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First Book.

Real numbers and functions of real numbers.

The conceptions of space and of number are the subject matter of

mathematical investigations. These investigations accordingly diverge

into two main branches: Geometry and Analysis. It thus appears that

Mathematics are of fundamental importance to all our knowledge of

Xature: for our representations of space contain the simplest properties

which are common to all things in the surrounding world; and accu-

rate comparison or measurement of quantities leads always to concrete

numbers of the units employed: in order to understand the result, we

lequire a knowledge of numbers and of their combinations.

Nature in its phenomena is perpetually exhibiting change; the

implest changes we perceive externally are changes of place, motions.

The representation of motion is necessarily combined with that of con-

tinuity, i. e. of an uninterrupted connexion in space and of an unin-

terrupted sequence in time. To describe thoroughly the phenomena
of motion is to assign every circumstance in numbers of concrete

units: so that if the series of numbers is also to enable us to describe

motion, it must contain a continuous series of quantities. Thus the

iirst problem of Analysis is: to develope the conception and the pro-

l)erties of the continuous series of numbers.

First Chapter.

Rational numbers.

1. The natural series of numbers, which arises by adding on a

thing to others in counting, advances always by unity; each number
is defined by the preceding number and by unity. This series of in-

tegers starting from unity can be continued on indefinitely. Now as each

f^veral number is a sum of repeat.edly added units, such a sum of units

can be composed of different given numbers. This arithmetical ope-

ration, merely a continued reckoning up of groups of units, is called

Addition; it embraces all other operations, from it all others arise.

The fundamental proposition for addition is: the sum of given numbers
llARNACK, CalculUH. 1
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has alway the same value in whatever order the sumraands be reckoned

up. The truth of this proposition cannot be deduced from simpler

conceptions; it is immediately perceived from the intuition of an

arbitrary but finite number of units, v^hich form the sum. Addition

is always possible, the sum is continually greater than any of the

summands.

The problem of Subtraction follows from inversion of

addition. What this requires is, given the sum and one summand to

calculate the other summand (difference); that is, to reckon off from

a given number (minuend) as many units as the other number (sub-

trahend) contains. This is only possible when the minuend is greater

than the subtrahend. In case they are both equal, i. e. contain the same

number of units, we denote the result by 0. The numerical conception
is therefore defined "by the equation a — a = 0. Hence we obtain

for calculating with the equations: a + = a, a — = a.

2. To form a sum in which the several summands are equal to

the same number a and the number of summands is 6, is, to Multiply
the number a by b. The result is called a multiple of a. But without

distinguishing a and h they may be called factors and the result simply
the product, since for multiplication of two or more numbers we have

the fundamental proposition
— which can be proved from the conception

of summation: The product of given numbers has always the same

value, in whatever way the factors may be interchanged or combined

in groups.*) Multiplication is always possible.

The problem of Division follows from inversion of multipli-

cation, when, given the product and one factor it is required to

calculate the other factor; that is, to find that number (quotient) which

multiplied by one of the given numbers (divisor) yields a product equal

to the other (dividend). This is impossible unless the dividend is a

multiple of the divisor; calling a the divisor, h the dividend, then if

a ^h there is always an equation of the form : h = a . q -}- ?',
where

r (the remainder) must be a number of the series 0, 1, 2, ... a — 1.

Two numbers can be multiples of a third number, this is then

a common divisor of both. Two numbers, which have no common
divisor besides unity, are relatively prime. A number is called

absolutely prime which is not divisible by any other except unity.

This distinction of divisible and prime numbers leads to the important
theorem: Any number can be expressed only in a single manner as a

product of absolutely prime numbers; but the investigation of the

divisibility of a number rests *on the following rule (employed by

*) The proofs of the theorems for rational numbers cannot be presented
here: they are found in Baltzer, die Elemente der Mathematik, A^ol. I.
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Euclid): The greatest common divisor of two numbers a and h (where

6 > a) is found by forming by continued division the equations:

h ,= aq -\- r
y

a = r g, + r, ,
r = r^q^+ r.^

etc.

The divisor of the last division, which leaves no remainder, is the

greatest common divisor of a and h.

3. The first three arithmetical operations, performed on sums

and differences lead to the following equations:

jCa + 10 + (_c + d) ^ a + h + c + (1

\(^a + h)
-

(c + d)=^a + b - c — (l

(^a + h) + ic
—

d) = a + h + c — il

^^•^
l(a + 6)

-
(c
-

(f)
= a + & — c + (/

i(a
—

h) + (ic
—

iT)
= a — h + c — d

\ia
—

l)^
—

ic
—

d) = a — h — c + d

(II.) (a + 2*) c = ac + he, (a
—

1)) c = ac — be

(a -\- h) (c -\- d) = ac -{- h c -\- ad + hd

(III.) (a + h) (c — d) ^ ac + he — ad — hd

(a — fc) (c
—

d)
= ac — he — ad -\- hd

The differences on the left hand sides in these equations are assumed

to be possible; some of them may be zero. A product which contains

the factor 0, is therefore, as we learn from (II) and (HI), itself equal

to 0. It follows conversely from the same equations, that a product
can never be unless one of its factors have the value 0.

The similarity of the results in calculations with sums and diffe-

rences, suggests the advantage of regarding from the outset the difference

as a sum^ for instance the difference a — 6 as a sum of a actual

units here to be reckoned up and h to be taken away, or as it is

better expressed, of a Positive and h Negative units. The intro-

duction of negative unity enables us to calculate also with differences

in which the minuend is less than the subtrahend. Thus when a <. h

the number or— h expresses an excess of negative units, of so many,
in fact, that [h

—
a) -}- {a

—
h)
= 0.

In nature there are neither positive nor negative numbers in the

abstract; there exist only things which can be counted. The distinction

of positive or negative numbers — epithets which can only be under-

stood in contrast to each other — has a meaning only for the process
of adding and thence for all other arithmetical operations. But

it is often of great advantage in applying calculation to physical

problems, to distinguish the quantities we calculate with, in the sense

of the positive and the negative unit.

Every subtraction is possible when we employ the negative unit,

since there is now introduced an unlimited series of negative numbers
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besides the series of positive ones; zero separates the two. The

remaining operations with negative numbers are given by the equations

(I) (II) (III), since they are required to comply with the rules for

diiferences in general. A special consequence is, that the product of

two negative numbers is positive. The rules of signs for division by

positive and negative numbers are also determined by the inversion of

multiplication.

4. In order that the operation of division may be always possible,

the positive or negative unit must be broken up into subordinate

units; it is sufficient to introduce the numerical conception + Tj

where b can be any integer. For if the symbol j be employed to de-

note that number which when multiplied by b produces 1, then a

times this number will express the value of
-j-.

Here again it is to

be remarked that in nature there exists no fractional number, but

that this conception' also has a sense only in reference to numerical

combinations.

Any fraction can be replaced by another whose denominator is a

multiple of the original denominator:

b bat

a a a,

Employing this transformation we derive the rules

^ \
bi ba^^+ biO^

We have further from the conception of multiplication

a
^

a

Multiplication of a fraction —
by another -

,
in analogy with this last

equation, is understood to be division of the fraction by «, and multi-

plication of this part by 6, ;
whence

b^ bt ^ bbt >

a ai ««!

This definition complies with the fundamental proposition of multi-

plication. By inversion we get the equation of division

^ a
'

a^ ab^

Thus we can now complete the equations for sums and differences

^ ^ ~c~ "7^7' 7±d
~~

c±d =t c±d
'

But there is one very important exception to these equations: the

difference which occurs in the denominator must not be zero; a division
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is impossible if the divisor be zero. For if the dividend be not zero,

there is no number, which when multiplied by zero, gives a product

equal to it, since a product one of whose factors is zero vanishes;

but if the dividend is likewise zero, the value of the quotient is com-

pletely indeterminate; no calculation can be performed with such a

completely indeterminate number.

Integer and fractional numbers are both embraced under the ex-

pression Rational Numbers. Applying the first four rules of Arith-

metic to them we always reproduce rational numbers. The series of

rational numbers is unlimited: between any two, as a continued sub-

division shows, we can always insert as many more rational numbers as

we please, or to state the same thing in other words, a series of

rational numbers which is arrived at by any finite number of sub-

divisions never forms a continuum.



Second Chapter.

Badicals and irrational numbers in general.

5. Repeated multiplication gives rise to a fifth operation ,
that of

raising to a power or Involution, (^j means a product which con-

sists of 71 (exponent) factors, each equal to y (base). The values of

the powers of a positive base are only positive, those of a negative
base are positive or negative according as the exponent is an even

or odd number. Involution is always possible within the range of

rational numbers.

From one inversion of involution arises the problem of extracting

roots, Evolution. Given the positive number -r-, where a and h are

relatively prime, it is required to determine a positive number x^ so

that x^ =
-J- may be true for a given n. We assume the number v-

positive, for, when it is negative and the exponent n even, as far as

our conception of number yet reaches, no such root can be extracted,

whereas when the exponent is odd, the ?^*^ root of the positive value

of V- is to be taken, but with a negative sign. In like manner, it is

to be remarked from the outset, that when the exponent is even, the root

of a positive quantity can be given a positive or a negative sign. Accor-

dingly, the purpose of the following considerations is only to show

that the value itself can be determined.

If there be a fraction x = - such that — = ^ or &«» = aq^, since
q q^

^

a and h may always be assumed relatively prime and since we know

that there is only one way in which each number can be composed
of prime factors, we see that this equation must break up into a = p^j

]) = q». Thus a positive fraction is only equal to the »^*'' power of a

positive^ fraction, when its numerator and its denominator are each

equal to the n^^ power of an integer; in particular, an integer can never

be equal to the n^^ power of a fraction; for when h = 1, q must also

= 1. To find out therefore whether j is the w*^ power of a rational

number, we must form the table of n^^ powers of integers and examine

whether a and h appear in it.
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Hence manifestly the roots of positiye rational numbers cannot

universally be extracted by means of rational numbers only, but evo-

^lution in like manner with the problems of subtraction and of division

introduces a new conception into the theory of numbers. Employing
Euclid's method of inclusion within limits, this conception is ex-

pounded as follows:

If a be any rational number, then in the unlimited series of

fractions

0, ,, -, 7,
. . .

^,
. . . 0^*>o),

there must be a consecutive pair a= ~ and
/3
= -^t_

^
such that

«"
<-| <^«. -

The difference /3
— « is -. Now if a' be another number greater than

(>, fractions with the greater denominator a' can be inserted between

the fractions a and /3, this may be indicated by

a' a'' ff'
' a' *

' ' '

a'* a

In this series there must be two consecutive values a, and
/3,

such that

where «j > a or at least is equal to a, in case the required value occurs

in the first interval, and
/3, < /3 or at most is equal to

/3, in case the

last interval should have to be taken. The difference p^
—

a^ is

always less than —
,
for this is the difference between the first and the

last value of the series, intervening terms must have smaller differences.

Continuing this procedure with a new denominator a" > (?', we ob-

tain two -new fractions a^ and /^j having a difference smaller than

—
,
and so on. This will result finally either in a number being found

whose n*^ power is equal to ^; in which case the nature of v-b'
'"

•
^--^^ ""^ ""

b
IS

such, that it has a rational n^'^ root which can be expressed by one

of the denominators <T, 0\ (?", . . ., or, if not, the two series, that of

the lower limits: a < «j < a^ . . . < a^t . . . < a^+v • . . and that

of the upper limits: P > Pi > Pi ' • . > At • • • > A«+r ... go on

indefinitely.

These two series have the following properties: Although the

series of the a however far it is carried contains only increasing num-

bers, and that of the
/3 only decreasing ones, and this is not affected

if as is possible equalities occur among them, still each a is smaller
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than each p. Further, we can make the constantly positive diffe-

rences pfi+v
—

«i<+v, «u-fv
—

«/f , ftf
—

li/u-\-v
for each value of v, smaller

than any assigned value however small, merely by selecting only

those terms in the series for which ^ has a correspondingly great

value. For if these differences are to be smaller than d, we have only

to determine the first value of
ft

for which
/3^(
—

a^^ < ^
;
then we

shall also have by the foregoing inequalities for^ every v:

The numbers of the unlimited series of the a and likewise of the

P have the property that their n^^ powers are always coming nearer to

the value v-, so tjiat they ultimately differ from it as little as we please.

Hence it appears, that the numbers a and
/3
themselves also approach

more and more to one definite quantity, which, even though it does not

exist among rational numbers, is yet called a numerical value, because

it is connected with a rational number by a perfectly determinate arith-

metical operation. We denote the quantity as the limiting value

of the series a and /3; it is written in the form y ^
•

When the quantity is a rational number, its exposition as a

limiting value depends solely on the choice of the denominators

(?,(?', ^" etc. All periodic decimals belong to this case; for instance,

the value of

limiting
• 3

;

• 33
;

• 333
;

• 3333 etc.

is ^. Similarly, by the geometric progression, the limiting value of

1; i + ii i+i + (i?; i + i + a? + a)'. • •,

is 2. By suitably choosing the denominator, therefore, a rational form

can also be discovered for such values.

When on the other hand the quantity is not a rational number,
— and of this we can make sure at the outset in the case of a

radical by means of our opening proposition,
— the only possible

way of expressing the number, which is called an Irrational

number, is as limiting value of a series. This exposition and definition

embraces therefore besides rational quantities a new class, namely ir-

rational radicals
;
but it will be subsequently seen to embrace still more

than the roots of fractions. At the same time this process of evo-

lution fixes our attention on what is properly to be understood hence-

forth by the calculation of a number which is to possess a given

property. It cannot in general be required that this number shall

be assigned in finite closed form, but rather we see that: To calcu-

late a numher tohicJi shall have a definite property relatively to other given

numbers, means, to find a series of rational numbers that can he
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imlb)iif( iVn continued ivliich fulfil flic jn-opirfy of the rcj/dial nHndnr

witli ici r increasing and ultimately a rb i( r a r llij do s c ii2)i>fOjcini(ifio)i.

The question now arises, how such numbers are to be employed
in calculation, how irrational numbers are added, multiplied and so on.

This we proceed to show by the following investigations, based on

the knowledge we have just attained somewhat generalised.

6. Definition: By the General ('o]icrptl(ni of a ymiilnr Is hudut

a series of j^HisiHrc or negative rational itmubcrs tkat can, be uydunikdlg

continued according to <oii(c rule:

a, «, , «.,, . . . «^, . . . «,,+,.; . . .,

l((iciiig fl/c jtrnjirrfics, f>rsf ///af ds several numbers do not exceed a

di'fin.d'
ciihii in (d)sohdc ainoind

{i.
e. abstracting from sign) antf second,

thai for on 'I arldrardy snndl prescribed number 6, some number c,, con

he found i}i tin: rcrics, s(o-l( Ihat the differenee a^,-j_y
—

cc^ between it

and any succeeding number shall be in absolute amount smaller than 6.

Of such a series we say, it defines a number which is culled the

limiting value of the series.

VVe do not adopt into the definition the property that from some

certain place in the series the terms only increase or only decrease,

as was the case with the series a and /3 above. But it is important
to remark, that when this is the case we have the theorem:

If in the series

«, «, , ofo; • • • «/u,
• .

cC/ii-\-v , ' • •

the tt'iiiis only increase (or only decrease), and a superior limit can

be assigned, which the terms do not exceed (or in the other case, an

inferior one below which they do not fall), then such a series has

alway.s a limiting value, i.e., both properties stated in the definition

hold good.

For, were no place to be found in the series of increasing num-

bers a^i, «u-f 1 ,
... ff'/-|r, ... from which onwards the difi'erence

a^^y
— «„ rt'iiiaiiis less than an arbitrary number d

,
but rather,

hoAvcMT large we take ix, numbers «/^4-r; tV+'') "z'+v" • • • ^^ere always
to be iound which satisfy the inequalities

a^-fv
—

«/< > (^ and so
«/,_^,. > a,, + d

a^_|.v'
—

rv+^ > ^ '^^^^^ '^0 ^^h+^' > «/i + -<^ '

cCft^r'
—

a^u+v' > ^ ii-ii^ so
a^i_j-v" > a,,t + -^^

tlwu we could form a series of arbitrarily many i]ie(|iialities of

tliis kind. Accordingly, as the factor of d in the last inequality can

be arbitrarily increased, the amounts of the numbers a must increase

beyond all limits, which is contrary to hypothesis.
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A series whose terms sink numerically below any assignable value

is said to have the limiting value zero; thus we have the important

fact, that zero also is included in this general conception of number.
A series whose limiting value is not zero, if it is to have both

the properties we have stated
,
must have its terms after some definite

place either only positive or only negative. For if a^ and a^^.^ differ

in sign, the absolute amount of
«^,_|_,.

—
a,, is not less than the greater

of the two numbers, and so it is only possible for it to become smaller

than d when the series of the a has zero for limit.

7. We calculate with the numbers thus defined, by applying the

operations of arithmetic to the terms of the series expressing them,

since the limiting value can always be replaced with arbitrary approxi-

mation by a term of the series and thus the requirement of calculation

just laid down is complied with. Suppose the given series are

«, a^, aoy . . . a,,,
. . . and /3, /^^ , /J.^,

. . .
/3^

. . .
;

each representing a number, we can embody this in the symbolical

expressions
A = Lim («^,) ,

B = Lim
(/3t,)

.

Applying addition or subtraction it follows that in either case

« ± |5, «! + /^i , «2 ± ft 5
• • •

«^i ± /^^
• • •

form a new series possessing both the properties necessary for ex-

pressing a number. For when the absolute amount of the difference

of «^-j-v and «^f,
which we write briefly abs [w^t+r

—
««], is < ^ and

abs
[/3^(-}-)

—
/3J < d, the absolute amount of the difference of two terms

of the new series is less than 2d, for «^_|_v and ^^j^v have at the most

increased or diminished by the quantity- d in comparison with
a^i

and /3^.
But the limiting value of this new series differs from the

algebraic sum of the two given limiting values by less than an arbi-

trarily small assigned number, since the quantities a^ and |3^ differ

arbitrarily little from these limiting values; i. e. the limiting value

of the new series is equal to the algebraic sum of the given numbers

A and B. We formulate this in the equation

(I) Lim («^) + Lim
(/3^)

= Lim {a^, + ft,)-

Subtraction here furnishes the special theorem: Two series of

numbers which express the same limiting value yield when subtracted

a series of numbers whose limit is zero. But also conversely we de-

fine: Two series of numbers whose difference has the limiting value

zero express the same number, or, two numbers are called equal when

tiie difference of corresponding terms of their defining series has the

limiting value zero. This is to be regarded as the definition of

equality of two numbers. The original definition: Two rational

numbers are equal if they contain the same number of units or
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fractions of unity, is subordinate to this definition, which holds good
for number in general.

Similarly it follows on applying multiplication that

a/3, «, /3, , «2/32? • • • «^*ft* • . •

form a new series which likewise possesses the required properties.

For when the amounts of
a^,

and /3^ are at the most increased or

diminished by d, the product a^-|_v/3,,+v is also at the most only

altered by the amount «^ d + |3^
d + d^ which we can make as small

as we please by a suitable choice of fi,
since there are superior limits

which a and /3
never exceed, and d is arbitrarily small. Thus

(II) Lim (a^)
• Lim (/3^)

= Lim (a^
•

/3^).

We find by division the new series

1' ?i' F2'
"*

^^

*"

Excluding the case that the limiting value of the series of divisors

vanishes, and so that of the
/3

falls below any assignable value, there

is a superior value which these quotients are certain never to exceed;

and if
cc^

and /3^ are altered by d, then the difference

abs \"ji-^^ - ^1 - abs \lS^t±<r\

is a number whose amount is arbitrarily small. Therefore

Similarly from (II) we find for involution with a positive integer

exponent

(IV) (Lim (««))"
= Lim («/),

and thence for extracting the root of a positive number, i.e. of a

number whose, defining series from a certain place contains only posi-

tive terms:

(V) yU^(a,,) = Lim (p/^).

As before, these last two equations amount merely to the statements,

that a rational or irrational number can be qua^n proxime raised

to a power, or have a root extracted, by performing these respective

operations upon- a number in the defining series quam proxinie equal

to it in value.

It is convenient to base our introduction of powers with integer

negative exponents, as Newton did, on the equation

A'" 1

^^ __ Am—n __ i

A" A'*-"*'
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whether m^n, from which we see that. A'^ is 1 for all values of A;

as well as our introduction of powers with fractional exponents on

the equation

(A«)'"
= A'^'^'

which is valid for integer exponents. For since yk is the number

whose w*^ power is A, we can by this rule put j/A = A"
;
then

( -Y - "'
n —

But at present we restrict this definition of the fractional exponent
to a positive base, in order that the calculation may remain possible

without any exception.

The following consideration, of importance in itself, is premised
to the definition of a power with an irrational exponent:

Any number, which is expressed by a series of irrational

numbers, can also be expressed by a series of rational

numbers. For if

A| , A2 , A3 ,
... A^ ,

... A^-i-v ;
• • •

be the series of irrational quantities with the necessary properties,

suppose the quantities A to be defined by any arithmetical operation,

ex; gr. as roots, let us conceive two series of rational numbers

ft? ft? ft; . • .
/5/.,

. . . ftt+v, ...

«! , CC^i PJ3 J
• • •

CC^ ,
. . .

CiJ^u-fr J
• • •

of which the series of the
/S

is chosen arbitrarily but so as to have the

limiting value zero, whereas each number
a^^^

is assumed so that

abs [A^t
—

«^<] < ft(
. Then the series a represents the same limiting

value as the first series. This is a statement of a general process for

forming from a series any other with the same limiting value.

Accordingly if E be an arbitrary irrational exponent defined by

the series

f, £1, ^2; • • • ^^ • • •;

the power is to be understood as the limiting value of the series

As A*', A*% . . . AV, . . .

whose terms possess both the required properties.

For, A'/'+^' — ^'^ = A'/^ (A^
—

1).

But since A^ = 1
,
the absolute amount of this quantity can be made

arbitrarily small, as can be shown as follows. Conceive 6 to be a

positive rational fraction with numerator 1 and denominator an

arbitrarily great positive number M, then, if A > 1,'

A'^- i=='>;, A = (i + n)'^ .
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Multiplying 1 + ^ continually on itself to M times produces a number

which is certainly greater than 1 + Miy; therefore

A> 1 +Mv, >/<-V-
But if A < 1

,
let us put

then

A == 1—-- < —j-jTjT-, ,
therefore J < M

Now if we cousiilcr, tliat by the procedure just explained the series

A'', A'% ... A'^
;

. . .

also can be replaced by the series

'2

when Lim (a^J
= A, the result of this investigation can be written

in the form:

(VI) (Lim a,0
'''""

('") = Lim (a>,V) .

8. Inversion of involution presents a second problem: that of

the logarithm. Two positive numbers A and B are given, each

defined as limiting value of a series; it is required to determine a

number x having the property that B^ = A. Here x is called the

logarithm (exponent) of the number A (number) with regard iro the

base B, and is written

a; = «
log A.

It can be shown, in the first place that only one number x has

this property
— for we cannot at the same time have (B^ 1)

B = A = B^' and so -^.
= B'"^' = 1

without having x — rr'= 0,
— and moreover in the second place that

this number x can be expressed as limiting value of a series. In fact,

forming the series of terms

... B-S B-S 1, B', BS ...

there will be among them two values, such that, if B > 1

B^ < A < B^+' .

If we interpolate rational fractions between X and A + 1 we have:

B^'^ < ^ <B^ ^
.

As we increase the values of the denominator we obtain two series

by which cr is defined.
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The logarithm of 1 with regard to any positive number as base

is zero. In the sequel we assume as known the rules for calculating

with logarithms.

Numbers positive and negative, rational and irrational, are all com-

prehended together under the name real numbers. However often we

repeat the first operations of arithmetic on real numbers we reproduce
numbers of the same kind. But an essential exception must be made

regarding the last two operations. The values of negative numbers

with an even exponent are positive, but on the other hand we are

not at present in a position to assign what is the value of a negative
number with its exponent a fraction having an even denominator or

with its exponent irrational; since such fractions can occur in the de-

fining series. Similarly in order to avoid having to point out further

exceptions, we restricted ourselves in defining the logarithm to positive

values of the base and of the number. Thus a gap still remains here

which only the introduction of complex numbers will remove, but it

will do so completely.

Further, we have so far made no attempt to give the most con-

venient methods for actual calculation of any power or logarithm, we
have merely demonstrated its possibility and determinateness.*)

*) The conception of irrational number is treated in detail in Lipschitz,

Lehrbuch der Analysis Vol. I. As to the general conception of number see: Cantor,

Znr Theorie der trigonometrischen Reilien, Math. Ann. Vol. V; Heine, die Ele-

mente der Functionenlehre
, J. f. Math. Vol 71; and Dedekind, Stetigkeit und

irrationale Zahl. (Braunschweig 1872).



Third Chapter.

Conception of a variable quantity and calculation with variables,

specially with infinite quantities.

\), The totality of rational and irrational numbers forms the con-
tinuous series of numbers. To represent a continuum as a

whole we necessarily require an intuitive image. We naturally take

the right line, the simplest representation of a continuum in space.

Having assumed a unit of length, the points of a right line are

determined by assigning their distances from a fixed zero-point, with

the + or — sign, accordmg as the point considered is right or left

of that origin. The distance of each point can be expressed by a

rationaj or irrational number. For, what is characteristic of a point

is that it bounds a definite length from the origin; this length

measured by the assumed unit is a number which can be expressed

either in a finite form, or as is taught in Euclid's elements, with

arbitrary approximation by continued subdivision of the unit; and this is

the very idea of obtaining a series defining the distance. Thus to each

point of the continuum belongs one and only one number, our general

conception of number is never in default. And conversely: to each

number belongs one and also only one point, since each number

determines a length to be constructed, each length an end point.

Thus according as a point moves upon a right line, its distance from

the origin travels through the continuous series of numbers. The infor-

mation we have now acquired can also be thus stated : Rational numbers

enable us to express as approximately as can be desired every value

of the continuous series of numbers.

In order to contemplate the conception of all numbers possible

within an interval, that is, between two fixed values, we introduce into

analysis the representation of variability apart from the image of a

definite motion on the right line. This representation was first em-

ployed in the most general manner by Newton, the way for it having
been prepared by Geometry, specially from the time of Descartes.*)
A quantity is said to be variahlCf when it is able to assume different

numerical values. As in purely arithmetical investigations we no longer

consider what are the things given in number, so in the conception

*) (1596-1650).
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of ^'variable quantity^' we have also to free ourselves entirely from

considering what this quantity represents. The distance of a movable

point, the temperature, the tension of vapor, in a word, everything

measurable in nature can enter into calculations as variable quantity.

A quantity is said to he continuous or continuously variable within an

interval i.e. between two numbers, when there is no numerical value

between two numbers Xq and x^ -{- d however close together which it

does not assume as it changes from Xq to x^^ + 8. Thus the state-

ment, a quantity changes continuously from the value a to the value

by amounts to this, the quantity travels through all numbers between

a and b and there is no break in the sequence of the numbers.

But now since when we want to fix the variable, we are not al-

ways able to assign a value which it assumes in a closed form but

only as the limiting value of a series, we often use a phrase drawing
attention to this change towards a determinate value whether rational or

irrational. We say : the continuous variable approximates infinitely to

a determinate value b or converges to &, when the series of numbers

through which it passes has this limiting value; that is, for any
number d however small, some place must be assignable in the series

from which onwards all values of the continuous variable differ from

b by less than d. We shall always denote by the word ^^infiuite'^, a

continuous change towards a determinate limiting value.

In particular a variable becomes ^'infinitely small'', ivhen as it

varies continuously there is no condition tvhich prevents its absolute amount

becoming less than any assignable number
,

i. e. when it has the limiting

value zero.

The variable is called "infinitely great^' and its limiting value

written with the sign + oo
,
when as it varies continuously there is

no condition which prevents its absolute amount becoming greater

than any assignable number. From the continuous series of numbers

through which such a variable ultimately passes, discontinuous series

of numbers can be selected according to some law, (for instance if

we only pay attention to, integers,) but they no longer satisfy the two

properties already recognised as necessary for series defining numbers.

Nevertheless certain calculations can be effected with these series of

numbers, on which account we introduce them as a distinct numerical

conception by the following more accurately stated definition:

A variable becomes in a determinate manner positively or negatively

infinitely great, when, the series of numbers tlirough which it travels,

has the properties, first that the values after a certain place are only

positive or only negative, and, second thcd a place can be found in the

series after which all values are greater in amount than an assigned

oiumher Jioivever great.
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This second property must await closer discussion in subsequent

examples; it does not preclude the terms of the series still oscil-

lating on from any place, that is, becoming at one time greater and

at another smaller. But when in the series of numbers only arbi-

trarily large values occur, yet the other property is not satisfied by
all the terms, the variable becomes indeterminately infinite.

We denote variables by the last letters of the alphabet XyyjZ\
and quantities with fixed or constant values by the first letters a, hy c.

10. The principal laws for calculating with variables result from

the rules established in Chapter II for limiting values; for, the numbers

which there approximate discoutinuously to the limiting value, occur

among the other values in the continuous variation. Here we repeat

the equations, written now with a reference to continuous variability,

in order to append some special theorems to them:

(1) Lim {x ^^z.y)
= L^^ W i ^^^ iy)*

This equation asserts: The limiting value to which the sum of

two continuous variables tends, is equal to the sum of the limiting

values to which the summands tend, and conversely. This proposition

can be extended to several summands.

Special theorem: The sum or difference of two infinitely small

quantities is itself an infinitely small quantity, that is, one converging
to zero.

(II) Lim {x '

y) = Lim {x)
• Lim {y).

Special theorem: The product of a finite and of an infinitely

small or the product of two infinitely small quantities is itself an in-

finitely small quantity, that is, one which converges to zero.

If m denote a constant and x a variable which assumes only positive

values, then

(IV) Lim (rr"')
= (Lim rr)'"

.

If Z< be a positive constant, x an arbitrary variable, then:

(V) Lim ih')
= t^J"" (^)

.

Powers with a variable exponent are called '^Exponentials'' in

contrast to powers with a constant exponent.

In equation (III) the condition is assumed, that Lim {y) is not

zero. But the introduction of the conception of continuous variability

furnishes an expedient which renders it possible henceforth to take

account in calculations, of quotients even with an infini-

tely small divisor. For, zero being no longer defined only by the

difference a — cr, but as the limiting value of a series of numbers,
Harnack, Calculus. « 2

t
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the quotient j
!°^ ,^ . can also still retain a determinate value when, for

arbitrarily small values of y^ the quotient x : y expresses a number

approximating to a determinate limiting value, finite or infinite. But

this is only possible when the law of formation of the series x : y
is given, i. e. when to each number within the series x the number

in the series y is known, by which the former is to be divided. When

this is so, by the quotient j
!°^

^' we shall understand the value

Lim (—)*)• If X have a determinate finite limiting value, the series

X : y will consist of numbers, which increase in absolute amount be-

yond any limit. But if the limiting value of x itself be zero, then

the series x : y can have either a finite, or an infinitely small
,
or even

an infinitely great or yet no definite limiting value at all, and this

is to be decided only in each individual case by forming the series.

For equations (I), (II) the law holds also, that in order that

the left side may be formed without ambiguity, the connexion between

the places of the series x and those of the series y must be given.

In this case the left sides can then still express determinate limiting

values when the limits of one or of both series for x and y transcend

any finite amount.**)

Ik
*) A simple example may make this clear to the beginner. Suppose the series

given, in which y is to travel through all numbers from 1 to 0; let the series

consist of the numbers 3y — y^, so that therefore for i/
= 1 re = 2, for y == ^

X = ^ ^
for y = I X = \^ ,

• • y = X = 0. If now by y-^
we understand

the value Lim —
,

it will be expressed for every value of y by ——^= 3-2/,

and thus although y, and with it x, have the limiting value 0, the series of the

quotients has the limiting value 3.

**) The last half of this chapter will become more intelligible when the in-

vestigations which immediately follow shall have furnished us with materials for

definite examples



Fourth Chapter.

Conception and notation of functions of a variable.

11. If the value of a variable y is determined by the value of a

variable x in such a way that to each value of x within a certain

interval one or more values of y can be calculated or assigned in any

prescribed manner, then y is called a Function*) of the continuous

variable x within this interval; y is also called the d6pendent and x

the independent variable, or the argument of the function. If there

l)e one value of the function for each value of the variable it is called

a s'ingle-valued (one-valued or unique) function, if more values

a many-valued (or ambiguous) function.

This dependence may be perfectly casual, the independent variable

serving merely to indicate the position in a Table, the function being

that which is found there: in the problems which deal with measurable

(juantities in Physics, the functions with which we are always concerned

are those in which the dependence of the variables is ascertained by

Observation. The dependence may be expressed by an equation between

X and ifj which may or may not have for all values of a; a sense al-

ready defined. For instance, by the relation

y'^
= {x

-
I) (3

—
x) ov y = ± ]/{x

—
1) (3

—
x)

:i two-valued function of x is defined by reason of the double sign, but

it can be calculated in real numbers only for the values, 1 <a;<3.
When the relation between x and y is given in the form of the

general equation f{Xy y)
= ^ the function is called implicit: but

when the equation is in a form solved for y, y=f{x)j we call y

an explicit function of x. The functional connexion between x and

y may also arise by means of a third variable and the function be ex-

pressed by a parameter: x===f{t), y = (p (t)] to each value of ^

belongs a value of x and of y ;
in this way values of x and y become

connected.

It is usual to divide functions into algebraic and transcen-

dental. When the equation by which y is defined can be brought to

*) The term "function" was introduced by John Bernoulli (1667—1748)

(opera omnia t. TT
]i. 21 1\

4
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the form f {x, y)
<= where /' is integer and rational in x and ?/, we

call y an algebraic function of x. Accordingly the most general type

of an algebraic function with two variables is

A,y- + A,y-' + A^y^-^ + • • • + An-iy + ^n = 0,

where the quantities A are polynomials of any degree in x of the form

A = ttf^x^ -{- a^x^-^
• ' '

-\- (ijnj ^i and 7i being positive integers.

Here the only arithmetical operations performed on the variables

are those of the first four species repeated a finite number of times

and including integer powers.
All other functions are transcendental. To these the operations

of arithmetic contribute the power with an irrational exponent, but

chief of all the exponential function, the simplest type of which is

y z= a^^ and the logarithm y = *log X] we can only calculate these last

two functions, so far as our conception of number yet reaches, for

positive values of a and &, and further the second only for positive

values of x.

12. Not less important are the trigonometric or as they are

sometimes more precisely called goniometric functions which we are

familiar with from the elements of geometry. These are geometrically
defined as the ratios of lengths which depend on an angle. In order

to indicate that angular quantity is always a pure number, we describe

the magnitude of an angle, not by degrees, but by the ratio of the

length of the circular arc to that of the generating radius which be-

longs to it. The length of the circular arc belonging to an angle, as

well as that of the whole circumference, is proportional to the radius

with which it is described. Hence the circumference may be denoted

by 27i;r, where tc is a number to which the Geometry of Euclid shows

we can approximate as closely as we please by inscribing and circum-

scribing polygons. Accordingly, to each angle there will belong a

number which determines as part or multiple of 2 it the arc as part

or multiple of the circumference. By geometric 'investigation we con-

clude the following properties of the functions:

y = sinx and y = cos a:.

1) as a; goes from to ^jr, sin it; goes from Oto 1, cosicfrom 1 to

,;
^ „ „i-^^^^7 sin^ „ „ 1„ 0, cosa; „ 0„— 1

„ X „ „ 7t„^7t, sin^ „ „ „~1, cos:r „ —1 „

„ X „ „ |:nc„27r, sina; „ „
— 1 „ 0, cos iz; „ „ 1.

This is one of the cases in which it is good to adopt a distinction

of signs in the geometric interpretation.

2) {sinxy + icosxy = 1.
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3) If the size of the angle be extended by turning the leg further,

it follows that for any positive integer Jc:

sin {x + 2Jc7t)
=a sin a;; cos {x + 2k7i) = cos x.

4) If the rotation be effected in an opposite sense, the angle is to

be denoted by a negative number; therefore we have then:

sin
(
—

x)
= sin(2«

—
x) = — sin^c

cos (
—

x) == cos {2n — x) = cos a;,

and generally:

sin (x + 2]c7c) ==
sina;; cos {x + 2k7t) = cosrr.

Both functions, which always lie between the values + 1 and — 1,

have the property of reproducing their values, whenever the indepen-

dent variable is increased or diminished by an integer multiple of 2 jr.

Such a function is called periodic and 2;r its period.

5) It is proved geometrically that:

sin {x + x^)
= sin x cos

rCj + sin x^ cos x

cos
(a; 4: iPj)

= cos x cos x^ + sin x sin x^ ,

from which follow

sin X — sin
a;,
= 2 sin i{x — a;,) cos i{x + :r,)

cos a: — cos
a^i
=— 2 sin i{x

—
x^) sin ^(x + x^).

6) The area of the circular sector SCAM, whose angle lies

between and J;r, is greater than the area of the triangle ^JBJf and

less than the sum of the triani^les ADM and

JBD3L
Let the radius AM= I, the angle A3IC= Xy

then AE = sin X, ME = cos x-^ further :

AD:AM==^AE:ME,
and 80 AD = sin X

Fig. 1.

, accordingly for the areas
COS x^ ° ''

mentioned we have the inequality:

sin X
cos a;

> ic > sm a; cos x or
1 ^ a; ^> —.— >» cos x

cos X sm a;
^

This inequality holds, however small x is assumed; it holds also

if X be made negative. The quotient -— is of such a nature,o * sin X
that its numerator and denominator can become infinitely

small, while the quotient itself converges to a determinate

finite value; since for x = cos a; is = 1. Thus the value ^^^
which forms a superior limit, coincides with the lower limit cos X for

.,; = 0. Therefore also the included value will be 1
,
that is

Lim
Bin a;

1 foYX=0.
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The quotient
^^^ travels through the series of the reciprocal

values and has likewise 1 for limit.

From these two functions two others are formed by division,

which are also immediately expressed as ratios of lengths by geometry:
. sin a; , cos x
tan X =

, cot X == -.— :

cos X ' SlU X '

tan a; is for a; = 0, +7r, +2;z;etc., cot^ is for rr= + -^jr, + f tt,

-h l^r etc.; tan x increases beyond any assignable limit and becomes

+ oo in a determinate manner, when x converges to the values -\- ^tc,

ibt^' +|:n;etc., so does likewise cot x when x converges to the

values 0, + n:, +2:71 etc. Both functions have the period jr.

We have so far not given any convenient method of calculating

goniometric functions; only inasmuch as the determinateness of the

problem, to find for any given angle its sine etc., is known geometri-

cally, we ventured to introduce the conception of these functions and

a symbolic notation for them.

13. From these four functions can be derived their inverses the

circular functions. If for any function we conceive the values of y

as given first, then the values of x appear as dependent; x is then

called the inverse function of y. In a table of logarithms we can

consider the logarithm as function of the number, but also inversely

the number as function of the logarithm.

The nature of a function may however be such that its inverse

function is defined only for isolated values of y. If we consider, for

instance, the function y^=G{x)j using G {x) to denote the greatest

integer in x^ the inverse function is defined only for the integer

values
2/
= 0, 1, 2, . . .

;
to each of these values then belong infinitely

many different values of x
, namely to ^ = all values from x == Q

to a? = 1 exclusive, to
^Z
== 1 all values of x between 1 and 2, etc.

When y = ^in Xj the inverse denotes the angle x whose sine has

the given value y\ it is written ;

X = sin~^?/

which is read, the angle whose sine is y, or the arc whose sine is y.

Similarly from the others a; = cos-^2/, a; = tan-^«/, a; = cot-^t/.

Now since sine and cosine assume only values between — 1 and + 1,

sin~^ and cos
—^ are defined only for the values of y within this

interval. Further, since different angles belong to the same value of

either sine, cosine, tangent or cotangent, and so different numbers x,

circular functions are many-valued. In order to be able to consider

them as determinate numerical values in calculation, we adopt a con-

vention which at the same time presents them as continuous functions :

Sin-^?/ denotes that number between —
\7C and ^it whose sine is y.
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Cos""^ y denotes that number between and it whose cosine is y.

(-1<2/<1)-
Tan-^ y denotes that number between — ^it and J n whose tangent is y,

(— oo<y^ + oo).

Cot-^ y denotes that number between and 7t whose cotangent is y.

(— OO <t/<+ CX)).

14. Algebraic functions and the four simple kinds of trans-

cendentals: Exponential and Trigonometric functions with their

inverses: Logarithmic and Circular functions, form in their in-

numerable combinations the proximate object of analytical investigation.

Its course which is aimed at the actual calculation of the functions

and at the knowledge of their properties, will reveal a close relation

))etween exponential and trigonometric functions, and therefore also

between the logarithm and the circular function. Further it will appear,
that the operations of the Differential Calculus, when applied to these

functions do not give rise to new ones, but that on the other hand, the

Integral Calculus does teach us to exhibit and calculate new functions.



Fifth Chapter.

Geometrical representation of a function; its continuity and its

differential quotient.

15. By the help of the Cartesian system of coordinates — most

simply by a rectangular system
— we present to ourselves an image

of the entire course of a function, as a succession of points, whose

number can be arbitrarily increased and whose uninterrupted connexion

can be considered generally as a curve, when we lay off each value

of a; as a length along the axis of abscissEe, and each corresponding y

as a perpendicular ordinate at the extremity of x. The extremity of

this ordinate is the point which corresponds to the system of values x,

y. But since points even though infinitely numerous never generate a

curve, but it must always be made up of lines between points, as

matter of fact the only way we obtain an image of the function i

by constructing arbitrarily many separate points corresponding to diff*

rent systems of values, and connecting these points by right lines. Th

approximate image of the function, a polygon with arbitrarily man

angles ,
will present a certain general view of the whole course of tl

function, which will be more correct the more we increase the numb<

of points constructed; but in its individual small parts this represe:

tation will never be quite exact. Specially, when the function ge»

metrically represented is very much twisted near any point, i. e. when

presents polygons with salient and reentrant angles starting in and ou'

every image we thus proQure will exhibit its course very imperfectly

and will undergo very considerable changes as more points are em

ployed in the construction, so that the true image of the function, in

regard to all its properties at each point, cannot be fixed in this manner.

But when we say of a function: it can be exactly represented at

a point by a curve, we are enunciating a definite property for this

point; for we are assuming, that while the number of angles of

the polygon is arbitrarily increased, the directions of the sides of

the polygon proceeding from this point as an angle converge to fixed

limiting positions. We shall in the present Chapter formulate the

^condition for this analytically.
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Our first enquiry is : what properties does the course of the depen-
dent variable y exhibit while the independent variable x assumes all

possible values? There are three things of immediate importance in

the examination of any proposed function.

First: Is its course everywhere continuous or not?

Second: What singularities occur among the values which the

function assumes?

Third: What values does it take, when the independent variable

becomes infinitely great?

16. Let the explicit function y=:=f{x) be defined as a one-valued

function for a determinate interval from x = a to a; == &
, i.e. let one

and only one determinate v/lue of the function without any exception

belong to each value of x. We call the function continuous on

both sides of any point x in this interval, when there are no sudden

changes in its values as we move from x to either side, that is,

as we form the values of the function belonging to values arbi-

trarily little greater or less than x. In a form applicable to cal-

culation we state what is required thus: It must he possible for this

value of Xj to find a finite number h, which only converges to zero

tvith d = 0, such that the absolute amount of the difference f{x + Qh)
—

f(x) of the values of the function is less than an arbitrarily small

nfisigned number d, denoting a variable between the limits 1 and 0»

tr,
there is thus fixed about this point a;,

a region + h in which the

lues of the function differ by less than the arbitrarily small quantity
from the value at x, and this excludes a sudden change of the

action at that point. The same condition can be stated in other

)rds : The value of the function for a determinate x must come as the

niting value both from f{x-{- h) ajiid likewise from f{x — h), ivhen h

comes infinitely small
y

i.e. converges continuously to zero, provided
'S limiting value is completely determinate*)] for if so, by the funda-

ental property of a series defining a limiting value there will be a

due of h for which abs [f {x :jzh)
— f {xj] < d, and this absolute

nount will remain smaller than/ d as h converges to zero.

Thus for instance

sin {x Hh h)
— sin x = 2 sin (+ ^h) cos (a? + 4 h).

.ere h can be determined so as to make the first factor on the right

de arbitrarily small, for the sine is smaller than its argument, the

jcond is finite for every .r; accordingly by a suitable choice of h the

roduct can always be made less than an assigned number d, whence it

38ults that the sine is always a continuous function (see p. 30).

*) Lim
(cos

—XTJ
~ ^^™ v®®

—
Il-~7l)' ^®* *^^ function is not continuous

)r .r =
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With the foregoing consideratipns we have attained the conception

of the Region or Neighbourhood of a point. By it we mean an

arbitrarily small but still always finite interval at both sides of the

value X. If a function satisfy the condition of continuity at each point

of this interval, it is said to be continuous in this interval.

When a function is everywhere continuous in the interval from a to

&, and has the values f {x^ and f (x.^ for two points x^ and
r^j

of this

interval
,
then

,
as x goes through the range of values from x^ to

x.^ ,

the function also assumes each value which lies between f(x^ and

fix.^ at least once. In other words: the continuous function

does not overleap any value intermediate between two va-

lues which it assumes.

We can reduce the proof of this proposition to that of a simpler

case. If m be a value which lies between f {x^ and f {x^)^ f\^\) being

greater than f (^2) >
then the function g? (x)

= f (a;)
— m is positive

for X =^
x^ and negative for x ==. x.^.

In order therefore to prove that

fix) is equal to m for some point between x^ and a;2, we have to

show that somewhere between x^ and x^^ (p {x) is equal to 0. There-

fore we have to prove the theorem: If a continuous function

(p {x) \^ positive for x = x^ and negative ior x = x^y there

is in the interval between x^ and x^ at least one point at

which it is equal to 0.

Let the length of the interval x^
—

ic,
be ?. Construct its middle

point x^ -\- ^l = Xr^. If at it the value of the function be zero, the

theorem is already proved. If it be positive, let us take into con-

sideration the interval from
Xr^

to X2 within which the function changes
its sign J

but if negative, the interval from x^ to x^. Whichever case

presents itself, the interval to be considered has the length -J I, and

at its commencement which we may call a^ and which is either

a?i
or ^'3, the function is positive, at its termination /3,

which is

either
x.^^

or X2', it is negative. Now let us again halve this interval

and consider the first or the second half, according as the function

is negative or positive for the new middle point. We have then an

interval of the length \lj in which the function changes sign; at

its beginning a^ the function is positive, at its end /Jo negative. As

we continue this process of halving, we either reach a point at which

the value of the function is zero, and then the theorem is proved ;4gr

we can mark off intervals without limit, whose lengths decrease ever

more and more and converge to zero, for these lengths are

^Ij \l, \l ' ' ' etc.

The initial points as well as the terminal points of these intervals con-

verge to a determinate limit and it is the same for both. For the
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initial values a,, a^, a
3 ... never decrease, they are ever on the in-

crease, though several in succession may remain equal; and all of them
are less than

/3,.
From this it follows (§ 6) that they have a de-

terminate limit. The final values
/3 never increase and yet always

remain greater than a^ ;
whence it follows that they likewise have a

limit. Both limits are equal, because the difference /3„
— a„ converges

to zero. Accordingly a value X, between Xy and X2, is defined as

well by the series
ofj , a.^, ...«„.. as by the series

/3,, ^27 • • •
/^« • • •

Now since cp («) is always positive and (p (P) always negative, and
since we can take n so large that X — a„ and /3„

— X may be less

than an arbitrarily small quantity h, we must also have by the de-

finition of continuity

abs [(p [an)
-

(p (X)] < d and abs [(p (/3„)
-

tp (X)J < d

if d denote an arbitrarily small quantity. But if the value of 9 (X)
were a positive quantity a, different from zero, we should have

(p{X)
—

(p (Pn) > a since (p (/3„) < 0;

and if it were a negative quantity
— a

,
different from zero

,
we

should have

(p (ci„)
—

(p {X) > a since (p (a„] > 0.

In either case the condition of continuity would not be fulfilled; we
must therefore have (p (X) = 0.*)

Since a continuous function in the interval between a and b can

never overleap a value lying between any two of its values, it is

possible, unless the function is constant, to discover at every points;
a finite region + ^^> such that abs [f(x-\-h) — f(x)] is equal to a

certain prescribed quantity ^d while abs [f{oc-{-Qh)
—

f((c)] < ^d,
Now in the interval from a to & in which the function is to be con-

tinuous, suppose such a region h found first for the point a and laid

off from that point on the side towards 6
,

let a -f- A =
o^i ,

then

there is for the point Xi likewise such an interval
/i, ,

let
a;, + h^

= X2 ;

proceed now to find the interval h^ for the point X2 and thus advance

to a point x^ and so on. The ultimate result of this process must be,

either, that we arrive at the point h, or, that we include it in an interval,

by a finite number of finite assignable intervals. For if, by reason

of the intervals h ultimately sinking below any assignable limit, this

})rocess should go on infinitely and therefore should converge on some

value X between a and b or on the value 6, the condition of conti-

nuity could not be* satisfied for this point x, since it requires that a

finite interval can be assigned in which abs [f\x
—

Ji)
—

f(.^}] < i<^.

The smallest of the finite number. of values h thus found, let us

) A.Harnack: Lehrbuch d. Differential- und Integralrechnung von J.-A. Serret

Vol. I p. 20—1. 1884.
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call it h'j is an interval for each point from a to 6, within which

the absolute difference between values of the function is certainly

smaller than 8. For, to an arbitrary point x occurring, ex. gr. in the

x^ X2 interval, belongs x + h' which is at most in the x^ x^ interval;

now we have

abs [f(x,^
-

f(x)-\ < \8 ,
abs [f(x,)

-
fixd] = i^.

abs [fix^^
— fix+yy] < -Jd, therefore abs Ui:^+'h")-f{pcy] < d.

We have thus learned, that for each continuous function one finite

value h can be assigned, which is sufficient for every x in the entire

interval from a to h in order that it may satisfy the inequality

f\x±eii)-f{x^<d,
d being given arbitrarily. In consequence of this property Heine (see

note p. 14) has called every continuous function uniformly con-

tinuous in its interval.

We can also state the result of these investigations thus: Any
continuous function accomplishes any assignable finite change in its

value only within an assignable finite interval; whereas with a discon-

tinuous function a finite change takes place in an arbitrarily small

interval.

17. Points at which the criterion of continuity is not satisfied

are called points of discontinuity. Thus, for instance, the function

—
^, («>i)

is discontinuous for x = a, as we find in calculating its value by

putting X = a -{- h or x = a — h, and making li converge to zero.

In the former case it is at once

For /i = this is a quotient whose numerator and denominator in-

crease in a determinate manner beyond any assignable limit; yet it

approximates to a fixed finite value. For as it can always be put

equal to

1

a J

1 + e'"'^

we see that ultimately the values of the second factor differ arbitrarily

little from unity; because as Ji decreases, e a is always a decreasing
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fraction. Determined thus, the value of the function for x = a is a.

But if we put X = a —
li, then

6~^ -i'
2/
= «—T ,

e
* +1

hence for h = the limiting value is — a. Thus the function pro-

ceeds up to the value — «, when x beginning from a lower value

increases to «, but there the function suddenly leaps to the value + a

for the same a; = a, henceforth it decreases continuously as x in-

creases; accordingly, for re = « the function ceases to be one-valued.

The function already mentioned in § 13: y==G{x) where by

G(x) is meant the greatest integer contained in x, is when investigated

for positive values up from rr = 0, a function everywhere one-valued,
which is discontinuous at the points a;=l, 2, 3, . . ., the values

of the function suddenly changing from to 1, from 1 to 2, and so

on. At all other points, however near they lie to the points of discon-

tinuity, the function is continuous; we can even say, that for each
distinct value of x^ we can choose h so as to make G{x-\-Qh)— G{x) <,^-> only the value of h. falls below any assignable limit

when X comes arbitrarily near a point of discontinuity: the continuity

ceases to be uniform; but we cannot make G (x — Qli)
— G(x) <^d

when X is one of the points of discontinuity, whence we see that the

first inequality alone is not a sufficient condition of continuity.

But further, those points are also styled points of discontinuity, at

which the value of the function itself exceeds any assignable limit,

or at which it is quite indeterminate, because at such points also the

condition of continuity as above formulated cannot be satisfied. For

any given function it is then important to investigate, how it behaves

in the neighbourhood of such a point.

Thus, for instance, y = ——— will have a negative value for

a; < «, whose amount becomes greater the more x approaches the

value a; as soon as x has become a little greater than «, the amount

becomes positive and arbitrarily great; here therefore there is a change
from — oo to + oo, or

f{a + h) = [
and /(« -/,) = -

\

present as h decreases, numerical series which become determinately

(§ 9) positively and negatively infinite. The same thing can be seen,

from the geometrical definition
,

to be the case with tan x when x

=
^7t. On the other hand, the function y ==

(—zr~) ^^ ^* ^^^^ sides

of a positively arbitrarily great. Continuity however is maintained for
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every value of x which differs from a by an arbitrarily small yet

finite quantity.

The functions

y-^a «'" (^«) '''^^ ^=^
(^'"^ (^a))'

behave quite indeterminately; for whereas in each case the first factor

becomes arbitrarily great as x approximates to a, the second oscillates

between — 1 and + 1 in the first case, between and -\- \ 'wa the

other, so that from no point however close to a does

/^ (« + /,)
= ^^ sin (± I)

or ^ (sin
(+ i))

present a series with a determinate finite or infinite limiting value as li

becomes infinitely small; neither the properties required in § 6 nor

those in § 9 are here fulfilled. The oscillations of the sine function

follow each other more rapidly the nearer x comes to a; if we assume

a; = ej^ -|- /i and ask: by how much h must be diminished in order that

the number under the sine may change by 2;r, it follows, putting

that

therefore

7 7, 2 TT ^2
r^ — A = ^r^—„—7"

•

l + 27r/j

Thus the difference, the interval in which the sine travels all through
its values, is less than 2 7ch^, so that the number of oscillations

of the sine in an arbitrarily small region near a is far beyond any

assignable limit; for such a point, at which its argument becomes

infinite, the sine (and likewise the cosine, tangent and cotangent) has

no determinate value; therefore also it cannot be called continuous at

this point, although it is continuous at every point however near to it.

'^'^
If a continuous function do.^not become infinite for any value

of X in an interval from a to &, then there is at least one value

of X in the interval or coinciding with either limit a or &, for which

it assumes a greatest value G assignable algebraically (that is, taking

account of sign) and likewise one at which it assumes an algebrai-

cally least value g. This proposition is not self-evident. In case of

a discontinuous function also, provided it remains finite, an upper

(and a lower) limit can be assigned , beyond which the values of the

function do not pass; moreover such limit can be fixed so that the

values of the function come arbitrarily near it at some point, and yet

the value itself never be actually reached. If we consider, for in-
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stance, the function y = x in the interval from to 1
,
but attribute

to it at a; = 1 the value y = instead of y ^ 1
,
then it is a discon-

tinuous function whose upper limit is the value 1
,
which it however

does not assume in the interval from to 1, both limits included.

For a continuous function the proposition is proved as follows.

If we break up the interval a to & into w parts d each = —^-
,

then, either, the function assumes the value of the upper limit G at

one of the points of division, or the value G is upper limit at least for

one of these intervals; that is, the values of the function come arbi-

trarily near this quantity; let this interval reach from Xf^ to
ic^^-i.

Choose d'< d and subdivide this interval into parts d'. By this we
either hit upon the point with the maximum value, or G is the upper
limit in an interval x^- to Xfi'+i. Now if we divide this interval

further into portions d"< d\ and so on, we either arrive by a finite

process at the point at which the maximum G is the value, or, we
obtain an unlimited series of increasing quantities a;^, a:^-, x^t" . . .,

which defines a point X. The value of the continuous function f
at this point X cannot differ from the value G, since it is the pro-

perty of a continuous function, that its value at each point can be

derived as limiting value of neighbouring ones (§ 16);

f{^M)> fi^f*')y /*(V') • • •

is the series by which f{X) is defined. But the values of this series

approach arbitrarily to the value G] consequently f(X) also cannot

differ from G hy a, finite quantity, thus f{X) == 6r.

In like manner we find a point at which the value of the function

coincides with the lower limit g.

18. When a function is not restricted to a finite interval of x,

it is always of importance to examine its behaviour when x becomes

infinitely great, that is, to investigate what is the limiting value

of the series of values of the function when formed for arbitrarily

great values of x. The limiting value is either determinately finite,

or determinately infinite, or indeterminate, according to the properties

exhibited by the series.

The following are Examples:

(«) Lim(a + ~) = a, LimC-^") =0 (w > 0).

(/3) Lim (;r'"):r=+a
= + oo (w > 0), Lim *log (a:);^+x= oo(b> 1).

, ^ (Lim (sin ic)for«=+<» is indeterminate but finite,

(Lim (icsin a;)fora:=+» is unlimitedly indeterminate.

19. Inasmuch as the continuity of a function on both sides oi

a point precludes the function from becoming infinitely great in the
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neighbourhood of this point, the following general theorems regarding
the property of continuity hold good:

a) The algebraic sum of two or more continuous functions is itself

a continuous function.

For if g)(x) and 'tp{x) be continuous, it is always possible to discover

an interval h, such that

abs [(pixAzh) — (p {x)] < iSj abs [ip (x + h)
—

ip {x)] < ^d.
From this it follows that

abs [\(p(x±h)±t{x±h)]— {9ix)±t{x)]]<d.

b) The product of two or more continuous functions is itself a

continuous function.

For we have : abs [9 (x ^h) -

ip {x i:h) — (p (x)
• ^ {xj]

= abs [(p{x + h){ijj{x+ h)
—

-il) [x)] + ^(^) { ^'(^ ih ^0
—

^{^) 1 ]•

If the interval h be so determined that

abs \^ {x + J^)
—

ijj (x)] < 8
J

abs [q) {x + 70
—

cp (a?)] < s,

then we have:

abs [cp {x + h) ijj{x ^h) — cp (x) xl^ {x)] < s . abs [cp (x + /O+ ^ (^)]'

But since q) and tp have determinate upper limits in the neighbourhood
of the point under consideration, by assuming £ suitably and deter-

mining h to correspond, this expression on the right can always be

made smaller than any prescribed small number.

c) The quotient of two continuous functions is itself a continuous

function, except at points at which the denominator vanishes.

For we have:

l^{x±h) ip{x)j

{x ±:h) — (p(x)} —cp {x) {^p{x±:h) — tp{x)}~\

[ t{f{x)ip{x±:h)

A similar consideration to the last, shows that the numerator of this

expression can be made as small as we please, while the denominator

remains finite.

But if in the fraction ^-~ the denominator converges to zero for

X = a, the numerator remaining finite, the value of the quotient be-

comes discontinuous, being either determinately infinite or indetermi-

nate; though for every value of x however near this it is continuous.

If the numerator also converges to zero, then by the value of

^1^ for X = a is to be understood the limiting value of the series

obtained when x travels through a continuous series of numbers having
a for its limit. Whether the quotient then acquires a determinate
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value and whether it is a continuous function at this point also, i.e.

whether it arrives at the same value by proceeding from a; > a as from

ic < a, must be decided by particular methods. The most important
case of this kind will be investigated in the following paragraphs: its

solution gives rise to a general method.

d) If u = cp{x) be a continuous function of a;, and y = f{u) a con-

tinuous function of ?t, then y is also a continuous function of a;.

For in order that

abs [f{(p {X + h)) ~f{(p (x))'] may be < d^

the change ol x must be so determined, that

abs [(p {x -j- h)
—

q}(x)] < £,

6 denoting the quantity for which the condition

abs [f(u + s)- f{u)] < d

is fulfilled for the continuous function f. But by hypothesis such a

value h can be assigned.

20. Having ascertained the remarkable points in the course of a

tunction, we proceed to investigate a measure for the way in which the

function changes its values when the independent variable is increased

or diminished. The leading idea in the Differential Calculus is

the establishment of this measure with full mathematical precision.

Consider two values of the function, belonging to two different values

of the argument x and x + Aa;, Ax denoting here the increment of rr

must not be mistaken for a product and can be chosen > or < 0; let

the corresponding values of the function be denoted by y and y + Ay,
then Ay can be calculated from the equation:

(1) Ay = f{x + Ax)-fXx),
The difference on the right assigns the magnitude of the change of y
tvhen the inde])endent variable alters from the value x to the value

X -}- Ax.

Now this change of y has to be compared with that of x. Keeping
the value of Aii; unchanged, the intensity of the change in the value

of the function becomes greater when the value of Ay is increased.

On the other hand, for a given value of Ay the intensity of change
would be increased it Ay were produced by a smaller Ax. Thus the

quotient of differences

gives a measure for the average (mean) intensity of the change in the

interval from x to x -j- Ax. If the function changed uniformly in the

interval, that is, if equal values of Ay always belonged to equal

values of Ajc, then if the intensity, or rate, of change were that given
in equation (II), through the entire interval Ax it would give rise to

Haunack, Calculus. 3
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the increase Ay in the function. The quotient of differences has the

following properties: when /'is a continuous function of a?, the quotient
of differences is for any finite value of A a; a continuous function of a;;

but on the same hypothesis it is also, secondly, a continuous function

of Ax
J
as long as we restrict ourselves to finite but arbitrarily small

values of A a; (see last Section).

When we now endeavour to determine a measure not for an

arbitrary interval but for one point of the function, we have to make
the interval Ax converge to zero. The quotient on the right then

becomes infinitely great, unless its numerator f{x-}-Ax)— f{x) also

turn out to be a series of numbers having zero for a limit (§ 10).

But assuming that this is the case, let us consider a point in whose

immediate neighbourhood the unique function is continuous. What
conditions must be fulfilled in order that for continually diminishing
values of A^, the quotient

f{x + ^x) - fix)

Ax

may present a continuous sequence of numbers tending to a deter-

minate limiting value: zero, finite or infinitely great? We can

again give expression to the fact that we are passing through the

interval Ail? in the positive or negative sense, by considering A;r as

a fixed arbitrarily small but finite value, and introducing a number

which moves continuously between the limits — 1 and + 1 ; then our

present object is, to find whether

f{x-heAx) — f(x)

QAx
has a limiting value when converges from — 1 to zero, or from

+ 1 to zero. The limiting values, arising in the two cases, can be

different; in the first we call the quotient of differences regressive,
in the second, progressive. Upon the latter we fix our attention:

The particular value zero will occur as limiting value, provided,

for each number d however small, a number A^ can be found such

that the absolute amount of this quotient for ever}^ value of is

less than d. Here the numerator can change sign arbitrarily , i^ e.

f {x -\- QA x) can be at one time greater, at another less than f(x)f

or in other words : Provided zero is the limiting value of the quotient

of differences, the function
/"(a?) can^ in the neighbourhood of the point ic,

oscillate arbitrarily many times about the axis of rr.*)

*) The fluctuations (differences of ordinates) ,
we remark only in passing, are

infinitely small of an order higher than the first (Chap. VII). The function x- sin —
X

has ex. gr. for x = the differential quotient 0, for we have

^.^
|

no + /0-m
j
„ Lim

{/.
sin

1}
= 0.

i
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But if the limiting value is to be finite or determinately infinite,

then since when +1^0>O the denominator of the quotient is

only positive, the numerator must also always have one and the same

sign for the same sign of 0, that is,

f(x-\-OAx) is either only > or only < f{x).

The function only increases or only decreases in comparison with its

value at x, while x increases; it no longer oscillates about this value

in an arbitrarily small interval. This is a necessary condition. But

the condition necessary and sufficient in order that the series of quo-
tients of differences may have a finite limiting value, by § 6 is that

abs m^+^^)-m _/i* +^A^/Mj < ^, (1 > ^ 0)

where 6 signifies an arbitrary number.

This inequality can be interpreted as follows:

Calling the numerical diff'erence between the quotients of difi'erences

belonging to the values Ax and 0A^ which depends on 0, a fluc-

tuation of this quotient in the interval Ax, then this inequality asserts:

The necessary and sufficient condition for the existence of a determinate

finite limiting value consists in this, that for each number d however

small, a finite interval Ax can be ascertained, in which all fluctuations

of the quotient of difi'erences are less than d\

But this amounts to saying, that in the neighbourhood
of any point at which the quotient of differences of the

continuous function has a determinate finite limiting value,
the quotient of differences is not only a continuous function
of Ax for every finite value of Ax, but retains this pro-

perty also for Aic = 0.

If the quotient of differences has the property of only increasing

or of only decreasing in the interval Ax, while converges to zero,

in other words: if at any point an interval Ax can be found in which

the quotient of differences has neither maxima nor minima, then as in the

Theorem ia § 6 (cf. § 9), it has a limiting value either finite or deter-

minately infinite. The possibility of no determinate limiting value arises

accordingly only in case the quotient of differences at a point assumes

in however small an interval infinitely many maxima and minima,
whose differences cannot be arbitrarily diminished. In this case we no

longer say that the quotient of differences is continuous inclusive of the

value Ax = 0.

We can illustrate numerator and denominator of the above inequality

geometrically as follows:

Let us represent the function y= f(x) under the figure of a polygon
with any number of angles, interpreting the values of x and y as lengths

in a rectangular system of Cartesian coordinates. Then we perceive:
3*
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1. A 2/
is the difference of altitude of two points P and P^, belonging

to the values x and x -\- diX.

II. The quotient of differences is equal to the trigonometric tangent
of the angle, made by the chord FF^ with the axis of abscissae;

it measures the mean intensity of rising.

The equation of the chord, i. e.

the right line passing through
the points P and Pj, if | and

ri signify the coordinates of any

point on it, is

f{x + £^x)
- fix)V —fix)

^.- X Ax

The point on this line with the

abscissa | == re + GAiC has the

ordinate

On the other hand, to the abs-

cissa X -\- QAx belongs the vertex of the polygon

7]
= f{x + QAx).

Accordingly

e[f{x + Ax) - fix) ]-lf{x + SAx) - fix) ]

is equal to the difference MTT'— MTT = TTTT'. Let us call -^,^ the

measure of the deviation of the value of the function from the right

line at this point in the interval Ax, then the above inequality, which

includes the first mentioned condition, teaches us:

The necessary and sufficient condition that the quotient of diffe-

rences may have a determinate finite limiting value, consists in it

being possible to find an interval Ax, in which the deviations from

the right line are in absolute amount less than any number d however

small.*)

Denoting by a' the ^ngle which the chord FF^ makes with the

axis of abscissae and likewise by a" that which PTT makes, we obtain

another interpretation of the inequality: for

fix -\-Ax) — fix) fix-\-QAx)- fix)tan tan«"==
Ax <d.eAx

that is, it must be possible to find an interval A a;, in which the

differences of the angles a\ a" become arbitrarily small. The sides

of the polygon then approach to a fixed limiting position and the

*) Here the deviations lean continually change sign ,
i. e. a curve can in any

interval hov^ever small have infinitely many oscillations relatively to its tangent.
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function at this point can be imagined as a curve, i. e. a geo-
metrical figure having a definite direction at the point, so that its

course at this point is represented as approximately as we can wish

by a determinate right line. Therefore in geometrical language the

condition that there should be a limiting value, is no other than the

condition that a function should admit of being represented by a

curve. (§ 15.)

On the other hand the limiting value becomes infinitely great in

a determinate manner, when the measure of the deviation from the

right line FPi increases always positively or always negatively beyond

any finite amount or tan a becomes infinite (§ 24a). But it becomes

completely indeterminate when the deviation is neither zero nor be-

comes infinite in a determinate manner, but oscillates between difi'ereut

limits.

This limiting value, defined by the equation:

(III) T-^==Lim- -'
,..

— or more briefly: Lim '
~! —'-^

,

ailed the Progressive Differential Quotient of the function at the point x,

affords a measure for the change of the function at the pointy when x
increases.

Likewise the Regressive Differential Quotient:

(Ilia) ^ = Lim A^- QA^) - A^)
or more briefly: Lim fi^-^^)-^

^ ' ^^^ 0=0 -0A^ J
j^^Q -Ax

affords a measure for the change of the function at that point when x
decreases.

Instead of equations (III), provided .
^ is finite, we can also

write Ay = <Zj, ^Ax dx ' '

where d is precisely that difference between the terms of the series

formed of the quotients of differences and the limiting value of that

series which converges to zero with Ao;. Here it is to be remarked,
that since the quotient of differences is a continuous function of A a:,

I finite value of A a; can always be found which shall satisfy this

equation, however small but finite be the value of d; but for a given
d this has not to be the same Aa; for all values of x in an interval

see next paragraph). The equation

Ay = AX'p -{-Axdd X

hen asserts: the smaller we choose Ax, the more accurately is the

corresponding change of the function equal to the product of the

differential quotient by Ax, so that for the point itself this precisely

lenotes the measure of the increase. It is also evident, as stated at

^^iV-t =>^4^,
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the outset, that the existence of determinate finite values for the pro-

gressive and regressive diiferential quotients, involves in itself always
the condition of the continuity of the function at this point.

21. According as the progressive differential quotient is positive

or negative, the function increases or decreases for increasing values

of 00 at this point; and according as the regressive differential quotient
is positive or negative, the function decreases or increases when the

values of x decrease. But the distinction of the progressive and the

regressive differential quotient for a continuous function is unnecessary
in most of the cases we shall have to consider, for we have the theorem:

If in the neigJibourhood on loth sides of a point at which f{x) is

continuous
y
an interval Ax can he found for every value of x^ such

that the differences of the quotients of differences of this interval
, for-

med for all values between and Ax^ remain in absolute amount

smaller than an arbitrarily small number d, then the progressive diffe-

rential quotient is a continuous function of x and the value of the re-

gressive one is identical with it.

Taking an arbitrarily small but finite quantity h, lay off the inter-

val + /i on the two sides of a point x\ this represents the neigh-
bourhood on the two sides. The condition then asserts, that the

difference

, rf{x±h-\-i^x) — f{x±li) f(x±r}h-\-eAx) — f[x±rih)-]^^^
I

A^ 0A^^
~

"J

remains smaller than d, while and
rj

assume all values from to 1.

This condition can be put into the words: The quotient of diffe-

rences is a continuous function of both variables h and

Arr; or it is a uniformly continuous function of h and Ax.

(For the reason of this phrase, see Chap. IX.)

Let us denote the progressive differential quotient of f{x) at the

point X by f^{x)j then, by hypothesis, Ax can always be chosen so

small that

(1) /, {X ± h)
= Aa--±/> + A^)-A;>L±A) + « d) .

ZA X

In like manner in consequence of the hypothesis of our theorem we

have for the differential quotient at the point x

(2) /; {X)
= Af^±A+^^^i^±A) + « 8)

and it is of importance that in the entire interval the same value

of Ai:c is sufficient for a given value of d. Accordingly the amount

of the difference f^ (ii; + /j)
—

/', {x) is also less than 2d, i. e. the pro-

gressive differential quotient is continuous in the neighbourhood of

the point x.

To prove the second part of the statement, let us denote the re-
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gressive differential quotient at the point a; hj f^(x), then it is defined

by the equation:

(3) f,i.)= f('-^fl-f(-
} + ,,

,.

s converging to zero along with 0. But if in equation (1) we make
Ax = h and then put for h in f^(x

—
h) the value 0AiC, we find:

(4) f,(x
-

A:r) = G?I^^_eAx) ^ (^ g^

From this we see, that the quotient

f{x — QA x) — f(x)— OAa?

tends to a certain limit whose value is equal to
/"j {x) , consequently

AC^) = /i W; ^s was to be proved.*)
The theorem of the equality of the progressive with the regressive

differential quotient still continues true at the points at which f\(x)
becomes positively or negatively infinite; provided both f\(x

—
rjh)

and f^{x + r^h) become infinitely great for
rj
= in the same sense.

For, if, in whatever way r^
and converge to zero, both quotients

fix -7ih-{- eAx) - fix - rjh) , f(x-\-r]h + OAx) — f(x+7)h)

increase beyond any finite amount in the same sense, then putting

rjh
= QAx in the first quotient and

rj
= in the second, the quotients

fix) - f(x -_QAx) , fix±eAx)- fix)" '
QAx ^"^

0A^^

also become determinately infinite in the same sense. Therefore the

regressive differential quotient is identical with the progressive at the

point x.

When progressive and regressive differential quotients of a function

f{x) are thus identical, the function which expresses them is the first

differential coefficient of the function, it has been named by Lagrange
(1736

—
1813) the first derived of /"and is frequently denoted by /^(a:);

for brevity we shall sometimes call the first derived function the first

derivate.**)

Therefore
,

- = , = f{x) are only different notations for one

(quantity, which is to be calculated from the formula:

Li^ A»±Ax)-Ax) for Ax = 0.
H- Ax

*) It wiU be seen § 100 that no further hypothesis is necessary in order to

establish the identity of ft{x) and fi{x) than the continuity both of the progressive

diflferential quotient and of the function fix).

**) The original mentions that the German name „Ableitung von /"" is due

to Crelle. After much of my work was printed off, the word "derivate" was

suggested by my friend Dr. Atkinson, and I have ventured to use it since.

G. L. C.



40 Differential quotient of a function. Bk. I. ch. V.

The process of forming the differential quotient of y or its first

differential coefficient, or the first derived of /"with respect to x is briefly

called differentiation.

22. It is however not only at each point that the values of the

first derived of a function give us information respecting the manner

in which the function changes whether positively or negatively. We
are now going to demonstrate that the change of value of the function,

even in an interval of finite extent, can be measured by the values

of the first derivate. With this purpose in view we first prove the

Lemma: When a unique function^ whose progressive differential quotient

coincides with its regressive at each point within an interval from x = a

to X = h, has equal values at the extremities of this interval, there

must he in the interval at least one point at which the first derivate

vanishes.*) For, either, the function. has everywhere the same value,

in which case it is constant and its differential quotient everywhere

zero; or, the function attains in at least one point within the interval

its greatest or its least value (§ 17). It may even undergo repeated

alternations of increase and decrease, one such it must have in any
case. If Xi be such a point, then in its immediate neighbourhood

f{Xi
—

h)
—

/"(iCi)
will have the same sign as f(x^ + h)

—
fioi^i)-

Consequently the quotients

fix, -h)- fix,) ^^^ fix, -^h)- fixd
— h h

differ in sign, however small we choose the value of h. Now these

two quotients have the same limiting value, since by hypothesis the

progressive differential quotient and the regressive are identical; but

a positive and a negative series of numbers can have the same limit,

only when this limit is zero, therefore at this point f(x^) = 0.

*) Such a function can be exhibited geometrically by tracing a curve of

the form fig. 3:

Fig.

it can also have points at which the tangent is parallel to the axis of ordinates.

The theorem asserts, what is manifest geometrically : that when the ordinates of

the extremities are equal, there is between them at least one point with the

tangent parallel to the axis of abscissae.
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Note. This proof does not assume the continuity of fix)^ so

that f(x) may become infinite in the interval. Moreover it does not

require f{x) to have everywhere a determinate value; the only

assumption it makes is that

Lim /•(.'^4-/O-2A^) + /'(a;-70 _ ^
h

at each point of the interval.

This Lemma furnishes the proof of the following proposition

which is called the Theorem of the Mean Value:

If f\x) he a unique function in the interval from a to h, whose

progressive and regressive differential quotients are everywhere in the

interval identical and determinate, then a value
a;, can always he found

hetween a and h such that we shall have the quotient of differences

fib)-f{a)
6-a A^i).*)

For if we denote the value of the quotient of differences by K, so that :

{f(b)-Kh] - \f{a)-Ka]=0,
and form the function:

then this alike with f{x) will be continuous, it will likewise have

everywhere identical progressive and regressive differential quotients,

and furthermore it will have the same value both for a? = a and

for X = h. Hence there must in the interval be a value Xi which

will make 9X^1) = ^•

But we have:

cp\x,) ^K- fix,) = 0, that is: ^= ^^^^-^'
= />,)• Q. E. D.**)

*) Geometrically:

Fig. 4.

There is an intermediate point at which the tangent is parallel to the line joining

the extremities. Here also the case may occur that the derivate becomes infinite:

that is, that the tangent at a point is parallel to the axis of ordinates.

**) This proof of the proposition, which is also called the theorem of Rolle

^1652—1719), is due to Serret (1819-85): Cours de calcul diflKrentiel et integral,

.1^' dd., t. I, p. 17 seq.
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We can always express a value x^ situated between a and h by
the formula: x^

= a -\- Q(h — a)^ where denotes a positive proper

fraction, so that the equation of the Theorem of the Mean Value can

also be written:

fJ^^l^fM
^ f'{a + Q{b - a)). O<0<1.

Scholium: If the progressive and regressive differential quotients

vanish everywhere in the interval
y

the function is continuous in this

interval and its value constant. For then, if x denote any value in

the interval

ML^=fXa + eix-a])^0,

that is, f(x)=f(a). (See also Integral Calculus. Bk. III. Chap. I.)

23. We have already indicated above, that the differential quotient,

alike with the quotient of differences, admits of a simple geometric

meaning. For when, as AiC goes on decreasing, the quotient
~-

tends to a determinate limiting value,* and therefore (Fig. 2 § 20) the

right line PF^ approximates to a certain limiting position, this limiting

line is called the tangent of the figure represented by the function.

We must regard this as the definition of the tangent to a continuous

series of points defined by an equation: Limiting position of the

secant drawn through two arbitrarily near points. We can

accordingly deduce the following proposition III from II:

III. The differential quotient is equal to the trigonometric tangent
of the angle, which the touching line (tangent) at the point F of the

curve forms with the axis of abscissae; it measures the inclination of

the curve at this point to the axis of abscissae.

It will not be superfluous to remark, that a continuous series of

points, which we call a curve, can be defined in two different ways:
Either geometrically by the mechanical contrivance of a motion (as

the circle by rotation of a fixed length) or analytically by a functional

equation between the coordinates. In both cases proof must be produced
that there is such a thing as a tangent, and it is only when this is

forthcoming that the figure may in strictness be called a curve. In

case of the geometric definition, kinematics proves there is a tangent,

in case of the analytic, the proof is contained in the fact that the

function admits of differentiation.

When the differential quotient is calculated, the problem of

constructing the tangent at any point of any curve whose equation is

given, is solved. This problem originated the Differential Calculus, of

which Leibnitz (1646
—

1716) first published the principles in the very
notations still employed, in the year 1684, in an essay of a few pages :

"Nova methodus pro maximis et minimis, itemque tangentibus, quae
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nec fractas nee irrationales quantitates moratur, et singulare pro illis

calculi genus'^ which appeared iu the periodical : Acta Eruditorum, at

Leipzig. Independently of him, Newton*) had already for years in

working mechanical problems been developing the same method of

calculation, as he has repeatedly mentioned and intimated in his letters

from about 1670 until he ultimately published it in 1687 in his great
work "Philosophiae naturalis principia mathematical as quite an in-

dispensable resource for investigating continuously measurable phe-

nomena**) Here Newton introduced the conception of a variable,

considering the independent variable as measure of the time. At the

very outset he etablishes the theorem for calculation with continuous

variables: "Quantities which iu a given time continually approach
to equality and which before the end of that time can come nearer

to each other than any assigned quantity, are finally equal to each

another", which is only a different statement of our fundamental pro-

position of § 5. Taking the distance described by a movable point as

the dependent variable, the quotient of differences assigns the mean

velocity with which a finite length is described, while the differential

quotient measures the actual velocity at each point.

24. Geometrical corollaries and illustrations.

a) If the differential quotient for a finite value of x and of ?/ is

determinately infinite, then the tangent of the curve at this jx'i

parallel to the axis of ordiuates.

b) At points at which the progressive and regressive differential

quotients differ, the direction of the tangent changes discontinuously;
the curve forms an angle, (^c^^'^

* A^.>--^^ -^ » o / . ?/
-

)

c) At points at which the function undergoes a* break, provided
it is continuous towards one side, it can also possess a differential

quotient towards this side.
*

d) If the function f{x) he determinately infinite for a finite value

*) The inscription on Newton's monument in Westminster Abbey runs:

H. S. E. ISAACUS NEWTONUS, EQUES AURATUS, QUI ANIMI VI PROPE
DIVINA PLANETARUM MOTUS FIGURAS, COMETARUM SEMITAS, OCEA-
NIQUE AESTUS, SUA MATHESI FACEM PRAEFERENTE, PRIMUS DEMON-
STRAVIT. RADIORUM LUCIS DISSIMILITUDINES, COLORUMQUE INDE
NASCENTIUM PROPRIETATES

, QUAS NEMO ANTE VEL SUSPICATUS
ERAT, PERVESTIGAVIT. NATURAE, ANTIQUITATIS, S. SCRIPTURAE SEDU-
LUS, SAGAX, FIDUS INTERPRES DEI 0. M. MAIESTATEM PHILOSOPHIA
APERUIT, EVANGELII SIMPLICITATEM MORIBUS EXPRESSIT. SIBI GRA-
TULENTUR MORTALES TALE TANTUMQUE EXTITISSE HUMANI GENERIS
DECUS.

Natus XXV. Decemb. A. D. MDCXLII ; obiit Martii XX MDCCXXVI. (N. S. 1727.)

**) The treatise : Methodus fluxionum et serierum infinitarum
,
cum ejusdem

applicatione ad curvarum geometriam, first appeared in 1736 after his death.
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a of X, then the limiting value of f'{x) is also determinately infinite

for X = a^ on the hypothesis that there is any determinate limiting

value of f (x).

For, by the Theorem of the Mean Value, we have the equation:

f{a
— d + h) —f{a — d)

= hf{a - d + Qh)

in which we first suppose h smaller than 8. But if we let h become

arbitrarily nearly equal to d, the left side becomes arbitrarily great,

hence there are points in the interval from a — d to a at which f\x)
also becomes arbitrarily great; if then f'{x) have any definite limit,

this limit can only be infinitely great.

If the function f {x) he determinately infinitely great for x = co,

tlien for every finite value of h,

Lim f(- + ^\-m=Umm
provided the first quotient have any determinate finite limiting value for

any finite value of h. *).

For the proof we assume /^ > 0, and let f(x) become positively

or negatively infinite. Calling the limiting value of the left side K,
X can be chosen so great that

or: Eh — sh < f(,x + h)
—

f{x) < Kh + ah-,

where s denotes a quantity, which is arbitrarily small by our choice

of X. Putting for x the values x^ x -{-h, x -{- 2hy ... x -\- n — 17^
,

and adding the successive inequalities, we find:

nKh — neh < f{x + nh) — f(x) < nXh + oieh, or,

^ nh ^
'

In order that the argument of the function may become infinite in

the most general manner, let us put x ==
Xq \- ph y

where < a;^ < /^
,

and p is a positive integer, then as soon as we have fixed p large

enough, we have for all values of ^Cq,

nh \ "f •

If we call
X(^ -\- p -{- nh = ^ y

nh == ^ — Xq
— ph; thus we have

j^_,^fM^zf(^«+P]^<K+e, or^
i
— xo—ph ^ '

i ^
—

Xo
— ph

^ '

*) Cauchy: Cours d'Analyse algebr. Cap. 2. The proposition has been ex-

tended by Stolz: Uber die Grenzwerthe der Quotienten. Math. Ann. Vol. XIV. XV.
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Now if we make n increase arbitrarily, | also increases without limit,

thus as Xq can be fixed arbitrarily, the argument 5 can assume any

arbitrarily great value. Since zero is the limit of the quotient
"

^
^ -

,

and 1 that of z r, we have also
I
-—

a^o
— pn^

and because a can from the outset be chosen arbitrarily small, we

must have the limiting value K= Lim ^-^ .

The theorem also continues to hold, when the quotient

fix-\-h)- f{x)

h

becomes determinately infinite for a; = cx) . For if we can choose x

so large, that the quotient continues larger than an arbitrary number

K, it follows by the same process:

f(x-{-nh)
—

fix') j^
nh

^ ^
— Xo—ph-^ '

that is Lim ^® > K.

But we can replace the quotient i~ (§ ^^) ^Y ^^^ value

of the derived f (x -{- Qh)^ if f{x) is a continuous function for all

finite values of x and its derived is also everywhere determinate.

Therefore the inequality ^ — £ < f"{x -\- Qh) < K -\- s holds true

for arbitrarily great values of x, but from this it follows: //' the

function f'(x) has any determinate limit for arbitrarily increasing va-

lues of Xj this limit must likewise he equal to K.

Examples:

(1) /W = log (x). Lim 'og(x + ft)-log(.) _ ^ Lim log (l + ^)
=

for a; = oo. Therefore we have also Lim ^^ == 0. In next Chapter

it will be shown, that the derived of the logarithm is -
,
so that in

fact also Lim /" {x) ==0.

(2) f{x)=^a'. Lim
"

.

"

h
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we have also Lim ^^ = 1 . But on the other hand /" {x)=l ^
sin (ic^)

+ 2 cos {X') is for ;r = oo indeterminate.

e) If f\x) has a finite determinate value for a; = oo, then for

every finite value of h we have Lim
|

^
^^

~^^— I =0. This is also

x:= 00

to be regarded as value of the differential quotient at ^ = cx)
;

it coin-

cides with the value Lim {f(x)} provided f"{x) changes continuously
to any determinate limiting value for x = oo sls x increases arbitrarily.

f) The differential quotient can be indeterminate at all points of

a continuous function, if ex. gr. the difference f(x -\- Ax) — f(x) every-

where in an arbitrarily small interval Ax undergo change of sign

without the amount of the quotient of differences ——
.
—

converging to zero; this is a case, in which the function cannot be

fixed under the figure of a curve, on the basis of the formula in

accordance with which it is to be calculated, because the interpolation

of more and more points ultimately displaces the angles of the polygon

immeasurably, whereas it displaces the sides measurably.

g) In representing to ourselves how motion goes on in nature we

presuppose no discontinuities, neither in regard to the places which the

moving body occupies, nor in regard to the direction and magnitude
of its motion. In some phenomena however (under the influence of

blows) the changes are effected so rapidly, that we look upon the pro-

cess as a discontinuous one.

The Continuity of a function was first precisely defined by

Cauchy (1789—1857) (Aualyse Algebr. 1821), to him we owe the

foundation of the differential calculus generally in the form in which

it is here developed. Riemann (1826
—1866) directed attention to

continuous functions which have within an arbitrarily small interval

infinitely many points at which the progressive and the regressive

differential quotients are indeterminate. Weierstrass was the first

who gave an example of a continuous function haviug in no point

a determinate value of the differential quotient either progressive or

regressive (communicated in a paper of Du Bois-Reymond Journ.

f. Math. Vol. 79). Here the function appears as limit of a series of

functions, whose values ultimately differ arbitrarily little, while the

same is not true for the values of the differential quotients which on

the contrary vary between arbitrarily great positive and arbitrarily

great negative values. '



Sixth Chapter.

DiflFerentiation of the simplest functions.

25. We shall first treat the functions defined in Chapter IV whicli

are styled Elementary functions.

I. The algebraic, whose simplest type is y = x"^, and whose most

general is the implicit function : AqI/' +^i 2/"~^+ • • • -^n-i y +^n=0
in which Aq, Ai, ... An are polynomials of any degree in x.

II. The transcendental, namely:

a) the exponential function y = a'' and the trigonometric : sin x^

cosic, tana;, cot^-;

b) the logarithm y ="logx and the circular functions: sin-^:r,

cos-^x, tan-^a;, cot-^a;.

The immediate aim of our investigation is: from the properties of

these functions to obtain convenient methods of calculating them
; for,

with the" exception of the case y = x"^ for m a positive or negative

integer, in which the calculation is accomplished by carrying out

an wi-fold multiplication ,
we have been hitherto put off with the process

of inclusion within limits or geometrical considerations. The most

comprehensive problem is presented by the implicit algebraic function,

but its treatment must be preceded by further general considerations.

26. For the formation of first differential quotients whether with

positive or negative values of Ax, the following General Rules are

required.

1) The differential quotient of a constant is equal to zero.

2) The differential quotient of a sum of functions is equal to the

sum of the differential quotients of the summands. For if

y = t\W + h {«) + f,(x) + ... + A {x),
then

y + Ay = /, (:r + Arr) + A (^ + A:*:) + . . . + Ux + A.r),

therefore :

^y _ U{X+ £^X)-f,ix) , f^(x-{-Ax)-Mx) .

,
fn{X'\-^X)-fn i^)

Ax Ax * Ax * • Ax

Hence it follows by Proposition I § 10 that:

tl
=

f> W + /.' (*) + ••+/.'W Q- B- D.
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Scholium: Two functions, which dififer only by an additive con-

stant, have the values of the differential quotient the same.

3) If y be the product of two functions : y = cp (x)
•

il^ (x)

, Ay q) (x -\- Ax) •

Tp {x -}- Ax) — (p (x) tij (x)

Ax Ax

The expression on the right can be replaced for every finite A a; by

i^X Z\ X

If 9? and if)
be continuous and their differential quotients have deter-

minate values at the point x^ then, by Theorem II § 10 when Aji;

converges to zero:

% = ^i^l^"-^ = 9 W *' {X) + ^ (*) ¥ {X).

This law can be extended to any definite number of factors.

Scholium: If a signify a constant, when y = af(x) we have

dy _ da fix) _ ^,/s

4) If
2/
= ^4^ ,

then at a point where ip {x) does not vanish
,

* cp {x-\- Ax) qp jx) ip {x) cp {x -\- Ax) — cp {x) ij} {x -{- Ax)
y

li) {x-\- Ax) ip {x) t\) {x) tl) {x -\- Ax)

or:

By Theorem III § 10 we have therefore :

% ^ '»/> {x)
•

(p' {X)
—

cp(x)
'

Ij}' jx)

dx {ip {x)f

Scholium: If 2/
=

-77-^ »
then -^ = —

.^ , ,,o
-

5) It is convenient to consider more composite functions in the

form : y == f (m), where u itself denotes a function of x.

For instance y = (ax-\-h)^ may be treated under the form:

y= u^^ where u= ax-\-h\ or ly
= sin {x"^) as «/

= sin {u), where u = x'^.

In such a case when rr increases by A a; it first makes u change;
let the amount of the change be At*, then: A^ =/'(w + Aw) — f{u)

therefore ^ = f {u -\- Au) — f {u) ^ /"(u + At^)
- f{u)

^

Au
^

Ax Ax Au Ax

If w be a continuous function of x, and
/'

a continuous function of Uj

then when AiC becomes zero, Aw also converges to zero (§ 19 d).

The limiting value of the first factor on the right is, as its form

shows, simply the first derived of the function f taken with respect
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to u as independent variable, while that of the second is the differential

quotient of u with respect to x. Consequently we have:

dy <^fiV') du
dx du dx'

27. Explicit rational algebraic functions.

V) y = x"".

a) m a positive integer. — cx)<a? < + (X).

For a; = + oo, the absolute value of the function also becomes

infinitely great; for every finite value oiXy the function is continuous and

has a differential quotient finite in value; for, multiplying out we find

(a;±Aa;r-a;"»^ ±ma;"*-^Aa?4-Ot(±Aa;)»+C7,(±Aa;)3.-H-gm(±Aa;r
+ Aa; +Aa;

The coefficients C are finite, depending on x and m, not on A a;; their

further determination does not here concern us. Accordingly:

Lim
^^^^^^~-

= mx"^-^ + C2 Lim (± Ax) + C^ Urn (± Ax)' • • •

^.• + C^Um{±Axy-\

therefore for Ax == ^- ^—
= ~^

==
*wa;"*-^, in particular: -^ = 1.

The value Lim (mx"^^^) for a; = 00 is to be regarded as differential

quotient at the point a; = 00.

/3)
m a negative integer.

— c» < .3^ < + co.

y = X"'= -—
(ft
= — m > 0).

x^

For x=Oy the absolute value of the function is infinite. By § 26 Rule 4):

^ = -(^ = - '*^''"' = - '*- = mx"^-'
dx dx x^^ ar"+^

The differential quotient likewise is cx) for x = 0, while for j; ^+ cx)

both the function y and its differential quotient converge to zero.

2) y = aQX"" + a, a;"»^i + a-iX""-^
. . .

-j- a,n-iX + cim = A,

m integer > 0. For every finite value of x we have by Rules 2) and 3) :

^'^
= ma,x"'-' + {m - l)a,x"'-'+ «,„_. = f^ ,

independent by Rule 1) of the additive constant «„.

If y == (ax -{- h)"*
=

u"*y u = ax -\- hj we calculate the differential

quotient by Rule- 5) without having to expand the binomial:

^_^du_ ,,,^m-ia = ma{ax + &)—^dx du dx \ I '

3) The fractional rational function:

^ ^
b,x- 4- b, x"^-' 4- . . . + 6„ _ ,

x + ?>/
B^

Haenack, Calculaa.
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m aud n integer > 0. For every finite value of x for which B does

not vanish we have:
dA .dB

dy dx dx
dx

~"
B2

*

Application of differentiation to the deduction of the Binomial

Theorem for positive integer exponents:
If we put:

(1) (l-\-X)^=l + C,X-^C.y+ C^X^ H CmX^

and endeavour to determine each C of this equation, we obtain by
differentiation :

(2) mil + xY~' — <^i + 2C^x + ?>a^x'' H mCmX^^-\

Multiplying both sides hj \ -\- x and arranging by powers of a?, we get:

(3) m(l + xY = C, + x{2C, + fi) + x\^C, + 2C,) + • • •

+ x'^-'^{mCm + m — iCm-i) + x'^mCm-

Comparing the right sides of equations (1) and (3) we find:

m = Cj, m(7, =26^2 + <^w ^^2== 3(73 + 202. * * '

• . • mCm-i = mC„i + (m — 1.) (7«_i,

or:

G, =m, Go =
^ , O3 = 2T3 ,

m(m—l){m — 2)---(m— ]c-\-l) i, n i? xi j j.

C;fc
=^ — ' ^ *—^ =

Wyt, as we shall frequently denote

the Binomial Coefficients, adopting also the symbol li = 1 • 2 • 3 •

-yfe,

in words: factorial Ic.

28. The Exponential function.

y = w^. (a > 0,
— 00 <ix <-\- (x>).

When a > 1
,
for rr = + 00 the function becomes positively infinite,

but iox X = — cx) it is
5
when a < 1, for iC == + 00, ?/

= 0, for

X = — 00 the function becomes positively infinite. For all the values

of X, y has a positive value and has a differential quotient. We have

^==Lim
"

^
"
^a-him"^^ (Arr $ 0),dx Arc Ax ^ ^ ^^

and it has to be shown that the multiplier of a* approximates to a

determinate finite limiting value when A a; converges to zero. It

fulfils the condition that its numerator and denominator have zero as

limit. To facilitate calculation let us put:

a^^ — 1 == d, Aa; = «log (I + 8) ,

then we have -^^-1 8 1
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d is positively arbitrarily small when either a> 1 and Aa; > 0,

or a < 1 and Ao; < 0, in other cases negatively arbitrarily small.

Writing -^
= m the expression becomes = • Now

«,og{(.+ l)"'}

we have to show, that
(l -| j

has a determinate finite limiting

value, when ni passes through the continuous series of numbers or

through any discontinuous series of numbers whose limiting value

exceeds any finite amount. At the same time we have to conduct the

investigation in a way which shall present a convenient method of

calculating this value.

Let us first make m pass through the series of positive integers,

then by the binomial theorem as just proved, we have always:

= 2;„ + 7?.

Where by Z„ we signify the sum of the first n terms, by jR the sum of

the last terms reckoned on from the {n + 1), so that therefore:

7J = (1_ ")(, _:^)...(i_»-A)
'

.s
V 111/ \ 7U/ V w '

L2.

S embracing the m -{- I — n terms

'^ "^ ^ + V ~
m/n-fl + V ~

in) V ^) (^+i)(n4-2)
+ ' ' *

+ _
'L) ...(i- :^-=ii) L~

V in/ V m / (n+l)-.w
If ni be a considerable number, we can approximate arbitrarily to the

value of
(l -| J by merely summing the first n terms of the series,

n being a number much smaller than m.12..
For, the differences 1

,
1

, etc. in the expressions for II

and S being positive proper fractions, the remainder R is certainly

smaller than the value obtained when we put in it unity for each of

these differences; and a fortiori

/ 1 Y+^

^ ,_ '

still more is: li

n+l
1

1_
1 n -\- I

4*
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Therefore we have for each positive integer m:

(l + ir = ^„ + (<l^), (n<«+X).

Now retaining the value of n, and increasing m continually, the frac-

tions —,—;••• which occur in !!„ will approach always nearer

to zero, i. e. 2^„ approximates to the limiting value

'

1
'

li
'

li
^ I |n-l

The error incurred by equating to this sum the value for m = oo

of (1 H ) is positive and less than -r- •
, therefore we can

choose n so as to make it arbitrarily small. We thus obtain for m
arbitrarily great:

that is, the more terms of this sum we add up, the nearer we ap-

proximate to a determinate value which is denoted by e; we find

6 = 2,7182818284.. .

The number e is irrational, i. e. is expressed completely neither

by a decimal fraction with a finite number of places, nor by a periodic

decimal. The proof of this is simple: If we had e = —-, where a

and 1) are integers, we should find by multiplying the series by |&:

«l^_^=.2|^ + | + f + ...+ l + ^+(,+ ,)\,+ ,)
+ ---

or, bringing all integer values on the right over to the left, and then

denoting the integer number on the left hj G:

^
fe+1

+
(6+1) (6+ 2)

+ • • • <
"b+J

+ (H^? +
• • •

This equation is impossible, for the value of the right side is smaller

than Y f
therefore is a proper fraction. **)

If m be not a^ integer, but its value is included between the

numbers n and w + 1 :

n-\-a==m = n-\-l — p,
then

n-^^w^'w+l'
therefore

*) Euler: Introductio in analysin infinit. I § 115.

**) Hermite has proved further, that the number e cannot be a root of an

algebraic equation of any degree with rational coefficients. Sur la fonction ex-

ponentielle. Paris 1874.
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o+ir>(i+,D"'>o+.TiTr-
or

(' + IT •

(1 + ir > (1 + ^T > (1 + „-^r ••

(1 + 4-./-

Here both
(l + —

)"
and

(l + j^zp[f converge to the value e, while

as 71 increases arbitrarily (^1 -j-
—
)"and (l -J

—
ZElf have unity for

their limit; thus superior and inferior limit approximate to the value e,

therefore for the present m we also have

Lim(l+i-y"=e.

Lastly if m is negative, let us put m = —
ji; then

Therefore

Lim
(1 + If = Lim

(l + ^^J''
• Lim

(l + -J^,)
= e • 1.

Accordingly in whatever way A a; may converge to zero we have

'

dy ^ y. a^* — 1 , T- 1

-J— = ^ • L'lDi —T = a' • Lim

-{O+^D
ft-^ • = a^ . "log a.

""log e
^

Hence we see that the exponential function whose base is e, has the

}>roperty of reproducing itself unaltered by differentiation; we have

^
= 6*, smce «log e = 1 .

The irrational number e is called the base of the natural system of

logarithms ;
the logarithm relative to this base is, briefly denoted by I

29. The trigonometric functions.

a) y = sin x. P) y == cos x.

Although we have as yet defined these functions only geometrically

lor all finite values of x, the propositions in § 12 enable us to assign

the derived function of each;

f .Ay sin {x -f- A x) — sin a; 2 sin ^ Aa; cos (x + jAo;)
^^^ ">' A^ Ax

~~
Ax

P- = Lim '^i^ Lim cos {x + i^x) = cos x.
dx \Ax \ \ I J
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p o\ ^y cos (x + Aa;)
— cos x 2 sin | Ax sin (a; + -gA a;)

4^ = - Lim ?iL(iM Lim sin (x + .i- A^) = - sin ^.
dx ^Ax V I 2 /

f? sin a? . d cos a;

cos a; ^ sm a;

y) y = tang ^ =

d) ?/ = cot a; = -T

cos a?'



§ 29— 31. Trigonometric and inverse functions. 55

y) y = tan-^x. Inverse function: x == tany.

^ = (cos,/V==
•

.

dx ^ "'^
14- .7,2

d) y = cot-^rr. Inverse function x = cot?/.

dx \ ifJ
l-\-x^

In the first two of these functions the values +1, at which the

definition of the functions ceases, form special points; in the last two,
X goes from — 00 to + 00 and the functions as well as their

differential quotients are finite even at these limits.

The logarithm and the circular functions are transcendental; but

their differential quotients are algebraic.

31. But lastly we can also differentiate the explicit irrational
function: y==x"*, where m means any real number, but x is

positive, and the root is always taken positively. For, taking the

natural logarithm of both sides of the equation y = x^ we have

l{y)
= ml{x). If we differentiate this equation, remembering that

y on the left side is a function of x, it follows by Rule 5) § 2{j that

— ^= —
, therefore : ',

^ ==
"'

//
= m x"^~^.

y dx X ^ dx X ^

We have accordingly for every value of m the equation:

11
= ^' = -"-'. (2'>o).

It is to be noticed, that when < m < 1 the function is finite for

a: = 0, and infinitely great for a; = + cx), whereas its differential

quotient is infinitely great at the former point and at the latter finite

and equal to zero. For the Implicit Algebraic Function see Chap. X.

For all functions dealt with in this Chapter it is indifferent

whether Aic is chosen positive or negative; i. e. all these functions

have at each point the value of the progressive differential quotient

equal to that of the regressive; each has a derived function or derivate.



Seventh Chapter.

Successive diflFerentiation of explicit functions. Different orders

of infinitely small quantities.

33. The first derivate of a function or its first differential quotient,

as the calculations of last Chapter show, is itself again a function of

the variable. For the linear function y = ax -{- h, the progressive

and regressive differential quotient
-~ = a is constant, and this is the

only continuous function with a constant differential quotient, as we shall

prove in Chap. I of the Integral Calculus. Accordingly under similar

hypotheses further functions can be derived by the same rules from

each new derived function and their calculation always results from

what precedes. Let y = f{x) denote the original function, further let

CL CC iXOC

uniquely and determinately for each value of x, denote its first derivate,

then provided the function f\x) is continuous and
/C
~

approximates to a determinate limiting value for Ax = 0, we obtain,

the second derivate: f\x) = Lim *"
J^

~
^^^

for A a; = 0,

the third derivate: f'^x) = Lim ^'^^^ "^

^^j

"
^'^""^

for A a;= 0, etc. .

These higher derivates as well as the first can be immediately
defined by means of the original function. For we have for A^^O

fix + h) = Lim A-^ + ?' +
A^j-r(^

+J)
^

therefore :

f (a?)
== Lim/,=o Lim^a^o

/^Aa;
~^— '

But this double limit can be determined more simply. We saw § 22

by the Theorem of the Mean Value, that for a continuous function

(p {x)j the quotient of differences ~— ^—^S^ ^^^ \^q always put

equal to the value of the derivate formed for a point x -\- QAx within

the interval from x to :x; + Aa?, where denotes a number between
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and 1, on the hypothesis that there exists for the entire interval a

derived function (progressive identical with regressive). This being
the case with the continuous function (p (x)

= f(x + h)
—

f{x) ,
we

can put:

thus

f{x-\-h+ ^x)-^f{x-^£^x)-f{x-{-h)+ f{x)^ f\x^h^(dC^x)~f\x-\-Q£^x)
^

hAx h

If we first make A.r, and then h converge to zero, we obtain the value

fXx). ISow we are going to show, that h may always be assumed

equal to A a? in the quotient on the left, and thus h and A a; be made
to vanish simultaneously. From substituting /i = A re, it follows that:

fix 4- 2Aa;} - 2/(a; + Ax) + f(x) f\x + Aa; + QAx) - f\x + 9 Aa;)

Let us give the right side the form:

f{x-\-Ax-\-QA x)--f\x) /.
, pvx _ f{x-\-QAx)~f{x) ^

Aa;(l -f 0)
^ "^ ^^ Aa;

* ^'

Now we can choose A a; so small that /

f{x-\-Ax{\-irQ))-nx) , fix -Y QA x) -fix)
Aa;(l + 0j 0Aa;

shall each differ from the value f\x) by less than the arbitrarily small

quantity d. Accordingly:

hence the new definition is: A^l = Lim /•'^+^A^)-y(;^+^»)+/-(x) .

In like manner, provided f"{x) remains the same when taken

progressively and regressively and has a determinate derivate f"{x)y

we obtain for f"{x) the definition by means of the original function:

r'(^\ = T im /"(g + 3 Aa?)
-

3/-(a; + 2Aa;) + 3/-(a; + Aa;)
- f{x)

because: f"'{x)
= ' ^

Lim Lim /l^+^+^Aa;) -2/-((r+;t+Aa;)-f/la^-f/i) /ta;+2Aa;)--2/'(a;-fAa;)+Aa;)

A=0 Jx=0 ^£! ^
h

For, by the Theorem of the Mean Value this last quotient is equal to

Aa; 4- 2Aa; + Q^) - '^fi^ + Aa; + Q^) + fix + 0^)

(Aa;)«

and also equal to

fix + Aa; + ijAa; + 0^) - f {^ + ijAa; + ^)
^ (0 < i^ < 1).
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We perceive as before, that h may be assumed = Arr and then both

made simultaneously converge to zero.

There is no difficulty in establishing the general equation of this

kind, by showing that when it holds for n it is also true for n -\- \.

33. These new expressions are no doubt less suited for calculating

the higher differential quotients than those first formed
;
but they exhibit

them to us as limiting values of higher quotients of differences, which

is of importance for the theory. Euler (1707
—1783) in his work:

Institutiones calculi differentialis, Petrop. 1755, gave the following

convenient exposition of this. If we denote the values of the function

y ==
f{x) which belong to the arguments

X, X -{- Ax J
X + 2Aa;, . . . x + wAiC, respectively by

y •) Vm ^2 ?
• • • Vnj

we get the series of first differences:

y^^y = Ay, y^
— y^^ Ay^ , y.^—y^= Ay^, . . . 2/«

—
2/«-i

= ^Vn-u

From these we form the series of second differences:

A^/i
— Ay = AV; A2/2

— Ay^ = A^^/,, Ay.^
— Ay^ = Ahj^, . . .

Ayn-i — Ayn-2 ==
A'^yn-2,

and so of third differences:

Ahj^
— Ahj = A'V, A22/2

—
A*^2/i

= ^%^ ^% —
-^^2/2

= ^^Viy • • •

A'^yn-2
— A^yn-3 = A'V„_3,

on to the w*^ difference:

A^'-^yi
— A^-^y = A'^y.

If we propose to express the higher differences by the original values

of the function we find:

^y= yi-y^
^'y= (2/2

-
2/1)
-

(2/1
-

2/) =2/2
- 2y,+y==^f{x+2Ax)-~2f{x+Ax)+f{xl

A'2/={(2/3~2/2)— (2/2-2/1)}
—

{(2/2— 2/1)
—

(2/1-2/) )==2/3-%2+%i— 2/

=f{x+ 3Ax)-3f{x+ 2Ax)+ 3f{x+ Ax)-f(x), . . .

whence results, that f^x) = Lim ^^ , fix) = Lim -^3 ,
etc. . This

accounts for the notation for the higher differential quotients

We can also form higher differences of the values of the independent

variable, but they are found to vanish. For, from the values

x^
= X -\- Ax, X2

= X -{- 2Axy x^
= X -}- SAic, . . . Xn == x -{- nAx

we find:

fl/J
X ——

iJ^Xj X2 X4 ——
L^Xl^ , X^ X2 "~~" l^Xny • • . «3/jj Xfi—1 i^Xji—1,
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therefore

Aa;,
— A^ = A'*^- = 0, A'a^ — A'^x == A^x =

Ax.^
— Ax^= A'^Xi

= 0, A'^x.^
—

A'X^= A^o;,
=

A^Tg
— Aa;^ = A~ic., = 0,

I

Thus the higher differences of the independent variable vanish,

bince its values are supposed to increase by equal amounts.

The same is the case, when the function y increases in proportion
to Xf that is, when y ^^ ax -\- h.

Since according to the above method of determination the diffe-

rential quotients

II =n^), |^^=rw, U-^n^) etc.

have the signification of actual fractions, we can pass over from them

also to the equations between the differentials:

dy==f\x).dx, d^y=f(x).dx^, d^y=r{x),dx\...d^y^f''(x).iW.
Of course we have now on each side of such an equation a vanishing

quantity, so that it appears not to contain anything more than

the self-evident identity = 0. Nevertheless it has a determinate

content when we recollect how it originated. For it then asserts:

the n*^ difference A^y at the point x is more nearly equal to the

product of Ax"^ by the determinate value f'^ix), the smaller A a; is

chosen; so that the limiting value of the quotient
—

^, which we

have denoted by —^ is equal to /*« {x). Thu^ an equation between in-

finitely small quantities has a determinate content, if it can he inter-

preted as a relation between the limiting values of continuous variables.

Now it is further to be remarked, that in the above equations the

differential dx occurs in increasing powers, so that we are enabled

to distinguish infinitely small quantities of different orders. If dx be

called infinitely small of the first order, then dx"^ is infinitely small

of the second, dx^ of the third, dx^ of the w*^ order. The ratio of two

infinitely smalls of the w*^ order and of the m^^ order (n > m) is itself

infinitely small of the {n
— my^ order: dx^ : dx"* = dx"*'"*. The

numerator may be said to converge to zero much more rapidly than

the denominator; if w = m then the quotient is finite, equal to 1.

34. This measure of becoming infinitely small can be stated gene-

rally : Two quantities are infinitely small of the same order when their

(quotient retains a fi/nite value. The derived functions

f'{x), f"{x), rW etc.

have in general for any x finite values; consequently the differentials
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dy, d'^y, d^y, etc., in like manner as the corresponding powers of dXy

are infinitely small respectively of the orders 1, 2, 3, etc. If we wish

to investigate the order in which a function, which is known to

vanish for x = a^ is infinitely small at this point, we have to form

fix)
the quotient

—^-^-!— and to determine for what value of r it remains^
(X- af

finite. We shall only become possessed of a general method for cal-

culating such ^ quotients by the investigations of next Chapter. It

may be that the order of becoming infinitely small has to be expressed

by a fractional or even irrational number, as, to cite only the simplest,

in case of f{x) = x^ at the point x = 0, where n is any positive

number whatever. It is possible even, though we shall only mention

it here, that no number can be found, but only a limit for r, below

which the quotient is zero, above which it is infinitely great. The

simplest example of this kind is f{x)
= x" . log (x), (a > 0), in which a

forms such a boundary between the values r.*)

In the applications of the differential calculus to problems of Geo-

metry and Mechanics two courses always present themselves: either

we start from equations between quotients of differences and pass

over from these to differentialquotients; or we start from equations

between differences and pass from these to differentials. The

latter frequently corresponds better to the immediate intuition. In this

case we can from the outset facilitate calculation by omitting in

the equation between the quantities still conceived as finite, all the

terms which in the transition to differentials, become infinitely small

of higher order than some term which occurs in the same sum with

them. If for instance y = x'^ where w is a positive integer, then

Ay= {x-\-Axy— x""= nx''-^ Ax-[- n^x""-^ Ax"^ -^-n^x""-^ Ax^ -] Arc";

here as all terms on the right side become infinitely small of higher
order than the first term, the equation Ay = nx'^~^ Ax, though not

exact for finite values, yet expresses for infinitely small ones the

correct value dy = nx'^~'^dx. In elementary Stereometry an appli-

cation of this remark occurs, in proving the theorem for the cubature

of a body bounded by planes : that the volume of a thin slice bounded

by parallel planes can be calculated as that of a prism , provided the

number of the parallel planes becomes infinite. In fact, the volume

of a slice differs from that of a prism with equal base, by a

quantity which is infinitely small of the second order when the

volume of the prism comes to be considered infinitely small of

the first order, on arbitrarily continued subdivision diminishing their

*) Cauchy, Sur les diverges ordres des quantites infiniment petites. Exer-

cices de mathematiques. Tome 1.
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thicknesses; it is easy to prove this from the simplest case of the

three-sided pyramid by directly calculating the difference as a function

of the thickness. Thence follows that the limiting value of the sums

of the prisms is identical with the lin>iting value of the sums of the

truncated pyramids, and this facilitates calculation from the outset.

35. Forming the higher dijfferential quotients of the explicit func-

tions treated in last Chapter we find:

I. y = a;'", '/- == mic"'-S ^^^mim— 1) x""-^ . . .

—?- = m{m—l){m — 2) . . . {m — n + 1) .r'"-" .

dx

When ni signifies a positive integer,
—^ is constant.

II. i) y^a", %^a'la, g= a«(^a)^ •

.£!
= ania)"i (»>0.)

In particular for y = e"^,
—
^ is =• e*.

dx

2) y= sin x, -^ = cos a; = sin (^ + i^);

^\ = — sin X = cos
(a? + i tt)

= sin {x \- jt) ,dx^

d^y
dx^
—^ = — cos X = COS

(ic + tt)
= sin {x + .^ 7t) ,

dx""

cos(ic + ^nji)
== sin {x + J (n + l)jr).

3) 7/
=

cosiP, -,-^ = — smx= cos{x-]-^7t), ...—^ = cos (x-\- ^ 71
ti),ax Q,x

If
// be a sum of functions:

then

da;» dx""
"^

da;»
"^

do;"
"^ ' "^

da:"
'

for example:

lor explicitly
^

d"y

da;'*

= M. r__i__ 4. -Jul)"- 1
2 L(l-a;)"+^ "^(l-f-a;)"+U
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If y be the product of two functions:

y = ^W • ^W = (f
•

^P then
ll
=

9)'. ^ + ^ .

I/;'

In general, if we denote —^- by qd^*^ and the binominal coefficients

(§ 27) by Wa, (w,)
=

1), we have the Rule:

^ =
9)(«) ip -{- Ui 9(«-^) ^(1) + >^2 9)(«-2) j/;(2) _j_

. . .

k=.{)

For, if we assume this formula proved for any value of n, differentiating,

kz=0

=^% g)(«+i-*) ip(^) + ^^i 9){«-i) ^{^'+1)

Writing apart the first term of the first sum and the last of the second:

we can evidently combine each pair of terms of the two sums so that

f^+1
== 9^"+')^ + (n, + >^o)9)(«)^(l> + {n, + nJ 9 (-D i/,(2) + . . .

But it is a property of the binominal coefficients that

thus this sum can be written according to the above notation:

which proves that if the assumed law holds for any n it remains valid

for the following number, and therefore for all that follow
^
but its

validity is directly seen for n = 2 and w = 3.

According to this Rule we obtain the following exposition for:

4) ^ = tan X. If we put y.cosx = sin a;, then, ?/("^ denoting
—

|-,
ctoc

y' cos X + y cos(;z; -|- i^) = ^^^ (^ + i^)

y" cos ^ + 2 y' cos {x -\- ^Tt) -{- y cos (^ + 1^) == sin (^ + ^jt)

y'" cos a; + 3 ?/" cos {x + ^-jr) +3y'cos(^ +2"^) +2/ <^os
(a; + f^)= sin {x -{- I tt)

2/^"^ cos X + *^l ^("""^^ cos {x + Y^) + n^y^'^~^^ cos
(;^; + I J^f) + • • •

+ Wa- y^^-^^f cos (;5? + -|-
/;

:nr) + • • •

?y cos (a; + i^^^)
= sin (^ + l-nTt).
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The calculation of the n^ derived function ?/"> from the last equation

requires that of all preceding derivates from the preceding equations;
the formula 'established for ?/<") is called on this account a recurring
formula. All the derived functions are finite, except where cos x == 0.

5) y = coiXf ysinx = cos x.

y^^sina; + w, ?/("-!) sin (a; + Jjr) + n<^i/''-^^sm{x + ^jc) + . . .

+ Wi2/<"~*^ sin(ic + ^IcTt)
. . . + 2/sin(a; + ^nn) = cos(a: + ^nn).

III. I), = «l0g.,^
=

-lal0g.,^
=
_i,-l0g^2^= y-l0g.,

g =
(-iy"-^>^-ioge. («>o.)

2) 2/
=

sin-^a:, (- l£x£+l, _|;r^f/<:+ ^Tt).

From the equation: y'=r—=r-- i.e. //l — a;"^= 1
, follows on further

f^i — a^

differentiation, the quantity on the right being constant:

y'yi —x"" — ^^^ =0 or y"{l—x'^) — y'x = 0.

Differentiating this equation n times by the Rule of the Product, we find

This is likewise a recurring formula for the calculation of all the

derived functions; they become infinite for the arguments x^ == I.

6) y == cos-^ic = Xtv — sin-^ic. —^ =* •

4) y = isin-'x, (— 4^<y^ + i^)•

F^om the equation -^
=

}_ ^ ,
or 2/(1 + ^^)

= 1
>
follows:

y«+i) (1 + a;2) + 2n, ?/(»)ii- + 2w22/<"-'>
= 0, or:

2/(«+i) (1 + a;2)
= - Snx^/"^

— n(n - l)?/^'-*); and lastly

5) for y = cot-^ic = Xtc — tan-^a;, we have —^=— ^ ^^" ^
•

30. For circular functions we have thus found only recurring

formulas; such formulas we shall obtain for every compound function

by applying the Rule of the Product. But we can also propose the

problem: to calculate the n^^ derivate by an independent formula

not requiring first the calculation of all preceding derived functions.*)

As an example of obtaining an independent expression, we can

treat y = tan~^a; in the following particularly simple manner.

*) The propositions bearing on this are discussed in detail in Schldmilch:

Compendium der hoheren Analysis, Vol. II, and Hoppe: Theorie der hdheren

Differentialquotienten.
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We have: y= , ^
= (cosyY= cos y • sin

{ij -\- ^tc)^ therefore :

y"=y{— sinysiniy + in) + cosi/cos(^ + ^Tt)] =y'cos{2y + ^it)

=
(cos 2/)^ sin 2(2/ + I :r),

y"=y\— 2cos2/sin^sin2(?/ + \7t) + 2 (cos t/)^ cos 2(2/ + ^%)]
= 2?/' cos 2/

cos (3 2/ + l^r)
= 2 (cos 2/)^ sin 3(1/ + ^:?r).

By reasoning from n to w + 1 it is proved, that in general:

2/(»)
== h— i (cos?/> smn{y + i^), (12.

==
!)•



Eighth Chapter.

Calculation of functions by infinite series. General theorems

concerning series of powers.

37. We now proceed to employ the successive derived functions

of a given function in presenting the Theorem of the Mean Value in a

form which constitutes the basis of the most important theorem of the

Differential Calculus.

Let f{x) be a unique function from a to 6, let its derived functions

fix), f''(po)y . . . /"("-') (a;) be everywhere- in the same interval Con-

tinuous and therefore also finite, while we assume no other property of

the n^^ derived f'^'^(x), but that it has the same value at each point
when formed progressively as regressively. Our first enquiry, in con-

formity with § 22, is whether the quotient

fib)-f{a)-{b-a)f'{a)
'

(

[h
— ay ' '

which again may be denoted by K, can be expressed by means of

higher derived functions. From the equation

f{Jb)
-

f{a)
— {b- a) f{a) — K{b - a)'

=
it results as in § 22 that

cp{x)
= f{b)

-
fix)

-
{b -^x)r\x)- {b

- x)^K

is a continuous function with a determinate differential quotient, and

that it vanishes for a; = a and for a; == 5. There must therefore be

some value a;,, such that

q>-{x,)
= -

f'(x,) + f (a;,) -{b- x,)r(x,) + 2(6 - x,)K = 0,

that is

Accordingly we have the equation:

f(b) ^f{a) + (6
-

a)f'ia) + ^ (b
- a)T'(« + 6 (t

-
a)), O<0 < 1.

If we proceed similarly and put

t\b)
-

fia)
-

(6
-

a)r{a)
-

-^
(6- a)Y'(a)

-
^| (6

-
a)' iT = 0,

the value of K is found by the equation:
Uaunack, Calculus. 5
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so that

We introduced the quantity |2_ in the denominator from the first, in

order that the equation for K arising from differentiation might assume

as simple a form as possible.

Let us now put somewhat more generally for any value of n:

/•(&) =/(«) +(6_a)/-(«) +iA^V' («)+ ...

-^^^V"-' (a) +^^^ K,

where p is to signify any positive integer, and let us enquire whether

K can be expressed by values of the n*^ derived. Once more, the

function

,p{x)
=m -

fix) -ih-x) fix)
-
'-^2 fix)

..._(tz^f.-.^^)_(i^yK\n
— 1 I \ J p

is continuous, everywhere finite, has a determinate differential quotient,

and vanishes for x == a and for x = h: so that we must have

<P'M = -{^^^-f (^i)
-

(6
-

«,)^-' ^}
=

or, as x^ must be different from h:

^ - ''^- fM =
^±SZir^^^^^":lfn ia + Oib- a)).

Accordingly

/(&) =/(«) + (&
_

a)fia) + ^^' fia)+ • •

(^-/«^i(a)

The last term assumes particularly simple forms when p is put
= ^, or = 1

,
we have

I. m =
fia) + (6

-
a) f ia) + M/-" («)+... -^p-' /•«-' (a)

II. m = fia) + (6
-

a) fia) + ^'^"^rW + • • •

^'^-f"' («)

+ (L-)»(L-_^)"->(« + 0(6-a)).

does not signify the same value in both equations, moreover all
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that immediately concerns us is to know, that in each case there is

a value for between and 1.*)

38. By the formulas just established the problem of actually cal-

culating the values of a function for a given interval of its argu-
ment X is solved. Previously, with the exception of the process of

inclusion within limits, we had no means of doing this, even for the

elementary functions: a;" (n arbitrary), a*,
'^

log re (a positive), the

trigonometric and circular functions; and yet in its absence we could

perceive their uniqueness and continuity, and assign all their derived

functions in terms of the same symbols of calculation.

The only arithmetical operations we have in our power actually

to carry out are the two — summation and multiplication
—

performing
them a finite number of times on a definite set of rational numbers,

positive or negative, integer or fractional; irrational numbers must be

replaced by their nearest rational approximations.**) Accordingly the

only function whose calculation we can deem completed is the rational

algebraic function:

To calculate any other function for an arbitrary value of x, is to assign

a method according to which continued summations or multiplications

have to he carried out, the result of which exhibits the required value

with greater approximation the more frequently the operations are carried

out as prescribed by the method.

The elementary functions of x must therefore admit of expression

ill the form either, of suras v/hose summands can be powers of the

argument Xy or, of products whose factors can likewise contain the

argument in powers. When they are calculated in this manner, they

can themselves be used in the calculation of more complicated functions.

The number of such summands or of such factors will of course, in

analogy with the exposition of an irrational number, be infinite, for

otherwise every function could be brought to the rational algebraic

form; but the arrangement of them will be such, that even a finite

summation or multiplication is enough to generate a value whose

difference from the required value of the function is demonstrably

*) The first formula was developed by Lagrange: Th^orie des fonctions

analytiques, 1797; the alteration contained in the second was given by Cauchy:

Exercices de mathematiques, T. I. p. 29. Subsequently, still more general forms

for the last term were devised by Schlomilch according to the method we have

here followed.

**) Subtraction is summation with negative, division is multiplication with

fractional numl)er8.
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less than an arbitrarily small quantity. The calculation of the number
e affords us an example of this. The formula of such an infinite sum or

of such an infinite product is called a convergent one.*)

39. The property of convergence of any infinite series is expressed

analytically as follows:

Let
itj + ^2 + %+•• "^n + ^«+l + ^«+2 + • • •

be the terms of the infinite series, which can be continued unlimitedly

according to some law, the sunts obtained by adding up, first n terms,

then n -\- l^ n -{- 2, ••• n -\- h terms:

Sn =
M, + ^2 + • • • + «*»

Sn^\ = U^ + U2 + • • + lin + Wn+1

Sn+k = 'i^i + ^'2 + • • + ^« + '^n+l + • • • + W7i+i

must form a succession of numbers with a determinate finite limiting

value S. This requires: first, that none of these sums, therefore

also none of the terms u, increase beyond any finite amount, and

second, that for any number d however small, a place n be assignable,

such that the amount of the difference Sn+k
— Sn for every value of ^,

shall be less than d. But this difference is nothing else than the

suTQ of Iv terms following the w*^; accordingly it must he possible to

choose n so that for every value of h,

abs [w-A+i + «*n+2
• • • + Un+k] shall he <, 6-

Now let us denote by JR„ the difference between the finite limiting

value S and the sum Sn ,
then this quantity Sn+k

— Sn may also be

written as Bn — ^«+a, similarly Sn-^k
—

/5«+i as Rn^i — Bn+k-, etc.,

whence, provided the choice of n makes abs [jR„
—

-Kw+J less than d

for every value of h^ jR«+i
—

Bn+k) Bn-\-2
—

Bn^ky etc. are also certain

to remain less in amount than 2d for every value of h. For we have

abs [i?„+j
—

Bn+k] == abs [(/S„+a
—

Sn)
—

{Sn+l — SnJ]

abs [i?„+2
—

Bn+k] = abs [{Sn+k
—

Sn)
—

(>S'„_,_2
—

S„)], etc.

And conversely, when i?„, i^„_j.i,"- are smaller than ^, the differences

Bn Bn-i-k
= Un+l + Ww+2

" * * + '^n+k
=

Sn-{-k &
are also less than 2 d for every value of Jc.

If then we call the limit of the sum Bn of all terms from the (n + 1 )*^ ,

*) It is important for the beginner to realise clearly this requisite of cal-

culability of a function; and so the essential difference between a rational

function and all other denominations of functions y, log, sin, cos. The latter

are only to be regarded as symbols by which the dependence of one number on

another is expressed, whose properties are no doubt known, so that the nature of

the dependence is completely defined ex. gr. by inversion of an arithmetical

operation, or by geometric definitions, but for whose calculation we have as yet
no fixed law.



§ 38-41. Taylor's Theorem. 69

the remainder of the series after n places, we can formulate

the condition of convergence also as follows:

The necessary mid sufficient condition for the convergence of an

infinite series consists in this^ that for any number 6 however small,

a place n can he found in it, such that its remainders 22,, jBn+i» -Rn+2,
• • •

are always smaller in amount than d.

This cannot possibly be fulfilled. unless the amounts of the terms

in the infinite series ultimately decrease and have zero as limit, but

this condition alone is not sufficient for its convergence. The value

of an infinite series which does not converge, will either be quite

indeterminate, when the series of sums Sn oscillates between arbitrarv

values, or it will be determinately infinite positively or negatively.

In both cases the series is said to be divergent.

40. Now the forms developed in § 37 express the simple functions

as infinite series of powers. For, supposing the value of the

function and of all its derived functions be known for the argument a,

and that the value of the function for any other x is required, then

in consequence of these equations we have, putting x for h:

/w =/(«)+ (^ -«) r (")+^^rw + ••
^^ig^V'-' («)+

-R

On the right side accordingly all terms are known, except the last, in

which the unknown fraction occurs. But if we can prove that this

last term R, formed for arbitrarily increasing values of n, passes

through a series of numbers having zero as limit, then neglecting

this last terra, we shall obtain the value of f (x) with arbitrary ap-

proximation by summing as many terms as we please of the in-

finite series:

/ (^)
= f{a) + (x -a) /-(a) + ^-^f" (a)+ ^^^^

f" («) + •• in ~.

This is Taylor's series named after its discoverer*); it teaches: If we

liiow the value of a function and of all its derived functions for a single

argument^ we can calculate the value of the function for every other

argument x'^ a, if in the interval from a to x the function and as

many of its derived functions as may he formed are continuous without

becoming infinite, and if Lim (R) vanishes for w ==» oo .

41. The examination of the first hypothesis is apparently com-

plicated, requiring the finiteness and continuity of all the derived

*) Taylor (1685-1731) in his chief work: Methodua incrementorum directa

et inversa, 1715, established this series but without taking account of the remainder

term. Mac Laurin (1698—1746) in his Treatise of Fluxious, 1742, developed the

series for the special value a = 0.
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functions in the interval from a to :r to be investigated; however it

is simplified by the Theorem:

If the w*^ derived of a function formed progressively and likewise

regressively, be within a finite interval everywhere determinate and

only finite^ not necessarily continuous, then all the derived functions

preceding this one, as well as the function itself, must be continuous

in this interval and cannot become infinite.

For if ^ be a value intermediate to a and x, the equations:

define the values of the progressive derived /'" (<2f) ,
and of the regressive

9)" (^s).
From these by subtraction:

/«-! i^ + h)
—

f^-' (s-h) = h
(/•« (^) + 9)» {0)) +h{d + d').

If now /*" and 9" are everywhere finite, we have at each point in the

interval, Lim [/""-i {0 + h)
—

/""-i (^
—

i^)]
= 0, for A = 0; so that

the function is continuous at both sides of this point. Moreover /'«-i

remains everywhere finite: for if M be the greatest value which /*"

takes between =
Xq and

a;^ + ^^ ^^^ ^^^ ^^^ least, then in the entire

interval from x^ io x^ -\- h the expression

/«-i(^)
_

fn-^(x,)
—

(^
-

x^) m is > 0,

because it vanishes for = Xq and its derived (^{z)
— m remains

always > 0; on the other hand

/n-i(^^)
—

f^'-^ix^)
—

{z
—

Xq) M is <0 because /"« {0)
~ M < 0.

Each value of therefore will have its own proper fraction 0, so that

fn-l (^)
_

fn-, (^^)
=

(^
_

:»„) [« 4. (Jf- ,«)] ,

that is, to each belongs a finite value of f^—^(s). A like method

of proof being applied, the same thing follows for each preceding derived

function as well as for
/'(.s)

itself.

In determining the hmiting value of B the following Theorem is

at times of use:

If the values of the n derived functions up to n = 00 remain finite

in an interval, then Lim B vanishes.

For in the product

'

ix — a)'
—-- . —-— . .

. ={x— a) Q
\n
— \

we have

x—ax — a x—a,^ p o ix-^af {x—af {x— ay-
g = —-— —TT— • •

, therefore g- = ^
—^-^ •

-; ^ • • • ^^—-^,

therefore g^ < (^^^^^3^) ,
because n—l<]c(n— h), h being < ?^ — 1

,

hence q < (-^^V \ Now \i x ~~ a is finite, ,-^^ is a fraction
\Vn — 1/ Vn — 1
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whose higher powers, when n increases, have zero as limit. In

the present case therefore the first and second hypotheses are com-

prehended in one: A function whose ti derived functions up to w = cx)

remain finite within an interval, can be calculated in this interval

by a series of powers. But this proposition cannot be converted, be-

cause Lim R can vanish, without the n derived functions up to u = oo

also being finite, as some of the following examples show.

42. Exponential series: 2/ =='/'(^)
= e*.

For X =0, f {x) and all derived functions are known; in fact /""(a;) =e*
therefore /'" (0)

= 1. These are continuous functions for all finite

values of x, and even for n = oo always remain finite. Accordingly

Taylor's series converges and

c'= 1 + T + I + J +
• • •

^-
+ '" '°«n-'

- °o < ^ < + oo-*)

If more generally y = a^ (a > 0), let us put y = e"" and we have

a^^l + ^+(J'lf^+^^^+...^-^ + ...in infin.

— <X> <^ X < -\- OO .

43. Trigonometric series: y = f{x)
= sin x.

^

^ = sin {x -\-^n7i) is finite for every finite argument. Accordingly

Taylor's* series converges, and as

/•(O)
= sin (0)

= 0, r(0) = sin (f :r)
= 0, /'^ (0)

= sin (f 7t)
=

0,

/•'(0)== sin {{71)
=

1, r(0) = sin (f ;r)
= -

1, /- (0)
= sin (|;r)

=
I,

we have:

X X^ , X'' X^ / iNt ic^*"*"*

Again : y = f{x)
= cos x. ^ = cos (x + i nn).

dx

l\())
= cos (0)

= 1
, f" (0)

= cos (I «) = - 1
, r (0)

= cos (i 3r)
=

1,

/'(O)= cos (i n:)
=

0, f"(P)
== cos (f a) = 0, r W = «os (I ^) =0,

eos:.= l-|+|-|...(-l)''^'.-., -oo<a.< + oo.

The present series render it possible to calculate trigonometric tables

for the sine and cosine of any number. When we wish to abstract

quite from the geometric definition of sine and cosine, these series

*) The series itself was first established by Newton, as well as the series

for sine and cosine; the number e, as already mentioned, was introduced by

Euler as basis of exponential functions.
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are to be considered as definitions of these functions, and from them

all their properties already employed must directly follow.

4:4. To demonstrate this, we must show independently of previous

considerations that the defining series converge and are continuous

functions of x. For this purpose we prove the following

General theorems concerning series of powers.*)

1. If the coefficients a^, a^. ... a„ ... in any series of powers

f (x)
=

a^ -]- a^x -\- a^x'^ -{-
• • anX'^ + • • •

are all of lihe sign, and for a definite positive value X its terms after

some certain one decrease and converge to zero^ so that the quotient of

a term hy the preceding one is less than unity ,
and for n = oo is at

most equal to unityj
then the series converges for all positive values of x

ivhich are smaller than X.

The quotient
—— X after some definite place in the series being

less than or at most equal to unity, if we take x <C X, a proper

fraction a can be assigned, such that

therefore
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Therefore in general the interval of convergence (couvergeucy)
of the series is given by the condition

Lim ^^ X < \y or a; < Lim — — (n = oo) .

II. The sum (difference) of two convergent series is itself a con-

vergent series, whose terms consist of the sum (difference) of the

terms of both.

if f{x) = «() + «I ^ + ^J ^^ + • • • «»-l X""-^ + I^n ,

cp (x)
=

b^ -{-hi X -{- b^x"^ + ' " hn-i rz;"-' + li'n ,

l)e such, that a determinate n can be chosen, so that R as well as R'

may become less than any arbitrarily small number, we have

/\x)±(pix)^{a,±ho)+ {a,±h,)x+'^'(an-i±h„.i)x^-'+Rn±Rn.
Now since we have Lim (i?„ + R'n) = 0, for all values of a; for which

both series converge, we obtain for the algebraic sum the infinite series

/ {x) ±(p (x)
= a„ ± &o + («i ±h)^ + («2 ± ^2) ^^ H

Still more generally if the series converge respectively for x and x\ we have

/"W ± 9^ (^')
== («o ± ^0) + («i ^ ± ^1 ^') + («2 ^^ ± h ^'^) + • • •

III. An infinite series, whose terms have different signs for some

value of X, converges, if the limit of the sum of the positive terms

be finite and also the limit of the sum of the negative terms be finite.

For by Theorem II such a series expresses the difference of the

values of two convergent series. When this is the case, the series

consisting of the same terms taken all with like sign converges and

we shall see that it has the same limiting value even when the order

of its terms is changed: such a series is said to be absolutely (un-

conditionally) convergent. But a series whose terms have diffe-

rent ^igns may converge without the sum of the positive and of the

negative terms separately having finite limits, it is then said to be

semiconvergent (conditionally convergent). A series converges

unconditionally when the absolute value of the quotient of a term

by the preceding one is less than unity for all values from some

determinate n on to w = 00. For then, even when all the terms are

written with the same sign, the series fulfils the condition of con-

vergence proved sufficient in Theorem I.

It is thus seen: that a conditional convergence can only arise by
the ratio of a term to the preceding one being less in amount than

unity, but becoming unity for w = oo; and hence follows further:

If a series of powers of x converges only conditionally for a determi-

nate value X then it converges absolutely for every numerically smaller

value of X-, while it diverges for a greater value.

For, for a smaller Yalu^^i^i^mdmiki^&mains less than one, for
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a greater value it becomes greater than one; the terms of the series

then do not decrease in amount but increase.

IV. Every series of powers is a continuous function of the variable^

ivitliin the interval in tvliich it absolutely converges.

Let f {x) signify the vahie of the infinite series

a^^ -\- a^x -\- a^x^ -{-
' ' ' a» a;" + • • •

,

for which, since x is to be a value within its convergency, we haye

[^*«]<'.Lim P±i

it is required to show that Lim {f{x + ^)
—

/ (^)] =0 for d = 0.

Putting:

a^ -\- a^ X -\- a^ X- -\-
' ' • a„-i ^"-^ ==

q) (x)

an x"" + an+1 a;"+i +a„+2 i«?"+^ + • • • = ^ (^),

then as in Theorem I

abs il){x) is < abs anX'^ •

T~.zr i (0 < a < 1).

Merely by the selection of a lower limit for n^ we can thus make ^ {x)

as well as ^ (^ + d) and therefore also the amount of their difference

il) {x ^8^ — i\) (x) less than a quantity f however small
,
because the

term a„ x'^ becomes arbitrarily small as n increases. When X. denotes

the greatest value of the interval for x, we must choose n so that

a«<-^-*) Accordingly

f[x ±8) - f [x)
^

q> (X ±8) -
q^ (x) -^ e.

Now since cp (x) denotes a rational integer function of x, which as

already seen § 19 is continuous, the difference f(x + ^)
—

/(^) becomes

smaller than an arbitrarily small quantity as d decreases, i.e. f{x)
is a continuous function.

The Theorem also holds when the series converges at the limits

of the interval of convergence for X, conditionally or unconditionally:

that, for d =
Umf{X- d)=f{X).

For we have here:

*) In consequence of this property, that for the same n, both
i}} (x) and

ip {x-±^ d) become less than s
,

series of i)Owers are said to be convergent in

equal degree or uniformly. Abel was the first {loc. cit. Oeuvres J, p. 225)

to point out, that continuity of the series does not of itself follow from the

continuity of the terms of the series. Uniform convergence teaches also, that

the infinite series in its entire couvergency can be replaced quam proxime by the

same rational integer function. The function expressed by the series of powers
is styled therefore, after Weierstrass

,
one which has the character of a rational

integer function.
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^ (X- d)
= .„ (^--'y X" + ..^, c^-^-')"-''

x«^^ + . . .

Jf the terms in ^ (X) are. all of like sigu, ex. gr. positive, we see

lit once, that as ^^ < 1
, t {X — d)< {^~ ^J

• ^ (X), so that

11 value can be given to n which will make tp(^X
—

6) as well as

ip (X), smaller than any arbitrarily small quantity s.

But if the terms in ^ (X) are different in sigu ,
a special in-

vestigation is still required. This is based upon the following Lemma:
If

^,), ^, , ^.^,
. . . t„^J . . . denote an infinite series of arbitrary quan-

titie»s, and if the quantity

Pm = ^0 ~r ^1 ~r ' ' *
^»»

» for all values of m be always algebraically less than a determinate

quantity (r, but greater than g, then if £„, e^ . . . denote decreasing

[K)sitive quantities we have

^ f„ < r = fy ^„ + £i ^, + . . •

£,„ t,„ < Gcq.
(Since

^0
=

Ihi , ^1
=

Pi
—

1\ 9 h == Pi
—

P\ y
«tc.

therefore

^=^oPo + ^1 iP\ ~Po) + ^2 (P2—P1) H + ^" {Pm-Pm-i),
or

^=I>0 («0
—

«l) + P[ («l
—

^2) + • • • Pm-l (fm-1
—

£m) + Pm ^m •

As the differences £,,
—

£,, f,
—

e.y, . . . are positive, the value of this

expression is less than

on the other hand it is greater than

Applied to the present case, in which( -^-), (
—^—J

• • • denote

a series of decreasing positive quantities, it results from this Lemma
that the amount of

rp {X — d) is less than (—^z ' ^
>

where M represents the greatest numerical value in the series

^

an X» , a„ X" + an+, X«+' ,

•

-, a„ X» + a„^, X-+' + . + ^^n+* X''+*, etc.

'

Since the series /'(X) converges, a place 71 can be found in it from

which onwards the value of -M is less than an arbitrarily small quan-

tity £, whence what we stated follows.
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V. The infinite series of powers is differentiated^ hy forming the

scries of differential quotients of its several terms.

The series

a^ -{- 2 a^ X -\- 'd a^ x^ -\-
' ' • n an x""-^ -{-...

derived from

f{x)==a(^-\-aiX-\- a^x"^ -\-
• ' ' anX"^ -{-

' ' •

certainly converges for all values of x which lie within the interval

of convergence of the original series. For, the interval of the derived

series is, according to the criterion, determined by

abs Lim ~— < 1
,

or abs x < abs Lim —
.1 n+l

Now since Lim -4-t = Lim (1 r—) becomes =1, for ^ = oo, it

a
follows that abs x < abs Lim —^ •

Now in order to determine the differential quotient of the con-

tinuous function f{x), let us first form the quotient of differences,

doing so ex. gr. regressively, in order when possible to take account

also of the upper limit of its convergency :

f{x — A a?) — f{x) cp (x — A X >

—
(p (x)

I

tp ix — Ax) — il) (x)
— Ax — Ax "*" — Ax

For any finite £^x however small, this continuous expression in A^
has a determinate finite value.

If we denote the infinite series a^ -\- 2 a^^x -\- '-'-{- nan ^"~^ -|-
. . .

^7 1 C^)? its remainder by Bn{x), this equation takes the form

f(x — Ax)— f{x) , r\ K \ T) r r\ K \ \ 1p (x— A x)
—

If} (x)-—
ztax ^^^^' -eAx)~ Bn {x

- A^) + ^—ziTK^-^
'

Retaining the value of A^, when we increase n arbitrarily the value of

changes on the right side. But as the remainder of a series of

powers has the property, that after some determinate ^^, Bn {x) becomes

arbitrarily small for all values between x and x — h.Xj then because as

n increases the last quotient can also be made arbitrarily small, it

follows that

For because the continuous function %{x) comes arbitrarily near

the quotient of differences in the interval from x to x ~ ^Xj there

must also be a point (compare § 17) where the two are equal. . Now
the differential quotient /" {x) arises from the quotient of differences by
continuous transition for Aa; == 0. But as long as what is on the

right side converges, it is by Theorem IV a continuous function of

the variable x — OhXj therefore we have for l^x = 0:
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f\x) = «, + 2^2 a; + Sag ic^ + . . .

(w
—

1) a„_, rr«-2 + • - •

,

as was to be proved. The regressive differential quotient of the infinite

series of powers is a continuous function of x. For the progressive
differential quotient we obtain in the same way the same series.

45. Applying these Theorems to the trigonometric series

«. /»s
/pb x' aj**"*"^+ 15-

—
17- +•••(- 1)"

•

li^TTT H = sin a:,
1 li

"^

[5 11
' V '/

^2n

/p2 /pi ^.n -^2n
^ —

[2
+

l4

—
16

H (- ^)''
•

12^
H = COS O;

,

we perceive that each of them converges absolutely for all finite values

of Xj for we have for n = oo:

^'"^
I t^M^ •

H^El J
= ^'^

L2n.(2n+l)J
= ^'

^i^^
[ £- • 1^1

= Lim
[,^_^).,J

= 0.

Accordingly the functions expressed by the series are continuous for

;ill finite values of x. Further we have

-d^ == - T + li

-
{5

• • • (- 1)"
• -

T2^=r . .
., 1. e. = - sin x.

Next it follows from the series that

2) cos (— x) = cos a;, sin
(
—

x)
= — sin ic, cos (0)

= 1
,
sin (0)

== 0.

Now, since equations 1) teach that all the derived functions even for

n = cx) remain finite and continuous, we may develope cos (x + ;'/)

according to Taylor's series in powers of i/, and thus obtain:

,
,

V
,

dcosx
, 2/' d^oosx . y^ d^ cos x

, t/'d'cosa; .

COs(a!+ t,)
= C09:r+2/ -J- + I -^^ + I^^ + I -^^ +

• •

= cosic — ysinx ^-
.^

cos a; + j^
sin re + i^

cos ic — • • •

==
cosa;(l

-
J + g )

-
^inx(y

-
| + |^ ),

i. e.

.'.
I cos

(ic + y)
= cos x C09 y — sin x sin y.

In like maimer we find:

sin {x -{- y)
= sin x co% y -\- cos x %m y .

Thus the theorem of addition, on which our previous calculations

were based, is proved independently of geometrical considerations.

From 3) we get, putting
— y for y, in consequence of 2):

cos (x
—

y)
= cos a; cos y + sin x sin y ,
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If we assume x = y ^
the proposition follows

4) 1 = (cos xf + (sin xf.

It remains to show the periodicity of both functions. With this in

view we remark that the nature of the terms of both series is such,

that sin x and cos x remain positive when x increases from to 1
,

whence results, that within this interval sin ic is a function increasing
from 0, cos ic a function decreasing from 1, for, the differential quotient
of the first function is positive, that of the second negative. Now
since taking account of the initial terms:

sin 1 > I - jL+^_i^, cos 1 < 1 -^+ 1^— jL+ ^,
it follows that

sin 1 - cos 1 > ^ + (]!;--]?) +(-^ -j^).
therefore sin 1 > cos 1. Hence there must be a value between and

1 for which sin x = cos x. If we call this value -{tc (< I), we get

by equation 4)

sin
|-

;r = cos ^ 7t = -j- ^j/ 2 .

Also since

cos 2x = (cos xy — (sin xy ;
sin 2 x = 2 sin x cos x,

we have

cos^;r = 0, sin^7r=l;
further

cos 7t = — 1
,

sin :7r =
;

cos 27t = 1
,

sin 2 :7r = .

Consequently

cos {x -\- ^ 7t)
= — sin ic, sm{x-{-^7t) = cos

it;,

cos (x -}- 7t)
= — cos X, sin {x -\- 7t)

= — sin x,

cos {x + 2jr)
= cos x, sin {x + 2;r)

= sin x.

The number 2jr is the period. The course of the functions between

^ It and ^ It can be determined as follows.

We have : cos {x-\-\it) =^ (cos ;3;
— sin ;r) ^/ 2

,

sin {x-\-\ii)
=

(cos x -\- svn x) ^y 2 .

As long as a; < ^ jr
,
the difference cos x — sin ^ is always positive,

therefore in the interval x = \7t to x = \it ^
cos x is a function con-

tinuously decreasing from the value ^ ]f/2 to the value zero, sin ic a

function continuously increasing from the value ^ ?/ 2 up to unity.

The number tt, here defined purely arithmetically, we shall calculate

when we come to circular series. The essential properties of the

functions have thus been obtained immediately from the series defining

them. Henceforth we shall always understand by sin^, cos :^; only a

symbolical representation of their respective series; sin-^ic, cos-^^:!;

are then defined as the inverse functions.
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46. Binomial series.

?/=/(^)= (1 + ^)"* • a? > — 1. m having any value; y always positive.

For X = the value of y and of all derived functions is known; we have

/»(ic)
= m (m — 1) (w — 2)

. . • (m — M + 1) (1 + a;)"»-«.

These derived functions are continuous as long as rr > — 1: therefore

/I I \,n 1 I , w(m — 1) ^ ,
m (m — 1) (m —

t>) ., ,

(1 -I- xY = I + mx H ^ a;2 + ~^^ ^ I
a:** + • • •

|_

w (w - 1) (m - 2)
. . • (m - n + 2)

^„_i ^^^

li = m,, a;" (1 + Ga.*)'"-", or jR = wi„ wa;" (1
-

0)»-» (1 + 0a;)'"--";

_ w (w — 1) (m — 2)
•

r
(w — n -}- 1)

It is convenient to consider the second form of the remainder. Since

a;>— 1,1 + Q^isa positive number for all values of as required.

Let us put

then we have

1 2 k n— 1
'

= .
i'^—'^)^

.
(wi
— 2)g

^ ^ ^
(w— A)^;? ^ ^

(wi
— (n— l))g

_ ^
1 2

' *

^-

* '

n— 1

The factors ^ and m are finite. The product will certainly have its

limit zero, when its factors begin somewhere to be proper fractions and

remain proper fractions when w becomes <X). For, if (r be numerically

the greatest of the fractions between -

^^^

"T
^ and

^^ ~
7 ^ » the° k n — 1 ^

product of these factors taken absolutely is less than G^**-*; but such

a power has zero as limit. On the other hand the product vjrill cer-

tainly increase beyond all limits, provided the factors once become

greater than unity and remain so.

But now since as w increases, the amount of
""

_""
^

is approaches

arbitrarily to that of Zj the amount of must be less than unity;
therefore

fora;>0, ^[^q^.< 1, or(l-0)a;< 1 + 0a;, i. e. a; < 1,

fora;<0, f~|^- > — 1, or(l— 0)a;> — 1 ~Qx, i.e.x> — l.

Result: If — 1 < a? < + 1, the positive function (I + a;)"* can

be calculated for every m with arbitrary approximation from the

infinite sum:
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I
I

'''

X
\

^^^^^-^^ ^2
I

.. ^(m-l)---(m-n+2) ^,_, _|
^.

The error which is incurred in breaking off the series at the n*^ term

is at most equal to the maximum value of the remainder

ninX"^ (1 + x)^-^ or mnX*^,

according as rr < or > 0.

It appears from what has been said that, except for positive

integer values of m, for which the series is finite, the values of the

terms of the series for rr> + l or < — 1 increase beyond any limit,

so that the series no longer converges.

The limiting cases : x = + 1 or= — 1 require a special con-

sideration^, not at present possible by means of the remainder, inasmuch

as it should take account of the maximum value of (1
—

Q)^-'^ (1+ 0^:)"'-".

It is plain at once, that if the series converge at all for J:hese limits,

the values it must express are respectively 2"* and 0'"; for, as long
as the series converges, it is a continuous junction of x and must

therefore assume the same value as the continuous function (1 + x)'^

with which it coincides for all values of x within these limits.

When m > and x = — 1
,
the series is of the form :

-,

tn
^^ m(m

—
1) m(m— l)(w— 2)^^ >.

^v„ m(m
—

!)••• (m— w-f-l)
1 _ _

_|_
_

^ I ^^_ jj
— _

In this series the terms all take the same sign as soon as n becomes

> m. But the sum of 2, 3,
• • • ^ + 1 terms is

Here each term is ultimately less in absolute amount then the one

preceding; therefore we have a series of numbers all of one sign

and each smaller than the one before it. This series of numbers has

therefore a determinate limit and this limit is zero in consequence of

the above remark.

For X = -{- I we obtain the series

I I

m
, m(w— 1) j_ m{m—l)ini — 2). m {m — 1) (r/i

—
2)

• • • (m— n -f- 1)

^"TT"! [2
\

j3
I E

These terms assume alternate signs when w > m but yet the series

converges absolutely, because according to what we have just seen, the

series converges, even when we give all its terms the same sign. The

series expresses the value 2"^.

When m = —
/«- < 0, the series cannot converge for ic == — 1, for

we have (1
— l)-^ =^ oo. Accordingly if the series converge at all

for ic = + 1, it can do so only conditionally. We obtain:

*) Newton in the letters for Leibnitz of 13 June and 24 October 1676.
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'J'liis series, in which the terms alternate in sign, cannot converge
il' ^ — 1 > 0, ^ > 1, for then they increase incessantly in amount.

But if
ft
— 1 < ,

the terms decrease incessantly in amount and

consequently become zero as we saw above for ii;

Ihif a serieSf whose terms have alternate signs, decrease avd Ihicc

r.rro (fs
li)ftif, alivays converges.

I'oi-, if we denote the sum of the series from the ?i*'' term by

Bn =-
(?<«

—
?<«+l) + (^<n+2

—
Wn+s) • • •

or lin = tin
—

(w„-{-i
—

lln+2)
—

(Wn+3
—

^n+l) • . .

we perceive that Rn is positive but smaller than tf„. As n increases,

the limit of It„ therefore, in like manner as that of w„ is zero.

Therefore the binomial series

(1 + xy = 1 + 'f^ +
-
1^'-^ +

. . .

converges absolutely for all positive values, of 7n even at the limits

+ 1
;
on the other hand a negative m must be > — 1 in order that

the series may converge also for x ==
-{- 1 and then it does so con-

ditionally.

Although restricted in its convergence, the series can still be

employed in extracting an arbitrary root of an arbitrary number; for, if

a be the given base, 9)1= - a rational fraction, let us determine

a number h'l as near as possible to a and put

then the binomial can be expanded.

47. Logarithmic series.*)

//
=

f{x) = l{l + X), then /•» (x)
=

^"."T'^T^- ,x>-l,

? ( 1 + a;)
= a; -

I" + f - 4- + • • • ^^^^ + K.>

1{„ = ^ ^ or {— l)"-i •

The remainder in the second form converges to zero when

abs
pi

~
1^/1 < 1, that is - 1< a; <- + 1.

*) Nic. Mercator (Logarithmotechnia 1668) and James Gregory (1636—1675)

(Exercit. geometr. 1668); to the latter is due in the same work the series for

tan""^ X.

Habnack, Calculus. 6
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The first form of the remainder shows that the series still converges
for a; = 1 .

Therefore
<7»2 /y»3 /y»4 /y.^

1(1 + X) = X -
^^-
+ ^ - ^ + . . . {- ir-^ ^.

.

., -i<x£ + \.

In the particular case

?(2)=l-i + i-i+i
of this last, we have an example of a merely conditionally convergent
series

;
for neither the series

nor the series

l + i + i +!•••, nor i+i + i+i-..,
are convergent, although their terms decrease and converge to zero,

on the contrary, their sums increase beyond any finite amount; for

To obtain series useful for calculating the logarithm of any positive

number, let us put
— x for x in the series just found, then if rz; < 1

Z/y.2 /V.3 /y.1 /y.'*
^

/-I ^ ill Uy U^ '^ I Tt '

[\-x) = -x-^ - j-~ ^^ + -R
>

therefore

and as R — R' converges to zero in the assumed interval, we have

*) The above divergent series l4-i + i + ^'"* ^^ called the harmonic
series. It is important for subsequent applications to remark that the series

^^^2*" 3^' 4^ 5^

converges for all values of
/x >• 1. For, grouping as above — =—

,

1*" 1'"

2^ 3" 2^' 2^*-^
'

4^' 5^ 6^* 7'" 4^ V 2^"' /
'

-{-^)
we see, that the sum of any number of terms of the series remains less than the

sum of the same number of corresponding terms in the geometric progression

whose ratio is the proper fraction ——r- •
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Now substitute:

then: < <^ < <x>

H. + a)
=m + 2 (,^ + i (-^^^)' + i (,-^„y+

. .

.)

.

For instance, ^ = 1, a = I:

l{2)
= 2(i + i a)» + i ay + K^)' + . .

.);

5 = 2, a = 1 :

2(3)
= K2) + 2(i + J ay + i (i)^ +•••)•

To pass from natural logarithms, with the base e, to common

logarithms with the base 10, since '"log a ==»
*log a : *log 10 we have

to calculate the number:

/(lO) = Z(2) + ?(5)
= 2.3025850929 . .

.,

then we must multiply all values by ,-—r- = 0.4342944819 . . .

48. Circular series. y==tfin-^x.
An independent expression of the n*^ derivate of the circular

function f{x) = tan-*:j; was given in § 36:

/''*(x)
= ln-i cos'»2/8inw(2/ + ^tt)

= —-^^=^ sinw(tan-^:r + i^)-

(i + xV
Now since for x = 0, y is also = 0, it follows that tor this value:

/"'(O)
= 0, p^(0) = , r^{0) == . . . p\0) =

/' (0)
= 1

, /"'(O)
=-

1£ , r (0) =.ii • • • r*+^ (0)
= (- 1)* lii-.

Tlie remainder B is by the first formula:

l^=^^^8inn(tan-'0:t + i:r)= ^(-^^^^^^
LL(lH-e«a;»)«

This first factor converges to zero, the third has a finite value. The

middle factor does not become infinite for w = cxj when the quotient

within brackets is equal to or less than 1 for all values of 0, i. e, when

X- < 1. We have thus:

tan-x = f -l + t • • (- D* ^. + •>- l<-^<+ '•

The viilue of x being any proper fraction, this series presents the

corresponding angle between — ^7t and + ^:r.

The angle whose tangent has the value + 1 i** equal to J^;r; this
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number which is of fundamental importance for the periods of

trigonometric functions can therefore be calculated by the formula:

but the convergence of this series is very slow, i, e. many terms must

be summed in order to obtain a value at all approximate*); series

that converge more rapidly can however be formed for calculating n.

If a; be a fraction small enough to give quickly an approximate value of

cp
= idinr^x by the above series, let us form tan(mgp), where m is a

positive integer to be chosen so that mcp shall be nearly equal to

\7C^ and mcp — \7C therefore be a very small angle; this will make

, . .V tan?wm — 1

tan(mgp
—

tJ'f)
=

-j- tanm cp

also a small fraction, so that moo — Ijt = tan"^
/ anrnqp — \

^^^ ^^

calculated from the series with rapid convergence. For x = \^ m =4:

tan 29P = j^^ = t\, tan49c = m, f+'ZrTil,
= ^>

therefore**)

iTt
= 4tan-H - tan-i^i^ = 4{i - ^ • (if + |(±)5_ |(±)7 + . .

.}

-{^h-UYhf + U^hf }

7c = 3.1415926535 . . .

In order to calculate the angle corresponding to a tangent which

is greater than 1, let us remember, that for

<(p <i7t, tan(^;r
-

(p)
= -^ ,

and for

^^7t < (p <0, tan(- ^7t
-

(p)
=

j^^
.

Accordingly, if we put tan q)
==

x, we have

+ 1
jr = tan-^ic + tan-^ —

, (ic ^ 0),

therefore :

tan-ia?== i^TT -tan-i^
= ±i7t_{l-^ + ^-^+..|.

We have thus obtained a series with ascending powers of —
or with descending powers of x.

*) When we add an odd number of terms in the above series we find a

superior limit of the required value
,
an even number gives us an inferior limit.

If ex. gr. the two limits are not to differ before the 11*1^ place of decimals we

must sum 4-10'° places in the series.

**) First established by Machin, who in 1706 calculated tt to 100 decimal

places (vide Kliigel: Math. Worterbuch: Cyclotechnie). To obtain n accurately

to 10 places, it is here enough to sum 15 terms of the first series and 8 of the

second. •
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49. In the series for sin a; and tan~*a; only odd powers of x

occur, in that for cos a; only even powers including zero. The first

two functions are therefore characterised as odd, the other as even.

An odd function f{x) can in general be defined by the property:
that f{x)

= —
f{
—

x)] for an even function we have f{x) = f{
—

x).

Thence follows that an odd function, provided it is continuous for

X = Oy must there vanish
;

it follows further by difierentiation that

all its derivates of odd order are even functions, on the other hand

its even derivates are odd functions. Therefore these latter must also

all vanish at the point zero. In the case of even functions on the

other hand, all odd derivates are odd functions and vanish for x = 0.

50. The development of Taylor's series is based on the formation

of the w*'' derivate. This marks the limit of its applicability; for, if for

any function the general expression of this derivate be too complicated,

the method loses in practicability. Thus, it is not hard to calculate

in general from the recurring formula established for sin~^ii; the values

of the derived functions for x = 0, but that formula is not suited for

forming the remainder.*) Therefore our first endeavour must be to

decide as to the developability of a function and the convergence
of the series of powers from the properties of the function itself

exclusively, not also taking account as heretofore of the properties of

all its derived functions. But then we shall recognise that a series of

powers obtained in any way for a function in an interval must be

identical with the series of Taylor, because f(x) cannot be expressed

by two diff"erent series of powers. The investigations require
— for

completeness
— the extension of the domain of number and for this

new conceptions must first be introduced by the theory of functions

with more than one independent variable.

*) For the expansion of sin— la; in a series, see Integral Calculus, Bk. Ill

Chap. IV.
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Functions of more than one independent variable.

51. When the value of a variable z is determined by the values

of two independent variables x and y in such a way, that to each

value of X in the interval from a to & and to each value of y in the

interval from « to /3 belong one or more values of s, then 3 is said to be

a function of the two independent variables x and y. Here we can

also classify functions after the nature of their analytical expression

into algebraic and transcendental, and the form in which the function

is presented may be explicit: ^ = f{x , y) j
or implicit: f{x,y,0)

= 0, or again it may be brought about by two variable parameters:

x = (p(u, v), y = il^{u, v), z = %{u, v).

The total course of the function is exhibited to intuition by the aid

of a system of Cartesian coordinates in space
— most simply by a

rectangular one — each system of values x and y is represented by
a point in the plane of xy, and from this the corresponding value

of 2 is erected perpendicularly to the plane, towards one side or the

other according as it is positive or negative. The extremity of this

perpendicular represents the simultaneous system of values, x, «/, 0. The

interval from x = a to h^ y z= a to /3
determines in the plane xy a

rectangle, the domain, for which the function is defined, and the

points constructed lie above and below this. If x and y go through
all values from — oo to + cx), these points spread over the entire plane.

A general view of the distribution of the points is arrived at, by beginning
with a fixed value of one variable ex. gr. x = a, and giving to y
different values between a and /3; connecting the points thus constructed,

a polygon arises in space, of which the right line x = a is the

projection in the plane xy. As the value x is altered, different polygons
are obtained for these values of ^; if we conceive the points for

which y has the same value to be connected, there arises a net whose

quadrangular meshes are more and more diminished by interpolating

further points and such that it can have as its limit a determinate

surface. This surface is accordingly the complete image of the function,

its intersections with planes parallel to those of y0 or sx are curves

which form the limits of the polygons first constructed.
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52. Considering the explicit function z = f{x, y) let us assume it to

be one-valued, and enquire when is it continuous in a domain for which

it has determinate values. Conceive any point of the domain inclosed

in a small rectangle having the lengths of its sides parallel to the

axis of abscissae == 2h and of those parallel to the ordinate axis

=
2^', so thai a; + 7i, 2/ ih ^ ^^® *^® coordinates of its four corners.

Thus the coordinates of any point within this region or on its boun-

cary are a; + 0^, 2/ i ^^'; (^ ^ ® ^ ^; ^ ^ 'Z ^ !)• ^^ we denote by

fix^Qhy ijAzV^) *^® corresponding value of the function, then

the function shall be called continuous at x, ?/, only when finite values of
h and k can he found, for tvhich the absolute amount of the difference:

f{x^Qh^ y :\z V^)
—

f{x f y) is less than a prescribed arbitrarily

small number d for every value of the independent variables a^id
ri.

For then and only then will every series of numbers obtained from

f{x + 0/i; y :\z'^]^)
—

f{^y y) ^y making and
ri converge to zero

in any manner whatever, have zero as its limit. It is therefore

necessary for continuity, that f(x ^Oh, y)
— f{Xy y) and likewise

f{^)y:JzV^)
—

fi^> y) become infinitely small, or in other words:

that f(x, y) be continuous as a function of the variable x alone or of

the variable y alone; but yet this is not sufficient. Therefore to say

/'(ic, y) is a continuous function of both variables x and ?/, is different

from saying that /'
is a continuous function of x as well as of y.

On the other hand we can replace the above definition by its

equivalent: It must be possible to find at the point x, y, a finite

value h and a finite value Z;, so that for all values equal to or less

than h or Tz respectively, f{x + 0/^, rj)
shall be a continuous function

of y alone, and f{x, y ^hv^) ^ continuous function of ic alone, in

such a way that independently of Qh, we shall have

abs [f{x ±Qh, y±rik)- f{x ± Oh
, y)] < d

for all values of
rj merely by the value chosen for k^ and in like

manner that independently of rjk, we shall have

abs [f{x ± Qh, y±V^)- fix, y ± rik)] < 6

for all values of merely by the value chosen for h.

These conditions are enunciated in the words: /'(a;, y) must be a

uniformly continuous function of x as well as oi y in the neighbour-

hood of the point x, y.

For according to this way of putting it, if we assume rj
= in the

second inequality, we have also for all values of

B,hs[f(x±eh,y)-f{x,y)]<d.
This inequality added to the first shows that

abs [f\,x ±0/*, y ±rik) —f{x, y)]
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becomes less than the arbitrarily small quantity 2d for all values of

and
rj, merely by the values chosen for h and Ic.

This way of putting it is important, because it reduces the in-

vestigation of continuity of a function vpith tv^^o variables to that of

uniform continuity in regard to each of them.

Examples:
1. The function = ax^y^, where

ft
and v are positive integers and

a an arbitrary constant, is a continuous function of both variables.

For, the absolute amount of

{y ± v^y-r = lv^ (±v^)y'-' + v2{±vW'y'-' + • • • (± ^^)M
is less than

1 - {riJc)
'

where N signifies the greatest among the coefficients within the above

brackets. Assuming i;^ < 1, then the amount of the difterence

(2/±#)'-r is <iVp^.
Consequently

a(x± Qhy [(y ±riiy — if] < a {x -\- Qhy •

,

"^^
,

• N,

and if this is to be less than d for all values of and
t;, denoting

by X the greatest absolute value which {x + Qhy' takes for all

values of 0, we have in order to determine ^

rih 8 .
-,

8^

l — nk
^ aXN' ^•^- ^ <

d-\-aXN'
A like consideration shows that the difference

a
(2/ + fihy [{x + Qhy — x^'] is also < d when h < ^,^ym'

The considerations in this example serve for the proof of the general
theorem :

If f{x, y)
=

(p{x) . ip(y) where cp and
ifj

are continuous functions of

the variables x and y, then
/*

is a uniformly continuous function of

X as well as of i/, i. e. a continuous function of both variables. For

^{x ± Qh) [jp {y ± 7ih)
-

^(^)]

can be made < d', exclusively by choice of A; independently of 07^, and

'p{y ± v^) ["Pi^ ± 0^0 — 9(^)]

can be made < d, exclusively by choice of h independently of
rjlc.

2. ^ = ^- is discontinuous at all points of the right line x =
xy

and of the right line y = 0. For,
— is for all values oi x a discon-
xy

tinuous function of y when y= 0, and for all values of i/ a discontinuous

function of x when x = 0.
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3. z =^ — i^ discontinuous at all points of the right line x =
while y is finite, and is quite indeterminate at the point x = Q^ y = 0.

4. The function z = sin (4tan~^ —) being defined for a; = 0*) to

be zero for all values of y incUiding 2/
= 0, is a discontinuous function

in the point x = 0, y = Oy although for a constant !/ it is a contimious

function of a; and for a constant x a continuous function oi y. But if

we put //
= ax the function sin(4tan-^a) can take all possible values

between the limits + 1 and — 1 as we approach the point x == 0, y =
in all possible directions, whereas it should there be zero: or, forming the

differences for the neighbourhood of this point, no value can be chosen for

Ic independently of 0/<, nor for ]l independently of
rjlc which will make

sin r4tan-^ —
^,' ) < d: the criterion of continuity therefore is not

satisfied.

5. If we form the function z = x" y~J j
where a and

/3
are positive

and
/3 < «, and for all values of x replace it for i/

= by the value

z =
,
then it is a discontinuous function at a; =0, y = Oy although

when we put y = ax it is a continuous function: z = x'^'^a'^ of the

variable x and so is continuous on every direction proceeding from

the origin. For here too it is not possible to find a finite value of h

independent oi rjky for which we have

(±Qhy{±rik)-'<d,
In a domain, in which the criterion of continuity holds without

exception for every point, including its limits, /*(:r, y) is a uni-

formly continuous function of both variables, i.e. a value

cau be assigned for h and one for k, which, whatever be the values

of a; and y, are sufficient to satisfy the inequality

fix ± Qh, y±n^)- fix, y)<d, (0 < < 1, < ,; < 1).

For if it were assumed that such minima values could nut be asssigned

to h and k, there should be points in the domain, in whose immediate

neighbourhood the criterion of continuity could only be satisfied by

h and k ultimately falling below any assignable value. That this is

impossible is seen as follows: Suppose x^^ y^ to be such a point, and

determine Ji and k for a point a;,
—

f, ?/,
— f' arbitrarily near it, so that

abs [f{x^
— f ± 0^; Vx

— f'± n^)
—

f(^i
—

^, !/\
—

n)] < ^^

Now if the only way in which this inequality can continue to hold,

when £ and e' converge to zero, be by h and k also falling below any

assignable value, then — s -\- QJi and — a'-f- };/<
will always t» inaiii

less than zero, so that the point a;, , y^ is never readied in this pruce.s.s.

*) Thonice: Einlcitmi^'^ in 'Ii'' Tlicuno dcr 1 m liitegraN
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But this not being so, a finite region + O/^j + V^'^ can be assigned
at the point Xi,y^, for which

abs [f{x, ± Qh, y, + n^) - f{x,,, i/,)] < ^.

This finite region includes also the points x^
—

^? 2/i
— ^ (^^^ ^ ^^^

e' converge to zero, h and h have fixed finite values) and therefore

the same assignable region is also sufficient for each of these points

for satisfying the inequality, so that therefore what was assumed is in

contradiction with the condition of continuity.

53. The first difi'erential quotients of the function at a point, in

whose neighbourhood it is continuous, can be formed in various ways:
If we first leave y unaltered, while x increases or decreases by Aic,

and denote the corresponding change of ^ by Aa;^, then the quotient

of difi'erences is

^xz ^ f{x±Ax,y) —f{x,y)
Ax + Ax

We assume that this approximates, when Ax converges to zero, to a

determinate limiting value, as well for the + as for the — sign, but

not necessarily the same for both. It is denoted after Jacobi by

^- or ^ and called the partial derived of with regard to x

progressive or regressive as the case may be, thus:

U = I'- = Lim A«±A^y)-A^,y
)

for A» = 0.
cx cx + Ax

The partial derived of z with regard to y secondly is got
in the same way, x remaining unchanged:

|/ = |1 = Lim fi^^y±^y)-f^^^y) for Ay = 0.
dy dy ±Ay '^

Obviously we have here also the proposition: If the progressive

partial derived with regard to x or with regard to y be identical with

the regressive one, the Theorem of the Mean Value holds:

f{x + h, y)
—

fix, y) == lif {x + 0/^, ?/),

f{x, y -{-l)— f{x, y)
= If {x, y + Yili) ,

and
Tj

will be respectively dependent on y and x.

But if X be changed by A^ and at the same time y by Ay, the

ratio Ay: Ax remaining quite arbitrary but finite, the increase is

A0 = fix + Ax,y + Ay) — f{x, y).

Here also the question arises: What is the limiting value to

which x^ or ^ tends, when Ax and Ay converge to zero in any

manner in which their ratio always retains a finite limiting value ^,
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the partial derivates
^

and ,- being supposed to have definite values

in the neighbourhood of the point under consideration?

We have identically:

/•(a; + Ax, y -f Ay) - f{x, y) ^ f(x -{- l^x.y -^ Ay) ~ fix,y + Ay) _
Aa; Aa;

_L /"(g. y + Ay)
—

f(a?,y)
^
Ay

^
' Ay

'

Aa?
*

If in the first quotient on the right we first make Ay vanish, it

becomes '^-'^ ^' ^ 'l.'S^iyi and this passes over into
~'^-'^'

as A a?

vanishes; but if reversing the order we first put Aa; ==» 0, we get the

expression ?fi^^^|±^^\-which
will likewise become ^^- to^ Ay=0,

only when it is a continuous function in regard to y. Now what value

results when Ay and Ax converge to zero simultaneously in any

manner? In order that ^^—^' be again limiting value independently
(/X

of the manner of convergence, the condition must be satisfied: that a

Ax can be found and independently of it a Ay, such as will make the

absolute amount of the difference

^^g
rf{x-\-Axiy+Ay)--f{x,y^Ay) _ f{x-{- QAx,y+7]Ay)-f(x,y+7iAy)l ^
L Aa; 0Aa; J '

where d denotes an arbitrarily small quantity, while the proper
fractions and

rj
assume all possible values. This inequality is

expressed in the words: The quotient of differences must be a

uniformly continuous function of Ax and of y.

This condition is necessary and sufficient — it cannot be replaced

by any other. The differential quotient proceeds by continuous transition

from the quotient of differences and we can therefore easily conclude,
rl f

that from this requirement the continuity of the function ~- in regard

to y necessarily follows, without this therefore being fitted to replace

the above. For, since the condition must be fulfilled for all values of

Ay independently of the value AXy it holds also for Ax = 0, i. e.,

df{x,y + Ay) __ df{x,y -{ ijAy) ^ ^. (0 < « < 1 .)dx dx
' \ ^— ' = y

If, putting =s 1
, 1?

== 0, we write the above inequality in the form

^v rfix±Ax^y±Ay) -f{x-\-Ax,y) f{x,y-{-Ay)-fix,y)-] Ay .

*^^L Ay Ay JAa;^'''

since it holds for values of A:c and Ay however small, whose ratio

has an arbitrary finite limiting value k, we see that the continuity

of S' in regard to x is also involved in the above condition, for:
cy °
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L A^/ Ay J '

therefore for hy == 0, ?^-A_^-ii^
_ ^/^) must also be < dl.

-^

dy dy

Accordingly the result is:

Provided we have at the point x^ y, at which f is continuous, the

quotient of differences:

fix + Aa?, 1/ 4- Ay) — f(x , y + Ay)
Ao;

a uniformly continuous function of hx and y, then -~ is a continuous
(jX

function of the variable y-,^ is a continuous function of the variable

Xy and for all values of dy : dx the Total Differential Quotient with

regard to x is equal to

dl ^dl .dl dy
dx dx ' dy dx '

or in a more symmetrical statement: the Total Differential

ds^i^dx + ^dy,dx '

dy
^

i. e. is equal to the sum of the 'partial differentials.

The differential equation contrasts by its symmetry with the equation
of differential quotients ; but, since there are vanishing (infinitely small)

quantities on both its sides, it derives a meaning only from the fact

that a quotient equation can always be formed from it.

In most cases of calculation it is enough to replace the condition

of this Theorem of the Total Differential by the narrower one: When

the progressive and regressive differential quotient ^-^ is a continuous

function of both variables x and y in the neighbourhood of a point,

and ^ has a determinate value, we have also
dy

'

dz = ^dx + ^dy,dx ^

dy
^

For then we can replace the first quotient in the equation:

f{x-^ llx, y-\- t^y)
—

f{x, y) ^ fjx -\- Ax,y + Ay) — f{x, y + Ay)
Ax Ax

. f{x,y + Ay) — f(x,y) Ay
* Ay Ax'

by the mean value:

df(x-{-eAx,y+ Ay)
dx '

P>f
which becomes ~- for Aa; = 0, Ay = 0.

ox
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Examples.
1. The function z == ^x' + y- is unique and continuous even at

the point x = Oj «/
= 0, but its first derived functions :

dz X dz y
dx y^^^yt

'

'dy pp^"^t
have no determinate values at that point; therefore the Theorem of

the Total Differential does not apply in this case, in the absence of

further conventions respecting the partial derived functions.

2. If we replace in the function ^r = (3iC + 3) + f/ all values for

y = by the values Qxy the function so formed is continuous in the

neighbourhood of the point x== 1, y=^0', but ^^-^
= 6, ^-^if^

= 3

i. e. the partial differential quotient in regard to a; is not a continuous

function 01 ?/: in like manner -^X
' == 1

,

—
'o

= -h ^^i^ ^ cy
^

oy
therefore although the function is continuous at the point, the Theorem

of the Total Differential does not there hold for it.

3. An example, in which f is continuous in both variables and

^ a continuous function of y and yet the Theorem of the Total Differential

does not hold, is presented by the function: ;2?
«= a: sin (4

tan-^
-^-)

with the convention that for all values of y (including //
=

0) whenever

X = we have also z = 0. This function is continuous in the

neighbourhood of the point a? = 0, y = 0. Now

£M = y, ^^^^^^ = 0,

thus it is a continuous function of y. On the other hand we have

o.r/ ^^ ic sin ( 4 tan~^ —^)
?^^ = Lim >-;,

^ = 4,
dy Ay '

as lonoj as x is different from : whereas —i—^- = 0. The Theorem ofo '

dy
the Total Differential does not hold in this case.

The condition under which the Theorem of the Total Differential

holds is the condition that the function can be represented by a

surface. Just as we say of a function of one variable: it can be

represented at a point by a curve, when the lines joining this point to

neighbouring points converge to a fixed limiting position, so we say

of a function of two variables: it can be represented at a point as a

surface, when every plane, which can be drawn through that point

and through any two other points belonging to the function, converges

to the same fixed limiting position, in whatever manner these other

two points close up to the original point. (It is a peculiarity in a

surface when it behaves at a point as a cone does at its vertex;
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in such a case there can no longer be any such thing as a fixed

plane; the first partial derived functions are indeterminate.) Let the

coordinates of the points be respectively x, y, ^] x -\- AiX, y -{- A^y,
^ + Ai<2?; X -{- A^x, y -\- A^y ,

z -{- A^z^ so that

^ = A^. 2/); 2 + A^z = f{x + A^x, y + A,y),

z + A^z = f{x + A^x, y + A^y).

The equation of a plane through these points, denoting its current

coordinates by J, i^, 5, is:

t^-z = A{i-x) + B{n-y)'

AiXAzy — A^xAiy

B = A^zA^x — A^zA^x

AxZ

A,x



Ao;
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The only remark still to be made is that the value of -^
—Ir- or t•^

, ^

^ cydx
can also increase beyond all limits; though under the circumstances

assumed, namely that the theorem of the mean value is to continue to

hold, this can only occur by i^) becoming determinately- infinite however

we may approach this point; the limiting values then remain equal to

one another, + co or — cc.

We can now further conclude, that under corresponding circum-

stances the order of difi'erentiation is indifferent also for higher partial

derived functions. For if

dydx docdy

then it follows by differentiation ex. gr. with regard to x that:

dxdydx doc^dy

If then we put ^= p and the theorem just proved holds for the

function 2h ^^^^ is to say, if not only ^[ = .? , but also
C/X C X'

dydx dydxdx

Q. E. D.

be a continuous function of both variables, we have:

dxdy dydx''
'

'dxdydx dydx^ dx'^dy

55, By the help of the higher partial derived functions the higher
total differential quotients are expressed as follows: In the function

dz ^ dfix,y) , df{x,y)
_ dy^

dx dx '

dy dx''

which depends on the two variables x and y, let ic increase by Aic,

A ^^

y by A 2/, then the limiting value of the quotient of differences d^

which we shall have to denote by -5—g when A^ vanishes, is to be

calculated from the form:

a/'(^ + A.^,2/ + A2/) df{x,y)
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of / is equal to ^Ar—h ?-A • j- : the third limitinoj value is unde-

termined, just as
-^-

itself is, as long as no law is assigned between

the change of tlie variable x and that of the variable ?/; but if such

^dy
'

a dependence exist, we shall have to denote Lim -^^ by i~, (ex. gr.

when the increments of x are in a constant ratio to those of //,

'h/ : (Ix ==
A-, d'h/ : dx"^ = 0); therefore if /'{ =- 5-^,•' ) .' /' cxcy cy ex '

we have
^'' - '"^

4- ^^ -^^- •
^^ 4- ^ T^Y 4- ^^ • ^'-^ •we nave

^^^,
—

.^^,,
-f- -

.^..^ ^^. -f
^^t K^J -f-

^^ ^^^

It is to be remarked, that this expression is not symmetrically
turmed relatively to the differentials of x and

?/; this depends on the

fact that we considered the variable x as independent, and formed

the higher quotients of differences with regard to a; (§ 33). It becomes

symmetrical either, when as y varies in proportion to a;, ^- is to

be considered constant, for then equal changes of y belong to equal

changes of x so that as just stated A ~- =^ 0,and consequently:

d^z _ o^f ,.) ^L dy \^ Mj/V
dx^ ox' "• dxdy'dx'^dy* \dx/ '

or, when the change of x as well as that of y is to be made depend
on a third quantity.

This case we must consider more closely. If x as well as y be

functions of the independent variable t whose change therefore con-

ditions the change of value of x and of y, the differentials dx and

(I If are functions of t, multiplied by the differential dt-, accordingly

tlie differential quotient -p is a function of t. Writing dx = (p{t)dtj

(hj
=

^f{t)dty then t- =—/tt 5
^^ ^ change and the differential quotient

is to be determined, we have

dy\
dxf <p{t)V>'(t)-<p'it)^it).<^m

dt (p{t)*

Evidently, in consequence of the equations -^
=

q)(t), ^ = ^(^)

we can also write:
-^^

= 9(0? .K =t'(t), or d^x = (p'{t) dt^f

d^y = t'(i)dt'; introducing these values into the above equation, it

assumes the form

Vrfx/ _ dxd^y — dyd^x -, (dy\
dt

~
dx'dt ^^^\dx/^ dx»

i.e. if in a differential quotient, numerator and denominator are conceived

Uarsack, Calculu8. 7

<dx/ dxd*y — dyd^x ^ (^y\ dxd*y — dyd^x
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to be functions of an independent variable, its differential relatively vto

this variable is formed according to the general rule for a quotient.

If the variable t coincide v^^ith x, we have x = t, hence

therefore d^x = and we obtain the equation d (j^J
^^ ^ ' ^^ ^^®

variable t coincide with y, then y = t, ^(Q = 1, ^'(^)
= 0, d'^y

=
and we obtain d f^j == — 3^ —-,—• The same is the case if w(t) and

\dx/ ax ax ^ \ y

Tpit) are constant, and the variables x and y therefore change in pro-

portion to. the independent variable. The second and all higher diffe-

rentials of the independent variable therefore vanish.

If now in the equation z = f{x^ y) both x and y are to be con-

ceived as dependent variables whose change is determined in any
manner by a third variable

t,
the total first differential of with regard

to this variable is

dz df dx
I df dij -, df j \ df -,

dt dx dt *

dy dt dx '

dy
^ '

and now considering that both the partial derived functions and the

differentials dx and dy depend on t, we find for the second differential

dt^ cxAdU "^ dydxdt dt '^ dxdy dtdt "•"
dy'^^dt)

"• dx dt^ '^
dy dP

or d''z= P.dx"- + 2 /'I- dxdy + |^" dy'^ + |^ d^x+ |^ d'-y.dx^ '

dxdy
^ '

dy
^ * dx '

c)y
"^

But it must be remembered as to this last equation, that it states

a determinate relation between finite quantities only when x and y
are given as functions of a quantity t, and both sides of the equation
are divided by df] that it has on the contrary no content at all, when

nothing is determined as to the way in which x and y vary. We have

accordingly the Rule.

In order to obtain the most general form of the second differential

from d0 = ~ dx -\- ^- dy, we have to form the total differential of

the terms on the right side, taking account of both differentials d^x

and d'^y. If x is to be taken as an independent variable, then d^x = 0;

if y also is to be considered as an independent variable, d^ y must also

vanish.

Example:
s = ic'" y"", d0 = mx'^-^y'' dx + nx""' y''^^ dy

d'^0 = m{m — 1) x""^-^ ^" dx"^ + 2mnx'"-^y''~-^ dxdy

+ n(n — \) x'^ij''-^ dif + mx'"-^y'' cPx + nx'^y'-'^d'^y .

This Rule contains also the law of formation of further differentials:
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+ 2[%dx<Px+£l^{d^-xdy+ d>ydx)+ fl^dyd',, )
+ |rrf»^+|/rf3y.

But if X and y are both to be taken as independent variables, this

expression reduces to its first four terms. It is seen that these terms

occur with binomial coefficients and that in general for independent
variables

k= n

d'z^'^n.J^
. dx'-^dt/. (n„

=
1).

For, if we form the total dijfferential of this equation, we find:

l^]xcept the first term of the first sum and the last of the second,

each term occurs twice, only with a different binomial factor, so that

«+i f .l^n^l . r.. . ., N^^+V
d'^+' ^ --=

f^,
dx-+^ + (n. + n,)

-^-^
dx^dy+->

but since w* + rik-i = (w + l)*j we have

rfn+i , _V (n + 1)* n̂+iJ^yk
dx--^'-^ dy^, Q. E. D.

There is no difficulty in extending these investigations to ex-

plicit functions with more than two independent variables, when once

we have defined for them in a perfectly analogous manner what is

meant by the continuity of the partial and total differential.*)

50. The knowledge of the partial derived of a function with

more independent variables than one, leads likewise, as Lagrange has

shown, to a calculation of the function by an infinite series of powers.
To find the value of z = f {p- + '*, // + ^); when the values of the

function and of all its partial derived functions at a point Xy y are

known, let us form the expression

1) F (t)
= fix + th,y + tk)

= f\x, y').

This will be a continuous function of t for arbitrary values of h and

A;, only if /' is a continuous function of the two variables within the

region determined by h and li. Now if F {t) can be expanded by
Mac Laurin's series, that is, if

•) Theorems concerning functions with more than one variable were first

systematically developed by Euler: Instit. calcul. diff. Pars I, 7.

7*
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2) ^-(0 = F(0) + -*- F' (0) + '^r'{())
+ . . .

I^F'iQt),

we get for ^ = 1 the value:

3) F{\)^ F(0) + I F' (0) + i F" (0) + ---^F' (6).

Now on the hypothesis that f and its partial derived functions are con-

tinuous in both variables, we have for every value of h and h the total

derived of F with regard to t:

V (i\ — ^A^'. y) ^ _i_
^ fi^\ y) dy^^

^^^
—

dx dt "*"
dy' dt

or because: x = x -}- hty y = y + lit, therefore

df _df_ dl — K ^ — h ^ — h
dx'^dx' dy"'' dy' dt

~
"'^ dt

~~ '^
'

F' (t)
= h ^'^-^ + h -M|l^_l and F' (0)

== h ^'^-^ + h^^ •

^ ^ dx ^

dy dx ^

dy

Further we have

^ ' cx^ ' dxcy '

dy^
'

therefore

and so oii, in general:

p—n

If we substitute these values in equation 3) we find

F
{^\)
= f{x+ h, y+h)^f{x,y) + {/,||

+
fc|/}

This expression is the Theorem of the Mean Value in its most

general form for a function with two variables. It leads to an in-

finite series proceeding by powers of h and h, whenever the remainder

converges to zero as the values of n increase arbitrarily, k special

case in which this occurs is when the partial derived functions have

the property of remaining finite in the domain assigned by h and h

when n becomes infinite. If they have not this property, the remainder

may indeed still converge to zero, though, as the determination of

the limit becomes difficult, we require other criteria to decide by.



Tenth Chapter.

Implicit Functions. Application of Taylor's series to evaluate

quotients apparently indeterminate.

57. Our last investigations were shown to be applicable to the

calculation of differential quotients of complicated functions of an

independent variable when x and y depend on the quantity t\ but they
also admit of application to implicit functions.*)

In the case of an implicit function f{x^ 2/)
= ^; represented

ex. gr. by the most general form of an algebraic function (§ 25), the

value of the function hitherto named z is constantly equal to zero.

By making it vanish we produce a dependence between the quan-
tities X and

?/; for, if one or more values of
\j

can be assigned for a

determinate value of x so that /'=* 0, a change of the value oi x will

give rise to a perfectly determinate change of each of these values

of
]j

that satisfy the relation fix, y)
= 0.

Let us fix our attention on a determinate value of y and attempt
to measure its change in relation to that of x.

When will y be a continuous function of a:? It will be so when
as the increase A a; becomes 0, the A?/ belonging to it also converges
to zero; i. e. when the equation f{x-\-l^Xy ?/ + Ay) = is satisfied

by a vanishing value ofAy simultaneously with a vanishing value ofA a;.

Therefore in fhis case there are values arbitrarily near the point

^1 l/} y^t besides this point itself, for which the function of two variables

z = f(Xjy) vanishes, and conversely the existence of such values

within arbitrary- proximity to the point Xj y, coincides with the con-

ception of continuity for y. If ex. gr. ;? be a unique and continuous

function of both variables which can be shown to have positive as

well as negative values in the neighbourhood of a point, it follows

that there must be also a continuous series of values for which z vanishes.

When the change of value is continuous, the limiting value of

the quotient -^ can be enquired after.

•) Euler: Instit. calcul. diff. Pars 1. 9.

^^m'^iny
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If the function z = f(Xj y) when ^ = have a total differential:

ds =^ J^ dx -{->.-- dy ,
there is obviously a determinate sort of in-

c oc y
crease for x and y^ for which z remains = 0^ namely

dx^^ ^ dy^^~ ^' ^^ dx— ydx)-\dyf

Accordingly the value of the differential quotient of an implicit

function can be determined, without requiring first to express it as an

explicit one, by substituting in the expressions of the partial derived

functions ^ and —^ the values of x and y at the point. The second

total differential d'^z equated to zero gives the calculation of the second

differential quotient ^, and so on:

dx^ ~^ dxdy
'

dx'^ dy- ^dx/ '

dy
'

dx'^

O — Ha.^ ^"f ^ _4_ n -I'/L (^\"a^ ?lf (^Y^ ~~
dx^

"T"
dx'^dy

'

dx "1" "^

dxdy'' \dxJ '

dy^ \dx)

^ ^
dx^ \dxdy

^
^2/2 dx) ^ dy dx'^

*^^^-

58. Application to the most general algebraic function of two

variables.

The function z ^ f {x, y)
==

A^, y^ + A^ y""'-^ + * • • ^n-i y + An,

where J.q, A^ ... An signify polynomials of any degree in x, which can

likewise be arranged in powers of x :

z = B^ x^^ + B, x-^-' H h ^,,_i X + Bra,

is a continuous function of both variables. For, written out in full

it consists of a finite number of summands of the form: a^vOC'^'f\

each of these summands is, as was shown § 52, a continuous function

of both variables, but a finite sum of continuous functions is

itself a continuous function. We can easily prove this propo-
sition in general. If for any values x, y, we have the function

Z^f\ (^, 2/) + /2 (^; ^) H h fp (^) y)y

and we form its value for x-\^^ln, 2/lb''?^? ^^ difference between

the new value and the old will remain less than
(J,

when we make
% and li respectively equal to the smallest of the values that result

for the individual summands, in order that the amount of

fiix + 0A, ^ ± >?^)
—

fi (^, y)

may be less than — •

Further, the algebraic function has a total

differential of the form (^^ = ^ 6?^' + ^ ^i/. For, its partial derived

functions in x and y are themselves again algebraic and therefore con-

tinuous functions of both variables. Consequently, at any point for
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which 2 = 0, there is also a differential quotient identical when taken

progressively and regressively, to be calculated from the equation:

^y = _ ££ = _ ^nBpx"'-^ -I- (nt
-

1) B ,
x"'-' -f 1- Bm-i

^^ K n A,y*-' + (n - 1) ^,y-« -f . . . + ^^__/
dy

and that becomes infinite at the points for which the denominator

vanishes, where simultaneously /*= and ~= 0.

The preliminary result is therefore; If in the algebraical equation

/ (^) y)
= ^y y be considered as a function of x, this function has at

each point a differential quotient; in other words: it can be carried

on continuously from each point. Geometrically stated this is the

theorem: an algebraical curve has at each point a tangent; it cannot

])reak off at any point.

This theorem however undergoes modifications: for there can be

points, at which numerator and denominator of the quotient ^^ vanish

simultaneously; or simultaneously increase beyond all limits; these

require a special investigation.

59. The Theorem of the Mean Value in its most general form

(Taylor's series) shows directly whether a function can be carried on

continuously for finite values of x and y. We found § 56 that the

value of f{x + hj y + h) can be calculated from the equation

We commence from a point Xq^ y^f at which f=Oj and try to

lind another in its neighbourhood, i. e. for arbitrarily small values of

// and kj at which f{XQ -{- h, 2/0 + ^) likewise vanishes. Denoting
the values of the partial derived functions at x^^^ y^ by ()o, the values

h and h must satisfy

^'(a+K^ju +i{'''(i^a+^^^(afa+^<i;a)+

Since arbitrarily small values of h and Tc are in question, we see that:

unless J- and ^ vanish simultaneously, terms containing higher

[)owers of li and h are arbitrarily small compared with terms of

the first dimension; thus the continuation of the implicit function is
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indicated in the direction of its differential quotient

dl
7c dx
h
~

d£'
dy

But now if ^ and ~ simultaneously vanish
,
the first member of our

equation disappears, and since for the arbitrarily small values of /^

and li for which we are enquiring, the 3^^, 4*^ etc. powers are arbi-

trarily small compared with the second, the limit of the ratio of h to

h is to be extracted from the quadratic equation:

When this equation is written in the form

Jc

it shows, that the ratio
-^

^^^ two real values, different or equal, or

no real value at all, according as

\\dxdy^oi ^^^0 ^€y'^_o

is greater than, equal to or less than zero. In the last case the func-

tion f{x,y) = cannot be continued from the point ^o ^o ^^ ^"7
direction by real values of x and y] while in the first, two different

directions are found. Its curve has an isolated point or a double

point with real branches, singularities that can also occur in algebraic

curves. If (v^) , ( ^ !^ ) , (~-J ? also vanish
,
we are led to a cubic

equation which presents for the ratio ofhih either three real values,

different or equal, or else only one real value. Such singularities

can rise higher, but the further discussions require theorems as to the

number and nature of the solutions of equations of the n^^ degree.

These remarks contain only the first germs of a problem which may
be stated generally thus: The implicit algebraic function f (x, y)

=
is given. For x ^=

Xq^ y takes the value y^. It is required to ex-

press y as an explicit function of ic by a convergent series of powers,

subject to the condition, that the relation f{x^ y)
= remain always

satisfied, and that for x = X(^ ^ P = Vo- ^^^^ ^^ must postpone the

solution of this problem until later on, for it requires a considerable

extension of our previous conceptions. In the first place we must

be able to tell, how many values of y belong to a determinate x^^.

This requires the investigation of complex solutions. We must then

solve in general the question as to whether a function, in whatever
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way it may be defined, can be expanded in a series of powers. (Bk. II

Ch. IV. Bk. IV Ch. III).

()0. We return to the question as to the differential quotients

at these singular points. We assert, the values of ^* : h calculated

from the above-mentioned quadratic or cubic equation present, when

real, the different values of the differential quotient
~- at such point.

This proposition is manifest, for A; : /^ is a quotient of differences, and

its limiting value defines the differential quotient. It can however be

deduced yet otherwise from the original equation of definition:

dy _ _ a/ . a/; .

dx dx
*

dy

We consider first the following simple but important case,

(cf. § 1 9c): If in a quotient ~j^ ,
numerator and denominator vanish

simultaneously for a determinate value a; = a, (jp
and tl) may be any

continuous functions, not only algebraic, then (§ 10) this quotient

has a meaning only in so far as it is the limit towards which the

values at neighbouring points tend; thus

^A^ = Lim ^ ^"^ + ^^
or 5^ = Lim '^ ^^

~ ^^
•

If now the Theorem of the Mean Value in its first form hold for

the functions g) and ^, the following general rule is found for cal-

culating the limiting value. Put

9? (a+ h)
—

(p(a)
= h q){a-{-Q h), or, as (p {a)

= 0, g? (a+ h)
= h (p' (a+ 0/i)>

V'(a+ /0
—

f(a)= htl^'(a-\-r]h)f or, as^(a)= 0,^(«+ /fc)
= /<>'(a+i?^),

then

cp(a-\-h) _^ {a-\-eh) ,
J

. q>'{a-\-eh) _ qo'Ja)

i. e. the value of the quotient
-
j^ at a point where numerator and

denominator vanish simultaneously, is, on the hypothesis assigned,

equal to the quotient of the first derived functions of q) and ^ at this

point.

If tp' (a) aad ^' (a) likewise vanish, but if the theorem of the

mean value is applicable in its extended form, we have

g, (a + h)
=

I'
9" (a + 0/0, iPia + h) = ^^r {a + rih),

therefore

qp(a) r
•

qp (g + ^0 _ r -^ <P" (a-^Oh) cp" (a)

^ («)

^
^0 '^ (« + '*)

~
A=S V (a + rih) W (a)

This demonstration is not possible for the special case that a
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is not a finite value, when numerator and denominator siriaultaneously

vanish for ^ = cxd. This case shall be dealt with in § 62.

Now the same process holds good for a quotient of the form:

,
in which, as in case of the implicit function, y is a function<P ix, y)

'^ (^' 2/)
. .

of X. This quotient must likewise be derived as limiting value from

neighbouring points, when for x ^= a^ V = ^j numerator and denomi-

nator vanish. We have

cp (a,h) y
. tp {a -\- Ji, h -{- li)

and by the theorem of the mean value

g,la + h,b + k)
= h SjS±+^hA+^ + I djp(a + QKh.+ Qlc)

^

Accordingly

(p {a,o) a ^ CO h

*(^)
~

I* + II . Lim A
da ' db h

If now in our case, in which 9?
= —

k-^, ^ = -]--~, assuming

that the implicit function f{Xj y)
=^ can be continued, we determine

the value of~ = -— by the same rule, remembering that by the above

proof Lim — == -^
,
we obtain the equation

d^ , JV_ dy

dy^_ dx^ '^dxdy'dx d^(dy\^ ,
,. -^ ^ -J_ ?!Z =

dx d'^'f aV" dy^^ dy''\dx)
'^ dxdy' dx~^ dx" '

dxdy
"^

dy'^ dx

in which the values of the partial derived functions are taken at the

point under consideration. This equation coincides with that already

found for li and ^, and teaches that the quotient -r^, provided it is

real, remains even in the singular points a continuous function of Xy

for it can be derived as limiting value from neighbouring points. But

we may not take this second manner of calculating, as a proof that

such a thing exists, for here we are taking for granted not only the

existence of -^ but also its continuity.

It is easily seen how this calculation adapts itself also to higher

singularities, the value of
^

^^

'

^ being developed on the hypothesis,

that all first derived functions, then all second, etc. vanish. We
do not here enter on the special case, that a and 6 are both infinite.
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61. But in the second place, a quotient appears in an indeterminate

form, when as numerator and denominator simultaneously approach
a point, they increase beyond any limit; or in other words become

simultaneously infinite at a point. If the quotient be an algebraic
function

,
this can of course only occur when either or both of the

quantities x and y become infinite. Here the simplest case is disposed
of by the following theorem:

Suppose f(Xy y) == an algebraic function in which the highest
order of the terms, i.e. the highest sum of the exponents of x and y
is n, and let the terms of equal dimensions be grouped together, we
can thus bring it into the form

x'f, (^)+x'.-v;-.(5)+
• • • + ^'-Y.-*(f) +-^f\ (f) +/„ = 0,

where fn-k (J^j signifies a polynomial of the (w
—

ky^ order in the

quotient y : x. Substituting for y : x a. definite value g , the equation

^" /« {9) + ^"-^ fn-i (9)+-"-hxf\ (9) + /o
=

determines those values of a; to which a value y belongs such that

// : X = g. The question: For what values of'^ does x become infinite?

can be reduced, by putting
— for Xy to the simpler one: When is
z

fn {g) + ^A-.O?) + • • • + ^-'/; {g) + z'f„ = o

-atisfied by ^=0? The answer is: When /„(^)
= 0, only. This is in

general an equation of the n^^ degree in g. Suppose we had found g
ji definite solution of it. In our present notation we have :

;'^=«x-7„© + (n-I)^»-Y.-.(f)+ -+/-,<^)-a.-2^/,'(f)

:i=-'--v»'a)+-"-T-(i)+--/;'e).
Dividing numerator and denominator of the quotient

—
Y^ '^ ^J

.r"-^ and putting
— =^, a; = cx), all terms that retain x in their

• lenominators will go out, and as fn{g)
= there will only remain in

the numerator the term gtn{9), and in the denominator /J,' (^). Accord-

ingly, unless the special case fn'ig) =» occur, we have for a; = oo,

Therefore the differential quotient of an algebraic function has a

determinate value, even at points where x is infinite, if the ratio y : x
have any determinate value, even zero. If we went through the

demonstration for the ratio x : y in an analogous manner, we should

lind the theorem also holds for the points not already considered, at
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which y is infinite, but x finite, so that the ratio y:x is infinite;

here we have 3- = 0.
dy

62. We conclude these considerations with the problem: Let

q){x) and
%l){x?)

be any two functions, which both become infinite for

X = a\ it is required to find the limiting value of the quotient

%^\ for X = a.

Putting X = a -\ consider 9? and i/^ as functions in z^ then they

become infinite for ^ = 00, i. e. when z increases positively or negati-

vely beyond all limits. Therefore the problem is reduced to this

other, to calculate Lim
-y-!^

for <^ = 00 or — 00, when Lim (p {0)
= 00,

Lim
ilj(0)

= 00. It was shown in § 24d, that provided ^^^'^^l~
^^^^

has any determinate limiting value for ^ = -j- 00, we have then

Lim ^^ = ^(^ + ^ )
-

f(')

z h

for every value of h. If now the function f be continuous from a

point =
0^^ and infinite only when z = cx)^ if further its differential

quotient be everywhere determinate, which we know cannot be the

case unless from a certain point the function only increases or only

decreases, and if the progressive differential quotient be identical with

the regressive, then it follows that

Lim '^
= Lim

fJl+JpI^^'l
= Lim f'{^ + Sh).

When these formulas apply to g) and t^, we have

Lim^ = Lim (p'{0 + Bh), Lim^ = Lim ijj\0 + 07^,

and so by division:

Lim ^~- = Lim -^-/^ ,
", ,, for ^ = 00

,

i. e. Provided the derived functions (p and ip' have each a determinate value

for = (x> the same when taken progressively as regressively ,
then their

quotient also has; and the limiting value of the quotient of the functions

g) and iIj ,
ivhich become determinately infinite^ is equal to the quotient

of the derived functions."^)

Examples:

1) il{^±h£}\ _ 1

ar:=x
n

*) The hypotheses of the theorem can be further generalised, see

Rouquet: N. Annal. de mathem., 2. Ser., T. XVL
Stolz: Math. Annal., Vol. XV.
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For we have:

Determination of a quotient of the form 109

5 c'

a -f he'

= 1
0x

X + sin X, ^{x) = Xj we have for a; = oo,2) If we put (p{x)

Lim (?(^;l
= Lim If+A'"-*} = 1, but Lim KfJ =

(

' + "«
*!

is indeterminate. Although the function cp{x) increases continuously, and

becomes determiiiately infinite, it does not satisfy either the condition that

h

or that (p' {x) have a determinate value for x = oo.

If (p{x) and ^(ic) both vanish for a: = oo (see § GO), let us write:

/

^ ^\{^)) TT~\ *== ^1 W> botli functions g), and ^, become oo for

a: = OO
;
so by the rule last found

!g~~ 30 if 00 » 30 X—JO

Hence we have the equation:

But the problem of determining the value is not directly solved by
this -equation, since q)' and xp' must also vanish for a; = oo (§ 24e); it

may however lead to a simplification.

Example:

(^+:)

('+.:).

1 +

1 +

a.



Second Book.

Complex Numbers and functions of Complex Numbers.

First Chapter.
The complex number and the Operations of Arithmetic.

63. In a manner similar to that in which Subtraction, Division

and Evolution each required the conception of number to be extended

so as to include respectively, negative, fractional and irrational numbers,
the attempt to render all the seven operations of Arithmetic possible

on real numbers vrithout any exception, requires the adoption into

analysis of a new conception, the complex number.

Regarding roots of positive quantities we have the propositions:

1. The root of a number is equal to the product of the roots of

its factors.

2. If the exponent of the root be a product mn, the root can

be reduced by taking the m*^ root of the n*^ root of the quantify or

inversely.

These propositions being extended to the even roots of negative

quantities, it will appear that the problem of evolution is solved in

all cases, as soon as we adopt the square root of negative unity into

the numerical system and define the arithmetical operations with it;

for we have
2n, — 2n,

]/
— 1 is called the imaginary unit and, after Gauss, briefly de-

noted by + ^. In like manner as real positive and negative numbers arise

from + 1 by multiplication, division and involution, so positive and

negative imaginary numbers are obtained from +^:
+ (^ + ^)

= 4-2^, + (2i+i) = + 3i,
• • - ±{ai + i)=^±{a + l)i,

i~i = -i = 0.

The most general imaginary number is: -^ai, where a signifies an

arbitrary real number rational or irrational.*)

*) It being already known that all quadratic equations could not be solved by
means of real quantities, the introduction of imaginary numbers became una-

voidable, when it was found in the irreducible case of solving cubic equations
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04. The contrasted epithets "reaP' and ''imaginary'' favor the

erroneous impression, which indeed has impeded the systematic intro-

duction of imaginary numbers into analysis, that numbers of the first

kind possess a practical reality which those of the second have not.

Considering the arithmetical operations merely, without application
to physical quantities, fractions, irrational numbers, imaginaries, all

form legitimate extensions of the conception of number, that are

connected with the integer by determinate arithmetical operations.

In the applications of these operations on the other hand every-

thing depends on the kind of numbers introduced at the outset in

framing a problem analytically. If ex. gr. in the case of discrete

quantities, from the way in which the problem is proposed only

integers are admissible, the proposed problem is seen to be im-

possible when the result is a fraction. Likewise in the result ol

a calculation referring to physical quantities, a negative number will

have a meaning applicable to these quantities, only when from the

first the quantities were distinguished in the sense of positive and

negative. In analogy with this, even when the result of calculation

is imaginary, its meaning is no longer unreal, when the actual

quantities considered, are characterised not only by real, but also by

imaginary numbers. The simplest example of a representation of intuitive

quantities by imaginary numbers is the geometric interpretation, which

we shall deal with as we go on. "As mathematical science strives towards

doing away with exceptions to rules and towards contemplating dififerent

propositions from one point of view, it is often compelled to enlarge its

conceptions or to establish new ones, and this nearly always denotes

a progress in the science. A great example of this is the introduction

of imaginary quantities into analysis." (v. Staudt, Beitrage zur Geo-

metric der Lage. Heft I. Vorwort.)
65. It follows from the definition of the imaginary unit that:

P = i-i = {y— 1)2
= -

Accordingly we understand by:
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on the circle with radius r. All numbers with the same amplitude

belong to points on a right line proceeding from the origin.

We found for calculating cos qo and sin 9? the convergent series:

cos(p
=. 1 _ g + ^

-
^'
+ H Lim 2^ = 0,

sin 9 = g)
—

^^
-f- ^- ~%_-\ B' Lim jR'= 0.

If we take their sum, having multiplied the latter by i, we get:

(i-Jf + g-g + - + ^) + K^-g + |'-J+ + /i')-

Employing the properties of the powers of ^, this assumes the form:

The remainder of this series, a complex number, cojiverges to zero

for all values of qp ; accordingly the convergent series:

i+i'P+'^ + '^f +^ + ^f+- in inf.

expresses the complex quantity: cos cp -\- i sin q) as approximately as

can be desired. But this series is got from the exponential series

found in § 42, by writing icp for x-^ accordingly*) we denote it by
the symbol e'^, and obtain in this notation the theorem:

Every complex numher can he written in the form re^''f, tvhere e''P

stands for the infinite series just defined.

In consequence of this definition we have:

68. Complex numbers form a group complete in themselves; that

is, every operation of arithmetic when applied to complex numbers

presents without exception a result which can be expressed by
a complex number. Before this can be shown, we must define what is

now to be understood by the operations of arithmetic; the definitions

must be framed so as to embrace those already given for real,

numbers.

G9. Sum and difference (§ 65):

(a + ih) ± (a'+ ih')
= {a ± a) + i (h ± h'),

or r (cos (p -\- i sin (p) + r\cos q)' -{- i sin cp')

==
{r cos (p + ^'' cos cp') -{- i {r sin qp + r'sin

q)').

In this second form we prove most easily the theorem: The modulus of

*) Euler: Introductio, I. Cap. VIII. These equations establish the connexion

stated in § 14 to exist between exponential and trigonometrical functions:

cosqp -f ^sinqD= e"^, cosqp
-

i&incp= e~^^, cosqp=^ (e'^^-f-c"'^), sinqp= —
(e''^—e~"^;.
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the sum or of the difference of two complex numbers may have any
value not greater than the sum, and not less than the difference of

the moduli of the summands. For, putting

(r cos 9> + r' cos q)') + *
(**

sin (p + r' sin tp')
<^ K (cos ^ + i sin tl'),

if we identify the real parts and also the imaginary parts

Jl cos ^ = r cos 9 4:^*' cos 9', 2^ sin ^ = r sin 9> + r' sin (p\

we find for the required modulus II that:

7^'^ = r^ -j- r"^ 4- ^^rr' cos(g)
—

tp') ; but,
— 1 ^ cos (9)

—
9') ^ + 1.

70. Multiplication.
If m be a positive integer, (a + e6)

• m must be understood to moan

that a + i^ is to be put m times as sun)maud; from this follows

(a + i6)
• m = am + ihm'^

III agreement with this we define in general:

(a+ ib) {a + ih')
== a (a-\-ih)-\-ih'(a-\- ih)='aa+iha + iah'-^-i^bb'

= aa' — bh' -^ i {ba' -\- ab').

This keeps up the proposition of the interchangeability of factors.

In the second form we obtain:

r (cos (p -\- i sin (p) . r'(cos (p' -\- i sin (p')

= rr'{cos (p cos 9'
— sin qp sin 9' + i (sin <p cos (p' + cosip sin tp')]

= rr'(cos ("JP + qp') + ^ sin (qp + qp')} =rr'y^.y.

The modulus of the product is equal to the product of the moduli

of its factors; the amplitude of the product is equal to the sum ol

their amplitudes.

The product vanishes only when one of its factors vanishes.

We have in general:

^</)

'
'i'

ip

' ' '
t'

ip^
^^

V*'*'
• ' y

)y_j_y'_|-...f|)»'«

In the third form the equation is written:

re'P • r'e'P' • rVv" • • • r^'c'v" = (rr'
• • •

r'')c'(v+*^'+--v*');

showing that here also: Powers of the same base e with imaginary

exponents are multiplied by adding the exponents.

71. Division is defined as inverse of multiplication : The meaning
<»i a + ib : fl'+ ib' is that a number should be determined, which,

multiplied by a' '\- ib' shall give a product equal to a -\- ib. As
"

-L^fc
= 1

,
the calculation of the quotient can be reduced to the

multiplication of two complex numbers.

a-\-ib a-\- ib a — ih' {a -f- ih) {a^~ t6[) aa'-^hh' . . ha — ah'
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Two numbers of the form a + ih' and a — ih' are said to be

conjugate; their product, equal to the square of their common modulus,
is called the Norm. (Gauss.)

. . r (cos (p 4- I sin op) T , •
• • \ / ' • • f^

Affain : , ,^ , .

—
>,
= -^ • (cos op + * sin w) (cos op — ^ sm op )^ r (cos cp -\-i»mcp) r ^ ^ ' ^^ \ ^ ^ i

=
7 {

COS (9)
—

q)') + i sin (9
-

9)') } ,

i. e., r(p
: r'^-

==
(^^j , ,

or in the third form, r&^ : r' e'P'= ~, • e'^'P~'P'K

The modulus of the quotient is equal to the quotient of the two

moduli, its amplitude is equal to the difference of the amplitudes.

If the modulus of the divisor vanish, the quotient is infinitely great.

72. The Power with a real exponent.

a) The power with a positive integer exponent n is defined as

^i-fold multiplication of the base.

{a + ilif
= a" + na^'-^iih) + n^a'^-^(iyf + • • • + {ihy,

or:

{
r (cos 9 + * sin qp) }

" = r" (cos 7i(p -\- i sin n
qp). *)

In the third form we obtain: {r&^Y= r^e^^^P ,

b) When thie exponent is a positive rational fraction —
,
m and n

being relatively prime, the power is understood to be the w*^ root

of the m*^ power of the base, or the m^^^ power of the n*^ root of

the base. We shall see by calculation that both values coincide.

To determine the >^*'' root of a number means to find that number

which raised to the w'^ power is equal to the given number. It

ya -\- ih = u -\- iv, then {u + ivy must = a -f" ^^•

But the values of u and v are assigned far more easily in the

trigonometrical form.

When
{
r (cos gp + i sin g)) }

» =
(> (cos t -{- i sin

ip)j

r (cos qp + i sin (p) must = (>«
•

(cos ?^^ + ^ sin n ip).

Thence : r cos (p
=

q"^ cos w ^ ,
r sin qp

=
^" sin n ip ,

and so:

r- = Q^^j i. e.
()
==

-f- yr-^ and cos 9?
= cos nip ^

sin cp
= sin n-tp.

The last two equations are only satisfied, if w 1^
=

qp or differ from q)

o 7.

by integer multiples of 2%: nip = 9 -j- 2h7r.j so i/;
= ^

-j-
^— .

Now as h goes through all positive or negative integers, we obtain

infinitely many values for ip. But all of them that differ only by

*) De Moivre (1667—1756): Miscellanea analytica (1730).
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multiples of 2:r belong to the same number q^. Tlieie are therefore

only n such numbers; they belong to the values /: =
(), 1, 2.. .w — 1.

For, in the first place, among the ditferent forms for
tf;,

all that have

a negative sign for A' can evidently be brought to bo forms with a

positive sign by addition of integer multiples ui J.t; then again,

for /.• = {n
-

I) + //, we have
^^^ =2x + ^Kzi})^ .

Every complex number has therefore n distinct n^^ roots; these

are included in the form:

yr (cos q) + i sin cp)
=^ r"

(^cos
*^ - + i sin t.J:_-^

J ^
i. e.

y% = {yr)^^^_^, or, y're^v^ J/7 -e •
; (A;
=

0, 1, 2 •• • n - 1).

n

Every positive or negative real number also has n distinct roots;

of these however in case of a positive number for which cp
=

0,

when n is odd, only one is real: /j = 0; when n is even, two are real:

A- = 0, A; = ^n; in case of a negative number for which qp
=

;r,

when n is odd, one is real : k =
.] («

— 1
) ;

when n is even
, they are

all imaginary or complex.
«

.
1 « -A-^r

,

. . 2k7t n. (-iA'+nw ,
. . (2A-+l)7r

/
4- 1 = cos kism , y-^ 1 = cos ^^—±-l— 4- % siu ^^—^ '

,

'7 7~^ (4A:4-l)7c ,

. . (4A;-|-l);r »/ . (4A-f3)7r ,

. . (4A-+3)«

(A;=:0, 1, 2...W- 1).

Accordingly by the first definition for an arbitrary fractional

exponent we have:
m

(r (cos 9 + i sin qp))"
= ^r"» (cos tw^) + * sin W9?)

= r**
(^cos

^^
1- % sin

^~
j,

(/i:
= 0, 1, 2". ..w - 1).

By the second:

(r (cos 9 + i sin 9))«
=

{r «(co8 ?^*J! + ^ sin ?L-t^)}"*

= r»
(cos "*^+^^^'^^*^ + isin V}1±M^) ,

(/j'
= 0, 1, 2. . .w — 1).

But the last expressions on the right are identical in both equations;

lor, since w and n are relatively prime, each number 0, m,

2m, . . . (w
—

1) tw, divided by n, leaves a different remainder; hence

**-

expresses, it may be in altered order, values differing from

those in the upper line only by multiples of 2%, The value belonging
to A = is styled the simplest value among the roots.
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c) The power with an irrational exponent is understood to be the

limiting value of tlie series of numbers obtained by forming the

powers whose exponents are the rational numbers of the series that

defines the irrational number. If — ,
—

, —„•• • be the series of

defining numbers, (r (cos 9 + z sin 9))" represents all those numbers
m 111' lit"

whose modulus is the limiting value of the series r "
, r"'

,
r"' ,

and whose amplitudes are the limiting values of the series:

n ' n ' h"

(/i;
= 1

,
2

J
. . . n, n + 1; . . . n' . .

.).

To each integer value of Jc belongs a different limiting value of the

amplitude, so that therefore for an irrational exponent there are

infinitely many numbers of the form:

(r (cos cp -j- i sin
go))'"

= r^'
[
cos ^{<p -\- 2]i7t) -\- i sin

ft (9 + 2 A;;r) ) ,

i. e., (n^)^^
=

r^\uicp+2kn), or, [re'^py
= r-" • e'V'^'/'+^/.vr)

all with the same modulus r-".

(1)
A power with a negative exponent must as before signify

the reciprocal value of the power with a positive exponent.' We have

(r (cos cp-\-i sin (p))-
/'=

-^^
=

^

(r(cosfp-|-^sing)))'" r*"
{
co^ u.{cp-{-2Tin)-\-i^m n{cp-\-2kTi) }

= r"'" •

{cos f*(g) -|- 21v7t) — ^ sin ^{cp -\- 2A;7r))

for every ft; a result that can also be identified with the form of

De Moivre's theorem, since we can write this equation as follows:

{r (cos (p+ isin 9))"'"
= r^ -" •

{
cos

(
—

^{cp+ 2hii)) + isin (
—

fi (qo+ 2h7t)) }
.

73. The power withacomplexexponent. (Exponential.)
The symbol c'^, denoting a power with a real base and a purely

imaginary exponent, was defined in § 67 as the sum of the infinite

series

1 _J_ ^'^ _J_ *^*^)' _L (*'5P)''
I

(^>''
I

i + -

r + 12^ + "IT"
+ ~F" "^

whose real and imaginary constituents considered apart, form conver-

gent infinite series with the values cos cp and i sin q). In connexion

with this we define the power with the base e and complex exponent
X -\- iy as the value of the product of the exponential expression e^

by the exponential expression e'^; i. e. in a formula

QX^iy ^^ qX . (,-^iy ^^ qX (^cqs y -\- i siu y)

-(1 + T+f+f + ---)(i + \^+¥+---)-
We shall see in next Chapter how this product of two infinite

series may be combined in a single infinite series. From the definition

follows the fundamental property of the exponential (§ 70):
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tliat is, jiowtMs Wit!! a icil base r ami euiiiplex exponents are multiplied

by tuMiiiLi" til" ' <.

\
,
we have 6'<'+'y^ • c'±'-*"'*= t:'

' =« c»+'yj
IIk' .. . ..laiiis unaltered when its expniie;. . ... creased or

'I'M. .i-(l 1)\- an inlcuTT niulli|)le oi 2in\ it ha- iIp' i.rriM.l I'/.r.

It' y number, we have

in okI' r that we niay he able to reduce the most <x^neral <\ji(ni(ii-

tial exjn-f.-sion aU\.i\- t») the Ijase C, we proceed t(» (hnnc:

< 1. T h e Ln .^a r i t h ni.

By the logarithm ct' a complex iiuml)er a \- ih in regard to the

hase c we umlerstand that number x -{- iij ,
which has the property

that r' : ''' =-^ a -\- ih] we denote it by x -\- if/
=

l{(i -\- ih).

In order tu calculate the numbers x ami
// let us determine

a -\- ih = r(cos (p -\- i sin 9).

W then n be the Inoarithm of the positive number r =]/a"^ + i>* to the

base ,

,
\\.' laivc: it

-\- ih = c''(cos qp + i sin (p)
== c^icosy -\- /sin y/).

Equating s^'paratelv the real paris and the iniauanary parts, we iimi

^' = Qy !l
=

H' It -/.T, thereiore l{<i -\- ih)
=

l[r) + H9^ it 2A;?rj, or,

employing the delinition oi'
(p (§ 67),*)

li^a + ih)
= ?(+ ^a^+ft'O + i tan-i | + i^hit when a > 0,

I {a + /«;)
== /(+ Ya'+ l/^ + i tan-i A + i(2/^ + 1) jr when a < 0.

Kveiv number has tberefnre infinitely many logarithms in regard In

the bii.se c\ they (HlVcr by integer multiples of 2 J ;r. To A" = <>
lielojigs

the simp If- 1 value of the iMO'iirithni. A real positive numher <i has

one real logarithm, while tin' real negative number a has complex

hjgarithms only, that dilh-r jrom tliose of the positive number by iic.

li-\- 1) = 4-2 2Ajr. l{— l)
= ±^CiA+ \)n.

'i'he .Miuation : c-^+'y • e^'+«y' = c<^+*')+«(y+y') = («-]- ih) {a + ih'),

>how- that: l{a +ih) + l{a' + ih')
= l\{a + ih){a' + ih')], an

ecjuation however that does not always hokl between the simplest
values of the logiirithnis.

75. ro\\er> \\ i t li complex base and complex exponent.

(General exponential expressions.)

) The connexion bctweon the loirarithni and eircnhir 1
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By the expression {a + ihy'-^'^' we understand

Putting U<^ + ^^)
= ^ + *" (^ db ^^^)»

we find: {a + ihy+'^'
==

{e^+«(2/±2^-7^) }(«'+e*')^

and further: f(>x+ i(y±2kn)Ua''^ib'),^ f,xa'-(y±2kn)b-+i(xb'-^{y±2kn)a)

= ^«'-iy±'^^^)b' [cos{xb'+ {y±2]c7i)a') + ism {xh'+ (ij ±2kn)a)} .

Both the modulus of this number and its amplitude have in general

infinitely many values, corresponding to all integer values of Z;; to

^ = belong^ the simplest value. For h' = this equation iu-

cludes the former definition of a power with a real exponent. If a

and b both vauish, this definition fails; because for the logarithm the

value X is infinite and the value y is completely indeterminate. By
this most general definition also only the simplest vakie of (e)^+'^

is equal to c^+'y = e-'^
•

(cos y + isimj)^ its general value being:

However it is usual to denote only the simplest value by the symbol
6^+'2/. Inverting this definition we obtain further the definition of

the logarithm for' any base:

The logarithm of a number a -{- ih in regard to the base a' -{- ih'

is that number u -{- ivj which has the property that:

(a + iiy-^'"'
= a -\- ih.

Putting a + ih = e^+i('?±2*7r)^ and a + ih' = e«+'(^±2A'7r). ^^ ^nd

V are to be calculated from the equations:

su — (^ + 2¥7t)v = 1, sv -{- (t J2 2h''Jt)u
= ^ + 21%^

which determine them uniquely for each value of Iz and h'
\
to it = 0,

]i' =z belong the simplest value of the logarithm:

This closes the circle of arithmetical operations; their results can

always be assigned in complex numbers; it is specially to be observed

that the power with a negative base and any exponent, as also the

logarithm with a negative base or with a negative number are now

adopted as numerical conceptions into analysis.



Second Chapter.

Complex series. Complex variable. Functions of a complex variable.

76. By the sum of an infinite series, whose terms, are complex:

I!{u + iv) = {u^, + ivo) + (w, + /Vj) + • • •

{tin + ivn) ' . .

is to be understood the complex number U -\- iV whose real part U
is equal to the sum of the infinite series Mq + Mj + * * * Wn • •

•, and

its imaginary part iV to the sum of the series i
(t'^ + v^ + • • • v„ • •

•)•

The complex series has therefore a determinate value and is said to

be convergent, only when both U and V have determinate finite

limiting values, that is to say, when both the series w^+ ^i H «*„•••

and
t'y -\- v^ -{-'• Vn ' - '

converge.

Addition of two infinite series.

It" ^) Po+Py+Pi+'-+Pn-- and 2) g„ + g^ + g^.
• . + ry„+ • • •

be two convergent infinite series having complex terms

0» = W« + iVn , qn = Un + IVn),

and their sums respectively F and §, the series

•>) (Po + Qo) + iPx + Q\) + (P2 + 2J H {Pn -\-qn)-
"

is convergent and its sum is P + §. For, putting:

^» = i>0 + 1>I + • •

Vny <?n
==

Qo + ^l + • • •

3'«,

as n increases, 1\ and Qn approximate to the limits P and §, hence

(i>0 + ^o) + {P^ + 2.) + • • •

{Pn + qn) ^Fn + Qn

the sum of the n + 1 first terms of series 3) has, as n increases,

the limiting value P + (J.

77. The complex series is said to be absolutely convergent, when

the sum of the positive terms of u^+ ^*i + ^2
" " ' ^^^ ^^ ^0 + ^1 + ^2

* *

';

and likewise the sum of the negative terms of each, have finite

limiting values, or as this property is described : when the series w and

the series v are absolutely convergent.*) When each series consists

only of terms with one and the same sign, the only conception we

•) The conception of absolute convergence was introduced by Cauchy;
Dirichlet (1805—1869) noticed the contrast with infinite series in which the limit

of the sum depends on the order of the terms: Abhandlungen der Berliner Aka-

demie, 1837.
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require of convergence is that of absolute or unconditional con-

vergence; but when their terms have different signs, ex. gr. are alter-

jiately positive and negative, a special property is enunciated. (Cf,

§ 44, III.)

//' a complex scries converges ahsolutely, the series of its moduli

also converges.

If we denote the terms u -\- iv separated according to the signs
of li and V so that

1) Eiu + iv)
==

2;(w<i) + iv^'^) + 2;(^fc(2)
_

^-^(2)) _[_ 2:(— tf(3) 4- ^^;(3))

-f ZY— w(^) — iv^'^\

then on the hypothesis of absolute convergence, each of the series :

2) Su^'\ Eii^^\ 2;^#), 2:w(i), 2:i;('), Zv^^\ i:v^')
,
Ev^^)

converges, and therefore by the theorem of addition the series:

3) 2;(t((i) + t;(i)), 2:(w(^) + t;(2)), Z{u^'^ + v^^^), E{u^^'> + v^^)).

also converjxe. But now:

Consequently:

must have finite values, and therefore the sum of these four series

y.]/u- + v~ is likewise a finite quantity.

The converse proposition is also true; for since the modulus of a

sum is not greater than the sum of the moduli of its summands,
when the sums 5) have finite limiting values, the moduli of the sums

2:{i^{i) _|_ i^{i)y 2;(w(2)
—

iv^^)), 2;(— u^^) + iv^^^), E{— 11^'^
—

iv^^^)

must also be finite: this requires that the sums 2) should converge.

The necessary and sufficient condition for the absolute convergence

of a complex series is therefore the convergence of the series of moduli

belonging to it.'^)

An absolutely convergent series tends to the same finite limiting

value, and is therefore said to have the same sum, even when the

arrangement of its terms is changed according to any law.

Let Un + i Vn be the sum of the terms

(Uq + ivo) + {u^ + iv^) + • • • K + ivn),

and Lim {Un + iVn)= U + iV; further let:

*) Cauch)^: Cours d'Analyse algebrique.
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« + «'0 + («i' + «*«^i') + • • •

(tip + ivp) = Up + iF/
denote the sum of the first p -\- \ terms of an infinite series that is

formed from the other only by a different arrangement of the terms,
then however large we suppose w, we can always choose p so that all

the terms which are contained in Un + iVn shall occur in Up + iVp.
This latter expression will also contain other terms but their indices

are greater than n. Consequently:

{U; + iVp') -{Un + iVn) = K + ^'^v) + ("/• + «iV)
• • • + {ih + iv.)

{q, r,
' "Z > n).

If now we make n and therefore also 2^ increase arbitrarily,

Lim
(n,^ -\- u,. -\-

- • -

u^) and Lim
(v,, -{- Vr -{-'-' v.)

will become smaller than an arbitrarily small quantity; because since

the series of moduli converges exclusively by choice of n:

Lim (/w,2 + vq'2 + yu;' + v/ H /m,» + t;,2), (q, r,
• - - z > n)

becomes arbitrarily small; therefore we have:

Lim {Up + iVp) = Lim {Un + iV^) = U+ iV.

The fundamental proposition of addition is thus proved to apply
to a sum of infinitely many summands that converges absolutely.

On the other hand, an infinite series that converges only con-

ditionally,, changes its value when the arrangement of the terms is

altered; it presents a different sum when the summands are reckoned

up in a different order.

Let us take as an example the series with real terms cited § 47:

»M= n

with a different rule of arrangement of its terms let us form the series:

>S" = 1 + i
-

.V + 1 + 1 -
I

. . . = Lim Vfr-^ + .
-

. —. V' •» -1,17 I

^

Xi Wm — '^
' 4wi — I 'J my'

then, since we can also consider S under the form:

^
n=™ ^ (iw— 3

~~
4»r^ ' 4m— 1

~~
Tin)

'

we shall have:

T/4=n >/<= «

S'—S = Lim yr I
,

— y^ == X Lim Vfo -^ -
o )

=
l-^'^

m= 1 7«= 1

hence we find: S' = \ S.

It is obvious that the terms of such a semiconvergent series can

be arranged so that their sum shall amount to any required value C
Kor, JL"a denoting the combination of all the positive terms^ Eh that
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of all the negative, both these series increasing beyond any finite amount;
let us form a series by first taking so many a terms that their sum is

greater than C, then joining on so many h terms that the sum be-

comes less than C, and so on. As this alternating arrangement is con-

tinued, the deviation from C will never amount to more than the

value of the term preceding the last change of sign; therefore since

the quantities a and h converge to zero, the value of the sum of the

series has the limit C*)
78. Multiplication of two infinite series.

If the moduli of the terms of the two complex series (§ 76):

1) Po + i^i + i^2 H Pn- ' • and 2) g, + ^, + g, H g„
• •

(J9n=l^n + iVnj <ln
= ^n + IVn)

likewise form convergent series :

3) Q(i + Qi + 92+ - '

9n + • • '

^) 9^ + Qx + Q2 + - • '

Qn + ' ' '

{9:i
=

V'^n'^ + <^ ) 9n
= V^C^ + Vn'^)

then the series

^) Pii Qi) + (Po^i + Pi Qo) + (Pq ^2 +PiQi+ Pi g'o) H
• • •

{PiAn +Piq.n-l-\ Pkq.n-l-\ i>« ^o) H

is convergent and its sum is F . Q.

To prove this theorem*'-') we require the Lemma:
If U and jR' be the sums of the two series 3) and 4) that consist

only of positive terms, the series

6) (>o 9^ + {9q 9\ + 9i 9d) + (^0 ^2' + ^1 Pi' + ?2 9o) H
• • •

{9o9n + 9\9n-l + • • • 9k9n-k + • • •

9n9o) + ' ' '

is convergent and its sum ^== B . JR',

. For, denoting the sum of the first n -^ 1 terms of series 3), 4)

and 6) respectively by jR„, Bn\ Sn, it is plain, that Sn < BnRn] and if

we call m the greatest integer in ^?^, that /S„ > BmBm- For, the

product (^0 + Pi + * * •

9n) {9o + p/ + * * •

9n) contains more terms

than occur in Snj while all the terms of the product

(Po + Pi H 9m) {9o + 9i -\ Qm)

occur in Sn, and in addition to them other positive quantities. It

follows from the inequality, which holds for every n however great,

BnBn > /S'„ > BmBm ,

that Lim /S^ =^ Lim BnBn =^^^oa. BmB^a, since as n is arbitrarily

increased Lim jR„ = Lim Bm-, Lim Bn = Lim B^. Forming now the

difference :

'•')
Dirichlet: loc. cit.\ Riemaon: Ueber die Darstellbarkeit einer Function

durch eine trigonometrische Reihe. Werke, p. 221.

**) Cauchy: Oours d'Analyse algebrique.
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JO i, e t

'

'-

Bn . lin— Sn= ((), Qn + (>•. ?'„ - 1 H (>r, (>i')+ (pj Qn + 9^ 9 u I -\ ['.V.^

inasmuch as by tlie theorem just proved Lirn {Il,Jt„'
—

Sn) = 0, we
n=z.X)

liii(], that the sum on the rig'lit also has zero as its limit.

'lliis result enables us to prove the theorem regardin- tic product
in the Ibllowini^r niaiiiier.

If >SV be the .sum uf the first n + 1 terms of series 5), we have:

PnQn — Sn = {p^q,, + P.q.-l + ' '

Pn(h)

+ ilhO. + P,qn-l -\ PnQ.) H Pnqn\

and it has to be shown, that the sum of the products on the right
has zero as its limit when 7i increases. This will be tlie (asc (niK

when the modulus of this complex exjut's^iou convtjgcs to /cru. Now
as the modulus of a sum of complex imiiil)ers is not greater than

the sum of the moduli of the summands, what we have stated is

proved, since

(9lQn+ QiQ'n-l-] QnQi')+ (Q-29u+939n-l-] ?n (^j') H 9n9n

converges to zero.

We apply this theorem to the exponential function as defined § 73:

'ill.'
1

KMiucL of the two inliuite series is expressed by one inhnite

seric

*

\ Li l"-J 1
"^

I" :-

[£
'

' '

\
"~'^

\±
"I

li y
~i

'

'

that can be contracted in the form:

'
1

•

12
'

\±
-f-

• • •

j^

-
-|_

. . .

This is the exponential series with a complex argument, it expresses the

simplest vuluc of the exponential function 6^+*!^.

70. J 'laaniilij is called a <o)nplcx variable when it is able to

'fit complex numerical values.

\\ iiii.-l any set of real numbers can always be figured by the points
of a finite right line, a limited ranjj^e of complex numbers is in

•i)t ral presented to intuition by a ''(loiiiaiu'' of two dimensions of

tlie plane bounded by some curve. In each individual case it must be

specially assigned whether the points of the boundary curve them-

selves belong to the domain or not. Such a domain can in parti( uhir

cases n'(Iu( »' to a linear figure, a domain of one dimension: to the

|)oiMts ot a portion of a curve or of a finite right line.
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Thus, for example, all complex numbers whose moduli are less

than r, and greater than
r.^

form a domain exhibited geometrically

by the plane ring bounded by the two concentric circles with radii r,

and r^ round the origin. But complex numbers whose modulus is

equal to r^ form a linear figure, namely the circumference of the

circle whose radius is r,.

A domain of two dimensions is said to be connected, when we
can pass from any one point within it to any other without crossing
its boundary.

A domain of one dimension is said to be connected, when we
can pass from any point in the domain to any other point in it without

leaving the domain.

A quantity is said to be unrestrictedly variable within a domain,
when it is able to assume all numerical values belonging to this

domain.

iM- complex quantity is said to he continuously variable, when all

values wfMi it assumes, belong always to a finite connected domain,

t-^ In pauicular a variable is called unrestrictedly continuous at a

certain point, when it can assume all values which belong to a

finite domain however small including that point. On the other hand,

the variable is restrictedly continuous at this point, when the values

it assumes near the point form a domain Avhose boundary passes

through the point, or form a domain of only one dimension. It is

discontinuous at this point when the point is isolated by itself, and

so belongs to no domain.

A further circumstance has to be noticed here: If a real variable

is said to alter continuously within an interval from a value a to

a value 6, this informs us what numerical values it assumes, or in

geometric language ,
we know the path along which it travels. If a

complex quantity change continuously from a complex value a to a

complex value b, this tells nothing at all of its intervening values.

The ways in which it changes are just as illimitable as the continuous

lines which can be drawn joining one point of the plane to another.

Continuous change of a complex quantity = x -{- iy requires

that both the real constituent x and the factor y of the imaginary,

Vary continuously. A complex variable becomes infinitely small, when

its modulus becomes infinitely small, i.e. when both x and y have

zero as limit A complex quantity becomes infinitely great, when

its modulus becomes infinitely great, i. e. when either x or y or both

together increase numerically beyond any finite amount.

To the infinitely great values of complex numbers correspond in

the plane of the figure the infinitely distant points, and as a complex
number x -\- iy can become infinite, while the ratio x : y assumes all
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possible values, there is in the plaue on each direction through the

origin an infinitely distant point. In so far the limiting conception

of projective plane geometry, in accordance with which there is an

infinitely remote point belonging to each direction, coincides with the

system of complex numbers in regard to the infinite values.

On the other hand in analytical investigations the occurrence of

an infinite quantity always requires special considerations; these are

mostly independent of the ratio x : y and can be reduced by a simple
substitution to what takes place with a finite value of the variable.

For, should the variable z increase beyond all bounds, the equation

z = , correlates to such values only a single value of z\ namely

the value 0, leaving it still possible for the ratio of the vanishing
real numbers x' and

ij'
m z' = x' -\- i y' io assume any value whatever.

The infinite values of s are therefore in this manner concentrated into

one point.

There are two ways of expressing geometrically this connexion.

In the first we say directly, the plane is closed at infinity by
a point. This statement does not coincide with any actual represen-

tation any more than does the statement, that the plane is bounded

by a right line at infinity, for there can be no such thing as a

representation of infinity; it is only a way of stating how certain

limiting processes are completed. But by passing from the plane

to the sphere, we can procure ourselves an intuitive image of this

cojiception. Let us suppose a sphere of any radius placed on the

plane at the origin and its highest point joined with the points of

the plane, each joining line meets the sphere in a second point. Let

us consider this point as the image of the complex number x + iy

which was originally represented by the point of the plane with the

coordinates x and y. Here, then, all the points corresponding to

arbitrarily remote points of the plane, converge on the sphere to a

ingle point namely its highest point. In this way we can utilise

ii finite sphere in representing the system of numbers; we shall

however in what follows abide by the plane.

For there is still a second possibility of giving an intuitive form

to the way in which we contemplate the infinite by a point.

Let us lay out in the plane of e all numbers whose modulus

does not exceed a certain arbitrary limit 1{\ but let us lay out in

another plane z'^ whose points are coordinated to those of the first

by the equation z =
,

all numbers whose modulus is greater than R,

Let us put z = r (cos 9? + * sin qp) and z' == ()(cos^ + i sin ^), then

Q (cos t + i sin V) = -
(cos (p

— i sin tp) ,
therefore q= , ^ = —

9.
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To all points of the plane ?!,
which are outside the circle r = li,

correspond points in the plane z' within the circle q = ^ . Circles

round the origin ^ =^ change into circles round the origin 0' = 0,

but these are described in the opposite direction; to the infinite in

the plane corresponds only one point namely z' == 0. It is this

Circular Relation between two planes, *) called Transformation by reci-

procal radii vectores or by Inversion, which we shall subsequently

employ in reference to infinite values of z.

80. When the values of a complex variable w = u -\- iv are so

determined by the values of a complex variable z = x -\- iy = r<pf
that

to each value of z within a determinate domain one or more values

of w can be assigned by means of any finite or infinite number of

arithmetical operations (§38) on Zj w is said to be a function of

the complex variable z.

Here also functions are distinguished into one-valued and many-
valued, according to the number of values of w belonging to one

value of Z', into algebraic and transcendental, according to the

form in which the variables occur; and into explicit and implicit

according as the equation defining the function is solved for w or not.

The total course of a one-valued (monotropic) function is realised

by help of two planes. To each value x -\- iy = r^t
of the quantity z

corresponds a point of plane A having the rectangular coordinates x

and I/, to each corresponding value u -\- iv of w, a point of plane B

having as rectangular coordinates u and v. If to each value of z

belong a determinate value of w changing continuously with z,

then to each point of plane A will correspond a point of plane B, to

each line a line, to each connected area a connected area. If on the

other hand, w changes discontinuously at some points, while z changes

continuously, disconnected portions of plane B will correspond to a

connected area of plane A. In a word, the dependence of the quantity iv

on z is geometrically represented as a Transformation of plane B upon

plane A.**) Such a transformation, for instance, was already investigated

in last Section by means of the equation : w == — •

81. Commencing with the case of an explicit function

w = u -\- iv = f(z)
= f(x + ^?/)

= f{r (cos (p + i sin (p) ]

— the quantities u and v are functions of the real variables x and 1/,

*) Mobius (1790—1868): Abhandl. der sachs. Gesellsch. d. Wissensch., 1855.

This paper on Circular Relationship (Kreisverwandtschaft) follows earlier notices

of the same subject in his Gesammelte Werke, vol. 11, p. 243.

**) Riemann: Grundlagen fiir eine allgemeine Theorie der Functionen.

Werke, p. 5.
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or of r anck 9 — let us ask what is the analytical characteristic

that such a function is unrestrictedly continuous in a domain for which

it has determinate values. The foregoing discussions indicate that

it must be possible to find surrounding any point z at which w
is to be continuous, a connected domain of two dimensions of finite

extent however small (the Neighbourhood of the point je),
to which cor-

responds a connected domain Qiw\ i. e. the quantities u and v must vary

continuously when the quantities x and y, or r and 9 vary continuously;
in other words: u and v must be continuous functions of both the

real variables x and «/, or r and g? (§ 52). When the quantities u and

V are expressed as functions of r and <p it must however further be

remarked, that should the function w be one-valued, an increase of ^>

by multiples of 2;r must not alter the values of these functions.

Denoting the increment oi z by L.Z =^ t^x -\- it^y and putting:

i<; + Aw; = (w + Aw) + i(y + Av) ^^ f{z + Lz\
then in whatever way Arc and A?/ converge to zero, we must have

Lim Aw = and Lim At; = 0.

These two conditions are combined in the single statement:

The function w = f{z) is continuous at a point Zj when this point

can be included within a domain such that the modulus of the difference:

mod [Aw] = mod [f{z -{- Az)— f{z)]
= "/Aw^ + Av^

for every point z -{- Az in this domain, shall he less than any arbitrarily

small prescribed number d.

82. Turning now to the formation of definite examples of func-

tions of a complex variable, before all things we restrict ourselves to

such as admit of the calculation of one or more values oi w by
a given formula for each value of the argument z. The most general

instrument our previous investigations have provided for this purpose
is the series of powers, which embraces the explicit rational or

irrational functions.

Of such series we have already become acquainted in the domain

of real quantities with the exponential series, and its inverse, the

logarithm ;
to these we can reduce trigonometric and circular functions

(§ 67 and § 74).

Accordingly we propose to ourselves the task of studying in the

complex domain: first the explicit rational and irrational functions,

next the exponential function and its inverse the logarithm, and then

in general the properties of functions expressed by series of powers.

These problems form the basis of the general Theory of Functions; to

ihem the following investigations always return, inasmuch as in their

progress the methods for the complete solution are gradually attained.

Uarnack, Calculus. 9
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By these methods we shall be ultimately enabled to carry out the

development of implicit algebraic functions.

1. The power with a positive integer exponent: w = z'^

is a one-valued function and continuous for the entire plane, because

^ == r'^* cos m 9? ,
i; = r"'sinm9) are continuous functions of r and qo

that do not alter as the amplitude (p is increased by multiples of 2%,

Such a function having everywhere in the neighbourhood of any
definite point z a finite value that changes continuously with z.) we

describe as behaving regularly in the neighbourhood of that point,

or as having that point as a regular point.

To investigate how this function behaves for infinite values of z^

let us put ^ = —
,
then ^ = ^, and to the infinite corresponds the point

z' = 0. At this point w becomes infinite, that is, its modulus increases

determinately beyond all limits in whatever way the point is approached.
The point infinity is therefore a singular point for this function. But

inasmuch as the function w == -— is such that its product by z'^' = (—)
z

at the point / = has the finite value 1, this singular point is called

non-essential; the general definition being :"^)

If a function f {z) become infinite at a finite point z == a or at

infinity z ^=
oo, this singular point is called non-essential, provided an

integer m can he assigned, such that the product:

is equal to a finite quantity G, in whatever manner z is made converge

to a, or to oo, as the case may be; or more strictly: a domain must be

assignable about the point, within which the above product shdl differ

from G by less than an arbitrarily small number d. Moreover, when

the value of f(z) = for z = a, or = Gz"^ for ^ = oo
,
we

say that for such a value of z the function becomes infinite in

the order m, or, that in the point its infinitude is equal to m.

It follows hence : Every rational integer function of the fi'^' degree

in z is one-valued and continuous for the entire plane and has no singu-

larity except one, which is non-essential, in the point infinity. For,

the function f(z)
=

aQ -\- a^z -\- a2Z~ -{-
- - - anZ"" ^

in which a« ^ 0, is

for every finite z a sum of functions that are all continuous, and

only for z = co becomes infinite, as f{j^
=

^q -|-
-' + -^4"

' * '

"^

does for /=0; but for /=0, ^'YQ = \ f{^)
=

^o^'"+ «i^'"~' H ««

is equal to a„. Thus in ^ = oo the infinitude of f{z) is equal to n.

*) Weierstrass: Zur Theorie der eindeutigen analytischen Fiinctionen. Ab-

handl. d. Akad. d. Wissensch.
,
Berlin 1876. Reprinted in his: Abhandlungen aus

der Functionenlehre. 1886.
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2. The rational fractional function: is one-valued

and continuous in the entire plane, except at the non-essential singular

point z = a. The point infinity is not singular, since by the above

substitution we have for it: =
| }

The most general rational fractional function is of the form:

It will be shown in next Chapter, that every rational integer function

of the degree n may be broken up into w linear factors. If this result,

be assumed here, and this fraction therefore written in the form:

where some of the quantities a as well as some of the p may be equal,

but each a will be supposed different from each
/3

because otherwise

factors could be cancelled, then obviously: the rational fractional function

is one-valued and continuous in the entire finite plane except at the

non-essential singular points /3j, ^2 • • • Pm* The point infinity likewise

is a non-essential singular point when w > m, but is a regular point
when n < w. For, the function behaves for ;? = cx) as :

«« (?~''v(7-"«)"(/~"») a„ ,,^ (I
-

a,0) (1 -«,/)•• (l-a„0
r--Z

—n

''m

/"i-p,) (J,-«A..vi_«
^ K c-fto (i-fto •••

(»-?»«')

behaves for z = 0.

3. The simplest explicit irrational algebraic function:

(V = {z'
—

a)"*, m a rational fractional number — ,
reduces lo

the form z"' by the substitution z — a = z. All propositions which

we shall prove for the function ^'", can be easily transferred to the

more general form (/
—

a)"* since we have only to observe that

whatever holds for the point z = relates to the point / = a,

h z = r (cos (p -{- i sin 9?), then for A; = 0, 1, ... ^
—

1
,

w = z'" = r3
(cos

-
(g> + 2^•;r) + ism^{(p -{- 2knj\

This exposition shows that the function can be calculated. For,

both cosine and sine are series of powers. Each integer value of A;

determines at each point the corresponding value of a branch of the

function; it is therefore a many-valued function, no longer single-

valued as those in the previous examples. At the point <? = and

ai z = 00 all branches have the same values, namely:
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when — > 0, at ^ = the value 0, at ;? = oo the value cc;

when — < 0, at ;^ = the value oo, at ^ = cx) the value 0.

These two points are called branching points or ramifications

of the function; it has moreover, in the first case the point =
oo^

and in the second the point ^ = 0, as an infinity point.

The next inquiry is, how can we group together the values

belonging to a single branch of the function, so as to have each

branch by itself in general a continuous function.

Draw from the origin out to infinity any curve that does not

cross itself; the simplest that can be chosen is one of the axes of

coordinates, ex. gr. the positive part of the axis of abscissae.

To each point of this right line belong q values of the function

p^ p
w=^ri

^cos
-

(qp + 2A;:7r) + ^ sin - (9 4" ^yt^r)")
mt- 2 "^

(^
=

0, 1, ...g-1).

Selecting one of these values for a point at an arbitrarily small

finite distance from the origin, for instance the value belonging to

^ =
,

let us attribute to all other points of the curve those values

that proceed from the assumed value by continuous change of r and 9,

for which therefore )i is likewise zero. In this manner the values

w = r'i^ are chosen for the positive axis of abscissae. Now in order

to construct the values of one branch of the function for other points

of the plane, suppose concentric circles drawn round the origin with

all possible values of r and attribute to their points those values of

w that result on continuous change of 9), the circles being described

in one and the same direction, ex. gr. from the positive axis of abscissae

to the positive axis of ordinates.

Along a circle with radius r corresponds in this way to the point:

^ = 0; z==r,
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9 = 0. Therefore also its values that belong to points uiliitrarily

near the positive axis of abscissae with positive ordinates, differ by
finite quantities from the values possessed by points below that

axis. A branch of the function constructed in this way is there-

fore discontinuous along the positive axis of abscissae. It is usual

also to state the matter geometrically thus: A branch of the function
p_

z'l is continuous in the connected surface that consists of the infinite

plane perforated from its zero point to its infinity point.

It is in fact easily seen that everywhere else the branch is not

only unique, as follows from the construction, but also continuous.

For, z = ()(cos fl> + *sin ^) being any point for which ^ differs finitely

from or 2;r, let us surround it with a small circle of radius A(); the

coordinates of points upon or within the circumference of this circle are

s + A;^ = z -\- 6 (cos + ^ sin G) = r(cos 9 + ^ sin (p)

(6<A(), O<0 <2;r),
so that:

r cos (p
= Q cos ^ -{- e cos

,
r sin 9 = ^ sin ^ + ^ sin 0.

Hence follows that r = ]/ q'^ -\- s^ + 2q6 cos (^
—

0); therefore A()

can be chosen so as to make the difference abs [r
—

q\ less than an

arbitrarily small quantity d, whence it follows further that we can

also put 9 = ^-|-?^, where
ri

is arbitrarily small. If now ^ differ

from or 27r by a finite quantity, t^ + ^ ^^ always a positive number

between zero and 27r, and the values of the function:

IV + l^w = {q± dy ^cos ^it±v) + '^ sin ~ {t ±
rj)J

differ, as the respective series show, arbitrarily little from those of:

w = Q^ f cos— ^ + ^ sin — ^j
.

This method of rendering the function w unique and continuous,

by drawing a section that must not be crossed by the argument z as

it varies, was introduced by Cauchy. Rieniaun perfected it by

a process which enables us to contemplate simultaneously all branches,

and to render the function unique and continuous along all paths

without restriction. This is effected, for a function admitting of q

values, by making the variable z move upon q different plane leaves.

We shall first consider the simplest case, assuming q = 2. Besides

the one plane perforated along the positive axis of x, to which we

have coordinated the values of the function starting from the values

IV = r'i
J
we take a second plane for the motion of z. In this,

conformably with the general equation:
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W r«
(cos

^
{(f + 21%) + ^sin ^ (g? + 2h7i)\

for
q_
=

2, we coordinate to the points of the positive axis of abscissae

the values belonging to ^ = 1 :

w = r^^ {cos (pjr) + isin (p:7r))

and proceed with laying out the remaining values as before. The

amplitudes thus assigned to points with arbitrarily small negative
ordiuates will, for 9 = 2;r, conduct continuously into the values:

p_ p_

w = r^ (cos 2p7C + i sin 2p7t) = r^
,

that therefore again differ finitely from the initial values chosen for the

second plane; but they coincide with the initial values of the first.

Accordingly let two banks be distinguished along the positive axis of

abscissae in the first leaf
5

call one with positive values of the ordi-

nates, B+), the other with negative values, I(~); similarly in the second

leaf the two banks IIW^ 1I(—). Conceiving the planes superposed,

join I(+^ with IF")
,
F") with II(+), so that thus both planes or leaves

cross along the entire positive axis of abscissae, the branching section.

Thus arises a connected two-leaved Riemann's surface that is called

a winding surface of the first order. To each point of this

surface corresponds one determinate value of the function
,

to each

continuous curve on the surface, whether remaining in the same leaf

or passing over into the other, correspond values of the function which

change continuously. As each closed curve must cross the branching
section either an even number of times or not at all, it leads to a

final value which is identical with the initial one.*) When there are

more than two leaves, ex. gr. when q = d, we have corresponding to :

P.

I(+) the values r^
,

m(+)
.„ „ .l(cosif^ + isinif^),

1V(+) „ „ ,f(cos^- + ism^),

V(+) „ „ ,f(cos^ + isin^),

*) It is manifest, that instead of the positive axis of abscissae any other

curve, that does not cross itself, can be cliosen as branching section; the two-

leaved surface which arises, is in its totality always the same.
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I(-) the values r'^ (cos ^- -f- isin ^^),

II<-) „ „ r^(cosi|^ + isini^),

III(-) „ „ r^(co8^^-^ + ism5|-),

IV(-) „ „ r^(cos«|^ + .-sin«^),

V(-) „ „ r^
(cos^p + i sin

i?f-^)
=. r^

We have therefore to coDiiect !<-) with II(+), !!(-) with III(+),

II l<-) with IV(+), IV(-) with V(+), finally V(-) with 1^+), so that there

arises a connected five-leaved surface; every closed curve crosses the

branching section either not at all or a number of times that is a

multiple of 5.

If the exponent m be a real irrational number, the function is

infinitely many-valued; a single branch is constructed in the same manner

as before, moreover aRiemann's surface can also be formed but now
it must consist of infinitely many leaves.

4. The exponential function: e*+«y defined by its infinite

series, which has the same meaning as e* (cos y + * sin y) ,
is a one-

valued and continuous function in the entire finite plane. But the

point infinity is a singular point, it is moreover an essential

singular point.

For, putting z = -r
y
^^^ therefore:

when the ratio y : x of the vanishing values of x and y' has any

arbitrary fixed limiting value Z; we have:

The modulus of this expression converges to + oo or to zero accor-

ding as X approximates positively or negatively to the value zero,

while the functions cosine and sine oscillate between the limits — 1

and + 1 . We can also make the values x and y converge to zero so

that the modulus may tend to any arbitrary finite value e*, by putting

Lim —
,g >^

=
A;, for a;' = 0, y'

= 0, and therefore x = y"^li\ in a

word: in the essential singular point,
that for e' is situated in the point

= oc
,

or for e'' in the point <sr = 0, the function is completely

indeterminate, it assumes every complex value without any restriction.
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Another property distinguishing the essential singular point from

the non-essential, is, that with the latter an integer m can be assigned
for which Lim (^

—
ay'f{8)

= G. With the former this is not possible.

For, putting here: e' 1 4_J_± -4_-LJL_J_i Jl4_^1 "I
|2 ^2 '

|3 ^3 -r

^m^. + ^"-' + ^ ^m— 2 I

we have

[m
+ |m+ l +

and however great we may choose m, we cannot give it any finite

value such that for 3 = the right side shall remain finite.

A second property is illustrated by the exponential function: it

is a periodic function; the period is 2 i jr.

e*+2»«= e* {cos(^ + 2%) + ^sin(^ + 2%)} = e\

If we divide the plane into infinite strips by right lines parallel to

the axis of abscisses at distances 2jr, the function reproduces itself

symmetrically in each of these strips.

5. The logarithm u + iv of the number x -\- iy ==
r(p

in

regard to the base e is by the definition (§ 74) an infinitely many-
'Valued function. But as long as the simplest value

u -{- iv = l{x -\- iy)
=

l(r) -\- icp

is considered, it is a one-valued function. Only the points r = and

r = oo are branching points; at these the real constituent of the

function increases beyond any limit, and the imaginary is completely

indeterminate. Conceiving therefore a branching section laid from

the zero point to the infinity point, as in the example of the irrational

function, one branch of the infinitely many-valued function is con-

tinuous in this perforated plane.

It is important for a subsequent application to interpret further

in the following manner

Y] the significance of the

branching section for the

different values of the

logarithm. If we make the

variable <s describe a finite

closed curve
, beginning at

a point J. and returning to

it, which curve neither

crosses itself nor includes

the origin, and so meets

the positive part of the axis of abscissae either in an even number of points

or not at all, then as r and (p vary continuously, the value of l{z)

on the return to the point A is just the same as at first; for, s has

rig. 6.
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Fig. 7.

returned to the same leaf. lu fig. 6, g? decreases from the value
<p^)

to a

determinate negative value, then increases passing through zero up to a

value greater than 7t and then decreases to the value qp^. Something
similar to this will occur along every other such curve even when
there are different pairs of intersections with the positive axis of

abscissae.

If on the other hand we make the argument z describe a finite

closed curve, not crossing itself but including the origin a ^= and

so meeting the positive axis of abscissae in an odd number of points,

the value of l{z)j as r and

^4 g> vary continuously, will on

the return to the point A
come to be different from the

initial one by 2i7t. In the

adjoining figure let e travel

from the point A so as to

have the enclosed space on

the left, then ip increases from

qpo up to 2;r, becomes then

> 23r, decreases to a value

between 27C and ^tc and again

increases, ultimately passing beyond 2jr to the value (pQ -\- 27t. Thus

the value of the logarithm is l{r) + i(qpQ -J- 2;r), while it was initially

l{r) + i(pQ.

We can extend these considerations to curves that repeatedly

go round the origin, crossing
^' themselves in doing so, and

formulate the following rule:

If in a determinately directed

circuit the positive axis of ab-

scissae is crossed n times from

below upwards, the value of

l{z) is increased by 2 inn, for,

each crossing shows that a

circuit is completed. The path

between two crossings only

signifies that there has been

no circuit, when, between the two, the amplitude (p had a retrograde

motion, so that at an even or an odd number of points the curve

has cut the positive axis of abscissae from above downwards. If there

be 7)1 such points, 2i7tm is to be deducted; therefore the value

of the logarithm changes by 2i7t{n
—

m), when the numbers
of the crossings are respectively n and m.

Fig. 8.
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83. The complex series of powers in general.
The infinite series:

1) a^ + a, (/
—

a) + a^^iz'
—

«)2 + ...«„(/ — «)« + ...
,

in which the coefficients a^j a^j . . a„ . . as well as a signify deter-

minate complex numbers, can always be given the form:

2) ao + a^s + a.^z'^ + . . . a„^« + . . .

by substituting si for / — a.

If we denote the modulus of ^ by r, and that of ak by Ak, the

proposed series converges absolutely for every value of for which:

converges; and conversely the convergence of series 3) follows from

the absolute convergence of series 2) (§ 77). The geometric statement

of this connexion is: When a series of powers converges absolutely for

a determinate point 0, it likewise converges absolutely for all other

points at the same distance from the origin ^ = 0.

But then the infinite series also converges absolutely at all points

within this circle. For if / be a value less than r:

4) A, + A,r+ A,r'^ + • • • ^„/« H

must be a convergent series, since each of its terms is positive and

less than the corresponding term of series 3), consequently the sum
of series 4) has a determinate value between zero and the sum of 3).

Therefore the domain of convergence (convergency) of series 2) is

always a circle round the origin ^ = 0; the convergency of series 1)

is a circle round the point 0'= a. For, the value of the modulus of the

difference determines all points 0' that are equally distant from a.

By the radius of the circle of convergence of any series 2) is

meant the greatest value of r up to which the corresponding series 3)

converges. We are enabled to calculate this value by the Theorem

(§ 44) that beyond a determinate place n in the series we must have:

Lim -^-— < 1
,

or i^ < Lim -r-^ •

When R = Lim -^-^- the series 3) and likewise 2) may possibly

converge ; therefore in each case a special investigation is required as to

whether the series is or is not convergent in the points of the bounding
circle. But outside this circle it cannot converge, even conditionally,

because then the moduli of the terms after a certain place in series 2)

increase beyond any finite amount. When a series converges for a

value of even conditionally, it converges absolutely for all values

having a smaller modulus. For, semiconvergence, in which the series

of moduli ceases to converge, still requires that: Lim R -—^ <C 1
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since the moduli of the terms cannot increase, and only for w = co can

we have JR Lim
^"^^

= 1. If then we give R a smaller value, the

property of absolute convergence is satisfied. Accordingly, series can be

semiconvergent, if at all, only in points on the circle of convergence*).
Since each of its terms is unique, an infinite series of powers as

long as it converges, is a one- valued function of the complex variable,

that does not anywhere become infinite. This function is cox/iinioiis^

i. e. when z and z -\^8 are complex values for which the series converges^

Lim mod [f {z±d)- f {z)]
=

0, for d = 0.

To prove this, we separate the terms of the series /'(^) into the groups:

(p(z)
=

aQ + a^z -\-
' ' an-iz""-^,

'

tl^i^)
= anZ» + a„+ i;2r''

+ i

H an + A^f'
+ ^H ;

inasmuch as from thew*** term onwards, within the circle of convergence:

A„+iI{ < A„a, An^2li'^ < Ana\ • • • An + kR^ < Ana'',

where a denotes a proper fraction, we must therefore have:

mod il;fz)< An B'' z-^ •

Accordingly merely by choosing a lower limit for w, we are able to

make both mod ijj (z) and mod ^ (^ + ^), and therefore also :

mod [tI}{z±^8)
—

-tl) {zy]

less than an arbitrarily small quantity e. Now, since:

mod U\^ ± ^) -n^)'] = mod [9? {^s ± 8) -ip {z) + i;{z ±8) -
^{z)]

< mod \(p{z ^8) — (p {z)] + E

) Examples:
1. The binomial series:

, , ,
m(m — 1) , ,

m (m— 1) (m — 2) , ,

l-^mz-\- -Yr2 ^ ^ 1.2 .3
— ^ +

in which m is a real number and z complex, converges absolutely as long as mod [z]

is less than 1; it diverges if mod [z] >• 1, For mod [z]
= 1:

If m >> 0, it also converges absolutely along the entire circle of convergence.
If m<CO but >— 1, the series is semiconvergent, with the exception of the

point z = — 1, in which it diverges.
If m <^ — 1, the aeries diverges in all points of the circle of convergence.

AH llu'.-f nj.-ultft ran be deduced from § 46. In investigating the case - 1 <C»kC^
put 2\'= I -{- in^z -\-

•

m^z^, multiply both sides of the equation by (I -{- z)

and consider the limiting value for n = oo.

2. The logarithmic series:

z*
,

0» z* .

converges absolutely for mod [z]<Clt it diverges for mod [z]"^ I. On the circle

of convergence it is semiconvergent , except at the point z = — 1 at which it

diverges.
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and (p {^) is a ratioDal integer function; having chosen a lower limit

for n we can always determine 6 so as to make the difference on the

right less than any prescribed number, i. e. :

Lim mod [f(0 ± ^)
-

/"(/)]
= 0.

It is proved as in § 44, IV that this theorem of uniform or equable

convergence holds even on the limiting circle for a point in which the

infinite series converges, by varying along a radius and so putting:

The amount of tp (0
—

d) is less than that of \^^—fM, where M is

put for the greatest amount in the series of the complex numbers;

an^^^f an^"" + an+i0''+\ anZ'' + a„ + i^« + i + a„4-2^"
+ S etc..

For, choosing z — d upon the radius to Zy
== ^ is a positive

real quantity less than 1. Thus:

and the powers of q form a decreasing series that converges to zero.

But the Lemma of Abel in § 44, IV can be stated as follows for

complex quantities.

If ^Q, t^^ . . . tm ' • ' denote an infinite series of arbitrary complex

quantities and if the amount of the quantity:

is for all values of m always less than G^ then the amount of:

when £y, fj, . . denote real positive decreasing numbers. For, we have

^ ==P0 (fo
—

^l) + Pi (^1
—

£0) + • • -Pm-l (fm-1
—

£m) + Pm^m

as before, and so,

mod r < (fo
—

aj mod^^ + {e^
—

s^) mod;)^ + • •

{Sm-i
—

£m) mod_p,„_i

+ f^mod_p„.
The numerical value on the right side is less than:

^ (^0
—

^1 + ^1
—

^2 + • • • ^'"-l ~ ^™ + ^^«)
= G , £q.

84. The differential quotient of a function of a complex variable

at a point in which the function is continuous is formed as follows.

Supposing the complex variable z = x -\- iy to receive the increment

l^z = Ax-\-iAy = Are^^y let us consider the quotient of differences

fi2-\-Az)-f (z)
^^ fiz-j-Are'^P)

-
f{z)

Az Are'^P

The limiting values, to which the real and imaginary constituents of
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this quotient tend for A;? = 0, constitute the derived of the complex
function.

We shall concern ourselves in the sequel only with functions for

which, except in singular points, this limiting quantity is a function of

= X -{- iy exclusively and is thus independent of the value q) or of the

ratio A?/ : Aa;; such functions are called analytic functions. For an

analytic function f{z) therefore:

it has a derived function, not only as in real functions identical when
taken progressively and regressively but the same in every direction.

We shall show that every function expressed by an infinite series of

powers is analytic within the convergeucy of this series, and that

also conversely every function that is analytic within a domain can

within this domain be expressed by infinite series of powers*).

Equation 1) can also be written thus:

2> ^^ = rW «>•= mi') = m-di:^r{:!){dx + idy).

This last form is the equation for the Total Differential of the

complex function.

If we make the complex variable z change only by the real part

A a; or by the purely imaginary part eAt/, we obtain as limiting

values of the quotient of differences the partial derived functions with

regard to x or to y. But these likewise, in consequence of our hypo-

thesis, satisfy the following equations;

3)

dx /\x

^«^' - Lim fM±iML=.M = ^(^).
idy i^y

Therefore the analytic function regarded as a function of the two

variables x and y satisfies the equation:

4) K^LK or ^L^iK-^^f dx idy'
^^ dx^^ dy

~^'

If we ask whether these equations are also sufficient conditions,

that there may be at a point one derived function depending only on

z for every direction; the answer is:

Provided there exist in the neighbourhood of the point, definite

values of the partial derived functions i— and -r- -^ that are always

*) Riemann styled functions on the hypothesis of their analytical property,

pimply, functions of a complex variable. Cauchy called functions that are

analytic in a domain without exception, synectic. Briot and Bouquet call such

functions liolomorplie.
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equal and moreover are continuous functions of the complex variable

X -^ iy^ we have also:

dfjz) ^K ^IK.
dz dx i dy

For, we have:

f{x-\-iy-\-l:^x-]ri^y)—f{x-{-iy)^ f{x-\-iy-{-Lx-\-i£iiy)—f{x-\-iy-\-iAy) A^
Ax-\-iAy Ax

'

Ax-\-iAy

I f{oc-\-iy+ iAy)— f{x-\-iy)
^

iAy
^

'

iAy Ax -\- iAy

Now A
2/

can be chosen so small that:

nx + iy-^iAy)-f{x-^iy) ^ _1^ ^f(x-\-iy) , ^
iAy i dy — '

where d denotes a quantity arbitrarily small in amount. Further we
can choose the value of A^ so that:

fix -{-iy + Ax-\- iAy) — f{x + iy+iAy) ^ df(x-^iy + eAx + iA y)

Ax dx

^ df[x + i y) 1 ^ ^ J_ df{x-\-iy) , ^
dx ~ i dy — '

From this it follows: values can be assigned to A^ and A«/ such that

for them and for all smaller values the above quotient of differences
t 7) f

shall differ from the value —^ at most by the quantity

^Ax , ^iAy
Ax -\- iAy ' Ax + iAy

'

the modulus of d being arbitrarily small. Since the amount of the

quotients by which 8 is multiplied cannot increase beyond all limits,

what we have stated is proved.

The real and imaginary constituents u-\- iv into which the complex
function f{z) resolves, are functions of the two real variables x and y.

But as the equation of condition 4) must be fulfilled, they are functions

of two variables of a special kind : the functions u and v cannot be

independent. In fact from:

rr \ ,

•
1 df du . .dv df du . .dv

f{z)
= u + zv: we have: ^==^ h^o— > ^ = ^ h*^"»' ^ ^ ' ' dx dx ^ dx ^

dy dy
*

dy

then by equation 4) we find :

By separating the real and the imaginary, this equation resolves into:

n\ du dv du dv
^ dx dy' dy dx

The two constituents of an analytic function are therefore generally

continuous functions with determinate differential quotients. For these

functions the Theorem of the Total Differential holds. For, if we write:
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equal and moreover are continuous functions of the complex variable

X -\- ipf we have also:

df{z) ^d£ = lK.
dz dx i dy

For, we have:

f{x-\-iy-\-L X -\-iAy)—f{x-\-iy) f(x-{-iy-fA x-\-iAy)—f(x-{-iy-}-iAy) Ax
Ax-\-iAy Kx Ax-\-iAy

, f{x-\-iy-{-iAy)
—

f{x-{-iy)
^

iAy
'

iAy
'

Ax-^iAy
Now A?/ can be chosen so small that:

f{x-{- iy 4- iAy) — f{x-\- iy) ^ J_ df{x + iy) , ^
iAy i dy — '

where d denotes a quantity arbitrarily small in amount. Further we
can choose the value of A ^ so that:

f[x-\- iy -\- Ax-\- iAy) — f{x -{- iy-{- iAy) df{x -^iy-\-QAx -f iA y)

Ax dx

dx — i dy —
From this it follows: values can be assigned to A^j; and Ay such that

for them and for all smaller values the above quotient of differences

shall differ from the value —^ at most by the quantity

^Ax
, ^iAy
-rAx-\-iAy '

Ax-\-iAy^
the modulus of d being arbitrarily small. Since the amount of the

quotients by which 8 is multiplied cannot increase beyond all limits,

what we have stated is proved.

The real and imaginary constituents u-\-%v into which the complex
function f{z) resolves, are functions of the two real variables x and y.

But as the equation of condition 4) must be fulfilled, they are functions

of two variables of a special kind : the functions u and v cannot be

independent. In fact from:

nr \ I

•
1 ^Z du , .dv df du . . dv

f(s) = u 4- tv: we have: -^ = ~ h'<^^> -^ = ^ h^^— »' '^ ^ ' ' dx dx ^ dx '

dy dy
*

dy
^

then by equation 4) we find:

By separating the real and the imaginary, this equation resolves into:

n\ du dv du dv
^^ dx~dy' dy~~~"dx'

The two constituents of an analytic function are therefore generally

continuous functions with determinate differential quotients. For these

functions the Theorem of the Total Differential holds. For, if we write:
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dfjz) ^ du-\'idv ^ dx "^^dx
dz dx-i'idi/'^

1 _i.
•^ '

siuce f\z) = ^^* + * p^ '
^® obtain the equation:

IVdin wliicli and C^^ wo find for the total flifferehnu. vjwutif^nts of* w and v:

' r '/.//
' '(

I

du dy
(/ ./ c\'- ^/.f 6*5;

'

(?y

*

da;'

f/,
^^

. /

j_ ^"
.

'^i/ =_ ^Ji 4. ^Ji . 4y .

da; dx * dx dx dx "'
(9y da:

Conversely, if the Theorem of the Total Differential be supposed to

hold for n and r, equations 0) are sufficient conditions that the com-

bination u + iv = iv be expressible by arithmetical operations on the

single variable z = X -{- iy. For then, replacing x hy z — iy in the

combination xi + iv
j

this must become altogether independent of the

variable
//,

i. e. its partial differential quotient with respect to / must

vanish. (§ 2(). 1.)

Denoting the result of substituting x = z — iy in w + *^ '^y

(w) + i{y\ we find

^y cx^ ^ ^

cy' ' y (> ^ ^ ^

( y*

when z — iy is substituted for x in the derived functions on the right.

Accordingly, combining these, we have:

f{u) . . d{v) {du I
c'\ • (du dV

I ;
d{v) _ (du ,

cr\ _ . /du _ dv\
"1"

.
//

~~
\;y

"^ dx^ \dx dy^

In cousequt'uce ul equaiiuiib U; the expressions in the brackets vanish;

they are therefore sufficient conditions that w should depend on z only.

85. The property of an analytic function of a complex variable, that

its first derived /"'(<?) is independent of the ratio -p, is important in

the geometrical transformation upon plane A of plane B that repVe-

sents the values of the function w = f{z). If we consider in plane A
a triangle PP'P\ whose vertices belong to the values z, z -\- Az,

z-{-Az', to these correspond in plane B three points QQ'Q", whose

values \vt,' may dfii* !•' by w, w-\-Aiv, w-\-At('. Transposing the

system of coordinate^i in each plane so as to make the points P and Q
the origins of the systems, and putting:

Az = Af . <
>

,
Az' = At' .c"i'\ Aiv = Aq . e''^. Aw' = Aq'.c ,

the quantities introduced are in each jilaiu* the jiolar coordinates of

the other two vertices of the triangle in regard to the origin. But

by the analytic property, the quotients:

^'"
= fr ,.(.;- 9) and pi- ^ p^ . c'^i'-r^

Az A r Az Ar
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have the same limiting value; therefore unless this value be or oo:

•i^im ^ = Lim^ , ^ — ^ = ^ _
^,

i.e. if the sides of the triangle FP'F" and therefore also those

of the triangle QQ'Q" be infinitely small, the angles P, P\ F'\
and QyQ'yQ'y are respectively equal and their containing sides pro-

portional. Therefore two corresponding infinitely small parts and so

in general the smallest parts of the planes A and B are similar. To
two curves that cross in plane A correspond in plane B two curves

that cross at the same angle*). This likewise holds for the

transformation of z and w upon two spheres.

86. Applications.

1. The positive integer power: w = z'^ has the derived function:

-J- == Lim -
^

.
= Lim ^-—^

^^
= nz''-^,

dz Az Are^^

For if we consider ^<; as a function of x or of y, we have:

From this follows, that the rational integer function:

w = aQ-\- a^z -{- a^z'^ + • • •

dn^"",

has the derived function:

dw . c\ I ^1-— =
a^ -{-2aoZ -{-

' ' •nanZ''-\

2. The rational fractional function has a finite first derived function

except at the singular points, in which its denominator vanishes.

3. The explicit irrational function : w = (z
—

a)'", which is unique
and continuous in the plane perforated along a curve starting from a,

has a derived function. We determine it, so as to exhibit its ambiguity,
as follows:

If we put z — a = r (cos cp + i sin cp) and therefore:

w = r"' (cos m {(p + 2h%) + ^sin m (9 + 2^;r)) ,

when we fix upon some one value of Z;, we have:

dz = dr (cos (p -\- i sin cp) -\- r (
— sin (p -\- i cos (p) dtp

=
(cos 9 -|- ^ sin g)) {dr -\- irdcp),

dw = mr^'^-^dr (cos m {cp -\- 21^71) ~\- i sm m {(p -\- 2]c7t))

_|_ ^y^^m ^
— sin m (g) -\- 2 k 7t) -]- i cos m {cp + 2Jc7c)) dcp

=
(cos m {cp -{- 2'k7t) + i sin m {cp + 2^7r)) mr"*-^ {dr -f- irdcp)j

*) This property of the function of a complex variable was noticed by Gauss

in solving the important problem in mapping: "To represent the parts of one

given surface upon another given surface so that the copy may be similar in its

smallest parts to the original." See his answer to the prize problem proposed by
the Royal Society of Sciences in Copenhagen for 1822. Werke, Vol. IV, p. 189.
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accordingly:

dw
^,^^_j (cos m (y 4- ^Icn) -f < sin m{cp -\- 'ikn))

dz cos 9 -|- » sin tp

= mr'"-^ {cos (m — 19^ + 2kmn) + isin (w — I 9> + 2hmn)],
Since cos (2'knm) = cos 2k(m — Vjit, sin {2kmii) = sin 2A;(wi

—
l);r,

this expression takes the form:

^*."=^wr"'-*{cos(w
—

l){(p-{-2k7i)+ism{m—\)(cp-\-2k3t)]=^m{z—a)"'-^.

The value of k originally chosen remains unchanged in the derivate,

which is as many-valued a function as the original.

4. For the exponential function:

tv = e'- = e*+'y == e' (cos y -{- i sin y)
we have:

'dx
"= ^' ^^^^ y + * ^^" ^)' If

"" ^ ^~ ^^^ ^ + ^ ^^^ y^'

therefore it has the derivate: j— = ^* (cos ?/ + i sin
«/)
= c*.

5. The logarithm of the number z = x -\- iy to the base c has

the value:

I {x + iy) = I (+ j/x'+y'^) + i tan-i ^ + ^2A;;r when a; > 0,tv

w = ^(^ + *2/) =l{+yx'+y'^) + iia.n-'~^-±i{2k+l)7t whena;<0.

A branch of the function is continuous in the plane perforated along
the positive axis of Xj for it we have:

dto X iy 1^

dx ic'H-y* X* -\- y^ x-\-iy*

IX %^ ^ y
j

iri_ = ^-_'

dy x' 4" !/' ^'* + y"^
^ + *

therefore the derivate is:
'^ = - .

dz z

0. The complex infinite series of ascending positive integer powers :

1) f{z)
=

ct^, + a, ^ + a^z"^ + • • • fln^" + • • •

is an analytic function within its circle of convergence.
Let ;e? + /* be a complex value within this circle, then:

2) fiz + h) = a,+ a,(z + h) + a,{z+hy + • • •

a.(z + hy + • •

•;

arranging this absolutely convergent infinite series by powers of h,

the coefficients of these powers are infinite series, which we shall prove
to be the successive derived functions of f(js). With this in view let

us provisionally denote the series:

3) ai + 2a.,z + ?>a.,z'' ^ na.z''-^ H by /;(<?).

This series converges absolutely within the same circle for which

Habkack, Calcalas. 10
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the original series 1) is convergent; for, B, its radius of convergence
is determined from the inequality § 83:

B Lim ^^^^t ^±i <^ ] or II < Lim ^

"
, since Lim ^^"^ '= 1.

Similarly we obtain by continued differentiation of the several terms

the following series that all converge within the same circle:

4) 2a2 + 3 .2a^z-\ n{n — l)«„^«-2. . - =
f,{z)

3. 2^3 + 4.3.2a4^H n{n—l) {n — 2)anS''-^'-' =U{z)

Introducing this notation we obtain for series 2) arranged by powers
of h the value:

5) f{z + 70 =/(«) + y a^) + f Ac^) +••• ^ A(^) + •

•,

where Lim
-r^ fn [z) is certainly zero, because the sum of the moduli of

h^

~uirfn{^) is smaller than the sum of the moduli of the absolutely

convergent series of powers:

an{s + hy + a„+i(^ + A)«+i + an+2(^ + /0"+' -\ etc..

The convergency of this new series 5) is therefore a circle with its

centre at the point h == 0, i. e. at the point z, and its radius H at

least equal to: B — mod[^]; for, as the circle, whose radius is equal

to this, touches the inside of the original one, all its points lie within

that circle and for them series 2) converges absolutely, therefore series 5)

derived from it by arranging its terms differently also converges absolutely.

We have still to convince ourselves directly, that it is allowable

to reason thus from the absolutely convergent series 2), for this might
seem doubtful, since in the new arrangement of terms each coefficient

requires the summation of an infinite series. Let us therefore examine

whether n can be chosen so as to make the difference between the first

n -\- I terms of series 2) and of series 5) arbitrarily small, always

assuming the absolute convergence of the former series. Putting:

f{z)
=

Gq + a^z + a^z^ -|-
. . . a„^" + (>«,

f^{z)
= 2^2+ 3. 2^3^-1 n(^i

—
l)a„.s"~^+ ^,i",

fn{^) =L!L. ««+ qn^'^\

the difference between the sums of their first n -\- 1 terms is:

Qn + ^ Qn +
-^^Qn

H
"jj

^«^"*.

Now since series 2) converges absolutely, we can always choose n, such

that for every value of h: .
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Bn,k = fU^i {z + hy+' 4- an+2 (.r + h)^-^^ -\ f- a« + * (2 + /0«+*
shall be smaller than d, as long as z -{- h lies in the convergency of

series 1), even when we put for each term its absolute value; when 8
is prescribed the value of n is determined. But now k can always be

chosen so great as to make the amount of:

B..k
-

(p, + *-
e,' +

^*
9,"+ • •• f e.<"')

smaller tlian any quantity however small. For, each of the series q

converges absolutely; therefore in each of them can be found a place
Ic from which onwards the remainder of that series is constantly
smaller than a determinate quantity d'. Hence we have:

mod
[jin,k— (p« + Y (>»' + • •-•

|C (>."")]
< ^ + d'. c-"^l''l,

therefore we have also:

mod
[^^„
+ A

p„' -]
Ijl ^„(«)]

< 2d + d\ e»od|/,].

This proves that the difference between the sums can be made arbitrarily
small by choice of n alone, so that series 2) and 5) must be identical.

Each point tvithin the circle of convergence of 1) can tJierefore be

tahen as the centre of an expansion^ and its convergency tviU he at least

as great as the circle touching the inside of that original boundary circle.

Now from series 5) it follows that:

therefore : Lim ^^^ +
^]~

^^^^ =
f^ (z) ,

i.v. the first derived function of f{z) is expressed by the infinite series 3):

/'W = /*i(^)
=

^1 + 2a2^ + ^ati^^ H nanZ''-' H etc..

Or, the complex series of powers is differentiated by forming the series

of first derivates of its individual terms. This series converges within

the same circle of convergence as the original series.

Further, by differentiating the series for f(z) it follows that:

/" (^)
=

/i (^) , similarly f (^)
=

/"a («) ,
etc. .

Accordingly we have series 5):

f{.t + h) = fiz) + A f(,) + ^ /-(^) + . . .

,^'
/•»(.) + . . .

identical with Taylor's expansion for the function of a complex
variabfe given by an infinite series of powers.

Comparing this with 2) we find the meaning of the coefficients in

the expansion; we have:

"„=/'(0), a,=r(0), n,=^r(0), ••«„= I,
/"(O), etc..

10
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Hence we see that whenever it is possible to express a unique function

f{z) hy a series of powers of 0, it can he possible only in a single tvay.

For
J

the coefficients of this series must be equal to the values of the

function and of its successive derivates at (he point = 0.

In fact, if two developments convergent within the same domain:

f[z) = aQ + a^0 + a^z^ + • • • ««^" + • • •

were found, we should have:

= K —
^0) + K -

^1)^ + K —
^2)^^ -\ (««

— M^" -\
—

,

and since all the successive derivates of the constant zero vanish for

all values of z^ we must also have:

^0
—

^0
= ^? ^\

—
^1
= 0» % — ^2

= ^» • • • «» — ^M = 0, etc. .

In the French Translation by E. Picard of the above Memoir of Weierstrass, which appeared
under the revision of the Author in the Annales de I'Ecole Normale, 2e Serie, T. VIII, 1879,
entitled: "Memoire sur les fonctions analytiques uniformes", the opening statement reads as
follows:

•

Among unique (uniformes) functions of a single variable, rational functions form a distinct
class which we proceed to define by their characteristic property.

We shall say that a unique function f{z) of the complex variable z is regular in the

neighbourhood of a point a, when for all values of z comprised within a circle having its centre
at a and a radius sufficiently small, the function can be developed in a series of the form:
«o+ "j.(*

—
Of) + 02(2— «)"+ •• -1 tlie coefficients Co, «i, tto, .. . being constants. In case the point a

were at infinity we should replace «— <» by — .

Every point a in whose neighbourhood the function /(«) is not regular will be called a
singular point of /(c), and we shall distinguish two kinds of singular points: if a positive

integer {?/<) power of {z
—

a') can be found such that the product (2— a')'"/(3) is regular in the
neighbourhood of a and does not vanish for z-=a\ this point will be called a pole of the
function; if not, we shall say that a is an essentially singular point.

We may accordingly say that the function /( 2) has a determinate value for 3 = a, not only
when it is regular in the neighbourhood of this point, but even when a is a pole, for in both
cases we shall have for values of z sufficiently near a

f(z) = {z- cf)-"' {ao+ fli (J
-

a) -f ao(0 - a)^+ . . . } ,

where m is an integer and a^ is not zero. When m > 0, the function will be infinitely great for any
infinitely small value of (2

—
a) and this is an indispensable condition in order that we may be

able to write /(a) = co .

Moreover within the circle of convergence of the above series the function has no othet

singular point than a when in is positive and it has none at all when in is negative or zero.

Consequently, if we can demonstrate that in the neighbourhood of a given point a,,, and at a
distance less than any given quantity, there are singular points of /(c) different from z^^, we shall
be able to assert that Zq is an essentially singular point of /(s).

After these explanations, the class of rational functions of one variable z can now be defined
as that which comprehends collectively all the unique functions of z that have only poles.

It is not only to illustrate this chapter that I have placed this Extract here, but further I
wish to remark, that throughout the Translation the word "pole" is used wherever the phrase,
"ausserwesentliche singulfire Stelle" occurs in the original Memoir In H. Laurent: Trait6
d'Analyse, T. Ill, p. B6fi etc., these points are called "infinis ou poles", and this alternative
word I render by "infinite" of the function or "infinity point"; it occurs once in Picard's
translation where the original has "Werthe . fiir die /(s) = <»". The desire to avoid using the
overtasked word "pole" has been my motive in employing for "ausserwesentlich" the word
"non-essential" which I feel to be objectionable. It might be less so, if unique analytic functions

only had to be considered; but when we have other analytic functions in view, it is unpleasant
to have to remember, that essential and non-essential singular points do not exhaust the catalogue
of singular points. TJiose epithets are exhaustive only of the points in which analytic functions
become infinite. ^' J^- ^-



Third Chapter.

The vanishing values of a series of powers, specially those of the

integer rational algebraic function.

87. The Theorem last proved in the previous Section for series

of powers . assists us in enquiring: hoiv many points are there within

a circle of convergence, for which the function f{z) vanishes?

The function vanishes in a point 0q, when, taking this point as

centre, it gives rise to an expansion in which the first term
/'(^?o)

is

zero. When other succeeding terms also vanish, so that the expansion

begins with the term i— /'"K); ^^^ point is called a vanishing or

zero point (nullity) of the order (nullitude) w; it must be counted as

n vanishing points; the quotient
—

7;,i

'

then remains finite at the

point h = 0. We have first to prove:

The function f{z) cannot be zero at infinitely many points within

a finite circle of convergence, unless it be zero identically, i. e. every-

where in the circle, so that all the coefficients of the series vanish.

In fact, if there be infinitely many vanishing points, there is also

a region of arbitrarily small extent which contains infinitely many
of them. For if the entire domain be divided into an arbitrarily great

finite number of parts, there must still be in at least one of these

parts infinitely many vanishing points. Let ^ be a point in such a

region; the expression

1) . /-(^ + /o = /w + Y /"(«) +frw + ---

must become zero for a value h, whose modulus is arbitrarily small.

Since the coefficients of h, h"^ . , . are finite, the amount of the terms

multiplied by /* is arbitrarily small; accordingly if the expression

is to vanish, the amount of f{z) must also be smaller than any finite

quantity, i. e. since f(z) is a determinate value
,
we must have :

Now considering the product:

there is an arbitrarily small but finite value /* for which it is zero,
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therefore the bracketed factor vanishes. Hence follows as before:

m = 0-
.

In like manner from the vanishing of the product:

it results that f"{s) vanishes, and similarly it is found that:

r(«) = 0, .../(«> (^)
= 0,... etc..

Thus f{z + ^0 ^^^ ^^^ ^^^ derivates vanish for all values of z -\- h

that lie within the circle of convergence of series 1). In this circle a

point z' for which mod z < mod z, being chosen as centre, gives

rise to an expansion the radius of whose convergency

H'=B- mod [/] is > B.

The coefficients in this new expansion all vanish, i.e. the function

is zero everywhere in this greater circle also. Taking a point /'

within this circle as centre, we obtain a new circle, and this process

can be continued till we reach a circle that includes the origin

^ == 0. Since for this point the function and all its derivates vanish,

the same is true for all points of the original circle of convergence
of the series:

f(^z)
=

ao + ci\^ + «2^^ H f^nS"" -\ ;

that is, we have

/•(0)
=

ao
= 0,AO) = ai

= 0,r(0)-«^2l2==0,.../'«(0)= aJjL=0,etc,.

By means of this proposition we can generalise the Theorem

proved at the close of last Chapter concerning the unique expression

of a function by a series of powers. For, from it follows that:

When the values of two series of powers are the same even only

in infinitely many points of a domain, the series are identical throughout
the entire common part of their convergencies. For let these series be :

a„+ ai(«-«)+«,(^-«)' + ..-and&„ + 6i(«-|3)+ 62(«-/3)-+---,

then their difference can be expanded for a point y, within the domain

common to their circles of convergence, in a series of powers

^0 + ci(^ -r) + cA^ — r)' H etc..

This series vanishes in infinitely many points, accordingly it is zero

within its entire circle of convergence. But from this series we can

attain to any other point lying at a finite distance however small

inside the boundaries, by adopting a new point within its circle of

convergence as centre of an expansion, that in like manner must

vanish, and continuing this process.

88. Suppose a domain of convergence with the radius Fi is to

be investigated; since there is only a finite number of vanishing

points in each finite part of the plane, we can assume, that none of
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these points lies upon the bounding circle. Let the vanishing points

within it he z^y 02) ' • ' ^v , and their respective orders A,, ^2, . . . A^.

Calling the product:

(^
_

^,)», (^
_

2.^y, ...(«_ ^,y, = nrz);

/'(^) is divisible by 17(5?) and the quotient is a series of powers that

converges for the original domain and is not zero at any point in it.

To see this, let us put h = s — ^, in the above development, hence:

M =
/(^i + ^ - ^,)

=
fi^t) + '-^ f'M + ^^^ rC^,) + • • •

;

but since z^ is a vanishing point of the order (nullitude) Aj ,
we have :

therefore :

This absolutely convergent series proceeding by powers of <?
—

z^ can

be rearranged by powers of z and resumes the original circle of

convergence. For, then again the circle of convergence of this series

must include that for the development by powers of ^ — Zi. Since the

new resulting series vanishes in the point Z2 in the order X^, it is

divisible by {z
—

^2)^'? ^^ ^^i^ ^^J we ultimately obtain :

^^
=

,,(^), or: /•(.)
= n(/).,p(^),

where ip{z) is a series of powers that is not zero at any point in the

domain.

The propositions hitherto proved apply in particular to the integer

rational algebraic function:

f(^)
= «o + «i^ + «2-^^ H h «»^-

The convergency of this function, in which a^, ... «« mean determinate

finite complex values, is the entire plane, i.e. to each finite value

of z belongs a determinate finite value of /*(^); this function cannot

vanish for infinitely many values of z without vanishing identically;

and further if ^j , z^ ^ - - Zy be vanishing points , f{z) is divisible by

rT(^), the quotient being again an integer rational algebraic function;

in this case, if A, + A2 + * • * ^v = W; ^C-^^) is constant and equal to a„.

Therefore an integer rational algebraic function of the order n can

certainly not have more than n vanishing points in the entire plane.

80. Forming the logarithm of f{z) we have:

Ifi^z)
= m{z) + l^>(z)

=
l^l{z

— a^ + X^Kz - ^2) H

-\-U{z-z.)'\-l^{z),

For each of the logarithms on the right we take one of its infinitely

many values, and let z describe the circumference of the bounding
circle from any point A^ keeping the inside of the circle on the
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left. Since the argument ^ — ^, vanishes only once within the circle,

namely for s = z^^ the value of the logarithm when z returns to

the i^oint A will differ by 21% from its initial value, §82,5; the

same will happen with l{z
—

z^) j
- - - l{z

—
^y); on the other hand

l(p{z) on its return to the point A will resume the value it had at

first, because (p{z) does not vanish at any poiut within the circle, but

has for every point a determinate finite continuously changing value,

so that no branching point of its logarithm is included. Accordingly
we see that: If there he v vanishing points of tJie function f{z) within

the circle of convergence y
the value of lf{z) changes hy 2i7cv when the

argument z describes the entire circumference; and conversely: If the

logarithm of the function change hg 2i7tv when its argument z describes

the circle of convergence, v is the number of vanishing points of f{z) within

this circle.

90. Applying this Theorem to the algebraic function, we can

take the circle^ for whose points the values of z are to be formed, with

a radius so large that the amount of the term a„^» shall far exceed

all the rest, and accordingly the amount of:

n

be smaller than an arbitrarily small quantity d; to attain this, we have

only to take mod z greater than unity and then to determine that

mod z shall be also > A + A-\ ^«_i 1

each A denoting the modulus of the corresponding a; then let us put:

1+ -„-^^ )=ZM»)+ Z(l+ a);

writing b for the complex quantity, whose modulus is smaller than 8.

Now l{\ -|- f), formed from a determinate point upon the bounding

circle, differs everywhere inappreciably from Z(l)
= + 27t;i;r; thus if

we begin with any value of the logarithm, ex. gr. the simplest, since

when £ changes its value, the corresponding logarithm must vary

continuously, it will always differ only inappreciably from the simplest

value of l{\) namely zero; therefore when z has returned to the

original point, the value of l{\ -\- f) will not have increased by a

multiple of 2%%.
\_

But while z describes the circle, l(anZ'^)
= nl{an'' z) changes

by 2i7t.n, since the point ^ = is included within this circle.

Accordingly lf{z) undergoes the change 2i7tnf i. e. in the arbitrarily

great circle of convergence there are always n values
^ for which the

rational function
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vanishes; some of these vanishiug points may coincide, but always the

total sum of their nullitudes is n. This theorem, which can also be

stated in the words: Every equation of the n^^ degree

t\z)
= ao + a^z + a,z' + • • • a--?" =

has n complex roots; is known as the Fundamental Theorem of

Algebra.*) When the coefficients a^, a, . . . cr„ are all real, if the

equation have one complex root z = a -\- i/3, it has also the conjugate

complex root z = a — i/3; for then we have in general:

/•(«
_

ip) ==U-iV, if f\a + ip) =. U+ iV.

But, when cc -\- ip is a root, both U and V vanish.

The implicit algebraic function, defined by the equation § 25;

A, + A^y + A,y- + • • • ^« !/"
= 0,

in which A^^ . . . An signify integer polynomials in a?, is accordingly,

when complex solutions also are taken into account, an w-valued function,

i. e. to each value oi x, for which the values of the coefficients Aq...A„
are determinate, belong n equal or different values of y, namely the

n roots of this equation of the n^^ degree.

The calculation of the n values of the roots, i. e. their expression
as functions of the coefficients, forms the object of the Theory of

Equations. As long as n ^ 4, the roots can be developed in a closed

form as functions of the coefficients by help of the explicit algebraical

operations of the first six species ;
if n > 4 the solution of the general

equation gives rise to new functions whose properties we have to

investigate in the next Chapter. But it is in all cases possible when

the coefficients of an equation are given in the form of determinate

numerical quantities, to express each root uumericaHy with any

required degree of approximation, i.e. after the method of inclusion

within limits to form two infinite series of rational numbers, whereof

one has the real constituent, and the other the factor of the imaginary
constituent of a root as its limiting value.

*) The theorem was first proved by Gauss in his doctoral dissertation 1799,

to this there is a supplement of the year 1849; Gauss published two other proofs in

1815 and 1816 (Werke, Vol. III). The proof detailed in the text, applicable as

it is to infinite series of powers, is derived essentially from Cauchy (Journal
(le riilcole polytechnique, Cahier 26, 1837); he had previously, in his Analyse

ulg^brique, chap. X, 1821, given an elementary proof for the existence of the n

roots of an equation, that coincides in principle with that developed by Argand

Gergonne Ann., Vol. V, 1815j.



Fourth Chapter.

The implicit algebraic function.*)

91. The most general form in which a variable tv is defined as

an algebraic function of the variable ^ is by the vanishing of a

polynomial consisting of integer powers of and of w:

1) f(w-, .e-)
= w- 9o (^) + ^"-' 9i (^) + • • •

^(Pn-i{^) + q>n (2)
= 0,

the factors (p (z) being integer polynomials of arbitrary degree in s with

complex coefficients; let the highest power of in any of them be m.

This form is of the n*^ order in Wj assuming that all coefficients in

the polynomial cp^^s) do not vanish; let 9?q be of the degree h in ^,

h == denoting that 9?^ is a constant. It may be assumed that the

form 1) is not reducible, i. e. that f cannot be resolved into products of

algebraic expressions of lower order; for if it could, each factor equated
to zero might be investigated separately.

Integer and fractional rational functions are included in this

form, for these ^ = 1
;
in like manner it includes the explicit irrational

function treated above:

p_

w = {0
—

a) ?, which in form 1) is: w^ — {0
— aY = 0.

To each value of 0, correspond n determinate values of w^ different

or equal, the roots of equation 1), as was proved in last Chapter.

Let these be denoted hj w^y w^j » > . Wn\ they will vary according
to the value of 0. The equation 1) presents therefore n functions

of 0y or m other words : it determines an w-valued function of 0. The

following investigations have to demonstrate how these n branches

of the function may be separated, and how far they are continuous

functions with determinate derivates. **)

92. If the function w be considered at a determinate point, and

so one of the possible values iv calculated for a determinate =
0^^

*) In this chapter the theorems of Algebra regarding the resultant and

the discriminant are supposed known.

**) Cauchy: Exercices d'analyse et de physique math^matique. Tome II.

V. Puiseux (1820
—

83): Recherches sur les fonctions algebriques. Journal de

Mathematiques, T. XV et XVI. 1850—1. (German translation by Fischer, Halle

1861). Briot et Bouquet: Theorie des fonctions elliptiques. Paris 1875.
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the question arises, how is this value of w altered as the value z

changes. The value Zq, chosen to begin with, can always be assumed

finite
J
for when the change of w from an infinite value z concerns us,

let us substitute z ==
.__ , thereby converting 1) into a relation

between w and z', and investigate what values w assumes for / = a.

Now we must first establish, what kind of singular points can

occur. An equation of the n^^ degree has always n roots. When
its coefficients are variable, as in the present case, these roots can

exhibit the peculiarities either of becoming infinite or of some of them

becoming equal. These two are the only kinds of singularities. As

we pursue the investigation, we shall show, that the number of such

points is finite.

1. Let us put to = -r and determine the points at which w'= 0,

then we have instead of equation 1):

<Po{2) + W'VlW H W'^-'(pn-l(z) + W'^(pn{z)
= 0.

If w' is to converge tg zero, cpo(^) must become = 0. This is an

equation determining h separate or coincident finite points for which

one value of w increases beyond any finite amount. These singular

points of the function w we shall denote by a^^ a2 . . . ock] they are,

in the absence of further conditions, non-essential infinity points

{infinities)^ for, it follows from the equation

tCtp,{z)
= —

Cp,{z)
—

I- (p,{z) -^(pn-i{z)
- -— 9nW,

that, though tv is infinite for ^ = a, the product wq)Q{z)
= —

9i(^)

still remains finite.

In such a singular point, besides the one infinite value, n — 1

further values of w, generally finite, will be found from the equation

«;'»-^9?i (a) + w^-^cp.iia) + . . .

w(pn-i{cc) + q>n{a)
= 0.

Only when9i(a) also vanishes, a second value of w becomes infinite;

when fPiicc) also = 0, a third; and so on. Such an infinity point a

can lose the non-essential character, because it is at the same time a

critical point. Critical points form the second Mnd of singxdarity.

2. To investigate an algebraic expression of the w*** degree f{w)
at a determinate finite point w^^ let us bring it to the form (§ 87):

/Xm')
= /(«;0 + (u-

-
«>,)/>0 +^^ A«*0 + • • '—

^^''V'K)-
If /* vanish simply for w = w^, we have f(iv^)

= 0, while the value

of its first derivate fiw^) at this point is not zero. But if there be

A roots = w^, all the derived functions up to the (A
—

1)'*^
inclusive

also vanish:
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If therefore w == w^ be a double or a multiple root of equation 1):

/(^(;", s'")
= 0, it can be so only for such values of as make the

derived function ^
^——

simultaneously vanish. From this theorem we

derive in Algebra the condition which subsists among the coefficients

of an equation that has a double root: Forming the resultant of the

equation and of its first derivate, either by continued division, or,

with E u 1 e r
,

as the determinant of the coefficients of a system of

equations, we obtain the discriminant as a rational integer

function of the coefficients. But in the equation f{w^ , ^"*)
= the

coefficients are integer polynomials in ^, accordingly we find on

equating the discriminant to zero, a finite number of points, that

we shall denote by /3j, /S.,
.. ./3i, which alone can be critical points

of the function w, i. e. points at which two or more values of w
coincide.

Besides these points a and /3,
there remains further only the point

infinity, which is to be investigated by means of the substitution

^ = '_ ;
it can be either a regular point, or a singular point of

the first or second kind.

93. It is now possible to show, that each branch of the algebraic

function proceeds in general continuously. Let us bound olf all

critical points in the "plane of z by circles of arbitrarily small radius,

and likewise the non-essential singular points. Let us consider some

one of the possible n values of w, ex. gr. the value w^ ,
at the point

==
z^^

that must not be a critical point or a non-essential infinity

point for w,, even though it may be a singular point for some of

the other values of Wj thus w^ must be at Zq a simple finite root

of the equation. If now we change continuously, by making its

representative point travel from 0q to another point Z along an

arbitrary curve which does not cross any of the bounding curves just

named, we are going to show that tv^ also varies continuously.

Denoting a point upon the curve near 0q hy ^^ + A0 and the

corresponding value of the fmiction hy w^ -\- Aw, if such continuity

exist, it must he possible^ for any numher d however small, to assign a

value h, so that mod Aw shall he less than d, as long as mod A0 ^h.
Putting 0= 0Q -{- A0 ,

w = iv^ -\- Aw in the equation:

let us suppose it arranged by powers of Aw:

f{0Q + A0, w^ + Aw) == ^0 + ^i^^ + ^2^«^' H ZnAw^ = 0.

The coefficients Zq, . . .Zn are functions of A^ and of the constants

0^)
and Wy For A0 = 0, a single root of this equation is Aw = 0,
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therefore Z,, must vanish, while the other finite roots each increased

by Wi y express the other n — 1 values of the algebraic function

at Zq. Since w^ is not a multiple root at that point, Z, certainly

does not vanish for A^ = 0. Now let the modulus of A^ be chosen

so small, that, for all values within the circle described with it as radius

around Zqj mod Z^ shall not exceed a determinate arbitrarily small

number A', the modulus of Z, will then not fall below a certain

amount B. This requirement can be satisfied; a superior limit of A-r

is determined by the assigned value -4, for, in the polynomial Z^^

there is no term free from Az, whereas Z^ contains such a term.

Now if we consider the form

/U,+A.r,«', + At(;)
=
Z,At(;{|^^+l + ^;Ae^ + ...^;^

= Z^Aw{l + P)

and put mod Aw = dy then
,

if B denote the smallest amount of Z^ ,

mod P = mod
[| J^ + §A^v + • • • ^ A^.'-»]

<^[y + ^ mod Z^ + • • • d» ' mod
Zn\,

therefore if C denote the greatest of the moduli oi Z^ . . Zn within

the limit assumed for Az,

modP<^[.f+C(d + ...d-.-.)]<l[^ + ^J.
1 C fiWe can choose d so as to make ^ ; 5 smaller than ~ , where £ is
Ji 1 — o 2

arbitrarily small. In like manner we can determine the value of A and

thereby the superior limit for Az, so that however small 8 is, we shall

have
-g -* < Y >

^^'^ ^^^^ ^® °^"^* choose A<i a -3-
• The corresponding

limit for A^ we call h. Now it has to be shown, that within the

circle having the radius 8 there is one and only one root of the equation :

f{z, + A^, w, + A«0 = Z,Lw{\ + P) = 0; .

tor any value oiAz, whose modulus < ^. This we show by taking:

l«g { A^o + A.^ tv, + Aiv)] = log Z, + log Aw + log (I + P).

When we conduct Aw along the circle round w^ with radius 8y log Z,
remains a constant, log Aw increases by 2 in:, since the zero point
is included, but as mod P remains smaller than the arbitrarily small

number e for all points on the circle, log (1 -f- P) does not change
its imaginary part by the circuit; in the circle consequently there is

one root A^t;, whose modulus is smaller than d, as was to be proved.

Accordingly it follows, that on a determinate path, leading from

Zq to Z without crossing the boundary of a singular point, each value

of the algebraic function w varies uniquely and continuously.

TjNIVFTiSTTT



158 The implicit algebraic function. Bk. II. ch. IV.

94. The algebraic function thus varying is moreover an analytic

function, i. e. at each regular point 2 it has a determinate differential

quotient that is independent of the differential dz = dx ^ idy. Let

and Wj -j- A0 and w -}- Aw denote a pair of corresponding values;

if A converge to zero, Aw also becomes = 0, it is required therefore

to determine the ratio -^ •

Let modAz'^h, then modA«^ < d, Now from the equation

f{;2 + AZj w + Aw) = 0,

that becomes on expanding by powers of A 5^ and Aw:

/(.,«,) + (If
A. + |£-A^)

in which the first term vanishes and the last are of the dimensions

of Az"^ and Aw^; dividing by Az we obtain:

\dz "f" dw Azy~^ '^

\dz^
'

"
dzdw As " dw^ \AzJ J

The quotient ^r-
is by this equation an ^-valued algebraic function

that for A ^ = has one and only one finite value, namely :

^Az Jjz=:o dz
'

dtv
'

because by hypothesis ,
not being a critical point ,

-~^ is not zero.

But we have just proved (§ 93); that a simple branch of an algebraic

function varies continuously in the neighbourhood of any point;

accordingly we have

/Aw\ _dw__ df , df
\AzJjz=o dz dz 'dw

'

a value proceeding continuously from the quotient of differences -^,
and therefore the required differential coefficient (derived function,

or, for brevity, derivate). Accordingly we have found for the implicit

algebraic function for any complex value the same rule of differentiation

as was already established for real arguments. The fact that here the

derived function is expressed also in terms of w does not contravene

the statement that it is determined exclusively by the value of 0,

because w depends uniquely upon z.

95. So far we have always had to speak of a determinate path
that the argument has to travel from 0q to Z, in order to keep in

view the variation of one branch
^<;^.

Now the question arises, whether

the value of w^ at the point Z will always be the same, however

the path be chosen. For, the algebraic function has n different values
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at the point Z\ it is therefore conceivable, that m;, may pass over

into these n different values at Z, according as z travels by different

paths from z^ to Z.

When two different 'paths leading from Zq to Z hound a finite

surface and neither enclose nor pass through a critical pointj the values

acquired by w at the terminal point Z are identical. If on the other

hand there be any such points within the surface, the values may
be different.

When there is no critical point within the surface, a finite

quantity D can be assigned that will be the minimum absolute difference

between the various values of w belonging to any single value z.

With Zq as centre and radius h a circle can be drawn, such that for

all points within it, one and only one of the values at any such

point differs from the value w^ by a quantity with smaller modulus

than ^Z), while the other values corresponding to the point must

differ from m?! by more than ^D; for w^j as was proved, is ^unique
and continuous function along every
continuous curve, and there can be

only one value differing from tv^ by
less than ^7) at each point in this

circle, because if there were two

such values they would differ from

each other by less than D. Let this

circle intersect the curve (I) in

the point z' and let us call the

corresponding value

A circle with radius W can be

drawn round z' as centre with a

similar property; let it cut the

curve (I) in the point z"
\
we have

iv"=w' -{- ^Wy (mod Aw; < \I)).

Repeating this process a finite number of times we arrive at a point
.:* with the value w^ and from this reach the point Z with the value

W =^10" + Aw, {modAw < ^D).

Xow if we draw between (1) and (II) a curve (2) from Zq to Z, near

enough to (1) to intersect the v circles in the points t\ t". , . t*, the

portion ZQt' must be within the circle round
Zq-^ ft" within the circle

round z'; . . .t^Z within the circle round z^. To t', then, belongs one

and only one value w = v' differing from w^ by a quantity whose

modulus is smaller than ^D. Now we must observe that if z move upon
the curve (2) from z^ to t', tv passes continuously from the value Wi

Fijf . 9.
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precisely into this value v and iuto none of the others. For, at each

point through which z passes, there is always only one vakie that differs

from w, by less than \J). If then w were to change continuously to a

value differing from w^ by more than^Z), this difference should somewhere

become equal io \D\ but this cannot be for any point in the circle. Thus

too since t' lies in the circle round z\ the difference between v' and

w' is smaller than \T). Similarly, to t" belongs one value v'\ differing

from the value w' by less than ^D, since t" is on the circumference

of the circle drawn round z . This value is obtained by travelling

along the curve (2) from t' to t"
-^

for were w to assume a diff'erent

final value, it would be one differing from w' by more than ^Z).

Therefore there should be upon the path ft" a point at which the

difference is \T>\ and this again is excluded, because t' and t" are

within and upon the circle round z' , Since i" lies in the circle round

the centre z" we have:
mod \y"

— w"\ < \J).

In like manner it can be seen that for the values at t* and z^\

mod
[t'^
—

^(;^] < .^D,

and from these points we arrive at the values W and F. Here the

inequalities are:

mod \W —w;\ < -ID, mod [F— Wr\ < \J).

Hence follows that mod [ IT
—

F] < D.

Now since by hypothesis the n different values of w at the point

Z differ from each other at least by D, IF and F cannot signify two

different values, so that we must have V= W. Therefore the curve (I)

and the curve (2) lead to the same final value. From curve (2) we can

pass over to a curve (3) closer to (II) and proceeding thus we must

ultimately be able to arrive at curve (II). For, all the radii h are

of finite assignable magnitude therefore it is not possible that the

number of steps can be infinite. Such a progressus in infinitum can

only occur when the interpolated curves are approaching a critical

point of w: for, in the immediate neighbourhood of such a point no

circle can be determined within which always one only of the

corresponding roots differs from w^ by less than
-|
D : the quantity

indicated by D, here converges to zero. If in the included domain

there be a non-essential singular point that is not also a critical point,

the theorem still holds. For, although the algebraic function becomes

infinite in this point, yet it retains the character of a rational function

and remains unique. In fact if we surround the point by a circle of

arbitrarily small radius, then, while z goes round this circle, that root,

whose amount increases beyond all limits as the singular point is

approached, passes through a continuous series of values, that returns
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back to its initial value. For in this case in the equation f{^, w"*}
=

we have at the point z = a^ (p^icc)
= 0, while

g), («) is dilBPerent from

zero. Therefore if we put ^ == a + Aa and consider the equation:

w*Aq + w;"-M, -f . . ^„ = 0, writing Aj, = g?j.(a + Aa),
we can choose A« so as to make Aq smaller than an arbitrarily small

number Af while mod [-4,] certainly remains greater than some finite

number B. Consequently it is true, in conformity with the proof

§ 93, of the equation:

^y + iv'A^ + iv'^'A., + • • • iv'^'An = 0,

that it has for each value of A a one and only one root, for which

modM;'=mod — < ^, or, mod t^ > ^ :

i. e. when z has gone round the arbitrarily small circle, the final value

of w can coincide with no other than the initial value.

From the theorem follows furtlier: If we make the argument z

begin at a point Zq and go round a closed finite curve not including

(iny critical point j
the final value of tVi at Zq is the same as that with

which it began.

96. These Theorems do not yet enable us to picture to ourselves

a branch of the function. For, having calculated the value m;, at a

point Zq, we can arrive at any other point by very diff'erent paths and

any two of them may include a critical point; thus it is still possible
that we may obtain at each point difi'erent values according to the path.

The perfectly unique exposition, already exemplified in the explicit

irrational function, is obtained here also by Riemann's method of

adopting for the representation of z, instead of a single plane, n planes
fastened together along their branching sections. But this requires that

we should investigate more closely the properties of the critical points.
Let the point z = be a regular point for all values of the

function w\ i.e. let n simple finite roots of the equation

/(-?"», tc;")
=

belong to it. Now conceive n different planes lying one on another;
to each of them coordinate in the point ;? = one of the values

w . . tVn\ indexing each plane by a number 1, 2, ... w. Further, mark
in each plane all those points /3,

which are critical points for any values

whatever of w^ and from these points to the point infinity draw curves,

intersecting neither themselves nor one another; in all the n planes
the curves proceeding from a point /J* are conceived to be identical.

Let us further coordinate to each point of plane 1 that value of w
into which w^^ changes continuously when the argument z is made
travel along a path not crossing any of the curves starting from the

(i points. In this manner a perfectly determinate value of w belongs
Harnack, Calcnlas. 11
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to each point, and this system of values w is in general continuous.

Only at the two sides of a /3-curve is it possible that the values of

w differ by a finite quantity. We shall distinguish these two sides as

left and right banks, fixing them by the direction from the point /3 to the

point infinity. We then determine as follows whether there is a finite

difference or not. Surround the point j3 by an arbitrarily small circle

and make the argument s go round it, starting towards the left at

its point of intersection with the /3-curve and returning to that point.

If in this circuit w^ has returned to its initial value and not passed
over into some of the n — 1 other possible values, the values of w
also pass over into one another at both sides along the entire ^-curve;
thus /3 is not a branching point in leaf 1

;
the curve starting from /3

in this leaf can be erased. But if the value of y) changes in this

circuit, we have on the left bank of the j3-curve values that must

be denoted by w^ ,
and on the right other values that we may call w^.

Conceive the leaf perforated along this curve. Let the same thing
be done for all points j3

that are branching points in leaf 1, then

after this coordination, «<; is a continuous function in regard to all

continuous paths in leaf 1 that do not cross any section.

Now when on the right side of a /3-curve in leaf 1 there are values

W2 different from w^ , among the remaining leaves, for which the values

w^^j ' . . Wn^ respectively were coordinated to the origin, there must be

one and one only with the property, that to the points upon the

left side of that /5-curve correspond all the values tV2. For, the path

along which we arrived at w^ from Wi*^ in the first leaf, must when
reversed lead back W2 into one of the values that w has at the point
z = 0. In the leaf in question, let it be called 2 and its value at the

origin W2^, the values Wo belong therefore to the left side of the /3-curve^

the same values w^ cannot however now correspond to the right

side, for it was assumed that the path, which leads to a point on

the right side, leads w^^ over into w^'j therefore it is not possible,

reversing the same path, to come from W2 to «^2^- Therefore on the

right side of the /3-curve in the second leaf there are either the values

w^ or new values w^. If the former, fasten the left bank in the first

leaf to the right in the" second and the right bank in the first to the

left in the second along the whole /3-curve, thus a winding surface

of the first order is constructed about the branching point j3.
The

leaves 1 and 2 form a cycle; a single circuit round the branching

point leads from the first leaf into the second, a further circuit, from

the second leaf into the first. The same point /3 can determine a

winding of the first order also for other leaves.

But in the latter case, when leaf 2 brings new values Wr^,

we have to determine that third leaf, which presents the values w^ on
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the 1(11 side of the /3- curve. Either, this leaf has then on the right
side of the ^-curve the values

«<?, ,
in wjjich case the three leaves:

1) with the values: Wi on the left, w.^ on the right,

2) with the values: m^j ^^ ^^® ^^^*» ^3 ^^ the right,

3) with the values: w^ on the left, iv^ on the right
form a cycle, and constitute a winding surface of the second order:

on completing a circle therein round the point /3, keeping it on tiie left,

we pass from leaf 1 into 2, in a further circuit from 2 into 3, and in a

third from 3 into 1; if we travel in the opposite direction along the

circle we come from leaf 1 into 3, from 3 into 2 and from 2 into 1.

Or else, the third leaf has new values w^ on the right; there is then a

fourth leaf which either concludes the cycle or leads to new values w^
iind thereby to an enlargement of the cycle.

Accordingly certain cycles of values belong to each branching
section /3; and an w-leaved Riemann's surface is produced by fastening

together the different leaves belonging to each cycle along all sections.

Throughout any arbitrary curve drawn upon this surface, whether it

cross branching sections or not, the algebraic function w is completely

unique and continuous. It can become infinite only in the non-essential

singular points «.

97. The only further remark we shall here make is on the values

of w at the point infinity. In our distribution of values to each

leaf, the point infinity occurs as a many-valued point, i. e. at the

two sides of the j3 curve that is a branching section in leaf 1, the

I'unction w takes for ^ = cx> both the values which ex. gr. w^ and w^
assume for this value of the argument. Within any finite distance

however small from the point infinity, taking the illustration (§ 79) from

the sphere instead of a plane, or in numerical language, however

^reat may be the value of s, complete uniqueness still prevails.

The character of the point infinity, as a regular point or as a

Itranching point with determinate cycles in regard to the different

values of «;, reveals itself, when starting from a leaf 1 we construct

a circle surrounding only the point infinity and no other branching

point, and consider how w changes value along this circle. By a circle

>urrounding only the point infinity, the Transformation by Geometrical

inversion plainly shows we have to conceive a circle round the origin,

whose radius can be arbitrarily great, but at any rate must be so

great that it shall include all finite branching points. When we

go quite round this circle keeping the finite surface on our right, this

signifies a circuit of the point infinity that is included on the left.

Accordingly we have the relation:

When tlie circuit of all finite branching points does not change a
Idue w^ , the point infinity is not a branching point for Wi ;

and conversely,
11*
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When on the other hand the circuit of all finite branching points

in a determinate direction brings on a cycle: w^ into w^-^ w^ into

w^j ... Wp-i into Wp , lastly Wp into w^ ,
the point infinity is a

branching point for the p leaves. The circuit of the branching point
in the prescribed direction, which becomes reversed in transforming by

Inversion, brings on the same cycle.

98, We shall work out the general theory in the following:

Examples.

Let the quantities b, Pi, ^2 ^^^® ^^J arbitrary complex values; and

let Pi be different from ^2- ^J ^^® substitution — , it appears that

there are no finite non-essential singular points. The critical points

can easily be determined by means of the explicit form:

tv=ib(0-p,)(^-P2)r.

For, at points at which the two values of a square root are equal,

the function under the root must vanish, therefore the critical points

are : z = p^, ^ = /Jj
.

In going round such a point the values are interchanged. For

if we consider a neighbouring point ^ =
/3, -j- re^^j where r is arbitrarily

small, the amplitudes of the corresponding pair of values

to = {bre^'P{Pi
—

1^2 + re^'P)}^,

differ by jr. If we choose one value and make q) go through all values

from zero to 2jr, e^^^-^^v occurs instead of e^v. In the last factor the

amplitude will not increase by 2;r, since it always differs arbitrarily

little from the amplitude of the constant number
/3j
—

^2- Accordingly
the root undergoes the change by the factor e^^, i. e. the two values

interchange. The same is true for the point ^2- Therefore they are

both branching points. The two leaves are connected along sections

which start from them.

If we call leaf 1 that which has at the origin the value:

«;,o
_

(6^_ ^^)^
_ ^B B, B,)* (cos

"-+*L+ *» + i sin
" +

»^+»') ,

b == B (cos a -\- isin a), ^^
==

B^ (cos ^^ + i sin ^,),

^2
= B2 (cos ^2 + ^ sin ^2)?

and leaf 2 that for which:

= {BB, B,)* (cos
^+*L±li+_25 + ,• sia ?Hi*>±*i±.2^),

we can decide what value of w belongs to each point in each leaf,

as soon as we have settled about the branching section. If this be

drawn from
/3j parallel to the positive axis of abscissae, we have to

determine what values belong to leaf 1 along the right line 0/3j .
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Let a point on this right line he s = r(cos ^, + i sin ^,); fur it:

w = \B (cos a+ * sin a) (r
—

B,) (cos ^,+ i sin ^j)

{
r (cos ^1 + i sin ^,)

—
Bj (cos ^.^ + i sin V-^) 1

}
j

or putting: r(cos V'l + » sin ^i)
—

B., (cos ^j + » sin ^.2)

= P(cos + * sin O), (0 < :^;rj,

the values for r < Bj are:

**;,
=

(i; (B,
-

r) P)< {cos
«-±*dl*± "^

+ / sin
«+

*!-++-''} ,

,.,
= (B (B,

-
r) P)4{co8

?+ *i_+.^i5 + isi„ li!^+»'|.
Now if r converge to zero, P becomes Bj,

= ^2 + ^? ^^^^s we see

that the first value passes over into tv.,^ and the second into
tv^*^.

The latter lies in the first leaf.

But in order to consider points for which r > Bj ,
let us surround

/3,
with a circle of arbitrarily small radius q and let us travel along it

from the point below
/3j

to the point above
j3,

on 0/3,, in such a

way as not to cross the branching section. If we put:

r (cos <p + i sin (p)
—

B^ (cos ^j + i sin ^,) = q (cos ;u + i sin %),

a glance at the figure, in which q cos % and g sin % can be constructed

geometrically for all values of r and p, shows that when % begins

with the value ^j + Bar it changes to the value ^j + 2^, so that

now at a point of the right line 0/Jj the value in the first leaf is:

(0 < 27t)

^, = (1^ (r
-

B.) Pf (cos
«_±li±^-tl!! + ,• sin --+^l±^-±l^).

If we surround the two branching points /3,
and p., by a curve, and

travel along it so as to keep the finite surface on the right, we pass

from a point of the first leaf by crossing one branching section into

the second, and then by crossing the other, back again into the first leaf,

so that therefore w returns into the original value of the function.

Consequently also the point infinity is not a branching point.

This appears by substituting ^ =
-^

in l)j for, the point ^'=0 is not

a branching point of the function tv = m -- ^t^ H^ - ^t^
))\ ^ut its

branching points are the points ^'= o y
^'^

q
'

2) w^ — 32W + z^ = 0,

To determine the critical points for this function, we calculate

fl = 3 (tv' — z)==i)cw ^ '
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and from this we substitute w"^ = ?: in 2); thus they will be determiued

by the equation z^ {z^
—

4) = 0.

At the point ^ = three roots of this equation vanish. To decide

whether this is a branching point of the three leaves or not, we take

an arbitrarily small value of r and put z = re'f\ then

«(;•*
— Zre'fw + r'^(?if = 0.

Since the algebraic function is continuous, the modulus of each value of

w must decrease arbitrarily at the same time as r does; but as the

ratio -7- is the root of an equation:

and thus can never become indeterminate, it may tend to a value

either finite or zero or 00.

Now we see by this equation that the limit of the ratio —
cannot be finite, for, its middle term increases beyond any finite

amount when r = 0.

If we assume that the limit of— is zero
,
the first term vanishes

in comparison with the second and third, so that we have

Lim (
— e^>J

= — ^^^^ therefore: Lim w = \r^ e^'^ ==
iv^\

this shows that close to the origin one root of the equation differs

arbitrarily little from ^r'^e^^'f'
=

^z^. This root is unique in the

neighbourhood of the point zero.

Again,
— can only tend to an infinitely great value if

Lim (^Y- ^ Lim ^ c''" + e'"p = 0,

or, as results from dividing this by
—

,
if

Lim(^y-Ae'>=0.\ r / r

It follows hence that either:

Lim w = //3 .r^e'^ = w^^y

or: _ . "f+ i7t

Lim w = ]/o . r'^e ==
w^^.

Two roots of the equation differ arbitrarily slightly from these values,

and for these two the origin is a branching point. Let us choose its

branching section along the negative axis of ordinates.

The other branching points are determined by the equation
z^ — A = 0^ which gives three values:

= /4, /3.,
= /4 (cos -^ + i sin ^J = j/4 e

j3^
=

//
4 (cos -J- -{-I sm —J = j/4e
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In order to establish in what manner the roots interchange about the

points ft,
let us start from a point z at the arbitrarily small distance r

from tlie origin on the axis of abscissae; the corresponding roots are

real and quam proxime:

w,^ = ir2, w^^ = j/3 r^, iv.^'^
= — /3 r^.

Two of them are positive and one negative, and all three remain real

us s moves along the axis of abscissa; towards the point /3,. For then,

>ince complex roots can occur only as conjugate pairs, and moreover

the real constituent and the imaginary vary continuously, a transition

to complex values can only occur in points wherein the real constituents

are equal and the imaginary constituents vanish, that is to say, in

branching points. In the point /S^
the value of the two equal roots is

the two positive values interchange; it is a branching point for the

leaves 1 and 2; let its section be chosen so as not to cut the segments

0?,, Oft.
Let us now consider a point arbitrarily near the origin upon the

right line Oft^'-i
when we proceed to this point along the circle with

radius r without crossing the negative axis of ordinates, we have:

Mti

w, = ir2e^ , w.,^==]/3r^e^= ysr^i' Wo ySr'^e

iin

3

A point upon 0/3., is expressed by z

root for the point ft.,
is ^

2 in

iV = 2^.

4ijt

substitute:

2ijt
3

If then we

an
tv = w'e^

'^^Chh,fj

the value of the double

2 ==» Qe

in our equation 2), it takes

the form:

W'^ — 3qW' + ()^
=: 0,

from which it appears
that iv' behaves along

Oft.2 just as w along the

radius
/3, ,

thus the two

positive values with the
Ain

factor c '
, Yiz.w^ andu^j,

interchange; therefore
ft.^

is a branching point for the first and third leaf; let its section be

drawn so as not to cut the segments Oftij Oft^.

Fig. 10.
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Lastly we obtain upon the radius O/3.5:

2 in
__ 2in 5i7t 2irt

and in the same manner it is established, that ^^ is a branching point
for w^ and W2'

Accordingly the system of branching sections is established. A
circuit of all the branching points leads each value back into the

initial value
; consequently the point infinity also is only a non-essential

singularity.

99. We are not going to enter into the methods of simplifying
the system of branching sections — such investigations are important for

the theory of algebraic integrals and their periods
— but we must raise

the question: By what general method can the different values of w,
which continuously follow each other as z varies continuously, be

calculated? For, the previous investigations have only demonstrated

that this problem is determinate, and in our simple examples, rising

no higher than the 2"^^ and the Z^^ degree in w^ only some methods

of treating the values at the branching points have found application.

The general problem of calculating the algebraic function therefore

still remaius to be solved (see Book IV), and will find its accomplishment

by means of Taylor's ser|ies
for complex functions.

We shall have occasion at the same time also for showing how
to determine the higher derivates of an algebraic function.



Till id Hook.

Integrals of functions of real variables.

First Chapter.

The definite and the indefinite integral.

100. Before consideriug the fundamental problem of the Integral

Calculus we must make ourselves acquainted with a theorem which

is supplementarv to the propositions proved in §21 and § 22.

From the Theorem of the Mean Value in § 22 we deduced that:

A function whose progressive and regressive differential quotients

vanish everywhere in an interval, is continuous in tliis interval and

in fact is constant. The example mentioned in § 17 shows that this

proposition does not admit of the enunciation: If the progressive

differential quotient vanish at each individual point in an interval, the

function is constant. For, the discontinuous function y == G{x)^ where

G signifies the greatest integer number contained in x^ is discontinuous

at the points 1, 2, 3 . .
.;

and yet we must admit that its progressive

differential quotient is zero at each individual Jjoint. For, however

near, ex. gr. we may assume a; = 1 — £ to be to the point 1, still

an interval Aa; < £ can be assigned such that x -{- tix <^ 1, therefore

«('+ A.. ^^
Jl\ tlic

lit'lj)
(t the Theorem of the Mean Value, however, we can

perceive ihul a continuous function, whose progressive diffcrn^finl

quotiuU vanishes everywhere in an interval, is constant, and iil the

same time prove the Theorem of §21 in tlif Innii :

Wl in interval in which f{X) 's, its pf<';ir':^.^^rc

ili/fcftidita niiulicnt is also a continuous /' "f''^) that rj/sfs

everywhere in this interval a determinate of its nyrcssicc

differential quotient that /^ id' idical with the
/ ive.

Whereas therefore the uniform continuiij ui the quotient of

differences in regard to x and A.r formed previously the hypothesis
whereon rested both the identit\ two differential quoti<'i)ts iind

their continuity, here tliat ideiitiiv is lo be deduced from the continuity
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of one of them; we shall also find that the uniform continuity of the

quotient of difi'erences arises from it.

The propositions we have stated can be proved by the following
considerations :

1. When a continuous function has throughout the whole of

an interval a positive progressive differential quotient, the values of

the function increase in this interval and its initial value is less than

its final value.

At each point, at which a continuous function has a progressive
differential quotient different from zero, a progressive interval AiC

can be assigned, within which the difference f(x-j-OAx) — f(x)
does not change sign, § 20. Hence, if the function were to decrease at

a point instead of increasing, f(x + QAx) — /"(ic),
and therefore also

the differential quotient, should be negative. Moreover the case is

inconceivable, that while x converges to a determinate point x' in the

interval, Ax should fall below any assignable limit. For, let us form

the difference f{x'
— e -\- Ax) — f(x'

—
s) and make s converge to

zero, then in case Ax were to converge to zero, this difference should

become zero in consequence of the continuity of f, but since at the

point x' there is a positive differential quotient, there must at any rate

be an assignable interval Ji ,
within which f{x -\- h)

—
f{x) remains

positive. Therefore f(x -\- h)
—

f(x
—

e) also is positive, however small

6 is chosen.

2. When a continuous function assumes the same value at the

extremities of an interval, throughout which it has a determinate

progressive differential quotient that is continuous in the entire interval,

there must be a point, at which the differential quotient vanishes.

Since the function attains the same value at the extreme points,

unless it remain throughout constant, it must undergo alternation in

its continuous increase or decrease, i.e. must have points at which

its differential quotient is positive and points at which it is negative.

But as this latter is continuous, there must be between these a point

at which it vanishes.

3. For every continuous function f whose progressive differential

quotient /\ is also continuous, we have in an interval from Xq to X
the equation:

^~^=/il»o + 0(X~^„)) (O<0<1).

For, if we denote the value of

JL Xq

then (p{x)
=

{f{x)
— Kx] —

{f{x^))
—

Kx^)\

is a continuous function of x, which has the same vakie, zero, at both
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extremities Xq and X of the interval, and its differential quotient is

continuous as that of /* is; therefore there is a point

at which:

9>, {x, + 6(X - a:„)l
= f\\x, + e(X -X,)] -K=0.

The equation :

-ir^~-=/".f^«+ e(X-x„)l, or: fJE+J^^m = f,i:o + Qh),

holds for every value of 7i, when x and x -{- h denote any points in

the interval. For an arbitrarily small prescribed value of
/*,

we can

choose X so that x -j- h may represent any point a;, in the interval.

Hence we have the result: For values of h however small, the equation

can be fulfilled at every point x^ in the interval. Making 7j converge
to zero

,
while maintaining the value x^ ,

the right side passes over

continuously into f^ (a;J, therefore the regressive differential quotient is

identical with
f^ at every point, as was to be proved.

Accordingly the Theorem of the Mean Value holds for a continuous

function if its progressive differential quotient is likewise continuous;

and hence follows : A continuous function, whose progressive differential

quotietit vanishes throughout any interval, is constant in this ititerval

We shall further for completeness deduce the uniform continuity
of the quotient of differences. It has to be proved, that in con-

sequence of the continuity of /' and f\ for every value of x, a superior
limit can be assigned for h and Ax, such that for all smaller values

r f(x-\-h-\- Ax)- fix + h) fix + Ag; - fix)
1

L Ax^ Ax J

remains smaller than an arbitrarily small number d.

The first quotient can be brought to the form/j(x -{- h -\- QAx),
the second is equal to f^{x -{- Q'Ax). Since /\ is continuous, we are

able merely by choice of h and A a? to make the difference

/i (^ + /* + Ao;)
-

/*, (a; + 0'Aa:)
smaller than d.

Thence it follows, that if the function f(x) and its derivate
/', {x)

be defiued for an entire interval from a to 6, a superior limit can be

assigned for Ax", sufficient, for a given value of d\ that every smaller

interval Ax between a and h shall satisfy the inequality

For if, while x converges to a value x\ Ax were to fall below any

assignable limit, arbitrarily near this point it would become impossible
to satisfy the inequality;
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by any assignable value of Ax, but this would be ^contrary to the

continuity of f^,

101. The fundamental problem of the Integral Calculus consists

in the inversion of the problem of differentiation
;

it may be expressed :

Any arbitrary unique function f(x) heing given in the interval from
X == a to X = h; it is required to find a continuous function F{x)
possessing the property that its derived function is identical with f(x)

for all values from x = a to x = b.

Regarding the function f(x) we make here the following restrictive

hypotheses: first, f{x) is to be throughout the entire interval finite;

second; f{x) is to be throughout the entire interval continuous, or if

not, its discontinuities must be finite, and, however numerous, they
must occur only at isolated points.

When f{x) is a continuous function, the required function F(x)^
if it exist, is such that its progressive and regressive differential

quotients coincide everywhere in the interval. But when f(x) is

discontinuous at separate points, so that at any such point the values

Lim f{x -|- d) and Lim f{x
—

d), that by hypothesis are determinate,

are different for d = 0, the function F(x) must be such that its

progressive differential quotient at this point is equal to f(x + 0), and

its regressive is equal to f(x
—

0) ;
these abridged notations being

employed for the limiting values above named.

Now the first question to be answered is whether under these

conditions and with these data the problem is v definite or not; that

is, whether there are not different continuous functions whose

derived functions coincide in the interval from a to b. Suppose that

besides F{x) a second function (i>(x) were found whose differential

quotients in the interval a to b likewise equal f(x)'j then <^{x)
—

F{x)
is a continuous function having its progressive and regressive differential

quotients throughout that entire interval zero. Such a function can

only be a constant, as was proved in the last Section. Hence:

cD(^)
=

i^(^) + Const.,

i. e. all continuous functions, that have the same determinate values of

the progressive and regressive differential quotients respectively in an

interval, differ from each other only by an additive constant whose

value is arbitrary.

This result can also be stated as follows: There is only a single
continuous function whose differential quotients coincide with

/'(a;)
in the

interval a to 6, and which has a determinate, arbitrarily chosen value

at the point x= a. For
,

the additive constant is uniquely fixed by

establishing a value of the function at the point x =^ a.
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102. To determine the function F{x) ou the hypothesis that

f(x) is throughout continuous.

A continuous function F[x) is connected with its progressive

diflfereutial quotient by the equation:

where 8 denotes a continuous function of A a;,- that converges to

zero with A a;; the value of 6 for every finite A a; is unknown as long

as the values of F are unknown. We assume the interval from a

up to any value x<h to be of finite length ,
and divide it into n

parts by the points rCj, iCj . . . ^n-i; let t^j, ffj
• • • ^^n-i, dn denote the

lengths of the parts x^
—

a^ x^
—

x^j . . . Xn-i — Xn-2j x — a:„_i;

at the point a let F{a) = const, be chosen at pleasure ,
then the

required function F{x) must satisfy the equations:

F{x,)-F{a) =dj{a) + d,d,

F{x,)-F{x,)^d,f{x,) + d,d,

I. F{x,)
-

Fix,) = dji^x,) + d, d.

F{Xn-l)
- F{Xn-2) = dn-lf{Xn-2) + dn^,d,.l .

F{X)
— F{Xn^{) = dnf{Xn-x) + d,d„.

From addition of all these equations we find:

Il.i''(xO-J'(a)={rf,/-(a)+'?/(^,)+rf/W-rf.-.A^.-ii)+<4/-(3;»-,)H-A,

writing the unknown quantity:

^1^1 + ^2^> + d,d, H r7„_id„_i + dndn = A.

Now if we denote by d the greatest in absolute amount of all

the values d, , d., , . . 6^, the absolute value of A is certainly not greater

than the absolute value of the product:

d(di + d^-\ d,)=^d{x -o);
so that for a continuous function F{x) whose derivate is to be f(x),

the value of A will become smaller than any assignable quantity when the

partial intervals d all fall below a certain amount. Therefore should

equation II. serve for calculating the value F(x), it is requisite that

as the number of partial intervals is arbitrarily increased, the expression

within brackets on its right shall converge to a determinate value

depending on x and on the constant a, and moreover that this value

shall be a continuous function of x with the derived function f{x).

103. In order to show that this first requirement is actually

fulfilled, we proceed as follows. Let the sum:

S = dj(a) + d,ax^) + dJ{X^) + . . .

dn^ifiXn-i) + dnf{Xn-l)

Ije altered by breaking up each of the intervals
rZ, , d.^

. . , dn anew
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into subdivisions; let S' denote the corresponding sum of products
formed like S by multiplying each new partial interval by the value

of f at the beginning of that interval; let n' be the number of the

new intervals; after this each of these intervals is to be broken up
into an arbitrary number of subdivisions, let the respective value of

the sum of products be called S'' and the number of intervals w";

proceeding thus we obtain a series of arbitrarily increasing numbers:

n, n, n" . . . ^(*) . . . etc.

and a corresponding series of sums:

S,S\S" ... /SW ... etc..

This series must represent a determinate limiting value
,

i. e. for

any number d however small, it must be possible to find a value w^^^

such that the difference between S^^^ and any following value ^(*+'')

shall be smaller than d.

We first remark, that a sum of the form S can be represented

always by an expression of the form:

III. S={x- a) f{a + e{x ~ a)), where < < 1;

for if, taking account of the sign, the greatest value among the

coefficients f{a) . . . f(x„-i) be denoted by (r, and the least by K,
we have K{x — a) <, S <Z G{x — a), or ^ is equal to the product
of a; — a by a value between K and G. Now because f(x) is

'

a

continuous function of x, it assumes at least once each value between

the least value K and the greatest (r, it overleaps none, therefore there

must be a point at which f actually has the value that is requisite for

equation III.

Now if each of the intervals from a to x^ from x^ to X2 ,
etc.

be divided into smaller intervals, new sums come up in place of the

products d^fia), d^fix^),..-^ namely, when the dividing points in

the ¥^ interval: from Xk-i to Xk, are denoted by x^^^\ ^2^\ • • • ^I'-i^*^

the product dkf(Xk~\) is replaced by the sum:

2J-{x^''^-x,-l)ax,-l)+{x^'^--X,('^)f{x,^'^)^

In analogy with equation III. the sum on the right can be brought to

the form:

2^= {xj,— Xk-i)f{Xk--i+ OkiXk— Xk-i))
=

dkf(Xk-i+ Qk(oCk
—

Xk-i)) .

^ 0, < 1.

Thus, partition of the intervals of S inio new
subdivisions leads to a value S\ that only differs from
the former by each term dkf(Xk-i) containing in place of
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f{Xk-i) another value of /" that belongs to a point within
the interval ch.

In like manner, S'' arises from S' by the occurrence in place of

the term dkf{x'k-i) in S' of another value of
/' that belongs to a

point in the interval d\'^ where d'k denotes that one of the n' partial
intervals that begins at the point x\^i\ and- so on.

But now since the function f is continuous, at each point a

finite interval can be discovered wherein the various values of f dififer

by less than an arbitrarily small finite quantity s. Therefore by con-

tinued subdivision the intervals can certainly be made so small, that

in each of them the absolute differences of the various values of f
shall be smaller than a; let the number of these intervals be n<*>,

the resj)ective sum S^^\ when we advance to any of the further partitions

we have:

abs [>S(*)
-

/S(*+i')J ^e[d, + d^-\ Jn(t) } ;

but as the total interval is always equal to {x
—

a), this difference

is smaller than a(x — a).

When therefore the partition has advanced so far, that in each

interval the fluctuations of /"are smaller than ——— = f
, any further

partitions can alter the amount of /S^*) only by less than d; therefore

the series >S, S', S", etc., approximates to a determinate limiting value.

But it must still be investigated, whether this limiting value

depends on the original partition into n intervals and the con-

sequent partition of each of these into smaller intervals, or whether

it is quite indifferent in what way the total interval from a to a; is

iiroken up into subdivisions that ultimately decrease below any finite

amount.*) That the latter is the case, appears from the following
consideration.

Let the original partition be into m parts, the corresponding sum

being /S,. By further dividing these intervals we obtain as before a

series of values <S,<*), >S,<2), . . . /S/*> . .
., the numbers of intervals being

))i'y m'\ . . . m^*> etc.. Let the partition have advanced so far, that

cacli lurther partition can alter the value of iS/*) only by less than d.

iSow let us conceive these two partitions: into mW, and into w'*>

intervals, combined into a single one, then to it belongs a sum H that

differs from /S<*> as well ^s from
iSi<*> by a quantity smaller than d\

I for, this third partition arising from their combination is to be

ft regarded as a continuation of each of the two former. Abs
[>S'*>

—
'S/*)]

K is therefore smaller than the arbitrarily small quantity 2d, i.e. the

B series S^ has the same limiting value as the series S.

*) This is investigated with still more detail in § 142.

k
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Thus as a particular case we can conceive the interval from a to

X broken up into equal parts A a;, of which the number n increases

without limit; the required value is then expressed in the form:

J.im {Ax{f(a) +f{a + Ax) + f{a + 2 Arr) H f{a +^^^^^lAx))}

(^Z^ = Aa;, for A:r = 0)-

Employing the sign of the differential dx = Lim Axj we follow

Leibnitz in denoting the sum hy the abridged symbol:

X

IV. i)\x)dx = Lim
{ Ax{f{a) + f{a-\- Ax)-] f{x-^Ax))}

a

for Ax =^0, {^^ = Ax)',

and call it the Definite Integral of tlie function f(x) taken from the

lower limit a to some determinate upper limit x.

The integral sign / is a sign of a sum; on the left side of the

defining equation IV. stands a symbol ,
on the right an expression that

can be calculated. It is to be observed regarding this formula, that

X as upper limit represents a definite value, but under the integral

sign it signifies a variable, since f is to be formed for the points

f(a)y f{a + dx)^ f{a + 2dx)f etc..

The conception of the integral as a sum gave rise to an erroneous

impression. For, if we first put Ax equal to zero on the right side

of equation IV., since all terms have the factor Ax, we obtain only

summands whose value is zero, and however many of them are added,

the resulting value of the sum is necessarily zero. An integral could

therefore never have any value but zero, or equation IV. should

contain a contradiction. This is not removed but only obscured by
the further contradiction: f{x)dx is not zero but an infinitely small

quantity. Euler therefore (see foot-note § 105) completely rejected the

definition of the integral as a sum, and maintained only the definition

that follows from inversion of differentiation. Meanwhile, as the

above development shows, this same definition leads unavoidably to

the conception of a sum and this contains no contradiction, when

we bear in mind, that

/f{x)dx

is not the sum of the limiting values of f{x)Ax, but the limiting

value of the sum of the terms f(x)Ax'^ in other words: what is

required is, first to find the sum for a finite number of terms as a

function of A a;,
and then to determine its limiting value for Aa;= 0.
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We have, ex. gr. for Ax == ~^^ -
:

b

I
xdx = Lim Ax(a -[-{a-{- Ax) -\-

- • -

(a -{- 7i — 1 A x))

a

«= Lim anA a; + Lim Ax^ **^^~
^,:•*

=
(b
—

a) a + Lim i {b
—

a) (b
— a — Ax) =^ ib^ — i a».

In equation IV. the proposition holds for any value of Ax however

small, that the sum on the right is equal to the product of x — a by
some value between the greatest and least values assumed by /" at

the different points of division; but since by hypothesis /' is con-

tinuous it must actually assume this mean value at any rate once, i. e.

we have also:

X

V.
ff(x)dx

= (x- a) f{a + (x
—

«)), where .^ ^ 1.

a

104. But the determinate limiting value is moreover (§ 102) a con-

tinuous function of its upper limit x; for every number 8 however

small, a number h can be found such that:

Z±h X

abs r rf{x)dx
-

ff{x)dx']
< d,

a a

on the hypothesis, that x ^h also lies within the interval a to b.

For, from the definition as a sum we have:

x+A X

i)\x)dx— i)\x)dx = Lim Ax(Ax)+ /Ta;+ Ax)+ . "f\x+ h -Ax))
a a

x-fA

=J)Xx)dx.
X

But by Equation V.:

x+A

^}Xx)dx = hf{x + Qh), ^ ^ 1./
Since f(x) is throughout finite, h can be chosen so as to make this

expression arbitrarily small. Similarly:
«-A X

rf(x)dx- lf(x)dx UmAx{f{x-h)+f{x -h+Ax)+'-f{x-Ax))

X

I'f(x)'di
x—h

TIabxaok, Calcnln*. 12
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and by Equation V.:

-
I}{x)dx

== — hf{x - 0/0, ^ ^ 1.

It also follows from these equations, that the integral regarded as

a function of its upper limit, has f{x) as its derived. For we have:

x-{-h X x-^h

Lim
-jA ffX^)

dx —
I f{x) dx\= Lim y if{x)dx= Lim f(x + /*) ,

a a X

X— h X X

Lim —
j;\ I f{^)

dx —
I f(x)

dx\= Limy / f{x) dx= Lim f{x
—

It).

a a x — h

At points in which f{x) is continuous, both f{x -\- Qh) and f{x — Qh)

pass over continuously into the value
/"(a;); the progressive and regressive

differential quotients are here identical.

Accordingly the conditions are fulfilled which are necessary and

sufficient for us to obtain from Equation IL the Theorem:

The continuous function F{x) required to possess the propertyy
that

its progressive and regressive derived functions everywhei^e in the interval

from a to h have the same values with the continuous function f{x),
X

is equal to the definite integral lf{x)dx increased by the addition of

a

an arbitrary constant:

X

F{x) == Cf{x}dx + Const.

The function F{x) is called the Indefinite Litegral of f{x). The

constant is fixed, once the value is given that F is to have at the

point a. For if we put x = a in. the equation, we have :

a

I f{x)dx
= 0, thus F{a) == Const.

a

Conversely therefore the definite integral can be described as the

difference of the values of the indefinite integral formed for the upper
and lower limit:

X

F{x) ~F{a)=
l'f(x)dx.

a

X

105. The definite integral i f(x)dx admits of a simple geometrical
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interpretation, when the values f(x) are represented as the ordinates

of a curve, or more precisely as the ordinates of the corners of a

polygon of arbitrarily many sides,

for here the condition that /'

may admit of representation by
a curve or of being differentiated

is not necessarily fulfilled. If we
construct for the points:

ttj a -\- Aa;,

a + 2Aa;, ... (a +w— lAa;), x

the ordinates:

f{a),f{a + Lx),

f{a+ 2Ax)...f{a+ n^}Ax),f[x)
and join consecutive extremities

of these ordinates by right lines, the area ABCD bounded by the

polygon and by the coordinates, being a sum of trapezia, is equal to:

^^ jAoHhAo+A^) _L na+Ax)-{-na-{-2Ax) _^ f(a±^^iAx)±f{x)\

or equal to:

+ 2

s
Ax

(/•(«) -A^)l,

where S stands for a sum of products of the previous form. Now if

we make Ax converge to zero, i. e. in geometric terms: if we construct

the polygons corresponding to the

function f with more and more

corners, S passes over into the

value of the definite integral:

O

x Jf(x)dx,

Fig. 12.

while the second term of the

equation converges to zero.

Thus the definite integral is

—J equal to the number of units of

an area when the values of /"are

interpreted as ordinates of points ;

of the area bounded by a portion of a curve, by the ordinates of

its extremities and by the axis of abscissae, in the particular case when

the polygons of the function f converge to a definite curve.*) If the

•) From the solution of this geometric problem: that of measuring the

surface bounded by an arbitrary curve given by a function, the Integral Calculus

originated simultaneously with the Differential Calculus from that of the problem
12*
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values of f in the interval from a io x differ in sign, the definite

integral measures the difference of areas. This geometric intuition

brings home to us most simply that the definite integral

j f{x)dx

has still a determinate finite value, although the function /' is discon-

tinuous at any finite number of points c^, c^^ . , . Cm whilB remaining
finite.

In that case:

b c,
— C2-O ^m~^ b

jf{x)dx =jf\x)dx + jf{x)dx H if\x)dx + jf{x)dx

is a determinate finite quantity, namely the sum of the areas bounded

by the several polygons or portions of curves and the ordinates of their

extremities. At such a discontinuity of /; the indefinite integral

F{x) = jf{x)dx + Const.

has as its progressive differential quotient f(c + 0), for we have;

^Jfix)dx^fic + Qh),
c

and as its regressive differential quotient f(c
—

0), for we have:

c— h e

ff{x)dx—ff{x)dx
Fic-h)~F(c)

— h —h
c— h

+ \jmdx^f{c-Qh),

as was originally required when proposing to find the function F.

of tangents. Leibnitz and Newton in the writings named in § 23 gave the first pro-

positions of both; before this, Fermat (1608—1665) and Wallis (1616—1703) had evol-

ved the fundamental conception of a summation for measuring areas and applied
it to parabolic curves. But the principal merit of the further cultivation of this

calculus belongs to the brothers James (1654—1705) and John (1667—1748)
Bernoulli of Bale, who strove to outbid each other in the solution of problems

by its means, John Bernoulli compiled in the years 1691 and 1692 at Paris

his Lectiones mathematicse, the first text-book on the integral calculus; in 1742 it

appeared in print in the complete collection of his writings. In forwarding them

to Euler, John Bernoulli wrote: "Exhibeo enim mathesin sublimem, qualis fuit in

infantia, Tu vero earn nobis sistis in virili aetate." Euler's systematic treatment

of the integral calculus: Institutiones calculi iutegralis, appeared at St. Petersburg

1768—70.
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10(>. Hitherto the formula

F{x) = ff{x)dj;
+ Const.

has been derived in the sense of expressing the indefinite integral

F(x) from the definite integral; it therefore requires the calculation

of the limiting value of a sum with arbitrarily many summands. It

can however inversely be employed in calculating this limiting value

of a sum, when the indefinite integral F(x) is known. But now since in

the differential calculus the derived functions f{x)
= F'{x) belonging

to whole classes of functions F(x) have been calculated; inversely, the

indefinite integral F(x) belonging to each of these derived functions

f(x) is also known. On the hypothesis that this integral is

unique and continuous in the interval from a to &, we obtain

by the difference of the values of this function the definite integral

from a to b. This calculation is still valid when in the interval

from a to h the function f(x) assumes infinite values, while F(x)
remains finite, since at such a point c we have to put:

c c—d

Jfix) dx =. Lim
\j fix) dx\

= Lim
( F{c — d)

- F(a) )
= F(c)

-
F(a)y

a a for(f=0 ford =

and it holds even for an infinite interval from a to cx), or from
— CX) to +00, when the function F(;x) retains a determinate finite

value actually at these limits, if we introduce the definition:

-(-» w

(fix) dx= Lim
I jf {x) dx\ = Lim

{ F{w) — F{a) }
= F{oo) — F(a),

a w=oo «7= »

The indefinite integral of f{x) is usually denoted by the symbol
d ffix) d X

ff(x) dx + const.
,
so that ^^^

^—=
f(x)-^ f(x) is called the function

CvX
that is to be integrated; F{x) the integral function.

107. Fundamental formulas:

dr dp^'
Uax-) =-' 3)

''-- = e"^'dx.

dainmx , -n, dcoamx •
,= cos mxax. o) — = sin mxdx.m ^ tn

'^ ^nx = -7-^^,
.

1)
- d cot X

(cos x)*
^

(sin x)*

asin~*a; =s 777= • v) — a co8~^a: = ,. =
Vi - x*

' Vi-x

(/tan-*a;== -

' '

,
• H) — dcoi-'

l-fa:^
^ '*

l + a;«
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From these we find by inverting:

i)Jx"'dx=^^+ const., (m ^ - 1).

2) l^-
=

l{x) + const. 3) ie'^'^dx =^ + const.

/Sin 7)1 DC i COS KKh SCeosmxdx= h const. 5) lsmmxdx== h const.

6) I
—V- = tan X 4- const. 7) / . f = — cot x + const.

^ ^ cos^a? ' ^^ sin^ ic
'

/* dx r dx
^) / YTZTx^

= sin-i;r 4 const. 9)J yi-^r^,
= — cos-^a; + const.

10) /p|:^^2
= tan-^^ + const. 11)

/y-f.'^^a
= — cot" ^^ + const.

These formulas only state in another form the same thing as is

already asserted by the first eleven equations.

But now the definite integrals can be got from these; the region
in which they are valid, determined by the requirement that the

integral function remain real, continuous and finite, is assigned in the

brackets adjoining; the following equations furnish new information

since they express the calculation of the limiting values of sums.

b

^"^'^^ - ^H- 1
^ C*'^^-^' < a < oo, < 6 < CO)

a

if m + 1 > the formula holds also for a or 6 equal to 0, if

m -{- \ < the formula holds also for a or 6 equal to oo.

a —a
b

Jjnb ma
enx^^ ^ ^ 1_

^ (if m > 0,
-- OO < a < + cx)m

a — oo<h < + o6)
b

A-\ I J sin (mfe) — sin(ma) ^ ^ ^ .

4) f COS mxdx = —^ ^—
, (— cx) < a < -f- c»

— oo < 6 < + oo)
6

r-, /* . T COS (m 6)
— COS (ma) ^ ^ ^ \

5) f sin mxdx == ^—'— ^

, (
— oo < a < + ^
— oo < & < + oo)

b

6) /
—-^ == tan h — tan a, (in every interval from a to 6, which

^y COS X
a

does not contain odd multiples of ^ it).
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7) I -.-^
= — coih -\- cot a, (in every interval from a to ?>,^ sin X

a

which does not contain it or multiples of ;r).

/>

8) and 9) I ——^^ =3 sin" '6 - sin-- a == - cos-*6 + cos~*a,
*J Vi — x'

(_l^a^+l, — 1;^6^+1).
6

10) anil 1 \) fjZL-t
= tan-16 — tan-^a = — cot-'6 + coi-'a,

a

(
— cx)<a< + c»,

— oo<6< + '^)-

108. We can also assign the indefinite integral for functions

compounded of the simple ones; for this we require the General Rules

that can be derived by inverting the Rules of Differentiation (§ 26).

If:

a
J fix) = /iw + /:, {X) + /:, (:r) + • . . + /nW
we have:

jWx^dx =Jt\ ix)dx +Jf,{x)dx +jf,ix)dx +
. . .

ffnix)dX,
that is, the integral of a sum of functions is equal to the sum of the

integrals of the several summands. This is proved by differentiation.

If:

b) F(x) = q>(x)ilf(x), then F'^x) = f\x) = (p(x)xlf'(x) + ^(ic)qD'(^)»

therefore inverting:

/ (p {x) ^1/ (x) dx -\- i jI) (x) (p Qc) dx = (p (x) t (^) .

write this formula:

I (p{x)'il)'{x)dx
= (p{x)^{x)

—
I ip(x)(p'(x)dx

ur airain:

jcp{x)d{^{x))
=

q){x)7l){x) —Jt{x)d((p{x)),

it shows how to reduce the integral of a function, consisting of two

factors of which one can be integrated, to another integral. This

reduction, called the process of integration by parts, in many cases

simplifies the problem.

Special theorem: If:

F(x) = a(p(x), then F\x) = f\x)
=

a(p'(x)y

therefore :

I a(p'{x)dx = aq){x) = a
f cp (x)dx.
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c) Let us introduce a uew variable for x into the formula

F{x?^ ^ffix) dx

by the equation a; = <3p(w), such that to continuous consecutive values

of X from a to 6 correspond uniquely continuous consecutive values

of u not undergoing any alternation of increase or decrease, so that

-^ does not vanish; thus let F^x') become Y(m), and let f{x) become

^(ii). We have then the relation:

TPf / \ /v \ , , ^ d^(u) du

and so:

whence :

du dx

d^{u) ,
. ^ dx , r \ ' r \

V(w) = I t(u)(p'[u)du.

Substitution of a variable by the equation x = q)(u)

reduces the determination of the integral of f:

I f(x)dx^ to that of:
j ip{ii)q)\u)du]

by an apt choice of the formula of substitution this integral
may be more simply found than the original one.

When the original is to be taken between the limits x == a and

X = h, the new integral is to be formed with the limits Ua and U(, for

which a = g){Ua), b = (p{Ub), so that the values from x = aio x = h

are uniquely related to the values from Ua to w^.

But if the relation between x and u is not uniquely convertible,

the total interval must be broken up into partial intervals in which

a mutually unique relation can be established.

00

Thus, when the integral ex. gr. \ f (ax -\
] dx is proposed,

a and & being positive, if we put ax -\
=

tt, to each value of a;

corresponds a unique value of w, but while x passes from to oo, ti

which began by decreasing, undergoes a change and subsequently

increases; to each value of u correspond two values of rr,

as we can realise geometrically by drawing the hyperbola. We can cal-

culate the minimum value of u by means of ;t^
== 0, that is a r = 0:

(X X X

we have x ==
-\- T/ —, u = 2j/ab.



if

§ 108, Reduction by substitution. 185

As X goes from to 1/
,
u diminishes from oo to ^j/ah and

we have:

VI.

on the other hand
,

in the interval from x = 1/ — to oo
,
u increases

from 2 yah to oo, and therefore:

j'fia.
+ I) d. =

:L//00 (l + ^^^.) au.

\fb_ 2Vab
'

a

Hence adding up we have:

00 oo

" 2V^b

We proceed to apply the general theorems to various functions f\x)

with the view of determining I f{x)dx hy means of the Fundamental

Formulas.



Second Chapter.

The integral of rational algebraic functions. Partial fractions.*)

109. The integral of the rational integer function of the n^^ order :

f{x) = ttQ -\- a^x -\- a^x^ -\-
' '

-\- ttnX""

is, by Theorems a) and b) § 108 and by Fundamental Formula 1) § 107 :

F{x) = I f{x)dx
=

flo \ dx -{- a^ I xdx + • • • + ^« /
x'^dx

= a^x + «! Y + • • • a„ ^q^ + Const.

110. A rational fractional function: f{x) = .^^^ , tp being of the

m*^ and cp of the n^^ order, when m'>^n can always be resolved

into an integer function and a proper fractional function, i.e. a

function in which the order of the numerator is at most n — 1.

This only requires the division by the denominator (p{x) to be

carried out until the order of the remainder becomes less than n. As

the integration of the integer function has been given already, we
have only to determine the integral of the form:

/ . . dx
tp{x)

in which z^ is of lower order than (p and they have no common root.

This proper fractional function can he resolved into a sum of

fractions with constant numerators and with denominators that are

linear functions or powers of linear functions.

Partial fractions.

111. Let «,, ttj? • • • ^n the n roots or vanishing points of

(p (x)
==

aQ -\- a^ X -{-'-' -\- x""

be real or complex, but first let them all be different. The coefficient

of the highest power of a? in 9) is supposed unity, it can always be

made so by putting the original factor before the entire quotient

*) Leibnitz, and John Bernoulli : Acta erud., 1702—1703. Euler: Institutiones

calculi integralis. Vol. I. Sect. I. Cap. I.
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and therefore also before the integral. The w vanishing points shall be

assumed known and cp(x) resolved into the product:

(p(^x)
= {X

-
a^) (x

—
a^) . . . {x

—
«„).

Calling the product of all these factors except the first, <jp, {x)y so that

q)(x)
= (x

—
«,) (pi(x)f we are going to show that:

The fraction -)^ can be resolved in one way only into the form :

(fix)
J J

where A^ is employed to denote a constant and tpi{x) an integer func-

tion of the order n — 2 at most. For we have identically:

4f(x)= A^(p,(x) + (x
—

cc^)^p^{x),

therefore :

Now for this to be an integer function of the order n — 2 at most,

the numerator on the right must be divisible by a; — «, , i. e. must

vanish for a; = a,; thence follows:

The value qpi(«,)
=

(a,
—

a.^) («i
—

"3) • • • («i
—

««) ^^^s not vanish,

because all the roots a are different; moreover by means of the

derived of (p(x) it can be written in the form (p'(cc^)^ since we have

for X =
a^^

LimJ^ = 9.'(«,)i

accordingly :

^
qp(a;) g)'(a,) a? — a,

"^
9, (a?)

'

Proceeding in like manner we shall resolve the quotient ^^4^. into the

form:

^g =^ +^. -»>- ^.(.) = (.-a,).p,(.);

further :

::S=^+Wy "^(^^ = (^
-

«»> ''»(^>' «*«••

Jn the second quotient on the right the order of the numerator is at

least one lower than that of the denominator, so that ultimately:

where An-i and An are constants; thus we have proved: >

The proper fractional function can be resolved in only one way
into partial fractions of the form:
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c\ il^jx) __ At . A2
I

. . .

-^»
_

We can also now give a uniform method of determining the coeffi-

cients Aj independent of the order in which they are calculated. For,

multiplying both sides of equation 5) by cp{x)y we have:

Substituting for g){x) everywhere its value as a product, each deno-

minator cancels; and if we put in for x any vanishing value a^ of 9,

all terms having the factor x — «a disappear, leaving the term with

the coefficient ^^j so that

^(a;fc)
= Ak . Lim :^^j- = Ak(p' {a^) ,

forx=a;t *

thus

(p(ak) cannot vanish, since (p{pc)
= has only distinct roots. Obviously

also, since (p\x) would vanish for a multiple root of cp{x)
=

0, the

present method does not apply when there are multiple roots.

Accordingly :

ip{x) ^ "y 'V'K) 1

l\{(^) ^^^^M f dx . tl^jccz) f dx
, _ .

,

^("n) r_dx_ _

Each integral I ^_ ^^
is brought to the Fundamental Integral I -z- = l(^)

by the substitution x — ak=0j dx=d0, thus the final formula is:

I. r^ dx =4^ l{x
- «0 + 4/^ Z(rr

-
«2) +

^(aJ
h -^^^^ K^ - ^n) + Const.

Examples:

== X- + |?(a;
-

1) + i/(^ + 1)
—

22(ri;) -f Const.

The definite integral can be had from this formula for every finite

interval to which the vanishing points
—

1, 0, + 1; dc> not belong.

2) J^-^^^'^^^c^-o + '^ic^ + o + c-
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The logarithm of a complex quantity is many- valued, but as its

values differ only by an additive imaginary constant, it is indifferent

in the indefinite integral which of its values is attributed to each

individual logarithm. The transition to the definite integral by for-

mation of the difference of two values of the function, requires that

the value of the functipn at the one limit shall proceed continuously
from its value at the other limit; compare the end of next Section.

112. If the coefficients of ip{x) be real, it may have complex
roots but they are conjugate in pairs (§ 90). When it has, we can

prevent complex values appearing in the final formula, provided the

coefficients of 4* are also real, by combining the partial fractions

relative to conjugate complex roots.

Let a + iP and a — ifi be two conjugate roots, then

^J"^-r|y is a complex quantity: M -{- iN^

and ~'(~Er^ ^^ *^® conjugate value: M— iN'j

therefore :

a; — (a + t|J)
•

a; - (a
—

if) {x — a)* -f |3«

is a real quotient. The constants of the numerator can also be directly

determined, by starting from the identity:

SS = ij^^i^ + W>' -"- ^w = (^' + ''^>''.(^)'

hence:

p(x) = (Px + Q) <p, (x) + (
x--^^ + /3^) t, {x).

Substituting for x the two values a + */3 we have the equations:

^(«±*-^) + «=Ml'
whose real and imaginary parts give two equations to determine

P and Q.

The integral:

/ ^*+« dx
(X
-

a)' + fi'

can be resolved into the integrals:

dx

i'/TJ^^41^
+ (^« + «)/> - a)* + ^

Putting X - a^ + P'= ^> (^— a)(^a;
=

^(lz^ the first of these becomes:

The second can be reduced, by putting x — a = p0^ dx = pdz, to a

Fundamental Integral :
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Pa + Q r dz _ Pa+^ x-a

Accordingly: '

n.X f^tqV dx =
f- K--^ + P) + ^-"-t^ tan- ^^ + C.

Treated thus, the last Example gives the value:

/^ti dx = 4 Z(a;' + 1) + tan-'^ + C.

Moreover the definite integral can now be calculated at once from

this for any finite real interval by the formula:

b

/:
-^-T dx = ^l -K^-^ + tan-1 h — tan-^ a.

From the two different forms found for the same integral it is

obvious that we must have for all values of Xj

i^n-^x = - Y K|^) + ^o"st..

But this is in fact involved in § 74 which gives :

«

1^^
= «

^^^il^fl^
= - ^ ten-^^ + C = 2i tan- 0, + C.

Example:

J dx r
dx^

1 _j cx-^-h
I p

This expression is real, provided ac — ?>- > 0, i. e. when the roots are

complex. Under the same condition we have the definite integral :

-4-00

,
otherwise this formula does not hold.

j a+2bx-^cx^ Yac — b^
CO

113. If the function cp have multiple roots:

q){x)
=

{x
—

aY^{x
—

P/^ •••
{x
—

xYm^ x^ + L^-] f- A,„ = w,

the foregoing process of resolution into partial fractions no longer

applies; but we have now the theorem: The quotient -j-^
can be

always resolved in one way only into the form:

1)
VlM _ __A^ + ^ ,

where cp{x)
= (x^ay^cp, (x),

Aq denoting a constant and
i/;, (x) an integer function of the order

w — 2 at most. This follows from the identity:

2) t (x)
=

A,^{x) + ix-a) t, (X) ov:t,{x) = ^W-_^»-P'(^'
.
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In order that this quotient may be an integer function, its numerator

must vanish for a; therefore we have

•PiC") 9^' (a)
'

where q)^* (a) means the value of the A**' derived function for a: == «
;

the constant A^^ is neither zero nor infinite.

Applying the same process to the second quotient on the right

ot equation 1) we shall obtain:

The value of -4, , however, can vanish, since we may have ^, (a) = 0.

Continuing this method we obtain the equation:

4) ^^f
^ ^y-+ ^r-1 -\ ^\—o+ '•' ^^^'+ iM .

The quotient -~r in which the order of the numerator is less^
op, (a;)

than that of the denominator, can be resolved by the same rule for

each multiple factor of
<3P,,

so that we have in general and in only
()iH» wav flift equation:

il>{x) ^ Aq . . At I
. . . ^-1

q>{xj (a;-a/'
'^

(^x—af'-^
"' «-«

_i ^ji
I

^ \- • • '
^"'~*

.

The constants ^q, i?o • • • ^^o ^^^ not vanish, any of the others may.
The best way of determining the coefficients A in equation 4) is

to put X — a = hy then since :

3!^^A^, = ^, + A,h + A,h^+ + A,.^^h^-' + ^^±1, • /.'.
;

^0, A^j . . . Ax,-i are the first A, coefficients when the quotient on

the left is expanded in ascending powers of h] when this is done by

Taylor's series, denoting ^~^ by 0, (a) we have:

.I„
=

<J>,(«), ^1,
=

*,'(«), ^,= ,?-2<t),»,
• • . ^.,- .= 1^ 0/.-'(«).

Hence in the general case:
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But,

V = — 7—7 3
—

T if ^ > 1, and /
—-~ = lix — «),

hence :

III

+

The integral of any rational algebraic function ^^^ can he ex-

pressed hy a combination of rational algebraic functions and logarithms;

to integrate it explicitly the vanishing values of (p{x) must be determined;

moreover circular functions can be introduced instead of the logarithms.

Example:
ip [x) 2x^ — ^x^ — a; + 2 1

9(^ ~(ic+ if{x — 2)2

~ '

If we put X = — 1 -{- hy then

^{—\-\-h) _27— 18;i+ 2l/i2 — 11/^3
_j_2;i4^

;j3

if>{x) ^ 3__ , __2 ,

1

tpi^x) {X + 1)3
"•

{x-\-\)'^ {x
—

2)2
'

/iK^)_

Cp{x) ''^=-*T»-ii)i + 2K^ + i)-s^ + C-

114:. It is also possible in the general case just treated to pre-

vent complex quantities appearing in the ultimate result, if, when

{p has complex roots, the coefficients of q) and ^ are real; here

again the partial fractions belonging to conjugate complex roots are

to be combined. We start directly from the theorem:

When cp {x)
==

(^ _ «2 _|_ ^"^y-q)^ (x), there is only a single way
in which to effect the resolution:

'^(ic) ^ PqX -f ^0 . i/>i(a;)

where P^ and §0 signify real constants.

We must have

^{x) = {P,x + Q,)<p,{x) + ^^,(^) (^
- «- + |3'),

1. e.

Accordingly:

-1^(0?) ^ . Pq^ + ^o
I

Px(c-\-Qx
I

, ;^-iHh^^-,_|_ y(a;)
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An integral of the form:

when A > 1, consists of the two paiN:

<lie first of ti

J .'^ -
1 f-

r dy

J (2/* +

' ' '

')'

The value of <lie first of these is at once:

J,
r 'X a)fl:r ^__ p 1

Let us convert the second by substituting x — « =
!/,

into the intrMi

dy

§*)"
li'ii Since:

)^'

= -(2A-3) ~^-j-.-\-{2X - 2)B^
"-'

we arrive at tlie formula:

IV /'
'^y = 1_ "

[

2A-3 r dy

Repetition of this recurring formula:

/*
'^y L_ . ___y . JLll±_ r__ ^2/

'

etc

reduces the proposed integral to algebraic functions and to the inteninl:

Example:

/'
4- 1 7 /

xdx
J.

r '

= -
i •

(-FT~«7 + * ^x^ryy + I
•

^4 1
+ ' '"""''' + ^'

115. To integrate:

f x'^-Ux ^.

i = y— 1
,

w — 1 < n, —
:7r < f^ < + jr.

The n roots of the denominator are complex and all are different:

*) Euler: Inst, calculi integr., Vol. I., Cap. I, § 77—80., Cap. VIII, § 3.51—355.

Dirichlct: A'orlosiinjren iiber die Theorie der bestimmten Integrale. Bearbeitet

-^'Ml Mf\ .

-.j; 1S71. § 27.
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a+(2A:+l)s

X = y— e«» = e " = cos —^——
\- % sm --T—X—

]c = 0, 1, 2, .. .n—1.

Accordingly the type of the constant numerator of its partial fractions is:

1 t(m-n)—J—-^-—
1 (2A:+ 1)

^t = -e " =
-, ^

— e «
,

therefore:

If we separate the logarithm of the complex quantity (§ 74) into its

real and imaginary parts, supposing x real, and call:

P,= iZ (x^
- 2r.cos ^+-^^ + l)

,

Qu = tan-

a 4- 2k A- in
sin !

a-\-2k-\-ln
cos '— ' X

n

incorporating the multiples of iti in the arbitrary constant we may
write this indefinite integral:

Let the definite integral be required between the limits zero and oo,

when all roots of the denominator are complex or negative, thus

— Jt < a < + 7r. To obtain it, Fk and Qk have to be determined

at the limits and oc: they must however remain continuous in the

entire range from x = to x = cx).

The value of each P vanishes for x == and continuously in-

creases as the values of x increase. But inasmuch as

•>^o cc -{- 2k -\- In -,

x- > 2x cos —' 1
,

if we write:

a-\-2k-\- \n
/ 2x cos —' —' 1 \

P, = |Z(x^) + 4Z(] -^^ ),

and combine all terms multiplied by ^^(a;*) in the sum, they amount to

7.—«— 1 . 2 « m n t

this formula is no longer valid when m = n. In this case the integral
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between infinite limits is no longer finite; hence we introduce tlie

hypothesi.^ tluit /// is at most equal to n — 1.

The second part only of each 7^^ has now to be considered in J;he

summation and all of them converge lu zero for x = go.

In order to determine tlie value of Qj^ let us observe, that since a

was assumed < ;r, we have

tor all values of /^ = 0, 1
,

. . .,
n — 1. For x = 0, Qk = tan- *

(tan /i);

h'i us put it ofpuil to ^ in whatever quadrant this be.

ll u lie in the first quadrant (cos /[* > 0, sin a > 0), Qk increases

as X does, it becomes + i^r for a; = cos ft. For greater values of

X the argument is negative, for a; = oo we have Qf,
= jr.

If
ft

be in the second quadrant (cos a < <»^
sin ft > 0), the argu-

ment is throughout negative, for x == oo, Qt = ^.

If ft be in the third quadrant (cos ft < 0, sin
ft < 0), the argu-

ment is throughout positive, for x = cx), Qk = tt.

If ft be in the fourth quadrant (cos ft > 0, sin fi < 0), Qi de-

' as a; increases, it is |;r for a; = cos ft; it becomes less than

.^j greater values of a; and for .r =
cx>, Qk = ^^ Accordingly:

a-\-2k-\-'in"- = _ '

_;>:{„ ^-^1JL±J3],

The summation is carried out as follows: we have for any value of

X<27t

The si'foii 1 I'ormula results by differentiating the lir^t with respect to A.

Putt ill- // /. ^=2m7t we obtain:

_ n nc "

,- ^ .
tluTl t

III j[

-_ .K inn I .)
, ^ —^

Accordingly wiien m < w:

n

Sul.-titutiiiu z for aj" in this formula and writing a for the proper
rational tractioji -

,
we obtain the t'nndamental definite integral:

J -

,

'

=
Bu^uTi >

— 7t < a < + 71',
see further § 159.

13*



196 The integral of rational algebraic functions. Bk. III. eh. II.

110. An expression of the form:

j f(x^j x^, .'.. x^)dx

in which a,h, . . . I are rational fractions, and /"the sign of functionality

denotes a rational algebraic combination of the quantities involved,

is reduced to the form of a rational integral by a simple substitu-

tion.*) If m be the least common multiple of the denominators of

ttjl), . . . l^ and we put x = ^"% dx = mz^~^dZj then:

ifix"-, x\ . . . x^) dx = m //"(^""S ;2?*"*,
. . . z^"') ^s"*"^ dz

is the integral of a rational function.

Example:

=
6y(-

Z^ + ^« + ^5_ ,4 + ,2 _ 1 + ~^j^dZ
= _ l^s _j_ ^^e-' + ;e« — %z^ + 2^j3 _ g^ + 6tan-i^ + C;

and replacing the value of z\

J iil^^^' dx = — ix}/x + ^x}/x+x~^l/x'

+ 2yx — 6}/x + 6tan-i |/^ + C

^) Euler: Instit. calc. integr., Cap. I, § 27.



Third riiiiplrr.

The integral of explicitly irrational functions.

117. 'I'lie riiiii'tidn to 1m' iiitcirrated is sai<l to be explicitly irra-

tional, when, hcsidrs integer or I'ractional [xtwcr.s of the variable x

(see l;i>i l*araL:r;i|ii . it contains polynomials in x which are affected

witii tract ioiial t\
|h in.-iit^. TIi'' simplest of these is flif linear l»ino-

niiiil aiid it
,L;'i\

cs ri.-f lo:

Jf{x, (a + hx)'i ]dx,

where
;>

and q denote integers relatively prime. This is converted

into the integial uf u rational t'unetioii by substituting:

tlius:

f/\.. (a-{-bx)^] dx= ij f{''';\ ^')--'
''(:.

We st\lt' an inteural of the form:

I x"'-^(a + hx^y'dXj

a general binomial integral, where >y^ )>, ]> stand for any rational

fractions. "^n Without anv restriction of generality, however, we may
al\' integers; for it' they be fractions wIk.s*'

denominators have v as least common multiple, we can put s^ for x.

Further, n may be always assumed positive, for otherwise we may write;

It* now ji
aUu is au integer, the function is at once rational; but

when p IS a traction, the function can in certain cases be brought to

a rational form. l*utting:

a + hx- = ,, X =
j'^-^" j

°, dx =
lj{l-- ")

"

lU,

we obtain:

'"
-1 — -I

/V-,"!" -': o.A/{'-^}; /J-- ,'•" „.,!,, o,,^L/|'-f^-H" /+v-'rf,.

1J4.
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When " is an integer, the first expression becomes rational by

substituting s = fi
, q being the denominator of the fraction p.

When p -]
—- is an integer, the second expression becomes rational

by substituting:

b~~
— ^ '

118. Now although it is only under these determinate conditions

that the binomial integral can be expressed by explicitly irrational

algebraic functions and by logarithms*), yet in all cases its integration

can be reduced to that of certain simple forms.

Consider the differential x''^-^{a + hx'')Pdx as a product, either of :

—^ • (a + hx"y\ or ol: -—r,—^-v^— ' ic'"""
,

then integrating by parts:

L
j x^--\a -]-hx-Ydx==^'^^^^^^''

— ^

II. / x-^-Ha+hx^ydx= ^"'
"

\pf)^- - -^,^, (x^^-'^-\a+hx-)p'^^dx.

We can alter these formulas so that in each integral on the right, one

exponent only shall be changed. In equation I. let us write:

Lm-^n-l
(^ _j_ Jj^n-^^

p - 1
J^.^

\^

Luc - 1

(^^ _J_ ^^wydx—^ jx'''-^
(«+ Ix"")P-^dXj

also in equation 11. :

/
^rn-n-\ (^, _|_ ^^-vi)p+idx^a I x"'-""-^ {a-\-hx"')

P dx+11 x'"-\a-\-hx''ydx,

and combine in each case the integral on the right side with the

equal integral on the left; we find:

III. ix^-^(a + hx-ydx===^^'^^~'^+-^^ I x"^-\a+hx-)p-'dx,

IV. / x-^-'(a + hx-ydx = "^^^Zli^Jll^^

n)
V / oS"'-''-Ha + hx")Pdx.

{np + ^w) '

Thus the formulas III. and IV. diminish the exponents p and m
by the quantities 1 and n. These formulas can also be regarded as

reducing the integrals on the right to those on the left. For unifor-

mity let us solve each equation for the integral on the right, having
first put p for p — 1 in III. and m for m — n in IV- the results are:

*) Tsehebychef: Siir Fintegration de diffdrentielles irrationnelles. Liouville

Journal, T. XVllI. 1853.
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V. / a;"*
-
H« + ^^"Y (^i^ =

an(p+ 1)

VI.

am J \ I /

These formulas of reduction become useless when the quantities

in the denominators vanish; but in all such cases the integral becomes

rational by the substitutions already assigned; the only cases worthy
of special notice here are m = and ^ip + w = 0; for these:

f^n-'^a.^lf^^a.. (a + ... = .),

Formulas IV. and Vi. show that the binomial integral can be

expressed by algebraic functions and by an integral in which m the

exponent of x is between zero and n^ and therefore the ratio m : n

between and 1.

The forms 111. and V. show that the binomial integral can be

expressed by algebraic functions and by an integral in which the

exponent p is likewise a positive fraction between zero and 1.

Finally if neither -
vanish, nor the two fractions — and p

supplement to unity, the value of the integral can be expressed only

by au infinite series, by expanding in a series of powers the binomial

of the function to be integrated, and then forming the integral of this

series multiplied by x"^~^ (Chap. IV).

119. The group of irrational functions next in order consists of

those in which the square root of a polynomial of the second degree

enters*):

Cf^x, ]/R)dx, li = a + 2hx + cx\

wlitrt' F means a rational combination of x and yE, The sign of

/li is to be taken positively unless the opposite sign is prefixed.

Arranged by its rational and irrational parts we have:

*) Euler: loc. cit., Cap. II, § 88—93.
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F(x l/U)=^ G(x)J-JI(x)VB_

G, H, (t| , H^ signifyiug integer rational functions. If we rationalise

the denominator of this quotient by multiplying by

G,{x)
~ H,{x)fU ,

we have:

F{x. y'R) = (p{x) + ^{x)yB,

€p and ^ denoting rational functions. We are concerned henceforth

only with the irrational part, which may be presented in the form:

^{X) .B ^ fix) ^ S^AnX'' , ^ ^jn
1

ioY
J

the rational function f\x^ breaks up into an integer function

and a proper fraction tbat can be resolved into partial fractions.

/*x^dx
——r^— is reduced by means of a recurring formula

J*
dx

^j7^
• In fact:

d (a;"-i ya^2boi+~cx-)

= (^^^^^x»-''y'cr-i^Yh^-f~cc^' + ^jI~:'£l±m\ ^x

fn ^lx""'^ {a-\-'lhx-\-cx^) , x""
' ^

(b -\- c x) \ -.

~\ Vb
'~

VB )
^'

hence by integration :

T „ i./"t5 iT l*x'^~^'^dx , i. r, rx'^~^dx
,

Cx^dX

Putting for n the values 1, 2, 3 . . . in succession, we have:

/'xdx
1

/y;
h i* dx

J^x^dx

X r^ 36 f*xdx a /*dx

\2c ticvK^^ "1 V2c2 2c/ y y^ 1

/o^dx^
__ x"' y^

bh rx^dx _ 2a Pxd^x
VB ~~^cy^ JcJ yb 'scJ Ye

/x"- __ S?*^
_j_

15&^ — 4ac\
/"T^ _ (6¥ __ '^ab\ /*dx~

\Jc Jc^ "• 6C^ / ' V2c3 2C2/J J/^
•

In general:

fi^-^^-%^-+d'vf



§110—120. Simplest trinomial irrationality. 201

The coefticients Uy and ^ are determined by recurring formulas that

can be found directly by differentiating this equation, thus:

or, multiplying both sides by yli and arranging by a, />,
c\

2^«,(w
— V + l)a;»-''+i + i;2^«,(2n

- 2i/ + l):i;'—X" = c

Hence, comparing coefficients we have the relations:

l-==c«,n, =
ca._,(n

—
1) -{- bcc^{2n

—
1),

=
ca.^{n

—
2) + 6a,(2w — 3) + a«, (n

--
1),

in general:

()=c«,,(n— 1/+ 1) + ?;«,_,(2w-2r + 3) + aa„_2(M-i/+2),

Note: When 2; = 0, i^t = a + ca;^ then the middle term in the

recurring formula for «v disappears; consequently a.,, a^, and iu general

every even a vanishes. Further we have:

=
ca2m-{-i{n

— 2m) -\- aa2,„_i(n
— 27n -\- 1)

therefore :

_ 1 a{n — 1
) _ a« (n

-
1) (n

—
3)

^^^~ en' "»""
c«n(n — 2)'

"^
—

^s ^(n - 2) (n -4J'

a^mH 1
= (— 1)'

c'^+i n{n — 2J (n
—

4) . . . (n
— 2m) .

When n- is odd, /3 vanishes; but when w is even = 2^, we have:

.^==-a«.,, ,=(-!>> a^('3i>-l)(2l>-3)...5.3
^

^

c^22)(2p — 2) (2i)
—

4) ...4.2

In the first of these cases the integral

cz

reduces to algebraic functions only; in the second case to algebraic
functions along with

J Va-^cx*
120. The integral

/
* dx

J Va~-\-Ux-^cx*

can always be ^iveu a rational form. When the coefficients a, 6, c
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are real, we distinguish between the cases when c is positive and

negative, and endeavour whenever possible to express the integral

function by means of real quantities only.

1) When c > 0, let us substitute:

z^ — a
/-p (^2 + a) Vc-ir 2hz

2(^Kc +&)
'

2(0^c + fc)

thus both X and j/ll are expressed rationally and uniquely by 0. From
the equation:

a -\- 2hx =- 0'^ — 2zx]/c
it follows that:

*

Idx = sds — xds}/c— jidxj/c , (h + 0j/c) dx = {b
~

x'l/c)d0,

dx dz
or :

—=- = -—
:

•

Vn h + zVc
Hence we have:

= -^i(h + j/R^ + xc) -\-a
yc

2) When c < 0, if a > 0, let us substitute:

ya-\-2hx-\- cx'^ = ^a + zx

_ 2{gVa — b) /^ _ yaic-i-z^) — 2bz dx _ J^dz_^ ~~
c-z^ ; r -^

c - ^2 '

J/B ^0- z^

Therefore

II

/dx
ct r dz 2 C dz 2 , 1

2
, ^^

\y-ii)

2 . , VM-Va . .,= - y= tan-1 —-=- + C.
V—c xy—c

If a < • and the roots of a + 2&a; + cii;^ = are complex,

so that ac — 6'^ > 0, B is negative for all real values of Xy and ^jR
is imaginary; in this case there is no way of avoiding the introduction

of imaginary constants in expressing the integral function.

But if both roots a and
j3

be real, then for values of x between

a and
/3, ]/B is real; in this case we can give the integral function

a real form by substituting:

3) B = a -\- 2bx + cx'^ = c(x
—

a) {x
—

/3), j/B = ix — «)^,

consequently :

. c^ — ixz^ /^ c{§
— a)z .dx 2dz
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Thus we have:

III. /;f5 = 2 /^^, = '•' / ^^r^ = - Jr tau-' ,-.!=. + G

V-c {x-a)V-c^
These substitutions can also be employed from the very beginning
to convert

fF{x, /B) dx

into the integral of a rational function.

Note. The case c = reduces to the simplest binomial integral,

the integral then becomes:

/' _^__ = \}/a + 2lx+ C.

Ivll. In ortler to determine the integral:

let us begin by investigating I —^ ;
we find a recurring formula for

it from :

tlius if a ^0:

n— 1 (g -4- 2&a?+ c^*) j _! (6 + cx)dx

x'Vr
"^ ^'

x'-'VTi
'

(n
— \)adx {2n

—
'6)bdx X^ ~ ''^)cdx ^

I /
^^ ' jTi^ tin— /i h r dx _ n— 2

c^
/ da;

VB

When we put for w the values 2, 3, 4, . . . in succession, the integral

/dx
--— *

The formula is generalised by substituting x = z — p; then,

jR = ^ + 2Bz + C52 = (a
_

26() + cq"-) + 2(?;
-

cq)z + c/^

thus:

Now write on both sides a, 6, c, for A, By C, and for z put a?,

also for brevity write :

a + 26p + cp^ = /(e), 6 + cp = ir(<.), c=in(>),

then, provided /\()) does not vanish, we have:
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J
/*

doc^ ^^
I yii _ 2n-3 f\Q) I'

dx
•

J {X-QrrB~ {n~l) fig) (x - q^'' 2 (n-1) f{Q)J Ix-qf-^Vn
n -2, f'JQ) r dx

2(n-l) mj (x-q)^-^Vm'
From this we see that:

TT r dx "'^ ^vYm , o r dx

J {x-qtyr ,4-' (o^-^r-^^' J {X Q)yB

The quantities a^ and
(i can be calculated by recurring formulas that

are found by differentiating this equation :

V= n — 1 v=:n- 1

i ^b+cx y «^ yj, y in-v)a^

which becomes, on multiplying up:
r= n— I v=.n— 1

1 = (6 + cx) ^cc,,{x
~ qY— {a-{~2bx + cx'^)^(n~v)a,.{x

—
^y-'^

+ p(x
- qY-^

or, writing x ~ q == 0:
^

V= n— 1 v=.n~ 1

Arranged according to the coefficients this equation assumes the

form :

r==n— 1 v= n — 1

v=zn— 1

-
ir'(9)^(« -V -I) «.^'+' + ^^»-'.

Hence :

/•((.)(«
-

1) «, + 1 = 0, /((.) («
-

2)«, + /•'((.)(«
-

|)«,
= 0.

In general for v = 3, 4, . . . n — 1 :

HI. t\Q){n-v)a,+f"{Q){n - v +\)a,,^,+ ^f'\Q){n-v+\)a,-^,= 0,

Note. The formulas developed in this section undergo a change
when f\Q) ==

0, and therefore ^ is a root of

a + 2hx + cx'' =0.

Multiplying the identity I. by f\Q) and then putting ({q) = 0,

we find:
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= — -IL __J^__ 2n — 3
^,

. r dx

__ ** ~ ^ /•"/ ^ r ^^

or putting w + 1 for ^i:

Hence:

lir. r((,)a„(«-i) + l=0,
/-((,)«,(«

- t; - i) + ir(p)(w - !')«,_,
= 0,

or:

r/==r-l>-i (/"^(P))' (n~l)(n-2)...(n-y)
'^ ^

(rCp))""^' (2n - 1) (2n - 3) ... (2n - 2v - 1)

'

In this case therefore the integral can be expressed by algebraic

functions only.

122. The substitutions given in § 120 enable us to calculate

the integrals:

/*
dx , r dx

xVIi
^"'

J ix-Q)yM'

In expressing the former, it makes a difference whether a > or a < 0.

In case a > 0, we employ substitution 2); we find:

I. fe=. f p.^U^.ya^^J xVR J zVa-h Va
^ ^ ^^

Va \ « /^

Putting for x the value z — q and working precisely as when we
made the same generalisation in la. § 121, we get:

•

J ix- ,)VB
^
vm \ ^^^ /

"^ '

a real formula, if f{Q) > 0.

In case a < 0, we employ substitution 1); we obtain:

II. r^- =2 /-^^= ^.tan-S^jL..+C--4.tan-^^^

Hence results by the same process of generalisation:

ir. T—'^-^ = i^^i^ tan-^ m±^^)Ll + c.

Lastly, in case a < 0, c < 0, a + 2hx + cx"^ = having its

roots real, and consequently of like sign, we have further by means
of substitution 3):
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111 /*-i^~ = 2 /'- ^1- _ = -
/'_„

''•

tan-',4^ + 0,

or

This equation can also be generalised according to the above process:
we have

j{x-Q)yB yi^ct-Q){^-Q)y-c r ^~Q ^oc-u)y-c
'

where a and /3 are the roots of the quatdratic equation R = 0.

Note: The integral j F^x^yR) dx can be discussed by the help

of geometrical considerations. Denoting the value:

l/'R = i/a + 2hx~+ cx'^ by tj,

the equation: y""-
== a -\- 2bx -\- ex""-, referred to Cartesian coordinates

represents a curve of the second order; this is a hyperbola if c > 0,

a parabola if c = 0, an ellipse if c < 0, but, when at the same time

ac — &2 > the curve is completely imaginary. The axis of abscissae

is an axis of the curve, to each value of x correspond two equal and

opposite values of ?/, or + }/M.

The integral: I F(Xf y)dx is uniquely related to the curve, i.e.

to each of its joints, real or complex, belongs one value of the

function to be integrated ,. for ,
the sign of the root is determined by

the point of the curve. Now our investigations have shown, that

such an integral extended along a conic can be transformed into a

rational one^ that therefore the coordinates Xy y, of points on the conic

can be expressed as rational functions of a variable z. If conversely

we assume this theorem, that is found in the projective geometry of

conies to be a fundamental theorem, the methods of treating the irrational

integral are simple deductions and lose all appearance of an artificial

substitution. Thus ex.gr. for the hyperbola y'^
= a -\- 2hx -\- cx'^j c > 0,

the directions of the asymptotes are given by y'^
— cx'^ == 0. If now

we construct a system of right lines parallel to one asymptote, we

have for the equation of this system y-\-xyc=z^ where z stands

for a variable. Each of these right lines meets the hyperbola only

in one finite point, its other intersection being always the same point

at infinity, and the coordinates of this single finite intersection are

expressed as the following functions of z:
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^~~'>{zVE~-\-b)'
'^~

2{zVc + b)

But these are the formulas of the first substitution in § 120. Both

the other substitutions of that section are accounted for by analogous
considerations. By considering the pencil of rays at any point of the

conic, we obtain all possible substitutions by which the integral

is made rational. The study of algebraic integrals in general first

gains connexion and perspicuity by the geometry of algebraic curves;
this was first brought out in the fundamental works of Aronhold and

Clebsch (Journal f. Math., Vol. Gl. G3. G4).

Regarding the present problem we have still to remark: the two

fundamental integrals to which every other was reduced, were:

Now considering one of the solutions we established for them, ex. gr. :

^^^:l^l(b + cx + ]/cB)+C,f
r dx 1

/
VRgq) -m -

\ fJQ) {X-Q)
\ , ^

we perceive that the integral function does not become infinite at the

points y = 0. These intersections with the axis of abscissae, at which

the tangents to the conic are parallel to the axis of ordinates, are

branching points of the function y but are not infinities for the

integral function. On the other hand, in the first formula the argu-
ment of the logarithm is infinite when x becomes infinitely great.

For the hyperbola there are two real points in which a? = oo and

for the ellipse two complex points.

In the second formula when x =^ q the argument of the logarithm

vanishes, and therefore as:

the logarithm itself is infinite. The one fundamental integral is

logarithmically infinite at the two points at infinity upon the conic,
the other at its two points upon the right line x = q. This con-

nexion between the two integrals becomes evident, when we can treat

the equation of the line at infinity like that of any other right line.

VVe can do so most simply by using homogeneous coordinates.

Putting a; = ^ , y = ^- ,
the equation of the line at infinity

is
u-^
= 0; that of the conic is a;,^

=
ax^'^ + 2bx^x.^ + ca;,-; and
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we have:

/dx
/ x^dXi — Xjdx^ r dx Cx^dx^ — x^dx^

y ~J ^^^2
' JW^Q)y'~J (.-rT- QX^^'

Hence we see, what is lost sight of in the non-homogeneous form,
that the first integral is only a special form of the second, since

it involves the intersections of the conic with the right line x^
=

0,

instead of those with the right line
rr,
—

gXr^
= 0. (Aronhold loc. cit.).

When ({q) = 0, the right line ic = 9 is a tangent to the curve,

for, its two intersections have the same coordinates x=Qj i?y
= 0;

but then:

dx 2 VB . f,
-J- ^1/;

00.

(x-q)VB f'{Q)^

and for x = q this algebraic expression becomes:

/ 2_ Vb \ ^( 2_ b±cx\ ^ (
1 \ _

V f{Q) x~^) \ f[Q) Vb ) \ Vm)
The same holds for the parabola where it meets the line at infinity.

123. From the indefinite integral we can form the definite for

two limits between which the integral function remains continuous

and does not become infinite; thus for instance, if
q"^ > 1, we have by

formula III' § 122:

/^t-i

«=+i
^^„ . _ (__ '^_ tan-i 1/^-^^- .

^^ - ^'
^

{x-q)y\—X^ \ Vq'—I '9+1 X—lJ— 1 a;=:— 1.

When X = — 1 the argument of this circular function vanishes
;

its

values are continuous and negative as x increases, when x = -{- 1 the

value becomes — oo
; for, we have

yr^^ ^ yrz:rx-yr^f^ ^ / yT+^ ^ = _
0^-1 ^yrir^.yYzz,^ \~yr^^r^J

'

'^'
x=l

the factor 1/ -j^-i is positive, therefore we have:

A
dx

{X
— Q^yi — x^ yQ^ — 1

This reasoning would not be possible if ()^ < 1; in this case tan-^ is

discontinuous in the interval; the value of its argument is — i

when 'x = Q.

124. The class of integrals of explicitly irrational functions next

in order is given by I F{x, l/U) dx\ B being a polynomial of the third

or fourth degree in :r,

R == a -\- bx -}- ex- + dx^ + ex"^.
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in which e may vauish
;
and F a rational combination of x and Yli. For,

just as it was really indifferent in considering the previous class whether

the polynomial under the square root was of the first degree or of the

second — the integral could be reduced to a rational form in both

cases —
,
so also here the cases of the third and of the fourth degree

are equivalent: the integrals can be transformed into one another; they

no longer however in general become rational. This transformation is

effected by the substitution:

by which:
R == a -\-hx -\- cx^ + dx^ + ^^* '^

/*(^)

becomes

or

/,/•• + h) = ^^^-^ {(«
+ mym + (0 + mfinjc) + 5^±f ir'(i)

Now if we determine k so that f{k)
= 0, i. e. that k be a root of the

equation E = 0, we have:

A = lf{k), B = Zmlf(k) + i Vr\V),

C = 3».'Z/'(70 + r>tPf"{k) + n^ rW,

])=mHf{lc) + \mHH'\h) + ~l^^r\V)+ T^J"^^')-

Tiie quantities I and m remain arbitrary.

Under the square root there is now only a cubic polynomial,

and since x is rationally expressed by z^ j F{x, yR)dx is transformed

into
I <t>{0y i/Z)d3j as was stated. Denoting the roots of II = by

«, /3, y, d, and making k coincide with a, the corresponding values of

z are: cx), -r m, m, -^ m. Therefore to one
'^ — a 'y — a 'd — a

vanishing value of JB corresponds a value of z that becomes infinite;

to the others correspond the roots of Z = 0.

The cvahuition of the elliptic integral:*)

*) The geometric problem ,
to determine the length of the arc of an ellipse

or of a hyperbola between arbitrarily given terminal points, led to integrals of this

torin. The Italian mathematician Faguano (1682—1766) (Produzioni matematiche,

t. II, 1750) first found geometric relations among arcs of one of these curves by
llARjiACK, Calcalos. 14
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I F{Xf j/li)dx, where E = a -{- h x -\- c x'^ -{- ilx^j (^
=

^),

can be reduced to algehraic and logarithmic functions and to three

fundamental integrals :

/dx
/^xdx /' dx

VM' JVfi' JrT-^^ie'
When arranged according to its rational and irrational parts, we

have (compare § 119):

^ '" ^

G^{x)-\-H,(x)VB
'^v ;-i -pv yi' ,

(p and 7p denoting rational functions; the integration of (p leads to

algebraic and logarithmic expressions; the second part gives us:

^
' can be reduced by a recurring formula: From

,n—3/^ I 1,^ I ^^2 I ^^3N ^n—2,

I' JX Li Y si

we find by integration:

+ cin
-

l)j ~y^ + din
-

i)J
--_- .

Now putting in succession for n the values 2, 3, 4 . . ., we get:

/x^dx
2 y^ h i^ dx 2c Cxdx

/ x^dx _ _2_ /^ _ 2a r^ _ 36^ Cxdx __ Ac_
^x^dx

VR ~^d ^y^^
bdj Yb ^dj Yb ^dj YB

'

In general for n^2:
*:=«— 1

yx^
dx ,/-^ Sn « 1 ^ , o r dx . i xdx

means of the integral; for these relations Euler (in the Nov. Com. Petrop., 1761,

Vols. VI, VII; see also his Inst. calc. integral., Vol. I, Sect. 2, Cap. VI, §§ 606-649)
discovered the general ground in the theorem of addition: "par une combinaison

qu'on pent regarder comme fort heureuse, quoiqiie ces hasards n'arrivent qu'a
ceux qui savent les faire uaitre", as Legendre says in the Introduction to his great
work. Euler perceived that by these integrals new functions are introduced into

analysis, so that the group of transcendental functions (logarithmic and circular, and

their inverses: the exponential and trigonometric) becomes legitimately enlarged.

Legendre (1752—1833) established a theory of these new transcendents by his:

Traite des fonctions elliptiques et des integrales Eulerienhes, 1825—26.
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so that the reduction to the first two fundamental integrals is

effected.

Puttinor the values 1, 0,
—

1,
—

2, . . . for w in the same recur-

/dx
by means of the first two fundamental integrals and by the integral

I t7^
• To show this, let us put

— w + 3 for w; we find:

/dx
r dx

^^=jy=
- d{n -

'i)J -^zziyj^

Now provided a does not vanish, this gives for n = 2, .-5,
etc.:

/_dx
1 y^ __ h C dx_ , d Cxdx

x*VJi
~

« « '«J xVH
"^

^«J VH *

/'
dx ^_ j_y^ _ '^ r dx _ c r dx

d^
Cidx

In general for n > 2:

v= n— 1

In case a vanishes, I —^^ is expressed by the first two fundamental
dx

integrals, as appears from the recurring formula II..

Formula II. admits of generalisation according to the method already

applied (§ 121), by writing for x, x— 9 and for a -\- bx -\- ex- -\- tlx\

A + lix+ Cx' + Dx^, where:

a = ^ + pi? + P'C + p'D = f{Q),

b = B + 2QC+SQ^D = r{Q),

c = C + 3(.i)==Jir((»,

d = i) = ir{Q).
Then if we imagine the letters a, hf c, dy put for A, By C, D,
we have:

- irW (n - 2)j~J^^ - 4r (.) (n
-
4)j'^4^

III accordance with this formula we have for w^2:

dx

VH
'{x — Q)dx

I' ":',,..- '"'1,7^5=-. +»'j',jd^+'j:

+'i F5
'

U
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i. e. it is expressed; as already stated, by the three fundamental integrals :

/ dx r xdx f* dx

yb' J ru
' J (x-e)FB'

these are called the elliptic integrals of the first, second and
third kind.

Employing the substitution which served to convert a polynomial
of the fourth degree under the square root into one of the third degree,

by transforming these integrals back again, we can also state our result

as follows:

Every elliptic integral I F(Xf j/E)dx, in which:

B = a -\- hx -^ cx^ + dx^ + ex'^^

can be expressed by three fundamental integrals:

/ dx r dx r dx

VB
' J {x-a)yB' J {x-q)VM

and by algebraic and logarithmic functions.

In the integral of the second kind, a denotes a root of i^ = 0.

It can also be shown, by developing a formula of reduction analogous
to III., that:

/xdx
J f*x'^dx

can be introduced instead of the last two integrals.

125. We now proceed still on the basis of these reductions to

establish the three normal integrals to the calculation of which

Legendre reduced the general elliptic integraL

Let the coefficients in B == a -\- hx -}- ex? -\- dx^ + ex^ be real,

then whether the four roots of 2t = be real or complex, we can

always by a real linear substitution cause the odd powers in the

polynomial to vanish.

When the four roots are all real
,

let us name them so that

a > /5 > 5^ > ^; when complex let a be conjugate to ^, and y to d.

Putting

R == e{x
~

a){x
—

^) {x—y) {x~-8) ==
e{x''-

—2Xx+ ^){x'
— 2QX+ a\

then :

« + |3
= 2A, «/3

=
/Lt, y -{- 8 = 2q, yd == a.

From the substitution:

we have:

r2 '2lr I ^- -^^' + ^^+0 , 2 ox I ^_ ^V+i^^^+ 6-
^ — ^ Aa; + ^ —

^^--j-^p
,

X -^^QX-i-a—
^^ _^ ^y,

-

where :
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B = 2{pq - X{p + 3) + ^), B' = 2(pj - Q{p + q) + a),

C^p"- -2Xp + (,., C'=i)^-2pp + <r;

p and q can always be determined so that B and B' may vanish.

Fur from the equations:

pq — X{p + q) + IL^O, pq — Q{p + q) + 6=:^0,

unless X —
(>
=

0, we have:

,
u — a Qu,

— iff

and hence:

Since the values }) -\- q and pg are real, the values of p and q will

separately be real unless {p
— qf be negative.

When two of the four roots are real and two complex, A~ — ft and

{)'
— o are different in sign, hencfe the numerator is positive.

When the four roots are real, developing the numerator we find:

=
(„;, + ,,_ C + OHv +

^y _
^(, _ ^^.(„

_
^),.

This expression is symmetrical in a and /3, y and dy it vanishes for

a = y^ thus has (a
—

y) as a factor, it has therefore also the factors

« — d), (/3
—

y), (fi
—

d). Being of the fourth degree, it consists

of their product multiplied only by a numerical factor, which is found

to be 1 as the term ct^/j^ occurs in both with that factor, thus:

(„|3+yd-
'«+

^)icK)y_i(y_d)'(«-^)W(«_y)(„
- SW-y)<^-S).

This product is positive since a > /3 > y > d.

When all the four roots are complex, let them be:

a = k -\- ici\ p => X — ia\ y = p -|- iy ',
d=

()
— iy\

then :

« - y =:
(A
—

p) + i{a'
-

y'), « — d = (A
—

9) + i{a' + y'),

^ _ y = (A
-

p)
-

i(«' + y'), ^ - d = (A
-

^)
-

i(«'
-

y').

Thus the product is ((A
— gf + {a

—
y'f) ((A

— of + (a + y'f),
i. e. positive as before.

When A =
(>

:

jR = e(a;2
— 2Xx + ^) (a;^

— 2 Aa; + (J) ,

if \ve put a; = <e: + A:

B = e(;52 + ^ _ A^) (£f' + (J — A2).

by the assumed substitution the reduced elliptic integral becomes:
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where :

A = {q-a) (q
-

^), G == {p
-

a) (p
-

/3) ,
A' == {q

-
y) {q

-
d\

o [p y)^p o),p-\-q
(«_|_p)_(y+d^)^i^^i 2((a+^)-(y+ d))

All these quantities are real, when the coefficients in U are real.

Developing the rational function F
\ .~_,^ ) we can collect the

odd and the even terms in its numerator as well as in its denominator:

If we multiply this above and below by (r,
— zH^ y

we get in the

denominator only even powers, so that:

Vz
"

Vz'^ Vz
'

The integral of the second term is converted by the substitution z'^ == t

into an integral of the form:

*f>y(At-]-C)iA't + C')'

and is therefore evaluated by logarithmic and algebraic functions.

In the integral of the first term the polynomial Z can be brought
to the form:

where < ^^ < 1. In order to examine this, let us write:

^ = cc (i + 4 «0 (i + ^ ^'0
= ± r'(i ± «'«') (1 + ^''^')'

taking a'^ > /3^, Of course a, /3, y here are not to be confounded with

the former notation for the roots of R. Now according to the signs

eight cases arise; in each we consider those values of Zj with values

corresponding for y, for which Z remains positive, so that both the

function to be integrated and the integral function are real for real

values of the variable.

1) Z= + y^(l + cc^z'^) (1 + /5^^^) remains positive for all real

values of z. Let us put:

a2 = -—^
, adz — ^

Vi-y^' (1
-

y^)^

If z increase from — oo to 0, y increases from — 1 to 0; and if z

increase from to + oo, ?/ increases from to + ^
5
^^^^ we have:

dz dy 7.2
a- — ^'^

Vz
~~

ay y{Y^~^{r—Wy^)
'

~~
«^

The radicals in this equation as well as in all the analogous results

from 2) to 8) have the same sign on both sides.
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2) Z= + y'^l + cc-z-) (1
—

§'Z^) remains positive as long as z

lies between —
-^

and + y • I^et us put:

If 2 increase from —
-^

to 0, let us make y increase from to -f- l>

taking the square root in the formula of substitution negative; but if ^

increase from to + -g > l^t us make y increase from — 1 to 0, the

square root having the positive sign; then:

d2 ^ dy
j,2 ^ «*

,

VZ y Va^-ff^ V(l - y») (1
-

k*y*)
'

'
«» + ^«

*

;;; Z = -\- y^{i
—

a^Z') (1 + P^^^) remains positive as long as

lies between and -4 • Let us put:

If z increase from to 0, ij
increases from to +1, the square

root is negative; if z go from to -| , y increases from — I to 0,

the square root is positive; then:

dz dy
j,2
_ J^

VZ yy€t* + ^y{l-y*){i-k^y*)' «' -h !»*

4) Z = + y'(l
—

a**.?-) (I
—

l3^^^) remains positive as long as z

lies either between and -\ , between -|- cg and + ^ ,
or

between — oo and — -3-
• Let us put: ccz = y, adz = dy m the

first case,
—

g^
=

2/> J^'^ ^y "^ ^^^ others, then:

de ^ dy
fe' = ^ .

Vz y«K(i-t/)(i-A;V)* «*

5) ^= —
y^(l + a'^z"^) (1 + p'^z^)',

in this case Z is negative

fur all real values of r; the integral function cannot be expressed by

means of real quantities. If we put the factor }/
— I before the integral,

tliis case is in other respects reduced to the first.

(y)
Z = — y'^(l + a'^Z') (1

—
P'^z'^) remains positive, for z from

— (x> to —
^ ,

and from + »- to + 00. Let us put:

J'l-y'
'^

(,_J,.)i

It s increase from — oo to — „ , y increases from — I to 0, the
P
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square root is to be taken negatively; if z increase from + -^
to +^

y increases froru to + 1, the square root is positive. We have:

yz y ^i^MT*
*

ViT- VYii'- k^y')
' «' + '^'

'

1) Z = — y2(i
_

e\;2^2^ ^x + l^^-^^) remains positive, for z from

— CO to
,
and from -| to + oo. Let us put :

az = _.
,

adz = —^ ^
3 y

thus we have:
y^ — 2/' (1

-
2/2)-^

dz 1 dy ^2 ^^

yz yKa2+|32 y{\-y^){\--k^y^)' a^ -\- ^^

8) Z = —
y"^ {\

— a^ z^) {1
—

^"^z"^) is positive, for z from — -„ to

, and from A to + -^^
• Let us put:

2/«^2/

r^-"^^y'
If ^ increase from — ~o ^^

; 1/
increases from to + 1

,
the

square root is negative ;
if^ increase from+ ^ to -| , y increases from

— 1 to 0, the square root is positive. We have:

dz ^ dy ,2 _ oi^ — ^^
.

yz ~/3yr(T=^^2Kr^¥2^'
" ~

«^
'

This concludes the proof of our assertion for all cases. To all values

of z for which j/Z remains real, correspond values 2/^ < 1.

But if we observe that all the substitutions we have employed
are included in the form:

we obtain the result: The elliptic integral / -^^ dz^ disregarding

constant factors, can always be brought to the form:

f<p (ttI:?) FT '
"^'^" ^= (^

-
^') ^1

-
^'^') •

in which, provided Z has real coefficients, k — the modulus of

the elliptic integral — signifies a real positive proper fraction.

Putting y"^
= t in order to complete the reduction of this integral

to the normal forms of Legendre, we have:

J ^ ^ ^ + B.y^J Yy ^J yt(i-t)(\-kH)

It was proved (§ 124) of this integral, in which the polynomial
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is ouly (•! till- third df^roe, that it can be reduced tu the thrt'c

t'undaiiiL'iilal lorius:

rat rt<it r at

Jvt' Jit' J {t^,)rT''

accordin;^!} Legendre's normal intcjj^rals expressed in y are:

J I \ !>'>'.) I 1
.'^

1
:' ',' 1 V 1 ^^/z'''

or us Lege 11(1 re. restricting himself primarily to the investigation of

real values ot tlie integral, by substituting

//
= .sill

(p ^ ihf = cos (pd<pj
wrote them:

u U

A
(jp
= /i — P sin' cp.

The coellieiciit n = in the third integral is called the Parameter

nt til'' third normal integral.*)

^«ote. From the central equation of the ellipse

introducing cp the eccentric anomaly reckoned i'roin the axis minor,

we have:

X = asiuq)f y = h cos q) ,

I \/dx^+ ihf = I d<p y^a^ cos^ q) -\- b'^sm^ cp
= a I d<p yi — k' >

' sin-
(/

/.-^^<i.
Thus the length of the elliptic arc that belongs to the values and

(p depends on the calculation of the integral:

From the central equation of the hyperbola
~

^,-
=

1, in

which a means the length of the real semiaxis, putting x = a sec tp,

we find y == b tan gp,

ydx^ + dy"^
= dq) sec^ qp j/b"^ + a^ sin^

(p.

*) A more compendious account of the transformation to the normal form,
duo to Weierstrass, in wliich the coefficients of a fractional linear substitution are

detoi' values y = Hh 1, i . sliall correspond to the four roots

of J{ =z
^,^ IS tuiiiniiiiiii ated hy Schellbach: Die Lehre von den elli|'li>(li<Mi hiU;-

jjralen uud den ThttatuiK iionen; and Kunigsberger: Vorlesungen iilnr die Ihcorie

der cUiptischen hitcgrak-.
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To obtain integrals of the previous form, however, we intro-

duce the distance from the centre to the focus, c'^ = a^ -\- 6'^,
and put

cy = h"^ tan (p, then:

X = a sec (pj/\— 1c^ sin^ (p ,
c^k'^ = a^,

thus:

fyi^+d^' =fdyj/i + ^
.

i;
=
;p^y^'±J^+.

ft'o

="/
dcp

008^ q)A(p
Aq) = j/l

— k* sin'^g).

Therefore the integral Y (cp) by which the length of the hyperbolic

arc from g?
= is measured, is directly equal to that third normal

integral TT(qp) iu which the parameter n = — 1. But when n= — 1,

this thirtf integral can be reduced to the second and first, it is the

case of the vanishing value q of the linear function coinciding with

a root of Y= 0. From the identity :

diAw . tan op) = ^
,
^

^

we have:

=
(1
_

1,-t) f'p + r- 4^ - ¥ ^^5^^ ^
COS-qpAqp

'

Aqp Acp

Y(9) =-- cA<ptan 9)
^ ^ Fi<p) + ^ Z{cp),

or: Y(9) = cA(pian (p + ^ F{q))
—

cE{(p).

The first term has a simple geometric meaning. It is equal to

the length along the tangent to the curve at the point belonging to

(p, measured from that point to the foot of the perpendicular let fall

from the centre.*)

126. Elliptic integrals of the three kinds, or the three normal

integrals ofLegendre are calculated by means of expansions obtained

by converting the function to be integrated into a series of powers and

forming the integral of this infinite series. But this method requires

some preliminary general investigations.

*) Legendre: Traite des fonctions elliptiques, p. 16.



Fourth Chapter.

Uniform convergence, Differentiation and Integration of an

infinite series.

127. In the General Theorems concerning series of powers,

(§ 44. IV), it was indicated that the proof of the continuity (•!' ;i

function expressed by a series of powers, as well as the rule lur

its differentiation, is based on a definite property of these serieS;

namely on their uniform or equable convergence.

We are now going to discuss this conception more closely for

any arbitrary infinite series which converges for a real interval.

Let the infinite series :

fii^) + /;W + AW + • • • + fn{x) + fn+ l{x) + • • .

be convergent in the interval from a to &; let its sum be denoted

by F{x), The functions fn{x) can be continued unrestrictedly according
to some law, and we assume that however many of them are formed

they are all continuous in the assigned interval. This hypothesis
is to be maintained in all the following theorems^

The convergence of the infinite series requires, that, for any
number d however small, it shall be possible to find a place n in the

series, such that every remainder :

Rn « fn{x) + fn+ l{x) + • •

', Rn+X = fn+ i{x) + fn+2{x) + • •

-,

Rn+k = fn+k(x) H

from Kn onwards shall be smaller in amount than d (§ 39).

The infinite series is said to be uniformly or equably convergent in

the entire interval without exception, when this criterion of convergence

is satisfied by the same n for any given d, while x passes through

aU values from a to b; we need not therefore take a different value

for n until another value is assigned to d*)
A sufficient, although not a necessary, critorion of uniform

convergence is presented in the theorem: When the series of the

numerically greatest values assumed by the terms of the infinite

*) Heine: Ueber trigonometrische Beiheo. Crelle'a Journal, Vol. 71.
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series in the interval from a to h converges, the series is uniformly

convergent for all values of x.

For then the number n of the place from which onwards the

remainders P„, P^+i ... of the newly formed series are constantly
less than d, assigns also a place such as is required for every a;.

Example:

ine series . -^ ^ j ^ ^ h • • *

is uniformly convergent for all values of x, because:

- + - + - + -+•••
12

T^ 3? T^ 52 n^ 72 T^

is convergent (§ 47, foot-note p. 82).

For a series whose terms alternate in sign within an interval,

the following also is a sufficient criterion: The series is uniformly

convergent when for each number d a place n can be discovered in the

series, such that for every value of x the numerical values of the

terms from fn(x) onwards decrease and are constantly less than 6.

For, putting:

Bn(x) = fn{x)
—

fn+ l{00) + fn+^{x)
—

fn+ z{po) + • • •

where the quantities f are all positive, Mnipo) is greater than but

less than /«(rc), because:

Bnipc)
= fn{x)

—
[fn-irl{x)

—
/«+ 2(^)]

—
[fn+ ^{po)

—
fn+ 4.{x)]

— • • •

128. When an infinite series is uniformly convergent in the

neighbourhood of a point of its convergencyy the infinite series expresses

a continuous function at this point.

Denoting the sum of the first n — 1 terms of the series by 27(a;),

we have:

Fix) == Z{x) + Bn{x\

Since the series is uniformly convergent in the neighbourhood of ic,

a value n can be found such that abs JR„ (x) shall be less than
-J^
d

for any value from x to a? + 7^, d being an arbitrarily small given
number. Hence, as:

abs iF{x + h)
—

Fix)] == abs {S{x ±h)— Z{x)+ Bn {x±h)— Bn (a;)],

we have:

abs [F{x + h)
—

Fix)] < abs [E{x ±h) - Eipc)] + f d.

But since the functions /' are continuous and 2J is a sum of terms

finite in number, we can always choose a finite h so small that we

may have:

abs [Z{x + h)
—

2J{x)] < J d;
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lif'iKW' for any 6 however small, a valiu' A can be fuiiiiil for whicli:

abs \F{x 4- h) - J\ij\ < d.

AvAiovdiii'^ly Ihf (.iiteiioii oi" (.oiitiiiuity is satisfied.

'I'lif tliLort'iii we have provt'd can also be statnl thus: It' the

function expressed by the series be discontinuous at a point ol its con-

ver^a-ncv, the series must converge unequal^ly in the nt-ighbourhood
of tliis point.

From the theorem it follows: If the series converge uniformly
without exception in its convergeucy, it expresses a function everywhere
continuous in the same interval.

These theorems admit of conversion only on a certain hypothesis.

When the infinite series expresses a continuous function .at a ])oint,

to aii\ point X belongs a finite value n such that the remainder

Jin •'vutl all that follow it are less than U)-^ moreover a value of /< can

be assigned for which:

abs [F{x ± h)
—

F{x)] < J
anil likewise:

abs [Six ± h)
-

Z{x)\ < I .

Accord in Lily troin the equation:

F{x ± h)
-

F{x) = £{x ± h)
- Z(x) + En{x± h)

- R, (x)

it follows that:

abs [Bn{oc 4: h)] also < d.

Ihit it does not follow from this^ tliat all tlie following remainders

in the interval + h continue less than d. This will only be certainly

the case when all terms have the same sign in the interval a; to a; + h,

because then the amounts of the remainders form a decreasing series.

Ae((:i'din!j;ly the statement of the theorem is:

It ill the iMiuiihouihood (d' a point a finite value w can be assigned
such that tlie> /^"' and all fid'owing terms in the series retain the

same sign in the interval, then the unitoiiii (•(•nvei-o'ence of the series

is a ('(msequence of its cojitinnity at this point; or again: If an

infinite series converge absolutely in the neighbourhood of a point,

its uniform convergence is a consequence of its continuity at this

point. ^)

*) It shown as a fact thai the continuity of a convergent series

alone is ii.;L a .-^ullicient conditir;--
' • ' uuilbrm convorcrcnco, by exainplos of

continuous but unequably convei s recently fennnl hv I in iloi^ lli\ moiid,

Darboux ami Cantor. An exaniiile ^'ivun ! i- is: The inhnite series having
its general term :

fni^) =
n«x«-fl (n+l)*a;«-}- 1

rN
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129. We come now in the second jilace to investigate, under

what condition the differential quotient of an infinite series is expressed

by the series formed of the differential quotients of its several terms.

Here we assume that all the functions f{x) can be differentiated and

that their derived functions are continuous; but moreover since the

infinite series:

/•,'(«) + f;{x) + f,xx) + • • •

f„'{x) +
cannot possibly be convergent unless Lim fn\x) vanish for w = oo, *)

our investigation must be based on the hypothesis tbat it does vanish.

Example. It is shown in the Theory of Trigonometric Series,

that for — 7C <C X <i -]- 7t the infinite series:

Bin2x
,

sinSiJ? Bin 4a;
,

expresses the value ^X'^ that is to say, a function whose derived is ^.

But this value is not presented by the series got by differentiating

the several terms:

cos X — cos 2x + cos 3x — cos Ax -\-
- - -

which does not even converge, but is completely indeterminate, because :

Lim fnix) = -j-
Lim cosnx

assumes for w = (X> all possible values between — 1- and + L
In order to determine the differential quotient of the function

F{x) at a point in which F{x) is continuous, let us first form the

quotient of differences:

converges, for, the remainder:

is zero for n=oo, and the sum of the series is the continuous function:

F{x) =

But in the neighbourhood of the point x = this series converges unequably;

for
,
the function JR„ (x) has maximum and minimum values +4 for x= +— •

Therefore near zero no interval can be assigned however small, within which

the amounts of all remainders after a certain one continue smaller than an

arbitrarily small number.

*) Lim /„'(«) denotes that
f^'ioc)

is first formed and then n put = oo. This

is of course to be distinguished from — Lim f^ (x) in which we first put n = oo

and then differentiate.

Sin 7% ^
If f'ni^)

=
»
Lim

^^'(rc)
= Lim cos n^ is completely indeterminate,

while on the other hand:
d T . sin nx
-J- Lim = 0.
ax n
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1 ^ F(x-{-Ax)- Fix) ^ 2:(x-{-Ax)-£ix) ,
R^jx -\- Ax) - Ji,^ (x)

^

^^ Ax Ax *' Ax
^

For any finite value Ax however small, this continuous expression in

Ax has a determinate finite value; we can write it:

^2)J''^^-^^l-^(^^)^f^'^:,+ eAx)+ f.;{x+ eAx)+-^.t:-^^^

R^ix + Ax)-li^ix)r Ax

Now making Ax converge to zero and denoting the differential

quotient of the remainder function Iin(x) by Rn (x) we get:

3) FXx) = f\\x) + f,'{x) + . . .

A'_,(^) + R„\x).

If then the remainder of the original series be so constituted, that

for any number 6 however small, a place n can be assigned from

which onwards not only Iin{x) but also RnX^) remains smaller than ^,

however large n be, this equation passes over into the infinite series:

4) F'{X) = f;{^) + f,'{x) + fn-x (x) + U{x)+
The statement of the result is : If the remainder of an, infinite

seines possess the property ,
that for a given value of x hy choice of a

lower limit for n
, Iin'(x) l^ccomes arbitrarily smallf the series formed of

the differential quotients of the several terms is convergent and expresses

at this point tlie value of the derived function.

Since this property of the remainder in any arbitrary series cannot

be recognised at once, we may usefully establish another criterion, not

indeed necessary, but still sufficient, by which in many cases the

question is decided:

If the series of the derived terms converge uniformly in an interval,

it expresses everywhere in this interval the derived of tJie given series.

In order to examine this, let us denote the value of the supposed

uniformly convergent series

by {x) and its remainder from the n^ place by P„ (a;), then equation 2)

passes over into the form:

F{x-{-Ax)-F(x)
, r.. . D ,

, CIA NJ I
^„(^+Aa:)-i2,(a:)

Ai '=^l(t>(x+QAx)-Pn(x+ QAx)]'] ^
Now here let n first become infinite and then put A a; = 0. When n
becomes infinite, the value of also changes. But whatever be its

value, since the derived series converges uniformly, a value n can be

assigned, from which onwards we shall have Pn{x + QAx) < d for all

values of 9. In like manner n can be chosen so great that the last

expression also shall amount to less than 6. Therefore a point can be

found in the interval from x to a; + Aic, at which the continuous
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function shall differ inappreciably from the quotient of differences;

there must therefore also be a point at which:

F{x + Ax) -^ F(x) ^, , ^A ^

and since O as a uniformly convergent series signifies a continuous

function, we shall have for Aic = 0:

Series, to which these criteria do not apply, cannot be differentiated

except by attempting to sum directly the infinite series for the quotient

of differences
"^'

a

~—— and then passing to the limit for Ax.

Examples.
1
)

It was seen in § 47 that the infinite series :

0^2 /y>3 /y>4

has for — 1 < ic ^ + 1 the value: •

l{l + X).

This series converges uniformly. The series formed of its derived terms:

1 — X -}- x"^ — a:^ + • • •

converges uniformly for — 1 < a; < + 1, and is thus a continuous

function. It expresses the derived function —r—-
•,

but this connexion
1 ~j~ X

does not hold for x = I, although the differential quotient of the

logarithm has the determinate value -|.

2) It is shown in the Theory of Trigonometric Series, that the

signification of the infinite series:

jp( s _ 4
j

sin re sin 3aj
j,

sin hx \^ ^^^
"^ ^ \i^ 3^ f" ~P /

when 0<ic<— ,
is i^(ir)

=
ic; and when ^ <^<jr, is i^(rr)=:;r

—
X]

it is uniformly convergent. Further, we have:

T^,, X 4 (COS re cosSrc
,

cos 5a;
-^ ^^)

=
» 1

-I 3^ +—i^

except for x ^=
\'it for which the derived series is discontinuous and

expresses the value zero, while the progressive differential quotient of

F{x) is — 1 and the regressive + 1-

3) The infinite series whose general term is:

/«(^)
= L ^(»'^' + 1)

- ^^) '(»+^'^' + 1)

is uniformly convergent for all finite values of
.x',

since:
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For, evidently Bni^) is a function, which for a given x decreases

when the values of n increase, and for a fixed value of n increases

when the values of x increase. R^ (x) vanishes for a; = for all

values of n. Moreover at that point, for an interval from x =
to x = hf we can determine n so that Rn(x) shall be less than an

arbitrary number d; we have only to choose n, so that:

The series expresses the value:

We have also:

FUx) ^ = "Vi ~- ^±iiL_l •

although this series converges unequably in the neigbourhood of a; = 0;
but the remainder of the original series has here the property, that:

Lim B:{x) = Lim
^^5^^

= 0.

4) The infinite series:

F(x) =^ J" COS (a« X n)
nc=0

converges uniformly if < 6 < 1
;

its differential quotient, however,
cannot be calculated, when the product a6 > 1, from the derived series:

— Tt^ {aby ain (a* XTc),
n=

for this series does not converge, because Lim (a6)"sin(a«a5;r) is not zero

for w = cx>. The differential quotient of F(x) has no determinate

value. (Communication of Weierstrass in Du Bois-Reymond's
memoir, Journal f. Math., Vol. 79. Darboux, Annal. de I'ecole normale,
T. VIII, p. 195, gives a further class of examples of this kind.)

130. The rules for the integration of an infinite series result

without further investigation from the Theorems established for its

differentiation. In accordance with our investigations in § 127, we
assume that the infinite series expresses a function everywhere con-

tinuous in the interval from a to 6. Let us denote the definite

integral taken between two values Xq and Xi in the interval, by:
.1

F(x)dx = <t>{x,)
=

(x,
-

X,} F(x, + 0(:i;,
-

x,)),

and likewise each continuous function fn(x) when integrated, by
Uaukack, Calculas. 15



226 Integration of an infinite series. Bk. III. ch. IV.

P
Now first of all, the series of these integral functions cannot possibly

converge unless:

Lira (fni^i)
= Lim I fn(,x)dx

vanish for n = oo. We cannot infer that this condition is fulfilled

of itself because

fn{x)dx = (x^
—

XQ)fn(xQ + e(Xi
—

X^)))

X

I
and Lim fn

= 0. For instance :

Lim
jnxe-'''='''dx

= \ Lim(l — e-"^^')
= \

and is not equal to

x^ Lim (w iCt
e- "

®'^^')
= 0.

When the series formed of the integral functions of the several

terms is a continuous function of x^ and its derived series for every

value in the interval from x^ to x^ is equal to the series F{x)^ it

expresses the integral of the original series.

According to the first Theorem of last § this requires the series of

the integral functions to have the property that for any number d hoivever

small
^
a place n can he found such that for it and all higher values

the derived of the remainder term Bn{x) shall he less than d.

But by the second Theorem it is a sufficient condition, that the

given series converges uniformly.

This second theorem can be seen directly as follows: If

F{x) = f, {X) + f,{x) +f,{x) + ---
fn-,{x) + P„ {X),

and for the entire interval from X(^ to x^ a single n can be found

for which and for all greater values the continuous function P„(ic)

shall remain less in amount than d, we shall have:

I Pn(x)dx = {Xi
—

^„) P„ {Xq -\- Qxi
—

Xq), therefore

Xo
Xi

JF(x)dx
=

(p^{x^)+ (p2{x^)+'"(pn-l(x^)+ (x^—XQ)Pn{x^,+ Qx^—x^,).

If now n be arbitrarily increased, we have
Xi

J F(ix)dx = (p^(x^) + (p,{Xi) h fn-l^X'd ' •

•;
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and this series likewise converges uuii'onnly in the entire interval

from
oc^^

to x^.

The Theorems proved concerning the definite integral show that

these investigations can be extended to series representing i'uuclions

that are discontinuous or infinite in separate points, or again, to

tliM (It'linite integral with an infinite limit, always on the hypothesis
that the series of the integral functions remains convergent.

riie oxamplos adduced in last § can be regarded inversely also as

cxaniplts lor ihtj integration of infinite series.

We cite the following, due to Darboux, as an example in wliich

the integration is not effected, although the series of the integral

functions converges :

V
F(x) = xc-'" = _^(mxc-"''

— n + la;e-»+'»*)
n=.l

is a convergent series for all values of x and a continuous function,

although the series converges unequably in the neighbourhood of the

point X = 0. In fact Rn(x) = nxe~"^^ and for x = =yz-zz it becomes

i^y integratin*^ the individual terms between and x we obtain:

I
uxc-^-'Ulx — I (n+ \)xe-^^^'\lx = —

Je-"*' + ^e" "+'''.

'- u

Tiie infinite series formed of these integral functions:

7J=X

n=l

converges, it expresses the function — \e~^^ for every finite value

of X, but for .r = its value is 0, it is therefore a discontinuous
function at this point and not in general equal to:

X X

iF{x)dx ^jxe-'^dx
— H^ — e-^').

. U

131. Appl\iim these Theorems to a series ascending by powers
of any continuous fiuietion f{xy.

«o + ^/iA^) + «2(/'Wl'+ •••+««( /*W1'' + • •

•,

we see:

I'i i ies is a continuous function of x within its

convergt'iicy ; lor, ji we put /'(a;)
=

<?, the absolutely convergent series:

«o + «i -^ + a-i^'^ + • • • + ttn-^" -\

15*
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is a uniformly convergent series. Moreover even at the limits of the

convergency this series of powers is a continuous function, although

only semiconvergent (§44. IV); thus it alv^^ays converges uniformly.

Second: The series derived by differentiating with respect to x\

r{x) {a, + 2aJ{x) + ^aAf{x)y + • • • na„{f{x)Y-^ + •..},

as long as it converges, is continuous and expresses the derived of

the given series ; but it certainly converges within the interval of the

original series.

Third: The integral of the given series, taken between two

values x^ and x^ in the convergency, is formed by the uniformly

convergent series:

Xi Xi Xf

«() + «i / f{x)dx -\- a^j { f{x) ydx-\- \-anj { f{x) ]''dx -{ etc. .

Xq Xq Xq

If this series converge also at the limits of the convergency and

remain continuous there, it expresses the integral up to and including

the limits.
X

132. Expression of the function sin~^ x =
j by a series.

If ic^ < 1 we have the expansion:

{l—X) — i-h 2
-^ +2.4^ ^^2.4.6^ ^ ^ 2.4.6...2n

^ ^ '

hence:
.

, ,
1 a;3 l.Sojs 1.3.5 a;7

, ,
1.3... (2w- l)a;2"+^ , ,^

Sm-^d;= a;+^y+^^+ 2-X6T + ---+ 2.4...2n 2n+ l
+ ^^"^ '

This series continues to converge even for ic^ = 1, although the above

binomial series is no longer convergent. For, the terms of the series :

1 "• 2 3 '2.45 '2.4.6 7 ~2.4.6.8 9
~

are smaller than the corresponding terms of the series:

1 + ¥ +2T4 +2X6 + 2-X6^ + • • • + ^*^--

But this series converges and its value is 2. For:

^i_^ = i —
-^-

— — — ——— — ...

converges even for the value x = I. Therefore:

,/iN ^ 1
,

1 1
,

1.3 1
,

1.3.5 1
, I «i«

sin- Hl) = Y-T+-2-¥ + 2:4T + 2X6y + --'+ ^*^-

1

The definite integral /
-—-^—

,
as already indicated in § 107, has the

J Vi— x^
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finite value ^ n, although the function to be integrated becomes in-

finite at the upper limit.

133. The elliptic integral:

J Vn — x») (1
—

k*x*) J Kl -^•' 8in*<p
^ ^

can be developed by powers of k. Expanding:

(1— A;28in>)-^==l+y7j^8in>+ A-^A;^sinV+l^A;«8inV + --,

we have therefore:

F(fp) =J f^
=

9> + \ k''J sin'^ (pd(p + i^ k^Jsm^q)d(p
*0

u

The integrals in this series belong to the binomial integrals

investigated in § 118 as is seen by substituting sin 9)
=

a;, they are

Ij
determined by integrating, by parts; we have:

I sin^"*q)d(p
= — I sin^"^-^ (pd(cos qi)

= —
sin'-^'^-^gpcos^p + (2^ — I) j 8in^"^~^(pcos'^(pdipy

hence replacing in the last term cos^^) by 1 — sin^^), transposing and

inserting the limits we find:

For the limits zero and ^Jt we have:

f
y' y' 2in J

r ^ 2wj 2m— 2 2m— 4 4 2 2

Hence the ''complete integral" is:

u

Similarly we obtain for the integral:

JE;(^) =JA(pd(p
=

F{(p)
—

k^Z((p)

u

by expanding:

(l-A;'8in>)^==l--|A:28in2<p-,i^A;^8inV-2X6A;«8in> ,



230 Integration of an infinite series. Bk. III. ch. IV.

the series:

{¥8m'^(p £ 1),

These series converge slowly when the value of Z;^ is nearly 1
;
for

this case Legendre (Traite, p. 65) established more rapidly conver-

gent series ascending by powers of the complementary modulus

¥ = j/l ~¥,
134. To discover the law of the explicit expression of F{q))

and E{(p\ it is convenient to introduce the forms by which the powers
of sing? are expressed by sines or cosines of multiples of gp.*) In

consequence of the equations (§67):

e«> = cos 9 + ^ sin 9) ,
e~'> = cos 9 — i sin qp,

let us put:

1^ A'^ 1 72-2 (l + ce2''9')(I+ce-2'^) ,
4c .

2

1 + c
'

1 4_ ^1 _ ^2
^

NoW; for c < 1:

are absolutely convergent series, therefore the value of

\ = {\ + c)FQ

calculated by the rule of multiplication (§ 78), will be likewise an

absolutely convergent series, which can be arranged by cosines of

multiples of cp when we replace

(dm(p _j_ ^-im(p == 2cos(mg)).
The result is:

3) -^
= A — 2 A^co^2(p -\- 4J..^cos49)

— 6 ^3 cos 69) 4--. •

^=(1+.) {i+(i)v+e^)%^+(^:l^:)%''+(S:DV + . .

.}

_14^| 1 1 1.3 , 1.3 1.3.5
,

,

1.3.5 1.3.5.7 -
)

^l""" 1 l2^^^2 274^^2.4 2.4.6^^2.4.6 2.4.6.8^^ J

*) Legendre, loc. cit., p. 273.
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A _t+cfl.3 o,
1 1.3.5 ,

,

1.3 1.3.5.7 6
,

1.8.5 1.3.5.7. 9 ,
1

^''"" 2 12.4^^2 2.4.6^^2.4 2.4.6.8
^ "T" 2.4.6 2.4.6.8.10

^"^*
I

A -I±f/Llil5.3 4.
1 ^-3.5.7 .

,

1.3 1.3.5.7.9 - .

''~ 3 12.4.6^^2 2.4.6.8^^2.4 2.4.6.8.10^"^' )

These numbers -4,-4,, 2 42, ^-^3> 4^^, etc., decrease continually

and have zero as limit, for:

A^<cA, 2A^<cA^y 3^3 < 2c^2, 4^^ < 3c^.,, . . .

consequently :

A^<cA, 2A^<c^A, 3^3 < c3^, 4^^ < cM, . . . etc..

Hence, as c < 1, series 3) converges even when we give e^ch of its

terms the absolutely greatest value it admits of; therefore 3) converges

uniformly (§ 127) and expresses a continuous function in the interval

from zero to ^jr. Accordingly we obtain by integration:

'^.

4) F{<p)
= / -~- = A<p — -4, sin 2(p + ^.^sin 4^ — ^3sin 6qp + • • •

In particular for (p
*=

^it:

5) ^ = 1/ -^^li^VM.

But the other coefficients of this series can also be expressed as

definite integrals. For, if we multiply series 3) in turn by ;

cos2g?, cos49, COS69),...

and integrate these products between zero and i^r, since for w ^ n:

I
COS 2 7/1 q)Cos2n(pd(p= ^ I {cos2m + wg? + cos2m — nq)] dtp = 0,

/(co:
and for wt = n: I (cos 2 mq)y dtp

= ^
~

,
we thus obtain:

in ^n -^n

., (cQ%1(pdtp J n^
/ co8 Acpdtp rtj n rcosGcpdqf qj n

^J Aqp
^ ^ V ^ ^ ^ '^ A^~ 3 Y '"

U

The calculation of -4, introduces the values jP^y) ^^^ -^(^0>^or:

Recurring formulas can be found for the other coefficients by

dififereutiating series 3). Since the series thus obtained;

^3
^'^ =

4-4i8in 2(p
—

16-428in 4^ + 36 -43 sin 67)
— • • •
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is uniformly convergent, the differentiation is admissible (§ 129). If

we multiply the

the equal value:

2 A'
we multiply the left side of this equation by -j^^- ,

and the right by

2 ^2—
p f- cos 2g) = A + cos 2 9

and arrange by sines of multiples of q), since:

2sm2mg) cos2(p = sin 2m + I9? + ^"^ ^*^ — ^9^>

we shall have:

'-^^
= {4:A^X

~ SA^)sm2(p — {l6A^;i —2A^ -
\^A^)^mA(p

+ (36-43^
— 8A, — 32^j)sin69)

-
(64^^ A — 18^3 — 50^5)sin8g)

(- l)-((2m-2)M,,_iA-^-^^-^'^^_2-^'A^)sin2^^r=^

On the other hand we obtain by multiplying equation 3) by sin 2 9) :

s^n^^ = (^ _ 2A^)^m2cp — {A^
-

3A^)sm4:(p + (2 A^— 4A,)fim6q>

• • • (— 1)'« {(m
—

2)A,n-2
— mAm)sm2m — I9 • . .

This series must be identical with the previous one; and since both

series converge uniformly, the oiily way in which this identity can subsist,

is, that the coefficients of corresponding sines coincide in both. This

becomes evident when, as in the deduction of equations 6), we express

each coefficient by a definite integral. Hence:

A-~2A^ = 4:A^X
— 8^2? A — 3A= 16A^A — 2^1 — 18^3,

{m — 2)Arr,-2—'mA„,= (2m—2yAm-iX— ^^^-^ Am-2—^^ A,„,

or:

8) 2w(2w — \)Am= 2{2m — 2yAm-i^ — (2m — 3)(2m — 4) J„,_2.

Accordingly the coefficients of series 4) are determined by the equations:

Similarly an explicit expression is got for the integral E(q)).

The third normal integral TT(g)) requires special investigations,

upon which we do not here enter since these series can in general be

replaced by more rapidly convergent developments, investigations that

demand a detailed theory of elliptic integrals.



Fifth Chapter.

Integrals of transcondental functions.*)

135. If /'(e*) denote a rational function of C, I f{e')dx is

dz
transformed into a rational integral by substituting z = e*,

— = dx.

The integral of a rational function of sin rr and cos a: can be

converted into one of the above form by substituting:

cos X = *-
, sin X

2i '

and therefore also into the integral of a rational function.

However as this introduces imaginary quantities, we ordinarily

prefer to substitute:
, . . 2z 1 — z^ J 2dz
iiin^x = z, sina;=p^qj^,

cos a; =
^-^^-^

,
dx =

-^'^^.

Since I xdf= xf — jfdx, we can also calculate
j xdf by the

rule of rational functions, when f is any rational function .of sin a;

and cos x.

13G. By partial integration:

/ (fx"' dx = x'^d' — ml x^'^-^e'dx
,

If m be a positive integer, we obtain by the first formula:

e^oir dx = \me^ ^

/^^
•

The second formula when m is an integer leads to the equation:

•) Without entering on a general investigation, under what conditions the

integrals of transcendental functions can be evaluated in fiQite terms, we only
collect in this chapter those formulas to which the simplest applications of

analysis lead us. Euler; ibid., Ch. IV and V. General investigations of these

integrals were given by Hermite: Cours d'Analyse, p. 320.
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New forms of the same integral are fouud by substitutions:

j
x"'e^''dx= I {ly)'^i/-^dy , (x

=
l{y)).

137. The logarithmic integral: / -—— = I j^ ,
when x = l{y).

Since

|-=H 1 + -i^+ 4'*' +
• • • + 1^^"-'+

we have:

The definite integral can be taken between two limits that do not

include zero, that are thus either both positive or both negative:

a

'
dx =

l(^) + (6
-

a) +
.-|^

{¥-a^)+^ (6' -«') + •

Likewise when x = —
l{y):

But here a special case presents itself. Since the function j—.
is

finite and continuous in a finite interval that does not include unity,

ex. gr. from
2/
= up to any proper fraction y, the value of the integral

/y'

x'

j~ which is the same as / — —
,
where x' = — l(y') may be any

00

positive number, must be determinate (§ 106). Series 2) however is no

longer convergent at the limit ic = + 00. Hence ^e must have:

where the value of the constant C is still to be found. If we denote

the convergent series:

l{x) ^ + ^ ""
3J3;
+ • • •

by F{x), since the integral vanishes for a; = 00, we must have:

F(oo) + (7=0.

If then we put a large number a for Xj we obtain an approximate
value for = — F(a)f of which we can estimate the error as follows :
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Forming the function:

its derived is q)' {x)
=— . Now since F' (x) == —

, <r (^) is > -F'(a;)

if a; > a. Hence the functions F{x)
—

F{a) and (p{x) both increase

continuously from zero fof a; > a, so that the second function is

always greater than the first; hence

therefore

F{oc,)<F(a) + ^.
a

Thus the error iiuurretl in putting C= — F{a) is less than •*)

In this manner, assuming ex. gr. a = 10, we determine the value of

C from that of F{iO) with a defect less than

4^ < 0,00001.

The value of C, the Eulerian constant, for which we shall give
a more rapidly convergent series § 165, is: 0.5772156649 . . .

138. Integrating by parts:

I
x"*co8xdx^= x"'co3 (x

—
^7t)

— m
j
x"*^co8 (x

—
\n) dXy

I
a;"* sin xdx = a;"' sin (x

—
in)

— m
f
x"*-^sin (x

—
^n) dx.

Hence for a positive integer 7h:

x"^cosxdx = b. V^ (— l)'"-^cos (x
— ^^L—

p:i jr),

x"^sm^dx = im y^^ (— l)'»-»sin (x
- ^-^-r^ ^j

.

Likewise:

J'coBxdx

cosic 1 P sinxdx

/
sip a; da; sina;

,

1 Pcosxdx

xT
"

(m - 1) a;"-^
"" »» - y ~^^T~

*

In this case a positive integer value of m leads to the integrals:

/C08a;da;

C %inxdx

that can only be found by expansion. We get:

*) Minding: Handbuch der Differential- und Integralrechnung, p. 191.
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cos a; -, 7, X X* . X* x^
,

. , ,. 0^^^ '^^ = 'W -
2li
+

ill
-

ee +
••• + (-')"•

2FliIi

/sin

a;
-,

x^ . x'^ x' ,
1 / i\„ x^^^^ ,

The first holds for every interval that does not include the number

zero, the second without restriction. Moreover, determinate values

must result even for infinite limits (§ 155).

139. The integral / sin"*a;cos«rz;c?a; is converted by the substitution:

sinic = ^^, cosa; = (I
—

^)^, dx= ^

z^ (1
—

z)^

into the binomial integral

/»

m— 1— 1 n— 1

1 —
;^)

2 dz.

The Theorems in § 117 show that this integral can be brought
to a rational form when one of the numbers:

i(m— 1), \(n—l), \{m + n)

is integer; one of these equations must be fulfilled if m and n are

both integers. In other cases the recurring formulas of § 118 are

applicable to the present integral. We can write down these six

recurring formulas retaining the trigonometric shape, directly thus:

I. / sin"^iccos";r(^a;= sm^':^i^cosl"^ ,

»^:i fmTi'^^+'^xQos>''-^xdx,

II. Ain"*X COS"a;dx=— "''"'""' ^ C0S"+^ m-l
L{^m-2^QQ^n+2^^x^

Putting on the right in the first equation sin"'+2ii? = sin^"^(l
—

cosmic),

and in the second cos^+^ic = cos"ir(l
—

sin^rr), we find:

III. rsin^a;cos"a;f^a;= ^''''""^'^,'^^'"

~'^+ '^^ f^in^xco^^-^xdx,

IV. /sin'»:i;cos«a;f?a;=— ?^^—^,^"— + *^^ f^xoJ^-^xco^^xdx.J m + w '

m-\-nJ

If we solve these equations for the integrals on the right, and replace

in III. w — 2 by n, and in IV. m — 2 by m, we obtain:

V. fsm^^xcos^xdx= - ^in-+^^cos"
+^ m+nj^ Ain-^^cos-^+^^^o:,

VI. fsm^^xcos^xdx= ^^'^^^^^''^ + ''^^-^ fsm^^+^'xcos^xdx.J m+l ' m+l J
Equations III. and IV. cannot be employed when m + n = 0. Here

we have for n = — m = —
:

V

fi^i'^^=/ ^^"^ '''y^ '^^
= "

S^T^P^' P""'°S tan ^ = «^
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Similarly the other equations are inapplicable in the cases of in

or n being
— 1. But here too the condition of being integrable

rationally holds.

The recurring formulas show that in all other cases the exponents
)n and n can be brought down to numbers between — 1 and + 1, or

< » and 2. If m and n are integers, we are in all cases led by repeated

ap2)lication of the recurring formulas to one of the eight integrals:

I
sin xdx = — cos a; + C / cos xdx = sin x + C,

Js^ -Jt =
'(-) + <^'= '(tangix) + a (§ 135.)

J
sin xdx ,/ \ I AT / cos xdx , , - ^s , ^

I sin a; cos a; da; = i /
sin2a;rfa; == —

;J^cos2a: + C

i'^-^ 2 T-^l- = Ktungx) + C.
,/ Binxcosx ^ 8in2a; ^ o -^ «

140. Putting e^'dx ^^^l^^j ^^^^^ integrating by parts we find:

1. I^'sm*xdx
==

^''"''"'^ — y |e**
sin«-»a:cos xdx.

Likewise we find for this new integral:

/'.

. - , c**8in**~^a;co8a; (w— 1) / t_ . ,„_9 » ,

e^'am'^^xcosxdx^-
^ ^—j^ I e^'am'^^xcos^xdx

+ T" /e**sin*»a;<?a?,

or, as cosmic =1 — sin^ar:

2.
J'^^sm-'xcoBxdx

=
^^^-^^^^-^^f<^'smn-'xclx

+ T /
^"^sin^av/a;.

If we combine equations 1. and 2. we have:

a; (A; sin a;

A:« + n«
o /*!.••- 7 e**8in*'""^a;(A:sina;

— ncosic)
3.

I
(^'3m'*xdx=

For w = 1 this is :

e**(A;8ina; — cosic)/e**sina;da; =
A«+i
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For n = we had already:

/
Every iutegral of this kind, in which »* is a jDOsitive integer, is reduced

by formula 3. to one of these two integrals.

When Ic is a negative number, the integral can be taken up to

a positive infinite limit, for although sin iC and cos rr become quite

indeterminate between — 1 and -[- 1
> yet e^"* in the integral function

will pass over continuously into zero. Thus we have for /»; < 0:

/'
^^sinxdx ==

k'' + 1

In like manner we find:

J k^ -\- n^

I

n{n — \) I^ n^ + t'J
e^^cos'^-^xdx.

Here

and for A; <

e^^ cosxdx ==

141. If circular functions occur in the function to be integrated,

the process of integration by parts leads likewise in many cases to a

solution or simplification of the problem. If in the integral

/ X sin-'-ic • dx

the function X be integrable we have:

I
Xsin-^xdx = s'm-^x

j
Xdx — / j^^—

—
j
Xdxi •

Ex. ffr. : \ x"^ ^\n~^ X dx = —T—^iiar^x r-: f
.,

,

This new binomial integral can be expressed in finite terms when n

is an integer. We can also get rid of the circular functions by

introducing algebraic and trigonometric functions, putting

^in~^x = Zj x = ^mZy dx = cos 0d0.

Thus ex. gr. : / (sin-^ xydx = I ;^" cos^^^.



Sixth Chapter.

General theorems concerning the definite integral as the limiting

value of a sum.

142. The fundamental problem of the Integral Calculus in its

simplest statement (§ 101) leads to the evaluation of the limiting

value of a sum with arbitrarily many summands. Independently
therefore of the differential conception, the problem of the integral

calculus opens up the question : What must he the nature of a func-

tion f{x) in the interval from x = a to x = h^ in order that the sum :

S= d,f(a+eM+ d,f(X,+ Q.,d^)+ d^f{X^+Q^d^)+^-+dnf{Xn-l+endn)

may have a determinate finite limiting value
^
when the subdivision of

the interval from a to h by the points:

x^
= a + d^y ajj

=
a;, + ^2 > x.^

=
x^ + d^ . . ., 6 = Xn^i + dn

is continued arbitrarily^
while the lengths d converge to zero? Such is

the most general form in which this question can be proposed. The

quantities denote proper fractions, they may also be zero or unity,

<) that the values of the function are always chosen anywhere within

)r at the limits of an interval. The limiting value must be quite

independent of the arbitrary quantities 0. Still more generally we

may denote by f(x + 0p dp) any value whatever from the greatest to

the least of the values assumed by the function in the interval dp.

If it be discontinuous in the interval, this selected value may not

occur among those of the function. It is a secondary question that

must be answered by itself, whether, when there is a limiting value,

this limiting value regarded as a function of the upper limit has fix)
as its derived function or not.

Now while in § 102 the investigation admitted of a simple form,
because f(x) was assumed continuous, it will have to be conducted

differently here, since we have first to ascertain the hypotheses

necessary regarding the function /*(a;). Riemann*) who was the first

*) Biemann: Ueber die Darstellbarkeit einer Function durch eine trigono-

metrische Reihe {Werke, pp. 213—253). Some details in the following proof have

been rendered more precise by Du Bois-Reymond (J. f. M., VoL 79).
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to formulate the problem precisely, has also supplied its solution.

We restrict ourselves at first to fuuctions which do not become infinite

anywhere in the finite interval from a to h, so that all the values of

the function are included between a superior limit that may be

denoted by G and an inferior that may be denoted by g, these being

positive or negative.

The function must be one that is defined without exception for

this interval; i.e. its value belonging to each point is actually given.

The question proposed above may now be abridged into the words:

Under what hypotheses is such a function integrahle? The answer is:

If we denote the greatest fluctuation of the function, i. e. the

positive difference of its greatest and least values^ in the interval from
a to Xi including those limits by Dj, likewise between x^ and x^ by

Dj, . . . betiveen Xn—i ctnd b by Dn, then the limit of the sum:

d,B, + d,B^ H h dnBn {d,-\-d.,-\ \-dn^b-a)
must be zero as the values of n increase, when simultaneously all the

quantities d converge to zero.

This is the necessary and sufficient condition. What takes place is:

When the above sum converges to zero for any law by which

the number of intervals increases arbitrarily, it always converges to

zero in whatever manner the quantities d are chosen and arbitrarily

diminished.

We prove this last statement in the first place as follows:

Suppose the number n already chosen so large, that the absolute

amount of ^dpJDpj since its limiting value vanishes, is less than 6.

Choosing another completely different subdivision into m parts, where

m '^ n, and the quantities d^j d^j . . . d,n are arbitrarily smaller

than the least of the quantities d, we shall show that ^dpDp
p=i

also converges to zero. Let us consider the length ab simultaneously

divided into n intervals d and into m intervals d\ then there will

be in each part d sl certain number of the intervals fZ'; but, in general,

extremities of the intervals d' will not coincide with extremities of the

intervals d. Suppose:

q + di + d^ + ' • • dx' < a -{- di
=

x^ < a -{- dy -\-
' ' ' d\+u

a + di + d^ + ' ' •

df/ < x^ -\- d2
= ^2 < a -{- di + • • - ^V+i?

a -{- d^ -\- d2 -\-
' ' ' dv' ^ X2 -\- d^

=
x^ <^ a -\- d^' -{-

' ' ' d\^ij
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p=m
then we can separate the sum ^dp Dp into parts as follows:

p=i

^dpDp + d'i^iD'i+i + 2\(^pDp + d'^^iD\,+i + • •

•,

isolating the terms that refer to intervals that contain the dividing

j)oints of the first partition; they are w — 1 in number. But since

i>, denotes the greatest fluctuation in the whole interval J,, we have:

^d/Dp £ d^ Di , yjdpD; £d^D^, etc. .

p=l P=T+2

Further, the sum of all the isolated terms is certainly smaller than

' — 1 times the product of the greatest d' of their intervals by the

greatest fluctuation D' occurring among them. Therefore:

^dpDp £ %JpDp + (n
-

\)d'D'.
p=\ . p=i

Now since we can arbitrarily diminish the values d' y
we can always

I hoose them so small that the product (n
—

\)d' D' =^ s shall become

iirbitrarily small; therefore we have:

p=i

i. e. this sum also becomes arbitrarily small by suitable choice of m.

We now proceed with the proof of the above theorem as follows:

Let the entire interval from a to 5 be divided
,

in succession,
first into Wj, then into n^y Wj, . . . Wv, . . . parts; and let:

ich segment of the first partition: r?/*), <:y),.. .rf„/') be smaller than d, ,

iich segment of the second partition: (7/2), d^^^\,,.dn^'^^ be smaller than dj,

iich segment of the third partition: d^^^\ d^^\ . .
.flf«,<3>

be smaller than dg,

ich segment of the v**» partition: d^i^*'), f7.,<»'),... (?„/*)
be smaller than d,,

let d, , dj, dg, . . . d». . . form a series of positive numbers converging
to zero; and let the dividing points of the second partition include

all the dividiug points of the first, and likewise let those of each

further partition include all the dividing points of the preceding one,
so that each interval

f/, , d^ . . . is divided into new subdivisions.

Let Gf}'^ denote the superior limit of the function f{x) within the

interval
(i^t*), taking the sign into account, and similarly g^<y^ its

inferior limit. Then \Qi us form the sums:
Uamiack, Calculus. IG
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^1= 1 n= l

and denote their values by Ay and B^ In the series of numbers:

A^, A^y A^^ . . . Ay . . .^ each number is less than, or at most equal

to, the preceding, for, whereas one interval ex. gr. (^2^^^
contributes

^2^^^ ^2^'^ ^^ ^n ^^® same interval in the sum A2 consists of several

parts. But these partial intervals certainly do not contribute more
to the sum A^ than the product d.^^^^G^^^^ because 6^2^^^ denotes the

greatest number that occurs in the entire interval
d.^^^"^ y

and therefore

also in any of its subdivisions.

The quantities B^jB^j B^, . . . By . . . form a series of increasing

numbers; and since each A is greater than each By the series of

numbers A as well as the series B has each a definite limiting value.

These limiting values become identical when a place v can be assigned
for which and for all greater values of v the diflPerence A^ — By is

less than an arbitrarily small number
(?,

i.e. such that:

H—riy H= ny

Ay - Br =^d^^^) (G^i^)
-

g,S'))
=

^d^^^W^S^') < o.

fl
= l iu=l

In whatever way the quantities are assumed, the sum:

S = (?,«/•(« + 01^/^^) + d^^'^fia + f?/^) + 02<^>^2^^)) H

whose limiting value defines the integral, always lies between the limiting

values of Ay and By and when these are equal, this sum has also the

same finite and determinate value; as we undertook to prove.

The condition enunciated is sufficient; but it is also necessary.

For if both series of numbers A and B had not the same limiting

value, the limiting value of the integral sum could, by varying the

quantities 0, be brought to coincide with the limiting value either

of ^ or of ^; thus it would not be independent of the quantities 0.

But the proof is not yet complete; for it was assumed, that the

successive partitions are always carried out so that the extremities of

a partial interval occur also as extremities in the subsequent partitions.

The questions therefore arise: Is the value of S quite independent

of the choice of dividing points? and is it also independent of the

manner of continuing the partition? Let:

and:

be the extremities in two partitions. Suppose these in whatever way
commenced to have been carried on quite independently according to
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our process so far, that the value Sn of the sum belonging to the

former differs from its limiting value S only by the arbitrarily small

quantity €, whereas &/ likewise differs from its limiting value S' only

by f'; for, as was proved at first, every partition must lead to a

definite limiting value provided there be one for any such partition.

If now we imagine the two partitions combined into a single one

and form the corresponding sum S,„,n relative to this single partition

resulting from their combination, this may be regarded as a step forward

as well in the series S„ as also in the series 5„,'; hence Sm,n only differs

from S by a quantity rj <C s, and from /S' by a quantity rj' < s'l

The absolute difference S— S' will therefore not be more than
r; + rj\

it is less than the arbitrarily small quantity e + ^'j the limiting values

N and S' consequently are identical. The second question also is

answered by the same process. If we consider a succession of different

independent partitions: in the first let each of the intervals be less

llian di'>, and the sum of their products by the fluctuations be less

lian £<*'; in the v^ let each of the intervals be less than d^"), and the

um of their products by the fluctuations be less than
£<*');

further let:

s('\ s^^yy . . . s('^ . . .

Ije the respective values of the sum; we can again combine the i/*^

partition with the first and regard this combination as a continuation

of the first as well as of the i/*^ partition. Denoting the value of

the sum relative to the combination by >S', we have:

S' = S(') ± (< £(^)), S' = S^*) ±« £(»)).

Therefore jS<') and S^*^ differ by less than the arbitrarily small quantity
u

_(_ {{V). i. e. the series of the sums S has a determina^te limiting value.

The limiting value of the sums S is called the definite integral and
> denoted hy the symbol:

/'f{x)dx.

143. The condition thus established is fulfilled:

First: when the function f{x) is throughout; continuous; this

was proved directly in §§ 102 and 103. For, in this case a quantity
"I can be found such that at all points, in intervals that are equal to

r less than 6j the fluctuations of the function:

abs[A^) - f{x + Q8)]

are smaller than an arbitrarily small number c. Hence we have:

^dD <{b - a) (5.

Second, when the function f{x) has finite discontinuities at a

16*
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finite number of separate points (§ 105). For, these separate points,

suppose n in number, can be included within arbitrarily small inter-

vals d, such that when D denotes the largest value among the sudden

changes, these intervals of discontinuity do not contribute more to the

sum S than ndD, Since n and Z) are finite, d can be chosen so as

to make this product arbitrarily small.

We can likewise see that, at each of an arbitrary finite number
of points, the function can have, within an interval however small,

infinitely many maxima and minima with finite fluctuations, (as ex. gr.

sin —3— at the point x ==
a)^ or even that it can be left altogether

indeterminate, i. e. that we are at liberty to attribute any finite value

whatever to the function at such a number of points, without the

value of the definite integral being thereby altered.

Third: when at an infinite number of points the function is

discontinuous or indeterminate between finite limits, or else, within

an interval however small, has infinitely many maxima and minima

with arbitrary finite fluctuations
; provided this infinite system of points

answer to a certain definite description. Into this we shall enter in

the next Paragraph because the investigation presents an occasion for

us to extend considerably our conception of a function.

144. To grasp the conception of an infinite number of points,

we must first of all dwell upon the difference: a finite length con-

tains infinitely many points, but infinitely many points do not neces-

sarily fill up a length, or in purely arithmetical language: the con-

tinuous series of numbers between any two limits, contains infinitely

many numbers between these limits, but yet infinitely many numbers

between two limits do not fill up the series of numbers. In order to

characterise this 'difference we introduce the following definitions:*)

Naming the interval from x — s to x -{- s, whose length is any

arbitrarily small finite quantity 2f, the neighbourhood of a point x,

we shall call an infinite multiplicity of points a discrete set or mass
of points, when it is possible to include all of these points within neigh-

bourhoods whose sum can be made smaller than an arbitrarily small

length, while the number of the neighbourhoods can increase arbitrarily.

*) The investigation of infinite sets of points first given concisely (1871) by
G. Cantor, Math. Annal., Vol. V, is developed also in Dini: Fondamenti per la

teorica delle fuiizioni di variabili reali. Pisa 1878. The above distinction of

discrete and linear sets of points differs however from Cantor's definition of sets

of the first and second species (Math. Annal., Vol. XV, p. 2). In strictness, by
the phrase

*
'discrete set" of points or values, we imply that for the problems

of the integral calculus such a set has the same property as a finite number of

separate points or values, often using it briefly whether the number is finite or

infinite. See Ex. 1).



§ 143. 144. Discrete and linear sets of points. 245

But on the other hand we shall describe the infinite system as

a linear set or mass of points, when the sum of the neighbourhoods
cannot be arbitrarily diminished.

From these definitions it follows: (1) In case of a discrete set of

points it is always possible to assign intervals, whose sum differs

irbitrarily little from h — a, such that there is no point of the given
't in auy of these intervals; for we need only exclude the points

tlong with their neighbourhoods, of which the sum is arbitrarily

-mall. In case of a linear set of points the sum of such intervals

always differs by a finite quantity from b — a.

(2) In case of a discrete set of points it is always possible, arbi-

trarily near any position whatever, to assign a finite interval within

which there is no point of the given set. For, if a be an arbitrary

point of the interval, it could only be impossible to find arbitrarily

near « an interval devoid of any point of the set, if in the neigh-

bourhood of each point within the finite distance d of a there were

infinitely many points of the set. But then it must also have been

impossible originally to have included all the points of the set within

neighbourhoods having their sum less than d; i.e. the set could not

have been discrete.

In case of a linear set of points this is not possible everywhere.

These differences will become clear by the following Examples:

1) Every finite number of points in an interval of finite length
^

discrete; considering it as a set, we denote its order by zero.

2) The infinite set of points in the interval from to 1, which

is determined by the numbers:

> discrete, for, the points of this set concentrate only at zero. If we

parate off an arbitrarily small interval beginning from the point

zero, we leave only a finite number of points of the set in the

remaining length, so that the total sum of all the neighbourhoods can

be made arbitrarily small.

The positions at which points of any set concentrate or condense

themselves infinitely are called its limiting points; the set of the

limiting points is called the first derived set of points. In the

present case the first derived set is of the order zero; the order of the

original set is therefore denoted by unity.

3) A discrete set of points can have more derived sets than one,

or be of higher order. The points:

I
, h ay, i + (i)'. (i)'. i + (i)'. ay + w', ay, n) + ay, •

concentrate at infinitely many positions, namely at the points:

0, i, (i)', (i)',
• • • etc..
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Nevertheless they form a discrete set. For if we lay off an arbitrarily

small interval from the zero, there remains only a finite number of

points at which concentrations of the given set of points occur; and

if we include these within arbitrarily small intervals, there remains

further only a finite number of points of the given set. The first

derived set is here of the order one; the order of the original set is two.

4) Considering all rational numbers in the interval from a to 6 as

a set of points, we have a set of the second kind, a linear mass of

points. For, at no position can a finite interval be assigned, within

which there are not infinitely many points of this set; such a linear

set answers to the description "everywhere dense'^ within a finite

interval. Similarly all irrational numbers form a linear set, and

so do also all numbers that when reduced to their lowest terms have

as denominator a power of any number n.

Here moreover no derived set of lower order can be found,

because each point of a segment however small is a limiting point.

It can be shown on the other hand quite generally: Whenever a

set of points has a finite number of derived sets, it is discrete.

For, starting from the last derived set of order zero, i.e. from

a finite number of points a^, aj, . . . am; the set of points of which

this is the derived set, contains only at these positions concentrations

of infinitely many points, and further a finite number of points

&j, 5o, . . . &«. The sum total of their neighbourhoods can be ipade

arbitrarily small. The set of the first order is discrete. From this

let us proceed to the set of the next higher order. Having included the

positions a^, a^y ... «»», and &i, h^j ... &w, within arbitrarily small

neighbourhoods, the new set contains further only a finite number

of points Cj, ^2, . . . Cp. It accordingly is likewise discrete; therefore the

character of the discrete mass of points is preserved through any finite

number of such ascending processes.*)

145. A function that is generally continuous yet in infinitely

many points is either discontinuous or completely indeterminate between

finite limits, or else, within an interval however small has infinitely

many finite maxima and minima, we call discretely discontinuous,
whenever the points at which the fluctuations of the function exceed'

a determinate finite number (?, form only a discrete set of points.**)

*) The conception of derived sets of points was introduced by Cantor (Math.

Annal., Vol. V, p. 129). His example {ib. Vol. XVII, p. 358) shows that a

discrete set of points can also have infinitely many derived sets, being thus of

his second species.

**) These definitions are essentially connected with those given by H. Hankel

(1839
—

73) in his: Untersuchungen iiber die unendlich oft oscillirenden und

unstetigen Functionen, Tubingen 1870. fieprinted Math. Annal,, Vol. XX, p. 63.
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By "fluctuation" of the function is meant the magnitude of the

breaches of continuity, or, the difference of the limits between which

the indeterminate values lie, or lastly the difference between the

maximum and minimum values.

On the other hand we call a function linearly discontinuous,
in which such points form a linear set of points. Now it is easy to

ee from Riemann's Theorem that within its interval:

A discretely discontinuous function is integrable.

For, a being a prescribed arbitrarily small finite number, we can

'

tirry the partition of the length a 6 so far, that in the partial intervals

L,^enerally the fluctuations become less than a, while 5, the sum of the

neighbourhoods of all the points at which the fluctuations exceed a,

can be arbitrarily diminished. Let m be the greatest value among
these fluctuations, then:

2jdl> <o{h — a) + sm.

But the sum on the right can be diminished arbitrarily, since 6 may
be assumed arbitrarily small, and likewise .s in consequence of the

I)roperty of a discrete set of points.

Linearly discontinuous functions are not integrable.

Examples of functions infinitely often discontinuous that are

integrable. ^

1) Let the value of the function f{x) be zero everywhere in the

interval from to 1, except in the infinite series of points:

i, a)^ («'. (i)\ ar
in which its value is to be ^. This function is infinitely often

discontinuous within an arbitrarily small interval from zero; but the

-iim of the intervals in v/hich the fluctuations are ^ can be made

irhitrarily small. The value of the integral is determinate, it vanishes.

2) We can likewise construct a function that is integrable, although
it is discontinuous in every interval however small, and though the

number of points, at which it has discontinuities greater than some

iiuite number, is not finite. Determining, ex.gr., that the function

f{x) is to vanish generally in the interval from zero to unity, but

yet that at all points of a discrete set of which the point ^ is the

derived set its value is to be ^; at the set of points whose derived

^et are the points -J, f ,
its value is to be

-J;
at the set of points

with the derived set ^, ^, ^, J, its value is to be ^j and generally:
if p be a prime number and q denote each number smaller than p, at

the set of points with the derived set — , its value is to be — ,
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the integral of the function so defined is zero. The sets of points in

question we maj ex. gr. conceive formed by the series:

f + ar, I + (i)'»+s
|-
+ {\Y+\ etc..

For, the points at which the discontinuities ejxceed some given finite

number, form always only a finite number of discrete sets of points.

The sum of their neighbourhoods becomes arbitrarily small.

3) The first example of a discretely discontinuous iutegrable
function was given by Riemann. *) Let (x) denote the positive or

negative excess of x over the nearest integer less or greater; when x

is midway between two integers, let (x) = 0. The series :

mz=:cc

{mx)
^(.)

=
(^ + M+(3|)+... = 2'

converges; for, y + o^ + ^2 + • • • is convergent (§ 47) and its sum

found from the expansions of tan :r and cot x is ^ jr^. ^Iso the value \

is a superior limit of {mx). Each term of the series /(a;) is generally

continuous, only when 2mx = an odd integer j9, neighbouring values

in the function {mx) differ from each other quam proxime by 1.

When X == ~— this takes place not only with the term {mx) but

al^o with the terms (3mic), (Sm^c), etc.. Hence follows: When a? is

of the form ~-
^
where jp is prime to m:

A^ + 0)
= f(a;)-^,, f{x-^)^f{x)-^16 m2' ' ^ ' ' ^ J ' 16m2

For, when x == -~- the terms named contribute nothing, they vanish;

while when x begins to increase, they increase each qiiam proxime

by
—

^, and when x decreases, each increases by -|- 4. But:

^^2JY+32+ -pH f""2w2(T"'" 22+32 "^ 22VT+ "22+ 32
+

*")!

2w2 t 6 24/ 16m2
'

For each rational value of x^ that in its lowest terms is a fraction

with an even denominator 2m, there is therefore a discontinuity

of f{x) ;
and thus, infinitely many between any two limits however close.

But the number of such discontinuities whose value exceeds a given

limit is finite: for, if ^^ must be > (S, m must be < -—= . But in
' ' 8m2 ^ '

2K2<y

*) Gesammelte Werke, p. 228.
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a finite iDterval there are only a finite number of fractions having
denominators below a given finite limit.

The series converges uniformly; it is not continuous, because its

separate terms are not continuous functions; the integral is obtained

by integration of the separate terms.

146. The fundamental theorems concerning the definite integral

V follow immediately from the equation of definition, whose shortest

form, independent moreover of the quantities 9, is :

6

J f(x)dx= Urn
{ (a;,

—
a)f(a) + (x.^ —x^)f{x^)

• • •

-f (6— a:„_,)/Ya;,_,) }
.

We have:

I.

b b

j cf(x)dx = c
I f(x)dx.

II. Interchanging a with h, and keeping the same partition of tlie

interval, the integral;

f(x) dx

is obviously equal to:

Lim
{ (Xn-i-b)f(h)+(Xn-%-'Xn-l)f(Xn-i)+-''+(Xi--X^)f{X^)+(a-X^)f{Xi) )

and also to:

Lim
{ (a:„_i

—
b)f(Xn- 1)+ (x^r-i

—
Xn-i)f(Xn-2) H h (^i

—
^2)f(^i)

+ (a-x,)aa)].

For, as was shown, it is indifferent at what points within an interval

the values of the function are chosen.

It becomes evident by this second equality that:

b a

j'mdx
=

-Jf{x)dx,

i. e. the integral changes only in sign by interchanging its upper and

lower limits.

c 6 b
^

III.
Jf{x)dx + jf{x)

dx
=jf{x^dx.

a c
'

a

This equation holds even when c lies outside the interval a to 6,

provided only the function remains integrable. For, when:-

a <b <c
we have:



250 The definite integral as the limiting value of a buni. lik. 111. ch. VI.

c b c

Cf{x)dx = jf\x)dx + jf\x)dxy

therefore :

b

jf\x)dx
= lt\x)dx — if\x)dx = if{x)dx + j f{x)dx.

a a b a c

IV. The sum of integrable functions is itself integrable, we have:

b b

J {fi{x)±f,{x)±-'±fn{x)}dx^Jf,{x)dX±Jf,{x)dX±-
•

•±J fn{x)d:i

V. The product of two or more integrable functions is itself

integrable.*)

We must remember that the foregoing discussions only deal with

functions that do not become infinite. An extension of theorem Y,

will be found in § 149.

In the interval dp let the value of the greatest fluctuation of the

function q)(x) be Dp and of i^ix) be D/. We have by hypothesis:

^, dpJDp = Oy ^ dp Dp' =0, for w = cx).

^=1 p=i

The product cp(x) . ip{x) is subject in the same interval to fluctuations,

which, if X -\- Qdp and x -\- Q' dp denote the places of its greatest

and least values, are measured by the difi'erence:

(pix + Qdp)i}j{x-\-Qdp)
— (p{x+ &dp)i;{x + 0' dp)

=
(p{x + edp) {il^{x + Qdp)-ij{x + e'dp)}

+ ilj{x-{- e'dp){(p{x + Qdp)~-g){x-{-Q'dp)].

This form shows that the fluctuation of the product is certain not to

exceed Gp Dp + G-pDp ,
if Gp and Gp denote the greatest absolute

amounts which the functions g? and ^ assume in the interval dp.

When G and G' are the greatest of all the absolute amounts which

these functions assume in the entire interval of integration, we have:

/>=»

^{(p{x + 0^,0 2lj{x + edp)
—

(fix + Q'dp) t{x + Q'dp)\dp
P= i

p=n p=n

<G^d,l)/ + G'^d,D,

therefore in consequence of our hypothesis, it vanishes. Q. E. D.

*) Du Bois-Reymond, Journal f. Math., Vol. 79, p. 21.
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VI. Integration by parts. (Partial integration.)
Let the functions (p{x)y f\x), as also their product be integrable;

further let (p(x) be a function everywhere continuous and have the

integrable derivfd function (p'(x), so that therefore (see § 147):

X

c

where c and x mean arbitrary points in the interval of integration;

we have then:

b b X

j f{x')(p(x)dx =j f{x)\j (p\y)dy + (p{c)\
dx

a a c

b b X

=
9{o)jf{x)dx

+ jdx \f{x)jq)'{y)dtj \
.

a a c

Now putting c ^^
tty we find:

'j jm<!>{x)dx
=

q,{a)J'f(x)dx
+ jdx \f<,x)j<p-(,y)dy\.

a a a a

Putting c = hy and
\fp{y)dy

= —
/ T'(y)^y> we find:

b X
b b b b

II) Jf{x)(p{x)dx = (p{h)J f{x)dx -Jdx\f\x)Jgj'(y)dy\.
a a a X

It will be proved in § 168 that the order of these integrations
on the right can be interchanged, at least, if t\x) and (p {y) remain

finite within the domain of integration; that in fact we have:bx 6 6

jdx \f(x)j
tf' (ij)dy\ =Jdy \<p'{y)ff{x)dx\

,

a a ay
b b by

Jdx\f\x)J(p'{y)dy\=Jdy \(p\y)Jf\x)dx\
.ax a a

Accordingly we obtain from I) and II) the formulas:

6 6 6 6

j/lx)g,{x)
dx =

<p{a)J
f{x)dx +J dy

\cp'('j)Jf{x) dx\ ,

'* a a ]/

':
* *

':/

J fix) (fix) dx =
(p(b)Jflx)dx

-
Jdy\q>\y)J/lx)dx\

.
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These are known as the formulas of integration by parts ; they contain

the ajDplication to a definite integral of the method of § 108 b.*)

VII. The First Theorem of the Mean Value. (Cf. § 103.)

From the definition by the sum immediately follows:

b

ff{x)dx=\g + Q{G-g)}{b-a) (0 < ^ 1),

(I

g denoting the least and G the greatest value of f(x) in the interval.

When f{x) is continuous, it cannot overleap any intermediate value;

therefore the equation can be written:

b

s>f{x)dx
=

(b
—

a) f{a + Q {h
—

a)).

The following generalisation of the Theorem of the Mean Value is

often useful: If f{x) and (p{x) are integrable, further, if within the

interval of integration the function (p{x) has always the same sign,

suppose positive, then g denoting the inferior and G the superior

limit of f(x), we have:
b b b

g I g){x)dx ^ I f{x)q){x)dx ^GJ €p{x)dx
a a a

'

or:

6 b

jf{x)(p{x)dx
=

{g + Q{G — g) ]f(pix)dx (0£Q£ 1).

a a

When the function f{x) is continuous, this can be written:

6 b

lf{x)(p{x)dx
= fia + e(b — a)) f(p{x)dx (0 < < 1).

a a

VIII. From the Theorem of the Mean Value in connexion with

theorem III. (as in § 104) follows that: The definite integral is

a continuous function of its upper limit.

For, X and x ^Ji denoting any values within the interval ah, if

we call the integral as a function of its upper limit x briefly F{x),

we have:

*) These formulas also hold when f{x) and gj'(£c) become infinite within the

domain of integration, provided only their integrals as well as that of the product

f{x)cp{x) are finite and therefore also (p{x) remains a continuous function. The

theorem is not liable to any further restrictions than those just mentioned.

Cf. Du Bois-Reymond , Abhandl. der k. bayer. Akad. d. Wissensch.
, II. Classe,

XII. Vol., I. Abthl., p. 133.
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X±h X x±h

F{x±h)- i\x) ==Jf{x)dx-Jf{x)dx=^j
f(x)dx=±h.(g+ Q{G -g)),

a a X

G denoting the greatest and g the leaat value of f{x) within the interval

+ /t or — h. Since the function f is finite throughout, an interval

+ /* can be assigned at each point x, within which this difi'erence

becomes less than an arbitrarily small number.

IX. When f'{x) and (p {x) are integrable, and further the function

f{x) within the interval of integration is a positive quantity decreasing

everywhere as x passes through all values from a to 6, then if M and

ni denote respectively the greatest and the least value the integral:

J(p{x)^
dx

assumes as x thus varies, we have the relation:

/ 6

f{a) . m <
jf{x)(p{x)dx

< /'(a) . M,
a

By the definition we have:

h «

Jf(x)(p{x)dx
== Lim ((a;,

—
a)f(a)(p{a) + (a^j

—
a:,)/*(a;,)9(^i) • • •

+ {h
—

X„^l)f(Xn-l)(p{Xn-l')).

Now let the dividing points a:,
. . . Xn-i be chosen so close together that

the sum of the products of fluctuations by partial intervals: ZdpVp
shall be < a. Then inasmuch as f{a), f{x^) . . .f(Xn-i) are positive

decreasing quantities, we can apply to the finite sum:

dj{a)(p(a) + d^f{x^)q){x,) -\ dnf{Xn-i)(p{Xn-i).

the Lemma (§ 44 IV.) proved by Abel, and it shows that this sum

is less than the product t\a)G^ but greater than the product f{a)g,

where G and g are the greatest and least values algebraically in the

series :

fZ,<3P(a), d^(p{a) + d^(p{x^\ d^(p{d) + d^(p{x^) + d^(p{x^\ . . . etc..

But in consequence of our hypothesis as to the partial intervals,

these values differ from the definite integrals:

^a+J, a+ d^+ d, a-\-2dp
j,

j(p{x)dx, I (p{x)dXf . . . j(p{x)dx,... j(p{x)dXy
a a a a

by quantities that are certainly less than the arbitrarily small quan-

tity (J, because the total sum of all the products of the fluctuations
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by their intervals is < /?. If then we denote by g the least and by
G' the greatest value in this series, we have the inequality:

If n be arbitrarily increased in this inequality, 6 becomes zero,

while g and G' do not pass beyond the least and greatest of the

values which the integral

J (p{x)dx

assumes while x is given all values between a and h. Hence we have ;

b

f{a) . m <
jf{x)(p{x)

dx <, f{a) . M.
a

Since the definite integral is a continuous function of its upper

limit, it actually assumes each value lying between its maximum and

its minimum, it overleaps none; there is therefore certainly a value

between a and 1) such that:

b a+Q(b— a)

ff\x) <p {x) dx = f{a) f(p (x) dx (0 < < 1) *).

a a

X. Waiving the hypothesis that f{x) retains the same sign, we

obtain from this last equation a more general theorem usually called

the Second Theorem of the Mean Value, li f{x) and q){x) are

everywhere finite integrable functions and f{x) in the interval from

a to h a decreasing quantity that can also become negative, f(x)
—

f(b)

is a positive quantity in the interval from a to h, therefore also by
theorem IX.:

6 a-\~&(b-a}

or:

a-\-0{b-a)

I f{x)cp(x)dx
== f{a) I cp{x)dx + f(b) I cp(x)dx.

«+ (y(6
— a)

If f{x) be an increasing function
,
therefore — (/ (^)

—
/(^)) positive

and decreasing, it follows that:

b a+Q(b~a)

-f(m - m) <p (*) rf^
= - (/(«)

- m)fvw <^^,

*) 0. Bonnet: liemarques sur quelques integrales definies. Liouv. Journ., XIV.
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or likewise:

b a4-©(6— a) b

*jf{x)q>{x)dx
=

f\a)J<p(x)dx
+ f{h) j ^>{x)dx*)

a a a-\-Q(b — a)

Note. The values of /" at the extremities a and h can also be

indeterminate. From our deduction it follows, that then in case of

a decreasing function, f(a) is to be replaced by the greatest value and

f(h) by the least value to which this function approximates in the

neighbourhood of these points; the reverse holds in the case of an

increasing function.

14:7. Having learned that the definite integral is a continuous

function of its upper limit; we naturally ask, whether its progressive

and regressive differential quotients have a single determinate value?

From the Equation VIII. : \

x±h • X x±h

I^\x±h)-F(x)=JfXx)dx-Jax)dx=J f{x)dx==±hi(/+e{G-g))
a a X

we find:

£(^±|^.€(?)=, + e(tf_^).

Now making h converge to zero, it is evident that wherever the

progressive value of f{x) is continuous, where we can therefore put

g + Q{G-g)=f{x + Qh),

the function F{x) has the progressive differential quotient

i^'(^)=/-(x + 0);

and wherever the regressive value of f{x) is continuous, the function

F(x) has the regressive differential quotient f(x — 0).

The same holds also at every point at which fix) differs from

the values f{x + 0) and fix — 0) by an arbitrary finite quantity;

and there may be a discrete set of such points, provided, arbitrarily

near each such point, the values fix + 0) and fix
—

0) follow from

fix + h) and fix
—

h) by continuous transition. As a particular case

we have under these hypotheses:
b 6

\f^Jm dx\
= Lim -

lff(x)dx
=m .

Regarding the integral as a function of its lower limit, the differential

quotient can be determined either by means of the inversion of limits:

a

Jf(x)dx
=

-^Jfix)dx,

*) Du Bois-Keyraond, Journal f. Mathem., Vol 69.
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leading to:

b

ri r •

^//W^^

or directly from the formula:

Lim — y / f{x)dx = —
f{a) .

a

At all points in whose neighbourhood j{x) has infinitely many
maxima and minima with finite fluctuations, moreover such points also

can only form a discrete set, the function F(pc) has no differential

quotient.

Summing up it may therefore be said: livery definite integral

expresses within its interval of integration a continuous function of
its upper limit, whose progressive differential quotient has generally a

determinate value, and its regressive also one identical with this. It is

only in discrete sets of points that the progressive and regressive

differential quotients can differ or can he altogether indeterminate.

Since the definite integral is quite independent of the nature of

the function in discrete points, all integrable functions that coincide

within their interval except in such points give rise to the same value

of the definite integral.

From this appears, further, what is the form of the connexion

between the definite and the indefinite integral. For, if F(x) be any
continuous function, whose derived function F'{x) is integrable, (so

that if this derivate be discontinuous or indeterminate or else have

infinitely many maxima and minima with finite fluctuations it is so

only at infinitely many discrete points,) then, the difference:

z

/F\x)dx — F{x)

is a continuous function of ic, whose differential quotient, generally

zero, is prima facie indeterminate only in discrete points. But such

a function is a constant. For in every interval however small,

after separating out the singular points, finite intervals will still

remain within which not only is the function continuous but also

its derived function vanishes. By the Theorem § 100 therefore the

function is constant within such an interval; and because the limits

of the interval can be brought arbitrarily close to the singular points,

since the function is continuous it will have the same value also at

the singular points. Therefore it does not undergo any change of
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value on passing from one interval into the next; i. e. it remains

constant throughout the entire interval of integration:

jF'{x)dx-Fix)
= C.

The value of this constant is determined by putting x = (i
;
thence

1 oUows :

X

- Fia) = C or: I F'ix)dx = F(r) — F(a).
a

TJiercfore tchen the derivate F'{x) of a continuous function F{x) is

Lnotvn and is finite and integrahlc^ tlie value of its integral is always

F{x)
—

F{a)\ even though we may alter arbitrarily the value of F\x)
in infinitely many discrete points.

148, When the function f{x) becomes infinitely great, either

(leterminately, oi*, oscillating between arbitrary limits, as the variable x

;4)proaches a certain value c in the interval from a to
2;,

the sum, whose

limiting value is the definite integral, can assume any value whatever

lor any finite partition of the interval, it has therefore no limiting value.
b

;uicl
jf{x)dx as hitherto defined would have no meaning. But if

a

under these circumstances the sum:
c— at

jf{x)dx + lf{x)dx
a C+ ffa

issume a fixed limiting value while a, and aj independently converge
b

\() zero: I f{x')dx is understood to mean this limiting value.

a

I'his was indicated in § 106. Examples in which the function to be

integrated becomes infinite occur in § 122 Note and § 132,

Now the necessary and sufficient condition that each of the two

integrals may liave a determinate value, is that

C— «i C-f-'a

I f{x)dx and I f{x)dx
c— a, c+o,

liall vanish, when s is always smaller than a, and a converges to zero.

In case the function becomes determinately infinite at a point,

this condition is certainly fulfilled, when in the neighbourhood
of this point it becomes algebraically infinite in lower than

til. first order; taking as unity the order of — for a; = 0,

XJHIVERSITT
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For, if f{x) be a function that increases as c is approached, but in

such a way, that in the neighbourhood of the point c, for x <i c\

abs fix) is < ,

A being any finite quantity, and v a positive proper fraction; then:

c— e c—f

ff(x)dx will be smaller than A /*—^— =_ —^ U^-^ — ai-*"),

c—a c—a

and as long as 1 — v > this expression converges to zero along
with a and £. Even when the order of becoming infinite (infinitude)

differs from unity by no assignable number, when ex. gr.*)

abs f(x) < • rx- ,ly J ^ c-x
(log (c

-
x))^-^"

'

the quantity:

fm,. <Aj-~^^_^^.- ^ {(log
(.))- - (log («))-

converges to zero along with a, provided v is positive.

But the above condition for a determinate limiting value of the

definite integral is certainly not fulfilled, when the function that is to

be integrated becomes determinately infinite in the first or in a higher

order; i.e. when its infinitude i> 1. For, if:

abs f{x) > c — X

c — s

Jf{x)
dx is > Aj ^^ = A (log a — log «),

c—a c—a

then as a converges to zero, these logarithms become infinite and

their difference is completely indeterminate.**)

In case of a function that becomes indeterminately infinite at a

point, the condition is satisfied without requiring any restriction as to

the order of becoming infinite; thus ex. gr. the function:

*) Riemann: ges. Werke, p. 229. See a general remark on the universality

of logarithmic criteria by Du Bois-Reymond, Journal f. Math., Vol. 76, p. 88.

**) log u — log s == log {a : f) assumes arbitrary values, according to the

way in which the ratio of the vanishing quantities a : f is determined. Making
a = f, gives a value for which the logarithm vanishes. We could therefore in

/ d X
this sense speak of a finite value of the integral I

,
that results from a

t/ ^ ^
.

'

.

determinate way of approaching the infinity point. Such special determinations,

which were frequently employed by Cauchy, are styled singular integrals,

but, as Riemann noticed, they have not been adopted in framing the general con-

ception, because they require special arbitrary investigations in each calculation.
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COS \e') -\ e* sin \e*/
,

which for every finite value of a; is identical with the derivate:

l)ecomes completely indeterminate for a; = 0, oscillating between

arbitrarily great positive and negative values as x approaches zero.

Its infinitude is infinite. Nevertheless we have:

/
jcos

\6'*/ + ^
e' sinvc-'Jj

dx = a; cos Ve^J -f C,

cv en for the value x = 0: because

/ .
. jo;

cos \e'
/j
dx =

jc
cos \c ' / — « cos \e"

)\
it

< onverges to zero along with a and s.

Corollary. When the function becomes infinite in infinitely many
discrete points of its interval of integration, we can resolve this interval

into a finite number of finite intervals that contain none of the

infinity points, while these latter are included within intervals whose

sum becomes arbitrarily small. The integral has a meaning, provided

lie partial integrals, formed for the intervals containing no infinity

points, converge to fixed values when the limits of these intervals are

l>rought arbitrarily close to the infinity points.

When the infinity points form a linear set, such a definition is

1)0 longer possible, since there are then finite intervals containing

everywhere infinitely many points of the kind.

14:9. The Theorems given in § 14G are somewhat modified by
tiie occurrence of infinity points. We confine our investigation to the

assumption of a finite number of such points.

Instead of Theorem V., whose proof essentially required that the

luuction to be integrated should be finite, we obtain the theorem:

When (p{x) and ^{x) are two functions integrable from a to &,

• iich becoming infinite at certain points c, but without any infinity

[toint of (p coinciding with one of ^, the product q){x) . ip{x) can

l)e integrated in the same interval whenever the functions (pxix) and

^, (a;) formed of the absolute values of (p and ^ remain integrable.

In proving this theorem we need only consider an interval from

a to c, within which neither function becomes infinite, while the

limit c is an infinity point for one, ex.gr. for fp{x)' Evidently then:

tlie .iniount of

17*
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c-d

a

is smaller than:
c-d

M '

j (p^{x)dx.

where M signifies the greatest amount 'ip{x) assumes in this interval.

But by hypothesis the second factor remains finite even for d = 0.

Scholium: When the integrable functions become infinite

always in a determinate manner, their product is integrable; for

then all the hypotheses of the -theorem are fulfilled.

But when infinity points coincide, we cannot immediately conclude

anything concerning integrability. Thus, from the integrability of a

function that becomes infinite, we cannot conclude that of the square

of this function: Ex. gr. we have the value of
1 1

r dx n f dx

JfT^^-^' but that
ofJ(|7n^l^

U

becomes infinite.

The extension of the First Theorem of the Mean Value to the pro-

duct of two functions, VII., holds although q){x) becomes determinately

infinite, provided f(x) remains finite. Here moreover the definite integral

is a continuous function of its upper limit, Theorem VIII. . For, e being
an infinity point, we have:

c— d

if{x)dx = Lim i if{x)dx)
= Lim {f{c

—
d)\.

a a d— Q
' 6—

Now since i^ is a continuous function of d, we can choose d so that

abs [F{c)
— F(c - d)-\

'

shall become smaller than an arbitrarily small prescribed number
f,

provided there be any limiting value F{c).

The Second Theorem of the Mean Value, X., continues valid even

when the function q){x) becomes infinite; provided only cp{x) and

f{x)(p{x) are integrable. The diff'erential quotient of the integral with

respect to its upper limit (§ 147) becomes determinately infinite at

each point at which in continuous increase the function that is to be

integrated becomes determinately infinite; when this is not the case,

the differential quotient of the integral needs not coincide with the

value of the function that is to be integrated; it also can become

indeterminate. We have ex. gr. in conformity with the equation :

_d_
dx

( ^2 cos (,c^ jj
= 2^1? cos ye'') + sin ye"^) e*

,
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X

I (2^co8(c*) +sm\je')e']dx^==x^cos\e')—a^cos\e'*)===F{x)—F{a).

rhe diflferential quotient of the function F{x) for a; = has the value:

Lim [m+^^^) = Lim
(a cosG^))

= 0,

while the function to be integrated becomes indeterminately infinite at

this point.

150. As already shown in § 106, the definite integral can still

have a finite value, even when its limits become infinite^ provided we

understand by I f\x)dx the limiting value assumed by I f{x)dx
a a

when 6 c= cx>. Similarly we define :

b b

j f{x)dx
=» Lim I f{x)dXj when a ==> —

(X)*).

— ao a

By the substitution x=—z we can always reduce the investigation

of the negatively infinite limit to that of the positive. Examples of

the existence of such limitiug values have also been already given,

•je specially § 107 and § 137.

But now the necessary and sufficient condition that there may
be a. determinate limiting value, is: that

1

J f (x) dx

hall be smaller than an arbitrarily small quantity <y,
when u is assumed

ufficiently great and w greater than u.

When, for arbitrarily increasing values of x^ the function does

not oscillate infinitely often, this condition is certainly fulfilled if,

lor X = ooj f'{x) vanish algebraically in an order higher than

tlie first, taking as unity the order of — for a: = cx>. In

other words, f\x) can be integrated up to a; =» c» when this limit is

L zero or nullity of /(a;) whose nullitude > 1). For, if the absolute

values of f\x) form a decreasing series, such that :

.
abs f{x) < 4r ,X

A being an arbitrary finite quantity, and v a number greater than 1:

*) How a definite integral with infinite limits can be considered directly as

the limiting value of a sum
^^dj,fp,

is shown by Dini: Fondamenti, p. 338 etc..

P-i
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w w

I f'(x)dx will be smaller than A / "^= - _ {w^-'*'
—

tt^""),

u u

aud while 1 — v < this expression converges to zero as the values

of u and w increase.

But the condition stated is not fulfilled when the function vanishes

in the first or a lower order, or when it remains finite. For, if

we shall have

abs fXx) > 4- > (^ < 1)

w w
'

j'f\x)dx
>
Ap^^-^^~ K-

-
«'-'),

u u

and here the exponents of the arbitrarily increasing values u and tv

are positive.

On the whole the investigation is evidently quite analogous to that

in § 148; because by the substitution x = —
,

I f\x)dx passes over into

accordingly the behaviour of the new integral at the point s =
must be examined.

Our criterion shows for instance, without any substitution, that

the integral (§ 137) :

J--?
must have a finite value; for, the function:

becomes smaller than -
^ xr

for every 2/ > 1, because:

Lim (it'-i
•

c-^) == 0.

But when the function makes
infinitely many oscillations as the

values of x become infinite, its nullitude needs no restriction in order

that the condition may be fulfilled. Thus ex. gr. the value of:

j sin {x^) dx

is finite and determinate, although for .r=op the function to be integrated

becomes quite indeterminate between the limits — 1 and + 1.*) For:

*) Dirichlet, Journal f. Math., Vol. 17.



,^ 150. Definition iu case of infinite limits. 263

u u u
to

COB (w*) ,
COB (tt*)

1_
/ co8(a;*) ,

u

The absolute difference of these two first terms does not exceed
u

Further, since the function —^ does not change sign ,
we see by the

First Theorem of the Mean Value that the amount of:

10 w

1 /'co8(a:«) , 31 Cdx M\ \ l] . n xi l

> I
-

,-^ ax = —
I ,

= I IS smaller tlian —
,

2 J x^ 'IJ a? 2 |_M w\ 2u '

tt u

since M signifies a mean value of cos (a;'), and is therefore a proper
i'raction. Accordingly:

w

abs / sin {piP) dx < —^
u

and tends to zero as u increases.

We have:
ao CO

sin ix^)dx = ^f-y^-
dz ^ 1/I ^

; (see § 158.)-

U

Another example is:

u

which can similarly be proved to be finite. It is still more instructive

to consider the following process: Taking li an integer and a <i n^

let w = h7t -\- a be an arbitrarily great number, then:

w n tn lot •

kn-\-a

Ki n (A— l);t kn

The terms of this infinite series (for A; = oo) alternate in sign and

decrease in amount; for, comparing:
kn (k-\-\)n

J

j'"\'
dx y^ith

f'J^dx,

by substituting x = y -j- tt and so making the limits of the second

integral the same as those of the first> we find:

(*-fi)n kn kn

*i^ dx = I'''' ^^+-
"^

dij
= -

/'
"°^

dy.

(k-l)n (*-!)«i
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As Iv increases, these integrals converge in amount to zero; hence

the infinite series has for a; = oo a finite value. It is worthy of

notice further that:

I Bin X 7 /sin ccS j , ^ rw

so that the value of the integral is independent of «; it is ^^it (§ 155).

The convergence of these integrals is only conditional, i. e, arises

only by the changes in sign of the functions to be integrated; the

integrals formed of the absolute amounts are divergent. It has however

been proved by Du Bois-Reymond in a general class of examples

(Math. Ann., Vol. XIII) that integrals can be convergent even in case

of oscillations between zero and positive limits.

151. Differentiation of a definite integral vvfith respect
to a parameter.*)

A theorem stating how the definite integral in certain cases

can be differentiated with respect to a quantity that is contained

in the function to be integrated ,
is of importance in calculation with

definite integrals.

First of all we remark : When f{x, a) is a continuous function of

both variables x and a (§ 52) within the domain that is determined

by the values x = a to x = h^ and a = p to a = y, the definite

integral:
b

/'/(ic, a)dx

is also a continuous function of a. For if, whatever be the value

of Xf a value h can be assigned such that in the interval « to a + A :

abs [/(a;,
a + h)

—
/'(rr, a)] < ^, .

then will also the absolute value of:

6
b^

b

I f\x, a ^h)dx — / f\x, a)dx == / [f\Xy « + /^
—

f\x^ a)] dx
a a a

be smaller than 8(b — a); therefore it can be arbitrarily diminished

by choice of h. This is a sufficient condition
;
but the theorem cannot

be converted.

The differential quotient of the definite integral for a determinate

value of a is to be calculated as a limiting value:

b b

ff{x,a-\-h)dx-ffix,a)dx ,?

Lim «

j^^ = Limj
A^^ ^ + ^0 -J^_^^^ ^^.

*) Tboma) : Einleitung in die Theorie der bestimmten lutegrale. p. 20 etc..
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i. e. this definite integral must first be evaluated for a finite value of

h and then the limit found for /i = 0. The question arises, whether

these processes may also be applied in reversed order; when they can,

we liave the differential quotient of the definite integral expressed by
a new integral, namely:

b

f doc
'

and this will present an important method of calculating detinite integrals.

In order to examine the condition of this theorem, let us put:

fix, « + ;»)- fix, a) dfix, cc) . . .s

h ~~da •" ^^ ' ' ^'

thus 9 is a quantity variable with x and h
,

that vanishes for h = 0.

/if
Now we shall assume that both f and its differential quotient ., are

continuous functions of x within the interval x ==> a to a; = &; then

too, for every value of 7^, 9? is a continuous function of x, so that

both functions are also integrable. *) Hence:

J
V... a + >0 -/(». ») j^

^fiff.'^ dx+jlix, a, k),U
u a a

Making the value h converge to zero in this equation, it will only

pass over into the desired equation:

Li„
jWi|=.£f?ii?)

dx =p-^^ dx,
a a

provided:
6

Lim / (p{Xj a, h) dx
hz=iO J

a

continuously converges to the limit zero. Therefore the necessary
and sufficient condition is, that for each value of d however

small, it shall be possible to find a value h such that:

abs
f (p{Xi a, />)

rfx < d\

a

This condition shows, that the theorem of the interchange of

integration and differentiation is by no means always valid. It will

/)f

*) If
^

be not an integrablo function, the possibility of the theorem is

completely excluded.
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not hold, ex.gr. for any functions /"for which, while (p has always
the same sign, there is a linear set of points x at which the inequality :

abs [cpix, a, h)\
= abs

[f(^'±+''i^szm-'^l
-
^^^^] < d'

cannot be satisfied by an assignable value h.*)

But the course of our investigation reveals to us a condition

that is sufficient. In fact if
--'^^-^

for every value of x is also

a continuous function of «, the above inequality can be written by
the help of the Theorem of the Mean Value in the form:

I da dec J

Now when this condition is to be fulfilled generally for all values of x

within the interval of integration (with exception, possibly, of only a

discrete set of points),
~- must be generally a uniformly continuous

function of a, and therefore also generally a continuous function

of both variables. We have therefore the theorem: When for

X

') Suppose the integral I f {x ^ a) dx = x mi i 4tan—i —
J
and therefore

a continuous function of both variables, w^e have:

f{x, a)
(4

tan—1 —
I ^-7-

—
5 cos (4 tan—1 —

|

xj x^ -\- a^ \ xj

Ata; = 0, a = 0, /"(O, 0) is to be = 0; this convention has no influence upon
the integral. Moreover the equation holds for every value of a?; for a = we
have /"(aj, 0)

= 0; for ic=0, /"(O, a) = 0. If we differentiate the integral with

respect to a we obtain:

X

^Jrx,
,.)dx =

~-^
cos

(4
tan-i

^)
,

and for a = this value is equal to 4. But the value of

d

because :

X

^J^dx==^,
')a J

(^/f-)) = Li. {'<l^::l^l _ ^^4^ eos L tan-. -) }
= 0.

The theorem of the interchange therefore does not hold, although for every value

d fix cc)

of x both /"(a?, a) and -^'— are continuous functions of a.
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a determinate value of a an interval can he assigned such that

-^— mthin the domain from a to a -\- h and from x = a to x = h

is generally a continuous function of both variables, we have:

da

O n

J'flx,
a)dx =fff^ dx.

Moreover also it is sufficient for the validity of the theorem,

that the definite integral be such a function of its upper limit x and

of the parameter « as to have its first derived functions with respect

to X and a continuous and the order of differentiations with respect

to X and « interchangeable (§54). For, writing:

^ fix, a) dx« F{x, «),

a

we have then:

dx ' V » /' doidx Oct
' cxoa cxcaj

' ^ ' ^ '

a

and from the equation:

df{x,a) _ a« /'
,,

a

follows by integration:

/-^/^'"'"-
=

^//-(->«>'-

When the limits of the integral likewise depend on the parameter «,

we obtain its derived function with respect to a, on the hypothesis that

ditterontiatiou is admissible under the integral sign, by the formula:

;Jfix, a)dx = m, a)l^- na, a)^ +fJ^'J dx.

a a

152. The preceding theorems require to be supplemented, when

the limits of the integral or the functions to be integrated become

infinite. Without exhausting all possibilities, we consider the following
cases.

a) Although f(Xf a) be a continuous function of both variables

in the domain from a; = a to a; = ex and from a =
/3

to a = y, still

it is only on a certain hypothesis that the integral:

fix, a)dx
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is a continuous function of a. We have:

CO V)

I Ui^) ^ ± ^0
—

/(^> a)]dx == / [f{Xf a + h)
— -

f(x, K)]dx
a a

00

+flfix,a±h)-f(x.,a)]dx.
w

In order that by choice of h this expression may become smaller than d,

the function must be so constituted that, for all values in the interval

from a — h to a -{- h, one and the same w shall be sufficient to make:

/ [/'(^) a + /i)
—

fiXy a)]dx < 6,

w

Thus ex.gr. (§ 155) for every finite value of a:

/
Sin aic 7 ,

.

but for « = the value of the integral vanishes. The definite integral

is therefore not a continuous function of a, although the function

that is to be integrated is continuous in both variables.

But the hypothesis is fulfilled, if, whatever value a may have,

the function f vanish determinately for x == oo in an order higher
than the first. For then we can first assume w so s^reat as to make:

[fipc; a±h) — f{x, aj] dx<—y

and afterwards determine the value of h so that we may have:

J[/(^; " ifc ^0
~~

/(^> ^)] ^^ <

In this case differentiation under the integral sign is certainly

possible, if
\^

— also is a continuous function of both variables

that vanishes in higher than the first order for x = oo. For, putting :

Aa;, gJ^h)— f\x, u) _ df(x, tt + e/y)

/t

~
dec

'

we have:

00
,

W
rrf{x,a+ h)-f(x,a) _ dfi^cz)! . _ rrdfix,a+ Qh) __ dfix^af] ^^
J I h dcx J

^ J I doc da j
a a

,

f\df(x,a-\-eh) __ df(x,a)l ^j^
J L da da J

'
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The quantity on the right side of this equation, as was just shown,

converges with h to zero and therefore we have:

a a

b) If either or both of the functions f{Xy a) and -~ become

infinite at the point x = c within the interval, but in such a manner .

that integration is permitted for each, while a varies within an interval

a — h to a -\- hy then it is once more a sufficient condition for the

validity of the Theorem of differentiation under the integral sign,

that —^ shall become determinately infinite in an order lower than

the first but otherwise shall remain continuous. For we have:

r e — d

a a c—d

The first of these limiting values passes over, however small d may be,

into the value of the integral:
d

faq?'?) dx,
(ice

the second takes the form

c

I'
d fix, a +

J. a«
^dx

and can by hypothesis, however small h is chosen, exclusively by choice

of d be made smaller than an arbitrarily small number. Therefore :

d

a

differs arbitrarily little from:

dx
JI da

as d converges to zero
; establishing the equation we desired to prove :

c

d

alfax,a)dx=fJf^dx.

153. Integration of a definite integral with respect to

a parameter.
If the definite integral is a continuous function of the parameter
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a within certain limits /3 and y, then it is also between these limits

undoubtedly integrable with respect to a.

we have:Calling:
J^(i'^)j|^F(4),

To such an expression the name definite double integral has

been given; it implies, that first the integration regarding x has to

be effected and then that regarding a. The general theory of double

integrals will be treated in Chapter VIII; one question only is to be

solved here. Assuming the limits a and &, /3 and y^ to be independent
determinate constants, and f{x^ a) to be a continuous function of both

variables, does the following equality hold between the

integrals:

da
I f{x, a)dx = j

dx I f{x, a) da ;

(la a
(i

or, does the order in which we integrate influence th 6 result?

For h == a both expressions vanish. They are therefore equal functions

of hy if their derivates with respect to h coincide. Pifi'erentiating each

with respect to the upper limit h, we find on equating:
'

Y ^, y^ y,

-^ j
da

f f{x, a)dx= <
j f{x, a)da\ = I f(h, a)da.

Now this requires the integral with respect to a on the left side to

admit of differentiation under the integral sign. But it does admit

of it, because the derivatb of

b

I f{Xy a)dx
a

with respect to 6, whose value is f(b, a), is by hypothesis a continuous

function of both a and h. The order of the integrations can therefore be

inverted for a continuous function of two variables.

When the limits h and y are infinite, we have:

I
da \f{Xj a)dx = Lim I da I Lim I f{x, a)dx\

(i
a

[i
a

ydx j f{Xj a) da = Lim idx\ Lim I f{x, a)(/a\ .
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Now when t\x, «), as the values of x and a increase arbitrarily, is a

continuous function of both variables, we have the equation:

I
(^

I f{Xy a)dx = I
(Ix I fix, a) da.

[i
a a

(i

First let u increase arbitrarily, while the arbitrarily great value of w is

vt

kept fixed, then if the functions /*(a;, a) and / /"(rr, a) da are integrable

with respect to a: up to infinite limits, we have the relation:

W CO » w

Ida I f{x, a)dx ^=
j
dx I f{x, a) da.

(i
a a

(t

If now when w also increases arbitrarily, the integral on the left side

pass over into a determinate value, the quantity w on tlie right side

may also be replaced by the value oo, provided the further condition

is fulfilled, that an upper limit w can be found such that:

=0 «

I dx
I tX^) a) da

shall remain smaller than an arbitrarily small number d. For then

both sides are continuous functions of tv. As a special case this will

occur, when it is a property of the function f{Xy «), that, whatever

value X may have, an inferior limit can be assigned for a
,
such 'that

the function
/"(a;, a) shall remain absolutely smaller than ^^-~, where

V > 1, and q){x) signifies a function of x integrable between the

limits and oo.

When the function f(Xj a) becomes infinite at a point x = Cy but

ill such a way that, for all values of a between /3 and y integration is

admissible up to. the point a; = c, we have:

Y c~d c—d Y

Ida
I f(Xy a)dx = Idx I f{x, a)da

[i
a a

fi

however small we choose d. Now when we make 8 converge to zero,

the int<'crr;il on tlif left side will pass over into the value:

da
j f{Xf a)dx,

provjclctl a quantity d can be assigned that is sufficient jrenerally lur

all values of a between /3
and y, to make:
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c

f{x, a)dx
d

smaller than an arbitrarily small quantity s. The integral on the

right side then, as a continuous function of 8, also passes over into

the same value, provided it has any determinate limiting value.

These sufficient conditions are fulfilled, for instance, when:

abs/-(«, «)<-^, iy<\)

while ^ as a function of a remains finite.

Example. /''"^"^
dx = \7C (§§ 150, 152, 155) for every finite

value of «; except for « = 0, where the value of the integral vanishes.

Nevertheless an integration with respect to a is possible ex. gr. between

the limits and 1 :

1 -r, 1

j
da i dx = ^Tt j

da = ^ic.

Interchanging the order of integrations we obtain:

00 1 CO oo

-^J
sin axda =J -, dx =J ^--^- dx = J 7t.

The following Example shows that an interchange of the order of

integrations in discontinuous functions gives rise to a different value*):11 11
<»

Here the function to be integrated is discontinuous for x = 6, a = 0.

We have:
1 1

/ (gg
— x^)d x / X \ 1

J (a2 + x^)^~
~

\cc^-{-x'0
"~

1 + a2
'

Hence the first double integral is equal to:

1 1

On the other hand:
1

therefore the second double integral is equal to — — •

*) Oauchy, Le9ons de calcul differentiel et integral, redigees par Moigno. p. 85.
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It is to be noticed, that this difference arises from the value of

1

/ {a^
- x*)dx

{a* + x*)*
'

which is generally , ,
for finite values of a, becoming

—-
f '^ j

that is to say, infinite, for a = 0; the value of:

is different from that of:

1

/^L':(S-^f.)"-
(Jonsequently we have in the neighbourhood of the point x ==

0^ a = 0:

u u

on the other hand:

OK)
The values of the double integrals are quite indeterminate, depending
on the way in which d' and d converge to zero. (Cf. § 168.)

Harnack, Calculus. l8



Seventh Chapter.

Examples on the calculation of dejanite integrals. The fundamental

formulas of Eulerian integrals.

154:. First group.
I 1

By successive differentiations with respect to the parameter a we obtain

the following integrals:

2) Jx'-H{x)dx^~-^„
1 1

jx—\lxfdx
= ^, • •

'Jx—'{lxY-'dx
= (-if-yh:^ , .

U

By the Theorems § 152b and § 148, all these integrals hold for a > 0.

By integration with respect to the parameter a between the limits

a== a and p, it is found that:

da ix^-^dx =
jdx jx^-'^da

= fdx
^^~\Tjf~^

= ^

{~)
'

a a

This formula holds good, provided a and
/3 > 0.

For, so long as a is positive, we have not only x^~'^ but also -,-—
L (X)

Jnfegrable at the points x == and x = I
,
moreover the condition

stated at the end of § 153 is fulfilled.

Putting a = 1, we find:

1

3) Jclx'^^'-^K^), (^>0). -^

Substituting in these integrals the function e-^ for Xy the limits

become oo and 0, instead of and 1, and we. obtain for a > 0:

CO

la) I
e-''''dx =^ '
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2 a) I
e-"''xdx = -j,

• •

•, j
e-^'^x'^-^dx = ^=^ ;

n a positive integer.

3-.) f
'"-'"' d»= 1(a).

155. Second group. (§140.)

Je-<^'
8mhxdx = ^,~-^

1)

"
^

(a>0)

J e-^' COS bxdx=^~j^^'

Hence follows by differentiation with respect to a :

/*

2ab C a* h*
c-"''xsmhxdx= y~r-rTi^ » / ^~'*'^ xcoshxdx= :.

,
. ,

•

Again by integration with respect to a between the limits a and /3:

oe

I

^ ZlA gin hxdx = tan-^ y — tan-* "- •

:i) (a and /3 > 0).

/V«*-e-^'
, , 1 ,^«+6'

cos oa;(?a; = — I Vt-ti *

X 2 a« -f fc*

u

Making a converge to zero in the first of these two integrals, we

fiml:

\) I
^—— sin bxdx «= tan-*

For, the integral 3) is a continuous function of a inclusive of the

value a = 0. In fact, separating the integral from to w? and from

IV to oo, as § 152 requires, we can evidently by choice of w alone,

independently of the value K make: "^

00

J'c~**—

1

sin hxdx
X

w

less than an arbitrarily small number, because (§ 150):
oo

/
sin da; ,

X
^

w
18*
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can be arbitrarily diminished by choice of w^ and moreover by the

Second Theorem of the Mean Value we have:

00 u

J X J X

the upper limit u denoting a number between w and (X). In like

manner, integral 4) is a continuous function of
/3.

Therefore making

/3 become infinite, we obtain:

CO

r\ /*sin hx n
\

Tt

5) . j-^rf^=±Y
according as Z> > or < 0. But this definite integral, as already

remarked, is not a continuous function of h when & = 0; for, at that

point its value is zero.

The formula 5) can be expressed generally. Replacing h in it

successively hy h -\- a and by & — a and assuming that & > a > 0,

we have:
00 «

sin
(?)
— a)x ^

n

Hence also, as w^e find by addition and subtraction:

00 - cc

X ^^==T J X
dx = (h>a),

or:

^ , 2 /sin b X cos ax
-, ^ ^ t , ^ .

'

6^
—

I — ax = I or == 0, according as & > or < a.

00

T7, 7 1 /sin 2b X J 1
1 or a==o: — I ax= -r •

ItJ X 2

156. Third group. (Laplace's integrals.)
00

Writing u = I
^"^ —^—- dx {a and 6 > 0), we have u =

when h <i a, and u =
-^

tc when h > a. Multiplying both sides by

g-6c^ where c is positive, and integrating from b = to & ==
oo,

we find:

/* 7,^77 ^ r hr n '^ ^~ I hrji i^mhxcosaXj
I
u 6-^^11= —

I
e-^uJh = Y ==

I
e-^'^dh I dx.

Interchanging the order of integrations in this integral, it becomes:
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— cos ax I c-^'^ sin hxdb = I -^^x~i dj-

Hence:

cos ax
J

TT e
""

The integral is a continuous function of a. If a become negative, the

function under the integral sign remains unaltered, therefore:

n e-^°^ (according as a > or < 0).V /cos ax ,

If we differentiate with respect to a, the result is:

/x
sin axdx ,

n^ q:„^. (according as a > or < 0)
c« -j- x=* — 2

^
this does not hold for a = 0.

This differentiation with respect to a is permitted (§ 152); but a

further differentiation under the integral sign with respect to a is not

possible, because the derived function is no longer integrable between

the limits and oo. Integrating equation 1) with respect to a between

the limits and a positive, we have:

fy^ "- = "

(- '7)
= ^ (I

- --)' (« > 0)
u

on the other liand for a negative:

a

, .i^ dx =
", (C )

= ^^ {<-"'
-

> )• (« < 0)f:

Successive differentiations with respect to the parameter c can also be

effected on integral 1).

157. Fourth group. (§ 139.)

/ sin^xf/.r = sin* *a;co8a;
,
n— I / •

„ g 7

n ' n /
'

I
s\n''x(ix = ^^ - / sin'^-^xdx.

hen n is an even integer
= 2 m, we have as in § 133:

P8in^"^xdx
'2m— 1 2m — 3
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When n is an odd integer = 2m -\- 1:

J 2?w+ 1 2m— 1 6 3

Now sin X between the limits and ^ :;r is a positive proper fraction,

hence :

I
sm^'Ti-ixdx > lsm^"'xdx> I sm^"'+^xdx,

%
2 4 '2*^*~2\^ Jl A 2 ?M — 1 2 4 2m— 2 2m
3 5 2m— 1

^
2 2 4 2m -^3 5 2m— 1 2m+l

Dividing across by the coefficient oi ^tc, we find:

2 2 4 4 2m — 2 2m — 2 2 m tt

1 3 3 5 2 m — 3 2m — 1 2 m— 1

\ A _?.
^ A .

2m— 2
^

2m— 2 2m 2m
^T'~3"'y'5'''*2m — 3'2m —1

*

2m— 1

*

2m+ 1

*

J TT i 2m
^m > Y > ^m '

2^_|rT
•

As m increases, the quantities Am form a series of decreasing numbers

greater than \7tj they must therefore have a definite limit. But on

the other hand we can choose m so large that Am and

2m
2m -fl

may differ inappreciably, therefore the limiting value of A^ differs

inappreciably from ^it^ or we have:

n 224466 • • n -i. a\

We have also:

Am •

f
cos^xdx = I sin^xdx.siwxax.

158. Fifth group.
The following process serves for the evaluation of the integral

00

e~^'dx.
I'

Let us denote its value by A and introduce a new variable z by the

equation x = az, then:

*) Wallis: Arithmetica infinitorum. The earliest expression Of a number
in the foriji of an infinite product. (Cf. § 39 and § 163.)
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Multiplying this equation by c~^\la let us then integrate from a =
to a = oo, we find :

thtM-efore we have:
00 -f" * -

. > -

1; A==
je-^'dx =?^ , je''\lx

= yn.
— «

If in the second integral we put for x the value a;j/a, we have:

2) fe—'dx^^, («>0).
— oo

|i
We obtain by differentiating n times with respect to a:

^) Te-'-x'-dx = yn .
'•^•^-'^"-"

«-('+l'i-'^" (« > 0).
t/ 2*— 00

Substituting a? Hh a for a; in integral 1), we have:

le-'^+^'"dx
= /^ . e«' .

— 00

Putting in this for
a?, xj/a and for 2a^a the value b, we find:

4-^» — A»

/g-ax'+6x^a; = ?^.e^; (a>0).
«/ Va— ao

From equation 2) in the form:

lollows;

/l¥''"=jlA"''"A'"'''^-
These integrations can be interchanged; for, sin a , c~"*' is everywhere
a continuous function, that for a = oo becomes infinitely small in

a higher order than any algebraic function; hence:

C C 00 00

I ,-
„ ii(c = -—

I dx I e-'" sm ad a = ,,„ I
, ,—

- =
,. .

u 4
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therefore:

00 oo

6) r«i5_« da= //|
. We likewise iiiid :

J"^^
da = /J •

*)

159. Sixth group.

We proved in § 115 the formula:

rx"'~^dx 7t e ^ ^'
{m and n positive integers, m < n)

^ J x^' + e"''

~
^

'

sin ^tT"
' —7t<a< + 7t.

n

m
nPutting x'^ = and denoting the rational fraction — by a, we find:

CO

2) ri!l^=^— .e(«-i)«^-, (0 <a< 1, —%<a< + 7t\

Nov^^ this equation v^^as proved only for rational proper fractions.

But since the definite integral, as vrell as the function on the right

side, is a continuous function of a (proof as in § 152), the equation

is still true for every irrational number less than 1. For « =
v^e find :

3)

00

f^^clx=^^^ (0<a<l),J x-{-l sm a TT
^ ^ ^

y> ">

or, separating the integrals between and 1, and between 1 and 00,

and introducing? into the second — instead of x:^ X

1 00 ] 1

fx^'-^d x fx^'
-'dx ^ (V-^dx

, fx-'^dx10
1

4) r^!li+^"^a;=^^^, (0<a<l).J X -\- I am an' ^ ^ ^

Although integral 1) ceases to be finite for « = + ^; because the

function to be integrated becomes infinite in the first order at the

point X = \^ still the integral

f
^m-1 _ ^m'-l

ax
x"" + e"*

must exist even for a = n^ because the factor x — 1 cancels in

*) The problem, of determining curves, having the radius of curvature in

inverse proportion to the length of the arc
,
conducted Euler to these integrals.

(Salomon's Uebersetzung der Euler'schen Integralrechnung. Vol, IV. Suppl,, p. 321.)
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the numerator and denominator. We can express the value of this

integral as the difference of two integrals of the form 1), thus:

/=
'-^-a^
a:" + e«'

dx^
. m

81u n
n

. m
sin — n

n

Both sides are continuous functions of a inclusive of the value a

consequently we find:

.">)

Bin — n
n

cot— n
n

. m
8in — n

n

cot
in \

Putting x"* == z.
m

a, = h this becomes:

*>) f^-
-1-^-^

7)

dz ^^Tticotan — coihn), (0 < aand /; < 1).

Let h = 1 — a:

—
:;

dz = 27t cota;r.

160, Eulerian integrals (Gamma functions).
00

As found in § 154, I x'*e-'dx has the value [w
= 1 . 2 . . . n for

every positive integer vahie of n. Withdrawing this restriction as to

tlie exponents of x, the problem arises, what value has the integral

J'
dx

for an arbitrary value of a? With any finite value for the upper
limit its value can be expressed by a series, the exponential being

replaced by its expansion; but for an infinite limit this procedure
affords no direct solution.

The value of the integral is finite only for a > 0; for, when this

condition is not satisfied, the function to be integrated becomes in-

finite for X = in an order higher than the first (§ 148). After

Legendre, the integral is called the Eulerian integral of the

second kind, and the required value as a function of the exponent a

briefly denoted by r(a) its function Gamma*). Therefore:

*) Euler: Inst calc. integr., P. I, Cap. 4. 8. 9. Also: Nov. Comment. Acad.

I'etrop., T. XVI; in Salomon ibidem Vol. IV, Supplement III. Legendre: Traitd

des fonctions elliptiques et des integrales Euleriennes, Tome II.
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I) f x^'-^c-^dx
=

r{a)

is an equation of definition.

1

Replacing x successively by .i;", by I and by hx where /j > 0:

1 --1 r-uhdx is replaced by
— ic« dx, therefore: 1) I e ^ 'dx= aV{a), (a>0);

1

dx is replaced by — -^ ,
therefore : 2) [(l^^'^dx

=
r(a), (a > 0) ;

CO

dx is replaced hyhdx, therefore: 3) /e '*^<'-Vte=—-,(a>0,A;>0);

accordingly these integrals also are calculated, as soon as the value

of V(a) is known.

Moreover, for complex values of a the value of the function V{a)
is finite, provided only the real part of a is positive.

For if we put a = a -\- ifi, bearing in mind that:

^i/3 ^ Qi^Kx) _ cos ^^ ^ i(^^y^ _|_ ^'siij (^ ^ 2(^^))^

we have:

r(« + ^/5)
== /:3j«-' cos(/3 . l{x))e-='dx + ^ I x^'-^smiP .l{x))e-''dx.

But:

Lim f
I x^'-^cosi^ .l{x))e-''dx^

= Lim
(ilf

I x"" -^e-'^dx) =

for ^ = 0, £ = 0,

w w

Lim (
I x''-^cos{p.l{x))e-''dxj

== Lim (iflx^-^e-'^dx] = 0,

for w ==
cx), w = cx),

where ilf and M' respectively denote mean values of the universally

finite function cos(/3 . l{x))'^ the like holds good for the second integral.

We shall however in what follows only aim at solving the

problem of calculating the function gamma for real argu-

ments; although some of our theorems hold good also for a complex

argument.

161. First property. From the formula:

d(e~^x^) = ae~'^x^~^dx — e~-^x^dx
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follows by integration between the limits and oo;

0= a
I
c-'x"-^ dx — I e-^'x^dx, or: II) r(l + a) = ar{a).

u

Accordingly, for the series of integers we have:

r(i) = Je-'dx
=

1, ri2)
= 1 r(i) = i, rai) = 2r(2) = 2.1,

r(4) = 3r(3) = 18,... r(nj = h-i .

Similarly , substituting for a the value a -{- n — 1
,
n being an

integer:

11') r(a + w) « (a + w — 1) (a + w - 2) . . . aTia)*),

This equation shows, that once the function gamma is known for all

proper fractions, it can be calculated without difficulty for every other

value of a; thus, for instance:

r(l)
= ra+3) = f|.ir(l).

Second property. From the formula:

Via)
er^'xf^-^dx

we find on putting A; = c + ?/,
c and ?/ > :

/g-(c+y)x-j;«-i^^_
r(a)

(c + yf

Multiplying both sides by e'^vy^-^dy, where h and h are positive,

there follows by integration:
00 00 '00

Je-inf-hly le-^''+i^'a^-Ulx= r(a) I -—*"
„ rfy.

„

•" V «/ (« + ">

It is allowable to interchange the order of integrations on the left

side (§ 153), thus we have:

r. 00 io

therefore :

•) Euler: loc. city Supplement III, § 10.

*) Dirichlet, Journal f. Math., Vol. 15.
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Provided b ^ a, both sides are continuous functions of c, the

value 6' = included (§ 152a). For c = and ]c = 1 the equation
assumes the form:

r(6)/|^
= r{a)r(h- «) (h > «),

that can also be written:

i\T\ r(a)r(&) / x'^~^dx /7 ^ A \ A\
IV) 7^7

—r^ = I j-T (h >(),«> 0).

This formula shows how to calculate a new integral, of the

binomial class, by means of the functions gamma. Legendre styles

it the Eulerian integral of the first kind. Putting:

y 1 dy X i_i ^

we have y = for ;r = 0, y = 1 for ic = ex:)
;
and when y is replaced

again by a; or by 1 — a;
, IV) changes into:

1 1

When we put a + & = 1
, taking a therefore as a proper fraction^

since r(l) = 1, formula IV) becomes:

oo

V) i~^'~ dx = V(a)V[\
-

a)
= -^^"^

, § 159 Formula 3).

6

This formula reduces the calculation of all values of r(a) for arguments

greater than \ to that of values for arguments between zero and \.

We have for a = ^ ^^ special value :

CO

TQ) = j
e-^'x- ^^ dx = ]/7t .

Replacing x by ^Z^,
we obtain the integral treated in § 158.

162. Expression of the function gamma by an infinite

product.

Integral I) can be differentiated with respect to the parameter a

(§ 152) and we get:
CO

^-M _ r'(«)
=

fe-^x^-H{x)dx.

If we replace l{x) by its value as an integral, § 154 Formula 3 a):

*} Euler, loc, cit., § 25.
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K^) =J y
dtf>

we find:

r'(o)
^
fe-'x^-'dxf

^''^'''''"^
dy.

U

Here the order of integrations can be interchanged, for the function:

f{^, y)
=

\
for a; = oo, y = oo, becomes infinitely small in a higher order than

any algebraic expression, for a; «= it becomes infinitely great in an

order lower than the first; for y = we have:

Lira,irn (iJ!
—?-^) = Lim (- c^ + e-'^x) = - 1 + a:.

f= \ y / y=

Accordingly let us begin by putting the above integral:

to . oo

Via) ='1^ I er'x"-^{e-y
— e-'y)dx

00 oo

= Lim i^-j e-'x^'-^e-y
— e-'y)dx.

But we have

00 OC 09

l~^- 1 e-'x^-^e-ydx=r{a) f~-dyf

f~^-fe '('+y)x^-^dx=^r{a)(
^^

,

Therefore :

r '(a)
= r(a)Lim f('~'' L—)dy==r{a) f(--^ ?-—

-) dy.

Vt, if is evident from the fact that

Li.„
(
^J: _ _L_) ^ Lim (il!iL+fci)

and is therefore finite, that while a > this integral remains finite

and determinate even at the limit y = 0.
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This investigation was necessary, because the integrals

dy
/v'". h+ yr

are not separately finite.

Accordingly we have :

da J \ y y{l + yrJ
^

Differentiating with respect to a and then putting 1 -{- y = e" "we find :

^
VII) . ,

^ = I -^-—'-^ dy = I
——- dx (a > 0).

This is an integral adapted to integration by expanding. We
have:

therefore :

CO -r-r

CO CO CO oo

==
I
xe-'^'^dx + I xe-^''+^^^dx-\ 1- j

xe-^''+'''>^dx + I B„xe^'''' dx .

Now:
CO 00

V (a + n) {a + n)^ J (a + n)^
'

and we can choose n (cf. also § 130), so that

/ Rnxe-^'^dx = /
— dx

J J 1 — e
""

shall become arbitrarily small, because:

1 1 1

— dx==M /e-(«+«+i)-^^= M — '

^ J ,J l_e-^ J \ a + n + l/'

/t,e-(«+«+l)a;

/^ / -(a+n+l)x _(a+»+lM

1 — e-^ J V^« + ^+A (a+n+l)V'

where Jf denotes a mean value of in the interval from to 1 ,
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and M' a mean value of —-^— iu the interval from 1 to cx); thus:
1 - e

VTTT^ ^'^(^ — 1 J i I ^—-4- _JL_ a_ _V_L_
^^^^> da*

~"
a* "T"

(a+l)«
"^

(o+2)«
"»"•*

*

{a-\-ny
"^

~~^Ca+n)«
*

(a > 0).

This is a uniformly convergent series for every positive value of a;

integrating it between the limits 1 and a, the result is:

^v^ dirja) fdir(a)\ '^f 1
__' ^ __ / _ n "V ___J_^

^^'^ "d^ V d^~/=^ Vi + n
~
a+J— ^^

'

^) ^(14-n) (a + n

(a>0),
or:

dZr(a
(2o

— (« ^)^(i + n)(aH-n)
+ ^'

where C, denotes the value of
( -t^) ==

P^r ,
therefore by VI) the

for a= I

value of the integral:
a

Integrating equation IX) again between the limits a and 1 , we
find :

»i =.>5 a

?r(«) =5/(> + i^W) + ^'^"
-

^) ("^^) = ")'

or:

The constant C can be eliminated : Putting a = 2 this becomes :

multiplying this equation by a — 1 and subtracting from XI) we
obtain :

•) Writing:
~ ^ ^ ^j \ J. ^j ^ ~jr~ f

where however each

of these series apart is divergent,
— C is evidently the same number that

occurs in the Logarithmic integral (§ 137), as can also be directly inferred from
the connexion of this integral with formula X) above.
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n= ' '

ffl= QO

or:

XII) lT{a)=;2l ;/„,^,
-

rrt=l

Accordingly, when we pass over from the logarithm to the number,
we have V [a) expressed for calculation by an infinite product:

r(rA = 7T^ ''' ^ = 1.2.3. ..m(m+ir
-'

^
^^''^

IJ^ {a + m—l) a(a-+ l)(a + 2)... (a+ 7«-l)

«(i+„)(,+|)...(. + _^)
(for m = oo) ,

or, as this expression can be written, when m is replaced in the

numerator by the value {m -\- 1) (l -j—-) ,
and it is remembered

that as m increases arbitrarily, the factor 1 t-— and likewise

(l -| J
differ inappreciably from unity:

XIII) r(^)

«(.-f-«)0+|)--.0+^) «[70+«T^)
771= 2

(m ==
oo).

Gauss*) employed this formula as the definition of a function

and derived all its properties from this infinite product. This can be

shown to converge for every finite value of a, which does not make
a factor of the denominator vanish, so that this definition is more

comprehensive, than the Eulerian integral.

163. We are going to prove this, by answering in general the

question: Under what condition does an infinite product converge?
This is an important question; for as was indicated in § 38 and is

here worked out for a definite function, the formation of an infinite

product is a second instrument for the expression of a function, not

symbolically, but suitably for numerical computation. The following

*) Gauss: Disquisitiones generales circa seriem infinitam. Werke Vol. III.
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investigations apply also in case there are complex factors. If, in an

infinite product, we give the form:

(1 + UO (1 + U,) . . . (1 + W„) (1 + Un+ l) . . .

to the factors that can be unrestrictedly continued in accordance with

some law, the successive values obtained by multiplying, firsi fr factors,

then w + 1, ... w + /;,.. .:

P„ = (l+«,)(l + t*.)...(l+t«0,

P«+, = (I + u,) (I + «,) . . . (1 + M„) (1 + t/„+,),

Pn+k= (1 -f l^,)(l + U,) .,,{l+Un) (1 + W„+ .) . . . (I + M„+ ,)

must form a sequence of numbers with a determinate finite limiting

value. For this it is requisite : first that none of the products P, and

therefore also none of the terms u shall become infinite; second that for

any number d however small, there shall be a place n such that:

abs [P^* -Pn]<d
for every value of k. From this inequality follows, provided P„ does

not fall below any finite assignable limit, that:

abs
[^,+*

-
l]
<

*__
,

or: abs
P;+»] < 1 + abs

in other words: There must be a place n from which onwards the

ratio of the values P difiers inappreciably from unity; this must also

be the case in particular for:

i. e. the terms u must necessarily converge to zero.

The case, that the quantities P sink below any finite amount, or

that separate factors vanish and the limiting value of the product
is therefore zero, must be excluded both here and in the following

investigations.

If a product still converge even when we give all the terms u
their absolute values, it is called absolutely convergent.

This definition requires a preliminary proof, that the convergence
of the product TT(1 + ^n) is always a necessary consequence of the

convergence of the product formed of the absolute values v of the

terms m; the case that even a single quantity w is = — 1 is excluded.

Denoting by Vr the absolute amount of Mr, and by Q^ the product:

(1 + V,) (1 + V,) . . . (1 + V,),
we have:

(%"*
-

l)
=

(^ + ""+') (' + '''+'^ •••(! + ^-f*)
-

1.

(^ -
l)
=

(1 + «„+,) (1 + u^,) . . . (1 + «M-*)
- 1-

Haksactc, CalcaloB. 19
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Multiplying out these products, the absolute amount resulting

from the first equation is easily seen to be not less than the abso-

lute amount resulting from the second
;
therefore we have the relation :

abs[?|t_^-l]^absP^*_l]
By hypothesis we can choose n so as to make the amount on the left

side arbitrarily small; therefore also a valuer can be found, such that

abs
r^^±-

— ll shall be < d.

Hence follows that P„ tends to a determinate finite limiting value that

is not zero. For were zero the limiting value of P, to each value

of n however great could be found a value ^, for which the ratio

Pn+k ' Pn would be arbitrarily small.

A necessary and sufficient criterion for the absolute convergence
of the product:

P={l+u,)(l + u,)(l + u,)..,

is the convergence of the infinite series formed of the absolute amounts :

^1 + ^2 + ^3 + • • • + ^« +' • • ^*C..

For, because the product:

the convergence of the infinite series is necessary, and because:

1 + ^, < e^', 1 + ^2 < (i'-',
. • 1 + Vn < e^«,

SO that:

Qn is <C e»i+»^+--^«,

therefore the convergence of the infinite series is sufficient.

The value of an absolutely convergent product is independent of

the arrangement of its factors.

For, writing:

P, = (1 + ,,,) (1 + ,,^) . . . (1 + t,,),

p„;== (1 + u;) (1 + u,') . . . (1 + u,,;),

this second product consisting of factors occurring in P only arranged

differently, we can choose m so large, that all the factors contained in

Pn shall also occur in P^'. Then:

Pm' --= Pn (1 + Uk) {l + n)...{\+ «.),

where
Jc^

I . . . v denote indices that are greater than n\ or:

But the amount of the right side is not greater than the amount of

(1 + ^*) (1 + ^0 • • • (1 + '^v)
^^^ ^^is ^^ ^®ss than
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Since this expression approximates arbitrarily to unity, merely by choice

of w, we have:

LimP«' = LimP,.*)

164:. The convergence of the function gamma for all values

of a, for which no factor vanishes, is now demonstrated as follows.

Let us form:

. "^0+.-.)
,

j+o. _iil (^ 0+11 •

m- .«
""+>'0+irT'+iT"0+l)°'"

>+^
Writing the factor -r-r- in the form 1 — tin, and applying

i' + n)
the Binomial series (§ 46), we have:

o+-:r-o+^~) >+f+'^'(iy('+:r-o+^)

('+:)" 0+^)"
or:

„^_ 1(0-0 /IV / ^«
©•|.-,;hr.iy

'—
If a be positive, I I

•

g—^
is certainly a proper fraction,

V ^' / V n /

and the series:

, , , ^ o(o
— l)/l ,

1
,

1
,

\

converges absolutely.

If a be negative, we can choose n so large, that for any possible

value of 0, I X- .

„..^ shall be less than some determinate

v+i;o+»)
number, ex.gr. less than 2, so that the series:

, , ^ «(a - 1) o / '
I

1
I

1 \
Un + Un+i + w«4-,.

. . . <
^

- 2 .

^^, + ^^^-p^,
+ -

_p~,
• •

•;

likewise converges absolutely.

It is accordingly proved, that the infinite product ^y-r ,
therefore

•) Although infinite products were introduced almost simultaneously with n

infinite series, the fundamental theorems regarding them were first proved by
Weierstrass: Ueber die Theorie der analytischen Facultaten, Journ. f. Math.,

Vol. 51; reprinted in his: Abhandlungen aus der Functionenlehre, p. 183, 1886.

19*
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also the product r(a), converges absolutely for all finite values of a

except negative integers.

165. Legendre's series for calculating lV{a).

Writing Equation VIII) in the form:

da'' ia+ 1)2^ (a + 2)2
^

(a 4- 3)2^ ^" -^ ''

and differentiating it w — 2 times, which is allowable since the derived

series likewise converge absolutely, the result is:

\_ ^"Zr(l -\-a) _ (- ir
J

1
,

^
I

1 J 1

Let the sum -^ + -^ + ^ + -^ -] (§47 foot-note p. 82), be

denoted by S„^ we have:

1 f c?"Zr(l + a)
| _ .

^.
^n

\n \ ^^n J
*^ ^ n '

a=
further :

dir{l -i-a)

{ ^^a }
==r'(l) = C and: ir{l) = 0.

a=

Therefore by Mac Laurin's theorem:

lV(l + a)^aC+-b^~-b^+-b,- h
j^l J-;, j'

0a

The remainder converges to zero when the absolute amount of a is

less than 1, accordingly, omitting the remainder, the infinite series is

absolutely convergent for all values of a between — 1 and -|- 1.

But this series is unsuitable for numerical calculation, because the

coefficients S do not decrease rapidly enough, and moreover the value

of C is still unknown. A more rapidly convergent series is found

by expanding the value of Z(l + a) and adding:

= -
2(1 + a) + o - 1+ y

-
f' + • • •

thus:

Zr(l + «)
= _;(]+ a) + a(l + C) + I [S, -l)a^-- | (S3

-
l)a'

+ i(S4-i)«^----;

.likewise, taking a with the opposite sign:

Zr(l
- a)=- 1{1

- a)-a(l + C) + I iS,-l)a^+}{S,
-

l)a

Now because by Equation V):

irn + «) + ir{\
-

a) = i^--,^ ' ^ ' ^ ^ sin TT a '
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we have finally:

XIV) ir(l+a)==il-^''~-lll±^^ V I / 2 8in TT a 2 1 — a

+ a{\ + C) - |(^3
-

l)a3
_ 1

(S,
_

i)„5

(- 1< a < + 1).

From this formula the values of If (a) can be calculated for the

arguments to 2, when the quantities S.^, Sr^ . , . have been previously
determined. Legendre has given these values from S^ to S^^ to 16

places of- decimals. Also the value of C must be expressed, this is

done most rapidly by putting a = ^ , because :

'r(|)
=
Kv'-(i))

= K|/«)
is known. By the series:

we obtain C= — 0,577 215 664 901 532 .. . *).

Accordingly the initial numerical terms of series XIV) are:

7r/i I \ I J na 1 , l-\-a

+ 0,422 784 3a — 0,067 353 Oa^ - 0, 007 385 ba^

*) Euler obtained this number correctly to 15 places of decimals; annotating
Euler's Calc. integ., Mascheroni calculated it further, Legendre also gives 26

places but both differ in the 20*^ place from Gauss who had it recalculated by
Nicolai and gives the result to 40 places of decimals. Werke, Vol. Ill, p. 154.



Eighth Chapter.

General theorems concerning the double integral.

166. Definition of the double integral.
Let fix J y) be a function of the two variables, that is uniquely

defined in any way for any domain T, but for the .present in such

a way as to be everywhere finite. Let the domain be conceived

to be in the plane xy surrounded by some continuous and closed

succession of points, or, stated analytically, bounded by a curve whose

equation is q){x, y)
= 0. The domain can also be bounded by more

closed lines than one, as ex. gr. a circular ring by two circles. The

simplest case of boundary of a domain is a rectangle with its sides

parallel to the axes of rectangular coordinates
;
then x takes all values

from a io h, y all values from a to /3. Should the function be defined

for the entire infinite plane, we can always express this: it is defined

for a surface, whose boundary can be arbitrarily extended. Let us

resolve the domain T, at first on the hypothesis that it is

finite, into n small parts or superficial elements, and call them Tj ,

T.,, ... tn. All these elenients are conceived as positive quantities.

Such a resolution is effected, ex. gr. ,
when we cover over the domain

with a net having its lines parallel to the coordinate axes at the

distances h.x and A?/. In this case all superficial elelnents are equal,

being rectangles whose magnitude is Ax , Ay. Only at the bounds

of the domain are these rectangles cut by the boundary line. Let us

select any arbitrary value among those assumed by the function within

or at the limits of such a superficial element. For simplicity, let

such a value in each be denoted by /'(r,), /"(r.,), . . ./'(t„); thus the

question arises:

Under what hypotheses does the value of the sum:

Sn = /'(t^i)
•

Ti + /"(To)
• r, + • • • + f{t„)

' Tn

approximate to a determinate limit, altogether independent of the choice

both of the superficial elements and of the value of the function in any
such element, tvhen the number of the elements is arbitrarily increased

according to any law in such a tvay that each element tends to the

limit zero?
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The enunciation of the answer is as it was for the simple integral:

If tve denote the greatest fluctuation of the function^ i, e. the positive

difference of its greatest and least values in the clcnmit t^ or at its

limits^ by D^\ the sum: r, i>, -j- ^2 -^2 + • • + ^« A. must converge

to zero along with the quantities t.

In the hrst place it can be seen that when for any one continued

process of partition this sum converges to zero, it converges likewise

to zero for every other. The proof is the same as *for th^ simple

integral, only that the conception of the superficial element everywhere

replaces that of the linear interval.*)

In the second place we prove that the condition enunciated is

necessary, by starting from a determinate partition and continuing it

by resolving each element into further elements. The sums

formed with the greatest and least values of the function : G^ and ^^
in the interval t^,

^G^t^ and ^g^r^

approximate in this process, the first by continued decrease, the second

by continued increase, each to a determinate limiting value, and these

two limiting values become equal only when we have:

In the third place it can be seen that the same limiting value is

obtained in another partition of the same kind, when two difterent

partitions, each already pushed so far as to yield a value difibring

arbitrarily little from its limiting value, are considered simultaneously,

and this partition resulting from their combination is regarded as a

continuation as well of the one as of the other.

Finally we perceive that, provided the above condition is fulfilled,

we may also complete the process of partition without retaining the

limits of a former partition, because the series of values formed in

this way takes also a determinate limiting value, and each term of

this series ultimately differs arbitrarily little from the limiting value

reached by the previous process.

1G7. The necessary condition is fulfilled:

First: when f(Xy y) is everywhere a continuous function (§ 52).

*) Here as in the case of Hnear intervals it is quite indiflFerent according
to what law the succession of the summands is formed. In that case, as in this,

ince we are dealing with finite sums and want to demonstrate that it is a pro-

jterty of such a sum to have a limiting value, there is no necessity that we
>hould take the intervals only in the exact order in which they are arranged in

the interval a to h. It is otherwise in the transition to the limit for integrals

in whicli the function to be integrated becomes infinite.
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Second: wh^n ((Xjij) in separate points or in separate lines

(oo^ places) is discontinuous or indeterminate between finite limits,

or again, when it has infinitely many maxima and minima with finite

fluctuations.

Third: when f{x,y) in infinitely many lines (oo^ places) is

finitely discontinuous or indeterminate or fluctuates infinitely often, but

when the sum of the superficial elements in which the fluctuations

D^ exceed an arbitrarily small number ^, can be made arbitrarily small.

This third requirement, which embraces the first two, suggests an

extension of the distinction established by Cantor of sets of points
in a domain of two dimensions, rising from linear sets to plane
sets. Infinitely many lines do not give rise to a plane set of points

when their initial elements form a discrete set of points ;
on the other

hand we do obtain a plane set of points, when the initial elements

of the lines belong to a linear set or mass. The following in-

vestigation, however, is restricted to functions that satisfy the first

or second requirement and the third possibility will only be cited

incidentally.

The limiting value of the sum:

Lim {/"(ti)
•

Tj + f{x^)
'

to-{-
' • ' + fir„)

• r„ ) for n = 00

is usually denoted by:

j Jfi^y y)^^^y^ or: J f{x, y)dT,

and is called the definite double integral in the domain T,

The definite double integral, as well as the simple integral, admits

of a geometrical interpretation. If we lay off the value of the function

z=f{Xjy) perpendicular to the plane xy^ the integral:

/
(2)

fix, y)dT

expresses the volume of the cylinder whose base is the area enclosed

by the curve cp{x,y) and that is bounded above the plane xy by the

surface s = f{x^ 2/)-*)

Among the theorems resulting from this definition of the double

integral wje only notice specially the following.

1. When cp{x^ y) and ^(^, y) are any finite integrable functions

within a certain domain, their product also is integrable within the same

domain. (Proof as in § 146.)

2. The First Theorem of the Mean Value: When the

*) By the geometrical problems: the determination of volume and the

measurement of curved surfaces, the analytical conception of the double integral

was introduced. Riemann^s investigations on the definite integral established

the fundamental principle both for the double and also for multiple integrals.
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function q) has the same sign everywhere in the domain of integration,

if G denote the greatest and y the least value of
/'

in that domain,

we have:

fi^,y)'<pi^^y)dT^\g+Q{G-g)}J g>(x,y)dT (0 ^ 9 < 1).

In particular, if /* be a continuous function throughout, the value

g -\- Q{G — g) actually occurs among the values that /' assumes in

the domain.

168. In ordef to ascertain the value of the double integral, we
endeavour to reduce it to two simple integrations.

Since the manner of partition into superficial elements is quite

-_ indifierent, let us conceive it as a
'

network parallel to the axes of

coordinates. Each line parallel

to the abscissa) must cross the

boundary curve in an even finite

number of points, likewise each

line parallel to the ordinates.

The domain can then be resolved

by means of a finite number of

parallels into finite areas, each

- having its boundary crossed by
the lines of the net only in two

places. To a part having such

a simple form, an elementary surface, the following investigation has

reference.

Let a and b be the extreme values of a?, a and
/3

those of y,

that belong to points of the boundary curve. If then x^, yv denote

any arbitrary point in the region and x^^i
—

Xf^ , i/v+i
—

2/v
^^ ^^^

lengths of the sides of the rectangle having this point as a vertex,

we have to form the double sum:

22^^^+'
~

^^^ ^^'+^
~

2/0 /"fe, 2/r).

Now we can carry out this summation in two different ways: either

by first summing all the values that have the same factor Xft^i
—

a:^,

and then adding these quantities; or in reverse order by combining
the terms with the same factor y^i — y^, and then summing these

values. These two different processes are symbolically indicated by:

and:

Fig. 13.
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Proceeding successively to the limits, as the differences (yv+i
—

Vv)

and (Xfi+i
—

Xfi) converge to zero, let us in the first case conceive

the differences (pv-\-i
—

Vv) chosen so small, that the value of:

^{ijv+i -yv)t\x^nyv)

shall differ from the value of the definite integral:

f{x^, y) dy

only by a quantity A(ir^) whose absolute amount can be rendered

arbitrarily small by diminishing the distances y^j^i
—

?/»•

For inasmuch as the function /", assumed everywhere finite, is

subject to the conditions of § 167, f is generally integrable with

respect to y^ and it is only for a discrete set of values of x^i that

the integral can lose its meaning. Therefore:

^{Vv^i
-

yv)f(x,,, y,)
=

if\x^,y) dy + A(^^).

The quantities ^/q^*"^
and

?//''*) signify the values of y belonging to
a;^

at the limits of the domain, we can also denote them as functions of

Xfi by the equations:

From the 'above equation we have further:

^(•^/'+i
—

^,«)2^(^r+i
—

yr ) t\x^c, yv ) =2^(^^+i
—

x^) i f\x^, , y) dy
^ y>)

Now letting each interval x^,^i
—

Xju. converge to zero, the limiting

values of the quantities upon the right side become:

b ifJ (x) />

J dxjf{x, y)dy +J A{x)dx.
a

tp (x) a

But since the absolute amount of A
(a;)

for all values of Xj with

possibly a discrete set of exceptions that do not influence the value of

the integral, can be made arbitrarily small, the value of this second

integral is also arbitrarily small, i. e. :
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^Jdxjt\x,y)dy*)
a y=(p{x)

By the second process likewise we find the double integral equal to:

Jdyjf(x,y)dx,
x= (pi{y)

when (p^ (y) and ^j (y) denote the values that x assumes at the limits

of the domain for the different values of y.

When the boundary of the domain ex. gr. is the ellipse:

^*
_L. ^

we have:

1,

+ « y=+aV^'-^ '=+T>^^'-i

/ dxjt\x,
y)dy =j dyj fix, y) dx =jj f(x, y) dxdy.

— " * —b a ,

yo'-x»
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When f\x, y) is an integrable function, we have:

J dxjt\x, y) dy =J dyj f\x, y)dx.
a a a a

This theorem contains an extension of the condition under which the

order of integrations can be interchanged in the integration of a function

with respect to a parameter, as it was given in § 153. For this only

requires as a sufficient condition, that the function f{x^ y) should be

finite and doubly integrable, and no longer its complete continuity in

a domain.

169. A double integral having independent limits:

jdxjf{x,y)dy

when regarded as a function of its upper limits c|) (&, pi)
is a continuous

function of both these quantities. For, on the hypothesis that h and

P are within the domain of integration of f, we have:

0(6 + h,^ + Jc)
-

<i>ib, §) =JdxJf{x, y)dy -fdxjf{x, y)dy
a a a a

b^ /9+i 6+A (i+ k

==jdxjf{x, y)dy + JdxJ f(x, y)dy
a ^ b a

ji^k b b-\-h (i-\-k

j dyjf{x,y)dx+j dxjf(x,
y)dy,

since the order of integrations may be interchanged. This equation
leads to the form:

0(2, j^-k^pj^i) — 0(1)^ p)
= lcM + hN,

in which M and N are finite quantities; the condition of continuity
therefore is fulfilled.

Moreover the partial derived functions with respect to h and
/3

are found from this equation. Putting Z; = we find:

b+h
^^

(t)(& + h, /3)
-

0(6, p) =JdxJfix, y)dy.
b a

If then I f{x, y)dy is a continuous function of x in the interval

a

from X = h to x = h -{- h and we denote a mean value of it by :

[ jf{^,y)dy} ,

a x—b-\-&h
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we have:

When at X = h the function /'
is generally for all values of y from

a to /3 a uniformly continuous function of x, so that, with exception

possibly of a discrete set of values oi y, a value h can be assigned
for which we have independently of the value y.

^hs yih + Qh,y)-f(b,ij)]<S

(cf. § 52) ,
this equation may also be written :

-jf\hy)dy.
ao)

dh

Similarly, under the analogous condition:

or, when /' is a uniformly continuous function of y at y = /3 in the

entire interval from x == a to x = b:

a

In this case, as the above equation shows, the Theorem of the Total

Differential :

also holds. We have moreover:

dfidb
^/y^> P)— ^bd§

'

It is accordingly proved: The definite double integral with constant

limits is a continuous function of its upper limits^ for which, p^'ovided

the function that ts to be integrated is in the neighbourhood of x = b

a uniformly continuous function of x for all values of y and in the

neighbourhood of y = ^ a uniformly continuous function of y for all

values of x^ the Theorems of the total differential and of the interchange

of the order of differentiatiotis hold.

The assigned condition is fulfilled in particular for each point in

the domain, when /* is a continuous function of the two variables in

the entire domain without exception.

The condition that a function may admit of differentiation with
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respect to a parameter under the integral sign (§ 151) may be stated

in a new form by means of these theorems: In order that the result

b

of differentiating the integral / f{Xj a)dx with respect to the parameter
a

a may for a definite value « = «' be equal to :

for all values of a between /3
and y, it is sufficient, that ^

'

be an integrable function within the domain from x = a to x = hy

a = p to a = y and that its integral :

J da
^dx

be a continuous function of a. For then

b y

//^«" rf:.rfa
-=j'dx'f'-£f^

da --j'dap^ d:

or, since:

J^if^-^da====nx,r)-ax,p)

with exception possibly of a discrete set of values of Xj we have:

6 b y b

J'fix,
Y)dx. -ff{x, P)dx ^J'da p-^-f^

dx.

a a
[i

a

Differentiating this equation with respect to j^, we have under the

assigned conditions:

6 b

«=y
.J'f(x,y)dx^\f^f^dx]
a a az

The integral on the right side is not as a matter of course equal to

j'^^\dx.,
y

this is its value, however, when ^p-^ is in e^eneral for the values
^ ^

dec
^

from X = a to x = h a uniformly continuous function of a in the

neighbourhood of the point a = y.
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170. Substitution of new variables in the double integral.
The partition into superficial elements can be accomplished by

any arbitrary net of curves. Putting:

^
, there is a curve belonging to

each constant value of p ,
and

likewise to each value of q.

Let us suppose each ^j-curve to

cut each ^-curve in one point
within the domain of validity

of the double integral, and

let us consider the rectilinear

quadrilateral deteriliined by the
'

points of intersection having the
^' ^^-

coordinates :

^l=9(P>Q)y ^2='9{P+^Pyq)y ^3=9 (P, 2+^9'); ^4=<P{P+^Py Q+^Q)
j/i=^(i>;2), y2'=^^{p+^p>a)7 y^=^(p,q+^ql Vi^^tip+^p^q+^o)'

The area of this quadrilateral is:

r= ^ abs [(x^
—

a;,) {y^
—

y^) + (x^
—

x^) (y^
-

y^)].

The vanishing limit to which this expression tends when the quantities

hp and t^q converge to zero is at the same time the limit of the

quadrilateral bounded by the curves, and since:

x^
—

a:,
= (p{p + A2>, ^ + Ag) — 9(1), q)

«
^J dp + ^ dq

x^-x^ = (p{p -\- Ap, q)
—

(p[p, q + Ag)

^
\^{p.q) +f dp\

-
\^{p^q) + %dq\^ '^ dp - ^ dq

//.
—

:V,
= -^{p + A;), q + A^) — ^(p, q)

=
^^ dp + ^| dq

Vz
-

ih
=

^(i>> q-\- ^q)-'^{p + ^p> q)
=

|| ^^~^ ^^^''^

it is expressed by the diflferential :

Accordingly:

fjh, y)d^cly =fffi^, ^) ab, [(g- ^ -^ ^)] dpd,.

Employing polar coordinates:

*) ITie theorem of the total differential is applicable to the functions qp

and ^, when in each of the two systems the continuously variable direction

of the tangent depends also continuously on the points of the plane.
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x = rcos(p, y = rsinq),
as:

dx dec . dy • dy
aV
- cos (p, ^^=-rr sill cp, ^ = sm cp ,

^^
= r cos 9);

dT = rdrdq).

I I /{^^y)d^dy
==

I I fij' cos (p^
rain (p)rdrdq).

It is important to prove purely analytically the formula for the

substitution of new variables in the double integral without employing

geometrical conceptions, in order to obtain a method applicable also to

multiple integrals.

Having brought the double integral into the form of successive

integrations :

JJf(^^ y)d^dy =J dxjfix,
y)dy,

we can proceed as follows, employing the theorems for the simple

integral.

First: If ^ = 9p(p)j y = tlj(q)f and to the values y^ and y^

correspond the values Qq and q^ so that while y increases from
i/o

to ?/,, g likewise increases from Qq to q^, then:

J'dxJ'fix.
y) dy =fdxj'fix, t) || dq =j"g- dpj'f{<p,

f) f- dq

or:

j'Jfi^x,
y)dxdy -ffr{% t) -g ^Idpdq;

both integrals being extended over the same domain.

Second: l^ x = (p (p) , y = t (p, q) ,
we can first suppose p to

be eliminated and y calculated as a function of x and q:

and for each value of x let increasing values of q belong to increasing

values of 2/; we have then:

Jd:^jf{x,
y) dy =jdxjf{x, x) ||

dq = /'-g dpjf{<p,
f) ||-

dq
a

or:

fjf{x, y)dxdy
=fJ'f('P,

t) abs
[g- |^] dpdq,

since x passes over into p by the substitution x=(p{p)^ and thus

p-=^^. Hence follows:
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Third: the general case, when, retaining q^ we introduce a

function p = xip'j q) instead of ^;, and then employ the equation of

transformation obtained in the second case. Let us denote:

3^ = 9(X) = ^{P\ Q)y y = ^{X> Q) = "^iP. Q).

thus corresponding to the second case we have:

Now since when p is regarded as a function of p and q:

(pip)
=

<t>(p', g.)> ^{py q)
= Y(/, 2)

we have: ,

?^ =^ ^^ ^ ^ ^^ ^P

dp dp
'

dp
'

dp' dp' dp'

d^^d^ dp_ ay ^ at/> dp , gt^

dq_ dp
'

dq
'

dq dp
'

dq
'^

dq
'

therefore as a function of p and q:

Up' i:^*? <?P' dqj Up dp dq] Idp
'

dq 'dpj'
P=X(P\9)

accordingly the above double integral for x = <^(p\q)^ y = ^(PjQ)-

J'J as, y)a.ay ^fja^, y) abs
[^.

^1 -
g; II] .,-...

171. When the function to be integrated becomes determinately

infinitely great or indeterminate between infinite limits at isolated

points in the domain, let us suppose each of these points surrounded

by a closed boundary curve. The question then arises: under what

condition is the function f{x, y) integrable in such a domain containing
a single infinity point? Let the coordinates of the poiut be a; = a,

//
= & and suppose it the centre of an arbitrarily small circle with

radius r, ,
the coordinates of any point upon or within this circle are :

X =^ a -\- r cos g) , y = /> + r sin g? ,

where :

0<r<r,, i)<q)<2%.

Now the necessary and *

sufficient condition that must be satisfied in

order that the double integral may present a determinate finite value

in this domain from its external boundary up to the circumference of

this circle, however small its radius r, be taken, is: that the double

integral

/(a + r cos 9 ,
b -\- rB,m(p)rdrd(pIf'

extended over the interior of the circle with radius rj must converge
to zero simultaneously with r, ,

or in other words, a superior limit

must be ascertainable for r, ,
such that the double integral extended

Uarnack, Calculus. 20
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throughout a ring bounded by the concentric circles r^ and r.y < r^

shall remain smaller than any assignable quantity d, however small ^3

be taken.

When, for r = 0, the function f(a -\- r cos cp^ b -\- r sin 9) becomes

determinately infinite for all values of
9),

a limit can be assigned that

its infinitude must not exceed if the integral is to continue finite.

The order in which f becomes infinite must be lower than the second^

i. e. in the neighbourhood of this point we must have for all values

of qp:

r

where C denotes a constant and a a number less than 2. For, were

f\^, y) > ifT 1

we should have within the above circular ring:

27t r,

J'J'f(x,y,dT>cJdcpJ\^
= C2^{l{r,)-l{u)\,

ra

and this expression becomes infinite for r^
= 0.

In such a case, whenever the double integral has a determinate

value, this value is independent of the succession of the integrations.

On the other hand it is to be noticed, that when by the function

becoming infinite the value of the double integral is no longer finite,

although each succession of integrations can give rise to a finite value,

these need not both be equal. In this case the double integral defined

by a determinate succession of integrations is said to be singular.
Thus ex. gr. in the last example given in § 153 p. 272, we found:

11 1 11
00 U U

while the double integral:

/* r ».2 ^%

dxdySI:
in the rectangle from x = to x = \, y =^ to y = 1 is unmeaning;
for at the point ^ = 0, y = the function to be integrated becomes

quite indeterminate and assumes in the neighbourhood of this point

values infinitely great in the second order. In fact, putting:
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x = rcosq)y y = rsin(p,
we have:

y*
— a^ — cos 2 <p

(1/* + a;*)* V' '

therefore in a quadrant round the vertex x = 0, y = (\ the integral:

j
— cos 2(pdg) I

increases logarithmically beyond any limit. As another example:

1 I

has a finite value, because although the function to be integrated is

discontinuous and indeterminate in the point a; = 0, ij
= 0, it still

remains finite.

Again, the double integral:

dxdy
//

has a finite value for a? > 0, y^^Oj although the function becomes

infinite in the second order at the point a; «= in the direction

of the axis of abscissae, but in this direction only. To demonstrate

this, let us calculate the value of the double integral for a rectangle

from X = to X = Uf y = b to y = Cj we have:

\\lx f '!l
= /(/xZ^*;i^=aZ";^i| + 2^aan-»,^ -2/6 tan-^,,1

•

•16
Now making c and 6 < c converge to zero in any way whatever, this

expression on the right side converges to zero.

Tlie values resulting from the two successions of integrations are

not necessarily difi*erent, even when the double integral is unmeaning.
We have in the first example:

3- flO 00 00

while the double integral for the domain, that is here infinite, has

no existence.

When the function f becomes infinite along an entire curve in

the domain, let this be taken as the line p == const. Then the product:

k
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in the neighbourhood of the line p = c must not be equal to nor

greater than a finite number A^ for otherwise the integral:

JJfdT would be > J. fdq /-^

Thus ex. gr. the double integral :

jJ.
dxdy

has no finite value in a domain in which the parabola rr^ -{-?/==
is situated.

Conversely, when f is such that in the neighbourhood of the

line ^ = c we have the product :

f(P'^-) (^ S -
If- S) (i'

-
.)• < ^ for < « < 1,

the value of the integral is finite, for it is less than

In other words : When the function becomes determinately infinite along
an entire curve

^ provided its infinitude is lower than unity, the double

integral will remain finite. The theorem of the interchangeabilitj of

successive integrations is then maintained.

172. When the domain of integration is infinite, the double

integral extended over the infinite surface is understood to mean the

finite limiting value that the double integral assumes when it is

first evaluated for a finite surface and then this finite domain so

extended as to pass over into the infinite region. Thus we have to

investigate, under what conditions there is a finite limiting value.

The transition from the finite to the infinite region is effected

in various ways according to the definition of the latter. When it

is to embrace the entire plane, let the double integral be formed for

any rectangle from x = a to x =b, y = a io y = ji,
and let a and a

increase negatively and & and
/3 positively beyond all limits.

When the infinite domain is only an infinite section of the plane

that is bounded by right lines or by an unclosed curve, we must

guide ourselves by this boundary curve in the transition to the limit.

When ex. gr. the double integral is to be extended throughout
the parabola whose equation is

y"^
= 2pXf we can put:

_^
a pz=-\-]/2px -\-b 2p

/f(Xj y)dT= Lim I dx I f(x, y) dy == Lim I dy I f(x^ y) dx.

^ ,j=-y2px -* ^_JL
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When it is to be formed for the inside of one branch of a

hyperbol^ whose equation is : a; > 0, xy = Jcj the double integral can

be defined as:
a b ha

I /*(^» y)dT^ Lim I dx I f{x, y) dy == Lim I dy \ [{Xy y) dx.

The value of the double integral becomes singular, when it

depends on the way in which a and b become infinite.

When for arbitrarily increasing value of a; and y, the function to be

integrated f{x, y)
= f\r cos 9, r sin (p) has ultimately neither maxima

nor minima, so that, within its domain of integration for every value

of 9 as r increases infinitely, /' converges to zero; then, if its order

of vanishing (nullitude) be higher than the second, since from a

certain value r, , /(r cos (p,>sin qp) is constantly < -^ where a > 2,
r

the double integral is finite and completely independent of the method

of the transition to the infinite region. For, the part of the integral:

/'

(2)

f{x,y)dT

relative to a domain for which r ^ r^^ is less than:

and this expression vanishes for arbitrarily increasing values of r.

But the double integral has no finite value whatever, when the

function f{x, ?/), having neither maxima nor minima as the values of

X and y increase, becomes infinitely small in an order lower than the

second or continues finite.

In case the function undergoes incessant oscillations as the values

of X and y increase infinitely, the double integral exists, as did the

simple integral, without involving any limit as to the order in which

the function becomes infinitely small.

When the double integral has no existence, there may yet be a

ingular value for a determinate succession of integrations. One

L'xample of this was given in last §. ;
another important example is

the following: The function f(_Xy y) = cos(xy) is not integrable in

the infinite strip from x = to x = b, y =^ to y = 00, for we have:

h b b h b h b

I dyj cos{xy)dx=J dxj cos{xy)dy=J (—/") dx=J^'^~ dx,

and if we first make h increase arbitrarily in the function to be

integrated, this becomes quite indeterminate; but the integral:
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h b h

j dy I
cos {xy) dx = f

--—^ dy

has for //. = oo the determinate values + i^? according as ?> > or

< (§ 155). Inasmuch therefore as the double integral does not exist,

I
dx him I

I Q.oii(xy) dy>

also becomes indeterminate, while the value of:

h b

Lim idy j cos(xy)dx
= j^i ^j according as h^O.

"^

It is to be noticed therefore that although the equation:
b h h b

I dx
I
cos (xy)dy = I dy j

cos (xy)dXf

holds for every finite value of h, yet we cannot conclude from it that:

h h h b

/dx
Lira

j
cos (xy)dy = Lim Idy I cos(xy)dx'*),

because the formula on the left side has no definite meaning.

173. It is further of importance, finally, to recognise that the

product of two simple integrals can always be considered as a double

integral. When f{x) and ^(^O are two integrable functions, we have:

b
/?

jf{x)dxjt{y)dy =jjt\x)ip(y)dxdy,
a a

this double integral being extended over the rectangle between the

limits from x= a to x = b, y = cc to y = ^.

For:

b

Jf{x)dx^{x^-a)f{a)
+ (x,~x,)f\x^)-ih-x,,_r)f(Xn-0^

a

J(p{y)dy=={y—a)q?{cc)
+ (y.~y^)(p{y^)..{P~tj„,_,)q:{^^^^^

a

therefore :

*) In the theory of Fourier's integrals as of the more general class to

which they belong (Du Bois Reymond, Journal f. Math., Vol. 69), the conventions

concerning the succession of integrations and the corresponding transitions to the

limit are essential.
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lfX^)(l-£jcp{f/)(ly
=

^^f{x^)<p{y^){x^^i
—

a'^)(t/.+i
—

ijy)

-]- SA' + S'A + AA'.

Now since as the values of m and n increase, the quantities A and A'

converge to zero, it is evident that the left side actually represents
the limiting value of the double sum. This theorem is also true,

when the functions f(x) and (p{f/) become infinite within the interval

of integration , provided each alone remains integrable. For if f{x)
become infinite for a? = c, and q){y) for y = c, then by the theorem

just proved we have:

c—d c' —d'

J f{x) dxj (p iy) dy =jJ f{x) (p {y)dxdy.
a a

As 8 and 8' converge to zero, the product on the left side passes

over, by hypothesis, into a determinate finite value that at the same

time represents the value of the double integral in the rectangle up
to the limits x= Cj y = c.

174. For the simple definite integral the following theorem holds:

When F(x) is a known contiguous function whose derived function

is integrable and coincides generally with a function f{x)^ we have:

X

f{x)dx = F(x) - F(a).

The value of the definite integral depends therefore only on the values

of the function F at the limits of integration. An analogue for the

double integral is presented in the Theorem of Green (1793
—

1841)*):

(Joncerning the reduction of a double integral of aunique
function to simple integrals along the boundary curve.

In the plane xy let there be given a finite connected domain,
bounded by one or more closed curves. In Fig. 16 ex. gr. we suppose
the domain to consist of the part of the plane enclosed by the external

( urve omitting the two areas bounded by the ovals; in it there are

lierefore three closed boundary curves. Let a function f(x, y) be

^nven for all points within and on the boundaries of this domain and

let it be integrable within the domain. Such a function may, as in

§ 167, be continuous, although it is also possible that in a ''discrete''

multiplicity of curves it may become discontinuous, indeterminate or

'*) An Essay on the appUcatioo of mathematical analysis to the theories of

lUectricity and Magnetism. Nottingham 1828; reprinted in Crelle Journ. f. Math.,
Vol. 39, 44, 47; and again in Mathematical papers of the late George Green,

London 1871. - Kiemann: Grundlagen fiir eine allgemeine Theorie etc. §7 — 9'
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even infinite
5
we call the function then "in general" continuous. In

the last case if the function become determinately infinite it must be

algebraically infinite at each isolated point in a lower order than the

second and along entire curves in a lower order than the first.

For each value of y then I f{Xfy)dx represents a function of X

also in general continuous and finite, that is integrable with respect

to y. Denoting:

I'f{x, y)dx = F{x, y)
- F{a, y),

we have:

f{^7 y)
dF{x, y)

doc

Each parallel to the axis of x must cut the boundary curves in a

finite even number of points.
^^= In our figure it is two or

four. Denoting the values of

X at the entrances and exits

belonging to a definite value

of ^ by x^yX2jX^jXj^^ the double

integral :

Jjf{^:y)dxdy
is equal to

jdyjfix.
y)dx,

if the integral respecting x
X in this successive integration

be extended, for each value

of yj between the limits from x^ to iPg? ^^^ from x^ to x^. But in

the above notation:

Jf(x,
y)dx +

jf{x,y)dx=~F{x2,y)
—

F{x,, y)+ F{x,,y) -F(x,, y).

Therefore:

jj f{x.yy^(^y=j
dyF{x.„y) J dyF(x^,y)+J dyF{x„y)--J

dyF{x., y).

In these integrals the values of x as functions of y corresponding to

the equations of the boundary curves are to be substituted and then the

integrations with respect to y to be effected between the extreme values,

o'

Fig. 16.
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namely those at which any entrance of a parallel to the axis of x

coincides with its exit.

Constructing at each point o the normal to the boundary curve

and denoting the angle its direction entering the domain makes with

the positive axis of ordinates by g?i, 9?2> 9^3* 9^4 >
^^^ angle being

always measured in the same direction of rotation from the positive

axis of ordinates to the negative axis of abscissae, then at the entrances

0, , 03 the angles 9, and ^3 are always in the third or fourth quadrant,

but at the exits Oj, O4, the angles (p^, (p^ are in the first or second

quadrant. Therefore if ds denote the positive value of the element

of the arc of a boundary curve, we have:

dy=— ^ssin9?j, dy= ds8m<po, dy=— dssiuq^^y dy=^dssinq)^.

Accordingly:

IJ f{x,y)dxdy='J F{x.iyy)s'm(p^ds + / l'\x^,y) ^iiKp^ds

+ / F{x^ , y) sin 9)4 ds+j F{x^ , ?/)sin 93 ds.

All these partial integrals can be comprehended under the following

single conception:

We can describe each such integral as extended along a portion of

a boundary curve, inasmuch as the function that is to be integrated:

F{Xj y) sin g? ds

has always to be formed for the continuously consecutive points of

the boundary curve, with positive values of ds.

Now we adopt as a convention: The length of the arc of any

boundary curve is a positive increasing magnitude, when we trace the

curve from any of its points so as to keep the bounded area on the

left. We thus obtain the partial integrals that the points o^ or O4

ibrm along the segments: a^a^j «2^5> %^7; ^7^9; ^d^Mt ^11^13?

'^:^a^^ and from
Z/, by c, to 63 > ^3 ^7 ^3 ^ ^4 5

^^^ again, those that

the points Oj or O3 form along the segments: a^Gif a^a^, ««%, «8^6»

ajoOy, a|2«io; ^14^12 and from ^2 by c, to h^j h^ by c^ to 63. We can

therefore say: The integral

/•^
F{Xj y) sin (pds

is to be formed for the points of all the boundary curves,
these being traced so that the domain they have to bound
is constantly on the left.

We have conversely the definition: A simple integral

/i*\2;, y) sin (pds
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extended along a closed curve in a positive direction, signifies, in terms

of a single variable, the value of

P
when in the first place the entrances and exits of parallels to the axis oi X'.

^1
=

^1 {y) < ^2
=

^2(2/) < ^3
= %iy) < ^4

=
^4(2/) • • .

are calculated for each value of y from q){Xj y)
= the equation of

the boundary curve, and then the sum of integrals:

J 'F{Uy)-y)dy~J 'n>i'^{y),y¥y+j'nUy\y¥y-fF{,i,,
{y), y) dy...

is formed for increasing values of y.

Employing this definition, the following is the statement of

Green's theorem:

When the function f\x, y) is integrdble within a domain^ the integral:

X

Jf(x,y)dx
= F(x,y)

is in general for each value of y a continuous function of x and for

each value of x an integrdble function with respect to y. The double

integral :

fi^x, ifjdxdySI'
extended throughout the entire domain is equal to the simple integral:

F(x, y) sin (pdsJ'
extended along the boundary curves of the domain in a positive cir^"

This equality still holds good when the values of the func o

f and F are altered arbitrarily at infinitely many points, provided the

integrals are not thereby changed.
Therefore the value of the definite double integral depends only

on the values of F at the points of the boundary curves.

We can also frame the theorem thus, reversing the order of ideas :

When the partial derivate >r- of a function F{Xj y) is integrable over
c '^

the entire domain, even admitting that there are points or curves at

which it is discontinuous or infinite, we have always:

JJ-^'l^dxdy=^jFix,y).m^
d.

Likewise, interchanging the letters x and y, and denoting the angle

that the inward direction of the normal makes with the positive axis

of :r by ^, so that at the entrances of parallels to the axis of y
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the positive value of dx = ds^\i\ ip
= ds cos cp, but at their exits dx

is equal to — dssinifj = —
rfscos^); we prove the equation:

C
C^^yVl dxdy = —fF{x, y) siii i^ds = -

j F{x, y) cos (fds,
*

By the above definition— I F{x,y)cos(pds is the integral
- - / F{x^y)dx

formed along the boundary curves in a positive circuit.

175. Some consequences of this result claim our special attention.

1. Let a unique function of two variables f\Xj y) be given for a

domain limited in any manner by one or more boundary curves; let

its partial derived functions be:

Smvl = p,
a^(-.. 2'> == Q, and let : f? = l« •

cx '

dy dy ox

Now when the functions
v^

and ,^ are integrable within the domain,
cy c X

we have:

jflf dxdy = - Tpcos (pds, j j |^ dxdy = Cq sin (pds,

therefore :

But by hypothesis the function under the double integral sign vanishes,

consequently we obtain the theorem:

If V and Q he the xmrtial derived functions of a unique function

of two variahleSf the value of the integral:

/(Pcos9)+ Q sin (p)ds= l{Fdx+ Qdy)

is zero
J
when it is formed in a positive circuit for all the boundary

curves of a domain within which the functions ^— , >- - are integrahle

and in general j
with possibly a linear set of exceptions ^ satisfy the

equation ^- = —^^
•

^
oy dx

2. From this theorem follows: When the domain is limited only

by a single closed boundary curve (simply connected) find when

within it the conditions just stated are fulfilled, the value of the

integral formed for this one closed boundary curve is zero.

3. If two points within such a simply connected domain, whose

coordinates are x^^y^^f ^xVxt ^^ joined by arbitrary curves s^^s.^^ h - - -

included witliiu the domain, the value of the integral:

j (ptos ^
-hj^^u'f^,i'jfy==J

(^''^^^ + ^^'^y)
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is always the same for whichever curve it may be formed. For, any
two of these curves ex. gr. 5, and Sg surround a part of the domain,

consequently the sum of two integrals, taken, the first along Sj from

X(^y^ to r^i«/j, the second along s^ from x^xj^ to x^^y^^ is zero; or

writing this in a formula:

J (Pdx + Qchj) = -J (Fdx + Qdy) =J {Fdx + Qdy).
3:0,2/0 (along 5,) xi,yy (along «o) Xo^y^ (along Sj)

4. The integration to be effected in theorem 3. takes a simple form

when the domain is such as to include the entire rectangle having
the two points a^o2/o? ^i2/i ^^ vertices and its sides parallel to the

coordinate axes. For simplicity we shall assume here that within and

upon the boundaries of such a rectangle the functions P, §, >, -, -^

are continuous without exception, and that the equation ^—
= -^

is everywhere valid. We can then integrate along the sides of this

rectangle and obtain either:

^.,2/x
X, y,

J(Fdx+Qdy) =JF{x,y,)dx+JQ{x,,y)dy,
or:

xi.yi yi xi

J {Pdx + Qdy) =Jq{x„ y)dy
-\rJP{x,

y,)dx.
Xo^Vo yo Xo

Denoting the integral as a function of its upper limit by F{x^ , y^)
—

this we can easily see is a continuous function, because:

F{x,+li, y^+ ]c)-F{x, , y,) =fP(^, 2/0) d^ +JQ{^i + h y) dy
Xy Vl

+J{Q(x^ + hy)-Q{x„y)\d,j,
I/O

and Q{Xjy) is a continuous function — on differentiating the first

formula with respect to x^, we find the equation:

T^Vf^ .,^ djQ{x,,y)dy

Now because —^^^ is a continuous function, we are entitled to
ox '

differentiate under the integral sign (§ 169); further we have the

equation :

dQ (x,y) _ dP{x,y) .

dx dy ^
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therefore :

and consequently:

likewise :

The integral function / {Fdx + Qdy) can therefore be defined as that

continuous function of the variables
a;j , ?/, ,

which vanishes for the

values XQ,yQy and whose partial derived functions with respect to

ic,
and

«/,
are the functions P and Q.

By this enunciation the function F{x^^y^) is completely defined.

For, .all continuous functions of two variables whose partial

derived functions within a domain respectively coincide, can differ

only by au additive constant. Suppose, in fact, that F and are

two distinct functions for which:

dF{x, y) d<X»{x, y) dFjx.y) ^ 6<t)(a;,y)

dx
'^

dx '

dy dy
'

then in consequence of this first equation we have for every value of y:

F{x,y) = <^{x,y) + C,

where (J being a quantity independent of Xj can be only a continuous

function of y (§ 100); denoting this by Y, we have:

dF{x,y) ^ d^(x^y) , dY_
dy' dy

~^
dy

'

but in consequence of the second equation ^
=0. Accordingly

(§ 100) Y is a constant also with respect to y.

The problem therefore is solved : When two continuous functions P
and Q are given which satisfy the equation ^ *= o-^ within a simply

connected domain; it is required to find those continuous functions

whose partial derived functions with respect to x and y coincide with

the values P and Q, All such functions are collectively expressed by:

{Pdx+ Qdy) + Const.,
/'

Conversely, knowing beforehand such a continuous function F{x^y)j
the definite integral is thereby ascertained; for we have: ^

<
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X

f'{Pdx + Qdy) = F{x, J/) + C = F{x, y)
-

F{x„, y,) ,

because the left side vanishes for x ==
Xq^ 2/

=
2/o> therefore Omust

be equal to — F^x^^yQ).

Thus also the connexion between the definite and the indefinite

integral in two variables is developed subject to all the hypotheses
here necessary.

Note: It is to be observed, that this deduction of a continuous

function F{x^y) from its partial derived functions P and Q requires

not only that these derived functions be continuous but also that

they admit of being differentiated respectively for y and x

within the domain*); while there is no analogue to this with functions

of a single variable.

It is therefore not unimportant for us to realize that the condition

for an exact differential must be modified in certain cases. Let us

formulate the problem as follows:

Given in a rectangular domain, from x = a 'to x = h^

y = a io y = ^j two continuous functions P and Q, What
further conditions must they fulfil, in order that there may
be a continuous function F{x,y) in the domain, for which:

and how^ is this function determined?
All continuous functions whose partial derived function with respect

to X coincides with P are collectively included in the form:
X

F{x,y)=JF(,x,y)dx+ Y,
a

where F is a continuous function of y only. Making x =>
a, we find:

F{x, y)
-

F{a, y) =/p(a;, y)dx.
a

*) There may be points at which the functions P and Q cease to be

continuous and finite. But these points can be enclosed within arbitrarily small

neighbourhoods; the enclosing curves are then counted among the boundaries

of the domain, rendering it multiply connected. But they do not ultimately
come into consideration in the formation of the simple integral, if for the interior

of such a region the double integral I I I ^ ^^ jdxdy must vanish. The

^
J J \cy ox /

equation / / (>
— ^^^]dx(ly = 0, formed for every arbitrary part of the

entire domain, is the necessary and sufficient hypothesis on which the derived

theorems are based.
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Differentiating this equation with respect to y, since we must hg-ve:

we find the relation:
X

(1) Qi.x, y)
- Q('h y) = ^/^(^. s')''^-

a

We find in like manner the analogous equation:

(2) l>{x, y)
- Fix, a)

=
|^J Q {x, y) dy.

a

Therefore the functions P and Q cannot be independent; they

must satisfy these equations, of which one is a consequence of the

other. These conditions are necessary. Does it then follow, that,

since the integrals can be differentiated, the functions P and Q also

can be differentiated respectively for y and xl Instead of equation (1)

in which a and x signify arbitrary values we can write:

ft dy hj
^ '•'''

^j,3,„ hj Ay
X z

This expression on the right side has therefore for arbitrarily small

values of /* a limiting value for Ay = 0, But at each point at which P
is a continuous function of x^ the integral on the right can be replaced

by its mean value, so that we obtain the equation:

Q{X']-h,y) -Q{x.y) ^ j^.^^
Pix-\-Q h,y-{- Ay) -F(x+Q h,y)

^

Here is a function depending on At/, and the interval 0^ can be

diminished arbitrarily by choice of h. Nevertheless we must not argue

that the determinate limiting value which is found on the right,

is the differential quotient with respect to y of the function F(x, y)

at a determinate point. For, that limiting value only arises by the

argument 0/i also varying, whereas the derived function with respect

to y is defined as

jy=ii ^y

It is only in case the derived function ^- exists for all points within

the domain, and is an integrable function with respect to both the

variables that we can infer by the proof in § 169 that differentiation

and integration are interchangeable in equation (1), and thence the

existence of t-
,

as well as the equality ^r—
= -^

• Cases may be

assigned in which it becomes necessary to formulate the condition



/

320 General theorems concerning the double integral. Bk. III. ch. VIII.

generally. Let ti^) be a function, that within a determinate interval

is continuous, but has no second derived function. Substituting then

==
(p{x,y)^ a function xp((p{x,y))

= F(x,y) is obtained, for which no
Pi 2 T/""

mixed differential coefficient ^ ^ exists, althou^^h this function has a

total first differential whose integral remains always independent of

the path of integration.

The condition
-^

- =
-^^-

was essential for the proof we have given

of theorem 1. in this section, that the sum of the integrals:

\pdx + Qdy)

formed in a positive circuit for all the boundary curves of a multiply

connected domain is zero. Whether this condition is necessary, we

have not investigated.

176. The conditions of integrability still hold, when instead of

the variables x and y two new variables u and v are introduced, whose

first and second derived functions exist.

Let X = (p(UjV)j y = 4>{u, ^;),
then by the equations:

dx == 7^ du 4- —- dv , dy = 1^ du 4- -^ dv,

the differential Pdx-\- Qdy is converted into the form F^du-\- Q^dv^
where :

and we have:

dv du \'dx dv '

dy dv] du \dx dv *

dy dv

"T" ^
dudv "T" ^ dudv'

dQi ^ d(p idP djp . dP
a^j , djPidQ^ dj> , dQ dy)

du dv \dx du* dy du]
~^ dv \dx dii dy du\

Accordingly :

and:

""
di^'CV

' ^ dudv

dPi _ dQt
dv du

J{F,du + Q,dv) =J{Fdx + Qdy) + C.

In the deduction of this formula the existence of all the second

differential quotients of the original function is presupposed.



Fourth Book.

Integrals of complex functions. General properties of analytic

functions.

First Chapter!

The definite integral of a unique analytic function in the complex
domain.

177. A function f{z) of a complex variable z was defined in

§80 as a quantity which can be calculated from z by any finite

or even infinite number of arithmetical operations. When such a

function has throughout a connected domain, except in singular points,

;i determinate derivate /''(^) independent of the differential f/2:= f? a;+ *rff/,

we called it (§64) an analytic function in that domain. The two

constituents of an analytic function f{z)
= li, -\- iv are, as was then

deduced, continuous functions of the two variables x and y having
determinate derivates both for x and for y that satisfy the equations:

du dv cu dv

d'x~dy' dy'^~' dx
'

Moreover it was shown that these equations taken along with the

continuity of the derivates are also the sufficient conditions that the

function f{x + iy) =^ u -\- iv may have a derivate independent of

the differential, and thus be an analytic function of z in the sense

originally defined.

The following investigations, by which we are about to establish

the integral conception in the complex domain, deal first with the

function of a complex variable in general and then pass on to

analytic functions, whose general properties form our ultimate object.

In the complex plane let two given points Zq and Z be joined

together by an arbitrary curve of finite length. The equation of the

curve may be supposed given either in the form (p (Xj ?/)
= or by

means of a parameter x ==
<p(t), y = ^(^). To each value of t should

then correspond uniquely one value of x and one of y; further, to

continuously consecutive values of the variable t, which we assume

Haukack, Calcalus. 21
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to undergo no alternation of increase or decrease between the limit

t(^
and t, correspond the continuously consecutive points from z^^

to Z.

Now inserting between Zq and Z arbitrarily many points z^, z^, , . . z„-i

along the curve, let us form for any function f(z) the sum:

the complex limiting value to which this sum tends, as the value of

n increases arbitrarily, is called the definite integral of the function

f{z)j formed from Zq to Z along the path prescribed hy the equation of
the curve.*)

Under what conditions is there a determinate limiting value?

Assuming first that the function f{z) remains finite in all points of

the curve, so that its modulus does not exceed some assignable superior

limit, and also that the points wherein the real and the imaginary
constituents of f{z) undergo finite discontinuities or infinitely many
oscillations with finite fluctuations form a discrete set, the existence

of a determinate limiting value is easily evident by meaus of the

Theorems concerning the real integral. For if by the substitution:

z = x-\-itj = (p{t) + ^>(0,

we convert f{z) into f {t) + ^'^(Oy and if ^^j ^i ; ^2? • • • ^w-i) ^ ^^^ ^^^^

values corresponding to the points z^^f z^^ Z2j -
.,- Zn-i, Z, the above

sum passes over into:

/c=n— 1

^{/"i (4) + iUh) } { 9 (<t+i) + «>(4+t) - vih) - ii'ik) } ,

that resolves itself into a real constituent:

k=.n — 1 k=n— 1

k=0 k= V

and an imaginary:
k= ra~ ^ ^ =^w

— 1

i2f2itk){<p{h+i)
-

9(4)1 + »2'/''(^*)!*(^*+')
-

'''(^*)1-
k=:0 k=

To the first sum we can give the form:

^/iW T ^^. {tk+ 1
—

tk)^
k=o *+i *

and analogous forms to the 'three others.

The curve chosen as path of integration must be of finite length;

it is certain therefore to have everywhere, except possibly in a

*) Cauchy: Memoirs sur les integrales definies, prises entre des limites

imaginaires. 1825. Comptes rendus, 184G. — Riemann: Grundlagen fiir eine

allgemeine Theorie der Functionen einer veriinderlichen complexen Grosse. J851.

Werke, pp. 3 -47, 1876.
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discrete set of points, a progressive differential quotient that is itself

generally a continuous function and is identical with the regressive

differential quotient; or in geometric terms: the curve has no angles

except at discrete points. The intervals can therefore (§ 100) be assumed

so small, that generally for each value of t:

where d signifies an arbitrarily small quantity. Accordingly each of

the four sums takes a form such as:

tiiat passes over into the definite integral:
T

Jm¥{t)dt

as the value of n increases arbitrarily. Therefore:
7. T

to to

T T

+ ij'{m9\t) + f,W^'{t)\ dt=J\f,{l)+ if,{t)\ |9,'(0+ «>V)1'/

<i determinate finite quantity.

For instance, if the integral is to be formed in a straight path from

the point .?„
=

a^^ + iy^ to the point Z = X -\- iY, we have:

x = Xq+{X — XQ)t, y = ?/o + (Y - y^)t,

therefore:

<=

When we require to integrate along the arc of a circle of radius r

whose centre is the point Xq + iy^j we have by the equations:

x = Xq +r cos^, y = y^ + ^*sin^, dx = —
rsin^</^, dy = rcos^(/^;

/ T T

Jflz)dz^Jf{x, + iy, + r&^)ir&Ult=
irjf{x,

+ iy^ + re^)e^dt,
'„ ',.

*' where t^ and T denote the values of t belonging to the initial and

terminal points of the arc.

178. It results from Equation I. that we also have for the

^•nnijdMv integral the following theorems:

21*
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1)
Jf{g)dz

=
-Jf{,)dB,

Zo Z

only that both integrals must refer to the same curve. Again:

z ^k z

2) Jf{,)dg^Jmd^+Jf{,)dB, \

only that the paths of integration from z^ by Zk to Z or from z^ by Z \

to Zk must be the same in all the integrals. \

There is likewise here a Theorem of the Mean Value; although
it has not as simple a form as for the real integral.

In fact, from the equation:
z T T

Jmdz =Jf\(t)[cp\t)
+

it\t)\dt+iJut)W(.t)+in()\(it,

follows :

z

}{g)d0 = M,{Z- «„) + iM,(Z- ^„),

Z

where M^ signifies a mean value of fy (t) and M2 a mean value of f^ {t).

When these functions are continuous along the path of integration, this

equation can be given the form:

z

3) Jmdz
=

(/•, {t, + e(r-j„)) + if,{h + Q\T- Q) ] (z - ^„).

The values of and 0', however, will in general be different.

It can further be deduced from this equation, that the integral

in every point of the path of integration presents a function of the

complex variable, and moreover generally an analytic function. For if

z denote an arbitrary point on the path of integration, the differential

quotient in an arbitrary direction of the integral:

/'fliz)dz

with respect to its upper limit is derived by forming the quotient:

z-\-h

{-ffi^)d^,

where h signifies any quantity converging to zero and the integration

is along any path between the points z and z + h. If the values t

and t -\- h correspond to these points in such a way that when h =
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aloDg the path of integration h also converges to zero, we have by

equation 3):

4) lJ/Wf^«
=

/i (' + 9'^) + '/^C + 0''^> '

therefore :

Urn
\-Jf(z)dz

=
/; {t) + ifS) = nz).

The definite integral, regarded as a function of its upper limit,

lias therefore generally in the points of the path of integration the

derived function f(z). In particular also:

cfmdz cfmdz

by which is expressed, in conformity with § 84, that the integral is a

lunction of the complex variable x + iy == z.

When along the path of integration a unique analytic function

F{z) is known, whose derivate is equal to f{z)^ we have likewise :

ff{s)dz
= F{Z) - F{z,).

For if by the substitution Z'=fp{t)-\-itl>{t), f{z) passes into
/", (^)-f i/'.,{t),

and F(z) into F^it) + iF.,{t)] we have:

FXz) = az) = 1 F,Xt) + iF,Xt) 1 f^ ,

therefore :

cousequently:
Z T T

*

Jh)dz=f{m+if,{t)) {g>Xt)+it\t)\dt^f[Fat) + iF,'(t)]dt

= |V,(r) + iF,(T)] -{FM + iF,{t„) I

= F(Z)-Fiz„).

The definition of the definite integral, furthermore, can be

\ tended as it was before:

When the function f{z) becomes infinite in discrete points c, ,

'

,, etc., the equation of definition takes the form:

r, Ci
— d

rf\z)dz = L\m
ff{z)dz.

llerL' aUu, as for the real integral, the following criterion holds:
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This right hand integral has a determinate limiting value for

d = 0, provided the amount of the product (c
—

'^yfi-'O remains finite

when = c, for v a positive proper fraction, in whatever way the

value of z converges to c. (Cf. § 181, 3.)

When the path of integration proceeds in a determinate manner

'to infinity, we have:

I f{2) dz = Lim / f{z) dz, forz = co,

when the point passes to infinity along the prescribed line.

The integral is certain to have a determinate limiting value, when

in this process the amount of s^f{2) remains finite and i; is a number

greater than 1. (See § 181, 4.)

179. One essential difference there always is,
between the integral

of a complex function and that of a real function, notwithstanding the

similarity of the Theorems of last Section with those we had before:

A complex integral can be taken along very different paths between

two determinate limits Zq and Z, while for the real integral the mere

requirement that it shall be real prescribes always one path only

between the limits. The complex integral of one and the same function

between the same limits can therefore assume various values according

to the path of integration.

/dz
— from the point + 1 ^o the point

— 1 along the upper semicircle round the origin, putting:

z = cos(^) + ism(t), dz ={— sin(^) + ico^(t)\dtj

we have:
— 1 n

/--
= i I dt == iit.

But along the lower semicircle its value is:

— 1 —n

r^j^
== i Cdt = ~ iTt.

+ 1

The question therefore arises : Under ivliat conditions is the integral

of a complex function a unique function of its upper limits independent

of the path of integration? This question, as Riemann has shown,
is answered by means of Green's Theorem and the Corollaries that

follow from it (§ 174—176).
Let the unique function f{z)

= u -\- iv be defined for a given

simply connected domain. Let the functions u and v be continuous

throughout this domain. Should this not be the case in certain points,
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let us enclose them within curves and count these on to the boundary
curves of the domain which thereby becomes multiply connected.

Integration within such a multiply connected domain will occupy
us in what follows presently. Further let us put:

jf(z)
dz=V{Z )

-
i''K)= ( I/+ i K)

-
( t^o+i J^o) =/(«+ iv) (jlx+idy),

where U and V similarly signify real and continuous functions of

X and y.

The function U -{- iV is required to have the property, that in

each point of the domain it is independent of the path of integration

and satisfies the equations:

dx * ex ' ^ '' ' ^
dy

^

cy
' ^ ^ ^ ' ^'

so that we must have:

cU dU dV dV
dx '

dy
' dx '

dy

We are accordingly led back to the problem previously treated, whose

solution (§ 175, p. 317) informs us:

In the simply connected domain if ZJ is to be a continuous function,

whose partial derivates for x and y are everywhere respectively u and
—

Vy and if V is likewise to be a continuous function for which they
are respectively v and Uj these functions w and v having determinate

partial differential coefficients with respect both to x and to y tliat

satisfy the relations:

ay"~ dx'^ dy~^d'x'^

then the functions U and V are obtained, formed by the integrals:

I (udx
— vdy) and I {vdx + udy)y

along any arbitrary path. But the above relations inform us that

t\z) is an analytic function with the determinate derivate:

r'{^\ _ <^** _!. ;
^*^ — ^

i^** _L_ V ^^
\

' ^^^~d^'^ ^
i)x~'l \dy'^^ dy\'

It is accordingly proved: When in a simply connected finite

domain f{z) is without exception an analytic function ^
the integral

\f{z)dz is an analytic function of z completely independent of the

path of integration within the entire domain
^
and its derivate is f(z).
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180. If a new variable be introduced into the integral I j\z)d8

by substituting z = '^{/)y where ^(/) is an analytic function in the

entire domain within which the integral is to be formed, then by

§ 176 the property of integrability holds undisturbed with respect to

the new variable /, and thus:

Jf\3)
dz

=^jf{^{z))
tV)d0'

is an analytic function of s with the derivate f{(l^{z)) . il}\z').

When the integral has to be extended over a domain reaching to

infinity, we can transform it by Inversion (§ 79) iuto an in1;egral that

is to be investigated within a finite region. From the substitution:

z=j, t^^ = - ^ ,
we find: Cf\z)dz = —

ff{\^ % ;

and to arbitrarily increasing values of z correspond values of z with

arbitrarily small modulus. If then we have to integrate \f{z)dz

along a curve upon which z becomes infinite, we have:

UmffX,}d,
= Lim

-ff{j-)%
181. A number of corollaries depend on the Theorem of § 179:

1. When we form the integral along a closed curve that lies

within the simply connected domahij its value is zero.

For, when the path from
s^^ by ^, to z is one part of this curve,

and the path from z^ by Z2 to z the other, the integrals along these

paths are equal; and because along one and the same path:
Z So

Jmdz = -Jf{s)cU, § 178, 1),

the sum of the two integrals for the closed path from z^ to z and

from z to Zq is ziero.

2. When the domain is not simply connected, both the integrals:

/ {u + iv) {dx + idy) = I {udx — vdy) -\- i I {vdx -\- udy)

formed for all the boundary curves of the domain in a positive circuit

are zero (§ 175, 1.). If therefore we form I f{z) dz in a positive circuit for

all the boundary curves of a multiply connected domain wherein f{z)

is an analytic function, the value the integral assumes is zero.

Along each separate boundary curve it has a determinate value.
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When within the domain a closed curve is drawn, (a, fig. 17), which

by itself encloses a simply connected domain, the integral along
this curve vanishes

;
but when a curve is

drawn which together with a boundary
curve encloses a domain, ex. gr. /3, the

integral along this curve is equal to the

value that it assumes for the associated

boundary curve.

From this we form the rule :

3. When t\z)^ the function that is

to be integrated, loses the property of an

analytic function in a discrete set of

points of a simply connected finite domain,

Pig. 17. by either ceasing to be continuous, or

to be finite, or to have a derivate, let

us enclose each such isolated point within a curve arbitrarily near it,

and, counting all these among the boundary curves of the domain, let us

carry on the investigation in the multiply connected domain. When
the integral for the boundary curve round any such point vanishes, the

boundary of this point can be dispensed with, although it is always

possible that the integral function up to such a point may likewise

lose the property of an analytic function. For, it was only proved
tor points at which f{z) remains continuous, that the integral function

also is analytic.

There are therefore two things to be examined : first, whether the

integral round a singular point vanishes; second, whether the integral

up to the singular point continues finite or analytic in general.

We can at once see that: if the integral round the singular point

do not vanish, the integral function is an ambiguous function, and the

singular point is one of its branching points; along a branching section

starting from this, point the values of the integral difi'er by a constant

quantity.

For if the value of the integral round one boundary curve of the

point a he A, it has the same value for every boundary curve round

the point «, because two boundary curves determine a ring surface in

which the function is analytic without exception. At the two sides

of a curve starting from the singular point the values of the integral

differ by A\ the integral is therefore ambiguous.
A determinate value of the integral up to the singular point is

in this case quite out of the question; the value of it then depends on

the path by which the singular point is reached; how often ex.gr. the

branching section is crossed on the way.
But next: if the integral round the boundary of a point a vanish,
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the integral remains a unique f'uDctioii within a domain however

small round «, but this point itself may possibly be a singular point
for the integral.

A necessary condition in order that the integral up to the point
a may remain finite, in which case it is certainly continuous, is: that

for any number d however small, it shall be possible to assign a circle

with a as centre and with radius r, such that for all values of

z — a = q{qo^\1) + i^sin^)

for which
()
< r, the amount of the integral

f>

shall independently of
i/;

be smaller than d. This will certainly be the

case ex.gr. when the function f(z) is so constituted that: for
() < r

and < 1^ < 1,

abs[/'(« + Qe^'f")
•

(>^]

is constantly smaller than a finite quantity G. For we have:Or r

r
^

and r can be chosen so as to make this quantity smaller than d.

We can also assign a condition which is sufficient in order that

the integral taken round the boundary of a point may vanish. This

condition is: that

Lim{(«-«)/'(^)) =0,

and therefore that a domain, can be bounded off round the point a

within which the amount of the product (z
—

^)f{p) is equal to or

smaller than an arbitrarily small number 8.

For then, integrating round the circle with radius r, we have:

2n

sih&
If{z)d0 < /abs [f{cc + re"^) ire^'^jdt <27td\

and this value is Arbitrarily small; it is therefore impossible that the

integral round the boundary should have a finite value, so that, since

its value is determinate and is the same for each boundary curve, it

must be zero.

We can now estimate the bearing upon integration of whatever

singularities there may be.

a) When the function f{0) loses the property of an analytic

-function in a point by becoming discontinuous or by ceasing to satisfy

the equation j^ + i 5 == 0, while still remaining finite, this point
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has no influence whatever upon the integral. In fact; for a positive

V either equal to or less than 1 we have

Lim
j {z
—

ayt'{z) )
= 0.

The integral is still an analytic function in the point a, its derived

function is Lim f\z) for z = cc. (See moreover Remark c.)

b) But when the function f{z) becomes infinite at a point, whether

an essential or a non-essential singular point, this is always an infinity

point for the integral also. In fact, here

Lim
i {z
-

«)7-(.-) 1

is not finite for v less than 1
;
because in a non-essential singular point

Lim {{z
—

aYtX^)]

is linite only for m equal to or greater than 1, but in an essential

singular point it is finite for no assignable in whatever. In the examples
of next Section we shall discuss this as well as the question whether

such a singular point is a branching point or not.

c) It is necessary also to consider whether possibly the function

f{z) may lose the analytic property all along a curve c situated
within the domain, by no longer satisfying the equation

-^ 4- i ^t ^dx^ ''

dy
^

in any point of this curve, although continuous in its neighbourhood;
while the derived functions remain finite. This assumption however,
as we shall prove, involves a contradiction.

In fact if we surround the curve c by a boundary I arbitrarily

close to it, the integral round this boundary will vanish, because the

values of the function on the part of I to the right of c differ from

those to the left arbitrarily little when I closes in arbitrarily up to c;

therefore the sum of the integrals, being taken in opposite directions,

becomes arbitrarily small. Moreover the integral remains finite for

each point of the curve c. Therefore such a curve would not be

singular for the integral. Thence it follows that even in the points
of the curve we have:

U+ iV=J (u + iv) (dx + idy),

or the equations:
^t 'J T, y

U =
I (tidx

—
vdt/)j V=

j {vdx -{ udy).

Therefore the integral U -\- iV is an analytic function, whose derivate

is /'(j)
= M + *^- I^ will be shown subsequently, that the derivate

of an analytic function has also a derivate independent of the quotient
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'

;^ ; consequently the equations

du^ dv dv du
dy dx '

dy dx

must also hold for the points of the curve, that is to say, the original

assumption is impossible.

d) When the function f{z) is discontinuous at the two sides of a

curve lying within the domain, the paths of integration at the two

sides of such a curve also lead to different values
;

i. e. the integral

also is no longer an analytic function in the domain.

4. When the domain of the integral contains the point infinity,

we convert it into a finite domain by the substitution ^ = —
,

• To the

integral

z

-f'-m
taken arbitrarily closely round the origin in a positive circuit will

correspond an integral in z along a curve likewise surrounding the

origin but arbitrarily remote and in a circuit keeping the infinite on

the left : such a curve is said to surround the point infinity. The value

of this integral is certainly zero when

The integral function will remain finite even for the point infinity,

according to the theorem just proved, when we have:

some finite quantity, where the exponent 2 — v> 1 orv< 1.

182. Of unique analytic functions presented in an explicit form

we have only become acquainted with rational algebraic functions and

with the infinite series of ascending positive integer powers within its

circle of convergence. These we have now to integrate, taking their

singular points specially into account.

1. The integral of an integer rational function.

When ^ is a positive integer, the power ^" is an analytic function

without exception in the entire plane. Therefore along any path of

integration :

/ n-\- 1
'

When the integration is extended to infinity, the integral function also

becomes infinite. The point infinity is a non-essential singular point.
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It is easy to prove the theorem: that the complex integral of a

sum of functions is equal to the sum of the integrals formed for the

several summands; by its help we obtain from this the formula for

the integration of any integer rational function:

s

2. The integral of a fractional rational function.

Every fractional rational function can be broken up into an

integer function and into partial fractions each having a constant

numerator and its denominator an integer power; for, the identities

developed in §§ 111, 113 hold also for the complex variable. Accordingly
the integration of a fractional function requires us only to investigate:

/—
— and more generally / :

in place of these, writing z instead oi z — a, adopting therefore the

point a as zero or origin, we can deal with the simpler integrals:

/dz
, rdz

Considering first the case of n a positive integer greater than 1;

it is evident that the function - loses the character of an analytic

function at the singular point zero; in all the rest of the plane,

the point infinity included, it is regular. Surround the singular point
with a circle of radius r. Along the circumference of this circle, since

z = r (cos qp + ^ sin ^), dz = r(
— sin (p -\- i cos (p)d(py

the value of the definite integral is:

/= , / ~"°y~T"/ ^^ dw=^ - *

,
1 (cosn— \(p—ismn—\w)dw= 0,

^n t^—^j cosny-f ^siJiwy f^~ J T'y f ;

since w > 1. Thus the result of integrating round the boundary of

the origin vanishes, so that its boundary curve has not to be taken

into account. Along every path in the plane, even such as pass

through the point infinity, since for it

Lim
\z
U =

0,

we have the integral:

and it vanishes along every closed path. But the point zero or origin
is a non-essential singular point of the integral.
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The case n=l, that already served as an example in §179,
requires a particular treatment; for here round a circle with the point
zero or origin as centre we have:

2n

/^ =
'/d(p.

Therefore independently of the radius r the integral is equal to 2i7i.

Around the point infinity the integral Has likewise a finite value; for,

integrating along a circle with an arbitrarily great radius lij keeping
the origin on the right, the integral is converted by the substitution

1 . dz
"i )z

/dz'
^1

-J-
to be integrated along a circle of radius

-^ keeping

the origin on the left; thus its value is — 21%. The value of the

integral will accordingly depend on the path of integration; along a

finite closed curve its value will be 2i7ilc or zero, according as the

closed curve goes round the origin ^ times or not at all. The integral

^ is a unique function of its upper limit ^, when the paths thatj
lead from the lower limit z^ to z do not cross a section leading from

the origin to the point infinity; it is only in the plane perforated along
this section that the values of the integral calculated along such curves

are continuous
;
on opposite banks arbitrarily near the branching section

they differ by the constant quantity 2i7t.

But the many-valued function which is presented by the integral
is the logarithm treated in §82,5; for, l{z) is that function whose

derivate is — • The method there employed of rendering it a unique

function by means of arbitrarily many leaves, is valid also for the

integral. For each path not crossing the branching section we have:

f% = K«)
-

K^o),

z
,

/'dz
— =

l{.^). In writing this equation, however,

we must observe that the quantity on the left is now determinate, while

that on the right is still many-valued. What is the value on the

right belonging to a determinate path? Before we can characterise

a definite kind of path, we must adopt a definite branching section,

ex. gr. the positive axis of ordinates. We reject the positive axis of
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abscissae, to avoid having the lower limit -|- 1 on the branching section,

for in that case we should have to distinguish between its two banks.

To proceed from 1 to in the same leaf, means to take a path
! that, while otherwise arbitrary, does not cross this section. To proceed
from 1 to ;? and at the same time pass from the first into the

(Ic -(- 1)*^ leaf, means to take an arbitrary path which crosses this

line (k + k') times in the direction from right to left and k' times in

the opposite direction; to pass from the first into the — (k -\- 1)*^ leaf,

means to cross the section {k' + ^) times from left to right and

// times from right to left.

Remaining in the first leaf, we can as a particular case integrate

from 1 to z === X -{- iy, provided z is not in the second quadrant

(a; < 0, t/ > 0) , by proceeding first from 1 parallel to ordinates to ij

and then parallel to abscissa? to the value x.

Putting :

dz ^ idx-^idy ^ i{x — iy)dx ,

. nx-iyjdy
'y J x + iy J x^Ty "^ J «» +¥ '

then (as in § 175, 4.) the first integral on the right is zero along the

first part of the path of integration, along the second it is either:

/^i?7i^
=

|«(V+?/«')- Y«(l+ yo-')+ ' {tan- '^l

-
ta..-'?/«} ,

1

or:

=
I IW + ?//)

-
{ '(» +yo') + »

{tan-' |^_tan-'y„}
-

i»,

according as x^ is positive or negative; the circular function hero

always signifies a value between —
\7C and + ^;r. For in the

second case, as x passes through zero, tan—* — is led over continuously

into tlie value tan-^ - — %,
X

We find for the second integral along the path parallel to

ordinates:

Here the circular function signifies always a value between — \n and

+ J^r; therefore in flic firsf loaf, (excluding y^^ > 0, Xq < 0), we have:

j ^1
=

-1
'(^'.' + y^') + 'tan-' % + ". o"-'

- »*;
1

according as x^ > 0, or, < 0.
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h'or a point of the second quadrant let us first proceed from

x==l parallel to ordinates to the point 1 — ^?/„, thence parallel to

abscissai to the point Xq
—

iyQ and lastly again parallel to ordinates

to Xq + ^'2/0 5
thus:

1 1 Xo—iyo Xo— iiJo

But the last integral is equal to:

xc+iyo ^Vo

ijdy _ .

fi^-iyldy _ ^ .^^^^_,
2A.

J x-i-iy J Xo^ + y^ a^o'
Xa—iyo —y„

therefore for the points of the second quadrant:
z

/^ = I KV + y^) + »tan-i I
- «.

Along the right side of the positive axis of ordinates the values of the

integral are ^liy^^) + \iit, but along the left they are \l[yQ^)
—

^^'jr;

they differ by 2i7t,

3. The integral of an infinite series of powers.
Within the circle round the centre a, in which the complex series

of ascending positive integer powers:

% + (^\ip
—

«) + (^'A^
— ^y + • '

(in{3
—

(^y + ' '

converges, it expresses a unique and continuous function f{z) without

singular points ;
for every point s == Z within the circle of convergence

the series converges absolutely; and therefore it also converges

uniformly; i.e. a value of n can be assigned from which onwards

every remainder is of smaller amount than an arbitrarily small number

d, for every value of s such that abs [^
—

a]<abs[2^— a]. For,

abs [a„(Z- «)«+ a„+i (Z- «:)-+i+ .-.]< ^« i^'^+ A+i i^"+'+- ,

when A is written for abs a, and B for abs[Z — a\. But since the

series :

Aq + A^B + A^B} -]

converges, a value can be assigned to n, for which the right side of the

above inequality will be always smaller than d, a fortiori we shall have:

abs [an {2
—

a,y+ a„+i {z
-

a)«+i
• •

•] < ^« ^" + ^n+i ^"+'+ • • • < d\

when abs [z
—

«]
= r < jR.

From this results the following theorem:

When the complex series of powers is integrated from the point Zq

up to the point Z^ that both lie within its convergency, its integral is an
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analytic function and presents itself as the difference between the

values for the arguments Z and
z^^

of the series of powers that arises

on integrating the given series term by term:

jnz)dz
=

}«„(z
-

«) + ^-
(z - «)' + f (z -«)» + . .

;

-
!«„(.?„

-
«) + ^ (-'«

-
«)' + f (^. -«)'+••

j

•

As a particular case we have:

7

The circle of convergence of this new series can be neither smaller

nor larger than that of the original. It is however possible that

this second series may still converge (conditionally or unconditionally)

upon the circle itself, while the original series diverges in the points of

the circumference. In this case the series expresses the integral of

the function f(z) for the point on the circle of convergence also.

For, when Z denotes such a point, we have:

z Z—d

l)\z)ilz=^L\m ff{z)dz

a

=
Limjao(Z-<J—a)+«i(;^—

(J—a)2+««(Z— ^—
«)3+...|.

Since a series of powers remains continuous provided it converges in

tlie points of the limiting circle (§ 83), this right hand limiting value

passes over continuously into the series:

a,{Z - «) + f (2 -«)-+? {Z-af++ etc..

When the infinite plane is the convergency of the series, the

value of the integral is expressed by the series of powers for values

of Z however great in amount. For the point Z = oo^ the integral,

meaning thereby the limiting value along a determinate path, may
possibly remain finite, only its value can no longer be expressed by
a series of powers.

This is exemplified in the case of the integral I e'dz, whose

value for every finite value of Z is:

z z

U

CalculuH.
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When Ave require this integral along a path to infinity along
which the abscissa x increases arbitrarily negatively and the ordinate y

positively, we can proceed by describing the path of integration first

up to — a along the axis of abscissae, then the path h parallel to

ordinates, and ultimately causing a and h to increase arbitrarily.

Conceiving ex. gr. the parabola y = x^ as path of integration, let us

consider the point

z = — a -^ ia'^

upon it. The value of the integral extended to this point is:

z —a a-

= (e-«— 1) + e-«(e*"«'
—

1)
= — 1 + e-«+^'«\

When a converges to infinity, the value of the right side passes over

into — 1. But it is only along a determinate path of integration

that a determinate value of the integral is generated.
In order to study in this example the behaviour of the essential

singular point in integration generally, we transfer it to the origin

or point zero by the substitution s = -y and consider the integral

'J
^'

^'' J ^^'' '^ zn±'^ z^\i~^ z^\i'^ '"^'«+2,_^
+ ds

taken in a negative circuit round the point z = 0.

We have here a series advancing by powers of the variable
-r*,

we shall therefore first prove in general the theorem (see § 131):

When F{s) is. a series which advances by powers of a function

f{z)j its integral within a domain wherein the series converges and

f(8) is an analytic function, is obtained by integrating its several

terms.

With a view to this proof, we have to demonstrate that the series:

F{,) = ao + «,{/"«} + a,[f{z)y + " + an[m]- + . . .

converges uniformly within its convergency. It is obvious that if

the series converge for a determinate value of Z, it is absolutely
convergent for every value of z ior which abs/'(^) < abs/*(Z). For,

inasmuch as the series converges for f{Z)j its terms must decrease

in amount in such a way that, calHng An = abs[aj, B = abs [f{Z)\,
we shall have:

An+iR-+' <AnR'', and that, Lim ^i* R
shall at most =1.
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Accordingly

/.-(.)
=«.+ «,• ^|FW+a,{|^!'iF(.)r+...a.|^j"{F(.)l" +

...

is an absolutely convergent series; for, its series of moduli:

A„ + A,^R + A,(g'R^+-- A„
('j^)'li' + . . .

converges, because while r < 2i:

Lim^.^.i{<l.
But as long as the series converges absolutely, it converges also

uniformly; in fact then, for every value of 0, the amount of:

s smaller than d, provided v^e choose n large enough to make

AnR" + A„+iR''+^ + ' ' < d, remembering that B > aha f{z).

We have consequently:

jF(zyiz^a„J<h+ aJt\^dz^-a,j\m\\h+-.-a,j\f{z)\'de+-

Since f{z) is a unique analytic function, the integrals on the

right are also analytic functions independent of the path of integration.

This series converges uniformly within its convergency.

Employing this theorem as a Lemma, we can find the value of:

-/{ }i + 7k + z'm + • ^^-^ +--]dz

integrated round the point zero in a negative circuit, since the series

converges for every finite value of z' but zero. The value of this

integral is found by the substitution:

z = ()(cosqp + *«Jn 9^))

to l)e:

rhe essential singular point of the exponential function is therefore

not a branching point of the integral function; but it is an essential

singular point; for the integral:

J\^.dz'
1,1,1, 1

, , ^

a

is an infinite series of powers and has the singular point z = 0.

22*
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1^
1

But the functions e^ and e' - ~ are instances in which the
z

essential singular point ^ = is at the same time a branching point
of the integral. Moreover when a non-essential singular point of the

function f(0) is considered in the general form:

/•(^)
= ~-^-—

{ao + a,(z
-

0^) + a^{z -ay-] },
{Z
~

aj ^

where the series of powers must be convergent in the neighbourhood
of the point «, we see that (if m > 1) the point a will always remain

a non-essential singular point for the integral j f{z)(lz, and that it

will at the same time be a branching point, provided the coefficient

am-i in the term am—i{z — «)"*-^ does not vanish.

These examples therefore teach us that the character of an infinity

point of the function can only alter for the integral function in so

far as it may possibly become at the same time a branching point.



Second Chapter.

Expansion of unique analytic functions in series of powers.

General properties.

183. We have more than once pointed out that, except in the

rase of rational algebraic functions, the definition of functions by
means of arithmetical operations left the problem of their calculation

^till unsolved; for real functions this problem found its solution in

Taylor's Theorem: Given the value of an arbitrarily defined function

and of each of its derived functions at one point, and knowing that

these are all continuous within an interval, the value of the function

and of each of its derived functions can be calculated for every point
f the interval by means of Taylor's series, provided this series

tonverges.
We are now however concerned with the calculation of a function

ill a complex domain; our present investigations will show that this

is accomplished by meaus of the follov^ing simple theorem:

Being given the value of an arbitrarily defined function and of each

of its derived functions at one pointy and knowing that the function is

'iiudytic tvithin a finite connected domain, i. e. is unique , continuous,
")id has a determinate finite first derived function, its Taylor's series

nverges round this point within a circle that is included in the domain.

I round each point in the domain such an expansion is possible, and by
ueans of it tJte function and all its derived functions can be calculated

fur every value of the variable.

Whereas therefore under the restriction to the real interval the

intinuity of the derived functions and the convergence of Taylor's
ries still belonged to the hypotheses that had to be established

before the problem could be proved to admit of solution, here simply
I he character of the analytic function is seen to be hypothesis sufficient,

> that we can enunciate the theorem also in the pregnant form:

Every function that is analytic ivithout exception in a connected

ilomain can be expressed for tJie neighbourhood of each point in it by
n ascending series of positive integer powers.

To this is owing the fundamental importance of these series, which

also in our previous investigations always had our special attention.
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Not only do they present the simplest method of calculating any
function other than a rational algebraic function, but they define in

general all continuous functions of a complex variable whose first

derivate is determinate.

The way of arriving at this theorem was pointed out by Cauchy.
184. When f{z) is an analytic function without exception in a

simply connected domain inclusive of the boundary, and t = u -\- iv

m
is in the same domaindenotes an internal point, the quotient -^.

likewise an analytic function
, only that the one point z = t is a

non-essential singularity. An arbitrarily small circle drawn with radius

Q round t as centre will be the second

boundary curve of a domain in which

the above quotient is analytic without

exception. Integrating the quotient along
both the external boundary curve and

this circle q, keeping the ring surface

on the left, the sum of these two integrals

is zero. (§ 181.)

We find the result of integrating

round the arbitrarily small circle of

radius q negatively, i. e. keeping its

interior on the right, as follows: For any point on the circumference

of this circle we have:

— t= Q{cosq)-\-ismg))=Qe^Vj dz= q ie^v d cp
= q i(cosg) -^i sing)) dqj,

therefore :

cp=z2Tt

Jf^l
de^-

ij'at
+ Q,ff)d.p.

Fig. 18.

(p
=

But since the function /'
is continuous in the neighbourhood of

the point ^ = ^, we can choose q so small that the difference between

the values f(t) and f{t -\- Q&^), for all values of 9), shall be smaller

than a number d whose modulus is arbitrarily small. Accordingly
27t 2jt

fit + Q&^f>)d(p differs from i (f{t)d(p
=

2i7tf(t)J
by a quantity whose modulus is smaller than that of the arbitrarily

small number 27td] i. e. independently of the value q we have the

integral :

/f\t + Q&'P)d(p equal to 2 infit).

(p=0

Therefore the following equality is established for the integral taken
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positively rouDd the outer boundary, and in general along any iucluded

curve surrounding the point t:

fp^\.u-2um
=
,or..m^^lJm.^ dz.

This equation asserts that: If we are given the values along a closed

curve of a function f(z) that is known to be analytic without exception

in the enclosed space, we can find the value oi f{z) for each internal

point / by a definite integral.*)

185. We began with the hypothesis that the function f{z) has a first

differential coefficient everywhere within and along the boundary; we
are now in fact able easily to express this first derived function by
means of a definite integral. For we have:

fit -{-At) -fit) 1 /V,x dz

^.Jf^ i^iAt lin J
' ^^

{z
— t — At) ^z

—
t)

When A^ converges to zero, since the quantity on the right side of

this equation is also a continuous function of A^, we obtain:

where this integration round t may be along any path that remains

within the domain originally defined. But a further consequence is:

that the derived function f {t) itself is analytic everywhere in the

interior; for we have:

f{t-{-A t)-nt) 1 /*... 2U.-<)~At ,

At
=*

ThtJ
'^^^ {z-t- At)*{z _ t)*

'*^»

therefore :

in like manner all the successive higher derived functions are found

for each point situated within the domain and we have:

A function that is analytic in a simply connected domain tJwref'ore

is not only itself finite and continuous y as is likewise its first derivatcy

•) This theorem must not be taken to mean that we may arbitrarily assume

the values of the function f{z) along the boundary and then calculate the value

for each internal point by equation I. On the contrary the values of the function

at the boundary, as we can easily conceive, must satisfy antecedent conditions

in order that they may give rise to an analytic function for the interior. The

investigations concerning this question — definition of a function by conditions

of boundary and of continuity
— are collectively comprehended mider the title:

the Principle of Dirichlet.
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hut it has also for each point within the domain higher derivates, and

these all, as many as may he formed, are analytic functions.

18G. Equation I. leads also to the expansion of the function f(t)

in an infinite series of ascending positive integer powers.

Let any point a be selected subject only to the condition: that

the greatest circle with a as centre which does not go outside the

boundary curve of the domain shall include the point t for which the

values of the function are to be calculated. Let this circle be adopted

as curve of integration of Equation I.
,
then for every point z on its

circumference we have:

abs [t
—

a] <^ abs [0
—

a].

Accordingly

z—t z— a' t —a z- a\ ~^ z—a~^ {z
— af~^

* *

(^
_

(i)«

'*

/

z— a

is a convergent series. By the Lemma proved in § 182, 3, therefore:

1 z— t J z ~a ' ^ ^J {z
—

a)-

+ (^
_ ay fr-^^c, ch + ..-{t-ay f—^^^, dz > •

-,

and we obtain the equation:

that can also in consequence of Equations L—IV. be written in the

form :

V. m =
/-(o) + (i- a)t\a)+^^' f\d) + • • •

(^" /•»(«)
• • •+ etc..

This series of powers certainly converges absolutely for every value

of t situated within the greatest circle round the centre a that does

not go outside of the boundary curves of the original domain. This

is Taylor's expansion for a complex function.

The contents of equation V. may be stated in the following words :

Given the value of a function and of each of its successive derivates

at a point a, if we Imow that the function is analytic within a circle

round the centre a, the value of the function ivill he calcidatcd for every

point tvithin this circle hy means of the infinite series of ascending

positive integer powers V.;

or: The value of a function and of each of its successive derivates

being given at a point a, it is an analytic function in the neighbourhood
of this point, only, when a circle of arbitrarily small finite radius can

be assigned round a as centre, within which the series V. is convergent.
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The series V. will generally not converge for every value t within

the region originally assumed, wherein f{z) was supposed analytic,

liut we can vary the centre from a so as to arrive at a circle, and

with it at an expansion, that will include the required point. For, if

this point t be at a finite distance however small beyond the boundary
uf the circle, let us draw from the point a to ^ any curve that keeps

always at a finite distance from the boundary curves. The circle

whose centre is a will meet this curve in a point a between a and t.

The function /*
anfl arbitrarily many of its successive derivates can be

calculated from series V. for a point on the curve and arbitrarily near

a within the circle; this point can then be made the centre of a new

expansion all whose coefficients are known. The point a" in which

the new circle of convergence crosses the curve is of course nearer

to ^; and the continuation of this process must ultimately lead to a

circle that includes the point ^, since the radii cannot become infinitely

small, because the path a a a" ... Ms always at a finite distance from

the boundary curves.

This process of continuation can also be employed in the case of

an analytic function defined only by a series of powers, in order to

extend it out beyond its convergency into any domain not including a

singular point. (§ 87.)

Each such series of powers defines the function for a determinate

circular convergency and is called .an element of the function.

According to the centre chosen for the expansion, different elements

of the function are obtained, moreover, one and the same value of the

argument belongs to different elements. But when the function is unique,

its different elements must lead to the same value for the same point.

When in this extension of the function by its elements we do not

pass out beyond some limited connected domain, the function exists

only for this domain.

Any pair of analytic functions of the complex variable defined

arbitrarily within given domains are to be considered as belonging to the

same function, only, when the elements of one of the functions can be

derived from those of the other.

In this sense an analytic function is completely determined when

its value and the values of each of its derived functions at a point are

known, or in other words, when the values of the function are given

along a line however short. For then its derived functions can be

determined. Functions that are not thus connected, are to be regarded
as independent of each other.*)

*) Hankel: Untersuchuugen iiber die unendlich oft oscillirenden und uastetigen

Functionen, p. 44 etc., 49 etc.; reprinted, Math. Annalen, XX, p. 104 etc.,

p. 109 etc.. Weierstrass , Monateberichte der Berliner Akudemie. 1870 August
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187. If we know that a function loses the property of a unique

analytic function at certain points c, , ^2? • • • ^^ *^^ plane, and we
desire to expand this function in a series of powers in the neighbourhood
of a point a, the circle of convergence may only be so large as to pass

through one or more of the points c, but must include none of them.

For, the series of powers is a unique analytic function in the entire

circle, while by hypothesis the function loses this property in each point c.

As soon therefore as we know the properties of a function, we
are in a position to foretell the extent of the convergencies of its

elements. This we proceed to illustrate by the functions already studied.

I. It is known regarding the exponential function

f>x+iy ._^ qx (^cos ij -\- i sin
?/),

that it is analytic in the entire plane, for every finite value of x -\- iy.

There exists round each point a an expansion with an arbitrarily great

convergency, the series is:

II. The function 1(0), which we have defined as the inverse of the

exponential function, is a many-valued function of s. Its values can be

uniquely coordinated to the points of a winding surface with infinitely

many leaves that are connected along branching sections from the

point to 00. When we describe with a centre a in any leaf a

circle including the point zero, the logarithm is not a unique analytic

function within this domain; moreover the domain itself is not

closed according to the idea we formed of the winding surface, for

its boundary circle crosses the branching section an odd number of

times and does not lead back to the original point, but into a

different leaf. But when we describe round a as centre a circle that

at the utmost passes through the branching point ^ = 0, the function

is everywhere analytic within this circle, and the circle itself is closed,

although parts of it may possibly be in different leaves. The function

1(0) must therefore admit of expansion by powers of {z
—

a), and

because its successive derived functions are —
, -^- , ^ ,

—7^ , etc.,

the series is, for abs [z
—

a] < abs a :

This series expresses that value of the logarithm into which the value

assumed for 1(a) changes continuously along any path within the

circle of convergence. When we extend the function l{z) out beyond
this circle of convergence, by adopting some new point a within it

as centre of the expansion:

m -
l{a') + "f -

^-^- + ''^- ,
abs [^

-
d\ < abs a,
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we can calculate the corresponding logarithm for each point of the plane,

and the value thus obtained is that actually lying in the same leaf as

Z(rt) when we join the points a and ^r by a curve which does not

cross the branching section, and then choose successive points of this

curve as centres of expansion until we arrive at a circle which includes

the point Zj and in which the curve drawn from its centre to ,r is

not intersected by the branching section.

111. The binomial (1 + ;&;'*,
when the number n is a rational

fraction p '. q^ is a g'-valued function, whose branching points are

z = — 1 and z = oo. This is presented as a unique function of z by
means of a surface with q leaves that are connected along a branching
section from — 1 to oo. Taking any leaf and selecting any point a

in it as centre of expansion, its convergeucy will be a circle that

at the utmost passes through, but does not include, the branching

point z = — 1
;
the series is :

{\+zY^{l + aY+l{z-a){\+ aY-^+'^^^-{z-aY{\+ ay-^

+ ^^'*"|l^'*~^\^-a)ni+ «)"-' + ---;abs[g
— a]<ab8[-l-a].

This series expresses that value of the root at the point Zy which

proceeds by continuous change from the value assumed for (1 + a)"

along any path within the circle of convergence. In particular, if a

be the origin of coordinates and we choose for 1* the simple value 1,

we have:

/I I \« 11*^ I
nln— X) 9 , n^n— l)(n— 2) «

, / . ,s
(1 + ^)''= 1 + Y ^+ —|2—

^ + jf
^^ H , (abs z < 1).

When the exponent w is a complex number, this series still holds

unchanged; we have then

(1 + zY = c«'(i+*)

an infinitely many-valued function; selecting for ^f = the value 1,

the above series presents that value of e'»'(i+-) which proceeds from

the number by continuous change when the point z moves ex.gr.

along a radius from the origin. We can fix this value uniquely in

the form:

restricting, as usual, the angle whose tangent is named, to mean a

quantity between — ^it and -\- ^it,

188. The implicit algebraic function w, which is defined by the

equation t\^\ w*) = 0, was proved in Book II, Chapter IV, to be an

w-valued function with a certain finite number of critical points and

non-essential singular points. By the word critical we designate all

those points z for which —' '^' *^^ is also zero, because the value of w



348 Expansion of analytic functions in series of powers. hk. iV. ch. II.

belonging to eacli is a multiple root. In the neighbourhood of any
other (regular) point each branch of w is an analytic function, and

consequently with any regular point a as centre must admit of an

expansion whose convergency extends at least as far as it can without

including any non-essential singular or critical point. Denoting by
Wa one of the values, necessarily simple, belonging to the point a,

the expansion is:

\ dz^>

a, w^ a, «'„ a, w^

where ( ~„
j

denotes the value of the n*^ derived function formed at

the point =
a, w = Wa- We know a circle of convergence of

this series, when we have previously determined all such singular and

critical points of the function.

It has now become necessary to find the n^^ derived function.

We showed in § 94 how the first derivate of the implicit function

is calculated:

dz dz
'

dw '

and that it has a finite determinate value for every regular point

because -^ is not zero. Every higher derived function is found from

this by successive differentiation: the partial diff'erential coefficients

^ , ^— ,
alike with

/',
are algebraic expressions in ^ and «^

5 consequently,

as long as ^<; is a unique analytic function of 0, they are likewise

unique analytic functions of 0. Therefore also their quotient is an

analytic function of 0, and by the same rule of differentiation we find :

df fd'f ^ dw^ _ dff d^f ^ dwK

dHv___ dw\d^'^ dwdz dz) dzKdzdw'^dW dz)
dz^~

'

(djy

The Theorem of the interchange of the order of differentiations holds

here, for, the algebraic functions ^^J , r,
—

l are continuous functions

of the variables and w^ therefore, inserting its value for ,— ,

we have:

dz-\div) dzdw dzdw~^ dw'Kdz)(irlO

dz-

We have then in this expression on the right to substitute for the

value a and for w the value Wa.
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Successive differentiation of this quotient, a calculation without

difficulty but leading to long formulas, presents as many derived

functions as we please. It is essential that in all of them the

only quantity occurring in the denominator is a
,
which does not vanish

as long as we keep in a domain of regular points, so that the values

of all the derived functions are finite and determinate, since the points

are excluded in which w becomes infinite.

Although we have thus indicated that which is essential in the

equations whereby the derived functions are calculated, it is still

important for a subsequent application of the formulas, to introduce

-ome abridgments of notation which give us a comprehensive view

of the equations that are to be formed.*) Let us denote the

derivate —"
by tv^, the partial derived function ^-J-^^^' by /**_« «,

and let us write: *

then, for the ratio
" = tv. , which for z = a becomes the derivate

.
,
we have the equation :

0=0, + {z
-

a)*, + (^
-

a)^0:, + • •

-,

ascending by powers of ;2r to the term {z — r/)'" or {z — rt)" according
as m is greater or is less than n.

From the equation w — iVa = w^{z
—

a) we find that:

77*
=

(^
-

«) v.*
' + * T.*-

SO tliat for ^ = a we have the relation

(f;)-

Accordingly the higher derived functions w.^, w.^^ etc., are found by

differentiating the above equation totally with respect to z^ and putting

d^
— '

IV 1
=" " ._f = ,.

•
^^'k in the derived equations. Only the terms

dz^ .

^

up to the power (z
—

a)*~^ in the equation are required in establishing

the recurring formula for the k^^ derived function. P'or the lowest

values of Jc we find the following equations:

*) Plilcker (1801—68): Theorie der algebraischen €urven, p. 156. Bonn 1839.

Liouville (1809—82): M^moire sur quelques propositions gdnerales de guom^trie
et sur la theorie de relimination dans lea equations algebriques. J. de math., T. Vl.
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Ya*:-^ + *^ = «'

-FT ^— w^ 4- — -^ W^ + 0.,
=

,

E ^«^,
^4 i-

13 a^,
^3 i- 2 dw,A2J + ¥ a^i;,

^'^ i- ^4 — '^

H M ^r. + K ^' ^^ +
2ir ae.,1

^^2^3 +
y, ^ ^3

^ 2 a«(;,2V2>'
^ 2 ^w;,

^2 i" ^5 — '^•

It is evident in this form also, that, for the regular point, in which

1^ = /• — 1£

does not vanish, all the differential coefficients as many as we may
form, continue finite.

Returning to the main result of the investigation of the algebraic

function in a regular point, we formulate it in the theorem:

Knowing a single value tVa at a regular point = a of an algebraic

function w given by f{z"^^ w^) = 0, we can calculate the value of the

function belonging to any other point z within the regular domain

round a
,
on expanding arbitrarily many terms of the series of powers

by a determinate succession of possible arithmetical operations.

We may frame the theorem still more completely: Knowing every

critical and singular point of an algebraic function given by f{0"% w'^)=0,
and furthermore one of its values at a regular point, we can by a

determinate succession of finite arithmetical operations resolve the n-valued

function by means of branching sections into n branches, each of which

is discontinuous only along the branching sections and becomes infinite

only in non-essential singular points; moreover^ for any arbitrary point

every branch can have its value calculated by means of arbitrarily many
terms of an infinite series of ascending positive integer powers.

We arrive at this theorem by means of the method of continuous

extension of a function out beyond its circle of convergence repeatedly

described in the foregoing examples. Let the value of the function

given for a be denoted as belonging to the first leaf. From the point

a let us draw curves, each until it is arbitrarily near to one critical

point, but keeping at a finite distance from every other, and let us

surround that critical point by an arbitrarily small circle. Such a

curve along with the small circle is called a loop. By expansion we
can establish whether the circuit of the entire loop introduces a change
of the value of the function belonging to a; if it do not, the point
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is not a branching point for this first leaf; if it do, let us establish by

repeated expansion, employing the newly found value for the point

z = a, how many leaves are connected with the first in the point.

Let these be called 1,2,.. .j), then for each of these leaves the

significance of any other critical point can be determined by means

of the loops. In this way too we shall become acquainted in another

branching point with the value for e = a belonging to a new leaf

that did not occur among the values 1, 2, ... p.

If the case were to occur, that the circuit of all the loops does

not lead beyond the leaves 1 to |), or, in general, that all the n values

which belong io z = a are not obtained in this process, this signifies,

as we shall subsequently prove (§ 199), that the algebraic function

/(;?"', «;*) may be resolved into factors which are rational in e and w.

In the case of an irreducible function this does not occur, the theorem

holds good for it as above enunciated.

189. Having established that analytic functions can be expressed

Ijy series of ascending positive integer powers, it is still necessary that

we should discuss their singular points, in order that we may ascertain

how analytic functions admit of expansion in the neighbourhood of

Jiny singular point according to its kind.

We must first of all premise that in a domain wherein a function

is generally a unique analytic function, it can have no other singularities

than the non-essential and essential points in which it becomes infinite.

For, if an analytic function f(z) have finite discontinuities in separate

l)oints a of a domain, the product {z
—

cc)f{z) is an analytic function

in the neighbourhood of and including the point a at which it is

zero, and its first derived function is equal to Lim
/'(,?)

for z = a.

Accordingly there is an expansion of the form:

(z
—

cc)f{z)
= Lim f{z)

•

{z
^

a) + a.^{z
— ay -\- a.^(z

—
ccy-\ etc..

Therefore the value of the function f(z) at the point a must be

\Amf{z)y thus this point is regular.
;=«

It is likewise impossible (see § 181. 3.c) that an analytic function

while itself finite and continuous in a domain should become singular
in separate points or along an entire curve in consequence of any

violation of the equation w + i~ = between its partial derivates.

The integral I f\z)dz even up to any point a of the irregular curve

would then be an analytic function; for the integral is continuous

and its derived function is Lim f{z) for z = a. But an analytic

lunction, as was proved, has arbitrarily many successive derivates all of

which are continuous functions. Therefore f{z) must have a determinate
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derived function even at the point a, and accordingly at that point

the equation
~

-j- ^ —/- == must be satisfied.

In the unique analytic function, therefore, only essential and

non-essential singular points have to be considered, and in these all

the successive derived functions will be seen also to become infinite.

Let a circle described round the centre a with the radius H be

given. Suppose we know that a function f{z) is regular in the point
a and is analytic within the entire domain inclusive of the boundaries,

except at the points c, , Co ,
. . . c„ within this circle which are to be

singular points, essential or non-essential. When a concentric circle

is described round a that excludes all the points c, a series can

be assigned within this smaller circle, ascending by positive integer

powers of z — «, whose coefficients are the

derived functions at the point a. We are

now, however, about to show that there also

exists an expansion valid for the entire

domain of radius jR, no longer containing

only positive integer powers of z with the

derived functions at the point a as their

coefficients, but enabling us to calculate

the function for every point z within the

circle JR, so that therefore there is no need

of extensions of the series of powers, as in

the case of the previous expansion.

Let us enclose the points Cj , C2 ,
. . . c„ in circles of arbitrarily small

radius (>; then within the one-leaved but multiply connected surface,

f{z) is an analytic function; and the sum of the integrals taken

round the circle a and round the circles c^ , C2, . . . c„, keeping the surface

on the left, is zero. We can express this by the equation:

jf{z)dz =-jf{z)dz +ff{z)dz +
. . .

+jf{z)dz,

Fig. 19.

(«) (c<) (c.)

integrating now round each circle c so as to keep its area on the left.

When t signifies an arbitrary point within the multiply connected

surface,
m

is in this surface an analytic function alike with /(^),z — t

only that it has the point z

Hence we have also:

^ as a non-essential singular point.

JB ^^=JB ^^^ +./B ^^ +./B ''- • • +ja '^^.

or
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(t) (a) (c.) (c,) (c„)

Now on the left side of this equation we have the integral:

t^dz=^2i7if{t).P
i'-'

But the integrals on its right can be expressed by series. Since for

the first of them e signifies a point upon the circle 12, we have

mod \z
—

a] > mod [t
—

a] ;
therefore:

1 1

z— t z —a
1 Z—U

t - « '^^g - g \
"» z— tt

"T"
(;g
-

a)«
'

(g— tt)»
"T"

'

/

Z—a

is an absolutely convergent series. Accordingly:

(«) («) («) (a)

l)ut the coefficients of this series are no longer the derived functions

at the point a as before, although they have the same form; for

the circle of radius li^ round which these integrals are formed, can no

longer be arbitrarily contracted about the point a.

For each integral round a point c: mod [t
—

c] > mod [z
—

c],

Ijecause Ms a point outside its circle q\ consequently:

1 — I 1 \ {. . z— c . {z
- cY . (z—cY

t t—c z
^ i_fi

I

^— C
.I

(g-cr
I

(e—cy
,

t — c\ "•"* — c"" (t
— C)*'^ {t— (<5»

"•

t— c

is an absolutely convergent series; and we have: — / _{(^^=^

Denoting briefly the coefficients of series VI. divided by 2i7C by

/1„, A^, A.2f . . .; likewise those of series VII., referring to the point

'At by C/*\ Cj^*^ C;/*^ . . ., and in this the definite integrals can be

taken along a circle of arbitrarily small radius; the result is: For all

points t within the circle R, in which c, , Cj, . . . c„ are singular

points for the unique analytic function f{z), we have the expansion:

Vlll. at) = A, + A,(t-a) + A,{t
- ay + A,(t

-
«)3 + . . .

_|- _?L- J 9*.
I

Ql
I

9*.
|_

. . .^ t-Ci^ {t- c,)«
^ {t- c,)3

^
it
—

CiY

~

in series proceeding both by positive and negative integer powers of U

liARXACK, Calcolaa. 23
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From this expansion moreover we realise how the two kinds of

singular points differ in the nature of their expansions in powers.
The ];on-essential was characterised by the possibility of assigning

some positive integer m, for which f\z) (z
—

c)"* at the point c is equal

to a finite quantity. Hence follows : When c is a non-essential point,

of infinitude m^ all the coefficients higher than Cm vanish for it. In'

fact, because the radius q can be chosen so small that f(z) (z
—

c)"*

shall differ inappreciably from a finite number G, the integral

//•(^)O

will differ in value inappreciably from

'

f{z-cydz,G

and the value of this integral is zero. Conversely, if for a point c

all the higher coefficients Cm+iy C'w+2, • • • vanish, it must evidently

be a non-essential singular point, because then (^
—

^)"^f(^) remains

finite for z = c.

Every other point in which f(z) becomes infinite is an essential

singular point, and we now see that the essential singular point in any

analytic function behaves as it did in the exponential series where

we first took cognisance of it: there exists for its neighbourhood an

infinite series proceeding by negative powers.

The value of the reciprocal function y-- will be zero at every

non-essential singular point of f(z). For, when {z
—

cy'f(z)
= G

for z = c, we have -yrr^
= -—yr-^ = for z = c. But an essential

f{z) G

singular point remains such also for the reciprocal function. For if

in the region of an essential singular point the reciprocal function

-yrr-
were regular, the same should be the case also with f(z)y and if

the singularity of
jr-^

were only non-essential, f(z) should be regular.

Any essential singular point of f{z) is also essentially singular for the

function ,. , .^ , C denoting any arbitrary constant; we conclude

hence: Round the essential singular point a circle of radius q can be

assigned, that certainly includes points at which f(z\ -j^ , f{\_n
each becomes greater in amount than any arbitrarily prescribed number

K however great; i. e. points at which the amount of f{z) exceeds K, as

well as points at which it differs from zero, or from any number C, by less

than the arbitrarily small quantity -^
• In other words : The value of
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a function at any essential singular point is completely indeterminate

between infinite limits, in the vicinity of the point it converges to

every arbitrary value. In the case of the exponential function this

property was already pointed out. § 82, 4.

The integral of f{z) taken round the arbitrarily close boundary
of an essential or non-essential singular point c is zero, only when,
in the expansion relative to the point c, the coefficient of the term

is zero. The integral taken up to the singular point always

becomes infinite; its infinitude is m — 1 for a non-essential point of

t{z) of the order w, and for a non-essential point of the order 1

the integral becomes logarithmically infinite.

190. We have now to examine how the domain oif{z) admits of

extension out beyond the domain B-. Let R' ^ B be the radius of a

circle round the centre a, in it let f{z) be generally an analytic

function, only with the additional singular points Cn+i, . . .
c„_f-jt;

then in Expansion VIII. the coefficients Aq, A^, A.^ . . . change,

while all the coefficients C remain as they were, and new terms arise

by the points ^n+i, . . .
Cn_|-jfc.

Assuming first that the function f{z) is not singular at infinity,

but converges for £f = cx) to a determinate finite value G, and that it

lias in all cases a finite number m of singular points in the entire

plane; then the integrals in Series VI. that determine the coefficients

A all converge to zero, for B can be chosen so great that f{z) shall

differ inappreciably from the finite number (r, accordingly we have also:

urbitrarily small. Only, the value of the first term:

is equal to O,

Therefore a unique analytic function which has m singular points

in the entire plane and behaves regularly at infinity is of the form:

A function which has only finite non-essential singular points and

is regular at infinityy differs from a proper fractional rational function

only by an additive constant. For then the terms that refer to the

various points c all come to an end, and when we reduce them to

a common denominator, the order of the numerator is at least one

less than that of the denominator.
23*
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When the function f{z) has a non-essential singular point at

infinity, and when moreover the number of its singular points in the entire

plane is finite, let us convert it by the substitution z — ^ = -/
,

or

by ;2f
= — if the origin jgf

= be not singular, into a function of z

that behaves regularly at infinity. For this function then, since the

new origin is now a non-essential singular point, the expansion:

f(L\ — ^9L^ J_ ^^ 4_ ^^ J_ j_ _?L!i_

is valid in the entire plane, i. e.:

/I ' n ' n '
(1 (m) p (m)

Hence follows: J. function that has a non-essential singular point

at infinity ,
and a finite nurnber of finite non-essential singular points,

is an improper fractional rational function. When it has no finite

singular point, it is an integer function.

Lastly, when the point infinity is an essential singular point, the

expansion :

t'
"T

't'2
~r ' '

^'«
"T • • *

in the last series does not come to an end; therefore:

also is an infinite series that converges for every finite value of s.

We have thus attained the most general form of the expansion:

When f{s) is an analytic function that has the non-essential or

essential singular points Cj, Cg, . . . c„t in the finite plane, and also an

essential singular point at infinity, the expansion:

f(£\ = -^
I

^
I

^ I L -^^ L ^2

+ .T^V^ + • . . + G + X,^ + K.z^' + K,z^ +

is valid for every finite value of z, and its coefficients C and K
are to be calculated by means of definite integrals, ^ in particular

from the form:
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2inJ]

rouud t

or also

,r^i
dz, round the point z = oo.

When there are no finite singular points , f{z) can be expressed by an

infinite series of ascending positive integer powers:

which converges in the entire plane. In tJds case f(z) is said to be

an integer transcendental function*) To this class the exponential
function belongs. The calculation of the coefficients K can moreover

then be reduced to any curve round the origin, and as no singular

points are included, we have:

^" =
2^/5+ .^'-

=
^ /"(«)•

The following statements supplement the theorems resulting from

the expansion of the analytic function in a series of the Form VIII.:

An analytic function that has no singular pointy and therefore

noivhere becomes infinitej
is a constant.

It cannot be an integer function either rational or transcendental,

because either would have a singular point at infinity, non-essential

in the former case and essential in the latter.

Further : An analytic function without any essential singular point,

that nowhere vanishes^ is a constant.

(The exponential function is zero at no finite point, its vanishing

point coincides with its essential singularity.)

An analytic function must assume every arbitrary value at least

once; otherivise it is a constant.

The value may possibly belong to the essential singular point.

An analytic function is determined when its values are given along
a finite portion of a curve however short.

For then all the successive derivates of the function at a point
can be calculated

;
therefore the series of powers in the neighbourhood

of this point is obtained, and this can be extended out beyond its

convergeiicy (§ 186).

An analytic function is constant when it is constant along a finite

portion of a curve hoivever short.

For then all its derived functions at a point are zero.

*) The classification of transcendental analytic functions into integer and
I actional with the subdivision of these according to the number of their essential

iiigular points was given by Weierstrass in the Memoir cited in the foot-note

1>. 130. (Also p. 148.) In it he also showed how the functions may be developed

analytically when the number of their non-essential singular points is unrestricted.
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191. Inversion of the unique analytic function.

When the analytic function f{s) = w has no singular point in a

finite domain, its inverse function z = tpiiv) is also analytic. For,

since there is a determinate derivate:

dw ,.,. s.

d7
= /(^)'

there exists also a derived function of 2 with respect to w\ namely
dz _ \^

dw
~~

f\z)
'

at each point within the region, and, putting w = u -^ iv
^
we have

This derivate of z with respect to iv can become infinite only at

separate points at which f\z) = 0, and these will be found to be

branching points for the function 2 = il;{w).

We may examine this in detail as follows, in order to assure

dz
ourselves that the derived function ^—

-

depends uniquely on w. To

a determinate value z = a belongs a determinate value w = ^. On

inversion, a finite number of difi'erent values of s can correspond to

the single value w = ^. Assuming then a determinate value for w
and considering one of the values 2 = a belonging to it, we may
enquire how z varies when the value of /3 is changed infinitesimally.

We shall show that this variation is continuous and unique, by
dz

proving that the value of the derivate ^
— also is determinate as long

as w does not pass through a point at which the corresponding value

of z belongs to the equation f\z) = 0. Again it is to be remarked,
that this equation possesses a finite number of solutions in any closed

domain; that to each solution belongs a determinate value of w, but

that inversely to each such value of w can belong different values

of z of which however in general only one will satisfy the equation

f(^)
= o.

The unique and continuous variation of z is perceived as follows.

Let a be a point for which f\a) does not vanish. Then denoting a

neighbouring value of w by p -\~ Aw, let the value a -}- Az
correspond to it, thus when the right side of the equation

P + Atv =f{a + Az)
is arranged by powers of A z, we have :

Aw = Azfia) + ^^-l/»+ ^-rW + • • • etc..

For a given value of Atv within a finite domain for A^, different

values of A^ may possibly satisfy this equation; but since /"(«) is
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not zero, only one of these values of dkZ can become zero when Aw
converges to zero. The others converge to the values that satisfy:

r(«) + ^ /-'(«) + -^ /•"'(«) + • • • = 0,

and the roots of this equation each increased by a are the remaining
values of z that belong to the point w = fi.

This one value of A^ depends continuously on Aw, inasmuch as the

quotient -r— tends to a determinate magnitude, for we have:

' =
AioKW + IT / («) +

-jT
^ («) + •••},

therefore when Az converges to zero, the limiting value is:

dz J_
Jw

~"
/"(a)

*

This holds for every point at which f(a) is not zero. The function

2 can be continued in a determinate unique manner.

It is otherwise when we come to a point a for which f(a) = 0;

we have then:

or more generally

=1^ /'"(«) +W- /•'"+' («) + •,

and to the point w = § belongs a value ^: = a to be counted doubly

(or w-ly) as there are at the neighbouring point /3 + Aw two values

z == a -\- AiZ and z = a -^ A2Z (or m values) which converge to

zero with Atv. Therefore when w arrives at a point for which

/"(z)
= 0, a branching point is reached and the function can no longer

be continued uniquely.

In fact the point w = /3, in whose neighbourhood we have:

is a branching point for the required function z = ip(w) in which w
of its leaves are cyclically connected; or expressed otherwise: The

])oint being enclosed by an arbitrarily small circle let Aw go through
the values corresponding to the points of this circle, then by a single

( ircuit, A^ will change from whichever of the m values it may have

Ijegun with into some other; when Aw repeats the circuit, Az passes

trom this second value into a third; after w — 1 circuits, A;? assumes

an m^ value and only when m circuits are completed does it resume

the original value. For, from the equation:
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^^ =
t/'-W +1^ /•'"+'(«) + 4wf-'-'i-) +'A/

which for a vanishing value of A^ passes over continuously into:

it follows, that with the centre /3
a circle can be described so small

that for each of its points the value of

shall be smaller than a quantity d whose amount is arbitrarily small
;

therefore we have also

When we put Aw = re^^ and write this last equation in the form:

V""/
we see that the values of A^s^ divided by the positive value of the root

r'" are expressed with arbitrarily close approximation by:

i(p 1 i(p-{-2iTt J_ i(p-{-2{m—l )i7t
I_

g»7 . C~m^ g m .

C~'^j
' •

', e "* C "%

1

where C "* means one of its m possible values, the same throughout.
When 9? changes by 27C, i.e. when Atv completes a circuit, each of

these values passes over into another, consequently the different

values of A0 : r"*, which come arbitrarily near this value, must also

interchange cyclically.

Accordingly: Considering a point a within the circle in which

the function f{^) is convergent, if we denote those points for which

/"(^)
= by ttj, «2) • • • ^« (" itself must not be one of these), then

round the centre a a circle can be described with radius r excluding

these n points. Let us interpret the values of «(; in a second plane.

To the centre a corresponds the point /3.
To all points of the

circumference must correspond points of a determinate finite closed curve

in the plane w surrounding the point /?; moreover this curve cannot

intersect itself, for then two different points would be coordinated

to the intersection w. To each point in the circle r corresponds a

determinate point in the domain round /S,
but also inversely to each

point in the domain round p only a single determinate point in the

circle r. There must exist an expansion for of the form:
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^ = « + a, («(;
-

/3) + a,(w - py + a,{iv
-

P)^ + • - - =
t{zvy,

this is convergent in a circle with the centre fl that is altogether

included within the bounded region round /3, hence the radius of

the circle of convergence is to be specified analytically as follows:

As z travels through all the points a + re"f let us determine the

least modulus among the values (w — P) = f{z)
—

f{ci) for these

points; this minimum is the radius of convergence of the series

ascending by powers of tv.

The coefficients of the series are the successive derivates of z with

respect to w formed for the point a
; tliey are obtained by successively

differentiating the equation

aw' ^ '

relatively to Wy or in the form of the definite integrals (/.; > 1):

taken round the point z = a. In the numerator of the second integral

we have been able to write {z
—

«) instead of z, because the integral

of the part multiplied by a vanishes.

Since the successive differentiation of z with respect to w as

independent variable leads to complicated recurring formulas, it is

important that we should know how these coefficients may be otherwise

expressed. Forming the difference w — ^ by means of the equations:

w = f(z)
=

h^ + b,z + h,z'' H and
/j
=

2>, + ^, « + h.,a' H ,

we can arrange it by powers of {z
—

a)^ and are thus led to the

problem of inverting the series of ascending positive integer powers:

iv-P^(z-a)[c,+ c^(z-a)+ c.,(z-ay-i-.--\==(z~a)F{z-a),

192. The function F(z — «) = ^^^^""^^"^
does not vanish at the^ ^ z — a

point z = cCf for there its value is

i= a * **

and it does not vanish anywhere in the convergency, because tv = ^

only for ^f = a. Denoting the value of
t,^; _ x by (p(z

—
a), this is

a function which can be expanded in a series in the neighbourhood
of the point a. Our problem accordingly is reduced to the special

form of one first solved by Lagrange: From the equation:

{w — P)(p{z
—

a) ==' z --
a, or: w'(p{z) = z'

to calculate / as a function of w'. This problem leads to the former

series :

/ c= a^iv + a.^iv"^ + «3«<^'^ + • •

•;
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and the coefficients ak are to be determined from the integral:

Now putting:

whence :

f'(„\ ^ 1 (g
- a)cp'{z—cc)

' ^^
(p{z

-
a) {<p{2

—
cc)y

'

we see that the integral breaks up into the following two parts:

^ 1_ f{(plZ -cc)fd2 1^ l \,p(z-a)f-^cp'(Z'
2inJ {z-a)'' ^i^J (^

- «)*"'

The first part by § 185 is equal to

1 d^-\(piz — a))^

at the point z = a. The second part is equal to

1 d'-'{(cpiz-a)f-'cp'(z- cc]} 1 1 d'-\<p(Z-a)f x- ^_^.
[Lzl dz'-'

~
\Ii^ "/^ dz'-'

' '

SO that:

^^- -E^ (^^1
-

T) ^/--i
-

li J^^ '
tor, -a.

Accordingly we have the above solution stated in Lagrange's form:

From the equation: w'(p(s')
== 0, in which cp signifies a unique

analytic function, ike following expansion is found:

/=«,>(0)+^ \'i^\ + -f \^i^\ +f j^f:>>!{ + . . . etc. .

e'=0 z'=0 z'=
Since :

f{,'\ _ f{ry\ = ^-" JL = (cp{z-a)y
/ W; / V";

^(^g
_

^)
?

f(^2) (p{z
—

a)
— {Z— a)(p'{z

—
a)

»

the manner in which the preceding condition of convergence is brought
into relation with the function g)(s') is as follows:

When r signifies the radius of the greatest circle round 0=0 as

centre within which cp {z)
—

^'(p\^') does not vanish
,

let us find the

smallest value assumed by w = —
pr upon this cirde, this minimum is

the radius of convergence for w .

The domain of this circle in the plane w can by inversion be

uniquely transformed into a domain of the plane / included in the

circle of radius r, wherein also fpiz) is not zero.

Here the point w' = corresponds to the point / == 0.



Third Chapter.

Expansion of ambiguous analytic functions, specially of the algebraic

function.

193. Both the problem: of solving for iv the implicit algebraic

t unction defined by /(;?, w) ==
0, and that just considered: of forming

the inverse function of a series of powers, led to ambiguous functions.

In each case we showed how Taylor's expansion is applicable within

restricted domains in which the function remains regular. The algebraic

function (§ 188) presented two kinds of points in which the function

w ceases to be regular: first, the points that were called non-essential

singular points, in which w becomes infinite, although its product by a

iiitional algebraic function remains finite; second, all the points that

\\ ere described as critical, in which the value of to counts as a multiple

1 oot, for which therefore ^-~' -^ = 0. It may be, that both specialities

concur in the same point. In our last problem the ramifications formed

the irregular points. Generalising this problem to the inversion of any

unique analytic function in an arbitrary domain that also contains

essential and non-essential singular poiuts, such singularities will also

occur in the inverse function.

Accordingly in what follows we shall investigate the properties

of ambiguous analytic functions in general, and specially those of the

algebraic function.

By an n-valued analytic function of z, defined for the entire plane
or for a finite domain, is meant a function which generally for each

value of z has n different values. Each of these values must satisfy

the differential equation J -\- i
^'
=0 —

except in non-essential or

-sential singular points. But furthermore the function must have

branching points. By a branching point or ramification is meant a

point s in which two at least of the corresponding values of the

function become equal, and in which moreover the values of the

function have changed when s has travelled round a curve enclosing
the point (§ 191). The ramification may happen to be also a singular

l^oint. Now as we have already seen that in any domain that is
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regular without exception the function can be expressed by Taylor's

series, and that the expansion is generalised by the method developed
in § 189 in case singular points occur in the domain, it still remains

to be shown that an expansion is possible also in the neighbourhood
of a branching point and how it proceeds. Then the values of the

derived functions in the branching point must be determined. Lastly
it has to be shown how the analytic expression of the function is

modified when the ramification is also an essential or non-essential

singular point.

In transferring these theorems to the ambiguous algebraic function,

the further question specially requires an answer: whether each of its

critical points is a ramification. As it will appear that this is not

always the case, but that the critical point may be merely a multiple

point without branching, the question arises: what are then the

values of the successive derivates; a question that for real values of

the function was already (§ 60) answered in the simplest cases.

194. In our investigation of an ambiguous function f{s) in the

neighbourhood of, a branching point a, at present supposed not to be

also singular, in which m branches of the function are connected so

as to form a cycle, we shall set out from the consideration of a

definite integral, in accordance with the method we have always

employed hitherto. The analytical operations can be geometrically
elucidated by constructing round the point a, instead of the single

plane of z, a Riemann's winding surface of the order m — 1. This

consists of m leaves cyclically connected along an arbitrarily drawn

branching section; superincumbent points in these leaves represent
the same value of z, but to each of these points is always uniquely
coordinated only one of the m values of the function. A closed curve,

ex. gr. a circle, required to surround the point «, must be constructed

so that starting from a point z of the first leaf it is drawn round the

point a in that leaf, but then having reached the branching section

it enters into the second leaf, thence after a complete circuit round

the point a it enters into the third leaf, and so on, lastly into the m^'^ .

From this at the branching section it returns into the first leaf and

completes its circuit there where it began.

Substituting in the function f{/) for s the new variable J connected

with z by the equation:

g»»
:= ^ — a, and therefore, extracting the root:

t,
= (z

—
«)"»,

let us begin with some one of the m values of this root belonging to a

determinate z, then while z describes a circle round the point a, the

value of 5 will change continuously with it; J however will not have

resumed its former value on z completing a circuit, but will have changed
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continuously into another root differing from the original in amplitude

by 27t : m. The first return of g to its initial value occurs when
z has completed the entire m circuits. Interpreting the values of

5 in a plane , t,
first completes the circle round the point J =

when z has completed its circuit on all the m leaves of the winding
surface. To the points z of a. single leaf within a circle of radius r,

j_

correspond only the points J within a circular sector of radius r"* and

Jl

central angle 2:r : m. Having fixed which value of the radical {z
—

a)"*

shall be chosen initially, we have established a definite relation between

the consecutive circular sectors and the various leaves.

The values which the function f(z) assumes in the various leaves

can be coordinated uniquely and continuously to the points of the m
circular sectors, so that we can say, the function

A^) = /'(5"' + «)
= <P«)

is a unique and continuous function for the interior of the circle

round the point f == 0. But it is also an analytic function. For, the

lunction f(z) must have a determinate finite derivate at every point,

except the branching point; therefore we have:

rc^) = 9{t) 2 =
f'(^) i ^'

- «)^
"

';

i. e. the quantity:

9)'(0
=

^nfXz)
•

{z
- af^

is everywhere determinate and finite. In the point z = a itself, f{z)

and therefore also 9? (5) must remain finite and continuous; hence this

cannot be a singular point for the otherwise unique analytic function

9? (J); consequently (§ 180) qp'(g) also has a determinate value. When
this value is finite and different from zero, the equation:

m{z—a)
"*

liows that the derived function f{z) becomes infinite of the order

'
~

in the branching point. When (p\l) vanishes, f{z) may be

Unite or even zero, as shall be more strictly determined hereafter.

To the integral I f{z) dz formed for the complete circular circuit

in all the m leaves, beginning in the first leaf with one of the m
possible values of f(z) and changing this continuously with z^

corresponds thus the integral
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taken along the circle with radius r"* round the point zero; since

According to the fundamental Theorem proved concerning the unique

analytic function, this integral, and in general every, integral taken

along a curve enclosing the point t = and containing no singular

point, has the value zero. It follows similarly, because / <3p(5)^S

integrated along the same path is zero, that the corresponding integral :

mj m — 1
dz

also vanishes. Hence for the ambiguous function the analogous
theorem is:

When the branching point of an ambiguous function^ in ivhich

m leaves are cyclically connected, is surrounded by a closed curve that

necessarily winds m times round the point, if there be no non-essential

or essential singular point within this curve, both the integrals

ffiz)dz
and f- ^^^^^dg*)

along this closed path are zero.

The above Theorem led to the analytical expression of the unique
function in the regular domain (§ 184); its counterpart does the same

for ambiguous functions, only it must also first be generalised for a

domain with a multipartite boundary.
When there are singular points in the circle round J = 0,

supposing first that none of them coincides with this point zero, let us

surround each such point g = c by an arbitrary closed curve, ex.gr. a

circle with radius q. The curve corresponding to this curve (c) on the

winding surface by reason of the equation:

^ = g'" -)- « = (c -|- Qc'^Pf' -}- a,

is likewise closed; it is contained altogether in one leaf, when the

corresponding curve (c) in the circle g lies altogether within one of the

sectors corresponding to each leaf; when this curve (c) enters into

different sectors, the other is also found in different leaves. But

always the theorem holds for each unique analytic function (p (g) and

9^(0 . ^'"~^7 ^liat the sum of all the integrals taken in a positive

*) In general f ~~YZ.lt ds = for Jc^O.

^
{s
—

cc)
"*
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circuit along the boundary curves of a domain in which (p{^) has no

singular points, is zero. Accordingly the generalisation of the above

theorem is as follows:

When we form either integral:

Jmdz or:J-M^
rf;

{Z
-

a)

in a positive circuit for all the curves constituting the multipartite

boundary of a domain^ which consists of m leaves that are cyclically

connected along a branching section starting from the point z = a, if

there be no singular point within such a domain, the sum of all the

integrals in each case is zero.

195. We can now proceed in analogy with the earlier development
as follows. First, let f{z) and therefore also 93(5) have no singular

points within the winding surface round the point a bounded by the

radius r. With t any value within the circle of radius r"» round the

point zero let us form the function y_
-

Enclosing also the point

t by an arbitrarily small circle, we have a domain with bipartite

boundary without any singular point. Then (§ 184):

The integration is to be along the circle with radius r"' enclosing the

point zero.

Hence, denoting ^^ + a by w, so that w is a point on a determinate

leaf of the winding surface within the circle of radius r, it follows that:

•^ (z- a)
""

{z
— a)™— (M

-
a)"*

Since the values ot .: signify the points of the bounding curve, while

(I represents any point within it, we have

mod [u
—

«]'" < mod [z
—

a]'".

Accordingly :

L L L

{2_a)"'-(tt-«)'" («-«)"'

and we have (cf. § 186):
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i
/^/(i)^^ + („

_
«)V,

/vffiMt

{Z
—

a)'"
"^

(2
-

a)

'^'^^^ 2inm ] I ^« ' ^^"' "''
/ m+inm \ I m i \ / I

^ J
(z — a)'"

"^
(2
-

a)

Each integral in this series refers to the closed curve taken

positively in all the leaves round the point a; in the various leaves
m+ l

f{z) and [z
—

a)
"* assume their prescribed values.

The root {u — a)"* and its powers assume their different values

according as the value of f{u) is to be determined in one or other

of the m leaves.

The statement of equation II. in words is:

When the branching point in which m values of the function are

cyclically connected is not also a singular point, each of the m values of the

function in its neighourhood can he expanded in an ascending series of
j_

positive integer powers of (u — «)™. This neighbourhood is coextensive

with a domain wherein there is neither a singular point nor another

branching point of the function.

The significance of the coefficients in II. can be shown otherwise.

Putting u = Kj we have :

' ^ ^ 2i7tm J z — a

If further we differentiate the equation with respect to Uj which

in case of a series of powers is done by differentiating term by term, we

obtain; on multiplying both sides by {u
—

a)
"* and putting u = a\

Lim{f(«)(«-«)'^}=^,r-^
f{z)dz^

{z
- ay^

By the same process is found:

2(w-l) _ m-2

Lim
\f"{u)

(u
-

a)
- +^ fXti) (u

-
«)

-
}

2(2 — w) 1 r f{z)d1 r md
2i7tm I^ iz-a)

m2 2nim / "^+2

Writing series II. briefly in the form:

f{u) = a^ _|_ (^ -^ ay a^ + (w
~

«)"» ^2 + • •

•,

. etc.
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we see that the derived functions f'(ii) , f'iu) ,
. . . become infinite at a in

the respective orders
,

^^
>

• • •
> provided a, is not zero.

But when some of the coefficients following a^ vanish, so that

the series presents the form:

t\u)
=

flo + (w
-

Of)'" a^ + (m
—

a)
"»

a^+i + (w
—

a)
« a^^t+"-,

ft—tn

the expansion of f*{u) begins with the term —
(m
—

a)
"

a^, and

for w = a this expression becomes either infinitely great of the order

^^^
,

or infinitely small of the order ^^-^^—
, according as m is

greater or less than ^. For m = fi the term is finite. The first derivate

of a function in a branching point can therefore also be zero or finite.

But, whether it be infinite or not, a number h can always be assigned such

that every derivate of order equal to or higher than k shall become

infinite in the branching point. For, the k^^ derived function begins
ft
— km

with the term {u
—

a)
"*

. We have accordingly the theorem:

When the lowest power occurring in the expansion of the m-valued

junction is {u — a)^:

The ¥'^ derived function becomes infinite of the order—^^ in the

Iranching point a, when k is chosen > —
;

When k = — is an integer^ the A;*'' derived function is finite at a
;

All derived functions of order A; < —
,

vanish in the branching

point a.

196. According to the process shown in § 189, the expansion
can also be generalised to a domain wherein there are essential or

non-essential singular points of the function f{z) and therefore also

of the function 9) (J); on the hypothesis, that none of these points

is also a ramification.

Let c, ,C2,...c^. be the singular points of /*(^), the corresponding

singular points of 9 (J) being respectively

J- -L i_

Vx
=

(^1
-

«)"' , yi
=

(^2
-

«)"S
• • •

y* = (c*
—

«)",

where in each case it needs only one of the m possible values of

the radical to determine a point y that is an infinity point for the

function 9? (5); thus we have the equation:

TIT ^.A— ^
I C'^^^^^l. C^ML C^ML /V?>^li

(0) (y.) iXj) {Yk)

The integrals are to be taken round the point zero and round the

points y, so as to keep each of them on the left.

Habhack, Calculaa. 24
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From this equation, substituting ^ = (z
—

«)"*, t = (u
—

a)"', we

find for the function f(u) the relation:

Ilia. /•(«)-
'

f ^ ''"' '"

(«)

m— 1 1 ]

(Z- a)
'"

{Z-ay'-iu- ay

-f^~^ r-^-^ r n-

The first integral is to be formed for the external boundary of the

winding surface
;
the others refer severally to each curve that encloses a

(non-branching) singular point c. The first integral can consequently

be expanded by powers of y

'
~ "

J *,
since u signifies a point within

the curve to which the values of z refer. In any of the other integrals,

2 signifies a point on the curve round the point c, and u lies outside

this curve
5
therefore we have

I 1

t-yi .1 (z-ar-ic-a)

and the quotient

1 ffe
—

y 1 , iZ ~ a ' — [C — cc)- . .

'^^^
L'^^J

^ '''
—

"I 1 ^ '

can be expressed by a series beginning with the terms:

1 1,1 1

-1
, , (^-«)"'-(c- «)"^

,
(^-a)^-(c-«)"' ,

L
_^

_ --^ ^

—_
_|-1 1

Accordingly, from equation Ilia, we have the following expansion

IV. /•{«)= T^( P^'~ + {u
-

a)^' r f^'^\

+ («-«)V-^^+---l

_, !_) 1 r mdz
~^ 2inm

|
1 L f ^1^

+ -—^—37^ r^-^'-'b \^'
-

«)"
-

^''
-

")™!
'^^

i(»~a)"'-(c, -«)'"! ,v( (z-a)
"
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1 I .2

H-

2inm
|

1 If »'-»
j

(t*-a)'"-(C4-a)'«j-4)(ir-a)
'"

The singular point c,- is non-essential or essential, according as

tlie expansion relative to it is finite or not. In the former case an

integer n can be assigned such that the product:

f(u) (w - «« — Ci~a "7

is finite for « = r,.

197. When the ramification a in which tn leaves of the function

are cyclically connected is also a singular point, the point f = is

likewise singular in the function (p(^) that results from f{s) by the

substitution 5
=

(?
—

a)"*. Hence the expansion (§ 189) within a

ilomain in which there are no further singular points, is:

(0) (0) (0)

+ 2!-„
\\f'P(t)'it

+
,1 J9ii)i<n+lrj'<p{t)i-'<lt+[

(0) (0) (0)

To this corresponds for f(u) the formula:

{a) (a) V^
— ^)

2

24*
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Here the curve of integration must surround the point a and be

closed by completing the circuit in all the leaves, it can proceed

arbitrarily near the branching point.

This singular point a is non-essential or essential according as

the number of terms in the second part of the expansion is finite or

not. When finite, an integer n can be assigned such that the product

f{u) u — a ^*

continues finite for u = a. In the branching point, /'(m) then becomes

infinite of the order n : m.

The integral / f{z) dz taken in a closed circuit round the branching

point is zero, only when the coefficient of the term ——— is zero;

for this coefficient is the integral itself. When this condition is

fulfilled, the branching point, notwithstanding that it is also singular, is

not a logarithmic branching point for the ambiguous integral function.

The value of the integral up to the branching point is finite,

only when
j (p{X)t,"'-'^dt, also continues finite. This requires (§181)

wm-A = {/(^)(«-«))
f=0 z=a

to vanish. Therefore in the second part of the above expansion every

term, whose denominator contains a power of (u — a) with exponent

equal to or greater than unity, must vanish
;
therefore in the branching

point, which can only be a non-essential singular point, the infinitude of

the function must be less than unity.

198. If the point infinity ^ = oo be a branching point in which

m values of the function are cyclically connected, and if all the singular

points of the function lie within a finite domain, then by the substitution

iS = —
, f{/) becomes f(—)

=
fp (^') ,

and this function has the origin

/ == as its branching point and it has no singular points within

a finite domain round the origin.

Accordingly (§ 195 II.) for an arbitrary point u of this domain:

(0)
^

(0)
^

(Oj
^

The integrals are to be taken in a positive circuit round the origin.

Hence, the following must be the expansion for the original function :

A^)=^{ r-^^\ r-^+\ r^+-j-
_(<»)

^
-(00)

^ ^ —
(=c)

^
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The integrations refer to the point infinity, i. e. they are to be taken

along an arbitrarily remote curve enclosing the point zero, and in the

direction that keep*, the finite surface likewise on the left.

When the point £f = oo is at the same time a singular point, we
obtain by the same substitution from Formula V. § 197 the expansion:

-(00)
«

-(00)
*

-(ao)
«

.(00)
•

-(00

When infinity is a non-essential singular point, an integer n can be

assigned for which the ?alue of

\f{u) : u^

is finite. The function then becomes infinite of the order n : m in

the branching point, and the second part of the above expansion
1 fi

contains only the powers from w"» to m"*.

The value of I f{z)dz integrated round the point infinity is zero

when the coefficient of the term.— vanishes.
u

The same integral taken up to the point infinity is finite when

vanishes for /=0] therefore also {f(fs)z] =0. In the (m— l)-branching

point ;? = 00 therefore the function must vanish in a higher order

than the first, i.e. this cannot be a singular point, and the first

m+l

part of the expansion must begin with the term 1 : w "»
.

199. The investigations of the constitution of ambiguous functions

in the neighl)Ourhood of a branching point are necessary in order

that we may attain a definitive insight into the theory of algebraic

functions.

As a culmination to these investigations we may establish a

theorem by which algebraic functions are completely characterised as a

special class among ambiguous functions.

For, in a similar manner as among unique analytic functions

rational algebraic functions admitted of being defined as those which
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have only non-essential singular "points, either finite or at infinity, we

have the foliowing theorem respecting ambiguous functions:*)

WJien a function w has n values for each value of Zy and in the

entire infinite plane its only irregular points are non-essential singular

points and branching points such as have been above discussed, the

function must be root of an algebraic equation:

/'(^"S tV")
= 0,

of the n^^ degree in w, and of a degree m in z that is equal to the

sum of the orders {infinitudes) of the infinity points.

Let the n values of the function be denoted by w^, tv^, . . . Wn'-,

and further let a^ , cc^, .. . «^<
be the finite singular points that are not

branching points; in each of these points one branch of the function

becomes infinite, let the orders of becoming infinite be denoted respectively

^J hjh->"'hi> ^^ *^^* therefore the products:

w{s —
a,)'"';

IV {z
—

ccj)'-]
. . . '10 (^

—
«/0*"'"

remain finite; where tv in each signifies that branch which becomes

infinite in the point a involved. Moreover points a may be coincident.

Further let p^, ^.^7 - - ^v he the finite branching points that are

also infinity points; in these several points let Zj,, Z;2, ... K leaves of the

function respectively be connected; and let the respective infinitudes

(cf. § 197) be denoted by Zj ,?.,;•.• ^v; the products:

w(z — p^y>; w{z — ^.^f-^-;
. . . w(z — /3^)^

are therefore finite. Lastly let the point z = oo he sl branching point
in which Ic leaves are connected and let its infinitude be

l,
so that

is finite. Let us put

(^"i + h + • •
•

hO + iU + k + ' ' • Q + ^ === ^>^-

Forming now the symmetric function of the values of w:

S = {6 — tv^) [a
—

W.,) ...((?
—

Wn)y

this, as in general every symmetric function of the quantities w, is a

single-valued function of ^; for, even the paths along which certain

values of w interchange cyclically lead always to the same value of

the function S. S becomes infinite of the order i^ in each point a^,

of the order l^ in each point /?y, and lastly of the order I in the point

;s?
= (X). Thus as the single-valued function S has only non-essential

singularities, it must be a rational fractional function of z (§ 190)
that can be set down in the form:

*) Riemann: Theorie der Abel'schen Functionen, Werke (pp. 81—135), p. 101.

Briot (i 1882) et Bouquet (f 1885): Theorie des fonctions elHptiques, 2. ed., p. 216.
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(p[Z)
'

where /* is some function of the order w with respect to Zj and

(p{z)
=

{z
~

«,)'. {z
-

a,)'^ ...{z- «^)V {z
-

/3,y. . . . (2r
-

/3,y»'

Accordingly

S.fp{z) = f{z,<5)
'

< ail integer function of the m^^ degree in z and an integer function

r the w**^ degree in (5,

Hence, inasmuch as this polynomial /*(£?'", (y") of the n*** degree
in (J vanishes whenever a assumes one of the values

«<;, , w^y . . . t<;„ ;

r must satisfy, or, as the enunciation asserts, be root of the algebraic

ijuatiou:

t\z"'j iv")
= 0.

This algebraic expression is irreducible, i. e. it cannot be

resolved into rational factors of a lower degree in w^ provided the n

generally different values of the function w are connected in such a

way that, by suitable choice of paths which enclose the branching

points, any value tVi of the function can be carried over continuously

into any other Wk\ in other words: when the n-leaved surface requisite

lor exhibiting the function tv uniquely is connected not only in separate

points but along entire branching sections.

For, if f{z"'f W) break up into the product ^ (;Ef, w)
•

h{Zj w)y since

each of these factors is of a lower degree than the w*** in Wy neither

of them can vanish for all the n values of Wy they must therefore

both vanish for every value of Zy ex. gr.

g {Zy Wi)
=

,
h {Zj tVk)

= 0.

Now since w is determined by any algebraic equation as a

continuous function of Zy round each point can be assigned a finite

region throughout which g{z, Wijy and likewise h(Zj Wk), each regarded

as a function of z, has the value zero. But hence follows that each of

these functions must be zero in the entire connected «-leaved surface;

lor, the function can be extended out from the finite domain into

each leaf by means of the expansion in series of positive integer

powers. But since by hypothesis iVt can be carried over continuously

into every other value of the function, we have therefore:

g(Zy w;,)
= 0, g{Zy w^) = 0, . . . g{Zy Wn) = 0,

which is only possible when g is of the n^^ degree with respect to

. When the sum of the infinitudes of the function w is my g must

;i]so be of the m*^ degree in Zy i. e. the factor hi^z, Wk) is of the order

with respect to z also. We have therefore:

f\z"\ m;")
= Const. g{z"'y ?<;"). Q. E. D.
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It is evident conversely: If the algebraic equation f{z^w) = be

such that we cannot pass from any one arbitrary initial value w by

arbitrary circuits of the branching points to every other value of the

root, the algebraic form must break up into rational factors} for, each

connected cycle satisfies an irreducible equation of lower degree with

rational coefficients.

200. Supposing now the irreducible equation f{z^-) w^) = given ;

it is required to establish criteria for estimating the properties of

each critical point and also a method of obtaining the expansions
valid in its neighbourliood.

In this investigation we may restrict ourselves to points in which the

values of and w are finite; for, those points in which they are not

finite can be transformed by substituting ^= ^ and w = —
respectively,

into points with finite values.

We shall first show how certain simple cases can be settled

without recourse to special methods. From this will emerge the most

general statement of the problem under anj- conditions whatever, and

its solution is presented in § 202.

Suppose the function w is known to assume the value h for a

determinate value = a, then the algebraic form f{0j tv) can be

expanded by powers of {z
—

a) and (w — h) (§ 94). The coefficients

of this expansion are the partial derived functions of f with respect

to z and w formed for the point == a, w ==
h] we shall briefly

denote them by:
d^f{2, w)

a.b

Then we have:

+ 4" \f'''^'

-
^)' + ^^>'^(^

"
^) ^''

-
^) + ^^'^^ ^''

-
^A

+ • • • + ^ {A/'(^

-
«)'" + \U~.A^-aY-\w -

6) + . . .

+ ,

a sum concluding with terms in which (0
—

a) rises to the m*^ and

{w
—

b) to the n*^ power.

When the system of values z = a, w ==h, is a regular point

for the function w^ /i,!
is not zero; in this case an expansion in a

series of ascending positive integer powers:
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. - 6 = (.
-

a) (i^)
+ ^ (.- «)'(^;) +

- - (.- a)3g) + . . .

a,b a,b a, 6

is valid for the neighbourhood of the point, as was developed in

§ 188.

The derivates —? are obtained from the formula ~= J'-

by successive differentiation. In particular, if /io, /i.o, . • . /i-i,o

all vanish at the point z = a, w = hy the expansion begins with

the term:

a. 6

If for illustration we consider the relation as one between an

ordinate (w) and an abscissa
(jbt),

the tangent to the algebraic curve

at the point z = a^ w = hf is then parallel to abscissae and has a contact

of the order h — 1
;

it meets the curve in h consecutive points.

The point is = a, w = h is a critical point, v/hen for it

/;, 1
c= 0. We proceed to examine what expansions are then valid.

As a first case we have to consider the critical point when /i,o

is not zero. Then e can be expanded by integer powers of w in the

manner just described, and assuming, in order to mention at once

the most general eventuality, that all the partial derived functions

fo,2) /o,3, . . • /o.i-i also vanish for the critical point, we obtain the

expansion:

a,b a,b

which we may write:

(Lim Bn « 0).

Extracting the k^^ root on both sides, and arranging the right

in powers of {w
—

h) by means of the Polynomial Theorem, we find :

I

Denoting (-"" ") by tj we have now to solve the problem discussed

in § 192: to invert the series

t={w— b)\l + a;(w — h) -f- aj^w — by^-\ )
.

By this means we find an expansion of the form:

w -h = i + li,t- + P:,P H ,
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therefore :

IV

JL 1.
^

This critical point is accordingly a branching point of the

order Z; — 1
;

in it /;; of the n leaves required to exhibit the function

w uniquely are cyclically connected. When the point in question is

a real point of an algebraic curve with real coefficients, the real

figure of the curve has here a tangent v^ith contact of the order

Iv — 1 as before, but parallel to ordinates. The curve also crosses the

tangent at the point (of inflexion) when h is an odd number.

201. The critical point has next to be investigated for the case

that /o,i and
/i,o simultaneously vanish. We briefly denote henceforth

z — a simply by Zj and w — h by w^ merely expressing thereby that

the origin of coordinates replaces the point z^=a^ w = h\ further

we shall write the value of —
^

at that point
= Wr. When all the

(X z

partial derived functions of the 2"^, 3^^^, . . . {k — 1)*^ orders vanish

besides the first two, the expanded equation is:

In this case the point considered is called a Z;-elementary point*),
inasmuch as the system of values, 5; = 0, w ==^y along with the

several series of systems of values which satisfy f = in its

neighbourhood ,
form li elements of the function defined by /*

= at

that point. In fact putting ^ =0 in this equation, we obtain an equation
of the n*^ degree for w; assuming for the present that /o,i does not

vanish, Ix, of its roots are zero. For, w^ can be taken out as a

factor. Therefore Iz leaves now meet in the critical point, and the

question arises whether they branch in it.

This requires us to investigate the quotient w : z near the

/v-elementary point, in oAler to establish what values the first derived

function -^ == Lim — ,
as well as the higher derived functions assume

dz z ^ °

in that point. Dividing by 0* let us form the equation:

=
-^ {/m + /../.-M (f) + • • • hh-.. (^y+ • • • + u (t)1

which is of the ^*^ degree in the quotient, but gives only ^ finite values

of it when ^ = as roots of the equation :

*) Nother, Math. Annal., Vol. IX, p. 169. •
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4- (/m + l'^fk-^.^^V, + • • •

Kfk-P.pte," + • • • +/mM'/) = <t>*
= 0.

By our hypothesis the k roots of this equation are determinate

quantities not infinite; we shall further assume, that they are also

all different.

In the A'-elementary point there is then no branching;
tor, all the higher derived functions, belonging respectively to the

various values of ir, remain finite. These are to be deduced from

a system of equations which are obtained, in analogy with those

established in § 188, by successive total differentiation.

Denoting the quotient
—

by tc;, ,
because Lim

(*-)
= w^ =

'

.—
,

we should have in general:

-- = z '- 4- n - -—r ,
therefore when £ = 0:

,

' =
dz"" dz"

^
di^-^ dz''-' '* ds*

Now the equation for W7, arranged by powers of ^ is:

and from this we obtain for determining the successive derivates at the

l)oint ^ = the equations :

l£ dWi
"»

li V dwi
"I 2 a«;,« /

+ 1 M" T + 2 -dtvY (2) + \i bic^ (J ;
+ ^*+^~^-

These equations present successively finite determinate values for

iV2,tv^f...y since the factor -5
— does not vanish. Corresponding to

each different value of tv^ they give uniquely a different value of each

higher derived function, and accordingly k different expansions.

The result is formulated in the theorem:

WJicn in the k-elementarij point all the values of the first derived

function are finite and different j
k elements of the function meet in

this point and each of these is only a simple element
,

i. e. each can he

expressed hy a series of positive inteyer powers.

When the point considered is real
,
and the 'k values of the first

derivate likewise real, k branches of the algebraic curve with distinct

directions of tangents pass through the Z;-eleraentary point, and each

right line through it w = az has in it at least k points common with

the curve; it is then called a multiple point of the order k without

ramification. i*-"^^^ ;-.
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When one root of the equation 0;^.
= becomes infinite, this

means that
/i),^^
= 0, and the degree of O^ reduces to ^ — 1. In order to

obtain that element of the function which belongs to the one infinite

root, let us first expand ;^ as a function of w, as at the end of § 200.

The series begins with the term w^j or with some higher power of w
when further consecutive values of the derivates of z with respect

to %v also vanish. When w*^' is the first term, we obtain by inversion

\_

a Z;'-branched element of the function, having the initial term 0*'.

The geometric statement of this case is: In the multiple point one
of the li branches of the curve has a tangent parallel to ordinates

having ^' consecutive points on it, or having a contact of the order li— 1

with that branch of the curve.

The theorem still holds for each simple root of 0;^ = even

when there are multiple roots besides. But, for a multiple root it does

not hold : for. because -7.
— vanishes for such a root, the values of the

higher derived functions for it are no longer generally finite. Thus

the question finally outstanding is : What is the form of the expansion
for a multiple value of w?,, finite or infinite?

202. Although this question can also be solved by successive

substitutions*); a process having the preference: that it employs only
the Theorem for the possibility of the expansion in a regular point
of an algebraic function in order to deduce from it the existence and

nature of the expansions in the singular point, still, since the general

investigations in this chapter establish the existence of the expansion,
it appears suitable that we should go back to the method given by

Newton, ^vhich has been elaborated by Puiseux. **)

Suppose the equation f(z + a, ^6? + &)
=

0, which defines the

function that is to be investigated in the neighbourhood of its

Zj-elementary point ^==0, w = 0, arranged by powers of z and w.

Since we must henceforth assume that some partial derivates of the

W^ order (specially /"o,^)
also may vanish, let us conceive the terms of

the equation arranged as follows. Take first the term independent of

w in which z occurs in the lowest power; there must be such a term,

for otherwise the factor w could be separated and the equation would

*) See Hamburgej: Ueber die Entwickelung algebraischer Functionen in

Reihen. Zeitschrift f. Math. u. Physik, Vol. XVI. Nother: Ueber die singularen

Werthsysteme einer algebraischen Function. Math. Annal., Vol. IX, pp. 166—182.

**) Newton in the letters to Oldenburg, June 13 and October 24, 1676.

Newton's method was explained and proved by Stirling, who says of it: "quae
est omnium quam quis excogitare potest, generalissima et elegantissima", Lineae

tertii ordinis, 1717; Cramer: Analyse des lignes courbes, 1750; Puiseux, see reference

in foot-note § 91, p. 154. Compare also the exposition given in Briot et Bouquet.
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not be irreducible. Let this term be e^, its coefficient Ai^q. Let us

then take the term independent of in which w occurs in the lowest

power. Let it be Aq^zv^. Between these two let us arrauge all those

terms of the form Aa,pz^wfi whose exponents a and /3 are respectively

lower than I and h, while of terms with the same power z" (or wfi)

we always take only that one in which the exponent of w (or s) is

lowest. The terms thus selected can then be so arranged that the

series of numbers a shall decrease from Z to 0, and that the series

of numbers
/3

shall increase from to h. All the rest of the terms,

in case there be any over, may be denoted by (p{z^w) so that we
shall write down the aggregate in the form:*)

f\z + a,w + l)
=

\^Ai,,z^
+ ^Aa,^z-wi^ + A^t^j + (p(z, w) = 0.

Since the point is by hypothesis A;-elementary, a term of the h^^

dimension is certain to occur among the bracketed terms. For

z = 0y h values of w vanish, what is required therefore is to obtain

expansions of these h roots in series of ascending powers of z.

Such an expansion begins with the term: w = vzf^ . . ., where ^
must be a positive number, integer or fractional. If the series were

known, all the powers of w could be expressed by series valid within

the same circle of convergence, the expansion for w^^ beginning with

the term: v^z^f^. Substituting then these series in the above form, the

expression should vanish identically : i. e. the coefficients of its various

powers of z should be separately zero. But when we substitute

the form of the above expression becomes:

the substitution of further terms of w only introduces terms whose

dimensions exceed those written down. But even among those written

down, in consequence of our selection, the dimensions of the terms in

fpiZyVZ^) are certainly higher than of those bracketed; for, if there

be a term z^w^ in 9, there is a term inside the brackets in which

at least one exponent is less than the corresponding a or
/3.

If the

value of ft were known, those terms within the brackets for which the

exponent is lowest could easily be pointed out; but as \i has first to be

found, the inverse questions arise: What assumption as to terms of equal

•) Example: From the equation: A^ r^zv^ -\- J.. ^i^vP' -j- A^ qZw^ -\- A^fto^

in which z = 0, w = OiB& 6-elementary point, the terms:

have to be singled out; all the rest belong to the aggregate (p{z,u)).
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lowest dimensions within the brackets leads to a rational determination

of |Lt? and must a value of ft found in this way necessarily be the

exponent of the initial term of an expansion?
The first question can be solved graphically: Draw the rectangular

system of coordinates having OX and OF as axes, and, adopting any
unit of length, mark the values of

a and
/3

which occur as exponents
in each of the bracketed terms by a

point with the coordinates x =
ccj

y = p. Thus the first term gives

the point on the axis of abscissae:

x = l, qj
= Oj then from those

that follow we have certain points

with decreasing values of x and

increasing values of «/; lastly the

point upon the axis of ordinates

X = 0, y = li. Fig. 20 records the

points belonging to the example in the last foot-note.

If now two terms ex. gr. Aa^^^^wi^ and
Aa',(i-z"'w^'

are to become

of equal dimensions when zf^ is put for Wy Remembering that only

positive values of
fi are considered, « + /3ft must be = «'-|-/3'ft, i.e.

K CI
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the point x = 1, y = to the point a; = 0, y = h as shall form a

polygon convex to the origin (ji > 0) but concave to all the remaining

points. Hence: turn 'a right line clockwise round the point x =
l,

?/
= 0, from being along the axis of abscissae, until it first meets

one or more of the points marked down. Let a, , /?,
be the most

distant of these from the turning point, then the terms of lowest

dimensions are:

and the corresponding value of ^, found from the equation

; = «, +^/3,: ^ = -^-^
is a rational number; to indicate that it is not necessarily an integer,

let it be denoted by

where p^ and q^ are relatively prime. Substituting the value w == vs^>,

we find an expression irom which the factor z^ can be separated, and

since the term independent of is must vanish of itself, we obtain for the

determination of v the equation of the degree ^j:

This presents /^^
values for v^ finite but not all necessarily distinct;

so that from this first assumption we should obtain the initial terms

of
/3i

series.

Let us now consider a second side of the polygon, rotating the

right line further from left to right round the point ofj , /3, ,
till it meets

one or more of the points marked down. Let the furthest of these

from a,,/3,, be cfj? Pz- ^^^ corresponding terms:

ire then of equal dimensions when we put:

«i + ^/3,
--=

ffj + ft/3.,, or: fi
===

^'

"
*"« — -P*-

'1 «
P7

and for determining the coefficient v in the expansion w = V0% on

substituting this value for w, we find the equation of the degree /Sj
—

/3,
:

Continuing this process, we ultimately obtain from the last {i^^) side

of the polygon, which must pass through the point a; = 0, «/
=

/*,
the

combination :

.1/^-1^"'-^'
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and from this for determining the coefficient v in the expansion

w=v.z'^^ we find the equation of the degree h — Pi~i'.

The result is therefore stated : When the polygon consists of i sides,

i difi^erent initial terms of expansions w = v . z^ are possible; and if

the coordinates of the vertices of the polygon are called:

I, 0; a,, /3i; cc^, ^.^; . . . «._i, ft_i; 0, h,

the numbers of such possible expansions belonging to the values:

are respectively:

on the whole therefore h expansions of the h values of w that vanish

for ^ = have been proved possible.

The quotients p^ : q^^ p^ : q2j . - • Pi
'

qi form a decreasing series

of numbers, as a glance at the figure shows, because the tangents of

the angles between the sides of the polygon and the positive axis of

X are the negative values of these numbers.

It must also be shown that these expansions are all actually

necessary in order to obtain the li expansions of w.

Let us consider the ^^ possible expansions belonging to the first

side of the polygon ,
and so to the ratio p^\ qi\ this number

/3j
is

either equal to q^ or is a multiple of it, suppose ^^
=

Jc^q^. Now since

for each point «, /3 that lies upon this side of the polygon,

we have:
Z — or p.

therefore also each such j3
is equal to q^ or to some multiple of ^i ,

suppose p = Jcq^,

In the equation from which the corresponding value of v is

calculated let us substitute A^^ for v, thus it becomes:

A,,o + 2JAa,^l' + Aa^,^^X^^
= 0.

This presents hi finite values for A, some of them moreover may be

equal. Then to each simple root of such an equation corresponds a

cycle of q^ values; the expansion begins with the term:

1 ^.
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i_

iji which we can retain for the root A-?' some one of its q^ values,

while s'^' assumes all its q^ different values.

Accordingly, when all the roots of the equations for A are simple,

the
/3, , /^j

—
/3, , ... /i

—
pi-i expansions which belong to the i sides of

the polygon resolve respectively into
A*, cycles each having q^ values,

into l\, cycles each having q.^ values, . . ., into Ict cycles each having

7, values; so that in fact all these expansions are necessary in order

to exhibit the h values of w that vanish for 2^=0.

Relatively to each simple root A, the next term in the expansion :

tv

is obtained by attending to the term of the next dimension of e in

substituting this series for w. The coefficient of this term equated
to zero, presehts a linear equation for determining v, .

To investigate the signification of a multiple root of the equation:

^,.o + 2:^«,^A* +yl„.,^.A*.
= 0,

we suppose it to have j roots equal to A; then each of the forms:

1 £i

w = A«»js??',

must be initial term in q^j expansions; but these again will resolve

into certain cycles. In order to perceive that they do, let us substitute

z = z'i', e<; = VA^' + w)z'P'j

ill the original algebraic equation. This is thereby converted into

ail equation between z' and w\ which, developed by powers of these

(juantities, must have j roots w vanishing along with z == 0. In fact

( yl,.o5^+ 2:Aa^Z"W{^ 4- Aa,,fi,Z"^w(^^ \ + { EAa',^Z<''w^-\- A^j,U^+tp{Z,w) \ ,

in which the first brackets contain all the terms of lowest dimensions,

passes over, as regards these terms, into:

Ai^Qz'^'i^ + EA^^aZ^'iKkTi -|- w) z^^^ + i4a„^.^?'«''?'\Avi + w) z^^^^,

or, dividing by the lowest power of z\ the value of whose exponent is

W\ = a^i + ?lh = «i(/i + /3,i),, into:

/I y /I y.
^/,o + 2;vi„,^VAv. -J- w) + Aa,,^yi'^'-\-w) ,

and of these, the term independent of w vanishes, because A is a root

of the equation:

t /^.

Hatcnack. Calculus. 25
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But because j roots are to be equal to A in this equation, its first

j — 1 derivates with respect to A also vanish.

Now let the equation between / and tv' be investigated, as was
the original equation between z and tv

, by constructing the polygon

corresponding to the dimensions of its terms. Each side of the polygon
leads to a selection of terms of equal lowest dimensions, and each

simple root corresponding to this selection leads to the initial term

of an expansion, for which the denominator q specifies the number
in the cycle. Now since

z = ^^', and tv=\l'i^-\- iv) z'^^,

the first two terms of the expansion of to in powers of z are:

i_ ^ 1 y '+</>!

w = A^'^5' + X'i z 5'9i
.

\_ \^

Here we can retain for each root A'/' and X'i some one of its possible

values, while the roots of z assume all possible q^c[ values. Thus a

cycle of g, g''
branches arises from this simple root; the next term in

the expansion is to be found by substituting:

w= Vi^z'i' + Xi z 9'^' + ^-^ *'^
_|-

. . . etc..

But when there is a multiple root in the equation between %v and /,

let us similarly introduce the variables z" and w"\ then as result of

substituting

- ^ ( ^ \ ( - .\ ,> <

^(;= A'?';^% Z= z''i\ W =U'^'+ IV'JZP', Z = Z *?

,
W =\A 'i-]-lV Jz P

,

provided this new substitution leads to a cycle between tv" and /',

we shall have:

1 p1

^^,"^X''i"z"'i\

therefore:

J_ y 1 p"+q"p'

w' = A'5' z'i + X"fz' 9"'''
,

^ Pi J_ p'+q'Pi 1 p''-\-q"p '-{-Pi'i'<i"

iV == X'i'Zl^ + X'J'Z «'«' + l"^"z ^•«'«" + • •

>

a cycle of qiqq" values arises.

Now several such substitutions may be necessary, but ultimately

a finite number of them must lead to a simple root.

This we see as follows: Since X is a multiple root of the equation

of degree A;,, j will be less than or at most equal to k^ . Therefore there

is generally a decrease of multiplicity, and as the process is continued

we generally reach a simple point that presents a root also only
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imple. The process would only fail to lead to the desired end, it

alter a certain stage the multiplicitv (-1 ilie root remained alwavs

•qual to the degree of the equation in question. But this supposition
( ontradicts the hypothesis that the form considered is irreducible.

For, assuming, as we may without any restriction of generality,

that from the outset the equation:

has
A:,

roots equal, and is therefore:

^«.....(A- A,)*. =0,
the form of the original equation must be

By substituting: s = z''i\ tv = \Xq'J^ -{- w')z'P'j and dividing by the

factor s'liiuAPif^i) = /'/.', we obtain the equation between z' and tv:

where ^(/, tv) denotes the terms proceeding from 9; the lowest power
of tv' is M^'*'. By hypothesis this equation is to give only a single

root, to be counted
Jc^ times, for the expansion of tv'. But this requires

that the corresponding polygon should reduce to a single right line

and that therefore the corresponding equation should be:

A(tv'
—

k'z'f'y* + <Pi(^', «<^')
= ^•

Now supposing the further substitutions carried out, and that we
found every time an equation of degree ki between tv and z, there

iiould exist an expansion:

i_ El Prtf"' Pi+p'+p"

W = A9'^»' + ^'^ ''' + ^"^ '• + • •

•,

that must be valid however great the exponents of z become. By this

expansion h^ roots of the equation would be expressed. The algebraic

form would therefore have
Z;, equal roots within a certain domain of

and consequently in general. Since, starting from a value tVy we
(an establish an irreducible form (§ 199) whose root is tv^ it follows

lliat the original algebraic form on our hypothesis must have contained

a- a ta( tor the h^^ power of an irreducible factor or must have been

(

(jual to the
h^}^ power of such a form.

203. The example in the foot-note to § 202, p. 381:

A>^^()^^ -\- A-i^xz"^ IV+ Ar^^iZ^tv"^ -\- Aa^aZ^w^ +Ax^n^tv-' -{-Ao,itv'^ -{- q){Zytv) =0,
wiiere

(p{z, tv)
= Ai^czw^' + A'!^2s'w' -\- Af,,jiz^tv* + A,8w;^ + A^fiZ^^y

ill which seven values of tv vanish for £? = 0, leads, as the polygon

tig. 20 shows, to the three aggregates of terms of equal dimensions:
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I. Aq^oZ^ -|- A^^l2''^v + Ary^2 2'*tv'^ = 0,

II. A5,2e^w'^ + Ai^r^ZW^ = 0,

III. Ai,50W'^ + Ao,7W'^
= 0.

To I. belongs the value:

9 — 7 9 — 5 o

accordingly putting w = vz^j we obtain the quadratic for v.

A^^o + A^^lV + ^5,2 v^
= 0.

When this has unequal roots, v^ and v^j there are two expansions of

w by integer powers of z beginning respectively with the terms

tv = v^z^ and w = v^z^.

These are not branched here. The next term in each is found by

substituting:

^ = ^i^^(l + |'^)
and

w==v^z'^{\-\-''f^z),

and equating to zero the sum of the terms found to be of the tenth

dimension; thus:

Vo=—

When the roots of the quadratic are equal, 1)^=^2 = Vj and thus:

Aix — 4^9,0^5,2 = P and 2^5,2^ + J.7,1
==

0,

let us put w ==
{v -{- w')z'^\ in the equation between z and iv resulting

from division by z*^^ two values of w vanish along with z = ^. This

equation is:

^9,0 + ^7,1 {v + %v') + ^5,2 (^ •\-wy-\- ^4,4 z^ (v+wy+ ^,,5 ;s^ (t;+wy

or, as it may be arranged in consequence of the condition for v\

AiofiZ + A5,2w"^ + ...== 0.

Hence results:

w-±y~~^-''),2

and consequently we obtain:

w = vz^ +/z^..,* +

that is to say, a series that proceeds by powers of z^
;
two values of

the function ramify cyclically.

But when ^.10,0= 0, the initial terms are: Ai^r^z'^v^ + -^5,2^'^
=

0,

accordingly:
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and we obtain the following two separate expansions that coincide

only in the initial term:

tv = vz''+l/ —j^—z^-\ ,
w =

vz''-J/ ^^ 0^ etc..

To II. belongs the value:

5—1 4

and for tv = vz^ we find the equation:

Ar,,2v' + .J,.5t;^
= or: ^5.2 + ^i,^^ = 0, P = v.

There is accordingly a cycle of three branches; the expansion

pertaining to it is:

,t. = z/^-y«*+ r«*+ . . . etc..

1,5

To III. belongs the value:

ft
=

^—-^
= -- and ^1.5 + ^0.7 A = 0;

therefore :

to = y-^^ • z^+ vz^+ ' • • etc.

We have thus indicated the explicit forms of the seven values of to

which vanish along with z = in the 6-elementary point.

IT



COKRECTIOKS.

p. 8, 1. 20-19 up, read "the limiting value of: 0.3; 0.33; etc.".

„ 13 „ 11 up, read "jB-^ = .4 = ^^' ".

„ 33 ,,
2 down, read "a; > a",

„ 39 „ 4-5 down, read "(1) we write QAx lor A a; and then".

„ 60 ,, 7 up, read "of any portion of a body cut off b}^ a plane:"

„ 80 ,, 14-3 up, read "ultimately smaller than that preceding it;"

„ 89 „ 5 up, read ''f{Xi
—

s, 2/i
—

£')"•

,, 180 ,, 5 7 down, read "/ has finite discontinuities at any finite number of

points Ci, Ca, . . .
c,,^."

,,
239 ,, 9 up, read "value may or may not".

„ 243 ,, 8 up, read "throughout continuous;"

„ 261 „ 6-5 up, read "(In other words,"

,, 309 ,, 7 down, read "values".
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Abel, 72 n*. 74 n*, 140, 253.

abs
I I

= absolute amount, 10, = mod.
absolute amount, 9, 113.

,, convergence, 73, 121, 138,290.
addition, 1, 10.

„ [fundamental proposition of

,, of infinite aeries, 73, 121.

[theorem of
additive constant, 48, 172, c. 256-7, 317.

algebraic curve, 103, 207, 377.

,, equation, 153, 374-5.

., expression, 155, 375.

function, 20, 102, 154,350, 3G;;.

,, integrals, 108, 207.

,, operations, 153.

sum, 10, 32, 73, c. 67.

algebraically, 30, 75.

infinite, 257, 312.

,, [vanish
along a curve or path, [analytic

continuous

given
integral

[singular
altered values of integrable function,

244, 257, 314.

alternate signs in series, 80, 122, 220, 263.
alternation of increase and decrease,

40, 170, 184. 322.

ambiguity, 18, 113, 144, s. many-valued,
ambiguous function, 19, 363.

integral, 329, 372.

amount, [absolute
amplitude, 113.

analytic along a curve, 158.

, , functions, 1 4 1 , 1 45-8 n
, 32 1

, 327.

„ [generally
property, 141, 143, 329 31.

without exception, 141 n, 327,
329, 311-3.

analytical expression of Unique func-

tion, 343. 866.

„ investigation, 23, 127, 304,
364.

angles in curves, 43, 144, .323.

angular quantity or magnitude, 20.

applicability of Taylor's theorem, 85,
341, 363.

applications of arithmetic, 111.

approximate discontinuously, 17.

,, infinitely, 16.

approximation, [arbitrarily close

„ [rational

„ to a figure, 24, 86.

,) ,, „ number, 7, 153.

„ „ „ position, 42.

,, „ „ value, 52, 67.

arbitrarily close approximation, 9, 2o,

{=^quam proxime, II, 248).

„ great or large, 12, 17,29,41.
„ manv, 9, 181, 239.

„ small or little, 8, 9, 34, 149.

arc taken positively, 313, c. circuit,

area, 21, 128, 179, 297, 303, 313.

Argand, 112n*, 113, 153u*.

argument, 19, 125, 129.

„ Cauchy's usage of term, 1 13.

arithmetical operations, 1, 8, 67, 111,

128, 14.3, 321, 350.

Aronhold, 207*, 208.

arrangement of factors, 67, 290.

., ,, summands, 123, U6.
ascending positive integer powers, 115.

,, powers, 84, 381.

,, series, 368.

assignable, 10, 22, 30, 258.

assigned, 8, 9, 27, 97.

assumes a value, 30, 174, 239, 264, 297.

asymptotes, 107, 206.

at infinity, 127, 130, 148n, 206-8, 355-7,
374.

Atkinson, 39 n.

ausserwesentlich, 1 4 8 u.

axes of conies, 206, 217. ^
„ „ coordinates, 24, 87, 113, 294, 382.

Baltzer, 2n*.

bank, 134, 162, 334.

base of exponential or power, 6, 53, 118.

„ ,, logarithm, 13, 120.

,, „ volume, 60, 296.

behaves regularly. 130, 355-6.

below any assignable limit, 27, 89, 170,

2«9.

Bernoulli, James, 180 u.

Bernoulli, John, 19 n*, 180 ii*, 186n*.

beyond all limits, 9, 96, 107, 127, 136.

„ any finite amount, 39, 124, 126.

binomial coefficients, 50, 62, 99.

„ integral, 197-9, 236, 284.

„ series, 79, 139n, 347.

„ theorem, 60, 377.
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Bombelli, llln.

Bonnet, '25411*.

boundary between values, 60.

„ curve, 125, 297, 803,311,328.

„ of a curve, 331.

„ „ domain or region, 87, 150,

294, 318 n, 342, 3G6-7.

„ ,, point, 157, 329, 352.
|

bounding circle or curve, 138, 367.
j

branch (limb) of curve, 104,309,379, 380. !

„ of function, 131-5, 154-63,348,364.
branched element (expansion), 380, 388.

branches connected, 364.

[cycle of

branching, 364, 379, s. ramification.

„ point, 132, 162, 207,351,359.
,, „ at infinity, 163, 372,

„ „ , at a singular point,
329, 372.

,, „ [lo<?arithmic

„ „ [neighbourhood of a

„ „ of integral, 339-40.

„ ,, „ logarithm , 136,

152, 346.

section, 134, 329, 364, 375.

„ ,, of binomial, 347.

„ „ „ logarithm, 334.

breaches of continuity, 247.

break, 16, 43, s. discontinuous.

off, 103.

Briot and Bouquet, 141 n, 154n*, 374u*,
380 n.

calQulation, 10, 67, 288.

„ by infinite series, 99, 341,

350, 352.

,, of a number, 8, 51, 83-4.

„ „ functions, 23, 129, 321.

„ with variables, 17, 43.

calculus, 23, 179 n.

,, [differential

,, [integral
Cantor, G., 1 4 n*, 22 1 n, 244 n*, 246 n*, 296.

carried on continuously, 103, 375.

Cartesian, 24, 35, 86, 112-3, 206, s.

Descartes.

casual, 19.

Cauchy, 44 n*, 46*, 60 n*, 67 n* llln,
113, 121n, 122n*, 124n*, 133,
153n*, 154n*, 258n, 272 n*,
322 n*, 342.

Cauchy's theorem, 152, 342.

central conies, 217.

centre of expansion, 147, 150, 345-8.

change of values in ramification, 162-3,
363, s. interchange.

„ [sudden
changed arrangement or order of terms,

73, 121-3.

changes discontinuously, 43, 128.

character of a discrete mass of points,
246.

„ ,, ,, rational function, 74 n,
160.

character of an analytic function, 333,
341.

,, ,, ,, infinity point, 155, 310.

circle in integration, 323, 333, 352.

„ of convergence, 138, 145,152,337,
346, 8. convergency.

,, surrounding infinity, 163, s. curve,

circles in the process of extension of

functions, 150, 159, 345-7.

circuit of branching point, 136-7, 162-4,
c. 335, 359-60, 364-5, 372.

„ loop, 350.

,, positive or negative, 314-5, c.151.

circular functions, 22-3, 54, 63, 83-5, 228.

ring, 126, 294.

,, sectors, 21, 365.

circumference of circle, 126, 337, 360.

classification of functions, 19, 86, 128,
141 n, 148 n, 210n, 357, 373.

Clebsch, 207*.

closed at infinity, 127.

,, circuit, 372.

„ curve, 134-7, 161, 311, 329, 364-6.

,, domain, 346.

form, 8, 16, 153.

coefficient, [binomial
,, [differential

coincident infinity points, 155, 260, 374.

combination in a complex, 112, 143.

,,
of partitions, 175,243,295.

common logarithms, 83.

complete circuit, 364-5, 372.

„ eUiptic integral, 229.

„ group of complex numbers,
114, 120.

completel.y (quite) indeterminate, 5, 30,

37, 120, 222, 238, 258-9, 262, 273, 355.

complex argument, 125, 282, 337, 345.

„ domain, 129, 321, 341.

„ function, 141, 321, 326.

„ integral, 323, 326.

„ limiting value, 158, 322, 359.

number, 14, 110-21.

,, plane, 321.

points, 206-7.

quantity, 114, 126, 140,189, 194.

,,
roots of equations, 153, 167,

189-93, 212-3.

„ ,, „ numbers, 117, 347.

„ series, 121-5.

,, „ of powers, 138-40,

145-53, 336-51.

,, solutions, 104, 153.

value, 126, 135, 167, 282.

,, variable, 125-6, 333.

„ „ [function of a

complexes, [conjugate
concentration in a point, 127, 245-6.

conception extended, 110-ln, 244.

„ introduced, 4, 7, 15-7, 121 u.

of infinite number of points,
244.

„ integral, 176, 239, 258 n.

„ ,, number, 9, 111.
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concrete numbers or units, 1.

condensation iu a point, 245.

condition lor convergence, Gi), 122.

„ ,, ditierentiation, 179, c. 40.

,, ,, ,, of series,
222.

double integration, 295.

, exact difFerentiiil, 318-20.

,, integration, 240.

,, ,, of series, 226.

., ,, representation by curve,
24, 37, 93. 179.

,, representation by a sur-

face, 93.

.1 continuity, 25-7, •29, 87, 129.

,, theorem of total differen-

tial, 92, C. 303 n.

that a complex integral be

unique, 32G.

,, function be analytic,
141, 321.

,. ,, integrations be inter-

changeable, 300.

conditional convergence, 73-4, 80-2,

123, 138, 264, 337.

cone, 93.

conies in integral, 206.

conjuj,'ate complexes, 116, 153, 167,

189, 192, 212.

connected along branching sections,

164, 347, 375,

area, 128.

,, [branches
cycle, 364, 376.

[cyclically

domain, 126, 129, 311, 321,

341, 345.

functions, 345.
iu points, 351, 374-5, c. .S78.

,, [multiply
[»imply

., surface, 133-5, 375.

,, values of function, 375.

connexion between definite and inde-

finite integrals,

178,181,256,318.
,, ,, elementary func-

tions, 23, 114 n,

119n, 190.

constant, 17. 40, 56, 169-72, 256, 357.

constituents of complex, 118, 126, 136,
14U-2, 153, 321.

contact, 37T-8, 380.

contents of an equation, 59, 98, 344.

continually approach, 43.

,, change sign, 36 n.

continuation of tuuction, 103, 150, 345,

359, 8. extension.

„ partition, 175, 243, 295.

continued arbitrarily, 239.

„ subdivision, 5, 60, 175.

,, uniquely, 103, 359.

,, unlimitedly, 68.

„ unrestrictedly, 219, 289.

continuity, 1, 46, 87, lai, 127, 343 n.

„ at a point, 26, 38, 129, 221,

,, (breaches of

,, [condition of

,, (criterion of

„ of complex, 126.

,, „ convergent infinite series,

220.

,, ,, convergent infinite series

of powers, 74-n, 139.

., ,, implicit function, 101, 156.

,, „ terms of a series, 74 u, 219.

(uniform
continuous along a curve (path), 132,

156, 163, 324.

,, change, 16, 101, 126.

,. function, 26, 30, 38, 102,

129,139,154,169,173,220,
256, 311, 321.

,, [generally (in general)
in a domain, 87, 3<X)-1.

,, „ an interval, 16, 26, 69,

181, 225.

„ neighbourhood of a point,

34-5, 90, 93, 95.

,, inclusive of a value, 35.

„ increase or decrease, 170.

,, on both sides of a point,

25, 31, 70.

„ [restricted ly

,, series, 221 n.

,, „ of numbers, 1, 15-6,

32. 51, 244.

„ „ „ points, 42, 294.

„ „ values, 101, 160,

184, 208.

,. towards one side, 43.

,, transition, 76, 91, 255.

,, [unrestrictedly
,, variables, 17, 43, 59, 126.

,, without exception, 301, 316.

continuously variable, 16, 126.

continuum, 5, 15.

contracted about a point, 353.

converge, 16, 24, 72, 93, 127, 337, 356.

336.absolutely, 138,221,29
„ conditionally, 73, 123, 138.

., continuously, 25, 265,

more rapidly, 59, 84, 230, 292.

„ to infinity, 338.

„ zero, 17. 39, 124-5, 140,

170-1,239-41,295,324-5.
,, unconditionally, 73.

„ unequably, 22 1-2 n, 225, 227.

uniformly, 219-28, 231-2, 249,

336,-338 9.

convergence, 68, 73, 122, 341.

[absolute
circle of
condition for

conditional
criterion of
domain of

equable
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convergence, [interval of

,, of infinite product, 289.

„ „ ,. series, 68, 122,
219.

,, ,, ,, ,, of powers,
72, 138.

,, ,, integrals, 264.

,, [unconditional
„ [uniform

convergency, 151, 220-1, 228, 339.

„ of series of powers, 73-6,

138,146,150,227,336-8,
345-8, 357.^

,, [radius of

convergent, 68.

,, in equal degree or uni

formly, 74 n.

» [not
series, 73, 104, 121,139,219.

coordinated, 127, 133-4, 161-2, 346,
360, 364-5.

coordinates, s. Cartesian, lioniogcucous,
polar,

,, of points on conic, 206.
course of a function, 24-5, 33, 86, 128.

correspond uniquely, 128, 184, 321.

Cramer, 380 n*.

Crelle, 39 n.

criterion of continuity, 28, 89, 221.

,, „ convergence, 76, 219, 290.

,, ,, differentiation of series, 223.

„ „ integrability, 262.

„ ,, uniform convergence, 219.
critical points, 155-65, 347, 350, 363-4,

376-89.

,, „ with ramification, 162,

351, 378, 380.

crossing a branching section, 134 7,

161-7, 329, 334-5.

,, along a branching section, 134.

cubature, 60, c. 296-n.
cubic equation, 104, llOn.

curve, [algebraic
„ defined in two ways, 42, 294.

,, illustrates implicit function, 104,
377-80.

,, [irregular
„ of integration, ,321, 344, 372.

„ ,, singularities, 307, 331, 351.

„ representing function, 24, 37, 86,
93, 179.

,, surrounding point infinity, 332,373.
„ with angles, 43, 323.

curved surfaces, 296 n.

curves intersecting, 144, 303.

cycle, 163-4, 376, 385-6.

„ of branches, 364, 386, 389.

,, „ leaves, 162.

„ ,, values, 163, 384-6.

cyclically connected, [leaves
„ „ values, 368, 372.

„ [interchange
„ [ramify

cylinder, 296.

j

Darboux, 221 n, 225*, 227.

decimals, 8, 52, 84.

Dedekind, 14 n*.

definite double integral, 270, 296, 314.

„ integral, 176, 243, (simple, 296).

,, ,, a continuous function,

177, 252, 256, 301.

„ „ discontinuous function
of a parameter, 268,
276.

,, „ formed from indefinite,

181, 194, 208, 257.

,, ,,
in two variables, 317.

,, ,,
of complex function

along a path, 322.
definition of a number, 1, 9.

,, ,, arithmetical operations,
114-20.

,, „ continuity, 27, 87.

,, ,, curve, 42.

,, ,, equality, 10-1.

„ „ functions, 19, 22, 55, 128,

321, 341.

,, ,, higher derivates, 56-7,

,, ,, infinitely great, 16.

„ ,, integral as a sum, 176,

242, 257, 261,

296, 322-5.

,, „ „ positively along
a curve, 313-4.

,, ,, trigonometric functions,

20, 53, 71.

„ „ zero, 2, 17.

degree of equation, 153, 374-6.

„ ,, expression, function, polyno-
mial, 20, 155, 375.

Ax, increment of x, 33, c. 129, 140.

De Moivre, 116 u*, 118.

dependence, 19, 68 n, 97, 101, 128.

dependent variable, 19, 22, 25, 43.

derivate, 39-n, 55-7, 94, 158, 171, 256,

321, 327, 331, 369.

„ of a term, 147, 226.

,, „ an equation, 156, 386.

,, [partial
derived (derivate), 45, 65-6, 70, 143,

178, 222.

,, equations, 349.

function, 39, 53, 141, 172, 325.

„ [partial

,, ,, [total

„ of a function, 39, 40, 45, 48,

96, 99, (differential quo-
tient) 90, 141.

„ „ „ series, 223, 228.

„ series (or terms), 223 6, 292.

,,
sets of points, 245-7.

Descartes, 15 -n, s. Cartesian.

descending powers, 84.

determinant, 156.

determinate, 8, 16, 35, 108, 148 n.

determinately finite, 31, 305.

infinite, 16, 22, 28-32,

37, 39, 43-5, 108, 148 n, 257-8, 260, 306, 312.
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development, 85, 130, 148, 151, 153.

difference, 2, 73, 11 4, 150.

„ of terms in Bcries, 7, 'J?,

37, 68, 140-7.

,, ,, values of a function, 25,

•28,33,74,87,102,170-1,
175, 240.

differences, 58-9.

,, [equation between
„ [quotients of

differential, 59, 60, 97-8, 158, 176, 303,
320-1.

,, calculus, 23, 33, 42, 46,

00. 65, 179 n, 181.

,, coefficient, 39, 40, 158,

343, 350.

,, coefficients, [mixed
., „ [partial
,, equation, 92, 303.

,, [exact
,, [partial
„ quotient, 31-n, 37, 58, 60,

105, 140, 142,

158,319,323-4.
., ,, indeterminate, 40,

c. 41, 225, 250.

,, [partial

„ regressive differs

from progres-
sive, 43, 224.

„ [toUl
[total

differentiation, 40, 47, 50, 90, 103,

158, 172, 319, 348.

„ impossible, 40,225,277.

,, must be possible,
318 9, c. 179.

„ ' of infinite series, 70,

147, 222, 232, 308.

„ of integral for para-
meter, 204-9, 274-7,
302, 310.

dimensions of domain, 125-0, 129, 290.

„ tei-m, 103, 158, 381.

Dini, 2Un*, 201 u*.

direction of circuit, 137, 162-4, 314.

,, „ curve, 37, (tangent) 42-3.

,, ,, differential quotient, 104,

141, 324.

Dirichlet, 121 ii*, 124n, 193 n*, 262n*,
•J8.ln*. .•i43n.

disconnected, 1l'8.

discontinuities, 29, 40, 247-8, s.breuclits.

,, [finite

discontinuity (point), 180.

„ I
intervals of

„ [points of

discontinuous along a line, 88-9, 133,

296,311,332,334-6,350.
,, at points, 29, 89, 126,

109, 172, 221, 227,240,

307, 351.

„ between finite limits,

(finitel>r) 296.

discontinuous derived series, 224.

„ function, 28-32,239,272,
330.

„ [discretely
„ „ nitegrable 180,

247-9,250,290.

[linearly

„ [infinitely often

„ series of numbers, 16, 51 .

discrete mass of
points, 246.

„ multiplicity of curves, 311,
c. 296.

„ points, 256-7, 259, 323, 325.

,, quantities. 111.

set. 246-7, 256, 298, 301-2, 322.

„ set of points, 244 n-8, 255-6,

266, 296, 323, 329.

„ set or mass of points, 244.

discretely discontinuous function, 246-8.

discriminant, 154n, 156.

diverge, 72-3. 139 n, 337.

divergent integrals, 264.

„ series, 69, 82 -n, 287 n.

dividing points, 174, 241-2.

division, 2, 11, 67 n, 110, 115.

domain, 80-7, 89, 100, 125, 291, 368.

„ [complex
,, [connected
„ [dimensions of

„ of complex numbers, 112.

„ „ convergence, 138 s. con

vergency.
„ „ integration, 251, 297, 304-5.

„ „ „ [infinite

„ „ number, 85.

„ „ real quantities, 129.

„ „ validity of double intt-gral,
303.

[regular
double (s multiple) integral, [definite

,, ]»oiut of curve, 104.

sum, 297, 311.

Drobisch, I12n*.
Du Bois-Reymond (1831-89), 40*,

221 n, 225*, 239 n*, 250 n*, 252 n*, 255 u*,
258 n*, 204*, 310 n*.

e denotes base of natural logarithms,
52-3, 08, 71 n, 114.

eccentric anomaly, 217.

element of a function, 345-0, 378-9.

„ „ „ „ branched, 380.

,, ., an arc, 313.

elementary functions, 47, 07.

„ surface, 297.

elements, [superficial

ellipse, 2O0, 209 n, 217, 299.

elliptic arc, 217.

integrals, 209, 229.

entire plane, 130-1. 135, 151, 294, 308,
346, 355-7, 363, 374.

equable, (in equal degree 74 n), s. uni-

form convergence, 140, 219.

equal, 2-3.
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equality, 10, 89, 43, 249, 270, 314.

equation, 2-4.

„ [algebraic
„ between differences, 60.

,, defining analytic property,
141-3, 321, 327,

331-2,351, 358,303.
,, ,, definite integral, 249.

., ,, gamma function, 282.

,, „ implicit algebraic
function, 19, 154,

347, 363, 374, 380.

,, of curve, 42, 294, 321.

essential difference between:

,, „ — rational and other

functions, 68 n.

,, ,,
— real and complexin-

tegra]s,326,s. 126.

„ or non-essential singular
points, 340, 351-7, 363-73.

„ singular point, 135, 148n, 331 :

„ ,,
—

[indeterminateness at

„ ,,
— in expansion. 136,

354-7, 371-2.

,, ,,— in integration, 338-40.

„ singularity, 357.

essentially singular point, 148n, 351.

Euclid, 3, 7, 15, 20.

Euler, 52 n*, 58*, 71 n, 99 n*, 101 u*,
11 In. 113n*, 114n*, 156, 176, 180n*,

186n*, 193n*, 196n*, 197n*, 199n*,
210n*, 233 n*, 280 n*, 281 n*, 283 n*,
284 n*, 293 n.

Eulerian constant, 235, 287, 293-n.

„ integrals, 281-8, first kind, 284.
even functions, 85.

,, root, 6, 110.

everywhere dense, 246.

finite, 30, 70, 240, 294, 322.

evolution, 6-8, 110.

exact differential, 317-9.

exceptions removed, 3, 14, 17, 110.

expansion, s. Taylor's series,

[centre of
in integration, 199, 235.

of ambiguous analytic func-

tion, c. 104:— near a critical point, 377.—
,, „ ramification, 367.—
„ ,, regular point, 350.—
„ ,, singular point,369.—
„ any multiple point,

380.— when infinity is a rami-

fication, 372.—
,, infinity is singular,

373.—
,, a ramification is

singular, 371.

of inverse function, 360-1.

of unique analytic function,
351-7.

varied so as to include a

point, 150, 345, 347.

explicit form, 86, 164, 332.

function, 19, 25, 49, 61, 87, 128.

explicitly irrational function, 55, 131-6,

141, 154, 161, 197-8, 208.

exponent, 6, 11-3, 17, 110, 115-20, 347.

exponential, ,17, 118-9.

„ function, 20, 23, 50, 135,

346, 355, 357.

,, ,, differentiated, 53,

61, 145.

,, ,,
is periodic, 136.

,, series, 71, 114, 125.

extension of conceptions, s. generali-

sation, 244, 296, 325.

„ „ function, s. continuation,
345, 350, 352, 375.

extracting a root, 6, 11, 81, 116.

extreme values of a function, 31, 312.

factorial, 50.

factors, 2, 67, 289, 387.

„ rational, s. reducible form.

Fagnano, 209 ii*.

fastened together along branching
sections, 161-3, s. connected.

Fermat, 180 u.

fill a length, 244, c. 24.

finite discontinuities, 28, 172, 180, 243,

296, 322, 330, 351.

,, form, 8, 15.

,, limiting value, 35, 239, 242.

number, 2, 5, 20, 27, 67, 248.

„ ,,
of points, 244 n, 245, 259.

,, „ „ sets of points, 248.

,, plane (or points), 206, 356-7, 374.

,, sum, 102, 295 n.

,, terms, 233 n, 238, 371-2.

finiteness of derivates, 69-71, 100, 365.

Fischer, 154 n*.

five-leaved surface, 135.

fixed or constant values, 17.

fluctuations, 34n-5, 175, 240-7, 250, 256,
295 6, 322.

fluxions, 43 n, 69 n.

form of equation defining an algebraic
function, 19, 20, 86, 128, 154.

formulas of reduction of integrals, 199,
s. recurring.

Fourier's integrals, 310 n.

fractions, 4, 6-8, 32, 59, 131, 283-4.

,, [partial
fractional functions, 49, 131, 333.

,, numbers, 5, 110.

function, 19-n.

,, [algebraic
„ [ambiguous
,, [analytic
,, [branch of

,, [continuous
,, [discontinuous
,, [element of a

„ [elementary
„ expressed by a series of

powers, 74 n, 219, 341, 351.
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function, [implicit

[integer
„ ( integrable
„ (integral
„ [odd or even

,, of a complex variable, 128,
139-44 D, 321.

,, „ „ continuous variable, 19.

„ „ two variables, 86, 102.

„ [rational
„ regular, 148 n, 333, 352-5, 363.

,, represented at a point by
a curve or surface, 24, 93.

„ that is to be integrated, 181,

214, 229, 257, 268.

functional, 19, 42.

functionality, 196.

fundamental definite integrals, 182, 195.

,, elliptic integrals, 210-2.

,, formulas of integration,
181, 185.

„ integrals, 188-9, 207.

,, principle for multiple
integrals, 296 n.

„ problem of integral cal-

culus, 169, 172, 239.

„ property of the exponen-
tial, 118.

„ proposition of addition,

1, 112, 123.

„ theorem concerning the

unique analytic func-

tion, 366, c. 328, 342.

„ theorem of algebra, lo.i.

„ theorems concerning the
definite iutegral, 249,

259, s. 296, 323.

gamma functions, 281-93.

Gauss, no, lllu, 112n, 113n*, 116,
144 n*, 153 n*, 288-n*, 293 n*.

general rules of differentiation, 47, 54.

„ „ „ integration, 183.

., theorems concerning series of

powers, 72, 138, 145.

generalisation, 252, 367, s. extension

generalise, 9, llln, 150, 364.

generally (= in general) :

„ analvtic, 256, 324, 351, 355.

„ contmuous, 162, 246, 248,

266, .301-2, 312, 314.

integrable, 298.

geometric definition, 20, 42, 53, 6Sn, 71.

„ interpretation, 20, lli-2D,

179, 296.

„ inversion, 163.

,, meaning, 42, 218.

„ problems, 179n, 209d, 280n,
296 n.

„ representation of a function,

24, 37, 86, 93, 128.

„ statement, 133, 138, 380.

„ transformation, 128. 143.

geometry, 1, 15, 20, 60, 127, 206 7.

given along a curve, 343-5, 357.

goniometric, 20.

graphic solution, 382.

greatest integer in x, G(x), 22, 29, 169.
Green's theorem, 811-n*, 314, 326.

Gregory, 81 n*.

Hamburger, 380 n*.

Hankel, 112n*, 246 u*, 345n*
harmonic series, 82 n.

Harnack, 27 n*.

Heine, I4n*, 28, 219n*.

Hermite, 52 n*, 233 n*
homogeneous coordinates, 207.

Hoppe, 63 n*.

Hoiiel, 112n*.

hyperbola, 184, 206, 209 n, 217, 309.

hypothesis, (data, iii), 38-9 n, 172,

240, 341.

1 denotes imaginary unit, 110.

identical curves in ditlcrent planes, 161.

,, differential quotients, progres-
sive and regressive, 38-41,
141, 169, 178, 255.

,, limiting values, 95, 242-3.

series, 85, 147, 150, 232.

identity, 39 n 59. 169, 232, 333.

image of a complex number, 127.

„ „ „ continuum, 15.

,, „ „ function, 24, 86.

., ,. ,, motion, 15.

imaginaries. 111.

imaginary constants, 189, 202.

,, numbers, 110-2.

[purely
,, quantities, 233.

implicit algebraic function, 47, 101,

153-68, 347-51, 363, 373-89.

„ functions, 19, 86, 101, 128.

importance of series of powers, 341.

impossible, 2, 5, 52, 89, 111.

improper fractional rational function,

inappreciably (= arbitrarily little), 152,

224, 278, 288-9, 354-5.

inclusion within limits, 7, 47, 67, 153.

increment, 33, 97, 129, 140.

indefinite integral, 178, 180-1, 189,
I 208, 256, 318.

I
independent formulas for diflFerentia-

tion, 63, 83.

„ limits of double integra-
tion, 270, 300.

„ of path of integration,
316, 820, 326-7, 339.

„ variable, 19, 26, 49, 58-9,

85-7, 97-9, 361.

indeterminate, 6, 30-1, c. oscillate.

„ along a curve, 311.

„ at a point, 29, 89.

„ between finite limits,

238,244,246,262,296.
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indeterminate between infinite limits,

258-9, 305 6, 355.

,, [completely
„ definite integral, 258,

273, 310.

„ differential quotient, 35,

37, 46, 225, 256, 260.

„ divergent series, 69, 222.

„ form, 60, 105, 107.

„ infinitely often, 244, 296.

„
'

partial derivates, 94.

,, [quotients
indeterminately infinite, 17, 258-9, 261.

indeterminateness at essential point,
135, 354-5.

inferior limit, 9, 240.
infinis ou poles, 148 n.

infinite, 16-8, 126, = infinitely great.
„ [algebraically
;„ along a curve, 307, 312.

„ argument, 30, 44, 107, 207.

„ at a point, 29, 130, 227.

„ [determinately
,, domain of integration, 307-10.

,, in a certain order, 130, 257,

269, 280-1, 306, 312, 365.

,, [indeterminately
,, limits of integration, 181-5,

227, 234, 261-87.

„ [logarithmically
„ multiplicity, 244, c. 311.

„ number of operations, 67, 128,
321.

,, „ ,, points, 244-n,

,, of a function, 148n, s. singular
or infinity point.

,, ,, „ „ to be integrated,
181,207,229,257,
267, 271, 295n.

„ „ derivate, .35, 41,352,358,365.
,, „ integral function, 331,339-40.
„ [order of becoming
„ plane, 133, 294, 337.

„ [positively or negatively
,, process, 27, c. 160.

,, product, 67-8, 79, 278-n, 288-91.

„ quantity, 127. !

„ series, [continuity of
i

,, „ [convergence of I

„ „ in general, 68, 121, 219
|

„ ,, [integration of an i

„ ,, of negative powers, 354.
|

„ ,, ofpowers, 69, 72,99,138
145, 153n.

,, ,, [terms of an

,, sets of points, 244 n-5.

,, system of points, 244-5.

., [the

,, values of a function, 29.

infinitely distant, remote, 126-7.

„ great, 16, 18, 126, s. infinite.

„ many, (as many as may be for-

med, 09, 2 19,344,349-50)
„ „ discontinuities, 248.

infinitely many discrete point8,256-7,259.
„ „ leaves, 135, 346.

,, „ lines, 296,

,, ,, maxima and minima
with finite fiuctiia-

tions, 35, 244, 246,

256, 296.

,, ,, numbers, 244.

„ „ oscillations, 30, 36 n,

262, 322.

„ . „ points, 46, 149-50,244-6,

314, s. set.

„ „ positions, 245.

„ ,, summands, 123.

„ ,, values, 22, 118-20, 151.

„ many-valued, 135-6, 189, 334,
346-7.

„ numerous, 24.

,, often discontinuous, 247, 296.

„ small, 16-8, 21, 25, 126, 144.

,, „ [order of becoming
,, ,, quantities, 59-60, 92,

126, 176, c. vanishes,
infinitesimally, 358.

infinities, 155, 207.

infinitude, 130, 354-5, 374-5.

,, integer, 354-5.

,, having a limit, 306.

„ lower than unity, 258, 308, 372.

infinity, 127, 132, 326.

,, a branching point, 164, 372.

„ „. regular point, 131, 163.

, singular point, essential, 135,

,, non-essential,
130-1.

„ ramifying,
373-4.

„ [line at

„ point, 132-3, 136, 148n, 155-6,

258n-60, 305, 331, 340, 369,
374. s. infinite, infinities.

„ [point
,, [point or points at

inflexion, 378.

integer numbers, 1, 111.

,, rational function, 130, 151, 186.

„ transcendental function, 357.

integrability, 260, 320, 328.

integrable functions, 173, 180-1, 238,

„ 240, 247-54, 256, 259-60,

270-1, 298, 300, 319.

[not
„ rationally, 237.

„ . series, 226.

,, within a domain (doubly),
296, 302, 311, 314-5.

integral along a:

,,
— circuit (closed curve or

path), 314, 328, 343,

353, 365 8, 372.

,,
—

conic, 206.

„
— curve or path, 313, 322,

326, 333.

„ [binomial

'» >j >>

" n
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integral calculus, 23, 172, 239, 244 n.

,, [definite

„ [definition of

„ (double, 8. definite.

„ found by expansion, 199, 218,
235 281 286.

function, 181, 207, 238, 329, 372.

„ [indefinite

,, of analytic function, 327, 355.

„ „ continuous function, 173.

,, ,, discontinuous function, 180,

239, 249, 272.

„ „ function that becomes in-

finite, 181, 257.

[real

„ round a point, 329, 353, 372.

,, » i> circle independent of

its radius, 334, 342.

sign, 176, 267-9, 277, 316-6.

„ [simple
unique, 181, 326, 330.

,, up to a point, 329, 355, 372.

,, with infinite limits, 181, 261.

integrals, [elliptic

„ I multiple
,, of explicitly irrational func-

tions, 197.

„ ,, rational algebraic func-

tions, 186.

„ „ transcendental functions,
233.

„ that tiike a rational form. 201,
c. 209.

„ [singular

integrated, [function that is to be

integration by parts. 183, 229, 251-2.

„ „ substitution, 184, 202.

,, [domain of

„ [interval of

„ [limits of

„ of an infinite series, 225

„ „ integral, 269-77, 300

,, [path of

„ within multiply connected

domain, 329.

integrrations interchangeable, 251, 272,

279, 285, 300, 306.

,, not interchangeable, 272,

306, 309.

interchange, 164, s. change.
„ cyclically, 360, 374.

„ of integration and diffe-

rentiation. y65, 319.

„ „ order of differentia-

tions, 267. 301, 348.

„ „ order of integrations,
272, 276, 283.

interchangeability of factors, 115.

„ „ integrations, 308.

interpretation, [geometric
interval, 7, 15-6, 25 6, 65, 169, 32.'}, 341.

[continuous in an

[linear

„ of convergence, 73.

I interval of integration, 172-3, 250-7, 311.

j

intervals of discontinuity, 244.

„ [partial
I intuition, 2, 60, 86, 112, 125, 180.

intuitive, 15, 111, 127.

inverse functions, 22, 54, 129, 346, 358.

„ operations, 112, 115.

inversion, 128, 163-4, 328, 362.

,, of an arithmetical operation,
2, 13, 68 n, 120.

„ „ differentiation, 172, 176.

„ „ function or series, 358,
363, 377, 380.

involution, 6, U, IKTT
irrational exponent, 12, 20, 118, 135,

c. transcendental functions.

„ function, [explicitly

number, 8, 52, 60,67,246,280.
irreducible, 154, 351, 375-6, 381, 387.

irregular curve, 351.

„ point, 363, 374.
isolated noint, 104, 126, 172, 305, 312,

329, c. discrete.

Jacobi, 90.

kinds of elliptic integrals, 212, 218.

Kliigel. 84 n*.

Konigsberger, 217 n*.

1 denotes natural logarithm, 53.

Lagrange, 89, 67 n* 99, 361-2.

Laplace's integrals, 276.

Laurent, 148n*.
leaf of Kiemann's nleaved surface, 134,

162, 346, 350, 304, 376.

leaves cyclically connected, 359, 364,

366-7, 371. 378.

„ meeting in a critical point, 378.

„ [plane
Legendre, 210 ii*, 212, 216, 217, 2l8-n*,

2.U)*-n*, 281-n*, 284, 292, 293-n.

Leibnitz, 42*, 80 n, 176, 180n, 186n*.

Lim, briefly for limiting value, 10.

limiting circle of convergence, 140, 337,

„ points of infinite set, 245-6.

„ position, 24, 36, 42, 93.

„ value of a function or series,

8-9, 25, 34, 172.

„ „ „ „ sum, 121, 176, 239,

294-6, 322.

limits, 7, 60, 86.

„ of a function, 30, 252.

,, „ an integral, upper and lower,
176.

integration, 311.

.. magnitude, superior and in-

ferior, 9, 84 n, 240-1.
line at infinity, 127, 207-8.

linear, 56, 131, 186, 197, 212, 2l7n
„ figure, 125 6.

„ interval, 295-n.

„ mass or set of points, 245 6, 296.

„ set, 244 n-7, 259, 266, 315.
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linearly discontinuous function, 247; c.

'290, 307-8, ;Ul.

Liouville, 349 n*.

liipschitz, 14 n*.

logarithm, 13, 83, 119, 136, 334.

,, differentiated, 54, 63, 145.

logarithmic branching point, 372, c.

136-7, 346-7.

„ differentiation, 55,

„ integral, 234, 262, 287 n.

„ operation, 151-2, 157.

,, series, 81, 139 n, 346.

logarithmically infinite, 207, 307, 355.

loop, 350-1.

Machin, 84 n.

Mac Laurin, 69 n*, 99, 292.

many-valued function, 19, 22, 128, 131,

145; w-valued, 154,363.
„ point, 163.

many-elementary point, 379, Jc-, 378-9.

Mascheroni, 293 n*.

mass of points, 244-6, 296.

maxima and minima, 35, 244-7, 254-6,
309, c. oscillate.

maximum value, 31, 80.

mean value, 33, 263, 282, 286-7, 319.

„ „ [theorem of the

meaning, 3, 92, 105, 111, 257, 259, 298.

measure of change of function, 33, 40.

measurement of surface, 179n, 296n.

mechanical, 42-3, 60.

Mercator, N., 81 n*.

Meyer, 193 n*.

Minding, 235 n*.

minima, 89, 159, 184, 361-2.

mixed differential coefficients, 94, 320.

Mobius, 128 n*.

mod[]= modulus of complex, 129, =abf!.
modulus of complex, 113-30,106,322,328.

„ „ elliptic integral, 216, 230.

Moigno, 272 n*.

monotropic, 128.

motion, 1, 15, 42-3, 46.

multipartite boundary, 306-7.

multiple, 2, 20, 113.

„ inti^grals. 296 n, 304.

„ point, 105, 364, 379-80.

root, 156-7, 188-93, 348, 363,

380, 385.

multiplication, 2, 67-n, 115.

„ of infinite series, 124,
230.

multiplicity, 244, 311, 386-7.

multiply connected, 318 n, 320, 327-9,
352.

mutually unique relation, 184.

natural logarithms, 53, 55, 83.

,, series of numbers, 1.

nature, 1, 3, 4, lO, 46, s. physical.
negative circuit, 338-9, 342.

„ numbers, 3, 6, 21, 49.

neighbourhood of a branching point,
364-73.

,, „ „ line, 308, c. ,331.

„ „ point, 26, 87, 129,
158, 244, 348.

neighbouring points or values, 31, 93,
106, 248, 358.

net, 86, 294, 297, 303.

Newton, 11, 15, 43*-ii*, 71 n, 80 n*,
180n, 380-n*.

Nicolai, 293 n*.

non-essential infinity point, 155-6.

„ singular point, 130-1, 148 n,

156,331-3,354.
„ ,, „ and brancliing

point, 340, 372.

„ singularity, 130, 168, 342.

norm, 116.

normal elliptic integrals, 212-8, 232.

„ to boundary curve, 313.
not convergent, 69, 80-2, 138, 222, 234,

345, s. divergent.
,, integrable, 227, 247, 258, 262, 277,

309.

notation, 39, 42, 58, 176, 349.

Nother, 378n*, 380n*.

nullitude, 149, 151, 153, 261-2, 309.

nullity, 149, 261.
number as a limiting value, 9, 10, 118,

„ [complex
„ in a closed form, 8, c. 16.

,,
in the abstract, 3, 111.

,, [irrational

„ of a given logarithm, 1 3, 22, 288.

[pure
numbers, [real
numerical conception, 2, 4, 16, 120.

„ equations, 153.

,, values, 8, 22.

numerically greatest, 75, 79, 219.

odd functions, 85.

Oldenburg, .S80n.

one-valued, 19, 25, 29, 87, 128, 139,
s. unique.

operation, [logarithmic
operations, [algebraic

„ [arithmetical
,, of the calculus, 23.

order, 2, 73, 121-3, c. arrangement,
succession.

„ of algebraic expression, form,
function, 151, 154, 375, c.

degree.
,, ,, becoming infinite, 130, 257-8,

269, 369.

,, ,, ,, infinitely small, 34 n,

59, 279, 285, 309.

,, „ branching point, 378,

,, ,, contact, 377-8.

derivates, 85, 309.

differentiations, 95-6.

,, integrations, 270. 300.

„ multiple point, 379.

5» >»
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order of set of points, 245-6.

„ ,, sumiDation, 297.

„ „ vanishing. 149, 261, 309, 373.

„ „ winding surface, 162-3, 364.

origin or point zero, 15. 334, 838.

oscillate, 17, arbitrarily (infinitely) often
in region of a point, 30, 34-7, 69,

135, 257, 259, 2G1, 309, 322. c. indeter-

minate, infinitely many, maxima etc..

overleap, 26-7, 174, 252, 254.

parabola, 206, 208, 308, 338.

parabolic curves, 180n.

parameter, 19, 86, 321.

„ of elliptic integral, 217-8.

., under integral sign, 264,
274, 300; in the limits, 267.

part, 121, 141, 157, s. constituent,

partial derivate, 91, 314, 327, 351, 380.

„ derived function, 90, 98, 141,

315, 317, 376.
differential coefficients, 327, 348.

„ quotient, 93, 143.

differentials, 92, 99.

tractions, 186, 333.

integration. 233, 251.

intervals, 173-4, 184,242,247,263.
partition of linear intervals, 174-5,

241-3. 247, 249, 257.

„ „ superficial elements, 295,
297, 303.

parts of a domain, 149, 294.

path of complex argument, 158-62, 375.
.. integration, 322-9, 332-5, 338-9.

peculiarity, 93, 155, c. irregular, sin-

gular, special,
perforated plane leaf, 133, 136, 144-5,

102, 334.

period of exponential function, 119. 136.

„ ,, trigonometric function, 21-2,
78, 84.

periodic decimals, 8, 52.

,, functions, 21, 136.

periods of algebraic integrals, 168.

physical quantities, 8. 19, 111.
n a definite number, 20, 78.

„ expressed by infinite product, 278.

M ,, „ series, 83-4.

Picard, 148n.

place in a product. 289.

„ „ series, 9-11, 16, 18, 68-9, 72,
84 n, 138, 220, 242.

places, 250, 296, c. positions.
„ of decimals, 84 n, 293- n.

plane, 86, 93-4, 112, 127, 321.

,, leaves, 133-4.

,, set of points, 296.

planes, 60, I28, 143, 161, 360.

Pliicker, 849 n*.

point (or points) at infinity, 206-7.

„ corresponds to system of values,
15, 24, 86, c. 112, 376.

,, infinity, or, at infinity, 127, 130-1,
135. 156, 161-5, 33i-4, 356, 374.

Harsack, CalcultiR.

point [infinity

„ [irregular
„ [singular

zero or origin, 85, 245, 333-4, 367.
! points infinitely numerous, 24, s. set

of points.
., of discontinuity, 28-9.

„ division, 31, 177, s. dividing
points,

polar coordinates, 113, 143, 303.
pole, 148 n.

: polygon, 20, 383-7.

I „ represents a function, 24,
35-6, 46, 8'>. 179-80.

pol3momial, 20, 47, 153.

,, theorem, 377, s. binomial,
positions, 245-6.

positive circuit, 314-5, 328, 343.

,, numbers, 3, 11.

sign, 6.

positively or negatively infinite, 16,
29, 39, 50.

possible, 2-4, 6, 8, 350, 369.

power, 6, 130.

,, differentiated, 49, 65, 61, 144.

power-series= infinite series of ascen-

ding positive integer powers,
prime numbers, 2, 247-8.

principle of Dirichlet, 343 n.

„ „ Kiemann, 296 n.

problem of calculation. 23, 47, 168.

„ „ integral calculus, 172, 239.

„ ., tangents, 42, 180n.
process of continuation, 150, c. 169, 34.^,

351.

,, ,, evolution, 8.

„ „ subdivision (partition) of

intervals, 26-7, 31, 174-5,
243, 295.

product, 2-6. 17, 32, 110, 115.

„ [infinite

„ of infinite series, 118, 124-5.

„ „ integrablefunction8,259-60.
296.

„ simple integrals, 310-1.
,, [rule of the

progressive and regressive, 34, 37-43,
55-7, 92, 103, 108, 141,

172, 823.

„ differential quotient, 37,

39n, 77, 169-71,224,255.
projective geometry, 127, 206.

property ot analytic function, 143, 346,
s. analytic property.

,, essential point, 136, 354-5.

proper tractional rational function, 18C,
355.

Puiseux, 164 II*, 380-n.

pure number, 20.

purely arithmetical, 15, 78, 244.

„ imaginary, 118, 141.

quadrant, 195, 307, 313, 336-6.

quadratic equations, 104, llOn, 388.
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quadrature, 179n, 296 n.

quotients, 2, 17-8, 32-3, 115.

, , [differential
„ indeterminate, 5, 21-2, 28,

105-9.

„ of diflPerences, 33-8, 60, 140,

158, 169, 222-4.

radical, 8, 214, 365, 369, s. root,

radiusofconvergency, 138,146,150,361-2.
ramification, 379.

,, (branchinj^ point) 132,

363-4, 369, 371.

ramify, 388.

range, 6, 125, 194.

rapid convergence, 84.

ratio of two complexes, 158.

„ ,, ,, infinitesimals, 59, 258 n.

rational algebraic functions, 49, 67,

186, 341-2, 373.

,, approximations, 12, 67, c. 118.
j

„ form, 8, 197, 209. i

„ functions, 129-31, 148n, 154,
'

355-7.
j

,, integer function, 74n, c. 357 n. i

„ integral, 196, 206, 233.
'

numbers, 5-15, 246, 383.
|

,, ,, used to express irra-
;

tional,12,118,153. i

rationalisation, 196, 200.

real integral, 182, 322, 326.

,, linear substitution, 212.

,, numbers, 14, 19, 111, 125.

reality. 111.

reciprocal, 22, 118, 128, 354, s. in-

version, substitution.

rectangle, 86-7, 294, 297, 299, 306-8,
310-1, 316-8.

rectangular coordinates, 24, 35-, 86,
112. 128, 294, 382.

rectification of conies, 209 n, 217.

recurring formulas, 63, 85, 231, 349,
361.

,, ,, of integration^ 193,

200-5, 210, 236.

reducible form, 154, 351, 376.

reduction of double integral to simple
along the boundary^ 3 11.

\

„ ,, simple integrals, 183-5,

196, 198-217.

region, 25-7, 87, 90, 99, 149, 182, 297,
308, 328, 358, 361.

regressive, 76, s. progressive.
regular domain, 350, 364, 366.

,, [function
„ points, 130-1, 156, 158, 161,

163, 348-51, 376, 380.

relation, s. connexion between functions.

relatively prime, 2, 6, 116-7, 197.

remainder, 2.

,,
of series, 51, 69, 85, 219-27.

,. ,, Taylor's series, 70, 100.

remarkable points of a function, 33.

representation, 1, 24, 111, 127, 161.

representative point, 156.

resolution, 294, s. partition.

,, into factors, 154, 351, 375.

,, ,, partial fractions, 187.

restrictedly continuous variable, 126.

resultant, 154n, 156.

Riemann, B., 46, 124 n*, 128 n*, 133,
141 n, 161, 239-n*, 248-n*, 258n*-n,
311 n*, 322 n*, 326, 374 u*.

Riemann's surface, 134-5, 163, 364,

„ theorem, 247, 296 n.

right line, 15, 24, 36, 125, 206, s. line.

ring surface, 126, 294, 306, 329, 342.

Rolle, 4:ln.

root of a number, 6-8, 11, 110, 116-7.

„ ,, „ variable, 55, 347, s, radical.

„ „ an algebraic equation, 52 n, 153,

186, s. vanishing point or

value.

„ „ ,, algebraic equation, s. im-

plicit algebraic function.

Rouquet, 108 n*'.

rotation, 21, 42, 113, 313, 383.

rule of the product, 62-3.

rules of differentiation, 47-9, 54-5.

,, ,, integration, 183.

„ „ signs, 4.

Salomon, 280 n*, 28 In*

Schellbach, 217 n*.

Schlomilch, 63 n*, 67 n.

section, s. branching section, perforated.
sector of circle, 21, 365.

segments, 241, 246, 313.

semiconvergence, 138.^
semiconvergent, 73, 1^3, 139-n, 228.

sense, 3, 21, 34, 39, 111-3.

separate, s. discrete, isolated.

„ lines, 296.

points, 24, 172, 227, 244-n,

296, 351, 358, 375.

separation of branches, 154, 350.

,, „ factors, 151.

sequence, 1, 16, 34, 289, c. succession.

series, 1, 7, s infinite series.

„ [binomial
,, [continuous
„ [convergent
,, defining a number, point or

value, 8-13, 15, 27, 31, 118.

„ [derived, = of derivates

„ [divergent
,, [exponential
,, [logarithmic
,, not defining a number, 16, 30.

,, of continuous functions, 74 n, 219.

„ „ functions, 46, c. 225, 249.

„ „ moduli or absolute values,

122, 138, 336, 339.

,, „ numbers, [continuous
„ ,, ,, [discontinuous

,, ,, „ having a limiting

value, 40, 242.

„ ,, points, 42, 247.
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series of powers, i. e. of ascending
positive integer
powers. 72, 332.

,, „ „ identical for unique
function, 85, 148.

Serret, 27 n, 41 n*.

set [derived
„ [discrete

,, [linear

„ of numbers, 67, 125.

„ „ points, 244-8, 296.

,, [plane
sign [integral

„ of infinity, 16.

signs 4- or — , 2, 15, 73, 80-1, 90, 121-4.

[rules of
similar smallest parts, 144.

simple branch, 158.

„ element. 379.

forms in integration, 198, 816.

integral or integration, 295-7,
309-14.

„ root, 156, 161, 380.

simplest value of a logarithm, 119-20,
136, 152.

,, „ „ „ radical, 117.

,, „ ,, an exponential, 120,

125.

simply connected, 315, 317, 326-9, 342.

sine, 20-2, is continuous, 25, except
at infinity, 30, 238, 244.

single-valued, 19, 131,374, s. one- valued,

unique-
singular, c. irregular, peculiarity, re-

markable, special,

along a curve, 331, 351,
c. 307, 311.

,, double integral, 306, 309.

„ integrals, 258 n.

„ point (in general), 130, 141,
148 n. 155-6, 256, 321,
329, 351.

,, [essential
,, „ [non-essential

,, „ of curve, 105-6, s. mul-

tiple point.

,, ,, g. infinity point,

singularities, 25, 104, 106, 130, 155,

3:50, 342, 351, 363, 374.

slow convergence, 84.

solutions ot equations, 104, 11 In, 153.

space, 1, 15, 86.

special points, 55.

specialities, 363.

species, 20, 153, c. 5.

„ of sets of points, 244 n, 246 n.

sphere illustrates complexes, 127, 144,
lCi3.

Stirling, 380n*.
Stolz, 44 n*, 108n*.

strips, 136, 309.

subdivision, 5, 15, 60.

,,
of intervals, 31, 175,

239-40, c. 26, s. partition.

subdivisions, 174-5, 241-2.

subordinate units, 4.

substitution in integration, 196-7, 209,
212, 233, 320.

„ ,, ,, geometrically
treated, 184,

206, 303.

„ of reciprocal variable,

127, 130-1,262,328,
334, 338, 356, 372.

subtraction, 2, 10, 67 u, 110.

succession of integrations, 306-10 n,
c. order.

„ ,, points, 24, 294, c. se-

quence.
n M summands, 295 n.

successive derivates, 56, 65, 145, 343,
349, 357, 361, 369, 379.

„ integrations, 299 n, 304, 308,
312.

sudden change, 25, 29, 244.

sum, 1, 17, 47, 61, 102, 112, 114-5, 121-5.

„ [double
summands, 2, 123, 176, 181, 239.

summation, 67 n, 146, 195, 297.

superficial elements, 294-7, 303.

superincumbent points, 364.

superior or inferior limit, 157, 240-1,248.
superposed planes, 134, c. 161.

surface, s. area.

,, [connected
„ (curved), 86, 93, 112, 144n,

296- n.

„ [elementary
„ [Riemann's
„ [winding

symbol, 4, 50, 67, 68 n, 114, 120.

of integration, 176, 181, 243.

symbolic, 10, 22, 78, 288, 297.

symmetric function, 374.

symmetrical, 92, 97, 136, 213.

synectic, 141 n.

system of numbers, 110, 127.

„ „ points, 244.

„ „ values, 24, 86, s. point.

table, G, 19, 22, 71.

tangent line, 36 n, 40n, 41 n, 42, c, 37,

43, 103, 207-8, 303 n, 377-80.

„ of an angle, 22, 36, 42.

,, plane, 93.

Taylor, G9-ii*.

Taylor's series, 71, 77, 85, 103, 147,

IBS, 191, 341, 344, 363-4.

terms of an infinite series, 74 n, 219, 249.

the infinite, 127-8, 130, 332.

theorem of luldition of angles, 77.

„ „ complexes, 114,

122.

„ ., ,, ,, elliptic inte-

grals, 210n.

„ ,, hiterchange of differen-

tiations, 301; 348.

26•
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theorem of interchange of differentia-

tion and integration, 264-9.

„ „ the mean value, 41, 56, 65,

95-6, 100, 105, 169, 266.

„ „ the mean value for definite

integral, 252, 254, 260,
263, 276, 296, 324.

,, „ the total differential, 92-4,

142-3, 301, 303n.

theory of equations, 153.

,, „ functions, 85, 129.

,, „ trigonometric series, 222, 224.

Thomas, 89 n*, 264 n*.

time, 1, 43.

total derived function, 96.

differential, 92, 98-9, 102, 141, 320.

„ „ [theorem of the

„ „ quotient, 92, 96, 143.

transcendental functions, 19-23, 47,
55, 86, 128, 210n, 233, 357-n, c. 67.

transcendents, 210n.

transformation, s. inversion

„ by substitution, 209.

„ of plane upon plane,
128. 143, 362.

„ upon two spheres, 144.

transition, [continuous
to complex values, 167.

„ differentials, 60,

„ the definite integral, 189.

,, „ infinite region, 308-9.

„ „ limit, 295n, 310n.

trigonometric form of complex, 116.

„ functions, 20, 53, 61, c.

sine, tangent,
series, 71, 77, 222, 231.

Tschebychef, 198n*.
twisted near a point, 24.

two-leaved surface, 134.

two-valued function, 19.

unclosed curve, 308, c. 132.

unconditional convergence, 73, 122.

unequably, [converge
uniform continuity, 29, 88, 169-71.

,, convergence, 74 n, 140, 219,
221-n, s. equable.

uniformly continuous, 28, 38, 87-92,

266, 301-2,

,, [converge
„ convergent, 220, 249, 287.

uninterrupted, 1, 24.

unique, 19, 139, s, one-Valued, single-
valued.

„ analytic function, 145, 148 n,

325, 332-9, .341-8, 351-62, 366,
373,

„ exposition, 133, 161, 334, 347,
375.

,, expression by series of powers,
148, 150.

„ function, 34, 40-1, 65, 148-n,
150, 311, 315, 326.

uniquely determined, 112-3, c. 15.

1

uniqueness of branch of function, 161,
163.

,, „ limiting value, 175, 243.

unit, 1-4, 110-2.

„ of area, 179.

„ of length, 15, 382.

unity, 1-3, 53, 72-3, 257-8, 261.

unlimited series, 3, 5, 7, 8, 31.

unlimitedly continued, 9.

,, indeterminate, 31.

unmeaning, 306-7, c. 310.

unreal, HI.
unrestrictedly continued, 219, 289.

,, continuous, 126, 129, 133.

,, variable, 126,

upper and lower limits of integral, 176.

validity of integral, 182, 303.

value, 2-22, 27, s. point,

[limiting
„ [mean

• valued, s. one-, two-, many-valued,
vanishes, 5, 32, 59, 60, 113, c. infinitely

small.

vanishing, 150, 154, c. zero.

„ differential quotient, 34,

170-2, -256.

„ [order of, c. nuliitude.

„ point, 149-53, 186, c, root.

„ quantity, 59, 92.

values, 149, 188, 192, 209.
vanish algebraically, 261.

I

,, identically, 148-51, 381.

variable, 15, 43. 176.

„ [complex
,, [dependent
„ [independent
„ parameter, 19, 86.

,, quantity, 16.

variables, 17, 86,

velocity, 43.

vicinity, 355.

volume, 60, 296-n,
von Staudt, 111*.

Wallis, 180 II, 278n*-9.

"Weierstrass, 46*, 74n, 113*, 130n*, 148n*,
217n*, 225*, 291n*, 345n* 357n.

winding point, 162.

,, surface of first order, 134, 162.

,, ,, „ infinitely many
leaves, 346.

,, „ ,, order wi — 1, 364-7,
370.

,, ,, ,, q leaves, 347.

„ ,, „ second order, 163.

„ „ s. Riemann's.

zero, 3-5, 176, 245.

„ as a limiting value, 10, 16-7, 34,

,, identically, 149.

,, [point, = origin
„ point, 133, 136, 149, 261, c. infi-

nitely small, nullity, vanishing
point.
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