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PREFACE,

THIS hook is based on courses of l<

Analysis given ;it (^m-i-n's Coll.-^.-. ( ialway. dm
: Mi"

LOUS I!MiM!M)7. Hut additions have naturally ln-,-n n.

in preparing the manuvript fot press: in parti
1

hapter X I. ami th r part of t :

been added, in selecting tin- subja r,
1 !ia\-.- attempt

t> include proofs >!' all tliron-n, . in Priu^lM.-iin'-

Irrationalzahlen ////'/ I\ wnendlicher itli

th- -\<-rpti<.n oi' tli.-oi-rins n-latin^- to coiitinu'l tVad i. n-.

In Chapter I. a preliminary account is
j

1' the n-

i limit ami ol' COTr I ha\e not in this clia-

ath-iiipt.-.l to supply arithmetic proof- ,,f the fun-i

thecrein^ (-..nctTnin-- the existence of limits, l.m bave allow-'-l

their truth to rest on an appeal to the reader's intuition

the hope that the diseu^ion may thus lr mai-- i,

live to Ih-^inners. An arithnietie treatment will !> f"iin<l in

Appendix J.. where Dedekiml's definition ..i irratinnal num ;

is adapted as fundamental: this metliod lea<U at the

niom.tonic ]rim-ipl- of , mce (Art. 14!h. I'roni \\hicli

e\i breme limits t ia deduced < L60);itist]

easy t" .-taMish the ^-m-ral principle of

In the remainder <,f the l,(...k fiv- n>- is made ,,f the n .1

and principles of the 1 >itl-ivntial and Integral Calculus: I 1

for BOme time l>em c. mvince.l that b uld not attempt
to study Intinite Series in any detail until after they 1

. H.I. I..

1'1>. 17 ;in.l H'Jl).

t Not only litTf. Imt in ni:tny <>th-: : M have been

>e by a systt nur i.uin and ininiinuin limits.



vi PKEFACE.

mastered the differentiation and integration of the simpler

functions, and the geometrical meaning of these operations.
The use of the Calculus has enabled me to shorten and

simplify the discussion of various theorems (for instance, Arts.

11, 61, 62), and to include other theorems which must have

been omitted otherwise (for instance, Arts. 45, 46, and the latter

part of 83).

It will be noticed that from Art. 11 onwards, free use is

made of the equation

although the limit of (1 + 1/V)" (from which this equation is

commonly deduced) is not obtained until Art. 57. To avoid

the appearance of reasoning in a circle, I have given in

Appendix II. a treatment of the theory of the logarithm of

a real number, starting from the equation

l X

The use of this definition of a logarithm goes back to Napier,
but in modern teaching its advantages have been overlooked

until comparatively recently. An arithmetic proof that the

integral represents a definite number will be found in Art. 163,

although this fact would naturally be treated as axiomatic

when the subject is approached for the first time.

In Chapter V. will be found an account of Pringsheim's theory
of double series, which has not been easily accessible to English
readers hitherto.

The notion of uniform convergence usually presents diffi-

culties to beginners; for this reason it has been explained at

some length, and the definition has been illustrated by Osgood's

graphical method. The use of Abel's and Dirichlet's names
for the tests given in Art. 44 is not strictly historical, but i^

intended to emphasise the similarity between the tests for

uniform convergence and for simple convergence (Arts. 19, 20).

In obtaining the fundamental power-series and products
constant reference is made to the principle of uniform con-

vergence, and particularly to Tannery's theorems (Art. 49) ;

the proofs are thus simplified and made more uniform than is

otherwise possible. Considerable use is also made of Abel's



ri;i:i \ \ii

(Arta, 50 '-1 88) on tip- <-.ntinuity of power-series, a

the,,ivm which, iii spit.- nl' its importance has u-'ially not been

Mately diseased in text-book-.

('hapt.-r XI contaii --ral.lv complete account of th-

iitly de\,-l,,p,'d theoriefl of not,
.

- nt ami asymptotic
Beri< iiP-nt li '-ontim-d t,, tli- antlim- I

applicatiMiis tM i'linct JMii-tlh-Mi-y \H'\w
f

f nutsid'- th.- s r
,,p,

tip- iM,,k. Afl mi-'lit IH- exp systematic
M!' tip- knnwn r.-sults has l.-.l IM -MUM- exteosiODfl M!' th-- th-

For Instance, Arta L18 L21, IL':;. and pa
Tin- inv.-Nt i-at SMUS ,,f ('haj.t.T XI. imply an ar.juaiii'

with tip- COnveTJ f intinit.- in! ut wlp-n th- inaiiii-

repared t'ir pi-intini: no Kiiuli^h ln>ok was
a\ailaM.- I'l'Min which tin- Qe0688ary t h-< IP-IMS CMiiM ( qnot
I was tlp-n-fMiv lrl ti writ*- out App.-iplix III., ^ivin^r an

intnuliictiun to tip- throry ..!' int-_i:raN: IP-: HMH

is (lir ct. ,1 to the points of similarity and of difference ln-tv.

this tlp-ory ami that !' 961166, To emphasise tip- siinila-

the tests of convrr-viic,- ami of unit'Mnn <-Mii\vrirence (Ai

171. 17'J. are c-alli-d l>y tip- saiip- nanp-s as in the case ol

ami tip- traditional 1'nnn of the Second Theorem of M.-an Valu-

i^
i-i-plat-i-il l,y iip-<|iialitirs (Art. Uiii) which are IMMI-.- obvioc

Connected with Alu-l's Lcnnna (Art '

i. To illustrate the

ral tlu'Mi-y. a ^h<.rt discu^siMii nt' IHrichlet'- inte^i-aN and

"t' the (ianmia integrals i^ given; it i- hoped that these pmnt's
will le t'niind Imth simple and ri-orou-.

The examples (.,!' which there are over li(M>) include a nuinl.rr

ol tlp-Mivms which CMiild not ! inserted i n the fcert, and in

sm-h caaee referencefl are ^i\-en t<> SOD I'urther inl'm-inatiMn.

ThrMU-'liMUt the l.M,,k I have made it my aim tn keep in

view the practical application- nl' the tlp-Mreins to ev-

w..rk in analysis. I
),,,p,.

that most dniiMe-limit ]ml.l.

which present theinsel\. r<iU;/. in connexion with i

9,
dillt-rentiatiMii nl' -. and BO I'Mrth.

Settled witliMUt ditliculty l.y iisin- the results -m-,, h. :

'

\VhiK- my l>ook has l.t-fii in tin- press, three books have appeared, <

\UiK-li roiitums MB
-'ml Integral* (ch. iv.), and Pierpont'a Theory

ntctiuns </



viii PREFACE.

Mr. G. H. Hardy, M.A., Fellow and Lecturer of Trinity

College, has given me great help during the preparation of

the book
;
he has read all the proofs, and also the manuscript

of Chapter XL and the Appendices. I am deeply conscious

that the value of the book has been much increased by Mr.

Hardy's valuable suggestions and by his assistance in the

selection and manufacture of examples.
The proofs have also been read by Mr. J. E. Bowen, B.A.,

Senior Scholar of Queen's College, Galway, 1906-1907 ;
and in

part by Mr. J. E. Wright, M.A., Fellow of Trinity College, and

Professor at Bryn Mawr College, Pennsylvania. The examples
have been verified by Mr. G. N. Watson, B.A., Scholar of Trinity

College, who also read the proofs of Chapter XL and Appendix
III. To these three gentlemen my best thanks are due for

their careful work.

T. J. I'A. BROMWICH.

CAMBRIDGE, December, 1907.

The following list comprises those books of which I have made most
use in arranging the material :

Chrystal, Algebra, vol. 2.

Hobson, Trigonometry.

Osgood, Infinite Series.

De la Vallee Poussin, Cours d*Analyse Infinitesimal?.

Goursat, Cours d'Analyse Mathdmatique.

Tannery, The'orie des Fonctions d yune Variable, t. 1.

Cesaro, Lehrbuch der Algebraischen Analyti*.

Pringsheim, Mathematische Annalen, Bd. 35, pp. 297-3!) l

Reference has also been made to works on Analysis and Theorv .if

Functions by Baire, Borel, Dini, Harkness and Morley, Hohs.m, Jordan,

Lebesgue, Nielsen, Osgood, Picard, Runge, Schlomilch, Stolz, Vivanti, and

various other authors, in addition to the sources iiu-nUnm-d alu.vf and
in Chapter XI.
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ADDENDA AND CORRIGENDA.

p. 16, l."17. The series is here supposed to oscillate finitely ; such a series as
1 -2 + 3-4+... is excluded.

p. 29, Art. 11, and p. 80, 1. 2. The integral test is commonly attributed to

Cauchy : it occurs in Maclaurin's Fluxions, 1742, Art. 350.

p. 97. Ex.1. Thevalueof the second product is (sinh7r)/27r= 1-845... (Art. 91.)

p. 101. Art. 41. A proof of the first part can also be given on the lines of

Art. 77.

p. 122. The discussion can be somewhat shortened by the use of extreme
limits ; thus, if m is chosen so that

l

we get at once

l

p. 141. For methods of determining the region of convergence of Lagrange's
series, see Goursat,. Cours d'Analyse Math., t. 2, p. 131, and

Schlomilch, Kompendium der hoheren Analysis, Bd. 2, p. 100 ;

the relation between these methods will be seen from theorems
due to Macdonald, Proc. Lond. Math. Soc., vol. 29, p. 576.

p. 146, Ex. The numerical results should be 4-8105... instead of 4 '80, and
23-14... instead of 23 '00.

p. 164. Ex. 25, 1. 4. The index
- 1 is omitted from {(1 -xy)(l -xly)}~

1
.

p. 190. Ex. 18. This is taken from the Mathematical Tripos Papers, 1890.

pp. 212, 213. It is assumed that v is a function of w writh a period 2?r, so that

v(w) = v(u- 2?r).

p. 226. Professor Dixon's own version of his proof has just been published in

the Quarterly Journal of Mathematics (vol. 39, p. 94, Oct. 1907).

p. 227. 1. 8. The reference should be to Arts. 44, 45 (1), instead of Art. 49.

p. 323. 1. 3. The last figure in Euler's constant should be 8 instead of 5, and
the following four figures are 6060, according to Gauss.

p.. 410, 1. 4. The proof that 2 > 8n and a< Sn can be made purely arithmetical

by using 2', <r', the sums obtained by superposing the two modes of

division. We have then 2'rxr', while 2' is less than both N,, and

2, and a' is greater than both sn and <r. Thus 2 > 2' > a' > *
. ami

similarly <r < a' < 2' < Sn .

p. 471. Exs. 20, 21. Similar integrals occur in Electron-Theory (compare
Soinmerfeld, (iitttimji n Xachrichten, 11MI4, p. 117).

p. 490. Non-differentiable functions. Other examples of a simple character

have I.e. M -ixen recently by H. von Km-h. A<-tn Matin ninfifi. \'\.

30, 1!K)7, p. 14",; and by Faber, Jahr, *l rirhf <1> / /hnt*>-l, t n Math.

Verdi,, !',<!. Hi, 1JI07, p. :>3S.

p. 495, Ex. 51. The function /(a,
1

, ;/i is Mippo.-etl monntniik- with respect to n.
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CHAPTEB I.

SEQUENCES AND LIMITS.

1. Infinite sequences : convergence and divergence.

SiipjM.s.- that we have agreed upon -MIL- rule, OT rul<

which we can BSSOCiate a definite numher ,/, \\itli any .i-H^ned

positive inte-vr ,, : then the set of numl..-!^

"i-
'

arranged BO as to c< H-IV>JM m< I to the set of ]nsit:

1. - '!. I /' will IM- i-allr.l an
infill

siiujily \V.- shall l'r.-i|ucnt ly timl it convenienl

!!- tin- notation (am) to i--]ir-s.'nt this sequence, 'I'h'- li-

the word infinite simply means that every t.'i-ni iii the m-iju.

is followed hy anothei- term.

The rule detinin-- the >e|n,-iice may either l>e
expl

ome loi-iiiuln (oi- formulae) _d\ in-- a BS an explicit fui;

me verbal Statement which indicates IK,\ rm

be determined, either directly or from the preceding t.-nns.

Ex. 1. I' -Id imnil.rrs 1.

Ex. 2. i I'M.' li;u iM"iii<

Ex.3. Tlir ni'_C 't' thr rati.-iial positi

arm
of t

; to ill'- >.! : ami -

i ini> t h'T'- '-an I-- '

ami 80 this nu-tlr .f -\\ i aiiuvm.Mit .1-.-- n..t It-ail !" anv OOITeBpOod
UK! the

|
..'to

i

si-<|in-ii.

it mil- <>f llx-ii .

"hrir inn.



2 SEQUENCES AND LIMITS.
[(

H. I,

The most important sequences in the applications of analysis

are those which tend to a limit,

The limit of a sequence (an) is said to be I, if an index m can

be found to correspond to every positive number e, however

small, such that i < an <i+ j

provided only that n*>m.
It is generally more convenient to contract these two in-

equalities into the single one

\l-an \<6,
where the symbol \x\ is used to denote the numerical value

of x.

The following notations will be convenient abbreviations for

the above property :

I = Km an ;
or I = lim an ;

or an-+l ;

n >-oo

the two latter being only used when there is no doubt as

to what variable tends to infinity.

Amongst sequences having no limit it is useful to distinguish

those with an infinite limit.

A sequence (an) has an infinite limit, if, no matter how large

the number N may be, an index m can be found such that

an >N,
provided only that n > 771.

This property is expressed by the equations

lim an = oo
;
or lim an= oo

;
or a.n ->>oc .

n ><x>

In like manner, we interpret the equations

lim an = oo
,
lim an = oo

,
aw-> oo .

n >oo

In case the sequence (an) has a finite limit I, it is called

convergent and is said to converge to I as a limit', if the

sequence has an infinite limit, it is called divergent*

Ex. 1 big. With aw= 2w 1 (the sequence of odd integers) we Imvj

'oo
;
a diverge/it sequence.

Ex. 2 ftfa. With an =l/n (the harmonic sequence) we have -*<); a

convergent sequence.

* Some writers regard <lir<i-<j< at us equivalent to non-conn r<j< nt ; but it

.oii\ cnit-nt to distinguish l/<-t\veen sequences which tend to infinity as a limit and

those which oscillate. We shall fall the latter sequences <>.<<,-i//<tturit (Ai ;
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Ex. 3 It til

ler in- liu

ln> liiHttrl h< n in tin* s.Mjii.-li' -. tli.-i.- will ,i!.v;i\- !:

unlimited nun.

\V- shall tind it convenient some! im

:>hirally, iiid;. an OrdlE

;iiul MM abfiG '

<-<|iial
'

the sr (

|U.-n<-.- may
'

pirtun-d hy joining tin- 8 points with a l.ml

liin-. In tli' i M OOni

points li.- \\holly within a liuri/mital .strip <>!' \\i<lt!

rtain valu-: if tin- sequence is divergent, fch<

lii- wholly al')\,- (or below) a certain ! has passed
i-taiii valur.

'I'in- ^rajhical i-rjirr^-ntat i- >n !' tin- initial tmns i n tin- thr--

alr.-aly considered i- given

It will 1)0 srrn at a ^lann- that tin- t'.-w tennfl r<-j'r-s,-ntrl in

tin- iliM-T.-ini sln-w that tin- tirst s.-.junin- is 111

tin- s.-cMinl t converge, and tin- third to <>scillat- (see Art

Tin- definition nf a limit is oft.-n ]oo>,-ly

'/'/" 9 th /'//M'/ /.

'// makt I-

Smdi a definition <! id- tin- pos^jl.i;

aa may l>- Been tY-mi th :

h h
' ' '

in which . n f 4) if / is ,'\ en.

Hd-.-. l.y taking n large enough, we can tin-l a berm a whirh

is as .small M W
\

i-ut tin-

and I r(,/ -f 1 i



4 SEQUENCES AND LIMITS. [CH. I.

(2) Infinity.

It is to be remembered that the symbol oo and the terms

infinite, infinity, infinitely great, etc., have purely conventional

meanings in the present theory; in fact, anticipating the

definitions of Art. 4, we may say that infinity must be regarded

q# an upper limit which cannot be attained. The statement

that a set contains an infinite number of objects may be under-

stood as implying that no number suffices to count the set.

Similarly, an equation such as liman =oo is merely a con-

ventional abbreviation for the definition on p. 2.

In speaking of a divergent sequence (aw),
some writers use

phrases such as : The numbers an become infinitely great, when
n increases ivithout limit. Of course this phrase is used as an

equivalent for tend to infinity ;
but we shall avoid the practice

in the sequel.

(3) It is evident that the alteration of a finite number of
terms in a sequence will not alter the limit.

Ex, 4. The two sequences

1, 2, 3, 4,
i

J,
i

i,...

1, i, i, J, i i *, fc..

have the same limit zero.

Further, it is evident that the omission of any number of

terms from a convergent or divergent sequence does not affect

the limit; but such omission may change the character of o

oscillatory sequence.

Ex. 5. Thus the sequences 1, 5, 9, 13, ... and 1, ;\, |, 1, ... have the same

limits as those considered in Exs. 1, 2. But the omission of the alternate

t'ini> in the sequence
1, fc I, i, !,*,*,...

changes it into a convergent sequence.

(4) In a convergent sequence, "//, n /////"//////. ji i/ifc mi mix /

or none of the terms may be equal to the limit.

Kxainplrs of these four possibilities (in order) aiv ^ivm ly :

1; n= -sm(iw7r); "N =
W -^+

-
S 5 a-^J

the limits of which an-, in m-drr, 1,0,0,0.
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We shall usually employ e to <! ily

' ive iiuiiil..-!- : si rid i\ ;

,.- irord

'It, r hOW >//"'//. ..!' /
'/

( whir!

added I l.ut 861

i !!. is /, n tliau .

\\.- shall al A' (or '') to denote an arl.itrarily [

tive numher: b<

unii Inn are usually added i" emphasise t

:

that t In- variahl' i hail N.

fco denot,- any positiv,- nunili-r. we could

with \ : l.ut it avoids roMt'usioM t we two d

II. \\.-\rJ- it is xnliu-t ilil.-s c< Hi \ , -| i j, ] H I
, \}' \.

M.'ii ha]iM-iis t hat a ri-rtain limit / can ) i

!) lesa than + ,
. wln-n- f,,, can ! mal.- arl-it rarily small hy

choic.- <!' an iii'i

thru intVr that /_'. K'-r ii' / wer f than >ull

not ma'', 98 than / ". which cout ralicts tin- hypoth.
A- a

Special '\aui]lc ol' this, supposi- that i

s.-ijii,
'lie. -s such that can I"- mal.- leSfl than

hy takin- ,> ^> n> : then w.- can ch..,

th- ditr.-rciM

j.i-ovidcd that //>///. Thus lini /> lini",, < :

/// only: hcnc.- we must hav<- lim/;
i(

= lin

It should 1 ..... l).s,Tv.-l that ii' .

Bequencee
s U rh that ,<i>,. it may easily ha].]M-n that

lim " = lim

K..r the .lit! Ithou-'h constantly j.osi

imit. Thus th- '-.uiclusion \'v\\,

hif'|Ualit\
' < b

lim <i,,
:_ lim

2. Monotonic sequences ; and conditions for their con-

vergence.

iu which a tor all vulu- ailed

an and similar.; all

yah, calle 1

and ied in i



6 SEQUENCES AND LIMITS. [CH. I.

The first general theorem on convergence may now be stated :

A monotonic sequence has always a limit, either finite or

infinite; the sequence is convergent provided that \an \

is less

than a number A independent of n; otherwise the sequence

diverges.

For the sake of detiniteness, suppose that tt+1= n ,
and

that an is constantly less than the fixed number A. Then,

however small the positive fraction e may be, it will be

possible to find an index m such that an <^am -\-e, if n^>m',

for, if not, it would be possible to select an unlimited sequence
of indices p, q, r, s, ...

,
such that ap >a^+ e, a

q >ap+ e,

ar >ag+ e, as ^>ar -\-, etc.; and consequently, after going far

enough* in the sequence p, q, r, s, ...
,
we should arrive at an

index v such that av> A
, contrary to hypothesis.

Thus, if we employ the graphical representation described in

the last article, we see that all the points to the right of the

line x =m will be within a strip of breadth e; and that the

breadth of the strip can be made as small as we please

by going far enough to the right. From the graphical

representation it appears intuitively obvious that the sequence

approaches some limit, which cannot exceed A (but may
be equal to this value). But inasmuch as intuition has

occasionally led to serious blunders in mathematical reasoning,

it is desirable to give a proof depending entirely on arithmetical

grounds; such a proof will be found in the Appendix, Art. 14!>.

Ex, 1. As an example consider the increasing sequence

t 8. i> * >>
which is represented by the diagram below.

i

1234567
FIG. 4.

In this case we may take A = \, and there is no diHirulty in

that the limit of the sequence is equal to .1 ; but of oourse \u- might

have taki-n .1=2, in which case the limit would In- less than .1.

*The nmnher of terms to he taken in the se^umce /i. </, /, v. .. would he

equal to the integer next greater than (A -i)/c.
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Ex. 2. A si- \ the sequence (1 + I

iv that tli

that . limit obtained is th-

\ formal pr.mf !' th- ni..ii"t,,ni,-
jn-.,ji.-i

A ||i-iuli\. Ait. I ">s
: ainl tin- lit,

I'.ut in ease n<> numbrr such inl, so that,

1 may In-, thnv i.s always an iinl

> .1. then it is plain that tin- +00,

> .1. if /' ^m.
Th- iva.lcr will havt- no ditliculty in niodifyini: I

work ;1
l

)

!''y tr) l ^ ie case ^ a sequence which n-

BO tliat ttm+j '/.

Ex. 3. ('niisiih-r tin- s.Mjufnce 0,,
= ^.

If 0<r<l, the se<| ulily decreases but tin- ti-rm-

j..Mti\.- : and r..nsfi|iuMitly / approadirs a dftinitt* limit / such that

1 > / _ o. 'I'hu- wt- can lind //< ' :".nd to t,
s.i that

^<r"<^ + ,
if n>r/i.

II. <r(/ + );

itly J<r" + 1

<r(/ + )

/(I -;)</.

-jiiality is inn-, however Miiall e may U-, \vt- havi- ^ = 0.

\Vhi-ii /> 1, it follows fi'.'in th- last result that ; we can

Thus \v- find /" > 1
:it -aii

iaMi>h-d t'lMin tin- iimiiMtMnii- projii-i ty "f tin- Mquenoe : "i by <i

MI K.\. 1. An
It

(-l)".|r|"

t' tin- sr.ju.'iH-e can be drtfrniim

btained.

Sniinuinjr "]>,
''"it :

It -Kr<l, r"-*0;

1 :
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In all other cases the sequence oscillates, and we find :

If r<-l, r2M->oo, r2n+W-oo
;

r=-l, ^=
1, r-" +1 =-l.

Ex. 4. Take next on =r/w!.

If r is positive, let p be its integral part. Then the sequence (a,,) decreases

steadily, after n exceeds the value p : and since () is positive it follows

that an-+l ^0.

Now ..
,

an n+ I n + 2 2n Zn 2

Thus we can find m so that

>TO.

and a-2n<a )

Hence, as in Ex. 3, we obtain

l<^(l + t) or

It follows that = 0.

When r is negative, we obtain the same result by writing

a = (-l)". |r|"/!.

Thiis for all values of r we have

lira =0
n\

3. General principle of convergence.
If a sequence is not monotonic, the condition that

|

a

constantly less than a fixed number is by no means sufficient

to ensure convergence ;
this may be seen at once from the

sequence given in Example 3, Art. 1, for which 0<an <l.
The necessary and sufficient condition for convergence is tin it

it may be possible to find an index m, corresponding to any-

positive number e, such that

for all values of n greater than m.

Interpreted graphically, this implies that all points of the

sequence which are to the right of x = m, lie within a strip

of breadth 2e. The statement is then almost intuitive, since

the breadth of the strip can be made as small as we
pit-

hy going far enough to the right; an arithmetical, proof will

be found in the Appendix, Art. 151.
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Ex.

GENERAL PRINCIPLE "I OONVJ

the

J>

012345678
Pic

hieh it is easily >.-t-n that tin- limit is 1. Tin- diairiain i-

aiid it will

CAT der must ! wunu-d n 1 tin-

above test of <-oii\ .-I'Li-'iicf as equivalent t<> a condition sometii

;i (even in hooks which an- i;vnT;illy >. nann-ly:

condition f<rr conv* ,
~ /////

This condition is certainly necessary, lnit is NT siitli-

/////. ^,II>IH,S,<I
f<> /,. ,i ,, a/rbtirary function <>j

. -l'-l

may tend towards /'///////'///
//-/'/A //. >'// */// arbitral

K-T i-\;ilii|iU', suppose that ; then

HIM |= liui l..Lr(l -r/* /')=0,
W MO

it"
//

is any tixnl iiuinln-r. I'.ut tin- B6qU61 \J be

seen t'mni tin- Appendix, Ait. l."7.

Tin- ivjulrr will have no ditliculty in prnviii^- that ll>

den ndea for calculating !//, limits a

Iim(all
6
ll)=limall

liin6

linn

]>r<\ idi-d that tin- sequencer nt.

liu

]T"\-id-d tli and that 1:

And ^-n. -rally that

liin/(" a .
/ ,.)=/(HmamJ Iim6w> lim

where J demurs any n>iiil linat in of th- l'<>ur -l-iM-ji-

operations, MiKj.vt to conditions similar to those ah-.-ady sj,,.ritii-d.



10 SEQUENCES AND LIMITS. [CH. I.

If the functional symbol contains other operations (such as

extraction of roots), the equation above may be taken as a

definition of the right-hand side, assuming that the left-hand

side is found to converge. On this basis the theory of irrational

indices and logarithms can be satisfactorily constructed.*

It is to be remembered that the limits on the left may be perfectly
definite without implying the existence of liman and lini bn. To illustrate

this possibility, take = (-!)", b tl
= (- l)"-^! + !/).

Then an + bn= (- l)
n~ l

/n and (an + 6,,)-+0,

an .bn=-(l + l/n) (.&)-> -1,

an/bH =-n/(n

so that these three limits are quite definite, in spite of the non-existence of

Km an and lini bn .

If an is convergent and 6n->0, we cannot infer that -n/&n^oo

without first proving that an/bn has a fixed sign.

If an->0, and 6n->0, the quotient ajbn may or may not have a

limit (see Appendix, Art. 152).

. Thus with aw= l, bn= (-l)
n
/n, we see that bn-*0, but an/bn = (-l)"n and

so an/bn oscillates between - oo and + oo .

Again, with a lt
=

l/n, bH = ( 1)"/X the value of an/bn oscillates between - 1

and +1.

When one of the sequences diverges (say < n-*oo ) and the

other converges (say to a positive limit) it is easy to see that

(a&n)^c ;
an .bn-+x> ;

.n/6n->oo ;
6n/an-0 ;

the only case of exception arising when 6n->0, and then the

.sequences (an .bn) and (an/bn) need special discussion.

Again, if both an and bn diverge to oo
,
we have

but both (an bn) and (an/bn) have to be examined specially (see

Appendix, Art. 152).

If aw->oo and frw->oo ,
there are three distinct alternatives with

rc-pect to the sequence (an/bn), *<nin,n/ tlmt it /

(i) aw/6n^0; (ii) ajbn->k>0: (iii) a.
/>

*
TlniH \vc can define A-V^ a8 lima?"", where (a,,)

= l, , J, H. -*\--
n \\hcn ( iunl / ate botli nionotonic, tlu- srijiirn, .cd not con-

.
.

i
;. .\|.|i.-ii(lix, Art. l.VJ, Kx. 4).
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hi C . in <'

//// than >'<. In eastr (ii) i'

eon\ enient to use the notation

wbn

Kill. iven in the Appendix ( Ait. \:,'2\ for the d

mhiat ion of Mm < in a number of cases which an- in.

in practical work.

4. Upper and lower limits of a sequence.

rm //. this

tin- upp .Mid similarly. \\ i

a l.-a^t l.rm I. it is callcl th- lower limit.

r.ut quence 1 term, it i'oll.\\- tliat n.

may he. th--rc is always a lar^-r in-1-

such tli I'ui-th.'i-. tln-rt- is an inimhcr of such

imlici-.s !: t.tln-r\vis.' ii fcerm in the

Iliake
J)

definite \\ e Sllpp'sr j,
I,, ] tile

' index sati^l'yine- the required condition. Hence t)i- terms

the sequence which fall het ween am and Op are all

than a,, and

('lioose now a Succession <>f values of
/>

such that

"^""r ">_-

/'!>'- P*>Pl> Pt>j
and for simplicity den..' . Then WG i -truct.-d

a moiiotonic sequence b
lt

! >

: and this se.jUence has a

limit (Art. 2). either a finite numl.er // or ao. If lim //.

eaii find /// BO that bm lies hetweeii H e and //. no m.r

how small e may he: and consc,|Uently we ha

// e<-/ ; ,

f
< //, prn\ ided that r

II is //' / ///.
>//>{ r lim if of fi-

ll 'Hi/ iiff.iinn/ //

Similarly, if lin. \\- can find ,i> so that

> A', provided that /

no mailer h,,\\ lar-e A' ma;
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If the upper limit of the sequence is H, whether attained

or not, the sequence has the two following properties:

(i) No term of the sequence is greater than H.

(ii) At least one term of the sequence is greater than He,
however small e may be*

But if the upper limit of the sequence is oo, it has the

property :

An infinity of terms of the sequence exceed N
t
no matter

how great N may be.

It is easy to modify these definitions and results so as to

refer to the lower limit (h or oo
).

1 2 3 4 5 6 7 8 9 1O 11 12

FIG. 7.

The diagram gives an indication of the mode of selecting the

sub-sequences for H and h\ these are represented by dotted lines.

Ex. 1. (Art. 1) aw = 2?i-l.

Here we have & =
,
and so the upper limit is oc

;
A= l, because 1 is

the least number in the sequence.

Ex. 2. (Art. 1) an= l/it.

Here J5T=1, because this is the greatest number in the sequence ;
and A is

seen to be 0, which is not actually attained by any number of the sequence.

Ex. 3. (Art. 1) -i, 1, , 1, f, i |, f, f, ....

Here the sequence (&) is |, , f, f, ... and gives H=l ;
and similarly

h is found from the sequence ^, J, |, ^, ... to be 0. These sequences are

indicated in Fig. 3 of Art. 1 by the dotted lines.

5. Maximum and minimum limiting values of a sequence.

We have seen in the last article that any infinite sequence
lias upper and lower limits. Consider successively the sequeiuvs

a
lt

a
z ,

a
s , a4> a

fi ,...,

":; "r "
>

"; ".,- >

",. <V". ,

and so on.

*
If //"is not attained, there will be ;m infinite niimlirr of surh terms.
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i|>jM-r
ami I0W6T limit- 1- d>-n< .t <-d l.y

//,,
I . II >

: // '
:

//,. A, : an. I BO OIL

Thru \\<- may ha\r //,-/,. in which 0886 ", miM !> th--

trnii in i in- sequ< iae w- ^liall lia\ e // //
,

M all cam //. // Thus // // // //

the sequence < //. > i- jnonoh.nir .-UP! givee a limit G or /:

<Ar Similarly
a limit gTOr-foo, It may be DOticed tliat // ran only 1 - -f '/:

in OftSe //! // // ... = + 3c: and
.'/

ran mily be 00, ii'

Jl

i

= h-> = h
:i= ... =

It is imp.M-tant t< notice that Q
t

./ CCW1 /- i //"

14m

rithrr //.. //
,
H ... ,<// Ic'loll-- t> tllr >.M|llr]ir 'I which

thr sub-sequence for <> i- rr.incidmt with < //

// II II ... ',. and

thru //, is Itself thr limit <,[' a c-n'tain Bub-Sequel
tVi.ni ("). so that this samr suh-sr.jii.-nc,- d.'tin.- (i. An
similar ar^uiwnt ajiplirs to

//.

o con '' //' /// #ub-& </"< n have
it I in, if n'l,ii-/i is greater tha/n G ///"//

//.
!'

lim//
lt
= ^r

f

, we ran find /// BO that // &+, no matt.-i- i

small e is: luit. ly tin- drtinition of //,,. \v- have

//

so i hat _ (j -f-e, if //_ ///.

Thus, ii' / is thr limit of any num-r^-rnt 8ub-8equenC
B nm-t ha\r /i.^'-j-e: and. rlutrarily small.

this requiree
; 0. In likr mann.-r \\c prove that m can

found to makr a, //-e, if and drdnrr tlia
1

Thr two properties just rMaMislird justify us in ralli-

' ant/
;/

llf //<>'// /'/// MM I

in symbols we

. I
< '

. 1 1 1 i 1 ! :

Thr symhol Mm" is n^-d to denote rithrr th.- maximum r

minimum limit: thus an inequality /< lim a < /' impli.-s tliat

/<</ and d < /'.

If it hapjirns that ( ,' = x . \\r ha\.- // s
. an-;

..-ntly

th<Tr must hr an intinity of terms irr than an\



14 SEQUENCES AND LIMITS. [CH. I.

number N, however great; similarly when y = x
,
there must

!) an infinity of terms less than N. On the other hand, if

liin Hn oc
,
it is easy to see that Inn an = co

;
and similarly

if lim/< u =4-oo we must have limaw=+oo.
From what has been explained it is clear that every sequence

has a maximum and a minimum limit; and these limits

are equal, if, and only if, the sequence converges.

It is convenient to call sequences oscillatory when the

maximum and minimum limits are unequal. We shall call

these limits the extreme limits of the sequence, in case we
wish to refer to both maximum and minimum limits.

It will be evident that the maximum limit coincides with

the upper limit, except ^vhen the latter is actually attained by
one or more terms of the sequence; and similarly for the

minimum and lower limits.

123456789 1O

FIG. 8.

The diagram gives an indication of the process. The points
Hn and hn are marked with O and are joined by dotted lines.

Ex. 1. In the sequence (Ex. 3, Art. 1)

i A. 3. t f i t, i i
we have //"=!, AB= ;

so that #= 1, g= Q.

Here it is plain that convergent sub-sequences can be selected to give

any limit between the extreme limits. Thus

i f> f , ...gives the limit

and
, f, ft, fa ...gives the limit -L.

v*

Ex.2. With 8, -f,l, fc.-fc...
,,

ll
=
(-])-i(i+l)

we get J7
1
= 2, //, //

; |, //, //,
=

!!,...

ami //
1
=/t.

J

= -if, /<3
= //

4=-^
80 that 6 f =

l, #= -1.

Ex. 3. With 1, -2, 3, i. 5, <:,... o-(-l)
\vc tiinl //

/(
=

00, A,,= QO

and HO 6' = 00, </= -oc.

In ErS, J, :5 it will he seen that IH> suit -M'i|inMH''s can In- t'ouiul to

! limits <.tli-i- than tin- cxticnir limits.
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I
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i
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H<
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Thus lim sn= - *
,

lim s,,
= + cc

,

arid so the series oscillates between oo and + oo .

If r= 1, sn= l, if n ig odd,

and sn= 0, if n is even.

Thus the series again oscillates.

We have now justified all the statements of the enunciation.

It follows at once from the results stated in Art. 3 that if

=a
1+ a

2+ a.
3 +... to oo

and T=&
1+ &2+ &

8 +... to GO,

then fifT=(a1 5
1)+(a2 62)+(a8 68)+....

The rule for multiplication of S, T does not follow quite so

readily (see Art. 34).

It should be observed that the insertion of brackets in a

series is equivalent to the selection of a sub-sequence from

the sequence (sn)',
and since an oscillatory sequence always

contains at least two convergent sub-sequences (those giving

the extreme limits), it is evident that an oscillatory series can

always be made to converge by grouping the terms in

brackets; and, conversely, the removal of brackets may cause

a convergent series to oscillate.

Ex. 2, The series l-J + -f+i-f + --. oscillates between the values

306... and 1-306...; but the series (1
-

|)+ (|-f) + (f-f) + ... converges

to the sum '306..., while 1 -(i -)-(-)- ... converges to the sum

1-306.... [-306. .. = l-log2 = - + -+..., see Arts. 21, 24, 63.]

It is evident that when we are only concerned with deter-

mining whether a series is convergent or not, we may neglect

any finite number of terms of the series; this is often con-

venient in order to avoid some irregularity of the terms, at

the beginning of the series.

In particular, it is clear that the series

ore simultaneously convergent. The sum of the latter is often

the remainder after m terms of the former.
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10. In general, if aH+i=f(a ll ), and if (a n) converges to a limit I, then I

must be a root of the equation x= f(x).

But there are two limits which can be derived from (an) by means of

sub-sequences, they must satisfy the equations x= f(y\ y =f(x).
For illustrations, see Ex. 11.

11. If an+ i
= &", >0, a number of alternatives arise; we can write

the condition in the form loga,, +1 = Aa,,, if A= log&. By means of the

curve y= log.r and the line y= \x we can easily prove that

(i) if A>l/e, (an) is a divergent monotonic sequence ;

(ii) if < A < 1 /e, the equation A#= log x has two real roots a, /? (say

that a < ft) ;
then the sequence (a,,) is monotonic, and an -* a

if !</?; but if !>/?, an ><x).

When A is negative, the equation log#=Ao; has one real root (a); but

the sequence () will be seen to be no longer monotonic. To meet this

difficulty we may write log (log )
=

Iog( A) + Aa,,_i and use the curve
/ | \

> n + l/

y= log (log- )
and the line y = log(- A) + \x. It can then be proved that

the sequences (a2n), (a-2n+i) are separately monotonic, and

(iii) if -e<A<0, aw ->a.

(iv) if A<-<9, : +i-*, a*,, -*<>, if a
1 <a', but a.>n ^u, a.,)+1 ^v,

if
a-j > a

;
and - = a, if a

:
a.

Here w, v are such that u<a<v and ^M= v, ^*= w.

This problem was discussed in the special case a^
= k by Seidel (Abhand-

lungen der k. Akad. der Wissensch. zil Miinchen, Bd. 11, 1870), who was the

first to point out the possibility of oscillation, in case (iv). Previously,

Eisenstein (CrelUs Journal fur Math., Bd. 28, 1844, p. 49) had obtained the

root a as a series proceeding in powers of A
;

this series is the same as

the one given in Art. 56, Ex. 4, below.

Arts. 4, 5.

- 12. The reader may find it instructive to determine the upper and lower

limits, and also the extreme limiting values of the following sequences.

Th< relations of the terms a n to the limits should also be considered.

(1) aM = (-l)"n/(2w+l). (2) M
= (-l)"( + l)/(2w + l).

(3) a,,
= 7i + (-l)

n
(2H + l). (4) CT,,

= 2w + l+(-l)
M
w.

13. In an oscillatory sequence there may be a finite numlx-r of limits

derived from sub-sequences, all, sinnc, or none of the limits bring attained,

as may bo seen by considering :

(1) a tl
=

Hin(ttir), which consists of tlir sevrn numbers 0, -ti, ix/3,

1 all repeated infinitely often.

(2)a,,= M4- jsin(jb<7r)
has the same seven limits as in ca

luit only tin* value n is attained.



J.I
I

1

.'

Tli. ba :i \V!IM!. ..f limits (> l.x. 1. \

limits may ;

:n nil tin- lin.

rith

tilt- .m-t "t , ail. I tli.-|vt'..iv raiiUMt f.,MM a -

14. ''

It' liiii-/,, /, lim<>,, = A'

and liin /' /, lim /> = A,

/ + /^lim(^, + /O = A'+A

a n.l /'-/. K-l

iiiiilti|ilii-atinn tin- rt-siilts | tplej
\vt- may >M|)|M.>.-

|fi A" and A
I"

i
Mil <></

I= A'A;

it' <></< A' and /<i)<r A, w.- 1:

,-,-A-A :

if /<>< A" and /<0<A, \v- i:

A _lim ((//>)__//,

win-re A is tlu> nuin.-rically : /-A and A'/. //
,.f //

and A"/..

nlvalsii in the liniitiui; -iscs /---A*, / ", A'^

!-tandinur tliat tin- ruli-s <-an iriv,- D" inf.>rinati..n in -:ist-s when

present,
It is also t,, In- M ,,ti ..... 1 that i-..Mv-ri:'-i

that tln-sr in. -.jualit i'-s ma\ iv nnK'h \\id.-r lii ',,6W )

than in jiarii.-nlai-

15. \
'

is usually !-

multiplication ly tin- rM-i|ii-,,,-al. an-1 we lind

(1) If (</-

1 /.

and - A'.

l.ut if /<()

in i'iu-1 -i all; |
:n thosi- I-

i tin- values of /, A Jjive no
.



20 SEQUENCES AND LIMITS. [CH.

16. To illustrate the results of Exs. 14, 15, the reader may consider

the following cases :

(1) (O= 1, i, , i, ... &,,-* 0, an/bn-0.^
(&)=-> + , -f, + ,

... lim (&/<>=-<*, Hm" (6n/aw)
= x .

(2)(a,,)= 1,
*

^, i, ... lim (&,,)=-!.

(6,,)= -2, +3, -4, +5, ..

(3) (O=l, }, 2, J, 3, i, 4, ..

(&)=!, 1, i, 2,
i

3,
i

an bn -* 1.

lira (an/bn)= 0, Era" (/&)= x .

There is no difficulty in constructing further examples.

17. Verify the following table, and construct examples of each possi-

bility, where (1) denotes convergence to a limit not zero, (2) to zero.

(3) divergence to +x, (3') divergence to -x, (4) finite oscillation,

(5) infinite oscillation.

CLn
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CHAPTER II.

SEEIES OF POSITIVE TERMS.

7. If all the terms (alt
a

2 ,
a
3 , ...) of the series are positive, the

sequence (sn) steadily increases
;
and so (by Art. 2) the series 2 n

must be either convergent or divergent; that is, oscillation is

impossible. It is therefore clear (from the same article) that :

(1) The series converges if sn is less than some fixed number

for all values of n.

(2) The series diverges if a value of n can be found so that

sn is greater than N, no matter how large N is.

Ex. 1. Consider the series given by an= 1/nl, so that

8 = i + J_ + J_ + JL . . 1

Compare sn with the sum
i ,

!
,

!
,

1
,

T

<Tn=l + + 02 + 03+ + o^i'

It is clear that 3!= 3.2>22
;
4! = 4.3.2>23

;

and so on, n\ = n. (n 1) ... 3. 2>2"~ 1
.

Thus, from the third term onwards, every term in <rn is greater than the

corresponding term in sn ; and the first and second terms in the sums

are equal. Thus cr,,>s,,.

so that x, ( < <rn < 2.

< '"usequently the series 2an is convergent and its sum cannot exceed -2.

1 1' l In- Mini is denoted by e 1, as usual, we ran prove similarly that

By direct calculation to 6 decimals we find that l-l-*; lies between

and 1^71*-'* and that l/{7(7!)} is less than 00003, 10 that lies

between 2'7182 and 2'7183. Further calculations ha\e shewn that

-2-7182818!
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The method used here can easily be applied to discuss the two series

But the discussions in Art. 11 are as easy and have the advantage of

being more easily remembered.

The method given in Ex. 2 can be put in the following

rule (often called Cauchy's test of condensation):

The series 2an converges or diverges with ^NaN ,
if N=2n

and an^ an+l ;
and it is easy to extend the proof given above

so as to shew that we may take N as the integral part of kn >

where k is any number greater than 1.

(3) It is clear also, from the results of Art. 2, that if we
can find nv so that s

ni
sn^>h (where, h is a fixed positive

constant), no matter how large n may be, then the series must

be divergent.

For we can then select a succession of values n
,
n

l}
n

z ,
ns>

n, ... , such that

h -Sh etc.

Thus, on adding, we find that

and therefore s
nf

can be made arbitrarily large by taking r

sufficiently great; and so the series diverges in virtue of (2)

above.

As an example, consider Ex. 2 above
;
we have then

s
ni
-sn>(nl -n)ln^

because s
ni
~sn contains (ni-n) terms ranging from !/(?? + 1) to 1 /^ ; ami

so, by taking ?i
1
= 2w, we get

*Jn
-

*n> i

(4) If S is the sum of a convergent series of positive terms,

the sequence ( n ) increases to the limit 8
;
the value of sn cannot

reach, ami <i fortiori, cannot exceed S. Thus S must be ^ivntrr

than the sum of any number of terms, taken arbitrarily, in tlu>

;ies; for n can be chosen lai-^v enough to ensure th.-r

includes all these terms.

On the other hand, any number smaller than N. (say N e),

has the property that we can liml terms in the 861168 whose

sum exceeds N e.
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9. The comparison test leads at once to the following form,

which is often easier to work with :

Let the series 2(l/C
r

n) be convergent; then ^an will converge,

provided that

is not infinite, both series containing only positive terms.

For, when this condition is satisfied, we can find a constant G

independent of n, such that

Hence an is less than G/Cn ,
which is the general term of a

convergent series.

It is useful to remark that there is no need to assume the

existence of the limit lim (anCn) ;
this is seen by considering

the convergent serieso

for which anCn is alternately equal to 1 and 2.

Further, the test is sufficient only and is not necessary ;
as

we may see by taking Cn = nl and a.n
= l/2

n ~ 1

;
then anGn>n/2t

so that lim(ari
(7n)

= oo. But Ean converges (see Ex. 1, Art. 6).

The corresponding test for divergence runs :

Let the series 2(l/Dn ) be divergent, then 2aw itfiM diverge,

provided that
lira( nZ)n)>0,

/>o/// series containing only positive terms.

The proof is practically identical with the previous investiga-

tion, when the signs of inequality are reversed. We note also

that the limit lim(anDn) need not exist; and that the test is

not necessary.

It follows immediately that the folln-! ,/</ rttmlitnmx are

necessary but not sufficient :

For convergence, Mm (anDn)
=

;

for divergence, Mm (",/') '

lint, in ^vn.-ral tlicrc is no need for tin- limits <>!' (<> 1>

of (anCn ) to <-xist: and //// condition, [im(anDn)=Q, sometimes

given as necessary for convergence, is incorrect,
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!_

Further, to ensure divergence, it is not necessary that an
n

should be ultimately greater than unity, in spite of what is

i

sometimes stated in text-books; and if an
n

oscillates between

limits which include unity, the series diverges*

To prove these rules, suppose first that

j_

liman
n= Gf < 1.

Take any number p between 6' and 1
;
then we can find rn so that

_i_

a n
n< p < 1

,
if n>m.

Hence, after the rath term, the terms of 2 ro are less than those of the

convergent series S/o
n

;
that is, 2an is convergent. And the remainder

after p terms is less than p
p/(lp) provided that p>m.

i
But if limanw >l, there will be an infinite sequence of values of n,

(say n-t,
n

2 ,
n3 , ...), such that

i_

an n>], if n= np ;

and therefore aw>l, if n= np .

Thus the sum 2a, taken from 1 to np ,
must be greater than p ;

and

j
i may be taken as large as we please, so that 2 n diverges.

We know from Art. 1 54 that lim an
n
lies between the extreme

limits of (an+1/an); thus the series converges if \im(an+l/a.n) < 1,

and diverges if limO',, .

,
") >> 1. This shews that d'Alembert's

test (Art. 12) is a deduction from Cauchy's.

But on the other hand, since we only know that linuf,,"

falls between the extreme limits of (an+l/an),
it is clear that

we cannot deduce Cauchy's test in its full generality from
d'Alembert's.

If we consider a power-series 26naj
n

(in which bn and x are

supposed positive), Cauchy's test will give

#<!, for convergence, and se>l, for divergence,

where Z=lim/v.

Tims ./ = ]/ gives an exact boundary between comvrgrnt
and divergent series, supposing I to be diflrrcnt from /m and

This rni^lit SIM-HI to In- at \ ariaiic- \\itli a slat i-im-nl niad- \>\ ('lirvMal

. 'Jncl edition. <-li. \\\l. Jj ">, I): Imt his ivinaik must In- umli-rst cod as

implying the insiiHii-ii-in-y of tin- nictliod ns.-d in that atticlc. Tin- roniplrt .-

toi in .,!' t In- t.-st is ^ivi-n I

iy
( 'hrystal in 5 1 1 of tin- sain.- c!ia].l.T.
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fn+l
Further (sn+l

- 7n+1 )
-

(.sn
- 7J = n+l

-
f(x)dx^ 0,

J n

and therefore the sequence whose ??th term is sn In never

increases', and since its terms are contained between and a
l>

the sequence must have a limit (Art. 2) and

a, Slim (-/.) SO.

Thus, the series Sctn converges or diverges with the integral*

I"
f(x)dx ; if convergent, the sum of the series differs from the

integral by less than a
l ; if divergent ,-

the limit of (sn In)
nevertheless exists and lies between and ar

Ex. If an= l/n(n + l), /(#) = !/#(#+ !), and f*/{*)drlog.8.
3C

And 2t
cin = l, which is contained between the values log 2 and ^+ log2,

in agreement with the general result.

A large number of very important special series are easily

tested by this rule :

(1) Consider - + ^4-+..., where cin
= n'P.

Here, if p is positive, the rule applies at once, and gives

^. (^i-p-1);
p

thus the integral to oo is convergent only if p > 1. Thus the

given series converges only if p^>l: and the sum is tlifi)

contained between the values l/(p 1) and p/(p l).

If p = 1
,
the integral is equal to log x, and shews that the

harmonic series is divergent (see Act. 7) ;
we infer also that

n->cc

.xists and lies between and 1. This is Euler's or M*rln ',<>,/ /".s-

constant.

The convergence of the st-rifs used in Art. 9

L + gf+3 ,
+

^,
+ ..^-^ +

^-1-...

can in w ! inferred.

* The integral converges or <livrrm:s with the scqurnrr (/): for further details

iix III.
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The following results, which are independent of the Calculus, have a

field of application substantially equivalent to (4) :

Let (Mn ) denote an increasing sequence such that limMn= cc
;
then

are divergent series, while l̂(Mn+l Mn)/'MH
p~ lMn+1 is convergent if p>\.

For, if we take the sum of (Mn+l -Mn)/Mn as n ranges from q to r, we

see that its value is greater than ~Z(Mn+l
- Mn)/Mr+l (Mr+l - Mg)/Mr+l

i

because in the summation J/n <J/r+1 . We can choose r large enough to

make J/r+l^2Mg ;
and so this sum is greater than ^, no matter how

large q may be. Thus the series diverges. (Art. 7 (3).)

Similarly, 2(J/n+1 - M n)/Mn+l is divergent.

If
/?
=

2, the third series reduces to
^(jr--*/ )

:=
17

r
'
an^ so *s con "

vergent ; thus if p > 2, the terms are less than those of a convergent

series, and so the only case left for discussion is given by 1 < p < 2.

From Ex. 24, Ch. I., we have the inequality

( 1 - am)/m > ( 1
- an)/n, if m< n.

Write now an c, m/n = k,

and then we have 1 c*>(l-c)
where k is a proper fraction.

To apply this lemma, write

and then we get 1 -^ < -L-
[l

-(^ )" ']
,

Mn+l -Mn 1/1 1

From this it is plain that the given series has its terms less than those

of a convergent series.

12. Ratio-tests for convergence.

Rummer's test for the series 2an runs thus:

// SAr 1 is a divergent series, then 2aM is

(C) convergent, if lim (l)n

t/ " _
JL>/J+1)>0,

\ ''
. i X

I,
if

lini(/>,,
"'"

AH-I)<O.
> '

'

>/ i i
/

For in tin- first case, i!' // is tin- minimum limit ;m<l // is any

positive numlxT less than //.an intr^vr //, can IK- found siu-h tl-.at

'

^n) i> '' '*'

-n-fl
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(3) If the limits used in (2) are both equal to 1, we must use

more delicate tests, found by writing

Dn= nlogn, n log n log (log n), and so on.

These functions are of the form f(ri), where f(x) is continuous

and f"(x) tends to zero as x tends to infinity. Then Rummer's
test becomes

(C) iim^w >0; (D) lhn~/cn <0,

where ^= i

For

f(n + 1) -f(n) -f(n}= [f(n+ #) -f(n}}dx= ffaf*f(n
+ t)dt.

Now we can find v so that. \f"(x) \

< e, if x > v, and so the last integral

is easily seen to be less than ^e, if n > v. Thus

f(n+ I)-f(n)-f(n)-*0, as 91^00.

Writing f(n+ l) and f(ri) for Z)n+ i and Z)M in Rummer's test, we are led

at once to the form given above.

In particular if f(x) x log x, we find /'(#)
= log ar+ 1/

f'
f

(x) 1/X', thus we find de Morgan's and Bertrand's first test,

(C) lim
/0n >l; (D) KS

/0n <l,

where " = 1 + -+~^
Their further tests, given by f(x) = x log x log (log a;), etc., are of

little practical importance.

(4) It is sometimes more convenient to replace the last test

by the following:

(C) lim <rn > 1
; (D) !W7l < 1,

where w_^i-=-

After a certain stage, we have 1 <an/an +i

also <^-log (l+^)=[o
f

r^^<^, if

thus we see that <p,,-(r, l < 2 (log %)/, and so pn -o-,t
-*0.

(5) The most important cases in practical work admit of

the quotient ajan+l being expressed in the form

<* = !
. ff

,

'"

an+1 ?'

where yU is a constant, X an indrx ^r'at-r than 1. and

remains less than a fixed nnmlMT .1 I'oi- all values of //.
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Secondly, it is not necessary for the convergence of the series

San that an/an+l should have a definite limit.

For it will be seen in Art. 26 that the order of the terms does not affect

the convergence of a series of positive terms
;
but of course a change in

the order may affect the value of liman/an+l .

Ex. 1. The series a + l + a3+ a2+ a5+ a4 + ... is a rearrangement of the

geometric series 1 +a+ cr+ a3 +... ,
and so is convergent if 0<a<l. But

in this series the quotient an/an+l is alternately a and I/a
3

.

Ex.2. Theseries l + a+ /3
2+ a3+ /3

4+ a5+ /3
6 +...

is convergent if < a < @ < I ; as is plain by comparison with

In this series we have

lim an/ft
n+1=

0, llm /3
n
/a

n+1 = oo .

But even when the terms are arranged in order of magnitude, the convergence

of the series does not imply the existence of the limit.

Ex.3. Theseries l+-ia+ f5 a+|a2+ ia2 + a3+ ^a3 +...

has its terms arranged in order of magnitude, if < a < 1
;
and it is then

convergent, by comparison with l + a + a + a2+ a2 + u,
3+ a3 +... .

But yet lim(an/an+1)= l/a, Km (an/an + :)
= 1.

Thirdly, if the quotient an/an+l has maximum and minimum
limits which include unity, the whole scale of ratio-tests will

fail.

For, if \im(an/an+l)O> 1 >g = \im(an/an+l), we can take A", k such that

and then an/an+l is greater than K for an infinite sequence of values of n,

while it is less than k for a second infinite sequence of values.

If n belongs to the first set of values, we shall have

n(a n/an+l -l)>n(K-l);
but if it belongs to the second set,

Hence limw(an/an+ 1
- 1)= + 00, lim n(a,,/an+1

- 1)= - co
,

and therefore Raabe's test fails entirely. It is easy to see that the failure

extends to all the following tests.

If we apply Raabe's test to Ex. 3 above, we iind

lira ?*(/+,-!)+ oo, Hn7i(aM/aM+1 -l)=l ;

and passing to the next stage we get

imi (log n)[n(an/an +i -!)-!]= + 00, lim(log70[/<(",, ",,-n-l)- 1]
= 0,

so that the ratio-tests can give no information.
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Or, again, since the last term in the bracket is positive, because ex is

greater than X, we have

" '

As this inequality is true for any value of X greater than
,
it is clear

that the integral / f(x)dx must converge ; and, therefore, so also does

the series 2/(w).

In the second case, can be found so that

As above, this gives

7*

or I f(x)dx= I f(x)dx, if J
Jx .

J
f

/oo
f(x)dx is divergent, because, no matter

how great X may be, a number X'= ex can be found such that / f(x}dx

is greater than a certain constant K
; compare the argument of Art. 7 (3).

Thus the series 2/(w) is divergent.

These tests include the whole of the logarithmic scale.

For example, consider

f(x)=l/{x.\ogx. [log(log#)]
p
),

then exf(e
x
)
= e

x
/{e

x .x. [log x]?}.

Thus exf(e
x
)/f(x)

=
[log(log x)y

and so lim exf(e
x
)/f(x)

= Q, if

,/' ^. oo

or = oo
,

if p : 1.

That is, the series 2/(7i) converges if p>-l and diverges if

It is easy to see that if
</>(x) is a function which steadily

increases with x> in such a way that (/>(x)>x, the proof
above may be generalised to give ErmakofFs tests:

. . p 4/(x)f(A(x)) ^
(i) convergence, if lim '

7x T <1,
x-> J\x )

(ii) divergence, if lim *'<)/(())> L
xi^; ./('')
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Similarly it can be proved that test (2) can be replaced by

5 log flog *)
[n(1

- a""}
"
log n^> 1 '

This form proves for example that the series n
--lognj diverges if

0=^=1 >
but converges for x>\.

16. General notes on series of positive terms.

Although the rules which we have established are sufficient

to test the convergence of all series which present themselves

naturally in elementary analysis, yet it is impossible to frame

any rule which will give a decisive test for an artificially

constructed series. In other words, whatever rule is given, a

series can be invented for which the rule fails to give a decisive

result.

The following notes (l)-(3) and (8) show how certain rules

which appear plausible at first sight have been proved to

be either incorrect or insufficient. Notes (4)-(7) shew that

however slowly a series may diverge (or converge) we can

always construct series which diverge (or converge) still more

slowly ;
and thus no test of comparison can be sufficient for all

series.

Other interesting questions in this connexion have been con-

sidered by Hadamard (Acta Mathematica, t. 18, 1894, p. 319,

and t. 27, 1903, p. 177).

(1) Abel, has pointed out that there cannot be a positive

function <j>(n) such that the two conditions

(i) lim </>(n).an
= Q, (ii) lim

</>()}).
an >

are sufficient, the first for the convergence, the second for the

divergence of any series Zf,,.

For, if so, 2J[<(wj)j~
l would diverge ;

and therefore, if

Mn = wo)]-* + wa)]- 1 + . . . + ooor,
the sequence Mn would be an increasing sequence tending to oo .

Hence the series 2(Mn Mn -\)IMn would diverge also (Art. 11); but

so that lim <l>(n)(MH
- M

.
,

) -I/,, =0,

contradicting the first condition.

(2) Pringsheim has proved that there cannot be a positive

function <f>(n) tending to c/r
,
such that the condition
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(7) Stieltjes also proved that if v
lt

v
2 ,
v
3 ,

... is an increasing

sequence, tending to infinity as a limit, a convergent series 2cn
can be found so that Zvn cn is divergent.

For, write cM= l/vM -l/v,l+1 ,
which makes 2cn a convergent series; then

i'
ll
c n = (vn+i-vn)/vn+ i, so that 2vncn is divergent.

(8) Finally, even when the terms of the series 2an steadily

decrease, the following results have been found by Pringsheim :

However fast the series Sc" 1

may converge, yet there are

always divergent series 2an such that limcwan = 0.

However slowly <j>(n) may increase to oo with n, there are

always convergent series Ean ,
for which Kmti. <j)(n) . an = <x>

(although Iim7i.aw= by Art. 9).

See Math. Annalen, Bd. 35, pp. 347, 356.

EXAMPLES.

1. Test the convergence of the series 2# M ,
where a n is given by the

following expressions :

1

"'
(log)

10 n>
[log(logw)]

10 M '

(Art. 15)
a1/"- 1. (Ex. 25, Ch. I., and Art. 11)

2. Prove that if 6-l>>0, the series

a(a+l)(q+2)

converges to the sum (6 1)/(6 a 1).

Shew also that the sum of

a-l)(6-a-2), if &-

[If the first series is denoted by w + ?i
1
+ M2 +..., we get

\\hidi

Hence (6-a- l)(x (l

-V )
=

a</,, -(< + /<)", hy addition. But
l.\ Ait. !, >ince the terms st.-adily decrease. Hence lim*w can be found.

The second series can be expressed as the difference between two series

of the fust
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by means of the integral
C
n ndx _ [i

dt

Jo x2+ ri2 ~Jol + t'
2 '

and deduce that cr,,
->

|TT.

11. Prove that if p approaches zero through positive values,

and that

where C is Euler's constant. [DiRICHLET.]

[To prove the latter part, note that if

f(v) is positive but less than l/v. The desired limit is that of /"(I), which

can be put in the form

1

From this expression we can easily see that the desired limit must be

equal to that of

12. More generally, if Mn = an + bn (where
|

bn
|

is less than a fixed value,

and Mn is never zero),

and lim
^2 ;J/~I+P

~ ~
)

exists and is finite. [DIRICHLET.]

If Mn tends steadily to infinity with n, and

then l{

p-+Q \ 1

or =(1 - l/o)/logc, if Mn+l/Mn -+c>l,
or =0, if J/N+1/J/,,-*oc.

[PRINGSHEIM, Math. Annalen, Bd. 37.]

Ex. Mn = n*, 2", n!

13. Utilise Tln-i.ivm II. of Art. 152 (Appendix) to shew that if (</)

decreases steadily, the condition lim(?m,,)= is necessary (Art. 9) for the

convergence of 2w /( , by writing

,,
= (#/") , /,. I

that = S, l
-,,,i

l ,. ";~
r/"- 1 =

6', (_1 . [CESA.:,..]
"

" "n I

If w,, =
^l--log?ij , prove that lim (//) = !, and deduce the divergence

of 2X, ('nipniv Art. !.").
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CHAPTEK III.

SERIES IN GENERAL.

17. The only general test of convergence is simply a trans-

formation of the condition for convergence of the sequence sn

(Art. 3); namely, that we must be able to find m, so that

\sn sm |<e, provided only that n>m. If we express this

condition in terms of the series 2 n ,
we get :

"

It must be possible to find m, corresponding to the arbitrary

positive fraction e, so that

|

am+1+ am+z+ . . . + am+p |< e,

no matter how large p may be.

It is an obvious consequence that in every convergent series*

lim an = 0, lim (an+1+ an+2+ . . . + an+p)
= 0.

n -oo n >co

But these conditions are not sufficient unless p is allowed to

take all possible forms of variation with n; and so they are

not practically useful. However, it is sometimes possible to

infer non-convergence by using a special form for p and

shewing that then the limit is not zero (as in Art. 7 (3)).

We are therefore obliged to employ special tests, which

suffice to shew that a large number of interesting series are

convergent.

*
It is clear from the examples in ( 'liaptcr II. that the condition lima,, = does

not exclude divergent series : Ua it does not < -\vn exclude oscillatory series, as

perhaps might bo expect. .1.

where lim /,
= 0, iiman = l, and \<t t In- tn-ms ti-inl to /.cm.
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The sum of the first 2?z terms is

=

Thus, by Art. 11, Iims2n =oo.

But *2n-]>2n, and so also Kms2 -i = oo.

Thus the new series is divergent.

The reason for the failure of the theorem is that the original series

contains an infinity of negative terms
;
and that the series ceases to con-

verge when these terms are made positive (Art. 11).

It is easy to see that the foregoing theorem can also be

stated in the form :

An absolutely convergent series remains convergent if each

term is multiplied by a factor whose numerical value does

not exceed a constant k.

19. It is often convenient, however, to infer the convergence
of a series from one which is not absolutely convergent. For

this purpose the following theorem may be used :

A convergent series 2an (which need not converge absolutely)

remains convergent if its terms are each multiplied by a factor
un , provided that the sequence (un) is monotonic, and that

\

un \

is less than a constant k. (Abel's test.)

Under these conditions un converges to a limit u
;
and write

vn = u un when (un) is an increasing sequence, but vn= un u
when (un ) is decreasing. Then it is clear that the sequence (vn)

never increases and converges to zero as a limit. Now

so that it will suffice to prove the convergence of 2ftnvn in order

to infer the convergence of 2anun . But by Abel's lemma i

Art. 23 below)

PVni+\
m+1

where p is greater than any of the sums

m-ni '"
i i ~~~H -'

| -j
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and c..ns,.ijufiitly 1 at
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-

\ + \
-

}
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and rnij.li.y
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oiiic sequ n-tors
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i'- 3-
'"

Thus li in ,<,._! t-xi-ts (liy Ait. 1) (1)), and sine.-
.<... =%,_i -

1 (/<+i

liin*.
F1 _, = liin.N- J , 1

. That is, the B61

Ex. 2. It is easy to sec why, fn.ni our present point of series

In Ex. 2, Art. 18, converge; the sequence of factors employed it

important intViviic-r is that it' tlu- i
/

u depend
in any \s ay on a varial >lr ./ <suljrct t the conditinn of t'ori.

a. iin-nntMiiic sMju-nc<-). tin- r.-iiiaind.-r after in terms in

-
nunirrirally less than i>('\+ ): and C

^'-,|u-ntly tin- choice of ni, \vhicli niak.-s this ivmaindrr

than e. is /'//-/-
;

o/OJj
so lon^ as

r^ -f /^ is tinit,-.

This ].r.']Tty may In- .-xpv-s.-d 1

>y ^ayin-' that

! *-,,, witf 41.

below.)

A -prcial ca.M- of thi>, whi--h wu- th.- origin*]

ran 1-y takin.i: ".,-- l. I'i ^1.

20. // 1

minimwm lvm,\
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terms are multiplied by a decreasing sequence (vn) which tends

to zero as a limit. (Dirichlet's test.)
*

Abel's lemma gives the inequality

m+p
I ^^ ^

/ (K 1) ^^ nt)

771+ 1

where p is any number not less than the greatest of the sums

am+i>

It is sufficient to suppose p not less than each of the differences

>
|

Sm+p
- Sm \

.

Now, if the extreme limits of sn are both finite, we can

find some constant! I, such that sn is not greater than I, for

any value of n. Thus sn sm
\
= 21, and we may take p = 21.

We can now choose m so that vm+l < e/Z, and then

m+p

|2wJ<2e,
m+1

proving that the series 2a?lfn converges.

Ex. The series 2-yncos nO, *2vn sin nB converge if 6 is not or a multiple
Of 27T.

For l>;

P
cos?i0= sin(te9) . cos [m+ ^(p + 1)]<9. cosecW

m+l

m+p
and 2 an0=sm(J0).8m[m+i(p+l)]0.eoeecJ0;

m+l

so that we could here take p= \

cosec J0|.

When =
0, the first series may be convergent or divergent according to

the form of vn ;
but the second series, being 0+0+ + ..., converges to the

sum 0.

21. A special case of the last article is the result:

If the terms of a series '2( I)
n - 1vn are alternately positive

and negative, and never increase in numerical value, the series

will converge, provided that the terms tend to zero as a limit.

*
It is practically certain that Abel knew of this test : the history is sketched

briefly by Pringsheim .(Math. Annul ,-n, I'.d. 25, p. 423, footnote). But to dis-

tinguish it clearly from the test of Art. 19, it seems better to use Dirichlet's

name, following Jordan (Cours d'Analyse, t. 1, 299).

fThis constant I will be either_the greatest value of
| M |,

or (if there is no

greatest value) the greater of Ilim,*,,! and |lim.<*,,|.
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|-'<>i if we take 1 1 -f 1 1 + 1 1 + ... as the oscillat*

of the la>t article, \v need only .suppose that p is 1; and

<<|Uently til'

v
1 ->'.>+>',-v4+ v

& -Vt+...
it.

<)n account of the frequent use of this theon-m. \v.

now give another proof of it. It is plain that

%i-(i-^)-K^-4)+...f(^|.1-i

and each of th-s.- l.i-ack.-ts i> ]><it ive (or at least n<-' ive),

so that, as n increases, th.- s.Mjuciice of terin- <> > never decreases.

Also x M .

l

= ,-
1 -(,>2

-i;
3)- ( -...-(t)

- ^K

and so the sequence >
v
..,,.;> Qever increases.

Further =--
and

Hence, by Art. L) . the sequence (> v ) lias a limit not greater
than >\

and (fi^+i) Has a limit not less tlian 0. But these two

limits must be equal since lini c., n ..^ =0, so that

Hence the series converges to a sum lying between and vr

Ex. 1. The M-rii-s already mentioned in Art. 1*, K.\. 1,

is n->\\ >een to converge, i>n>\idfd that 0<jol-l.
In the special case p=l we get tin-

\\hirh is easily seen t> le cvjual t< l>^-2. F.i

'i x jo I +.r

1 f1
.'-'"

.' 1 H-

,.

1!" 1

J,','i

,,,,1,,, if-*L(i-J+J-J+.
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The diagram indicates the first eight terms in the sequence (sn) obtained

from this series by addition
;

the dotted lines indicate the monotonic

convergence of the two sequences

4 5

FIG. 9.

It is obvious that if the sequence (vn) never increases, but

approaches a limit I, not equal to zero, the series 2( l)
n ~ lvn

will oscillate between two values whose difference is equal to I;

in fact we have by the previous argument lim s2n+1
= lim s2n+ 1.

A special case of interest is given by the following test

which is similar to that of Art. 12 :

If vn/vn+1 can be expressed in the form

FX>1
J^l + 2 +

^5, {j

the series 2( \)
n ~ lvn is convergent if p > 0, oscillatory if /m= 0.

For if /x> 0, after a certain stage we shall have

M ^ I
>n

|

*^~ x~ '

n n*

so that vw>vn+1 ;
and further (by Art. 39, Ex. 3) limvn = 0.

But, on the other hand, if /x
= 0, it is clear (from Art. 39) that

limt>n is not zero, and so the series must oscillate. And, if

/JL < 0, after a certain stage we shall have vn<vn+l) so that

limi;w cannot be zero, leading to oscillation again.

Ex. 2. Take the series

a. ft . q
*

l.y 1.2.y(7 -fl) 1.2.3.7(7 + 1X7 + 2)

So the series converges if

The same condition .ipplies to the series (Art. 20)

and to the corresponding series of sines.
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can be made greater that NJ^ by taking n greater .than (say)

n . Hence, no matter how large Nt is, a value n can be

found so that
//;

if ?i>7i ;

hence sn must tend to oo with n, contrary to hypothesis.

It follows similarly that (pn qn)/n cannot approach a negative

limit; so that if lim (pn qn)/n exists its value must be 0. Now

n=pn+qn, and so if lim(pn/qn) exists, its value must be 1.

This proof is substantially the same as one given by Bagnera.*

Ex. The series 1 + ^- + i+ - + ^+ - + ... cannot converge.

As a verification, we note that the sum of 3n terms is certainly greater

than

so that the series is divergent.

23. Abel's Lemma.

If the sequence (vn) of positive terms never increases, the sum

2 anVn ties between Hv
l
and hv

: ,
where H, h are the upper and

lower limits of the sums

For, with the usual notation,

a
l
= s

1 ,
a

2
= s

z
s
l

Thus

Now the factors (fj v
2 ), (v2 v

s),
...

, (vp .
l

vp),
vp are never

negative, and consequently

8i(vi
- vz> <H(vi

- v
s).

8*(V2
- vs) <H(v2

- v
s ), . . .

8p .
l (v9 .

l
-V9)<H(vp .

l
^V9) t

8f Vp <H>

*
Bagnera, Hull. Sci. Mnth. (2), t. 12, p. 227: Ces&ro, Rom. Ace. Lincei,

Rend. (4), t. 4, p. \\\'.\.
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Hence 2 <

or Xa <//'-,.

In likr manner lli- sum [fl r ilian

I
-

l't ",,'',, < //

i

where H' IB the greater of
1
17

1
and |&|; that is,

// i- the upper
lil it "

:

:

!

, -.., |*p|.

It is Bometimefl <l'^irallc to obtain limitfl for 1

se that // mote th<- u]|nT and lo\v.-r limits of 8mt

while //. A aiv tl . Th. -n exactly

< Mi tin- ntli.-r hand, whm ( .!/ i i^ an iiu-n-a^i

w.- find

M

24. Transformation of slowly convergent series.

Let us writ </ + r/
l( .

,

= /

and aw+2olH.l-hh^= / tc.

Thru \\v lia\r

( i

and rous,',,urntly ^J",/"
= "

lt'/-f .

/

wh-
//
= .'( 1 +.'>

I.' |"-atin^ this op.-rat i >n. we tind

^ << l=oly-KjRol)y+...4

-f.
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It can be proved* that in all cases when the original series

converges, the remainder term

tends to zero as p increases to infinity, at least when x is

positive. Consequently,

The cases of chief interest arise when x = l, and the terms a

are alternately positive and negative. Write then

a
l=+v1 ,

a
2
=-v

2 ,
a
B=+v3 ,

a= -v, ...,

and we have

where we write

Dv
l
= v

l
v
2 ,

L^v
l
= Dv

l
Dv

2
= v

l
2v

2+ 1>3 ,
etc.

We can write down a simple expression for the remainder,

if vn =f(n), where f(x) is a function such that/* (as) has a fixed

sign for all positive values of x, and steadily decreases in

numerical value as x increases.

For we have Dvn
=

\ f'(xl
Jo

I

l

dx
l

I

l

f (Xl
Jo Jo

so

and generally
ri ri

J)Pvn
=

( I)P \
dx

l
dx

Jo Jo

Thus the series Dpv
l
Dpv

2+Dpv
s

... consists of a succession

of decreasing terms, of alternate signs. Its sum is therefore

less than Dp
v^ in numerical value; and consequently

where

*For the cose x=l, see L. D. Ames, Annals of Mathematics, series '2, \.>1.

p. 188.
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Now '40825 --19568 = -21 257, so that s' certainly is contained between
0-21256 and 0-21258.

But s= 0-81746-5', so that $= 0'6049 to four decimal places. If we used

the original series, it would need over a hundred million terms to get this

result.

Ex. 2. Similarly we may sum the series l-
To 6 decimals, the first 8 terms give 0'634524 and from the next 7

terms we get the table :

V.
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A reference t< will hew that we have

;i series of terms v
l
-?., for \\hi.-i .-ry small

a n. I IP-v* has always the same sign. We ha\. tin -n

/>,', + ...).

Now if Dhn is positive we ha\-
/>/-, />>, -/ iti.l lim />- -o.

because the series in tin- l-ia.-l.--t \ ^et

Dvj.

Similarly if //-' . e have ir, >*> ^(r, -f Dv^.
tlu* series ca ii_:li degree of

'I'll.- trans!'.. rniatidi <l.-rriU-<l above WBS .en by K
and tin- tirst proof of il - acniracy i> <lu.- to Ponoelet Kuininer

ami Mai'kotl' lia\.- i'<un.l oth.-r transl'nnnatioiis !'.,r the M
th- latt.-r> nn-ili<.l includes Kult-r's aa a

an t-\ain]il- <i' Mark.tf>. \\ may

-2)1

Lnvr the sum mnvrtly to 20 <1-

TM ajj)ly Killer's method t> this example the ivader may n<
|

-' l

d V -U Vr& 43 *'")

\\\->\ trn term> ..f the series in th- 1 : .e -9011165, and if

;

|.].ly Kulei's m.-th.-d i the next >i.\. \\ r get '0004262 for the value

<-f the remainder: thus ^057 to six

'I-ofi. 1
-

1 _ !

4
j'
+

The >um ,,f the tiist teli t.-rms in the lira.-k.-;

mrtli.nl - '1 s f-r the reiiiaiii-.

Thus 1' 1=2 (0-822469)= 1 '
I

l^v.
j..

i:u : /'
i./Jg, 1896),

p. 178. F.-i-oth.: . .-MiiMilt l'rin::vli.-ii!.
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EXAMPLES.

1. Prove that the series

i_J_ J__L.
x x+\

converges for any value of x which makes none of the denominators zero ;

but that both the series

1, J__L_ J_
x x+l

, 1 __1_ 1 1 1~~ +

are divergent.

2. Prove that if ^nan is convergent, so also is 2 n .

3. If the series 2aw is convergent and the sequence (J/,,) steadily

increases to co with n, then (see Art. 23)

lim (a^J/i 4- 2 ^2+ + anMn}IMn= 0. [KRONECKER.]

4. Prove that the series

a - a? + a? - a?+ a* - a*+ . . .

oscillates, but can be made to converge to either of its two extreme limits

by inserting brackets. On the other hand the series

is convergent.

5. Shew that if a series converges, it is still convergent when any
number of brackets are inserted, grouping the terms. And shew also that

the converse is true, if all the terms in the brackets are positive.

6. Calculate, correctly to 20 decimals, the sum of the series

for x= t\y> *& How many terms would have to be taken, to calculate

the sum for x= fy to 3 decimals?

I C_iy'-i
7. Shew that the series

1
-a2+ a3 -a4+ ... diverges if an= -j-+

or if a=l/[-x/w + (-l)
n~ 1

] ; although the terms are alternately positive

and negative and tend to zero as a limit.

8. If |#|>1, prove that

' _2__L_
.r+1 *2 +l A-*+l

+

converges to the sum -.

9. If a,, -> a and bn -> 6, verify that if the series

converges to the sum >S, then the series

A, (01
- a

2 ) + 62 ('/2
-

3) + 63 (r
/
3
- </

4 ) -f ...

converges to the sum S-ab.
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10. 1 -! if the

>...
. ei j^ent , .so al

1 + ^ (rtt+ ^3) + ^ ( (/3 ^

converse always t % that

i-se is certainly tin.- \\ h-n

11. Ni.sruss ti

4-...
cS

_I_ +_L_- + +_L_rl +
./-Cj C,

ijucin-r tending to oo .

12. Verifv that

/ 1 1 /

?)
ru'i-iit if < to x

,
and x is not equal

I the vak
i

If
'

is fixed, verify that

al.-olutely convergent if r ia tin- int^ia! part "f /.

13. She* that v _!_ = _A
T - '

in inti'^er and th- 1 1' in. -in- th..' >>e

frmii the -unnnatioM.

fad tin- >UIM ran '> writti-n
|

In

M-\ +

*fl-

_,)
- +i

14. With the >anie notation as \-

~

if )i<

Find an

i //<
-
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15. Discuss the convergence of the series whose general term is

and also that of the series with cosw$ in place of sinnB. [Art. 20.]

[Math. Trip., 1899.}

16. Apply Art. 20 to the series whose sums to n terms are sin(w

cos(w+ !)
2
#, and deduce that

^^sin nd . cos n2
0, 2vn sin nO . sin n2

are convergent if vn steadily -O. [HARDY.]

17. Shew that if vn tends steadily to zero, in such a way that 2vn is

not convergent, then the series

r=D

converges if (and only if) a
l + a2+ ...+ak= 0.

18. If the sequence ( n) is convergent, prove that liniw(aM+1 ) must

either oscillate or converge to zero.

19. If 2an converges, and an steadily decreases to 0, 2?i(an -an+ i) is

convergent. If, in addition, aw 2an+ i+ an+2 >0, prove that

n2
(an

- n+i>->0. [HARDY.]

20. Apply Euler's transformation to shew that

21. Utilise the result of Ex. 3, p. 58, to shew that the sum of the series

1 x .v
2 x3

~*\ T I

~
~T~ T '. *j T ". -j ~T~

tends to the limit \ as x-*\.

It is easy to see that (if 6 <#<!), Dvn is positive and deceases ;
thus.

1 "1
the sum lies between ^v l =J and i(^i +^i)= 4^j

-
x-

22. By taking ?> ;l
= log( + H), shew, as on p. 56, that Dpvn is negative

nl steadily decreases; deduce that



CHAITKK IV.

ABSOLUTE CONVERGENT I.

25. Il is a i'ainiliar fact that a Unit-- BUID ha- the

value. IK. matter how tin- termfl .|' tli,- MUM

projn-rty, however, is ly no means uni\ .-r-ally
'

series ; as an illustration. consider th-

which we know is c-on\ci'-vnt (Ait. J I . K\.
L),

and has a

|i'itivf value N ^rt-attT than .1. L-t u^ arrange tin- t-niis of

this srrics so that each positive t-nii is i'ol]o\\

ii\v trnns : th- 96068 th-n beOOl

t
- .'-V 1 . 1 , 1

- >_ ! !

-J 4^:; i; g 1 K> i-j

Now we liav-

i_Ui_i4
' J_

2 -ri; ^^ -2 4

1=
.,

Thus

and it is easily >een that lim/. .., lim/. .., = lim

the sum oi' the series / i-
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Consequently, this derangement of the terms in the series

alters the sum of the series.

In view of the foregoing example we naturally ask under

what conditions may we derange the terms of a series without

altering its value? It is to be observed that in the derange-
ment we make a one-to-one correspondence between the terms

of two series; so that every term in the first series occupies
a perfectly definite place in the second series, and conversely.

Thus, corresponding to any number (n) of terms in the first

series, we can find a number (n) in the second series, such that

the n terms contain all the n terms (and some others); and

conversely.

For instance, in the derangement considered above, the first (2?

terms of s are all contained in the first (871 + 1) terms of t\ and the first

3p terms of t are all contained in the first 4p terms of s.

26. A series of positive terms, if convergent, has a sum

independent of the order of its terms; but if divergent it

remains divergent, however its terms are deranged.
As above, denote the original series by s and the deranged

series by t
;
and suppose first that s converges to the sum S.

Then we can choose n, so that the sum sn exceeds S e, however

small e may be. Now, t contains all the terms of s (and if any
term happens to be repeated in s, t contains it equally often);

we can therefore find an index p such that tp contains all the

terms sn . Thus we have found p so that tp exceeds 8 e,

because all the terms in ip sn are positive or zero. Now t

contains no terms which are not present in s, so that however

great r may be, tr cannot exceed 8} and, combining these two

conclusions, we get

S^tr >S-e, if r^p.
Consequently the series t converges to the sum S.

Secondly, if s is divergent, t cannot converge ;
for the foregoing

argument shews that if t converges, s must also converge.

Consequently t is divergent.

If we attempt to apply this ai ^unicnt t<> the two series considered in

Art. 25,
..1-1+I-.J+..., 1-1-1-1+1-1-1+,..,

we find that the terms in
,,

* arc partly ////<////<. Thus we cannot pi

that tf>S \
and as a matter of fact we sec frmn Art. :.'"> that this
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>iu.il;ul\, til-- argument ueed above fails to

that X -1 ( r , although thi> happ.-n- (,, I,,- ti ,.- h.-i-- it" r>\.

It is now easy to prove that if a series " is absolutely

convergent, its sum X is not altered by derangement.

write 0Zaw , '2|aJ, ami th.-n introduce the new

:-j n |]. The aeriea -; contains no negative terms,
ami no I. TIM in o i- than twic,- the corresponding
term in a; BO, since < is convergent, .-; _jes to a sum B
not -renter than 2.1, \vl th.- sum of a; and so B= S+A.

SUJ.JM.S.' now that N. .1 . /; are th.- MIIII^ ot' th.- three series

al'ti-r any .l.-rani;-i-im-nt ( siij.|ns,.,l tlie saim- for each ser
;

Tli.-n H' = S'+A'; hut hy what has been proved A' A and

/' ntain only positive tern

II,: N'=/;'-.| ll-A

}T..\ in-' tin-

Ex. 1. ii-iil-r thf >. i

1-.

.trly convergent l.y An. 11; ;m.l therefore ih- series

rgent, ;nnl lias tla- same sum after any deran^fin.-nt. h is

t! t<>

1 +
1 1

-f
1

,

' ! __L_JL.
1Q2 12

^

Ex. 2. From our present point ot' Hew, WQ observe that tlu- iiu-jiiality

betw< ,.1.1 i .^-i+j-j_^ + ...

-.ulain.-d l.y th.- tact that these serifs are not absolutely OO1

11). The wriefl a, o' li\.-i^.-iit, and ..f couise we havt-

to infer tha-

Tli.- last n-sult should U- c. .nt rastt-d with thf -tate of

affairs explained at tin- h.---innino- of Art. l^s : u^ino- th- nota'

.it article, we lind :

lini(r,-//, (
)-N, lim < ./

,
-f ,'/ \A

so that lim (8+A ). limy -
.< -8+A :

whereas there the se|Uencex (.,'
;

). ^-11

^ej.arately. althouo-h thrii- dill'-! -
>

>

-.verges to a

sum. whose value depends en th-
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27. Applications of absolute convergence.

Consider first the multiplication of two absolutely convergent
series A =2an> B = ^bn . Write the terms of the product so as to

form a table of double entry

a^ afiz a-J)3 a^ ...

/ t / t / t /
ajb^aj)} a

2b3 a
2
6
4 ...

/ / t / t

aj)^aj)^aj}s
a3

Z>
4

...

/ / t

a
4
b
l
-+a

4bz-+a4
b
3
-+a

4
b

4:
...

It is easy to prove that AB is the sum of the series

where the order of the terms is the same as is indicated by the

arrows in the table. For the sum to n terms of this series (1)

is A nBn ,
if

Now A /= 'Z an \

and B' = ^ bn are convergent by hypothesis.
Thus the series

(2)

obtained by removing the brackets from (1), is absolutely

convergent, because the sum of the absolute values of any
number of terms in (2) cannot exceed A'B'. Accordingly, (2)

has the same sum AB as the series (1). Since (2) is absolutely

convergent, we can arrange it in any order (by Art. 26)
without changing the sum. Thus we may replace (2) by

(3) a
1
6
1+a26 1+a1

6
2 4-a361+ a

2
&
2+" 1 />,+ "/> 1 + ...,

following the order of the diagonals indicated in the diagram.
Hence we find, on inserting brackets in (3),

-A.S= c
1+ c

2+c8 +... to oc,

where c
l
= a

1
b
1)

C
2
= a

2
6

1+ a
1
6
2 ,

c
3
= a861 H-a262+a1

6
3

and

For other results on the multiplication of series thr iv;ul<-r

should refer to Arts. 34, 35.
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MM.! us-|'ul application of tin.- theorem of Alt. 26 19

to justify thf step of arrang in lowers m
wh.-iv

;/
is a polynomial in ./ : say //

= '> -f >r/:+ ... -f l*^.

It is hriv sutli-i.-nt to have !< v \vliere

,<= 0.1, u-A+ftf+.-.+Af, A.-IU f-||:
and from Art. 1<>. w.- 966 that this iv.|iiires

shall

,;< A, if \- 1 = liin

'I'ln- last condition iv.juiivs that j8d<X, and that

1668 than BOOI6 ti\-d value; and thm the n.-ct-ssary

will certainly not alter th- sum f th- BOTJ

In most of the ordinary 68864 \=l. and
//

is of th- 1'orm

the condition is th.-n

-

In particular, if .^__2. it is

ainly satisfied \vln-n

to tak- : < x
/ 2 1. which

-

uri, ,,,,.,. ,, iav ).
t.-mpt.',! t,. think th;it the coiulitiuii \y\<\ w..uUl

be sutlii-ient : lut tliis is m.t the case. K"i- we have to ensure the

i> \viitt-n cut at length, and V
is inaih pusitivr in /<>f/ form.

AB an illustration >f tliis j.oint, r..n>i.l'-r \vhi--h

has ih. >um [1 -(ir-.r-')]-
1 = (!-.) -'. \V!MMI \toe-a?\<l. This conditi

ird l.y any vahu- >f 1) lyin^r Between 1 -r s - ; iad

jurii'-iilar liy x }, bed i'.nt if th-

in
)
i" get

-X*
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This equation is true if both series converge ; although the proof does not

follow from our present line of argument. It may be guessed that, in

general, the condition found for f in the text is unnecessarily narrow
;

and this is certainly the case in a number of special applications. How-

ever, we are not here concerned with finding the widest limits for x
;
what

we wish to shew is that the transformation is certainly legitimate when x
is properly restricted.

In view of Riemann's theorem (Art. 28) it may seem surprising that

the condition of absolute convergence gives an unnecessarily small value

for f. However, a little consideration will shew that Riemann's theorem
does not imply that any derangement of a non -absolutely convergent series

will alter its sum
; but that such a series can be made to have any value

by means of a special derangement, which may easily be of a far more

sweeping character than the derangement implied in arranging ^a^n

according to powers of x.

28. Riemann's Theorem.

// a series converges, but not absolutely, its sum can be made
to have any arbitrary value by a suitable derangement of the

series; it can also be made divergent or oscillatory.
Let xp denote the sum of the first p positive terms and yn

the sum of the first n negative terms
;
then we are given that

lim(a?p-2/n) = s, lim (xp+ yn)
= oo

,

where p, n tend to oo according to some definite relation. Hence

lim xp = oo
,

lim yn = oc .

p >oo n >oo

Suppose now that the sum of the series is to be made equal
to o-; since xp-*vo we can choose pl

so that x
Pi
> er, and so that

pl
is the smallest index which satisfies this condition. Similarly

we can find n^ so that
2/%1> 2^ 0", and again suppose that 71

1

is the least index consistent with the inequality.

Then, in the deranged series, we place first a group of pl

positive terms, second a group of n^ negative terms, keeping
the terms in each group in their original order. Thus, if >S, is

the sum of v terms, it is plain tint

<S
f O, if v<pv but Sv ><r, if p^ v<p1+ " r

We now continue the process, placing third a group of (p2 pi)

positive terms, where p2
is the least index such that r

;) > //,^-ho-;
and fourth, a group of (n^ n^) negative terms, where n

8
ifl

the least index such that
// > ,/,,.

<r.
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Tin- im-thon! of construction can evidently be carried on

indefinitely, and it is d.-ar that if /*,.+ /*, >^=pr
^ *

is
positive, I'M: oannoi exceed th- (/>,+ />, .>^ 1 t-rm of tin- MC

\vhil.- if
i>, . ,-f- /> r >' = />,.+ //,-. T N, is jMiMtiv.-, Imt does not

<! tin-
</', + /',-)ili t'-riu: i'<.r N.-T ehangefl sign .-it these

terms.

Thus, since tin- ti-rm^ "f th'- tferiea mu-t t.-nl to zero as v

increases, we ha\- limN =&
It is easy to mo. lily tin- t'oiv^oin^ m.-thoil so as to get a

<li\fi-L;Tiit or o.scillat'ry 901166, by starting from a sequ<-:

which is ritht-r <li\vruvnt or oscillatory and takin. .....

in turn to be tin- tir-i inlic-s which satisfy thr int-'jualii

t>^-^i !s>y l
--<rii y

t
> xPt

-

;ml so on.

As a matter of fact, howe\ tnn> prooeM i- 'juite out of the

fur pra'-tical work ; and \vr have to adopt an entirely dift'-

!i-ti..n. >t.-adiiy dr<T.-asing to zero as x increases ;

ami -i)"-y(/0, \vhii-h converges, i>\ Art. 21.

\- jiusiihv tei-ni is f<.ll.i\vrd itiv.- tt-nn : and suppose
that, in tla- dfraniTfd s.-ri,->, tin- first / t-nns i-,ntain /- -r r ji--iliv,- to n

negative terma (so that -In + r = r). Then the sum of these r tern:

win-re the second l>rark.-t contains r trims, and s.. lios between

and r-

Suj.jiosr first that /-/'(/') tcnd> *r- intinity with n, then

/'(-") ''- iM-tw.-iMi 1 and /(*+?), Tin;- llOOSe v to be

inction <>f

tin- hange in tlu- sum of th. /, l.t-.-au-.- th-n i

\Vr ha\- thus th,- !ii->t rr-ult :

''
?'* *M^/' =/.

taking the series ^(-ly-'/r*, we see that v may be

tlu- integer neireet x .r again with 1( -i)--
1 ! ^, v may bi-

integt i !ogn.

i. -J-J,
j..

i

1 to take always the nearest \ . order

to xitisiy tin- i-.iulitiiin. Hut tl .:--nl.
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Next, if lim nf(n) is finite, say equal to g, it follows that, for any positive
value of c, however small, a value nQ can be found such that

Let v be chosen so that k= \im(n+ v)/n.

It is easy to see, by an argument similar to that of Art. 11, that

i i i rn+ v dx i

Hence the alteration I is contained between the two values

(#c)log.

Thus, since e is arbitrarily small, we must have

Hence, if lim nf(n) =g, and if k is the limit of the ratio of the number of

positive to the number of negative terms, the alteration I is given by l=%glogk.
In particular, since 1 - + -* + ... = log 2 (Art. 21), we see that when

this series is arranged so that Ten positive terms correspond to n negative
terms its sum is log 2-f log k=% log 4

;
and so, if there are two positive

terms to each negative term, we get

While, if there are two negative terms to each positive term, we have

a result which has been proved already (Art. 25).

Finally, if there are four negative terms to each positive term, we find

To save space, we refer to V. of Pringsheim's paper for the discussion

of the rather more difficult case when liranf(n)=Q.

EXAMPLES.

1. Criticise the following paradox :

1+1+*+*+*+*+...
2 +J + 1 + ...)

= 0.

2. If a transformation similar to that of Ex. 1 is applied to the series

1-i+l.lo.I.
2* 3* 4 6

Hhew that (if p<\) we obtain the paradoxical result that the sum of the

series is negative, But, ifp> 1, the result obtained is correct and rx presses

the sum of the given series in terms of the corresponding series of positive

terms.
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3. If wt writ- /(.)-!/*, and =i/(n), shew that

t/W + ...H'-!*1
.

")
-

[It is proved in An. 71 that i

4. I'K.VC that

5. Apply a transfoi mation similar t tliat of Ex. 1 to the series

i-i+j-H~,
ami piovr that tin- i suit iiiu

r >! ies is----.
which converges to a -um ItH tlian that of th'- -iven series.

6. Any n>n-alis..lutrly convergent series may be converted into an

absolutely coiiveru'ent wriM ly tin- insertion i.f brackets. [See Art. 5.]

Any oscillating s.-rii-s may W converted into a convergent sei

in>.-rti..n ..f l.ra.-ki-ts
;
and the bracket* may be arranged so that the

la- a sum i|ual to any of the limits of .

7. In Mi-iK-i- that tin- valu.- .f a n.n-al>>"lutt-ly convergent series may
it-main unaltered aftt-r a <-.-rtain chain:'- in the order of the tei

sutli'-it-nt that the product of the displacement <>f the //th term by the

greatest subsequent term may tend to zero as n increases to oo.

[Iiui:Ki.. G \ V"tL (2), t. 14, 1890, p. 1*7.]

30 1

8. Prove that 2 ' s Il(lt a dfierminate numl>er, luit that

is p.-rfe.-tly definite. Here ./ is supposed not to U> an integer, and

implies that // =0 is to le >nii
f

Shew that lim

wheie p and
./

tend to x in siidi a way that lim (</;<)
=

9. Find the product of the two sei

+...+-K., and 1-..- + '-. ..+(-1)-

10. Shew that if .<, 1

= ^
(1 + (/,+as +...-l-a- ,

then

.



CHAPTER V.

DOUBLE SERIES.

29. Suppose an infinite number of terms arranged so as to

form a network (or lattice) which is bounded on the left and

above, but extends .to infinity to the right and below, as

indicated in the diagram :

The first suffix refers to the row, the second suffix to the

column in which the term stands.

Suppose next that a rectangle is drawn across the network

so as to include the first in rows and the first n columns of

the array of terms; and denote the sum of the terms con-

tained within this rectangle by the symbol sm|M
. If #

/M>M

approaches a definite limit s as m and n tend to infinity < < t

the same time (but independently), then s is called the sun*

the double series represented by the array.*
In more precise form, this statement requires that it shall be

possible to find an index
//, corresponding to an arbitrary

positive fraction e, such that

!-V -*!<*> if >,n>p.

By the last inequality is implied that m, n are subject to no

other restriction than the condition of being greater than
/z.

*ThiH definition is framed in arrordaixT with the om- adopted l.y

(Miinchener Sitzunytberichte, Bd. 27, 1897, p. 101 ; see particularly pp. K:i. 1 UK



29] Sl'.M OF \ DO1 BLE 3EBU

pn.p.-rty
:

I I

-y
th- e (

|iiati<

HIM s
tii _ n

=
s-. ,r lini \

->

tin- symhol ifl not MiMid-iit . unless sum.- indi'

is .-iM.-<| as to tlif mode of MI n 1 1 1 ia 1 i< ii a 1

]

.! 1 : I'm- it

eoii\ .-ni.-nt t.) u.x,. nthei- method :;1 i whidi i,

give values dilli-ivm from tl>

s ''

l+*m-\,
it t'..lln\v.s that \\-IK-H o > converges, we can find /z so t

|ttw>H <e, pruvidi-d that /"*/// in and // ;i ber than
fi

:

iliis of eOUIM doefl n.-t n. ( arily ini])ly that a will t-nd

t> /..T., wh.-n //', // t-nd t" I /"/'///.

'I'll-- filiations
lini .s-

r

= y: or lim x
iHi?J

= v:

imply that, ^ivm any jH.vitiv.- nuinlH-r fr. lio\v-\ .-r l.i

can tind //. Midi that

8m,n>G, it' '" >f*:
and tin- d<>uM- Berieci 18 then Baid

'

\V<- d. tint-

similarly divergence to -/: .

It is aNi jM.^il,!,. that tin- d(uM- Beriefl m. and

th.-r.' is littlf ditliculty in modifying the ni'-thod of Art.

to establish tli. l'oi- any d..ull<-

sr.ju. i ; these may I).- d'Mot'd l.y

lii" 8m and lim
(m, w)

i- -imply that tli-

of tli.- t.Tin- between two r.-ctan^lfs //'. /< and
/*. '/ must be

numerically less than e. ii r than /* ; m- in

wh.-iv of (-"iii-s,- the value of // will depend on e. Tl

dition i .,nd to see that it i>

d.-not,' l,y T tli,- \alue of >-
;; ,

when ,n = i> (so that th- rectangle
is replaced ly B Then OUT condition yi.-ld-

!o-9 -<rM |< if </> n > At.

Heiu-e T approaches a limil and so we can

^, such that IS.^K^ if lt>

"The in full l>y rnnir-i 1900,

Wl,
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Now the general condition gives also

| p,,- <r <K if p,q>n>[jL2 ',

and so, if
//3

is the greater of /^ and //2 ,
and n > //3 ,

we find

\

SP,- S \< >
if ^ 2>^-

Ex. 1. Convergence: If m>w=l/m+l/, =0 and /x^2/c.

Ex. 2. Divergence: If sw> M
=m+ w, the condition of divergence is satisfied.

Ex. 3. Oscillation : If *,,
=

( l)
m+n

,
the extreme limits are -1 and +1.

30. Repeated series.

In addition to the mode of summation just defined it is often

necessary to use the method of repeated summation; then we
first form the sum of a row of terms in the diagram, and

oo oo

obtain bm=2 amiM ,
after which we sum 2 6m .

n=l 1

This process gives a value which we denote by

(JH) (n)

this is called the sum by rows of the double series.

In like manner we define the repeated sum

/ j \ ^J ^m
> /

n=i xm=l
or 2 2

which is called the sum by columns of the double series.

Each of these sums may also be defined as a repeated

limit, thus":

2 2am
,
M
= lim (lim sm>n) or lim s

m<ll ,

(m) (n) m->m n-+<x> (m)(n)

with a similar interpretation for the second repeated sum.

In dealing with a finite number of terms it is obvious that

M / N \ N / M \
\TM x^ \ VM v* \

8*-SSv^Hi;gg<v.;-
But it is by no means necessarily true that if a double series

lias the sum s in the sense of Art. 29 then also

a) s=i
m-

indeed the single series formed by the rows and columns of the

louble series need not converge / <>//, Iml may oscilla
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That th. L oolomnt need not oonrergc he example
'A hi.'h 1-0

lini . lim Vn
m * ii t

exists at all.

I'l-iii^h.-im has proved. 1. f /Ae rows

.//. <i,l if th, </,, >i/,/, 9eri& is conr* /;/' //'.
I

quatiow < 1 1 o&ot* u /

In I'aet we have

MI that
|
lim - * ^e, if //<>//;

since, l>y hypothesis, this limit

I !
' lim dim >-

(/1 /t )
= x.

u-> n-*>oo

In like manner we can prove the other half of equation < 1 ).

\\'hen the douh'' i^ not convergent, the equation

g(fr*.)-|(!
i^ mt n.M-r.^arily valid win-never the two repeated 961166

convergent

1 h. i t no reason \\hau-ver for assuming that the equation

lim (lim *,.) = lim (lim v)
the repeated limits

/>),
we tiiul

lim (lim x
fllill )

= n, lim (lim .<, )
= !.

Knm 1'rin^shrim's theorem it is clear that tin- .lnMe series

not (mvr^e (the rows and columns ln-in-- ^upposed con-

vergent) unless e(|uation ( '2 ) is valid: Init the truth oi

no reason for avximiin^ tli- [ the douMe

. with < .....
= IHI< (;/j + /o-, we find

lim (lim ., ,,)
= = lim (lim -V,

Mi

lint yi-t tht- d..ul.le >eiies ca; . w,i
=

i

FT some purp.^ex it is nvrt'ul to know thai equation c2) is

true, without tnmMin^ to con^id.-r th-
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convergence of the double series. In such cases, conditions

may be used which will be found in the Proceedings of the

London Mathematical Society,* the discussion of them here

would go somewhat beyond our limits.

A further example, due to Arnclt, of the possible failure of equation (2)

may be added :

Thus lira (lim sm> )
= -

J,
m*-x> n *

but lim (liin*mtw)=+i-

Other examples of points in the general theory will be found at the end
of the chapter. (See Exs. 1-6 and 9.)

31. Double series of positive terms.

In view of what has been proved in Art. 26, we may
anticipate that if a series of positive terms converges to the sum
s in any way, it will have the same sum if summed in any
other way which includes all the terms. For, however many
terms are taken, we cannot get a larger sum than s, but we can

get as near to s as we please, by taking a sufficient number of

terms. We shall now apply this general principle to the most

useful special cases.

(1) It is sufficient to consider squares only in testing a

double series of positive terms for convergence.
Write for brevity smn = o-n when m= n; then plainly crn

must converge to the limit s, if sw, iH does so. Further, if <rn

converges to a limit s, so also will sm<n . For then we can find

/j.
so that <TM lies between s and s e; but if m and n are

greater than
/z,

we have

so that = ,>* e.

Hence sm<n converges to the limit 8.

The reader will find no difficulty in extending the argument
to cases of divergence.

*Bromwich, Proc. Lond. Math. Soc., seri- -J, \..l. I. I'.MH, p. ITti
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If mem for puri
f ion, we

iccession of curves* '>nd

plainly, when tin- i mi therefore th-- -jiiares)

a sum V particular CUTVe <'
it
to be con-

tained ' two of tin- square-, and that tl

aqua p, g ; thus if is the sum for tti< ,-ive,

M in (1) ^cr^a.
l-'urtli.-r. to tt-iid tn iiitinity in all <lin--- . can

makr
i> greater than // 1)V taking // >

Thus, since rr
t

, > x e,

\vt- h -N- e < fi it' n >
and SO lint N

;| aft

In lik- nianii.-i-. ly cnclo-in-' a s.juar.- ln-t\vM-n two !' the

cm". can >lu-\v that if tin- cur

tin- M|U;UVN (and t h.-iv!', ,r,. tin- rect boo, in virtue of (1)

A particular da-s <>|' th,- curv.-s u^-d in ( -J ) i- t'orim-d ly

drawing diagonals, equally indiiu-d to tin.- Imri/nntal and v.-rn'cal

<>t' the nrt\v<>rk as indicated in tin- riidit-hand

10.

Tin- summation ly >.|Uar-s is indicated on the l-l't. It should

he noticed t i

Thus, hy sjuaivs. we are suniiiiin^ the

r(.2l + ",, + ",, ) + -f-

\vhlly IT in
i

that each curvr enclose s I
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and by the diagonals we get

an+ (aa+ a
12) + (a3l+ 22+ a

13) -f- . . . .

Of course the equality between these two series is now seen

to be a consequence of Art. 26
;
but we could not, without

further proof, infer theorem (1) from that article since Art. 26

refers only to single and not to double series.

By combining Art. 26 with (1) above, it will be seen that :

(3) No derangement of the (positive) terms of a double series

can alter the sum, nor change divergence into convergence.
It is also important to note that:

(4) When the terms of the double series are positive, its con-

vergence implies the convergence of all the rows and columns,
and its sum is equal to the sums of the two repeated series.

For, when the double series has the sum s, it is clear that

8
m> n cannot exceed s

;
and consequently the sum of any number

of terms in a single row cannot be greater than s. Also, for

any fixed value of m, limsm>n exists and is not greater than s.

(n)

Now we can find
JUL

so that s
mt n > s e, if m, n are greater

than
JUL. Consequently

silimsTO|W >s-e, if m > //.

(n)

Hence Km [lim sm ]
=

s,

(HI) (n)

In a similar way, we see that each column converges and that

As a converse to (4), we have :

(5) The terms being always positive, if either repeated series

is convergent, so also is the other and also the double series;

and the three sums are the same.

For, suppose that

lim [lim*,,, ]
= *,

Hence by Art. 2 the sequence (a-m) converges to a limit
y.j

;ui<l it then follows from (4) above that x = rr. and that tin-

other repeated series has the s.-mir sum.
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'I'll.- ivnd'-r will find littlr ditlirnlty in ni'.difyi:

in (4) and (."o so as to cover the case of di\. -i

32. Tests for convergence of a double series of positive
terms.

It' we compare An. s with < 1 > .f the last article, we see t

< i > If t; , rms of a <l<>i>/< series wi less il>i<

mother doub ///,;, /, ;* known to converge, th*

Similarly for d; . with '

greater
'

in
plai

Tin- in.ist iiiipnrtaiil \y\- d' c)ii\ .-r^'-nt series'
1

i^ -i\-n by
amtH = (< wln-iv ^^',"

1

is a convergenl singl . to

that tliis .inn!.],- seriee i> convergent we note t -\\u\

ntain-l in a s.|iiar- .i' sj.1.- n i^ plainly r.jUa

: + ^o- l + -
'

and therefore T ha- a limit. r<>ii^.,|u,-iitly tin- <l>ul.-.

Converges, ly ( 1 ) of tin- last articl.-.

( >n tin- tlirr liand. th- chirf ivp-- i'< r divergence'
1

ly / =(y/>;/
)

-
1

. \vli<-i-.-
i,
= ,n + ,i and ^/>

1

"
1

is a di

-in^lf aeries; t> recognise tin- iliv.-r^.-ncf. take tin- Bum

diagonals, as in c2) of tin- last artirlr. In thi^ way
ill-' Beriea

which i- aeon t In- divci--vnt. .n coin paring it with

'+..

Ex. 1. ?.)n-*n-fi coir a>l, /^>1.

Ex. 2. l'(//j + /)~
ft di\

divei

^v=rK

Ex. 3. I

- A
,

opavergea if X>1, div-i

-

N

\\h--iv J i> th- L:I> uid b\.

Thus thf roiidit in-> "t' i dix'i

and -J.

iiu. .1.'
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The reader will have no difficulty in seeing that the following

generalisation of Cauchy's test (Art. 11) is correct:

(2) If the function f(x, y) is positive and steadily decreases

to zero as x and y increase to infinity* then the double series

S/(m, n) converges or diverges with the double integral

\
\ f(x,y)dxdy.

However, nearly all cases of interest which come under the

test (2) can be as easily tested by the following method, which

depends only on a single integral :

(3) // the positive function f(x, y) has a lower limit g()
and an upper limit G() when y = x and x varies from

to and if G(), g() tend steadily to zero as ->x
,

then the double series 22/(m, n) converges if the integral
//>

I &()$; converges; but the series diverges if the integral

f
00

1 0()^ diverges^

For then the sum of the terms on the diagonal x-{-y = n
lies between (n-l)g(n) and (n l)6r(?i); thus the series con-

f
30

verges with Z(?i 1) G(n), that is, with the integral I G()d\
but the series diverges with 2(?i l)</(?i), that is, with the

integral y()(d(.

Ex. 4. A particular case of (3) which has some interest is given by
the double series f(am*+ 2bmn+o*,*), where /(#) is a function which

steadily decreases as its argument increases, and am* + %bnin+cn 2 is subject

to the same conditions as in Ex. 3 above.

If A is the greatest of a, |6|, c, it is evident that

is less than A[a? + 2.r( -.r) +( -x)
2
]
= A 2

. When b is positive, we see in

the same way that if B is the least of </, b, c, the expression is uivutrr than

/? 2
. But if b is negative, we can put the expression in the form

[{( + c-26).r+ (6-c)^}
2
-f(ac-^)P]/(a +c-26)^^2

,
if 4Jfl=ac-&

Hence =(Ap) and </tf)

*That is, we suppose /(f, i?) =/(.''. //).

if f= -{
' ""'' 7

? =='!/

I Tin- us.- Ml' a singlr int.'-ral |',.r testing mull ipl- s.-rirs srrniS to be due to

Cii-m.-mii (</.M. H'o-Ar, lS7'i, |i.
l-VJi; an all I'liat i \

'

in\ t-st i-at ion is given by
Hut-wit/ (Math. Ann'i/m, I',. I. II. p. s:ti. Tin- .-ilmv.- tonn s.-cins to lr imvi-1.
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/.

il.trlv tl s seen to diverge \

.. :i al.o\e; and it -li.-wa also that \\ :

t
'

.'i >0)
tin- >eries converges; ..ii the other hand, tin- 181161 divergei if

p)

33. Absolutely convergent double series.

lust as in tin- tlifry <>!'
sing I,

w- call the series

! iit<l
;l

, . , / if ^ ,, ,-, ,n\ .-r^-nt.

Tlit- in. -ill. .,1 u^.-.l in Ar 1 m be applii-.l ,-it once to shew
that all tin- ivMilts pn.v.-il in Art. :il !'. -r l..uM.-

I'..sitivr ten still true for any aK^>lutely convergent
il..nl.lc aeriea In tliN oonnezioD tlie reader \vlm has advanced

l-.-ycnd tin- .l.-in.'iits of tin- sul.j.-.-t slmuld t-misult a pajM-r

by Hardy (Proc, A'-"/. .I/"'/'. N''. c2) voL l. I'.'o:;. p. 2

Tliat tlu-se results are not necessjirily trm- for n>n-al.>'.lutely i-<nivergent

may In- sc-n liy taking t\v.. siiupk- examples:

(1) Consider first 1 + 1 + 1 + 1 + ...

+ 1-1-1-1-...

+ 1 1 +0 + 0+ ...

\vli.Tc all tli-- tTiu-
jit

in tin- tirst \.\\ rows and c.lui.

ll'-i,- ^,,= 2 if ?/J, tt>\, sn that tin- s.-ri-< has tin- >um i\ a--.-.. riling

I' plheim'l l-linition. Hut if it the d<uil>l- series into a

.iniuiiij,' tlie (1: Alt. :il ), \v,- get

1+2 + 1+0+ + .. .=4.

nlivii.iisly, too, tip- convergence --f tlii- series does not imjily the con-

tWO fowl ami columns (compare (.}) Art. 31).

(2)
' the (loul.K- series suggested by Cesaro :

1 1,1 1,1 1,1
2~ j ^8~16 + l6~-
1 :i :i 7 7 L6 16

+
21-,

l.s,

: 73 153 15s
~

16*
+

r6'



82 DOUBLE SERIES. [CH. V.

Here the sums of the rows in order are

i L I I
2' 22'

23'

24
'
*"

'

and so the sum of all the rows is 1.

But the sums of the columns are

+ 1, -1, +1, -1, +1. -1, +1, ...,

proving that (5) of Art. 31 does not apply.

This result is specially striking because each row converges absolutely

(the terms being less than t+i+i+J+J-K..)j and secondly, the series

formed by the sums of the rows is a + ! + 53 ~*~
>
which also converges

, , , *2i 2i

absolutely.

But the justification for applying (5) of Art. 31 is that the double

series still converges when all the terms are made positive, which is not

the case here
;
since the sum of the first n columns then becomes equal to n.

The fact that the sum of a non-absolutely convergent double

series may have different values according to the mode of

summation has led Jordan* to frame a definition which admits

only absolute convergence. Such restriction seems, however,

unnecessary, provided that, when a non-absolutely convergent
series is used, we do not attempt to employ theorems (1) to (5)

of Art. 31 without special justification.

For example in Lord Kelvin's discussion of the force between two
electrified spheres in contact, the repeated series

" r* (-l)
m+nmn~\

m=iUt'i (m + nY J(m+nf
is used.t This series has the sum (log2-), and it has the same value

if we sum first with respect to m. However, Pringsheim's sum does not

exist but oscillates between limits^ J(log2-f) and (log2 + |); while the

diagonal series oscillates between - oo and + QO .

34. A special example of deranging a double series is gi\vn

by the rule for multiplying single series given in Art. 27

above.

Suppose we take the two single series J. = 2ttn ,
5= 26n ,

and

construct from them the double series P = 2ambn .

*
Contra cTAiiaJye, t. 1, p. ;>!>_'; <-..mp;nv <."iii>ufs Aiiu/i/xi* (translation l>y

H.-.lrick), vol. 1, i>. :r,7.

t-K.-lvin, /.' /*///// >,f MiTfricn/ / MM.

:|.
Bromvvich ;iiul Hardy, /Vof. l.,i<l. Mnf/i. So,-., sri i-s -J, \ >1. '_', l!Ol, p. lt!l

(see 9).
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It i ii.it /' eonvi-r;r,.s in lYini^h.-im ^ --use, provided
ha: .1 /> ponvi i- ire lu

*m.n
=

("i + ",+ + ",></>,+/>,+ ... + '

BO that liin >, J I!.

-*

lint f"i- praeiiral work in analysis it i ssary

to convert tli'- ilouhle aeriea /' into a single series, the one

usually ehoflen hein;: tin- sum l>y diagonals (see (2) A

This siii-'l,. senee i^> -'. where

It follows at Once tVoin Art. >> that : //' // t ivo serif*

their product is eqwil t<>

^_ ,!},',,}, Jut, I
if cnu>'< ,'!<' i'f.

und.-r tht's.- cinMiinstanr.-s tin- lciil)l-

al^oluti-ly oonvergentj
!' -au.se 2|am|.|6.| converges to t

:

m, it

<- '.(S^,,!); and 2|cn | converges because the sum of

<t' terms from ~\cn \

cannot exceed tin- pi'oduct

If. however, one or both of A, B should not converge

absolutely, we have Abel's theorem: /V<',V,>,/ f/lt ,f the aeries

^ /->. ;/> 8wn Is /<ii f<> n />,<///</ A.B.* For tl

if we write A
n
= n

l
+ 'i.

2 -}-...^-'i nt ti
n
=

l>i + f'.>+. .. + !>, \ve tind

cl+ct+...+cn=alBn+atBn. l+...+amBv
Hence Ol+Ct+.,.+On-AlB1>+AJBn .l+...+A

Now (App., Art. r>4>. when \\m('
n
= r. w ,. have also

lim ((', + (',+ ... + '

and again <AJ.I... An. t54 i

lim 1.1 ./.' -*-.!.// . 4- ... + A4 ,/y. )= .1 />.
L II ' X r

"
1 HI

Hence <' = AH. (For an alt.'i-nativ.- |'ioof, see Art 54 be

ha> pr.ivi-tl. i.y ;i siinil.u nn-th<Kl. ;

oonvt jual t-> thi? sum .! tin- diagonal series, v

.-onvTL.'-. provitlrtl that \ i-oluinii.
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It should be observed that the series 2cn cannot diverge (if

2an , 26W are convergent), although it may oscillate. For, if

2cn is divergent, we should have lim Cn= oo, and therefore also

IV

by Art. 154; whereas this limit must be equal to AB. If

2cn oscillates, it is clear from the article quoted that AB lies

between the extreme limits of 2cn ;
that in some cases 2cn does

oscillate (and that its extreme limits may be oo and -foe)

is evident from Ex. 3 below; but in all cases the oscillation

is of such a character* that

IV

Ex. 1. Undoubtedly the cases of chief interest arise in the multiplication
of power-series. Thus, if the two series

are both absolutely convergent for \x <r (see Art. 50), their product is

given bv + 0^+ 02^+ ...,

which is also absolutely convergent for |#|<r; where we have written

c = a 6
,

cn= a bn+ ^i&n-i + . . . + anbQ ,

the notation being slightly changed from that used in the text.

Ex. 2. If we apply the rule to square the series

we have no reason (so far) to anticipate a convergent series
;
but we

find the series , -Q + i

in which the general term is ( l)""
1
;^, where

so that

* Ces&ro (to whom this result is due) calls such serii-s xhnply ind>(> miniate ;

the degree of Indeterminacy being measured l>\ the number of means \vhioh

have to be taken before a definite value is obtained. (See Art. 122 below. )
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1

Mi l.THM.K LTIOH OF SEE]

li.nfu logn)=' LI),

9
liin " lini !>gn)

w-f 1

+
,,'-i)-;r7T

theorem,

10-1 -S('+4
this agrees with l'i in^lx-ini's general th.-c.r.-i:

[M- 1900.]

Ex. 3. Hut if w.- -qnare the s.

^i-I^....,

"litain l'(
-

1 )" '". where

-r[2(/l

if

'.at
[./'( + ! -.r)]"

and ">/''

it'
/>= b, th<> .<'r/f.< -(~ 0"~ ljrn ?J{ w de for

iniilri ,

(>n th- I'tln-r hand, if
/' > A, I'l-in^h-

tlu- ml.- i

35. M.-rt.-n- lia^ |.i..\,-d tliat tit. -

.! /;. 'h<it one

Suppose that \ t, and thru writr f->r In-

.-|a|, r^^-f-r.-f ...-f-,-... t' In.

/ = /. , , 4- />+... + ... /!,

M it /?=/ + /; .

('.'nsr.juently (/ =
</,/* + /,/;.. ,-f...-

= ,/
I (//_r,,)+ ,(^-r,)

.1 /; // .

# .-i -f-.-.-fc

so that |,|i ...,-i-H. ..4-
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Now, since the aeries B is convergent, the sequence p1? p2 > Pa* tends

to zero as a limit
;

it has therefore a finite upper limit H. Also we
can find m so that

/om , pm+ i, /om+2 ,
... are all less than e

; thus, if p= n m,
we have

Take the limit of the last inequality as n tends to oo
,
and we find

because p tends to oo with n. Now e is arbitrarily small and V is fixed,

so that we must have

HnT|fln |

=
0, (see Note (6), p. 5),

that is, lim /fn= 0.

Hence lirn(A nB-Cn )
=

0,

or MmCn=AB.

It must not, however, be supposed that the condition of Mertens is

necessary for the convergence of 2cw ;
in fact Pringsheim has established

a large number of results on the multiplication of two series neither of

which converges absolutely. The simplest of these (including most cases

of interest) is as follows :

If 7=2( 1 )**"%, F=2( l)
n~l

vn are convergent in virtue of the conditions

their product is given by 2( -!)""%, where

wn= u
}
vn + u2vn_ 1 + ...+ unvl ,

provided that the series 2(wnyn) is convergent.

Since lim^w= 0, we can write

2 7= Ul
-
(u2

- UJ+ (u3
- u2)

-
(HI

-

where 8
l
= u

l ,
S2
= w2

~ wn ^3
= W3~ W25

Now, by hypothesis, 82 ,
83 ,

6"
4 ,

... are all negative, and accordingly

Hence, 2|8| is convergent, and therefore the series 8
1
-82+ 83

- B
4+ ...

is absolutely convergent ;
we can therefore apply Mertens' theorem and

obtain ^
where 7i

= Vi = ^i y = &ii>n+ 82*^-

Th UH 2U F= w
l
- (w2

-
?j) -f (w3

- w
2)
~

(W4
~

and therefore we have

/'!'-= Wj
- w, + <r

:,

provided that lim ^',,
= 0.
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iir*-ut (in virtu.- ..f M.-rteiw' theorem),
ii that limy,, <>, M that \\- n.-.-d ..|,1\ for

'

i vx

and >iiji|.o-- that 7 i> :i".v index less th:in/>; as I in 7+1 !

\M- ha\e --cause n-v^r : ti.

1

lolll 1 to
,/,

\\e have ,',. ,

K t
;

+ f, "/!-$)

Thus we find

i -

If, as is 8iippc- m tind 7 so tl. is leas

than Ac; 7 having been fixed, take the limit of the last inequality as n

tend.- to infinity, and we find lini "_. Thus, since t is ail'itraiily

small, lini '/ -0, and it follows that lim "-<.
other n-sults are due to Voss and C'ajoii, in addition to those found

1 'i iirjsheim. K"i : 1 of 1'ringsheim's aiti'le in the

. Ikl. I.; two nii-re i-.-.-mt ]>;i])ers will l.e found in t
;

/, vol. -2, IJHM, j,j,.
-J.-) and 4<l.

36. Substitution of a power-series in another power-series.

ThU operation -ivr^ anotlicr t-xaniplc of deranging a double

oaider tin- aeries t**f(
-r

/._,//
4-.. . and

,j
= l,

t}+ l>
r

i' + /'.,./- 4- ...: if convergent at all. th-y con\.

al.solut.-ly for
// <N. ./' < / 9&y (see Art. 50) Tin- <|U-ti..n

thru arises \vln-tluT tin- ivMilt of ^u 1 >^t i t nt i n - th- BeOOnd

Beries in tlif tir^l ami arran^ino; in jo\vrrs of X is ev.

gent, and if BO, t'>r what valu- It apj-.-ar- from

: that thr powers of
//

i-an lr calculat.-d

usino; tin- rule for tin- multiplication of series, and tln-n

-ijual to /// 8WM l>;i fOWS of the doulde s :

+ "/'

+ "A :;

4-..

+ "
:

-f-M

-f...

4-...
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If this double series is arranged according to powers of x,

we are summing it by columns these two sums are certainly

equal if the double series still converges, after every term is

made positive (Art. 31 (5) and Art. 33).

Write
|a| = an , \bn =/3n , x\

=
g,

and then the new series is not greater than

- --(2)

Now this series, summed by rows, gives

which converges, provided that

Take now any positive number less than r, say p, then

the series 2/3m/o

m
is convergent, and consequently the terms

/3mp
m have a finite upper limit M. Thus our condition is

satisfied if

or if
/

Hence if /3 <s, and g<(s p )p/(M+s-/3o), the series (2 )

of positive terms will converge. Consequently the derangement
of the series (1) will not alter its sum. Thus the trans-

formation is permissible if the two conditions

(i) |6 |<, (ii) |*|<(8-|6 |) /,/(af+-|6 |)

are satisfied (where p<^r, bn p
n ^M). In particular, if

> = 0, the conditions may be replaced by the one

// the series n
converges for all values of y y it is

is sufficient to justify fit rxevident that the condition

derangement.
The case 6 = is of special interest in practice; and then

the coefficient of xn in the final series is not itself an infinite

series, but terminates; a few of the coefficients are

and generally, if n > 2, cn will contain the terms
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1

N"\ LBSOL1 Ti. < \ (

Ex. ! .1 hyH

y=i" '>'-',,

tlu-n tin- iation is all'.waMf, pn.vid'-d that |#|<1, since z con-

verges for all vain- I/- 1. Tin- i- -ult is .lvi..M-l\ I
- - ! ./;", where

a polynomial in
//,

sn<-h that tin- term of hi_;li'--t degree ifl "

Lining that z = e* and
t>/
=
/zlog(l +.r) (see A

I

;

, ;
A ill vanish for

/x
= 0, 1, 2, ..., /'-I, l--ans- in '

caeOfi th- neiiefl t.-nninat.-s l.rf<.i-'- i-.-a-hinj

II. cH = fj.(fj.
/' .

an.l M we 'il.tain the l>in'inial Bttiei (Ait-. ;| ami

37. Non-absolutely convergent double series.

AliiK.st tlic dily Lrnirral tyj ..... f su.-h >.-ri.^ has l..--n iriv.-n. .,,ni|,aiM-

tiv.-ly r.-mitly. l.y Hardy;* it n.n-,-sji,,n,ls t.. tin- t\|i- discussed

in Art* i:. L
(

". Th.- th.-.-n-ni ia th- aztenrioD f niii.-h..

'' series ^,n (/<> .<//;/i m> ?

'

5 /"///"'/- '"^// '<< '

con>'^ "// ////
'

'/.< - . /-^^*

.-'.*!., ;<
,.

-
' ,,+i

'/*'// <, N '''"'^ ^o -2^0 as either m or n t

In ta.-t. just as in th> proof of Abel's leninia (Art. i*:'.

that iiinh-i tin- Lrivt'ii i-onditions f"r V . \vc

22<Vt> //

win re // is an upprr limit to

M ''

''" 11 -|fci-fc*-l-*-H'H

s.. that it' rithiM-
// or i LB I. // -''. and otherwise //

. 1 A ./ ,
-

i .i/ .v

N'- S2-Z 2 S 2-1-2 2-f2 S1111 1 i- M 1 M

M that (V v V'v; ,
, +,V(1 ),

whit h .an !., lM ad<- as small as w.-
|>l,>as.- l.y ]I-MJ.T .-h'-i.-.- .f

//. r, because

and P^ | both tend to
;
and >.. th' diMilil.- ''ges.

AII apjilii-atinn is ,
r iv-n Iiy th.- i

'y + wc/)), <,..

\vhi-rr o, '-.', p an

'. .l/'/'/K SOC., srri.-s _'. vol. 1. UNI:?.
},.

I-.M ; roL J. l'.U.
]..

I'.MI.
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For then \smttl \<4\cosec$0cosec$<f>\

and -.'
while lim vm>n =0.

EXAMPLES.

1. As examples of double sequences we take the following :

(1) *m n= I--; here the double and repeated limits exist and are all
in n

equal to 0.

(2) sm
, n =(-l)

m+n (!+!); here the double limit is again 0, but the
\m n)

single and repeated limits do not exist, although we have

lim /lim sm<n \ = = lim / lim sm,

m >-oo \ n -ac / n >-3o \m wo

(3) Sm,w = wm/(w
3+ tt

3
) 5

here the double and repeated limits are again all 0.

(4) sm , n
= m/(m+ n) ; here the double limit does not exist, but we have

<*,<!, and limsm , n =0, lim *,.
=

!,

because, however large p may be, we can find values of m, n greater than

/x, such that sm<n < ;
and other values of m, n for which *TO,n>l e. But

the repeated limits exist and are such that

lim / lim sm> ,A =0, lim / lim sm<n\ = 1.

m MO \n >cr> J n >-oo \n > /

Similar features present themselves in the sequences

sm.n
= mn/(m*+ n?) and sm

,
n = l/[1 +(m-n)*].

(5) If sm . n = (-l)m m2n3
/(m

s+ nG
),
we have

lim /limsw , n\=0=lim /limsm, n\ ;

(m) \ (n) J () \ (m) /

bat yet limsmtn=-ao, lim sm
, n
= + oc

;

us may be seen by taking m= ri
2

. Here it should be noticed that the

limit of the single sequence given by putting w- = n exists and is equal.

to
; although the double limit does not exist. [PRINGSHEIM.]

2. The double series given by

(a + bn) + (, - 6 ) + 2 + </., fa4 -f ...

(-a ()
+!)

l)+(-a l
-!>

l)-a2 -a3 -a4 -...

!>., b.
2 +0 + 0+0+...

A,
-

/>.,
+0 + 0+0+...

.^ives the sum in Pringlheim'f sense, whatever may be the values .f

", />. But the sum by rows is only convergent if 2a,, converges; and

the sum by columns converges only if 17>,, is convergent. The sum by

diagonal is lim (n lt + />), if this limit exists; and is otherwise oscillatory.



v.| IfFLES

3. In tin- (1. .ul. I.- neriea 1+2+4+*-
-i-1-2-4-
-i-J-1-2-
-I

j ci.luiiin converges t<> o, Inn row li\. !_"-. < n

l'i iii^.-ht-iin's sum cannot t-xi-t : and tin- sum l.v diagonals is divergent.

4. The series gran l.v 0+1+0+0+0+...
-1+0+1+0 + 0+.. .

+0-1+0+1 + .. .

+ +0-1+0+.. .

ha> the sum 1 l.v rows; -1 l.v columns; u ly diagonals; and naturally

tlu- doul> 'iiverge in Pringsheim's sense. In fact, .

<> if m H< and is -1 if m>n, or +1 if m<n.

5. 'I i given by -2 + 1+0 + + 0+...

+ 1-2 + 1+0 + + .. .

0+1-2+1+0 + .. .

+0+1-2 + 1 + .. .

+ +0+1-2 + .. .

has tin- sum -
1 Imth ly r.\\s and columns ; and th- diagOIM]

scillates ln-twet-n -2 and 0. There is no sum in I'rin^hfiin's

-1 if m=/>, and is ..tlu-rwise 0.

6. The dnul.l. 2 + 0-1+0 + + 0+.. .

0+2 +0-1+0+ 0+.. .

-1+0+ 2 + 0-1+0+.. .

1+0+2+0-1+ ...

+0-1+0+ 2 + 0+.. .

0+0+0-1+0 + 2 + .. .

ha> tin- sum l.v K.US 1 + 1 +0 + 0+ ... =2, and tin- samr sum l.v -..lui.

the sum l.v diaLTonals is 2 r<> + < + <> + ... = 2. Thus t/iee three sums are

/we, since </ w , B
= 2.

7. I'l-nvt- that tin- multiplication rule fr 1

l.y summiiiL: the dmil.

-
",/',.

f + 'ij>.*i-+ ...

+ </,' +...

first liy ru\\s and secoiully l>y



92 DOUBLE SERIES. [CH.

8. Discuss the following paradox :

If we sum the double series of positive terras1111

first by rows and secondly by columns, we obtain 5 + 1=5 or 1=0, where

[J. BERNOULLI.]

9. If the double series 22am>n is convergent in Pringsheim's sense, it

does not follow (in contract to the case of single series) that a constant C
can be found such that

|

sm ,
|

< C for all values of m, n
;

this is seen by
considering the series of Ex. 2, and supposing 2a,,, 26n to be divergent.

In like manner we cannot infer sm> n
\

< C from the convergence of the

sum by columns or by rows (see for instance Ex. 3).

10. The double series in which amin ( l)
m+n

/mn does not converge

absolutely ;
but yet its sums by rows, columns and diagonals are equal to

one another and to Pringsheim's sum. The common value is, in fact, (log 2)
2

.

Exactly similar results apply to the series in which amtn= (-l)
m+numvn j

where the sequences (um\ (vn) steadily decrease to zero.

11. Consider the double series in which

and am , M= 0.

Here we find 2 2 = -|2<

IS = +P(W. [M^P-<) M } [HARDY.]

12. Prove that
V V

m?-, n?

tends to /.<!' . when v tends to oo
, pnvilnl tliat all trrms for which m = n

are omitted from the summation.
[

Moth. Trip. 1895.]

13. If m-

and am ,

= 2~m
,

a
.

= -
2~", a

,

=
0,

then Yi *)-- If i
m=0 \i-0 / w=0 \ m=0



V.| !.\ \.MTi

14. It .u. f,(-ir*"m/(>w-

m

1ml tin- -inn i. illatt-> lirtwi-rn -x and '
; and

sum oscillates l.rt\\.-rn /
,'rt

and / + jV
[F.-i ti,,- . e Iin.inwi.-h and Hardy, Proc.

I! M.I, j,. 17.-,.]

15. I 'rove that the product <>f the two series

x x* .r
3

' ^
,il to

* ^
2

"r
(3!)

2 .6!

16. It < ,. V )=i+ y (.,.+ i .i/^)+^ )4....

1 - iy:<i,

and J?)-^*"*/(*/^^)-25ffi r
i v=-i,

th.-n -Axing)- .?
2
).5r(y

2
,9

2
),

.</)-."('.

17. Verify that

1

1 1
L!(n-l)!+J !':</'

-
-2).: ./-- 2 K*-)! 4?+8

use Arts. 33, 57 to infer I'rym's identity,

1.1 1

./

'

x(x 4- !)".'(.' +!)(.' + 2)
+< " C

Lr 1! .r+1
+

2! .r-f-2 3!

18. 8h6H that _. _._
j

....

into ;i dulle M-rirs. and transform it t

.

,

..
,

Taki- /r lit and 8O calcnlatt- I'l /,- t> 7 d.-rimal places. [STII.

19. Ckm^ -+_. + _^ ( .

into a dnul'le Beriee, and drdu.r that it i> c<jual t<>
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20. Shew that (if |#|<1) Lambert's series

X X1 3?

r^"*"!^?4"!-
and deduce that this series is equal to Clausen's series,

l+x

Hence evaluate Lambert's series to five decimal places, for

Shew that each of these series is also equal to

the coefficient of xn being the number of divisors of n (1 and n included).

21. From Ex. 19, or directly, prove that, if
|

x <1,

x
.

3?
.

3?
.

x &
.

&
T
'^l+^6^l+^10^"*~l-^2 l-j^^l-^10

~\+x +a

22. Shew that, if \x\<l]

x 2x* 3.r*

(l+xf

"*

[For the connexion between the series in Exs. 19-22 and elliptic

functions, see Jacobi, Fundamenta Nova, 40.]

23. If \x\ <1, shew that

where
<^>n .is the sum of the divisors of n (including 1 and n). Deduce

that, if <^_ 1
= 0=<#> ,

[Math. Trip. 1899.]
24. If \x | <1, prove that

where 0(w) denotes the sum X/(rf) for all the divisors of n (including

1 and n).
2 * ' 6 6

In

[LAGUEHKK. ]

25. Shew that in the special series <>f Art. 37, the repeated series also

converge to the saim- sum as tin- (loulili- sfiies; but the diagonal series

may oscillate, for instance u = /?
=

l,
= <=7r, p = l, gives for the diagonal

series _
3 + _ + .... [H,\i:i.v.]



CHAPTER VI.

INTIMTK PRODU(

38. Weierstrass s inequalities.

In this artirlf the nunilx-rs
ej,

.. an- suppn

])(>N]'ti\c and leee than 1 : this In-in^r the case, we s

(!+",)( 1 + ",)= 1 f(ol -fo1)+ol
at> 1 +(",+

Eeuoe

( 1 +0, )( 1 +",>( 1 +" S >[ 1 +('/! +",)]( 1 +";;> > 1 +<"! + ",+

ami (-(.ntiiiuin- this proc, see tliat

(l) (1 4-0^(1 H-a^l^at)...(l+aw)>l-h(a1-fa1+a1-f...4
In liU- nianinT \vc ha\.-

( 1 -OiX 1 -",)= 1 -("
1 -h",,) + "

1
",>l -('/! +

Thus, since 1 Oj i^ |<sitiv-. \\r liave

(l-al)(l-o^(l-at)>[l-(al4-a1)](l-at)>l-(al -|-a14-fl

ami so \\v 1 nt-rally,

>>\->
l +, + ,+ ...-

l -

and tip;
/, +</.,+ . . . + 1. \v- have, 1

>y

aid nf c2). tin- r.-Milt

( 1+,/jH 1 + ./.)...< 1 4-OnXP -(",+">-...^".)]-
1
.

_+Oj+...- _!t-utrr tluiii 1. tin.- iiu-|U,ilit \

siiu'i 1
it would tluMi
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Similarly, we find

(4) (l_a1)(l-a2)...(l-an)<[l+(a1+ a
2 +... + an)]-

1
.

By combining these four inequalities, we find the results

(5) (l-2a)-
1>n(l+a)>l + 2a,

(6) (l+2a)-
1>n(l-a)>l-2a,

where all the letters a denote numbers between and 1, such

that 2a is less than 1.

39. If a
lt

a
z ,

a
3 ,

... are numbers between and 1, the

convergence of the series 2an is necessary and sufficient for

the convergence of the products Pn , Qn to positive limits

P, Q as n increases to co, where

For clearly Pn increases as n increases, and Qn decreases.

Now, if 2an is convergent, we can find a number m such

that
3. = am+i+ an+s+ am+s+ ... to oo< L

Then by the inequalities (5), (6) of the last article, we have

8+ ... +aB)
^ Pm

'

and 1 -a

Hence, provided that n is greater than m, we have

Pn<Pra /(l-<r),

and .>Q.(l-<r).

Thus, by Art. 2, PH and QH approach definite finite limits P, Q,

such that

-P^Pm /(l-<r), QSQ.(l-<r).

But, if SaM is divergent, we can find in so that

no matter how large N may be.

Hence, by the same inequalities,

Pn >l + N, QW <1/(1+JV) I
if w>m,

and consequently lim Pn
=

,
lim Qn = 0.

It should be observed that if a product tends to zero

^mi^, without any of its factors being zero, the product /*
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rallrlism with tli.- tli. -MI

Ex. 1. _'>, ili'- I'i'xl

will approach a limit d - because

: thr |.i"diu-t

I)(M + 1) 1 + l

1

so tll.it lllu '/

Similarly ( 1 + ^ \( \ +--
)(

1 < It hough iU value is

'ulaU-il so iradily.

Ex. 2. 8

(i + *)(i
- :-i)(i-S)0-i)...

\\ill (livt-rirf I

,
,,

5 M+l n + l 1 -1 3 n
1

'

\ T-' V"- 1
=
^3'4 - ^

liin /'== -f.
,

lim V'.
= 0.

Ex. 3. / MI I., f,
iiii(/,,

= 0.

iuulfi tin- u'ivfii c if. nil, ; timl an : K-h that

l>,,>lb>0 if n^tn.
have

and !

:.:- D-

M- lim x,

so that lim </ = ().

It is easy to 896 that the ur^mm-nt "f Ai iiti-,l

>rove that "

<</' // .

/ = (!+.,, I +-,.(!+.
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For if, in any new arrangement (represented by accents), we
have to take p factors to include the first n factors of P and Q,

then

Now n can be taken large enough to bring Pn and Qn as close

to P and Q, respectively, as we please.

Consequently lim P/ = P, lim Qr

' = Q.
r >oo r ><*>

In like manner, if P diverges to oo
,
so does P'

;
and if Q

diverges to 0, so does Q'.

By taking logarithms we can see at once that the present
theorem is deducible from the theorem of Art. 26.

40. Convergence of infinite products in general.

It is quite possible that in an infinite product

the numbers u
lt
u

z ,
UB) ... may have both signs. But without

loss of generality it may be supposed that they are all numeri-

cally less than 1
;

for there can only be a finite number of

them greater than 1 (otherwise the product would certainly

diverge or oscillate), and the corresponding factors can be

omitted without affecting the convergence.
Now we have*

< u log(l +u)< ?u
2 if u is positive,

or <$u*/(l+u) if 0>M>-1.
Thus, if X is the lower limit of the numbers

1, 1+Ui, l + u.
2 , ..., l+unt ...,

we have

fu ,/..

For log(l + )=Jo|

Hence, if u is positive /

"

p~ < u -
log (

1 + u) <
j

but, if u is negative \
xdx< u -

log ( 1 + n)< /
"f^l .

.'ii JQ 1 +U



39, 40
1

TERMS 99

Consequently, <f n teries -ujtaeo/ th-- di:
;

M-1-HWrK..+tf >-log[(l+tWi)(l+*Wi)---(l+*O]
can !> mad-' arhitrarily small by properly choosing m, no

bet how large W is. Tim- we have tin- theorem :

ij 1 /<* to oo if 2uw diverges to

i

i/ 2u,, '/" x : ! Ikites if 1

in* \vi- h;i\.-

// !"- i I -4-
// ) > in'2 ( 1 4- // > if " i^> poeitn

..r > '

if 0> / > -1,
so tliat

..+ ... + // >-ln.i; !+",.,). ..(!+"

> H-...-H4) A

wluT'- L is the upper limit of 1, (1 +%),(!+
I jrli 9O fl"lf ' /' "//'

is not +x) //////' 1" /'>, ///'

d-h^xi + ^jd + r
to d" vcd/UA o.

Tin- .nly cases not covrr-l ly tl; in-- in.-thod are those

in wliich Su^
1
diverges and ^i// .-itln-r divergee t -f x , or has

,i^ its inaxiiiiiiiii limit (in i-as.- !' <.v ( -illatioii ).

It is. perhaps, a littl.- prrph-xin^ at tirM si^-lit that \vh-n
v Loth dix.TLiv t s. . th- jn-mlurt may n.-\-.-rth-l,-

Converge; hut it is juit t-asy to const rurt a pi-nluct >t' this

typ.\ Fr. Id ^'-, ) a COnvei a li\ s of

pOSJ
MI-. and i'nrni the product of which th< Mth

and -J/'th tenii^ aiv given hy

, ,=!+/.,

Then, provided that lim // = (), the pi-odiu-t 1 1 ( I -f " >- ll< 1 +Cm )

and BO olvimisly C (by Ar; :'.'.' i. Kurthi-r 1" will

diverge if -''/.-l +
J^'/

)
= - '

isdivergeni ;

and I

us page.

M not abso,
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2un
z must also diverge.* This condition can be satisfied in

many ways; one simple method is to take cn
= d^, and then

we must suppose 2dn , ^Zdn
2 both divergent, and 2c n

3
convergent;

for instance, we may take dn
= n~p

,
where %^.p>\. The

product is then given by u2n . 1
= n~i)

,
u2n

= n-

Ex. 1. Since the series

1111 1 1 1 1

are both convergent, the two infinite products

0+(l-i)(l+i)(l-*)... and (l-

converge also. In fact the first is obviously equal to 1 and the second

to}.

Ex. 2. Since the series ^ + |- + ^ + -^+... diverges in virtue of

Cesaro's theorem (Art. 22) it follows that the infinite products

a+jxi+i)a-}xi+ixi+#i-..*^
are both divergent. In fact the first diverges to oo and the second to :

for they are equivalent to the products

Ex. 3. Since the series

J__JL _,_!__!,
V2 v/3 v/4 V&

is convergent, but ^+ ^ + 4 + 5 + --. is divergent, it is clear that the two

products

and

hoth diverge to the value <>.

In fact

(
1+

j_)[, -^3-1 -^^^[i-^-.j,
so that this product is always less than 1, and can be put in the form

(l-aw).
Further lirn(waw)= l, so that our two products diverge to by

Art. 39.

Ex. 4. If Mn
= (-l)"i, it is evident that 2?*,, oscillates, while 2?/,,

2

diverges ;
thus the product

must diverge to 0, which may be verified 1>\ inspection.

*If Sun
2 were convergent, the divergence of 2n n would imply the divergence of

the product.
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1

&B8OL1 TE < " N
- 101

41. Absolute convergence of an infinite product.
<//s,,/,//,/

(y convert! ui, tl>

II* I ,-./> /" a WMW //// /'// pendent of
f '>T8.

Writ.- u - then -" converges; and, as explained i:

last articl.-. \v can suppose a w < I . BO that "'<",. II-

tlso convergent (Art. 8), thai --"ii verges; and Zt/,,

.ind th-ivf(.n- 11(1 -MO
it in virtin- >f a tli-!vni proved in tin- last arti<

Su|ij...v,. n.-xt that tin- 861166 Stt, i- l-ranged SO as to b"

i IK! writ.- fur lr-vity

... (14-14 i r.-a+v^a+tg-O
'...0

' '
'

B.-(i+6i)a+^)...(i+W.
Then suppase j) chosen (> // > BO that t/p contains th- whole

I' (and nmtly .4p contains the whole of Bn); on

multiplying out it is vi.l.-m that Ap/Bn } CMiitains every
l.Tiu in Up/Vn \. hut with the si^ns made p.

.sit:

H.-nce \Up/Vn -l ^Ap 'Bn -l,

and Fn ^//
s.i that l^-^l^.l, -/; .

N"\v. as rxplaim-.l in Art. :>!>. lim /^,, =P lim .-! = A say. Con-

s,M|u-ntly /',, can !> t'..uinl BO -T--at that

A >A9>Bn>A-ie t lfjp>>
ii'-i- ^ip -/y,,< if // >
and \UV-V < if //>

Hut
E7^ approaches a limit ^7 as y trnds t<> y : and th.-i

if //>//> /^ Wr ha\V UU9 <
Thus, if // is the greater .if /, n and /^,.

\v.- li .

Iff-r.Ke, &n>i
that is Hn, V=U.

'hiite product by

TIu- IllX'MIIH'nt us. '.I I.. r-t.tl)lish Uii'lii;iMir- tie

luit little change to shew that a nn-al>solutely ..averment ititinit> jm-
inay be made to converge to any \ to diverge, or to oscillate,

l>y altering the ..nl.T -f tin- fi.-tors.
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Perhaps the case of chief interest is that afforded by the infinite product

II[l+(-l)
n~ 1aM], where is positive and \im(nan)=g. Suppose that

the value of the product is P when the positive and negative terms occur

alternately ;
and let its value be X when the limit of the ratio of the

number of positive to the number of negative terms is k.

Then X/P= Km (1 +,n+1)(l + aan+8) ... (1 + 2v-i),
n -oo

where \im(v/n)= k.

Now it is plain that 2aM
2 is convergent, and therefore, by the last

article, it is clear that

can be made arbitrarily small by taking n large enough. Further, by

Pringsheim's method (Art. 28), it is clear that

lim ( 2w+1+ a2n+3 + . . . + a-i)= \g log k,

and therefore

or X/P=Jk
k9

.

42. The Gamma-product.
It is evident from the foregoing articles (39, 40) that the product

is divergent except for #= 0. But we have

.

I
so that the expression

increases with n. Also, as. in Art. 40, we have

[Art11 (1)] >

where A is either 1, if x is positive, or l+#, if x is negative. Hence, by
Art. 2, Sn approaches a definite limit S as n increases to oo .

Now (Art. 11) l+||4-...+-logJi

approaches a definite limit (7, and therefore

Now x log n - log Pn= log(n*IPn\
so that n*IPn has also a definite limit; this limit is denoted by II (.r) in

Gauss's notation.

THUS n *-"

which, again, can be written in Weierstrass's form

= ecx
-s=ecx lim e~Sn= e

(
'

x U
H *-ao r=l

When x is a positive integer, Gauss's form gives II (.r) =.<!, because

(l+)(2+ )...(*+) n/\



41, 42] G IMMA-PEODl OT,

Although we have convenient \ rentrict (1 -f .f) to be positive,

"t necetiftai nvergem-e ;
and it is easy to see th,r

prod Mill Converge if .> has any n-u'ativr valm- wh

an intrjjer.*

It i- rasy to \.-rifv liy integration ly parts that Kuler's integral

rd

has the property ,.f 1,,-in^ ,. (

j,,
a i t< ./ : when x is an integer; and we

mtii-ipatr tin- (|uati.!i

r(i+./-)^n.
\\lii.-h will be proved to be correct in Art I7fi of bhe

It \\i- ebl -f 1 in i IK- definition <>f !!(.'), wr tind

w*"^ 1 "
'

+
",!'-

4-l) = (.r+l)II .

It f,,ll,,ws that (1+*X*+*)...(*+*)-H( +*)/!!(*),
and f.iiM.-juentlv tin- definition leads to the e<juatim

,.or 1= hni

It is often convenient to write th- last iMjuation in the form

the notation t-xjilained in Art. 3.

I'.y reversing the foregoing argument we see that tfo function I'.

7 hi/ (I" .

II -4-l) = (r4-l)Il(.'-) < II(w+./-)ru/<'i;

I \ AMPLES.

1. Discuss the convergent

/"(/() is a polynomial in /*.

2. Piovt- that II
[(

1 ~ (w = l, 2, 3, ...)

absolutely f,.i- any valur of .r, provided th;r

integer ; ami that r / r \i-i

^"VfTflJ J

j converm-nt if ./ < 1.

Tlu- ronvfi'iifiu't- j)Tsists also lur i-oinpU-x values of X (set- K
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* if _Wn~

then Hwn diverges to if m > 1
;

to oo if m<l.
If 7n = l, Hwn diverges to if a<c, and to oo if a>c; and converges

if a= c. [STIRLING.]

4. If
!
=

(), M2
=

0, u2n-i=-n~p,
u2n= n~p+ n~2p

,
where n>l and

$=P>k then 2wn ,
2wn2 are both divergent, but 11(1 +un) is convergent.

Verify that the same is true if

Ma-i = -
W--P, w2n= w~* + ?i~2p+ w-3

^, (n > 1
).

[Jfo^. rnjo. 1906.]
5. Verify the identity

.,- --
,~~ ~~

Shew that as n tends to infinity, the product diverges for all values

of x except 0, but the series converges, provided that #>0.

6. Prove that (1+^)(1+^
2
)(1+^

4
)(1+^

8
).. .

=
!/(! -x\ if \x\<\.

it -n- .*.*, x x x sn x
7. Verify that cos -

. cos -^ . cos -
3

... =
-^-,

and that i
tan|

+i tan J+ gi tan^+ ... = i-cot^?. [EULER.]

8. Determine the value of

in terms of the Gamma functions F(l+c) and T(l+x+ c).

9. Shew that
-

= t

frm. j . ir(^+2w) r(w) n
The product is - ^ f f^T-L 2 T(x + n) F(27i) J

10. Prove that, if k is an integer,

lim

verify that waM -(w + l)all+ i
= to

ll + (<- l)a,, +1
-

and that (w
-

l)
2w6M_, -7ia ( + l)6n = <

2
[(2- l)a,, +1 -f n6J.

Shew that limttan= 0, Iimw36n= 0, if ^>^, and deduce that

Hence prove that ^ 2 6,,
= 2 ('It

- 1 ) or,,
-

3/*.



vi.
I

LMPLE8 L05

12. I tin- ^eneral
' hree hyperge>i

erief

fry, i), i'> /'<- -l,Ar. ' '-fty + i-

111 \vlii.-h y>u + /;f.
Then prove that

(y -)(</-&) = /:?'/-, + ("
-

1 )/.,
-

liin (/m,,)=0.

Deduceth.u -

/;-(y _/^r, (y- tt)(.l -/*)=.,

and that J=(y-)(y-

13. Kr.-in K\.

v 1)
--_

:) r(y-a-/J)-
(X'/^7 +

i-

and slu-\v that tin- last t-xprrssimi tt-nls t> the limit 1 as H-*-o( I
'- duce

.- !-!^F-
14. if ,/= IK i -,/->, ?1 =n(i+ ?n \

IK. +v), y;i=n ( i -,/-
the four iii-udiirU air als..lut-ly (-..nverp-nt if y < 1.

9ctfs
= II(l -y"), yi7 2 =n(l-i-

and y,Y.'/3 =l-

Thu> 1 [<1- 7 )(1 -7^(1 -7-')...]
= (l+y)(l+v-)(l+y

:t

).... [K

15. It 1" i> al>s<liitfly convergent, tht> ]i<>duct 11(14-.- .lately

. .-iivri ur,. Ilt f,,,. ;u ,y vain.- of ./ ; and it can ! expanded in an al>s<>lutel\

c..nvei-.;,. Ml .,

i + r
1./-+r^+..., ui.c,,. r,

Shew aU,, that

11(1 +.*//)(! +/' r)= '+ ri(-''+ :

K.-

16. I.

iiavc at i .nee (!--/ : and l.y the la>t example

...

Thus we find

</+: , V V .

which give

=

<i-f)<i-y', -^)(i-
and u'enerally (' / /' .

/' =
(
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17. If

we see, from Ex. 15, that we can write

But qxF(q*x)= F(x), and so we find

yielding F
2
= V^, F3

=

Thus ^)=F [l+ ?Cr+l/^)+
To determine F we may use the results of Exs. 15, 16, from which

we find F"2=

Thus pn 7 -l< + +..., where g = U(l -
<Io <Io

because I<?I<1 and Pn+r/Pn >qQ, Pr >qQ -

Hence Pn V - 1 < q
2n
/q

2
(l
-
q

2

"),

so that lim(Pn F )
=

l, or I
/ =

l/?o-

Thus, using the notation of Ex. 16, Ch. V., we have

/(#, q)
= q U(l+ f-\v}(l +q^lx\

from which a number of interesting results follow. [.TACOBI.]

18. From Ex. 17 we find, with the notation of Ex. 14,

/(I, ?)
= <M2

2
, /(-I, ?)=<M3

2
, /(?, y)

Or, writing these equations at length, we have

where the indices in the third series are of the type n(n+l).

Again, by taking the limit of /(a?, <?)/(! +<?/#) as # approaches -g, we have

the indices being the same as in the third series. [Compare Art. 46.]

19. Again, from Ex. 17, we get

so that tfo/?!
= 1 - 2?

2
4- 2?

8

the indices being of the form 2?i2.

Also f(Jq, Jq)= 2H(l-q
n
) . 11(1

so that W?3
the indices being of the form $n(w+l). [GAUSS.]

Similarly,

/(-<?*, ^)=n(i- ?
8
"). no -f- lw -9

3'-2
)=n(i -r/)

or M3= l-(? + 9
2
)+(7

6+97
)-(9

12+ 9
16
)+-->

the indices being alternately tt(3?il). [EULEK.]
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20. Writ- ml
|>'it N '. N 'y

iii j.la- . in tli.-

* b \ Thru ire

x s

x x !! D -*),

-that N s N N :i(i-9
2-',

Thus. <>n niultiplirati.'ii, we tind

<.// />]-'

Wi*
ami si i we have the identity

'/,'! /'I"'.

In particular. if we \\in.- - I. \v- find tin- intf-n-stin.-; ivsiilt

7i
8
,

whii-h leads a^ain t< the identity

(l+iy +V + *V+---)
4
-(l -2y + 2y

4 -
:.'</' -K..)

4

"+.-.)
4

,

\\!i-iT the sei'ir> an- tin- -ivt-n in \-]\. !s ,-,1,,
[.TACOBI.]

21. ,,,,.. , if -.-<-.
:;;;>U,e

product,, ,

-..ii verge if / = / and l\/ = i!/>. \\"li-n thcs- d.nditiona are 8ati>ti.-.l, -.\|

the product in tin- form

In parlii-ular. prove thai

(/t+a + 6) = r(l+a)r(l4-6)
*?(+)(.

22. I'lovr that

I
Tak- the trims in pairs and use the last example.]

23. I .l-nntes r(#)/T.'), w can write (>-,

, ,.ijm
(
!,,_] __J-- s-1--... --?-Y;

,,_,V
' T 1 + r 2-fj- w+jr/

Thru wr tind
|| 1 _e.

f

..
- n]

24. It is easy to drdiu-r fi-.-m th- thr..i-y of infinite product* Abel's

\ 11. hi), that I'./ and !< I OODVWge 01 diverge togct :

In ? di-r the pr.-diK't II Il.< .

.. wilidl d:\n-gea to

if . ..nst also di\rii:r I re am >0.]
Otlirr o\ani]tlr> ..n pi..ilu.-t> will lie found at the emls of Chapters I



CHAPTER VII.

SERIES OF VARIABLE TERMS.

43. Uniform convergence of a sequence.
It may happen that the terms of a sequence depend on some

variable x in addition
.
to the index n; and this is indicated

by using the notation Sn (x). We assume that the sequence is

convergent for all values of x within a certain interval (a, 6),

and then the limit iim 8n(x)
n->ao

defines a certain function of x, say F(x), in the interval (a, b).

The condition of convergence (Art. 1) implies that, given an

arbitrarily small positive number e, we can determine &n integer

m such that
|

8^_F^ |
< e> if 71 > m.

Obviously the definition of m is not yet precise, but we can

make it precise by agreeing to always select the least integer

in which satisfies the prescribed inequality. When this is done,

it is natural to expect that the value of in will depend on x,

and so we are led to consider a new function ra(#), which

depends on e and on the nature of the sequence.

We note incidentally that, regarded as a function of e, in(x)

is monotonic since (for any assigned value of x) it cannot

decrease as e diminishes.

Ex. 1. If Sn (x)
= \j(x+ n\ where .r^O, we have

F(x)= lim,,(.r) = 0.
n +ao

Then the condition of convergence gives

*+*>!/>
so that m(.r) = the integral part of (l/c)-.r, when .<!/,
or m(x) = 0, when xzZlfc.



43
1

[FORM

Ex. 2. It >. < ' >
'

-
< v*

1.

MI kb

i all values ,,f R,
\v,- nm-t tak--

Ex. 3. It
x uli.-re -r^O, we have

-n
; ami

It is easily >-rn tint

il part "I (>,

and '=0.

Ex. 4. [f d+n**1
), j? bt-i ted, ire !..<

/'(./)- liui >' .' -0.

-to Exs. L

Tin- .i.nditiMii ..f .

n|, if<i
tin- intr-i-al part of [1 +(1

- 4 2
)*]/2 | x\ ,

if |j?|>0,

ltlu'ii. = 0.

It will U i st-cii that in Kx. 1 the functi'in ///( ./ > i^ alway-

tluin 1 e: lut in K\. - -
/: as .f-*l : ami in 1-

lining that e < ! >. Thix consideratioD

tfl a i'urth.-r sul<li\ ision ,!' cnn\. Bquenoes, which

will pr- inqmrtaiKM' in the s.-ijUcl.
and i i it n luces a

UK. iv snl.tl.- distinction.

\V- ^hall vay that
'

uniformly in

flu- ink /'<"/ (/. /').
J

I //"'/ m ' 98 tl> i>

-//; ln-i me iii\ may vary with e.

l.nt nni^t 1.. Thus, a- ,- variea tV.m a to 6,

lixt-il u].j.-r limit ami si. canmH t-ml t> intinii

any point in th- interval (a, />).

Thus in Ex, 1 Uniterm t'..r all }>-

values of x
t

sin ni tak-- /<(e)=l e. Hut ii. tin-

OQD :i"t nnil'nrm in an interval r -aching u]> t r = 1 :

it /x uniform in tin- interval (0. o)t
it' '><'<!.

we can th.-n t,
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Hence in Ex. 2, x = l cannot be included in any interval of

uniform convergence : such a point will be called a point <>f

non-uniform convergence. Similarly in Exs. 3, 4 the point
x = must be excluded to ensure uniform convergence.

This distinction may be made more tangible by means of a

graphical method suggested by Osgood.* The curves y = Sn(x)
are drawn for a succession of values of n in the same diagram ;

this is done in Figs. 11-14 for the sequences of Exs. 1-4. Then,

if Sn(x)-*F(x) uniformly in the interval (a, 6), the whole of

F(f)=f

O 1 2 3 4 5 6

Ffo)=o

FIG. 13. FIG. 14.

the curves for which ?,>//() will lie in the strip bounded

by y = F(x)+ e. A glance at Fig. 11 will shew that this does

occur in Ex. 1. But in Ex. 2, as we see from Fig. 12, every
curve y = Sn(x) finally rises above 2/

= e; and the larger n is

taken, the nearer to x = 1 is the point of crossing ;
thus x I

is a point of non-uniform convergence. In the same way,

Ki-^s. 13, 14 shew that # = () is a point of non-uniform con-

vergence for each of the sequences in Exs. 3, 4.

i '-.tin of the American Math. Society (_>), vol. :\, 1S'.)7, p. :,!).
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i \ll'o|;M OOin Ki: 1 1 I

In ordei a d.-linition ..i' uniform G

in>t Involve the actual l.-t. niiinatic.il of /

due.- tin- follov. to that of An
C0ll\ ,

>rm con-

/respond n>>!

number e. tile f fiil am >n<!ex m, which is

independent of x, and /> #m-h //"'/

') <,
,/// vafa /A"// ///. and for all points f tl-

It will l>e seen on coni|>ari.u with Art. ') that the nnly
..ii<litinn jx that /// is t< h- iinl.-jM-n<lcnt >f ,/, \vh-r.-a-> tin- t.-nn>

.i' tin- M'<|Ui-nc- an- functions of x.

That tlic cnmlitimi i \ id.-nt, for if N,(r) t.-n-U

to F(x\ >'
''//-

^- can \\-i-it.j /// 1
= IJL( :.e). so that

\Sn i > <H '' n>m-l.
II. -nc.- the i-oiMliti.ui for uniform c >n\ <-r^vnc- leads to tin-

The condition is al- - /// : for if it is satMi.-d.

must convrr-v t,, some limit. / \\ in virtue of

an<1 **** lim N
/( (.0=/

we bave
|
F(.O-N,,U) |

^e, [Art. l

llenc-.- \F(a-)-S n '.'-) <2e. if n > //'.

and BO the condition of uniform convergence to / 'i^tied.

iould lie noticed that //

closed: that is. if - unifnnly f.-r

*/<.</'. it will R!BO converge uniformly ^aason
that .r = <i. >> are not discontinuities oi

found so that

l#, ,(^)|< je. if n <<6 and >
A U.i. si] a continuous function

tind o 90 that

l^'
1

-a<4
and <Jtf J

where n
%

may defend on - \\. 1!
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Hence Sn(a)-Sm (a)\<e,
so that Sn (a) converges, and x = a can therefore be included in

the interval of uniform convergence. Similarly for x b.

Ex. 5. The sequence Sn(x)=x"(l #), O^r-r^l, converges unifor/it!//,

because lim*S'n (.r)
= and Sn (x)<.l/n, since the maximum of Sn(x) in the

interval is given by #= w/(w + l). The reader should contrast this result

with Ex. 2, and should draw the curves y= Sn (x] for a few values

of n.

44. Uniform convergence of a series.

If, in Art. 43, we suppose the sequence to be derived from

a series of variable terms

by writing Sn(x)=fo(x')+fl(x)+ -"+fn(x),

we obtain the test for uniform convergence of a series in an
interval (a, b) in the form:

It must be possible to find a number m independent of x,

so as to satisfy the condition

\fn+i(x)+f+*(x)+...+fm+P(x)\<e, where p = l, 2, 3, ...
,

at all points of the interval (a, b).

Each of the examples given in Art. 43 can be used to construct a

series by writing

but a more natural type of non-uniform convergence is the following :

x2
x"-

* +H^+(TT^
Here we find Sn (x)

=
\

so that F(x]

and /X0) = 0.

There is a point of non-uniform convergence at .r= 0, as the reader

will see by considering the condition

But, just as the general test for convergence is usually

replaced by narrower tests (compare Chap. III.) \\hicli ,nv

more convenient in ordinary practice, so here we usually

replace the test above by one of the three following

tests :
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NVI ND M'.KI. -
i I:>TS. I i:t

(1) Weierstrass's M-test for uniform convergence.

The majontv <.f 861166 im-t with in elementary analysis can

proved to < uniformly \>y means of a test due to

Ifl8 and de--rrih"d l.rietly as the .!/-

/Hist- flu if for nil /" ' fa fl"

,) has '! i>r<>/>''rty

, .!/

re Mn ?> 'irf constant, independent of x: <///'/ XH/>]HM
tin- series ~M vergent. Tin n fl"' series 2/n(a;) is

-,,,/,, and absolutely convergent vn f/ interval (a

Tlie ahsolute con\ci-^ence f(llows at once from Art. 18;

to realisr the uniform convergence, it is only m '

to

niher that for any integral \alue <f p,

t~< if ^ ^r^ if

IS
('nsfijii-ntly, if \\v choos,- /// 90 Jis to make th' rt'inainder

in 1M/,, lss than e. f '(./) is also Less tlian e: and this

cli"i. [g nlivinllsly \\\( IcjiriK lent of X, 80 that the

of uniform i-onvrr^.-nci- i- satistinl. [CoiMpan- Stokes,

and Phys. !'>/ rs
t

\>l. i.
],. -2sl.]

(2) Abel's test for uniform convergence.
A moiv ilrlicjiti- ti-M for uniform converg due. in

to A1..-1. and has 1.,.,-n aln-ady nu-nt ion-l in Art. l!:

xeries *2a nvn(x)

2 nt; fl' f 'i'ir

: and tlif >> ////// '

fined
'// >;,i ,! - m fl" vnti /''//.

K"i-. in virtue of tli-- COBV< we can find in.

8O tliat, whatc\-r ]>ositi\v inte-vr
f

, may l>e,

+! ", .!+", .-.-
. !-!- BH2-|-----f "+|.

all nuniei-icallx Then, in \irtue of A

lemma 6 that

i-y hyjM.tht- <AT.
L8. 11
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. Further, since an and K are independent of x, the choice of

m is independent of x also
;
and therefore 2anvn(x) converges

uniformly in the interval.

It is obvious that the terms an may be themselves functions

of x, provided that 2an is uniformly convergent in tl j

interval.

(3) Dirichlet's test for uniform convergence.
This is also more delicate than the I/-test. (Compare Exs.

1, 4 below.)

The series *2anvn(x) is uniformly convergent in an interval

(a, b), provided that 2an oscillates between finite limits; that

for any particular value of x in the interval vn(x) is positive
and never increases with n ; and that, as n tends to oo

,
vn(x)

tends uniformly to zero for all values of x in the interval.

For then the expressions

\am+l ,
am+i+ am+2 |, -.., Kn+i+ <Vf2+ ...-ftfm+j,|

are less than a fixed number K\ and we can find an index m
such that vm(x)</K
for all values of x in the interval.

Thus, using Abel's lemma as before, we see that

m+l

for all points in the interval.

Again, the terms an may be changed to functions of x,

provided that the maximum limit of 2aw
|

remains less than a

fixed number throughout the interval.

Ex. 1. Weierstrass's M-test.

Consider 2 ^7^ 2 ~=i (fl);

these converge uniformly for all real values of .r, because then

Sinn* ., 1 OOHW < 1
and (1/,(P) is con nt .

np np n p np i

Ex. 2. yl&eJ'* ^^.

Consider the case vn (.r)=l/7i
x

, (O^I./'^l); then ^(ajn*) converges

uniformly in the interval (0, 1) if ~c,, c-onverges. [DlRIOHLKT.]

Ex. 3. Abel's test.

If 2an is convergent,

converge uniformly in the interval (0, 1). [HARDY.]
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Ml\l MY I i:,

Ex. 4

.

.
v

2r, (p> 0) ;

' T nf

then WTii

we see that lioth series converge nnit'orinlv in an in
1 ~ a)

\vhc: \ posit i\ i- anirlr.

45. Fundamental properties of uniformly convergent series.

Caiichy and the earlier analysts < \\ith the exception of Abel)
lined that the continuity of /'(.'')

- lim >'(./) could 1>.- deduced
n-*-<n

fr.im that . that this assumption is no-

immediately from K -f Art. 4:i. Kurtln-r. tin ,ples

that a discontinuity in /'(./) imj.li.-s a point of non-

uniform convergence; although K\. -l. An. 4:1. indicai

DOn-Unifomi convergence does not nee, ssarily invohe the dis-

continuity of /';

\i;ain, if w- wish to integrate /'(./). the

r|lini >'(./ )|</./-= lin, I "N,ir,,/./'
,tf

is n..t n.-ci'ssarily tni- <-ithT. as will be seen from th- .-xanipl.'

on
}.

1 US Ix-low. .,

In IS47 Stok.-s* published his lisciv-ry of tin- distinction

In-tw.-.-n uniform and non-uniform OOnveTgenoe, and

'ivm (1) below, which <-stallishcs tin- continuity of

Beriefl iv.junvd in Ifinrntai-y analysis. Tln-nn-m c2\ on int.--

is due to \\Yii-rM ra-,. and smns not to ha\'- b

(-xc-pt in l.'t-tur.-s) until 1^7<>

i I
. // fl,r : 'Hivergei'

tl,> ', ,,t, ,-,-,,/ (,t. /,). amd \f each of th>

cinifiniiiin.fi in tin iiif'Tcnf, 90 '/" ''- //" 9Wm /'

Kr. in virtue of the definition of uniform c< mver^ence. tln

nuiiilu-r /// can ! chosen independently of X (provided >nlv

that ti^Lx = ln, in such a way that

ilix-civrry \\as made alsu l.y \\Yi<-r>t ra>- and s, ,,), ; ],, lt xtoljgg'g paper
\\.t- pulilislird a yrar IK

auarr of tin- distinction some the years at I'-.i-t bd ''s's paper WAS

pulilished.
-

riu> i^ dear from paper- in tin- tii-t \olunieof \V ci erst Pass's \\

(see pp. i>7 si , \vljiL-h ivinaiiifd iui])ul>lisiuHl for aU.ut .Vi \ears.
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no matter how small the constant e may be. Now write

and it is then clear that

\F(x)-Sm(x)\<&, (a^x^b),
where it' must be remembered that 771, e are quite independent
of x.

Thus if c is any value of x within the interval, we have

so that \F(c)-F(x)\<$e+ \Sm(c)-Sm (x)\.

Now 77i being fixed, 8m (x) is a continuous function of x,

and therefore we can tind a value S, such that

\8m(c)-Sm(x)\<fr, if \c-
Hence \F(c)-F(x)\<e, if |c-o;|

which proves the continuity of F(x) within the interval (a, b).

It is not unusual for beginners to miss the point of the foregoing proof ;

and it is therefore advisable to show how the argument fails when applied
to such a series as

(l-x) + (.v-j(?)+ (x*-a*)+..., (Ex. 2, Art. 43)

when we take c = l.

Here /m(#)+/m+i (#)+... to co =xm if 0<.r<],

and /(l)+/+i(l)+- to oo =0.

Thus, if we wish to make both these remainders less than e, we must

choose m, if we can, so that vm <i e (.1)

but to make \Sm(l)-S,n(x)\<$
we must take l-,vm <$.
or ^m >]--^, .................................(B)

and the two inequalities (A) and (B) are mutually contradictory (supposing
that <1).

Consequently the two steps used in the general aimiment are incom-

patible here
;
and the reason for this difference lies in the fact that the

inequality (A) does not lead to a determination of m independent of .

when x can approach as near to 1 as we please. The assumption that

the series converges uniformly enables us to avoid the difficulty involved

in such a condition as (A).

(2) // the series F(x) = 'Zfn(x) i# uniformly nmrergent in (/'

interval (a, b), and if each of fl/f fu m-titm* /(./) /'x continuous

in the interval, we may write
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K<-r, in virtu.- ol' tin- uniform c>n\ .-r^-nce of 2/n(#), we
can til id /// BO that

l/(*)+/.+,(.'-.)+...-f/;jr) <*, if p>mi

however -mall e may !> : ami tin- value <>f m will be

vndept i" I- at of x, as before.

Hence We li

ami since this is true, no matter how lar^e /> may be, we see

that
,

OOnV< :il that

i| =e'--
m J'i

At th.- saim- timr \\v have

|ji( ).L()|;
ami oonaeqnently

I

l

F()da>-\"sm(a>)da>J c, J c,e,
J

Cl

i^ last inequality can be written
t

':

I

so that, coiiihinini: the two ine.|U;.lities, we find

[

\vhTf fc- may In- a^ small as \\c plra^*-. l>y ]iri|nT choice "!' //-.

Since /// is no l<m-vr juvsmt <>n the let't-haml >ile, the

inent -i\-en in N,
p,

:,. shews that

I

"

Jc

This
o].el-;iti..ll ix .t'tell lrsf|'il '

1 as /,/',/,-/,//-/,///

\vill
|,i-,,l,;il,ly tin.l !.->> ilitVu-Mlty here in rea!

,,f tilt- . onditioi) tlial Ml >houl(l ! indrprlldrlil .!" ./'. It !

n>(, hnwrviT. r;isy to give a really simple example .f a n<>M-uir.:

i-onvi-rirt-nt >erirs in \\hi.-li irrni-l>\ -term inte^rat i.-n l-.ul> ! nroneous
n-sults. Tin- f'-llMU-ini:. ahh \<A as good as any.
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Let Sn(x)
= nxe-*\

so that F(x)= lim Sn (x)
= 0, if x> 0,

n *co

and obviously Sn (0)=0, so that F(0) = 0.

Hence

But on the other hand

so that 2 fn (.<v)dx= lim (1 -<?-') = ,^ w >

which is obviously not equal to I F(x)dx.

The figure shews the non-uniform convergence at .i-= and gives some

indication as to the reason why the area under y=Sn(x) does not tend

to zero.

1

FIG. 15.

Of course the argument above assumes that the range of

integration is finite ;
the conditions under which an infinite

series can be integrated from to oo
, say, belong more properly

to the Integral Calculus; but some special cases are given in

Art. 176 of the Appendix.

46. Differentiation of an infinite series.

If we consider Ex. 4 of Art. 43, for which

we see that

z->0 z-j

Thus lim *SfM'(0)== oo, although JF/

() = -

n->co

It follows that the equation

[lim ,(*)]- lim Sn'W''
/( / -i *.
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y tru.- uln-ii !!<>n-iinii'<.rin ,-, nee pres
!'. Hut it -hniiM IM- untie. -<1 that it is i: ,im

n.n-. of the \\hirh is the era*

i'ailurr. as will he apparent t'n.in tin- ^-n. n m h, -..

Th<- rradcr may nuisidi-r similarly tin-

:.H ,/./-.. Pi

hri- Bfl unitnrmK \/(#) oscillates.

I/ fi,,- sert< s
, rential \ r*mly

: ,,t ///'////'// / </// (,/. /, I ,

,y//,//
/,, F'(x),

'

of /'' /////// //^' /"'

/- /'// f/ ', ,,t, ri-<if*

Write

">. \v.- have

i

'I'hus. ly tin- t'uii.lani'-ntal ju'ujn-rly <t' an iiit-_;ral. \\- hav-

/

F'(x)=G(x)t (" = .'-i

'

jirnoi'
ol' tin- l'(prr-(.in^ ihcoi-ciii is IK it rasy witlnmt

BOme usr nf thr Intr^ral Calculus; hut the following infthn.!

i- easier than tlms,- J.PM.I'S which depend - <.n tin-

1 )itlrn-ntial Calculus. an<l only on,- ivsult is Ml,tain-d ly
_:!-alitu.

in IM- chosen so as to make

() <, U^X;

Thus
\^

I K(x)d* <((
i J

|>r..\id.-d that <., ,-., hrl,,,,- fco th.- int.-rval (. /> >. This

^
and sn

\^
i/i

iufrr the .

this wou.

An al(Hti<>nal assumption \\lurli \\ . .). n..t I]
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Or, changing the notation, we have

^1 ,

?x {/- to
-

provided that both x and x+ h belong to the interval (a, 6).

Now we have

-/(*)} '^e,

^ 4
=x,.

We have proved

original choice of m,

t+ Fro, say.

that

h

= ^ and in virtue of our

But we have identically

h

and so we find

^(05+ ^-^(05)

_g JJ

-Q(x)

Since 77i has been fixed without reference to /ij we can allow

h to tend to zero, without changing m; the right-hand side of

the last inequality then approaches the limit 2e, because each

term under the summation sign tends to zero. Consequently,
the maximum limiting value of the left-hand side is not greater
than 2e

;
and since e is arbitrarily small, this maximum limit

must be zero (see Note (6), p. 5).

Thus we have

F(x+h)-F(x)Jim -G(x) = 0,

or

which in the required theorem.

47. It is important to bear in mind that the condition of

uniform com rr^vnr.- is merely Niijlirirnf for the truth of tlu

theorems in Arts. 45, 46
;
but it is by no means a necessary

condition. In other words, this condition is too narrow
;
but in

spite of this, no other condition of equal simplieity has been
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discover ami \\v shall not ^ t'urtln-r into tin-

Mii
:

ra

That unit''.mi not D6CC

til- t\Vii following ,.\;i||,|.

(i) hat Don-uniform convergence do*

imply <lis.-,,iitinuity.

1 , -f ,-' .,-+... 1 ,1 + .r), (0 <.<!).

:ind \<^-2 is also equal to the SIM

i-t+J-J+-
found hy integrating tenn-Ky-t'-mi.

Nevertheless r=l is a point of non-uniform ...UMT^-IH-O of the series

in ./ ; l>e-au-f tin- ivmaindi-! :.l the condition ^jr"<
l.M.ls to a (It-t.-nnination of /,, wlii.-li OO**Oi ! ind.-jx.nd.-nt of ./ (v.

1 is indudnl in tin- intt-rval

48. Uniform convergence of an infinite product.
Tin- l'tinition oi' unii'orm convergence can be extonl-l at

one.' I., an infinit.- ])rnlucl : l>ut ,M])]lic;itins
f tin- jrim-ijl.-

occur Irss I'rtMjuriitly in rlcinrntary analysis, and for our
}>r<

purpos.- tin- following theorem will In- sntlicient :

If far "// values <>/ x im '!>' interval (0,6) the fwn*

>)
has th /"/>< rty \fn(x)\^M,,. /,,,< M isapoeMix >

slant (independent <>f x), tl >/ *!> aeries -M is convenj

flu i>r<xl
art

/v-)=fi +./;,(y)][i + /;(.')]! 1+u.i-)]... i

/ continuous fumctio^ of x im th*
: f l" lf V

the fun continuous in ' ! >l.

For writ-
[

I -K, (,0][ 1+ /-,(./)]. ..[H-/Ml ..,(r)]
= P

B1
(

LI +/(')][ I ]... tooo-<

then ii: i
' Q < ><n I-/-

-/' '^Hil-l/J}; fl;i+/, t
<1 (I-/-

where /,' / . i

'

+ !/.+,(*) |
+ ... to

Thus
| Q.(x)-l|< RJ(l-Rm ).

in.ulr U> I..HM-I bg tin- author (JVofc /. ..... /. .V'C S

s.-1-ii-s 'J. vol. 1. !'.(! I. |.. IS7] P.I :

;

;. _ : .. : :

q
:

-'

t-nn-l>y-t*Tin int.-uiation li.i\,- l...n jivBO bj

i in thr Apjx nli\. Ai tt, IT-''.
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Now Rm
<Mm+Mm+l +Mm+,+ ... to oo

,

where all the JJ/'s are independent of #. Hence ?/i can be

chosen (independently of x) to make 72TO <-J-e, for all values of

# within the interval (a, b).

Hence, assuming e to be less than 1
,
we have

\Qm(x)-l <e/(4-e)<ie, ifa^o^fc,

where (as already explained) m is chosen quite independently
of x.

Thus, if c is any value of x within the interval, we have

the inequalities

and i-i^Q^
Or ^e Q(x)

l+^eQm (c)

1-fr P..(aO^P(s)'

Now, since m is fixed and independent .of x, and since

are continuous functions of x, so also is the product /',(,'):

thus we can find 3 so that

i ., < -P-() <
*

,

provided that \x c\<^8.

*IMM T T "^ n/^v "\ 71 i \9 '

and so*

provided that |a? c|<[<5. Hence P() is a continuous function

of x within the interval (a, b).

If the function /(;/) ///* // derivate, snch I In it
\fn'(x) \

< M,,,

<md if

*For (l

so that (l-)(H-iO<(l-iOs
.
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1

I \\.\l. l;\ > III

///,/, //'

,i d

Pi -| + ,

tieee i-"iiditi<iis ire i

1 ''
<-

!+./
'

v,, ihai An. h; ran !..
a|.].li.-,l;

and \v.- tin<l. ac (

-,,i.lin-ly.

1

49. ( !elv connected with tin- theory of unit'iTn,

i.s. tin- I'dllou ini: theorem4 whirl .jiu-iit
u-- in sob

OpO84 ilnit " mi in

\^vl(n)+vt(n)^...^vp(

and tlntt we wcwt to fond fl- limit lim l-\,<\. ii

/ /////
7 ./;/_//

/,,
iiijin

it
j with /*. '/'A',

limvr(n)wf (r lu-in^ fixed),

//// ////// -
/*//

lini /'(//)= */ + <'-+ ^''o-f ... to 00 a= IT.

vided //"'/ ',(/') : .I/,. <'/"/' .U, M independent of

///r 00TM8 l.U, At

'rh.- reader will note that t
; for th<- th.-nn-m is

Milistantially th- sain- bhe .l/-t-st due t> \\'.

(Art. H ). 'I'll'' irMl'. tOO, is alnmst thr sain.-.

Kirst choose a nuinlnT
'/

(which .f DOOT86 is
iii.l.-]--inl,-nt

<!' // i. Mich that

M
:
r M .

!
+ ... to x <e,

and h-t ,i he taken lari;.- rm.u_u
rh to make />></: then

.-

+ 'Vfi-f -.. + '|. =^/ 1/
+ J/,

;
.;.

1
+ ... to x<e

i

e ot x in tlu- tot of Art, 1 1.
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Also \wq+wq+l+wq+2 +... to
<z>\ =Mq+Mq+l +... to oo < e

Thus \F(n)-(wQ+wl+w2 +... to oo)|

<|(%+ ^i+--.+ ^-i)--(
/w +w1 +... +wq-i)\ + 2e

>

and it is to be remembered that so far n has only been

restricted by the condition p^>q.

Now, since q is fixed and independent of n, we can allow

n to tend to infinity in the last inequality, and then we find

because lirn t;r(?i)
=wr .

n><x,

Hence, since e is arbitrarily small, we find, as on p. 120,

or HmFn=W=W+w +w+... to oo

The following example will serve to shew the danger of trying to use

the foregoing theorem when the J/-test does not apply.
Consider the sum

so that tv()=logf 1+^J and p= n.

Then obviously wr
= }imvr(n)

=
t

n *oo

and so the sum of the series w +20+w + ... is 0.

But vr(n) lies between r/n
2 and rj(n^+n\ and 2>=

so that

and hence lim F(n)= \.
n

Another theorem of importance in this connexion is the

analogous result for products :

Suppose that

where p tends steadily to infinity with n.

Then if \imvr(n)=wr ,
and if \vr(n)\^Mr where Mr is

n->oo

independent of n and I,Mr is convergent, we have the equation

... to oo .



49] MI'LES.

Tin- iv.-ul.-r sl,,,uM liavr littl<- ditlicnlt y ii

proof <>f this tln-.TiMii on tin- li: be foregoing, '-inj.!'.;

ill.- ivsnlts (,!' Art-. bo timl limits I'm- tin-
]

I t-V<l4 l

Mini ( 1 +"V< I + "'.,.,)... to 00

in terms Of tin- n-ni;mil.-r J/
( + J/,. + ... to oo .

b6W the i Die condition >n<-h as tin- .l/-t-

tllf X.-MMjilr

in which
j-,
= /, = ... = !/,

that ...=0.

I'.Ml tllf ,-,,M;itinl| IJui
(

1 +
)'
=1

l niM-i-ssarily true. In fa<-t tin- valm- <.f the limit ! ;

value of liiu(yy /<), because

< i

n + 1

, ., /'

I.X \M!'I.I>.

1. Shi-w that if ^.(i) = .i" (\ +.'"), r=l is a j)int of noii-u;

OOnvei it> limit. 1 >raw graphs of &(.) and lim >

*
1

2. Sh-\v that tlir ,)=^--
t

is uniformly o.iivrn:.

all \ .'ii Ity t.-ini-l.y-t. i in dnt'.'i .-nt iat i.-n.

3. If /'(.) is nr\. .,- iii th- interval (", /o. and if :

i-ontinunus fuiirtioii f r in tin- same interval, shew that tin- -

uniformly in th- int.-r\al.
| iMxi.]

i Lfl any jM.int of the int,-ival. w.- can timl //? siu-h I

0^ (C)<j.
l-'uithd. : continuous, we can find & -

\K >.,(.r)-5

pi-vidcd that r-c| <8.

Senoe = F(.r)-Sm(.r)<

at all ]>>ints .f the inteival (c-8, C+ S).
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Now, since Sn(x) never decreases (as n increases), we have

(.*)^Sm(.r), if n>m.
Thus F(x)-Sn(.v)<, if n>m,

at all points of the interval (c-8, c+ S). Consequently there can be no

point of non-uniform convergence in the neighbourhood of c
;
and therefore

there is no such point in the whole interval (a, b).

The reader should observe that this argument fails in cases such as

those illustrated in Figs. 14, 15, because then Sn(x) may be further from

F(x) than Sm(x) is. In the cases considered here, no two of the approximation
curves can intersect.]

4. Shew that the series Y
? ^ is continuous for all values of .i\

and deduce from Ex. 3 that it converges uniformly.

[It is easy to prove that ^= is the only possible point of discontinuity,

by means of the J/-test. Now if we take v as equal to the greatest integer

contained in l/.#
2
, we have <.r(l +log f), 2<l/#v, if 0<#<1. Hence

r v+i

since =<r' we filld

the limit of which as x-*0 is zero, so that the series is continuous at #=0.]

5. Shew that f(x)= 2^-2
-

r~x converges uniformly for all values
L ~p % ~f~ 71 i?/'"*

of x
;
examine whether f(0) can be found by term-by-term differentiation.

1 //"

6. Shew that 2-1 _^_jn\ l+x*a2n n

converge uniformly for all values of x
;

and that if <1 and .

they are respectively equal to the series

and e~a

obtained by expanding each fraction in powers of x. [PRINGSHEIM.]

7. If /(*)=*''(! -.r);

then we have 2/n(#)=#/(l -.r2), if

but 2/',1 (l)
=

0, although

8. Shew that the series 2 l/(w + ^)
2
converges uniformly if .v^O; but

that it cannot be integrated from to oc . [OsoooD.]

9. If \fn(x)\<.Mnlx
t>

,
where J/,, is ;i positive mnstant such th,U I'.l/,,

converges and jo>l, then, if a>0,

Apply this to the series 2 !/(+#)* I
and shew that it does not apply

to Ex. 8. [OsaooD.]
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10. If 1'",, oscillates fmit.-U !! the series 2(ajn*) is

[IMKK MLKT.]

11. .,,,..., ,,

|.J.

I
Km- 1 .'-"

12. It' 1 : Itely 00] illts. >ll-

11(1+ erges absolutely ;u id uniformly in int--r\al.

t fcbsolntely) ;md 1",,- '-ii\ orgec, 1 1
'

i

uniformly (l>ut my tinili- intei val.

13. Shew that tin- produ.-ts

II[l+(- D".'-/'J, II|.l+(-l. )] t
II.-..>.

OOQVerge unifm-mly in any linitc int.-rval, and tliat tin- tliinl f"ii\erges

1 'han a lix.-tl nuinlM-r H at ;ill j).in;
-o

and for all \ ii-n it' ^ -s at ;ill poin
1

int.-rval (./. /), it 001 ,nifniily. [HKM-IX>N.]

[For, divide tli- interval into \- snl.-intfrvals ,-sich >f Imu'th

win -re 6<^, lriii'4 any assi^iu-d small jM.sitivc nunil-r. N-xt tinJ

'hat at tip.- t-nds of ra--li suit-interval

<t>(>>'r)="'fn(-'-r\ (^-1, 2, ^ ...)
,,,-t-l

is numerically less than o. Thi- i- possil.le le.-;m>e th

h of thr-M- points, .///// //';/ -fl). Now if

any point of tin- interval the nt-aiest end of a sul>-intt-rval - not

further distant than A/ ; hem-.-

\<P(*)\<

|<K*)|<I<M.V)| +S<2S<,
and so the te>t of uniform <

'led.]

15. Apply li'ndi\*Mifs ti-st to th.-

^- 1

16. It -' OODVergM M hi.-h t.-nls steadily to /

with n, tin- //
,

'

OOHYergM unit'..rni!y if '-.^0. Deduce '

their
it,

in -.!!, Tal, >oiue nuinl.er ;
: sii-h thai >(*

and do,-s not OODVergQ if <

s
:

. <>f OOOFM it is |M>ssil>le that the l.i

i nil val . values of .' ; exai.

- n. [CA

17. Shew that



CHAPTER VIII.

POWER SERIES.

50. The power-series 2awo;
n

is one of the most important

types of uniformly convergent series.

We recall the result- proved in Art. 10, that if

Inn
n >w

the power-series converges absolutely when x < I/I ;
but the

series cannot converge if x
\
> I

/I, for then lim ! anxn > 1
,
and

so there will be an infinity of terms in the series whose absolute

values are greater than 1.

Thus any power-series has an interval ( 1/, +!/) within

which it converges absolutely, and outside which convergence
is impossible. By writing x in place of Ix, we can reduce this

interval to the special one ( 1, +1): and we shall suppose
this done in what follows (we exclude for the moment the

cases I = or oo
).

Thus suppose that we have a power-series which is absolutely

convergent for values of x between 1 and + 1 : so that if

/ is any number between and 1 the series ^|^,,|&
n is con-

vergent. Then, by Weierstrass's Jf-test, it is clear that the

series 2an#
n

converges uniformly in the interval ( k, +/>),

because in that interval
|

anx
n

|
=

|

an
|

kn . Hence we have the

n -suit that a power series converges uniformly in an intercut

which falls entirely within its interval of absolute converge .

It sometimes happens lint further tests (such as those given
in Art. 11) shew that the scries is .il>solm<-ly convergent for

|oj|
= l; and then the interval of uniform <-<>n\ i-r^viice extends



50] I vi i

:

-
1 U) -f 1 :npare tin- ith

ami apply \\ ,in.

But it may al> happ.-n tli,;' . not

nt: in this ca - m apply Abel's test

i \rt. 11), lerau*e tli.- leqUi variahle factors Xn D<

inn-eases with //.ami is U r than ! (if O^u 1

I i. Con-

s 2a,,a;
n

rmly in an interval which includes ./ ^ 1 (hut

nei-tl IP i as far as ./= 1 ). Similarly it' ~( \

nt ili- interval nf uniform C0nv< / = 1.

Ex. 1. The ft 1 + ;

uniformly in the- int-rval (-, +/)? where / is any niunl.-i-

l"t\v-cii <> and 1 ; lnit tlit- jH.ints
- 1, -4-1 .1,, n,,t l-l.nig to the region of

uniform

Ex. 2. Tin- +...

i-.ifi's uniformly in the interval (-1, +1).

Ex. 3. The ft

8 -i

<-"ii\erL.fes uniformly in the interval (-, +1). whore / is any urn

li.-tv. 1 1
;

luit the p-'int
-

1 il>es n>t lifhuig to the region of uniform

\\V HM\\ ivturn to th.- cases / = () or oo
,
which wv havr

hitherto k-t'l .n one side. It' it happen^ that

O, "=0

tin- seriea 1" SB" will converge ai.sMhurly tor any value of x\

and the interval >i' uniform convi may be taken as

(-.1. -f-^1). Where .1 can )> arhitrai-ily la:

Tims the si-i

1-f

.y foi- any value of * ami is uniformly omver^ent ii

-
-1, +.1 ).

On the other luunl.it' / = lini
\

an |"
= X

,
the Sei " eannot

t'or any value of x other tha.

An example of tli led 1-y i:



130 POWEE SERIES. [CH. VIII.

There is one important distinction between the intervals of

absolute and of uniform convergence; the interval of uniform

convergence must include its end-points, but the interval of

absolute convergence need not. Or, to use a convenient

terminology, the former interval is closed', the latter may
be unclosed.

That the interval of absolute convergence of a power-series
need not be closed is evident from Ex. 1 above, in which the

series is absolutely convergent for any value of x numerically
less than 1, but the series diverges for x = \ and oscillates for

x = 1 . On the other hand, Ex. 2 gives an illustration of a

closed interval of absolute convergence.

But we proved (at the end of Art. 43) that the interval of

uniform convergence must be closed, whenever the function

Sn(x) is a continuous function of x. Now for a power-series
2aw#n,

we have

Sn(x) = a + a
:
x+ a^x?+ . . . -f anx

n
,

which is obviously continuous for all values of x. Consequently
the interval of uniform convergence of a power-series is certainly

closed. This fact is not deducible from Abel's theorem (see

p. 129, top, or Art. 51), for it does not appear impossible
a priori that a power-series might diverge at x=l and yet
be uniformly convergent for

|

x
\
< 1.

51. Abel's theorem is expressed by the equation

Km

provided that 2an is convergent; this of course follows from

the fact (pointed out in Art. 50) that x= l belongs to the

region of uniform convergence and from the theorem (1) in

Art. 45.

Abel also shewed that when 2aM diverges, say to + oo
,
then 2an#w also

tends to +oc as x approaches 1. This theorem cannot be proved by any
appeal to uniform convergence ;

but the following method applies to both

theorems.

Write A = a
, A^ciQ+a^ ..., J,, = + rt

1 + a2 +... + '

Then since 1, x, #2
,
... is a decreasing sequence, we have by the second

form of Abel's Lemma (Art. 23)



50, 51
1

ABEL'fl THfiOBl

\\hnr //, // ar- tin- IIJIJMT ami 1" wt-r limit- i .1,,, .1, ...... l m _i, and
//

,

'

are those .

Sin..-.- ill,-,- limit- an- ind-|M-nIi-nt <!' y, we have

(1) : -O-H /'.-''"=Sa^^ // i ' //,,*".
I

*MWI *, then we can

I
h:il

however small may be.

ami

the indi-x /// di
]..

-ntls only on the series 2#n and is therefore

independent oi

Thus \vt- Me frin (1), that

Hut t is arbitrarily small, and so (see Note (6), p. 5) both th.- maximum
ami minimum limiting valu. lal to s.

Hence lim (l'/,,r
M
)
= = -

x-*l

. say to oo, we can timl >// s<> that //.n

h" \\.-v.-r lar.u't- .V may !. Thus

so that from (1) lim I'./,, ./" _: .V.

x *!

Thus, l.y an aixumrnt similar t> that ust-d alx.ve, we prove that

/-'////, // So,, otcillatesi we can see by the same argument that

lim J n |fjniafrr
n

ly c.uin.M-trd with tin- f..icur inur results is the theorem of com-

parison for two divergent series.

Suppose that I'./,,, I'/-, are t\\" ilm-r^-m seiief, tl.- ive an

ility similar t> (1),

\\hnv /, A' ami from Z?,,
= ^

-i-^i + -" + ^. IM(>

way as /.. // and

Thus, provided that //, />, //v yc< tind

(2)
.")+*-

_ ".=v= -"

In applications of the theorem it is generally the case that a* is always
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. Obviously lim
</> (#)= kmjHm ,

and lim 3> (x)
=Km/hm ;

Xf-l X>I
and now suppose that Bn/A n approaches a limit I as n increases

;
it is

then possible to choose m, so that

however small may be. Then we have at once

lim
<f> (.r)^l and lim <I? (#)^

X>I X --l

Hence from (2) we have, if /(^)

X-+\ X-+1

Repeating the former argument, we find that

!

In a similar way we can prove that if Bn/A n-*&, then f(x) -+cc
;
and

that if BnIA n oscillates, f(x) may oscillate between limits which cannot

be wider than those of Bn/A n .

Thus we have the theorem, due to Cesaro :

If BJA n= (6 + 6
X + . . . + bn) / ( + !+...+ aM) approaches a definite limit,

Jmite or infinite, then

lira [(26Bay)/(2oH )]
= lim Bn/A n ;

ac^l >oc

a result which can be obtained also from Art. 153 of the Appendix.
It should be noticed that if bn/an approaches a limit, Bn/A n approaches the

same limit (Appendix, Art. 152) ;
thus a particular case of the theorem is :

If bn/an approaches a definite limit, finite or infinite, then

lim (bn/an).

Ex. 1. It is possible to obtain the first form of Abel's theorem from

the last theorem, by comparing the two series

Ex. 2. Similarly, by comparing the series

4;r+ .J + .4 +.4#2 + ... and

we see that if lim -(A + A
l

then lim(2,,.r
w
)
= Z. [FROBENIUS.]

x >!

Ex. 3. Again, if the limit in Ex. 2 is not definite, we may consider

a further mean. Suppose that

,. n

tlien we can compare the series

y| + (2^ + ^ 1)^+(3/l +^J
1
-i-.l

:i)^-f-... and

and prove that lim (!'</,.../")
=

. [C'ompare Art. 123.]

\\'- n. .t<- tliat eacli of tin- <-.\ainik's 1, 2, 3 includes the preceding one.
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Ex. 4. AH Q tin- n-a<ler in,. 'hat

<'+ *'+...) =

(ii)

'.r + 3'-V+...)=I
J *!

' '-Kr' -.!> + ...)= .

In rase (i), the sei 14. ^4.... gi vt
-

while the series for (l-.r)~* gives ZfH = 3. + 1) -2 . 4 . <)...2.

'ml .l
f| cx>logtt/log, \\hile tin- log(l-x)

M0 (iii) \ve DM th- fa-t tli;c -
, !' -f 1).

Kinally, in case (iv) we li:ive J,,+ .-!, + ... -f .l
rlroA.

1 1'rin.u'slHMui* liav.- pi-..\,-l the,, reins of great generality on
\vhieh diverge at r=l. A> an examj.],- ire quote th- f-ll-.v.

It' A( /

) i.- a funetiin of

sl,,wly than r, K that liin
[ A(./-) .*] <. th.-n 2A'(n)

approximately ly A[l (1 -.r)] for values <>f ./ neaf t< 1.

52. Properties of a power-series.

'I'ln- LT'-ii'-i'al thcoiviii^ proved in Arts. 43, 40 of course apply
to a ptwvr-srrii^. BO that \v.- can inakr thr i'ullnwin-- state-

iiu-nts :

(1) A power-series 2an#* is u <;,,ili n>iu.-< fu , <> any
, ,,f, rval '/ "/////'// /'/> region / <

<Val ii'itliin f/ r> !'",> <>f

\
*(Saj> xfc-2

')"
(<-;

+1
-'-r

+t+I
).

-

//' / is any uithin fl reg noe

!/,
:

\\'r nutf that tin- interval <t' altsolut,- convei >f a

p^ nit alt.'ivd l,y ditrcrcntiatiun >

I'rnin thr i'act that ; lini // 1 = 1,

80 that lit, i ,Mf
i(

" = lini 1^1"= lim
j

M, t f: -. linn. p. i. \vi,,:i- full references

will he found.
i

>r lim(n +!)/!= 1. so that liui/c 1 1-y Art. l.Vt in :
;

.i\.
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By applying Abel's theorem (Art. 51) to the integrated series

we see that in (2) the point c
z may be taken at the boundary

of the interval of absolute convergence, provided that the

integrated series converges there, no matter whether the original
series does so or not.

An example of this has occurred already in Art. 47.

(4) If a power-series f(x)=^anx
n

converges within an
t
o

interval ( k, -f-/c),
there is an interval within which f(x)=

has no root except, perhaps, x = 0.

For suppose that am is the first coefficient in f(x) which does not vanish
;

then the series

is a continuous function of x, in virtue of (1) above, and fm(x)
= Q for #=0.

Thus we can find c, so that \fm (x} \

is less than ^ |

am
\ ,

if
|

x
\

< c < k
;

consequently in the interval ( c, c),

Hence /(#)
= has no root other than #= in the interval (-c, c) ;

and if is different from zero (so that ra= 0), /(#)= has no root in the

interval ( c, c).

(5) It is an immediate deduction from (4) that: If two power-
oo oo

series f(x) =^anx
n

, g(x) ^bnx
n are both convergent in the

interval ( k, +/c), and if, however small 8 may be, we can

find a non-zero value x
l
in the interval ( 8, S), which satisfies

then a = b
, !

=
&!,

and the two series are identical.

In practice, we hardly ever need this theorem except wlu.-n

f(x) is known to be equal to g(x} for all values of x, such

that
|

x |< &

53. We have hitherto discussed the continuity of the po\\< T-

series from the point of view of the variable x\ but it some-

times happens that we wish to discuss a series 2/n(y) . xn

regarded as a function of the variable y. The following

theorem (due to Pringsheim) throws some light on this question:*

* Further results have been established by Haitn^s (Math. Annalen, K<1. CrJ,

1006, p. 9), Using more elalmiatr aiiaK



52, 53) PEINGSHEIM'e THEOREM,

\' caTi be found 8u</< ////

trl,f>re A, p are fixed and /
'//'/ ?i /ias any value. Then

2/,< >ntlnuou8 fuiirfiun f if
', ,i f/tc interval (

<

la continuous for all finite mines ofn, and
th.it ./ < A'.

To prov tli- theorem, we in-.-.l <.nly compare the series

with -/l?i ;>

(-pJ-J ,
which is ino! t

-p.-ii<l.-nt of y ami i> OQQVefg

when |05|<A': tlms the s.-rics ^/'(1 (^).a5* (by Weierstrass's

i cm vi-r^-s uniformly with iv^unl to
//

in th- int.-rval

;
'), ainl is tlu-r.-1'ore a continuous function of

//
in that

Interval.

It was erroneously ^uppo^nl li\- Aln-1 that the convergence of

1 / i '/ ) . A' in tin- intn-val (a, l>) was sullici-nt to ciivun- th-

continuity of ^/( ,(iy)a;
n for < ./ < A (a-<umin^ /',(//) con-

tinuous). But rriii^shrini lias cotistruct-<| an .-xanipl.- s

that this c.nlitimi is not sutlicient (see Example (5)

The follnwitiLT rxainpk-s are due to AK-1, \\itli the i-xccptimi of (5):

(1) Tlu- > l'jc+-2 !'.c-+... + ,<\c" + ... (\jc <1)

represents a continuous function of y.

ffiiny+i '->in ^// -.',' sin 3// + ...

MtiiiMini.- \vlii-n ./ <1 ; Imt altln-uirh tin- st-rit-s still

COnvergea it" g \, it i- ili> 1 -. l ntiiiu.us at v=0, 2?r, 4;r, ... (see Art. 65).

.miniums fniH-ti.>ii <.f >i if X\<\\ and thus liin /'(y)
= U. Hut if

* ' the 9eries
5+ + + - (see Art - u)

from / ."'
'

tan" 1
//"'-'

I tiian tlu- tii>t t.-nn y(l-f//-). Thus it i th.it

(,
I) Thr ...nv.TLrt-iu-c of tlu- sn

Spim
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does not follow from that of 2/M(#)#
w for all values of y>0. Thus the

series
8in.y Bin2y sin2y- , n2^
y y y y

converges if #<1, when y>0; but the series 1

diverges if x>\.

(5) Pringsheim's Example :

Let Jfn tend steadily to oo with n in such a way that Km J/'n+1/J/B
=

and let J/ = 0. [For example J/" = 0, J/7l =wn
.]

Then write

and it is evident that the series 2/n(y)#
2n

converges for all real values

of y and for any value* of x. Further, the functions / , /j, ... are con-

tinuous for all real values of
?/. But if #^1, the series 2/n (y)^r2n is

discontinuous at ,y

For

and so if |y|>0,
o

Now the terms /rt (y) are positive, so that

^i if ^1
From these facts it is clear that the series is discontinuous at #= 0, if x^\.

Of course if \x <J, the series is continuous at ;/
=

0, because /,(y) is-

positive but less than 1, and so

and thus the Weierstrass-test applies.

54. Multiplication and division of power-series.

As regards multiplication of two power-series, the results

of Art. 34 shew that if both series

converge absolutely in the interval! ( /, +/), their product
is given by9

* Because

ami ^x2n/Mn converges for any value of x, since lim Afn+1/J/M
= ao . Of course

we have taken y not to be zero; if y = 0, all the terms of the series are zero,

and S/M (0).x2 = 0.

f If the two series have different regions of convergence, this iuUTval \\ill be

UK- -///'/// /' of tin- two.
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which OOnTflVgei al.-olut<-ly ill the same int.-r\al. \\
:

Co H'/V

If \v- apply Abel'd theorem (An. ~>\) to the equate

**-(So,

we can deduce at oner hi- tln-nivin (Art. :{-! that CAE,
pn>\ id-d that all tin---"- Beriefi convei

</;/;>;<;,/, we assuni,- tirst that tin- constant term i>

ditr.-ivnt from zero; and for simplicity \v- tak.- it 08 1. Thus

>nsilrr tir-t

where //
=

Now

and liy Art. .')U. th may 1..- arran-v,l in pw.-rs <>:

pi-i>vil-l that

In-ill^- any nuiiiln-r Irss than th.- radius of coir. 16 of

',,.'-", and M th.- upper limit of \bn \p
n

(of cour>- h.'iv >=!.
\\'- ohtain

<!+//)- 1=1-^., + ,^ -:_/,
:

,.,-- _,/,,.-:_ O/^/,^.

This seriefl may th.-n l>e multiplird by any other
j.

\

in ./:, and we ol.tain a p ..v - for tlie (jiioti.-nt

^r" r''-h" :
,'-+...)(l-f^ r''-f^

in.- .f th,. initial trim- in tin- ilriic-minat

, tli.- .lu.'tinit may still l.c found as a powei

Th N 6
( ,

=
0, l^=(l 1'iit tliat

/-_,
is n..t BWO) th.-n w- h.,

wben />',
/

Tlu-n, as al,. :u l

'',

Thus
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In practice it is often better to use the method of undeter-

mined coefficients thus we should write

multiply up, and obtain, in virtue of Art. 52 (5),

from which we get successively

^0 ' 1 ' 2 '
* ' ' '

A more exact determination of the interval of convergence
is given in Art. 84 below.

55. Reversion of a power-series.

Suppose that the series

y = a^x+ a
2
x2+ aB

xs
-i- ...

converges absolutely in the interval ( k, + k), and that it is

required to express x, if possible, as a power-series in y.

Let us try to solve the equation, formally, *by inserting a

power-series

If 2bny
n is convergent for any value of y other than zero

(by Art. 36), the resulting series may certainly be re-arranged
in powers of y without altering its value, at any rate for some

values of y ; leaving the question of what these values are

for subsequent examination, we have, in a certain interval,

y = ( A)y + (aA+ 2V)2/
2+OA+ 2

2
&A+ 3V)2/

3+
or 0,^ = 1, a

1
6
2 4-a2

6
1

2 = 0, a^3+ 2a
z
b
1
b
z+a^3 = 0,

and so on, in virtue of Art. 52 (5).

Thus we can determine, step-by-step, the succession of

coefficients,

6
X
= l/av b.

2
= - a

z/<**, b
s
= 2a

2
2
/a1

6-
aja^, ....

It is evident from these results that a
t
must be supposed

different from 0, or the assumed solution will certainly fail.*

*For the case when aj = and aa is not zero, the reader may refer to

K.xs. B, 31-33, at the end of the chapter.
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\\'e may then 1 without loss of generality, for the

Q equation ran he writ!

and BO, with a slight change of notation, we can start from

//
= .,- + ",.'''+ 'V :1

+....

Then the equations i'or l>
{

.

.-.juations sh.-w tliat \bn\^/3n , where t given

])l'o\ id.-d that

Now the (Mjuations for the ,-J's are those which wouM l.e

ol)taine(l l.y in.srrtin^ the series

in the equation

Hut it'
ft

is any positive nuniher less than /. the aeriefl 1

iver-vnt, and BO we can timl* a nuiuher .17 such that

/'
-
1 /

fol all values of //.

Thus we ran put M

_,_
/.'/

this equation -'i

Of

iiiii.itic.n i.f M. Mfl

below.
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the negative sign being taken for the square-root, because

and
tj

vanish together.

But (p+tf-^M+p^X-Mft-n),
where X = 2M+ p+ 2 [M(M+ p)] *,

Thus we have

and thus, since X>yu, the value of can be expanded* in a

convergent series of powers of
rj, provided that 0<i;</x. But

this series is clearly the same as 2/3n >7

n
;
which therefore con-

verges if 0<>7</u. Now j8nS|&|< so that finally 26ni/
w is

absolutely convergent in the interval ( /x, +/x). Consequently
the formal solution proves to be a real one, in the sense that

it is certainly convergent for sufficiently small values of y.

It is perhaps advisable to point out that the interval ( /*, +//-) has

not been proved to be the extreme range of convergence of the series 26,,y ;

we only know that the region of convergence is not less than the interval

For instance, with the series

X1 $

^= 'r+
2!
+

3!

we could take as the comparison-series

This is found to give

X =
and so the method above gives an interval only slightly greater than

(_^ +). But actually (see Arts. 58, 62 below)

y= e*-l, so that ar= log(l+^),
and the series for ^ converges absolutely in the interval ( 1, +1).

56. Lagrange's Series.

In books on the Differential Calculus, an investigationt is commonly given

for the expansion of x in powers of y, when an equation holds of tin.- form

* We anticipate here the binomial expansion of Art. 61, for the case v = lt.

fSee for instance \Villiain.-on, />//// -ntinl ('d/nt/it*, chap. 7: Khvanl>,

Differential Colai'm, dia|). 18.



55, 56) I. LOB \\'-i

process 'gives an anal ratioo f-r the coefficient* in th<-

u it gives no inf-.i hi-h

an -\|.i: 1 tin- expansi>:

'ally u. -t jH.^il.K- m l'-d in a < nvergent power-
tli.-ii pOMible to write the

"-" m "" ''"""
,-,

MIC -"it tin- d- : mis ^grange's prol>h-m i- n>w seen to be,

in ivality, t-<|iiivalrnt t.. tli- iw.-i >i<.n .f the power-series ^a,^, in the

I^agrange's iii\-r>ti^aii"ii -)i,-\\> ti i.il to the

M nf [/'(-')]" : "!', \
'

1 ng
in tin- r\|aii-

\v.- . cstalilislj tin- inert- ur 'n-ral form i.f Lagrange's series in
00

\vhirh ;H iiidr<l in i ^_
-

"
is another _

p'\\- \\'.- knew in fa. t (lV"in Art-. ''><> and .".")) that i ntly

small values of \x\ and |.y|, we can \\

wlu-n-
/,----<, f,

anil tlie otln-r c..i-Hi.'ii-nts have still to be found. The
inti-rval ..f convergence cannot In- f.iuinl. ly flrnit-ntary ni'tli"ls, until

the coftli.-ifiits havr IMM-II (l.-trnniiifd.

Mtiaic tin .'1 we find

-|(*.;
hividc in.w liv i/

r
, \\1, uiv \vliolr nuinlier, and wr get

Suppose both thifl i-|iiatiin t<> IK- -\pandi-d in asn-iulin^ :

: tln-ii. on the riu'lit. thriv is ..nly mi.- t.-nn+ containing * '

: and this

= r.

It is n,\v ,-1,-ar tli th.- r,,-Mi.-i-ut ..f ./--
1 in the rxpansion of

'.lie finl of tlu- cha]

\cept for 7i = r,

1., +

= Jo*-"' +

hut in this t-\i sen if n is loss than r,
'

> term in

because x
; , nt ,.f any pow-r -

On tlu- othfcr h:inl. if n r, \vr 1,

g+^
= + J5,^ J
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g'(x}jy
r in ascending powers of x

;
and this is equivalent to Lagrange's

formula, although first put in the above form by Jacobi.*

It is to be observed that if the equation in #,

is solved by some algebraic (or other) process, there will usually be

additional solutions as well as the series found by reversion. This series

gives the solution which tends to zero with y.

Ex. 1. If y=x-ax?, and g(x}=x, we have to find the coefficient

of x~ l in the expansion of

(x-ax*)-
r=x-r

(\-axY
r

.

Thus we get rdr =

and so x=y+ a#
2+ 2a2

y
3+ 5a3

?/
4+ . . .

,

which converges if
| ay \

< J.

Of course this series gives only one root of the quadratic in x, namely

Ex. 2. In like manner, if y=x-axm+l, we find for one root

Ex. 3. The reader will find similarly that if y=.r(l+#)
n

,
then

37i37i+l 4 ,

y + ~-

Ex. 4. To illustrate the method of expanding g(x\ we take the follow-

ing example : To expand e
ax in powers of y= xebx

.

Here g'(x)ly
r=ax~r

e(a
~ rb)x

^
and so the coefficient of x~ l is easily seen to be

a(a-rby-
l
f(r~l)l.

Thus we have

, a(a-26) , a(a-36)
2

.
S*= l + ay+ 2 ,

V + -
3 ,

y

y
s+ .,

which converges if |y|<l/e|6|.

In particular, with a= l, 6=-l, ^= e*, we obtain Eisenstein's solution

of the equation log=,y (see Ex. 11, p. 18), in the form of the series

* Qes. Werke, Bd. 6, p. 37.
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1

KXroNKNTI \|. SKHIER

CI:I;TAI.\ SPECIAL i'<>\\ 1:1; SERE

57. The exponential limit.*

\\v pn.r.-.-d tu prove that

win-!-.- 05 = liliH.

-*<>

Consider first tin- sin-rial 6886 wh.-n j t-nds to intinity th;

intr-Tal values //. and writ.- n*=*X.

Thru we tiiiil.'- >n .-xpaiKlii

i-

"

-3(i-J)...(i-^
Now. this ezpressioi] satisti-s tin- cnmlitions ni' Art. 4!>:

can u^i- as tin- roinj.arisoii-series,

i -,,..- .,..
- .

where A',, is the <nvatrst value} of |X| for any value ol

F< >r we have

r

wln-n- A',, is (,!' coarse iinl<'|enlem Also

Hill >'
r ( n )

= J

n

i use lini
(
1 -)= 1 and liinA'=.'-. Finallv the in-i

n->.\

-|iial t<> n. and so of com infinity.

Thus |iml+*l+s+.l_^+.. t to x.

"Tin- Mitik'ndnl ;i\ II. before proo
further.

tFor tht- L'< -iitTiil ti-rni in the liiiunnial expansion of (1+^)H
is

|
That tluTi- is ;i

jji-i-ati-.st
val ;,-iit. livcause it is supposed t

-lu-s tht- limit x, us in.n ,ist-s t<> intinity.
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If now v tends to infinity in any other way, v will, at any
stage, be contained between the two integers n and (n+ I)

say; and of course n will tend to infinity as v does. Thus

(! + )" will be contained between* (l + )
n and (l + )

n+1
;
and

vg will be contained between ng and (n+ l)g, so that

lim (ng) =Km (n+l)=x.n>x n >oo

Thus, from what has already been proved, we see that

and since (! + )" is contained between (1 + )
M and (l + )

n+1
,
it

follows that 2 s

If we write for brevity

(*+)"- 2/r(*,*),
r=0

it will be seen that we have used the theorem

lira 2/r(*, n)= [lim/r(#, )].
n >-oor=0 r=0 >)

That is, we have replaced a single limit by a double (repeated) limit
;
and

of course such a step needs justification (see the examples in Art. 49).

Special cases.

If =
l/i/, we have the equation

l +l+i + i-,+ ... tooo=&
z! d!

The value of e has been calculated in Art. 7 and proved to be

2-7182....

If =l(i/-l), we have

so that lim (1 l/v)~
v= e.

v->ao

These two results may be combined into the single equation

where X approaches from either side.

*It is of course understood that the positive value of (!+)" is taken; and

then this value is obviously fnntaiiu-d between (!+{)" and (l+f)H+1 if " is

rational. On the other h.md, if > is irrational, the statement is a consequence of

tin- ih-tinitioii <>f un irrational ]>o\ver.
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1

CES,

58. The exponential function.

\V. may denote hy tli.- synil."! /'<
B)

ill.- .

xjMuiential series

x* a* a*
' +

'I'd- -ii (1 tliat K(x) is a contin

t'uneti..n ..f X, and that its ditl.-ivntial coefficient i^ -i\-)i by
term ditl'-ivntiation, go that

i)-i++lJ+jP+...-jrM

. .= .

-
TT|.

rl (/--I).

we see !'r.ni Art. ">7 that

" x

This rrsult i-an also !

prn\-r(l dir.-ctly I'rmn tin- > i rios for

I-'A > tin- rule (An r inultiplyin^ I

.lut.-ly oonvergeni serie& Tli.- i-.-ult leads din-ctly tc

..|uati.iis (in which re positive int.-^ers)

+-[(iyf-E(n)-[E( (- ;/- 'I'
1

-

Thus W B6 that / valu- nf ^ t\.r

rational valu.- of B, Hut tl..- relation must also be tru- i' >r

in-atinnal values ot'
j

i'or it' .ts a

Sequence l' i-ati"iial nuinlx-i-^ wli..x,. limit is ./, we h;.

lim //(/ i= A'.

the ]:ist step I alid IMMMU^-
' i>n

(Art 46) In I'utuiv. w,- shall p-nerally write ,-
T instra

E(x)\ hut when the e\]M.ii-iit mplicate
it is sometimes clearer to use ezpx, as in l.

!' the c-hapt.T.
K
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The reader will find an independent proof (depending on

the Integral Calculus) of the equation

in the Appendix (Art. 162).

Ex. As a numerical example, the reader may shew that

e^= 4-800...,

and hence that 6^= 23-0 ____

[Reference may be made to the example of Art. 59 for some of the

results needed in the calculation.]

59. The sine and cosine power-series.

[3
5

Hn+gr-"*- 1^

and

Then it is plain that Sn (x), Cn(x) are both continuous

functions of x and

as may be seen by differentiation.

Now C (x) = cosx 1 is negative, and consequently -i-

is negative ;
but S (x) vanishes with x

}
and consequently SQ(x)

is negative when x is positive.*

Thus -r-[Cl(x)]= S (x) is positive when x is positive; but

GI(X) vanishes with x, and therefore C^x) is positive when x

is positive.

Hence -T-[Sl(x)]
= C

i (x) is positive when x is positive; and

S^x) vanishes with x, so that S^x) must be positive when x

is positive.

That is, -r-[C2(x)]= S^xy is negative when x is positive;

and therefore, since C
2(x) vanishes with x, C2(x) is negative

when x is positive.

*We make use throughout this article of the obvious fact that if y is

increasing with x and is zero for x=Q, then y (if continuous) must be positive

for positive values of x.
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\Ve can cnnt iniie t his ai'innm-nt . and l.y doing SO W6 find that

(7 (ar), Cz (x), C
4 (x), CQ(x), ...

j
are negativ. \\ h -n

5 (aj), fi ... J Dispositive,

while the expressions with odd Mitlix.- are positive,

This .sh.-ws that sin,/' lirs between th- tw<.

- 1

+
.v

' +(
- + i>:

,.,,1 -...+<-

Hence, since

-I ,

'

3-2/1+3

(2iT~

2n+3)l
- = (see Ex. 4, p. 8),

u Xs
t
X6 X7

twe have sin2 KT+T? &-:+ to ao,

In like manner we find

... >.4 7.6
1 i i

These results have been established only for positive values

of x; but it is evident that since and its series both change sign
with ./', while cos./' and its series do not change sign, so that

the results are valid for negative values of x also.

The figure lelw will s.-rve to sli'W the relation between sin./-

and the first two or three terms in the infinite ser

Ku:. If,.

Ex. Lot us calculate c<.s(irr) and

\\Y li,t\,- .r = ^7r=r.")7<s vci v

This L '

-0 (

&**=
07W, ,

= -0209,

L-S546 i-j:>;
0,

tlu- wror 1-oing less than -00003.

Also g r-1, the error IKMH.I: leea than -00003.

= -00003.
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60. Other methods of establishing the sine and cosine

power-series.

(1) Probably the most rapid method of recalling the series to memory
is to assume that sin x and cos x may be represented by power-series.

Thus if sinx=

we have

and so

Further, a =
0,

Hence we get

cos x -j- (sin x) + 3a3#
2+ . . .

,

. 4.

because sin.r is and COS.T is 1, for #=0.

1 . 2 . a2
= =0,

2. 3. o3
= -!=-], or 3

=-
,

3.4.a-4
= -a2

=
0,

4.5.<x5
=-a3,

or &&
=

?

and so on.

But of course we have no a priori reason for supposing that sin x and

cos# can be expressed as power-series ;
and therefore this method is not

logically complete.

(2) We may start from the series, and call them, 'say, S(x\ C(x). Then

multiplication of the series gives

C(x) C(y)
-

Hence in particular [C

and S(*c)= ZS(x)C(x\ C(Zx)= \C(xff-\S(xff.

From these formulae we can shew that S(x) and C(x) satisfy the ordinary

results of elementary trigonometry.

Further, it can be seen without much trouble that (7(2) is negative,
* so

that C(x)= has at least one root between and 2. But

and S(x) is always positive! for any value of x between and 2. Thus

C(x) can have only one root between and 2, because it steadily decreases

in that interval.

I liccaiiHt-



; \\i' - [ES

( 'all this r,,ot

~
: thru

and ao l>e positive.

Hence

ami W >
. C(X+T)--C

< MI these facts tin- \vh..lr of Analytical Tri.u
r
"ii"iiirtry can be based.

[t is nut ditliciilt to piove, liy imliK-tioii or l.y the methods given

in < 'hap. IX. l>rlo\v, that

n(n-l)
2!

\vhrre t = t&n0, and both aeries trnninatr after An or 4( + l) <>r i(/>

Thus we have, on putting # = .r,

\ n>

To theae azpnemona i: -an apply the the.-:

u>inur as tin- coinjtarison-series

... ;! ,

e / =|tano:|^|f |.

\\itli that rinpl..yed f..r the

exponential limit in Ait. .~7 ; ami \ve get

r+ / 1\/ 2\^* n

iLM1
"*)!

1

*-\ -]-
1 -f- ^

= COS -,

we have

that lim n /=0,

an.l thus li,n eoe*- lim (H M=l (see Art. 58),
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(4) Another instructive method is to apply the process of integration by
parts to the two equations

cx rx

sin#= / cos(x-t)dt, co.s#-l=-/ s\u(x-t)dt.
Jo Jo

If we integrate twice by parts, we obtain

t
2

~\
x

c
x

t
2

(x-t)--2jsin(x-t)\
-

/ co$(x-t)

r-
f-2

U f-x
fi

and
cos#=l-| sin(#-) + cos(#-)J

+ / -^m(x-

and so on.

Thus we find that, in the notation of Art. 59,

Hence we find

and

61. The binomial series.

Let us examine the series

-l)-j
+ K^-l)(^-2)+... to oo.

We know from elementary algebra that if v is a positive

integer this series terminates and represents (l+x)
v

. We now

proceed to examine the corresponding theorem for other values

of v.

By Art. 12, the region of absolute convergence is given

by |

x
|
< 1

;
and so (Art. 50) the series is uniformly con-

vergent in any interval ( A:, + /.,), where < / < 1 .

Now f(a;)
=
^l + ( l/ -l)a;4.( l

;-l)(^2)^+...
to x]

= vg(x) say,

where g(x) differs from f(x) by having (v 1 ) in place of v.



60, 61
J

BINOMIAL

x
Also (1 -f \+(v -l)x+ (i>- 1)(.

-2)jj+...

BO that

Hence we see that

or /(aj)=.-l(l +

where .4 is a constant in<l. JM
n<l. lit of x. But/(0)=l: and

consequently, it' v\<- choose the po*>' >lue for (l+x)",

have .1 - 1 : that 18,

This result has, of course, been proved only for the im

(-/, + /.); K't u- now see if it can ! '.\trnl-l t. inrhnl.-

th.- points 1, +1. Th.- <jU<'ti.-nt <>t' the />th term in th--

series ly the ( ,/ + 1 >th is

// (?? i^ 1).?:,
if />>i' + l,

and so the series con\< r-vs for ic= 1 if v is positive (Art.

an.l for ./=+! if (r+1) is positive (Art. '2\ ). Thus by Abel's

thenl-elll (Art. ">
1 ) tile sillll of thf Sel'leS for iC = 1 18 0, if

i- is positive: and for .r=+l the sum is '2' if i'-fl is positive.

l'h- ni">t rapitl nictli-ul f,,r r.-calling the series to m- ;

B th- ditlrivntial M|uatinii

(1 +

I iy assuming a sei f(.r)=\ +a rv+ <i.,.r-+

On sul.stitMti..ii. \vr lind that

-'
'..,
+ </i

= 1 etc.

tliis mu>t l>e supplemented as abov.- in ..nU-i t.. o>ni)>l-t-

tin- |i"..t".

in multijilv l'_:-!li.[ t\\,, writ \vitli tlitlVrmt values of f (say

r, ami r.) and \< : \it. L'T ) that tlu-ir j.l.xlu.t :

whii-h r \rt. s;i. 1

.iiimt as was

must lu- tlu- rth |H, \\n ,,f its valur f.-i r = l.
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(3) We have

o

where we obtain the last line by integrating by parts. Continuing thus,

we get

Now, if x is positive, (l+x-t) lies between 1 and (l+#), so that

provided that r > v - 1.

On the other hand, if x is negative, we can only say that

x}
v ~ - 1 IJ

-,
if r>v-l.

Thus, in either case, the difference

tends to zero as r increases to infinity.

If x = 1
,
it is interesting to note that we can sum the binomial

series to a finite number of terms. Thus we have

and so on.

Hence the sum to (r-fl) terms is

Therefore it is clear from Art. 39 that this sum tends to if v

is positive, to infinity if v is negative.*

62. The logarithmic series.

We take as our definition (see Appendix II.) of the natural

logarithm the equation

Because the series l + i + + ... to GO is divergent.



81, 62] I' GABITHM*

v \vln-ii ./' < I 'i wriit-

ml-t+t ...tOQO,

tin- uniformly from ^ = to =/. H

( l.y Art. \\- ha\- th- -\|>ai,

log(l + .!) = ./- A./--+^./-
:!

-J.i-
4 +.

llo\\.-v.-r. it i^ not ry i" make use of tin- unit''.mi

(oiivrr^rnrc "1 tin- 861160 in <>nl-r to inlt-ji-al.- t.-i-m-ly-i -Tin ;

Can \\rib-

Thus in- ( i-f.'-) = ,--^,^-f!.'
;

-...-H(-l .

oF+
It' X is positive, tin- la^t intf--ral i* cl.-arly l.-ss than

*

P<
J /' + 1

which tends to /,-ro as // tends to infinity. i>n.vMMl that

<s= 1. Thus //M Ini/m-it/iiHtc series if >"//''/* even for x\.
( )n the otht-r han<l. when ./ is i -,-111 only say that

jf;
98 than

1 +# Jo

anl from tl. Ssion it woull !.
cxi..-ct-il that ./= !

be '-xrlnd.-.l iVoin l
' of th<- loirarili

9; ami, as a matter of fact, tin- 96li6fl

been |'ro\ .<! to li\ , -2 ..

, tin- i.l- (1-f J-X= tf
1^

-i

Tli.it is, .-re be ext-

of unitnim OCH tegrated series (compare
Art. 47 UM-1 Ar-
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It is now necessary to consider whether the first of these series can

be re-arranged in powers of y without changing its value. By Art. 26,

this derangement will be permissible if the series

is convergent, where f= |# |, ^= \y\.

But the last series is the expanded form of (1 -)~
T

!,
which is convergent

if <1 ;
that is, if |#|<1. Thus the derangement will not alter the sum.

Hence we get (from the coefficients of ?/ and y
2
) the equations

... to oo,

^(l + HHi)+-.. to oo.

Similar (but less simple) series may be deduced for higher powers
of log (1+0?). [Compare ChrystaPs Algebra, Ch. XXVIII., 9.]

63. For purposes of numerical computation of logarithms it

is better to use the series

which can be found from the previous series by writing x

for x and then subtracting; or directly, by integrating 1/(1 x2
).

In either way the remainder after n terms is seen to be less

than

-I
f i * ~T~ K 1 ~* i J- ~1 T t

iX.

The details of calculation for log f may be arranged as follows :

I = -20 00 00 00 -20 00 00 00
5

-^3=
800000 +3 2666 67

-J3-=
32000 +5 6400

-^r= 12 80 +7 1 83

51 +9 06

20 27 32 56

2

log f
= -40 54 65

Tin- error involvrd in m^li-ct in^ terms l.cvoiul tln> tifth is loss than

-i4L_-.
rff)) which cannot affect the eighth <lt<imal. Hence the

result is correct to the sixth decimal.



62, 63, 64] LBH >l\ \M AJEf

get

again l-ss th;ui ;i unit in tin- ri^hth !.

Also log} = :.'[-imilll+-OOCn.- 'KXXXKX)3]

=a'2L'.'Ji 1 1 t" -ix decim

th.-><- ivMilts \\- tlnil the natural logarithms of all integer-

1 t.. In (with tin- rM-i'ptinn of 7, whi.-h .-an 1..- t'--iind simOarlj r'i"in l"g).
In particular, \vi- havr

Iog2= -698147, Iog3 = 1-09861:.'.

log:. : log 10= ^:

han tin- febove hav- I>MI f"iin<l. \vlii.-h < -on verge
more rapitlly, and so enable the logaritlnns to be easily calculated to a

: nmiilM-r >f placrs. T<. illu>t iat<-. the reader may find formulae for

log 2, log^i. l"ic .") in terms ..f the three series obtained by \\ritiii'_
r ./--! 31,

1 lt; l '" -- {+ ir*+ ...).

64. The power series for arc sinz and ,n

II' X ~ >in ^. we b;i\

and BO, l>y tlit- principle of reversion of Beriefl (Art ~>~>), we
can expreefl th- Dumerically b-ast value of as a _

rent

in .>'. tin- first t\v> t.-nn* <!' \\bicb arc

H \\-f\-rr. it i^ ii"' i-asy tx> obtain tin- ^'iirral la\\" <!' tlic

coetlici.-nts in this manner: hut \v<- can me th>- ditliculty

by nsin^ the Calcn!

\V.- have in i'act

i i i i .:;
(

i ,g

^c^il-^r 1 + :r + :>. 4''
+

^.l.,;

'

h

wlr ! to lie between -ATT and -fl-. sn that

i- positive

The B6VJ r- i^ nhtain.-d lV..in the binomial Beri

writing i --^. ami ./
:

I'm- -f.r: it will th.

unil'nrmly in any interval (/,-. +/,) if ()</,<!.
We may int.-urrat.- fcenn-hy-term and so obt-iin

i i. g i

arcrina ^ = ,- + ,
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which converges absolutely and uniformly in the interval

( 1, +1), as may be seen from the test of Art. 12 (5). Thus,

writing x = l, we have a series for |TT.

Although we have not found* a series for tana?, we can

easily find one for arc tan x. For, writing x = tan
<j>,

we have

d L 1

dx

or d>

'o

where
</>

is supposed to lie between |TT and + JTT.

The integral last written is less, in numerical value, than

/2n,7/__!
aj

lo
;

2n+l

and this tends to as n tends to cc
, provided that

|

x = 1.

Hence we havet

... to 'oo
,

where 1 ==+!, jTr^

In particular we have

Of course this series converges very slowly, but by the aid

of the method given in Art. 24, the reader will find no great

difficulty in calculating JTT to five decimals, from the first 13

or 14 terms. The result is JTT
= '78540.

* We can, of course, form such a series by dividing sin.c by cos a- (compare
Art. 54), but there is no simple general law for the coefficients. The first

three terms are

anil more coefficients are given in Chrystal's Alyebra, vol. II., p. 344.

The method used in Art. 54 shews that this series will certainly be convergent
XZ yA y&

in any interval for which ol + T-,
+

^j
+ < 1 &"il a short calculation will shew

that this is satisfied in the interval (-1*3, -f I'.'i); but by means of a tlu-ornn

given in Art. 84, we can shew that the region of convergence is (
-

^ir, + ^TT).

fOf course the term-by-term integration could also have been justified by

making use of the uniform coim-riM-in-i- <>f the series 1 -x'2 + x*- ... .



64, 65
1

ntlGONOMETRK \i.

rfoai t" i uvergence of the series ; a

kii'.un i i\.

Tl.
,'\,

tan i

I [en
i
7r)
= 2.H

.tli. -r m \ I*-.
1

1. :

65. Various trigonometrical power-series.

Il is clear iVi'in Art. '21 that tin- BZpCU

i l-2rco80+r*)-
1=l+(2rco80-ri)+ f+... to oo

may In- arraii-vd in ]M\V.-I^ ..!' / without alt-riiii: its \alu\

|mvi<lrl that* <r^-|.
Tin- srijih-nre of coeflirimts is. h..\v\ er, MHI-- -a^ily l--ti-niiiinMl

t'..r tli.- fraction (l-rcoa0) (12

.1 . .1
, .1 .... are of cuur^.' functiona <>i' H.

have thf Mi-ntity

1 -rooed- L-h^r +J 4- -l
:;

/-
:i

+...

-^00802^^00802 80+...

ami h.-ncr we get, u-in-- Art. 52

-I

-0-1 -

39,

.1
,

and BO <>n.

Thus w, ha\.- tli.-

r_ -l+rco80-Hrtcoe20-frI coe30-h... to i

It' \\v sul.tract 1 and ilivi.lt- l.y r,
\\

J^+y-co- ;f9-f ... tn

..atfl+r^^airi+r8
: an.l whn. r |

Jr|+^= f|<l. Thiii|2roM0 /
a <l,as..
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Combining these, we get also

1 r2

... to oo .

An exactly similar argument will give the result

to oo .

By inspection we see that all these series converge when
r+ r2+r3

+... converges, or when 0<r<l. Thus we are

led to enquire whether the equations are not also true for

the interval (0, 1). Now we find, identically,

h

Hence, as for the geometrical progression (Art. 6), we see

that lim.Rn= 0, if 0<r<l, and accordingly the first equation
holds for the interval (0, 1). And the other equations can be

extended similarly.

Again we have

d

= -
2(cos 0+r cos 20+r2 cos 30+ . . .)

by what has been proved.

Hence, integrating,* we have

log(l 2r cos + r2
)
= 2(r cos + J r

2 cos 20+ ^r
3 cos 30 +...),

no constant being needed because both sides are zero for r = 0.

Also we have

dt
(*'

dt 1

>
=

I 7 2
:

$7\
== ~ 5 ^r^ ^an

Thus we find

sin . <ft

Jo

= r sin + ^r2 8^20+1^ sin 30+..

*
Term-by-terni integration is purinissihU- hrcause, if 0^r^fc< 1, tlie series

may be compared with 1 + k + k- + k?+ ..., ami Wt-ierstrass's J^-test can be u]])lied.



65
1

TBIGONOMETRK \i. SEED

\\ , li.-iv.- only .-stal.lMi.-d ill--
-,,
nations above on tin- 1,

</<!: hut we knew from Art 20 thd ih- two series

>-f ...

rin0+j MB 20+in30+--
lepi

tin- !ir>t i'or = or :

Thus, hy AbeTfl theorem (Art ~>i >. we have

C080+ ''+..-- Mm "J I"-'* 1 -l-Vn.sfl+ r2)

-!Tjlog(4Bin
3

and similarly,

cos0-4cos20+Jcos:W-...= li -r2
)

a 1'iv^li in tioo i^ unnecessary, the la-t

in lit- driluo-il iV.iiu tin- ]>ivcc(lin--
1,\- clian-iiiL:- l'r :

In likf inaniii-r \v.- have

hisin30-|-...=limarctaD
v ^ I

\ii\\ t'roin tin- ti^un- it is -vi<l-iit that tin- an^l.- in
ijii-

is tli.- anu.-lc r/>,
wliich (acc..nlin^ to the drtinitioii of th--

tan runctioii) must lit- l>-t\\v<'ii J. TT and +J7r; so that

17.

Thu> Bm0+ism20+i8m30-|v .. = J(ir-0)>
if 0<d<

I Jut if = 0, nr "2~. th- valu.- of th- Beriefl i> (> l-rc-au-

t.Tiii in it vanishes: thu^ tin- - .>ntinu': ' =

and

If lies Ix'Uveen '2L-- and 2 (Jb4-1)IT, wli.-iv /,- is an iir

aegatiye, w.- ha\-

.
= j[-- -

N].

MM these are points of n.-n un. series (A:
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It is not difficult to discuss the series

by a direct method. In fact, if Sn (0) is the sum of the first n terms in

/(0), we have, by differentiating,

Thus n(#)

Now, by Art.. 174, Ex. 2 (Appendix), the limit of this integral is TT,

provided that ^0 lies between and TT
;
and consequently

/(0)= i(7T-0), if 0<0<27T.
But /(0)= 0=/(27r).

Thus the curve y=f(6) consists of a line making an angle arc tan ^ with

the horizontal and two points on the horizontal axis.

A glance at Figs. 12 and 13 of Art. 43 suggests the conjecture that

the limiting form of the curve y=Sn(0) consists of the slanting line and

two vertical lines, joining the slanting line to the axis (see the figure

below). But as a matter of 'fact this is not quite correct, and the vertical

lines really project above and below the slanting line.

For clearly the point $_ w^ ?
,_ g (X.lri)

belongs to the curve y =Sn (B), whatever the positive number A may be.

Now, as tt-*oo, this point approaches the limiting position

/i n fA sin t ,

J t

in virtue of Ex. 3, Art. 174. Similarly the point

/"* sin t ,

u = Sir. y= \ dt,
Jo t

belongs to the limiting form of the curve.

Now the integral / (sin t/t) dt can have any value from to its maximum
.'o i

1'851 94 = TTX (1-1790), which occurs for A= TT
;
so that in the limiting form

of the curve y=Sn(B), the two vertical lines have lengths T85194, instead

of ^7r=r57080, as conjectured.

85 --

-J7T
-1-85-

FIG. 18.

Some of the approximation curves y = Sn(0) are drawn for various values

of n in Byerly's Fourier Series, etc., p. 63 (No. II.), and in < arslau s /',.,///>/.<

,sv-/vV, etc., p. 49
;
and the curve w = 80 is given by Michelson and Stratton,

/'////. Mag. (5), vol. 45, ls)s, I']. XII., Fig. 5.
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Differentiation and Integration.

1. .Ju-tify tin- i-iju.-itinii

5-a4s+J^-J:i/- +
-~A'n:? rf' <a > 4>0>-

Thus the series can be found in Unit. ..nal. [GAUSS.]

De<1 ...... """ ~ + -=
1111 1

-

ll^'-sba-

-Jl
+ - =

[Math. Trip. 1896.]
.'\v that if / and i- are positive integers

3. Utilise Ex. 2 to prove that

1 x x* 3 1 (l-.r)
2

r^73+ 273T4+ 3T4T5 + <<--^~2^+^^~
and find a fonnula fr the sum of the s ;

Obtain the former result also by i:
g the logarithmic se:111

4.

2r4-4-rr6+6TY78--=i('r - 3 )-
.i''

:

5. Shew that with rrt:iin restri-tions on a, j8, y, ,

and dedu . \:>,. rh.

Ft n n r(y)r(y-q-)
7-)r<y-!sy

*In a number of these examples, the i is used aa equiva

me cases the words /or sufficiently small values of x
are implied. ^

I.s. I
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6. The complete elliptic integrals are

7. Prove that

8. From Ex. 13, Ch. VI., or Ex. 5 above, prove that

- r(2) - 4

,2.4.6.8

[Write a= J, /3=-, 7 = !.]

9. Multiply the expansions of (1-x)'
1 and log(l-.r), and deduce by

integration that

[Compare Art. 62.]

10. If y= (l+^)-
n
log(l+^), shew that

Deduce the expansion

11. Prove that

[By direct multiplication, or by expanding the differential coefficient

(l-^)

12. Prove that

[Use
the equation

Shew similarly that

13. Prove that, if \x\<\,

Is the result true for x=\ ?



vin.
I

LMPLE8 A.

14. Sln-w that, if \jc. < 1,

i . :j .

-
1 . :>, . 5 ^

log[i{lW(l-*)}]=-

15. Prove that

K^,,^.,^.'^,
[It is easy to see th.it

(1- ,(. + J* + J** + ...)

+(l+*%r-J^+J*-.
= 2{*-(J ,1-

16. tf j/=(seco:-ftanar)
m=2a^, prove that

. -IK-i + jrfa-SK.s -... = ,

[Hen I6C, Of
(\ //.]

[.V .1896.]

17. Verify that

J(arctan.r).log(l-

where

and dciluoe that

J log 2 =
.1

!>-.... [Math.T" O

[Here (1+)$-<
= S... fi .S)^+(*6 S

For the second ]>art, use Al.rls thftOT

Derangement of Expansions.

18. Prove that the I'lu-fli.-ii-iit f .;-" in th.- i-\ji:uiin >

/ iy.w(m
+ l)...(iM+M-l) ,.r

]
><(w + /0

/>
//(/<-!)(/

71 !

' L 2! 4! -,

whei 7 .

Sh.-w that it is a inultiplr .f the o..tlicient <f f in the expansion of

i+qt

--7V -j
--

3-;;
-- -

S

(1+-. (1- (1-
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19. Expand exp (arc tan .r) up to the term which contains x>.

[Math. Trip. 1899.]

[This function satisfies (l+^2)=y, and so we find that if

/nl )
then ^= 1, an+l = an -n(n-l)an-i.

This gives 2=1, 3=-l, 4=-7, ....

The possibility of the expansion follows from Art. 36.]

20. Shew that, if |#|<1,

>. 1902.]

[This is the expansion of (2+y)
a

,
where #=2y+#2

; use Lagrange's series.]

21. If y= a + a1^+a2 -^
2+ .-.

>
obtain the first and second terms in the

power-series for

1 1 * I Ids
- and -----=-.

y- a^x y-a x dy

22. Apply the last example to prove that if

f(x)= (sin x - sin a)~
! -

[(x
-
a) cos a]"

1
, /"(a)

=
lim/(.r),

J
x^a

then j- [/(a)]
-
lim/(#)= | sec3a -A sec a. [

Math. Trip. 1896.]

23. Prove that the coefficient of y
n in the expansion of (1

-

r 7i(7i-l) ^-1)^-2)^-3) -1

L 2271-1
"*" 2.42w-l2rc-3 "'J'n\ 2(271-1)

the number of terms being ^(^+ 1) or

24. Determine the first three terms in the expansion of

25. If [(l-#3/)(l-tf,y
2
)(l-#/.y)(l -tf/^

2
)]"

1 is expanded in powers of x,

the part of the expansion which is independent of y is equal to

(1 +ss
)/(l -^)(1 - *2

)
2

. [Math. Trip, 1903.]

[If we expand {(\-xy)(l -x/y)}, we obtain

It is then easy to pick out the specified terms in the form

26. Expand (l+.r)*= exp(l -^x + ^x
2 -

J.r
3
-}-...)

up to and including the term in x*.

[The first three terms are e(l -J^+ JJ^
2
) ;

the possibility of the expansion
follows from Art. 36.]
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27. th-

.
1.3 * 1.3.5 x*

(T^? 3! (1

in powers of *, shewin* that th- ooefl ..-" ia

that tlu- iii->t MI ,-ial to I N '( 1 -./-'), and hence find an

28. I

\\li- i HARDY.]

29. i

""-rr? -<*<!.

in !p'- 5

ami extend to any nunil>-r -f indices of 8iiiuniati"n. [.I/"' :K)3.]

30. Shf\v that tin.- following series are alislutely -(inverg/nt, and by
summing with IH-\\ tliat tlu ; are as gh

SB X
| J

X T
J

-M7
=
^TT ,.

=

-r.r
X X _j_ E- -

i

[STERN.*]

Special Series.

i-tsii* l-.-^T^'^-
sln-w that th- y+1 i- |t..>itivi-: and if

also i that tli.- x-i-i.-s i> njual to -
1).

[If V>0, wt' ran j.iov,. l,\- Art. \~> that '( /-, y) is equal to

'(1 -tyjt ; and this .-an I..- extended ise 0>y> -1, by

the \aiial.lr from / to \-f in iri-t th- ~'ilt.]

32. If (1-r l.+ftr
s +

-(i-^o+^y-
1900.]

*See Dirichlet's .-,te InttgraU (c ( i
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33, Shew that the sum of the squares of the coefficients in the binomial

power-series is

. >-*- [Math. Trip,

[Put a= /3=-i/, y = l in Ex. 13, Ch. VI., or in Ex. 5 above.]

34. Prove that

Discuss the validity of this equation for x=\.

35. Shew that at r per cent., compound interest, a capital will increase to

A times its original value in n years, approximately, where

In particular, the capital will be doubled in the time given by the

approximation 69.3
n=--h'35.

r

36. If

prove that/,(#) is a polynomial of degree s in x which satisfies the equation

**x ~tt l-

Shew that /j =x+ a, /2 =(.r+ a)
2 +#, /3

= (#+ a)
3+ 3#(. + )+#, and that if

a is positive all the roots of /,(#)
= are real and negative, and that they are

separated by the roots of /,_i(#)
= 0. [HARDY ; and Math. Trip. 1902.]

37. If ^anxn = (l-x)-%, prove that

and deduce that

1 n- 2 n-...

[For the latter part, use Ex. B, 2.] [Math. Trip. 1890.]

Trigonometrical Series.

38. By writing r=-#sin0 in the power-series for

arc tan {r sin @/(l r cos #)},

shew that

arc tan (a -f x)
- arc tan a= (x sin 0) sin 6 - (.r sin 0)

2 sin 20+ $(x sin 0)
3 sin 36

...
,

where =cot#. [EULER.]

39. Prove that the eerie s

is convergent and is equal to $ir-6, when 6 lies between and TT.

[Put r= cos0 in Art. (;: : or . -eot0 in lv\. :is
|
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40. Sh-\\ that li.-iiiflrr < qual to / x

le of a regular h-jtagon inscribed in a circle IB nearly

equal t tin i,.-i_-lit il triangle whose Bide is equa.

41. If
tan./' 1 -A

|

42. <l,tain the f..ll.\vin; d.-li rals :

Iog(l-2rcos0+ r-').

r
: '(i z)*' 1

, ~>
Vl -rc<-

oosne
^

'-f'-
1
.

ItiOD in i '. <;.') and tTiii-ly-terni integration (Art. 45).

1 1
- an intt-_' and 1.

/"' sin>^si

Jo l-2rcosi

43. Pv int"jratinur th- |Mati'ii (Art. '

*-... = (A-

- and ./ lies between <> and 1, we can infer the results

C080+
;,

1

.
:J0+... = | ')7T

2
,

nn |
r3

,

cos^-f^cos
30+...=

[!'. I.M.]

[\.t- that tin- .iixtrmts of intrifiati..!! can !< d-l.-i inin.-d thus: The

\aiiiil-. i-> unifcim . anil thei :

tinnuus. f,,i all values of 0. Th>;
'

+
J,

-f ... = ATT*, we tind th.

uret

-JA**,

whi, I
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44. Shew that, if |r|<l,

arc tan

45. Prove that

cos 6+ cos 3(9+ 1 cos 50+ ... = J log cot2
J0,

sin 0+sin30+ sin50+...= +7r, (0<0<7r)
sin -

1 sin 30+ ^ sin 50 - ... = log (sec 0+tan 0)
2
,

The second series changes sign at =
7r, STT, ..., and is discontinuous for

these values of
;
while the fourth changes sign and is discontinuous at

0=^5 IT*

46. Prove that

cos 0cosa+ ^cos2#cos2a+ cos3#cos3a+...= -
J log [4 (cos 0- cos a)

2
],

cos 0cosa-cos20cos2a-f ^cos30cos3a- ... = Jlog[4(cos + cosa)
2
],

sin cos a+ sin 20 cos 2a+ sin 30 cos 3a+ . . . =/(0),
cos sin a+ J cos 20 sin 2a + J cos 30 sin 3a+ . . . =g(0\

where, assuming < a < TT,

i(ir-a), ifO<0<a,

-^a, ifa<0<7r.

47. Prove that, if 0^0^7r,

and find the sums of

48. Series for TT.

" cos 710 sin ?i

'

Since - ?r= arc tan -+ arc tan 5
4 2> o

. 2 2 ,2.4/2\ I 3F 2 1 ,2.4/1

both of these results are due to Euler.
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( '1 , '.sit \
-

which leads to Hn

6 fl-i* l
-L
2 ' 4

/'
l YJ. la. "flJ. 2 l

a.
2 ' 4 / l Vj. 1

4"fi>L
1+

3 io
+OV!oJ f -J 4TooL

1 +
: 5(100; +-}

i also gave the result

l l '$

-7r = :<
11=5,

\\lii.-ll lead lu'lilv COB

TT 7 r
-|

7r,*4f. 2.4/144V-^^ *-* l++ + -

In writing these serif* il"\\n, \\- n..ti- that I I

1

..
2, below '--in l>e put

in tin- f'-rni

* r, - \
2

1 +
-J-

EXAMPLES 1',

Euler s Transformation.

1. Sl,.'\\ hy the saint- nirtli.xl as in 'hat

... N'( !+//-)[ ...1

il , -/r,. 01

Similarly. jr'V- that

; + ^- 4.r'+...^ s >'/
5
+...],

If x N [KrLKR.]

2. By takin_ ', = J, cr3 =l, ... in K\. 1. ihew that if
:/ < 1,

logty
'

K\
Dedu*-c that

2 , J\J*\_ ,2.41 2.4.6 1

V3 logV~7r/~~ v: i

h"
= 1 in the first Ml [Ei

3. Shr\\ ftlM that if

'V: 4-...= (

vV)-(Mr,,),-^ ,

+
(/>-,,)^ ^;'
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4. In particular, if
,,
= w3

,
we find

a =0, DaQ=-l, /

Thus from Ex. 3, ^^
Similarly, 2^ #"= (a? -f 7#

2+ 6-r
3+ .z

4
) e*.

oo ,,r

5. If
*=2|L,

r is an integral multiple of e, and in particular

[WOLSTENHOLME.]

6. By integrating the formulae of Ex. 2 above, prove that if |y|<l,

2 w4 24
l|+|:

2 y
4 2 . 4

Are these equations valid for y= l? [J/a^A. ^n>. 1897 and 1905.]

7. From Ex. 4 above, prove that if

oo ; xn

i : -

n
n I 4

and that ^(-l)n- lSn = 0. [Math. Trip. 1904.]
1 71 !

Shew similarly that

Obtain these results also by differentiating the exponential series and the

series for (1 -4?)~*.

8. Apply Euler's method to prove that

* *

m m+l m+ 2 f+3

__(_*\+ 1 ' 2
/"

* Vi 1
"*"+UH-W

~
f

"(7tt + l)(m+ 2)\l+#/
"

9. Apply Euler's method to prove that

F(a, ft 7, ^) =
(T^-a^(

a
. 7-A 7'^)

where /(, ft 7 , ,) = ! + x+ x*+ ... . [GAUSS.]
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Miscellaneous.

10. If //
= / (!+.'-) ail. 1

- l...th less tha: that

[#=; x

11. If

1 /
'',-_'!'

;

Also

1.4

12. From the fxpan-i-.n ( .f (1-^.,)" ih-t-i niin.- tli-- v

drrinial i-lan-s. [Til Uirr.ilL'.-JTS.]

(>l>tain in the saint- \\-iv tin- t-iiln- root of J from tin- -.\]>ansi.>!

: -KK
-l

Theorems of Abel and Frobenius.

13. With thr notation of Kx. !>. sh-\v tliat

tf

!

14. If - n.i if

then

OUL]

that < 1 _ ivea a !

apply AWl's tlit-..| t -iii.
]

15. If PJ ITS and liui t 51 to

pr'\c (hat if I'/ ^.'iil oi- di\ .-1 L.
r '-nt

lin, . I .

that if /'' .1 tenda to

lim{2 J-^,
X *1

Hi;.' ntiv and that .1 tendl to
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16. If the coefficients n ,
bn satisfy the conditions of Ex. 15, and fn(x)

decreases as n increases (but is always positive), prove that ^bn fn(x) will

converge provided that 2a,,/n(.r) does, if lim A nfn= Q. Deduce that when

/n (l)=0, and lim 2,^(.r)= rr>0, then \i

[Apply the lemma of Art. 153.]

17. If Ayn= yra -vn+ i, &2v ll
= vn -

:

2vn+ i+ vn +2, and lim(?ivn)= 0, shew that

Writing fn(x)= &?vn in Ex. 16, shew that if A3yn is positive, and if

then the series A2v -f 2A2
?>2 + 3A2y4+ . . .

,
v - 2,v

l + 3v2
- 4y3+ . . . converge and

are equal. If further vn has the limit 1 as x tends to 1, then the last

series has the limit | as x tends to 1.

18. Use the method of Ex. 17 to shew that if &2vn is positive, and if

\imn&vn= and limv
rt
=

l, then lim(i' -^4- y
2 -y3 +...) = |.

n x vl x *!

[For another method see Ex. 3, Art. 24.]

19. From Ex. 15, prove that

lim IX-l)-
1

-^^--= 1
log 2 = lim |(- 1)-^^

1

-f>.
x-+i i n(l+x

u
)

2 *_i i 1-.^'

20. Establish the asymptotic formulae (as^-*!),

, $n(-x) 1 i

and ~--
[The difference between the two sides of the first is less than

;
in

the second, multiply by \-x and use Ex. 18.]

21. On the lines of Exs. 17-20 establish the following asymptotic

formulae (as /r-*l) :

Tf 1

--'~4irp
where C is Euler's constant. [CEsXno.]

Lagrange's Series.

22. Shew that, if n is a positive integer,

(t+ a)
n= t

n + wi(t + l>)

n~ l + . . . 4- n ra(a
-
rh)

r~ l

(
f + //>)"

~ r + ... + a(a nb)"-
1

,

where wr is the ordinary binomial coefficient

[ABEL.]
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3 B.

multiply I'.v .". ;ind equate coetl

i.il authors have con-id- n-d th- \aliditv i.f tin- equation, also due to

A1...I.

4(t + a)=<t>(t) + <i>'(( + b)+
a(a -*b)

<!>"((+.

h.-ii i. --ults raniK't I..- ..'ivi-ii IM-M-. \\'.
M.-iy remark, ho\v-v.-r. tha'

if </>(f) is Ini: Tin- iiio.-t recent

i 1:<1. 28, 1 ").]

23. Prove that the i-ot-Hiri, in tin- BZpl -1)]"
is (

-
1

[
\\

l'i"\,- tliat tin- roctVirirnt 'f.,"
'

in tin- <-\j>ansi<.n <.f

(l+.r)
2"- 1

(2 +

[Mtl,. Trij.. 1906.]

[Tse Lagrange's series (1) for y = e*- 1 ; and (L 1 -j/), wli-

y ']

24. Kxjtaml t* and l>ur > in
)"

t-f*-t- = (a-

and drtri-iiiint- tin- interval .

[Write (*-^l+y and apply J.a^ran.u'*
1 '-

-e.]

25. If /'(.') is a pc \vt-r-st-rics in ./, wh. \v that the

1 .' in the r.\jiaii.in <>f [1 /('')]", in a>.-,-nding powers of

the '"tli. -it-lit ..f .'" in th- Sip :-e to

iiiiin.- tlie coefficient for tlie f.-llowini; f>

n.r; n, : (3) log(l

[\\'< MK.]

[The ivsnlts

0)'"" ^
:

;;':;
(8)0or(-l^ (3)1/( W -1): ;

<4) Oor(-l (6)0 on.

Tin- values occur \vh- \
.-n.]

26. ! \ t
- that

.i

N Lagrange's s.

27. Use Lagrange's series to establish the eqi:

where /=./(! -.r) and
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28. Prove that

4 P 6.7#5 8.9.10*7

where t=x(\ +x2
) and

1

1
1

2 < fa.

29. Shew that

on-l
,
nt *n-S

,

tt(M+l)
2u-3 , _ ,

*(*+ 1) . (2tt
-

2) =^
[M^A. TVzp. 1903.]

[This is the coefficient of l/# in the expansion of \,v(l -z)\-
n
(l -Zx)-\ and

is therefore equal to nan if

2o^"= TT log(l 2.9?), where y= x{ 1 - .r).

Hence 2any
n= -

J log (1
-

4;y), or an= 4"- 1

/??.]

An alternative way of stating the result is to say that the sum of the first n
terms in the binomial series for (1 -|)~

M
is equal to the remainder.

30. Extend the method of Art. 55 to prove that if

y= a*>x*'+ a$y?+ 4
,r
4 + . . .

,

there are two expansions for x of the form

Shew also that if

<7Oi

where Wn is the coefficient of l/.r in the expansion of

31. As a particular case of the. last example, shew that if

then
.?! + ^2

=
a,y + (ab + c)?y

2+ . . . .

32. If y^x^+x}-, we find #
1 + ff2

= 2a,y,
where a

1
= m, a2

= wl(2^-l)(2m-2)/3 !,

- l ) (3w -
2)(3m - 3)(3m - 4) / 5 !

,
etc.

33. It is easy to write down the general forms for the expansion of x

in the following cases :

Differential Equations.

34. If P

are two power-series which converge for |.rj</i', prove that the differential

equation ,/--,,

has solutions of the type y A + Ai. + J.y-+... ,
whirh also converge for

\x\<R. Here A and A\ are arbitnuy, while
.!._,, .1.., ^J 4 ,... are linear

conil>iri;itions of J
( ,

and J,.
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.'e the coii

: ,,-t

-f ... + .!,'/. i-t-J,//

we that /; .i,,j, if #,= .1, . /; .!: and

i,/; *B ..v+c*-; J^

where r<R and M u mob that /;,,|<J//-", //,,

\\, ti,,.,, tind

lin: -r.

Thn- E tmvergM if .- </; and M \v.- lind that 1. .verges

35. Witli til-

th-' differential <juati(n

tli.- type

-...),

ie t(t-l) = tpQ+ q and J,, is arl-itiai-y, the other erti'-i-nt8 being

inultiilr- ot A .

[If
/' is thr nth-r rM.t ..f' th.- <|ua<lrati<-, we lind

-{(*-l+t)pl+qJAn-l+...+(tpn+qn)A .

wliidi may !* i-mnjiai -d with

K-l+T)^+...+(l-fT)^},
re S= \t-t'\, r= \t\, \p,,

d u>8.

If we tak.- /> = |^ol a d Bp
= A, M l.-n-r ;us J0^8, we shall have

o. Fur-

M that lin, =r.

6 that 1'.! .- COnV< < /,', as in t

: il in-tli-..i nicditicai an integer. wh-n d(

with tip ; tht- "(uadiat -MI (+t-t') vanishes \\

i|tinn of tin- i-haiiL'es \\i!l ]. f-und in !'

36. Sup|iose (hat . 'hat

|*-bl^a, \y-y \^b,

and that y=y,,+ I
- (

= 1. I
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Then yn approaches as its limit a continuous function of x, say 77,
which

satisfies dv
x

dx=f(x > ^
for sufficiently small values of \x-x \. [PICARD.]

[It is assumed that for these values of x, y

\f\<M, \f(x,y')-f(x,y)\<A\y'-y\,

where M and A are constants
;
and so in particular f(x, y) is a continuous

function of y.

Then |yw -y |< M\x xQ \,
and so, if c is the smaller of a and b/M, the

values of yn fall within the prescribed limits, provided that X-XQ <c.

Suppose now, for brevity of statement, that x>x& : then

ly-n-yl= r\f(x,yn)-f(x,yn-i}\dx<
Jx

o

and
I #1

-
.yo I

< M(x ~ ^o) < Me.

Thus, by integration we find

and generally | yn - yn^ \<^MA
n~l

(x
- x^

n< MA n~1
c
n

.

Thus, by Weierstrass's rule, y and (similarly)
(-^ converge uniformly to

their limits
77,

.

dx

Also, g=
lim^

because f(x, y) is continuous as regards yJ]



CHAPTBB IX.

Tl;I<;<>N<>.MKTl;irAL IN VKSTH IATK )XS.

66. Expressions for and <-in /<M sin tf> as polynomials
in c

\\V have seen (Art. 65) that

cos + } r^cos 20+^cos 30+
Bui

f/ .-) = _[( /
.

y _r-)+^/-y- />2 '

2+ 1

,<'
<7-^)3

+...]

wln-n- y = 2cos0; ami, t'urtlu-r. the latter series may be re-

arr.in-vd in j.o\vi-rs of r, without alteration of valu.-. jn-ovided
2

that ()</-:^|. It is therefore evident that -cos//# is the

coefficient of /' in tin- r\j session

/

1

/

(/-y-'-'
J

)" +
7;-^T

( /7- />2 )

n -
1 + ---+<''y-

becan^' i "/. i"
+2

,
... contain no terms in r*.

Thus
"

,

// //I
(f/

(71-8). *!

innnlxT of tt-nns lciiiLT ritlu-r i(// + l Of
;

< /'

1 1.

, ? =
y" /? y""

2+
2

4- f l y *

+ ..

l.s.
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Similarly, we have seen that

rsinO

1-ZrcosO+r2
= rsin#+r2sin

Hence we deduce that -

7r is the coefficient of rn
~ l in the

sin $

series 1 + (ry
- r2

)+ (ry
- r2

)
2+ (ry

- r2
)
3+ . . . .

Thus

where the number of terms is either $n or $(n+ l). We note

that this formula can be 'deduced from the last by differentiation.

It is therefore evident that both cosnO and sin7i$/sin$ are

polynomials in cos$, of degrees n and (n 1) respectively. But

for some purposes it is more useful to express the functions

of nO in terms of sin 0. This we shall do in the following
article.

Before leaving the formulae above, it is worth while to notice that if

we write y= t+ Ift, instead of 2cos0, then 1 -ry + r2= (l -rt)(l -r/t).

Hence log (1
-
ry + r2)

= log (1
-

rt)+ log (1
-

rjt)
= - rn (t

n+ t~
n
\

and so, from the foregoing argument, we get the algebraic identity

t
n + t~

n= y
n

ny
n~z+ ... as above.

Similai.,y,

and so we find ~r. = n~l

-(n-2
n-3 + ... as above.

67. Further forms for cosTifl and

In the formulae of the last article change to (J^r 0) ;
then

y= 2 sin 6, and we find

(
- 1 )

m 2 cos 2ra0 = y
2m- 2my'

2 "'
--+... to (m+ 1 ) terms,

=^
in case n is even and equal to 2m.
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Bir M.l.l aii-1 njiial in < -2n> -f I

( -1 .

<

iNm<2,,,+l)0 = y
2 'M+ l

-<:>/,< + l)y
2m -'+ ...to(m+ l)terms,

(-l)
M(2m+ 1 )d

asy -(2m-l)y
>->

+... to (m+1) terms.
c<

llo\vr\.-r. tli.-sr f. nnul;u' take a more ele<: pe \vli-n

arm wording nding powers of sin0; of course

it i- not sji.M-ially litlicult tn rearrange iln- ezpreeeiona al.

l.i-.iically. lnit it is instnirt i\v to obtain ill.- n-ults in another

way,
in //rt or cos //H, \v- ha\-

\ \vrit- .' sin H. anl w- have

it' \\-.- <( n^ilT tin- fxjiri-svioii ^ivrii alx>ve for cos 2m6,

966 that /'//* // // M ' can be expressed as a

polynomial of degree // in X, containing only even powers; thu^

in \vritr

cos ?> = 1 + J
,.'-' + -1

4
*4

4- . 4- A nxn,

tin- ronxtaiit t.Tin
l.'iii;_;- I. h.-caiisc 0=0 gives CO81101, 050.

Il' \\.' vul.stitutr this expression in th<* diti'.-r.-ntial equation,

ire tin.l

.2. .l..-f:{. 4. l
r /--'+. ..+<,/- 1 .

_

42
)and so .1,

L__ __ZV

ii-

H !!<. oo6ft0>l~ r- + k
.

t

\\ht-n // i-

Siinilarl;.
' tin<l tliat sin nO is a polynomial

of degree /'. which contain^ milyodd powers of .r : tl.

sin 710= 4-...-I-J
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the first coefficient being determined by considering that for = 0,

~ dx d . .

Hence, on substitution, we find

. 2 . A
3
x+ 5 . 4 . A

5
x*+ . . . +n(n- l)A nx

n

+n2
(nx+A3

x3+A 5
x5+ . . . +Anxn) = 0.

Thus 3.2.^
3+O2

-l)?i = 0, 5.4.^
5

giving

to J(7i+ l) terms,
?i being oc?<i.

To verify the algebraic identity between these results and those of

Art. 66, consider the case n= Q. Then Art. 66 gives

or cos 60= 32 cos60- 48 cos40+ 18 cos2 - 1.

Change from 9 to (TT - 0), and we get

cos 66= 1 - 18 sin2 + 48 sin46- 32 sin6

62
. . 62

(6
2 -2 2

) . . 62
(6

2 -22
)(6

2 -42
) .=

l-^sm
2 +

-^
^sm4 --

~6!
sm ^

in agreement with the formula for cosnO.

Again, consider the case n = l
;
we have, from Art. 66,

or cos70= 64cos70- 112 cos6 + 56cos30- 7 cos d.

Hence, changing to TT 0, we have

sin7<9=7sm0-56sin30+112sm60-64sin7
6'

7(7
2 -l 2

) . . 7(7
2 -l 2

)(7
2 -32

) .- v *

By differentiating the formulae just obtained for sinnO and

cosnO, we find

to A(?i+ l) terms,
when n is odd', and
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BID--
3T

to JTI term-.

when n is f

Til'- iv;ulrl- in;iy >1|. \V that

co70/coB0^ + 80 sin4 0-64 sin6

an.lth.it i(>0/co80 = ::i'>iii
:: //-T-:^>in 5^f

;unl '"iiiuif tli.-sr formula-- \\ith til"-,- ,,f An

68. 'I'd'- tone obtained in the last article are resti

ly c.-i-tain conditions on tin- tonn of //. L.-t us no\v st-e il' these

ran J, (

. i-,.ino\-<-i in any \vuy.

.iniplr the &

-

which was proved to terminate and to represent cos??$, win -n

// is , ,-.

\\ /' ifl au odd integer, or is not an integer, the series does

ninatc. It is natural to consider whether it is con-

, and it' so, to investigate its >inn.

The test (5) of Art. 12 ahewa at once that the seri .Tges

al>solut'-ly when X =1; and so, as we have explained in

Art. -")(), the series converges ,i1,..,/ nt> !
>/ and U/nifan

It l'llnws that v is continuous for all real values of 6, and

as on
j>. 17!, it satisfies the equation ~7^

+ ?j2# = 0-

From this equation it follows^ that
//

is of the form

J.cos 6+ 7> sin

\ w for = 0, we have y = l,
-,')(

= 0.

Thus .1 = 1, 7^ = 0, and so

cos nO=l -**+%!^s*-...to oo

for any valu

This ol)\
.juiitiiMi : ;m.l since tin- solution contains tiro

:ul)itr;uy constants, no other solution can l>e found (Forsyth, Differential

Equations, Art. 8).
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Similarly, we find that all the other formulae of Art. 67 are

valid for any value of n, provided that x
\
< 1 and that the

series are continued to infinity.

It should however be noticed that the third and fourth series

are not convergent when
|

x
\

= 1
;
but they converge absolutely

for
|

x
|
< 1, and uniformly for x

\

^ k < 1.

69. Various deductions from Art. 67.

We know that we can write

sin nO_
sin0 (n odd)

r
sinflcos

= ^+ ^2 sin2 + "- +n- 2sin"-
2
0, (n even)

where the coefficients are the same as those worked out in

Art. 67, but are not needed in an explicit form at present.

Now the left-hand side vanishes for

0=Tr/n, + 27T/71, 37i>, ...
,

so that the right-hand side (regarded as a polynomial in sin 0)

must have roots

sin = sin (TT/TI), + sin (Zir/n), + sin (3-Tr/n), ____

When n is odd, there must be (n 1) of these roots which

are all different; and these can be taken as

TT . 2-7T. ~ . .

sm0=+sin-, Sm-, ,... ;
.

But if n is even, there are only (?i 2) different roots, namely

. ^ . TT 2?r
sm0=sm-,, ,...,

Thus we have the formulae

(n odd)

sin 710= / sin20\/ sin2 \
[

sin
=

sinVV sin22a/
'"

L X^
(n even)

sin 710 / sin20\/ sin2 \
[

sin2~ n
sinVV sin22a/

"'
L

where, in each case, a = 7r/7i.
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It \ve compare these with the explicit I'-TIM*
<'>7, we can

ii M

^T Ja
+ -

- _
6 8m-. 8ini(n-2)a'

In a -imilar way w- pn.v- tin- identities

,,v cos nfl /. sin20\/ sin2 \ f
-ii.-'

-^y =
l
1

"si,^A
1
~

I

I

",iii(n-

/. sm-0\/^ ^m'0\ f^ ^in2

4n< ,>nO = (\- . B (l--v-.7~b ... l--^-o7
V sm-/3/\ an*3/8/ L sm-(/'-

where P= w/2n and only th- <"/'/ multiples of /8 appear.

ih tin- fonn> 7, we see that

^ =
iI^8-

H^3^ + --- +
sinV-2))8'

'

;

f
ri

- +
8in"(-l)^

Again, if \\v cMHi>itl-r tin- I'm-muK-u- of Art. ()(i, it is

that (cos 710 c-.s ,,\ ) may ! -x]>r^sed as a polynomial of degree
;/ in cos^, tin- term of hi^hrst degree bein^i tin-

(cos ?i0 cos ,, \ iv zero if

. -2-//\, 47T/'\,....

tin- factors of the polynomial in (jurstion will be n
<lit}-r.'iit

eXprefisiODfl of th- form

v ,., H_,.,, S (\2a), C080 cos(X4a .....

wli.-rr , as befon-. i- u^--.l f<>r

It is .-asily s.-.-n that the n ditirn-nt factors ean 1>- tak-n as

ooe(X+2a >.<'- ''

cosO-cos(\-f -2,

because ooe (X 2 (A+2(n 1

H.-ii,-.- \v,- ha\- the i'l.-ntity

n-l
cos/- .: x(X+2

r=0

If \\r \\i-itf = in this -X]IV>-MIM wt- ha\r

2 II -'. . \
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or, with a change of notation,

sin nO= 2^11 sin (0+ TV*).
r-o

But the sign must be + , because, if < < a, all the factors;

are positive, and it is easily seen that both sides change sign

together (as passes through any multiple of a).

70. Expression of sin as an infinite product.

We have seen in the last article that, if n is an odd integer,

sin 71 ^ \

/

where a = 7r/n. Thus if we write n<j)
= 6 we have

/
T<7 r=l

To this equation we apply the general theorem of Art. 49 ;

we have, in fact,*

sin2
(0/7i) _02_

sin2 (r7r/7i) ^4r2 '

because rTr/n is less than JTT. Now this expression is inde-
00

pendent of n, and the series ^02

/4<r
2
is convergent; consequently

r=l

the theorem applies. But we have

lim n sin(0/7i)
= 0,

r rhm . o
' = hm

sin ,

Consequently, -^-
= II (I

-

The special value O = %TT leads at once to Wallis's Theorem t

7T

TT 224466

* We see, by differentiation or otherwise, that sin xfx decreases as x increases,

from to ^ TT : thus

1 > (sin x)fx> 2/Tr, if < x< jr.

Consequently, sin (rw/n) "> 2r/n, if r < i n.

Also |sin0/n|< |0/w|, for any value of 6; and so the inequality follows.
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I'.y combining th- l'"nnula i'.r MM fJ witb the results of

Art. ; ee that

''--""'
,

:,.-ijis
\v..i-tli \\hile to ifffr Kin-fly to an in- ompl.-tf

M
]

given in Bonn i for

0=nr, 1, it is ur^-d that >ii\ V fj m
'

the
-*0

i\v
; hut .-\artly th- s.r would apply equally to

th- ' v ival number, so that thi-
* / /M \

only suggest* that 11
(l-^-rJ may {jossibly be of the form a6

sin 0/0;

:iii"t pi> In this (.(niH-xioi). it luav be ii"t.-l tl.

//- / 6 \ / f) \
we separate l-^-j into factors (l -- ), (l-\

J
and th more

iian n-Lr
i is (say f> --ry q negative factors),

the i th.- pr..(bi,-t is ff) /**]?). fsee Art. 41, an.l

e ~i Vf/ \ ^ / L^=
0^=-.]

A sat j.i-.M.f
i. it thf..- lin.-s inv..lv-s some knowledge of fin.

i _u">"il pp'iif is Lri\-i! by Haiku.-- and M<>il.-y
>

.

I 1^).

\\ have Already piint-tl ..ut the (lan^i-r 'f jipplyinj; the thi-Mi-em of

to cases when tin- J/-t<-.-t dees n..t h>kl ^ood. An additional

his risk may be m
.>)
=

sin</>, it follows that the values of sin(rr

'/'-f-1) ti.
I

- tlmse Nvhen r ranges t:

1 t< A(/<--l), but in thf iwris" "idt-r.

8in2 -'r sin^^y

pa SL^a
and if \v- applv the theorem h' :. \\- appeal to get

-

whi.-h eonti;idi-t> thf n-siilt ..btaim-d before. < f

i- that thf i!if<|uality

'x

'_, __" < j
is n,, lon^.-r true, since nr/n may

be greater than A- ; and it i-. in fact, imp. -ible t" <>nstnHt a n divergent

oomp

71. Expressions for cosO, cotfl.

Tin- reader ^b<.uhl tin<l n<> dilliculty in I'xjT.-^ing cosO as an
illtillitr pl-odlK't, l'nlln\\ ilio- tb<' lilli-s nl' thi' p!-fCC(li]i_

\\'r hive in fed < Art.

cos *= "ill.- .T
-

-

wb. ami r i^ "'/'/.
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Here the comparison-series is 202
/r

2
,
and the result is

Alternative methods are to write cos 0=
S1"

/~S~? an<^ appeal directly

to the product of Art. 70
;
or to write $7r-@ for in that product and

rearrange the factors.

To express cot$, we know that

. 0^n ~ i

r, sin2
(0/7i)-]sm = n sin- II 1 . .,, , \\, (n being odd)n r= i 1_ sm2
(r7r/^)J'

and so if we take logarithms and then differentiate, we have

the identity
- 1 4.0

M^1} 2 sin(0/n)cos6n= - cot-- V . o, / .

n sm2 r7rn si

assuming that is not a multiple of TT.

To this identity we apply the theorem of Art. 49, and our

first step is to obtain a comparison-series ^Mr .

Now (see footnote, Art. 70, p. 184)

sm2
(T7r/n)> 4r2

/^
2

, provided that r< \n ;

.also sin2
(0/7i) < 2

/7i
2

.

Thus, sin2
(r7r/%)

- sin2
(0/7i) > (4r

2 - 2
)/

2

for all values of r such that n> 2r> ;
and consequently

sin(0/7i)cos(fl/?i)
if

sin2(r7r/7i) sin2
($/?i)

Since 6 is fixed, there may be a fixed number of terms (i.e.

a number independent of n) at the beginning of the expression
for cot 6 for which the last inequality is not valid. But for

the rest of the terms we can use the comparison-series

which is obviously convergent and independent of n.

To these terms we can apply the theorem of Art. 49 ; for

the fixed number of terms preceding them no special test is

necessary.*

*No test of this character is requisite for any fixed number of terms; the

object of Art. 49 is to enable us to handle a sum the numher of whose terms

tends to oo with n.
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li,,,

'

ocri

" '

I!,, I'-/tan J)-Jn\ n/ 9

i 8in(0/7i)co8(0/n)

. n sinVir/n)-8m*(0/

'I'

e
*

1 \

-0i

This ivsult can also l.e derived at 01106 lYoin the product for

>in(>. ty differentiating Logarithmically; we ^hould then u>e the

theorem at the end <!' Art. 4s to jn^til'y the operation.

In exactly the saint- way th- identitir- (p. 1*3),

^IJ'S"^^^ Cod

and s="S -a-^- (r dd> n w*1)
2 i nsin2

(r-

.11 apply intr An. I'.', the two s<-:

l_y_l_ l T '

a~TrV 2~7'

or r -f- r 4.

1 1

and
f+: >-..=

uis- tlin-c is no dilliciilty in d-lucin.i; the second of th--c fr'iii tlu

i use

+ ... =
( j

|-p+-

-J)(i' 4*
th.- traiisf.,nnati.ns being ju<tili.-il l.v Ait.

i'h. IV.)

I r];il,o|-at<- 1'urtluT dflails of analytical

(altliouM-h ,,r greal interest) w.ull l-al UN too i'ar ati.-ll. \\'.-

content oursi'lvi'S with making a i
< to

('liry.stal's Algebra, vol. 2. ch. XXX.. in which will l.c- i'ouml

a lar^c minihcr ol' us.-l'ul and interesting ident;
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EXAMPLES.

1. From the formula (of Art. 68)

sin(mO)=msin 9 ^ -sin3 + ... to oo
,

obtain a power-series for (arc sin xf : namely

6T
ai ==2^\l 2 32 /2. 4"5"^\12 "^32 o2 / 2.4. 6T

2. From the formula for sin n9 given at the end of Art. 69, prove thatr
' I

cosec2 6+ cosec2
(0+ a)+ . . . + cosec2

{ + (n
-

1) a }
=n2 cosec2 nO.

[Math. Trip. 1900.]

3. If n is odd and equal to 2m + 1, shew that

2 tan4
(r7r/7i)

= ^(7i-l)(7i
2
+^-3). [Math. Trip. 1903.]

l

4. If n is odd, shew that

'^cosec^nr/Ti)= J(%
2 -

1).
r=l

If n= abc...k, where a, 6, c, ..., & are primes, shew that the above sum,

If extended only to values of r which are prime to n, is equal to

(a
2
-l)(6

2
-l)(c

2
-l)...(F-l). [Math. Trip. 1902.]

5. Shew that the roots of the equation 3? #2+ if
= are given by

AV7 = 2sin(^r), 2sin(f7r), 2 sin (fir).

[Write ^= 2sin0 in the formula of Art. 67 for sin 70. Then we get

/= 7(3/
2
-l)

2 or ^=^7(^-1).
To distinguish between the two sets of three roots note that 2 sin (fTT),

2sin(f7r) are both greater than 1, while 2sinf;r lies between -1 and 0.]

6. Shew that the roots of the equation

are 2cos(y7r), 2cos(f?r), 2 cos (fir).

[The formula of Art. 66 for sin 70 shews that

are the roots of f - bf + 6y
- 1 = 0.

The substitution y=x+Z leads at once to the required result.]

7. Shew that, if \x\ < 1,

and deduce that, if y = 2 cos 20,



IX.]
iMl'LKS.

.in the series ,' all terra* for

\vhi--h N is ;i multiplr .f / fn.iii tin- series

Shew that if 0<*<*, the greatest int. _' -r IN tl to

').
[
RISKS.-

9. Sum the series

-i( -)+^( Kin !si

[~'l!u-
MUD is tin- smalK-i- >f

~'^

'

anl 1 if <>__.,<
7T.J

in it

"'(- + /',)(/-

Mtl II. -li.. ,

sin (q^ain (a*r) ... sin (a^)^ r F ,

'~sin(/>J7r)8in(^7r)...8in(

It' S6-2a^ >h-\v that, if tin- ;io-rnt iinj.lirs that i

.

:

)
= lim II ? /,,

= /'.

:lu-r, if lim(// r)
= /\ \\- hav.-

D , wh.-r.- P i> rxcliuled and KM

n. ,.,.. , hl ,t
C _ x \ -C

** ~i 8"iL
, i

-J
=1 -

8-fi?^- [K '

Why caniict tin- first ]n-olu. t l.r written without an i-xpciu-ntial fa I

12. Sh.-w that

(l-.r)(l
-

-fr)...
= co8(|-

tin- terms in j.air- ami aj]>l\ MX. Jl. ( 'h. VI.. ..Staining

1

D

r(-) ,

4.1 \viit.' OU< tin- i>r..lm-t f.-rm t -( 1 -.r)} sin(|7r).]

13. Prove that n fi
- -**- 1= - l :

[Ki
_ r L (nTT+jr^J
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14. Determine the limit of the product

where
/x,

v tend to oo in such a way that Km (/x/v)
= k.

15. Shew directly from the products for sin x and cos x that

sin (x+ TT)
= cos x, cos (x+ ^TT)

= - sin #,

and deduce the periodic properties of the sine and cosine.

16. Deduce the infinite product for sin.r from the equation

fi*
ran (&)*=*2# / oos(2f)c&

Jo

by means of the series for cos (2xt) in powers of sin t (Art. 68).

17. Shew that " F/ #\ . H
sin (TTX)

= irx II
(
1 - - )e*/

n
,

_ QQ L\ %/ _I

1

- =-+ 2'

7r[cot(7r^)-cot(7ra)]= 2 --- = 2v ^J -n a-n

oo
-j

7T
3 cot (TTJ?) cosec

2
(7r^)

= 2 ;
-

ri
-co

(.1? W)
3

^^) - ? cosec2
(TT^)"]

= 2 . ^.4- [EULER.]
o _l

oo^^-' y

In the first and second equations the accent implies that n= is excluded,

18. Deduce from the last example that

lim
I/->ao n=-V X ll

and limf 2 2 7 ,,1=-^
v_^o Lm= _v = - ^ (a?

- m)(x - n)J

where in the double summation all values m= n are excluded.

19. Shew that

and sec ^=r^2-CTZ^+yjl a*"'"' [EULER.]

[We can get the expansion for cosec# from the identity

cosec x= cot (Ja?)
- cot #.

The second series can be derived from the series (equivalent to the first)

by writing x+\ir for x and grouping the trims differently.]



i\.
I

iMFLES

20. Shew that

I -lfc+A+A+.~
Deduce the value of

l)-'

n=0 being excluded from tin- Miiimiation. [J/.- 1896.]

21. l'lo\e tli:it

?("
:

-6-7^7 + "-

22. If the general term <

,
can be divided into partial

in tlic form

1\1=0,

tli. -11 2" 1.1-'->t(</7r),-B ,i

\\li.-ic all the ntunbers a are supposed ditl.-r-ni from xero.

23. Find the sum of the sci

-

-0 being iv\ 'hided.

[\ 57i-2 / 2 1\

L
H< e

6^^57?- "m/+
00

24. Find tlu- vain- f 2 .
.

i

w - A -1A_
-I)

3
(271)3

;tnd dftt-nniiif 5, C so that (i'/'
-

1 may be quadratic i:

25. We have seen <rh. V!.. Kx. 11) that if

rr(nr(QT rr^noT rr(3)r(/n-'

f/)J
+
Lr(i+oJ"*"Lr(3+o'J

th-n M.I =
J{L

if^>A.

Now ^l== -- l.v Ait. 71, n We lind

^=
^(^-9), ^

^fcW+fcW^-S



CHAPTER X.

COMPLEX SERIES AND PRODUCTS.

72 The algebra of complex numbers.

We assume that the reader 'has already become acquainted
with the leading features of the algebra of complex numbers.

The fundamental laws of operation are :

If x = g-\-irj, x' = g'+ irj',

then x+ x'= +'+ i(>i + *)'), (addition)

x x'= g'-\-i(r) j/), (subtraction)

xx = gg' w 4- i(gri+ g'rj), (multiplication)

. En 'ti

It is easily seen that these laws include those of real numbers

as a special case
;
and that these four operations can be carried

out without exception (excluding division by zero). Further,

these laws are consistent with the relations with which we
are familiar for real numbers, such as

=
(xy)z.

Thus any of the ordinary algebraic identities, which are

established in the first instance for real numbers, are still true

if the letters are supposed to represent complex numbers.

It is natural to ask whether other assumptions might not be made
which would be equally satisfactory. Thus the analogy for addition might

suggest for multiplication ##'= {f' + i7;i/'.

But this is inconsistent with tin- relation x+x= 2x, since #'= 2 would

then give 2.r=2 + i(0)
=

2f,

whereas x+x= + + t'
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1

H.sXUIIIpl Mill tin-

MI tive laws an to fix the Uw of ranlttp

iuulti|>li<-Hti'.ii, by a8iii:

tliil' MIlllllMT*. It rail
'

be shewn (t* r.l. II.. \>\>. *-\-2) that we

jitjons mad*- i-lse we are forced

'he produ-
\\ ithout t-it ht-r

./-,

73. Argand s diagram.
Tin- reader is douhti* I'amiliar with the usual represen-

tati"ii d' tin-

;nt wit): -
(^,

O f

19.

r.ut it may !> i-nnvi-ni-iit t< inv.- a ln-i.-t' ^uinmary of th.-

tod

If we intnxlucf polar coordin.-, \v.- can writ.-

./ /((.-< s ^-f /' si:

\\.- shall call r = (
2+ >/

J
i <>l' 33 (it is some-

times also callcfl the mo </*w of a*): and wo shall

denote it l,y tli.- symbol \x\. 'I'his. . i- (juitc ccn^i^tcnt

with the notation n^,-,! previously: for if x is real, \x\ will

her +./ or ./. according as x is pov-itiv.- or negat
\V" call H the wrgwneni <>f ./ : it is snm-times called the

From tlu- diagram the nieani :- :. m - ident.
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If we draw through A, AB, CA equal and parallel to OA ',

then B, C are respectively x+x' and x x. The fact that

x+xf= x'+x is represented by the geometrical theorem that

A'B is equal and parallel to OA (Euclid I. 33).

Since OB<OA +AB or OB< OA + OA,

we have the relation
|

x +x'
\
<

|

x
\

+
1

x'
|,

and similarly, x x'
\
<

|

x
\

+
1

x'
\

.

Again, supposing OA < OA, we have

OB+AB>OA or OB>OA-OA'.

Thus, # 4-^
r

|
>

|

x
\ \

x'

and so also
|

x x' ^>\x x'

It is easy to prove similarly that

and generally, that
1

2x
\
< E

|

x
\

.

These facts can be proved algebraically, thus, consider the first inequality

and write R= \x+ af\, so that IP = (f+f )
2+ (^+ T?')

2
.

Then we have Jft
2= r2 H-r/2+ 2(^

/

Hence (r+ /)
2 - /22= 2 (r/

-

and this is certainly positive if ^' + t]tj'
is zero or negative. But if

s positive, we have

so that

the sign of equality only occurring if

Thus in all cases

or

and the sign of equality can only appear if >?'-'?7
= and '+ >;>/> r

which is represented geometrically by supposing that 0^1' falls along OA.

74. Multiplication; de Moivre's theorem.

If we multiply together the two numbers

x = r(cos + i sin 0), x' = r'(cos 0'+ i sin 0'),

the product is found to be

xx'= rr'(cos 6 cos & - sin 6 sin 0')+ irr'(cos sin 0'+ sin cos 0')

= rr [cos (0+ 0')+ i sin (0+ 0')].
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Thus tlio absolute valu- of / /' N /T'; or

I-I*M*' i.

and tli- ai'innm-nt of ././' is O+ tf, tli- sum of the arguments

In pariicular, if /'=!, tin- product ,/<>-> f) 4- / -in H is equal

to r[oo h* sin (0+0')],

o

It is therefore clear that if / =cas0+ -isin 0, 1- \^ pial t<>

20+% six hisin30; /- l to cos(-0)+z sin(-0);
ami so on, as indicat.-d in th-

22.

if n i^ any \vli<.l.- nuinl>T. ]M>siti\-
< r n. -Dative. \\v have

(cos 6+ '' si n )" = T = cos >?0+ / sin /? 0.

To intrrj.r.-t
/

. \vh.-iv /// and // ar- wliol,- nun

agree that th- law of indi<-.-> (f ")" = f
m

is still true.

Qenoe if ./<-^''sin</>),

wr 1 1 p
n
(cos ??<+/ sin

,><;>
)r-r..x //-f)+ ^'sin

thus, I. and ty //<t)4--2/"7r.

whciv /', is any whole nunil>.T.

'rh;i-

-cos
| j(m0+2fcr)l

+ifflu [^(m0+l

thus , has /, litlrn-nt values, uiv.-n l.y taking fc0, I.

I. Th' casr / = () constitutes d-
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A large number of elegant geometrical applications have been given by

Morley, some of which will be found in Harkness and Morley's Introduction

to the Theory of Analytic Functions, chapter II. We note a few samples :

1. The triangles x, y, z and x', y', z' are directly similar if

x', y', z'

1, 1, 1

2. If the triangles x, y, z and x', y', z
1

are directly similar, any three

points dividing xx', yy', zz in the same ratio form a third similar triangle.

3. The conditions

= and
^ zx-\-yw,

P , y
i . 1,1

a, 7
1, 1, 1

(where a, ft, y are real numbers) are respectively the conditions that x, y, z

should be collinear, and that x, y, z, w should be concyclic.

75. General principle of convergence for complex sequences,
If Sn = Xn+iYnt we say that the sequence (Sn) converges,

when both (Xn) and (Fn) are convergent; and if Xn-*X, and

FnHF, we write Sn -*X + iY.

The necessary and sufficient test for the convergence of the

sequence (Sn) is that, corresponding to any real positive number

e, however small, we can find an index m such that

|#n-m|<e, if >m.
To prove this statement, we observe that

so that \Sn -Sm \^\X,n -Xm \
+ \Yn-Ym \

and Sn -Sm \^\Xn-Xm \, \Sn -Sm \^\Yn-Ym \.

Now, if (Sn) converges, (Xn) and (Yn ) are also convergent, so that we can

find m to satisfy

and consequently |

Sn
- S,n

|

< e, if n > m ;

so that the condition is necessary.

On the other hand, when this inequality is satisfied, we have also

Xn-Xm \<, \Yn-Ym \<, if n>m,
and therefore the sequences (Xn), ( F,,) are convergent.

Thus (S) converges ;
and therefore the condition is sufficient.

As an application of this principle we consider the interpreta-

tion of t*
,
where t = cos + i sin 6 and a is irrational. We note

as a preliminary that

| (cos $+ i sin $) (cos tjs 4- i sin
\js) |

= 2 sin |(0
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1

< i: OF < OMPL1

numl.-i^ which lias a

6 can lind in so

-,,,|<e/|tf . 11 a >m.
'I'llUS

|{cos(an0)-f 9)+* 00(0*0)} |

<l - 0!<e,

> //< ; and so the sequence
/"

9)-j-isini <-on-

gent It IN thT 'iiral to delin.- /" as lini/'
1

-; but :

of course to be rfiii.-nilM-i-.--l that </// tin- limits*

limlcosajtf + l.' *) + :>/,-)] (/.'=+!, 2, 3, to

may equally well In- regarded a> incIulMl in tin- symbol /

a
. Thus

special care must be tak.-n to ^{..-cit'y th.- m.-anincr to be attach. -I

to<*; for most purposes it i-> >utlici'-iit t r.-tain tin- vulin- which

r.-diir, - U) I \vln-ii t) i h;it K tin- valur ^i\'-n l>y /

Convergence and divergence of a series of complex terms.

It' "n = n + iti n , w' bave

t ....
Th. u il' fj + ., -f . . . to * and

// 1 -|-/y 2 4- ... to x are separately
nt tn tin- sums s, t resptrtivi'ly, \vc say tliat

!
+ '/.,+ ... to oo

OOIH tli- sum N-(-/V.

"/ Z// (1 div.T^es (or oscillates), we say
that ^L" n <li\ o^-illates).

It is easy t <m this drtinitinn and tin- l'>n-^i.in_

COSfflOI] l'r BtMjurncrs that ///.

LB Dimply th -ji.mdin^ t tin- n-al

t inn e, \vt- can tind /// such that

no mattci- lm\v i^r.-at j> may be.

In like manner \\v ..Main th.- <lrtiniti.>n .!' o n\ < rgence of

an infinite
]>r<><i oniplr\ . l,u t in ordinary \\

\\e n.-.-.l only absolutely convergent }>roducts, which we shall

in Art. 77.

*
All these values are uiuMjujil. bOMMi makes la equal to

:ui iitt< ( must not be allowed t ;h .
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76. Absolute convergence of a series of complex terms.

If an = gn -\-irin and if 2|an
|

is convergent, we shall say that

2an is absolutely convergent. It is evident in this case, from

Art. 18, that the separate series 2 n , 2^ are both absolutely

convergent, because

|fi.|^ |

and Ifcl^KI.
It follows therefore that 2an is convergent in virtue of our

definition (Art. 75); and by Art. 26 the sums 2 n , 2^/n are

independent of the order of the terms. Hence also, the sum of
an absolutely convergent series is independent of the order of

arrangement.

It is perhaps worth while to give a graphical illustration of the method
of inferriDg the convergence of 2an from

Let sn= a
1 + a2 +.

ovHail +
and represent the numbers in Argand's diagram, as below :

O
ff, 0*

ff
3 <7fa

O-

FIG. 23.

By definition we have

Os
1
= 0(Tli S

1
S2
= <T

1
(T2 ,

S2S3
= 0-2 0-3, etc -

Thus *n*p= 0"n<7> by elementary geometry.

But we have <rH<rp= o-no-, if p>n,
where <r represents the sum 2 an

|

= limaw .

Now, by the definition of convergence, we can choose n to correspond
to

,
so that <rMor= cr-<rw <e.

Consequently, n can be found, so that

**,<, if p> n ;

or, geometrically, all the points 8P must lie within a circle of radiiis
,
irJnw

centre is sn . Since can !< taken as small as we please, the last result

shews (see Art. 75) that tin- p-tints *,,
must duster alumt s.unc limiting

f,
\\hi--li may In- <> tin- ciivlc Imt cannot be outside it.

(li;r_iT;un indicates the riivli-s with centres 2 , 3 , .-.,.

An alti-rnaiivr ffiii >f diagram lias been proposed by G. H.

A.*ndU nf Mathematics (2), \.,1. :.,
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It is ni' CMIU-S,- obviMiis n-Miu what has been said as to series

of ival -hut alisMluh- oonvei is not necessary
i>l.-x series whirl .

although M<

-*+.
For both ival and imaginary parts cunvi-r^, by Art. 21; but

s.-ries of absolute values is

which div.-rjres by Art. 7 < K\. >) W Ai-t. 11.

evident I'mm chap. I\'. that the sum M!' a non-absolut.-ly

oonvergeni series may ! altrr.-d l.y derangement.

77. Absolute convergence of an infinite product of complex
factors.

Thr intinitr proiluct 11(1 -f" ) i- "ail to be absolutely con-

ii' th.- j.rMluct 11(1+ a i- convergent It foil

at onc-f that 'v convergent, so also is

lid -

F.-r \\.- know that S|an
| converges: and so by Art. 39 th..-

t\\-M pi-M-lucts Jl(l4-|an |) and 11(1 |att |)
are convergent.

Hut \\v have still to sht-w that (in the case of complex

pi-Miiu.-ts) wmpU < am i deck

tonv* ^ \\\ if </,<!. we have

1- " ^11 + a.l
'

m+p
and SO II (l-

i

II (1+rO
IR-fl

since II(l-f a > converges, it follows from Art. 39

that 1 and thnvfoiv a No 1 1( I
|

an \)

gent : thus we can tind //>. s. that

H < 1
- " >>l-e and "ll'\l + ", )<l+e,

m+l

\ ei Mnall e may be.

11. : MII tind i hat

11 L+a > < 1+6,
-,,4-1

-mall t may le. and however lar^e /' may be.
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That is, II(l-fan) satisfies the general condition for con-

vergence; and so the product is convergent.
It is easy to modify the proof of Art. 41 to shew that if

*an is absolutely convergent the value o/II(lH-an) is unaltered

by changing the order of the factors.

78. Pringsheim's tests for absolute convergence of a com-

plex series.*

Of course the conditions of chap. II. can be applied at once

to the series of positive terms 2
1

an
\

;
but since

|on|
= V(&2+ ?n

2
)..

if On = fn+ ^n,

it is evident that the square-root complicates some of the tests.

Of course the tests of Art. 9 can be at once changed to

2lim (7n
2
,\an

2 < oo, (convergence)

limDna . an
|

2 >0, (divergence);

but the same transformation cannot, as a rule, be applied to

the ratio-tests of Art. 12.

Thus, the condition

n+l

is by no means sufficient to ensure the convergence of 2
1

an
\
;

because whenever lim Dn oo (which is usually the case), the

above condition does not exclude the possibility

n+l

which may occur with a divergent series.

For instance, with l/an= n\ogn and Dn= n (n>2), we have

2
a

because

Thus,

but yet 2|a| diverges. [See Art. 11 (2).]

*
Archivfiir Math. u. Phys. (3), Bd. 4, 1902, pp. 1-19.
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It can be

therefor* ii/ tin- conditions

,.ee)li.ul />

\\ni\D

\\-\i\ uliMantially <-<juival.-nt t<i tin- conditions ..l' Art. 1 "2.

if the first condition is s;it . lind
/i

:nid /" M

*!;!' % "
"'

"
.

i --s; !

Now in all cases of ju-n-ti.-al intt-rost,* it is possible to assign an

limit to I
-2s-

1 and 9st, say /; th.-u l)n J?S- -// . and so the

r'nditi.ni "f Art. 1 1 ;(!.

But if the sfc..n<l .-..nditinn hld>. we C0 tind M si. that

if

that tli- lir-t fa'-l.r must ! nr-m iv.

79. Applications.

It i^ easy t<> UMii^l'orii! ri-iii^ii.-iin'.s rnnlitinns ly writing
/' /( /' ) U in Ail. \-2

(3), and th.-n \vc tind

lim/v-,,>
'

win -re -

only fash point to notice i- that i

p. ii,J""'i-' =li ,,,

*-' jr-*

in \irtur >!' L'l I -
j.ital's nili- (Art. l.">2): no\v w-

-o. and W |/< . also tends to /.era

In particular, In us take

-n, (8)/(n)nlog

that

ailiuitx slightly m.-n- L -itions.
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We obtain, after a few transformations, the following
conditions:*

(1) lim
['n+l

(2) lim 7i

(3)

an

''n+i

2, (convergence)

2, (divergence).

> 2, (convergence)
'

2, (divergence).

The most interesting case in practice is one corresponding to

(5) of Art. 12, where we can write

(4) n^n+l '"" (I w

It is easy to see that -if ^ = a

i2

(5)

in (4),

n+l

and so from (2) we see that the series 2|an
.| converges if

>1 and diverges if a < 1
;

in case a = l, we apply (3), and

find divergence. Thus we have the rule:t

When
a. n

the series 2|aw | converges if the real part of jm is greater
than 1, and otherwise diverges.

On account of the importance of the series 2an 03
M when (4)

holds, we proceed to consider some further results.

An application of (1) above shews that the series converges

absolutely if |os|<l, diverges if \x >1; and we have just
examined the case when \x =1 and a> 1, proving that then

2an#
w

is absolutely convergent.
But we do not know yet whether the series may converge

for
|fl5|

= l (although not absolutely) even when a^l.
If a is negative, the sequence \a n

\

will increase with n,

ut least after a certain sta^v, in virtue of (o) above; and

*The inequalities

are here used as equivalent to the two HmP>l, HtnP<l.

t Weierstrass, Gea. Werke, Bd. 1, p. 185.
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consequent 1 nee of 2(t nx* is impassible, sin,-,- th.-

termfl -i M /< ineivases.

Kurth.-r. if O 0, it i-
OftSJ bo see (by an argument ^imilar

to I a linite limit,
1

BO that

On the other haml. if 0>0, it follows lY"m Kx. :;. Ar

that |an |

ti'iiU to /..TO as a limit
;

so that convergence may
or.

\\'e prove next that tradition (4) holds and < a=1,
2

In the first place ii is evident that (at least after a cei-tain

vali; jiience |rtn |

decreases as // im-n-ases: h-

the istfl finally .f uly.

and it is obviously convergent Kurth.-r. we bave, from (5),

|q-a,. J0n_ T
I'.

(< n
1
1_I^+^ 1 " A

|J| ^n

*n+l !/lk+ i /'- ^Ik-H,

Thus
a.-n+l I

and it follows, as in Art. IN. that the series 2| H aw+1 |

is

convergent
v, \\v have identically.

ami

ami eon-e.juently, if |a?|= 1 ami X \^ litlen-nt t'n -m 1. the
00

1 ' -"
.

! conxer^es ami linn/
fl

= 0.
o

This result may aU ! .leri\e.l t'rm l>irirhl>

\\'e have "Mtaine.l no information as to the K-haviour nf 1
( > < a :_, 1 : as a mat

it. Lilt the proof is a little tedious, ami we simply

li i- to limit unless = 0;
r should i

:lty in

proving tlr.~
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refer to Pringsheim for the details.* Of course we have already

proved that the series diverges in the corresponding case when
an is real (see Art. 12).

The final conclusion is thus :

Tf _^n_ = l_l_/
Z

. ^_ (X >!)
aH+1 VS* 1

(\\<A)
then the series ^anx

n
converges absolutely for x < 1, and

cannot converge for |

as
|
> 1.

If \x\
= \ and

fji
a + i^, there are three cases:

(i) when a> 1, the series converges absolutely.

(ii) when 0<a = l, the series converges (but not absolutely),

except for x = \.

(iii) when ^ a, the series does not converge. (Weierstrass, Lc.)

Ex. As a special example we may take the hypergeometric series

(Art. 12), in which
an

an+l

so that u

Then we see that, for
|

x
\

= 1 :

(i) if the real part of (y-a-fi) is positive, the hypergeometric
series converges absolutely ;

(ii) if this real part is between - 1 and 0, the series converges except
for .r=l

;

(iii) if the real part is - 1 or less than -
1, the series does not converge.

Special cases of this have been found already in Arts. 12 and 21.

80. Further tests for convergence.
The reader will find no difficulty in modifying the proof

of Art. 18 to establish the theorem:

(1) // 2an is absolutely convergent, so also is 2anvn , provided
that

|

vn |

never exceeds a fixed number k.

*
L.c. pp. 13-17; the proof shews that (except for /&=!, when the series is

easily seen to diverge) the behaviour of 2a,, is the same as that of

1-A* (1-AQ(2-/Q (1- M)(2-/0(8-AO
"I" 1.2 1.2.3

And the sum of ?i terms of this series is

L^\ (i + Lz/A2 )'"\
L +

n-l)1.2. 3. ,.(7i-l)

It can easily be seen that the absolute value of this expression tends to oo with

?i, and that its argument has no definite limit.
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It is, ho\\, . that Ai '.ill need a little

alt t-rat ion to include cases in which * i- complex. \\ shall

prove ti,

9, ///// 1 / /

nsider the modilied form of Ahel'fl I.-ii.

Writ-- for i.re\ ; note the -um of tl

I

vn vn+l I
-f

I

t'n+j i',j+ 2 1
-f to

;

>at V -
l'n+i.

-

\Vc 1,

i

;

>+...+([T; :

- v

SO thai - < :, /' - /
. it' // > //<.

N.\v (see Art. Til) tli' series -('..

2|vn Vw+1 1

is COM v !;] it. And

>-}-...4-('\
- ' ,)='',-'

SO that ' lias a <lctiiiit'- limit ;/ MS R-QC : and h-t n- \vrit.-

G- // =Hm|t;n .

:n. \v

.

-'

iiat if we take the limit of this ine.jiialit
\

- K . \v- tind

Q [.[

Thus, if we write }' = (!+!' .
\' \^ al\\ than

It i- aNo obi lOOfl that the se.jUriir,
i I' .

Beqne&Oe, and that !'- I' i- njual to '..+i|

if 1 -"j'
f

!-f ".,''.,+ +",'' ^'e tind. as in Art. :>:>. that

Zn = l(>\- ''.,)+ ^ )+...+ S,VW .

Thus, if // is not Ie86 than the upper limit of
-^ |, |*t |,

... |w|,
we tind

v
ITRFj-F^-f n-...+(F-i-F //r

:

.

which is the form of A.bel'fl Lemma for complex term-.

Similarly, if
//

is m-t !*< than tin- \ijp-r limit ..f
|

*r -cr|, as r ranges from

1 ti /,/
-

1, ami i/ than tin- ujijwr limit as r ranges fron.

:iul . i_
,;( I",

-
r,,,)-f >/

1



206 COMPLEX SERIES AND PRODUCTS. [CH. X.

If the sequence (#) is real, positive and decreasing, we find that

G= \imvn and Vn= vn ,
so that these inequalities are almost the same as

those of Art. 23.

Now apply the Lemma to the sum

It is then evident that this is less, in absolute value, than

H'Vm+i, where H' is the upper limit of

Now since 2a,t converges, m can be chosen so large as to

make H' < e, however small e may be
;
and then we have

|

am+lvm+1+ . . . + am+pvm+p |< eVm+1 < eVv
which proves that the series 2aBvn is convergent.

This may be called Abel's test for complex series.

If vn is a function of #, Abel's test also enables us to ensure the

uniform convergence of 2aMvn at all points x within an area for which

1^1 and C/i remain less than a fixed value. For

F
1
= +*71 ,

arid 0< vj + tfi.

Similarly, we can establish Dirichlet's test for complex series.

(3) If 2 vn Vn+i\ converges and limi>n = 0, then Zttnt>n will

converge if 2an oscillates between finite limits.

In fact G is here zero, and (just as in Art. 20) we can find

a constant I (independent of m) so that H' < 2. Thus

m+l

which can be made less than e by proper choice of m because

r,H.o.

A special case of this test has been already used in Art. 79.

81. Uniform convergence.
After what has been explained in Art. 43, there will be no-

difficulty in appreciating the idea of uniform convergence for

a series 2/n (se), when x is complex ;
the only essential point of

novelty being that the region of uniform convergence now

usually consists of an area in the ( q) plane (if x = +irj)

instead of an interval (or segment) of the real axis. It is also

sometimes convenient to use the idea of uniform, convergence

along a line, which should present no fresh difficulty to the

reader.
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Weierstrass's M-test for uniform convergence can be ret;i

almost unaltered, tl,

-f+o;
) irifliin >' oerttwn wren .1, '/"

) /,, is //-- /</"/" /'/// t/nif

when M <><'/" Constant, ///'/ ift) ^.M co

''.^nltitiln a/nd uniformly ' i*

.1.

Abel's and Dirichlet's tests for uniform convergence (for a com-

plex are <>htained at Once from tin- last art;

The proof of Art. 4~> (1) can he easily iiioliti.-d to sh.-\v that

I/ i') u IWU8 fnixt'"!' "/ ./ n-'ithlii f} ,-'

I fluif tin- 9epa/ra& ><ma

contfawHU vn f/

Tli.- lis<MiwiiiM <.f (liU'.-ivntiatiun and int.-^i-ation witli respect

tn tin- \arial)l<- X falls Ix-yoiid tin- BOqpe of this IxH.k:

lnt it is not out <>i' plan- t<> im-utiou tliat (wlu-n tin- fun-la-

ini'iital notions ha\;' hccn made clear) the results of Arts. 4.">-47

remain |>raet it-ally unchanged.

It is evident a No that Art. 1^ i- -till correct, when X N a

c<.mj.le\ variahle.

Tliere i- no ditliculty in seeing that the two theor.M,

lit remain valid, wlien the function- re c<m}>lex.

It is often important to integrate a complex function with

rasped to a real variahle: in particular it i- usrful to consider

the mean value of a continuous function /(./) along a circle |.r
=

p,

which is defined hy the equation
i

= where '

,

The existence of a definite mean value i- inferred at

fr-'in the o.ntinuity of /(
'

. JUM afl in Art. lti-"> of the Appendix :

and the following condu>i -n^ are immediate consequences of

the definition :

i i ) \\ri<> ti. if .ii-tant,

(iii . < .1. if f(
. < J on the eircle.

(iiii \Vi' (>. if / i. an int.-vr (not /.ero),

because ' i '+ i sin /HI and

I
. 00, ! =(.

Jo J
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Further, from Art. (45 2), we deduce that if

converges uniformly on the circle \x\
=

p, then

We can define the mean value without using the Integral Calculus, by
supposing the circumference divided into v equal parts at #t ,

#2 , ...av, and

writing

This method leads to the same results as those just proved ;
and thus

Cauchy's inequalities (p. 209) can be established without the Calculus.

82. Circle of convergence of a power-series ^anx
n

.

From Art. 10 it is evident that the series is absolutely con-

vergent if
p I

ni .x-i

and the series certainly cannot converge if

because then anxn cannot tend to zero as a limit.

Hence, if we write (as in Art. 50)

(where, of course, I is real and positive), the power-series con-

verges absolutely if > 1/L< l/; and cannot converge if \x

To interpret this geometrically, let a circle of radius \jl be

drawn in Argand's diagram ;
then the series is absolutely con-

vergent at any point within the circle, and cannot converge at

Fio. 24.

any point outside the circle. The circle is called the circle of

convergence ;
and it will be seen that, if an is real, the interval

of convergence obtained in Art. 50 is a diameter of the circle.
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< U;i |.|

Of < MI with respect t

'h- <!!< in wh n / I i,-i case to which

we can

[nation b \\VI.TM raae'e ml- diacu

in Art. 7!. It nniM nut. li npjx.s.-il that tin- three

ilitifs B

OO tli.- circle; in<l<-c<|. I'rui^h'-iin* has <

*in n hidi convei - <>n th.- circle. l.ut

not ahsolutcly.

Tin- ice, \\ hen - "
, rgent

an. I
/ -

i. jx ti H .

,//,,,/,' of th.- cirrli- x =1 the ciro\

\ i.l.-nt n-oiii th.- .17

6 c;in at |.IVS,-MI only -;i\ ti

iinii'onnly within and "// any cirri. r =/,-, \vhn-

between < ami I. \\V -hall, h- 'int

iiinr.- fully in Art.

Tin* iva.lrr will tind lit 1 1.- difficulty in that the theorems

of Art- h< >!' i for cninplcx |>< >\Vfr-series, Certain Mnall

\.-i-lal ;ilt-rati(inx h.-in^ made.

- uniformly <>n every ciivlr

,,,
!'..i- which'

j> < 1 /. we ran ivnlily ohtain its mean-value

de hy intc-'i-atiiiL:- t .-i-jn-1 >y-t crm.

. if
\^

\, ,-

60 tli.i!

kl =/.i/0
tto2 /" '/x >;ihi nf //..

Similarlv. w- lind

8[/< -u.;

Thus, if .!/ is the niaxiinuin \:ilu- nn the circle ./ =/>.

we lia\.

< .V. " < M

.-ii.l

\!l belongs t<> t ergence, we may
of >

La o
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Again, since the series

converges uniformly on the circle
1

03
1

=
p, we find

w^'a/ O Q

Similarly, we find

# c

We shall now consider the question : Can a power-series be determined so

as to have given values along a definite circle, say \x\-\ 1

Let us write the coefficients an in the form an+ ifin where an , /3H are real;

then write 2on#n=/1(#), ^iftnx
n =f2(x\ so that f(x)= 2anxn=fl(x)+f2(x).

Now suppose that when x= coa0+ i sin 6, we have f^x)= u
l -\- ivlt f2(x)=u2+ iv2

a,TLdf(x)
= u+w t

where u
lt v^ etc., are all functions of 6 such that U = U

I + H.,,

v= v
l + v2 . Then, if |c|<l, we find as above (assuming the uniform con-

vergence of 2an#n on the circle |#j
=

l)

In the second integral put \Jx for x : this will change u
l + iv

1
to u-^ iv^

and so we have i far c= ^-1 (ul
-w

1) de.
27T-/0

l/ C-X

If we subtract the last result from the formula for /i(c), we obtain

/t(
C)=J- P

STT^'O ^

Similarly, by addition we get

In the same way we can find integrals for /2 (c) in terms of w.
2 ,

v2 : the

nly essential change in the argument being that when .* is changed to 1 .',

u
2+ iv2 becomes -u

2+ iv2 . This, however, does not alter the final formulae ;

and so by addition we see that these formulae remain true when the x /////'. /v.s-

are omitted throughout. Thus /(c) is completely determined (save for a

constant) by a knowledge of either u or v. But, given an arbitrary con-

tinuous function for u (or v\ we do not yet know that it is actually possible

to determine /(c) so that its real (or imaginary) part does assume the given
values on the circle; this problem will be discussed in Art. 83.

83. Abel's theorem and allied theorems.

Suppose that |#|
= 1 is the circle of convergence for Sa,,o;" ant I

tliat 2art
is known to converge, altli<>u-li imt absolutely.
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It' we take vn = j-
n in An tind that '/ = lim|vn |

= 0, and

hat V = 2\vn-vn+l \

= \l-
Thus, sine.- 1 'it, the series Sxt^" will converge

unit'nniily in any an a for which we h,<

I-' Ml-M),
wh. any assigned mimher greater than 1, and of course

\x\< i. (See &beJ - ted OB p. 2

'I'-, interpret this iin-,,uality wre observe thai it may be NM

p<\d-/-> or (X-p)^g>
where 1 ./ =

/* (CMS 0-f (see i

Thus _-_)\
/J

_
|

_
/
32>X2

(l--2/,'-(
(

s,/>-h /

n -i)/, 2(X
f
oo8^-

In this minlitinn.
.;,

li.-s between t- ~, and the equation

-l)p-8 ,;>-X), (-^7T<0<i
Bfl tin- innrr arc of ;i liuiunni (witli a n>(l- at

/>

r. .u-'hly in ti^un- '2~> I'm- tin- case X = -i.

It is easy to see that the an- nt' tin- lima;.m ajpn);ii'lu'v thr

nearly to the circle |#|
= 1, tin- lai taken.

Thus /A 1

//>/,

Il'any rc^ulai- c-urvc i> drawn fmin a point inside the circle

tc tlie ]>'im ./ 1, then, provided the curve ruts the circle at a

/'unbioncnthtori 7 use a

i wliii-h in our n<>i.itii>n wouUl be representetl by p=2oos<f>
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finite angle, we can draw a lima^on to enclose the whole of the

curve : that is, the series will converge uniformly along the

curve. Hence lim 2anx
n= 2an ,

where x approaches 1 along

any regular curve which cuts the circle at a finite angle*
This is the extension of Abel's theorem to complex variables.

The theorems in Art. 51 relating to the divergence of 2an
cannot be extended so as to hold for complex variables quite
so easily, because the lemma of Art. 80 gives less precise

information than the lemma of Art. 23, and it is necessary to

assume that the series 2anx
n
possesses some further property in

addition to the divergence of 2aw . For as a matter of fact,

even if an is real and positive, Pringsheim has shewn that the

divergence of 2an does not ensure!

. lim
|

2anx
n

|

= oo

for all paths defined as above.

The condition introduced by Pringsheim is that of uniform
divergence, which implies

where an> and the point x lies within the limacon.

It is then obvious from Art. 51 that lim
|

*Lanx
n

\

= oo .

The reader will find no great difficulty in modifying the

proofs given in Art. 51 so as to apply for complex variables

when Pringsheim 's condition is satisfied.

We proceed now to find the limiting values of the integrals, given at the

end of Art. 82.

For example, suppose that v is an arbitrary real continuous function
;

then the second formula gives a value for /(c) which can be expanded as

a power-series in c, convergent if |c|<l. We shall now prove that if this

function is denoted by U+i V, then V tends to v as c moves up to any point

on the circle
;
so that we have determined a power-series whose imaginary

part has an assigned continuous value v along the circle |c|
= l.

Clearly it is sufficient to establish the result for any point on the circle
;

so we shall calculate the limit of V as c moves up to 1.

*
Picard, Traiti d'Analyte, t. 2, p. 73.

t For consider A7f
aj
=

A'P-^ (cos 20 - sin 20)
J,

where E(x) = *.

There is no difficulty in seeing that, when this series is put in the form

the coefficients an are positive and that 2an diverges. However, if $* <0 < ^ir,

cos 20 is negative, and so lim E\
- -, |=0.

p->o L(l -#) J
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It will be seen that

j-+ c_ 1 - 1*+ 2ir sin (0 - o>)

where now .r=co8<o+ t sin <u and

'

,'

from Art. 65,

->+ K'-H-H-i,
and we note further ti : int.-jrati..n is

positive,
the

value of the (km over any x//<. //// ran^e must be less than 1.

f ' f>r > <>, we find

1

>
(,'- )(l-rV<o .

1

I -2r 008(0-0))+^'

and sinee , is a eontinii"u Min<-tiou of u>, we can determine a so that

Th* Iff*.
27T\Jo

next to consider the integral from j = 2a to w= 2rr-2a; here,

1 .I that // -
i.>) is not greater than cos a, and so

1 - >) + /- ^1 1
- iV e, ,s ( t -f /-' jT sin2a

while L-fJ<2(l-r>
; he upper limit to the values of \V\ on the eiivle, we have

I (v-vn)(l-

|l-2rcos(0-

'juently

1

^ftr-fc .-^[(1-r
27rj2a 1 -in*a

'

It i-> th.-i -i-t". ! p(.--iMe t< find a, <-.. so that

|V-P |<, if tf'<u, and 1 r<8j
that is to sa\ '0 moves up towards

tO and ;

tegral

still -;i\rs a : id tlie preceding \\ did as c

appioa-he-, any point on the eiivle exOSpl 1. T-> deal with 1, suppose
that ha> the limit /. when .* <> tlii'-'iiirh p.iti\e \a! tin- limit

ne^al i\ e it" We \\ :

I in ^. \ .

V=V -1

it i- evident fioin becomes continuous at o> = 0, if we assign
to it the \ .=0.

Furth-r. I" T - -

wluMe <:> rej.ie-ent- the same angle as is indicated in the diagram on p. :M1.
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Now from the first case considered we have

lim V' limv'
(r, e) (w)

so that lim V
(r, 6) 7T

where
</>

is the limiting value of
<f>

as (r, 6) approaches 1.

In the particular case when v is given in the form 2an sin Tito, we shall

have m=-l, and then the result is

sin nO=

It will be noted that in this case the series 2an cannot be convergent ;

for if it were convergent we should have

lim 2 nr
w
(cos n + i sin n0)

= 2an
(M)

in virtue of the extension of Abel's theorem (at the beginning of this

article); that is, lim 2a^sin*0= 0,
(r, 0)

which is not the case.

84. Taylor's theorem for a power-series.

We have seen that a power-series ^anx
11

represents a con-

tinuous function of x, say f(x\ within its circle of convergence

|

x
|

=R
;
let us now attempt to express f(x+ h) as a power-series

in h. Draw the circle of convergence, and mark a point x

FIG. 26.

inside it, such that
|oj|

= r; draw a second circle (of radius

R r\ with centre x, to touch the first, and mark a point x+ h

within the second circle.

We shall now see that f(x+ h) can be expressed as a power-
series in h.

In fact f(x+ h) is the sum, by columns, of the double series

a +alx+ a^2 + ag? +..,

+aj
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r.-pla<-<-Hut this series is absolutely convergent, ln-raus.-. ii' w
term by its absolute value, we ^. t tl.

\**\+\*i\(r+p)+\**\(r+pP+\**\(r+i
\vh.-iv

i>
= fi

|.
Now tlii 'Muse

liv tli.- mnstructinii ; ami ti 'In- <loull<- series convergesv

lately. Tliat i-, \vr can SIMM tin- loiible series l.y rows,

willmut altri \alu- ( Art.

H.'licr /(/ + /,)=/!

\\h ') = ft
l
+ '*i.,.r-

h3.4a4o^+.,

f...,

so that these series may be obtained inmi /< /
) l.y

applying tin- l'>nnal nil.- for SO LOU, will

any att.-nti..n t< th- nifanin- of the process.

Series in // may !>< rallfl '/''//'' >^8.

It in. iy ln> usrful t.. ivuiaik that thr .-ir.-N- ..f .-..nvergence for th

h- .-iivl.- ./ /,' ; \v kiinw that it

f\-idcii.-f that it may not rxtcixl further.

. it is <-a>y t- that it' \\ * writ.-

...,

th,n -M J

mgea it' |A|<|1 -

\/t\<

Thus the Taylor's series I in tin- >)mded area

_.!!<.. w.- !M\.' tli-;- i m ii i >wei wi i<
- rh
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86. The exponential power-series.
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then /()x/(0)=/(a)
or

Hence an
= l, and so

Again,

and if we take the limit of both sides as y tends to zero,

we get at once f'(x)
= a

lf(x).

Or, applying Art. 52 (3), we have

and since this equation must hold for all values of x in the

interval ( ^R, +%R\ we must have

a
2
= a

:

2
, a

3
= a

1
a

2 , a4
= a

1
a3 ,

.... See Art. 52 (5).

That is, a
2
= a

x
2

,
a
3 a-f, a = a^ ,

. . .
,
an
= a^\ . . .

,

and so xz
.X3

f(x) = 1 + o

We do not know from this argument that f(x) satisfies all the

conditions of the problem ;
but we see that if there is such a

power- series, it can be no other than E(alx). Now E(a^x) does

satisfy the relation

E(a,x) x E(a1y)
=E[^ (x+ y)]

for any real or complex values of x, y.

Consequently our problem has been solved;* and

where a
l

is the coefficient of x in the power-series for f(x).

It is usual, and in many respects convenient, to write e* for

E(x) even when x is complex. But it must be remembered

that this is merely a convention
;
and that in such an equation

as e^ = i (see below, Art. 86) the index does not denote an

ordinary power.

*
It does not follow from the foregoing that no other function can satisfy the

relation f(x) xf(y)=f(x + y), because we have assumed f(x) to be a power-series.

But, if we assume that f'(x) is continuous, there is no difficulty in shewing that

f(x) has the exponential form.
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86. Connexion between the exponential and circular

functions.

1 1' tin- n.mplex \arial>le ./' in tin- ntial B6f

depends on a mil variable /, we may differentiate term-by t-rm

\\ itli respect to /, and obtain the same formula as if x w< -i

- that "rr->jM. mlin^ in a .lian.u'*'
'' in

', X < hangea

-

A.,,1
..],

ls.
:

r, M 8<-*0, &r/& approaches the lim .<laoit

foil.. be la-t iiM-|iialit v i :

li,n
(
!jA',,

;-,

In pai-ticular. .siip|.ns,. t! , puiv iina-iiiary and equal to

/'//.
wli.-n-

//
is ival : thru \\c 1

or, if /:< w;)r(oo80-f '-i

we have

-*-L
euj tn|

Thus / and ft q are ind.-j.endent .,1'
//

; l.ut t'.r
//

I

and so r=l, = o.

Hi-lie.- L^-M. -rally r= 1. ^ =
;/,

and SO j- /'sin
;y.

which is continued l.y tlu- ivinark that

A'"V A -;;/) / '

/ )=^(0)=1.
Another m.-tlidd of establishing the last r.-sult i- ^iven ly

>l.scr\in^ that

J + I sin ;;
=

(cos^>-|-/
-

it' v
N"\v write cos^-f isin#= 1 -f -

and we see that lim mra ;/,
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because lim (n sin <) = r\
lim (sin </<)= q,

and lim n(l - cos 0)= r\
lim [(1

- cos
</>)/</>]

= 0.

Hence cos
r\+ i sin

r\
= lim (1 + /cn)

w= E(irj)

by Art. 85.

Still another method, analogous to that of Art. 59, can be used. In fact,

write P 1 1

Then ^ {yn_^ and Ji _
i(GOS 77 + i sin

77).

But, if y= r(cos

we have

or ^| = | Lrii ) +r'(^) |
^ ~

drj

Hence
'

drj

and 3/0, #1, ... are all zero for
77
= 0. Hence we find, if

77
is positive, the

sequence of equations

< i < i 1

Thus lim ?/M=0.
71 ><K

If we substitute i^ in the exponential series, we find

and so we have now a new method of finding the sine and

cosine power-series (Art. 59).

If we write
r\
= \ir and TT, we get the equations

E(Tri) = i, E(7ri)=-l.

Using the notation explained in Art. 85, we may write

cos r\+ i sin
r\
= eir

*

t

and changing the sign of rj, we find

cos r\
i sin q = e~ ll>

;

thus cos
f]
= (e^+e~ '*),

sin
r\
= -. (e^ -e~^\
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\\'e have at pivsriit IK. d-finiti <-O80; and -in ' wh'-n

;l and <-,,n\ .-nieiil to detin,- tli.-m by
tin-

JM.V. already est ahl ish.- 1 when X is real. Then the

e.juai
I I

COS i
'' =

.,
('"

are tni.- I'm- comj.lrx valurs of X as well as i-.-al

It inll(,\\s also that any t ri-< un nn-t rical i'<ii-iiiul;n- which

depend only on tin- addition-theorema r.-inain unalt<-r-il

complex \ariahh-s: thus in particular tin.- formula*- of Arts.

main tru-.

re vmte x : K ///.
it will Ix- seen that

COS X= COS cosh
;/

/ sin ^sinh ;y.

-in ,' --in fcoah ;y
-f ,h

;y.

wh- cosh/; = A(^4-r l),
sinh

//
= \(< "-,

\\'- shall not elaborate tin- <l-tails <!' \\n> analysis of tin- sinh

inl cosh functions: th.- results can he found in many t.-xt

V instance, C'lirystal's Algebra, ch. XMX.i.
h is to be noticed that n-hen x is complex, fl"- >

//"/
/////// '.<<

|

sin as |< 1

35
1, |cosic|<l

are no longer vulii/. \\V can. liowever, replace them hy "there,

*

|
= .sii.l, x = x

and so, if |#|< 1, we have

|rfn|<|

Similarly, we have

^ eoab r|;

and. if \x\ < 1, we find

87. The logarithm.
\\'.' have already seen that if

//
is a real ai

/.'i '/
y

i 008 If -f ' s i" ;
/-

Henee if n is any inte^.-r ( j.o.sit
i\c ..] n.-^ative),

AVJ, --;>=!,
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and since E(g+ir}) = e(cosr]+i8inr)) there are no solutions of

the equation E((+irf)= \
t

other than =0, ri
= 2mr.

It follows that if we wish to solve the equation E(y)= x,

so as to obtain the function inverse to the exponential function,

the value obtained is not single-valued, but is of the form

y = y + 2mri, (n= 0, 1, 2,...),

where y is one solution of the equation.

Q* O 1
FIG. 28.

If we represent x geometrically in Argand's diagram, we have

x= r(cos + i sin 0)
= rE(i6).

But if logr is the logarithm of the real number r, defined

as in Art. 157 of the Appendix, we have

r = E(log r),

and consequently x = E(logr+iO).
Thus we can take y = logr+ /

i0, and then the general solution

is y = \ogx = \ogr+i(0+ 2n7r), (n = 0, + 1, 2,...).

We define the logarithmic function as consisting of all the

inverses of the exponential function
;
and we can specify a

one-valued branch of the logarithm by supposing a cut made

along the negative part of the real axis, and regarding x as

prevented from crossing the cut. Then we shall have

log x= log r+ i9, where TT <C Q^TT-

With this determination, logx is real when x is real, which

is generally the most convenient assumption. Hut it should

be observed that then such formulae as

\og(xx')
= log x+ log x'

can only be employed with caution, since it may easily happen
that (0+ 9') is greater than TT, in which case we ought to write

log (.''./'')
=

log x -f- log x' 2?ri.

The reader will note that for two points such as P, Q in the

diagram (Q being the reflexion of P in the negative half

of the real axis),
1 i 1 1 1 (log xp log XQ )

= 2-Tri.
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repi at the rut. ill'- I. ranch sejrcted for log X IB

oh\ jollsly continuous over tlir whole plillie of X.

88. The logarithmic power-series.

\\'r know 1'n.ni
v

>, .ind lii', that if X is real and \X < 1

(1) //
= .i-- A.i-'+'.r'-...

represents the function inverse I" the exponential function

In other words. if we substitute tin- series (1) in the |

( *J i.and then arrange ;icc. .I'din-- to powers of X, the result*

must le 1-j-.'. Hut thi- t ran-fonnation is merely al^el>r;i

and. as such, is equally true whether X \^ real or complex.
Since the series c2\ c]\ . i.solutely f >r all values of y.

the d'-ran^eim-nt implied in this transformation is legitimate (see

Art. :>ii). provided that the series ( 1 ) is al>olute]y COB

Hence, if |o^|<[l, equation (1) ^ives one value of
>/ satisiyinu

ipiat i- 'ii < 'J i : ami furthei'. from (1). // i- real when ./ is real.

Thus, usine the hranrh of the In^arithm defined in the

artic!--. we have

,

1 +.,) = .,_ ^+., .:;_... (if |a.| < i).

p>

-1

From the ti-ure. it is evident that this equation --j\es

Wh- -7T <</>= +~ (
^ tM ' Al

This result can he at once continued l,y reference t> Ar
where we proved that (if < )' < 1 )

<
'

J

C '2tf+ Jr'cosSH-

arctan
j ^' ^= ,-sin H- }. r-sin ^(9+^/

J sin :;>

If we \\ me X r(oOfl H-f- ; sin f)) in the poi
./

:; -...-, , ^ + |rcos:{H-...
-f /v/'sin^-^. /-sin l^+^sin.Stf-.

Ml is a gooii e\> i.y nuiiu-i -ir.-il i-Diuputation up to, say, a*.



224 COMPLEX SERIES AND PRODUCTS. [OH. X.

and obviously p
2 = 1 4- '2r cos 6+ r2

,

tan = r sin 0/(l + r cos 0).

Thus our results are in agreement with those of Art. 65,

except that we now see that < actually lies between \-K and

+ JTT (because r < 1) instead of TT and TT.

We shall obtain an independent proof of the equation

log(I+x) =x-x2+ x*-... (if a?|<l)

in the following article.

The series for arc since and arc tan a?.

Again, by Art. 64, the series

,

1 xs
,

1 . 3 x5
,

y =x+2 3"
+ 2T4y+ --

represents the function inverse to the sine-function (Art. 59).

for real values of x, y, such that
|

x < 1. Since the series (4)

is absolutely convergent for all values of y, and the series (3) for

aj|<l, the algebraic relation between these series is now seen

to persist for complex values of x, and we can accordingly
write

1 xs 1 . 3 x5
..

since the series (4) is taken as defining the sine for complex
values of the variable (Art. 86).

Similarly the pair of functions

(5) y = x

are inverse to one another for real values of x, such that
|

x
\
< 1

,

and we may therefore write for complex values of x

arc tan a? = a? \x*+ \x
b

... (if |#|<1).

In these equations the values of the inverse functions are

determined by the conditions
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89. The binomial power-series.

/(, x). 1 + ,* + ,< ,

-
I C + , .,

-
I ,. 2)+

\vheiv hoth j ;nil X in.'iy
! r, .11 1

j

>1* \ . Th- -rieS is absolr/

.lit when |#|<1, ami thus we hav,- tin- il.-ntity

/(,. r>x/<.',*)=/(,+ ,>) (|*|<

i!' we pick nut tin- meHiri.-nt of & in th- product

/<**)x/(,',a>>

it is seen by the ordinary rule (Art. 54) to be a polynomial
of degree r in lth v and /'; thus tin- co-tlici-nt of .r

r
\\\

,X)-f(+l
-o a polynomial Nr of the same de^

Hut. when ,. j are (my two int.---.-^ because

. and cniis (

..ju,.ntly ~\
,.
must be identically /

M186, wh.'ii j' is any a^i-nr<l int-^-r. .V,. is zero for an

infinity of <liti'<Mvnt values of i- (namely. I. '2. 8,... to oo
).

Thus, identically,

x)xf(v',x) =/(r+i '..'),
(| *|<1).

From this relatin we can apply the method indicated in

til c2) to prove that

,.<) = (! -ho'

when i/ is a rational number.

I'.ut to deal with the case of complex values <.f j. w.- proceed

somewhat ditl'erently. In the lirst place /(v, a;) can be expressed
as a power-eeriee in i : for t'd. x) can be regarded as the

1-y columns .f the doul.l,- 961166

1-f. fj
-

,

'' -f ...

11

<

-f ....

ua p
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Now this double series is absolutely convergent because, if

|i/|
= / and

|a;|
= a;

,
the sum of the absolute values of the terms

in the (p+ l)th column is

~~x/,

which is the (p+ I)kh term of the series /(i/ ,
a? ); and /(i/ ,

o? )

converges if x <^ 1 by Art. 12.

The double series being absolutely convergent its sum is not

altered (see Art. 33) by changing the mode of summation to

rows, which gives

f(v, x) = l + vX
where X

l
= x ^x

Thus, since /(j/, #)x/(V, x)=f(vd-v, x), we can apply Art. 85

above, and deduce that*

/(,, x) = E(vX
1\

In order to determine X
lt

let us write i/
= l, which gives

Thus X
1

is a value of log(l+x); and since X
t

is real when
x is real, it is the value defined in Art. 87. We have thus a

new investigation of the logarithmic series.

Hence X
l
= log p+ i(f>

(see fig. 29, Art. 88), so that

sn

where v = a+ i/3,

a result which is due to Abel. The investigation above is based

on the proof given by Goursat (Cours d'Analyse Mathtfmatique,

275).

The method given in the example of Art. 36 (p. 89) applies to complex
indices ;

and the following method was suggested in 1903 by Prof. A. C.

JDixon :

The relation /(i>, .r) x/(i/, x) =f(v + v, x)

gives at once f(v, *?-[/(i *)J-0 +f)" Sa7

where n is a positive integer.

* Of course v corresponds here to jc of that article ; and A'j corresponds to a^
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(' >(-a(-*)*

-=)(' -]
the aeries in square bracket* has each of its terms less, in absolute

lll.lli tllf '.n-t^|)Ml|ili||^ tf| !

+

;i convergent series, independent of n
; and consequently th- limit

to oo can be found ly taking tin- limit of each term

Hence )-v(*-

But (Art. 86) lim(l + f)" = /;(./'), if .r' = lim ().

Thus, /(is #) = lim(l +)" = [ log(l +.i-)].

Tin- di>eu-M<n -i\,-n alM>\i- appli--. only to points within tin*

o5|
= l. To exaniiiif tin- convergence at points on tin-

ire c-an i-.-i'.-r back to WetarafcasB'fl nilf (Art. 79); but on

tint >t' tin- importance of the binomial s.-i-irs, \\<- shall

give an indt-pciHh-nt treatment of case (ii).

\\\ i have at once

<-
i

*
i i

^-*
i

-.
i
w

A H I~ T~~9
-"I [(*-o?+/fi

\vhere i<
= u4- -

-; and |o)| < .1.

Thus the aeries converges absolutely the circumi

a is positive ; and SO 2a up to and including the

imference. 'Ilm-. aince ff[vlog(l+flj)] i- also oontinaoi

nt that

C) ,if u >0)
at till points /// th- cii-cuinl'crrnce |a;|=l.

(>n th- .thT hand, ii' a+l=0, after a certain stago the

absolute \alues of the terms of the series never decrease, and

so fd Lverge \vhen |a;|
= l.

1 ; liut tlu-r.- is no ilitliculty in MTJIIJ; tli.U (it :

liin A'[

For the absolute value of this exponential is p*~^, where
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Again, if - 1 < a^ 0, we see from Ex. 3, Art. 39, that

lim|an =0; also we have /(I, x) = I+x, so that
n->*>

(l+aO/fo x)=f(v +l,- x).

If we take only the terms up to xn in this identity, we see that

where Sn , Sn
'

are the sums of the first (n+I) terms in f(v, x)

and /(i/H-1, x) respectively.

Now the real part of j/H-1 is a + 1, and is accordingly positive ;

and so it follows from the previous argument that Sn
'

tends to

a definite limit as n increases to oo .

And since lim = lim an |

= 0, it follows
n\

that lim(l+oj) n is definite and equal to E[(v+I)\og(I+x)] ;

%->oo

thus, unless x= 1, we have f(v, x)= lim 8n= E[vlog( ! + #)],
n-><*>

and the series converges on the circle, except at x 1.

For points on the circumference, it is evident that

,0
= 200810, =

^0, (-7T<0<7r)
and so we have

f(v, a?)
= (2 cos J0)

a
e-^[cos{ Ja0+ /31og(2 cos

provided that a > 1.

For the special value = 1, we have the identity (see p. 152)

It follows, as in Arts. 42 and 61, that

Sn ->0, ifa>0, |^n Koo, ifa<0,
but that Sn oscillates if a = 0.

90. Differentiation of Trigonometrical Series.

In some cases of interest, it is found that although the series

f(x) = 2ttne
inx = 2an (cos nx+ i sin nx)

is uniformly convergent, yet the series of differential coefficients

ceases to converge. If this occurs, it is often possible to obtain

the value oif'(x) by differentiating the series
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This gives

+8(a -...],

pn>\ ided that the s.-ries ^/H/ ; , ,

")' ^ uniformly c.,iver-

linly the 6886 (in any interval 1'rnin \vhirh

fc= 0, 2-7T are excluded ) if n(o , , /,. > is a r.-al positive decreasing

Lence, or in any int.-rval ii' l/< "
,

an
|

is convergent (see

Arts, n
It' \ve substitute the value of f(x) as a seri- v re liml th,-

eqaation

,,!-< 1.%^ -(",-- '.>' -...].

In ].i-actic.- it will usually ! found best to litl 6 the

i for f(x) first, and obtain thf /"///// (Mjuatinii

which is to !

int.Tj.i-rtcd l>y multiplication l>y (1 4 > and

rrangemeni accinlin^ t JMW.-I^ of . as if the differentiated

Be were convergent This rule will be seen in ('haj.ter XI.

to' be more than an accidental coincidence [Ar md
UO(2)J

It is easy to see that exactly the same method can be

if necessary, to .-staMi-di a similar rule to interpret the 91

> ly IIMH- the 1'artoi- < 1 +' ) oi- ( 1 + /
-'

i. where / is ;iu

integ

Another process, which in practice U almost the xiine as the

foregoing, is due to Stok.-x <.!/.////. i///// /'////>-. /'" L 1,

pp. D); the tirst case of Stokes's rule may ) rcdue,-d

t the form

-1>

where .1 i- a Constant determined liy the e<iidition that

i- e,,i, and another case can be writt.-n

i .- -i.
B]<

-/>'

liy t-.|uival-nt t tliis luive Item pven by Lerch (Ann. dt,

-
.

(S), t. !_'. lv:.. p. :>:.! ,m.l r.n-nk

< !

8, I'.'M;.
p, ^7). H, lt t i ,,g process seems simpler, Uotli in

}u-:icti.-c ;unl in principle.
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if B is a constant which makes the series on the right con-

vergent. These results of course depend on the fact that

in virtue of Art. 65 (see also Ex. 1, below).

Ex. 1. Consider f(x)= eix+
This gives the formal equation

/()-t'(*
which leads to the real equation

(\-<&)f(x)= i(**

or /(#)=-(*+ cot #), 0<.r<27r.

Thus f(x)
-
log (sin J#)

-
\ix+ const.

But for X=TT, we find /(7r)=-log2,

so that f(x)= -
log (2 sin J#)+ %i(ir-x\ < x< 27T,

in agreement with Art. 65.

Ex. 2. Similarly we can prove that

eix+ ^tx+ fypx+ . . .
== - J log (tan i^)+ i?, < ^P < TT,

and ete

These give, if

cos x+ } cos 5^+ ^ cos 9^4- . . . =|TT
-
j log(tan Jo?),

sin #+ J
5
sin 5#+ sin 9^+ . . .

=
|TT + J log(sec #+ tan #).

oo
ginx

Ex. 3. Again consider f(x)
= 2i--

_,t 7i

Here we get the formal equation

f'(x)-itf(x}=-i^e**,
00

which gives the real equation

[/(^)-i(/(.r)](l-6^)= 0.

Thus f(x) = Aeitx
,
where A does not involve #, and x ranges from to 2?r.

Putting #=7T we obtain the result

or ^e ip =a __.+ _._.. i=s7r cosec(7rO (see Art. !:>).
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Th : \ilim: l-y "', we get

-coeff-iOf n(t-n)x
'
~ 2<

--
7
-

> ' i
_ -

91. The infinite products for sin / and rosa.

The identitie- "!' Art. (i! ivinain true for complex values of 05,

and we deduce, as in Art. 70,

sin a; .^'i sin2(a/n) 1
?i sn /

Now. BU to t.-ml KT -an always t-nsuiv tliat n

greater than \x\ t and so Art. 86 gives

and, since / < sin(r7r/?i)> 2r/n

(see footnote, p. 184>.

n:n2/ r ,. v Q l/r I*
II tUU I iC/TVJ ^ ' */

Hence ^ ~ L
sin

N
-2.") r2 '

and consequently we can

in tin- thron-in . .1' Art. P.'. Hence, as in Art. 70, we h'ml

r =i

In tli.- ^anif way \\- find

11 l-Br=C( )S ./'

92. The series of fractions for cot -/
,
tan ./

,
cosec '.

The investigation ur i v ' i" Art. 71 for real angles, can )>

-\t. uded \sith'Ut difficulty to a complex argument. ly making
the t'nl lowing nnditicati"!

\Ve ha\ e, of ooune, the idi-ntity

x
.

n)

lie identity is merely an al^el.raieal deduction i'n>m

trigonometrical addit ion-t li- .\liieh ai \vhether the

.nients are real r
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Now here, as in Art. 91, we have

sin (r7r/ri)> 2r/n, \

sin (x/ri) \<%\x\/n,

assuming that n >
|

x .

Also we have (Art. 86)

Hence

1

2n sin (x/ri) cos (x/ri) \
< "--

\

x

and ri
2

1

sin2
(r7r/ri)

- siu2(x/ri) |
> 4r2-f

Thus, provided that 5r> 3
|

x
\,
we have

2 sin (x/ri) cos 30|a?

Consequently we can use the comparison-series

^ 30|*|

and so the theorem of Art. 49 can be applied just as in Art. 71;

further,
T / ' X \ V / X \ 1hm ( n sin -

)
= x, lim

(
cos 1 = 1,

\ n/ \ n/

exactly as if a; were real instead of complex.*

Hence lim (
- cot -

)
= -

Vn n/ x

and lim - *(/n)<x*(x/n) = %x

n sin 2
(rTr/n) sin 2

(x/ri) rV x2
'

Thus we have, for all values of x, real or complex (except

multiples of TT),

1
, ^ 2x 1

, ^v / 1 IN
cot # = - + Zv -Q o = -+ 7 j { )>X T X2

ri
2
7T

2 X ~
VaJ TlTT 7?7r/

where TI, is now the variable of summation, instead of r.

Now the following identities hold :t

tan x = cot x 2 cot 2#,

cosec x = cot J# cot x.

* These statements follow at once from the power-series for the sine and cosine.

fThe identities are familiar results when .i
1

is real; for other values, they
follow from the formulae obtained in Art. 86.
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Hence we find, on su)itra<-ii..n.

* &c _* 2x

^2n-l) . ^-o^'

cos* .eto+e 4-1
811 ' = .

= <
.

=
-j =-,-r '

,'-" - 1

ly writing y2i0, \v- M'- tliat

l ' ^tl.iVi-
5^"i j -i v -j

93. The power-series for x

The exponential Beri<

and consequently (as in Art. :>4) th<- iv<-iprocal function x ''-
l >

can ! expanded in powen "i' '
. i-r'-vidi-d that

|

.*
|
< p,

\\\.

2!"*"3!
+ "*= 1 '

This last con<liti<'ii is certainly satisti-l l>y taking

OK l.y tai p= I
T

Thus \\v can \\ i

_
1

ii'.
'At ' n'nd

,./'+..., if ||<1-L>.

l-'- =1+ 2'
;

It
1

\vr sulttract th.- lir^t of these ezpansioiifl bom the aa

we obtain tin- idmtity

r =

s<- t ! ^3=- -l-.
= (>

-
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Consequently we can write

1 ?J_7?^_ 7? _L R ^*- "" + J^ ^2+J

where JBj, 52 ,
5

3 ,
... are Bernoulli's numbers.

It is easy to verify by direct division that

A=
i> 2

= *V> 8
= A, #4= #>=F

but the higher numbers become very complicated.*

Again, from the last Article we see that

Now if x <C 2-7T, each fraction can be expanded in powers of

x, giving

ZnW

And the resulting double series is absolutely convergent, since

the series of absolute values is obtained by expanding the

convergent series

^ 2laj|

It is therefore permissible to arrange the double series in

powers of x
t
and then we obtain

e* L x z

which is now seen to be valid for
|

x
\
< 2-jr.J

By comparison with the former expression, we see that

11 Q 1 J,^ 1
T-k J- V~> * T- J X~> A T- *" K^> -1-

and generally

*The numbers (as decimals) and tlu-ir logarithms have been tabulated by
<;i;ii.sher (Trans. Camb. Phil. Soc., vol. 12, p. 384); and B

l
to fiw are givi-n

by Adams (Scientific Paperx, vol. 1, pp. 453 and 455). (For more details, see

Qhryitel'i .\/,,<bra, Ch. XXVIII. 0.)

tThat 'lir is the radius of conver^riirf may be smi tVoiu Kaker's theorem

(Art. 84); for the zeros of e
x -\ are y = 2niri, and the least distance of any of

these from the origin is L'TT.



93, 94] l:l I:\MII.I.I - \i MI;|.;RS.

Wo ol.tain thus tin- n-siilts

S-i , \^ ! -^ V '

-
^ V 1

-
^

6
Alt (l) v Z^^c i ^~9450*

It is instructive to notic,. that. \\ hen x is real, we liav-

any value of

** 2

^+ '

(2.2

v r

4nVJ o

. l.y ail.litiMH. we see that i- n-].ivs-nt.-l \>y th-
c^ ~~

1

(r+ 3) terms of tin- srrirs with an error which is l-ss than

tin- following ti-rin of tli-

For instance, for any ival po^itiv.- \alu-- of ,/\ W6 h.-.

720'

an.l so on.

Ex. By HUM identity

1 2 1

WO ca liat

md

94. Bernoullian functions.

r.-'i-nonllian function of - the

in th- , D of

'',-",'

whicli. lv the ; in powers of

/ <
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Thus we have

so that <pn (x)

. rn T -l , ^Q-l) D Tn-2_^" 1 )(W" 2X^" 3>P ~n-4 ,

~2 ~2~! x 41 ***x

where the polynomial terminates with either x or x2
.

From this formula, or by direct multiplication, we find that

the first six polynomials are :

=
yz,

where y = x(x \) t
Z X \ \-.T-'

Again, n (o?+ l) (j>n (x) is the coefficient of t
n
/n\ in the

expansion of

so that ^n (33 + 1
) n (x) = nxn ~ 1

.

If we write 03 = 1, 2, 3, ... in the last equation and add the

results, we see that, if x is any positive integer,

n

which gives one application of the polynomials.

Further, by differentiation we see that
(j>n'(x) is the coefficient

of t
n
jn\ in the expansion of

t*e _,t(e*<-\) t

e'-l~

Hence we find
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and generally 0',m(z)
= 2m^,, (

-I.

+ <-l 1..

1 1 w Change x to 1 a; ami / to -/. hat

$*a- ='*,':; i
Thna i -,> = <-! <//>u
Sim-.' 0, i <i )--=<>. it t'nllnws 1'p.ni tin- last njuatinn that B 1 i- a

root of
(/>

i
' >and thai ia a root of

<j,
and a glance at

tin- ti\- i'uncti"! .
,

f/v lraK to tin- ronj.-i-nnv that ^,n (^)

no root " x ""/// '/"' ^oo<
-J-.

Suppose that tliis rouj.-cturr lias IM-.-M i-sialilisli-l 1'.

valu- up to. then since

<-c),

:(#) is innnri-ically ; at ./-=A, and cannot \a:

en <> and 1.

Consequently ^ ('2/jL + :\ ran d
between I Imn- ^ ,.

i /

havr no xrro lM-t\v'-n X -<> and '..and thcr.-1'mv non<- l>etween

Mid I. Thus tin- tlu'on-ni has IMM-II rxti-n<h-d to tin- \alu-

a-fl: and it ll iin^ly always tru-. Tin- diagram
indiratrs th- ivlations

'

and so

illustrates tin- general ar^p.n

^j''

It will lr s.M-n thai I )-'

(in > 1). l'";in#e
<f> m (.'')= <. I : "/"/ t/tt tin' -

,
, /x //M/ / Oy (

_ i

i).
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95. Euler's summation formula.

We have seen in Art. 94 that if x and n are positive integers,

li

the polynomial containing 1(71+ 2) or J(ti+ 3) terms.

It is obvious that if f(x) is a polynomial in x, we can obtain

the value of the sum

/(l)+/(2)+...+/(*-!)

by the addition of suitable multiples of the Bernoullian

functions of proper degrees. But to obtain a single formula,

we must utilise the Calculus
;
and so we observe that we

can write the foregoing -expression in the form

Hence when f(x) is a polynomial, we have Euler's formula*

/(l)+/(2)+. ..+/(*-!)

where there is no term on the right-hand side (in its final form)

which is not divisible by x.

However, the most interesting applications of this formula

arise when f(x) is a rational, algebraic, or transcendental

function, and then of course the foregoing method of proof
cannot be used; and the right-hand side becomes an infinite

series which may not converge.

To obtain the formula in these cases, we shall apply the method of

integration by parts.* Consider in fact the integral

where < denotes the Bernoullian polynomial.

KViniMiilmriiig that </*_.(/) vanishes for / <) and /-I, \vi tincl that

this integral is equal to

*Seliwanoff, J}i/ereuzenrechnun</, 38, 39.
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' M.MATH'N |,,|;MI |. \

Int.-.natiiix ly parts again, w- mil.-u-ly

+0[^-a(0 + (-l)"^-

Hence if we v,

.V

we have the r

-i=(-l)' ')], (:

Let us now examine the case n = l
;
we have tli -n

A" ,//.

Thus, rinoa <MO = '*-'> we have

-l

Th.r

v :r'

Thus *f r'(.r)

//(o^4-.;L/'o--Hi)-r

^ !)-/]-
and fl-

uke a succ- . /*-!, and add the

epi:itii.u>. Tlifii \\i- liavr. if \\ M->J. at
A'_.

f>r instance,

1 ) +/(&) -
(/(')<ft

+ * L'X'O +/"(")]
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And obviously we can introduce as many terras as we please on the

right-hand side.

For a further discussion of Euler's formula, see Chapter XI. Art. 131.

Ex. 1. If tyn(x) is the coefficient of t
n
\n\ in the expansion of

prove that

and if x is a positive integer,

-
-^n(O) ^n(x)

= l
n - 2n+ 3" - . . .

Deduce that if f(x) is a polynomial in x,

/(I)
-

^- ... + const.

Ex. 2. As particular cases of Ex. 1, we find

These give, when x is a positive integer,

1-2 +3 -4 +...+(_i)*-i# =-U or

1 - 22+ 32 - 42+ ... + (
- \-la?= (- \

and so on. In the first and third cases the alternatives are to be chosen

according as x is even or odd.

Ex. 3. It is easy to see that

From the foregoing equations and from those of Ex. 3 prove that

Shew also that (x-%) is a factor of the odd polynomials, and x(x\)
of the even polynomials.

Ex. 4. Prove that if n is odd and k is an integer,

r=0

and obtain the corresponding result when n is even.
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Complex Numbers.

1. It th.- inn an- l".tli 'mpl.-x, >h-w tl. ;-.ints

ii. tli.-v li, ..ii ;m ri|iii;u

od n"i -I,

d cases when x is ( 1 ) i al. ; and

;liat if !>--=a',

|&+]/&:= >/[:i!,-,,>i>( I/--M-.. .

\\ln-i . _rer.

2. ' y are complex, prove that

l*+yl
f+

; pivt thi^ -|uati>n in Ai-iranil's ilia-^raiii. ! 'hat

l*+yl + !-'

[HAKKXKS.S and M

3. It' I, /! are the points in A .m whirh represei.

. uid .1 . '=0,

slu-w that tin- .iindittMii "< .N-nt t. tlif condi 1

o.i- OA ./:. .: OA .\<>i:.

mid point ..f Ml. [.!/< 1901.]

[Tian-fT t" o .1- "I'iirin, \\hi.-l, 0.]

4. It' Q08J I. wh( inh //= sin J ; and that

if we write
:i ^

\\li.-i in 0= sii

mi the roots of th.-
-.|
nation \\, :'

(*+l )\ and prove
tliat tln-\

6. It" the |iiati"ii

ha- \

(t \s<' lii-nrj real and t \\
-"ni|>l.

,-as
s= 0.

7. If a,
/]

, t! tin- point

't.
5+y

M a rouii- m- straight lim-. \vln-n t takes all n-al \a!

onnliti'!is for tin- [STU./ und <

8. I

1

-Miplrx iinniUtM -u. h ti IW tliat as

t \arir-. tin- point at + h
"
t-c

1. when it : ,'ht lin.-.

LB,
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9. If t varies so that |j = l, shew that the point

in general describes an ellipse whose axes are |a] + |6| and |a|- 6|, and

whose foci are given by x2= ab.

If |o|
=

|6|, prove that the point x traces out the portion of a straight

line which is terminated by the two points x2 =ab.

10. If t varies so that |"|
=

1, prove that the point

in general describes a limagon, whose focus is c b2/a. Find the node ;

and if a
\

=
|

b
\ ,
shew that the limagon reduces to a cardioid. [MORLEY.]

11. If t varies so that
|tf|
=

l, shew that the point
a b

*-iZI+*Fl+
in general describes a hyperbola, and find its asymptotes. Under what

conditions is the origin (1) the centre, (2) a focus of the curve ?

Prove also that the point x= -,
-

z^ H--= + c
(t * / ^ ^-

describes a parabola.

12. Constructions for trisecting an angle.

If a= cosa+ *sin a, the determination of ga is equivalent to the solution

of the equation in
t, t

3= a.

To effect this geometrically we use the intersections of a conic with

the circle
1

1 = I
;
the form of the conic is largely arbitrary, but we shall

give three typical constructions, the first and second of which, at any rate,

were known to the later Greek geometers (e.g. Pappus).

(1) A rectangular hyperbola.

If we write our equation in the form

*-o/4
and then put t= + irj, l/t

= -;, we find that the points trisecting the

angle are given by three of the intersections with the circle 2+ r/
2 =l of

the two rectangular hyperbolas
2
-?/

2 -(cosa+ 77sin a)= 0, 2^-^sina+ ?/cosa= 0.

Of course the fourth intersection of the hyperbolas is the origin and so

is not on the circle.

Either of these hyperbolas solves the problem, but the second is the

easier to construct; its asymptotes are parallel to the axes (tin- one axis

being an arm of the angle to be trisected), its centre is the point

(-Jcosa, Jsina), and it passes through the centre of the circle (that is,

the vertex of the angle to be trisected). Since a hyperbola is determined

by its asymptotes and a point on the curve, we can now construct the

hyperbola.

(2) A hyperbola of eccentricity 2.

The first hyperbola in (1) cuts the circle 2
-fr/

2= l in the same points

as the hyperbola f
1 -

<ty*
- 2( 00*0+17 sin a)+10.
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Tin- li\ pei I,,, la baa ecr. >

), and

IT-|M.M.| the vertex on the

oth.-r I. ran. h ,,f tin- tin- pres.-n;

naturally tli.m th'.-e ^iven in (1 ; hut the

ad I'.v
tii'

1 that tin- iir-t h i (1) cute the circle *+/2 = l

in tin- same point- a*

,/sin n - 1=0.

Thi- paral>ola has irallel to ?;=0, passes through the points

ami touches tin- line * u f
//
sin u -

1 -----) at tin- point (sec./.

13. If and .V l'.' . shew ti

(i)
= : \ -

x/7,

/ = 11 ... ,11.

(iii) a 13 V s 'i:'..

1 kin^ Oftfll : at A' 1 -f -'s . N\ li'

-./O-K'-'-v

easily |.i-.,v,-,l
that ,V-f.S"=-l, - .)-=n. and

- =2.

Thus .v is a root of ,S-' + .S' + :J = o, \\hi.-h _

X* :. or .V

It is easily proved 1

;. \\\^

tor 7)- un(&r 7) - sini irr 7)

tli >t the >i-n niii-t Le -
; oompa |..

188,

In like inann.'i ,. ,th ease (ii).

In CM6 (iii) i now

s=.,
*+ 3*+ J>

II. i e ig 1. l,,,t ::

13. That .s
1

(and the! .mst l.e
|.

i> iilivimis ly eonsid.-i iu^ , ;.

4-cos(67r

in \\hi.-h the ,, n ! e term i> jh- ,nd thai - lew
than the first (in nunn-rieal vain-

14. With tin- same n in the last example, she\\ that

= 4 gives A'=(l -

'= 8 V (l

(iii) a- 18 ...

[In the first case we ha

In tlu- second case, w-

In the third QMO, x ).]
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a-l

15. The value of the more general sum y=^xbn
~, where b is an integer

=o

prime to a, can now be inferred in these special cases. We find, in fact,

if 6 = 1, 2, 4,

if 6 = 3, 5, 6.

if 6= 1, 3, 4, 5, 9,

if 6= 2, 6, 7, 8, 10,

if 6 = 1, 3, 4, 9, 10, 12,

if 6= 2, 5, 6, 7, 8, 11.

,
if fc = i,

(-l+;)2v/2, if 6 = 3,

(-l-z)2v/2, if 6 = 5,

(1-1)2^2, if 6 = 7.

16. It will be seen from a consideration of the special cases discussed

in Exs. 13, 14, that the set of values ar n*

may, or may not, be equivalent
to the set xn

*. In the former case, a is of the form 4/-+ 1, where k is an

integer ;
and the sum 8 consists of k pairs of terms, whose indices are

complementary (that is, of the form v, a v). On multiplying SS' out, it

is easily seen to be the same as k(S+S').
Thus we find S'2+S - k= or JT2= 4&+ l=a.

Similarly, if a is of the form 4&+ 3, we find that the terms x~ n<1

belong

to
',
and then we find 88'= (2k+\)+ k(S+S')= k+\.

Thus S'2+S+k+ I=0 or X2= -(4 + 3)= -a.

[Mnth. Trip. 1895.]

A general determination of the sign of X (and indeed a complete

discussion of the distribution of indices between S and *S") belongs to

the problem of quadratic residues in the Theory of Numbers.*

17. When a is an even integer a = Zk, where k is odd, we note that

affi+W^-aF*, so that X is identically zero.

When a= 4&, the results of Ex. 14 suggest that JT=(l+) N/, but a

complete proof of this requires some further discussion.t

18. Deduce from Ex. 13 that

tan

[In fact,

- - r- 1895.]

since #" = !. Thus, in the notation of Ex. 13,

i tan = S-S'-2(A-

*For example, see Gauss, Disq. Arithm., Art. 356; Wcrke, Bd. 1, p. 441;

Werke, Bd. 2, p. 11 ;
G. B. Mathews, Theory of Numbers, pt. 1, pp. 200 iil-_>:

H. Weber, Algebra, Bd. 1, 179 ; Dirichlet, Zahlenlheorie, 111-117.

t Gauss, Werke, Bd. 2, pp. IM 15,
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19. Tin? ivsnli in lead to .in easy geometrical -

tin- r.Mjular heptagon : .; gee at ODCe '

:io roots of th-

s7 + l)-l
s< tint ), -, .i--

2
,
x4 are root-

If \\> \\nt-- ' - + //. l/<"4

,- + >/N'7-l=0,
\\hirh represents I ular IIVJH-I-IM-: tlir-ni^i, ticea

n-^iilai- lu'|it;i.u
riMi insnil.nl in tin-

tlii-r f..!i>tru-ti..n bj rith.-r f tin-

:{ ". i /r
.-c

, /N
'

7
:

20. If that

. (r=0, 1. _.

an.l l.-liici- l.y .litl.-i-riitiati.'ii that

1 -
rw) cosec58

( ^ -f rw) = ' osec^^.

I
' duce that, if u = J<u

=
?r/-l/'.

! 5a ... to

i> .Mjiuil t- [J/ 1901.]

21. If
/'

is an ...1.1 int- ur,. r an ,l ^ j s any intt'irn- jirinn- t.
/,, shew that

||f-ll

2ain(S ^) i^-A,

wlu-re 6= irqlp, ami A is any inn-iM-r fr.ni I t. ^ 1 (l...th inch:.;

MiiiM- the \aii ..... f the sum \\hfii A than
/-.

[K: :^)7.]

I Writ., r-.-'". thni fn.m the th-,rv ..f partial fra.-ti.-ns

;, |
K4

8 tin* limit -f In.th sides as J>--l, and \v get

-A-2<
1 1 -se A</>,

;.]
-A

22. I'ri'vi' similarly that, \\ith tin- same notation as in the last example,

\ v (a + H#)
f,

\vhnv / is mid and n.-i 1, l>ut
/

net-d not be odd.

[\Yriu- A = i(X- + ]), .r = e-'
2 '*

in tin- partial fra.-tions nsed in Kx. ^l.J
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Convergence of complex sequences.

23. If (an) is a sequence of complex numbers, which converges to a as a

limit, and if b is another complex number, shew that values of b n can

be selected so as to form a convergent sequence, whose limit is one of

the values of ba .

24. If x is real, prove that any value of xl oscillates finitely both as x
tends to and to co.

25. A straight line can be drawn in the plane of the complex variable #,

so that the series

! ^|^- ] ) *(*-!)(*- 2).
2! 3!

converges to on one side of the line
;
and its modulus tends to infinity

on the other side of the line. [Math. Trip. 1905.]

26. If an infinite set of points is taken within a square, the set has at

least one limiting point (that is, a point in whose neighbourhood there

is an infinity of points of the set).

[For if the square is subdivided into four by bisecting the sides, at

least one of the four contains an infinity of points of the set
; repeating

this argument, there is an infinity within at least one square whose
side is a/2

n
,
where a is the side of the original square, and n is any integer.

It is then not difficult to see that we can select a sequence of squares,
each within the preceding, and each containing an infinity of points of

the set
; the centres of these squares then define a sequence of points

which can be proved to have a limiting point. Finally, we can shew that

within any square whose centre is at this limiting point, there is an

infinity of points of the set.]

27. Suppose that Sn(x)=f (x)+fl(x)+ f2(.v)+ ...+fn(x), and let the roots

of (#)
= be marked in Argand's diagram for all values of n : if these

roots have x= a as a limiting point, the series

has #= a as a zero, provided that the series converges uniformly within

an area including ,v= a. [HURWITZ.]

EXAMPLES B.

Power-series.

1. If H, K are the radii of coin er^enre of ^/,,.r" and -!>.<" respectively,

then :

(1) HI!' is the radius of convergence of ^Jt .'".

(2) If 11 is less than /.' . /.' is tin- radius of convergence of 2(an+ bn)x
n

;

but if 11= It' the radius is at least equal to A' and may l>e greater.

[Apply the method of Art. 82.]

2. If a power-series is /.en. at all points of a set \\hirli lias the origin

.as a limiting point, then the series is identically /.en.
|< '<>in|>aie Art. .">_'.



x.| IMPLEfi a

\ power-series cannot ! purely real ary) at all

jM.ints within 'in.

tin- la-t example.)

4. NV- have seen that in many ra-.-s ill.- radiu- .f Convergence of 2ar*
can be determined i

lun(o a

and Kal'iv ha- pr..\ed (te I lal:tni;irl. / , pp. !:

that if this limit is e.|iial t.. A. th<-n / = A \B a singular point "f the

{.WIT ->.-i !-. Si.nirtiin.-s wh.-n thr limit A does not exist, we can deter-

t n-luti.>n such as

\\ln-i. ' ml t.i drtinit'- limits
/>, >/

as 7i-*oo.

ThiMi tin- radi d t tin- nioilulus of the least root

of 1 -jt.r-qx
3= Q.

[For details, si-i- Van- Vl.-.-k. M-itL Soc^ roL 1. 1<>00, p. 293.]

5. An illustration of tin- last example is afforded by the series for

log[(H **+i*-K..>

in which (;j 4-^)'/,,+-j= /

and tin- IMOCiatod |iiadrati.- is 1

Similarly for the series

f^ + |^+5.r+...

oUaincd from -l<.ur (l
-

.'-) + ar<- tan r, we get

(/ +3K, 3
-

i

, + (/ -f l)// M + i
- w M =0,

and tht- associated ciil. =0.

:ally. if - have the same radiu- rgence
l.-it .litl'en-nt singular |.int>. th iy be expected

:IH- under Van VK-ck's rule.

6. If -" '

'

converges within tin- circle .r|
= fl(>0), shew that 1

Com all value i examine the relation between the regions
>>' and 1

7. If. -'/ is the maximum value of l'a,,r" ( ,n a circle .< /, M is also

grejiter than the valu- any p.-int within th-

ilian the radiu> of com
Sliew tiMtlier that within ti,

vvln-r.- .1

[Use ( auchy's ine<|ualit ie- "i".
]

8. I' /.'. tlien (>e,

- "JV8
", wh. :

I >educe Caudiy's ineijiialit;
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[For we have
<Sfor"f(x)

= ant
and if an

'

is the conjugate to
,

'2an'r*
n
/x

n=f1 (r
2
lx) is the conjugate to /(#).

Thus
\f(xW= f(x}fi(r

*
lx}

and 2R|/(tf)|
2=2<C^n^#-n

/(#) (Art. 82)

9. If /(a?)
= 2aH#n converges for

|

#
1

< R, then

where D is the maximum of !/(#)-/( -#)| on the circle \x\=r<R.
[LANDAU and TOEPLITZ.]

[In fact, .a
l
= morif(x\ -a^m.v- lf(-x\

so that 2a
l =m[x-i{f(x)-f(-x)}~},

which gives the desired result.]

10. Shew that if p is the radius of convergence of 2an#n ,
the series

^dnX"* will converge absolutely, provided that the argument of x is greater

than log (!//>).

11. Obtain from the binomial series, or otherwise, the equation

where v is real and greater than 1. What restrictions are required as

to the value of 61

Shew that the equation ceases to be true for i>=
,
=

7r, and explain why.

12. Find the sum of

cos 30+...

and of

[Apply Art. 89, putting v=-J, x-ei9
.'\

13. If m is positive, shew that

and examine the special form of the result when w= l/10.

[Take x= i in the expansion of (l+#)
m

.J

14. Examine the convergence of the power-series

[Apply Weierstraas's rule, Art. 79.]

15. Discuss the convergence of the power-series

[In Lin- third, tin- ...rllirim! ,,f ./" steadily decreases; see Ex. -2, Art.



.]

16. I

d of

f/0-

17. Determine tip- expan>i..n of -*
it) in po\\er-

;,,/
*

s
Jo t -1 Jo

[I'u; in the exponential series.]

18. Shew tliat (compare lv\. 17)

* -

...},

\\here there are (/< + !) r b(n + -2) tei-ms in the luackets.

Determine a siini! Q /./-.

19. Sh.-w that if 0|<l/e,
1 22 3s

cos 0=1 -6 Bin 6-* '/* cos 40-

33

_! 3!

[JA/M. r/-/r . 1891.]

[Write <t = b = i in the formula .f K.\. I. Ait. 56. The intr.nlneti,.;

complex numlters in the place of i-eal oii.-s may lie justified hy an ariju:

of the same type as that used in Art. 88.]

20. It' s
'

i a '. sheii that Lagrang*'

. H+^l
ami that the ay |

< 2.

21. It"
' OM^H I 0<r<l. shew that

1 /'**

, (1 + ft)"t ; .-...

and
SF/ ^ H -,i.?-i*nf-'

lie c,,etlicieiits iii the liinoinial series.

i ted ; e fiom .\IM-I, theorem that, if N >o,

+--3><
.neiMr).

[Note that the ai'mimen; jiproaches the limit 4-Jnir

-1) when ril itive, and L-- when
tirst summation is valid if did tli- M-.-..ml if > lj lut th-

me rather IIUMV ditlicult \\ ! 'ive.]
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22. If .r= cos#+ isin#, n-*0 and 2|an -an+1
|

is convergent, prove by
Dirichlet's test (Art. 80) that 2a,Xl

is convergent if 0<0<2?r.
If 26,Xl

is convergent, under similar conditions, then shew that

cn= a bn +^ &_, + ...+ 6
,

provided that 2^ n Z?n converges, where

4 n= \an -an+1
\

+ \an+i-an+3 \
+ ...,

Bn= \bn
- bn+l

|

+
|

6M+1
- 6n+2 |

+ ... .

[Note that the sequences (A n\ (Bn) are decreasing sequences and that

|
On

|

< A n , \bn <Bn (as in Art. 80). Then apply the method given in Art. 35

for establishing Pringsheim's theorem on the multiplication of series.]

23. If f =
l/n log n when n>\, and/x

=
l, the series

is convergent, but not absolutely, while 2 vn -vn+ i\ is convergent. Note
that the signs of vn are the same in groups of 1, 2, 4, 8, ... terms.

[For we have /5</4<4/2 or /4+/5</2
and /7</6<i/s or /6+/7</3-
Thus /2+/3</4+/6 +/o+/7 : and so on for each group of 2* terms with

the same sign. The convergence then follows from Art. 21.

Again, 2
1

vn - vn+l
\

=
(t\ +/2) + (/2+/4)+ (/4 +/8) + . . .

so that 2|vM -vn+1 converges.] [PRINGSHEIM.]

24. It follows from the previous example that the series

=

converges, but not absolutely, at every point of the circle |.r|
= l.

[The convergence of 2|-yn -v,l+I |,
combined with limvn= 0, establishes the

convergence of ^vnxn at all points except x=\
;
and the last example

enables us to include x=\. As regards the absolute convergence, we note

that 2|tn *|
1

2|t>1,|2/n is divergent] [PRINGSHEIM.]

25. If H,l
= b + b

l + ... + bn ,
and if A", A',,, are the upper limits of 1.5,, as

n rant^s from to ?>i-l, and from m to GO, respectively, it follows from

Arts. 81, 83 that

'J'li us, if *2,a n is a series of positive terms satisfying the condition of

uniform divergence (Art. 83), we h;ivr

0, if li

x !

I In- path of approach lying within the lima^on of Art. 83.

llrii'-<: ^ciM-rallv, for such path-,

the right-haml limit Iming supposed to e.\i>t. [PRINGSHKIM.]
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: > r\ten<i

to tin- coinpN-.x. variaMe ; ;in<l in part i-nl.i : theorem

M to apply tO -h lyinu' \\ithin tin- In

\\ , note Blao tin- foil.. ilt :

It' a -_ -IM-H. ;is .r-l,

--

\ t'i!ili.-i '-xtelision is quoted on |. I:'!', al"

27. Converse of Abel's theorem.

If liin(l ial t< ;i finite nuinl't-r .1. it

Mt- to ii \\itlmut fui'tlit-r i '--t i i'-t iotj .n

liiri.-iit^. In two siiiijilr
c i in ni.'ikr tlii-> [\

(1) \Vln-n the coeffici' : all JM.^

\Vlu-ii lini /"/, <>, and .> aj.pr-.a.-li.- ] l.y any path within tin- 1

Ol Ar [T.\-

[Sincr in ras (I)./- can apjirnafli 1 l>y IM! valurs. \\e can infi-r fi.m tin-

of lini !'</. /" that !'/ cannot livrr^.- ; t'ui lli.-r, ^.n,, cann-.i

llrncf, in case (1) ^i-f,, convives, and is then-fore eijual to J, l>y Abel's

theorem.

In <
; it,, i, ,f

r[ ,. then we find

1(1 r)|
= |l+^+ ./--

>

+...+.r"-
1

|^
the ilppel- limit to .',. .

. ;. ... U) f. . We 1.

then ./ as a point <m tin- iriven path Mich that C I
-

1 i : \\

ha\e th.-n. U in Ait. M3, |l-j:|<A i.

and 80
T|^

1 1 //,.

-x,'a<'h of the ti-rnis on th- liirht t<-nd- t> <Mt) lt
.

\\ {
, t i,,

and SO ,i
lini ^<i n

-- lim 1 .1.]
, o

28. In - ii" d'-fmite limit. \\ e can infer th. nee of

I'lom th.- of lini 1 h within the lima
z l

and from tlie Condition

lini (i
l
+ '2'i.

i

, 4- & /
;:
-f

n
Thoe coiiditinns are Loth neecssary fop the convergence of 2^, and,

taken together, they are vutl,

[Tau . !'.d. ^. ;

i;d. :n, UMI.
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29. Applications of Art. 84.

it is easily verified that, with the notation of Art. 84,

and so on. Thus, we obtain the transformation

The two series on the right-hand are both convergent if
|

.v
\

< 1 and

| #!-#!< 1 1+#|, and the latter condition is satisfied for some points x^
which are outside the circle

| #j |

= 1
;
we have thus obtained a continuation

of the binomial series. Repeating the process, we obtain

where we assume that the broken line from x to xn is drawn so that

\xr+l -xr \<\l+xr
\ (r

=
0, I,..., n-1).

For example, by taking

so that

where

Thus we are led

But it should be noticed that if we take a broken line passing below

the real axis, we find /(-2)= e^
7r

[cos(a7r)- <'sin(a7r)] ;
we thus obtain two

different values for/(~2) by approaching -2 along different jf>aths. This

indicates (what we know to be the case) that f(x) is manyvfelued unit's

(3
= and a is an integer.

30. A method wimilai to the last example can be applied to

for which we find

and

tl < same |Hiints .1-, .r,,
./'

2 , .1-.,,
.r

4 ,
us in the last example, we get

<(-2)= Z7r. And with a lnkni lim- passing below the ival axis, \\<-

get <^>(-2)= -/V.



x
I

31. If tin- OCX aiv all positivr (fl

<_'., tin- -i i \i>* has a BJ i-oint

A iln- radr.
(
VIVANTI ai.d

l:..d ,,f pi Su|,|,(^.-,
if possible,

that (t'..i 0<r</0 the HIT;- --on-

than A' / ; \v can l! 1111111!.. i
f>

(

that tli. 84)

M a d<>ul>;

it will thm ; kin OOnvergen( \\ln-n >iimiiiMl as I'//., {/-

That \\ ill 000 !" tin- .-i i-inal hyjM.tli-

and si X It nin-t In- a >in^iilai- point.]

32. Weierstrass's double-series theorem.*

that thr

1 -.)

an- all OOnvergenl f.-i- t - A', and nnlli.'i that th-

OODY< '/////// a 1> in L: r\.-ry circle \\1. --ss than A', 'i

90

(1) thr i ^ fin- r\.-ry valur ..f

1 -I . <lt.
tn=0 n=0

i

tin- niran IMMII^ taken aloii^ an \..w on this .

is uniformly i-mi\ rru'nit. and so th- -t be

-ti!ivri'_u'-nt and r.jual !-

in, if
//

is any integer and

-

'

f '.,

\\. ha\r similarly
/; . . ,.d M /;

if M^ is thr niaxinnini ol =r,.

Eenoe, ii

N=0

and 1. . LIT. Q( i <M^ so that

-r.

li.l. 11.. p. 206.
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Now,-we have identically

F(x)-G(x)= 2 (^ -#,)'"
n=0

because this equation contains only a finite number (/z) of series: am'

we find - I^
|

< ^(Sr, - r)/(rL
-

r), if
|

*
|

= r.

n=0

But, since F(x) converges uniformly on the circle #|=r, we can make ^f
l

as small as we please by proper choice of p. Thus, since F(x) and ~2A nx
n are

oo

independent of
/x,

we must have F(x)= ^A nxnJ\
71=

EXAMPLES C.

Miscellaneous Series.

the series *Lan F(x, n) converges absolutely, provided that 2 an \n ^does sor

where f is the real part of x. Thus, in particular, if ^anxn has a radius

of convergence greater than 1, "Zan F(x, n) is absolutely convergent for

all values of x (other than real negative integers). But if the radius of

convergence is less than 1, ^Lan F(x,ri) cannot converge.

Finally, if the radius of convergence is equal to 1, suppose that

where A > 1 and
|

a>n
|

< A : then 2 F(x, n) is absolutely convergent if

-a. [KLUYVER, see also NIELSEN, Gammafunktion, ^ 1)3, J.)4.]

[Note that F(.r, n)cuT(x)n~
x

.']

2. Shew that, with the notation of the last example, the two series

2/anF(x, n) converge for the same values of x. [LANDAU.]

[Apply Art. 80 (2), taking vn= n*F(x, n) ;
the series 2|i',,-vn+i| and

2 l/vn \jvnfi\ are then easily proved to be convergent.]

3. Shew that in the notation of Ex. 1,

/'(.''-I, n)-F(x-\, n + l)
= F(*, n),

and deduce that S/'X-r, n) converges only when f >1 ;
that is, -F(.i; u)

can only converge absolutely. Shew also that 2( l)
n
/X#, n) convi

if ^>0; and apply Ex. 2 to deduce the corresponding results for

4. The series (see Ex. 19, Ch. 1.)

* # ''

1_^41_.^ ]

represents the function .r/(l -.r), if |.r|<l, and 1 /(I -.<), if |.r|>l.

[J. TANNKUV.]
5. Slievv that tlu; scries

are botli convergent for all values of ./, except 0, -1, -2, -3,....

|
Kor applications, sec N IKI.SKN, ti'-iiniii<ifnnktion< .^33.
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10. If 2aM is convergent, the series 2 n 3/f7* is convergent if the real part
of x is positive. Thus, in general the region of convergence of *2anM^

x
is

bounded by a line parallel to the imaginary axis.

Further, in case 2an is convergent, the series converges uniformly in a

sector of the plane bounded by the lines rj= -i K, where K is any assigned
number. [CAHEN.]

[For then we can use Abel's theorem (Arts. 80, 81), merely noting that

we may write Vn= HM~_ in virtue of the last example.]

11. It is not hard to modify the result of Ex. 27 (p. 251) so as to apply
to series of the type ^Zan e~ xf(n

\ where f(n} is a positive function which

steadily increases to infinity (this is the same type as in the last example) :

If as x tends to by any path between the two lines ?;= K (where
K is an assigned number), the series has a limit /I, and if lim {anf(n)/f'(n)}

=
Q,

then 2aw converges to the sum A.

[Landau, Monatshefte /. Math. u. Phys., Bd. 18, 1907, p. 19.]

12. Prove that if O<#<^TT,
*

cos 3^ cos 5x \ cos 3.r cos 5x
cosx

^ + ... )=cos.r + 3 + R2- + ...
o ) / o O

13. From Ex. 2, Art. 90, deduce that, if O^^^TT,
TT , v _ sin x sin 3# sin bx
-X(TT-X)- ^p I p ^3

+...,

and obtain the sum of the series for all values of x. [EULER.]

14. From Ex. 13, shew that if -^=v=%Tr,
7r.r/7r2 #2

\_ siii3# sin 5^7

8"VT~3";~ ~ar ~5*~

and (by taking #= j7r) shew that

llTT4

1536 v/2

15. Deduce from Ex. 2, Art. 90, that, if -\TT^X^.
cos 3x cos 5.r cos *ix _TT t

1

1. 3. 5~3. 5.75.7.9"
=
8

CC
~3

and find the sum of the series for all values of x.

16. Shew that

where n=0 is excluded from the summation and 0<y<l.
Deduce that

etc-

[L'A.MiK and ScHlAMlLcil.]

[Put t = 0/27Ti, ^=27r// iii Ivx. :i. Art. !>n. and apply Ait. !U.|
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17. r'n.i.1 i-duce that it' A li between th two even

integt :

f

aild rXHUlillf the r.i

[Writ,- * (A 8r)r, * -f -.]

18. Shrw that

and divide this r<|iiati>n int.. ival and imaginary |.

_.;-<'0'r

19. Sh.-w that
_.

v
rintar

\\li.-r- // is tli,- ditr.-ivn.T between 9 and tin- int-^-! to v.

.' -d r -L'>/) iii tin- eerifl 90, and ..W-rve that

20. If " is an int-grr and < ><./<!, we i

V' 1
'

,~i m* - ri* 4n* ~~n
'

\vhri' - i-xdudt-d from th<- summation. [Kx. 3. Art. 90.]

21. If 1"'th .-, y an- lirt \v-rn <> and j., w- ha\- tlic following r-

00 I

-7r(./--i), if -r>v,

or --(' -.{), if .'

or if

i'.-v) = 7r[</>,(,-) + </,,(//) + //
-

J], if .r>y,

or T-'[</,,(,-) + </>,(,/) 4- .i-H, if .r<y,

<.V,o> ,-'-.,- + J is the IVrnoullian function of order 2.

22. By writing f Mt. 90, or otht-i-wise. sh-w that

sllll:

| 0<<>r.
Sllll;

Use Stok<-s'> mil- (Art. !i) t. dcduc> cadi of MI the otln-r l>y

ditlrivntiatin.i:. [JVM. '/'

23. i-t rxainjilf. that

C08ha.r_l 2
77 .

= -
-f- ^" - - a Q >

- '

\\'t~ a

_sini ! ! -I)""
1'**"

. . -- 7T <..<...,
Slllll 1

|c=
\

1 +(-!)"

and obtain a .

l.v R
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24. Shew that the product

converges absolutely except when x is a positive integer.

[If the general term is !-, lim(iAi)*

25. Evaluate #2 [(H-.r>
4
) and

i i

[Glaisher, Proc. ZOT^. 3/a*A. Soc. (1), vol. 7, p. 23.]

26. From Ex. 10, Ch. IX., find the values of

27. Prove that

where logH c

any determination of logc being taken. [HARDY.]

28. Shew that n^l=| [GRAM.]
2 *i + 1 </J

[If i= J(-l+iV3), so that t
3=

l, we have, as in Ex. 21, Ch. VI.,

T,

Now write ^=1, and observe that

29. Shew that "1 TT sinh (?r.2\/2) + sin (

[Math. Trip. 1888.]

[We have _^ = J_Y_1--
i),L w^-r4 $f4?\i+to /

where ^
4= 1.

Thus, as in Ex. 22, Ch. IX., the given sum is

and this gives the required result.]

30. Apply a method similar to Ex. 29 to find

V 1
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31. Prove ti

that til.- lr;i-t Vtlllf

n /j_v'

[.I//'/. 7 rip. 1892.]

*)+/
=
%U+(*+ i>)~n+<*-iy)r

and so the sun.

32. Shew that

4/1- -1 .. , 7J\/3 ,7T V-l ,
^ech-^-.

[M,,- 1898.]

,T^ +2^^"2M^rV'
\\li.-iv <,> = ^(-l4-'x ii tli* 1

.iriv-n seriei

-
A7r{cosec(i7rto)

whirh is easily reduced t< tin- -jivi-n fm-ni.]

33. Sh.-w tliat

F
aivtan, .,

-arc tan., .\ tan ... ...... =arc tan
1 L

[.!/ 1891.]

[It is <>asy t<> prove that

f * \ ( X \
aivtan-5--

9
- an- tan ..I -fare tan ..I,

"- -.'- N x 3/

and it follows that th.- ^ivt-n il to

\,

\vh-i. N :;.
.\i'pl_\ iil the ^ivcii foiniula.]

34. Slu-w that

2
) '=

"

L \n + .r/ n

In partii-ulai- \ve tintl \\ ith

H3
v/ l<s\ T rsinh(Tr.r)~l
1 i 0-1= -- + are tan .

-.') J



260 COMPLEX SERIES AND PRODUCTS. [CH. X.]

[We have

and log tan(^-)

In each of these, change x tox+ iy, and equate the imaginary parts on

the two sides.]

35. The points P, Q have coordinates (p, q\ (
-

p, q) respectively ;
N is

the point with coordinates (na, 0). Shew that if

then tan0=tan(7rp/a)coth(7r?/a). [Math. Trip. 1894.]

[If we write p + iq=x, -p+ iq=y, it will be found that

id= log sin (n-xja}
-
log sin (iry/a).]

36. Verify that, if x is a positive integer,

where we are to put EP = -BS ,
BP+ l = Q after expansion. [Math. Trip. 1897.]

[Apply Art. 94.]

37. Shew that

fcotf-1-^fj-B^-.B.f;-...,
and that

x _Bx^ B^x*_ BS^
g 2 sin (Jar)"" 2~2!

+
4 4!

+
6 6!

+

38. In virtue of Baker's theorem (Art. 84), we can expand sec# in

powers of x if |#|<JTT, and if we write

the coefficients En are called Euler's numbers. Prove that

#
1
=

1, 2̂
=

5, ^= 61,
-

4=1385,111 E TT''"
+I

l-3^ +5^-7^+...
=
2^, (

^ )f

[See also Chrystal's Algebra, Chap. XXX., 3.]

39. Shew from Ex. 37 that

cosh x cos x ,<,_ ,, . Bn .'-"

iog--^- -^n+lcos
^-)^(2^r

[Math. Trip. 1890.]

40. Assuming Stirling's formula (Art. 179), shew that

J

when n is large.
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97. Historical introduction.

r.rfniv tin- iiu'tlii..ls <!' Analysis had IM-.-II put on a sinv

footing, and in jiarticular before tin- tln-ory of convergence had

l>y Alirl and ( 'audiy. niatlicinat iciaiis liad little

in u-in-- in ii-r n\-i-r^-nl aeriea in Imtli t ln- n-tical and

investigations,

In nunirrical Work, however, tli.-y naturally used i.nly
-

which art- n..w rallc.l asymptotic (Alt, l.'JO below); in such s<

tin- trnii.s ln---in to decrease, and r.-ach a minimum, afterwards

incr If we tak.- the sum to a stage at which the terms

*T rs on these serifs use th< trgtnt aa including
in quotations. a<i

listi; viotis part of ti
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are sufficiently small, we may hope to obtain an approxi-
mation with a degree of accuracy represented by the last term

retained; and it can be proved that this is the case with

many series which are convenient for numerical calculations

(see Art. 130 for examples).
An important class of such series consists of the series used

by astronomers to calculate the planetary positions : it has

been proved by Poincare * that these series do not converge,
but yet the results of the calculations are confirmed by obser-

vation. The explanation of this "fact may be inferred from

Poincare's theory of asymptotic series (Art. 133).

But mathematicians have often been led to employ series of a

different character, in which the terms never decrease, and may
increase to infinity. Typical examples of such series are :

(1) i_i + i_i + i_i + ...
;

(2) 1-2+3-4+ 5-
(3) i^2 + 2 2-23+
(4) 1-2! +3! -4! +5! -6! + ....

Euler considered the " sum "
of a non-convergent series as the

finite numerical value of the arithmetical expression from the

expansion of which the series was derived. Thus he defined

the " sums
"
of the series (l)-(3) as follows :

J__l. (^_ 1 _1. ,^_ 1 _L
~1 + 1~2' -(1 + 1)2-4' -1 + 2-3'

and his discussion of the series (4) will be found at the end

of Art. 98 (see p. 267).

In principle, Kuler's definition depends on the inversion of two

limits, which, taken in one order, give a definite value, and taken

in the reverse order give a non-convergent series. Thus series

(!) is lim l-limoj+ limic2 -lim^3
+...

as x tends to 1
;
Euler's definition replaces this by

So, generally, if 2/w (c) is not convergent, Euler defines the
" sum "

as lim 2/n(#), when this limit is definite
;
a definition

X-+-C

which should be compared with the principle L'ormuluti'd .it

the beginning of Art. !M).

*Acta Mathematica, t. 13, 1890; in particular i:t.
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made numerous discoveries l>y usin^ M-i-ii-^ which do not converge,
\\e may ftgrOe with Dnn-l in the statement that the ollcr

n:athMiiaticians had sutlicient ly ^(.o<l experimental -vil-

that the use of such series as if they \veiv cnnverevnt led to

COrrecl results t in the majority of easefl when they presented
themselves ,/,/////,/////.

i]l- rxumplr .f tli- Bi t" ..litaiii a

.1 is atl"nl.-il 1>\- a pa-aur ' in I

i. 1. p. I rier is ol)t;iiniiiur \vliat \v<- should IK>\V call a

K"iui. inctk>O f\

'

, and } finds that tlu-
ih -

la

;

*Thi t more satisfactory basis i

tluMMvm of Fiolx-nius c' l;,l. x'.i, ls>u, ],.
_'.,

in Ait. ."! iiat

liln

*-!

:iu sum

,( -f- 1) ;

'

lim J.
with a few al-.

MB |>t
I
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Tims the coefficient of sin x appears as 1-1+1-1 + ..., and may therefore

be expected to be
,

if we adopt Euler's principle.

As a matter of fact this is correct, since

/ sinh x sin x dx= | (cosh x sin x - sinh x cos x \

2 f
n

so that I f(x)*v&xdx=^.

Abel and Cauchy, however, pointed out that the use of non-

convergent series had sometimes led to gross errors; and, in

their anxiety to place mathematical analysis on the firmest

foundations, they felt obliged to banish non-convergent series

from their work. But this was not done without hesitation
;

thus Abel writes to .his former teacher Holmboe in 1826

(Oeuvres d'Abel, 2me. ed. t. 2, p. 256): "Les series divergentes

sont, en general, quelque chose de bien fatal, et c'est une honte

qu'on ose y fonder aucune demonstration ... la partie la plus
essentielle des Mathematiques est sans fondement. Pour la

plus grande partie, les resultats sont justes, il est vrai, mais

c'est la une chose bien etrange. Je m'occupe a en chercher

la raison, probleme tres interessant."

And Cauchy, in the preface of his Analyse Algebrique

(1821), writes: "J'ai ete force' d'admettre diverses propositions

qui paraitront peut-etre un peu dures : par exemple, qu'une
serie divergente n'a pas de somnie."

"

Cauchy established the asymptotic property of Stirling's

series (see Art. 132 below), by means of a method which can

be applied to a large class of power-series. But the possibility

of obtaining other useful asymptotic series was generally over-

looked by later analysts ;
and after the time of Cauchy, workers

in the regions of analysis for the most part abandoned all

attempts at utilising non-convergent series. In England,

however, Stokes published three remarkable papers! (dated

1850, 1857, 1868), in which Cauchy's method for dealing with

Stirling's series was applied to a number of other problems,
such as the calculation of Bessel's functions for large values

of the variable.

*Of course no one would now regard ('auehy's statement as unusual, m
the sense in which he made it.

fSee the references of Arts. 1.'!::, i:i.~> Ix-low.
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And he adds, after referring to various difficulties, that contradictions can be

avoided by attributing a somewhat different meaning to the word sum. "Let
us say, therefore, that the sum of any infinite series is the finite expression, by
the expansion of which the series is generated. In this sense the sum of the

infinite series 1 -x+xz -x*+ ... will be --
,
because the series arises from

the expansion of the fraction, whatever number is put in place of x. If

this is agreed, the new definition of the word sum coincides with the ordin-

ary meaning when a series converges ;
and since divergent series have no

sum, in the proper sense of the word, no inconvenience can arise from this new

terminology. Finally, by means of this definition, we can preserve the

utility of divergent series and defend their use from all objections."

In writing to N. Bernoulli (L. Euleri Opera Posthuma, t. 1, p. 536), Euler

adds that he had had grave doubts as to the use of divergent series, but that

he had never been led into error by using his definition of "sum." To this

Bernoulli replies that the saine series might arise from the expansion of

more than one expression, and that if so, the " sum " would not be definite
;

to which Euler rejoins that he does not believe that any example of this

-could be given. However, Pringsheim (Encyklopddie, Bd. I., A. 3, 39) has

given a number of examples to shew that Euler fell into error here
;
but in

practice Euler used his definition almost exclusively in the form

and if restricted to this case, Euler's statement is correct.

It will be seen from these passages that Euler had views which do not

differ greatly, at bottom, from those held by modern workers on this subject ;

although of course his attempted definition leaves something to be desired,

in the light of modern analysis.

It is to be carefully borne in mind that the legitimate use

of non-convergent series is always symbolic ;
the operations being

merely convenient abbreviations of more complicated trans-

formations in the background. Naturally this
" shorthand

representation" does not enable us to avoid the labour of

justifying the various steps employed ;
but when general rules

have been laid down and firmly established we may apply
them with confidence in any particular case.

It may very likely be urged that we might just as well writr

the work in full, and so avoid all risk of misinterpretation.

But experience shews that the use of the series frequently

suggests profitable transformations which otherwise might never

be thought of.

An c.\ainj)k; of this may be taUm fr>m KuK-r's ronvspmuli'iu-.' with

Nicholas JWimiilli (//. Euleri ()//'! /W/tuma, t. 1, p. f>47) ;
uhrir ilu> ivul
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olij. Caning ti-

ll.- prOTM lir-t that th- M :

'!' a

which In- nlitain- tin- intrirral

-

if

|-;h''

" (l

* in tin- "th.T hand, liv n>inu' tin- rul--> which In- li:nl olitain-d f-r tin-

transformation

j? x x 2.r &r 3.r 3o-

1+ i-h 1+ rr TT~ r+~ i-t-

aiid it 1:
|.r..v.-(l

l.v I.

"~Ldt= __-__
1+AY 1 1 1+ 11+ 1+ 1+ 1+ 1-f

N"\v this n-latiun l.t-.> n.it iUggi ill naturally \vithut tlie

alit-ady i nnai -ki-d, it is r\ idnit tli..'

\v..rk was rntiirly guided 1>\ thr aim of evaluating the

Writing .r- 1, Kult-r cl-tains fi-.-ni th<- c'.ntinu.-d fia.-tion tlic nuivfrgente

1>
and Ity usini; tli- l-'Uh and 1-lth . In- int"-i- tin- numerical

value

Hr then sulti-a-ts this drrimal fi'dii 1 and infd-s that th-- Value -f tin-

J

99. Borel's integral; summable series.

Tl).- general considerations <>!' th.- la->t m-ticl.- lta\.- n\\ to be

Specialised ly adMjitin-- aome mivrntinnal im-jmin^ t In- tak.-n

as t In- sum
"
of a n

Hardy, in tli- [.MJM-I-S i|ii"ti-.i rniulatt'd tlu-

inllowin-- jn-incijilr : //'

definib ordt

vdku A'. Imt. -

S
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meaningless expression Y, we may agree to interpret Y as

meaning X.

For example, the equation

J

~=o

f(x, n)dx = I [lim/(#, n)] dx
JO n-><x>

is true under certain restrictions* on the function f(x, n). But

it may happen that the right-hand side is perfectly definite

while the left-hand oscillates between certain values (which may
be oo and + x ).

In such cases, Hardy's principle is that we

may take the right-hand integral as defining the left-hand

limit.

In particular, suppose that f(x, n) is the sum to n+ 1 terms

of a series of functions of x; say that

and that

The equation then becomes

o o o

Jco
<&(x)dx is con-

o

vergent, when the series on the left is not
;

if so, we have an

integral ivhich may be taken as defining the
" sum "

of a non-

convergent series.

The special type of function
<j>n(x) which has led to the most

interesting results is

<t>n (x)
= e-*unx

n
/nl,

where un is independent of x.

too
n (a?) dx = un (see Art. 178)

o

arid $(x) = e~*(uQ+up+u2 |j
+u3 |j +...)

= e~xu(x) t

let us say. We must assume t that the coefficients un are such

that the seriefl u(x) converges for all values of x.

*A few simple cases will be found in the Appendix, Art. 172.

fAt least for the present; but see Art. 130 below.
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Then provided //</ // integral \
\

conve,

we may agree to associ < //-/'/A /A*- *grie* ^
tl> i* series /'- : this int.-^ral ma\ e called

tin-
i;ty

IK- rall'-d MMIMIU1

Tin- sum may !> d.-n,t,-d l.y tin- syml)ol

o

This definition is due to Borel, who deduced it. 1, i'r..m

tlir definition u-ivni hrlnNV ill Al' III: liUt BUICe the

lias
].ro\.-.i more serviceable in suls-.jurni in\-<-sti-j-ati<Hi-. it

rd tlii> as tin- i'uinlaiinMital d.-tinit i .n.

100. Condition of consistency.
It is oltvinus that tin- <l-finit in ^ivm in tin- last artirl'- will

lead to diilirulti.'s- unl.-ss tin- .sum ^UH a^r.--s with tin- sum ^

\vli-in-vt-r 1 : shall imw pm\
oditiOD i'l' consistency

"
is satistinl.

Fr. 1 ffrgent,VfG rnn tind a nunil).-: that

< e, if n ~ fi.

Then St. ',

/j,

and consequently tin- s. rics \J // r ;

-e~x converges uniformly for
.,

''

all \alucs df ,/ within an interval (0. ,\ >. \\ln-iv X may be

arliitrarily 1,-r

f\
|*A

.

S^ ''~z
,c?a;

o u Jo

by A
rx

|

(

fA / \ \ \

where ,\ te(_i- T+7A_ .+...toa
J V(// + D: (n+!

New, since ,\ is jm.siti\r. tin- sequence (X,) ia a

aence; ami r..nM-.|in-ntIy \vc can apply tin- rxtriidt-d form of

Alu-l's Icimna (Ait. L':! t> tin- -um li | \,,. and we sec that

A(\,-\ '
; \ - ^ <//(\, ( -,\, /( )-f //
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where H, h are the upper and lower limits of UQ+U^ ... + ur as

r varies from to m 1 and Hm ,
hm are the limits as r varies

from in to oo .

Now if ^un converges to the sum s, we can choose m so that

hm= s
,
Hm= s+ e, however small e maybe; and as X tends

to oo
,
X and Xm tend to the limit 1, because m is fixed.* Thus

lim [h(\Q
- \m)+ hm\m]

= hm^s-e

and lim [#(X - Xm)+Hm\m]
=Hm^

A-*- oo

Hence we see that
00

A->oo

But e is arbitrarily small, and so (see Note (6), p. 5) the

maximum and minimum limits of 2un\n must both be equal
to s, so that

00

lim 2 un\i = 8
>

A-^co o

_ -^v

But if 2un diverges (say to +00), we can find in so that

or, what is the same thing,

however great N may be.

Thus, since

lim [h(\
- \m)+ hm\m]

= hm> N,
X->co

00

we see that lim ^ un^n= ^r
-

A->->3 o

Since N is arbitrarily great, this inequality implies that

tends to infinity with X. That is, the integral for

v
n is divergent, when 2*** ^ divergent. Of course this

o o

is only as it should be
;
otherwise there might be a risk of

inconsistencies arising.

*For X =l-e-A, Xm= l -
(

1 + \ + i\
2 + ... + ;X

m
)e-*>

and each of these

expressions tends to the limit 1.
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/ 00

101. Relation between '/ // and >
o i

It .loes not follow immediately tY'-m their definitions tliat the

suma
,

.

8= <*UH and * = <J/
o i

are related in such a way thai tin- existence >!' either ini]

tin- existence <>f the ther. The definition
j

tin- relation

9l r-'y/t. /)'/.', .s'=| e-*u'(i''i
Jo Jo

//// a;
2

,

1186 +";:.).+
' /.''

the coefficient are -m-h that u(x) <

I'oi- any valn- of ./ : an-l o MISC. jn.-nt ly Art. ")0 can be

OSed to justify trnu-liy-tenii <litr.'r-ntiation of u(x).

( )n int.'-i-at iii'4" tin- expression for 8* ny \>
tind tin.:

relation r
x'^ g-w(a;)

I

+x.

This shews that when >, >' l>oth exist, tlie limit

lini
|

r
//

(./)]
X ><*>

fcfl also: and the \aine of this limit must he zero, Miir-

otlierwise the inte-'ral for cnld not conver^.-. (S.-c Art i

Appendix.)
Hein-i-.

i>i-<,
>>,/></ flnif Jx>t/i integrals st i

/,,,,-,. ^ s'=/i u : thus the t\\n aeriei

j)i'n|ierti'>. in this respect, ana In--, .us to t
;

Beiiea < M' course any failure of the analogy bere would li

.lvious ditlicnltie^ and w.u
ly

reduce the utility

the definition which we have sel< r the " sum "
of a

sunuuahl'

I'.nt it must be rememhnvd that the oonv< of

I

Jo'o

l>y no mean- enSUTQfi ti; ; delinit- value

lini -

X >ao

as is cli-ai- fn>m Art. Dili !' the Apii.-nilix. It follows that

<>/ .///// definite valw
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An example of this has been given by Hardy (p. 30 of his second

paper), by taking

Then =

but the integral for s' is

which oscillates.

Thus 5' does not converge, although s does converge.
The reader will find little difficulty in seeing that here

the algebraical transformation will be found in Hardy's paper.

f
00

Although the convergence of e"*u(a/)daj does not ensure
Jo

that e x
u(x) tends to a definite limit as x increases to oo

,

yet we can infer that lim e~ x
u(x) = 0, when the integral

e~ x
ii(x)dx is convergent; and consequently that the integral

Jo
r

e~*u(x)dx converges also.

For, write y= / e~xu(x)da
Jo

Then ^ -* f \ d?y_ _x ,,

and consequently

The last expression tends to a finite limit ?, as x increases to oc
;
so write

and then
(TJ + T;')

tends to the limit 0. Thus we can choose A", so that

e if

If
YI

has an unlimited number of extreme values, //'
vanishes at each of

these
;
hence at any extreme value beyond A', we have

| rj \

< . Thus

|T?|< , if*>.\',

or Iini7;
=

0, and hence Iiui7/
= 0.

if
r;

has not an unlimited number of extreme values, ?/ must be

finally of constant sign, and so
77

must approach a definite limit (Art. 2),

say a; thus
r)' approaches the limit -a. Now, from Art. 152, it follows
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that if
-/ :ij,|,r..:i.-li.--

tin- limit -o, tli.-n
//

'.r approaches the same limit.

Tim* Wl hav
liiu

if ", Inn
(,/ .r) -a,

l.ut
ii
and

,,
- hu\v tli-- be zero.

Thus we must always h

liiu
?)
= 0, lim

;/'
= 0.

X->oo X-^oo

or 1 "ttto+l e-*u'(x)dxt

Jo Jo

and Mm '-'//(. /') = 0,
x->>

]>r<\ idcd that tin- integral vergent.
Jo

Accordingly W6 have tin- n-sult : //' f/te series

vmmdbUj //" // 00 "/>" i the series

.. :

//' r' I 1. 1 ion between their ?////>

mode of stating these i-.-sults is the following:

///<"/ />c prefixed to a -

, v. and / /" oortefl "'iff remain swwmdbl*

//" .sums will be related as if (/' tm> series were convery
Hut fhi- removal of even singl* term from /// 6

of tl ////// destroy tin' j>n>/r(;/ of swmrm

102. Some obvious theorems.
ao

It follows immediately tY<m the d-tinitin> that if (*un and
oo oo

'

n are BUmm&ble, tli-n
(/\n n +''n) and / i

- - are also
o o

suniiuahl.-. and

Kurtht-r. ii' '' is any 1'act.u- independent <f /'.

o

l.s.
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We should note further that the addition of a constant to

any term of a summable series is equivalent to adding the

same constant to its sum : this of course is a special case of

the theorem on the addition of summable series. For the series

are all summable and equal to k,

CO

Thus
o

although, as we have just proved (Art. 101),

is not necessarily summable when + u^+ u^+ us+ . . . is so.

103. Examples of summable series.

Ex.l. i_i + i_i + i_....

x2 x3

Here u(x) = \-x+^-^+ ... =e~x
,

foo

/oo

e~xu(x)dx= \
e~ 2x dx = L [Compare Art. 97.1

o Jo

Assuming this series to be summable, and to have a sum s,

we can evaluate s by prefixing a term 1 at the beginning
of the series (Art. 101): this process leads to

s-l=- 1 + 1-1 + ...= _ s
, (by Art. 102)

so that s= J.

Ex.2. l-t+ t--t*+.... (t>I)

Here, just as in Ex. 1, we find u(x) = e~ tx
,
and then we get

Jo

Here again, assuming the series summable, we obtain its

value s
} by prefixing 1 at the beginning of ts, giving

or = !/(!+/).

Ex.3. 1-2 + 3-4+ 5-....

Here ^(oO=l -2u;+3-4+... =er'\l - '>

and so e-*u(x)dx=\ e'^(\ -.e)rfa? = i-J = J.
Jo Jo
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Assuming tli.- siimiiialiilit y. !! us write

9.1-2+8-4+5-64
!UI ,1 so 0+0-0+1-2+8-4+J MI. 102).

Adding til,- corresponding i.-rm-.

1-14-114-1-1 + ...-} (by Kx. l)

< T X =
J.

Ex. 4. (7=l+co80+cos20+cos30+ ...,

0+8H10+ sin 20+n30+....
Thus C+i/?=l-;

ami the associatol i'unrtion i-

)=1+^, +...=t'X 1)(^)

Of ;

.)
= er(co+i8in)e

Hi-jir,-.
pi-.

,\ id.-d that 1) is not zero or a inulti}

tind thi- Mini

I I 6U=T -n = s(H-
Jn 1 COSO / S1110 2\

Of coon iiiin^- the suimuablr property, tin- MHH can

In- nlitaiiu-d l>y nn-aiis of tin- sann- drvici- as in Kx. '2. which

[nation

e(('+;N)+l= I

and there! (7-fifl l/(l-<

Henl with tli- rrsnlt just fmind.

Thus wr havt-

1+costf + n. .

and () + sinH + siii2rt + .sii,:^+...,

In likt- nianin-r w- find t!

'+ = '
:

')(- l +

msf) + rMs:>f) + (.'0830+...= -
| ^ ,__

sin0+sin 26 >+...-Jc

I'.y rhan^-in^ I'nnu t- - H. re l'tain

.= .

,

rin0-am20+ain30-... -..)
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Ex.5. If C=cos0+ cos30+ cos50+...

and $=sin0+sin3$+ sin 50+... ,

we have (7+ iS = eie(l + e + e4ie +...) = "/(!
- e2

<')>

using Ex. 4.

Hence (7=0, =Jcosec0 (0 < 6 < TT).

It will be noticed that these two values are the same as

are given (Ex. 4) by summing
cos

and sin

but there is no general theorem which would justify our

equating these new series to G and S.

By changing from to JTT 0, we obtain

cos0 cos30+ cos50 ...= ^a^\ \

-sm30+ sin50-...=.

Ex. 6. It is easy to deduce from Ex. 4 that if is not equal

to + 0, we have

cos cos + cos 20 cos 20+.-. = -g-,

sin sin + sin 20 sin 20+ ... =0,

cos sin + cos 20 sin 20+ . . .
= ^sin 0/(cos cos 0).

104. Absolutely summable series.

Following Borel, we say that a series

is absolutely summable if the integrals

Joo

/

e~ x
u(x)dx and

\
e~ x

u^(x)dx y

o Jo

where \ represents any index of differentiation, are all abso-

lutely convergent.

It is at once evident that if the series i^+ 1^+ 1&
2+ . . . is

absolutely summable, so also is the series obtained by removing

any number of terms from the beginning of the series : for

the integral function associated with the series

s

by hypothesis I e~ x
u'(x)dx is absolutely convergent.

Jn
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It follows in \irtu- of what was proved in Art. 1"1

lim -0, liine-*wA (a;) = 0.

X->!

nimbly. '/ *

f...

is al*l tii'i
>j swm/mable, 90 also art "/ ; /A series

<//,i/ their sums <n-> as '///"'// were convert)'

And, conversely, '/ //"' M'rii'* n
l
-f "._,+

"
3 + ... '-s

'

'

Bumrndble, BO also is th<> series formed by prefixing u .

'I'h.-it is, \vt- can ini'.-i- th- convergence <>!' tli.-

'0

IV. .111 that of

'0

T. irvr this, h/t us writ,-

[ e-*\u(x)\dx
Jo

I i
"

i o'cte.
Jn

= 1

'

Jn

Thus ')^

BO li \U(.'

Id -nc.- ,
''

//(./) J./' urrtainly OOD I &(x)d& is

Jo Jo

(Miivrr^vnt. I'.ut the r..n\ .!--. -nee of tin- last iiit'_Ljral can be

inl'.-nvd lV"in that of
i

/ /. l>y the ar^tinu-nt of Art. HM
Jo

above. Tin- ]r<t', Imwrxcr, can 1..- simplitird h.-rc. in \'irtue

of tlu- inonotniiic nature of ,

;

,

For we liave tin- identity

fJT

/'- -' -*A(Z)-f
o Jo

and consequently, because
/>(

A
"

and ive,

\ .1 -I
o Jo Jo
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Hence, since the integrand e~ x
<^(x) is positive, the integral

o

is convergent, by Art. 166 of the Appendix.
It will be noted that this argument cannot be reversed

;
and

that the convergence of I e~ x
(j>'(x)dx is not deducible from the

Jo

Jao
e- x$(x)dx.

o

e-*<$>(x)dx

is convergent, but lime-x
(f>(x) does not exist, may be obtained by taking

so that

It follows from a general result due to du Bois Reymond that

I exp (
- x3 sin2

.^) dx

is convergent (see Ex. 3, Art. 166).

The function $(x) can obviously be expanded in a power-series for any
value of x, although the law of the coefficients is not simple.

As examples of absolutely summable series, we may refer

to those given already in Art. 103. Thus, for instance, take

Ex. 2; here it will be seen that

so that

and

dx is obviously convergent, since 1 + 1 > 0.
dx*

Similarly the other cases are proved to be absolutely

summable.

105. Absolutely convergent series are absolutely summable.

For we have

so that
| u(x) |

^ v(x), if vn =
|

un \.

Now, since the series 5>n is convergent, the integral

e~*v(x)dx
Jo

converges (Art. 100), and thrn-l'mv the integral

{oo
e-*u(x)dx

is absolutely convergent.
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Further. tli.- m ^_itA+1 H-v/ A ^_.-i- ... is absolutely con-

'I tin- .same argument applied to this series shews
that tin- int.

I \dx
Jo

dec absolutely convergent That is, an absolutely n.h

absolutely suiiiinable.

1'iit I!..)-. in. -lit. that any <-<>n\ -

utely

Minmiablr, is not correct. as lias b.-.-n proved by an example
const n id. -.1 l.y llar.ly (in h I

]

.a per. pp. -~> 2&).

This
fxaiiijil.- is ^ivrn hy takin.u'

in \\liii-h K, ( -I/' i- \\li.-n /- r-, and M i- " \\ li'-ii N i- lid a M]

Hanly then shews that ill.- lai-<->t integer contain. -d ; s .

and 'lie saint- .id.i .itmle as the t

in \\hich i- ;
:

; and that <
'*

\ u(x)\> K r, \\ln-i.- K is a constant, throughout
all intn -\ L.-inu' any int-ur -i. It is then easy to prove

that ^'-nt.

It is easy to construct simple series which aiv suiimial>l<\

hut not absolutely: an example is ^i\-n by the series

For here - ')=
['

J
(c.s./-+ ; sin ./) !],x

I v , f*cosic c-'-f/sinaj ,

and so
|

(j-)<Lr=\ -- _
fl^ ==

[Art. 173 (DJ.

But ucc "i

SO
|*\

I ,.-*

i U(x)\dx^\
Jo Jo

{
.

lit.

In iVLranl t this srrii-s. \v- m>t<- that

-O/^
\vhirli tends t< B6TO, a in * ; thu>. as in Art. 1"1, we B66 that

'

I
"'

i ges.
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But the convergence of this integral is not absolute, because

so that \er
x
u'(x)\^j2lx-2la?, if

/oo

Thus the integral / e~x
\ u'(x) |

dx is divergent.
J Q Vac

Similarly, we establish the convergence of I e~xv>(x)dx, A. being any
/oo

index of differentiation, and the divergence of I e~x \u
x
(x)\dx.

Thus the series ^A+%+ i +%+ 2 + "- summable for all values of A.,

although not absolutely.

106. Multiplication of absolutely summable series.

If the two series

are both absolutely summable, and if

wn = uQ

then the series

is also absolutely summable, and

W = UV;

For then we have

I e- x
u(x)clx\ e~

Jo Jo

= lim
\\

A->oo J J

-(x+v)
u(x)v(y)dxdy,

where the latter double integral is taken over the area of a

square of side X.

Now, in case u(x) and v(y) are both positive, the integral

taken over a triangle such as OA'C' lies between the integrals

taken over the squares OABC and OA'B'C'] so that, since the

latter integrals both approach the limit uv when OA tends

to oo, the integral over OA'C' will also approach the limit uv.

15nt if u(x) and v(y) are not always positive, the difference
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between tin- ini OA BO and n.\ /;' I.

tin- integral

' "'WaOI. '"

taken over the area .I//'
1

''//.! : an<l this is the dil
;

the integrals
f
A

C
A

- '

\

"
'( 'i)\dy

J Jo

and '

'|tt(j")|
tLc

\ e"V\v( /

Jo

which teniU to BerO, since the ii,

r
30

r
I e~* and <

-'

Jo Jo

are in.th convergept
we can writ-

= lim '

<lxdy,
A >/:Jj

when- tin- integral is now t. ! tak-n "\-.-r th- ai-ea of a

triangle such as O.1V", wl.^- sil- i- _\.

Del us write .,-+,/ = -77
= ^,

and th-n tli- intr-Tal Ix-conif-

|

l-iy.]. .-(

Jn Jo

Owino-td the fact that tin- scries l'>r //
1 ./ ). -(//) aiv al>s,.lately

^I'-.'nt I'.-)- any \ah \\ e can obtain the product

fti-)]-*(dr)

hy the rule t'or inultijdicat i. .11 of Beriefi (Ari uid the

product-Seriee will obvi be uniformly convergent with

resped t iliat we may then integrate terin-hy-terni.

The general term in the
|>r

and
[' ,,

tl.al
I

^
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Thus the integral over the triangle is

where

-and accordingly we have the equation

uv =
'0

But we have not yet completed our investigation, because

the last integral is the sum of the series

and (Art. 101) it does not immediately follow that the series

is summable. It should be observed, however, that we can

infer the absolute convergence of

because |TP()| = \

u {(l *i)} I- \

v(&)\ d>j.
Jo

Hence, if we reverse the argument used above, we find

JA

rx r\

e~% W(g)\dg<\ e~x \u(x)\dx. \ e~y\v(y)\dy
o Jo Jo

Joo
e-*\u(x)\dx.\ e~y\v(y)\dy.

o Jo

Thus, since the integrand is positive, the integral

is convergent (see Art. 166).

To complete the demonstration of the theorem, let us multiply
the two absolutely summable series

Their product is given (in virtue of the foregoing) by the

absolutely convergent integral

where



106| Ml UII'LK \TI<

'I'll.'!'

;
;

)="',,+
- + "-,V ...-,/'

|

"-

anil so ah

|
--'Itrtf) i

JO

ami therefore I
< W((

Jo

ix ahsnint.-iy gent

No* HT() i*() -,4-^;-
:

-r <<>...

i^ tin- t'unction assu-iatrl with the scries

w= //-
y 4-

/r
t
4- /'._>+... ,

whicli is therefore suniinablr: ami its sum is r|ual to that of

0+ "'+"'!+ "',4-... (Art 101).

If we multiply similarly the ahx.lutely Mimmable ser;

r //
;{
+" 4 +... ,

'

u+ /

'i
+ /'-+'"'

we can establish th- oonvergenoe of

< 'out inning the ].r..cess. VT6 can pn\v that

|Jo

e.n for any int. ue .,f \; an-1 aceuplin^ly the

!'<)hltely slJininahle.

By conihinin- the foregoing results with the obvious

nn the addition >lutely suniinal-i the

t'nllnwili.

//'
/' . . ) M ''

p
! Ill IIKllll'

ng fl si

'/'// / i4 un# 6c



284 NON-CONVERGENT AND ASYMPTOTIC SERIES. [CH. XI.

107. Examples of multiplication of absolutely summable
series.

Ex. 1. (1-1 + 1-1 + .. .)2
= i

Of course these results agree with the examples of Art. 103.

Ex.2. Write (7=l+cos + cos 20+ cos30+... ,

=0+ sin + sin 20+ sin 30+ ...
;

then C7+i#=l+el

'

+ eK*+ es''+....

Hence (0+ iS)
2 = 1 + 2eie+ 3e + 4e3^+ . . .

or (7
2 ->Sf 2 = l + 2c

By using the values of C and S found in Art. 103, it is easy
to deduce that

+ cos 0+2 cos 20 + 3 cos 30+ . .. = - cosec2
(|0),

+ sin 0+2 sin 20+ 3 sin 30+.. .
= 0,

agreeing with the results found in Art. 110 below.

Ex. 3. Another exercise in multiplication is given by squaring
C and S directly ;

this yields
2 = Jcosec0(sin0+ sin20+ sin 30+...)

+ JO + 2 cos + 3 cos 20 + ...),

S 2 =
| cosec 0(siri + sin 20+ sin 30+ . . .)

-1(1 +2 cos + 8 cos 20+...).

These obviously agree with the value of C 2 S 2 found above.

We can also find C2+ S* by multiplying (C+iS)x(C-iS);
and we can find CS directly.

108. Multiplication of non-absolutely summable series.

Hardy (p. 43 of his second paper) has given two theorems, \vhirh are the

extensions to summable series of the theorems of Mertens (Art. 35) and

Abel (Art. 34). The second of these extensions will be found in Art. 111.

The first theorem is that it is sufficient to suppose one of the series u
t
v t

absolutely summable ;
then w will be summable and its sum will be equal

to uv. We suppose that u is absolutely summable, while v is summabK'

but not absolutely.

On reference to Art. 106 it is plain that the ditfeience between tin-

(luubl integrals over the areas OA<\ <>M>C is
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writ,-

ami th. MI /'

\ A

'

tin- integral / c~ y
<(>/} <(>/

is roppoted tt ! < .n vergent, ^(

a finite upper limit // f<T all values <.f * ami A
;

further we can timl

; hat

if X-jrg

t may ! arbitrarily small.

Now divide tin- integral (1) int> t\v. parts, from to A-// and fim

\-fji to A; in tin- t'oimei >>( - is l-xs than t, in the ],v

exceed //. Tims, sim-o </>(./) i . we timl

\D\<
.'0

,(

/"*Now / <: l so if we take the limit

i<- last incijuality as A trmls t> infinity. \v.- timl

lim l>

A->

Hut t i- arl'itrarily small, ami M . p. .") tin- la-l in.Mjuality

! IT trm- Miih->- lim /> i>

Thus lim I) 0; and M tin- intr^ral OTef tin-

A-+-OO

!ila--l ly th- intr-ial ..VIM- tin- I '.! '
.

II' Q Art. |iu;. \\,- m.i\ \\ nt--

<>.(!',<' may again

lim /
|

A-*

the integral l.ein- taken over the triangle OAO.
After tin- Stage r

\.i.-lly the same lines U
Thus tli>- M /' \ "-,,-f "', -f

tlint one

It can )>e shewn that any s- :

. + ... is summahh' umler

the above hyp.th-
M at the end <f Art. 1 H.'I is an example of the possibility

that "a -4- "'.,, i

-- "a .
.-

r- ... may l.i- summal>le t 'hout
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109. Continuity, differentiation and integration of a sum-
mable series.

Suppose that the terms of the summable series are functions

of a variable a, so that we may write

u (x a \=^ u (a \?L_.

o n J

then, in agreement with the previous use of the word uniform,
oo

we shall say that : Tlie series Q^un (a) is uniformly summable
o

with respect to a in an interval
(/3, y), provided that the integral

e~ x
u(x, a)dx converges uniformly in that interval.

Thus, in particular (Art. 171, Appendix), the series is certainly

uniformly summable, if we can find a positive function M(x}>

independent of a, such that

\u(x,a)\<M(x\ (/3^a^y)
j.90

while I e~ x
M(x)dx is convergent.

Then the following theorems are true :

(i) If all the terms un (a) are continuous and the series

n(a) is uniformly summable, and ^J un (a)x
n
/n\ is uni-

o o

formly convergent for any finite value of x, when a lies in
00

the interval (/3, y), the sum o^un(a) is a continuous function

of a in the same interval.

For then, if a is any particular value of a in the interval

oo r
|<Km (?un(a)

= lim 1 e~ xu(x, a)dx= e^'lim [u(x, a)]dx,
a >a a >a Jo ^ ->o

this transformation being justified by the uniform convergence
of the integral (Appendix, Art. 172).

00

xn *
xn

Next lim [u(x, a)]
= lim 2 ^() IT,

=2 <(o) ~t

= u (x > o).
a^oo a-^-oo U 71 i o

because un (a) is a continuous function of a, and the series

converges uniformly (Art. 45).

oo r

Thus lim Q^<un()=
a->a J O

which sliews that the sum is a continuous function of u .it

any point of the interval (/3, y).
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di ) /',/./, r tht 9am <* in (i
.

T[ 9 "
\

Jft Jft

it-Hi be cor/

This f..ll..ws l,y an ar^uinenl similar to that of (i).

tiii) // //" saint conditions of "/"'/'/////'/// */////''

00

'* ^

This thenivm is also aii easy deductiOD from A \~~2.

110. Applications of Art. 109.
00

Ex. 1. If we consider tl. where x is & complex
o

number of absolute value not less than 1. we find that

,

f

j

U Jn 135*

where v me that the ival pari
; - lesa than i.

It may be observed that |e
x
'|
= >p f

,
wlieiv

ft
is the ival part

. and e.'nse.jurntly. if
fi

1 ... \\i: arbitrarily small

but positive. th- inti-^i-al for / .' will conv'i-^f unifoi
oo

with rrsprct t.. ./-,

:

: thus tl,.- sum ^xn

is a r..ntiniion.s fuin-ti..n .f x within tin- P6gi
:

ti.-l 1,\-

/5
1 <i, as is nhvinus f|-,,m thr valu- of tin-

Ex. 2. If in ( I ) we writ.- lind that

and 80

Thus, the integral functi..n bed with

00 ,/;,

^
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because we have the algebraical identity

7^ = 7i(?i- l)...(?i-_p + l)+^l 1?iO- I)...(n-p+ ty + ^. + Ap^n,
where A 1} A 2 ,

...
,
Ap .

l
are certain coefficients which depend on

p but not on n (compare Exs. 4, 5, p. 170).

Hence \up(xt)\^e*
9
(t* + \A 1 \tP-

l
+... + \Ap _

1 \t),

and therefore the integral

re~
tup(xt)dt

.

converges uniformly if cos = 1 a.

Thus we may differentiate the series found in Art. 103 for
00 00

'

, <25^sin 710, as often as we please, provided that is
i i

not a multiple of 2?r.

Hence we find, for instance,

J^n* cos 7i0 = 0, J?VS+1 sin n6= 0.

i i

Taking O = TT in the first equation and J?r in the second,

we find the results:

1*_ 2*+ 3*- . . .
= 0, 1

26'+1 - 3*+1+ 52s+1 - . . .
= 0.

Again,

provided that is not an odd multiple of TT.

Thus, since

we find
92+2_ I<>>+i)

[Art. 126, Ex. 5].

Thus in particular*

l_2 + 3-. .. =
] (Art. 103),

*The second and third of these may also be obtained by means of devices

similar to those used in Art. 103. See also Art. 126, Exs. 2-4.
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In lik.- manmT ih,- sn

COB O-CQB 30+cos 50- ... = i sec

l.-a.U to tli.' n-iilt

3+5-... = i(-l)'#.,

where E u Buler'fl number (Ch, V Ex, C [Ci

Hi-nee in particular

I ._:; + ;,-_...= _

.

Ex.3. As examples m we may tak- the series

-n

whi<-li (as in -2) are unilMi-inly suininalil- in an interval

when- <><o< ATT.

Thus \\v

fi

-

& s

Now

f^flq-MC*
Ji

6
i 2n+l

and iherel'on' tin- scries mi th- ri^ht is convergent; also,

2cos(2?i+ l)^/(2?i+ l)= J, 1'
,;), (see Ex. 4, p. 290)

ami 28inc2/< + l)c) (2// + 1)
2

<-..ii verges uniformly l.y \V.-i.-rstraas's test.

"

--',,+r- ,,-

ami therefore

1

In like manner we pr-.ve that

o
./ft-. <-')'

-

f dOOtdcW=2 ^f *Hsin
J i J

ami hei

I *fl,. ( ,t d,/rt=9 V/ _1 V-
2

is 82<-i ; -:;iog 2.

T
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Ex. 4. As other examples of integration, we note that we may
integrate the first series in Ex. 3 from to JTT, and so obtain

cos 0+icos 30+icos 50+ . . .
= Jlog cot J0, (0 < < TT)

where the resulting series converges. This series is summed

independently in Art. 90, Ex. 2, and Ex. A, 43, Ch. VIII.

Similarly from the series

cos0+ cos20+ cos30+... = -J,

sin + sin 20+ sin 30+ ... = J

we find, by integration from to TT, the results

sin + 1 sin 20+ J sin 30+ . . .
= JO- 0)

and _(i+cos0)+ JrO-cos20)-J(l+cos30)+... (0<0<27r)
=
log sin 1 0.

These series converge, and the second one leads to the simpler
form

cos + i cos 20+ J cos 30+ ... = -
Jlog(4 sin2i

#).

All these series agree with the results of Art. 65. Similarly
we can establish the results

sin 0- J sin 30+ i sin 50- . . .
= ilog(sec + tan 0)

and sin + J sin 30+ isin 50+ ... =i?r (0 < < TT).

. T <S cos x (a 4- nx)
Ex. 5. If ^=

we get

Thus

The values of u for cc = 0, cc = 2 are found in Ex. C, 31 r

Ch. X. (p. 259); from these it follows that

1 / cosh bx sinh 26 . ,u = T (
-

iTol
-

i

--
o
--- 8mn

6 \cosh26 'cos 2a

For other applications, leading to the values of some interest-

ing definite integrals, and for the investigation of conditions

under which the equation

is true, we must refer to the latter part of Hardy's first

paper (see the references given in Art. 96).
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I

AUK i.- THEOREM,

111. Analogue of Abel's theorem. (An. 5L)

that <*Un is summahlf, ami consider tin- possihilitv
oo

of summing / //,/ ,
\v i. n-al ami lies between ami 1.

o

\\V have th.-n, l,y li-tinit ion.

<&unt
n

=\ e-*u(xt)dx,
o Jo

ami BO, ehaninn^ tin- iml'-]>'ml-nt variable from X to xt

( =//, sa\ fold

o

Thus, it' 17 = 1+0, su that H is n-al ami \> ire have

o Jo

Now, by hyp'ttlM-si^. the integral

|
e-

Jo

mvergent; and consequently (from Art. 171. Y.\. ~2. >t

Aj|M-mlix) the integral

f
e-9< l

+*>u(y)dy
Jo

converges unit'nnnly with n-spect to 6, in any interval (0

win-re a i^ any positive i lumber.
oo

Ih-nce ^*u n
t" can le summed uniformly with resp.

o

the interval ( <>, 1).

Thus in partieiilar w- havi- the result

l')='
Further, pi-Mvi.lr.l that the series

ummaMe for every integral value of X, the series (^unt
n

is

o

also absolutely summable f->r all positi\.- \aluesof t less than 1 ;

for tlu'ii we have
limi

)]
= 0, (X^O).
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Thus we can find a constant A, such that

Now
[*e-*^[u(xt)]dx

= P- 1

\e

so that

Thus, since the integrand is positive, the integral taken up
to oo must converge (Art. 166); and so the conditions of

00

absolute summability are satisfied by the series
o

Thus we have the theorem :

*

// o^un is summable, then o^unt
n is uniformly summable

o o

for all values of t in the interval (0, 1); and if, further,
oo

is summable for all positive integral values of A, then
o

oo

(^unt
n is absolutely summable for any value of t between

o

and 1.

An immediate consequence from this result is Hardy's second

theorem on multiplication of series :

// neither u nor v is absolutely summable the equation
uv =w is still correct (using the notation of Art. 106), provided
that w is summable.

00 00 CO

For then the three series Q7*unt
n

, <^vnt
n

y Q^wnt
n are

o o o

absolutely summable, and therefore (Art. 106)

(0 < t < 1).000
Hence, taking the limit as t approaches 1, we have

/TV

*Due in part to Phragmen (Complex Rendw, t. 132, 1901, p. 1396) and to

Hardy (p. 44 of his second paper).
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112. An important class of summable power-series.

Suppose that
|

where /() i.s sueh tliat
j'

f(g)\dg i- convergent, so that I

int.-Tal I'm- // is aUo absolutely < >n\ ,-r^ent.

Then, appl\ A. Art. 17"). \ve have

|

beam-.' tli.- aeri converges uniformly with respect to

and I H^I '/;- is convergent
Jo

Thus r.oivl's int.-ral I'm- P

I

' "..// =
[

c-'cfl P **/()<*
Jo Jo Jo

Fr<.in Art. 177. it t'>ll>ws that tin* order of integration can

be inverted in this integral, provided that the real part oi

i-^ imt ^reati-r than a fixed nuniher / i<l); !'<>r then the

is seen to be absolutely C(n\ rr^vnt ly coniparini: it

with tht-

I

J

- "
o o

Thus IJiiri-l's integral reduces to

I' /
(

-

C

V'/^ (real part of x^k < \ \

J 1

.''(

It is , -vident that the last integral will he con\-i-i^eut for

all values of x
t except real values which are greater than I ;

thus the last int'-rai gives a larger region nl' suiiinialility

than IJmvl'.x integral. \\V cnuld, of COUTSe, have adopted this

as a definition ,|' the sum
"

nl' 1" , l.y making another

applicatinn of Hardy's prineip. \rt. 99 above); but it

would not have been evident to what extent the new definition

Could he deduce. 1 tVoin Corel's.

L.- liny has -iv.-n a nuiul.er .!' applicati< ms ni' this integral
in the paper ijunted above (Art. !ti). and the method has 1"

nded )>y Hardy.^ ly th.- aid of contour-integrals,

*/'/ .oi. ;?, ini:,. p.
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Ex. 1. We have *^L /"V-V-
1 dt= f f"-'[loga/ft?-

1

d%, (p>0),n J J o

and accordingly the series

3, ^2 ^
1 +

2*
+
3*
+ 4P+

can be summed ;
and its sum is expressed by the integral

L
> lo/- 1

rff . [HADAMARD.]

i r
00

r 1

Ex. 2. Again, -ji
= / e-* sin t dt= \

n~ l sin [log ( 1/)] d,^ + 1 JQ -'o

so that the series

1
i i_

I_l-l2 J.1.92'1 **%'

is summed by means of the integral

Ex. 3. If b>a>0, we have

a(a+ l)...(q + 7i-l) T(b)
[

l

6(6+ 1) ...(6+ -l)~r(a)r(6-a) J

so that the series

can be summed by the integral

d-ft*-'-
1

^. [HADAMARD.]

In particular, if 6=1, the integral can be evaluated by writing

which gives

If x is complex the last transformation requires a little justification, which
is beyond our range, as it depends on the theory of contour integration.

Ex. 4. Consider similarly the general binomial series

where v is contained between two integers m and m + 1
; then, if w^O, we

can apply the nirihixl ..f Ex. 3 to the series obtained by omitting the first

(m + l) terms, and so pn>\r th.it tla- original series is summable by applying
Art. 101.
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113. Application of Borels process to power-series in

general.
a first example, ennsider the series

1+r + .r- + .r
; +

\\'e Jind by Bond's m. -i hod

!'
I

so that
<̂

?xn
=\ t'~

: ('<(((=:- ;

o Jo I '

and this integral convei--.-^. pn, \id--d that the real part of X

is less than 1.

Similarly, ly considering the 861166

we find tin-

HI. Cc
h

a?
'

6 a;
'

< .,

j.i-n\
id.-.l that tin- n-al parts of x/a, x/b, x/c are all less than 1.

Tin- i.^ioiis ,,r suininaljility in thrv,- t\v examples are as

In-low: thr n-^ion to be excluded is shaded and the

in<licat- the t-ircles of coin'tT^t'iict- of th<- power-series.

Similarly, the -jM-cial 861168 e\amin-d in the last article are

snmmahle in the region imlicated in li-airr

I'ln 3 1,-ad to the r.-njeeture t!

Tin m/mabili

,-<></ i i from th< origin to

of i/

il'|>"M- ;iny jMMut /' tak.-ii in tln> rr_i:i"ii : tlu-i. drawn on

-iniMil.ii 'it;. \m within or -n tlu-

-iivunr It i> tli.-j. le of radius

hi. }i endooee ". /' and >till .,11-iti--.-.
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Let /(.r)
= 2an#n be the series; then it follows from Art. 82 that if k

is the mid-point of OP, and x is any point within the second circle,

where the mean value is taken round the circle
| k\= r.

Thus an
and so we get

where the interchange of summation and integration is permissible because

the series converges uniformly at all points on the circle since

Hence the integral f
\ u*(x, t)\e~

f dt converges, provided that the real

part of (-*)/ I x/( is positive at all points on the circle; now
this is satisfied when x is at P, because OP subtends an acute angle 6 at

all points of the circle, and so (f #)/*=pe**, where p is real and positive.

Thus the series is absolutely summable at any point within the polygon

specified.

By the aid of complex integrals and a slight modification of the method

of Art. Ill, it may be proved that if a power-series is absolutely summable

at P, it can have no singularity within the circle described on OP as

diameter.* This is the converse of the last theorem.

It will be evident that, whenever the number of singular

points is finite, the method of summation enables the value

of the power-series to be found at points belonging to certain

regions outside the circle of convergence ;
and we have thus

a process for finding an analytical continuation for the power-
series.

It follows from Art. Ill that the power-series is uniformly
summable within any area inside the polygon of suinmdbility.
This property completes the analogy with the circle of con-

vergence^
Borel has also proved in a later paper t that if F(xt) is the

integral function associated with the given power-series, then

the straight lines (drawn as above) determine on each radius

through 0, the limit of the points x for which

*
Borel, Le$om t p. 108.

t Borel, Math. Annaltn, Bd. 55, 1902, p. 74.
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OTHKi: MI:TIIOI OF BUMMATK

114. Borels primary definition of the sum of an oscillatory

series.

Writ.- *, = "+"! + ".,+ . ..+U,,

and thru consider tin- 6X]

< -*u^=e-u'(X).

Hence (1) ^ |

Thus, vimv the inte^n-ul
< ''//</),/./ is associated with the

Jo
series

we see that if the s.-ri-s <^Un is summahle, then the limit
i

-- -
;

:

)-

: - ami is eijuul t" tin- sum

But we have proved that if (*UH can be summed, so also can
90 I 00

(^u (see Art. KM ): and since ire see that when

wnmable, fl i<><ition

limf- S '"'.)]

=
x-^xL V-V /* ./ J o

rue; andccn when '/ ^s ^un and &s
i o

<> ,-' bath www nw ; ^ quati&n i

For tin- existence <>f th- limit implies thr e(.n\-r--.-nce of

{and this a^-iin l.-ad- t> t-.juatin i _

o

Th.- limit just nl.tain-'d was th.- <i-i-inal d.-tinitinn BOggeeted

l>y IJoivl:* hut, as pointed ,,ut l.y Hardy, tin- integral d.-tin:

.'iirsr tliis inctlioil r.m !,
]<|>|iliril

to nuni.noal calctllni -ii* the

;it least 11.

54
'

s
1 has i-aliMilju. . ^ .i that this expression gives

N to thrrc .li-.-iinals : | it is possible to use th-

pr.uvss to ol.tain iiiiiui-ri.-al \

loddenbl
j. 1896, p, 119 i-Ji.
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(deduced by Borel from this limit) can be applied to cases in

which the limiting process gives no definite value (see for

instance the example of Art. 101).

It is almost evident from Art. 100 that the limit is equal to

the sum, if the original series is convergent; but a direct

proof is easy. For if

<jhoose m so that

n converges to a sum s, we can

S >

Hence we find

and therefore
m-l

where H is the upper limit of \sn s as n ranges from to m 1

and so we see that

lim
, : S

But e is arbitrarily small, and so (see Note (6), p. 5) this

maximum limit must be zero, and therefore

-- =00.

It is easy to modify the argument so as to prove that when

un is divergent,
lim

Ex. If

we have

Thus

and

giving

The reader will find it a

eries given in Art. 103.

exercise to discuss similarly the other
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115. Le Roy's extension of Borel's definition.

I.-- Roy has >

f
r\\ t 'n an extension integral by

modifying tin- seri.-s in tin- form

t^+0+0+...+04^+0+0+...+0+14+0+.,
where (p 1) zero terms an-

]!.
n un and un+l .

The analytical formula i'nr tin- Mini is tht-n

|

'-

where W=l
'I'll.- ol.j.-et nt' iisin-- this .U-tinitinii is i id Ilon-I's int

asrs in wliich th.- Beriee () -nul.l oever coim-r^-: such

cases are illustrated by tli.-

Of course if !>/, is convergent, its value is equal t<> that of

tin- iimditird s.-ri.-s. and BO L- 1 nsiii nlivinusly

th<- condition of consist. -ncy (in virtu.- of Art. 100).

116. Le Roy s independent definition.

'I'll.- expression h.-r.- taken for tlir sum of an oscillatory

Beriee "+// + */.,+ ... is the limit

Nn\v. assuming that the series u^-d in this definition is

bsolutely convergent, we can write

T(nt+ l) (' A
rt^nj Jo v /

rh^l- -',': :,':

an. I thri-rt'..!.- tin- 1' I

Jo
I

iivrr^nit. - that tin- \ j>|.i-mlix, can be applied to

justify tin- in\ri>i.'i ml summation.

n.
I I
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This integral is the same as

J

00

e~ x
u(x

t

)dx )

o

and so Le Roy's definition becomes

x ll/t)u(x)dx
1 f

lim- I

t->i t J

Jo____
xl+a)u(x) dx.

o

If Borel's limit exists, this definition gives the same value ;

for the function

xa
Qxp(x xl+a)

decreases* as x increases, if x> 1 and a > 0, and is equal to 1

for x = 1
;
and we can therefore apply Abel's test for uniform

convergence given in Art. 171 of the Appendix, which gives

{
x r*

xa
exp(x xl+a).e~

x
u(x)dx= \

e~ x
u(x)dx,

i Ji

because the latter integral converges.

Further,

lim I #a
exp(# xl+a). e~ x

u(x)dx = \
e~ x

u(x)dx,
a^-OJO JQ

because the range of integration is finite.

t
Hence Le Roy's definition coincides with Borel's, whenever

the latter is convergent.

117. Borel's third method.

This method of summing differs from the first method in

the fact that the terms are arranged in groups of k before

applying the method. It is however of less importance than

the other methods, at any rate from the arithmetical point

of view.
CO

Thus we obtain from ^un the integral

Ie~
xuk(x)dx,

o

Because the logarithmic derivate is

l-(l+a).e
a + a/a:=

- (x
a -

1)
-

\vlii--h is plainly negative when #>1 and a>0.



116, 117, 118] AN ] Of I HI. Ml IMI [<

\\ here

')

-0

If 2un is convcr^ nt, tliis
],r. .cuss of grouping eann.t alter

its sun,, and e.>ns,',|U<-nt ly (Art. M'l) this integral will also

< -"ii verge to the sum.

Hut in -vii.-i-al tin- \aluc obtained dep.-inls on / ; for example,
1
-

1 4- 1
-

I -f ... -iv-s <) + <) + <)+...(=<)) if / is 2 or any .

number, lut 1 1 -f 1 ...( = \ ) if / is odd.

As another example, take 1 -2 + 3-4 -H... ,
\\lii.li has tl -y the

foregoing methods.

With =2 we get
- 1 - 1 - 1 - 1 - ...

,
\\ hi.-h divi-r^s tu - r. while k=3

-'-5 + 8- ..., \vhi< h is the same as

3(1 -2 + 3 -4 + .. .)-(!-! + 1-1 +...) = ! ~i = t-

118. A further extension of the method of summation.

that <j)(x)
is a pnsiti\-

t
- function, which steadily

-s to as ./' tends t< 30, in such a way that all tin-

integrals po''=
V'

1

Jo

ar.- convergent Then if we consid.-r th-

f #(*)(S;
=

Jo N o cn '

it is easily s.-.-n to be correct when H N absolutely c

nt.

K'-r then f Ui un \,

because </>(/) and ./" an- jm>itiv.- ; and ,i.-,-,,nliiii:ly the test 1

Aj.jirndix, can be aj)]ili-d t justify tlu- iiivi-i>in ..f tlu- onK-r .f sunnn .

and intr uqati.n. Tims

-^).'- 1 ')**'dx)
=

/ u \- o cn I

. if 1" / is oonvergent within the interval ( 1. -f-1),

we ha\-

ag \.,
-
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Now, because
<t>(x/t) steadily decreases as x increases,

we have, by applying Abel's theorem for definite integrals

(Appendix, Art. 171),

provided that the latter integral converges.

Thus, provided that ^unt
n

converges absolutely within the

interval ( 1, +1), we have

Km 2 = f <j>{x)(
V^xn] dx,

Jo \ cn /

provided that the latter integral is convergent.

Thus, if for two different functions 0, \}s
we can prove that

the corresponding integrals are convergent, we can infer that

their values are equal. In particular, if we can shew that BoreUs

integral is convergent, we can obtain its value (when more
convenient} by means -of any integral of the form

nrn rlv

,0 ^~^ )
'

which also converges.

Ex. Consider the series of Ex. 3, Art. 112 (with 6= 1).

We know that this series is summable by means of Borel's integral, if the
real part of t is less than 1

;
so to find its value we could take

Then

119. Euler's method for summing oscillatory series.

Euler (Inst. Gale. Diff., Pars II. cap. I.) employed his

transformation (already given in Art. 24) for summing oscilla-

tory series. This method is in many cases the most rapid
in practice ; and we shall apply it to some of the examples of

Art. 103, before examining its theoretical foundation.



118,119,120) i:i u:i;> TRANSFORMATION.

Ex. 1. \

Ki"iu the coefficients I, l. l. I,...

we get the aeries of differences 0, 0, 0,

s simply

-L. [Kxs. -, 4, Art 1

Ex. 2. 1-2+3-4
in tin- <... 1, 2, 3, 4, 5, ...

we get the differences -1, -1, -1, -1, ...

0, 0, 0,

and M the t ran>f<.i mati"ii
gj

i-J =i [Ex. ."3.J

Ex. 3. l-22+32 -42+ 52 -

11. l.- the -i.-mYi-nt8 are 1, 4, 9, 16, -'

ami tin- il are -3, -9,

...

0, 0,

Eenoe the sum is i-| + i=0. 2. Ait. lio.J

Ex 4. As easy examples for pra-ti.-.-
\v- may give the following, taken

Kuler f>r tin.- ni">t pail :

1-3 + 5-7 + 9-.. .
=

1-3 + 6-10+15-.. . =

[Ex. 2, Art.
l-24 + 34 -4 4 + 5 4 -...= O/

L

It will be seen that in all thrse cases tin- n-sults fmnul

integral with those obtained by usino- Ku

transformation. This fact suu-.-sts tin- that a

ral ivlation can ! ohtaincil lM-t\v- t -n th- t\vn methods;
and we shall investi^atr this point in the following art;

120. Connexion between Euler's transformation and Borel's

integral.

Supposr that >i ~^,<.t . wh'Tt- a i^ real and positive, whih- f

\^ ival and [688 than 1. Tln-n. as in Art. '24 \\<- introduc.

= ".-, I'

h-

-''
::

rr- /^''M. etc.
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From these equations, we find at once

a =

a
3
= 6 -36

1+ 36
2
-6

3
= D36

,
etc.

Thus, in Borel's integral we have

or, expressed in terms of 6
,
b
lt

6
2 , ...,

u(x)= b

- bjxt

We can obtain the value of u(x) by summing this series

according to columns, provided that the series converges

absolutely.

Thus, provided that the series

converges, we find the equation

Hence, Borel's integral is

e~ x
u(x)dx= \

e-x(l - t)

[b -b 1 (xt)+...]dx.
Jo Jo

If we integrate this series term-by-term, we obtain Euler's

series

(l-O4

a43 equivalent to Borel's integral ; although of course we have

still to consider the validity of the transformations.



120] i.i i EUE8 \M- BOREU6 IN I BOB \i.

Now. il' Kult*r
f

8 series oonvei can repeat tip- argument
\n ion (with ;i ivioufl changes) to prove that tl

( A
-bpt+l

is ahsnlut.dy C0nv< .' ttd that BoreTfl intend is

to til-- MUM ; i have obtain'l th-

// Kiders series is cow< '! xeries 2ant* is summable

l/ BorePs /////// ;/' t is real \ ////// 1. amd f l"

"il*

It is natural t. iKjuiiv it' th lls for complex
\ah; . lut it <1<>^ not S.M-HI

jM.svil,!,. to apply the same

iii.-th<><l. i

\vin_n' to tin- fact that the Irimna !' Art. NO leads

to a litliculty here.

Thus we should h.-ive t tl

(
~

irb>t (T=Tr^
^ =r

and t.. coiisidrr the continuity of lY M A fl
as A^oc.

Tin.- kMiiin;i !-< juirrs tin- conv.-rua-nro >f ^/-,, and )f ^; A,,-An + ij; no

we 1

ll ., .

hy diif't integration.

Now if t = r+ is, |c-A(i-0|
= e-Mi-r)

}
and 1 - 1

- =
(\

-

thus 2An -Aw+1 = e-Mi-'0fA i-r _]

8-|l-< -(!-/)
- K-a-t \\hcn .< i- nut wro, and consequently the sum

1 A,,- AM + 1 j-*- \vitli A. I thfl lenini,. the

continuity \ ^

On the other hand, if \\ e assume that the sei

convergent, \vh.-i-e p = \t\/(l /) (/ IK-HILT tin- real part of

We <-an apply te>t I', of Art. ITti. Appendix. Km- since 2 ltn p*

;, it t'nllows that

2(-D

*
It should l>e m>t. .I th.it if / is on ita

'

uile.

i s. r
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converges absolutely and uniformly with respect to x in any
finite interval. We can now infer from our test that

b t
n

converges to the same sum as 2( 1)"
n

.vn+1
-

(l t)

We have in fact

Jo n\ I Jo n\

and the last expression reduces to \bn \p
n
/(l -r).

Thus the series
o

is convergent, because E \bn \ p
n

converges. Consequently, in virtue of the

article quoted, we can write

Jo n I

From Art. 50, we see that the series 2
1

bn
\ p

n
converges if

p<^l, say ;
thus Borel's and Euler's sums are equal if

\t\<^l(l r), that is to say at all points* within a conic of

eccentricity I, whose focus is at the origin and whose directrix

is the line rl.
Euler's series will converge in an area bounded by the circle

|tf|
=

|

1
|,
which is the auxiliary circle of the conic; if I < 1,

the area is within the circle because t = is inside the circle
;

if >1, the area is outside the circle because = is so.

If 1 = 1, the boundary is a straight line (V= J) and the area is

to the left of the line in the ordinary form of diagram ;
and then

of course the conic is a parabola.

By appealing to the Theory of Functions, we can now see

that Borel'8 integral and Euler's series must be equal of all-

points where both converge. But there is no obvious means

of determining the region of convergence of one from that

of the other, as will appear from the two simple examples

given below.

* In case/>l, the conic is a hyperbola, and uc must take only points within

one branch; that is, the branch for which r< 1, and this is tin- /iff-lnim/ brunch

in the ordinary way of drawing tin- diagram (with / 1 to the right of the origin).



120
1

KM

Ex. 1. Tfckeo, i - : this gives /foN -aN -aH + 1
-

/ I. M/ =J, ZPoo^t, etc.,

dor's series is

I t *

_
roa if |*|<2|l-f; tli.it i>, in the region outside the circle

i tin- tw.i p..int- |

lint Borel's integral gives

ami N tin- int.-^ral wh.-n tli- n-.-il - I.--.* tli;m 2.

In tin- diagram, tin- if_ri"ii "t convergence of Killer's series is \\.-

rdej and that <>f I'.nn-l's integral is the space t< the left of

the linr Ml. Tli.- ai--a in \\liidi they air pruvt-d i. ]. t-.jnal }>y the

in-tli.(l ^ivcii al..iv.- i- tin- ar-a t- tin- l-ft -f tin- hyj,.-;

-r).

(Tea in which the twn ly o|ual is the area which

the l'-ft i if All and i< ..nt-idr In this case one or

the in> i 1"- applied ;

' = '2.

Tlie "i -i-inal - thin the _'. \\hi.-li

drawn.

Ex. 2. Consider n.-\t tli- case a*-

Th.-n hl
- -L>X:

:.

Thus

I

_L. **

\-r(\
which .-..nver^es if ,' , ihat i- in the aiea in-ide the circle whose
diameter is tin- liir the points A

k ,
-1.

Hut intcuM-a;

and si. the integral oonverges wli > than J.
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In the diagram, the interior of the circle represents the area of con-

vergence for Euler's series
;
and Borel's integral converges in the space

to the left of AB. The two expressions have been proved to be equal in

FIG. 36.

the area within the ellipse (\t\ <(! -r)) ;
but they are actually equal

at all points within the circle.

The original series converges within the circle
| |=J, which is not drawn.

Ex. 3. The reader may examine similarly any example such as

where k is a positive constant.

In particular, if an= I or n, Euler's series terminates for any value of

t : Borel's integral converges only if the real part of t is less than 1.

121. Numerical examples of Euler's transformation.

Euler's transformation lends itself very naturally to the

numerical evaluation of non-convergent series.

Ex. 1. As an example let us take the series

-(* + *
2+^3

+...) [which is equal to log(l-), if |*|<1]

and write t= -2.

We obtain 2 - . 22
-f J . 23 -

. 24+ . . .
;
and we shall utilise the calculations

already made in Art. 24
;
thus we sum the first eight terms separately,

which give
-

19*314286, to six decimals. The remainder can be put in

the form

where 6
,
6n b2l ... are the differences given in Ex. 2, Art. 24.

But we can obtain a general formula for these differences, and so establish

the convergence of the transformed series.

For

Dzan=Dan-Dan .

and so on
; leading to

1.2



120, 121) M Mi:i:i< \l. I. \ \\IIM.I LEB - -

< 'I. -aily tin. expct ft less than 1, and so the tranBformed

series certain 1\
,
Mince |tf|/|l |

=
|.

With tin- ditl.-i'-ne.-s f.iiin.! v \\e liiul the values

7407

= 898

81

7_2

II
1

.-'

It \\e
;i|)|ly tli- foinmla given

- that the remainder lies

between J4 and
,

7
2 of the last t< -i m r> -t .un.-.l, . that we can take

4-. .. = -119607.

Now ^'(-1 !!); .7) i;n-llL'!>, an<l BO tin- Mliefl should be

L129 I'.Kil i :i = 1-0986,

whii-h agrees with log 3 to the last figure.

Ex. 2. As a second example, for comp;iri-"ii \\itli Borel's numerical

.* 1ft US !

'-i'-o'
3 nrl'l-o-^ if IKII

ami au'ain write / -2.

Tin- -HIM nf tin- lirst tin.-.- ^-iiiis i> 1*5
;

and we shall apply the

transformation to tin- following it-mis.

\\ '.- liave

1 .3...(2n-3) 1.3...(2-1)_ 1 3)

2.4...2n ~2. 4. ..(2 + i>)~ 2.4.

and priM'frdini: thus we find

,

1

2.4.6...(2wH-2jD)

Thus, jnitting
=

3,

.10...(2;^

:.iws that /
;

. decreases asp increase^ so that Kuler's erges;
and fonsdjiu-nt ly the integral of \\\- t -\ '- niftli \M-a-nt : this

mention because Boivl himself does not s.-.-m to have succeeded

in pi-oviiiL: this dir.-.-tly
\Ve have, i dready established

the convergence m An. 1 1 2,

i), t 2, ivn;. p,
ll'i.
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In our case, we have

and so on.

Then the series is l'5 + . 23 (c + C! + c2+ ...).

The numerical values given by these formulae have been checked by
direct calculation of 3 ,

a4 , 6 ,
... and their differences

;
we have then

c,
= '062500 c7

= -000192

c2
= 15625 c8

= 96

c3
= 5208 c9

= 50

C4
= 2025 c10

= 26

c5
= 868 cu =_14

c
6
= 398 -000378

086624

378

087002

A rough estimate of the remainder gives cn ,
so that we get

.
= '087021,

the approximation being probably in excess of the true value.

Thus we find for the sum of the original series

1-5 + '232056= 1-732056.

Now ^3= 1-7320508...,

so that our approximation is a very good one
;

it is closer than Borel's,

although he works to 7 figures and uses 34 terms of the series.

Ex. 3. Euler calculates in this way the value of the series

Iog 10 2
-
Iog 103 + log 10 4

- ...
,

starting to take differences at Iog 10
10. He obtains 0'0980601. (Compare

Ex. 10, p. 351.)

Euler also attempts to evaluate 1 !
- 2 ! + 3 !

- 4 ! + . . . by this method,

and he obtains '4008..., but although the first and second figures agree

with those found in Arts. 98 and 132 (1), yet it does not appear that

his method rests on a satisfactory basis here.

122. Cesaro's method of summation.

It has been proved (Art. 34) that when two convergent series

are multiplied together, the product-series is at most simphi
indeterminate. That is, if denotes the sum to (?i+ l) terms,

the limit

(1) Km



121,122] \ \.\\. mi

is and is Unit.-. \\'<- have al-o ^.,-11 that thU nn-an-value

in the theorem .!' l-'rohenius ( A

lim (i'
ltx*).

Cesi\ro has proposed to adopt the limit exists, as the

d'-tinition nf the sum of a non-conv -ries
; or, more

generally, he defines tin- ^\\m as

Hi" {.S.
|P

'M.W },
n->-oo

wh<

8

an.l .!

< >i course the limit (1) is tin- special case of (2) which is

i liy putting / = !.

With tln-s.- drtinitions, it is cvid.-nt that*

V,
:=(\-X)-

an.l 1^ :

NMW (1 -x)- (r+l}= (l+x+ a*+...)il-x)

and hy juatin^ Cddlic: ^,-e that
'

Thus tlu- drnoniinator is equal to the sum of the coeffic

in the ininicrat.r of N, J
,,'

; and BO, in particular, if

">',,

=
>'j
=

>'.,
=

. . .
= -s

'

/(

we see that they are all e<jual to Sn(r)

/A n
(r}

.

Furtlu i

'"' = (l+-'.-+

we h; -x)-(r+11
<:

and c<.nstM|U.-ntlv

.+(H J" +l

(l-,)-'=l + r, +^"
iiiiiltiplii-il l.\ : the coeffit

tion.
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Thus we can write also

From the last expression it is evident that the effect of

increasing r is to give more weight to the comparatively early
terms of the series 2uw ;

it is therefore obvious that by increasing
r we may hope to counteract the oscillatory character of the

series 2un ,
and so to replace the series by a convergent limit.

Now, since

we have 2Sn
(r+1}xn =(l+x+x

and similarly,

By equating coefficients of xn
,
we have

Consequently, from Stolz's theorem (Appendix, Art. 152, II.),

if lim [Sn
(r)

/An
(r)

] exists, so also does lim [Sn
(r+l]

/An
(r+1)

] ;
and

n >oo jj,_^.oo

the second limit is equal to the first. Thus if the limit (2)

exists for any value of r, it exists also for any higher value

of r.

If r k is the least value of r for which the limit (2) exists,

Cesaro calls the series "Zun k-ply indeterminate.

123. Extension of Frobenius's theorem.

We have tacitly assumed that the power-series used in the

last article would converge absolutely. This is, however,

capable of easy proof whenever 8n(r]

/A n
(r) tends to a finite

limit I', for then we can fix an upper limit C to the absolute

value of this quotient. Thus 2$n(r)#n will converge absolutely
when 2Mn

(r)#n=
(l x)~

(r+1) does so; that is to say, for values

of x such that \x < 1. Since 2unx
n and 2sn#n can be derived

from 2Sn
(r)xn by multiplying this series by (1 x)

r+l and

(1 x)
r

respectively, we infer that I,unx
n and 2snxn are also

convergent for
|

x
\ < 1.



122, 123, 124
1

Ml. AN \ Al. 818

in, ly Art. -"'I
.

\\- B66 that

25; .

11111 =shm =/ '

-.= - pl

so that liia

\\hirh is tin < 'tension of Frobe //' //>'* //,//,/,

.r thi> theorem are air<>r.l,.<i i,\- M\-. :; 5

i.-sult aj]).-;us t. ! iK.vrl ; lnt a closely ivhit.-.l th ..... m h;i.s been

7 =:
(Jb+'i + -+-) !-5 ro

;

y - =-
71 -f- 1

7' '" =--
r [7

T

"-'4-r
i
'^-f... + 7'

~

tlu-n if lini T,,
r

/. II.'ld.T has
|,i-..vr,l

that lin: :. It stains 1;

n >oo x 1

that tin- in. -ans found ly < .tlmd and ly Ht.lder's process must
!" tli,- >aiii.-, and this lias lu-.-n j.n.vi-d uj. t.. / J. l-'or hiurh-i vallMI

Kn'])p* has
|ti'<.

vrd that \vh-:u?\vr H"ld<-r's m t hod gives a limit, Cesaro's

will j^ive the saint- limit.

It i> usually l.cttn- to apply Ceskro's method tlian H.'.ld-r'>
'

a given series on an-oiiiit !' it> -_
r ri-at-r >implirity.

124. Inferences from Cesaro s definition.

It' ^LH \^ /'-ply iiil<'trniiinat' ami lias tlic sum /, ii,

,
it EolloWS t'n.m thr .l.'tinition that

Thus \v- can writ,-

SflJ -^.i

\\hri -h that

(1) lim =0.

Benoe, remembering tli.- i.l.-ntiti-- of Art. rj-j. we have n->\v

tin- identity

(2) ,1-0 i '(i-x

i, /
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where the coefficients in p(x) are subject to condition (1) given
&bove. And, conversely, if (2) holds, the series Sun is at 'most

r-ply indeterminate and has the sum I.

It is to be noticed that (2) does not allow us to write

where lim{o
-

n/-d^~
1)

}
= 0.

For we have <rn= /on -pn_i and A (*~ l} = A (* - A^,
and so if

|
/_!

|

< eljjtj and
| /> |

< *A (

^\

we can only deduce that |ern | <e{A^ + A^}
or crn/A

(*~* } )<{!+ (2n/r) }.

Thus, owing to the presence of n in the factor multiplying e, it cannot

be inferred that limJ IA^
r~ l) \=Q

if we know nothing more than that the condition (1) is satisfied.

A simple example is given by taking r=2 and

Then <r (x)
= I - -

. . .
,

so that (Tn/A^ oscillates between 2 and +2.

In particular, if we have an identity

(3) (l-x)-
(r+l)2unx

n = l

where P(x) is a polynomial not divisible by 1 x, the series

2un is at most r-ply indeterminate, and has the sum I.

For if there are p terms in P(x\ and if M is the greatest of the absolute

values of the coefficients of P(x\ it is clear that the coefficient of .v" in

P(x)(\-x)-
r

is less than
MpA (r

~
l)

and the quotient of this by A (

n is

Mpr/(r+ n\
which tends to zero as n tends to GO .

In practice the most common form of identity is

(4) (1
-

x)-
(r+ l^unx

n = 1(1- x)~
(r+l}+ P^x) (1

- 2
)-

r
,

from which we can deduce the same results as from (3).

125. Cesaro's theorem on the multiplication of series.

The following lemma will be needed:

IfZun ,
2t>n are two series such that \un \/A

(

? has a finite

upper limit, while vn/A
(

n tends to zero, then the quotient

(u vn+ u.Vn^+ . . . + unv )/A
(

;
+8+1}

tends to zero. It may be noticed that either (or both) of ?, s

may be zero here.
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we can find C aini

\ Um II Viilu.-s -

ami l^l- >m.

Then |2*,.,*|<r ;.:,*"

ami |2*l<tt .ay-

Now A',, i> th,- ,.,,,-
rl

'x(l
H) =

(l

ami 10 /; is equal bo

Hence 1 vK^l' -",

Consequent lv, lira) 2 u v \/A
(r+*+"~

-*^ ,

and, since can 1> tak n a> small a> \\- please, it follows that

--i + -..~
"+1>

==0.

\\'e proceed HoW to the pFOOf of C'

Suppose that 1".. aii'l ^'' are /'-ply and *-ply i: iliate

respectively, and that their MUMS are I'. V . BO that we can write

I _ ( ( 1
-

-^- /) I

.1 r ('+1)+ o-(

wliei-.-
p|

=
^/r,,.'- .cli that

liin
[ft

-I f=0, HIM [o-,,/^!^}
=

Ti, ,1 >x(2 S

wl" ,.,-}-...-

e (l-) i rn i
-

,

where R(x) = r< l -.c)-
(r+
V-'')+ I'd-.'') '

To each of the terms in /,'</> \\ ,- can apply the lemma

n alo\.- : i', .r instance, in /"( l

i-> / d BO if

/'(1-r)-" SI

we have lin. ;A',, A (

?'
+l}

}=().

Similarly for the two ..th,-r term- in ;,

Ri J

we have lin. ;/,' .1
;
=0.
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Thus we see from (1) and (2) of the last article that the

degree of indeterminacy of 2wn is not higher than (r+s+ 1),

and that its sum is equal to UV*
This leads to the theorem : The product of a series (whose

degree of indeterminacy is r) by a series (whose degree is s)

can be formed as if the series were convergent. The degree of

indeterminacy of the resulting series cannot exceed (r

126. Examples of Cesaro's method.

Ex. 1. The series 1-1 + 1-1 + 1-1 + .. . is simply indeterminate and

has the sum \.

Ex. 2. The series 1-2 + 3-4 + 5-6 + .. . is doubly indeterminate and

has the sum . For here we find s = 1
>

5i=-l> S2
= 2

> *3= 2, ...
;
and

if we write r= 2 in the formula of Art. 122, we have to evaluate

Now (n+ 1)50+ 715!
=

1, (i-l)*2+ (ii-2)*3= 2, etc.

Thus, when n is even (
= 2m), we have

(n + I)s + ns
l + ...+= 1 + 2 + 3 + ... +m + (in+ l)

=$(m + I)(m + 2).

When n is odd (
= 2m+ l), we have again

(n + I)8 + ns
1 + ...+*=! + 2 + 3 + . ..

Thus the fraction has the limiting value

It will be observed that

and, according to Cesaro's theorem of the last article, (1
- 1 + 1 - 1 + ...)

2

should be at most trebly indeterminate ;
and this of course is verified here.

Ex. 3. The series 1 22 + 32 -42 +... is trebly indeterminate, for we have

Hence (1
-
x}~*(\ -2 2^+3%2 -42.r} +. ..)

=
(! -#V,

which obviously satisfies the condition (3) of Art. 124 and gives

l-22+ 32 -42+ ...=0.

Ex. 4. In like manner, we find

Now flz^L has the value -i for #= 1, so that we have

_ -
:

where P(x) is a polynomial of degree 3.

* The reader will probably find it instructive to use this method to establish

the theorem for r= 0, = 0, already established in Art. 34. Cesaro's treatment of

the general case is on the same lines as the proof given in Art. 34.
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we find

(1- ... + i)=/'(.r)(l--*V,
1 I r...= -J,

ries being q .d< t* t minate.

Ex. 5. i diili'-nlt t<> MM- thai il the series

1-ir *-...

i'ly indeterminate, because

:;

. we find

, <"+[(l_, -..)-']= WOO--'
is a polynomial of degree (r-l); and

-ftGI
-0, if / i* //(A/.

J

Bei i lie >MIII of th- Beriei i- >'

-ARO.]

Ex. 6. The reader will have little dihVulty in vnifyin :4 K

inultij.licati'.n. F.r in-tan. we lind

(1-1 +1-1 +...)(! -i + 3 -4 + ...)= 1-3 + 6 -10+...

or 1-3 +6-10 + .. .

;-' + ...--i(l- 3 + 0-10+.. .)-(!- 2 + 3 -4 + ...),

and so |=0.

Ex. 7. The follou

!+ '' + ...=J,
sin (y + sin 2^+sin3^+... ^oot^,
cos ^+ cos 3^+ cos ~>0+ . . .

= 0,

-.- n-^ults agree with th.s- f..und liy I'-uirl's ni.-th..d (Ait. 103).

evaluated l.y d'.\ 1. -ml M-I t ( ii-in- tin- ni'-an- valu- jn
' >'-o.>). (

tputcula M

127. Limitations of Cesaro's method.

Tlu- iiiran-vulu.' process li;i> ratln-r narrow limits of 01

6 this, let i, ,iinc tli. type of sc;

which can l.r Miiiiinc.1 in this way. \\".- ha , that

^^ a- (i ,n
so that 1 I

which givee

3 --+l>N:," 1 + "'t
l

-'terms.
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Now if S^V-d-iT
1

approaches a definite limit /, we can find a

value p such that when i/>> r, all the terms $}

/A
(

? lie

between (l e) and (l+ e).

Thus u

The coefficient of in this expression is easily seen to be zero

in virtue of the fact that

so that

Thus
\

U

That is, un < e.2r+1A (n >p),

and so limuA ( = ().

But ^;

so that Iim4 n

p

/7i
r
=]/r!.

il-D

Thus, we have the result

which gives a necessary condition that the series 2^n ??ia2/ te

r-j9^2/ indeterminate.

There are many series surnmable by the former methods

which do not satisfy this condition
;
in fact the simplest of all,

does not satisfy it, and is therefore not summable in Cesaro's

sense.

128. Borel's original method contrasted with Cesaro's.

We may regard the most general form of mean amongst
s

,
sv 8

2 ,
... as given by
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xn
^

I ii' O. it' i< >
or #, = ./+ 1

-
1'. ii 0, if /' >

wlii-iv X is al't.-r\\ai-U m;i|.- t. t.-n.l ; mvMi^h i

valu-o. Ami tin- <thcr im-ans are given 1'V -imilar, lut n

t'oriiiulju-. In these rases thr osoilla
1

'

M-i|ll.-nre (
>'

> ^ rnMVerteil into 1

,y th--

rharartrr of th. . that little wei -'n-.l

he t'Tins with hi-'h inilirrs. which an- the ms that

are of importancr in studying tin- Beriea

To meet this <litlicu!ty. IJorel chooses the factors '

/( so as to

increase ,-n firsi t a maximnm (whose pi -sit ion \ari-- \\itl:

ami ai'trrwanls to steadily d The |K.-itin <1' the

maximum recedefl as ./ increases, which ensure^ that tin- terms

with hi^h indice^ play an important part in determii:

mean.

Thr mo-t natural type ..f Function -i'yin^ t!

ilitions : which inciva.se> so Ion-- afl /'<''. and tinally

deCP ry rapidly.

This
givefl afl ihr m.-an

.'- -:+.. r / \
f2TT^r n+->

which is the definition ;. M 4.

129. Connexion between Borels sum and Cesaros mean

for a given series 1

\Ve have pro\rd ( Art. 1 L*:J) tliat i:

limit /. thru

liiii-1 -/.
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Further, we have proved (Art. Ill) that
*

lim (&u,nt*) = e~xu(x) doc,
t^>i Jo

provided that the latter converges. Thus, when Cesaro's mean
exists, it gives the value of BoreUs integral, provided that the

latter is convergent; the integral may, however, oscillate

between extreme limits which include Cesaro's mean.* Obviously
the same result is true for any mode of summation given

by the integral of Art. 118,

Hardy has proved in his second paper (see also the small

type below) that if r=l, and if a further condition is satisfied,

the convergence of Borel's integral will follow from the

existence of Cesaro's mean. In general, with higher values

for r, it seems likely that the same condition will suffice to

deduce the convergence of the integral from the existence

of the mean. However, the algebraical difficulties involved

seem at present too formidable to make it worth while to

write out a rigorous proof, except for the case r= l.

We have seen (Art. 114) that the existence of the limit

implies the existence of Borel's integral, and that the two expressions are

equal ;
and we shall prove now that if

lim (* + s
l + . . . + sn)l(n + 1 )

=
Z,

n *-oo

then
\\n\e-* (^sn -\\ = l,^oo L V nl/J

subject to Hardy's condition. It is then obvious from Art. 114 that

Borel's integral must also be equal to L

Now suppose that //, h are the upper and lower limits of

"n
=

(*0+ *1 + + *)/( W + ] )

as n ranges from to oo
,
while //,, /<, are those of <rm ,

<rm+1 ,
crm+1 ,

... :

then, from Art. 153 of the Appendix, we see that

*
It is of course understood that Cesaio > mean exists. If we are dealing with

series in general, the mean may oscillate though the integral converges (see

Art. 127).
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e
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Hardy remarks that the condition lim ( wN/m) = is by no means necessary

for the truth of the theorem
;
in fact, it is not satisfied by the following

convergent series (which has the sum and is therefore summable in

virtue of Art. 100).

Let s = *,,
= Ji-,

and then - a
)/(n + l )

i

Thus by Art 11, we see that

so that lim ( nx/w)= oo
, although limen= 0.

But Hardy shews by another example (I.e. p. 41) that if the condition

lini(e,iv/tt)
= is broken, the series 2w,t may not be summable

;
so that the

condition is not merely a consequence of the special presentation of the

argument.

ASYMPTOTIC SERIES.

130. Euler's use of asymptotic series.

One of the most instructive examples of the application of

non-convergent series was given by Euler in using his formula

of summation (Art. 95) for the calculation of certain finite

sums.*

Thus, taking f(x)
=

!/#, a = l, b n, Euler finds

1 +
1
+

*

+ .. . + i=log7i+-^-A+ -j^i-^L+.-.+const.v ^ti ATI 2 /
7? 4?? o??

Now this series, if continued to infinity, doe^ not converge,

because we have (Art. 92)

Br 2r(2r 1) ^n?''~'
Z

but, if r>3, 2_<ll- 4 (see Art. 7), and 2

Br B,^ 150-
Llliit

hence the terms in the series steadily increase in numerical

value after a certain value of r (depending on n). It does not

appear whether Euler realised that the series could never con-

verge ;
but he was certainly aware of the fact that it does not

*
Innt. Cole. Difl., 17V> (Pars Posterior), cap. vi.
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Ex. 1. 1 + -i- ... .17.
_ /'
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Ex. 4. Taking f(x) =1/^
2
, prove similarly that

2+ 2+ 2+... to 00= -0951663357,

Ex. 5. Shew similarly that

o

and deduce that ^-= 1-6449340668.
6

l+^s
+

Js
+ p+...

= 1-2020569032.

Euler obtained in this manner the numerical values of 2l/w
r from r= 2 to

16, each calculated to 18 decimals (I.e. p. 456); Stieltjes has carried on the

calculations to 32 decimals from r= 2 to 70 (Acta Math., Bd. 10, p. 299).

The values to 10 decimals (for r= 2 to 9) are given in Chrystal's Algebra,

vol. 2, p. 367.

Ex. 6. If /(.r)=l/(
2+ .r

2
), prove that

sin 2(9 2 sin40sin4#
+ -r :

^.2U2 P + ri
2
/ Z(e

2^-l) 2 I
3 4

where tan0=/w; the constant is determined by allowing n to tend to GO

and using the series found at the end of Art. 92.

Ex. 7. In particular, by writing l= n (in Ex. 6), we find

,=4
.(-,lT+

_L l ^ ' 4-

By writing n= 5, Euler calculates the value of TT to 15 decimals.

Ex. 8. If /(#)= log x, we obtain Stirling's series

which is found differently in Art. 132 below.

131. The remainder in Euler's formula.

In virtue of the results of Art. 95 (small type), we can write

(1) f

, , :

<
''

>
-*

where
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~<
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<if
i ,

<

<if
(

dt

I i 'H/ /-J,,
(1 -'

57-J, F

i i

-

\vh.-i-,. C i- Baler's constani (see Appendix. Art. 178).
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siiil.ol
"

li
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But this expansion, although convergent for all values of x,

is unsuitable for calculation when \x\ is large, just as the

exponential series is not convenient for calculating high powers
of e. To meet this difficulty we proceed as follows:

If x is positive, we write t x(l-\-u), and then we have

cx e -te
dt= e-

Jx t l+U
du

where
|

Rn |< n I x~(n+l)
.

This result can also be found by integration by parts.

When x is large, the terms of this series at first decrease

very rapidly. Thus, up to a certain degree of accuracy, this

series is very convenient for numerical work when x is large;

but we cannot get beyond a certain approximation, because the

terms finally increase beyond all limits.

For example, with #= 10, the estimated limits for jR9 ,
R10 are equal and

are less than any other remainder. And the ratio of their common value

to the first term in the series is about 1 : 2500. To get this degree of

accuracy from the first series we should need 35 terms. Again, with

#= 20, the ratio of RIQ to the first term is less than 1 : K>G
;
but 80 terms of

the ascending series do not suffice to obtain this degree of approximation.

When x is negative, we write

x^ and t = x(l u)= (u 1);

then we find

J
/-

- du
o 1-^

Q
r

c

')/
n p~ u

~\

n4.<u,+v?+...+u*- l)e-**dM+P\ -du
\,

Jo 1 u

where P denotes the principal value of the integral (Appendix,

Art. 164). Thus

where R*=P du-
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We have U+iV= f ^j-dt,
Jx \/t

so that if t = x(l + u) we have

-- du = + du

by applying the process of integration by parts. Continuing

thus, we have

e j 1 l.S.i 1.3.5 1.3.5. 7 f" e
ixu du~~' ' '

and the process can be continued as far as we please. A
moment's consideration shews that the remainder integral at

any stage is less in absolute value than the last term of the

series ;
and thus for any value of x we can determine the stage

at which it is best to stop in numerical work.

We are thus led to the asymptotic equation (see Art. 133)

*>-^(X-Y),
say.

The series for X iY can be "summed" by observing that

1.3. 5. ..(271-1) 1 f

00

Thus L = j- e~ vvn -*dv,
V 7T Jo

and so, applying Art. 118, we see that if the series X iY can

be summed in Borel's way, its sum is given by

X- iY= -%- f
"- -~

, (see Art. 136).

my, i y _ e~ v dv v_ x
00
* e-"v dv" ~

and U= .-(-Xsinx+Ycosx), V=-j- (^Tcosa;-h F since).
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If we take the quotient of two consecutive terms and remark
that (compare Art. 130)

where Q is a factor slightly less than 1, we see that the least

value for the remainder is given by taking n equal to the

integral part of TTX; but the first two terms give a degree
of accuracy which is ample for ordinary calculations.*

(4) The reader may discuss, by methods analogous to those

of (1) and (2) above, the following integrals:

7 / I
OJ.AJ. i/ 7 .

'

J ~r

the first of which is related to the error-function, while the

second and third are the cosine- and sine-integrals.

133. Poincare's theory of asymptotic series.

All the investigations of Arts. 130-132 resemble one another

to the following extent:

Starting from some function J(x), we develop it formally
in a series

a, . a . ct f

This series is not convergent, but yet the sum of the first

{tt+1) terms gives an approximation to J(x) which differs from

J(x) by less than Kn/x
n+l

t
where Kn depends only on n and

not on x.

Thus, if Sn denotes the sum of the first (n + 1) terms, we have

In all such cases, we say that the series is asymptotic to

i In 1

function', and the relation may be denoted by the symbol

Such series were called aemiconvergent by the older writers.

*An elementary treatment of this approximation will be found (for tin ra.M-

when x is an integer) in a paper by the author (MeHsenyer of Moths., vol. .'>(>,

J90C, p. 81).
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and rearrange in powers of J
1 , provided that |a |

is less than

the radius of convergence (Art. 84); because lim t/
1
= 0, and we

can therefore take x large enough to satisfy the restriction that

l

ttol~H</il is to be less than the radius of convergence.
This having been done, we may consider the substitution of

the asymptotic series

for
/,_

in the series

*Vi) = t' + C.J,

Let us make a formal substitution, as if the series for J
l

were convergent; then we obtain some new series

*-*4+^+ :::.

where

Let us denote by Sn and 2n the sum of the terms up to \jx
n in J^ and

2 respectively.

Now, if 2,/= C + C.Sn + C,Sn
*+ . . . + CJSS,

2n
' and 2n agree up to terms in l/#

n
,
and consequently 2W

'

! is a

polynomial in l/.r, ranging from terms in (l/#)
n+1 to (l/^)

n2
;
thus

(1)

Next, if rn= CQ

we have, since Sn represents J^ asymptotically, \imxn (J1
r Snr)=0, and

therefore

(2)

Finally, ^- Tn= Cn+

thus, since ^("/i) is convergent,

where Jf is a constant.

Hence, we find

(3)

because

By combining (1), (2) and (3), we see now that

lim
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But, on the other hand, an asymptotic series cannot safely
be differentiated without additional investigation, for the

existence of an asymptotic series for J(x) does not imply
the existence of one for J'(x).

Thus e~*sin(e*) has an asymptotic series

0+2++.-x a?

But its differential coefficient is e
* sin (e?) + cos (e*), which oscillates as x-

tends to GO
;
and consequently the differential coefficient has no asymptotic

expansion.

On the other hand, if we know that J'(x) has an asymptotic

expansion, it must be the series obtained by the ordinary rule

for term-by-term differentiation.

This follows by applying the theorem on integration to J'(x) ;
but a direct

proof is quite as simple, and perhaps more instructive. We make use of the

theorem that if <f>(x) has a definite finite limit as x tends to QC
,
then <'(-r)

either oscillates or tends to zero as a limit*

If J(x) <x a + ajx+ a2Ar
2
4- . . .

,
we have

Thus the differential coefficient

^+ 1

[t/'(^)-^'(
if it has a definite limit, must tend to zero. But xn[J(x)-Sn (x)] does tend

to zero, so that \imxn+l [J'(x)-Sn'($y], if it exists, is zero.

That is, if /'(#) nas an asymptotic series, it is

It is instructive to contrast the rules for transforming and

combining asymptotic series with those previously established

for convergent series. Thus any two asymptotic series can be

multiplied together : whereas the product of two convergent
series need not give a convergent series (see Arts. 34, 35).

Similarly any asymptotic series may be integrated term-by-tern i,

although not every convergent series can be integrated (Art. 45).

*
111 fact if <f>(x) tends to a definite limit we can find r so that

if x > XQ .

Thus, since
"

o = 0'(a where x > * > a-
,

we find
I *'() I </(*-*()) '

So <f>'(x) cannot approach any definite limit other than zero ; but the last

inequality does not exclude oxcillatioH, since i.

: may not take a// values greater

than .r as x tends to 00,
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In fact, if we can determine constants M, R, such that

r_ _i <M_ HI !->/?" a
x ^l*!

2 ' C|>

it follows from elementary theorems in the theory of functions

that J(x) is a regular function of l/x, and consequently the

asymptotic series is convergent.
For different ranges of variation of the argument of x, we may

have different asymptotic representations of the same function

which between them give complete information as to its nature.

A good illustration of this phenomenon is afforded by the P>essel

functions which have been discussed at length by Stokes.*

134. Applications of Poincare's theory.

An important application of Poincare's theory is to the

solution of differential equations.! The method may be summed

up in the following steps :

1st. A formal solution is obtained by means of a non-con-

vergent series.

2nd. It is shewn, by independent reasoning, that a solution

exists which is capable of asymptotic representation. Thus we

may either, as has been done in Arts. 131, 132 above, deduce a

definite ^.epral from the series first calculated; or we may
find a solution as a definite integral directly, and then identify

it with the series.

3rd. The region is determined in which the asymptotic

representation is valid.

Poincare has in fact proved { that every linear differential

equation which has polynomial coefficients may be solved by

asymptotic series; but his work is restricted to the case in

which the independent variable tends to oo along n specified

*Camb. Phil. Tram., vol. 9, 1850, vol. 10, 1857, p. 105, and vol. 11,

p. 41-J; Mti/h. and Phy*. Papers, vol. 2, p. 350, vol. 4, pp. 77. -Js'i. See

also Ada Mathe.matica, vol. 26, 1902, p. :>!>:}, and Papers, vol. 5, p. 283. Stokes

r.marks that in the asymptotic series examined by him, the change in represen-

tation occurs at a value of the argument, which gives the same sign to all the

terms of the divergent series.

I Some interesting remarks on the sense in which an asymptotic series gives a

Million of a differential equation, have been made by Stokes (Papers, vol. 2,

].. :W7).

: Acta Mathematica, t. 8, 1S86, p. 808,
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where q = e~^ /t
. Making use of Art. 51, Ex. 3, we see that (since

q approaches the limit 1) the series in brackets is represented

approximately by 7r*(l q)~*, or by (2-jr//tiJ*.

Thus the asymptotic expression is

e'H-* i

T . rr, where t = x-.

M*(arO**"

Hardy* has proved, somewhat in the same way, that if

f(x) is represented asymptotically by Aex
/(27rx)\ where

+... and = e~*.

SUMMATION OF ASYMPTOTIC SERIES.

136. Extension of Borel's definition of summable series.

In the foregoing work (Arts. 130-135) we have shewn how
to obtain asymptotic expansions of certain given functions, and

we have established rules of calculation for these expansions.
We are now led to consider the converse problem of summing
a given asymptotic series

;
arid the natural method is to apply

Borel's integral. But on trial, it appears that Borel's method

is not sufficiently powerful to sum even the simplest asymptotic

series, such as (Arts. 98, 132)

If we apply Borel's method of summation to this series we
are led to use the associated function

which converges only if t<x. Thus the results of Arts. 99-

113 no longer apply, but we shall now proceed to modify the

definition so as to obtain corresponding results for such series.

We have u(t, x) = x/(x+ 1), if t < x,

and this defines a function which is regular, as t ranges from

to oo . Thus we can agree to take the integral

*Proc. Lwul. Mntli. sV. (-2), vol. i>, 191)4, p. 339.
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To make any practical use of this definition we must, how-

ever, assume further that a positive number I can be found
such that lime- lv

f
n
(v)

= 0,
v-><n

where n is any index of differentiation.

It is evident that then the integral defines a function which is analytic

within the region indicated in the figure.

137. Rules for calculation.

It is easy to see that the series of the last article represents

the integral asymptotically, x being real and positive.

For, if we integrate by parts we have

= a +-l e-'f(-\dt,U / I . \ / /

because /(0) = a . We continue this process, and we obtain

Now, by hypothesis, we can find the positive constants
,
A

so that
|/

w+1(^)l<-^^

and therefore
' " /A 7 '

Consequently,

which establishes the asymptotic property.

It will be remembered (see Art. 133) that the differentiation

of an asymptotic series requires special consideration; but

this special type of asymptotic series may be differentiated

any number of times. For

the differentiation under the integral sign being permissible

(if x>l), because

\te-
t

f'(t/x)\<Ate-
(x
-

l}t
,

and the integral te~ (x
~

l)t dt is convergent.
Jo
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.
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and consequently by differentiation we find

Thus Borel's associated function for the product-series is

F(v)= atf(v)+ \

V

f(v-t)g(t)dt
Jo

and \F(v)\\a \.\g(v)\+\"\f(v-t)\.\g(t)\dt.Jo

But, by hypothesis, we can find the positive constants A and

I such that

\f(t)\<A#, \g(t)\<A#.

Hence F(v}\< a \Ae
lv+A 2velv

,

and consequently we find

lim[e-
2lv

F(v)] = Q.

v>ao

Similarly, we can prove that

lim [e-*
v
F*(v)] = 0.

v-><

Thus F(v) satisfies all the necessary conditions.

By combining these results, we have the following rule : If
a polynomial expression contains a certain number of

asymptotic series* (of the present type) and their derivates, the

value of the polynomial is expressible asymptotically by a

series (of the same type), obtained by applying the ordinary
rules of calculation, as if the series were all convergent.

And the result cannot be identically zero, unless the terms of
the resulting series are zero.

The reader who is familiar with elementary function-theory will have no

difficulty in extending these results to the complex variable, in a suitably

restricted area.

*0f course some of the functions may have ordinary convergent expansions

in I/a;.
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Again* J'(x)=

and, as previously, this can be shewn to give the asymptotic
series obtained by the ordinary rule for differentiation.

A special type is given by taking

and then cn
= T(n-i-\).

Thus our definition becomes

=

It is easy to repeat the previous argument (with small

changes) to establish the corresponding theorems for operating
with this integral.

As an example of the- last method, we may point out that in Ex. 2,

Art. 132, we could infer the differential equations for X, Y by simply

operating on the asymptotic series.

Another example is given by the series

which leads to f(v)= I/(l+v), so that the series represents asymptotically

the integral

139. Differential equations.

We shall conclude by giving a few examples of the way in

which asymptotic series present themselves in the solution of

differential equations ;
and we shall illustrate the methods of

Arts. 136-138 by summing these series.

1. Let us try to solve the differential equationf

dy _a
dx~~ x

*
Differentiation under the integral sign is justified, because we suppose

and / t<f>(t)dt converges.
Jo

Thus the test of Art. 172 (3) applies.

fThis is the simplest case of a general type of equations examined by Borel

(Annalea de VEcole Normale Suptrienre (3), t. 16, 1899, p. 95).
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On substitution. we find

'I'll is g\:

-4 = 0, A
l
= - -I ..= -

i*
a

-2A,_ 1.2a 34 8_1.2.3.a
8
" : ~~

4 f (

I,

'

I,

'

/,'

Thus we lino! the formal solution

'/=-/' 1 1-,
1

-.

)'+...].ox \ ox J

and by Art. l.'lti bhif the equivalent integral

i-"
I 7-T-|

-,

and it i bo vei'ify diivetly that this inte-cal .

tin- Lriven e.jiiation, as of course must be the

Of Art. 137,

n>i<l-r tin- iiK'tlitied Bessel's matiin

-a

Writ.- n . ami then \vi- tind
'

If ire sul.st.tui,-
7;
=i

ire

...

+ ...

+
...)=o.

Hence we find

--(fife*
and so

1*.3.52
1s45 T3>
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Thus >/ is represented by the series

1 1 1 2 .32
1__ 1 2 .32 .5'2 1

2.4.6

That is, *=(- D"
---l 1

* l} 2.4.6...2w 2"'

and so if we put cn
r(f)

we have v^ vn =

This leads to the integral (Art. 138)

A~i

s>& ,,00 ptfjfTT (/ /
W C Ct'O

Hence y= -y-
/

t ,

which can be proved directly to be a solution of the given equation.

Similarly, we can obtain the solution

for the equation
d2y 1 duJ+5s

3. In like manner the differential equation

*s+<.+/~*>i-<*-*
is satisfied formally by the asymptotic power-series

.IT, a(l-^)
|

a(q+l)(l-^)(2-^) 1
y~x\}~ l.x 1.2.^2

which leads to the integral

This equation has been very fully discussed by W. Jacobsthal (Math.

Annalen, Bd. 56, 1903, p. 129), to whose paper we may refer for details

as to the various solutions.

We have now completed a tolerably full account of the

theory of non-convergent series, so far as it has been yet

developed on the "arithmetic" side. Its applications to the

Theory of Functions lie beyond the scope of this book, and

we have made no attempt to give more than a few theorems

whose proofs can be readily supplied by any reader interested

in such developments.
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.- series

to be *a).

This suggests* P f'
c 87U'-' /

(0<a<7r),
OS 4? COS a

\vhi.-h is -a>ily vi-i ili'-d b tity

.os nx - cos na _ ___ ,-^ n(l + .>
(

.

{>> , a i

cos ./--rns a MM(i

2. .)u-t a- in lli-

and so integratiiii:
\v- tind

log ;

the constant being foond bj ufling the value of the sej \ -.65).

I

'

/ log(f"-

An'th-r fi.rin ..f tht- first intrirral is

-Trlogma2
-^)}.

e that if ,- . i.

0..+HX

3. Sinn- \\r ':

it i> sii^^f-t-tl
* that if

//
is a multii>

I HI =ir.

This i-i-siilt is easily vt-rit'u-tl indr|MMid-Mtly.

*Thr n-M intririiit .e x =
\, nor >vi-r ti



348 NON-CONVERGENT AND ASYMFTOTIC SERIES. [CH.

4. From Art. 103(4) we see that

Thus

and

Hence, integrating with respect to 0, we find

^
2J sin

The series 2( l)
n
/(x+ n) is sometimes denoted by /?(#), and can be

o

expressed by means of the ^-function (see Exs. 42-44, p. 475), since

Thus, ^y x is rational, the series can be summed in finite terms
;
the case

= \ has occurred in Arts. 65, 90, so take now x= % as a further example.

We get
C

where < 6 < TT.

If 0/7T is rational the series may be expressed by means of "^-functions

and so the integrals are then expressible in the same form.

If we allow to tend to in the sine-series, we get

*

[For

by Weierstrass's Jlf-test, and

I?^(^) ^= (.
_

^) COS^ _
J Sin ^6 log(4 si

Cesaro's Mean-value Process.

5. A specially interesting example of Ceskro's process was given recently

by Feje>, who applied it to the Fourier-series for a function f(x) which

does not satisfy Dirichlet's conditions (Art. 174, App. III.), so that the

series need not converge.

In fact, if an=- { f(0)<x*n$d6. 6,,
= - (*f(0)fa.nO dO.

TTjO TTJO
'

and

and we write
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\\- find tli.it

"

and that tin- aritlinn-t i- im-an "t" .<, x, ,
...

twh
ial int.. tWO, W6 I'm

'

1~ :>'

(A|.|. I I I iln- fnin-ti..!!

The extension to caws \\h- baa a Unit*- mind" i

n.ntinuitiea present.- IK* fn-li (litli.-ulty : l.ut tin- pi.-.f und*-i- tli- >ingle

) ni!i>t ! inti'^r.-ilili- i- L.-vnud our r;m_

6. L.-t u> writ.- ,r,, f.,r tin- arithiiM-ti'- iiM-an us.-d in th.- la-t

thru it is ra.-ily Men that '

. "lit iniK-us the .nvrr-- r
fl to

it> limit '

in to L':

i r -^,1-'' 7 ' n

Since o-w _i = a
(l 1

r 1 ^l

\\f tind that (|-ayin- at ti-nt i'ii t. tin- il-tiniti-

'' l/l'-)J-^--

^ + A
(

v
(^+/v)(i-^)<^ | /;V /-

rfl M i- any nuinl.ri K->s than ,< ; and BO, taking tin- limit a> N tends

to oo, \vc find

I =} l"'[ . becanae li.M./,l= o.
r=l

Thti-
x

:it (Alt. 7). and M wr may a].jly
1*^1

Tannri y's thf-i'-ni (Ait. 1'.') to ./
. \vhirh givi

1 >;-' + V).

[Thi.-> ivsnlt is due IM dt- la Vall'-- I'mis-in ; MT al>. a jnji-r lv ilnrwit/

{Mutt- i

7. Wr h ~MiVr th- '

L Lft, Ch, N.\ T6 MT that

1 - , and
'

I
}< n

\. . I ;, 1<.
.'! : Lebesgue, Strie* T

. I'.Hlti. j,j,.
(_>-
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Hence the series

-
{
an sin nx -f bn ( 1

- cos nx) }

is convergent ;
and its sum is therefore equal to the sum found by taking

the arithmetic mean. But this is equal to

lim <rndx= { f(x)dx,n-^Jo -

because <rn converges uniformly to the value f(x).

[This result is also due to de la Vallee Poussin.]

8. Consider the application of Frobenius's theorem to the series

where t is a complex number of absolute value 1, but is not equal to 1,

and x is real. It is easily proved that

_l-t'
2 _l+t3

S ! s
l

S2 S3
~ ~" Si~ So~ ' S8 i> *>

and generally sn= {l-(-t)}/(I+t), if (v-l)
2^

Hence the arithmetic mean is found to be 1 /(! + ),

and thus lim (1 -^+.^2 -.^3 +. ..)
=

!/(! +
x>-l

or lim (1
- .r cos + #4 cos 20 -.r9 cos 3# +...)= 55

X >1

lim (x sin 6-x* sin W+x sin 30 -...) = i tan
* >1

[See also Appendix, Art. 155.]

9. Apply Cesaro's mean-value process to the aeries

/I
-

(/I +/*)+ (/I +/2 +/S>
-
(/I +/2+/3+/4 )+ ,

where fn is positive and decreases steadily to zero, but 2fn diverges.

The sum is

Kni [/i
-

(/i +/2)-^+ (/i +/2 +/3)^
2
--]. [HARDY.]

a: !

[We have, in fact,

*1 =/! *2
=

~/2> *2n-l =

and so the arithmetic nu-an of
.s-,,

*
2 , ..., %, is

Apply Stolz's theorem (Art. 152, II.), and we find that the limit of the

arithmetic mean is equal to lim^.,,. Again, from Stolz's theorem we see

that lim(^,, + i/w)
=

lim/o,(+1
=

0, and so the arithmetic mean of 1} *a , ..., %,+!

tends to the same limit -as that of s,, .,, ,.., *_,. The result can also be

found l.y applying Art. 124 (< tin- pi <.<luct (1
- 1 + 1 - ...)(/ -/i+/2 - ...).J



10. Illn
'

unple are L'iv-n liv t.ti

I (I :.,-M

r>

[in tin- seeond m a to

iU" tli base 10, log ($TT)
= -098060 to 6 d ices,

wllieh V.-lili'-- Killer's .-alt-illation <|U..ted il \rt. 1 -J 1 .

]

11. I II that

O"
decreases, and 1 I C.

Thus the series
2(-l)r-[(n -n]

nvergent and, fi.>m tli- nu isseen to be

iC-filog

Tlif value nf tin- ->uin can i l>y i.l.-n \ in^ that th- sum t<>

rms is

f-i) + (. -...+('0*,;:,

Asymptotic Series.

12. Ksialilish tlu- asvni]titir furnmla

in./- . (-l)'T, ] - I. ...<
Vn= \

**- 1 -;
--

v,+ . -... ,

JM L (/'-)- (WTT)
4 J

whi.-h It-ads very easily t> tin- nunu-ri<-al i-

| 0787, '
- -M;:ii, <

-

and so on.

[C(.in[.air Art. 132.] [(
; i

13. t'se the integral of An. 1
^> t<> sli.-w that

") /'T -/ 1 -"I

'M</'
l0^

, JT
and th-ducf thf asvni|.t"ti.- .-\iKHisii.n

Where -: (a) i- th.- Hernnullian fun.-ti..n ..f An

/* *-** 1 <>

14. -/,^}

the I-IT..I- olitaiiu-il liy .t.-iijtin^ at any >tage being less than the f.-lb

t'Tiu in the sn v and iMr.im:

[Km- the first in;. tin- identity
1 /-

'

-
1 - ,~ -

K.T the MOOOd, integral.- l.y jur integral*

..Cgested by the series and tan le established dirertly.]
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the error being again less than the following term.

[Apply the same methods again.]

By writing f" e~ tzdt= P e~ t2dt-
J^k Jo

and integrating the latter by parts, we find that the first integral is equal to

16. Generally, if 0<s<l, we find

r<

L

And similar expressions can be given for

17. Apply Art. 131 to the function /(#)= #-(*+*), A>0, and deduce

in particular the formula

72xl03

Hence evaluate the sum

l+i+i+^2* 31
to five decimal places.

/oo2i.a2 l-a:2

18. If ^
JO 1

shew that ^-^.

'"

and that ^o

Hence prove that

r^dt-' l ] 1.3. ..(271-3)
J*

and that the value of the remainder is approximately (a
2 - 71

In particular, for a= 4, by taking 16 terms we can infer tluit the

value of the integral L-fd* lies between 1149400-6 and 1149400-8.

[STIKLTJES, A eta Math., Bd. 9, p. 167.]



XI.)

19. <>!' i:Jl tin- asymptotic expansion

^1((r : 6! 6

and d<

.

+

approaches 1, l>y writing f= log(l

-\!ii.. ii. Com} 1 1.. p. 238.]

20. From tin-

<(rb)"

1.2...(r-l) -1

r(w+l)(^4-2)...(n+ r)J

Thai

//-' 6 n + 1 (

21. Similarly |ii>\^ that

-H-

[See Si -ii I..".MI i.i -ii,
'

'7-100;

. 1 1., pp. I'.L' i !:>.]

22. I'lovr al>.. that

icuiiiu' numerators I>MIILT -'. -I.

, >
-
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23. More generally prove that

where t(t- 1) ... (t-

and

24. It must not be assumed that if lim (/&)=! and 2an#n is con-

vergent for all values of x, that the two functions 2a rt
#n

,
?bnxn have the

same asymptotic representations.

For example, consider the two series

x2 x* 3*

.-11111 tAS I _ A. I *^ / 1 *
I

"^
I 1 i

*
1 *^/T 1 i

co^+__ =^ +Tj-_^i_ gj
+
_^

1 + _j-_^_-j + ....

Miscellaneous Applications.

25. Shew that if we .attempt to find a Fourier sine-series for

from x= Q to ^= TT, we obtain the series

2 (sin 2x+ sin 4# -f sin Qx -f . . .
),

which can be proved to have the sum cot# by using either Borel's integral

or Cesaro's mean value (Arts. 103, 126).

26. Hardy has extended the result of the last example as follows :

If f(x) satisfies the conditions of Fourier's expansion from #=0 to 2?r,

except that near x=a, f(x}- -7^ + 7 ~~\2+ '~ +
? ^ satisfies these

i_# a (x a) \x a) j

conditions
;

then f(x) can be expanded as a Fourier series which is

summable except at x=a.
In particular, if 7n = l, we have the simple result

00

f(x)= + <2^ (a cos nx+ ^n sin w#)j
i

where a = ^-P r/(x)dx, an = -P f f(a;)co&nxdxt

ZTT Jo TT Jo

bn=-P f f(x) sin nx dx ;

7T JO

and this is easily extended to the case in which /(.r) has any finite numln-r

of such singular points. [HARDY, Messenger of Mat/is., vol. 33, 1903, p. 137.]

27. Applying a method similar to that of Ex. 2, p. 42, prove that

J_ 1.2
A ^ "T"

\

2wi 27n(2//<-l)

or
m +

while (2w + l)!-(2)!.l! + (2w-l)!.2!-...=0.
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i li.-it tin- . ;IM mptotK- series

1

is represented by

I

'

J+p +
,..
+ -> '

As a verification, two series are denoted

->|M-.-ti\rlv, thru trim-l.y trim (li tl'rivii t i;it ion gives (compare Ait. 137)

1 ,/,- 1

- = -

a,
--

)

a.,.1 s,,

\vliich agrees with the result deduced above fr'in direi.-t multij*!.

28. Le Roy's method desril..(l in Art. 115 can be app! ding's

&
-

taking ;>
= 2 in Le Roy's formula.

L\V, lind in fact

a series which converges absolutely if ||<2ir|jr|. Also (Art. 176, Ex. 2)

M
.-*+1)J

.

-

^T"1

tli.- intfivluinge of suinniatiiiii and int^ratioii being justifiable l.y

17''', A, M long as ||<: Thus, in a-,vrni.-nt with tin-
j.rir.

cxplain.-il in Art. i:i;, we can agree to define ^() as always givm l.y

tli.- la-t LIttegni Th.-n it" it is p.-nui>Ml.l.- to invt-rt tin- Drd -gra-
with rt-sjK-ct t> ^ ai bare

*'**
*}.

f*

Md we get the rain
Jo <r" - 1

l>ut this last iiiv-rsi..ii i- n,.t pn-tirularly easy to justify.]
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29. As examples of series which can be readily summed by means of

various integrals similar to those of Art. 136, we give the following simple
cases :

30. Determine a formal solution of the equation

in the form
\ x x

and express the result as a definite integral.

[The integral is^/V'(l +;)"'-<*,
if g > 0.]

31. Obtain a formal solution of the differential equation

in the form *-**Vfl _n(n-l) n(n-l)(n-2)(n-8)_ 1
L 4^2 4 . 8#* J

and express the sum of this series as a definite integral.

References.

For Exs. 1, 2, see Hardy, Proc. Lond. Math. Soc. (1), vol. 34, p. 55, and

vol. 35, p. 81. For a justification of the integration used in Ex. 1, see

Hardy, Trans. Camb. Phil. Soc., 1904, vol. 19, p. 310.

For Exs. 14-16, see Diriehlet's Bestimmte Integrate (ed. Arendt), pp. 208-215 ;

Nielsen, Mathematische Annale?i, Bd. 59, p. 94; Hardy, Proc. Lond. Math.

Soc. (2), vol. 3, p. 453. The equality of the integrals of Ex. 14 was proved

by Cauchy, (Euvres, t. 1, p. 377.

In Exs. 20-23 the series are not asymptotic but convergent ; they may be used

instead of some of the asymptotic series found in Arts. 130, 132. But the

law of the coefficients is much simpler in the asymptotic series ; and for this

reason they are usually preferable.
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140. Infinite decimals.

II' \v- apply tin- Mi-ilinary prO060a !' livisi..n t> convert a

rath.nal fraction a/6 to a <lrriinal. it ix .-\il.-ni thai .-ith.-r tin-

process must terminate >r else tin- <|Utii-ntx imM n-eiir .

(//-I) divi-ion^ at most; t'T in li\ilinu l.y l>, tln-n- are not

more than (/>-!) ditl'.-ivnt iviiiaiinL-rs pussiM.-. ( nann-ly 1 L'

3,. ../>-!>.

nninatin.ir aft.-i tin.-.- di\ i

i : 71 !: -.

(
= 7- 1) divi-

-. frcurriiiur after s.-\cii divisions.

And i)) <livi-.

If tin- drcimal part is pur-ly prrimlir and .-..ntain- , 'In- d--iiua!

ran Pm /''l"-"-l), ly im-ans of tlio formula f..r

sunn '

''). Tli';

: ii;il t". I
1 '' 1 ; and BO /' \t ll"t <li\'isil )! 1>V ritllfl' '2 "I' ."). < '"HV'M

it t""ll"\vs fr-'in K".
1

!i-i.n -f I theorem that \\li.-ii

di\i-iM- 1'v ,-itlM-r -1 "i- ."). an index
/>

can be found BO t'

di\Mlh- liv/-: thus a I is .if tin- f..rm /' ( In'
1 -

1) and so can be expand- d

i..-ridi.- decimal with
/ liirurcs in the pel

I'.ut if the drrimal pai t i> nii\.-.l. e,,ntainin_ i i"dic and
/> j-

n\MH' Miu-t contain eith. : ; because

tin- decimal i tie Tic- relation

hrt\\ 1 the .itlier pi Mi..t l.e discussed so simply.

it is pi..\.'d in th,- 'I'!,, USB, Ditq.

that if lt = V&r**"t* .... where
r, t, r, ... are

prin is a factor of

.

It' IKINV we inated (say -\-l'}\ l>y an

intinitr <l.'cinial I 2t i will ). .-vidt-nt bhal

fracfa

.rdin.K to tlie n.

it is more o.nvi-niriit : . ;inl \\ shall .i.llu-re to 'l
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But we can easily see that the rational numbers do not

exhaust all infinite decimals.

Thus consider the decimal

1010010001000010...,

which consists of unities separated by zeros, the number of zeros

increasing by one at each stage. Clearly this decimal neither

terminates nor recurs: and it is therefore not rational.

Similarly, we may take a decimal

11101010001010001...

formed by writing unity when the order of the decimal place is

prime (1, 2, 3, 5, 7, ...), and zero when it is composite (4, 6, 8, 9,

10, ...). This cannot be rational, since the primes do not form a

sequence which recurs (in rank), and their number is infinite, as

appears from the Theory of Numbers.

If the primes recurred in rank after a certain stage, it would be possible
to find the integers a, b

}
such that all the numbers

would be prime. Now this is impossible, since a+ ab is divisible by a;
and therefore the primes do not recur.

If the primes were finite in number, we could denote them by plt p2 ,

jt?3 , ...,>; and then the number

would not be divisible by any prime, which is absurd. Thus the number
of primes is infinite

;
this theorem and proof are Euclid's (Bk. ix, Prop. 20).

As an example of a different type, consider the infinite decimal

obtained by applying the regular arithmetic process for ex-

tracting the square-root to a non-square such as 2
;
this process

gives a sequence of digits*

1-414213562373....

This decimal has the property that, if An denotes the value

of the first n digits after the point,

which gives 2-^ n
2 < 3/10", since 2^1n+l/10

w < 3.

* A rapid way of finding the decimal is to use the series of Euler, Ex. B. 12,

h. VIII.
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1
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To see that this decimal cannoJ terminate <>r recur, we have

only to pn.\r that there is i" >on whose aqua/re is

\ecangiv- j.i-iM.f thug : Suppose, if

poesilil* , tli;it (<//6)
a= 2

;
we may a ;' are .positive integers which

are mutually j.iim.-. ami ' at least one of them is odd. Now
i <-an!i"t U- . must I..- <,<1(1. lint if we write

a = 2c, we get 2c2= 68
,

SO that /* .ann.t l.- ..tl.l ; w.- thu> arriv.- at a

contradiction.

141. The order of the system of infinite decimals.

It is jM.ssiM... ;iinl in many way- it i> .list in<-t ly best, to l)iiill

up tin- \vhnlr tli. .,1V "!' rational nuinlH-rs ,,n tin- basis of order,

be nuinlMTs as marks distinguishing certain objects

arran-v<l in a <l-tinit- nnli-r. 1 1'. M u-ual. \v- ]>lac- tin- lai

numlM-rs to tin- ri^lit ni' tin- smaller. aln^ a slrai^lit lin', we
shall thfii regard tin- iiiMjualit i-s .!>/). ]{>(.' simply as

m.anin- that tin- mark .1 is t< th.- ri-'ht of B an<l the mark <'

to the lefl of />'. BO that /; falls between A and <\

/; j

\\'.' shall now pn.vr that KM cam l>f<n<> tlie same inent

I,,
I

8 directly.

that w<- fiml

and that tin- in' . I,,, an- tin- same up to a certain sta_

say that we tind

.1.-...,+;, ...

with a nin-fspoinlin^ interpretation for />',. Then \ve 1.

>
1/10".

me, n .1 would in- . ..it a,,

may be negative, but that <r, 'i... ,i.d lew tba;
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Also lOn(B Bn ) is a rational number, and is less than 1, in

virtue of the method of finding Bn from B.

Thus B<Bn +l/lO
n

,

while A = A n

and An^Bn+l/Wn
.

Hence A > B.

Thus, in order to determine the relative position of two

infinite decimals (derived from rational fractions), we need

only compare their digits, until we arrive at a stage where the

corresponding digits are different; the relative value of these

digits determines the relative position of the two decimals.

By extending this rule to all infinite decimals (whether
derived from rational numbers or not) we can assign a perfectly

definite order to the whole system : for example, the decimal

1010010001 ... given in Art. 140 would be placed between the

two decimals

1010000 ... (zeros) and '1011000 ... (zeros),

and also between

101001000... (zeros) and '101001100 ... (zeros),

and so on.

Similarly, we may shew that the infinite decimal derived from extracting

the square root of 2 must be placed between ff and ff . For, by division,

we find
ff = 1-411..., ff= 1-4146 ...

,

so that, in agreement with the rule,

ff < T41421 ...<{f.

It must not be forgotten that at present the new infinite

decimals are purely formal expressions, although, as we have

explained, they fall in perfectly definite order into the scheme

of infinite decimals derived from rational fractions.

142. Additional arithmetical examples of infinite decimals

which are not rational.

Consider first the sequence of fractions (an ),
where

If m is any integer, and n > m, we find

1 1 .1
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which is l.-.ss than

'I- -' + + +
'

l< V V(i-
'

nt'.l in + 1 ( // I i
-

! V ra+1/

Tim >//< + !, the iliH-iniiil for ' lies Ix-tw.-.-n tin-

by

?lll + l
= <'.+

hl)l

In this \\.i\ w,. tiiut su.Ti->siv-ly tin- lii:.

and i

1708 Mid :

m
w=3

i :!;; and TT

1 TIHC, and

L71888 a.,,1 !

and M 'H.

AJB m increases, these two <l.-<-imaU become nmn- and m<nv

hi-arly i-i|ual:
and \v- an- t Inis 1...1 t < c n^t rud an infinite decimal

(] '718281828...X Which T -1 as.Mjuival.-nt i

(1) 1 + -+' + +

It will IIMW IM- pi-MYrd that this intinitr di-ciinal can'

with tin- <>nr which c< )rr^j)<)ii'U to any i-atinnal MUMih'T.

I-'MI- tin- dfcinial corresponding t<>

111
J_

21 31 4! wl

than th- lM-iinal il.-riv.-d I'I-MMI

-2

+
'2 . :{

+
-2 . :>-

+ " ' +
2.3W - 2

'

Ami the last ex; i-

SW '-8-!(-^>
J ]

Bence, n<> matt.-]- IIMW many t.-nn^ we take from ^,-f . + ... ,

the drcimal d.'i'i\.'d i'r..in th.-ir sinn will l>c less than th- d.-cimal

75,

I'.ui 'lian 1.

1 1
1_

1 1 1

21^0-H
1

ir^t.-fix >
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-and so on. Thus the decimal representing any number of

terms from

i 1 I / i "I \ / ^ i O\ I / i 1 \ / i O\ I

must be less than '75.

Suppose now, if possible, that (1) could lead to an infinite

decimal agreeing with the decimal derived from a/c, where

a and c are positive integers. Multiply by c\, and (1) becomes

The terms in brackets give some integer /, say, and so we
iind that

that is, an integer equal to a decimal which is less than '75,

which is absurd. Thus no fraction such as a/c can give the

same infinite decimal as (1) does.

Consider next the continued fractions

& = ! + -
jx"'

to n terms -

Here, we recall the facts that if

bm =p/q, bnl+1
=

r/s,

then \p8 qr\
= l,

while bn lies between 6TO and bm+l if ?i>w + l.

Thus we find for the successive values of bn ,

1,2, |, , I, , ...,

so, converting to decimals, we see that 6n lies between

1

2

1-5

1-67

1-6

1-625

1-615

1-6191
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OBOME1 l:i< .\l. I A \\iri.l.-

6 lliniv ;in.l DXM
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in ..iiMfxii.n \vith tin- ! i -\aiiij>lc of Art. 143.
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i I) i -30H J] ...

cann..t ! rational. For it' it \\viv .-<pial t "
C,
w- should i

. hut 10" must ,-nd with 0. wh< endfl with :

r, or a Thus l<>'
; & is impossible,

Similarly. \v that 3,5,6,7, 11.... cannot have nr

lo^ai'.it Inn-.

143. Geometrical examples.
I-YMIM fche .-.\aiii]>lfs --ivcn in Ar 14:2 it i- evident that

tin- system of rational nuinhers is l,y no means sullicient to

fulfil all the n-. ds ,!' al^ehra. \\'e shall now jrive an ezao

to -hew that it does not Mitlice for geometry.
L'-t ^ht line .!/; be divid.-.l at r* in "golden section"

(M in Euclid, Bonk II. .prop. 11). so that AC \CB = AB : AC.

r ~Y~b 7" "i
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It is then easy to see that AC must be greater than CB, but

less than twice CB.* Cut off AD equal to CB; it follows at

once that AC is divided at D in the same ratio as AB is divided

at C. For we have

AC:AD = AC :CB = AB:AC,
and consequently

AD:DC=AD:(AC-AD) =AC:(AB-AC) = AC:CB.
Also AD is less than half of AB.

Thus if we repeat this process 2n times, we arrive at a line

AN, which is less than the 2 nth part of AB.
Now suppose, if possible, that AC/AB can be expressed as a

rational fraction r/s; then AD/AB = CBIAB is (s r)/s, and

DC/AB is (2r-s)/s. Hence AE/AB is (2r-s)/s and ED/AB
is (2s 3r)/s. Continuing this argument, we see that AN/AB
must be some multiple of 1/s ;

and so cannot be less than 1/s.

But we have seen than AN/AB is less than l/2
re

,
so that we

are led to a contradiction, because we can choose n so that 2 71

exceeds s. Thus the ratio AC : AB cannot be rational.

It is not difficult to prove similarly that the ratio of the

side to the diagonal of a square is not expressible as a rational

fraction. In fact, let ABC in the figure represent half a square
of which AB is a diagonal ;

it is at once evident that AB is

greater than AC and less than 2AC. Cut off BD= BC, and erect

B

FIG. 38.

DE perpendicular to AB at D; then we have ED= DA, and

EC= ED, because BE is a line of symmetry for the quadrilateral

BCED. Thus EC=DA. If we repeat the same construction

on the triangle ADE, we see in the same way that

AF=FG =

*The first follows from the definition ; and so we see that AB= AC+Cli is

less than twice AC. Now, since AC'. CB=AB :AC, it follows that AC is less

than twice CB.
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Tim- .1 D( I
than half AO\ and -imilarly, A /' ii

than hair Ah. Tim-. i.y continuing the eond we

arrive at an isosceh lo ANP,*\u-\i that AN is less than

the L'

\\ Ar A/I isa rational fraction / 4 then -1 1> .!/>' is(*-r)/,
hat AF/ABis 8r 2a)/a; ami continuing the process, we see

that AN/AJi is in .1 lea than I

I, Of that J .\' 40 \B ad less
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144. A special classification of rational numbers.

Th<- rxain]l-v ,.f Art-. I M> -'i imli-at.- tin- iif.-l I'm-

smut- th- irrational numbers. I'.ut before proceeding to a
f'Tinal l-liniti<n. which will !>< found in tin- n-xt arti-l-, we
shall jrive some cnnsil-iMti<.ns which -h-w how infinite .i.-cimals

which do not ivcur h-ad un t< 1 )cd. -kind's dctinition.

Tin- intinit-- d-ciinal 1'4I42I ... disj-ii-M-d in Art. 140 mal>l-s

' divid- "// rational nmnl'.Ts into tw< c

(A) Thi /"//// r//xx, which contains all rational fractions

(Mich as jM l.-.-s than or
i-ijual to smm- tmii of tin-

sequence of t-niiinat<'d decimals

1-4. 1-41. 1-414, 1-414-J. etc,

(I
1

,) T/ upper do88
t

\\hich contains all rational fraci

(-uch as ;;> ^-i-.-atcr than every trrni >f tin- s-.ju,

It is ih'-n drar that

(i) Any numl>-r in tin- n]>p.-i- rla^- i- -Train- than every
numltcr in the lower dasa

(ii) Thnv i- n ~t nuinl-cr in the I..W.T class; ami

no least numlier in the upper da--.

'!' M6 tin- truth ..f tin- <!.. n.l -t :it.-iiM-iit .
\v.- m.iv obMTVe that, if

we have /-/--i'(i L'-/-' >(S

latiiinal iiiiin MB, we have /(,
bean; : and, t'^r tli.- sam.- M that / \\ill I : ^ to

tin- l(.\v-r rlasx. '1'liriv is tlii-n-fiiiv n..
g

.mlirr in tin- l.\v-r class.

It' MOW w. suppose k t<i lf a iMtii>nal MUMilx-r of tin- u|>p<-r class, we prove
l.v a similar aix'uin.-nt that / i- aU,, a innn'; - less

tlian /.
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Ex. 1. Prove similarly that if F</V, then l>k, 1
2 <N, where

l=(Na + bk)l(b + ak) and b*> No*.

Ex. 2. Establish inequalities similar to those of Ex. 1, taking

Ex. 3. The formula, corresponding to Ex. 2, for the nth root of N

Ex. 4. Utilise the last example to find approximations to 2*
;
the first

two may be taken as 1, f.

The classification of rational numbers which has been just

described can, however, be obtained by a different process. From
the arithmetical process of extracting the square-root of 2, it is

evident that

(1-4)
2

, (1-41)*, (1-414)
2

, (1-4142)
2
,...

are all less than 2
;
but the sequence contains numbers which

are as close to 2 as we please. Thus the lower class contains

every positive rational number whose square is less than 2
;
and

it also contains all negative rational numbers. Since the two
classes together contain all rational numbers, it follows that

the upper class must contain every positive rational number
whose square is greater than 2.

Thus the same classification is made by putting,

(A) In the lower class, all negative numbers and all positive

numbers whose square is less than 2.

(B) In the upper class, all positive numbers whose square
is greater than 2.

145. Dedekind's definition of irrational numbers.

Suppose that some rule has been chosen which separates all

rational numbers into two classes, such that any number in

the upper class is greater than every number in the lower class.

Thus, if a number k belongs to the upper class, so also does

every rational number greater than /,.

There are then three mutually exclusive possibilities :

(1) There may be ;i number (/ in the lower class which is

greater than every other number in that class.

(2) There may be a number I in the upper class which is

less than every other number in that class.

(3) Neither (j
nor I may exist.
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It is clear that in case (3) the rule gives a cleavage or section

in the rational numbers
;
and to fill up the gap so caused in our

number-system, we agree to regard every such section as

defining a new number. This constitutes Dedekinds definition

of irrational numbers* For it is clear from what has been

said that these new numbers cannot be rational.

On the other hand, in cases (1), (2) there is no section, and

so no new number is introduced.

146. Definitions of equal, greater, less
;
deductions.

For the present we use the following notation :

An irrational number is denoted by a Greek letter, such as

a, ft ;
the numbers of the corresponding lower class by small

italics, as a, b
;
those of the upper class by capital italics, as

A, B. The classes themselves may be denoted by adding

brackets, as (a), (A).

These definitions may be indicated graphically thus

i i i

a a A

It is an obvious extension of the ordinary use of the symbols

<, >, to write

a<a<A, b<@<R
In particular, we say that a is positive wThen belongs to

(a)', a is negative when belongs to (A).

Two irrational numbers are equal, if their classes are the

same; in symbols we write a j3 if (a) = (6) and (A) = (B).

The reader who is acquainted with Euclid's theory of ratio will recognise

that this definition of equality is exactly the same as that which he adopts
in his Elements. Euclid in fact says that A:B=C:D, provided that

the inequalities mA^-nB are accompanied by mC^-nD, for any values of

m, n whatever. In Dedekind's theory, the inequality mA > nB implies that

njm is in the lower class defining A : B
;

thus Euclid's definition implies

that A : B and C : D have the same lower class and the same upper class.

On the other hand, the number a is less than the number
/3,

when part of the upper class (A) belongs to the lower class

{&), so that at least one rational number r belongs both to (A)
and to (b).

This definition of inequality also coincides with Euclid's.

* Other definitions have been framed by Meray, Weierstrass and G. Cantor.
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a" be another number of the lower class which is greater than

a''; and then choose r so that 10r> l/(a" a'). Then

A r ar <a" a', or a r a'> A r a".

But 4 r >a", so that a r > a'.

Modified form of Dedekind's definition.

Suppose that a classification of the rational numbers has the

following properties :

(1) if a belongs to the lower class
?
so does every rational

number less than a;

(2) if A belongs to the upper class, so does every rational

number greater than A :

(3) every number a is less than any number A
;

(4) numbers A, a can be found in the two classes such

that A a is less than an arbitrary rational fraction.

Such a classification defines a single number, rational or

irrational.

For any rational number r which does not belong to either

class must lie between the two classes, since any number
less than a number of the lower class must also belong to

the lower class
;
and therefore r must exceed every number

of the lower class : similarly, r must be less than every number
of the upper class. Hence, if a, A are any two numbers of

the two classes a < r < A .

Suppose now that s is a second rational number which belongs
to neither class; then a<^s<^A. Hence \r s\ must be less

than A a; but this is impossible, since by hypothesis A, a can

be chosen so that A a is less than any assigned rational fraction.

Consequently, not more than one rational number can escape
classification

;
if there is one such number, the classification may

be regarded as defining that number; but if there is no rational

number which escapes classification, we have obtained a Dedekind

section, and have therefore defined an irrational number.

148. Algebraic operations with irrational numbers.

The negative of an irrational number a is defined by means
of the lower class A and the upper class a; and it is denoted

by -a.

Tin 1

reciprocal of an irrational number a is defined most

easily by restricting the classes at first to contain only terms
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from the lou.-r olasses; and then \v,- detin.- the jro(lu'.-t a/3 by
usin- the tyj>e

,if, for tin- lower elass and A Ii for the &

spondine- upper claSS, To prove that this .1. -tines ; , -.in-l,. nun
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then choose any rational number P which is greater than a+/3+l.
Next find numbers A, a and B, b such that A a<^6l,B b<i l ,

where e
l
=

e/P.

The determination of A, a
}
and B, b is possible in virtue of

Art. 147. Now we have

or

That is, AB-ab<6.
Thus the classification by means of ab and AB defines a

single number which may be rational or irrational
;
and this

number is called a/3.

In particular, if /3=l/a, the product is equal to 1
;
for the

lower class is represented by a/A and the upper class by A/a.-

That is, the lower class contains all rational numbers less than 1

and the upper class all rational numbers greater than 1. Con-

sequently the product is equal to 1, the single rational number

which escapes classification.

Multiplication of negative irrational numbers is reduced

at once to that of positive numbers by agreeing to accept the

"rule of signs" as established for rational numbers.

Division.

In consequence of the relation (l//3)x/3 = l, we may define

the quotient a//3 as equal to. the product ax(l//3).

It is at once evident that any of the fundamental laws of

algebra which have been established for rational numbers

remain true for irrational numbers.

Thus, we have the following laws :

For example, let us prove the theorem a + )8
=

By definition we have

and

But a + b= b + a and A +n= fl+Aj so that a+ j3 and /2 + a are dHinrd ly

the same two classes and are accordingly r<|ii;il.
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Hence, since an= am, ^ 7i>m,
we have @= an= /3 e, if n > m.

That is, lim an= ft.

A good example of such a sequence is afforded by the terminated decimals

derived from an infinite decimal
;
and it will be seen at once that the

section described here is an obvious extension of the method used in

Art. 144 above.

Suppose next that the terms of the sequence, while still

increasing, do not remain less than any fixed number A. It

is then evident that if am ^> A, we have an> A if 7i>m.
Thus lim an = oo .

n >oo

Exactly similar arguments can be applied to a decreasing

sequence.

As an example we shall give a proof of the theorem that any continuous

monotonic function attains just once every value between its greatest and least

values. Suppose that /(#) steadily increases from x=a to x=c, so that

b<d, if f(d)= b and/(c)= rf.

Then if I is any number between b and d, we consider /{^( + e)}, which

is also between b and d
; suppose that this is found to be less than

,

write then

<*!
=

( + <!),
b1 =f(al)<l,

Cl
=

c, d
l =f(cl)>l.

On the other hand, when /{J(a+ c)} is greater than I, we write

,
d

1 =f(c1)>l.

Continuing the process we construct two sequences (), (c,,), the first

never decreasing and the second never increasing; and c ;l -an = (c-a)/2
M

,

so that (an), (CM) have a common limit k. Also by the method of con-

struction it is evident that f(an)<l<f(cn) ;
unless it happens that at

some stage we find /()= I, in which case the theorem requires no

further discussion.

Now since f{x) is continuous we can find an integer v such that

f(cn)-f(an)<, if n>v, and both f(k) and I are contained between f( ,)

and /(CM).
Thus we can find v so that

\f(k)-l\< ,
if n> v

,

and therefore, as in Art. 1 (6), f(k)= l. From the method of construction

it is clear that there is only one value such as /
;
and this is also evident

from the monotonic nature of #.
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"i"

Thus we can .letennine a Bub-aeqtience 1'p'iii (" ..) which has G
M its limit : ami we can find a certain stage after which all

the bermfl <>f the >e,juenn. are less than I'f + e: thus no

convergent sab-sequence can have a Inn ber thai.

s/H-tr tlmt a ;> //

A qut

It' DO such numl.ei- afl /' can be l'"Un<l in t

ar-'uinent. th.-r. ;iiml)er8 of the sequence i ater

than at naMe numher. 80 ('

flu a JO. On the other hand, if no such numl>er as p can be

found, there \\ill IK- only a / rm^ _^r.

than .V. however 1 consequeni
lim " B
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For the sake of uniformity we may say even then that the

sequence has a maximum limit, which is, of course, oo .

All the foregoing discussion can be at once modified to

establish the existence of a minimum limit (g or cc
).

151. The general principle of convergence stated in Art. 3 is both

necessary and sufficient
;
the terms being rational or irrational.

In the first place, the condition is obviously necessary ;
for if

lim an= I, we know that an index in can be found to correspond
n >oo

to e, in such a way that

|

l an \

< Je, if n^m.
Thus |an-am |= l-an \+ -am |<e, if n>m.
In the second place, the condition is sufficient ;

for let m be

fixed so that

an-am < Je, if n > m,

or am-Je<an <am+ Je, if n > m.

Then it follows from the last article that the sequence (an)

has a finite maximum limit G ;
so that an infinity of terms fall

between G Je and 6r-fje. Choose one of these, say ap ,
whose

index p is greater than m. Thus we have

Also ap Je< <xm < ap+ Je, since > > w..

Thus - fe < aw < + fe,

and since am \e<^an < a,,, + Je, if ?i> m,
it follows that G e < an <C (r+ e, if TI >> 7?i.

Thus an-+G ;
and consequently the sequence is convergent.

Of course in this case g G, the extreme limits being equal
in a convergent sequence.

Various proofs of this general theorem have been published, sonic 1 icing

apparently much shorter than the foregoing series of articles. But on

examining the foundations of the shorter investigations it will be seen that.

in all cases the apparent brevity is obtained by avoiding the definition of an

irrational number. This virtually implies a shirking of the whole difficulty ;

for this difficulty consists essentially* in proving that (under the condition

of Art. 3) a sequence may be used to define a "number."

*
Pringsheiin (Encyklopiidie, I. A. 3, 14) says: "As the truth of this theorem

rests essentially and exclusively on an exact definition of imitituml inn.',

naturally the first accurate proofs are connected with the arithmetical theories of

irrational numbers, and with the associated revision and improvement of the

older yeometrical views."
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This theorem should be compared with the theorem (L'Hos-

pital's) of the Differential Calculus, that:

// lim0(X) = 0, limbec) = 0,

then lim 0(aj)/^r(aj)=lim <f>'(x)/\{s'(x),
X>x> X->oo

provided that the second limit exists and that \^'(x) has a
constant sign for values of x greater than some, fixed value.

II. If bn steadily increases to oo
,
then

n n+l~n

provided that the second limit exists*

For if the second limit is finite and equal to I, as in I. above,

we see by a similar argument that it is possible to choose

m so that

(l-e)(bn bm) < an- am< (I+ e) (bn
- bm),

if n>m.
Thus, since bn is positive,

Now, since bn-+x ,
we have

and lim (i + e) l - + = i+ e.

n^-

And so we find

But these extreme limits are independent of m, and therefore

also of e
;
and so the inequalities can only be true if each of

the extreme limits is equal to I. Hence

lim (an /b n)
= 1.

Similarly, if the limit is oo
,
we can find m, so that

a n-am>N(bn -bm ),
if n > m,

however great N may be.

Thus i

* Extended by Stolz from a theorem given by Cauchy for the case bn =n.
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Ex. 2. If
. an= lo7? b = n

we have n+i- = 1

bn+i-bn
5

\ n

so that lim =0. (Compare Art. 161.)

Similarly, if an= (logw)
2

,
bn = n, we find

^ =
[log n + log ( + 1)] log (l +1)

<
| log ( + !),

which tends to by the previous result.

Thus \irn[(\ogn)*/n]
= Q.

Similarly we can prove that lim [(log#)*/]=0.

The reader may also verify this result by using L'Hospital's theorem.

Ex. 3. If an=pn
,
bn= n,

we have an+l -a n=pn
(p~l\ &JI+1 -6,, = 1,

and hence lini(an+1 -aw)
=

0, if/>ll,

or = x
,

if p > 1 .

Thus . lim(p'-0, ifjo^l,

or =ao, ifjo>l, (Art. 161).

Of course Ex. 3 is only another form of Ex. 2.

Ex. 4. Even when (an) and (6W) are both monotonic, lim n/6n need not

exist. In this case, the theorem shews that lim (an+l
- an)/(bn+l

- bn) does

not exist. An example is given by

Here o +i-a=/ fl

[^+p(-l)ll+1
-g'-( -1)"]

and so steadily increases if q>(p + l)'/(p- 1).

Then we have

^.iiz. j-l. = + ,

on+i-ow jo-1 bn+1 -bn p-l
while lim(aw/&w)=2- 1, lim(/&) =?+ 1.

Since
(jo + l)/(p-l)>l,

these results agree with the extended form of Theorem II.

Ex. 5. If ow

we see that ow+i-an= 3 + 2(-l)ll+1
,

Thus (a/l+i-a,1)/(6H+i-6 /( ) oscillates between \ and 5, although

Again, if

we find
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'
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-
'-,
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where H, Hm are the upper limits of

(B B
l Bn^

,

f
/Bm Bin+l Bn\

l-2-> -j-, ->, -pJi
ana or i

,
--

, ..., i,
\-L ^Ij + n/ \-A-m -"-?n+i "'

respectively. This follows because the factors (VQ V^ (t^ v
2),

. . .
, (fri-i vn) and f are all positive.

Thus

and, if we replace J.r by its value in terms of a +a1+ ... +a r>

we obtain,* since H^Hm by definition,

i^
/

'i ~T
"

In like manner we prove that

where A, hm are the corresponding lower limits of Br/A r .

Secondly, suppose that the sequence (vn) steadily increases.

In the numerator of Xn the factors (VQ
v

x), (vx
f
2 ),

. . . ,

(vn-i~ vn) are a^ negative, while vn is positive, so that the

value of the numerator is increased by writing

hA r in place of Br , (r = 0, 1, ...
,
m 1)

and /iw -4r in place of Br , (r
= m,m+ l, ...,n l),

while in the last term we must put HmAn in place of Bn .

This changes the numerator to

= km(a v + . . .+anvn )+(Hm - hm)Anvn

+ (h tn .

-
h)(A llt Vm - " ru

-
. . .
- amvm),

and, since hm ^h, this again will not be decreased by omitting

the negative terms in the last bracket. Hence, since the

denominator is positive,

Y ^ ]
. (Hw - hm}A nvn 4- (hm - h)A inv in

*The numerator is actually

a v +' 0,1?! + ... + amrm -
(a -f-^ + .. . + am )vK

which is less than the value given
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-...-"

/' x.i,,.'-,,.-'/. '-...-
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V < //

Similarly, we find

av +a l
v

l+...+anvn

Ex. l'i-..v (
- iha; u divi-r.Lr- / be

provided that -. ....
... + 6,, [.Ins-

154. Other theorems on limits.

It follows at onre t'n>ni Theoivm II. of Art. 1">2. that if

->
i ha- a definite limit. fcendfl to the same limit.

Thus l.y writing 8m=a1+Oj+...+a 6 that \f a -

as <i I iin if, fh>- / fi>

I

lim (r/ -|- r /.,+ ...-!-
*"

*
I' 1 t!

;ivj, monotonic : l\it it saves

troul)K' to i-xjiiniiu- it lirr-.
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Of course the second limit may exist, when the first does not
;
thus

with ..._!
=

1, a-j,,
=

0, the second limit becomes
, although the sequence

{an) oscillates.

THEOREM III. If all the terms of a sequence (an) are positive,

and if lim (an+l/an) is definite, so also is lim an ; and the two

limits are the same. [CAUCHY.]
For, if lim (a?l+1/aw) is finite and equal to I (not zero), we

can write an= cn l
n

,
so that

lim(cn+1/cn)=l,

Thus we can find m, so that

1 < cn+1/cn< 1 + e, if n^ m.

By multiplication, we obtain

so that cw(l-e)
w< cn <cm (l + e)

tt
.

Hence cm (l-e)< cw <c,n (l + e).

Now limcm = l (see Ex. 4, p. 17),
n >oo

so that 1 e i lim cn ^ lim cn ^ 1 + e.

Now these extreme limits are independent of m and therefore

of e; and e is arbitrarily small, so that the inequalities can

only be true if each of these limits is equal to 1, or if

lim<v = l.

Thus lim n = I = lim (an+l/an).

But if lim (an+l/an)
= oo

,
we can find m, so that

<-i>n+il<*>n>Nt
if n^m, *

however great N may be.

Hence, as above, a>n/(f in> N >l ~m

or ai>^[ w/JT]i.

But lim K,/JV'] = 1 (Ex. 4, p. 17),
n x

so that lim an i J\r.

This minimum limit is independent of m and therefore oi V :

and N is arbitrarily great, so that wr must have

Lim On*a oo.
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and consequently we have only to prove that

lim -(Piq+piq*-i + - +Mi) = -

tv

Now, since pn , qn both tend to 0, we can find a constant A
which is greater than \pr and \qr \;

and further, we can find

JUL
so that

\pr \<e/A, qr\<e/A, ifr>//.

Then, if w > 2/z, we have

\prqn-r+i\<A\qn - r+l \<e, if r^$n, n-r^$n> p,

and \prqn - r+i \<A\pr \<e, if r^$n> p..

Consequently

-|(Mn+Mn-l+-..+Ml)l< e
>

if >2/*,
IV

and so tends to zero, as n tends to oo
;
thus the theorem is

established.

155. THEOREM V. If 26n
.

2cri are two divergent series of

positive terms, then

_ i .- 11111

Co+ ^4-.. .+C

provided that the second limit exists, and that either (1) cn/bn

steadily decreases, or (2) cn/6n steadily increases subject to the

condition*

where K is fixed.

Let us write for brevity

Let us also write cn/bn
= vn ',

then

gn = (^QO)^O+
Cn b v +...+bnvn

* The second part of the theorem is due to Hardy, Quarterly Journal, vol. 38,

1907, p. 269; the first is given by Cesaro, Bulletin des Sciences Matlnmatiques

(2), t. 13, 1889, p. 61. Of course A'>1 in case (2), in virtue of the t';u-t

that cn/bn increases.
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/-C-Vv'-lk
in,,/;' /-frJA'-

I'rniii which the same result i'. .ll-.vv-s as
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It is instructive to note that in the first case the series 2cn

diverges more slowly than 26W ,
while in the second case 2cM

diverges more rapidly than S6n ,
but the final condition excludes

series which diverge too fast.

It should be noticed that if sn tends to a definite limit, Theorem V. is an

immediate corollary from Theorem II. of Art. 152
;
for then both fractions

have the same limit as sn .

The applications of most interest arise when
'

b = \=...=bn
= l,

and then we have the result:

// 2cn is a divergent series of positive terms, then

Co+ Ci+.-.+c* n+ 1

provided that the second limit exists and either (1) that cn

steadily decreases, or (2) that cn steadily increases, subject to

the restriction

ncn <K(c + c
l +...+cn),

where K is a fixed number.

Ex. 1. A specially interesting application arises from applying the

theorem of Frobenius (Art. 51) to the series

where c
,

clt c2 ,
... form an increasing sequence of positive integers,

satisfying the condition just given.

Here it is evident that the series must be written in the form

so that ^o= o> ^i = o> > -4q>-i
= ao>

A Co
=a -}-a1 ,

A
Co+i

= aQ+ a
l ^ ..., and so on.

Generally we have A v =a + a
1 + ...-}- ant

if c + c
1 + ... + c,l_i^v<c + c

1 + ...+cn .

Thus, if 8n = aQ+a1 + ...+a1l1 we have

A + A! + ...+A V =s co+ 5
i
c
i + -- + *n-icw_i + s(v - c - c

1
-

...-c,,_

and therefore Frobenius's mean, if it exists, is given by

which we have proved to be the same as

provided that the last limit exists.

Ex. 2. Interesting special cases of Ex. 1 are given by taking

6-0+ 0! + . .. + c,,
= (w + l)

;2

, (w + 1)
3
, etc.,

for which K may be taken as 2, 3 respectively.
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EXAMPLES.

Irrational Numbers.

1. (1) If A is a rational number lying between a2 and (a+ 1)
2
, prove that

A -

(2) If

where a, pn , qn are rational numbers, prove that

and that p,
2 -Aqn

2= (a
2 -A)n

.

Thus if a is an approximation to *JA, pn/qn is a closer approximation.

[The approximation ps/qs is the same as that used by Dedekind (see

Art. 145).]

2. (1) If a, b, x, ?/
are rational numbers such that

prove that either (i) x= a and
?/
=

&, or (ii) <J(l-ab) and ^/(l-.r?/) are

rational numbers. [Math. Trip. 1903.]

(2) If the equations in x, y^

ax2+ %bxy + cy
1= 1 = la

have only rational solutions, then

J[(b-m)
2
-(a-l)(c-n)] and ^(<^

are both rational. [Math. Trip. 1899.]

3. If a is irrational and a, b, c, d are rational (but such that ad is

not equal to bc\ then
aa+ b and (

-are irrational numbers, except when a = in the former.

4. Any irrational number a can be expressed in the form

a a a

where a is any assigned positive integer and c1? c2 ,
c3 ,

... are positive

integers less than a. Thus, in the scale of notation to base a, we may
write a as a decimal

For example, with a= 2, that is, in the binary scale, we find

^2 = 1-01 10101000001....

5. If %, a
2 ,

a3 , ... is an infinite sequence of positive integers siuli

that n can be found to make (a^^... a,,) divisible by JV
7

,
whatever the

integer N may be, then any number a ran bo e\|n vssrd in the form

- ''
!

+..., cH <a n .
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9. Suppose that a is an irrational number which is converted into a

continued fraction

and pn/qn is the convergent which precedes the quotient an ;
write further

Qn+i=gnA n + q*-i,

where An= an+ + + . . . .

an+ i a,i+2

Then shew that
|

sin man
\

> KjQn+\ ,

if qn<m<qn+i;

and also that
|

sin qnair \

= sin (ir/Qn+i)
=

(1 + en)7r/$,i+ i ,

where en tends to zero as n tends to oc.

[HARDY, Proc. Lond. Math. Soc. (2), vol. 3, p. 444.]

Monotonic Sequences.

10. (1) If in a sequence (an) each term lies between the two preceding

terms, shew that it is compounded of two monotonic sequences.

(2) If a sequence of positive numbers (an) is monotonic, prove that the

sequence (bn) of its geometric means is also monotonic, where

(3) If
<?!,

c2 , ..., cp are real positive numbers, and if

prove that the sequence (ju,n +i//^n) steadily increases; and deduce that

the same is true of //,.

11. If Sn= '

where ar is positive and independent of ^, shew that if 2ar is convergent,

its sum gives the value of lim n (see Art. 49).

Conversely, if lim n exists, shew that 2ar converges, and that its sum

is equal to the limit of Sn .

Apply to Ex. 12, taking k= l
;
and to Ex. 6, Ch. XL, taking &= 2.

12. Apply Cauchy's theorem (Art. 152, II.) to prove that

1 [~n
,
n - 1 n - 2

,

1

where C is Euler's constant (Art. 11).

Prove also that for all values of n, the expression lies between and 1.

[Maf/t. Tri[>. 1!H>7.]

13. Apply Stolz's theorem (Art. 152, II.) to prove that if

Inn ( +!- + A
-"J=,

where A.>-1,

-

then -T-.
H 1 + A
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16. Given any infinite set of numbers (&) we can construct a Dedekind

section by placing in the upper class all rational numbers greater than

any number &, and in the lower class all rational numbers less than some

number k.

This section defines the upper limit of the set
; prove that this upper

limit has the properties stated on p. 12 for the upper limit of a sequence.
Frame also a corresponding definition for the lower limit of the set k

;

and define both upper and lower limits by using the method of continued

bisection (as in Art. 150).

17. The limiting values of an infinite set of numbers consist of numbers A
such that an infinity of terms of the set fall between A-c and A+ e,

however small e may be.

Given an infinite set of numbers (k) we can construct a Dedekind

section by placing in the upper class all rational numbers which are greater
than all but a finite number of the terms k, and in the lower class all

rational numbers less than an infinite number of terms k.

This section defines the maximum limit of the set
; prove that the

maximum limit is a limiting value of the set, in accordance with the

definition given above
;
and further that no limiting value of the set

can exceed the maximum limit (compare Art. 5, p. 13). Frame a corre-

sponding definition for the minimum limit and state the analogous properties.

Goursat's Lemma.

18. Suppose that an interval has the property that round every point P
of the interval we can mark off a sub-interval such that a certain inequality

denoted by {$, P} is satisfied for every point Q of the sub-interval. Then

we can divide the whole interval into a finite number of parts, such that

each part contains at least one point (P) for which the inequality \Q', P} is

satisfied at every point Q' of the part in which P lies.

[Bisect the original interval
;

if either half does not satisfy the condition,

bisect it again ;
and so on. If we continue the process, one of two

alternatives must occur : either we shall obtain a set of sub-divisions which

satisfy the condition, or else, however small the divisions may be, there

is always at least one part which does not satisfy the condition.

In the former case, the lemma is proved ;
in the latter, we have an

infinite sequence of intervals (, &), each half the preceding, so that

bH+i-an+i = $(bH -aH) and aw^all+1 <6,1+i^6n ,

and the condition is not satisfied in any interval (a,,, 6,,).

Now the sequences (), (&) have a common limit /
;
mark off round /

the interval (/, g) within which the inequality {Q, 1} holds. Then we

have an= = &n an^ we can choose n so that bn - d
lt <l-f=g-l.

Thus ">/+(& -0=/ and l>n<g + (l-<*)^ff,

so that the interval (a n , />) is contained within the interval (/, g) ;
and

tlii-refore the inequality {^, l\ is satisfied at all points of (<(, /;). That is.
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APPENDIX II.

DEFINITIONS OF THE LOGARITHMIC AND EXPONENTIAL
FUNCTIONS.

156. In the text it has been assumed that

d , 1

and a number of allied properties of the logarithm have been

used. It is customary in English books on the Calculus

to deduce the differential coefficient of log x from the ex-

ponential limit (Art. 57) or else from the exponential series

(Art. 58). It would, therefore, seem illogical to assume these

properties of logarithms in the earlier part of the theory;

although, no doubt, we could have obtained these limits quite
at the beginning of the book. But from the point of view

adopted it seemed more natural to place all special limits

after the general theorems on convergence. It is, therefore,

desirable to indicate an independent treatment of the logarithmic-

function
;
and it seems desirable to use this way of introducing

the function in a first course on the Calculus.*

157. Definition of the logarithmic function.

There appears to be no real need for the logarithm at the

beginning of the Differential Calculus, but we require it in

the Integral Calculus as soon as fractions have to be integral' M!.

At first it is probably best to denote \dx/x by L(x), and post-

pone the discussion of the nature of the function /,(.') until

*See a paper by Bradshaw (Annal* of Matkematic* (-2), vol. 4, 190,'i, j>.
.~>l>

sunl Osgood's Lehrbitch der Funktionentheorie, Bd. 1, pp. 487-500.
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For instance, we get from (3),

But in numerical value < Z(|)|<1.

Again, if we take an ordinate QN, such that ON=2.0M,
we have

L('2x) -L(x) =PMNQ> rect. MN . NQ,
and <rect. MN.MP.

That is, x(^)>L(2a)-L(x)>x(^)t
or

Thus, we get 1> Z(2)>J, since

and so on.

It follows by addition that

Now, if X>XQ ,
it is evident from the figure that

Hence (n+ 1)> Z(2
+1

) > L(x) > Z(2)>K
if 2n+1 >a;>2n

,
and it is evident that L(x) tends to infinity

with x (Art. 1, Note 2), or

(5)

Again, if we write x = l/t, we have

cZa?_ dt

~^~ "T

so that Z(^) =
a;c = - = - ^( or

(6)

Hence, as a? approaches zero, since Ifx tends to infinity,

L(x) tends towards negative infinity, or

(7) limZ(aj)=-oo.
a;->0

Again, the function L(x) is continuous for all povifiw
values of x. For we see at once that \L(x+ h)-L(x)\ lies

between two rectangles,' one of which is equal to \h\/x and

the other to \h\/(x+ h). Thus

\L(x+h)-L(x)\<c, if
\

\\ Inch proves the continuity of L(x).
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158. Fundamental properties of the logarithmic function.

In the formula f
u dx

change the independent variable from x to g by writing
x= g/v; we find then

or, going back to the definition,

= L(uv)-L(v).
Thus

(1) L
From equation (1) it follows at once that

(2) L(un)
= nL(u),

where n is any rational number.*

Suppose now that e is a number such that L(e) = I; the

existence of e follows from the fact that L(x) is a continuous

function, which steadily increases from x to +x as a?

varies from to oo (see Art. 149).

Then equation (2) gives, for rational values of n,

(3) L(e") = n,

which proves that L(x) must agree with the logarithm to

base e, as ordinarily defined; we shall, therefore, write for

the future logx in place of L(x).

We can obtain an approximation to the value of e by

observing that, when n is positive, (3) of Art. 157 gives, on

writing x = l + l/n,

(4) 1

n/ n+1

(lV
l

1 +
)

tends to 1 as its limit; and

so, since the logarithmic function is continuous and monotonic,

must tend to e.

*
Equation (2) maybe used (see Bradshaw's paper, 4) to establish the exist-

ence of roots which are not evident on geometrical grounds ; for example, th-

lifth root. Of course, from the point of view adopted in this book, it is rnoiv

natural to establish the existence of such roots by using Dedekind's section.
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The error in the approximation (8) can easily be shewn to

be about b[(a,b)/af, and in Napier's work (a b)/a does not

exceed* 5/10
5

;
so that Napier's approximation is right to the

13th decimal place.

Napier's definition of a logarithm is exactly equivalent to

the definite integral which we have employed ;
he supposes that

the velocity of a moving point P is proportional to the distance

of P from a fixed point 0, and is directed towards 0; so that

the time represents the logarithm of the distance OP, if the

initial distance OP is taken as unit.

159. The exponential function.

Since the logarithmic function logy steadily increases as y
increases from to + oo

,
it follows from Art. 149 that, corre-

sponding to any assigned real value of x
t
there is a real

positive solution of the equation

We call y the exponential function when x is the inde-

pendent variable and write y = exp x
;

the graph of the

function can be obtained by turning over Fig. 41, p. 399 and

interchanging x and y. The figure obtained is shewn below :

-2-1 01
Dotted curve, y =

FIG. 42.

It is evident that the exponential function is single-vain

*
Generally, the function inverse to a given function is single-valued in any

interval for which the given function steadily increases (or steadily decreases).
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The following inequalities are often useful:*

(6) e*>l+#, for any value of x.

(7) e*<l/(l-aj), ifOO<l.
These follow from (3a) of Art. 157.

160. Some miscellaneous inequalities.

Since, when a;> 1, we have from (3) of Art. 157,

(1) \OgX<^X 1 <05,

it follows that if n is any positive index,

(2) \vgx
n <xn or log x < xn/n.

Again, from the same article, we see that if x and n are

positive,

x/(n -f x) < log (1 + x/ri)< x/n.

Thus, we find

(3) '

Since lim=#, and since the exponential is a continuous
n->w

function, it follows from (3) that

(4)
* =

lim(l + |)".
71 >t X 't''

Similarly, we can prove that if n> x > 0,

1
_

When n is a positive integer, we have

K)"='+<'('-:>-
and since all the terms are positive, this gives, from (3),

and consequently, by taking the limit as ?i->oo,

(5) e*^l+a:+ ia
2

,
if x > 0.

Similarly, we can prove that

if ./>().

*The geometrical meaning of (6) is simply that the exponential cutvo

entirely above any of its tangents.
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161. Some limits
;
the logarithmic scale of infinity.

\\V have seen in c2) ..!' th.- last article tliat

<./" //, if s> 1, n >0,
and BO -

I

I I. -IlCe limllo^.r fl

x *co

mply
( 1 > lii. i <!<>-./ if // >0.

X'-^OO

Since loga= log (I/a:), tin- last equation is tli.- same as

liui(.'-"loga:)
= 0, it' n >0.

(3) of th- last article we SCt- that

(x/n)<e*>
or < ,. - if >0, /?>0.

U, /j-n^ ,,-aj^

and therefore liin(./-'v---
f

)
= o,
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is thru
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Art. l.'n' ;ilx)ve.

HUM ,^=0,
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Si,,,.: ?* 0^*
Inn / .

" >0.
g OD ** JT >oo A

It \ve write </ I m-l raise the last to the 7ith power, we get (4).

Th<- limits (!) (4) form tin- basifl "*^ CO/

It follows from (1) thai l^-./- tends to oo more slowly
than any positive power of '. li\v.-\vr ^mall its index may

e still more slowly,

ami so on. On th- other hand, we see from (4) that e* tends



406 LOGARITHMIC FUNCTION. [AP. II.

to oo faster than any power of x, however large its index may
be

;
and hence a fortiori e? tends to oo still faster, and so on.

Thus we can construct a succession of functions, all tending
to oo

, say,

. . . < log (log x) < log x < x < ex < ef < . . .
,

and each function tends to oo faster than any power of
the preceding function, but more slowly than any power

of the following function.

It is easy to see, however, that this scale by no means exhausts all

types of increase to infinity. Thus, for instance, the function

e(loga:)2_ ^loga;

tends to oo more slowly than e
x

,
but more rapidly than any (fixed) power

of x.

Similarly, a*= e* l **

tends to infinity more rapidly than e*, but more slowly than e? or than ef.

Other examples will be found at the end of this Appendix (Exs. 11, 12,

p. 412).

162. The exponential series.

If we write

we have

Thus .(l-e-*Xn)
= e-*(Xn-Xn _,)

= e-*

and so, since 1 e~ xXn is zero for cc = 0, we have

a result which can also be easily obtained by applying the

method of repeated integration by parts to the integral

i>-

Multiplying the last equation by ex
,
we find
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But when X in th<- last integral i> losa than

I. and 8O

I

3.11+1

ori
e

'

"J
=
(^+i?

\\'li. n . i~ (= say),
-'

is less than e*, and so

irIJo
-

' >

w.- have bherel

l-f-^-fC-r.-.-h'^-rA',.

In t-i

A'.i < T r^-r., when ./ ^> 0,

wh-n ./ < 0.

lini /.' = <) (Art. -2, Kx. 4), and so

.,. + ... to ^ .

163. The existence of an area for the rectangular hyperbola.
\Yc inv.- here a proof thai tin- ivrt angular hypi'rl>ola has an

area which can )> found l>y a ddinitf limiting process; this

,ual. sincr l'c\v Ku^lish hooks ^i\- any ad'juate
arithin.'t ic lisciission of tin- aiva of a curxv. The method

applies at once to any curve which can he divided into a //

numhcr of parts, in each of which the ordinate steadily increases

or sti-adily deereasee; although the at-tual proof refers only to

a curve lik-' the rectangular liyp-rl)ola in wliicli the ordinate

constantly < Increases.
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associate with this strip an outer rectangle PMNP' and an

inner rectangle Q'MNQ\ now bisect MN at M
l
and draw the

ordinate R^M^ This gives two outer and two inner rectangles ;

namely, PMly R^ outside the curve, R^, QM1
inside. But

the sum PM
1+R1

N is obviously less than the original outer

rectangle; and R
1M+QM1

is greater than the original inner

rectangle.

If we again bisect MM
l
and M^N, we obtain four outer and

four inner rectangles ;
and the sum of the outer rectangles has

again been diminished while the sum of the inner has been

increased by the bisection.

When MN is divided into 2n equal parts, let us denote the

sum of the outer rectangles by Sn and the sum of the inner

rectangles by sn . Then

S >S1 >S2 >...>Sn >...,

and s < s
l < 8

2 <...< <....

AISO 8n >Sn , (71
= 0,1,2,3,...).

Now, from the figure, we see that the difference S
1

s
l

is

the sum of the two rectangles PRl}
R

:Q, which is equal to

Similarly,

and generally Sn- sn
= J (Sn _

x
- sn .

x )
=

. . .
=
^(S

- s
).

It is therefore clear from Art. 149 that 'Sn and sn approach a

common limit as n increases
;

this limit, say A, is called the

area of the figure PMNQ.

But it is essential to prove that we find the same area A
in whatever way the base MN is supposed divided to form
the rectangles.
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I. .-i i denote the turn <>\' U wh.-n MN is

ili\ id.'d up in any n Vt <>r irr. nd l.-t /r denote

tin- sum <!' i in- oorresponding inner Th-n a glanoo
at t li.- li-iin-

*
will shew tliat !'< w.- 1.

S> l
- < 5

wli. uite independent "!' n.

'i'liu lini N
n
a .-1 = lini

We 1. 2=^, <T_ J.

llut 1 T v/M/ -QjV),

\\hnv ,-)' is tin- linsultli >!' tin- wil-st _! .main.-.l in

the SHIMS ^l. rj.

llr: MII ohOQf LCb that

2-(r<e, if
j
S<

ami tln-r't'. .!-. since = /!=T. w- 1

Thus. Hiii }L = J = liin T.

^^o ^^.0

That is. w- olitain the *<i ,n> aiva .1. in whut-\vr way tin-

lias,- .17 A' is ilividol. !>,<;,/.,/ f/,,,f //,/ /

// //'/> /" :' /-a

Extensions of the definition of integration.

If tin- function t<> lr iutr'_r i"itr.l i> ii"t mOOOtonic, hut tinitf in tin-

int<-i\al (./, A) (f>r (Ictinitinii, s.-.- K\. i':i, p.
::

taking //,-. /'
. - tin- upj-r ami l<>\v.-i limits i.f tin- fum-timi in th- int-'i\;il

y r ,
an.l Writing $n ^//-

\vlin-.-
y,.

is ..l.tainril I iy divi.linur (". M ii;

it is easy to see that h iiion.t,ni.-, ami BO liavr

limits as i< trmls t> intinit limit> iict-d n-a ! f|ual.

have gone at prrst-nt ; hut we m\v intr<du.-f A

Supjxisi' that in //// sMl-iiivi-j,,n - Qto -ul-int<-i-\ aU
,j

.

\v.- denoi n thf iippn- and b-w.-r liin.-

function in th- intn \al
// ... then it nn; il.lr t. tind c> - a- i

i

1 // rWr <,
ill modes of <livisic.ii ..t' th.- int. that

//,.

leea thai

luivo only iiulio;it-.l the rc.-t.ui-;. |

latin hciiiu' <lttel : th.

for IT an.
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Under this condition we have obviously

liin(-) =
(),

so that Km Sn= lira sn = A , sa}*.

Then, just as above, we prove that for any mode of division

and by Riemann's condition,

S-o- <e, if
yjr <8.

Thus Km2= J=limcr.

It is easy to shew that a continuous function is integrable ;
for (see

Ex. 22, App. I.) we can find 8 so that <or < c/(b
-

a), if
rjr <S. Thus we find

2i7r a>r <, because ^r)r
= b-a.

It is also easy to extend the definition of integration to a function of

two variables, say .r, y ;
let us consider the meaning of

///(.r,
y)dxdy,

where x ranges from a to 6, and y from a' to 6'.

If we divide (a, 6) into 2m equal parts and (a', '&') into 2n equal parts,

we obtain two sums

*^m, n
== 2jtl

IL, vifj., v i &m, n= ^'^fJ., v / /u, v>

where H^ v and AM ,
V are the upper and lower limits in a sub-rectangle

'TV,*. Then, just as above, we see that Sm
,
n decreases if either m or n is

increased, while sm<n increases
;
thus ,,,,

and sm>n have each a limit when

wi, T& tend to infinity in any manner (see Ch. V., Art. 31).

Further, if f(x, y) is continuous we prove as above that

Km Snlt
= lira sMi n F, say.

Now we have, from the definition of single integrals,

/ \ Cb
fb'Km

(
lira Sm>n )= I dx \ f(x, y)dym *oo \ M >-oo / ^

and Km
(
Km SW) B)

=
(* dy (* /(a?,

w > \m^ao / '' '

so that these two repeated integrals are each equal to F, and therefore to

>each other.

EXAMPLES.

1. Prove directly from the integral for log# that

,[For we have log(2) = J*^,
If we take these integrals from 1 to 1J, from \\ to 1J, etc., we find that



Il.'l
111

2. W

t.-h th.-ii gra]

3. If >i, t -*l as tends to
, prove tint

'.

Dcdll.T th;,t

l

...+o

\\hi.'h ( ,f tin- t\v. <>na

(*' )

1>r

' l.-j.-n ithin- ami ii"t.- that

181.]

5. If /' is nmnrrirallv l-ss than a lixed number A, iiuU'|H-i.

and if

.og (l
+

<

then lim.r

log( 1 + i +_L_
\ /' // l"ur /' /' /' log?i

=

Art 1-2 (1).]

6. Tsc the last t-xain.!!- t. >h.-\v that if

'| W I-

. tormi 1" , converges if /x>l,and ..thorwisr diverges.
iiat tin- i

_] )-<"+!)

is div.-i^riit. Compare Art IS,

7. If 1
> - ". pfov that .- -(l+./-)!lg(l +

1906.]

[Write log (!+./) = '2, and UM th.- t '-e'f > 2^ if is i

8. Provt- that as - rank's fr..m -1 to x, tlu- funrti..ii

1 _1
log(l-fj-) -

iitinuous and steadily decreases fr'in 1 to 0.
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[From the last example, we see that the derivate is negative ;
dis-

continuity is only possible at #= 0, and when \x\ is small we find that

_J_ -l_l-.a
log(l-Kr) x 2 12"*"

the series converging if |.r|<l.]

9. Shew how to determine X so that

e*>Mxy, \tx>X,
where M, N are any assigned large numbers.

[We have to make
x> logM+ Nlog x>

which (since log x< &Jx) can be satisfied by taking #>21ogJ/' andlG.V-.

But as a rule these determinations of X are unnecessarily large.]

10. The logarithmic function logx is not a rational function of x.

[Apply Art. 161.]

11. What is the largest number which can be expressed algebraically

by means of three 9's ? Estimate the number of digits in this number

when written in the ordinary system of numeration.

12. Arrange the following functions in the order of the rapidity with

which they tend to infinity with x :

x*, # l0
**, (log a?)*, (logo?)'

10**)8

, (logtf)
10* 10

**, (log log .r)^
10
**.

Indicate the position of each of these functions in between the

members of the standard logarithmic scale.

13. If we assume the binomial series for any integral exponent, and

suppose n to be an integer greater than
|

x
\ ,
we find

Deduce that, if x is positive,

and so obtain the exponential series.

14. Shew that

(-1W / 1 1\*
i (nl) i V 2 a/ ill

[If the product on the left is called v, we get

dv e*-l
,

x
,

a?

^- V =-^-
= 1 +

2!
+

3!
+-

Taking v = 'Zanxn/nl, we get at once, since o = 0,



ii.
I

LMPLE8

vre find tin- idmtit \

whi.-h i- .

rly.J

15. Sh.-u that. .iH *-*<),

G^-r! v

16. If x -,
=

(l
-'"" r

'

. 11). |.|-..\i-
t

-

<x < r '-

[It will be seen that

_ [
l_Mc_ }_

\

X- X-J0/4 (W
-.'

whirli give* tin- result.]

17. A good a|)ii-.'.\iin:iti.n t. the fuii<-ti.. n ..f K\. 16 l>y taking

1

the ermr in wliieli is <.f tlie 'il.-i 1 (I"" 1

[A. L"i><;K.]

[Aj.j.ly Kuler's . 1 :)).]

18. I'I-MV. that

I=^Y^_
: (/< + ): J !\fl n-f2

T
8!

[Dill'eiviitiutr, and l...tli -id.- irdu-,- t. .

19. Shew that the Mqn<
=
e-, 3

=
e'\ 4

= <-

Ifl t< infinity nmrr rapidly than any ni.-nil.er of tli- ial scale.

20. I'mve tliat tl

2(loj

convergee it'
/

-i or it"
/

I ami
/

1 : and <.tli-i\\i>r d



APPENDIX III.

SOME THEOREMS ON INFINITE INTEGRALS AND
GAMMA-FUNCTIONS.

164. Infinite integrals: definitions.

If either the range is infinite or the subject of integration

tends to infinity at some point of the range, an integral may-
be conveniently called infinite* as differing from an ordinary

integral very much in the same way as an infinite series

differs from a finite series.

In the case of an infinite integral, the method commonly
used to establish the existence of a finite integral will not apply,

as will be seen if we attempt to modify the proof of Art. 163.

We must accordingly frame a new definition :

{00
f(x)dxfff(x)dx when this limit exists.

.. . a

Secondly, if the integrand tends to infinity at either limit

fbf(x)dx
a

as equal to the limit

lim
[ f(x)dx (S> 0)

6->0 J (t+8

when this limit exists.

*
Following German writers (who use uneiyentlich), some English authors have

used the adjective improper to distinguish such integrals as we propose to call

infinite. The term used here was introduced by Hardy (Proc. Lond. Math. ^

(ser. 1), vol. 34, p. 16, footnote), and has .several advantages, not the least of

which is the implied analogy with the theory of injinite series.
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If tin- int'"_;!-an'l tendfl t" intii. i point within tin-

ran-.- oi' in to li\il.- i

i^ral

into fcwo, ami tli- .-uM il-tim- tin- int - ral ly :

I liml liml >

J i- ,-"'.

But in n-rtain proLL-niv il,,. t \\ limit^ in tin- la*-:

ln.th intinitf. \vliil.-
|

tli- two int.'-raU tends to

a tinitr liin t a tinit- limit : \v.- then

tin-
/

r\ /,-)^=ii.- :

' -i-
['/(./) //*].

It is at one,- .-viilmt tliat bend tin- u^.- .!' tin-

temuj aii-1 OA apply t> these

definitiona

Exs.

1

/

>

%- ftr^= liiM
IA
;='

JO A A-.

,

n/.

1

"-

/"fr
di- . /./

,^ 1 "
I

-T+lim
pi !

K)-'-5
;

i-*o 2

n
J-a X 5_o\.

=
i(" (s

\\hfic in tin- la>t i\\.. int. >u])jisf / and /< t

shnuhl ik.-d that in tin- la-t CMQ ^- ihoold

8

ml to a tlffuiiu- limit BI
,
doea so.

Maik, < 1. 1.
j.. -.Ml.
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Exs. (of divergence and oscillation).

dx
/* .

diverges and I sm.vdx oscillates,

l dx ,. .-
diverges and . am I I oscillates.x Jo x* \xj

It must not be supposed that the two types of infinite

integrals are fundamentally different. An infinite integral of

one type can always be transformed so as to belong to the

other type; thus, if /(#)-> oo as x->b, but is continuous else-

where in the interval (a, b), we can write

. x a a-\-b
=7 or x - f

b x

and the integrand in is everywhere finite.'

Ex. f
1-*-/-

Jo d-^2
)
2 -^

(

By reversing this transformation it may happen that an

integral to oo can be expressed as a finite integral.
rao r\

Ex. When -
= !/, / ar'd-x becomes

J^
%'-

2
d%, which is a finite integral

if 5^2 (both integrals still converge if 2>s>l).

It is also possible in many cases to express a convergent
infinite integral of the second type as a finite integral by a

change of variable. Thus we have

o(l x2
y*

by writing x = sin 0, and the latter integral is finite if f(x) is

finite in the interval (0, 1) (for definition see Ex. 23, p. 395).

Kronecker in his lectures on definite integrals states that such

a transformation is always possible, but although this is

theoretically true, it is not effectively practicable! in all cases.

* Care must be taken in applying this kind of transformation when the infinity

of f(x) is inxide the range of integration. Here it is usually safer to divide

the integral into two, as already explained.

t If /()-* oo as x -a, we can write / J'(x)dx= i-
)
and introduce as a

Jm
new variable. Similarly in other cases ; and in the same sense we can always

express a divergent integral in the form / </;.
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165. Special case of monotonic functions.

Although. as we have pointed out in tin- last art

definition of a definite integral iv-jinn^ in gen.-ral a i

for ilif case of an infinite integral. can obtain a

direet definition ,,f tin- as tin- limit of a sum, when

integrand steadily increases or steadily 'Increases.

f(x)dx tin- function f(x)

steadily lrrivasr> to o for values of x greater than c; w- :

tli.-n cMnsi.lri- only tin- iiit.-^ral
j
/ 'Because the integral

i'alls un.l.-r tin- ordinary rul.-s. 'I'ln-n let .'',,(='),

. be a seju-! fcluefl in- to /: : r liave,

I 1.

(*+,-' I

>' /-'
1 > (

Jx*

Thus, ii' tin- integral /<.')</./ to the value /.

:,)^I^" -'

< )f th- two MM-ii-s in (I), tin- srconil certainly converges, in

vii-tut- >f tin- COnVi the integral and the fact
"

the contains only j>ositi\e tei-ms. The tii-st need not

conver-v, it' tlm rate of increase of <
' i-- sufficiently rapid:

instance, \\ith ./ -J-" and /()=] ./-. it will l>e found that

every t'-nn in ti

Hw. -\-i-r. l.y taking Xn to l.e a }.i-operly chosen function of

some parameter l> (as well as of ,< . we can easily en^un- the

Convergence of lli io (1); and we can also |.n>vr that

the t \\ have a common limit . i^ made to

tend t" ZrO ly varying//: this common limit must he

to /. in virtue of the int-.|ualiti'^ (1).

Miple. si a^ is independent of // and

eijiial
to A, say: then .r n

= r+nlt and we have

-A[/(c)+/(+A)4 > + ...].

i ,-, . =
I
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It follows that the difference between the two sums is hf(c),

so that both are convergent, and their difference tends to

with h
;
hence

In like manner, if xn+1/xn is independent of n and equal to

q, say, so that xn= cq
n

,
we have

and

Thus we can again infer the convergence of the first series

from that of the second, and we see that

/-co

Ex. 1. Consider I xe~x dx, with xn=nh.

We have then 7=
h X)

a value which can be verified by integration by parts.

/oo
x~*dx, (where s>l).

Here write xn=cq
n

,
and we get

by applying one of the fundamental limits of the differential calculus.

Ex. 3. It can be proved by rather more elaborate reasoning that

if f(x) steadily decreases to as x tends to oo
,
then

r oo r<*> <t

/ sin xf(x) dx= lim h ^f(nh} sin nh, I cos xf(x)dx= liiu h ^f(nh) cos nh.

Let us consider the simple example

r sin x ,

),
**

the sum is then // + (sin h + $ sin 2A + ...)
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1

DEFINITIO -H'.i

Sin, ,
I I,---, than -27T), tic-

is UTT M tin- v.

givei tin- limit Ar ; th.it tlii- i^ivi- th-- correct \ the

i.il i -an be verified l.y
< I. Art. I

Ex. 4. The reader may verify in th- SHIM-
\\.-iy

that

Jo -?

Ex. 5. liy means ..f tin- int.-^i;il
|

./' - ''/r, w- ran |r-.vi- that

lim/, v
(<--*+ 2*- l e-

<* + 3*-'e- ;i* + ...)
= I "./-'

v-o ^

r

.It whi.-li has already been found in Art. "1 ly an-.th.-i inrtho.!.

In lik- iiiaiiin-i-. if /'(./) oe U flB -<>. Inu st-alilv decreases
ft

as a; varies fr.in to 6, we can ji-<vt: that \vli.-n f(x)dx

erges, we have

f( iI

JO

Ex. 6. Take [\ogrdx', we have t.. find

lim l>(\
-

= 6 (lo- />)-/>,

a- v. int-'^i.tt inn.

In tin- piwimis \\-Mi-k \\.> have SMMI how to evaluate an

infinite intr^Ta! ly calculating the limit of an infinite 9BTJ

\vln-n the i-anu'. is tinit-- WG can also "l.tain the result as the

limit of n /in iff series; that is. \\e can replace a loulle limit

l.y a single limit. (See ah

Thus, suppose that in tlie < nt inte--ral f(x)d& tlie

i nt - -^ra nl
' an<l that /'(./) steadily 1

from " t<> /'. Then \\i-it. >> >i .- ////. and an argument similar

to that of Art. II will shew that I i/./- lies liet\\-en the

l< {/(" -f /' )+/> + 1'A )+ ... +/</>-/' )]

and
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Now, as 7^0, the integral tends to a definite limit
;
and the

difference between the two sums is Ji{f(a+ h) /(&)], which
tends to zero with h in virtue of the monotonic property of

f(x) (see pp. 423, 424 below). That is,

P
f(x)dx = limh[f(a+h)+f(a+2k)+...+f(b)],J a 7t->0

which gives the value of the integral as a single limit.

ft
Ex. 7. Consider

J^x-'dx,
where 0<s<l.

Write A= -, and we have to find

(by Ex. 1, Art. 152, above).

Ex. 8. In the same way I \Qgxdx is found as

liml 2log(-) = limlog( YT=-1 (Ex. ], Art. 154).6 *

Ex. 9. If we divide the last equation of Art. 69 by sin 0, and let 6
tend to zero, we find, if a= 7r/

/

n,

n= 2"- 1 sin a sin 2a . . . sin (n
- 1 ) a.

Now change from n to 2n and write h for a
;
we get, pairing the terms,

Thus, extracting the square root,

sin A sin 2A... sin (?i -!)/$ =A1

-", (if A= 7r/2w),

and from this we can find / "log sin #.

For this integral is equal to

lim h [log sin h + log sin (2/<) + . . . + log sin (nh)]
h M)

=
Ji!." 27i

f* log n ~(n ~ x ) io 2
]

= - TT log 2.

166. Tests of convergence for infinite integrals with a

positive integrand.

If the function f(x) is positive, at least for sufficiently large
rA

values of x, it is clear that the integral f(x)dx steadily
J

increases with X; thus in virtue of the monotonic test lor
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integral t

;,,/(

- .1

\.

In practic.- tin- usual ni.-t!i."l !' applying thlfl ted

nppi-al to tin- principle of < is in the case of WM

!' positive terms; in i'a-t. ii' i positive function

which 't(x)dx COIIN.T^,--, tlii-n /(./)</./ also converges if

any rat-- for valu.-s of iC
[

than M>me

tixrd nuiiili'-!

I

(Le < [ | |

.

ami tliis la.st rxpn-ssion is in<l-j.'nl.-nt of \.

Thus, suppose we ooond '.\\hereaispo-
[">;' _Mii\.- ; fr.iin Art. I'll :il'.v-. \v.- lind that ./^e'l^-^O a JT-^OO,

>n that \v.- eu I'-t.-riniiH' '
'

A-**r

<l, if ./->c,

iind tlion i-=.r^e"
ar <e~ia

-', if r>c.

-,
1

1. ! 1 ". Ait. i;i) / e~^*dx is convergent, and conse-

/

J

.^e~
n

If in write A'=e*, we fin.l tliat

\-fA'-(
l +

\t.\'.

th (a * n
'/./- i< .-(.nvcr^nit.

be niultijilifd tc. ;u l.y th.- ;ii<l of

iiinic scale of inlii,:
1

Tim- ",/ a <ni>/ a rU Ii

fluif one "/' ///

'l ,<>o ->,
/

fi'dl J(
J

Tin- coinparisoii t.-st I'm- <l I'un- as follov

h' G Iwaya ]
.:nl <;< iln-n

80 also is
j

at any rate at't.-r a crrtain

valur
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We have proved (see the small type above) that if a is positive, c can be

found so that

whatever the index /? may be.

Now
/
Jc

and this expression tends to oo with A, so that the integral to oo is divergent.

Thus
I
y&e^dx also diverges.

If a=0, it is easily seen that this integral diverges if fi= I.

By changing the variable, we deduce as before that

diverges under the same conditions.

Joe
f(x)dx diverges if we can find

a

an index a^iO, such that one of the conditions

(i) f(x)> J5(loga;y
ia- (1

-
a)

4 a >
(ii) /()> BxPer", J or a = 0, /3^-l,

is satisfied.

These conditions are analogous to those of Art. 11 for testing

the convergence of a series of positive terms; and, as there

remarked, closer tests can be obtained by making use of other

terms in the logarithmic scale (although such conditions are

not of importance for our present purpose). But one striking

feature presents itself in the theory of infinite integrals which

has no counterpart in the theory of series. An integral

f(x)dx may converge even though f(x) does not tend to the

limit zero. Naturally, we must then have an oscillatory

function, for lim /(&) = () is obviously necessary in all cases of

convergence; but we may even have lim/(#) = oo . To see, in a

general way, that this is possible, we may use a graphical

method.

n 1
l-i... IS,

Consider a curve which has an infinite series of />'/, x, of

steadily increasing height; then, it is quite possible to suppose

that their widths are correspondingly decreased in such a AV.-IV
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that the areas of the peak- t'.nn a oonvergeni series;

(|ii, ntly f(x)dx may con

i in pai ti'-ular tin- fun.-tKui

-r* (l+.r-sin
2
.r), (a>/3>0).

1

i itli .c
ft

~ a
,

It'll its Xiaj.l

to tin- carve // i^, at every point fr \\hi<-h ./ is .-i multiple ..f r,

In tin- intnval fi< . we have

-

thai
(n+1)

f
'

this it is evident that
|

/'(./)</./ .'..iivrrL't-s .,r diverges with the

';th;r /> 2(/?+l) or a^2(/?+l).
And ^eiu-rally, if </>(#), Vr

(A%) steadily to oc with *, tin- integral

r 44>
J l + v

^rs if l\/i(/< -f 1) [VK*)P converges and divrr^-s if -00'

diverges.

/"* o^dor
Ex. 1. converges "i divergee according as

-/0
l+j<r\*inx\

a>(j+l or a^j8+l. [HAUI.Y.*]

Ex. 2.
/"</,( .nrergM with

-^|^^]
and diverges

With
-''

[IIAK..Y.]
irff)

Ex. 3. /"<(*)-- ih 1
jfefi

1 divergesJo ^
-
()

with I'
;

M/ ' :r
. [1M- Hois RBTMOSI..]

111 spit.- !' tin- last rrsuh, \v, can
i'1-ov.- (a.s in Art.

86) that ''I'/ decrease*, tl> i = l)

Accessary for t/<> <jence of I /

.Messenger of Math> mmiX April 1JX-. 111.
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For here we have

thus for convergence it is necessary to be able to find A so that (/x
-

A)/(/x)

is less than e for any value of p greater than A.

Hence lim #/(#)=() is necessary for convergence. But even so, no such

condition as lim {x log x)f(x)= is necessary in general (compare Art. 9);

but it is easy to shew that if (for instance) xf(x) is monotonic, then

x\ogxf(x) must tend to 0. More generally, if <f>(x) tends steadily to x
and f(x}l<f>(x) is monotonic, then f(x)<j>(x)l<f>(x') must tend to zero

;
this-

may be proved by changing the variable from x to <(#). [PRINGSHEIM.]

It is perfectly easy to modify all the foregoing work * so

as to apply to integrals in which the integrand tends to infinity,

say at x = 0.

The results are : The integral \ f(x)dx converges (if b is less
Jo

than 1), provided that we can satisfy one of the conditions

where either (i) a>0 or (ii) a = 0, /3< 1.

On the other hand, the integral diverges when

where (i) a<0 or (ii) a = (), /3^-l.

167. Examples.

To illustrate the last article, we consider two simple cases.

It is easy to see that the integral converges, so far as

concerns the upper limit, by applying the tests of the last

article. There is an apparent difficulty at the lower limit,

because of the factor I/a); but since

the difficulty is apparent only.

* Or we may obtain the results directly by writing l/.r for .r in the integral.
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f dx
A tin- intt-'n-al i.s liui (<

' -< nid
l-*J x

\

"
=
{"J X J,5 X

l>y
ri the

Benoe nr int.-

*Inn <-* .

CM
But I e~* lirs between tin- \alu.-s i'..unl 1\- r-j,i,i

l>y
' and ly

"
'"'

: tli->,. valn-s an- i

g-'lno-/ and -

both ul' wliicli tend to lo^ / as o kendfl to 0.

H. liin ^- z = 1(.

->oJ

and aceordin. I (e~
x e~ tx

)
= 1.

f ///*

iider I (Ae- + J*<-
^+ (v-- ,

/. //, c are positive and

A

It may ! sh.-wn as above tliat tin- integral converges
cnnditions aiv

NOW

H i -r-J3 VJl OJ* J 6fi

In \irtu-- !' the r(,nditi<'n 1J./=O, it is now ,-\ idrnt that

B

f
(l*

I

' :=

Thu>
|

,1.1. "'J
= 2(^ .;

and BO I l 1.1- 1
Jo
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3. The reader can prove similarly that, if p> n,

where 2^A rar
L' = 0. (k = Q, 1, 2, ..., n 1)

168. Analogue of Abel's Lemma.

If the function f(x) steadily decreases, but is always positive,

in an interval (a, b), and if \<f>(x)\
is less than a fixed number

A in the interval, then *

}

f(x)<p(x)dx<Hf(a),
i

where H, h are the upper and lower limits of the integral

r*

as ranges from a to b.

For, assuming that f(x) is differentiate, we have

J=

Now, since /(&) is positive and f'(x) is everywhere negative,

we obtain a value greater than J by replacing x(&) and x^)
in the last expression by H, and a value less than J by

replacing them by h.

Thus we find

-h\
b

f(x)dx <J<Hf(b)-H\ f(x)dx
J a Ja

or hf(a)<J<Hf(a).

Similarly, if Hv /^ are the limits of the integral x() in the

interval (a, c) and H2 ,
h

2
in the interval (c, b), we find

- H, (

e

f(x)da>
-H

2 [f(<e)da>J a Jc

or

*If f(x) should be discontinuous at x= a, /(a) denotes the limit of/(#) as r

tends to a through larger values.
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\\ li unction of a real variable, it is

that if y nunilM-r. n-al <T minpl.-x. air,

an- th- upjM-r iiinii

as ranges from ,/ to , and from c to >>. ivsjM-rtm-ly. th.-n

|7 Uf() < /yj /'('')-/('> |
+ >).>f(c).

\Vln-u /'./) is complex, formula.- ronvs|,oiilin- fco

of Art. 80 can be ol>tainr<l (gee /'

1. i, li>07, p. ()": hut th.-sr results an- not u.-.-j.-.l

foi- oiu- j)i-f>i-nt p

<t ineijuality on p.
i^<; is iMjui\'alent to the Second Theorem

Of Mean Value. To see thi>, note first that \(^> is ri.htiniK.us. and 80

-I. p.
:V.t~> i ,i--i;n \alue Itet ween A, // at least oner in the

inter\al (o, ''o. Thus the ine,,uality leads t<. Bonnet's theorem

^/('Oxtfo)' ul "' iv ' = ,= ''

i this du Bois Reymond's theorem, which i> true f..ran\ monotonic

liy writing \ !/('')- ff(b) \

f" ^hu- we find

the t'oini comnK.nly quoted

/V >(l>)l^
<}>(

BOM value of
,,

cannot le determined, Mee equa

Although the restriction t! l.e ditl'erential.le i> of little

importance here. \.-t it i- t h---i .-t ic.illy de.-iral.le to establish -udi results

as th ni; with the greatest generality possible. \Ve shall tln-ivfore

a second proof, based on one due to Pringsheim*, in whuh we
me nothing aln.ut the existei

Divide the interxal in; |] part- l.y inserting j...

. and wri 1

: then we ha\e

= 1

where

'<K), p. '209; this paper contains a

inure general form of th.

equality on
j>.

4-t'.. Another }>roof baa been given i.\ H.ir.iy, MtMtny
vol. .SO, HHMi, i>.

1".
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Hence,* if /r+1 =/(.rr+] ),

(1) Jr-r

but in virtue of the decreasing property of f(x\ [/(#)-/r+i] is positive in

the last integral and is less than (fr fr+i), so that

(2) <(fr-fr+i)A(b-a)/n,

because <j>(x)\<A and xr+i-xr=(b-a)ln.

By adding up the equations (1), bearing in mind the inequality (2), we
see that

n_l rxr+l

(3) J-Zff+il $(x)dx=Rn ,

r=0 J XT

where Rn
\

< 4
(6
-

)(/ -/)< ~
(b
-

)/ ,

because fn =f(b) is positive.

If now we apply Abel's Lemma (Art. 23) to the sum
r+l

r=0

we obtain the limits hf- and .fi^ for it, because

w 1 T^r+l f
xm

and the sequence /i, /2 , ...,/ is decreasing.

Thus, from (3), we find

(4) A/i-^-)/P<^<^/i+^-)/fi

where /! =/[ + (5
-

)/]

If now we take the limit of (4) as n tends to infinity, we obtain the

desired result, t

In exactly the same way we can make the further inference that if c

lies between a, b, and if H^ A
x
are the upper and lower limits of I ^ (.r)././

as ranges from a to c, while ZT2 ,
h2 are those as f ranges from c to 6, then

* In case /(a;) should be discontinuous at xr+\, we define fr+\ as the limit

of f(x) when x approaches arr+ i through smaller values of x
; this limit will

exist in virtue of the monotonic property of /(.<)

fit will be seen that the condition |0(#)|<-4 is by no means essential, and
t't>

that it may be broken at an infinity of points, provided that / \<j>(x)\dx con-

verges ; for we can then make a division into sub-intervals, for each of whirh
/* , -.

/ \<f>(x)\dx is less than any assigned number. But Pringsheiin has proved

that it is only necessary to assume that (f>(x) and f(x) x (x) are integrablc in

the interval (a, l>) ; compare Proc. Loud. Math. Soc.
t

vol. 6, 1907, p. tii?.
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169. Tests of convergence in general.

AppK in- the genera] be I

<,//// and for tl Convergence <>f
tin-

fral /i -!n,t we oam find nieh
J

j

T f /in n "//'/ e 18 ni'ftifi'"

'//.

HoW( vet .

' M I'm- inlinit. .--ral test for con-

usually r-|laci-l in
j.i'act

iff ly BOm DMTO
which can l>c

a]>plic<l more <|uickly. The thn-.- chief t'-sts are

tin- t'ollo\\ iii

1. Absolute convergence.*

The i literal will certainly converge it' I/O/
1

'

.'

converges, b

.<' I

<!>'

Jf

i'.iit naturally tin- analogy h.-twccn Midi intc^i-als and abso-

lut.-ly convergeni aeriea is not <|uitc c(,ni])l-tr. since th.-r.- is no

/ in the values of a function.

In particular, if |/(#)|< //'(.'). wli-- Readily decreases

:icivascs. tin- integral /'(')'/./ will coii\>
J

2. Abel's test.

Infinite integral wh ''hinnjii m,t absolutely)

and //N>-
'

>e).

Suppose that
,/,(.

/)'/./ . ;id that a inono-
J

tonic function, such that
*fr(x) <.l: it i> th- tit that

\lr(.i'} tt-nds t. sonic limit

Thus, if we wri

i-/ if i -.-. thai tnd

*
'I'lit ahsohiti- is clearly

pointed out l.y B( -. ami /'A
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decreases to
;
and it is obviously sufficient to prove the

Joo
f(x)<j>(x)dx.

a

Now, by the analogue of Abel's Lemma (Art. 168), we see that

IJ1
< Hf(() < Hf(a),

and then

where H is the upper limit to

x

<j>(x)dx

when X ranges from to '. Now, in virtue of the convergence

of I <j)(x)dx, we can determine so as to make

f/<

so that the integral I f(x)<f)(x)dx converges.

fHence also I \}r(x)<t>(x)dx converges.
Ja

3. Dirichlet's test.

An infinite integral which oscillates finitely becomes con-

vergent after the insertion of a monotonic factor which tends

to zero as a limit.

Here again we have

I f^'

f(x)$(x)dx \ < Hf(),
I J

and H will be less than some fixed constant independent of ^;
*

thus, since f(x)-> 0, we can find so that #/()< e, and con-
/QO

sequently the integral I f(x)(h(x)dx is convergent.
Ja

Although the tests (2), (3) are almost immediately suggested by the tests

of Arts. 19, 20, yet it is not clear that they were ever given, in a complete

form, until recently. Stokes (in 1847) was certainly aware of the theorem

(3) in the case <(#)= sin .r (Math, and Phys. Papers, vol. 1, p. 275), but he

makes no reference to any extension, nor does he indicate his method of

proof. The first general statements and proofs seem to be due to Hardy
(Messenger of Maths., vol. 30, 1901, p. 187) ;

his argument is somewhat
diflerent from the foregoing, and is on the lines of the following treatment

of the special case <(.?;)
= sin ./.

* Since the integral / <f>(x)dx oscillates finitely it remains less than some fixed

number G for all values of ; thus we have
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In tin- . i>. .
--sci Hates between the two

i.ly in the figure.

o

almost intuitively -\ id.-nt that tin- aivas .,f tin- \\aves steadily

decrease in value, and have alt- in

r

and .sim-e -in t U positive in tin- integral, tliis lies U-t

fl TT) ; so that it tends to zero as s to oo . Further,

I vdx--Jf(x+**+lir)KD
which i> obviously negative and nuinerically less than the area of the

f*
luiis wave. It follows that

/
sin is c.n\ t-rgent, by applying

th- th.-MUMii of Art. 21.

In general, if <f>(.r) changes sign infinitely often we can apply a similar

method. usiiiL' i>iriehlet'> t->t (An. ^>) to establisli th.- ronvergence of

If tin- intro-ranil tends \ JO, -ay as .r-*a, the general t-M.

lor convergence and tin- tr-.t .!' als(lut- convergence run as

Th> '!/ tin'/ 8UJj /'"/ flu <'<>n>; r<jence

Ib
././ is fl.- ><!, fix if

ivherc o ///.- any ;>ox//?>v
*/

I |/

,ii /'.> /A.

'//.

It is
i>M>vil,l,. to write nut con-.^jioinliii^- nioliticat inns of

Altai's and Dirichlet's tests ;
l>ut such t.-sts are not ci

in practice and an- (oetl to tin- ingenuity <>!' tlu reader.
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Ex. 1. / ! __ctr, / .-dx converge absolutely ifp> 1
,
and so does

(
1(^<foif 0<<1 ;

because |sin#|^l, |cos#|^l.
Jo x^

/oo /*oo

Ex. 2. I

*-^.(lx,
I -^^ d# converge if 0<p<l ;

and generally

/ </>(#) sin .rcr, / </>(#) cos tfcfo?

converge in virtue of Dirichlet's test, if <j>(x) tends steadily to zero.

I Cb I I fb I

For
/

sin x dx =
I cos a cos b

\ ^ 2, / cos x dx =
I sin b - sin

|

^ 2.
I
7a

|
Ja

Ex. 3. Further examples of Dirichlet's test are given by

/(*)= -"*, (logj?)-* ; <^(d7)
=

(sina?)-*, log(4cos%). [HARDY, I.e.]

170. Frullani's integrals.

As a simple and interesting example of the tests of the

last article, let us consider the value of

o x

pco
where

<f>(x) is such that <j>(x)dx oscillates between finite limits

{or converges).

Then, by applying Dirichlet's or Abel's test, we see that

x

is convergent and is equal to

, x
X

' if a"5>-

THUS
X

and if
<f>(x) tends to a definite finite limit

,
as x tends to 0,

the last integral has a finite range and a finite integrand;
thus we have

In the same way we can prove that if

v

For examples, take 0(.) = coso5 or sina;.
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Tin- foniH-r in!' e <'\aliiat'-<| IT
,j,(

/
> tends to

M x tend

is X J. 03

by means of \\hi<-h th.- \.-ilu.- .f l-Yullani's integral may be

Tli.' integral f. .iiml in AM. |ii7 ill i> a particular case of 1

formula a i i<l a U.. <>f thai

>n8 i.r 1 1

and l.y Hai'

171. Uniform convergence of an infinite integral

i
,

tin- lue !'
^-\

lor wliidi tin- in.-(|iiality

^^ <6, (\>$),
J A

Lfi a function w.-ll as .f e. In -nee

witli Art. !:). we Bay iliat tin- intf^r.al converges uniformly in

interval (a, 3), it' fr all vahu-s .f
// in tlir intn-val ^ r-iii,

than a i'linction A' if), wliicli d.-pt-nds on but is inde-

pendent of
//. T.iit. if t!

interval which . a ]>art icuK-n- vahif //, tin :.

to be a point of non-uniform convergence f tin- int-^ral.

Ex. 1.

(if

-" tin- intc^i-.-il i- unit'

kc -\'u ) 1 t.

Ex.

0,

^= =0.

II flirt' >/
-

is a ; .rnJ.

/via/,

v,.l. :;:?. I'.nu. ,,.
11:;. 3e ilM i t.

*. Papers, vd. I.
j..

l.s.
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But, just as in the case of series, we have usually in practice
to introduce a test for uniform convergence which is similar to

the general test for convergence (Art. 169): The necessary and

sufficient condition for the uniform convergence of the integral
r

I f(x, y)dx, in an interval of valuer of y, is that we can find
J a

a value of , independent of y, such that

f(x, y)dx e,

where
'

has any value greater than ft
and e is arbitrarily

small.

The only fresh point introduced is seen to be the fact that

must be independent of y. The proof that this condition is

both necessary and sufficient follows precisely on the lines of

Art. 43, with mere verbal alterations.

But in practical work we need more special tests which can be

applied more quickly ;
the three most useful of these tests are :

1. Weierstrass's test.

Sup2)ose that for all values of y in the interval (a, /3), the

function f(x, y) satisfies the condition

\f(x,y)\<M(x),

where M(x) is a positive function, independent of y. Then, if

the integral I M(x)dx converges, the integral I f(x, y)dx is
Ja Ja

absolutely and uniformly convergent for all values of y

the interval (a, /3).

For then we can choose independently of y, so that

Joe
M(x)dx is less than e; and therefore

I

\ f(x, y)dx < f
M(x)dx < f M(x)dx < e.

I J J J

Thus the integral converges uniformly; and it con\

absolutely in virtue of Art. 169, (1).

2. Abel's test.*

The integral \ f(x, y)</>(x)dx is uniformly convergent in an
J a

p/

interval (a, /ft), provided that
\ <j>(x)dx converges, and thxf,
J ,<

*
Hromwich, Pro?. Loud. Math. SW. (:>), vol. 1, 1903, j>.

-JO I.
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<es as x increas'

.'/)

then, in virtue .,i the analogue to Abel's Lemma, we

| !*/(. y)#()*
< <///'.

where // j. the upper liinii r)dx , when

ia eonv< .

we can timl independently of y, so that // < e J\ : and

iven int. :y.

i'leut that v ; liy 0<.''. // ), pi-'A i<le,l

that <

i r^rni in the interval (a, ft).
-'

Dirichlet's test.

1

J a

i*val (a, ft) if I $(.'
iltiffs I,.

and fl" and 8tt > creases as x

nil h-jit consta/T( * fj/'it
f(

tO Z( ' '/'//<///
'I'! f/i

/V.vy/rr/
/,,

;/ : . ft).

F..r then '

/./ < lff((, y),

wh'-iv // is [ess tli.iii 91 :ileut of can

then tix . indepen.leutly .l'
//.

to sati^l , < e //.

Again, ^1 c) may contain //. provide*! that ti uie limits

of I 0(. /)'/./ remain .'it the iut- i

,-?).

Ex. 3. '<** /ef.

. ><,

convi-r::*' uniformly tlii'-u^hout any inU-rvjil of variation

Ex. 4.

;iiiiormly in any interval (O^yl^J), because the integrals

raf*
in virtin- "f Ait. 1-
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Generally / e~xy$(x)dx converges uniformly in any similar interval, pro-

&(x)dx converges.

Ex. 5. Dirichlefs test.

r COB *
dx, r sin *

^x
Jl

(.^+y2)i-
h (rf+y^

converge uniformly throughout any interval of variation of y.

And p cos
(f)cfo. f^if)^, ("iZMd*

Jl 1+X2 Jl 1+Z2 Jl X

converge uniformly in any interval which does not include y= Q.

Of course the definition of, and the tests for, uniform con-

vergence can be modified at once so as to refer to the second

type of infinite integrals.

172. Applications of uniform convergence.

Joo
f(x, y)dx which converges uniformly in an

a

interval (a, /3) has properties strictly analogous to those of

uniformly convergent series (Arts. 45, 46) ;
and the proofs

can be carried out on exactly the same lines. Thus we find :

1. If f(x, y) is a continuous function of y in the interval

(a, /3),
the integral is also a continuous function of y, provided

that it converges uniformly in the interval (a, /?).*

Only verbal alterations are needed in the proof of the corre-

sponding theorem for series (see Art. 45).

Ex. 1. Thus (see Ex. 3, Art. 171)

i f!^><*,, f^>^ f"gg*,,
are continuous functions of y in any interval.

/oo

Ex. 2. If / <f>(x)dx is convergent, then (see Ex. 4, Art. 171)

[DIMCHI.KT.]

Ex. 3. But we must not anticipate the continuity at y = of

and it is not hard to see that they are actually discontinuous.

(See Ex. 5, Art. 171, and Ex. 6, Art. 173.)

*
Stokes, I.e., \>.
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L'. fin/' r tin- M cu vn < I <jrate

n-itl,
respect

t<>
// //, prov*

fin it th>
ft).

A -Min, tli.- proof f.,r Beiiefl M ..... Is only v.-rhal changes.

^

-j
' equation

'-

'I/id, provided tlmf tin 1

infri/^if on tin' right converges

uniformly <nt f/nif fl ////*///// n,, tl< Irft
/'x convert)'

write ,/".-.
/= f [/(.

y+*)-/(. y)_
JaL A ay

ami Irt us liml
;-

;

BO that

\vli< .ill be indeprii<l-iit of y, and the in.Mjuality

cni-iv.-t for all values of // in the interval (a, /3). Then,
if X>(,

\ ^

the value of the doiihle inteiri-al of a

function, taken over a fin He area, is inl.-j)en<lent of the order

of integration (see Art. lti:i.
j..

H()I.

Thus.

in virtue of our eh<

.M-Y>(/0 =

{"',[/<'.
</ + /<)-/<.'-.'/>]'.' <

80 that |0(A'. / )

*

'1'hr hist condiiion i.s
|>

i p. 119 for

the case <>
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The last inequality holds for all values of X greater than ,

and all values of
|

h
\

under a certain limit. If we make X tend

to oo
,
we obtain

Since our choice of is independent of h, we can now
allow h to tend to zero without changing ; and, by definition,

thus we have lim| ^>(oo, 7t)|^2e.

Since e is arbitrarily small, and 0(oo , h) is independent of e,

this inequality can only be true if

lim
/t->0

or

Another theorem may be mentioned here, although the ideas involved

are a little beyond our scope.
,-oo

//", w ^e integral F(z)= I f(x, z)dx, the function f(x, z) is an analytic
J a

function of the complex variable z at all points of a certain region T of the

z-plane, then F(z) is analytic within T, provided that a real positive function

M(x) can be found which makes the integral \ M(x)dx convergent and
I 'TV / Ja

satisfies the condition < M(x) at all points of T.

Ex. 5. To shew the need for some condition such as that of uniform

convergence, we may consider the integral /

sm ^' dx
;

if this is differ-
JO X r<a

entiated with respect to y under the integral sign, we find I cos(jcy)dx,

which does not converge.

Ex. 6. On the other hand, the equations

d ,

a f* x&i

Jo 1

are quite correct. (See Exs. 1, 6, Art. 173.)

4. The analogue of Tannery's theorem {Art. 49).

n{A

n r*>

f(x, n)dx= \ g(x)dxy

n J a
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i uniformly in

< c), for a '* of n,

.i/> ,
. ...

J

let be chosen so n is large

<//!/-."

-</ will uniformly (;is // t-

Ex. 7. T<> B* - necessary, consider

tip- integral

/"" / 1

] ( ;
-

9
--

5 ' ;in TT'
.'u \

!

-f *)=o, a ;ipp!y
tin- ml.-. \vitliMtit i- liml tin- limit

.T

:rul :i]iji-
limit

1 imt TT.

The second type of infinite integrals.

Th- i. ;!<![ slu.ulil find littU- ditlimlty in stating and
j

l)-(4 ) above, fn- tin- second tyj..

Tln-rc is only one case <
:

'

\\liu-h may In- fniind t

some difficulty ;
tlu> ia the problem of differentiating an integral of

F(. l = b(y)>

in \vlii.-li tin- upper limit van.-.s with y, and i> a p-ii .uity

for
j/,

alt In MIL' :

/"fr 7^f
\V. ix unif..indy i all

vab; !,i,-h \ve | . and

that //(.</) ivmains 1,-ss tlian a rmiMant / lues of y.

lin.l a constai ire have

* <!?! and !/(-..")-'('-

)='. - } -^'
ry siinplr rxainplo is gi\ >ay,

^ = 'j{x(y-z)}dx, y>0.
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we have, by the ordinary theorem for differentiating an integral,

and so, using the inequalities which define 8, we find

Also,

so that

and so, using a double integral as on p. 437, we see that

In the last inequality, let tend to 0, and <(, y} then tends to F(y\
so that

Thus we see that

<2e +

Take the limit of the last inequality as A tends to zero
;
then the right-

hand tends to 2c, because 8 is independent of h
;
thus we find

1

and so by the same argument as before, we have

173. Applications of Art. 172.

Ex. 1. Consider first the integral

where a, 6 may be complex, provided that they have their real pairs

positive or zero.

Then J is uniformly convergent for all positive or zero values of y*
Now differentiate with respect to y. We obtain

IY hv\ 7 * *

and this integral converges uniformly so long as y= l>0. Its value is

therefore equal to dJjdy^ in virtue of Art. 172 (3).

*
It is understood that neither a nor b is zero.
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. 111,!./

e

'

.'"'-I.

IT:.', w.- lind

,~-o'
/r

H."./ r> v ' X ,-*> J

Tli.- la-t int.-ial '-an 1 H !...;(/. ii has the advantage
!' being of \\\- same t'--i m i .- to tin- m

v;iliiri| n.'itui.- ..!' lli- l.-xMi-itlnn i'f a
.-Minj.l.A iiuml>-r,

:IJ|M-;I|
.I

.i-tii-iilar. if \v- \\i-itr a ! . / ''. \\- :

^.r^-^
1

.

;

-CB.,)^.^

Ex. 2. (Jfiirrally, \\r can prove in t

iraj that

\\liri.- I'.-lo ami tli,> real parts of " .r zero.

Ex. 3. By diivrt iiit-.i,
r i-ati.ii rninltim-il with (1) it will !> found that

L+(a+c)

tin- l<i:a!-itliiii is dcti-riniiifd a- !
> are

-t in --at

!'"! -\aiiipl-, if we taki-

a = l, 6= -

get ^"[r-{l+(H-t>}-^

fr)-cosa:]^=|-].
1.

As annth.-i- illustr.v

6= 1, c =-0/-fi).
Thr,, w- tilld

.(,'[(" ')

Ex. 4. It i> .-.tsy t
) ii-ly that

l.o,

I'.l, i. 1\ !._,(>, and tin- real parts of a, /<. e or
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Ex. 5. By differentiating J= [Q ^/^[fa twice, we find that

=, ify>0;

the last result following from (1) above.

Hence, since linit/=0, and J remains finite as y tends to oo (see Ex. 1,
y-M>

Art. 172), we find J=$ir(l-e-).

Thus, on differentiating, we find, if y is positive,

When y is negative we find J=\Tt(e
y -

1), and so the other integrals
become \TT&, -\ictf, respectively.

Thus </and the cosine integral are continuous at y= 0. But the third

integral is discontinuous there (see Exs. 1, 3, Art. 172).
,"<x> j

In like manner, the ^integral J
sin (xy) has the value ^TT, according

to the sign of
?/,

and vanishes for y=0.

Ex. 6. As an example of Tannery's theorem, we take the integral

in which
| f(x) \

is supposed less than the constant H in the interval (0, b).

Here

so that

rsin2 .r, r sin2 .rT f
00

sin2a;, TT
For / -

^-- dx=\ -- +/ -- dx= -,
Jo .v

l L x Jo Jo x 2

this result following from (1) above. In applying Tannery's theorem we
can take M(x) H(^v[^x)lx

L
\
and f(x/n) tends to the limit /(O) uniformly

in any fixed interval for x. It is understood here that /(O) denotes the

limit of f(x) as x tends to through positive values.

Ex. 7. It follows at once from (6) that if

then linit/n= i

n ao

The reader should prove that if & = TT, this result must be replaced by

The integral Jn is interesting on account of an application to Fourier

Series given by Fej6r (see Ex. 5, Ch. XI.).
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174. Some further theorems on integrals containing another

variable.

as Tan
i in related

ia x incf

hen

(A,,a

/ that liin \ m /

.1 /.,i' ,i/l nilin-s
0)

thru v \- Art. I

i
"/' </(c:

- " // </<'' " )// < -I//,

// is the upper limit to
[I

as
'

i from

ft] run verges when extended to

infinity, w.- can find
(-

mak.- ,l//<e: and tli^n

j

i // < J // < e,
J

because, as ,r increase ~ and does nc'

Coiisetjlieniiy we tind

| |

<^e4
I

/r|.

6 ^ is fixed tlic limit <>t' tin- last int.-Tal as ,, tmd-
I

PO 1-y Art. 1 .iiid sc we lia\-

lin. I

* >

It follows that this maximum limit or

fp<I

it
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Dirichlet's first integral.

As an application of this theorem, consider the integral

sin nx , . , , .

'0 ^

If we change the variable of integration to x/n, we have

T f
w6

/./#\ sin a? ,

Jn =\ /(-)- dx.

Hence, if f(x) is positive and never increases, our theorem

can be applied, because*

/(O) a/(a/) >0,
and f(x/n) tends to the limit /(O) uniformly in any fixed interval.

Hence lim Jn =/(0) f ^HL?
w^oo Jo 35o

in virtue of Art. 173, Ex. 1, above.

It is, however, easy to remove the conditions from the

function f(x) of being positive and never increasing. Suppose,

for example, that f(x) first decreases in the interval (0, c), and

afterwards increases in the interval (c, b). Now consider the

functions F(x), G(x) defined by

and F(x)=
0(x)=f(c)+A-f(x),

where A is a constant such that f(c) -fA and f(c)+A f(b)

are both positive. Then the conditions of being positive and

never increasing are satisfied by both F(x) and G(x)}
so that

i- f
6

rr/ xSin?i# , TT ^^hm F(x)- -dx= ^F(0),
n-*-oo Jo ^

with a similar equation for 0(x). But F(x) G(x)=f(x\ so th.it

T f
b
S/ \ Sin ^^ 7 T ^/rk\hm f(x)- -dx=

9-f(Q).
n--ao JO B *

It is easy to see that this result can be at once extended

to any case where f(x) has a limited number of maxima
and minima and no infinities between and b.

* Here we use /(O) to denote the limit of /(a?) as x approaches through

positive values ; this limit exists in virtue of the monotonic property of /i
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Dirichlet's second integral.

Coiisnl.-r D

I
j

(0<6 <1P)

'*'
I

JO x

"li'- !/=:>//" -/()
Sill ,

'
'

e x/aiux steadily increases and lias no iniinity in tlif

interval (0. /). it follows tliat
</>(./)

wil

forth in lfaliii-- with I )iru-hl-t's first inu-^ral. provided
that /<.' i ^at isfiee th

Bence Hm I\ H
= \TT^ o).

II

1

. however, the ran^- <>t' int. .-^ration extends up to TT, we

may \\ rite tin- hit f^ral in tin- form

/f*"
1

, f''
\Slllltf5 .

(I +1

and tlion clian^v the variall' in the s.-c.uid part to ~

ves f,7

a "sin-
^-" >;

Bence lim I"
sl " ( ~" + ] )J

'

i\,- >,/.,-- -

Ex. 1. As n.it

h...-1-Sooi

(*" i-r
Jo

.
/I

whirh a.u'ivr \\itli t!

tlu'ii we can \\ .

') are positiv.- ;uul IM in ti

while / is ;i
j

- OK
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Ex. 2. It is instructive to investigate the value of the integral

'-dx,
sin.v

by means of the curve
?/
=

{sin(2?i + l).#}/sin#. This curve is of the same

general type as the one given in Fig. 46, Art. 169
; except that the initial

ordinate is y= 2^+ l and that the points of crossing the axis are

Then, using the argument given there, we see that the value of the

integral Kn is expressed by a finite series of the form

where k is an integer such that (2?i + l) lies between (k-l)ir and for, and

V > V
l > V

-2
> > vk> 0.

Hence (if r is any integer less than k\ the value of the integral Kn

differs from
VQ
_ ^ +^ _

. t . + (
_ iy-1^

by less than vr . Thus, changing the variable to #/i/, ^"n lies between

and .to,

where v= 2n+l. If we make w tend to oo
,
we find that the limit of

the integral Kn lies between*

and
x

where r is any positive integer. Thus

,. T
00

sin^7 , TT

JOB'.-/,, -^=2' [DlRICHLET.]

Ex. 3. It is easy to see (as in Ex. 2 or otherwise) that

,. f
bn sin(2w + l)^ , r^sin^,

lim 'dx= dx,sm.r Jo x

where A = lim (2w6M ).
The maxima of this integral are given by A = TT, 37r,

STT, ... and the minima by A= 27r, 4?r, 677,

Glaisher (Phil. Trans., vol. 160, 1870, p. 387) has given the following

numerical values for the maxima and minima, where

/* sin x ,
-

/"'" sin x 7/r= /
dx=~-

\
-

dx,Jm X 2 Jo

71= -0-28114, 73
= -0-10397, 76= -0'06317,

7
2
= +0-15264, 74= +0-07864, 7

fl

= +0'05276.

Thus the greatest value of the integral is \TT 7j
= 1*85194, and the

least (if A>TT) is \TT- /2 =1 '41816. (See also Ex. 12, p. 351.)

*From the inequalities proved in Art. 59 and in the footnote p. 184, we

see that (since x\v < i?r),

I*. . x\ \x* x Zv

Thug I
sin a; sin a;

I |sinx|

x v sin (xfv) \ |

a;
|

sin (x/v)

and so this difference tends to zero uniformly in the interval 0^.r^(r+ l)?r
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Ex. 4. h decreases in such a wa>

i.iiv. -r^'rnt, wr --an pro

and |

...].

In |,.irti nl.M, >0), the first linii'.

Ex. 5. Sh-\v that 6 ronditi'

and <)<< 1, tli.-n

liin

w-* * Jo

lim/,'/
'

n+x J*
' &
..f til."

Jordan's extension of Dirichlet's integral.

n
Sup|<sL- that I .-= '''. \\ !IT poeitiv*

Jo

never decreases in tin- interval ((). i>i whilr -

rties

(i)
|

<A }
\\- n^-^6;

(ii) lini I if '<'- = f^6,
Jo

\vh.-iv .1 i- a COnfltanl and C is arl>i' rded

ae ti\.-d in taking th- limit ( ii ). I'ndi-r t :

lii..

\vh.-iv /'(()) d.-nntrs tli<- liinii "n
j,

444.

Km- \vr liavi- from Art. his. j|' < r < />,

(/.-/OlAOj-MOl +AMOX /,<(//-//. )]+//'-

where //. A an- tli.- u})]n- and lo\\cr limits of I v '' **
Jo

to 6. >

bom (i) A-A' <*A, //-// <iM.
bhal |/-V(0)'<2.l|.'

if
tj

is tin' irn-att-r f //' / and / A'.
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Now choose c so that 2J.[/(0)~/(c)] < e; and having fixed

c, make n tend to infinity. Since lim
r\
= by condition (ii),

n >oo

it follows that

Hence lim/n=

This result can be at once extended to any function f(x) of the

type considered in dealing with Dirichlet's integral (see p. 444).

175. Integration of series, when infinities of the inte-

grand occur in the range.

It is obvious that infinite integrals are excluded from the

discussion of Art. 45 : one case of practical importance presents
itself when the terms of the series are of the form (p(x)fn (x),

where <j>(x)-*oc at, say, the upper limit b. Then we can easily

establish the following result :

A. If 2/w (o;) converges uniformly in the interval (a, b) and
b

| 0(05) |

dx is convergent (and has the value J), then

-2
\

b

</>(x)fn(x)dx.
J a

For then we can find m, independently of #, so that

/()]<* it p>m.
m

Thus I t /

b

<t>(x)fn(x)dx < ^ | (#) |

dx=*J.
I m Jo, J a

oo Cb

It follows that 2 I d>(x}fn(x)dx converges, and that

At the same time we have

so that -"2 f *</>(')/(<)<**
Q Ja

Tims we find

-I -'a

and, since t/ is fixed, we can determine m to make 27 as small as \\-
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but in the last im-ijuality the h-ft-hand >ide is independent of m,
and th'M.-fc.iv iiiu-t !" .

Thai ^)i/.w*r-SVw
Ex. 1. This caso is illustrated l,y

.SC-lJr-^^k

Here th- -r log(l+./v roiiv.-rurrs uniformly from to 1
;
but

-oo as

On tin- other liand. I

i y also t.-nd to oo (or it may
se to be uniformly convergent) as < -l>\ wln-n tliis liappens,

\\ CM n often justify term-by-term integration by means of

the th. oivm :

B. Suppose that </>(x) is positive in //// interval (<>. /o.

Unit /us fn(x} "''r ''H
positive,

'

convergence of
r flu> >i>tfral fb

'-'',
.

n
or II 21 <

t

, )'/.'',

J

/// In <llhr of /' /'//'-''<
-

..lvinis that Imth -..nditions are necessary: the only point to be

|in.\vd i- that I
th-m i-

W,
|/

tli.-n, -it iM-.u'.'itiv.-, tin- fuin-tii'M /" .

<tses as S t.-inU t<. /.-n. and //< t" infinity. Thus, as in Ait. 31(5),

:iat if riih-r .f the iT]K';itfd limits

liiu -' lim . . li.n |lim/\(S, m)\
a-*o In. J m-* U-*o J

I thr ..tlirr. and tht-ir values are equal.

the iiit.-i \al (a, />-6), so that

and lim
|

lil ..(1)
5_M) lm-H I I

[.8,
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Similarly the other repeated limit is seen to be equal to the series

(*)/()<**...... ............................(2)

Hence the theorem is established
;
for if either the integral (1) or the

series (2) is convergent, so also is the other, and their values are equal.

Ex. 2. An application of Theorem B is given by the equation

Plog(l-*) gfi
*dx 4/2 2.4 2.4.6 \

Jo V(l-*) rJW(l-*)~ 3\
+

5
+O +

57779
+
"7'

This result is easily verified directly ; by integration by parts, the

integral is found to be -4, and the sum of the series in brackets is 3

(see Ex. 2, p. 42).

We get another illustration by expanding !/>/(! #) instead of log(l -#).

Ex. 3. Another example is given by

where jt?+l is positive. Here we use Theorem A to include x= Q in the

interval and Theorem B to include x=l.
The special case p=0 gives

and if p= -\ the integral can also be evaluated in finite terms.

C. When the terms fn(x) are not all positive, we can apply
a similar argument in case either the integral

(

b

\<l>(x)\{2\fn(x)\}dx or the series S'P| f |
. |/ |

*
Ja J a

converges* Here we write

and then, under either of the given conditions, Theorem B can

be applied to each term on the right-hand side. Of course

these conditions are easily seen to be sufficient only and not

necessary here. Thus, for example, if

n(x)
= (-I)n

- 1xn
,

a= 0, ft=l,

*
Hardy, Messenger of Mathematics, vol. 35, 1905, p. 126; Bromwich, ibid.,

vol. 36, 1906, p. 1. It should be noticed that the argument fails if we only
fb

know that / <f>(x)[Zfn (r)]dx is absolutely convergent.
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we h

i-'.-f !-.!+..= r .I'-- (see Arte -

.'
I ~r ''

althnu-1, 1,,-re 2|/(aj)|= 1 H - -
. And I '/./ ( 1 -r diverges.

Jo

Ex. 4. To il Theorem ('.

-iy-'.'-'-..
Here we t ik- .(.r)| =1 (1 . aid th.-n the con-

diti"iis ..I Caresati \ n particular, />
= gives

-

-
But Theorems B, C d<> nut sutlicr in a number of comparat

simple caaefl which |ii-.-<mt thi'iii^-lvi-^ in ; and do not

COWK' und'-r any really --.-iifral tln-nn-m. In .li-alin^ with }>ow.-i--

BerieS, the n-mark made at the top of p.
I :i-n useful;

and in some cases we can apply The. -ivm (' t> ^] /

/(
_

{

\>t
n \x

n
,

taking X to ! lim ( n '/.,). and tln-n pn.c.-.-d as in the

following example :

Ex. 5. Oonrider the integral |

''

/' + 1>0.

If i . . -1 (i-.'-y-', and Theorem <

because tin- integral diverges if }
: (\ -.<)- is put in

j.la<-t-
of 1 (1 -fa:)

8
.

Now a n = MI.1A--1. .Ms,, 1 <\+, -)-^,, ,--./..)<"; and
].V 'I'll' ! 'Ill ( '.

'I'll.' .-...ili.-i.-nt .f ./
,
on tlir i-iu'i

iiinl BO "i- tind

In ];iiti'-i:l:ir,
it'

/) n, tin- s-rii-< n-dmvs to -log:>, and it is easily
verified thai tlii> is th.-n the \alu- ..f the intr^ral ;

tluis mu
Continued.

Ex. 6. To illustrate the result given \\ p. 1

H>0);

this is valid, beoauae the resulting sen -

rges.
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Ex. 7. Further applications of Theorems B, C are given by the equations

P(lpg^)^ /
J^ 1 \_ 2^-1

Jo 1 + -C

l' l

\
l

2 +
yr -)- ^"^

From the last integral we can obtain the results

or= 0, if #= 0,

or= - 7T
2
,

if y < 0.

Ex. 8. By changing the variable in Ex. 6 from x to
,
where .r= e~

we find

r= cosh (bt) ,.

I

Jo
irrv\^--r

cosh(atf) 2a \2a

Similarly, starting from the equation

which can be established by Theorem B, we find

rsinh(&0 , TT , /TT&\v v/#=_tan( ),

Jo smh(aO 2a \2a/

176. Integration of an infinite series over an infinite

interval.

The method of proof employed in Art. 45 does not justify

the deduction of the equation

r *<*
o J a

from the knowledge that 2/7i (#) is uniformly convergent for

all values of x greater than .

fao
|^(0)'|(2(B

is con-
o

vergent, the method used to prove Theorem A of Art. 175 can

be at once modified to establish the desired result.

But it is often necessary to justify the equation when either

r\<j>(x)\dx
is divergent or 2 fn(x) can only be proved to con-
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INTEGRATION Ol

nil'onnly i:* and tli'-n sunn- new test

must be iut r-ihn-M|.

Thus t'--I- \ai,i|!<

;(.<) + .. .-f (.r)=0;

and tin- maximum -r^es uniformly to

its limit in any interval t'oi- S. I
.

)
=

1,

1 ; BO tint lim
/

'

$,(*)<&?-!,
-'JO

and tin- ifl DOl tin- same a / [lim
s

'

H-KB

This ilia ,,

|
| <^>(^) |

dor diverges (because <(#)=!) ;

tin- Mtlin- liili<-iilty ari>-s in tin- ijiti-irrati"!' such as the expOOentuU
whirli oOOVergee nnifirmly in any ti\.-d int.-i-val (wliidi

! arbitrarily Lr ivat ) l.ir ((.nv.-i'p- uniformly in an infinite interval.

B. Many cases <>f j.r.^-tical impoi-tance are covcn-.l ly tl it-

follow in-- '

//' 1 brndy /'// cvnyfia
''= b,

II-/K /< /

if (f)(x) is con!' u'linut for all f\.

x Of X, /

I

</>(x)fn(x)dx;

provided flif /-/'//// ^/// ///////// S /'/X-^) }</.'.
"/ //"'

Ja

' ' x 1 ( ./ ) . !/(#

identity

$/.H<+WH/.+l/.U- /
r

|}-l/|.

,in at on this th iiu- i-asi- in which </> and f"
r, are

In this -a>c the function

o

eases as . raaM : ai. ;--ntly repeat the

'; nil" i inn <.<

intcr\al m.iy i"- il!u-t i.ited l>y the t\ mil >'.,(.n l'.r-Mi).

The l<T!i:- -..f.-nnly to /cro in any ii

hut m.iy ^hitrurily great ; the latter converges unifonnly to zero for

all positive values ,
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arguments given in Art. 31 (5) to prove that if lim (lim F(k //,)) exists,
A. X*>

fJ.
>ao

so also does the other repeated limit, and the two limits are equal.

But, in virtue of the uniform convergence of 2/n(#)j we have

so that lim {lim F(\, ja)}
=

A->oo fjiHB a

The other repeated limit is seen in the same way to be

and so the test is established.

Ex.1. Consider
Jo e

ax - 1

where a is positive, and b=p+ iq, where q\
=s<a; since

| sin(fe^) |

=
[sinh

2
(

,.00

and the integral /
[

Jo

is convergent, it follows from Theorem B that term-by-term integration is

permissible,* because the terms in the series

are all positive. Thus we have

in(fo) 6
a*-l

~

In the case when a= 2?r, this expression is equal (by Art. 93) to

and so in general it is equal to

Ex. 2. In like manner we prove that

6 6/sintfcc) .

Jo *"+!
tf '-

=in_ _jr__ "1

2Lb a sinh (irb/a)J

by Art. 92.

* Note that exactly the same argument enables us to include iu the range of

integration, although the series diverges there.
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Ex. 3. Taking the case a= 2jr, expand !.<>th ikUi powers
In this CMS the application t the theorem depends upon the integral

,-HMh_{|
e*-\

irh .-..nverges if |6|<27T. Thus we find

[*a*-*dx_Br

Jo V

see A. d compare Art. 17.'., K\. 7.

Ex. 4. Similarly, l.y -xpuiidiii-_:
in powers of .r, we find that

it' 6

>S+-)-F
And \vitln . ut iv>triction on 6, we have frm the valuo of l'(.l), r(j?), ...,

r N^ ^/i ^v 1 6* \ VT / ^\
/ e-^cofi ^/l 1 + 5i~2---- )

=
iT7~ exP (-2\ / 2a V /

C. However, Theorem B does not cover all cases which are

iv|uired. For example, it is not hard to see that the seri

IM int. -rated term-by-term between the limits 1 and

although the test given above fails.* This case and others are

cover. <! l>y the following test:

flmt the series 1
o

/''.s uniformly vn <<n;i //'.'"/ interval (a, 6), wltl>

series 2gn(x) converge* >////>/////// vn /*val

(1) 2
1 I

/ M
HfoJ

)]././ 001
.

/// r,il n,s of( 1 CI&

[DIM.]
ly Ait. -i'i. wt- have

And. since X</.<--) > s uiuf..nnly r..Mvi-ri;Mit, wt- have (Art. ;

/" [-/(,-)],/,-- Inn [!',/.,(.''
'

j-*r ^-. L_. .>

* See the second paper quoted on p. 450.
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177. The inversion of a repeated infinite integral.

It is by no means easy to determine fairly general conditions

under which the equation*

fOO

/GO /30
pCO

dx\ f(x,y)dy=\ dy\ f(x, y)dx
a Jb Jb Ja

is correct.

Here we shall simply consider the easiest case, when either

f(x, y) is positive or else the integrals still converge when f(x, y)
is replaced by \f(x, y)\.

Let us write

f(x, y)dx,

this equation being valid (see p. 410) if, as we suppose, f(x, y)
is continuous for all finite values of x, y (or at least for all

such as come under consideration). Further, write

0(a?, p)= \f(x, y)dy } ^r(aj)
= lim 0(0, /*)

= f(x, y)dy,
Jb fj.>os Jb

assuming the convergence of the last integral. Let the interval

(a, X) be subdivided by continued bisection into n sub-intervals,

each of length I, and let hr(m) denote the minimum of <J>(x, /z)

in the rth interval
; then, as in Art. 163, we have

Now this sum cannot decrease as n and // tend to infinity;!

and so we may use theorem (5), Art. 31, which gives

(2) Km { lim Uir (fi)} =lim { lim I1ir(n)},
H><*> n>x> 1 n ><x> p >oo 1

provided that one of these limits converges. Thus

(3) lim F(\ //)
= lim lkr ,

if /v = lim hr(fi).
/A > n-->oo 1 /a >>

Now we shall prove below (see the small type, p. 457) that

* For wider conditions, see a paper in the Proc. Lond. Math. Soc. (2), vol. 1,

1903, p. 187, and other papers quoted there. Reference may also be made to

Gibson's Calculus, Ch. XXI. (2nd ed.), and Jorclm's ( -our* ,rAnnli/e t
t. 2, 71, 7'J.

t As regards n, see the argument of Art. 163; and 0(x', /t) increases \vith
,

(because f(x, y) is not negative), so that the same is true of



177
1

REPEATED I NTK< ;it,\LS.

/,. i- the minimum .!' >//(/) ]!] //. ) in tin- /'th inter

inn 1 \
'

;
: v.

*
fA

I iiii ^ //',.=
-> 1

Sine.- the integral in ( -1 >p08ed c-onv.-r^.-nt (other

n (I) would be obviously meaningless ). tin- equation (4)

that tin- ri-ht-hand limit in ("2) exists; and BO

Q made above is justified. 1'Yum the (illations (3)'

and ' hat
'

dy\ /(.', y)dx=\ dx\Jb J Jb

\
:.

; thai

I d
| /<

,lim
I

li

JO \>V fJL

and similarly, we timl that th'- s.roml intf^ral in (1) is M|iial

to tip bed limit >f /'( \, //) taken in the reverse or 1

:!imt decrease, as X and
/JL increase, so that

we ' in a}nly theorem (
."> ) of Art. 31; and we obt

dr la \'.iii.
:

.- foussin'a theorem :

i > above is correct, provided thai both fin

{,- /( B, y
.

are and tiff either <>f
tin- rep reds

ill be seen that (lr. / '+ j in place of/) \v-

nd the theorem to cases \\ht-n /'clia !'-il that

the integrals all remain nt when f is put in
pi,

\\ ' !:
'

, >till to |.|-HVf tll.'ll

//J of

l-'i-uii th,- ilriini;

and BO, OD tnal iinl

hapiK'Hs that
<!>(/>, />} hat ^(p)^i'y also;

uiiniinu:

\//-(./-)
in tin- Ln(

i convergence, aa in

Art. 17_ 2 : iii-
1

.' i that/ is :
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But if
(f>(p, ^}>k^.h(^\ it follows from Ex. 21, p. 395, that the equation

<(#, p)= k has at least one root in the interval (p, q) ;
let M denote the

least root.* Then, if v>p, we havet

so that i>^ju,, and v therefore tends to a limit as v tends to infinity.

Again <X">AO= <K", ")
=

*,

so that, on making v tend to infinity, we have

Thus Vr(f)^|, and so from (5) we find that ^()=, which is therefore

again the minimum of ^-(#).

Ex. As an application we shall establish the equations

where the real part of y is positive and the arc tan function is determined

o as to vanish with x.
'

We have seen (Ex. 1, Art. 176) that

and therefore

fY-(_L-vu=2 r^& ri)&.
Jo Ve'-l ^ 2/ . Jo Jo e*-\

Now the last integral is absolutely convergent, since

r
00

1 sin (xt) I T r ^^o?^ ^

J e^-i
dx <

J ^Zl =
24'

(Ex - 3
'
Art'

and e'* =e~ if

Thus 2 f" e-
I

dt fl
8

|

n (**)l^<-V ,

Jo Jo e
2" 35 -! 122'

which proves the absolute convergence ;
we can therefore invert the order

of integration without altering the value of the integral, and we then find

xdxr ew_j__1,1^=2
Jo Ve'-l t 2/

"

Jo

Now, if we write y ^-\-i^ in the last equation, we can integrate with

respect to under the integral sign, between and oo
;
for

*
If the equation has an infinite set of roots, the limiting values of the set

are also roots (because is continuous) ; and so the set attains its lower limit,

which is therefore the least root.

fThe reader is advised to use a figure in following the argument here.
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80 that this tli.ul.l.' intr.u'i-al is aU..lnt-ly convergent. Similarly we tincl

< onvergent, since (a'+Jf'liSft so that

xdx

Thus \\r tiinl tin- furtli- :

JT<
-<-

where y =<)+"/

178. The Gamma-integral.
In Art. 42 we have seen th.-it

We shall now express this function by means of an infinite

integral \vh-n a. tln n-al ]uirt of l+ic, is positive.

Write /, = P y
x+s

(l
-

y)
n~'

dy,
Jo

thru, using the method of integration by parts, we find that

and so I /In= n\/{(l+x)(2+x)...(n+x)}.

But /n= l/(n+ l+aj),

so that r(H-.'')=lini //'''/o,

or, chan^in^ tin- varial>li- l>y writing / =
////, wu hav.-

r(l+a;)=lim f'Yl--Y/ '<//.

n->cc Jo >

We can apply Tannery's tlu-nn-m (Art. 172(4)) to the last

integral; for we have*

\e~
l t'-(\ - </ 1+

/cJ

and so (since a is p-^itiv') the intr^raiid converges to th' limit

unit'ormly in any _//./W interval I'm- /. Further, \v- ha

too
^ent, because a is positive.

o

*
Actually 1 - e'(l -

-j
=

^
e'M - M

^dv,
so that, when t is po

-'-(l-*/w)
w

is positive and less than ^/(-'O-
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Thus all the conditions are satisfied, and so we find

r(l+a)=f e-'&dt.
Jo

A somewhat similar integral can be found for Euler's constant
;
we have

seen (Art. 11) that

= lim
n >vo

But l++... +

Thus we find, on writing x=l-t/n,

And

hence C= lim [Ml-fl- *)"}f
- f(l-^1,

n-wo L/o I V n) J t Ji V nj t -\

and, by the same method as before, we obtain as the limit

Since

we see that C lim
[^ j

(
j

-
f*J y

-
log(l + 8)J

Another form is easily obtained by changing the variable from t to
.00

in the integral / e~ f

dtjt ;
this gives

A number of definite integrals for C can be obtained from the expression

-lim Hog 8+ Te-'-
g-^oL J$ t

Amongst them are the following :

It is easy to see from Art. 180 below that

Useful properties of the Gamma-function.

1. When x is a positive integer, we can write
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a result whit -h is also easily obtain-. I n-.m the definite integral, using the

ni.-tliM(l of int."_ri;iti.>M 1

2 - !

'""7,1, -x)(2-*)...<n-*)

! >'

)(2-.r
2
)...(n*-^)

)!'

; ,. (An. .i.)

:*. Writing #= $ in the last result, \\- ti: T(i) i*
}><

*

^-*
fir).

Thus ;i) =lim (

I (-'.'+ 1) ,: n

this last expression does not contain
,
we can find its value by

putting '-(); tlii- . . a result which can also be obtained

by ajijiealin.u' directly t> the detiniti>n.

179. Stirling's asymptotic formula for the Gamma-function

when x is real, large and positive.

In tin- integral

F(l+ .!)=[
J

tin- niMxiiiiuin <>1' tin- in! .-rand is 6~maP and occurs for t = J\

so it' we write

"*",

tin- range of valnefl ( oo,0, 4-oc for y will i-nnvspmul ]

to thr range (0, ,
oo

) for

Thus r(l+) I

.'

Now, taking lnr;iritlnus. \v.- li,

t/0)

so that
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But the properties of the logarithmic function shew that

y
2

lies between*
2

, x- z

and

Thus, since y has the same sign as t x, we see that y lies

between

(\2/

/y, ArA^/ /rt& \ u \AJ -i / tA/ \ v \AJ

2)
and (I/-

Thus, (o5/2)*(l/y) lies between

T1 /i / _. ^y i <a Tifi / /i / - 0" i
tAs I \ V \fiJl <Aillv4- l> I \l/ W !

And therefore, since /( a;)
= 1 + x/(t a;), we see that t/(t x)

must lie between

,

Hence -7- = -;
- lies between

ay t x

and 2

Accordingly, we have

where
| | < 2

1 y |

Nowt
[

+

J -c

and accordingly

Hence

or, as we may write it,

ir* |y|e-^dy =
J -GO

-1
(2vttV

.(t-x)lx= r, y^x* We have, if

which obviously lies between ixr
a and $#T

2
/(1 +r)

2
.

I
e- ( e-xx . (Art. 178 (3).)
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Again, we

)] < -2 \c2irx) -2],

so thai log T(l +*) ^ (./+i) log a-a;+ Uog(2?r),

usm- 1 1,, -\ ml.ol '\/ in tin- rxt.-nd.-.l sense explains! in Art. 133.

I!' we -uUrart
logOJ,

wr oUain

log !'(.!) co (.1-- -0+ilog<2T)
'I'll.- Eon nirtlio.l is .hi.- to IJ.u\ ill.-, wlio gave it ill

his Journal t*60 (\. 1 1. L846, p. *64)

Ex. < "ii-id'-i tin- value of

*<-r>=" +
,')

r
(
r+D - p

(*
+25

1
)/r6l(*

ve integer.

6 change X to r+1, \ve see that

<M.<-+l)<M-'0 =
n"[.'{.'-

+^
Hei </>(jr)

= ^(.r+l)= ^(jr+ 2)=... = ^(ar+).

n
// is large, r(y + a)~ r(j/).?/' . x. that

or, u-iiiir tlir asymptotic formula ab--.

Hence, as y tends to intinity, </>(//) tends t> the limit (27r)^
(n~ 1)

n*, and
WC hav- alrradv j.mvril that /.(.'-)

= ^(r+ ), where is an arbitrarily

great positive iiiteur T, >> that \vi- must have
f/>(.r)

=
(27r)^

(n ~ 1

The >]>ecial case n = 2 has IM-.-M (lisni,-,l in Art. 178 (4).

180. Integrals for 1- Til

\Y. have j.rnvnl (K\. 1. Art. 17:>) that if the real parts of

a, b an- positiye,

Hi -nr. If // rwl /"'/V "f 1 +./ la positive, w- hav.-

I

I-

log Til +.'

'0

f./-)

? j

]'
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Thus we are led to consider the function

S(x, n) =x log 7i -fV log f--^-
i \r-{-x

[AP. III.

J

60
/7/ r

(e
-._ e-*)9+2 (1

_ e
-

"i JO

Now

7i), say.

It is to be observed that both in F(x) and in G(x,n) the

integrands are finite at t= 0.

For if t < 2-7T, we can write (Art. 93)

so that

and similarly for the other integrand.

Thus, when t<l, '-

L

cannot exceed some fixed

value, independent of t
;
but if t> 1

,
this expression is less

6+ 1
than |oj|H z-, because \e~

xt <V (since the real part of l+o;
6 ~~

J.

is positive). Thus we can determine a value X, independent of

t, such that

Then

or

so that

Hence

Xe-M dt

<X/n,
lim G(x, n)= 0.

n >oo

logr(l+a)= lim S(x t n) =



180
1

|
M M \ !

This in' in I..- divided ii, parts, and we find

logr(l+) ,/,/.:-.',.

..... ' wH
tin- last expressi(,n following lV-.ni the example of Art. 177.

The advantage of this i runs)'. rinat i< n is due to two fa<

that the value of
0(o?) CftD be i'-Miinl in termfl of el.-im-ntary

functions; ami secondly that \//<r) tends to zero if |a;| tends

to /: in such a way that the real part of X also tends to oo .

in the course of the example of Art. 177, we proved that

B) <1 ;

where :- is the real part of ,/. Thus when 5 tends to -s.
,
we 1

The limit is also 0, when /;
tend ^ being kept posit i

p, 478).

irds ^(.r). we have

^[(,--D^'+()-; -'"')
|f

l.y Kx. :i. A: Thus we see that, if J=
--./ j' + A.

To deteimi . i 7s. which -'ives

logr(aJ+i)+l< -log rt-)

r-hl)= Hog7r.

Thus \ve ha\ I

lim

whi< n iiis.-i-tin- th,- value of

lin,
1.

1 +,' I, --I I -J
;
.)
+

.i -^...oj...^,,.,,

or*
1

. 478).

"
Tlu' valr.

: lllllla

I.S.
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Thus we can write

log T(l + x)= (x+ 1) log x
- x+ \ log 2-Tr+ \/s(x).

i t \ o r arc tan (Wo;) ,

where ^ = 2

and |Vr(aO|<l/12f

It is often convenient to have a formula for r(l-fo5), when x

is real and varies in the neighbourhood of a fixed large value.

Thus, if we write x v _j_ ttj

where v is large and a may be large, but is of the order \]v at

most, we obtain the asymptotic expression*

where the error is of order a/v.

Hence

In several books on analysis, the integrals for logF(l+#) are found

by a somewhat different method due to Dirichlet.

In outline, this proof is as follows :

(1 ) Differentiate the Gamma-integral, and we findrr 00 r //i
e- t

t
x
logtdt= jQ

e- t
t
x

dtjo
(e--e-<*).

(2) Invert the order of integration, and we obtain

(3) We must next prove that

lini

and then we have

(4) Finally, if we integrate the last equation, we arrive at the same

integral as before for log F(l +./).

The reader will find it a good exercise in the use of Arts. 160, 1 72,

177, to shew that the steps (l)-(4) are legitimate. Proofs will be found

in Jordan's Cours dAnalyse (t. 2, 2me 6d., pp. 176-182).

*We have

so that here we get



in.
I

4J7

i.\ LMPLE8

Tests of Convergence.

1. 1 Mci mine the valu.^ .f O,
/' fol whi,-}, tl,,. integrals

^i-'cosjfdSr, (2)jV'sin*<i>.

are convergent.

2. iMscuss tlio continuity of tin- int-

/"* Bi

l-2ff

'led as a function ,,f y. Sketch its graph. [JA/'//. 7

3. hisousB the convergence .f the i

./;.
s

. EM

4. If 0<K;_i
J
both the series and tin- intrgral

2 /'
* ,^ + " >\\\ i'H' J .r" +

liv.-i-gent if a>0, although both converge if a=0. When f>^, the

I and int l><>th convergent.
Reconcile these results with Dirichlet's test- ' and 171). [HARDY.]

5. 1' *, prove from Art. 1W5 that w,-

/"*
inf.-r tin- convergence of

/
n-.-m that of

j /(.)/.; provided

'(.') is in<>n<t"nic.

Similarly. sh-\v that if (") is a iM<iiii.t,.|iic sequence, th- OODTergOl
ii lie dedii'-dl from that of

6. Apply tin- ni'-t'1 thai, if u, /?, y are p<-
ll.- integral

*

if -; -'. and di\.-rges if /^ + yi
Dedu -l>y>0 and ^3+ y> -. egral

[<

ic l,r 1,..

Shew that in the la-t te^rand tends steadily to zei

that no test of the Logarithmic scale suilices to establish the convergence
of the int'

State and p: [H \.
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na-l
7. Shew that the series 2-o

-
diverges if a is positive and A is rational (in contrast to the corresponding

integral in Art. 166). But if A is the root of an algebraic equation of

degree m > 1, the series converges if /3>a+ 2m. However, irrational

values of A can be constructed for which the series will diverge, whatever

/3 may be.

[Compare a paper by Hardy, Proc. Lond. Math. Soc. (2), vol. 3, pp. 444-9.]

8. Shew that the integrals

/cos {/(*)}<**, pm{/G*)}db
are convergent, provided that f(x) tends steadily to infinity with x.

Prove also that I f'(x)sin{e
f(x) }dx is convergent no matter how rapidly

f'(x) tends to infinity.

[In the first case it is not sufficient that f(x) tends steadily to infinity,

as we may see by taking /(^)= x]

/

/-oo

cos(x
2
)dx and / s'm(x

2
)dx are convergent,

prove that 2cos(ft
2
0) and 2sin(%

2
0) cannot converge if B/TT is rational

(see Exs. A', 13-17, Ch. XL, and Ex. 10, p. 485).

Change of Variables.

10. If g() is an odd function of
, prove by dividing the range into

intervals (0, JTT), (Jir, TT), (TT, |TT), ... and introducing the new variables

x, TT-X, x ir, ZTT X, ... respectively, that

provided that both integrals converge.

Deduce that

tan~ 1

(asin.r) =
^7rsinh~

1
a, (Ex. 15.)

/ (log COS-.-')

H
-

[

dx 7T log 2. [WOLSTENHOLMK.]

11. Apply the same method to prove that, if /() is an even function

of f, a>0 and O^K:-^

(!) f/(sin,)$
= >i"

= 2 f
1

V(sisn A> + e-- cos



ill.]

=
/ <>

- 2
[*V(sin .r) [e + 2 cosh(Ka) 2 '*"* cos 2nx] dx ;

in p)a( oowe**-

[It i.-, understood th;it all the intrgi rge ;
the series used are

in lv\. 17, p. :n.
|>. 869, .-iii.l K.\. :..

12. Illustrations ,f the last exaui]>l<-

(1)

X

(logC08^)~= -7T,

(logcos
2
.r)(logHii 1).

^
ami a similar formula rout, lining log sin'-'.' and log A(l -

Ol'>g(l +*-

similar formula <-ontainin_ and log(l -e'**).

-
1) ;

but in this case then- is no lin^ foriuula with l>^-\

.
[I and HARDY.]

Differentiation and Integration.

13. Cali-iil. ite the inteL:

,=jf
10g ,

and
j)i

o\- that linn

tli- ambigUOCU >iu'n lu-in^ i i- the sign of 'lain why this

limit i> not the same as tin- integral

[STOLZ.]

14. l'i'..\- I'.v
di"

n, or l,y .xj.aiidniL: in jwwers of a, that

jt
' l)S!

liy writing . f /b\ whi-r- o' i> real; and
- :lls I iv dillrn-ntiati.-n and
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15. Prove similarly that

/ log (1 -f a sin x) =
[TT sin"

1 a - (sin"
1
a)

2
]

J S1H 30

and
j^log

(1 + a sin%)4^=* [v/(l + a)
-

1].

Obtain four other integrals by writing a= i/3. [WOLSTENHOLME.]

16. By integrating the equation

fSrSS*-!^ where a>0>

with respect to y, prove that

and so on, the terms introduced on the left being those of the sine and

cosine power-series and the terms on the right being those of the exponential
series. [Math. Trip. 1902.]

17. Justify differentiating the integral

f^tan- 1

(a
2
tan%)^, (a >0)

under the integral sign, and so prove that its value is 7rtan~1
{a/(a + v/2)}.

Change the variable to 0, where a2 tan2^=cot 0, and deduce that if

we put V<= 2a/(a
2
-l),

e) I
an

.

n 0J(1 + ta

Examine the special cases x = 2 (Wolstenholme) and * = 8 (Oxford Senior

Scholarship).

18. By differentiation or otherwise, prove that if a, 6 are positive,

jftan-'(a*)tan-'(&*) J-Ja- [olog (l +^)
+ 6 log (l

+
|

19. By differentiation or otherwise, prove that, if a is positive,

osin

7V/;>. 1892.]



ill.
I

171

20. >li.-\\ i },.. are positive, a being the greatest of the three,

: i <io: COB &r COB or = 4^, >>6+ c,

ITT, if a<6-fc.
Deduct- l.y integration that

e08ar-^
=

i7r&, if a>6 + c,

i7r( + &-c), if a <& + <?,

/ ' > 6-fc,

/<&+ <?.

In particular, / 10, if <><f<2,

or *TT, if '.

21. Prove that, if t>
!
+ "

2 |

+ ... + |a*|,

II ...aft^r.^i = i- :MER.]

22. The results of Exs. 20, 21 can also be found l.y integration by
: this iiirtln.ll irivt-s at once

rili- f/*"- 1

(
v.,, ( ,s, (^^l^S^^jp

Jo
(1 ,=(-!)" 1'- 1

log^p
!'.!:>, ^.l'/-' .0, I'.l"' "..... I\la2"=0.

'lish similar formulae f-T intr^rals which contain sums of sines;

and prove that

--...}

tin- Miuiili* . in tin- 1. racket being i or i

Dirichlet's Integrals.

23. Apply the thfoifin of Art. 17^ (4) to justify the equation

liu. \' >(r + ,-t}e-dt=^
c-M)^0

and deduce that

'(y)-<*-H*dy = A s
'-

li, u [_;(,- + o)+ r\.r- 8)].
C >OC J_ao 8 *0

[\VKlKi:sTRA88.]

24. Apply Alel's test of in 4ence to prove that if /(/) is

inonotonic (at least after a certain itage)

-'(OX i/(ox

according M c, zero, or positive.
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/ f(i)dt is convergent, then

/"cos (xv)dv
j

and the same result is true if the cosines are both replaced by sines.

[FOURIER.]

25. By taking /(#)= e~ ax (a>0), deduce from the last example that

, TT /""acosO^y) 7

-i<" =1 -W^2*-

Consider similarly the integrals given by taking f(x) \ from #= to 1,

d/(#)=0 from 1 to oo. [FOURIER.]

26. From the integrals

,ech*=S/>iS**, sech%=.
Jo cosh Trt

2

sinh irt

prove by the method of Ex. 4, Art. 174, that

TT
* cos (2^7r.r/(o)

o) cosh(?i7r
2
/w)'

2?r2
* n cos (2w7T^/w)

(o
2

~& sinh (w7T
2
/o>)

2 e -(x+no,)2=
-OD O) _a

). [SCHLOMILCH.]

Integration of Series.

27. Prove that (see Ex. 42, p. 167), if a, b are positive,

a cos%+ 62
sin*#)<far

= TT log ,

and verify that these results remain correct when 6 = and when <t = 0.

Deduce that, if r2 < 1 and p, q are positive,

/" log (a

Jo

, _7T
9sn.r

r

**py

Compare Ex. 2, p. 347.

28. Using the series of Ex. 7, Ch. IX., prove that

/ cos^cty = 2_tanjr^ /*"

Jo H-2^cos0+ i
4
"

(1 + ^)' Jo l

f/<

Deduce that f'tan-
1

.
= 8tan-/. tanlrV,

Jo \ l-t4 /unf9
and verify this result by expanding in pmvrrs of /. [HAHHY.]



in.) LMFLEa

29. Ki-.-in A :1)

I
1

Sli.-\v a!-, i

f* 7r
\ (\ -L \

1^7+r :.vcos*+r* r

30. (1) I'n.ve th.v Bn (I
'o suin \7r' )

! 175>

A\ ii Euler*! nuinl.*-:

lly r\j;uitliiiu
r in powers of u, -i

=

31. Kroiii tli.

Jo

logO, -('-i'

--)

*10j ^rr'. [W..LSTKNII

(V..ni|.;ir.-
; Mt th.- ..nly ditli-Milties arise in

tt-mliii^ tin- I'ul.- t"<>! t--i in -l.y-t.-i in i n|i to the limits.]

32.
'

IT"' l" iu-iit'\ tin- following traiisfunnat i

-J

= 1 _i

[LKGKNDRE.]
33. shrw that

N \it. 176),

ami verify tin- equation 1>\ mak 30.

34. It' Mtih that
/ |

[\V,
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Gamma Functions, etc.

35. Use the method of Art. 106 to shew that if the real parts of r, s

are positive,

and deduce that

36. If
Cf=Jo

e~ xt
t
n-l

dt, where #=+iV? and >0, shew that

3_ n 'dU_ inn
3f~ *

u
\ <sj"!"-T*r

'

and hence prove that U=T(n)/x
n

,
if n>0.

By using Ex. 2, Art. 172, deduce that if

r<a /-

/
co$t.tn

-l dt= T(n)cos(%n7r\ / smt.
Jo JQ

and verify that the last result is correct if l<n<l.
Obtain the corresponding formulae for

/ coa(a?)dx and / si

37. If the real part of x lies between -k and -

positive integer, prove that

[CAUCHY.]

where k is a

. [CAUCHY.]

[Apply the process of integration by parts to the integral for r (

38. Shew that if a, ft are real,

If #=
117,

shew that

Tf
- ]

express A
t
B in terms of Gamma-functions, and prove that

dx

Assuming the value of F(f) given in Ex. 41, deduce that

;4 = 1-311029, =0-599070.

40. Similarly express the integrals

dx l xdx

[GAUSS.]

in terms of T(^), and so obtain numerical values for them. [GAUSS.]



in.
I

EXAMPLES,

41. Deduce fr-.m (In- j,r..du.-t formula for !'(!+./) that if [jr|<2,

K'r<i+*)-jiog
I ; -jiogQ^+c,*-^-^-...,

^1 - C :;. (77
= ) N-r

=0-0011928,

Cs- J 2 ws=
,

= % 2 7t- = 2232,

<7&
= $i>-*= 73- fc-U-

nuim-ii' that

logl(l ivt
, F-WTMl, I..g10 r(|)=!

It will also !. found fi-'iu this s.-i i-s that if 1' ( I + i)
= re*, then

log, /-= 1-7 17:11 ami ^=-'301'
Tho.-

g '.802-(0-15495)i ;

ilt t-alculated to 7 decimals : Stirling- >-i ies (Art. 132),

writing #=10+ /.

42. If i l-o

that ) .,l

win-re r is Euler's constant.

Shew that xKO-
I

Deduce from Arts. 17*, 17!) that

)-i

\js(x)+C= f
]

>lt (if the real part <>f is |...>itive).
Jo 1 t

Obtain the particular results,

alflO tliat

fa)-|(iw>-w ^'(4)=i

43. Shew that, if p, q are posit i\e

where f(t)=
-

-*)} + (! -f)log(l ~0+ 2 w~'r log(l
- wr

O>

if 0)= 11
(-TT/flJl
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Deduce from this and the corresponding formula with q p in place of

p, that

Obtain the particular results,

lK) + C= ~
I log 3+ ITT v/3, <Kf) + (7= - 3 log 2 + Jir. [GAUSS.]

30
( IV*

44. Similar results can be obtained for the function J3(x)= 2 ;

o x -\- n
thus, shew that

/?(#)+ 0(1 + x)= 1/x, ($(x) + 0(1
-
#) = TT cosec (wtf),

lim O(^) - log x\ = 0, lim $(x)= 0,
a; >oo a: >

Tl fx-1

($(x)= I ^r-.dt (if the real part of x is positive).

In particular, prove that

45. If /(a)

prove from Art. 172 (3) that we may differentiate under the integral sign,

provided that a is positive.

Hence

and

46. Shew from Ex. 45 that

rt
I sin ^ . log sin x . dx =

log 2 - 1,

''sin x . (log sin #)*.<&? =
(log 2 - 1 )

2
-f 1 - V,

f V(sii? ^) log sin a? . etc =
Jo

I log sin a; . dx = -
JTT log 2,

^)
2

. dx =
tir



III.
I

, \ll-l. l>

47. .hi.-tify tl .tiati..n ..f th- ..,,.

that

log cos x .</.< = ATT [( log 2)
1 -A 71"]'

^o

/"i*
/ sin o: . log sin x . log cos # . dx= 2 - log 2 - ITT*.

Miscellaneous.

48. Frnin the series

i that it' the real part t i> UIV.H.T than -I,

[See Ex. 42 and use Art. 52 (3).]

49. From the last example <K-du.-r that, if ih- KM! part "f n i>

and n't uu-att-r than I,

r* sinh our dor

Ki-.)*,

and hence, if A rove that

-log 00th JAr, [JA/M. r/-r . 1889.]

si

nhlATT). [HA
cos.

50. Ki<m K\.
B,

Ait. IT."-, ; if thr ival part of a is p-

nd n't ^n-alei- than A,

* ]

=ilog, [.I/ 1895.]

51. I 7fi 15, that if - and a are p

I -HI

r
r

LIP
]

1) 4.8 .r(.r

JTo
obtain the latter sn -;d >]~-(\-ij)'

<l->,)'-*l + : +...
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52. Obtain the first integral of Ex. 49 from the series

sech x= 2 (er*
- e~Sx+ e~^ - . . .)

by applying Frullani's integral to the separate terms.

Obtain similarly the following integrals :

where the real part of a is positive. [HARDY.]

53. Write down the form of Frullani's integral when
and deduce that when p is positive,

/"*/ sinhp# sirihpx W^_ii /

Jo Vcoshpx + cos qx cosh px+ cos rx) x
~ ^

[Math. Trip. 1890.]

54. The following integrals are allied to Frullani's integral

r^dx ,

(sin mx sin nxf % =%TT \

m - n
\ ,

Evaluate the first of these integrals when m, n have opposite signs.

55. By changing the variable from t to 2 in Art. 180, prove that

Shew from Ex. 3, Art. 173, that of these integrals the first is equal to

Iog2-l and the second to log(7r). (See Ex. 52.)

56. Prove that if is positive, the function

t V-l *

steadily decreases as t increases from to oo (see p. 234). By applying
Art. 168, deduce that, if #= + /?/

in the formulae of p. 465,

57. Deduce from Ex. 56 that if #+tfy where is positive and

but
rj

tends to infinity,

where r= |a?|. (Compare Ex. 38, p. 474.) [PINCHEHU:.]



BABY MISCELLANEOUS EXAMPLES,

1. Sh,w that
v|_ t!)-

1]^*
" 10 -

series can be MH.UM..I to 71 tern may express the general

in the form
| '{./--

<

/.*-.]

2. I>i>ouss the convergence of the series

1890.]

3. If ,l++...+-

and d-'dur.- that Kulfr's i-i.nstant is rju;il {<>

t
" + '-' } - [<

V1

4. 1'iove that, it'
//

1111

'

(w =

I to the limit log{(l +/);(! -X-)}, wluMi
//,

r tend t.. intinity in such

. that r
//.

tend- ;

5. A
j.).l>, -hat

1

;

[K<>i .'th.-r i! mini: and rvalisatin:: tln-sr -riea

8, i'p. l.

6. If I dniotes 2~" + : D into

hat

'., + *
4 + ... = l, *,-f*4 -|-*

fl
+... = i,

J^+ ii3 + l*l+- = l- '

[>
'

,12, L906, i'. 477.]
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7. If 6 is positive, prove that

[Write x=e~^9 and convert into a double series.] [Math. Trip. 1894.]

8. Shew that the series

does not converge uniformly in any interval including x\.
[Math. Trip. 1901.]

9. (1) If /(#)= way"-1 -(%+ !)#", prove that

and deduce that S/nfaO <&?=!> while

(2) Prove that the series obtained by differentiating

is uniformly convergent for all real values of #, including #=0. Is the

same true of the given series?

10. Prove that

11 X 1.3 tf
2

1 1 ' 3

, 1, 2, ^)]
2= ^(1, |, 3, #), [^(1, f, 3, ^)P= ^(2, I, 5, ^).

[All these can be obtained by direct multiplication ;
but the law of

the coefficients is more quickly determined by differentiation or some

other special device.]

11. Shew how to calculate log 2, log 3, log 5, log 7 from the five series

a, 6, c, d, e given by writing

^=A> %V> T&TJ sV> sir

respectively in the series for log{(l +#)/(! .^)} ;
and prove that

[For results to 260 decimals, see ADAMS, Math. Papers, vol. 1, p. 459.]

12. Prove that as x tends to 1,

.ru _
log (1 -.,). [CESARO.]

13. Sketch the graphs from to 2?r of the functions

sin bx+ - sin lO.r+ ~ sin 1 bx + . . .
,

sin 2.^+ 7; si n (}.* + - sin Kb 1 + ... .

> 5



I.AM gift l.l.l.\\ \ AMI'LKS. 4M

14. It ^

'li.it i)+...+/{.r + (*-l)a}],

\\lit-re a-2ir -.

nmlti|ih-

[This ir>ult : 111 tli.- nimifiiral apji

i

; see ^ </-.<. \-\

P, i*4, an.l I.

15. If r- i- -
1. M tl

[Ml

384).

|Takf jp| in tin- s-i . 17,
j,. I'.ni.J

IB. s,, (,vha,
i-!,,i ;,,,;, ;_,..

ivin^j ./ >|-.-ial valiu-s in tl.-
. 17, \>.

190.

17. l'i"\- that it' n i- -'\ rn

,!,,) = tan i.' -i""l_\
rfl ^/*+l

[M- 1907.]

18. Slu-Nv that th- remainder aftrr /< tnni> in th- lii-i

\
,'\

'-'

iiotcs th- r.frn.'iilli,,!, fuiH-ti.'ii (h-iin.-d in An.

|".1A/^. 7'

19. Sh.-w that

[\\ l.ME.]

H'sf Arts. !C, l!> ami th, ;.]

20. Discuss th-

h 'inj.lex.

tllC )H'i.l

f>r all vahu-s ..f th.- ..miil.-x vaHabl
[.I/.-

La --'n
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21. Prove that if

S = l!-2!+3!-4! + ..., (Arts. 98, 132)

then l(l!)-2(2!) + 3(3!)-4(4!)+... = l -2S
,

l 2(l!)-2
2
(2!)+ 32

(3!)-4
2
(4!)+...=5 -2,

and generally 2(- \)
n~*nk(n !)

is of the form aS + /?, where a, /;?
are

integers (positive or negative).

22. Shew that

l !- 3 1.3.5 1.3.5.7

[For an Application to an important physical problem, see Lovi:

Trans., A, vol. 207, 1907, pp. 195-197.]

23. If X*=F<r*.dx,
Jo n -

prove that lim (lim n̂ )
=

0, Km (lim Xn)=\.
X >ao n >oc z >-oo a: >an

24. From the power-series for 4[log(l+#)]
2

,
shew that if -7r<#<-,

and obtain a corresponding formula for [log (4 sinH#)]
2

.

Shew also that

Deduce the integrals of Ex. 31, p. 473.

25. If un= - 2n f "cos %nx log (2 cos \x) dx,

prove that un - un+l = (
- 1 )/(2w + 1

),

and that ^=
^-(l

- i+ i -
..3^) [CATALAN.]

26. Prove that if /: is an integer and |r|<l,
rir

(1 -r2
)cos7i.r

j 5^= 0, if n is not divisible by X
1

,

Jo 1 -2rcos#-H*2

=
7rr", if tt= v.

Deduce that if k= aK and ?= aA, where *, A are co-prime integers,

f,

Jo (I~

27. Prove that if a is positive and y
2= cu?2 +2&.r-f c,

If also ac-62 is positive and equal to jo
2
, prove that

/

J

where the angle lies between and TT.

[For a discussion of these and other similar cases, see BROMWICH, M<

of Maths., vol. 35, 1900, ].. 13I.|



RAfiTS \n-< BLLANEO1

28. Prove th;i

'gfiKJAWfOll-

all I- -a! rmta "I"
I (0 th:it

/' "--6*>0),

'Vt !

when -s the second result in a real

form, \\hrn
(,'

\* ii'-^at

/*4w

29. Provt- that if th- "iivergent and equal

IT. tli. MI tli.-

f M

Converges, |.r'\il-.l that </>(.) t-tnU >tcadily t> /.'!".

h.-d .nvergen

/ log (4 co8
2
.r)<^)(.r )</./,

/
l..r( ; HXRDT.]

30. Provr that in the sense defined l.y l'i in-shriin (Ch. \

HIM
/'

A

| '"/).'-
r }

</'-':l.<-dy (r,8>0)
A, >X-*r.'" /

-crfc--
r(r)r()an J(r+)*.

also that if 0<a<;r,

lim
f

A

/'%'W^coea-h^
A, M '' a

HAKDT, Messenger ofM :--J, r.'W.
j,j,. :>2, 159.]

31. Provr that if tin- ivul j:irt I ]-ositive,

H^- 1^ 1^ n!

Jo l+^~2r^-fl)...

32. Piovr that if in tin- intnval (./. /') the function /(.,, n)\ ift less

tlian 1 for all val mil if tin* fum-tiiMi ml has a

C01l\ri ur,. n t intr U'I-al fl'olii fl to /,, tlli'll

Urn

pi-o\ id.-d that nd- to its limit uniformly in any interval whi-'h

ao< .niifiin - = '. [See &\>

De<lu'- that

0,

lim f
r

[/> + (l



HARDER MISCELLANEOUS EXAMPLES,

WITH REFERENCES.

1. Prove that the function which is equal to 1 when x is rational,

and to when x is irrational, can be defined by either of the following

repeated limits :

(1) lim [lim {cos(m!7T^)}
2w

].m >oc n >

[PRINGSHEIM and LEBESGUE.]

(2) lim [sgn{sin
2
(ra!7r#)}],m >-oo

2
where sgn X=lim -

arctan(w^T). [PIERPOINT.]

[This function cannot be represented as a single limit of a continuous

function of x, n : BAIRE, Lepons sur les Fonctions Discontinues, pp. 75, S3.]

2. If f(x) is equal to q, when x is represented by the rational fraction

pjq, and to 0, when x is irrational, prove that f(x} is not finite in <m//

interval, however small, although f(x} is finite for every value of x.

3. Discuss the solution of an equation

/(*)<*)= *,

where f, < are real monotonic functions, by forming the sequence () in

which /(an+1)
= /<XO.

[See SOMMERFELD, Gottingen Nachrichten, 1898, p. 360; and compare
Exs. 10, 11, p. 18. An extension to complex variables has been made by

FATOU, Comptes Rendus, t. 143, 1906, p. 546.]

4. Prove that if -()'. 0<a<,
\ no, J *&

then 2>n <?, I,\Vn-vn+l \<l+^+^f

I To prove the first result take an integer r so that ra.^ 1 <(;-+l)a ;
then

r I oo I

2><-, 2^,<-.
i a r+i a

To prove the second, take the integer s so that 5a^7r<(+l)a; then

v1

,Z \Vn-Vn+1\= V\ Vt

Bothat
\
Vn



II AIM'I

5. h \vlii. -li t.-iuU -h-idily t.. infinity with or (so that

that, \\ht-n tin- .s.- (

|i].-iir.-
" iiumotonv-

condition li,,, =
-*

iv ntoutary fr r..ii\,-i^.-M.'-.

ph-, with

u monotonio, <KIM.;

[('..in pair Arts. 9 and 166.]

6. I ' "f ,, \\hi.-h tends stradih as n tends

t<> intimtv, tlii-n th.- ! .verge and diverge

7. (1) It' huth tdily t.i infinity with , pn>ve that

JftO l. inlinitv with a rapidity n..t l-.s> :

tliat OJ

. l>Mtli trn.l stradily t" infinity with

uith

a rapidity M"t h-ss than that of

[K>r pi-Mil'-
, .f tli.--.- and a nuinln-i- ..f similar tli.-ui-eni8, see 1'

. t. 11. 1906, p. 29.]

8. l>u U"i^ Bejmond hai oonstmcted Bfying all the logarithmic
criteria as foil.

v'.V_J_ . v _J_+
i* ~*log

~
ognlog(log

wlii-r- /;,. /'.. ;?-., ... arr tin- least intru'tTs, siu-h that

> i
-

nuinlnTs //,. i,.,, Plj,
... incn-asr very rapidly, thu-

i between i" : and IM-.

that t! "lit.

'.MKKI..
s

l'."_', p. 12.]

9. Sln-w (MC K\. ''. p. :V.H ) that it" fy i> irrational wr can find a SftjueiK-f

. whi.h ti-nd- t" -uch that

HIM ^ >in
' 1

jrhen -1 i- any ntunlu-i- l.rtw.-,-n tin- .-Mrfiiif limit.-

10. I'rovr that if rin(n^)
- t and H!>(ft+l)W <,

then

I feduce tljat l'>in(//-Vyi caDl - a niulti!

I'.y
ii 1IM7, p| tliat 2i divergent

:r = (2A+ I )-'/' r-:5). when A and
//

an- U

llatei fail

hisruss similarly the ^).

[Littl<- apjirai- t- ! kno\\n a- to th- of tl>ee series when 0/ir

is irrational.]



486 HARDER EXAMPLES.

11. Prove in the same way that 2 sin (2
M
#) can only converge if

$/7r
= A/2'

t

,
where A and /x are integers.

12. Shew that 2sin(tt!7r.r) converges for all rational values of x ; and

also for

#=(2ra-fl)e, 2m/e, sinl, cos 1. [RIEMANN.]

For instance, if x=e, we have sin (n \ire)
= (- I)"-

1 sin (/Or), where

|

We can now apply Art. 21.

We note for comparison with Exs. 10-12 that the integrals

are all convergent (see Ex. 8, p.

oo

13. Prove that if the series f(x}= 2 anx
n
converges absolutely for

|

x
\ <1,

the two series

both converge and are equal if |#|<1, |c|<l, |y|<l.

[Compare Ex. 6, p. 126.]

[The series obtained by writing an=(- l)
n
/nl, y= c in Ex. 13 have been

considered in Dedekind's edition of Dirichlet's Zahlentheorie
;
and those

found by writing #=c, an=(-l)
n
/nl or 1/w!, have been discussed by

Pringsheim, Chicago Math. Congress Papers, p. 288.] ..

14. If the two series of the last example are not equal, but are con-

vergent, prove that

and deduce that if x=rx-x then

[That the series need not be equal when c>l is clear from Ex. 28.]

15. If we put y= \ in Ex. 13, we must omit the first term in </>(.)

and write
,.

fcW-Sfr^J
then prove that

(f>l (x)-(f> J(xc)=f(x)-a ()
.

Deduce that if Xi(-r)
= f (')-</>! (''),

then A' =

16. Deduce from Exs. 20, 21, p. 251, that if 0=y<x=b

where m= n IH omitted from the series; hut that the sum is zero if .r=#.

Shew further (hat the culrr ..f suiuniat ion is immaterial except when

#=0, # = (nee Ex. 11, p. 92). [HARDY.]



HAEDEB I \ \MI i.

17. ohtain tin- sum of tin- i-j>eated sen

S v-xpii';r/(i/M- +,...-,;
1,

fi-'" [Kk'.M,
li.it tin- "

.vergent, sec II

: : .

. :

18. Let the -ymhol !4
:

; _rer ncare*

ii.it U :
;

.

:

.is definition.

A! to \\hi.-li 1C Ol Tim.-. M ;
: tends to

through >maller values, | } tends t<. -f \ : || to /<
-

.'. through
lar'_r'T \alues, \'q\ tends to -^; hut {^} lia-^ m> -.th.-r di><ntint;

l'i.ve that tl

^^...
is uniformly i all valuer of ./

;
hut that the series has a

ntimiity ry |i"int ./--/- -2n>, \\li--ii-
j,

i- ,,dd and jiim-
t> in. Thus the seri'-> i- diaCOntinuOQfl intinii

[1;

19. i the lines i.f Ail. '>') that the equation

y=
\\hei t ilnuhlr ]M\V-l i.solnlfly .-. >l\ \-rr^'Ilt for /

\ff\
= li -an hi- -all-tied hy a ]>.\\

er >ei ies

y- I

\\hieh ei-rtaiidy .-..nverges if \x <4aM ( -Ll/ 4- '//). where .I/ lain

i-oli-taill dete)Iliine<l hy the tenn> in the '.6).

20. Shew tl, M iii Art. an <>Uain an

i>im in
]

f>r a I'uin-tii.n //(') //(.'
>

< .\\li-:

in .', and / is a {...sitive intr^rr. I*rove also that if \\e \\iite

4(4?)

tht-n /-/A, is the eneilieient of 1 .< in the r\jaiision
. in

jm\\fi- i't' ./ ; tin- d'-i'-rmim'> all the e..etVieiei.' /! . which i- the

OOefficienl of I ., in the expansion of

Ajijily the metliod taking !-

21. If .' + .- l"" vt - th;lt

(1) <M

^

l-fr)}.
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Deduce the value of <() (see also Ex. 32, p. 473), and that if #= iU'o - 1),

so that x2+ x= l, then

<*>(*)
= AT* - (log x}\ 4>(a*)

= J.TT2 - (log x}\

[BERTRAND, Calc. Int., 270 ; ROGERS, Proc. Lond. Math. Soc. (2), vol. 4,

1906, p. 169.]

22. (1) Prove that the differential equation

can be solved by a series

where u = A cos #+ Z? sin #, un(x}=
|

tun_i(i)&\i\(x-i)dt.

Shew that
|

wn
| <| x\

2n+l
/n\.

(2) Prove that if v(x) is continuous in an interval (a, 6), the equation

has a solution y= ^u n in the same interval, where

o

Shew that if
^8, y are certain constants depending on the nature of v(.'')9

|

un
|

< (3y
n
/(2n) 1. [A . C. DIXON.]

Results allied to Abel's theorem.

23. If <j>(x) tends steadily to zero as x increases, but the series ^,<f>(n)

diverges, shew that as a tends to zero (from the positive side),

/CO
<$>(x)e-xdx, ci0.

An illustration has already occurred in Ex. 5, p. 419 ;
another is given by

[LE ROY, Bulletin des sci. math., t. 24, 1900, p. 245.]

24. Extend the results of the last example to double series, and pn>\.-

in particular that if 0<s<l,

rot)/-*" do
-V^ ivTi

-
^i (^8 .r, ?/-fl),

r* .'o cos*^-o>'

where rcosw = l-.r, rsinw = l-y/, &= 2-2s. [HAI:I.V.|

25. Abel's theorem (Arts. 51, 83) can be extended as follows:

Siij)|)..-.- that ^H H is /'-ply indeterminate (in (' -sard's sense) and li;i> the

sum I, and that vn is a function of x which satisfies the following conditions :

lim nX-0, 2w r
|

A-+1
/-, ( |

< A',



SARD!

\\hile

then inn !/., /=/.

rwi( ii. M .'led under tin-

D havr Keen found l.\ II 1907, and

aN. Moo 1907. See also H
. Vol.

-1.]

26. Ajtj.i.
: formula (Ait. I.'JI) in ol.tain tin- asymptotie formulae

1 ' '

,..^..~'' ? + *TT-1+.I-U. "*X'2

Us- that

seen./ - Mob? r...<^4[(7r/.r)-l].

;itt.-ni|.t tO cMiitinue the l.i-I asymptotic fonnul;i a-

in ./-, all i ..-ills will !. fo mill f> ! BOTO: and a- a iiiattM- of t

tin- iH-xt trim in tin- :iji|>roxiin:itioii j> (l-'x^-**!*.

27. Apply thi- nirthotl of Art. !:*:> t<> t:

Y'
J

and ju-ovc that U 7
* I.

in the sain.- way tin-

28. l)uliii-- from lv\. ."). p. :U^. ami tin- pow.-r

that if /"(
'

)
i- any i-ontimioiis function in tin- interval (<>. _'-). a j>.lvii":

\jP+..
can !" ilctfj inini'il ^. > that

.

,|,aiv I', ;. I. Ch. 1\.. <
V.]

29. Shew that l.y |.i..|..'i d the maximum value of J I

the CO1TW] ..... linur value of t, can l,,.th In- l.roii^ht as n.-ai t.. 1 us we please.
I >-ducc that, as / t.-nds t 1, the >. :

'

-f...

o-'-illato 1 MC limits (\ and I.
f
H \

30. If W write ,/ ( 1. and 1 3. w,

'_
fet t 1

:V(-V

M-
I'rovr that if /'( r)

'( :hen
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Verify also that, to five places of decimals,

^(1/^/2)= -00275, if c= 2,

and that F(l/6*)= -13185, if c= 6.

Shew further that, as x tends to 1, g(x) tends to
;
and deduce that

f(x) oscillates between limits at least as wide as

50275 and -49725, if c=2,
or -63185 and '36815, if c= Q.

31. If we write ,,
=

(
-

l)
n
/nl and -logo; for x in Ex. 15, we get

the series =

Prove that if F(x)=f(x)-g(x\ then

and verify that ^(1/^2) =1'1960, if c= 2.

Shew also that g(x) tends to as x tends to 1, and deduce Cesaro's

result that f{x) has the asymptotic representation

-
log HogiVlog c. [See Ex. 4, p. 133.]

[For a treatment of the series in Exs. 30, 31 by means of contour

integrals, see 8-13 of a paper by HARDY, Quarterly Journal, vol. 38, 1907,

p. 269 ;
some similar results have been obtained for the series

V -,-A,,*
i un a ,

where Xw tends steadily to infinity, by CAHEN, Annales de VEcole Normal?

Sup. (3), t. 11, 1894, p. 75.]

Functions without a derivate.

32. Shew that if a continuous function F(x) has a finite derivate b

at x=a, an interval (a 8, a + 8) can be found such that the quotient

{F(x2)-F(xl )}/(jc2 -x1) lies between b-e and b+ t when #, is any point
such that a-8<x

l <a, and #2 is any point such that a<#2 <a-f8.
In like manner if F(x) has an infinite derivate (positive) at x= a, prove

that the interval can be chosen so that the quotient is greater than .V.

however large N may be.

33. Write F(x}= ^Lr
n
cos(s

n
Trx\ where 0<r<l and * is an odd int-_-

and let $m(x) denote the sum of the first m terms in F(.r), then slu-\\ thai

while if a=jt?/
m

,
where p is an integer,

prove that, if q is p + 1 or ?+ 3, and /?
=

<//s
m

, then

F(ft-F(a) ()"["/ i\
2

I/I=
^^L(

" ^r^^^l
where |-tf|<3ir/(r-l).



II Al.'l'l

Deduce that ii i >l+f*>(] r), the quotient ha* the nine iign M (- 1)*,

and ran In- iii.id. ail.itiaiily ^i ing m sufficiently.

['I'll.- conditions mi /, x are ea pl-, take r=^, <= 7 ;

34. I UK! an arbitrarily small int.-i

containing ". -he\\ that joints ,,,, n.,, /;?,, /, can In- found i.f the type
idered in tin- la-t example, and su -h that a,, a. fall in the intei

: fall in tin- ii ',), wliil.-

and {fi' {

h. \\c\t-r lai'iri- -V may
< that thr function /Mr), although cmtinin>u> f-r all

has nowhere a d.-tinit<- d.-n
( \VKIKI:STRASS.]

[Thr in\r-ti^ati<.n usuallx ^i\cn i'..r \\fn-i-strass's fuin-tin leads to the

nnnrcfssarily naii"\\ cnndit i<>n /.< 1
-^ ;;-. Thus /-~\ would require f:

-

_-.
! instead of = ".]

35. Sh.-u h-,,i,, K\. :{:; tluM

a=(?-i)/r, f^=qlf
m

y y=*
\vlit-rc Y . /'(/;) is less than !>>th ^(a) and /-Vy) ; and

deduce that / minimum in the interval (a, y).
11

prove that /'(./) has an infinity of maxima and minima in any interval,

nail.

[It has sometime-* ln-.-n stated tl i maximum, /^ a minimum of

: Imt this cannot l.e ju-oved at any rate l>y th<

argument.]

36. (1) h i "f odd in \Veieist pass's function, -hew that

a similai n leads to the condition n > 1

I | .-|iondiliu
r c.ises when sim-> take the

jii
in the >

Trove that with the notation \

4ifi.
|

ami dediu-e that \\ iction has nowln-i-e a definite/''/-/.'' dei

[The last ciinditio',

iher similai fancttons, M0 I>IM. X.)

Complex Series.

37. Deduce from Kx. HI. p. -Jll. that it'
/-

i-* a prime nu

~\p/
where

|^"]
is 4-1 if N i> a -piadiat ic n

and ') if /< is a multip

.' is, if \ve ran lind .'ill i:. '"* n is & multiple
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In particular, with p 1, the residues less than 7 are 1, 2, 4, and so

+!_i+i_ 1 _!+ 1 +!_J_,_L__L_! 4 _JL
^2 3U 5 G^S^O KT11 12 IS"

1
"

^7'

[DIRICHLET : see also GLAISHER, Messenger of Maths., vol. 31, p. 98.]

38. If the real part of p is positive, prove that (see Art. 89),

the mean value being taken along the circle j#|
= l

Deduce that if the real part of q is also positive,

and hence that

^ r(2w+i)--- -

provided that the real parts of m, n-m are positive. [CAUCHY.]

39. (1) If (an) is a sequence such that every subsequence selected from

(an) has zero as one limiting value, prove that (an) tends to zero as a limit.

(2) If for every value of x from to a (a>0),

prove that (cn) tends to zero.

(3) If for all values of x from a to ft (both real),

lim (an cos nx + ft,, sin nx)= 0,

prove that (a,,), (ft,,) both tend to zero.

[G. CANTOR, Math. Ann., Bd. 4, p. 141.]

40. If the imaginary part of 2an#M (a;
= + ^) converges at all points of

an arc of a regular curve (which is not a radius through the origin), prove

(from Ex. 39) that 2an#w has a radius of convergence not less than p, if

f)
is the least distance from the origin to the given arc.

It is not enough to suppose the convergence given at all points of a

dense set along the arc
;
thus the imaginary part of 2.a?

n!
converges for ani/

value of r, if .r= r(cos + i'sin 6) and O/TT is rational.

[KALMAN, Math. Annalen, Bd. 63, 1907, p. 3-J-2.
|

41. For any series of the type

v"

are two constants A, /x
such that the series diverges it A'

converges if A</?(.r)</x, and converges absolutely if /?(a
<

)>/x. These

constants air mniM-h-d l,v tin- < ..... litions

A = lTm {log |

A n |}/log w, /x
= lira (log ^H)/logw,

l



BARD!

It is assumed ih,. ./" ban a radius of

igence equal t<> anil

theorems can be eHtal.li-1,. <l r'..i tlie series

(*-l)...(*

[LAM. .\ i -// .. !-<!. 36, 1906, pp. 192-208.]

42. Sln-w that it th. i,-al numheis tends .<t*;uli'fy to

infinity, tli.- i V >-.',. .mil ..iily if,

I/ .

\\here A M=a l
+ d.

2 +. .. + ./. It is assumed that the series 2o does

-

i urc ;
it' it !"-. tin- oondif :

..-nt. l.ut

"t he necessary f..i- ooi

[ton, pair Kxs. !>, K>. p. -2^>.\

43. Consider i

V

'TrA/

\\ln-i i and latiniial. l'r-v.- that
'

(1)
-

J
valut- OJ

has a tinitr radius ..f ..nvrr 1;M

(3) div.-ru'o for every aon-zero \alu- <.r

I! \i;i nd. i/Otk, vol. 3, MX).'), p. 441.]

Riemann's t-function.

44. l'i-i'V- tliat the sei

l+2-'-H3-' + 4-' + ...- >

nd -lily .,f g) is givat.-r than 1.

\Vhrn this c'c.ndit i"ii i> ii"t satislifd. dftiiu-d a> tin- OOJ

term in lh- a-ynipt'ti.- --xpan-i.. ,:il )

\+-2- + Z-'+...+

Thus if < /{(.<) = 1, we have

f()-Km F(H r...-f-
fl * M \ 1

and sn on. It -an 1 l.y nimv rlalM.iatr inrth.-ds thai

function {(t) is analytic ami lias only one singularity, a poK- at .
= 1 :

IL a singularity fnll<>\\ -
; 11. (h. II.. which gives
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45. The following are easy examples on the {-function assuming R(s) > 1 :

(1) [f(*)]~
l== n(l l/p*)i where p is any prime number. [EULER.]

(2 ) [f(5)]
2 =

2A.(w)/M*, where X(n) is the number of divisors of n.

(3) From (1) deduce that

where n is of the form aab^...kK
,
when expressed in terms of its prime

factors, and ag= q(q + l)...(q + a- l)/a!.

(4) From (2), (3) we obtain the familiar result

(5) The coefficient of l/n* in the product {(s)f(s-l) is the sum of the

divisors of n.

(6) [^(s)]~
1 =

2/x(/i)/w*, where fj,(n) is if n has any repeated factor, +1
if n has an even number of factors (all different), and - 1 if n has an odd

number of factors (all different).

(7) Let <f>(n) denote the number of numbers less than and prime to n
;

and let d denote any divisor of n, and write ^(w)= 2<(d). We have then

(8) ft

(9) f(2*)/f()=2( - l)
a+/3+ +/'= H(l + 1/p')-

1
- [CAHEN.]

46. Shew that the series

(*)
= l-2- + 3--4-+...

converges if, and only if, R(s) is positive, and prove that then

&)-<! -S*~)(('}

Shew also that, if 0</2(*)<!,

Deduce that

and so prove that 21-T() () cos (Jw)= 7r
s
f( 1 -

47. If 0< /(*)<!, shew that the series

r;(*)=l-3-'+ 5-'-7-'+...
is c -.nvergent, and that

48. Prove from the definition of the {-function that

C(0)
= ~

J, f(2m)= 2*"

f(-2m)= 0, f(27 + l)
=K

where m is any positive integer.

Deduce that the relation between f() and (!-*) given in Ex. IG is

true when is any integer ; that it is true for all values of * is proved

by Hi-in;iiin (/



Ml'LES.

49. Tin- snirs, in \vhi.-h
/.

t.ik. dues,

1

L+I+J

It ha- I- 1 that tin- sn nje if <*<!, luit t h-

|)i-M.t'
i- M"t \.-l OOmpll

in. .?,.,! there.]

Infinite Integrals.

50. IVnVr that if -

*(,

in ('/, A). i'Ut in su.-h a way that
|

tin- v;il

Mjnal t"

liiu 1

the iiit-r\a iilxlividcd ly rout inm-d lii^-<-t ion into n equal
<>f

((>(.,-)
in th'

51. Apply tin- la-t example and tli- tlif..ivm pr^v.-d in th-- >inall tyj.-

>t' Art. 177 ( i pi..vr that th.- n true

in any put of the

iiitt-i \

52. P>y writing ./ -"sV, s .!,, f -/^.^inh'/, I.I-MV.-
that

^

(dW+P/4^-lJ

j["(V-4>/jj

\ iind

iW+ b*l**)e-" i
/- + l/4a)e--*,

-

53. ly tin- sain.- 1 1 .iiisf..uu;it in as in tin- nd

?>

\vlu-! i an ci-en fim<-ii..n ; on f the *econd equat

}>rinripal valtu-s arc t> !> \\~.,-,\ if IHM-C-
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Similarly, if #() is an odd function,

Special examples of these are given by taking /()= cos
,

[Compare HARDY, Quarterly Journal, vol. 32, p. 374.]

/

54. If an integral
J^

f(x)dx oscillates, we may call it summable, if tin

lira {" e-t*f(x}dx

exists. We may, when convenient, indicate this limit by writing G befon
the sign of integration. Deduce from Ex. 2, Art. 172, that the "conditu \

of consistency" (Art. 100) is satisfied. Prove that (compare Ex. 36, p. 74)

aw lain(*)/'

=Qt GJ\inxdx=\.
[HARDY, Quarterly Journal, vol. 35, 1903, p. 22.

55. Use the result of Ex. 54 to prove that if the series F(x}=^,a^
converges for all values of x, then

provided that both series on the right are convergent.
Deduce that

T
cos mo? -?dx=*J cos H-sin

),4m 4m

where

56. Following the lines of Art. 109, frame a definition of uniformly
/.on

summable integrals ;
and prove that if O

\ f(x, a)dx is uniformly sunnnable
J

in an interval, its value is a continuous- function of a
; and that integration

is permissible under the sign of integration.

57. Discuss also the question of differentiation with respect to a

parameter. In particular if

shew that "-=- - '

u



HAIJM

hi u= l[-<r\i(e-*) + e- a
\i<

in th.- samr way
*

X - 5 A

58. he ex pan.-.

ta.,1, -...,

ln-\v tliat

and drduo- that

ta. *-l)-

59. I'l'-v- that it v (.. intinity and / ri

'n liniti- limit-. tli-u

ilisli -imilaily lh- udini: results witli sin*-* B

interchani

Deduct' Sti-k-
'

that if

u=
^

ccs
(.,-<-.,-;/

>

,,lx,

tln-n _!f + jyw = 0, ^ + A//i'
=

60. Ol'tain tin- a.-yni|t..ti<- s.ltitiui <>f th- ditlnvnt ial i-jM;iti.n

-0, (comi-aiv Kx. 58)

l.y \viitin. ^c:"
;
and ]r..vt- tliat tin- equation n

/

0,

\vhirh .L'ivi-> thf >>lutiui

f*e*4
8 { 1 !

[ST--KKS,

Trigonometrical Series.

61. >hc\v that, i: ^ei's (<j
<

1

wluTf <<. = -/ , and iu the sunn. 'akes all
]

pt multi].

[Wi-itt- spect to m by |>. 190.]

La -i
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62. Shew that

Deduce that

with certain restrictions on and
<f>. [H. N. DAVIS.]

63. If p is any integer and q is an integer not divisible by p, prove that

E = _ + sin (2^0) cot (nO\
\p/ p 2 2p n=1

where E(x) denotes the integral part of x and #=7rr/p, r being any

integer prime to p.

Writing r= 2, deduce that if p, q are odd,

where a= 7r/p. [EISENSTEIX.]

[See Ex. 21, p. 245, for the first part.]

64. Shew that if (an) and (6n) tend to 0, the series

F(x)= $a x2 - 2
-^

( cos ?w;+ bn sin w^)

is uniformly convergent for all values of x.

Prove that

Deduce from Ex. 4 and Art. 80 that

lim -- { F(x+ 2<x)+ ^(o;
-
2a)

- 2^) }
= a + 2 ( cos ?i,r+ 6n sin nx)

a-*0 4tt l

for all values of x for which the right-hand side can be proved to convex

[RIEMANN, Ges. Werke, p. 232.]

65. Prove by means of Ex. 4 and Weierstrass's J/-test that if (A n) tends

to zero, the series

converges uniformly for all values of a.

Hence shew that with the notation of the last example,

lim ~ [F(x+ 2a) + F(x- 2a)
-
%F(jc) ]

=
0,

a *0 ^a

provided that (an) and (&) tend to zero, no mattei* whether the ,>

converge or not. [RIEMANN, /.,-.]



II \I;M

66. I>-du . fi..i.-i tin- if the series

00+2(0,, COB /

U <-'|Mal I.. /.!< at all Imt a timt<- inn in th- ii
'

the coefficient*

[<;.
<

eh. I v

Mittag-Leffler's method of representing functions.

67. It' /'( p)
t.-nds to infinity at <-a<-h point !' an infinite >.-

1
ufiice (a*)

in such a uav that

lim / I .

tli'-n we ran \\ i it.-

win i integer -liosen so Ha to inak- th.- -. -i ios conver-_

iiiiil '

I t'linrtion d'-\-"i.l ..f .-insularity in tin* Unit.-
j.a;

plane. It i- amnr(l tliat th-- \ moduli
| a,, |

never decreases,

and IMM!S to inlinity with n,

Shew that if -I,",, . i. mains h->s than a ti.\.-d \: .

68. (1) Indicate the niu-xinn Ix-tw.-cn Mitta^-Li-tHi-r's represei
and tin- seriea "f partial fractions f.r roo<

Prove that lim (.' + //)!'(.')
=

( -1)" ', as x tends to -

and deduce that 1 -
'

Shew also that )= / e~'t
.'i

<:j) Indicate the relation of Mittag-Letfler's theorem to the equations

* r
-

.

'

I ! l-)(2-q) 1

~T2 J+2 +

69. (1) Shew, as Art. :M, that

where Q(f) 0, if o<y<-2-, l.ut
flf(*)

--,. ^
,f 27r<y<

Indi.-ate the n-latinn of this result to Mi-

" tliat if H is
poril

;'-

where
[('-l-log(^-

1

'
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Jacobi's Theta-functions.

70. If we put x= e
zi* in the functions of Ex. 16, Chap. V., the functions

obtained are called theta-functions ;
thus

a-j (<)=g (
- e^, q)

= 2q* sin
<f>
-
2q$ sin 3^+2^ sin 5< -

. . .
,

=/( e**, q)
= l + 2? cos 2< + 2?

4 cos 4< + 2?
9cos 6</>+ . . .

,

= - e
2^ = 1 - 2 cos

[There is some divergence as to notation
;
we adopt that of Tannery

and Molk so far as the suffixes are concerned.]

71. From Ex. 16, Ch. V., prove that

where a= ^(^)+ ^), /2
= ^ (<-!/') ;

and obtain corresponding formulae for

the products 2 (a)$ 2 (/3), etc.

Deduce that

and obtain other similar formulae.

72. From Exs. 18, 20, Ch. VI., prove that

73. if ^)=^^-
2

n
[(i

-

prove that

where n may be any integer, positive or negative.

Shew also that, as x tends to l/^
n

,

lim F(x)l(l-a?q)= (- l^V/fi
where (as in Ex. 14, p. 105), qn denotes 11(1 -q

Zn
).

Deduce by Mittag-Lettler's method that, "if \p\ lies between 1 and

[It may be proved by more advanced methods (see Tannery and Molk,
Fonctions Elliptiquen, t. 3, Art. 479) that O(x) is zero hnv.

]

74. Assuming that in the formula of the last example (?(.) is

""'" 1

-*'^
Deduce that (see Ex. 18, p. 106),



H \i;i.-

75. Induce i between 1 and |1

,_!___i

t\p)F(x) i-it+i^p+ri^q* r-r*-?*"

Write #= and 1-
'

D l.y !+;>'-), and deduce

=1+HV'
.

-^'-

tin- l.i\v i.f tin- imliff- ..n thf !

76. r'l-.m Kx. 7 I pn.vf i

(1 + : >

it every p-itivf intf <:! <-an In- \pressed as the sum oi

[.I
A. Bd i. pp. L':i:.

77. \Vrit inur .'- N . in K\. 71. prove '
;

,

'

'

M.H any prime ..f tin- f.u-m 4/-+1 can l>e expressed (i

\vav onlv) as the sum >f twu squares ; l>ut n<> prime <>f tin- form -1/- + 3

can lie MI -\pi. [JACUHI, /..]

Series defining functions which have no analytical continuation.

78. 1' is p..sitiv.- ami <></<!. th.-n

lim s '(l

r-*l

I-diii-- that when " ami / are positive integers ami * is all.>\<,

appi'>a'h tin- |).'int I
tin- unit .-irele along the radius,

2y'~/'s r=|x|,

where (see E.\

/' 1. if * = 4/-+l ; /'=+/, if = 4* + 3; / =4/-.

[The im-lh..d faik \\li.-n a \- "f th-
I

we get '-l)V*t

ami M tie ml> tn tin- limit t

79. Kr'in thf iplf, pmve that ti

larity in . ^f unit-ri! 1 \\i:\t the function

'nued bey<'

:

[WK1KRSTRA88, (?e. Werte, Bd. 2, p. 228.]



502 HARDER EXAMPLES.

80. Shew that the functions

tend to infinity as x approaches the points

exp C2,7rib/a
m
\ exp (^iri

respectively along the radii.

Deduce that these functions cannot be continued beyond the unit-circle.

81. Apply Ex. 31, p. 253, to prove that the function

f(x)= ^n-nxan

has a singularity at every point of the type exp(27ri'6/a
w

).
The function

therefore cannot be continued beyond the unit-circle, although f(x\ /&),

fi(x\ ' (Art. 84) all converge absolutely at every point of the circum-

ference. [PRINGSHEIM.]

82. Assuming Borel's theorem (see Ex. 83), prove that the function

cannot be continued beyond the unit-circle, although <(#), <$>i(x\ <
2 (#), ...

all converge absolutely at every point of the circumference. [FREDHOLM.]

83. Although it is beyond the range of the methods given in this book,

we state the following theorem, which includes Exs. 78-82 as special cases :

The function 2cw^ cannot be continued beyond the unit-circle, provided
that the integers an increase fast enough to satisfy the condition

lira (an+1
- an)IJan> 0,

and that |# |

= 1 is the circle of convergence.
A narrower form of the second condition is often convenient in practice,

namely lim \og{\cn \/\cn+l \}= Q
n+l

- n

[BOREL, Liouville's Journal de Math. (5), t. 2, 1896, p. 441.]

84. Prove (by means of Ex. 79 or Ex. 83) that the function

1

has the unit-circle as a natural boundary.

Prove also that if M<1 and

then /(

!
>

J?*
> = 1 -fg>i

i

and so shew that the function inverse to f(x) is single-valued.

Extend the argument to the function

where 2cn is a convergent series of positive terms whose sum is less than

and the indices satisfy Borel's condition (Ex. 83).

85. It is evident that the series given in Exs. 78-84 have all large

in the sequence of indices; but this is not essential to secure that the

function cannot be continued beyond the unit-circle.



11 \i;i'i .ii'Lix

fcfon

which has mi -japs in tin- sr.|ii.-nr,- .,f indices.

[Compare Pi: .-, I

1

* I. 1 1. pp.

Kummer's Series for logr(l-i

86. \NV find -I-., that, if the real part of ./ lies

;

,
]r

:

and L-fcr-2 i
l - to)

'<? orcfer / summation can be

\\<- tind

logr^l- - "- =

Now it is t-asv t. vcrifv that

/.' W^-^T-J
ler's constant.

lo f^)'
and T iFl I (Art. 177)

so that we obtain Kumi * for log !"(/), nat

(A-r)(C'-|-log2)+ (l-.r)]og7r-41oK 1

Power Series in Two Variables.

87. if thr s. i y=y<M
ju..\r that it i- al- til valur- ..-} that

[AHKI..]

I'l'-'V.- that it i- ais. unifolmlv OOIlV6fgen1 f"i all \a!';.--
'

surh tliat
l*l^l*ol-i lyl^lyol-,

?
. is any posi- [\N KIKRSTRASS.]

A. !', in pear to bt-

to justify this strj : luit a ' io obtain*

the analysis appears to be rather tedious.



504 HARDER EXAMPLES.

88. Suppose that r is given ;
then there will be a maximum value of

/, such that the series is absolutely convergent within the circles |#|
=

r,

\y\=r'. This maximum value of r' may be regarded as a function of r,

given by a relation

<(r, O= 0;

and r, r' are then called a pair of associated radii of convergence.

Let

where p+ q=n. Then prove that

1
,

k~' '

are a pair of associated radii. Eliminating k, shew that the relation between

r and r' is

[LEMAIRE, ZtoW. des set. math., t. 20, 1896, p. 286.]

89. Prove that the series 22-n-Vy*
is convergent if \x <1, |y|<2,

and deduce that / is defined as a function of r by the equations

For the series 2^T
shew that the relation is r+/= l.

90. Evidently /= <(?) is a non-increasing function of r Let R denote

the upper limit of the values of r for which <(?')>0, so that

Shew that for the series which is the expansion of

we have ^=3, and

/ = 2, (r^J); r'= l/

[For an application of this theory to the differential equation

see GOURSAT, J5^. o?e ^a ^oc. wa^/i. c?e France, t. 35, 1907, p. 81.]

91. The function /= $(r) satisfies the inequality

1, logn, log </>(?

1, log?-2 ,

1, logrs ,

where 0<r
1 <r2 <r3 </!.

[FABRY, Comptes Rmdus, t. 137 ; HARTOGS, Math. Annalen, Bd. 62.]



ttABDEB i:\ \MN.

92. From Kx. !! it m l

limits excluded. :

for uhid,

here /?= .

93. Shew a <.nly In- constant (and not D an

int.-i-val l.e-miiim: \\i' ..h, as lv\. !>J sh-w>, not neceasa

including r=0).

[For solution. oi : ..]

94. The st-i may ! r..iiv,-r;:-Mt. though nt al>-. lu-

ll sete of tside the re^imi >f alisnlute con-

Thus, M ;i l.y the scheme -\ith

power series, whii-h i> th- azpl

(1- -,

rges for #=1, y \
;
but for absolute convergence v

tMWIOH AM- HAIM.V. /' ll<ith. fin,-.. v,,l. i', JjniJ,
j,. 161.]

95. 'I'his kind c.f funveriri-nft- can only : for particular,

isolat'-d |,ails of \alu-'> "f X

[11 . 1!><>4.
1

1. iM.]

96. 'I'll.- scii.-s may converge in a wid-r region than that of absolute

..... \ wh.-n siinimrd by rows, r columns, or diagonals. 'I

prove that th.- st-ri.-s for !/(]-.<--//) converges absolutely if |.r|+ |y|<l :

it oonverg < i ; ami it

or by .-olumi! |y|<l, |j?|<|l-

Ke]ae> t-iu the regions oi in a dia_-

09

97. I. 2 M the

double power series

-

...,

'

-f ...

converges absolutely if * +|y|<l, by dia-oi,al> it" r+^;<l, by rows

I <i> \y < i

[HARTOOS.]



506 HARDER EXAMPLES.

98. If the series 22ev satisfies the condition

<K
m=0 =0

for all values of
/A, v, and if any one of the three series

(w,) (m) (w) (n) (m)

is convergent, the corresponding one of the three limits

lim f(x, y), lira f(x, y), lira f(x, y)
(*,) (*)W W(a)

is determinate and equal to the sum of the series. In these limits #, y
are supposed to approach the common limit 1, simultaneously or successively.

[BROMWICH and HARDY, I.e., p. 168.]

99. Extend the last example to cases in which the series 2aw>n can only

be summed by a mean -value process similar to Cesaro's.

[BROMWICH and HARDY, I.e., p. 173.]

100. An example of the theorems of Ex. 98 is given by the coefficients

of Ex. 13, p. 92, for which

2am
,
nxmy

n
=(x- #)/(2 -x-y\

An example of the mean-value method is given by writing

[BROMWICH and HARDY, I.e., pp. 169, 175.]

[For various extensions of the results given in Exs. 98-100, see BROMWICH,
Proc. Lond. Math. Soc., vol. 6, 1907, pp. 67, 74.]



INDKX OF SPECIAL [NTEGRALS, PRODUCTS AND
SERB

(The numbers r

Asymptotic series.

Kul.. Stirling's serie- 155; logarithmic

Integral,

Elliptic function series.

TheM .funelioiK. !W, luti, li>7. :;:,M. r>0o : various series of fr I. 114,

172; 172; 180.

Integrals.

. 171.

Dot-el's, 268 et set], ; 8 -ion).

171.

Klliptir, 17, I

Krn.r fun.-tion. :iVJ 182,

Killer's constant, i

K\I...H, ini.il or Logjirithinie, 825, -. UK.

i l-J.

KourierV, 17'-'.

FrulhiniV, 182, L7&

1 17.

. 210, _'!_'.

Sii.. .

. .1. IK) : i Hi. Ui^. l

Non-convergent series.

,i". :;:.] : :

J^^. 817 ;

See also ui.

Numerical series.

L87,
'

Donl -""'fnn-fcn1).

rsfor T, 1



508 SPECIAL INDEX.

Numerical values.

21/?i!, 22 ; 21/7iand Euler's constant, 323 ; 2( -
l)

n
/n, 58, 155 ; 2( -

l)"/(2n+ 1),

156; Z(-l)B
/(an + 6), 161, 481; 2(-l)/v/n, 57; 21/w

2
, 59, 71, 93, 187, 324;

2(-l)"/(2w + l)
2
, 479; 21/?i

3
, 59, 324; 21/?i

2r
, 234, 324, 481.

log 2, Iog3, ... 154, 480; ^2, $2, 171; sin (71-), COS(^TT), e**, e*
t 146, 147;

e), 475.

Power-series.

Binomial, 89, 150, 225 ; sum of squares of coefficients in, 166 (Ex. 33), 249

(Ex. 21).

Exponential, 143, 217, 406.

Geometric, 15.

Hypergeometric, 35, 52; limit as x-*l, 42 (Ex. 2), 105 (Ex. 13), 161 (Ex. 5),

171 (Ex. 13).

Inverse sine and tangent, 155, 169, 170, 224.

Lagrange's, 140, 174 (Exs. 30, 31), 487 (Exs. 19, 20).

Logarithmic, 152, 162, 223.

Sine and cosine, 146, 221.

Theta, 93, 106, 107, 350, 500.

ZnP~ l xn
, 2z"

2

, 2(-l)n#"
2

,
2x

n
, 2*'", 133,389,489,501.

*/(*-!), 234, (e*-l)/(e*-l), 235.

Products.

H(lqn
), nKl +^-^Kl+g2"- 1

/*)}, 105,106.

Gamma-product, 102, 461, 463 ;
sine and cosine, 184, 231.

Wallis's product, 184.

Trigonometrical series.

Convergence of 2vn cos w0, 2> M sin nO, 50 ; 2 sin (w
2
0), 2 sin (2

n
0), 2 sin (n! d),

485, 486.

), 2 rM
(
COS

Vi0, 157.?ism

2 ?^, 114, 115, 167, 168, 256, 257, 480, 498 ;
2
(
s_^\2

}
484.

nv \ na /

cot (Ta.)
= +25 t 7rcosec(7rx) = +2_ 2 , 187-190, 231-233.
X

Zl/(a?-n)', 190,475,476.

^coanx ^,?isinwa; OCT. v wo v/*-r <*/., 29Q

See also under Fourier series in general Index.

Zeta series, 493-495.
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(The numbers refer to pages, not tu

AW1'> Lemma, --ries);

rals).

i); 11:;. 207 (unit*

Abel's i continuity of
]

iin.maMe wriM AS. 98-

imi (for double sen

A 1 isolate convergence, 47 (of real

series); 81 (of double series): 196

(of complex series) ; 429 (of in-

tegrals).

Al.solute sunnnability, 27<'. 284,

Area of a curve, arithmetic treatment,
HC. 4i Hi.

A<\:nptOtic 86! i Killer's

met! ;:;7(I'oinc;t!
'

theory).

r.endixscin's test for uniform

187.

Brrnoulli's numbers, 234
; functions,

t.'i.

series,

!4&

L';uu'l>-

17.

C;uid, .

.riii.

o's mean-value.

Cesan/ | , I.TJ on <:::pari8on

314 (<>n multiplication of series).

Complex MI t, 197
I 'rings-

s tests); 204-206 (Abel's and
Dirichlet's tests).

Continuity, 11") (of serie.-

summableseri' functions);

Convergence, absolute, see Absolute

convergence.

Convergence, circle of,

Convergence, general principle of, 8

(for real sequences) ; 196 (for

complex sequences i

; :>76 (proof).

i of, 1'J^.

:gence, uniform, see I 'inform

Decimals, imiuit-

1 >c<U-kiul's (Ictinitinn of \\ \ .

nun

Petiniti iir limit of a sum,
i<>:

:I of s< :.

:nami's ami rrm.:-

stence
theor, 11,-. 17 \ \

.* and

118 [d -

(of t

int.: ils).

to authors :

usually .|ii't-l in tli- text uti.i. r ;\n .uit: name in the
Index.



510 GENERAL INDEX.

Dirichlet's integrals, 444, 445, 471.

Dirichlet's test for convergence, 49,
206 (of series); 114, 207 (uniform);
430, 435 (of integrals).

Double integrals, 410 (arithmetic defini-

tion) ; 456 (inversion of repeated).

Double series, 73-89 (convergence) ;

76-79 (of positive terms) ; 503-506

(power-series).

Ermakoffs tests of convergence, 37.

Euler's constant, 30, 323, 460.

summation formula, 238, 322.

transformation, 55, 169, 302.

Exponential function, 145, 402 (real

variable) ; 217 (complex variable).

Exponential series, 143, 217, 406.

Fejer's theorem on Fourier series, 348.

Fourier integrals, 447, 471, 472.

Fourier series, 167, 168, 189, 230, 256,

257, 263, 472, 480-482, 498, 503;

non-convergent, 2/5, 276, 284, 287-

290, 347-350, 354.

Fresnel's integrals, 327.

Frobenius's theorem, 132, 313

(extension).

Functions, 395 (continuous) ; 490

(without derivates) ; 501 (without
continuation). For other special

functions, see under Exponential,
Gamma, Logarithmic, Zeta, etc.

Gamma function, 102 (product) ; 459

(integral) ; 461 (Stirling's formula) ;

463 (formulae for logarithm); 461,

474, 478 (miscellaneous properties) ;

503 (Rummer's series).

Goursat's Lemma, 394.

Huygens' zones in Optics, 58.

Infinite integral, 414 (limit of an

integral) ; 417, 495 (limit of a sum) ;

420, 429 (tests for convergence).

Integration, 116, 448, 452 (of series) ;

286 (of summable series) ; 437 (of

integrals).

Inversion of repeated integrals, 410,456.

Irrational numbers, 358 (as decimals) ;

366-370 (Dedekind's definition).

Jucobi's theta-functions, 500.

.Ionian's extension of Dirichlet's inte-

grals, 44-7.

Rummer's series, 503.

Rummer's tests for convergence, 32.

Lagrange's series, 140, 172, 249, 487.

Le Roy's methods for summation of

non-convergent series, 299.

Limits, 2 (definition) ; 9 (rules of com-

bination) ; 246 (of point-sets) ; 377 (of

quotients) ; 383-389 (miscellaneous

theorems).

Limits, maximum and minimum (or

extreme), 12, 375 (of sequences) ; 394

(of infinite sets).

Limits, upper and lower, 11 (of

sequences) ; 394 (of infinite sets).

Logarithmic function, 221 (complex
variable) ; 396-402 (real variable).

Logarithmic scale of infinity, 405.

Maclaurin's theorem* connecting the

convergence of series and integrals,
29 ; for double series, 80.

Mertens' theorem, 85; 284 (for non-

convergent series).

Mittag Leffler's theorem, 499.

Monotonic sequences, 5 ; 373 (proof of

convergence) ; 393 (quasi-monotonic
sequences).

Multiplication of series, 66, 82-86;

280, 284, 314, 331, 341 (non-con-

vergent series).

Non-convergent series, 261-267 (general
remarks) ; see also under Summable
Series, Asymptotic Series.

Numbers, irrational, 358 (as decimals) ;

366-370 (Dedekiud's definition).

Poincare's theory of asymptotic series,

330-337.

Poisson's integral, 210, 212.

Power-series, 128-142 (real) ; 202-216

(complex) ;
293-296 (summable).

Pringsheim's tests of convergence, 200.

Pringsheim's theorem on multiplication
of series, 86.

IV.Hluets, infinite, 96-102 (real); 197-

199 (complex).

Repeated integrals, inversion of order

of integration, 410, 456.

I fit'ii latin's theorem on derangement
of series, 6s.

Kit matin's theorems on Fourier series,

498 (Exs. (>4-<;(>).

Riemann's Zeta function, 493-495.

'Commonly attiilHitfd to (tauchy ; it occurs in Maclaurin's Fluxions, 17-1-, Art. X>
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Second theorem of mean va

Stirling's series, I

Stirling's t. nee of pro-
daol

Suinni.-ihlf- ''-gral);

linir

-"I
i,'ral) ;

met b

Syinl.i.ls, -/
, ;,:>; ,

'_' ; liin, lim,

'i;<; w, 11,

loots); 43S (integrals); I \'.\

Taylor's theor.-m, _'! I

, sr- unth-r .\\-l.

Brmlixxm, (\iuchy, Dirii-liN-
1

nuikot!'. Kuinmer, Shiclani in, 1'

hcini, Stirling. iss. General
'. !_'_'.

167,

of series,

Tests for convergence, series,

-

>. !'. I

TrigoiK ul. i.-, 17:

(for COSH* and sinnff); 181

i<*s for cotB, cosec'

complex) ;

|cosx|<2,

I'nifo: -

(sequence) ;

!!_'. -JIM; (senes); 113, 114, 127,
-'"7 tests): l-JI (products):

Emu).

-trass's tests for convei
11.'{ iiinifi-i-iin ; L'U t (power-series);

nils).

-trass's theorem on double series,

Zeta function, (Riemann's), 49.S
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