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PREFACE.

In preparing tins second edition for press I have altered as

slightly as possible those portions of the work which were

written entirely by Prof. Kelland. The mode of presentation

which he employed must always be of great interest, if only

from the fact that he was an exceptionally able teacher
;
but

the success of the work, as an introduction to a method which

is now rapidly advancing in general estimation, would of itself

have been a sufficient motive for my refraining from any

serious alteration.

A third reason, had such been necessary, would have pre-

sented itself in the fact that I have never considered with the

necessary care those metaphysical questions connected with

the growth and development of mathematical ideas, to which

my late venerated teacher paid such particular attention.

My own part of the book (including mainly Chap. X. and

worked out Examples 10^24 in Chap. IX.) was written

huniedly, and while I was deeply engaged with work of a very

different kind
;
so that I had no hesitation in determining to

re-cast it where I fancied I could improve it.

P. G. TAIT.

University of Edinburgh,

November, 1881.
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PEEFACE TO THE FIRST EDITION.

The present Treatise is, as tlie title-page indicates, the joint

production of Prof. Tait and myself The preface I write

in the first person, as this enables me to offer some personal

explanations.

For many years past I have been accustomed, no doubt

very imperfectly, to introduce to my class the subject of

Quaternions as part of elementary Algebra, more with the

view of establishing principles than of applying processes.

Experience has taught me that to induce a student to think

for himself there is nothing so effectual as to lay before him

the different stages of the development of a science in some-

thing like the liistorical order. And justice alike to the

student and the subject forbade that I should stop short at

that point where, more simply and more effectually than at

any other, the intimate connexion between principles and pro-

cesses is made manifest. Moreover, in lecturing on the ground-

work on which the mathematical sciences are based, I could

not but bring before my class the names of great men who

spoke in other tongues and belonged to other nationalities

than their own—Diophantus, Des Cartes, Lagrange, for in-

stance—and it was not just to omit the name of one as
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great as any of them, Sir Williara Rowan Hamilton, who

spoke their own tongue and claimed their own nationality.

It is true the name of Hamilton has not had the impress

of time to stamp it with the seal of immortality. And it

must be admitted that a cautious j)olicy which forbids to

wander from the beaten paths, and encourages converse

with the past rather than interference with the present, is

the true policy of a teacher. But in the case before us,

quite irrespective of the nationality of the inventor, there

is ample ground for introducing this subject of Quaternions

into an elementary course of mathematics. It belongs to

first principles and is their crowning and completion. It

brings those principles face to face with operations, and thus

not only satisfies the student of the mutual dependence of

the two, but tends to carry him back to a clear apprehension

of what he had probably fliiled to appreciate in the sub-

ordinate sciences.

Besides, there is no branch of mathematics in which

results of such wide variety are deduced by one uniform

process ;
there is no territory like this to be attacked

and subjugated by a single weapon. And what is of the

utmost importance in an educational point of view, the

reader of this subject does not require to encumber his

memoiy with a host of conclusions already arrived at in

order to advance. Every problem is more or less self-

contained. This is my apology for the present treatise.

The Avork is, as I have said, the joint i3roduction

of Prof. Tait and myself. The preface I have written

without consulting my colleague, as I am thus enabled
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to say wliat could not otherwise have been said, that

mathematicians owe a lasting debt of gratitude to Prof.

Tait for the singleness of purj)ose and the self-denying

zeal with which he has worked out the designs of his

friend Sir "VVm. Hamilton, preferring always the claims of

the science and of its founder to the assertion of his own

power and originality in its development. For my own

part I must confess that my knowledge of Quaternions

is due exclusively to him. The first work of Sir \Vm.

Hamilton, Lectures on Quaternions, was very dimly and im-

perfectly understood by me and I dare say by others, until

Prof. Tait published his pajoers on the subject in the

Messenger of Mathematics. Then, and not till tlien, did

the science in all its simplicity develope itself to me. Sub-

sequently Prof. Tait has published a work of great value

and originality, An Eleynentary Treatise on Quaternions.

The literature of the subject is completed in all but

what relates to its physical applications, when I mention in

addition Hamilton's second great work, Elements of Quater-

nions, a posthumous work so far as publication is concerned,

but one of which the sheets had been corrected by the

author, and which bears all the impress of his genius. But

it is far from elementary, whatever its title may seem to

imply; nor is the work of Prof. Tait altogether free from

difficulties. Hamilton and Tait write for mathematicians,

and they do well, but the time has come when it behoves

some one to write for those who desire to become mathe-

maticians. Friends and pupils have urged me to undertake

this duty, and after consultation with Prof. Tait, who from
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being my pupil in youtli is my teacher in riper years,

I have, in conjunction with him, and drawing unreservedly

from his writings, endeavoured in the first nine chapters

of this treatise to illustrate and enforce the principles of

this beautiful science. The last chapter, which may be

regarded as an introduction to the application of Quater-

nions to the region beyond that of pure geometry, is due

to Prof Tait alone. Sir W. Hamilton, on nearly the last

completed page of his last work, indicated Prof Tait as

eminently fitted to carry on happily and usefully the appli-

cations, mathematical and physical, of Quaternions, and as

likely to become in the science one of the chief successors

of its inventor. With how great justice, the reader of this

chapter and of Prof Tait's other writings on the subject

will judge.

PHILIP KELLAND.

University of Edinbuegh,

October, 1873.
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INTRODUCTION TO QUATERNIONS.

CHAPTER I.

INTRODUCTORY.

The science named Quaternions by its illustrious founder, Sir

William Eowan Hamilton, is the last and the most beautiful ex-

ample of extension by the removal of limitations.

The Algebraic sciences are based on ordinary arithmetic, start-

ing at first with all its restrictions, but gradually freeing themselves

from one and another, until the parent science scarce recognises
itself in its offspring. A student will best get an idea of the thing

by considering one case of extension within the science of Arith-

metic itself There are two distinct bases of operation in that

science—addition and multiplication. In the infancy of the science

the latter was a mere repetition of the former. Multiplication w^as,

in fact, an abbreviated form of equal additions. It is in this form

that it occurs in the earliest writer on arithmetic whose works have

come down to us—Euclid. Within the limits to which his prin-

ciples extended, the reasonings and conclusions of Euclid in his

seventh and following Books are absolutely perfect. The demon-
stration of the rule for finding the greatest common measure of

two numbers in Prop. 2, Book VII. is identically the same as that

which is given in all modern treatises. But Euclid dares not

venture on fractions. Their properties were probably all but un-

known to him. Accordingly we look in vain for any demonstration

of the properties of fractions in the writings of the Greek arith-

meticians. For that we must come lower down. On the revival

T. Q. 1
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of science in the West, we are presented with categorical treatises

on arithmetic. The first printed treatise is that of Lucas de Biirgo

in 1494. The author considers a fraction to be a quotient, and

thus, as he expressly states, the order of operations becomes the

reverse of that for whole numbers—multiplication precedes addi-

tion, etc. In our own country we have a tolerably early writer on

arithmetic, Robert Record', who dedicated his work to King Edward

the Sixth. The ingenious aiithor exhibits his treatise in the form

of a dialogue between master and scholar. The scholar battles

long with this difficulty
—that multiplying a thing should make it

less. At first, the master attempts to explain the anomaly by

reference to proportion, thus : that the product by a fraction bears

the*same proportion to the thing multiplied that the multiplying

fraction does to unity. The scholar is not satisfied
;
and accord-

ingly the master goes on to say : "If I multiply by more than one,

the thing is increased; if I take it but once, it is not changed; and

if I take it less than once, it cannot be so much as it was before.

Then, seeing that a fraction is less than one, if I multiply by a

fraction, it follows that I do take it less than once", etc. The

scholar thereupon replies,
"
Sir, I do thank yon much for this

reason ;
and I trust that I do perceive the thing".

Need we add that the same difiiculty which the scholar in the

time of King Edward experienced, is experienced by eveiy thinking

boy of our own times; and the explanation afibrded him is precisely

the same admixture of multiplication, proportion, and division which

suggested itself to old Robert Record. Every schoolboy feels that

to multiply by a fraction is not to multii)ly at all in the sense in

which multiplication was originally presented to him, viz. as an

abbreviation of equal additions, or of repetitions of the thing multi-

plied. A totally new view of the process of multiplication has

insensibly crept in by the advance from whole numbers to fractions.

So new, so different is it, that we ai'e satisfied Euclid in his logical

and unbending mai'ch could never have attained to it. It is only

by standing loose for a time to logical accuracy that extensions in

the abstract sciences—extensions at any rate which stretch from

one science to another—are effected. Thus Diophantus in his
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Treatise on Arithmetic (i.e. Arithmetic extended to Algebra)

boldly lays it down as a definition or first principle of his science

that 'minus into minus makes plus'. The science he is founding

is subject to this condition, and the results must be interpreted

consistently with it. So far as this condition does not belong to

ordinary arithmetic, so far the science extends beyond ordinary

arithmetic: and this is the distance to which it extends—It makes

subtraction to stand by itself, apart from addition; or, at any rate,

not dependent on it.

"We trust, then, it begins to be seen that sciences are extended

by the removal of barriers, of limitations, of conditions, on which

sometimes their very existence appears to depend. Fractional

arithmetic was an impossibility so long as multiplication was re-

garded as abbreviated addition ;
the moment an extended idea was

entertained, ever so illogically, that moment fractional arithmetic

started into existence. Algebra, except as mere symbolized arith-

metic, was an impossibility so long as the thought of subtraction

was chained to the requirement of something adequate to subtract

from. The moment Diophantus gave it a separate existence—
boldly and logically as it happened— by exhibiting the law of minus

in the forefront as the primary definition of his science, that moment

algebra in its highest form became a possibility ;
and indeed the

foundation-stone was no sooner laid than a goodly building arose

on it.

The examples we have given, pei-haps from their very simplicity,

escape notice, but they are not less really examples of extension

from science to science by the removal of a restriction. We have

selected them in preference to the more familiar one of the extension

of the meaning of an index, whereby it becomes a logarithm, because

they prepare the way for a further extension in the same direction

to which we are presently to advance. Observe, then, that in frac-

tions and in the rule of signs, addition (or subtraction) is very

slenderly connected with multiplication (or division). Arithmetic

as Euclid left it stands on one support, addition only, inasmuch

as with him multiplication is but abbreviated addition. Arithmetic

in its extended form rests on two supports, addition and multiplica-

1—2
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tion, the one different from the other. This is the first idea we

want our reader to get a firm hold of
;

that multiplication is not

necessarily addition, but an operation self-contained, self-interpret-

able—springing originally out of addition
; but, when full-grown,

existing apart from its parent.

The second idea we want our reader to fix his mind on is this,

that when a science has been extended into a new form, certain

limitations, which appeared to be of the nature of essential truths

in the old science, are found to be utterly untenable
;
that it is, in

fact, by throwing these limitations aside that room is made for the

growth of the new science. We have instanced Algebra as a growth
out of Arithmetic by the removal of the restriction that subtraction

shall require something to subtract from. The word 'subtraction'

may indeed be inappropriate, as the word multiplication ap-

peared to be to Record's scholar, who failed to see how the multi-

plication of a thing could make it less. In the advance of the

sciences the old terminology often becomes inappropriate ;
but if

the mind can extract the right idea from the souud or sisht of a

word, it is the jiart of wisdom to retain it. And so all the old words

have been retained in the science of Quaternions to which we are

now to advance.

The fundamental idea on which the science is based is that of

motion—of transference. Real motion is indeed not needed, any
more than real superposition is needed in Euclid's Geometry. An

appeal is made to mental transference in the one science, to mental

superposition in the other.

We are then to consider how it is possible to frame a new science

which shall spring out of Arithmetic, Algebra, and Geometry, and

shall add to them the idea of motion—of transference. It must be

confessed the project we entertain is not a project due to the

nineteenth century. The Geometry of Des Cartes was based on

something very much i-escmbling the idea of motion, and so far the

mere introduction of the idea of transference was not of mucli value.

The real advance was due to the thought of severing multiplication

from addition, so that the one might be the representative of a kind

of motion absolutely different from that which was represented by



I.] INTRODUCTORT. 5

tlie otlier, yet capable of being combined with it. What the nine-

teenth century has done, then, is to divorce addition from multipli-
cation in the new form in which the two are presented, and to

cause the one, in this new character, to signify motion forwards

and backwards, the other motion round and round.

We do not purpose to give a history of the science, and shall

accordingly content ourselves with saying, that the notion of sepa-

rating addition from multiplication
—

attributing to the one, motion

from a point, to the other motion about a point
—had Ijeen floating

in the minds of mathematicians for half a century, without producino-

many results worth recording, when the subject fell into the hands

of a giant, Sir William Ptowan Hamilton, who early found that his

road was obstructed—he knew not by what obstacle—so that many
points which seemed within his reach were really inaccessible. He
had done a considerable amount of good work, obstructed as he was,

when, about the year 1843, he perceived clearly the obstruction to

his progress in the shape of an old law which, prior to that time,

had appeared like a law of common sense. The law in question is

known as the commutative law of multiplication. Presented in its

simplest form it is nothing more than this,
' five times three is the

same as three times five'; more generally, it appears under the

form of ^ab = ba whatever a and b may represent'. When it

came distinctly into the mind of Hamilton that this law is not a

necessity, with the extended signification of multiplication, he saw

his way clear, and gave up the law. The barrier being removed,
he entered on the new science as a warrior enters a besieged city

through a practicable breach. The reader will find it easy to enter

after him.



CHAPTER II.

VECTOR ADDITION AND SUBTRACTION.

1, Definition of a Vector. A vector is the representative of

transference through a given distance, in a given direction. Thus

if u4J5 be a straight line, the idea to be attached to 'vector AB^ is

that of transference from -4 to ^.

For the sake of defiuiteness we shall frequently abbreviate the

phrase
' vector AB '

by a Greek letter, retaining in the meantime

(with one exception to be noted in the next chapter) the English

letters to denote ordinary numerical quantities.

If we now start from 7) and advance to Cin the same direction,

BC being equal to AB, we may, as in ordinary geometry, designate
' vector BG '

by the same symbol, which we adoj^ted to designate
* vector AB.^

Further, if we sbart from any other point in space, and

advance from that point by the distance OX equal to and in the

same direction as AB, we are at liberty to designate 'vector OX'

by the same symbol as that which represents AB.

Other circumstances will determine the starting point, and in-

dividualize the line to which a specific vector corresponds. Our

definition is therefore subject to the following condition :
—All lines

which are equal and drawn in the same direction are represented by

the same vector symbol.

We have purposely employed the phrase 'drawn in the same

direction
'

instead of '

jiarallel,' because we wish to guard the

student against confounding 'vector AB '

with 'vector BxlJ
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2. In oi-der to apply algebra to geometry, it is necessary to

impose on geometry the condition that when a line measured in

one direction is represented by a positive symbol, the same lino

measured in the opposite direction must be represented by the coi'-

responding negative symbol.
In the science before us the same condition is eq.ually requisite,

and indeed the reason for it is even more manifest. For if a

transference from A to B be represented by +,a, the transference

which neutralizes this, and brings us back again to A, cannot be

conceived to be represented by anything but —a, provided the

symbols + and — are to retain any of their old .algebraic meaning.
The vector AB, then, being represented by + a, the vector BA will

be represented by - a.

3. Further it is abundantly evident that so far as addition and

subtraction of parallel vectors are concerned, all the laws of Algebra
must be applicable. Thus (in Art. 1) AB + BC or a + a produces
the same result as AC which is twice as great as AB, and is there-

fore properly represented by 2a
;
and so on for all the rest. The

distributive law of addition may then be assumed to hold in all its

integrity so long at least as we deal with vectors which are parallc 1

to one another. In fact there is no reason whatever, so far, why
a should not be treated in every respect as if it were an ordinary

algebraic quantity. It need scarcely be added that vectors in the

same direction have the same proportion as the lines which corre-

spond to them.

We have then advanced to the following
—

Lemma. All lines drawn in the same direction are, as vectors,

to he represented hy numerical viultlples of one and the same

symbol, to which the ordinary laws of Algebra, sofar as their addi-

tion, subtraction, and numerical multiplication are concerned, may
he unreservedly applied.

4. The converse is of course true, that if lines as vectors are

represented by multiples of the same vector symbol, they are

parallel.
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It is only necessary to add to what has preceded, that if BC be

a line not in the same direction with
(^

AB, then the vector BC cannot be

repre.sented by a or by any (arith-

metical) multiple of a. The vecto^ A 73

symbol a must be limited to express transference in a certain

direction, and caianot, at the same time, express transference in

any other direction. To express 'vector BC then, another and

quite independent symbol /3 must be introduced. This symbol,

being united to a by the signs + and —
,
the laws of algebra will,

of course, apply to the combination.

5. If we now join AC, and thus form a triangle ABC, and if

we denote vector AB by a, BC by jS, AC by y,
it is clear that we

shall be presented with the equation a + /3
=

y.

This equation appears at first sight to be a violation of Euclid I.

20 :
" Any two sides of a triangle are together greater than the

third side". But it is not really so. The anomalous appearance
arises from the fact that whilst we have extended the meaninsr of

the symbol + beyond its arithmetical signification, we have said

nothing about that of a symbol = . It is clearly necessary that the

signification of this symbol shall be extended along'with that of

the other. It must now be held to designate, as it does perpetually

in algebra,
'

equivalent to.' This being premised, the equation

above is freed from its anomalous appearance, and is perfectly con-

sistent with everything in ordinary geometry. Expressed in words

it reads thus :

' A transference from A to B followed by a trans-

ference from B to C is equivalent to a transference from A to C'

r 6. Axiom. If two vectors have not the same direction, it is

I impossible that the one can neutralize the other.

This is quite obvious, for when a transference has been effected

from A to B, it is impossible to conceive that any amouTit of trans-

ference whatever along BC can bring the moving point back to A.

It follows as a consequence of this axiom, that if a, /? be different

actual vectors, i.e. finite vectors not in the same direction, and if
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ma + 71^
=

0, where m and n arc numerical quqjitities ;
tlicn must

171 = and n = 0.

Another form of tliis consequence may be thus stated. If /

[still
with the above assumption as to a and )8]

ma + nfi
= pa + qP, J

then must m'=p, and n — q.

7. We now proceed to exemplify the principles so far as they

have hitherto been laid down. It is scarcely necessary to remind

the reader that we are assuming the applicability of all the rules

of algebra and arithmetic, so far as we are yet in a position to draw

on them
;
and consequently that our demonstrations of certain of

Euclid's elementary propositions must be accepted subject to this

assumption.
To avoid prolixity, we shall very frequently drop the word vector,

at least in cases where, either from the introduction of a Greek

letter as its representative, or from obvious considerations, it must

be clear that the mere line is not meant. The reader will not fail

to notice that the method of demonstration consists mainly in reach^
ing the same point by two different routes. (See remark on Ex. 9.) j

Examples.

Ex. 1, Tlie straigJit lines which join the extremities of equal and

parallel straight lines towards the same parts ao-e themselves equal

and 2iarallel.

Let ABhQ equal and parallel to CD
;

to prove that ^C is equal and parallel

to BD.

Let vector AB be represented by a,

then (Art. 1) vector CD is also rej)re- q''

sented b}^ a.

If now vector CA be represented by fi,
vector DB by y,

we shall

have
(
Art. 5) vector CB = CA+AB = p + a,

and vector CB = CD + DB = a + y;

.'./? + a — a + y,

and P = y',

so that P and y are the same vector symbol; consequently (Art. 1)
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the lines which they represent are equal and parallel ;
i. e. CA is

equal and parallel to BD.

Ex. 2. The opposite sides of a parcdlelogram are equal; and

the diagonals bisect each other.

Since AB is parallel to CD, if vector AB be represented by a,

vector CD will be represented by some numerical multiple of a

(Art. 3), call it ma.

And since CA is pai-allel to DB; if vector CA be P, then vector

DB is njB ;
hence

vector CB^-CA+AB = p + a,

and = CD + DB = 7na + nj3 ;

.: a + (3
= ma + ii/B.

Hence (Art. G) m= 1, n= 1, i.e. the opposite sides of the paral-

lelogram are equal.

Again, as vectors, AO-h 0B=^ AB
= CD
= CO + CD ;

And as .40 is a vector along CD, and CO a vector alo7ig OB ;

it follows (Art. 6) that vector AO is vector OD, and vector CO is

OB;
.'. line AO = OD, CO = OB.

Ex. 3. The sides about the equal angles of equiangular triangles

are proportionals.

Let the triangles ABC, ADE have a common

angle A, then, because the angles D and B are

equal, DE is parallel to BC.

Let vector AD be repi'esented by a, DE by

yS,
then (Art. 3) ^^ is ma, BC n{3.

. : as vectoi-s, AE = AD + DE= a + y8,

AC^AB + BC = ma + n^.

Now AC is a multiple of AE, call it 2){a+fS).

. : ma + vi-P =]) {°-
+ ^)i

and 7/i - p = ?i
(
Art, G).
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But line AB : AD = m,

lineBC : I>B = n,

.: AB : AD :: BC : DE.

Ex. 4. Tlt,e bisectors of tlie sides of a triangle meet in a point

wJiich trisects each of them.

Let the sides of the triangle ABC he

hisectecl in D, E, F
;
and let AD, BE

meet in G.

Let vectorBD or DC he a, CE or EA /3, -^
then, as vectors,

'

/^^^"^

hence (Art. 4) ^y1 is parallel to DE, and

equal to 2Z>Z;.

Again, BG +GA=BA
^2DE
= 2{DG + GE).

Now vector BG is along GE, and vector 6'J along DG.

.: (Art. G) BG = 2GE,

GA =
2Z>(y,

-

whence the same is true of the lines.

Lastly, BG^^BE

=
^'{BC+CJ:)

=
|(2a

+ ^);

.-. CG =BG-BC

=
|(2a

+ /3)-2a
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^-BA-BG,

=
a4-yS-|(2a

+ /3)

hence CG is in the same straight line with GF, and equal to 2GF.

Ex. 5. When, itistead of D and E being the middle 2')oints of
the sides, tliey are any jioints tuhatever in those sides, it is required
tofind G and the 2)oint in ivhich CG jjroduced meets AB.

BC GA
^^^

/i/-'~"*» rilj
—

''^) ^^^ let vector Z)C = a, vector CF =
(3 ;

.-. BG-ma, CA=njS.
Hence BE = BG+GE=ma + p,

DA = a + np.

Let BG^xBE, GA=yDA,
then BA = BG + GA = x (ma + l3)

+ y(a + n^).

But BA = ma + n^,

.'. {Art. G) xm + y-7n, x + yn = n,

BG (iii-l)n AG ()i-l)m.and X. I.e. —- = ^
'-—, y or

, .^
= ^

-.BE 7nn-l '^ AD mn~i

Again, let BF=2)BA=2){ma + n/3).

But BF=BC + GF
= ma + a multiple of CG
= ma + zCG suppose
= ma + z{BG-BG}

({m-\)n , „, )= ma + z- -V (ma + p) — ma -

.

(,
mn - 1

^ ' '

J

The tAVO values of BF being equated, and Art. G applied,

there results

. n -\ m, — 1

p=l-,'2 -, p = z -,
mil — 1 myi — 1



EX. C]

whence

VECTOR ADDITION AND SUBTRACTION.

1 — ;;
n — 1

13

P m - 1
'

I.e.
AF AE BD
BF GE Ci>'

OY AF.BD. GE=AE.CD.BF.
Ex. G. Whcji,, instead of as in Ex. 4, where D, E, F are lioints

taken within BC, CA, AB at distances equal to half those lines

respectively, they are 2^oinis taken in BC, CA, AB produced, at

the same distances resp)ectivelyfrom C, A, and B ; to find the inter-

sections.

Let tlie poiuts of intersection be respectively G^, 6'.,, G^.

Retaining the notation of Ex. 4, we have

BD = 3a, CE=3fi;
and .:BG^ = xBE

= x{2a+3/3)

and BG^ = BD + DG^
= 3a + yDA
= 3a + y{CA-CB)
= 3a + y{2^-a);

.: 2x=3- y, 3x= 2y, and x =

.: line EG^ = ]-EB.3
J

•ax

6

1'
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Similarly line FG^ = -FC,

line DG„ = I DA,

and from equation (1) BG.^
= —

(2a + 3|8).

But

hence

BG^ = BA + AG.^
= 2a + 2/3 +AG^ ;

.'. AG^ = ^(2/3-a)-

2
line AG =~ line JDA

=
2I)G,,

and similarly of the others.

Ex. 7. The middle points of the lines ivhich join the points oj

bisection of the ojjposite sides of a quadrilateral coincide, whether

thefour sides of the quadrilateral he in the same plune or not.

Let ABCD be a qiiadrilateral ; E, H, G, F tlie middle points of

AB, BG, CD, DA ;
X the middle point of EG.

Let vector AB =
a, AC =

jB,
AD =

y,

then AE + EG--=AD + DG gives

- a + EG^y + -{/3-y),

•Ai.\^AX=AE + -EG
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Let P, Q be the middle points of AC,

JW, It that of PQ.

Retaining the notation of the last ex-

ample we have

AQ = AB+BQ=a+l{y- a)
=
\{a+y),

i.e. AQ = -{AB + AD).

Similarly AR=rAAP + AQ)

=
4 (« + /^ + y),

i.e. R is the same jwint as X in the last example; and is therefore

the mean point of ABCD.

Ex. 9. AD is drawn bisecting BC in D and is produced to any
point E ; AB, CE produced meet in P ; AC, BE in Q ; PQ is

parallel to BC.

Let Ji?=a, AC =
j3,

AP^xa,AQ^yp,
1

.'. BC = fi-a,AB = AB + ^BC, a

and A E is a multifile oi AD = z {a. -r ^) say.

Then CP =pCE give% xa-/3 =p {z (a +(3)- (3],

.•. (Art. (i)
x = pz,

— \ -pz-p;
.: p = x+ 1.

Similarly BQ - qBE gives i/(3 -a= q [z (a + (3)
-

a],

y =
qz, -l=qz-q,
••

!?
= y + i,
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and since z = -= - we have
V (I

.'. PQ=y(i — xa=-x{^-a)^xBC,

hence the line PQ is parallel to BC.

The method pursued in this example leads to the solution of all

similar problems. It consists, as we have already stated, in reach-

ing the points P and Q resijectively by two different routes,
—viz.

through G and through E for P
; through B and through E for Q—and comparing the results.

AB.Cor. 1.
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Ex. 11. Iffrom, any foint loithin a parallelogram, parallels

he drawn to the sides, the corresiJonding diagonals of the two

2)arallelograms thus formed, and of the original parallelogram

shall meet m the same point.

Let PQ, RS meet in I";
-4-

join TO, OD.

Let OA =
a, OB = 13, OQ=ma, 0S=^n(3,

then QP=QG+CP = np + {\-m)a,SR = SC-vCR = ma+{\-n)P,

and TO = TQ-OQ = x {nfi + (1
- m) a}

- ma,

also TO = TS-OS = y {ma + (1
-
w) /3}

-
w/3 :

equating, tli^e results

xn =y {\—n) — n', x{l—m)—m = ym ;

m
x =

1 —m — 71*

and T0 =
-^ (a+m=- 0Z> :1—m — n^ '^' \—m — n

hence (Art. 4) TO, OD are in the same straight line.

Cor. TO : TD :: mn : (l-m)(l-w) :: OSCQ : CRDP.

Ex. 1 2. The j)oints of bisection of the three diagonals of a com-

plete quadrilateral are in a straig/U line.

T. Q. . 2
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P, Q, R, the middle points of the

diagonals of the complete quadrila-

teral ABCD, are in a straight line.

Let AB=:a,AJ) =
(3,

AE = ma, AF=7iP;
.: £F=nP-aandB0 =

x{')i(3-a),

ED = P-ma and GD = y{j3- ma).

l^ow £C + CI) = BD=AD-AB a

X («/3
—

a) + y{P — ma) = (3
—

a,

xn + y=l, x + my=\,
m—l

1'

gives

whence

X
mn-

and AP=lAC^Ua + ^^{nfi-a)\2 2 ( ,mn— 1
^

')

\7n {n—\) a+ n (m — I) fi

AQ-AP=

AR-AP=

7mi — 1

AE = -
(ma + nj3),

1

1{mn-\)
\{m-\)o.^{n-\)^l

m/rh

{(m-l)a + («-l)i3},
2(wm-l)

or vector PR is a multiple of vector PQ, and thei'efore they are in

the same straight line.

Cor. Line PQ : PR :: 1 : mn
:: AB : AD AE.AF

triangle ABE triansrle AEF.

We shall presently exemplify a very elegant method due to

Sir W. Hamilton of proving three points to be in the same

straight line.
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8. It is often convenient to take a vector of the length of the

unit, and to express the vector under consideration as a numerical

multiple of this unit. Of course it is not necessary that the unit

should have any specified value
;

all that is required is tliat when
once assumed for any given problem, it must remain unchanged

througliout the discvission of that problem.
If the line AB be supposed to be a units in length, and the

unit vector along AB be designated by a, then will vector AB be

«a (Art. 3).

Sir "William Hamilton has termed the length of the line in

such cases, the Tensor of the vector
;
so that the vector AB is the

product of the tensor AB and the unit vector along AB. Thus if,

as in the examples worked under the last article, we designate the

vector AB by a, we may write a = TaUa, where Ta is an abbre-

viation for ' Tensor of the vector a
;
Ua for ' unit vector along a'.

Examples.

Ex. 1. If tJie vertical angle of a triangle he bisected by a

straight line which also cuts the base, the segments at the base shall

have the same ratio that the other sides of the triangle have to one

another.

Take unit vectors along AB, AC, which ^
call a, /3 respectively : constiiict a rhombus p^

APQR on them and draw its diagonal AR.
Then since the diagonals of a rhombus bi-

sect its angles, it is clear that the vector
^

AD which bisects the angle ^ is a multiple of AR the diagonal
vector of the rhombus.

Now AR=AP+PR = AP+AQ^.a + p,

.: AJ)^x{a +
(3).

Now vector AB = ca, AC=b/3; using c, b as in ordinary

geometry for the lengths of AB, AC.

Hence BD =AJ) -AB = x{a + (3) -ca,

and BD = yBG=y{AC-AB)
= y{bfi- Co).

2—2
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Equating, x-c--yc, x = yh',

and BD : DC '.'. y -.l-y
:: c : b

:: BA : AC.

Cor. If a, P are unit vectors from A, and if S be another

vector from A such that 8 = a; (a + yS) ;
then S bisects the angle

between a and (i.

Ex. 2. T/te iAree bisectors of the angles of a triangle meet in

a point.

Let AD, BE bisect A, B and meet in G
;
CG bisects C.

Let units along AB, AC, BC be a, yS, y, then as in the last

example,
AG -^x {a + P), BG = y {- a + y).

But ay^bjB
—

ca,

and (76^ = ^(7-^(7

= x{a + ft)-bfi,

also CG =BG-BC

=y(^-'^+~^)-^(^+c<^;

a '

whence a;

a+ 6 + c'

and C(S^ =
^ {ca-{a + b)fi\a + b + c

b

{-ay-a(3)a + b + c

=p(y + Ph
hence CG bisects the angle C (Cor. Ex. 1).
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9. If a, /S, y are non-parallel vectors in tlie same plane, it is

always possible to find numerical values of a, b, c so that aa + b/S

+ cy shall = 0.

For a triangle can be constructed whose sides shall be pai'allel

respectively to a, (3, y.

Now if the vectors corresponding to those sides taken in order

be aa, bp, cy respectively, we shall have, by going round the

triangle,

aa + bj3 + cy
= 0.

10. If a, (3, y are three vectors neither- parallel nor in the

same plane, it is impossible to find numerical values of a, b, c, not

equal to zero, which shall render aa + b(3 + cy
= 0.

For (Art. 5) aa + b^ can be represented by a third vector in
'

the plane which contains two lines parallel respectively to a, (3.

Now cy is not in that jilane, therefore (Art. G) their sum cannot

equal 0.

It follows that if aa + &/3 + cy
= and a, ft, y are not parallel

vectors, they are in the same plane.

11. There is but one way of making the sum of multiples

of a, /?, y (as in Art. 9) equal to 0.

Let aa+bjS + cy
= 0,

and also pa + ql3 + ry
= 0.

By eliminating y we get u ,,

(ar
—

c]))
a + (br -cq) (3

=
;

. •, (Art. 6) ar = cp, br = cq,

ov a : b '. c :: J) '• 1 ''
'"'y

so that the second equation is simply a multi^^le of the first.

12. If a, p, y are coinitial, coplanar vectors terminating in

a straight line, then the same values of a, 6, c which render

aa + bl3 + cy
= will also render a + b + c — 0.
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Let vector OA =
a, 0B =

/3, OC =
y, ABC

being a straight line
;
then

AC = y-a.
But J.C is a multiple of AB,

or y-a=2){IS-a),
i.e. (p—l)a-2}/3 + y = 0.

But 0^-1)-^;+ 1 = 0;

and as p—1, —p, +1 correspond to a, b, c and satisfy the con-

dition required, the proposition is proved generally (Art. 11).

13. Conversely, if a, (3, y are coinitial coplanar vectors, and if

both rta + 1/3 + cy
= and a + b + c = 0, then do a, /3, y terminate

in a straight line.

For ay + by + cy=0;
therefore by subtraction

a{y-a) + b(y-l3) = 0,

i.e. y
— a is a multiple of y

—
y8, and therefore (Art. 4) in the same

straight line with it : i. e. AG is in the same straight line with

£C. (See Tait's Quaternions, § 30.)

Examples.

Ex. 1. If two triangles are so situated that the lines which

join corresponding angles meet in a jioint, then piairs of correspond-

ing sides being prodxiced will meet in a straight line.

ABC, A'B'C are the triangles;

the point in which A'A, B'B, G'G

meet; P, Q, R the points in which

BG, B'G', to. meet: PQR is a

straight line.

Let OA^a, 0B = (3, OG = y,

OA'^ma, OB' = 71/3, 0G'=2^y,

then BA = a -
/?,

and BE -x(a — /3);

B'A' = ma-nj3,

and B'R = y {rna - nfi) .
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Now BB' = BR- B'R gives

(n-l) I3
= x{a- (3)

- y (ma
-

?i/3) ;

.•. n— 1 = — X + ny, = a; — iny,

and

23

tn in — V)
x = ^ '-

;m — n

whence OR = OB + BR = B- '^''^'"' ^^
(ct-/3)

_n(m—l) 13
—
ni{n — X) a

7)1 — n )

Similarly, OpJ'i^'-'^)y-'^iP-^)^^
n~p

p —m '

. •. {m
-
n) {p -\)0R+ {n

-
p) (m -1)0P
+ {p-m){7i-l)OQ = 0.

And also

(m - n) {p-l) + {n -])) (m - 1) + (p
-
m) {n

-
1)
=

0,

whence (Art. 13) P, Q, R are in the same straight line.

Ex. 2. If a quadrilateral he divided into two quadrilaterals

by any cutting line, the centres of the three shall lie in a straight line.

Let RiQiQ-jP^ be the quadrilateral divided, into two by tie

line P^Q^. Let the diagonals of P^Q^Q^P^ meet in R^; and so of

the others : R^, R^, R^ are the centres.



24 QUATERNIONS. [CHAP. II.

Produce PJ^^, Q3Q1 ^'^ uieet in 0. Let tmit vectors along

OP, OQhe denoted by a, j8; and put

OPj = m^a, OPg = m^a, OP^ --=

ni^a ;

then 0i?3
=

OPj^ + P^B^ = m^a + x {n^fB
-
m^a),

and OP, = OQ^ + Q,R^ = 7^,/3
+ y (m,a

-
n,^).

Equating, we have

• m^
-
m^x = m^, and n^ = n^

—
n{>j;

... ^^ K-'^.)^ ^

and j^ -, '^\^^ (^i
-

^2) « + ^1^. (^1
-
^2) /^

^

Similarly,

^

mgWg
—
m^Wj

^

+ (m^TZg
—
m^n^) m^n^ OR^ = 0.

And also

whence (Art. 13) R^, R^, R^ are in the same straight line.

CoK. R^, Rj^, R, will pass through provided the coefficients

of a and /8 in the three vectors have the same proportion, i.e.

pi'ovided

1 L._L_J_..JL_1.L_1

Ex. 3. If AD, BE, CF he drawn cutting one another at any

point G within a triangle, then FD, DE, EF shall meet the third

sides of the triangle produced in 2)oints ivhich lie in a straight line.

Also the produced sides of tlm triangle shall he cut harmo-

nically.
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If, as in Ex. 5, Art. 7, we piit

I)C = a, CB= I3, BC^ma, CA^n(3,

we get, as in that example,

AF : £F :: 7i-l : m-1;

. •. BF= —
^ (ma + nB),

and FD=BD-BF=—"^^^„ Un-2)a-n3Y

DM=xFD^ compared with

DM=DC-MC =
a-ijlB,

lm-l)(n-2) , lm-\)n
gives m + n -9. m + n — 'Z

•'• y

n>p ^ D

n

16 2'

and
71BM=BC-MC= ma ^ B.

n — 2

Again, FE=FA + AE =
m + n-2 {ma~{m-2)l3}.
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And EL = xFE, compared with

EL = CL-CE^ya-p,
m

m(m-l)BL = (y + m)a =—^ — a.

Thirdly, DN'= xDE = cc (a + ^), compared with

DN= BN- BD = y (ma +
7i(3)

-
(m - 1) a,

m— 1

gives y ~ ,

and jBi\r = (ma + nB).m- n

Now (m-l){n-2) BM+{m- 7i)
BN

-(m-2)(n-l)BL = 0.

Also (m - 1) (n
-

2) + {m - n)
-

(^ni
-

2) {n
-

1)
=

;

therefore BM, BN, BL are in a straight line (Art. 13).

Further, CL==-^^GD,m — 2

BL =-^BD-m — 2

.-. CL : CD :: BL : BB,

and BL is cut harmonically.

Ex. 4. The point of intersection of bisectors of the sides of a

triangle from the opposite angles, the 2Joint of intersection, of per-

pendiculars on the sides from the opposite angles, and the point of

intersection ofperpendiculars on the sidesfrom their middle points,

lie in a straight line which is trisected by the first of these p>oints.

V. Let unit vector CB = a, unit vector CA - p,

then, Ex. 4, Art. 7, CG =
\ {aa + b(3).o
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2°. Let All, BK perpendiculars on the

sides intersect in 0,

then HA =
1/3 -ba cos C,

= b{(3-aco& C),

KB =^ a (a- (3 COS 0).

Now CO = CA +A0, and also = CB + BO, gives

&/3 + yh{P
— rta cos C) = aa + xa

{a-
—

(3 cos (7),

b cos C — a

sm- o

and CO =
-r-^, {{b -acos C) a + (a-b cos C) /S}.

3". Let perpendiculars from I> and B (Ex. 4, Art. 7) meet

in X,

then DX is a multiple of HA.

. : CX=CI) +DX=CE +EX gives

~aa + v{l3- acos C) = -^b/3
+ z (a- (3 COB C),

b — a cos C

and CA" =

2.sin^C
'

(a
- b cos C)a-\-{b

— a cos C) ^
2 sin^ C

.-. 2CX+CO-3CC = 0,

and also 2 + 1 — 3 = 0,

.•. X, 0, G are in a straight line.

Also C0-CC-2(CC-CX),
or vector GO = 2 vector XGy

.-. G0 = 2GX,

and G trisects XO.

14. The vector to the mean point of any polygon is the mean
of the vectors to the angles of the polygon.
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1°. Let be any point ;
tlien in tlie figure of Ex. 4, Art. 7, ,

we have, calling OA, a, OB, /3 and OC, y,

OG = a + AG^(i + BG = y+CG

= -{a. + (i + y)+^-{AG + BG+CG)

= _(a + /3 + y);

because AG + BG + CG^-^{AD + BE + CF)

=
I {{AB + AC) + (BA + BC) + {CA + CB)\

= 0.

2°. If OA, OB, OC, OB be a, /?, y, 8, in the figure of Ex. 7,

Art. 7, we have

OX^OH-\-HX=On+^{OF-OH)

J-{OF+OH) =
\{a

+ p + y + h).

3". In the more general case we may define the mean point in

a manner analogous to that adopted in mechanics to define the

centime of inertia of equal masses placed at the angular points of

the figure. Thus, if we take any rectangular axes OX, OY, and

designate by a, /S \iuit vectors parallel to these axes; and by p^,

Pg, &c. the vectors to the difierent points; and if we write a;,, y^;

Xg, y^, &c. for the Cartesian co-ordinates of the difierent points

referred to those axes
;
and define the mean point as the centre of

inertia of equal masses placed at the angular points ;
the Cartesian

co-ordinates of that point will be

m '
7/4

'

and its vector p =xa+ y^.
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Now p,
=
X^a + 2/,A Pa

= ^»« + 2/2A «^^C.

' ' m m m

=
P-

Cor. 1. (p,
-

p) + (p,
-

p) + (P3
-

p) + &c. = 0,

i. e. the sum of the vectors of all the points, drawn from the mean

point,
= 0.

The extension of the same theorem to three dimensions is

obvious.

Cor. 2. If we have another system of n points whose vectors

• are o-j, o-^,
kc. then the vector to the mean point is

n

If now T be the mean point of the whole system, we have

^^ Pi
+ Po •*-••• +p-,+o-,+ ...

m + n '

or [m + n)T
— mp — nu = 0,

hence (13) t, p, o- terminate in a right line; or the general mean

point is situated on the right line which connects the two partial

mean points.

Additional Examples to Chap. II.

1. If P, (?, R, S be points taken in the sides AB, BG, CD, ^
DA of a parallelogram, so that AP : AB :: BQ : BG, &c,, FQES
will form a parallelogram.

2. If the points be taken so that AP = CR, BQ = DS, the -^

same is true.

3. The mean point of FQES is in both cases the same as that

of ABGD.
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4. If P'Q'R'S' be another parallelogram described as in Ex. 1,

the intersections of FQ, P'Q', &c. shall be in the angular points of

a parallelogram EFGH constructed from PQRS as F'Q'E'S' is

constructed from ABGD.

5. The quadrilateral formed by bisecting the sides of a

quadrilateral and joining the successive points of bisection is a

parallelogram, with the same mean point.

6. If the same be true of any other equable division such as

trisection, the original quadrilateral is a parallelogram.

7. If any line pass through the mean point of a number of

points, the sum of the perpendiculars on this line from the

different points, measured in the same direction, is zero.

8. From a point E in the common base ^^ of the two

triangles ABC, ABD, straight lines are drawn pai'allel to AG, AD,
meeting BC, BD dJo F, G

;
shew that FG is parallel to CD.

9. From any point in the base of a triangle, straight lines are

drawn parallel to the sides : shew that the intersections of the

diagonals of every parallelogram so formed lie in a straight line.

10. If the sides of a triangle be produced, the bisectors of the /

external angles meet the opposite sides in three pomts which lie^

in a straight line.

11. If straight lines bisect the interior and exterior angles

at A of the triangle ABC in D and ^respectively; prove that BD,

BC, BE ioYva. an harmonical progression.

12. The diagonals of a parallelepiped bisect one another.

13. The mean point of a tetrahedron is the mean point

of the tetrahedron formed by joining the mean points of the

triangular faces
;
and also those of the edges.

14. If the figure of Ex. 11, Art. 7, be that of a gauche quadri-

lateral (a term employed by CLasles to signify that the triangles



EX. 15.] VECTOR ADDITION AND SUBTRACTION. 31

AOD, BOD are not in the same plane), the lines QP, DO, JRS will

meet in a point, provided

AP OS ,AQ DR

15. If through any point within the triangle ABC, three

straight lines MN, PQ, RS be drawn respectively parallel to the

sides AB, AC, BC] then wUl

.
MN- PQ RS ^

^ AB AG BC

IG. ABCD is a parallelogram; E, the point of bisection of

AB
; prove that AC, DE being joined will trisect each other.

17. ABCD is a parallelogram; PQ any line parallel to CD;
PD, QC meet in S, I^A, QB in R

; prove that AD is parallel to

RS.



CHAPTER III.

VECTOR MULTIPLICATION AND DIVISION.

15, We trust we have made tlie reader understand by what we

stated in our Introductory Chapter, that, whilst we retain for

'multiplication' all its old properties, so far as it relates to ordi-

nary algebraical quantities, we are at liberty to attach to it any

signification we j)lease when we speak of the multiplication of a

vector by or into another vector. Of course the interpretation of

our results will depend on the definition, and may in some j)oints

diSer from the interpretation of the results of multiplication of

numerical qviantities.

It is necessary to start with one limitation. Whereas in

Algebra we are accustomed to use at random the phrases
'

multi23ly

by' and 'multiply into' as tantamount to the same thing, it is

now impossible to do so. We must select one to the exclusion of

the other. The phrase selected is 'multiply into'; thus we shall

understand that the first written symbol in a sequence is the

operator on that which follows : in other words that a/3 shall read
* a into )8',

and denote a operating on /?.

16. As in the Cartesian Geometry, so ^
here we indicate the positioil of a point in

space by its relation to three axes, mutually

at right angles, which we designate the axes

of X, y, and z respectively. For graphic

representation the axes of x .and y f-i'S

drawn in the plane of the paper whilst that

of z being perpendicular to that plane is

drawn in perspective only. As in ordinary

I
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geometry we assume that when vectors measured forwards ai'e

represented by positive symbols, vectors measured backwards will

be represented by the corresponding negative symbols. In the

figure before us, the positive directions are forwards, upwards
and outwards; the corresponding negative directions, haclcv}ai'ds,

downwards and inwards.

With respect to vector rotation we assume that, looked at in

perspective in the figure before us, it is negative when in the

(^Urection of the motion of the hands of a watch, positive when in

the contrary direction. In other words, we assume, as is done in

modern works on Dynamics, that rotation is positive when it

takes place from y to s, s to x, x to y: negative when it takes

l>lace in tlie contrary directions (see Tait, Art. G5).

Unit vectors at right angles to each other.

17. Definitioit. If i, j, k be unit vectors along Ox, Oy, Oz

respectively, the result of the multiplication of i into J or ij is

defined to be the turning of
_;' through a right angle in the plane

perpendicular to i and in the positive direction
;
in other words,

the operation of i on j turns it round so as to make it coincide

with k
;
and therefore briefly ij

= k.

To be consistent it is requisite to admit that if i instead of

operating on j had operated on any other unit vector perpendicular

to i in the plane of
y:::,

it would have turned it through a right angle

in the same direction, so that ik can be nothing else than —j.

Extending to other unit vectors the definition which we have

illustrated by referring to
i,

it is evident that j operating on k

must bring it round to i, ov jk — i.

Again, always remembering that the positive directions of

rotation are y to z, z to x, x to y, we must haye ki =j.

"^ 18. As we have stated, we retain in connection with this

definition the old laws of numerical multiplication, whenever

numerical quantities ai-e mixed up with vector operations; thus

2i . 3/= 67]/. Further, there can be no reason whatever, but the

contrary, why the laws of addition and subtraction should undergo

T. Q. 3
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any modification when the operations are subject to this new

definition
;
we must clearly have

iU+k) = V + ik.

Finally, as we are to regard the operations of this new de-

finition as operations of multiplication
—magnitude and motion

of rotation being united in one vector symbol as multiplier,

just as magnitude and motion of translation were united in

one vector symbol in the last chapter
—we are bound to retain

all the laws of algebraic multiplication so far as tliey do not

give results inconsistent with each other. In no other way can

the conclusions be made to compare with those deduced from

the corresjionding operation's in the previous science. Thus we

retain what Sir "VViiliam Hamilton terms the associative laio of

'multiplication : the law which assumes that it is indifferent in

what way operations are grouped, provided the order be not

changed ;
the law which makes it indifferent whether we consider

abc to be a x be or ab x c. This law is assumed to be applicable to

multiplication in its new aspect (for example that ijk
=

ij . k), and

bding assumed it limits the science to certain boundaries, and,

along with other assumed laws, furnishes the key to the interpreta-

tion of results.

The law is by no means a necessary law. Some new forms of

the science may possibly modify it hereafter. In the meantime

the assumption of the law fixes the limits of the science.

The commutative law of multiplication under which order may
be deranged, which is assumed as the groundwork of common

algebra (we say assumed advisedly) is now no longer tenable. And
this being the case it is found that the science of Quaternions

breaks down one of the barriers imposed by this law and expands
itself into a new field.

ij is not equal to ji, it is clearly impossible it should be.

A simple ii3S2)ection of the figure, and a moment's consideration

of the definition, will make this plain. The definition imposes on i

as an operator onj the duty of turning^' through a i-ight angle as

if by a left-handed turn with a cork-screw handle, thus throwing

j up from the plane a-y; when, on the other hand, ^'
is the operator
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and i the vector operated on, a similar left-handed turn will brinw

i down from the plane of xy. In fact ij
= k, ji = — k, and so

V 19. We go on to obtain one or two results of the application
of the associative law.

1. Since ij
=

k, we have i . ij
= ik = —j.

Now by the law in question,

or i^ = -l.

Our first result is that the square of the unit vector along Ox
is - 1

;
and as Ox may have any direction whatever, we have, gene-

rally, the square of a unit vector =-1. In other words the

repetition of the operation of turning through a right angle reverses

a vector,

2. Again, ijk
= i .jk-i .i = i^ = — \.

Similarly it may be proved that

jki = kij
= -l,

or no change is produced in the product so long as direct cyclical

order is maintained.

3. But ikj—i.kj = i.—i = — i^ = + \-^

••• yk^-ikj,

or a derangement of cyclical order changes the sign of the product.

This last conclusion is also manifest from Art. 18.

Vectors generally not at right angles to each other.

20. We have already (Ai-t. 8) laid down the principle of

separation of the vector into the product of tensor and unit

vector; and we apply this to multiplication by the considerations

given in Art. 18, from which it follows at once that if a be a

vector along Ox containing a units, /3 a vector along Oy con-

taining h units,

a = ai, jB
=

hj, and aft
-

ahij.

S—2
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2. If a, (3 are not unit vectors, but contain Ta and T^ units

respectively, we have at once, by the i)rinciple laid down in

Art. 20,

afi
= TaT(3 (- cos ^ + e sin 0).

3. It thus appears that the product of two vectors a, /? not

at right angles to each other consists of two distinct parts, a

numerical quantity and a vector perpendicular to the plane of

a, p. The foi-mer of these Sir William Hamilton terms the scalar

part, the latter the vector part. We may now write

a^ = Sa^ + Vap,

where S is read scalar, V vector : and we find

Va/3=TaTfi€8ine.

4. The coefficient of e in Fa/3 is the area of the parallelogram

whose sides are equal and parallel to the lines of which a, ^ are

the vectors.

22. To obtain j3a we have, a and 13 being unit vectors,

a — ft cos 6 +y sin 6
;

.: (Sa^ftipcosO+yshiO)

=
ft' cos e + (3y sin 6

= - cos ^ - € sin ^ (Art. 1 9. 1 and 18) ;

therefore generally

(3a = TaTft (- cos ^ - € sin 6).

It is scarcely necessary to remark that whilst y operating on

(3 turns it inwards from OB to DO produced, ft operating on y
turns it outwards from OC to OD, causing it to become - e.

We have therefore

1. Saft^Sfta.

2. Vaft = - Vfta.

3. a/3 + /3a = 2Saft.

4. aft-fta = 2Vaft. .
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5. (a + )8)'=(a + /3)(a + y8)

= a- + a^ + ;8a + (3'

= a' + 2Sa(3 + (3'.

6. (a-py=a'-2Sa(3+(3\

7. If a, (3 are at riglit angles to each other, SaJ3 = 0, and

conversely.

8. Vafi is a vector in the direction perpendicular to the

plane which passes through a, (3.

9. a^/3"
—

a{3 . fta because fi' is a scalar
;

.-. a'^'^
=

{Sal3 + Va{3) {Sa(3
-

Va(3)

= {Sal3r-(Va(3y-.

Note, a'(3^ must not be confounded with (afif.

23, Before proceeding further it is desirable we should work

out a few simple Examples.

Ex. 1. To exj^ress the cosine of an angle of a triangle in terms

oftlie sides.

V Let ABC be a triangle ;
and retaining the usual notation of

Trigonometry, let

Ci?=a, CA=P;
then (vector ABf =

(a
-

(3y

= a'-2Sa(3 + ft' (22. 6),

or, changing all the signs to pass from vectors to lines (20) and

applying 21. 3,

c^ = a' — 2ab cos C+b".

sj Ex. 2. To express the relations between the sides and ojyposite

angles of a triangle.

Let (75 = a, CA = p, BA=y.
Then CB + BA = CA gives

a + y^ (3,

. •. a' = a{j3
—

y) =aj3
—

ay.

Take the vectors of each side.
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Now Va' = 0, for a" = - a" has no vector part,

. •. Fa/3 = Vay ;

i. a (21. 3) abe sin C = ace sin B,

or b sin C = c sin J]
;

i.e. 5 : c :: sin^S : sinC.

V Ex. 3. The sum of the squares of the diagonals of a imral-

lelogram is equal to the sum of the squares of the sides.

Retaining the notation and figure of Ex. 1, Art. 7,

CB^a + /3,

AD = a-[i;

.: C-B' + DA' ^ 2a' +2
ft',

aiul, changing all the signs, we get (20) for the corresponding
lines,

CB"- + I)A'=2CA''+2AB'

= CA'+AB' + BD' + DC\

Ex. 4. Parallelograms upon the same base and beticeen the

same jyarallels are equal.

It is necessary to remind the reader of what we have already

stated, that examples such as this are given for illustration only.
We assume that the area of the parallelogram is the product of

two adjacent sides and the sine of the contained angle.

Adopting the figure of Euclid i. 35 and Avriting TVpa as the

tensor multiplier of VjSa so as to drop the vector e ou both sides;

we have, calling BA, a; BC, ^ ;

BE=BA+AE
= a + 5c/3 ;

. •. F. y8 (a ^ x^) = V{BC. BE),
i.e. VI3a=V{BC.BE),

remembering that xfi' has no vector part.

Hence T . V/3a = T {BG . BE),

i. e. BC . BA sin ABC = BC.BE sin EBC {21. 3),

which pi'oves the proposition.
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i Ex. 5. On the sides AB, AG of a triangle are co^nstructed any two

])araUelograms ABDE, ACFG : the sides DE, FG are j^roduced to

meet in H. Prove that the suvi of the areas of the jJaraUelor/rams

ABDE, ACFG is equal to the area of the parallelogra'ni ivhose

adjacent sides are respectively equal and parallel to BC and AH.

Let BA =
a, AE = p, AC =

y, GA=8,
then AH —

fS + xa, and AH= — h-yy;

.'. raAII=Val3 and VyAII=-VyS
= V8y (22. 2),

hence V (a + y) All= Vafi + VSy,

i. e. {21. 4), the parallelogram whose sides are parallel and equal to

BC, All, equals the two parallelogi'ams whose sides are parallel

and equal to BA^ AE ; GA, -4C respectively.

[The reader is requested to notice that the 07-der GA, AC is the

same as the oi'der BA, AE, and BA, AH : so that the vector c

is common to
all.]

Ex. 6. If he any j^oint whatever either in the jilane of the

triangle ABC or out of that plane, the squares of the sides of the

triangle fall short of three times the squares of the distances of the

(ingidar 2)oints from 0, by the square of three times the distance of
the mean j^ointfrom 0.

Let OA =
a, OB^/3, OC =

y,

then (Art. 1 4), 0Q =ha +
f3 + y),O

or a' + ^'+y' + 2S{a(3 + (3y + ya)^90G'.
'

Now AB=p-a, BC^y-/3, CA=a-y,
. •. AB' + BC + CA' = 2 [a' + /3-'

+ y-)
- 2S (a^ + /3y + ya)

= 3{a' + l3'+y')-90G\
and the lines

AB' + BC +CA'=3 {OA' + OB' + OC) - (WGy.

Ex. 7. The sum of the squares of the distances of any point

from the angidar j^oints of the triangle exceeds the sum of the
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squares of its distances from the middle joints of the sides hy the

sum of the squares of half the sides.

Retaining the notation of the last example, and the figure of

Ex. 4, Art. 7.

OD =
\{^^y), OE=\{y+a), OF=\{a^(i);
Jj ^ ^

.'. 4 {OD' +0E'+ OF') = 2{a' + (3'+ y-) + 2S (a/?
+ /3y + ya)

= 4 (a^ + (5' + y')
-

{AB"- + BC"- + CA') ;

.-. as lines QD' ^OE' + 0F' + ^^^^^^^^^^^^^=0A-' + 0B' + 0C\
4

Ex. 8. The squares of the sides of any quadrilateral exceed the

squares of the diagonals hy four times the square of the line which

joins the middle points of the diagonals.

Retaining the figure and notafcion of Ex. 8, Art. 7, we have

squares of sides as vectors

= 2(a^+/3^ + /)-2^(a/3 + /3y),

and squares of diagonals

= o? + (i'+y'-2Say;

therefore the former sum exceeds the latter by

a^ + ^2 + y^
_

2,Sa/3
-

2.S'^y + 2>S'ay

= 4 (^(2
- hy ^ -

= iPQ\

Tlierefore as lines the same is true.

.Note. The points A, B, C, D need not be in one plane.
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Ex, 9. Four times the squares of the distances of any jyoiut

whateverfrom the angiUar points of a quadrilateral are equal to the

sum of the squares of the sides, the squares of the diagonals and the

square of four times the distance of the point from the mean point

of thefigure.

With the notation of Art. 14, and the figure of Ex. 7, Art. 7>

we have

squares of the sides + squares of the diagonals

= (^-ar+(y-/3f + (S-y)^ + (a-Sr+(y-ar + (8-/3)

- 3 (a' + yS' + y- + W)
- 2S {a/3 + ay 4- aS + /3y + /58 + yS).

Now (Art. 14) {a + j3 + y + Sy={WXy;
.: {iOXy + squares of sides + squares of diagonals

= 4 {OA' + OB' + 06'- + OD^).

Ex. 10. Tlie lines which join the mean points of three equila-

teral triangles described outwards on the three sides of any triangle

form an equilateral triangle whose mean 2')oint is the same as that of

the given triangle.

Let F, Q, R be the mean points of tlie equilateral triangles on

BC, CA, AB; FD =
a, DC - P, CE ^y, EQ^h; and let the sides

of the triangle ABC be 2a, 26, 2c.

rCf={a^P + y + hY

- a= + ^' + y- + S'-' + 2,Sa/3 + 2Say + 2Sah

+ 2S[3y + 2^'/38 + 2^yS.
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Clianging all the signs and observing that

2
Safi

=
0, AS'ay

=
-p;

ah sin C, &c.

we have (writing the results in the same order),

line FQ' = ~ + «" + 6= + ^ +

2.2 2 .

+ —Tx a& sin C + ^ab cos (7 — 2a& co.s C + , ah sin C +

4 4 .=
^ (a^ + &^ — a6 cos C) + —t;^ a5 sin C

2 2
=

;^ (a^ + &^ + c^) + -y;r
area of A BC,

which being symmetrical in a, h, c proves that PQH is equilateral.

Again, G being the mean point of AUG,

PG = FB + DG==a + ^ + ^,o o

a^ a" 4h^ 4: 4
and line FG^ =

o"
+ "o"^ "TT

"^
1.

—
T-i

"^ ^^^^ ^ ~ q "^ ^^^ ^

=
I (a^ + 6-' + r) + —^ area J^C ;

.-. FG = QG = RG;
and 6^ is the mean point of the equilateral triangle FQR.

Ex. 11. Ill any quadrilateral j)vism, the sum

of the squares of the edges exceeds the sum of the ^

squares of the diagonals hy eight times the square

of the straight line which joins the points of inter-

section of tlie two pairs of diagonals. I Jg
Let OA =

a, 0B =
f3, OC =

y, OD^h;
sum of squares of edges — C

2{a^ + ^^ + (y-ar+(y-/3r +
2S-"}

= 2 {2a^ + 2;S' + -Iy + 2S-' - -ISay
-

-ISPy},
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Slim of squares of diagonals

=
(8 + yY + (8

- yY +{S + a-l3Y+{S + P-aY
= 2{a' + (3' + y- + 2S'-2Sa^].

Also
l^OG

=
l{S

+ y)

= vector to the point of bisection of

CD, and therefore to the point of intersection of OG, CD,
and vector from to the point of bisection of AF, as also to that

of BE, and therefore to the intersection of A F, BE

=
J(8 + a+^),

hence vector which joins the points of intersection of diagonals

=
^{a + l3-y),

eight times the square of this vector

= 2 (a^ + p' + Y + 2Sa(3
-
2Say

-
2S/3y),

which, added to the sum of the squares of the diagonals, makes up

the sum of the squares of the edges.

^ 24. Definition. We define the quotient or fraction —, where
a

a and j3 are unit vectors, to be such that when it operates 07i a it

produces yS or —
. a =

(3.
This form of the definition enables us to

strike out a by a dash made in the direction of ordinary writing,

thus —
. a= B. — is therefore that multiplier which, operatinga a

on a, or on (i cos 6 + y sin 6 (21), jjroduces /?.

Now cos ^ + e sin 6 operating on /? cos ^ + y sin d produces

/3 cos^ ^ + (y + efS)
sin 6 cos 6 + ^y sin^ 0.

But a glance at the figure (Art. 21) will shew that

and cy
-

)8 ;
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.'. cos ^ + c sin 6 operating on f3 cos + y sin produces /? ;

hence i* = cos ^ + 6 sin 6.
a

It may be worth while to exhibit another demonstration of

this proposition : thus
'

.al3
=

13. j3 (by the associative law) ==-1.(19.1).

i.e. (21.1) ^.(-cos6' + €sin^) = -l.

Now (cos + e sin 0) (
- cos ^ + e sin 0)

= - cos^ 6 — sin^ d

= -1;

= COS 9 + € sin 6.

I
Cor. ^ = -/3a(by 22). / il

- ^/

V 25. 1. Defixition. Still retaining a, (3 as unit vectors, since

—
operating on a causes it to become

j3,
it may be defined as a

VERSOR acting as if its axis were along OD (Fig. Art. 21). By.

comparing the result of that article with the definitions of Art.

17, it is clear that — or cos 9 + csinli^ is an operator of the same

character as - k or e (as we have now called the corresponding
unit vector) ;

with this difference only; that whereas — it or e as an

oj)erator would turn a through a right angle, cos ^ + c sin 9 turns it,

in the same direction, only tlirough the angle 9 : cos 9 + i. ?in 9 is

then the versor through the angle 9.

2. If a, jB are not unit vQctqrs, the considerations ah'sady

advanced render it evident that

- =
77,- (cos 9 + € Sin 9).a la '

TR . .Now —
f- is itself of the nature of a tensor, for it is a numerical

la.

quantity, hence — is the product of a tensor and a versor.
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26. ^y comparing the last Article with Art. 22 it appears

that generally the product or quotient of two vectors may be

expressed as the product of a tensor and a versor. This product

Sir W. Hamilton names a Quaterniox.

Cor. It is evident that a quaternion is also the sum of a

scalar and a vector.

^ 27. (1)
If ct) A y ^^^ "i"'it vectors in the same plane, e a

unit vector perpendicular to that plane ;
we

have seen that -
operating on a turns it

a

round aboiit e as an axis to bring it into the

position /3.
If now ^ be a second operator

about the same axis in the same direction

acting on /?,
it will bring it into the position y.

But it is evident

that -
acting on a would at once have brought it into the position

1,^ = 1
/3 a a

form (Art. 24) that

(cos ^ + e sin
</>) (cos $ + € sin 6)

= cos
(i9
+ <^) + e sin (9 + (f>).

From this it is evident thnt the results of Demoivre's Theoi'em

apply to the form cos 6 + e sin $.

Further, it is evident that since cos^ + csin^ operating with e

as its axis, turns a vector through the angle 6, whilst e itself acting

in the same direction turns it through a right angle, cos + e sin 6

is ^;a?'< oi the operation designated by e, viz. that part which bears

to the whole the ])roi)ortion that 6 bears to a right angle.

(2) Remembering then that the operations are of the nature

of multiplication, it becomes evident that cos ^ + e sin 6* as an
d"

28

operator may be abbreviated by c- or e".

And since

(cos 6 + e sin 6) (cos <^ + e sin
(ft)

= cos (^ + <^) + e bin [0 + cj>),

a

y.
This is equivaleut to the fact that p- ^ =z'> oi" ii^ another
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we shall have

n n n )

C . € = £

or the law of indices is applicable to this operator.

(3) Now we have already seen (19. 1) that e' = — 1
;

.-. £*= + !.

Conversely, if e." = ± c, n must be an odd number
;

if e" = -
1,

n must be an odd multiple of 2
;
and if e" = 4- 1, w must be an even

multiple of 2.

(4) When a, /8 are not units, the introduction of the^ corre-

sponding tensor can be at once efl'ected.

We conclude that a quaternion may be expressed as the power
of a vector, to which the algebraic definition of an index is

apjJicable.

28. Reciprocals of quaternions
—unit vectors.

1 . Since a . a — a" = — 1
,

and -.a=l (Def. Art. 24)a

1
. *.

— = — a, or a = — a
ja

or the reciprocal of a unit vector is a unit vector in the opposite

direction.

2. Again, a.--a(-a) = l=-.a:
a a

or a vector is commutative with its reciprocal.

3 . li q be a versor ( say cos ^ + e sin 9, or -
j

,

-
. q=\ (Def. extended).

XT P
IS ow — =

(7 j

a

.: (3
-

qa, by operating on a.
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Also

and

a = -
j3, by operating on

13,

q . -=1 =~ .q,
9 9

1
or g and — are commutative.

9

This is perhaps better demonstrated by observing that

a-]3 /3
'

or that if

then must

B— = cos + e sin 9,
a

-r = COS 6 — e sin 6 ;

(cos 6 + e sin 6) (cos 6 - € sin 6)

factors which are from their very nature commutative.

As a verification, we have

^ a

a /?
—

(cos 6)'
— e" (sin Oy

= 1

because e" = - 1 (28. 1).

When the versors are not units the tensors can be introduced

as mere multipliers without affecting the versor conclusions.

\/ 29. We present one or two examples of quaternion divi.sion.

Ex. 1. To express sin (6 + <^) and cos (0 + <^) in terms of sines

and cosines of 6 and
(f).

a, (3, y being unit vectors in the same plane (Fig. Art. 27), we

have

- = cos6 + € sin 6,
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y
^
= COS

(f)
+ e sin

<f),

^ =
cos{6+(f>) + e sin (9+ cj>).

But y=i.^-
a ^ a'

. : cos (0 + (f))
+ € sin (9 + (f>)

=
(cos 6 + e sin 0) (cos ^ + e sin ^) ;

whence multiplying out and equating, we have

sin (0 + <f))
= sin $ cos

<ji
+ cos ^ sin

(f>,

cos (0 + <f>)
= cos ^ cos <^

- sin ^ sin ^.

Cor. If the action of the versors be in opposite dii'cctions,

yS lying beyond y, we have (Art. 28)

- = cos (^
-
^)

- € sin (6
-

<f>).

But - = cos ^ + e sin
<^,

a

^
= COS 6 - € sin 6

;

a a /S .

•• -= o-
-

gi'^'es
y p y

cos (6-(f))
— e sin (6

—
<f>)
=

(cos ^ — e sin ^) (cos <^
+ c sin ^),

whence sin {6
—
4>)= sin ^ cos <^

— cos 6 sin ^ ,

cos (9 — <f)
= cos ^ cos ^ + sin 9 sin ^.

Ex. 2. To y?/ifZ ^/ie cosine of the angle of a spherical triangle

in terms of the sides.

Let a, (3, y be unit vectors OA, OB, OC not in the same

plane, then

• ^ 13 a. A
y ~a

•

y
'

i. e. taking the scalar of each side,

cos a = cos c cos b + S . ( V - .V-) .

\ a y/

T. Q. 4
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Now SV — F - is sin c sin 5 x cosine of the an£;le betweenay °

perpendiculars to the planes AB, AC, and is therefore

sin b sin c cos A
;

. '. cos « = cos c cos & 4- sin c sin 6 cos A .

The reader will observe that in accordance with the results of

Art. 21, the sign of the term involving cos^ is +, seeing that it is

in fact — cosine (supplement of ^).

Ex. 3. The angles of a triangle are together equal to two right

angles.

What we shall prove in fact is '^hat the exterior angles formed

by producing the sides in the same direction are eqiial to four

right angles.

Let unit vectors along BC, CA, AB be a, /3, y ;
and let the

exterior angles formed l)y producing BC, CA, AB be 6, <p, if/;

then

e-a=/3(2r. 1),

€"•)/= a
;

.•. c'^ . c'^ a = €'^ ^ =
y,

2<f> 24> 29
2i^

and c'f.e'^.£'^a=c'^y = a,

•ixji 2<^ 29

so that €'^.£'^.€'^ =
1,

2

or
,.^^^*^^) =1(27.2).

Hence (27. 3),
~

{6 + (ji
+

i{/)
is an even multiple of 2. The

TT

first value is 4
;

,'. 6 +
(f)
+

{J/

=
2Tr,

or the exterior angles of a triangle are equal to four right angles.
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It will be seen that the demonstration here given i.s of the

nature of that given by Prof, Thomson in the Notes to his Euclid.

[More directly
"

-

From these

or

2A
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which beiug symmetrical iu b and c shews that CF, AL intersect

in the same point in which BK, AL intersect.

Cor. Since

we have

sjlso

BO _ c'

BK~ a' + bc'

CO _
b'

,

CF
~
a'+bc

'

JV be

BD a' + be'

AO BO CO c' + h' + bc
+ = 1.

then

BD ' BK ' CF a' + be

Ex. 5. If ABCD be a quadrilateral inscribed in a circle ;

AB =
a, BC =

(3,
CD =

y, DA =8;

TaT(iTyW =
TjJ^

^•

Let unit vectors along AB, BC, CD, DA be a, (3', y', 8'; and

let the exterior angles at B and D he 6 and ^ respectively ;
then

a'13'y' ^{-cosO + c sin 6) y' (21. 1)

=
(cos (ji

+ € sin
<{i) y

= 8' (25. 1);

therefore, introducing the tensors,

TaT^Ty

Conjugate Quaternions.

V 30. If we designate by q the expression
- cos ^ + e sin d, Ave

have seen that it may be regarded as a versor through an angle 6

in a certain direction. Now if we write - 6 in place of 6 in this

expression it assumes the form - cos ^ - c sin 0, which must on

the same hypotheses be regarded a versor through the angle 6 in

the contrary direction.

When the quaternion is completed by the introduction of a

tensor Tq, if we retain the same tensor to both forms of the
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versor, we have Sii- W. Hamilton's conjugate quaternion defined

thus : The conjugate of a quaternion q, written Kq, has the same

tensor, plane and angle as q has, only the angle is taken in the

reverse way.

The analogy between q and Kq is precisely the same as that

which exists between the two forms

R (cos (^ + y - 1 sin ^) and R (cos ^ - ^ - 1 sin ^) ;

and as the product of the latter form is R', so the multiplication

of the former produces (Tq)'.

If we put q = Sq+ Vq,

we shall have ICq = Sq— Vq,

and qKq = {^qY + {TYq)\

for {Vqf = -{TVqf, Art. 20.

It is almost self-evident that, since the change of order of

multiplication of two vectors produces no other change than that

of the sign of the vector part of the product (22),

K (qr)
= KrKq,

q and r occurring in a changed ordei*.

The following is a demonstration.

Let q=Tq[- cos ^ + a sin 6),

r = Tr (- cos ^ + /3 sin <ji),

a and /3 being unit vectors
;
then

qr = TqTi' (cos 6 cos <^
- a sin 6 cos <^

-
/3 cos 6 sin

<fi

+ a/3 sin 9 sin
<j>),

KrKq = TqTr (- cos <^
-

/3 sin ^) (- cos ^ - a sin 6)

= TqTr (cos $ cos ^ + a sin 6 cos
<i>
+ ^ cos 6 sin ^

+ /3a sin Q sin
</>).

Kow observing that /3a has the same scalar part with aj8, but

the vector part with a contrary sign, we see that the two ex-
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pressions for qr and for KrKq likewise have the same scalar

part, but that their vector parts have contrary signs.

Hence K{qr) = KrKq.

(See Tait, § 79 et sq.)

31. We propose, in this Article, to give and interpret one or

two formula?, relating to three or more vectors, which are indis-

pensable to our progress, reserving to a separate Chapter the

demonstration and application of other formulise, the value of

which the reader can hardly as yet be expected to understand.

1. To express >S' . a;8y geometrically.

First suppose a, /?, y to be unit vectors OA, OB, OC.

Let A0B =
9, and the angle which 00 makes with the plane

AOB=^
(ji ;

then since

a/3
= - cos ^ + € sin 6 (Art. 21),

where e is perpendicular to the plane A OB,

S . afiy
= S{-cosd + e sin 6) y

= S^y sin 6.

Now Sey = — COS . angle between e and y

= — sin . angle between plane AOB
and 00

= - sin ^ ;

.•. /S. a/3y=
- sin

cj>
sin 0.

^''

Next if a, /B, y are not units, but have re-

spectively the lengths Ta, T/S, Ty, or a, h, c
;

we shall have
S . afSy

= - abc sin 6 sin ^.

But ah mi 6 is the area of the parallelogram of which the

adjacent sides are a, h
;
and c sin ^ is the perpendicular from C on

the plane of the parallelogram ;

. •.
— S . ajSy

= ah sin 6 . c sin ^
= volume of parallelepiped of which three con-

terminous edges are OA, OB, 00.
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V 2, From the nature of the case, no change of order amongst
the vectors a, y8, y can make any change in the value (apart from

the sign) of the scalar of the product of the three vectors
; for it

will in every case produce the volume of the same parallelepiped.

.'. S . a/5y
= ± <S' . ya^ = ^ >S . ay(3,

&C.

V Cor, 1. The volume of the triangular pyramid, of which OA,

OB, 00 are conterminous edges is — ^ aS' . a/3y.

V' Cob. 2, If a, jS, y are in the same plane, <^
=

;

. *. *S' . a(3y
= 0.

Conversely, if S . afiy
=

0, none of the vectors a, (3, y being
themselves 0, we must have either ^ = or c^

=
;
hence in either

case the three vectors are co-plaiiar.

V 3. Since Vaf3 = y' (21. 3), ^vector perpendicular to the plane
OAB (fig. of formula 2); Fy8y

= a'^ a* vector perpendicular to

the ])laue OBC ;
and since

y',
a are-both perpendicular to OB,

the line along which is the vector /5 ;
OB is perpendicular to the

plane which passes through y', a', and therefore (21. 3) is in the

direction of Fy'a' ; hence

F(ra;8r^y)=Fy'a'=.my8,

or the vector of the product of two resultant vectors, one of the

constituents of each of Avhich is the same vector, is a multiple of

that vector.

v/
4. If OA=a, OB =

p, on =
8, OE= e; and if the planes

OAB, ODE intersect in OP
;

it follows, as in (3), that, T^a^ and

rSc being both perpendicular to OP,

V{Val3VSe) is along OP and is therefore = nOP.

o. Connection between the representation of the position of a

point hij a vector and its representation by Cartesian co-ordinates.

If X, y, z be the perpendicular distances of a point P in space

from the planes of yz, zx, xy respectively (fig.
of Art. 16); i, j, k
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imit vectors in the directions of x, y, z
; tlien xi is tlie vector of

which the line is x (Art. 3) ; consequently OM along Ox, MN
parallel to Oij and NP parallel to Oz, being x, y, z as co-ordinates,

they are cci, yj, zk as vectors.

Now vector OP= 0M-\-MN+ NP,

and is therefore p = xi + yj + zh.

The same method of representation is evidently applicable
when the planes of reference are not mutually at right angles.
If X, y, z be the co-ordinates of P referred to oblique co-ordinates;

a, /3, y unit vectors parallel respectively to x, y, z
;
then

vector OP = xa + y/3 + zy. ,^,

Cor. When x, y, z are at right angles to one another

p = xi + yj + zk

gives Sip = -
x, Sjp = — y, Skp = —

~
;

. •. (SlpY + {SJpY + {Skp)-
= x- + 2f + z-

= 0P\

I

Ex. To find the volume of the pyramid of which the vertex is

a given point ami the base the triangle formed by joining three

given points in the rectangidar co-ordinate axes.

Let .4, ^, C be the three given points;

\ineOA=a, OB =
b, OC = c;

X, y, z the co-ordinates of the given point P,

then vector OA =
ai, OB =

bj, OC = ck
;

and OP = xi + yj + zk
;

.-. PA = OA-OP= - {{x -a)i + yj + zk],

PB = -
{xi +(y- b)j + zk],

PC = -{xi + yj +{z-c) k].

/V
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Now the volume of tlie pyramid PABC is

-^S{PA.FB.PC) (31. 2. Cor. 1)

^--S.{{x-a)i + yj + zk] {xi + (y
-
h)j + zh] [xi + yh + {z-c) k].

Multiplying out and observing that only terms which involve

all of the three vectors i, j, k produce a scalar in the product,

we get

(+ or -) Yol. = - _
{(a;

-
a) (hz + €]/

—
he)

-
cxy — hxz\

= -o5cf- + ^ + --l
).

\a b c J

The sign of the result will of course depend on the position

oiP.

Additional Examples to Chap. III.

1. If in the figure of Euclid I. 47 DF, GH, KE be joined,

the sum of the squares of the joining lines is three times the sum

of the squares of the sides of the triangle.

The same is true whatever be the angle A.

2. Prove that

4.AD"- (Art. 7, Ex. 4)
= 2 {AB' + AC) - BC\

3. If P, Q, R, S be points in the sides AB, BC, CD, DA of

a rectangle, such that PQ = RS, prove that

AR' + CS' = AQ' + CP\

4. The sum of the squares of tlie three sides of a triangle is
*

equal to three times the sum of the squares of the lines drawn •

from the angles to the mean point of the triangle.
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5. In any quadrilateral, the product of the two diagonals and

the cosine of their contained angle is equal to the sum or difference

of the two corresponding products for the pairs of opposite sides.

6. If a, h, c be three conterminous edges of a rectangular

parallele2:)iped ; prove that four times the square of the area of

the triangle which joins their extremities is

= a^b^ + b"c- + c^a^.

7. If two pairs of opposite edges of a tetrahedron be respect-

ively at right angles, the third pair will be also at right angles.

8. Given that each edge of a tetrahedron is equal to the edge

opposite to it. Prove that the lines which join the points of

bisection of opposite edges are at right angles to those edges.

9. If from the vertex of a tetrahedron OABC the straight

line OD be drawn to the base making equal angles with the

faces OAB, OAC, 0J3G ; prove that the triangles OAB, OAC, OBC
are to one another as the triangles DAB, DAC, DBO.



CHAPTER IV.

THE STRAIGHT LINE AND PLANE.

32. Equations of a straight line.

1. Let y8 be a vector (unit or otherwise) parallel to or along
the straight line

; a the vector to a given . „
. . . _ -" ^ V

point A in the line, p that to any point what-

ever P in the line, starting from the same

origin ;
then -^P is a vector parallel to ^

^

=
a;/?, say,

and OP = OA + AP

gives p = a + x/3 (
1
)

as the equation of the line.

2. Another form in which the equation of a straight line

may be expressed is this : let OA =
a, OB =

y8 be the vectors to

two given points in the line
;
then

AB = I3 -a and AP^x(ft-a);
.-. p = a + x{l3-a) (2).

Of course the (3 of No. 2 is not that of No. 1. The first form

of the equatiou supposes the direction of the line and the position

of one point in it to be given, the second form supposes two points

in it to be given.

3. A third form may be exhibited in which the perpendicular
on the line from the origin is given.
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'

Let OD perpendicular to AP = ^; then

DP = p-8 and S8ip - S)
=

0,

because OD is perpendicular to AP (22. 7) ;

i.e. ^Sp = C (3),

wLere C is a constant.

{Kote. In addition to this "vve must have the equation of the

plane of the paper, in which p is tacitly supposed to lie. This

may be written as Sep = 0.)

33. Equation of a plane.

Let P be any point in the phine, OD perpendicular to the

plane ;
and let

0D^8, OP = p;
•

then p-8 = DP,
which is in a direction perpendicular to OD

;

.•.S8{p-S) = 0,

or S8p = 8',^ -t23.

or^'? = l.
o

Cor. L If S8p = C be the equation of a plane, 8 is a vector

in the direction perpendicular to the plane.

CoE, 2. If the plane pass through 0, p can have the value zero,

. '. S8p = is the equation.

Cor. 3. Since a vector can be drawn in the plane through D,

parallel to any given vector in or parallel to the plane ;
if /3 be

any vector in or parallel to the plane, S^[i
= 0.

34, We proceed to exhibit certain modifications of the

equations of a straight line and plane, and one or two results

immediately deducible from the forms of those equations.

1. To find the equation of a straight line which is perpen-

dicular to each of two given straight lines.

Let
y8, y be vectors from a given point A in the required line,

and parallel respectively to the given lines.
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If OA =a as before, then since (22. 8) V{3y is a vector along
the line whose equation is required ; we have

p
— a = x Vj3y,

ov p = a+ X V/3y,

as the equation of the line.

2. To find the length of the perpendicular from the origin on

a given line.

Equation (1) of Art. 32 is

p = a + x/B.

Know p = 0I) = 8;
<

we get S6^ = SSa,

or -OB'^SSa;
^,-^^'

U^ bcin^' the unit vector perpendicular to the line.

Cor. The same result is true of a plane.
**

3. To find the length of the perpendicular from a given point
on a given plane.

Let Sap = C be the equation of the plane, y the vector to the

given point.

Then if the vector perpendicular be xa (33. Cor. 1),

p = y + Xa

gives Say + xa" = C,

and the vector pei-pendicular is
^^

a;a-= + a~' (G
-
Say) ;

the square of which with a -
sign is the square of the perpendi-

cular.

4. To find the length of the common perpendicular to each

of two given straight lines.
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Let j3, /?j
be unit vectors along the lines; a, a^ vectors to

given points in the lines
;

p~a + x/3,

Pi
= «!+•'«A'

the vectors to the extremities of the common perpendicular S.

Then since 8 is perpendicular to both lines, it is perpendicular
to the plane which passes through two straight lines drawn pa-
rallel to them through a given point ;

.-. (21. 3)8 = 2/ F^A-

But 8^p-p^^a + x/3-a,-x,(3,,
^^.o^.

i-
.

lience S . 8/3^,
= S.{a-a,) /3/3, ; V'''

'

'

r i.e. S{i/VI3^,.(3(S,)
= S.(a-a^)/3/S„

, ,3j'
or y{V/3/3,y

=
S\{a-a;)(3(3^,

because
S'V/3ft^Sfil3,

=
;

whence 8 = y F^/3j is known.

V 5. To find the equation of a plane which passes through three

given points.

Let a, /?, y be the vectors of the points.

Then p
—

a, a —
ft, /3

—
y are in the same plane.

.-. (Art. 31. 2. Cor. 2) S. (p-a) (a-y8) (^-y) = 0,

or Sp{VaP+ VPy+ Vya)-S. a;8y
=

is the equation required. ,

^

)?(_»''•--''
-^'

Cor. Vaji + F/3y + Fya is a vector in the direction perpen-
dicular to the plane; therefore (No. 3) the perpendicular vector

from the origin
= S . afiy . {Vaf3 + Vf3y + Vya)-\

^ 6. To find the equation of a i)lane wliich shall pass through
a given point and be parallel to each of two given straight lines.
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Let y be tlie vector to the given point, p = a + x^, p = a^+ x^^^
the lines

;
then if lines >>e drawn in the required plane parallel to

each of the given straight lines—these lines as vectors will be

yS, /8j
: also p

—
y is a vector line in the plane ;

.-. S.(3(3^{p-y) = (31, 2. Cor. 2),

which is the equation required.

7. To find the equation of a plane which shall pass throuf^h

two given points and be perpendicular to a given plane.

Let a, /3 be the vectors to the given point.?, SSp ^ C the equa-
tion of the plane; then the three lines p

—
a, a —

/?, 8 are vectors

in the plane ;

.-. S.{p-a){a-/3)B = 0,

or S.p{a-(3)8 + S.afiB = 0.

8. To find the condition that four j^oints shall be in the same

plane.

1. Let OA, OB, 00, OD or a, jS, y, S be the vectors to the

four points ;
then 8 - a, S —j8, 8 — y are vectors in the same plane ;

.-. AS'.(8-a)(8-^)(S-y) = 0(31. 2. Cor. 2),

or S.SI3y + S.a8y + S.a/38 = S.afty (1).

2. Another form of the condition is to be obtained by as-

suming that

dS + cy + h^ + aa =
(2),

and substituting in equation (1) the value of 8 deduced from

this equation. The result is

- - ^ 1-0
d d d '

or a + b + c + d = (3),

Equation (1), or the concurrence of equations (2) and (3) is the

condition necessary and sufficient for coplanarity.

9. To find the line of intersection of two planes through the

origin.
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Let Sap - 0, S(3p
= be the planes.

Since every line in the one plane is perpendicular to a
;
and

every line in the other perpendicular to (3; the line requii-ed is

perpendicular to both a and
(3,

and is therefore parallel to Va^,

or p = xVa[3 is the equation.

10. The equation of the plane which passes through and

the line of intersection of the planes Sap = a, &'/3p
= b is

Sp(aj3-ba) = 0.

For 1° it is a plane through ;
2° if p be such that Sap = «,

then must S/Sp
= b.

11. To find the equation of the line of intersection of the two

planes.

Let p = ma +
9^y8 + x Vaj3

be the equation required.

Then Sap = ma? + nSa^ = a,

since Va^ is perpendicular to a, and similarly

SPp = mSali + n^' = b,

_ a(3r -bSafi _bSa(3-a(i'^ . .

q>••

"^'a^/i'-iSa^y- (Va/sy
^^''^- •'''• ^''

aSaB — ba^ aSaB — ha'

{Sa/sy-a'/s' (Va/sy
'

35. We ofier a few simple examples.

"^ Ex. 1. To find iJie locus of the middle j)oints of all straight

lines which are terminated by two given straight lines.

Let AP, BQ be the two given straight

lines, unit vectors parallel to which are /3, y;

AB the line which is perpendicular to both

AP, BQ.

Let be the middle point of AB; vector

OA -a; P the middle point of any line PQ,

vector OP =
p', then
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OQ = p + KQ = -a + yy.

But IiP + KQ = Q;

.-. 2p = x(3 + yy;

lience, since Sa{3 = 0, /Say
= 0,

Sap = is tlie equation required ; and the locus is a plane passing

through (33. Cor. 2), and perpendicular to OA (33. Cor. 1).

Note that, if j8 [] y, we have simply

2p = x'(3;

and, as there is now but one scalar indeterminate, the locus is a

straight line instead of a plane.

Ex. 2. Planes cut off, from tJie three rectangular co-ordlnafe

axes, pi/1'amids of equal volume, to find the locus of thefeet of per-

pendiculars on themfrom t,he origin.

Here the axes are given, so that i,j, k are known unit vectoi^s.

Let ai, hj, ck be the portions cut off from the axes by a plane,

the perpendicular on which from the origin is p.

Then p
— ai is perpendicular to p ;

.'. Sp (p
—

ai)
=

0,

or pr
=
aSip.

Similarly, p^
=

hSjp,

p^
= cSkp.

Hence
p'^
= abc Sip Sjp Skp

= C Sip Sjp Skp,

since abc is by the problem constant.

If X, y, z be the co-ordinates of p this equation gives at once

as the equation required.

T. Q. 5
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Ex. 3. To find the locus of the middle points of straight lines

tcmiinated by two given straight lines and all parallel to a given

plane.

Retaining the figure and notation of Ex. 1, let 8 be tlie vectoi'

perpendicular to the given plane : we have

Ip^x^ + yy,

0P=2a^xp-yy.
Now ShQP=Q (33. Cor. 3);

.-. ^8(2a + a-/3-2/y)
= 0;

_ 2,S'aS SBh
and 2p =xP^^y

+ x~^y

^ay + x{^ + by),

where a — ^^V^ >
^ = o <s

^^'^ constants ; (SyS for instance is tlie

>byo /oyo

negative of the cosine of the angle between one of the given lines

and the perpendicular to the given plane).

Now ^ + 6y is a known vector lying between /3 and y ;
call it

€, and 2p= ay + xe is the equation required; which is that of a

straight line, not generally passing through (32. 1).

Ex. 4. OA, OB are two fixed lines, which are cut hy lines

AB, A'B' so that the area AOB is constant; and also tJie product

QA, OA' constant. It is required to find the locus of the intersec-

tions of AB, A'B'.

Let the unit vectors along OA, OB be a, (3 respectively.

OA = ma, OA' = m'a,

0B =
nl3, 0B' = n'l3;

then the conditions of the problem are

7nn = m'n' — C,

mm' - a.
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Now if AB, A'B' intersect in P, and OP =
p, we have

p=OA + AP
~ ma + X (nfi

—
ma),

P=OA' + A'P

= 711 a + x' (w'y8
—
m'a) ;

'C
or p = ma + a; (

— ^ — ma j
,

p = m'a + x' (—,^ — m'a
j ;

m — xm =m —xm,

and m m

Hence
m

X- m +m
,2m

m^ + a'

l-x =
a

7)f + a
'

and p =
m

m +a (aa + C(3),

and the locus reqiTired is a straiglit line, the diagonal of the

parallelogram whose sides are aa, C{3.

Ex. 5, To find the locus of a point such that the ratio of its

distancesfrom a given point a^id a given straight line is constant—
all in one plane.

Let S be the given point, DQ the given

straight line, SP = ePQ the given relation.

Let vector SD =
a, SP =

p, DQ =
yy,

y being the unit vector along BQ,

PQ = xa;

then Tp = eT{PQ),

5—2
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gives p"
= e'PQ', wliere PQ is a vector,

= &" (xaY
•> 2 2= e'x a .

But p + xa = SQ = SD + DQ
= a + 2/y ;

. •. Sap + xa? = a, for *Say
=

;

and x'a =
(a^

—
Sap)' ;

hence a'p^
= e" {a

—
Sap)',

a surface of the second order, wliose intersection with the plane

S . ayp
= is the required locus.

Ex. 6. Tlie same problem when the points and line are not in

the same plane.

Retaining the same figure and notation, we see that PQ is no

longer a multiple of a ;
but

PQ =SQ-SP
^a + yy-p;

.'. p-
= e^a + yy-py,

and because PQ is perpendicular to BQ

Sy{a + 2/y-p)
= 0;

•• {yf> i.e.)-y^Syp,

and p"
= e^ (a

-
y^S'yp

-
pY,

a surface of the second order.

Cor. If e - 1, and the sui'face be cut by a plane perpendicular

to DQ whose equation is
AS'yp

=
c, the equation of the section is

a' + c'-2Sa'p = 0,

another plane, so that the section is a straight line.

Ex. 7. To find the locus of the middle j)oints of lines of given

length terminated by each of two given straight lines.
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Retaining tlie figure and notation of Ex. 1, and calling HP c,

we have

2p ^ xl3 + yy (l),

and 2RP = IiP-BQ=2a + xP-yy (2).

From equation (1) we have

Sap = (22. 7),

2Sl3p^-x + ySI3y,

because )8 is a unit vector,

2Syp = xSfiy
—

y.

The first of these three equations shews that p lies in. a plane

througli perpendicular to AB (33. Cor. 2).

The second and third equations give

2{Slip+SPySyp)x =

y =

{S^yy-l

2(Syp+Sl3ySI3p)

Now (2) gives, by squaring,
- ic' = 4a' + x'(i' + yY -

2xySI3y,

in which, if the values of x and y just obtained be substituted,

there results an equation of the second order in p.

Hence the locus required is a plane curve of the second order,

or a conic section, which by the very nature of the problem must

be finite in extent and therefore an ellipse.

Ex. 8. If a plane be drawn through the i^oints of bisection of

two opposite edges of a tetrahedron it will bisect the tetrahedron.
Ilk

Let D, E be the middle points of OB,
AC : DFEG the cutting plane : OA, OB,
OC =

a, jS, y respectively.

OG = my,AF=n{IB-a).
The portion ODGEA consists of three

tetrahedra whose common vertex is 0, and

bases the triangles AEF, EFG, FGD.

JSTow OEJ-{y + a\
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OD =
^^P,

OG = my,

OF=a + n{p-a);

and 6 times the volume cut off

+ S.-^(a + y)my{a + n{P -a)}

+ .S'.{a + n(/3-a)}my^/? (31.2 Cor. 1)

= -
{?i + nra + (1

—
w) m} S . ay/?

=
-^{n-\-m)

S . ay/3.

But since B, G, D, F are in one plane, and

2m (1
-
n) 0E-{\- n) OG + 2mnOD - mOF^ 0,

we must have (34. 8)

%n (1
—
n)

-
(1
-

'i)
+ 2mn — m =

;

.•. m + n = \
;

and 6 times the whole volume cut off

=
^6\ayl3

of 6 times the whole volume,

2

1

hence the plane bisects the tetrahedron.

Cor. The plane cuts other two edges at F and G, so that

AF_ OG^^.
AB^OC~ -
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Additional Examples to Chap. IV.

1. Straight lines are drawn terminated by two given straiglit

lines, to find the locus of a point in them whose distances from

the extremities have a given ratio.

2. Two lines and a point *S' are given, not in one plane ;
find

the locus of a point P such that a perpendicular from it on one

of the given lines intersects the other, and the portion of the

perpendicular between the point of section and P bears to SP
a constant ratio. Prove that the locus of P is a surface of the

second order.

3. Prove that the section of this sui-face by a plane perpen-

dicular to the line to which the generating lines are drawn perpen-

dicular is a circle.

4. Prove that the locus of a point whose distances from two

given straight lines have a constant ratio is a surface of the second

order.
y

5. A straight line moves parallel to a fixed plane and is ter-

minated by two given straight lines not in one plane ; find the

locus of the point which divides the line into parts which have

a constant ratio.

6. Required the locus of a point P such that the sum of the

projections of OP on OA and OB is constant.

7. If the sum of the perpendiculars on two given planes from

the point A is the same as the sum of the perpendiculars from 7i,

this sum is the same for every point in the line AB.

8. If the sum of the perpendiculai-s on two given planes from

each of three points A, B, C (not in the same straight line) be the

same, this sum will remain the same for every point in the plane
ABC.

9. A solid angle is contained by four plane angles. Through
a given point in one of the edges to draw a plane so that the sec-

tion shall be a parallelogi'am.
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10. Through each of the edges of a tetrahedron a plane is

drawn perpendicular to the opposite face. Prove that these planes

pass tlu'ough the same straight Hue.

11. ABC is a triangle formed by joining points in the rect-

angular co-ordinates OA, OB, OC
;
OD is perpendicular to ABC.

Prove that the triangle AOB is a mean propox'tional between the

triangles ABC, ABB.

1 2. Vap V/3p + ( Va(3)-
= is the equation of a hyperbola in p,

the asymptotes being parallel to a, /B.



CHAPTER V.

THE CIRCLE AND SPHERE.

36. Equations of the circle.

Let AD he the diameter of the circle,

centre C, radius = a, P any point.

If vector Ci) = a, CP^p,
we have p— — d' (1). A

If however AP =
p,

CP = p-a,
we have (p— a)^

= -a"
(2).

If be any point,

OP =
p, OC =

y, CP = p-y,

we have (^p-yf = -a' (3).

These are the three forms of the vector equation.

Form (2^ may be written

p'-2Sap^0.

If OC = c, iorxa (3) may be written

p*
—

2»S'yp
= c* — a*.

Examples.

37. Ex. 1. T/ie angle in a semicircle is a right angle.

Taking the second form

p'
- 2Sap =

0,

we may again write it

^pO>-2a) = 0;
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therefore p, p
— 2a are vectors at I'ight angles to one another.

But p-2a is DF;
.'. DPA is a right angle.

Ex. 2. If through any foint within or without a circle, a

straight line be drawn cutting the circle in the points F, Q, the pro-
duct OF . OQ is alv)ays the samefor that point.

The third form of the equation may be written

{TpY + 2TpSyUp + c'-a'^0,

which shews that Tp has two values corresponding to each value

of Up, the product of which is c* — a^. Therefore, ikc.

Ex. 3. If two circles cut one another, the straight Hue which

joins the points of section is perpendicular to tlue straigM line which

joins the centres.

Let 0, C be the centres, P, Q the points of section
;

vector OC = a; a, b the radii;

then (as vectors)

OF' = - a%

{OF-aY = -b';

.•. SaOP= C, a constant.

Similarly, SaOQ = C, the same constant ;

.-. Sa{OQ-OF) = 0,

or SaFQ = 0,

i. e. FQ is at right angles to 00.

Ex. 4. is afixed2^oint, AB a given straight line. A point Q
is taken 171 the line OP drawn to a point F in AB, such that

OF.OQ = k' ;

to find the locus of Q.

Let OA perpendicular to yl^ be a, vector a
;

OQ =
p, OF^xp;

tlien T{OP.OQ)^¥,
or xp^

— — Jc'.
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But Sa {xp
-

a) = ;

. •. xSap = — a'
;

hence P^
-

~2 *^"P

is the equation of the locus of Q, which is therefore a circle,

passing through 0.

Ex. 5. Straight lines are drawn through a fixed jioint, to find

the locus of the feet of perpendiculars on them from another fixed

2)oint.

Let 0, A be the points, the lines being drawn through A.

Let OA =
a, and let p = a + a;;8 be the equation of one of the lines

through A, 8 the perpendicular on it from 0.

Then 8 = a + xl3,

and /S'S" = Sa8,

because 8 is perpendicular to /3 ;

i. e. 8' — Sa8 = 0,

the equation of a circle whose diameter is OA.

> Ex. 6. A chord QR is drawn parallel to the diameter AB of

a circle : P is any point in AB ; to prove, that

PQ^ + PR^ = PA^ + PB\

Let CQ =
p, CR =

p', PC = a;

then PQ' = - {vector PQY
= -{a + pY = -{a'+ 2Sap + p'),

PR' = - (a + p'f
= -{a: + 2Sap' + p") ;

.-. PQ'- + PR'=2PC' + 2AC'-2{Sap + Sa;>').

But >S' (p + p) (p -/)')
= and p-p = xa,

because QR is parallel to AB
;

. •. S'ap + Sap' = 0,

and PQ' + PR' = 2PC' + 2AC''

- PA' + PB\
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Ex. 7. If three given circles he cut hy any other circle^ the

chords of section willform a triangle, the loci of the angular j)oints

of which are three straight lines respectively perpendicular to the

Vines which join the centres of the given circles ; and these three

lines meet in a point.

Let A, B, G be the centres of the three given circles ; a, b, c

their radii
; a, yS, y the vectors to A, B, C from the origin ;

OA, OB, 00 respectively p, q, r
;
D the centre of tlie cutting

circle whose radius is R, OD =
s, vector OD =

S, p the vector to

a point of section of circle 7) with circle A
;
then we shall have

(p-ay = -a\ {p-8y = -R\
and .-. 2S{S-a)p = E'-a'-s'+2y'.

Now this is satisfied by the values of p to both points of sec-

tion
;
and being the equation of a straight line (32. 3) is the

eqtiation of the line joining the points of section of circle D with

circle A—call it line 1, and so of the others; then

line lis 2S {8
-

a) p=E'- a'- s' +p%

line 2 is 2S{h
-

/3) p'
= R' -¥-s' + q\

line 3 is 2>S'(8
-
y)^" =R^-c--s^- r\

If 1 and 2 intersect in P whose vector is
pj ,

1 and 3 in (J (pJ ;

2 and 3 In ^
(p^),

we shall have by subtraction —

at P, 2S{a -(S)p,
= a' -b'-p' + q';

at (2, 2S{y-a)p^ = -a'+c'+2f-r'',

2.1 R, 2S(J3-^)p^ = ¥-c'-q' + r';

th(^refore (32. 3) the loci of P, Q, R are straight lines, perpen-

dicular respectively to AB, AC, BC.

Also at the point of intersection of the first and third of these

lines, we have, by addition,

2S (a
-

y) p = a- - c* -p!^ + r",

wliich is satisfied by the second : hence the three loci meet in a

point.
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Ex, 8. To find the equation of the cissoid.

AQ is a chord in a circle whose diameter is AB, QiY j)erpen-

dicular to AJi.

AM is taken equal to BN", and MP is drawn perpendicular

to AB to meet AQ in P
;
the locus of P is the cissoid.

Let vector .-l-P = TT, AC =
a, AM=ya, AQ = xir;

then y : I :: '2-y : x,hj the construction ;

2
•*• 7 = 1 •^ 1+x

Now a;V-2a;^a7r =

is the equation of the circle
;

_ 2SaTr
. . X — ^ .

Also Tr = AM+MP
= ?/a + y ;

. *. tSair = ya',

Sair

a

- /, 2*S'a7r\ <S'a7r _
hence

(
1 +—^ ) -^^ = i,

TT / a

and
(tt^

+ 2,S'a7r) San -= 2aV,
is the equation requii-ed.

Ex. 9. If ABCD is a 2)ctraUelograni, and if a circle he de-

scribed passing through the point A, and cutting the sides AB, AC
and tJie diagonal AD in the j^oints F, G, H respectively ; then the

rectangle AD . All is equal to the sum of the rectangles AB . AF,
and AC. AG.

Let AB^a, AC-^p, AD = y
'

AF=xa, AG = yP, All^zy;
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6 the vector diameter of the circle
;
then

whence, since y= a + (3,

z-f
= xoL + 2//3^ ;

i.e. AI).AH = AB.AF^AC.AG.

Ex. 10. What is represented by the equation

If a, )8 be not at right angles to one another, we can piit

ttj
+ e/5 for a, and so choose e that Sa^fi

= 0.

We shall therefore consider a, /3 as vectors at right angles

to each other, and we may, on account of x, assume their tensors

equal, and each a unit. Z \ li

a + xfi _ a + xft
^^J^

f''(^)-. ^r^'"^^'^^^
Hence

or, if
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Or, again, p~^
= a + xfi;

whence Sap~^ = ~ 1
5

or 7^8 (p-'
-

a)
=

0,

or U —^ =
1,

where U stands for the versor of the quaternion ;

all of these being, with the obvious condition aS' . a/3p
= 0, varieties

of the form of the equation of a circle, referred to a point in the

circumference, the diameter through which is parallel to a.

Draw any two radii p and p^ ,
then we have

,S'. Up-'U{p-'-p-') = S.Up-'U ^'^'~/.''^
PiP'

= S.Up-^UP^^P^^.
pCp

Kow _ ' VP
^

P'/P
^viii Le rendered a unit if we take a unit

PiP'

vector along each of the three vectors p^, (p- p^),
and p ;

.-. S. Up-'U{pr-p-') =
^'^'Up-^Up,U{p-p,)Up

= S.Up,{J{p-p,).

But pr-p~' = i^.-^)fi;

••• u{pr-P~')=f3,

and >S'. Up-'U{p-'-p-') = S/3Up"=-S(3Up.

Hence S. Up,U{p-pJ=~ S(3Up.

If p be constant whils^ p, varies, the right-hand side of this

equation is constant, and the equation shews that the angles in

the same segment of a circle are equal to one another.

Further, the form of the I'ight-hand side of the equation, viz.

— SpUp, shews that the angle in the segment is equal to the sup-

plement of the angle between the chord (p) and the tangent (yS).

38. ^0 draw a tangent to a circle.

1. If we assume the first form of the equation, the centre

bsiiig the origin, and assume also that the tangent is at right
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angles to the radiixs drawn to the point of contact
;
we shall have,

denoting by ir a vector to a point in the tangent,

Sp (tt
-
p)
=

0,

for TT — p is along the tangent ;

. '. Sirp
— — a'

is the equation required.

2. Without assuming the property of the tangent, we may
obtain it as follows.

Let p' be a point in the circle near to P
;
then

S{p---p^)
=

0,

from the equation ;

i.e. S{p'^-p){p'-p)--=Q.

But p' + p is the vector which bisects the angle between the

vectors to the points of section, and p
—
p is a vector along the

secant.

Now the equation shews (22. 7) that the former of these lines

is perpendicular to the latter.

As the points of section a])proach one another, the tangent

af'pi'oaches the secant, and the bisecting line approaches the radius

to the point of contact : therefore the radius to the point of

contact is perpendicular to the tangent.

39. From a point without a circle two tangents are drawn

to the circle, to find the equation of the chord of contact.

Let y8 be the vector to the given

point,

S-rrp
= - a^

the equation of a tangent; then since

it passes through the given point

SPp = -a\

Now this equation is satisfied for both points of contact, and

since it is the equation of a straight line (32. 3) it must be satis-

fied for every point in the straight line which passes through those

points : it is therefore the equation of the chord of contact. To
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avoid the appearance of limiting p to a point in the circle, we raay
write o- in place of p ;

and the equation of the chord of contact

becomes

Spa- = -a\

Examples.

40. Ex. 1. If chords be drawn through a given point, and

tangents he drawn at the jioints of section, the corresponding /;ai/"»

of tangents will intersect in a straight line.

Let y be the vector to the given point G, the centre C being
the origin ; /3 the vector to 0, the point of intersection of two

tangents at the extremities of a chord through G ; then the equa-
tion of the chord of contact is (39)

S^a- = —
a",

and as the chord passes througli G we have

S(3y=-a\

which, since y is a constant vector, is the equation of a straight

line, the locus of
/3.

Cor. 1. The straight line is at right angles to CG (32. 3).

CoR. 2. The converse is obviously true, that if through points
in a straight line pairs of tangents be drawn to a circle, the chords

of contact all pass through the same point.

Ex. 2. Any chord drawn from the point of intersection of
two tangents, is cut hannonicaUg by the circle and the chord of
contact.

Let radius = CT, OC-^c, OR=p, OS=q, vector 00=- a, unit

vector OE = p ;
then

(ppy-2pSap^'c'-a'

is the equation of the circle
;

i.e. p^ + 2pSap + c" - rt* -=
0,

T. Q. 6
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1^ J_

a quadratic equation which gives

the two values of ^;, viz. OR and

OT;

2Sap

Bnt qp = OS=Oy+J^S,
Saqp = SaON;

i.e. qSap=^Sa{OC-NC)
=^o:-SaNC

= -c^ + a^(39);

_2__2
OS~q

2Sap~
(f -a'

hence

-b^
'^^?

.•>-ji'^

I
OR^ OT'

Ex. 3. If tangents he drawn at the, angular pomts of a triangle

inscribed in a circle, the intersections of these^taiigents with the

opposite sides of tlie triangle lie in a straight line.

Let radius = a, OA =
a, 0B = /3, 00 =

y, then

OP = a + xAP =
l3 + ^j{y-l3).

I



ART. 40.] THE CIRCLE AND SPHERE. •83

and

But a is perpemliculai' to AP
;

. •. iSa' = Saf^ + yS (ay
-

a/3) ,

o^ + Sa(i

»S'ay
—
Saji

(a' + Say) 13
-

(a' + Sa(3) y

Say — SafS

OP

Similarly, OQ _ (a' + Sa(3) y
-

(a' + SjSy) a

0R =

Hence

Sa^ -
Sfty

(a' + S(3y)a-{(r+Say)(3

S/dy
—
Say

(Say
-

Safi) OP + (Sa^
-
S/Sy) OQ

+ [Sfty
-
Say) OP =

0,

whilst (Say
-

Sa(3) + (Sa^ - Sfty) + (S/3y
-
Say)

= 0.

Consequently (Art. 13) P, Q, R are in the same straight line.

Cor. PQ -.PR :: S/3y-Say :: Sfiy-Safi

cos 2B - cos 2A : cos 2C - cos 2A'

sin C sin (B- A) : sin ^ sin (C-^).

Ex. 4. A fixed circle is cut by a number of circles, all of which

pass through two given 2}oints ; to prove that the lines of section of
thefixed circle with each circle of the series all jJass through a 2)oint

whose distances from the two given points are 'p'>'oj)ortional to the

squares of the tangents drawnfrom those points to thefixed circle.

Let be the centre of the

fixed circle whose radius is a,

yl, B the given points, vectors

a, p, the origin being ; OA =
b, , ^ _

OB — c;G the centre of a circle

which passes through A and B,
radius r

; 00 = p, -tt the vector to

any point in the circumference of

this circle; then the equation of

the circle is
(tt
— pf = — r^-^

6—2
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hence for the four points A, B, P, Q, we have

3 O C .2 2a —
Ja3up + p = — r

,

P'
-
2S{3p + p'

= - r%

0P'-2S.0Pp + p'
= -r\

0Q'-2S.0Qp + p'
= -r\

From which it follows that

&'{OP-OQ)p =
(1),

-b' + c' = a' - 13'
= 2S {a- (S) p (2),

2S (OP - a) p
= or- - a' = - a' + b"-

(3).

Let QP, AB intersect in P, OR = a
;
then

S(xp
= S{OP + X {OP - OQ)} p

= S.OPphj{\),
and Sa-p

= S {a + 1/ (a
—

(3)} p

= Sap + '(^{-¥ + c'-)hy{2);

.-. 7j{-b"- + c"-)=2Sap-2Sap
= 2S{0P-a)p
= — a" + b- by (3),

i.e. 9/
is independent of p and r

;
or li is the same point for

every circle :

c'-b' '

and PA : PB :: a -OP : /3
- OP :: b'-a* : c'-a'

:: AT' : BU'.

41. The Sphere.

1. It is clear that there is nothing in the demonstration of

Art. 36 which limits the conclusions to one plane; it follows that

the equations there obtained are also equations of a sphere.

2. Further if we assume that the tangent plane to a sphere

is perpendicular to the radius to the point of contact, the con-

clusion in Art. 38 is applicable also.



ART. 42.] THE CIRCLE AND SPHERE. 85

The equation of the tangent plane to the sphere is therefore

iSttp
= — rt".

3, Lastly, the results of Art. 39 are also applicable if we

substitute any number of tangent planes passing through a given

point for two tangent lines
;

the equation of the plane which

passes through the points of contact is therefore

S/3cr
= - a\

This plane is the ^o/«r plane to the point through which the

tangent planes pass.

CoK. Since the polar plane is perpendicular to the line which

joins the centre with the point through which the tangent planes

pass, the perpendicular CD to it from the centre is along this

line and has therefore the same unit vector with it. The equa-
tion above gives in this case

S {CO . CD (Ul3f} = - a'
;

.-. CO. CD =^ a' (19).

Examples.

42. Ex. 1. Uveri/ section of a sphere inade by a 2^lane is

a circle.

Let p^
= — ci" be the equation of the sphere, a the vector per-

pendicular from the centre on the cutting plane; c the correspond-

ing line.

Let p = a + TT
;

then the equation becomes

But «S'a7r =
;

2 / 2 2\
. •. TT —— [a

— c
)

is the equation of the section, which is therefore a circle, the square
of whose radius is a" — c^.

Ex. 2. Tofiiid the curve of intersection of two spheres.

Let the equations be

p'-%Sap = C,

p'-2Sap^C';
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.-. 2S{a-a)p=C-C',
a plane perpendicular to the line of wliicli the vector is a —

a,

i.e. to the line which joins the centres of the two spheres.

Hence, by Ex. 1, the curve of intersection is a circle.

Ex. 3. Tofind the locus of the feet of perpendiculars from the

origin on planes which pass through a given point.

Let a be the vector to the jDoint, S perpendicular on a plane

through it ; then

SZ{p-a) =

is the equation of that plane ;
therefore for the foot of the per-

pendicular

^(8^-a8)=0;
or

'

8'-^^a8 =

is true for the foot of every perpendicular and is therefore the

equation of the surface required. Hence it is a sphere whose

diameter is the line joining the origin with the given point.

Ex. 4, Perpendiculars are drawnfrom, a, point on the surface

of a sphere to all tangent j^lanes, to find the locus of their extremi-

ties.

Let a be the vector to the given point,

Sirp
= — a*

the equation of a tangent plane.

Since the perpendicular is parallel to p, its vector is

7r = a + xp ;

.: (tt
-

a)^
= 03^ = xV

~" ob Cv »

because both p and a are vector radii.

But Sirp — — a^ gives with xp = Tr — a,

Stt
(tt

—
a)
= —

a'x,

{tt^
—

Sa-n-y
= a^x'

2 9 9ax— a X

= _a'{ir-ay
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Ex. 5. If the j)ointsfrom lohich tangent planes are drawn to

a sphere lie always in a straight line, prove that the
p)l(^i-'^^6S of sec-

tion all pass through a given jjoint.

Let CB be perpendicular to the line in wliicli the point /3

lies (41), see fig. of Art. 39,

CE =
c, vector CE =

8;

then SI38
= -c'

is the equation of the line.

But Sfi(T
= -a^

is the plane of contact, which is therefore satisfied by

i. e. the planes all pass through a point G in CU, such that

c^

or CE.CG = a\

Ex. 6. If three spheres intersect one another^ their three planes

of intersection all j^ass through the same straight line.

Let a, p, y be the vectors to the centres of the three spheres,

p'-2Sap=a, ,

p'-2SPp =
b,

p'
-

2»S'yp
=

c,

their three equations ;

.-. 2S{a-ft)p = b-a,

2S (a
—

y) p = c - a,

2S{/3-y)p=c-b,

are the equations of the three planes of intersection.

Now the line of intersection of the first and second of these

planes is obtained by taking p so as to satisfy both equations,

and therefore their difierence

2SH3-y)p = c-b,
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which, being the third equation, proves that the same vahie of p

satisfies it also. The three planes consequently all pass through
the same straight line.

Ex. 7. To find tJie locus of a point, the ,sum of the squares

of v:hose distances from a number of given 2)oints has a given

value.

Let p denote the sought point ; a, /?,
. . . the given ones

;
then

{p- ay + {p- ^Y + kc. = %(p-aY --=-0.

If there be n given points ;
this is

or
(-i")'Ki^y-^^-'^^)-

This is the equation of a sphere, the vector to whose centre is

-2(a),n ^ '

i. e. the centre of inertia of the n points taken as equal.

Transpase the origin to this point, then (36)

2.a=0,

and p^
=
-\{%{a^)^C].

Hence, that there may be a real locus, C must be positive

and not less than the sum of the squares of the distances of the

given system of points from their centre of inertia. If C have

its least value, we have of course

the sphere haviiag shrunk to a point.

Additional Examples to Chap. V.

1. If two circles cut one another, and from one of the points

of section diameters be drawn to both circles, their other extre-

mities and the other point of section will be in a sti-aight line.
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2. If a chord be drawn parallel to the diameter of a circle,

the radii to the points where it meets the circle make equal angles

with the diametei\

y 3. The locus of a point from which two unequal circles sub-

tend equal angles is a circle.

-r 4. A line moves so that the sum of the perpendiculars on it

from two given points in its plane is constant. Shew that the

locus of the middle point between the feet of the perpendiculars

is a circle.

< 5. If 0, 0' be the centres of two circles, the circumference

of the latter of which passes through ;
then the point of inter-

section A of the circles being joined with 0' and produced to

meet the circles in C, D, we shall have

AC.AD = 2A0-.

}. 6. If two circles touch one another in 0, and two common

chords be di'awn thi'ough at right angles to one another, the

sum of their squares is equal to the square of the sum of the

diameters of the circles.

7. A, B, (7 are three points in the circumference of a circle;

prove that if tangents at B and (7 meet in D, those at C and A
in E, and those at A and B in. F; then AB, BB, CF will meet

in a point.

8. If A, B, C are three points in the circumference of a

circle, prove that V {AB . BC . CA) is a vector parallel to the tan-

gent at A.

9. A straight line is drawn from a given point to a point

jP on a given sphere : a point Q is taken in OP so that

OP.OQ = k\

Prove that the locus of (J is a sphere.

10. A point moves so that the ratio of its distances from two

given points is constant. Prove that its locus is either a plane

or a sphere.
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11. A point moves so that tlie sum of tlie squai-es of its

distances from a number of given points is constant. Prove that

its locus is a sphere.

12. A sphere touches each of two given straight lines which

do not meet
;
find the locus of its centre.



CHAPTER VI.

THE ELLIPSE.

43. 1- If we define a conic section as "the locus of a point

which moves so that its distance from a fixed point bears a con-

stant ratio to its distance from a fixed straight line
"
(Todhunter,

Art. 123), we shall find the equation to be (Ex. 5, Art. 35)

ay==e'(a'-Sapy (1),

where SP= ePQ, vector SD = a, SP = p.

When e is less than 1, the curve is the ellipse, a few of whose

properties we are about to exhibit. -^

2. SA, SA' are multiples of a : call one of them xa : then,

by equation (1), putting xa for p, we get

x^ = e^ (1 —x)";

.*. X
1+e'

e
X--

1-e'
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i.e. SA = ^-^SD,
1 +e

1 —e

.'. AA'=^,SD,
i.
— e'

tlie m:ijor axis of tbe ellipse, wliicli we shall as usual abbreviate

by 2a.

If C be the centre of the ellipse

CS =SA'-CA'^(-^-^)lSD^eCA
\1 - e 1 — e/

= ae,

and if vector CS be designated by a, CP by p, we have

a =
,
a and p'

= p + a'
;

whence, by substituting in (1), the equation assumes the form

a'p"+{Sapy = -a'{\-e');

which we may now write, CS being a and CP p,

ay+{Sapy = -a'{l-e"-) (2).

3. This equation might have been obtained at once by I'e-

ferring the ellipse to the two foci, as Newton does in the Prin-

cipia. Book i. Prop. 1 1
;
the definition then becomes

SP + IIP=2a,
or in vectors, if

CP= p, CS=a,

T(p+a) + T{p-a)^2a;

i.e. J- {p + ay + J-{p- a)'
= 2a

;

hence, squaring,

a ^— {p
— ay = a" + Sap ;

i.e. aV + (6ap)' - - c^(l
-

e').

'
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If now we write
(ftp

for
471

'^

af j
where

cjtp
is a vector

wliich coincides with p only in the cases in which either a coin-

cides with p or wlien Sap = 0, i. e in the cases of the princij>al

axes
;
the equation of the ellipse becomes

Sp<f^P
= l

(3).

The same equation is, of course, applicable to the liyperbola,

e being greater than 1.

44. The following properties of ^p will be veri/ /requentl//

employed. The reader is requested to bear them constantly in

mind.

1.
(I> (p + a)

=
(f)p

+ <pa:

2. <f>xp
—

X(j)p.

.J c, a'Sap 4- SacrSap

=
upcjxr, ,

They need no other demonstration than what results from

simple inspection of the value of
(f>p

a*p + aSap

45. To find the equation of the tangent to the ellipse.

The tangent is defined to be the limit to which the secant

approaches as the points of section approach each, other.

Let CP =
p, GQ =

p', then

vector PQ^CQ-CP- p-p-=P say ;

/8 is therefore a vector along the secant.

Now Sp'4>p'
= S{p + fS)cf>(p + ft)

= ^(p + /3)(</.p + </./?) (44. 1)

-
Sp(i>p + Spcf>fi + S^<f>p + >Sl3cj>p.
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But ^p'^'P
= 1 = Sp^p ;

or (44. 3) 2>y/3<^p + SjS^ft = 0.

Now jBi^p involves tlie first power of j3 whilst
ftcf^jS involves

the second, and the definition reqv^ires that the limit of the sum

of the two as (B gets smaller and smaller should be the first only,

even if that should be zero : i. e. when (3 is along the tangent, we

must have

2SI3cj,p
= 0.

[We might also have written the equation in the form

2S.{3(ct>P+l<f>pyO.

Thus, however small the tensor of fi may be.

^"4^)
is always perpendicular to

(3. Whence, finally,

S/3cf>p
=

0.]

Let then T be any point in the tangent, vector CT —
tt, then

TT = p + xfi,

and SI3c})p
=

gives

S{n-p)<j,p = 0;

. '. Sirffip
=

/Sp<j)p
= 1

is the equation of the tangent.

Cor. 1
cj)p is a vector along the perpendicular to the tangent

(32. 3), that is, <f)p
is a normal vectoi', or parallel to a normal

vector at the point p.

Cor. 2. The equation of the tangent may also be written

(44. 3) Spcf^TT
= 1.

46. We may now exhibit the corresponding equations in

terms of the Cartesian co-ordinates, as some of the results are

best known in that form.
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Let CM=x, MP-y as usual; tlien, retaining the notation

of Art. 31 with i, j as unit vectors parallel and perpendicular

respectively to CA,

vector CM= xi, MP =
yj, CS = aei

;

,-. p = xi + yj,

Cfp + aSap
<j>p^-

a'{l-e')

a' (1- e^) xi + a'yj

" W 67'

where 6* = a^ (1
-

e^) ;

and Sp<l>p
= -S{xi +

yj)(^,+'f^

"
a' b'

is the Cartesian interpretation oi Sp(f>p
= l.

Again, if x, y be the co-ordinates of 1^ a point in the tangent,

and ^TTc^p
= -S {x'i + y'j)

(|*
+

1^,)

xx' yy'

oox' yy'

ft' b'

is the equation of the tangent.
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47. The values of p and
(jip

exliibited in the last Article,

VIZ.

p = xi + yj, '^P
=
-\~2^p) (1)'

enable us to write

We shall have

iSlp jSjp .

,2 , , ^'S'^>p J^H^

/iSip jSjp\ ,„.

^"V"^"" 6^7
^-^'>'

<ji~ 'p
=

a'iSip + h'jSjp, «fec.

If, further, we write
i/^p

for

fiSip j§p\

we shall have

=
-<l>p w.

\^~^p
= —

(aiSip + bjSJp), &c.

= -
{aiSiij/p + ijSji{/p) (5).

It is evident that the properties of
(ftp (Art, 44) are possessed

by all these functions.

Now Sp(f)p
= l

gives Spij/ (ij/p)
= - 1.

But since Spil/cr
=

Saipp,

this becomes S\pp\pp
= —

1,

or T\l/p
- 1

;
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whicli shews 1. that
\J/p

is a unit vector; 2. that the equation of

the ellipse may be expressed in the form of the equation of a

cii'cle, the vector which represents the radius being itself of vari-

able length, defoiTned by the function
ij/..

Lastly, Sa(l>p
=

gives Sa\l/'(3
—

Sipaipp
=

;

therefore
i/^a, i/'/?

are vectors at right angles to one another.

48. To find the locus of the middle points of parallel chords.

Let all the chords be parallel to the vector /3 ;
ir the vector

to the middle point of one of them v/hose vector length is 2xfi ;

then

TT + xP, TT — X{B

are vectors to points in the ellipse ;

.•. S(Tr+x^)cf>{Tr + xl3)
=

l,

S(Tr-xl3)4>{Tr-xl3)^l,

multiplying out, observing that (44. 1),

^ (tt + x(3)
=

<^7r + X(fi^, &c.,

we get by subtracting,

or, (Art. 44. 3),

i. e. the locus required is a straight line perpendicular to <^/3.

Now ^/3 is the vector perpendicular to the tangent at the

extremity of the diameter /3 (Art. 45. Coi\ 1).

Therefore the locus of the middle points of parallel chords is

a diameter parallel to the tangent at the extremity of the diameter

to which the chords are parallel.

Cor. If a be the diameter which bisects all chords parallel

to /3 ; since

T. Q. 7
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we have (Art, 44. 3),

^;8<^a
=

0,

which is the equation to the straight line that bisects all chords

parallel to a. Moreover ^8 is parallel to the tangent at the ex-

tremity of a, for it is perpendicular to the normal ^a.

Hence the propei'ties of a with respect to /S are convertible

with those of (3 with respect to a : and the diameters which

satisfy the equation

Sacf)^
=

0,

are said to be conjugate to one another.

49. Ouv object being simply to illustrate the process, we shall

set down in this Article a few of the properties of conjugate

diameters without attempting to classify or complete them,

1. If CP, CD are the conjugate semi-diameters a, ft; and

if DC be produced to meet the ellipse again in U, and PD, PE
be joined ;

vector DP = a —
(3, vector DP = a + /S.

Now
,S' (a + /5) </) (a

-
/5)
= ^ (a 4 /3) {<^a

-
<^^)

=
>S'a<^a -^/JcjbyS

-
Sa4>(B +&'ficj,a (44. 1

)

= 0,

because Satf^a, SPcfi/S, each equals 1.

Therefore a + jB,
a- (i are parallel to conjugate diameters,

(Art. 48, Cor.)

This is the property of Supplemental Chords,

2. Let two tangents meet in T, CT= 7r, and let the chord

of contact be parallel to
/3.

If for the present purpose we denote

CN by a, we have

SiT(^ (a -ha; yS)= 1,

AS'7r<^ (a -fa;, y8)
=

1,

for the two points of contact.
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Subtracting and applying (44. 1),

^7r</>yS
= :

hence tt and (i i.e. GT, QR are conjugate.

3. The equation of the chord of contact is Sa-ffiir
= 1.

For aSp^tt
- 1 (45. Cor, 2) is satisfied by the values of p at

Q and at B, and since Spcfur^l or Scr<f>Tr
= l is the equation

of a straight line, tt being a constant vector (32. 3) it is the

line QE.

4. If QR pass through a fixed point B, the locus of T is

a straight line.

Let cr be the vector to the point U, then

S(r<f>Tr =1 ;

. '. SiTfjxr
= 1

,

or the locus of 2^ is a straight line perpendicular to
<^o-, i.e.

parallel to the tangent at the point where CE meets the elKpse.

(45. Cor. 1.)

The converse is of course true.

5. Let us now take

CP^a, CD =
j3, CN^xa, NQ^yp, CT=^za;

7—2
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then the equation of the tangent becomes

Sza(J3 (xa + 2/fB)
= 1 ;

i.e. xzSa^a =\ ',

or xa .za = CL

geometrically CN.CT=CP\

6. The equation of the ellipse gives

S{xa + yp)il>{xa + yP) = l,

or
x^Sa<l,a + 'ifSp<i>P + 2x7jSacji(3

= 1 ,

I.e. X- + y ^
1,

or, since Clf is xa, CP =
a, &c.,

\cf) '^\gd)
"•''

the equation of the ellipse referred to conjugate diameters,

7. a =
ij/'^il/a

= —
(aiSi\J/a + hjSjij/a)

ft
=

iff-'ij/ft
= -

(aiSiij/ft + hjSJ4f[i) ;

. '. Fa/3 = ah Vij {Siij/aSjij/13
-

Sixf/ftSjilya).

If now we call k the unit vector perpendicular to the plane

of the ellipse, we get

Vij
= h.

And, observing that
i//^a, xpft are unit vectors at right angles ;

if the angle between % and i/a be 9, that between i and
i/'/S

will be

^ + 9, &c. &c.,

we shall have (21. 3)

^
jSiij/a

= — cos 9,

Siij/(3
= sin 9,

JSjij/a
= — sin 9,

Sjxpft
= - cos 9.

.'. Siij/aSji]/(3
-

Siij/ftSJil/a
= cos'' 9 + sin- 6^1.

i
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Consequently Va^ = abk ;

i.e. Ta.Tft sin PCD = ab,

or all parallelograms circumscribing an ellipse are equal.

50, Examples.

Ex. 1. To find the length of the perpendicularfrom the centre

on the tangent.

Let CY the perpendicular, wliicli (Art. 45. Coi*. 1) is a vector

along ^p, be x^p ; then since F is a point in the tangent,

S7r<j>p
= l gives Sxcf)p(jip =1,

or X (<^p)*= 1
;

.-. {x<j.py{i.pf^i,

and CY' = T(xcf,py
= Tj^.,

{9P)'

^
-

(46).

a* b

Ex. 2. The ptt'oduct of the perpendicularsfrom the foci on t/te

tangent is equal to the square of the semi-axis minor.

"We have SY the vector perpendicular = x^p, and as F is a

point in the tangent, and

CY=a + x<f>p,

S{a + x<fip) </>p
=

1,

X {<^py
= 1 — iSa(jip,

SY= Txc{>p
= T^-f"^P .

99

Similarly, nZ=T^-±^^',

.-. SY.EZ=T ^-^\tr
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Now (43. 2) ay - -
JS'ap -a* {I- e'),

a^p + aSap _

^P
a^(l-0

Ex. 3. The perpendicular from the focus on the tangent in-

tersects the tangent in the circumference of the circle described about

tJie axis major.

Retaining tlie notation of the last example, we have

CY= a + SC<f>p

~
{4>pr

'

^V3_,2 , 2Sa<f>p (1
-

Sa<fip) , {l-Sa<i>p)-' ^^ ^'^ " m- ^
{4>pr

„ 1 - S^atfyp

= — aV — a" (1
—

e^) (last example)

= -a-,

and the line CY= a.

Ex. 4. To ^wc? i/ie ?ocms of T tvhen the perpendicular from
the centre on the chord of contact is constant.

If CT be IT, the equation of QR, the chord of contact, is

AS'o-<^7r-l (Art. 49. 3),

and the perpendicular (Ex. 1) is I' ^—
;
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^ or ^<^7r , ^TT
= —

c^,

or STrcf)(f>Tr
= - c" (Art. 44. 3);

Le. 5.(^+>^)
= c'(47.3),

*'
?/' 2

an ellipse.

Ex. 5. 7'<2, ^-S are two tangents to an ellipse, and CQ', CR'

are drawn to tlie ellipse parallel respectively to TQ, TR ; pirove

that Q'R' is parallel to QR.

Let CQ=p, CR =
p', CT^a,

then Sp(fia= 1,

Sp'^a = 1.

Now since CQ' is parallel to TQ,

CQ'=xTQ^x(p-a).

Similarly CR' = y{p-a),

and S.CQ'4>{CQ')=l

gives
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Ex. 6. If a i->arallelogram he inscribed in an ell'qjse, its sides

are parallel to conjugate diameters.

Let PQRS be the parallelogram.

PQ^a, PS =13,

CP =
p, CS = p:

tliea CQ = p + a, CP = p +a;

.'. Sp<f)p=l,

S{p + a)<f>{p + a)
=

l',

-wherefore 2Sp(fia + *S'a<^a
= 0.

Similarly 2Sp'c}>a + Sac^a = ;

. •. S (p
—

p) <jia
=

0, hj subtraction,

or S/3(l>a
=

0,

and (48. Cor.) /?,
a are parallel to conjugate diameters.

Additional Examples to Chap. VI.

i/l. Shew that the locus of the points of bisection of chords to

an ellipse, all of which pass through a given point, is an ellipse.

^2. The locus of the middle points of all straight lines of con-

stant length terminated by two fixed straight lines, is an ellipse

whose centre bisects the shortest distance between the fixed lines;

and whose axes are equally inclined to them.

^/-3. If chords to an ellipse intersect one another in a given

point, the rectangles by their segments are to one another as the

squares of semi-diameters parallel to them.

•^4. If PCP\ DCD' are conjugate diameters, then PD, PD'
are proportional to the diameters parallel to them.

'5. If (2 be a point in the focal distance SP of an ellipse, such

that SQ is to SP in a constant ratio, the locus of ^ is a similar

ellipse.
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^. Diameters wliicli coincide -witli the diagonals of tlie paral-

lelogram on the axes are equal and conjugate.

7. Also diameters which coincide with the diagonals of any

parallelogram formed by tangents at the extremities of conjugate

diameters are conjugate.

8. The angular points of these parallelograms lie on an ellipse

similar to the given ellipse and of twice its area.

9. If from the extremities of the axes of an ellipse four pa-

rallel lines be drawn, the points in which they cut the curve are

the extremities of conjugate diameters.

10. If from the extremity of each of two semi-diameters

ordinates be drawn to the other, the two triangles so formed will

be equal in area.

11. Also if tangents be drawn from the extremity of each

to meet the other produced, the two triangles so formed will be

equal in area.

12. If on the semi-axes a parallelogram be described, and

about it an ellipse similar and similarly situated to the given

ellipse be constructed, any chord PQR of the larger ellipse, drawn
from the further extremity of the diameter CD of the smaller

ellipse, is bisected by the smaller ellipse at Q.

13. If TP, TQ be tangents to an ellipse, and PCP' be the

diameter through P, then FQ is parallel to CT.



CHAPTER VII.

THE PARABOLA AND HYPERBOLA.

51. As already stated, most of the properties of the hyj^erbola

are the same as the corresponding properties of the ellipse, and

proved by the same process, e being greater than 1. There are,

however, some properties both of it and of the parabola which

may be conveniently developed by a process more analogous to

that of the Cartesian geometry. This process we shall develope

presently. In the meantime we proceed to give a brief outline

of the application to the parabola of the method employed in

the preceding Chapter for the ellipse.

52. If ^ he the focus of a

parabola, BQ the directrix, we

liave SP = PQ, SA=AI) = a.

If SP =
p, SD =

a, we have

(Ex. 5, Ai't. 35)

aV =
(a^-,S'ap)=' (1).

p
—
a~^Sap

If #=' a •(2),

to which the properties of
(f)p

in

Art. 44 evidently apply,

the equation becomes

Sp (<^p + 2a->)
= 1 .(3).

If p' be another point in the parabola, p
—

p = P, the limit to

which (i approaches is a vector along the tangent ;
so that if

xfi
= TT — p, TT is the vector to a point in the tangent ;

this gives

^(7r-p)(c^,o + a-')
=

(4);
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hence the equation of the tangent becomes

>S'7r(<^p+a-') + ;S'a-'p=l (5).

From (2) it is evident that

Sacf>p=0 (G),

so that
(j>p

is a vector perpendicular to the axis.

From the same equation
2 „-2C'2„

\ a

(p
— a

'(S'ap)

3

a"

-o.'^iM' • (')•

From (4) the normal vector is

(}ip+a~^ (8);

therefore the equation of the normal is

a- = p + x {(fip
+ a"') (9).

Equation (2) when exhibited as

a^<}>p
= p

—
oT^Sapf

reads by (6), 'vector along iVT* — /S'P — vector along AN\ which

requires that

NF=o?4,p (10),

SN'= a~^Sap ;

i.e. =aSa-'p (11).

For the subtangent AT, put xa for tt in (5), and there results

ty (6)

x-^ Sa V =
Ij

whence Ix — ^\a= ^a
—

aSoT^p',

i. e. vector .41'=— vector^iV (by 11);

.-. lineill'^^iV^;
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and ST—xa gives

_ {a'-SapY
a'

.'. line ST=SF,
whence also tlie tangent bisects the angle SPQ ;

and SQ is per-

pendicular to and bisected by the tangent.

From (8) y {<f>p
+ a") =FG

= PiV+ ]}fG

= -
a'(jip + za (by 10) ;

.-. y = -o.\ y = za,

z = -\,

Za = — a',

le. NG=-SD,
or lineiV^G' = /SZ>,

whence the subnormal is constant.

And vector GP = -y {4>p + a~')
= a^ {^p + a"

') ;

.-. \eciov SQ = SD + DQ
= SD + NP
= a + a

(f)p

= GP,

and SQGP is a rhombus.

Lastly, -{a + a''<fip)
=
:^SQ

= SY
= SA+AT;

or (10) -4 F is parallel to, and equal to half of NP.



ART. 54.] THE PARABOLA AND HYPERBOLA. 109

53. If now we substitute Cartesian co-ordinates, making
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tlie ratio of the rectangles of their segments is always the same

wJiatever he their 2Joint of section.

Let pop, QOq be the chords drawn through 0, and always

parallel respectively to ^ and y, which we will suppose to be

unit vectors.

Let 8 be the vector to 0,

then p= 8 + x/S

gives from equation (3)

/S' (8 + xl3) (cf,8
+ c^xP + 2a-')

= 1
;

. •. x-Sp4>p + >S'S</)8 + 2AS'a-'8 + Ax =
\,

the product of the two values of x being

OP . Op : OQ.Oq ::

1

a constant ratio whatever be 0.

Cor. Let 6, 6' be the angles in. which ft and y cut the axis ;

then since (3, y are unit vectors, if
/a
be a vector to the parabola,

drawn from S parallel to PO]), which we may now call SP ;

p = np, cf>p
= ^{nfi)=ni>fi{U.2),

will give

w^/? ^P'^P ^P^P

. ^^p
•

in which case <f>p
is —^ ;

NP N'F
.: SjScjip : ^y<^y :: sin^^ : sin 6'^^ :: sin^^ : sin' 6';

and, OP . Op : OQ.Oq
1

sin^^
•

sin^e'

Ex. 2. Find the locvs of the 2ioint which divides a system of

•parallel chords into segments wloose ^^roduct is constant.
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By the last example, the equation of the locus is

a parabola similar to the given parabola,

Ex. 3. 27ie 2)6i'J>sncUcular from A on the tangent, and the line

PQ are produced to meet in R : find the locus of R.

By Art. 52. 8, AR = x
{<f>p

+ a"'),

and FR = ya ;

.: ^ +X {(f)p
+ a~')

-
p + ya = TT.

Operate by S<^pj

and X {4>pY
=

iSp<fyp

= a' {cf>py (52. 7) ;

. '. X— a*,

and IT = - + a'
((f)p

+ a~^)

=
-^ + a^cjyp is the equation required ;

and, since S (tt—^ j
a = 0, it is that of a straight line perpendi-

cular to the axis, at the distance 3a from S.

Ex. 4. To find the locus of the intersection with the ta/ngent

of the jierpendicMlar on itfrom the vertex.

If TT be the vector perpendicular on the tangent from A,
we have by (52. 8)

Tr^x{^p + a-') (1),

and the equation of the tangent gives, putting tt + -x in place

of TT in (52. 5), and multii^lying by 2,

2^7r<^p + 2,S'a-'7r + 2>S'a-V
= 1 (2),

we have also

Sp{<i>p + 2a-')^\ (3).



112 QUATERNIONS. [CHAP. VII.

From these tliree equations we have to eliminate x and p.

Equation (1) gives

SaTT ~ X,

which gives x,

and aS'tt^P
= x {4>p)')

which substituted in (2) gives

2x {cjypY + 2Sa-'7r+ ISa'^p - 1.

Also, substituting (52. 7) a
{(ftpy for Sp(pp, equation (3)

gives

a'' {cl>py + 2Sa-'p = 1
;

therefox-e by subtraction

(2a;-a=)(<^;D)^+2^a-'7r=0,

i. e. (2^'a7r
-

a') (<^p)- + 2Sa-''!r = 0,

which from (1) becomes, multiplying by S^a-Tr,

(2/S'a7r
—

a)^ (tt
—

a'^Sarr)' + 2S'a7TSa~^Tr = 0.

This equation at once reduces to

2it''Sxtv — 7r"a^ + aS'^utt = 0,

an equation which, when 4a is written in place of a, becomes

identical with that obtained in Art. 37, Ex. 8.

The locus is therefore a cissoid, the diameter of the generating
circle being AD.

55. It. will probably have suggested itself to the reader, that

there exists a large class of problems to which the processes we
have illustrated are scai'cely if at all applicable. Hence there

may have arisen a contrast between the Cartesian Geometry and

Quaternions unfavourable to the latter. To remove this un-

favourable impression, all that is required in a reader familiar with

the older Geometry is a little experience in combining the logic

of the new analysis with the forms of the old. He will then see

how simple and direct are the arguments which he can bring

to bear on any individual problem, and consequently how little

the memory is taxed.
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We propose in this Article to put the reader in the track

of employing his old forms in conjunction with quaternion

reasonings.

"We shall work several examples on the parabola and the

hyperbola. Having applied quaternions pretty fully to the

ellipse in what has preceded, we will limit ourselves to a single

example in this case.

1. The Parabola. If the unit vector along any diameter of

the parabola be a, and the unit vector parallel to the tangent at

its extremity be /3; we may write the equation of the parabola

under the form

p — xa +
1/13

=
£«-^2'^ «•

For the particular case in which the diameter in question is the

axis, and the tangent at its extremity parallel to the directrix

P-|^«
+

2//3 (2),

where a is AS (Art. 52).

This is the most convenient form when the focus is referred

to.

In other cases a somewhat simpler form may be obtained by

supposing a, or if necessaiy both a and j3 of equation (1) to

be other than unit vectors.

The equation may then be written under the form

P = ^'«
+ <^ (3).

To find the equation of the tangent, we have

T. Q. 8
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Now p
— p is a vector along tlie secant

;
and its limit is a

vector along the tangent : lience any vector along the tangent

is a multiple of ia + /3 ;
and the equation of the tangent may

be written
f

7r = -^a-\rtj3 + x{ta + P) ....(4).

Examples.

Ex. 1. If AP, AQ he chords drawn at rigid angles to one

another from A ; PM, QN 2)Gr2-)endicidars on the axis, then the

latus rectum, is a mean proportional between A SI and AN ; or

between PM and QN.

li PM=y, QN = y\

AP =
f^a^yl3, AQ^'£a-y'^.

Now S{AP.AQ)=0{22. 7);

or 2/2/'
=

(4a)'';

therefore also xx' = (4a)".

Ex. 2. If the rectangle of which AP, AQ are the sides he

completed, the further angle ivill trace ozii a jiti^dbola similar to

the given parahola, the distance between the two vertices being equal

to twice the latus rectum.

p^AP+AQ

-y''-y'^a + {y-y)(iia

{y-yj
Aa

a + (y-y') (S + 8aa.

Ex. 3. The circle described on a focal chord as diameter touches

the directrix; and the circle described on a7iy other chord does

not reach the directrix.
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Let FQ he any chord, centre 0,

The equation of the circle with centre 0, radius OP, is

/ AQ + APy fAQ-AP\'

or p'-S{AP + AQ)p-\-S{AP.AQ)^(i.

At the points in which this circle meets the directrix

p = — aa. + z^;

or

This equation is possible only when

yy'+ia'^d;

i. e. Avhen the chord is a focal chord.

y J^ 1)/

In this case the two values of z are equal, each being ^—^- ;

and the directrix is a tangent to the circle.

Ex. 4. Two parabolas have a common focus and axis ; their

vertices are turned in opposite directions. A focal chord cuts

them in PQ, P'Q', so that PP'/SQQ' are in order. Prove (1) that

SP . SP' = SQ . SQ'; (2) that SP : SQ' is a constant ratio ; and

(3) tliat the tangents at P, P' are at right angles to one another.

The equations of the parabolas are

2

the focus being the origin.

8—2
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Now since p, p' are in the same straight line when the common

chord is the focal chord, we have

p =pp;

V'=PV,

•'• {yy'
~

4act') (ay + ay')
= 0.

Taking the former factor, we must have y, y' on the same

side of the axis with a constant product; therefore

SP. SF' = SQ.;SQ'.

The second factor gives SP : SQ' a constant ratio a : a.

Lastly, by Equation (4), the tangent vectors at P and P' are

parallel to

Now
<|-/')(-|^.«^^)

=
;g-i

= 0;

therefore the tangents are at right angles to one another.

Ex. 5. If a triangle he inscribed in a parabola, the three

points in which the sides are met by the tangents at the angles lie

in a straight line.

Let OPQ he the triangle.

Take as the origin, then

f
p = -^a

+ tj3,

P =!)" + i'P,

ir=-^a
+ tj3+x{ta + P),

y'2

ir'--5-a + ^'^+a;'(i'a+yS),
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are tlie vectors OP, OQ, and the equations of the tangents at P
and Q.

If QO meet in A the tangent at P,

f
OA =

-^a
+ tl3 + x{ta + l3)

.:^
+ tx= — y,

t + x = t'y,

f

and OA =
^,(i;..fp)

Similarly if the tangent at Q meets PO in B,

If the tangent at meets PQ in C,

00=OP + z{PQ)
= OP + z{OQ-OP)

I^ut OG=vp;

t + z{t' -t) = v,

W
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and 00 =-^(3.t+t

Now ^^oa-^-^obJ^og=o,
t t' W '

, ,
2t-t' llf-t f-t'^ »

and also -. t- = ;

therefore (Art. 13) A, B, Care in a straight line,

2. The ellipse. If a, ^ are unit vectors along tlie axes, the

equation of the ellipse may be written

p = xa. + yfS,

7 -

where if = -^(aj'—x^ = m ic^— x'\ :

a' ^ '

and the equation of the tangent will be readily seen to be

i: = xa. + 2//3 +X (2/a
-
mxji).

A single example will suffice.

Ex. If tangents he drawn at three points P, Q, R of an

ellipse intersecting in R', Q', P, prove that

PR'. QF. RQ' = Pq. QR'. RP'.

If X, y; x\ y ; x", y" are respectively the co-ordinates of

P, Q, R] we shall have

CR' ^xa + y{3 + X {ya
-
inxp)

= x'a + y'(i +X '

{y'a
-

mx'yS) ;

.: x + Xy = x' + X'y,

y — mXx =
y'
— mX'x'

;

. •. mX {x'y
—

y'x)
— mx''^ + y'^

— mxx' — yy'

. =1/ — mxx —
yy' .

Hence mX '

{x7j
—

x'y)
= b'- mxx' — yy'

= - mX{xy' — x'y) ;

.*. -A. = — A
J

r=-r'for<?',

Z = -Z' fori",

and XY'Z = -X'YZ'.
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Now X PR'
7> &C.Y PQ'

hence the proposition.

3. The hyperbola. If a, jB are unit vectors parallel to tlie

asymptotes CX, CY, the equation of the hyperbola may be written

p—xa-¥yji

= JCa + -
B,

X

since xy =
a' + b'

C.

If a, p be not both units we may write the equation under

the simpler form

p
= ta + i8

.(1).

To find the equation of the tangent, we have as usual a vector

parallel to the secant

and a vector parallel to the tangent will be

(3)-
t
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Hence the equation of tlie tangent is
.

Tr = ta+^ + xfta-^ (3).

Cor. It is evident that

laA— , la ,

are conjugate semi-diameters.

Examples.

Ex. 1. One diagonal of a parallelogram whose sides are tJie

co-ordinates being the radius vector, the other diagonal is parallel to

the tangent.

We have
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and X'-Y'- =
\,

an equation wLicli gives two equal values of Y with opposite

signs, for every value of X.

Hence all chords are bisected.

Cor. A'^-r=^=lis

CD being

\aFj \cd)
~

^'

This is the ordinary equation of the hyperbola referred to

conjugate diameters.

Ex. 3. If TQ, T'Q' he tvio taiigents to the hyperbola intersect-

ing in R and terminated at T, T\ Q, Q' hy the asymptotes; then

(1) TQ' is parallel to T'Q; (2) area of triangle TRT' = area of

triangle QRQ', and (3) CR bisects TQ' and T'Q.

The equation of the tangent

/3
TT = ^a + - + X

gives

(the coeflQcient of ^ being 0),

CT= 2ta,

CT =
2t'a,

CQ' =
2i8

Q'T^2at-^-f
=

^,(afi'-(S),

QT'J (atf - p)

therefore Q'Ti^ parallel to QT'.



J
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t

and CE.CG = GF';

because X'-Y'=\ (Ex, 2).

Ex. 5. If a chord of a hyj^erhola he one diagonal of a

parallelogram whose sides are parallel to the asymptotes, the other

diagonal passes through the centre.

Let the cliorcl be PQ ; p, p tlie vectors to P and Q ;
then

QP = p-p' = at+^^-(at'
+
^y

Now when one diagonal of a parallelogi-am is ma + n^, the

other will be ma. — njB.

Therefore in the case before us, the other diagonal is

'1 r
. «('-'')-/^G-?)

.(*-0(-|,)

And it is therefore in the same straight line with the line

which joins the centre of the hyperbola with the middle point
of PQ ;

whence the truth of the proposition.



124 QUATERNIONS. [chap. A' 1 1.

Ex. 6. If two tangents to a Jiyjyerhola at tlie extremities

Q) Q' of a diameter, meet a tangent at P in the x>oints T, T';

and if CD, CD' are the semi-diayneters conjugate to GF, CQ ;

then (1) FT : QT :: PT' : Q'T' :: CD : CD';

and {2) PT,PT' = CD\

If
t, t',

—
t', correspond to P, Q, Q', then

CT=at + ^ + xfat-^y

, /3^

-^'4-^i^'-j)'

gives
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Ex. 7. Straight lines move so that the triangular area ivhich

they cut offfrom two given straight lines which meet one another

is constaoit: to find the locus of their ultimate intersections.

Let OAA\ OBB' be the fixed lines, AB, A'B'l^o of the moving
lines with the condition that

OA.OB=.OA' . OB'.

If a, /3 be unit vectors along OA, OB,

OA=ia, 0B = ul3; OA' = t'a, OE = u'p,

the point of intersection of AB, AB' gives

p = ta + x (tc/3
—

to)

^ t'a + x' {u'/3
-

t'a),

/ 9

• • JOfAl "—^ \K> (Jj m

and «(l-a;) = i!' (1 -a;')

, /, xu\

Now tu = t!u! = c because the triangle has a constant area;

t 1
,

.

1 1^1, lc/3

the equation of a hyperbola.

Additional Examples to Chap. VII.

1. In the parabola .ST' = SP . SA.

2. If the tangent to a pai-abola cut the directrix in JR, SH is

perpendicular to SP.

3. A circle has its centre at the vertex A of a, parabola whose

focvis is
^S',

and the diameter of the circle is 3AS. Prove that the

common chord bisects AS.

4. The tangent at any point of a parabola meets the directrix

and latus rectum in two points equally distant from the focus.
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5. The circle described on SF as diameter is touched by the

tangent at the vertex.

6. Parabolas have their axes parallel and all pass through
two given points. Prove that their foci lie in a conic section,

7. Two parabolas have a common directrix. Prove that

their common chord bisects at right angles the line joining their

foci.

8. The portion of any tangent to the parabola between tau-

its

focus.

gents which meet in the directrix subtends a right angle at the

9. If from the poiiat of contact of a tangent to a parabola

a chord be drawn, and another line be di'awn parallel to the axis

meeting the chord, tangent and curve
;
this line will be divided

by them in the same ratio as it divides the chord.

10. The middle points of focal chords describe a parabola

whose latus rectum is half that of the given parabola.

11. FSQ is a focal chord of a parabola: FA, QA meet the

directrix in y, z. Prove that Fz, Qy are parallel to the axis.

12. The tangent at D to the conjugate hyperbola is parallel

to CF.

13. The portion of the tangent to a hyperbola which is in-

tercepted by the asymptotes is bisected at the point of contact.

14. The locus of a point which divides in a given ratio lines

which cut off equal areas from the space enclosed by two given

straight lines is a hyperbola of which these lines are the asymj)-

totes.

15. The tangent to a hyperbola at F meets an asymptote
in T, and TQ is drawn to the curve parallel to the other asymp-
tote. FQ produced both ways meets the asymptotes in li, K :

RR' is trisected in F, Q.
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1 6. From any point R of an asymptote, RN, RM are drawn

parallel to conjugate diameters intersecting the hyperbola and its

conjugate in P and D. Prove that CP and CD are conjugate.

17. The intercepts on any straight line between the hyper-
bola and its asymptotes are equal.

IS. If QQ' meet the asymptotes in R, r,

RQ.Qr = PO\

19, If the tangent at any point meet the asymptotes in X
and Y, the area of the triangle XCY is constailt.



CHAPTER VIII.

CENTEAL SURFACES OF THE SECOND ORDER, PARTICULARLY

THE ELLIPSOID AND CONE.

56. The Elli2)soid. In discussing central surfaces of tlie

second order, we sliall speak as if our results were limited to the

ellipsoid. That such limitation is not, in most cases, necessarily-

imposed on us, will be apparent to any one who has a slender

acquaintance with ordinary Analytical Geometry. We adopt it

in order that our language may have more precision, and that, in

some instances, our analysis may have greater simplicity. If the

centre be made the origin it is clear that the scalar equation can

contain no such term as ASap, for tlie definition of a central sui'-

face requires that the equation shall be satisfied both by + p and

by -p.

If we turn to the equation of the ellipse (Art. 43), we shall

see at once that the equation of the ellipsoid must have the form

ap'^ + hS'ap + 2cSapS{3p + . . . = 1.

Now if, as in the Article referred to, we put

ff>p
= ap + baSap + c (aSj3p + fiSap) + ...

we shall have

Sp(f>p
=

cip^ + hS^ap + 2cSapSj3p + ...

= h
the equation required.

It will be seen that, as in Arts. 32, 33, one form of the equa-

tion of the straight line was found to coincide exactly with the

equation of a plane, so a form of the eqiiation of the ellipse

coincides exactly with the equation of the ellipsoid.
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It is evident that the three properties of
(ftp given in Art. 44

are true of ^p in its present form.

57. To find the equation of the tangent plane.

Let a secant plane pass through the point who.se vector is p;

and let p' be the vector to any point of section.

Put p'
= p + /?,

where /? is a vector along the secant plane ;

then
/S'p'c^p'

= S(p + P)cji(p + /3).

Hence, observing that (44)

^{p + (3)=^P +
<t>l3,

and Sp(j)/3
=

S(S<^p,

we have Sp<l>p
=

Spi>p + 2Sp^p +
^'/?</)^ ;

i.e. 2S^cj>p + Sl3i>l3
= 0.

Now (45), as the secant plane approaches the tangent plane,
the sum of these two expressions approaches in value to the fii-st

alone : that is, for the tangent plane, Sficpp
~

0, where /S is a vector

along that plane.

If TT be the vector to a point in the tangent plane,

TT - p + x/3 ;

. '. S (jr
—

p) (jip
—

xSI3<j>p

=
0,

and Sirffip
=

/Spfpp

= 1

is the equation of the tangent plane.

Cor. <f)p
is a vector perpendicular to the tangent plane at the

extremity of the vector p.

58. If OF be perpendicular from the centre on the tangent

plane; then, since <^p is a vector perpendicular to that plane,

0Y= x^p and Sx {<^pf
=

1, giving

OY=T(xcf>p) = T^.
9P

Sir W. Hamilton terms ^p the vector of lyroximity. [In fact

vector Or=(<^p)-'.]

T. Q. 9
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59. If tangent planes all pass thi'ongli a fixed point, the

curve of contact is a plane curve.

Let T be the fixed point ;
vector a

; p the vector to a point of

contact.

Then (Art. 57) Sa<l>p
= 1

;

i.e. AS'p<^a=l (44. 3),

which is the equation in p of a plane perpendicular to ^a.

Now <^a is the normal vector of the point where OT cuts the

ellipsoid ;

.*. the curve of contact lies in a plane parallel to the tangent

plane at the extremity of the diameter drawn to the given point.

The plane of contact is called the polar plane to the point.

60. Tangent planes are all parallel to a given straight line,

to find the curve of contact.

Let a be a vector parallel to the given line
;
then

"jr = p + xa

is a point in the tangent plane ;

.'. /S {p + xa) if>p
^ 1 ; .

and Sa<J3p
=

0,

or iSp(}>a
—

0,

the equation of a plane through the origin perpendicular to ^a :

that is, the curve of contact lies in a plane through the centre

parallel to the tangent plane at the extremity of the diameter

which is parallel to the given line.

61. To find the locus of the middle points of parallel chords.

Let each of the chords be parallel to a, tt the vector to the

middle j)oint of one of them
;
then tt + xa, tt — xa are points in

the ellipsoid.

From the first,

aS* (tt + xa) <f> {Tr
+ xa)

= 1 (Art. 56) ;

i.e. /Stt^tt + 2xSTr<fia + X'/Sacjia
= 1.
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From the second,

/S'ttc^tt
—

2xS7rcj)a + X^Sa(fia
= 1

;

.'. subtracting, S7r(fia
—

(1),

i. e. the locus is a plane through the centre perpendicular to (f>a,

or parallel to the tangent plane at the extremity A of the

diameter which is drawn pax'allel to a.

If we call this the plane £0C, B and C being any points in

which it cuts the ellipsoid ;
and if OB - p, OC =

y,
we shall have

/SyS^a
= 0, Sy(f}a

=
0,

and therefore
/Sa(j)(3 =0,

or a satisfies the equation /Stt^jS
—

of the plane which bisects all chords parallel to OB (Equation 1).

Let A OC be this plane which bisects all chords parallel to OB.

Then, since OC or y is a vector in it,

Syi>{3
=

0, i.e. S/Sc^y^O.

But we have already proved that

Sycjia
=

0, i. e. Sa(f)y
= 0,

because y is in tlie plane BOC ;

.'. by equation (1) a, (3 both satisfy the equation of the plane

Sircfyy
= 0, which is the plane bisecting all chords pai'allel to y ;

that plane is therefoi'e the plane AOB: we are thus presented

with three lines OA, OB, OC such that all chords parallel to any
one of them are bisected by the diametral plane which passes

through the other two.

We may term these lines conjugate semi-diameters, and the

corresponding diametral planes conjugate diametral jjlanes.

It is evident that the number of conjugate diameters is

unlimited.

Cor. We have the following equations :

S^4>y = =
Syc}>l3,

Sa(f)y
= =

Sycjiu (2).

9—2
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They sliew tliat y is perpendicular to both ^a and ^/3, and is

therefore a vector perpendicular to their plane ; hence, as in 34. 4,

y = x V<fia(fi^.

In the same "way, since ^y is perpendicular to both a and
/?,

we have

<^y
=
2/Fa/3;

or, neglecting tensors, we have the following vector equalities :

y = F<^a<^y3, /5
=

V<l>acj>y,
a =

r<t>l3cj,y,

tf>y=VaP, 0^=ray, cj^a
=

Vfiy (3).

Note also

upon which Hamilton founded his solution of linear equations,

62. If s-s in Art. 47 we write —
xj/ij/p

for
(f>p, ij/p being still a

vector, the equation of the ellipsoid assumes the form

Spily(il/p)
= -l,

i. e. (44) Si{/pij/p
= — 1

{^py=-T(rppy=-i (1),

which, if we put u- ij/p,
becomes T(r=^ 1, the equation of a sphere.

Hence the ellipsoid can be changed into tlie sphere and vice

versd, by a linear deformation of each vector, the operator being

the function
xj/

or its inverse.

The equations

.Sa<^y8
= 0, &c.

now become Sa\p^p = 0,

i.e. S'xl/aij/fi^O, &c., &c (2).

(1) and (2) shew that
vj/a, if//3, xpy are unit vectors at right angles

to one another.

If we term the sphere T<j =\ the unit-sphere, we may
enunciate this result by saying that the vectors of the unit-sphere

which correspond to semi-conjugate diameters form a rectangular

system.



ART. G3.] CENTRAL SURFACES OF THE SECOND ORDER, 133

63. Let lis now take i, J, k unit vectors along the principal

axes of X, 7j,
z

;
then we shall have

p^xi + yj + zk
(1),

.*. Sip — — X, (fee.

so that for the sake of transformations in which it is desirable

that the form of p should be retained, we may write

p = -{iSip+j,Sjp + kSkp) (2);

and as «^p is a linear and vector function of p, its vector portions

along the principal axes will be multiples of

iSip, jSjp, kSkp ;

we may therefore write

iSip jSjp kSkp
a c

the form a^ having been assumed in order to make the equation

/Spcj^p
= 1

coincide with the Cartesian equation

x-' y^ z^

a' li' e

As <^p
= -^^p (4),

we require to take
i/^p

so that pei"forming the operation i/f
twice

on p shall give tlie same result (with a -sign) as performing the

operation <^ once.

Now a comparison of equations (2) and (3) will shew that

the latter operation introduces — &c. into p ;
it is evident

a'

therefore that the former operation (i/^)
is to introduce - &c. or

, (iS'ip jSjp kSkp\
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It may perhaps be worth while to verify this result. We have

fiSixlyp jSjil/p kSkif/p\

a\ a c J

. i'Sln

a

^iSip jSjp kSkp\

~^^ IF'^ '"^J

= -^p.

'^ a c

^iSip jSjp kSlcp\ ,„,

a c J

<j!)~'p
= a^iSip + b'jSjp + c^kSkp (7),

because <^(fi~^p produces p.

i/'" 'p
= — (aiSip + hjSjp + cJcSkp) (8),

p = ij/~^ijyp
= —

(aiSiif/p + hjSjxpp + ckShxpp) (9).

It is evident that the properties of Art. 44 apply to all these

functions.

64. Examples.

Ex. 1. Find the point on an ellipsoid, the tangent j)lane at

lohich cuts off" eqiial portio7is^from the axes.

Let X, 2/,
z be the co-ordinates of the point, p the portion cut

off, then

p = xi + yj + zk.

Now p?, pj, 2di: are points on the tangent plane ;

.*. Sjncjip- 1,

which gives
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or -^ = 1.

Similarly ^=^'

X y z \

«' ^" <^' P Jci^ + ¥ + <f'

Ex. 2. To ^/ic^ the perjJendicular from the centre of the

eirqysoid on a tangent plane.

.-. ^ =
(r<(,p)'

=
-(,(,p)'

=
|;

+
|^

+ r; (Art. G3, 1. 3).

Ex. 3. To find the locus of the points of coniact of tangent

planes which make a given angle with tJve axis of z.

"We have

SkU (^p)
=

p,

Skipp =pTc{)p,

t)r

c

the equation of a cone whose axis is that of z and guiiling curve

an ellipse whose semi-axes are o?, b^.

The intersection of this surface with the ellipsoid is the locus

required.

Ex. 4. To find tlie locus of a point when the 2}e7'pendicular

from the centre on its 2iolar 2ylcine is of constant length.

Let TT be the vector to the point, then

/Sp^7r= 1 is the equation of the polar plane (Art. 59),

and ^T- is the length of the perpendicular on it (Art. 58) ;
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.*. /S' (^tt)^
= —

C^, by the question.

But since (44)

if S be
(fi-TT,

. '. SiT^^TT = — C" is the equation required ;

hence the Cartesian equation is (63. 6)

-J + T5 H 4
— ^ •

a c

Ex. 5. The sum of the squares of three conjugate semi-dia-

meters is constant.

Let a, p, y be the semi-diameters
; xpa, ij/jS, ij/y

are rectangular
unit vectors (Art. 62).

Now a = - [aiSiipa + hjSjxpa + chSJupa) (63. 9) ;

.-. (Ta)-'
= - a-' = cr {Si^l,aY- + If {Sj^af + c' (-%-./^a)^

{Tpy =: a^
(*S'i«/'i8)'

+ h' {Sjip/Sy + c' (Skxl^py,

{TyY = a' (Si^PyY + ¥ {Sjijyyy + c' {Skil^yY :

adding, and observing that

we get

{Si^ay + {Siip/sy + {Si^yy = i (si. Cor.),

(^a)^ + (Tfiy + (TyY = a' -^Jy + r,

1. e. a + 6
- + c = a + 6" + c".

Ex. 6. The sum of the squares of the three j^erpendicularsfrom
the centre on three tangent planes at right angles to one another is

constant.

"We have

p = <}>~^<f>p
=

aHSi(f)p + b'jSjcfip + c^kSJccf)p (63. 7),

and ^p = -
{iSi(j>p +jSj(f)p + kSkcf)p) (63. 2) ;

.-. Sp4>p
= l=a' {Sict>py + b' (SJcf^pY + r {Skcf^pY

=
{Tcl>py {a' {SiUcf^pY + b' {SJ U4>pY + C-" {SkU<j>pY] ;
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hence if p, p', p" be three vectors so tliat
(f>p, cfip', cfip" are at right

angles to each other
;
that is, so that the tangent phxnes at their

exti'emities are at right angles to one another (57. Cor.),

1 1 1

{Tcppy
^
{T^p'r

"-

{Tcpp'r

- a' {(Si Ucf^pY + (SI U4^py + (SlU^pJ}

+b^(sju<{>pr+...] +...

= a' + b' + c' {31. Cor.).

But ,„ ,, &c. are the perpendiculars from the centre on the

tangent planes at p, p , p" (58). Hence the proposition.

Ex. 7. The sum of the squares of the 2)rojections of three con-

jugate diameters on any of the jiTincipal axes is equal to the square

of that axis.

Let a, /?, y be conjugate semi-diameters
; then, since

a = — (aiSiif/a + bjSjil/a + cTcSk\pa) (63. 9),

Sia = aSiif/a.

Similarly, Si/S
=

aSi\(/^,

Siy = aSiij/y ;

.'. (Siaf + (Si^y + (SiyY = o? {(SiiffaY + (si^/3y + (Siii^yf]

=
a'(3l. Cor.),

because
ij/a, \pp, \}/y

are at right angles to one another (62).

But — Sia is the pi'ojection of Ta along the axis of x
;
and

similarly of the others. Hence the proposition.

Ex. 8. The sjwi of the reciprocals of the squares of the three

perpendiculars from the centre on tangent planes at the extremities

of conjugate diameters is constant.

Let Oi/^, Oi/.^, Oi/s be the perpendiculars.

1

Ol/,
,
— {M (58)

(Siaf (Sja)- (SkaY
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i_ _ {Sif3y (Sjfsy {Sk{3y

Oy,' a'
^

b'
"^

c'

l_^(Siy)\(Sjyr_^(Skyy
O^f a' h' c*

1 11 1

{Slay + {Si^y + {Siyy\ + &c.

1 1 1
/T. -TX= - + ,- + -T, (Ex. 7).a' 0' c'
^ '

Ex. 9. If through a fixed point within an ellipsoid three

chords be drawn mutually at right angles, the sum of the recijiro-

cols of the products of their segments will be constant.

Let be the vector to the given point ; a, fS, y unit vectors

parallel to three chords at right angles to each other.

Then $ + xa = p gives

S{6 + xa)<f>(e + xa) = l

a quadratic equation in x, the product of whose roots is

secf>e-i ^

Sacfia

. '. the product of the reciprocals of the segments of the chord is

1 Sa(f)a 1

X^a
^

Sdcf>0
- 1

*

(Tay
'

and the sum of the reciprocals of the prodvicts of the segments is

1 (Sa4a Spcf,(3 Sy^y]

m<^e~i
'

\{Ky'^{T(dy '^{Tyyj-

Now since ^a<^a = ^-^% %^ + ^^^'^^- (G3. 2, 3),^
a^ b^ c

^ '

the sum of the recipi'ocals of the products

1

^'^(^y
- 1

+ i
|{>s)-a)^

+ {Sj^y +
{Sjyy^^
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+ l{(S'kay-+ l

e^i (,7
*

t^
-
?) ("• ^"•)-

Cor. If 6 be uot constant, but S6(f)9 be so, i. e. if the given

point be situated on an ellipsoid concentric with, and similar to the

given ellipsoid, the same is true.

Ex. 10. If the poles lie in a plane parallel to yz, the polar

planes cut the axis of x always in the same point.

Lot pi be tlie distance from the origin of the plane in -which

the poles lie, S any line in that plane, then tt =pi + 8 is the vector

to a pole, and

>^/D<^(pi + S)
= l (59)

the equation of the corresponding polar plane.

At the jioint where this plane cuts the axis of cc,

p = xi',

. •. Spxicfii + xSi(l>S
= 1.

Now S is a vector in a plane perpendicular to ^i,

.-. Sicf>8
=

SScfii
=

;

and Si<f>i
= constant = 7i suppose ;

.*. npx= 1,

which shews that x is constant.

Ex. 11. A, B and C are three similar and similarly

situated ellipsoids; A and B are concentric, and G has its centre

on the surface of B. To shew that the tangent "plane to B at this

2)oint is parallel to the plane of intersection of A and C.

Let a be the vector to the centi'e of C.

Sfx^p^a the equation of J,

Spct>p
= b B,

S {p -a) <f){p
—

a)
= c C.
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Now at the intersection of A and C, p is the same for both
;

therefore the equation of the plane of intersection is to be found

by subtracting the one from the other.

It is therefore 2>S'p<^a
= Sa(^a + a — c

;

and the equation of the tangent plane to B at the centre of C is

STTtpa
= b

;

.'. both planes are perpendicular to ^a, and are consequently

parallel.

Ex. 12. If through a given 2^oint chords he drawn to an

ellipsoid, the intersections of pairs of tangent 2^lcmes at their ex-

tremities all lie in a 2)lane parallel to the tangent plane at the

extremity of the diameter which passes through the 2^oint.

Let a be the vector to the point ;
a + a\P, a +

x^/S,
the vectors

to the points of intersection with the ellipsoid of chords parallel

to /? ;
then

STTcf) (a 4 x^(3)
= 1,

AS'7r<^(a + .T^^)
=

l,

are the equations of the tangent planes at these points.

At the intersection of these planes tt is the same for both
;

.*. subtracting we get

S7rcf>f3
=

0,

STr(f)a
= 1 ,

The last equation is that of the line of intersection of the tan-

gent planes; and that line is per[)endicular to ^a, or (57. Cor.)

parallel to the tangent plane at the extremity of the diameter

which passes through the given point.

Cor. STr<fi/3
= shews that the line of intersection correspond-

ing to any one chord is parallel to the tangent plane at the

exti'emity of the diameter which is parallel to that chord.

Ex. 13. Two similar and similarly situated elli2)Soids are cut

ly a series of ellipsoids similar and similarly situated to the two
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give7i ones ; and in such a manner that the 2:)lanes of intersection

are at right angles to one another. Shew that the centres of the

cutting ellipsoids lie on anotlier ellipsoid.

Let Sp<f>p
= l

(1),

S{p-a)4.{p-a)^C (2),

be the given ellipsoids;

S(p-ir)^(p-7r)=x (3),

one of the cutting ellipsoids.

f}>
is the same for all because the ellipsoids are similai*.

The plane of intersection of (1) and (3) is found by subtracting
the equations ;

and is therefore

2Spcf)Tr
= Stt^tt + 1 — X.

The plane of intersection of (2) and (3) is

2/Sp (<^7r
—

<^a)
=

/bV</)7r
—

Sacf^a + — X.

The former of these planes is perpendicular to <^7r and the latter

to (fiw
-

<^a ; and, since by the question, the former is j^erpen-

dicular to the latter, <^7r is perpendicular to cfiw
—

(jya,

.'. ScfiTT (<f)7r
—

<^a)
=

0,

the equation of th.e locus of the centres of the cutting ellipsoids.

This equation will be reduced to the requisite form by ob-

serving that

o<^7r<^7r
=

S:r(f>Cf)Tr
=

Sircji tt

S(f>7T(fia
—

Sa.(fi'7r ]

.'. S {it
—

a) </)"7r
=

0,

the equation of an ellipsoid of which the semi-axes are propor-

tional to

a^, b", c* (G3. 6).

The Cartesian equation is

X V z (xx iiy zz\

a c \« b* c* /
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Ex, 14, If d tangent 2jlane he draion to the inner of two

similar concentric and similarly situated ellipsoids the 2Joint of

contact is the centre of the elliptic section of the outer ellipsoid.

Let Sp^p = 1 be the eqxiation of the inner,

a'Sp4>p
= 1 of the outer ellipsoid.

The tangent plane is Sttcj^p
= 1.

Now if cr be the vector to the elliptic section measured from

the point of contact, tt = p + cr is a point in the outer ellipsoid ;

.: a^S {p + a-)(f>{p + (T)=l.

But AS'(r9f)/3
=

(57. Cor.) j

.•. a^ + a'/So-ipa-
=

1,

a"

I -a' S(T<I>(T= 1,

the equation of an ellipse of which the centre is the point of

contact,

Ex. 15. Find the equation of the curve described hy a given

point in a line of given length whose extremities viove in fixed

straight lines.

Eirst, let the straight lines lie in one plane.

Let unit vectors parallel to them be a, (3.

Let the vectors of the extremities of the moving line be

£ca, yfi, and its length L Then the condition is

{yl3-xay = -l%

or x' + f + 2xySal3 = l' (1).

The vector to a point which divides this line in the ratio

e : 1 is

p = £ca + e (i/^
—
xa)

= aja (1
—

e) + ei/^ ;

.', Sap = —
(1

—
e) X + eySa,3,

&'l3p
^

(I
-

e) xSa(3
-
ey ;
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, Sap + SaBSBp Sj3n + SaBSapwhence x=^-,— , ,^,.; ,' ., , ,
?/=

'

,, -'
., , ,

which values being substituted in equation (1) give the required

equation, viz, :

(Sap + SapS/SpY (S/3p + Sa(3SapY

{l-er

+ 2 ~^^^ {Sap + SafiS/Sp) {SI3p + Sa(3Sap)
e(i

—
e)

= r{s'ai3-iy.

But p is subject to the additional condition
(.31.

2. Cor. 2)

*S' . a/Sp
=

;
and the locus is a plane ellipse.

When the given straight lines are at right angles to one

another, the equation is much simplified, for

Safi^O;

and our eqiiations are

Sap = — (1 — e) X, S/Sp
= —

ey;

whence i^ + ^^ = ^^
{\-ef e-

an ellipse of which the semi-axes are le and ^ (1
—

e).

Generally, if the given lines do not meet, let the origin be

chosen midway along the line perpendicular to both; then we

have

{y + xa-{-y + y[i)r^-l\

y and —
y being the vectors perpendicular to the lines,

p=^{y+oca){l-e) + e{-y + yp).

The first gives

and the second gives, as in the simpler case above,

Sap = — (1 —e)x+ eySa/S,

SfJp
^

(1
-

e) xSafi
-

ey.
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Hence the elimination of x and y again leads to the equation
of an ellipsoid, the only difference being tliat I' is diminished by
the square of the shortest distance between the lines; i. e. the

axes are less than in the former case.

In the extreme case, where l=2Ty, the equation cannot be

satisfied except by

x^O, 2/
=

0,

(i.
e. the locus is reduced to a single point), unless indeed we have

a = ±
/?,

for then x~^y,
and the locus is a straight line parallel to each of the j)receding

lines.

65. The cone.

1. To find the equation of a cone of revolution whose vertex

is the origin 0.

Let a be a unit vector along the axis OA,

p the vector to a point F on the surface of the cone
;

then Sap = — Tp cos 9,

6 being the angle POA.

But this angle is constant,

.•. S^ap =
c'p^ is the eqviation required.

2. The equation of a cone which has circular sections, but

which is not necessarily a cone of revolution, is thus found.

Take the vertex as the origin, and let one of the circular

sections be the intersection of the plane

Sap — — a' (1)

with the sphere p^
= SPp (2).

Since these are scalar equations we may multiply them together ;

and thus obtain at all the points of the circular section

ay + SapSj3p = (3).
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Now if xp or p be written in place of p, the equation is not

changed, since p occurs twice on each side. It is thei'efore the

required equation of the cone. •
'

Cor. 1. Every section by a plane parallel to Sap - - a^ is a

circle.

For the equation of a plane parallel to

Sap = — a

is Sap = — aa*,

which being substituted in the equation of the cone gives

the equation of a circle.

CoR. 2. The plane S^p = -h^' (4)

also gives a circle whose equation is

a^p"
=

b/3'Sap (5).

These two equations give the suhcontrary sections.

To deduce the relation between the two sections
;

let be the

vertex of the cone, OAB the plane through a, ji ;
AB the line in

which the section cuts this plane, AD that in which the sub-

contrary section cuts it ;

OA^p, OB =
p', OD=.xp'.

We have, by (5), xp'^
= -^' Sap'

= -6/3^by(l),
=

S[ip, by (4),

= 9% % (2) ;

i.e. OB.OD = OA\

and the triangles OAB^ OAD are similar, or AD cuts OA at the

same angle that AB cuts OB.

66. If
</>p

=
2a-> + aSjip + pSap,

the equation of the cone is reduced to

Sp(^p
— 0.

T. Q. 10
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It is evident that all the properties of
cjip, Art. 44, are appli-

cable here.

As in Art. 57, the equation of the tangent plane is

/S'tt^/j
= 0.

67. Examples.

Ex. 1. Tangent i^lanes are draton to an ellipsoidfrom a given

external 2^oint, to find the cone which has its vertex at the origin

[the centre of tli^e ellipsoid\ and loJiich 2)asses through all the points of

contact of the tangent j)lanes ivith the ellipsoid.

Let a be the vector to the external point, p a point in the

ellipsoid where a tangent plane through a touches it.

Then the equation of the ellipsoid is

aSp^P=1,

and the equation of the tangent plane

Sa(f)p=l, i.e. /Sp(f>a
= l,

The equation
>S)o(^p

=
(*Sp<j!)a)",

x^ y^ z^ (XX yf '"''^ ^

zz'y
a c \a

represents a surface passing through the points of contact; and

is the cone requii'ed. [For it is homogeneous in Tp.^

Ex. 2. Of a system of three rectangular vectors two are con-

fined to given planes, to find the surface traced out hy the third.

Let TT, p, cr be the three vectors, of which two are confined to

given plaues whose equations are

>S'a7r = 0, SPp =
0,

to find the locus of a.

Since the vectors are at right angles, we have

Sirp = 0, SntT = 0, Sap --=
0,

and we have five equations from which to eliminate tt and p.

Since Sair = 0, /S'cttt = 0,

TT is at right angles to both a and
o-,

and therefore to the plane
acr

;
or

TT — x Vaa.
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Since S/Sp
-

0, Sap - 0,

p is at riglit angles to tlie plane /?cr; therefore

p = yVf3(T,

and 7rp
=

xt/ Vaa V/Scr.

Now Sttp = 0,

therefore aS' . Vaa Vficr
=

0,

or S (ao-
-

Sacr) {/3<t
-
Sl3a)

=
0,

or o-^S'a/3-.SW>S'/?o-=0,

the equation of a cone of the second oi'der, which has circular

sections (65. 2).
^

Cor. The circular sections are parallel to the two planes to

which the two vectors are confined.

Ex. 3. The eqitation p = i"a + u^j3 + (t + iiy y is that of a cone

of the second order touched hy each of the three planes through

OAB, OBC, OCA; and tlie section ABC through the extremities of

a, /?, y is an ellipse touched at their middle j^oints hy AB, BC, CA.

1. If the surface be referred to oblique co-ordinates parallel

to a, fS, y respectively, we shall have

p = xa+yj3 + zy,

therefore x = f, y = u^, z ^ {t + tiy,

or z = {Jx + Jyy = x + y + 2jxy,

which gives (z
— x — yY = ixy,

a cone of the second order.

2. If ^ = — M, the equation becomes

p = f{a + (3),

the equation of a sti-aight line bisecting the base AB, which since

it satisfies the equation relative to t, shews that this line coincides

with the cone in all its length; i.e. the cone is touched in this

line by the plane OAB. '

Similarly, by putting ^ = 0, u = respectively, we can shew

that the cone is touched by the plane BOC,' COA in the lines

which bisect AC, CA.

10—2
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3. Restricting ourselves to the plane ABC, we have the

section of a cone of the second order enclosed by the triangle

AI>C, which triangle is itself the section of tln^ee planes each of

which touches the cone.

Ex. 4. The equation p = aa + hj3+ cy with the condition

ah + bc + ca=0 is a C07ie of the second order, and the lines OA, OB,
OC coincide throughout their length ivith the surface.

1. It is evident that the equation gives

XI/ + 1/Z+ zx = 0,

2. That if & = 0, c = 0, the question is satisfied by

p = aa,

whatever be a, therefore &c.

Ex. 5. Find the locus of a point, the sum of the squares of

whose distancesfrom a member of given j^lanes is constarit.

Let
>S'S,Pj

=
C,, SS,^p„

= C„, &c. be the equations of the given

planes, p the vector to the point under consideration; then
£Cj8, ,

x„S^, &c. Yv'ill be the perpendiculars on the planes from the point ;

provided

p + x,S^=p^, p + x,_p,^=p„, &c.;

therefore
/S'Sj (p + a;,8,)

=
C^, &c.

and
ajjSj-

= 0^
—

>SS^p, etc.,

i.e. the square of the line perpendicular to the first plane from

the given point

/fi
- SS.pV

\ 2\ J
'

and, by the question,

\~^f^ J
+

[ TS~ )
'^^^- ^^ constant.

The locus is therefore a surface of the second order.
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Ex. G. The lines which divide i^roi'iortionalhj the ixdrs of

opposite sides of a gauche quadrilateral, are the generatmg lines

of a hi/jjerbolic 2'>ciraholoid.

Let ABCD be the quadrilateral.

AD, BC are divided proportionally
in P and R.

Let CA^a, CB = p, CD =
y;

CE = mf3, DP^mDA;
I.e.

therefore

therefore

therefore

CP—y = m(a-y);

PP = CP-CP^y + m{a-y)-onl3,

p=CQ=CR+pRP
= mfS +2^{y + m (a

-
y)
-
m(3\

= xa + yfi + %y, say;

X =^pm, y = m -]}ni, z=p{^- m);

X
ni = x + y, -p

=
x + y

x
Jb*

or

x-¥ y

{x +z) {x + y)
= X,

the equation referred to oblique co-ordinates parallel to a, yS, y.

Pascal's Hexagram.

68. Let be the origin, OA, OB, 00, OD, OE five given
vectors lying on the surface of a cone, and terminated in a plane
section of the cone ABCDBF, not passing through \

OX any
vector lying on the same surface.

Let OA =
a, 0B =

13, 00 =
y, OB =

S, OB = e, OX=p.
The equation

,S. V{Val3V8€) ViV/SyVep) F(FyST» =
(1)

is the equation of a cone of the second order whose vertex is

and vector p along the surface. For
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1. It is a cone whose vertex is because it is not altered

hj writing xp for p. Also it is of tlie second oi'der in p, since p

occurs ill it twice and twice only.

^ w
R

2. All the vectors OA, OB, OC, OD, OE lie on its surface.

This we shall prove by shewing that if p coincide with any
one of them the equation (1) is satisfied.

If p coincide with a, the last term of the left-hand side of the

equation, viz. Fpa, becomes Faa = Vci =
0, and the equation is

satisfied.

If p coincide with y3, the left-hand side of the equation be-

comes

S. V(Va(3rS€) V(r^yVe/3) F(FySF/3a) (2).

Now F(F/?yFe/3)-- F(F€/3F;8y), (22. 2), is a vector parallel

to ft (31. 3), call it mft; and

r.{V{rapV8c) F(Fy8F^a)}= F {F(Fa;8FSe) F(Fa/3FyS)}, (22. 2),

= a multiple of Fa;S, (31. 3),

^nVa/B, say.
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Hence the product of the first and third vectors in expression

(2) becomes
scalar + n Va^,

and the second is mf3; therefore expression (2) becomes, by 31. 2,

>S . (scalar + n Va/3) 7n/3

= mn&'jS Vaj3

=
0,

because Vaj3 is a vector perpendicular to
(3.

Equation (1) is therefore satisfied when p. coincides witli
/3.

If p coincide with y both the second and third vectors are

parallel to (3 (31. 3); therefore their product is a scalar, and equa-

tion (1) is satisfied.

The other cases are but repetitions of these.

Hence equation (1) is satisfied if p coincide with any one of

the five vectors a, (3, y, S, e; i.e. OA, OB, OC, OB, OE are vectors

on the surface of the cone.

3. Let F be the point in whicli OX cuts the plane ABCDE;
then ABCDEF avQ the angular points of a hexagon inscribed in

a conic section.

4. Let the planes OAB, ODE intersect in OP; OBC, OEF
in OQ; OCD, OFA in OR; then

V. Vaj3V8€ = mOP, (31. 4),

r . VfSyVep = nOQ,

r. Vy8Vpa=2)OJi;
therefore

S. r{Va(3V8e) V{V(3yV€p) V{VyhYpa) = mnpS{OP.OQ.OR);
hence equation (1) gives

S{OP. OQ. OR) =
0,

or (31. 2. Cor. 2) OP, OQ, OR are in the same plane.

Hence PQR, the intersection of this plane with the plane
ABCDEF is a straight line. But P is the point of intersection

of AB, ED, &c.
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Therefore, the opposite sides (1st and 4th, 2nd and 5th, 3rd

and Gth) of a hexagon inscribed in a conic section being produced
meet in the same straight line.

Cor. It is evident that the demonstration applies to any six

jjoints in the conic, whether the lines which join them form a

hexasron or not.*o^

Additional Examples to Chap. VIII,

1. Find the locus of a point, the ratio of whose distances

from two given straight lines is constant.

2. Find the locus of a point the squai'e of whose distance

from a given line is proportional to its distance from a given

plane.

3. Prove that the locus of the foot of the perpendicular from

the centre on the tangent plane of an ellipsoid is

{axY + {hjY + {czf
=

{a? +f + zj.

4. The sum of the squares of the reciprocals of any three

radii at right angles to one another is constant.

5. If Oy^y Oy^, Oy^ be perpendiculars from the centre on

tangent planes at the extremities of conjugate diameters, and if

(^1, Q^y Q^ be the points wliere they meet the ellipsoid; then

1 1 1111
4- . 4- . = J I

01\\0Q^' OY^'.OQJ' OY^\OQ^ a' h'

6. If tangent planes to an ellipsoid be drawn from points in

a plane parallel to that of xy, the curves which contain all the

points of contact will lie in planes which all cut the axis of z

in the same point.

7. Two similar and similarly situated ellipsoids intersect

in a plane curve whose plane is conjugate to the line which joins

the centres of the ellipsoids.

8. If points be taken in conjugate semi-diameters produced,
at distances from the centre equal to <p times those semi-diameters

respectively; the sum of the squares of the recipi'ocals of the
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perpendiculars from tlie centre on tlieir polar planes is equal to ;>"

times the sum of the squares o£ the perpendiculars from the

centre on tangent planes at the extremities of those diameters.

9, If P be a point on the surface of an elli})Soid, FA, PB,

PC any three chords at right angles to each other, the plane

ABC will pass through a fixed point, which is in the normal to

the ellipsoid at P; and distant from P by

2

V
1 i i

'

a b c

where p is the perpendicular from the centre on the tangent

plane at P.

10. Find the equation of the cone which has its vertex in

a given point, and which touches and envelopes a given ellipsoid.



CHAPTER IX.

FORMULA AND THEIR APPLICATION.

69- Products of two or more vectors.

H 1. Two vectors. The relations which, exist between the

scalars and vectors of the product of two vectors have ah'eady

been exhibited in Art. 22. We simply extract them :

(a) Sal3 = S{3a. (b) Val3 = -V(3a.

(c) af3+f3a^.2Sa(3. (d) af3
-
(3a= 2Vap.

These we shall quote as formulte (1).

2. We may here add a single conclusion for qtiaternion

products.

Any quaternion, such as aj3, may be written as the sum of

a scalar and a vector. If therefore q and r be quaternions, we

may write

q=Sq+rq,
r = Sr + Vr ;

therefore qr = SqSr + Sq Vr + Sr Vq + Vq Vr,

and S.qr = SqSr + S. Vq Vr,

V. qr = Sq Vr + SrVq + V . Vq Vr,

where S .VqVr is the scalar part, and V.VqVr the vector part of

the product of the two vectors Vq, Vr.

If now we transpose q and r, and apply (a) and (h) of for-

mulae 1, we get

S.qr = S.rq \

V. qr +V . rq -^ 2 (SqVr + SrVqy
^''^'
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y-
3. Three vectors. By observing that S.ySafS is simply tlie

£. scalar of a vector, and is consequently zero, we may insert or

J
omit such an expression at pleasure. By bearing this in mind

the reader will readily apprehend the demonstrations which

follow, even in cases Avhere we have studied brevity.

S.aPy = S.{Sal3+ra(3)y

= S.yraP,{hjl.a),
= S.y{SaP+ral3)
=
S.yaj3 (3).

Again, S.a^y = S.a (S/Sy + V/Sy)

= S{VPy.a),{hyl.a),
= S {S/Sy + Vfiy) a

=
>S.i3ya (.3).

The formulae marked (3) shew that a change of order amongst
three vectors pi-oduces no change in the scalar of their i^roduct,

provided the cyclical order remain unchanged.

This conclusion might have been obtained by a different pro-

cess, thus :

In (2) let q = a/3, r — y, there results at once

JS.afiy^S.yajS.

Again in (2) let g = ya, »* =
/?, there results

S . yaj3
--= S . /3ya.

We have therefore, as before,

S . oiySy
= S . ya/3

= S . /3ya (3).

V 4. S,a/3y = S.aV(3y
= -S.aryl3, (by 1.5),

= -S.ayl3 (4).

Similarly S . af3y=
- S . ^ay (4),

or a cyclical change of order amongst three vectors changes the

sign of the scalar of their product.
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5. It lias already been seen (Art. 31. 1) that -S. ajBy is tlie

volume of the parallelepiped of which the three edges which

terminate in the point are the lines OA, OB, 00 whose vectors

are a, /?, y respectively.

"We may express this volume in the form of a determinant,
thus :

Let a, (3, y be replaced by

xi+yj + zk, x'i + y'j + z'h, x"i + y"j + z"k (Art. 31. 5) ;

X, y, £ being the rectangular co-ordinates of A, x, y, z those of B,

x", y", z" those of C, measured from as the origin ;
then

S . a(3y
= S . {xi + yj + zk)

X (x'i + y'j + z'k)

x{x"i+y"j + z"k).

Now if we observe first that the scalar part of this product is

confined to those terms in which all the three vectors i, j, k

appear ;
and secondly that the sign of any tei-m in the product

will by formuliB (3) and (4) be — or + according as cyclical order

is or is not retained, we perceive that we have the exact con-

ditions which apply to a determinant : therefore

>S'.a/3y
= X,
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as seen from 0, we shall find the following general law of signs to

hold good whatever be the vertex
; viz. the sign of the scalar is

minus or 2>lus according as the order in it of the angles of the base

of the -pyramid is right-handed or left-handed as seen from the

vertex.

For example, CABO=S{CA.CB. CO)

-S(a-y){(3-yl(-y)
— — Sa^y
= -OABC,

which is^^/'ws because OABG is minus, and the order of the letters

A, B, as seen from C is left-handed.

V 6. F.a/3y
=
F.a(,S'/3y + r/3y)

= aS^y + V.aV(iy;

V.ypa = V.{Sy(i + Vy!i)a

= aSIBy-V.aVyp,{\.h),
= aSI3y+V.aV(3y,{l. b),

= r.a(3y (G).

V 7. F. afty
= V. {Sa(3 + VajS) y

=
ySa/B 'V. yVap ',

F. ya/?
= F. 7 (*S'a/3+ Fa/3)

=
y>S'a/5+F. yFa/3;

therefore F. a/3y +F. ya^- 2y^a/? (7).

V 8. 2 F a F/?y
= F. a ((By

-
y/3), (1 . (0,

= F. a^y + F. ya/3
-

(
F. ay/3 + F. ya/3)

=
F(aj8y + Pay)

-V (ay/3 + ya/B), (by C),

= F. {ajB + (3a)y- F. (ay + ya) /B

= 2ySa{3-2pSay, (1. c);

therefore F. a F/3y
=

y^S'a/?
-
^S^ay (8).
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n/ 9. We Lave, by (8),

V . aV(3y
= ySaP

-
i^Say,

V.(3Vya=aSl3y-ySal3,

V.yVap = pSay-aSpy;

therefore, by addition,

V.{aVPy+pVya + yVaP) = (9).

^ 10. F. a/3y
= F. a {S^y + V/3y)

= aSPy+V.aVPy,

which, by (8), ^aSl3y-l3&'ay + ySaj3 (10).

Another proof of this important formula is found in the

identity

-
(a^y + y/?a)

= - a (/3y + y^)
-

-, /? (ay + ya) + .^ y (a/5 + /Sa),
Jj aJ ^ 4i^

which, by (4) and (6), is the theorem itself.

11. If in (8) we write FayS in place of a, we get

F. raf3VI3y=^yS{Va^.ft)-pS{raj3.y)

^yS.afi(3-ftSafiy

^-(SS.al^y (11).

Nl 12. Four vectors. If in (8) we ^vrite VaS in place of a, we

obtain

F(FaSF)8y) = y.S'.a8/3-/3>S'.aSy (12).

vy 13. By (12) we have

F
( V/3y Va8)

- SS . (3ya
- a^ . /?yS.

But F ( F;8y FaS)
= - F ( FaS F/?y).

Hence, by adding the above result to (12), we get

S*S' . /3ya
- aS . /3yS + y^'. a§/3

-
(3S . aSy = 0,

whicli, by (3) and (4), if we adopt alphabetical order, may be

written

aS. (3y8
-
I3S . ayS + y.S'

. a/3S
- S/S'. a^y - (13),

or SS.al3y = aS.{3yS-l3S.ayB+yS.afiB (13),
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or, again, if we adopt cyclical order,

aS . /3y8
— SS . ajSy + yS . Saj3

—
/SS . ySa,

or, finally, SS . a/Sy
^ aS . ^yS

-
(SS . ySa + yS . Sa{3 (13).

This equation expresses a vector in terms of tlu-ee other

vectors. The following equation expresses it in terms of the

vectors which result from their products two and two.

11. F(ySa/3) may be written, first as V (y . Sa/3), and secondly

as V{yS. ay3), and the results compared. These forms give re-

spectively

V (y . Sa/3) =V.y {S . 8a/3 + F . Saj3)

^yS.afi8+V.y (8>S'a/3
-
aSS{3 + (3SSa), by (3) and (10),

= yS . aySS + VySSa(3
-

VyaSSjB + VyfSSBa ;

V (yS .a{3)-^ V. (,S'y8
+ FyS) {Safi + Vaj3)

= Vaj3SyS + rySSal3+ V. FyS Fa/3
^ =

ral3>Sy8+ Vy8Sal3- V. FaySFyS

=
Fa/3>SyS + FyS^'a^

- 86' . a/3y + y.S'
. a/38, by (12).

The two expressions being equated, and the common terms

deleted, there results

SS . a/3y
=

Fay8^y8 + F^Sy-SaS + VyaS/SS (14).

V 15. .S'.a/3yS-6'.(.S'.a/3y+F.a/3y)8

= S.{V.al3y)S
= S . (a,S'/3y

-
(3Say + ySaft) 8, by (10),

=
SajSSyS

—
SayS/So + SaSS/Sy (15).

V 1 G. 6'{ra(3 FyS)
= ,S' . (a^

-
Safi) (yS

-
S'y8)

— S . a/3yS
—
Sa/3Sy8

=
Sa8S(3y

-
SaySfiS, by (15) (16).

^ 17. ^.a^y8=AS'.(Fay8y)8

=
>S'.8Fa^y

=
S.8al3y (17).



160 QUATERNIONS. [CHAP. IX.

\/ 18. Five vectors. As v/e do not purpose to exhibit any

applications of tlie i-elations which exist among five or more

vectors, we shall confine ourselves to simply writing down the two

following expressions.

S . aySySe
— — S. eSy/3a,

V.a(3yS€= F.eSy/3a (18).

70. Many of these formulae might have been proved diff'er-

ently, and some of them more directly, by assuming for instance

that a, j3, y are not in the same plane. In this case an?/ other

vector S may be expressed in terms of a, jS, y, by the equation

S^xa +
1/fi

+ sy, {31. 5);

therefore S . (3yS
= xS. jSya

- xS . af3y, (3),

S.y8a^,jS.y/3a^-yS.a/3y,(i),

S.Sal3 = zS.yap = zS. afiy, (3);

therefore hS . ajSy
= xaS . aj3y + yfSS . a/5y + zyS . aySy

- a^ . /3yS
-

(3S . ySa + y>S'. SuyS

which is formula 13.

71, Examples.

Ex. 1. To ex2oress the relation between the sides of a spherical

triangle and the angles ojyj^osite to them.

Retaining the notation and figure of Ex. 2, Art. 29, we shall

have

Va(3 V(3y
— y sin c . a' sin «,

where
y',

a' are unit vectors perj)endicular respectively to the

planes OAB, OBG.

Therefore V . Fa/3 V/^y
= sin c sin a . j3 sin B.

Also —l3S.a{3y
= ftsmcs{n<fi,(3l. 1),

where <f>
is the angle between OC and the plane OAB.

Now these results are equal (formula 11), therefore

sin ^ = sin a sin B.
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Similarly sin ^ = sin h sin A
;

therefore sin a sin £ ~ sin h sin A,

or sin a : sin 6 :: sin ^1 : sin ^.

Ex. 2. To find the condition that the 2^srpendlculars from the

angles of a tetrahedron on the 02)poslte faces shall intersect one

another.

Let OA, OB, OC be the edges of the tetrahedron (Fig. of Art.

31), a, yS, y the corresponding vectors.

Vector perpendiculai-s from A and B on the opposite faces are

F/Sy, 1 ya respectively (22. 8). If these perpendiculars intersect

in G, the three points A, B, G will be in one plane, whence

S. {(3 -a) VI3yVya^0 (31. 2, Cor. 2),

i.e. S.{(3-a)V.r(3yVya-^0.
Now V . Vpy Tya = ~ yS . (3ya (Formula 11),

therefore S . {ft
-

a) V . F/?y Fya = - (^^^y
-
^ay) S . {3ya.

Hence Sfiy
=
Say.

Now BC'+OA"- = {y- py + a'

^a'+P' + y'- •2SI3y

= a:' + ^' + Y- 26'ay

= (y-a)^>y3^

= AC' + OB\

Consequently the condition that all three perpendiculars shall

meet in a point is that the sum of the sq;iares of each pair of

opposite edges shall be the same.

Cor. Conversely, if the sum of the squares of each pair of

opposite edges is the same, the perpendiculars from the angles on

the opposite faces will meet in a point.

Ex. 3. If P he a jjolnt in the face ABC of a tetrahedron,

from which are drawn Pa, Ph, Pc, respectively parallel to OA,

OB, OC to 7neet the opposite faces OBC, OCA, OAB in a, b, c;

then will

Pa
Pb^

Pc

0A^0B'^0C~
T.X 11
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Retaining tlie notation of the last examples, let OP =
8,

Pa — — xa, Pb = — yfS, Pc = —
zy; then

Oa = 8 — xa, Ob -8- yP, Oc = h- zy.

Now because P, A, B, C are in the same plane

^.(S-a)(a-/3)(/3-y) =
0,

i.e. , S.8{al3 + Py+ya)^S.a/3y (1) ;

and because 0, a, B, C are in the same plane

S.{8-xa)py=0,

i.e. xSaPy = S.SPy (2);

also because O, A, h, C are in the same jilane

i. e. yS . /3ya
= S . Sya,

or, by formula 3, yS . a/3y
= S . Sya (3) ;

lastly, because 0, A, B, c are in the same plane

^.(S-«y)a/?=0,

L e. zS . ya/3
= *S' . ^ajB,

or zS.a{3y = S. 8a/? (4).

Adding (2), (3), and (4) there results

{x + y + z)S.a{3y = S.8Py + S.Sya + S.Saf3

= S.a/3y,hy{l),

therefore x + y + z=l:

Pa Pb Pc ^
hence OA^Ob'-00=^-

Cor. 1. If P be in the plane ABC produced below the plane

OBC, Pa as a vector will have the same sign as OA has; hence

in this case we shall have

Pa Pb Pc~
OA^OB^OG~
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Cor. 2. If P be outside botli the planes OBC, OCA ; we

shall have

Pa Ph Pc
'

~0A ~0B'^0G~

Ex. 4. Any point Q is joined to the angular points A, B,C,0
of a tetrahedron, and the joining lines, produced if necessary,

meet the opposite faces in a, b, c, o ; to prove that

Aa M Cc Oo '

regard being had to the signs of Aa, Bb, &c., as in the last example.

'LQiQA=a, QB =
ft, QC = y, Q0 = 8; Qa = aa, Qb = b{3, Qc = cy,

Qo=^d8 : then since the points a, b, c, o are in the planes BCO,
ACO, ABO, ABC, respectively, we have, as in the last example,

aS.a{l3y + y8 + SI3)
=
S.(3y8,

&G. &C.

i.e. aS. {apy+ay8+aSp)-S./3yS^-0 (1),

bS. {^ay + fSyS + 138a)
- S . ay8

=
(2),

cS . {yal3 + yp8 + y8a)
- S . al38

=
.'..(S),

dS. {8aj3 + 8l3y + 8ya)-jS.al3y=0 (4).

Now, if we write

S.apy^x, S.ay8 =
y, >S'.a8/?

=
s, S.I3y8 = U',

and apply the formulae 3 and 4, we get

ax + ay + az— u = 0,

— bx— y —bz+ bu = 0,

CX + cy + z — cu — 0,

- X — dy — dz + du - 0,

which give ^
x +

-j

—
^ u—0,a — i. a — X

11—2
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c-l^ 6-1

c d

C-1 (/-I

and, therefore, r + ^ H , + -

., =0,a—\ 6-1 c— 1 a— 1

a 6 c J

a^ "^

6^1
"^

c^^n:
"^

Tl^l
I.e. IT + ^

—T+ ^+-—5=1}

(?a Qb Qc Qo ^

-4a ij6 6c Oo

Ex. 5. If two tetrahedra ABCD, A'B'C'D' are so situated that

the straight lines, AA', BB', CC, DD' all meet in a point, the lines

of intersection of the flanes of corresponding faces shall all lie in

the same j)lane.

Let ^I'.l, B'B, CC, D'D meet in 0.

OA =
a, 0B =

f3, OC = y, OD=-Z,

OA' = ma, OB'^n/3, OC'=py, OB'-^qS.

The equation of the plane ABC is (34. 5)

Sp ( Va/S + FySy + Fya)
= S . a/3y,

and that of A'B'C becomes, after dividing both sides by mnp,

Sp f- VaB + ~ V(3y +
^

Vya) = S . a/3y.
\p m ' n J

The vector line of intersection of the two jjlanes is (31. 9)

V.iYo.^^ FySy + Yyo)
(^^

Ya^ +
]^ V(3y +

^
Tya)

,

i.e. by formula (H), omitting the common factor S . a/Sy,

\?i pj \p inj \m nj
'

From this expression the vectors of the intersections of the

other planes may at once be written down.
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That or Ann, A'B'D' is

\n qJ \q 111J' \m nj
'

that of ^CZ), A'CD' is

and tliat of BCD, B'C'D'

Now to prove that any three of these lines lie in the same

plane, all that is necessary is to prove (31, 2, Cor. 2) that the

scalar of the product of their vectors equals 0.

If we take the vectors of the first three, we may write them
under the form

aa + l/3 + cy, a a + h'/3 + cS, a"a + I'y
-

hi,

respectively; so that the scalar of their product is

S.{aa + bp + cy) {a a + h'p + cS) {a"a + h'y
-

68).

Now the coefficient of every different scalar in this product is

separately equal to 0. That of ,S' . afty for instance is, omitting
the common factor h',

\n 2>J \q mj \m nj \p^ qJ \p mj \7i gj
'

in which every term vanishes.

That again of .S' . /3yS is

— bcb' + ch'b,

which is
;
and so of the rest.

Hence the intersections, two and two, of the first three pairs
of planes lie in the same plane ;

and the same may be proved in

like manner of any other three : whence the truth of the pro-

position.
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Ex. 6. CP, CD are conjugate semi-diameters of an ellipse,

as also CP', CD'
;
PP'

,
DD' are joined ; to jjrove that the area of

the triangle PCP' equals that of the triangle DCD'.

Let a, /3, d, ^' be the vectors CP, CD, CP', CD'
;
k a unit

vector perpendicular to the plane of the ellipse.

Since

a =
xf/'^if/a

= —
(aiSixj/a + hjSjxpa), &c., &c. (47. 5),

therefore Yaa'=V. [aiSixpa + hjSjij/a) (aiSi\j/a + bjSjif/a)

= ab/c
(^Siif'aSjij/a —Sjij/aSiil/o.')

= - ahkS . JcV (i/^ai/^a'). (Formula 1 6. )

Similarly 7/3^3'-
- ahkS . kV

{ify/Sil^fS').

Now
i]/a, ij/fi

ax"e unit vectors at right angles to one another;

as are also ij/a, \j/j3' ;
therefore the angle between xpa and \pa' is

the same as that between \p(i and i///3'.

Hence S.kV
{ij/axjfa')

= S.kV (lA/?^^'),

and Faa'-F/3/3',

i.e. area of triangle PGP'— that of triangle DCD'.

Ex. 7. If a 2^<^^'idlelepiped be consi'rtccted on the semi-con-

jugate diameters of an ellipsoid, the sum of the squares of the areas

of the faces of the parallelejnped is equal to the sum of the squares

of the faces of the rectangular paralleleinped constructed on t/te

semi-axes.

By 63. 9, a = —
[aiSiipa + bjSjipa + ckSkij/a)

fi
= - {aiSi0 + bjSjxl,^ + ckSkxpP) ;

therefore Yo.^ ~ abk (SiipaSjif/(3
—

)Si[j//3SJK}/a)

+ arj (SifaSkfft
-

Siil/l3SkiJ/a)

+ bci {Sjif/aSkij/fS
-

Sji{;(3Sk\l/a).

Now SiipaSj^l3-SixpfiSjipa
=

SrijV4f(3il/a, Formula (IG),

=
-Ski{;y, (Art. 17);



ART. 71.] FORMULA AND THEIR APPLICATION. 167

therefore VafS = -
(abkSk\j/y + acjSjxpy + hciSi\py),

Fya = -
{cMSkxl^p + acjSj^li + bciSiip(3),

VPy = —
{abkSkij/a + acjSjif/a + bciSiij/a).

If now we square and add these expressions, observing that

because if/a, ij/f^, \j/y
are unit vectors at right angles to one another,

(Si^aY + (Slij^^y + (Sii^yY
=

1,

we shall have

( ra/3y +
( Fay)^ + ( VfiyY

= - {{abY + (acf + (6c)^},

which (21. 4) IS the proposition to be proved.

Ex. 8, To find the locus of the intersections of tangent planeg

at tfie extremities of conjugate diameters of an ellipsoid.

Let TT be the vector to the point of intersection of tangent

planes at the extremities of a, ^, y. then

6V<^a= 1, (57),

gives S7r\p''a
= —

1,

or Sij/Trxj/a
= — 1

,

Slj/TTlj/jS
= — 1

,

SipTTij/y
= — 1.

Fi'om these three equations we extricate
xJ/tt by means of for-

mula (14), which gives

ij/TrSi(/a{{/ISij/y
=

Vil/axf/fSSij/Tnjjy
+ Vij/jSil/ySipTrilra

+
Vif/yij/aSij/Trij/l^ ;

therefore ipir
=

Vif/aij/fS
+

ri///3t//y
+

Vij/yilra

—
xj/y

+
ij/a

+
\j/^,

= -3,

x' y' z"
,

3a^ 36^ 3c^
'

an ellipsoid similar to the given ellipsoid.
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Ex. 9. If 0, A, B, C, D, E are any six points in sjyace, OX
amj given direction, OA', 0B\ OC, OD', OE' the projections

ofOA, OB, OC, OD, OE onOX ; BODE, CDEA, DEAB, EABC,
ABCD the volumes of the pyramids whose vertices are B, C, D,E,A,
with a 2^ositive or negative sign in accordance with the law given
in the note to 69. 5

;
then

OA'. BCDE+ OB'. CDEA + OC. DEAB + OD'. EABC
+ OE'.ABCD--^0.

Let OA, OB, OC, OD, OE be a, /S, y, S, « respectively.

Write for aS {y
-

j3) {S
-

/3) (e
-

ft) its value

a
(,S'

. ySe
- S . Se/3 + S . e/Sy

- S . ^yS),

and similar expressions for ^S (a
—
y)(S-y) (c

—
y), itc, and there

will result, by addition,

a.S'(y-^)(S-^)(e-/3) + /3,S'(a-y)(8-y)(c-y)

+ y^(a- S) (/8
-

S) (e- 8) + SS (a
-

e) (/3
-

e) (y
-

c)

+ cS{(3-a){y-a){8-a)=0,

i.e. retaining the notation adopted in the Note referred to,

OA . BCDE+ OB . CDEA + OC . DEAB + OD . EABC
+ OE.ABCD = 0.

Now let TT be a vector along OX ;
then the operation by *S' . ir

on the above expression gives the result required.

In some of the examples which follow, we will endeavour to

shew how a problem should not, as well as how it should, be

attacked.

Ex. 10. Given any three planes, and the direction of the vector

perpendicular to a fourth, to find its length so that they may meet

in one point.

Let Sap
-

a, Sj3p
=

b, Syp = c be the three, and let 8 be the

vector perpendicular to the new plane. Then, if its equation be

iSSp
= d,
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we must find the value of d that these four equations may all be

satisfied by one value of p.

Formula (14) gives

pS . afiy
= VaftSyp + VjSySap + VyaS/3p

= cVap + aV/3y + bVya,

by the equations of the first three. Operate by S . 8, and use the

fourth ecjuation, and we have the required value

dS . a^y = aS . ^yS + bS . yaS + cS . a/SS.

Ex. 11. The sum of the {vectm-) areas of the faces of any

tetrahedron^ and therefore of any polyhedron, is zero.

Take one corner as origin, and let a, /3, y be the vectors of

the other three. Then the vector areas of the three faces meeting

in the origin are'»"

Tliat of the fourth may be expressed iu any of the forms

lr(y-a)(/3-a), \v {^a
-

(i) {y
-

(3) , \v {^ -y){a -y).
tU a^ *U

But all of these have the common value

which is obviously the sum of the three other vector-areas taken-

negatively. Hence the projiosition, which is an elementary one in

Hydrostatics.

Now any polyhcdfon may be cut up by planes into tetrahedra,

and the faces exjjosed by such treatment have vector-ai'eas equal
and opposite in sign. Hence the extension.

Ex. 12. If the pressure he uniform throughout a fluid mass,

an immersed tetrahedron (and therefore any polyhedron) experiences
no couple tending to make it rotate.

Tliis is supplementary to the last example. The pressures on

the faces are fully expressed by the vector-areas above given, and
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their points of application, are the centres of inertia of the areas

of the faces. The co-ordinates of these points are

and the sum of the couples is

lr.{Val3.{a
+ (3)+ri3y.{(3 + y)+Vya.{y+a)

+ V{yl3 + I3a + ay) . {a + f3 + y)}

=
-| F(ra^ . y + F/?y . a + Fya .

/?)
= 0,

hy applying formula (9).

Ex. 1 3. What are the conditions that the three 'planes

Sap = a, S/3p
=

b, Syp = c,

shall intersect in a straight line ?

There are many ways of attacking such a question, so we will

give a few for practice.

(a) pS . a^y = ra/3Syp + VftySap + VyaS/Sp

= cra(3 + aV(3y + bVya

by the given equations. But this gives a single definite value

of p unless both sides vanish, so that the conditions are

S.aPy = 0,

and c Ta/? + a FySy + h Vya =
0,

which includes the preceding.

(b) S {la
-
m/S) p

= al- bm

is the equation of any plane passing through the intersection of

the first two given planes. Hence, if the three intersect in a

straight line there must be values of I, m such that

la — 7)1ft
=

y,

la — mb = c.

The first of these gives, as before,

S.al3y = 0,
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and it also gives

Vya = m Vap, F/Jy
= - I Yap,

BO that if we multiply the second by Va(i,

laVap - mbVa{3 = cVal3

becomes — a T/^y
— h Tya = c Fa/? ;

the second condition of (a).

(c) Again, suppose p to be given by the first two in the form

p = pa+ ql3 + X Va(3,

we find a =210." + qSa(S, because SaVa[3 = 0,

therefore

a^
, Sa^

SajS, /3'

-a
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Now since S . a/3y
=

0, a, /3, y are vectors ia tlio same plane;
therefore y may be written 7?ia + np,

and c Fa/3 + a F/3y + h P^ya

assumes the form eVajB, which, unless e = 0, gives

or Va/3 is in the same plane with a, ^; but it is also perpendicular
to the plane, which is absurd

;
therefore e = 0, or

cra^ + arj3y + hVya = 0;

thus the third and prolix method leads to the same conclusion as

the first.

Ex. 14. Find the surface traced out hy a straigltt line which

remains always perpendictclar to a given line while intersecting

each of two fixed lines.

Let the equations of the fixed lines be

•zzr
= a + xfS, 'a:^=a^-\- x^(3^.

Then if p he the vector of the new line in any position,

p
= •ar + ?/ (zu-,

-
ro)

= {l-y){a + x/S) + y (a^
+ x,^,).

This is not, as yet, the equation required. Fur it involves

essentially three independent constants, cc, cc^, y; and may there-

fore in general be made to repi-csent any point whatever of

infinite space. The reader may easily see this if lie reflects that

two lines which are not parallel must appear, from every point of

space, to intersect one another. We have still to introduce the

condition tliat the new line is perpendicular to a fixed vector,

y suppose, which gives

aS' . 7 (ot,
-

tct)
= = aS' . 7 [(a,

-
a) + .r,^,

-
xfP^.

This gives x^ in terms of x, so that there are now but two'

indeterminates in the equation for p, which therefore I'epresents

a surface, which, it is not difficult to see, is one of the second

order.
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Ex. 15. Find the condition that the equation

S . p^p = 1

may represent a surface o/ revolution.

The expression tj^p
here stands for something more general than

that employed in Chap. VIII. above, in fact it may be written

(f)p
= aSa^p + l3iS(3^p

+ y'^ViP)

where a, a^, (3, (3^, y, y,
arc any six vectors whatever. This will

be more carefully examined in the next chapter.

If the surface be one of revolution then, since it is central

and of the second degree, it is obvious that any sphere whose

centre is at the origin will cut it in two equal circles in i)lancs

perpendicular to the axis, and that these will be equidistant from

the origin. Hence, if r be the radius of one of these circles, e the

vector to its centre, p the vector to any point in its circumference,

it is evident that we have the following equation,

Spcjyp -l-C(p' + r-)
=

{6'epf
-

e',

where C and e are constants. This, being an identity, gives

l-e' + Cr' =
I

Sp4ip-Cp'={S€pyj'

The form of these equations shews that C is an absolute con-

stant, while r and e are related to one another by the first
;
and

the second gives

cfip= Cp + eSep.

This shews simply that S . ep4>p
=

0,

i. e. c, p, and
(ftp are coplanar, i. e. all the normals pass through a

given straight line
;
or that the expression

Fpc^p,

whatever be p, expresses always a vector pai'allel to a particular

plane.

Ex. IG. If three mutual!u perpendicular vectors he drawn

from a jyoiid to a j^lane, the sum of the recij^rocals of the squares

of their lenr/ths is independent of their directions.
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Let Sep=l
be the equation of the plane, and let a, (3, y be any set of

mutually perpendicular unit-vectors. Then, if xa, y[i, zy be

points in the plane, we have

xSa€ = 1, ySfie.
=

1, zSye
=

1,

whence - e = aSac + yS^S'^e + ySy^ (63. 2)
= - + ^ + 5^

.

Taking the tensor, we have

r^-i 1 1
X II' z

Ex. 17. Find the equation of the straight line which meets,

at right angles, two given straight lines.

Let zir - a + xjB, -u: = a^+ ^\P\ >

be the two lines
;
then the equation of the required line must be

of the form

and nothinc; is undetermined but a .

Since the first and third equations denote lines having one

point in common, we have

S.(3r/3/3^(a-a;) = 0.

Similarly S .
/S^ F/3y3, (a^

-
a,)

= 0.

Let a^
=

2/^ + 2/,/3,

(it is obviously superfluous to add a term in
F/3/5j),

then

S.a^pJI3l3^ = -yrV(3fi,,

and, finally,

^ ^i4m ^^'^ ' "^ ^^^'
~ ^^ • "'^' ^^^'^ "

""' ^^^' '

Ex. 1 8. I/Tp^Ta=TI3 = l, and S.af3p = 0, shew that

S.U{p-a)U{p-P)=J\{l-SaP).

Interpret this theorem geometrically.
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We have, from tlie given equations, the following, which are

equivalent to them,

p
= a;a 4- ?//3J

Hence -x' -y" + 2xi/Saft = - 1
,

J{x -lf-2{xy-y) ,Sa/3 + y'

Jx'-2 {xy-x)Safi + (y-iy
'

S.U{p-a)U{p-(S)

-x{x-l )
+
[xy+^{x

-
1) (y

-
1)] 6'a/3 -y{y-l)

Jx'+ y'-2x + l-2 (xy
-
y) Sa/3 Jx' + y'- 2y+l-2 (xy- x) Sa/S

x + y-{x + y-l) Sa^ - 1

j2-2x + 2ySa^ j2-2y + 2xSa^

ix + y-l){l-Sa/3)

2j{\-x-y){\- Sa/S) + a;^ {
1 -

(*b'a/?)'}

= ^ + y ~ ^ / 1 - /S'a/3~
^ V l-x-y + xy{l+^'a/3)

_ x + y-l l
~

1 - ^a/3

2 \/ \-x-y->r\{2xy^x^ + y''-\)

^ x+y -1 / \-Sal^

J2 V l-2(aj + 7/)
+ cc^-f3/-" + 2.ry

=
=*=y-^(l-'5a/3).

Of course there are far simpler solutions. Thus, for instance,

the given equations shew that p, a, (3 are radii of some unit

circle. Hence the expression is the cosine of the supplement of

the angle between two chords of a circle drawn from the same

point in the circumference. This is obviously half the angle
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subtended at the centre by radii drawn to tlie other ends of the

chords. The cosine of this angle is

—
Sa/S,

and therefore the cosine of its half is

^/\{l-Sa(3).

Ex. 19. Find the relative position, at any instant, of two

points, lohlcli are moving uniformly in straight lines.

If a, /3' be their vector velocities, t the time elapsed since

their vectors were a, /3, their relative vector is

p=a+ta -fi-tf^'

= {a-l3) + tia'-fi'),

so that relatively to one another the lujotion is rectilinear, and

the vector velocity is

a -
(3'.

To find the time at which the mutual distance is least.

Here we may write

p = y+tS,

Tp' = -Y-2tSyS-t'^*

v-K-T)-
As the last term is positive, this is least when it vanishes,

i. e. when

t = — S.yS~ .

This gives P — y
~

S^S'yS'"'

,

=yV8-'y, .
"i^hi

tlio vector perpendicular drawn to the relative path ;
as is, of

course, self-evident.

Ex. 20. Find the locus of a given point in a line of given

length, when the extremities of the line move in circles in one plane.

(Watfs Parallel Motion.)
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Let o- and t be tlic vectors of the ends of the line, drawn

from the centres a, /3
of the circles. Then if p be the vector of

the required point

p = (a + cr) (1
-

e) + e (^ + t),

subject to the conditions

{a + cr-(/3-fT)r = -Z=,

Sycr
=

0, Syr = 0,

3 2 2 Z,2<T~ — a,T= — 0.

From these equations o- and t must be eliminated. We leave

the work to the reader. There is obviously an equation of con-

dition

S.y{(3-a) = 0.

Ex. 21. Classift/ the curves rej^resented by an equation of

theform
a + x^ + x~y
a + bx + coif

*

tohere a, /S, y are given vectoo's, and a, b, c given scalars.

In the first place we remark that x' in the numerator merely
adds a constant vector to the value of p, unless c = 0.

Thus, if c do not vanish, the equation may be written, with

a change of a an,d ^ and in general a change of origin,

a + x3
P = 1 2 •

a + ox + ex

and this again, by change of x and of a and yS, as

a + x(3
P ~i

•

a + ex

It is obvious that this represents a plane curve.

. , Sap a" + xSal3

T. Q. 12
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Hence both numerator and denominator of x are of the first

degree in -Sap, S^p ;
and therefore

Sap =
a^ + xSa/3

a + ex

gives an equation of the third degree in p by the elimination of x.

When we have Sa^ = 0,

Sap =
a

whence

and

a conic section.

x =

a

a + ex'

xl3'

a + CQ(?

a'S/3p

IS'Sap
'

a (Sapy + C
-^ {'^I^pY

— a Sap,
P

If c = 0, then with a change of x, a, yS, y,
the equation may be

written

a
p^_ + /3 + a;y,X

a hyperbola
—so long at least as b does not also vanish.

If b and c both vanish, the equation is obviously that of a

parabola.

If a and b both vanish, whilst c has a real value, we have

again a parabola.

If a vanish while b and c have real values, we have again

a hyperbola.

Ex. 22. F{7id the locus of a 2^oint at which a given Jlnite

straight line subtends a given angle.
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Take the middle point of the line as origin, and let ± a be the

vectors of its ends. At p it subtends an angle whose cosine is

-SU{p-a)U{p + a).

This, equated to a constant, gives the locus required. We
may write the equation

a'-p' = cT(p-a)T(p + a).

This is, obviously, a surface of the fourth order; a ring or

tore formed by the rotation of a circle about a chord. When
c = 0, i. e. when the angle is a right angle, the two sheets of this

surface close up into the sphere

p = a .

A plane section (in the plane a, /3 (suppose) where T^ = Ta

and
/S'a/3

=
0) gives

p=xa +
2/f3,

{a' (1
-

x')
- fay = c' {{x -iy- + y^}{{x+iy+ f} a^

or {1
-

{x' + f)Y = c' {(x- + f-+ ly - 4x'},

or, finally, 1 - (x' + f) = ^ -^^^ ,

which, of course, denotes two equal circles intersecting at the

ends of the fixed line.

Ex. 23. A ray of light falls on a thin reflecting cylinder, shew

that it is sjjread over a right cone.

Let a be the ray, t a normal to the cylinder, p a reflected ray,

P the axis of the cylinder.

Then t is perpendicular to (5, or

.S'^T=0 (1).

Again p and a make equal angles with t, on opposite sides of

it, in one plane ;
therefore

p 11
TttT

or F.TaTp = (2).

12—2
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Eliminating t between (1) and (2) we liave

the equation of tlie right cone of which (3 is the axis, and a a side.

Additional Examples to Chap. IX.

1. Prove that S . (a + ft) {^ + y) (y + a)
= 2S . a/3y.

2. ;S' . Vaft VftyYya = -
{SaftyY.

3. S.ViVaft V/Sy) V
( Vfty Fya) V

( Fya Vaft)
= -{S. afty)\

4. S(V(3y Fya) = fSajS
-

S(3ySya.

5. a^;8Y = ( Fa^y)^
-

(.S'a^y)''

G. = a' {SftyY + ft' {Syaf + y' (SaftY
-
{SaftyY

-
2SaftSftySya.

7. >S'(yF.a^y) = yoS'a^.

8. {aftyY
=
orftY + 2aftyS . afty.

9. .S'
( Vafty FySya Fya/?)

=
iSaftSftySyaS . afty.

10. The expression

Fa;S FyS + Fay F8/3 + Fa8 Vfty

denotes a vector. What vector ]

(Tait's Quaternions. Miscellaneous Ex. 1.)

1 1 . SapS . ftyB
—
SftpS . ySa + iSypS . Baft

—
iSSpS . a/3y

= 0.

1 2. (aftyY
= 2a'fty + a' (ftyY+ ft' (ayY+ y' {aftY- iaySaftSfty.

(Hamilton, Elements, p. 346.)
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13. With the notation of the Note, Art. 69. 5, we shall

have

DABC =OABC- OBCD + OCDA - ODAB.

14. When A, B, C, D are in the same plane,

a . BCD -p. CDA +y.DAB - 8 . ABC^O,

where BCD, &c. are the areas of the triangles.

15. SF. a/3y + aV. /3y8 + /3V . ySa + yF. Sa^S
= 4^. a/3yS.

1 6. Vafi FyS + F^y VSa + FyS Fa/3 + V8a V(3y is a scalar. What
is its geometrical meaning ?

17. Find the equation of the sphere circumscribing a given
tetrahedron.

18. A straight line intersects a fixed line at right angles, and

turns uniformly about it while it slides uniformly along it. Find

the equation of the surface described (1) when the fixed line is

straight, (2) when it is circular.



CHAPTER X.

VECTOR EQUATIONS OF THE FIEST DEGREE.

With the object of giving the student an idea of one of the

physical applications of Quaternions, we will treat the solution of

linear and vector equations fi'om an elementary kinematical point

of view. For this purpose we choose the problem of the de-

formation of a solid or fluid body, when all its parts are similarly

and equally deformed.

Def. Homogeneous Strain is such that portions of a body,

originally equal, similar, and similarly placed, remain after the

strain equal, similar, and similarly placed.

Thus straight lines remain straight lines, parallel lines remain

parallel, equal parallel lines remain equal, planes remain planes,

parallel planes remain parallel, and equal areas on joarallel planes

I'emain equal. Also the volumes of all portions of the body are

increased or diminished in the same proportion, as is easily seen by

su})posing the body originally divided into small equal cubes by
series of planes perpendicular to each other. After the strain,

these cubes are all changed into similar, similarly placed, and

equal parallelepipeds.

It is thus obvious that a homogeneous strain is entirely deter-

mined if we know into what vectors three given (non-coplanar)

vectors are changed by it. Thus if a, /?, y become a, /3', y
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respectively: any other vector, which may of course be expressed as

P = g n^
("'5'

• Pyp + P'^ • y°-P + 1^ • "-l^p)

is changed to

P =
-^^^

{a'S . ySyp + ^'8 . yap + y'^ . a^p).

No needful generality is lost, while much simplification is

gained, by taking a, /?, y as unit vectors at right angles to one

another. This is, in fact, the method already spoken of, i. e. the

imaginary division of the body into small equal cubes, by three

mutually ^perpendicular series of equidistant planes. We thus

have

p = — {aSap + /?'S'/?p
+ ySyp),

p'
= —

{a Sap + /S'S'/Sp + y'Syp).

Compai'iug these expressions we see that Homogeneous Strain

alters a vector into a definite linear and vector function of its

original value.

In abbreviated notation, we may write (as in Art. 63, though

our symbol, as will soon be seen, is more general than that there

employed)

ff)p
= —

{a'Sap + ^'S(3p + y'Syp),

where
(j>

itself depends upon nine independent constants involved

in the three equations

<^a
= a

</>/?
=

/3'

(j>y
=

y'

For a, j3', y may of course be expressed in terms of a, /?, y :

and, as they are quite independent of one another, the nine co-

efiicients in the following equations may have absolutely any
values whatever ;

(j>a
— a — Aa + cfi + h'y "j

(f>l3^fi'
= c'a + B/3 + ay I («)•

^y =y' = &a + a'yS + Cyi
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In discussing the particular form of ^ which occurs in the

treatment of central surfaces of the second order we found, Ai-t. 44,

that it possessed the property

S . acj)p
= S . pcficr (6),

whatever vectors are represented by p and a. Remembering that

a, P, y form a rectangular unit system, we find from («)

*S' . yS^a = — c

S . a^fi = — c
\

with other similar pairs ; so that our new value of ^ satisfies (&)

if, and only if, we have in (a)

a = a'\

h=h\ (c).

c - c]

The physical meaning of this condition, as will be seen im-

mediately, is that the distortion expressed by <^ takes place without

rotation. In this case the nine constants are reduced to six.

But, although (b) is not generally true, we have

S . crcfip
= —

(iSaa-Sap + SjS'aS^p + Sy'aSyp)

= — S . p (aSa'a + /SSfS'o- + ySy'a),

where the expression in brackets is a linear and vector function

of (T, depending upon the same nine scalars as those in <^ ;
and

which we may therefore express by ^', so that

(ji'a-
= —

(aSa'a- + )8/S'/S'o-
+ ySycr) {d).

And with this we have obviously

S .
(T(f)p

= S . p(f>'o' (e),

which is the general relation, of which (b) is a mere particular

case.

By putting a, /3, y in succession for cr in
(cl)

and referring to

(a) we have

<f>'a =Aa+c'^+ by ]

if>'l3= ca + B{3 + ay\ (/)•

€}>'y^b'a + a/3 + Cy'
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Comparing (/) with (a) we see that

^P =
^'P>

whatever be p, provided the conditions (c) be fulfilled. This agrees

with the result already obtained.

Either of the functions and ^', thus defined together, is

called the Conjugate of the other : and when they are equal (i.
e.

when (c)
is satisfied) </>

is called a, Self-Conjugate function. As we

employed it in Chap. VI, <^ was self-conjugate ; and, even had it

not been so, it was involved (as we shall presently see) in such a

manner that its non-conjugate part was necessarily absent.

We may now write, as before,

<f>p
= —

(a Sap + j3'SPp + ySyp),

and, by (d),

cf>'p
= —

(aSa'p + PS^'p + ySy p).

From these we have by subtraction,

(^cfi

—
(f)') p = (f>p

—
<j>'p

~ aSa'p
— a Sap + (3Sf3'p

—
jS'S/Sp + ySy'p

—
y'Syp

- V . Vaa'p + r. F/3/3'p + V . Vyy'p

= 2F.ep (g);

if we agree to write

2e=F(aa'4-^/3'+y/) (h).

We may now express that
<fi

is self-conjugate by writing

the physical interpretation of which equation is of the highest

importance, as will soon appear.

If we form by means of (a) the value of e as in (h) we get

2e = (cy
-

6'/3) -t- (aa
-

c'y) + (6/3
- a a)

= {a- a') a + {b-b')(3 + {c- c') y,

which obviously cannot vanish unless (as before) the three con-

ditions
(c)

are satisfied.
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By adding the values of <^p and
cfi'p

above we obtain

(<^ + ^')p = cf>p
+

cl>'p
= -

(aSa'p + a!Sap +/3S/3'p +l3'Sl3p +ySYp + y'Syp)

- -F (apa' + /3pl3' + ypy')
-
p {Sua' + S/^/i' + >S'yy').

As we have (by G9. 6)

V . apa =V . a'pa, &C.

this new function of p is self-conjugate.

This will easily be seen by putting 4> + ^' for ^ in (6) and re-

membering that (by 69. 17) we have

iS . crapa
= S . pa'aa = S . pacra', &c., &c.

Hence we may write

(<^ + f)p = 2^p (i),

where the bar over "^
signifies that it is self-conjugate, and the

factor 2 is introduced for convenience.

From
((/)

and (i) we have

4>p
=

OTp + Vep) .

,' - T-
('

\J r
(p p

=
"ojp

—
y epJ

If instead of ^p in any of the above investigations we write

(4' + ff) Pi it is obvious that
(ji'p

becomes
(<^'

+ g) p ' and the only

change in the coefficients in («) and (/) is the addition of y to

each of the main series A, B, G.

"We now come to Hamilton's grand proposition with regard to

linear and vector functions. If
c^

be such that, in general, the

vectors

p, ^p, «^V

(where <^-p is an abbreviation for <^ {4>p)) f^i'6 not in one j^lane, then

any fourth vector such as <^^p (a contraction for <^ ((^(c^p))) can be

expressed in terms of them as in 31. 5.

Thus
</)®p

=
m^cf>-p

—
m^(pp + mp [k),

where m, m, , m^ are scalars whose values will be found immedi-

ately. That they are independent of p is obvious, for we may put
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a, (3, y in succession for p and tbus obtain three equations of the

form

^'a = m^(ji"a
—

7n^cf}a
+ «ia (')>

from which their values can be found. For by repeated applica-

tions of {a) we can express (l)
in the form

\// \f> \"

Aa + Ji^ + C'y
= 0.

\// v/ v-*'

This gives ^ = 0, i>'=0, C = 0.

These are three equations connecting m, m^, m,^,
with the nine

coefficients in (a).
The other two groups

'

of three equations,

furnished by the other two equations of the form
(l),

are merely

consistent with these ;
and involve no farther limitations. This

method, however, is very inferior to one which will shortly be

given.

Conversely, if quantities m, m^ , m^ can be found which satisfy

(I),
we may repi'oduce {k) by putting

p = ica + 2//3 + sy

and adding together the three expressions {I) multiplied by x, y, z

respectively. For it is obvious from the ex])ression for c^ that

X(^p = (^ {xp), xcfi'p
= ^" (^^p), '•tc.,

whatever scalar be represented by x.

If p, 4>p, and <^-p are in the same plane, then applying the

strain <^ again we find <(>p, ^"p, cf)^p
in one plane ;

and thus equa-

tion (k) holds for this case also. And it of course holds if «^p is

parallel to p, for then <fi^p and <^^p are also parallel to p.

We will prove that scalars can 1)e found which satisfy the

three equations (I) (equivalent to nine scalar equations, of which,

however, as we have seen, six depend upon the other three) by

actually determining their values.

The volume of the pai-allelepiped whose three conterminous

edges are A, p., v is (31. 1)
— S . A/xv.
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After the strain its volvime is

— S . (})X <f>jj. <^i',

S . <fi\cf)fJi<f)V

[chap.

so that the ratio
S . XfJLV

is the same -whatever vectors A, jx,
v may be

;
and depends there-

fore on the constants of 6 alone. We may therefore assume

X = p,

fj.
=

(pp, >

V = cfi-p, )

= m. .(m),

and by inspection of
(/j)

^ve find

S . (f>\ 4>ix <^i' 'S' . (f>p(ji'p(fi^p

/S .
X.fj.v

/S . p<^p<^^p

which gives the physical meaning of this constant in
(h). As we

may put if we please

X = a,

v = y,

we see by (a) that

aS' . aySy c', B, a !

'

h, a, C
I

which is the expression for the ratio in which the volume of each

portion has been increased. This is unchanged by putting <^' for

</),
for it becomes, by {/),

m= A, c', b

c, B, a

I U, a, C

Hence conjv/jate strains produce equal changes of volume.

Recurring to (rn) we may ^v^^te it by (e) as

S . Xcf>' V^tp^v = mS . X F/xv,
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from which, as X is ahsolutehj any vector, we have

^'V<t>fxcjiv ^mVtiv]
^^^y

or «/> V(fi'iJi(f>'v
- m F/Avj

[In passing we may notice that (n) gives us the complete solution

of a linear and vector equation such as

(fio-
=

8,

where 8 and ^ are given and a is to be found. We have in fact

only to take any two vectors
fx.
and v which are perpendicular to

S, and such that

V/xv
=

8,

and we have for the unknown vector

m
which can be calculated, as

</>
is given.]

If in («) we put cfi
+ g for <^ we must do so for the value of m

in {m). Calling the latter J4 ^^® ^^^^'^^

' S . XfXV

S . Xd)u.d>v + S . fX(fiV(f}\
+ S . vc^X^/u.—m + g r,

—
;

(o),+

and by {n) {4>
+ g) V {i>'

+ g) im (cji'
+ g) v = 3f, . Vfxv (i>),

or il/,
- m + iJ-xg+ M' +5''

I . . (5).

(<^
+ g) [rti0~' I>v + g (l»v + T></)V) + g- Vfj-v]

= M, T>]/J

From the latter of these equations it is obvious that

must be a linear and vector function of V/xv, since all the other

terms of the equation are such functions.
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As practice in the use of these functions we will solve a

problem of a little greater generality. The vectors

F/xv, Vfji'iJiv,
and VfJL^jiV

are not generally coplanar. In terms of these (31. 5), let us

express cfiVfiv.

Let
cf) VfjLv

= X V/Jiv + y F<^'/x,v + z Vfifj/v.

Operate by S . X, S .
[x,
8 .v successively, then

S . jxvi^'X
= xS . \p.v + yS . v\<p!jx + zS . X/xcfi'v,

S .
/xvcfi'fji

= yS .
v}Ji<fi fi,

S . [XVfji'v
~ zS .

V[X<j> V.

The two last equations give (by 69. 4)

y = -l, S--1,
and therefore the first gives

»S^ . jJ,V<jiX + aS^ .
vXffi'fJL

+ S . XfXCJj'v

)S . XfA.V

= /^.>by ((^).

Hence, finally,

^ VfXV
=

/X,^ VfJiV
—

Vcji' fXV
—

VfJLcji'v (?•).

Substituting this in
(q), and putting o- for F/av, which is any

vector whatever, we have

{4>
+ U) [^i4>~' +y{l^o.-4>)+ g'] o- = (?« + fx^g + ix^f + g") a-,

or, multiplying out,

{m
-

(j<jy + fx,^g(l>
- g^ + gm^" + g'(f> + g'jx,^

+ /) <t

=
(«* + y-.g

+ M' + g") o"
i

that is (- (fi^
+

iJL,,(j>
+

7)i(ji~^)
a- ^

jx^a,

Comparing this with (k) we see that

S . Xfx<f)V + S . vXcj^/x + S . fivtfiX 1

I

*S' . XfXV I

_ _^ - X(f}IX(jiV + *S' . lX(f)V(})X + S . V<l)X(f)IX Im
iS . X[xv J

and thus the determination is complete.
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We may write (k),
if we please, in the form

m<^~^p = v\p
-

Vl,^cf)p
+

(f>^p (/;'),

which gives another, and more direct, solution of the equation

(above mentioned)

^o- = S.

Physically, the result we have arrived at is the solution of

the problem,
"
By adding together scalar niultij)les of any vector

of a body, of tlie corresponding vector of the same sti'ained homo-

geneously, and of that of the same twice over strained, to repre-

sent the state of the body which would be produced by supposing
the strain to be reversed or inverted."

These properties of the function
cj)

are sufficient for many
applications, of which we proceed to give a few.

I. Homogeneous strain converts an originally spherical por-
tion of a body into an ellipsoid.

For if p be a radius of the sphere, o- the vector into which

it is changed by the strain, we have

(r =
cjip,

and Tp^C,
'

fx'om which we obtain

T^-'a = C,

or S.cj>-'(rc}>-'(T
= -C\

or, finally, S . (t<^"'^- '(t = -C\

This is the equation of a central surface of the second degree ;

and, therefore, of course, from the nature of the jiroblem, an

ellipsoid.

II. To find the vectors whose direction is unchanged by the

strain.

Here ^p must be parallel to p or

^P=gp.

This gives ^"p = g'p, &c.,
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so that by (k) we have

g''-m,,g'' + m^g-m=0.
This must have one real root, and may have three. Suppose g^ to

be a root, then

(f>p
-

g^p
=

0,

and therefore, whatever be
A,,

>S\4>p-g^SXp
=

0,

or S.p{<i>'\-g^\) = 0.

Thus it appears that the operator <^'
—

y^ cuts off from any vector

X the part which is parallel to the required value of p, and there-

fore that we have

p||J/F.(c/>'-y^)A(^'-^>

II {m<^-
-

^,K -
c^)

+
gr^-"} ^,

where ^ is absolutely any vector whatever. This may be written as

{j'^-("K-ffH
+
i>^C

9-5',

The same result may more easily be obtained thus :
—

The expression

{4>^
-

7n^<ji' + vi^<f>- m) p = 0,

being true for all vectors whatever, may be written

and it is obvious that each of these factors deprives p of the poi'-

tion corresponding to it : i.e.
(ft
—

g^ applied to p cuts off the part

parallel to the root of

(4*
—

ffi)^
-

0> *^c., <tc.

so that the operator (<^
—

g,) (eft
-

g^) when applied to a vector

'leaves only that part of it which is parallel to cr where

{c{>-g^)<T^O.
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III. Thus it appears that there is always one vector, and

that there may be three vectors, whose direction is unchanged by
tlie strain.

Def. Pure, or non-rotational, strain consists in altering the

lengths of three lines at rigid angles to one another, without altering

their directions.

Hence if
<^p^

=
g^p^

"^92
=

9^92

^9^
=
9^93

the strain ^ is pure if, and not unless, p^, p^, p^ form a rectangular

system. [There is a qualification if two or more of g^g.^g^ be

equal.]

Hence, for a pure strain, we have

S92^9i=9,Sp^9i
=

^y

and
S9i'f>92

=
92^9i92

= ^ '•

or Sp^<j>p^
=

Sp^<l)p^.

But we have, generally.

As we have two other pairs of equations like these, we see

that 4^
=

4*'

when the sti-ain is pure.

Conversely, if 4^
—

4"'

the three unchanging directions p^, p^, p^ are perpendicular to one

another.
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(because, by hypothesis, the strain is pure)

^d'iSp.p.,,

for ^P2 = ff2p2
aiid

<k'p.2
=

ff2P2-

Hence, except in the particular case of

we must have

whence the proposition.

^^^1^2
=

0,

When g^ and g., are equal, p^
and p^ are each perpendicular

to pg,
but «7iv/ vector in their plane satisfies

cf>a-g^(T
= 0.

When all three roots are equal, everi/ vector satisfies

TV. Thus we see that when the strain is unaccompanied by
rotation the three values of g are real. [But we must take care

to notice that the converse does not hold. This will be discussed

later.] If these values be real and different, there are three vectors

at right angles to one another which are the only lines in the body
whose directions remain unchanged. When two are equal, every

vector parallel to a given plane, and all vectors perpendicular to

it, are unchanged in dii'ection. When all three are equal no

vector has its direction changed.

V. There is, however, a peculiarity to be noticed, which dis-

tinguishes true physical strain from the results of our mathe-

matical analysis. When one or more of the values of g has a

negative sign, we cannot interpret 'physicallg the result without

introducing the idea of a pure strain which shall, as it were, pull

the parts of an oi-iginally spherical portion of the body through

the centre of the sphere, and so form an elli2:)soid by turning a

part of the body outside in. When two, only, are negative we
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can represent physically tlie result by introducing the conception

of a rotation through two right angles about the third axis. But

we began by assuming that there is no rotation ! Hence, for the

case considered, all three roots must be positive. See end of next

section (VI.).

VI. This will appear more clearly if we take the case of a

ri<'id body, for here we must have, whatever vectors be repi-e-

sented by p and a,

T4>p = Tp )
^^^^

iSp(T
= S .

<f>p(fi(r)

i. e. the lengths of vectors, and their inclinations to one another,

are unaltered. In this case, therefore, the straia can be nothing

but a rotation. It is easy to see that the second of these equa-

tions includes the first; so that if, for variety, we take 4> as

represented in equations (a),
and write

p = xa + i/(3 + zy,

(r = $a + 7]l3 + ty,

we have, for all values of the six scalars x, y, z, ^, rj, ^ the follow-

ing identity :

-
{x^ +yy] + zO = S. {xa' + y^' + zy') {^a! + 7?/3'

+ ly)

= a''xi + l3'"yv + y'H
+ {xr}

+ yi) Sa'13' + (z/C + ^V) S/S'y + (z^ + xt) Sy'a.

This necessitates

i.e. the vectors a, /3', y form, like a, (i, y, a rectangular unit

system. And it is evident that any and every such system

satisfies the given conditions. But the system a', ^', y must be

similar to a, P, y, i. e. if a quadrant of j^ositive rotation round a

changes y8 to y &c. a quadrant of j^ositive rotation about a must

change /3'
to

y' &.c.

When this is not the case, the system a', 13', y is the
;?;er-

13—2
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version of a, (3, y, i. e. its image in a plane mirror
;
and the strain

is impossible from a physical point of view.

This is easily seen from another point of view. The volume

of the parallelepiped whose edges are rectangular unit vectors

a, y8, y is —S. ajiy

if a positive quadrant of rotation round a brings /? to coincide

with y &c. But, in the perverted system, the volume has changed

sign and is expressed by
S . a/3y.

VII. It may be interesting to form, for this particular case,

the equation giving the values of g. We have

S.{4^+g)a{<^ + g)P{c^+g)y
"

S.a(iy

S.{a'+ga){(3' + gl3){y' + gy)

S . aySy

= 1 - gS {a/S'y + a'lSy'
+

a'/3'y)

-g"-S{a(3Y + al3'y + a'(3y)+g\

Recollecting that a, j3, y ; a, /3', y'
are systems of rectangular

unit vectors, we find that this may he written

M,^l-(g + g"~)S{aa' + f3/3' + yy') + g'

=
(S-

+ 1) [/
-
^ {1 + ^ (aa' + 1313' + yy')J + 1].

Hence the roots of

are in this case ; first and always,

which refers to the axis about which the rotation takes place :

secondly, the roots of

f-g{l+S{aa'^/3(3' + yy')} + l=0.

Now the roots of this equation are imaginary so long as the

coefficient of the first power of g lies hetweeii the limits =*= 2.

Also the values of the several quantities Saa!
, 8(3^', Syy can

never exceed the limits ± 1. When the system a, [3, y coincides
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with a', y8', y',
the vahie of each of the scalars is -1, and the

coefficieut of the first j)Ower of r/ is + 2. When two of them are

equal to + 1 and the third to - 1 we have the coefficient of the first

power of
(/
= — 2. These are the only two cases iu which the

three values of ^ are all real.

In the first, all three values of
^r are equal to -1, i.e.

^P = P

for all values of p, and there is no rotation whatever. In the

second case there is a rotation throusrh two right angles about

the axis of the —1 value of g.

VTII. It is an exceedingly remarkable fact that, however a

body may be homogeneously stx'ained, there is always at least one

vector whose direction remains unchanged. The proof is simply
based on the fact that the strain-function depends on a cubic equa-
tion (with real coefficients) which must have at least one real root.

IX. As an illustration of what precedes (though one which

must be approached cautiously), suj^pose a body to be strained so

that three vectors, a", ^", y" (not coplanar, and not necessarily
at right angles to one another), preserve their direction, becoming

e^a", e„/3", e^y". Then we have

<f>pS . a"/3"y"
= e^'S. /5"y"p + e,(3">S . y'V'p -1- e^y"S . a"/3"p.

By the formulae
(?«, s) we have

S . <f>a"(j)l3"(})y"

S (a"B"cf>y" + B"y"cha" + V'a'chB")^
S.a'P'y"

-^1 + ^2 + ^3'

so that we have by (h)

Though the values of g are here all real, we must not rashly

adopt the conclusions of (iv.), for we must remember that a", |S", y"
do not, like a, /3, y, necessarily form a rectangular system.
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la this case we have

ct>'pS . a"yS"y"
=

e^ V/SySa'p + ejy" a" Sfi"p + eja!' fi"Sy" p.

So that, by {Ji),

2eS . a"/3"y"
= V- (e,a" Y[i"y" + e^/S" Fy'a" + e,y" Va"{3")

/ f'OO'f 'f
. Of O ff 'f

.
f O "Of\—

(e„
—

ggtt op y +
63
—

e,p oy a + e^
-

e,y oa p ).

This vanishes, or the strain is pure, if either

1. Sa'/3" = /S(3"y"
= Sy"a" = 0,

i.e. if a", (3", y" are rectangular, in which case
e^, e^j ^^g ™ay have

any values
;
or

2.
e^
=

62
=

i^a,
ill which case

i^pS. ol'^'y"
=

e^ { V^"y"Sa"p+Vy"a"Sfi"p + fa"(S"Sy"p}

= e^pS.aP'y" by (G9. U),

so that

ffi'p=e^p
=

cf>p

for every vector : a genei'al uniform dilatation unaccompanied by

change of direction.

3.
Cj
=

e„, and a" and /3" both perpendicular to y".

From what precedes it is evident that for the complete study
of a strain we must endeavour to distinguish in each case between

the pure strain and the merely rotational part. If a strain be

capable of being decomposed into 1st a pure strain, 2nd a rotation,

it is obvious that the vectors which in the altei'ed state of the

body become the axes of the strain-ellipsoid (i.)
must have been

originally at right angles to one another.

The equation of the strain-ellipsoid is

Spcfi'^p
= -

C-,

and in this it is obvious that <^~^ is self-conjugate, or at least is to

be treated as such : for a non-conjugate term in 4'~^p would be
(</)

of the form Vep,

and would therefore not appear in the equation.
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For the proper treatment of rotations, the following simple

but excessively important proposition, due to Hamilton, forms the

best starting-point.

Jf qhe any quaternion, the operator q { ) q~^ turns the vector,

quaternion, or body operated on round an axis perpendicular to the

plane of q and through an angle equal to double that of q.

For the proof we I'efer the reader to Hamilton's Lectures,

§ 282, Elements, § 179 (1), or Tait, § 353. It is obvious that the

tensor of q may be taken to be unity, i. e. q maybe considered as a

mere versor, because the value of its tensor does not affect that of

the operator.

[A very simple but important example of this proposition is

given by supposing q and r to be both vectors, a and /? let us say.

Then

is the result of turning j8 conically through two right angles about

a, i. e. if a be the normal to a reflecting surface and p the incident

ray,
—

a;8a~^ is the reflected ray.]

Now let the strain <^ be effected by (1), a pvire strain ct (self-

conjugate of course) followed by the rotation q{ ) q~^. We have,

for all values of p,

4>p
= qC^p)q-' (v).

whence cft'p
= S {q~^pq).

The interpretation is that, under the above definition, the con-

jugate to any strain consists of the reversed rotation, followed by the

jnire strain.

We may of course put, as in Chap, vi,

wp =
e^aSap 4- e^fSSfSp + e.jySyp,

where a, /?, y form a rectangular system. Hence

<f>p
=
e^qaq-^Sap + e./i^q'^S^p + e^qyq~'Syp.
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Here the axes are parallel to

qaq-\ q(3q~\ qyq~\
and we have

S . qaq-'q(3q-'
= S . qa{3q-'

= Sa(3 = 0, &C.

So far the matter is neai-ly self-evident, but we now come to

the important question of the separation of the pure strain from

the rotation. By the formulae above we see that

<^'^p
= ^q~^^p<2

= '^q~'{q'^pq~')q

= w'p,

so that we have in symbols, for the determination of zr, the

equation

(ft (f)
= w ,

That is, as we see at once from the statements above, anij

strain, followed hy its conjugate, gives a pure strain, ivhich is the

square {or the result of two aj^plications) of the inire part of

either.

To solve this equation we employ expressions like
(Z;). ^'^

being a known function, let us call it
co, and form its equation as

w' —m^ +
Tn^tsi

— m=0.

Kere the coefficients are perfectly determinate.

Also suppose that the corresponding equation in ot is

where g, g^, g^ are unknown scalars. By the help of the given

relation ot^ = <d,

we may modify this last equation as follows :

^o)-g^w + g^^-g =
0,

whence ot ==^9+ff: w2

^i+<-
>
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i.e. CT is given definitely in terms of tlie known function w, as

soon as the quantities g are found. But our given equation

— 2
OT =0)

may now be written

=
0),

.9, + ^.

or w' -((//- 2^7,)
co' + (5'i'-2(75'2)<^-r

= 0.

As this is an equation between to and constants it must be

equivalent to that already given : so that,.comparing coefficients,

we have

92-^ffi =m„
9'-^9ff2=^^^

9^"
= "* ;

from which, by elimination of
^r
and y^, we have

The solution of the problem is therefore reduced to that of this

biquadratic equation ; for, when g^ is found, g^ is given linearly

in terms of it.

It is to be observed that in the operations above we have not

been particular as to the arrangement of factors. This is due to

the fact that any functions of the same operator are commutative

in their application.

Having thus found the pure part of the strain we have at once

the rotation, for (v) gives

<i>^-' p = qpq-\

or, as it may more expressively be written,

If instead of (v) we ^vrite

<f)p
=

Zi{rpr-') {v'),
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we assume that the rotation takes place first, and is succeeded by
the pure strain. This form gives

and
4'4''p

~
^'P>

whence w is found as aboA'e. And then
(v') gives

B-'cji
= r

( )
7--^

Thus, to recapitulate, a strain <^ is equivalent to the pure

strain J4''(ji followed by the i-otational strain <^ -. _r^
,

or to the

rotational strain -. .

(^ followed by the pure strain J4>4>'-

This leads us, as an example, to find the condition that a given

strain is rotational onhj, i. e. that a quaternion q can be found

such that

Here we have ^' = 5-"' ( ) (7,

or
. «^'

=
«/>"' H.

But
rjKji"'

=
m^

— m„4> + i>',

or
m<j>'

= m^
—

m^(f> + cf)',)

whose conjugate is vicji
= m^ —m^(f>'+(ji'-J

and the elimination of
<fi'

between these two equations gives

7)7, 1

ifv It o

I.e.

-
{m^

—
nim^^ + ^ni^m,^ <^

-
(m?«^

—
2??ij

— m^) <j>"

by using the expression for
(j>*

from the cubic in
<f>.

(m')n^
— mm^m^ +

7)i^)

—
{rn^

—
mm.^ + 2ni^m,^

—
vi) cfi

+ (2?«j + m^'
— mm^ — «tj (pr
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Now this last expression cau be nothing else than the cubic

in <^ itself, else <^ would have two different sets of constants in the

form {k), which is absurd, as these constants, from the mode in

which they are determined, can have but single values. Thus we

have, bj comparing coefficients,

m^ =
2/rtj + m_^

—
vim,^

—
m^ \

S

The first ffives

\

by the help of which the second and third each become

m^ — m ~ 0.

The value

m =

is to be rejected, as otherwise we should have been working with

non-existent terms
;
and m, as the ratio of the volumes of two

tetrahedra, is positive, so that finally

m= 1,

7?i,
= m^ ,

•

and the cubic for a rotational strain is, therefore,

(ji^
—

on^rji' + 7no4> -1=0,
or (c^_ 1)1(^2 + (l_„g^ + lj

= 0,

where
on^ is left undetermined.

By comparison with the result of (vii.) we see that in the

notation there employed

m, = -,S'(aa' + /3/3' + yy').

The student will perha2:)S here require to bo reminded that

in the section just refex'red to we employed the positive sign in

opei'ators such as (ji+ff- I^^ the one case the coefficients in the

cubic are all positive, in the other they are alternately posi-

tive and negative. The example we have given is a particularly

valuable one, as it gives a glimpse of the extent to which tlie
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separation of symbols can be safely carried in dealing witli these

questions.

Def. a simple shear is a homogeneovis strain in "wLich all

planes parallel to a fixed plane are displaced in the same direction

l^arallel to that plane, and therefore through spaces proportional
to their distances from that plane.

Let a be noi'mal to the plane, ^ the direction of displacement,
the former being considei-ed as an unit-vector, acd the tensor of

the latter beiaig the displacement of points at unit distance from

the plane.

We obviously have, by the definition,

SajB = 0.

Now if p be the vector of any point, drawn from an origin in

the fixed plane, the distance of the point from the plane is

—
Sap.

Hence, if o- be the vector of the point after the shear,

O" = <^p
— p

—
/3/Sap.

This gives

<ji'p
= p- aSI3p,

which may be written as

= p~T/3.aS. UI3p,

so that the conjugate of a simple shear is another simple shear

equal to the former. But the direction of displacement in each

shear is perpendicular to the unaltered planes in the other.

The equation for
cf)

is easily found (by calculating 7n, m^, m^
from

(rti), (s)) to be

<^'-3</)' + 3</)-l=0.

Putting ^'(^
=

\p,
we easily find (with h = T[i)

xj,'-{3+F-) f + (3 + b"-)ij/- 1 = 0.

Solving by the process lately described, we find

fzlzlj^_,,,.,,,^.
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If b = 2, this gives i/j
=

1, and the farthex' equatioa

of which
(/j
= — 3 is a root, so that

and g^
= 1^2j2.

We leave to the student the selection (by trial) of the proper

root, and the formation of the complete expressions for the pure

and rotational parts of the strain in this simple and yet very

interesting case.

As a simple example of the case in which two of the roots of

the cubic are unreal, take the vector function when the strain is

equivalent to a rotation 6 about the unit vector a; the others of

the rectangular system being (3, y.

Here we have, obviously,

^0.
=

a,

<^/3
=

/3 cos 6 + y sin 6,

4>y
=
y cos 6-13 sin 6,

whence at once

- ^p = aSap + {l3cos6 + y sin 0) S(3p + (y cos 6 - (3 sin 6) Syp

=
(1
— cos 6) aSap — p cos 6 - Vap sin 6.

Forming the quantities m, m^, m^ as usual, we have

«/,'- (1 + 2 cos 0) </)^'
+ (1 + 2 cos ^) </>

- 1 = 0,

or (<^-l){<^"-2cos^<^ + l)
=

0,

or
(<^

-
1) (<^

- cos 6 -J^ sin 6) (<^
- cos ^ +J^ sin 0)

= 0.

Now

-{(fi-l) p = {l -C0s6) (aSap + p)
- sin $ Vap,

-
(^

- cos ^ - J- 1 sin ^) p = (1
- cos 6) aSap + sin $ {p J- 1 - Vap),

-
(^

- cos 6 + J— 1 sin ^) p
=

(1
— cos 6) aSap

— sin 6 {p J-1 4- Vap).
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To detect tlie components which are destroyed by each of these

factors separately, we have, l)y (ii.),
for {(f)— 1),

the vector

(<^-- 2 cos ^ (^ + 1) p = - 2aSap (1
- cos 9) :

so that (^
-

1) a = 0,

which is, of course, true. Again

{<f>- !)(</)
- cos 6-J^ sin 0)p=- sin ^ (1

-
e-eV-i) (JZTa+1) Vap,

which we leave to the student to verify. The imaginary directions

which correspond to the unreal roots are thus, in this case, parallel

to the Bivectors

(a^J^)Vap.

Here, however, we reach notions which, though by no means

difficult, cannot well be called elementary.

A very curious case, whose special interest however is rather

mathematical than physical, is presented by the assumptions

(^' = 1^ + 7,

(3'^y + a,

7 = a + /?,

for then
(jip

=
{(i

+ y) Sap + (y + a) S^p + (a + yS) Syp

=
{a + /3 +y) S{a + 13 + y) p- (aSap + /SSfip + ySyp)

= oSS8p + p,

where 8 is a known unit vector. This function is obviously self-

conjugate. Its cubic is

<j)' -3cj, + 2 = =
{cji -1)"- (cjy

+ 2),

which might easily have been seen from the facts that

1st, <^8
= -2S,

2nd, (jia
=

a, if SaS = 0.

The case is but slightly altered when the sig^is of a, /8', y are

changed. Then

<j>p
-- — Z8SSp

—
p,

and the cubic is

«^^-3(/)-2 = (c^ + l)^(<^-2) = 0.
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Those are mere particular cases of extension parallel to the single

axis S. The general expi-ession for such extension is obviously

tf)p
= p

—
eSS8p,

and we have for its cubic

We will conclude our treatment of strains by solving the

following problem : Find the conditions which must be satisfied hj

a simjyle shear ivhich is capable of reducing a given strain to a pure
strain.

Let ^ be the given strain, and let the shear be, as above,

then the i-esultant strain is

=
<^ + yS;S'.<^'a.

Taking the conjugate and subtracting, we must have

= 2F.e-F.(F<^'a/3),

so that the requisite conditions are contained in the sole equation

This gives (1) ^./3e = 0,

(2) Scji'a€=0 = Sacfie.

But (3) Saj3
= (by the conditions of a shear),

so that xa—V. /3<i6e.

Again, (4) le^S. <^'a (3€
= S.acf> (^e)

2x€' = S . I3ct>e cf> (/3e)
- -

m(3"~€',

or —ma=2V.I3~^cfi€.

Hence we may assume any vector perpendicular to e for
jS,

and

a is immediately determined.
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When two of the roots of the cubic in
<j>

are imaginary let us

suppose the three roots to be

Let /3 and y be such that

c^ (/? + 7 V=^) =
(6, + 63 7IT) (/3 + y V^l).

Then it is obvious that, by changing throughout the sign of

the imaginary quantity, we have

<l>{(3-y 7-1) -
(e,,

-
e, J^^) (/3

-
y J^).

These two equations, when expanded, unite in giving by

equating the real and imaginary parts the values

<^/3
=
e,/3-63y\

</>y
=

e„y + e,l3)'

To find the values of a, ^, y we must, as before, operate on

any vector by two of the factors of the cubic.

As an example, take the very simple case

<fip
— e Vip.

Here it is easily seen by (m), (s),
that m =

0, m^ = + e'^, m„ = 0,

so that ^^ + e"</)
=

0,

that is
cl>{cf>

+ ej^){cj>-ej^)=^0.

As operand take

p = ix +ji/ + kz,

then a\\V{4> + eJ^){<^-eJ^)p

\\eV.{<f> + e J^) {ky -jz
-
p J^)

II (_jy
_ ks + p)

Again

II -jy -kz + J-i {hj -jz)

Wjy + kz-j'^ijz-hj).
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With a change of sign in the imaginary part, this will repre-

sent

so that yS =ji/ + kz,

y =i- - %•

Thus, as the student will easily find by trial, ft and y form

with a a rectangular system. But for all that the system of

principal vectors of
cjy,

viz.

a, ySiyJ^l
does not satisfy the conditions of rectangularity. In fact we see

by the above values of y8 and y that

It may be well to call the student's attention at this point to

the fact that the tensors of these imaginary vectors vanish, for

This gives a simple example of the new and very curious

modifications which our results undergo when we jiass to Hi-

vectors ; or, more generally, to Blquaternions.

As a pendant to the last problem we may investigate the

relation of two vector-functions whose successive application

produces rotation merely.

Here <^
=

4'X'^

is such that by {w)

4>'
= ^~\

i.e. x'~''/''
=

X"/'~'»

or x'x
= "AV = '^^

since each of these functions is evidently self-conjugate. This

shews that the pure parts of the strains
i//
and ^ ^i-'<^ the same,

which is the sole condition.

One solution is, obviously,

T. Q. 14
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i. e. each of tlie two is itself a rotation ;
and a new proof that any

number of successive rotations can be compounded into a single

one may easily be given from this.

But we may also suppose either of
i}/, x^ suppose the latter,

to be self-conjugate, so that

x'=x = x>

or '/'V
=

X"»

which leads to previous results.

Examples to Chapter X,

1. If a, ^, y be a rectangular unit system

S . Fac^a F/3<^/3 Vy<t>y
= -mS. /3(l>'~'aS . /? (<^

-
<^') a,

and therefore vanishes if ^ be self-conjugate. State in words the

theorem expressed by its vanishing.

2. With the same supposition find the values of

SF. Fa(/>a . r^cj^/B and of ^.S'. Vacj^aVficjylS.

Also of S . aSa<f>a.

3. When are two simple shears commutative ?

4. Expand -ij
in powers of A, and reduce the result to

1—69
three terms by the cubic in ^.

6. Shew that <^' F . #c^> = ^'^J^Pfpfp y ^
= 7)1 Vp<^p.

G. Why cannot we expand <^' in terms of ^"j ^, <^^1

7. Express Vp<^p in terms of p, 4>Pi <^"P> ^^^ from the result

find the conditions that <^p shall be parallel to p.
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8. Given the coefficients of the cubic in 0, find those of the

cubics in
<^-, </>'',

ikc. ^".

9. Prove

10. Ifm:

X^ ilAdBdU

((f)
+ «?„) V. acji'a

=
Fa<jf)'"a.

A, b, c shew that
J/j,

= may be written as

a, B, c ,

a', b', C

+ U'

<r
,+ + 9dAdB

or 6^ (li '"••) ni = 0,

(^i^-O'-^l^^^^'

11. Interpret the invariants m^ and m^ in connexion with

Homogeneous Strain.

12. The cubics in ^^ and \p^ are the same.

13. Find the unknown strains ^ and
^(^
from the equations

<^ + X = ^,

14. Shew that the value of V (cf^a^a + (jif^x^ + cfiyxy) is the

same, whatever rectangular unit system is denoted by a, /?, y.

15. Find a system of simple shears whose successive applica-

tion results in a pure strain.

16. Shew that, if
cfy

be self-conjugate, and i, rj
two vectors,

the two following equations are consequences one of the other :
—

^ V .
rjcjir)

From either of them we obtain the equation :

/S(fi$(fi7]
= S^ . ^^^^"^*S'^ .

T](fiy]cji"r],

14—2
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17. Shew tliat in general any self-conjugate linear and vector

function may be expressed in terms of two given ones, the

expression involving terms of the second order.

Shew also that we may write

(ji + z = a
{-SIT

+ x)" + b
(-n: + x) (oi

+ y) + c
(o)

+ yf,

where a, h, c, x, y, z are scalars, and
ztr,

w the given functions.

What character of generality is necessary in or and w 1 How is

the solution affected by non-self-conjugation in one or both?

18. Solve the equations :

(«) V.ap{3=r.ayf3,

(b) ap + p^ = y,

(c) p + apP=-af3,

(d) apa~' + I3pl3~^
— ypy

(e) ap^p = pap/3.

-1



APPENDIX.

We have thought it would be acceptable to many students

if we should give as an Appendix a brief, and in some cases

even a detailed, solution of the most important and most difficult

of the Additional Examples. In doing so, we would add as

a word of advice, that our solutions be employed simply for the

purpose of comparison with those which shall occur to the student

himself.

Chap. II.

Ex.4. If AB=^a, BO = p, AP^ma, AF =m'a, BQ^mfi,
&c.

;
then

AE=AP + xPQ = AP' + xP'Q'

gives ma + a;{(l-m)a + m(3}
— ma + x {(I

-
m') a + m'^S},

whence x = m\ and PE-mPQ.

Ex. 6. ABCB is a quadrilateral; AB =
a, AC = P, AB^y,

AP = ma, BQ = m {(3
—

a), &c.

The condition PQ + ES=0

gives (1
-

7n) a + m (/3
-

a) + (1
- m) (y

-
^3)

- my = 0,

or (l-2m)(a-y3 + y)
= 0;

an equation which is satisfied either when 1 - 2m =
0, or when

a-/3 + y = 0.

The former solution is Ex, 5; the latter gives ABCB a

parallelogram.
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Ex. 10, Let a, b, c be tlie points in which the bisectors of

the exterior angles at A, B, C meet the opposite sides. Let unit

vectors along BC, CA, AB be a, ft, y; then with the usual nota-

tion we have

aa + h^ + cy
=

(1).

Now Aa = X {13
+ y)

= -
bjB + 1/ {h(3 + cy)

be
gives
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Ex, 13. "With tlie figure and notation of Art. 31, the former

part of the ennnciation is proved l)y the equation

a + f3 + y _l (a.
+ /3 + y a + ^ ^ + y y + a\—

^—-\\;—l
+

3
""

3
"^

3 ;•

Also, if the edges AB, BC, CA be bisected in c, a, h, the mean

point of the tetrahedron Oahc is evidently

\ (a + P Ji + y y + a\

4V"2 "^"2
^

2 ;'

which proves the latter part of the enimciation.

Ex. 14. Here we have to do with nothing but the triangles

on each side of OD.

If OQ =
a, QA =pa, AP = p,PD = qp-

TO^xOD = TQ-OQ = yQP-OQ
1

gives X = zr .° pq— i.

Similarly, if OS^a, SB==p'a', BR =
p', RD--^q'fi';

TO = x'OD

gives ""'^W^'

But the data are - =—,, p = rnq' ;
hence

<1 P

pq^p'q, and x = x';

therefore T' coincides with T.

Ex. 15. If vl5 = a, ^C-/?, MN = pa, PQ = qP, PS=r{{3-a),
we shall have, by making AO = AP + PO = AE + BO,

{l-q)a + {\-p)l3^ra + a-p){(i-a);

therefore p + q + r = 2.

Ex. 17. Let^^ = a, EB^p, AP = ma, AD^pa + q/B; then

PD =2)a + q(i
—

I'ict,
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Hnd US = BF + PS=liQ + QS gives

(I +m)a + x (2)0L + q^ — ?«a)
=

(1 + *'0 P + y (P"- + (7/3
—

7n/3),

,
1 + m

whence x =
,

'/lb

I +m 1 + m . --

anti HS^ — (pa + oB) = A D.
Ill

^ ' m

[Or thus :

J)Q = ma .-. US =
-^((S

+ ma),

^ 1

QA^{l-in)a; QIi = ^{/3 + 1- ma),

DR=^{P+ l+ma),

^i=]jE-I)S=la.]

Chap. III.

Ex. 5. Let ABCD be the quadrilateral; BA, DB, DC, a, jB, y

respectively.

Now y8(y-a)+(7-a) /3
= y(iS-a) + (^-a)y

+ a(y-/3)+(7-/3)a.

Taking scalars, and applying 22. 3, there results,

Sp{y-a)=Sy{P-a) + Sa{y-^),

which is the proposition.

Ex. 6. If a, /8, y be the vectors OA, OB, OC corresponding

to the edges a,h,c; we have

V{CA.CB)^V{a-y){P-y)
= F(a/3+)8y+7a)
= ahk + hci + caj,

the negative square of which is the proposition given.
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Ex. 7. If Sa {13 -y) = and Sl3{a-y)=0, tlien, by sub-

traction, will iSy (a
—

/3)
= 0.

Ex. 8. If a^ = (^
-
y)^ /?'

=
(r

-
o.y, y'

=
{a.- (3)'; then will

for these are the same equations in another form; and they prove

that the corresponding vectors are at right angles to one another.

Ex. 9. If OA, OB, OC, OD are a, /?, y, S;

triangle i)^i? : BAG :: tetrahedron 0Z>.15 : ODAC

:: Saj3h : Sayh

:: triangle OAB : OAGy

because the angles which S makes with the planes OAB, OAC are

equal.

Chap. IV.

Ex. 1. Let be the middle point of the common perpendi-

cular to the two given lines
; a,

-
a, the vectors from to those

lines, imit vectors along which are (3, y ; p the vector to a point

P in a line QR which joins the given lines; P being such that

RP = mPQ ;
therefore

p + a-yy = m(a + xl3- p).

Now since a is perpendicular to both ^ and y, the equation

gives (1 4- m)Sap = (m — 1) a-
;
a plane.

Ex. 2. Retaining what is necessary of the notation of the

last example, let OS = 8.

If PR perpendicular on y meet (3 in Q, we have

- a + 2/7
+ RP =

p, which gives yy"
= Syp ;

^- RQ = 2a + xl3- yy, which gives i/y^
= xS^y ;
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and SP- = e-FQ- gives

(p
-

8)"
= e" (a + x^ -

p)'

whicli being of the second degree in p shews that the locus is a

surface of the second order. See Chap. VL

Ex. 3. The equation of the plane is

Syp = a,

which, being substituted in the equation of the surface, gives

what is obviously the equation of a circle.

Ex. 4. With the notation of Ex. 1, let 8, 8' be the perpen-

diculars on the lines,

then p + 8 = a + rr/? gives V(38 =-Vfi{p- a),

and the condition given may be written

.-. r'fi(p-a)=e'V'y(p + a).

Now (22. 9)

F^/3 (p-a) = -/3^p- ay + S'-(3 (p
-

a),

whence p"
— 2Sap + a* + S'j3p

= e* (p" + 2Sap + a' + S'yp),

a surface of the second order. ^

Ex. 6. Sp (/3
+ y)

=
c, a plane perpendicular to the line which

bisects the angle which parallels to the given lines drawn through

make with one another.

Ex. 7. a, (3
the vectors to the given points A, B,

Syp = a, SSp = b

the equations of the planes, y, 8 being unit vectors.

xy, 2/8 the vector perpendiculars from A on the planes, then

X = Say
—

rt, y — '^^^ ~ ^)

.'. x +
ij
= Sa{y + 8)-{a+h) (1).
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Hence by the question

or ^(^-a)(y + 8)
= 0..... (2).

Now equation (1) will give tlie sum of the perpendiculars on

the planes from any other point in the line AB by simply writing

a + z{(i-a) in place of a; and from equation (2) this will pro-

duce no change.

Ex. 8. If
j8'

be the vector to C, equation (2) of the last

example gives

^(/3-a)(y + S)
=

0, .S(/3'-a)(y + 8)
= 0.

Now the sum of the perpendiculars from any other point in

the plane will be found from equation (1) by writing

a+z{p-a) + z'{fi'-a)

in place of a. Hence the proposition.

Ex. 10. Tait's Quaternions, Art. 213.

Ex. 11. Let a, /3, y, S be the vectors OA, OB, OC, OD ;

then (34. 5, Cor.)

S = S.apy.{ Va(3 + F/3y + Fya)"'

abc {bci + caj + abk) /-.x

^{aby^-^{bcy + {cay^

Now

triangle ABD : triangle ABC

:: tetrahedron OABD : tetrahedron OABG

S. aj38 : ,S'. a(3y

S . abijS : S . ahcijk

{abf : {aby + {bcf + {cay

(triangle AOSy : (triangle ABCy.

(Chap. III., Additional Ex. 6.)
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Ex. 12. This is merely the eqiiation

P = a^ +
y .

with t eliminated by taking the product of Vap, V/^p. (See 55. 3.)

Chap. V.

Ex. 3. Let a, a' be the radii of the circles
; a, p the vectors

from the centre of one of them to that of the other, and to the

point whose locus is required ;
then

Tp_ T{p-a)
^

a a

Ex. 7. This is the polar reciprocal of Ex. 3, Art. 40.

Ex. 8. Let A be the origin, AB =
ft, AC =

y,
the vector to

the centre a : then

- V{AB . £C . CA) = V.(3{y-(3)y

= 2ftSay
-
2ySaft from the circle

;

.-. S.aV{AB.BC.CA) = 0.

Ex. 9. Tait, Art. 222.

Ex. 10. Tait, Art. 221.

Ex. 11. Tait, Art. 223.

Ex. 12. Tait, Art. 232.

Chap. YI.

Ex. 1. Let 8 be the vector to the given point, tt the vector to

the point of bisection of a chord, ft a vector parallel to the chord,

all measured from the centre
;
then

8 = TT + xft,

SiTf^'^
=

SvcfiTr ("^S) }
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from which by making

'T = p +
r> S»

we get 'Sp4'P
-
7 'S'S^S,

an ellipse whose centre is at the point of bisection of the line

which joins the given point with the centre of the given ellipse.

Ex. 2. Let 2b be the shortest distance between the given

lines ; $ their angle of inclination
;
2a the line of constant length ;

then, as in Ex. 2, Chap, IV.,

-4^a' = {2a + xl3-9/yy,

2p = a-/3 + yy ;

the former gives

x^->ry'-2xyQo%Q = i((x^-h') (1),

the latter

4p = (oj + 2/) (/? + y) + (.-c

-
7/) (^

-
y),

which, since ^ + y, /3
—
y are vectors bisecting the angles between

the lines and therefore at right angles to one another, is an equa-

tion of the form of that in Art. 55. 2
;
whilst equation (1) satisfies

the condition

{x^yy ^m(x-y)- = c,

which is I'equisite for an ellipse.

Ex. 3. Let a be a vector semi-diameter, parallel to a chord

through ;
8 the vector to : then

p = S + a;a

gives /SS^S + IxSh^a. -f- x'Sacjia
=

1,

which, since >Sa^a=l,

shews that the product of the two values of x is constant ; hence

the rectangle by the segments of the chord varies as a', which is

the proposition.
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Ex. 4. Witli the usual notation, let CE, CE' be semi-

diametei's parallel to DP, D'P, and let their vectors be m (a
-

fi),

n(a + (3) ;
tlieu since F, D, E, E' are points in the ellipse,

m'^(a-;8)(/>(a-y8)
=

l,

.'. 2m" = 1. Similarly 2 ?i^ = 1, m = n,

and DP : D'P :: T{a-(i) : T{a + fi)

: Tm{a-P) : Tn{a +
(3)

: CE : CE'.

Cor. Since m = ^^, CE : DP :: 1 : J2.

Ex. 5. Put na, np in place of a, p in equation (1), Art. 43.

Ex. 6, 7. Witb everything as in Ex. 4, CE, CE' being now

semi-diameters in the dii-ection of diagonals of the parallelogram,

SCEcj^CE' = ls{a-(3)4>{a + l3)

= 0;

hence CE, CE' are conjugate.

IS

Ex. 8. /S' (a + /3) ^ (a + j8)
= 2 gives an ellipse, whose equation

Sp<^'p
= 1

,
where <^'

= ^ ;

hence the diameters of the locus are to those of the given ellipse

:: V2 : 1.

Ex. 9. If y be a unit vector to which the lines are parallel,

p, p' points in which the lines cut the ellipse,

p = ai + my, p =
hj + ?zy,

and Sp^p = 1 gives

2aSl4>y + m>S'y<fiy
=

0'|
,, .

Similarly 2bSj<l>y + nSycj^y
= 0)

^ ^'
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Now Spc{>p'
= an Sl(jiy + hinSj^y + mnSycfiy

=
0, by equations (1) ;

.*. p, p are conjugate.

Cor. The same demonstration applies when the diameters

from whose extremities parallels are drawn, are any conjugate

diameters whatever, i, j being parallel to those diameters.

Ex. 10. Let CP, CF' be any two semi-diameters, their vec-

tors being a, a
; PQ the semi-ordinate to CP'] CQ = na!

;
then

S{PQ.^a) =

gives S (a
— na) ^a —

0,

Now the area of the triangle QCP is proportional to

V{CP.CQ),
i.e. to nVaa! or to

which, being symmetrical in a, a, proves the proposition.

Ex. 11. If the tangent at P' meet CP produced in T,

CT=ma;

then, since P'T is perpendicular to ^a',

S{CT-a')<l>a:
= 0.

1

I >

/Sa<pa
'

and area rCT is proportional to Y{CP'.CT), i.e. to ~^
which is symmetrical in a, a.

Ex. 12. Let a, /3 be the vector semi-diameters of the larger

ellipse ;
C the centre

;
the centre of the smaller ellipse, whose

equation is

Sp(^p
=

c,
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y a vector along PQR ;
then

r>n « + /^

>S'(^
+
«^y)<^("-^

+
«^r)

a + ft a + ft

Sycfiy

and since CQ = a + ft + xy,

S {CQ<j>y)
=

;

hence FH is conjugate to CQ, and therefore bisected at Q.

Ex. 13. This is simply a combination of 49. 2 and 49. 1.

Chap. YIL

Ex. 3. The equation of the circle is

which by 52. 1 gives

5
(a^

— SapY — a'Sap = y^ a*,
16

•which (52. 11) is the proposition.

Ex. 5. If be the centre of the circle, Q a point at which it

meets the tangent at A ; then, with the notation of 55. 1,

QO^-{aa+- {p
-
aa)

-
zftf

= j{p- «")">

.*. z^ft'
-

zSftp + aSap = 0,

i. e. «" - «?/ + 2 = 0,

which gives two equal values of z
;
hence the proposition.
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Ex. 6. With aiuy point as origin, let ^, y be the vectors to

the two given points, tt the vector to the focus of one of the

parabolas. Write aa in place of a in equation (1), Art. 52, a

being a unit vector
;

then -
{(^

-
lif

=
{a + Sa{P --tt)]' (1)

whence, by subtraction,

)8-° -y'- 2Sir {fB-y)
= -Sa{ft- y) {2a + Sa {(i

-
y)
-

2Sa7r},

which gives a by a simple equation in tt ; and then equation (1)
becomes a quadratic in it.

Ex. 8. If two tangents meet at T, it is easy, as in Ex. 5,

Art. 55, with the notation available for the focus, to Hud

4a 2

nm, yy" ^ y + y" r, „ol — —.— a ^ — a — aa,

and S{ST . ST') = will follow at once, from the fact that

2/y' + 4a^=0.

Ex. 9. Let F be the point of contact, PQ the chord, TUF the

line parallel to the axis cutting the curve in £j ;
E the origin ;

EpJ~a+tp, ET=-^a,

whence z =
^—y,

, y - -
g

•

.-. PF : FQ :: t : t'

e it'

'.2
'

~2

.: TE : EF.

Ex. 10. This is evident from equation (1), Art. 52.

T. Q. 15
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Ex. 11. With the notation of Art. 52, let

SQ = xFS = -xp, A^/
= - x'AP = X (- -

pj ,

. •. x (a
-

2p)
= a + 8,

X (a'
-
2Sap) = a\

But p, —xp being vectors to the parabola, equation (1),
Art.

52, gives

x' {a?
- SapY = {a' + xSap)\

. '. X (a^
—
Sap) =a^ + xSap,

X (a^
-

2Sap) = a^

• a «A/ JU •

and the proposition is true (Euc. VI. 2).

Ex. 14. Tait, Art. 43, Cor. 2.

Ex, 15.

t
CF= at + ~ gives CT=2at,

CQ = 2at + xP=at' + ^,=^2at + §-
t Jit

SO that the equation of EQPR is

<

whence for B and i2' the values of x are 2 and — 1
;
therefore

^ t

QR = at-^^
= PQ =

^RR'.



APPENDIX. 227

Ex. 1 G. If CR = aa ;
a + m(i, a - mfi vectors parallel to the

given conjugate diameters,

GP = aa + a? (a + m(i) = at + ~
,

CD = aa + x (a
—

viji) =at'— !--
,

give t = t'; therefore CP, CD are conjugate.

Ex. 18. Adopting the figure and notation of Ex. 2 of the

hyperbola, Art. 55, we have

GR = 2Xta, Cr = 2X^;

therefore QR = {X- Y) fta -
^\ ,

and rQ . QR= (X'
-

Y') (ta
-
|Y

= P0\ since X'-Y'=l.

As an example of combining not merely the forms but the

results of the Cartesian Geometry with Quaternions, we will add

one more example.

If CP, CD; CP', CD' be two pairs of conjugate semi-diameters

of an ellipse, PD' will be parallel to P'D.

Let CP, CF be denoted, as in Art. 55. 2, by xa +
?//?,

x'a + y'/?

respectively; then CD, CD' will be represented by

with the conditions

ay + 6V = a'b\ aSf + b'x"^ a'¥ (1 ).

Now vector D'P ^ (x ¥ -jtA a. +
(y--x'j (3,

15—2
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But equations (1) give, by subtraction,

a
,

b , ,
a

,
h

X -^ r: 11 : y— X : : x -^-rV : y — x

therefore D'P is a multiple of DP' and consequently parallel to it.

Cor. PD' : P'D : : ay' + bx : ay + bx.

Chap. VIII.

Ex. 1. With the notation of Additional Ex. 1, Chap. IV.,

the perpendiculars are

p -a-x/S, p + a- yy,

so that S^p = xft'', Syp = yy" ;

and by the question,

{p-a-fi-^S(3pf = e^ip + a-y-^Sypr,

a surface of the second order in p.

Ex. 3. The equations Spcfip= 1, Sircfip
= 1, with the condition

7r = x^p, give

1 TT

.^S-n-cfi V=l, ~- = l respectively,

therefore *S'7r<^
tt = tt

,

whence the Cartesian equation.

Ex. 4. If a, (3, y are the vector radii,

Sacho. _ (SiUaY (SjUaY (SkUaf

{Taf~ a'
'^

b'
'^

c'
'

&c. = &c.

Adding and observing that »S'a<^a= 1, &c., there results

1 1 1111
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Ex. 5. As in Ex. 8, Art. G4,

and if vector OQ^ = xcjia, the ellipsoid gives

x'S<f>acf>'a
= 1 .

(Slay (SjaY (SkaY

and, since

{SiaY + {Si/3Y + (SiyY - a'

(Ex. 7, Art. 64), the result required is obtained by simply

adding.

Ex. 6. Let pk be the vector distance from the origin, of the

plane jmrallel to xi/, v a point in it; then /6X- (tt
—
p^) = gives

Sirk = const.

Now SpcfiTr
= 1 is the equation of the plane of contact, and if

zk be the point in which this plane cuts the axis of z, zSk(}>7r = 1,

i.e. zSTTcjik
=

1, gives z.

Now
(f>k

is a multiple of k. and since Sirk is constant, z is

constant.

Ex. 7. The equations of the ellipsoids

iSp(f>p
=

1, S {p-a)cj>(p-a) = l,

give Sp<})a
= const, as the plane of contact.

Ex. 8. If pa be the vector to the point in the line OA ; the

equation of its polar plane is Spa^p = 1 ; and the square of the

reciprocal of the perpendicular from the centre on this plane is

-p'-((})aY. Hence the conclusion by Ex. 8, Art. 64.

Ex, 9. Let p be the vector to P
; a, /S, y vector radii parallel

to the chords
;
then

p + xa, p + y^, p + zy,
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will be the vectors to A, B, C ;
and since P, A, B, C are

points in the ellipsoid

Spcjyp
= l, 2Spc{>a + x = 0, 2Sp<l>(3 + y = 0,

2Sp4>y + z = 0.

The equation of the plane ABC is {34. 5)

S .(tt-p) {xi/a(3 + yzjSy + ^a^ya)
= xyzS . a^y,

and since a, P, y are at right angles to one another,
'

^^ = -
T^2

S .
<i(3y,

&c.
^

therefore the equation of the plane ABC becomes

^ , ./ 1 _j_ 1 ^^^ J_ _i^\ = o

which is satisfied by
TT — p = mcfip,

where
^

1 1 l) ^ 2m

and therefore Ex. 4 above gives

m =
1 1 1

a 12 ' 3
6 c

Chap. IX.

Ex. 2 and 3. Employ formula 11.

Ex. 5. Since

a^yS'y"
-
a/?y . y(3a,

formulae 4 and 6 give the required result.

Ex. 6. Apply formula 10 to Ex. 5.

Ex. 8. (a/^yY
=

a(3y . a/Sy
= a^y (>S'

. a;8y + F . a/3y)

=
a^y(,S'.a^y + r.y^a)

= a^y(y^a+2^'.a^y)
=
a^^-y+2a/?y.S'.a/?y.
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Ex. 9. Formula 10 gives tlie vector of the product of three

vectors a, /3, y, under the form a -
jS' + y where a — aS^y, &c.

Hence the required scalar may be written

S.{a'-/3'+y'){a' + fi'-y'){-a'+ft' + y');

and as the scalar part of this product is that which involves all of

the three vectors a', yS', y we have exactly as in the demonstra-

tion of formula 5,

S{Val3yVfiyarya(3)

S. a, -/?', y

0-, P, -y

=
4,S'.a';8V.

10. The scalar part, by formula 16, is reduced to

Sa8S^y
- SaySpS

-
Sa8S{3y + Sa(SSy8 + SaySfiy

-
Sa/3S'yS,

which is identically 0.

The vector part, by formula 12, is

aS.yS(3-l3S.y8a + aS.SI3y-yS.S(3a + aS.l3yS-8S.ftya,

which, by formula 13, reduces to

2a>S'. fiyS.

12. If, for brevity, we denote S , aySy, V. a/Sy respectively by
S and V, we have, by formula 7,

2a^^Y + a' {(^yY + )8^ (ay)^ + / (a^)^
-

{a(3yY

=
2a(3y . y/3a + (3ya . a(3y + ay^ . /3ay + a/3y . ya^ -

(a;8y)-

= 2 (*s'+ v){-s + r} + (s-v+2aspy){s+r)
+ (_ ^ _ 7+ 2a^^y) {-S-V+ 2ySa/3)

+ {s+v){S-v+2ySa(3)-{s+ry
=

AaySaftS(3y.

The student is recommended to verify a few examples such as

the above, by putting

a = i, P = ai + bj + ck, y
= a'i + h'j

+ c'k,
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with the conditions

The quaternion equality will then reduce itself to four alge-

braic equalities, one of which is obvious, and the others are

if + r* - a^ -a^ + 2aa'm = 0,

pq - mr + ad + ac — ^ac'm — 0,

qr + m20 + a'b' + ah — 2ab'm = 0,

where m = aa' + bb' + cc, p = ah' - ah',

q = he —
h'c, r = ca! — c'a.

Ex. 13.

S . {a -h) {^-^) {y -^^ S . ajBy
- S . jBy^ + S . y^a- S . Sa{3.

Ex. 14. By 34. 8, we have

_a_S.Sfty_ BCD
~d~Y~oi^y~^ABG''

therefore the same Article gives

^a.BCD^p.CDA^y.DAB^h.ABG = 0;

and since the scalar of the product of this vector by the vector

perpendicular to the plane in which A, B, C, D lie gives the right-

hand side of Ex. 1 3, we obtain

a.BCD-fi.GDA+y.DAB-h.ABC = Q.
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