 can be so determined that

I
/(•^•) —/(•'•„)

I
< e

,
if

I

a- — Xo |< S .

Let

^s„(^0= "0 ('•)+ "i(-0+ -\-u^-i{x),

f(x) = s,^{x)^r,^{x).
Then

f{x) —fix,) = {s„{x)
-

.s„(.r„) } + r,^{x)
—

r,(a-o).

Wfi will show that the absolute value of eacii of the (quantities

l'\(-'')
—

'\(-'^*o)|, rjx), 7;(.ro)
is less than \e. if 8 is properly

chosen and
|

x — a-„
| <:^ 8. Fioiii this follows that the absolute

value of f(x)
—

fi-^'o)
i^ less than e; hence the proposition.

Let "the remainder in the JVf-series be denoted by R^ :

and let n be so chosen that Ix <' At, and then held fast. Then,

since

l«„(^') I

< ^^„,

• • • •

it follows that

I '•,.(•'•) I

< K
* The absolute value of a quantity .1 shall from now on be denoted by |

-4
|

.
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for all values of x at once,* or

I ';(-^-) I <3e, a<a;</3.

Since s^(x) is the sum of a fixed number of continuous functions,
it is a, continuous function and hence S can be so chosen that

I \ (^)
— K (-'"o)

I < ^^ ,
I

a; — a-o
I
< 8 .

Hence

|/(a-)_/(;r,) I <e, I
a5_a-o |<S,

and tlie theorem is proved.

Exercise. Sliow that the series

sin a; sin 8 a- sin5.T
—— • • • • •

12 3^
^

5-^

converges and represents a continuous function.

38. The general test for continuity' just obtained can be applied
at once to power series

Theorem 2. A jjoiver series represents a continuwxs function
vjithin its interval of convergence. The function may however he-

come discontinuous on. the boundary of the interval.

Let the series be

f(x) = Go -f a^x -f- a.2X~ -|- ,

convergent when — r <^ x <^ r
;
and let (a, ^) be any interval con-

tained in the interval of convergence, neither extremity coinciding
with an extremity of that interval. Let X be chosen greater than

either of the quantities
|

a
|

,
|
/3

|

,
but less than r. Then

I ««^«" I < I «« I
^"^ a<x<(3;

and the series

I
a,

I
+

I
a,

I

X +
I
a,

I

X^ +
converges. Hence if we set

M =
\

a
I

X«
, ,

the conditions of Theorem 1 will he satisfied and therefore f(x) is

continuous throughout the interval (a, 13).

By the aid of this theorem the following theorem can be readily

proved.

* It is just at this point that the restriction on a convergent series of con-

tinuous functions, whicli the theorem imposes, comes into play. Without this

restriction this proof would be impossible and in fact, as has already been

pointed out, the theorem is not always true.
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Theorem. If a j)oioer series vanishes for all values of x lying in

a certain interval about the j)oint cc := :

= «„ "h ^'i-^' "h ''2 -''^ ~h 5

— I <^x <^l ,

then each coefficient vanishes :

Oo ^0, tti ^ 0,

First put X :=
;

theu fto = aud the above equation can be

written iu the form

=: X (tti -|- ttoX -{- )

From this equation it follows that

:= ai -\- a^x -{-

provided x =h
;
but it does not follow that this last equation is

satisfied when x = 0, and therefore tt^ cannot be shown to vanish by

putting X = here as in the previous case. Theorem 2 furnishes a

conveaioiit means of meeting this dilliculty. Let

/i(a-)
= ai 4- a,.»- +

Then since /i(«) is by that theorem a continuous function of x

lim ./; (x) = f (0) = tti .

x =
But lim /; (.r)

=
;

.-. a^ = .

x =
By repeating this reasoning each of the subsequent coefficients can

be shown to be 0, and thus the theorem is established.

CoROLLAUY. //' tico poirev sevies hare (he same value for all

values of X iu a» interval about (he point x =. 0, (heir coefficients

<(re respectively equal:

ao-\-<iiX-\-a.,x--\- = ba-\-biX-{-b.X'-{- ;

— ?<a.'</,

Oo =: 6o? ^'i
^= ^hi 6tC.

Transpose one series to the other side of the equation and the

proof is at once obvious.

The Determinadon of the Coefficients c. It was shown in § 36

that the quotient of two power series can be represented as a

power series.

,^, + /,,+ ,,..+ ^,^^,^,^,^,.^
f'oH- «i-'--|- 'l'2•^•^+

By the aid of tlu' theorems of this paragraph a more convenient

mode of determining the coefficients c can be established. Multiply
each side of the equation by the denominator series :
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bQ-\-biX-\-b2X^-\-
• •

'=:(aQ-\-aiX-\-a2X^-\-
• •

')(co-\- CiX-\- CoX^-f^-
• •

•)

=
tto Co -f (tti Co+ ao ci)

X -\- (a^ Co+ «! Ci+ ^o ^2)
a^^+

Hence C>o CIqCo

61 = OiCo + CloCi

60 = Oo-^o H- «'iCi + aoC2

A simple mode of solving these equations for the successive c's is

furnished by the rule of elementary algebra for dividing one poly-

nomial by another,

Qiiotient:
[

q^^ _|_ g^ x -\- C^X^ -\-

&0 x-\-'bo

«._, Co

x''-{-h, x^-\- ^0 H" «i ^ H- «2 ^^ H" ^z ^^^ -\-

(pQ
—

«o Co) + {bi
—

tti Co)

«oCi

^+(^2— 02^0) a'''+(&3
—

«3fo) iC^-f-

(&1
—

aiCo
—

aoCi).T -|- (62
—

02'-'o
—

«iCi)

^'0^2

'^'' H- (&3
—

«3('o
—

«2Ci) a;^ H-

ttjC2

{h.
—

a.,r^
—

a^(\
—

a^,c^)x^-\-{b^
—

a^c^
—

a^c^
—

a^c.^x^-\-

etc.

The equations determining the c's are precisely the condition that

the first term in the remainder shall vanish each time.

For example, to develop tan .t, divide the series for sin x by the

series for cos x.

Quotient:
\^

^ -\- ^ X^ -\- ^^ x"- -\-

^
"(T

•*-"
I T2'T7

'^ r i ^ *^
~\ TTX **^

^X 3
'^

I

^^- i x^^

ete.

Hence

tan X' ^ a; -(- ;^
.c^ ~h t^'

^^ ~f~

This method is applicable even to the case treated in the corol-

lary, § 36.

Exercise. Develop

1 \2 — bx-\- x^

1 + a;' 3 + .r -(- a;'
.7 '

csCa; .



§39, CONTINUITY, INTEGRATION, DIFFERENTIATION. 57

39. The Integration of Series Term by Term. Let the eontinuou3

function /(x) be represented by an infinite series of continuous func-

tions convergent througliout the interval (a, /?)
:

f{x) = n, {x) + n, (X) -h ,
a < X < ^ . {A)

The problem is this : to determine when the integral of f{x) will be

given by the series of the integrals of the terms on the right of

equation (^1) ;
i. e. to deterniinc wlioii

f^f(x)dx= rn,{x)clx-{- l\i,{x)dx-\- {B)

will be a true equation. The right hand member of {B) is called

the term by term integral of the w-series.

Let

s,{x) = v^ix) + «iO«) -f + «„-i(a;),

f{x) = s„(x)^r„(x).
Then

f^f{x)dx= f^s,Xx)dx^ rr„{x)d
t/a t/a tJa

or

Jf(x)dx=z I UQ(x)dx-\- j rii(x)dx-\-
• '

+ / r,Xx)dx.

Hence tlie necessary and sufficient condition that (B) is a true equation

is that hm
f^r(x)dx=0.

To obtain a test for determining when this condition is satisfied,

plot the curve

y = r„ (x) .

X

+
X'""-'

(x)dx

y
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Draw lines through the highest and lowest points of the curve parallel

to the x'-axis. The distance p„ of the more remote of these lines

from the .T-axis is the maximum value that
|

/•„ (x) |

attains in the

interval. Lay off a belt bounded by the lines y = p,,
and y =: — p„.

Then the curve lies wholly within this belt and the absolute value of

the area under the curve cannot exceed the area of the rectangle

bounded by the line ?/
= p„ ,

or (/?
—

a) p„ . This area will converge

toward as its limit if *

lim p„= 0,

and thus we shall have a sufficient condition for the truth of equation

(B) if we establish a sufficient condition that the maximum value p„

of
I

?•„ (x) I

in the interval (a, /3) approaches when n =i cc . Now
we saw in the proof of Theorem 1 that if the series (A) satisfies the

conditions of that theorem,

Hence any such series can be integrated term by term and we have

in this result a test sufficiently general for most of the cases that

arise in ordinary practice. Let the test be formulated as follows.

Theorem 3. Series (A) can alivays be integrated term by term, i. e.

Jf(x)dx=: I UQ(x)dx-\- I Ui(x)dx-\-

will be a true equation, if a set ofpositive numbers Mq, Mi, M^, ,

independent of x, can be found such that

1) I >^:X^) I

< -^4, a<x<l3, n = 0,1,2, ;

2) Jfo + ^/i + 3^2 +
is a convergent series.

The form in which the test has been deduced is restricted to real

functions of a real variable. But the theorem itself is equally appU-

cable to complex variables and functions. It is desirable therefore

to give a proof that applies at once to both cases.

* This condition is not satisfied by all series that are subject merely to the

restrictions hitherto imposed on (A). Not every series of this sort can be

integrated term by term. See an article by the author : A Geometrical Method

for the Treatment of Uniform Convergence and Certain Double Limits, Bul-

letin of the Amer. Math. Soc, 2d ser., vol. iii, Nov. 1896, where examples of

series that cannot be integrated term by term are given and the nature of such

series is discussed by the aid of graphical methods.
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Keeping tlie notation nsecl above, the relation

Jf(x)dx
=

I iio (x) dx -\- I ai(x)dx-{- -f- / u„_i{x)dx

+ / r„(x)dx

still holds and the proof of the theorem turns on showing that the

hypotheses are sutticient to enable us to infer tliat

1"" rrAx)dx=0.

Let the remainder of the 3f-series be denoted as in § 37 by i2„ :

i2,.= 3/„ + 3/„^,+

Then it follows, as in that paragraph, that

I
r„ (x) I

< 7?,. .

Now

I

f^r,Xx)dx < P
I r„(x) \ \

dx
\ < RJ,

I tJa tJa

the second integral being extended along the same path as the first,

and I denoting the length of the path, liut lim (BJ) = 0; hence

I r,^(x)dx converges toward when n =: x and the proof is

complete.

40. We proceed now to apply the above test to the integration

of some of the more common forms of series.

First Application : Poioer Series. A poioer series can be integrated

term by term throughout any interval (a, (3)
contained in the interval

of convergence and not reaching out to the extremities of this interval:

|a|<r, 1/3 I
<r.

Let the series be written in the form

f(x) = a,, -f- a,.r -|- a.,.r- -(-

and let X be chosen greater than the greater of the two quantities

I

a
I

,
I

/?
I

,
but less than r. Then

I
a„x"

I < I
a,.

I
X\ a<x<P,

and if we set
|
a„

|

X" = .V„ ,

the conditions of the test will be satisfied.
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In particular

Jo
•''"'^^ ' "^2 -3f(x)dx = aoh -\- ai

—
-{- a^ ^ -\- ,

|

/i
|
< r

If when X = r or — r, the series for f(x) converges absolutely,

then h may be taken equal to r or — r. If however the series for

f(x) does not converge absolutely or diverges when a; = r or — r, it

may nevertheless happen that the integral series converges when

h z= r or — r. In this case the value of the integral series will still

be the integral of f(x). Thus the series

diverges when x z= I
;
but the equation

-o'

x
/' dx _ Ji^ h^ _
r+ii -''~j^j~

still holds when h =: 1 :

log2= i_^ + ^_^+---.-
The proof of this theorem will be omitted.

Second Application: Series of Powers of a Function. Let <f>(x) he

a continuous function of x ayid let its maximum and minimum values

lie between — r and r ivhen a '^ x \ fi. Let the power series

converge lolien — r <^ y <^r. Then the series

f{x)= ao-\- ai<f>(x)-{- ao[cl>{x)Y^

can be integrated term by term from a to /3 ;

Jf{x)dx
= ao I dx-\-ai j (f>(x)dx-\-a2 I [cl>(x)Ydi

For if Y be so taken that it is greater than the numerically greatest

value of <^ (cc)
in the interval a ^ a- ^ /3, but less than r, then

1) I «„| I <^(.i-) I

» < |a„ I
Y\

2) I
tto \+\ch\y+\ch\Y'+

converges ;
and if we set

I
a„

I

r« = M,, ,

the conditions of the test will be satisfied.

Thus the integrations of §§ 24, 25 are justified.

Lt+
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Third Application. If the function <f>(x) and the series

«o + "uV + "2.'/^ +
satisfy the same conditions as in the precedinrj theorem and if ^{/(x) is

any contimious function ofx, then the series

f(x) = a^il/(x) -\- a,xp(x) <t>(x) + a.,ip(x) \_<f>(x)Y -\-

can he inter/rated term by term.

The method of proof has been so fully illiistratcd in the two pre-

ceding iippncations that the detailed coiistruetioii of the proof may
be left as an exercise to the student.

This theorem is needed in the deduction of Taylor's Theorem from

Cauehy's Integral.

Examples. 1. Compute
TT

/x^e'^'dx, I yj smx dx.

2. Show that

l£cos(xsiu<t^d.t.= l-^+^^^-^^-^
Hitherto the limits of integration have always been the limits of

the interval considered, a and (3. It becomes evident on a little

reflection that if any other limits of integration, X(„ x, lying within

the interval (a, ft) are taken, Theorem will still hold :

Jf*x

/*x /*x

f(x)dx= I UQ(x)dx -\- I ni(x)dx -\-

a ^ .I'o ^ /?, a ^ a: ^ /3.

For, all the conditions of the test will hold for the interval (xq, x) if

they hold for the intei-val (a, /?).

41. The Differentiation of Series Term by Term. Let the function

f(x) he represented by the series:

f(.v)= u,(.r)-\-u,(x)-\-

throughout the interval (a, /3).
Then the derivativef (x) will he given

at any point of the interval by the series of the derivatives :

f(x)=u',(x)-\-n\ (..)-}-

provided the series of the derivatives

w'o(.r)-h^/\(.r)-h

satisjies the conditions of Theorem 1 throughout the interval (a, /3).



62 CONTINUITY, INTEGRATION, DIFFERENTIATION. § 41.

Let the latter series be denoted l)y cf> (^x)
:

4> (x)
—

u'o (x) -\- u\ (x) +
We wish to prove that

ct.(x)=f'(x).

By Theorem 1 the function <^ (a.*) represented by the w'-series is con-

tinuous and by Theorem 3 the series can be integrated term by term :

(J3(x)dx:= I
«

'o (a;)
d X- -f- / v'i(;x)dx -\-

a. fja *J a.

= {"oO«)— "u(a)} + {»i(-^')— «i(«)) +
= f(x)-f(a).

Hence, differentiating,

<t>(x)
=z /'(x), q. e. d.

Exercise. Show that the series

cos X cos 3 X cos 5 x

can be differentiated term by term.

By the aid of this general theorem we can at once prove the follow-

ing theorem.

Theorem. A poiver series can be differentiated term by term at

any point within (but not necessarily at a point on the boundary of)
its interval of convergence.

Let the power series be

convergent when
\

x
\ <^ r, and form the series of the derivatives :

«! -|- -la^x -f- 303.1-2 -f-

Then we want to prove that if
|
Xq

|
<^ ?•,

/'(a-o)
= «! -\- 2a2.ro -h 3a3.V -f

It will be sufficient to show that the series of the derivatives con-

verges when
I

.X'
I
<^ ?•

;
for in that case, if X be so chosen that

I
iCo

I <C ^ <C ^'1 the conditions of the test will be fulfilled through-

out the interval
(
— X, X). We can prove this as follows. Let x'

be any value of x within the interval (
—

?•, r) :
— r <^ a;' <^ r, and

let X' be so chosen that
|

ic'
| <^ X' <^ r. The series

jao I
+ 1% I

X'+ la^ I
X'^+

converges. It will serve as a test-series for the convergence of

I
a, l-f 2

I
a^

I I

X'
I
+ 3

I

a,
I |

a;'
|

^
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if it can be shown tliat

n
I
a„

I !

X'
j

»-» < I a„
|

X'"

from some definite point, n = m, on. This will be the case if

x'
n Xri < I

a;'
I

, nym
But the expression on the left approaches when ?i = x

,
for

\

x'
\ I X' is independent of n and less than 1

;
the limit can

therefore be obtained by the usual method for evaluating the limit

00 • 0. Hence the condition that the former series may serve as

test-series is fulfilled and the proof is complete.

Exercise. From the formula

1
1 + X + a;2 -f a-3 +

1 —X
obtain by differentiation the developments for

1 1 1

(1 —x)^' (1
—

a-)*' (1 —.';)"'

and show that they agree with the corresponding developments given

by the binomial theorem.
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A FUNDAMENTAL THEOREM REGARDING THE EXISTENCE
OF A LIMIT.

It was shown in § 13 that if the variable s^ approaches a limit

when n increases indefinitely, then

approaches the limit when p is constant or varies in any wise with

n. And it was stated that if, conversely, the limit of this expression

is when n zn go
,
no matte}' how we allovo p to vary loith n, then s^

will ai)proach a limit. This latter theorem is important in the theory

of infinite series. It is however only a special case of a theorem

regarding the existence of a limit, which is of fundamental impor-

tance in higher analysis.

Theorem. Let f(x) he any function of x such that

Urn lf{x') —/(a;")] =
when x' and x", regarded as independent variables, both become infi-

nite. Then f(x) approaches a limit when x =1 x .

We will begin by stating precisely what we mean by saying that

f(x')
—

/O^") approaches the limit when x' and x", regarded as

independent variables, both become infinite. AVe mean that if X is

taken as an independent varialile that is allowed to increase without

limit and then, corresponding to any given value of X, the pair of

values (x', x") is chosen arbitrarily subject only to the condition that

both x' and x" are greater than X (or at least as great), the quantity

f(x')
—

/(*") will then converge towards as its limit. In other

words, let e denote an arbitrarily small positive quantity. Then X
can be so chosen that *

I
f(x') —f{x") I < £

,
if x'> X and x" > X.

We proceed now to the proof. Let us choose for the successive

values that c is to take on any set Cj, cg*, £3, steadily de-

creasing and approaching the limit
;

— for example the values

1, ^, ^, ) «,
= 1/i- Denote the corresponding values of

X by Xi, X2, X3 Then in general these latter values will

* For the notation cf. foot-note, p. 53.
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steadily increase, and we can in any case choose tliem so that they

do always increase.

Begin by putting e = q :

I f{x') -/(.V) |< c, ,
.'.' > X\ ,

X" > X,.

Assign to a;' the value X^. Then

\f(X,)-fix) |<ci,

i.e.

'

/(XO-q</(a;)</(XO + ci

for all values of x greater than X^. The meaning of this last rela-

tion can be illustrated graphically as follows. Plot the point f(Xi)
on a line and mark the points /(X^)

—
cj and f(Xi) -f- tj. Then

the inequalities assert that the point which represents f(x) always

lies within this interval, whose length is 2ei, pro\ided x^X^.

y<v- *. /^' f(^i>
^-t.

I

4—1
=

1*1!. : ', =:Pi

A

Fio. lu.

Denote the left hand boundary f{Xi)
—

e^ of this interval by a^,

the right hand l)Oundary f(Xi) -|- c^ by /Sj. Then, to restate con-

cisely the foregoing results,

«! < f(.^) < /3i
if ^ > ^i ; A — ai = 2 €,.

Now repeat this step, choosing lor c the value co
'

|/(X,)— /(.1-) |<e.,,

i. e. f{X,) — c, < J\x) < f(X,) + c, ,

where x denotes any value of the variable x greater than X.,. Plot

the point f(Xo) ;
this point Ues in the interval (ai, fii). Mark the

points f(X^)
—

£2 and f(Xo) -\- co . Then three cases can arise :

(a) both of these points lie in the interval (aj, (3i) ; let them be

denoted respectively by ao
, ^2 ;

(b) /(-X'2) lies so near to ai that/(Xo)
— co f^^ll^ outside the inter-

val
;

in this case, let a^ be taken coincident with a^ : ao = a^ ;
the

other point /(Xo) -\- e-2
will lie in the interval (ai, jSi) and shall be

denoted by ySo 5

(c) /(X2) lies so near to /3i that f(X..) -\- e., falls outside the inter-

val
;
in this case, let ySj be taken coincident with (3i: /Sa ==

i^i ; the

other point f(Xo)
— €0 will lie in the interval (aj, /?i) and shall be

denoted bv a...
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In each one of these three cases

ao < f{^) < A if a; > X2 ; /?2
—

a2 < 2 e^ .

The remaiudev of the proof is extremely simple. The step just

described at length can be repeated again and again, and we shall

have as the result in the general case the following :

Now consider the set of points that represent a^, ug, . . . a,, . . .

They advance in general toward the right as i increases,
—

they
never recede toward the left,

— but no one of them ever advances

so far to the right as /Jj. Hence, by the principle* of § 4, they

approach a limit A. Similar reasoning shows that the points repre-

senting /3i, /^a, . . • A, • • • approach a limit B. And since

these limits must be equal : A = B.

From this it follows that f{x) converges toward the same limit.

For

and if when x increases indefinitely, we allow i to increase indefi-

nitely at the same time, but not 1-0 rapidly as to invalidate these in-

equalities, we see that /(a;) is shut in between two variables, a, and
;8,-,

each of which approaches the same limit. Hence /(a;) approaches

that limit also, and the theorem is proved.

In the theorem in infinite series above quoted n is the independent

variable x, s^ the function f(x) ;
the expression s^^^

—
s^ corre-

sponds to f{x')
—

/(a;"); and thus that theorem is seen to be a

special case of the theorem just proved. The domain of values for

the variable x is in this case the positive integers, 1, 2, 3,

Another application of the present theorem is to the convergence

of a definite integral when the upper limit becomes infinite. Let

f(x)= rct>{x)dx.
tJ a

4> (x) dX— I </) {x) dx = I
cl> (x) d X.

J''

a-/

(^ {x) dx =z

* This principle was stated, to be sure, in the form 5',/ I> 5 if ?;'> w;

but it obviously continues to hold if we assume merely that S,,' ^ S,, when

n' > n.



APPENDIX. 67

when x' and a;", regarded as independent variables, both become in-

finite, tlie integral

f (ji (x) dx

is convergent. The domain of valnes for the variable x is in this

case all the real quantities greater than a.

In the foregoing theorem it has been assumed that the independent

variable x increases without limit. Tiie theorem can however be

readily extended to the case that x decreases algebraically indefi-

nitely or approaches a limit a from either side or from both sides.

In the tirst case, let

x = —y;
in the second, let

,
1

X =z a -\
—
y

if X is always greater than its limit a
;

let

1
X =^ a

y

if X is always less than a. Then if we set

f(x)= c/>(.v)

and the function ^ (//)
satisfies the conditions of the theorem when

y =z
-\- cc

, <f> (y) and hence /(.r) will approach a limit. Finally, if x

in approaching a assumes values sometimes greater than a and some-

times less, we may restrict x first to approaching a from above,

secondly from l)elow. In each of these cases it has just been seen

that /(a;) approaches a limit, and since

lim[/(.i•')-/(.^•")] z=0

where x' and x" may now be taken the one above, the other below a,

these two limits must be equal. We are thus led to the following

more general form of statement of the theorem.

Theorem. Let f(x) he such a function ofx that

Urn [/(x')— /(x")] =
when x' and x", regarded as independent variables, approach the limit

a from above or from below or from both sides, or become jwsitively or

negatively infinite. Then f(x) apjrroaches a limit when x approaches
the limit a from above or from below or from both sides, or becomes

positively or negatively infinite.
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A TABLE OF THE MORE IMPORTANT FORMULAS.

The heavy line indicates the region of convergence.

._J_ = 1 + a; + x-^ + ..3 +
— 1 1

a — bx a cr cr cr

r II r

r= -
numerically.

x^
,

x^ X*
log (1+X)=.T -- + --- +

— 1 1

(^
+ f + f+ )

log [^=2(0. + :^+:^ +
—10 1

(l + x)M=l+^.+ tl^..-^ + ?iOi=i|i^.^+
— 1

^ = 1 _ 2ic + 3.^•2 — ix^ -\-

{l-\-x)
— 1



APPENDIX. 69

I O ' > . 1
I •> . /I . c I

V 1 — a;2 '2 '21 '

2 • 4 • 6

— 1 1

Vl_a-»^l-^x»-^j^-^..
— 1 (I 1

/V.2 ,,.8 ,.4

«^= 1+^ + ^ +
3.
+ .!,+

a;*
,

x^ x''

sinx = x---^^--^
II

a;2
,

a;* .j;«

cosa.'= i__-f +
4! 6!

tan a; m a; H- ^ .r^ -f- j-^
x^ -|-

- ^ •>

cot ar
—

^ .)•
— \ x^ -\-

X

IT < ' E
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sec x=l-\-^x^-\-^x*-\-
' •

—
TT Y

. , ,

1 a;3 1 . 3 a;5
,

1 • 3 • 5 a;''
,

— 1 1

x^
,

x^ .v''

tan ^x r= X
1

'—1-

3 i

— 1 1

f(Xo-\-?l) = /(Xo)-\-f'(x,)h-\-r(Xo)^^ H- +/(«)(a:„+ ^/,)

^"

0<^<1

f{x, -j-h)= /(.i-o) + hf (a-o 4- ^/i)

Jo ^/ 1 — k'^sin^<f>

TT

E =
j ^ I — k'^sm^ff, d<f> =
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For small values of x the following equations are approximately
correct.

f(a + x)=f{a)-\-f'ia)x

(1 -^ x)"'= 1 -(- ma;

(I -\- xy = \ -\- -Ix

VT+^rrr 1 + ^x

= \ — 2x
ii-\-xy

,

^ = 1 — Ax
V 1 + cc

If X, y, z, to, are all numerically sn.all, then, approximately,

(1 + .T) (1 + 2/) (1 + ^) = 1 4- .0 + y + ^ +

sin a; == x or x — ^ x^

cos X rr: 1 Or 1 — i .i'^

tan X' z= X- or .r -f- j^
x^

sin (a -|- a*)
— sin a = x cos a

cos (a -|- x)
— cos a = — x sin a

log (a -\- x)
—

log a r= -
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