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PREFACE

A His book is intended to provide an introduction to those parts of Astronomy
which require dynamical treatment To cover the whole of this wide sub-

ject, even m a preliminary way, within the limits of a single volume of

moderate size would be manifestly impossible Thus the treatment of bodies

of definite shape and of deformable bodies is entirely excluded, and hence no

reference will be found to problems of geodesy or the many aspects of tidal

theory Already the study of stellar motions is bringing the methods of

statistical mechanics into use for astronomical purposes, but this development
is both too recent and too distinct m its subject-matter to find a place here.

Nevertheless the book covers a wider range of subject than has been

usual in works of the kind Thereby two advantages may be gained For

the reader is spared the repetition of very much the same introductory matter

which would be necessary if the different branches of the subject were taken

up separately. But in the second place, and this is more important, he will

see these branches in due relation to one another and will realize better that

he is dealing not with several distinct problems but with different parts of

what is essentially a single problem, In an introductory work it therefore

seemed desirable to make the scope a* wide as was compatible with a reason-

able unity of method, the more so on account of the almost complete absence

of similar works m the English language.

The first six chapters are devoted to preliminary matters, chiefly connected

with the undisturbed motion of two bodies. These are followed by five

chapters VII to XI dealing with the determination of orbits, This section it

intended to feenihariz* the reader with the properties of undisturbed motion

by explaining in general terms the most important and interesting applica-

tions. It )* la 00 sense complete and is not intended to replace those works

which are entirely devoted to this subject, Otherwise it would have been

necessary to describe in detail such admirably effective methods as Prof&saor

Leufiohner's and to include fully worked numerical examples. Here, as else**

where, the aim has been to give such am account of principle* as will be
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instructive to the reader whose studies in this branch go no further, and at

the same time one which will help the student to understand more easily

the technical details to be met with in more special treatises Though the

actual details of practical computation are entirely excluded, the fact that all

such methods end in numerical application has by no means been overlooked

A distinct effort has been made to leave no formulae in a shape unsuitable

for translation into numbers The student who feels the need will have no

difficulty in finding forms of computation in other works At the same time

the reader who will take the trouble to work out such forms for himself will

be rewarded with a much truer mastery of the subject, though he should not

disdain what is to be learnt from the tradition of practical computers

An outline of the Planetary Theory is given in the seven chapters XII to

XVin The first of these deals exclusively with the abstract dynamical

principles which are subsequently employed It is hoped that this synopsis

will prove useful in avoiding the necessity for frequent reference to works on

theoretical mechanics The reader to whom the methods are unfamiliar and

who wishes to become more fully acquainted with them may be referred to

Professor Whittaker's Analfacal Dynamics, where he will also find an intro-

duction to those more purely theoretical aspects of the Problem of Three

Bodies which find no place here To those who are familiar with these

principles in there abstract form only the concrete applications in the follow-

ing chapters may prove interesting A chapter on special perturbations is

included. Here, as in the determination of orbits, the need for numerical

examples may be felt To have inserted them would have interfered too

much with the general plan of the book,.and they will be found in the more

special treatises But it was felt that the subject could not be omitted

altogether, and a concise and fairly complete account of the theory has there-

fore been given It may seem curious that with the development of

analytical resources the need for these mechanical methods becomes greater
rather than less, but so it is

Chapter XIX on the restricted problem of three bodies is intended as an
uitroduction to the Lunar Theory contained in Chapters XX and XXI The
division of these two chapters is partly arbitrary, for the sake of

preserving a
feir

uniformly
of length, but it coincides roughly with the distinction

between Hill's researches and the subsequent development by Professor
Brown In the second a low order of approximation is worked out, and it is

hoped that this will serve to some extent the double purpose of making the
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whole method clearer and of pointing out the nature of the principal terms,

which are apt to be entirely hidden by the complicated machinery of the

systematic development

The rotation of the Earth and Moon is discussed in Chapters XXII and

XXIII The treatment of precession and nutation is meant to be simple
and practical, and the opportunity is taken to add an account of the astro-

nomical methods of reckoning time in actual use In the final chapter of the

book the theory of the ordinary methods of numerical calculation is explained
This is necessary for the proper understanding of Chapter XYIII, but it also

bears on various points which occur elsewhere Numerical applications find

no place in this work But let the mathematical reader be under no mis-

apprehension The ultimate aim of all theory in Astronomy is seldom

attained without comparison with the results of observation, and the medium
of comparison is numerical Hence few parts of the theory can be regarded
as complete till they are reduced to a numerical form This is a process

which often demands immense labour and in itself a quite special kind of

skill It is just as essential as the manipulation of analytical forms

Originality in the wider sense is not to be expected and indeed would

defeat the object of the book, which aims at making it easier for the student

to read with profit the larger and more technical treatises and to proceed
to the original memoirs A certain freshness in the manner of treatment is

possible and, it is hoped, will not be found altogether wanting Few direct

references have been given as a guide to further reading, and this may be

regretted But the opinion may be expressed that for the reader who is

qualified to profit by a work like the present, and who wishes to go further,

the time has come when he should acquire, if he has not done so already, the

faculty of consulting the library for what he wants without an apparatus of

special directions Sign-posts have their uses, and the experienced traveller

is the last to despise them, but they are not conducive to a spmt of original

adventure

Since the mam object in view has been to cover a wade extent of ground
in a tolerably adequate way rather than to delay over critical details, the

absence of mathematical ngour may sometimes be noticed Very little

attention is given to such questions as the convergence of senes It is not

to be inferred that these points are unimportant or that the modern astronomer

can afford to disregard them But apart from a few simple cases where the
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reader will either be able to supply what is necessary for himself or would

not benefit even if a critical discussion were added, such questions are

extremely difficult and have not always found a solution as yet It is pre-

cisely one of the aims of this book to increase the number of those who can

appreciate this side of the subject and will contribute to its elucidation

The reader who wishes to proceed further in any parts of the subject to

which he is introduced in this book will soon find that the number of

systematic treatises available in all languages is by no means large He
must turn at au early stage to the study of original memoirs It is not

difficult to find assistance in such sources as the articles in the Encyklopadie
der Mathemafoschen Wissenschaften, which render it unnecessary to give a

bibliography The subject is one which has received the attention of the

majority of the greatest mathematicians during the last two centuries and in

which they have found a constant source of inspiration Their works are

generally accessible in a convenient collected form

For the benefit of any student who wishes to supplement his reading and
has no means of obtaining personal advice, the following works may be

specially mentioned

Determination of Orbits wnd Special Perturbations

1 J Bauschinger, Bahribestimmung der Himvnelskotper
(A source of fully worked numerical applications )

2 Publications of the Licjc Observatory, Vol VII

(Contains an exposition of A Leuschner's methods)

Planetary and Lunar Theories

3 F Tisserand, TraM de mecanique ctleste

(The most complete account of the classical theories )

4 EL Pomcare", Legons de mecanique celeste

5 H Pomcare, M&hodes nouvelles de mecanique celeste

6 C V. L. Charher, Lie Mechanik des Himmels
7 E,W Brown, An introductory treatise on the lunar theory

(Gives full references to all the earlier work on the subject )

The great examples of the classical methods in the form of practical
application to the theories of the planets are to be found in the works of
I* Vemer (Annies de I'Ooservatovre de Pan*), Newcomb (Astronomical
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Papers of the American Ephemens) and Hill (Collected Works) The most

suggestive developments, apart from the researches of Pomcare*, are contained

in the work of H Gyld6n (Traitt analyfoque des orbites absolues des hmt

plan&tes pnncipales) and P A Hansen All these works will repay careful

study, but the suggestions are not to be taken in any restrictive sense

The author of the present book has the best of reasons for acknowledging
his debt to most of the writers mentioned above and to others who are not

mentioned Some of the proof sheets have been very kindly read by the

Eev P J Kirkby, D Sc
, late fellow of New College, Oxford. Acknowledge-

ment is also due to the staff of the Cambridge University Press for their

care in the printing It is not to be hoped, m spite of every care, that no

errors have escaped detection, and the author will be glad to have such as

are found brought to his notice

EL C PLUMMEB

OBSEBVATOBY, Co DUBLIN,

20 February 1918
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CHAPTER I

THE LAW OF GHAVITATION

1 The foundations of dynamical Astionomy were laid by Johann Kepler
at the beginning of the seventeenth century His most important work,
Astronomia Nova (De Motibus Stellae Martis), published in 1609, contains

a profound discussion of the motion of the planet Mars, based on the obser-

vations of Tycho Brahe In this work a real approximation to the true

kmematical relations of the solar system is for the first time revealed

Kepler's main results may be summarized thus

(a) The heliocentric motions of the planets*(i e their motions relative to

the Sun) take place m fixed planes passing through the actual position of the

Sun

(6) The area of the sector traced by the radius vector from the Sun,

between any two positions of a planet m its orbit, is proportional to the time

occupied in passing from one position to the other

(c) The form of a planetary orbit is an ellipse, of which the Sun occupies

one focus

These laws, which were found in the first instance to hold for the Earth

and for Mars, apply to the individual planets In a later work, Harmonices

Mund% published m 1619, another law is given which connects the motions

of the different planets together This is

(d) The square of the periodic time is proportional to the cube of the

mean distance (i e the semi-axis major)

These deductions fiom observation are given here m the order in which

they were discovered The third (c) is generally known as Kepler's first law,

the second (6) as his second law, and the fourth (d) as his third law But the

first statement is of equal importance In the Ptolemaic system the "
first

inequality
"
of a planet, which represents its heliocentric motion, was assigned

to a plane passing through the mean position of the Sun Even m the

Copeimcan system this
" mean position

"
becomes the centre of the Earth's

orbit, not the actual eccentric position of the Sun In consequence no

astronomer before Kepler had succeeded in representing the latitudes of the

planets with even tolerable success

1



2 The Law of Gravitation [OH i

2 It is undeniable that in making his discoveries Kepler was aided by
a certain measure of good fortune Thus his law of areas was in reality
founded on a lucky combination of errors In the first place it was based on
the hypothesis of an eccentric circular orbit and was later adopted in the
elliptic theory In the second place Kepler supposed (a) that the time in a
small ,irc was proportional to the radius vector, (6) that the time m a finite
arc was therefore proportional to the sum of the radii vectores to all the

points of the arc, (c) that this sum is represented by the area of the sector
Both (a) and (c) are erroneous, and indeed Kepler was aware that (c) was
not strictly accurate Mathematically expressed, the argument would appear
thus

hdt -rds, ht =
1

1 ds = 2 (area of sector)

Both the supposed fact and the method of deduction are wrong, yet the
result is right But if it should be supposed that Kepler owed his success
to good fortune it must be remembered that this, fortune was simply the
reward of unparalleled industry in exhausting the possibilities of every
hypothesis that presented itself and m checking the value of any new principle
by direct comparison with good observations It must also be remarked that

Tycho Brahe's observations were of the proper order of accuracy for Kepler's
purpose, being sufficiently accurate to discriminate between true and false

hypotheses and yet not so refined as to involve the problem in a maze of

unmanageable detail Another factor in Kepler's success was his knowledge
of the Greek mathematicians, in particular of the works of Apollonms

3 Kepler had no conception of the property of inertia and he was
therefore unable to make any progress towards a correct dynamical view of

planetary motion It is interesting to analyze his results and to see what is

implied by each of the above statements taken by itself

According to the first statement the planets move m a field of force which
is such that every trajectory is a plane curve If we suppose that the
acceleration at each point is a function of the coordinates of the point, an
immediate deduction can be made as to the nature of the field of force For
let A, B be two points on a certain trajectory, and let P be a third point not
in the plane of this curve Then P can be joined to A and to B by plane
trajectories The planes m which ABt PA and PB lie meet in one point
(which may be at infinity) The acceleration at A is m the plane OAB and
also m the plane OAP Hence it is along AO Similarly the acceleration
at B is along BO, and the acceleration at P is along PO But the point
is determined by the two points A and B Therefore the acceleration at

every point of the field is directed towards the fixed point 0, and the field of
force is central (or parallel) Now the planes of the orbits all pass through
the Sun Hence the Sun is the centre of the field of force in which the
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planets move For an analytical proof of the general theorem see Halphen

(Comptes Rendus, LXXXIV, p 944)

4 To this the second statement adds nothing with regard to the nature

of the forces, and might indeed have been deduced from the first For it

tells us that

i*dO ^[(sody-ydsc) = ht
fi

the Sun being the origin of coordinates and k being a, constant By differen-

tiation we have

y y& = h
or

, xy-yx = Q

Thus yfx
=

y/d, which proves that the acceleration is towards the Sun at

every point, i e the field of force is central Cleai ly the argument might be

reversed, and the law of areas deduced from the fact that the accelerations

are directed towards a fixed centre, which has already been obtained from the

first statement Both this theorem and its converse are given in Newton's

Pwncipia, Book I, Props I and n

5 We shall now investigate the law of acceleration towards a fixed point

under which elliptic motion is possible In the first instance it will not be

assumed that the fixed point is the focus of the ellipse Apart from the

interest of the more general result, this is the more desirable because many

pairs of stars are known in the sky the components of which are observed to

revolve around one another in apparent ellipses ,
but the plane of the motion

being unknown it is only a matter of inference that either star is in the focus

of the relative orbit of the other. For it is the projection of the motion on

a plane perpendicular to the line of sight which is observed Let then the

ellipse

be described freely under an acceleration to the fixed point (/, g) Any point

on the ellipse can be represented by (a cos E, b sin E) The angle E which

is known in analytical geometry as the eccentric angle is called in Astronomy
the eccentric anomaly of the point The accelerations being

- a sin E $- a cos # *, 6 cos S E-b sm E E*

along the two axes, we have

JE-aco&E E* bwaE j-6sm ff E 9

/" b sin E - g
whence

E^_ qgr cos J- bf sin E E
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form,
ff ,rta

a^sin^-6/cos^)-1

(2)

A'~ -8in
(3)

lei's

to*- r, voluUon K.^ler's for
e enVhat 2-/=y^ ^e period of a

"-. -'- '-S^^^
- esin^=w(*~^) ^

IH ot fundamental importance The point for which # ='"*- -n tho orbit to th
1 h

corresponding time is * and is called the mem

By ( 1 ) and <2) tho coniponents of the acceleration become

- a cos J^) fr__
(a6 - a^r sin E-

pa
(a6

-
a# sm J? - 6/ cos

thnt ili4 total aeoeloration is equal to

JR - n*r 1 - / cos E- sin E
(5)

MW r IH tho tlintanoo of the point on the orbit from (ft g)

6, l*fc>n* i^xatnming this result more closely, it may be not1Ced that the
nthirf n i|Uit4 goiioial and may be applied to any central orbit For if the
imiiMtm of a point (r, y) on the curve be expressed m terms of a single
roiwt**r or, wi huvo Hiinilarly

y-g

IITI ^
f /* . . <lt-noi<t donvatives with respect to ot, and a, a derivatives with
to thi tmto. Hence on integration,

a - A {n'(y -g)-y'(a> -/)}-*
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By taking the last integration over one revolution in a closed orbit it is

seen that h represents twice the area divided by the periodic time The

components of the acceleration become

/) and

and the total acceleration is therefore

JB - h*r (afy"
-

af'tf) [of (y
-

<?)
-

3,' ( -/)}

where p is the radius of curvature at the point and p is the perpendicular
from (/, g) to the tangent at the point This of course is the well-known

expression for the acceleration towards the centre of attraction

The same orbit will be described in the same periodic time under the

central attraction jR' to another point (/', g') if

that is, if

This result is equivalent to Pnncipia, Book I, Prop vn, Cor 3

7 We now return to equation (5) which may be written

. (6)

where q and qn are the perpendiculars on the polar of (/, g) from the point

(#, y) on the orbit and the centre of the ellipse respectively Hence the

ellipse represented by the general equation

<M? + Zhay + by* + 2gx + 2/y + 1 = (7)

can be described under an acceleration directed towards the origin if the

acceleration follows the law

Rv*r(l + gu+fyy+9 *-iM/0 (8)

where A and C have their usual meaning for the conic (7) Conversely, if the

law (8) is given, the trajectory is always a come whatever the initial conditions

may be For (7) 1$ a possible orbit, and / and g are determined by the law,

while a, 6 and h are three arbitrary constants which can be chosen so as to

satisfy any given conditions, such as the initial velocity given in magnitude

and direction at a particular point

There now arises the interesting question whether any other form of law

besides (8) exists, for which the trajectories are always comes (Bertrand's

problem) Let

^, y)
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be such a law Then if (7) is to be an orbit,

must be satisfied by the coordinates of every point on (7), i e this equation
must be equivalent to (7) But (7) can be written in either of the forms

1 +gx+fy = (1
- aa? - 2% -

bf)

and clearly m no other way which does not introduce a greater number of

independent constants on the right-hand side The first of these forms givesan expression for/ (a?, y) which is (like an infinite number of others) compatible
with (7), but only under restricted conditions For it fixes the constants a, b
and h and leaves only/and g arbitrary, and these are not in general sufficient
in number to satisfy the initial conditions On the other hand, the second
form gives an expression for the acceleration which may be written

(9)

This only requires the constants in (7) to satisfy the two relations

and thus three other relations can be satisfied which are required by the
initial conditions Hence motion under a central acceleiation given by (9)
is always in a conic which by the two relations found touches the lines (real
or imaginary)

The laws (8) and (9) are the only ones under which a conic is always
described in a given plane whatever the initial conditions may be Their
character was first established by Darboux and by Halphen (Oomptes Rendus
LXXXIV, pp 760, 936 and 939)

8 A point on a central orbit at which the motion is at right angles to

the radius vector is called an apse At such a point
~ = and the radius

vector is in general either a maximum or a minimum Since the motion is

reversible the radius vector to an apse is an axis of symmetry in the orbit
and the next apsidal distances on either side are equal There can be there-
fore only two distinct apsidal distances recurring alternately and the angle
between any two consecutive apses is constant and is called the apsidal
angle

The differential equation of a central orbit is known to be
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where w = l/r and P is the force to the centre If we write P = u*U the

radius of a circular orbit is given by u= U/h* Let the circular orbit be

slightly disturbed, so that we may write u + x instead of w, where u is con-

stant and a) is so small that only the first power of # need be retained Then

cft U' uU'
TT, dU_ +^ F ^_*, tr=_

If we put
l-

the equation becomes

g

and the solution is

x a cosm (0 )

The apsidal angle is therefore

K^ir/m-TrQ-uU'/U)-* (10)

For example, if P =
/AT', U = fj,u~P~* and

This result is given in the Pwnapia, Book I, Prop xi/v, Ex 2

9 Let us push the approximation further in order to see, if possible,

under what conditions the apsidal angle remains unchanged by a higher

order of the increment a The equation of the disturbed circular orbit

becomes

) (11)

and we assume a solution

x s Oo -f o>i cos mO + aa cos %mO + <

If ax is of the first order, a and a* must be of the second order at least,

and it will become clear that a8 is of the third order Hence

#* * Jet!* + (2a ai + a^) cos w^ + ia^ cos 2w0 -i- c^aj cos ZmQ

a?=a f ai
$ cos 7n^ + i^i

3 cos 3m^

All terms of order higher than the third have been omitted and products

of the cosines have been changed into simple cosines of the multiple angles,

We now substitute in (11) and equate coefficients Thus

.1 U"

a,*
4

*

\J

I u,U'"
"r 7T

1 "V"
, 9

uV" I uU'" .

"IT ^^SS "7T *
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The last of these equations confirms the statement that a* is of the third

order, hut will not be needed here The first three after the elimination of
a and aa give

ff" 5 uU''luU'"

or

8uU** + 3U'"(U-uU') = , (12)
This equation expresses a necessary condition which must be satisfied if

the apsidal angle is to remain constant when the displacement from a circular
orbit is considered finite

10 Let us consider any closed orbit to be determined by a central
acceleration under a finite range of initial velocities The number of apsesm a complete orbit must be finite and (10) shows that m must be a com-
mensurable number It must be a constant therefore, for otherwise it would
change discontmuously as u changes continuously Hence

is an equation giving the form of U
t
and the solution is

But if all the orbits are to be re-entrant, so that K is constant, the
equation (12) must also be satisfied Hence substituting the form 'just
found, we have

5wi<(l -m')
a + 3m<(l - m*)=>

or

Since K is finite, m is not zero and we have

l-ma = or 1 - m2 = - 3
giving

and

R =
fc/r

2 or R = jfo

Thus *e have Bertrand's remarkable theorem (Oomptes Rendus, LXXVII,
p 849) that these are the only laws, expressible as functions of the distance,
which always give nse to closed orbits whatever the initial circumstances
may be (within a certain range) In these two cases m = l or 2 and the
apsidal angle K= TT or JTT

11 The results obtained can now be brought together According to

Kapler's law the planetary orbits are
ellipses with the centre of attraction

the Sun, situated in one focus The polar of the focus being the corresponding
directrix, we have in (6) q,

=
a/e and j-r/a, so that the acceleration towards

the Sun is

.B-wW/r8

(13)
When the centre of attraction is an arbitrary point and it is merelyknown that the orbits are

ellipses, the acceleration towards the centre must
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follow one of the two laws expressed by (8) and (9) These are not in general

simple functions of the distance and it is only by induction that we should

infer from the apparent orbits of double stars that these bodies obey the law

given by (13) But the law (8) provides a simple function of the distance,

R.=m*
r> when /- # = 0, in which case the centres of all possible orbits are

at the origin, i e coincide with the centre of attraction Similarly the law (9)

provides a simple function of the distance, R =
<ni*/r*,

when a = 7 and ft
=

In this case every orbit touches the lines a? + y*
= 0, showing that the centre

of attraction at the origin is the focus for every path These are the only

two laws of central acceleration which give rise to elliptic orbits in general

and can be expressed in simple terms of the distance But we have also

seen that the same restriction is imposed when it is merely required that the

paths shall be plane closed curves of any kind It is moreover obvious that

the law of the direct distance, which makes the attraction of a distant body

more effective than that of a near one, cannot be the law of nature The

only alternative is that the acceleration varies inversely as the square of the

distance, and this law can therefore be based upon these simple suppositions

(a) the planets describe closed paths m planes passing through the Sun,

(6) the centripetal acceleration towards the Sun, required by (a), is a simple

function of the distance and does not become infinite when the distance is

infinite

12 We have now to consider Kepler's law connecting the periodic times

of the planets with their mean distances from the Sun This states that T2

vanes as a8 But T = Z-rr/n, so that naa8
is constant for all the planets Hence

by (13) the acceleration of each planet towards the Sun is (j,/r* where p is

constant The force of attraction acting on a planet is therefore m/*/r* where

m is the mass of the planet And observation shows that the same form oi

law holds for the satellites of any planet, e g the satellites of Jupiter Thus

not only does the Sun attract the planets but the planets themselves appear

to attract their satellites in the same way It is but natural to suppose that

the forces of attraction in either case arise from an inherent property of matter,

and that a stress exists between the Sun and a planet, or between a planet

and its satellite Action and reaction being equal and opposite, we must

suppose the force proportional not only to the mass of the attracted body but

equally to the mass of the attracting body We are thus led to Newton's law

of gravitation
that the mutual attraction between two masses m, m' at

a distance r apart is measured by

where G is an absolute constant, independent of the masses or their distance

It must be noticed that the law has been arrived at from the consideration of

cases in which the dimensions of the bodieslTre small in comparison with the

distances separating them But since the action in these cases is proportional
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to the total masses, it is to be supposed that it applies to the individual
elements of the matter composing them This is the true form of the law of
universal gravitation When it is a question of bodies whose dimensions are
not

negligible in relation to the distances of surrounding bodies, a modification
of the simple statement must be expected The examination of all conse-
quences of the law of gravitation, including a comparison with the results
ot observation, practically constitutes the complete function of dynamical
Astronomy

13 Since the Earth possesses only one satellite, it is impossible to verify
Kepler's third law in our own system But it is of historic interest to calcu-
late from the observed motion of the Moon the acceleration towards the centre
of the Earth which a body would have at the Earth's surface The Moon's
sidereal period is 27* 7" 43" IP 5 OI 2360591 5 sees Let a be the Moon's
mean distance and b the radius of the Earth The required acceleration is

\<> ,

*

The ratio a/b is 602745 and b may be taken to be 6378 x 10scm The
result of

substituting these numbers is to give for the acceleration 989 cm /sec
"

In point of fact the acceleration of a body at the Earth's surface is in the
mean g = 981 cm /sec But the discrepancy is not

surprising The Moon
describes its orbit not only under the attraction of the Earth but also under
the

dumbing
influence of the Sun Moreover g is a variable quantity over

the Earths surface, owing to the Earth's rotation and figure The above
calculation is altogether too rough to give really comparable results But it
suffices to show that the quantity is quite of the same order as g, and to this
extent supports the identification of the force which retains the Moon in its
orbit with that which in the case of tenestrial objects is known as weightAs stated, the point is of historical interest because it presented a dimcultv
to Newton who was long misled by adopting erroneous numerical data

14 The numerical value of the constant & depends upon the units
adopted Its dimensions are given by

or

In CGS units it is the force between two particles each of 1
placed 1 apart The first deteimmation of the force m absolutea

laboratory experiment was made by Cavendish Several determmationshave since been made, of which peihaps the two best, those of C V Boys andH JBraun, agree in giving
J

6 658xlO-8

pe,ponding
to 5 527 for the mean density of the Earth and 5 985 x 10* orfor the total mass of the Earth ,

^



CHAPTER II

INTRODUCTORY PROPOSITIONS

15 As we have seen, the sample facts of observation lead us to assume

that between two particles of masses m and m' situated at the points

P(xt y, z) and P'(x', y> d) there exists a force Gmm'/r*, where r is the

distance PPf Now the direction cosines of PP' are

x

and hence the components of the force acting on the particle m are

0mm' 15, Gmrn'^, Gmm'^-
or

_a?7 _877 _ai7
30

'

8y
'

d*

where
J7 = -(?mra'/y

If m is attracted not by a single particle m' but by any number typified

by ml at (#t , ylt z%) the components of the total force are similarly

_dU _dU _dU
dx' dy' dz

where

It is evident that U is the work which the system of attracting particles

will do if the particle m is moved from its actual position by any path to

some standard position, except for a constant ,
it is the potential energy ofm

due to its position relative to the attracting system If we put

F is called the potential of the attracting system at the point P When
the potential is known it is evident that the components of the attraction

can be easily calculated
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the swarm fills a sphere uniformly the mass operative at any point varies as

the cube of the distance from the centre Hence the effective force towards

the centre varies directly as the distance As another example it may be

proved that if the density of a globular cluster varies as (1 + r*)

"
*, r being the

distance from the centre, each star moves under a central attraction varying

asr(l

18 An approximate expression can be found for the potential of a body
of any shape at a distant point Let the origin of coordinates, 0, be taken

at the centre of gravity of the body and the axis of x be drawn through the

point P, the distance OP being r Let dm be an element of mass at the

point (#, y, z) The corresponding element of the potential at P is

Gdm
_

Gdm

(r*
-

where PI, Pa ,
are the functions known as Legendre's polynomials

The first terms are easily obtained by expansion in the ordinary way, and

we have
a\

Hence if the expansion is not earned to terms beyond the second order,

But if A, B, C are the principal moments of inertia at 0, and I is the

moment of inertia about Ox, since p
fl has been written for & + y

a
4- .s

2
,

A

and since is the centre of gravity,

la? dm =s

Hence

la?

and we see that the potential of the body at P differs from the potential of a

particle of equal total mass placed at the centre of gravity by a quantity

depending only on 1/r
8

Except in a few cases this quantity is negligible



14 Introductory Propositions [OH n

m astronomical problems not only by reason of the great distances which

separate the heavenly bodies m comparison with their linear dimensions,
but because they possess in general a symmetry of form which makes
A H- B + C- 3/ itself a small quantity

19 We see then that in general a system of n bodies of finite dimen-

sions can be replaced by a system of n small particles of equal masses

occupying the positions of their centres of gravity The total potential

energy of the system is

U=

where m^ t m}
are two of tbe masses and rv their distance apart For if we

start witb any one of the particles this sum, which consists of %n (n 1)

terms, represents the potential energy of a second in the presence of the

first, of a third m the presence of these two, and so on The equations
of motion are 3ra in number and, according to 15, of the form

827

^=-3^
Now

s|Jt 0i
Hence

2mta?t
= Sw^i = 2mt<grt

=
or

2^ = ^, 7^ = 02, 2 rrk2!%

and

where (x, y, z) is the centre of gravity of the system Thus we have the six

integrals corresponding to the fact that the centre of gravity moves with

uniform velocity in a certain direction

Again, we have

Hence

or

and similarly
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These are called the three integrals of area and express the fact that the sum

of the areas described by the radius vector to each mass, each multiplied by

that mass and projected on any given plane, is constant They also show that

the total angular momentum of the system about any fixed axis is constant

Finally we have

dU dU dU\

whence, on integration,

wheie h is constant This is the integral of energy

There are then in all ten general integrals for the motion of a system of

particles moving under their mutual attractions and it is known that no

others exist under certain limitations of analytical form (Bruns and Pomcare)

They are in fact! simply those which apply in virtue of the absence of external

forces acting on the system

20 Let the centre of gravity (#, y> z) of the system be now taken as the

origin of coordinates If (ft , ?7t, ft) are the new coordinates of mt ,

and

The equations of motion become

dU dU y
dU

"h&
5&' """"""a^' ^""af.

where U is the same as before, but r# is now given by

V-(fe-6y + (

For the integrals of area we have

(since 2?nii;t
= Swixft= Smc^c SOTH&= 0)

Smt (rjih
-

?ii7<) + (0369

or

and similarly
2m< (fe|

-
ftfc)

==
0, + (Ctjba

-
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The integral of energy becomes

A - U=^m, {(T 4- )
a + (y +^ + (z + &)'}

where
'= A -

21 An interesting equation involving the mutual distances of the masses
can be deduced We have

.191, (ff +

with similar equations for the other coordinates Hence

SHM^
It follows that

= 2

since Z7 is a homogeneous function of the cooidinates of degree
- 1 The

form of the result is due to Jacobi Now U i& essentially negative Hence
if hr

be positive the second derivative of Smf 0*j9 v
* will be always positive and

the first derivative will increase indefinitely with the time Thus the first

derivative, even if negative initially, will become positive after a certain time
and therefore Sw^m,?-^

1 will increase without limit This means that at least

one of the distances will tend to become infinite We see therefore that
a necessary (but not sufficient) condition foi the stability of the system is that
In! must be negative

22 The angular momenta whose constant values are Cj, ca , cs are the

projections on the coordinate planes of a single quantity They are there-
fore the components of a vectoi which represents the resultant angular
momentum about the axis

#/Ci
=

2//c2
=

*/c3 (1)

For this axis, which is fixed m space, the angular momentum is a maximum
The plane through the origin which is perpendicular to this axis and
therefore fixed is called the invariable plane at About any line through
in this plane the angular momentum is zero, and about any line through
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making an angle with the invariable axis (1) the angular momentum is

V(ci
a + c2

a + Cs
a

) cos The position of the invariable plane is dependent on

the position of the chosen origin of reference

Here we have considered the angular momentum as arising purely from

the translational motions of the bodies treated as particles In reality the

total angular momentum of the system includes also that part which arises

from the rotations of the bodies about their axes This part itself is constant

if the system consists of unconnected, rigid, spherical bodies whose concentric

layers are homogeneous Under these conditions the invariable plane at a

point, as determined by the translational motions of the system alone,

remains permanently fixed The conditions hold very approximately in a

planetary system But precessional movements and the effects of tidal

friction cause an interchange between the rotational and translational parts

of the angular momentum, without disturbing the total amount, and to this

extent affect the position of the astronomical invariable plane as defined

above

The centre of gravity of the system may be taken instead of an origin

fixed in space The invariable plane is then

Ci'M-prt + c/e-O (2)

and this is the invariable plane of Laplace Its permanent fixity is subject

to the qualifications just mentioned

A simple proposition applies to the motion of two bodies, namely that

the planes through a fixed point and containing the tangents to the paths

of the two bodies intersect the invariable plane at in one line This is

easily seen to be true For the first plane passes through the origin, the

position of the first body (sclt yl9 *,) and the consecutive point on its path

(^ + a>idt, yl+ yrft, A + ftete) Hence its equation is

Similarly the equation of the second plane is

The equations of these planes together with that of the invariable plane

may therefore be written

and these evidently meet in a common line of intersection.

23 When we deal with the motions in the solar system it is convenient

to refer them to the centre of the Sun as origin Let M be the mass of the

Sun, m the mass of the planet specially considered and let there be n other
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planets, of which the typical mass is mt Then the total potential energy of

the system is

where pt is the distance of TO, from the Sun, A, the distance of m, from m
and r the distance ofm from the Sun, so that

rv
' - (* -

pt = (4 -Z )'+ (y,
-

A,' = (^ - xf + (y,
-

The equations of motion of the Sun are

dU

and of the planet considered

3Z7 927 dU~

> ?) ar the relative coordinates of the planet,

a? = Z + ft y=F4-97, ^ = ^+f
Hence, if (f, i?t , ?) are the coordinates of m^ relative to the Sun,

\

(

1

If then we put

we have for the equations of relative motion

and similarly

(6)
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The function R is called the disturbing function When, as in the solar

system, the masses of the planets are small in comparison with that of the

central body, M, we see that the forces derived from this function are small

in comparison with the attraction ofM Indeed a first approximation to the

motion of the planet considered, which may now be called the disturbed

planet, is obtained by putting R =

24. A double star, or system of two stars physically connected and at the

same time isolated from external influences, may be considered to present a

case of the problem of two bodies In the solar system the disturbing effect

of the other planets is always operating Since, however this effect is small

in comparison with the attraction of the Sun it is useful to neglect R and to

consider the orbit which a particular planet would have if at a given instant

the disturbing forces were removed and the planet continued to move as part

of the system formed by itself and the Sun alone, its velocity in direction and

amount at the given instant being that which it actually possesses Such an

orbit is called the osculating orbit corresponding to the given instant The

actual orbit from the beginning will depart more and more from the osculating

orbit, but for a short interval of time the divergence befrw een the two will be

so small that an accurate ephemens can be calculated from the elements of

the osculating orbit The usefulness of the conception of the osculating orbit

goes much deeper than this, as will appear later

Now the equations (4) to (6) show that in the problem of two bodies, since

jR = 0, the relative motion is that which is determined by an acceleration

(m + M) ff/r
3 towards the body M which is considered fixed But by 11

(13) a law of this form leads to an elliptic orbit with mean distance a and

periodic time T, where
nT 2-7T, n*a* = (m + M)G

We can now introduce the usual system of astronomical units Provision-

ally they are taken to be

Unit of time one mean solar day

Unit of length the Earth's mean distance* from the Sun

Unit of mass the Sun's mass

Corresponding to this system G is replaced by the constant k*, so that

which differs little from the Earth's mean motion Here T is the sidereal

year expressed in mean solar days and m is the mass of the Earth expressed

as a fraction of that of the Sun The numerical values adopted by Gauss

were
!T = 365 2563835

w = 1/354 710
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which lead to

k= 017 202 098 95, log k = 8 235 581 4414 - 10
It may be useful to add that

'

180" */- 8648" 18761. log(180 *M - 8 550 006 5746
which differs little from the Earth's daily mean motzon expressed in seconds

The miTn'hoT' t i n_j 1 ^

o more modll'T *"!^^ mconveiue-e * 4* the value rf*

For brevity we may often put

M = ^ (1 + m) =nV
in the case of a

planetary orbit, and for a double star



CHAPTER III

MOTION UNDER A CENTRAL ATTRACTION

25 If the attraction of the Sun alone is considered, the relative motion
of any other body of spherical shape is conditioned by the central acceleration

/xr"
2
, /i being a constant the value of which has been explained The equations

of motion expressed in polar coordinates are

r - r* =

rO + 2r0 =

The latter equation gives imotediately

f*d~h

where h is the constant of areas Let v be the velocity in the orbit, P the

perpendicular from the origin on the tangent and -^ the angle which the

tangent makes with the radius vector Then

r6
,

P= sin ^ =
v r r

so that

Pv = r*6 = h

or the velocity is inversely proportional to P The result of eliminating
from the equations of motion is

whence
r = 2^/r-AVr

a + c (1)

and from these again

jgi
(**) 2 (rr 4- ra

) 2^/r + 2c

The equation of energy is

v". r| + rs>0* = 2/*/r + e . . (2)

The geometrical meaning of the constant c has yet to be found.
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26 From the second equation of motion

<i =hu2 d_

where u = 1/r Hence the first equation of motion becomes

_^-0
the integral of which is

where e and 7 are the two constants of integration But this is the polar
equation of a conic section of which the eccentricity is e and the focus is at
the origin The semi-latus rectum in this connexion is more usually called
the parameter and denoting it by p we have

or
Also

But by (1) and (3)

Hence

or

Thus if 2a the transverse axis of the orbt, c = - / for an
ellipse, c- for"^ f r ^ ^erb0la ^ e n
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the radius vector, and (&) a constant velocity eV in a direction making an

angle i7rH-0-7-with the radius vector, that is, perpendicular to the transverse

axis Thus at perihelion the velocity is V (1 + fl)
and at aphelion (in the case

of elliptic motion) the velocity is "F(l
-

e)

Since h = vr sin -^, the preceding equations may be written

fie sin (6 7) = i
2r sin ijr

cos ^

giving e and y when ^ and ^ are given at (r, 0) Thus

^s (02
_

1)
= ,y2r (VV -

2/L) sin
2

>|r

27 In finding the relations which subsist between positions in an orbit

and the time it is necessary to consider separately the three kinds of come

section The closed orbit, or ellipse, will be discussed first

The line 6 = y is drawn from the pole (the Sun) in the direction of
jperi-

helion The angle 0-<y is measured from this line and is called the true

anomaly Let it be denoted by <w Then, if t is the time at perihelion,

5/,

dw

o (1 + e cos w)
a

The corresponding result in terms of the eccentric anomaly E has already

been found ( 5) It will be convenient to write down the relations between

the radms vector and the true and eccentric anomalies m the forms which are

most frequently required We have

SB =* r cos w = a (cos E e)

y = r sm w = a \

Hence

)
. . (5)

l-heeosw

r cosa \w a (1
-

e) cos
8
Jj#

- ()

This last equation may be regarded as the standard form of the relation

between w and E If we wnte e - sin $ (0 <
<t>
< 90), as is commonly done,

then
tan %w = tan (45 + 4<) tan ^E

tan J# ban (45
-

i<^>)
tan lw
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In order to obtain a good approximate solution at the outset a great

variety of methods have been devised These depend upon (a) the use of

special tables, (&) an approximate formula or a series, or (c) a graphical

method Thus to the first order in e,

and to the second order in e

tan EQ = sec
<f>
tan 2^

where

the verification of which may be left as an exercise

Among graphical methods we can refer only to one, given by Newton

(Pnneipia, Book I, Prop xxxi) Consider a circle of unit radius and centre C

rolling on a straight line OX Let E be the point of contact and A the

point on the circumference initially coinciding with Let P be a point on

the radius CA such that CP - e and M and N the feet of the perpendiculars

from P on OX and OE Then if E- Z AOE= arc AE = OE,

Hence if the circle is rolled (without slipping) along OX until the point

P is on the ordmate PM where OM -Jf, the point of contact gives OE=E,
which can therefore be read off when M is given. The locus of P is evidently

a trochoid It may also be noted that the ordinate

PM - QN~ 1 -

which is the corresponding value of r/a or of dM/dE, and so gives the factor

required for the improvement of an approximate value E* For references

to practical applications of the above principle see Monthly Notices, R A 8
,

LXVII, p 67



untttr a Centnit .irtwu ^\\ \\ {

29. In the case of priralmhc

i f

W

and thorefore a quantity M miiy l* (k*hni.ii by i d. f , l fltini

A table, known u Barkor'n Tabhs givi* A/ (, lt J/ i,,lh|.hif| hv * uif .
t ,

numencal ftotor) with thn luytunont w An in\n* t li* KIVIIUI

argument Jf will bo found m RHUHohinfp^N 7Vi/W (No \v
> or v

deduced when t- 1> is givon thun Tho ^imM, tfk MM tiu> U.
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r cos2 %w = a (e
-

1) cosh8 $F
r sma

\w = a (e + 1) smb.3 F

(11)

e cosh F

ecosw

(12)v '

By employing (10) and (12) we now obtain

dw

(1 4- e cos w)*

dF e cosh F- '.

which is the analogue of Kepler's equation for this case

Analogy suggests the use of hyperbolic functions, but full and accurate
tables of these functions are not always available Hence it is convenient to

introduce /, the Gudermannian function of F, where (Log denoting natural

logarithm)
F= Log tan (45 + /)

or

sinh F= tan/ cosh F = sec/, tanh F= tan \f
We may also put e = sec->/r, The principal formulae (10), (11) and (13) then
become

ra(ffsec/-l) , (14)

tan w = cot <^ tan J/ (15)
and

V(/^-
3
) (t -$,)* tan/- Log tan (45 + /) (16)

The last equation may also be wntten

vV*~s
) M* - W - Xa tan/- log tan (45 + ^/)

where log denotes common logarithm and log\ = 9 6377843

Comets moving m hyperbolic orbits are few in number, and in no case

does the eccentricity greatly exceed unity

31 There are certain astronomical problems which require the con-

sideration of repulsive forces according to the law p/r* which are of the

same form as gravitational attraction but differ in sense The small particles
which constitute a comet's tail are apparently subject to such forces and
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finely divided meteonc matter in the solai system must move under the

pressure due to the Sun's radiation Hence we shall consider the effect of

replacing +fi, the acceleration at unit distance, by p! The differential

equation of the orbit becomes

the integral of which is

l) (17)

If we restrict w to such a range of values that u (or r) is positive, this

equation gives only the branch of the hyperbola convex to the centie of

repulsion at the focus, just as under the same restriction the equation (10)

gives only the branch concave to the centre of attraction As compared
with 26 the signs of p and e, as well as of ^, have been changed Hence
the constant c in the equation of energy becomes

o- - / (1 -*)/* = + /*'/*

so that the equation of energy is now

t^/i'/a-VA- (18)

Also, if ^r is the angle which the direction of motion at (rt 6) makes with the
radius vector drawn towards the origin,

= r6 = hu =
^ [ecos(0 - <y)

-
1}

are the components of the velocity along the inward radius vector und
perpendicular to it These are evidently equivalent to (a) a constant

velocity -V' = -tjflh = -*J(n'lp) perpendicular to the radius vector, the
negative sign meaning that V is drawn m the sense opposite to that in
which the radius vector is rotating, and (b) a constant velocity eV m a
direction making an angle JTT + 6- 7 with the radius vector, that is, perpen-
dicular to the transverse axis Thus at perihelion the velocity is V (e- 1)
as compared with the velocity V(e+ 1) at perihelion on the concave branch
under an attracting force

If the circumstances of projection are given m the form of v and ^ at tho
point (r, 0), we have

fjfp
= h? = uV sma

ty

fie sm (6 - 7) = - -y
2
? sin -^ cos ty

fi'e COS (0
-

ry)
= -yV Sin8

i/r + fjf

whlch determine p, e and 7 m terms of given quantities In particular

X2
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32 Expressing the coordinates in terms of hyperbolic functions we now
have, since the centre is at (ae, 0),

Hence

oc = r cos w = a (e 4- cosh F)

y = r sinw = a V(e
a -

1) smhF

r cos2
J w = a (e + 1) cosh2

cosw
ecosh^+1

WOJA * -COBW-I

ecosw-1

e cosw 1

It then follows that

dw

(ecos w l)
a

dF e cosh F + 1

tan Jw =^=- tanh^ (20)

e + coshJ7

, _ e cosw'

y/..
(22)

which corresponds to Kepler's equation for this case

As in the case of an attracting force we may now put

tan /= tanh %F, sec/=coshJ?
T

, tan/=smhF
and e = sec-^ With these transformations the pnncipal formulae of the

solution become

r = a(esec/+l) (23)

tan Jw = tan J^ tan J/ (24)

V(//a-
8
) (t

-
1,)
= e tan/+ Log tan (45 + J/) (25)

or, as the last may be written,

V(//cr
s
) \(t-tQ)

= \e tan/+ log tan (45 + J/ )

in the notation previously explained



30 Motion under a Central Attraction [OH in

33 The simple and important representation of the velocity in all cases
as the resultant of two vectors both constant in magnitude, and one constant
in direction also, may be illustrated by considering the hodograph of the
motion This curve is clearly a circle of radius V and centre at a distance
eV from the origin The four figures given coirespond with the four distinct

types of motion, (a) elliptic, (6) parabolic, (c) hypeibolic, under attraction to
the focus, and (d) hyperbolic, under lepulsion from the focus In all cases
is the origin, G the centre, and OP represents the velocity at perihelion If
Q is any point on the hodograph, OQ represents the velocity in the orbit at
one extremity of the focal chord which is at right angles to CQ The radius
CP being V, 00=eFand as the eccentricity increases moves along the
radius opposite to CP from the position for a circular orbit to a point on
the circumference for a parabolic orbit As e increases beyond the value 1

() (&) Pig 2

the point passes outside the circle But the hodograph corresponding to
hyperbolic motion is no longer a complete cncle since the possible directions
of motion are limited by the asymptotes If OA, OB are the tangents from
to the circle the angles COA, GOB are each equal to sin-1 r+ and it is easilyseen that OA, OB aie parallel to the asymptotes of the orbit, that AOB is
equal to the exterior angle between the asymptotes, and that the arc APB
constitutes the whole hodograph When the attraction is changed to a
repulsion and motion takes place along the convex instead of the concave
beach of the hyperbola OP= F'(e-l), and the hodograph is confined to
that arc of the circle which is at all points convex to 0, whereas in case Co)
it was everywhere concave to

34 From the point of view of practical calculation there are points con-
nected with orbits nearly parabolic in form which require special attention
Heplers equation for elliptic motion may be written

M= E - sin E+ (1
-

e) sin E
?hen

ITV8
Tn 1 the a CUrate calculatlon f X depends on that of*- nntf But if E is small the latter expression is the difference of two

nearly equal quantities and cannot be calculated directly unless each is
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expressed by a disproportionate number of significant figures Hence the

need for special tables (e g Bauschmger's Tafeln, No XL) or an approximate

formula Under the latter head may be mentioned the function

which is so close an approximation to E sin. 12 over the range of E from

to "70 that the logarithms of the two expressions never differ by more than

2 in the seventh place

It is evident that in the parabola itself E is evanescent and generally in

the ellipse of great eccentricity E is small at all points near the attracting

focus The method given by Gauss in the Theoria Motus for the treatment

of Kepler's equation is a particularly instructive example of the construction

and use of special tables and as at the same time it brings out clearly the

relation to parabolic motion its principle will be explained here

Kepler's equation may be written in the form

if a + ft
= 1, or

Jf (l-) 24* JB + GS + ) $A*B . . (26)

if

A = 3 (E - sin JB)/2 (ctE + ft son E)
and

JS
3

(aE + /8 sin JSy/6 (# - sin J0)

- (#'-* E* )/(tf'-*tf' )

which differs from unity by a quantity of the fourth order only in E if

ft 1/10, a = 9/10 With these values it is readily found that

Hence logB is a small quantity of the fourth order which is tabulated with A,

itself of the second order, as argument

We now put, in view of (26),

so that

M-
But

where # is the perihelion distance, in the present problem a more convenient

element than the mean distance a Hence
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the analogy of which with (9) of 29 is evident Here B is unknown, but
the supposition that B = 1 will lead to a good first approximation to tan w>i

and hence to A, and a nearer value for logB can then be taken from the table
This in turn will lead to a second approximation to tan $wlt and so on until

the correct value is reached Now let

or

where C is a function of the second order in A, i e a small quantity of the
fourth order in E, which like logB can be tabulated with the argument A
Hence

-e/ VI -e l-
\

Finally, by 27,

r cos2 %w = a (1
-

e) cos
a E =

q/(l + T)
or

so that the problem of finding w and r is solved by the aid of the tables

giving log B and G with the argument A without introducing E explicitly
into the calculation The method with very little change is adapted equally
to hyperbolic orbits The tables will be found in the Theona Motus of Gauss
or in an equivalent form in Bauschmger's Tafeln, Nos xvn and xviu



CHAPTER IV

EXPANSIONS IN ELLIPTIC MOTION

35 The fundamental equations of elliptic motion found in the last

chapter, namely
, (1)

tan4w= x/(^^)tan^ = tan(^ + j7r)tan^
(2)

a~~l + ecost0~*
ww"~

give at once the means of calculating the coordinates at any given time But

for many purposes it is necessary to express them as periodic functions in the

form of series Some of the more important forms of expansion will now be

investigated

But certain changes in these equations are sometimes useful Let

Then from (2)

y-/9 & + /S

!-& "-IT/S
Also by (1)
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The equation (3) gives

r
T ^ / - *

\iir+jr^-T^d-^a-Ar)
( ^

It is evident that some expansions will be made more simply in terms of

$ than of e Hence it will be useful to have the development of any positive
power of in terms of e Now

or
tan |0 + cot

$</>
= 2 cosec 6

Hence by Lagrange's theorem

for the only terms which survive arise when q = 2p + m Hence

and it is readily seen that this senes is absolutely convergent

36 Since

it Mows that

\OgX= logy + log (1 -0jr*)-l g(l -Qy)

Hence

) (8)
^ " ^ mte"4 1 rf lf the^ of^ ^ged at the same fame

It is also easy to express M m terms ofw For, by (5)

_
^ +
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and therefore

M = w 2
[ft (1 + cos <) sin w 8

( + cos <) sm 2w + s
(-J +cos<)sm3w- }

By this expansion the equation of the centre, w-M,iB expressed as a series in

terms of the true anomaly

37 We have now to consider the expansions m teims of If, which are of

the greatest importance because they are required in order to express the

coordinates as periodic functions of the time And first we take the case of

r
1""1 Now

This is an even periodic function ofE and consequently of M Hence

? = i
f

*

(1
- ecos E)-

1 dM+$~GoapM T (1
- e

V IT JO 7T '0

-i ^dE + - S cos^Jlf [*cos ( -& - p sm E)dE
TTJO T Jo

where

-
f

^

cos P
~

Jf (pe) is called the Bessel's coefficient of ordei ^)
and argument pe We shall

briefly study the properties of these coefficients so far as they are required for

our immediate purpose

Let

. JP 00 - exp [fa (t
- r1

)}

For < write exp ( t-^r) Then
+ 00

exp (- us sin ^) = S ap exp (-

This is a Fourier expansion, showing that

a-s-| exp ^(^-a
ZTTJo

and combining the parts of the integral which are due to f and 2?r -<f we

have

cu - i
[''cos fjp^

- * sm
TTJo
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or

j, () + \ JP
'

<*) + (i
-

) /, (>
- o

^ \ a? /

This shows that /y (#) is a particular solution of the equation

The general theory of Bessel's functions, defined as solutions of this dif-

ferential equation, is not required for our purpose We need only the

solutions of the first kind, with integral values of pt
and the definition given

above is sufficient

39 The desired expansions in M can now be resumed We take

sin mE which is an odd function of E and M Therefore

2 (*
sinmE = -2 sin pM I sin mE sinpM dM

7r

= - - 2 sinpM
I

V
- sinmE d {cos (pE -pe sm E)}

= - 2 sinpM cosmE cos (pE pe sin E) dE
7T JO JP

(by integration by parts, the integrated part vanishing at the limits)

= - S smpM I (cos (p-mE -
pe sm E)

TT Jo p _
-I- cos (p + mE pe sin E)} dE

(17)

In particular, when m = 1, by

2 ^ sinpM

and therefore

(19)

Similarly, since cos M$ is an even function of E and A/,

cos w# a + - 2 cos pif cos7yijE
r

cosjpifdJkf
7T JO

a 4- - S cospM I

*
- cosw^ d5 [sin (p^- pe sm .#)}

7T JO P

* a. 4- - 2 cospM I

"
- sm wii

1
sin (pE-pe sm #) rfJP

7T Jo JP



38 Expansions in Elliptic Motion [OH iv

(integrating by parts as before)

ScoapM I {cos(p mE
7T /A Pf

o P
- cos (p + mE pe sin E)} dE

: Oo 4- m 2 ^pt {Jp.^ (pe)
-
Jp+OT ( pe)} (20)

The constant term has not been determined It is

1 r
w

GL. = I cosmEdM

1 f*- cos mE (1-e cos #) dETJO

and thus

= ifm>l
The particular case ofm I is simplified by (15), so that

40 From the last expansion it follows that

(22)

Any positive power of i can be expanded by means of (20) For example

= 1 + 4* - 2e cos J?+ ie
8 cos 2.E

-i+i'+'

Now, by (14) and

Hence

, lw (23)
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The expansions of the rectangular coordinates can be written down at once

by means of (18) and (21) Thus, if a?, y have this meaning and not as in 35,

x a cosE ae

(24)

and
y = ^(1 e*) a sm E

- 2a cot $ 2 Jp (pe) (25)

Other important expansions can be derived from those already obtained by
differentiation or integration For instance, the equations of motion give

directly
d*x q3#_~ ~

whence

(26)

^
= -

a
cot

<^ Hjp/^ (^e) sinpM (27)

41 The expansion of functions of the true anomaly in terms of the

mean anomaly is in general more difficult But smw and cosw are readily

found For (27)
V(l

- &) sin #

= cot

= 2 cos
<f>
2 Jp (pe) sinpM (28)

by (22) And

_ -i ln 2

by (9)
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Hence also for the equation of the centre,

- 6
2
) 2 Jp

'

(pe) {sm (p + 1)M + sin (p
-

1) Jf}

sinJf+ 2 apsmp^ (30)

where

)}

)}

This expansion for the equation of the centre in terms of the mean
anomaly is important, although the coefficients are rather complicated
Hence, AS far as &,

sin (w - M )
= e(2 - %e*) sinM + je

8 sin 2Jlf+ ^e8 sin 3Jf

w-M = e\2 - #) amM+ $e* sin 2M + $& sm ^JkT

as can easily be verified,

*42 For some purposes Laurent series in the exponentials a?, y> z of
35 are more convenient than Fourier series in w, E, M Clearly

8= o + S (a, cos pff + bf sin p6)
= a, + 2 ft (op

-
16

})) T* + i (oj, + 16,

where log T = t0 By Founer's theorem

Scosp6d0,

IT (a,,- tbf)

Hence

where

This well-known form, intermediate between Founer's and taurent's is

general and includes the case p = It has been used already in 37
Formulae have been found which make it possible to pass from anyFouners expansion in E to one m M The general result may be expressedin a slightly Afferent way For, since y has the same period as z,

* The reading of g 42-46 can qmte convener be deferred tall after Ch.pt* XIII
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where

=
I
^"m dM = *w~*

(V<Z OBT*)

[- im-1^-] -
ipm'

1

ly?-
1^ dy

/27T-1

exp [ipE
- im(E-e sin

J o

(m 4 0) But when m =
0,

/2ir=
Jo

=
f

2"

j o

Hence generally, for any function of y,

00

43 There is another form of calculation, due to Cauchy, in which Bessel's

coefficients do not appear explicitly Let 8 be any periodic function, such

that

Here, by (4),

[
Jo

- cos

- i(y + r1

)}

where
J7 = fi (1

-
i (y + jr*)} exp ftps (y

- jT

the coefficient J5P of Z7 expanded in powers of y*
1

being thus identical with

the coefficient Ap of fl expanded in powers of g&
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It is now only necessary to consider the construction of the table for

$"_y, 0> g when p is positive But this is indicated by

whence p = 2r
9, and

The tabulation of Cauchy's numbers, which are all positive or negative
integers, is therefore an extiemely simple matter

44 To considei an example, let

S =
(a

" 1
)

m
=

(
~ e cos E}m " (~ ^m& + 2/"

a

)
W

Then

*
(y + y~^} exp

\

g

+ (- ie)
w+3

(y + y-
1)*

and

is the coefficient of y* in U, and therefore of ** in S

When p = the exponential function disappears and the constant term is

given by
U= (- 6) (y + 3T') + (- je)^

and as therefore the first 01 the second of the forms

! [(Jin) !]^, (ja)"^ (TO + 1)
i

J[J (in + 1)]

according as m is even or odd

On the other hand,

and therefore

v
=j(-

Wn
y-

1

(y +rr-1 2 (y
-

Hence
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is the coefficient of
2/
y~1 m V and therefore also the coefficient of 2?^ in o

Comparison -with the previous result shows that

mN-py ^1, 9+i
= pN-p, m,q $N-p, m+l, q-l

is an identity From this the recurrence formula

(m -p + q + 2)#_3H.2im>ff
- 2(m - q) N. pt ^ q + (m + p + q + 2)-Z\LJP

_
a> m, 9

can he easily deduced

45 The development in terms of if 01 z of the functions

/r\n sm /r\n

wiw,
-

*6
m

\a/ cos w
is of special importance Here n is any positive or negative integer, and if

m is also a positive or negative integer it is only necessary to considei the

second form This involves Hansen's coefficients X"
m

, where

f-V ** = 2 xn
"V, 27rjr-

w - r f-V
\a/

* *
Jo W

Now
-

\.a

of which the kbt form follows from the areal property of elliptic motion,

? *dw = hdt = 7T*hdM=ab dM = a? cos ^>c?Jf
Also

^-ya-ftTXl-^)^
and therefore X"'

m
can be expressed hy a definite integral involving y and

J, or by one involving x and w, by means of (4), (5), (6), thus

exp [fa
and

27J-Z*'
w -

*
(1
-

/3*)*
1"1-'

(1 + /SV1-1 &"-* (1 + ^)-n-a+l
(1

exp |># cos
</> {08 + a"1

)"
1 - 08 + a)"*

1

}] cfa;

The first of these forms shows that (1 + py*lX*'
m

is the coefficient of

in the expanded product Y^Y*, wheie

7. - (1
-

jSy-
1
)"
414*

exp (-

Similarly the second form shows that (1 + yS
2
)^1

(1
- l

)~"*"
iZ"'

m
is the

coefficient of aj
1-7^ in the expanded product ZjZ2 , whe^e

Zj = (1 + fl*)-"-** exp [% cos </> /8a? (1 + /Sa?)-
1
]

exp [- t cos <
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The deduction of Eansen's formulae m this way is not difficult, and has been
given by Tisserand (M4c 041

} i, ch xv)

An obvious method consists in expanding the exponential function oc-

curring in the first of the two integral forms in a series with Bessel's
coefficients Thus

-i 2 jp (ie)
I

""

j> J

P

where
JT*^*

is clearly the coefficient of y*-*- m the expansion of

F 08) - (1
"

/3y)
n+1-

(1
- /ty-7*^

and therefore equally the coefficient of y~*+p+ m the expansion of

P^ (ft - a - fly-^ (1
- ^

Now

where A =p + A, aad ifj is positive the coefficieat ol
j/' is

C_ fl\
* (~J> + 1) < ("P) (*-P- * 4 1) j

v ;
*

in the ordinary notatioa for a hypergeometnc series Hence there are two

possible forms for X"'

of which the first is available if ip-m> and the second if i-p m <0,
for then the third argument of the series is positive and the binomial coeffi-

cient has a meaning If i p = m both forms become

JT
J*

* = F(W - 91 - 1,
- M ^- M - 1, 1, ')

When n is assumed to be positive, at least one of the first two arguments of

the series is always negative, and therefore the series is a polynomial m $*
For in the first form with %pm> 0, the second argument is certainly
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negative if m is positive ,
if m is negative, n + 1 m > and the binomial

coefficient shows that i p m< n + I m, so that the first argument is

negative Similarly when the second form is valid it also is a terminating
series When n is negative one of the known transformations of the

hypergeometnc series may he necessary to give a finite form Hence

Hansen's coefficients are reduced to the form

=
(1 + /3

3
)-"-

1 2 Jp

where X* represents, with a simple factor, a hypergeometric polynomial

in f& This form was first given by Hill

46 The periodic series in M found above are evidently legitimate
Founer expansions, satisfying the necessary conditions with e < 1, and as

such are convergent The Bessel's coefficients are given in explicit form by
the series (11) which also is at once seen to be absolutely convergent for

all values of e But in practical applications the expansions are generally
ordered not as Fourier series in M but as power series in e Under these

circumstances the question of convergence is altered and needs a special

investigation Now
J= M 4 esmE

considered as an equation in E has one root in the interior of a given contour,

and any regular function of this root can be expanded by Lagrange's theorem

as a power series in e, provided that

|

e sm E
|

<
|

E -M
\

at all points of the given contour* We have then to find a contour with the

required property, and to examine its limits

We are to regard e and M as given real constants The equation

E =M + p cos % + tp sin ^

where p is constant, defines a circular contour At any point on it

sm E = sin (M -f p cos %) cosh (p sin ^) 4- i cos (M + p cos %) smh (p sin %)

so that

|
sm E

|

a = sin2

(M + p cos %) cosh8

(p sin %) + cos3 (M+ p cos %) smh
3

(p sin %)

= cosh2

(p sin %)
- cos2 (M + p cos %)

while

\S-H\-p
* Of Whittaker's Modem Analysis, p 106

, Whittaker and Watson, p 183
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The most unfavourable point on the contour for the required condition is

that at which
|

sinE
\

is greatest And our series is to be valid for all real

values of M Hence the condition is always fulfilled if it is fulfilled when

sin % = 1, cos (M + p cos %) =
or

in which case

|

sinE
|

= cosh p

Thus the required condition becomes

e < p/cosh p

The greatest value of e is therefore limited by the maximum value of

p/cosh p, which is given by
cosh p p smh p

Inspection of a table of hyperbolic cosines shows at once that p/cosh p is

greatest when p is about 1 20 and that its value is then about $ With

ordinary logarithmic tables an accurate* value can be obtained without

difficulty thus Let tan a be the greatest possible value of e, so that

tan a = p/cosh p = 1/smh p

It easily follows that

exp p cot ^a, coth p = sec a

whence, by the equation giving p,

cos a Log cot J a
= 1

or, using common logarithms and taking logarithms once more,

*
log cos a -I- log log cot Ja -I- 362 215 69 =

In this form it is easily verified that

a 33 32' 3" 0, tan a = 662 7434,

This last number is then the limiting value of ef within which the expansion

of any regular function of E in powers of e is valid for all values of M The

orbits of the members of the solar system have eccentricities which are much

below this limit, with the exception of some, but not all, of the periodic

comets

47 In the form in which Bessel's coefficients occur most frequently in

astronomical expansions,

~
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It may be convenient for reference to give the following table

2-

2
-. _

2,, 625e*/ 25e' 625s4

189^

These can easily be earned further if necessary, but they are often enough for

practical purposes

Bessel's coefficients occur naturally in several physical problems discussed

by Euler and D Bernoulli from 1732 onwards In 1771 Lagrange* gave
the expression of the eccentric anomaly in terms of the mean anomaly, the
result (19) above, and found the expansions of the coefficients as power series,

thus anticipating Bessel's work (3824) of more than half a century later

* 0uw, m, p 180 This reference, which seems to have been overlooked, u due to
Prof Whittaker



CHAPTER Y

RELATIONS BETWEEN TWO OR MOJRE POSITIONS IN AN ORBIT

AND THE TIME

48 Since a conic section can be chosen to satisfy any five conditions it is

evident that when the focus is given, and two points on the curve, an infinite

numher of orbits will pass through them The orbit becomes determinate
when the length of the transverse axis is given, though in general the solution

is not unique For let the points be Pl9 P2 and the focal distances rlt ra

In the first place we take an elliptic orbit with major axis 2a The second

focus lies on the circle with centre Pa and radius 2a r, ,
it also lies on the

circle with radius Pa and radius 2a ra These two circles intersect in two

points provided (c being the length of the chord P^PJ)

- ra > c

or

4a > ra + ra + c * . (I)

If this inequality be satisfied two orbits fulfil the given conditions, if not,

no such orbit exists We notice that the two intersections lie on opposite
sides of the chord PiP2 ,

so that in the one case the two foci he on the same
side of the chord, in the other on opposite sides In other words, in one

orbit the chord intersects the axis at some point between the foci, while

m the other orbit it does not Only when 4a rx 4- ra + c the two circles

mentioned touch one another in a single point on PXP9 and the two orbits

coincide In this case the chord passes through the second focus

When the orbit is the concave branch of an hyperbola the second focus

lies on the circle with centre Pi and radius n H- Set and also on the circle

with centre Pa and radius ra+2a These circles always intersect in two
distinct real points since

always There are therefore always two hyperbolas which satisfy the con-

ditions The second foci he on opposite sides of the chord and hence in the

one case the chord intersects the axis between the two foci and the difference
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between the true anomalies at the points Pl9 P2 is less than 180, while in

the other case the chord intersects the axis beyond the attracting focus and

the difference between the anomalies is greater than 180

Under a repulsive force varying inversely as the square of the distance the

convex branch of an hyperbola can be described The position of the second

focus is again given by the intersection of two circles, the one with ccntio Pl

and radius t l
- 2a and the othei with centre Pa and radius ra

- 2a These

circles intersect in two points provided

or

c (2)

There are then two hyperbolas and in the one case the chord intersects the

axis at a point between the two foci while m the other it cutb the axiH at a

point beyond the second focus

It is easy to see similarly that it is always pobsible to draw four hyper-

bolas such that one branch passes through Pj while the other branch passes

through Pa These have no inteiest from the kinematical point of view

since it is impossible for a particle to pass from one branch to the other

The case of parabolic solutions, two of which always exist, can be inferred

from the foregoing by the principle of continuity But it is otherwise clear

that the directrix touches the Glides with centres PI, P9 and radn 1 1, r a These

circles, which intersect in the focus, have two real common tangents eithoi of

which may be the directrix The corresponding axes are the perpendicular
from the focus to these tangents In the case of the nearer tangent it is

evident that the part of the axis beyond the focus intersects the choid PjPj
and the difference of the anomalies is greater than 180 In the case of tho

opposite tangent, on the other hand, it is the part of the axis towards the

directrix which cuts the chord and the difference of the anomalies* IH less

than 180

These simple geometrical considerations show that, when the transverse

axis is given, two points on an orbit may be joined in general by four elliptic
arcs (of two ellipses), by two concave hyperbolic arcs, by two convex hyper-
bolic arcs

3 and m particular by two parabolic arcs This conclusion is qualified

by the conditions (1) and (2) which of course cannot be satisfied simul-

taneously All these different cases must present themselves when we sock
the time occupied in passing from one given point to another, as we shall

at once see

49 Let Elt Ez be the eccentric anomalies at two points Plt Pj on an

ellipse, and let

Then
n = a (1 -ecosEJ, ra= a (I-e cos



48-0o] in an Orbit and the Time 51

and
r-! + r2 - 2a {1

- e cos J (^a + 3$ cos

= 2a (1 e cos (? cos g)

Again, o being the chord PjP9 ,

ca - aa
(cos E*

- cos jEi) + a2
(1
-
*) (am #2

- sin

= 4aa sma
(? sma

# + 4aa
(1
- 2

) cos
2 G sma

#

Hence if we put
cos k = e cos (?

then
c2 = 4a2 sm2

^ (1
- cos2

h)
or

c = 2a sin g sm &
and

ri + fa = 2a (1 cos g cos A)

If further we now put

or

e - S^Es-E!, cos (e+ 8)
= cos i(tf, + .Bi) (3)

we have

(4)

- c = 2a {1
- cos (h

-
#)}

= 4a sm2

^8 .. (5)

But on the other hand, if E* >E and

the time t of describing the arc PiP2 is given by

nt = E* j&i e (sin -E'a sm !,

sinS) (6)

where e and 8 are given by (4) and (5) in terms of rx +ra ,
c and a, and this

is Lambert's theorem for elliptic motion

50 It is evident that (4) and (5) do not give 6 and 8 without ambiguity,

and this point must be examined, We suppose always that E2-El <360
Q

,

i e that the arc described is less than a single circuit of the orbit
,
and we

assume, that the eccentric anomaly is reckoned from the pericentre in the

direction of motion Now it is consistent with (3) to take (e + 8) between

and TT and we also have ^ (e 8) between the same limits Hence ^e lies

between and TT and 8 lies between -
-Jvr

and + far But the equation of

the chord P^Pa referred to the centre of the ellipse shows that it cuts the

axis of x in the point
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so that, if Q is this point, A the pencentre and F.F, the foci,

cos j(e -8) -cosHe + 8)_
,-a cos I (E, - E,)

- cos

-a cos

Now sm } and cos JS are always positive We may also take E, less than
27r and

nnj^ positive, then smj â is negative or positive according as
tie arc includes or does not include the pericentre In the first equationtne lett-nand side is negative when the chord intersects the axis between-
the pencentre and the irst

(attracting) focus, in the second when the
intersection falls between the pencentre and the second focus Otherwise
both members are positive Hence we see that sm J8 is positive if (1) the
arc contains the pencentre and the chord intersects F,A, or (2) the arc does
not contain the pencentre and the chord does not intersect F,A, and that
cos *6 is positive if (3) the arc contains the pencentre and the chord inter-
sects F,A, or (4) the arc does not contain the pencentre and the chord does
not intersect F>A In other words, sin 8 is positive when the segmentformed by the arc and the chord does not contain the first focus, and cosi*
is positive when the segment does not contain the second focus

Let ei and 8, be the smallest positive angles which satisfy (4) and (5)The other possible values are 2,r - 6l and - 8, If we put

there are four cases to be distinguished, namely

when the segment contains neither focus,

when the segment contains the
attracting, but not the other focus

when the segment contains the second, but not the
attracting focus ,

when the segment contains both fod It is easy to see from 48 that when

.mparatively short and hence that the solution (.) the right one
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51 The corresponding theorem for parabolic motion is easily deduced as

a limiting case For when a is very large e and B are very small Hence

(4) and (5) become
ae-=* TI -f ra + c, aS8 - ^ + r2

- c

At the same time, if we replace n by jufy^ (?) becomes

/A -*a*(-*)
= ifa + ra 4- c)* T ifa + ra -c)

f

As this applies to the motion of a comet, and the mass of a comet may be

considered negligible, we may therefore write

6fa = fa + r2 + c)* T fa + ra -c)* (7)

which is the required equation It was first found by Euler As regards

the ambiguous sign, the second focus is at an infinite distance and does not

come into consideration But B is negative or positive according as the

segment formed by the arc described and the chord contains or does not

contain the focus of the parabola Hence the lower (+) sign is to be used

when the angle described by the radius vector exceeds 180, and the upper

(-) sign is to be used when this angle is less than 180, as it almost

always is in actual problems

52 The solution of (7) as an equation in c is facilitated by a trans-

formation due to Encke We put

c = fa + ra) sin 7, < 7 < 90

and

ij-att/fa+r,)
1

Then (7) becomes

87? (1 + sin 7)
1 T (1

- sm 7)*

(cos &7 + sin 7)* T (cos 7
- sin J7)

8

(8)

First we take the upper sign, in- which case

= 6 sin ^7 4 sins 7
If we put

sm 47 N/2 sin J0, < J<B> < 30
then

3i?
= 2V2sme, 0< 0<90 < , (9)

and

Hence

where

/*
= sin 7/17

= 3 sm J V(cos e)/sm 8 . (11)
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Since
/j, and 97 are both functions of

, /z can be tabulated with the
When such a table is available (cf Bauschmger's Tafeln, No
known, c is immediately given by (10)

In the second place we take the lower sign m (8), so that

3?7 2 cos8 7 + 6 sin2

7 cos 7

= 6 cos y- 4 cos3 7
If now we put

cosfy=V2smJ@, 30<je<45
then

37?
= 2A/2sm@, 90 < @<135

and

sin 7 = 2 V2 sm V(cos f )

as before Hence (10) and (11) apply equally to this case, with the
that as given by (12) is an angle in the second quadrant msi><?
first Except for this the solution is formally the same in both.
different tables would be necessary The case of angular motion
180, however, seldom demands consideration m practice

53 For motion along the concave branch of an hyperbola under
to the focus we have

( 30)

and we may suppose E* > E, Hence

n + ra = 2a [e cosh | (JE,
- SJ cosh J (E* 4- E,) - 1}

where
=^

(
OSh * ('

"
S) C sh * (e + S>

~ ^
-3 = ^-^, cosh $ (e + 8) = e cosh H^a + ^i)

Again, the chord c is given by

= 4a' smh2
i ( â

= 4tf smh2
i (e

-
B) {- 1 + Cosha

or

Hence
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But on the other hand if

nt = esmh ft- j&
T

2 -(e smh ft - ft)

= 2e smh (ft
- ft) cosh J (ft + ft)

-
(ft

-
ft)

= 2smhi(e-S)coshi (e + 8)
-

(c
-

8)

= smhe-sinh$-(e-8) (16)

where e and 8 are given by (14) and (15) This is the form which Lambert's

theorem takes in this case

We may take i ( + s) as defined by (13) positive ,
and i (e

-
8) is positive

since E> > El Hence e is positive Now the equation of the chord referred

to the centre of the hyperbola gives for the intercept on the axis

a = - a cosh J (ft
-
ft)/cosh i (ft, + ft), y=

or, ( ae, 0) being the attracting focus within this branch,

+ ae- - 4 {cosh i (e
-

8)
- cosh i (e + 8)}/cosh * (^ + ft)

= + 2a smh ^e smh S/cosh 4 (ft + ft) (I7)

The left-hand side is negative or positive according as the intersection falls

beyond the focus or on the side of the focus towards the centre Hence

smh AS is positive when the angular motion about the focus is less than 180,

and negative when it exceeds 180 Thus the sign of 8 is determined. If

we put . . IA*
m1*-(r1 + ra +c)/4a> m? = (r, + r2

-
c)/4a

then
smh Je = + %, smh ^-6

= w2

or

Hence (16) can be written (Log denoting natural logarithm)

nt = V 1 + 2maVm9
a
4- 1

where the upper or the lower sign is to be taken aoocndixig a* the angular

motion about the attracting focus is less or greater than 180

64 The corresponding theorem for motion- along the convex branch of

an hyperbola under a repulsive force from the focus can be proved similarly,

In this case ( 32)

rlS=a(ecoshft + l), r, = a (e cosh ft + 1)

r + r, - 2a (cosh *( + ) cosh } (
- 8) + 1}
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wheie

6-8 = ^-^, cosh } (6 + 8)
= e cosh i(^ + -#i) (IB)

and as in 53

c = 2asmhi(e-8)sinh(e + 8)We have therefore

ra + ra + - 2a (cosh e + 1) = 4a cosh8 } e (19)

T-! + r2 - c = 2a (cosh 8 + 1)
= 4a cosh8 } 8 (20)

Then by $32 (22), if /-nW,
wC = e smh #2 + J a

-
(e smh J^ + E,)

= 2e smh (E.-EJ cosh } (^ + E,)

= smh e - smh 8 + e - S (21)
where e and 8 are given by (19) and (20) This is analogous to the other
forms of Lambert's equation

Putting as before

we have of necessity
cosh Je = -|- mlt cosh 8 = + m*

but there is again an ambiguity ui the values of e and 8 Now we may takeE2 >E, and i(-8) positive, and we may denne i(e + 8) as the positrve
value which satisfies (18) Hence e is positive and exp (j,)>l To the
equation (17) now corresponds

x - ae - - 2a smh e smh |8/c

showing that 8 is positive if the chord intersects the axis at a point on the
side of the focus towards the centre It must be noticed that this focus is,
as before, the focus within the branch and not the centre of force Honco
exp }S > or < 1 according as the angular motion about this focus < or > 180
It follows that

exp fte) = + 77?, + iJmf-i, exp (8) = + m, Vm^^!
smh e = 2m, Vm^-1, smh 8=12^ V^TTi

and hence that

nt = 2m! 'Jmf-l ^ 2ma \/wia
a - 1

+ 2 Log^ + vW-i) + 2Log(i1 + \/^r- 1)
where Log denotes natural loganthm and the upper or the lower sign is to betaken

a^cordang
as the motion about the internal focus (not ?he centreof force) is less or greater than 180

In all cases, whether the motion u along a parabola or either branch ofan hyperbola, when two tocal distances are given in position and nothmg
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more is known about the circumstances, the discussion of 48 shows that

the ambiguities in the expressions for the time of descrihing the arc corre-

spond to the distinct solutions of the geometrical problem Hence they

cannot he decided without further information In practice, however, it

rarely happens that the angular motion ahout a focus exceeds 180 and

this limitation, hy which the upper sign can be taken, will be generally

understood

55 A quantity of great importance m the determination of orbits is the

ratio, denoted hy y, of the sector to the triangle The case of elliptic
motion

is taken first Since n - h/cd),
where h is the constant of areas, twice the

area of the sector is, by (6),

hi = ab {e
- 8 - (sin e- sm $)}

But if (<!, 2/1), (02, y.) are the extremities of the arc, twice the area of the

triangle is

= ab {sm Es (cos El
-

e)
- sin El (cos Ez

-
e)}

= ab (sm (E,
- #,)

- 2e cos i (E, + EJ sin i (ft
-

#1)}

= ab {sin (e
-

S)
- (sm e- sm 8)}

by (3) Hence

_ e-S-foine-sinS)
^ " sm (e

-
S)
- (sm e- sm 5)

This expression contains a implicitly and this quantity is to be eliminated

Let 2/be the angle between r, and ra and let g, h have the meaning assigned

to them in 49 Then

1 6a' sm'iesin'iS-fa + rt + c) fa + r>-c)

=
(t j + r2)

J - n8 -
r,' -h2^ cos 2/

whence x

2a (cos y
- cos h)

= 2 cos/v r

Also by (4) and (5)

^ + rj

and therefore ,

n 4. rt
- 2 cos/cos 5f

v nr, == 2a sma

Again, by (22), ^

ant

2cos./Vrl
ra
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57 In the case of the branch of an hyperbola concave to the focus of

attraction, twice the area of the sector is by (16)

kb = ab (sinh e - smh 8 - (e
-

8)}

since h = V(/^) = nab And, if (a,, T/^, (#2 , ya) are the extremities of the arc,

twice the area of the focal triangle is

2A ~ fl%yx
- o^a

= ab {smh^ (cosh J2 e) smh 2̂ (cosh ^ e)}

- a& {smh (E^EJ-e (smh ^ - smh E*)}
= ab {smh e smh 8 smh (e 8)}

by (13) Hence

v = smhe -sinh8-(-8)
* sinh e - smh 8 - sinh (e- 8)

v '

Now we have by (14) and (15)

16aa sinh8
J e smh8

^S = (^ + r-2)
a - c2

= 4^^ cos2/
or

2 cos/vVira= 2a (cosh k cosh #)

where 2A = e + 8, 2^r
- e - 8 Also by addition of the same equations (14)

and (15)
rx + ra =* 2a (cosh ^ cosh h 1)

and therefore

T! + ?~a
- 2 cos/cosh # Vr^ = 2a sinh2

^
But by (27)

y s= n*/(2 smh ^r
cosh A - smh 2*7)

= a w-i/smh^r (2 cos/VrjT-a)
and therefore

/ (n + ? 2
- 2 cos/cosh g Vr^) = 2^a

/(2 cos/V?^)
2

(28)

since nte8 =
/* On the other hand

smh (e- 8) -(e -8)
*
~ ~~

sinh e sinh 8 smh (e 8)smh (e 8)

smh 2gr 2
ty

2 sinh # (cosh h cosh #)

a smh 2<y 2<

Hence

As in the case of the ellipse we write

1 + 2^=
r' +r

!

2 cos/Vr.r,
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and thus (28) and (29) become

(30)

(31)

This pair of equations m y and # must be solved by some process of approxi-

mation so that the value of y may be found

58 The case of the branch which is convex to a centre of repulsive

force at the focus (- ae, 0) needs slight modifications Twice the area of the

sector is by (21)
ht = db (sinh e smh B + e S)

while twice the area of the triangle is

2A = o?1ya -a2y1

= db (sinh E* (cosh El + e)
- smh E^ (cosh Ez + e)}

= ab {sinh (E*
- L^ + 2e sinh J (E2

-
J6y cosh ^ (E2 +

= a6 {sinh (e 8) + sinh sinh 8}

by (18) Hence the ratio of sector to triangle is

sinhe-8inh8 + -a
y

sinh (e
-

8) -f smh e- smh 3

In this case we have by (19) and (20)

16a8 cosh8
Je cosh

2

%S = (rx 4- rs)
a - ca - 4rxr, cos

2/
or

2 cos/V^ra = 2a (cosh ^ + cosh g)
and

rx + r2 = 2a (1 f cosh h cosh 7)

where 2A= c+ 3, 2^ - e - 3 Hence

2 cos/cosh #Vr^ - (r, + r2)
= 2a smh2

^

But (32) may be wntten

y = wi/(smh 2p + 2 smh g cosh A)

ant/amhg (2 cos

smh (e
-

8) 4- smh e- sinh 8

sinh 20 2$r"

2 smh g (cosh H- cosh h)

a sinh 2r - 2

and therefore

y
2

(2 cos/ cosh ^ Vrv^- ^ - r2) = 2/f/(2 cos/V7^)2
(33)

since naa8= / Also by (32)
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(2
If as before we write

1 + 21- -

,

2 cos/vr^z

then (33) and (34) become

(34)

ma

(2

*
(smh 2#

-
20)/smh

8

g

(35)

(36)

and these again, when solved by a method of approximation, give the value

of y in this case when r1} ra and /are known

59 Some useful approximations can be obtained from a proposition

which is easily proved Let X be any regular function of t If we neglect

powers of t beyond the fourth order we may write

X =

Let JTX , Z fl ,
Jf8 be the values of X when J- - TS ,

and TX Then we have

three pairs of equations, obtained by substituting these values in the above

From these six equations the coefficients a , ,
a4 can be eliminated and the

result expressed in determinant form is clearly

The determinant can be calculated without difficulty, and the result after

dividing by 12^3 (rx + rs) is

)-X.(T1 + Tt)(T

T3
a -T1 T3-Tl

2

If we put T2
= T! + TS and write

this becomes

(38)
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60 Now in the case of the motion of two bodies in a plane we have

Hence substituting oc and y successively for X in the formula just obtained

we have, to the fouith order in the intervals of time,

= ^T! (1 + Mi/fi
3

)
- #2r2 (1

-
fL42 /r .') + a3T8 (1 4-M ,/

/
,

0-yir1 (l+^A 1 /7 10-2/2T2 (l- ju42/^) + ^T3 (l-f-

The solution of these equations in the ordinaly form gives

But the denominators are respectively double the areas of the triangles whoso

sides are pairs of rlt r2) ? 3 Hence we have the formulae of Gibbs,

r, (1 +Mi/O r2 (1
-
^,/r,-) T, (1 + pAtlrf)

where, according to the customary notation, [7,7J denotes double the circa of

the triangle whose sides are n, r,, and ^L lf ^1 2 , J.,, have the values found
above (37) This expresses the ratio of the triangles correctly to the thud
order of the time intervals

A second interesting example is provided if we take X = r3 In this c<iso

we have $ 25 and 26)

-(- 9
Hence the formula (38) gives

{TI (T2 T3
-

Tj
3
) + T2 (TlTd + T2

2
) + T3 ( Tl T,

-
T/)} ft /fa

-
Tj

3
4- Ta"

1 -
T,

3

) ft/ 6a

The form (40) applies to an ellipse and gives the means of calculating an
approximate value of a when r,, n, rz are known It must be adapted
to the hyperbola by changing the sign of a For the parabola the light-hand
side vanishes and we have the relation between the three radii vectoics

which holds provided we may neglect terms of the fifth order m the time
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61 Returning to the formulae of Gibbs (39), m which the denominators

are correct to the fourth order, we have

ilVJ = "L+fAA^rf = i + M? _ f^l
l/vj 1+Mi/n3 r3

3
*-!

1-
_

r3
3 r2

8

Mi , Ma

to the third order But to the first order

1

Hence

"̂ ^/gjj
^

For the coefficients we easily find from (37)

12 (At 4- -d.,)
= T1

T3 + T2
S

12 (^ x + 4a) = T!T3 + T2
9

12 ^.

- T8
2 = 2 (T8

a - T3
2
)

- TT
* * 2 (Tft

2 -
T^)

) + T8 (TaT3
- T,

2
)

and therefore

(41)

These formulae are correct to the third order and if the terms involving

ra be omitted they express the ratios of the triangles m terms of the single

distance r, to the second order Hence their value for the determination of

orbits
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62 Without loss of accuracy the ratios c<in be eypiessed in fc <

two distances ra and r
3 instead of ra and ra The forms feu?**

may be derived thus, we have to the first order

ri-^t.-r.T,, ^ = ^+1^
whence

i

r3-n = r2 ro, r1 + y,= 2. + i J (T1
-. Tj)

and therefore

or

IE the terms of the third order we have simply

_r, _4(r,-? 1)

^/ ""ln + n?
Hence the ratios of the triangles to the reqiiued order become

where, if t, ^, ft are the times corresponding to the distances lf r29 ^ ^

Equivalent but rather simpler expressions in teims of the extreino
may be obtained by observing that

whence

By substitution m (41) it is easily found that

IE? (

From the method by which all the expressions of this kmd have been <l
it is clear that the rebults apply equally to all undisturbed orhts ell il
hyperbolic

' *



CHAPTEE VI

THE ORBIT IN SPACE

63 Hitherto we have considered the relative motion of two bodies only

as referred to axes in the plane in which the motion takes place It is now

necessary to specify the manner in which the motion in space is usually

We take a sphere of arbitrary unit radius with the Sun at its centre

The ecliptic for a given date is a great circle on this sphere That hemi-

sphere which contains the North Pole of the Equator may be called the

northern hemisphere On the ecliptic is a fixed point 7 which represents

the equinoctial point for the given date and from which longitudes are

reckoned in a certain direction The plane of the orbit is also represented

by a great circle which intersects the ecliptic in two points One of these

H corresponds to the passage of the moving body from the southern to the

northern hemisphere and is called the ascending node
,
the other node is

called the descending node The longitude of H, or 70, may be denoted also

by 1 it is an angle which may have any value between and 360 The

angle between the direction of increasing longitudes along the ecliptic and

the direction of increasing true anomaly along the orbit is called the in-

clination and may be denoted by i It is an angle which may he between

and 180

Let P be the point on the great circle of the orbit which represents the

radius vector through the perihelion and Q any other point on the same

great circle representing a radius vector with the true anomaly w, so that

PQ = w We may denote the arc HP lying between and 360 by o>, so

that flQ = o> + w This angle, reckoned from the ascending node to any

point on the plane of the orbit, is called the argument of the latitude It is

possible to regard o> as an element of the orbit, but it has been more usual

to define the element -or, which is called the longitude of perihelion, as the

sum of the two angles Jl4-o> although only one of these is measured along

the ecliptic The angle w + worfl + w-l-wis called the longitude in the

orht We have thus defined the three elements, the longitude of the
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node, the inclmataon of the orbit and the longitude of perihelionTed to fix the position of the orbit in space and with these it is

isary to mention the date of the
ecliptic and equinox to which they

aferred '

1 The motion must now be definitely related to the time Let *, be
joch

arbitrarily chosen and T the time of perihelion passage Then
Qg the mean motion, the mean anomaly corresponding to the epoch is

-M"o
= (<o-2

7
)

ither M, or T might be legarded as an element of the orbit, but in the
rf a planetary orbit it is more usual to employ the mean longitude at
>och, , which is defined as the sum * + M, Thus at any time t if
+ w is the longitude in the orbit and E the eccentric anomaly, the
on of the planet is given by

M = n(t- T)

lean motion and the mean distance are connected by the relation Q 24)

m i. the mass of the planet (negligible m the case of minor planets)
.mplete elements can now be enumerated and illustrated by the case ofmet Mars

Epoch

Mean longitude

Longitude of perihelion

Longitude of node

Inclination

Eccentricity

Mean motion

Log of mean distance log a

Mais (m=l/3 093 500)

1900 Jan 0, Oh GMT
293 44' 51" 36 \

334 13 6 88
Equmox

48 47 9 36
j

19000
1 51 1 32 )

009330895

1886" 51862

182897033

to the
imber of independent elements is six, corres
3f integration which enter into the solution of tne equa
>eing in their general form three in number and of the

.1 i

eccentricity is 1 and the mean
"

63-

at

(B

0-

tb

w
ta

tf

IS

n
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at a chosen epoch Thus preliminary parabolic elements of Comet a 1906

(Brooks) are shown as follows

T 1905 Dec 2229263 GMT
<w 89 51' 53"n
ft 286 24 22 1 V 1906

% 126 26 7 3j

q 1 296318

66 If axes (xlt ylt zj be taken such that Oa^ passes through the node,

(tyi lies m the plane of the orbit, and Ozl is in the direction of the N pole of

the orbit, the coordinates of the planet (or comet) are

#j ss r cos (<0 + w)} y\ v sin (o> + w), #1

when its true anomaly is w Let the axes be turned about Oasi so that Oyl

takes the position Oya in the plane of the ecliptic and Oz* is directed towards

the N pole of the ecliptic
Then

#s = ssi, y yi cos l "~
*i sin * * = *l cos * + 2/i

smi

Next let the axes be turned about 0*2 so that Ox, passes through the equi-

noctial point and Cty3 is in longitude 90 Then

u,8 ^ cos ft - ya sm ft, 2/3
=

2/a
cos O + #a sm ft, ^ = %

Hence the relations between (a?,, yjf ^) and (^, ft, 1) are given by

*j cos ft -cos i sin ft suit sin fl

ys smft cos i cos ft -sm t cos ft

This scheme will give the heliocentric ecliptic coordinates of the planet

It is convenient to write

sin a sin A = cos ft, sm a cos A = - cos-z. sm ft

sm V sin B' = sin ft, sm V cos ^ ; - cos i cos ft

for then * \
ia r sin a em (-A + a> + w)

ys
= r sm 6' sm (

' + o> + w)

Honce if L B, are the geocentric distance, longitude and latitude (the

T^*^^ 4e) of the Sun, which may be taken from the

Nautical Almanac, and A,\, are the geocentric distance, longitude and

latitude of the planet,

AsinXcos/3^sinL1 cosJB1 -Hrsin6sm(5
/ + a> + M;)

whence the geocentric ecliptic
coordinates of the planet
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66 Were the elements given with reference to the equator instead of

the
ecliptic, and this is sometimes done (though not often), the same

formulae would give equatorial coordinates with the substitution of R A and

declination for longitude and latitude To obtain equatorial coordinates

from ecliptic elements another transformation is necessary Let the last

system of axes be turned about 0^ so that Oy^ comes into the piano of tho

equator and the new axis Oz^ is directed towards the N pole of tho equator
Then the obliquity of the ecliptic being denoted by <?

,

#4 = #3> y*
=

2/3
cos - zs sin e0) #i = 23 cos e + y* sin e

From the above relations between (#8 , 3/3,
z
3 ) and fa, ylt ^) it follows

that (j?4 , 2/4 ,
24) and fa, yl9 z^ are related by the scheme

*i yi *i

44 sin a sin A sin a cos A cos a,

yt sin I sin B sin cos -B cos 6

*4 sin c sin sin o cos G cos c

where it is easily seen that

sin a sinA cos fl

sin a cosA cos & sin O
cos a = sin & sin O
sin 6 sin B = cos e sin It

sin 6 cos B cob e cos ^ cos O sin e sin A

cos b = - cos e sin ^ cos Q - sin 6 cos %

fame sin (7= faine sinll

sincco&(7 =
sineocosicosa-fcofaeosini

cose = - sme sini cos ft + cose co8^

The heliocentric equatorial coordinates ofthe planet now become
#4
= r sin a sin (^4 + &> 4- w;)

2/4
== r sin 6 sin (jB-f G> -j- w)

z* = r sin c sin ((7+ + w)

Thus, for example, the above elements for Comet a 1906 lead to

04 = r [9 803389] sin (243 29' 42" 3 +10)
y<
= r [9 999830] sin (331 33 15 H-t0)

*4 = r [9 887772] sin
( 60 14 19 5 -h w)

referred to the equator of 1906

Let y *> 1 the geocentric equatorial coordinates of th pknot and
(X,,y,Z) the

corresponding geocentnc coordinates of the Sun, which mavbe taken directly from the Nautical Almanac or other ephemens Sfhus
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But
x = A cos a cos 8, y = A sin a cos 8, z = A sin 8

where A, a, 8 are the geocentric distance, right ascension and decimation of

the planet These coordinates can therefore be calculated from the equations

A cos a cos 8 = X + r sm a sm (J. 4 <*> 4- w)

A sin a cos 8 F + r sin & sm (# + G> 4- w)

A sin 8 = # + ? sin c sm (<7 + a> 4- w)

This form of equations, introduced by Gauss, is very convenient for the

systematic calculation of positions in an orbit

67 The direct transformation of the elements from one plane of refer-

ence to any other may be made as follows Let yAB represent the first

plane of reference, ytAO the second plane and BOP the plane of the orbit

The first set of elements are yB = &, BP = co and 180 -B = i The new

elements are ^0= 1', CP = a>', and C = i' Also the position of the new

plane of reference relative to the old may be defined by yA = ft, A =ix and

the arbitrary origin 7! by 7^ ft Hence the sides and angles of the

triangle ABO are

Now the analogies of Delambre may be written in the single formula, easily

remembered,

sin (45 (45
- \b T a)} sm (45 * (45

- J3 A)}

sin {45 (4-5
-

4 c)}
cos (45 T (45

-
} C)}

where the ambiguities T must be read consistently but independently in

two sets of three Hence taking (1) all lower signs, (2) all + signs, (3) all

-
signs and (4) all upper signs in the above formula, we have

sm i (fV
- no + co - sinK = sin J (O - &0 sm 4 (* +O

cosi (H
x - Oo + -

') sm Jt'
- cos t (H

- 00 sin i(t
-O

sm
j. (n

; - n - a) + fi>')
cos i*

7 - sm } (n - no cos i (t + *o

cos J (O'
_ Ho - w + ') cosK = cosKft ~ ^0 cos 4 (*

- 1

These formulae will serve directly if for example it is required to refer the

elements of a minor planet to the plane of Jupiter's orbit instead of to the

ecliptic Or again, if &, o> and are the elements referred to the ecliptic

and equinox at the date T and fl',
' and

'
the elements for the equinox

T + 1, we may put ft - n x , t,
=

TT, and H = H, +^ where fi the pmnri

jr0oMnon Hence when these quantities
are known the effect of precession

is given by

tan 4 (Of
- nt

-^ + Aw) - tan 4 (H
- n x) cos 4 (t + wO/cos i (t

- w
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where AG> = o>' - to, and (by Napier's analogy involving B 4- C and A)

68 When the interval t is moderately short, however, these rigorous

equations for the effect of precession are not required and it is more con-

venient to use differential formulae We now consider /AB as the fixed

ecliptic of 1850 and ^AC as a variable ecliptic Since

cos G = sm A sin B cos c cosA cos B

-sin(7 d<7 = (cos ^ sm J? cos c + sin A cos 5) cLi - sin -4 sin 5 sin c cfc

= sin C? cos 6 dA sin a sin B sm (7dc

or

dO- cos 6 (Li + sinasinjB dc (1)

Also, since

sin C sm 6 = sin B sin c

smCcofefc db*=smBcosc dc cos(7sm& cZtf

= sin B (cos c cos sin a sin 6) cfc + cos G sin 6 cos 6 dA
or

sin G db = cos C7 sin 6 eLi 4- sin B cos a eZc (2)

Similarly, since

sin Osm a = sin A sm c

sin C cos a . da = cos -4 sin c cLi + sm J. cos c rfc cos(7sma c(7

=
(cos A sin c + cos Gsm a cos 6) <L!

+ (sin A cos c sm A cos C sin a sin b) dc

= cos a sin 6 dJ. + sin A cos a cos 6 do
or

sm C da- sm 6 eL! + sin A cos 6 dc (B)

By a slight change of notation we now put f!
,
o> and i for the elements

at T= 18500, H, CD and * for the elements at time T+t (instead of fl', a/

and i') and denne the position of the ecliptic and equinox at T + 1 relative to

those at T by Q^ - II, ix = TT and H = II + ^, so that

a = G> -o>, 6 = O - II
-|r, c =O II

A = w, = 180-i
, a=*

Hence by substitution in (1), (2) and (3)

dU
-sin* dco= sin(fl-n-T/r)d7r-cos(fl-II-.^)sm7r dU
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But in the coefficients of dU we may put ^ = t,, G> o> and TT = 0, this being

the mutual inclination of the fixed and moving ecliptic Hence we have

simply
di jdt = - cos (O - n - f) Ar/ctt

dti/dt = ety/eft + cot t sin (ft
- H - +) dirfdi

d<o jdt = cosec $ sin (1 II ^) dtr/dt

These are to be integrated between t ft and * = ,, and the coefficients of

dTT/cfc are variable with the time Provided the interval is no more than a

few years, it is sufficiently accurate to proceed thus Writing

0,2=0)!- (fa
-

tfj)
cosec i sin (II

- n -

we take H + ifr, d-jr/d* and i^/& from appropnate tables (e g Bauschinger's

Tafeln, No xxx) with the argument T + ft +O With fl =* nx and t = %,

approximate values of f!2 ,
^z can be obtained and the calculation is then

repeated with the corresponding values * (ft + fi2), 4 fe + ) substituted for

H and i

69 It is impossible to correct the first observations of a moving body

for parallax m the ordinary way because its distance is unknown But the

line of observation intersects the plane of the ecliptic in a certain point

called by Gauss the locus fictus,
the position of which can be calculated If

the observation is then treated as though made from this point the effect of

parallax is allowed for and also the latitude of the Sun

Let the observation be made at sidereal time T at a place whose geo-

centnc latitude is * Let a, 8 be the observed B A and decimation, reduced

to mean equinox The geocentric equatorial
coordinates of the place of

observation'are (p cos + oof* , cos * sin T. P. , P being the

,E*Jj's

rachus

at the place, and the corresponding ecliptic coordinates (fa, fa, PW> where

hi - cos I cos b = cos
<J>

cos T

h* = sm I cos b = cos < sin T cos + sin ^ sin e

ht = sin b = sm^> cos - cos
<f>
Bin T sin e

o being the obliquity of the ecliptic
and I. b the longitude and latitude of

the Zenith Similarly

J5TX
= cos\ cos = cos 8 cosa

Ht sm \ cos /3
- cos 8 sin acos e + sin 8 sin *

H* sm )8
= sm 8 cos e - cos 8 sin a sin e

^ the direction cosines of the line of observation, \ ft being the geocentric
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Hence in heliocentric ecliptic coordinates the equation of the line of obser-
vation is

x + .fix cosA cosft - h^p y + R^ sinA cos ft - hyp

fli B*

_ i + R! sin ft Asp

#3
""

where A is the distance from the place of observation to the point (a?, y, z)
positively in the direction away from the object If then this line intersects
the plane of the ecliptic in the point (the locus fictus)

sin
- R sin L = - R, sin A cos ft + ph,

-
(h3p

- ZS
But these exact equations can be simplified, regard being had to the small
quantities involved For , < V in general, so that sm Sl^Bl9 cos 5, = 1
Also we may put p ^pR, where p is the solar parallax, 8" 80 Hence writing

i, L =s Zj + dL1} we have

-cosA d^-f^ sinZx

-sinA dE^R.coaL, d
whence

-
dR./R, =p (h, cosA + A2 sm A) - (h*p

- A) (J7i cos L, + tfa sin
dL, =p (hi sm 4 -^ cosA -

or again

=p cos b cos (A - -
(p sm 6 - 50 cos (Z,

-
X) cot

-pcos6sin(Z1 -0-(^sin6-51)sin(ZI -X)cot )9= }Sin&- 1)/sin

Here both
j> and ft are naturally expressed in seconds of arc Thus dL the

additive correction to the Sun's longitude, is
appropriately expressed in' th!

'
,

Tone'ctioTis

^ ***""" ***

w^^6 bse
;
Vf n ^tUally been made from the locus fictus itwould have been made later in time by the interval required for 1Jht to

^vel
the distance A But the light equation, or the tie over tbtoe from the Sun to the Earth, is 498' 5 Hence the additive conto the time of observation is (in seconds)

The reduction to the locus fictus is a refinement
rarely employed in practice
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CONDITIONS FOR THE DETERMINATION OF AN ELLIPTIC ORBIT

70 There are certain properties of the apparent motion of a planet or

comet on the celestial sphere which bear on the problem of determining the

true orbit and which can be considered with advantage apart from the details

of numerical calculation which are necessary for a practical solution. They
are closely connected with the direct method of solution devised by Laplace,

but they equally contain principles which are fundamental to all methods.

Let (#, y, z) be the heliocentric coordinates of the planet, (Z, 7, Z) the

heliocentric coordinates of the Earth Then

x = -

Z--/I.Z/JP,

m and m^ being the masses of the planet and the Earth Let (a, b, c) be the

corresponding geocentric direction cosines of the planet, so that

a? = Z + a/>, y=7+ fy>,
z = Z + cp (1)

p being the geocentnc distance of the planet The observed position of the

planet is given in right ascension and declination (a, ), and if the equatorial

system of axes be chosen,

a = cos a cos B, b = sm a cos 8, c = sm 8

Since

x = 4- ap + 2a/> + ap

/&!**
- n,XI& + cup + Zap + ap =

or

and similarly
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These are three equations m />, p and p + pp/r*,
the solution of which can be

written down at once in the form

the value of p not being required

71 The determinants m (2) can be calculated when the first and second

derivatives of the three direction cosines are known Now

a sin a cos S a cos a sin B 8

a= -smacosS a-cosacosS as+2sinasin8 aS cosacosS ^-cosasmS B

c= cosS S-smS

The derivatives a, a, 8, B are most simply calculated from a series of obseiwd

values by Lagrange's interpolation formulae If the number of observations

is three, made at the times k, ^, 3, we have according to this rule,

^ ^

whence

or, if we choose i= fa , the time of the middle observation,

03

TiT2T8 a

where

Ta aa -2r2
- 2^ (or2

-
Oj) -f 2rs (ah

-
)

These formulae, which apply equally to the declinations, mutatis mutandis,
are only correct if the observations are made at very short intervals oi time
and are ideally accurate Since the accuracy of observations has practical
limitations, moderately long intervals must be used and a greater number
of observed places is necessary for satisfactory results Our immediate
concern, however, is rather with general principles than practical methodn
of calculation
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72 It is now possible to calculate the quantity I given by

Jc* X
7

Z

and we then have by (2)

lp
-

(1 (3)

The mass of the planet, m, must be neglected in a first approximation to the

orbit and this is one relation between p and r In essence it is fundamental

in all general methods of finding an approximate orbit A second relation

is available because we know the angle T|T
between R and p, namely

s-^ (4)

while the projection of R as a yector in the direction of p gives

, (0 < f < 180)

If r be eliminated between (3) and (4) an equation of the eighth degree in

p results, and it will be necessary to examine the nature of the possible roots

For the moment we suppose that the appropriate value of p has been found

Then the corresponding value of p is given by (2) and the components of the

velocity can be calculated, since by (1)

(5)

where X, Y, Z must be found from the solar ephemens by mechanical

differentiation Thus when p and p are known, (1) and (5) give the three

nehocentnc coordinates of the planet and the three corresponding components

of velocity at a given time t From these data the elements of the planet's

orbit, assumed for the present purpose to be elliptic, can be calculated without

difficulty

73 Smce equatorial coordinates have been used hitherto, 'the elliptic

elements of the orbit will also be referred to the equatorial plane If new

coordinates (f, 77, f) be taken so that the axis of f passes through the node

and the axis of f through the N pole of the orbit, the transformation scheme

is (cf 65)
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Hence in the plane of the orbit,

f= x sin IV sin i' y cos ft' sin a' + z cos i'~

5 = a? sin 1' sin ^
'

y cos XI' sin *
'

4- # cos i
' =

giving for the determination of H' and ^
f

sin Q' sin z'
__

cos fl' sin ^' _ cost
7

/^
yz yz

~~

xz-xz xy xy

Also, if -w is the argument of latitude (or rather of decimation),

f - r cos u = a? cos O' + y sm O
7

(V)
and

i)
x sin 1' cos i' + y cos H' cos ^' + zsmi'

or

r sin u = z cosec i' (8)

by the above equation for f Similarly, if F is the velocity and x tne

between V and the radius vector produced,

f = Fcos (z/ + %)
= x cos IV + y sm IV (9)

77
= Fsin (t* + x) = s cosec i' (10)

Thus F and %, as well as r and u, are determined Now if w is the true

anomaly at the point, the polar equation of the orbit gives

# = r(l+ecosw) (11)

_2?cot^
= resni^ (12)

since tan % - rdw/dr But the consfant of areas is

A = Frsmx-V(flp) = #V!p . (13)

givong p and hence e and w The mean distance a can be deduced from the
known values ofp and e, or directly from the relation

F2 = 2^/r-^/a (14)

and the mean motion n from the equation /t
= 1<* = waas Also the element ta-'

is given by tsr' = fl
7 + % - M; FuiaUy the epoch of perihelion passage is deter-

mined by the two equations

(15)
J? being the eccentnc anomaly at the point of the orbit observed

74. We now return to the consideration of the solution of equations (3)and (4), following the method of Charher, which gives the clearest view of
the geometrical conditions of the problem The first of these equations is
based on the assumption that the point of observation is moving under
gravity about the SUD The point which so moves is in reality the centre
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of gravity of the Earth-Moon system and, strictly speaking, the observations
should be reduced to this point and not the centre of the Earth But this is

a matter of detail which our immediate purpose does not require us to stop
and consider Similarly we may neglect the mass of the Earth as well as that
of the planet and put R = 1 Then the equations become simply

lp-1-l/r* (16)

ra =l + 2pcos-</r + p
a

(IT)

where I and
i/r

are known The position of the planet becomes known when
either p or r has been found, and it is simpler to eliminate p Thus

l*i* = I*}* + 2Zr (r
3 -

1) cos ^ + (r
- iy

or

ZV- (Z* + 2Zcosf + !)-+ 2(Z cosf + 1) r8- 1*0 (18)

Now the coefficient of r3 is

2 (I OOB + + 1)
=

{(1
- 1/f) (r*

- 1 -

which is obviously positive, whether r is greater or less than 1 And the

coefficient of r6 is essentially negative Hence, by Descartes' rule of signs,

there are at most three positive roots and one negative root The latter

certainly exists because the last term is negative (the equation being of

even degree), and two positive roots must satisfy the equation, namely -I- 1

(corresponding to the Earth's orbit) and the root required There must
be a fourth real root, and therefore in all three real and positive roots, one

real and negative root and four imaginary roots But the third positive

root may or may not satisfy the problem

Now by (16) r is greater or less than 1 according as I is positive or

negative If then the two roots which are in question he on opposite sides

of 1, the spunous root can be detected and a unique solution of the problem
can be found But if they he on the same side, they cannot be discriminated

between m this way, and an ambiguity exists If we divide (18) by (r 1),

we obtain

/(r) = ZV(r+ l)-(2Jr*cos^-|-r
}

-l)(r
2 + r + 1) =

Thus

/(0) = + 1, /(+1) = 2Z (J-3cos.fr)

so that the roots are separated by +1, and a unique solution exists, if

is negative

75 The geometrical interpretation is instructive The equation (16)

for different values of the parameter I represents a family of curves in bipolar

coordinates, the poles being E (the Earth) for p and 8 (the Sun) for r The

planet lies at the intersection of one of these curves with a straight line
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drawn through E in a given direction But there may be two intersections,
and this will happen if/(+ 1) or

is positive This expression changes sign when we cross the circle r = 1 and

again when we cross the curve

Putting /o

a =* 1 + r2 2r cos
<f>
we get for the polar equation of this curve with

the origin at S
4 - 3r cos

<t>
=

1/r
8

(19)

or in rectangular coordinates,

showing that the curve has an asymptote 3# = 4 Moving the origin to E
we find at once that E is a node, the tangents being y = 2& The whole

curve consists of a loop crossing the SE axis at the point r = 5604, <J>
=

TT, and

an asymptotic branch, and is shown as the "
limiting

"
curve in the figure

The plane of the figure is that containing S, E and P (the planet), it is

only necessary to show the curves on one side of the axis because this is one

of symmetry

A few curves of the family (16) are also shown in the figure, for values

of I which indicate sufficiently the different forms When I = we have the

circle r = l, called here the "zero" circle It is evident that when I is

negative r < 1 and the curve lies entirely within the zero circle, while when I

is positive r > 1 and the curve lies entirely outside this circle When I has

a large negative value, the curve consists of a simple loop surrounding S and

an isolated conjugate point at E As - 1 decreases from oo the loop increases

in size until, when Z = 3, the loop extends to E, where there is a cusp

Afterwards as / approaches the loop, still passing through E, approximates

more and more closely to the zero circle

When I is positive the form of the curves is rather more complicated It

must be remarked that I cannot be greater than + 3 For

But r>landr-l<p Hence the limit is established and we have only to

follow the values of I from + 3 to At first the curve consists of a small

loop passing through E As the value of I falls the loop expands, tending

to enfold the zero circle Finally, when I = + 2959, it reaches the axis again

and forms a node on the further side of S As the value of I falls still further

the curve breaks up into two distinct loops The larger continues to expand

outwards at all points and recedes to infinity, while the inner, always passing

through E, contracts until finally it becomes the zero circle These features

in the development of the family of curves will be evident in the figure
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It will now be apparent that the limiting curve and the zero circle divide

space into certain regions and that the solution of the problem of determining

an orbit by the method indicated is unique or not according to the region in

which the planet happens to be Thus we distinguish four cases

(1) If the planet is within the loop of the limiting curve there are two

solutions

(2) In the space between the loop and the zero circle the solution is

unique

(3) Outside the zero circle and to the left of the asymptotic branch of

the limiting curve there aie again two solutions

(4) If the planet lies to the right of the asymptotic branch of the

limiting curve only one solution is possible It happens that newly dis-

covered minor planets are usually observed near opposition and therefore

this is the case which most commonly occurs

76 There is another curve which has considerable importance in the

problem of determining an orbit by a method of approximation and to which

Charher has given the name of the "
singular

"
curve We may find it thus

If we eliminate r between the equations (16) and (17) we have

which is an equation giving the values of p for a line drawn through E in

the direction -^ Two of the values become equal and the line touches the

curve (16) if

I = 3 (COS-^ + p) (1 + 2p COS^r + p)~*

Hence the locus of the points of contact of the tangents from E to the family
of curves (16) is

(1 -l/*)/p- S(OOB
or

or again

3^-2r- 57-"+ 3 (20)

This is the equation of the singular curve If we change from bipolar
coordinates to the polar equation with the origin at S

t
we obtain

or

r"= 4-3coB0/r (21)

Comparison of this form with the equation (19) of the limiting curve shows
at once that these two curves are the inverse of one another with respect to



of an Elliptic Orbit 81

the zero circle From this relation the foim of the singular curve, which is

shown in figure 3, becomes apparent

The importance of the singular curve arises thus In general a line

through E meets a curve of the family (16) either in one point (besides E)
or in two distinct points In the latter case the coordinates of the planet
are regular functions of the tune and can be expanded m powers of the time,
but each is expressed by two distinct series between which it is impossible to

discriminate When, however, the planet is situated at a point on the singular

curve, the two distinct series coalesce and each point of the singular curve

corresponds to a branch point where we may expect the coordinates of the

planet to be no longer regular functions of the time This is in fact the

case Charher obtained the equation of the singular curve by noticing that

along this curve expansion of the coordinates as power senes in the time

ceases to be possible

77 If the masses of the Earth and of the planet be neglected, (2) may
be written in the form

-

where Aj, A3 ,
A3 represent three determinants and Z Ag/T^Aj It is clear,

as we have already noticed, that r < R if I is negative and r >R if Z is

positive Now the equation of the plane of the great circle tangent to the

apparent orbit at (a, &, c) is

= (23)a a co

b b y

The coordinates of the Sun on the celestial sphere are (-X/R, - Y/R, - Z/R)

and of a neighbouring point to (a, 6, c) on the apparent orbit (a + at + ^ai^,

b 4- ,
c + ) Hence the ratio of the perpendiculars from these points to

the above plane is - A,/JR
* ^2A3

= - 2/ZWE Thus I is negative if the

Sun and the arc of the planet's orbit he on the same side of the great circle

touching the orbit, and positive if the Sun and the arc are on opposite sides

In the first case r< R, in the second r > R Hence we have the theorem

due to Lambert, which may be expressed by saying that an arc of the orbit

of an inferior planet appears concave to the corresponding position of the

Sun, but the arc described by a superior planet appears convex This test

makes it immediately apparent whether a planet or the Earth is the nearer

;fco the Sun

It may happen that A3 vanishes It is then necessary to express

the coordinates of neighbouring points on the orbit to the third order
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(a a/4-i/tf \at\ b , c ) The result of substituting m the left-

hand &idt of (23) is

+ Jtf
3 a a a

b b b

c c c

ind the double sign sho^vs that the curve crosses the tangent great circle In

tht langu igt of plane geometry theie is a point of inflexion on the apparent

(rDit Xu\* it A \amshes either t = R or A! = O Thus such a point of

mtfexun t'ccurs either ^hen a comet reaches the same distance from the Sun

as rhe Eaith <r TV hen the great circle which touches the orbit of a planet

passes through the position of the Sun

78 When the apparent orbit of a planet reaches a stationary point the

cun e tither crosses itself and forms a loop, or v, ithout ciossing itself it pursues
a t\s i^ted path, passing through a point ol inflexion At such a point, as we

hav just seen the tangent in general passes through the Sun There is a

rehted theorem, due to Klmkerrues, which applies to the case of a loop
Let P

, P_, P3 be three positions of the planet m space, E1} E2 , Es the corre-

sponding p >sitions of the Earth and S the position of the Sun If the first

and third positions correspond to the double point on the loop, E^ and JSSPB

art parallel and he in one plane Let P2 meet the chord P^PZ in p2 and SEZ

mt-et tht chord E Ez in e_ If ^ is the time taken to describe P2PZ or E^E*
aTid t tht time along P^P.or E^E3 , ^ ^ is the ratio of the sectors SP1PZ)

&P.P3 or tn nearh the ratio of the triangles SP^, Sp2Ps , that is

P,/). p^P But siniilarh 2 t2 is nearly equal to the ratio E& e^Ez
Hence P:PU and E^ are di\ided by p2 and e* in approximately the same
ratio and therefore e2p3 is parallel to ^Pi and E3P3 Consequently the

three planes E SP1} E2e^Sp^P^ E3SP3 have a common line of intersection,

naineh the line through S parallel to E^ and E3P3 But on the geocentric

sphere these three planes correspond to three intersecting great circles The
first and third intersect in P, the double point on the apparent orbit Hence
the great circle joining anj intermediate point on the loop to the corre-

sponding position of the Sun also passes through the double point, at least

ver} approximately

It may be inferred then that if any three points on such a loop be joined
to the ujrrespondmg positions of the Sun, the three great circles will meet m
une p, nit T* hich is also a point on the apparent orbit

79 There ib some interest m finding the geometrical meaning of the
thr^e determinants A,, \, A3 m (2) or (22) Bruns has noticed that

A,= PA, a here k is the geodetic curvature of the apparent orbit on the

sphert and V the \elocity m this orbit at the point (a, b, c), so that
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But we shall now express these determinants in terms of the small circle

of closest contact or circle of curvature This passes through the points

(a, 6, c), (a + crf> b + bt,c+ct) and (a4-a'+o^/2
, 6 + , + ),

and the

equation of its plane is

x y z 1

!

a 6 c 1

a b c

=

a 6 c

or

x(bc- 6c) + 2/(ca
-

ca) + z (db
-

ab) = A8 (24)
Now

a + P +c2 =1

aa + 66 + cc =

aa + 66 + CG = - F 2

by successive differentiation Solving these as linear equations in a, 6, c, we

obtain

aA3
= &o-6c-F2

(6c-6c)

and two similar equations But (a/F, b/V, cjV) are the direction cosines of

the point P! on the tangent 90 from (a, 6, c), and the pole of the tangent is

(flo, &o> c ) where

7a = be - 6c, 7Z>o = ca - ca, Fc = 06 - ab

so that

6c-6c
and

S(6c-6c)
2

The equation of the circle of curvature (24) becomes then

(aA3 + OoF3
) x + (6A3 + b,V*) y + (cA3+ c 78

) * = A3

Hence, if o> is the angular radius of this circle,

and therefore

A3
= F8 cotw

This then is the geometrical meaning of the third determinant

80 Next we take A2 If (A t B, C) are the geocentric direction cosines

^ BR, Z CR and

^- R [A (bc-bc)+B(ca-ca) + (7 (aft-

- RV CM, + Bb, + Co*)
- RV(Aa> + 6, + Oc.)
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Here A B, C av of course constants Xow (a ,
b , c ) is the pole P of the

tangent at P (T, fe c) The arc PP parses through the centre of the circle

of c una'ure and uhJe P is initial!} dtscribmg a circle of angular radius to

about *h^ urn* P is describing a circle of radius 90 -G> about the same
centre It the .*'oc<r\ ut P ,

which is in the direction of the pole of

P lb V

r f^o, = F^n*>, ^ F =-a r,

Htnce

A.^A r
Ag un

A =-RV

S h ^ itr *h p*>*it'<'L of ttie Sun *n the sphere, and T the perpendicular aic

iruni > to th* ungfiit PP a^ P tu the apparent orbit (positne if drawn from
tht ^iih* fei*It of PP A as P^ or the centre uf cur\ature) Also

Je' - ^6-^- C'c = Fcos^ = Fsm v

e i -i +h> j.^-pt*nd c alar arc fiom ti to the normal PP to the apparent
it P ip^it*\t if U^awn from the same side of PP as P,) Hence

Th - ^ piT *tT iCa3 significance of the three determinants has been
i*

* rr JIT* < i^l At *

^aj \\nte (2) in the form

_____ __ ^
A* r*.^ *- ^ < T3 cot CD sm v V bin T) F3 cot o>

^r .w- m *r> c'.trest wa\ hov this method of determining the orbit
JS 'i* a k r

wl*dE: t*t the simple quantities T
r
, F, T, and a>, which can.

^t <1 'sv'thoTit n itrtncf to an} particular axes To these must bejoined
i
f

> i. f4> A-iic^ enjoys the same property

Nu- J* r* 'r'hirkrdil 75) that /cannot he greater than +3 Now

H **r r i<
r tl v ^ riur plant t,

Ts < 3L*R
i tan oj sin T ,

1. 1 " M *- ,t in 2^ t* tht apparent velocit) \vhen <u and T are known, or to the
r, s n * tht p*tn wftcn Fand T are known



CHAPTER VIII

DETERMINATION OF AN ORBIT METHOD OP GAUSS

81 Since a planetary orbit requires for its complete specification six

elements, it is to be expected that three positions of the planet, i e three

pairs of coordinates, observed at known times, will suffice to determine its

path And this is in general true, though there are exceptional circumstances

m which1

further observations may be necessary The formulae are a little

simpler when ecliptic coordinates are employed, and though this is not

essential we shall take as the data of the problem

the times of observation *i, tz , t^

the longitudes of the planet \, Xg, X3

the latitudes of the planet &,, &, &
the longitudes of the Earth Llr LZ) L$

the Earth's radii vectores JE^, R*, R$

The angular coordinates are referred to a fixed equinox which will apply to

the resulting elements The Earth's longitude (which differs by 180 from

the Sun's longitude) and radius vector can be derived from the Nautical

Almanac or other national ephemeris the Earth's latitude can be neglected,

or, if desired, allowed for by using the method of the locus fictus ( 69)

At the time t% let rt be the heliocentric distance of the planet and pt its

geocentric distance Referred to a fixed system of rectangular axes through

the Sun let (x^ t yt ,
*%)

be the coordinates of the planet, (A l} Bl} CJ the

direction cosines of Et and (c^, 6t ,
ct) the direction cosines of plf so that

82 Since the three positions of the planet lie m a plane passing through

the Sun

a* 2/2

3 2/3

or *

a
-

2/3*i) + #3 (2/i*a
-

2/2*i)
=
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But (yZs ysZz\ (y^-y^i) and (y^-y^ are the projections on the ye t

plane of the areas [ra rs], [r3rj and [r^] Hence '

#1 fer ]
-

ffafofs] + #3 [ifj =
or

And similarly

-0 (2) J

= (3) 1

These are the fundamental equations expressing the condition for a plane |

orbit From them one pair of the six quantities />,, R^ can be eliminated in
,

fifteen wajs The result immediately required is obtained by eliminating

pl and /?, namely

[rarJJfZj'aL-A^Ojj-fj^J^olajjffajasl [i ]&>;!, A, ajl + fn^-KgK^s^l^O
where the determinants are indicated by their first lines, from which the

|

second and third lines are to be obtained by changing the letters without

changing the suffixes, e g

A l a,

"0i 03

We have no\v to notice that these determinants are proportional to the

perpendiculars to the plane

03

6-

=

or the plane passing through the points fa, bl9 Cl), fa, &3 , c,) and the origin,
from the points (A lt Blt G,\ fa, &2 , c^), (4 2 , B2 , Cz) and (A 3 , J?3 , (7,), and these
are the representative points of the directions of J^, />2 , Rz , R^ on the sphere
of unit radius The perpendiculars to the plane are therefore the sines of the

perpendicular arcs to the great circle through fa, blt c,), (a,, & c3) and if these
arcs are J?/, ft', 5', B* respectively (due regard being paid to sign) our
equation becomes

(4)

83 The points on the sphere just named are JSlf Et , E3 , representing
the heliocentric directions of the Earth and lying on the ecliptic, and P1? P2 , Pif

representing the geocentnc directions of the planet The great circle men-
tioned to PjP I^et this circle intersect the ecliptic in longitude H2 and at
the inclination 97, Then we have the same relation between any one of the
perpendicular arcs and the longitude (reckoned from H2) and latitude of the
point from which it is drawn as exists between the latitude of a point and its
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right ascension and decimation, the obliquity of the ecliptic being replaced

by 972 That is to say,

sin #/ = cos 772 sin ft
- sm 772 cos ft sin (\ - H^

sin BI = - sm 772
sin (L^

- H2)

sinBz

' = sin 772 sin (L2 jET2)

sm BS = - sin 772 sin (Ls
- E^)

and as regards the points PT ,
P3

= cos 772 sin ft
- sin 772 cos ft sin (\ -Hz)

= cos 772 sin ft
- sin rjz cos ft sm (\,

- H,)

The latter give, by addition and subtraction,

2 tan 77, sin ft (X, + X.)
-
H,} = sm (ft + ft)/cos ft cos ft cos (X8

- \0

2 tan 773 cos ft (X! + X>)
-#2}

= sm (ft
-

ft)/cos ft cos ft sin 4 (X,
- Xx)

and determine 773 and H2
We now put

c1 = -jR1 sinB17sin#>', c 2
= --R*sm 27smft', cs = - -^ sm 3s'/sm ft

The equation (4) then takes the simple form

Now this is a purely geometrical relation involving the intersections of any

plane through the Sun with three lines drawn in given directions through

the positions of the Earth If we imagine the plane to move into coincidence

with the ecliptic, cls ca , c3 remain unaltered while in the limit Pl9 p2) PS vanish

and rlf ra> r, become coincident with Rlf RZ) & Hence if we put

si

the equation = -

must be an identity, and this can be verified Hence by the elimination of ca

pn-C^-fhH^W-"*) (5)

which is the required equation for p2

84. Since &' is the perpendicular
arc from P2 to P,P3 it IB geometrically

evident that if the observed arcs of the planet's
orbit are of the first order of

small quantities (and we assume them to be small) ft' is a quantity of the

second order Hence the equation (4) shows that if we are to obtain a va ue

of P2 which is a real approximation
and not merely illusory we must at the

oute* employ values of the ratios of the tnangles which are correct to the
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second order in the time intervals Accordingly we use (41) of 61 and
neglect the terms of higher order than the second

,
that is to say,

where

l

It is necessary to neglect the mass of the planet and put /
u,= Aa this can

safely be done in
calculating a

preliminary orbit, for which the perturbations
are entirely neglected The equation (5) for p, therefore becomes

8
C mpl

J
ete
Jy Stemmed quantities But if S, is the angle(< 180 ) between ft and .8, produced,

where
r '=* +^+ *** cos S

(9)

eos &,= cosP2 â
= cosA cos O.- Z2)

corresponds to the definite

T t tfh' the eighth

discussed m 8 H. B * n
Orm f e<luatlon has already been

*

or

andth, f ,and therefore if we put

^ cos q = k,+Ri cos

-here^ M the^
fflgn ^ ^

(1
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and this is the equation of Gauss This form of equation does not avoid the

possibility of an amhiguity arising from two distinct roots, which is inherent

in the problem But when only one appropriate root exists, it is easily found

by successive approximation In the most common case, that of a minor

planet observed near opposition, z q is small and a first approximate value is

given by
#! = q + m sin4 q

When z is found the corresponding first approximations to pa and r*2 are given

by (10)

85 We have now to find the corresponding values of pt and ps For

this purpose we return to the equations (1), (2) and (3), and eliminate

ps and R3 The result can be written down at once in the form

fan] pi | 01, 03, A t
|

+ [r.rj R* |

A lt o,^ 8 |

= [r1r3]p2 |aa,a3,^s|-f[r1r8] JR2 |^. 2,a3,^ 3
|

or

nrLpl
|
oi, as ,

A9
1

+n^
\

A l} as , A*
\

= pz
\
03, 03, A* \

4- R*
\
A^ 03, 4 8

1

where the determinants as before are represented by their first lines, the

other rows being obtained by change of letters without change of suffixes

Since the same form of equation must remain true, the directions of plt pz , p3

being preserved, when the plane of the orbit is made to coincide with the

ecliptic, in which case p l
^=

p*
and r^ becomes NI, the equation

must be an identity Hence

Now

cos ft cos Xa cos ft cos Xa cos 8

sin ft sin ft

= cos ft cos Pi (- tan ft sm (X3
- L9) + tan ft sin (Xj

- ZB)}

the axis of z being drawn towards the pole of the ecliptic and the axis of

x towards the First Point of Aries Similarly

1 a,, as, A>
|

= cos ft cos ft {- tan ft sm (X*
- L,) + tan ft sm (X*- ,

and

where

^ ~
tan ft sm (\

- L9)
- tan ft em (X,

- X8)
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Similarly the result of eliminating p and Rl from the original equations is

to give (interchanging the suffixes 1 and 3)

n
, p, cos #j= ^3/>2 cosA + (JV"s ftj) If/ (13)

where
,, _ tan ff2 sm (Xj A) tan ft sm (X2 J^)

a
""

tan /8S sin (\i
- A) - tan ft sin (Xj, jy

,.,,_ jRj tan ft sin (A Z3)
**
~"

tan& sm (Xi
- A) - tan ft sin (X8

- A)

The coefficients Mlt M^ MSt MJ as well as NI} N* are constants throughout

the process of approximation, but n^ n$ must be taken at this stage from the

approximate forms (6) and (7) Then (12) and (13) give values of p^ and p9

corresponding to the approximate value of p2 already obtained

86 The heliocentric distances, longitudes and latitudes of the planet are

next deduced by the formulae

7 1 cos &t cos (^ L%)
= p L cos ft cos (X t

- Xt) + RI

r% cos 6 t
sm (l% Lt)

= p% cos ft sin (\ t X t) (14)

rx sin 6t = pi sin /9 t

(i
= 1, 2, 3), which aie at once found by taking the axis oi a; successively along

Rlf RQ and R t ,
the axis of z being always directed towaids the pole of the

ecliptic But these coordinates give the position of the plane of the orbit, for

tan ^ sin (4
-

II)
= tan 6a

tan ^ sin (h O) = tan b8

where i is the inclination and II the longitude of the node , oi in a form more

suitable foi calculation

2 tan t sin
{ J- (^ + 1*)

- H} = sin (6X -t- 63)/cos 6j cos 6j cos (,
-

2 tan i cos [i (^ + /j)
- OJ = sm (&a

-
6,)/cos h cos 63 sm

And now the three aigumontH of latitude
ttj, giving the diftciences of the true

anomalies, can be calculated, foi

tan u
f
= tan

(Z,
- H) sec % ( 16)

(^
= 1, 2, 3) In the case of a comot, it is the piactice to take it} < or > 180

y

according as the latitude IH positive 01 negative ,
m the case of a planet, u}

is

placed in the same quadrant an
lj

11 If we calculate 7^, w, from

7 a HID w,__ _

1
"~

7 n am (w3
-

2/0
' }

"
rj sm (wj

- %)

we shall not obtain improved values of those ratios, because these equations

have a purely geometrical basis and merely serve as- a useful contiol on tho

accuracy of the calculation, the values already obtained should be loproduced
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87 We h^ve n. \v arrived at preliminary approximations to the values ot

the geocentric ^is-fcaxxces pls p%, fa, the heliocentnc distances rlt r^ rs and the

arguments of la"fcitiucle ^,^2,^8 From these quantities we might proceed to

deduce a cox**P*et^ set of elements But our results are not accurate for two

reasons (1 ) trie efifeot of aberration has "been ignored, and (2) the expressions

(6) and (7) employed for ^ and ns weie of necessity only approximate The

effect of aberration naay be stated thus The light observed at time t left the

source whose cUte,n.ce is p at the time t- A, where

A*= 498s 5 p/l day = [7 76116] p

in days, 49S
S 5 being- the light-time tor unit astronomical distance Had the

source moved. Hi tHe interval Ai uniformly with the velocity of the observer

at time tt its position at time t would be correctly inferred from the observa-

tion, without correction, since in that case there is no relative motion between

the source etnci the observer If now we correct the observation for stellar

aberration according- to the ordinary rule the observer's motion attributed to

the source is eliminated and we have the direction of the observed body at

time t A from tb.e observer's position at time t This is the most convenient

procedure in the present case, because it enables us to retain the Earth's

coordinates (J^> -) At the times of observation t throughout the calculation

and to make no subsequent change in the planet's observed coordinates (X, ft)

supposing them -fco "be corrected for stellar aberration at the outset This

avoids many changes which would otherwise be necessary m the calculation of

subsidiary quantities. It only remains when approximate values of pt become

known to correct the time t by subtracting A in so far as these relate to

actual positions in the orbit In particular, the corresponding corrections

must be applied, to the time intervals rlt r2 ,
r3

88 A bettor approximation to the values of nl} n$ might now be made by

using the fortntiltLo of Gibbs or those of 62 and with these values the whole

calculation might be repeated But we proceed at once to introduce the

accurate formulae for the ratio of the sector to the triangle, (25) and (26) of

55 in the case of an elliptic orbit The sectors are

and are proportional to TI? Ta , TJ (now corrected for aberration) Hence

. n^ y-* T
-\ *-*!' (17)

Vi V V* rs
v

Here
tf-wf/ft+ fflrfte)

| ^

y*
-

y*
- m* (2#2

- sin 2#j)/sm
s

g* )

by the formulae quoted, and in the present notation

3 cos i (M,
- wx), m? Ifrf/fiViyl cos ^ (u,

-
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The corresponding equations for ylt y3 can be written down by a symmetrical

interchange of suffixes Vanous methods have been devised for the convenient

solution of these equations, generally involving the use of special tables

In the absence of such tables, and they are not necessary, we may pioceed

thus Writing the cubic equation in the foim

f - 2/
2 ->2 Q (20) = 0, Q (2g)

= 3 (2</
- sm 2#)/4 sm^

where Q(2g) approaches the value 1 as g approaches the \alue 0, we compare
it with the identity

(X
3 - X-3

)- 3(X-V1

) -(X- V-1

)
3 ^

Thus v = c/(X~ \~0if
_

X3_ X-3 3 %

that is, if c= 2mVQ = J (X
s - XT8

) Hence if V = cot 0, 3WQ = cot and if

\ = cotfy, 2/
= mVQtan7 But from the other equation in y we have

sm \g SB V^ tan S if y = m cob 8/V^

Accordingly we thiow the equations in y into the following form

cot = 3mVQ \

tan' I?- tan 10 i

sm^ = V^ tan 8 J

Then, calculating the function Q with an approximate value g' of g, the lesult

of solving these equations in turn is to lead to a new and closei appioximation

g" With this new value the process is repeated until no change is found

between the initial and final values The true value of q has then been

ai rived At, and finally (the value of 5 being taken from the last lopetition)

Since Zg is the difference between the eccentnc anomalies, the first appioxi-

mation to its value may be taken to be the difference between the tiue

anomalies, that is, between the arguments of latitude When 2g ib small, as

it usually is m the practical pioblem, the direct calculation of the function

Q (2#) is inaccurate (cf 34) But if we write

logQ (20)
-Wlogsec^- J

7W<flgbec \9

the error committed is piactically negligible when k

lg < (
)0, and the duect

calculation only presents a difficulty when 20 is much smalloi than this limit

The verification of thib approximate formula may be left as an exercibc

It is unnecessary to repeat the solution of (19) until the value of g is

exactly reproduced This point may be explained in genoial terms as it is of

wide application Suppose the equations to be solved are y **p (x) t 0t,=>q (y),

p and g being any functions These correspond to two cuives P and Q

Starting with the approximate value x
l
we find ^ =jp(#i) and hence (AI, yj
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the point P! on P Next we find similarly (#a , yj the point Q1 on Q This

gives the new value #2 of and with this we find successively (#2 , 7/2) the

point P2 on P and (#3 , ya) the point Q2 on Q But if the successive values

#n #2. #s do not differ greatly, the chords PjPa, QiQ2 lie close to the curves

P and Q and their intersection nearly coincides with the intersection of the

curves In this way we find for the correction to the third value a?3

In the above case two solutions of (19) with application of the correction just
indicated will generally suffice for the accurate determination of g and y

89 When the values of ylt yz , ys have been thus obtained we have new

values of n^ and n^ by (17) The next step is to recalculate pQ by (5) and

Pi, PS by (12) and (13) Hence rlt rzt rs and llt 1Q , h by (14), new values of

H and ^ by (15) and finally ^, ut ,
u9 by (16) This brings us back once more

to the equations (18) in y If the result of solving them with the improved
values introduced is to leave Wj and n% practically unaltered, our object is

attained Otherwise it is necessary to repeat the above steps until a satis-

factory agreement is reached

When this stage has been arrived at the problem has been solved, and it

only remains to calculate the other elements of the orbit, H and ^ having
been obtained in the last approximation The three equations

j>
=

rj {1 + a cos (*,-)} = 1,2,3)

are linear in p, e cos o> and e sin o> The symmetrical solution gives

p = rir2r3 S sin fa - %)/S rar3 sin fa -O
e cos G) = S 7*2 7*3 (sin ws sin ^)/S Vj sin (w3 1(3)

e sin o> 2 7 a? 3 (cos MS cos %)/2 rv 3 sin (w3 w.2)

whence e = sin<^),
co = Tar-n and a p seca ^ This, however, is not the simplest

solution The areal velocity h = k^p ( 26) and hence

^a dp = [n^s] 3/2
=

2/2 n^s sm (w3
-

Wi) (20)

Thus, p being known, we have

+ _ 2 = 2e cos i (M! + w3
-

2o>) cos } (, - K^ ]^ r
L (21)

= 2e sin J (^ + ^3
-

2o>) sm ^ fa - M^
rx rs /

which also give e and w Finally, if the mass is neglected, the mean motion

is n = A/'/a
3/3 and the mean longitude at the epoch tf is ( 64)

e = G> + H + EJ
- e" sin Ej

- w (/
-

(22)
where

.X = 1, 2 or 3)

The times
t,
are here corrected for aberration ( 87)



CHAPTER IX

DETERMINATION OF PARABOLIC AND CIRCULAR ORBlTb

90 The method explained in principle in the last chapter requnes no

assumption as to the eccentricity of the orbit Its practical convenience is

greatest, however, when the eccentricity is comparatively small On the

other hand the majority of comets move in orbits almost strictly parabolic

For these it is important to have approximate elements aftci the first

observations have been secured, in order that an ephemens may be calculated

to guide observers as to the position of the object For this purpose the

method of Olbers (published m 1797), which depends on the assumption oi a

parabolic orbit, has continued in use to the present time Although only

five elements have in this case to be determined we still use three complete

observations of the comet giving the longitude and latitude (X,, $,) at the?

three times
tj

We again take (JB,, Lj) as the corresponding radius voctoi

and longitude of the Earth and pj the geocentric distance of the comet, so

that as before

Here (ac3) y} ,
z
})

are the heliocentric coordinates of the comet, (fy, &,, c,) the

direction cosines of
/>,

and (A J}
B

3 , C,) the dnection cosmos of JB,
In the

ecliptic system of axes adopted,

CL
3
= cos X, cos $,, bj

= sm X, cos /3>, c,
= bin /S,

We shall express p& in terms of pl and for this purpose it is possible to

eliminate pz and JS2 from (1), (2) and (3) m 82 The same result may,

however, be deduced from the condition that the orbit is plane in another way

91 If S is the Sun, El} 18* #s the three positions of the Earth, and

d, C2 , 3 the three positions of the comet, S, Cl} (72 , C, arc coplanar Hence

1!

!, cl pl+OlRlt I

tetrahedron SE^
\? a? s]

""

tetrahedron SE* <7aC9

o o

AA #2^2

t, bsp9+B3R3 ,
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A 7? r.1.2 jDg L/2

: &!*,+.%%,

Oj 52 C
fl

or, representing determinants by single rows,

[firJ {p* I
Os ^2, 2 1 +^3

1
A^ A^ a* \]

+ [r2r3] {/>! |
c^, -4 2) az

\
+ J2a

But if, leaving the directions of pl9 pa , ps unaltered, we move the plane of the

orbit into coincidence with the ecliptic, we see that in the limit

,, a,)

must be an identity Hence

f>i
+

Now
MPI + m

Oil

61,

COS X! COS ft, COS -La , COSXaCOSft

sin Xj cos ft ,
sin L2) sin X,, cos ft

smft

sin ft cos ft sin (Xx Z2)

sin ft ,

= sin ft cos ft sin (Xg

and the other determinants can be wntten down by simple substitutions

Thus

[YjjrJ sin ft cos ft sin (Xa A) sm & cos ft sin fa

pv7] sin ft cos ft sin (X8
- L2)

- sm ft cos ft sin (Xa
-

and

B f[*JW_bvdi
*1[1OJ [nrjr

(1)

m
sm ft cos ft sm (Xs

-
a)
- sm ft cos ft sin (Xg

- ia)

In the practical problem the time intervals are usually small and it is

possible to substitute the ratio of the sectors for the ratio of the triangles,

both for the comet and the Earth, so that

Thus m = and with sufficient accuracy we may write

p
= Mpi (3)

where M has the value given by (1) and (2), unless the comet is near the

Sun and describes large arcs in comparatively short intervals The effects of

parallax and aberration are entirely neglected

92 The next step is to express r1} r8 and the chord c joining the

extremities of these radii m terms of pl
We have

n* - 2 (O, PI +A&y -
Pi

8 + %? + 2pA cos ft cos (Xx
- jy . (4)

r,
9= 2 (Jfo./^ + ^s^)

3 JtfVi* +^ + 2Jfpi^i cos ft cos (X,
- L3) (5)



96 Determination of Parabolic and Circular Orbits [OH ix

and
2 [(Mat

-O Pi + (AA -

= h*p? + g* + Zp^hg cos
<j> (6)

where

#=2 (Ma*
-

da)
2 = Jf2 + 1 - 21f{sm&sm^ + cosft cos /3 { cos(X,

-
X,)

2 = 2 (AA - A.Rtf = ft
2 + ft

3 - 2ftft cos (Z,
- A)

=M cos ft (ft cos (\3
- 4) - ft cos (\3

- A)}
- COS& (ft COS (\!

- Z3)
- ft COfa (X,

- A))
If ^(7 is drawn equal and parallel to EA G* it is clear that OG3

= $\E*=><],

CC, = hp1} 0^ = and ftCG3
= 180 - ^

But Euler's equation gives

M(ts - y = (n + r, + 6/-(rx +r,- o)
1

and this must be satisfied by the appropriate value of p^ in (4), (5) and (6)
This value must be found by a process of approximation and for a suitable

starting point we may consider c small in comparison with ^ + 7^, ? i ^
and ft - 1 Then

or

Pl cos
<f> gjh H-^2

) {pj + 2P1 cos ft cos (\x
- A) + I}

4

With approximate values of the numbers which occur m this equation it is

easy to find by tnal a value of pt which is correct at least to one decimal

place Then with this value of pl it is possible to calculate c m two waya
(i) directly by (6), (n) through rlt r3 given by (4) and (5) and inserted in
Euler's equation, which may be written ( 52) in the form

3&& - 0/V2 (n 4- r,)
1 = sin ty = 2^/2 (r, 4- r8) sin J </ cos JO (7)

or solved by special tables Two values of c thus correspond to a hypo-
thetical value of plt and the latter must be vaned until the discrepancy
between the former is made to disappear A rule analogous to that given in
88 leads quickly to the desired value of Pl For if the values ^, p load

successively to the differences AlC, A2c in c, it is easy to see that the value
of p! to be inferred is given by

Pi - Pi" + (p" - px') Afo/(AlC
-

In ordinary cases the correct result is quickly obtained in this way
93 When Pl and p,

=MPl have been obtained it only remains to do-
termme the elements of the orbit The formulae of 86 are anin
appropriate, namely

e

r, cos 6, cos ft
-

i,)
= ^ Cos ^ cos (X,

- L
3) + fi,

r, cos 6
;
sin ft

-
Lj)

= ^ cos$ sin
(X,

- ^)
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(3
= * 3)> for the heliocentric distances, longitudes and latitude of the comet

Here rlt rs should reproduce the values finally arrived at in the course of

determining p^ Also

2 tan % sin ft ft + 4)
-

Ii}
- sm& + 63)/cos 6, cos &a cos ft - y (8)

2 tan i cos ft ft + 4)
-

11}
= sm (6S

-
ftj/cos k cos 6j sin % ft

-
4) (9)

(0 < 7 < 90 if 4 > 4, 90 < < 180 if I, < I,) give O and t The arguments
of latitude are given by

tan Uj
= tan (13

-
1) sec i

* 1 3), where in this case <
u, < 180 if 6, > By the equation of the

parabola

V? = V*i cos J (! - 0) = yV3 cos } (a,
-

o>) (10)
whence

A/PS + A/PI cos
or *

tan C0

which gives o = - n and also q, the perihelion distance Finally, T being
the time of penhehon passage, we have ( 29)

T= t3-$ {tan i (M,
-

) + J tan
8

} (a,
-

)} VSJ/fc (12)

(jf
=

!* 3) This completes the determination of the five elements

94. It is to be noticed that while the nrst and third observations have
been completely used, the second observation has only entered partially into
the calculation In fact the five elements have been determined from six

given coordinates in a unique way because X2 , & have not been used

independently but only in the form cot ft sin (X2 -Za) in the equation (1)
for M Consequently it cannot be expected that the elements will satisfy
the second place exactly and the magnitude of the discordance is an im-
mediate test of the derived orbit The second place is therefore calculated

by finding ( 29) w* = ^- *> from (12) (j
**

2), r2 = 0sec
2

$wz , and hence the
coordinates of the comet by means of

pz cos /3a cos (X2
-

Ii)
= r8 cos wa

- Eg cos (Za
- H)

/>a cosA sm (Xa
- H) = ra sm w2 cos t -jR; am (Z2

-
fl)

/3a sin ft = ra sm i^ sin i

If the residuals are small the elements may be considered satisfactory If
the residuals appear large, on the other hand, there are several possible
reasons for the fact There may be an error in the calculation, there may be
an error in the observations, or the assumption of a paiabolic orbit may be
unjustified The evidence of further observations must be the final test

But without additional material it is possible to improve the orbit obtained
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by reconsidering the quantities which were ignoied in the course of finding
the first elements Parallax and aberration may be allowed for In the

place of (3) may now be written

where Jfand m are iven by (1) and the following equation At this stage
an approximate value of Pl is known and [r.rj/frrj can be calculated with
greater accuracy than by means of (2), for example by the application of the
formulae of Gibbs or by dnect calculation of the aieas, since the sides of the

triangles and the included angles are now approximately known Thus the

approximate M in (3) can now be replaced by the impiovod value M+m/fr
and the remamdei of the work can be repeated from this point There are
however, shorter practical methods of removing a discrepancy m the middle
place, which serve the purpose well enough since a provisional orbit is in

general all that is required
n

95 The eccentricity of planetary orbits are m general small and hence
a circular orbit may prove a useful approximation to the true path, just as a
parabolic orbit is a useful preliminary step towards the orbit of a periodiccomet As the eccentncity vanishes and the powtion of perihelion ceases to
have a meaning, the number of element* to be determined is reduced to four
and two complete observations of position only are required Thus if a
minor planet has been found on two photographs of the sky and no othei
observations are immediately available, a search ephemens based on a
circular orbit may be a useful guide in examining other plates which mayhave been taken at the same or at other observatories

To consider the ploblem in a general form let (X,, F, Z,) (X Y Z\
be the geocentric coordinates of the Sun at the times of observation\ t Iand let ft , MI ), (I,, m,. a.) be the direction cosines of the observed
directions of the planet The axes may be any nxed system with the Sun
at the origin The planet is observed to he on the lines,

=
(y m, = M + ,

-
Pl

t - (y + Fa)/ 2
=

(, + gynt
=

Pt

P! , p, being the geocentric distances Hence, if a u the radius of the orbit,
*' =

tfipi
~ XJ*+ (m,ft

-
F,X+ (nlRl-Zty

-
Pi

' -
2pj (11X1 + m, F, + rkZJ + X^ + IV + Zj

= ff - V ft^ + m. F, + m^) + JT.J + y.' + gf
<ind, if n is the mean motion and tl -t1

=
r,

-w cos 6 - ft . + m + n -
t F,
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where B is the angle between the observed directions Since 6 is a small

angle the equation
COS 6 = l^z + Tfyflig -f n^

is unsuitable for its determination, but the proper modification depends on

the choice of coordinates Similarly n cannot be accurately determined

from cos nr

If we now put

A! = 11X1 + ml F!

&i = l*

we have

aa cos nr = p^ cos - ft^ _ ftp2 + ^J^ + Yl Fa +
Hence

4a* Bin1 iWT= /)x

2 + pa
s

cosa

i {^
-

/D!
-
i (^L,

- A - ^a +A) sec2 ^}a

+ sin2
i {ft + PI

-
4 (4 9 + -d.j

- ft - ft) cosec8

i ^}
2

-
i(-^i + J.!- ft- ft)

2 cosec2

The equations, which must be solved by trial, can theiefore be reduced to

the form

sin
T/TJ

=s MJa, p!
= a cos fa + Ai \

sin
-^j,
= M*/a, ps

=
acos>|ra+ J. a

L (13)

4a3 sin" ^nr = cos2

(p2
-

pa
-
&0

2+ sin8^ (ps + pi
- &3)

2 + c J

where (without the transformations appropriate to the coordinate system)

(A,
- A, - ft + ft)/2 cos2

4^

(A, +A - ft - ft)/2 sm
a

40

- (4. - ft - A l + ft)
a

/4 cos2 i
- (A - ft + A, - ft)

3
/4 sin* J

A trial value of a gives, by (13), ^, ^2 and hence pi, ps ,
these lead to a

\alue of W and the process is continued until values are obtained consistent

with the relation w2as = &J In the case of a minor planet log a 04 is

indicated as the appropriate initial value With the above formulae the

calculation can be performed directly m equatorial coordinates, and little

will be gamed by introducing the ecliptic system When a and n have been
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found, ply pz are also known by (13) and hence the heliocentric coordinates of

the planet

96 Gauss has given a method for finding a circular orbit, based on

ecliptic coordinates Let (J^, L^y (R^, Lz) be the hehocentnc distances and

longitudes of the Earth at the times , ^ and (\lt &), (\2t j32) the cor-

responding observed longitudes and latitudes of the planet If in the plane

triangle SE^ the angle at Pl is denoted by zl and the exterior angle
at El by Blt PlSEl ^Sl ^jgl and

a sin *! = J^ sui $! (14)

Similarly in the triangle SE2P2t with similar notation,

asm,3r2 = J?3 sm$a (15)

The directions of the sides of the two triangles are now represented on a

sphere of unit radius, 8El9 SE2 being represented by El9 E* on the ecliptic,SP13 SP* by two points Pl9 P2 If ffl9 fy represent ^Plf 2̂P2 , these

points he respectively on the great circles E,Plt 2̂P2 and the arcs E&,EZGZ are S, and So Let the circles El&l9 2G2 cut the ecliptic at the

angles 7l , 73 Then the projections of the radius through Gl on the radius

through Elt the radius through the point on the ecliptic 90 in advance
of E^ and the radius through the pole of the ecliptic give

COSA COS fta-A) -COS 8!

cos A sin (Xj
-

Zj) = sin cos ^
, , ,

sinA *= sin S2 sin 7!ana similarly

cos f}2 sm (Xj - Z2)
= sm $2 cos 72

smA = sin S2 sin 72

whence
J

1( S8 and 7l 7a Let the circles ^plf E,P, meet in D at an angle ,

nvv^1 and DEt= <^' the ^^ogies of Delambre applied to the triangleDE& in which the sideE& is4 - 1, and the adjacent angles are y. * -t,
give

' ' *

or more
explicitly

sm J? am (fc + ^) = sin j (
_ r \ i /

*/ * \ /s

sin
77 cos (0J + <f,s)

= cos
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whence ^, < a and rj But since the arc ElPl ^S1 gil and

DPj = & -
8j + *! and Z)P8

= < a
- Sa + *a , while P^ = n (4

-
ft),

w being the

mean motion Hence

<)S(<2-$2+^

or better, since n (ft
-

ft) is a small angle,

sma
J w (ft

-
ft)
= cos3

i 77
sm2

} (# + z, - ^) + sin2

4*7 sin
2

(x2 + #a + *0 (16)

where

36
- fr- *a

-
(fc-i), # = fc- 8 + (fc- 81)

The solution is conducted in the usual way Since 8If 8a are known an

assumed value of a gives zlt z* by (14) and (15) Then ^, ^2 and 77 being

known, the value of n is deduced from (1C), and the process is continued

until values are found which satisfy the relation n*a? =& When this has

been done, the values of zlt z* have also been found, and hence the geo-
centric distances are given by

pi sin J8i
=

jKj sin (Sj
-

^), p2 sin z^ R^ sin (S2 ^9)

but these distances are not actually required Since the arc E
lPl on the

sphere is Sj zl and makes the angle ^ with the ecliptic, we have the

heliocentric longitude and latitude of Pl (as in the case of ffj) given by

cos 6, cos (Zi
-

Z,) - cos (Sa ^)

cos 61 am (^ - /i,) sin (Sx ^) cos 7:

sm 6j
= sm (! ,?,) sin y^

with similar formulae for (Ja , fta) the heliocentric longitude and latitude of

the planet in its second position

97 If (ft , &0 (^a> W ^ave ^een *nu0 obtained the remaining elements

are easily found For by (15) of 86 the node and inclination are given by

2 tan i sin \\ (ft H- ftj) 11}
= sin (b : 4- 6

fl)/cos & t cos 6a cos ^ (^8
-

ft)

2 tan i cos
( (ft + i8 )

-
H) = sin (68 6j)/cos ZH cos ^ sin

-J- (Z2
-

ft)

and then the arguments of latitude by

tan Wj tan (ft
- O) sec *, tan ^ tan (ft

- O) sec ^

with the check u^-u^n (ft
-

ft) As the fourth element the argument of

latitude n at a chosen epoch ft n^y be taken, and this is simply

U u ! + n fa
-

ft) u* 4- n (^
- W

where ft, ta niay be antedated for planetary aberration

If, on the other hand, the heliocentric coordinates (a?,, ylt *,) and (#i, ya ,
^a)

have been found as in 95, and i! is the inclination of the orbit to the



102 Determination of Patabolic and Circular Orbits [OH ix

plane z = and &' is reckoned in this plane from the axis of ^ towards the

axis of y, the plane of the orbit is

CG sin fi' sm i' y cos V sin i +z cos i' =

and as this is satisfied by the two points on the orbit we have

sin H' sin i' _ cos fl' sm i' _ cos ^
/

?/i*2
~

ya#i

"
#i^>

-
#2^1

"
i ya

-
*a#

The solution can then be completed as bcfoie, the arguments w being now

reckoned in the plane of the oibit from the node m the plane 2=0

The meaning of the quantities b
l ,

b2 and c in 95 may be seen thus Let an

axis of z be taken peipendiculai to p l and p>, and an axis of ^ midway between

the directions of pr and p2 >
so that (llt w lf nj become (cosJ0, sin ^Q, 0),

(I*, ?7? aj n,) become (cos^, sin \6> 0), and (JP,, V,, ^), (Zj, 7j, JgT2) boooine

(JT/, F/.Z/X W, F/,^0 Then

If the difficulties of reducing this apparently simple pioblom to a practical

form of calculation aie carefully considered, in view of the small quantities
which occui, the merit of the method in 96 will be better nuclei stood The

reader must realize that the gcneial problem of determining orbits fioui

observations close together in time is essentially a question of authmetieal

technique, and not of any particular mathematical difficulty Thw is well

illustrated in the history of the problem, especially in the eighteenth centmy

It is to be remarked that the problem of finding a circular orbit to

satisfy the given observations cannot always be solved That a solution is

not necessarily to be expected with aibitrary data can be readily seen,

though the equations, not being algebraic, are too complicated to make a

general discussion of the conditions feasible It is enough to way that, eases

have occurred in practice in which a circular approximation to the orbit has

proved impossible The number of minor planets already diaeovered is

approaching a thousand, and the most hequent eccentricity is in the neigh-
bourhood of 012



CHAPTER X

CEBITS OF DOCJBLE STARS

98 There exist m the sky pairs of stars the components of which are

separated by no more than a few seconds of arc, and frequently by less than
one second So close are they that they can only be seen distinctly in

powerful telescopes, if indeed they can be clearly resolved at all Such pairs
are so numerous that probability forbids the idea that the contiguity of the
stars can be explained by chance distribution in space They must be

physically connected systems for the most part and it is to be expected that

the relative motion of the stars will reveal the effect of mutual gravitation
That this is actually true was discovered by Sir W Herschel

The motion is referred to the brighter component as a fixed point The
relative motion of the fainter component takes place in an ellipse of which

the principal star occupies the focus ( 24), unless there are other bodies in

the system, or there proves to be no physical connexion between the pair
The apparent orbit which is observed is the projection of the actual orbit on

the tangent plane to the celestial sphere, to which the line of sight to the

principal star is normal, and since the point of observation is very distant

compared with the dimensions of the orbit the projection can be considered

orthogonal Hence the law of areas holds also in the apparent orbit, which

is "equally an ellipse But m this orbit the brighter star does not occupy the

focus its position gives the means of determining the relative situation of

the true orbit

The observations give the polar coordinates, p, 6, of the companion, the

principal star being at the origin The distance p is expressed in seconds of

arc and the linear scale remains unknown unless the parallax of the system
has been determined The position angle 6 is reckoned from the North

direction through 360
P
in the order N , E or following, S ,

W or preceding
The planes of the actual and apparent orbits intersect in a line called the line

of nodes and passing through the principal star The position angle of that

node which lies between and 180 will be designated by H Thus if the

line of nodes is taken as the axis of
,

= /ocos(0-JQ), )?
=

/>
sin (0- fl)
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On the other hand, in the plane of the actual oibit, the longitude of penastion

X is the angle measured fiom this node to penastron in the direction of

orbital motion Hence in this plane, if the line of nodes is taken as the axis

of &,
d = r cos (w + X), y = sin (w + X)

where r is the radius vector and w the tiue anomaly of the companion But

it i is the inclination of the two planes to one another, f= & and 77= y cos i,

so that

p cos (0 t)
= ? cos (w + X)

p sin (6
-

fl)
= 7 sin (w + X) cos *

Here the limits contemplated for t are and 180 If < t < 90, 6 and w

increase together with the time and the motion is dnect If 90" < i< 180
r>

,

decreases with the time and the motion is retrograde This is a depaituie

from the more usual convention according to 'which i is always loss than 90

It is then necessary to state whether the motion is dnoct 01 letrogiade, and

in the latter case to leveise the sign of cosi Ordmaiy visual observations

of double stars, however, must leave the position of the oibital plant* m one

respect ambiguous, since there is nothing to indicate whether the node as

defined is the approaching or receding node The two possible planes mteiseet

in the line of nodes and are the images of one anothei in the tangent plane

to the celestial sphere

In addition to the three elements, Jl, X, i, now denned, foui other elements

are required These are a, the mean distance in the true ox bit, expressed

like p in seconds of arc, e, the eccentricity of the tiue oibit, T, the time ot

penastron passage, and P, the period (or n = 2ir/P t the mean motion) ex-

pressed in years

99 The measurement of double stars is difficult and the early measures

were very rough indeed As the accuracy of the obsoivationw is not high

refined methods of treatment are seldom justified and graphical processes

have been largely employed The observed coordinates may be plotted on

paper and the apparent ellipse drawn through the pointH as well an may be

Let G be the centre and S the position of the pnncipal stai The problem
consists in finding the orthogonal projection by which the actual orbit is

projected into this ellipse and the focus F into the point 8

The direction of the line of nodes can be determined by the principles of

protective geometry Conjugate lines through the focus F form an orthogonal
involution They project into an overlapping involution of conjugate IHIUB

through S Of this involution one pair is at light angles and a in this ease

a right angle projects into a right angle it is clear that the line of nodes IH

parallel to one of the pan Let SA, SA'
, SB, SB' be two pairs of conjugate

lines through S When the appaient ellipse has been <lra\vn these can be
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found by drawing tangents at the extremities of chords through S
,

or. by
inscribing quadrangles in the ellipse, for each of which S is a haimonic point
On CS as diameter describe a circle, centre K Let A if A^ , Bly Bf be the

points m which the conjugate lines intersect this circle and let A-^Ai, JBi-B/

intersect in Corresponding points of the same involution on the circle

are obtained by drawing chords through 0, and if OK meets the circle in

N, N\ 8N
y
SN' are the orthogonal pair of the involution pencil required

Let GABNA'B' be a transversal of the pencil drawn parallel to SN' so that

AA\ BB' subtend obtuse angles at S This is an involution range of which

N, since it corresponds to the point at infinity, is the centre, so that

AN NA'=*BN NB' On NS take the point F such that NF* is equal to

this constant product Then F is the intersection of circles on the diameters

AA', BB' and A FA', BFB' are right angles Hence if NF be rotated about

CN until F8 is perpendiculai to the plane CNS (the plane of the apparent

orbit) right angles at F will be orthogonally projected into the involution of

conjugate lines at 8 The position of the focus F of the actual orbit has

therefore been found, and the orthogonal projection by which the true and

the apparent orbits are related

The true orbit may be plotted point by point on the plane of the paper,

with its centre G and focus F For if P' is a point on the apparent orbit and

P the corresponding point on the true orbit PP' is perpendicular to ON and

PFt P'S meet on ON In particular, if X' (fig 5) is a point where 08 meets

the apparent orbit, the corresponding point X in which the perpendicular

through X
1

to ON meets OF is a vertex of the true orbit and OX = a The

eccentricity is given by
OS _ OF _
OX'

~
OX

" e
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and the inclination by
SN

[OH x

where < t< ^TT if the motion is direct and JTT < % < TT if the motion is

retrograde Also fl (<TT) is the position angle -of ON and \ is the angle
between CAT and CF measured in the direction in which the motion takes

place The five geometrical elements of the orbit have therefore been found

100 It is to be noticed that this method does not require the ellipse
which represents the apparent orbit to be actually drawn When the observed

positions have been plotted five points may be chosen to define the ellipse
These points need not be actual points of observation it is better if they are

graphically interpolated among the observed positions Let them be denoted

90

Fig 5

by 1, 2 3, 4t 5 Draw a line through 1 parallel to 23 The second point in
which this line meets the ellipse can then be found by Pascal's theorem with
the ruler onlj This gives two parallel chords and hence a diameter

Similarly a second diameter is drawn and the two intersect in the centre C
of the apparent ellipse Again, by a similar use of Pascal's theorem, the points
in which the lines IS, 2tf, 3S meet the ellipse again are determined This
gi\es three pairs of lines each t>f which determines a quadrangle inscribed in
the ellipse If two of these be completed the sides of the harmonic triangles
which meet in 8 determine two pairs of conjugate lines From this point
the construction follows as before The point X' m which CS meets the
apparent ellipse can be constructed by projective geometry But it is
unnecessary If F' is the second focus of the real orbit and P the point
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^ponding
to any one of the turned pomts on the apparent orbit,Jtf + fJ? = 2aand CF=ae Hence a and e

,

m
f

When ^e apparent ellipse has been drawn the
eccentricity is

known for if OS meets the ellipse m X', the projection of the vertex of the
true orbit LS/GX - since the ratio of segments of a hne is unaltered by
orthogonal projection Let OY' be the conjugate diameter to CX> and
therefore the projection of the minor axis of the true orbit If the oblique
ordmates parallel to OY' are produced in the latio 1 V(l -e*) an auxiliary
ellipse will be constructed which is

clearly the projection of the auxiliarycircle to the true orbit and has double contact with the apparent orbit 08
being the common chord But the oithogonal projection of a circle is an
ellipse of which the major axis is equal to the diameter and is paiallel to the
line of nodes, while the minor axis ,s the dnect projection of the dmmeterHence the major axis of the auxihaiy ellipse is 2, the minor axis 2acos*
the eccentricity smz and fl ,s the angle which the transverse axls makes
with the N direction The circle on the major ax,s as d.ameter is the

auxiliary

circle of the fane oibit turned into the plane of the apparent orbit
Let X be the point in which this circle is cut by a perpendicular from X' to
the major ax,s of the auxihary elhpse The pomt X will project into the
point X and therefore represents the position of penastron on the auxiliary
circle Hence the angle (taken in the right sense) which GX makes with the
major axis of the auxiliary ellipse, or hne of nodes, is the angle X This is
the graphical method of Zwiers

It is evident that the hne of nodes and the mclmation will be equally
indicated by constructing the piojection of any circle in the plane of the true
orbit Now the pa.ameter p (or semi-latus rectum) is a harmonic mean
between the segments of any focal chord Hence the circle on the latus
rectum as diameter has radii along any focal chord which are equal to the
harmonic mean of the focal segments The projection of this circle is an
ellipse with its centre at S, its ma]oi axis equal to 2p and lying m the
direction of the line of nodes, and its

eccentricity equal to sin This elhpse
ui be actually derived fiorn th apparent orbit by laying off on radii through

-S lengths equal to the harmonic mean of the intercepts on the same chord
between 8 and the curve, smco the ratios are unaltered by projection This
principle, of which another uso will bo made, in duo to Thiele

102 Such graphical methods are tedious and may bo avoided by a slight
calculation when the apparent orbit has been drawn Since the eccentricity
is known when this has been done, there- lemam four geometrical elements
a, i, n, X, to be determined Four independent quantities are required and
the four chosen by Sir John Heischel and others are 2a, the diameter through
S, 2/9 the conjugate diamotoi, and Xll Xi the position angles of these diameters
rhe length of the choul through 8 parallel to & or tho projection of the latus



108 Orbits of Double Stars [en x

rectum of the true orbit, is therefore 2^(l-e2
)

Hence the relations

between the positions in the true and apparent orbits ( 98) give

ce(l-e) sinfoi-^^afl-
V(l -e2

) cos fo - Q) - - o(l - *-) sin X

ft V(l - e2) *>m fo - fl)
= a (1

- e
2
) cos X cos *

since w = at penastron and 90 at the extremity of the latus rectum

Hence H is given by

a* (1
- #) sin 2 (# - Q) +

"
sin 2 (# - ft)

=

or
tan (xi + %2

-
2fl) = tan fo - #) cos 27

where
tan 7 = \/(l

- e2) a//?

This equation in H is satisfied by O ^TT as well as fl But

cos2 i = tan (# ft) tan (%2
- H)

and this rejects O ^TT since cos i < 1 and determines i The first and third

of the abo\ e set of four equations give both a and X with its proper quadrant

and the second or fourth gives also the proper sign of cos i (according to the

contention of 98) The solution is then free from t\mbiguity, understanding

that % is the position angle corresponding to penastron and xz tne position

angle \vhen the companion has moved through one quadrant m its plane

beyond this point

103 Another method emplojs the general equation

cur2 + 2hxy + by* + fyx + 2/y + c =

of the apparent orbit referred to the pimcipal star as origin Without loss of

generality c may be put equal to 1 The othei coefficients are to be chosen

to satisfy the observations as well as may be But an elaborate solution is

not justified because the one accurate element m the observation, the time,

is not involved in this stage The intersections of the ellipse with the axes

and anv nM point give the result in the simplest way The elements of the

true orbit can then be derived in a variety of forms Let us find the pro-

jection of the circle on the latus rectum The above equation may be written

acos2 6 4- 2A cos Q sm 6 + b sin2 6 -h -(g cos 6 +/sin 0)+ -2
=

For a particular \alue of 6, p has two values, pj and pa , one positive and

one negative since the origin is inside the curve Hence, if p represents the

harmonic mean,

{(g cos 6 4-/sm 0)* -c(a cosa 6 + 2h cos 6 sin 6 + b sma
0)}/c

2

(-5cos* + 2H sin 6 cos 9- A sin2
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where, in the usual notation,

,4=&c-/2
, H=fg-ck, B = ac-g*

Hence the equation
Ba? - IHxy + Af + C2=

represents the projection of the circle on the latus rectum (^ 101), or an

ellipse with axes 2p and Zp cos i and its transverse axis coinciding with the
line of nodes It is therefore identical with the equation

(at cos fl + y sin Q)
a

(y cos a -a; sin t)
g

#
a

p
2 cosa

and thus
-

/c
a = jr* cos3 fl + ^-3 sec2

1 sin2 H

JT/c
2

( p~
z - p- sec3

1) sin fl cos H
-

.A/c
2=p-

2 sin2 fl + jj-" sec
2
^ cos2 &

or

jcr
2 tan2

1 sin 2H = - 2JJ/c
2

p~
2 tan2

1 cos 2H = (B-

which determine H, p and i

Again, the perpendicular from the focus on the directrix is a (e*
1

e)
= pe~

l

Hence the intercepts on the line of nodes and on the line perpendicular to it

between the focus and the directnx are p/e cos X, p/e sin X The projections
of these intercepts, also at right angles, are p/e cos X, p cos ^|e sin X But the

projection of the directnx is the polar of the origin, or the line qx +fy + c =
Hence

(g cos fl +/sin fl) p/e cos X + c=

(- <7 sin fl +/cos fl)p cos */e sin X + c =

so that e and X are given by the equations

e sin X a* p cos i (/cos 1 g sin fl)/c

e cos X= p (/sin fl + g cos <Q)/c

Equations for the five geometucal elements m the above form were first given

by Kowalsky

The form of the equation which represents the projection of a circle is

defined by the fact that the asymptotes of the projected ellipse are parallel

to the projection of the circular lines and therefore to the tangents from 8 to

the apparent orbit It will be found that the projection of the auxiliary

circle, refened to its centre, is m the usual notation

C* (Bx*
- ZHvy + Ay*) + A2 =
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and that of the director cucle

C2
(Ba?~ 2Hxy + Ay*) + A (A + Oc)

=

while the eccentricity of the true orbit is given by

104 In some few cases a double star has been observed over more than

one complete revolution The period P is then known appioxnnately and

the date T of penastron passage, when the companion is situated on the

diameter of the appaient orbit through 8 Otherwise, when the geometricA!

elements have been determined, two dated observations suffice to determine

these two additional elements For two observed position angles ft, give

the corresponding true anomalies wlt w3 and hence the eccontnc anomalies

Elt E^ since

tan (9
- O) = tan (w + X) cos i, tan \E = */(- ^ j

tan
\
w

Then
n(t- T) - El

- B sin E
, n(t2 -T) = E2

determme n = 2-Tr/P and jT In practice a larger numbei of such equations
will be employed m ordei to reduce the effect of errois in the observations

The law of areas can also be applied directly to the apparent orbit, foi if Oi

is the area described by the ladius vector between the dates t, t2i and A l is

the area of the ellipse, P = (t^-t1)A 1/a1) and similarly T'can bo determined

A primitive method which has been used for measuring the areas consists in

cutting out the areas in cardboard and weighing them

When the parallax -sr of a double star is known, a/w is the mean distance

in the system expressed m terms of the astionomical unit Hence ( 24), if

m
t
m' are the masses of the components,

while ^ = 4^^ if the mass of the Sun-Earth system and the sidereal year aio

taken as units For this purpose the mass of the Earth is negligible and

thus, P being expressed in years,

is the combined mass of the system, compared with that of the Sun

105 The appaient orbit can be reconstructed, on an arbitiaiy Hcalc,
from observed position angles alone This course was advocated by Sir J
Herschel, who considered the measured distances of his day very infeiior in

accuracy With this object the position angles are plotted as oidinates with
the time as abscissa Owing to inaccuracies the points will not lie exactly
on a smooth cuive, but such a curve must be drawn through them as well as

possible Let ^ be the angle which the tangent to the curve at the point
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ft 0) makes with the axis of t, so that <Z0/<fc
=

tani/r But since Kepler's
law of areas is preserved in the apparent orbit, pe-h, an undetermined
constant Hence p = >J(h cot ^) and the apparent orbit can thus be derived

graphically from the ft 0) curve The elements with the exception of a can
then be obtained and finally a is determined by the measured distances, of
which no other use is made in the calculation

The opposite case may arise, and is illustrated by the star 42 Comae
Berenices, m which the determination of the elements must be based on the
distances Here the plane of the orbifc passes through the point of observa-
tion, ^ a 90 (or practically so) and the position angles serve only to determine
H If the star has been observed over more than one revolution the period P
may be considered known Corresponding to the point (a cos E, b sin E) on
the orbit, the observed distance is

p = a cos E cos X - b sin E sin X - ae cos X
= 12 cos ( + )- 00 cos X

while

n(t-T) = E-e&mE
If the observations are plotted for a single period, from maximum to

maximum, the result is to give the curve

e sin E
)-ae cos X

which is a distorted cosine curve Maximum and minimum correspond to

E = $, TT 13 and give

n, = nT- /3 + e sin (3, yl
= R-ae cos X

nt3
= nT + TT- - e sin #, y^-R-ae cos X

whence jR and ae cos X, while in addition

These equations may be supplemented by a simple device Taking the

origin of x at the first maximum let the curve

y = R cos x ae cos X

also be drawn Let P be a point on this curve and Q the corresponding

point on the first curve such that the ordmates at P and Q are equal Then
at P, x =E + j3, so that

Hence the curve

y = e sin (a
- 0) + ft

- n(T- t
} )

can be constructed by laying off on each ordmate through P a length equal
to QP This is a simple sine curve, the form of which will serve to show
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any irregularities in the (nt, p) curve from which it is derived The ampli-

tude is 20, represented on the scale by which 2-rr conespondfc to the penod in

x The value of e being thus known gives @ from ($,- 4) and hence a and X,

since
a cos X = E cos 0, a sin X = R sin #Ml - ej)

Tis then given by the maximum and minimum of the ongmal cuive But

the sine curve has its maximum at x = ft + \TT and its central line is

y = ft-n(T-ty) These conditions miibt also ho fauly satisfied by the

adopted solution

106 Graphical methods, such as those sketched above, only ptovide a

first approximation to the solution of a problem Hcio in getieial the obser-

vations are too rough to make a closer approximation feasible But. if it is

necessary to improve the elements thus found, each obseivation given one

equation in the following waj Let da, dll, be the reqmied corrections

to the approximate elements, a, 1, For the time t of an obHexvutum

6 (or p) can be calculated Its value is

But the observed value is

If then the elements have boon found with such an accinacy that squares,

products and higher powers of da, <Ml, can be neglected,

-*-" d" +m dn+

a linear equation in da, dl, And similaily with p The toethuents ire

?? = dp p
'

x- = I sm 2 (6 P-) tan i,
=

~ N
~ Qf^ ">*** ** \^v u*<y n*i K tlflitl I

d\

tin n W aw n dT

dB r*/a 1 \ 3p 3p /
,

1 N ap= f - 4 ain w coa t,
'r =:

; ( + sin w - r

a p
2 \r 1 - &J de d\ \? i

- ev /

the verification of which may be left as an exeicise
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107 In some cases the position of a binary system has been measured

relatively to some neighbouring star C which is independent of the system
Let A be the pnncipal star, m^ its mass, (xlt y^ its coordinates at the time t,
and similarly let B be the companion, m^ its mass, (#2 , ya) its coordinates
A series of measures of AB gives

#2 #j = p cos 6, y%yi = p sm

while the measures of AC give ff3 -&i, y.- ft, ( y) being the position of G
Let ( 17) be the c G of AB, so that

But the motions of G and of the c G of AB are uniform and independent
Hence

where & # are the proper motions of the CG relative to C, and (a, a') is its

position relative to C at the chosen epoch to which t refers Thus

j + a
or

ffj) + ^ -^
and

-ffa-yj + 2/3-
similarly, where

From a series of such equations a, a', ,

'

and / can be determined and
therefore the ratio of the masses of A and B But if a is the mean distance,P the period and -ar the parallax of the system AB,

Wj + MI = a*/
1
.?*

and the masses of the individual stars, expressed in terms of the Sun, become
known

108 In certain cases the absolute coordinates of stars apparently smgle
have exhibited a variable proper motion It is then assumed that the varia-
tion is penodic and due to orbital motion in conjunction with an undetected
body The motion to be investigated is relative to the c G of the system,
which itaelf is supposed to move uniformly In the plane of the orbit the
coordinates are a' (cos E - e), b' sinE

t and therefore in the plane of projection,
when referred to the line of nodes and the line at right angles, they become

'

x = at (cos E e) cos X - b' sin E sin X

y = {a' (cos E- e)sm X + 6' sm .tf cos \} cos ^

Hence the orbital displacement in the direction of the position angle Q is

~g coaE + h smEge
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where

g = a! {cos X cos (O - Q)
- sin X sin (H - Q) cos 1}

k = - 6' {sin X cos (1 - Q) + cos X sm (H - Q) cos i|

and Q=90 for displacements mEA ,Q = foi displacements in declination

The observations of one cooidmate, say 8, theiefoie give a senes of equations

of the foim
S = S + ^ -f # cob E 4- A sin j# - #e

with

From these e, n (or P), T, /ifi ,
30} g and h can be doturnnnetl Smco <?

mcl A

are functions of a', H, X and
,
these four elements cannot bo deiivod horn

observations of one coordinate alone But fiom observations of the othoi

coordinate, say a, the corresponding quantities q' and // can bo found and the*

elements of the motion are then completely detenmnate, including a'
t
th(

mean distance from the c G of the system

In the two notable examples of this kind, Sinus and Piocyon, the

companion was discovered afteiwards It thus became possible to find t.h<

relative mean distance a and hence the latio of the masses, SUM o

w,.(a
-

a')

Hence, the parallax being known, the individual masses of tho

have been deteimmed It ib to be noticed that, when the companion cannoi

be observed, the function of the masses which can be found is m A
l

(nii + nt )
J

For this is equal to a'^



CHAPTER XI

ORBITS OF SPECTROSCOPIC BINARIES

109 Another class of orbits which are based on pure elliptic motion is

presented by those systems which are known as spectroscopic binaries It
is now possible to determine the radial velocities of the stars m absolute
measure with high accuracy This follows from the application of Doppler's
principle to the inteipretation of stellar spectra. On the simple wave theory
of light this principle is easily explained A light distuibance travels out-
wards from its source in a spherical wave front which expands in the free
ether of space with the uniform velocity U Let a fixed set of rectangular
axes be taken in this space, and let fa> ylt ^) be the position of the source
at the origin of time Let (ult ^, wj be the velocity components of the
source, supposed to be m uniform motion, and t the time at which a light
disturbance is emitted Similarly let (j%, ya , zz) be the position of the
observer, also supposed to be moving uniformly, (?/3 , va ,

w2) the velocity
components, and T the time at which the specified disturbance reaches him
For simplicity the motions have been considered uniform, but obviously they
are immatenal except as regards the source at the instant t and the observer
at the instant T Let the corresponding positions be A, B respectively and
let the distance AB = R Then

J8J - 2

where (a, & 7) are the direction cosines of AB and 7i, Fa are the projections
of the velocities (%, vlt w^ (%, w9) on this line But since the wave
reaches B from A m the time (r

-
1),

*

Hence
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Now (F"2
-

FI) is the component of relative velocity of A and B, measured

in the direction of sepai ation of the two points This is a definite quantity

But F2 is a component of the observer's absolute motion m free ether, and

this is unknown Presumably it is small in comparison with U, and the last

term can be rejected as a negligible effect of the second order Or, on the

theory of relativity, T
7
^ is not only unknown but unknowable, and the effect

is completely compensated by a transformation of the ideal coordinates of

space and time into another set which is the subject of observation All

this has its counterpart in the theory of aberration, with which it is intimately

related Whether the limitation is imposed by the imperfection of practical

observations or by the ultimate nature of things, it is necessary to be content

with the effect of the first order

If the light emitted at A has the wave length \, the frequency of a

paiticular phase in the wave tram at Ais>U/\ But the number of waves

emitted in a time dt is received at B in the tune dr If then the apparent
wave length of the light received at B is X' and the apparent frequency

and therefore

where V is the relative radial velocity of A from B Thiib the application

of Doppler's principle gives
V=U AX/X

where A\ is the increase of wave length (or displacement measured positively

towards the red end of the spectrum) of a spectral line, of which the natural

wave length in the star is supposed known Further details on the practical

methods of reduction would be out of place here, and this explanation must
suffice It is usual to express V in km /sec ,

and the velocity of bght may be

taken to be Z7= 299860 km /sec

110 From the measured radial velocity must be deduced the radial

velocity of the star relative to the Sun, or rather relative to the centre

of gravity of the solar system This requires the calculation of certain

corrections, of which the most important are due to (1) the diurnal rotation

of the observer, and (2) the annual elliptic motion of the Earth relative to

the Sun The effects of perturbations of the Earth and Sun are compara-
tively small

An observer situated on the equator is carried by the Earth's rotation

over 40,000 km rn a sidereal day This means a velocity of 046 km /sec
Hence the velocity of an observer in latitude $ is 46 cos

<f>
km /sec alwayw

directed towards the E point If 6 is the angular distance of the star from
this point at the tune of observation, cos B = cos B cos (h + 90), where $ is the
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decimation and h the W hour angle of the star Hence the additive

correction corresponding to (1) is

vd = -h 46 cos $ cos 6 = - 46 cos <p cos & sin h

Again, the Earth's elliptic velocity is compounded ( 26) of one constant

velocity F, perpendicular to the radius vector and another e Fj perpendicular
to the major axis, e being the eccentucity of the orbit These vectors are

directed to points in the ecliptic of which the longitudes are 90 and
T 90, where is the longitude of the Sun and F the longitude of the

solar perigee Let (I, /3) be the stai's longitude and latitude Hence the

required correction for the Earth's orbital motion is

Now Fj is precisely that vector on which the constant of stellar aberration

depends, so that if k" is this constant,

Fa
= A" 17/206265" = 29 76 km /sec

whea the standard value of k
y
20" 47, is adopted with the value of U given

above Hence the correction for (2) is

va - + 29 76 cos ft {sin (
-

1) + e sin (P - Z) J

It is evident that the process might be reversed and the value of k deter-

mined by observing the apparent radial motion of one or more stars at

different times of year This has been done at the Cape Observatory, with
the result that the standard value of k was reproduced very exactly, an
excellent test of the theory Indeed this is probably the best available

method of finding the constant of aberration it will be noticed that the

adopted value of U, being a factor of both Vl and F, will scarcely affect the

resulting value of k

When the necessary corrections have been applied to the apparent radial

velocity of a star, the star's radial velocity is obtained relative to the solar

system This is affected by the motion of the latter relative to the stellar

system as a whole Hence conversely when the ladiai velocities of a number
of stars scattered over the sky are known, it becomes possible to deduce the
motion of the solar system relative to the average of those stars in absolute

measure If, further, w is the parallax of a star, and /A its total annual

pioper motion, its transverse velocity is p/isr when expressed in astronomical

units per year Now with the solar parallax 8" 80 and the Earth's equatorial
radius 6378 249 km

, the astronomical unit (or Earth's mean distance from
the Sun) is 149,500,000 km Hence this unit of velocity is equivalent to

4 737 km /sec and the star's transverse velocity is 4 737 /x/cr km /sec Thus
the velocity of a star relative to the Sun can be completely determined in

absolute measure This concerns questions of stellar kinematics which are

now entering the region of dynamics but lie outside our present scope



118 Orbits of Specti oscopic Binaries [OH xi

111 Repeated determinations of the radial velocity of a star yield values

which in the majority of cases are constant within the errors- of observation

The motion of the star is apparently uniform But in other cases, perhaps
a third of all the brighter stars, changes aie obseived which prove to be

regular and periodic These are attnbuted plausibly to the motion of one

component in a binary system Such spectroscopic bmanes diflfei fiom

visual doubles only in the scale of their orbits, which prevents them fiom

beang resolved even in the most powerful telescopes, while their periods aie

to be reckoned in days instead of years or even centuries It may appear
that the spectrum of the second component should also be seen When the

components are fairly equal in brightness, as m /3 Aungae, this is so
,
the

lines of the spectrum are seen periodically doubled But with other stars,

and this is the more common type, the companion is relatively so faint that

only one spectrum is shown it is quite unnecessary to suppose that the

companion is then an absolutely dark body Even when both spectra are

visible the secondary spectrum is often difficult to detect and usually difficult

to measuie As a paiticularly interesting example Castor (a. Gemmoium)
may be quoted The telescope reveals this star as a visual double, and the

spectroscope shows that both components are themselves binary systems
More complex systems can be infeired from spectroscopic measures alone

Thus Polaris, which appears in the telescope as a single star, has been shown
to be a triple system, consisting of a close pair revolving round a moie
distant third body Here the motion will be considered m the fiist instance
of one component of a binary system about the common centre of gravity,
and it will be seen how far the elements of an elliptic orbit can be deduced
from the measured radial velocities, these being based on the comparison of

the star's spectrum with that fiom a teriestrial source (usually the spaik
spectrum of iron or titanium)

112 Since the penod is generally short, the observations extend over
several revolutions and the penod P is determined by obvious considerations
with fair exactness This being known, the observed velocities can bo
referred to a single penod with arbitrary epoch and plotted as ordmatos
with the time as abscissa in a diagram called the radial velocity cutve Such
a curve is illustrated m ng cr, while the relative orbit is shown in fig 6,

corresponding points being indicated by the same letters The focus of thib
orbit is , the centre of gravity of the system The line of nodes AGB,
passing through A the receding node and B the appicaching node, is the
line drawn through Q in the plane of the orbit at nght angles to the line of

sight The points Plt P2 mark the position of penastron and apastron, xnd
the angle from OA to QPlt measured in the direction of motion, is the longi-
tude of penastron, a> The true anomaly at any point of the orbit being w,
the longitude of this point from Ai*u=+w Let i (0 < t < 90) be the
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inclination of the orbit, this being the angle between its plane and the plane
which is normal to the line of sight, and let e be the eccentricity

kmlsec

-50

100 15O 200 250

G () upper, (b) lower

The orbital velocity of the star is compounded ( 26) of one constant

velocity Fa transverse to the radius vector and another eTa perpendicular to

the major axis These may be resolved along and perpendicular to the line

of nodes The former components contribute nothing to the radial velocity
The latter are + Fa cosw and +eViCO&a> in the direction QE which is
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drawn at right angles to G-A This line makes the angle (90
-

*) with the

line of sight, and hence the radial velocity which is measured is

V= 7 + (cos u + e cos o>) F2 sin i

where y is the radial velocity of the point G, that is, ol the system lelative

to the Sun It is at once evident that V and i cannot bo determined inde-

pendently from the radial velocities alone, and the equation may bo written

7= 7 + JST(cos u -h e cos o>), K = Fa sin i

or again,
7= y' + Tifcos w, y = y+ Ke co& o>

where JST, 7 and 7' are to be taken as constant

113 When the velocity curve has been drawn the maximum and mini-
mum ordmates are approximately known These aic y = 7' + K> i/

= 7' K,
which require ^=0, ^ = 180 The maximum and minimum points, A, /*,

therefore coi respond with the receding and approaching nodes The lino

y=y can then be drawn in the diagram, mteisecting the velocity nuve in

E, F These points require i*=90, 270 and the concsponding points in
the orbit are the extremities of the focal choid at right angles to the line ot

nodes The velocity cuive is thus divided at A, E, B, F into four parts
corresponding to four focal quadrants, each bounded on one side by tho luu
of nodes The part which contains the periastron passage will be described
in the shortest time and that which contains the apastion passage will

require the longest time The opposite extiemities of any focal choid give
equal and opposite values to (^-7) In particular, the penastiun and
apastron points, Pl9 P2 ,

aie located on the velocity curve by the fuxthox
condition that their abscissae differ by JP, the half peiiod, and the pomtH
In, ZB corresponding to the ends of the latus lectum by the condition that

they are equidistant in time from fl or P> The four points P,, P,, i,, ia

on the velocity curve are easily found graphically by tnal and enoi

Again, let be the centre of the orbit and COD the diameter which is

conjugate to the diameter parallel to the line of nodes, so that the tangents
to the orbit at G and D arc also parallel to this line Hence V**y at
C and D on the velocity curve Let an axis of * be taken parallel to OE m
the plane of the orbit, so that

Tr ,
dzF = 7 +-

Now the integral represents the area of the velocity curve measuxcci from
the line y = 7 Hence by taking the limits at A, 0, B, D it follows that tho
positive area of the velocity curve from A to is equal to the negative area
from C to B, and the negative area from B to D is equal to the positive tuea
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from D to A These conditions, which can be tested by a planimeter or some

equivalent method, make it possible to draw the line y - 7 m the diagram

At jSTj, KQ, the extremities of the minor axis, the radial velocities relative

to are equal and opposite Hence on the velocity curve IT, and X9 are at

equal and opposite distances from the line
2/
= 7 an^ equidistant in time

from P! or P2 Thus these points can also be found graphically without

difficulty

114 It is supposed that the period P is known, and this gives the mean

daily motion, //,
= 27r/P The other quantities which can be derived from

the velocity curve are five m number, namely T the time of penastron

passage, K = F2 sm i
t y the radial velocity of the system, o> the longitude of

the node, and e = sm <f> the eccentricity of the orbit The most satisfactory

direct method of finding these elements is based on the representation of

the curve (see Chapter XXIV) by a harmonic series in the form

where t is leckoned from some arbitrary epoch This is always possible

by Fourier's theorem But

V= 7 -t-K cos G> (e + cos w) -K sm a sm w

= y-f 2JTcoseocos8
< e-l

2Jj(je)cosjM

2-fiT sm co cos
<J> St// ( je) smjM

by 41, (28) and (29) Now M** p (t
- T) and therefore F - 7 and

where

JTa^JjTcoswcos^, .K^jBTsintocos^ (1)

There are now only four quantities to be determined, which may be taken to

be Kl9 KS, T and e Thus the four equations corresponding toj 1, 2 are

alone required those of a higher order are useful only when there is reason

to suspect that the motion is not purely elliptic Now these give ( 47)

(2)

- r8 cos(2/u!Z
T + &) = X"2

(l
- - +

g-

-
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showing that r^fa is of the order of e Hence, by division,

sin
+ ~

ra eoB(2j*r + A) A re'_ e* \

n cos (XT* A) V
1

24 96
-

/

and, by subtraction and addition,

_
sin 2 (/^+ A) 24

A)

the last equation containing no teim m e Eccentncities an high as 075
are met with

occasionally, but even so it ib evident that (/n7
T

-f- # -
^,) is

veiy small angle which can scarcely exceed 2 and is goncially n(

If then
=^ + /3 -A

it is possible to neglect a2 and the last equations become

whence
r2

f
& es

\ #

From this equation e is easily found by trial and enoi, and thai a, which
gives T, is found from (3) The equations (2) gl ve Kl and K*

t whence fmall>
JT and o> are denved by (1) The pioccsb is theiefore very simply oven
without special tables, when once the hairnomc representation o< the volix-ily
curve by two penodic terms has been obtained This can ho done veiy
easily and with all needful accuracy by taking a sufficient numhci oi IMIIU*
distant ordmates from the cuive

115 It is, however, more usual in practice to find appioximat,o pie-
hminary elements by methods which are largely graphical and to imptovi.
them, if thought necessary, by a least-squares solution giving diileicntial
corrections Thus 2K 1S the apparent range of the velocity ui V (S an<l whon
the penastron point Pl has been located on the cuivo, T is known, while the

( 113) The remaining elements Lo be doteimmod aie UieiefolV^ azwTwand these are connected by the relation #e cos o> = 7
'- 7 A number of

interesting properties have been used for the purpose

b
focal t ( <' >'

be the time at a certain point of the orbit and to Mid A', the



114-116] Orbits of Spectroscopic Binaries 123

corresponding true and eccentric anomalies Let t2 be the time at the other
end of the focal chord through the point and 180 + w and ft the true and
eccentric anomalies Then

(1
-

e)
4 tan Jw = (1 + )* tan Jft , p (t,

- Z7

)
= ft - sin El

Hence
(1

""
0)ic0t^ =

(l

-(1 -

, ., ,and therefore

= (ft - ft)
- sin (2fa

-
ft)

__

Hence, if 2*?=: ft -ft,

tan i (ft
-
ft) -

j (1
-
#)* e-i (C0t^ + tan 4

= cot 6 cosecw

tj)
=

2-?7
- sin 2?7, tau sin w = - cot 77

Similarly, if ,, ^ are the times at the ends of the perpendicular chord, where
the true anomalies are 90 + w, 270 + w,

p, (k
- =

2T?
7 - sin 2V, tan < cos w ** - cot 77'

The angles 17, */ are easily found, especially with the help of a suitable table
of the function (x

- sin *), and hence
<j>

or e and w = u - o> But the oidmate
at the point ^ gives y~y = Kcosu and therefoie w, whence the value of o>
can be inferred The equations

tan 4ft -i tan (45 - 40) tan 4*0, /* (fc
-
T) = ft - * sin ft

tan 4ft = tan (45 -
40) tan (410 + 45), ^ ft - Z) - 2?.

- e sin ft
will give two independent values of T

Sets of four points related in this way are easily located on the velocity
curve, for they are given by y/_ tfcosu, Ksmu Thus the four
points y-r/- J5T/V2 are very suitable for the puipose Here w 45
w, = 45-o, Two special sets have been mentioned in 113, namely ABEF where,, -<),* , and P.P., A4 wheie w ^ In the latter case
y-7 -^coso>, 2rsui t giving tf immediately, ^-SP, and e is given
py <^ rj 90

T^
fe al8 Pr Perties connected with a diameter of the orbit

If E is the eccentric anomaly at a point, E +^ and E + ^TT are the eccentric
anomalies at the ends of the diameter conjugate to that which passes throughthe point Let tl} t9 be the

corresponding times Then
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so that

Now the points (7, D, in which the line y = y cuts the velocity curve, satisfy
this condition and the conjugate diameter being parallel to the line of nodes
makes the angle

- a> with the major axis Hence in this case

tan eu = cos < tan E
and therefore

i/4 (4
-

ft
-
iP) = 6 ( 1 4- tan2

G> sec2 0)
"
*

which gives e = sm < when e cos o> = (7
-
7)/ Jg' is known Also

which gives a relation between e and T
Another pan of such points is Klt Jf2 , corresponding to the ends of the

minor axis Since E = in this case,

Let M!, tt2 be the longitudes at K1} K* Then the radial velocities at these

points, lelative to G, are

This quantity is therefore given by the ordmates at Klf K2 on the velocity
curve, relative to the line y = y

117 The velocity curve also possesses interesting integral and differential

properties which may be useful It is necessary to have a consistent system
of units, and since those of time and velocity have already been adopted, the
unit of length is fixed and the natural system is

Unit of time = 1 mean solar day - 86400 mean sees ,

Unit of length
= 86400 kin =00005779 astronomical units,

Unit of velocity
= 1 km per second,

Unit of mass = that of the Sun

Now the constant of areal velocity m the orbit is

pVl fyrab/P = pa* cos 6
so that

a sm i = Vtfjr
1 cos sm ^ = Kj

The argument relative to the areas of the velocity curve in 113 can now be
made more precise For the tangents to the orbit at C and D, refeired to
the principal axes of the ellipse, are

x sin + y cos CD = V(a
2 sin9

o> + 62 cosj

<y)
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and the perpendiculars on them from the focus @ are

Measured from the line y*= 7 let A 1 be the aiea of the velocity curve from A
to C,

- A, from to B, - 4 2 from B to D, and A 2 from D to J. Then

+ A) = -5V1 COS V(l - # COS2 6))

1 cos <

When -Ax, A* have been measured in the proper units these equations deter-

mine < (or e) and o>

118 If the tangent to the velocity curve makes an angle ty with the
axis of time,

, . dV ^ dw
tan

i/r
= -7r= Abinit-^-

at dt

and r being the radius vector in the orbit, the constant areal velocity is

pa? cos
<f>

r3
-rr
dt

Hence
tan ^f /xJ5f cos < sin ^ (a/r)

a

= p,K sec3
<^>

sin u (1 + e cos w)
2

and at special points on the curve tan
-\Jr

has these valuer

A, B u=0, 180 tani/r
=

^, F u= 90, 270 tan^ = +^ secj
< (1 e sin o>)

2

Pi, A ^ = 0, 180 tan -^
= T /J5f sec

3

</>
sin o> (1 e)

a

4, , w = 90, 270 tan -^
= q: pK sec8

<#>
cos w

If tan ^ is found graphically at any of these points attention must be paid
to the scales in which ordmates and abscissae are represented These

expressions can then be used in order to find o> and <

Since

r oc (sin w cot -^)*, w = u - o>

and % at any point on the velocity curve is given by the ordmate measured
from the axis y = 7', it is possible theoretically to plot the actual orbit to an

arbitrary scale, point by point This is scarcely a practical method, but

deserves mention as the counterpart of Sir John Herschel'b method for

double stAr orbits ( 105)
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119 The values of the elements found by any of these graphical methodswo appzoxmmte only They can be improved by the addition of differential
coriections, &ST to K, Be to e, j to a,, BT to T and 8p to / Thus each
observation gives an equation of condition of the form

Va
- Ve = &/ + cos tt BK

,

and it is easily found that

dw
-fo=*smw(2 + e cos w) sec- $

dw
g^7= /A (1+ e cos w)

J sec-1

<^>

3w

g^
= -

T) (1 + e cosw)
2 becs <

It is more usual to give % the radial velocity of the system, than 7', but this
quantity can be derived finally from the relation 7 = 7'-^ cos o>

120 When the elements of an orbit specified above have been obtained
by whatevei method, some mfoimation can be gained as to the dimensions
and mass of the system An equation already found in 117 gives

=K^ cos < 86400 km
when the unit of length there adopted * explicitly introduced Let m be
the mass of the star whose spectrum is observed, and m' the mass of the
other star Then

wheie C is a constant depending on the units employed These being as
stated m 117, the special case when m! = 1, m -

0, gives

(36525)
a

(00005779)
8 '

Ct follows that

=
[3 01625 - 10] K*P cos^

ind it is only this function of the masses, involving the unknown inclination
>f the 01 bit, which can be determined \?hen only one spectrum can be
>b&erved

mIf, however, the radial velocity V of the second component of the syste
;an be measured at the same time, which is possible when the two superposed
pectra arc of comparable intensity,
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One such equation will give the ratio m mf

when 7 is known and two will

give 7 in addition without any knowledge of the orbit It has been supposed
that the radial velocities have been determined by referring the stellar

spectrum to a comparison spectrum from a terrestrial source, <\s mentioned in

111 When there is no comparison spectrum, as when an objective prism
is used, and the stellar spectrum shows double lines, it is still possible to

deduce the orbit of the system from the relative displacements of corre-

sponding lines But the orbit is then the relative orbit, a is the mean
distance of the components from one another, and it is easily seen that

(m + mf) sin3
% must be substituted for the above function of the masses

121 The true spectroscopic binary cannot be resolved in the telescope
But one or both components of a visual double can, when bright enough, be
observed with the spectrograph, and very interesting results can be gained
in this way Let a, a! be the mean distances of the components relative to

the centre of mass, expressed in terms of the linear unit 86400 km The
astronomical unit contains T730 such units Let a" be the visual mean
distance and r" the parallax of the system both expressed in seconds of arc

Then
, .^

> (a 4- )N 'm + m
a

-1730 -n ;

sr m 4- m
and therefore

V = 7 + K (cos u 4- e cos o>)

-y + fiasmi sec < (cos u 4- e cos o>)

= 74- 1730 /w sm i sec $ (cos t& + e cos o>) 7,

while for the othei component similarly

V = 7 - 1730 /A sin t sec < (cos u, + e cos co) ^7,
^

;W Wl H- 7W

If then the elements of the visual orbit have been independently determined

and the radial velocity of the first component alone can be observed at

different dates, the two quantities 7 and (1 4- wi/m') -sr" can be inferred If

the radial velocity of the second component can also be observed, the parallax,

the ratio of the masses and hence the individual masses themselves in terms

of the Sun ( 104) can also be deduced From the relative radial velocity

alone,
F- V 1730

fju
sin i sec

<j> (cos u + e cos o>) a"/-**"

the parallax can be found, and hence the total mass of the system

One question remains in the determination of the true orientation of a

double star orbit in space, which can only be decided by radial velocity
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observations For the spectroscope binary ^ has been denned so that
< i < TT, while for the visual double < i < TT This difference does not

affect sin!, which is positive in either case Hence if Flf F2 are the
radial velocities of the principal star at different times, the two expressions

cos

have the same sign, where *> is the longitude of penastion of this star
reckoned from its receding node in the direction of motion But X is the
longitude of penastron of the companion at its first node fl (< w) Hence if
the expressions

Pi - F,, cos (WT, + X)- cos (w2 + X)
have the same sign, X m o, This means that the principal star is recedingand the companion is approaching when the latter is at its node fl If on
the other hand the expressions are of opposite signs, X = *, + TT and the
companion is receding at fl

Otherwise it may be possible to determine the velocities F, T of the
principal star and the companion respectively at the same time Then the
expressions

F F7

, cos (w + 6>) + ecos o>

have the same sign, and therefore if the expressions

F- F', cos (w + X) + 6 cos X

have the same sign, X = , while if they have opposite signs, X= + ,r The
same consequences follow as before Thus a knowledge of either F, - Fa orF- F' removes the ambiguity with regard to the true position of the orbital
plane, which remains after the elements of a double star have been deter-
mined from visual obseivations alone



CHAPTER XII

DYNAMICA PRINCIPLES

122 It will be convenient m this chapter to recall some of the salient

features of dynamical theory and to consider as "briefly as possible the form

of those transformations which are of the greatest importance in astronomical

applications We shall start from Lagrange's equations

Let the system consist of a number of particles whose coordinates can be

expressed in terms of n quantities qlf qz , ,qn and possibly of the time t

Let m be the mass of a typical particle situated at the point (#, y, z)

Then
9& das 'boa

* =
Fi+9 * + +

n̂
so that

das _ da,

9^"a^
Hence

d /! da?\ d ( da,

v x oj=Xr |- moo 5
dqr dqr

where X is the component of the force acting on m If T is the kinetic

energy of the whole system,

Hence adding all the equations of the preceding type for the three co-

ordinates and all the particles,

Now the forces which occur in astronomical problems are in general con-

servative, and we can write

2 (Xdx + Ydy + Zdz) =-dU
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where dU * a perfect diffeiential U represents the work done bv the

ST "Y T! ^
m th6 aCtUal confi^ratlon ^ some standard

configu-ration and 1S called the potential energy We therefore have

d_ {VF\ = d(T-U)
dt (dqr ) dqr

But U does not contam fr , and henee, if we write r- U + L, this becomes

d_ (dL\ dL

dt(^-J-Sq-r
-(r=1-^ ,~) (1)

which is the standard form of Lagrange's equations
The function L 1S often called the Kinetic Potential In the absence of

moving constraints (or some analogous feature) within the system
d* = =

Then T is a homogeneous (positive definite) quadratic form in ?1

*
q

so that

(2)
where h is a constant of integration Eeplacmg L by T- U where T
homogeneous quadratic form in ?r and ZTdL nft conL Jwlt'

A = 227

-(r-j7) = r+jr
which shows that A is the sum of the kinetic and potentia! energies

or since Z = T7

, + T, + ^ - jr
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an equation which applies to relative motion When U does not contain t

When 17 does contain t the equation

o-- u+j dt
dt + h

is a purely formal integral because it is to be understood that any coordinates

occurring in dU/dt are expressed in terms of t before integration This

implies a knowledge of the complete solution of the problem But the

equation is not without its uses Thus if U= UQ + IT, where /" does not
contain t and the effect of U' is small in comparison with the effect of U0>

preliminary values of the coordinates in terms of t may be found When
these are inserted in 9 U' / dt a closer approximation to the true integral will

be obtained and the process can be repeated The true meaning of the

equation is therefore connected with a method of approximation

124 The above form (2) of the integral of energy is directly connected

with the Hamiltoman form of the equations of motion whereby the n

Lagrangian equations of the second order are replaced by a system of

2w, equations of the first order For we may write

? 3 T _ rr $
2t qr =-- JLt = n. } = = p*
r 30r 9<?r

^

The n equations for pr are linear in qr and when solved express qr in

terms of (qrt pr\ this symbol being used, wheie no ambiguity is to be feared,

to denote all the quantities qlt q2 , > qn , pl} pQ , , pn Hence L and // can

be expressed either in terms of (qr , qr) or of (qr , pr) Thus

^= **+ **

and therefore

since

_ d fdL\ dL
Pr
~di(i

It follows that

^H t _JH
I' f\tn

' *f^ 3/v ' ^ ' * ' \ J

and this is the form of the equations which is

When L has its natural form, H= T -f U If L does not contain t ex-

plicitly, neither does H, and the integral of energy (2) becomes simply H= //
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125 Let us consider the differential foim

or

d(S,p t qr -8) = 2,q, dpr i-Hdt
1 r

If d9 is a perfect differential, the right-hand side of both equations must
also be perfect differentials, and this requires that

dgr^atf rf^atf
dt dqr

'

dt dpr

or the canonical equations must be satisfied Let us suppose now a trans-
formation fiom the variables (qr , p,) to the variables (Qrt P,) such that

2P, dQr
-

where dW is a perfect differential and F is expressible either in teims of
(qr,pr) or of (Qrt Pr) Such a transformation is called a contact transforma-
tion, or m the particular case when (qr) can be expressed m terms of (Q )
alone [by relations not involving (pr) or (Pr)] an extended point transformation
If W contains t in addition we may write

dt

so that when d6 is introduced

Each side of this equation is a perfect differential provided d& is a perfect
differential, and in this case

i> SK dK
fr

Wr'
Qr=W, (5)

where

K- TT J.
dWK =H+
~3T (6)

Smce these equations equally with the form (S) express the conditions
required if dd is to be a perfect differential, they must bo equivalent to (3)Thus we see that any transformation of variables

satisfying the condition (4)
leaves the equations of motion in the canonical form

126 In consequence of (4)

r

Hence K will vanish in virtue of (6) provided
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This equation is known as the Hamilton-Jacobi equation But when K=* 0,

JPr-A, r = r

where ar and j3r , by (5), are arbitrary constants Hence if any function W
can be found which satisfies (8) and contains n arbitrary constants (OT) in

addition to (qr) and t, the solution of the problem is completely expressed by
the 2n equations (7) written in the form

where (,) are n additional arbitrary constants

IfH does not contain t explicitly we may write

where W is a solution, containing (n 1) constants (a,.) apart from o^ but
not i, of the equation

The solution (9) is therefore replaced by

^ ft-, *r-
8

jjr,<r-l,2, ,-!)'

3TT .

127 In the set of equations (7) W is an arbitrary function of (Qr , qr)
Instead of making W a solution of (8) let it satisfy the equation

3TT SW\
. 3W n

where HQ is the Hamiltoman function of another problem also presenting
n degiees of freedom Hence as before

where (art @r) are the 2w arbitrary constants of the problem defined by
Hence the equations (5) and (6) become

dK Q m
**-&,'

A""S^
where

Thus if the H^ problem has been solved and the constants of a solution of

the corresponding Hamilton-Jacobi equation are known, the same form of

solution applies to the H problem with the difference that the quantities
which remain constant in the first problem undergo variations in the second
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_
da, SA, a/s, a/?, az; a^)

= 2 f A A\^
7 l

^ m> 4'J
ai;

where K =H-H6&S before, and

a fom of ezp^on wh.ch wUl be defined later ( 130) a, a Person's bracket
128 Let us consider the integral

by the first set of equations in 124 We have thezefore

at each

one fixed oodJg ^r *
the actual as comate^ tnv

^ " & 8tdtl ndry Vdlue for
v o

the tnne at
correspond.po s thsa" neigb Unng *"
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If however 8 denotes a change in tt

-M!
Hence when two neighbouring forms of motion, each compatible with the

canonical equations, are compared, the complete variation between two

positions and 1 is

Accordingly, if the initial time is taken as fixed and (a,., &.) are the initial

values of (qr , pr), we have

and

But this is the Hamilton-Jacobi equation Hence the integral J is a par-
ticular solution of this equation And further, since we have reproduced the

equations (8) and (9) of 126 except that J is written in the place of W, we
see thatJ is that solution which contains the initial values of the coordinates

as its n arbitrary constants

129 Let us suppose now that H does not contain t explicitly, so that

the integral of energy ff = h exists Then if

[

'

5jpr qrdt = f
'

(L + A) dt (14)
J rf 1 h

But

and therefore

+
o J t

This is the complete variation of / and it vanishes between fixed terminal

points if Bh = in each intermediate position, i e if the time is assigned to

each displaced position in such a way that the equation H= h is satisfied in

the varied motion Under these conditions the integral
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has a

stationary value in the course of the actual motion as compared waftmotion in any neighbouring paths

This integral is called the a^on and the proposition established is knownas the pnnapl* Of least action When T is a quadratic function of the
velocities h = T+ U and tha int.,^! ^^_ r lne

J. r J vvwou Ul/C/DLW UtJU ./ ]

velocities h = T+ U and the integral becomes

and in problems which involve only one material particle this is simply
_ rt n
</=VS<Ho* <fo

(16)
where is the velocity of the particle (of unit mass)

The integrals which we have found to be
stationary are notmimma The necessary conditions m o.der that an integraf

shall be an actual minimum are

(1) The first variation SJ vanishes between fixed terminal points
(2) The function of ( r)

is a minimum

does

.^ be 2n extinct functions of fe fr) The firstpfo w

2
(|fc |Pt _ |2L Et\ _ 2

3 < iv)
. V3, 3^n 3 m 9iJ-*S7J^lQ (17)

^^^ 1S den ted ^^ -J The second

a.., _ 3^ ^ _ a (Ul>'
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There are also relations between the two types of expression, and these

we shall now investigate

Let two linear substitutions be defined by

and

where r can have all values 1, ,
n and I and m can have all values 1, ,

The result of eliminating yr , yn+r is to give

(19)

But the substitutions can be reversed by writing

The equivalence of these forms is easily venfied since

When yr , yn+r are eliminated, these give

: 2
{t*j, (20)

The resultant substitutions (19) and (20) must therefore be equivalent, and

accordingly their determinants, written in the forms

and

(21)

are reciprocal This means that any constituent of either determinant is

equal to the co-factor of the corresponding constituent in the other determinant

divided by that determinant Any Lagrange's bracket is thus expressible m
terms of Poisson's brackets, and vice versa.
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a contac

dPt]
i )

131 Let us now consider the explicit conditions for a contact trans-

formation We have in this case

a perfect differential Hence

9

always, and

9

unless Z = m, in which case

It is at once evident that these conditions may he written

fn n i .; ^
[p^-] = 0, [ft,J-0

tor all values of I and ra,

[ft, -P.]0
for all unequal values of I and m, and

Wi, Pd-i
for all values of Z In other words, in the case of a contact transformation
all the Lagrange's brackets vanish with the exception of those which are of
the form [Qt> PJ, and these are all unity

Let us now put

"r= Qr, u>n+r = Pr , (r= l, 2, ,n)
Then the substitution (19) becomes simply

xf~ &n+r 3 &+}
~ Zr

But tius shows that all the Poisson's biackete occumng in (20) vamsh
except those which are of the form

{u,, u[n], and these may be wntten
or

The condrtions for a contact transformation are therefore of the same simpleform whether expressed m terms of
Lagrange's or of Poisson's brackets

Again, the substitutions of 130,
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become identical when m = n + I, since 5W+Z = { Hence

But when l = n + m, they are identical except for an opposite sign throughout,
since an+m = - gm9 and thus

_
9^r

' aPTO 8ft.

These relations hold for all values of Z, m or r not exceeding H

132 Let us consider the transformation

where j/, -p/ are any functions of
(ft., pr) and e is an infinitesimal constant

If the transformation is an infinitesimal contact transformation,

% dW = S {(pr + cp/)

is a perfect differential Hence we may write

6 2 (K^r
- g/C^) = d (W - 2 #.(&/)

where JiT may be any function of (gr , jpr) Accordingly

, a# , a^
'"; fr

as;

and the general form of an infinitesimal contact transformation is given by

wheie ^f is an arbitrary function of (qr ,pr)

If for e we write Si, the equations (22) become

Sqr = dK tyr = _3K
8t dpr' Bt dqr

and comparing this form with that of the canonical equations of motion we
see that the progressive motion of a system from point to point corresponds
to a succession of infinitesimal contact transformations

The effect of substituting (Qr , Pr) in any function / of (ft, pr) is to

produce an increment

, 8ft-

*{/,} (23)
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133 Let us consider a distuibed motion in which (qr , pr) become

(qr + $qr , pr 4- Spr) at the time t If this motion is compatible with the

canonical equations

we must have

with similar equations for Bpr Now let us suppose that the new variables

are those given by (22) These will lead to a particular solution of the

varied motion provided

d =
dt \dprJ 7 (tyrdq* 3p.

dp8

-i I rN.
~

7T~ I ~\ T7 I ^ i I ^ .

or

with a similar set of conditions arising from the equations for Spr But
it is evident that all these conditions will be satisfied if K is an integral
of the system, for then K = We thus see that if K is an integral, the

equations (22) are a particular solution of the equations for the disturbed

motion

134 Let u be another integral of the undisturbed system Then u + AM
must also have a constant value in the disturbed motion But by (23)

AW = {M, K}

when the disturbed motion is that obtained by the infinitesimal contact

transformation derived from K Hence {u, K} must be constant, and we
have Poisson's theorem if u and K are two integrals of a system, the

Poisson's biacket
{u, K} is also an integral It might be supposed that a

knowledge of two integrals would thus lead to the discovery of all the
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integrals of a problem This is not so in general The known integrals are
more often of a generic type, particularly m the case of those gravitational
problems with which we have to deal, and fall into closed groups For
example, if we start from two integrals of area we obtain by Poisson's theorem
the third integral of the same type and no further progress can be made in
this way In order to obtain fresh information it is necessary to start from

integrals which are special to the problem considered

Let u1} u2) , UM be 2n distinct integrals of the problem Then each
Poisson's bracket of the type {^, u8}

is constant throughout the motion But
we have seen in 130 that a Lagrange's bracket [ur , wj can be expressed m
terms of all the Poisson's brackets Hence [ur , u8] is also constant through-
out the motion But this gives no means of finding additional integrals of
the problem, for in order to calculate [u,, wj it is first necessary to express
(qr , pr) in terms of the 2n integrals (w.) And this presupposes that the

problem has been completely solved
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VARIATION OF ELEMENTS

135 The Hamilton-Jacobi equation corresponding to elliptic motion

about a fixed centre of attraction is very simply solved when the variables

are expressed in polar coordinates (r, I, X), so that (I, \ having the same

relation to one another as longitude and latitude)

Then, after suppressing the factor m in the potential energy U and theiefoio

treatmg the mass factor in the momenta as unity,

U =-fir-\ p=

H = T+ Z7=

The Hamilton-Jacobi equation ( 126) therefore takes the form, since H
not contain t,

where Tr=TT' ajt Integration by separation of the vaiiables ib thon

easy For

_-'
!

obviously satisfy the equation Hence

a,/
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is an integral which contains the three independent constants Oj, cr2} 3

Therefore the complete solution of the problem is given by the equations

where &, & A are three additional constants The lower limit r is also

arbitrary It may be identified with the pencentnc distance, and then the

integrals depending on r will vanish at the pencentre

136 We have now to determine the meaning of the six constants of

integration Since the integral in the first equation vanishes at perihelion,
A is clearly the time at this point Also, by the same equation,

But at an apse, r = and r = a (1 + e) These then are the values of t lt

and hence

or
,

<k = -
/V2a> 02 =

Also if we put as/a,
= cos % the second and third equations become on

integration
- & ~

/i (r) + sin"1

(sm X/sin z)

A i sm""1

(tan X/tan i)
or

sm \ - sin i sm j/a (r)
- A}

tan X = tan i sin (Z 4- A)

This last equation shows that the motion takes place m a fixed plane making
the angle ^ with the plane X = G, which may be taken to represent, for

example, the ecliptic, with I and X as the longitude and latitude of the

planet Thus the meaning of a3 =*ora cos^ is defined, and - & is simply the

longitude of the node The preceding equation then shows that /j (r) & is

the angle between the radius vector of the planet and the line of nodes,
i e the argument of latitude But at perihelion the integral / (r) vanishes

Hence -ft is simply the angle in the orbit from the node to perihelion,
or -GT fl in the ordinary notation The canonical elements which we
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have introduced can therefore be expressed in teims of the usual elements

(T being reckoned from the epoch when the mean longitude is e) thus

ax
= -

/*/2o, ft - T= -
(e
-

r)/n

The homogeneity of these constants will be increased by introducing a

instead of ^ This makes 2a1
= -/u-

2

/a
2 and TF= JF' + ^/2as Hence

will be replaced by ft where

8F' tft_iffiW_ \

'fa"""?""?^ V

Snice the integral vanishes at penhelion, and t = T at this point,

ft-!&. / T=nT=^
<$ V a8

The other constants are easily seen not to be affected by the change in <xlr

ft, which can accordingly be replaced by

where e is the mean longitude of the planet at the time t=

137 The expressions for a, 0%, <%, ft, #2 , & in terms of the ordinary

elliptic elements which have just been found make it very easy to calculate

the Lagrange's brackets

where u, v are any pair of the six elements a, e, v, H, r, e Since of, a2 , cr, are

functions of a, e, i alone and ft, ft, ft are functions of O, *r, e alone, the

Lagrange's bracket for any pair of either set of three elements vanishes It

is equally evident on inspection that [e, e], [i, or] and
[*, e] also vanish, the

two constituents never occurring in a corresponding pan
1 of canonical constants

Hence the complete array of Lagrange's brackets may be set out thus



136-138] Variation of Elements 145

where the first constituent of each bracket taken positively is placed in the
column on the left and the second constituent m the line at the top The
brackets in the second diagonal really contain only one term and are at once
seen to be

[a, e]
= <-

[t, H] = *fjal-ez

) sin t

while the remaining three brackets contain two terms and are

[a, 12]
=

3 V(l-#)^i (1
- cos *)

[a, ]
=

J V^/a (1
- Vl - ej

)

[e, Ji]
= - e Vy^a (1

- cos )/Vl
- e2

The value of the whole determinant depends simply on the constituents in
the second diagonal and is evidently

=
\ p?ae

z sin2
%

138 It is now easy to form the reciprocal determinant, the constituents
of which are the Poisson's brackets of pairs of elements On account of the

large number of zeros in the above determinant a corresponding number of
minors vanish and the rest can he calculated without difficulty It can in
fact be verified by simple inspection that the reciprocal determinant takes
the form

the first constituent of each bracket (written positively) being indicated in
the column on the left and the second constituent in the top line as before
It is also clear that the partial substitutions ( 130)

*i = [a, a] *4 + [a, m] *8 + [a, e] #6
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and

} *j

6
=

{a, ej a?! + {e, e] 4 2 4- t, e} ,1
,

must be equivalent, and it leadily follows that

{a, e}
=

l/[a, 6]
- - 2 V^

[e, -ar}
=

1/|>, -or]
= Vl - eP/e V/Tor

- sin i

{e, e)
= -

[a, r]/[a, e] [e, w]

=
(1
- VT- e

')
VI ->/e vVa

= (1
- cos i)/V^~a (1

- e2) sin ^

K 1
= -

{[ ^] [, w] - [e, H] [a, IT]} /[a, e] [e, r] [t, H]
=

(1
- cos i )/VyL6a(l-e

2

) sin t

The six Poisson's brackets are thus all known

139 A solution of the Hamilton-Jacobi equation, involving the six

arbitrary constants a, a,, a3 , & &, ft, has been found for the case of un-
disturbed elliptic motion relative to the Sun When the action of the othoi

planets is taken into account, the potential eneigy U becomes U R
t

where R is the disturbing function and is expiessed b} (^ 23)

Hence H becomes HQ-R and consequently by 127 the constants of the
approximate problem aie m the more complete problem subject to variations
which are defined by the equations

cfo^^aR d@r _ dR
dt 3ft' W" +

d^
Here R is supposed to be expressed in terms of the constants mentioned in
136, which refer to the motion of the planet consideied undisturbed, and

the time as it occurs in the expression of the coordinates of the disturbing
planets When instead of the canonical constants arising m the solution oi
the Hamilton-Jacobi equation the ordinary elements of elliptic motion aio
employed, the equations for the variations are no longoi of the above simple
type, but take the more complicated form

r - dR

where AT represents any one of such elements Since we have found the
expressions for all the Poisson's brackets, the equations for the variation of
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the usual elliptic elements can at once be written down in an explicit form

They are as follows

da dR
dt '' OG

dt
*//j,a

d-sr

cos
</>
sm ^ /^a 9H cos

= 1 dR
dt cos sin i \/jj,a

di

^sr _ cot <f> 3JK tan% dR
dt

^/fjLa
de coa ^ y^; 3t

~ -- a^ tan cos

A slight simplification has been made by writing sm < in place of e m the
coefficients of the paitial differentials of R

140 The above set of equations for the variations of the elements is

fundamental An important point must be noticed in legaid to them The
variation of a entails a corresponding vanation of n which is determined by
the relation naa3 =

/z Now the disturbing function R is a periodic function
of the mean anomaly and is expressed in terms of oncular functions of mul-
tiples of nt Hence the derivative of R with respect to a would contain the
same circular functions multiplied by t and this intioduction of teims not
purely periodic would be inconvenient The difficulty is avoided by an
artifice which should be carefully noted

We consider n (as distinct from a) to occur only in the arguments of these
periodic terms Otherwise a is used explicitly or if it is more convenient to
use n outside the arguments, n is simply a function of a given by na a' = ^Now e enters into R only m the form nt + e through the mean anomalv
so that

<r '

aft^l /8JR\

de t V9w/ aJ , (OUBt
Hence

+
a const J

dn da
= const <*& dt
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or

S + *S-- 2^(?r) +
dt dt

/r
\9a/w=ccmst

If then we take
;

instead of e, where

de dn de'

e+
j
ndt

theform of the above equations for the variations of the six elements will be

unaltered, since

but their natural meaning will be so far alteied that (1) >/ in the mean

anomaly is not to be varied in forming the derivative with lespect to a, and

(2) nt in the mean anomaly is to be replaced by Indt The secular terms

which would arise from the cause mentioned aie thus avoided

The value of n is deduced directly fiom the value of a, and we have

If this integral be denoted by p we have also

d*p 3 /-T- da 3 dE

or

which gives the finite variation of this pait of the mean longitude in the
disturbed orbit

141 When e (and therefore
<f>)

is small, and this is commonly the case,
the coefficients in the vanations of e and w which contain cot < as a factoi

become large This gives rise to a difficulty which can be avoided by intro-

ducing the transformation

^ e sin r, ^ = e cos

The result of making this change, which can be venned without difficulty, is

to substitute for the corresponding pair of equations

cos __ _
dt

*/jj,a dk cos^V^ di 2cosa
^"\/^a de

dli^^cos^ djl_ h tea. i dti _ ^ cos
</>

dE
dt *Jaa dh, cos^V/xa di 2cos40V/ia ^e
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Similarly, when the angle between the plane of the orbit and the plane of

leference is small, a pair of coefficients m the variations of i and ft become

large, and the transformation

h? = sin ^ sin fl, &2
= sm ^ cos O

is useful The result, which can be verified with equal ease, is to replace
the equations named by the pair

co3^ dR ___ &a cosj- __ /dR dR\

$V/x,a 3&2 2 cos2^ cos <>
*J~jJba, \3*r de )

__
dt cos$V/x,a 3&2 2 cos2^ cos

<j> *J~jJba,

dR ____ -
dt cos

<f> V/Aa dh2 2 cos2^ cos
<j>

*Jp.a \3tsr 9e /

142 Another form of the equations for the variations of the elements,
in which the disturbing forces appear explicitly, is of great importance Let

S, T be the components of these forces m the plane of the oibit along the

radius vector and perpendicular to it, and W the component normal to the

plane Let u be the argument of latitude and (X, /x, v) the direction cosines

of the radius vector, so that ( 65)

X = cos u cos fl sin u sm fl cos i

/M
as cos u sm fl + sm u cos t cos i

v = sm u sin i

The direction cosines of the transversal and of the normal to the plane may
be written

~ d/J/ and
* ^ JL ?

1 3*

3&
'

9w
'

8^ sin w 3t
'

sin it 9i
'

sin u di

which must satisfy the conditions

If cr be any one of the elliptic elements, we have also

aR^ajftcte dR ty dR fa

d<r doc dcr dy 9<r 3,0 dcr

But the component of the disturbing forces along the axis of x is

du sin i

Hence
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by the conditions mentioned Now

= a (1
- cos

jtf),
tan Jw = /(r^)

tan J#

In accordance with 140 we treat ?i, as it occurs implicitly in u, as inde-

pendent of a, and replace nt by Indt

Hence

2*Lfl -
3a 3a a

dE rW /ax

^
an

J

azan

(snice A, contains fl both explicitly and implicitly thiough u)

(V "|/^

?^(cos i - 1) + (- sin cos w sin t)iSlll U '

\%
- rFcos wsm i

mt

Hence

"-
**S a? e sin ^/? + a7sm w/sin ^

Since / and w; are both functions of e -
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and finally

_

oe oe

sm

~ e-cosE /1+ecosw 1 \= a --= + rr sin w ,
----h n

-
1 e cos E \ 1 - e 1 - e2/

= a/S' cos w H- 7 r sm w (2 f e cos w) sec2
<^

It only remains to carry the expressions found for the deri\atives of It into

the equations of 139 for the variations of the elements The lesults are as

follows

-57
= 2 Va8

/A* {S tan <f>
sm w + T sec

<f> (1 -f 6 cos w)}

37 =
Va//* cos

<f> {S sm w 4- ^(cos w + cos

:

= rW cos w/cos <

= ? TTsm w/cos ^> sin z

g
-

From the first two equations we get for the variation of the parameter

p a (1
- e3)

- = cos2
<f> ^7 2a sin

<^> T-
= 2? J

7
cos <^ \/a///,dt at cLt

It has been convenient to derive the above important set of equations from

those which involve the derivatives of the disturbing function But their

form would be the same if the components of the forces were not such as can

be expressed as the differentials of a single function Thus they hold, for

example, in the case of elliptic motion disturbed by a resisting medium

Since naas =/* is constant, the equation for the variation of a maybe

replaced by

--- = 3 [jgsm < sm w + T (1 -h e cos w)}/a cos
<f>
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Also

(e
-

r)
= - 2rtf/VG*0 - cos

=
{(a cos2 < cos w - 2? sin <) flf - rJPsm (2 + e cos w)}/sin

which gives the variation of the mean anomaly,

dM d

part of the variation of nt being included in e as explained m 140 and
mentioned above

143 It has been seen m 139 how the canonical solution of the problem
of undisturbed elliptic motion leads to the canonical equations appropriate to
the form of motion which follows from the mtioduction of disturbing foices
With a slight change of notation,

L = a = V(M l = nt-/3 = e - -or + nt

and the canonical equations become

dL = 3 dl_ dR
dt dr dt az

dG _ dR dg fiR

~dt~~^g
j

dt^"~dG

dH= dR dh dR
dt dh

3

~dt m
But there is here a change in the meaning of R due to replacing the elementp oy tne mean anomaly I If the rWv,T.K, i j..__ . ,1 , -
~

* J ! ToZ
aW m^ ^ If the dl^bg function m the usual form

quoted m 139 be denoted by R,, the vanation of I follows from

3jR

-
j
ndL

the othei

is the same thing ds -W/dB The

Without changmg Z let the transfoiination
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be made Then

\dL + a)ldpl -f coQdp2
-
(l$L + gdGr + hdH) =

and this expression is therefore a perfect differential Hence by 125 the

transformation from the variables

L,&,H, l,g,h
to the variables

L, plt pa , X, !, eu2

is one which leaves the equations of motion in the canonical form The

angle X = e + nt is the mean longitude, and coj
=

-sr, w2
= fl are the longi-

tudes of perihelion and the node, reversed in sign

Again, consider the transformation

f = (2/a)* cos to, 77
-

(2/o)
4
sin co

In this case

yd!; (t>dp
=

2/> sm2 coda) + sm o> cos a>cfy> adp
= d [p Q sin 2ft>

a))}

is a perfect dnTeiential Hence the variables L, pl} /oa , X, o>i, o>2 can be

changed to

A ?i fa, ^fji^z

and the canonical form of the equations will still be preserved These

variables have been used extensively by Pomcar6 Since

pl
= L G- = 2 A/(fta) sin-1

<

(sin< =
e), fj, 77! are of the order of the eccentricity, and are called by him

the eccentmc variables Similarly, since

,, 772 are of the same order as the inclination, and are therefore called the

oblique variables

144 The account -which will be given of the lunar theory m later

chapters will be based on a method which is quite different from Delaunay's
But the latter is in reality very general and therefore Delaunay's mode of

integrating the canonical equations of the previous section will now be

indicated The form of the disturbing function will be taken to be

R _. _ JS _ ^ cos

where jRj represents an aggregate of periodic terms similar to the one written

down and n
7

, q are constants The term B and the coefficients A are

functions of L, G, H only and in comparison with B these coefficients are

small quantities of definite orders Let

b = B i^n't q
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Then the vanables

L,&,ff t l,g,h
can be leplaced b^

l.ff.H'.v+l.g.k
provided

(iT
l

O,-l)dL+g d(G'-G) + h d(H'-H) = dW
is a perfect differential

,
and this condition is clearly satisfied if

for then dW = If now 2^ = 0, a solution of the problem can be found
For corresponding to the equation

the Hamilton-Jacobi equation takes the form

and a solution involving thiee constants (7, g't h
1

is

W= Ot + ir

piovided

This equation, which is m fact one integral, may be written

0-A + -4C080, B1
= + ltn' zrlL

The solution, b} 126, takes the foim (ar
=

C, g\ h'
, ft = c,

-
#',

-

^= const,
ff

H'= const, h

The lower limit of the
integral involved is a function of (7, <?' #' but the'
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At this point (C, g', h>
, c,

-
&', -H') are absolute constants, resulting from

the solution of a Hamilton-Jacobi equation when the Hamiltoman function 1S

R-R! Hence, by 127, the further treatment of the problem depends on
taking these constants as new variables, and solving the canonical system

d = SR, d&_ HZ, dE' dR,& 3c
'

dt
Sff'

' 3T~ W
dc = _dR, =_3j dh'_ SR,
dt BG '

dt dO" dt~~SH'
But circumstances now arise which require further exaimnation For R, is
now a function of the new variables, instead of the old, and the form of the
function is important

145 In the partial solution

where JBlt A are functions of @ (and the constants 0, &', S'\ and are
functions of t to be determined The forms to be expected may be seen in
this way The above equations give

e-/(cos0). -/'(cos 0)^= A
cut

and therefore

t+c=<l> (cos 6) d$ = 6/6Q + Si, sin rO

when $ vanishes with t + c Hence 6 - 0, (t + c) is an odd periodic function
of and therefore of X - 6Q (t + c) Thus, being some constant,

r

and

=s/(cos (9)
= eo + 2@r cos ? X

These forms, which without a critical examination of the conditions have
only been made plausible, are actually found m practice It follows that

L Bll e + i2et cos rX, e-0 /+ J

*

and the original variable ^ is given by

-Vr -H^^
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Now, since 6 and contain 0, (r', H', these constants also enter into q^ hQ

and therefore into the coefficients of t in the arguments of the terms in Rl

Hence t will appear outside the circulai functions in the derivatives of R
1

with respect to C, G', H' This inconvenient circumstance must be avoided

by a change of variables No\\

by the form of the partial solution, and therefore

- cdG + (g
-
g

f

) dG' + (h
-

h') dH' + Cdt

This is a perfect differential and when each side is expanded in the form of

a secular and a periodic part, the same must clearly hold true for each pait

separately, at least when the number of periodic terms is finite, and in

practice the remainder aftei a certain number of terms must be treated as

negligible But
j/\

6 = (e + S ' cos rx)^ + 2r^' cos r^
= A + 2Ar cos r\, A

Hence, when the penodic terms are omitted,

Cdt - AQd\ - cdC + g, (t 4 c) d*?
7 + A (* + c)

is a perfect differential, to which d (A X) may be added
, and therefore the

vanables

C,G',H', ,g',h'
can be replaced by

A
, (?', iT' , \ K, 7)

where
* = #' + ^o (* + c), T?

= A' + h, (t+c)

This follows from 125, which shows that at the same time E, must be

replaced by 1^ - C All is now expressed in terms of the last set of variables,
and secular terms are thus lemoved from the arguments of the terms in JKj

It is convenient to make a final simple transformation Since

(^X' - X) <2A + i2fcdA + iwdA.Q
= -d (A (i4 n't + q)} + i4n

f

A,dt

&i\' as X i2 ic ijT) i^n't -r q
the variables

At,Q' 9 H', \K9 ij

can be replaced by

A' = 4l A , G" = G' + i2At, H'' = H' + i,AQ , V, ,

but at the same time it is necessaiy to add *47i'A to R, - C Thus finally, if
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the system of canonical equations

dA' = dJV dG"^ d& dH lf

dR'
dt d\'

'

dt dtc
' ~W ~~

~fy~

d\
__ dR dfc ^ dR /

drj dR'
~dt~~dK" ~dt~~~d(y" dt

=
~"aF//

is obtained

146 If the value of V be compared with the expression for I in terms 6f
X it will now be seen that

0r-^ -iji,)smr\
and thus X' and I differ only by periodic terms The same is true of K, g and
rj, h The periodic terms would disappear with A, as also those in and 0,
and A* would coincide with <B> and Hence the final variables are the
same as the original variables when A = The form of R 1

differs from that
of R mainly m the complete removal of the term A cos <9, and naturally the
most important term will be first selected for elimination Periodic terms
will be introduced into the arguments of R', but it is easily seen that on
expansion they give rise to periodic terms of a higher order than A cos 6

The same process can be repeated indefinitely, until all sensible terms are
one by one removed, together with those of a higher order introduced at an
earlier stage It has been assumed that ^1 is not zero If il

= 0, %g or i^h
can take the place of ij There are also terms for which ^ = ^2 = ^3 = In
the lunar problem these depend on the mean longitude of the Sun and are
removed by a single preliminary operation analogous to the above

Delaunay's expression for the disturbing function contains over 300
periodic terms, and their removal involves practically 500 operations of the
above kind, reduced to the application of a set of formal rules This

immensely laborious task was carried out unaided But the result is the
most perfect analytical solution which has yet been found for the satellite

type of motion in the problem of three bodies The solution is not limited
to the actual case of the Moon since it is expressed in geneiai algebraic
terms The satellite type of motion may indeed be defined as that type for

which the Delaunay expansions are valid It seems an interesting problem
of the future whether such satellites as Jupiter VIII and IX will be found
to satisfy this definition Their conditions differ widely from those of the
lunar problem, m particular m the fact that tho motions are retrograde



CHAPTER XIV

THE DISTURBING FUNCTION

147 The development of the distuibmg function R m a suitable foirn

gives nse to many difficulties, partly of analysis, paitly of pi actual computa-
tion, and is the subject of an extensive literature* It is possible- to deal

here only with a few of the moie important points

The principal part of the disturbing function foi two planets involves the

expansion of A"1
, the reciprocal of then mutual distance It is theioioie

important to consider the natuie of this expansion, 01 lather of A"* in

general where 5 is half an odd integer For this moie general foim will

give the derivatives of A"1
,
A3

being a rational quantity, and these \vill

naturally occur when A- 1
is expanded in teims of any contained paiauu tei

It is convenient to consider first the case of two ciiuilu, coplanai oibits

Then, ifH is the difference of longitude in tho plane,

A8 = a^ + aj- 2a, au cos //

Oi, a2 being the radii of the orbits Let

a, <a2 ,
a. = 0,/a^ iH = log g, i*=-l

and therefore

aa

-2A'= i + a2_ 2acos // = (!-. 02) (i
_ az

-
1

)

Hence the function to be examined is

-
(1 + a" - 2a cos ff)~ = J6f

o+ 3 ^ cos lff
i

Since the function is unalteied when z and z"1 aio intei changed, ft,

and t may be tieated as positive The coefficients &, aie cM^l
coefficients By Fourier's theorem,

2 f ff

= ~
I

(1 + aa - 2a cos t)~* cos itdt

* Of H v Zeipel, Encykl de, Math Wis*
, vr, 2, pp 5f,0-<>65
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The first (complex) integral is due to Cauchy , the path of integration is

taken round a circle of unit radius By introducing the Weierstrassian

elliptic function

Cauchy's integral clearly becomes an elliptic function, and Pomcar6 has
shown how this function can be reduced to a calculable form But another
method will be followed here

The coefficients bf are easily developed as power series in a2
For, with

the use of gamma functions,

and therefore, when p q -f i,

t

r()r(.-n)
a

But this can be recognized as a hypergeometric series, and when it is

expressed in the ordinary notation,

By the known properties of the hypergeometric series, this expansion is

convergent when a< 1 There are many equivalent forms, but (2) is enough
for the present purpose

148 Laplace's coefficients aie subject to several formulae of recurrence,
which facilitate their calculation That such exist follows from the known
relations between sets of three contiguous hypergeometric functions Instead
of finding them directly, a more general function

may be considered, for this reduces to bf when j = In the integral (1 )

write z - or, and then

trwr+bf**
[(1

-
a'?)-* (1

-

It follows that

The equivalent forms
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show at once that

.
(>

Again,

= (1
- a2

?)-'-> (1
- f

When these expressions are mtegiated along a path lying between the limits

1 <,
| f| < or2

, where the functions are legular, the fust integrand ictmm to

its original value Therefore

(^-s + l)a5A
l+
^-(^^-^ + ^aa)5s

''' + (i + y + 6-l)aA'" ly = (4)

The identity

(i-a?)-'-'(i-r 1

)"?
4*- 1

= (1
- a3

?) '-*(1
-

f-i)
*

((1 + a') f"H- - a-?'"-
'

'"-}

gives similarly on integration

and after eliminating the last term by means of (4) with s + 1 in the place of A,

When
.7
=

0, (4) and (5) give formulae which apply to Laplace's coefficients

Denvatives of the latter with respect to a can then bo oxpiessecl as lineai

functions

149 Newcomb's method of calculating the coefficients ba', togethei with

their derivatives in the form subsequently lequired, can now be explained
Let

2s = n, S = A, J).a^-2a- S

and let

cn
l * = 2^ a'+^-l B* 3 = 2J <x*(n-U+i+lj & (a &,)

This is not NewcomVs definition of cn
* J

, but it is the equivalent Thun

Dc^J {J(_ 1) +t + 2;} Cn'.J + Cn
1'^ 1

and therefore

D*-HCW^ =
ft (n

-
1) + + 2;) jD*cn'^ + i)*^ J+*

(6)

so that these derivatives of a higher older are easily deduced from those of

the next lower order Let
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and then, by (4),

where

The development is to be carried to a definite order fixed by ^ = ^
J say 11

In the first place pn
k>3 is calculated tor the required values of n,j by a direct

method Next p,,*~H > Pn' J are deduced in succession by (7) For i = 1,

s =
,
the formula (3) becomes

(2? + 1) a d1
' ' = c^-H-

1 - a d1'-*1 =
or

The first coefficient d' is calculated directly Then (8) gives c^ *

(j
= 1, 2,

in succession The formula (5), when i = Q, gives

or

B+2 ^[i

whence cn '-7
(w
= 3, 5, ) are found in succession It only remains to form

cn
l>3 = pn

l
>3cn~1>J (i= 1, 2, ) and the calculation is then complete The

successive derivatives are finally derived by the use of (6)

The employment of a chain of recurrence formulae in practical computa-
tions requires care, because they are apt to involve an accumulation of

numerical error It is the merit of Newcomb's method here descnbed that

it is not only simple but very accurate

150 The quantities which must be calculated directly are c/' and pnk>3 ,

where n 1, 3, , j
= 0, 1, 2, ,

and k is the highest value of ^ to which the

expansion is earned Now

a complete elliptic integral which can be found in a great variety of ways

Newcomb commends for the purpose the anthmetic-geometiic mean, which

follows from the identity

[

T

(a*
9 cosj

< + 6n
a sin" <)

-
*
cty

=
f

*

(a
JO JO

where
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This is obtained mimodjatol} b) tin* tiansfonu itmn <! <i,<u -

and can be cxtondod indefinitely by sum ssm> .tops If v *.l>\mu uuf ili>

boquenccb tt
rt ,

ftw have 11 common hunt J and IIMU i tint tl< \ du* t tju

mtogml is TT/SA In the pmsonf, cas

i
I - a, A, I I ,

<
,"

((

i> i
'

and this indices on< way ui whidi t,"'
(l

is c,isil\ o)i,uitMi

Tho calculation of
/>,/./ is lus< kd on Mi< liypoi^'uniHiji MI. r| h ,

^T

(s,s M, H l,o)
'J^/^'jH I I M / 1 I M

and

s by (2),

i,/ .'Xs + y) P(s I-M /)

"|T(0| r(M/-t I)

2a'^/^'/ M M
iihciefoui, hincc = 2s,

M / I , ,
,

n l

,( ,

Ihf quotient, of Ihf two hype.^oiuei,,.. sut.< ,> 1,, ...m.,.,,)
umtaiimd lection by a kmwn Uif<ni-i* ol uM ims ,HI( | ,, lll|ivi , fl

mpidly a low U>inih sufiir. I,,, , ,ls N.,],,,- !!N ,|H s .,,thu,| N,*,,li (

(ict(>i ininod the K^HHK-I! values of *.'

151 In oloi t obtriin Uu- ( |,W1 <. t l , , ,,, i(4,tlnll'''
ll|(s , ,,,

lollowing t-quution,

,,,,./';"" /*;"" n
t

> '

/;
'

ce;
n

//;

''"'

.,.. ;"," :

MM>
/;"'

" 8

; i"" /c"
1

/*
"

and by (4),

*
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These are three linear equations in j?/
4" 1'^1

, jB/-?
+1

,
BB

l

eliminated The result may be expressed in the form

163

1

,
which can be

=

After expansion and division by (1
-

a") this gives

+1
''^ir - + 3

or

Theicfoie (7) gives (2<s
= n)

- a

(* -f"1)

1- 1-

1- 1- 1-

and this is the required form The i elation between the alternate constituents

is obvious enough, for the substitution of j + 2 for j and n 2 for n (or 5 1

for 5) clearly has the effect of increasing each factor by 1 in the numerators

and by 2 in the denominate)! s As t & IB a fauly huge number m the direct

calculation of pn*'*, the even constituents are small and the calculation is

based on an odd number of terms (generally five) With the use of subtraction

logarithms the process is rapid

152 The next step is to consider two circular oibits m planes inclined at

an angle J Let Ll} L* be tho longitudes in the two planes, leckoned from

the common node, and let

fA + v = I

Then the angular distance between the planets is given by

cos H = cos a cos Z2 + sin L L sm L cos J

=
p, cos x 4- v cos y
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and
2

-2acos#)-*

where
'

&U = ~2
J Q J o

(a A-1

) cos cos^y dx dy

When ii is small A-' can be expanded m poweis of v Thus
oaA"1 =

{
1 + a* - 2a cos x - 2az/ (cos t/

- cos a?; j

-
i

or

where

*
coefficients of f^ m these expressions m
in v> the coefficients

26"

expansion (10) of a,A- ls convergent onl^ when

J/< 1+01^-20008
2a (cosy- cos #)

and smce the most unfavourable ca,e, oo.. *-!. must be included

o

to find
P JTter eX eed the db ve hmlt * Beforeto find a more general form of development Let
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The coefficients C8
n are polynomials in a, which are in fact Legendre's poly-

nomials when s = J Diffeientiation with respect to <r
t
and log a gives

*,_!.,.,_,,,

2- 2 nO.fli -
(a-
-

a) (1 + a* - 2a<r)

=

(or
-

2a) (1-f- a2 - 2acr) + 2 (5 + I) a (a
-

<r)
2

(<r + 2aa) (1 + a2

-2ao-)- 2(* + l)o(l -a2
)

Hence Of satisfies the. differential equation
J2/*Y ifi

(l-(7)^-(25 + l)^g + 7i(n + 25)a = (11) .

Now m the piesent case

cr = cosH ~ p cos x-\-v cos y

and the problem is to develop Cd
n in the form

(12)

where the coefficients A\ 3t considered generally as functions of p, v, are

Appell's hypergeometnc series in two variables /^, z/
9 But the solutions

required can be deduced from the well known equation (11) by a certain

treatment It will bo seen that this treatment is very special, but it is

adequate for the purpose in view

Let ft, v, which are not in fact independent, for p + v = 1, be considered as

functions of a vaiiable t Their derivatives with respect to t will be denoted

by /*', /x", z/', v" Then

90 dC .
,

d*C

dO
, 2

d*C

z
+v sin

9-3?

W
t ' > ^

d0
to-(l* <***+*&-&
~ = fa" cos to -h v" cos y) -j

- + (/ cos v + i'' cos 7/)
a
-T

It will now be seen that if with the help of these equations a partial

differential equation can be deduced fiom (11), such that a-, cos a? and cost/
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do not appeaa in it, a differential equation satisfied by A n
t 3

will be deducible
on comparing the coefficients of cos ix cosjy Now

n (n + 2s) C (p? cos3
a? 4- z/

2
cosy - 1 + 2/iz/ cos # cos y) -r-2

-j-
acr

"" "

2^ I
(25 + a ) 0* coa + cos y)

-
-^y (A*" cos * + i/

x/

cos y)

and therefore if

*^

the equation takes the requned form

<"*-&%+-'%-}i
+> o

154 At present /t and v are any functions of t Let

^-(l-ftXl-A). '-ftft
Then it will easily be found that the first condition becomes

W*'Jf-0>,-A)' ftV-0
Hence either ft

-
ft or Pa 18 independent of The nrst case h!W theobvious importance since it gives directly

Jft-am'iJ; /.-l- ft .co8'lJ
r

The second condition may be written

2*-!=^ **V-/V
//V fi.v'-fi'v (14)

and the light-hand vanwhes because
/. + .! Hence the

-
equation (13) in C becomes

~ =
'

_ _1W
2 l-3' vB 1 (
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On inserting the series (12) and comparing the coefficients of cos we cosjy this

gives

But the direct expansion of F~8 shows that since cosiascosjy arises from

terms of the foirn
(/LI

cos # + z/cos y)
m

, A\ 3 must contain /**i^ as -a factor It

is therefore proper to write

and this gives, with a little reduction,

)-^ -1}

or

Now jB\ ;
is a polynomial in v with a constant term, and this equation gives

the law of its coefficients But the equation is clearly of the form satisfied

hy a hypergeometnc series Hence

+ n, 2? + 1, v) , (15)

where c is a constant depending on ^, j, n This gives the form of Hansen's

development in powers of a, namely

The determination of the constant c may be defeired

155 This is the simplest, most obvious application of the method But
its possibilities, though limited, are not exhausted The first condition for

its use is also satisfied by making p% a constant This may be expressed by

p 1 sin4
J, p9

= sin2

l/o, /A
= cos J cos 7 , z/ = sm J/sm^/o

where / is to be treated initially as constant, though finally it will be

identified with J The relation /* + v = 1 no longer holds formally, but is

replaced by

and the lesult of differentiating this twice with respect to t and eliminating
tan ^Jo shows that the right-hand side of the second condition (14) is 1

Therefore s = 1 At first sight this case has no present interest, since a is

not half an odd integer, but the reason for considering it further will be

seen later

The development will be in powers of sm9

^/ as before, but it will be

convenient first to make t = /, so that

^'= sin -/ cos /0, i/=c
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Then the paitial differential equation (13) for G becomes

The foim of the solution resembles the previous case, suggesting=
e

2 t*v3r\ 3 COSW ajy
and the comparison of coeffiJents of cos eo.jy after the substitute giv

Now let the independent variable be changed to T = sin'* = sln jj; so

J-S-nloo.^, S
'

and the previous equation becomes

this

of the type satisfied by a hypergeomec"s SenT
* " "

wheie ca is a constant independent of T and T in*
whatever the values of / and ^. A wtuiJTl

"

be m,de by putting J.-j. and thenV
2"' ^2

-
3 + 1 '

")
which gives the form of expansion

The more
utility of this result will now be

easily seen For= 1 + . _ 2a cos#)-: = (1
_^^ (1

_
-{*(!- ?)-'

- JTHI (1
_ 02

= 2 a (+i _ zr"-*) (g
_ ^-

= 2 a" 8m(n +l)H/Binff
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Hence, by comparing the coefficients of a.
n

t

sm (n + 1) H/amE 2 T\ j^V cos yc cos^y

But

(or
1

A)-' = -J68 + 6

= i&8 + 2 4&/
1

{sm (n + 1) jff - sm (n
-

1) JSTJ/sin#
and therefore

(or
1

A)-* = 4V + 4 2 &,
n 2 (T - T' a

) A** *' cos 10 cos^y (16)
wl z ^

which is Tisserand's development in a series of Laplace's coefficients

156 To complete the result it is necessary to find the numerical factor c2

Now the final teim of F( a, , 7, a), a, & 7 being positive integers, is

Hence the term containing the highest power of v in, T\,/tV is

But
a2

aA~2

{1 + aa 2a cos a; - 2av (cos y
- cos a;)}"

1

2 (2oz/)
m

(cos y - cos a?)
w

(1 + aa -

and the highest power of v associated with an is given by the terms

(cos y
-

when
m - 40 - * + n) * = 4 (n - * -J)

The same terms appear in the form

S T\j itfv* cos za? cos^y = /c S rn
4ij i^v^rf

i,3 i,3

where = 1 when z and ^
= 0, /c = 4 when t or j

= 0, and K = i otherwise The

highest power of / has already been found m this form, and comparison of the

coefficients of vn fV gives finally

- .-i
2

O^ttCn + t-j)] 1 [*(-* -

The development (16) is now completely denned
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The numencal factor c in Hansen's development (15) can be fouml

similarly For the term containing the highest power of v in A\j is

v

On the other hand the terms associated with a and the highest powei of v

in OjA"1 are by (10) contained in

and these are no^v known As before, the coefficients of vn%
l

rf in the two
forms of a.A"1 can be compaied, and thus

where n denotes the product of four factorial factois Now %(n i -j) is

an integer, n - 1 ~j is even, and the sign is the same on both sides Also

TT *Hence finally

which completes the determination of Hansen's development
The results obtained for inclined circular orbits may now be summarized

Since

cos us cos^y - cos t (L,
- L2) coaj (Z>

= J cos [( +j) Z,
-

( -;) ZJ + J cos [(
-

it is possible to write

where IqgX,-*!,, Iog^= ti2) and rt has been shown how the coefficient
A(* ,ft) can be developed (1) m powers of ^sm^y, (2) ,n powera ofa =

aj/aj, (3) as a series m Laplace's coefficients

157 The preceding developments of A- or A- apply to circular otbita,^̂ " a*
the fo

r6gare M approximate to" y ^P^*6 to the of the solar system On the

ntb th

%
eS8ential fr- "iud, the latter fomsmust be generated by the most convenient means Now quite generally''
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a j
1 a" and

' Wa ^ be ldentlfied with theanomalies Jf,, Jfa coriespondmg value of A may be written A,
Taylor's theorem can be expressed m the famikar symbolical form

exp y ./<) =
exp

which means simply that if the. exponential function be expanded as though VD
*

'

where J), operates on #, alone Now when ei
=

e, = 0,

is an expanse of which the form has been
completely determined Themore convenient developments refei not to ,_ but r/a andTf^

from the argument a to the argument , is made ad
the vanable instead of a Thus in the present case

a.-logo,, ^L

Then generally

= oxp
[log?I

A +
log^ A+da.-Jf

But in the notation of Hanson's coefficients ( 45)

H(inci ' in

Simphfications arc now possible owing to the form of / In the first
place A - B homogeneous, and of dogteo

-
1, m , Hence
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But further/has been expanded in the form

and -

(ft)*V 1V
so that A, A can be replaced by iplt ip2 ,

and A, A do not opeiate on Xlt

Hence the symbolic form of the complete expansion becomes

A-*- 2

where log Xj = i (^+ %), log X.
= *(, + #,), log^Ofi, log 4, iif,, and

the symbols X are respectively functions of e,, A and e2 , Aa

158 This leads immediately to Newcomb's operators as defined by

Poincare" For the functions X can be expanded in positive powers of e,

so that

x* = s n . (A, PI) o, */5/'
-
J n, (A, ft) ^

where ma
-

1

1
1, m*

-
\j \

= 0, 2, , since Xt
n m is of the order e 1 *-ml at least

The operators II are combined by Newcomb in the notation

nt
. (A.^ n,- (A, ftO

=
n";

= u"
c\ nj;

but the combined symbols, though tabulated by him over a wide lange, scorn

to present no practical advantage over the constituent operators

The final form of the development of A"1 can therefoie be written

A-1 = s V 1v 2 o** s s^n^ (A, ft) n/- (- 1 - A, p*) ^ (ft, ft)

and the completion of this part of the problem depends on the piactical

treatment of Newcomb's operators II, which are polynomials in A }>
<>*

degree m, with numerical coefficients

The definition of the symbols is given by

Hence in particular

and therefore

2 II (A p) e
m& = 2 n, (A 0) e

mzl 2 Uf1

(0, ;

Comparison of the coefficients of emzl on both sides then gives

n (A P) = 2 n/ (A o> n^
tt

(o, P)

where n = 0, 1, , m, and j has all the values which make n-|^| and
77i _ w -

|

^ -^ | positive integers (including 0) This formula, due in another
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notation to Cowell, makes the calculation of Tlf(D,p) depend on the
expansion of r/a and aP

But these are known forma The first is given by (22) m Chapter IV
Means of deriving the latter have been given in 45 In fact

and therefore it is necessary to expand Z* * in powers of e and the resulting
coefficients will represent D -

(0, p) They are purely numerical and can be
tabulated for all moderate values of m, % and p Other methods have been
suggested to facilitate the calculation of Newcomb's operators But the
above will suffice to make clear the principles involved

159 The disturbing function due to the complete action of a single
planet can now be considered By (3) of 23 this is

where (, y, *), (V, y'9 J) are the heliocentric coordinates of the disturbed and
disturbing planets ,

r' is the radius vectoi of the latter The constant Q
may be reduced to unity by the choice of appropriate units, and the dis-

turbing mass m' may be understood as a common factor to be restored

ultimately Thus

E = (H + r'a - 2rr' cos #)"* - TV'-* cosH
where H has its previous meaning, the mutual elongation of the two planets
as seen from the Sun The principal part, already discussed, is symmetrical
in r, r't but the indirect part is not so Hence a distinction must be drawn,
according as the disturbing planet is superior, when r=rlt r'=*rz , or the

disturbing planet is inferior, when r-ra , / = ri Now when the eccen-
tricities vanish, by 152,

OaA-1 = &o + 251
' cos a? + 26 * 1 cos y +

cosH =
/M cos so -f v cos y

and
R - A~l = SE - aa'-a

(/M cos x -f v cos y)

is the correction required to change A~A into R This can be effected by
giving corrections to 61

- and 6 ' 1
, thus

~ - a (a' > a),
- or2

(a > a')

where a<l always and a' is the mean distance of the disturbing planet If
these corrections are carried into the expansion in terms of v ( 152), as used in
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the chief planetaiy theones, it will affect the Laplace's coefficients only to

this extent

Sfij

1 = - a, Sb = - 2 (a' > a)

86^
= -a~2

, 8& = -2a-J
(a > a')

for it is easily verified that these changes will give the required collections

to 61 '

, 601 In the exponential form they apply equally to b~l

>, 6 *""1
,

and
b^~~

l Thus the mdnect term is very simply incorporated in jR
,
m

which &L
= ea ss 0, and the full expansion of R m terms of the eccentricities

can then be deduced in the manner explained for the development of A
from A

It is most important to remark that while the indirect part modifies the

coefficients of certain elementary periodic terms, it affects in no way the

constant term which is independent of the time

160. Another order of development is possible by expanding A"1

initially
in terms of r^r^ If this ratio is small, as in the case of the solar perturba-
tions of the lunar orbit, this method has gieat advantages By 153 this

expansion takes the form

A-1 ^ 2 rl
n

t 9
-Jn^1An

%

n,t j

where A\ 3
is given by (15) and as, y have their true meanings,

T^i + Wa = o>i
+ MI + (e>2 4- wz)

It is more convenient to use the exponential foim, and with a slight change
of notation for the coefficients,

A-1 = 2 /yvr71-1-^ Oh, />j) /<a
2Wa

Pi . Pa

where log^ = i (^ + w^, log fr = i (a)2 + w2), \p1 -p2
\

= 2i
} \pi+pi\**2j

and n \pt |,
n \p2

\

are even positive integers Hence

A-1 = S r^r.-^A

where log \^ = t (Wl + MJ, logX2=A(6)2+iT2),

log xz
= LW* But this form can clearly be expressed m terms of Hansen's

coefficients Thus

=
.L

where ql9 g have all integral values, positive and negative, and the symbolsX
are respectively functions of el3 e2> while A n (plf p^ is a function of i/ = sm2

4J
which has been determined

The indirect part of the distuibmg function when ^ (< rz) refers to the
disturbed body, is clearly allowed for by simply excluding the terms cor-

responding to n = 1, for these are equal to ^r^cosE
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By either method the fundamental importance of Hansen's coefficients
and their relation to Newcomb's symbolic operators is clearly seen Numerical
developments of their coefficients According to powers of e have been calculated

by several authors, including Cayley, Newcomb and, for the purposes of the
lunar theory, Delaunay

161 It has been seen that the generating expansion is of the form

R = 2 SAfjfvQ cos psG cos qy

where L = o> + M, L' = & + M'
The subsequent process introduces e, e' into

the coefficient A, which already contains powers of z/ = sma
}J

r

, and adds

multiples of AT, JIT to the argument In the ordinary notation foi the

elements,
6) = fff fl ^ &' flj' _ ft _ yf

where ^, %' are the distances of the intersection of the orbits from their

ecliptic nodes Hence R takes the form

R =*2AfJi?vV cos [hM + KM' + (p + q) (
-

XI)

Now the two orbits with the ecliptic form a spherical triangle ABC in which

where z, i' are the inclinations of the orbits to the ecliptic Hence, as in 67,
if the intersection be taken as the ascending node of the disturbing orbit on
the disturbed orbit,

sm
ir (% + X) sm i /. sin i (^ - ft) am 4 <t' + 1)

cos i (% + %') sm i /= cos ^ (H' - fl) sin i (*'
-

4)

sm i (%
-

%') cos J / sm i (H'- n)cosi (*' +0
c s i (X - X ) cos i /= cos J (ft'

-
12) cos J ('

-
1)

and therefore

i/*exp ^(x + x'J-wnKcosi^exp i^n'-^-Bin Jtcos Ji'exp
-

It follows that

^) 2 a, sm^ (Q'
- H)

where a
ff , bs represent simple coefficients involving i, i' Thus % tf can be

eliminated from R, which now takes the form

R 2 -4 cos [AJf+ A'Jf'+(p + <?) (^ - fl)
-
(p -
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where A now contains a, a', e, e', ^t ^' and also powers of v But from the

above analogies of Delambre,

v = sm8
(!'

- H) sm8

\ (%' + i) + cos2

} (fl'
-

fi) sina (^
-

^)

=
(1 cos cos i) -J

sm * sm i' cos (fl
;

fl)

Hence these powers of v can be removed from the coefficient without altering

the form of the arguments, which are only changed by the addition of some

multiples of Of - 11 Thus finally

R = 5 A cos [hM+ fc'Jf' + $rw 4-#V +./

= S -4. cos [h (nt + )+h' (n't + e
7

) + g

where the coefficient A is now a function of a, a', e, e\ ^) ^' only, and the

argument contains the six elements H, O', or, tr
7

, c, e' and the time And
this is the final form of the disturbing function, involving the twelve

elements of the two orbits explicitly, and expressed in the desired way



CHAPTER XV

ABSOLUTE PERTURBATIONS

162 The disturbance of a purely elliptic motion may be illustrated m
a quite elementary way by supposing the motion to take place m a resistingmedium Let the tangential resistance per unit mass be

z;/r*, where v is the
velocity and r the radius vector, so that the radial and tangential components

_?? 1 ;?_,_ 5.
fa _ r dO _ a d6

i* v dt r*dt' ~~^ v~di r ~dt

When other powers of v and r are assumedm the expression for the resistance
the general results are very much the same, and this simple form is sufficiently
typical to represent fairly an interesting problem

Let t* be the reciprocal of r and SW the work done by external forces in
a small radial or transversal displacement Then

. S
"where p, is the constant of attraction

, and the kinetic energy is T, where

Hence the equations of motion are

5 (ir*ti

d
<*,-*a\ dB

5ir > ** " a ^7
Now let

dt

tr*6-H, ^-Jtt-^-

and the first equation of motion becomes

or
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But by the second equation of motion

H=h-0
where h is constant Hence

It is enough to retain the first power of ot, so that

d

3

and the integral is

e} (1)

where e and 7 are constants

163 The osculating ellipse at the point 6 = ft is obtained by supposing

the resisting medium to disappear at this point and the subsequent motion

under the central attraction to be undisturbed The path is then

The motion at the instant is the same in the actual trajectory (1) and in this

ellipse, and thus =
ft, w = i, u and 0, and therefore H Hl and dujdB are

the same for both curves Let /<tA"~
a = p'

1 Now H^ is the constant of areal

velocity m the ellipse, and hence

To the first order in a then

jpf^Ajpj^-aaA-
1
*!

Again, by equating the values of w and dujdQ,

pr1

{1 + ei cos (6,
-
70} * P"

1

{1 + cos (^ - 7) + 2a^-1

and to the first order in a

0! cos (ft
-

71)
= e cos (ft

-
7)
- SaA^eft cos (ft

-
7)

! sin (ft
-

7j)
= e sin (ft

-
7)
- 2aA-1 - 2a/*~1

eft sin (ft
-

7)
Hence

0! cos (71 7) = e 2afr-J

eft
- 20A,-1 sm (ft

-
7)

0! sin (7! 7) = 2ctA~1
e cos (ft

-
7)

and, still to the first order,

A* - 2oA-1

(e ft + sm (ft
-

7)}

A?!- 2A-^coB (ft -7)

Between these terms an important practical distinction is at once apparent
That in A^ depending on ft will dimmish the eccentucity indefinitely until

the orbit becomes circular It is a secular term The other terms are
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penodic, and when a is small their effect, not being cumulative, is small also
In practical applications, to Encke's comet for example, they can be neglected
Then Ayj = and the direction of the apsidal line is unaffected by the resist-

ing medium

In a complete revolution the secular effects are given by

_ _ ^
0i Pi

~~
h

and the corresponding changes in the mean motion and the mean distance are

given by
Ani _ _ 3 Afe = 3 Afr 3fr Aex = 1 +^8 6?ra

h 2 ! 2
;>! l- ei

2 1-^ ~F
since ! ^ (1

-
e^)-! Thus the most important effects of a resisting medium

are a steady increase in the mean motion and a steady decrease m the mean
distance, which must ultimately bring the disturbed body into contact with
the centre of attraction

164. This simple example has been chosen, apart from its intrinsic

interest, because it illustrates certain important points There is, in the first

place, the osculating or instantaneous ellipse, which is

p1u
and not

pu

The latter is a definite curve which may be called an intermediate orbit and

may seive usefully as a curve of reference Indeed it has been so used in

what precedes But it is not the osculating orbit at any time There is also

the distinction drawn between periodic and secular disturbances in the motion,
of which the former may be relatively unimportant compared with the lattei

because these, however slow, are cumulative in effect

The general nature of disturbed planetary motion can now be considered

For two planets only, the disturbing function has the form, found in the last

chapter,
J2 = 2JP(a, a', e,e', i,i')coaT,

T= [h (nt + e) + h' (n't + e') + ff*r + 0V +/B +/
/

>Q']

where (a, n, e, i, H, car, e) are the elements of the disturbed orbit, (a, n', e'
t i,

fl', tsr', e') the elements of the distmbing orbit The equations of 139 are

now available for finding the variations of the elements In accordance with

the artifice explained in 140 the mean longitude is taken in a special

sense there defined, and a m the coefficient and n in the argument of any term

are treated as independent m forming the partial diffeiential coefficients of R
Therefore

dR dR dR
da' tie' di
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are all of the form 20 cos T9
and

dR dR BE
an' at*

1

de

are all of the form SO sin T, where T is the argument of the term Hence

the equations for the variations are themselves ol the form

In the first approximation the right-hand members (which contain the dis-

turbing mass as a factor) are calculated with the osculating elements of both

orbits foi a certain epoch, and these elements are treated as constant The

equations can then be integrated, and in fact

Sjo = - 2 Oi cos T/(hn + h'n') t

^n = 2 <7a sm Tf(hn + hV),

These are the absolute perturbations of the first order Similarly the pertur-

bations of the first order in the masses can be calculated for all the distxubmg

planets concerned and the results can be combined by addition

165 Each term m the perturbations represents a distinct inequality in

the motion of the disturbed planet It will now be seen that tho inequalities

are of two kinds The multipliers h, ti have all integral values, positive and

negative, including When h = h' = the disturbing function R is reduced

to that part which does not contain the time Thus

da dO

and the inequalities are secular From the present limited point of view they

will increase indefinitely and in the course of time will modify the conditions

of the planetary system profoundly, uncompensated by any check

But one remark can be made immediately The most important element

as regards the stability of the system is clearly the mean distance a Now
when h = h'= 0, not only does t disappear from R but also e Honce

*
dt de

and in the previous set of equations C^ = There is therefore no secular

inequality m a of the first order in the masses How far this important
theorem can be extended to the higher orders must be seen later It follows

that the mean motion n is also free from any secular inequality of the first

order
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The other inequalities, when h and A' are not both zero, are evidently

purely periodic, unless hn + h'n' = The meaning of this qualification
is that

the mean motions must not be commensurable Now mean motions are never

commensurable, except perhaps instantaneously, since in fact they are not
constant But there are, as it were, degrees of incommensurability In any
case integers can be found to make hn + h'ri smaller than any assignable
quantity If the incommensurability of n, ri is high, the corresponding
integers h, h' will be large In general the coefficients in R which correspond
to arguments of a high order diminish rapidly with the order Then the
occurrence of a small divisor hn + h'n' on integration will have no very serious
effect But if the incommensurability of the mean motions is low, this

divisor may become very small for quite moderate values of h, h', and a fairly
small term in the disturbing function may be greatly magnified by integration

Thus in the case of Jupiter and Saturn

5?i - 2^' = /30 = n//74

nearly, and this fact causes a considerable inequality in the motion of both

planets, with a period of nearly 900 years The period of such an inequality
is %7r/(hn + h'n') and therefore inequalities of the class just considered are

always connected with long periods They hold an intermediate place between
ordinary penodic inequalities and seculai inequalities

The mean longitude is affected in a double degree For ( 140) this is

e + I ndt = e + p

where

d'p 3 m ^ n _
33-

= --1 ^- = 2,<7smjF
at* u2

9e
and therefore

S1P = - 2 sin T/(hn + h'nj

The long-period inequalities in the other elements have the divisor hn + h'n'
in the first degree only Hence the principal effect is to be observed in the
mean longitude

166 It is in the next place necessary to consider the perturbations of
the second order in the masses, for the first approximation does not in geneial
suffice, and in the theories of Jupiter and Saturn it is even necessary to go
beyond the third order It is convenient to write

where a
, , ,

er ', , e
'

are the osculating elements for a chosen epoch, and ^
indicates the perturbations of the first order, the derivation of which has been
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explained, 2 those of the second order, and so on The equations for the

variations of the elements can be written, for example, in the foim

and after substituting the above expressions for a, ,
e' and expanding by

Taylor's theorem,

m'
{8,00g + 5,00' J + + (Vo + 8A)

gj
+ (8^' + W)

JJ}

The reduction of the right-hand side to a suitable foim will bo readily

understood in geneial terms, apart fiom the complexities which will naturally
arise in the practical calculation, and a simple integration, requiring the

introduction of no arbitrary constant, will give the expi ession of $,H Similai ly
the perturbations of higher orders, so far as they aie of sensible magnitude,
can be found successively, when those of the lowei orders have been dctci-

mmed, for all the elements

167 The general form of the results will now be apparent In the

first order the inequalities are of the forms

A cos (vt + h), At

only In the highei orders the terms obtained by the algebiaic composition
and subsequent integration of these two forms will clearly belong to one ot

the three types
A cos (vt + h\ A t

m
t A t

m cos (vt + A)

which may be called respectively periodic, purely secular and mixed terms
The term order may be retained to denote the degree a of A m the masses
As A is also a function of the eccentricities and inclinations, which are also
in general small parameters, it may be limited to a homogeneous function in

these parameters Then the degree of the term is the degiee of this function
and represents its order in respect to the eccentncities and inclinations

A further classification is used by Pomcar6 The oidei of a term being a,
the rank of a term is represented by a - w, 01 by the order 1<>H tho exponent
of t A term of high order is initially small, but if m is large it will grow
rapidly in importance, so that ultimately the terms of tho lowest rank will

have the greatest significance

The occurience of long-period terms with small divisors has boon noticed
In the higher orders these divisors will be combined and rawed to higher
powers by the subsequent integrations Let m' bo the sum of the exponents
of such divisors in any term Then the clan of that tot in is defined by the
number a - J (m + m!) It will now be clear that the value of these different

categories depends on the length of time contemplated For relatively short
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intervals the most important terms are those of low order In longer intervals

the terms of low class rise into prominence And finally it is the terms of low

rank which have the greatest influence in the ultimate destiny of the system

But here a question naturally arises How far is the form in which the

terms present themselves natural to the problem, and how far are they the

artificial product of the particular method by which they are obtained ? It is

evident that the physical importance of this question is not quite the same

in all cases Thus a mean motion in the position of the node or perihelion

may be admitted without any serious direct consequences to the nature of the

system On the other hand, a purely secular term in the mean distance or

the eccentricity, taken by itself without compensating circumstances, must

ultimately prove fatal to the stability The general problem suggested is

very difficult and the reader is referred to the first volume of Pomcare*'s

Lemons de Mdcamque Celeste for a thorough discussion

It must, however, be pointed out that the form of the results may be

perfectly legitimate, so far as it goes, and at the same time not in any way
inconsistent with the stability of the system, though a decision is beyond the

range of the above elementary methods It is impossible to be satisfied with

the solution here described as a final representation, and this feeling is ob-

viously suggested by considering the mixed terms Since the corresponding

oscillations increase in amplitude indefinitely with the time the departure

from the original configuration will become so great that the fundamental

assumption of small displacements in forming the equations for the vanations

will be contravened Then one of two things will happen Either the mutual

forces will tend to restore the original configuration, and there will be stability,

or the forces will tend to magnify the disturbance, and there will be instability

But in either case equally the method adopted breaks down and the funda-

mental question remains unanswered

How then are the statements to be reconciled, that the method which

is the method on which the existing theories of the major planets are actually

based may be perfectly legitimate, and that, while the form of the terms to

which it leads obviously suggests instability, complete stability is never-

theless entirely possible
? The simple answer is that it is only necessary to

imagine that v m the argument of any term is itself a function of the

disturbing masses Now the above method involves a development in powers

of the masses, and when the parameters which represent the masses are thus

forced out of the circular functions they carry the time t explicitly with them,

and the appearance of secular and mixed terms is a natural consequence

Yet the development in terms of the masses may be convergent and entirely

legitimate In this way it will be seen that the occurrence of secular and

mixed terms is compatible with stability, though a profound discussion is

necessary for a positive conclusion on this point
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The case of a planet moving in a resisting medium is quite different
There is then a definite loss of energy and the effect of the secular changes is

not doubtful

168 In the theories of the planets on which the existing tables have
been based the coordinates of the planets relative to the Sun have been used
and this feet governs the form of the disturbing function, which is distinct
for each pair of planets For practical purposes this choice of coordinates is
an obvious one But for theoretical purposes it is unsuitable, chiefly because,
like the common system of elliptic elements, it is ill adapted to the transfor-
mations which are an essential feature of the dynamical methods initiated by
Hamilton Another system of coordinates, due to Jacobi, will therefore now
be introduced

Left (?* *?t> *) be the coordinates of the mass ?w t in a system of n mewses
^1,^8, ,mn , the origin being any hxed point The masses are taken in
any fixed order, represented by the suffixes, which is quite independent of
any arrangement which may be visible m the system Let

m1 + m^+ +77^^, 7^=^-^, /*oS=0
Let (Xtf Ylt Z%) be the coordinates of the point <?t , which is the centre of mass
ot the artial sot the partial system m,,^, ,

mt , so that

fo, ylf ^) be the coordinates of m, relative to 6U, so that

Thus fe ya , *,) are the coordinates ofm, relative to m,, or (&-& _ >- _* \

<%. *, *,) are the^^^ rf^^^ to

-

J&J^J
6 W,

and so on There are no coordinates fc f fci ,
l} By the above

fo - /^O2
of ^t(Xt

Hence on elimmatmg the product term Z.X

and on addition of all the equations of this type

.
-

same tor all three coordinates
separately
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Therefore they also apply to the velocities Hence if T is the kinetic energy
of the system,

'+ IV +V)
1=2

But (JSTn> Fn ,
#n) are the coordinates of the centre of mass of the system.

They are ahsent from the potential function and are in fact ignorable coordi-

nates The known integrals for the centre of mass follow immediately and

these coordinates can be suppressed The problem of n bodies is thus reduced

to a problem of n 1 fictitious bodies and the total order of the differential

equations of motion is reduced by 6

169 The new form of the areal integrals is easily found For

;-^
and hence

The sum of all equations of this type gives

But it is possible to write Zn = Fn = #n -0, that is equivalent to taking the

centre of mass of the system as the ongm of the coordinates ( t , ^, ) Thus

the areal integrals now take the form

2
z=2

t=2

where (Cj, ca , c8) are the angular momenta of the system about fixed axes

through the centre of mass The direction of the axes has remained the

same throughout

Let (cj, ca , CB) be considered as the components of a constant vector (7,

^, y*> *t) ^ the components of a vector Mit and (&, yt , ^) as the
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components of a vector rt Then in quaternion notation the above three

integrals may be represented by the single equation

I F(r% Jft)-Cf.
*<=2

Hence in the problem of three bodies

These three vectors are therefore coplanar But V(rzMz) is normal to the

plane of r2 , M2> that is, to the instantaneous orbit of the fictitious planet 2

Similarly V (r3M9) is normal to the instantaneous orbit of the fictitious planet 3,
and clearly C is normal to the invariable plane Hence the nodes of the instan-
taneous orbits of the two fictitious planets on the invariable plane coincide

This important property explains the so-called elimination of the nodes,
which in an explicit form is due to Jacobi In the more common system of
astronomical coordinates it disappears from view The reader who is un-
acquainted with the elements of quaternions will have no difficulty m finding
an alternative form of proof, as in 22

170 The body denoted by 1 will now be identified with the Sun, and
i or j will have the values 2, , n The potential energy of the system, when
the units are chosen so that the constant of gravitation is unity, is

, I,l t,7
where

At,/ = (fe
- &)

2 + Ofo
-

9;0
2 + ((j

-
{;)>

Also the kinetic energy, when the coordinates (Xnt 7n> Zn) are ignored, is T,
where

2T-2
Let

a, /==
WT

_

Then the equations of motion of the system may be written
( 124)

Now

and therefore

Hence by the addition of such equations
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which expresses the relative coordinates ft
-

ft, m terms of the coordinates
#t , ,

and shows that the latter differ from the former only by quantities of

the first order in the small masses In particular, for the body 2, which may
be identified with any one of the planets, there is no difference

Let U be reduced to its terms U^ of the lowest order in the small masses,
which is the first Then

for rt differs from AM by a quantity which involves the masses The equations
of motion reduce to

or ui more explicit form

/^-i/-^"
1 x% m^rf, (#, y, z)

These are the equations of undisturbed elliptic motion, and m particular

which agiee naturally with the usual equations of a planet relative to the
Sun m undisturbed motion, and give a mean distance a* with the usual

meaning For the other bodies the equations are of the same form and have

precisely similar solutions, but the elements al will differ from the ordinary
elements slightly because (a?t , yt , ^) are not coordinates relative to the Sun
unless i = 2 This is not material to the purpose in view because the body 2

represents any planet and any proposition which is proved for it must be true

generally

171- These equatnns for the undisturbed motion can now be solved in

terms of canonical constants When the latter are treated as variables, they
satisfy canonical equations formed with R = Ul-U As in 143 this value

of J? may be modified by adding 2 m/u,
2

/2Z'
2
, where m =

TT^/V-J//^ and

/j,
= m^/ytv-i m view of the explicit form of the undisturbed equations Then

any of the different sets of variables explained in that section can be used,

and the last set, now denoted by (//, ft', ft', X, ^/, %'), will be chosen The

equations for the perturbations can now be written

.3 T / 2 ~\T J\ f\ ITT
CuJjj. V Wlifai C&AT, V

dt 9\.' LL dt

dV
fr dt

where
F - Z7+ ZT; + w^"

There are w- 1 pairs of equations in (/, \) and 2(7i-l) pairs in (&',^
but there is no need here to distinguish between the eccentnc and oblique
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variables From this point the former use of (ft, %, &) as the rectangular

coordinates of m^ disappears

A little explanation may be necessary to account for the appearance of

the mass factors of the momenta a^ in the equations In 135 giving the

Hamilton-Jacobi solution for undisturbed elliptic motion the single factor w,

representing the mass of the moving body, was removed consistently from U,

T and H Similarly m 139 U R was written in the place of U, R being

the disturbing function in its common form, whereas the true increment in

the potential energy is -mR But here it is not possible to divide the more

general function U Pi as a whole by any particular mass, though it is

possible to do so as regards the set of equations corresponding to a particular

value of ^ Fence it was necessary to restore the mass factors in the manner

shown But now they can be removed by the change of variables*

and the equations then become

jrfA^dF dX
t== _e)F

dt 3V dt dL,

d % ^dV ti^^JW
dt tin

9

dt 3

where
F= - 17+ PI + mf 2wAW2/**L?

The terms added to Pi P depend on the L% only, and affect one type of

equation, namely

d\ 9

so that \isan%t + h and rii is the mean motion in the preliminary solution

The first-order pertuibations of \, will require the first-older perturbation of

L% to be included in the term from which nt originates

172 It is not at present very necessary to consider in detail the form of

expansion ol UU^ It can in the first place be expanded m powers and

products of the small masses mt and of the coordinates (o\, yi, $t) The latter

can be expanded m powers of Llt %t , y% with purely periodic functions of X

Hence 17-^ can be expanded in the same form, and arranged m orders of

the masses, beginning with the second since the first has been removed by Pi

Thus if the fourth order in F be neglected, F= Fa +F3 , where Fa is of the

second order and Fs of the third, and Ffl contains at most two, F3 at most

three, mean longitudes Xt m its arguments, the coefficients of the penodic
terms bemg rational and integral functions of Llt { vj%
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The perturbations of the first order can now be obtained in the usual way
by neglecting F8 and substituting initial values of Llt ft , ^ in F2 , including
n%t +V for \ This process gives

where t ,
are constants and o\Zt , are the perturbations of the first order

Owing to the form of Fa ,
dV2/d\ is purely periodic and free from any term

independent of X, Hence B, Lj is also periodic and free from a secular term
But the other elements will contain a term multiplied by t, arising from the
terms independent of \t in the partial derivatives of F2 , together with

periodic terms To the second order let

In F8 , which must now be retained, it suffices to substitute the constant
values Zt , for Llt , and r^t + XJ for \, but in F2 it is necessary to
substitute A' + ^A , for Ltt , though only the first powers of these

perturbations are required Hence the equation

5(A' +^ +W-A(Fa + FO

gives, when account is taken of the solution for the first order

By the same argument as applied to F2 in the first approximation the last

term gives rise to penodic terms only Hence a search for secular terms can
be confined in the first place to the expression

a*F2 rw*,. a*F2 pF,.]j^
Here the multipliers of the integrals are all purely periodic, owing to

differentiation with respect to 7^ The integrals themselves contain secular

terms m t Hence on integration the products will give rise to periodic and
mixed terms, but not to purely secular terms on this account The latter must
arise, if at all, from a constant term m the products The only way in which
this could happen would be connected with terms m the development of FB of

the form

Fa
= B sin (kt\, + kj\j) + G cos (k^ + k^) B sm ^ + (7 cos ^

But for these

t (dvt a>F3 /-ar,

i ] ax, 3\,9x, J al
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In a similar way those terms which might produce constant terms neutralize

one another between the other pairs of products and therefore no purely

secular part of $zLj> can arise in this way

But the above expression is not complete, because S^ depends on B^
as well as on F2 For, by the last equation of 171,

so that there is an additional part of 82A not yet considered It is given by

where A is a constant But terms in F2 of the above type, taken in the form

D sin (ifr H- h), lead to

2 sm 2 (^ + A)

Therefore this part of S2Z t is purely periodic

Hence there are no puiely secular terms in S2A> <* proposition which

Pomcare' has proved in the more general form theio are no purely secular

perturbations of A in any order of rank lower than 2

This applies in particular to A But a^ML^, where M is a constant

mass factor Hence

82a2
= M (L* + A + 82L2)

2

- 2A (S,A)}

the affix being now omitted But SXZ2 1S purely periodic, and 52A ^ds no

purely secular term Hence to the second order in the masses there is no

secular inequality in the mean distance, for it has been remarked that a&

represents the mean distance of any of the planets This is Poisson's theorem,

an extension of Laplace's corresponding theorem for the first order, and it is

the most important elementary result bearing on the stability of the solar

system

173 On the other hand there are evidently mixed terms of order 2 and

rank 1 in Zt Hence the existence of purely secular terms of order 3 and

rank 2 in aa can be anticipated For even without pushing the approximation
further and examining 88A it is obvious that %M 8,A 8A constitutes a part
of $sa2 Therefore the combination of a term A COSTW* in SjA with a term

Bt cos mt in SaA will give a term MABt in S3Oa Such terms were first shown

to exist by Spiru-Haretu m 1ST6
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On one condition true secular inequalities of the first order occur in the

mean distances Since

U - Z7i
= 2 A cos (A^Xt +k^ + h)

to its lowest order,

am (

For perturbations of the first order the coefficients are constants and \t - n% t,

\j n
}
t are also constant Hence

dLJdt = 2 Ak* sin (wtf H- A')

A constant term results, producing a secular inequality, if m = klnz + k
3 nj

= 0,

which is possible only if r^, rij
are commensurable This possibility was

considered in the previous form of discussion and excluded But it is in effect

ruled out by its own consequences For if a body were artificially or fortui-

tously projected in such a way as to have a mean motion commensurable

(e g , j, )
with the mean motion of a disturbing body, its mean distance

would be subject to a secular disturbance from the beginning, and therefore

the commensurabihty of its motion would be definitely destroyed Hence if

the minor planets be arranged in order of distance from the Sun, it is to be

expected that gaps will be found in the frequency at distances corresponding

to mean motions commensurable with that of Jupiter, and it is so And

similarly divisions in the rings of Saturn can be attributed to the secular

perturbations of the constituent meteoric bodies, produced by the commen-

surable motions of any satellite which may be effective This also has been

verified for the action of Mimas by Lowell and Slipher

Nevertheless among the many minor planets a few are naturally found

whose motions are nearly commensurable with Jupiter's mean motion Foi

these the long-period terms with small divisors are highly important, and the

terms of low class play a far larger part than in the theories of the major

planets The special difficulties thus presented require special methods of

treatment, and such have been suggested by Hansen, Gylde*n and others

Poincare" has used an application of the principle of Delaunay's method The

proper treatment of this class of minor planets presents perhaps the most

interesting problems to be found in dynamical Astronomy at the present

time



CHAPTER XVI

SECULAR PERTURBATIONS

174 In the preceding chapter it has been shown that the mean distances

in the planetary system are free from purely secular inequalities when

developed to the second order in the masses The general nature of the

secular perturbations in the other elements will now be examined It may
be convenient to modify slightly the equations obtained in 170, 1*71 By
reducing U to its terms of the lowest order the equations of motion there
took the explicit form

= -
twifl^/n*, to y, *)

which are satisfied by the osculating motion of a planet, according to its

ordinary definition, when z 2, but not otherwise But if /"/ be substituted
for Z7i, where

a form which will be found to differ from IT, by terms of the third order

only, the explicit equations of motion become

(a?, yt z)

which are the ordinary equations in the undisturbed problem of two bodies,
and are satisfied by the osculating elements taken in their usual sense The
mass factors of the momenta are as before w^t-i//*i> but the constants of
attraction are p = m^ + mt Hence the equations for the variations will now
be based on

F'= - U+ Ul

The relation between Lt and / is the same as before, but the meaning of
both is changed (except when ^=:2) in such a way that Xt bears generally
the same form of relation to at , the osculating mean distance in its ordinary
sense, as L2 to a?
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Thus the transformations of 143 give, with those of 171,

,
= / cos & ,

jff = ft cos t

#t -cFt &%, At ^i

^ x
= 2Zt

' sma
Ifa , pt, 2

= 2JV cos < sin2 J^

W*,!*
8 Wt, G)lj2

= X

-i/V"10*

cos BTt , %, i
= - 2.L^ sin \fa sin w 4

,
2= t cos* & sin fa cos Hi} 7?t) 2

- - 2It
* cos* ^ sin fa sm Ht

Here sin < t
= et and no confusion is possible between the inclination ^ and

the subscnpt *, which is merely a distinguishing mark for the several planets

175 It is obvious that U'- /"/ can be expanded in powers of #4 a*,

3ft 6, *t
- ^ where (az ,

6
,
ct) are what (^, yt , ^) become when ft

=
7?t
=

Now ( 65) the heliocentric coordinates are generally

x = r cos fl cos (w + iff
- H) r cos i sm H sm (w + -sr - fl)

= r cos2 Jt cos (w + tff) + r sm2

Ji cos (w; + -BT 2Q)

^ = r sm fl cos (w + r H) + r cos ^ cos H sm (w + UT - fl)

= r cos3^ sin (w + -or) r sm2
%i sin (; 4- tar 2O)

z = r sin i sin (w + r t)

t; being the true anomaly Let

^=rcos(w M), Y= ram(w-M), 3f=X,-isr

M being the mean anomaly Then

x-Z {cos
2^ cos X + sm2 t cos (X - 211)}

- F (cos
2
Ji sm \ + sin2

}t sm (X
-

2fl)}

y = Z (cos
2

^i sm X - suV t sm (X
-

2fl)}

4- F (cos
2
^i cos X - sm2 t cos (X

-
2H)}

,sr=X sin i sm (X
- O) + Fsm i cos (X

- H)

The coefficients of X and F here involve, besides periodic functions of X, the

quantities

cos2 i, sin3 t cos 2ft, sin2
t sm 2fl, smicosO, smismll

and since

ft+ y*= 4Z sin2 ^ <j(), ?a
2 + %2 = 4i cos 4> sm

2

$*

tan r= i/i/fx , tan O = ^/fa

it is easily venfiied that the five quantities can all be expanded in powers of

&, *7i> ?2, ^7a Also

r cos w= a (cos E e), r sm w= a cos < sin^
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E being the eccentric anomaly, and therefore

Z/a = - e cosM+ cos2 cos (J
- Jf)

+ J sec2

-^^ {e" cos 2M" cos (^ - Jlf )
- e2 sin 2Jlf sin (E-M)}

Y/a =esrnM+ cosa $<f> sin (# - Jl/)

- J sec2

i< le
2 cos 2Jf sin (# - M) + e

8 sin 2Jlf cos (# - Jtf
)}

which are forms easily verified Since cosa
^<, sec2 -J-0 can be expanded in

terms of ez = sin2 <, these forms show that X, Y can be expanded in powers
of e sm M, e cosM if this is true of sm (E M), cos (E M) But Kepler's
equation may be wntten

6 - x cos 6 - y cos 6 = 0, = E-M, a = e sm Jf
, y = ecosM

and can be expanded in powers of a, y Hence sin (E - M ), cos (# Jtf)
can be expanded in powers of e sm M, e cos Jlf, and theiefore also X and F
But this shows that X, Y can be expanded in powers of e sin -cr, e cos -GJ with
coefficients involving periodic functions of X, since M= X - r And e sin -or,

e cos w can be expanded in powers of ft, i^, as can easily be seen, with
coefficients involving L Hence (as, y, 2) can be developed in powers of

ft> *7i> ft, *?2 with coefficients involving L and periodic functions of X There-
fore finally 17- Uj can be expanded m powers of ft lf ^ lf ft a , ^ 2 with
coefficients involving A and penodic functions of Xt , and the supplementary
part of V involves t only

It is assumed that the inclinations of the orbits are very small Now
there are two ways of regarding retrograde motion m an orbit whose plane
differs little from the orbits of planets moving in the opposite sense It is

possible to take the mean motion n, as positive Then the inclination is
near TT and is not small Or it is possible to take the inclination as small,
and to regard * t as negative Then since n,L? is a positive mass function,'
L, is negative and therefore ft, % are imaginary All the orbits will therefore
be supposed to be descnbed m the same (direct) sense, which is true of the
planetary system but not always of the satellite systems

This remark has an obvious beanng on theoiies of cosmogony For if

high inclinations and m particular retrograde motions were unstable such
forms of motion would not be permanently maintained Now the nebular
hypothesis of Laplace is very largely based on the obseived fact that the
planetary motions are nearly coplanar If, however, such a type of motion
is alone stable, the observed fact loses its significance m this connexion and
no deduction of the kind is to be drawn from it The question of stabilitym general, beyond the range of inclinations to be found in the actual planetary
system, is therefore important, though beyond the range of this work
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176 When the secular part

which is free from \ is considered, certain properties of the development are

easily seen For this being independent of the direction of the chosen axes,

the substitutions

&,l, *?, 1> ft, 2> ^,2

(a) -&,i> -*?*,!> "ft, 2, -*?i,2

(6) i?,i, &,i> %, 3 ft,

(C) f,i, 171,1, "ft, 2, -*?t,9

(d) f,i, -i?t i &,a, -^,2

are all possible without affecting the result Thus (a) follows when flt ,
w

are altered by TT, or when the axes of ay are rotated through TT m their own

plane Similarly (b) follows \vhen this rotation is made through -^TT Again

(c) is produced when H t (but not r) is altered by TT, and this is equivalent

to reversing the axis of * Finally (d) is obtained by changing the signs of

all the angles Xt ,
Iil , tl which is equivalent to reversing the axis of y The

change in TW is of no further importance here since Xt is absent from the

terms now considered

Certain properties of the exponents in the expansion are now obvious

For 2 ( pi + 3 + p2 + &) must be an even number to satisfy (a), and 2 (pz+qz)

to satisfy (c) Hence 2(^ + ^0 is also an even numbei Similarly (d)

requires 2 (ql + &) to be even, and therefore 2 ( pl +pz) must be even Hence

m the second degree there can be no terms of the form jfy or &, 17^

But if terms of the fourth degree be neglected, only terms of the second

degree involving f, 17 remain These terms can therefore be written down in

the form

where the coefficients of &&, ^ are taken to be the same, both for the

eccentric and the oblique variables, in accordance with the substitution (6),

and terms &&, %-ty are reckoned twice when %,j are different, but 4^ =
4,,,,

B^j
1*^,*

177 It will be of interest to obtain the explicit values of A^,, Bltj
for

the lowest order in the masses The principal part of the disturbing function

is SmtfUjAf* and it has been seen m 159 that the complementary part

contains periodic terms only The distances A*,, involve coordinates (xlt ylt *)

which themselves contain the masses But to the lowest order these coordi-

nates are identical with the relative coordinates commonly m use, and the

methods of Chap XIV can therefore be employed Two planets, 1, 2, will be

first considered Then m the notation of 132, when the orbits are circular,

a,A-1 - 6> - i 6
t
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with the exclusion of all periodic terms The triangle foimed by the two
orbits and the ecliptic gives

cos /= cos i1 cos ta + sm il sin ta cos (Ox - H,,)

or to the second order in ilt ta ,

v = sm2i/= J (V + Za
2 _ 2M2 cos (Qj

-
O,)}

Since v is of the second older the Laplace's coefficient If is derived imme-

diately from the circular motion But bg must be modified to include the

eccentricities, the orbits being now treated as coplanar Let

A 2 = oi
2 + a? -2^ cos 6,

Then in the notation of 157,

A~* =
()

'

Sr exp {("'
-

and, by (22) of 40 and (30) of 41,

r/a = 1 + J#_ cos Jf-^ cos 2Jf +
^ - -Jf= 2e sin Jf+ 4e2 sm 2JW +

Hence

-cos 2M)D + %e*(l +cos

l -cos
All operating terms which do not combine Mlt M2 m the foim Ml

- M, will
clearly produce periodic terms only And terms aheady of the second degreeare combined with no others Therefore, when ineffective terms are omitted
since A +D = -1,

if, A-K1 AA) (1 -* cos Jf, A-ie2
a AA)

2 D< + ef Aa

) A-
-Jf,) AA + 2^^008(1^ -IT,) AA
-^) AA-^MnW-JfO AA
A + i

2 A2 + <?2
S A2

}
A -i

where again terms involving Jflf Jf. Or J!/1 + Ma are omitted Now^--A^/W and, snice a =
Oi/aa,

AAA -^ - a.a, cos V + 3 (a^ - ^a3 cos tf) (a."
-

0,0, cos *) A.-= a,- (a cos 6 0,3A -* + 8a [|a
-

(1 + ^ cos ^ + ^a cos 20] a/ A,-*]-

= 02
x

{- a cos 6 0,'Ao-' + f* (1
_ CoS 2^) a/A<r}AAAo-1 - 0,0, sm A -* -

80,0, sin 6 (a* - 0,0, cos 0) A -'

=^ {
sm aa Ao- - 3a ( sm - sm 20) 0,'Ar'AAAT' -- erA sm A.-

1 + 8^0, sin (a,-
-

aiaa cos 0) A
-

- or" {- a sin ag A -' + 3a (sm - a sm
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For the secular terms it is possible to write

cos (Mi Mz)
= cos (6 jj -f- ra)

= cos 9 cos
(-or! -02)

sin (Jfi -ftQ
= sin (0 i^ 4- r8)

= sin cos (T! tsra)

since sine terms and cosine terms must combine separately

178. The secular terms of the second degree in the eccentricities can

now be written down m terms of Laplace's coefficients ( 147) thus

A""1 = + J 61 ez cos (tsti ty^) C&2
1

ft(V + V>

+ a (6f
o -

b{)
- 3a^ [a (bf

- 6
f
2
)
-

+ a (&f
> - V)

- 3a KV -
V) - * ft (V "V

To simplify this expression the recurrence formulae (4) and (5) of 148 with

= are available

Thus

= * (- 1 V + t*i>f)
- v = ta (V

-
V)

and the last line of the expression disappears Again

a*)V + 1 VI
*

( X + a2>V
= - 1 (1 + a3

) bf + 16|'
= - V

Hence the penultimate Ime of the expression reduces to

+ 41** + **) Oa-
1

^!
1

which represents all the terms in e^, ez
*

The coefficient of + i^ft cos (OTI
- -sr2) Oa"^ is
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and the whole of this term is therefore

cos (cr,
- <BT2) ai*ab

Hence the terms of the second degree in the eccentricities and inclinations
for two planets give finally

[A-
1

]
- aa

-

But to this order (that is, neglecting the third order in e, ^)

j
- eX* cos r, 773

= - el sin -BT

fa
= * cos II, 173

= - iL* sin (I

By translating from one system of variables to the other and taking the sum
for each pair of planets, it follows that

[- U+ ZTil
=

2

where

S> (a,, a,)
=^ fc,i (^ = 2 r_0.0, coe g

'

5S ( 15 a,)
= 2i 6, (*} = -
V * W -o(a,. + a,._ 20,0,

The coefficients of Laplace are posative Therefore the quadratac terms m
the obhque vanatles are a negative definite form Further, by the recunence
formulae,

=*
Jaftji

- 2 (1 + a2) bf + |J^

Therefore
^ =

*

J6i
s = V

But

and therefore

- V

which shows that

Hence the quadratic terms m the eccentnc vanables are a positive definite
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179 The problem of the small eccentricities and inclinations of the

planetary system is now brought within the range of the general theory of

small oscillations about a steady state of motion Indeed a knowledge of the

principles
of this theory shows at once that the variations in the eccentricities

and inclinations are periodic and stable, for this follows from the definite

(positive or negative) forms of the quadratic terms

Since ( 176)

(&,i&,i +*i^
the corresponding canonical equations are

%--?*,,*..

forming two distinct sets of linear equations with constant coefficients The

results will clearly be of the same general kind for both, and it is only

necessary to consider the eccentric \ariables

Let the linear transformations

fc

be orthogonal, so that

2fr-

l-Sa lfJ ,
= 20^0^, + 4)

i *

Thus

Sftefrh
- SSSa^a^ftdflb = 2p*dq>

^ j k

which shows that such a transformation is also canonical Now let

Then

2^,,

is an expression which is independent of pk Therefore, product terms being

reckoned twice,

This is an identity, satisfied by all values of & Hence
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and this system of equations, for tlie values i - 2, 3, n, gives a consistent
solution for Ojt *, provided &k is a root of the equation

4

4,3 A*" 1

This is a symmetrical determinant of familiar type, and it is well known that
all its roots are real For the system of the eight major planets it is of the

eighth order It is most unlikely that the equation would have exactly equal
roots in a case like this, nor does it m fact happen But it is to be observed
that the occurrence of repeated roots would alter in no way the essential
circumstances The main point is that the definite quadratic form can alwaysbe reduced to the form 2alpl

*
by a linear transformation to normal coordinates

The effect of repeated roots can be seen when there are three planets Then2^2
corresponds to an ellipsoid, which is one of revolution when two roots

a, are equal An arbitrary element enters into the direction cosmos of the
principal axes, which are the coefficients of the transformation But this does
not affect the form of the result or the stability of the motion It is not
necessary to examine the algebra of the subject further, but so much should
be mentioned because from the time of Lagrange to Weieretrass in 1858 it
was supposed that the occurrence of repeated roots would result in the
appearance of the time outside the periodic functions and would be fatal to
stability It is not so

180 It has been seen that the orthogonal transformation to normal
coordinates is also canonical and that the principal function, a* for as the
eccentric variables are concerned, takes the form

and the solution is

-(7, o
,

where <7,, A, are
artntrary constants This gives the quadratic uxtegrals

A" +?i
a=Cr

t

&, ^Thus
^^ lmmedldtely e*P'essed > 'ems of the previous vanables

2^,,p}^ 2aM q, cos
(atjt + A,)

7, sin (a,< 4 A,)
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where a^ j
are definite constants When the transformation is reversed,

and the quadratic integrals "become

The general solution may also be written, with the degree of approxima-

tion adopted,

cos -art
=So^ Cj cos fat 4- hj)

sin crt = otjj sin

which determine the eccentricities and the motions of the perihelia The

question then arises in every case has the perihelion a mean motion ? In

other words, is the motion of perihelion, to use the analogy of the simple

pendulum, of the circulating or the oscillating type
?

The problem, stated m general terms, is not a simple one But there is

one simple case which will serve to explain what is meant and the necessary

condition of which is satisfied more often than not The preceding equations

may be regarded as applying to certain coplanar vectors whose tensors are

e^Li*, OtjCj From this point of view the one vector is represented as the

sum of a set of vectors each rotating uniformly Let the tensor of one vector

of the set exceed in length the sum of the tensors of the rest, and let this

vector terminate at the origin, the others forming a chain from the other

end It is then geometrically obvious that the representative point at the

end of the chain must share m the circulation round the origin of the pre-

dominant vector The perihelion in this case has a mean motion therefore,

and it coincides with that, ctt ,
associated with the large coefficient The

sense of this mean motion is always direct, since o is positive In the same

circumstances fy cannot vanish, but has a lower positive limit

The condition is clearly satisfied when there are only two planets, unless

the two tensors are equal In this exceptional case it is evident that the

mean motion of a perihelion is the same as that of the resultant of the two

vectors and is the arithmetic mean, (a + s) between their angular motions

The eight roots of the fundamental determinant range between the values

0"*616 and 22"'46 (Stockwell) These are annual motions, so that the corre-

sponding periods lie between 58,000 and 2,100,000 years Since they are of

this order it is evident that et ,
<srt can be developed m powers of the time and

that the lowest terms of such expressions will suffice to represent the changes

for several centuries These are the secular inequalities as commonly under-

stood, and it will be seen that they exhibit the initial changes, apart from

those of short period, rather than truly secular effects



202 Secular Perturbations [OH xvi

181 These lesults for the eccentricities and perihelia apply almost

without change equally to the inclinations and nodes But there are two

differences to be noted In the fiist place the principal function is a negative
definite foim, which may be written after the transformation to normal

coordinates,

V--

where & is positive In the second place, one j3t is zero, or, in othei words,
the discriminant or Hessian of F (a quadratic form) vanishes For the pait
which involves the oblique variable ft may be written ( 178)

^-
and therefore

llr
If then % is the characteristic of a row and j of a column in the Hessian, and
each column is multiplied by the corresponding L^ 9 the sum of each row will

vanish Hence the disciiminant is identically zero and /8
= is a root of the

fundamental equation

The physical reason for this is easily seen Foi the canonical equations
become

-A*.
Corresponding to the root & =

0,

PI = 26^ = const
, q%

= 26
t|J^ = const

which are two linear integrals The constants need not be zero, and the
inclinations may be finite, while their variations vanish This in fact is the
case when the orbits are all coplanar and inclined to the plane of refeience
This explains why the fundamental determinant has a zero root The othei
seven negative roots when calculated for the solar system are quite similar in

magnitude to the positive roots of the determinant in a

The general solution of the equations when a finite root is in question is

&=A cos (&t + Art ), q%
=

giving the quadratic integrals

ft + qf = (2^&)2 + (2
9 3

From the general solution it follows that

cos

- ^^L? sin fl *= S&ufc - 26t ,D, sin
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where \}
are the definite constants of the transformation to normal coordi-

nates Owing to the zero root in ft, t disappears from one term on the nght-
hand side of each equation, leaving seven periodic terms and one constant,
but the form is undisturbed by this fact

These equations determine the inclinations and the motions of the nodes

The plane of reference is fixed and arbitrary, except in so far as it lies near

the average plane of the orbits Considered as applying to a set of rotating

coplanar vectors, the equations show immediately that if one coefficient on

the right exceeds the sum of all the rest (taken positively), the node has a

mean motion equal and opposite to that of the corresponding vector, and this

mean motion is therefore letrograde When this simple entenon is satisfied,

as it is more often than not, it is also evident that the tensor of the vector

cannot vanish and that \ has a lower limit

182 The sum of the quadratic integrals gives

2 (pf + ?t
2
) = 2 (# + V) = const

and this applies separately to the eccentric and to the oblique variables It

follows immediately from the canonical equations of 179 without any trans-

formation Now
, i?t contain the factor LV) which is

or to the lowest order in the masses m^mfa? Hence

const

const

or, as the latter is more usually written,

SwitO/ tan2 tt
= const

for the degree of approximation adopted allows of no discrimination between

these forms The constants being small initially it follows that the orbit

of no considerable mass in the system can acquire an indefinitely large

eccentricity or inclination at the expense of the others as a result of mutual

perturbations These propositions, due to Laplace, clearly have an importance

analogous to that of Poisson on the invariability of the mean distances,

The areal velocity in any orbit is

0*p)*
= (! + m$a? cos

<(>z
G%

The mass factors being ra^t-^-1 as in 170, the components of angular
momentum are

Glm% fjil^1 fjLl

~1

(sin il sin fX, - sin ^ cos lt ,
cos \)

= LI cos ( (sin zt sin Ht , sin \ cos t , cos it)

\vhen the direction cosines of the normal to the orbit are mtroduced These

components may be wntten
( 174)

os^t cos^, cos ^ cos
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or since

IV + 9\i - 2A (1
- cos &), fV. +< = 2A cos * (!

- cos *)

they can also be expressed in terms of these quantities The areal integrals

then become
-
* (f'm + *?V)

-
i (f

2

s* +< 2)}
4 - const

const

)
-
i ( V + fl\,)}

= const

If the plane 01 reference is the invariable plane the first two of these con-

stants are zero In that case, when there are only two planets, i7,/ 2 is the

same for both and the nodes coincide, which is the property already noticed

in 169 and referred to as the elimination of the nodes

These integrals, being satisfied identically, remain true when developed

according to order and rank Thus the third equation gives

which is the sum of the quadratic integrals both for the eccentric and the

oblique variables For L% has no terms of zero rank, and the purely periodic

terms of the first order are excluded from consideration

Thus Lt is for the present purpose to be regarded as constant The

neglect of terms of the fourth degree in the disturbing function implies the

neglect of the third degree in the variables f, 17 themselves Hence to the

same approximation the first two areal integrals give

, 2
- const , 2A?M = const

These then are the two linear integrals found above for the oblique variables,

and their physical meaning is thus explained The constants are now

interpreted (to a factor) as the angular momenta of the system about two

rectangular axes in the arbitrary plane of reference In particular, if the

invariable plane of the system is taken as the plane of leference, both the

constants will become zero

183 The interpretation of the equations

*

in a vectorial sense has been seen to give a lower limit of el when one of the

tensors
| c^jCj \

exceeds the sum of the rest In all cases similar reasoning
shows that
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gives an upper limit of the eccentricity Similarly the inequality

i,L? < 2
1 b^D3 1

gives an upper limit of the inclination The actual limits found m this way
by Stockwell are of interest and are therefore reproduced

Eccentricity Inclination

Max Mm Max Mm
Mercury 0232 0121 9 2 4 7

Venus OT1 33
Earth 0068 31
Mars 0140 0018 59
Jupiter 0061 0025 05 02
Saturn 0084 0012 10 08
Uranus 0078 0012 11 09
Neptune 0015 0006 08 06

The effect of penodic inequalities is ignored, and the inclinations are referred

to the invariable plane Minimum figures are given only when a pre-

ponderating term exists

Since L$ contains mf as a factor these limits have no value when the
mass mt is very small To consider this case let an infinitesimal mass m* be
added to the system Then for the eccentric variables,

[- U + U{\ = 2 A, (66 + *H,)

Inspection of the explicit form m ,178 shows that A
%t}

is of the order of m,
any of the masses, assumed comparable, of the finite planets , that A j is of

the order of mfmf , and that -4 0f0 is again of the order m,,

The canonical equations give for the infinitesimal planet

-^0,0

As the new mass is regarded as infinitesimal, the motion of the finite planets
will not be influenced, and the former solution

6 2oj, v (7, cos fat + A)

?&
- - Sc^O* sin (aj + ht)

holds good Hence

i sin

iO; cos (a.*+ AO
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Tl - .r ^ "i * ^' ^ *
t i n i* ir\' .^rhtmn, together *ith a set of forced

, v
> r ' j n .trbi^r.ir , > 4^ar- In general this solution sho\\s that the

, ,
- >*

i*-\ i ,M i - M '
ir t r" . *\ pi ts to the inclination) of the orbit of the

.<",!*. ^^ i "
. i^ % 1 r< IK i j *i< i'

1 For ft( i/ contain m * as a factor, and

1 U4 -2 -
s t thi rni^-r * wr^wt""^ An exception occurs nrhen -4, o

.,/vi. t pi' T ^ a, *M* ^ *^*n th ieniKi ot the tree oscillation nearly

A m * * i h n* * +b. t.. .l |.
n. -is imposed h\ the mam planetary system

p * in -IMI
*
'.4 an.v - .!* *l^r temis to become infinite This condition

^ fulh
1 id tt tr . n.*w. l^t vie* frniu the Sun 1 95, or near the inner limit of

*ht n nor lumit- <Er.^ txcepfi>, but for the inclinations only (^ ,o= A)

B,ii ** f.r*? 'iT \ !
-i

+ ^f i.ff^t'ision can be drawn for this case, the extremely

d u^ )inien+ nf th* dteturbmg function must be remembered*

r* < hir ier*s 3/ffftaniJfc <^ Himmels, i



CHAPTER XVII

SECULAR INEQUALITIES METHOD OP GAUSS

184. A beautiful method of calculating the secular perturbations of the
first order, due to the action of one planet on another, was proposed hy Gauss
in 1818 It was this method which was applied by Adams to the path of the
Leonid meteors Further developments have been given by several writers,
and references will be found in an article* by H v Zeipel

The principle of the method is extremely simple Equations for the
variations of the elements have been found in a suitable form in 142. As
an example we may take (//,

= wto8
)

dz_ _1_
rWco&u

dt
~~

no?
"

cos</>

Here the right-hand side can be developed in terms of M, M'r

,
the mean

anomalies of the disturbed and disturbing planets, in the form

fM' + q)

and hence, the coefficients being constant in the first approximation,

If therefore the mean motions nt ri are incommensurable, so that
(jn +}'n)

can never vanish, A^t constitutes the secular inequality in ^ Now

The component W contains as a factor frmf^nWm'Kl + m) We therefore
write

with similar reduced mean values , ^o corresponding to
, T If then a

series of values of
, T0) TF can be calculated for a number of points

*
Mmyklap&die d math Ww , vi 2, p 682
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re "* rl
> di-tnbi fed round the disturbed orbit, the} can be introduced into

tht tjia+MiS for tht< variations and a simple quadrature will give the

stcUar p rturbationt of the several elements, that of a being zero

185 In calculating S' M F^ Trc , the disturbed planet occupies a given

fix* <1 pjint P in its .rbit It :s clear that Si, ro ,
TF are components of the

mtan ur traction, with rtspect to the time, exercised at P by a unit mass

rtv><.n> Tg t^e di^Mrbjig orbit, ^ith unit constant of gravitation They are

tht saihH *is wouid rtsult if the disturbing orbit were permanently loaded so

a* tj CHfAtitut** a material nng of the same total mass, when the density is

pri portiunal tr rfj/ rfs' Thus it is necessary to calculate the attraction of

&ii elliptic ring of this kind

Ltt am \stem of rectangular axes xyz be taken, -with origin at P Let

<Jfu tVe -j* be the coordinates of the Sun, (a;', y', z') those of a point P' on the

disturbing rbit, and let rf<r' be the area of an elementary focal sector, dV
the vol'iin^ of tht tetrahedron on the base <L0 with its apex at P Then

2 dc - t>t F

wl^rt p is the perpendicular from P on the plane of dcf Hence one

ownpimtnt of the required attraction at P is

' 3

when, ir ^' are the semi-axes of the disturbing orbit and A*= &'2 +
Thu uLi-s account of the first (principal) part of the disturbing function

on'\ the <*ond (indirect) part has been left out of consideration because
< 150 )it gi\es nse to no secular terms in the perturbations of the first order

It is now to be obsened that x'$r*dV is a homogeneous function of degree
in JT', j i\ and can therefore be expressed, since z'dtf

-
y'd/ = z'*d (y'/z

f

), ,

in terms of x
r

z
, / j', ^hich are connected by some relation

which iir the equation of the cone having its apex at P and the attracting

ring aa its section Thus the integral factor ofPx (and similarly ofPy) P,)

depend? onV on the form of the cone and not on the particular section

Thw is true whatever the shape of the nnginay be But in the present case

the cone i* of the second degree, and the a*es may now be identified with
ito principal axes, P <X, F, Z) Let PZ be the internal axis and a, ft the

semi-axes of the section Z** 1 The coordinates of P/

can be written

where T is the eccentric angle in the section, and

A8 l-i-acoea r-h>9sin
s T

> 6dF; = f-X. COST- aF, SUIT + *0Z<>) dr.
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Hence

P - * f
2"" cos r (- fiJ5T cos r ocFo sin T 4- Q/3o) <Zr

STra'Jfy Jo (14. <# cos2 r + /3
2 sin2 T)*

__
-

2ecffZ r** cos^rcfrr

Tra'Z/p Jo A8

and similarly

p _-2gff7 I

1

*- smg rdr p _ 2/&Z /*" <2r
>rr"

Vjp Jo A'
' ^M

~Z3Vp J A5

These components can now be expressed in terms of the complete elliptic

integrals

For, since

sin r cos r cos2 T sina r + & sin4 r

^ /p __ fg\ __ _^ J7t __

= I

sm T T _ + i p - __ ^

Hence

p
"" ~

(a
2 -^) V(l + aa

)
v 7

Pr= zl]
[o iff [l^ X ^,lY

ira'b'p (a
2 -

j8") V(l + a3
) [l + ^2

J

Pgss
2

^ . J^
rJ&

where the modulus k of E and F is given by

186 It is now necessary to consider the geometry of the problem Let

the angular elements of the disturbed orbit be H, ^, o>, and of the disturbing
orbit 1', ^

f

,

'

These are leferred to the ecliptic, which it is convenient to

eliminate by referring the latter orbit directly to the former With some

change in the notation of 67 the equations there found give

sin i (II" 4- co' - to") sin &" = sin % (IT
- a) sin } (*' + ^)

cos i (O" -!-'- o>") sin J" = cos* (Q'
-

(1) sin } (i
7 -

)

sm 4 (O" - CD' + G>") cos Ji" = sin 4 (O'
- a) cos % (if + ^)

cosK = cos 4 (0
; - a) cos i (t'

-
^)
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Hoie fl" is the distance of the mteiseetion of ihr t\\o oilutH how the i
'

hpU*
node of the distuibed orbit, i" is the mutual intimation oi tin t\\u phut*
and "

is the distance <>! the peuhohon ol (In dtstmlnn^ mint ti^m ih

intoisection

Two setn of rcctanguhu axes, with ut mbitiai\ omm O, <m nun * 1*

dohnod IA>i 0(f, ?;, f) the (Impious an* those oi .s
f T H, o tint Nf

paiallol to the null us v<ctoi at /\ 0^; is p,u*illrl to lh< pi in* o< th di ti*'l i

oibit and 90 in advanct* of Of, and OJ is in tin* dm < tiun i ih N
p-

1
'

"

thiH oibit Foi the wcond set, ()(i //, O Oi is lmttl to^anl* ft*' j* j

h<hon of the distuibing plaiuM, Oy is paiallel to fh< phutc <i th li iii?)'n/

orbit and !)0
n m tulvanco ot Of, ami 0. is dm < tl lf\\auii <h N pii t ')*

oibit Let t; b< the true anomaly at l\ and

6) { ? II" /,

tho diHUnco of P iioin tin* inteihettion of the oihitr* Thin tlt ila* t<

between the two Hyutems ot (ooidinates an* i^iven I>\ th* s< hi nu

Thus if ? m the ladiuh ve< ktor at /*, and tin oui^in O hi tukiit at fh-

of the distuilnng oibit, tho eoonltuates t>i /' ,uo ( /,, //,, ), \\h r

*&i
- 'c' I >

(<
os (>" <*os M, | sm <*>" <in f

,

* o*- / }

yi
^ t ( win ft>" ( OH Vj M os a*

'

Hirn't < os / ), ,
/ m i\ ni i

and a',

'

are the mean distunee and e<e< kntm \(\ of fit*' tliM

187 Considei now the eonioeal HjMnti of <jua<ht<
. J win* If

dwtinbiiig orbit IH the ioral

The paiamoteis X,, X Ut X, of the time tpwdues pa^im* fiM<iti;ii T)I

(*n yn ^i) <"<-4

given by

\ **
'' + X

t

b M X
*

X

01 as th( k roots of the < uhi<

Now the axew of any tangent cone to a (nuuliit ii* tht* tntnn.il' \n tt.i f -,

coniocals which can be dtawn thnmgh the\ut\ u( fh< MUI, ai.il '!

rcmaniB true in the paitieulai COHO when* th fo<al i lhph M a '<nn f
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^ cone Hence the relations between the sets of coordinates (X, F, Z) and
are gjven by the scheme

x y
X
Y

#,#1 (a'
2 + X3)-i ps2/1 (6" + Xa)-

1

p^ 3 pZi ps are such that

# {a?!

2
(a'

a + X^-2 + yf (6'
8

combined with the scheme given above for
(a?, y, s), ( 77, f), this givestho relations between (X, F, Z) and (f, 77, J)

The equation of the cone is

ior- this is clearly homogeneous and of the second degree m x xlt y-ylt

** z\ t -^d its section by the plane z = is the disturbing orbit Transposed
parallel axes through its vertex (xl9 ylt z^) it becomes

j

j \ 2y^

"V +
"^"

2/^ = -P-i =

<^ justification for identifying these two forms is seen on comparing the
t*l*;roe functions of the coefncients which remain invariant under a rotation

of thcs axes It will then be found that the results arc equivalent to the

relations between the coefficients and roots of (2)

It is convenient to write down the equation of the reciprocal cone The
ooorBcients are the minors of the discriminant of the previous equation
**

j
= (). Hence with due care in choosing the right multiplier the desired

t|uafcion may be written

^ X, Jf
a + \Y* + X8^2 = Fl

-

invariant relations being identical with those between tho coefficients

tircd roots of (2)

Also
s XJ + F 3 + Z* ** * + 17

a + {^ = F9

it is evident that JP^, ^ can also be readily expressed, by means of the

scheme of 186, m terms of *;, f
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188 Two of the roots of the cubic (2) are negative and one positive,

since two of the corresponding quadrics are hyperboloids and one an ellipsoid

Let
\2 < < A 3

The axis of Z is then the internal axis of the cone F^ and it follows that

\3

' X3

J

1 + a2 X3 XJL

The elliptic integrals F, E can therefore be found The coordinates of the

Sun relative to the point P are ar - V -
i. ft

= -
Vi> *o

-
*i in the fayfatetn

(a, y> z) and (Z ,
F

i ^o) can be deduced by the transformation scheme of

187 Hence PX, PY> PZ become known, and the components P{ = # ,

P, = TO, P = TFo may be denved by applying the two transfoi notations of

186 and 187

It is unnecessary here to consider the equations for all the inequalities

As a type, (1) now becomes

/d^\ nam' 1 f
27r

1I7 , ,,
I

}
= r cos M W dM

\<W/of o (l+77l)COS<p 27Tj

Suppose that j values tys of ^ = rcosw TF have been found, corresponding

to j points around the disturbed orbit at which M has equidistant values,

0, 27r/^, , 2 -
1) ir/j Then (Chapter XXIV)

T/T
= a 4- 2c&i cos ^M + 26 t sm iTW

where

--Si/ - -S^[r
2gt7r

A =
^"j *

flJ *""
J ^ J

Hence
nam'

(1 + TO) 008^
^ V/

and it is only necessary to calculate the average valuo of ^ to havo tho

secular inequality For the major planets j
= 12 practically suffices Tho

summation formula for a really gives a + Oj -h It is theiofoio necossaiy
to take ] large enough to make a

3 negligible The number of points to bo

taken on the disturbed orbit thus depends on the practical convorgency of

the series a , al9 a*,,

It is, however, preferred to take points equidistant in E, tho ocoontnc

anomaly, instead of M, since this secures a more even distribution in arc

The advantage of this course seems scarcely obvious, because it appears to

weight unduly the part of the orbit which is passed over rapidly But tho

modification is easily made In this case

^ = a -f 2at cos lE + S6V sin lE
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where again
2 . 2M7T , 2 ^ 2SI-7T

al
= -2-f<(

cos -
, &t = -Ssin -

J a J J * J

but the meaning of ty will be changed For

dM = (I-ecosE)dE = a-l r dE

and (1) may be written

fdi \
nam 1 f

2ir
.

, nr ,

[-=-) =7^-r
-r 5 a-1

?
8 cost* WQdJS

\dtJ Q,t (iH-m)cos^ 27T-J

Hence (3) will still hold good if cr is the simple mean value of
i|r,

where

is now a"1
?*
2 cos u WQ

189 The cubic (2) has three real roots and can be easily solved It is

to be seen that the solution can be avoided Let the equation be

tten

X8 + 3^\e + 3fc2X + A;,
=

the roots being \ lt Xj, \%, and let the result of removing the second term be

* /

now

written

of which the roots are en e* t e* Then

12 (kf
-

and
3 1

= 2X1 -XS-X3 ,
3e2

= 2Xa -X 8-XlJ 3e
J

= 2X3-X1 -Xa

el < e* < ej, ^ 4- ea + ^
Thus

A3 = 1 + afl cos8 T + /3
3 sin' r = Xs""

1 X8
- Xj) cos

2 T + (X,
-

Xa) am r]

^3~
l

l(s
-

i) cos
3 r+ (es

- 4) sin8 r}
-

and the components to be calculated are

- 2Z (X^Xa)* /*
cos3 rdr p __

-2ro (X 1
X

1i Xs)
ir

f*"

1

sm'jrdrS7

6>~^Jo ""^f ~' K " S?^
"

Jo "A7 '

where X^X, A?i It is clearly possible to write consistently

whence
cir (4 - !> (4 4)

2 sin r cos T -7- p-
-^~-^ds ^(^-eiX*-^)*

and
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But this can be written

A'"1 dr = dv f
i

tip (u)
= 5

where @(u) is the Weierstrassian elliptic function formed with the roots

e3 When r = 0, $>(u)
= e2 ,

w = o)2 ,
when T=TT, ^(u) elt u^^

Hence
" -

r7
fi" dr r-i __W^L_
Jo A'J

J.(* -*)(*-*)

/**" sma
rcfrr _ p f (u) -02 ,

Jo A 7' "";..(.-*)(.-)
""

r

J o

where

O;
- f (ft)2)

- f (&>i), 0) = 6)j
-

6)j

The quantities o> and ?? will now be found

190 The reader who is unacquainted with the theory of elliptic functions

will notice that nothing beyond the definitions of the functions
ff)(w), f () is

here in\olved, and that these can be easily inferred In fact, if the variable s

be retained, it is easily seen that

_ te> ds ids
<

"/.
1 V{4(5 -

where

4(s-e1a , 3, !j
The range of integration is the finite interval between the loots in which the

integrals are real Let

s - (fa)* cos 6, cos 87 - (2V0rJ

)*
=

7

"
4

The values of corresponding to e^ 63, e, in older are clearly

0i =V + 7* ^8==^ 7i 0j = 7<^7r
since

4fi' - gtf
-
^ =

( J&)
f
(cos B0 - cos ^7)

Hence

Now the Mehler-Dirichlet integral* gives

D / o \ 1 f^ e^W^dA
P. (oos 7> - -

J _^ 7(2 ĉ T_^ ;

where Pw denotes Legendie's function of the first kind and order w Lot

<^>
= 30 - 2-7T, and then

* Of Whittaker's Modern Analysis, p 219, Whittaker and Watson, p 808
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whence

fJe*
Now put n = J and + in succession Thus

sin 0d0 i

V (cos 30 - cos 37)
= 6

sm20<20

But the Legendre's functions can be expressed in the form of hypergeometnc

series* F ( n, n + 1, 1, sin2 7) Hence finally

where sma
7 = i (1

- g
"
*) Thus D and t; are expressed in a form not

requning the solution of the cubic equation

These hypergeometnc series are not the same as those originally found

by H Bruns as the solution of the problem But the latter are easily

deduced For Pn (&) satisfies the differential equation

The result of changing the independent vanable to x= 1 .s
2
is

which is satisfied by the hypergeometnc series F(-$n, %n + i, 1, as)
When

g = cos 3% x - sin2
87 = g~

l (g- 1) and since there can be only one convergent

series for'y m powers of x, this is it {The above series may therefore be

replace y
i

f
aa* 3?), '(-A, &> L **W

which are the series obtained by Bruns

191 Let the origin of coordinates now be taken at the Sun, the point P

being at (JT, F, Z) or (- X - 7.,
- Z.\ Then the components PXt PT, PZ

(4) can be derived by partial differentiation from the potential

tr (lA)* [^ j
j['V

7ra'b'p J o

^ (-_*,)*^
-rrafVp (es

Of Wbittokei's Jfodwn^nolyw.p 214, Whittaker and Watson, p 305
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Secular Inequalities [OH. xvn

Now by ordinary multiplication of determinants

and

where

and e1; eg, e, are the roots in X' corresponding to \, Xa, X The first

determinant is clearly ffx and the determinant below it is

The multiplying determinant m both identities is

Xs xo (x,
-

x^) (xa
- \) =pr1

and the determuiants on the right-hand side are easily expressed m terms of
&1? &2 , fe They are respectively Qkr1^ and - Q^jffa, where

and

Hence

-2fc-^

(^

144 (-

ira'b'p
. (5)

But F19 F99 F-t have been expressed ( 187) in terms of (a, y, z) Hence the

system of coordinates (X, F, Z) has been completely eliminated from the

problem

192 Now Fis a homogeneous quadratic function in (x, y, z) and can be
reduced to the same form in (, ^ f) But its complete expression is not
required, because flf , T9 , W are its partial differential coefficients at the
point P (r, 0, 0) It is therefore
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and the terms which do not contain f can be neglected Thus FQ is f
2

simply Let the transformation scheme of 186 be written

#! = If + afe'

y

$

with the usual relations of an orthogonal substitution Then

2 + 2aVr t) + 277 (aVrWH + 6

with neglect of terms not containing f Similarly

The last teim does not contain f and hence

Thus jP\, jFo, jP-a are now expressed, as far as necessary, in terms of f, 77, f

It remains to calculate H, and Htt and then the simple comparison of the

coefficients of ', ^, ff in (5) and (6) gives S , TO, FO

It must be understood that it is not the object here to obtain the most

practical form of calculation in its final shape, but rather to explain the

mathematical principles involved and to be content with showing how the

computation might be carried out The method was not developed by

Gauss in the complete form which is necessary for practical computations

This was done by Hill The introduction ol elliptic functions in the modern

form is due to Halphen



CHAPTER XVIII

SPECIAL PEBTURBATIONS

193 In Chapter XV some explanation has been given of the various

classes into which planetary perturbations naturally fall when regarded from
a practical point of view There is, however, another kind of distinction

which can be drawn among perturbations, depending on the mode of calculation

and expression When they are expressed in an analytical form, from which
their values can be deduced for any time simply by giving t its appropriate
value, they are called absolute pertuibations For all the major planets
a theory has been developed in this form But such a theory, if it is to be

complete and accurate, demands immense labour, which is justified if positions
of a planet are constantly required Moreover questions of general theoiy
must nearly always be based on analytical forms On the other hand theie
are bodies which are observed during one short period only, like the majority
of comets, or at relatively long intervals, like the periodic comets In such

cases, which include also the orbits of the minor planets, the method of

quadratures is resorted to, partly m order to save labour and paitly to avoid
difficulties which have not hitheito been surmounted by analysis Peiturba-
tions calculated in this way ate called special pertuibations The advantage
of the method is that it is generally applicable, though agambt this must be
set the frequent necessity of continuing the calculation without a bieak

through long intervals when no observations have been made, and the im-

possibility of making any general inference as to the motion outside the actual

penod covered by the computations There are exceptions to this statement,
because important researches have been made with success into the ongin of

comets by the method of special perturbations, and the penodic solutions of
the problem of three bodies have also been largely investigated by the method
of quadratures But generally the services of this method havo been of a

practical rather than a theoretical kind

The method of quadratures involves an arithmetical technique with which
the reader may not be familiar It therefore lies strictly outside the intended

scope of this work, which is not concerned with the actual details of piactical
calculation But the computation of special perturbations nils so large a place
in the practice of astronomy at the present time that it cannot be dismissed
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without some description Accordingly, m order to interrupt the treatment

of dynamical questions as little as possible, a brief account of the algebra of

difference tables is given in the final chapter of the book, and the results will

be quoted here without proof

194 Let yn be a tabulated function of the argument 1 *= a -f- nwt where n

represents a series of consecutive integers and w is a constant tabular interval

As the practical formulae of quadrature depend on central differences, it will

be convenient to represent the difference table thus

Here yn is tabulated in a vertical column and the successive differences on
the right are formed directly m the usual way Thus Ay7l

= yn+1 yn , and
the commutative operator K, which is clearly appropriate to central (or hori-

zontal) differences, represents a move two places to the right on a horizontal

line of the table Similarly K~l

represents a horizontal move two places to

the left Two columns are shown on the left of the tabulated function, and
these die known as the first and second summation columns The relation of

each to the adjacent columns on the right is precisely the same as that

holding between any two consecutive difference columns Thus the fiist

summation column contains the diffeiences of the second, and the differences

of the first are the successive values of the function itself The first column
can therefore be based on an arbitrary constant and foimed in the downward
direction by adding the numerical values of the function successively The
second summation column is based on a second aibitraiy constant and foimed

from the first in tho same way

The table thus constructed has alternate blank spaces These are now
filled by the insertion of the arithmetic moans of the entries standing im-

mediately above and below each apace In its completed form the table may
be represented thus

y

[WtyJ Affy*

where the mean differences are distinguished by ^ to the nght of a simple
difference or by k below a simple difference* AB a matter of fact,

&'=! + A, A; = A(1+4A)(1H-A)-1

, K* Aa
(l + A)-

1

but for the immediate purpose in view these opeiatora serve merely to define

the position of entries m the difference table They are all algebraic
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195 The formulae available for executing the necessary quadratures can

now be given Numbered as in the last chaptei of the book, to which

reference can be made for proofs, they are these

11 191 Trn . V.
^2g^

(30>

where m is written m the upper limit in the place of n + ^ The commutative

operator k must of course be carefully distinguished from the Gaussian

constant k

The lower limits, 6 and c, are arbitrary and correspond with the aibitraiy

constants involved in forming the first and second summation columns If

the lower limit is to be c = a,

^-*+*(n-W^+&*- )
(29)

which fixes one constituent of the first column, and the rest follow If the

lower limit is to be c = a + %w,

-BaSgo*
1 *

)
(27)

Similarly, if the lower limit b of the second integration is a,

'* (32)

and the value of this particular constituent makes the whole of the second

summation column determinate If the lower limit is 6 = a + $w t

-
)* (33)

In general, b = c and (29) and (32) aie used togethei, or (27) and (S3) Tn

the latter case (33) may also be written

(34)

In whatever way the lower limits are determined, (28) and (30) will give the

integrals to the uppei limit a + nwt and (26) and (31) to the upper limit

^ 4- (n + ^) w
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196 The application of quadratures to the solution of differential equa-
tions such as anse in dynamical problems can be explained by a simple but

fairly general form Consider the equation

or, as it may be written,

Hence, by (30),

or

Kx = wa

j] -\ K -- K* 4- i X (1)

Now suppose that we have a solution in progress, giving at a certain stage,

Jfn

(A
2
-

X,n+a

Here Xn is a known function of &n and tn It is required to find an+s and Xn+
which depend on 7H.S and on one another, so that the}, cannot be calculated

directly For simplicity the time interval w may be imagined to be so small

that x-rrr K*Xn+l is negligible The general run of the differences KX will
t*t\l

suggest a close guess to the valuo of KXn+i , though the true value requires
a knowledge of Xn H and therefore of trn+ i

itself This leads to a correspond-

ing provisional value of J>n+8 by (1) and hence to #nM #n+a or #n+8 Then
Xn+t can be calculated, in general, with the accuracy which is finally necessary
If this be so, KXn+x IB now accurately known, and hence &n+8 by a simple

repetition of the same process, in which if need be an allowance for K*X can

be made After every low steps m the calculation the whole can be rigorously

checked by tho difference formula (1) and either verified or corrected if

necessary In general small conectiona of #tt do not entail a re-adjustment
of Xn

197 Thi IH the principle ot the method employed by Cowell and

Grommelm m calculating the path of Halloy's Comet during the two revolu-

tions 1759-1835-1910 It la the cindest possible method m the sense that

it ignores completely what is known oi the approximate orbit and is based on

the equations of motion m their primitive form, but it 18 none the lens ex-

tremely effective for its practical purpose* The origin of coordinates is taken
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at the centre of gravity of the solar system, with the axis of x towards the

equinox, the axis of y towards longitude 90 and the axis of z towards the

N pole of the ecliptic for a stated fixed epoch The equations of motion are

then ( 20)*

where

U 2m 2 w, {(*

and 2 includes the Sun and all the disturbing planets Thus the typical

equation may be written

where
X = - 2 (frvfimy) (x

-
*,)

i-*

and 2w2m
;

is a constant for each attracting body The problem, being m
three dimensions, involves the parallel solution of the thiee similar equations

for x, y and z It is convenient to change the time interval from time to time

according to circumstances, in order to economise labour in computing the

forces by making the interval as long as experience may show to be practicable

In the example refeired to, w = 2^ days, where p has integral values ranging
from 1 in the neighbourhood of the Sun to 8 in the most distant part of the

orbit As the comet lecedes from the Sun it becomes feasible to treat first

Venus and later the Earth and Mais as forming a centrobanc system with

the Sun, so that the separate computation of then attractions is avoided

The solution is started by deriving the rectangular coordinates of the comet

on two consecutive dates from the osculating elements at the intermediate

epoch 1835

A similar treatment has been applied to the path of Jupitoi'b eighth

satellite, which is so distant from its pumary that the soldi perturbations are

relatively very considerable

198 The above process is closely related to the more usual method of

calculating special perturbations in rectangular coordinates, which dates from

Encke Here the origin is taken at the centre of the Sun and a fixed ecliptic

system of axes is generally chosen Let
(au t y, z) be the position of the

disturbed body P, (x3 , y}> zj) of the typical disturbing planet PJt and lot

SP = r, SPj = pj and PP, = A, Then the equations of motion of P relative

to the Sun are of the form ( 23)

But the undisturbed motion is given by
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where (#<>, y > ^o) an(i *o can be calculated at regular intervals of time from the

osculating elements Hence if (f, 77, f) are the pertuibations, where

The right-hand side contains (f, 17, f) implicitly, and therefore extrapolation

is necessary as in 197 But in the first member f, which is of the first

order in mj, is multiplied by m, and hence if the second order m m, be

neglected (#OJ 2A>, #0) can be directly substituted for (x, y, z) This is conse-

quently known as the direct member, but it is quite possible to include

approximate values of the perturbations as they become known in the course

of the work, and thus to make allowance for the higher orders of the disturb-

ing masses The second member, which has been called the indirect member,

has no small multiplier and besides is expressed as the difference of two

nearly equal quantities To avoid this inconvenience the transformation

is made, where

9
-

(r-
-

and/ is tabulated as a function of q, which is a small quantity The equation

for f now becomes

_i_""

with parallel equations for 77 and This treatment is not applied to the

planets with sensible masHes, but only to bodies whose masses are negligible

and generally unknown Hence h k*rf*

Suppose that n - 1 stops m the quadrature ha\e been carried out, so that

fn-i, n~i arc known and n is required As in ^ 197 w* can be omitted by

substituting w*fc for A? Then, by (30),

or
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Here S^* compnses the tenns which can be directly calculated, foi JTn

represents the direct terms, ^T""3

| follows from the previous stage of the

quadrature, and K%n can be extrapolated easily owing to its small multiplier
Also n=ab+fn is known well enough since it is multiplied by q But q itself

is not accurately known By combining the three parallel equations of the

same type as the last with the above equation for q, it follows that

where 2 refers to the three coordinates Thus, /being easily extrapolated,
q can be calculated The combination of (3) and (5) now gives

whence ?n can be calculated, and therefore fn by (4) Thus the quadrature,
once started, proceeds step by step

In order to start the quadrature the four dates are taken such that the

epoch of osculation coincides with the centre of the middle interval With
=0 the direct terms in f are calculated and the difference table is formed

By applying (27) and (34) approximate values of f are obtained whereby the
indirect terms can be brought in The process is then repeated until the
final approximation is reached The rest of the calculation, giving the results

by means of (30), has already been explained

199 Special perturbations may also be directly calculated foi polar
coordinates Let the cylindrical coordinates of the disturbed mass m be
0>, 6, z\ the fundamental plane being the plane of the osculating oibit itself
at the epoch , and the initial line passing through the ecliptic node The
rectangular coordinates of the typical disturbing planet, of mass m,, relative
to the Sun are

The kinetic energy of m is Jm^ + ptf' + j^ and therefore the equations of
motion ai e, since r*= p

3+ z*t

d ( d&\ 3JZ d"z

where ( 23)

B = If 2m, (A,-
1- T*(% +m + a,)}

= * 2m, {V1~
>- fa cos B, cos (L, -0) + zr, sm
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Hence

m) pr-
s-# 2m, {pAf8 -(Vs - rr3

) rj cos BJ cos (A ~ *)

d (p*B)jdt
= Jfy Smj (A/-

s -
r/-

8
) r, cos Bj

sin (I,
- 0)

z =-# (1 + m) 7-8 - # Smj {sAj-
8 -

(A,-
3 -V3

) ** sm ^1
Let

*V=2<?, ^/i--(i + 2s)-*-i-./gr

where /is the same function of q as in (2) and can usually be replaced by 3

simply, because z is merely the perturbation in latitude reckoned from the

osculating plane The equations of motion can. now be written

d (/o
8
6)1dt

=
17, + W*z =Wl

where
fl^ + ft

1
2m, {p-

1

(A^
8 -

r,-
8
) r,

cos JB, cos (i,
-

^)
-Vl

j-*
- rf') rj cos J5

;
sin (L,

-
^)

-8
) ^smB5 -H ifc

8
(1 + m)fp~*z*

,-
8 + # (14- m) /r

3

The third equation is now m the required form to determine *. The first

two must be transformed in order to obtain p and Q

200 The second equation gives

Udt

where /i is the undisturbed constant of areas, so that

h {# (1 + m) p }*
- 7i a a cos <^

j? ,
wo> o. ffua*o^ng the osculating parameter, mean motion, mean distance

and eccentricity Hence

e - + fc

j

'

p^dt +
J*

1

L- 9

irdJ
dt

o) 4- F + Aw

where ^ is the initial value of and o> is the distance of the undisturbed

perihelion
from the node The angle Aa>, which represents and is denned by

the double integral, would vanish m the absence of disturbing forces In the

same circumstances V would bo the undisturbed true anomaly Thus 7 may

be regarded as the disturbed true anomaly and Aeo as a rotation of the apse

In the rotating orbit thu defined, in which the elements # , Oo, e
<fr> k^P

their osculating values, let p(l^v)^ be the radius vector corresponding to

the true anomaly V, so that, since 1^ hp~*t



[CH XTIH

H'T *

P 4

//t
* A- i I 4 nnp-*-Jff

> r 1 1 i ** ^ 4 f h i* .f th satnt f <nn as that in z, v can be found
ij r*M Kr , A r:* fc vi T

\^r ,*T.*,i f ^^ (^1rU r k ft.Jirt-ct -luadratniv, the necessary- correction

^
*"*

^J*
"

T tf ir rjav ^HxlAted with the undisturbed mean motion
* w ->p , - 'V *r i m nul\ T r.r thf> eccentric anomah E m the

* * 1"

A-r
I - f C* * K\ JS p 1 1 -

the latrtude X are
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Perturbations to the iirst order will be obtained by calculating the quanti-

ties occurring in the differential equations according to the osculating elements,

but as they become known in the course of the work their approximate effect

on the coordinates of the disturbed planet can be introduced before integra-

tion The integral of U, and also N and A&>, can thus be found by direct

quadrature by applying (27) and (28) For v and z, which require exactly

similar treatment, the case is slightly different As before, the time interval

w is removed by writing uPk? for A?, which is equivalent to making this interval

the unit of time Then at any stage n, when zn^ and K~lzn are known,

and this last equation will determine zn with the needful accuracy, and

hence zn and K~lzn+l for the next stage

This method is due in principle to Hansen The perturbations start from

zero values and remain small for a considerable length of time This conduces

to accuracy and is an advantage The method is less simple than that of

rectangular coordinates, and for the easier construction of an ephemens

requires the determination of new cmculatmg elements by a process which is

itself complicated and is omitted lieie Perturbations of the coordinates are

recommended by the fact that there are throe coordinates as against six

elements to bo determined by quadrature*, and their computation is suitable

for practical needs in the caae of a body, such a a periodic comet, which can

only be observed at relatively long intervals Otherwise it is preferred to

perform the calculation on the elements directly

202 With slight changes which will be icadily understood the equations

found in 142 for the perturbation** of the elements may bo written

di/dt rW cos u/

dl/dt w rW sin u/k^/p win i

d$/dta {
sm v + T (cow v + COB E)} *Jpfk COB <t>

dtff/dt
= {-pN COB v + (p + 7 ) T win v H- rW Bin < tan t win u\/k*/p Bin <

dn/dt
= - 3 (rS sin tun v -H pT) cos <

rt dn
dMIdt= \(p cos v cos <f>

- ? mn 2d>) ^S
y -

( }> 4- r) r wn v COM <f>\/L*/p wn <f> -f /
,;
ai

J ttCW
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where v represents the true anomaly and m is neglected, so that p = &* Let

Then the equations are of the form

wdijdt = |>, 3] F3 , wdtl/dt = [H, 3] F3

wdftdt - ft, 1]^ + ft, 2] ^, wdn/dt - [n, 1] ^ + [n, 2]^
[w, 2] JP, + [w , 3] F3

where

[i, 3]
= r cos M, [n, 3] = r sin w/sm z

[0, 1]
= p sin v sec <, [<, 2] =p (cos 2; + cos E) sec

<^>

[-nr, 1]
= - p cos v/sin <, [r, 2]

= (p + r) sm w/sm <^>, [or, 3]
- r sin u tan J i

[Jf, 1]
= -

{[>, 1] + 2r} cos ^, [if, 2] = - [w, 2] cos
<f>

\nt 1]
= - 3^ sin

(f>
cos

<f>
sin v/^p, [n, 2]

= - 3k cos < Vp/r

For a minor planet disturbed by Jupiter, 40 days is generally found a suitable
value for the interval w

The disturbing function R may be taken m the ioim found in 199

except that the argument of latitude is now u = v + -or - fl instead of 6
Thus

R = & 2m, {A,-
1 -

r,-
8

[pr, cos J% cos (L}
-

1*) +^ sin S^J
and if the directions of the components S, T, W be recalled,

where after differentiation * = 0, because the plane of reference is the plane
of the instantaneous orbit For the same reason p = r Hence

Fi =p
~
* S (A^w^) {(A,-

3 -
rp*) r, cos By cos (Z,

-
u)
- 7 A/*}

JP.
= p

'
* 2 (fawn,) (A,-*

-
r,- ') r, cos B, sm (, - u)

, , sm
and

A/ = r2 + r/
- 2rr

; cos B3 cos (Z,
-

u)

203 Let ^, &, be the heliocentric longitude and latitude of the disturbing
planet, which with log r, are given m annual tables like the Nautical A ImanacThe relations between ecliptic coordinates (a, y, ,) and the orbital coordmaton
(6 ^ 0, the am of f passing through the ecliptic node, are shown by

cos&

-cost sinf} cos i cos n
sin ^ sinn -sm^cosn cost
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which is the scheme derived in 65 Hence

f = cos B
3 cos Lj

= cos ty cos (13
- H)

77
= cos Bj sm Zy cos 1

3 cos i sin
(fy
-

II) + sin
6,

sin i

f = cos B
;

a - cos
6j sin t sin

(Z,
-

fl) + sm
6, cos %

and thus J^i, F2 , j/P3 can be calculated, so far as the coordinates of any disturb-

ing planet are concerned

But jp
7

!, FZ, F9 and the coefficients [i, 3], , involve also the varying
elements and coordinates which depend on them The elements may he
identified with the osculating elements at the initial epoch tQ and the co-

ordinates may be calculated as in undisturbed motion Then the result of

mechanical integration will give the perturbations of the first order When
these are known for the several dates covered by the work, the calculation

can be repeated with the unproved values and a higher approximation can be

obtained The work can be arranged so as to obviate this repetition by
including the perturbations to date at each step

204. The five elements i, H, <, -ST, n require only a single quadrature
The lower limit a + \w is made to coincide with the epoch of osculation and

the tables are formed m accordance with (27) The corresponding perturba-

tions are then given by (28) or (26) according as a + nw or a + (n -|- ) w is

preferred
for the final date It is to be noticed that the differential equations

for the elements have been reduced to a form in which w occurs explicitly as

a coefficient of the derivatives on the left-hand side It will disappear when

the quadratures are effected, its function being to make the unit of time agree

with the tabular interval But the unit of time is not really changed, and

with the ordinary Gaussian constant k occurring in the combination kwmj for

each disturbing planet remains one mean solar day Thus the perturbation

in n which will bo drawn by this process will be the increment m the mean

daily motion Since all the elements are in the form of angles, it is con-

venient to express k, so far as it occurs m Flt F*, F3 through the combination

kwnij t by its value* m arc (log k" 3 55 ) But in [n, 1], [w, 2] k has its

purely
numerical value (log k 8 235 . )

The perturbation m M can bo conveniently divided into two parts The

first,

f, 1] Fl + [M. 2] F*} dt

is calculated in precisely tho Haxne way aa the other five elements The second is

The table having been prepared for tho first quadrature on the basis of (27)

and (28), the second can be performed by means of (34) and (30) The
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immediate result will give w~-*S2M, which must thercfoie be multiplied by w*

To avoid this large multiplier it is usual to calculate w$n from w*dn/dt at the

first quadrature (giving the mciement in the w-day mean motion) Thin

alters the time unit of the acceleration and therefore no multiplier will be

required by S2 Jf, a result which can be otherwise seen by noticing thai all

the tabular entries are multiplied by w, while the integrand is divided by wr,

being in fact dn/dt instead of w dn/dt as in the first qiudiatme actually

performed on this plan

205 In the case of parabolic and neaily parabolic oibits some modifica-
tion is necessary The equations foi i, O and r remain valid, except that it.

is well to replace by e The equation for e itself becomes

But the equations for n and M become inconvenient, if not illusoiy One
suitable substitute is easily obtained by forming the equation foi

r/,
the

perihelion distance Since q = a (1
-

e),

de
'

dt

wheie

and

a

"

i sm <f>
cos

<j> (1
-

e) sin fl ao sin v
np

z

2&(l-*

q* sin z;
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Thus a valid form for the perturbation of q is obtained If Flt Fz have

been calculated with the angular value of the constant k the results for Be and

8q will require to be multiplied by sin 1"

Again, an equation can be formed for the variation of Tt the time of

perihelion passage Since

n(t-T) =M= -isr +
jndt

dT d .

it follows that

w *g =
-

(t
- T) {[n, 1] F, + [n, 2] Ft}

- n~l

{[M, l]Fl + [Jf, 2] Fs]

where

[T, 1]
= n- 1

(*
- T) [n, 1]

- -'
[Jf, 1]

She (l-e^sin (
- T) (1 -;")* /,__ i- ....... - ' --_ .-, ^_

~^ ^_ i
y*
__

n

and

[jp, 2]
- n-* (t

-
JP) [n, 2]

- ir* [M, 2]

nr

But these coefficients are in a form absolutely unsuitable for calculation,

especially
m the case of a parabola, for which in fact they are required

The difficulty can be, and is bent, met for such orbits by calculating special

perturbations
in rectangular or polar coordinates, instead of directly m the

elements

206 The reduction of [T, 1], [T, 2] to a calculable form is not altogether

easy It can be effected m the following way, The required expressions can

be written, since n4a* k*> p a (1
-

a*),
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Now

(I-*
8
)

1

j) JS

a

*8(i
where

But ( 27)

r cos2 i v= a (1
-

e) cos
2^ =p (1 +

and therefore

T) sinv

Let [T, 1], [2
1

, 2] be written in the form

ry n _ %>*> f, co8t)(l+ecosp)
1 -^- 1 -- 1

i

}

where

F^esinv F, F2=(
and therefore

-(l-tf)ain^ F

(1 -he) cos At; F
Hence

+ i cos { sin D {2 (1 + )-i tan
8

^ + 3}
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Then
i
= J (1 + e)-

1 sin3 v (3e + tan2 v)

(1 + e)-
1
(1
- cos v) {3e (,1 + cos v) + (1

-
cost?)}

ya = (1 + e)"
1 sinz; {f (1 + e) cos

2
Jw 4- f (1

-
e)sin

a

s= ^ (1 + e)"
1 sin v (4

- cos v + 30 cos v)

It is now possible to write, with a little simple reduction

and yxi ya have been determined m such a way that

where

Hence

which are fairly simple forms, but still require the calculation ofg sin ,0<x>s <?

In the limiting case of the parabola, 5 faE* and

^ am ff tan8 ) sin ^v, ^ cos G = ^ tan4
^w cos }t>

which then completes the solution

The more general case of a very eccentric ellipse can be related to the

method of 34 In the notation of that section,

Hence

; - sin JE? - J (1
-
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Now by the method of 34 A (of the order E*) is found in calculating v,

and C (of the order E*) is tabulated with argument A With the same

argument it is possible to tabulate* log f and log 97, where

1-8= g-\ fifootfftf-i;
Then

2 tan2 iv

and the problem is thus solved in a practical way Similai treatment can be

applied to hyperbolic orbits

207 It sometimes happens that a comet approaches a planet (generally

Jupiter) so closely that the disturbing force due to the planet is actually

greater than the force due to the solar attraction It is then moie convenient

to refer the motion to the centre of the planet and to treat the solar action as

the disturbing force

In the ordinary case the equations of motion of the comet are of the form

where M is the mass of the Sun, m the mass of the planet, and the ongin is

at the centre of the Sun If S, P, Q are the positions of Sun, planet and
comet, OS = r, OP = A, SP = p The equations involve no assumption as to the
relative masses of the Sun and planet, and if they are interchanged the

equations of motion of the comet take the form

where the origin is at the centre of the planet, so that #=#' + , ,

The advantage of either form depends on the ratio of the total disturbing
force to the corresponding central attraction, and it will rest with the latter if

that is, if
jL6
= m/Af, when

^& +?-^
LetOP = Then

r cos CSP = p
- A cos 6

?
2

=:/>'-2/)Acos0+ A*

Now m the nature of the case A is small compared with p Hence
r-* =

/>-* + 4/>-
BA cos 6 + 2/r

6Aa

(-1 + 6 cosa

6) +
r"3 = /r

5 f 3/r*A cos 6 + fp-*A' (-1 + 5 cosa
0) +

*
Bauschinger's Tafein, Nos xivn, xxvm
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and therefore

r-4 + p~
4 - 2r-3

/
cr2 (p

- A cos 0) = p- A2 (1+3 cos2 6) +

To gam an idea of the planet's sphere of influence the approximation need not

go further On the other side of the inequality the first term preponderates
and it can be further simplified by taking r = p Thus the significant terms

of the lowest order in A give the inequality

p~
6A6

(1 + 3 cos2 0) < Xp4A~4

and the polar equation, with coordinates (A, 0) and origin at the centre of

the planet,

A (1 + 3 co&eyh^pip

represents a meridian of the bounding surface, which is one of revolution

and differs little from a sphere Its radius for Jupiter, Saturn and Uranus is

about a third, and for Neptune rather more than half, of an astronomical

unit

When the comet enters this spheie of influence its relative coordinates

fa -#/, y, -2/1', *i
-

*/) or (, ?>!, Ji) and its relative velocity (, ^ 15 fa) are

known and its orbit about the planet can be found, with the constant of

attraction 1c?m It remains within the sphere so short a time that the solar

pertuibation can generally be neglected and on emergence a return is made

to the heliocentric orbit, based on the now position (> + &,/, ^ + y,/, fa + zj) or

fa, 2/2, *) and the velocity (#a , ya , z)



CHAPTER XIX

THE BESTEICTBD PROBLEM OF THEEE BODIES

208 The general problem of three bodies is reduced to a relatively

simple and ideal form when two of the masses describe cncles in one plane

about their common centre of gravity and the thud body has a mass so small

as not to affect this circular motion in any appieciable degree Let QXYZ
he a set of rectangular axes rotating with angular velocity n about OZ, OX

following OF, and let the coordinates of the masses /*, v be (- Cj, 0, 0), (cj} 0, 0)

where ^d = vd The velocity components m space of a small body at P (f, *?, f)

are (-^7, 77 -f wf, )
and hence the kinetic energy of unit mass is

The equations of relative motion are therefoie

~
dtj

where ni this case

P!, p2 hemg the distances of P from p, v The lesult of adding these equations,

multiplied respectively by f, ij, f, gives Jacobi's mtegial of oneigy

and ID accordance with Kepler's law

209 This nitegral has a very simple and important practical application
Let us return to nxed axes through p, so that

where I is the longitude of v and Z = n Then
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Hence Jacobi's integral becomes

o?+ 2/
2 + z* + 2/1 (yx xy) = 2F- STi

2^ (a, cos Z 4- y sin J) + rfcf -

The special circumstances under which this integral can be usefully

employed are these A periodic comet between two appearances in the

neighbourhood of the Sun may pass in close proximity to a large planet,

Jupiter for example In that event the elements may be so altered that at

the second return the identity of the comet is doubtful At times when the

perturbations are small and the heliocentric motion is sensibly elliptic,

cos i

the latter being the projection of the areal velocity on the plane of the

disturbing planet Hence

-
J^fL/a

- Zkn vVjp) cos ^ = 2&2

i//pa
- 2w2d (as cos I + y sm Z) + n*c*- C

It is supposed that the change in the observed osculating elements takes

place almost impulsively within the region of the planet's influence This

region is small and nearly spherical Hence pa is the same at the beginning
and end of the encounter, and the changes in oc, y and I are small These can

be neglected together with the other planetary perturbations, and therefore

approximately

/*/' + 2Ar*nvW) cos %' - p/a" + 2Ar1 nvW) cos
"

where a', a" are the mean distances of the comet, p' t p" the parameters, and

^
/

,
i" the inclinations of the orbit to the orbit of the disturbing planet, before

and after the encounter For the Sun /*
= 1 and &(l + v)**n*a* 9 where a is

the mean distance of the planet, and if v bo neglected

a'-1
-h 2a

""
3

jp'*
cos i' = a"-1 + 2a

" *
p"* cos fc"

which is the criterion of identity proposed by Tisserand It has been assumed

that the orbit of the disturbing planet is circular, but some allowance can be

made for the eccentricity of tho orbit by taking into account the actual

motion of the planet at the time of the suspected encounter

210 Let the problem of 208 be now reduced to two dimensions (f= 0)

Then

Let the units be so chosen that & 1 and GI + Ca 1, with tho consequence
that /A + v na The equations of relative motion may now be written
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where
2fl = p (2/or

1 + Pi
2
) + v (2/>r

1 + /V)

and the integral of relative energy is

fl
3 = 2n-(7

These are the equations used by Sir G H Darwin, with the masses /*
= 10,

v = 1, in his researches on periodic orbits Now it is obvious that v* cannot

become negative under any circumstances Hence the curves of the family

given in bipolar coordinates by the equation

2n = C

are of great importance in the restricted problem of three bodies, because they

represent barner curves which cannot be crossed by trajectories characterized

by corresponding values of (7 Thus if the bamer curve, or curve of zero

velocity, is a simple loop within which a part of the trajectory lies, then the

trajectory can never pass outside If the lunar theory can be compared with

this simpler problem it is found that the orbit of the Moon lies within such a

closed curve surrounding the Earth, and therefore the Moon cannot recede

beyond a certain limiting distance from the Earth This remark is due

to Hill

The simplest view of the general character of the curves of zero velocity

is gained by considering them as the contour lines of the surface

2ft = s, z = C

If the axis of z is taken vertically upwards, and motion for a given value of C
is supposed to take place on the actual contoui plane z G, then it is

evidently restricted to those parts of the plane which lie underneath the

s irface, since elsewheie in the plane the velocity becomes imagmaiy Now
th? main features of the surface are easily represented topographically At
the points where the masses p, v are situated the surface rises to infinity, but

in the neighbourhood of these singular points may be treated as two peaks
At any considerable distance from them the terms pp^ H- vpf are predominant,
and the surface rises indefinitely in all directions Now 2fl may be oxpiesscd
in the form

211 - 3 fa+ v) + p (ft
-

I)
2
(1 + 2

/or
1

) + v (/>2
-

1)
2
(1 + 2/O

and clearly has an absolute minimum value 3 (/t + v) when px
=
pa
=

1, i e at

the vertices of the equilateral triangle on the line joining the masses ft, v

These points represent the bottom of two valleys, and a simple consideration

of the continuity of the surface shows that these valleys must be connected

by three passes, one between the two masses and the others on the same line

but on opposite sides of the two masses and separating them horn the using
surface as it recedes in the distance If it be added that the highest pass is
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that which lies between the masses and the lowest is on the other side of the

greater mass, the general order of development of the contour lines should be

sufficiently evident The critical curves for Darwin's special case, ^= 10,

i>= l, are illustrated in fig 7 The whole is symmetrical about the line SJ

211 The points at which the ovals coalesce or disappear evidently

correspond to critical values of O Take i></z The critical values are

given by
an an dp1 aa ^PH-A
aj^ap, a?

+
ap2 a?

~ u

which show immediately that such points are points of relative equilibrium

for the third body These equations are satisfied in the first place by

an an ~

or pi /3a
= 1 This gives the "

equilateral
"
points mentioned above, where &

is an absolute minimum But other solutions are gi\en by

or ??
= 0, together with 9ft/3f This Vvill lead to the three points collmear

with the masses For the first, lying between the masses,

so that

/*
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This is a quintic in p with only one real root The actual solution in

a particular case is easily found by tnal and error from the first expression

The second expression, when expanded, gives

and to the same order

C= /* (3 + 3Pa
> + 2/>2

3
) + v (2/ir* + />2

a
)

For the second colhnear point, on the further side of the smaller mass

and hence

agam a quintic in p2 with only one real root For the approximate solution

= 3rf-8/tf(l

and to the same order

C7 - /* (3 + 3^ -
2/>2

3
) +

For the third colhnear point, on the further side of the larger mass
//,,

*
and therefore

where p!
= l4-<r, p2

= 2 + o- Hence

f = -o- (12 + 24(7+19^+
/*

and
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which shows that

" =
12

(fju + v)

=
4, -f- 12a3

is a very close approximation. The approximate value of G at this point is

-A* (3

When v/fi
= So8

is small, as m the case of the planets compared with the

Sun, the ahove approximations are generally more than sufficient In the

limiting case /z
= v and the arrangement of the points of relative equilibrium

is obviously symmetrical with respect to the rotating masses

212 Let =, + #, ,7
= ^ + 3,,

where (f , i? ) is a fixed point The
equations of motion may then be written

y + 2& =
where

provided fl is regular at the point (f , %) and a?, y are not too large If

(?o. ^o) is a point of relative equilibrium, or as it has been called a point
of hbration, and a?, y are very small, the linear equations

y +

are obtained, and these determine the nature of the equilibrium at ( , ?; )

For they are satisfied by the solution

SG h cos (mt a), y =* k COB (w ft)

provided
= (m

9 + Xiao) h cos a + &flu cos ft

(m3 + fl^) h sm a +
sm a = Afcu cos a 4- (

a - hflu sin a + (m
fl

-f nM) ^ sm /9

These equations, which result from equating coefficients of cos wit, sm m*, are

equivalent to

(wi
2
-f Hao) ^ sin (a ft)

= 2ww&

&lu sm (a /8) 2mnA cos (a )

(7/i
a + Hoa) ^ sin (a-ft)=* Zmnh

Win sm (a )8)
= 2wmA cos (a $)

There are only three independent equations here, and this should be so

because the only quantities which can bo determined aie the ratio of
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amplitudes h/k, the difference of phases a-& and ra The three equations

may be written
A2

(m* + Hgo) = fc (m
2
4- QM)

(m
2 + HSO) (m

2

and these determine a series of infinitesimal elliptic orbits about a point of

hbration when m has a real value With certain simple developments such

a senes can be traced into a family of finite periodic oibits

213 The third equation, that is the quadratic in m-a,

m* -ma
(4n

2 - f^- O^) +n^^-^u =

decides the question of stability and may be examined more closely If thi*

roots m m2 are complex or negative, real exponential functions of the time

enter into the disturbed motion and equilibrium is unstable II the roots

are real, but of opposite sign, an unstable mode of motion is associated with

a possible elliptic mode and equilibrium is again unstable Here the point

is surrounded by an unstable family of orbits initially elliptic This m
illustrated by the colhnear points of librabion For it is easily found that

when TJ
=

so that flao is positive Now at the point of libration between the masses

-. !+!-. g-S
and therefore, since

r\
=

0,

i an i an /i i\ / i

which is negative since PI < 1 Similarly && is negative at the other collmoai

points of hbration Hence at these three points the absolute term of the

quadratic in m2
is negative and the roots are real and of opposite sign Eac h

of the pomts is therefore surrounded by a family of unstable periodic oibitK

It has been suggested by Gykten and by Moulton that the phenomenon
known as the Gegenschein is due to sunlight reflected by meteors which, in

spite of the instability, are tempoiarily retained in the neighbourhood of that

centre of hbration in the Sun-Earth system which is opposite to the Sun and
at a distance of about 938,000 miles from the Earth

When both values ofm2 are positive the disturbed motion is the lesultant
of two elliptic motions, and equilibrium is stable This may be illustiaiwl

by the
"
equilateral

"
centres of libiation At one of these
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and therefore

,
2 / j.+ -*<** +

Hence the quadratic in m2
becomes, since n2 = p + z/,

m4 - 77i
2

(//, + v) + *p.v =

and the roots are real and positive if

an inequality which is satisfied if p/v is 25 or greater In that case the

equilateral centres of libration are surrounded by two distinct families of

stable periodic orbits which are ellipses in their elementary form, with periods

tending to STT/W If the masses are more nearly equal, the roots of the

equation in m2 are complex, and no such periodic orbits exist

Since the masses in the system Sun-Jupiter satisfy the condition of

stability, and the disturbing influence of Jupiter predominates over the

minor planets, it might be expected that planets would be found m this

group approximating to the equilateral configuration Such planets, with

a mean motion nearly equal to that of Jupiter, have actually been discoveied

214 A valuable insight into the general character of the solutions of the

problem of three bodies is obtained from the periodic solutions because they

repeat themselves after every period These solutions have therefore been

the subject of much laborious study But such orbits will not be indefinitely

permanent unless they are also atable Hence it is necessary to study them

in relation to those orbits which initially differ but little from them

The original equations of motion give

J +
2.W

,|J-irfr
(1)

where R is the radius of cuxvaturc of the orbit, Sp la an element of the

outward drawn normal, and N may be called the component of effective

force along the inward normal Hence if the tangent to the orbit makes the

angle <f>
with the axis of

,
R -

v/<f>
and

<*+*>
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Also the equation of relative energy gives, when the constant C remains

unaltered,

9p

~~

dp

Let the undisturbed orbit at P be defined by the quantities s and
<j>,

and the

corresponding point P' on the neighbouring orbit by &s along the undistuibed

orbit and Bp normal to it Then

or to the first order

. an $p an &
Sv = -=

-- + ---
dp v ds v

Hence

i(, +.)*-r.*---.g) (2)

Again, let (u, u') be the components of velocity in space of P m duections

coinciding with Ss, 3p Since these Imet, are rotating with the absolute

velocity (<f> + ri) the kinetic energy of unit mass at P 7

is

Hence Lagrange's equation for Sp is

Now this equation must be satisfied when Sp = Bs = 0, and when the tettns
which do not vanish have been removed, it becomes

Also it must be satisfied when Sp = b-vft, where & is constant, for this
also represents a point moving on the unvaried orbit Thus

and therefore

which owing to (2) becomes
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But

Hence finally

^ + Sp = (3)

where

a well-known result due to Hill

Again, Lagrange's equation for 8s is

which must be satisfied when 8p 8s and also when 8p = 0, 8s = vSt

Hence, after removing the terms which are independent of Bp and 8s and

then those which contain 8p,

This result may be used to give another form, namely

where V =
a*/^* + 33

/d&
2 = 32

/9f
2 + 8*/*?

1 Tnis form may be more convenient

than Hill's because V2
(not to be confounded with the three-dimensional V a

)

does not depend on any particular direction

For some purposes it is necessary to take the arc s instead of t as the

independent variable Then (3) becomes

or again, if 8p
= v

" *
89,

where

215 When the unvaried orbit is periodic, is a periodic function of t

with the same period T The equation (3) is therefore a particular case of a

linear differential equation with periodic coefficients Its general theory may
be indicated Since the equation is unaltered when t is replaced by t + T,

w& solution if g (t) is one But every solution is a linear combination
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of any two others which are independent Hence if g represents g (t) and

G represents g (t + T), glt gz being any two solutions,

where a, ft, 7, $ are constants, not unrelated For since gl} gQ are two solutions

of (3)

g*gi**ff&
and therefore

fftfi
-

9i9*
= const = G^ -

G^ff,

Hence S - 7 = 1 Letyi,/2 be two other independent solutions Then

and the result of eliminating glt g*, Glt G2 is

F
where

(ad
-

fee) 4 =

(ad-bc)C =-ac(a-5)
(ac?

-
fee) jD = - feca - cdft -t- 067 + ac?8

Hence ^+D = a + 8isa constant independent of the choice of particular
solutions, as well as AD - BO= aB - #y = 1 But it is now possible to choose
b/d and a/c so that B=^C==0 Then

and the funcfaons/^/, are defined by the property that they are multiplied
by constants when the argument is increased by the period T Hence the
general solution of the differential equation may be written

where < < 2 are periodic functions with the same period as and
cosh/,2

7^ J ( + *), a constant which can be derived from any pair of inde-
pendent solutions The quantities k are what Pouwarf has called
charactenstic exponents If & is a pure imaginary circular functions are
involved and Bp has no tendency to increase beyond a certain limit The
periodic orbit is then stable If on the contrary k is real or complex real
exponential ranctions are mvolved and Bp will increase

indefinitely The
orbit is then unstable J

fJ^T!f
D f SUblhty theref re mvolves ess^tially the determination

Math .

"

,"

'"^^^^ m^eral What 1S known asMathieu s equation, generally written in the form

+ \a + 16q cos
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of which the solutions are elliptic cylinder functions, is only a particular case

of the general type (3) and it is the subject of an extensive literature On
the astronomical side the reader may consult Poincar^'s M&hodes Nouvelles,

Tome II See also Whittaker and Watson, Modern Analysis, Ch XIX

216 The original equations of motion,

?
- 2n

,=|,
can also be given a canonical form Let

and then evidently

dH dH
"= > ft

97;
>

are equivalent to the above, and they are of the required form The integral

of energy is H Now consider the integral

- {'(-
J to

Between fixed limits its variation will vanish along a trajectory in virtue of

the canonical equations Therefore it is a minimum (or at least stationary)

along a trajectory as compared with its \alue along any neighbouring path

Let the time along any such path be determined by the equation of energy

H = Then the integral becomes

ft.
Jo

from which form, since v* - 2H - C, the time is absent Now
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and

B f\ (fdn - vd%) = n
Jo

Therefore, if f= ty = at the limits,

/-
("fads

-
Sf<* (#) - fyd (vp] + 2>i i

Jo I \ as/ V ds/

Let the tangent to the orbit make the angle <f>
with the axis of f,

and let fy
be the normal distance to an outer neighbouring curve, so that

af = d$ cos $, dvj ds sm ^, Sf p sm rf>j 877
= Sp coa 6

Then
ri^ =
Jo
^^^ "" Sm^^ OS^^ + COS ^d (v sin 0) ^ + 2n %>^*}

where

A -

JJ being the radius of curvature Along an orbit K=
therefore, and thw IB

a result already expressed in (1) It is fuithei to be noticed that

dp v dp*

when K - Q, and since v -
</> comparison with (3) shows that

^^rJlnef
116^ ^ r Und a Cl ^d rblt 1S P*** ^

adjacent parallel curve when 6 is positive at every point In
periodic orbit is in general stable
when 6 is negative at every point
obviously unstable

negative everywhere along a simple closed
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curve A Then by (5) the value of J will he diminished when taken round

another curve adjacent to and surrounding A Again, let the quantity K he

positive everywhere along another simple closed curve B external to A The

value of / will also he diminished when taken round a curve adjacent to and

surrounded hy B Now consider the aggregate of all the simple closed curves

which can he drawn in the ring-shaped space bounded hy A and B There

must exist, if the space contains no singularity of 1, one of these curves

which will give a smaller value of //than any other, and it cannot coincide

with A or B for any part of its length It represents therefore a periodic

orbit characterized by the constant of energy C, and thus the existence of

such an orbit is established when the two curves A and B can be found

which satisfy the conditions stated The orbit is necessarily unstable

The same author has given another elegant theorem By Green's theorem

JjV (log v) dtdrj
=
1^ (log v) dy

- 1
(log *

where the first integral is taken over the area of a closed curve, and the second

over its boundary But if the curve is a trajectory, K= and therefore

Hence

This assumes that the enclosed area contains no singularity of the integrand

But this function becomes infinite at the centres of attraction Surround the

mass
/JL

at (- o,, 0) with a small circle * of radius p Then since

the integral round the circumference becomes
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Similarly the corresponding integral round a small circle /ca surrounding the
mass v tends to the same limit Now if the outer boundary contains either
of the attracting masses or both, the boundary integral must be diminished

by subtracting the integrals taken round *, or K* as the case may be Hence
the final result is

where j
=

0, 1 or 2 according as the loop of the orbit contains neither or one
or both of the attracting masses, y is the total angle through which the

tangent to the orbit turns, and T is the time from one end of the loop to the
other In the case of a periodic orbit in the form of a single closed curve
y=27T

218 The equations of relative motion are capable of a transformation
which is very useful in some cases This may be deduced from the intro-
duction of conjugate functions in a general form Let the original equations be

op-
nz

7j
=~

Off
or in the Lagrangian form

d

where
*

^==H
and the integral of energy is

Nowlet

sothat

3f= 95 <L?

, fa fa' dv
and

l_ 3 9

Abolet
*-"S + '&

Then if
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where the suffix denotes the degree of the terms m u, v (or , 77),
it will be

found that

The equations of motion may now be written

* f^U^ffi-^-^4.^4.?!
dt \ditj dt\du) da du

*
du du

d_ fiv*\,d /^i\ s^ <fff ar ar
dt \dv)^dt\dv) dv dv

*
dv

+
dv

and the integral of energy is

Tt = T* + V-h

It can be verified without difficulty that

d

Also
ar. 3r ^3F iw, , ,. ar,

- -

Hence the equations of motion become

|(Ju)-2.J. J |.

-
(/.) + 8/u -

.

1
1
J (f, + F- i)}

-
.

Now let

and we have

with the equation of energy
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It is convenient to write

and then

219 What is needed when F is the potential due to two masses /*, v at

a distance 2c apart is a transformation of the coordinates which will rationalize

both the distances pl} p% Such a transformation is

b + c cos (M 4- iv), b = c(fji v)/(fjL + y)

where 6 is the distance of the middle point between the masses from then*

centre of gravity For

Pi
2 =

(f b + c)
2
-f i?

2 = 4c* cos2
J (M + w) cos2 i (?t

-

^' B (
_ ( c)

2 + i?
a = 4c2 sin2

J- (w+ w) sm2
^ (u

-

and hence

. =_ = ___
pi p2 c (cosh v + cos ?*) c (cosh v - cos z/)

Also

J=fi'f3
= & sm (tt + w) sin (^

- w) = Jc' (cosh 2v - cos 2 a)

and

f
2 + ^

2
=/i/2 = ^>

2
4- 26c cosh v cos M + ^c

2
(cosh 2u + cos 2t&)

Hence

Q' = /ic (cosh v cos u) H- vc (cosh v + cos M)

+ Jw'to
8

(cosh 3w cos w - cosh i; cos 3w) + ^n8 c4 (cosh 4v cos 4w)

-
^c

2
(h
-

J7i
a6a) (cosh 2-y - cos 2w)

and the equations of motion are

The time is given by a final integration

* = ic
8

[(cosh
2u - cos 2u) dT= (

These equations are in general very complicated, although they offer

essential advantages in studying the motion in the immediate vicinity of
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one of the masses Two particular cases may be noticed In the first the

masses are equal, /z,
= v and 6 = The equations of motion then become

^ - we2

(cosh 2v - cos 2 u) -^
= - c'h sin 2w + JnV sm 4w

^ -1- Tic
9
(cosh 2v - cos 2 w) -^

=
2/uc smh v - c

2
/* smh 2u + \^c4 sinh 4rt;

which are equivalent to equations given by Thiele and employed by Stromgren
and Burrau The other case represents the problem of two centres of attrac-

tion fixed in space, so that n = Then the equations become simply

J2

= (p ii)
c sm u c

2A sin %u

- = (p + v) c smh v - <?h sinh 2v

Here the variables w, t; are separated and the equations lead immediately to

a solution in elliptic functions The comparison of this problem with the

simplest case of the problem of three bodies is instructive as to the difficulty

of the latter



CHAPTER XX

LUNAR THEORY I

220 The theory of the Moon's motion lelative to the Earth has been
discus&ed with generally increasing elaboration and completeness by vanous
authors from the time of Newton to the present day The methods which
have been employed also differ considerably, presenting pecuhai advantages
in different respects, so that it cannot be said definitely that any one method

possesses an exclusive claim to consideration But at the present time three
modes of treatment are certainly of outstanding impoitance, those adopted
by Hansen, Delaunay and G W Hill respectively Hansen's theory was
reduced to the form of tables by the author, these tables weie published in
1857 and are still in common use, but will shortly be superseded Delaunay's
work took the form of an entirely algebraic development of the Moon's motion
as conditioned by the Earth and Sun alone His theoiy has been completed
by others and made the basis of tables recently published Hill's leseaiches,
which bear a certain relation to Euler's memoir of 1772, deal only with
particular parts of the theory, but the whole work on these lines has now
been earned out systematically and completely by E W Brown and will
form the foundation of a new set of lunar tables now in oouise of preparation

Here it is only possible to attempt a slight sketch of one method For
this purpose Hill's theory will be chosen, partly because it is destined to
receive extensive practical application, and partly because it contains original
features of the greatest theoretical interest The reader who wishes to gam
a comparative vie* of the different methods which have been used m the
lunar theory will study Brown's Lunar Theovy and may also be lefencd to
the third volume of Tisserand's M&amque Ctleste

221 Let the mass of the Earth be J, of the Moon M and of the Sun m'
the unit being such that the gravitational constant G _ 1 Let the origin of
rectangular axes be X, (*, y, ,) the coordinates of M and (*', *', *') the co-
ordinates of m' Further, let r be the distance JSJf. t

'

the distance Em'

rTktf ,I' /
tan

\
e M^ J!L

en ( 23) the f rCeS n the Moon Prelative to E can be denved from the force function
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by differentiation with respect to x> y, z ,
and similarly the forces on the Sun

per unit mass relative to E can be derived from the function

by differentiation with respect to of, y',
a? Hence the as-component of the

Sua's acceleration relative to G, the centre of gravity ofE and M, is

9F M dF

This expression will be derived by differentiating the function

/ __
-

co-with respect to #', or with respect to xl} where (tclt yl9 ^) are the new c

ordmates of m' when parallel axes are taken through Q instead of E Let

be the distance m'(?, l the angle m'GM and S= cos 0, Then

r M* r* p \
'rl

Pl +
(E+'M)^

P^
)

and

*5*-
+

(

where Plf Pa ,
are Legendre's polynomials

Po T> a Qa 1 P .

!
= O, la ^ AJ ~"

"Jj
* a

'

Hence, when expanded m terms of r/r,,

j^
* i \ \

- - -

^

Now the Moon's parallax is of the order 1, the solar parallax is of the

order 9" and the ratio M/ft is of the order 1/80 It follows that the second

term in FI is of the order 10"7 as compared with the first It can be

neglected, at least m the first instance JP/ is therefore reduced simply to

the first term, and the meaning of this is that the motion of G about w', or

of m' about 0, is the same as if the masses E and M were united at their

centre of gravity
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This motion is elliptic and the coordinates (x^ ylt zj can be treated as

known functions of the time according to undisturbed elliptic motion The
influence of the other planets is left out of account in the first instance and

finally introduced in the form of small corrections The first task, and the

only one considered here, is to find an appropriate solution of the problem of
three bodies, the problem being already so far simplified that the lelative

motion of the Sun and the centre of gravity of the Earth-Moon system is

supposed known

222 The force function F is expressed in terms of (a?', y', /) and not the
coordinates fa, ylf *,) now supposed known It is necessary to considei the
effect of this The jj-component of the Moon's acceleration is

.ft of , ft'''-_
E \ m' f M

since

This component is clearly derivable fiom the force function

f _S+M
i m'(JB+JU) . m'(E+ M)

"*" + -
when r'md A sue expressed m terms of fa, y,, *,) instead of (', y', *')When A

', r-> are expanded in terms of r/r, this becomes

for the term m l/n does not contain (*, y ,) and can therefore be 8uppresSod
As a matter of &ot the force function which is commonly used for the

motion of the Moon is neither # nor the function

jfi_^_+-3f . m' m'r
11

^~ +
A;~7i-

cos(?

where is the angle m'EM, but the function

r, _E + M m' m't--
r
--

A
---

>A
'

>

to rt^ SUb8tltuto* the coordmates of the Sun relateto w tor the coordinates relative to E Thus
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and therefore in the expanded form

E+M m' ( r r* 1 m'
r

"

E+M m'r-(p r r*--r~ + 17r 2+
fi n'

p* +

after suppressing m'/fi This is not the same as Flt but for practical

purposes it can be brought into agreement by a simple device Let a, of be

the mean values of r, ^ It is iound that to a term of the series involving

correspond inequalities with the factor (a/ay If then

be substituted for a/a' in the results which follow from the use of F^, they

will be very nearly the same as if they had been derived by using Fl It

may be left to the reader to examine the order of the chief outstanding dis-

crepancy after this treatment of F* It is easy to make the adjustment exact

223 Let the axis Ez be taken normal to the ecliptic and let EX, EY
rotate m the ecliptic plane of (ovy) with the Sun's mean motion ri The

equations of motion of the Moon are then

Now if E 4- M =
/*, since w'V m' (more strictly m'

the higher terms containing r/ra and therefore the solar parallax as a factor

Let v' be the true longitude of the Sun and let v' = e
; when t ~ Then the

Sun's coordinates are

Jf^ncosO/-^-^), r'=nBin(tf-n'*-A ^ S55

the axis of X being always directed towards the Sun's mean place When

the solar eccentricity is neglected and the Sun's orbit treated as circular,

t/ = n't + e
; and ^ a', so that

jr-n-a-, r-^-o, rfl -(**' + rro/n-x

Hence when the solar parallax and eccentricity are both neglected
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and when, still farther, the latitude of the Moon is ignored, the equations
of motion become simply

X- 2n'Y- 3n''Z = -

Y+2n'X =_
/u F/r< C1 )

These two-dimensional equations represent the simplest problem beaimg any
real resemblance to the actual circumstances of the lunar theory It is the
degenerate case of the restricted problem of three bodies when the two
finite masses are relatively at a very great distance apart and refers strictly
to the motion of a satellite in the immediate neighbourhood of its primaiyinese equations have great importance in Hill's theory

the forT'

When *he S0lar PMallaX al ne 1S neSlected' * mdy bo written m

^-entncity,. aquadratic

*
traasfo ^n of the genoial

m. JL_
mk
Then, smce

, , K as :

71 ~ n
(U - ?!

/i
being undefined i

kinetic
energy of the Moon 7- i by
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The equations of motion are therefore

* asB2
d̂s

7l'
2S = 2^3

ou

259

Let

where to, like n, is a constant at piesent undefined The previous equations

become

ou
- 2m JD* + m-6

It is, however, convenient to separate from 12
'

(accented for this reason) the

part which is independent of the solar eccentricity This is

With this change the equations of motion take the form

it + 6)
- ~ = -

-gj

~

**

wheie fit, -h Thus

(2)

(3)

which vanishes with the solar eccentricity

225 The next object is to transform the equations in u and s so as to

remove the terms involving r~* Since ( 123)

and Jj, contains terms involving t explicitly only m fi, in this case
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or in the later notation

Du Ds + (Dzf + fm2

(u + s)
2 - m2^ + = C -

where (7 is a constant of integration, D"1
is the inveise opeiatoi to D, and X

represents the operator D applying to ft only m bo far as 12 contains

explicitly This corresponds to the equation of energy

Again, since r2 = us + z\ the equations of motion (2) give

-]m
2O -f 6)

J - 2m'^

by Euler s theorem, % being a homogeneous function of degree p m t, tf, -7

The result of adding the last two equations is

D2

(us +O-Du Ds- (Dz}*

= C7- S (p+ 1)%4- D- 1

(AH) (4)
#-2

This is one equation of the required form

^
The other equations are obtained simply by eliminating the toims with
as a factor between different pairs of the equations of motion Thus

from the first pair

D (uDs -

and when the third equation is used,

ZmzDu -
}m , (5tl + 3s) =^ _ JM

9*
"

2m*A -
i m * (3a 4 5.) =

8O -
\ ,s

These combined g!ve
8"

,)j
_ 2mil)

(tt + s)
_

/an ao

with tho lovvoz HT-.-S !

Plaee a

Except for the comr mo
g^

eo^ m
, S> , of the second deg

the a^Ilax of
* th6 "^^^ momb "

.
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can be more easily manipulated Also if u =/()> s /(f""
1

) an(^ therefore

when either u or s has been calculated the other can be derived immediately

226 The general method ot the lunar theory, which is common to all

foims, consists in choosing an intermediate orbit which bears some re-

semblance to the actual path of the Moon and in studying the variations

which it must undergo in order that the path may be represented accurately

and permanently This intermediate orbit, since it merely serves as a subject

for amendment, will naturally be chosen with a view to simplicity At the

same time, the more closely it represents the permanent features of the

actual motion, the less burden will be thrown on the subsequent variations

Thus one might take the osculating elliptic orbit of the Moon about the

Earth as the intermediary, neglecting the effect of the Sun altogether The

intermediate orbit adopted by Hill is called the vanational curve and this

must now be denned"

When the solar eccentncity (e') and the solar parallax are neglected,

ft Also, when the Moon's latitude is neglected, z = Equations (4)

and (5) then become

D* (m) - Dn Ds + 2m (sDu -uD$) + |mj
(u + s)

2 = 0} ^
D(uDs-sDu,- 2mus) + fm2

(u
- s2)

= J

which must be equivalent to (1), whence m fact they can be directly deduced

The constant K (or /*) has been eliminated and the constant C has been

introduced There must be a relation between them which can be found by

reference to the original equations of motion Hill's vanational curve is

defined as that paiticular solution of (1) or (6) which represents a periodic

oibit Since the axes of reference rotate at the rate ri the period of this

oibit must be 2ir/(n-') where n is the mean motion of the Moon From

this it follows that the coordinates X, Y of the solution have this period and

can be expressed in the form of Fourier series in (n
- n9

) t, while u, s can

be expressed in the form of Laurent series m f The coefficients will be

developed m powers of m, and this is an essential advantage of the method,

since it is precisely this development which is less easy by the earlier

methods As a particular solution of the equations the symmetrical periodic

orbit involves no arbitrary constants beyond those already introduced, namely

n which depends on the actual scale of the lunar oibit, and *
,
which gives

an arbitraiy epoch corresponding with the fact that (6) do not involve the

independent variable explicitly

The existence of such periodic orbits is assumed The question has been

discussed analytically by Pomcm* (Methodes Nouvelles, Tome i), who has

proved that they do exist m general To some extent the assumption will

be found practically justified by the results But there is no doubt on the

point The periodic orbit m the actual circumstances could be found by the

method of quadratures
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227 The assumption that the periodic orbit required is symmetrical
about both axes at once limits the form of the expansions For with this

limitation X, Y must be of the form

Z= 2AW cos(2i + 1) f, F= 2 A'w sin (2* + 1) f ?= (T?
~

') ($-$)

where 7=0 when t~t Hence

1
- ^VH) r-"-

1 - a 2 a ?*+>

= a <

-00.

where

^st+i = a (o + a^.,), J.^ = a (aai
-

a^.a.s)

As it is necessary to multiply such series together and to exhibit the products
as double summations, it is convenient to write

x

(

;

= a 2 (2t

= a 2 (2t

or similar equivalent forms, so as to retain always a fixed coefficient o^ and a
fixed power & m the typical constituent The result of substituting the
series m (6) is

a-C - 22 40'a*o^^^ - 22 (2t -M) (% - 2t - 1) a, a

= 22 2; (ty
- 4z - 2) a2l a_2?+2l^ - 2m 22 2ja1 7

t

+ fm2 22 a^

where ^ and ^ have all positive and negative integral values The coefficients
of every power of f must vanish

identically, and theiefore

*-*C = 2 {(2z + If + 4m (2* + 1) + $ tn^}< + |m^ So. Ou^. (8)

whenj==0, and

+ Jm" 2 a* (a^-^-a +
= - 2 4; (2t + 1 -j + m

)^ a_^ + }

when j has any other value
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228 Owing to the introduction of a, one coefficient a may be made

equal to 1, though retained for the sake of symmetry Then, if m is a

small quantity of the first order, ap is found to be of order \p\, being a

function of m alone This fact makes it possible to obtain the coefficients

by a process of continued approximation, provided m is sufficiently small

The terms containing a <%> floa-# m the last equations are obtained when

i = j and i = 0, and they are respectively

[4f + 2; + 1 + 4m + 1) + fm2
} a,a^ + {4f

_
2j + 1 - 4m -

1) + fm2

}
a a^

and

-4? (1 +J + m) <V* -4K1 -j + m) aoa-s, (9)

Let the two equations be combined so as to eliminate the second of these

terms The result may be written

2 a* {[%, 2%] a^* + [2?, +] a^-*^ + [2?, -] *-++*} = (10)
%

where

3m 4y
-

8?
- 2 - 4m Q 4- 2)

- 9m*
[2?, +J - -

j-6j2 8̂ - 2 - 4m 4- m8

Sin* 2Q?
g -

16? + 2 - 4m (5?
-

2) + 9m2

12.?> -J -
S 2 - 2 - 4m + m8

the common divisoi being chosen so that the coefficient of a a^, [2y, 2/],

is - 1, while [2j/, 0]
=

If, on the other hand, the term in a 0# be eliminated, the result will be

found to be

2 o It- % 2* - 2̂ ] -* + t- %, +] a^.^ -f [- 2j, -] o^^^} -
\

which can be deduced from the same series of equations (10) by changing

the sign of j and then writing ^ -j for i in the first term This single series

is therefore sufficient The last equation can also be written

2 {[- 2?,
-

2t] cv^a.^ + [- 2;, -] a^^a^ + [- 2j, +] a^-^a^}

and hence the rule for connecting the pair of equations corresponding to j

m terms multiplied by [2?, 2i] change the signs of j and i throughout (both

in coefficients and m suffixes) ,
in the other terms write [- 2j,

-
] for [2y, +]

and [- ty, +] for [2j, -], the suffixes being unchanged

229 Since the coefficients [2;, ] are of the second order m m, the orders

of the three terms are respectively

which are at least

2|j|, 2|j-li + 2, 2|j+l| + 2
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Let the equations be written dcmn so as to include all quantities of the sixth

order (neglecting m8

) This requires j
= I, 2, 3 The orders of the

terms with the only possible values of i are

j = 1, i = 2 (6, 10, 14), 1 (2, 6, 10), (2, 2, 6),
- 1 (6, 6, 6),

- 2 (10, 10, 6)

j 2, i = 2 (4 8, 16), 1 (4, 4, 12), (4, 4, 8)

j = 3, i = 3 (6, 10, 22), 2 (6, 6, 18), 1 (6, 6, 14), (6, 6, 10)

Hence the required equations are

ODOB =
[2, 4] o2a4 + [2,

-
2] a_2a_4 + [2, +] (2a2a_2 + a 2

) + [2, -] (2a a_4 4- a<L2)

a a_2
= [- 2,

-
4] GL2a.4 + [- 2, 2] a2a4 -f [- 2, -] (2a2 a_2 + a 2

)

+ [-2, +](2a a^4 -f a%)
a a4

=
[4, 2] a2a_2 + [4, +] 2a a2

[- 4, - 2] 0,0^ + [_ 4, -] 2a a2

[6, 4] a^a4 + [6, 2] a2aL_4 + [6, 4-] (2a a4 + of)
aQa^- [- 6,

-
4] a2a_4 + [- 6,

-
2] a.za4 + [- 6, -] (2a a4 + a2

2
)

Thus, since a =
1, if m6 be neglected,

*-[2,+], a.2
= [~2,~]

and then, neglecting m8
,

<*4
=

[4, 2] [2, +] [_ 2, _] + 2 [4, +] [2, +]

^-[4,-2][2,+][-2,-] + 2[-4,-][2,4.]
These values will glve ae , a_6 as far as m', and inserted on the right-handside of the first pair of equations they give second approximations to 2 , a^
of the same order It is to be noticed that each stage of further develop-ment carries an equation four orders higher

The ratio of the mean motions of the Sun and Moon, and therefore the
ls known Wlth great

m =
n'j(n

-
')
= 08084 89338 08312

Hence it is practicable to mtioduce the numerical value of m from the
beginning and the approximation to great accuracy m the calculation of

S 6n 6 y rapld bj the above method

f

* traCC the develoPmen* ^ *e whole family of

for K
^

,
TheSe rbltS are f ^eat theoretlcal -terlst,

But ^ 1S eVldeQt that the effect of the
m re ^^erable, and such result*
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230 To find the value of a recourse must be had to an equation of

motion which has not been reduced to a homogeneous form in M, s Since

fl = z = and r2 = us, the first of (2) becomes in the present case

(jD
2 + 2mD + fma

) u + fms = KU (us)

~ *

or

+ 1)' + 2m (2t + 1) +|m2

}

This equation must hold for all values of f, including f= 1 Then u=s=o. 2 o^,

and therefoie

a 2 {(2t + 1+ m)
2

-I- 2m2

) a*= a~a
(2 o^)-

2

But ( 224) * /i (n
- n )~

a -
/i (1 + m)2 n-2

,
so that

rc
2a* = /*(! + m)

2
(2 a*)"

2

[2 |(2t + 1 + m)
a + 2m2

} a*]-
1

(11)

It has been usual to write naa*=
ytt,

a being the mean distance which would

correspond to the mean motion n in the absence of solar or other perturba-

tions Thus a a (1 + powers ot m) when the values of a*, are inserted

The precise form of this relation is required only when it is desired to

compare two theories expressed in terms of a and a respectively The con-

stant a fixes the scale of the orbit and therefore depends on the parallax,

which is observed directly

When the coefficients a^ and a have been determined, (8) gives the

value of (7, if it be required

For the transformation to polar coordinates,

r cos (
- n t - )

= ? cos (v
- n't - 4 - )

= X cos f -I- Y sin f= (u

r sin (v
- nt - e)

= r sin (v
- rt - ' -

f) = F cos f
- X sin = J (*f

-
tif

where e = e' - (n - 71') <b> since f = (n
-

n') (fl
-

tf ) and *f= log ? Hence

? cos(v-r?<-e) = a{H-(aa + a^)cos2f-h(a4 + a-4)cos4f-f- }|
i

rsm(v-i-) = a{ (a,
- a_a) sin 2f + (a4

-
a_<) sin 4f + })

which lead to the determination of 7 and v, the more simply because v - nt- e

is evidently of the second order in m

231 The use of rectangular coordinates is a distinctive feature of Hill's

method But for some purposes polar coordinates present advantages By
a simple change of units and notation (1) become

eft

de dt i"

which can be reduced to canonical form by putting (cf 216)
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The transformation to ne^ ^ ariables, r, Z i\ l
f
defined by

p = r cos Z, /?'==?' cos / r~l
I' sin I

q = f sin Z, 5"
= ?

'

sin Z + r"1
Z' cos Z

\\ill leave the canonical form unchanged, since

p'dp -f 5'(5
- (r'dr + I'dl)

=

and therefore it is an extended point transformation ( 125) Let t be

eliminated from the equations b} taking Z as the independent variable

After writing out the equations in explicit form make the transformation

r = IV, j
f

p
l
(T, Z' = &?/a

2

and finally put = 0-* The result is to give the equations

- 1 )
~

fi>*
-
p

2 + 1 cos 2Z -f i - e

- = -
pce>

- sin
GL*

and the integral J5T = A becomes

|/r' -f | (
-

I)
2 -

| cos2
Z - (Ae

; + e)
=

Assume a solution in the form

p = i 2 a^e21111 &
;

= 2 b2ne^
nl k

, e = C2ne
2m^

- X -3D -00

For a periodic orbit described al^a}s in one direction as regards I these

senes are con\ergent and it the coefficients are real, am = d-^i, b*>n = Z> 2n ,

cm = c_ and therefore

Idt n* 2nZ

The index 1 is arbitrarv It may be proved that if Jc is an odd integer
the orbit is completed in A circuits and is symmetrical about both axes, and
if 1 is an e\en integer the orbit is completed in $Jc circuits and is sym-
metrical about the axis ofp only For Hill's variational curve Jc = 1

The substitution of the assumed series in the equations leads to three
series of equations which must be solved by continued approximation as in
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Hill's method A most interesting result is that the series for e converges
with exceptional rapidity, so that the equation

r-J = c + 2c2 cos 21

where c = 93ca nearly, represents the vanational curve with an error which
on the scale of the lunar orbit is no more than half a mile No simpler idea

of the nature of this curve could possibly be given

It may be left as an exercise to the student to fill in the details of the

outline conveyed in this section*

232 The method by which the vanational curve can be determined

with any required degree of accuracy has been fully explained But it must
not be supposed that this curve represents the lunar orbit in any true sense

It is merely a particular solution of equations which are themselves only
a degenerate form of those which characterize the Moon's motion, and the

only significant parameter involved is the mean motion of the Moon The
next step is to seek the form of the general solution of the same equations
With this object it is necessary to study the variation of the particular
solution and to determine a fundamental quantity c

With some change of notation (3) and (4) of 214 give

where, in the application to (1),

1

6 - 2n'' + 2 (^ + nj - VJP+ y
~~

,

BN being the normal displacement to the vanational curve, -^ the inclination

of the tangent to the axis of X, and V the relative velocity In terms

of u, s,

since d/dt
= ivD Hence, JR, being the ladius of curvature,

>|r= V/R =(YX J?F)/Fa J*(A -TO*)/ 7 a =:i

Also

1 #T
.1

d M dVj\ d
(

1 dV>\
JL_ (dV*\*

V dt* V dt \1V dt )
"

dt \Z V* dt)
+
41^ \dt )

* Of J P Steffensen, Boyal Danish Academy, foi handlings') (1909)
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Finally

Therefore, since v = n' - n, ri = mv and
//,
= KV\

Now since u = ?Sa2, f 5 = -' 2o f"
21 and

and ET can be calculated by equating coefficients in

2 (2* + 1)
2 azl ^+1 = 2 (2i + 1) a2l f

2l+1 S T7, f
*

Similarly, by the first of (2) when O = 0,

u (/cr~
3 + m2

)
= 2-wSlT, f

21 = D2w + 2m Dw + m2

(5w 4-

^

so that

f.r = S {(2i + 1)
2 + 2m (2*

whence 1ft can be calculated m the same way When Ul} M^ have been

found it remains to substitute the series in (14), a process which involves

squaring two series, and the result may be written in the form

Thus (13) becomes
, (15)

and the derivation of 4 has been fully explained It is easily seen that

_,,
=

t and that J/t ,
Z7 and %% are of the oider 2^ in m

233 Owing to the symmetry of the vanational curve is a periodic

function with the half period of the curve, TT/(W wx

) Hence by 215 one

solution of (15) has the form

and c is the quantity which is now required The result of substituting

this series is

2 1, (c + 2j)
>+? = 22 8, V* S***

J * J

which must be an identity, and therefore for every value ofj

|,(c + 2;)-2etV.
4

or more fully, since t
= _t ,
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These equations are of infinite order Nevertheless, let the coefficients 6 be
eliminated m the same way as though their number were finite Then
A (c)

= where A (c) represents the determinant of infinite order

-03 -04~

4- ' 4*- '

42 -CV

-,_ (c -2)2 - -0, -ft, ~08
'

22 -0 '

22 -0 22-00' 22 -0 '

2J -0
-03

Oa -0

'

2' -a ' 2^;
+ 4)

2-0
42 - '

each row being divided by such a factor that the constituent in the leading

diagonal becomes 1 when c=0 This is Hill's celebrated determinant,
which introduced the consideration of the meaning and convergence* of

determinants of infinite order into mathematical analysis

234 The determinant A (- c) = A(c), for the change only reverses the

order of the constituents in the leading diagonal Also A (c + 2j) A (c),

for the displacement of the leading diagonal along itself may be compensated
by moving the divisors of the rows Hence if c is a root of A (c), c + 2^
are also roots The highest power of c in the development is given by the

product of terms in the leading diagonal, and this product is

(COS 7TC - COS 7T -s/0 )/(l COS 7T \/0o)
It follows that

A (c) as (COS 7TC COS 7TC )/(1
- COS 7T Vo)

for this contains the right number of roots, the same as A (c), and the same
coefficient of the highest power of c The roots are those already found, and
there are no others But this equation shows that

A (0) = (1
- COS 7TC )/(1

- COS 7T Vo)
and therefore c is a root of

sin-
1

^-TTCo
= A(0) sin2

TTVo (16)

* Gf WhiMaker's Modern Analysis, p 35
,
Whittaker and Watflon, p 86



270 Lunar Theory I [on xx

The solution of A(c) = is thus reduced to the calculation of A(0) The

latter determinant is convergent if 2 t 4 is convergent, and this may be

assumed for sufficiently small values of m
As a matter of fact in the present case A (0) is not only convei gent but

very rapidly convergent It may be written in the foim

A(0):

where

Suppose every %3
to be multiplied by #? If then the sign of Q be changed

the sign of every alternate constituent m every row and every column is

changed Multiply every alternate row and every alternate column by 1

and the original determinant is restored This involves multiplication of

A (0, 6) by an even power of 1, since the number of rows and column** is

equal Hence A (0, 0) A (0, 0), and A (0, 6) is an even function of

But the power of 6 m any term of the development of A (0, 6) is the Bum of

the suffixes of the
,
associated with it Therefoie the sum of the wifhxes

m any term of the development of A(0) is even Since 0,, is of the otdei

| 2; |

in m, this means that the order of every term is a multiple of 4

It is evident that the determinant A (0) must be developed axial ly, the

term of zero order, 1, coming from the leading diagonal alone Theie can

be no term in %
3 alone, for 0, incapacitates by its row and column two units

from the leading diagonal as cofactors Similarly a product CH)tf^ incapaci-
tates more than two such units unless their rows and columns mtotsett on
the leading diagonal Thus ^=J and the only terms of binary type involve

squares

235 The mode of developing A(0) will be sufficiently imdoxHtood if mu

be neglected The sum of the suffixes can only be 0, 2 or 4 Hence the

only possible terms are of the type

A (0) = 1 + A0J2 + .#02
2 + 00^62 + DC*)/

It is also easy to see how each of these terms anses Thus

, -fy

-ft-jft,, <>
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The next term corresponds to three consecutive diagonal constituents, and

Finally, the term m j
4 must correspond to four diagonal constituents only

and it is therefore

, -&! , -&
i 3

-#1-!!, -$,_!!,

D = 22 &&-i #,$,_! = J. 2 - L/S/^Vi - 22A+jft
1^

for, as the two minors must not overlap, z cannot have the values j or ^ + 1

It remains to calculate the values of these coefficients Let = 4o

Then

^" Q O V*

-oo 8a(4a"-l)

7T COt 1TQL 7T CO

The other coefficients can be calculated similarly by first reducing to the

form of partial fractions Hill's results include all terms of order less than

16, and with the value of m already given ( 229) he obtained the value

c = 107158 32774 16012

Without going further than the term of which the form has actually been

found here,
A (0) = 1 + JirfV cot JWo/a -

o) V<H> (17)

The argument given above as to the order of the terms refers to lp @3 ,

and not to effects arising from <3> But 1 - is itself of the first order,

and therefore this expression neglects m 7 instead of m8 Since m = 08 the

error m c might be expected to occur at about the seventh decimal place,

and in fact it is about 5 units in this place This simple expression, involving

only o afcol ,, is therefore very approximate
;

It may be noticed that AC (?? n') are the characteristic exponents of

the vanational curve Since c is real this curve represents a stable orbit for

small variations
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236 The introduction of the ehmmant of infinite wder wan Ji bol<l *utl

original expedient on the part of Hill, though juwtified latei by aiwh^tH

But an analogous method had been used earlier by Adams, whost it suits

weie published after the appearance of Hill's They lefoi to the mtegntion
of the third equation of (2) when fl = 0, or

If z be neglected in the coefficient of s, that IH in /
' the sonen

in 232 may be inserted, and the equation becomes

which, since M%
= M^ is of the ordex 2*

|

in in, is of exactly the B*UJH fotm

as (15) A solution is known to be of the type

and g must be determined from the infinite set

Hence the ehmmant is A'(g) = 0, and the solution IH given by

sin2

i-Trgo
= A x

(0) am2

J-n-V(2A/ )

where A'(0) is the result of replacing fl
t by 2J/ in A (())

Adams used the value m = n'/n = 00748013 exactly, which IH not juttr
the same as Hill's value He thus obtained the eoneHponding

m = 008084 89030 51852, g = 108517



CHAPTER XXI

LUNAR THEORY II

237 It is now necessary to consider the form of the general solution of
the equations (6), m the present chapter equations will receive leference

numbers m continuation of those assigned in the previous chapter, so that
the latter will suffice without referring specifically to the chapter or section
in which they occur The solution of (15) may now be written

MT-fr^SkS* log & = i (i-n') <*-ti)

The arbitrary constant ^ makes it possible to assign any required phase to

the variation in relation to the periodic solution and as $N is supposed small

(so that $N* has been neglected) the coefficients bl may be considered to

have a small arbitrary factor These two arbitiaries make the small variation

otherwise general Since c has been determined it would clearly be possible
to determine real values of the coefficients (except for the arbitrary factor)

by substituting the scnes in (15), equating coefficients, and proceeding by
continued approximation

Again, if $<r be the displacement in arc corresponding to SN
} by (2) of

214 adapted to the present notation,

or ( 232)

(-*")* (T)

Hence, V being an even function of f, tSo- has the same form as $N But
since

Fcos^r

V&* = ivLu, Ve-* = iv Ds
and

8

it follows that
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Hence Bu, &s, like Du
} Ds, are odd functions m f with xeal coefficients, and it

is possible to write

Bu= &

the coefficients as expressed being the same in the two sencs since Bu I- 5s = 2SX
is real For the purpose of this argument it is necessary to associate the -h <

solution for Su with the c solution for Bs, and to notice that (f*/?")
|( uo

constant conjugate imagmanes with absolute value 1 which have been ic-

garded as external factors of the series with real coefficients for BN, (Bcry $11

and Bs At the same time Su Bs is a pure imaginary

Hence the general solution of (6), differing but little fiom the vaiuUonul

curve, may be written

u -

where * has all integral values between + oo and p has the values and I

Also An = a2l as in the variational curve and c is a determined function of m
which has been denoted by c

238 But the solution which is now sought diffeis by a finite* amount
from the variational curve The above form must therefore be legmdod
merely as the beginning of the full development Hence the xostiicMon on
p will now be withdrawn and its values will be allowed to mnge betwoou

oo The coefficients of the first order Alc contain a small aibitiaiy pm,i-
meter e and the higher coefficients A^ pc will be obtained by successive

approximation in the ordinary way, so that A,lpc will be of the older
| /;

I

m e The introduction of e into the solution will afiect both A& and c, and
a^ and c represent those parts only which are functions of m alone and not
of e

It is assumed that this process will produce convergent series If they
converge they are true solutions of the differential equations, and not other-
wise This recurrent question m dynamical astronomy cannot be dealt with
here But the reader must lealize its fundamental importance, and he *ill
understand why so much attention has been given, by Pomcai* especially to
discussions of this kind, although they may seem unpioductive of new and
striking results

It is now to be noticed that

and therefore that the result of putting , f W1H affect in no way tho men

Zsf r fg ^ C effiCientS If thlS s^itntion is made !t is m
aiumS ofS T

C eXpllCi%
I"

the mdeX f f d to
argument of the trigonometrical term

corresponding to f-'in*
(2* + 1) (n - n

9

) (t
- t ) +pe(n- n') (t - 1,)
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With this understanding the form of solution becomes

tt-afSS^^f*-***, ^af-^^-^t^ (18)
* p i p

Comparison of these series with (7) shows immediately that the effect of

substituting in the differential equations and equating coefficients of ^+(̂

will follow as before if

A, 22, 2i4-^c, 2;4-#c
i p

be substituted respectively for

a, 2, 2^ 2;
z

Thus to (10) corresponds the equation

(137 + go, 24+jH)]^^^^
+ [2; 4- qc, +] 4^-^c-po + [2; 4- 0c, -] A_2j^-^_pG }

=
(19)

which holds unless j = g = The form of the symbolical coefficients has
been given with (10), [2? + ?c, 2? + gc] = - 1 is the coefficient of A

l}A^ ,

and [2; + qG> OJ
= is the coefficient of A QA^qo The counterpait of (8) is

m

239 Of the first importance are the terms which depend on the first

power of the parameter e When 8JV2 was neglected A ,, was identical with
a,*,, and therefoie A& = ajt when ej

is neglected Let

A 214. =;e6 4 , j4 Jt_ = o e/

The limitation to the first order in o means a return to the equations at the
end of 237 and the only admissible values of q are 1 With either value

p must be chosen so that c occurs only once in the suffixes of any term, or

terms involving ea will be introduced Hence (19) gives

S {[2j + c, 2i + c] flL^+a^ + [2y + c, 2$] ajl '_/+l

+ [2y 4- c, +] (a^A-jei + rtA^ t i) + [2; + c, -] (GL^.,^^/ + c^eL^^))
2 {[2j

-
c, 2i - c] a^+Jt e' + [2;

-
c, 2] a2t e^ H

+ [2jf
-

c, 4-] (av.Jl^e/ + i/A ;. 4-,) + [2j
-

c, -](a^-ai-4 e t 4- a^e^^^)} =

Permissible changes m i make it possible to reduce all the suffixes of e, <* to

the form ^, and the simpler equations

S {[2y 4- c, 2i + c] tf-^+J, 4+ [2y 4- c, 2* 4- 2y] a* K,e/

+ 2 [2y 4- c, +] (V^.^ 4- 2 [2; -I- c, -] a^-^ c/ j

S ![2y -c, 2*-cJ a^+. t e/ 4- [2;
-

c, 2fc 4- 2j/] ^ 4| ^c,

4- 2 [2/
-

c, 4-] rv^je/ 4- S [2;
-

c, -J a^,^6,l -

(g



276 Lunar Theory IT [OH xvr

are thus obtained Since the numerical value of m is introduced horn the

outset and c has been determined, the coefficients of etj et
'

<xie numbers, whi< h

in general become rapidly smaller at a distance fiom the central term The

equations can therefore be solved by continued approximation As they
determine the ratios only of et , e/, it is possible to put

The equations for^
=

l, + 2, will then serve to determine the coefficients

b% , A, &'i &', where b = &' = 1, = &' = For
7
= 0,

]a_a 6 +2[c,-]a^e
'

1(21)

,1 + 2[c,-]c/ eL 1 'f J

with a similar equation obtained by changing the sign of c and interchanging
e e' Either of these two equations, with - e

(/
=

1, determines 6o and t/,
and hence ,, / in general The two must lead to the b.ne result, .ind

together are merely a check on the value of c, which, had it not been detei-
mined otherwise, could in theory be deduced fiom the whole set ol these
equations

240 Before contmumg the development of a method the whole- ,, ,,i

which is a systematic advance towards great accuracy m the complete lesullH
and which w therefore apt to obscure the mam features of the actu.U motmu
of the Moon, it will be well to consider the kind of results which have uh e.ulybeen obtained

implicitly or can be readily deduced Poi thus purpo.se .1 low
order of approximation must be adopted and m <

will be neglected Then ,t
is easily found that

=1, U, = m3 + 3m3
, T_, = -

To the order named, the combination of (16) with (17) glveglves

and
similarly

= + m - m -Wm, = ! 07263

go
= V(2M ) + JflV(1
= 1 + m + fm^ _

||ma
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Then (12) give

r cos (v
- nt - e)

= a {1
- (m2 + m8

) cos 2f}

i sin (v
- n* - e)

= a (^m2 + Jm) sin 2f
whence

v = n* -f e + (im* + J^m 1

) sm 2f

r = a [I
- Jjm

2 + J ms - (m
2 + Jm*)cos 2?}

Terms depending on m only are called variational terms The coefficient of

the puncipal term of the variation in longitude is thus

JgLm
2 + J^-m

3 = 01013 = 2090"

which is some 16" in defect of the true value This term was discovered

observationally by Tycho Brahe, and its period, indicated by 2f (orW in

Delaunay's notation), is half a synodic month

241 The equations (20) for^ = l, when the leading terms only are

retained, become simply

_! = [- 2 -{- c, c] a2 o -1- {[- 2 +c, - 2] a^ + 2 [- 2 +o, -]} ,'

6/= [2 -c, 2] a.eoH- {[2
-
c,-c]a_a + 2 [2 -c, +]) e.'

'_! = {[- 2 - c,
-

2] a_3 + 2 [- 2 - c, -]} 6fl + [- 2 - c,
- e

It is to be noticed that
[a?, y], [a?, ] contain as a divisor

and that this has the factor m when + cc 2 c It is easily found that

: &, [2 + c, 2J--S, [2 + c,+] = TS7m2

[-2 + c, c]
- im-1 + ^g, [- 2 + c,

- 2]- f

[- 2 + c, -] - J$m + tfljm", [2
-

c, +] = -
JJ m -

as far as the piesent low order of approximation xoquires Hence with the

approximate values of aa; a_g,

(Am + JmJ

) + (-^m

It has been seen how the order of _j, e/ is lowered by the divisoi Dx

A similar circumstance affects the coefficients of (21) more seriously, since

DC = 2ca - 2 - 4m
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The disappearance of the terms belo\v m3

explains why an oxtiemely aeon air

value of c is required in the numerical development- Without continuing
the series for c heyond ma

,
Dc is here limited to a single teim, and theiefou*

only the terms of the very lowest order in (21) can bo taken into account

This equation is thus reduced to

[c, 2] a^' - * + [c,
- 2 + c] rt_ 2 e-, + 2 [c, +] <r e-i =

where

[c, 2]
=

[c,
- 2 + c]

= - Jftm-
J

, [c, +] = -
-ft m->

Hence

A (A *o + JiO - e + ttt - A) (A o +w ')
* o

which gives quite simply 3e + e/ = 0, and with e - e
(/
=

1, ()

=
\ t ^ [

These values, though representing only the teims of /oio ordei in m, aie tuu k

within 1 per cent It follows that

-
|fgm

where, owing to the imperfect values of
, e

fl ', the second teims in
, */ may

also be defective

242 The terms thus found m (18) are

u = aef ( of
c + eo'?

~c + ^2+c + e.^" ^ + e/f
'""e + ^f^^)

s = aef-
1
(6 ?~

c + 6 'f
c + l?-

2-c + e_^2^
4- e/

to which correspond ( 230)

rcos(v -nt - e)
=

ae{(e + e ')cos <t>+( l + 6.0008

rsin (t;
- nt - e) - ae{(eo

- ^sm 0+(ej
-

e'^)s

where

<^
=
c(/z-^)(i5-i51)

is the argument of the trigonometrical term
corresponding to f

c These
terms are additive to the vanational terms already obtained

The fundamental terms are

r cos (v
- nt- e)

= a (1
-

j e cos 0)
r sin

(t;
- n$ - e)

= ae sin <

Now in elliptic motion (24) and (25) of Chapter IV give, to the fiist oido*
in e,

r cos w = a (- f<? + cos Jf + ^ cos 2Jf )

whence
rsinw*=a( smM+^e sm 2Jf)
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These can be identified with the former by putting a = a, e = 2e, $ = M, and

v = nt + + w M
= w 4- (w

- c (n n')} t + G + cfo-ri)^
=w + {I -c/(l+m))n + const

This shows that to this extent the motion of the Moon is purely elliptic, with

eccentricity Je, but that this motion is referred to a line rotating uniformly,

given by

Thus c determines the motion of the lunar perigee, which completes a revolu-

tion m the direct sense in rather less than 9 years The above approximation

gives 128 sidereal months or 3500 days

In the older lunar theories, beginning with Clairaut, the rotating elliptic

orbit is adopted in the first approximation

243 The result of collecting the terms found so far as necessary is

r cos (v nt e)
= a [I ma cos 2 Je cos <

- (ttm H-Wm2
) e cos (2f- <

i sin (v nt e)
= a (^m2 sin 2f -h e sin <

+ (jy*m + Jf-m
2

) e sm (2f

The effect of dividing the latter by the former is to add to the second series

the terms

m2e (cos 2f sm <f>
+ ft sin 2f cos

</>)
= m2e {$ sin (2f + <) - -fy sm (2f

-
<)}

Hence the longitude is approximately

v = nt + e + -y-m
3 sm 2

j? -f e sm <^

*

+ Wni +^m9

) e sm (2f
-
^) + iJm

ae sin (2f+ ^)

As a constant of integration introduced at one stage of the present

method, e may be defined in any suitable way for the later stages Its

value depends on the exact definition adopted and will be found by com-

paring the final results with observation Thus Je as defined by Brown is

not to be identified with the e of Delaunay, for example The difference is

not great, however, and its value may be taken to be 054*9 Thus the co-

efficient of the principal elliptic term in longitude, e sin
<f>,

is of the order 6 3

The term next in importance has the argument 2f $ (or 2D-Z in

Delaunay's notation) The coefficient is right to the order given, though the

above derivation left this doubtful, and its value gives

( m +Wm*) e =* 73/ nearly

The true coefficient, depending on e alone, is 4608" This inequality ]

the largest true perturbation in the Moon's motion and is known as the

Ejection Its discovery fiom observation is due to Ptolemy
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Tin-
The term with the itigmm'nt 2f \ $ (,,r 2/>-f /) is HUM h HtHiItu

above coefficient gives 1f>7", whil* thf Mur uihu* is ,h,*uf 17
W
* ti ti

depending on o ,ilon> It \vill h<> notim! that flu g*. *!>* ]m of u
due not to a tim poilm button m tin* iM-fanguhn t*irlumf H Imt i. inf.

forence between the variation ami th* pum ipal riliph* ft fvl , m .(, m ,,,w ,

longitude

244 The tenus

will bo next coiiHiclo

H =
Tijj and (4), (5)

.MI tin*

Withco mi i!t<. snhu pui

M | th, sulu iMuin*m ,'

v .till mIntHl

where (3) gives

Now

whete( 223) *

***

In*

TnoTaly
*' =

'

(<
-

/,)
- ni (i,

- M ') (/ _ tj ..
, j0>

,
f>11

,

The whole disturbmg lu,,ct,,,, n.ns, tl | lmiul( .| y ,. ,,,.,,,
&,ftrnooey,th,.c, .uu,,,., , v lvmK ,., J,

'

M , ,mimed.ate pu^e ,t
oun.ly v.dh,,! tbot .,- fh- KM ^fc" ! ,

Hence

~ - -
j + jfc' (W^ ;';

Hm a
,

, v WB
*

Ihus the right-hand mombore 1 th<>
section will be of the form

,,

() f ^ ^

>u tk tat th, |HW I,M ,,,K , ,j,m

The solution is of the form

'v
p,
.,

*"-lniJmK l T Ihv
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where

^21 &2i> -^21+in
=

dr\% , -^2i-m *?

and jp has the values 0, 1 only, until higher powers oi e' are taken into

account The solution follows the same course as in 239 except that there

are now terms on the right-hand side of the equations The equations of

condition corresponding to (20) are thus

2 {[ty + in, 2^ 4- m] a_^ iy + [2? + m, 2* + 2j] 0*+^ *//

+ 2 [2; + m, +] 0^-2% -f 2 [2; + m, -] a_^_at_2 ^'}
-#Vn

This form results from the linear combination of a pair of equations obtained

by comparing coefficients of ^+m and m these the leading terms by analogy

with (9) are respectively

+ {4/
2 + 2/ + 1 + 4m (/ + 1) + fm2

}
a e^

+ (4/
2 -

2/ + 1 - 4m (/
-

1) + fm*} a^V-j+ - e/%fm
-
4/ (1 +/ 4- m} a e

f

77;
-

4;' (1 -/ + m) ao*V-,j + = '^+m
where / is written for j + Jm The combination is such that the coefficient

of fl/_j vanishes and that of ^ becomes 1 Hence

w _y (1 -/ + m)^+m + {V -y + 1 - 4m (y - 1) +^m2

} JF^m
^+m "

4g'* (8y'
a - 2 - 4m + m2

)

The divisor, which appears also in the symbolical coefficients [ ], becomes

small only through the factor/, when^ = 0, 4/
a m2

245 The calculation of ijJ9 ^ when m is given its numencal value at

the outset, proceeds as in the case of
; , e/ with this difference, that the

equations contain definite right-hand members A particular solution of the

differential equations is required, representing a forced disturbance of the

steady variational motion Hence no new constant ot integration enters

The machinery is of course absurdly elaborate when only the main parts

of the leading terms aie sought, but this plan will be pursued It is easily

found that

with the neglect of m in the coefficients of ** m
,
but not ?

m The operator

Dt applies to
m

only and gives a multiplier m to every term, while the

operator ZH applies to generally and gives divisors 2 m or m Hence

to the same order in m

Also

r\r\ nr\

'-ra+m
)-
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H cnee

AV = (- m- 1 + j) A
T

m - im AV jm f >

Thus
?; , i7

' must be of the hist, oidei in in and give use t feuns of a< 1* 4

the third oidei m the equations for
/

\ I These eon? un no mdl di\i MI

and for the lowest oidei they give immedlatel\

Coefficients of the foim [m, ?/] aie of the oidei I m in, but (hi v uwlfiplv
terms of at least the fouith oidei in the equations lot i o The\< viw
therefore to the second oidei

-170 +2 fin, -f
]

tt
ttr/ , i 2 (m,

-
) </,>/ ,

. #"m
~

??

'

H- 2
[ in, + 1 HOT/' } 2

[
in [>; , #"

where

[m,+l-|-m,+l*-^ |n, f
| j

,,
j j

Accordingly

Thus the pnncipal teuns depin(Jing on the sulai mvntm'tU umv IM* pnf
in the form

7 cos (v nt e)

r sm (v wtf e)

=
a^{-3(m-.m')sm^

/

-} (\m J

Hm(af } ^') f J/jmNui(2 ^')]

In deriving the longitude theie aie no Jnleifmog t,., ms O i thin tudri mul
the last line without a gives the additional fenim depending otl /

'

Tl|l
term with argument f (or T) is called the 4,i^/ AV/w,i^fW fi f t< , r , tM IH

, II(W J

The value of e
f

is 001675 arid the coefhu.nt o! thm p,uf of the f< im
-^(m-mO, w-770"aH mnpaied with the emnplef,* %li | uo UW KMI*
the argument 2f-f (01 2Z> -

') tho co<^eient ||,V i f I0jr the tru,<
value being + 152 /7

, and foi the aignment 2fr f f (01 tf /> t /') tin* rocfhwu!
-t^e'm

2
is -15" 5, the true vJn< Inking -ai" The dwuefwmwt4 ^

considerable and show that the paitH depending on highei powmt of , m ]

large As acnes in m the toefheientB eonv< igr Hlowl V , and itenee fh, KH ,ir
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advantage of the Hill-Brown method, which by employing an accurate
numencal value of m from the beginning avoids expansions in this parametei
altogether

246 In deriving the terms with the characteristic a'-1
alone, e' is neg-

lected and therefore fl2
= 0, DtQ, = 0, and

= O, = 2m2 a'"1 P3H = mV
-1

{5 (u + s)
8 - I2us (u -f- s)}

since rS =X = %(u + s) when e' = The terms on the right-hand side of

(4), (5) are thus

a'-1

(5 (u* + s3) + 3zw (it 4- *)

~ ~ u " "

respectively The additional terms required m the solution must be of the
form

5

in order to pioduce odd powers of f Similarly H4 has the factor a'~* and
gives rise to terms with the same arguments as the vanational terms The
solution follows the same course as foi the terms with characteristic e', and
the relation connecting E\J+l with #

2j+1 , E'w is the same as before when
y-j+t

The principal terms are given by 2; + 1 = 1, 8 The divisor D
ft/ is of

the order m when /= J only But H, contains ma as a factor Hence,

when^
terms of the oider m3 are neglected m #'w , ma can be neglected

in m a

fl^ and the vanational coefficients a,, a_fl arc not requned Thus it is

enough to write
- 4n3

= - JnvfcV-1

(5

5w - wS - -

and therefore

Also, to the same order m m,

W - (- im-1 - A)^ + (-

The equations for an a.z can be adapted fiom (21) arid its correlative by
putting c = l, oBS / ai and e

7

e^ = cf^ To th*> second order m m
these give

[1, 2] <*,, - x + [l,
^

1]^^ + 2 [^ +] ^^ M^
[- 1, 1]o^ -

OHI + [-!.- 2] OuHicr^ + 2 [- 1, -.] O.OL.! E"^
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whence
- ^m^-^ + ^jma^- ^ma^ = fjtn k

\ !;m

ftmor,
- a_ t

-
IJJ
ma

, 4 V ma ,=.--', m -
,'

' >
and theiefote

-a, = i$m + {dm
1

,

- a
,

- -
jjjm

--
V.' lu

The additional t/oims in then olonu ntaty fotm aio thus

/ GOS(U- Jii e)~aV '

{(a, + a^Hosf f- (a, { a ) >!**,

and the last line, divided by a, giv<^s tho (>n(*sp<ntdnig turns in liuj[ituli

The mean parallax of the Sun is K"80 and of tho Moon 'U22"7, lo th*

above oider a/u'= 000257 1 This gives
- 114" toi the toHlinujt of the

first term (aigument f or I)) and !"(> foi the M fhuenl >t the sMnnti

(argument 3f 01 3D), \vheieas iho complete values, \\ith the < haia< ten *f u

a/a' alone, are 125" and midei 1" The tetm with aiu;{niM nt. /^ is kun\n

as the Parallactic Inequality Its ponod is one litnutttw (ui syuoilu month)

and the compaiibon of its t/lu^oictieal toeHj<i( k nt \\i\h ohsi nation ga\

probably the best deteimimitaon ol the solai paiallax until the <ln<H ^ o

metucal method based on the obseivation of minoi plain tn \\a- itliptfi

This use of the paiallactic imnjuahty is not entnel\ fire fioni h]<i*tnn

because the Moon cannot be obseived throughout a toutplefe huiatiii atil

systematic enor may be .suspected, duo to the \ai}iug illumination of tin

lunai disc

247 Hitherto the teims of it, # which aie of the iuM. oidei in the

characteristics e, e'^aa'"
1 have alone boon eonmdeied If the thud u*oilm Me

z be assumed to be of the hint oidei (.ho fust two equal HUH oi (iij show thai

u, 6 contain in addition only teims of the second and Inghei oidem Thi
third equation of (2) has already boon considered in ^ 2.%, imd \\lien SI is

neglected terms m z of the Hrat oidoi are given by the equation

Let

vi
= g (

-
') (t

- * - i log f ,
fe

Then the general solution is of the ioim

where a piolnmnary valu< of g has been found in 21*0 and k, / u iir

the two necessaiy arbitiaiy constants As before th< nulh\ ojf ^ has

suppressed because it does not affect the calculation, though the pt
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argument must be retained m the results The coefficients k* are deter-
mined by equating terms in ^+g

, so that

and it is possible to write k = 1

In obtaining klt k^ to m2
only it is possible to neglect ks , k^ and approxi-

mate values of M,, Ml
=M^ have been found in 240 Thus the equations

are

\vhcie

(2 + g)
2 -2o = 8, (2-g)'-2^ = -4m-3m2

, 2#i - 2M., = m' +^m3

Hence

Ax = T
3
Fm2

, AL.! = - m -
-|fm2

and to this order m m
is- ak(^-f-*-(tm + f5ma)(r2+*-f2^
z = 2ak {sin 77 + (|m + \\m2

) sin (2f
-

77) + f\m2 sin (2f + *?)}

248' Here the fundamental term is

# = 2ak sin
77
= 2ak sin (g (n

-
ri) (t

-
4)}

and its general meaning is easily seen, though the exact definition of k must
be adapted to the final approximation and then determined (like e) by direct

comparison with observation The maximum value of z is 2ak But it is

also approximately a tan /, a being the mean distance m the orbit projected
on the plane of the ecliptic and I being the inclination of the orbit to this

plane Hence k is nearly -J-
tan 7, and differs little from Delaunay's 7=sm %I

Its provisional value may be taken to be 0448866 = 9260"

At a node z=Q and the period between successive returns to the same node
is 2?r/g (n

-
n') In this tune the mean motion in longitude is 2?m/g;(?i

-
n')

Hence the mean rate of change in the position of the node is

{27m/g (n
-

n')
-

27r)
-

2?r/g (n
-

n')
= n - g (n

-
n')

with the approximate value of g tound in 240 Since this expression is

negative the lunar node has a retrogade motion and completes a circuit m
6890 days or 18 9 years, which is reduced by about 100 days when the com-

plete value of g is used These facts have an important bearing on the

theoiy of eclipse cycles

In dcnving the elemental y terms in latitude with the characteristic k it

is enough to take from the variational solution

r = a(l-m2
cos2f)

and to the ordci m2 the latitude ib

5/r
= 2k {am 77 4 ( j m + ^ma

)
sm (2f

-
77) 4- -j^m

2 sin (2f + 77)]
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The first term, with argument ^ (or .Fin Delaunay's notation) ib the puncipal
term in latitude Its coefficient is 5 8' The second term, with argument}
2

rj (or 2D - J1

), has been called the evection in latitude Its coefficient

as found above is 610" 6, the tiue value being 618" 4 / The third term, with

argument 2f + 77 (or 2D + J
1

) has the coefficient S3" 2 as compared with the

true value 94" 5

249 It is now possible to sketch the whole method of the subsequent

development The greater part of the practical work of calculation has b<n n

based not on the homogeneous equations used above, which present advan-

tages in special cases (especially the calculation of long-peiiod terms), but on

the original equations (2),

D*u + 2mDtt + fm9

(u + s)
-~ = - ~

T OS

It is unnecessary to use the equation m s because s =/('~"
1

) if w =
real equations are replaced Jby a single complex one Also the charactenstics

entering into u and z are distinct Hence the tieatment of the equations an

u and z is also distinct The order of a characteristic is the sum of the

positive powers of the parameters e, e'} aa'"
1
,
k which compose it in is

a mere number for this purpose, and retains its identity only in the argu-
ments Now suppose that a complete solution u = ul} s=s1} z z^ to the

order
//,

in the characteristics has been obtained The next step is to find

the solution u = u1 + u2) s=*Si + s& ,
z = zl + z,

y
where u2) $it z^ icpicsoiit tho

terms of order /i + 1 Insert these values m the equations, retaining- only
the first powers of u2) s$, z% The result is, since ? = us + zz

,

(D + m)
2

(u, -f 2) + m2
(M! + u3 + 3s, + 3sQ)

~ K (u, + wa) rf
^

+ f/cw^r
5

(i*j 4- Wa i a + 2^^) - -
d*s

(D
2 -m2

) (^ +^ -
(^ + *2) rr3 + j^rr5

(MI S -f w,^ + 2^^) = - I ?f^-
dz

Now terms of order less than p + 1 must be satisfied identically and thoiofoic
terms linear m ul} s1} zl may be omitted Also terms of ordei higher than
/!-+ 1 can be neglected Hence ult slt zl may be used in calculating 1, andm conjunction with u2 , s2 , z% it is possible to write a

l
= uQy s1 8Q9 #4 0,

? 1
2 = -w 5 = p

2
, where w0) 5 , 5=0 is the variational solution of zeio

Hence the equations reduce to

(D + my wa + w2 (im2 + i/:po~
3
)+ ^ (jm

2 +
-j

f
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where the terms with D have been retained on the right-hand side, though
apparently of order not higher than /A, for a reason to be explained later

For the moment they can be left out of sight

250 Since the treatment of the two equations is separate but quite
similar it will be enough to consider the first It is convenient to write

MI = MO + Ui, i
= s 4- $1 and to expand the term icv^rc* in terms of /, s/, zlt

rejecting the vanational part *
j0

~s and the linear terms The form of

the known solution has been made sufficiently obvious, and it is clear that

the right-hand side, when developed, will contain an aggregate of character-

istics X each of order //, + 1 and each associated with one or more series

Each constituent part may be taken to be of the form

A -

where

ft* <? & having fixed integral values (positive or negative) in the series con-

sidered, while 2t may have odd integral values when aa'"1 occurs in X

The part of the solution required to satisfy this series is of the same form

and Xl> V are to be found by inserting this expression in the equation This

may be written

(D + m)
a
U* + M<u* + JVabP- A

where

M =

The series AT, in which Mt
= Jlf_,, has already occurred in the determination

of GO and go After substitution of the senes for wa ,
sa comparison of the

terms in fH*)+i on both sides of the equation gives

This series of linear equations, in which the coefficients M% ,N% rapidly diminish,

must then be solved by successive approximation When this has been

earned out for each series A and every characteristic X, all the terms of order

p, + 1 m u, 3 have been determined The treatment of z is precisely similar

251 But one important question clearly arises Is the set of linear

equations consistent and definite ? If the modulus of the set, which can be

written as a symmetrical determinant of infinite order since M%
= M, lf

JVi = N"-.lt is not zero, the solution is certainly definite This is the general

case But consider the determination of et , e/ the co-factors of the character-

istic e of the first order By the above method these will be obtained from

(23) by putting Aj = A'-$
= and r = c The consistency of the equations
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now requires the modulus to vanish It is obvious that this condition in iact

must lead to a determination of r which will be identical with the value of

c
, though the latter was found above in a formally diffeient way When

the equations have thus been made consistent the solution only becomes
definite when the arbitrary condition e ^o

/ = l is added, and this condition
is equivalent to a definition of e

It is now evident that the modulus vanishes whenever T ==
c, 01 loi eveiy

series based on the same argument as that of the principal elliptic touu
The consistency of the linear equations requires a relation between the

coefficients A
Jt AJ wtych may be expressed by equating the modulus to zoio

after replacing any column in it by the seiies A
Jt Aj But owing to the

symmetry of the modulus this relation is capable of a much simpler f01 in

Let the equations (23) be multiplied by e
j} e'_, and let the sum be taken foi

all values ofj Then the coefficient of X, is

(2j + T + 1 + m)
2

ej + 2Mlj+l + S^e'-H* =

because, smce ^M% eJ+l
- Si/"~ 4e,^ = 2-flfte,., this is one of the equations of

condition Similarly all the coefficients on the left-hand side vanish, and
the lequired relation appears in the foim

The reason for retaining the terms (D
2 + 2mD)wz in (22) will now be undoi-

stood Without them there is no reason why the relation (24) should be

satisfied, and in fact it will be contradicted But let % contain terms of the
form

(M,)=2 w^+A'-.r*-1

)
i

(D* + 2mZ>) 00 = S {[c
2 + 2c (2t + 1 + in)] E^<-

+ [c
2 + 2c (2t

- 1 - m)] JE"_,?-
J4- <

}

where terms obviously of order less than
//, + 1 aie omitted Then cleaily, il

the value of c here be regarded as unknown, it will be possible to adjust its

value so as to satisfy the relation (24)

252 The matter is made clearer by considenng the actual facts In the
first ordei there is one such series, with the coefficients e,, e/ In the second
order there is no such series and the question does not arise The primitive
value c suffices In the thud order seiies of this type reappear, absocuited
with the characteristics e3

,
ee'2

,
ek2

, e (aa'-
1

)
2 The contemplated change m c

is associated with e through the first ordei terms Hence the relation (24)
in the third oider will give in succession the parts of c which contain
e2

,
e'

2
,
k2 and (aa'-

1

)
2

Similarly still higher parts of c may be found m con-
junction with the inequalities of a higher order It is natuial that the
motion of the perigee (and the value of the characteristic exponent) whu h
was determined for highly simplified conditions, should requne adjustment
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when the conditions are more complicated and the deviation from the periodic

orbit is no longer infinitely small

For c let c^ X'Sc be written, where X'Sc is the part to be determined, its

characteristic being X', and let

where }} #_,, JD,,
D

'_?
are calculated numbers With the new value of c the

quantities
A

Jt A'-j satisfy a certain relation identically as required, and the

equations (23) become consistent, but the solution is not definite because any
one of the equations can be derived from the rest An arbitrary condition

can be imposed, and the form X ' = X is chosen The solution is then con-

ducted in the following way

The equations for^= are left aside Three separate solutions are then

made of the remaining equations (1) X,
= 6

; , X'_,
=

&'_, when X V ==

and Aj =5; , A'-}
= #_, , (2) X,

= d
jt X'_,

= d'^ when X = X '=0 and A3
=D

i9

A 1

^ = V^ ,
and (3) X, =j$, X^ =/%, when X =V = 1 and A,

-
A'-j

=

The last, which under the different condition XQ
- X ' = 1 would have led to

e,, e'_j, is independent of A
J}
A 1

^ and applies in all cases The complete

solution is therefore

X,
=

bj + rfjSc 4-^Xo, \'-j
= 6Lj

- d -; ^c -f/^Xo

When these are inserted in the equations for j
= the result is of the form

6 4- rfo&c +/ X -V + A' c +/o% =

and Sc and X are thus determined The value of Sc must also satisfy the

relation (24), so that a check on the accuracy of the work is provided The

solution of the equations (23) for the case when T = c is therefore complete,

and the denvation ol the higher parts of c has been explained It may be

noted that on the left-hand side of these equations the primitive value CQ is

to be retained for T at every stage, both because it is associated with terms of

the full order p + 1 and because the theory of the equations depends on the

fact that the modulus vanishes On the other side c will receive its full

value so far as it has been determined When a new part of c comes to be

determined in conjunction with inequalities having the characteristic X, Sc is

always associated through (D
2
4- 2mD) (u}) with the terms in u^ of the first

order in e Hence the new part of c itself always has the characteristic

X' = e^X, and the numbers d
jt d'-j, hkej, /'-,, are the same in all cases

253 With the equation for z matters follow a precisely similar course,

and the exceptional case arises when T g The conditions are simpler,

because X
; -f\'_,

= always, and therefore the arbitrary relation has the

form X =V = The terms of the first order with suitable arguments have

the characteristic k, and the part of g found in conjunction with inequalities

having the characteristic X contains the characteristic k~*X
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The arbitrary condition X = X '

adopted in all cases has an impoiUmv
beyond that apparent in the actual calculation The aggiegato of the Unns
considered up to the final stage of approximation gives for the one aigurnont

u = aef (e

5 = ae?"1

ttf-i
_ 5f= ae 6o

The last expression remains unaltered throughout the coin so of the appnm-
mations Hence the constant e is defined as

"
the coefficient of a sin I in

the^aZ expression of psrn(v- nt- e) as a sum of periodic tenns, v,luw
v-nt-e is the difference of the true and mean longitudes and p is tin*

projection of the Moons radius \ector on the plane of leference"

Similarly the terms of the form

m the first approximation have no addition made to them suhsequrnUjsince
\j-V

= Hence the constant k is defined as "the coefficient of2a sinF in the (final) expression of * as a sum of peiuxhc terms
"

There is no reason to alter the definition of a, which is based on the
vanational curve But it is then to be noticed that the constant of distatx e

E2iT?T
on th

\*
plane Wl11 no longer be^ whcie *- '' ^ Mbe affected by terms with various characteristics which anse in the eoum> ofhe approximations as the constant parts of^ or ,f Kithe. m <, a n

rektion

The remaining three arbitranes have been denoted by f, * ^

h

=c (n-

- and CT<

depends on the S. alone aad

the plane of the
eclipt ^ & y

p ' ^ P^J^on

= p exp - i
(v
- nt ~ 6)

s p tan ^
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where
<j>

is the latitude Hence the true longitude and the latitude are

v = nt + + it (log sf
-

log ttf-
1

)

- -*'*
The constant of the Moon's horizontal equatorial parallax is based on a,

where n*a? =E + M To obtain the parallax at any time this constant must
be multiplied by

a /us 4- z-\

a \ a2
j

In these expiessions foi v
t

< and a?"1 the variational parts u0) $ are separated
from the other terms u^s^ z

t
and the expressions are then expanded in terms

of the latter Advantage can thus be taken of the expansions already obtained

in the course of the previous work The conversion to the hnal foim of

coordinates therefore entails no great amount of extra labour

254 This completes in outline the solution of the main part of the

pioblem, in which the Earth, Moon and Sun are treated as centrobaric

bodies, and the orbit of the Sun, or the relative orbit of the centre of mass

of the Earth-Moon system, is treated as an undisturbed ellipse in a fixed

plane, A large number of comparatively small but highly complicated
corrections are still necessary m order to represent the gravitational motion

of the Moon in actual circumstances They may bo classified thus

(1) Tho effect of the ellipsoidal hguio of the Edith, <\nd possibly of the

Moon

(2) The diiect action of the planets on the relative motion of the Moon

(8) The indirect action of the planets, which operates by modifying the

coordinates of the Sun These indirect effects are in general larger than

the direct effects, and are sometimes sensible m the lunar motion when they

are insensible m tho relative motion of the Earth and Sun Among the

indirect actions of the planets may be specially mentioned

(4) Lunar inequalities produced by the motion of the ecliptic, and

(5) The secular acceleiation of the Moon's mean motion, which t\ribes

from the secular change in the solar eccentricity e under the action of the

planets

It is impossible to discuss these matters profitably in a short space The

readei will find references in Professor Brown's Treatise and detailed results

in the memoir* which contains his complete and original theory

, Astr Sue
, wu, pp 39, 163 , tiv, p 1 , LVXI, p 51 , LIX, p 1



CHAPTER XXII

PKECESSION, NUTATION AND TIME

255 In order to investigate the motion of the Eaith about its eentie of

gravity we take a set of rectangular axes OXYZ fixed in space and a
second set Oxyz coinciding with the

principal axes of meitia, These a*o
fixed m the Earth and move with it The two sets aze drawn in such n
sense that the positive directions of the corresponding axes can be biought
into coincidence by a suitable rotation Their relative situation is defined
by the three Eulenan angles B> 0, ^ where is the angle between OX
and Oz

9
< is the angle between the planes OXZ and OZz, and ^ ls the anile

between the planes OZ* and Ox* Then the coordinates are iclatcd by the
scheme J

X V rs

so cos 6 cos $ cos ty sin < sm^

1S

axes

a>!
= 6 sin* - sin cos

i/r

a roUUon about,
6<lulvalent an ular vdoufoo. about th^.

o>s
= * + ^, cos Q

which are Euler's geometncal equatwns

thc axe&
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256 The external forces which are here considered are due to the action

of the Sun and Moon An approximate expression for the action of either

of these bodies is sufficient and easily found The potential of the Earth

(mass m) at a distant point P has been found ( 18) to be

where OP = r and / is the moment of inertia of m about OP This expression

is true as regards terms of the second order m the coordinates of points in m
relative to the centre of gravity Terms of the third order will clearly

vanish in the sum provided that the mass m possesses three rectangular

planes of symmetry and this is sensibly true m the case of the Earth

Terms of the fourth order are small in consequence of the ellipsoidal figure

of the Earth and are neglected Now V is the work done by unit attracting

mass at P when the particles of the mass m are brought from infinity to

their actual configuration Hence the work done by a finite mass near

a distant point 0' is

by similar reasoning, if 0' is the centre of gravity of the attracting mass

m', 00' =*R, A', B', C' are the principal moments of inertia of w' at 0' and 1*

is the moment of inertia of m' about 00' Now since A, Bt
and I are of

the second order m the linear dimensions of m, terms of the second order in

the linear dimensions of mf can be neglected when associated with them

Let the coordinates of 0' relative to be (a, y, z) and of P relative to 0' be

(ft 97,?) Then

But since 0' is the centre of gravity of the mass m'

%%dm' = S?? dm' = Xfdm' =

Hence if the expression to be summed be expanded in terms of , 77, f, the

terms of the first order vanish m the sum and terms of the second order are

neglected To this order of approximation

^Z_-"~^dm' = ,

and if I now represents the moment of inertia of m about 00', the complete

expression for U becomes

2.R"
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This represents the mutual potential of two masses m, mif with sufficient

accuracy In the usual astronomical units ( 24) G=*k~ The mass of the
Sun is unity and foi the masses of the Earth and Moon we l<ike E and fK
Then if the mean distances of the Sun and Moon are a'(= I ) and a" and the
mean motions n' and w",

257 The moments of the exteinal foices about the c%xcs OJLI/S being-
L, J/, N, the woik done by them when the Eaith icceives a amall twist
defined by the rotations da> L , d^, dco^ about the same axeb is

But U depends on the orientation of the Earth only thiough the OCCUIKIKC
of /, and

being the centre of gravity of the attracting body Hence

But with due regard to sign, when the axes are rotated,

dz = x da>2 y do),

Hence equating the coefficients of d lt dco,, da>, m the two eexpuvssi<msl

These apply to a body possessing three distinct principal axes But tho
Earth may be regaided as an

ellipsoid of revolution, for which B = A ando > A Under these circumstances

258 With B = A and F= 0, the tbrd equate of (2) glve,
6)3
=

0, eoj
= ^

and the other equations of the set become
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The actual motion of the Earth is a steady state of rotation disturbed by the

external forces and this steady state will be found by putting L = M =
The equations then give

where

p,

Hence the steady state is given by

a>!
= h cos (pA + ),

&>2
= h sin (p,t H- a)

But the instantaneous axis of rotation m the Earth is the line

x/col
=

y/<oz
= z/a>s

or

oD/h cos (p,t + a) = y/& sm (^ 4- a) = zjn

which indicates that if h is fairly small the terrestrial p&le describes a small

circle of radius h/n about the axis of figure in the period 27r/^ This is the

Eulenan period of A 1(0- A) (roughly 300) days Now the angle between

the Zenith of a place and the Pole is the co-latitude of the place, an angle

which can be constantly observed Hence the latitude of any place should

exhibit a variation with a period of about 10 months Until a quarter of

a century ago no vanation of latitude had certainly been detected Since

that time variations (of the order of 0" 3) have been systematically observed

and studied and have also been traced m the older observations But

analysis has proved conclusively that these variations contain no part which

confoims with the Eulerian period They cannot therefore be explained by
the free motion of the Pole on a rigid Earth Hence observation justifies

the belief that h/n is insensibly small

The variations of latitude observed are always very small and constitute

a highly complex phenomenon The periods of the chief components of the

motion of the Pole are about 12 and 14 months

259 Corresponding to the iree movement of the Pole on the Earth's

sutface ^ve have, by (1),

6 s=
&>! sm ty 4 <o2 cos ^ = h sm (pit + cc

<f>
sin 6 = o>2 sin ^ o>i cos^ = h cos (p,t +

For the plane OXY we take the plane of the ecliptic which varies but

slightly in consequence of planetary perturbations The value of 6 is about

2 3 Hence 8 and < are very small in comparison with n, a fact in accord-

ance with observation even when the disturbing effects of the Sun and

Moon are operative Hence, further, ^ differs only slightly ftcm n

The rotational energy of the Earth is T, where

2^ = -A (0)^4 6>a
a
) + CW

= A (0* + </>

a sma

0) + G (^ 4- < cos 0)*
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Hence the Lagrangian equations of motion are

7 r-i -r-r

jt
(A6) - Ap sin B cos 6 + Ccf> sin (ty 4- < cos

(9)
=
|g

7 rv

-T, \A<f) sin
2 + cos B (^ -f cos 0)1 = ^r

But since

= JV= 0, i/r + ^ cos (9 = n

the fiist two equations become

It has been seen that n is very large compared with 6 and <, and it follows

that those terms are of predominant importance which contain n as a factor

Neglecting the other terms on the left the equations become simply

= _ _^ Cn sin d6

=__1_ W
Cn sm

d(f>

The complete justification for omitting the terms rejected must be sought
by substituting m them the results which follow from the lattei simple foim
of equations, when it will be found that they are practically insensible The
form to be used for U is given by (3), so that

a sum of two terms corresponding to the Sun and Moon For each dis-
turbing body it is necessary to find the product of z*jR* and a/R* expressed
in appropriate terms and with a suitable degree of approximation

260 The axes XYZ being fixed in space are defined so that OZ is
directed towards the pole of the

ecliptic for 18500 and OX towards the
equinox for the same epoch By the scheme of transfoi mation

The position of a
disturbing body, such as the Moon, is more convenientlyreferred to a similar set of axes for another epoch * The necessary changes

may be considered
successively, thus

ranges
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(i) Rotate the axes about OZ through the angle H so as to bnng OX to

the position OXl Then

X = X1 cos H - FiSinH, F = Yl cos H + X^ sm ft, ^ =^
where H is the node of the ecliptic for epoch t on the ecliptic for 1850

(11) Rotate the axes about OXl through the angle i so as to bring OFj

to the position OFa Then

Xl
= X<i , F! = F2 cos z - Za sin i, Zl

= Z2 cosi + F2 sin-&

where i is the inclination of the ecliptic for epoch t to the ecliptic for 1850

(in) Rotate the axes about OZ2 through the angle N - ft so as to bring

OZ2 to the position OX9 Then

Xz
= Z3 cos (N- H) - Fs sm (N - fl),

where N is the longitude of the Moon's node reckoned through H in both

ecliptic planes

(iv) Rotate the axes about 0J 3 through the angle c so as to bring OY3

to the position OF4 Then

Z3
= X4 ,

F3
= F4 cose -Z< sine, 3

= #4 cosc + F4 smc

\vhere c is the inclination of the Moon's orbit to the ecliptic for epoch t

But, if (Z4 ,
F4 , Zt) are the Moon's coordinates,

4
= r cos u - ^, 4

where r is the radius vector and v is the longitude of the Moon at epoch t

reckoned in its orbit
,

this longitude is the sum of three arcs in the two

ecliptic planes and the plane of the lunar orbit Now i < 1 and, for the

Moon, c is of the order 5 Terms of the order **, c3 and ic are therefore

neglected Then the result of eliminating (Xtt F3 , ,), (Xt ,
F4) Z.) gives

X2
= r cos (v

-
fl) + -icY sin (v

- N) sin (JV- H)

Fa
- <? sin (v

-
1)
- c2r sm (v

-
-Y) cos (N - H)

j 2̂
= cr sin (a

-
J\T)

and the result of eliminating (X, F, Z\ (Xlt 7l} Z^ gives

+ 1
{
F2 cos 6 - Z* sm e sm (<

-
1)}

Hence

4- 1 cos 9 sm (v fl)

In squaring this expression terms not involving 6 or < can be rejected,

because they disappear on differentiation Also terms involving v with
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coefficients above zero order are found to be negligible m effect Under

these conditions the result becomes

#\i
2 =

J sin2 + J sm2 6 cos 2
(t;
-
#)

4- c sin cos sm (0 #) -M sin cos sin (<
-

fl)

+ i c
2 sm2 cos 2 (0

-
JV)

-
f c

2 sm2
(4)

261 Certain expansions in terms of the mean anomaly m undistuibed

elliptic motion are now lequired When e
s is neglected in the fonnulae

of 40, (22), (26) and (27) of Chapter IV become

r/a = 1 + \e*
- e cosM -

|e
2 cos 2M

a'0/r
8 =

(1
-

f e
2

) cos Jlf + 2e cos 2Jf -f ^f e
2 cos 3Jf

a2

i//?
3 =

(1
-

f e
2
) sm If+ 26 sin 2-W -f -^sm 3AT

The latter give, w being the true anomaly,

a4 sin 2w/r
4 =

(1
- e2) sm 2Jf -f 4e sm BM + -^-e

2 sm 4M

a4 cos 2w/r
4 = Je

2 + (1
- e

2
) cos 2M + 4e cos BM + -\

a4
/?

4 = 1 + 3e2 -f 4e cos If+ 7e cos 2Jf

whence, after multiplication by r/a,

a3 sin 2^/r
3 = [- Ja sm Jf ] + (1

-
1^) sm 21f + [}e sm 3if

a3 cos 2w/?
3 = [- Je cos if] + (1

-
fe) cos 2M + [^e cos 3Jf + Y"^ c<> 41/1

a3

/r
j = 1 + %e- + 3e cos M+ [-|e cos 2Jf ]

The eccentricity being small, of the same order as c, the terms [ ] winch
involve M and are not of zero order, are immediately rejected Now

M = ri't -f p - OT

where n'^ + ^ is the mean longitude of the Moon in its orbit and *r is the

longitude of the lunar perigee, both being measured partly in tho two

ecliptic planes for 18500 and the epoch t and partly in the plane of the
lunar orbit From the expression (4) can now be denved

aV/r
5 =

(J
-
fc

2 + f e
2
) sin

2 6 + c sm cos sin
(<
- #)

-M sin cos 6 sin
(<
-

11) + Jc
2 sm2 cos %(<f>~N)

4- ^ sm
2 B cos 2 (^ + fj,

-
<) + f a sm2 cos ("$ + /*

-
-or)

the final term being retained though peuodic and not of zero Older

For the Sun c = and hence similarly

" =
(i + f e'

2
) sin

2 + 1 sm cos sm (<
-

ft)

+ J sm2 cos 2 <y$ + X -
^>) + fe

7 sm2
cos (n'$ + / -

w')
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262 These expressions give the means of forming U, for

For the Moon
( 256)

Gmf_ = GEf
J a"J "!+/

and foi the Sun
Grnf G ri*

a
Let

ir o G-A~ a 2 Cn l+f ^ ^ (M
Then

^^
- K! {} cos 2 (n'J + fjf

-
<j>) + \e cos (n't + / -

isr')}
sin2

- Kz {
cos 2 (n"$ + /*- <) + f e cos (" + /*

-
-57)}

sm2 ^

- ^Ta (c sin tfcos ^sm (^
-

JV") + Jc
2 sin3 ^cos 2 (0 - #)} (6)

The dynamical equations ( 259)

e ___
sin ^ 9^> \Cn

which result must be solved by continual appioxirnation This process,
when guided by the facts of observation and limited to piactical lequire-
ments for a period of a century or two, is veiy simple For it is known
that 6 is very nearly constant, while changes progressively but very slowly
Hence it is possible to discuss the secular effects, or precession, and the

periodic effects, or nutation, separately

263 The last three lines in the expression for U/Cn, containing six

terms, give rise to periodic terms in 6, <, which can be neglected m the

first instance The secular changes come fiom the terms in the first line

With sufficient accmacy wo may write

i sm H =
gt, i cos fl = g't, e' = e + e^t

the quantities e
,
e1 g and g being given by the theory of the Sun's motion

The corresponding changes foi the Moon are negligible in effect or rather

are treated differently Hence the equations for the secular movements of

the Earth's axis are

- ("1 + K2)
~

Q (g'sm. <t> -g cos 0) t - 3.^001 * cos

e= (K^ ft*) cos (g' cos < + g sin <) t
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When = (18500), 9 is the mean obliquity of the ecliptic foi that cUte

and may be denoted by e Also <, being the angle between the pLinos

OXZ and OZz ( 255), is 90 by the definition of the axis OX The penodie

effects at the time i=0 are excluded from consideiation heie, but then

influence is small Hence initially

4>
= 90 -

[K, (1
-

|c
2 + f e2

) + K, (1 + |e()

2

)}
cos e t \

cos e

The length of time during which these expiessioris will be valid depends
on the numerical values of the quantities involved Foi a shoit inteival

from 18500 (a centmy or two) the preceding equations hold good, and may
be written

the suffix m denoting mean values from which periodic changes arc* excluded

Thus
<f>m ,

6m define the position of the mean equator at the time t relative to

the fixed ecliptic (18500), the coefficients a, ft and 7 being now determined

by (7) The motion of the mean equator on the fixed ecliptic, measiued by
90 <pm) is called the lum-solar precession in longitude The angle 6m *

may be called the lum-solar precession in obliquity

264 It has been convenient to use a fixed set of axes XYZ, where
# represents the pole of the ecliptic for 18500 and X the mean equinox foi

the same date It is now necessary to introduce a new set of axes X'Y'Z',
where Zf

represents the pole of the ecliptic for the epoch t and X f

the

corresponding mean equinox, i e the intersection of the mean equatoi and

ecliptic at the epoch t Let z represent the N pole of this moan equator
its position being defined by <f>m , 6m The longitude of Z' m theX YZ system
is Q - 90 and ZZ' = %9 where

^gt +ht*

i cos H =
g't + h't*

the terms of the second oider being omitted above because they clearly give
rise to terms of the third order only in the lum-solar precessions

Let us consider the spherical triangle ZZ'z, of which two aides mo
ZZ'~^ and Zz=0m Since Z^-Q-90 and XZ***^, the angle^/^ = ^OT -H + 90 The side zZ1

, which is the mean obhqmty of the
echptic at t, will be denoted by 6m

'

} and the angle ZsZ', which is call<<! the
planetary precession, will be denoted by a Hence

cot i sm 6m cos 6m sin (H - <j>m) + cot a cos (fl
-

^>m)
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and to the second order

301

__
cos i sin em -^ sin (U - < m) cos Bm

(gt + A/*a) cos <t>m + fog + fa2) sm <

sm - sm

sin e + ^'^ cos e

since it is enough to take 6m = e and $m = 90 - at Hence to the required
order

- co

Pig 8

Again, in the same triangle,

cos m
' - cos ^ cos 6m + sm i sm 6m sm (H - <

whence, to the second order,

(Om
-

0m') sin } (0TO + m')
= - ^a cos m + sm W

To the first order, therefore,

0m- 0m' = -
/*, sm J (0W + ^w

7

)
* sin e + J^< cos
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Hence to the second order

A '
fi _ |(ff

2
4- g'

2
) t

z cos 6 + (g't 4-M2 -
agt*) Bin en

* -"-"

=
g't +

' 2 -
agt* + 1^2 cot e (10)

Therelations between the vanoussets ofaxes are shown in fig" # The equatw

T';z/ (epoch ) cuts the fixed ecliptic XY in a?, where JiT^ = zZY= 90 $w ,

the lum-solar precession, and ocX' = oczX' = ZzZ' = a, the pUnetaiy pn*-

cession Let ^Z' cut ZF m D, so that XD is the negative mean longitude

(18500) of X', the mean equinox at t This arc is called the genet al pie-
cession and will be denoted by 90 < m',

so that xD = </ </>, The angle
DxX' Zz Qm and xDX' is a right angle Hence

tan ($m
f

<jbw)
= tan a cos #w

and to the second order

4>m 4>m + a cos e

Thus by (8) and (9) the general precession may be expressed in the foim

90 -
< w

' = Pt + P't*

where

P =a -^rcot6

P' = /3 cot e (/i + a^
7

g^' cot e )

and by (8) and (10) the mean obliquity of the ecliptic is

where

Q =<?'

Q =

265 To hnd the peuodic effects, or nutation, it is necessaiy to letuin
to 262 and write

Now
<j>m and 6m have been calculated so as to satisfy the seculai ieims which

anse in the equations of motion from the first line of the expression ((>) foi

UlCn Hence the six periodic terms of the last three lines alone are now
relevant, and the dynamical equations become

$ = - K, {cos 2 (n't + X -
0) + 3e' cos (n't + ^'

- w 7

)} cos- JTo {cos 2 (n"t + v~<t>)+le cos (n
/7 + p - tsr)J

cos 6>

-
a {c sin (^

- N) cos 20/sm + J-c
2 cos 2 (^

- cos

{c cos cos (0
- F) - |c

2 sin sin 2
(<
-

The Moon's node makes a circuit of the ecliptic m 18f years m the
grade direction, so that it is possible to write
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To the first order in t
t
which is alone necessary, 6 = e and

</>
= 90 at

,
the

coefficient a can clearly he incorporated with n', n" and N^ before integration
m those terms in which

<j> occurs, though the change in n'
t n" is unimportant

Then on integration

3> = Kl cos e
j-L

sin 2 (n't + /) - ^ sin (rit+ /*'
-

')}

+ .ffa cos 6
\ a-r, sin 2 (ri't + //,) sin (n"t + ju orU
I^Ti 71

J

r sm (JV
- Nj) cos 2e./sin e

fl

- sm 2 (JT
- #1

sm o
i cos 2 (n'a + /) 4- J^ cos 2 (n"

-f J5T2
|-|r

cos e cos (^ - N$) -^r sm e cos 2 (^V
-

It is unnecessary to add integration constants because these are incorporated

in $m and m , and, except as so far explained, annulled by definition at the

initial epoch tf= (1850)

266 is the nutation of the obliquity of the ecliptic, and
- <E> is the

nutation of longitude, <j>
and <fc being measured in the direction of increasing

longitudes The numerical quantities involved are of such an order of

magnitude that a fair standard of accuracy has already been obtained in the

formulae If more precise results were needed, it would be necessary (1) to

carry the expansions for the disturbing bodies further, and (2) to continue

the process of integration by successive approximation to a higher stage

The latter process would clearly introduce terms of the form at sin (nt + a)

Among the terms of the former origin those depending on three times the

Sun's mean longitude (n't + //) are the most important, and it may be left as

an exercise to the reader to determine them

By far the most important terms in the nutation are those with the

argument (N -
JTrf) The other terms being omitted, let

x = [$>] sm e = /fsin (JV
- NJ) cos 2e

/
cos

y
- =

Since /f'is an angle of a few seconds only, x and y may be considered as the

rectangular plane coordinates of the Earth's pole relative to the mean pole,

x being measmed in the direction of increasing longitudes and y upwards

towards the pole of the ecliptic The relative path of the true pole is

therefore the small ellipse

oc* cos3 eQ + f cos2 2e = /T cos2 2e
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described in a period of about 18 years Since cos e > cos 2e the majoi axis

is directed towards the pole of the ecliptic and, since x has the same sign
as y, the sense of description is such that the relative longitude of the true

pole ib increasing when it lies between the mean pole and the pole oi the

ecliptic, that is, it is clockwise when viewed from a point outside the celestial

sphere The centre of this elliptic motion is carried by piecession almost

uniformly in the direction of decreasing longitudes round the pole of the

ecliptic

267 Since the manner of the investigation has been controlled by the*

actual magnitude of the various quantities involved, it is necessary to intro-

duce numerical values if the results are to be properly understood Three

quantities are based on observation, and not derived from theory, namely,
the obliquity e at the fundamental epoch 1850 0, the precession constant P
and the nutation constant Jf The values now accepted are

e = 2327'31"7, P = 50" 2453, </f= 9" 210

The eccentricity of the Earth's orbit is given by

e' = e H- e = 016 7719 - 000 000418 1

and the position of the ecliptic by

i sin O =# + A*2 = -f 0" 05341 1 + 0" 000 01935 *

% cosO = g't+ h't* = - 0" 46838 t + 0" 000 00563 1*

the unit of time being a Julian year of 365 25 mean solar days The Sun's

period relative to the equinox is the tropical year, and the corresponding
mean motion is therefoie

n' = 27T x 365 25/365 2422 b 28332

The eccentricity and inclination of the Moon's orbit are

e = 05490, c = 5 8' 43" = 089802

The tropical period of the Moon is 2732158 days, and hence the mean
motion in a Julian year is

n" = 83 997 radians

The retrograde motion of the Moon's node has a sidereal period of 679:15
days The corresponding mean motion, corrected for precession, is

^1 = 33757 radians

It is now possible to derive the values of K, and K> In the fiist ploc e,
by (11),

j/c cos e = 37" 74
Also

= P + $r cot = 50" 2453 + 0" 1231 = 50" 3684

But, by (7) and (8),
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whence
54" 91 * 992425 JT2 + 1 000422El

and thus

>17"45
Since any error m e/f affects Kz directly and hence K^ equally, greater accuracy
would be superfluous The expressions for the lum-solar precession ( 263)
now become

90 - $m = at 4- @t* = 50" 3684 1 - 0" 000 1077 1*

m =e + yt*
= 23 27' 31" 7 + 0" 000 0066 i

2

while the general precession ( 264) becomes

90 -
4>m

' = Pt 4- F* = 50" 2453 1 4- 0" 000 1107 i
a

and the mean obliquity of the ecliptic

23 27' 31" 7 - 0" 46838 * - 0" 000 0008 i
2

268 In giving the numerical values of the terms in the nutation ( 265)

the notation is changed to that employed in the Nautical Almanac The

results which follow from substituting the above constants are

3> = + 17" 23 sin S3 - 0" 21 sin 2 S3 4- 1" 27 sin <2L

- 0" 13 sm (L - TT) + 0" 21 sin 2
<[
- 0" 07 sin gl

= 4-9" 21 cos - 0" 09 cos 2 S3 -h 0" 55 cos 2 4- 0" 09 cos 2([

where L is the Sun's mean longitude (n't 4- ft'),
w is the longitude of the

Sun's perigee (-or'), <J
is the Moon's mean longitude (n"t 4- ft), #1 is the Moon's

mean anomaly (ri't 4- ft -cr), and S3 is the longitude of the Moon's ascending

node (NQ N$ In the Nautical Almanac the nutation of the obliquity of

the ecliptic (@) is called Aw, and the nutation of longitude ( <l>) is called

Ai Comparison shows that no term with coefficient exceeding 0"05 has

been omitted here

Two important astronomical constants are involved implicitly in the

constants of nutation and precession, namely the mass of the Moon and the

ratio (C-A)/C, which has been called the mechanical ellipticity ot the

Earth For the equations (5) may be written

K* n!' 0-A_2 nK,

! ;?"" a "3 ti*

the mass of the Earth, # = 1/333432, being negligible Here K* and J*T3 ,

expressed above in seconds of arc, are angular motions in a Julian year,

and n> n
f and n" are sidereal mean motions in the same unit of time With

sufficient accuracy the above values of ri and n" may be used, and for n the

value 2?r x 366i Hence

//(!+/) -0012102. /-1/816
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for/, the ratio of the mass of the Moon to the mass of the Eaii.h, and

C-A 1
"

Gy

~ ""

304 2

for the mechanical elhpticity of the Earth The mass of tin Moon is also

obtained as a by-product liom the oKseivations of a minoi planet in a i rimed

determination of the solar paiallax The value of /"found by I finks ui this

way was 1/81 53

269 The piactical application of the icsults obtained foi pio<ession and

nutation belongs to the domain of Sphencal Astionomy and \ull not be

pursued m detail here Nutation is so small that its efleets can he, and

are, treated independently of those duo to piecessum Of the iaM< i some

thing more maybe said in oidei to define the two quantities employed in

calculating the effects of precession in tight ascension and diminution

Let a, S be the R A and declination of a star at the epo< h t These lelei

to the system of axes X'y'z (fig H), which diflots by ,i wimple lotuMon

through the angle a about z from the system iys Hence the (ooidinafts

of the star m the lattei system aie

a? = cos 8 cos (a -f a), 2/
= cobSbin(a + a), = am 3

whence, by differentiation with icspccb to t
t
it easily follows (.hai

Now the relations between tho systemH at/* and XYZ au expiessod bv flu

scheme

lr Y Z
sin

</>
- coa

(j>
()

y cos 6 cos <> coB(9sm^ mu^
z sin cos Bin0Hin$ cos <9

Here XYZ are constant, and diffeientiation of the 1mm fotmuliw foi /y,,
when ZF2" aie finally expressed m terms of

//, s, given

yss-j, COM fi-

z ~ - sm ^

Hence, when
a?, y, ^ are expressed in ternus oi

, 8,

These differential expressions aie icqwrod to the fust oulei m e, and
being of the second order may be xojocted at once Hence (the
being used here m a new sense)
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a == m 4- n sin a tan B p cos a tan 8

where
/M = a cos

<f>,
n = sm 6 <, p a sin

<f>
+

and may be leplaced by e,> With the numerical values given in 267, (9)

gives
a = + 0" 1342 1 - 0" 000 2380 1*

a=+0"1342 -0" 000 4760

and from the lum-solar precessions

= _ 50" 3684 + 0" 000 2154 1

0= + 0" 000 0132 1

Hence
m = 4- 40" 0711 + 0" 000 2784 1

n = + 20" 0511 -- 0" 000 0857 t

while p = + 0" 000 0002 and is altogether negligible Thus m and n are the

important quantities known as the annual precessions in R A and declination

The total precession in R A from 1850 for a point on the equator is

f
mdt = mj + mrf- 46" 0711 * + 0" 000 1392 *

a

Jo

The expressions found for a, 8 arc the coefficients of the fiist power of the

time and these terms suffice for short intervals only The further develop-

ment of formulae foi the transformation of cooidmatcs from one epoch to

another according to the methods of astronomical practice must be sought in

such works as Newcomb's Compendium of Sphencal Autonomy

270 It is now possible to considei m some detail the astronomical

measure of tune The third equation of (1) is

Here w3 is the angular velocity of the Earth about its axis of hgiue and is

a constant previously denoted by n As this symbol has been used with

another meaning in 269 it will now be replaced by o> The angle -^ is

the angle between a meridian plane (Qz&) fixed in the Eaith and rotating

with it and the plane (OZz) passing through the pole of the fixed ecliptic

For the fixed meridian we adopt the meridian of Greenwich The rotation

^ refers therefore to the Greenwich meridian lelative to ea, m fig 8, and

T =
i/r

a will measure the same rotation relative to zaf But the angle

between the Greenwich meridian and &&', & being the equinoctial point at

the time t, is the hour-angle of the First Point of Aries, i e the ndereal time

at Greenwich Thus, r being Greenwich sidereal time,

7- = <
= < a

<jt
cos
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It is *h> TI
i

* n i h r
i

- K * 'iv H> d afftc*el both bj prtcessiun
and

tin tali* n *- th i*

sin #m

with *.ifh^i* v\ ^\ r r t*4 ^n *< ntcKctMi since 6 is small and n

i* ib.u* 10"* <i&i *1> !
' * * * *

** 3^ riM* b^ replaced by cos* Hence

inU'gniM fi i^\ * t r <
* n^icn -* i r* *

t iin*j

-- *./- PI ?- ^^-4>cosea (12)

ulurt? M-* ni^aj-i^-1 in J t l m u irv ,.f *J03 25 mean da\s and reckoned from

IsSO Jan <i" M* tr n n Tb qiamitx f is an equi-crescent \anable in

th*' jy a** rM}a.ri*i >u th d\nann j V Id* s- which have been used, its ongm
and unit art, i .r th ti, ui ut t *'upt-rtancr unH so far as they condition the

numenesil \A !U^ f th j t * ft- , nt^ On the other hand the sidereal time r

it n^t urufTUi bt't'irf \ff<c: i 1\ **-cuhr and penodic terms Hence T is

intnh in m'*rni <iuu* s*,inimi pf time But this m no wa\ affects its

practical util t% B\ fr th** larg st t nn in 4>coset is

15 HfHMn r I
1 054 sin P

t which th> in d ^ i^ irU 1'* \ears and ni, is \ery small The irregulanties

m T art thtr^f' n' \^rv ^nuJ and gradual, and far less than the natural

imvuUntifS in fh rafc f *h*> intt ptrfect sidereal clock Since this

m^ran^n*1

*h >*< tht* h ir anjri uf thf First Point of Anes, it also shows

the ruht aaciii^i n *>f ^tr* n tht niendian, and this principle serves both

U dt'ttnnm^ th* timr ^*
r the d*ck and t* measure the apparent positions of

th*- -Uiv

271 In th* n \\
{ u. A /nfan i?ui/ is defined \shich moves in the plane

f tfo ty^mt^r *rh th* unif rm -ni-rtil mean motion /* Its R A at time t,

ei fn>m th* tru *quinijt IB therefore

A * *4 -r ^ * m 4# 4- m^ - ^> cos c

huur .in^'t

r T - .1 * T,
-

^i, -f (w - *) f

i the nirtUhun <if Gri>njch w?an time The constants occurnng in A are

*ijuuxi AA far ^ p>mba to *<?ure identity with the mean longitude of the

actual Sun atfWk-d b\ abtrratMn This mav be wntten m the form

L m <X,-f X^ - X/*) - i +iPt -f P'f)
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where A is the true mean longitude of the Sun when t = 0, Xx is the sidereal

mean motion, and 2X<j is the secular acceleration which arises indirectly from

the perturbations of the other elements of the Earth's orbit, & = 20"47 is

the constant of aberration, and (Pt + P'&) is the general precession in

longitude The adjustment of the constants in A and L gives

AQ~ Z , //. + mi = LI

and leaves outstanding between L and A the secular discrepancy (JLZ
-
m^) t*

which would lead ultimately to a departure of the actual Sun, apart from

periodic effects, from the meridian at mean noon This quantity is small

and far from certain in amount, and will have no practical effect for many
centuries to come Now at 1850 Jan 0, Greenwich mean noon,

and the effect of adding one mean day to T or t is

24h = 360 =
(o)

whence

(a) + mO/365 25 = 24h + LJ 365 25

Now, according to Newcomb,

L, = 279 47' 58" 2 = 18h 39m 11 s 88

A= 1296027" 6674 - 86401 8 84449

Xa
= + 0" 000 1089 = + 0" 000 00726

while in the latter unit (1
s

15")

mi = + 38 07 141 ,
w2 = + O8 000 00928

so that

Z
ly
/3G5 25 236* 55533, (^ - m^/365 25 236* 54692

Hence m numbers the equation (12) for Gr sidereal time becomes

T = 18h 39ra II 8 88 + (24
h 3ra 36 8

35533) D + B 000 00928 9 - <l> cos e

where D = 365 25 1 is the number of days reckoned from 1850 Jan When
D is given an integral value this expression gives the sidereal time at Gr

mean noon and its value (less a multiple of 24h) IB tabulated for every day

in the Nautical Almanac When the nutational term is omitted,

AT = (24
h 3m 56" 55533 + B 000 00005 1) AD

The secular term is also negligible,
and hence

1 mean day _ 86636' 555 _ j 0(m3fQ
1 sidereal da^

- '

86400^
" l 2 7379
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\ tj n i*- 1 * *

- iH< rs lit'it tp!n :h - 4dir. il ii,but must not be

< ^ i A n^ i- !h j*n<fl .fth Eu*h - rMri.n *n it * avis, measured

}>
*
t 1 *, * *

* t *ht m ri iKr il *h\ i-

272 V Litn.^> M mtr.nni,i i ],
- \ ^ j;i..

s nu an places freed frum

tiM'i'L ui'i r .'ncnl *
, tV opn \ t i iini^utpeh Such an epoch is

4

T

A i* - *U ) ^r '
A IUT t i tr

j*i'
t! \ ir iii

f ^i- *

vpr^s-i*>n must be denned

I* - <h> ni. 1*1 1 r
, AT i n tk

i Ji^ in
T

T j
*

lt -

* the STID as abuve descnbed,

Jm
1 *V" t

l a* ^"*
'

nj*h nt i trupical \ear is

24
. -*"

1 ^
?ij5 25 ni> in da\-

- >> 242 20272 -

r V."24J2nn Hi m si.Iir <in- it fh t-puch l^OU For the present the

M * iitr *' IT*J:
*

ii'ijAp'rlttiit Ujicc the bt^innni^ nf the tropical year
i* nvi in i

j
irt =u li^i1" cilinlir \ttii, its bt ginning in an} other year

luu 1- ! > j.vi la i'la'1
1;

a^ rnum trojrcal \e.iTv But the details will be

U t r f i^*ra*ti t>\ L ihrLii * \ampl*-* tn>rn the \tar 19uO When ^ = 50,

/, - 1^ 4M 4P12.J X.m ,'M ,1 i^uiti \tir- ^\cted r50 years of 365 days by
1 Jl d*i\- \Mi r^a,* f h 1 1 tn Ur IL^ n- 12 kap da\& between 1850 and 1900

H n ih.- i> tut \^ m 1 m^iturk lur l c
>f)0 Jan 05 The mean longitude

I r1*),Ii u*4ir iAin n.^n. i- th^r l *ivZ'- J, 36525 = 18h 38m 459 845

\iifl r -^ K inc rtivi b\ T4*15"> at the daily rate 23b*-555 in order to

Ut T i* 1^ 4 lhi> rw^uiri*- O81.?5 intan da\s, and the beginning of

tfir ti }i 3 v tr iii I'HK) i& thtref *rt Jan 03135, the fraction of a mean day
b m r ek^n *I tr'ru timiavich riitan ncn^n This epoch is recorded briefly

*.- VHKlt) I ^ t rh TI^ an t^inno\ of thi<* d\te that the obsenations of

niu^t<l 111 tht hn?t

273 ^'uh in utlme an thi main features in the astronomical methods
ut n-tk' ninj tun*- fh\ in\oh* cc*rtain cimstants which, being based on

ih> i luparix n ct thenn with ultoer\dtins, are capable of improvement
Bat th rn. i* HJ al^tlutt standard uf time Ultimately no doubt the con-

tiitfi^l vnii |mn^ '* * 1 th ir\ With sb nation according to such a system of

tiint i thu i wnl^l abuvt. will bnni: to Iiht discrepancies in the motions
ui ^h htutih btiits v.f a kind which cannot be attnbuted to errors of
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observation Then the question will arise whether these discrepancies can

be removed by a meie adjustment of an accepted system of constants in-

volved in the measure of time or whether khe fault lies in the theory This

is the ordinary experience of practical astronomy It may, however, prove

that what have been regarded as constants are not really constant at all

Thus o>, the rate of rotation of the Earth on its axis, may vary owing to such

causes as the secular cooling of the Earth and the effect of tidal friction.

Theie is, indeed, reason to think that this is so But ultimately it is only

possible to adopt such a system of measuring time as will reconcile all

celestial phenomena as far as may be with the simplest possible body of

laws In the meantime to deal with discrepancies as they arise is among

the most critical problems of technical astronomy



CHAPTER XXIII

LIBUATION OF THE MOON

274 The form of solution found suitable m discussing the rotation of

the Eaith depends on special circumstances and is by no means general

The Moon's rotation similarly presents quite special featuies which require

very different treatment This movement is governed to a high degree of

approximation by Cassmi's laws

(1) The Moon rotates uniformly about an axis which is fixed with

respect to the Moon itself The period of this rotation is identical with the

sidereal period of the Moon in its orbit, namely 27 321661 days

(2) The pole of the lunai rotation z makes a const mt angle (135')

with the pole of the ecliptic Z, which may heie be xegarded a&> a fixed point

on the celestial sphere

(3) In consequence of the nearly uniform regression of the lunar node

on the plane of the ecliptic and the nearly constant inclination of the lunai

oibit (5 9'), the pole of the Moon's orbit P is known to descnbe a small

circle about Z in a period of 18$ years The arc of a great circle zP contains

also the pole Z In other words, the planes of the lunxr orbit and the lunar

equator intersect on the ecliptic, the latter plane being mtei mediate between

the two former

These laws were discovered by observation and they are so exact that

later work with more refined instruments has failed hitherto to determine

any divergences from them with a satisfactory degree of certainty They

define as it were a steady state of motion, and it is necessary to inquire

under what conditions such a state is possible, and to what oscillations it is

subject according to theory

275 The first of the above laws corresponds with the well-known fact

that the Moon always presents the same face to the Earbh, or more truly

that a large fraction of its surface (nearly f) is always concealed from obser-

vation In order that exactly the same face should be seen at all times

three further conditions would be necessary and the failure of these conditions

gives rise to three distinct components of what is called the apparent or



274-276] Libration of the Moon 313

optical hbration of the Moon These conditions and the corresponding

effects of their departure from the facts aie

(1) The motion of the Moon in its orbit about the Earth must be

uniform But owing to the equation of the centre and periodic perturbations

the actual place of the Moon may differ from its mean place by as much as

8 Hence an oscillation in the central meridian, which is known as the

hbration in longitude

(2) The axis of the Moon must be normal to the plane of its orbit

Actually the angle which it makes with the normal to the orbit is

1 35' + 5 9' = 6 44'

The monthly effect of this is called the hbration in latitude

(3) The point of observation must be the centre of the Earth Owing

to the position of the observer on the Earth's surface, which varies with the

rotation of the Earth, there is a parallactic effeot which is called the diurnal

hbration

These three effects which together constitute the optical hbration of the

Moon are purely geometucal consequences of the known conditions, and

entirely independent of the dynamical hbration which is now to be examined

276 When the rotation of the Moon is in question the action of the

Earth as a disturbing body is clearly preponderant and the action of the

Sun is neglected Let be the centre of gravity of the Moon, OX7Z a set

of ecliptic axes fixed m space, and Oxyz a set fixed m the rotating body and

coinciding with the principal axes of the Moon, the corresponding moments

of inertia being A,B,C Now since the a^cis of rotation is nearly or quite

fixed in the body it must practically coincide with a principal axis
,
for a

permanent axis in any other position would require a constraint which is

obviously absent in this case This principal axis will be identified with Oz,

As m 255 the two sets of axes are connected by the angles 6, (f>
and ^, and

d ZOz being always of the order 1 6, its square may be neglected The

relations between the coordinates are then given b;y
the scheme

y
-

and Eulep's geometrical equations become

*>!
= d sin ty

- $0 cos -f

o)2
= 6 cos ^ + $0 sin ifr

s
-

ir +
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The dynamical equations
are again of the form

Ao)i
- (B

- 0) <2j = L

B(*>z-(C
- A) 6)3^1=-^

(7<ya -(,4. -) 0)^2= Ar

where ( 257)

m beinz the mass of the Eaith, (*, y, *) its cooidmates and 7 its distance

fiom the Moon Let (X, Y, Z) be the ecliptic coordinates of the Earth

relative to the Moon The inclination of the Moon's orbit, c= 5 9, is so

small that o' will be neglected Then (cf 65)

where O is the longitude
of the Moon's node, (O + *>) the longitude of the

Moon's perigee,
and w the Moon's tiue anomaly But

is the longitude of the Moon in its orbit Hence, by the above relations

between the two sets of cooidmates,

- so = r cos (\
-

<J>

-
1)>

-
^/
= ^ sm (X,

-
<#)

- f)

- g = ? (9 cos (X- cjb)
-h ^c bin (\

- H)

the pioduct c0 being neglected m a, and y Let

(y^B^j.a, A-0 = Bp, B~A~Cy

Then the dynamical equations
of motion become

r- sin (X
- ^ - t) I* cos (X " *) + c sm (X " a

)l)

)tcoB(X-*) + OHin(X-Q)}V (1)

a + 76), 6),
= Jft77

1 sm 2 (X
- * - *) J

As the figure of the Moon is to all appearance sensibly yphencal, a, ^ and 7

must be fairly small quantities
And since, fuithei, the instantaneous axis

is nearly fixed in the body and veiy close to the axis of *, ^ and o>2 must be

very small m comparison with w,

277 Ib follows that in the last equation the tenn yo^ can be neglected

Hence this equation becomes, m view of the third geometrical equation,

<j,
+ ^ =

| Gnt,w
-

sin 2 (X
-

(^
-

-f) (2)

The Moon's moan longitude is n't + e, whoie
'

is the Moon's mean motion

and e is a constant The Eaith'b mean longitude, as soon from the Moon, is

theiefore TT + n't + e But accoidmg to Casaim's faiat law,

Wj = -f- ^ = ;t'

or
=* n't + const
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the constant depending on the choice of a fixed meridian on the Moon's
surface Let it be so chosen that the latter expression is equal to the
Earth's mean longitude The

corresponding meridian is called the first
lunar

^

meridian In order now to allow for a possible mequahty m the
Moon's rotatron an angle x is introduced such that

^ + X = ir+n't + e
(3)

This angle represents an oscillation in the position of the first meridian
According to Cassim's laws x = and observation proves that v is certainly
very small The equation (2) now becomes

It is clear that the conditions of stability are only complicated by the
inequalities in the motion of the Moon Therefore we substitute for the
moment a uniform circular orbit with mean distance a', so that X = n't + e
r = a' and

'

X = f Gmya,'-* sin 2^
--4M1 +/T' on 2* (5)

where /is the ratio of the mass of the Moon to the mass of the Earth since
by Kepler's third law

'

Gm(l+f) = n"a'>
(6)

But the equation of motion of a srmple pendulum of length { and inclined to
the vertical at an angle 6 is

which can be identified with (5) by taking x= J<9 and 3n''y(l +/)-. = aj-i
Both equations can of course be solved generally in elliptic integrals But
it IB enough to notice the physical fact th.it the pendulum is capable of
small vibrations provided 9 is small

initially and g is positive Similarly y
if initially small will remain small provided 7 is positive, i e > A Now if
the inclination of the luuar equator to the lunar orbit be neglected IA + +\
measures the displacement oi the axis of * from the equmor from which the
longitudes are reckoned Under these simplified conditions the first meridian
coutams the axis of and always coincides with the central meridian of the
apparent disc The axis of is thcieforo d.rected approximately towards
the Earth and this defines the axi& about winch the nSment A u,C?ht
the moment B This w the first condition of stability It is also to bem

e^ed
that A+B For if A -B. x . and a small disturbanct

introduce A secular term in x which observation shows to be absent

278 If y = 7 ( L +j )-. thc moio genoi!ll eqlwtlon (4) for

X = ~
3

'Y ('/' )" n 2 (x + \ - n
'

t - e)
Now (X-^- e) of the oide. of the occentridty of the lunar oibit
(05o) X is st,ll smaller and a' /r differs from 1 also by a quantity of tho
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order of the occentucity Hence if the square of the eccentricity be

neglected,

y'2,ffsin(fa + r"

where the terms under 2 lepresent the equation of the centre and periodic

inequalities of the lunai motion This is the ordinary equation for foiced

vibrations and the solution may be wntten in the form % = Xl + %2 where Xl

is a particular solution, corresponding to the forced vibiations, and ^2 is the

complementaiy function, corresponding to an arbitrary free vibration It is

easily veiified that

wheie K, I' are arbitraiy Tenns in # can only become sensible by reason

of H large or h small, and the most promibing terms m the lunar theory are

consequently the equation of the centre (or principal elliptic term)

kt + h' = #15 H = + 22639" 1, h = 47033" 97

and the annual equation

/rf + fc' = 0, .#=-668" 9, // = 3548"16

where gl is the Moon's mean anomaly, O is the Sun's mean anomaly, and

the unit of time is the mean solar day, so that n' = 47435" 03 The corre-

sponding terms in %i aie

377' , 11' 15 , ^ /(7 x

* "mW^> * Sm * -
001865 -7'

V ^ ^
It is easily seen that, 7 being certainly very small, it is the second of these

terms which is the laiger But the determination of its coefficient from

observation has not yet been, made with satisfactory ceitamty Since the

Earth's distance is about 220 times the Moon's radius a geocentric angle

of 1" is the equivalent of 4' m selenographic aic near the centre of the lunar

disc As the quantities to be looked for are likely to be of this order, or

rather still less, and the observations aie very difficult, positive results must

be awaited from the study of the large-scale photographs of the Moon which

are now available According to Franz, using the heliometer observations of

Schluter, the coefficient of sin is about 2', giving 7 of the order 0003,

and the 'arbitraiy hbration K, which should have a period of rathei more

than 2 years, is practically negligible

279 Since, by (3), < 8 + % = n' where % may now be supposed very small,

the first two dynamical equations may be written
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Now let

f = cos ty, ?j
= sin

yfr
so that

f = 8 COS
i/r + 00 sin

i/r (<f> + i/r) sin ilr = eoa GJs^l

^ j-
(9)

Again o>8 may be replaced by n', being multiplied by f and 77 which are

small Hence (8) become

77
-

(1
-

a) n' + an'*y =L/A
% 4- (1 + ) w'^7

-
fin'*%

=
JI//5

Expressions for L/A, M/B have been given in (1), and if /- 1/81 be

neglected in (6) these are

LIA = 3cw'2 (a'/r)
3 sin (X

-
<j>

-
^/r) {0 cos (X

-
0) + c sm (X - &)}

M/B = 3^7i
/2

(a'/r)
8 cos (X - <f>

- ^) (0 cos (X - <f>)
+ c sm (X - n)}

and as they are already of the order or c multiplied by a. or ft, the other

quantities involved are only required to the first order in e, the eccentricity
of the orbit Now gl being the mean anomaly, by Ch IV (9) and (30) or

in a more simple way

where

^! = ?l' -f -cr, W = X cr

w being the true anomaly and -cr the longitude of perigee Also ^ is in-

significant here, so that by (3)

<^4.^ = 7T +n't + e=^ -f IS" -f-7T (10)
Hence

X _ <
_

-^
- w _^ _ TT

-. 2e sin^ - TT

sin (X ^>
-

T/T)
= - 2e sm^, cos (X <^>

-
->/r)

= 1

(a'/r)
3 sm (X

-
<f>

- ^) . - 2e sm ft )

(a'/r)
8 cos(X-^-^)=s -l-3ecos^J

( }

Again,
cos (X </>)

= cos (^ + 2esm^) - cos -^ + 2d sm^ sm ^
6 cos (X

-
0) = - 6 cos

i/r + e0 cos (^ ~"fy)-e6 cos fo + ^) (12)

and finally

sin (X fl)
= sm ( <7i 4- w H) 4- 2e sm^ cos (^ + w -

fl)

c sin (X fl)
=s c sm (^ -|- -sr H)
+ ce sm (20! + -or - H) - ce sin (nr

- H) (13)

It is now necessary to introduce (11), (12) and (13) into L/A, M/B, to

reject terms of the third order m e, c and 6, arid to resolve the products
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of circular functions which occur into single functions The lesult of this

simple reduction gives

L\A^ 3cm'2
{
e0 sin (^ + ^) + e6 sin (gl

-
$>) -ec cos (-BT

-
ft)

1 e0 cos (#!
-

^r)
-
40c sin (w - ft)

[

-
-|ec sin (20! + iff - ft)

- c sin (^ + r - ft) + cos ^} j

The last term m if/5 is 3/Bn'
2

!;,
which may be transferred immediately to

the other side of the corresponding dynamical equation This leaves one

term only of the first order in MfB the remaining terms m L/A and MjB
are entirely of the second order

280 Let the actual dynamical equations, aftei transferring the term

3^n
/a
f,
be replaced by the forms

-
(1
- a) n'% + cm," 77

= 3cw/2 F cos (p/^ + q)]
(15)

| + (i +^ n'q - 4/3n'
2
f= 3/9?i

/2P sm (jp' 4- q))

A particular solution is f = Q sm (pn't +q),^ = Q
f

cos (prit + q), piovidcd

<y(-^ + ) -Q(l-a) j)=3aF)

Q (- j>
2 -

4/3)
-

Q' (1+ 0)j> = 3/9P J

or

Q Q'
-

a)pP - a
( j

2

In this way any periodic terms on the right of the equations can be

represented by corresponding terms in f and 77 But the coefficients Q, Q'

involve P, P' multiplied by the small quantities a 01 ft, and aie theiefoie

extremely small unless A is also very small Now A=jp'(p
2

1) when
a and y8 are ignored and therefore, cetens panbus, sensible teims can be

obtained only when p is very near to 01 1

Solutions of the same form constitute the complementaiy function and

are determined by (17) when P = P ; = Then p is given by

A =
p* -^ (1

-
3/5

-
aft)

- 4/3 =

2p
2 1 -

3/3
-

a/3 V{(1
- 3^ - a^y -f

It is enough to retain m p the teims of the first order in a, 0, and thus

2p
2 = 1 - 3/3- a/5 (I

-
3/5

-
a/3 + 8a/3)

so that if PI, Pa a^e the two roots,

# = l-|/3, ft
- 2 ,/(-<#)
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Thus the periods of the two possible terms are determined with sufficient

accuracy, the former being nearly a month, and if the corresponding co-

efficients are ft, ft', Q2 , Qz', then by (16) to the lowest order only

Hence a solution of (15) when is substituted on the right-hand side is

fi
= ft sin {(1

-
fff) n't + ft j + Q2 am (2 V(- et/8) + &}

i?i
= - ft cos {(1

-
ffl) '* + ?i} + 2 V(- /o) Q2 cos {2 V(-

and as these expressions contain four arbitrary constants Q1} &, qlt qz they
represent the required complementary functions

These arbitrary terms again appear to be insensible The important
point is that aft must be negative, for otherwise the circular functions would
be changed into hyperbolic functions and the motion would be unstable
This means that (C - B) (A - C) is negative, or again that G is not inter-

mediate m magnitude between A and B This is the second condition of

stability which has been found

281 To terms of the first order only,

LIA = 0, M/B = -
3j3n'*c sin (^ + - O)

where, the secular inequality of the node being taken into account,

gl + <ar = n't +
)
H = t - /m'tf, /*

= + 0004019

Thus in applying (17), P' 0, P = -
c, p = 1 + p, and therefore

If a, and /A be legarded as small quantities of the first order and those of

the second order be neglected,

/3) (19)

so that f and rj contain the terms

These terms contain the explanation of the steady motion of the Moon's axis,
which is expressed by Cassmi's laws

For the coordinates of the Moon's pole of rotation relative to the pole of

the ecliptic may be taken as

X - B cos < = f cos
(<f> + t/r) + 77 sin

(<f> -h -f)

F= B sin $ = f sm (< + -^) 17 cos (<^> + -^)
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Let the free components fl , rji be ignored and also the forced oscillations of

the second order which have still to be found Then

X = Q sin (<7i + iy - H -
<
-

T|T)

7 = Q cos (gl + CT - ft - $ - ^)

But by (10)

< +
-\Jr
= ^ + <SJ -f 7T

and therefore

But the longitude of the pole of the lunar oibit is H -
J-TT,

so that its

coordinates are similarly

X ' = c sin H, F' - c cos n
Hence these two poles are always exactly on opposite sides of the pole of

the ecliptic provided Q is negative This requires, since Q is given by (19),

> >
|ju,

Hence C > J., which is a third condition to be satisfied fry the

moments of inertia The lesultant of the three places the moments m the

order

G>B>A
where G refers to the axis of rotation and A to that axis which in the mean

is directed towards the Earth

It is now clear that the further conditions necessary m order that the

second and third laws of Cassim shall remain approximately true are one

and the same, namely that those terms which have been neglected in the

above argument aie really small m comparison with Q This quantity is

the mean value of 6, and its numerical value is 91' 4 accoidmg to Fxarw

With c = 308' 7 and ^ = 004019 it follows that

- = (C-4)/5 0000612

which should be tolerably well determined It is to be noticed that a, /?, 7
are not independent, but connected by the identity

a + fi + y + a/3<y
= Q

The product is negligible and if 7 = 0003 as given above, then a is of

exactly the same order as 7

282 The terms of the second order in e, c, 6 can now be found without

difficulty, since here it is legitimate to give 6 and ^ their values m the

steady motion Thus 6 = 6Q) its constant mean value, and since m the steady
motion

<j>
=

Hence without the terms of lower order already treated, the expressions ( 1 4)
become

= Saw'2

{e (6, + c) cos (2^ + w -
II)

~ e (6, + c) cos (
-

M/B = 3n'2

{- 5* (0 + c) sin (2& + m - Jl)
-

\e (6, + c) sin (
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The corresponding terms m f, 17 can be found in the way explained in 280
But since w and fl change slowly p is nearly 2 in the case of the terms which
contain 2# in the argument Their counterpart in f, 77 is therefore negligible
With the other pair p is very small The secular changes in the node and

perigee may be expressed by

fl = O pn't, -or = TO + vn't

so that p = p + v, and 2P = P' = - e (0 + c) Hence (17) give

Q = Q
2a (1 + ftp -

/? (jp
2 -

a) (1
-

a)p - 2a (^ + 4/3)

(p
2 -

a) (p* + 4/3)
_

(1
-

a) (1 + 0) j*

which, when simplified by the removal of all but the most significant quantities
in the denominators, become

The terms of the second order are therefore simply

oB^-a) .(21)

Now v = 008455, /t + v = 1/80 nearly, and 0, 4- c - 4.00' Also e = 0549
and with the above values of a and & 3e = - f0e = 00005 Hence both
coefficients are numerically T 6, and

,
- 1' 6 sin (w - H), % = - 1' 6 cos(nr

- O)
the period being 80 lunar months or 6 years

283 When the several terms found are combined,

andby(9)
f-fe + & + &.

0>1
=

V)
-

6)^,

Now with the approximate forms (20)

Af /a-.x fc^
and from (21)

Hence, putting o>3 = ra' here and neglecting the arbitrary terms ft, 17^ the
existence of which has not been established by observation,

*>i /*'
= -

(1 4- /* + i/) f,, og/n' (1 + /* + v) ft

and
(/x + y) is relatively unimportant here

One remark is necessary however For the sake of simplicity and m order
to concentrate attention on the mam feature of the motion, the coefficients
of & and 972 in (20) were made numerically equal by the simple expedient
of neglecting ^(= 0000016) in comparison with p Consistently with this
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the factor (1 + A*) has been omitted in finding fa , fc, and the result is that

f * do not appear m <*, 2 This factor can only bo reinstated coirectly

afterV has been restored m &, ^2
Now by (18) ft> * aie of the foim

2= |(i 4. M)2 -a] 0- sing %= -
(1
-

a) (1 + /*)

where gf ^ + r H Hence

and the contributions to oo1} o>2 are given by

cos

The factor a shows that Aoh is veiy small and if /*
as well as a be now

rejected,
*,/*' = 0, A^/n^

Hence m a numerical form the forced rotation- aie finally given by

since ff = - 9V 4 and /*
* 004

With the more exact expiessions
the coefficient m is numerically

greater than that m ^ the difference being -(! + ;* + ) or - pQ This

amount 22", may be divided equally between tho two coefficients without

disturbing the observed mean inclination of the lunar oquatoi to the lunai

orbit, and thus

r - H = 91' 2 cos l + w - H)

Lastly, by (7), if % 2 the fiee libiation m longitude be ignoied,

Oil ,
0000242 ,

where the coefficients <xie expressed in cnculai measure Thus tht^ position

of the instantaneous axis, lelative to the principal ,xx<* of thc> Moon,

is determined It has therefoie been seen undoi \vhat, conditions

laws are approximately tiue, and how far they must nociswuily bc>

by disturbing actions

The latest results fioin observation, by M Pmsoux ol Pans, si^oiu to bo

at variance with the foregoing theory It is F obahl( t,h it, it. will he mwss,y

to treat the Moon as a clefonnablo body, as tho oWi v< d v anal ions of Utitudo

have shown to be requisite m the case of the Kailh Tho abovt theoiy is

very largely due to Poisson



CHAPTER XXIV

FOBMULAE OF NUMERICAL CALCULATION

284. If we consider a function of one variable 01 argument only, for the

sake of defimteness, it can be represented in three distinct ways, namely

(1) By an analytical form, eg sin x or a hypergeometnc series F (a, ft, 7, x)

The effectiveness of such a form depends on the knowledge of its properties
and the facility with which it submits to the ordinary operations of mathe-

matics

(2) Graphically, by a curve This gives a continuous representation
Values of the function corresponding to particular values of the argument
can be obtained and tho processes of differentiation and integration can be

performed mechanically But the accuracy of tho lesults is limited m
practice

(3) Numerically, by a series of isolated valuer This gives a discon-

tinuous representation, but one capable of very gieat accuracy In theory
this does not serve to define the function, for it may vary in any manner
between the given values Even in piactice the representation does not

cover terms in the function with a period of the same ordei as the intervals

between the values But with due care this limitation causes little in-

convenience

Each mode of representation has distinct advantages of itb own and to

pass from one to another is a problem frequently arising and often attended

by gieat difficulty The form (1) may bo consideiocl the ultimate expiession
of natural truth, but it has no absolute superiority Thus integration may
be practically impossible in this form and must be icplaced by a mechanical

quadrature

A function determined by a series oi observations 01 experiments falls

generally under the form (3) Now the vanable quantities which occui m
Astionomy, e g the coordinates of tho Moon, are in general so complicated,
even when an expiession in analytical form is available, that for practical

purposes it is necessary to use an ejtliemet is, 01 a table of values calculated

foi equal intervals of tune (not necessarily one day, as the name would

imply) It is therefore necessary to consider how functions lepresented in
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this way may be manipulated so as to give intermediate values by inter-

polation for comparison with the results of obseivation, and also to render
numerical differentiation and integration possible

285 Let w be the constant interval of the argument and yn =J (a + nw)
be the function to be considered, the values of yn being given for consecutive

integral values of n A simple difference table can be formed thus

a .f (n _ ;

a + (n + 1) w

Now let two operators A, 8 be mtioduced such that

Then it follows that
yn >

yn = A (yn
- y^)

Hence the operators A, 8 are commutative, and similarly it is easily seen
that they obey all the laws of ordinary algebia The inverse operatorsA \ 8 *

may be denned so that AA-'=1, S^ = l Then the table of
differences may be replaced by a table of operations which, acting on yn , will

reproduce the difference table, thus

AS

AS- 1

The two operators are not independent, for the position of AS m this table
shows that they aie connected by the homographic relation

Let x be the variable, so that y =/(*,), and let L = d/d* Then

W 4-wf (w) -f $w*f" (%) +

}f( %)

(1)

Hence

+ gwf (a,)

Thus
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is Newton's original formula of interpolation and can be written in

(3)

| q | by a proper choice of n may always be taken < J, and m any case

not exceed 1 The coefficients are simple binomial coefficients

6 The differences A, A 2
, are diagonal differences m the table

le most useful formulae involve central differences, lying on or adjacent
onzontal hne m the table If the blank spaces in the odd columns are

sy the arithmetic means of the entries immediately above and below,

aerators in the complete central line are

1 i(A + 8) AS 4 (AH- S) AS (AS)
2

can also be written, by introducing two new operators K, k,

1 k K kK K*

),
#=AS = A-S )

-Jfe-JJT, f-iZ'-JT)
'

'Y8-Jfe-JJT,

k cannot be expressed rationally m terms of K> and in order to find a

la in terms of central differences it is necessary to expand in terms

keeping only the first power of k Thus

(5)

t
-

(J)
a

(I)
(1 + JXX* (K + JJP) +

asily verified that

= u3+l ,
u
q (K -I- JZa

) + w
tf (1

-
2r) (|r)

+ (r + 1)(^ 2)}
(1 + 4^ (K2

2 to
-

+

2r . x
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It is therefoie possible to write

v
q
= + q),

T
, Uq

= q

Let 6, become 6/ m ^+1 , uq+1 ,
and equate the coefficients of Kr~l in the fiist,

arid ofK1 m the second, recurrence formula Thus

and, on eliminating &/,

2/(27-l)6r = (? + ?

This shows that

_/^H-7-lW
'
~

V 27-1 ; 2r

where J. is a constant, and since ^ = }^, ^1 = 1 Hence

>

and*the first teims of the complete formula are theiefore

t-

g|
/^ +

|y
n (7)

This seues was found by Newton, but is generally known as Stuhng's formula
It is here taken as fundamental, and other results are deduced from it

287 The formula of Gauss depends on the even central differences and
the odd differences of the line below, the operators being therefore

1 K 1C

A AJT

These are, in terms of k, K,

1, fc + iJT, K
9 (

But (5) may be wntten m the form

where by (6)
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This gives the coefficients of the even central differences, the coefficients of

the odd differences of the adjacent line heing still given by uq
The first

terms of the complete formula are therefore

If the order of the difference table were reversed, 8 would take the place of

A and the sign of w would be changed Hence similarly

By choosing either (9) or (10) q can always be taken between and + J

288 The formula of Bessel contains the odd differences in the line

immediately below the central function, with the mean even differences

of the same line, so that the operators are

A, (1

The odd differences aic thus the same as in the formula of Gauss, and

therefore

7
7
=

(1 4- JA)

where, by (6) and (8),

This gives the coefficients of the odd differences, and the coefficients of

the even (mean) differences are given by Vq Hence the first terms of the

complete foimula are

Bessel's own form diifers from this m the first two terms, being written

yn+q * l + q A +lT X)
(1 +^A) K+
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which is of course equivalent, but is not symmetrical with lespect to the

middle of the tabular interval To make this symmetry cleaier, let p -f
-J-
be

substituted for q in (12), which then becomes

When the sign of p is reversed, the terms of even order are unchanged and
the teims of odd order are simply reversed m sign If teiras of the two
orders are computed separately, two interpolations corresponding to p
are obtained at the same time This is of great advantage in systematic

interpolation to regular fractions of the tabular interval, eg in i educing the

12-houily places of the Moon to an hourly ephemens Stirling's formula

presents a similar advantage But (13) becomes particularly simple at the
middle of an interval, for then # = -J

or p = 0, and the odd differences dis-

appear Thus

and this gives intermediate values with great ease and accuracy

289 When the values of a function y are known only at irregular
intervals of the argument oc, as in an ordinary series of observations, the
function is strictly indeterminate in the absence of othei information as to
its form Nevertheless, when n values ylt , yn are known, corresponding
to a?!, , xa ,

a formula

y aQ + ai# -f + an_ 3 aP-1

can be found, which is satisfied by the n values and within the interval
a?

x to scn will generally resemble the true function closely The n coefficients
can be determined by the linear equations

0=1, , n) These can be solved in the ordinary way, but it is immediately
obvious that the result can be written

where the numerator of the fraction written does not contain (a,
- xr) For

this equation becomes an identity when tcrt yr are substituted for a?, y The
expression on the right is a polynomial of degree n - 1 m x and the equation
since it is satisfied by every pair (xr , yr\ must be identical with the previous
equation, the coefficients m which can be mitten down by comparison The
formula (15) is due to Lagrange and is

directly suitable for interpolation
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differentiation and integration An illustration of its use in a case where

n = 3 has been given in 71 When n is large the formula naturally be-

comes inconvenient for practical purposes

290 Returning to the function with known values at regular intervals

of the argument, let us consider the process of mechanical differentiation

By (2)

WJ) =log(l+A) -A - - \

4 -
J

(16)

These formulae are suitable only m simple cases where great accuracy is not

required The loss of accuracy is a natural tendency when differentiation is

concerned The forms (16) also apply only to the tabulated value of the

argument But since

$ = a + ( 4- q) w, wD =^wd/dsc = d/dq

a formula of differentiation can be derived from every formula of interpolation

Thus Bessel's formula (12) gives

}Vn
j+ JyJ

and analogous forms may be derived similarly by differentiating (7) and (9)

with respect to q

But there are some particular cases of special simplicity and importance

in the formulae of central differences According to (6) u
(l
is an odd function

and v
q
an even function of q Now when #

= 0, d/dq is the coefficient of q

and d*/dq* is twice the coefficient of <f m kuq + vq These coefficients can

easily be taken from fcu
q
and Vq respectively, and give, by (6) or (7), ,

and

Both (18) and (19) involve the alternate differences m the central tabular

line

Similarly when, Vq , Uq are expressed in terms of p = q + J instead of q as

in (8) and (11), Vq is an even function and Uq is an odd function of p
When ^

= ^,p = and d/dq is the coefficient of p and d?ld(f is twice the
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coefficient ofp* in (1 4- -JA) FQ + AUq These coefficients can readily be taken

from (13), which sufficiently indicates the law of foimation, and thus

and

The distinction between the operators (1-f A)^ and (1 -f JA) must be

carefully noted That on the left, (1 + A)* indicates an addition of half the
tabular interval to the argument, so as to apply the difteientiatiou at the

right point, which is the middle of the interval That on the right, (1 4- JA),

merely denotes the mean of adjacent diffeiences m a vertical column of "the
difference table

291 Convenient methods for mechanical integration 01 quadrature can
now be deduced The formulae-for differentiation just found, (18), (19), (20),
(21), are of the form

wD (1 + A)* = A#3 (jff), ufi& (l + A)* = (1 + |A) $, (K)
S (K) denoting a power series in K Hence

vr*D- - &-'/$ (Kl r- D- = 1 JS, (K)

The coefficients of the reciprocals of the K seiies must be expressed more
appropriately, thus

(1 4- A) A"1 = S-1 =

(1 + A) (1 + JA)^ = (1 + A) {1 4- 1A (1 4- A)-'}-* (1

It is therefore necessary to multiply ft arid ft by (1 4- \K) before finding the
reciprocals of the series by division in older to have lesults for IH, Z~a of
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exactly the same form as those already found for Z>, D* These results are
easily found to be

*+) (22)

(23)

-t. > (25)

The development is heie carried as far as differences of the fifth order
This is generally sufficient

It is now necessary to examine the meaning of these purely formal
results The operator K, like its components' A, 8, is such that EK~*= 1
and therefore, as K represents a move two places to the right in the table'K '

represents a move two places to the left The difference table now
requires an extension not hitherto contemplated, and the central line of the
table of operators, with the adjacent lines above and below, now becomes

1
\kK\ K*

Atf [(1+iA) jp] AJP[1+iA]

Here 1 corresponds to the original entry yn m the table The natural
differences as directly formed are expressed simply, while those which are
means of the entries immediately above and below are enclosed by [ ]But while the symbols occurring m the columns to the right of the central
column (representing the function itself) will be readily understood the
construction of the columns to the left must now be explained The numbersm the first column to the left aie such that their differences appear m the
central column Thus

(A/T-* - 8ff-i) yn = yB , AJT-* yn = yn + Stf- yn
and when one numbei m this column is fixed, the rest are formed by
adding successively (when proceeding downwards) the tabulated values of
the function The entries in this column therefore contain an additive
arbitrary constant The second column to the left is related to this first
column m exactly the same way as the fast column to the central' column,
and therefore contains anothei arbitrary constant, but is otherwise definite

The use of four different operators in the table may seem excessive, since
they are all expressible in terms of one In fact

A = e""> - i
f g . 1 _ ,-* & . smh wDj

. K
and this suggests anothei mode of development which has here been de-
liberately avoided But all these operators have simple special meanings
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and it is impoitant to notice that &S"1 and (1 + JA) are equivalent, but quite

distinct from A/c" 1
, though in the complete table, in which the mean differ-

ences are filled in, they all three denote one vertical step downwards

292 As with A"1 and the othei operatois, D"
1
is such that DD"1 = 1, 01

D, D""1

represent inverse operations And since D represents differentiation,

D"1

represents integration Thus take the formula (24) The column A/6"1

being foimed with an arbitrary constant, the right-hand side of the equation,

operating on yn , will produce a function (represented m tabular form) which

is w"1 D" 1

(1 + A)^ yn = wr 1 D"1

yn+ , On the application of D or differentia-

tion, this becomes w~l

yn t Hence the meaning of the foimula is

-\* -1
H- A A -

rffa AA
r + MWsnj A/P - ) yn (26)

where m is written for n + J The lower limit is arbitrary But the right-

hand side also contains an arbitrary constant, and this constant can now be

chosen so as to fix the lower limit of integration For let this limit be

a + \w If then m =
J, n = in (26)

and the value of AK~~l

yQ is now detei mined With it the whole of the

corresponding column can be definitely calculated by successive additions of

the values of the function When this is done, (26) represents the definite

integral of y between the limits a + \w and a + (n -h J) w

Quite similarly the meaning of (22) ib seen to be

ra+nw
r'

J
yds = (kK-* -

wheie the lower limit is a when

But the latter form is not convenient, because kK~ l

y ,
which is hereby deter-

mined, is the mean of two numbers not yet known Now

1

2/0
= AJT-1

2/0 4- S^"1

2/0, 2A>
= AJT'1

2/0
- &K"-1

2/o

and therefore

r1 - )y

Thus AAT""1

2/0
is determined, and the calculation proceeds as m the previous

case It is to be noticed that, though (27) has been derived fiom (26) and

(29) fiom (28), (26) can be used in conjunction with (29), giving a and

a _{_ (n + ^) w as the limits of integration, or (28) with (27), givmg a + nw as

the upper limit and a + ^w as the lower limit
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29^ In a similar way (23) and (25) give the second integrals, thus

a+nw

a+mw

(31)

where m n+ J-
as before The lower limit c of the subject of the second

integration is arbitrary But if the first summation column, on the left of

the function y, has been based on (29), c = a, if it has been based on (27),

c a 4 $w The lower limit 6 of the second integration is also arbitrary and

corresponds with the Additional arbitrary constant in the second summation
column K"1 The latter is easily determined by taking the case b a, n =
of (30) Thus

= (#->+A-ritf# + BT&W^2 --
)y (32)

This gives K"1

y , and the whole of the second summation column becomes

determinate when the first column has been fixed Or again, if the lower

limit b is to be a -f kw> (31) gives when b a + %w, m =
J, n = 0,

0-<l+iA) (If- -
or

This is quite general whatever the value of c, or of AIT"1

y^ may be But as

c = b usually, (2*7) can be used in this case, and then

}y> (34)

When the second summation column is based on (34) and the first on (27)
x = a + %w is the common lower htmt for the double integration When
(29) and (32) are used in forming these columns, x = a is the common lower

limit In either case (30) and (31) give the values of the double integrals
to the upper limits x = a + nw and x = a + (n + ) w respectively

No attention has been given here to the limitations of the method which
are imposed by the conditions of convergence of the expansions employed
In general the question is settled m practice by obvious considerations But
for a critical estimate of the accuracy attainable it is clearly important

294. Theie is also a trigonometrical form of interpolation, otherwise

known as harmonic analysis, which is of great importance This is intimately
related to Fourier's series, and indeed amounts to the calculation of the

coefficients of this expansion It will be well to recall the principal pro-

perties of the series, which may be stated thus

The sum of the infinite series

cr H- 2 (an cos n$ + bn sin nx)
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(n a positive integer), wheie

i f
2jr i [

2ir i f2ir

a = ~~ /(#) dx, an = -
/(a) cos nx doc, bn = I / (*,) sm n& <$&

/TTJo T./ 71" JO

is/"^) throughout the interval <x< 2ir, providedy(a?) is continuous

At any point x in the interval where f(x) is discontinuous, the sum of

the series is [f(x
-

0) +/(% + 0)}

It is assumed that the number of hnito discontinuities and the number of

maxima and minima of f(x) are finite These conditions are moie than

sufficient and are always satisfied by the empmcal functions of practical

computation

The expansion is unique m the sense that no other coefficients can make
the given series represent the same function over the stated interval so long
as n remains integral

If the series is absolutely convergent for all real values of x it is also

uniformly convergent Its sum has then no discontinuities and has the

same value at x= and = 2-Tr

The sum of the series is a periodic function, with the period 2?r Iff(cc)
is also periodic with the same period, it coincides with the sum of the senes

for all values of x, but otherwise the functions coincide only in the interval

< x < 2?r If f(v) =/(#) =f(x + 2-Tr), f(x) is lepreserited by a Fourier

series containing cosine terms only (bn
=

0) If f(x) = /( &) =/(& + 2?r),

f(x) is represented completely by a series containing sine terms only

(a = au = 0) Similarly an arbitraiy function can be leprcsented within

the interval to TT either by a sine series 01 by a cosine series when one of

the functions /(27T &) is assigned to the mteival TT to 2-rr

295 When the function is given and the term function has hcie an

exceptionally wide meaning the coefficients in its expression as a Fourier's

series can be calculated by a special kind of integrator, known as an Harmonic

Analyser, of which several forms have been invented But here the equivalent
arithmetical processes will be considered

When the function is lepresented by a definite number of distinct values

it is obvious that only a finite number of terms in the senes can be cletei-

mmed, and it is necessary to assume that the practical convexgoncy of the

series is such that the remainder after a certain point is negligible Let the

finite senes be

U = a + S (a t
coai$ + b

t Bmi6)
i,i

with 2n + l corresponding pans of values, v^u)) 6^6 ) Fiom the lincai

equations
2 (a t cos i0

1 + h sm i0
t )
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the coefficients OQ, c^, 6 can be found in the ordinary way It is also easy to

represent the result by a formula analogous to Lagrange's formula of inter-

polation (15) But when Or = 2r7r/(2w + 1) the solution can be effected in a

very simple way

It is necessary to consider the sums of two very simple series In the

first place
*-i <?-i

2 smra = 2 {cos(r- J)a- cos (r

=s sm %sa sin \ (s 1) a/sin Ja

and this is if a = 2p7r/s Even when j? =p'$, p and j/ being both integers,

and therefore sm^a=* 0,this remains true, for every term of the series is then

zero Similarly
-i *-i

2 cos ra. - 2 (sin (? + ) a sm (r -J-) a} /
2 sin Ja

r=0

= {sm (s
-

) a" + sm Ja} /2 sm -Ja

= sm ^sa cos (5 1) a/sin a

and this is also if a = 2p?r/s, unless jp =p's In the latter case each term of

the series is 1 and the sum is $ Thus both the series vanish for a = 2p?r/5,

except the cosine series when a = 2pV

296 Let u = ur be the value of the function corresponding to the value

of the argument = ra The series will not now be limited to a finite number

of terms Then

2 ur co&jra ss a 2 cos^ra + 22 (at cos^ra cos ira. -f- 6t cos^? a sm ^ra)

= a 2 cos^ra -^ i 2Sat {cos (i +^) ra + cos (i -j) ra]
r I r

2 ur smjra.
= a 2 sm^ra -f 2 2 (Oi sm^ra cos ira + b% sm^ra sin tra)

r=0 r ^ r

-J226t {cos (i j) ra cos (^ -h^) ra}
* >

when a=2?r/5, for all the sine terms vanish immediately in the sum with

respect to r The cosine terms also vanish m the sum unless^, i +^ or ^ j is

a multiple of s (including zero) Thus, j having m succession all values from

1 to
-J- (5 1), or %st

- 2 wr = flo + S a,,
5 r=0 =1

9 ^""1 ^'M'TT
- S Wr C08 -^ =

dj + 2

2 ^z;
1

?r , -
- 2 2^ sin -^- - bj + 2

(35)
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When s equidistant values, w0) , u^lt (us
= UQ), are known the opeiations

indicated on the left are easily performed Then, if the series converges so

rapidly that the higher coefficients can be neglected, a
, Oj, blf are deter-

mined, as far as aj^u, 6j ( -D if s is odd, and as far as ais , b^ if 5 is even
The lower coefficients will naturally be calculated much more accurately than
the higher, for there is little reason to suppose a^ 8+l small m comparison with
a
ig_! But it is well to compute the higher coefficients as a practical test of

convergence

297 It is usually convenient to make s an even number, and indeed a

multiple of 4, so as to divide the quadrants symmetrically Let s = Zn and
let the terms of higher order than an ,

6M be neglected Then (35) become

Hrsnv'- (36)

7
= 1,2, ,n-l)

so that an is determined, but not bn ,
and this is natural, for 2n coefficients in

addition to a cannot be derived from 2n values ur

Let n~ j be written for^ m (36) Then

Hence

~
*p + (wa + tfan-s) COS h (w4 + ?^2 i-4) COS -^ +^
(.

W 71

)
== -

|
Wl cos^Z + Wa cos -^ + + tz^j cos

(27l

^
1)??r

l

1 f, x 97T . s 3?7T )= -
-j (
Wi + '^an-i) cosl{ H (Wj + W^n-s) COS 1- [n

( n n
)

+ (, - M^.,) sin^ + I
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= 1,2, ,w-l), and

337

a + On = -
( HO 4- wa -f u* 4-

71

a - On = -
C^i +^ + W5 +

By this arrangement _,, &_, are calculated together with a,, bj
with scarcely

more trouble than a
jt bj

alone As a practical check on the convergence of

the series these higher harmonics should be found

298 The arrangement can be greatly simplified in special cases For

example, in the case s 12, n = 6, let the data be arranged thus

Sums

Differences

Sums

Differences V*

n

The equations for the coefficients are

^ (a, + OB-,)
= J ( + v2 cos ijTr + 1>4 cos ly-TT + v6 cos^^

i (a,- a ^) = J (^ cos ^TT + v3 cos ^TT + w
fi
cos ^TT)

^ (6^ + b^) = ^ (/i sin i^7r + w3 sin ^TT + w;B sin gjw)

4 (6,
- 6^) i (wasm J^TT + w4 sin JJTT)

Hence two cases, according as
.?

is even or odd

3 even j odd

i (r% + <*-,) i ( jpo + #2 cos ^

4 (a,
- a6_,)

= i (pl cos

* (tfo

Jr2 sin J^TT

and these forms can easily be made more general
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Then, forj
= 2,

i (0.2 + a4)
= i (jpo

- &p2), 4 (& + 64)
- J^ cos 30

for
.7
= 1,

i (flb + a.) - i (0 + Jfc), j (b, + 6.)
= ^ (j ri + r>)

i (01
-

OB)
= i ft cos 30, | (b,

- bs)
= J r > cos 30

for
,7
= 3,

0| =*fe^ *ilfrl"3)
and

finally,

The calculation of the lequired terms is therefore extremely simple The
case when ,- 24, n = 12, is almost equally so, but would require more space
to exhibit in detail

r

299 The mode of solution for the harmonic coefficients can be con-
sidered from another point of view Let the s equidistant values u* u u _
be given as before, and let the first p harmonics-includingV b lie
required H 2p-,-l, the number of unknowns is equal to the number of
values and the solution is unique If 2p < s~ 1, the number of equations is
in excess of the number of coefficients to be determined The latter can
then be found by the rule of least squaies, that is, so as to make the sum of
the squared residuals a minimum The equations being of the form

s

the quantity which is to be made a minimum

The conditions are

is

which, being 2p + 1 m number, determine a and the 2p coefficients They
^ive in lacu *
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But since 2p<s-l, 0<j<p + l and 0<i<p+JL, neither i nor i+j is

a multiple of s (including 0) Hence the only terms which do not vanish in

the sum with respect to r arise when i j
= 0, and therefore the equations

become
s-l

sa S tt =

A . , A
^sa,

- S wr cos
-^ = 0, ^sby

- 2, ur sm -^ =
r=0 s r=0 s

(j
=

l, , p) But these are identical with the earlier equations of the group

(35) when the distant harmonics are omitted Hence the harmonics to any

order p derived by the general rule (36) from 2 ft equidistant values (p < n)

are the same as would result from a least-square solution Thus if the

function is represented by a curve and the coefficients are calculated by the

rule, a gives the best horizontal straight line, a + ^ cos 6 + Z>i sin 6 the

closest simple sine curve,"and so on, m the sense defined This important

property emphasises the independence with which the several coefficients

are determined Each apart from the rest is found with the greatest possible

accuracy from the data accoidmg to the principle of least squares

300 The method can be extended to the development of a periodic

function m two variables,

For this may be wntten

F= a + 2 (c^ cos 10 + k sin ^0)
i

where a
,
al , bl are each of the same form as F with & in the place of

With any particular value of & and 2n equidistant values of F in respect

to 6, a ,
al} &i can be deteirmned according to the rule expressed by (36) Each

of these is a function of the chosen value of 6', and if the process is repeated

with 2n equidistant values of 8', each coefficient can be expressed m the

form

a,j
= + 2 (a, cos 16' + A sm i0')

i

by the same rule When these expressions are inserted in the second form

of jP, the first form is readily deduced This method was employed by

Le Verner m his theory of Saturn
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