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PEEPACE

This book is the outcome of the writer's desire to put into the

hands of a class, studying introductory thermodynamics, in a concise

form a statement of those principles and concepts which are essential

to the study of the construction and operation of steam engines,

steam turbines, and their auxiliaries, and, to a more limited extent, of

air compressors and gas engines. The book deals only with the ideal

and limiting cases, and aims only at a preparation of the student for

reading the more advanced technical works or papers. As such the

text makes no claim to originality except, to some extent, in the selec-

tion and arrangement of material and in the location of the emphasis.

The material selected is from such sources as the works and books

of Clausius, Rankine, Carnot, Kelvin, Stodola, Pellat, Planck, Preston,

Edser, Bryan, Boulvin, Swinburne, Peabody, and Buckingham. The

arrangement is intended to lead the student from the sophomore

physics work into thermodynamics as a continuation and more detailed

study of a portion of physical science already somewhat familiar. The

emphasis is therefore placed upon the physical concepts, and constant

reference is made to the molecular kinetic theory, which is usually

familiar to such a student. Although an effort has been made to

eliminate as far as practicable the use and solution of differential

equations, it is hoped that should the book be used by a student who

later takes up the study of pure thermodynamics, he will have little

if anything to unlearn and will find the physical interpretation of the

mathematical relations rendered easier. The emphasis is also placed

upon the solution of numerical problems, many examples of which are

given. These in general are arranged to lead from the simpler con-

cepts to the ideal limiting cases ^ of the applications to engineering

problems.
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In addition to the general statement of sources made above,

acknowledgments of details are made in footnotes. It is the writer's

pleasure to acknowledge the influence of former study under Professor

C. W. Berry of the Massachusetts Institute of Technology. To the

inspiration of Professor R. A. Millikan of the University of Chicago,

a friend and former teacher, who has read a portion of the proof of
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physics.
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SYMBOLS

The symbols given below are used consistently throughout this text. They have

been selected, as far as is possible, in accordance with the following rules : (1) a given

symbol is to be used /for but one physical magnitude, (2) a lower-case letter is always
to represent the value per unit mass of the magnitude to which it refers, (3) the sym-
bols are to be in accordance with the American usage.

A = l/J= factor for reducing me-

chanical units of energy to

heat units.

a = general expression for area.

a = volume coefficient of a gas

= 1.(*Z.\
V\dt ),

Apu = external latent heat of vaporiza-

tion in thermal units.

B.t.u. = British thermal unit.

/3 = pressure coefficient of a gas

I =

p \dt

general expression for specific

heat.

specific heat at constant pres-

sure.

specific heat at constant volume.

total intrinsic energy of a sub-

stance.

intrinsic energy of a unit mass of

a substance.

thermal efficiency of a process or

cycle.

general expression for force.

numerical value of the accelera-

tion due to gravity.

general expression for density.

heat units required to superheat

from dry saturated steam, per
unit mass.

intrinsic energy due to molecular

configuration.

factor for reducing thermal units

to work units.

ratio of cp to cv .

loss of kinetic energy due to fric-

tion, per unit mass of steam.

A = total heat contents per unit mass
of a mixture (from 32 F.), e.g.

A = q+ r + h, or \ = q + xr, or

A = q + xp + xApu.
M = mass (or weight) per second in flow

of fluids.

m = mass (or weight).

n = general expression for the exponent
in the relation pv

n = constant.

p = general expression for pressure (i.e.

specific pressure).

$ = general expression for entropy.

<f>w = general expression for entropy of

liquid (per unit mass) above that

of water at 32 F.

0v = increase in entropy per unit mass

due to vaporization.

<t>s
= increase in entropy per unit mass

due to superheating.

q = heat contents of water per unit mass

measured from 32 F.

l general expression for heat trans-

ferred to or from an external

source.

q = general expression for heat trans-

ferred per unit mass.

R = constant in the gas relation

p V = mRd.
r = total latent heat of vaporization per

unit mass.

p = internal latent heat of vaporization

per unit mass.

S = intrinsic energy due to molecular

motion.

s = specific volume of dry saturated

steam.

<r = specific volume of water =0.016 cubic

foot per pound.

vii
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T = temperature measured on the ther-

modynainic scale.

t = general expression for temperature.

t = general expression for time.

= absolute temperature as measured on

a perfect gas scale.

t = saturation temperature of dry steam

before superheating.
= absolute saturation temperature of

dry steam before superheating.

V general expression for volume.

v = general expression for the volume of

a mixture per unit mass.

ft = velocity.

u = increase in specific volume due to

vaporization, i.e. u = s <r.

W general expression for external me-

chanical work.

w general expression for external work

per unit mass of working sub-

stance!

x = quality of a mixture of x parts steam

and (1 cc) parts water.

y = friction work during flow through
a channel per unit mass of the fluid.

z and dz = distance through which a force

acts, e.g. W = \ Fdz.



AN INTRODUCTION TO

THERMODYNAMICS

CHAPTER I

FUNDAMENTAL CONCEPTS AND LAWS

1. Work. Work is defined as the act of overcoming a resistance

through space. It is measured by the product of the component of

the acting force along the direction of the motion of its point of

application, and the distance through which its point of application
moves during its action. The scholium to Newton's Third Law of

Motion states that " if the action (activity) of an agent be measured

by its amount and its velocity conjointly, and if similarly the reac-

tion (counter-activity) of the resistance be measured by the veloci-

ties of its several parts and their amounts conjointly, whether these

arise from friction, molecular force, weight, or acceleration, action

and reaction in all combinations of machines will be equal and op-

posite." Since velocity is merely the rate at which space is traversed,
it is seen that this scholium states that during any given time the

work of the acting forces is equal to the work of the resisting forces.

The unit of work depends upon the chosen unit of force. In the

absolute C. G. S. system where the unit of force is the dyne (a force

which if acting constantly upon one gram will produce a change in

its velocity of one centimeter per second every second), the unit of

work is the erg, or the work done by one dyne acting through one

centimeter. In the gravitational C. G. S. system the unit of force is

the gram weight (i.e. 980 dynes), and the unit of work is the gram-
centimeter. The force unit in the F. P. S. system (gravitational) is

the pound, or the force of the earth's attraction upon one pound of

matter, and the unit of work is the foot pound.
2. Energy. Energy is defined as the capacity of a body for doing

work. It is evident, then, that work and energy are to be measured
in the same units. In general the energy possessed by a body or by
a system of bodies may be considered as the result of work done

upon that body or system by another body or system. The energy
of a system may be either its capacity to do work as the result of

1
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work done upon the system in giving to its component parts motion

(that is, work done against the resistance of acceleration), in which

case it is known as kinetic energy ; or, it may be the result of work

done upon the system in producing the existing configuration of its

component parts (that is, work done against gravitation or other

forces), in which case it is known as potential energy.

The sum of the potential and kinetic energy of a body is com-

monly called its intrinsic energy. The Principle of the Conserva-

tion of Energy states that if work is done upon a body the amount

of work is equal to the increase in intrinsic energy of the body ; that

is, to the sum of the increases in the kinetic and potential energy.

And conversely, the work done by a body is equal to the decrease in

its intrinsic energy. Thus, if dE represents the increase in the

intrinsic energy of a body and dWthe amount of work done by the

body, then dE + dW= 0.

The measure of the kinetic energy of a rigid body is the sum of

its kinetic energy of translation and its kinetic energy of rotation.

The kinetic energy of translation is ^ wt) 2
, where m is the mass of

the body and t) is its absolute velocity of translation. The kinetic

energy of rotation is ^Ka>^, where ^Tis the moment of inertia of the

body about an axis through its center of mass, and o> is the absolute

velocity of rotation about this axis. The potential energy of a body

is 1 Fdz, where the integral represents the work done against the

resisting forces in moving the body from a position of zero potential

energy to the position under consideration.

From the above statement of the measure of the intrinsic energy
of a body it is evident that its energy is the total amount of work

which could be derived from it under the most favorable theoretical

considerations. For the practical purposes of the universe in which

we live the intrinsic energy may be considered in two parts ; namely,
available and unavailable energy. The availability of the intrinsic

energy of a body depends upon external conditions, as will be seen

later in various problems. A simple mechanical illustration is as

follows. Consider the velocity of a cannon ball of mass m to be t)
2
,

then its energy is Jwt)
2

. If the velocity of the ball after it has

struck a ship initially at rest (that is, the velocity communicated
to the ship by the impact) be represented by t>, then the intrinsic

energy of the ball is now | rat)
2

. Of the total energy of the ball only
the portion |-m(t)

2
t)
2
) was available for the destruction of the

ship.
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3. Molecular Kinetic Theory. The molecular kinetic theory is

based upon certain assumptions as to the character and actions of

molecules which do not pretend to represent the actual character

of the molecules but which simplify the problem so that it admits

of a mathematical analysis. The molecules of a gas (for which

state many of the assumptions would be approximately correct) are

considered to be in motion, to act like hard, smooth, small, and per-

fectly elastic spheres, exerting no forces upon each other except at

the instant of collision, and to exist in almost immeasurable num-

bers in any finite volume of the gas. These assumptions admit of

the application of the laws of probability, and of the treatment of

collisions as if the molecules were uniform spheres of unit coefficient

of restitution, colliding centrally.

Upon these assumptions by a mathematical analysis Maxwell,

Clausius, Joule, Boltzmann, and others have developed conclusions 1

as to the behavior of a gas which agree with the observed facts as

expressed in the well-known laws of Boyle, Charles, Dalton (and

Avogadro).
As expressed by Risteen, one of these conclusions is as follows :

" In a molecular mixture there is one physical quality which is the

same for every set of molecules ;
and that is, the average kinetic

energy of translation per molecule.''' Now it is an observed fact that

whenever two or more substances are brought into intimate contact

there is one physical property which is the same for all of the sub-

stances, namely, the temperature. Hence, it is natural to assume

that equality in the temperature means equality in energy of trans-

lation of the molecules.

4. Temperature. The temperature of a body is merely an arbi-

trary expression of its " hotness
"

as compared with some states of

hotness assumed as standard. Because, however, of the inexactness

of the sense of touch as a measure of the "hotness
" and because of

the experimentally determined fact that some substances expand as

they become hotter, the expansion or contraction of a given amount

of such a substance is arbitrarily taken as the quantitative measure

of a temperature change. For ordinary purposes the substance

used is mercury enclosed in glass, and the relative expansion of the

mercury is taken as a measure of the change in temperature.

1 It is desirable at this point to give merely the briefest possible resume of the kinetic

theory (the facts of which are already familiar to the student from his course in general

physics), in order that the concept of temperature may be approached from the side of

energy. For a more complete statement in non-mathematical language see Risteen,
" Mole-

cules and the Molecular Theory," pp. 42-43.



4 THERMODYNAMICS

The scale upon which temperature is measured has been chosen in

a purely arbitrary manner. On the Centigrade scale one degree
1

of temperature represents a change in temperature equal to that

which would produce one one-hundredth of the effect produced in

the mercury thermometer by a difference in temperature corre-

sponding to the following easily reproducible states of pure water.

The lower point, called zero degrees, is the temperature of pure
water and melting ice in an intimate mixture. The upper point,

called one hundred degrees, is the temperature of the vapor of pure

boiling water in contact with its liquid. In both cases (although it

is of primary importance only in the second case) the pressure upon
the mixture must be what is known as standard or normal pressure,

which is equal to that exerted by a column of mercury 76 centi-

meters high, when the mercury is at the temperature of melting ice

and water. The scale is extended in each direction from these two

fixed points by divisions corresponding to a degree as defined above.

The Fahrenheit scale has 180 degrees which are equivalent to 100

degrees on the Centigrade scale. The fixed point corresponding to

the temperature of melting ice and water is marked 32 degrees, and

the boiling point is 212 degrees.

According to the molecular kinetic theory two bodies are at the

same temperature when the average kinetic energy of translation of

their molecules is the same. It will be shown later in Section 15

that according to this theory one degree Centigrade is a difference

in temperature such that the average kinetic energy of translation

of the molecules of the substance considered, is increased (or di-

minished) by one one-hundredth of the change in this kinetic energy
which would be produced by a difference in temperature correspond-

ing to that between zero and one hundred degrees Centigrade. It

will also be seen that this is, for a gaseous body, approximately

equal to ^y^ of the average kinetic energy of the molecules when
the substance is at zero degrees Centigrade.

5. Thermal Units. When two bodies at different temperatures
are placed in proximity, it is found that they ultimately come to a

common temperature (unless this difference in temperature is main-

tained by some external agency). According to the kinetic theory
this must mean that a transfer of energy has taken place from one

body to the other in order that the final average molecular energy
of translation of the two bodies shall be the same. Energy trans-

1 For more rigorous definition of a degree Centigrade see Section 14.
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ferred under these conditions is known as heat. Because it was not

recognized in the earlier development of physical science that heat

is energy, units were introduced for the measurement of heat.

These thermal units are essentially arbitrary and relative, since

they depend upon the unit of temperature difference. Thus the

heat (energy) required to change the temperature of one gram of

pure water from 15 to 16 Centigrade is the thermal unit in the

C. G. S. system and is called the calorie. And similarly the amount
of heat (energy) required to raise the temperature of one pound of

water from 62 to 68 Fahrenheit is called a British thermal unit, or

as abbreviated a B.t. u.

6. First Law of Thermodynamics. The Principle of the Conser-

vation of Energy was not established until the classical work of

Joule (and Mayer) performed during the years following 1843.

This principle may be stated in a more general form than that given
in Section 2 as follows :

"
Every physical or chemical change of

state has a fixed mechanical equivalent expressible in work units."

Thus, for example, the amount of heat (or energy) required to pro-
duce in water the change in physical state which is produced by a

calorie (or a B. t. u.) is to be equated under all conditions to a defi-

nite number of work units. This particular application of the Prin-

ciple of the Conservation of Energy was experimentally shown to be

correct by Joule and was really the basis for the adoption of the

principle in its broadest form. This application has received the

name of the First Law of Thermodynamics. As usually stated it

reads :
" Heat and mechanical work are mutually convertible,

1 and

heat requires for its production and produces by its disappearance
a certain definite amount of work for each thermal unit." The
value of this mechanical equivalent of heat from the determination

made by Rowlands is 778 foot pounds per B.t. u., or 4.19 x 107

ergs per calorie. In symbols this law may be written

TF=flQorG = 4TP; (1)

where Q is the number of thermal units, TFthe number of mechan-

ical units which correspond, and J is the (mechanical) equivalent
of each thermal unit in work units for the system in which W is to

be expressed. The factor A is evidently the reciprocal of J.

7. Specific Heat. The amount of heat required to produce a

change of one degree in the temperature of a substance depends

1 Except in so far as all the heat energy of a hody is not available for such a conversion,
as is discussed in Section 2 and also in later sections.
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upon the nature of the substance, the mass in which it is desired to

produce this change, and, as will be seen in Section 18, upon the

conditions under which the change is produced. For the same mass

of a given Substance it is found that the amount of heat required

per degree is different at different temperatures ; that is, it is a

function of the temperature. The thermal capacity per unit mass

or "specific heat
"

of a substance is denned as the number of units of

heat required to change the temperature of unit mass of the sub-

stance one degree. This is expressed either in calories per gram or

in B. t. u. per pound, and the numbers representing the value of the

specific heat of a given substance are obviously the same in the two

systems. But it would be better to express the specific heat

directly in mechanical units, since these belong to an absolute system
and since this may readily be done in accordance with the First

Law of Thermodynamics. Thus J", the mechanical equivalent of

heat, is merely the specific heat of water in absolute units.

Since the specific heat of a substance is slightly different at dif-

fjerent temperatures, it may best be defined by a differential notation.

Thus if a quantity of heat dc\ be added to a unit mass of a substance

and produce an increase in the temperature of dt, then the specific

heat <?, at the temperature ,
at which the addition was made, or the

heat required per degree per unit mass, is ^ = c. Hence the total
dt

heat O required to produce in a mass m a change of temperature
from

j
to

2
is

/v

Q = mjcd6........ (2)

Frequently, it is sufficiently accurate to assume the specific heat

constant through the range of temperature ^ to
2
and to write

(3)

where c is the average value of the specific heat of the substance for

a range of temperature which includes ^ and
2

.

8. Component Parts of Specific Heat. When the temperature of

any substance is changed by the addition of a quantity of heat, it is

possible to consider the change as composed of three parts, and it is

frequently possible to assign to each part its proper portion of the

heat energy transferred. In general, heat added to a substance may
be considered as producing first, a change in the temperature ; sec-

ond, a change in the configuration of the molecules composing the sub-

stance ; and third, because of the consequent increase (or decrease)
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of the volume occupied by the substance, a certain amount of

external work. The first portion, which goes to produce a change
in the temperature, increases according to the molecular theory the

average kinetic energy of translation of the molecules. 1 This portion

will be represented by the symbol AdS. The second portion of the

heat supplied produces a change in the potential energy of the

molecules and will be represented by Adi. The third portion,

representing an amount of external work, will be symbolized by dW.

In general, then, if a small amount of heat c?Q is required to produce
a change in the temperature of a substance, we may write

(4)

where dS, dl, and c? IF are all expressed in mechanical units.

In the case of the change of state from water to steam, to be dis-

cussed later, the term dl is large as compared with the other two

terms. In the case of a "perfect gas," also to be discussed later, the

term dlis zero for all changes.

9. Latent Heat. In the case of a change of state, as that referred

to above, where water is converted into a vapor, or vice versa (or in

the case of the formation of ice from water, or vice versa) there is

produced no change in temperature until sufficient heat energy has

been added, or subtracted, to produce the change in potential energy
for the entire mass corresponding to the different configuration of

the molecules. During such a change of state the term AdS is then

zer.o. The term -, representing the amount of heat required per
Wit

unit mass to produce the change in internal potential energy, is

known as the internal latent heat for that particular change of state.

This internal latent heat is also a function of the temperature at

which the change of state occurs, as will be discussed more fully

later, in the case of steam. As commonly expressed the latent

Adi AdW
heat is the sum of the terms - and ---, the latter representingm m
the external latent heat or external work which must be done in

producing the change.
Thus in C. G. S. units, the latent heat of vaporization of water at

100 Centigrade and under an atmospheric pressure of 76 centi-

1 It is true also that an increase in temperature means in general an increase in the

kinetic energy of rotation of the molecule and also an increase in the "sub-molecular"
kinetic and potential energy of the component parts of the molecule, hut for the further

purposes of this discussion all this energy will be considered as included by the term AdS.
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meters of mercury is 536.5 calories. Of this the part corresponding

to may be found as follows. The volume occupied bv one
m

gram of water changes from one cubic centimeter to 1649 cubic

centimeters, which is the volume occupied by one gram of water

vapor under the given condition of temperature. Since this change
takes place against a pressure of (76) (13.6) (980) dynes per square

centimeter, (76)(13.6)(980) (1649-1), or 1.668 x 109
, ergs repre-

sent the external work during evaporation. That is, the external

latent heat of evaporation is 1.668 x 109
-r- 4.19 x 107 = 40 calories

for the conditions of the problem. The internal latent heat, repre-

senting the gain in molecular potential energy, is then 496.5 calories

or 2.08 x 1010
ergs.

10. Boyle's Law. Boyle's Law states that, other things being

equal (that is, the temperature, mass, and molecular constitution of

the gas experimented upon remaining unchanged), the product of

the pressure at which a given gas is maintained and the volume

which it occupies is a constant. Or, in other words, if the pressure

is changed, the volume occupied by a given quantity of gas main-

tained at a constant temperature undergoes a change inversely pro-

portional to the change in pressure. In symbols this is expressed as

pV= a constant, or Tr rr T_ >-*
Pi^i =PzF2 =PsV O)

where p represents the pressure or force per unit area and ^repre-
sents the volume (usually measured in the same system of units

as is the area).

The value of the constant is evidently for a given mass of some

particular gas a function of the temperature. This follows at once

from the observable fact that if the temperature is changed, the value

of the product p V is also changed. The physical meaning of this

fact is evident from the following analysis based upon the assump-
tions of the kinetic theory.

The pressure upon the bounding surface of a body of gas is due

to the impacts of the moving molecules. It is proportional to the

number of these impacts per second upon each unit area of the

bounding surface, and to the impulse of each molecular impact.
The impulse is proportional to the change in momentum of the mov-

ing molecule, and this in turn to the velocity and mass of the mole-

cule. The total number of impacts made by a given molecule will

be proportional to its velocity. The number of molecular impacts

upon each unit of area of the bounding surface will be proportional
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to the gas density ; that is, for a given mass of gas, inversely propor-

tional to the entire volume. Hence the pressure is directly propor-

tional to the mass of a molecule and to the square of the average
molecular velocity, and inversely proportional to the entire volume.

That is, the product of the pressure and the volume is directly

proportional to the average molecular kinetic energy of translation,

and hence is some function of the temperature.
1

This law of Boyle is not rigorously correct, for all gases show

departures from it at high pressures. It is followed very closely for

pressures under 10 atmospheres. For higher pressures the de-

partures are more marked. Thus for air they range from about

^ per cent at 10 atmospheres to as much as 25 per cent at 600

atmospheres.
11. Joule* s Law. Another important law of gases is due to

experiments performed by Joule. This law states that " all the

work done in compressing a gas is conducted away as heat if the

temperature of the gas is kept constant, and conversely, when a gas

expands at constant temperature, it must receive from its surround-

ings a quantity of heat equal to the work done by the expansion."
This means that during the expansion of a gas no internal work is

done by the molecules either by molecular repulsions or against
molecular attractions. For if there are attractive forces between

the molecules, then in such an expansion, since the molecules become

more widely separated, work must be done to produce this separa-

tion, and this must be supplied by the partial conversion of molec-

ular kinetic energy into molecular potential energy. If
' there

is to be no consequent lowering in the temperature, there must be

supplied to the molecules of the substance from the outside an

amount of heat energy equal to that converted into molecular poten-
tial energy. The amount of heat supplied to an expanding gas
would then be greater than the amount of external work performed

by the gas during expansion by this amount of increase in the

molecular potential energy. According to Joule's Law there are then

no molecular attractive forces acting between molecules. On the other

hand, if repellent forces exist between the molecules, the potential

energy term will decrease in value, and there will be a larger amount

of external work done than there is heat supplied to the expanding

gas. Thus, the possibility of repellent forces between the mole-

cules of a gas is also denied by Joule's Law. In so far, then, as a

1 See any general physics text, or Millikan,
"
Mechanics, Molecular Physics, and Heat,"

Chapters XIV and XVI.



10 THERMODYNAMICS

.

-**



FUNDAMENTAL LAWS 11

to the kinetic theory (see Section 10, above) the product of the

pressure and the volume would be some function of the temperature.

Writing p V=f(t), where f(t) represents some function of the

temperature, it is possible to show that for a perfect gas the values

of the "pressure coefficient" and of the "volume coefficient" are

equal when determined' for the same temperature. The pressure
coefficient /3 is defined as the increase in pressure per degree of

temperature per unit of pressure. In symbols this is expressed as

where pQ
is the original pressure exerted by a given mass of gas at a

temperature of ,.and p^ and
t^ represent the pressure and tempera-

ture of some later condition of the gas while occupying the same

volume. In differential notation this is most conveniently expressed

by using the symbol ( ) F to indicate the fact that the quantity

enclosed by the parenthesis is found under the conditions of constant

volume. Thus

Similarly, the expansion coefficient a is

From the expression of Boyle's Law for a perfect gas as p V=f(t)
wehave

P\Vdtv

_"

V\ dt )P pV /CO

The values of a and of (3 are evidently equal for the same values of

the temperature t.

The fact that all gases have the same value of a for any given

temperature was discovered as an experimental fact by Charles in

1787, some sixty years before the announcement of Joule's Law,

which has been used here in the definition of a perfect gas.

13. Charles's Law. Charles's Law states that all gases show the

same fractional or per cent expansions between the limits of two

fixed temperatures. Later experiments have shown that this law

of Charles (or of Gay-Lussac, as it is sometimes known) is only
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approximate. Experiments have also shown that for all gases the

values of the pressure coefficient /3 for the same initial temperature
are practically equal, and are also practically equivalent in value to

the values of the expansion coefficient a for the same temperature.
This is evident from Table I,

1 where are given for various gases
values of a and /3 which represent their average values for the range
of temperature from to 100 Centigrade.
The definition of a perfect gas leads then to the conclusion that for

perfect gases Charles's Law holds rigorously, and also the values of

a and /? are identical. For a perfect gas the value of /3 will be taken

as 0.0036625 at Centigrade, as is explained in Section 15.

14. Standard Hydrogen Thermometer. Because of the fact that

the expansion of most solids and liquids is not a linear function of

the temperature, while that of a gas is very nearly a linear function

in accordance with Charles's Law, the standard thermometric sub-

stance is a gas. A gas thermometer might, obviously, with almost

equal justification, be constructed to measure temperature by the

expansion of the gas under the condition of constant pressure, or by
the change in pressure under the condition of constant volume.

Because of the experimental difficulty of making the corrections

which enter into a determination of temperature with a constant

pressure gas thermometer (due to the variations in the exposed

length of the column of gas contained in the stem of the thermome-

ter), Regnault adopted the constant volume form. In 1887 the

International Committee of Weights and Measures adopted the

constant volume hydrogen thermometer as the standard. According
to this agreement one degree Centigrade is such a temperature as

will cause a change in the pressure of a mass of hydrogen (kept at

a constant volume) of 0.0036625, or ^3-, of the pressure which this

hydrogen exerts at the temperature of melting ice and pure water.

15. Absolute Temperature. According to the discussion of Sec-

tion 10 for a constant volume perfect gas thermometer we may
write the pressure as proportional to the average molecular kinetic

energy of translation. If, further, the pressure coefficient $ be

taken for a perfect gas as equal to the value 0.0036625, whch is given

by Chappuis for hydrogen, a gas which most nearly obeys the laws

of perfect gases, it may be shown, as follows, that one degree Centi-

grade change in the temperature of a perfect gas corresponds to a

change in the average molecular kinetic energy of 273- part of the

i See page 130.
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value at zero degrees Centigrade of this average molecular kinetic

ergy.

Hence

energy. Thus T,
. K. E.

dt

and

(dp\
/

\&)T\

p\dt)v av. K. E.V dt Jv
or

1 _ 1 A?(av. K. E.)\
av. K. E.atOC.V dt )}273 av. K. E.atOC.V dt Jratooc., (8)

where the symbol
"
( ) F at C." is used to represent the fact that

the volume is maintained constant at the value which it has for a

temperature of zero degrees Centigrade.

If, then, the temperature of a perfect gas be lowered to 273

Centigrade, it follows that the molecules would be completely de-

prived of kinetic energy of translation, and hence at rest. The pres-
sure exerted by the gas would then be zero. This temperature of

273 Centigrade is -known as the absolute zero; for, if temperatures
are measured in degrees absolute, that is in degrees from this abso-

lute zero, the intrinsic energy of a perfect gas is directly proportional
to its temperature. For all practical problems the intrinsic energy
of the so-called permanent gases may also be taken to be propor-
tional to the absolute temperature.

This absolute zero is not an attainable temperature. All known

gases liquefy and even solidify above this temperature. Thus hydro-

gen liquefies at about - 252 C. and solidifies at about - 256 C.

By evaporating liquid helium a temperature of about 270. 5 C. has

been attained. These low temperatures are measured with a plati-

num resistance thermometer which has been found to give results

very close to that of a hydrogen thermometer.

For a perfect gas, and for most practical problems in gases, under

the conditions of constant volume the pressure may be taken pro-

portional to the absolute temperature. This is expressed in symbols
in equation (9). And similarly, for constant pressure, the volume

may be taken proportional to the absolute temperature, as is expressed
in symbols in equation (10)

. \ //3 \

(9)

....... (10)
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where 6 is the absolute temperature as measured on the perfect gas
scale. Or, in symbols,

= 273.
l
= t

l + 273 in degrees Centigrade (11)

And since 273 Centigrade equals 491. 5 Fahrenheit,

= 459.5.
1
=

fj + 459. 5 in degrees Fahrenheit. . . . (12)

16. General Equation for a Perfect Gas. It is evident since

p Foe average molecular K. E. oc#,

that a general expression for the pressure, volume, and absolute

temperature of a perfect gas may be written as follows:

pV= mRO, (13)

where j?
is pressure, Fis volume, is the absolute temperature, m is

the mass of the gas, and R is a constant. The value of R depends

upon the kind of gas and has a numerical value which represents in

the system of units to which m belongs the value of the expression

^ for unit mass of the gas for any condition for which the corre-
ct

sponding values of p, v, and are known.

Thus for air, assuming that it will follow the equation for a per-

fect gas, and finding R for the C. G. S. system, we have the density
of air at the standard conditions of 76 centimeters of mercury pres-

sure and zero degrees Centigrade equal to 0.001293 as given by

Regnault for latitude 45 (where g is 980.6). The volume of one

gram of air for these conditions is then 773.4 cubic centimeters.

The value of p is 1.0134 x 106
dynes per square centimeter. The

absolute temperature, 0, is 273. Hence R is 2.867 x 106
.

Similarly for the F. P. S. system, the volume of one pound of air

is 12.39 cubic feet at a pressure of 14.7 pounds per square inch and

at a temperature of 32 Fahrenheit. Expressing the pressure p as

144 x 14.7 pounds per square foot and substituting, gives R equal
to 53.35.

17. Use of the Term "Specific." As used in physics the meaning
of the term "

specific
"
may best be shown by illustration. Thus

"
specific heat

"
is the amount of heat required to produce a definite

result, namely, unit change of temperature in unit mass. The term

"specific" then indicates on the part of the physical magnitude to

which it is applied a definite and peculiar quality in which this par-

ticular value of the magnitude differs from all other possible values

of the same magnitude. In general it limits the magnitude to unit
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mass, unit length, unit area, unit volume, or to a unit change in

some related magnitude. Thus "
specific resistance

"
is ths resist-

ance per unit cube, or the resistance per unit length having unit

cross section, as in the case of the mil-foot.

The adjective
"
specific

"
is somewhat more widely used in engi-

neering, where the terminology is not otherwise as carefully differ-

entiated as in pure physics. Thus in the rigorous physical usage
"
pressure

"
always means " force per unit area," but in engineering

usage, broadened and rendered less precise by the influence of the

necessity of conveying ideas in popular language, pressure and force

are used almost interchangeably. For this reason there has come

into common engineering use the term "
specific pressure

"
to mean

force per unit area, as for example in the F. P. S. system, where spe-

cific pressure is the force in pounds per square foot. Similarly,

"density," which to the student of physics means "mass per unit

volume," is expressed by the engineer as "
specific weight," meaning

thereby the weight per cubic foot. "
Specific volume

"
is the volume

of one pound in cubic feet. "
Specific gravity

"
is the weight of a

given volume of a substance in terms of the weight of the same

volume of water, taken as unity.
1

For the purposes of this book the word "pressure" will always be

used in its rigorous sense of force per unit area. Also, the follow-

ing scheme of notation has been adopted to avoid confusion. When-
ever volume, quantity of heat, or any other unit which may later be

introduced refers to unit mass of the substance under consideration,

a lower case letter will be used. Whenever reference is made to

the total value of a magnitude, referring to some other mass than

unity, a capital letter will be used. It will be noticed that this has

been done consistently in the earlier portion of the text; thus,

p V= mR0, but pv = RO.

18. Specific Heat of Gases. The specific heat of a gas may be

determined under the condition either of constant volume or of

constant pressure. It is evident from a consideration of equation

(4) of Section 8 that when the volume is constant, since the term

dW is zero (because there is no external work done in expanding),

1 This inexactitude of common engineering terminology has frequent illustration. Thus

"speed" and "velocity" are used interchangeably. "Acceleration," which is the rate of

change of velocity, is popularized into " rate of acceleration," an expression which rigor-

ously is a second derivative of velocity instead of the first. ''Electromotive force" and

"potential difference
"

are frequently used as synonymous. Also "
energy

" and "
power

"

are not carefully distinguished, as is illustrated by the frequent use of expressions like
"
expenditure of power."
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the amount of heat required to produce in unit mass a temperature

change of one degree is less than that required to produce this change
when the pressure is kept constant and the term dWh&s a numeri-

cal value (representing the work done externally by the expansion
of the gas against the constant pressure to which it is subjected).
These two values of the specific heat of a gas will in the future be

represented by cp and cv for the conditions of constant pressure and

constant volume, respectively. Or, in symbols,

The ratio of the specific heats of a gas written K = -^ )may be
V cv j

shown to depend upon the atomic structure 1 of the gas considered.

For monatomic gases this ratio K has a value of 1.66, for diatomic

gases a value of about 1.40; for the diatomic mixture constituting
air the value is 1.401, for carbon dioxide it is 1.30 (at 30 C.).

19. Graphical Representation of Gas Transformations. Changes in

the values of the magnitudes p, V, and 6 for a given mass of gas may
best be represented graphically by plotting on a set of coordinate

axes values of V as abscissas and values of p as ordinates. Since

the temperature 6 is a function of p and F", it is implicitly represented

upon the same plot.

The possible ways in which a given mass of gas may undergo a

continuous transformation,, not involving any chemical change, are

evidently the following : (#) at constant volume by changing the

pressure indirectly through a change in the temperature ; (5) at con-

stant pressure by changing the volume indirectly through a change
in the temperature ; (<?) at constant temperature, that is isothermally ,

and hence in accordance with the relation of Boyle's Law; the values

of p and T^are then related as p V=pl V^ = a constant ; (d\ without

the addition or subtraction of heat, that is, as it is called, adiabati-

cally ; as will be seen in Section 21 the equation expressing this

relation is pV* = PI VK

^
= a constant; (0) in accordance with the

condition that the intrinsic energy shall be constant, that is, an

isoenergic transformation ; for a perfect gas this condition is evidently

equivalent to that of an isothermal change ; (/) the change may be

under the condition of constancy in what is called the entropy of

the gas, that is, the change may be isentropic ; for a reversible trans-

formation, as will be discussed in Section 31, this is equivalent to

i See Edser,
" Heat for Advanced Students," p. 302.
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an adiabatic change ; or (#) the transformation may not be in ac-

cord with any of the above conditions, in which case frequently it

may be represented by a relation of the form p Vn = p1 V-f
= a con-

stant ; or, it may be assumed to take place in a series of infinitesi-

mal steps which are in accordance with some of the above conditions.

The plots of Figure 2, lettered #, 6, c, c, and g, represent graphi-

cally changes in accordance with the conditions of a, 6, <?, c?, and g^

V, V, V2

6

V, V5 V, V, V2

c

FIG. 2

above, from a volume and pressure of V
1
and p1

to a volume and

pressure of Vz and p2 , respectively. The plot (#) is drawn to a very

much larger scale than the others and represents disproportionately

a change as taking place in two imaginary or component infinitesi-

mal steps; namely, from (pv V^) to (p.2 , F3) by an adiabatic com-

pression and from (j?2 , F3) to (^ V^) by an isothermal expansion.

20. Work Calculations for Gas Transformations. The work re-

quired to produce a change in the state of a gas, or the external

work done by the gas, during some transformation, may be repre-

sented graphically upon the pressure-volume plot just described.

Thus, consider that a quantity of gas is contained in a vessel fitted

with a piston of area a. If the pressure of the gas is p units of force

per unit of area, then the total force exerted upon this piston is

F pa units. If the piston is caused to move a small distance dz

by this force (or against it), the infinitesimal amount of work dW
is dW= Fdz = padz. During this motion the volume is changed by

an infinitesimal amount dV, which is evidently equal to adz. The

expression for the work done in producing this change is then

dW=Fdz=padz = pdV. This may be considered positive if the

gas, or working substance, produces the change and does this amount
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of external work, and negative if the work is done by an external

agent upon the working substance. The total work required to

produce the change from a volume V^ to a volume V^ is then

(15)

If the summation is performed between the limits as shown above,

it is evident that an expansion will be positive and correspond to

work done by the substance, and similarly a compression will be

negative and correspond to work done upon the substance.

The integration given above is only possible analytically when p is

either constant or some known function of F". In the "jo-Fplot,"

however, the work required to produce a given change in volume is

always to be represented by the area enclosed between the axis of

volumes, the curve p =/(F"), and the two ordinates of values V
l
and

rf
It is important to note that although the above discussion referred

specifically to gases, the integral \ pdV between the proper limits

always gives the mechanical work required to produce the change in

volume indicated. In the case of the transformations of steam in

a steam engine the pressure-volume plot is drawn by a mechanism

known as an indicator, which is attached to the cylinder of the

engine in such a manner as to record pressures and to the piston of

the engine so as to record piston displacements. The work done by
the steam is then found approximately by using a planimeter to

determine the area.

The cases mentioned in Section 19 and shown in Figure 2, a, b, c,

and c?, will now be discussed. For completeness, in addition to

representing the value of the work integral there will be recorded

at this time the energy relations and the heat relations for these

changes, although some of these relations are not fully developed
until Sections 21 and 22. The following symbols will be used : to

represent intrinsic energy .27; to Represent heat added to the sub-

stance from some external source }. The subscripts 1 and 2 will

represent states 1 and 2 respectively. It is to be noticed that the

relations given below hold only for a perfect gas or one which may
be assumed perfect, and in every instance of a change of volume the

change is taken as an expansion ; that is, F^ is greater than Vr
(#) Since the volume is constant, W= 0. Because the tempera-

ture is increased the intrinsic energy is increased and by an amount

fl.(^-<1) (16)
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Since p is constant,

-V^). Also

EI-EI....... (17)

For an isothermal expansion

U
2 --#! = <), and Q = A W, where

oge
!. (18)

^2

(6?) For an adiabatic expansion Q = 0, and W= U
2 E^ where

<">

These integrations should be verified by the student. The results

will be used in subsequent discussions.

21. Adiabatic Transformation. The equation stated in Section 19

as representing the relation for an adiabatic transformation of a gas
will now be deduced. Consider a temperature change of infinitesi-

mal amount taking place in a unit mass of the gas as the result of

the addition of an infinitesimal amount of heat energy q. Imagine
the change to take place in two infinitesimal steps as follows, a

change in temperature of amount (#) while the volume remains

constant, and a change of (&@)p while the pressure remains con-

stant. Since part of this change is at constant volume and part at

constant pressure, the amount of heat Sq required to produce the

change is the sum of the heat required to produce these component

changes, namely, cv(6} v and cp(6)p,
where cv and cp are the specific

heats at constant volume and at constant pressure respectively.

Thus *H=cv(*0\ + c
p<$e\. .... (20)

Since, however, for this unit mass of gas p and v are related by the

equation pv = R6, it follows that a change of temperature of amount

($#), corresponds to and is expressible by (v/R)8p, and similarly

a change of temperature (80)p is expressible as (p/R)8v. Making
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this change of variables and writing in differential notation instead

of the notation of infinitesimals, gives

(21)

Equation (21) is a general heat equation for a perfect gas and

expresses the effect of adding heat energy in terms of the changes
of the pressure and the volume of the gas. In Section 38 similar

equations will be written expressing this effect in terms of the other

possible variables of the perfect gas equation, namely, p and 0, and

v and 0.

In the case of an adiabatic transformation, that is by definition

one which takes place under conditions which prevent the transfer

of heat to or from the substance, obviously the term dc\ is zero, and

equation (21) becomes

c,^dp
+ cp^dv

= ....... (i)

Upon substitution of K = cp/cv (see d3fmitioii of K in Section 18),

this gives K ^L = - clP. ..... (ii)
v p

Solving this differential equation by integration between the limits

of pl
and vr which represents the condition of the gas in the first

state, and p2
and v

a , which represents its second condition, gives

log/^Y = log, 1, ...... (iii)
\V p2

whence pv
"= p^vf = p<p, .... (iv)

or using the volume of m units instead of one unit of mass,

PJ\"=P*V{' (22)

22. Comparison of Adiabatic and Isothermal Transformations. It

is evident from equation (22) that the curve representing an adia-

batic transformation on a pressure-volume plot is steeper than

that representing an isothermal transformation, inasmuch as the tan-

gent of the angle of slope, given by dp/dv is K times as large for the

adiabatic as for the isothermal curve. This is in accordance with

the physical ideas involved ; for, considering a compression, it is

clear that the work done by an external agent would tend to raise

the temperature of the gas. If the change is isothermal, this must

be prevented by conducting away the heat equivalent of the work
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FIG. 3

as fast as it is produced. The isothermal change is represented in

Figure 3 by ab. In an adiabatic compression, on the other hand,
this is not done, and the heat goes
into increasing the molecular mo-

tion of the gas. The adiabatic is

ac in Figure 3. This increased

molecular motion means an in-

creased pressure for the same final

volume as was attained in the

isothermal compression. Similar

reasoning applies to the case of an

expansion.
In general, it is to be noted that

if a compression is adiabatic the

work done goes into raising the

temperature and increasing the intrinsic energy of the gas. If an

expansion is adiabatic, part of the intrinsic energy of the gas is

transformed into external work and the temperature of the gas
is lowered. In both cases the amount of work done is numerically

equal to the change in intrinsic energy. On the other hand, if the

change is isothermal, heat energy must be given off during a com-

pression and absorbed by the gas during an expansion, and the

amount of this heat energy in the case of" a perfect gas is equivalent

to the work done, as is stated in Joule's Law. Thus, an isothermal

transformation for most practical gas problems may be considered

an isoenergic transformation.

23. Second Law of Thermodynamics. It was stated in Section 19

that for a reversible 'process an adiabatic transformation was also a

so-called isentropic transformation. The concept of entropy may
best be developed after a discussion of a cycle of changes known
as the " Carnot cycle

" and of a law known as the " Second Law of

Thermodynamics."
The Second Law of Thermodynamics is similar to several laws of

physics in that it admits of 110 direct verification and applies essen-

tially to ideal cases. The first Newtonian law of motion is of this

kind, for it states that "
every body continues in a state of rest or of

uniform motion in a straight line except in so far as compelled by
force to change this state." The condition of a body free from the

action of forces, either of friction or of gravitational attraction, is

one that is not reproducible in nature, and yet the law is accepted

as essentially axiomatic, because as nearly as the conditions can be
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produced the law is in accord with known facts. The Second Law
of Thermodynamics may be accepted in somewhat the same manner,
not because it is capable of direct verification but because no deduc-

tion from it that is capable of experimental proof has ever failed of

verification.

The Second Law of Thermodynamics states that " it is impossible
for any self-acting machine, unaided by any external agency, to

convey heat from a body at a low temperature to one at a high

temperature ; or heat cannot of itself (that is, without the perform-
ance of work by some external agency) pass from a cold to a warmer

body." This law applies only to a type of operations known as

"
cyclic." Its discussion will be postponed until after a description

of the "
cycle

"
of changes suggested by Carnot.

24. Carnot Cycle. Imagine a working substance, as for example
air or gas, to be contained in a cylinder fitted with a piston. The

sides of the cylinder
and the piston are

supposed to be abso-

lute non-conductors of

heat. But the bottom

of the cylinder is as-

sumed to be a perfect

conductor of heat.

Let there be imagined
also two sources of

heat energy, dia-

grammed as A and B
in Figure 4, which

are maintained at con-

stant temperatures of

6
l
and 2 , where l

is

higher than #
2

. Let there also be provided an insulating stand

shown at C. Let the condition of the gas in the -cylinder be rep-

resented by the point a on the pressure-volume plot of Figure 5,

and let this original condition be so chosen that the temperature

Place the cylinder, upon the hot source A and allow the gas to

expand isothermally from its initial state of pv V\, V to a state p^
Fg, #j, represented by the point b. During this expansion .the

energy necessary to do the external work against the pressure of the

piston is derived from the source A. Now remove the cylinder

e,

FIG. 4
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FIG. 5

from A and placing it upon the insulating stand (7, allow an adiaba-

tic expansion until the temperature has fallen to that of the cold

source J5, namely, #
2

. The point c of coordinates pz and VB repre-
sents on the pressure-volume

plot the state of the gas.

Now place the cylinder upon
the source B and compress

isothermally until the state

of the gas is represented by
d of coordinates p and V^
and temperature #

2
. The

point d is conditioned by the

requirements that it shall

lie upon an adiabatic through
a as well as upon the iso-

thermal through c. Then

removing the cylinder, place
it upon the stand C and

compress the contents adia-

batically until the temperature has risen to 6^ when the state of

the gas will again be represented by the point a.

This set of four successive operations is called a cycle for the

obvious reason that the working substance undergoes a series of

changes which return it to its original condition. The cycle is

known as the Carnot Cycle from its proposer, and the scheme here

presented is known as a Carnot Engine.. In this ideal heat engine
the emphasis is placed upon the working substance and its cycle of

changes, and not upon the mechanical details by which such an

engine could be used practically.

These four operations will now be examined in more detail. Dur-

ing the isothermal expansion from a to b an amount of heat equal to

A x area abfe has been received from the hot source and converted

into work. During the adiabatic expansion from b to c an amount

of intrinsic energy equal in heat units to A X area bcgf has been con-

verted into mechanical work. This has been at the expense of the

temperature, as noted above. During the isothermal compression
from c to d an amount of external work has been converted into

A x area cdhg heat units and abstracted from the gas by the cold

source B. During the adiabatic compression from c? to a an amount

of heat equal to A x area daeh has been given to the working sub-

stance as the result of the external work, and the temperature has
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consequently risen. The net result of the cycle of operations has

been therefore the performance of W units of work by the gas, where

W= area (abfe -f bcgf cghd dhea) = area abed.

Further, since the molecular energy possessed by the working
substance is the same at any point on an isoenergic and hence iso-

thermal line, it follows that the change produced in the intrinsic

energy in passing from one isothermal to another is independent of

the path followed. Hence, it is considered evident that the loss in

intrinsic energy which occurs during the adiabatic expansion from

b to c is numerically equal to the gain occasioned by the compression
from d to a. Representing by Qj the entire amount of heat energy
taken from the hot source A and equal to A x area ab/e, and simi-

larly representing by Q2
the heat energy rejected to the cold source

B, of amount A X area cdhg, we have, since the working substance

returns to its original state, the net amount of heat supplied equal to

the net amount of external work performed. Then Qj Q2
= A W.

The efficiency of the engine is to be written as the ratio of the

output AW or Qj }2, to the input, which is Qr If 77 represent
the efficiency, we have then

'-if-V1

:.

:

.v'-;
25. Reversible Cycle. The Carnot cycle is reversible, inasmuch

as it is possible to perform these operations in the reverse order, and

to return the working substance to its initial state. Thus starting

with the gas in condition represented by , allow it to expand adia-

batically to the state represented by d in the pressure-volume plot.

Then placing it upon the cold source B, allow the gas to expand

isothermally from d to <?, while receiving an amount of heat Q2
.

Then compress adiabatically from c to 6, where the temperature is 6^.

And finally placing the cylinder upon the hot source A, compress

isothermally from b to a and reject to the source an amount of heat

Oj. An amount of external work TlT, equal in value to e/^Qj Q2),

will have been done upon the gas, and an amount of heat }2 ab-

sorbed from the cold source and rejected to the hot source. This

transfer of heat from a cold source to a warmer source has been at

the expense of work performed by some external agency, and does

not therefore constitute a violation of the Second Law.

26. Carnot's Theorem. Upon the assumption of the Second Law
a theorem advanced by Carnot may be proved. This theorem states

that all reversible heat engines have the same efficiency when absorb-
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ing and rejecting heat at the same limiting temperatures. To prove
this statement imagine two heat engines, that is, two working sub-

stances, operating in the fashion described in Section 24. Let one

of these, denoted by A, have a greater efficiency than the other

engine, which will be represented by B. Imagine the mechanical

details so arranged that when working with the same hot source

and the same cold source the work done by A shall equal that done

by B. Then let B pass through its cycle in the reversed direction,

in a manner similar to that described in Section 25, and let the

mechanical energy necessary to drive it be supplied by A. The
work done by A will then just equal that required to drive B,
reversed. Let A absorb from the hot source an amount of heat Ox ,

and reject to the cold source an amount Q2
. Similarly, let B absorb

from the cold source an amount Q2 ', and reject to the hot source an

amount Q/. Then if the heat taken from a source be indicated by
a minus sign and that rejected to a source by a plus sign, the net

result of the two operations upon the heat sources is shown in the

following tabular arrangement :

HOT SOURCE COLD SOURCE

Engine A - Q
x + Q2

Engine B + Q/ - Q2
'

Total heat Q^ - Ox
O2

- G2
'

Now since the work done by A is equal to that which B would do if

passing through its cycle in the positive direction, it follows that

G! - o2
= Q/ cy. . -v >:;- 0)

Also, since by assumption the efficiency of A is greater than that

Combining equations (i) and (ii) gives

and hence O/ > Qr

Further, by comparing equations (i) and (iii) it is evident that

In the tabular arrangement above it appears therefore that an

amount of heat is taken from the cold source and added to the hot
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source. The net result is that a self-acting machine (or combina-

tion of machines) performing a cycle is transferring heat from a cold

body to a hot body without the performance of work by some ex-

ternal agency. This is impossible, according to the Second Law.

Therefore )/ cannot be greater than Qj and also Q2
' cannot be

greater than &%.
Hence the efficiency of engine A cannot be greater than that of

engine B. A similar process of reasoning will show that the effi-

ciency of B cannot be greater than that of A. Hence the efficiencies

of any two (or of all) reversible heat engines absorbing heat from

the same hot source and rejecting heat to the same cold source must

be the same.

27. Discussion of Reversible Processes. Planck says of reversible

processes i
1 " A process which can in no way be completely reversed

is termed irreversible; all other processes are reversible. That a

process may be irreversible it is not sufficient that it cannot be

directly reversed. This is the case with many mechanical processes

which are not reversible. The full requirement is that it be impossi-

ble, even with the assistance of all agents in nature, to restore every-
where the exact initial state when the process has once taken place.

The generation of heat by friction, the expansion of a gas without

the performance of external work, the absorption of external heat,

and the conduction of heat, and so on, are irreversible processes.

Since there exists in nature no process entirely free from friction or

heat conduction, all processes which actually take place in nature are

in reality irreversible; reversible processes form only an ideal limit-

ing case. They are, however, of considerable importance for theo-

retical demonstration and for application to states of equilibrium."
28. Discussion of the Second Law. In a summary of the founda-

tions of thermodynamics Bryan says :
2 "

Passage of heat from one

body to another is usually irreversible and therefore accompanied

by a loss of available energy. If we define A to be hotter or colder

than B according as available energy is lost or gained by the trans-

ference of heat from A to B, it follows that heat can, and in general

will, pass from hotter to colder bodies, but the reverse change can

only be effected by combining it with a compensating transforma-

tion. Carnot's cycle reversed is a compensated reversible trans-

formation by which heat can be continuously taken from a colder

and given to a hotter body, or vice versa, without loss of availability.

1 Planck,
"
Thermodynamics," translated by Ogg, p. 85.

2 Bryan,
"
Thermodynamics," Teubner, 1907.
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In this case the compensating transformation takes the form of

work absorbed or produced."
The conclusion of Carnot's Theorem given in Section 26 is often

stated as the Second Law. That theorem, however, holds only for

reversible cyclic processes and is not as broad a statement of the

Second Law as that quoted in Section 23, which is due chiefly to

Clausius. An excellent statement of the essence of the law is

quoted from Drude 1 as follows: "Mechanical work can never be

continually obtained at the expense of heat if only one source of

heat at uniform temperature is at disposal."

From this statement there may easily be derived an alternative

proof of Carnot's Theorem. Thus consider the engines A and B of

Section 26, in which engine A is assumed to be of greater efficiency

than engine B, to be so arranged mechanically that they would each

take from the same hot source the same amount of heat, but because

of greater efficiency A would convert more into work and reject less

to the cold source than would B. Now imagine engine A to drive

engine J5, reversed, and let B give up to the hot source just as

much heat as A absorbs from it. Then the hot source may be

omitted from consideration and B supply A directly. Because A,

has a higher efficiency it will reject less heat to the cold source than

will B with its lower efficiency abstract from it. Further, A will do

more work than will B, and hence there will be a net amount of

work available for external purposes. But this would be in viola-

tion of the Second Law, for this external work would be done as a

result of a net amount of heat absorbed from the cold source ; that is,

from the single source of heat at disposal. Hence there can be no

external work. Hence, further, the efficiencies must be the same.

In this expression of the substance of the Second Law by Drude

the emphasis may for the moment be placed upon the word " contin-

ually," which is essentially equivalent to the term "in a cyclic

process." As an illustration of the fact that the Second Law holds

only for cyclic processes, consider the following example. Imagine
two non-conducting cylinders, one containing air at a high pressure

and a low temperature and the other air at a low pressure and a high

temperature. If they are fitted with connecting pistons so that the

higher pressure air may expand and compress that in the other cyl-

i Drude,
"
Theory of Optics," translated by Mann and Millikan, pp. 493-494. This state-

ment is equivalent to that of Lord Kelvin
; namely,

"
It is impossible, by means of inanimate

material agency, to derive mechanical effect from any portion of matter by cooling it below

the temperature of the coldest of surrounding objects."
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inder, then, for this adiabatic change the temperature in the high

pressure cylinder will fall, while that in the low pressure cylinder
will rise. During the process, then, heat has been abstracted from

the low temperature side and given to the high temperature side.

This does not, however, constitute a violation of the Second Law,
since the change is not cyclic.

1

Imagine that the low pressure cylinder is in connection with

the atmosphere as in a vacuum pump. The high pressure side

then does external work in pushing out the atmosphere contained in

the pump, and in so doing the working substance in the high pres-

sure cylinder is cooled still farther below the temperature of the

surrounding atmosphere. Heat may then be absorbed from the

atmosphere and the original temperature thus regained. But still

the working substance is not returned to its original state, and to

return it would require as much work as was originally obtained

from its expansion. The example cited is then in accordance with

the Second Law.

In general, it may be said for the production of mechanical work
two sources of heat at different temperatures are required, and the

production of work requires the transfer of heat in such a direction

as to tend to result in a final equality of temperature of the sources,

in which condition all the available energy of the system will have

been used up.

29. Thermodynamic Scale of Temperature. For a reversible cycle

it has been seen that the efficiency of all heat engines is the same

provided only that the temperature limits are the same. Lord

Kelvin therefore proposed a thermodynamic scale of temperatures
which is independent of the substance used.

Draw any two adiabatic lines for a substance and also two iso-

thermal lines (for reasons evident later the isothermals will be those

for temperatures of and 100 C.). Let the area bounded by the

two isothermals and the two adiabatics be divided into 100 equal

parts by drawing other isothermals. Calling the area between any
two adjacent isothermals a, divide the space below the zero degree

Centigrade isothermal and between the two adiabatics into areas

equal to a by drawing other isothermals. In Figure 6 this has been

represented by drawing the isothermals dividing the space between

the and the 100 isothermal into four parts and extending this

division below the isothermal as far as is possible in a finite

1 In part this illustration is derived from Edser,
" Heat for Advanced Students," p. 340.
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diagram. Let the lowest isothermal corresponding to the condition

of the substance when there is no intrinsic molecular energy be

FIG. 6

called the absolute zero of temperature as in Section 15. Number
the isothermals from this absolute zero, and let the number of any
isothermal be represented by T.

Consider now a Carnot cycle composed of these two adiabatics

and any two isothermals as T and T<J, where T^ is higher than T
2

'
.

7 ,
where Q/ and }2

' are
.

The efficiency of this cycle is ^

Q
measured as in Section 20 by the areas under the isothermal lines.

The numerator of this expression is, however, equal to the area

included by the two isothermals and the two adiabatics. If now a

particular value of zero be given to T%, and if T be put equal to T>

then the expression for the efficiency of the Carnot cycle between
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these limiting isothermals becomes ^-2 =^ = 1. That is, Q = Zfc.

This means merely that in traversing any isothermal between the

two limiting adiabatics, the input is T x a in work units. Hence

the efficiency of a Carnot cycle between two isothermals T^ and T
2

is given by the expression

a -
(24)

If the numbers which have been assigned to the isothermals be

considered to be temperatures, it is evident that we have a method

for measuring temperature which is independent of the substance

chosen. The zero of this thermodynamic scale coincides with the

perfect gas thermometer zero, and the size of a degree is approxi-

mately the degree Centigrade as measured on a hydrogen thermom-

eter. If now it can be shown that the efficiency of a Carnot cycle

-, where l
andwith a perfect gas for a working substance is

2
are the absolute temperatures on a perfect gas thermometric scale,

it will be evident that the thermodynamic scale of Lord Kelvin is

identical with the perfect gas scale.

30. Carnot Cycle for a Perfect Gas. It has already been shown

that the work done by a per-

fect gas during the adiabatic

expansion from b to c of the

Carnot cycle shown in Fig-
ure 5 (reproduced here as

Figure 7) is equal to that

done upon the gas during the

adiabatic compression from d

to a. It remains only to find

the values of QI and Q2
in

order to arrive at an expres-

sion for the efficiency of the

Carnot cycle for a perfect

y gas. If the efficiency can be

expressed entirely in terms

of the absolute temperatures,
then the comparison suggested in the preceding section can be made.

According to equation (18) the area under the isothermal a to 5,

which is equal to J&v is expressible as mRB
1 loge (VJV^). And

FIG. 7
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similarly, the heat rejected in passing along the isothermal from c to

d is ^=AmR9z loge ( VC/V^). The efficiency is therefore

AmR0.log,^-_ JUj :U2 {_

During the isothermal changes

v and also pcFc
= pdVd = mR6

, d i
,

Hence ^L* = -/ and
PaVa #1

^ for the adiabatic changes pbVb
K= p cVC

K and

Substituting from these adiabatic equations gives

9 d \ i 2 i

therefore -=^
= T= or -=? = -=?.

Substitution of this ratio in the expression for the efficiency gives

7?
=

A comparison of equations (24) and (25) shows that a perfect gas

scale is identical with the absolute thermodynamic scale.

31. Entropy, In equation (23), for the efficiency of a Carnot per-

fect gas cycle, if the two isothermals are taken at an infinitesimal

difference of temperature apart, so that
1 2

= dO, then the corre-

sponding heat Oj Qg, converted into work, may be represented by
the infinitesimal c?Q, and by equation (25) the expression for the

efficiency becomes
d& = dd

O
==

6
'
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The solution of this differential equation gives

loge
^l = logA or ^1 = ^1,36

2

3e
#2

'

2 2

and hence 1= ?2 - '* * ' '
(26)

1 2

This means that for a reversible process the ratio of the heat ab-

sorbed (or rejected) to the absolute temperature of the isothermal

traversed in passing between two adiabatics is independent of the

isothermal traversed. The quantity which remains constant under

these conditions is the difference in entropy of the substance in the

states represented by the two adiabatics. An adiabatic line is then

for a reversible process by definition a line of constant entropy, or an

isentropic.

The entropy of any state will be represented by the usual symbol

c/>.
The expression is then an expression for the difference in

6

entropy, to be denoted by $2
< r between the entropy X

of the

first adiabatic and $2 , the entropy corresponding to the second adia-

batic. This change in entropy between these two isentropics is

independent of the path followed, provided only the path is a rever-

sible one, as it was in the 'case of the isothermal of the Carnot cycle
from which this concept was developed.

In general, if a small amount of heat c?Q be added to a body at a

temperature 0, which is sensibly constant during that addition, then

the entropy of the body has been increased by an amount <#<, where

.

If the change in entropy is produced by a large number of such

additions, by processes which are completely reversible, the total

change in entropy thereby produced is

(27)

For the special case where the heat is added along an isothermal

this reduces to
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Further, it is to be noticed that for the Carnot cycle

^1-^=0.
*1 2

That is, for a reversible cycle

. (J)^
=

,
. . . V. . (28)

where the symbol (J ) indicates the fact that the integration is to be

performed about a complete cycle. This equation is sometimes

stated as a mathematical form of the Second Law, but it is prefer-
able to consider it a deduction from it.

32. Measurement of Entropy. It is not possible to determine the

total entropy of a body. That is, the expression J
^ when used

to find the entropy of a body in a given state will always contain a

constant of integration. The integral does, however, admit of the

determination of the difference in entropy between two given states.

Hence it is that entropy is always expressed as so much more or less

than the entropy of some chosen state of the substance under consid-

eration. This is satisfactory for all practical uses of the concept of

entropy. Having arbitrarily selected some adiabatic as a reference

state to which all other states of the substance are to be compared,
it is possible to conceive of the entire pressure-volume plot, for a

given mass of the substance, as filled with adiabatic or isentropic
lines which represent states of the substance differing by units of

entropy, just as the states represented by the isothermal lines differ

by units of temperature.

Quoting from Preston,1 "The entropy of a body being arbitrarily

taken as zero in some standard condition A defined by some standard

temperature and pressure (or volume), the entropy in any other state

/V7O)
B is the value of the integral J

- taken along any reversible path

by which the body may be brought to state B from standard state A.

The path may obviously be an arc A of an isothermal passing

through the point J., defining the standard state, together with the

arc B of the adiabatic line passing through the point B."

33. Temperature-Entropy Plot. It is evident from equation (27)

that, provided a change is taking place along a reversible path, the

i Preston,
"
Heat," p. 628.
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heat added (or rejected) may be expressed as the product of a tem-

perature term and a difference in entropy term, thus

e,

e

FIG. 8

For this reason and because of the practical interest in steam en-

gineering of following the changes in entropy of steam it is most

convenient to plot values of entropy on a

temperature-entropy plot.

In the temperature-entropy, or "0-0

plot," the ordinates are temperatures and

the abscissas are entropies measured from

some standard state as described above.

The 0-(f) diagram of the Carnot cycle will

now be plotted as an illustration. During
the isothermal expansion from a to b of

Figure 7, the entropy increases by an

amount by </>2 ^, and the change is rep-

resented as ab in the plot of Figure 8.

The reversible adiabatic expansion from b

to c is isentropic by definition and is rep-

resented on the 6-<t> plot by the line be.

The isothermal or constant temperature

change cd and the reversible adiabatic compression da complete the

cycle.

It is to be noticed that for this case, since the isothermal is a re-

versible process, the heat absorbed at temperature l
is represented

by the area under the line ab. Similarly, the heat rejected during
the isothermal compression from c to d is given by the area under

the line cd. The net heat converted into work in this cycle is then

Q! Q2
=

^i ($2
~~

$1)
~~

^2 ($2
~

$1) = (^1
~~

^2) ($2
~~

0i) ' that is, it

is represented by the area enclosed by the 0-(f> plot of the cycle.

It is important to note carefully that it is only when the trans-

formation takes place in a reversible manner that the heat absorbed

(or rejected) is represented by the area underneath the curve on the

0-<f> diagram representing the transformation. In all other cases

the increase in entropy will be disproportionate to the increase in

heat contents as in the case of the porous plug experiment to be de-

scribed in Section 35. Although this restriction limits this use of a

0-(f) plot to the ideal cases, such a plot is still of great interest and

value in many practical problems.
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e

FIG. 9

34. Discussion of Carnot Cycle from 0-<|> Plot. If any other re-

versible cycle be plotted upon the
#-</> diagram as in Figure 9, it

is evident that the work output, which would be proportional to the

area enclosed by the plot, is less than for the Carnot cycle, although
the same range of temperatures is used. It

follows then that no reversible heat engine
can have an efficiency greater than that of the

Carnot engine. And of course all heat en- ~

gines with irreversible transformations are

less efficient for the same limiting tempera-

tures than the reversible engines. An ex-

ample of a reversible cycle equal in efficiency

to the Carnot cycle is given in Problem 11, "z

on page 51.

It is evident from Figures 8 and 9 that

the high efficiency of the Carnot cycle is

obtained as the result of two conditions,

namely, that all the heat absorbed is taken

in at the highest temperature, and all the

heat rejected is at the lowest temperature.
In so far as any heat engine conforms to

these requirements (neglecting the fact that its other transforma-

tions will not in general be isentropic) will its efficiency approach
the limiting and maximum efficiency of a Carnot engine working
between the same temperatures.

35. Entropy Changes in Irreversible Processes. Returning again

to the concept of entropy, it may be said that entropy is that prop-

erty of a body which remains constant so long as the body is under-

going adiabatic changes that are reversible. If the change is not

reversible, then the entropy in the final state is greater than it

would be for a reversible transformation. This is indicated by the

classical "
porous plug experiment

"
of Kelvin and Joule. In this ex-

periment, which offers a more accurate method than does that de-

scribed in Section 11 for testing Joule's Law, it was found that when

air expanded from a higher pressure to a lower pressure without

doing external work there was a distinct lowering of the temperature,

due to the partial conversion of the kinetic energy of the molecules

into potential energy of molecular separation. The experiment was

performed by allowing air to expand from a high pressure through
a plug of cotton wool to atmospheric pressure. The plug was sur-

rounded with a non-conductor and the expansion was adiabatic.
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For the purposes of the present discussion the important point of

the experiment is as follows. A mass of the gas reaching an open-

ing in the plug, upon the other side of which the pressure is lower,

expands adiabatically (a reversible and hence isentropic change),

converting a portion of its intrinsic energy into mechanical kinetic

energy of the entire mass. This mechanical kinetic energy is im-

mediately converted into heat by friction, viscosity, and the like.

The quantity of heat corresponding to this friction work is now
returned to the air and causes an increase in entropy, exactly as if

it had been added from some outside source. As a result of these

two infinitesimal changes, the first isentropic and the second of

increasing entropy, the final entropy of the air is obviously in-

creased. The same conclusions as to an increase in entropy may
be made for the original experiment of Joule, but it is easier to con-

ceive of the steps in this case. This expansion, although adiabatic,

is obviously irreversible and

the entropy is increased. For

further discussion it will be

assumed to have been shown

that all irreversible transfor-

mations lead to a final state

of greater entropy than would

a corresponding reversible

transformation.

Consider a change of state

for a given substance from

A to B by a reversible path
as represented on the pressure-

V volume plot of Figure 10 by
the line ArB. This change

might be represented on the

temperature-entropy plot of Figure 11 by the line ArB. If now
the transformation from A to B is along some irreversible path as

AiB in Figure 10, it may be represented on the (f>-0 plot by some

line AiB'
, since the final entropy is greater than for the reversible

change. The integral \ gives the change in entropy along

the reversible path, but is less than the true change along the irre-

versible path. Thus

XB
^7O_. ...... (i)

FIG. 10
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Similarly, if the transformation take place from B to A, the entropy

along the reversible path is given by the integral | , but theJB 9

entropy in the final state for the irreversible path is greater than

that for the reversible path. That is,

For the irreversible change, represented on the p-v plot by ArBiA
the total change in entropy is not zero as it would be for an en-

tirely reversible process, but

is obviously greater than zero 9

(or at the most equal to it).

For, from A to B by a re-

versible process

6
'

and from B to A by an irre-

versible process

Then by the path ArBiA

4>

(v)
*s V

That is, for the irreversible

process just considered, the

expression I -~ taken for the entire change is less than the actual
^ 6

increase of entropy. But the physical state represented by <t>A
> is

not the same as the initial physical state of entropy </>A . In order,

then, that the process shall be a true cycle, it is necessary to sub-

tract an amount of entropy of value in this case
<f)A

'

<f>A . This

fact, usually stated in the form given below, is due to Clausius.

|0 (30)



CHAPTER II

GASES

36. Graphical Representation of State for a Perfect Gas. It is a

simple fact of solid analytical geometry that a function of three

variables in general represents a surface. The general equation for

a given mass m of a perfect gas, namely pV mRO, is evidently a

function of three variables and may be taken as representing a sur-

face plotted with reference to three rectangular axes, p, V, and 0,

corresponding to a?, y, and 2. This surface is known as the " char-

acteristic surface
"

of the gas. Since the position of any point on

this surface represents a corresponding state or condition of the gas,

such a point is usually termed a "state point" of the gas. Now,
whatever changes the given mass of gas may undergo, its successive

states must be represented by state points on this characteristic sur-

face, corresponding to the successive values of
j9, F", and 6 which the

gas assumes during its transformation. The continuous curve pass-

ing through these points is a curve in space and has an equation

corresponding to the type of transformation which the gas has

undergone.
The equation in rectangular coordinates of a curve in space is

usually expressed by two equations, each containing two vari-

ables only. These two equations represent two cylinders, which

are right projecting cylinders of the curve upon the two coordinate

planes corresponding to the two sets of variables in which the equa-
tions are expressed. The intersection of these two cylinders deter-

mines completely the curve in space. In the case of a curve in space

representing a gas transformation, since the curve must lie upon a

known surface, one equation in addition to the equation for this

characteristic surface is sufficient. This equation might be expressed
in terms of p and F", p and 0, or V and 6.

The projection on the p and F' plane is most serviceable for ordi-

nary purposes, as is evident from the discussion of Sections 19 and

20. It is to be noticed that the expressions there given in p and V
coordinates for various type transformations represent equations for

a right projecting cylinder of the space curve, perpendicular to the

38
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pressure-volume plane, and also that the third coordinate has already
been found from the characteristic equation by substitution of the

values of p and V.

In general, a characteristic surface of unit mass of any substance

may be represented by the equation stating the relation of any three

of the five following magnitudes : specific pressure, specific volume,
absolute temperature, intrinsic energy, and entropy. This is true

because in general if any two of these magnitudes are known for a

given state of the substance, the values of the remaining three for

this state may be expressed as functions of the first two. Two ex-

ceptions occur, one evidently in the case of perfect gases (and for

practical purposes in the case of all gases) inasmuch as the abso-

lute temperature of a gas is directly proportional to its intrinsic

energy. (The other exception is in the case of a vapor where the

temperature and the pressure do not completely determine the other

magnitudes.)
The expression of a transformation in terms of the absolute tem-

perature and the entropy is frequently of value, and the temperature-

entropy plot will be used throughout the remainder of this text. 1

Determinations of entropy and intrinsic energy from direct measure-

ments are of course impossible. The three magnitudes that may be

directly measured, namely, the temperature, pressure, and volume,

are all easily found. For this reason, as well as because of the rela-

tion between work and area on a p-v plot (see Section 19), the

pressure-volume plot is used almost exclusively in practical work.

37. Equations for Polytropic Transformation of a Perfect Gas. The

equation for the most general type of gas transformation has been

given in Section 19 as

p^V-f p^V^ = a constant. > . -. . . (i)

For n equal to unity this equation expresses the relations of an iso-

thermal change, and for n equal to K the relations of an adiabatic

changev
Since it is frequently desirable to express some special form of

such a polytropic transformation in terms of p and #, or of J^and 0,

general equations f*or that purpose will now be derived. Combin-

ing equation (i) with the relation for a perfect gas, namely,

1 A pressure-entropy plot is sometimes used in superheated steam problems, as is dis-

cussed on page 96.
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gives

^-1 = 0,^-1,
'

. (iii)

or

-i " (31)

Also from (i) and (ii)

^^?
hence

or

(32)
ft

38. Fundamental Heat Equations of Perfect Gas. Since a gas
transformation may be represented by the projection of the state

curve upon the plane of p and F", p and 0, or V and #, it follows

that the effect of adding to a given mass (as unit mass) a small

amount of heat d<\ may be expressed in terms of any two of these

variables. It is to be remembered that this has already been done

in terms of p and v in Section 21, where the result was expressed in

equation (21), which is here reproduced.

, (21)

This equation will, however, be put in its more usual form by sub-

stituting from the equation for unit mass of a perfect gas, namely,

pv =

the value of - for %- and also - for , giving equation (33) as
v R p II

below,

. ...: . . . . (33)
v p

From equation (i) we have also

dv = d

â
de + ^dp = ^

dt) dp
*

p
and

dp = ^dd + ^dv =
00 dv v
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Substituting from (ii) in (33) gives equation (34), which expresses
in terms of the temperature, 9, and pressure, p, the same effect as

does (33). Thus

R6j~} t 6j RQ j* ( RO* 0\i---dp -f cv-dp = cp dO-
(cp

-- cv -)dp.
2} J P pv V

P
p
2v

v

j
1

(34)

v_p 2} P pv V pv p
Hence

Similarly, substituting from (iii) in (33) gives dq in terms of v and 0.

Thus

(35)

39. Entropy Change for Perfect Gas. From the three equations
derived above there are easily obtained three expressions for the

difference of entropy between two states of a gas provided the change

produced may be considered reversible. In case of a reversible

transformation

If the coordinates of state 1 be represented by pv v
1 , and V and

similarly the coordinates of state 2 by p%, #
2 , and #

2 , then we may
obtain from equation (33) the following expression for the differ-

ence in entropy:

dv
~\ cp* dp=

I
Cv

V J /Pf p
or

^ -^=cv loge
a +ep loge

^
. ... . (36)

Pi v
i

And similarly, equations (34) and (35) lead to equations (37) and

(38), as follows :

& -
*i = e, loge + (cp

- cv) loge
^ ,. i (3T)

. . .' V (38)

Any one of these three equations may be used to calculate the

change in entropy. Thus if the change is isothermal, (37) and (38)
both reduce to a simple form, since the logarithm of the term

involving the temperature reduces to zero in this case. Similarly,
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for a constant volume change, (36) or (37) may most easily be used.

It is important to notice that, since these equations all involve the

specific heat and were derived for unit mass of the gas, the values of

the entropy found by their use is in every case per unit mass of the

substance, and to obtain the total entropy change the value
<f>2 ^

must be multiplied by m. With this understanding it makes no

difference whether the ratio of the volumes is v^v2
or V<JVV since

these are equivalent ratios.

40. Relation of the Specific Heats of a Gas. It has already been

stated in Section 18 that cp/cv is a ratio, /e, that depends upon the

nature of the gas. It

will now be shown that

CP cv = AR, where R is

the constant of the char-

acteristic gas relation.

If unit mass of a per-

fect gas at a pressure,

p, and a volume, v, is

heated from 6
l

to
2

P,

-v -

\e, 1
\

\
\
\
\
\

\e2

\
\

\

V,

FIG. 12

under the conditions of

constant volume, the p-v

plot of the change will

be as shown in Figure 12

by the line ac. The heat
'

supplied is cv(Q% 0^).

Since no external work

is done by the gas, this

expression represents in heat units the increase in intrinsic energy
of the gas. If, however, the change from 6

l
to 2

be made at con-

stant pressure, as represented by the line ab in the figure, then the

heat added is cp(62 0^). Since the final temperatures are the same,

the increases in intrinsic energy are the same. During the heating

at constant pressure an amount of external work represented by the

shaded area of the figure has been done. The value in thermal units

of this external work is Ap(v2 v^). It is evident, then, that

-
)

-
#1)

= Ap^ -
,), (0

or

but
*,-*,

pv^ = R9
l
and . . . . (iii)
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From (iii) we have

Hence substituting from (iv) in (ii) gives

P,

(39)

41. Changes in Intrinsic Energy of a Gas. For a perfect gas the

intrinsic energy consists entirely, as has been said in Section 15, of

molecular kinetic energy and is

directly proportional to the abso-

lute temperature. The value of

the intrinsic energy of a gas at

a given pressure and occupying a

given volume may then be ex-

pressed in terms of this pressure
and volume in accordance with

the following reasoning. Imagine
the gas to expand adiabatically

from the state a, at which the

value of the intrinsic energy is

desired, until the pressure is zero.

During this expansion all the in-

trinsic energy is converted into

external work. Such an expansion is represented diagrammatically
in Figure 13. The energy may therefore be measured by the area

under the adiabatic drawn through a as in the figure. Denoting
the energy in state a as E-^ we have, according to equation (19) of

Section 20,
f

In this equation the volume V^ corresponding to zero pressure', will

be infinite and hence the expression for E reduces to

FIG. 13

This may also be written as

*~ 7?

ffi
=
K-l

(40)

(41)

From this form it is evident that the value given in equation (40)

contains the mass implicitly, and hence the above expressions for

intrinsic energy are for the total energy and not per unit mass of the

gas.
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The difference in intrinsic energy between two states 1 and 2 of

the same mass of gas is evidently

K 1

In order that this energy shall be expressed, in foot pounds it is neces-

sary that p be expressed in pounds per square foot and V in cubic feet.

42. Imperfect Gases. As has been previously stated, for ordinaiy

engineering purposes it is sufficient to apply the relations established

in this chapter for perfect gases to any of the ordinary so-called

"
permanent gases

"
such as hydrogen, oxygen, nitrogen, marsh gas,

and mixtures like air (and also, to some extent, to carbon dioxide

and the like). When it is desired to analyze the action of any mix-

ture, it may frequently be done by the use of Dalton's Law of partial

pressures, which states that if pl
and p% represent the pressures

which two chemically inert gases would exert at the same tempera-
ture when separately occupying a volume V, then the resultant press-

ure p for that 'temperature due to both these gases confined in this

volume is the sum of p l
and p2

.

Certain constants for the ordinary gases are to be found in Table 2

on page 130.

43. Resume of Equations for Cases.

The numbers following the equations are the original numbers

assigned to them in the preceding chapters.

Temperature.

6 = 459.5 + t Fahrenheit ;
= 273 + t Centigrade. . . (11, 12)

External Work.

Characteristic Equation.
pV=mR6..... . . . (13)

Specific Heat. ,

<*=e
fit=*.....; (Section 18)

cp -cv =AB. ...... .
, (39)

G-eneral Heat Equatidns.
(1)

(29)
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W)=A(dI!+dW). . . (4)

+ cj9&....... (33)
v p

(cp -cv

)6^.
..... (35)

dn = Cfae-(cp -Cv)e&. .,..:"..-;:. (34)

Isothermal Transformation.

P^ri=P^........ (5)

W=p l^loge^=p i
r

i \oge ^==mliei loge^ -

(18)
v
\ Pz '

i

Adiabatic Transformation.
n T/ K _ nr. 77" K ^99^
Pi '

i Pi y
z

-
, \^)

K:

Intrinsic Energy.
-

, (40)

. . > ;-.
..- (27)

V

A+^loge
-^2. - (36)

'Pi

' r
i

_ 0^ - \ 1 . *& fQ7\

i t/o s "\ 1 IP*) /^QQ\

Carnot Cycle.
- Q1^Q2 =^2 . .... (23, 25)
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PROBLEMS AND SOLUTIONS: GASES

1. Use of the characteristic equation. A gas tank CODtains 1.5

pounds of oxygen at a temperature of 65 Fahrenheit and a gauge

pressure of 50.3 pounds per square inch. The atmospheric pressure
is standard atmospheric pressure. Find how much more oxygen the

tank can contain and not exceed its safe pressure limit of 250 pounds

gauge, if the temperature is liable to rise to 100.

Solution. A gauge always reads the difference between the pressure which it is to

measure and the atmospheric pressure. Normal or standard atmospheric condition is

a pressure of 14.7 pounds per square inch.

First, find the volume of the tank from eq. (13) and Table 2,

p= (50.3+ 14. 7) (144), = 459.5 + 65 = 524.5, m = 1.5, 72 = 52.56.

. y= (1.5)(52.56) (524.5) =
(65) (144)

Then, find the weight of oxygen which the tank can contain under the conditions

p = (250 + 14.7) (144), e = 459.5 + 100 = 559.5,

w = (264.7 ) (144)(4_I42) =
(52. 56) (559. 5)

The added weight is then 5.73 - 1.6 = 4.23 pounds.

2. Oarnot cycle. A Carnot engine working between 350 Fahren-

heit and 75 does 116,700 foot pounds of work per cycle. Find how
much heat is supplied and rejected per cycle.

Solution. 0i = 459.5 + 350 = 809.5, 2 = 459.5 + 75 = 534.5,

el 2 809.5 534.5 n q ,

-07" 809.5

W = 116.700 foot pounds, AW =^ (116,700) = 150 B. t. u.

nBi = AW. .-. Oi
=^||

= 442 B. t.u.

Qi-Q2 = AW. .'. 02 = 442 - 150 = 292 B. t. u.

3. Intrinsic energy. What is the energy of 2 pounds of air at

150 pounds per square inch pressure, absolute, if it occupies 6 cubic

feet ?

Solution. p = (150) (144), F=6, m = 2, K= 1.40.

By eq. (40), E =^- .-. E= (150)(144)(6) = 324,000 foot pounds.
/C ~~~ 1 J..4U J.

Alternative solution. Find the temperature 0, and assuming that the value of cv

holds from the absolute zero to this temperature, calculate the number of thermal units

to raise the temperature of 2 pounds of air from zero to 0. Then reduce thermal units

to mechanical energy units.
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E = mcve = (2) (0. 169) (1215) = 411 B. t. u.

.-. E = (411) (778) = 320,000 foot pounds.
1

4. Constant pressure transformation. If 2 pounds of air are

heated at constant pressure from 60 Fahrenheit to 200 find how
much external work is done and how much the intrinsic energy is

increased. How much heat is required ?

Solution. Cp = 0.2375, cp cv = AB, R = 53.35, m = 2, t\ = 60, t-2 = 200.

The heat required at constant pressure is cpm(t2 h)= (0.2375) (2) (200 60) = 66.5 B. t.u.

External work done is(cp-cv)(m)( 2 -i)=^2?(2)(200-60)= ^^
778

Increase in intrinsic energy is . . ." . . . . . 47.3 B. t.u.

Or, expressed in mechanical units, it is (47.3) (778) =36,800 ft. Ib.

5. Exponent n. Given 2 pounds of air at a pressure of 14.7

pounds absolute which occupy a volume of 24.78 cubic feet. If the

air expands until the pressure in 0.4^ and the volume is F^ = 2 Fj,

find the exponent n in the equation pVn =pl V{
1

,
which may be

taken to represent the expansion.

Solution. piVi
n = p2 F2

n
,
where p2 = OApi and F2 = 2 FI.

Taking the logarithm to the base 10, we have

log^i + w(log FI) = Iogp2 + w(log F2).

_ log pi logj?2 _ log 2.5 _ 0.3979 _ i 30~
log F2

- log FI
~

log 2
~

0.3010
~

6. Entropy changes. Given 2 pounds of air at 14.7 pounds abso-

lute pressure and 32 Fahrenheit, find and plot the following entropy

changes.

(a) constant pressure, temperature increases to 736 absolute,

Fahrenheit.
*

(5) constant volume, temperature increases to 736 absolute.

(c) constant temperature, pressure decreases to (J) (14.7) pounds.

(d) what is the entropy change in Problem 5 ?

Solution. By eq. (38),

(a) 02 - 0i = cp loge
^ = (0.237) ("2.303 log ^1 = 0.0961.

Since this change in entropy is per pound, the total change is 0.192.

.(6) By eq. (37), 2-0 t = cv loge
^ = (0.169) [2.

303 log ^1 =0.0684.
6\ L 49U

The total change in two pounds of air is then 0.137.

1 For all of the problems of this book slide rule results are sufficiently accurate. The

slide rule has been used in all numerical work connected with these problems.
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(c) By eq. (38), 2-0i = -(Cp-c,,) log, -22= (0.237 -0.169) [2.30 log 1.5] =0.0276.
Pi

Or the change for 2 pounds is 0.0552.

These changes are referred to in Figure 14 by the marginal letters used above.

(<2) By eq. (36), 2
- 0i =cp loge^ + cv log^ = 2.30 [0.237 log 2 + 0.169 log 0.4]

Vi pi
or 0.0090, and hence for 2 pounds 0.018.

900

8OO

700

6OO

500

400

300

2OO

100
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the temperature is 200 Fahrenheit, what is the amount of work
done per pound of air?

Solution. Designate the state after adiabatic expansion by the subscript 3.

p.2 =(83.3) (144), F2 = 18, 2 = 910, 3 = 459.5 + 200 = 660.

By eq. (32),

By eq. (19),

Therefore

Z2
F2

- 1

(88.8) 044)

K-l

W = 1S
_er|

= 148,500 foot pounds.

The work per pound is
148

*
500 = 33,300 foot pounds.

4.46

9. Simultaneous equations in p and v. If the expansions of Prob-
lems 7 and 8 are two transformations in a Carnot cycle, find the p
and v coordinates of the four intersections of isothermals and adia-

batics. What is the efficiency ? Plot the cycle.

500'

400

300

200

100

10 ZO 30

FIG. 15

Solution. From Problems 7 and 8,

P! = 500 Fi = 3

p2 = 83.3 Fo = 18

F3 = 40.2

Find p3 by eq. (22).

40 cu.ft.

01 = 910

02 = 01

3 = 660

= %pa = f-^-V'
4

(83.3) = 27.1 pounds per square inch.
F3

~
V40.27
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Find F4 by solving simultaneously the equations for the adiabatic through state

point 1 and the isothermal through state point 3, thus

and p4 =Ms = (27.1) (144) (40 .2) =^^^^ ^
Qr 16g poundg

The values of j>, F, and not given in Problems 7 and 8 are then

pa = 27.8

^4 =163 F4 = 6.7 4 = 03

The efficiency, by eq. (25), is 77
= 91 ~ 66 = 27.5 percent.

y10

The plot of this cycle is seen in Figure 15.

10. Pressure-volume plot. A quantity of air occupies 8 cubic feet

at 70 Fahrenheit and under an atmospheric pressure of 15 pounds.
It is compressed adiabatically to a volume of 2 cubic feet, cooled at

constant volume to its original temperature, and allowed to expand

adiabatically to atmospheric pressure. It then heats at constant

pressure to its initial temperature. Draw the pressure-volume plot

of this cycle.

100

90

80

7O

60

50

40

30

20

10
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Given p x VI
K = pVS, where p = (15) (144), Vl = 8, X = 460 + 70 = 530, F2 = 2,

= 1.40
;
then

104.6 pounds per square inch.

By eq. (31),

Since 3 -530,

= 922.

= r
2 =S^ 104.6 -60.

62 922

During adiabatic expansion to atmospheric pressure

pV
K = ps F3

K = p4 Vf and p4 = 15.

Hence

and
'4

4 = I -A_V"(530) = 358 absolute, or - 102 F.
\5.35/

11. Regenerative cycle, Sterling engine. The Sterling hot-air

engine works upon the following cycle (as shown in the 6-<f> plot of

Fig. 17). From a to b the A (j^H/.

air in the engine expands

isothermally at a tempera- 1860

ture 0j, from b to c this air

is cooled at essentially con-

stant volume to the tem-

perature #
3
and pressure jt?3,

from c to d it is then com-

pressed practically iso-

thermally to the volume v
1

and a pressure p^, from d
\ ( 'r^^

to a the air is heated at

constant volume to its

initial condition.

This is accomplished by
the use of a displacement

piston D in conjunction
with a working piston TPJ 549
as is shown in the diagram
of Figure 18. The' dis-

placement piston, actuated

by a rocker arm, moves up
its full stroke during da,

while the working piston
is essentially at rest. It FIG. 17
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thus forces all the cool air at temperature 3 through the regenerator
R into the lower portion beneath which there is a fire F. The re-

generator consists

merely of thin metal

plates or wires which

will rapidly absorb or

reject heat. The air in

contact now with the

heating surface expands
from a to b and causes

a working stroke of the

piston W-, while the pis-

ton D remains at the

top of its stroke. When
W has reached the end

of its stroke, the piston

D moves quickly down,
thus causing the air

below it to pass through
the regenerator. The

air passing through the

regenerator gives up
heat and then passes into the refrigerator (7. The pressure is

thereby reduced from b to c. The refrigerator consists of a set of

pipes through which flows cooling water. The working piston W
now returns, compressing essentially isothermally at the temperature
of the refrigerator all the air originally contained by both cylinders.

This last transformation is represented by cd.

Neglecting clearance, find the efficiency for such an engine work-

ing between 1400 and 80 Fahrenheit. Assume the volume of the

working cylinder to be 0.9 cubic foot and the entire volume, exclu-

sive of the working cyclinder, to be 3 cubic feet. Compare with the

Carnot engine in efficiency. Sketch the temperature-entropy plot

and compare with the plot for the Carnot cycle. The lowest pres-

sure is 16 pounds per square inch.

Solution. Denote by the subscripts 1, 2, 3, and 4 the state points a, 6, c, and c?,

respectively.

81 = 62 = 460 + 1400 = 1860 3 = 64 = 460 + 80 = 540

F! = F4 = 3 F2 = F3 = 3 + 0.9 = 3.9

FIG. 18
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Then

e ^1860
4
P4 ~

540

02 I860

By eq. (18),

30 log = 10 .42 B.,,

G-2-3 = Oi-i, since they are constant volume changes between the same limiting

temperatures.

The efficiency is then

The Carnot efficiency is

, =
10.42

1860 - 540

=70.8 per cent.

1860
= 70.8 per cent.

Discussion. This is an illustration of a regenerative cycle where,

although the changes are at constant volume instead of isentropic, the

efficiency is the same.

There are other cycles

possible which have the

same efficiency as the c\; ; ; ; ; ; ;\b

Carnot for the same

range of temperatures,

but none has a higher

efficiency, as is explained
in Section 34.

12. Air compressor
with and without clear-

ance. An air compres-
sor with perfect valves

receives air at the at-

mospheric pressure of

15 pounds per square
inch and delivers it at a

constant pressure of 90

pounds per square inch.

The compression follows

the equation p Vn
equal to a constant where n is 1.3 due to partial

cooling. Draw the p-v plot and find how many foot pounds of

FIG. 19
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work are required for each cubic foot of air at the atmospheric con-

ditions under which the condenser is working. (#) Neglect clear-

ance. (6) Allow for a

P ; clearance of 11.1 per
cent of the piston dis-

placement.

Solution. Representing
the total piston displacement
and clearance by FI, the vol-

ume after compression by

Fa, the clearance volume by
F4 ,

and the volume occu-

pied by the clearance air at

atmospheric pressure by F3 ,

Figures 19 and 20 represent

respectively the cycle and

the work done upon the air

for conditions (a) and (6)

above. The calculations are

tabulated below for these

two cases. It is important
to notice that the net work

- done on the air is only that

done in compressing it above

the 15 pounds at which it is

- received.
FIG. 20

(a) Without clearance.

Work of compression. By eq. (19), area abhk = 3650 V\

j_

Volume expelled at 90 Ib. pressure, F2 = [ \
^

FI = 0.251 FI

(6) With clearance.

area abhk = 3650 FI

= (0.261- 0.100)
= 0.151 Fi

area besh = 1960 PI

5610 Fi

area afmk = 1300 FI

area efms = 1460 FI

2850 Fi

0.603 Fi

4740

Work of expulsion (90) (144) ( F2
- F4), area bcgh = 3250 FI

Total work, 6900 Vl

Work done by atmosphere, area adgk = 2160 FI

Work done by clearance air. ( F3 =0.397 Fi), By eq. (15).

Therefore net work of compressor, 4740 FI

Cubic feet of air (at atmospheric pressure) delivered, V\

Foot pounds of work per cubic foot delivered, 4740

Discussion. The effect of the clearance in a frictionless compressor
is not to increase the work per cubic foot of air delivered, but to re-

quire a larger piston displacement to deliver the same amount of air

per stroke.

13. Otto gas engine cycle. The Otto, or de Rochas, cycle for a

gas engine consists thermodynamically, in the ideal case, of the fol-

lowing processes : (1) adiabatic compression of an explosive mixture
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of air and gas; (2) heating at constant volume by combustion;

(3) adiabatic expansion of the products of combustion to the origi-

nal volume occupied by its constituents; (4) cooling at constant

volume.

This cycle will be discussed upon the following assumptions :

(1) the specific volumes of the constituents will be considered equal
to that of the products of combustion under the same conditions of

temperature and pressure ; (2) the products of combustion are con-

sidered to follow the laws of perfect gases and to have specific heats

in the same ratio ; (3) the density of the gases before and after com-

bustion are considered equal to that of dry air under the same con-

ditions of pressure and temperature.
The p-v plot for such a cycle is shown in Figure 21. The piston

makes four strokes for each working stroke or explosion During
the forward stroke ab the piston

draws into the cylinder a charge
of gas and air. From b to c it

compresses. From c to d the heat-

ing takes place instantaneously,

due to the explosion of the mix-

ture. During the forward stroke

de external work is done. The
valve then Opens at e and the gases

exhaust, the pressure and tempera-
ture dropping to that of the at-

mosphere or the "muffler." In

effect it is as if the valves had not

opened but the gas had been cooled

at constant volume as represented

by the line eb. The fourth stroke

now expels this gas against atmos-

pheric pressure and is represented

by la.

(a) If the clearance is 25 per cent of the piston displacement, find

the theoretical thermal efficiency.

(5) If a mixture of gas and air which will develop 85 B. t. u. by
combustion is taken into the cylinder at a pressure of 14 pounds and

a temperature of 60 Fahrenheit, find the temperatures at c and d

and the pressures at e, d, and e.

(e) Compare the efficiency with the Carnot efficiency for the range
of temperatures found from (6).

v

FIG. 21
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Solution, (a) All the heat taken in is along cd in Figure 21. Similarly, the heat

rejected is along eb. The calculation will be made for one pound of the explosive mix-

ture.

The efficiency is

qi

where ^ = cv (dd C ) and q 2
= cv (0e 6).

Hence c/fr-g.) -c,(ft- ft) = j.

Since de and cb are adiabatics, they must differ by a constant quantity of entropy.

Equating then the difference in entropy found by eq. (37) between c and d to that

found between e and &, gives

cv log = cv log ,
hence =

Therefore 6e
~

0J> = -
0d 0c 0c

But since b and c lie on the same adiabatic, eq. (32) gives 2 = (
SsV . Now vc is

C \Vb/

clearance and vj> is piston displacement plus clearance. Hence

_ 1 _ 0& _ 1 _ f_clearance_I*"
1

.

ec Lclearance + piston displacemen

Substituting for the clearance 25 per cent of the piston displacement gives

r,
= i _ r

0.25^

-ii.*-i = l _ 525 _ 47
L! + 0.25J

(6) pa zz p5 = 14. 6 = 60 + 460 = 520. ^ = 85 B. t. u.

qi
= c^^d - C )

= 0.169(^ - 990) = 85 B. t. u.

Therefore
4

d
- 1490.

By eq. (32), pc =/^Ypb =(9.62) (14)= 133.
\vc /

Then ^ = ^
;
therefore jOd= 133 = 201.

C ec 990

Byeq.(32 ), ,.

(c) The Carnot efficiency is

gg^jg, = 1490- 520 ^ 65percent
d 1490

14. Diesel internal combustion cycle. Gas engines operating upon
the Diesel cycle compress air to a high temperature, as shown by
bo in Figure 22. The temperature is sufficient to ignite the fuel,

which is injected from c to d at a rate such that cd is essentially an

isothermal. Considering the initial compression to be adiabatic and

from 15 pounds atmospheric pressure and 60 Fahrenheit to 500
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pounds gauge, the isothermal to be for 15 per cent of the working
stroke, and the remainder of the expansion to be adiabatic, solve for

the following : (1) the temperature
of the isothermal, (2) the clearance

in per cent of the piston displace-

ment, (3) the B.t. u. supplied by
the combustion per pound of work-

ing substance, (4) the thermal

efficiency, and (5) the Carnot effi-

ciency for the same range of tem-

peratures.

Solution.

(1) C =

040

= 1430 abs. or 970 F.

i

(2)
v-c =

Pc
; therefore vc =0.08*v

or vc = 0.087 (vb -vc ).

That is, the clearance is 8.7 per cent of the piston displacement.

(3) Since vd = 0.15(v6 # c) + vc = 2.73 vc ,

the heat supplied along the isothermal is per pound of mixture

FIG. 22

778
98 B t u

778
"

vc 778 vc

Since 6e = (

v^Y-
l

ed = p.73)(0.08^)lo.4Q 1430 =^
\Vel L Vi J

the heat rejected at constant volume is

q 2 = 0.169(780 - 520) = 44 B. t. u.

= 55 per cent.(4) Therefore the efficiency
98 44 .

n =

(5) The Carnot efficiency is

98

1430 - 520 .

1430
'-- 64 per cent.

15. Air refrigeration. The fact that air falls in temperature

during an adiabatic expansion is made use of in the design of air

refrigerating machines. The essential features of such a machine are

shown in Figure 23. The air is received by the working cylinder
W from the room which is to be kept cool. Let its. temperature
and pressure be Ba and pa respectively. The air is compressed adia-
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3

*J

ft

batically as shown in the p-v plot of Figure 24. It is then cooled at

constant pressure by passing it through a coil placed in a tank sup-

plied with cooling water.

After this it expands adia-

batically along cd as shown
in the plot, and does work in

the expansion cylinder E,

which returns it to the prime

mover, which is driving the

compressor. The tempera-

Iture of the air is now con-

[siderably
below that of the

I

- =. ^ room from which it was re-

W E ceived. It then enters the

room and is heated at con-

stant pressure.

If pa is 14.7 pounds abso-

lute, pb is 14 times pa ,
6a is

to be zero degrees Fahren-

heit, how much heat is ab-

stracted from each pound of

air while it is in the cooling
Sketch the p-v plot

e

FIG. 23
room

for each cylinder and the 0-<f>

plot for the entire cycle. Neglect the clearance. Assume that the

cooling water reduces the tem-

perature of the air to 95 Fah-

renheit.

Solution.

= 14pa = 206 pounds per square inch.

Calling va equal to
,
we find vj, and

by eq. (32) and (19) as follows :

= *,.= -. 0.154,,

These values are plotted in Figure

25, which shows the work of the work-

ing cylinder W. FIG. 24
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Similarly, since 6C = 95 + 460 = 555 and pc =pb andpd =

p

59

= = (0.154,)= 0.086,,

= f^.Yve = (14) -7i(0.086 ,) = 0.562,,
w

FIG. 25

These values are plotted in Figure 26, which shows the work done in the expansion

cylinder E.

The net input to the compressor is the dotted area abed in Figure 26. This input
will be found by parts as below :

area abkr =P^-paVa _
(144)

/u<7 )
(14) (0.1 54) -1 v = 6100 v foot pounds<

/c 1 0.40

area bcok = pb (v b vc)
= (206) (144) (0.068) v = 1990 v foot pounds.

area cdho = = (144) (14>7)
.086)

- (0.562)

/c 1 0.40

area tter/i = j9a (va d) = (144) (14.7) (0.438) v = 930 v foot pounds.
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The net input is then 3760 foot pounds per cubic foot of entering air.

One pound of air at the admission temperature and pressure has a specific volume of

$*- 12.39 = 11.6 cubic feet.

FIG. 27

The work of the compressor per pound of air pumped is then

(3760) (11.6) = 43,600 foot pounds.

The B. t. u. equivalent of this work is

The heat abstracted per pound by the room it is desired to refrigerate is

cp(ed-ea )
= 0.237(460

-
260) = 47.5 B. t. u.

The cooling water must then remove the sum of these two amounts of heat or

103 B.t. u. As a check calculate the heat abstracted by the cooling water. It is

evidently
Cp(06 -0c ) =0.237 (990-655) =103 B.t. u.

The temperature-entropy plot is shown in Figure 27.



CHAPTER III

WATER AND ITS SATURATED VAPOR

44. Phenomena of Vaporization. In accordance with the kinetic

theory the molecules of a liquid are considered to be in motion in a

manner similar to the molecules of a gas, except for the fact that

the average free path which a molecule travels between impacts is

very much less in a liquid, and except for the fact that the molecules

are now within the sphere of each other's influence and exert large

mutual attractions. The continual evaporation which takes place

from the surface of an exposed liquid demands, however, the gen-

erally accepted assumption, that occasional molecules possessing

individually kinetic energies higher than the average for the entire

body convert a portion of their kinetic energy into potential energy

by breaking away from the surface attraction of the neighboring
molecules and passing into the space above the liquid. That this

free evaporation is facilitated by an increase of temperature, that is,

by an increase of molecular kinetic energy, is a fact of common

knowledge which supports this theory.

If the space above the liquid is enclosed, some of the molecules^
which have escaped, and in that space are moving essentially after

the manner of gaseous molecules, will in the course of their motion

impinge upon the surface of the liquid and once more become a part
of it. When, however, there are as many molecules entering the

liquid in this way as leave it in the same time, there is a so-called
" state of active equilibrium," and the vapor constituted by the free

molecules is said to be saturated. If now the volume above the

liquid, which these free molecules occupy, is reduced, there will be

momentarily a larger density, and hence a larger number of impacts
of the free molecules with the liquid, and hence a condensation of

the vapor. The ultimate result will be a reduction of the number
of free molecules until the density is reduced to its former value

and the state of active equilibrium is again attained. Other things

being equal, the density of a vapor in contact with its liquid is inde-

pendent of the volume which the vapor is free to occupy.
61
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On the other hand, if the temperature of the liquid is increased,

the equilibrium will be momentarily disturbed by the escape from the

liquid of a larger number of molecules than return to it in the same

time. This momentary disturbance lasts until a new stable density

of greater value is reached. The density of a saturated vapor in

contact with its liquid is then some function of its temperature.

The pressure exerted by the vapor is also a function of the tem-

perature, since by the kinetic theory the pressure depends upon the

energy of the molecules and their number per unit volume. The
number per unit volume is directly proportional to the density, and

hence the pressure increases with a twofold rapidity as the tempera-
ture rises. The temperature at which the pressure of the saturated

vapor would be equal to the external pressure upon the surface of a

given body of liquid is called the boiling temperature of the liquid

for that condition of pressure. At this temperature bubbles of the

vapor start to form beneath the surface of the liquid, rise to the top,

and burst into vapor. After boiling commences no further increase

in the temperature (for constant pressure) is possible until all the

liquid has been converted into vapor.

Water vapor, or steam, as it is usually called, is colorless and trans-

parent. The cloudy white form it frequently takes is due to the

condensation of part or all of the original steam into minute drops
of water. In this case the steam is called "wet" because of the

mixture with it of water particles. Steam free from moisture,

whether due to condensation, entrained water, or other causes, is

called "dry."
The temperature and pressure of water vapor are always the same

as the temperature and pressure of the water with which it is in

contact. 1
If, however, the saturated vapor is removed from contact

with its liquid, its temperature may be raised above the original boil-

ing point. The steam is then said to be superheated. If the pres-

sure of the superheated steam is kept constant, its volume increases

with the temperature ; and also, if its volume is kept constant, the

pressure increases with increased temperature. In steam engineer-

ing practice the steam is superheated in its passage from the boiler

to the engine as the result of passing through coils of pipe in the flue

of the boiler or as the result of some similar arrangement. Its vol-

ume per pound, or specific volume, then increases, and this increase

is cared for at once by the motion of the piston of the engine. The

1 Except for differences beneath the surface of the liquid due to the hydrostatic pressure.
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effect is the same as if the steam were entirely separated from the

water from which it is produced.
45. Specific Heat of Water. In order to convert a pound of water

into steam, it is necessary, tirst, to raise the temperature of the water

to that corresponding to the boiling point for the given pressure,

and, second, to vaporize this water. In each case the necessary heat

may be expressed by an equation of the form dQ= AdiS-\-Adl+ AdW,
as in Section 8. In raising the temperature of the water there is

produced a small increase in its volume. For ordinary engineering

purposes this is so small that the terms Adi and AdW may be neg-
lected. This necessary increase in the heat of the liquid will be

represented by the symbols q% q^ the significance of which will

appear more fully later in this section.

This increase in the heat of the liquid may be found approxi-

mately by assuming the specific heat to be constant and of average
value unity. Then the heat, ^""^i 1 required to change one pound
of water from a temperature of ^ to the boiling temperature 2 is

expressed as q2 ql
= t

2
tr It is in general desirable to know this

necessary heat more accurately, and this requires a knowledge of

the specific heat of water at various temperatures. The curve of

Figure 28 shows the variations of the value of the specific heat of

1.0400

1.0300

1.0100

1.0000

0.9900
50 150 200 250

Degrees Fahrenheit

FIG. 28
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water, taking the specific heat as unity for the change
Fahrenheit. From such a curve, accurately constructed on a large

scale, it would be possible to obtain the value of the specific heat for

each degree and then by a summation of the form ^cdt to obtain

fc
-

?r
It is more convenient, however, to use some set of tables, in which

are tabulated the results of such a summation from 32 Fahrenheit,

as a lower limit, to t as an upper limit, where t has for values all
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the whole degrees within the ordinary range of engineering work.

The heat which is required to raise one pound of water from 32 to

t will bQ represented by qr Similarly, the heat in B. t. u. required
to raise one pound of water from 32 to

2
is q2 . The heat required

to raise one pound of water from ^ to
2 is then q% q1

B. t. u. Such
a table of values for q is illustrated in Table 3, on page 130, for a few
chosen values. Certain other constants for steam, which will be

discussed later, enter into this table.

The plot of Figure 29 shows the general nature of the relation

between pressure and temperature for water vapor. It gives, in

7400

100

180 160 140 120 100 SO
Pounds per square inch

FIG. 29

20

other words, the boiling point temperature corresponding to a

given pressure. There is to be noticed at the higher temperatures
the rapid increase of pressure mentioned in Section 44. In Table 3,

the value of p corresponding to any given temperature t is the pres-

sure in pounds per square inch for which t is the boiling point.

46. Heat of Vaporization. The heat required to vaporize one

pound of water may be considered in three parts. The first of

these, namely, q% qv which is required to raise the temperature of

the water to the boiling point, has already been discussed. The

remaining two have been considered partially in the illustration

given on page 7. They are p, the internal latent heat required to

separate the molecules against their mutual attractions, and A.pu,

the external latent heat or heat equivalent of the external work
which must be done against the pressure p to cause the increase, u,

in the volume. This increase u is s <r, where s represents the spe-

cific volume of one pound of dry steam at the pressure p, and a-

represents the volume of one pound of water.
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The total heat required to raise one pound of water from 32

Fahrenheit to a temperature t and there to vaporize all of it is then

\ = q + p + Apu, (43)
where u = s cr. (44)

The letter X will be used hereafter as a general symbol for the total

heat contents of a pound of water (in whatever form it may be) as

measured by the heat in B. t. u. required to change the water from

32 Fahrenheit to the condition for which X represents the heat con-

tents. Also the letter r will be used to denote the total latent heat

of vaporization. Thus

r = p + Apu . . (45)

In Figure 30 is shown the general relation of q, p, Apu, X, and 8

for steam at various temperatures. It is to be noticed that the term

Apu, which is represented in the figure by the portion of the ordi-

nate between the curve of p, the " internal latent heat," and r, the

total " latent heat," is almost constant. Since the specific volume of

a pound of water is always approximately 0.016 cubic foot, it may
for many purposes be entirely neglected as compared with the spe-

cific volume s of dry steam. Hence the product Apu is practically

equal to Aps. This relation between p and s has been expressed in

empirical formulas for calculating the specific volume of dry steam

for any pressure. Thus by Zeuner as

ps
lM* = 479, ,.-. ; (46)

and by Rankine as

JEW**
= 482, . . . . . . ''A (47)

These equations obviously make allowance for the fact that Apu is

not exactly constant but increases somewhat at higher pressures.

The values for p, r, p, Apu, s, and 7, the density or mass per cubic

foot, for selected values of t are given in Table 3 on page 130. * It

is to be remembered that these values of r, p, Apu, as well as q, are

all in B. t. u. per pound. The specific volume s is in cubic feet per

pound. The pressure p is in pounds weight per square foot, but

since pressures are usually measured by gauges graduated in pounds

1 A convenient set of steam tables is the work of Professor Peabody of the Massachusetts

Institute of Technology. It is published under the title
" Steam and Entropy Tables "

by
Wiley and Sons. The values used in this text and included in Table 3 are taken from the

8th edition by the kind permission of the author and the publishers. The symbols used in

Table 3 are those of Professor Peabody except in the case of entropy, which is considered

later in Sections 49 and 50. The tables compiled by Professors Marks and Davis of

Harvard University also embody in a most convenient form the results of the recent inves-

tigations (Longmans, 1908).
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per square inch, the values of the table in the column headed by p
are so expressed and must be multiplied by a factor of 144 before

being used in any numerical calculations.

It is to be noticed also from Figure 30 that
/>,

the internal latent

heat of vaporization, decreases with the volume. This is in accord-

12OO
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ance with the kinetic theory, for when occupying a smaller volume
the molecules are closer together and less work has been done in

producing vaporization against their mutual attractions.

47. Quality of Steam. Consider a pound of water at 32 Fahren-

heit, and the results of raising its temperature to t and there evap-
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orating against the corresponding pressure of p pounds, not the

entire pound of water as the problem has previously been consid-

ered, but a fraction of a pound, say x. Then obviously the funda-

mental equations given below on the left hand must be restated as

shown on the right hand.

\ = q+ r= q+ p+ Apu. . . . (43) \= q+ xr= q+ xp+ xApu. . (48)

v= s = u+ <r (44) v= xs+ (I x~)o-
= xu+ o-. . . (49)

In general, if from any cause the steam considered is not dry but

has mixed with it water, and the mixture is x parts dry steam and

(1 x) parts water, then x is defined as the "
quality," and the

modified equations given above must be used. The quality x is

usually expressed in per cent, but obviously it must enter into these

equations as a decimal. The amount of water present, (1 x) parts,

is expressed as a per cent and called the "
priming."

48. Intrinsic Energy of Steam. In the formation of one pound of

dry steam at a pressure p, it is to be noted carefully that the mole-

cules of the forming steam act as direct agents by which a certain

amount of mechanical work, pu, is done at the expense of Apu heat

units supplied by the fire. At no time do these pu units constitute

part of the intrinsic energy of the steam. Therefore, in the equa-
tion \= q + p+Apu, which is in the form of Q = A(dS+ dI-\- dW),
the term q -f- p represents the intrinsic energy of the steam and cor-

responds to AdS+ Adi. Representing by e the intrinsic energy of a

pound of steam and water mixture, we have, if x is unity,

Ae = q + p (50)

Or, more generally, for the intrinsic energy of one pound of a mix-

ture of quality x, A xr-ixJ Ae = q + xp (51)

49. Entropy of the Liquid. By definition, the entropy of a body

in state 2 is the integral J 3, taken along any reversible path from

state point 1, arbitrarily chosen as a zero of entropy. By conven-

tion for steam the point 1 is taken as the entropy of a pound of

water at 32 Fahrenheit. The heating of water is a reversible pro-

cess, and the integral representing the entropy of one pound, at any

temperature t Fahrenheit or 6 Fahrenheit on the absolute scale,

may then be written as

..... (52)
0=491.5
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As an illustration, the entropy of water at 33 Fahrenheit will be

calculated. Thus
, 492.5

By a proper allowance for the varying value of the specific heat c,

the entropy of water may be calculated in this way for various tem-

peratures. Values so calculated are given in Table 3 in the column

headed fa. This symbol will be used hereafter to represent the

entropy of one pound of water.

50. Entropy of Vaporization. In a somewhat similar manner,
since vaporization is a reversible process, the increase of entropy

fa due to vaporization may be found. Thus

(53)

where the value of 6 is the absolute temperature at which vaporiza-

tion occurs, and r is the heat, I d. As an illustration, the entropy

of vaporization for 212 Fahrenheit will be calculated. Thus, sub-

stituting for r from Table 3,

. 969.7
*' =

459.5 + 212
=

The symbol fa will be used to represent the increase in entropy per

pound of steam due to vaporization.

The total entropy of a pound of dry steam is then

(54)

If the quality is not unity, but is #, then the total entropy of a

pound of the mixture is /^Jt
<t>
=

<l>w + xfa...... .>-. (55)

51. Temperature-Entropy Chart for Steam. If the temperature-

entropy diagram for the change in entropy of one pound of water

from 32 Fahrenheit to some temperature ^ is plotted, it will appear
as shown in Figure 31 by the line Fab. If the diagram is constructed

for several higher temperatures, as
2 , 3 , and so on, it will be found

that for these temperatures the changes in entropy from 32 are

represented by lines Fed, Fef, and so on. Such a temperature-entropy

diagram for one pound of water when constructed for a sufficient

number of temperatures is usually known as a "
temperature-entropy

chart for steam." It is of considerable value in the solution of

problems in steam turbine study and of interest, although probably
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32 F

FIG. 31
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of lesser value, in the study of the steam engine. Such a tempera-

ture-entropy chart is given in part on page 86.

The curve 'Face of Figure 31 is called the " water line," and the

locus of the points like 5, d, and/, is the "dry steam line" or "line

of constant steam weight."
Since the entropy of a mixture is

<f>w + x'<j>v and the length of the

lines ab, cd, and ef represents values of
<f>v , the entropy of any mix-

ture may be easily determined from this chart. Thus if the entropy
of a mixture of quality x at a temperature t%

is desired, we proceed as

follows. Divide the line cd into two parts by a point g so located

that egjcd shall equal x. Then obviously the length of the line eg is

x<f>v
and the total entropy of the mixture is represented by the line

Off. For convenience in making such interpolations on the chart

a series of lines like hgj may be drawn, indicating all the points
of the same quality for values of x differing by 10 per cent, as is

done in Figure 32. (In the chart on page 86 such lines have been

drawn for differences of one per cent.) These lines of constant

quality are usually called "a? lines."

Since the temperature is constant during vaporization, if the

pressure is constant, the lines ab, cd, and so on represent constant

pressure lines, the values of which correspond to the temperatures
tv 2 , and so on.

Lines of constant volume showing the entropy of all states of a

mixture of steam and water which occupy per pound the same

volume may be drawn as follows. Continue the axis of tempera-
tures below the entropy axis and let it represent to a convenient

scale an axis of volumes. Draw a line parallel to the entropy axis

and below it by an amount equal to cr, the specific volume of water.

In Figure 31 the distance cr is made disproportionately large for

clearness. The letters a f

, c', and e' refer to the intersections of the

dotted vertical projection lines with this constant volume line through
cr. Then for any pressure and temperature as ^ project normal to

the entropy axis the line aa f to intersect the constant volume line cr

in a', and the line W to intersect the -line
s-fi' , which is drawn

through j,
the point on the axis of volumes which corresponds to

the specific volume of dry steam at the temperature tr The line a'b
1

shows then the increase of entropy with increasing volume due to

vaporization at this temperature. In a similar manner, other lines,

showing the relations of volume and entropy for the temperatures t
2 ,

ty and so on, may be drawn. These are represented by c
f

d' and e'f.

For any volume as k the line of constant volume kkfff intersects the
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lines a'b f

, c'd', and e'f in points &', k", and k"f

, the abscissas of which

represent the entropy of mixtures of constant volume k but of differ-

ent temperatures. The corresponding temperatures may be found by
projecting the points &', k", and k 1" back onto the lines a>, cd, and ef,

respectively. The ordinates of these projections, namely k^ &
2 , and

&
3 , represent the temperatures for mixtures of volume k. The line

k^B
is then on the temperature-entropy plot a line of constant

volume, and similarly, the lines a'b', c'd f

, and e'f on the volume-

entropy plot are lines of constant pressure and temperature. On
the chart of page 86 several constant volume lines are represented.
A family of curves for constant total heat contents might also be

constructed through all the points for which X = q -f- xr constant,

for different values of

the parameter X. These

lines of constant heat

contents are of especial

value in the solution by
the use of a &-<]> chart

of problems on the flow

of steam through noz-

zles. There is unfortu-

nately no graphical
method of construct-

ing constant heat con-

tent curves, and the

calculation and plotting

of separate points is

necessarily tedious.

Constant heat curves

are shown in the chart

on page 86. Similarly,

curves for constant in-

trinsic energy might
be plotted in accordance with the relation e = q + xp = constant. The

general appearance of these curves is similar to those for constant

heat contents, but slightly different in slope.
1

52. Isentropic Transformation of a Mixture. From a study of the

temperature-entropy diagram of Figure 32 it is evident that if an

1 For a method of determining graphically the intrinsic energy corresponding to a desired

point on the 0-0 chart, the reader is referred to Berry,
"
Temperature Entropy Diagram,'*

1st edition, pp. 28-29. For the converse problem there is no graphical solution.

FIG. 32
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isentropic compression abc be made, starting with a mixture the state

of which is represented by #, as successive lines of smaller volume
are intersected (volume lines are not shown in the figure), so also

are met lines of greater quality Or higher values of x. That is, an

adiabatic compression of steam near its saturation point causes

reevaporation, the heat for which is obtained at the expense of the

external work done during compression. When the point c is

reached, further isentropic compression results in superheating the

steam, as was first announced by Cazin. Conversely, starting from

6?, an isentropic expansion results in a condensation or lowering of

the quality #, as was first stated by Him. That is, the external

work is now done by the expanding steam at the expense of the

heat of vaporization of a part of it.

From the same figure it will be noticed that the x lines for those

qualities less than 0.5 in general slope to the left, while the slope
is toward the right for those qualities greater than about 0.5. Hence
for the isentropic line efg, when the mixture is near its liquid condi-

tion, it is evident that compression results in condensation, and, vice

versa, expansion results in reevaporation, as was stated in Section 44.

An isentropic line as mn of Figure 32 if produced will in general
cut an x line in two points. Hence for each x line an isentropic may
be drawn tangent to it at some point, as o. If the line o'o" be

drawn through all these possible points of tangency, its general ap-

pearance will be as shown in the figure. Such a line is called the
" zero line

"
(because it represents states for which the specific heat

may be shown to be zero).
1

The changes in the state of a mixture undergoing an isentropic

compression may then be expressed in a more rigorous form by say-

ing that for values of x greater than the zero line values there is a

reevaporation, and for values less than the zero line values there is a

condensation. Conversely, for isentropic expansion there will be

condensation (or reevaporation) for values of x greater than (or
less than) the zero line values.

Since for an isentropic change the external work performed by the

steam is at the expense of the intrinsic energy, the work w per pound
of a steam mixture undergoing a reversible adiabatic expansion
from state 1 to state 2 is

W = e
1
-e

2
=

q1 + x
1p 1 -q2

-x
2p2 . .... (56)'

1 Berry,
"
Temperature Entropy Diagram," pp. 25-26.
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53. Specific Heat of Steam. The specific heat of dry steam may
be found for any of the following conditions : (a) superheating
under constant pressure, (>) superheating at a constant volume,

(c) for changes of both pressure and volume so related that the whole

mass remains dry saturated steam, that is, for changes such that the

temperature and entropy are related as in the dry steam line fb of Fig-

ure 31, page 69. For constant pressure the value of 0.48 may be used

for temperatures near that of saturation ; for higher temperatures,
values are given in the Table on page 93. For constant volume,

Regnault gave 0.346, but this determination is not entirely reliable.

For condition (<?) the specific heat is negative for all ordinary tem-

peratures and pressures. The physical significance of this fact may
best be shown by an example. Thus, suppose it is desired to raise

the temperature of one pound of steam from 212 to 213 Fahrenheit

in accordance with condition (<?) above. This may be done by com-

pressing the steam under a pressure which increases according to

the relation plotted in Figure 29 of page 64. The specific volume

decreases with this increased temperature and pressure. The exter-

nal work done may be taken as approximately equal to the product
of the average pressure and the decrease in volume. This is work

done upon the steam by some external source. The change in total

heat contents represents the amount of heat which must be added

from some external source. The values of
jo, q, a, and r for 212 and

for 213 Fahrenheit are given below.

213

^ = 14.99

* = 26.29

Hence, 0.4 B. t. u. must be supplied from some external source to

change from 212 to 213. But an amount of external work

14.70+14.99 144(26.78
- 26.29) = 1020 ft. Ib. = 1.35 B. t. u.

2* '*>

has been done upon tlfe steam. .Now, to maintain the required con-

ditions, external work to the value of 1.35 B. t. u. has been done,
but only 0.4 B. t. u. are needed to change the steam from 212 to

213. Hence, unless this excess of (1.35 0.4) obtained from the

external work is to go into superheating, it must be subtracted.

212
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This amount of heat per pound or 0.95 B. t. u. must therefore be

conducted away, and hence the specific heat is negative.
1

54. Resume of Equations for a Mixture of Steam and Water.

The following equations refer to a pound of mixture, and are num-
bered as in the preceding sections.

Total Heat Contents.

Apu = Ae + Apu
or X = q + xr = q + xp -f xApu = Ae + xApu . . (48)

;
or $=. + *$.. . . (55)

U

Total Entropy.

f*
Total Intrinsic Energy.

Ae=q + p, oi'Ae = q + xp. . . . . (51)

Specific Volume. For water cr= 0.016. For steam (dry) s.

v = xs + (1 X)G = xu + cr. . . . . (49)

Increase of Volume. u = s a-, or xu....... (44)

Constant Heat Transformation.

\ = X
2 ,

or q1 -f x^ = q2 + x
2
ry .

.
. -. . (48)

Constant Energy Transformation.

ej
= e

2 ,
or

Isothermal Transformation.
n nConstant Pressure.

}

\ q, 6, and p are constant.
}

J

Isentropic Transformation. 1

Reversible Adiabatic. )

*i = ^2 = ^1
+ a;A, = * 1

+ a?2*v
'

*

w = e
a
-

1
= -(92 -^1 + ^2-^1)- (56)

J\.

Irreversible Adiabatic Change.

dq=0, but <ty=jfcO.

1 This method is of course unsatisfactory for the purpose of determining this specific

heat because of the large errors introduced in a difference between two quantities where

the difference is of a magnitude not much greater than the probable error in the quantities

subtracted. For the method used by Clausius see Preston,
"
Heat," pp. 655-658. For 212

Fahrenheit Clausius gives 1.13. The method used above is selected because it is free from

differential notation, and emphasizes the physical relations involved.
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PROBLEMS AND SOLUTIONS: SATURATED WATER
VAPOR

16. Quality. How much heat has been required to change one

pound of water at 60 Fahrenheit into a mixture of steam and water

occupying 2 cubic feet at a pressure of 130 pounds per square inch

absolute ?

Solution. From Table 3,

For 130 pounds

q2 = 318.6

v2 = 872.1

s2 = 3.451

By eq. (49), v2 =2 = X2s2 + (1
-

For 60 F.

i = 28.1

or x2 = = 0.577.

By eq. (48), X2
- \i = -q l = 318.6 +(0.577) (872.1)- 28.1 = 793B.t.u.

17. Intrinsic energy. Find the intrinsic energy, volume, and

entropy of a mixture of 5 pounds of steam and water which is 80 per
cent steam, if the pressure is 120 pounds absolute per square inch.

How much heat must be added to make the quality unity at this

pressure ?

Solution. From Table 3, for 120 pounds,

q = 312.3, r = 876.9, p = 794.2, W = 0.4922, fo = 1.0951, s = 3.723.

Given x = 0.80.

By eq. (51), energy per pound = 778 [312 + (0.80) (794. 2)] = 736,000 foot pounds,

or 3,680,000 foot pounds for 5 pounds.

By eq. (55), entropy per pound = 0.4922 + (0.80) (1.0951) = 1.3682,

or 6.841 for 5 pounds.

By eq. (48), total heat per pound = 312.3 + (0.80) (876.9) = 1013 B. t. u.,

or 5065 B. t. u. for 5 pounds.

The total heat for x = 1.00 is 312.3 + 876.9 = 1189.2 B. t. u. per pound,

or 5946 B. t. u. for 5 pounds.

Therefore the heat which must be added is 5946 - 5065 = 881 B. t. u.

Byeq. (49),

the volume per pound = (0.80) (3.723) + (1
-

0.80) (0.016) = 2.99 cubic feet.

18. Isoenergic transformation. If three pounds of a mixture of

steam and water at a pressure of 120 pounds absolute and a quality of

0.90 undergoes an isoenergic change until the pressure is 150 pounds
absolute, find the quality and the volume in the final condition.
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Solution. From Table 3,

For 120 pounds For 150 pounds

qi = 312.3 g2 = 330.0

Pi = 794.2 P2 = 779.3

s2 = 3.014

Given xi = 0.90.

By eq. (51), ql + x1Pi = g2 +

Therefore x, =
312.3 +(0.90) (794.2)- 330.0 = Q^

7 7 y.o

By eq. (49), #2 = #2$2 + (1
~ a^V-

Therefore v2 = (0.893) (3.014) + (1
-

0.893)<r per pound
= 2.70 cubic feet per pound,

or for 3 pounds the volume is 8.10 cubic feet.

19. Isothermal transformation. Three pounds of steam and water

at 140 pounds absolute occupy 6 cubic feet. If the volume is in-

creased at constant pressure to 9 cubic feet, find the heat added, the

external work done, the final quality, and the increase in entropy.

Solution. The volume per pound is 2 cubic feet in state 1 and 3 cubic feet in

state 2.

From Table 3, for 140 pounds,

p= 784.0, Apu = 83.4, V = 1.0675, si = 3.220.

By eq.. (49), vi = xis + (1
-

ZI)<T.

Therefore

'

* =_=M_ = 0.6*0.
:

,

Similarly< ^=
3

The heat added is

\2 \l = x2r xir = fa xi)(p + Apu},
or

(0.932 0.620) (784 + 83.4) = 245 + 26 = 271 B. t. u. per pound.

Of this added heat 26 B. t. u. represents the external work. For 3 pounds the added

heat is 813 B. t. u. and the external work is

(3) (778) (26) = 60,400 foot pounds.

The increase in entropy is (x2 i)0v = (0.932 0.620) (1.0675) = 0.333 per pound,
or 1.0 unit of entropy for 3 pounds.

20. Adiabatic transformation. Five pounds of steam of quality

0.80 expand adiabatically from 130 pounds to 30 pounds absolute

pressure. Find the quality, the change in volume, and the external

work done.

Solution.
For 130 pounds For 30 pounds

qi = 318.6 g2 = 219.1

Pi = 789.0 P2 = 868.2

W1
= 0.5000 > s2 = 13.74

ri
= 1.0808 W,

= 0.3687

i = 3.451 <f>V2 = 1.3305

s2 = 13.74
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Given xi = 0.80.

By eq. (55), for an adiabatic expansion,

Therefore *a =
0.6000 + (0.80)

(1^808)
- 0.3687 =^

l.ooOo

By eq. (56) ,
the work per pound is

ei
-

*2 = (0i + *iPi - 02 X2p2),
^1

or

778 [318.6 + (0.80) (789) -219.1 - (0.75) (868.2)] = 778(79.5) =62,000 ft. lb.,

or 310,000 foot pounds for 5 pounds of mixture.

By eq. (49), t?i = (0.80) (3. 450) + (1
-

0.80)<r,

and v2 = (0.75) (13.74) + (1
-

0.76)<r.

The increase of volume per pound is (neglecting <r),

(0.75) (13.74) (0.80) (3.45) = 7.63 cubic feet, or 38.15 for 5 pounds.

21. Constant volume transformation. A closed tank containing
10 pounds of dry steam at 130 pounds absolute is cooled until 90 per
cent of the steam has been condensed. What is the final tempera-
ture and how much heat has been removed?

Solution. Since the change takes place at constant volume, no external work is

done, and the heat removed is that which is required to reduce the intrinsic energy
from state 1 to state 2.

^
.

For 130 pounds

0i = 318.6

Pi = 789.0

Si = 3.451

Given x\ =1.00 and x2 = 0.10. Solving for 1 pound,

Byeq. (49),

vi = si and v-2 = x.2s2 + (1 2 )<r
= 0.10 s2 + (0.90) (0.016).

For constant volume, vi = t> 2 ,

hence 3.451 = 0.10 s2 + 0.014, or s.2 = 34.37.

From tables similar to Table 3, s2 = 34.37 is found to be the specific volume of

steam at 198.9 Fahrenheit and 11.3 pounds pressure.

For these conditions, g2 = 167.1, p2 = 905.6.

The heat removed is ei e2 , where, by eq. (51),

6! = 318.6 + 789.0 and e2 = 167.1 + (0.10) (905.6);

that is, 850 B.t.u. per pound, or 8500 B.t.u. per 10 pounds.

22. Boiler explosion. How much energy is liberated if a boiler

containing two tons of water at 353 Fahrenheit explodes ? Assume
the atmospheric pressure to be 14.7 pounds. Draw the 0-<f> dia-
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gram. What volume would the steam thus produced occupy if

there was no condensation?

Solution.

At 353 F.

at 14.7 pounds,

,e
353'

p = 140 pounds,

qz = 180.3.

= 324.4
;

212'

32'

Hence the heat energy
liberated per pound is

qi
_ g2j or 144 B. t. u.

For 2 tons this is

576,000 B.t.u., that is

448,000,000 foot pounds.
The 6-<t> plot is shown

to scale in Figure 33,

where the heat liberated

is represented by the

shaded area.

If this energy is used

entirely to produce re-

evaporation at a pressure

of 14.7 pounds, the num-
ber of pounds of steam

produced is found as fol-

lows. From Table 3, r

for 14.7 pounds is 969.7.

For each pound of water

there is then evaporated
x = if| = 0.149 pound.
The volume occupied by
this steam is 0.149 s or

0.149 (26.78) = 3.98 cubic

feet. The steam pro-

duced by the explosion

would fill 4000 (3.98) or

15,920 cubic feet at the

atmospheric pressure.

Actually the steam would

in part be formed at

^ higher pressure, there

would be destructive ex-

pansion, and the values

calculated above repre-

sent not actual conditions but theoretical conditions which are useful only in giving

some ideas of the magnitude of the energy liberated.

23. Equivalent evaporation and boiler horse power. What is the

equivalent evaporation from and at 212 Fahrenheit per pound of

coal in a boiler where 19,000 pounds of feed water at a temperature
of 70 Fahrenheit are converted into steam at 80.3 pounds gauge by
the combustion of one ton of coal?

* FIG. 33
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If a boiler horse power is defined as the capacity of a boiler which

evaporates 30 pounds of water per hour from a temperature of 100

Fahrenheit against a pressure of 70 pounds gauge, find the equiva-
lent evaporation from and at 212 Fahrenheit, which is equal to a

boiler horse power. If the above evaporation took place in two

hours, what is the boiler horse power ?

Solution. From Table 3,

For 80.3 + 14.7 Ib. For 70 F. For 70 + 14.7 Ib. For 100 F. For 212 F.

q = 294.6 q = 38.1 q = 286.4 q = 68 q = 180.3

r = 890.5 r = 896.7 r = 969.7

"i Q onn
Per pound of coal, the given boiler evaporates 2- = 9.5 pounds of water from 70

Fahrenheit to steam at 95 pounds absolute. The B. t. u. required are evidently
294.6 + 890.5 38.1 = 1147.0 per pound.

Per pound of water from and at 212 the B. t. u. required are 969.7. The equiva-

lent evaporation of the given boiler is evidently 9.5- = 11.25 pounds of water

from and at 212 per pound of coal.

Now a boiler horse power is equivalent to 30(286.4 +896.7 - 68) =30(1115.0) B. t. u.

per hour. That is, a boiler horse power is equal to an equivalent evaporation of

30
1115 - = 34.5 pounds per hour.
969.7

The actual boiler had an equivalent evaporation per hour of =522 11.25 = 11,250
-I -I OKA 2

pounds. Hence, a boiler horse power of
t

= 325.
34.5

24. Surface condenser. A surface condenser receives steam at a

pressure of 4 pounds absolute. Twenty pounds of water at 60 Fahr-

enheit flow through the pipes of the condenser for every pound of

steam that is condensed. What is the temperature of the feed water

leaving the condenser ? The condenser water flows to a Worthing-
ton cooling tower, where it trickles down through tiles that cause it

to spread over a large surface. If five per cent is evaporated and

carried away by a current of air from a fan passing through the

tower, other things being equal, what would be the final tempera-
ture of the remaining 95 per cent ?

Solution. For 4 pounds pressure, q = 121.0 and r = 1005,5, or \! = 1126.5 B. t. u.

For 60 Fahrenheit temperature, q = 28.1 = X2 .

Let qx represent the heat of the liquid per pound for the final common temperature
of the steam and condenser water.

Then \x
- qx = 20(^ - X2 ),

or 21 qx Xi + 20 X2 ,

gj =
1126.5 + 662 =8pA

21

Hence the temperature is 112 Fahrenheit.
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To evaporate 5 per cent of a pound of water at 112 Fahrenheit requires 0.05 r B. t. u.

For 112 Fahrenheit, r is 1029. Hence it requires 51.5 B. t. u.

The abstraction of 51.5 B. t. u. from the remaining 95 per cent of the pound to re-

evaporate the 5 per cent reduces the heat of the liquid for the water to [(0.95) (80.2)

51.5] B.t. u. for each 95 per cent of a pound. Hence per pound of remaining

water q is (- 95)(80 - 2)- 51 - 5 = 26 B. t. u. The corresponding temperature is 26 + 32,
0.95

or 58 Fahrenheit. (Actually the temperature of the cooling water and the condensed

steam are not exactly the same.)

25. Jet condenser. A jet condenser, which injects cooling water

into the steam which is to be condensed, receives steam at 4 pounds
absolute. The water of the jet is 60 Fahrenheit. If the feed is

120 Fahrenheit, how much condensing water is used per pound of

steam condensed ?

Solution. Using the values of X from Problem 24 and q for 120 Fahrenheit as

88 B. t. u., if we represent by m the mass of the condensing water used per pound of

steam condensed, then

(1126.5
-

88) = m (88 - 28.1),

OT = .6 -88
88-28.1 '

26. Rankine cycle. The operations of a stearn engine are, essen-

tially, the admission of steam, its expansion, and its final expulsion.

The quantity of the working fluid in the engine is not always the

same, and for this reason the p-v plot of the engine does not repre-

sent a closed cycle in the sense in which the cycle of the Carnot en-

gine of page 22 is a closed cycle. Considering the boiler, the engine,

and the condenser as a unit, the steam does pass through a closed

cycle. The assumptions of the theoretical and ideal Rankine cycle

are as follows : (1) Water is raised from the temperature at which

it is fed into the boiler to the temperature and pressure at which it

is to be admitted to the engine cylinder. (2) When the admission

valve of the engine opens, an isothermal expansion occurs in the

boiler and engine cylinder while the piston is moved forward by this

expansion until c*ut-on occurs. (3) The steam then expands adia-

batically in the engine cylinder until its pressure is that of the con-

denser. (4) It is then expelled by the back stroke of the piston

and condensed at the constant temperature and pressure of the con-

denser. This condensed water is then fed back into the boiler.

Draw the p-v and
&-<]> plots of such a Rankine cycle for one pound

of water received by the engine and expelled at a condenser pressure

such that the vacuum gauge reads 24.4 inches of mercury. The

boiler pressure is 80 pounds gauge, the atmospheric pressure is

15 pounds. Calculate the efficiency.
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Solution. The p-v plot is shown in Figure 35, which is drawn to scale to emphasize

the volume relations. The 6-$ plot is also drawn to scale and is shown in Figure 34.

The work done may most easily be found from the 0-0 plot. The shaded area abed

represents the work done in heat units. The efficiency is evidently

area abed _ areas (Oo5/+ beef Ooag adeg}
area abceg areas ( Oobf + beef Ooag)

324

142'

32'

O

e

FIG. 34

Replacing these areas by their heat equivalents, we have

_ gi + ri q2 X2r2 _ ^
2r2

gi + **i ga gi + i"i gs

The boiler pressure is 80 + 15 = 95 pounds absolute. Since 30 inches of mercury

correspond to a pressure of 14.7 pounds, 24.4 inches correspond to a condenser

vacuum of 24.4 = 12 pounds. Hence the condenser pressure is 3 pounds absolute.
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95*
From Table 3,

For 95 pounds pressure

= 0.4699

= 1.1363

= 4.644

For 3 pounds pressure

q2 = 109.6

r2 = 1012.2

W = 0.2011

a
= 1.6841

S2 = 118.4

4.6 97.6cu.ft

FIG. 35

For the problem under solution the value of x2 must be found by using equation

(55), the condition for an isentropic expansion. Thus

or _ 0.4699 + 1. 1363 - 0.2011 n QQ/1*2 ~
L6841

-834 '

18.3 cu.ft

FIG. 36

Then substitution in the equation above for the " Rankine efficiency
"

gives

, = 1 (0.834) (1012.2) = _ ? or cent<
294.6 + 890.5 - 109.6

27. Incomplete expansion. Because of the large piston displace-

ment required for a complete expansion down to the condenser

pressure, the resulting small force exerted upon the piston and the
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324

2289

larger amount of friction, better mechanical efficiency can be obtained

by sacrificing some theoretical thermal efficiency and stopping the

expansion at some pressure higher than the condenser back pressure.

Such a cycle may be represented as in Figure 36. From c to d the

steam in an actual engine flows

through the exhaust valve until

the pressure has fallen to the con-

denser back pressure. From d to

e the remainder of the steam is

expelled by the back stroke of the

engine. For all thermodynamic

purposes in this discussion the

effect is the same as if the steam

were cooled at constant volume

from c to d, and compressed iso-

thermally from d to e.

If the initial pressure is 95

pounds and the condenser back

pressure 3 pounds absolute as in

Problem 26, find the thermal effi-

ciency if release occurs at 20

pressure absolute. Draw the 0-<f>

plot. What proportion of the

total piston displacement is the

cut-off in this case ?

FIG. 37
Solution. The p-v and 0-0 plots are

shown to scale in Figure 36 and Figure 37. The efficiency may be found from the 0-0

plot by the use of a planimeter. The line cd represents the constant volume of vCf

The efficiency may also be obtained by calculations based on the p-v plot as follows.

Denote by 1 the state for 95 pounds pressure, by 2 that for 20 pounds, and by 3 that

for 3 pounds.
_ areas (nbmo + bcnm dnoe}---JL J.1C11

where



84 THERMODYNAMICS

For an adiabatic expansion to a pressure of 20 pounds and quality xz we have

x, = 0.4699+1.1363-0.8362 = Q>m
1.3957

Hence from the relations established from Figure 36

Work during admission is (95) (144) (4.644) = 63,200 ft. Ib. per Ib. of steam,
Work during expansion is by eq. (36)

778 [294.6+808.8- 196.4- (0.909) (885.1)]= 79,400 ft. Ib.

The combined work of admission and expansion is 142,600 ft. Ib.

Work during expulsion is (3) (144) [0.909 (20.07)] = 7800 ft. Ib.

Therefore external work done by the engine is 134,800 ft. Ib. per Ib. of steam.

The input is 778(294.6 + 890.5 - 109.6) = 832,000 ft. Ib. per Ib. of steam.

Hence the efficiency is = 16.1 per cent.
8320

The volume at release per pound is vc = (0.909) (20.07) = 18.3 cubic feet.

The volume at cut-off per pound is vb = 4.64.

The cut-off is then -^- = 25 per cent.
18.3

28. Efficiency and boiler pressure. Assuming a non-conducting

engine working non-expansively and non-conducting, draw the p-v
and #-$ plot for a boiler pressure of 90 pounds absolute and an

atmospheric pressure of 14.7 pounds. The feed water is 60 Fahren-

heit. Calculate the efficiency for

pressures of 50, 70, 90, 110, arid 130

pounds absolute and plot a curve

showing the relation between boiler

pressure efficiency for this case.

Solution. The efficiency for a pressure of 90

pounds is calculated as an illustration. The p-v
and 0-0 plots are shown in Figures 38 and 39

90*

4.89 cu.ft.

FIG. 38 FIG. 39
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respectively. Table 3 gives for 90 pounds g1= 290.7, ri = 893.6, and

For 60 Fahrenheit qs = 28.1.

The input is g x + n - q* = 290.7 + 893.5 - 28.1 = 1156.1 B.t.u.

The output is most conveniently found from the p-v plot. It is (pa pd)Vb

= 4.

10

Is

5O 60 70 80 90
Pounds

FIG. 40

100 110 120 130

Or substituting the indicated values, the output is

(144) (90
-

14.7)4.886 = 52,900 foot pounds = 68 B. t. u.

The efficiency is then
1156

= 5.9 per cent.

The curve of efficiency and boiler pressure is shown in Figure 40.

25

20

15

10

10 20
Inches of Mercury

FIG. 41
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29. Condensing engine. Find for the Rankine cycle the theoreti-

cal efficiency of an engine supplied with steam at 100 pounds abso-

lute for the following values of the condenser back pressure : 1, 2, 3,

4, 6, 10, and 14.7 pounds absolute. Plot efficiency against inches

of mercury indicated by a vacuum gauge from an atmospheric press-

ure of 14.7 pounds.

Solution. The solution of this problem is identical with that of Problem 26. The

plot of Figure 41 shows the variation of the efficiency with the condenser vacuum.

30. Use of the temperature entropy chart. Assume a frictionless

non-conducting engine working on a cycle of incomplete expansion
as in Problem 27. If the clearance is negligible, the cut-off 40 per
cent of the piston displacement of 5 cubic feet, the admission steam

at 100 pounds absolute, and the condenser back pressure 3 pounds
absolute, draw the p-v and Q-$ plots.

Solution. One pound of steam at 100 pounds pressure has a volume of 4.432 cubic

feet. Therefore at cut-off the engine cylinder contains = 0.451 pounds.
100 4.432

328

259

Since the 0-0 chart and the tables for

steam given on page 130 are both per pound
of steam, it is most convenient to reduce

the engine under consideration to one con-

taining a pound of steam (or mixture if

the steam is wet). Thus, if the cylinder

volume is imagined to be increased in the

1 5.00
ratio that is, to = 11.1 cubic

32

0.451 0.451

feet, there will be one pound of steam in

the cylinder at cut-off.

From the 0-(f> chart of Figure 42 it is

found that the entropy of one pound of

dry steam at 100 pounds is 1.602. Where

the line of constant entropy of this value

intersects the line of constant volume for

11 cubic feet gives the point c on the 6-(f>

plot of Figure 43, corresponding to the

point c, which may now be plotted on the

p-v plot of Figure 44. If intervening

points on the p-v plot of the expansion are

desired, they may be found by noting the

intersections of the line of constant en-

tropy, equal to 1.602, with various lines of

constant volume and then finding the

pressures corresponding to those intersec-

tions. The constant volume line of value

11 cubic feet is followed until it intersects the constant pressure line for 3 pounds.

This gives the point d on the 0-< plot.

FIG. 43



Sj

'088

$175

'oae

T 140

130

[110

[
100

N
80

8S

oas

oss

*081

I

<ae.i 08.1

Q.

'OS!

001



100

1.42 1.44 1.46 1.48 1.50 1.52 1.54 1.56 1.58 I



1.62 1.64 1.66 1.68 1.74 1.76 1.78



oos

on
0l

Oil

OOl

08
'

oa

06 1

06-

0!

:

;

3

e|
f-

8T.r~



WATEK VAPOR- 87

The efficiency may now be found after the manner of Problem 27. The pressure

volume plot for this engine with its piston displacement of 5 cubic feet is shown dotted

in Figure 44.

100"

35*

\

\

\ \,
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Now draw in quadrant I the 0-(f> curve ab for this temperature. The
line of constant temperature a'b' in quadrant IV may then be drawn

as described in Section 51. The projection of Jcm on the curve a'b' at

&iv then gives the entropy corresponding to the pressure (that is,

to the temperature) and volume of the point &m . The point ^ on

the 0-(p> plot is then found by projecting Jciy on ab.

Figure 46 shows the indicator card of an actual engine. The

piston displacement was 1.037 cubic feet. Compression occurred

at 3.8 per cent stroke. The amount of steam supplied per stroke to

the end of the cylinder for which this card was obtained was 0.0781

50*SPRING

FIG. 46

pound. The clearance was 9.4 per cent of the piston displacement.

The receiver back pressure was 14.7 pounds. Draw the #-</> plot

for the expansion and discuss the heat transfer indicated.

Solution. Assume the steam dry at compression. This is the ordinary assumption

of steam engineering practice. All the water in the cylinder at release is supposed to

reevaporate during the back stroke of the piston and be expelled, except for that steam

which remains in the clearance spaces.
1 The steam at compression then occupies

(9.4 + 3.8) per cent of 1.037 cubic foot at a pressure of 14.7 pounds. For this pressure

the specific weight or density is found from Table 3 to be 0.0374. Hence the clearance

steam was T\^( 1.037) (0.0374)= 0.0052 pound. At cut-off there was then present in

the cylinder 0.0781 + 0.0052 = 0.0833 pound of steam.

Since the 6-$ diagram is most conveniently plotted for unit weight of steam, we

1 For further discussion of the quality at compression see Reeve, "Thermodynamics of

Heat Engines," p. 214 (Macmillan) .
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FIG. 47
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follow the method of Problem 30 and plot in the p-v quadrant of the Boulvin diagram
the changes in the pressure and volume per pound of mixture. That is, all the volumes

of the actual problem are increased in the ratio of 1 to 0.0833. The p-v plot of quadrant

III of Figure 47 shows the expansion line of the indicator card of Figure 46 so modified

and plotted. The piston displacement has been increased to
1.037

0.0833

Similarly, the clearance has become 9.4 per cent of 12.45, or 1.17 cubic feet,

= 12.45 cubic feet.

FIG. 48

The 6-<}> plot of the expansion has been constructed by the method outlined above.

The construction lines for two points which have been reproduced in the plate indicate

sufficiently the method.

Discussion. The steam supplied to this engine was found by means of a throttling

calorimeter to have a quality of 99 per cent when it entered the cylinder. Due to con-

densation the quality had fallen to 47 per cent at cut-off. Some further condensation

took place during the earlier part of the expansion. For the latter and greater part of

the expansion, however, heat was returned to the steam from the cylinder walls.1 The

quality therefore rose to 72 per cent at release.

1 That this heat is at a lower availability as a result of the lower temperature is evident

from Problem 50. The present problem serves as an introduction to the discussion of the

gain due to superheating which is made in Section 62 of page 98.
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32. Hyperbolic expansion line. Because the actual adiabatic line

for a steam transformation is not to be drawn by any simple graphi-
cal method, it is the custom of steam engineers to judge of the

actual operation of a given engine by drawing through the point of

cut-off on the p-v plot (indicator card) of the engine a hyperbola.
It is the object of this problem to compare the hyperbolic line with

the true isentropic. By using the Boulvin diagram find the p-v plot
of an isentropic line which has been assumed in the

6-<f> quadrant.
Then through the point of this adiabatic in the p-v quadrant which

corresponds to the highest assumed pressure draw a rectangular

hyperbola.

Solution. The construction of the adiabatic ab is evident from Figure 48. To
draw the hyperbola proceed as follows. Draw amm perpendicular to Ov and amn per-

pendicular to Op. Through some point vc on Ov draw vck perpendicular to Ov.

At k the intersection of vck and amn draw kO to the origin. Through j, the intersection

of kO and c^w, drawp^' perpendicular to Op to meet vck in c, which is a second point
on the hyperbola. In a similar manner other points may be obtained.



CHAPTER IV.

SUPERHEATED STEAM

55. Three Molecular States. It is a well-known fact of physics

that there are three molecular conditions in which substances may
exist. These are commonly stated as solid, liquid, and aeriform.

The aeriform bodies are commonly subdivided into two classes;

namely, those which obey Boyle's Law at ordinary temperatures and

pressures and are called gases, and those which at ordinary pressures

and temperatures can exist in both a liquid and an aeriform state

and are called vapors. The distinction between these molecular

conditions is not one depending upon the substance considered, but

is one dependent wholly upon its physical conditions of pressure and

temperature.
Thus it is known that the so-called "

permanent gases
"

like hydro-

gen and oxygen have been liquefied and even solidified at extremely
low temperatures and high pressures. For any gas there is a certain

critical temperature above which it cannot be liquefied. And at

this critical temperature there is a certain minimum value of the

pressure which must be applied to produce liquefaction. In the

development of this portion of physics the term "
permanent gases

"

was introduced and applied to those substances in an aeriform con-

dition which resisted the efforts that had been made to liquefy them.

The term to-day, since the work of Wroblewski and Olszewski,

Pictet, Cailletet, Dewar, and Liride, is evidently a misnomer.

The same substance can exist in any one of the three principal mo-

lecular states. The commonest example of this is, of course, water,

which at ordinary temperatures may coexist in all three states.

For the ordinary temperatures of our atmosphere, however, the aeri-

form state which water assumes must be classed as a vapor state.

It seems reasonable to consider that at higher temperatures it would

more nearly approximate a true gaseous state.

56. Superheated Steam. Water vapor, as has already been noted

in previous discussions, obeys the ordinary vapor laws by having the

temperature and pressure of the liquid from which it is produced and

with which it is in contact. But when removed from contact with

92
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its liquid (whether actually or essentially as described in Section 44),
its temperature may be raised above its former value. The vapor
or steam is then said to be superheated. According to that portion
of the molecular theory stated above it is to be expected, then, that

the pressure, specific volume, and temperature of superheated
steam would tend to follow an equation somewhat of the form of the

characteristic equation of a perfect gas.

In accordance with this supposition two very satisfactory formulas

have been proposed. They are both of the form pv = R6, but con-

tain corrective terms. The simplest, and for ordinary purposes one

of sufficient agreement with the actual experimental results, is that

suggested by Tumlirz and based upon the experiments of Battelli.

It will usually be referred to as the "equation of Tumlirz." Ex-

pressed in the units of the F. P. S. system it is

;w = 85.85 0-0.256;?, . . . .\.. (57)

where is the absolute temperature in Fahrenheit degrees and p
and v are specific pressure and volume.

The equation proposed by Knoblausch, Linde, and Klebe l
is more

satisfactory in its agreement, but the accuracy is attained at the

expense of a tedious calculation. It is expressed in the same

symbols as equation (57) as follows :

pv = 85.85 0-XI + 0.00000976p)(^^
000

57. Specific Heat of Superheated Steam. The specific heat of super-
heated steam has been determined for constant pressure conditions

by Knoblausch and Jakob. The following table of their values is

only partial :
2

-,

-0.0833
).

(58)

Pressure # per sq. in.
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the heat required to superheat from the saturation temperature (cor-

responding to this pressure and given in the second row) to the

temperature given in the left-hand column. Illustration of the use

of this table will be given in Problem 35.

For all engineering purposes steam is superheated at constant

pressure. The additional heat required to raise one pound of dry
steam from the condition of saturated vapor at a pressure p^ and

a temperature t
Q (or # absolute) to a temperature t (or 0*) will be

denoted by the symbol h. That is,

A = *p (0-0o) = <*(*-*<>)> ..... (59)

where c
p represents the specific heat at constant pressure as found

from the above table. The total heat contents of a pound of super-

heated steam at a temperature t is then

*=q* + r
Q + k ...... (60)

where r
Q
and qQ are the values for the saturation temperature 1

which corresponds to the pressure p (equal to
jp , since the super-

heating is at constant pressure).
For many engineering purposes the value of c

p may be taken as

0.48 with sufficient accuracy.

58. Entropy of Superheated Steam. The increase in entropy due

to superheating, expressed by the symbol <
5 ,

is sufficiently well ob-

tained for most purposes
l
by using the average value of the absolute

temperature at which the superheating occurs and the specific heat cp

as 0.48. Thus,

2 2

The total entropy < of a pound of superheated steam as measured

from the assumed zero of entropy at 32 Fahrenheit may then be

written *-*.+ *. + *........ (62)

59. Temperature-Entropy Chart for Superheated Steam. The O-fy

chart for steam may now be extended into the superheated region

to the right of the curve of constant steam weight. The increase of

entropy due to superheating at constant pressure is found by equa-
tion (61), and lines of constant pressure p^ p%, and so on, are plotted

1 Stodola, in the 2d edition of "The Steam Turbine," uses 0.48. Cross interpolation in

the table given on page 93 is usually unsatisfactory and not as accurate as a graphical

process. The tables of Marks and Davis give values of u, X, and for intervals of 10 F.

for steam superheated at all the ordinary pressures of engineering.
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as in Figure 49. These lines, representing the increase in entropy
at constant pressure, are essentially straight for small ranges of tem-

perature. For large ranges and for high temperatures of superheat,

they should be plotted, using values of the entropy as determined

more exactly by use of the specific heat values obtained by Knob-
lausch and Jakob.

FIG. 49

Constant volume lines may also be extended into the superheated

region by calculating for any assumed pressure and volume the cor-

responding temperature in accordance with either equation (57)
or (58). The intersection of the line for constant pressure for the

assumed value and the line of constant temperature for the calculated

value gives a point on the desired constant volume line. The con-

stant volume line might be drawn by a method similar to that em-

ployed in constructing the constant pressure line and using the

increase in entropy for this condition calculated in a similar manner,
were it not that the value of cv as 0.346 is not reliable. Constant

pressure and constant volume lines are shown in Figure 49.

In a temperature-entropy chart constructed as above it is evident

from Figure 49 that both the lines of constant pressure and the
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lines of constant volume are discontinuous at the curve of constant

steam weight, since they are different functions of the temperature
and the entropy in the wet steam and superheated steam regions.
In the wet steam region the lines of constant pressure coincide with

the lines of constant temperature. The chart is therefore equally
well a #-< or a p-$ plot. In the superheated region it is merely
a 0-<f> plot. Because of the fact that steam is usually heated at

constant pressure a p-<t> plot is sometimes convenient in this re-

gion. A chart constructed in this way is shown in Figure 42 on

page 86. 1 To indicate temperatures it is necessary to draw "quality
"

lines through those points representing steam of the same degree of

superheat. Such lines would be everywhere equally distant from

the curve of constant steam weight if the specific heat of superheated
steam were constant. In the chart shown these lines are drawn for

intervals of superheat equal to 20 degrees. The scale of tempera-
tures given on the left-hand side obviously refers only to points
within the wet steam region or on the dry steam line. The unequal
scale of pressures on the right refers to any point of the plot. Such

a plot is frequently spoken of as a temperature-entropy chart, but is

one only for the region of wet steam and more rigorously should be

called a pressure-entropy chart as stated above.

60. Intrinsic Energy of Superheated Steam. Let p l
be the press-

ure upon a pound of superheated steam, t^ (or 6^ absolute) be its

temperature, and v
1
its specific volume as calculated by either equa-

tion (57) or (58). This superheated steam may be considered as

derived at constant pressure pQ (equal to p^) from a pound of dry
saturated steam at a saturation temperature t (or ) corresponding
to this pressure pQ

. During the formation of this pound of dry
steam a quantity of intrinsic energy has been added to it, which

measured from water at 32 Fahrenheit has been expressed in equa-

tion (50) as e =
(<7 +/9 ), where the subscript indicates the value

A.

of any magnitude to which it is attached corresponding to the satu-

ration temperature t
Q

. Since p = r
Q -ApQ

u
Q by equation (45) and

since w =s cr by equation (44), it follows that the intrinsic energy
of the pound of dry saturated steam may be written as

-<)..... (0

1 The entropy diagram constructed in connection with Problem 50 on page 120 is drawn

both as ap-(f> and as a 0-0 plot to illustrate this difference.
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During superheating, at the pressure pv to the temperature ^ the

volume has increased to a value vv and there has been done an

amount p^v 1
s ) of external work. Since the total heat added

has been A, the increase e
l

e in intrinsic energy due to super-

heating is
-j^

The total intrinsic energy e
l possessed by a pound of superheated

steam in the condition indicated by the subscript 1 is then

61. Isentropic Transformation. From the 6-<j> plot of Figure 50

it is evident that an isentropic or reversible adiabatic expansion of

superheated steam may be considered in two parts ; namely, an ex-

Po=R

m

pansion entirely within the

superheated region until

the state k represented by
the intersection of the isen-

tropic line mn and the

curve of constant steam

weight, and a further ex-

pansion within the region
of wet steam. Dur-

ing the first part of the

'expansion the quality,

which may now be taken

to mean degrees of super-

heat, that is t 1
,

de-

creases, and during the

second part of the expan-
sion the quality as repre-

sented by x decreases.

If the expansion is

wholly in the superheated region, the quality in the second state

expressed in degrees superheat may most easily be found from a
6-<f>

chart. It may, however, be found analytically by the method il-

lustrated in Problem 38.

If the expansion, as is more usual, extends into the region of wet

steam, the quality may be found for the second state by the follow-

ing relation for constant entropy :

FIG. 50
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62. Superheating in Engineering Practice. The occasion for the

use of superheated steam is evident in part from Problem 31 on

page 87. The steam supplied to the engine there described had a

quality of over 99 per cent as it entered the engine. Due to the

fact that heat was lost to the walls of the engine cylinder its quality
had dropped to 47 per cent at cut-off. During a portion of the

expansion the transfer of heat to the cylinder walls continued, but

during the latter part of the expansion some of this heat was re-

turned to the mixture, reevaporating some of the 53 per cent origi-

nally condensed during admission. During exhaust still further

heat was abstracted from the cylinder walls to reevaporate (at the

condenser back pressure) the moisture left in the cylinder. As a

result the temperature of the cylinder rises with the admission of

steam and falls with its exhaust.

Consider for a moment that the entering steam is dry, if the

quality at cut-off is xv then the intrinsic energy of the mixture has

been reduced from q1 + p1
to qi + xtfi* The difference (1 x

1)p1

then represents (neglecting all further changes due to heat transfers

to the cylinder) a decrease in energy which should be available for

the expansion. During the expansion still further heat energy is

lost to the cylinder, and later returned at a lower availability. Of
the heat lost to the walls during admission, part is returned at lower

temperatures during expansion, and the rest in reevap'oration during
exhaust. All of this energy of reevaporation is of course rejected,
to the condenser.

It is evident, since a quantity of heat q2 + r
2 , where the subscript

2 represents condenser conditions, is always to be rejected to the

condenser, that as much as possible of the difference q^ + r^ q2 r%

between the total heat supplied and rejected, must be converted into

work. To accomplish this the mean temperature of the cylinder
must be more nearly that of the entering steam. To prevent the

loss at admission the steam may be supplied superheated by a num-
ber of degrees such that at cut-off the steam in the cylinder is dry.
To prevent the loss during expansion the entering steam may be

still further superheated so as to be dry at release. Then no heat

will be abstracted from the cylinder walls to reevaporate at the con-

denser back pressure. For any given engine it is of course a matter

of experiment to determine how much superheat is required.
In general, it may be said, superheated steam reduces the amount

of heat interchanged between the steam and the cylinder walls, and

thereby reduces the weight of steam required per stroke of the
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engine for the same work output. Quoting from Ripper:
1

"Super-

heating may be looked upon not as a means of obtaining a thermal

efficiency with the engine in any way proportional to the tempera-
ture used in superheat, but as a device for realizing, or at least ap-

proaching, the full thermal efficiency of the saturated steam between

the ranges of pressure used by the engine."
In the case of the steam turbine much of the advantage of dry

steam is the consequent small friction in the turbine nozzle and pas-

sages. The presence of water materially increases this friction.

Experiments by Stodola 2 show that the friction increases as the

density of the steam increases. Thus, for example, interpreting some

experiments performed by Lewicki, Stodola says, the work of fric-

tion of a wheel in saturated steam with equal specific weight (i.e.

density 7), equal size of wheel, and equal velocity is 1.3 times that

in the air. The work of friction for a wheel in superheated steam

at atmospheric pressure and 572 Fahrenheit is the same as that for

air.

63. Resume of Equations for Superheated Steam.

Characteristic equations.

pv = 85.85 - 0.256 p. ... . . . , V .
,

.- ..- V . (57)

pv = 85.85 d - p (1 + Q.QOOQ0976ff)f
15Q^^OQO - 0.0833\ (58)

\ v6 . /

Total heat contents.

x =?o + ro + ^ = 2o + r +^(<9-0 ). ..... j (60)

Total intrinsic energy.

i=3*i-pO'i-<0
........... , (63)

Total entropy.

(62)

1
Ripper,

" Steam Engine, Theory and Practice," 4th ed., p. 156 (Macmillau) .

2 Lowenstein's translation, Stodola,
" The Steam Turbine," 2d ed., pp. 135-140.
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PROBLEMS AND SOLUTIONS: SUPERHEATED STEAM

33. Specific volume. Find from equations (57) and (58) the vol-

ume occupied by two pounds of steam superheated 75 Fahrenheit

at a pressure of 135 pounds absolute.

Solution. From Table 3, for p = 135 we have to = 350 D F.

The absolute temperature of the superheated steam is d 460 + 350 + 75 = 885.

In eq. (58), substitution of this value of gives for the corrective term

150,300,000 _ Q 0833
\ _ Q 134

0* )

Hence v = (85 - 85)(885) _
[l + 0.00000976(135) (144)] (0.134),

(135) (144)

or v = 3.91 0.16 = 3.75 cubic feet.

Or the volume of two pounds of steam is 7.50 cubic feet.

By eq. (57), v = (
85 - 85)(885 ) _ 0.256 = 3.91 - 0.26 = 3.65 cubic feet.

(135) (144)

The volume for two pounds is then 7.30 cubic feet.

The per cent of difference between the values calculated by equation (57) and (58)

3.75-3.65 , f
is then 100 = 2.7 per cent.

3.75

34. Temperature of superheat. At 130.3 pounds gauge 3 pounds
of steam occupy 10.5 cubic feet. Find the degrees of superheat.

Solution. The volume per pound is 3.5 cubic feet. The pressure is 145 pounds abso-

lute. The equation of Knoblauch, Linde, and Klebe (58) is capable of solution only by
means of tedious approximations. The equation of Turnlirz (57) is here used.

, = P1+ 0.266J, = (145)(144)(8.6+0.256) = 91go Fahrenheit absolute .

85.85 85.85

From Table 3, the saturation temperature corresponding to a pressure of 145 pounds
is 355.8 F. or 815 F. absolute. The superheat is therefore 913 815 = 98 F.

If greater accuracy is desired and justified by .the precision with which p and v are

known, this value of 6 = 913 may be substituted in the corrective term of equation (58)

and then that equation solved for 0, considering the corrective term to be constant.

Such a substitution gives = 885 and 70 degrees of superheat.

35. Specific heat of superheated steam. Find the heat required to

superheat 2 pounds of steam 75 degrees at 135 pounds absolute.

Solution. For 135 pounds the saturation temperature is 350 Fahrenheit.

From Table 4, the specific heat is found to be approximately 0.558, by cross inter-

polation between the four values.

pounds
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The heat required per pound is then (0.558) (75)= 41.8 or 42 B. t.u. For two

pounds it would require 84 B. t. u.

36. Total heat. Find the total heat contents of two pounds of

steam superheated 75 Fahrenheit at a pressure of 135 pounds
absolute. How much heat is required to produce this steam from

feed water at a temperature of 90 Fahrenheit ?

Solution. The total heat contents \i of one pound of steam under the above con-

ditions is AI = q\ + TI + hi.

From Table 3, qi = 321.5, TI = 869.8, and hi from Problem 35 is 42 B. t.u. Hence

Xi = 1233.3 B. t. u.

For feed water at 90 Fahrenheit, X2 = g2 = 58.1 B. t. u.

Hence per pound Xi X2 = 1175 B. t. u. or 2350 B.t. u. for 2 pounds.

37. Entropy. Find the entropy for the superheated steam of

Problem 36, and also the increase in entropy above that of the feed

water.

Solution. The entropy of superheat is

2

From Table 3, 0,
t
= 1.0741, Wi

= 0.5037.

Hence 0i = 1.6266.

For the feed water 2 = 0.1117.

Hence 0i - 02 = 1.5149 or 3.030 for 2 pounds.

38. Quality. If the entropy of steam at 135 pounds absolute is

1.60, find its quality approximately.

Solution. Using the values of Problem 37, if 0i = 1.60, then

<i>Sl
1^1 0i 0tvi 0vi ~~ u.O^ol.

Assuming the specific heat as 0.48, we have hi = 0.48(0i ).

And = 2 C- 48)^-*o) =0.0229.
#0 + 01

Hence 0.96 0i
- 0.96 = 0.023 + 0.023 0i.

Substituting 6 = 350 + 460 = 810 as in Problem 37,

0i =
- 983 (8l) = 850, corresponding to 40 of superheat.
0.937

39. Quality after adiabatio expansion. If the steam of Problem

36 expands adiabatically to 3 pounds back pressure (absolute), find

the quality of the mixture.

Solution. From Problem 37, 0i = 1.627.

From Table 3, for a pressure of 3 pounds, W2
= 0.201,

and
flf

= 1.684.

By equation 64, ft^j..,, 1.087 -0.201
1

1.684
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40. Intrinsic energy. Find the intrinsic energy of the steam of

Problem 36.

Solution. By equation 63, the intrinsic energy ei is

Aei = qi + TI + hi Api(vi <r)
= Xi Api(v\ <r).

From Problem 33, the specific volume is 3.75 cubic feet, and from Problem 36 the

total heat is \i = 1233.

Therefore

A
ei
= 1233 - (185) (

Q

144
)(3.75-(r)=1139 B. t. u. per pound,

77o
or

61 = (778) (1139) = 885,000 foot pounds per pound of steam.

For 2 pounds the energy is 1,770,000 foot pounds.

41. Work of adiabatic expansion. Find the work done in the

adiabatic expansion of Problem 39.

Solution. For state 1, pl = 135, ti = 425, ei = 885,000 ft. Ib.

For state 2, p% = 3,

'

x2 = 0.846, q2 = 109.6, P2 = 946.4,
1

and hence 2 = - (02 + 2/02)
= (778) (911) = 707,000 ft. Ib.A

The work of the adiabatic expansion is

w = fi
- c2 = 885,000 707,000 = 178,000 foot pounds per pound.

For 2 pounds of steam the work is 356,000 foot pounds.

42. Grain by superheating. The steam at cut-off in a certain

engine cylinder has a quality of 80 per cent. It is found that super-

228

3a
c

0.336 0.475
FIG. 51

1.378 1.603

heating the steam 120 degrees makes the quality unity at cut-off.

The entering steam is at a pressure of 100 pounds absolute. The
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back pressure is 20 pounds absolute. The specific heat may be

taken at 0.52. What is the gain in efficiency due to superheating?
Plot the temperature entropy relations for both cases. Assume
adiabatic expansion.

Solution. The 0-<f> plots for the condition of 80 per cent quality and 100 per cent

quality are shown to scale in Figures 51 and 52 respectively. The useful work is repre-

448 F

328'

228

32'

0.336 0.475 1.602 1.677

FIG. 52

sented in heat units by the doubly cross-hatched area in each case. The entire cross-

hatched area represents the heat supplied.

The useful work qx q 2 is found numerically by assuming the water line oo 1 a

straight line and writing

qi
-

q 2
=

[K0WJ
-

0-,) + Si0*J(0i
~

fts).

The useful work for 80 per cent quality is then

qi
_

q 2 = [1(0.4748
-

0.3362) +0.80(1. 1273)] (327.9
-

227.9) = 97.1 B.t.u.

Similarly, for 100 per cent quality,

q 1'-q 2
' = 119.7 B.t.u.

The input is qi = qi + n g2 = 298.5 + 887.6 - 196.4 =989.7 B.t.u. for the first

case. For the superheated steam
<\i

f=qi+ ri+hi q^wherehi is approximately (0.52)

(120) or 62.4 B. t.u. The input in the second case is therefore 1186+62= 1052 B. t.u.

The efficiency is then = 9.81 per cent for wet steam and = 9.60 percent
989.7 1052

for dry steam at cut-off.

For the conditions of the present problem the gain in efficiency due to superheating

sufficiently to avoid cylinder condensation during admission is 1.54 per cent in 9.81

per cent or an increase of the efficiency of 15.7 per cent.



CHAPTER Y

FLOW OF STEAM AND GASES

64. Formula of de Saint-Venant. Consider a compressible body
B (Figure 53) acted upon by forces F

1
and F^. Let dz

1 represent
the distance of motion of the point of

application of Fv arid similarly dz^ rep-

resent the motion of the point of ap-

plication of FI . The motion dz^ is of

course negative if there is expansion as

shown in the figure. Then the gain
in. energy of the entire mass B is

equal to the algebraic sum of the work of the acting forces, or

dz,
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Since the flow is steady, there is the same amount of steam in

pounds passing A as is passing B in the same time. If ^represents
the weight of steam pass-

ing A or B in one second,

and if the velocities at

A and B are respectively t^

and t)2
in feet per second,

then this condition of

steady flow may be ex-

pressed as

and Mv
2
= #

2 t>
2 ,

where v
1
and v% are the

FIG. 55

specific volumes of the

steam in the states in which it passes A and B respectively. Equat-

ing M from the two equations of (iii) gives

(65)

This equation is known as the "
equation of continuity," and holds

for any fluid in a condition of steady flow.

Substitution of this equation of continuity in the equation (i) for

the increase of energy gives an equation expressing this increase dO
in terms of the pressure and specific volumes at A and B. Thus, if

we consider the flow for a small fraction of time c?t, then

dz
1
=

fcjcft
and (iv)

In the time dt the mass of steam passing A or B may be expressed
o c

dm = Mdt......... (v)

Hence, for this mass, dm, the equation of continuity (48) becomes

,dm = , .,

(vi)

Substitution from equations (ii), (iv), (v), and (vi) in equation (i)

gives
dO = M(pl

v
l -p^)dt. ..... (vii)

The total increase of energy expressed by equation (vii) is partly
external kinetic energy of the entire mass of steam, Mdi, and partly
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intrinsic or molecular energy. Representing these components by
dK and dE respectively, we have

dO=dK+dE.

The external kinetic energy expressed in terms of the gain in veloc-

ity of the entire mass of the steam is

dK= Mdt

The increase of intrinsic energy dE is equal to the external work
done in compressing the steam. If there is expansion, as in the case

considered, the increase in intrinsic energy is negative, and is numeri-

cally equal to the work done by the gas in expanding. Thus,

(x)

Or dividing by Mdt and transposing, we have

2

Substitution from equations (viii), (ix), and (x) in equation (vii)

gives

(xi)

(xii)

From Figure 56, which represents

the pressure-volume plot of the

frictionless adiabatic expansion
under consideration, it is evident

that p 1
v
l

is equal to the area Adog,
C V

2

p2v% to the area Scof, and I pdv

to the area ABcd. Hence equation

(xii) becomes

'= area ABfg=^vdp, (66)

This equation may be expressed

in terms of the pressures, and spe-

cific volumes at A and B if the frictionless adiabatic expansion

may be taken as represented by an equation of the form



FLOW OF FLUIDS 107

Then
p , . ,

(XIV)n- l
v

Therefore
E2

2 -
tt
t

a
= rc

f

2# n -l 1 l

In this equation, which is due to de Saint-Venant,1 p and v are

specific pressures and specific volumes in pounds per square foot

and cubic feet per pound, respectively. The kinetic energy term

represents the increase in external kinetic energy per pound of

steam. The exponent n is given by Zeuner as 1.035 4- 0.1 x for wet

steam of quality x\ that is, 1.135 for steam initially dry, and n is

1.3 for superheated steam.

65. Alternative Expression for the Formula of de Saint-Venant.

If in equation (viii), of the preceding section we substitute for

dK from equation (ix) of the same section, but for dE write

(e2 j) Mdi, where e
:
and e2 are the values of the intrinsic energy

per pound of steam at A and at B respectively, we have

2)dt = Mdi

or dividing by Mdt and transposing, we obtain for a pound of a

mixture undergoing a frictionless adiabatic expansion the relation

i
. P^ . . P

2 /'\Q\
11 l

2g
2 2 2

Zg

Equations (66) and (67) of Section 64 and equation (68) given
above as well as the equation of continuity (65) hold equally well

for all fluids. Thus if the fluid is a gas, the value of the exponent

n is of course K ^ = 1.4 for diatomic mixtures,

(69)

If the fluid is incompressible as water, then v
l
= v

2 and for an

adiabatic change ej
= e

2 ,

t)
2

t)
2

whence
-2-j

L = (p^ p%) cr........ (70)
^ y

1 A more rigorous demonstration from which the above is derived is to be found in

Lowenstein's translation of Stodola, "Steam Turbines," 2d ed., pp. 4-8.
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For steam three cases may be distinguished ; namely, (1) expan-
sion through the channel from a condition of saturated steam of

quality x
l
to a condition of quality x

2 , (2) expansion from a super-

heated condition to a saturated condition of quality o?
2 , and (3) ex-

pansion entirely within the superheated region. For all these cases

the expression for the gain in kinetic energy per pound of the steam

mixture reduces to a simple form which will be derived in the fol-

lowing section.

66. Zeuner's Formula for Kinetic Energy. In equation (68)

transposition gives

Considering an expansion which takes place entirely within the

region of wet steam, we have

v
l
= x^ -4- cr, and v

2
= x

2
u
2 + cr.

Therefore, neglecting cr, which in general will make a difference of

less than half of one per cent and substituting from equation (i) in

equation (68), we may write

But

\)
-

2 + Saffa 11*)
= ^ t?1

and ^ =

Substituting from equation (iii) in equation (ii) and remembering
that

\
l
= q1 + xfa + x^Ap^ and X

2
=

q2 + z
2/>2 + x^Ap^u^ . (iv)

gives

Similarly, consider the steam superheated in state 1 and wet in

state 2. For superheated steam, equation (63) of Section 60 gives

Or neglecting cr as before,

fe + + -tfXH- (vi>
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Substituting for (CI+PI^) from equation (vi) and for

from equations (iii) and (iv) in equation (ii) gives

For the case of an expansion entirely within the superh'eated

region similar reduction leads to the same equation as (71).

67. Kinetic Energy of an Irreversible Adiabatic Expansion. If,

however, the decrease in total heat contents is not entirely converted

into external energy, but is partly expended in external work of

amount w, while some heat of amount q is transferred from the

substance to external bodies, we have to consider the general case of

an expansion with heat changes and external work. Then equa-
tion (71) becomes

\ - X
2
= A *a

2

J~
*\ + q + Aw. .... (72)

t/

If there is work done against friction, there must be added to the

right-hand side of equation (71) a term y representing the work per

pound done against friction and expressed in heat units. If q is

zero, then the expansion is adiabatic ; if w is zero, then there is a free

expansion ; but if y is not zero, then there is an adiabatic expansion
similar to that described in the case of the "porous plug experiment

"

of Section 35, which is irreversible and during which there is an

increase in entropy. This case of the irreversible expansion of steam

in a non-conducting channel will be discussed in the latter part of

the following section.

68. Loss of Kinetic Energy Due to Friction. If there is friction

during the expansion from a pressure ofpl
to a pressure of p^ the gain

in kinetic energy will be less than it would have been for a similar

frictionless expansion. Denote by t)2
' the final velocity for a How

with friction for the same range of pressures as gives D2 for a

frictionless expansion. Then denoting by I the loss of kinetic energy

per pound of the mixture expressed in thermal units, we have

A*t-*i*. (73)'

Denoting by X
2

' the total heat contents, after flow with friction, it is

clear that

Z = (^i-*<2)-04-V) = V->2..... (74)

where \ and X
2 have their former significance and refer to a friction-

less flow.
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As the expansion takes place, a portion of the kinetic energy of

the mixture is converted into heat by friction and immediately after-

wards taken up by the mixture at a lower temperature and availa-

bility and again converted into kinetic energy. Since the heat

equivalent of the friction work is thus continually being returned to

the mixture, the actual loss in external kinetic energy due to the

friction is less than the total work done against frictional forces.

The heat corresponding to this friction work has been represented
in the previous section by y.

This heat y when returned to the steam or fluid in successive

infinitesimal amounts dy produces changes in the intrinsic energy of

the mixture of amount to be represented by de and also produces an

amount of external work of value pdv. That is,

dy = Ade -f Apdv. . (i)

But Ad(pv) = Apdv + Avdp (ii)

Hence dy = Ade + Ad{pv) Avdp. . . . (iii)

In equation (iii) there may be substituted as in Section 66

Ade + Ad(pv) = A(e1 +p 1
v
1)-A(e2 +p2

v
2)=d\. . (iv)

Hence
dy = d\-Avdp (75)

By integration from state 1 to state 2

<76 >

where equation (76) is a general relation for the total amount of

friction work.

If now the expansion is frictionless and takes place from state 1 to

state 2, we have y = and

X
2

X
x
= A I *vdp. . (v)

ffi

For the expansion with friction between the states 1 and 2' at

which the pressure is the same as for state 2 but at which the volume

v r
is different, />2

'

y = \2
f

Xj A I v'dp. . . . (vi)

Subtracting equations (v) and (vi) gives

i'l A( Cp* ?i Cp* * \
y = \

2
' _ X

2
A f I v'dp I vdp

J,

or,
rpa

(vii)
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In Figure 57 is shown the p-v plot for these two expansions.

From this it is evident that

JO- area 122',

FIG. 57

or reversing the order of the integration and thus changing the

algebraic sign,

PL

Therefore

_ C
P

\VI
' -

v)dp = + C
P

\v
r -

v)dp = area 12'2.
*Sn. Pz

y = \
2

f -
\j + A x area 12' 2 (77)

The total work done against friction is therefore larger than the

loss of kinetic energy due to friction by the amount of work cor-

responding to the area on the p-v plot included by the line repre-

senting the actual expansion, the line representing an adiabatic

expansion, and the line of constant final pressure.

The temperature entropy plot for these expansions is shown in

Figure 58. For a frictionless adiabatic expansion the area ab!2

represents in heat units the increase in kinetic energy per pound.
If all the kinetic energy of the expansion were converted into fric-

tion and this friction into heat, the line 13 representing the curve of

constant total heat contents through 1 would be the path followed

by the state point of the steam mixture. The area 23fd would

then be equal to the area ab!2. The path followed by the state

point during the actual irreversible expansion through a channel

like a turbine nozzle is some line between the constant heat line 13

and the reversible adiabatic 12, such as 12' . For the path 12 r the
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e

friction work is 12'ed, of which 22' ed represents the loss in kinetic

energy I. The net increase of kinetic energy during an irreversible

adiabatic expansion is then

expressed in heat units by the

area- 12ab diminished by the

area 22' ed.

The loss I is comparatively
small. For nozzles such as

are used in turbines which are

not more than 2 inches long
I is about 5 to 8 per cent of

the energy which would be

developed in a friction less

flow. For larger nozzles of

length 4 to 6 inches and with

diameters at the narrowest

point of from one quarter to

three eighths of an inch I is

from 10 to 15 per cent. 1

69. Flow through an Orifice.

If a fluid flows from a reser-

voir of such size that t)
x
2
may

be neglected in comparison
with t>

2
2
(as is the case in the

flow of steam from a boiler

into a pipe), then equations

(71) and (65) may be used

to find the weight of fluid

passing through the orifice if

the second state be taken at

the narrowest point or throat

of the short tube or orifice. The reason for specifying that the

second state shall be that at the throat is evident from the following

experimental fact and also may be seen from the curves of Prob-

lem 53.

Experiments of Napier show that the weight of steam discharged

through an orifice increases for a constant pressure p^ with a reduc-

tion of the back pressure p2
until p2

is Q.58pv after which further

reduction does not increase the weight discharged. In other words,

FIG. 58

1 The discussion follows Stodola,
" Steam Turbines," pp. 48-63.
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the pressure in the orifice for steam is always such as to give a

maximum value for the weight of steam discharged per second.

For steam, therefore, the pressure at the orifice may be taken as

0.58^! provided that p1
> 1.73 p2

.

Rankine therefore announced from his study of the experimental
results obtained by Napier the following empirical formulas for

calculating the flow of steam through an orifice. The symbols have

the significance of the preceding discussion.

Where p^ ^ -J jt?2 ,

and

where p 1 <
"^

(79)

It is to be noticed that these formulas of Napier and the assumption
of the pressure in the throat as 0.58^ are only approximations.
Since no flow is rigorously frictionless or adiabatic and the variations

from these ideal conditions depend upon the orifice or tube employed
when greater accuracy than about 2 per cent is required, the given
nozzle should be calibrated by weighing the steam passing through
it for various values of p^ and p2

.

70. Fliegner's Formulas for the Flow of Air. For the flow of air

through a rounded orifice, where the pressures are p1
and p2

on the

two sides of the orifice and the area is a\ the experiments of Fliegner
show that the weight M of air in pounds per second is given by the

following formulas :

where p 1 > 2 p2

M= 0.530 a-^=; (80)
V0j

where p1
< 2 p^

pi^E2
(81)

In these formulas
l

is the absolute temperature Fahrenheit of the

air in the reservoir. The pressure and the area are to be measured
in any similar units, as either in pounds per square foot and in square

feet, or the pressures in pounds per square inch and the area in

square inches.
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71. Resume of Equations for Flow of Fluids.

Equation of continuity.

//n / n

(65)

Frictionless adiabatic flow of steam.

t)
2

t)
2

Greneral equation.

Friction work.

y = I 4- A (area between isentropic and actual expansion paths
on a p-v plot) (77)

Loss of external K. E. due to friction.

l = \J-\. (74)

Napier's formulas for steam flow.

#"=&, where ft >|ft (78)

M=a-i, where ft < ft. . . (79)

Fliegner^s formulafor air flow.

M= 0.530 a-^L, where p1 > 2p2
..... (80)

M= 1.060 a\J*i~, where p 1
< 2p^. . (81)

#1

PROBLEMS AND SOLUTIONS

43. Kinetic energy of steam. Given one pound of steam initially

dry, issuing from a large reservoir under a pressure of 100 pounds
absolute. Assume adiabatic expansion to a back pressure of 14.7

pounds absolute. Consider the velocity in the reservoir negligible.

Find the final velocity (a) using equation (67), (5) using equation

(71); (tf) find the error due to neglecting the term 0(p 1
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Solution. From Table 3, for 100 pounds, q { = 298.5, r\ = 887.6, <f)w =0.4748,

Wi
= 1.1273, 81 = 4.432; for _p2

= 14.7 pounds, q2
-

180.3, r-2 = 969.7, </>J = 0.3125,

<t>vl= 1.4441, s2 = 26.78.

Hence the quality after adiabatic expansion without friction is

_ 0U,, + 4s
- Is _ 0.4748 + 1.1273 - 0.3125

~^7~ 1.4441

(a) t?i = si = 4.432
;
v 2 = X2s2 , approximately, or (0.893) (26.78)= 23.92.

By equation (67),

^-
2
=1^ [(100) (144) (4.432)

-
(14.7) (144) (23.92) ]= 111,100 foot pounds.

2 ^ 0.135

Therefore ba = 2670 feet per second.

(6) Xi = 298.5 + 887 .6 =1186.1, X2 = 180.3 + jr2(969.7)= 1046.4.

Hence,- in equation (71), 7(\i X2)
= 108,800 foot pounds,

the term o-(pi #2) is of value (0.016) (144) (100 14.7)= 196 foot pounds, and is

negligible.

Therefore, neglecting this term, we have

^ = 108,800,

or D2 = 2650 feet per second.

(c) The term neglected above evidently introduces an error of 0.2 per cent in the

value of the kinetic energy, or 0.1 per cent in the value of the final velocity.

44. Kinetic energy of superheated steam. Given one pound of

steam at 100 pounds absolute and 120 Fahrenheit of superheat,

find the final velocity acquired in expanding along a reversible adia-

batic to a back pressure of 14.7 pounds absolute, (a) by using equa-

tion (67), (6) by using equation (71), as in Problem 43.

Solution. From Table 3, the values of the constants for these pressures may be

obtained, as given in the preceding problem. For 120 of superheat cp may be taken

as 0.53. Then
hi = cp(0i )

= 0.53(120) = 63.6 B. t. u.,

The specific volume is found by equation (58) to be 5.27 cubic feet.

The quality after expansion is, then,

0! + <t>*i + 0i - 03 0.4748 + 1.1273 + 0.0750-0.3125 _ Q Q45
C2

1.4441

(a) Since the expansion extends from the superheated into the saturated region, it

is necessary to divide the expression of equation (67) for the increase of kinetic energy

into two parts, one representing the increase while the steam is superheated and

calculated by using n = 1.3, and one representing the increase while the steam is satu-

rated and calculated, as in Problem 43, by using n= 1.135. This demands a knowl-

edge of the pressure and volume corresponding to the intersection of the isentropic line
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with the curve of constant steam weight. This is most easily found from the 0-0 chart

of page 86 to be 40 pounds for the pressure and 10.5 cubic feet for the specific volume.

It may be found approximately by using the values for the entropy at 30 and 50

pounds, and assuming that the rate of change of the entropy is proportional to the

rate of change of the pressure. Such an interpolation gives the pressure as 39 pounds.
The more accurate value of 40 pounds will be used in this solution. Substitution of

these values in equation (67) then gives

|
=
i| [ (100) (144) (5.27)

-
(40) (144) (10.5) ]

+
j^||

[ (40) ( 144) (10.5)
-

(14.7) (144) (25.3)]

= 67,000 + 58,100 = 108,000 foot pounds.

Hence t> = 2830 feet per second.

(6) Solution by equation (71) is similar to that of Problem 43 except that \i is

greater by the superheat hi.

\i = 1186.1 + 63.6 = .1249.7, X2 = 180.3 + (0.945) (969.7) = 1096.5.

- X2 )
= 778(153.2) = 119,200 foot pounds.

Hence t) 2 = 2770 feet per second.

Discussion.

320 F

300

280

260

240

220

200

The deviation between solutions (a) and (&) is due to the inaccuracy

with which n is accompanied.

The method of (&) is the more

accurate and in general shorter of

solution.

1.60 1.62 1.64

FIG. 59

1.66 1.68

45- Loss due to friction.

In Problem 43 the ve-

locity for a frictionless

adiabatic expansion has

already been found. Tak-

ing the same values for the

pressures but assuming a

loss of 16 per cent of the

energy available for in-

creasing . the kinetic en-

ergy, find the final velocity.

Sketch the 0-$ plot and

find the total work done

against friction. Assume

the plot of the actual ex-

pansion line on the 0-<f>

diagram to be a straight

line.

Solution. The increase in

kinetic energy of the steam for
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a reversible adiabatic has been determined as 108,800 footpounds, and the final quality

as 0.893. The loss, I, in kinetic energy is then T̂ %(108,800) = 17,400 foot pounds
= 22B.t. u. The absolute temperature corresponding to the back pressure is

212 + 460=672 degrees. The increase in entropy due to the friction is then $fy =
0.0328 and is represented in Figure 59 by the line 22'.

The area 12'2 may now be found approximately by multiplying half this increase in

entropy by the difference in temperature between points 1 and 2
;
that is,

area 12'2 = i(0.0328)(328
- 212)= 1.9, or approximately 2 B. t. u.

The work done against friction, y, is by equation (77) equal to the sum of this area

and I Hence y = 22 + 2 = 24 B. t. u., or 18,700 foot pounds.

The final velocity is of course one half of 16 per cent smaller than that for a fric-

tionless flow, since the energy available is 16 per cent smaller. Hence t)2 = 24400 feet

per second.

46. Flow of air. Find the weight of air passing per second

through a rounded orifice of area 0.1 square inch, if the pressures on

the two sides of the orifice are 45 and 14.7 pounds absolute, (a) by

equation (67), (6) by equation (80). The temperature of the air

within the reservoir is 80 Fahrenheit.

Solution, (a) The pressure pt in the throat, where the area is given above, is to be

taken according to Fliegner's experiments as 0.577 of p, or for this case pt
= (0.577) (45).

The specific volume of the air in the reservoir is, by equation (13),

= 80 + 460 14.7
12 39 =

460 45

The specific volume after expansion is, by eq. (32),

(4.75) = 7.02 cubic feet.=
[;

i

45 I 1-*

. (0.577) 45J

Hence, by eq. (65),

3/=^^ ^1^2 ^[(45) (144) (4.75) -(0.577) (144) (7.02)] = 0.100 pounds per

second.

(6) By equation (80), since 61 = 80 + 460 = 540,

M = (0.530) (Q. 1)
45 = 0.102 pound per second.

V540

47. Napier's formula. Given steam of 95 per cent quality expand-

ing from 120 pounds absolute to atmospheric pressure of 14.7 pounds

through an orifice of 0.1 square inch area. Assume the pressure in

the throat to be 0.58^ or 70 pounds absolute. Find the weight of

steam per second, (a) by equation (71), (5) by equation (78).

Solution, (a) From Table 3, for 120 pounds, gi = 312.3, n = 876.9, Wj =0.4922,

0^ = 1.0951, For pt
= 70 pounds, qt

= 272.9, rt
= 906.6,

t

= 0.4418, r<
= 1.1892,

& =6.199.
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Hence

= 0.4922 + (0.95)^0951) -0.4418 =

And
\i - X, = 312.3 + (0.95) (876.9)

- 272.9 - (0.917) (906.6) = 41.1.

Then

(0.1) (120)

70
pound second.

48. Napier's formula. Compare the weight of steam of quality
95 per cent passing through an orifice 0.1 square inch in area from

an initial pressure of 20 pounds absolute to atmospheric pressure of

14.7 pounds, as calculated (a) by equation (71), (6) by equation

(79).

Solution, (a) From Table 3, for pi= 20 pounds, qi= 196.4, 7*1= 959.4,

Vi
= 1.3957. For p2 = 14.7 pounds, q = 180.3, r2 = 969.7, <j>w2= 0.3125,

s2 = 26.78.

Hence

X2 = 0.3362 + (0.95) (1.3957) -0.3125 =^6 or 0.934.
1.4441

t?2 = (0.934) (26.78) = 25.0.

\! _ \2 = 196.4 + (0.95) (959.4)
- 180.3 - (0.934) (969. 7) = 21.9 B.t.u.

Therefore

i
= 0.3362,

v^= 1.4441,

(6) M = second '

49. Injector (non-lifting}. An injector, as the name implies, is a

device for injecting water into a boiler against the boiler steam

pressure. This is accomplished by a mechanism the principles of

which are evident from Figure 60. To start the injector, steam is

Steam

FIG. 60

allowed to flow from the steam delivery pipe through the injector

and out of the overflow F, thus blowing out any condensed water
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and insuring practically dry steam. The steam valve S is then

turned off and the water valve turned on. When the water appears
at the overflow the steam -valve and the valve in the delivery tube

to the boiler are both turned on. The entering steam is condensed

by contact with the colder feed water and converts some of its heat

energy into m'echanical kinetic energy, forcing feed water and the

condensed steam into the boiler. The partial vacuum formed by
the steam and water rushing by the overflow valve draws it shut.

Calculate the number of pounds of water forced into a boiler

against a pressure of 120 pounds absolute by one pound of steam

from the same boiler. Neglect the velocity of the entering water.

Assume the steam 98 per cent dry, the temperature of the water

supplied to the injector as 70 Fahrenheit, and the temperature of

the water leaving the injector as 170 Fahrenheit. Assume that the

kinetic energy of the entire mass of water leaving the injector is one

per cent of the total heat contents of one pound of steam.

Solution. Let there be ra pounds of feed water entering the injector for every

pound of steam. The total energy of the entering water plus that of the entering
steam must equal the total energy of the two combined as they leave the injector.

That is,

W\Water + K. E. water + Xsteam + K. E. steam = (1 -f- m)X(water+steam) + K. E.(water+ steam),

where

Xwater = 39 B. t. u.
;
K. E. water is negligible ;

Xsteam = q + xr = 1172 B. t. u. per pound.

K. E.(water+steam) = 12 B. t. u.
;
and X(water+steam) = 138 B. t. u. per pound.

Hence 39 m + 1172 - (1 + w)138 + 12 or m = 10 pounds approximately.
For practical purpose it is sufficient to neglect all kinetic

energy terms and write

m = (rr)*+q.-qw+8 = 1172 - 138

qw+s-qw
'

138-39
= 10 pounds approximately.

50. Peabody throttling calorimeter. The

Peabody throttling calorimeter employs the

phenomena of an irreversible adiabatic expan-
sion in the determination of steam quality.
It consists of a reservoir A shown in Figure
61 to which the steam of which the quality
is desired is admitted by a small pipe b. A
pressure gauge at / and a thermometer at e

record the temperature and pressure of the

steam after it has expanded to fill the reser-

voir. The valve d admits of the free passage
of steam from the calorimeter. The entire FIG. 61
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reservoir is surrounded by a heat insulator. For a test, the valve

b which connects the reservoir with the main steam pipe, in which

it is desired to know the quality, is opened slightly, and thus admits

steam throttled down to a pressure of 5 to 15 pounds above that of

the atmosphere to which d is connected.

If the boiler pressure is p\ = 80.3 pounds gauge, the pressure p2

within the calorimeter is 5.3 pounds gauge, the atmospheric pressure
is 14.7 pounds, and the temperature within the calorimeter is 278

Fahrenheit, find the quality of the steam. Sketch the temperature

entropy diagram for this process.

Solution. There is assumed to be an irreversible adiabatic expansion, in which as

fast as the heat of the entering steam is converted into kinetic energy of motion, this

energy is transformed into work of friction and eddy currents, and is returned at a

slightly lower temperature to the steam. The change thus takes place at constant heat

contents Hence \i = X2 . If the steam is nearly saturated, the constant heat line will

take it into the superheated region for lower temperatures and pressures. Hence we

AI = gi + xiri = \ 2 =q2 +r2 + cp (t
-

*<>),

where to is the saturation temperature corresponding to the pressure p<>, and t is tlie

temperature as recorded by the thermometer in the calorimeter.

Hence, using 0.48 for cp and substituting the proper values for q and r from Table 3,

we have

x = ga + r2+cp (t
-

fr)
-

gi = 196.4 + 959.4+0.48(278 - 228) - 204.6 _ Q 9Q1
ri 890.5

The temperature-entropy plot is shown in Figure 62, where are plotted to scale the

corresponding values of the entropy as found from Table 3 for the constant steam

weight line, and by calculation for the curve of constant heat contents equal to AI.

F

340

320*

300'

280

260

240

220



FLOW OF FLUIDS 121

51. Limits of throttling calorimeter. If the valve d of the calo-

rimeter described in Problem 50 is connected not to the atmosphere
but to the exhaust pipe of the engine so that the back pressure is 3

pounds absolute, find the largest amount of priming (lowest value of

x) that can be measured with the calorimeter for a boiler pressure of

85 pounds absolute. Neglect probable and observational errors in

the thermometer.

Solution. At the back pressure of 3 pounds the steam must in the limiting case be

just at the point of being superheated. Hence putting cp (t tx ~) equal to zero in the

equation for xi derived in Problem 50 and substituting for q and r from Table 3,

we have

Xl =
109.6 + 1012.2-286.5 = 0.9S15.

For this pressure the calorimeter can then be used to determine the steam quality

down to 93.15 per cent or 6.85 per cent of priming. The range of the apparatus is

evidently extended by connecting the outlet to the condenser and thus using a lower

back pressure.

52. Throttle control. A small non-condensing engine uses steam at

50 pounds absolute, receiving it through a throttle valve from a header

containing dry steam at 200 pounds absolute. 1 The atmospheric

pressure is 14.7 pounds. Find the loss in availability of the steam

in B.t.u. per pound due to throttling.

Solution. During throttling heat is converted into kinetic energy and then by fric-

tion into heat as in the calorimeter of Problem 50. The 0-0 diagram for throttling is

similar to that of Problem 50.

If a quantity of heat dO is received from a source at a temperature of 0, and if the

lowest available temperature is
,
the Carnot efficiency between these two temperatures

represents the fraction of dO which is available for useful work. This available porT

tion of cZCl, the heat received from the hot source, has been termed its
"
motivity

"
by

Lord Kelvin.2 Now the heat possessed by a mass of steam has been received at a

series of temperatures ranging in the boiler from that of the feed water as it enters to

its final temperature. At each of these temperatures the motivity or availability is

given by an expression of the form xfe dO. The availability of a given mass in any
6

state, as 1, is then the sum of all the motivities due to the addition of the several infin-

itesimal amounts of heat dO at these various temperatures. That is, the motivity in

state 1 is r
\

6
- =^0 = 01-0001.J

o
*

Similarly, the motivity in any other state, as 2, is of the form 2 0002- The differ-

ence in availability of the substance at these two states is then

Oi-O2 + (>2-0i),

1 The conditions here chosen are not such as would ordinarily enter into good engineer-

ing practice. They are selected so that 2 0i is large as compared to the precision with

which 0J or 2 is known.
2 See Preston,

"
Heat," pp. 629, 630.
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an expression which for the condition of constant heat contents required by this par-
ticular problem reduces to

The lowest temperature for this problem is that at which the steam is rejected, or

212 Fahrenheit. The absolute temperature corresponding to this is 672. The en-

tropy 0i is found directly from Table 3 to be 1.5459.

In order to find the entropy in state 2 it is necessary to make use of the condition

that the heat contents remain constant and solve for the temperature as follows :

*i = 01 + n = 354.3 + 843.5 = 1197.8,

X2 = 2 + rz + cp (t2
- t^ = 250.4 + 922.8 + cp (t2

-
281) = 1173.2 + h.

Therefore

ft = 24.6; 2
- =51.2. g=-^- = 0.0324.

460 + $ (281 +332)

The entropy in the saturated condition is found from the tables, hence the total

entropy 2 is 1.6581 + 0.0324 = 1.6905. The loss in availability per pound is then

672(1.6905
-

1.5459) = 97.2 B. t. u.

53. Nozzle area. Plot to a scale of pressures for abscissas and

ordinates of B. t. u. the energy \ X available for increasing the

kinetic energy of a mixture of steam expanding adiabatically with-

out friction from 150 pounds absolute and 75 Fahrenheit of super-

heat to a back pressure of 6 pounds absolute. Plot also the velocity

during this expansion. Plot the area in square inches of a nozzle

to discharge one pound per second.

Solution. From Table 3, for 150 pounds, gi = 330.0, n = 863.0. For 75 degrees
of superheat, use cp = 0.57. Hence hi = 43. Therefore Xi = 1236.

Wl
= 0.5142,

<f>Vi
= 1.0551, and 0,

t

= 0.0503. Hence 0j. = 1.6196 or 1.62 approximately.
The values of the heat contents for other pressures may be found either by calcula-

tion or they may be read directly from the pressure-entropy chart of page 86. In this

solution they are read directly from the chart,
1 and also the values of the specific vol-

umes corresponding. The velocity is then found by equation (71) and the requisite

area by equation (65), which may be written

(144) (specific volume)
area m square inches = --^

. r -

velocity

The desired values are plotted in Figure 64.

54. Turbine nozzle. A 300 horse-power De Laval turbine uses

18 pounds of steam per horse-power hour. There are twelve nozzles

supplying steam to the turbine wheel. The steam is at 150 pounds
absolute and 75 degrees of superheat, and it expands to a back press-

ure of 2 pounds absolute. Find the diameters of the nozzle at the

throat and at the exit end necessary to deliver the requisite amount

1 For the purposes of this calculation the diagram proposed by Professor Mollier and

named after him is most convenient. In it ordinates are X's and abscissas are 0's. Lines

of constant pressure and of quality are plotted. Such a diagram is contained in the Tables

of Marks and Davis.
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of steam : (#) for frictionless adiabatic expansion, (5) for 15 per cent

energy loss by friction. For the throat pressure

3OOO

250

2000 200

150

1POO 100

50
7*

2.25

2.00

1.75

1.50

1.25

1.OO

0.75

0.50

O.25

150 140 120 60
Pounds

FIG. 64

Solution, (a) Each nozzle must deliver (
t

^ ^-
,
or 0.125 pound per second.

(3600) (12)

The quality in the throat for adiabatic expansion is found as follows. The entropy
is 1.6196 in the initial condition as found in Problem 53. For the throat pressure

(0jo)f = 0.4617 and (0 y), 1.1516. Hence (0S ), must equal 0.0063. Since the satura-

tion temperature is 318 Fahrenheit, for the throat pressure of 87 pounds, the quality

is 10 degrees of superheat (using cp = 0.48).

By equation (57) the specific volume is

(86.86) (788) _
. 256 = 5 . 13 .

(87) (144)

The total heat content at the throat is (\) t
- 288.2 + 895.3 + 4.8 = 1188.3.

The total heat contents in the initial condition were found in Problem 53 to be

\ = 1236.

The velocity in the throat is then

b 2 = V2 g 778 (1236 1188.3) = 1545 feet per second.

The requisite area in the throat must then be

i ^ ' ' '
' 0.479 square inch per pound of steam.

But for the turbine nozzle of the problem only 0.125 pounds per second are to pass,

hence the requisite area is (0. 125)(0.479) = 0.06 square inches. Ihe diameter at the

throat is 0.276 inch.
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Similar solution for the exit end gives x2 = 0.828, X2 = 940.0, and the specific volume

at the exit is 143.3 cubic feet. The velocity is therefore 3835 feet per second, the area

of the turbine nozzle is 0.672 square inch, and the diameter is 0.924 inch.

(&) It is usual not to make allowance for the friction at the throat, since its effect

would be small, but to make the nozzle at the throat according to the calculations

for a frictionless adiabatic expansion as made above. It will be remembered in justi-

fication of this method that the steam discharged through an orifice is practically

independent of the pressures, provided only that the exit pressure is less than 0.58 of

the initial pressure. (Thus compare Problem 47.)

At the exit end the loss in energy is 15 per cent of Xi X2 or 44 B.t. u. The

quality at exit for a flow with friction is greater than that for a frictionless flow by an

amount equal to the fraction of a pound of steam that this number of B. t. u. would

evaporate. Since r2 for 2 pounds is 1021.9, the increase in quality is- = 0.043. The
1022

quality after flow with friction is then 0.828 + 0.043 = 0.871. Hence the specific

volume is greater and is (0.871) (173.1) = 150.8 cubic feet. In order that this turbine

nozzle shall deliver the same amount of steam for the same pressure conditions the

area at the exit end must be larger than that for the case of frictionless expansion in

the ratio of the specific volumes in the two cases. Hence the requisite area is

(0.672) =0.706 square inch.
143.3

And the diameter is 0.947 inch.



MISCELLANEOUS PROBLEMS

1. Determine four points on the pressure-volume curve and also

four points on the temperature-entropy curve representing the trans-

formation of a pound of dry air undergoing an increase of tempera-
ture from 100 to 200 Fahrenheit under the following conditions :

(a) adiabatically from an initial pressure of 15 pounds, (5) at con-

stant pressure of 15 l
pounds per square inch, (<?) at constant volume

of 11 cubic feet. Assume a zero of entropy for each initial condition.

2. Plot in the same manner as in Problem 1 the transformation

at a constant temperature of one pound of air originally occupying
11 cubic feet at 35 pounds per square inch if the pressure decreases

to 15 pounds.

3. Find the work done, the change in internal energy, the change
in entropy, and the heat added during the expansion of 3.5 cubic

feet of air from 200 to 90 pounds pressure. The temperature is

maintained constant at 650 Fahrenheit absolute.

4. Find the external work done, the change in internal energy,
the change in entropy, and the heat added if 3 cubic feet of air at

200 Fahrenheit expand adiabatically from a pressure of 85 pounds

per square inch to a pressure of 15 pounds.

5. A quantity of gas occupying 9 cubic feet at a pressure of 42

pounds per square inch expands until the volume is 14 cubic feet at

a pressure of 23 pounds. Find an equation representing a possible

expansion between these two points. Find the work done. Find

the change in intrinsic energy.

6. A steam engine working between 135 pounds and 2 pounds

per square inch pressure requires 225 B. t. u. per indicated horse

power per minute. What is the ratio between the thermal efficiency

of this engine and that of a Carnot engine working between the

same temperature limits ?

7. Calculate the work done by an air compressor without clear-

ance in compressing and delivering 10 cubic feet of dry air from an

atmospheric pressure of 15 pounds to a gauge pressure of 75

pounds. Assume adiabatic compression.

1 All pressures are absolute and not gauge unless otherwise stated.

125
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8. What would have been the work in Problem 7 if the com-

pression had been according to the relation p V1'^ a constant ?

9. If cooling water of temperature 65 Fahrenheit is available, to

what pressure must dry atmospheric air be compressed in order that

after cooling it may in an adiabatic expansion fall to 32 Fahrenheit ?

The initial temperature of the air is 70 Fahrenheit. Atmospheric

pressure is 15 pounds per square inch.

10. Find from the entropy chart of page 86 what the pressure is

upon a mixture of steam and water one pound of which occupies
6 cubic feet, if the quality is 95 per cent.

11. What is the quality of a mixture of steam and water of

entropy 1.590 if one pound , occupies 8 cubic feet?

12. What is the quality in Problem 11 if the mixture occupies

3 cubic feet ?

13. One pound of saturated steam at a pressure of 140 pounds

per square inch undergoes a constant heat content change until the

final pressure is 25 pounds. Find the quality. Calculate the final

intrinsic energy.

14. Steam at 140 pounds gauge and superheated 100 Fahrenheit

expands adiabatically. What is the pressure when the steam is dry
saturated steam ? Atmospheric pressure is 15 pounds.

15. If the steam of Problem 14 expands in an engine cylinder to

five times its original volume, what, approximately, are the final

pressure and quality?

16. Steam of entropy 1.560 and heat contents 1200 B.t.u.

expands adiabatically until 200 B. t. u. have been converted into

external work. Find the final quality.

17. Find from the entropy chart of page 86 the limit of a throt-

tling calorimeter when used to measure quality in steam of pressure

145 pounds if it is connected to the atmosphere of which the absolute

pressure is 14.7 pounds.

18. Steam of quality 99 per cent and pressure 160 pounds passes

through a reducing valve. To what pressure must it be throttled

in order that the steam discharged shall be dry and saturated?

19. Steam from a boiler is passed into a barrel calorimeter in

which there is 200 pounds of water at a temperature of 60 Fahren-

heit. When 3 pounds have been condensed, the final temperature is

75 Fahrenheit. The boiler pressure is 145 pounds. Find the

quality.
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20. Feed water of temperature 80 Fahrenheit enters a boiler and

passes from a boiler through a superheater. It emerges at 100

pounds pressure and a temperature of 600 Fahrenheit. If 8

pounds of water is thus converted into steam for each pound of coal

burned, find the equivalent evaporation from and at 212 Fahren-

heit.

21. Find from values taken from the entropy chart of page 86

the Rankine efficiency of an engine working between 140 pounds
with a quality of 95 per cent and 10 pounds.

22. A four-stage impulse turbine is designed to develop equal

velocity in each of the stages. If supplied with steam of 100

pounds pressure and 100 Fahrenheit superheat and expanding to

a condenser pressure of 2 pounds, find the velocity developed in

each stage.

23. What is the area at the throat of a nozzle which allows 50

pounds of steam to pass in a minute, if the entering steam is 150

pounds pressure and 100 Fahrenheit superheat, and the back press-

ure is less than 0.58 of the admission pressure ?

24. What would be the area if the back pressure in Problem 23

were 100 pounds?

25. How much work is done in compressing adiabatically one

pound of a mixture of steam and water of quality 80 per cent and

pressure 14.7 pounds until the volume is 6 cubic feet?

26. Two pipes deliver into a third. One supplies 300 gallons per
minute at a temperature of 80 Fahrenheit and the other supplies

steam of quality 75 per cent and pressure 100 pounds per square inch

at the rate of 5 pounds per minute. What is the resulting quality

of the mixture in the third pipe ?

27. A hot-water heater is constructed on the above principle

(Problem 26). Ten gallons of water at 200 are to be obtained per
minute in the third pipe. The entering water is at 60 Fahrenheit.

The entering steam is at 50 pounds pressure and dry. What is the

smallest amount of steam in pounds required per minute ?

28. What approximately is the final temperature and pressure

exerted by a mixture of steam and water in a closed tank if the tank

originally contained 10 pounds at a pressure of 140 pounds per

square inch and a quality of 98 per cent and 9000 B. t.u. are removed

by cooling?
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29. Find the increase in volume per pound caused by passing dry
steam at a pressure of 130 pounds per square inch through a super-
heater which raises the temperature to 500 Fahrenheit.

30. A throttle valve reduces the pressure of dry steam from

135 pounds to 100 pounds. Find the loss in availability in B.t. u.

per pound if the lowest available temperature is 141.5 Fahrenheit.

31. Plot to scale the indicator card for a theoretically perfect

engine which has. a stroke of 30 inches, a clearance of 5 per cent,

cut-off at 30 per cent, compression at 5 per cent, release at the end of

the stroke, a piston diameter of 16 inches, and makes 100 revolutions

per minute. If the entering steam is 100 pounds pressure, the

condenser pressure is 2 pounds, and the expansion and compression

may be assumed to be adiabatic, find the work done during admission,

expansion, exhaust, and compression. Find the indicated horse

power. Find the mean effective pressure. The engine is of course

double-acting, having valves at each end of the cylinder.

32. Find the horse power of a hot-air engine which works on a

Sterling cycle from a maximum temperature of 700 Fahrenheit and

a maximum pressure of 110 pounds absolute, if the volume of the

working cylinder is 2 cubic feet and that of the displacement cylinder

is 6.5 cubic feet. Neglect clearance. The lowest available tem-

perature is 90 Fahrenheit. The engine makes 100 revolutions per

minute.

33. Draw to scale the cross section of a nozzle which will discharge
0.50 pound of steam per second for frictionless adiabatic expansion
from 120 pounds pressure and 120 Fahrenheit superheat to 2 pounds

pressure per square inch.

34. If the friction loss in the nozzle of Problem 33 is to be taken

as 12 per cent and the nozzle is drawn tapered from the throat to the

exit end, how much larger must be the diameter of the exit end in

order that the same amount of steam shall pass per second ?

35. If the steam of Problem 33 had not been superheated but had

been of quality 98 per cent, what would have been the velocity at

the exit end of the nozzle ?

36. If a steam turbine is to have four stages of equal velocity and

to be supplied with steam under the conditions of Problem 33, what

will be the pressures in the intermediate stages ?
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TABLE 3 1

(F.P. S. Gravitational system; degrees Fahrenheit, British thermal units)

DRY SATURATED STEAM ,

a
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LOGARITHMS
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Absolute pressure, 46

Absolute temperature, 12, 14

Absolute zero, 13

Adiabatic, for gases, 16, 19, 20, 32
;
for

steam, 71
;

for superheated steam,

97

Air compressor, 53

Air flow, 113

Air refrigeration, 57

Availability of energy, 2, 121

Battelli, 93

Boiler explosion, 77

Boiler horse power, 78

Boulvin diagram, 87

Boyle's law, 8

British thermal unit, 5

Calorie, 5

Calorimeter, throttling, 119, 121

Carnot cycle, 22
;
for perfect gas, 30

plot of, 34, 35; efficiency, 24, 31

engine, 23
; theorem, 24, 26

Cazin, 71

Centigrade scale, 4, 12

Chappuis, 12

Charles's law, 11

Clausius, 27
; inequality of, 37

Clearance, in air compressor, 53
;

ir

gas engine, 54

Compression, steam at, 88

Condenser, jet, 80
; surface, 79

Conservation of energy, 2, 5

Continuity, equation of, 105

Cycle, see Carnot, reversible, etc.

Cylinder condensation, 90, 98

Dalton's law, 44

De Laval turbine, 122

De Rochas gag-engine cycle, 54

De Saint Venant, formula of, 104

Diesel internal-combustion cycle, 56

Dry steam, 62

Efficiency, see Carnot, Rankine, etc.

Energy, 1
;
see intrinsic, kinetic, etc.

Entropy, 31
;
measurement of, 33

;
for

41
;
for water, 67

;
for steam,

for superheated steam, 94

Equations, re'sume' of, for gases, 44
;

for steam, 74
;
for superheated steam,

99
;
for flow of fluids, 114

Equivalent evaporation, 78

Fahrenheit scale, 4

First law of thermodynamics, 5

Fliegner's formulas, 113

Flow of fluids, Chap. V
Friction in flow of fluids, 109

Gases, molecular theory of, 3
;
laws ofr

8~11
; general equation, 14

; perfect,

10, 38, 40; imperfect, 44; see also

intrinsic energy, entropy, specific

; heat, etc.

; Gay-Lussac, law of, 11

Heat contents, see heat equations
Heat equations, for gases, 40

;
for

steam, 65, 67
;

for superheated

steam, 94

Helium, 13

Him, 71

Hydrogen, 13

Hyperbolic expansion line, 91

Imperfect gas, 44

Incomplete steam expansion, 81

Indicator, 18
; card, 88

Injector, 118

Intrinsic energy, 2, 16
;
for gases, 43

;

for steam, 67
;
for superheated steam,

96

Irreversible process, 35, 37, 109

Isentropic, 16, 32, 33
;

for gases, 41
;

for steam, 71
;
for superheated steam,

97

135
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Isoenergic, 16
;
see also intrinsic energy

Isothermal, 16, 19, 20

Joule, 3, 5
;
law of, 9

; experiment of,

10

Kelvin, 28, 121

Kinetic energy, 2
;
see molecular kinetic

theory
Kinetic energy due to expansion, 104,

109, 114, 115

Knoblausch and Jakob, 93

Knoblausch, Linde, and Klebe, 93

Latent heat, 7
; internal, 7

; external,

7
;
of vaporization, 61

Lewicki, 99

Loss of kinetic energy due to friction,

109, 116, 1-22

Mechanical equivalent of heat, 5

Molecular kinetic theory, 3, 8, 11, 13,

14, 61, 65, 92

Mollier diagram, 122

Motivity, 121

n, for gases, 39, 43
;
for steam, 107

Napier's formulas, 112

Newton, 1, 21

Nozzle area, 122

Otto gas-engine cycle, 54

Peabody, 119

Perfect gas, see gases

Polytropic transformation, 39, 47

Porous plug experiment, 35

Potential energy, 2

Pressure, denned, 15
; absolute, 46

Pressure, coefficient, 11

Pressure-entropy plot, 96, 120

Pressure-volume plot, 16, 17

Problems, see Contents

Quality, 66, 96, 119

Regenerative cycle, 51

Regnault, 12, 14, 73

Reversible cycle, 24

Second law of thermodynamics, 21, 26

Solutions .of problems, see Contents

Specific, use of the term, 14

Specific heat, 5
;
of gases, 15, 42

;
of

water, 63
;
of steam, 73

;
of super-

heated steam, 93

Specific volume, of water, 65
;
of steam,

65, 67
;
of superheated steam, 94

Steam, see under entropy, quality, etc.

Sterling hot-air engine, 51

Stodola, 99

Superheated steam, 93
;

see under en-

tropy, kinetic energy, etc.

Superheating in practice, 98, 102

Temperature, 3, 12, 14, 28

Temperature-entropy plot, 33
;

for

steam, 68
;

for superheated steam,

94
;
use of, 86, 122

Thermal units, 4

Thermodynamic scale of temperature,
28

Thermometer, mercury, 3
; hydrogen,

12, 14

Throttle control, 121

Throttling calorimeter, 119, 121

Transformation, see adiabatic, isother-

mal, etc.

Tumlirz, 93

Turbine nozzle, 112, 122

Vapor, see steam

Vaporization, 61

Volume, see specific volume

Volume coefficient, 11

Water, specific heat, 63
; specific

volume, 65

Water vapor, see steam

Wet steam, 62

Work 1
;
calculations for, 17

Rankine, 65, 112
;
Rankine cycle and Zeuner, formulas of, 65,' 107, 108

efficiency, 80
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