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GEOMETRY.

INTRODUCTION.

1 . Geometry is the Doctrine of Space.

What is Space? On opening our eyes we see objects

around us in endless number and variety : the book here,

the table there, the tree yonder. This vision of a world

outside of us is quite involuntary
— we cannot prevent it,

nor modify it in any way ;
it is called the Intuition (or Per-

ception or Envisagement) of Space. Two objects precisely

alike, as two copies of this book, so as to be indistinguishable

in every other respect, yet are not the same, because they

differ in place, in their positions in Space : the one is here,

the other is not here, but there. In between and all about

these objects that thus differ in place, there lies before us

an apparently unoccupied region, where it seems that noth-

ing isy but where anything might be. We may imagine or

suppose all these objects to vanish or to fade away, but we

cannot imagine this region, either where they were or where

they were not, to vanish or to change in any way. This

region, whether occupied or unoccupied, where all these

objects are and where countless others might be, is called

Space.

2. There are certain elementary facts ^
that is, facts that

cannot be resolved into any simpler facts, about this Space,

and these deserve special notice.

K7i«nf».*ii



2 GEOMETRY.

A. Space is fixed, permanent, unchangeable. The objects

in Space, called bodies, change place, or may be imagined
to change place, in all sorts of ways, without in the least

affecting Space itself. Animals move, that is, change their

places, hither and thither
;
clouds form and transform them-

selves, drifting before the wind, or dissolve, disappearing

altogether ;
the stars circle eternally about the pole of the

heavens ; sun, moon, and planets wander round among the

stars
;
but the blue dome of the sky,* the immeasurable

expanse in which all these motions go on, remains unmoved

and immovable, as a whole and in all its parts, absolutely

the same yesterday, to-day, and forever.

B. Space is homoBoidal ; i.e. it is precisely alike through-

out its whole extent. Any body may just as well be here,

there, or yonder, so far as Space is concerned. A mere

change of place in nowise affects the Space in which the

change, or motion, occurs.

C. Space is boundless. It has no beginning and no end.

We may imagine a piece of Space cut out and colored (to

distinguish it from the rest of Space) ;
the piece will be

bounded, but Space itself will remain unbounded.

N. B. When we say that Space is unbounded, we do not

mean that it is infinite. Suppose an earthquake to sink all

the land beneath the level of the sea, and suppose this latter

at rest
;
then its outside would be unbounded, without begin-

ning and without end,— a fish might swim about on it in

any way forever, without stop or stay of any kind. But it

would 7iot be infinite
;

there would be exactly so many

square feet of it, a finite number, neither more nor less.

Likewise, the fact that bodies may and do move about in

space every way without let or hindrance of any kind implies

* Appearing blue because of the refraction of light in the air.
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that Space is boundless, but by no means that it is infinite.

For all we know there may be just so many cubic feet of

Space ;
it may be just so many times as large as the sun,

neither more nor less. This distinction between unbounded

and infinite, first clearly drawn by Riemann, is fundamental.

D. Space is continuous. There are no gaps nor holes in

it, where it would be impossible for a body to be. A body

may move about in Space anywhere and everywhere, ever

so much or ever so litUe. Space is itself simply where a

body may be, and a body may be anywhere.

E. Space is triply extended, or has three dimensions.

This important fact needs careful explication.

In telling the size of a box or a beam we find it necessary

and sufficient to tell three things about it : its length, its

breadth, and its thickness. These are called its dimensions ;

knowing them, we know the size completely. But to tell the

size of a ball it is enough to tell one thing about it, namely,

its diameter; while to tell the size of a chair we should

have to tell many things about it, and we should be puzzled

to say what was its length, or breadth, or thickness. Never-

theless, it remains true that Space and all bodies in Space

have just three dimensions, but in the sense now to be made

clear.

We learn in Geography that, in order to tell accurately

where a place is on the outside of the earth, which may

conveniently be thought as a level sheet of water, it is

necessary and sufficient to tell two things about it
; namely,

its latitude and its longitude. Many places have the same

latitude, and many the same longitude ; but no two have

the same latitude and the same longitude. It is not suffi-

cient, however, if we wish to tell exactly where a thing is in

Space, to tell two things about it. Thus, at this moment

the bright star Jupiter is shining exacdy in the south ;
we
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also know its altitude, how high it is above the horizon (this

altitude is measured angularly
— a term to be explained

hereafter, but with which we have no present concern) . But

the knowledge of these two facts merely enables us to poiiit

towards Jupiter ; they do not fix his place definitely, they

do not say how far away he is : we should point towards

him the same way whether he were a mile or a million of

miles distant. Accordingly, a third thing must be known

about him, in order to know precisely where he is
; namely,

his distance from us. But when this third thing is known,

no further knowledge about his place is either necessary or

possible. Once more, here is the point of a pin. Where

is it in this room ? It is five feet above the floor. This is

not enough, however, for there are many places five feet

above the floor. It is also ten feet from the south wall, but

there are yet many positions five feet from the floor and ten

feet from the south wall, as we may see by sHpping a cane

five feet long sharpened to a point, upright on the floor,

keeping the point always ten feet from the south wall. But

as it is thus slipped along, the point of the cane will come

to the point of the pin and then will be exactly twelve feet

from the west wall. If it now move ever so little either way
east or west, it will no longer be at the pin-point and no

longer twelve feet from the west wall. So there is one, and

only one, point that is five feet from the floor, ten feet from

the south wall, and twelve feet from the west wall. Hence

it is seen that these three facts fix the position of the pin-

point exactly. A fourth statement, as that the point is nine

from the ceiling, will either be superfluous, if the ceiling is

fourteen feet high, being implied in what is already said, or

else incorrect, if the ceiling is not fourteen feet high, contra-

dicting what is already said. In general, with respect to any

position in Space it is necessary to know three independent
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facts (or data), and it is impossible to know any more. All

other knowledge about the position is involved in this knowl-

edge, which is necessary and sufficient to enable us to an-

swer any rational question that can be put with respect to

the position. Accordingly, since any position in Space is

known completely when, and only when, three independent

data are known about it, we say that Space is triply or three-

fold extended^ or has three dimensions. The dimensions are

any three independent things that it is necessary and suffi-

cient to know about any position in Space, as of the pin-

point or of Jupiter, in order to know exactly where it is.

3. But with respect to the outside of the earth, viewed

as a level sheet of water, we have seen that only two data,

as of latitude and longitude, are necessary and sufficient

to fix any position on it
;
neither are more than two inde-

pendent data possible ;
all other knowledge about the posi-

tion is involved in the knowledge of these two data about

it. Accordingly we say of such outside of the earth that it

is doubly or two-fold extendedy is bi-dimensional, or has two

dimensions
; and we name every such outside^ every such

bi-dimensional region, a surface. Such is the top of the

table : to know where a spot is on it we need know two, and

only two, independent facts about it, as how far it is from

the one edge and how far from the other. (Which other?

and why?)
We see at once that a surface is no part of Space, but is

only a border (doubly extended) between two parts of Space.

Thus, the whole earth-surface is no part either of the earth-

space or of the air-space around the earth, but is the boun-

dary between them. A soap-bubble floating in the air is

not a surface
; though exceedingly thin, it has some thick-

ness and occupies a part of space ;
the outside of the film
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is a surface, and so is the inside, and these are kept apart

by the film itself. If the film had no thickness, the outside

and the inside would fall together, and the film would be a

surface
; namely, the outside of the Space within and the

inside of the Space without.

4. Consider now once more this earth- surface, still viewed

as a smooth level sheet of water. From Geography we

learn that there are two extreme positions on this surface

that are called poles and that do not move at all as the

earth spins round on her axis. We also learn that there is

a certain region of positions just midway between these

poles and called the Equator. This Equator is no part of

the surface
;

it is only a border or boundary between two

parts of the globe-surface, which are called hemispheres.

To know where any position is on this border, it is neces-

sary and sufficient to know o?ie thing about it, namely, its

longitude ;
neither is any other independent knowledge

about the position possible ;
all other knowledge is involved

in this one knowledge. Accordingly we say of this border,

the Equator, that it is simply extended, or has one dimension

only. Every such one-dimensional border is called a line,

and its one dimension is named length. A line, then, has

length, but neither breadth nor thickness.

5. Lastly, consider a part of a line, as of the Equator,

say between longitudes 40° and 50°. The ends of this part

bound it off from the rest of the equator, but they them-

selves form no part of the Equator. They are called points ;

they have position merely, but no extent of any kind, neither

length nor breadth nor thickness,
—

they are wholly non-

dimensional.
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*6. It is noteworthy that extents, or regions, are bounded

by extents of fewer dimensions, and themselves bound

extents of more dimensions. Thus, lines are bounded by

points, and themselves bound surfaces ; surfaces are bounded

by lines, and themselves bound spaces ; spaces are bounded

by surfaces, and themselves bound— what? If anything

at all, it must be some extent of still higher order, oi four
dimensions. But here it is that our intuition fails us

;
our

vision of the world knows nothing of any fourth dimension,

but is confined to three dimensions. If there be any such

fourth dimension, we can know nothing of it by intuition ;

we cannot imagine it. In music, however, we do recognize

four dimensions : in order to know a note completely, to

distinguish it from every other note, we must know four

things about it : its pitch, its intensity, its length, its timbre,— how high it is, how loud it is, how long it is, how rich

it is. While, then, extents of higher dimensions may be

unimaginable, they are not at all unreasonable.

This doctrine of dimensions is of prime importance, but

rather subtile
;

let not the student be disheartened, if at first

he fail to master it.

6. We may see and handle bodies, which occupy portions

of Space ;
but not so surfaces, lines, points, which occupy

no Space, but are merely regions in Space. Here we must

invoke the help of the logical process called abstraction,

i.e. withdrawing attention from certain matters, disregard-

ing them, while regarding others. A sheet of paper is not

a surface, but a body occupying Space. However thin, it

yet has some thickness. But in thinking about it we may
leave its thickness out of our thoughts, disregard its thick-

ness altogether ;
so it becomes for our thought, though not

for our senses or imagination, a surface. The like may be
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said of the film of the soap-bubble. Again, consider the

pointer. It is a body or solid, not only long, but wide and

thick
;

it occupies Space. It is neither line nor surface.

But we may, and do often, disregard wholly two of its

dimensions, and attend solely to the fact that it is long.

Thus it becomes for our thought a line, though not for our

senses or imagination. So the mark made with chalk or

ink or pencil is a body, triply extended
;
but we disregard

all but its length, and it becomes for our reason a line.

Lastly, we make a dot with pen or chalk or pencil ;
it is a

body, tri-dimensional, occupying Space. But we may dis-

regard all its dimensions, and attend solely to the fact that

it has position, that it is here, and not there. So it becomes

in our thought a point. By such abstraction the earth, the

sun, the stars, the planets, may all be treated as points.

Fig. I.

7. Inasmuch as Space is continuous, there may also be

continuous surfaces and lines
;
and the only surfaces and

lines treated in this book are continuous, without holes, gaps,

rents, breaks, or interruptions of any kind in their extent.
,

It is important to note that in passing from any position A
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to another B on a continuous line, a moving point P must

pass through a complete series of intermediate positions ;

/>. there is no position on the line between A and B that

the point P would not assume in going from A to B.

(Fig. I.)

*8. Starting from the notion of Space, we have attained

the notions of surface, line, and point, in two ways : by treat-

ing them as borders, and by the process of abstraction. But

we may reverse this order and attain the notions of line,

surface, and solid or space from the notion of point, with

the help of the notion of motion, thus : Let a point be

defined as \izs\x\g position without parts or inagnitude of any
kind. Let it move continuously through Space from the

position A to the position B. To know where it is at any

stage of its motion along any definite path, it is necessary

Fig. 2.

and sufficient to know one thing ; namely, how far it is

from A. Hence its path is a 6?w^-dimensional extent, or

what we call a line.
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Now let a line move in any definite way from any position

Q to any other position R. To know the position of any

point of its path, it is necessary and sufficient to know two

things ; namely, the position of the point on the moving line

and the position of the moving line itself: hence the path

of the line is a /z^/^-dimensional extent, which we have

already named a surface. (Fig. 2.)

Now let a surface move in any definite way from any

position U to any other position V. To know the position

of any point on its path it is necessary and sufficient to

know three things about it
; namely, its position on the

moving surface (which, we know, counts as two things) and

the position of the moving surface itself. Hence the path

of the surface is a //jr^^f-dimensional extent, which we have

already named a solid or a part of space.

Now, if we let a solid move, what will its path be?

Naturally we should expect it to be a /^z^r- dimensional

extent, but no such extent is yielded in our experience by

any motion of a solid— the path of a solid is nothing but

a solid. The explanation of the apparent inconsistency is

very simple, to-wit : A piece of a line traces out a surface

only when it moves out from the line itself,
— if one part

were to slip round on another part of the same line, it would

trace out no surface at all as its path ; likewise, a piece of

a surface traces out a solid as its path only by moving out

from the surface itself,
— if one part were to slip round on

another part of the surface, it would trace out no solid at

all as its path. So, if a piece of our space could move out

from space itself, it would trace out a four-fold extent as its

path ;
in fact, however, no part of space can move out from

space ;
on the contrary, it can only slip along in space, from

one part of space to another, and hence does not trace out

any four-fold extended path.
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9. Space, we have seen, is homceoidal, everywhere alike.

We naturally inquire : Is there any homueoidal surface ? In

general, surfaces are certainly not homceoidal. Consider an

egg-shell, and by abstraction treat it as a surface. It is not

alike throughout ;
the ends are not like each other, and

neither is like the middle region. Suppose a piece cut out

anywhere ;
if slipped about over the rest of the shell, this

piece will not fit. But now consider a smooth round ball

covered with a thin rigid film, and treat this film as a sur-

face, by disregarding its thickness. Suppose a piece of the

film cut out and slipped round over the rest of the film : the

piece will fit everywhere perfectly, the surface is homceoidal
;

it is called a sphere-surface.

N.B. The precise definition of this surface is that all

its points are equidistant from a point within, called the

centre. Suppose a rigid bar of any shape, pointed at both

ends, and movable about one end fixed at a point ;
then

the other end will move always on a sphere-surface, which

is the whole region where the moving end may be. Since

Space is homceoidal around the fixed point, the surface

everywhere equidistant from the point is also homceoidal.

Now turn over the piece cut out of this spherical film

and slip it about the film : it no longer fits anywhere at all

— the surface is homceoidal, but not reversible.

10. But now consider a fine mirror covered with a deli-

cate film, which by abstraction we treat as a surface. Sup-

pose a piece cut out of the film and slipped about over it :

the piece fits everywhere ; turn it over, re-apply it, and slip

it alK)Ut : it still fits everywhere
— the surface is both homa-

oidalzxA reversible ; it is called a plane-surface.
* N.B. A precise definition of this surface is the following :

Take two points A and B and suppose two equal spherical
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bubbles formed about A and B as centres. Let them ex-

pand, always equal to each other, until they meet, and still

, ^ keep on expanding. The line where
^ S the equal (Fig. 3) spherical bubbles,

^^' ^"
regarded as surfaces, meet, has all

its points just as far from A as from B. As the bubbles

still expand, this line, with all its points equidistant from A
and B, itself expands and traces out a plane as its path

through Space.

Hence we may define \he plane as the region (or surface)

where a point may be that is equidistant from two fixed

points. Instead of region it is common to say locus, i.e.

place. Briefly, then, a plane is the locus of a point equidis-

tantfrom two fixed points. It is evident that the plane, as

thus defined, is reversible ;
for since the bubbles about A

and B are all the time precisely equal, to exchange A and

B^ or to exchange the sides of the plane, will make no dif-

ference whatever. Thus the plane cuts the Space evenly

half in two
;
and since Space itself is homoeoidal, so also is

this section or surface that halves it exactly. The superiority

of this definition consists in its not only telling what surface

the plane is, but also making clear that there actually is such

a surface.

1 1 . The mirror is the nearest approach that we can make

to a perfect plane surface
;
the blackboard is not plane, it

is rough and warped ;
but we shall disregard all its uneven-

ness and treat it as a plane extended through Space without

end. Any surface may be dealt with as a plane by abstrac-

tion, being thought as ho?nceoidal and reversible.

12. On this board, regarded as a plane, we. draw a chalk-

mark, abstract from all its dimensions but its length, and
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treat it as a line. This line is plainly not alike throughout ;

a piece cut out and slipped along it will not fit (Fig. 4).

FUJ. 4.

But here is a line homceoidal, alike in all its parts ; it is

drawn with a pair of compasses and is called a circle

(Fig. 5). One point of the compasses is held fast at the

centre Oy while the other traces out the circle as its path in

B

Fig. s.

•W
Fig. 6.

the plane. The circle is the locus of a point in the plane

equidistant from a fixed point. Since the plane is homce-

oidal, so too is this circle (see Art. 10) ;
a piece, called an

arc, cut out and slipped round will everywhere fit on the

circle. But turn it over and slip it round, — it fits nowhere ;

the circle is not reversible. It divides the plane into two
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parts, not halves, that are not ahke along the dividing line.

But now suppose a perfectly flexible string fastened at S and

stretched by a weight W. Its length only being regarded,

it is a line homoeoidal, alike throughout, and also reversible
;

any part AB will not only fit perfectly anywhere on it, but

will also fit when reversed, turned end for end. Such a

line is called right, or straight, or direct, or a ray. Extended

indefinitely, it cuts the whole plane into two halves pre-

cisely alike along the ray itself.

*N.B. The common line where the two spherical bub-

bles of Art. lo meet is a circle, for it is plainly precisely

alike all around
;

it is homoeoidal, being the intersection of

two homoeoidal surfaces, namely, the two equal sphere-

surfaces
;

it is also in a plane, and in fact traces out the

plane by its expansion as the bubbles expand.

To get accurately the notion of the ray or straight line,

we need another point C, and a third expanding bubble

always equal to those about A and B. The circular inter-

section of the bubbles about A and B will trace out one

plane ;
of those about B and C will trace out another plane ;

of those about C and A will trace a third plane. All the

points where the first two planes intersect will be equidistant

from A and B and C, and no other points will be; the

same may be said of all points where the second and third

planes meet, and of all points where the third and first meet ;

hence all three of the planes meet together, and they meet

only together. Also, the line where they meet has every

one of its points equidistant from all the thre5 points, A, B,
C

;
hence it is the locus 0/ a point equidistant from three

fixed points. Moreover, it is homoeoidal and reversible,

since it is the intersection of two planes, which are homoe-

oidal and reversible
;
hence it is what we call a straight

line, or right line, or ray.
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13. We may now define :

A sphere-surface is the locus of a point at a fixed

distance from a fixed point. It is homceoidal, but not

reversible.

A plane is the locus of a point equidistant from two fixed

points. It is both homceoidal and reversible.

A ray is the locus of a point equidistant from three fixed

points. It is both homceoidal and reversible
;

it is also the

intersection of two planes.

A circle is the locus (or path) of a point in a plane at a

fixed distance from a fixed point. It is homceoidal, but not

reversible. It is also the locus (or path) of a point in space

at a fixed distance from two points ;
it is also the intersec-

tion of two equal sphere-surfaces.*

14. It is only with the foregoing figures and combinations

of them that we have to deal in this book. Circles and rays

may be drawn with exceeding accuracy, but any lines, how-

ever roughly drawn, may answer our logical purposes as

well as the most accurately drawn
;

we have only, by

abstraction, to treat them as having the character of the

lines in question.

Circles and sphere-surfaces are unbounded, without be-

ginning or end, but both are finite : we shall learn how to

measure them.

* In the foregoing free use has been made of the notion of equidistance without

formal definition, because of its familiarity. We may, however, say precisely: \{ A
and B be two points, the ends of a rigid bar of any shape, and if /I be held fast, then

all the points on which B can fall are equidistant from A
,
and no other points arc

equidistant with them. They all lie on a closed surface, called a sphere-surface.

All points within this surface are said to be less distant, and all points without are

said to be more distant, from A than B is. Herewith, then, we tell exactly what

we mean by equidistant, less distant, and more distant, but we make no attempt to

define distatue in general, which is difficult and unnecessary to our purpose.
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15. Any geometric element or combination of geometric

elements, as points, lines, surfaces, is called a geometric

figure. It is a fundamental assumption, justified by experi-

ence, that space is homoeoidal, that figures or bodies are not

affected in size or shape by change of place. Two figures

that may be fitted exactly on each other, or may be thought

so fitted, are called congruent. Any two points, lines, or

parts of the two figures, that fall upon each other in this

superposition are said to correspond. It is manifest that all

planes are congruent and all rays are congruent. Rays and

planes are unbounded, but whether or not they are finite is

a question that we are unable to answer.

16. Any part of a circle or ray, as AB, is bounded by
two end-points, A and B, and is finite

;
the one is named

an arc (Fig. 5), the other a tract, sect, or line-segment.

Each is denoted by the two letters denoting the ends, as

the tract AB, the arc AB. Sometimes it is important to

distinguish these end-points as beginning and end proper ;

we do this by writing the letter at the beginning first.

A'
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respectively equal to AB, CDy EF, etc., the end of the first

being the beginning of the second, and so on, while no part

of one falls on any part of another, we are said to add or

sum the tracts ABj etc. Each is called an addend or sum-

mand, and the whole tract from first beginning to last end

is called the sum.

Equality is denoted by the bars (
=

) between the equals,

as AB = CD.

i8. If, when the beginning A is placed on the beginning

C, the end B does not fall on the end Z>, the tracts are

unequal, and we write AB ^ CD. If B falls between C
and A then AB is called less than CD, AB<CD\ but if

D falls between A and B, then AB is called greater than

CD, AB > CD. In either case, the tract BD or DB,
between the two ends of the tracts, whose beginnings coin-

cide, is called the difference of the two tracts, and we are

said to subtract the one from the other. Ordinarily we

mention the greater tract first in speaking of difference.

19. The symbols of addition and subtraction are + and
—

(plus and minus), thus :

AB-^- CD^AD and AB - CD=BD.
It is important to note here the order of the letters. In

summing a number of tracts, as AB, CD, EF, etc., to A'Z,

Fig. 8.

we have AB + CD -\- EF-- + KL = AL (Fig. 8). The

order of the summands is indifferent, and this important
fact is called the Commutative Law of Addition. Thus

AB+ CD+EF=AB^-EF-\- CD=EF-\-AB-\- CD, etc.
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'
20. When beginning and end of a tract or of any mag-

nitude are exchanged, the tract or magnitude is said to be

reversed, and the reverse is denoted by the sign
—

. Thus

the reverse of AB is BA, or AB = — BA. If we add a

magnitude and its reverse, the sum is o, or

AB -h{-AB) = AB-\-BA = o.

The same result o is obtained by subtracting, from a magni-

tude, itself or an equal magnitude ; and, in general, it is

plain that to subtract CB> yields the same result as to add

(Fig. 9) the reverse B>C. The reverse of a magnitude is

A B

C D CH
1 J^A B

Fig. 9.

often called its negative, the magnitude itself being called

its positive.

Similar rules hold for adding and subtracting arcs of a

circle or of equal circles.

ANGLES.

21. The indefinite extent of a ray on one side of a point

O, as OA, is called a half-ray : it has a beginning O, but no

end. Two half-rays, OA and OA\ which together make up
a whole ray, are called opposite or counter (Fig. 10).

Now let two half-rays, OA and OB, have the same be-

ginning O ;
the opening or spread between them is a mag-

nitude : it may be greater or less. Suppose OA and OB to

be two very fine needles pivoted at O
;
then OB may fall

exactly on OA, or it may be turned round from OA
;
and
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the amount of turning from OA to OB, or the spread
between the half- rays, is called the angle between them.

We may denote it by a Greek letter, as «, ^vritten in it
; or

by a large Roman letter, as O, at its vertex (where the half-

rays meet) ;
or by three such letters, as AOB, the middle

Fig. io.

one being at the vertex, the other two anywhere on the half-

rays. The symbol for angle is ^.

22. The angle is perfectly definite in size, it has two

ends or boundaries
; namely, the two half-rays, sometimes

called arms. When we would distinguish these arms as

beginning and end, we mention the letter on the beginning-
arm first, and the letter on the end-arm last; thus, A OB;
here OA is the beginning and OB the end of the angle.

Exchanging beginning and end reverses the angle ; thus,

BOA = -AOB.

23. Two angles whose ends or arms may be made to fit

on each other simultaneously are named equal ; they are also

congruent. Two angles whose arms will not fit on each other

simultaneously are unequal; and that is the less angle whose

end-arm falls within the other angle when their beginnings
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coincide; the other is the greater; thus, AOB> AOC
(Fig. II).

24. We sum angles precisely as we sum tracts
;
we lay

off a, 13, etc., around O, making the end of each the begin-

ning of the next : the angle from first beginning to last end

Fig. II.

is the stmt. So, too, in order to subtract /? from «, lay off

/8 from the beginning towards the end of a
;
the angle from

the end of (3 to the end of a is the difference, a —
fi. Or

we may add to a the reverse (or negative) of ^ : the sum
will be « + (-/5) or a-jS (Fig. 12).^

^ It is important to note the close correspondence of tract and angle: the former is

related to points as the latter is to rays (or half-rays). The tract is the simplest

magnitude that lies between points, that distinguishes them and keeps them apart;
likewise the angle is the simplest magnitude that lies between rays (in a plane), that

distinguishes them and keeps them apart. So, too, we define equality and inequality

among tracts and among angles, quite similarly, and without being compelled before-

hand to form the notion of the size either of a tract or of an angle. We may now
define the distance between two points to be the tract between them, and the dts-

tatice between two (half-) rays to be the angle between them, leaving for future

decision which tract and which angle if there should prove to be several.
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Fig. 12.

AXIOMS.

25. At this stage we must recognize and use certain dic-

tates or irresoluble facts of experience, called axioms.

{'kiniiiuimQ^ns somethifig worthy, like the Latin dignitas ; in

fact, older writers use dignity in the sense of axiom. But

Euclid's phrase is kqlvqx twouu = common notions.^ Some
have no special reference to Geometry, but pervade all of

our thinking about magnitudes ; such are

(i) Things equal to the same thing are equal to each

other.

(2) If equals be added to, subtracted from, multiplied by,

or divided by, ccjuals, the results will be equal.
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(3) If equals be added to or subtracted from unequals,

the latter will remain unequal as before.

(4) The whole equals, or is the sum of, all its distinct

parts, and is greater than any of its parts.

(5) If a necessary consequence of any supposition is

false, the supposition itself is false.

Others concern Geometry especially, as :

(6) All planes are congruent.

(7) Two rays can meet in only one point.

The extremely important axiom (7) may be stated in

other equivalent ways, thus : Two rays cannot meet in two

or more points ; or, Two rays cannot have two or more

points in common
; or. Only one ray can go through two

fixed points ; or, A ray is fixed by two points.

26. A statement or declaration in words is called -a, p7'op-

osition. The propositions with which we have to deal state

geometric facts and are also called Theorems (Oeiopyjfia, from

OewpeLv, to look at, means the product of metital contempla-

tioTi). Propositions are often incorrect; theorems, never.

Subordinate facts, special cases of general facts, and facts

immediately evidenced from some preceding facts, are

called Corollaries or Porisms {Tropi(Tixa
= dedi/ctio?i).

We may now proceed to investigate lines and angles, and

find out what we can about them. The first and simplest

things we can learn concern
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CONGRUENCE.

27. Theorem I. — All rays are congruent.

Proof. Let L and Z' be any two rays (Fig. 13). On
L take any two points, A and B ;

on L' take any two

points, A' and B', so that the tract AB shall equal the

tract A'B'. Think of Z and Z' as extremely fine rigid

spider-threads, and in thought place the ends of the tract

AB on the ends of the tract A'B', A on A\ and B on B'.

B

A B
Fig. 13.

Then A and A' become one and the same point, and B and

B' become one and the same point ; through these two

points only one ray can pass (by Axiom 7) : hence Z and

Z', which go through these two points, now become one

and the same ray ;
that is, they fit precisely, they are con-

gruent. Quod erat demonstrandum = which was to be

/>rotred= oTTtp iStL Sci^ai,
— the solemn Greek formula;

whereas the Hindu, appealing directly to intuition, merely
said Pafya— Behold !

28. In the foregoing proof we assumed that on any ray

we could lay off a tract equal to a given tract, or that on

any ray we could find two points, A and B, as far apart as

two other points. A' and B'. This assumption that something
can be done, is called a Postulate (alr-qfia), I.e. a demand,
which must be granted before we can proceed further.

Actually to carry out the construction, we need a pair of

compasses.
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29. Theorem II. — If two points of a ray lie in a certain

plane, allpoints of the ray lie in thatplane.

Proof. Regard the surface of paper or of the blackboard

as a plane, and suppose it covered with a fine rigid film,

itself a plane. Let L be any ray having two points, A and

B, in this plane. Through these two points suppose a

second plane drawn or passed; by definition (Art. 13) it

will intersect our first plane, or film, along a ray /; this ray

/ goes through the two points, A and B, and lies wholly

(with all its points) in the first plane ;
also the ray L goes

through A and B, and only one ray can go through the same

two points, A and B, by Axiom 7 ;
hence L and / are

the same ray ;
but / has all its points in the first plane ;

hence L has all its points in the first plane, q. e. d.

Query : What postulate is assumed in this proof ?

Corollary. If a ray turn about a fixed point P, and glide

along a fixed ray Z, it will trace out a plane (Fig. 14).

Fig. 14.

For it will always have two points
— namely, the fixed

point and a point on the fixed ray
— in the plane drawn

through the fixed point and the fixed ray.



Th. II.] CONGRUENCE. 25

Query: What postulate is here implied?— Henceforth it

is understood that all our points, lines, etc., are complanar,

/>. lie in one and the same plane.

30. In the foregoing Theorem and Corollary we observe

clauses introduced by the word if. Such a clause is called

an Hypothesis, i.e. a supposition. The result reached by

reasoning from the hypothesis and stated immediately after

the hypothesis, is called the Conclusion.

31. All logical processes consist in one or both of two

things : the formation of concepts, as of lines, surfaces,

angles, etc., and the combination of these concepts into

propositions. Geometric concepts are remarkable for their

perfect clearness and precision
— we know exactly what we

mean by them
;

this cannot be said of many other concepts,

about which diverse opinions prevail, as in Political Economy.
Hence it is that Geometry offers an unequalled gymnasium
for the reason or logical faculty. We shall now generate
some new concepts. Let the student note their definiteness

as well as the mode of their formation.

32. Let OA and OB be any two co-initial half-rays,

forming the angle A OB. Think of OA as held fast and of

OB as turning about the pivot (9, starting from the position

OA. As it turns (counter-clockwise), the (Fig. 15) angle

Fig. 15.

AOB increases. Finally, let it return to its original posi-

tion, OA ; then the whole amount of turning from the upper
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side of OA back to the under side of OA, or the full spread

around the point O, is called a ///// angle (or round angle,

or c'lrcum-dcci^t, or perigon) , Think of a fan opened until

the first rib falls on the last.— Note that the upper and

under sides of OA are exactly the same in position, and are

distinguished only in thought. (Think of a circular piece

of paper slit straight through from the edge to the centre.)

The like may be said of the two sides of any line or surface.

We can now prove

33. Theorem III. — All round angles are congruent.

Proof. Let AOB and AO'B' (Fig. 16) be any two

round angles. Slip the half-ray OA down, and turn it till

OA falls on O'A^
\ they will fit perfectly (why?); the

Fig. 16.

whole round angle about O will fit perfectly on the whole

round angle about O' (why?); hence the two full angles

are congruent, q. e. d.

N.B. In this slipping of figures about in the plane, it is

well to imagine the plane to consist of two very thin, per-

fectly rigid, smooth and transparent films
; also, to imagine

one figure drawn in the lower film and one in the upper ;

and to imagine the upper slipped about at will over the lower.

Query : On what cardinal property of the plane do these

considerations hinge ?
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34. From O draw any half-ray OA
;

then any second

half-ray from O, as OB, will (Fig. 17) cut the round angle

AOA into two angles, AOB and BOA. The end OB of

the first falls on the beginning, OB, of the second ;
while

A

B

Fig. 17.

the end, OA, of the second falls on the beginning, OA, of

the first. Hence the round angle AOA is their sum, by
Art. 24.

If we draw any number of half-rays, OB, OC, etc., -"OL,
the round angle will still be the sum of the consecutive

angles AOB, BOC, etc., --^LOA ;
hence we discover and

enounce this

Theorem IV. — T/ie sum of the consecutive angles about a

point in a plane is a round angle.

N.B. We cannot apply Axiom i immediately, because

we do not know, except by Art. 24, what is meant by a sum

of angles.

35. In the foregoing article we have exemplified the

erotetic, questioning, investigative method, in which the result
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is not announced until it is actually discovered and estab-

lished. In Theorems I., II., III., on the other hand, the

dogmatic procedure was illustrated, the fact or proposition

being announced beforehand, while the demonstration fol-

lowed after. Each method has its merits, and we shall

employ both.

36. As OB turns round from the upper to the under

side of OA, the angle AOB begins by being less than BOA
and ends by (Fig. 19) being greater than BOA. The plane

Fig. 19.

is continuous, the turning is continuous, the change m size

is continuous ; hence, in passing from the stage of being

less to the stage of being greater, the angle has passed

through the intermediate stage of being equal; let OA^ be

the position of the rotating half-ray at this stage of equality,

then AOA^ = A'OA. Two equal parts making up a whole

are called halves; hence AOA' and A'OA are halves of

the full angle AOA ; they are named straight (or flat)

angles.

37. Now, — Halves of equals are equal ;

All straight angles are halves of equals

(namely, equal round angles) ;
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Hence

Theorem V.— All straight angles are equal.

This argument here given /*// extenso is a specimen of a

syllogism ((rvAAoyto-/tAo«
= computation = thinking together).

The first two propositions are called premisses, the third

and last, in which the other two are thought together, is

called conclusion. All reasoning may be syllogized, but

this is rarely done, as being too formal and tedious.

38. Theorem VI. — Two counter half- rays bound a

straight angle.

O
Fig. 20.

For, let OA and OA' be two such counter half-rays (Fig.

20) forming the whole ray AA\ Turn the upper half of

the plane film round O as pivot until the upper OA' falls on

the lower OA-, then, since the ray is reversible, the ray

AA' will fit' exactly on the ray A^A; i.e. the two angles

AOA' and A'OA are congruent and equal; and the two

compose the round angle AOA ;
hence each is half of

AOA
; i.e. each is a straight angle, q. e. d.

39. Theorem VII.— Conversely, The half-rays bounding
a straight angle are counter.

P
Fic;. 21.

Let OA and OA' bound a straight angle (Fig. 21) AOA' ;

also let TB and J*B' be two counter half-rays ;
then they
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bound a straight angle BPB\ by Theorem VI. Since all

straight angles are congruent, we may fit these two on each

other
;

i.e. we may fit OA and OA^ on PB and PB^
; but

BB^ is a ray ;
so then is AA^

;
i.e. OA and OA^ are

counter, q. e. d.

40. We may define a straight angle as an angle bounded by

counter half-rays. Then we may prove Theorem V. thus :

The ends of all straight angles are pairs of counter half-

rays (or form whole rays) ;

But all such pairs (or whole rays) are congruent (by
Theorem I.) ;

Therefore, all ends of straight angles are simultaneously

congruent.

But when the ends of angles are (simultaneously) congru-

ent, so are the angles themselves.

Hence all straight angles are congruent, q. e. d.

Here the first conclusion, introduced by
"
therefore," is

deduced from two premisses ; but the second, introduced by

"hence," is apparently deduced from only one. Only

apparently, however
;

for one premiss was understood but

not expressed ; namely, all straight angles are angles whose

ends are congruent. Without some such implied additional

premiss, it would be impossible to draw the conclusion.

Such a maimed syllogism, with only one expressed premiss,

is called an enthymeme. The great body of our reasoning

is enthymematic. We shall frequently call for the suppressed

premiss or reason by a parenthetic question (Why?).

41. Now draw two rays, LV and MM\ meeting at O.

Each divides the round angle about O into two equal

straight angles, and together they (Fig. 22) form four angles

«, ^, «', y8'.
Two angles, as « and /8, that have a common

arm, are called adjacent. Accordingly we see at once :



Th. IX.] CONGRUENCE. 31

Theorem VIII.— Where tiuo rays iniersect^ the sum of two

difjaccnt angles is a straight angle.

M

Fig. 22.

*

Two angles whose sum is a straight angle are called

supplemental ; two angles whose sum is a round angle we

may call explemental. Two angles as « and «', the arms of

the one being counter to the arms of the other, are called

opposite^ or vertical^ or counter.

Theorem IX.— When two rays meety the opposite angles

formed are equal.

For a-{-P = S (a straight angle) (why?) ; and «'-f^ = 5

(why?).
Hence u + p = u' -{- /3 (why?) ; therefore a = a'. Simi-

larly let the student show that ft
=

)S'. q. e. d.

An important special case is when the adjacentSy a and y8,

are equal. Each then is half of a straight angle, and there-

fore onefourth of a round angle ;
and each is called a right

angle. Now let the student show that if « = ^, then «' = ^
and a —

/?', or

Corollary, When two intersecting rays make two equal

adjacent anglesy they make allfour of the angles equal (Fig.

23).

Def Rays that make right angles with one another are

called normal (or perpendicular) to each other. N.B.

The normal relation is mutual. How?
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Def. Two angles whose sum is a right angle are called

complemental.

Fig. 23.

42. Are we sure that through any point on a ray we can

draw a normal to the ray? Let O be any point on the

ray LV (Fig 24). Let any half-ray, pivoted at O, start

R

f

•^ o^

Fig. 24.

from the position 01. and turn counter-clockwise into the

position 0L\ At first the angle on the right is less than the

angle on the left, at last it is greate?' ; the plane, the turning,

and the angle are all continuous
;
hence in passing from the

stage of being less to the stage of being greater, it passes
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through the stage of equality. Let OR be its position in

this stage ; then ^LOR^^ ROV ; i.e. OR is normal to

LV. Moreover, in no other position, as OSy is the ray

normal to LV
\

for LOS is not = LOR unless OS falls on

ORy but is less than LOR when OS falls within the angle

LOR, while SOV is greater than LOR
; hence LOS and

SOV are not equal ; />. 6?^ is not normal to LL when (7.S

falls not on OR. Similarly, when Z (96" is greater than LOR.
Hence

Theorem X. —Through a point on a ray one^ and only one^

ray can be drawn normal to the ray,

43. Def. A ray through the vertex of an angle, and

forming equal angles with the arms of the angle, is called

the inner Bisector or mid-ray of the angle. The inner

bisector of an adjacent supplemental angle is called the outer

bisector of the angle itself. Thus OI bisects innerly and

OE bisects outerly the angle AOB (Fig. 25).

Exercise. Prove that there is one and only one such inner

mid-ray.
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44. Theorem XI. — The inner Bisector of an angle

bisects also its cxplenient innerly.

Proof. Let 6>/ bisect ^ AOB innerly ; then '^AOI=
^ lOB; call each a; then a^-BOI'=:a+AOr (why?) ;

take away «; then BOV^AOV (why?) ;
i.e. the ray //'

bisects innerly the angle BOA, the explement of A OB.
Show that the angles marked «' are equal.

45. Theorem XII. — The inner and outer Bisectors of

an angle are tiormal to each other.

Proof. Let 01 and OE bisect (Fig. 25) innerly and

outerly the angle AOB. Then, by definition, the angles

marked a are equal, and the angles marked /? are equal ;

also the sum of + a + « + /8 + y8
= *S ; hence a + y8

= J 6*
;

or, lOE = a right angle, q. e. d.

TRIANGLES.

46. Thus far we have treated only of rays intersecting in

a single point. But, in general, three rays Z, J/, N (Fig.

Fig. 26.

26) will meet in three points, since each pair will meet in

one point, and there are three pairs : {MN) , (iVZ) , {LM) .
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Denote these points by A^ B^ C. Then the figure formed

by these three rays is called a triangle, trigon, or three-side.

Af By C are its vertices ; <f, )8, y its inner angles ; BC, CA,

AB, its inn^r sides, or simply its sides. Its angles and sides

are called its parts. It is the simplest closed rectilinear

figure, and most important. If instead of taking three

rays we take three points A^ B, C, then we may join them

in pairs by rays; and since there are three pairs, BC, CA,

AB, then there are three rays, which we may name Z, M, N.

Thus we see that three points determine three rays, just as

three rays determine three points. This equivalent deter-

mination of the figure by the same number of points as of

rays makes the figure unique and especially important. We
denote it by the symbol A. We now ask, When are two

triangles congruent?

47. Theorem XIII. — Two A having two sides and the

included angle of the one equal respectively to two sides and

the included angle of the other are congruent.

The data are: Two A, ABC and AB'C, having the

three equalities, AB = A'B\ AC==A'C', a = u' (Fig. 27).

Fig. 27.

Proof. Fit the angle « on the angle a' ; this is possible,

because the angles are eqwal and congruent. Then A falls
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on A^
',
also the point B falls on B^ (why? Because AB

= A'B^), and C falls on C (why?). Hence the three ver-

tices of the two A coincide in pairs ; therefore the three

sides of the two A coincide in pairs (why? Because through
two points, as A (A') and B {B'), only one ray can pass).

Q. E. D.

Corollary i. The other parts of the two A are equal
or congruent in pairs of correspondents : /?

=
/?', 7 = y',

BC=:B'C'.

Corollary 2. Pairs of equal parts lie opposite to pairs of

equal parts.

48. Theorem XIV. — Two A having two angles and the

included side of the one equal respectively to two angles and
the included side of the other are congruent (Fig. 28).

Fig. 28.

Data: Two A ABC, A'B'C\ having «=«', ^ = ^\
AB=A'B\

Proof. Fit AB on A'B'; this is possible (M'hy?). Then
a will fit on a' (why?), and ^ on ft' (why?) ;

i.e. the ray
^C will fit on A'C, and the ray BC on B'C Then the

point C will fall on C (why ? Because two rays meet in only
one point) ; i.e. the two A fit exactly, q. e. d.
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49. We m:iy now use the conditions of congruence thus

far established to generate new notions that may be used in

estabHshing other Theorems.

Dff. The ray normal to a tract at its mid-point is called

the mid-normal of the tract.

Theorem XV.—Any point on the mid-normal of a tract is

equidistantfrom its ends (Fig. 29).

P>..C

Data : AB a tract, M its mid-point, Z the mid-normal,

PsLny point on it.

Proof. Compare the A APM and BPM. We have

AAf=BM (why?). PM=PM, ^ AMP=:^ BMP
(why?) ; hence the A are congruent (why?) ;

and PA =
PB. Q. E. D.

Dff. A A with two equal sides, like APB, is called

isosceles ; the third side is called the base, and its opposite

angle the vertical angle.

50. Theorem XVI.— The angles at the base ofan isosceles

A are equal; and conversely.
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Data: ABC an isosceles A, AB its base, AC and BC its

equal sides (Fig. 30).

Proof. Take up the A ABC, turn it over, and replace it

in the position BCA, Then the two A ACB and BCA
have the equal vertical angles, C and C, also the side AC =
BC (why?) and BC = AC (why?) ;

hence they are con-

gruent (why?), and the '^A = :^B. Q. e. d.

Conversely, A A whose basal angles are equal is isosceles.

Let the student conduct a proof quite similar to the fore-

going.

Def. The ray through a vertex and the mid-point of the

opposite side is called the medial of that side.

Corollary i . In an isosceles A the medial of the base is

normal to it, and is the mid-ray of the vertical angle.

Corollary 2. When the medial of a side of a A is normal

to the side, the A is isosceles. Prove it.

Corollary 3. When the medial of a side bisects the

opposite angle, the A is isosceles. Can you prove it ?
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LOGICAL DIGRESSION.

51. When the subject and predicate of a proposition are

merely exchanged, the proposition is said to be converted^

and the new proposition is called the converse. Thus X is

K; coiiicrsch\ Kis X. In general, converses of true prop-

ositions are not true, but false. Thus, The horse is an

animal is always correct, but The animal is a horse is

generally false. A proposition remains true after simple

conversion only when subject and predicate are properly

quantified, thus : All horses are some animals ; conversely,

Some animals are all horses. Both propositions are correct

and mean the same thing. But they are awkward in ex-

pression, and such forms are rarely or never used. When
the quantifying word is all or its equivalent, the term is

said to be taken universally ; when it is some or its equiva-

lent, the term is said to be taken particularly. Thus in the

foregoing example horse is taken universally, but animal

particularly. The only useful conversions are of proposi-

tions in which both subject and predicate are ufiiversal. In

the great body of propositions only the subject is quantified

universally, the quantifier is omitted from the predicate, but

a particular one is understood. To show that a universal

quantifier is admissible requires in general a distinct proof.

52. In order to convert an hypothetic proposition, we

exchange hypothesis and conclusion. Thus, \{X is K, U is F;
the converse is, if 6^" is V^ X is K All such hypothetic

propositions may be stated categorically^
thus : All cases of

A' being Fare cases of 6^" being V
\ conversely, All cases of

U being V are cases of X being Y. This converse is plainly

false except when the quantifier all is admissible in the first

predicate.
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53. But while the converse of a true hypothetic propo-

sition is generally false, the contrapositive is always true.

This latter is formed by exchanging hypothesis and conclu-

sion and denying both. Thus : If Jf is K, then 17 is F;

contrapositivey
If U is not V, then X is not K Or, if a

point is on the mid-normal of a tract, then it is equidistant

from the ends of the tract ; contrapositive. If a point is not

equidistant from the ends of a tract, then it is not on the

mid-normal of the tract.

54. Theorem XVII. — An outer angle of a A is greater

than either inner non-adjacent angle.

Data: Let ABC be any A, a' an outer angle, ^' a non-

adjacent inner one (Fig. 31).

Fig. 31.

Proof. Draw the medial CM and lay off MD — MC
;

also draw AD. Then in the A AMD and BMC we have

AM=BM {vfhy}), MD = MC (why?), and '^AMD =
'^.BMC (why?) ;

hence the A are congruent (why?), and

^MBC=^MAD (why?). But
-^^
MAD is only part of

the ^ «'
;
hence «'> ^ MAD (why?) ;

i.e. «'>/?'. q. e. d.

Similarly, prove that a! > y.
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55. Theorem XVIII. — If tivo sides 0/ a A are unequal,

then the opposite angles are unequal in the same sense {i.e.

the greater angle opposite the greater side) (Fig. 32).

Fig. 32.

Data: ABC a A, AC > AB, AR the mid-ray of the

angle at A, AB' laid off= AB.

Proof. ABR and AB^R are congruent (why?) ; hence

^ ABR = ^ AB'R (why ?) ; but ^ AB'R > C (why ?) ;

i.e. 7(.ABC>^ACB. q. e. d.

Conversely, If two angles 0/ a A are unequal, the opposite

sides are unequal in the same sense.

Proof. The opposite sides are not equal ;
for when the

sides are equal, the opposite angles are equal (Theorem

XVI.), and contrapositively, when the angles are unequal,

the opposite sides are unequal. Then, by the preceding

Theorem, the greater angle lies opposite the greater side.

56. Join BB' ;
then AR is the mid-normal of BB' (why ?),

and hence angle CBB'= angle BB^R (why ?) . Hence angle

BB'C>B'BC (why?) ;
hence BC>B'C (why?). But

B'C=AC-AB; hence BC> AC - AB : i.e.
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Theorem XIX. — Any side of a ^ is greater than the

difference of the other two.

Add AB to both sides of this inequahty and there results

AB +BOAC] i.e.

Theorem XX. — Any side of a A is less than the sum of

the other two.

This fundamental Theorem is here proved on the sup-

position that AB <AC; ifAB were =ACot> AC, it would

need no formal proof.

57. Theorem XXI. — A point not on the mid-normal of
a tract is not equidistantfrom the ends of the tract.

Data : AB the tract, MN the mid-normal, Q any point

not oviMN {Y\g. 33).

Fig. 33.

Proof. Draw QA and QB \
one of them, as QA, must

cut MN^X. some point, as P. Then QB< QP-\-PB (why ?) ,

and PB^PA (why?); hence QB<QP-\-PA', i.e.

QB < QA. Q. E. D.

Of what Theorem is this the converse ?

If now we seek for a point equidistant from A and B, we

can find it on the mid-normal of AB and only there
;
hence

the locus of a point equidistant from the ends of a tract is

the mid-normal of the tract.
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58. Theorem XXII.— Two A with the three sides of the one

equal respectively to the three sides of the other are congruent.

Data: ABC and A'B'C the two A, and AB = AB\
BC==B'C, C^= C'y^' (Fig. 34).

Proof. Turn the A A'B'C over and fit A'B^ on AB so

that C shall fall (say) at D. Draw CD. Then A and B
are on the mid-normal of CD (why?) ;

hence the ray AB
is the mid-normal of CD (why?) ;

hence the angle CAB =
angle DAB, and angle CBA = angle DBA (why?). Hence

the A are congruent (why?), q. e. d.

N.B. As to when the A must be turned round and when

turned over, see Art. 94.

59. Theorem XXIII.— A. From any point outside of a

ray one normal may be drawn to the ray.

Data: /*the point, LV the ray (Fig. 35).

Proof. From P draw a ray far to the left, as PA^ making
the angle PAL > angle PAL\ Now let the ray turn about

/* as a pivot into some position far to the right, making

angle PA^L < PA^V. The plane, the angle, the motion, all

being continuous, in passing from the stage of being unequal
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in one sense to the stage of being unequal in the opposite

sense, the angles made by the moving ray with the fixed ray

must have passed through the stage of equality. Let PN be

Fig. 35.

the ray in this position so that angle PNL— angle PNL! ;

then each is a right angle by Definition, and /Wis normal to

LL. Q. E. D.

B. There is only one ray through a fixedpoint and normal

to a fixed ray.

Proof. Any other ray than PN, as PD, is not normal to

LV
;

for the outer angle PDL is > the right angle PND
(why?). Q. E. D.

C. The normal tract PN is shorter than any other tract

from P to the ray LV .

Proof. For the right angle at Wis > angle PDN (why?) ;

hence PN < PD (why ?) . q. e:. d.

D. E. Equal tracts from point to ray meet the ray at

equal distances from the foot of the normal; and conversely.

Proof. For, if DPD^ be isosceles, then the normal PN is

the medial of the base (why ?) .

F. Two, and only t7i>o, tracts ofgiven length can be drawn

from a point to a ray.
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Proof. For two, and only two, points are on the ray at a

given distance from the foot of the normal.

G. Of tracts drawn to points unequally distant from the

foot of the normaly the one drawn to the remotest is the

longest.

Proof. In the A PDA, angle PDA > PAD (why?) ;

hence PA > PD (why ?) . q. e. d.

Similarly, PA' > PD.

H. Equal tracts from the point to the ray make equal

angles with the normal from the point to the ray and also

equal angles with the ray itself; and conversely.

I. Of unequal tracts from the point to the ray, the longest

makes the greatest angle with the normal and the least with

the ray.

I^t the student conduct the proof ofH and /.

60. Theorem XXIV.— Two A having two angles andan

opposite side of one equal respectively to two angles and an

opposite side of the other are congruent.

Data : ABC and A^B'C two A having AB — A'B\ angle

u = angle a', angle y = angle y' (Fig. 36).

Fig. 36.
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Proof. Fit «' on a
;

then B' falls on B (why?), andAC
falls along A C. Draw the normal BN. Then ^C and BC
make the same angle, y = y',

with the ray AN; hence they

are = and meet the ray in the same point (why ?) ;
i.e. C

falls on C
;

i.e. the A are congruent. Q. e. d.

6i. We now come to the so-called ambiguous case, of

two A with two sides and an opposite angle in one equal to

the two sides and the corresponding opposite angle in the

Fig. 37.

other. Let ABC and A B'C (Fig. 37) be the two A, with

AB = A'B', BC=B'C, and angle a = angle «'. Fit a' on
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«
;
then A^B^ falls on ABy B^ on B ; but since from a point

B {B') we may draw two equal tracts to the ray AL, the

side B'C may be either of these equals and may or may not

fall on BC, In general, then, we cannot prove congnience
in this case. But if ^C be > AB^ then angle « > angle y

(why?), and there is only one tract on the right of AB drawn

from B to the ray AC and equal io BC ;
the other tract

equal to BC must be drawn outside of AB and to the left.

Hence in this case, when the angle lies opposite the greater

side, the A are congruent. Hence

Theorem XXV.— Two A having two sides and an angle

opposite the greater in one equal to two sides and an angle

opposite the greater side in the other are congruent.

Corollary. Two right A having a side and any other

part of one equal to a side and the corresponding part of

the other are congruent.

Fig. 38.

62. We have seen (Art. 47) that when two A have two

sides and included angle in one equal to two sides and
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included angle in the other, they are congruent. But what

if the included angles are not equal ? Let ABC and A'B'C
be the two A, having AB^AB\ BC= B'C, but y8 > /8'.

Slip the upper film of the plane along until A^B^ fits on AB
and let C fall on D. Draw the mid-ray BM of the angle

CBD, let it cut AC Tui M, and draw DM. Then the A
CBM SiXid DBM 3ixe congruent (why?) ;

hence AM-{- MD
= AC (why?), and^C>^Z>, or^O^'C. Hence

Theorem XXVI.— Two A having two sides of one equal

to two sides of the other, but the included angles unequal^

have also the third sides unequal, the greater side lying

opposite the greater angle.

Conversely, Two A having two sides in one equal to two

sides in the other, but the third sides unequal, have the

included angles also unequal, the greater angle being opposite

the greater side.

Proof. The included angles are not equal; for if they

were equal, the A would be congruent (why?) and the

three sides would be equal. Hence the included angles are

unequal, and the relation just estabUshed holds
; namely, the

greater angle Hes opposite a greater side. q. e. d.

63. Theorem XXVII.— Every point on a mid-ray of an

angle is equidistantfrom its sides.

Data : O the angle, MJVV the mid-ray, P any point on it.

Proof. From P draw the normals PC and PD
; they are

(Fig. 39) the distances of P from the ends of the angle.

Then the APOC and POD are congruent (why?) ;
hence

PD = PC. Q. E. D.
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Conversely, A poitit equidistantfrom the ends ofan angle

is on a mid-ray of the angle (Fig. 39).

FIG. 39.

Proof. If PC = PD, then the ^ POC and POD are

congruent (why ?) ;
hence anglePOD = anglePOC. q. e. d.

Accordingly we say that the mid-rays of an angle are the

locus of a point equidistantfrom its ends.

*64. It is just at this stage in the development of the

doctrine of the Triangle that we are compelled to halt and

introduce a new concept before we can proceed any further.

The necessity of this step will appear from what follows

(which may, however, be omitted on first reading, at the

option of teacher or student) .

Def. Two A not congruent are called equivalent when

they may be cut up into parts that are congruent in pairs.

Theorem XXVIII. — Any A is equivalent to another A
having the sum of two of its angles equal to the smallest

angle of the given A.

Data : ABC the A, a the least angle (Fig. 40).
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Proof. Through M, the mid-point of BC, draw AM SLud

make MD = MA. Then the A ACM and DBM are con-

gruent (why?), the part AMB is common to ABC and

ABD, and the sum of the angles ADB and ^^Z? = angle

BAC. Q.E.D.

Fig. 40.

Corollary. The sum of the angles in the new A is equal

to the sum of the angles in the old A.

*
65. We may now repeat this process, applying it to the

smallest angle, as A, of the A ABD. In the new A ABE
the smallest angle, as A, cannot be greater than \ of the

original angle a in ABC ;
after n repetitions of this process

we obtain a A, as ALB, in which the sum of the angles A

and L cannot be > — of the original angle « in the A
^"

I

ABC. By making n as large as we please, we make —

as small as we please, and so we make — of angle a

smaller than any assigned magnitude no matter how small.

Meantime the other angle B has indeed grown larger and

larger, but has remained < a straight angle. Hence the

sum of the angles in the A ALB cannot exceed a straight

angle by any amount however small
;
but the sum of the

angles in ALB = sum of the angles in ABC ;
hence

Theorem XXIX. — The sum of the angles in any A can-

not exceed a straight angle by any finite amount.
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Corollary i. The outer angle of a A is not less than the

sum of the inner non-adjacent angles.

Corollary 2. From any point outside of a ray there may
be drawn a ray making with the given ray an angle small at

will.

Proof. From P draw any ray PA, and lay off AB = PA

(Fig. 41). Then the angle PBA is not greater than

Fio. 41.

\PAN (why?); now lay off BC=^PB (why?); then

angle PCB is not > \ angle PBA (why?) ; proceeding

this way, we obtain after n constructions an angle PLN
not > — of the angle PAN^ and by making n large enough

2"

we may make this ^ as small as we please, q. e. d.

66. Theorem XXX. — If the sum of the angles in any A
equals a straight angle, then it equals a straight angle in

every A (Fig. 42).
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Hypothesis : ABC a A with the sum of its angles

Proof, (i) Draw any ray through C, as CD. Then if

the sum of the angles in the A ACD and BCD be ^ — ;c

and S—y, x and y being any definite magnitudes however

small, then on adding these sums we get 2S—{x-\-y)',
and on subtracting the sum, S, of the supplemental angles

at Z> we get 6* — (^-f-jv) for the sum of the angles of the

A ABC. Now if this sum be S, then x and y must each

be O
;

i.e. the sum of the angles in each of the A ACD
and BCD is 5. Now draw DE and DF\ in each of the four

small A the sum of the angles is still = ^. (2) We may
now make a A as large as we please and of any shape what-

ever, but the sum of the angles will remain = S. For, take

the same A ABC, and draw CD normal to AB. Then the

sum of the (Fig. 43) angles in the A ACD is S, as has

Fig. 43.

been shown above
;

also angle Z> is a right angle ;
hence

the angles A and ACD are complementary. Now along

^C fit another A ACD^ congruent with ACD) then all

the angles of the quadrilateral ADCD' are right, and the

figure is called a rectangle. Now we can place horizontally

side by side as many of these rectangles, all congruent, as we

please, say p of them
;
we can also place as many of them

vertically, one upon another, as we please, say q of them
;
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and we can then fill up the whole figure into a new rectan-

gle, as large as we please. About each inner junction-point

of the sides of the rectangles there will be four right angles

plainly. Now connect the two opposite vertices, as A and Z,

of this rectangle. So we get two congruent right A, in each

of which the sum of the angles is S. Then any A that we

cut off from this right A will, by the foregoing, have the

sum of its angles equal to 6". Since / and q are entirely in

our power, we may make in this way any desired right A
and from it cut off any desired oblique A, with the sum of

its angles = S. q. e. d.

Hence either no A has the sum of its angles = 6", or

every A has the sum of its angles = S.

67. A logical choice between these alternatives is impos-

sible, but the matter may be cleared up by the following

considerations :

Across any ray LM draw a transversal T, cutting LM zX

O, and making the angles «, )3, y, 8. Through any point,

as O', of T'draw a ray (Fig. 44) L'M' making angle «' = a.

Fig. 44.

This is evidently possible (why?). Then plainly /8'
=

/3,

y'
=

y, S' = 8, «' = u
; they are called corresponding angles ;
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also a and
y', /? and V are equal,

—
they are called alternate

angles ;
also « and V, as well as ^ and y', are supplemental,—

they are called interadjacent angles.

68. Now let /*be the mid-point oi 00^ ;
on it as a pivot

turn the whole right side of the plane round through a

straight angle until O falls on 0\ and 6>' falls on O. Then,
since the angles about O and O^ are equal as above stated,

the half-ray OL will ffill and fit on the half-ray 0'M\ and

the half-ray O^V on the half-ray OM. Accordingly, if the

rays LM and Z'J/' meet on one side of the transversal T,

they also meet on the other side of T.

69. Three possibilities here lie open :

(i) The rays ZJ/and Z'J/' may meet on the left and

also on the right of T, in different points.

(2) They may meet on the left and also on the right of

T, in the same point.

(3) They may not meet at all.

No logical choice among these three is possible. But

in all regions accessible to our experience the rays neither

converge nor show any tendency to converge. Hence we

assume as an

Axiom A. Two rays that make with any third ray a pair

of corresponding angles equal, or a pair of alternate angles

equal, or a pair of interadjacent angles supplemental, are

non-intersectors.

70. But another query now arises. Is it possible to draw

another ray through (9' so close to Z' that it will not meet

'OL however far both may be produced ? Here again it is

impossible to answer from pure logic. An appeal to experi-

ence is all that is left us. This latter testifies that no ray
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can be drawn through O^ so close to 0*V as not to approach
and finally meet the ray OL. Hence we assume as another

Axiom B. Through any point in a plane only one non-

intersector can be drawnfor a given straight line.

This single non-intersector is commonly called the parallel,

through the point, to the straight line.

71. It cannot be too firmly insisted, nor too distinctly

understood, that the existence of any non-intersector at all,

and the existence of only one for any given point and given

ray, are both assumptions, which cannot be proved to be

facts. The best that can be said of them, and that is quite

good enough, is that they and all their logical consequences
accord completely and perfectly with all our experience as

far as our experience has hitherto gone. Even then, if

there be any error in our assumptions, we have thus far been

utterly unable to find it out.

A geometry that should reject either or both of these

assumptions would have just as much logical right to be as

the geometry that accepts them, and such geometries lack

neither interest nor importance. They may be called Hyper-
Euclidean in contradistinction from this of ours, which from

this point on is Euclidean (so-called from the Greek master,

Euclides, who distinctly enunciated the equivalent of our

Axioms in a Definition and a Postulate).

Note.— Observe the relation of Axioms A and B : the one is the

converse of the other.

Observe also that the necessity of assuming the first lies in our igno-

rance of the indefinitely greats and the occasion of assuming the other

lies in our ignorance of the indefinitely small. See Note, Art. 301.

73. Accepting our Axioms as at least exacter than any

experiment we can makc^ we may now easily settle the ques-
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tion as to the sum of the angles in a A. Let ABC be any
A

; through the vertex C draw the one parallel to the base

AB. Then a = «', ^ = /S' (why?) ;
also a' + y + )8'

= 6"
j

hence a + y-|-/3 = ^/ i.e. (Fig. 45)

Theorem XXXI. — The sui7i of the angles in a A is a

straight angle.

Fig. 4S.

Corollary i. The outer angle E equals the sum of the

inner non-adjacent angles a and y (why?).

Corollary 2. If two angles of a A be known, the third is

also known.

Corollary 3. If two A have two angles, or the sum of two

angles of the one equal to two angles, or the sum of two

angles of the other, then the third angles are equal.

^Corollary 4. To know the three angles of a A is not to

know the A completely, for many A may have the same

three angles. Such A are similar, as we shall see, but are

not congruent; they are alike in shape, but not in size.

73. Next to normality, parallelism is the most important

relation in which rays can stand to each other, and we must

now use the new relation in the generation of new concepts.
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Theorem XXXII. — Parallel Intercepts between parallels

arc e<]ual.

Data : L and Z', it/andM , two pairs of parallels (Fig. 46).

Fig. 46.

Proof. Draw BD. Then the A ABD and CDB are

congruent (why?), and AB = CD, BC=DA. q. e. d.

Def. The figure ABCD formed by two pairs of parallel

sides is called a parallelogram, and may be denoted by the

symbol O.
A join of opposite vertices, as BD, is called a diagonal.

74. Theorem XXXIII. — Properties of the parallelogram.

A. The opposite sides of a parallelogram are equal.

This has just been proved.

B. The opposite angles of a parallelogram are equal.

Proof. « = /3 (why?); )8
= «' (why?); hence « = «'.

Q. E. D.

Corollary, Adjacent angles of a parallelogram are sup-

plementary.

C. Each diagonal of a parallelogram cuts it into two con-

gruent A. Prove it.
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D. The diagonals of a parallelogram bisect each other

(Fig. 47)

,-''M

FIG. 47.

Proof. The A AMB and CMD are congruent (why?) ;

hence AM^ CM, BM= DM. q. e. d.

75. We may now convert all the foregoing propositions

and obtain as many criteria of the parallelogram.

Theorem XXXIV.— A'. A 4-side with its opposite sides

equal is a parallelogram.

Data : AB ^ CD, AD= CB (Fig 48).

W^-^,

Fig. 48.

Proof. Draw BD. Then ABD and CDB are congruent

(why?); hence ^ = 8; and AD and CB are parallel;

similarly, AB and CD are parallel ;
hence ABCD is a par-

allelogram. Q. E. D.
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B'. A 4-side with opposite ant^ks equal is a parailelogram.

Data: « = «', ^ + yS'
= y 4- y' (Fig. 49).

'i-A

Fig. 49.

Proof. Since « = «', y3 + y = )3' + y' (why?). Hence

/?
=

y', ft'
= y; i.e. opposite sides are parallel, the 4-side

is a parallelogram, q. e. d.

C, A 4-side that is cut by each diagonal into two congru-

ent A is a parallelogram.

For the opposite angles must be equal (why?) ; hence,

etc. Q. E. D.

D'. A 4-side whose diagonals bisect each other is a

parallelogram.

For the opposite sides are equal, being opposite equal

angles in congruent A ; hence, etc. q. e. d.

E'. A 4-side with one pair 0/ sides equal and parallel is

a parallelogram.

For the other two sides are equal and parallel (why?) ;

hence, etc. q. e. d.

76. The foregoing properties and criteria of the parallel-

ogram illustrate excellently the nature of a definition. This
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latter defines or bounds off by stating something that is true

of the thing defined, but of nothing else. Accordingly, the

characteristic of every definition or definitive property is

that the proposition that states it may be converted simply.

Thus:

Every parallelogram is a 4-side with opposite angles

equal ;
and conversely, every 4-side with opposite angles

equal is a parallelogram.

Not every property is definitive, and hence not every

property may be used as test or criterion.

77. Special Parallelograms.

Def. An equilateral parallelogram is called a rhombus.

Theorem XXXV. — The diagonals of a 7'hombus a7'e nor-

mal to each other.

Let the student conduct the proof suggested by the figure

(Fig- 50)-

Fig. 50.

Conversely, A parallelogram ivhose diagonals are normal

to each other is equilateral, or a rhombus. Let the student

supply the proof.

78. Def. An equiangular parallelogram is called a rect-

angle (for all the angles are right angles) .
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Theorem XXXVI.— The diagonals of a rectangle are equal

(fig- 50-

D
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For the square, being both rhombus and rectangle, has

all the definitive properties of both. Or the student may
prove the proposition directly from the figure (Fig. 52), as

well as its converse :

A parallelogram with diagonals equal and normal to each

other is a square.

80. Can we convert Theorem XXXII. and prove that

equal intercepts between parallels are parallel ? Manifestly
no (Fig. 53), for from the point C we may draw two equal

Fig. 53.

tracts to the other parallel, the one CB parallel to AD, the

other CB^ sloped at the same angle to the parallels but in

opposite ways. We may call CB^ a?iti-parallel to AD, and

the figure AB'CD an anti-parallelogram. Since from any

point C only two equal tracts, or tracts of given length, may
be drawn to the other parallel through A, we have the

Theorem XXXVIII.— Equal intercepts between parallels
are either parallel or anti-parallel.

Corollary i. Adjacent angles of an anti-parallelogram

are alternately equal or supplemental.

Corollary 2. Anti-parallels prolonged meet at the vertex

of an isosceles A.
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THE GENERAL QUADRILATERAL OR 4-SIDE.

81. A Quadrilateral is determined by four intersecting

rays. These determine six points, the four inner vertices,

C, Z>, Ey Fj and the two outer ones, Aj B. The cross-rays,

CE^ DFy AB, are the diagonals, CE and DF itiner, AB
outer. Commonly the outer diagonal is little used, and the

inner ones are called the diagonals. When none of the

angles C, Z>, E^ F, of the 4-side is greater than a straight

angle, the 4-side is called the normal, as CDEF. It is the

only form ordinarily considered. The other two forms are

(2) the crossed^ ACBE^ and (3) the inverse^ ADBF
(Fig. 54). For all forms let the student prove

Fio. 54.

Theorem XXXIX. — The sum of the inner angles of a

^-side is a round angle.

Corollary. When two angles of a 4-side are supple-

mental, so are the other two.

82 . Theorem XL.— The angles between two rays equal

the angles between two normals to the rays.
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Data : OL and OM any two rays, PA and PB any two

normals to them (Fig. 55).
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84. Def. A 4-side formed by two parallels and two

transversals is called a trapezoid. Thus ACFD is a trape-

zoid. The parallel sides are called the bases (major and

min3r) ;
the parallel through the mid-points of the trans-

verse sides is the mid-parallel.

Fig. 56.

Theorem XLII. — The mid-parallel of a trapezoid equals

the half-sum of its bases.

Let the student elicit the proof from the foregoing figure.

Corollary i . A parallel to a base of a A bisecting one

side bisects also the other. {Hint. Let D fall on A.)

Corollary 2. A ray bisecting two sides of a A is parallel

to the third.

For only one ray can bisect two sides (why?), and we
have just seen (Cor. i) that a ray parallel to the base does

this
; hence, q. e. d.

Corollary 3. The mid-parallel to the base of a A equals

half the base.

85. Def Three or more rays that pass through a point

are said to concur or l)e concurrent.
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Theorem XLIII. — The medials of a IS concur.

Data : ABC a A, ^^aiid BQ two medials (Fig. 57).

Proof. Draw a ray from C through (9, the intersection

of the two medials, and lay off 011= CO. Draw AH and

BH; they are parallel io BQ and AF (why?) ;
hence

AOBH is a parallelogram (why ?) ;
hence AR = BR

(why?). Hence COR is the third medial; />. the three

medials pass through O. q. e. d.

Corollary. Each medial cuts off a third from each of

the other two. For C0 = 20R (why?).

Def. The point of concurrence of the medials is called

the centroid of the A. It is two-thirds the length of each

medial from the corresponding vertex.

86. Theorem XLIV.— The mid-normals of the sides of
a A concur.

Data : ABC a A, Z and M mid-normals to the sides EC
and CA, meeting at S.
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Proof. ^ is equidistant from B and C (why?), and from

Cand A (why?) ;
hence S is equidistant from A and B

(why?), or is on the mid-normal of AB (why?) ;
hence

the mid-normals concur (Fig. 58). g. e. d.

Fig, 58.

Corollary. S is ecjuidistant from A, B, and C, and no

other point in the plane is (why?).

D^/. The point of concurrence of the mid-normals is

called the circumcentre of the A.

87. Z>e/. A tract from a vertex of a A normal to the

opposite side is called an altitude of the A. Sometimes,

when length is not considered, the whole ray is called the

altitude.

Theorem XLV.— T/ie altitudes of a ^ concur.

Proof. Using the preceding figure, draw the A A'B'C.

Its sides are parallel to the sides of ABC (why?) ;
hence

its altitudes are the mid-normals L, Af, JV; and these have

just been found to concur. Also, since ABC may be any

A, A'B'C may be any A ;
hence the altitudes of any A

concur, q. e. d.
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Def. The point of concurrence of altitudes is called the

orthocentre (or alticentre) of the A.

Def. In a right A the side opposite the right angle is

called the hypotenuse (= subtense = under-stretch).

Queries : Where do circumcentre and orthocentre lie :

(i) in an acute-angled A? (2) in an obtuse-angled A ?

(3) in a right A ?

88. Theorem XLVI.—The inner mid-rays of the angles

of a /S. concur.

Data : ABC a A, AL, BM, CiVthe inner mid-rays of its

angles (Fig. 59).

Fig. 59.

Proof. Let AL and BM intersect at /. Then / is equi-

distant from AB and AC, and from AB and BC (why?) ;

hence / is equidistant from AC and BC ;
hence / is on

the inner mid-ray of the angle C ; i.e. the three inner mid-

rays concur in /. q. e. d.

Def The point of concurrence of the inner mid-rays is

called the in-centre of the A.
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89. Theorem XLVII.— The outer mid-rays of hvo angles

and the inner mid- ray 0/ the other angle 0/ a A concur.

Let the student conduct the proof (Fig. 60).

I

Fig. 60.

De/. The points of concurrence are called ex-centres of

the A : there are three.

EXERCISES I.

Little by little the student has been left to rely more and

more upon his own resources of knowledge and ratiocination

in the conduct of the foregoing investigations. He has now

possessed himself of a large fund of concepts, and he must

test his ability to wield, combine, and manipulate them in

forging original proofs of theorems. Let him bear always
in mind the fundamental logical principle that ez'ery example
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of a general concept has all the marks of thai general concept.

Let him begin his proof by stating precisely the data, the

given or known facts, let him draw a corresponding diagram
in order to have a clearer view of the spatial relations in-

volved, let him note carefully what concepts are present in

the proposition, let him draw auxiliary lines and introduce

auxiliary concepts at pleasure. But let him exhaust simple
means before trying more complicated, let him distinguish,

by manner of drawing, the principal from the auxiliary rays,

and especially let him be systematic and consistent in the

literation of his figures.

1. How many degrees in a straight angle? In a right

angle ?

Historical Note.— For purposes of computation the round angle
is divided into 360 equal parts called degrees, each degree into 60

equal minutes (partes minutce primse), each minute into 60 equal
seconds (partes minutae secundcz), denoted by *^, ',

"
respectively.

This sexagesimal division is cumbrous and unscientific, but is apparently

permanently established. It seems to have originated with the Baby-

lonians, who fixed approximately the length of the year at 360 days, in

which time the sun completed his circuit of the heavens. A degree,

then, as is indicated by the name, which means step in Latin, Greek,
Hebrew {gradus, padfios (or rfXTjixa), ma'a/ak), was primarily the daily

step of the sun eastward among the stars. The Chinese, on the other

hand, determined the year much more exactly at 365} days, and

accordingly, in defiance of all arithmetic sense, divided the circle into

365 1 degrees.

2. The angles of a A are equal ;
how many degrees in

each?

Remark.— Such a A is called equiangular, more commonly equi-

lateral, but better still regular.

3. Show that this regular A is equilateral.

4. One angle of a A is a right-angle ;
the others are

equal ;
how many degrees in each ?
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5. One angle of a A is twice and the other thrice the

third
;
what are the angles ?

6. Two angles of a A are measured and found to be

46° 37' 24" and 52° 48' 39"; what is the third?

7. One angle of a A is measured to be 6i°22'4o"; the

others are computed to be 49° 34' 28" and 69° 2*43" ; what

do you infer ?

8. A half-ray turns through two round angles counter-

clockwise, then through half a right-angle clockwise, then

through a straight angle counter-clockwise, then through \
of a round angle counter-clockwise, then through |^

of a

straight angle clockwise
;
what angle does it make in its

final position with its original position ?

9. <9 is a fixed point (called origin) on a ray, A and B
are any pair of points, M their mid-point. Show and state

in words that 20M= OA -f OB.

10. Af B^ C are three points on a ray, A\ B\ C are

mid-points of the tracts BC^ CA, AB, and O is any point

on the ray ;
show that OA-\-OB-\- 0C= 0A'-{- 0B'-\- OC.

11. Af By C, £>, O are points on a ray; A', B\ C are

mid-points of AB, BC, CD \ A", B", are mid-points of

A'B', B'C; Mis the mid-point of A"B" ; prove SOM=
OA + sOB + sOC+OD.

12. What are the conditions of congruence in isosceles

A ? In right A ?

13. In what A does one angle equal the sum of the

other two?

Z>e/. A number of tracts joining consecutively any number

of points (first with second, second with third, etc.) is called

a broken line, or train of tracts, or polygon. Where the last
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point falls on the first the polygon is closed ; otherwise it is

open. Unless otherwise stated, the polygon is supposed to

be closed. The points are the vertices, the tracts are the

sides of the polygon. The closed polygon has the same

number of vertices and sides, and we may call it an n-angle
or n-side. The angles between the pairs of consecutive

sides are the angles of the polygon, either inner or outer
;

unless otherwise stated, inner angles are referred to. Inner

and outer angles at any vertex are supplemental. When
each inner angle is less than a straight angle, the polygon
is called convex ; otherwise, re-entrant. Unless otherwise

stated, convex polygons are meant. Sides and angles of a

polygon may be reckoned either clockwise or counter-clock-

wise.

14. Prove that the sum of the inner angles of an «-side

is {n
—

2) straight angles. What is the sum of the outer

angles ?

15. Find the angle in a regular {i.e. equiangular and

equilateral) 3-side, 4-side, 5-side, 8-side, 12-side. (For

proof that there is a regular ?z-side, see Art. 137.)

16. Show that a (convex) polygon cannot have more

than three obtuse outer angles, nor more than three acute

inner angles.

17. Two angles of a A are a and ^\ find the angles at

the intersection of their mid-rays.

18. If two A have their sides parallel or perpendicular in

pairs, then the A are mutually equiangular.

19. The medial to the hypotenuse of a right A cuts the

A into two isosceles A.

20. An angle in a A is obtuse, right, or acute, according

as the medial to the opposite side is less than, equal to, or

greater than, half the opposite side.
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21. A medial will be greater than, equal to, or less than,

half the side it bisects, according as the opposite angle is

acute, right, or obtuse.

22. \{ P and Q be on the mid-normal of ABy then

AAPQ = ABPQ (= indicates congruence).

23. AB is the base, C the opposite vertex of an isosce-

les A; show that ABN=BAM (i) when AM and BN
are altitudes, (2) when they are medials, (3) when they are

mid-rays of angles A and Z?, (4) when MN is normal to the

mid-normal of AB.

24. P is any point within the A ABC; show that

AP+BP<AC^ CB, AP+PB-\- CP> ^ {AB+BC+ CA).

25. ABC"'L and AB'C-'-L are two convex polygons,

not crossing each other, between the same pairs of points,

A and Z
;
which is the longer? Give proof.

26. P is a point within AABC ;
show that angle APB

>ACB and sum of angles at P= 2{A + B-\- C).

27. Pis equidistant from A, B, and C \ show that angle

APB=2{zxi^^ACB).
28. Conversely, if angle ^/^^ = 2 (angle ACB), angle

BPC= 2 (angle BAC), and angle CPA = 2 (angle CBA),
then P is equidistant from A, B, C.

29. The mid-rays of the angles at the ends of the trans-

verse axis of a kite cut the sides in the vertices of an

anti-parallelogram (Art. 99).

30. The four joins of the consecutive mid-points of the

sides of a 4-side form a parallelogram.

31. The joins of the mid-points of the pairs of opposite

sides and of the pairs of diagonals of a 4-side concur, bisect-

ing each other.
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52. The mid-parallels to the sides of a A cut it into 4

congruent A.

33. What figures are formed by the mid-parallels when

the A is right? isosceles? regular?

34. A parallelogram is a rhombus if a diagonal bisects

one of its angles.

35. A parallelogram is a square if its diagonals are equal

and one bisects an angle of the parallelogram.

36. From any point in the base of an isosceles A parallels

are drawn to the sides
;
the parallelogram so formed has a

constant perimeter (
= measure round = sum of sides) .

37. The sum of the distances of any point on the base of

an isosceles A from the sides is constant.

38. The sum of the distances of any point within a regular

A from the sides is constant.—What if the point be without

the A?

39. /* is on a mid-ray of the angle A in the A ABC)
compare the difference of FB and PC : when B is within

the A, and when B is without.

40. The inner mid-ray of one angle of a A and the outer

mid-ray of another form an angle that is half the third angle

of the A.

41. O is the orthocentre of the A ABC; express the

angles A OB, BOC, COA, through the angles A, B, C.

42. Do the like for the circum-centre 6" and the in-centre /.

43. The medial to the hypotenuse of a right A equals

one-half of that hypotenuse.

44. The mid-rays of two adjacent angles of a parallelogram

are normal to each other.
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45. In a 5 -pointed star the sum of the angles at the

points is a straight angle. What is the sum in a 7-pointed

star?

46. Parallels are drawn to the sides of a regular A, tri-

secting the sides ; what figures result ?

47. A side of a A is cut into 8 equal parts, through each

section point parallels are drawn to the other sides ;
how are

the other sides cut and what figures result ?

48. Two A are congruent when they have two mid-tracts

of two corresponding angles equal, and besides have equal

( 1 ) these angles and a pair of the including sides
;
or

(2) two pairs of corresponding angles; or

(3) one pair of corresponding angles and the correspond-

ing angles of the mid-tract with the opposite side
;
or

(4) one pair of including sides and the adjacent segment
of the opposite side.

49. Two A are congruent when they have two corre-

sponding sides and their medials equal, and besides have

equal

( 1 ) another pair of sides ; or

(2) the angles of the medial with its side (in pairs) ;
or

(3) a pair of angles of the bisected side with another

side, the angles of the medial with this side being both

acute or both obtuse ; or

(4) a pair of angles of the medial with an including side,

the corresponding angles of the medial with its side being

both acute or both obtuse.

50. Two A are congruent when they have a pair of cor-

responding altitudes equal, and besides have equal
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(
1
) the pair of bases and a pair of adjacent angles ;

or

(2) the pair of bases and another pair of sides
;
or

(3) the pairs of angles of the altitude with the sides
; or

(4) two pairs of corresponding angles ;
or

(5) the two pairs of sides, when the altitudes lie both

between or both not between the sides of the A.

SYMMETRY.

90. We have seen that congruent figures are ahke in size

and shape, different only in place, and may be made to fit

point for point, line for line, angle for angle. The parts

that fit one on the other are said to correspond or be corre-

spondent. Plainly only Hke can correspond to like, as point

to point, etc.

Def. The ray through two points we may call the join of

those points, and the point on two rays the join of the rays.

91. It is now plain that if A corresponds to A and B to

B\ then the join of A and B must correspond to the join

of A' and B^
;

for in fitting A on A' and B on B' the ray

AB must fit on the ray A'B' (why?). Also if the ray Z

corresponds to L', and Mto M\ then the join of L and M
must correspond to the join of V and J/' (why?). These

facts are very simple but very important.

We shall think of the plane as a thin double film, the one

figure drawn in the upper layer, the other in the lower.

92. Two congruent figures may be placed anywhere and

any way in the plane, but there are two positions especially

important: (i) the one in which the one figure may be

superimposed on the other by turning the one half of the

plane through a straight angle about a ray called an axis ;

(2) the one in which the one figure may be fitted on the
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Other by turning the one half of the plane through a straight

angle about a j^oint called a centre.

Congnient figures in either of these two positions are

called symmetric : in the first case axally, as to the axis of

symmetry ;
in the second case centrally, as to the centre

of symmetry.

93. In two symmetries, corresponding angles, like all

other correspondents, are of course congruent ;
but they

are reckoned oppositely if the symmetry be axal, similarly if

Fig. 61.
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it be central. To parallels correspond parallels ;
to normals,

normals
;

to mid-points, mid-points ;
to mid-rays, mid-rays ;

to the axis corresponds the axis, each point to itself; to the

centre corresponds the centre itself (Fig. 6i).

Elements, whether points or lines, that correspond to

themselves may be called self-correspondent or double.

It is also manifest that centre and axis are the only self-

correspondents ;
hence if a point be self-correspondent, it

must lie on the axis in axal symmetry, or be the centre in

central symmetry ; and if two counter half-rays be corre-

spondent, they (or the ray) must be normal to the axis in

axal symmetry, or go through the centre in central sym-

metry.

94. These facts are all perfectly obvious, but a more
vivid exemplification of the nature of these two kinds of

symmetry may perhaps be found in the following :

Suppose the axis of symmetry to be a perfect plane
mirror

;
then either half of the plane may be treated as the

reflection or exact image of the other, and will be the sym-
metric of the other as to the mirror-axis. For the image of

any point A is the point A^ such that the axis is the mid-

normal of AA\ as we know froni Physics ; also, on folding

over the one half of the plane about the axis upon the other

half, the point A falls on A^ (why?) ; hence A^ is the sym-
metric of A as to the axis.

Suppose the centre of symmetry S to be also a reflector ;

then the reflection or image of any point A will be a point
A^ such that 6" is the mid-point of the tract AA\ and on

rotation through a straight angle about 6" the point A falls

on A\ and the half-ray SA fits on the half-ray SA\ Hence
either of two centrally symmetric figures is the exact image
of the other reflected from the centre of symmetry 6".
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Note carefully that these two species of symmetry depend

upon the two fundamental definitive properties of the plane :

central symmetry upon the homa'oidality of the plane, axal

symmetry upon the reversibility of the plane. Moreover,

axally symmetric figures can 7iot be fitted on each other

without reversion, folding over ; by movement in the plane

their corresponding parts can at best be ^/posed, but never

j«/^rposed ;
while on the other hand central symmetries

may be j/y/^rposed, but cannot be <7/posed, along any ray,

by motion in the plane. In central symmetries the corre-

sponding parts follow one another in the same order, but in

axal symmetries they follow in opposite orders.

95. We must now discuss these two symmetries more

minutely, and to exhibit a certain remarkable relation hold-

ing between them we arrange their properties in parallel

columns.

In Axal Symmetry.

1. The axis corresponds to it-

self.

2. Every point of the axis cor-

responds to itself.

3. Every self-correspondent

point lies on the axis.

4. The join of two correspond-
ent rays is on the axis.

(For it is self-correspondent.)

5. Correspondent points are

equidistant from every point on

the axis.

In Central Symmetry.

1. The centre corresponds to

itself.

2. Every ray through the cen-

tre corresponds to itself (each half

to the other).

3. Every self-correspondent ray

goes through the centre.

4. The join of two correspond-
ent points goes through the cen-

tre.

(For it is self-correspondent.)

5. Correspondent rays are

equally inclined (isoclinal) to

every ray through the centre;

hence they are parallel, as is

otherwise manifest.
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6. The centre is a mid-point of

every tract between correspond-

ent points, and in fact the inner

mid-point.

N.B. The outer mid-point is a

point at infinity.

7. The join of two correspond-
ent rays is at infinity.

(For they are parallel.)

8. Correspondent angles are

contra-posed {i.e. have their arms

extended oppositely).

9. Correspondent rays are

equidistant from the centre.

10. The join of two points and

the join of their correspondents

themselves correspond.

6. The axis is a mid-ray of

every angle between correspond-

ent rays, and in fact the inner

mid-ray.

N.B. The outer mid-ray is a

normal to the axis.

7. The join of two correspond-

ent/o2«/^ is a normal to the axis.

8. Correspondent tracts are

anti-parallel.

9. Correspondent points are

equidistant from the axis.

10. The join of two rays and

the join of their correspondents

themselves correspond.

96. On regarding closely these correlated propositions, it

becomes clear that the one set differs from the other only
in the interchange of certain notions, as poi7it and ray, tract

and angle, etc. Every property of axal symmetry has its

obverse in central symmetry, and vice versa. This most

profound, important, and interesting fact has received the

name of the Principle of Reciprocity. We make this notion

more precise by the following

Def. Two figures such that to every point of each corre-

sponds a ray of the other, and to every ray of each a point

of the other, are called reciprocal. For example :

Suppose rays drawn through a point O to any number of

points. A, B, C, D, E, . . . on 2i ray L. Then the point

O with its ray through it, and the ray L with its point on

it, are two reciprocal figures (Fig. 62). The first is called

a (flat) pencil of rays, O being the centre
;
the second is

called a row (or range) of points, L being the axis. Sup-
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pose we have now a second pencil through O' and a second

row on Z'. These two figures are again reciprocal, and the

two pairs of reciprocals together make up another more

complex pair of reciprocals. In this latter pair we find our

definition fully exemplified. To O and 6>' correspond L and

Z'
;
to the rays through O and (9' correspond the points on Z

and Z'
; also, to the join (ray) of O and O' corresponds the

Fig. 62.

join (point) of Z and Z'
;
to any point as Pj the join of two

rays {OA^ O'A'), corresponds a ray AA', the join of two

points {A J A'). So Q, R^ S, Tare points corresponding to

the rays BB\ CC\ DD\ EE\ We may notice further

that angle and tract correspond in the reciprocal figures ;

thus the angle AOB corresponds to the tract AB, and the

angle BOC to the tract BC\ while the angle OPO' corre-

sponds to the tract AA^ and the tract RS to the angle

between the rays corresponding to R and S
; namely, between

CO and DD\ Let the student trace out as many corre-

spondences as possible.
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97. To three points fixing a triangle in either of two

reciprocals must correspond also three rays fixing a triangle

in the other reciprocal; hence, in general, triangle corre-

sponds to triangle in reciprocals. But notice : the sides of

one correspond to the vertices of the other
;
hence if the

sides of one all go through the same point, the vertices of

the other all lie on the same ray ; that is, three concurrent

rays in either reciprocal correspond to three collinear points

in the other.

It now appears that axal and central symmetry are recip-

rocal to each other
;
the reciprocal of an axal symmetric is

a central symmetric, and the reciprocal of a central sym-
metric is an axal symmetric ;

the reciprocal properties of

axal symmetry are the properties of central symmetry, and

the reciprocal properties of central symmetry are the proper-
ties of axal symmetry.

Very often the two symmetric figures may be regarded
as the two halves of one figure ;

this one figure is then said

to be symmetric as to the axis of symmetry or as to the

centre of symmetry, as the case may be.

98. If our figure be two points, A and A\ then the mid-

normal X of the tract AA is the axis of symmetry, mani-

festly. If, now, any double point D on the axis be joined

with A and A\ there results the isosceles A ADA\ whence

it appears that (Fig. ^2>)

The isosceles A is a symj?tetric A.

It is plain that any two points on the ray AA^ equidistant

from N are symmetric as to X, that all points on the ray,

and indeed in the whole plane, may be arranged in sym-
metric pairs, the members of each pair equidistant from the

axis X.
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99. Now take two points on the axis, as D and D\ or

D and Z>", and consider the 4-side DAD'A^ It is com-

posed of two A, ADiy and ADD\ symmetric with each

other as to the axis X, and opposed along that axis. Hence

the 4-side is itself symmetrical as to X.

Def. Such a 4-side, with an axis of symmetry, is called a

kite.

If we hold D fast, and let /)' glide along Jf, the 4-side

ADA'iy remains a kite. We see that there are two kinds

of kites, the convex kite, as ADA'Z>\ and the re-entrant, as

ADA'D". As the gliding point passes through TV the kite

changes from one kind to the other, passing through the

intermediate form of the symmetrical A.

When the gliding point reaches a position £>' such that

JVD = JVD', then the four sides of the kite are all equal

(why?), and the kite becomes a rhombus (why?). In this

case £> and D' are symmetric as to AA' as an axis of syni-
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metry. Hence the rhombus has two axes of syf?itnetry ;

namely, its two diagonals.

In all cases the diagonals, AA' and DD\ of the kite are

normal to each other (why?).

100. Now consider a pair of points, B and B\ symmetric
as to the axis X (Fig. 64). Then X is mid-normal oi BB'.

C

Fig. 64,

If C and C be any other pair of symmetric points, then X
is also mid-normal of CC

;
hence BB^ and CC are parallel

(why?). Also the tracts BC and B'C are symmetric as

to X (why?), and the 4-side BB'CC is itself symmetric as

to the axis X. Hence the angles at C and C are equal,
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also the angles at B and B' are equal (why ?) ;
hence the

angles at B and C and at B' and C are supplemental

(why?), and the 4-side BB'CC is an anti-parallelogram

(why?). Hence we see that another synunctrie ^-side is an

anti-parallelogram.

It is plain that every anti-parallelogram is symmetric, for

we know that the oblique sides prolonged yield an isosceles A.

Let the student complete the proof.

loi . There is only one kind of symmetric A, the isosceles.

For, let ABA' (Fig. 65) be symmetric and A' correspondent

Fig. 65.

to A. Then B must correspond to itself (why?) ; hence

B must lie on the axis (why?) ;
hence BA = BA' (why?).

Now let the student prove that

(i) /n a symtnetric A the axis of symmetfy is a medial ;

(2) // is also a mid-ray ; (3) /'/ is also a mid-normal.
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Conversely, let him show that

A medial that is a mid-ray, or a mid-normal, is an axis

of symmetry.

102. There are only two axally symmetric 4-sides ; namely,
the kite and the anti- parallelogram. For, in a symmetric

4-side a vertex must correspond to a vertex (why?). Also,

not all vertices can be on the axis (why?). Also, a vertex

on the axis is a double point (why?). Also, the vertices

not on the axis must appear in pairs (why ?) ; hence there

must be either two or four of them. If there be two only,

then the other two are on the axis and the 4-side is a kite ;

if there be four of them, we have just seen that the 4-side is

an anti-parallelogram.

103. Now let us turn to the reciprocals. The reciprocals

of the two points A and A^ symmetric as to the axis X will

be two rays L, L\ symmetric as to the centre S. But rays

symmetric as to a centre are parallel (why ?) ;
hence we have

two parallels symmetric as to S, which is midway between

them. The rays are symmetric as to any other point S' mid-

way between them (why?). The piece of plane between

these parallels is called a parallel strip, or band (Fig. 66).

R,'

y^
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But what corresponds to the point D on the axis X? The

answer is : a ray R through 6" (why?). Hence to the sym-
metric A of the three points A, A\ D, there corresponds

the figure formed by two parallels Z, Z', and a transverse R
through Sf

— a so-called half-strip. This is truly a three-

side, but not apparently a A (3-angle), for the parallels do

not meet in finity, in regions accessible to our experience.

Hence, instead of saying that the reciprocal of a A in axal

symmetry is a A (3-angle or 3-point) in central sym-

metry, we should have said, accurately, that the recipro-

cal of a A in axal symmetry is a 3-side (or trilateral) in

central symmetry, which will always be a A except when

sides are parallel or all concur. In higher Geometry it is

very convenient to remove this apparent exception by using

this form of expression : the parallels meet not in finityy
but

/// infinity.

104. It is indeed plain that

A A can have no centre of symmetry.

For, since vertex corresponds to vertex, and since corre-

spondents appear in pairs, one vertex must be a double point ;

hence it would have to be the centre .S" (why?). But the

other two vertices would have to lie on a ray through 6", being

correspondents ;
hence the three vertices would be collinear,

and the A would be flattened out to a triply-laid ray.

105. But there is a centrally symmetrical 4-side ; namely,
the parallelogram. For, consider once more the kite

AXA'X' and let us reciprocate it into a centrally symmetric

figure (Fig. 67). To the axis XX' will correspond the cen-

tre S; to the symmetric pair of rays AX and A'X w'\\\ corre-

spond a symmetric pair of points Pand P \
to the join of

those on the axis A' will correspond the join of these through
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the centre {PP^). Similarly, to the symmetric rays AX' diud

A'X' will correspond the symmetric points Q and Q', and

to the join X' will correspond the join QQ'. Also, AX
and AX' have a join A while A'X and A'X' have a join A',

and these joins are symmetric as to the axis XX'
; recipro-

FlG. 67.

cally, Pand Q have a join PQ, and /" and Q' have a join

/"^'j and these joins are symmetric as to .S"; that is, they are

parallel (why?). Similarly, PQ' and P'Q correspond to B
{AX, A'X') and B' {A'X, AX') ;

but B and B' are sym-

metric as to JTX' (why?) ;
hence PQ' and P'Q a.re symmetric

as to S, i.e. are parallel. Hence PQ PQ is symmetric as

to S, and is 2, parallelogram. Q. e. d.

106. We may indeed see at once that since any two par-

allels are centrally symmetrical as to any mid-point, a pair
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of parallels or a parallelogram is symmetric as to the common

mid-way point, the intersection of the diagonals. But the

foregoing reciprocation is instructive, as illustrating in detail

the method to be pursued, and as showing the intimate rela-

tion of the different symmetric quadrilaterals ; namely, the

parallelogram is the common reciprocal of both kite <///// anti-

parallelogram, which are thus seen to be really one,

107. Central symmetry does not in general imply any-

thing at all with respect to axal symmetry in a figure. We
may draw through any point S any number of rays and lay

off on each from 5 a pair of counter tracts SP and SP\
SQ and SQ^ etc. No matter how PQ^ etc., be chosen, the

figure so obtained will be centrally symmetric as to 6"; but

it may have no axal symmetry whatever. Neither does axal

symmetry in general imply any central symmetry, but we

may establish the following important

Theorem. — Any figure with two rectangular axes of

symmetry has also a centre of symmetry; namely^ the inter-

section of those axes.

p
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Data : XX^ and KF' two rectangular axes, P any point

of a figure symmetric as to these axes (Fig. 68).

Proof. The point /" symmetric with P as to XX is a

point of the figure (why?) ;
also /*" symmetric with /" as

to yy is a point of the figure (why?) ; so too is /*'"

(why?) ;
the figure /'/"/'"P"' is a rectangle (why?), its

diagonals halve each other, and SP= SP" = SP' = SP'".

Hence 6* is a centre of symmetry, q. e. d.

THE CIRCLE.

io8. We have already discovered the existence of a

homceoidal plane curve not reversible and have named it

circle.

Defs. A ray cutting a curve is called a secant, as L
; the

part of the secant intercepted by the curve, or the tract

between two points of the curve, is called a chord, as AB.
A finite part of a curve is called an arc. A chord and an

arc with the same two ends are said to subtend each other.

Also, the intercept of any line between the ends of an angle

is said to subtend \h.& angle. Thus .^Cand DE subtend the

angle O (Fig. 69).

Fig. 69.
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109. Theorem XLVIII. — Congruent arcs subtend con-

gruent chords.

Proof. Let the arcs AB and CD be congruent ; then we

may fii A on C and at the same time B on £>; then the

chords AB and CB fit throughout (why?), q. e. d.

N.B. We can no/ convert this proposition at once (why?)

(Fig. 70).

Fig. 70.

1 10. Theorem XLIX.—A closed curve is cut by a ray in

an eiien number ofpoints (Fig. 71).

Proof. Let Z be a ray, C any closed curve. Suppose a

point P to trace out the ray Z. At first P is without the

curve, at last it is also without the curve
;
hence P has

crossed the curve going out as often as it has crossed the

curve going in, for every entrance there is an exit
;
hence

the points of intersection appear in pairs, their number is

even, as o, 2, 4, 6, ... 2 //. q. e. d.
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These preliminary or auxiliary theorems, which prepare
the way for a theorem to follow, are sometimes called

lemmas {Xrjfxfxa
= assumption, premise, support, prop).

*iii. Theorem L.—A chrle has aft axis of symmetry

through every one of its points (Fig. 72).

Q

D

R

Q

Fig. 72.

Proof. Let D be any point of a circle. Take any arc

DP, and slip it round till P falls on D and D on /" ;
this

is possible (why ?) . Then PDP' is a symmetrical A (why ?) ;

and its axis of symmetry DR halves normally the chord

PP', and also halves the angle PDP' (why?). Now take

any other arc DQ and slip it round till Q falls on D and D
on Q\ so that DQ and QD are congruent. Then the

chords DQ and DQ are congruent (why?). Also, on

taking away the congruents DP and DP' we have left PQ
and P'Q as congruent remainders. Hence the chords PQ
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and PQ are congruent (why?). Hence the A PDQ and

PDQ' are congruent (why?) ;
hence the angles PDQ and

P'DQ' are equal (why?) ;
hence DR halves also the angle

QDQ (why?). But the A QDQ is symmetric (why?) ;

hence DR is also its axis of symmetry, and Q and Q are

symmetric points of the circle
;

hence any point of the

circle has its symmetric point as to DR
;

i.e. DR is an

axis of symmetry of the circle. Moreover, D was any point

of the circle
;
hence through any point of the circle passes

an axis of symmetry, q. e. d.

Def. A ray halving a system of parallel chords is called a

diameter
;
the chords and diameter are called conjugate to

each other.

Corollary i. In a circle a diameter is normal to its con-

jugate chords.

Corollary 2. Every mid-normal to a chord in a circle is

a diameter and halves the subtended arcs.

*ii2. Theorem LI. — A circle has a centre of symmetry

(Fig. 12).

For the ray through D must cut the circle in some second

point, as R (why?), and as the ray turns round from the

position DR to the reversed position RD, through a straight

angle, it must pass through some position, QQy normal to

its original position (why ?) . Hence for any axis of symmetry
there is another normal thereto and their intersection is a

centre of symmetry (why ?) . q. e. i>.

N.B. There is only one centre of symmetry (why?).

Def. This centre of symmetry is named centre of the

circle. It is often convenient to call the whole ray through

the centre a centre ray or line, and to restrict the term

diameter to the centre chord.
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Corollary i. All diameters go through the centre, and

halve each other there
; conversely, chords halving each

other are diameters.

Def. Two diameters each halving all the chords parallel

to the other are called conjugate.

Corollary 2. In the circle two diameters normal to each

other are conjugate ;
and conversely, two conjugate diameters

are normal to each other.

N.B. Other curves, as ElHpse and Hyperbola, have

conjugate diameters not in general normal to each other

(Fig- 73)-

*ii3. Theorem LII.— All diameters of a circle are equal

(Fig. 74).

Fig. 73. Fig. 74.

Proof. Let DR and D^R^ be two diameters. The figure

DD^RR^ is a parallelogram (why?), and DD^ is parallel to

RR^ ;
hence the mid-normal of these parallels is a diameter



Th. LI I.] THE CIRCLE. 95

through the centre ^
;

hence SD and SD^ are symmetric

and equal ; hence DR = D'R'. q. e. d.

De/. A half-diameter, from centre to circle, is called a

radius.

Corollary i. All radii of a circle are equal ; or, all points

of a circle are equidistant from the centre.

Corollary 2. Every parallelogram inscribed in a circle is

a rectangle.

N.B. By help of this important property the circle is

commonly defined as a plane curiae all points of which arc

equidistantfrom a point within called the centre. The com-

mon distance of all points of the circle from the centre is

often called the radius. We have deduced this property

from the homoeoidality ; conversely^
we may deduce the

homoeoidality from this property taken as definition. But

if there were no such surface as the plane, at least for our

intuition, the circle might still exist on the sphere-surface,

without centre, but with the body of its properties unimpaired.

Hence it seems better to define the circle by its intrinsic

homoeoidality than by its extrinsic centrality.

Corollary i. All points within the circle are less, and all

points without are more, than the radius distant from the

centre.

Defs. The two symmetric halves into which a diameter

cuts a circle are called semicircles. The part of the plane

bounded by an arc and its chord is called a segment ; the

part bounded by an arc and the two radii to its ends is

called a sector. If the sum of two arcs be a circle, we may
call them explemental, the one minor

y
the other major;

every chord belongs equally to each of two explemental arcs,

but in general, unless otherwise stated, it is the minor that



96 GEOMETRY. [Th. LIII.

is referred to. Two arcs whose sum is a half-circle are

called supplemental ; two whose sum is a quarter-circle or

quadrant are called complemental.

Corollary 2. All circles of the same radius are congruent ;

also, all semicircles of the same radius are congruent, and

all quadrants of the same radius are congruent.

Corollary 3. Any circle may be shpped round at will

upon itself about its centre as a pivot, like a wheel about its

axle, without changing in the least the position of the whole

circle.

114. From the foregoing it is clear that if we hold one

point of a ray fixed, and turn the ray in the plane about the

fixed point, every other point of it will trace out a circle

about the fixed point as a centre. An instrument, one point

of which may be fixed while the other is movable about in a

plane, is called a compass or pair of compasses, and is both

the simplest and the most important of all instruments for

drawing.

115. Theorem LIII. — Through any three points not col-

linear one, and only one, circle f?iay be drawn.

Proof. Let A, B, C be the three points not collinear

(Fig. 75). We have already seen that the mid-normals to

the tracts AB, EC, CA concur in a point S equidistant from

A, B, and C
;

hence a circle about S with radius d passes

through A, B, C. Also there is only one point thus equi-

distant from A, B, C (why?) ;
hence there is only one

circle through A, B, C. Q. e. d.

Def. The circle through the vertices A, B, C, of a A is

called the circum-circle of the A.

Corollary i. A A, or a triplet of points, or a triplet of

rays, determines one, and only one, circle.
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Corollary 2. Through two points, A and B, any number

of circles may be drawn. Their centres all lie on the mid-

normal of AB.

Corollary 3. ks BC turns clockwise about i9 as a pivot,

the intersection S, the centre of the circle through A^ B, C,

retires upward ever faster and faster along the mid-normal N
of AB ; when C becomes collinear with A and B, the inter-

FIG. 75.

section of the raid-normals of AB and BC vanishes from

finity, or rf/ires to infinity, as the phrase is. As BC keeps
on turning, S reappears in finity below and moves slower and

slower upward along the mid-normal. Moreover, a circle

passes through A, By and C, no matter how close C may lie

to the ray AB, nor on which side of it : only as C falls upon
the ray does the centre of the circle vanish into infinity ;

that

is, we may draw a circle that shall fit as close to the ray AB
as we pleasef though not upon it, by retiring the centre far



98 GEOMETRY. [Th. LTV.

enough. Hence a ray may be conceived as a circle with

centre retired to infinity ;
it is strictly the limit of a circle

whose centre has retired, along a normal to it, without limit.

1 1 6. Theorem LIV. — A circle can cut a ray in only two

points.

For there are only two points on a ray at a given distance

from a fixed point (why ?) . Q. e. d.

117. Theorem LV.— Secants that make equal angles with

the centre ray (or axis) through their intersection intercept

equal arcs on the circle.

Proof. For both the two semicircles and the two secants

are symmetric as to the axis IS (why ?) ; hence, on folding

over the one half-plane upon the other, A falls on A\ B on

B\ arc a fits on arc a\ and chord c on chord c^ (Fig. 76).

Q. E. D.
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Conversely, Secants thai intercept equal arcs make equal

angles with the axis through their intersection.

Proof. Let L and V intersect equal arcs AB and A^B\

Draw the mid-normal of AA^
;

it is an axis of symmetry

(why?). On folding over the left half-plane upon the right

half-plane, A falls on A and B onB' (why?) ;
hence AB

and A'B' are symmetric ; hence they meet on the axis and

make equal angles with it (why?), q. e. d.

Corollary i. Equal chords are equidistant from the cen-

tre ; and conversely^
Chords equidistant from the centre are

equal.

Corollary 2. The greater of two unequal chords is less

distant from the centre.

Corollary 3. A diameter is the greatest chord.

Corollary 4. Arcs intercepted by two parallel chords are

equal.

Corollary 5. Equal chords or arcs subtend equal central

angles (angles at the centre), and conversely.

Corollary 6. Of two unequal chords or arcs, the greater

subtends the greater central angle.

What figure is determined by two parallel chords and the

chords of the intercepted arcs ? By two secants that inter-

cept equal arcs and the central normals thereto ?

118. Theorem LVI. — A central angle subtended by a cer-

tain arc (or chord) is double the peripheral angle subtended

by the same (or an equal) arc (or chord) (Fig. 77).

Proof. Let ASB be a central angle, and APB be a

peripheral angle (periphery = circumference, the circle

itself), subtended by the same arc or chord AB. Draw the
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diameter PD. Then the A ASP and BSP are isosceles

(why?) ;
hence the angle ASD = 2 angle APD, and angle

BSD = 2 angle BPD (why ?) ;
hence angle ASB = 2 angle

APB. Q.E.D.

Fig. 'jj.

Corollary i . All peripheral angles subtended by (or stand-

ing on) the same or equal chords or arcs are equal. Hence,
as P moves round from A to B^ the angle APB remains

unchanged in size.

Def. An angle with its vertex on a certain arc, and its

arms passing through the ends of that arc, is said to be

inscribed in that arc. Hence for an angle to be inscribed

in a certain arc, and for it to stand on the explernental arc,

are equivalent.

Corollary 2. All angles inscribed in the same or equal

arcs of the same or equal circles are equal.

Corollary 3. As the vertex /* of a peripheral angle sub-

tended by an arc (or chord) AB^ in passing round a circle

goes through either end of the arc (or chord), the angle

itself leaps in value, changes to its supplement.
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1 19. Theorem LVII. — The locus of the vertex of a given

angle standing on a given tract ii two symmetric circular

arcs through the ends of the tract (Fig. 78).

\0

Fig. 78.

Proof. Let P be the vertex of the given angle, in any

position, standing on the tract AB. Through A, Py and B
draw a circular arc subtended by AB. We have just seen

that as long as P stays on this arc, the angle P remains the

same in size. Moreover, the point P cannot be without the

arc, as at O, because the angle AOB is less than APB
(why?) ;

neither can it come within the arc, as to /, because

the angle AIB is greater than APB (why ?) ;
hence so long

as the angle is constant in size the vertex must remain on

the arc APB or on its symmetric arc AP'By of which plainly

the same may be said. q. e. d.

120. Theorem LVIII. — The angle inscribed in a semi-

circle (or standing on a semicircle or diameter) is a right-

angle (Fig. 79).
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Proof. Let ABC\>^ any angle in a semicircle. Then it

is half of the central angle ASC (why?), which is a straight

angle (why?). Q. e. d.

U

Fig. 79.

Now let the vertex B, the intersection of the rays L and

N, move round the circle toward C; the angle ABC re-

mains a right angle, 710 matter how close B approaches to C ;

moreover, when B passes C, into the lower semicircle, the

angle remains a right angle (why?). That is, the angle at^
remains a right angle, no matter from which side nor how
close B approaches to C. Hence it is a right angle even

when Bfalls on C. But then the ray L falls on the diame-

ter A C, hence the ray N takes the position T normal to the

diameter (or radius) at its end. Such a normal to a radius

at its end is called a tangent to the circle at the point of

tangence (or touch or contact^ C.

Def. A ray normal to a tangent to a curve at the point

of touch is called normal to the curve itself. Hence

Corollary. All radii of a circle are normal to the circle ;

and conversely, all normals to a circle are radii of the circle.
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121. Theorem LIX. — All points on a tangenty except the

point of contact, lie outside of the circle.

Proof. For the point of touch is distant radius from the

centre (why?), and all other points, as D, of the tangent
are further from the centre (why ?) ;

hence all other points

of the tangent are without the circle (why?), q. e. d.

122. Theorem LX. — The point of tangence is a double

point.

Proof. For it is on a diameter, or axis of symmetry, of

the circle, and every such point is a double point with

respect to that axis.

Independently of this consideration, it is seen that the

chord CB becomes the tangent CT when, and only when,
the points B and C fall together in C.

Fig. 8o.

Still otherwise, let AB be any chord of a circle about

(Fig. 8o) O. Draw the mid-normal OD. Now let the

circle shrink about the centre O : the points A and B move
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towards each other, and as D is ahvays mid-way between

them they finally fall together in D, and their join is tan-

gent at D to the circle of radius OD.

Def. Two points thus falling together in a double point

are called consecutive points. Accordingly we may define

a tangent to a circle (or to any curve) as a ray through two

consecutive points of the circle (or curve). Adopting this

definition, let the student prove

123. Theorem LXI. Every tangent to a circle is normal

to a radius at its e?id ; conversely, Every normal to a radius

at its end is tangent to the circle.

124. Theorem LXII. The angle between a tangent and

a chord equals the peripheral angle on the same chord, or

equals half the angle of the chord (Fig. 81).

Proof. For if Z>r be a diameter, then the angles BDT
and BTA are equal, being complements of the same angle

BTD (why?). Or thus : TB '\?> sl chord, and TA is also a
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chord, through the double point T\ hence the angle BTA
is a peripheral angle standing on the arc TB. q. e. d.

125. Theorem LXIII. — The angle behveen two secants

is half the sum or half the difference of the angles of the

intercepted arcSy according as the secants intersect within or

without the circle.

Proof. For on drawing AB^ the angle / is seen (Fig.

82) to be the sum, and the angle O the difference, of the

Fig. 82.

angles at A and B^ standing on the arcs AA' and BB\
Q. E. D.

126. Theorem LXIV. — An encyclic quadrangle has its

opposite angles supplemental.

Proof. For the angles B and D are halves of the two

central angles ASC and CSAj whose sum is a round angle.

Hence the sum of B and Z> is a straight angle, g. e. d.



106 GEOMETRY. [Th. LXV.

127. Theorem LXV. — Conversely, A quadrangle with

its opposite angles supplemental is encyclic (Fig. Zt^),

Fig. 83.

Proof. Let ABCD be the quadrangle with the angles

A and C, B and D, supplemental. About the A ABC draw

a circle. IfP be any point on the arc of this circle exple-

mental to ABC, then the angle AFC is the supplement of

ABC ; but if B be not on* this arc, then the angle ABC is

either greater or less than that supplement (why?). Now
the angle Z> is that supplement; hence B> is on the arc.

Q. E. D.

128. Relations of circles to each other.

"

Suppose two circles X and K' of radii r and r' to be

concentric, i.e. to have the same centre O. Then, plainly,

the distance between them measured on any half-axis OR
is r—r\ the difference of the radii. Draw tangents AT,

A^T\ where 00^ cuts the circles. They are parallel (why ?).

Now let the centre of K^ move out on (9(9' a distance r — r\-

then A falls on A^ and A'T' on AT; the circles have a

common tangent at A and are said to touch each other

innerly at A (Fig. 84).
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Now let (9' move still further along 00* ;
then the circles

will lie partly within, partly without, each other ; they will

intersect at two i)oints, and only two (why?), symmetric as

to 00* (why?), namely /'and P \ hence

Fig. 84.

Theorem LXVI. — The common axis of two circles is the

mid- normal of their common chord.

When 6>' is distant ; -f /
'

from Oy the circles lie without

each other, but still have a common tangent (why?) and are

said to touch outerly.

As O* moves still further away from O, the circles cease to

touch and henceforth lie entirely without each other.

Thus we find that there are three critical positions depend-

ing on the distance d between the centres O and (9' :

d=Oy when the circles are concentric.

d—r—r'j when the circles touch innerly.

d= r-\- r', when the circles touch outerly.

There are alio three intermediate positions :

For o < d < r — / the one circle is i,<iihin the other.

F'or r—r'< d< r -\- r the circles intersect.

For r 4- r < // < 00 the circles lie ivithout each other.

129. Theorem LXVII .
— From any point without a circle

tivOf and only two^ tangents may be drawn to the circle (Fig.

85)-
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Proof. Let O be the centre of the circle K^ and F be

the point without. On OP as a diameter draw a circle K^
;

only one such circle is possible (why?), and it cuts K in two,

and only two, points, T and T. Draw PT and PV : they

are tangent to ^ at T and V (why ?) . Moreover, no other

ray through P, as PU, is tangent to K^ because OUP is not

a right angle (why?). Q. e. d.

Fig. 85.

Def. The chord TT^ through the points of contact of the

tangents is called the chord of contact for the point P or

the polar of the pole P (see Art. ) .

The angle between the tangents to two curves at the

intersection of the curves is called the angle between the

curves themselves. When this is a right angle, the curves

are said to intersect orthogonally.

The distance PT or PT^ is called the tangent-length

from P to the circle.

Corollary i . Two circles, one having as radius the tangent-

length from its centre to the other, intersect orthogonally.

Corollary 2. Two tangents are symmetric as to the axis

through their intersection ; hence, also, the tangent-lengths

are equal.
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130. Theorem LXVIII.— All tangent-lengths to a circle

from points on a concentric circle are equal, and intercept

equal arcs 0/ the circle (Fig. 86).

Fig. 86.

Proof. For if/* be any point without the circle K\ we

may turn F round about the centre (9 on a concentric circle

AT' without affecting any of the relations obtaining (why ?) .

Or thus : the right A TOP and T'OP^ are plainly con-

gruent (why?); hence PT= P^T (why?), q. e. d.

*i3i. Theorem LXIX.— The intercept between tioo fixed

tangents on a third tangent subtends a constant central angle

(Fig. 87).

Proof. Let PT and PT be the fixed tangents, VV^ the

intercept on the variable ray tangent at U. Then TPT' is

a constant angle, and VOV^ is half of TOT (why?), and

hence is constant. Q. e. d.
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Frc. 87.

132. Theorem LXX.—If the central (or peripheral) angles

of the common chord of two intersecting circles be equal, the

circles are equal.

Let the student conduct the proof suggested by the figure

(Fig. 88), and let him prove the converse.

*I33. Theorem LXXI.— The circumcircle of a A equals

the circumcircle of the orthocentre and any two vertices of
the l^ (Fig. 89).

Proof. Let K be the circumcircle of the A ABC, K' the

circumcircle of A, B, and O the orthocentre. The angles
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Cand B'OA^ are supplemental (why?) ; also the angles D
and BOA are supplemental (why?) ;

and the angles BOA
and B'OA' are equal (wliy?) ; hence the angles Z> and C
are equal ;

hence A' = A'' (why ?) q. e. d.

Fig. 89.

134. Theorem LXXII.— T/if mid-points of the sides of a

A, the feet of its a/titi/deSy and the mid-points between its

orthocentre and vertices^ are nine encyclic points.

Proof. I^t a circle through X^ V, Z, the mid-points of the

sides, cut the sides in three other points, 0] F, IV. Then
the angle ZXy= angle A (why?), and also = angle ZFV
(why?) ;

therefore the A AZF is symmetrical. Hence the

A Zf^B is also symmetrical, Z is equidistant from A, F, and

Bf and the angle A FB is a. right angle (why?) ;
so also the

angles at 6^ and IV; i.e. the circle through the mid-points of
the sides goes through thefeet of the altitudes (Fig. 90).

Again, if the circle cuts the altitudes at /*, Q^ R, then the

angle F/'[r= angle FZ/r(why?) = 2 angle FA IV (why?).

Moreover, A, F, O, IV, are encyclic (why?) ;
hence AO is

a diameter of the circle through them (why?) ; and FA IF

is a peripheral angle standing on the arc FIV-, hence the
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double angle yPJV must be the central angle of the same

arc; i.e. /'is the mid-point between a vertex and orthocen-

tre : so, also, are Q and /?, similarly, q. e. d.

De/. This remarkable circle is called the 9-point circle,

or a'r^/e of Feuerbach, of the A ABC.

Corollary. The radius of the 9-point circle is half the

radius of the circumcircle.

135- Def. A Polygon all of whose sides touch a circle is

said to be circumscribed about it, and the circle is said to be

inscribed in the polygon.

Theorem LXXIII. — A circle may be inscribed in any A.

Proof. Let ABC be any A (see Fig. 59). Draw the

inner mid-rays of the angles at A, B, C
; they concur in the

in-centre /of the A, equidistant from the three sides (why?).
About this point as centre with this common distance as

radius draw a circle
;

it will touch the three sides of the A
(why and where ?) . Q. e. d.

N.B. We have seen that the outer mid-rays of the angles

concur in pairs with the inner mid-rays of the angles in the

three ex-centres Ei, Eo, E^, also equidistant from the sides
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(Fig. 60). The circles about these touch only two sides

innerly, but the third side outerly, and hence are called

escribed, or ex-circles.

Corollary. Four, and only four, circles touch, each, all the

sides of a A.

135 a. Theorem LXXIV. — /// a 4-side circumscribed

about a circle the sums of the tivo pairs of opposite sides are

equal (Fig. 91).

Fig. 91.

Proof. The sum of the four sides is plainly 2t-{- 2u-\- 2v

-f 20/, and the sum of either pair of opposites is t-\-u-\-v^'w.

Q. E. D.

Conversely, If the sums of two pairs of opposite sides of a

4-side be equals the 4-side is circumscribed about a circle.

Proof. Let two counter sides, AB and DC meet in /,

and inscribe a circle K in the triangle ADI. Through B



114 GEOMETRY. [Th. LXXV.

draw a tangent (Fig. 92) to A' at U, and let it cut DI 2X C.
Then since ABCD is circumscribed about K, we have

or

Fig. 92.

AB^CD^BC ^DA,
Also AB+CD ==BC+ nA (why ?) .

Whence CD-CD =BC-BC,

CC=^BC-BC.
Hence C and C fall together (why? Art. 56). q. e. d.

136. Theorem LXXV. — The tangent-length from a ver-

tex of a A to the in-circle equals half the perimeter of the A
less the opposite side (Fig. 93).
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Proof. For the sum of CE ^ CD -\- BD + BF is plainly

2a (why?) ;
subtract this from the whole perimeter, a -\- b -\- c,

and there remains AE -\- AF= a -\- d + c — la^ or AE —
d + c-

=^AF.

FIG. 93.

It is common and convenient to denote the perimeter

( Fig. 93) (
= measure round = sum of sides) by 2s

\
then

we see that the tangent-lengths from Ay B, C, are s — a^

s — b, s — c.

Corollary. The tangent-length from any vertex, A, of a

A to the opposite ex-circle and the two adjacent ex-circles

are s, s—by s — c. Hence s — a, s^ s — b, s — c, are the

four tangent-lengths from any vertex, ^, of a A to the in-

circle and the three ex-circles.

These relations are useful and important.

137. Theorem LXXVI.— There is a regular n-side.

Proof. For the angle is a continuous magnitude (why?) ;

hence there are angles of all sizes from zero to a round
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angle ;
hence there is an angle, the - part of a round angle,

such that, taken 71 times in addition, the sum will be a round

angle. Suppose such an angle drawn, whether or not we
can actually draw it, and suppose ;/ such angles placed con-

secutively around any point O, so as to make a round angle.

In other words, suppose n half-rays drawn cutting the

round angle about O into n equal angles. Draw a circle

about (9, with (Fig. 94) any radius, and draw the ;/ chords

Fig. 94.

subtending the n equal central angles. These chords are

all equal (why?), and subtend equal arcs, and they form an

?z-side. Moreover, the angle between two consecutive sides
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is constant in size, because it stands on the part of
n

the circle. Hence the //-side is both equilateral and equian-

gular ;
that is, it is regular, q. e. d.

Corollary. The inner angle of a regular w-side is the

part of a straight angle.(^)
Find the value in degrees of the inner angles of the first

ten regular «-sides.

N.B. The foregoing demonstration merely settles the

question of the existence or lo^^icalpossibility of the regular

w-side. The problem of actually drawing such a figure is

one of the most intricate in all mathematics, and has been

solved only for certain very special classes of values of n.

Hut in order to discover the properties of the figure, it is by
no means necessary to be able to draw it accurately. It is

only since 1864 that we have known how to draw a straight

line or ray exactly.

137a. Theorem LXXVII. — The vertices of a regular

n-side are encyclic (Fig. 94).

Proof. Through any three vertices, as A, B, C, of a regular

«-side, draw a circle K
;

about C with radius CB draw

another circle. The fourth vertex D must lie on this circle

(why?). If it lie on the circle A', then the angle BCZ> =
angle ABC, as is the case in the regular «-side. Neither

can it lie off of X, as at D' or Z>", because then the angle

BCD' or BCD" would not equal angle BCD (why?), and

hence would not equal angle ABC. Hence the next vertex

must lie on the same circle K, and so on all around, q. e. d.

138. Theorem LXXVIII.— T/te sides of a regular n-side

are pericyclic (that is, they all touch a circle).
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Proof. For, on drawing the radii of the circumcircle K
(Fig. 95) to the vertices, we get n congruent symmetric A

A

O Fig. 95.

(why?). The altitudes of all are the same (why?) ;
with

this common altitude as radius draw another circle, K\
about the same centre. It will touch each of the sides

(why?). Q. E. D.

Corollary. The points of touch of the sides of the regular

circumscribed ;/-side are mid-points of the sides.

139. Theorem LXXIX.— The points of touch ofa regular

circujnscj'ibed 11-side are the vertices of a regular inscribed

n-side.

Proof. Connect the points of touch consecutively. Then

the A so formed are all congruent (why?) ;
hence the

joining chords are equal ;
hence the arcs are equal ;

hence the Theorem, q. e. d.
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THE CIRCLE AS ENVELOPE.

*i4oa. Thus far we have regarded the circle from various

points of view
;
from the most familiar it was seen to be the

locus of a point in a plane at a fixed distance from a fixed

point. An almost equally important conception of the curve

treats it not as the locus of a point, but as the envelope of a

ray. If the point P moves in the plane always equidistant

from O, then its locus is the circle, on which it may always

be found ; also, if the ray R moves about in the plane always

equidistant from O^ then its etwelope is the circle, on which

it may always be found, on which it lies, which it continually

touches. The point traces the circle, the ray envelops the

circle, which is accordingly called the envelope (/>. the

enveloped curve— French enveloppee) of the ray. In higher

mathematics the notion of the ray, instead of the point, as

the determining element in the nature of a curve, attains

more and more significance. In this text we are confined

to the circle— the envelope of a ray in a plane, at a fixed

distance from a fixed point.

*i40b. It is not only rays, however, that may envelop a

curve ; but circles, and in fact any other curves. Thus, let

the student draw a system of equal circles, having their

centres on another circle
;
the envelope will at once be seen

to be a pair of concentric circles. Let him also find the

envelope of a system of circles equal and with centres on a

given ray. In general, let him find the envelope of a circle

whose centre moves on any given curve. Lastly, let him

draw a large number of circles all of which pass through a

fixed point, while their centres all lie on a fixed circle, and

let him observe what curve they shadow forth as envelope.

Show that as the pole of a chord (or ray) traces a circle,



120 GEOMETRY.

the chord itself envelops a concentric circle, and con-

versely.

Show that tangents from two points on a centre ray form

a kite, and conversely. Also the chords of contact are

parallel, and conversely.

O is the centre of a circle, P any point without it. Show
how to find the point of touch of the tangents from /*, by

drawing a circle about O through P and a tangent where

OP cuts the given circle.

CONSTRUCTIONS.

140. Hitherto, in our reasoning about concepts, figures

have not been at all necessary, though exceedingly useful in

making sharp and precise our imagination of the relations

under consideration, in furnishing sensible examples of the

highly general notions that we dealt with. The conclusions

reached thus far all he wrapt up in axioms and in our defi-

nitions of point, ray, and circle, and our work has been one

of explication only ;
we have merely brought them forth to

light. Our demonstrations have not presumed ability to draw

accurately, and would remain unshaken if we could not draw

at all. Nevertheless, for many practical purposes, it is ex-

tremely important and even indispensable that we actually

make the constructions and draw the figures that thus far we

have merely supposed made and drawn.

141. What is meant by drawing a ray, circle, or any line?

Any mark, whether of ink or chalk, though a solid, may be

treated as a line by abstraction. Only its length, not its

width nor thickness, concerns us. How to make not just

any mark, but some particular mark called for, is our prob-

lem (7rpoft\7)ixa
= anything thrown forward as a task), and



CONSTRUCTIONS. 1 2 1

its solution consists accordingly of two parts, the logical and

the mechanical. The first is accomplished by fixing exactly

in thought the position of all the geometric elements (points,

rays, circles) in question ;
the second, by making marks that

by abstraction may be treated as these elements. Now, a

point is fixed as the join of two rays, a ray as the join of two

points (by what axiom?) ;
a circle is fixed or determined by

its centre and radius (why?), or by three points on it (why?).

Accordingly, when we know two rays through a point, or two

points on a ray, or centre and radius, or three points of a

circle, we know the point, or ray, or circle completely. The

logical part of our work is finished, then, when we determine

every point as the join of two known rays, every ray as the

join of two known points, every circle as drawn through three

known points or about a known centre with a known radius.

The mechanical part of the solution requires us to put and

keep a point in motion along a circle or a ray. Circular

motion is brought about by the compasses already described

(Art. 114), of which the shape is arbitrary, the necessary

parts being merely a fixed point rigidly connected in any way
with a movable point. But in the ruler one edge is supposed
made straight to begin with, so that a pencil point gliding

along it may trace a straight mark. Hence the nse of the

ruler is really illogical, since it assumes the problem of draw-

ing a ray or straight line as already solved in constructing

the straight edge. To say that, in order to draw a straight

liney we must take a straight edge and pass a pencil point

along it, is no better logically than to say that, in order to

draw a circular line, we must take a circular edge and pass

a pencil point along it. The question at once arises. How
make the edge straight or circular in the first place ? It was

not until 1864 that Peaucellier won, though he did not at

once receive, the Montyon prize from the French Academy
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by solving the thousand-year-old problem of imparting rec-

tilinear motion to a point without guiding edge of any kind

(Page ooo). But, though the ruler is logically valueless, it is

practically invaluable, even after the great discovery of Peau-

cellier. Its edge being assumed as straight and of any
desired length, and a pair of compasses of adjustable size

being given, we now make the following Postulates :

I. About any point may be drawn a circle of any radius.

II. Through any tivo points may be drawn a ray (more

strictly, a tract of any required length) .

Corollary. On any ray from any point on it we may lay

off a tract of any required length.

These are the only instruments used or postulates assumed

in the constructions of Elementary Geometry.

142. The fundamental relations of rays to each other are

two : Normality and Parallelism. Hence

Problem I. — To draw a ray normal to a given ray. Since

there are many rays normal to a given ray, to make the

problem definite we insert the limiting condition, through a

given point. Two cases then arise :

A. When the given point is on the given ray. All we can

do is to draw a circle about the point P. It cuts the ray at

two points, A and A\ symmetric as to P. Hence the mid-

normal of AA^ is the normal sought. Hence any point on

this normal lies on two circles of equal radius about A and

A\ Hence (Fig. 96)

Solution. From the given point P lay off on the given

ray two equal tracts PA, PA\ About A and A^ draw two

equal circles. Through their points of intersection draw

their common chord. It is the normal sought.
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Proof. For it is the mid -normal of AA', since it has two

of its i)oints equidistant from // and A', and P is the mid-

point of AA'.

Fig. 96.

Query : What radius shall we take for the circles about

A and^'?

B. IV/irn the given point is not on the given ray. All we

can do is to draw a circle about the given point P. Let it

cut the ray at A and A\ Then the mid-normal to AA^ is

the normal required (why?). Hence (Fig. 97)

Solution. Determine the points A, A' on the ray by

a circle about the given point F; then proceed as in the

first case (A).
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Proof. For the mid-normal of AA goes through P
(why?).

P

\
A' "Ta

Fig. 97.

Query : What radius shall we take for the circle about P ?

143. Problem II.— To draw a parallel to a given ray.

Since there are many parallels to every ray, to make the

problem definite we must insert the limiting condition,

through a given point ; then it becomes perfectly definite

(why?). Manifestly the point must be not on the ray

(why?). We now reflect that a transversal makes equal

corresponding angles with parallels, and we have just learned

to draw a normal transversal. Hence (Fig. 98)

Solution. Through the point draw a normal to the ray ;

through the same point draw a normal to this normal. It

will be the parallel required.

Proof. For it goes through the point and is parallel to the

ray (why?).
These two problems have been discussed at such length

as being the hinges on which nearly all others turn. At
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the end of a problem is sometimes written q. e. f. = quod
erat facicTnium

— ivhich ivas to he done, and translates the

Euclidean h-ntp iBei irpa^ai.

A'\ ; ^A

Fir,. 98.

144. Problem III.— To bisect a given tracts or to draw

the mid-normal to a given tract, AB,

Proceed as in Problem I.

145. Problem IV.— To bisect a given angle.

Solution. About the vertex draw any circle cutting the

arms at A and A\ and draw the mid-normal of AA\ It is

the mid-ray sought (why?).

Corollary. Show how to bisect any circular arc AB,

146. Problem V.— To bisect the angle between two rays

whoseJoin is not given (Fig. 99).
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We reflect that the join AA^ of two corresponding points

on the rays makes equal angles with the two rays that form

the angle. Hence

Solution. From any point P oi L draw the normal to it,

cuttingM at Q. From Q draw the normal to M. Bisect

Fig. 99.

the angle at Q between these two normals by the mid-tract

QR. Draw the mid-normal of QR. It is the mid-ray

sought (why?).

147. Problem VI.— To multisect a given tract AB (Fig.

100).

L
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Solution. Through either end of the tract, as A, draw any

ray, and lay off on it from A successively n equal tracts, L

being the end of the last. Draw BL. Through the ends

of the equal tracts draw parallels to BL. They cut AB
into n equal parts (why?).

148. Problem VII.— To draw an angle ofgiven size^ i.e.

equal to a given angle (Fig. loi).

Solution. At any point A of either arm of the given angle

O erect a normal to OA cutting the other arm at B. From

any point O on any other ray lay off O'A* = OA^ and normal

to the ray erect A^B' = AB and draw 0^B\ Then angle O*

= angle O (why?).
When does this construction fail ? How proceed then ?

149. Problem VIII.— To draw a tiiu-t cf given length

subtending a given angle andparallel to a given ay.

Data: O the given angle, L the ray, a the length (Fig.

102).

Solution. Through any point P of either arm of the angle

draw a parallel to the ray, and lay off on it towards the other
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arm a tract PA of the given length a. Through A draw a

parallel to OP, cutting the other angle arm at Q ; through Q
draw a parallel to PA meeting (9/* at P. QR is the subtense

sought (why?).

Fig. I02.

150. Problem IX.—To construct a A :

A. When altertiate parts (three sides or three angles) are

given.

Solution. About the ends of one side AB, with the other

sides for radii, draw circles meeting in C. Then ABC is

the A sought (why?) (Fig. 103).

Fig. 103.

How many such A may be drawn on the same base AB'>

How are they related? When is the solution impossible?
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When the angles are given, apply the construction of Problem

VII. How many solutions arc possible ? What kind of A ?

B. When three eonsecutive parts (two sides and included

angle or two angles and included side) are given.

Solution. Ai)[)ly the construction in Problem VII.

C. When opposite parts (two angles and an opposite side

or two sides and an opposite angle) are given.

Solution. Apply the constniction in Problem VII. When
is the construction ambiguous ?

D. When two sides and the altitude to the third side are

given.

Solution. Through one end of the altitude draw a normal

to it for the base
;
about the other end C as centre, with the

sides as radii, draw circles cutting the base at A and A\
B and B'

;
then ACB or A'CB' is the A required. Why?

E. When two sides and the. medial of the third side are

given.

A

Fig. 104.
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\i SA be the medial of BC, and SA^ be symmetric with

(Fig. 104) SA as to S, then ABA'C is a parallelogram

(why?) ;
hence

Solution. Take a tract the double of the medial. About

its ends as centres with the sides as radii draw circles and

then complete the construction. How manyA fulfilling the

conditions are possible ? How are they related ?

F. When the three medials are given (Fig. 105).

Solution. Remember that the medials trisect each other
;

construct the A OBC according to (E), and draw OA
counter to OM and twice as long.

151. Problfem X. — To construct an angle of given size

and subtended by a given tract.

Data : O the given angle, AB the given tract (Fig. 106).

Solution. Construct the angle BAD of given size (how?),

draw the mid-normal of AB, meeting AD at P) also the

normal to AD at A, meeting the mid-normal at S. About
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^S" as a centre with radius SA draw a circle
;

it touches AD
at A (why?). The vertex V of the required angle may be

anywhere on the arc A VB or on its symmetric A V^B (why ?) .

p
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153. Problem XII. — To draw a circle touching two given

rays.

The centre may be anywhere on either mid-ray (why ?) .

If now the circle is to touch a third given ray, the centre

must be also on another mid-ray ;
that is, it must be the

intersection of two mid-rays of the three angles of the three

rays. There are four such intersections — what are they ?

Complete the construction. See Fig. 60.

154. Problem XIII. — To draw a circle through two

points.

The centre 6" may be anywhere on the mid-normal of the

tract AB between the points (why?), the radius is— what?

If now the circle is to pass through a third point C, then *S

must also be on the mid-normal oi BC and CA (why?).
There is one, and only one, such point (why ?) ; complete
the construction. When is the construction impossible ?

155. Problem XIV.— To draw a circle through two given

points and tangent to a given ray ; or, tangent to two given

rays and through a given point.

This double problem is mentioned here because it must

naturally present itself to the mind of the student
; but the

solution involves deeper relations than we have yet explored.

See Art. 000.

Several of the foregoing problems were indefinite, admit-

ting any number of solutions : these latter taken all together

form a system or family. Problems concerning parallelo-

grams and other 4-sides may often be solved on cutting the

4-side into two A.

156. Problem XV.— To inscribe a regular 4-side (square)

in a circle (Fig, 107).
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Solution. Join consecutively the ends of two conjugate
diameters. The 4-side formed is inscribed (why?) and is

a square (why?).

Fig. 107.

157. Problem XVI.— To inscribe a regular 6-side in a

circle.

Solution. Apply the radius six times consecutively as a

chord to the circle (Fig. 108). The figure formed will

be the regular 6-side (why?).

Fig. 108.

N.B. This seems to have been one of the first geometric

problems ever solved. The Babylonians discovered that

six radii thus applied would compass the circle, and having
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already divided the circle into 360 steps, they accordingly
divided this number by 6 and thus obtained 60 as the

basis of the famous sexagesimal notation, which long domi-

nated mathematics and still maintains its authority un-

diminished in astronomy and chronometry.

In more difficult problems it is often advisable, or in fact

necessary, to suppose the problem solved, the construction

made, and investigate the relations thus brought to light.

Then the facts thus discovered may be used regressively

in making the construction required. This method is illus-

trated in the following :

158. Problem XVII.— To draw a square with each of

its sides through a given point.

Let A^ B, C, D, be the four given points, and suppose

(Fig. 109) PQRS to be the square properly drawn. Draw

p
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Hence we discover that CF= AB, This fact is the key to

the

Solution. Join two points A and B ; from a third, C, lay

off CF equal and normal to AB, The join of Z>, the fourth

point, and /'is one side of the square in position (why?).
Let the student complete the construction and show that

four squares are possible.

159. Problem XVIII. — To trisect a given angle.

Suppose the problem solved and the ray OT to make

^ TOB = 2TOA (Fig. no).

Fig. I 10.

From any point A of the one end of the angle draw a

parallel and a normal to the other end
;
also draw to the

trisector a tract AS— OA. Then the following relations are

evident :

^ AOS^ ^ ASO=:^ SAT-\- ^ STA
;

but :fAOS=z2^ TOB = 2 STA
;

hence ^ STA ^"^ SAT, and ST= SA.
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Again, ^ SAR = ^ SRA, being complements of equal

angles ;
hence SA = SR, TR = 2 OA. Hence

Solution. From any point A of either arm of the given

angle draw a parallel and a normal to the other arm ; then,

with one point of a straight-edge fixed at the vertex O, turn

the edge until the intercept between the normal and the

parallel equals 2 OA. But to do this we need a graduated

edge, or a sliding length 2 OA on the edge itself. Accord-

ingly, this construction, while simple, useful, and interesting,

is not elementary geometric in the sense already defined.

To discover such a solution for this famous problem, has up
to this time baffled the utmost efforts of mathematicians.

EXERCISES II.

1. State and prove the reciprocals of Exercises 9, 10,

II, page 71.

2. Find a point on a given ray, the sum of whose dis-

tances from two fixed points is a minimum.

3. The same as the foregoing, difference supplacing

sum.

4. A and A\ B and B\ C and C\ are symmetric as to

MN. Show that AABC=AA'B' C.

5. The inner and outer mid-rays of the basal angles of

a symmetric A form a kite.

6. The inner mid-rays of the angles of a trapezium form

a kite with two right angles.

7. The joins, of the mid-points of the parallel sides of an

anti-parallelogram, with the opposite vertices, form a kite.

8. The mid-rays of the angles at the ends of the trans-

verse axis of a kite cut the sides in the vertices of an anti-

parallelogram.
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9. How must a billiard ball be stnirk so as to rebound

from the four sides of a table and return through its original

place ?

10. Trace a ray of light from a focus P^ to another given

point Qi reflected from a convex polygonal mirror.

11. A ray of light falls on a mirror J/, is reflected along
5 to a second mirror M\ is thence reflected along T. Re-

membering that the angle of incidence equals the angle of

reflection, show that the angle between the original ray R
and its last reflection T is twice the angle between the

mirrors (angle RT= 2 angle MM'). On this theorem is

grounded the use of the sextant.

12. Two mirrors stand on a plane and form an inner

angle of 60°
;
a luminous point P\s on the mid-ray of this

angle (or anywhere within it) ;
how many images of /*are

formed? How are they placed? What if the angle of the

mirrors be i/« of a round angle?

This theorem is beautifully illustrated in the kaleidoscope.

13. A regular «-side has n axes of symmetry concurring

in the centre of the «-side, which centre is equidistant from

the sides of the //-side.

14. How do these axes lie when n is even? when n is

odd? Show that if // be even, the centre is a centre of

symmetry.

1 5 . The half-rays from centre to vertices of a regular «-side

form a regular pencil of n half-rays, and those from the cen-

tre normal to the sides, another regular pencil ;
also the half-

rays of each p>encil bisect the angles of the other.

16. In a figure with two rectangular axes of symmetry
each point, with three others, determines a rectangle, and

each ray, with three others, a rhombus.
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1 7. Find the axes of symmetry of two given tracts.

18. A regular A, along with the figure symmetric with it

as to its centre, determines a regular 6-angle (6-pointed

star) .

19. Two congruent squares, the diagonals of one lying on

the mid-parallels of the other, form a regular 8-angle ; also

find the lengths of the intercepts at the corners.

20. The outer angle of a regular «-side is in times the

outer angle of a regular ;//«-side.

EXERCISES III.

1. A circle with its centre on the mid-ray of an angle

makes equal intercepts on its arms.

2. Tangents parallel to a chord bisect the subtended

arcs, and conversely.

3. Tangents at the end of a diameter are parallel.

4. A and B are ends of a diameter, C and D any other

two points of a circle
;

iS" is on the diameter, and angle

AED — 2 angle CAD ;
find the possible positions of £.

5 . From n points are drawn 2 n equal tangent-lengths to

a circle
;
where do the points lie ?

6. In a circumscribed hexagon, or any circumscribed

2 n-side, the sums of the alternate sides are equal.

7. If the vertices of a circumscribed quadrangle, hexagon,

or any 2 «-side, be joined with the centre of the circle, the

sums of the alternate central angles will be equal.

8. The sums of the alternate angles of an encyclic 2n-

side are equal, namely, each sum is (n
—

i) straight angles.

9. The joins of the ends of two parallel chords are sym-

metric as to the conjugate diameter of the chords.
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10. A centre ray is cut by two parallel tmgents. Show

that the intercepts between tangent and circle are equal.

11. Normals to a chord from the ends of a diameter

make, with the circle, equal intercepts on the chord.

12. The joins of the ends of two diameters are parallel in

pairs, and form a rectangle, and meet any two parallel tan-

gents in points symmetric in pairs as to the centre.

13. The joins of the ends of two parallel chords meet the

tangents normal to the chords in points whose other joins

are parallel to the chords.

14. A chord AB is prolonged to C, making ^C= radius,

and the centre ray CD is drawn ; show that one intercepted

arc is thrice the other.

15. The intercepts, on a secant, of two concentric circles

are equal.

16. A chord through the point of touch of two tangent

circles subtends equal central angles in the circles.

1 7. Two rays through the point of touch of two tangent

circles intercept arcs in the circles whose chords are parallel.

18. The transverse joins of the ends of parallel diameters

in two tangent circles go through the point of tangence.

19. Four circles touch each other outerly in pairs: ist

and 2d, 2d and 3d, 3d and 4th, 4th and ist; show that the

points of touch are encyclic.

20. Show that three circles drawn on three diameters OA^

OBf OC intersect on the sides of the A ABC.

21. Find the shortest and the longest chord through a

point within a circle.

22. In a convex 4-side the sum of the diagonals is greater

than the sum of two opposite sides, less than the sum of all

the sides, and greater than half the sum of the sides.
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23. Three half-rays trisect the round angle O
;
on each

is taken any point, as A, B, C. Find a point M such that

the sum MA -f MB + MC is the least possible (a minimum).

24. Two tangents to a circle meet at a point distant twice

the radius, from the centre
;
what angles do they form?

25. The intercept of two circles on a ray through one of

their common points subtends a constant angle at the other.

26. What is the envelope of equal chords of a circle?

27. Two movable tangents to a circle intersect under con-

stant angles; find the envelope of the mid-rays of these

angles.

28. The vertex Fof a revolving right angle is fixed mid-

way between two parallels, and its arms cut the parallels at

A and B
;
find the envelope of AB.

29. From a fixed point P a normal FN is drawn to a

movable tangent 7" of a circle, and through the mid-pointM
of/W there is drawn a parallel to T; find its envelope.

30. The vertices of a A are Fj, Vo, V^ ;
the mid-points of

its sides are J/j, M^, M-^ ;
the feet of its altitudes are

Ai, A2, A3 ;
the inner bisectors of its angles meet the oppo-

site sides at B^, B.,, B^; and the outer bisectors at

B'l, B'2, B\ ]
its centroid is C, its in-centre is /, its circum-

centre is S] its angles are cti, «2, «3, and their complements
are a\, a\, w'g. Express through these six angles the

angles between : (i) Fi^iandFjFa; (2) AiA^Sind V2V3;

(3) AiAoSind ViAi; (4) A1A2 Sind A^A^; (5) M1A2 B.nd

V,V,; (6) J/i^sand V.V,; (7) M,A2SindM,A,; (8) A,M2
and AiM^; (9) A1M2 and AiA^; (10) 6^1 and SV2',

(11) SV, and V.Vo; (12) SF, and V2A2; (13) /Fi and

IF.; (14) /Fiand F^^., ; (15) F^'i and FoB'..
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31. Find the locus of the mid-points of chords through a

fixed point upon, within, or without a fixed circle.

32. Find the locus of the mid-points of the intercepts of

a secant between a fixed point and a fixed circle.

33. As the ends of a ruler slide along two grooves normal

to each other, how does its mid-point move?

34. Two equal hoops move along grooves normal to each

other and touch each other
;
how does the point of touch

move?

35. Orthocentre O, centroid C, circum-centre S, and cen-

tre F oi Feuerbach's (9-point) circle, of a A are collinear,

and (9C= 2 CS (Euler), OF=FS,
36. Two parallel tangents meet two diameters of a circle

at the vertices of a parallelogram concentric with the circle.

37. The inner mid-rays of the angles of a 4-side form an

encyclic 4-side.

38. The outer mid-rays of the angles of a 4-side form an

encyclic 4-side. How are the 4-sides of 37 and 2>^ related?

39. The circum-centres of the four A into which a 4-side

is cut by its diagonals are the vertices of a parallelogram.

40. The circum-centres of the two pairs of A, into which

a 4-side is cut by its diagonals in turn, are how related to

each other and to the centres in 39 ?

EXERCISES IV.

1. Construct a square, knowing

{a) Its side; or (h) its diagonal.

2. Construct a rectangle, knowing

(a) Two sides; or {b) a side and a diagonal; or (c)

either a side or a diagonal and the angle of either with the

other; or (//) a diagonal and its angles with the other

diagonal.
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3. Construct a parallelogram, knowing

{a) Two sides and one angle ;
or {b) a side, a diagonal,

and the included angle ;
or (<r) two sides and the opposite

diagonal; or {d) two sides and the included diagonal; or

{e) two diagonals and a side; or (/) two diagonals and

their angles with each other.

4. Construct an anti-parallelogram, knowing

{a) Its parallel sides and the distance between them;

{h) two adjacent sides and their included angle ; (r) two

adjacent sides and the angle between the non-parallel sides
;

id) a diagonal and two adjacent sides ; {e) a diagonal, a

side, and the included angle.

5. Construct a kite, knowing

{a) Two sides and an axis; {b) two sides and the in-

cluded angle ; (r) .a side and the axes.

6. Construct the rays equidistant from three given

points.

7. Draw a ray through a given point equally sloped to

two given rays.

8. A square has one vertex at a given point, and two

others on two given parallel rays ;
draw it.

9. Hypotenuse and sum of sides of a right A are given ;

draw it.

10. Construct a regular 2**-side, and a regular 3.2''-side.

11. Find the centre of a given circular arc.

12. Trisect a right angle.

13. Two points, A and B, of a ray are given; find any

number of points of the ray without drawing it, and without

opening the compasses more than AB.

14. Find a point on a given ray or given circle that has

a given tangent-length with respect to a given circle.

15. Through a given point draw a secant on which a

given circle shall make a given intercept.
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1 6. Draw four common tangents to two given circles.

17. Draw a ray touching a given circle and e(iuidistant

from two given points.

18. Draw a ray on which two given < ir( Ics shall make

two given intercepts.

19. With three given radii draw three circles, each touch-

ing the other two.

20. Draw a circle toucliing the radii and the arc of a

given sector.

21. Draw a circle touching two given equal intersecting

circles and their centre ray.

22. On the central intercept of two equal intersecting

circles as diameter draw a circle ; then draw a circle touch-

ing the three circles.

23. Three equal circles touch each other outerly ; draw

a circle touching the three.

24. Find a point from which two given apposed tracts

appear to be equal.

25. Through two given points of a given circle draw a

circle that shall cut a third circle orthogonally.

26. Construct a A, knowing

(rt) The feet of the altituOv^s ; {b) the foot of one altitude

and the mid-points of the other two sides
; {c) the three

ex-centres
; (^/) two.ex-centres and the in-centre.

27. Draw through a given point a ray that shall form with

the sides of a given angle a A of given perimeter. Hint :

Use the properties of ex-circles.

28. Draw a 5 -side, knowing the mid-points of the sides.

29. On a tract AB there is drawn a regular 3-side ;
draw

on it a regular 6-side. Generalize the problem, changing

3 into «, 6 into 2«, and solve it.

30. Given a regular //-side
;
draw a regular 2«-side having

liie original /; vertices for alternate vertices. Do not use

the circumcircle.
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