DOVER BOOKS ON SCIENCE

The Evolutzon of Sczentific Thought From Newton to Einstern, A d'Abro $\$ 200$

The Ruse of the New Physucs, A d'Abro 2 vol set $\$ 400$ The Birth and Development of the Geological Sciences, F D Adams $\$ 200$,
Language, Truth, and Logic, A J Ayer $\$ 125$
A Short Account of the Hestory of Mathematics, W W R Ball $\$ 200$
The Sky and Its Mysteries, E A Beet Clothbound $\$ 300$
Yoga A Scientıfic Evaluation, K T Behanan $\$ 165$
Foundations of Nuclear Physics, R T Beyer $\$ 175$
Non-Euclidean Geometry, R Bonola $\$ 195$
Experiment and Theory in Physıcs, Max Born 60ϕ
The Restless Universe, Max Born $\$ 200$ Soap Bubbles, C V Boys 95 ${ }^{\text {d }}$
Concerning the Nature of Things, William Bragg $\$ 135$
The Universe of Light, Willam Bragg $\$ 185$
The Nature of Phystcal Theory, P Wridgman $\$ 125$
Matter and Light The New Physics, Louts de Broglıe $\$ 160$
Foundations of Science Philosophy of Theory and Experiment, $N R$ Campbell $\$ 295$
What ws Sctence? $N R$ Campbell $\$ 125$
Introduction to Symbolic Logic and Its Applications, Rudolf Carnap \$185
The Common Sense of the Exact Sciences, W K Clifford $\$ 160$
A Diderot Pictorıal Encyclopedıa of Trades and Industry, C C Gillispıe ed 2 vol set Clothbound $\$ 1850$
A Hustory of Astronomy from Thales to Kepler, J L E Dreyer $\$ 198$
Investigations on the Theory of the Brownian Movement, Albert Einstein $\$ 125$
The Story of Atomic Theory and Atomic Energy, J G Feinberg $\$ 145$
Insect Life and Insect Natural History, S W Frost $\$ 225$
Fads and Fallacies in the Name of Scıence, Martın Gardner $\$ 150$
The Psychology of Invention in the Mathematical Fzeld, J Hadamard \$1 25
The Sensatzons of Tone, Hermann Helmholtz Clothbound $\$ 795$
A Treatuse on Plane Trigonometry, E W Hobson $\$ 195$
The Strange Story of the Quantum, Banesh Hoffmann $\$ 145$
The Realm of the Nebulae, Edwin Hubble $\$ 150$
The Principles of Science, Stanley Jevons $\$ 298$
Calculus Refresher for Technıcal Men, A A Klaf $\$ 200$

$$
\text { CALL NO O } \underset{P L U}{52 l . .1 ~}
$$

Q

AN INTRODUCTORY TREATISE
ON

DYNAMICAL ASTRONOMY

AN INTRODUCTORY TREATISE

 ON
DYNAMICAL ASTRONOMY

BY
H. C. PLUMMER, M.A.

LATE PROFESSOR OF ASTRONOMY IN THE UNIVERSITY OF DUBLIN AND ROYAL ASTRONOMER OF IRELAND

DOVER PUBLICATIONS, INC. NEW YORK

All rights reserved

Published in the United Kingdom by Constable and Company Limited, 10 Orange Street, London W C 2

This new Dover edition, first published in 1960, is an unabridged and unaltered republication of the work originally published in 1918 This edition is published by special arrangement with the Cambridge University Press, the original publisher of the work

PREFACE

THIs book is intended to provide an introduction to those parts of Astronomy which require dynamical treatment To cover the whole of this wide subject, even in a preliminary way, within the limits of a single volume of moderate size would be manifestly impossible Thus the treatment of bodies of definite shape and of deformable bodies as enturely excluded, and hence no reference will be found to problems of geodesy or the many aspects of tidal theory Already the study of stellar motions 18 bringing the methods of statistical mechamics into use for astronomical purposes, but this development is both too recent and too distinct in its subject-matter to find a place here.

Nevertheless the book covers a wider range of subject than has been usual in works of the kind Thereby two advantages may be gained For the reader is spared the repetition of very much the same introductory matter which would be necessary if the dufferent branches of the subject were taken up separately. But in the second place, and this is more umportant, he will see these branches in due relation to one another and will realize better that he is dealing not with several distinct problems but wath different parts of what is essentially a single problem. In an introductory work it therefore seemed desurable to make the scope as wide as was compatible with a reason. able unity of method, the more so on acoount of the almost complete absence of sumilar works in the English language.

The first six ohapters are devoted to preliminary matters, ohiefly connected with the undisturbed motion of two bodies. These are followed by flve chapters VII to XI dealing with the determination of orbits. This section is intended to familiarize the reader with the properties of undisturbed motion by explaining in general terms the most important and interesting applications. It as an no sense complete and is not intended to replece those worlas which are enturely devoted to this subject. Otherwise it would have been necessary to describe in detail suoh admirably effective methods as Professor Leusohner's and to unclude fully worked numerioal examplea. Here, as elsem where, the aim has been to give such an acoount of princuples as will be
instructive to the reader whose studies in this branch go no further, and at the same time one which will help the student to understand more eassly the technical details to be met with in more special treatises Though the actual details of practical computation are enturely excluded, the fact that all such methods end in numerical application has by no means been overlooked A distinct effort has been made to leave no formulae in a shape unsuitable for translation into numbers The student who feels the need will have no difficulty in finding forms of computation in other works At the same time the reader who will take the trouble to work out such forms for himself will be rewarded wrth a much truer mastery of the subject, though he should not disdain what is to be learnt from the tradition of practical computers

An outhe of the Planetary Theory is given in the seven chapters XII to XVIII The first of these deals exclusively with the abstract dynamical principles which are subsequently employed It is hoped that this synopsis will prove useful in avoiding the necessity for frequent reference to works on theoretical mechanics The reader to whom the methods are unfamiliar and who wishes to become more fully acquanted with them may be referred to Professor Whittaker's Analytical Dynamics, where he will also find an introduction to those more purely theoretical aspects of the Problem of Three Bodues which find no place here To those who are famular with these principles in therr abstract form only the concrete applications in the following chapters may prove interesting A chapter on special perturbations is meluded. Here, as in the determination of orbits, the need for numerical examples may be felt To have inserted them would have interfered too much with the general plan of the book, and they will be found in the more special treatises But it was felt that the subject could not be omitted altogether, and a concise and faurly complete account of the theory has therefore been given It may seem curious that with the development of analytical resources the need for these mechanical methods becomes greater rather than less, but so it is

Chapter XIX on the restricted problem of three bodies is intended as an introduction to the Lunar Theory contained in Chapters XX and XXI The division of these two chapters is partly arbitrary, for the sake of preserving a fair uniformity of length, but it coincides roughly with the distinction between Hull's researches and the subsequent development by Professor Brown In the second a low order of approximation is worked out, and it is hoped that this will serve to some extent the double purpose of making the
whole method elearer and of pointing out the nature of the principal terms, which are apt to be entirely hidden by the complicated machinery of the systematic development

The rotation of the Earth and Moon is discussed in Chapters XXII and XXIII The treatment of precession and nutation is meant to be simple and practical, and the opportunity is taken to add an account of the astronomical methods of reckoning time in actual use In the final chapter of the book the theory of the ordınary methods of numerical calculation is explamed This is necessary for the proper understanding of Chapter XVIII, but it also bears on various points which occur elsewhere Numerical applications find no place in this work But let the mathematical reader be under no misapprehension The ultimate amm of all theory in Astronomy is seldom attaned without comparison with the results of observation, and the meduum of comparison is numerical Hence few parts of the theory can be regarded as complete till they are reduced to a numerical form This is a process which often demands immense labour and in itself a quite special kind of skill It is just as essential as the manipulation of analytical forms

Originality in the wider sense is not to be expected and indeed would defeat the object of the book, which aims at making it easier for the student to read with profit the larger and more technical treatises and to proceed to the original memors A certain freshness in the manner of treatment is possible and, it is hoped, will not be found altogether wanting Few durect references have been given as a guide to further reading, and this may be regretted But the opinion may be expressed that for the reader who is quallfied to profit by a work like the present, and who wishes to go further, the time has come when he should acquure, uf he has not done so already, the faculty of consulting the library for what he wants without an apparatus of special durections Sign-posts have their uses, and the experienced traveller is the last to despise them, but they are not conducive to a spirit of original adventure

Since the main object in view has been to cover a wade extent of ground in a tolerably adequate way rather than to delay over critical details, the absence of mathematical rigour may sometimes be noticed Very little attention is given to such questions as the convergence of series It is not to be inferred that these points are unumportant or that the modern astronomer can afford to disregard them But apart from a few simple cases where the
reader will either be able to supply what is necessary for himself, or would not benefit even if a critical discussion were added, such questions are extremely difficult and have not always found a solution as yet It is precisely one of the aums of this book to increase the number of those who can appreciate this side of the subject and will contribute to its elucidation

The reader who wishes to proceed further in any parts of the subject to which he is introduced in this book will soon find that the number of systematic treatises available in all languages is by no means large He must turn at an early stage to the study of original memorrs It is not difficult to find assistance in such sources as the articles in the Encyklopadze der Mathematuschen Wrssenschaften, which render it unnecessary to give a brblography The subject is one which has received the attention of the majorty of the greatest mathematicians durng the last two centuries and in which they have found a constant source of inspiration Their works are generally accessible in a convenient collected form

For the benefit of any student who wishes to supplement his reading and has no means of obtaining personal advice, the following works may be specially mentioned

Determınatzon of Orbits and Special Perturbations

1 J Bauschnnger, Bahnbestımmung der Himmelskö̀ per (A source of fully worked numerical applications)
2 Publucations of the Lnck Observatory, Vol VII
(Contains an exposition of A O Leuschner's methods)

Planetary and Lunar Theorves

3 F Tisserand, Trarté de mécanrque céleste

(The most complete account of the classical theories)
4 H. Ponncaré, Leçons de mécannque celeste
5 H Ponncaré, Méthodes nouvelles de mécannque celeste
6 C V. L. Charlher, Dhe Mechanık des Hımmels
7 E, W Brown, An introductory treatze on the lunar theory (Gives full references to all the earher work on the subject)
The great examples of the classical methods in the form of practical apphication to the theories of the planets are to be found in the works of Le Verrier (Annales de l'Observatorre de Parrs), Newcomb (Astronomical

Papers of the American Ephemerrs) and Hill (Collected Works) The most suggestive developments, apart from the researches of Poncaré, are contamed in the work of H Gyldén (Tranté analytqque des orbites absolues des huıt planetes pruncupales) and P A Hansen All these works will repay careful study, but the suggestions are not to be taken in any restrictive sense

The author of the present book has the best of reasons for acknowledging his debt to most of the writers mentioned above and to others who are not mentioned Some of the proof sheets have been very kindly read by the Rev P J Kırkby, D Sc, late fellow of New College, Oxford. Acknowledgement is also due to the staff of the Cambridge University Press for their care in the printing It is not to be hoped, in spite of every care, that no errors have escaped detection, and the author will be glad to have such as are found brought to his notice

H. C PLUMMER

Dunging Observatory, Co Dublin, 20 February 1918

CONTENTS

CHAPTER I

THE LAW OF GRAVITATION

sect page
1, 2 Kepler's laws 1
3,4 The field of force central 2
5 Acceleration to a fixed point for elliptic motion 3
6 More general case 4
7 Laws of attraction for elliptic motion Bertrand's problem 5
8 The apsidal angle 6
9 Condition for constant apsidal angle 7
10 Bertrand's theorem on closed orbits 8
11 Summary of results 8
12 Newton's law 9
13 Gravity and the Moon's motion 10
14 Dimensions and absolute value of the constant of gravitation 10
CHAPTER II
INTRODUCTORY PROPOSITIONS
15 Forces due to a gravitational system 11
16 Potential of spherical shell 12
17 Attraction of a sphere 12
18 Potentral of a body at a distant point 13
19 Equations of motion and general integrals 14
20 The same referred to the centre of mass 15
21 A theorem of Jacobi 16
22 The invamable plane 16
23 Relative coordinates and the disturbing function 17
24 Astronomical units 19
CHAPTER III
MOTION UNDER A CENTRAL ATTRACTION
25, 26 Integration in polar coordinates 21
27 The elliptic anomalies 23
28 Solution of Kepler's equation (fig 1) 24
sect
29 Parabolic motion pagr
30 Hyperbolic motion 26
31, 32 Hyperbohc motion (repulsive force) 26
33 The hodograph (fig 2) 27
34 Special treatment of nearly parabolic motiou 30 30 30
CHAPTER IV
EXPANSIONS IN ELLIPTIC MOTION
35 Relations between the anomalies
36 True and eccentric anomalies 33
37 Bessel's coefficients 34
38 Recurrence formulae 35
39-41 Expansions in terms of mean anomaly 36
42 Transformation trom expansion in eccentric to mean anomaly 37
43 Cauchy's numbers 40
44 An example 41
45 Hansen's coefficients 43
46 Convergency of expansions in powers of e 44
47 Expansion of Bessel's coefficients 4647
CHAPTER V
RELATIONS BETWEEN TWO OR MORE POSITIONS IN AN ORBIT AND THE TIME
48 Determinateness of orbit, given mean distance and two points 49
50 Examination of the ambiguity 50 50
51 Euler's theorem 51
52 Encke's transformation 53
53, 54 Lambert's theorem for hyperbolic motion 53
55 Ratio of focal triangle to elliptic sector 54
56 Ratio to parabolic sector 57
57, 58 Ratio to hyperbolic sector 58
59 A general theorem in approximate form, 59
60 Two applecations Formulae of Glbbs 61
61, 62 Approximate ratios of focal triangles 6268
CHAPTER VI
THE ORBIT IN SPACE
63, 64 Definition of elements
65 Ecliptic coordinates 65
66 Equatomal coordinates 67
67 Change in the plane of reference 68
68 Effect of precession on the elements 69
69 The loous fictus 70
CHAPTER VIICONDITIONS FOR THE DETERMINATION OF AN ELLIPTIC ORBIT
sert pagr
70 Geocentric distance and its derivatives 73
71 Derivatives of direction-cosines 74
72 Deduction of heliocentric coordinates and components of velocity 75
73 The elements determined 75
74 The equation in the heliocentric distance 76
75 The limiting curve (fig 3) 77
76 The singular curve 80
77 The apparent orbit. Theorem of Lambert 81
78 Theorem of Klinkerfues 82
79 The small circle of closest contact 82
80 Geometrical interpretation of method 83

CHAPTER VIII

DETERMINATION OF AN ORBIT METHOD OF GAUSS
81 Data of the problem 85
82 Condition of motion in a plane 85
83 The middle geocentric distance 86
84 The fundamental equation of Gauss 87
85 First and last geocentric distances 89
86 First approximation 90
87 Treatment of aberration 91
88 True ratios of sectors and triangles 91
89 The solution completed 93

CHAPTER IX

DFTERMINATION OF PARABOLIC AND CIROULAR ORBITS

90 Data for a parabolic orbit 94
91 Dondition of motion in a plane 94
92 Use of Euler's equation 95
93 Deduction of parabolic elements 96
94 The second place as a test 97
95 Method for circular orbit 98
96 Method of Gauss 100
97 Groular elements derived 101

CHAPTER X

ORBITS OF DOUBLE STARS

sEOT PAGE
98 Nature of the apparent orbit 103
99 Application of projective geometry (fig 4) 104
100 Five-point constructions (fig 5) 106
101 Other graphical methods 107
102 Altei native method 107
103 Use of equation of the apparent orbit 108
104 Elements depending on the time 110
105 Special cases 110
106 Differential corrections 112
107 Ratio of masses 113
108 Use of absolute observations 113
CEAPTER XI
ORBITS OF SPECTROSOOPIC BINARIES
109 Doppler's principle 115
110 Corrections to the observations 116
111 Nature of spectioscopic binaries 118
112 The velocity curve (fig 6, a and b) 118
113 Special points on the curve 120
114 Analytical solution for elements 121
115 Properties of focal chords 128
116 Properties of diameters 143
117 Integral properties of velocity curve 184
118 Differential properties 180
119 Differential corrections to elements 126
120 Dimensions and mass functions of system 128
121 Application to visual double stars 187
CHAPTER XII
DYNAMICAL PRINCIPIES
122 Lagrange's equations
129
129
123 The integral of energy
180
180
124 Canomical equations 131
125 Contact transfoimation
138
138
126 The Hamilton-Jacobl equation 182
127 Varration of arbitrary constants
133
133
128 Hamilton's principle
134
134
129 Princuple of least action
136
136
130 Lagrange's and Poisson's brackets
138
138
131 Conditions satisfied by contact transformation
138
138
132 Infintesimal contact transformation
139
139
133 Disturbed motion related to an integral
140
140
134 Theorem of Poisson 140
CHAPTER XIII
VARIATION OF ELEMENTS
seot page
135 Hamilton-Jacobi form of solution for undisturbed motion 142
136 Interpretation of constants 143
137 Lagrange's brackets 144
138 Poisson's brackets 145
139 Equations for the variatious 146
140 Modified definition of mean longatude 147
141 Alternative form of equations for the variations 148
142 Form involving tangential system of components 149
143 Systems of canonical variables 152
144 Delaunay's method of integration 153
145 Subsequent transformations 155
146 Effect of the process 157
CHAPTER XIV
THE DISTURBING FUNOTION
147 Laplace's coefficients 158
148 Formulae of recurrence 159
149 Newcomb's method of calculating coethcients 160
150 Drect calculations required 161
151 Continued fruction formula 162
152 Jacobr's coefficients 163
153 Partial differential equation for coefficients 164
154 Hansen's development 166
155 Tisserand's polynomials 167
156 Determination of constant factors 169
157 Symbolic form of complete development 170
158 Newoomb's operators 172
159 Indirect part of disturbing function 173
160 Alternative order of development 174
161 Exphect form of disturbing function 175
CHAPTER XV
ABSOLUTE PERTURBATIONS
162 Orbit in a resisting medum 177
163 Nature of the perturbations 178
164 Perturbations of the first order 179
165 Secular and long period nequalities 180
166 Perturbations of higher orders 181
167 Classification of nequalities 182
168 Jacobi's coordinates 184
169 The areal integrals Elimination of the nodes 185
170 Equations of motion 186
171 Equations for disturbed motion 187
172 Porsson's theorem 188
173 Effect of commensurability of mean motions 190
CHAPTER XVI
SECULAR PERTURBATIONS
SECT
174 The disturbing function modified PAGII PAGII 192
175 Form of expansion
176 Effect of symmetry 193 193
177, 178 Expheit form of secular terms 195
179 Orthogonal transformation of variables 195
180 Solution for eccentric variables 199
181 Solution for oblique variables 200
182 Other forms of the integrals 202 202
183 Upper limat to eccentricities and inclinations 203 - 204
CHAPTER XVII
SECULAR INEQUALITIES METHOD OF GAUSS
184 Statement of the problem
207
207
185 Attraction of a loaded ring 208
186 Geometrical relations between the orbits
209
209
187 Equation of the cone
210
210
188 The final quadrature
212
212
189 Introduction of elliptic functions
213
213
190 Integrals expressed by hypergeometric semes
214
214
191 The potential in terms of invariants
191 The potential in terms of invariants 215
192 Transformation of coordinates 216
CHAPTER XVIII
SPECIAL PERTURBATIONS
193 Nature of special perturbations
194 The difference table 218
195 Formulae of quadratures 219
196 Application to a differential equation 220
197 An example 221
198 Method of rectangular coordinates 221
199 Equations of motion in cylindrical coordinates 222
200 Treatment of the equations 224
201 Perturbations in polar coordinates deduced 225
202 Equations for vamations in the elements 226
203 Calculation of disturbing forces 227
204 Perturbations in the elements 228
205 Case of parabohe orbits 229
206 Necessary modification of coefficients 230
207 Sphere of influence of a planet 231234
CHAPTER XIXSECT
208 Jacobi's integral PAGE
209 Tisserand's criterion 236
210 Curves of zero velocity (fig 7) 236
211 Points of 1 elative equlibrium 237
212 Motion in the neighbourhood 239 241
213 Stability of the motion
213 Stability of the motion 242
214 The varied orbit 243
215 Elementary theory of the differential equation 245
216 Variation of the action 247
217 Whittaker's theorems 248
218 Use of conjugate functions
250
250
219 Applications 252
CHAPTER XX
LUNAR THEORY I
220 Cholce of method 254
221 Motion of Sun defined 254
222 Force function for the Moon 256
223 Equations of motion
257
257
224 Hill's transformation 258
225 Further transformation 259
226 Varrational curve defined 261
227 Equations for coefficients 262
228 More symmetrical form 263
229 Mode of solution
263
263
230 Polar coordinates deduced 265
231 Another treatment of problem
265
265
232 Equation of veried orbit 267
233 Hill's determinant
268
268
234 Properties of roots
269
269
235 Development of associated determinant 270
236 Adams' determination of g 272
CHAPTER XXI
LUNAR THEORY II
237 Small displacements from variational curve
273
273
238 Finite displacements 274
239 Terms of the first order 275
240 The variation 276
241 First terms calculated 277
242 Motion of the perigee 278
243 Prinoipal elliptio term The Evection 279
244 Terms depending on solar eccentricity 280

Contents

sect page
245 The Annual Equation 281
246 The Parallactic Inequality 283
247 The third coordinate 284
248 Motion of the node 285
249 Further development 286
250 Mode of treatment 287
251 Consistency of equations 287
252 Higher parts of motion of perigee 288
253 Definitions of arbitrary constants 289
254 Remaning factors in the lunar problem 291
CHAPTER XXII
PRECESSION, NUTATION AND TIME
255 Euler's equations 292
256 Mutual potential of two distant masses 293
257 The moments calculated 294
258 Steady state of rotation 294
259 Equations of motion for the axis 295
260 Change of axes for the Moon 296
261 Expansions for elliptic motion introduced 298
262 Mode of solution 299
263 Lum-solar precession 299
264 General precession (fig 8) 300
265 Nutation 302
266 Nutational ellipse 303
267 Numerical values for precession 304
268 Results for nutation Moon's mass 305
269 Annual precessions in R A and declination 306
270 Sidereal time 307
271 Mean time 308
272 Tropical year 310
273 General remark 310
CHAPTER XXIII
LIBRATION OF THE MOON
274 Cassmis laws 312
275 Optical libration 312
276 Equations of motion 313
277 First condition of stabiluty 314
278 Libration in longitude 315
279 Equations for the pole 316
280 Second condition of stabllity 318
281 Third condition for moments of inertia 319
282 Second order terms 320
283 Ans of rotation 321
CHAPTER XXIV
FORMULAE OF NUMERICAL CALCULATION
SROT
284 Representation of a function PAGI
323285 The operators Δ, 8
286 Sturling's formula 324
287 Formula of Gauss 325
288 Bessel's formula 326
289 Lagrange's formula 327
328290 Mechanical differentiation
291 Inverse operations 329
292 The first integral 330
293 The second integral 332
294 Properties of Fourier's series 333
295 Mode of solution for coefficients 333
296 Fundamental formulae 334
297 Simplifications 335
298 Special case ($8=12$) 336
299 Property of least squares 337
300 Periodic function of two variables 338 339
Index
Index 341

AN INTRODUCTORY TREATISE ON

DYNAMICAL ASTRONOMY

CHAPTER I

THE LAW OF GRAVITATION

1 The foundations of dynamical Astionomy were laid by Johann Kepler at the beginning of the seventeenth century $\mathrm{H}_{1 \mathrm{~s}}$ most important work, Astronomia Nova (De Motibus Stellae Martis), published in 1609, contains a profound discussion of the motion of the planet Mars, based on the observations of Tycho Brahe In this work a real approximation to the true kinematical relations of the solar system is for the first time revealed Kepler's mann results may be summarized thus
(a) The heliocentric motions of the planets.(ie their motions relative to the Sun) take place in fixed planes passing through the actual position of the Sun
(b) The area of the sector traced by the raduus vector from the Sun, between any two positions of a planet in its orbit, is proportional to the time occupied in passing from one position to the other
(c) The form of a planetary orbit is an ellipse, of which the Sun occupies one focus

These laws, which were found in the first instance to hold for the Earth and for Mars, apply to the individual planets In a later work, Harmonices Munda, published in 1619, another law is given which connects the motions of the different planets together This is
(d) The square of the periodic time is proportional to the cube of the mean distance (1 e the semi-axis major)

These deductions fiom observation are given here in the order in which they were discovered The third (c) is generally known as Kepler's first law, the second (b) as his second law, and the fourth (d) as his third law But the first statement 18 of equal mpportance In the Ptolemarc system the "first mequality" of a planet, which represents its heliocentric motion, was assigned to a plane passing through the mean position of the Sun Even in the Copernican system this "mean position" becomes the centre of the Earth's orbit, not the actual eccentric position of the Sun In consequence no astronomer before Kepler had succeeded in representing the latitudes of the planets with even tolerable success

2 It is undeniable that in making his discoveries Kepler was anded by a certain measure of good fortune Thus his law of areas was in reality founded on a lucky combination of errors In the first place it was based on the hypothesis of an eccentric circular orbit and was later adopted in the elliptic theory In the second place Kepler supposed (a) that the time in a small arc was proportional to the radius vector, (b) that the time in a finite arc was therefore proportional to the sum of the radıl vectores to all the points of the arc, (c) that this sum is represented by the area of the sector Both (a) and (c) are erroneous, and indeed Kepler was aware that (c) was not strictly accurate Mathematically expressed, the argument would appear thus

$$
h d t=r d s, \quad h t=\int r d s=2 \text { (area of sector) }
$$

Both the supposed fact and the method of deduction are wrong, yet the result is right But if it should be supposed that Kepler owed his success to good fortune it must be remembered that this fortune was simply the reward of unparalleled industry in exhausting the possibilities of every hypothesis that presented itself and in checking the value of any new principle by durect comparison with good observations It must also be remarked that Tycho Brahe's observations were of the proper order of accuracy for Kepler's purpose, being sufficiently accurate to discriminate between true and false hypotheses and yet not so refined as to involve the problem in a maze of unmanageable detail Another factor in Kepler's success was his knowledge of the Greek mathematicians, in particular of the works of Apollonius

3 Kepler had no conception of the property of nertia and he was therefore unable to make any progress towards a correct dynamical view of planetary motion It is interesting to analyze his results and to see what is impled by each of the above statements taken by itself

According to the first statement the planets move in a field of force which is such that every trajectory is a plane curve If we suppose that the acceleration at each point is a function of the coordnates of the point, an immediate deduction can be made as to the nature of the field of force For let A, B be two points on a certain trajectory, and let P be a third point not in the plane of this curve Then P can be joined to A and to B by plane trajectories The planes in which $A B, P A$ and $P B$ le meet in one point 0 (which may be at infinity) The acceleration at A is in the plane $O A B$ and also in the plane OAP Hence it is along $A O$ Sumilarly the acceleration at B is along $B O$, and the acceleration at P is along $P O$ But the point O is determined by the two points A and B Therefore the acceleration at every point of the field is durected towards the fixed point O, and the field of force is central (or parallel) Now the planes of the orbits all pass through the Sun Hence the Sun is the centre of the field of force in which the
planets move For an analytical proof of the general theorem see Halphen (Comptes Rendus, Lxxxiv, p 944)

4 To this the second statement adds nothing with regard to the nature of the forces, and might andeed have been deduced from the first For at tells us that

$$
\int r^{2} d \theta=\int(x d y-y d x)=h t
$$

the Sun being the origin of coordinates and h being a. constant By differentiation we have

$$
x y-y \dot{x}=h
$$

or

$$
x y-y x=0
$$

Thus $y / x=y / \alpha$, which proves that the acceleration $1 s$ towards the Sun at every point, 1 e the field of force is central Clearly the argument might be reversed, and the law of areas deduced from the fact that the accelerations are directed towards a fixed centre, which has already been obtained from the first statement Both this theorem and its converse are given in Newton's Principia, Book I, Props I and II

5 We shall now investigate the law of acceleration towards a fixed point under which elliptic motion is possible In the first instance it will not be assumed that the fixed point is the focus of the ellipse Apart from the interest of the more general result, this is the more desirable because many parrs of stars are known in the sky the components of which are observed to revolve around one another in apparent ellipses, but the plane of the motion being unknown it is only a matter of inference that either star is in the focus of the relative orbit of the other. For it $1 s$ the projection of the motion on a plane perpendicular to the line of sight which is observed Let then the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{9}}{b^{2}}=1
$$

be described freely under an acceleration to the fixed point (f, g) Any point on the ellipse can be represented by ($a \cos E, b \sin E^{\prime}$) The angle E which is known in analytical geometry as the eccentric angle is called in Astronomy the eccentric anomaly of the point The accelerations being

$$
-a \sin E \dot{E}-a \cos E E^{2}, \quad b \cos E \ddot{E}-b \sin E E^{2}
$$

along the two axes, we have

$$
-\frac{a \sin E E-a \cos E E^{2}}{a \cos E-f}=\frac{b \cos E \dot{E}-b \sin E E^{2}}{b \sin E-g}
$$

whence

$$
\begin{equation*}
\frac{\dot{E}}{\dot{E}}=\frac{a g \cos E-b f \sin E}{a b-a g \sin E-b f \cos E} E \tag{1}
\end{equation*}
$$

This in an integrable form, giving immediately

$$
\begin{equation*}
E=h(a b-a g \sin E-b f \cos E)^{-1} \tag{2}
\end{equation*}
$$

$$
a b E+a g \cos E-b f \sin E=h\left(t-t_{0}\right)
$$

hirw h und t_{0} are constants of integration If we put $h=a b "$,

$$
\begin{equation*}
E-\frac{f}{a} \sin E+\frac{g}{b} \cos E=n\left(t-t_{0}\right) \tag{3}
\end{equation*}
$$

If th, mas lur considered a generalized form of what is known as Kepler's Hint liy medingy 2π to E^{\prime} it is evident that $2 \pi / n=T$ is the period of a "Hilipwr, tuil Kan bepler's form apples when the motion is about a focus of "Minpry, and can be obtaned by putting $f=a e, g=0$, so that

$$
\begin{equation*}
E-e \sin E=n\left(t-t_{0}\right) \tag{4}
\end{equation*}
$$

him "luntuin in of fundamental importance The point for which $E=0$ is Wenre"t permit on the orbit to the attracting focus and is sometimes called wericentre. The corresponding time is t_{0} and n is called the mean
utum

Ify (1) und (2) the components of the acceleration become

$$
\begin{aligned}
& \cdots \sin E A-a \cos E \quad E^{2}=\frac{a b(f-a \cos E) h^{2}}{\left(a b-a g \sin E^{2}-b f \cos E\right)^{3}} \\
& b \cos A B^{2}-b \sin E \quad E^{2}=\frac{a b(g-b \sin E) h^{2}}{(a b-a g \sin E-b f \cos E)^{3}}
\end{aligned}
$$

that hhu total acceleration is equal to

$$
\begin{equation*}
R=n^{\Omega} r\left(1-\frac{f}{a} \cos E-\frac{g}{b} \sin E\right)^{-3} \tag{5}
\end{equation*}
$$

anver the distrince of the point on the orbit from (f, g)
6. In firre "xamining this result more closely, it may be noticed that the thuxi 1. quitu gemoral and may be apphed to any central orbit For if the minntate of n ponnt (x, y) on the curve be expressed in terms of a sungle mumber α, wo have simularly

$$
\begin{gathered}
\frac{\alpha^{\prime} \alpha+x^{\prime \prime} \dot{\alpha}^{2}}{x-f}=\frac{y^{\prime} \alpha+y^{\prime \prime} \alpha^{2}}{y-g} \\
\alpha \\
\dot{\alpha}=-\frac{x^{\prime \prime}(y-g)-y^{\prime \prime}(x-f)}{\alpha^{\prime}(y-g)-y^{\prime}(x-f)} \dot{\alpha}
\end{gathered}
$$

"ru $\alpha^{\prime}, y^{\prime} \ldots$ deneote derivatives with respect to α, and α, α derivatives with fret to thi time. Hence on integration,

$$
\begin{gathered}
\alpha=-h\left\{x^{\prime}(y-g)-y^{\prime}(x-f)\right\}^{-1} \\
\int(x d y-y d x)-f y+g x=h\left(t-t_{0}\right)
\end{gathered}
$$

By taking the last integration over one revolution in a closed orbit it is seen that h represents twice the area divided by the periodic time The components of the acceleration become

$$
\frac{h^{2}\left(x^{\prime} y^{\prime \prime}-x^{\prime \prime} y^{\prime}\right)(x-f)}{\left\{x^{\prime}(y-g)-y^{\prime}(x-f)\right\}^{3}} \text { and } \frac{h^{2}\left(x^{\prime} y^{\prime \prime}-x^{\prime \prime} y^{\prime}\right)(y-g)}{\left\{x^{\prime}(y-g)-y^{\prime}(x-f)\right\}^{3}}
$$

and the total acceleration is therefore

$$
\begin{aligned}
R & =h^{2} r\left(x^{\prime} y^{\prime \prime}-x^{\prime \prime} y^{\prime}\right)\left\{x^{\prime}(y-g)-y^{\prime}(x-f)\right\}^{-3} \\
& =h^{3} r / p^{3} \rho
\end{aligned}
$$

where ρ is the radius of curvature at the point and p is the perpendicular from (f, g) to the tangent at the point This of course is the well-known expression for the acceleration towards the centre of attraction

The same orbit will be described in the same periodic time under the central attraction R^{\prime} to another point (f^{\prime}, g^{\prime}) if
that 18 , if

$$
R^{\prime}=h^{3} r^{\prime} / p^{\prime 3} \rho
$$

$$
R^{\prime} / R=p^{3} r^{\prime} / p^{\prime 3} r
$$

This result is equivalent to Proncıpıa, Book I, Prop vir, Cor 3
7 We now return to equation (5) which may be written

$$
\begin{equation*}
R=n^{2} r\left(1-\frac{f x}{a^{2}}-\frac{g y}{b^{2}}\right)^{-8}=n^{2} r\left(q_{0} / q\right)^{3} \tag{6}
\end{equation*}
$$

where q and q_{0} are the perpendiculars on the polar of (f, g) from the point (x, y) on the orbit and the centre of the ellipse respectively Hence the ellhpse represented by the general equation

$$
\begin{equation*}
a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+1=0 \tag{7}
\end{equation*}
$$

can be described under an acceleration durected towards the origin if the acceleration follows the law

$$
\begin{equation*}
R=m^{8} r(1+g x+f y)^{-3}, \quad m^{2}=n^{2} \Delta^{8} / C^{8} \tag{8}
\end{equation*}
$$

where Δ and C have their usual meaning for the conic (7) Conversely, if the law (8) is given, the trajectory is always a conic whatever the initial conditions may be For (7) is a possible orbit, and f and g are determined by the law, while a, b and h are three arbitrary constants which can be chosen so as to satisfy any given conditions, such as the initial velocity given in magnitude and durection at a particular point

There now arises the interesting question whether any other form of law besides (8) exists, for which the trajectories are always comics (Bertrand's problem) Let

$$
R=m^{2} r / f(x, y)
$$

be such a law Then if (7) is to be an orbit,

$$
f(x, y)=(1+g x+f y)^{8}
$$

must be satisfied by the coordinates of every point on (7), 1 e this equation must be equivalent to (7) But (7) can be written in either of the forms

$$
\begin{aligned}
1+g x+f y & =\frac{1}{2}\left(1-a x^{2}-2 h x y-b y^{2}\right) \\
(1+g x+f y)^{2} & =\left(g^{2}-a\right) x^{2}+2(f g-h) x y+\left(f^{2}-b\right) y^{2}
\end{aligned}
$$

and clearly in no other way which does not introduce a greater number of andependent constants on the right-hand side The first of these forms gives an expression for $f(x, y)$ which is (like an infinite number of others) compatible with (7), but only under restricted conditions For it fixes the constants a, b and h and leaves only f and g arbitrary, and these are not in general sufficient in number to satisfy the initial conditions On the other hand, the second form gives an expression for the acceleration which may be written

$$
\begin{equation*}
R=m^{2} r\left(\alpha x^{2}+2 \beta x y+\gamma y^{2}\right)^{-\frac{2}{2}} \tag{9}
\end{equation*}
$$

This only requures the constants in (7) to satisfy the two relations

$$
\frac{g^{2}-a}{\alpha}=\frac{f g-h}{\beta}=f_{-}^{2}-b
$$

and thus three other relations can be satisfied which are required by the initial conditions Hence motion under a central acceleration given by (9) is always in a conce which by the two relations found touches the lines (real or imaginary)

$$
\alpha x^{2}+2 \beta x y+\gamma y^{2}=0
$$

The laws (8) and (9) are the only ones under which a conce 1 s always described in a given plane whatever the initial conditions may be Their character was first established by Darboux and by Halphen (Comptes Rendus, LxXXIV, pp 760, 936 and 939)

8 A point on a central orbit at which the motion is at right angles to the raduus vector is called an apse At such a pount $\frac{d r}{d \theta}=0$ and the radus vector is in general either a maximuin or a minimum Since the motion is reversible the radus vector to an apse is an axis of symmetry in the orbit and the next apsidal distances on either side are equal There can be therefore only two distinct apsidal distances recurring alternately and the angle between any two consecutive apses is constant and is called the apsidal angle

The differential equation of a central orbit is known to be

$$
\frac{d^{2} u}{d \theta^{2}}+u=\frac{P}{h^{2} u^{2}}
$$

where $u=1 / r$ and P is the force to the centre If we write $P=u^{4} U$ the radus of a circular orbit is given by $u=U / h^{2}$ Let the circular orbit be sloghtly disturbed, so that we may write $u+x$ instead of u, where u is constant and x is so small that only the first power of x need be retanned Then

$$
\frac{d^{2} x}{d \theta^{2}}+x=\frac{U^{\prime}}{h^{2}} x=\frac{u U^{\prime}}{U} x, \quad U^{\prime}=\frac{d U}{d u}
$$

If we put

$$
1-u U^{\prime} / U=m^{2}
$$

the equation becomes

$$
\frac{d^{2} x}{d \theta^{2}}+m^{2} x=0
$$

and the solution is

$$
x=a \cos m\left(\theta-\theta_{0}\right)
$$

The apsidal angle 18 therefore

$$
\begin{equation*}
K=\pi / m=\pi\left(1-u U^{\prime} / U\right)^{-\frac{1}{2}} \tag{10}
\end{equation*}
$$

For example, if $P=\mu r^{p}, U=\mu u^{-p-2}$ and

$$
K=\pi(3+p)^{-\frac{1}{2}}
$$

This result is given in the Principia, Book I, Prop Xlv, Ex 2
9 Let us push the approximation further in order to see, if possible, under what conditions the apsidal angle remains unchanged by a higher order of the increment x The equation of the disturbed curcular orbit becomes

$$
\begin{equation*}
\frac{d^{2} x}{d \theta^{2}}+m^{2} x=\frac{u}{\tilde{U}}\left(\frac{1}{2} U^{\prime \prime} x^{2}+\frac{1}{6} U^{\prime \prime \prime} x^{3}\right) \tag{11}
\end{equation*}
$$

and we assume a solution

$$
x=a_{0}+a_{1} \cos m \theta+a_{2} \cos 2 m \theta+a_{3} \cos 3 m \theta
$$

If a_{1} is of the first order, a_{0} and a_{2} must be of the second order at least, and it will become clear that a_{3} is of the third order Hence

$$
\begin{array}{ll}
x^{2}=\frac{1}{2} a_{1}^{2}+\left(2 a_{0} a_{1}+a_{1} a_{2}\right) \cos m \theta+\frac{1}{2} a_{2}^{2} \cos 2 m \theta & +a_{1} a_{2} \cos 3 m \theta \\
x^{3}= & +\frac{1}{4} a_{1}^{3} \cos 3 m \theta
\end{array}
$$

All terms of order higher than the third have been omitted and products of the cosines have been changed into simple cosines of the multiple angles. We now substitute in (11) and equate coefficients Thus

$$
\begin{aligned}
m^{2} a_{0} & =\frac{1}{4} \cdot \frac{u U^{\prime \prime}}{U} a_{1}^{2} \\
0 & =\frac{1}{2} \frac{u U^{\prime \prime}}{U} \quad\left(2 a_{0} a_{1}+a_{1} a_{2}\right)+\frac{1}{8} \frac{u U^{\prime \prime \prime}}{U} a_{1}^{3} \\
-3 m^{2} a_{8} & =\frac{1}{4} \frac{u U^{\prime \prime}}{U} a_{2}^{3} \\
-8 m^{2} a_{3} & =\frac{1}{2} \frac{u U^{\prime \prime}}{U} a_{1} a_{2}+\frac{1}{24} \frac{u U^{\prime \prime \prime}}{U} a_{1}^{3}
\end{aligned}
$$

The last of these equations confirms the statement that a_{3} is of the third order, but will not be needed here The first three after the elimination of a_{0} and a_{2} give
or

$$
0=\left\{\frac{1}{2} \frac{u U^{\prime \prime}}{m^{2} U} \frac{5}{12} \frac{u U^{\prime \prime}}{U}+\frac{1}{8} \frac{u U^{\prime \prime \prime}}{U}\right\} a_{1}^{3}
$$

$$
\begin{equation*}
5 u U^{\prime \prime 2}+3 U^{\prime \prime \prime}\left(U-u U^{\prime}\right)=0 \tag{12}
\end{equation*}
$$

This equation expresses a necessary condition which must be satisfied if the apsidal angle is to remain constant when the displacement from a circular orbit is considered finite

10 Let us consider any closed orbit to be determined by a central acceleration under a finite range of initial velocities The number of apses in a complete orbit must be finite and (10) shows that m must be a commensurable number It must be a constant therefore, for otherwise it would change discontinuously as u changes continuously Hence

$$
m^{2}=1-u U^{\prime} / U
$$

is an equation giving the form of U, and the solution is

$$
U=k u^{1-m^{2}}
$$

But if all the orbits are to be re-entrant, so that K is constant, the equation (12) must also be satisfied Hence substituting the form just found, we have

$$
5 m^{4}\left(1-m^{2}\right)^{2}+3 m^{4}\left(1-m^{4}\right)=0
$$

or

$$
2 m^{4}\left(4-m^{2}\right)\left(1-m^{2}\right)=0
$$

Since K is finite, m is not zero and we have

$$
1-m^{2}=0 \text { or } 1-m^{2}=-3
$$

giving
and

$$
U=k \quad \text { or } \quad U=k u^{-s}
$$

$$
R=k / r^{2} \quad \text { or } \quad R=k
$$

Thus we have Bertrand's remarkable theorem (Comptes Rendus, Lxxvir, p 849) that these are the only laws, expressible as functions of the distance, which always give rise to closed orbits whatever the initial circumstances may be (within a certan range) In these two cases $m=1$ or 2 and the apsidal angle $K=\pi$ or $\frac{1}{2} \pi$

11 The results obtaned can now be brought together According to Kepler's law the planetary orbits are ellipses with the centre of attraction, the Sun, situated in one focus The polar of the focus being the corresponding directrix, we have in (6) $q_{0}=a / e$ and $q=r / e$, so that the acceleration towards the Sun is

$$
\begin{equation*}
R=n^{2} a^{3} / r^{2} \tag{13}
\end{equation*}
$$

When the centre of attraction is an arbitrary point and it is merely known that the orbits are ellipses, the acceleration towards the centre must
follow one of the two laws expressed by (8) and (9) These are not in general simple functions of the distance and it is only by induction that we should infer from the apparent orbits of double stars that these bodies obey the law given by (13) But the law (8) provides a simple function of the distance, $R=m^{2} r$, when $f=g=0$, in which case the centres of all possible orbits are at the origin, ie coincide with the centre of attraction Similarly the law (9) provides a simple function of the distance, $R=n^{2} / r^{2}$, when $\alpha=\gamma$ and $\beta=0$ In this case every orbit touches the lines $x^{2}+y^{2}=0$, showing that the centre of attraction at the origin is the focus for every path These are the only two laws of central acceleration which give rise to elliptic orbits in general and can be expressed in simple terms of the distance But we have also seen that the same restriction is imposed when it is merely required that the paths shall be plane closed curves of any kind It is moreover obvious that the law of the direct distance, which makes the attraction of a distant body more effective than that of a near one, cannot be the law of nature The only alternative is that the acceleration varies inversely as the square of the distance, and this law can therefore be based upon these simple suppositions
(a) the planets describe closed paths in planes passing through the Sun,
(b) the centripetal acceleration towards the Sun, required by (a), is a simple function of the distance and does not become infinite when the distance 1 s infinite

12 We have now to consider Kepler's law connecting the periodic times of the planets with their mean distances from the Sun This states that T^{2} varies as a^{3} But $T=2 \pi / n$, so that $n^{2} a^{8}$ is constant for all the planets Hence by (13) the acceleration of each planet towards the Sun is μ / r^{2} where μ 1s constant The force of attraction acting on a planet is therefore $m \mu / r^{2}$ where m is the mass of the planet And observation shows that the same form ot law holds for the satellites of any planet, eg the satellites of Jupiter Thus not only does the Sun attract the planets but the planets themselves appear to attract their satellites in the same way It as but natural to suppose that the forces of attraction in either case arise from an inherent property of matter, and that a stress exists between the Sun and a planet, or between a planet and its satellite Action and reaction being equal and opposite, we must suppose the force proportional not only to the mass of the attracted body but equally to the mass of the attracting body We are thus led to Newton's law of gravitation that the mutual attraction between two masses m, m^{\prime} at a distance r apart is measured by

$$
G m m^{\prime} / r^{2}
$$

where G is an absolute constant, independent of the masses or their distance It must be noticed that the law has been arrived at from the consideration of cases in which the dimensions of the bodies are small in comparison with the distances separating them But since the action in these cases is proportional
to the total masses, it is to be supposed that it applies to the individual elements of the matter composing them This is the true form of the law of universal gravitation When it is a question of bodies whose dimensions are not negligible in relation to the distances of surrounding bodies, a modification of the simple statement must be expected The examination of all consequences of the law of gravitation, including a comparison with the results of observation, practically constitutes the complete function of dynamical Astronomy

13 Since the Earth possesses only one satellite, it is impossible to verify Kepler's third law in our own system But it is of historic interest to calculate from the observed motion of the Moon the acceleration towards the centre of the Earth which a body would have at the Earth's surface The Moon's sidereal period is $27^{\mathrm{a}} 7^{\mathrm{h}} 43^{\mathrm{m}} 11^{\mathrm{s}} 5$ or 23605915 secs Let a be the Moon's mean distance and b the radus of the Earth The required acceleration is

$$
\frac{n^{2} a^{3}}{b^{2}}=\frac{4 \pi^{2}}{T^{2}}\left(\frac{a}{b}\right)^{3} b
$$

The ratio a / b is 602745 and b may be taken to be $6378 \times 10^{8} \mathrm{~cm}$ The result of substituting these numbers is to give for the acceleration $989 \mathrm{~cm} / \mathrm{sec}^{2}$ In point of fact the acceleration of a body at the Earth's surface is in the mean $g=981 \mathrm{~cm} / \mathrm{sec}^{2}$ But the discrepancy is not surprising The Moon describes its orbit not only under the attraction of the Earth but also under the disturbing influence of the Sun Moreover g is a variable quantity over the Earth's surface, owing to the Earth's rotation and figure The above calculation is altogether too rough to give really comparable results But it suffices to show that the quantity is quite of the same order as g, and to this extent supports the identification of the force which retains the Moon in its orbit with that which in the case of ternestrial objects is knowis as weight As stated, the point is of historical interest because it presented a difficulty to Newton who was long misled by adopting erroneous numerical data
14. The numerical value of the constant G depends upon the units adopted Its dimensions are given by

$$
\begin{gathered}
G M^{2} L^{-9}=M L T^{-2} \\
G=M^{-1} L^{s} I^{-2}
\end{gathered}
$$

In cas units it is the force between two particles each of 1 gramme placed 1 cm apart The first determination of the force in absolute units by a laboratory experiment was made by Cavendish Several determinations have since been made, of which perhaps the two best, those of CV Boys and K Braun, agree in giving

$$
G=6658 \times 10^{-8}
$$

corresponding to 5527 for the mean density of the Earth and $5985 \times 10^{27} \mathrm{gr}$
for the

CHAPTER II

INTRODUCTORY PROPOSITIONS

15 As we have seen, the simple facts of observation lead us to assume that between two particles of masses m and m^{\prime} situated at the points $P(x, y, z)$ and $P^{\prime}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ there exists a force $G m m^{\prime} / r^{2}$, where r is the distance $P P^{\prime} \quad$ Now the direction cosines of $P P^{\prime}$ are

$$
\frac{x^{\prime}-x}{1}, \frac{y^{\prime}-y}{1}, \frac{z^{\prime}-z}{r}
$$

and hence the components of the force acting on the particle m are

$$
G m m^{\prime} \frac{x^{\prime}-x}{r^{8}}, \quad G m m^{\prime} \frac{y^{\prime}-y}{r^{3}}, \quad G m m^{\prime} \frac{z^{\prime}-z}{r^{3}}
$$

or

$$
-\frac{\partial U}{\partial x}, \quad-\frac{\partial U}{\partial y}, \quad-\frac{\partial U}{\partial z}
$$

where

$$
U=-G m m^{\prime} / r
$$

If m is attracted not by a single particle m^{\prime} but by any number typified by m_{i} at $\left(x_{i}, y_{i}, z_{i}\right)$ the components of the total force are simularly

$$
-\frac{\partial U}{\partial x}, \quad-\frac{\partial U}{\partial y}, \quad-\frac{\partial U}{\partial z}
$$

where

$$
U=-G m \sum_{i v} m_{1} / r_{2}
$$

It $1 s$ evident that U is the work which the system of attracting particles will do of the particle m is moved from ats actual position by any path to some standard position, except for a constant, it is the potential energy of m due to its position relative to the attracting system If we put

$$
V=G \sum_{2} m_{2} / r_{2}, \quad U=-m V
$$

$V 1 s$ called the potential of the attracting system at the point P When the potential is known it is evident that the components of the attraction can be easily calculated

 an ats axis, will contuon betwern them an analum on the mather ot the

$$
d V a f i m 2 \pi u \text { nin } \phi, d d^{\prime} p
$$

whers

$$
\beta^{\prime \prime} \quad r^{4} ; a^{d} \text { 2tacond }
$$

$\%$

$$
p d \rho \quad r t \sin \phi d \phi
$$

not that

$$
d V \quad\left(1 m \cdot 2 \pi n t d_{p} / 1 .\right.
$$

Henew

$$
V, 2 \pi\left(J m u\left(p_{n}-p_{1}\right) / r\right.
$$

Where p_{a} and p_{1} aro the values of ρ at the wade of the damener throngh is. These valuat ate

$$
\rho_{\mathrm{a}}=r+a r \mu_{1} \quad \mid r \quad a i .
$$

 outade the nhell

$$
V^{\prime} \quad O M / r
$$

 make of the shell were concentrated ah the contres (On the other ham, when P^{\prime} in a promh made the nhell.

$$
V \quad \|, M / a
$$

 mentr:

 a pataclo of cyual maks mituated at the wontre:

the swarm fills a sphere unuformly the mass operative at any point varies as the cube of the distance from the centre Hence the effective force towards the centre varies directly as the distance As another example it may be proved that if the density of a globular cluster varies as $\left(1+r^{2}\right)^{-\frac{5}{2}}, r$ being the distance from the centre, each star moves under a central attraction varying as $r\left(1+r^{2}\right)^{-\frac{3}{2}}$

18 An approximate expression can be found for the potential of a body of any shape at a distant point Let the origin of coordinates, O, be taken at the centre of gravity of the body and the axis of x be drawn through the point P, the distance $O P$ being r Let $d m$ be an element of mass at the point (x, y, z) The corresponding element of the potential at P is

$$
\begin{aligned}
d V & =\frac{G d m}{\left\{(r-x)^{2}+y^{2}+z^{2}\right\}^{\frac{1}{2}}}=\frac{G d m}{\left(r^{2}-2 x x+\rho^{2}\right)^{\frac{1}{2}}} \\
& =\frac{G d m}{r}\left(1-2 \frac{\rho}{r} \frac{x}{\rho}+\frac{\rho^{2}}{r^{2}}\right)^{-\frac{1}{2}} \\
& =\frac{G d m}{r}\left\{1+\frac{\rho}{2} P_{1}\left(\frac{x}{\rho}\right)+\left(\frac{\rho}{r}\right)^{2} P_{2}\left(\frac{x}{\rho}\right)+\right\}
\end{aligned}
$$

where P_{1}, P_{2}, are the functions known as Legendre's polynomials
The first terms are easily obtamed by expansion in the ordmary way, and we have

$$
P_{1}\left(\frac{x}{\rho}\right)=\frac{x}{\rho}, \quad P_{\mathrm{g}}\left(\frac{x}{\rho}\right)=\frac{3 x^{2}-\rho^{2}}{2 \rho^{2}}
$$

Hence if the expansion is not carried to terms beyond the second order,

$$
V=G \int \frac{d m}{r}\left(1+\frac{x}{r}+\frac{3 x^{2}-\rho^{2}}{2 r^{2}}\right)
$$

But if A, B, C are the principal moments of mertia at O, and I is the moment of inertia about $O x$, since ρ^{2} has been written for $x^{2}+y^{2}+z^{2}$,

$$
A+B+C=\int 2 \rho^{2} d m, \quad I=\int\left(\rho^{2}-x^{2}\right) d m
$$

and sunce 0 is the centre of gravity,

$$
\int x d m=0
$$

Hence

$$
V=\frac{G m}{r}+\frac{G}{2 r^{3}}(A+B+C-3 I)
$$

and we see that the potential of the body at P dffers from the potential of a particle of equal total mass placed at the centre of gravity by a quantity depending only on $1 / r^{3}$ Except in a few cases this quantity is negligible
in astronomical problems not only by reason of the great distances which separate the heavenly bodies in comparison with their lunear dimensions, but because they possess in general a symmetry of form which makes $A+B+C-3 I$ itself a small quantity

19 We see then that in general a system of n bodies of finite dimensions can be replaced by a system of n small particles of equal masses occupying the positions of their centres of gravity The total potential energy of the system 18

$$
U=-G \Sigma m_{\imath} m_{\jmath} / r_{v}
$$

where $m_{\imath}, m_{\text {g }}$ are two of the masses and $r_{v y}$ ther distance apart For if we start with any one of the particles this sum, which consists of $\frac{1}{2} n(n-1)$ terms, represents the potential energy of a second in the presence of the first, of a third in the presence of these two, and so on The equations of motion are $3 n$ in number and, according to $\S 15$, of the form

$$
m_{2} x_{2}=-\frac{\partial U}{\partial x_{i}}, \quad m_{2} y_{2}=-\frac{\partial U}{\partial y_{2}}, \quad m_{2} z_{2}=-\frac{\partial U}{\partial z_{2}}
$$

Now

$$
\sum_{i} \frac{\partial U}{\partial x_{i}}=\sum_{i j} \sum_{j} m_{\imath} m_{j} \frac{x_{i}-x_{j}}{r_{i}^{3}}=0, \quad(\imath \neq \jmath)
$$

Hence

$$
\Sigma m_{\imath} x_{\imath}=\Sigma m_{\imath} y_{\imath}=\Sigma m_{\imath} z_{\imath}=0
$$

or

$$
\Sigma m_{\imath} x_{2}=a_{1}, \quad \Sigma m_{\imath} y_{\imath}=a_{2}, \quad \Sigma m_{\imath} z_{2}=a_{3}
$$

and

$$
\begin{aligned}
& \Sigma m_{2} x_{2}=\bar{x} \Sigma m_{2}=a_{1} t+b_{1} \\
& \Sigma m_{2} y_{2}=\bar{y} \Sigma m_{2}=a_{2} t+b_{2} \\
& \Sigma m_{2} z_{2}=\bar{z} \Sigma m_{2}=a_{3} t+b_{3}
\end{aligned}
$$

where $(\bar{x}, \bar{y}, \bar{z})$ is the centre of gravity of the system Thus we have the six integrals corresponding to the fact that the centre of gravity moves with uniform velocity in a certain durection

Again, we have

$$
\begin{align*}
\sum_{i}\left(y_{\imath} \frac{\partial U}{\partial z_{\imath}}-z_{i} \frac{\partial U}{\partial y_{\imath}}\right) & =\sum_{i j} \sum_{j} m_{\imath} m_{j}\left\{y_{\imath} \frac{z_{2}-z_{j}}{r_{i j}{ }^{3}}-z_{i} \frac{y_{\imath}-y_{j}}{r_{v}{ }^{3}}\right\} \\
& =\sum_{i g} \frac{m_{\imath} m_{j}}{r_{\vartheta j}{ }^{3}}\left(-y_{\imath} z_{j}+y_{j} z_{i}\right)=0
\end{align*}
$$

Hence
or
and sımılarly

$$
\Sigma m_{\imath}\left(y_{\imath} z_{\imath}-z_{2} y_{\imath}\right)=0
$$

$$
\Sigma m_{\imath}\left(y_{\imath} z_{l}-z_{\imath} y_{\imath}\right)=c_{1}
$$

$$
\Sigma m_{\imath}\left(z_{1} x_{i}-x_{\imath} z_{i}\right)=c_{2}
$$

$$
\Sigma m_{2}\left(x_{i} y_{\imath}-y_{\imath} x_{\imath}\right)=c_{3}
$$

These are called the three integrals of area and express the fact that the sum of the areas described by the radius vector to each mass, each multiplied by that mass and projected on any given plane, is constant They also show that the total angular momentum of the system about any fixed axis is constant

Finally we have

$$
\begin{aligned}
\sum_{i} m_{\imath}\left(x_{\imath} x_{2}+y_{\imath} y_{\imath}+z_{\imath} z_{2}\right) & =-\sum_{i}\left(x_{\imath} \frac{\partial U}{\partial x_{\imath}}+y_{i} \frac{\partial U}{\partial y_{2}}+z_{2} \frac{\partial U}{\partial z_{2}}\right) \\
& =-d U / d t
\end{aligned}
$$

whence, on integration,

$$
\frac{1}{2} \sum_{i} m_{\imath}\left(x_{\imath}{ }^{2}+y_{i}{ }^{2}+z_{\imath}{ }^{2}\right)=h-U
$$

where h is constant This is the integral of energy
There are then in all ten general integrals for the motion of a system of particles moving under therr mutual attractions and it is known that no others exist under certain limitations of analytical form (Bruns and Poincare) They are in fact simply those which apply in virtue of the absence of external forces acting on the system

20 Let the centre of gravity $(\bar{x}, \bar{y}, \bar{z})$ of the system be now taken as the origin of coordinates If ($\xi_{2}, \eta_{2}, \zeta_{2}$) are the new coordinates of m_{2},

$$
x_{i}=\bar{x}+\xi_{i}, y_{i}=\bar{y}+\eta_{i}, z_{i}=\bar{z}+\zeta_{2}
$$

and

$$
\Sigma m_{i} \xi_{2}=\Sigma m_{2} \eta_{2}=\Sigma m_{2} \xi_{2}=0
$$

The equations of motion become

$$
m_{2} \dot{\xi}_{2}=-\frac{\partial U}{\partial \xi_{2}}, m_{i} \eta_{i}=-\frac{\partial U}{\partial \eta_{2}}, \quad m_{2} \xi_{2}=-\frac{\partial U}{\partial \xi_{2}}
$$

where U is the same as before, but $r_{i j}$ is now given by

$$
r_{i j}{ }^{2}=\left(\xi_{i}-\xi_{j}\right)^{2}+\left(\eta_{i}-\eta_{j}\right)^{2}+\left(\zeta_{i}-\zeta_{j}\right)^{2}
$$

For the integrals of area we have

$$
\begin{aligned}
c_{2} & =\sum m_{i}\left(y_{i} z_{i}-z_{2} y_{i}\right) \\
& =\sum m_{i}\left\{\left(\bar{y}+\eta_{i}\right)\left(\bar{z}+\xi_{i}\right)-\left(\bar{z}+\zeta_{i}\right)\left(\vec{y}+\eta_{i}\right)\right\} \\
& =\sum m_{i}\left(\eta_{i} \zeta_{i}-\zeta_{i} \eta_{i}\right)+(\bar{y} z-\bar{z} \bar{y}) \sum m_{i}
\end{aligned}
$$

(since $\Sigma m_{i} \eta_{2}=\Sigma m_{2} \zeta_{i}=\Sigma m_{i} \eta_{i}=\Sigma m_{2} \xi_{2}=0$)

$$
=\Sigma m_{\imath}\left(\eta_{2} \zeta_{\imath}-\zeta_{i} \eta_{i}\right)+\left(a_{3} b_{2}-a_{2} b_{3}\right) / \Sigma m_{i}
$$

or

$$
\sum m_{1}\left(\eta_{i} \xi_{i}-\zeta_{i} \eta_{i}\right)=c_{1}+\left(a_{2} b_{3}-a_{s} b_{2}\right) / \sum m_{i}=c_{1}^{\prime}
$$

and sımilarly

$$
\begin{aligned}
& \Sigma m_{i}\left(\xi_{2} \xi_{i}-\xi_{i} \xi_{i}\right)=c_{8}+\left(a_{3} b_{1}-a_{1} b_{3}\right) / \Sigma m_{i}=c_{8}^{\prime} \\
& \Sigma m_{i}\left(\xi_{i} \eta_{i}-\eta_{2} \xi_{i}\right)=c_{3}+\left(a_{1} b_{2}-a_{2} b_{1}\right) / \Sigma m_{i}=c_{3}^{\prime}
\end{aligned}
$$

The integral of energy becomes
or

$$
\begin{aligned}
h-U & =\frac{1}{2} \sum m_{2}\left\{\left(\bar{x}+\xi_{2}\right)^{2}+\left(\bar{y}+\eta_{2}\right)^{2}+\left(\bar{z}+\xi_{2}\right)^{2}\right\} \\
& =\frac{1}{2} \sum m_{\imath}\left(\xi_{2}{ }^{2}+\eta_{2}{ }^{2}+\zeta_{2}{ }^{2}\right)+\frac{1}{2}\left(a_{1}{ }^{2}+a_{2}{ }^{2}+a_{3}^{2}\right) / \sum m_{\imath}
\end{aligned}
$$

where

$$
\frac{1}{2} \Sigma m_{\imath}\left(\xi_{2}{ }^{2}+\eta_{2}{ }^{2}+\zeta_{2}{ }^{2}\right)=h^{\prime}-U
$$

$$
h^{\prime}=h-\frac{1}{2}\left(a_{1}{ }^{2}+a_{2}^{2}+a_{3}{ }^{2}\right) / \Sigma m_{\imath}
$$

21 An interesting equation involving the mutual distances of the masses can be deduced We have

$$
\begin{aligned}
2 \sum_{\imath, j} m_{\imath} m_{\jmath}\left(\xi_{\imath}-\xi_{\jmath}\right)^{2} & =\sum \sum m_{\imath} m_{\jmath}\left(\xi_{\imath}{ }^{2}+\xi_{2}^{2}-2 \xi_{\imath} \xi_{\jmath}\right) \\
& =\sum m_{\imath} \xi_{\imath}{ }^{2} \sum m_{\jmath}+\Sigma m_{\imath} \Sigma m_{J} \xi_{j}^{2}-2 \Sigma m_{\imath} \xi_{2} \Sigma m_{\jmath} \xi_{J} \\
& =2 \Sigma m_{\imath} \Sigma m_{\imath} \xi_{\imath}{ }^{2}
\end{aligned}
$$

with simular equations for the other coordinates Hence

$$
\Sigma m_{\imath} m_{\jmath} r_{v}{ }^{2}=\Sigma m_{\imath} \Sigma m_{\imath}\left(\xi_{\imath}{ }^{2}+\eta_{\imath}{ }^{2}+\zeta_{\imath}{ }^{2}\right)
$$

It follows that

$$
\begin{aligned}
\frac{d^{2}}{d t^{2}}\left(\Sigma m_{2} m_{y} r_{2}{ }^{2}\right) / \Sigma m_{2} & =2 \frac{d}{d t}\left\{\Sigma m_{2}\left(\xi_{2} \xi_{2}+\eta_{2} \eta_{2}+\zeta_{2} \xi_{2}\right)\right\} \\
& =2 \Sigma m_{2}\left(\xi_{2}{ }^{2}+\eta_{2}{ }^{2}+\zeta_{2}{ }^{2}\right)-2 \Sigma\left(\xi_{2} \frac{\partial U}{\partial \xi_{2}}+\eta_{2} \frac{\partial U}{\partial \eta_{2}}+\zeta_{2} \frac{\partial U}{\partial \xi_{2}}\right) \\
& =4\left(h^{\prime}-U\right)+2 U=4 h^{\prime}-2 U
\end{aligned}
$$

since U is a homogeneous function of the coordnates of degree - 1 The form of the result is due to Jacobi Now U is essentially negative Hence if h^{\prime} be positive the second derivative of $\Sigma m_{2} m_{1} \rho_{y^{2}}$ will be always positive and the first derivative will increase indefinitely with the time This the first derivative, even of negative initially, will become positive after a certan tume and therefore $\Sigma m_{2} m_{y} r_{v}{ }^{2}$ will increase without limit This means that at least one of the distances will tend to become infinite We see therefore that a necessary (but not sufficient) condition for the stability of the system is that h^{\prime} must be negative

22 The angular momenta whose constant values are c_{1}, c_{2}, c_{3} are the projections on the coordinate planes of a single quantity They are therefore the components of a vector which represents the resultant angular momentum about the axis

$$
\begin{equation*}
x / c_{1}=y / c_{2}=z / c_{3} \tag{1}
\end{equation*}
$$

For this axis, which is fixed in space, the angular momentum is a maximum The plane through the origin O which 18 perpendicular to this axis and therefore fixed is called the invariable plane at 0 About any line through 0 in this plane the angular momentum is zero, and about any line through 0
making an angle θ with the invariable axis (1) the angular momentum is $\sqrt{ }\left(c_{1}{ }^{2}+c_{2}{ }^{2}+c_{3}{ }^{2}\right) \cos \theta$ The position of the invariable plane is dependent on the position of the chosen origin of reference

Here we have considered the angular momentum as arnsing purely from the translational motions of the bodies treated as particles In reality the total angular momentum of the system includes also that part which arises from the rotations of the bodies about their axes This part itself is constant if the system consists of unconnected, rigid, spherical bodies whose concentric layers are homogeneous Under these conditions the invariable plane at a point, as determined by the translational motions of the system alone, remains permanently fixed The conditions hold very approximately in a planetary system But precessional movements and the effects of tidal friction cause an interchange between the rotational and translational parts of the angular momentum, without disturbing the total amount, and to this extent affect the position of the astronomical invariable plane as defined above

The centre of gravity of the system may be taken instead of an origin fixed in space The invariable plane is then

$$
\begin{equation*}
c_{1}^{\prime} \xi+c_{2}^{\prime} \eta+c_{3}^{\prime} \zeta=0 \tag{2}
\end{equation*}
$$

and this 18 the invariable plane of Laplace Its permanent fixity is subject to the quallications just mentioned

A simple proposition applies to the motion of two bodies, namely that the planes through a fixed point O and contaning the tangents to the paths of the two bodies intersect the invariable plane at O in one line This is easaly seen to be true For the first plane passes through the orign, the position of the first body (x_{1}, y_{1}, z_{1}) and the consecutive point on its path $\left(x_{1}+x_{1} d t, y_{1}+y_{1} d t, z_{1}+\dot{z}_{1} d t\right)$ Hence tis equation 18

$$
x\left(y_{1} z_{1}-y_{1} z_{1}\right)+y\left(z_{1} x_{1}-z_{1} x_{1}\right)+z\left(x_{1} y_{1}-x_{1} y_{1}\right)=0
$$

Sumularly the equation of the second plane is

$$
x\left(y_{2} z_{2}-y_{2} z_{\mathrm{a}}\right)+y\left(z_{2} x_{2}-z_{2} x_{\mathrm{z}}\right)+z\left(x_{2} y_{2}-x_{2} y_{\mathrm{a}}\right)=0
$$

The equations of these planes together with that of the invariable plane may therefore be written

$$
\alpha_{1}=0, \quad \alpha_{2}=0, \quad m_{1} \alpha_{1}+m_{9} \alpha_{2}=0
$$

and these evidently meet in a common line of intersection.
23 When we deal with the motions in the solar system it is convenuent to refer them to the centre of the Sun as origin Let M be the mass of the Sun, m the mass of the planet specially considered and let there be n other
planets, of which the typical mass is m_{\imath} Then the total potential energy of the system is

$$
U=-\left(\Sigma \frac{m_{\imath} m_{3}}{r_{\imath}}+M \Sigma \frac{n_{\imath}}{\rho_{\imath}}+m \Sigma \frac{m_{2}}{\Delta_{\imath}}+\frac{m M}{r}\right) G
$$

where ρ_{\imath} is the distance of m_{\imath} from the Sun, Δ_{\imath} the distance of m_{\imath} from m and r the distance of m from the Sun, so that

$$
\begin{aligned}
& r_{\nu_{2}}{ }^{2}=\left(x_{\imath}-x_{j}\right)^{2}+\left(y_{\imath}-y_{j}\right)^{2}+\left(z_{2}-z_{j}\right)^{2} \\
& \rho_{2}{ }^{2}=\left(x_{2}-X\right)^{2}+\left(y_{\imath}-Y\right)^{2}+\left(z_{\imath}-Z\right)^{2} \\
& \Delta_{\imath}{ }^{2}=\left(x_{2}-x\right)^{2}+\left(y_{2}-y\right)^{2}+\left(z_{2}-z\right)^{2} \\
& r^{2}=(x-X)^{2}+(y-Y)^{2}+(z-Z)^{2}
\end{aligned}
$$

The equations of motion of the Sun are

$$
M X=-\frac{\partial U}{\partial X}, \quad M Y=-\frac{\partial U}{\partial Y}, \quad M Z=-\frac{\partial U}{\partial Z}
$$

and of the planet considered

$$
m x=-\frac{\partial U}{\partial x}, \quad m y=-\frac{\partial U}{\partial y}, \quad m z=-\frac{\partial U}{\partial z}
$$

If (ξ, η, ζ) are the relative coordinates of the planet,

$$
x=X+\xi, \quad y=Y+\eta, \quad z=Z+\zeta
$$

Hence, if $\left(\xi_{\imath}, \eta_{v}, \zeta_{\imath}\right)$ are the coordinates of m_{\imath} relative to the Sun,

$$
\begin{aligned}
\xi & =-\frac{1}{m} \frac{\partial U}{\partial x}+\frac{1}{M} \frac{\partial U}{\partial \bar{X}} \\
& =\left\{-\Sigma \frac{m_{2}\left(x-x_{2}\right)}{\Delta_{2}^{3}}-\frac{M(x-X)}{r^{3}}+\Sigma \underline{m}_{2}\left(X-x_{2}\right)\right. \\
\rho_{2}^{3} & \left.\frac{m(X-x)}{r^{3}}\right\} G \\
& =\left\{-\frac{(m+M) \xi}{r^{3}}-\Sigma \frac{m_{2}\left(\xi-\xi_{2}\right)}{\Delta_{2}^{3}}-\Sigma \frac{m_{2} \xi_{2}}{\rho_{2}^{8}}\right\} G
\end{aligned}
$$

If then we put

$$
\begin{equation*}
R=G\left\{\Sigma \frac{m_{2}}{\Delta_{\imath}}-\Sigma \frac{m_{\imath}}{\rho_{\imath}}\left(\xi \xi_{\imath}+\eta \eta_{\imath}+\zeta \zeta_{2}\right)\right\} \tag{3}
\end{equation*}
$$

we have for the equations of relative motion
and similarly

$$
\begin{equation*}
\xi=-(m+M) G \frac{\xi}{r^{3}}+\frac{\partial R}{\partial \xi} \tag{4}
\end{equation*}
$$

$$
\begin{align*}
& \eta=-(m+M) G \frac{\eta}{r^{3}}+\frac{\partial R}{\partial \eta} \tag{5}\\
& \zeta=-(m+M) G \frac{\zeta}{r^{3}}+\frac{\partial R}{\partial \zeta} \tag{6}
\end{align*}
$$

The function R is called the disturbing function When, as in the solar system, the masses of the planets are small in comparison with that of the central body, M, we see that the forces derived from this function are small in comparison with the attraction of M Indeed a first approximation to the motion of the planet considered, which may now be called the disturbed planet, is obtained by putting $R=0$
24. A double star, or system of two stars physically connected and at the same time isolated from external influences, may be considered to present a case of the problem of two bodies In the solar system the disturbing effect of the other planets is always operating Since, however this effect is small in comparison with the attraction of the Sun it is useful to neglect R and to consider the orbit which a particular planet would have of at a given instant the disturbing forces were removed and the planet continued to move as part of the system formed by itself and the Sun alone, its velocity in direction and amount at the given instant being that which it actually possesses Such an orbit is called the osculating orbit corresponding to the given instant The actual orbit from the beginning will depart more and more from the osculating orbit, but for a short interval of time the divergence between the two will be so small that an accurate ephemeris can be calculated from the elements of the osculating orbit The usefulness of the conception of the osculating orbit goes much deeper than this, as will appear later

Now the equations (4) to (6) show that in the problem of two bodies, since $R=0$, the relative motion is that which is determined by an acceleration $(m+M) G / r^{2}$ towards the body M which is considered fixed But by $\S 11$ (13) a law of this form leads to an elliptic orbit with mean distance a and periodic time T, where

$$
n T=2 \pi, \quad n^{2} a^{8}=(m+M) G
$$

We can now introduce the usual system of astronomical units Provisionally they are taken to be

Unit of time one mean solar day
Unit of length the Earth's mean distance from the Sun
Unit of mass the Sun's mass
Corresponding to this system G is replaced by the constant k^{2}, so that

$$
k=2 \pi /(1+m)^{\frac{1}{2}} T
$$

which differs little from the Earth's mean motion Here T is the sidereal year expressed in mean solar days and m is the mass of the Earth expressed as a fraction of that of the Sun The numerical values adopted by Gauss were

$$
\begin{aligned}
& T=3652563835 \\
& m=1 / 354,710
\end{aligned}
$$

which lead to

$$
k=001720209895, \quad \log k=82355814414-10
$$

It may be useful to add that

$$
180^{\circ} k / \pi=3548^{\prime \prime} 18761, \quad \log \left(180^{\circ} k / \pi\right)=35500065746
$$

which differs little from the Earth's daily mean motion expressed in seconds
The number k is called the Gaussian constant The numerical values of m and T on which it is based are no longer considered accurate Nevertheless it would cause great practical inconvenience to adjust the value of k to more modern values which themselves could not be regarded as final Hence it is agreed to adopt the above value of k as a definite, arbitrary constant and to recognize that the corresponding unit of length is only an approximation to the Earth's mean distance from the Sun According to Newcomb the logarithm of this distance is 0000000013

It is also possible to put the constant $k=1$ by adopting as the unit of time $1 / k=5813244087$ mean solar days

For brevity we may often put

$$
\mu=k^{2}(1+m)=n^{2} a^{3}
$$

in the case of a planetary orbit, and for a double star

$$
\mu=k^{2}(M+m)=n^{2} a^{3}
$$

where M, m are the masses of the two components when the mass of the Sun is taken as unity

CHAPTER III

MOTION UNDER A CENTRAL ATTRACTION

25 If the attraction of the Sun alone is considered, the relative motion of any other body of spherical shape is conditioned by the central acceleration $\mu r^{-2}, \mu$ being a constant the value of which has been explained The equations of motion expressed in polar coordinates are

$$
\begin{gathered}
r-r \theta^{2}=-\mu / r^{2} \\
r \theta+2 r \theta=0
\end{gathered}
$$

The latter equation gives immediately

$$
r^{2} \dot{\theta}=h
$$

where h is the constant of areas Let v be the velocity in the orbit, P the perpendicular from the origin on the tangent and ψ the angle which the tangent makes with the radus vector Then

$$
\frac{r \dot{\theta}}{v}=\sin \psi=\frac{P}{r}
$$

so that

$$
P v=r^{\mathbf{2}} \dot{\theta}=h
$$

or the velocity is inversely proportional to P The result of eliminating θ from the equations of motion is
whence

$$
r=h^{2} / r^{3}-\mu / r^{2}
$$

$$
\begin{equation*}
r^{2}=2 \mu / r-h^{2} / r^{2}+c \tag{1}
\end{equation*}
$$

and from these agan

$$
\frac{d^{2}}{d t^{2}}\left(r^{2}\right)=2\left(r r+r^{2}\right)=2 \mu / r+2 c
$$

The equation of energy 19

$$
\begin{equation*}
v^{2}=r^{2}+r^{2} \dot{\theta}^{2}=2 \mu / r+c \tag{2}
\end{equation*}
$$

The geometrical meaning of the constant c has yet to be found.

26 From the second equation of motion

$$
\frac{d}{d t}=h u^{2} \frac{d}{d \theta}
$$

where $u=1 / r \quad$ Hence the first equation of motion becomes

$$
\frac{d^{3} u}{d \theta^{2}}+u-\frac{\mu}{h^{2}}=0
$$

the integral of which is

$$
\begin{equation*}
u=\frac{\mu}{h^{2}}\{1+e \cos (\theta-\gamma)\} \tag{3}
\end{equation*}
$$

where e and γ are the two constants of integration But this is the pular equation of a conic section of which the eccentricity is e and the focus is at the origin The semx-latus rectum in this connexion is more usually called the parameter and denoting it by p we have

Also

$$
p=h^{2} / \mu \quad \text { or } \quad h=\sqrt{ }(\mu p)
$$

$$
r=-r^{2} u=-h \frac{d u}{d \bar{\theta}}=\frac{\mu e}{h} \sin (\theta-\gamma)
$$

But by (1) and (3)

$$
r^{2}=\frac{\mu^{2}}{h^{2}}\left\{1-e^{2} \cos ^{2}(\theta-\gamma)\right\}+c
$$

Hence

$$
0=\frac{\mu^{2}}{h^{2}}\left(1-e^{2}\right)+c
$$

or

$$
c=-\mu\left(1-e^{2}\right) / p
$$

Thus if $2 a$ is the transverse axis of the orbit, $c=-\mu / a$ for an ellipse, $c=0$ for a parabola and $c=+\mu / a$ for an hyperbola The equation of energy (2) becomes therefore

$$
\left.\begin{array}{ll}
v^{2}=2 \mu / r-\mu / a, & (e<1) \tag{4}\\
v^{2}=2 \mu / r, & (e=1) \\
v^{2}=2 \mu / r+\mu / a, & (e>1)
\end{array}\right\}
$$

Again, ψ being the angle which the direction of motion at (r, θ) makes with the radius vector (drawn towards the orignn),

$$
\begin{aligned}
& v \cos \psi=-r=-\frac{\mu e}{h} \sin (\theta-\gamma) \\
& v \sin \psi=r \theta=h u=\frac{\mu}{h}\{1+e \cos (\theta-\gamma)\}
\end{aligned}
$$

are the components of the velocity along the radus vector (inwards) and perpendicular to it The form of these expressions is to be noted For they evidently represent (a) a constant velocity $V=\mu / h=\sqrt{ }(\mu / p)$ perpendicular to
the radus vector, and (b) a constant velocity eV in a direction making an angle $\frac{1}{2} \pi+\theta-\gamma$ with the raduus vector, that is, perpendicular to the transverse axis Thus at peribelion the velocity is $V(1+e)$ and at aphelion (in the case of elliptic motion) the velocity is $V(1-e)$

Since $h=v r \sin \psi$, the preceding equations may be written

$$
\begin{aligned}
& \mu e \sin (\theta-\gamma)=-v^{2} r \sin \psi \cos \psi \\
& \mu e \cos (\theta-\gamma)=v^{2} r \sin ^{2} \psi-\mu
\end{aligned}
$$

giving e and γ when v and ψ are given at (r, θ) Thus

$$
\mu^{2}\left(e^{2}-1\right)=v^{2} r\left(v^{2} r-2 \mu\right) \sin ^{2} \psi
$$

27 In finding the relations which subsist between positions in an orbit and the time it is necessary to consider separately the three kinds of conic section The closed orbit, or ellipse, will be discussed first

The line $\theta=\gamma$ is drawn from the pole (the Sun) in the durection of perihelion The angle $\theta-\gamma$ is measured from this line and is called the trus anomaly Let it be denoted by w Then, if t_{0} is the time at perihelion,

$$
\begin{aligned}
t-t_{0} & =h^{-1} \int_{\gamma} r^{2} d \theta \\
& =\frac{h^{3}}{\mu^{2}} \int_{0} \frac{d w}{(1+e \cos w)^{2}}
\end{aligned}
$$

The corresponding result in terms of the eccentric anomaly E has already been found (§5) It will be convenient to write down the relations between the radius vector and the true and eccentric anomalies in the forms which are most frequently required We have

$$
\begin{aligned}
& x=r \cos w=a(\cos E-e) \\
& y=r \sin w=a \sqrt{ }\left(1-e^{2}\right) \sin E
\end{aligned}
$$

Hence

$$
\begin{align*}
r=\frac{a\left(1-e^{\theta}\right)}{1+e \cos w} & =a(1-e \cos E) \tag{5}\\
r \cos ^{2} \frac{1}{2} w & =a(1-e) \cos ^{2} \frac{1}{2} E \\
r \sin ^{\frac{1}{2}} w & =a(1+e) \sin ^{2} \frac{1}{2} E \\
\tan \frac{1}{2} w & =\sqrt{\left(\frac{1+e}{1-e}\right) \tan \frac{1}{2} E} \tag{6}
\end{align*}
$$

This last equation may be regarded as the standard form of the relation between w and $E \quad$ If we write $e=\sin \phi\left(0^{\circ}<\phi<90^{\circ}\right)$, as 1s commonly done, then

$$
\begin{aligned}
& \tan \frac{1}{2} w=\tan \left(45^{\circ}+\frac{1}{2} \phi\right) \tan \frac{1}{2} E \\
& \tan \frac{1}{2} E=\tan \left(45^{\circ}-\frac{1}{2} \phi\right) \tan \frac{1}{2} w
\end{aligned}
$$

and it renalaly follows that

If now we employ (5) and (7) wre whtam

$$
\begin{aligned}
& \sqrt{\left.\binom{\mu^{\prime}}{\mu}\right|_{m \text { vil }} ^{d F_{i}} 1,{ }_{1}^{\prime \prime \prime}, l^{\prime}}
\end{aligned}
$$

 obtamed K"phor's equation

$$
M=n\binom{1}{t_{4}} \quad B \text { rnin }: i
$$

 factor $1801 / \pi$

 $E_{0}+\Delta K_{0}$ be the "xact mellution, zand

Then

$$
M_{a} \quad E_{n}=\| \min E_{n}
$$

$$
M \cdots M_{n}+\left(1 \quad \sim \cos E_{n}\right) \Delta K_{1}+\ldots
$$

 Negleoting higher powirs of ΔK_{i}^{\prime} we hav"

$$
\Delta H_{0}^{\prime} \cdot\left(M \cdots M_{4}\right) /\left(1 \cdots \subset \cdots K_{n}\right)
$$

and hence a serond nyproximation $K_{1}^{\prime} K_{i}^{\prime}+\Delta K_{4}$, If then value it mit
 obtamed.

In order to obtain a good approximate solution at the outset a great variety of methods have been devised These depend upon (a) the use of special tables, (b) an approximate formula or a series, or (c) a graphical method Thus to the first order in e,

$$
E_{0}=M+e \sin M
$$

and to the second order in e

$$
\tan E_{0}=\sec \phi \tan 2 \chi
$$

where

$$
\tan \chi=\tan \left(45^{\circ}+\frac{1}{2} \phi\right) \tan \frac{1}{2} M
$$

the verfication of which may be left as an exercise
Among graphical methods we can refer only to one, given by Newton (Prnoupia, Book I, Prop xxxi) Consider a circle of unit radius and centre C rolling on a straight line $O X$ Let E be the point of contact and A the point on the carcumference initially coinciding with O Let P be a point on the radus $O A$ such that $C P=e$ and M and N the feet of the perpendiculars from P on $O X$ and $C E \quad$ Then if $E=\angle A C E=\operatorname{arc} A E=O E$,

$$
O M=O E-M E=O E-P N=E-e \sin E
$$

Hence of the circle is rolled (without slipping) along $O X$ untal the point $P_{\text {is }}$ on the ordinate $P M$ where $O M=M$, the point of contact gives $O E=E$, which can therefore be read off when M is given. The locus of P is evidently a trochoid It may also be noted that the ordinate

$$
P M=C E-C N=1-e \cos E
$$

which is the corresponding value of r / a or of $d M / d E$, and so gives the factor required for the improvement of an approximate value E_{0} For references to practical applications of the above principle see Monthly Notrces, $R A S$, Lxvii, $p 67$
29. In the case of puratwhe motum

 the identity

Hence

$$
\left(\begin{array}{ll}
\lambda^{\prime}-\frac{1}{\lambda^{\prime}}
\end{array}\right) \quad \lambda \quad \begin{aligned}
& 1 \\
& \lambda^{\prime}
\end{aligned}+1\left(\begin{array}{ll}
\lambda & 1 \\
\lambda
\end{array}\right)^{\prime}
$$

$$
\tan \frac{2}{2 \prime \prime} \times \lambda \begin{aligned}
& 1 \\
& \lambda
\end{aligned}
$$

$$
\begin{array}{ll}
3 M=\lambda^{\prime} & 1 \\
\lambda^{\prime}
\end{array}
$$

Let

$$
\lambda=-\tan \gamma, \lambda, \quad \text { lan, } 1
$$

Then

$$
\begin{gathered}
\forall M=3 \sqrt{ }\binom{\mu}{p^{\prime}}\binom{t}{t_{n}} \text { cint } \therefore \lambda \\
\tan \beta \quad \tan \gamma
\end{gathered}
$$

$$
\text { tann } \delta u \cdot 2 \text { roth } 2 \gamma
$$

By these equations w can be culculated danelly when 1 m parn

 anomaly Thus we have
so that

$$
\begin{aligned}
& x=r \operatorname{asc} v \cdot \because a\left(a-\cosh K^{n}\right) \\
& y=r \sin w-a \sqrt{ }\left(e^{\omega}-1\right) \sinh
\end{aligned}
$$

$$
r=\frac{a\left(\sigma^{2}-1\right)}{1+e c^{\prime}\left(\cos w^{-a}\right.}-a\left(\operatorname{ronh} k^{\prime} \quad\right. \text { । }
$$

$$
\begin{gather*}
r \cos ^{2} \frac{1}{2} w=a(e-1) \cosh ^{2} \frac{1}{2} F^{\prime} \\
r \sin ^{2} \frac{1}{2} w=a(e+1) \sinh ^{2} \frac{1}{2} F^{\prime} \\
\tan \frac{1}{2} w=\sqrt{2}\left(\frac{e+1}{e-1}\right) \tanh \frac{1}{2} F \tag{11}\\
\cos w=\frac{e-\cosh F}{e \cosh F-1}, \quad \cosh F=\frac{e+\cos w}{1+e \cos w} \\
\sin w=\frac{\sqrt{ }\left(e^{2}-1\right) \sinh F}{e \cosh \bar{F}-1}, \quad \sinh F=\frac{\sqrt{ }\left(e^{2}-1\right) \sin w}{1+e \cos w} \\
d w=\frac{\sqrt{ }\left(e^{2}-1\right) d F}{e \cosh \bar{F}-1}, \quad d F=\frac{\sqrt{ }\left(e^{2}-1\right) d w}{1+e \cos w} \tag{12}
\end{gather*}
$$

By employing (10) and (12) we now obtain

$$
\begin{align*}
t-t_{0} & =\frac{\lambda^{3}}{\mu^{2}} \int_{0} \frac{d w}{(1+e \cos w)^{2}} \\
& =\sqrt{ }\left(\frac{p^{3}}{\mu}\right) \int_{0} \frac{d F}{\sqrt{\left(e^{2}-1\right)}} \frac{e \cosh F-1}{e^{4}-1} \\
& =\sqrt{ }\left(\frac{a^{8}}{\mu}\right)(e \sinh F-F) \tag{13}
\end{align*}
$$

which is the analogue of Kepler's equation for this case
Analogy suggests the use of hyperbolic functions, but full and accurate tables of these functions are not always available Hence it is convenient to introduce f, the Gudermannian function of F, where (Log denoting natural logarithm)

$$
F^{\prime}=\log \tan \left(45^{\circ}+\frac{1}{2} f\right)
$$

or

$$
\sinh F=\tan f, \quad \cosh F=\sec f, \quad \tanh \frac{1}{2} F^{\prime}=\tan \frac{1}{2} f
$$

We may also put $e=\sec \psi$. The principal formulae (10), (11) and (13) then become
and

$$
\begin{align*}
r & =a(e \sec f-1) \tag{14}\\
\tan \frac{1}{2} w & =\cot \frac{1}{2} \psi \tan \frac{1}{2} f \tag{15}
\end{align*}
$$

$$
\begin{equation*}
\sqrt{ }\left(\mu \alpha^{-3}\right)\left(t-t_{0}\right)=e \tan f-\log \tan \left(45^{\circ}+\frac{1}{2} f\right) \tag{16}
\end{equation*}
$$

The last equation may also be written

$$
\sqrt{ }\left(\mu a^{-8}\right) \lambda\left(t-t_{0}\right)=\lambda e \tan f-\log \tan \left(45^{\circ}+\frac{1}{2} f\right)
$$

where \log denotes common logarithm and $\log \lambda=96377843$
Comets moving in hyperbolic orbits are few in number, and in no case does the eccentricity greatly exceed unity

31 There are certain astronomical problems which require the consideration of repulsive forces according to the law μr^{-2} which are of the same form as gravitational attraction but differ in sense The small particles which constitute a comet's tail are apparently subject to such forces and
finely divided meteoric matter in the solar system must move under the pressure due to the Sun's radation Hence we shall consider the effect of replacing $+\mu$, the acceleration at unit distance, by $-\mu^{\prime}$ The differential equation of the orbit becomes

$$
\frac{d^{2} u}{d \theta^{2}}+u+\frac{\mu^{\prime}}{h^{2}}=0
$$

the integral of which is

$$
\begin{align*}
u & =\frac{\mu^{\prime}}{h^{2}}\{e \cos (\theta-\gamma)-1\} \\
& =p^{-1}(e \cos w-1) \tag{17}
\end{align*}
$$

If we restrict w to such a range of values that u (or r) is positive, this equation gives only the branch of the hyperbola convex to the centre of repulsion at the focus, just as under the same restriction the equation (10) gives only the branch concave to the centre of attraction As compared with $\S 26$ the signs of p and e, as well as of μ, have been changed Hence the constant c in the equation of energy becomes

$$
c=-\mu^{\prime}\left(1-e^{a}\right) / p=+\mu^{\prime} / a
$$

so that the equation of energy is now

$$
\begin{equation*}
v^{2}=\mu^{\prime} / a-2 \mu^{\prime} / r \tag{18}
\end{equation*}
$$

Also, if ψ is the angle which the direction of motion at (r, θ) makes with the radus vector drawn towards the origin,

$$
\begin{aligned}
& v \cos \psi=-\gamma=h \frac{d u}{d \theta}=-\frac{\mu^{\prime} e}{h} \sin (\theta-\gamma) \\
& v \sin \psi=r \theta=h u=\frac{\mu^{\prime}}{h}\{e \cos (\theta-\gamma)-1\}
\end{aligned}
$$

are the components of the velocity along the inward radius vector and perpendicular to it These are evidently equivalent to (α) a constant velocity $-\nabla^{\prime}=-\mu^{\prime} / h=-\sqrt{ }\left(\mu^{\prime} / p\right)$ perpendicular to the raduus vector, the negative sign meaning that V^{\prime} is drawn in the sense opposite to that in which the radius vector is rotating, and (b) a constant velocity eV^{\prime} in a durection making an angle $\frac{1}{2} \pi+\theta-\gamma$ with the raduus vector, that is, perpendicular to the transverse axis Thus at perihelion the velocity is $V^{\prime}(e-1)$ as compared with the velocity $V(e+1)$ at perihelion on the concave branch under an attracting force

If the circumstances of projection are given in the form of v and ψ at the point (r, θ), we have

$$
\begin{aligned}
\mu^{\prime} p & =h^{2}=v^{2} r^{2} \sin ^{2} \psi \\
\mu^{\prime} e \sin (\theta-\gamma) & \left.=-v^{2}\right) \sin \psi \cos \psi \\
\mu^{\prime} e \cos (\theta-\gamma) & =v^{2} r \sin ^{2} \psi+\mu^{\prime}
\end{aligned}
$$

which determine p, e and γ in terms of given quantities In particular

$$
\mu^{\prime 2}\left(e^{2}-1\right)=v^{\prime} \gamma\left(v^{2} 1+2 \mu^{\prime}\right) \sin ^{2} \psi
$$

32 Expressing the coordnates in terms of hyperbolic functions we now have, since the centre is at ($a e, 0$),

$$
\begin{aligned}
& x=r \cos w=a(e+\cosh F) \\
& y=r \sin w=a \sqrt{ }\left(e^{2}-1\right) \sinh F
\end{aligned}
$$

Hence

$$
\begin{align*}
r & =\frac{a\left(e^{2}-1\right)}{e \cos w-1}=a\left(e \cosh F^{\prime}+1\right) \tag{19}\\
r \cos ^{2} \frac{1}{2} w & =a(e+1) \cosh ^{2} \frac{1}{2} F^{\prime} \\
1 \sin ^{2} \frac{1}{2} w & =a(e-1) \sinh ^{2} \frac{1}{2} F \\
\tan \frac{1}{2} w & =\sqrt{ }\left(\frac{e-1}{e+1}\right) \tanh \frac{1}{2} F \tag{20}\\
\cos w & =\frac{e+\cosh F}{e \cosh F+1} \quad \cosh F=\frac{e-\cos w}{e \cos w-1} \\
\sin w & =\frac{\sqrt{ }\left(e^{2}-1\right) \sinh F}{e \cosh \bar{F}+1}, \quad \sinh F=\frac{\sqrt{ }\left(e^{2}-1\right) \sin w}{e \cos w-1} \\
d w & =\frac{\sqrt{ }\left(e^{2}-1\right) d F^{\prime}}{e \cosh F+1}, \quad d F \tag{21}
\end{align*} \quad \frac{\sqrt{ }\left(e^{2}-1\right) d w}{e \cos w-1} . \quad l
$$

It then follows that

$$
\begin{align*}
t-t_{0} & =\left\{\frac{r^{2}}{h} d \theta=\frac{h^{3}}{\mu^{\prime 2}} \int_{0} \frac{d w}{(e \cos w-1)^{2}}\right. \\
& =\sqrt{ }\left(\frac{p^{3}}{\mu^{\prime}}\right) \int_{0} \frac{d F^{\prime}}{\sqrt{ }\left(e^{2}-1\right)} \frac{e \cosh F+1}{e^{2}-1} \\
& =\sqrt{ }\left(\frac{a^{3}}{\mu^{\prime}}\right)\left(e \sinh F+F^{\prime}\right) \tag{22}
\end{align*}
$$

which corresponds to Kepler's equation for this case
As in the case of an attracting force we may now put

$$
\tan \frac{1}{2} f=\tanh \frac{1}{2} F, \quad \sec f=\cosh F, \quad \tan f=\sinh F
$$

and $e=\sec \psi \quad$ With these transformations the principal formulae of the solution become

$$
\begin{align*}
r & =a(e \sec f+1) \tag{23}\\
\tan \frac{1}{2} w & =\tan \frac{1}{2} \psi \tan \frac{1}{2} f \tag{24}\\
\sqrt{ }\left(\mu^{\prime} a^{-s}\right)\left(t-t_{0}\right) & =e \tan f+\log \tan \left(45^{\circ}+\frac{1}{2} f\right) \tag{25}
\end{align*}
$$

or, as the last may be written,

$$
\sqrt{ }\left(\mu^{\prime} a^{-8}\right) \lambda\left(t-t_{0}\right)=\lambda e \tan f+\log \tan \left(45^{\circ}+\frac{1}{2} f\right)
$$

in the notation previously explained

33 The simple and important representation of the velocity in all cases as the resultant of two vectors both constant in magnitude, and one constant in durection also, may be illustrated by considering the hodograph of the motion This curve is clearly a circle of radius V and centre at a distance $\boldsymbol{e V}$ from the origin The four figures given correspond with the four distinct types of motion, (a) elliptic, (b) parabolic, (c) hyperbolic, under attraction to the focus, and (d) hyperbolic, under repulsion from the focus In all cases O is the origin, C the centre, and $O P$ represents the velocity at perihelion If Q is any point on the hodograph, $O Q$ represents the velocity in the orbit at one extremity of the focal chord which is at right angles to $C Q$ The radius $C P$ being $\nabla, O C=e V$ and as the eccentricity increases O moves along the radius opposite to $C P$ from the position C for a circular orbit to a point on the circumference for a parabolic orbit As e increases beyond the value 1

(a)

(b)

(c)

(d)
the point O passes outside the circle But the hodograph corresponding to hyperbolic motion is no longer a complete cucle since the possible directions of motion are limited by the asymptotes If $O A, O B$ are the tangents from O to the curcle the angles $C O A, C O B$ are each equal to $\sin ^{-1} e^{-1}$ and it is easily seen that $O A, O B$ are parallel to the asymptotes of the orbit, that $A O B$ is equal to the exterior angle between the asymptotes, and that the $\operatorname{arc} A P B$ constitutes the whole hodograph When the attraction is changed to a repulsion and motion takes place along the convex instead of the concave branch of the hyperbola, $O P=V^{\prime}(e-1)$, and the hodograph is confined to that arc of the circle which is at all points convex to 0 , whereas in case (c) it was everywhere concave to 0

34 From the point of new of practical calculation there are points connected with orbits nearly parabolic in form which require special attention Kepler's equation for elliptic motion may be written

$$
M=E-\sin E+(1-e) \sin E
$$

When $1-e$ is small the accurate calculation of M depends on that of $E-\sin E \quad$ But if E is small the latter expression is the difference of two nearly equal quantities and cannot be calculated drectly unless each is
expressed by a disproportionate number of sıgnificant figures Hence the need for special tables (eg Bauschinger's Tafeln, No xu) or an approximate formula Under the latter head may be mentioned the function

$$
\frac{1}{8} E^{3}\left(\cos \frac{1}{12} E\right)^{144}
$$

which is so close an approximation to $E-\sin E$ over the range of E from 0° to 70° that the logarithms of the two expressions never differ by more than 2 in the seventh place

It is evident that in the parabola itself E is evanescent and generally in the ellipse of great eccentricity E is small at all points near the attracting focus The method given by Gauss in the Theoria Motus for the treatment of Kepler's equation is a particularly instructive example of the construction and use of special tables and as at the same time it brings out clearly the relation to parabolic motion its principle will be explained here

Kepler's equation may be written in the form

$$
M=(1-e)(\alpha E+\beta \sin E)+(\beta+\alpha e)(E-\sin E)
$$

if $\alpha+\beta=1$, or

$$
\begin{equation*}
M=(1-e) 2 A^{\frac{1}{2}} B+(\beta+\alpha e) \frac{4}{3} A^{\frac{3}{2}} B \tag{26}
\end{equation*}
$$

If

$$
A=3(E-\sin E) / 2(\alpha E+\beta \sin E)
$$

and

$$
\begin{aligned}
B^{2} & =(\alpha E+\beta \sin E)^{3} / 6(E-\sin E) \\
& =\left(E^{3}-\frac{1}{2} \beta E^{\mathrm{s}}\right) /\left(E^{3}-\frac{1}{20} E^{\mathrm{b}}\right)
\end{aligned}
$$

which differs from unity by a quantity of the fourth order only in E if $\beta=1 / 10, \alpha=9 / 10 \quad W_{1}$ th these values it is readily found that

$$
\begin{aligned}
& A=\frac{1}{4} E^{2}-\frac{1}{12} E^{4}- \\
& B=1+\frac{8}{2} \frac{8}{800} E^{4}-
\end{aligned}
$$

Hence $\log B$ is a small quantity of the fourth order which is tabulated with A, itself of the second order, as argument

We now put, in view of (26),

$$
A^{\frac{1}{2}}=\sqrt{ }\left(\frac{5-5 \theta}{1+9 \theta}\right) \tan \frac{1}{2} w_{1}
$$

so that

$$
M=2 \sqrt{ } 5(1-e)^{\frac{7}{2}}(1+9 e)^{-\frac{1}{2}} B\left(\tan \frac{1}{2} w_{1}+\frac{1}{8} \tan ^{8} \frac{1}{2} w_{1}\right)
$$

But

$$
M=\sqrt{ }\left(\frac{\mu}{a^{3}}\right)\left(t-t_{0}\right)=\sqrt{ }\left(\frac{\mu}{q^{3}}\right)(1-e)^{\frac{\sharp}{4}}\left(t-t_{0}\right)
$$

where q is the perihelion distance, in the present problem a more convenient element than the mean distance a Hence

$$
\sqrt{\left(\frac{\mu}{q^{3}} \frac{1+9 e}{20}\right) \frac{t-t_{0}}{B}=\tan \frac{1}{2} w_{1}+\frac{1}{3} \tan ^{8} \frac{1}{2} w_{1} .{ }^{2} .}
$$

the analogy of which with (9) of § 29 is evident Here B is unknown, but the supposition that $B=1$ will lead to a good first approxunation to $\tan \frac{1}{2} w_{1}$ and hence to A, and a nearer value for $\log B$ can then be taken from the table This in turn will lead to a second approximation to $\tan \frac{1}{2} w_{1}$, and so on until the correct value is reached Now let

$$
\begin{aligned}
\tau & =\tan ^{2} \frac{1}{2} E=\left(\frac{1}{2} E+\frac{1}{24} E^{3} \quad\right)^{2}=\frac{1}{4} E^{2}+\frac{1}{2} \frac{1}{4} E^{4} \\
& =A+\frac{4}{8} A^{2}
\end{aligned}
$$

or

$$
A=\tau\left(1+\frac{4}{8} A \quad\right)^{-1}=\tau\left(1-\frac{4}{8} A+C\right)
$$

where C is a function of the second order in $A, 1 \mathrm{e}$ a small quantity of the fourth order in E, which like $\log B$ can be tabulated with the argument A Hence

$$
\tan \frac{1}{2} w=\sqrt{\tau} \quad \sqrt{\left(\frac{1+e}{1-e}\right)}=\sqrt{ }\left(\frac{1+e}{1-e} \frac{A}{1-\frac{4}{8} A+C}\right)
$$

Finally, by § 27,

$$
=\tan \frac{1}{2} w_{1} \sqrt{\binom{5+5 e}{1+9 e}\left(1-\frac{4}{8} A+C\right)^{\frac{1}{2}}}
$$

or

$$
r \cos ^{2} \frac{1}{2} w=a(1-e) \cos ^{2} \frac{1}{2} E=q /(1+\tau)
$$

$$
r=\frac{1-\frac{4}{8} A+C}{1+\frac{1}{6} A+C} q \sec ^{2} \frac{1}{\frac{1}{2} w}
$$

so that the problem of finding w and r is solved by the ald of the tables giving $\log B$ and C with the argument A without introducing E explicitly into the calculation The method with very little change is adapted equally to hyperbolic orbits The tables will be found in the Theora Motus of Gauss, or in an equivalent form in Bauschinger's Tafeln, Nos xviI and xviri

CHAPTER IV

EXPANSIONS IN ELLIPTIC MOTION

35 The fundamental equations of elliptic motion found in the last chapter, namely

$$
\left.\begin{array}{rl}
M & =E-e \sin E, \quad e=\sin \phi \\
\tan \frac{1}{2} w & =\sqrt{ }\left(\frac{1+e}{1-e}\right) \tan \frac{1}{2} E=\tan \left(\frac{1}{2} \phi+\frac{1}{2} \pi\right) \tan \frac{1}{2} E \\
& =\frac{1+\beta}{1-\beta} \tan \frac{1}{2} E, \quad \beta=\tan \frac{1}{2} \phi \\
\frac{r}{a} & =\frac{1-e^{2}}{1+e \cos w}=1-e \cos E \tag{3}
\end{array}\right\}
$$

give at once the means of calculating the coordnates at any given time But for many purposes it is necessary to express them as periodic functions in the form of series Some of the more important forms of expansion will now be investigated

But certain changes in these equations are sometimes useful Let

$$
\iota w=\log x, \quad \iota E=\log y, \quad \iota M=\log z, \quad \iota^{2}=-1
$$

Then from (2)

$$
\begin{aligned}
\frac{x-1}{x+1} & =1+\beta \frac{y-1}{1-\beta} \frac{1}{y+1} \\
x & =\begin{array}{l}
y-\beta \\
1-\beta y
\end{array}, \quad y=\frac{a+\beta}{1+\beta x}
\end{aligned}
$$

Also by (1)

$$
\begin{align*}
\log z & =\log y-\frac{1}{2} e\left(y-y^{-1}\right) \\
z & =y \exp \left[-\frac{1}{2} e\left(y-y^{-1}\right)\right] \tag{4}\\
& =\frac{x+\beta}{1+\beta} \exp \left[\frac{-\beta}{1+\beta^{2}} \frac{\left(x^{2}-1\right)\left(1-\beta^{2}\right)}{(\alpha+\beta)(1+\beta x)}\right] \\
& =x\left(1+\beta x x^{-1}\right)(1+\beta x)^{-1} \exp \left[\beta \cos \phi\left\{(\beta+x)^{-1}-\left(\beta+x^{-1}\right)^{-1}\right)\right] \tag{5}
\end{align*}
$$

The equation (3) gives

$$
\left.\begin{array}{rl}
\frac{r}{a} & =1-\frac{\beta}{1+\beta^{2}}\left(y+y^{-1}\right)=\frac{1}{1+\beta^{2}}(1-\beta y)\left(1-\beta y^{-1}\right) \\
& =\frac{1}{1+\beta^{2}} \frac{1-\beta^{2}}{1+\beta x} \frac{x\left(1-\beta^{2}\right)}{x+\beta}=\frac{\left(1-\beta^{2}\right)^{2}}{1+\beta^{2}}(1+\beta x)^{-1}\left(1+\beta x^{-1}\right)^{-1} \tag{6}
\end{array}\right\}
$$

It is evident that some expansions will be made more simply in terms of β than of e Hence it will be useful to have the development of any positive power of β in terms of e Now
or

$$
\beta+\beta^{-1}=\tan \frac{1}{2} \phi+\cot \frac{1}{2} \phi=2 \operatorname{cosec} \phi=2 e^{-1}
$$

$$
\beta=0+\frac{1}{2} e\left(1+\beta^{2}\right)
$$

Hence by Lagrange's theorem

$$
\begin{aligned}
\beta^{m} & =\sum_{q} \frac{\left(\frac{1}{2} e\right)^{q}}{q^{1}}\left[\frac{d^{q-1}}{d x^{q-1}}\left\{m x^{m-1}\left(1+x^{2}\right) q\right\}\right]_{x=0} \\
& =m \sum_{q} \frac{\left(\frac{1}{2} e\right)^{q}}{q^{\prime}}\left[\frac{d^{q-1}}{d x^{q-1}} \sum_{p}\binom{q}{p} x^{2 p+m-1}\right]_{x=0} \\
& =m \sum_{p} \frac{\left(\frac{1}{2} e e^{2 p+m}\right.}{(2 p+m)^{2 p}}\left[\frac{d^{2 p+m-1}}{d x^{2 p+m-1}}\binom{2 p+m}{p} x^{2 p+m-1}\right]_{x=0}
\end{aligned}
$$

for the only terms which survive arise when $q=2 p+m$ Hence

$$
\begin{align*}
\beta^{m} & =m \sum_{p=0}\left(\frac{1}{2} e e^{2 p+m} \frac{(2 p+m-1)!}{p^{\prime}(p+m)^{\prime}}\right. \\
& =\left(\frac{1}{2} e^{m}\left\{1+\frac{m}{4} e^{2}+\frac{m}{4^{2}} \frac{m+3}{2^{!}} e^{4}+\frac{m}{4^{3}} \frac{(m+4)(m+5)}{3!} e^{6}+\right\}\right. \tag{7}
\end{align*}
$$

and it is readily seen that this series is absolutely convergent
36 Since
it follows that

Hence

$$
x=(y-\beta)(1-\beta y)^{-1}
$$

$$
\log x=\log y+\log \left(1-\beta y^{-1}\right)-\log (1-\beta y)
$$

$$
=\log y+\beta\left(y-y^{-1}\right)+\frac{1}{2} \beta^{2}\left(y^{2}-y^{-2}\right)+
$$

$$
\begin{equation*}
w=E+2\left(\beta \sin E+\frac{1}{2} \beta^{2} \sin 2 E+\frac{1}{8} \beta^{s} \sin 3 E+\quad\right) \tag{8}
\end{equation*}
$$

But x and y can be interchanged if the sign of β is changed at the same time Therefore

$$
E=w-2\left(\beta \sin w-\frac{1}{2} \beta^{2} \sin 2 w+\frac{1}{3} \beta^{3} \sin 3 w-\quad\right)
$$

It is also easy to express M in terms of w For, by (5),

$$
\begin{aligned}
\log z= & \log x+\log \left(1+\beta x^{-1}\right)-\log (1+\beta x)+\beta \cos \phi\left\{(x+\beta)^{-1}-\left(x^{-1}+\beta\right)^{-1}\right\} \\
= & \log x-\beta\left(x-x^{-1}\right)+\frac{1}{2} \beta^{2}\left(x^{2}-x^{-2}\right)-\frac{1}{3} \beta^{3}\left(x^{3}-x^{-s}\right)+ \\
& \quad+\beta \cos \phi\left\{-\left(x-x^{-1}\right)+\beta\left(x^{3}-x^{-2}\right)-\beta^{2}\left(x^{s}-x^{-s}\right)+\right\} \\
= & \log x-\beta(1+\cos \phi)\left(x-x^{-1}\right)+\beta^{2}\left(\frac{1}{2}+\cos \phi\right)\left(x^{2}-x^{-2}\right)-
\end{aligned}
$$

and therefore
$M=w-2\left\{\beta(1+\cos \phi) \sin w-\beta^{2}\left(\frac{1}{2}+\cos \phi\right) \sin 2 w+\beta^{3}\left(\frac{1}{3}+\cos \phi\right) \sin 3 w-\quad\right\}$
By this expansion the equation of the centre, $w-M$, is expressed as a series in terms of the true anomaly

37 We have now to consider the expansions in teims of M, which are of the greatest importance because they are required in order to express the coordinates as periodic functions of the time And first we take the case of r^{-1} Now

$$
\frac{a}{\gamma}=(1-e \cos E)^{-1}=\frac{d E}{d M}
$$

This is an even periodic function of E and consequently of M Hence

$$
\begin{align*}
\frac{a}{r} & =\frac{1}{\pi} \int_{0}^{\pi}(1-e \cos E)^{-1} d M+\Sigma \frac{2}{\pi} \cos p M \int_{0}^{\pi}(1-e \cos E)^{-1} \cos p M d M \\
& =\frac{1}{\pi} \int_{0}^{\pi} d E+\frac{2}{\pi} \Sigma \cos p M \int_{0}^{\pi} \cos (p E-p e \sin E) d E \\
& =1+2 \sum_{p=1}^{\infty} J_{p}(p e) \cos p M \tag{9}
\end{align*}
$$

where

$$
J_{p}(p e)=\frac{1}{\pi} \int_{0}^{\pi} \cos (p E-p e \sin E) d E
$$

$J_{p}(p e)$ is called the Bessel's coefficuent of order p and argument pe We shall briefly study the properties of these coefficients so far as they are required for our immediate purpose

Eet

$$
F(t)=\exp \left\{\frac{1}{2} x\left(t-t^{-1}\right)\right\}=\sum_{-\infty}^{+\infty} a_{p} t^{p}
$$

For t write $\exp (-\iota \psi)$ Then

$$
\exp (-\iota c \sin \psi)=\sum_{-\infty}^{+\infty} a_{p} \exp (-\iota p \psi)
$$

This is a Fourier expansion, showing that

$$
a_{p}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \exp \iota(p \psi-x \sin \psi) d \psi
$$

and combining the parts of the integral which are due to ψ and $2 \pi-\psi$ we have

$$
\begin{align*}
a_{p} & =\frac{1}{\pi} \int_{0}^{\pi} \cos (p \psi-a \sin \psi) d \psi \\
& =J_{p}(a) \tag{10}
\end{align*}
$$

 which we have tostuly Nin

$$
\begin{aligned}
& f^{\prime}(0) \text { 'vip' (ficupl fit }
\end{aligned}
$$

 Hence

$$
\begin{equation*}
I_{n}\left(x^{\prime}\right) \quad\left(1 x^{n} \cdot J_{n}(-\cdots)\right. \tag{10}
\end{equation*}
$$

$$
J_{p}(, x) \quad\left(1, N_{n} J_{p}(, x)\right.
$$

Equating the coefturewnte of to 1 Ho haw.

$$
\begin{equation*}
\frac{1}{2}\left(\cdot l_{n, 1}(1) \mid, l_{n, 1,11} \quad \mu \cdot 1,11\right) \tag{111}
\end{equation*}
$$

or, equating the cowficunte of tre.

$$
\begin{aligned}
& t\left[J_{p},(x) \quad 2 . I_{p}(x)+I_{p, 1}(N)\right.
\end{aligned}
$$

$$
\begin{aligned}
& =-J_{p}(a)+\underset{\sim}{\mu^{3}}, J_{p}(1) \underset{,}{1}, I_{p}(x)
\end{aligned}
$$

or

$$
J_{p}^{\prime \prime}(x)+\frac{1}{x} J_{p}^{\prime}(x)+\left(1-\frac{p^{2}}{x^{2}}\right) J_{p}(x)=0
$$

This shows that $J_{p}(x)$ is a particular solution of the equation

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+\frac{1}{x} \frac{d y}{d x}+\left(1-\frac{p^{2}}{x^{2}}\right) y=0 \tag{16}
\end{equation*}
$$

The general theory of Bessel's functions, defined as solutions of this differential equation, is not required for our purpose We need only the solutions of the first kind, with integral values of p, and the definition given above is sufficient

39 The desired expansions in M can now be resumed We take $\sin m E$ which is an odd function of E and M Therefore

$$
\begin{aligned}
\sin m E & =\frac{2}{\pi} \Sigma \sin p M \int_{0}^{\pi} \sin m E \sin p M d M \\
& =-\frac{2}{\pi} \Sigma \sin p M \int_{0}^{\pi} \frac{1}{p} \sin m E d\{\cos (p E-p e \sin E)\} \\
& =\frac{2}{\pi} \Sigma \sin p M \int_{0}^{\pi} \frac{m}{p} \cos m E \cos (p E-p e \sin E) d E
\end{aligned}
$$

(by integration by parts, the integrated part vanishing at the limits)

$$
\begin{align*}
= & \frac{1}{\pi} \Sigma \sin p M \int_{0}^{\pi} \frac{m}{p}\{\cos (\overline{(p-m} E-p e \sin E) \\
& \quad+\cos (\overline{p+m} E-p e \sin E)\} d E^{*} \\
= & m \Sigma \cdot \frac{\sin p M}{p}\left\{J_{p-m}(p e)+J_{p+m}(p e)\right\} \tag{17}
\end{align*}
$$

In particular, when $m=1$, by (14)

$$
\begin{equation*}
\sin E=\frac{2}{e} \Sigma \frac{\sin p M}{p} J_{p}(p e) \tag{18}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
E=M+2 \Sigma \frac{\sin p M}{p} J_{p}(p e) \tag{19}
\end{equation*}
$$

Similarly, since $\cos m E$ is an even function of E and M,

$$
\begin{aligned}
\cos m E & =a_{0}+\frac{2}{\pi} \Sigma \cos p M \int_{0}^{\pi} \cos m E \cos p M d M \\
& =a_{0}+\frac{2}{\pi} \Sigma \cos p M \int_{0}^{\pi} \frac{1}{p} \cos m E d\{\sin (p E-p e \sin E)\} \\
& =a_{0}+\frac{2}{\pi} \Sigma \cos p M \int_{0}^{\pi} \frac{m}{p} \sin m E \sin (p E-p e \sin E) d E
\end{aligned}
$$

(integrating by parts as before)

$$
\begin{align*}
= & a_{0}+\frac{1}{\pi} \Sigma \cos p M \int_{0}^{\pi} \frac{m}{p}\{\cos (\overline{p-m} E-p e \sin E) \\
& \quad-\cos (\overline{p+m} E-p e \sin E)\} d E \\
= & a_{0}+m \Sigma \underbrace{\cos p M} \frac{p}{p}\left\{J_{p-m}(p e)-J_{p+m}(p e)\right\} \tag{20}
\end{align*}
$$

The constant term has not been determined It is

$$
\begin{aligned}
a_{0} & =\frac{1}{\pi} \int_{0}^{\pi} \cos m E d M \\
& =\frac{1}{\pi} \int_{0}^{\pi} \cos m E(1-e \cos E) d E \\
& =\frac{1}{\pi} \int_{0}^{\pi}\left\{\cos m E-\frac{1}{2} e \cos (m+1) E-\frac{1}{2} e \cos (m-1) E\right\} d E
\end{aligned}
$$

and thus

$$
\begin{aligned}
a_{0} & =1 \text { if } m=0 \\
& =-\frac{1}{2} e \text { if } m=1 \\
& =0 \text { if } m>1
\end{aligned}
$$

The particular case of $m=1$ is simphfied by (15), so that

$$
\begin{equation*}
\cos E=-\frac{1}{2} e+2 \Sigma \frac{\cos p M}{p} J_{p}{ }^{\prime}(p e) \tag{21}
\end{equation*}
$$

40 From the last expansion it follows that

$$
\begin{equation*}
\frac{r}{a}=1-e \cos E=1+\frac{1}{2} e^{2}-2 e \Sigma \frac{\cos p M}{p} J_{p}^{\prime}(p e) \tag{22}
\end{equation*}
$$

Any positive power of r can be expanded by means of (20) For example

$$
\begin{aligned}
\frac{r^{2}}{a^{2}} & =(1-e \cos E)^{2} \\
& =1+\frac{1}{2} e^{2}-2 e \cos E+\frac{1}{2} e^{2} \cos 2 E \\
& =1+\frac{1}{2} e^{2}+e^{2}-4 e \Sigma \frac{\cos p M}{p} J_{p^{\prime}}{ }^{\prime}(p e)+e^{2} \Sigma \frac{\cos p M}{p}\left\{J_{p-2}(p e)-J_{p+2}(p e)\right\}
\end{aligned}
$$

Now, by (14) and (15),

$$
\begin{aligned}
J_{p-1}(p e)-J_{p+2}(p e) & =\frac{2(p-1)}{p e} J_{p-1}(p e)-\frac{2(p+1)}{p e} J_{p+1}(p e) \\
& =\frac{4}{e} J_{p}^{\prime}(p e)-\frac{4}{p e^{2}} J_{p}(p e)
\end{aligned}
$$

$$
\begin{equation*}
\frac{r^{2}}{a^{2}}=1+\frac{3}{2} e^{2}-4 \Sigma \frac{\cos p M}{p^{2}} J_{p}(p e) \tag{23}
\end{equation*}
$$

The expansions of the rectangular coordinates can be written down at once by means of (18) and (21) Thus, if x, y have this meaning and not as in § 35,

$$
\begin{align*}
x & =a \cos E-a e \\
& =a\left\{-\frac{3}{2} e+2 \Sigma \frac{\cos p M}{p} J_{p}^{\prime}(p e)\right\} \tag{24}
\end{align*}
$$

and

$$
\begin{align*}
y & =\sqrt{ }\left(1-e^{2}\right) a \sin E \\
& =2 a \cot \phi \Sigma \frac{\sin p M}{p} J_{p}(p e) \tag{25}
\end{align*}
$$

Other important expansions can be derived from those already obtained by differentiation or integration For instance, the equations of motion give directly

$$
\begin{aligned}
& \frac{d^{2} x}{d M^{2}}+\frac{a^{3} x}{r^{3}}=0 \\
& \frac{d^{2} y}{d M^{2}}+\frac{a^{3} y}{r^{3}}=0
\end{aligned}
$$

whence

$$
\begin{align*}
& \frac{x}{r^{3}}=\frac{2}{a^{2}} \Sigma p J_{p}^{\prime}(p e) \cos p M \tag{26}\\
& \frac{y}{r^{3}}=\frac{2}{a^{3}} \cot \phi \Sigma p J_{p}(p e) \sin p M \tag{27}
\end{align*}
$$

41 The expansion of functions of the true anomaly in terms of the mean anomaly is in general more difficult $B u t \sin w$ and $\cos w$ are readily found For (§ 27)

$$
\begin{align*}
\sin w & =\frac{\sqrt{ }\left(1-e^{2}\right) \sin E}{1-e \cos E} \\
& =\cot \phi \frac{d}{d E}(1-e \cos E) \frac{d E}{d M} \\
& =\cot \phi \frac{d}{d M}\left(\frac{r}{a}\right) \\
& =2 \cos \phi \Sigma J_{p}^{\prime}(p e) \sin p M \tag{28}
\end{align*}
$$

by (22) And

$$
\begin{align*}
\cos w & =\frac{\cos E-e}{1-e \cos E} \\
& =-e^{-1}+\frac{1-e^{2}}{e} \frac{a}{r} \\
& =-e+\frac{2\left(1-e^{2}\right)}{e} \Sigma J_{\rho}(p e) \cos p M \tag{29}
\end{align*}
$$

by (9)

Hence also tor the equation of the centre,
$\sin (w-M)=e \sin M-\frac{1}{e}-\frac{e^{2}}{e} \Sigma J_{p}(p e)\{\sin (p+1) M-\sin (p-1) M\}$

$$
\begin{array}{r}
+\sqrt{ }\left(1-e^{2}\right) \Sigma J_{p}^{\prime}(p e)\{\sin (p+1) M+\sin (p-1) M\} \\
=\left\{e+\frac{1-e^{2}}{e} J_{2}(2 e)+\sqrt{ }\left(1-e^{2}\right) J_{2}^{\prime}(2 e)\right\} \sin M+\sum_{p=2}^{\infty} a_{p} \sin p M \quad \text { (30) }
\end{array}
$$

where

$$
\begin{aligned}
& a_{p}=-\frac{1}{e} \frac{-e^{o}}{e}\left\{J_{p-1}(\overline{p-1} e)-J_{p+1}(\overline{p+1} e)\right\} \\
& \\
& \quad+\sqrt{ }\left(1-e^{2}\right)\left\{J_{p-1}^{\prime}(\overline{p-1} e)+J_{p+1}^{\prime}(p+1 e)\right\}
\end{aligned}
$$

This expansion for the equation of the centre in terms of the mean anomaly is important, although the coefficients are rather complicated Hence, as far as e^{*},

$$
\begin{aligned}
\sin (w-M) & =e\left(2-\frac{5}{4} e^{2}\right) \sin M+\frac{5}{4} e^{2} \sin 2 M+\frac{17}{2} e^{8} \sin 3 M \\
w-M & =\dot{e}\left(2-\frac{1}{4} e^{2}\right) \sin M+\frac{5}{4} e^{2} \sin 2 M+\frac{18}{12} e^{3} \sin 3 M
\end{aligned}
$$

as can easily be verified,
*42 For some purposes Laurent series in the exponentials a, y, z of $\S 35$ are more convenient than Fourier series in w, E, M Clearly

Let

$$
x^{-1} d x=\iota d w, \quad y^{-1} d y=\iota d E, \quad z^{-1} d z=\iota d M
$$

$$
\begin{aligned}
S & =a_{0}+\Sigma\left(a_{p} \cos p \dot{\theta}+b_{p} \sin p \theta\right) \\
& =a_{a}+\Sigma\left\{\frac{1}{2}\left(a_{p}-\iota b_{p}\right) \tau^{p}+\frac{1}{2}\left(a_{p}+\iota b_{p}\right) \tau^{-p}\right\}
\end{aligned}
$$

where $\log \tau=\iota \theta \quad$ By Fourier's theorem

Hence

$$
\begin{array}{cl}
\pi a_{p}=\int_{0}^{2 \pi} S \cos p \theta d \theta, & \pi b_{p}=\int_{0}^{2 \pi} S \sin p \theta d \theta \\
\pi\left(a_{p}-\iota b_{p}\right)=\int_{0}^{2 \pi} S \tau^{-p} d \theta, & \pi\left(a_{p}+\iota b_{p}\right)=\int_{0}^{2 \pi} S \tau^{p} d \theta
\end{array}
$$

where

$$
S=\sum_{-\infty}^{\infty} A_{p} \tau^{p}
$$

$$
2 \pi A_{p}=\int_{0}^{2 \pi} S \tau^{-p} d \theta
$$

This well-known form, intermediate between Fourier's and Laurent's, is general and includes the case $p=0$ It has been used already in § 37

Formulae have been found which make it possible to pass from any Fourner's expansion in E to one in M The general result may be expressed in a shghtly dufferent way For, since y has the same period as z,

$$
y^{p}=\Sigma A_{m} z^{m}
$$

*The reading of $\$ 842-46$ can quite conveniently be deferred till after Chaptel XIII
where

$$
\begin{aligned}
2 \pi A_{m} & =\int_{0}^{2 \pi} y^{p} z^{-m} d M=\iota m^{-1} \int y^{p} d\left(z^{-m}\right) \\
& =\left[-\iota m^{-1} y^{p} z^{-m}\right]-\iota p m^{-1} \int y^{p-1} z^{-m} d y \\
& =p m^{-1} \int_{0}^{2 \pi} y^{p} z^{-m} d E \\
& =p \eta^{-1} \int_{0}^{2 \pi} \exp \{\iota p E-\iota m(E-e \sin E)\} d E \\
& =2 \pi p m^{-1} J_{m-p}(m e)
\end{aligned}
$$

($m \neq 0$) But when $m=0$,

$$
\begin{aligned}
2 \pi A_{0} & =\int_{0}^{2 \pi} y^{p} d M=\int_{0}^{2 \pi} y^{p}(1-e \cos E) d E \\
& =\int_{0}^{2 \pi}\left(y^{p}-\frac{1}{2} e y^{p+1}-\frac{1}{2} e y^{p-1}\right) d E \\
& =2 \pi(p=0), \quad-\pi e(p= \pm 1), \quad 0\left(p^{2}>1\right)
\end{aligned}
$$

Hence generally, for any function of y,

$$
\begin{aligned}
S & =\Sigma B_{p} y^{p}=\sum_{p} \sum_{m==1}^{ \pm \infty} B_{p} A_{m} z^{m}+\sum_{p} B_{p} A_{0} \\
& =B_{0}-\frac{1}{2} e\left(B_{1}+B_{-1}\right)+\sum_{m= \pm 1}^{\infty \infty} \sum_{p} p m^{-1} B_{p} J_{m-p}(m e) z^{m}
\end{aligned}
$$

43 There is another form of calculation, due to Cauchy, in which Bessel's coefficients do not appear explicitly Let S be any periodic function, such that

$$
S=\Sigma A_{p} z^{p}
$$

Here, by (4),

$$
\begin{aligned}
2 \pi A_{p} & =\int_{0}^{2 \pi} S z^{-p} d M \\
& =\int_{0}^{2 \pi} S y^{-p} \exp \left[\frac{1}{2} p e\left(y-y^{-1}\right)\right](1-e \cos E) d E \\
& =\int_{0}^{2 \pi} S y^{-p}\left\{1-\frac{1}{2} e\left(y+y^{-1}\right)\right\} \exp \left[\frac{1}{2} p e\left(y-y^{-1}\right)\right] d E \\
& =\int_{0}^{2 \pi} U y^{-p} d E
\end{aligned}
$$

where

$$
\begin{align*}
U & =S\left\{1-\frac{1}{2} e\left(y+y^{-1}\right)\right\} \exp \left[\frac{1}{2} p e\left(y-y^{-1}\right)\right] \tag{31}\\
& =\Sigma B_{p} y^{p}
\end{align*}
$$

the coefficient B_{p} of U expanded in powers of $y^{ \pm 1}$ being thus identical with the coefficient A_{p} of S expanded in powers of $z^{ \pm 1}$

Agam.

$$
\begin{aligned}
& \left.\mu \cdot\right|_{\|} ^{\prime \prime \prime} \quad m_{4 / 4}^{d N} d x
\end{aligned}
$$

$$
\begin{aligned}
& \int_{a}^{2 n} V_{y} \cdot \cdots d k^{\prime}
\end{aligned}
$$

where

$$
\begin{aligned}
& \text { さ } B_{p}^{\prime}, y^{\prime \prime}
\end{aligned}
$$

 allumeny when p " 0).

 prowern of !/ ! ${ }^{1}$ Int

at in avident that

$$
N_{m, \mu, y} N_{p, 1, y} N_{m, n}
$$

 efiecte of inturchanging $/$ mad t ' mhown that

$$
N_{p_{1}, 4} \text { (}(1) 9 N_{p, 1,4}
$$

 $j+q-p$ in a pomative uvon intuger, amilif $\mu, j+q, N=1$.

It is now only necessary to consider the construction of the table for $N_{-p, 0,9}$ when p is positive But this is indicated by

$$
\left(t-t^{-1}\right)^{q}=\Sigma N_{-p, 0, q} t^{p}=\Sigma \frac{q}{r^{!}(q-r)^{!}} t^{r}\left(-t^{-1}\right)^{q-r}
$$

whence $p=2 r-q$, and

$$
N_{-p, 0, q}=(-1)^{\frac{1}{4}(q-p)} \frac{q^{\prime}}{\left[\frac{1}{2}(q+p)\right]^{\prime}\left[\frac{1}{2}(q-p)\right]^{\prime}}
$$

The tabulation of Cauchy's numbers, which are all positive or negative integers, is therefore an extiemely simple matter

44 To consider an example, let

$$
S=\left(\frac{r}{a}-1\right)^{m}=(-e \cos E)^{n}=\left(-\frac{1}{2} e\right)^{m}\left(y+y^{-1}\right)^{m}
$$

Then
and

$$
\begin{aligned}
U= & \left\{\left(-\frac{1}{2} e\right)^{m}\left(y+y^{-1}\right)^{m}+\left(-\frac{1}{2} e\right)^{m+1}\left(y+y^{-1}\right)^{m+1}\right\} \exp \left[\frac{1}{2} p e\left(y-y^{-1}\right)\right] \\
= & \left\{\left(-\frac{1}{2} e\right)^{m}\left(y+y^{-1}\right)^{m}+\left(-\frac{1}{2} e\right)^{m+1}\left(y+y^{-1}\right)^{m+1}\right\} \sum_{q}\left(\frac{1}{2} p e\right)^{q}\left(y-y^{-1}\right)^{q} / q^{1} \\
= & \left(-\frac{1}{2} e\right)^{m}\left(y+y^{-1}\right)^{m} \sum_{q}\left(\frac{1}{2} p e\right)^{q}\left(y-y^{-1}\right)^{q} q^{1} \\
& \quad+\left(-\frac{1}{2} e\right)^{m+1}\left(y+y^{-1}\right)^{m+1} \sum_{q}\left(\frac{1}{2} p e\right)^{q-1}\left(y-y^{-1}\right)^{q-1} /(q-1)!
\end{aligned}
$$

$$
B_{p}=\left(-\frac{1}{2} e\right)^{m} \sum_{q} \frac{\left(\frac{1}{2} p e\right)^{q}}{q^{1}}\left[N_{-p, m, q}-\frac{q}{p} N_{-p, m+1, q-1}\right]
$$

is the coefficient of y^{p} in U, and therefore of z^{p} in S
When $p=0$ the exponential function disappears and the constant term is given by

$$
U=\left(-\frac{1}{2} e\right)^{m}\left(y+y^{-1}\right)^{m}+\left(-\frac{1}{2} e\right)^{m+1}\left(y+y^{-1}\right)^{m+1}
$$

and $1 s$ therefore the first or the second of the forms

$$
\left.\left(\frac{1}{2} e\right)^{m} m!\left[\left(\frac{1}{2} m\right)\right\rceil\right]^{-2}, \quad\left(\frac{1}{2} e\right)^{m+1}(m+1)!\left\{\left[\frac{1}{2}(m+1)\right]^{-2}\right.
$$

according as m is even or odd
On the other hand,

$$
\frac{d S}{d y}=m\left(-\frac{1}{2} e\right)^{m} y^{-1}\left(y-y^{-1}\right)\left(y+y^{-1}\right)^{m-1}
$$

and therefore

Hence

$$
V=\frac{m}{p}\left(-\frac{1}{2} e\right)^{m} y^{-1}\left(y+y^{-1}\right)^{m-1} \sum_{q}{\underset{q}{ }}_{\left(\frac{1}{2} p e\right)^{q}}^{q^{1}}\left(y-y^{-1}\right)^{q+1}
$$

$$
{B^{\prime}}_{p-1}={ }_{p}^{m}\left(-\frac{1}{2} e\right)^{m} \sum_{q} \underset{q}{ } \underset{q}{\left(\frac{1}{2} p e\right)^{q}} N_{-p, m-1, q+1}
$$

is the coefficient of y^{p-1} in V and therefore also the coefficient of z^{p} in S Comparison with the previous result shows that

$$
m N_{-p, m-1, q+1}=p N_{-p, m, q}-q N_{-p, m+1, q-1}
$$

is an identity From this the recurrence formula

$$
(m-p+q+2) N_{-p+2, m, q}-2(m-q) N_{-p, m, q}+(m+p+q+2) N_{-p-\mathrm{q}, m, q}
$$ can be eassly deduced

45 The development in terms of M ol z of the functions

$$
\left(\frac{r}{a}\right)^{n} \sin \cos m w, \quad\left(\frac{r}{a}\right)^{n} \varkappa^{m}
$$

is of special importance Here n is any positive or negative integer, and if m is also a positive or negative integer it is only necessary to consider the second form This involves Hansen's coefficients $X_{2}^{n}{ }^{m}$, where

$$
\left(\frac{r}{a}\right)^{n} a^{m}=\Sigma X_{\imath}^{n m} z^{2}, \quad 2 \pi X_{i}^{n, m}=\int_{0}^{2 \pi}\left(\frac{r}{a}\right)^{n} x^{m} z^{-2} d M
$$

Now

$$
d M=\frac{r}{a} d E=\left(\frac{r}{a}\right)^{2} \sec \phi d w=\frac{1+\beta^{2}}{1-\beta^{2}}\left(\frac{r}{a}\right)^{2} d w
$$

of which the last form follows from the areal property of elliptic motion,

$$
\imath^{2} d w=h d t=n^{-1} h d M=a b d M=a^{2} \cos \phi d M
$$

Also

$$
x=y\left(1-\beta y^{-1}\right)(1-\beta y)^{-1}
$$

and therefore $X_{\imath}^{n, m}$ can be expressed by a definite integral involving y and E, or by one involving x and w, by means of (4), (5), (6), thus

$$
2 \pi X_{\imath}^{n m}=\left.\right|_{0} ^{2 \pi}\left(1+\beta^{2}\right)^{-n-1} y^{m-2}(1-\beta y)^{n+1-m}\left(1-\beta y^{-1}\right)^{n+1+m}
$$

and

$$
\exp \left[\frac{1}{2} u e\left(y-y^{-1}\right)\right] d E
$$

$$
\begin{array}{r}
2 \pi X_{\imath}^{n, m}=\left.\right|_{0} ^{2 \pi}\left(1-\beta^{2}\right)^{2 n+8}\left(1+\beta^{2}\right)^{-n-1} x^{m-1}(1+\beta x)^{-n-3+2}\left(1+\beta x^{-1}\right)^{-n-2-1} \\
\quad \exp \left[\imath \beta \cos \phi\left\{\left(\beta+\alpha^{-1}\right)^{-1}-(\beta+x)^{-1}\right\}\right] d w
\end{array}
$$

The first of these forms shows that $\left(1+\beta^{2}\right)^{n+1} X_{2}^{n, m}$ is the coefficient of y^{i-m} in the expanded product $Y_{1} Y_{2}$, where

$$
\begin{aligned}
& Y_{1}=(1-\beta y)^{n+1-m} \exp \left(\frac{1}{2} r e y\right) \\
& Y_{2}=\left(1-\beta y^{-1}\right)^{n+1+m} \exp \left(-\frac{1}{2} r e y^{-1}\right)
\end{aligned}
$$

Sumilarly the second form shows that $\left(1+\beta^{2}\right)^{n+1}\left(1-\beta^{2}\right)^{-2 n-8} X_{i}^{n, m}$ is the coefficient of x^{1-m} in the expanded product $X_{1} X_{2}$, where

$$
\begin{aligned}
& X_{1}=(1+\beta x)^{-n-2+2} \exp \left[\imath \cos \phi \beta x(1+\beta x)^{-1}\right] \\
& X_{2}=\left(1+\beta x^{-1}\right)^{-n-2-2} \exp \left[-\imath \cos \phi \beta x^{-1}\left(1+\beta x^{-1}\right)^{-1}\right]
\end{aligned}
$$

The deduction of Hansen's formulae in this way is not difficult, and has been given by Tisserand (Méc Cell, I, ch xv)

An obvious method consists in expanding the exponential function occurring in the first of the two integral forms in a series with Bessel's coefficients Thus

$$
\begin{aligned}
2 \pi X_{i}^{n, m} & =\left(1+\beta^{2}\right)^{-n-1} \sum_{p} J_{p}(\imath e) \int_{0}^{2 \pi} y^{p+m-2}(1-\beta y)^{n+1-m}\left(1-\beta y^{-1}\right)^{n+1+m} d E \\
& =2 \pi\left(1+\beta^{2}\right)^{-n-1} \sum_{p} J_{p}(\imath e) X_{\imath p}^{n, m}
\end{aligned}
$$

where $X_{i, p}^{n, m}{ }_{1 s}$ clearly the coefficient of $y^{\imath-p \sim m}$ in the expansion of

$$
Y_{m}^{n}(\beta)=(1-\beta y)^{n+1-m}\left(1-\beta y^{-1}\right)^{n+1+m}
$$

and therefore equally the coefficient of y^{-1+p+m} in the expansion of

Now

$$
\begin{aligned}
(1-\beta y)^{2}\left(1-\beta y^{-1}\right)^{j} & =\Sigma(-\beta)^{h+k} y^{h-k} \frac{2(\imath-h+1)}{h^{\prime}} \frac{)(\jmath-k+1)}{k^{\prime}} \\
& =\Sigma_{k}(-1)^{p} \beta^{p+2 k} y^{p} \frac{2(2-p-k+1)}{(p+k)^{\prime}} \frac{\rho(\jmath-k+1)}{k^{\prime}}
\end{aligned}
$$

where $h=p+k$, and if ρ is positive the coefficient of y^{p} is

$$
\begin{aligned}
&(-\beta)^{p} \frac{\imath(\imath-p+1)}{p^{1}} \sum_{k} \frac{(\imath-p)}{(p+1)(\imath-p-k+1)}(p+k) \frac{(\jmath-k+1)}{k^{1}} \beta^{2 k} \\
&=(-\beta)^{p}\binom{\imath}{p} F\left(p-\imath,-\jmath, p+1, \beta^{2}\right)
\end{aligned}
$$

in the ordmary notation for a hypergeometric series Hence there are two possible forms for $X_{i, p}^{n, m}$

$$
\begin{aligned}
& (-\beta)^{1-p-m}\binom{n+1-m}{\imath-p-m} F\left(\imath-p-n-1,-m-n-1, \imath-p-m+1, \beta^{2}\right) \\
& (-\beta)^{-i+p+m}\binom{n+1+m}{-\imath+p+m} F\left(-\imath+p-n-1, m-n-1,-\imath+p+m+1, \beta^{2}\right)
\end{aligned}
$$

of which the first is avarlable if $q-p-m>0$ and the second if $\imath-p-m<0$, for then the third argument of the series is positive and the binomial coefficient has a meaning If $\imath-p=m$ both forms become

$$
X_{u, 2}^{n, n}=F\left(m-n-1,-m-n-1,1, \beta^{n}\right)
$$

When $n 18$ assumed to be positive, at least one of the tirst two arguments of the series is always negative, and therefore the series is a polynomial in β^{2} For in the first form with $\imath-p-m>0$, the second argument is certainly
negative if m is positive, if m is negative, $n+1-m>0$ and the binomial coefficient shows that $\imath-p-m<n+1-m$, so that the first argument is negative Similarly when the second form is valid it also is a terminating series When n is negative one of the known transformations of the hypergeometric series may be necessary to give a finite form Hence Hansen's coefficients are reduced to the form

$$
X_{\imath}^{n, m}=\left(1+\beta^{2}\right)^{-n-1} \sum_{p} J_{p}(\imath e) X_{i, p}^{n, m}
$$

where $X_{i, p}^{n{ }_{n}^{m}}$ represents, with a simple factor, a hypergeometric polynomial in $\beta^{2} \quad$ This form was first given by Hill

46 The periodic series in M found above are evidently legitimate Fourier expansions, satisfying the necessary conditions with $e<1$, and as such are convergent The Bessel's coefficients are given in explicit form by the series (11) which also $1 s$ at once seen to be absolutely convergent for all values of e But in practical applications the expansions are generally ordered not as Fourier series in M but as power series in e Under these circumstances the question of convergence is altered and needs a special investigation Now

$$
E=M+e \sin E
$$

considered as an equation in E has one root in the interior of a given contour, and any regular function of this root can be expanded by Lagrange's theorem as a power series in e, provided that

$$
|e \sin E|<|E-M|
$$

at all points of the given contour* We have then to find a contour with the required property, and to examine its limits

We are to regard e and M as given real constants The equation

$$
E=M+\rho \cos \chi+\iota \rho \sin \chi
$$

where ρ is constant, defines a circular contour At any point on it

$$
\sin E=\sin (M+\rho \cos \chi) \cosh (\rho \sin \chi)+\iota \cos (M+\rho \cos \chi) \sinh (\rho \sin \chi)
$$

so that

$$
\begin{aligned}
|\sin E|^{2} & =\sin ^{2}(M+\rho \cos \chi) \cosh ^{2}(\rho \sin \chi)+\cos ^{2}(M+\rho \cos \chi) \sinh ^{2}(\rho \sin \chi) \\
& =\cosh ^{2}(\rho \sin \chi)-\cos ^{2}(M+\rho \cos \chi)
\end{aligned}
$$

whule

$$
\begin{aligned}
|E-M| & =\rho \\
& \text { * Of Whittaker's Modern Analysis, } p \text { 106, Whittaker and Watson, } p 133
\end{aligned}
$$

The most unfavourable point on the contour for the required condition is that at which $|\sin E|$ is greatest And our series is to be valid for all real values of M Hence the condition is always fulfilled of it is fulfilled when

$$
\sin \chi= \pm 1, \quad \cos (M+\rho \cos \chi)=0
$$

or

$$
\chi= \pm \frac{1}{2} \pi, \quad M= \pm \frac{1}{2} \pi
$$

in which case

$$
|\sin E|=\cosh \rho
$$

Thus the required condition becomes

$$
e<\rho / \cosh \rho
$$

The greatest value of e is therefore limited by the maximum value of $\rho / \cosh \rho$, which is given by

$$
\cosh \rho=\rho \sinh \rho
$$

Inspection of a table of hyperbolic cosines shows at once that $\rho / \cosh \rho$ 1s greatest when ρ is about 120 and that its value is then about $\frac{2}{8}$ With ordnary logarithmic tables an accurate value can be obtanned wathout difficulty thus Let $\tan \alpha$ be the greatest possible value of e, so that

$$
\tan \alpha=\rho / \cosh \rho=1 / \sinh \rho
$$

It easily follows that

$$
\exp \rho=\cot \frac{1}{2} \alpha, \quad \operatorname{coth} \rho=\sec \alpha
$$

whence, by the equation giving ρ,

$$
\cos \alpha \log \cot \frac{1}{2} \alpha=1
$$

or, using common logarithms and taking logarithms once more,

$$
\log \cos \alpha+\log \log \cot \frac{1}{2} \alpha+036221569=0
$$

In this form it is easily verified that

$$
\alpha=33^{\circ} 32^{\prime} 3^{\prime \prime} 0, \quad \tan \alpha=06627434 .
$$

This last number is then the limiting value of e, within which the expansion of any regular function of E in powers of e is valid for all values of M The orbits of the members of the solar system have eccentricities which are much below this limit, with the exception of some, but not all, of the periodic comets

47 In the form in which Bessel's coefficients occur most frequently in astronomical expansions,

$$
\begin{aligned}
& 2 J_{j}^{\prime}(\jmath e)=\left(\frac{\rho^{e}}{2}\right)^{j-1} \frac{1}{(\jmath-1)!}\left\{1-\frac{\jmath+2}{\jmath} \frac{J^{2} e^{2}}{2(2 j+2)}+\frac{\jmath+4}{\jmath} \frac{\jmath^{4} e^{4}}{24(2 \jmath+2)(2 \jmath+4)}-.\right\}
\end{aligned}
$$

It may be convement for reference to give the following table

$$
\left.\begin{array}{l}
\frac{2}{e} J_{1}(e)=1-\frac{e^{2}}{8}+\frac{e^{4}}{192}-\frac{e^{8}}{9216}+ \\
\frac{2}{e} J_{3}(2 e)=e\left(1-\frac{e^{2}}{3}+\frac{e^{4}}{24}-\frac{e^{5}}{360}+\right) \\
\frac{2}{e} J_{8}(3 e)=\frac{9 e^{2}}{8}\left(1-\frac{9 e^{2}}{16}+\frac{81 e^{4}}{640}-\right) \\
\frac{2}{e} J_{4}(4 e)=\frac{4 e^{3}}{3}\left(1-\frac{4 e^{2}}{5}+\frac{4 e^{4}}{15}-\right) \\
\frac{2}{e} J_{5}(5 e)=\frac{625 e^{4}}{384}\left(1-\frac{25 e^{6}}{24}+\frac{625 e^{4}}{1344}-\right. \\
\frac{2}{e} J_{6}(6 e)=\frac{81 e^{5}}{40}\left(1-\frac{9 e^{2}}{7}+\frac{81 e^{4}}{112}-\right) \\
2 J_{1}^{\prime}(e)=1-\frac{3 e^{2}}{8}+\frac{5 e^{4}}{192}-\frac{7 e^{6}}{9216}+ \\
2 J_{2}^{\prime}(2 e)=e\left(1-\frac{2 e^{2}}{3}+\frac{e^{4}}{8}-\frac{e^{6}}{90}+\right) \\
2 J_{3}^{\prime}(3 e)=\frac{9 e^{2}}{8}\left(1-\frac{15 e^{2}}{16}+\frac{189 e^{4}}{640}-\right. \\
2 J_{4}^{\prime}(4 e)=\frac{4 e^{3}}{3}\left(1-\frac{6 e^{2}}{5}+\frac{8 e^{4}}{15}-\right. \\
2 J_{8}^{\prime}(5 e)=\frac{625 e^{4}}{384}\left(1-\frac{35 e^{2}}{24}+\frac{375 e^{4}}{448}-\right. \\
2 J_{6}^{\prime}(6 e)=\frac{81 e^{5}}{40}\left(1-\frac{12 e^{2}}{7}+\frac{135 e^{4}}{112}-\right.
\end{array}\right)
$$

These can easily be carried further if necessary, but they are often enough for practical purposes

Bessel's coefficients occur naturally in several physical problems discussed by Euler and D Bernoullh from 1732 onwards In 1771 Lagrange* gave the expression of the eccentric anomaly in terms of the mean anomaly, the result (19) above, and found the expansions of the coefficients as power series, thus anticipating Bessel's work (1824) of more than half a century later

[^0]
CHAPTER V

RELATIONS BETWEEN TWO OR MORE POSITIONS IN AN ORBIT AND THE TLME

48 Since a comic section can be chosen to satisfy any five conditions it is evident that when the focus is given, and two points on the curve, an infinite number of orbits will pass through them The orbit becomes determinate when the length of the transverse axis is given, though in general the solution is not unique For let the points be P_{1}, P_{8} and the focal distances r_{1}, r_{2} In the first place we take an elliptic orbit with major axis $2 a$ The second focus hes on the circle with centre P_{1} and raduus $2 \alpha-r_{1}$, at also hes on the circle with radius P_{2} and radius $2 a-r_{2}$ These two carcles intersect in two points provided (o being the length of the chord $P_{1} P_{2}$)
or

$$
\begin{align*}
& 2 a-r_{1}+2 a-r_{2}>c \\
& 4 a>r_{1}+r_{8}+c \tag{1}
\end{align*}
$$

If this inequality be satisfied two orbits fulthl the given conditions, if not, no such orbit exists We notice that the two intersections he on opposite sides of the chord $P_{1} P_{2}$, so that in the one case the two foct he on the same side of the chord, in the other on opposite sides In other words, in one orbit the chord intersects the axis at some point between the foci, while in the other orbit it does not Only when $4 a=r_{2}+r_{2}+c$ the two circles mentioned touch one another in a single point on $P_{1} P_{2}$ and the two orbits comoide In this case the chord passes through the second focus

When the orbit is the concave branch of an hyperbola the second focus hes on the circle with centre P_{1} and radus $r_{1}+2 a$ and also on the carcle with centre P_{2} and radus $r_{2}+2 a$ These circles always intersect in two distinct real points since

$$
r_{1}+2 a+r_{2}+2 a>0
$$

always There are therefore always two hyperbolas which satisfy the conditions The second foci lie on opposite sides of the chord and hence in the one case the chord intersects the axis between the two foci and the difference
between the true anomalies at the points P_{1}, P_{a} is less than 180°, while in the other case the chord intersects the axis beyond the attracting focus and the difference between the anomalies is greater than 180°

Under a repulsive force varying inversely as the square of the distance the convex branch of an hyperbola can be described The position of the second focus is again given by the intersection of two carcles, the one with centio P_{1} and radius $r_{1}-2 a$ and the other with centre P_{2} and radius $r_{2}-2 a$ These carcles intersect in two points provided

$$
r_{1}-2 a+r_{2}-2 a>c
$$

or

$$
\begin{equation*}
4 a<r_{1}+r_{2}-c \tag{2}
\end{equation*}
$$

There are then two hyperbolas and in the one case the chord intersects the axis at a point between the two foci while in the other it cuts the axis at a point beyond the second focus

It is easy to see sumularly that it is always possible to draw four hyperbolas such that one branch passes through P_{1} while the other branch passes through P_{2} These have no interest from the kinematical point of viow sunce it is impossible for a particle to pass from one branch to the other

The case of parabolic solutions, two of which always exist, can be inferred from the foregoing by the principle of continuity But it is otherwise clear that the durectrix touches the cucles with centres P_{1}, P_{2} and radu r_{1}, r_{2} Thesc circles, which intersect in the focus, have two real common tangents cither of which may be the directrix The corresponding axes are the perpendiculars from the focus to these tangents In the case of the nearer tangent it is evident that the part of the axis beyond the focus intersects the chord $P_{1} P_{\mathrm{d}}$ and the dufference of the anomalies 18 greater than 180° In the case of tho opposite tangent, on the other hand, it is the part of the axis towards the durectrix which cuts the chord and the difference of the anomalics is less than 180°

These simple geometrical considerations show that, when the transverse axis is given, two points on an orbit may be joined in general by four elliptic arcs (of two ellipses), by two concave hyperbolic ares, by two convex hyporbolic arcs, and in particular by two parabolic arcs This conclusion is qualitied by the conditions (1) and (2) which of course cannot be satisfied sumultaneously All these different cases must present themselves when we seck the time occupied in passing from one given point to another, as we shall at once see

49 Let E_{1}, E_{2} be the eccentric anomalies at two points P_{1}, P_{2} on an ellipse, and let

Then

$$
2 G=E_{2}+E_{1}, \quad 2 g=E_{2}-E_{1}
$$

$$
r_{1}=a\left(1-e \cos E_{1}\right), \quad r_{2}=a\left(1-e \cos E_{2}\right)
$$

and

$$
\begin{aligned}
r_{1}+r_{2} & =2 a\left\{1-e \cos \frac{1}{2}\left(E_{2}+E_{1}\right) \cos \frac{1}{2}\left(E_{2}-E_{1}\right)\right\} \\
& =2 a(1-e \cos G \cos g)
\end{aligned}
$$

Again, c being the chord $P_{1} P_{3}$,

$$
\begin{aligned}
c^{2} & =a^{2}\left(\cos E_{2}-\cos E_{1}\right)^{2}+a^{2}\left(1-e^{2}\right)\left(\sin E_{2}-\sin E_{1}\right)^{2} \\
& =4 a^{2} \sin ^{2} G \sin ^{2} g+4 a^{2}\left(1-e^{2}\right) \cos ^{2} G \sin ^{2} g
\end{aligned}
$$

Hence of we put

$$
\cos h=e \cos G
$$

then

$$
c^{2}=4 a^{2} \sin ^{2} g\left(1-\cos ^{2} h\right)
$$

or

$$
c=2 a \sin g \sin h
$$

and

$$
r_{1}+r_{2}=2 a(1-\cos g \cos h)
$$

If further we now put

$$
\boldsymbol{\epsilon}=h+g, \quad \delta=h-g
$$

or

$$
\begin{equation*}
\epsilon-\delta=E_{2}-E_{1}, \quad \cos \frac{1}{2}(\epsilon+\delta)=e \cos \frac{1}{2}\left(E_{2}+E_{1}\right) \tag{3}
\end{equation*}
$$

we have

$$
\begin{align*}
& r_{1}+r_{2}+c=2 a\{1-\cos (h+g)\}=4 a \sin ^{2} \frac{1}{2} \epsilon \tag{4}\\
& r_{1}+r_{2}-c=2 a\{1-\cos (h-g)\}=4 a \sin ^{\frac{1}{2}} \delta . . \tag{5}
\end{align*}
$$

But on the other hand, if $E_{2}>E_{1}$ and

$$
\mu=k^{2}(1+m)=n^{2} a^{3}
$$

the time t of describing the arc $P_{1} P_{2}$ is given by

$$
\begin{align*}
n t & =E_{8}-E_{1}-e\left(\sin E_{2}-\sin E_{1}\right) \\
& =\epsilon-\delta-2 \sin \frac{1}{2}(\epsilon-\delta) \cos \frac{1}{2}(\epsilon+\delta) \\
& =(\epsilon-\delta)-(\sin \epsilon-\sin \delta) \tag{6}
\end{align*}
$$

where ϵ and δ are given by (4) and (5) in terms of $r_{1}+r_{2}, c$ and a, and this is Lambert's theorem for elliptic motion

50 It is evident that (4) and (5) do not give ϵ and δ without ambiguity, and this point must be examined. We suppose always that $E_{2}-E_{1}<360^{\circ}$, 1θ that the arc described is less than a single circuit of the orbit, and we assume.that the eccentric anomaly is reckoned from the pericentre in the direction of motion Now it is consistent with (3) to take $\frac{1}{2}(\epsilon+\delta)$ between 0 and π and we also have $\frac{1}{2}(\epsilon-\delta)$ between the same limits Hence $\frac{1}{2} \epsilon$ lies between 0 and π and $\frac{1}{2} \delta$ hes between $-\frac{1}{2} \pi$ and $+\frac{1}{2} \pi \quad$ But the equation of the chord $P_{1} P_{2}$ referred to the centre of the ellhpse shows that it cuts the axis of x in the point

$$
x=a \cos \frac{1}{2}\left(E_{2}-E_{2}\right) / \cos \frac{1}{2}\left(E_{2}+E_{1}\right), \quad y=0
$$

so that, if Q is this point, A the pericentre and $F_{1} F_{2}$ the foci,

$$
\begin{aligned}
& \frac{F_{1} Q}{A Q}=\frac{x-a e}{x-a}=\frac{\cos \frac{1}{2}(\epsilon-\delta)-\cos \frac{1}{2}(\epsilon+\delta)}{\cos \frac{1}{2}\left(E_{2}-E_{1}\right)-\cos \frac{1}{2}\left(E_{2}+E_{1}^{\prime}\right)}=\frac{\sin \frac{1}{2} \epsilon \sin \frac{1}{2} \delta}{\sin \frac{1}{2} E_{1} \sin \frac{1}{2} E_{2}} \\
& \frac{F_{2} Q}{A Q}=\frac{x+a e}{x-a}=\frac{\cos \frac{1}{2}(\epsilon-\delta)+\cos \frac{1}{2}(\epsilon+\delta)}{\cos \frac{1}{2}\left(E_{2}-E_{1}^{\prime}\right)-\cos \frac{1}{2}\left(E_{2}+E_{1}\right)}=\frac{\cos \frac{1}{2} \epsilon \cos \frac{1}{2} \delta}{\sin \frac{1}{2} E_{1} \sin \frac{1}{2} E_{2}^{\prime}}
\end{aligned}
$$

Now $\sin \frac{1}{2} \epsilon$ and $\cos \frac{1}{2} \delta$ are always positive $W e$ may also take E_{1} less than 2π and $\sin \frac{1}{2} E_{1}$ positive, then $\sin \frac{1}{2} E_{2}$ is negative or positive according as the are includes or does not include the pericentre In the first equation the left-hand side is negative when the chord intersects the axis betweenthe pericentre and the first (attracting) focus, in the second when the intersection falls between the pericentre and the second focus Otherwise both members are positive Hence we see that $\sin \frac{1}{2} \delta$ is positive if (1) the arc contains the pericentre and the chord intersects $F_{1} A$, or (2) the arc does not contan the pericentre and the chord does not intersect $F_{1} A$, and that $\cos \frac{1}{2} \epsilon$ is positive if (3) the arc contains the pericentre and the chord intersects $F_{9} A$, or (4) the arc does not contain the pericentre and the chord does not intersect $F_{2} A$ In other words, sin $\frac{1}{2} \delta$ is positive when the segment formed by the arc and the chord does not contann the first focus, and $\cos \frac{1}{2} \epsilon$ is positive when the segment does not contain the second focus

Let ϵ_{1} and δ_{1} be the smallest positive angles which satisfy (4) and (5) The other possible values are $2 \pi-\epsilon_{1}$ and $-\delta_{1}$ If we put

$$
n t_{2}=\epsilon_{1}-\sin \epsilon_{1}, \quad n t_{1}=\delta_{1}-\sin \delta_{1}
$$

there are four cases to be distinguished, namely
(a)

$$
t=t_{2}-t_{1}
$$

when the segment contains neither focus,

$$
\begin{equation*}
t=t_{2}+t_{1} \tag{b}
\end{equation*}
$$

when the segment contains the attracting, but not the other focus
(c)

$$
t=2 \pi / n-t_{2}-t_{1}
$$

when the segment contains the second, but not the attracting focus,

$$
\begin{equation*}
t=2 \pi / n-t_{2}+t \tag{d}
\end{equation*}
$$

when the segment contains both foci It 1s easy to see from $\S 48$ that when the extreme points of the arc alone are given these four cases are always presented by the geometrical conditions and can only be distinguished by further knowledge of the circumstances Usually it is known that the arc is mparatively short and hence that the solution (a) is the right one

51 The corresponding theorem for parabolc motion is easily deduced as a limiting case For when a is very large ϵ and δ are very small Hence (4) and (5) become

$$
a \epsilon^{2}=r_{1}+r_{2}+c, \quad a \delta^{2}=r_{1}+r_{2}-c
$$

At the same time, if we replace n by $\mu^{\frac{1}{2}} / a^{\frac{1}{4}}$, (6) becomes

$$
\begin{aligned}
\mu^{\frac{1}{2}} t & =\frac{1}{8} a^{\frac{7}{2}}\left(\epsilon^{3}-\delta^{8}\right) \\
& =\frac{1}{6}\left(r_{1}+r_{2}+c\right)^{\frac{3}{2}} \mp \frac{1}{8}\left(r_{1}+r_{2}-c\right)^{\frac{3}{2}}
\end{aligned}
$$

As this apphes to the motion of a comet, and the mass of a comet may be considered negligıble, we may therefore write

$$
\begin{equation*}
6 k t=\left(r_{1}+r_{2}+c\right)^{\frac{3}{2}} \mp\left(r_{1}+r_{2}-c\right)^{\frac{4}{2}} \tag{7}
\end{equation*}
$$

which is the required equation It was first found by Euler As regards the ambiguous sign, the second focus is at an infinite distance and does not come into consideration But δ is negative or positive according as the segment formed by the arc described and the chord contains or does not contain the focus of the parabola Hence the lower (+) sign is to be used when the angle described by the radus vector exceeds 180°, and the upper $(-)$ sign is to be used when this angle is less than 180°, as it almost always is in actual problems

52 The solution of (7) as an equation in c is facilitated by a transformation due to Encke We put
and

$$
c=\left(r_{1}+r_{2}\right) \sin \gamma, \quad 0<\gamma<90^{\circ}
$$

$$
\eta=2 k t /\left(r_{1}+r_{\mathrm{k}}\right)^{\frac{\pi}{4}}
$$

Then (7) becomes

$$
\begin{align*}
3 \eta & =(1+\sin \gamma)^{\frac{1}{2}} \mp(1-\sin \gamma)^{\frac{1}{4}} \\
& =\left(\cos \frac{1}{2} \gamma+\sin \frac{1}{2} \gamma\right)^{2} \mp\left(\cos \frac{1}{2} \gamma-\sin \frac{1}{2} \gamma\right)^{8} \tag{8}
\end{align*}
$$

First we take the upper sign, in which case

$$
\begin{aligned}
3 \eta & =6 \sin \frac{1}{2} \gamma \cos ^{2} \frac{1}{2} \gamma+2 \sin ^{8} \frac{1}{2} \gamma \\
& =6 \sin \frac{1}{2} \gamma-4 \sin ^{3} \frac{1}{2} \gamma
\end{aligned}
$$

If we put

$$
\sin \frac{1}{2} \gamma=\sqrt{2} \sin \frac{1}{3} \Theta, \quad 0<\frac{1}{3} \Theta<30^{\circ}
$$

then

$$
\begin{equation*}
3 \eta=2 \sqrt{2} \sin \Theta, 0<\Theta<90^{\circ} \tag{9}
\end{equation*}
$$

and

$$
\sin \gamma=2 \sqrt{2} \sin \frac{1}{3} \Theta \sqrt{ }\left(\cos \frac{2}{8} \Theta\right)
$$

Hence

$$
\begin{equation*}
c=\left(r_{1}+r_{\mathrm{z}}\right) \eta \mu \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu=\sin \gamma / \eta=3 \sin \frac{1}{3} \Theta \sqrt{ }\left(\cos \frac{2}{3} \Theta\right) / \sin \Theta \tag{11}
\end{equation*}
$$

Since μ and η are both functions of Θ, μ can be tabulated with the $\Omega 1$ When such a table is available (cf Bauschinger's Tafeln, No xXI known, c is immedatately given by (10)

In the second place we take the lower sign in (8), so that

$$
\begin{aligned}
3 \eta & =2 \cos ^{3} \frac{1}{2} \gamma+6 \sin ^{2} \frac{1}{2} \gamma \cos \frac{1}{2} \gamma \\
& =6 \cos \frac{1}{2} \gamma-4 \cos ^{3} \frac{1}{2} \gamma
\end{aligned}
$$

If now we put
then

$$
\cos \frac{1}{2} \gamma=\sqrt{2} \sin \frac{1}{3} \Theta, \quad 30^{\circ}<\frac{1}{3} \Theta<45^{\circ}
$$

$$
3 \eta=2 \sqrt{2} \sin \Theta, 90^{\circ}<\Theta<135^{\circ}
$$

and

$$
\sin \gamma=2 \sqrt{2} \sin \frac{1}{3} \Theta \sqrt{ }\left(\cos \frac{2}{3} \Theta\right)
$$

as before Hence (10) and (11) apply equally to this case, with the that Θ as given by (12) is an angle in the second quadrant inste first Except for this the solution is formally the same in both dufferent tables would be necessary The case of angular motion 180°, however, seldom demands consideration in practice

53 For motion along the concave branch of an hyperbola under to the focus we have (§ 30)

$$
r_{1}=a\left(e \cosh E_{1}-1\right), \quad r_{2}=a\left(e \cosh E_{2}-1\right)
$$

and we may suppose $E_{2}>E_{1} \quad$ Hence
where

$$
\begin{aligned}
r_{1}+r_{2} & =2 a\left\{e \cosh \frac{1}{2}\left(E_{2}-E_{1}\right) \cosh \frac{1}{2}\left(E_{2}+E_{1}\right)-1\right\} \\
& =2 a\left\{\cosh \frac{1}{2}(\epsilon-\delta) \cosh \frac{1}{2}(\epsilon+\delta)-1\right\}
\end{aligned}
$$

$$
\epsilon-\delta=E_{2}-E_{1}, \quad \cosh \frac{1}{2}(\epsilon+\delta)=e \cosh \frac{1}{2}\left(E_{2}+E_{1}\right) \quad \ldots
$$

Again, the chord c is given by

$$
\begin{aligned}
c^{2}= & a^{2}\left(\cosh E_{2}-\cosh E_{1}\right)^{2}+a^{2}\left(e^{2}-1\right)\left(\sinh E_{2}-\sinh E_{1}\right)^{2} \\
= & 4 a^{2} \sinh ^{2} \frac{1}{2}\left(E_{2}-E_{1}\right) \sinh ^{2} \frac{1}{2}\left(E_{2}+E_{1}\right) \\
& \quad+4 a^{2}\left(e^{2}-1\right) \sinh ^{2} \frac{1}{2}\left(E_{2}-E_{1}\right) \cosh ^{2} \frac{1}{2}\left(E_{2}+\right. \\
= & 4 a^{2} \sinh ^{2} \frac{1}{2}(\epsilon-\delta)\left\{-1+\cosh ^{2} \frac{1}{2}(\epsilon+\delta)\right\} \\
\text { or } & \\
c= & 2 a \sinh \frac{1}{2}(\epsilon-\delta) \sinh \frac{1}{2}(\epsilon+\delta)
\end{aligned}
$$

Hence

$$
\begin{aligned}
& r_{1}+r_{2}+c=2 a(\cosh \epsilon-1)=4 a \sinh ^{2} \frac{1}{2} \epsilon \\
& r_{1}+r_{2}-c=2 a(\cosh \delta-1)=4 a \sinh ^{2} \frac{1}{2} \delta
\end{aligned}
$$

But on the other hand if

$$
\begin{align*}
\mu & =h^{2}(1+m)=n^{2} a^{3} \\
n t & =e \sinh E_{2}-E_{2}-\left(e \sinh E_{1}-E_{1}\right) \\
& =2 e \sinh \frac{1}{2}\left(E_{2}-E_{1}\right) \cosh \frac{1}{2}\left(E_{2}+E_{1}\right)-\left(E_{2}-E_{1}\right) \\
& =2 \sinh \frac{1}{2}(\epsilon-\delta) \cosh \frac{1}{2}(\epsilon+\delta)-(\epsilon-\delta) \\
& =\sinh \epsilon-\sinh \delta-(\epsilon-\delta) \tag{16}
\end{align*}
$$

where ϵ and δ are given by (14) and (15) This is the form which Lambert's theorem takes in this case

We may take $\frac{1}{2}(\epsilon+\delta)$ as defined by (13) positive, and $\frac{1}{2}(\epsilon-\delta)$ is positive since $E_{2}>E_{1}$ Hence ϵ is positive Now the equation of the chord referred to the centre of the hyperbola gives for the intercept on the axis

$$
x=-a \cosh \frac{1}{2}\left(E_{2}-E_{1}\right) / \cosh \frac{1}{2}\left(E_{2}+E_{1}\right), \quad y=0
$$

or, $(-a e, 0)$ being the attracting focus within this branch,

$$
\begin{align*}
x+a e & =-a\left\{\cosh \frac{1}{2}(\epsilon-\delta)-\cosh \frac{1}{2}(\epsilon+\delta)\right\} / \cosh \frac{1}{2}\left(E_{2}+E_{1}\right) \\
& =+2 a \sinh \frac{1}{2} \epsilon \sinh \frac{1}{2} \delta / \cosh \frac{1}{2}\left(E_{2}+E_{1}\right) \tag{11}
\end{align*}
$$

The left-hand side is negative or positive according as the intersection falls beyond the focus or on the side of the focus towards the centre Hence sunh $\frac{1}{2} \delta$ is positive when the angular motion about the focus is less than 180°, and negative when it exceeds 180° Thus the sign of δ is determined. If we put

$$
m_{1}^{2}=\left(r_{1}+r_{2}+c\right) / 4 a, \quad m_{2}^{2}=\left(r_{1}+r_{8}-c\right) / 4 a
$$

then

$$
\sinh \frac{1}{2} \epsilon=+m_{1}, \quad \sinh \frac{1}{2} \delta= \pm m_{2}
$$

or

$$
\begin{array}{ll}
\exp \frac{1}{2} \epsilon=+m_{1}+\sqrt{m_{2}^{2}+1}, & \exp \frac{1}{2} \delta= \pm m_{2}+\sqrt{m_{2}^{2}+1} \\
\sinh \epsilon=2 m_{1} \sqrt{m_{1}{ }^{2}+1}, & \sinh \delta= \pm 2 m_{2} \sqrt{m_{2}^{2}+1}
\end{array}
$$

Hence (16) can be written (Log denoting natural logarithm)

$$
\begin{aligned}
n t & =2 m_{1} \sqrt{m_{1}^{2}+1} \mp 2 m_{2} \sqrt{m_{2}{ }^{2}}+1 \\
& -2 \log \left(m_{1}+\sqrt{m_{1}^{2}+1}\right) \pm 2 \log \left(m_{2}+\sqrt{m_{2}^{2}+1}\right)
\end{aligned}
$$

where the upper or the lower sign is to be taken according as the angular motion about the attracting focus is less or greater than 180°

54 The corresponding theorem for motion, along the convex branch of an hyperbola under a repulsive force from the focus can be proved similarly. In this case (§ 32)

Hence

$$
r_{1}=a\left(e \cosh E_{1}+1\right), \quad r_{2}=a\left(e \cosh E_{2}+1\right)
$$

$$
r_{1}+r_{2}=2 a\left\{\cosh \frac{1}{2}(\epsilon+\delta) \cosh \frac{1}{2}(\epsilon-\delta)+1\right\}
$$

where

$$
\begin{equation*}
\epsilon-\delta=E_{8}-E_{1}, \quad \cosh \frac{1}{2}(\epsilon+\delta)=e \cosh \frac{1}{2}\left(E_{2}+E_{1}\right) \tag{18}
\end{equation*}
$$

and as in § 53

$$
c=2 a \sinh \frac{1}{2}(\epsilon-\delta) \sinh \frac{1}{2}(\epsilon+\delta)
$$

We have therefore

$$
\begin{align*}
& r_{1}+r_{2}+c=2 a(\cosh \epsilon+1)=4 a \cosh ^{2} \frac{1}{2} \epsilon \tag{19}\\
& r_{1}+r_{2}-c=2 a(\cosh \delta+1)=4 a \cosh ^{\mathrm{g}} \frac{1}{2} \delta \tag{20}
\end{align*}
$$

Then by § $32(22)$, if $\mu^{\prime}=n^{2} a^{3}$,

$$
\begin{align*}
n t & =e \sinh E_{2}+E_{2}-\left(e \sinh E_{1}+E_{1}\right) \\
& =2 e \sinh \frac{1}{2}\left(E_{2}-E_{1}\right) \cosh \frac{1}{2}\left(E_{\mathrm{a}}+E_{1}\right)+E_{\mathrm{q}}-E_{1} \\
& =2 \sinh \frac{1}{2}(\epsilon-\delta) \cosh \frac{1}{2}(\epsilon+\delta)+\epsilon-\delta \\
& =\sinh \epsilon-\sinh \delta+\epsilon-\delta \tag{21}
\end{align*}
$$

where ϵ and δ are given by (19) and (20) This is analogous to the other forms of Lambert's equation

Putting as before

$$
m_{2}^{2}=\left(r_{1}+r_{2}+c\right) / 4 a, \quad m_{2}^{2}=\left(r_{1}+r_{2}-c\right) / 4 a
$$

we have of necessity

$$
\cosh \frac{1}{2} e=+m_{1}, \quad \cosh \frac{1}{2} \delta=+m_{\Omega}
$$

but there is again an ambiguity in the values of ϵ and δ Now we may take $E_{\mathrm{g}}>E_{1}$ and $\frac{1}{2}(\epsilon-\delta)$ positive, and we may define $\frac{1}{2}(\epsilon+\delta)$ as the positive value which satisfies (18) Hence ϵ is positive and $\exp \left(\frac{1}{2} \epsilon\right)>1$ To the equation (17) now corresponds

$$
x-a e=-2 a \sinh \frac{1}{2} \epsilon \sinh \frac{1}{2} \delta / \cosh \frac{1}{2}\left(E_{\mathrm{a}}+E_{1}\right)
$$

showing that δ is positive if the chord intersects the axis at a point on the side of the focus towards the centre It must be noticed that this focus 18, as before, the focus within the branch and not the centre of force Hence $\exp \frac{1}{2} \delta>$ or <1 according as the angular motion about this focus < or $>180^{\circ}$
It follows that

$$
\begin{array}{cl}
\exp \left(\frac{1}{2} \epsilon\right)=+m_{1}+\sqrt{m_{1}^{2}-1}, & \exp \left(\frac{1}{2} \delta\right)=+m_{2} \pm \sqrt{m_{2}^{2}}-1 \\
\sinh \epsilon=2 m_{1} \sqrt{m_{1}^{2}-1}, & \operatorname{sunh} \delta= \pm 2 m_{2} \sqrt{m_{2}^{2}-1}
\end{array}
$$

and hence that

$$
\begin{aligned}
n t= & 2 m_{1} \sqrt{m_{1}^{2}-1} \mp 2 m_{2} \sqrt{m_{2}^{2}-1} \\
& +2 \log \left(m_{1}+\sqrt{m_{1}^{2}-1} \mp 2 \log \left(m_{2}+\sqrt{m_{2}^{2}}-1\right)\right.
\end{aligned}
$$

where Log denotes natural loganithm and the upper or the lower sign is to be taken according as the motion about the internal focus (not the centre of force) is less or greater than 180°

In all cases, whether the motion is along a parabola or either branch of an hyperbola, when two tocal distances are given in position and nothing
more is known about the circumstances, the discussion of $\S 48$ shows that the ambiguities in the expressions for the time of describing the are correspond to the distinct solutions of the geometrical problem Hence they cannot be decided without further information In practice, however, it rarely happens that the angular motion about a focus exceeds 180° and this limitation, by which the upper sign can be taken, will be generally understood

55 A quantity of great importance in the determination of orbits is the ratio, denoted by y, of the sector to the triangle The case of elliptic motion is taken first Since $n=h / a b$, where h is the constant of areas, twice the area of the sector 18 , by (6),

$$
h t=a b\{\epsilon-\delta-(\sin \epsilon-\sin \delta)\}
$$

But if $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ are the extremities of the arc, twice the area of the triangle is

$$
\begin{aligned}
2 \Delta & =\left(x_{1} y_{2}-x_{2} y_{1}\right) \\
& =a b\left\{\sin E_{2}\left(\cos E_{1}-e\right)-\sin E_{1}\left(\cos E_{2}-e\right)\right\} \\
& =a b\left\{\sin \left(E_{2}-E_{1}\right)-2 e \cos \frac{1}{2}\left(E_{2}+E_{1}\right) \sin \frac{1}{2}\left(E_{2}-E_{1}\right)\right\} \\
& =a b\{\sin (\epsilon-\delta)-(\sin \epsilon-\sin \delta)\}
\end{aligned}
$$

by (3) Hence

$$
\begin{equation*}
y=\frac{\epsilon-\delta-(\sin \epsilon-\sin \delta)}{\sin (\epsilon-\delta)-(\sin \epsilon-\sin \delta)} \tag{22}
\end{equation*}
$$

This expression contans a implicitly and this quantity is to be elimmated Let $2 f$ be the angle between r_{1} and r_{2} and let g, h have the meaning assigned to them in §49 Then

$$
\begin{aligned}
16 a^{2} \sin ^{2} \frac{1}{2} \epsilon \sin ^{2} \frac{1}{2} \delta & =\left(r_{1}+r_{2}+c\right)\left(r_{1}+r_{2}-c\right) \\
& =\left(r_{1}+r_{2}\right)^{2}-r_{1}^{2}-r_{2}^{2}+2 r_{1} r_{2} \cos 2 f \\
& =4 r_{1} r_{2} \cos ^{2} f
\end{aligned}
$$

whence

$$
2 a(\cos g-\cos h)=2 \cos f \sqrt{r_{1} r_{2}}
$$

Also by (4) and (5)

$$
\begin{aligned}
r_{1}+r_{2} & =2 a\left(\sin ^{2} \frac{1}{2} \epsilon+\sin ^{2} \frac{1}{2} \delta\right) \\
& =2 a(1-\cos g \cos h)
\end{aligned}
$$

and therefore

$$
r_{1}+r_{2}-2 \cos f \cos g \sqrt{r_{1} r_{2}}=2 a \sin 2 g
$$

Again, by (22),

$$
\begin{aligned}
y & =\frac{n t}{\sin 2 g-2 \sin g \cos h} \\
& =\frac{a n t}{\sin g 2 \cos f \sqrt{r_{1} r_{2}}}
\end{aligned}
$$

Hence

Hince $n^{2} a^{\prime \prime} \quad \mu \quad$（In the wher houl

$$
\begin{aligned}
& \text { 4. } 4111: 1 /
\end{aligned}
$$

$$
\begin{aligned}
& \text { "(4) "111: } \\
& \text { Naif! 2 (いいいい! }
\end{aligned}
$$

and therefort

In the notntion of（inuse we whte．
and then（23）and（24）berome

But by 851,52
Hence

$$
a^{2} 4^{4} \delta^{n}-\left(r_{1}+r_{2}\right)^{4} \quad \omega \quad\left(r_{1}+r_{1}\right)^{1} \cdot+u^{4} \geqslant
$$

$$
\begin{aligned}
y=\begin{array}{l}
2\left(r_{1}+r_{n}\right)+\left(r_{1}+r_{1}\right) \cos \gamma \\
3\left(r_{1}+r_{B}\right) \cos \gamma
\end{array} \\
=-1(1+2 \sec \gamma)
\end{aligned}
$$

$$
\theta-\left(r_{1}+r_{1}\right) \sin \gamma_{.}
$$

Thus y ，like η and μ ，is a function of γ（om A ）atid call fir whot like n be tabulated with the argument η ，when＂

$$
\eta \approx 2 k t /\left(r_{1}+r_{*}\right)=2 \operatorname{sun} j \gamma(2+\operatorname{lin} \gamma)
$$

（Of．Bauschinger＇s Tafoln，No xxua．）

57 In the case of the branch of an hyperbola concave to the focus of attraction, twice the area of the sector is by (16)

$$
h t=a b\{\sinh \epsilon-\sinh \delta-(\epsilon-\delta)\}
$$

since $h=\sqrt{ }(\mu p)=n a b \quad$ And, if $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ are the extremities of the arc, twice the area of the focal triangle is

$$
\begin{aligned}
2 \Delta & =x_{2} y_{1}-x_{1} y_{2} \\
& =a b\left\{\sinh E_{1}\left(\cosh E_{2}-e\right)-\sinh E_{2}\left(\cosh E_{1}-e\right)\right\} \\
& =a b\left\{\sinh \left(E_{1}-E_{2}\right)-e\left(\sinh E_{1}-\sinh E_{2}\right)\right\} \\
& =a b\{\sinh \epsilon-\sinh \delta-\sinh (\epsilon-\delta)\}
\end{aligned}
$$

by (13) Hence

$$
\begin{equation*}
y=\frac{\sinh \epsilon-\sinh \delta-(\epsilon-\delta)}{\sinh \epsilon-\sinh \delta-\sinh (\epsilon-\delta)} \tag{27}
\end{equation*}
$$

Now we have by (14) and (15)

$$
\begin{aligned}
16 a^{2} \sinh ^{2} \frac{1}{2} \epsilon \sinh ^{2} \frac{1}{2} \delta & =\left(r_{1}+r_{2}\right)^{2}-c^{2} \\
& =4 r_{1} r_{2} \cos ^{2} f
\end{aligned}
$$

or

$$
2 \cos f \sqrt{r_{2} r_{2}}=2 a(\cosh h-\cosh g)
$$

where $2 h=\epsilon+\delta, 2 g=\epsilon-\delta \quad$ Also by addition of the same equations (14) and (15)
and therefore

$$
r_{1}+r_{2}=2 \alpha(\cosh g \cosh h-1)
$$

But by (27)

$$
r_{1}+r_{2}-2 \cos f \cosh g \sqrt{r_{1} r_{2}}=2 a \sinh ^{2} g
$$

$$
\begin{aligned}
y & =n t /(2 \sinh g \cosh h-\sinh 2 g) \\
& =a n t / \sinh g\left(2 \cos f \sqrt{r_{1} r_{2}}\right)
\end{aligned}
$$

and therefore

$$
\begin{equation*}
y^{Q}\left(r_{1}+\imath_{2}-2 \cos f \cosh g \sqrt{r_{1} r_{2}}\right)=2 \mu t^{2} /\left(2 \cos f \sqrt{r_{1} r_{2}}\right)^{2} \tag{28}
\end{equation*}
$$

sunce $n^{3} a^{3}=\mu \quad$ On the other hand

$$
\begin{aligned}
y-1 & =\frac{\sinh (\epsilon-\delta)-(\epsilon-\delta)}{\sinh \epsilon-\sinh \delta-\sinh (\epsilon-\delta)} \\
& =\frac{\sinh 2 g-2 g}{2 \sinh g(\cosh h-\cosh g)} \\
& =\frac{a}{2 \cos f \sqrt{r_{1} r_{2}}} \frac{\sinh 2 g-2 g}{\sinh g}
\end{aligned}
$$

Hence

$$
\begin{equation*}
y^{2}(y-1)=\frac{\mu t^{2}}{\left(2 \cos f \sqrt{r_{1} \gamma_{2}}\right)^{3}} \frac{\sinh 2 g-2 g}{(\sinh g)^{3}} \tag{29}
\end{equation*}
$$

As in the case of the ellipse we write

$$
1+2 l=\frac{r_{1}+r_{2}}{2 \cos f \sqrt{r_{1} r_{3}}}, \quad m^{2}=\frac{\mu t^{2}}{\left(2 \cos f \sqrt{\left.r_{1} r_{2}\right)^{3}}\right.}
$$

and thus (28) and (29) become

$$
\begin{align*}
y^{2} & =m^{2} /\left(l-\sinh ^{2} \frac{1}{2} g\right) \tag{30}\\
y^{3}-y^{2} & =m^{3}(\sinh 2 g-2 g) / \sinh ^{3} g \tag{31}
\end{align*}
$$

This pair of equations in y and g must be solved by some process of approximation so that the value of y may be found

58 The case of the branch which is convex to a centre of repulsive force at the focus $(-a e, 0)$ needs slight modifications Twice the area of the sector is by (21)

$$
h t=a b(\sinh \epsilon-\sinh \delta+\epsilon-\delta)
$$

while twice the area of the triangle is

$$
\begin{aligned}
2 \Delta & =x_{1} y_{2}-x_{2} y_{1} \\
& =a b\left\{\sinh E_{2}\left(\cosh E_{1}+e\right)-\sinh E_{1}\left(\cosh E_{2}+e\right)\right\} \\
& =a b\left\{\sinh \left(E_{2}-E_{1}\right)+2 e \sinh \frac{1}{2}\left(E_{2}-E_{1}\right) \cosh \frac{1}{2}\left(E_{2}+E_{1}\right)\right\} \\
& =a b\{\sinh (\epsilon-\delta)+\sinh \epsilon-\sinh \delta\}
\end{aligned}
$$

by (18) Hence the ratio of sector to triangle is

$$
\begin{equation*}
y=\frac{\sinh \epsilon-\sinh \delta+\epsilon-\delta}{\sinh (\epsilon-\delta)+\sinh \epsilon-\sinh \delta} \tag{32}
\end{equation*}
$$

In this case we have by (19) and (20)

$$
16 a^{2} \cosh ^{2} \frac{1}{2} \epsilon \cosh ^{2} \frac{1}{2} \delta=\left(r_{1}+r_{2}\right)^{2}-c^{2}=4 r_{1} r_{2} \cos ^{2} f
$$

or

$$
2 \cos f \sqrt{r_{1} r_{2}}=2 a(\cosh h+\cosh g)
$$

and

$$
r_{1}+r_{2}=2 a(1+\cosh h \cosh q)
$$

where $2 h=\epsilon+\delta, 2 g=\epsilon-\delta \quad$ Hence

$$
2 \cos f \cosh g \sqrt{r_{1} r_{2}}-\left(r_{1}+r_{2}\right)=2 a \operatorname{sunh}^{2} g
$$

But (32) may be written

$$
\begin{aligned}
y & =n t /(\sinh 2 g+2 \sinh g \cosh h) \\
& =a n t / \sinh g\left(2 \cos f \sqrt{r_{1} r_{2}}\right)
\end{aligned}
$$

and therefore

$$
\begin{equation*}
y^{2}\left(2 \cos f \cosh g \sqrt{r_{1} r_{2}}-r_{1}-r_{2}\right)=2 \mu^{\prime} t^{\prime} /\left(2 \cos f \sqrt{r_{1} r_{2}}\right)^{2} \tag{33}
\end{equation*}
$$

sance $n^{2} a^{3}=\mu^{\prime} \quad$ Also by (32)

$$
\begin{aligned}
1-y & =\frac{\sinh (\epsilon-\delta)-(\epsilon-\delta)}{\sinh (\epsilon-\delta)+\sinh \epsilon-\sinh \delta} \\
& =\frac{\sinh 2 g-2 g}{2 \sinh g(\cosh g+\cosh h)} \\
& =\frac{a}{2 \cos f \sqrt{r_{1} r_{2}}} \frac{\sinh 2 g-2 g}{\sinh g}
\end{aligned}
$$

Hence

$$
\begin{equation*}
y^{2}(1-y)=\frac{\mu^{\prime} t^{2}}{\left(2 \cos f \sqrt{r_{1} r_{2}}\right)^{3}} \frac{\sinh 2 g-2 g}{\sinh ^{3} g} \tag{34}
\end{equation*}
$$

If as before we write

$$
1+2 l=\frac{r_{1}+r_{8}}{2 \cos f \sqrt{r_{1} r_{2}}}, \quad m^{2}=\frac{\mu^{\prime} t^{2}}{\left(2 \cos f \sqrt{r_{1} r_{2}}\right)^{3}}
$$

then (33) and (34) become

$$
\begin{align*}
y^{2} & =m^{2} /\left(\cosh ^{2} \frac{1}{2} g-l\right) \tag{35}\\
y^{2}-y^{3} & =m^{2}(\sinh 2 g-2 g) / \sinh ^{3} g \tag{36}
\end{align*}
$$

and these again, when solved by a method of approximation, give the value of y in this case when r_{1}, r_{2} and f are known

59 Some useful approximations can be obtained from a proposition which is easily proved Let X be any regular function of t If we neglect powers of t beyond the fourth order we may write

$$
\begin{aligned}
& X=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4} \\
& X=\quad 2 a_{2}+6 a_{3} t+12 a_{4} t^{2}
\end{aligned}
$$

Let X_{1}, X_{2}, X_{3} be the values of X when $t=-\tau_{3}, 0$ and τ_{1} Then we have three parrs of equations, obtained by substituting these values in the above From these six equations the coefficients a_{0}, \quad, a_{4} can be elminated and the result expressed in determinant form is clearly

$$
\left|\begin{array}{cccccc}
X_{1} & 1 & -\tau_{3} & \tau_{3}^{2} & -\tau_{3}^{3} & \tau_{3}^{4} \\
X_{2} & 1 & 0 & 0 & 0 & 0 \\
X_{3} & 1 & \tau_{1} & \tau_{1}^{2} & \tau_{1}^{3} & \tau_{1}^{4} \\
\ddot{X}_{1} & 0 & 0 & 2 & -6 \tau_{3} & 12 \tau_{3}^{2} \\
X_{2} & 0 & 0 & 2 & 0 & 0 \\
\ddot{X}_{3} & 0 & 0 & 2 & 6 \tau_{1} & 12 \tau_{1}^{2}
\end{array}\right|=0
$$

The determinant can be calculated without difficulty, and the result after dividing by $12 \tau_{1} \tau_{3}\left(\tau_{1}+\tau_{3}\right)$ is

$$
\begin{aligned}
0= & 12 X_{1} \tau_{1}+X_{1} \tau_{1}\left(\tau_{1}^{2}-\tau_{1} \tau_{3}-\tau_{3}^{2}\right) \\
& -12 X_{2}\left(\tau_{1}+\tau_{3}\right)-X_{9}\left(\tau_{1}+\tau_{3}\right)\left(\tau_{1}^{2}+3 \tau_{1} \tau_{3}+\tau_{3}^{2}\right) \\
& +12 X_{3} \tau_{3}+X_{3} \tau_{3}\left(\tau_{3}^{2}-\tau_{1} \tau_{3}-\tau_{1}^{2}\right)
\end{aligned}
$$

If we put $\tau_{2}=\tau_{1}+\tau_{3}$ and write

$$
\begin{equation*}
12 A_{2}=\tau_{3} \tau_{3}-\tau_{1}^{2}, \quad 12 A_{2}=\tau_{1} \tau_{3}+\tau_{2}^{2}, \quad 12 A_{3}=\tau_{1} \tau_{2}-\tau_{3}^{2} \tag{37}
\end{equation*}
$$

this becomes

$$
\begin{equation*}
0=X_{1} \tau_{1}\left(1-\frac{A_{1} X_{1}}{X_{1}}\right)-X_{2} \tau_{2}\left(1+\frac{A_{2} X_{2}}{X_{2}}\right)+X_{3} \tau_{3}\left(1-\frac{A_{3} X_{3}}{X_{3}}\right) \tag{38}
\end{equation*}
$$

60 Now in the case of the motion of two bodies in a plane we have

$$
x=-\mu x / \gamma^{3}, \quad y=-\mu y / r^{3}
$$

Hence substituting x and y successively for X in the formula just obtanned we have, to the fouith order in the intervals of time,

$$
\begin{aligned}
& 0=x_{1} \tau_{1}\left(1+\mu A_{1} / r_{1}^{3}\right)-x_{2} \tau_{2}\left(1-\mu A_{2} / r_{2}{ }^{3}\right)+x_{3} \tau_{3}\left(1+\mu A_{3} / r_{3}^{3}\right) \\
& 0=y_{1} \tau_{1}\left(1+\mu A_{1} / r_{1}^{3}\right)-y_{2} \tau_{2}\left(1-\mu A_{2} / r_{2}^{3}\right)+y_{3} \tau_{3}\left(1+\mu A_{3} / r_{3}{ }_{3}{ }^{3}\right)
\end{aligned}
$$

The solution of these equations in the ordindry form gives

$$
\frac{\tau_{1}\left(1+\mu A_{1} / r_{1}^{3}\right)}{x_{2} y_{3}-x_{3} y_{2}}=\frac{\tau_{0}\left(1-\mu A_{0} / r_{3}^{3}\right)}{-x_{3} y_{1}+x_{1} y_{3}}=\frac{\tau_{3}\left(1+\mu A_{3} / r_{3}^{3}\right)}{x_{1} y_{2}-x_{2} y_{1}}
$$

But the denominators are respectively double the areas of the triangles whose sides are pairs of r_{1}, r_{2}, r_{3} Hence we have the formulae of G1bbs,

$$
\begin{equation*}
\frac{\left[r_{2} r_{3}\right]}{\tau_{1}\left(1+\mu A_{1} / r_{1}^{3}\right)}=\frac{\left[r_{1} r_{3}\right]}{\tau_{2}\left(1-\mu A_{2} / r_{2}^{3}\right)}=\frac{\left[r_{1} r_{2}\right]}{\tau_{3}\left(1+\mu A_{3} / r_{3}^{3}\right)} \tag{39}
\end{equation*}
$$

where, according to the customary notation, $\left[\gamma_{2} 7_{3}\right]$ denotes double the arca of the triangle whose sides are r_{0}, r_{3}, and A_{1}, A_{2}, A_{3} have the values found above (37) This expresses the ratio of the triangles correctly to the thud order of the time intervals

A second interesting example is provided if we take $X=r^{2}$ In this case we have ($\$ 25$ and 26)

$$
\frac{d^{2}}{d t^{2}}\left(r^{2}\right)=2\left(\frac{\mu}{r}-\frac{\mu}{a}\right)
$$

Hence the formula (38) gives

$$
\begin{align*}
r_{1}{ }^{\circ} \tau_{1}(1 & \left.-2 \mu A_{1} / r_{1}^{3}\right)-\tau_{2}{ }^{2} \tau_{2}\left(1+2 \mu A_{2} / r_{2}{ }^{3}\right)+r_{3}{ }^{2} \tau_{3}\left(1-2 \mu A_{3} / r_{3}{ }^{3}\right) \\
= & -\left(A_{1} \tau_{1}+A_{2} \tau_{2}+A_{3} \tau_{3}\right) 2 \mu / a \\
= & -\left\{\tau_{1}\left(\tau_{2} \tau_{3}-\tau_{1}{ }^{3}\right)+\tau_{2}\left(\tau_{1} \tau_{3}+\tau_{2}{ }^{2}\right)+\tau_{3}\left(\tau_{1} \tau_{2}-\tau_{3}{ }^{2}\right)\right\} \mu / 6 a \\
& =-\left(3 \tau_{1} \tau_{2} \tau_{3}-\tau_{1}{ }^{3}+\tau_{2}{ }^{3}-\tau_{3}^{3}\right) \mu / 6 a \\
& =-\left\{3 \tau_{1} \tau_{2} \tau_{3}+3 \tau_{1} \tau_{3}\left(\tau_{1}+\tau_{3}\right)\right\} \mu / 6 a \\
& =-\mu \tau_{1} \tau_{2} \tau_{3} / a \tag{40}
\end{align*}
$$

The form (40) applies to an ellipse and gives the means of calculating an approximate value of a when r_{1}, r_{a}, r_{3} are known it must be adapted to the hyperbola by changing the sign of a For the parabola the right-hand side vanishes and we have the relation between the three radu vectores

$$
r_{1}^{2} \tau_{1}-1_{2}{ }^{2} \tau_{3}+r_{3}{ }^{2} \tau_{3}=2 \mu\left(A_{1} \tau_{1} / 1_{1}+A_{2} \tau_{2} / r_{2}+A_{3} \tau_{3} / r_{3}\right)
$$

which holds provided we may neglect terms of the fifth order in the time

61 Returning to the formulae of Glbbs (39), in which the denominators are correct to the fourth order, we have

$$
\begin{aligned}
& \left.\frac{\tau_{1}\left[r_{1} \tau_{2}\right]}{\tau_{3}\left[r_{2}{ }^{3}\right]}\right]=\frac{1+\mu A_{3} / r_{3}^{3}}{1+\mu A_{1} / r_{1}^{3}}=1+\frac{\mu A_{3}}{r_{3}{ }^{3}}-\frac{\mu A_{1}}{r_{1}^{3}} \\
& \frac{\tau_{2}\left[r_{1} r_{2}\right]}{\tau_{3}\left[r_{1} r_{3}\right]}=\frac{1+\mu A_{3} / r_{3}^{3}}{1-\mu A_{2} / r_{2}{ }^{3}}=1+\frac{\mu A_{3}}{r_{3}{ }^{3}}+\frac{\mu A_{2}}{r_{2}{ }^{3}} \\
& \frac{\tau_{2}\left[\tau_{2} r_{3}\right]}{\tau_{1}\left[r_{1} r_{3}\right]}=\frac{1+\mu A_{1} / r_{1}^{3}}{1-\mu A_{2} / r_{2}{ }^{3}}=1+\frac{\mu A_{1}}{r_{1}{ }^{3}}+\frac{\mu A_{2}}{r_{2}^{3}}
\end{aligned}
$$

to the third order But to the first order

$$
\begin{aligned}
& \frac{1}{r_{3}^{3}}=\frac{1}{r_{2}^{3}}-\frac{3 r_{2}}{r_{2}{ }^{4}} \tau_{1} \\
& \frac{1}{r_{1}^{3}}=\frac{1}{r_{2}^{9}}+\frac{3 r_{2}}{r_{2}^{4}} \tau_{3}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \frac{\tau_{1}\left[r_{1} r_{2}\right]}{\tau_{3}\left[r_{2} r_{3}\right]}=1+\mu\left(A_{3}-A_{1}\right) \\
& r_{2}^{3}
\end{aligned}-\frac{3 \mu r_{2}}{r_{2}^{4}}\left(A_{3} \tau_{1}+A_{1} \tau_{3}\right) .
$$

For the coefficients we easily find from (37)

$$
\begin{aligned}
& 12\left(A_{2}+A_{3}\right)=\tau_{1} \tau_{3}+\tau_{2}^{2}+\tau_{1} \tau_{2}-\tau_{3}^{2}=2\left(\tau_{2}{ }^{2}-\tau_{3}^{2}\right) \\
& 12\left(A_{1}+A_{2}\right)=\tau_{1} \tau_{3}+\tau_{2}^{2}+\tau_{2} \tau_{3}-\tau_{1}^{2}=2\left(\tau_{2}^{2}-\tau_{1}^{2}\right) \\
& 12\left(A_{3} \tau_{1}+A_{1} \tau_{3}\right)=\tau_{1}\left(\tau_{1} \tau_{2}-\tau_{3}{ }^{2}\right)+\tau_{3}\left(\tau_{2} \tau_{3}-\tau_{1}^{2}\right)=\tau_{1}{ }^{3}+\tau_{3}^{3}
\end{aligned}
$$

and therefore

$$
\left.\begin{array}{l}
\frac{\left[r_{1} r_{2}\right]}{\left[r_{2} r_{3}\right]}=\frac{\tau_{3}}{\tau_{1}}\left\{1+\frac{\mu}{6 r_{3}^{3}}\left(\tau_{1}^{2}-\tau_{3}^{2}\right)-\frac{\mu r_{2}}{4 r_{2}^{4}}\left(\tau_{1}^{3}+\tau_{3}^{3}\right)^{3}\right\} \\
\left.\frac{\left[r_{1} r_{2}\right]}{\left[r_{1} \tau_{3}\right]}=\frac{\tau_{3}}{\tau_{2}}\left\{1+\frac{\mu}{6 r_{2}^{3}}\left(\tau_{2}^{2}-\tau_{3}^{2}\right)-\frac{\mu r_{2}}{4 r_{2}^{4}}\left(\tau_{1} \tau_{2}-\tau_{3}^{2}\right) \tau_{1}\right\}\right\} \tag{41}\\
\frac{\left[r_{2} r_{3}\right]}{\left[r_{1} r_{3}\right]}=\frac{\tau_{1}}{\tau_{2}}\left\{1+\frac{\mu}{6 r_{2}^{3}}\left(\tau_{2}^{2}-\tau_{1}^{2}\right)+\frac{\mu r_{3}}{4 r_{2}^{2}}\left(\tau_{2} \tau_{3}-\tau_{2}^{2}\right) \tau_{3}\right\}
\end{array}\right\}
$$

These formulae are correct to the third order and if the terms involving r_{2} be omitted they express the ratios of the triangles in terms of the single distance r_{2} to the second order Hence their value for the determination of orbits

62 Without loss of accuracy the ratios can be expressed in trin two distances r_{1} and r_{3} instead of r_{2} and r_{2} The forms founcl l_{1} : may be derived thus we have to the first order
whence

$$
r_{1}=\gamma_{0}-r_{2} \tau_{3}, \quad \gamma_{3}=\gamma_{-}+1, \tau_{1}
$$

and therefore

$$
r_{3}-r_{1}=r_{2} \tau_{0}, \quad r_{1}+r_{1}=2 r_{n}+i_{2}\left(\tau_{1}-\tau_{3}\right)
$$

$$
\frac{1}{\left(r_{1}+r_{3}\right)^{3}}=\frac{1}{8 r_{3}^{3}}-\frac{3 r_{3}}{16 r_{2}^{4}}\left(\tau_{1}-\tau_{3}\right)
$$

or

$$
\frac{1}{r_{2}^{3}}=\frac{8}{\left(r_{1}+r_{3}\right)^{3}}+\frac{24\left(r_{3}-r_{1}\right)}{\left(r_{1}+r_{3}\right)^{4}} \frac{\tau_{1}-\tau_{3}}{\tau_{2}}
$$

In the terms of the third order we have simply

$$
\frac{r_{1}}{4 r_{2}^{4}} \tau_{2}=\frac{4\left(r_{1}-\lambda_{1}\right)}{\left(r_{1}+r_{3}\right)^{4}}
$$

Hence the ratios of the triangles to the requised order become

$$
\begin{aligned}
& \frac{\left[r_{1} r_{2}\right]}{\left[r_{8} r_{3}\right]}=\frac{\tau_{3}}{\tau_{1}}\left\{1+\frac{4 \mu}{3\left(r_{1}+\tau_{3}\right)^{3}}\left(\tau_{1}^{0}-\tau_{3}^{0}\right)-\frac{4 \mu\left(r_{1}-r_{1}\right)}{\left(r_{1}+\tau_{3}\right)^{4}} \boldsymbol{\tau}_{1} \tau_{3}\right\} \\
& \left.\frac{\left[r_{1} r_{2}\right]}{\left[r_{1} r_{3}\right]}=\frac{\tau_{3}}{\tau_{2}}\left\{1+\frac{4 \mu}{3\left(r_{1}+r_{3}\right)^{3}}\left(\tau_{2}{ }^{0}-\tau_{3}{ }^{3}\right)-\frac{4 \mu\left(r_{1}-\eta_{1}\right)}{\left(r_{1}+1_{3}\right)^{4}} \tau_{1} \tau_{3}{ }^{2} / \tau_{2}\right\}\right\} \\
& \left.\frac{\left[r_{2} r_{3}\right]}{\left[r_{1} r_{3}\right]}=\frac{\tau_{1}}{\tau_{0}}\left\{1+\frac{4 \mu}{3\left(r_{1}+\tau_{3}\right)^{3}}\left(\tau_{2}^{0}-\tau_{1}{ }^{\prime}\right)+\frac{4 \mu\left(r_{3}-r_{1}\right)}{\left(r_{1}+r_{3}\right)^{1}}-\tau_{1}^{2} \tau_{3} / \tau_{2}\right\}\right\}
\end{aligned}
$$

where, if t_{1}, t_{2}, t_{3} are the times corresponding to the distances r_{1}, r_{2}, r_{-1},

$$
\tau_{1}=t_{3}-t_{3}, \quad \tau_{2}=t_{3}-t_{1}, \quad \tau_{3}=t_{2}-t_{1}
$$

Equivalent but rather simpler expressions in terms of the extreme ciit may be obtained by observing that
whence

$$
\frac{1}{r_{1}^{3}}=\frac{1}{r_{2}^{3}}+\frac{3 r_{2}}{r_{1}^{4}} \tau_{3}, \quad \frac{1}{r_{3}^{3}}=\frac{1}{r_{0}^{3}}-\frac{3 r_{2}}{r_{1}^{4}} r_{1}
$$

$$
\frac{\tau_{7}}{r_{3}^{3}}=\frac{\tau_{1}}{r_{1}^{3}}+\frac{\tau_{3}}{r_{3}^{3}}, \quad \frac{3 r_{2}}{r_{2}^{4}} \tau_{2}=\frac{1}{r_{1}{ }^{3}}-\frac{1}{r_{3}^{3}}
$$

By substitution in (41) it is easily found that

From the method by which all the expressions of this kind have been al it is clear that the results apply equally to all undisturbed orbits, ellin hyperbolic

CHAPTER VI

THE ORBIT IN SPACE

63 Hitherto we have considered the relative motion of two bodies only as referred to axes in the plane in which the motion takes place It is now necessary to specify the manner in which the motion in space is usually expressed

We take a sphere of arbitrary unit radus with the Sun at its centre The ecliptic for a given date is a great circle on this sphere That hemisphere which contains the North Pole of the Equator may be called the northern hemisphere $O n$ the ecluptic is a fixed point γ which represents the equmoctial point for the given date and from which longitudes are reckoned in a certain direction The plane of the orbit is also represented by a great circle which intersects the ecluptic in two points One of these Ω corresponds to the passage of the moving body from the southern to the northern hemisphere and is called the ascending node, the other node 18 called the descendrng node The longitude of Ω, or $\gamma \Omega$, may be denoted also by Ω it is an angle which may have any value between 0° and 360° The angle between the direction of increasing longitudes along the ecliptic and the direction of increasing true anomaly along the orbit is called the $2 n$ clination and may be denoted by 2 It 18 an angle which may le between 0° and 180°

Let P be the point on the great circle of the orbit which represents the radus vector through the perihelion and Q any other point on the same great curcle representing a radius vector with the true anomaly w, so that $P Q=\omega \quad$ We may denote the arc ΩP lying between 0° and 360° by ω, so that $\Omega Q=\omega+w$ This angle, reckoned from the ascending node to any point on the plane of the orbit, is called the argument of the latitude It is possible to regard ω as an element of the orbit, but it has been more usual to define the element π, which is called the longztude of pervhelion, as the sum of the two angles $\Omega+\omega$ although only one of these is measured along the echptic The angle $w+w$ or $\Omega+\omega+w$ is called the longitude in the orbit We have thus defined the three elements, the longitude of the
iding node, the inclination of the orbit and the longitude of perihelion, ferred

4 The motion must now be defintely related to the time Let t_{0} be poch arbitrarily chosen and T the time of perihelion passage Then, ag the mean motion, the mean anomaly corresponding to the epoch is

$$
M_{0}=n\left(t_{0}-T\right)
$$

ther M_{0} or T might be regarded as an element of the orbit, but in the of a planetary orbit it is more usual to employ the mean longrtude at poch, ϵ, which is defined as the sum $\varpi+M_{0}$ Thus at any time t, if $+w$ is the longitude in the orbit and E the eccentric anomaly, the on of the planet is given by

$$
\begin{aligned}
\tan \frac{1}{2}(u-\sigma) & =\sqrt{\left(\frac{1+e}{1-e}\right) \tan \frac{1}{2} E} \\
E-e \sin E & =M=n(t-T) \\
& =n\left(t-t_{0}\right)+\epsilon-\sigma
\end{aligned}
$$

rean motion and the mean distance are connected by the relation (§ 24)

$$
n a^{\frac{3}{2}}=\mu^{\frac{1}{4}}=k^{\prime \prime}(1+m)^{\frac{1}{3}}
$$

m is the mass of the planet (negligible in the case of minor planets) mplete elements can now be enumerated and illustrated by the case of net Mars

Epoch
Mean longitude
Longitude of perihelion
Longitude of node
Inclination
Eccentricity
Mean motion
Log of mean distance

	Mars ($n=1 / 3093500$)	
t_{0}	1900 Jan 0, $0^{\text {b }}$ смт	
ϵ	$293^{\circ} 44^{\prime} 51^{\prime \prime} 36$	
ш	$\begin{array}{llll}334 & 13 & 688\end{array}$	
Ω	$\begin{array}{lllll}48 & 47 & 9 & 36\end{array}$	19000
2	$1 \begin{array}{llll}1 & 51 & 1 & 32\end{array}$	
e	009330895	
n	1886" 51862	
$\log a$	0182897	

mber of independent elements is six, corresponding to the six conof integration which enter into the solution of the equations of motion, eing in their general form three in number and of the second order en the orbit is parabolic the eccentricity is 1 and the mean distance the The scale of the orbit is indicated by the perihelion distance q time of perihelion passage T is given instead of the mean longitude
at a chosen epoch Thus prelımınary parabolic elements of Comet a 1906 (Brooks) are shown as follows
$\left.\begin{array}{lllll}T & 1905 & \text { Dec } & 22 & 29263 \\ \omega & 89^{\circ} & 51^{\prime} & 53^{\prime \prime} 7 \\ \Omega & 286 & 24 & 22 & 1 \\ \imath & 126 & 26 & 7 & 3\end{array}\right\} 19060$

65 If axes $O\left(x_{1}, y_{1}, z_{1}\right)$ be taken such that $O x_{1}$ passes through the node, $O y_{1}$ hes in the plane of the orbit, and $O z_{1}$ is in the direction of the N pole of the orbit, the coordınates of the planet (or comet) are

$$
x_{1}=r \cos (\omega+w), \quad y_{1}=r \sin (\omega+w), \quad z_{1}=0
$$

when its true anomaly is w Let the axes be turned about $O x_{1}$ so that $O y_{1}$ takes the position $O y_{2}$ in the plane of the ecliptic and $O z_{2}$ is directed towards the N pole of the ecliptic Then

$$
x_{2}=x_{1}, \quad y_{8}=y_{1} \cos \imath-z_{1} \sin \imath, \quad z_{2}=z_{1} \cos \imath+y_{1} \sin \imath
$$

Next let the axes be turned about $O z_{2}$ so that $O x_{3}$ passes through the equinoctial point and $O y_{3}$ is in longitude 90° Then

$$
\mu_{3}=x_{2} \cos \Omega-y_{2} \sin \Omega, \quad y_{3}=y_{2} \cos \Omega+x_{2} \sin \Omega, \quad z_{3}=z_{2}
$$

Hence the relations between (x_{3}, y_{3}, z_{3}) and (x_{1}, y_{1}, z_{1}) are given by

	x_{1}	y_{1}	z_{1}
a_{3}	$\cos \Omega$	$-\cos \imath \sin \Omega$	$\sin \imath \sin \Omega$
y_{3}	$\sin \Omega$	$\cos \imath \cos \Omega$	$-\sin \imath \cos \Omega$
z_{3}	0	$\sin \imath$	$\cos \imath$

This scheme will give the helocentric ecliptic coordmates of the planet
It is convenient to write

$$
\sin a \sin A=\cos \Omega, \quad \sin a \cos A=-\cos 2 \sin \Omega
$$

for then

$$
\begin{aligned}
& \sin a \sin A=\cos 2 \cos \Omega \\
& \sin b^{\prime} \sin B^{\prime}=\sin \Omega, \quad \sin b^{\prime} \cos B^{\prime}=\cos
\end{aligned}
$$

$$
\begin{aligned}
& x_{3}=r \sin a \sin (A+\omega+w) \\
& y_{\mathrm{s}}=r \sin b^{\prime} \sin \left(B^{\prime}+\omega+w\right) \\
& z_{3}=r \sin \imath \sin (\omega+w)
\end{aligned}
$$

Hence, if R, L_{1}, B_{1} are the geocentric distance, longitude and latitude (the last always a very small angle) of the Sun, which may be taken from the Nautical Almanac, and Δ, λ, β are the geocentric distance, longitude and latitude of the planet,

$$
\begin{aligned}
& \text { the piane }, \\
& \Delta \cos \lambda \cos \beta=R \cos L_{1} \cos B_{1}+r \sin a \sin \left(A^{\prime}+\omega+w\right) \\
& \Delta \sin \lambda \cos \beta=R \sin L_{1} \cos B_{1}+r \sin b \sin \left(B^{\prime}+\omega+w\right) \\
& \Delta \sin \beta \quad=R \sin B_{1} \quad+r \sin \imath \sin (\omega+w)
\end{aligned}
$$

whence the geocentric ecluptic coordınates of the planet

66 Were the elements given with reference to the equator instcad of the ecliptic, and this is sometimes done (though not often), the same formulae would give equatorial coordinates with the substitution of RA and declmation for longitude and latitude T_{0} obtain equatorial coordinates, from echptic elements another transformation is necessary Let the last system of azes be turned about $O a_{3}$ so that $O y_{3}$ comes into the plane of the equator and the new axis $O z_{4}$ is directed towards the \mathbf{N} pole of the equator Then the obliquity of the ecliptic being denoted by ϵ_{0},

$$
x_{4}=x_{3}, \quad y_{4}=y_{3} \cos \epsilon_{0}-z_{3} \sin \epsilon_{0}, \quad z_{1}=z_{3} \cos \epsilon_{0}+y_{3} \sin \epsilon_{0}
$$

From the above relations between (x_{3}, y_{3}, z_{3}) and (x_{1}, y_{1}, z_{1}) it follows that (x_{4}, y_{4}, z_{4}) and (x_{1}, y_{1}, z_{1}) are related by the scheme

	x_{1}	y_{1}	z_{1}
u_{4}	$\sin a \sin A$	$\sin a \cos A$	$\cos a$
y_{4}	$\sin b \sin B$	$\sin b \cos B$	$\cos b$
z_{4}	$\sin c \sin C$	$\sin c \cos C$	$\cos c$

where it is easily seen that

$$
\begin{aligned}
\sin a \sin A & =\cos \Omega \\
\sin a \cos A & =-\cos \imath \sin \Omega \\
\cos a & =\sin \imath \sin \Omega \\
\sin b \sin B & =\cos \epsilon_{0} \sin \Omega \\
\sin b \cos B & =\cos \epsilon_{0} \cos \imath \cos \Omega-\sin \epsilon_{0} \sin \imath \\
\cos b & =-\cos \epsilon_{0} \sin \imath \cos \Omega-\sin \epsilon_{0} \cos \imath \\
\sin c \sin C & =\sin \epsilon_{0} \sin \Omega \\
\sin c \cos C & =\sin \epsilon_{0} \cos \imath \cos \Omega+\cos \epsilon_{0} \sin \imath \\
\cos c & =-\sin \epsilon_{0} \sin \imath \cos \Omega+\cos \epsilon_{0} \cos \imath
\end{aligned}
$$

The heliocentric equatorial coordmates of the planet now become

$$
\begin{aligned}
& x_{4}=r \sin a \sin (A+\omega+w) \\
& y_{6}=r \sin b \sin (B+\omega+w) \\
& z_{4}=r \sin c \sin (C+\omega+w)
\end{aligned}
$$

Thus, for example, the above elements for Comet $a 1906$ lead to

$$
\begin{aligned}
& x_{4}=r\left[\begin{array}{llll}
9803389
\end{array}\right] \sin \left(\begin{array}{lll}
243^{\circ} & 29^{\prime} & 42^{\prime \prime} \\
y_{4} & =r & {\left[\begin{array}{l}
9 \\
9999830
\end{array}\right)} \\
z_{4} & =r\left[\begin{array}{lll}
9887772
\end{array}\right] \sin \left(\begin{array}{llll}
331 & 33 & 15 & 1+w
\end{array}\right)
\end{array} \begin{array}{llll}
60 & 14 & 19 & 5+w
\end{array}\right)
\end{aligned}
$$

referred to the equator of 19060
Let (x, y, z) be the geocentric equatorial coordinates of the planel and (X, Y, Z) the corresponding geocentric coordnates of the Sun, which may be taken directly from the Nautical Almanac or other ephemeris Thus

$$
u=X+x_{4}, \quad y=Y+y_{4}, \quad z=Z+z_{4}
$$

But

$$
x=\Delta \cos \alpha \cos \delta, \quad y=\Delta \sin \alpha \cos \delta, \quad z=\Delta \sin \delta
$$

where Δ, α, δ are the geocentric distance, right ascension and declination of the planet These coordinates can therefore be calculated from the equations

$$
\begin{aligned}
& \Delta \cos \alpha \cos \delta=X+r \sin a \sin (A+\omega+w) \\
& \Delta \sin \alpha \cos \delta=Y+r \sin b \sin (B+\omega+w) \\
& \Delta \sin \delta \quad=Z+\imath \sin c \sin (C+\omega+w)
\end{aligned}
$$

This form of equations, introduced by Gauss, is very convenient for the systematic calculation of positions in an orbit

67 The direct transformation of the elements from one plane of reference to any other may be made as follows Let $\gamma A B$ represent the first plane of reference, $\gamma_{1} A C$ the second plane and $B C P$ the plane of the orbit The first set of elements are $\gamma B=\Omega, B P=\omega$ and $180^{\circ}-B=\imath$ The new elements are $\gamma_{1} C=\Omega^{\prime}, C P=\omega^{\prime}$, and $C=i^{\prime}$ Also the position of the new plane of reference relative to the old may be defined by $\gamma A=\Omega_{1}, A=r_{1}$ and the arbitrary origin γ_{1} by $\gamma_{1} A=\Omega_{0}$ Hence the sides and angles of the triangle $A B C$ are

$$
\begin{array}{lll}
a=\omega-\omega^{\prime}, & b=\Omega^{\prime}-\Omega_{0}, & c=\Omega-\Omega_{1} \\
A=\imath_{1}, & B=180^{\circ}-\imath, & C=\imath^{\prime}
\end{array}
$$

Now the analogies of Delambre may be written in the single formula, easily remembered,

$$
\frac{\sin \left\{45^{\circ} \pm\left(45^{\circ}-\frac{1}{2} b \bar{\mp} a\right)\right\}}{\sin \left\{45^{\circ} \pm\left(45^{\circ}-\frac{1}{2} c\right)\right\}}=\frac{\sin \left\{45^{\circ} \mp\left(45^{\circ}-\frac{1}{2} \overline{B \pm A}\right)\right\}}{\cos \left\{45^{\circ} \mp\left(45^{\circ}-\frac{1}{2} C\right)\right\}}
$$

where the ambiguities $\pm \mp$ must be read consistently but independently in two sets of three Hence taking (1) all lower signs, (2) all + signs, (3) all - signs and (4) all upper signs in the above formula, we have

$$
\begin{aligned}
& \sin \frac{1}{2}\left(\Omega^{\prime}-\Omega_{0}+\omega-\omega^{\prime}\right) \sin \frac{1}{2} \imath^{\prime}=\sin \frac{1}{2}\left(\Omega-\Omega_{1}\right) \sin \frac{1}{2}\left(\imath+\imath_{1}\right) \\
& \cos \frac{1}{2}\left(\Omega^{\prime}-\Omega_{0}+\omega-\omega^{\prime}\right) \sin \frac{1}{2} \imath^{\prime}=\cos \frac{1}{2}\left(\Omega-\Omega_{1}\right) \sin \frac{1}{2}\left(\imath-\imath_{1}\right) \\
& \sin \frac{1}{2}\left(\Omega^{\prime}-\Omega_{0}-\omega+\omega^{\prime}\right) \cos \frac{1}{2} \imath^{\prime}=\sin \frac{1}{2}\left(\Omega-\Omega_{1}\right) \cos \frac{1}{2}\left(\imath+\imath_{1}\right) \\
& \cos \frac{1}{2}\left(\Omega^{\prime}-\Omega_{0}-\omega+\omega^{\prime}\right) \cos \frac{1}{2} \imath^{\prime}=\cos \frac{1}{2}\left(\Omega-\Omega_{1}\right) \cos \frac{1}{2}\left(\imath-\imath_{1}\right)
\end{aligned}
$$

These formulae will serve durectly if for example it is required to refer the elements of a minor planet to the plane of Jupiter's orbit instead of to the echptic Or again, if Ω, ω and \imath are the elements referred to the echptic and equinox at the date T and $\Omega^{\prime}, \omega^{\prime}$ and i^{\prime} the elements for the equinox $T+t$, we may put $\Omega_{1}=\Pi_{1}, \imath_{1}=\pi_{1}$ and $\Omega_{0}=\Pi_{1}+\psi_{1}$ where ψ_{1} is the general precession Hence when these quantities are known the effect of precession is given by

$$
\begin{aligned}
& \tan \frac{1}{2}\left(\Omega^{\prime}-\Pi_{1}-\psi_{1}-\Delta \omega\right)=\tan \frac{1}{2}\left(\Omega-\Pi_{1}\right) \sin \frac{1}{2}\left(\imath+\pi_{1}\right) / \sin \frac{1}{2}\left(\imath-\pi_{1}\right) \\
& \tan \frac{1}{2}\left(\Omega^{\prime}-\Pi_{1}-\psi_{1}+\Delta \omega\right)=\tan \frac{1}{2}\left(\Omega-\Pi_{1}\right) \cos \frac{1}{2}\left(\imath+\pi_{1}\right) / \cos \frac{1}{2}\left(\imath-\pi_{1}\right)
\end{aligned}
$$

where $\Delta \omega=\omega^{\prime}-\omega$, and (by Napier's analogy involving $B+C$ and A)

$$
\tan \frac{1}{2}\left(\imath-\imath^{\prime}\right)=\frac{\cos \frac{1}{2}\left(\Omega+\Omega^{\prime}-2 \Pi_{1}-\psi_{1}\right)}{\cos \frac{1}{2}\left(\Omega-\Omega^{\prime}+\psi_{1}\right)} \tan \frac{1}{2} \pi_{1}
$$

68 When the interval t is moderately short, however, these rigorous equations for the effect of precession are not required and it is more convenient to use differential formulae We now consider $\gamma A B$ as the fixed ecliptic of 18500 and $\gamma_{1} A C$ as a variable ecliptic Sunce

$$
\cos C=\sin A \sin B \cos c-\cos A \cos B
$$

$-\sin C d C=(\cos A \sin B \cos c+\sin A \cos B) d A-\sin A \sin B \sin c d c$

$$
=\sin C \cos b d A-\sin a \sin B \sin C d c
$$

or

$$
\begin{equation*}
d C=-\cos b d A+\sin a \sin B d c \tag{1}
\end{equation*}
$$

Also, sunce

$$
\begin{aligned}
\sin C \sin b & =\sin B \sin c \\
\sin C \cos b d b & =\sin B \cos c d c-\cos C \sin b \quad d C \\
& =\sin B(\cos c-\cos C \sin a \sin b) d c+\cos C \sin b \cos b \quad d A
\end{aligned}
$$

or

$$
\begin{equation*}
\sin C d b=\cos C \sin b d A+\sin B \cos a d c \tag{2}
\end{equation*}
$$

Similarly, since

$$
\begin{aligned}
\sin C \sin a= & \sin A \sin c \\
\sin C \cos a \cdot d a= & \cos A \sin c d A+\sin A \cos c d c-\cos C \sin a d C \\
= & \left(\cos A \sin c+\cos \left(\begin{array}{l}
\sin a \cos b) d A \\
\\
\end{array}+(\sin A \cos c-\sin A \cos C \sin a \sin b) d c\right.\right. \\
= & \cos a \sin b d A+\sin A \cos a \cos b d c
\end{aligned}
$$

or

$$
\begin{equation*}
\sin C d a=\sin b d A+\sin A \cos b d c \tag{3}
\end{equation*}
$$

By a slight change of notation we now put Ω_{0}, ω_{0} and u_{0} for the clements at $T=18500, \Omega, \omega$ and \imath for the elements at time $T+t$ (instead of $\Omega^{\prime}, \omega^{\prime}$ and \imath^{\prime}) and define the position of the ecliptic and equinox at $T+t$ relative to those at T by $\Omega_{1}=\Pi, \imath_{1}=\pi$ and $\Omega_{0}=\Pi+\psi$, so that

$$
\left.\begin{array}{rlrl}
a & =\omega_{0}-\omega, & & b=\Omega-\Pi-\psi, \\
& c=\Omega_{0}-\Pi \\
A & =\pi, & & B=180^{\circ}-\imath_{0},
\end{array} r=2\right)
$$

Hence by substitution in (1), (2) and (3)

$$
d \imath=-\cos (\Omega-\Pi-\psi) d \pi-\sin \left(\omega_{0}-\omega\right) \sin v_{0} d \Pi
$$

$\sin \imath d(\Omega-\Pi-\psi)=\cos 2 \sin (\Omega-\Pi-\psi) d \pi-\cos \left(\omega_{0}-\omega\right) \sin \imath_{0} d \Pi$

$$
-\sin \imath d \omega=\quad \sin (\Omega-\Pi-\psi) d \pi-\cos (\Omega-\Pi-\psi) \sin \pi d \Pi
$$

But in the coefficients of $d \Pi$ we may put $\imath=\nu_{0}, \omega=\omega_{0}$ and $\pi=0$, this being the mutual inclination of the fixed and moving ecliptic Hence we have sımply

$$
\begin{aligned}
& d \imath / d t=-\cos (\Omega-\Pi-\psi) d \pi / d t \\
& d \Omega / d t=d \psi / d t+\cot \imath \sin (\Omega-\Pi-\psi) d \pi / d t \\
& d \omega / d t=-\operatorname{cosec} \imath \sin (\Omega-\Pi-\psi) d \pi / d t
\end{aligned}
$$

These are to be integrated between $t=t_{1}$ and $t=t_{2}$, and the coefficients of $d \pi / d t$ are variable with the time Provided the interval is no more than a few years, it is sufficiently accurate to proceed thus Writing

$$
\begin{aligned}
& \imath_{2}=\imath_{1}-\left(t_{2}-t_{1}\right) \cos (\Omega-\Pi-\psi) d \pi / d t \\
& \Omega_{2}=\Omega_{1}+\left(t_{2}-t_{1}\right)\{d \psi / d t+\cot \imath \sin (\Omega-\Pi-\psi) d \pi / d t\} \\
& \omega_{2}=\omega_{1}-\left(t_{2}-t_{1}\right) \operatorname{cosec} \imath \sin (\Omega-\Pi-\psi) d \pi / d t
\end{aligned}
$$

we take $\Pi+\psi, d \pi / d t$ and $d \psi / d t$ from appropriate tables (e g Bauschinger's Tafeln, No $\mathbf{x x x}$) with the argument $T+\frac{1}{2}\left(t_{2}+t_{1}\right) \quad$ With $\Omega=\Omega_{1}$ and $\imath=\imath_{1}$ approximate values of Ω_{2}, z_{2} can be obtained and the calculation is then repeated with the corresponding values $\frac{1}{2}\left(\Omega_{1}+\Omega_{2}\right), \frac{1}{2}\left(\imath_{1}+\imath_{2}\right)$ substituted for Ω and \imath

69 It is impossible to correct the first observations of a moning body for parallax in the ordinary way because its distance is unknown But the line of observation intersects the plane of the ecliptic in a certain point, called by Gauss the locus fictus, the position of which can be calculated If the observation is then treated as though made from this point the effect of parallax is allowed for and also the latitude of the Sun

Let the observation be made at sidereal time T at a place whose geocentric latitude is $\phi \quad$ Let α, δ be the observed RA and declination, reduced to mean equinox The geocentric equatorial coordinates of the place of observation are ($\rho \cos \phi \cos T, \rho \cos \phi \sin T, \rho \sin \phi), \rho$ being the Eidrth's radıus at the place, and the corresponding ecliptic coordinates ($\rho h_{1}, \rho h_{2}, \rho h_{3}$), where

$$
\begin{aligned}
& h_{1}=\cos l \cos b=\cos \phi \cos T \\
& h_{2}=\sin l \cos b=\cos \phi \sin T \cos \epsilon_{0}+\sin \phi \sin \epsilon_{0} \\
& h_{3}=\sin b \quad=\sin \phi \cos \epsilon_{0}-\cos \phi \sin T \sin \epsilon_{0}
\end{aligned}
$$

ϵ_{0} being the obliquity of the ecliptic and l, b the longitude and latitude of the Zenith Similarly

$$
\begin{aligned}
& H_{1}=\cos \lambda \cos \beta=\cos \delta \cos \alpha \\
& H_{2}=\sin \lambda \cos \beta=\cos \delta \sin \alpha \cos \epsilon_{0}+\sin \delta \sin \epsilon_{0} \\
& H_{8}=\sin \beta \quad=\sin \delta \cos \epsilon_{0}-\cos \delta \sin \alpha \sin \epsilon_{0}
\end{aligned}
$$

are the direction cosines of the line of observation, λ, β being the geocentric longitude and latitude of the observed object The Nautical Almanac gives R_{1}, L_{1} and B_{1} the geocentric radius vector, longitude and latitude of the Sun.

Hence in heliocentric ecliptic coordinates the equation of the line of observation is

$$
\begin{aligned}
& \frac{x+R_{1} \cos L_{1} \cos B_{1}-h_{1} \rho}{H_{1}}=\frac{y+R_{1} \sin L_{1} \cos B_{1}-h_{2} \rho}{H_{2}} \\
&=\frac{2+R_{1} \sin B_{1}-h_{3} \rho}{H_{3}}=-\Delta
\end{aligned}
$$

where Δ is the distance from the place of observation to the point (x, y, z) positively in the direction away from the object If then this line intersects the plane of the echptic in the point (the locus fictus)

$$
\begin{gathered}
x=-R \cos L, \quad y=-R \sin L, \quad z=0 \\
\Delta=\left(h_{3} \rho-R_{1} \sin B_{1}\right) / H_{3} \\
-R \cos L=-R_{1} \cos L_{1} \cos B_{1}+\rho h_{1}-\left(h_{3} \rho-R_{1} \sin B_{1}\right) H_{1} / H_{3} \\
-R \sin L=-R_{1} \sin L_{1} \cos B_{1}+\rho h_{2}-\left(h_{3} \rho-R_{1} \sin B_{1}\right) H_{2} / H_{3}
\end{gathered}
$$

But these exact equations can be simplified, regard being had to the small quantities involved For $B_{1}<1^{\prime \prime}$ in general, so that $\sin B_{1}=B_{1}, \cos B_{1}=1$ Also we may put $\rho=p R_{1}$ where p is the solar parallax, $8^{\prime \prime} 80$ Hence writing $R=R_{1}+d R_{1}, L=L_{1}+d L_{1}$, we have

$$
\begin{aligned}
\Delta & =R_{1}\left(h_{3} p-B_{1}\right) / H_{3} \\
-\cos L_{1} d R_{1}+R_{1} \sin L_{1} d L_{1} & =p R_{1} h_{1}-\left(h_{3} p-B_{1}\right) R_{1} H_{1} / H_{3} \\
-\sin L_{1} d R_{1}-R_{1} \cos L_{1} d L_{1} & =p R_{1} h_{2}-\left(h_{3} p-B_{1}\right) R_{1} H_{2} / H_{3}
\end{aligned}
$$

whence

$$
-d R_{1} / R_{1}=p\left(h_{1} \cos L_{1}+h_{2} \sin L_{1}\right)-\left(h_{3} p-B_{1}\right)\left(H_{1} \cos L_{1}+H_{2} \sin L_{1}\right) / H_{3}
$$

or again

$$
d L_{1}=p\left(h_{1} \sin L_{1}-h_{2} \cos L_{1}\right)-\left(h_{3} p-B_{1}\right)\left(H_{1} \sin L_{1}-H_{2} \cos L_{1}\right) / H_{3}
$$

$$
\begin{aligned}
-d R_{1} / R_{1} & =p \cos b \cos \left(L_{1}-l\right)-\left(p \sin b-B_{1}\right) \cos \left(L_{1}-\lambda\right) \cot \beta \\
d L_{1} & =p \cos b \sin \left(L_{1}-l\right)-\left(p \sin b-B_{1}\right) \sin \left(L_{1}-\lambda\right) \cot \beta \\
\Delta / R_{1} & =\left(p \sin b-B_{1}\right) / \sin \beta
\end{aligned}
$$

Here both p and B_{1} are naturally expressed in seconds of are Thus $d L_{1}$, the additive correction to the Sun's longitude, is appropriately expressed in the same unit The Nautrcal Almanac gives $\log K_{1}$, to which the additive correction is

$$
d \log R_{1}=\frac{d R_{1}}{R_{1}} \quad \log _{10} \epsilon{ }_{206265^{\prime \prime}}=\frac{d R_{1}}{R_{1}}[43234-10]
$$

Finally, had the observation actually been made from the locus fictus $1 t$ would have been made later in time by the interval required for light to travel the distance Δ But the light equation, or the time over the mean distance from the Sun to the Earth, is $498^{\circ} 5$ Hence the additive correction to the time of observation is (in seconds)

$$
d t=\frac{\Delta}{R_{1}} \frac{498^{8} 5}{206265^{\prime \prime}}=\frac{\Delta}{R_{1}}[73832-10]
$$

The reduction to the locus fictus is a refinement rarely employed in practice

CHAPTER VII

CONDITIONS FOR THE DETERMINATION OF AN ELLIIPTIC ORBIT

70 There are certain properties of the apparent motion of a planet or comet on the celestial sphere which bear on the problem of determining the true orbit and which can be considered with advantage apart from the detalls of numerical calculation which are necessary for a practical solution. They are closely connected with the direct method of solution devised by Laplace, but they equally contann principles which are fundamental to all methods.

Let (x, y, z) be the heliocentric coordinates of the planet, (X, Y, Z) the helocentric coordinates of the Earth Then

$$
\begin{gathered}
x=-\mu x / r^{s}, \\
X=-\mu_{0} X / R^{s}, \\
\mu=k^{2}(1+m), \quad \mu_{0}=k^{a}\left(1+m_{0}\right)
\end{gathered}
$$

m and m_{0} beng the masses of the planet and the Earth Let (a, b, c) be the correspondung geocentric direction cosunes of the planet, so that

$$
\begin{equation*}
x=X+a \rho, \quad y=Y+b \rho, \quad z=Z+c \rho \tag{1}
\end{equation*}
$$

ρ being the geocentric distance of the planet The observed position of the planet is given in right ascension and declunation (a, δ), and if the equatorial system of axes be chosen,

$$
a=\cos \alpha \cos \delta, \quad b=\sin \alpha \cos \delta, \quad c=\sin \delta
$$

Sunce

$$
\begin{gathered}
x=\ddot{X}+a \rho+2 a \rho+a \rho \\
\mu x / r^{3}-\mu_{0} X / R^{3}+\ddot{a} \rho+2 a \rho+a \rho=0
\end{gathered}
$$

or

$$
X\left(\mu / r^{s}-\mu_{0} / R^{s}\right)+\ddot{a} \rho+2 a \rho+a\left(\rho+\mu \rho / r^{s}\right)=0
$$

and sımularly

$$
\begin{aligned}
& Y\left(\mu / r^{s}-\mu_{0} / R^{s}\right)+\dot{b}_{\rho}+2 \dot{b}_{\rho}+b\left(\rho+\mu \rho / r^{3}\right)=0 \\
& Z\left(\mu / r^{s}-\mu_{0} / R^{2}\right)+c \rho+2 \dot{c} \rho+c\left(\rho+\mu \rho / r^{3}\right)=0
\end{aligned}
$$

These are three equations in ρ, ρ and $\rho+\mu \rho / r^{3}$, the solution of which can be written down at once in the form

$$
\left|\begin{array}{lll}
a & -\rho \tag{2}\\
b & b & Y \\
c & c & Z
\end{array}\right| \frac{2 \rho}{\left|\begin{array}{ccc}
a & a & X \\
b & b & Y \\
c & c & Z
\end{array}\right|}\left|\frac{\mu / r^{3}-\mu_{0} / R^{3}}{a} \begin{array}{ccc}
a & a \\
b & b & b \\
c & c & c
\end{array}\right|
$$

the value of ρ not being required
71 The determmants in (2) can be calculated when the first and second derivatives of the three durection cossnes are known Now
$a=-\sin \alpha \cos \delta a-\cos \alpha \sin \delta \delta$
$a=-\sin \alpha \cos \delta \alpha-\cos \alpha \cos \delta \alpha^{2}+2 \sin \alpha \sin \delta \quad \alpha-\cos \alpha \cos \delta \delta^{2}-\cos \alpha \sin \delta \delta$
$c=\cos \delta \delta-\sin \delta \dot{\delta}^{2}$
The derivatives $\alpha, a, \delta, \delta$ are most simply calculated from a series of observed values by Lagrange's interpolation formulae If the number of observations is three, made at the times t_{1}, t_{2}, t_{3}, we have according to this rule,

$$
\alpha=\frac{\left(t-t_{2}\right)\left(t-t_{3}\right)}{\left(t_{1}-t_{2}\right)\left(t_{1}-t_{3}\right)} a_{1}+\frac{\left(t-t_{3}\right)\left(t-t_{1}\right)}{\left(t_{2}-t_{3}\right)\left(t_{2}-t_{1}\right)} \alpha_{2}+\frac{\left(t-t_{1}\right)\left(t-t_{2}\right)}{\left(t_{3}-t_{1}\right)\left(t_{9}-t_{2}\right)} \alpha_{3}
$$

whence

$$
\begin{aligned}
& \dot{\alpha}=\frac{2 t-t_{2}-t_{3}}{\left(t_{1}-t_{2}\right)\left(t_{1}-t_{3}\right)} \alpha_{1}+\frac{2 t-t_{3}-t_{1}}{\left(t_{2}-t_{3}\right)\left(t_{2}-t_{1}\right)} \alpha_{2}+\frac{2 t-t_{1}-t_{2}}{\left(t_{3}-\frac{\left.t_{1}\right)\left(t_{3}-t_{2}\right)}{} \alpha_{3}\right.} \\
& \alpha=\frac{2 \alpha_{1}}{\left(t_{1}-t_{2}\right)\left(t_{1}-t_{3}\right)}+\frac{2 \alpha_{2}}{\left(t_{2}-t_{3}\right)\left(t_{2}-t_{1}\right)}+\frac{2 \alpha_{3}}{\left(t_{3}-t_{1}\right)\left(t_{3}-t_{2}\right)}
\end{aligned}
$$

or, if we choose $t=t_{3}$, the time of the middle observation,

$$
\begin{aligned}
\alpha & =\alpha_{2} \\
\tau_{1} \tau_{2} \tau_{3} & \alpha \\
=-\tau_{1}{ }^{2} \cdot \alpha_{1}+\tau_{9}\left(\tau_{1}-\tau_{3}\right) \alpha_{2}+\tau_{3}^{2} \alpha_{3} & =\tau_{1}{ }^{2}\left(\alpha_{2}-\alpha_{1}\right)+\tau_{3}{ }^{2}\left(\alpha_{3}-\alpha_{2}\right) \\
\tau_{1} \tau_{2} \tau_{3} & \alpha=2 \tau_{1} \alpha_{1}-2 \tau_{2} \alpha_{2}+2 \tau_{3} \alpha_{3}=-2 \tau_{1}\left(\alpha_{2}-\alpha_{1}\right)+2 \tau_{3}\left(\alpha_{3}-\alpha_{2}\right)
\end{aligned}
$$

where

$$
\tau_{1}=t_{3}-t_{2}, \quad \tau_{2}=t_{3}-t_{1}, \quad \tau_{3}=t_{2}-t_{1}
$$

These formulae, which apply equally to the dechnations, mutatis mutandis, are only correct if the observations are made at very short intervals of time and are ideally accurate Since the accuracy of observations has practical limitations, moderately long intervals must be used and a greater number of observed places is necessary for satisfactory results Our immediate concern, however, is rather with general principles than practical methods of calculation

72 It as now possible to calculate the quantity l given by

$$
l=\left|\begin{array}{ccc}
a & a & a \\
b & b & b \\
c & c & c
\end{array}\right|-k^{2} \left\lvert\, \begin{array}{ccc}
a & \dot{a} & X \\
b & \dot{b} & Y \\
c & \dot{c} & Z
\end{array}\right.
$$

and we then have by (2)

$$
\begin{equation*}
l_{\rho}=\left(1+m_{0}\right) / R^{s}-(1+m) / r^{3} \tag{3}
\end{equation*}
$$

The mass of the planet, m, must be neglected in a first approximation to the orbit and this is one relation between ρ and r In essence it is fundamental in all general methods of finding an approximate orbit A second relation is avalable because we know the angle ψ between R and ρ, namely

$$
\begin{equation*}
r^{2}=R^{2}+\rho^{2}+2 R \rho \cos \psi \tag{4}
\end{equation*}
$$

while the projection of R as a vector in the durection of ρ gives

$$
R \cos \psi=a X+b Y+c Z, \quad\left(0<\psi<180^{\circ}\right)
$$

If r be eliminated between (3) and (4) an equation of the eighth degree in ρ results, and it will be necessary to examine the nature of the possible roots For the moment we suppose that the approprate value of ρ has been found Then the corresponding value of ρ is given by (2) and the components of the velocity can be calculated, since by (1)

$$
\begin{equation*}
x=X+a \rho+a \rho, \quad y=Y+b \rho+b \rho, \quad z=Z+c \rho+c \rho \tag{5}
\end{equation*}
$$

where X, Y, Z must be found from the solar ephemeris by mechanical differentiation Thus when ρ and ρ are known, (1) and (5) give the three neliocentric coordinates of the planet and the three corresponding components of velocity at a given time t From these data the elements of the planet's orbit, assumed for the present purpose to be elliptic, can be calculated without difficulty

73 Since equatorial coordnates have been used hitherto, the elliptic elements of the orbit will also be referred to the equatorial plane If new coordinates (ξ, η, ζ) be taken so that the axis of ξ passes through the node and the axis of ζ through the N pole of the orbit, the transformation scheme 1 s (cf § 65)

	x	y	2
ξ	$\cos \Omega^{\prime}$	$\sin \Omega^{\prime}$	0
$\boldsymbol{\eta}$	$-\sin \Omega^{\prime} \cos \imath^{\prime}$	$\cos \Omega^{\prime} \cos \imath^{\prime}$	$\sin \imath^{\prime}$
ζ	$\sin \Omega^{\prime} \sin \imath^{\prime}$	$-\cos \Omega^{\prime} \sin \imath^{\prime}$	$\cos \imath^{\prime}$

Hence in the plane of the orbit,

$$
\begin{aligned}
& \zeta=x \sin \Omega^{\prime} \sin \imath^{\prime}-y \cos \Omega^{\prime} \sin \imath^{\prime}+z \cos \imath^{\prime}=0 \\
& \zeta=x \sin \Omega^{\prime} \sin \imath^{\prime}-y \cos \Omega^{\prime} \sin \imath^{\prime}+z \cos \imath^{\prime}=0
\end{aligned}
$$

giving for the determination of Ω^{\prime} and \imath^{\prime}

$$
\begin{equation*}
\frac{\sin \Omega^{\prime} \sin \imath^{\prime}}{y z-y z}=\frac{\cos \Omega^{\prime} \sin \imath^{\prime}}{x z-x z}=\frac{\cos \imath^{\prime}}{x y-x y} \tag{6}
\end{equation*}
$$

Also, if u is the argument of latitude (or rather of declination),
and

$$
\begin{equation*}
\xi=r \cos u=x \cos \Omega^{\prime}+y \sin \Omega^{\prime} \tag{7}
\end{equation*}
$$

$\eta=-x \sin \Omega^{\prime} \cos \imath^{\prime}+y \cos \Omega^{\prime} \cos \imath^{\prime}+z \sin \imath^{\prime}$

$$
\begin{equation*}
r \sin u=z \operatorname{cosec} i^{\prime} \tag{8}
\end{equation*}
$$

by the above equation for ζ Sumilarly, if F is the velocity and χ the angle between V and the radius vector produced,

$$
\begin{align*}
& \boldsymbol{\xi}=V \cos (u+\chi)=x \cos \Omega^{\prime}+y \sin \Omega^{\prime} \tag{9}\\
& \boldsymbol{\eta}=V \sin (u+\chi)=z \operatorname{cosec} \imath^{\prime} \tag{10}
\end{align*}
$$

Thus V and χ, as well as r and u, are determmed Now if w is the true anomaly at the point, the polar equation of the orbit gives

$$
\begin{align*}
p & =r(1+e \cos w) \tag{11}\\
p \cot \chi & =r e \sin w \tag{12}
\end{align*}
$$

since $\tan \chi=r d w / d r \quad$ But the cons ${ }^{+}$ant of areas is

$$
\begin{equation*}
h=\operatorname{Vr} \sin \chi=\sqrt{ }(\mu p)=k \sqrt{ } p \tag{13}
\end{equation*}
$$

grong p and hence e and w The mean distance a can be deduced from the known values of p and e, or durectly from the relation

$$
\begin{equation*}
V^{2}=2 \mu / r-\mu / a \tag{14}
\end{equation*}
$$

and the mean motion n from the equation $\mu=k^{2}=n^{2} a^{3} \quad$ Also the element σ^{\prime} is given by $\sigma^{\prime}=\Omega^{\prime}+u-w$ Finally the epoch of perihelion passage is determined by the two equations

$$
\begin{align*}
\tan \frac{1}{2} E & =\sqrt{\left(\frac{1-e}{1+e}\right) \tan \frac{1}{2} w} \\
n(t-T) & =E-e \sin E \tag{15}
\end{align*}
$$

E being the eccentric anomaly at the point of the orbit observed
74 We now return to the consideration of the solution of equations (3) and (4), following the method of Charher, which gives the clearest view of the geometrical conditions of the problem The first of these equations is based on the assumption that the point of observation is moving under gravity about the Sun The point which so moves is in reality the centre
of gravity of the Earth-Moon system and, strictly speaking, the observations should be reduced to this point and not the centre of the Earth But this is a matter of detall which our immediate purpose does not require us to stop and consider Similarly we may neglect the mass of the Earth as well as that of the planet and put $R=1$ Then the equations become simply

$$
\begin{align*}
l \rho & =1-1 / r^{3} \tag{16}\\
r^{2} & =1+2 \rho \cos \psi+\rho^{2} \tag{17}
\end{align*}
$$

where l and ψ are known The position of the planet becomes known when either ρ or r has been found, and it is simpler to eliminate ρ Thus
or

$$
l^{2} r^{s}=l^{2} \not{ }^{\prime}+2 l r^{3}\left(r^{3}-1\right) \cos \psi+\left(r^{3}-1\right)^{2}
$$

$$
\begin{equation*}
l^{2} r^{s}-\left(l^{2}+2 l \cos \psi+1\right) r^{8}+2(l \cos \psi+1) r^{3}-1=0 \tag{18}
\end{equation*}
$$

Now the coefficient of r^{3} is

$$
\begin{aligned}
2(l \cos \psi+1) & =\left\{\left(1-1 / r^{3}\right)\left(r^{2}-1-\rho^{2}\right)+2 \rho^{2}\right\} / \rho^{2} \\
& =\left\{\left(1-1 / r^{3}\right)\left(r^{2}-1\right)+\rho^{2}\left(1+1 / r^{3}\right)\right\} / \rho^{2}
\end{aligned}
$$

which is obviously positive, whether r is greater or less than 1 And the coefficient of r^{6} is essentially negative Hence, by Descartes' rule of signs, there are at most three positive roots and one negative root The latter certamly exists because the last term is negative (the equation being of even degree), and two positive roots must satisfy the equation, namely +1 (corresponding to the Earth's orbit) and the root required There must be a fourth real root, and therefore in all three real and positive roots, one real and negative root and four imagnary roots But the third positive root may or may not satisfy the problem

Now by (16) r is greater or less than 1 according as l is positive or negative If then the two roots which are in question lie on opposite sides of 1 , the spurious root can be detected and a unique solution of the problem can be found But if they lie on the same side, they cannot be discriminated between in this way, and an ambigurty exists If we divide (18) by ($r-1$), we obtann

$$
f(r)=l^{2} r^{6}(r+1)-\left(2 l r^{3} \cos \psi+r^{3}-1\right)\left(r^{2}+r+1\right)=0
$$

Thus

$$
f(0)=+1, \quad f(+1)=2 l(l-3 \cos \psi)
$$

so that the roots are separated by +1 , and a unique solution exists, if $l(l \rightarrow 3 \cos \psi)$ is negative

75 The geometrical interpretation is instructive The equation (16) for dufferent values of the parameter l represents a family of curves in bipolar coordunates, the poles being E (the Earth) for ρ and S (the Sun) for r The planet hes at the intersection of one of these curves with a straight line

drawn through E in a given direction But there may be two intersections, and this will happen of $f(+1)$ or

$$
\rho^{2} l(l-3 \cos \psi)=\left(1-1 / r^{3}\right)\left\{1-1 / r^{3}+\frac{3}{2}\left(1+\rho^{2}-r^{2}\right)\right\}
$$

is positive This expression changes sign when we cross the circle $r=1$ and again when we cross the curve

$$
1-1 / r^{3}+\frac{3}{2}\left(1+\rho^{2}-r^{2}\right)=0
$$

Putting $\rho^{2}=1+r^{2}-2 r \cos \phi$ we get for the polar equation of this curve with the origin at S

$$
\begin{equation*}
4-3 r \cos \phi=1 / r^{3} \tag{19}
\end{equation*}
$$

or in rectangular coordinates,

$$
r^{s}(4-3 x)=1
$$

showing that the curve has an asymptote $3 x=4$ Moving the orign to E we find at once that E is a node, the tangents being $y= \pm 2 a$ The whole curve consists of a loop crossing the $S E$ axis at the point $r=5604, \phi=\pi$, and an asymptotic branch, and is shown as the "limiting" curve in the figure The plane of the figure is that containng S, E and P (the planet), it is only necessary to show the curves on one side of the axis because this is one of symmetry

A few curves of the family (16) are also shown in the figure, for values of l which inducate sufficiently the different forms When $l=0$ we have the circle $r=1$, called here the "zero" circle It is evident that when l is negative $r<1$ and the curve hes entirely within the zero carcle, while when l is positive $r>1$ and the curve hes entirely outside this circle When l has a large negative value, the curve consists of a simple loop surrounding S and an isolated conjugate point at E As $-l$ decreases from ∞ the loop increases in size until, when $l=-3$, the loop extends to E, where there is a cusp Afterwards as l approaches 0 the loop, still passung through E, approximates more and more closely to the zero circle

When l is positive the form of the curves is rather more complicated It must be remarked that l cannot be greater than +3 For

$$
l=\left(r^{3}-1\right) / r^{3} \rho=\left(r^{-1}+r^{-2}+r^{-3}\right)(r-1) / \rho
$$

But $r>1$ and $r-1<\rho \quad$ Hence the limit is established and we have only to follow the values of l from +3 to 0 At first the curve consists of a small loop passing through E As the value of l falls the loop expands, tending to enfold the zero circle Finally, when $l=+02959$, it reaches the axis agan and forms a node on the further side of S As the value of l falls still further the curve breaks up into two distinct loops The larger continues to expand outwards at all points and recedes to infinity, while the inner, always passing through E, contracts until finally it becomes the zero circle These features in the development of the family of curves will be evident in the figure

It will now be apparent that the limiting curve and the zero circle divide space into certain regions and that the solution of the problem of determining an orbit by the method indicated is unique or not according to the region in which the planet happens to be Thus we distinguish four cases
(1) If the planet is within the loop of the limiting curve there are two solutions
(2) In the space between the loop and the zero circle the solution is unique
(3) Outside the zero circle and to the left of the asymptotic branch of the lumiting curve there are again two solutions
(4) If the planet lies to the right of the asymptotic branch of the limiting curve only one solution is possible It happens that newly discovered minor planets are usually observed near opposition and therefore this is the case which most commonly occurs

76 There is another curve which has considerable importance in the problem of determining an orbit by a method of approximation and to which Charher has given the name of the "singular" curve We may find it thus If we eliminate r between the equations (16) and (17) we have

$$
l \rho=1-\left(1+2 \rho \cos \psi+\rho^{2}\right)^{-\frac{3}{2}}
$$

which is an equation giving the values of ρ for a line drawn through E in the durection ψ Two of the values become equal and the line touches the curve (16) if

$$
\begin{aligned}
l & =3(\cos \psi+\rho)\left(1+2 \rho \cos \psi+\rho^{2}\right)^{-\frac{5}{2}} \\
& =3(\cos \psi+\rho) / r^{s}
\end{aligned}
$$

Hence the locus of the points of contact of the tangents from E to the famly of curves (16) is

$$
\left(1-1 / r^{2}\right) / \rho=3(\cos \psi+\rho) / r^{s}
$$

or

$$
2 r^{2}\left(r^{3}-1\right)=3\left(\rho^{2}+r^{2}-1\right)
$$

or agam

$$
\begin{equation*}
3 \rho^{2}=2 r^{5}-5 r^{2}+3 \tag{20}
\end{equation*}
$$

This is the equation of the singular curve If we change from bipolar coordmates to the polar equation with the origin at S, we obtain

$$
3\left(1-2 r \cos \phi+r^{2}\right)=2 r^{5}-5 r^{2}+3
$$

or

$$
\begin{equation*}
r^{3}=4-3 \cos \phi / r \tag{21}
\end{equation*}
$$

Comparison of this form with the equation (19) of the limiting curve shows at once that these two curves are the inverse of one another with respect to
the zero circle From this relation the form of the singular curve, which is shown in figure 3, becomes apparent

The importance of the singular curve arises thus In general a line through E meets a curve of the famıly (16) either in one point (besides E) or in two distinct points In the latter case the coordinates of the planet are regular functions of the time and can be expanded in powers of the time, but each is expressed by two distinct series between which it is impossible to discriminate When, however, the planet is situated at a point on the singular curve, the two distinct series coalesce and each point of the singular curve corresponds to a branch point where we may expect the coordmates of the planet to be no longer regular functions of the time This is in fact the case Charler obtained the equation of the singular curve by noticing that along this curve expansion of the coordinates as power senies in the time ceases to be possible

77 If the masses of the Earth and of the planet be neglected, (2) may be written in the form

$$
\begin{equation*}
\frac{-\rho}{\Delta_{1}}=\frac{2 \rho}{\Delta_{2}}=\frac{h^{2}\left(1 / r^{3}-1 / R^{3}\right)}{\Delta_{3}} \tag{22}
\end{equation*}
$$

where $\Delta_{1}, \Delta_{2}, \Delta_{3}$ represent three determinants and $l=\Delta_{3} / k^{\circ} \Delta_{1}$ It is clear, as we have already noticed, that $r<R$ if l is negative and $r>R$ if l is positive Now the equation of the plane of the great circle tangent to the apparent orbit at (a, b, c) is

$$
\left|\begin{array}{lll}
a & a & x \tag{23}\\
b & b & y \\
c & c & z
\end{array}\right|=0
$$

The coordınates of the Sun on the celestal sphere are $(-X / R,-Y / R,-Z / R)$ and of a neighbouring point to (a, b, c) on the apparent orbit ($a+a t+\frac{1}{2} a t^{2}$, $b+, c+$) Hence the ratio of the perpendiculars from these points to the above plane is $-\Delta_{\mathrm{l}} / R-\frac{1}{2} t^{2} \Delta_{3}=-2 / l k^{2} t^{2} R \quad$ Thus l is negative if the Sun and the arc of the planet's orbit he on the same side of the great circle touching the orbit, and positive of the Sun and the arc are on opposite sides In the first case $r<R$, in the second $r>R$ Hence we have the theorem due to Lambert, which may be expressed by saying that an are of the orbit of an inferior planet appears concave to the corresponding position of the Sun, but the arc described by a superior planet appears convex This test makes it immediately apparent whether a planet or the Earth is the nearer to the Sun

It may happen that Δ_{3} vamshes It is then necessary to express the coordinates of neighbouring points on the orbit to the third order
$\left(a \pm a t+\frac{1}{2} d t^{2} \pm!a t^{3}, b \pm \quad, c \pm \quad\right.$) The result of substituting in the lefthand stde of (23) is

$$
\left.\pm \frac{1}{6} t^{3} \begin{array}{lll}
a & a & a \\
& b & b \\
c & b \\
c & c & c
\end{array} \right\rvert\,
$$

and the double sign shows that the curve crosses the tangent great circle In the langu igt it plane geometry theie is a point of mflexion on the apparent irbit Nur if $د$ vanshes either $t=R$ or $\Delta_{1}=0$ Thus such a point of inteviun ixcurs either when a comet reaches the same distance from the Sun as the Earth "r π hen the great circle which touches the orbit of a planet passes through the position of the Sun

78 When the apparent urbit of a planet reaches a stationary point the curve either crosses itself and torms a loop, or without ciossing itself it pursues a twisted path, passing through a point of inflexion At such a point, as we haw just seen the tangent in general passes through the Sun There is a related theorent, due to Klinkerfues, which apphes to the case of a loop Let P, P_{n}, P_{s} be three positions of the planet in space, E_{1}, E_{2}, E_{3} the corre-- punding p pisitiuns of the Earth and S the position of the Sun If the first and third positions correspond to the double point on the loop, $E_{1} P_{1}$ and $E_{3} P_{3}$ art parallel and lie in une plane Let $S P_{2}$ meet the chord $P_{1} P_{3}$ in p_{2} and $S E_{2}$ meet th. chord $E E_{3}$ in e_{-}. If t_{1} is the time taken to describe $P_{1} P_{2}$ or $E_{1} E_{2}$ and t the time along $P_{-} P$, or $E_{2} E_{3}, t_{1} t_{2}$ is the ratio of the sectors $S P_{1} P_{2}$, $S P_{.} P_{3}$ or ury nearly the ratio of the triangles $S P_{1} p_{3}, S p_{2} P_{3}$, that is P. . p. pr But smilarly $t_{1} t_{2}$ is nearly equal to the ratio $E_{1} e_{3} e_{2} E_{3}$ Hence $P_{1} P_{0}$ and $E_{1} E_{0}$ are dinded by p_{2} and e_{2} in approximately the same ratio and theretore $e_{2} p_{2}$ is parallel to $E_{1} P_{1}$ and $E_{3} P_{3}$ Consequently the three planes $E S P_{1}, E_{2} e_{2} S p_{3} P_{2}, E_{3} S P_{3}$ have a common line of intersection, namely the line thruugh S parallel to $E_{1} P_{1}$ and $E_{3} P_{3}$ But on the geocentric sphere these three planes correspond to three intersecting great curcles The first and third intersect in P, the double point on the apparent orbit Hence the great circle joining any intermediate point on the loop to the corresponding pusition of the Sun also passes through the double point, at ledst very approximately

It may be inferred then that if any three points on such a loop be joined tu, the curresponding positions of the Sun, the three great circles will meet in une pint which is also a point on the apparent orbit

79 There is some interest in finding the geometrical meaning of the thrre detrrminants $\Delta_{1}, \Delta_{2}, \Delta_{3}$ in (2) or (22) Bruns has noticed that $\Delta_{0}=V^{3} h$, where h is the geodetic curvature of the apparent orbit on the sphert and V the velocity in this orbit at the point (a, b, c), so that

$$
V^{2}=a^{2}+b^{0}+c^{2}
$$

But we shall now express these determinants in terms of the small circle of closest contact or circle of curvature This passes through the points $(a, b, c),(a+a t, b+b t, c+c t)$ and $\left(a+a t^{\prime}+\frac{1}{2} a t^{\prime 2}, b+, c+\right)$, and the equation of its plane is

$$
\left|\begin{array}{llll}
x & y & z & 1 \\
a & b & c & 1 \\
a & b & c & 0 \\
a & b & c & 0
\end{array}\right|=0
$$

or

$$
\begin{equation*}
x(b c-b c)+y(c a-c a)+z(a b-a b)=\Delta_{3} \tag{24}
\end{equation*}
$$

Now

$$
\begin{aligned}
a^{2}+b^{2}+c^{2} & =1 \\
a a+b b+c c & =0 \\
a a+b b+c c & =-V^{2}
\end{aligned}
$$

by successive differentiation Solving these as linear equations in a, b, c, we obtain

$$
a \Delta_{3}=b c-b c-V^{2}(b c-b c)
$$

and two similar equations $\operatorname{But}(a / V, b / V, c / V)$ are the durection cosines of the point P_{1} on the tangent 90° from (a, b, c), and the pole of the tangent is $\left(a_{0}, b_{0}, c_{0}\right)$ where

$$
V a_{0}=b c-b c, \quad V b_{0}=c a-c a, \quad V c_{0}=a b-a b
$$

so that

$$
b c-b c=a \Delta_{3}+\nabla^{3} a_{0}
$$

and

$$
\Sigma(b c-b c)^{2}=\Delta_{s}{ }^{2}+V^{6}
$$

The equation of the circle of curvature (24) becomes then

$$
\left(a \Delta_{3}+a_{0} V^{3}\right) x+\left(b \Delta_{3}+b_{0} V^{3}\right) y+\left(c \Delta_{3}+c_{0} V^{3}\right) z=\Delta_{3}
$$

Hence, if ω is the angular radius of this circle,

$$
\cos ^{2} \omega=\Delta_{3}^{2} /\left(\Delta_{s}^{2}+V^{6}\right)
$$

and therefore

$$
\Delta_{3}=V^{3} \cot \omega
$$

This then is the geometrical meaning of the third determinant
80 Next we take Δ_{2} If (A, B, C) are the geocentric direction cosmes of the Sun, $X=-A R, Y=-B R, Z=-C R$ and

$$
\begin{aligned}
\Delta_{2} & =-R\{A(b c-b c)+B(c a-c a)+C(a b-a b)\} \\
& =-R \frac{d}{d t}\{A(b c-b c)+B(c a-c a)+C(a b-a b)\} \\
& =-R \frac{d}{d t}\left\{V\left(A a_{0}+B b_{0}+C c_{0}\right)\right\} \\
& =-R V\left(A a_{0}+B b_{0}+C c_{0}\right)-R V\left(A a_{0}+B b_{0}+C c_{0}\right)
\end{aligned}
$$

84 Comditıons for the Determination of an Elliptıc Orbit [cH VII
Here A B, C are of course constants Now (a_{0}, b_{0}, c_{0}) is the pole P_{0} of the tangent at $P(n, b \&)$ The are $P P_{0}$ passes through the centre of the circle of cursature and while P is mitially describing a circle of angular radius ω about this ceriter P is describing a circle of radius $90^{\circ}-\omega$ about the same efntre It the eixcit of P, which is in the direction of the pole of $P P_{0}$ 4pesitr P is ${ }^{\prime}$

$$
V^{\prime} \quad, \quad, a=V^{\prime} s, n \omega, \quad \text { a, } V=-u \quad l^{r}, \quad b_{0} \quad V^{\prime}=-b / V, \quad c_{0} / V^{\prime}=-c / V
$$

Hance

$$
\Delta_{-}=د V V+R V c o t \omega(A \alpha+B b+C c)
$$

Agun

$$
\begin{aligned}
د & =-R V\left(A a_{0}-B b_{j}+C c_{0}\right) \\
& =-R V \cos N P_{0}=-R V \sin \tau
\end{aligned}
$$

She "as the pustwo of the Sun in the sphere, and τ the perpendicular arc from : to the tangent $P P$ a P to the apparent orbit (positive of drawn from tht - ithe sult of $P F_{1}$ an P_{0} or the centre of curvature) Also

$$
A c-B b+C^{\prime} c=V \cos S P_{1}=V \sin \nu
$$

where : , the fryend eslar are from s to the normal $P P_{0}$ to the apparent $1, w_{1}, \ldots$ at P : proltise if $u \times a w n$ from the same side of $P P_{0}$ as P_{1}) Hence

$$
د_{-}=-R V^{\prime} \sin \tau+R V^{\gamma^{2}} \cot \omega \sin \nu
$$

Th - +m. athr trical agmificance of the three determunants has been dr try in and an may write (2) in the form

$$
R V_{s}-=\frac{2 \rho}{R\left(I^{2} \cot \omega \sin \nu-V \sin \tau\right)}=\frac{\mu / r^{3}-\mu_{0} / R^{3}}{V^{3} \cot \omega}
$$

 At prit icala hrirdgr of the simple quantities V, V, τ, ν and ω, which can

$$
l=\Delta_{\mathrm{s}} l^{2} \Delta_{4}=-V^{2} \cot \omega, k^{0} R \sin \tau
$$

$$
I^{2}<3 h^{2} R \mid \tan \omega \sin \tau
$$

CHAPTER VIII

DETERMINATION OF AN ORBIT METHOD OF GAUSS

81 Since a planetary orbit requires for its complete specification sux elements, it is to be expected that three positions of the planet, ie three pairs of coordnates, observed at known times, will suffice to determine its path And this is in general true, though there are exceptional circumstances in which further observations may be necessary The formulae are a little simpler when ecliptic coordınates are employed, and though this is not essentral we shall take as the data of the problem

the times of observation	t_{1}, t_{2}, t_{3}
the longitudes of the planet	$\lambda_{1}, \lambda_{2}, \lambda_{3}$
the latitudes of the planet	$\beta_{1}, \beta_{2}, \beta_{3}$
the longitudes of the Earth	L_{1}, L_{2}, L_{3}
the Earth's radu vectores	R_{1}, R_{2}, R_{3}

The angular coordinates are referred to a fixed equinox which will apply to the resulting elements The Earth's long1tude (which differs by 180° from the Sun's longitude) and radius vector can be derived from the Nautcaal Almanac or other national ephemeris the Earth's latitude can be neglected, or, if desired, allowed for by using the method of the locus fictus (§69)

At the time t_{2} let r_{2} be the helocentric distance of the planet and ρ_{t} its geocentric distance Referred to a fixed system of rectangular axes through the Sun let $\left(x_{2}, y_{2}, z_{2}\right)$ be the coordinates of the planet, $\left(A_{2}, B_{2}, C_{2}\right)$ the direction cosines of R_{r} and (a_{i}, b_{2}, c_{2}) the direction cosines of ρ_{2}, so that

$$
x_{2}=a_{2} \rho_{2}+A_{2} R_{2}, \quad y_{2}=b_{2} \rho_{2}+B_{2} R_{4}, \quad z_{2}=c_{2} \rho_{2}+C_{2} R_{2}
$$

82 Since the three positions of the planet lie in a plane passing through the Sun

$$
\left|\begin{array}{lll}
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2} \\
x_{3} & y_{3} & z_{3}
\end{array}\right|=0
$$

or

$$
x_{1}\left(y_{2} z_{3}-y_{3} z_{2}\right)-x_{2}\left(y_{1} z_{3}-y_{3} z_{1}\right)+x_{3}\left(y_{1} z_{2}-y_{2} z_{1}\right)=0
$$

But $\left(y_{2} z_{3}-y_{3} z_{2}\right),\left(y_{1} z_{3}-y_{3} z_{1}\right)$ and $\left(y_{1} z_{0}-y_{2} z_{1}\right)$ are the projections on the $y z$ plane of the areas $\left[r_{2} r_{3}\right],\left[r_{3} r_{1}\right]$ and $\left[r_{1} r_{2}\right]$ Hence

$$
x_{1}\left[r_{2} r\right]-x_{2}\left[r_{1} r_{3}\right]+x_{3}\left[r_{1} r_{2}\right]=0
$$

or

$$
\begin{equation*}
\left[r_{2} r_{3}\right]\left(a_{1} \rho_{1}+A_{1} R_{1}\right)-\left[r_{1} r_{3}\right]\left(a_{2} \rho_{2}+A_{2} R_{-}\right)+\left[\gamma_{1} r_{2}\right]\left(a_{3} \rho_{3}+A_{3} R_{3}\right)=0 \tag{1}
\end{equation*}
$$

And similarly

$$
\begin{align*}
& {\left[r_{2} r_{2}\right]\left(b_{1} \rho_{1}+B_{1} R_{2}\right)-\left[r_{1} r_{3}\right]\left(b_{0} \rho_{2}+B_{2} R_{2}\right)+\left[r_{1} r_{2}\right]\left(b_{3} \rho_{3}+B_{3} R_{3}\right)=0} \tag{2}\\
& {\left[1_{2} r_{3}\right]\left(c_{1} \rho_{1}+C_{1} R_{1}\right)-\left[r_{1} r_{3}\right]\left(c_{2} \rho_{2}+C_{2} R_{2}\right)+\left[r_{1} r_{2}\right]\left(c_{3} \rho_{3}+C_{3} R_{3}\right)=0} \tag{3}
\end{align*}
$$

These are the fundamental equations expressing the condition for a plane orbit From them one pair of the six quantities $\rho_{\imath}, R_{\imath}$ can be elıminated in fifteen ways The result immedately required is obtanned by eliminating ρ_{1} and ρ_{3}, namely
$\left[r_{2} r_{3}\right] R_{1} a_{1}, A_{1}, a_{3_{1}}-\left[r_{1} r_{3}\right] \rho_{2}\left|a_{3}, a_{2}, a_{3}\right|-\left[1_{1}{ }_{1}\right] R_{2_{1}} a_{1}, A_{2}, a_{3}\left|+\left[r_{1} r_{2}\right] R_{3}\right| a_{1}, A_{3}, a_{3} \mid=0$ where the determinants are indicated by their first lines, from which the second and third lines are to be obtaned by changing the letters without changing the suffixes, eg

$$
\left|a_{1}, A_{1}, a\right|=\left|\begin{array}{ccc}
a_{1} & A_{1} & a_{3} \\
b_{1} & B_{1} & b_{3} \\
c_{1} & C_{1} & c_{3}
\end{array}\right|
$$

We have now to notice that these determinants are proportional to the perpendiculars to the plane

$$
\left|\begin{array}{lll}
a_{1} & x & a_{3} \\
b_{1} & y & b_{5} \\
c_{1} & z & c_{3}
\end{array}\right|=0
$$

or the plane passing through the points $\left(a_{1}, b_{1}, c_{1}\right),\left(a_{3}, b_{3}, c_{3}\right)$ and the origin, from the points $\left(A_{1}, B_{1}, C_{1}\right),\left(a_{2}, b_{2}, c_{2}\right),\left(A_{2}, B_{2}, C_{2}\right)$ and $\left(A_{3}, B_{3}, C_{9}\right)$, and these are the representative points of the durections of $R_{1}, \rho_{2}, R_{2}, R_{3}$ on the sphere of unit radus The perpendiculars to the plane are therefore the sines of the perpendicular arcs to the great circle through $\left(a_{1}, b_{1}, c_{1}\right),\left(a_{3}, b_{3}, c_{3}\right)$ and of these arcs are $B_{1}^{\prime}, \beta_{2}^{\prime}, B_{2}^{\prime}, B_{3}^{\prime}$ respectively (due regard being paid to sign) our equation becomes

$$
\begin{equation*}
\left[r_{1} r\right] \rho_{2} \sin \beta_{2}^{\prime}=\left[r_{3} r_{3}\right] R_{1} \sin B_{1}^{\prime}-\left[r_{1} r_{3}\right] R_{2} \sin B_{2}^{\prime}+\left[r_{1} r_{2}\right] R_{3} \sin B_{3}^{\prime} \tag{4}
\end{equation*}
$$

83 The points on the sphere just named are E_{1}, E_{2}, E_{3}, representing the heliocentric directions of the Earth and lying on the ecliptic, and P_{1}, P_{2}, P_{3}, representing the geocentric directions of the planet The great circle mentioned is $P_{1} P \quad$ Let this circle intersect the ecliptic in longtude H_{2} and at the inclination η_{2} Then we have the same relation between any one of the perpendicular arcs and the longitude (reckoned from H_{2}) and latitude of the point from which it is drawn as exists between the latitude of a point and its
right ascension and declination, the obliquity of the ecliptic being replaced by η_{2} That is to say,

$$
\begin{array}{ll}
\sin \beta_{2}^{\prime}=\cos \eta_{2} \sin \beta_{2}-\sin \eta_{2} \cos \beta_{2} \sin \left(\lambda_{2}-H_{2}\right) \\
\sin B_{1}^{\prime}= & -\sin \eta_{2} \sin \left(L_{1}-H_{2}\right) \\
\sin B_{2}^{\prime}= & -\sin \eta_{2} \sin \left(L_{2}-H_{2}\right) \\
\sin B_{3}^{\prime}= & -\sin \eta_{2} \sin \left(L_{3}-H_{2}\right)
\end{array}
$$

and as regards the points P_{1}, P_{3}

$$
\begin{aligned}
& 0=\cos \eta_{2} \sin \beta_{1}-\sin \eta_{2} \cos \beta_{1} \sin \left(\lambda_{1}-H_{2}\right) \\
& 0=\cos \eta_{2} \sin \beta_{3}-\sin \eta_{2} \cos \beta_{3} \sin \left(\lambda_{3}-H_{2}\right)
\end{aligned}
$$

The latter give, by addition and subtraction,

$$
\begin{aligned}
& 2 \tan \eta_{2} \sin \left\{\frac{1}{2}\left(\lambda_{1}+\lambda_{2}\right)-H_{2}\right\}=\sin \left(\beta_{1}+\beta_{3}\right) / \cos \beta_{1} \cos \beta_{3} \cos \frac{1}{2}\left(\lambda_{3}-\lambda_{1}\right) \\
& 2 \tan \eta_{2} \cos \left\{\frac{1}{2}\left(\lambda_{1}+\lambda_{2}\right)-H_{2}\right\}=\sin \left(\beta_{3}-\beta_{1}\right) / \cos \beta_{1} \cos \beta_{3} \sin \frac{1}{2}\left(\lambda_{3}-\lambda_{1}\right)
\end{aligned}
$$

and determine η_{2} and H_{2} We now put

$$
c_{1}=-R_{1} \sin B_{1}^{\prime} / \sin \beta_{2}^{\prime}, \quad c_{2}=-R_{2} \sin B_{2}^{\prime} / \sin \beta_{2}^{\prime}, \quad c_{3}=-R_{3} \sin B_{3}^{\prime} / \sin \beta_{2}^{\prime}
$$

and

$$
n_{1}=\left[r_{2} r_{3}\right] /\left[\eta_{1} 1_{3}\right], \quad n_{s}=\left[r_{1} r_{2}\right] /\left[r_{1} r_{3}\right]
$$

The equation (4) then takes the simple form

$$
\rho_{2}=-c_{1} n_{1}+c_{2}-c_{3} n_{3}
$$

Now this is a purely geometrical relation involving the intersections of any plane through the Sun with three lines drawn in given directions through the positions of the Earth If we imagine the plane to move into concidence with the ecliptic, c_{1}, c_{2}, c_{3} remain unaltered while in the limit $\rho_{1}, \rho_{2}, \rho_{3}$ vanush and r_{1}, r_{2}, r_{3} become concident with R_{1}, R_{2}, R_{3} Hence if we put

$$
\begin{aligned}
& N_{1}=\left[R_{2} R_{3}\right] /\left[R_{1} R_{3}\right]=R_{2} \sin \left(L_{3}-L_{2}\right) / R_{1} \sin \left(L_{3}-L_{1}\right) \\
& N_{3}=\left[R_{1} R_{2}\right] /\left[R_{1} R_{3}\right]=R_{2} \sin \left(L_{2}-L_{1}\right) / R_{3} \sin \left(L_{3}-L_{1}\right)
\end{aligned}
$$

the equation

$$
0=-c_{1} N_{1}+c_{2}-c_{3} N_{3}
$$

must be an identity, and this can be verified Hence by the elimination of c_{2}

$$
\begin{equation*}
\rho_{2}=c_{1}\left(N_{1}-n_{1}\right)+c_{3}\left(N_{3}-n_{3}\right) \tag{5}
\end{equation*}
$$

which is the required equation for ρ_{2}
84. Since β_{2}^{\prime} is the perpendicular are from P_{2} to $P_{1} P_{3}$ it 19 geometrically evident that if the observed arcs of the planet's orbit are of the first order of small quantities (and we assume them to be small) β_{2}^{\prime} is a quantity of the second order Hence the equation (4) shows that if we are to obtain a value of ρ_{2} which is a real approximation and not merely illusory we must at the outset employ values of the ratios of the triangles which are correct to the
second order in the time intervals Accordingly we use (41) of $\S 61$ and neglect the terms of higher order than the second, that is to say,
where

$$
\begin{align*}
& n_{1}=\frac{\tau_{1}}{\tau_{2}}\left\{1+\frac{\mu}{6 r_{2}^{3}}\left(\tau_{2}^{2}-\tau_{1}^{2}\right)\right\} \tag{6}\\
& n_{3}=\frac{\tau_{3}}{\tau_{2}}\left\{1+\frac{\mu}{6 r_{2}^{3}}\left(\tau_{2}^{2}-\tau_{3}^{2}\right)\right\} \tag{7}
\end{align*}
$$

$$
\tau_{1}=t_{3}-t_{2}, \quad \tau_{2}=t_{3}-t_{1}, \quad \tau_{3}=t_{2}-t_{1}
$$

It is necessary to neglect the mass of the planet and put $\mu=k^{2}$ this can safely be done in calculating a preliminary orbit, for which the perturbations are entirely neglected The equation (5) for ρ_{2} therefore becomes

$$
\begin{align*}
\rho_{2}= & c_{1}\left(N_{1}-\frac{\tau_{1}}{\tau_{2}}\right)+c_{3}\left(N_{3}-\frac{\tau_{3}}{\tau_{2}}\right) \\
& -\frac{k^{2} \tau_{1} \tau_{3}}{6 r_{2}^{s}}\left\{c_{1}\left(1+\frac{\tau_{1}}{\tau_{2}}\right)+c_{3}\left(1+\frac{\tau_{3}}{\tau_{8}}\right)\right\} \\
= & k_{0}-l_{0} / r_{2}^{3} \tag{8}
\end{align*}
$$

where k_{0}, l_{0} are completely deteimined quantities But if δ_{s} is the angle ($<180^{\circ}$) between ρ_{z} and R_{2} produced,
where

$$
\begin{equation*}
r_{2}^{2}=R_{2}^{2}+\rho_{2}^{2}+2 R_{2} \rho_{2} \cos \delta_{2} \tag{9}
\end{equation*}
$$

$$
\cos \delta_{2}=\cos P_{2} E_{2}=\cos \beta_{2} \cos \left(\lambda_{2}-L_{2}\right)
$$

If now ρ_{2} be eliminated from (8), which corresponds to the definite form of Lambert's theorem (§77), and (9), an equation of the eighth degree in r_{2} results The nature of the roots of this form of equation has already been discussed in § 74 But Gauss replaced the eliminant by a much sumples equation which is easily found We have

$$
\begin{equation*}
\frac{r_{2}}{\sin \delta_{2}}=\frac{R_{2}}{\sin z}=\frac{\rho_{\mathrm{q}}}{\sin -\left(\delta_{2}-z\right)} \tag{10}
\end{equation*}
$$

where z is the angle subtended by R_{2} at the planet in its intermediate observed position Hence by (8)
or

$$
\frac{R_{2} \sin \left(\delta_{2}-z\right)}{\sin z}=k_{0}-\frac{l_{0} \sin ^{3} z}{R_{2}{ }^{3} \sin ^{3} \delta_{3}}
$$

$$
\begin{aligned}
& l_{0} \sin ^{4} z / R_{2}^{3} \sin ^{3} \delta_{2}=-R_{2} \sin \left(\delta_{2}-z\right)+k_{0} \sin z \\
& \text { we put }
\end{aligned}
$$

and therefore of we put

$$
\begin{aligned}
m_{0} \cos q & =k_{0}+R_{2} \cos \delta_{2} \\
m_{0} \sin q & =R_{2} \sin \delta_{2} \\
m m_{0} & =l_{0} / R_{2}^{3} \sin ^{3} \delta_{2}
\end{aligned}
$$

where m_{0} is given the same sign as l_{0}, we have the simple form

$$
\begin{equation*}
m \sin ^{4} z=\sin (z-q) \tag{11}
\end{equation*}
$$

and this is the equation of Gauss This form of equation does not avoid the possibility of an ambiguity arising from two distinct roots, which is inherent in the problem But when only one appropriate root exists, it is easily found by successive approximation In the most common case, that of a minor planet observed near opposition, $z-q_{18}$ small and a first approximate value is given by

$$
z_{1}=q+m \sin ^{4} q
$$

When z is found the corresponding tirst approximations to ρ_{2} and r_{2} are given by (10)

85 We have now to find the corresponding values of ρ_{1} and ρ_{3} For this purpose we return to the equations (1), (2) and (3), and eliminate ρ_{s} and R_{3} The result can be written down at once in the form $\left[r_{2} r_{3}\right] \rho_{1}\left|a_{1}, a_{3}, A_{3}\right|+\left[r_{2} r_{3}\right] R_{1}\left|A_{1}, a_{3}, A_{3}\right|=\left[r_{1} r_{3}\right] \rho_{2}\left|a_{2}, a_{3}, A_{3}\right|+\left[r_{1} r_{3}\right] R_{2}\left|A_{2}, a_{3}, A_{3}\right|$ or

$$
n_{1} \rho_{1}\left|a_{1}, a_{3}, A_{3}\right|+n_{1} R_{1}\left|A_{1}, a_{3}, A_{3}\right|=\rho_{2}\left|a_{2}, a_{3}, A_{3}\right|+R_{2}\left|A_{2}, a_{3}, A_{3}\right|
$$

where the determinants as before are represented by their first lines, the other rows being obtaned by change of letters without change of suffixes Since the same form of equation must remain true, the directions of $\rho_{1}, \rho_{2}, \rho_{3}$ being preserved, when the plane of the orbit is made to conncide with the ecliptic, in which case $\rho_{1}=\rho_{2}=0$ and n_{1} becomes N_{1}, the equation

$$
N_{1} R_{1}\left|A_{1}, a_{3}, A_{3}\right|=R_{2}\left|A_{2}, a_{3}, A_{3}\right|
$$

must be an identity Hence
Now

$$
n_{1} \rho_{1}\left|a_{1}, a_{3}, A_{3}\right|=\rho_{3}\left|a_{2}, a_{3}, A_{3}\right|+\left(N_{1}-n_{1}\right) R_{1}\left|A_{1}, a_{3}, A_{3}\right|
$$

$$
\begin{aligned}
\left|a_{1}, a_{3}, A_{3}\right| & =\left|\begin{array}{ccc}
\cos \beta_{1} \cos \lambda_{1} & \cos \beta_{3} \cos \lambda_{3} & \cos L_{3} \\
\cos \beta_{1} \sin \lambda_{1} & \cos \beta_{3} \sin \lambda_{3} & \sin L_{3} \\
\sin \beta_{1} & \sin \beta_{3} & 0
\end{array}\right| \\
& =\cos \beta_{1} \cos \beta_{3}\left\{-\tan \beta_{1} \sin \left(\lambda_{3}-L_{3}\right)+\tan \beta_{3} \sin \left(\lambda_{1}-L_{3}\right)\right\}
\end{aligned}
$$

the axis of z being drawn towards the pole of the echptic and the axis of x towards the First Point of Aries Similarly

$$
\left|a_{2}, a_{3}, A_{3}\right|=\cos \beta_{2} \cos \beta_{3}\left\{-\tan \beta_{2} \sin \left(\lambda_{3}-L_{3}\right)+\tan \beta_{3} \sin \left(\lambda_{2}-L_{4}\right)\right\}
$$

and

$$
\left|A_{1}, a_{3}, A_{3}\right|=\sin \beta_{3} \sin \left(L_{1}-L_{3}\right)
$$

Hence

$$
\begin{equation*}
n_{1} \rho_{1} \cos \beta_{1}=M_{1} \rho_{2} \cos \beta_{2}+\left(N_{1}-n_{1}\right) M_{1}^{\prime} \tag{12}
\end{equation*}
$$

where

$$
\begin{aligned}
& M_{1}=\frac{\tan \beta_{2} \sin \left(\lambda_{3}-L_{9}\right)-\tan \beta_{3} \sin \left(\lambda_{2}-L_{3}\right)}{\tan \beta_{1} \sin \left(\lambda_{3}-L_{3}\right)-\tan \beta_{3} \sin \left(\lambda_{1}-L_{3}\right)} \\
& M_{1}^{\prime}=\frac{R_{1} \tan \beta_{9} \sin \left(L_{3}-L_{1}\right)}{\tan \beta_{1} \sin \left(\lambda_{3}-L_{3}\right)-\tan \beta_{3} \sin \left(\lambda_{1}-L_{3}\right)}
\end{aligned}
$$

Similarly the result of eliminating ρ_{1} and R_{1} from the original equations is to give (interchanging the suffixes 1 and 3)

$$
\begin{equation*}
n_{1} \rho_{3} \cos \beta_{3}=M_{3} \rho_{2} \cos \beta_{2}+\left(N_{s}-n_{3}\right) M_{3}^{\prime} \tag{13}
\end{equation*}
$$

where

$$
\begin{aligned}
& M_{3}=\frac{\tan \beta_{2} \sin \left(\lambda_{1}-L_{1}\right)-\tan \beta_{1} \sin \left(\lambda_{2}-L_{1}\right)}{\tan \beta_{3} \sin \left(\lambda_{1}-L_{1}\right)-\tan \beta_{1} \sin \left(\lambda_{3}-L_{1}\right)} \\
& M_{3}^{\prime}=\frac{R_{3} \tan \beta_{1} \sin \left(L_{1}-L_{3}\right)}{\tan \beta_{3} \sin \left(\lambda_{1}-L_{1}\right)-\tan \beta_{1} \sin \left(\lambda_{3}-L_{1}\right)}
\end{aligned}
$$

The coefficients $M_{1}, M_{1}^{\prime}, M_{3}, M_{3}^{\prime}$ as well as N_{1}, N_{3} are constants throughout the process of approximation, but n_{1}, n_{3} must be taken at this stage from the approximate forms (6) and (7) Then (12) and (13) give values of ρ_{1} and ρ_{3} corresponding to the approximate value of ρ_{2} already obtaned

86 The helrocentric distances, longitudes and latitudes of the planet are next deduced by the formulae

$$
\left.\begin{array}{rl}
r_{\imath} \cos b_{\imath} \cos \left(l_{\imath}-L_{\imath}\right) & =\rho_{\imath} \cos \beta_{\imath} \cos \left(\lambda_{\imath}-L_{\imath}\right)+R_{\imath} \tag{14}\\
r_{\imath} \cos b_{\imath} \sin \left(l_{\imath}-L_{\imath}\right) & =\rho_{\imath} \cos \beta_{\imath} \sin \left(\lambda_{\imath}-L_{\imath}\right) \\
r_{\imath} \sin b_{\imath} & =\rho_{\imath} \sin \beta_{\imath}
\end{array}\right\}
$$

($2=1,2,3$), which axe at once found by taking the axis of x successively along R_{1}, R_{2} and R_{3}, the axis of z being always drrected towards the pole of the ecliptic But these coordinates give the position of the plane of the orbit, for

$$
\begin{aligned}
& \tan 2 \sin \left(l_{1}-\Omega\right)=\tan b_{1} \\
& \tan 2 \sin \left(l_{3}-\Omega\right)=\tan b_{3}
\end{aligned}
$$

where r is the melnation and Ω the longitude of the node, on in a form more suitable for calculation

$$
\left.\begin{array}{l}
2 \tan 2 \sin \left\{\frac{1}{2}\left(l_{1}+l_{1}\right)-\Omega\right\}=4 \sin \left(b_{1}+b_{3}\right) / \cos b_{1} \cos b_{3} \cos \frac{1}{2}\left(l_{1}-l_{1}\right) \tag{15}\\
2 \tan \imath \cos \left\{\frac{1}{2}\left(l_{1}+l_{3}\right)-\Omega\right\}=\sin \left(b_{3}-b_{1}\right) / \cos b_{1} \cos b_{3} \sin \frac{1}{2}\left(l_{3}-l_{1}\right)
\end{array}\right\}(1
$$

And now the three arguments of latitude u_{j}, giving the differences of the true anomalies, can be caleulated, for

$$
\begin{equation*}
\tan u_{1}=\tan \left(l_{J}-\Omega\right) \sec \imath, \tag{16}
\end{equation*}
$$

$(\jmath=1,2,3)$ In the case of a comet, it is the practice to take $u_{j}<$ or $>180^{\circ}$ according as the latitude is positive or negative, in the case of a planet, u, 18 placed in the same quadrant as $l_{3}-\Omega$ It we calculate n_{1}, n_{3} from

$$
n_{1}=\frac{n_{2} \sin \left(u_{9}-u_{2}\right)}{r_{1} \sin \left(u_{3}-u_{1}\right)}, \quad n_{1}=\frac{r_{2} \sin \left(u_{2}-u_{1}\right)}{r_{3} \sin \left(u_{3}-u_{1}\right)}
$$

we shall not obtain improved values of those ratios, because these equations have a purely geometrical basis and merely serve as- a useful contiol on the accuracy of the calculation, the values already obtaned should be reproduced

87 We have now arrived at preliminary approximations to the values of the geocentric distances $\rho_{1}, \rho_{2}, \rho_{3}$, the helocentric distances r_{1}, r_{y}, r_{3} and the arguments of latitude u_{1}, u_{2}, u_{8} From these quantities we might proceed to deduce a complete set of elements But our results are not accurate for two reasons (1) the effect of aberration has been ignored, and (2) the expressions (6) and (7) employed for n_{1} and n_{3} weie of necessity only approximate The effect of aberration may be stated thus The light observed at time t left the source whose distance is ρ at the time $t-\Delta t$, where

$$
\Delta t=498^{8} 5 \rho / 1 \text { day }=[776116] \rho
$$

in days, $498^{s} 5$ being the light-time tor unit astronomical distance Had the source moved in the interval Δt unfformly with the velocity of the observer at time t, its position at time t would be correctly inferred from the observation, without correction, since in that case there is no relative motion between the source and the observer If now we correct the observation for stellar aberration according to the ordinary rule the observer's motion attributed to the source is climinated and we have the direction of the observed body at time $t-\Delta t$ from the observer's position at time t This is the most convenient procedure in the present case, because it enables us to retain the Earth's coordmates $(\boldsymbol{R}, \boldsymbol{L})$ at the times of observation t throughout the calculation and to make no subsequent change in the planet's observed coordinates (λ, β) supposing them to be corrected for stellar aberration at the outset This avoids many changes which would otherwise be necessary in the calculation of subsidary quantities. It only remains when approximate values of ρ become known to correct the time t by subtracting Δt in so far as these relate to actual positions in the orbit In particular, the corresponding corrections must be applied to the time intervals $\tau_{1}, \tau_{2}, \tau_{3}$

88 A better approximation to the values of n_{1}, n_{3} might now be made by using the formulace of Grbbs or those of $\S 62$ and with these values the whole calculation might be repeated But we proceed at once to introduce the accurate formulace for the ratio of the sector to the triangle, (25) and (26) of $\S 55 \mathrm{in}$ the case of an elliptic orbit The sectors are

$$
\frac{1}{2} y_{1}\left[r_{2} r_{3}\right], \quad \frac{1}{2} y_{2}\left[r_{2} r_{3}\right], \quad \frac{1}{2} y_{3}\left[r_{2} r_{2}\right]
$$

and are proportional to $\tau_{1}, \tau_{2}, \tau_{3}$ (now corrected for aberration) Hence

$$
\begin{equation*}
-n_{1}=\frac{y_{2}}{y_{1}} \frac{\tau_{2}}{\tau_{2}}, \quad n_{3}=\frac{y_{2}}{y_{3}} \frac{\tau_{3}}{\tau_{2}} \tag{17}
\end{equation*}
$$

Here

$$
\left.\begin{array}{c}
y_{2}{ }^{2}=m_{2}{ }^{2} /\left(l_{2}+\sin ^{2} \frac{1}{2} g_{2}\right) \tag{18}\\
y_{2}{ }^{3}-y_{2}^{2}=m_{2}{ }^{2}\left(2 g_{2}-\sin 2 g_{2}\right) / \sin ^{3} g_{2}
\end{array}\right\} .
$$

by the formulae quoted, and in the present notation

$$
1+2 l_{2}=\left(r_{2}+r_{3}\right) / 2 \sqrt{r_{1} r_{3}} \cos \frac{1}{2}\left(u_{3}-u_{1}\right), \quad m_{2}^{2}=k^{2} \tau_{2}^{2} /\left\{2 \sqrt{r_{1} 1_{3}} \cos \frac{1}{2}\left(u_{3}-u_{1}\right)\right\}^{3}
$$

The corresponding equations for y_{1}, y_{3} can be written down by a symmetrical interchange of suffixes Various methods have been devised for the convemient solution of these equations, generally involving the use of special tables

In the absence of such tables, and they are not necessary, we may proceed thus Writing the cubic equation in the form

$$
y^{3}-y^{2}-\frac{4}{3} m^{2} Q(2 g)=0, \quad Q(2 g)=3(2 g-\sin 2 g) / 4 \sin ^{3} g
$$

where $Q(2 g)$ approaches the value 1 as g approaches the value 0 , we compare it with the identity

$$
\left(\lambda^{3}-\lambda^{-3}\right)-3\left(\lambda-\lambda^{-1}\right)-\left(\lambda-\lambda^{-1}\right)^{3}=0
$$

Thus $y=c /\left(\lambda-\lambda^{-1}\right)$ if

$$
\lambda^{3}-{c^{3}}^{-3}=\frac{c^{2}}{3}=\frac{4 m^{3} Q}{3}
$$

that is, if $c=2 m \sqrt{ } Q=\frac{1}{3}\left(\lambda^{3}-\lambda^{-3}\right) \quad H e n c e ~ i f ~ \lambda^{3}=\cot \frac{1}{2} \beta, 3 m \sqrt{ } Q=\cot \beta$ and of $\lambda=\cot \frac{1}{2} \gamma, y=m \sqrt{ } Q \tan \gamma \quad$ But from the other equation in y we have $\sin \frac{1}{2} g=\sqrt{ } l \tan \delta$ if $y=m \cos \delta / \sqrt{ } l$

Accordingly we thiow the equations in y into the following form

$$
\left.\begin{array}{rl}
\cot \beta & =3 m \sqrt{ } Q \tag{19}\\
\tan ^{3} \frac{1}{2} \gamma & =\tan \frac{1}{2} \beta \\
\cos \delta & =\sqrt{ }(l Q) \tan \gamma \\
\sin \frac{1}{2} g & =\sqrt{ } l \tan \delta
\end{array}\right\}
$$

Then, calculating the function Q with an approximate value g^{\prime} of g, the result of solving these equations in turn is to lead to a new and closer approximation $g^{\prime \prime}$ With this new value the process is repeated until no change is found between the initial and final values The true value of q has then been arrived at, and finally (the value of δ being taken from the last repetition)

$$
y=m \cdot \cos \delta / \sqrt{ } l
$$

Since $2 g$ is the difference between the eccentric anomalies, the first appioximation to its value may be taken to be the difference between the tiue anomalies, that is, between the arguments of latitude When $2 g$ is small, as it usually is in the practical problem, the direct calculation of the function $Q(2 g)$ is inaccurate (cf § 34) But if we write

$$
\log Q(2 g)=\frac{24578}{\pi 000} \log \sec \frac{1}{2} g-\frac{174980}{7000} \log \sec \frac{1}{3} g
$$

the error committed is practically neghgible when $2 g<90^{\circ}$, and the duect calculation only presents a difficulty when $2 g$ is much smaller than this limit The verification of this approximate formula may be left as an exercise

It is unnecessary to repeat the solution of (19) until the value of g is exactly reproduced This point may be explained in gencial terms as it is of wide application Suppose the equations to be solved are $y=p(x), \alpha=q(y)$, p and q being any functions These correspond to two curves P and Q Starting with the approximate value x_{1} we find $y_{1}=p\left(x_{1}\right)$ and hence (a_{1}, y_{1})
the point P_{1} on $P \quad$ Next we find similarly $\left(x_{2}, y_{1}\right)$ the point Q_{1} on Q This gives the new value x_{2} of x and with this we find successively $\left(x_{2}, y_{2}\right)$ the point P_{2} on P and (x_{3}, y_{2}) the point Q_{2} on Q But if the successive values x_{1}, x_{2}, x_{3} do not differ greatly, the chords $P_{1} P_{2}, Q_{1} Q_{2}$ he close to the curves P and Q and their intersection nearly coincides with the intersection of the curves In this way we find for the correction to the third value x_{3}

$$
x-x_{3}=\left(x_{2}-x_{3}\right)^{2} /\left\{\left(x_{2}-x_{1}\right)-\left(x_{3}-x_{2}\right)\right\}
$$

In the above case two solutions of (19) with application of the correction just indicated will generally suffice for the accurate determination of g and y

89 When the values of y_{1}, y_{2}, y_{3} have been thus obtamed we have new values of n_{1} and n_{2} by (17) The next step is to recalculate ρ_{s} by (5) and ρ_{1}, ρ_{3} by (12) and (13) Hence r_{1}, r_{2}, r_{3} and l_{1}, l_{2}, l_{3} by (14), new values of Ω and \imath by (15) and finally u_{1}, u_{2}, u_{3} by (16) This brings us back once more to the equations (18) in y If the result of solving them with the improved values introduced is to leave n_{1} and n_{3} practically unaltered, our object is attaned Otherwise it is necessary to repeat the above steps until a satisfactory agreement is reached

When this stage has been arrived at the problem has been solved, and it only remains to calculate the other elements of the orbit, Ω and \imath having been obtained in the last approximation The three equations

$$
p=r_{j}\left\{1+e \cos \left(u_{j}-\omega\right)\right\}, \quad(\jmath=1,2,3)
$$

are linear in $p, e \cos \omega$ and $e \sin \omega$ The symmetrical solution gives

$$
\begin{aligned}
p & =r_{1} r_{2} r_{3} \sum \sin \left(u_{8}-u_{2}\right) / \sum r_{2} r_{3} \sin \left(u_{3}-u_{2}\right) \\
-e \cos \omega & =\sum r_{2} r_{3}\left(\sin u_{8}-\sin u_{2}\right) / \sum r_{2} r_{3} \sin \left(u_{3}-u_{\mathrm{g}}\right) \\
e \sin \omega & =\sum r_{2} r_{3}\left(\cos u_{3}-\cos u_{2}\right) / \sum r_{2} 7_{3} \sin \left(u_{3}-u_{2}\right)
\end{aligned}
$$

whence $e=\sin \phi, \omega=\omega-\Omega$ and $a=p \sec ^{2} \phi$ This, however, is not the simplest solution The areal velocity $h=k \sqrt{ } p(\S 26)$ and hence

$$
\begin{equation*}
k \tau_{2} \sqrt{ } p=\left[r_{1} r_{3}\right] y_{2}=y_{2} r_{1} r_{3} \sin \left(u_{3}-u_{1}\right) \tag{20}
\end{equation*}
$$

Thus, p being known, we have

$$
\left.\begin{array}{l}
\frac{p}{r_{\mathrm{T}}}+\frac{p}{r_{3}}-2=2 e \cos \frac{1}{2}\left(u_{1}+u_{3}-2 \omega\right) \cos \frac{1}{2}\left(u_{3}-u_{1}\right) \tag{21}\\
\frac{p}{r_{1}}-\frac{p}{r_{3}}=2 e \sin \frac{1}{2}\left(u_{1}+u_{3}-2 \omega\right) \sin \frac{1}{2}\left(u_{3}-u_{1}\right)
\end{array}\right\}
$$

which also give e and $\omega \quad$ Finally, if the mass is neglected, the mean motion is $n=k^{\prime \prime} / a^{s / 2}$ and the mean longitude at the epoch t_{0} is (§64)

$$
\begin{equation*}
\epsilon=\omega+\Omega+E_{j}-e^{\prime \prime} \sin E_{j}-n\left(t_{j}-t_{0}\right) \tag{22}
\end{equation*}
$$

where

$$
\tan \frac{1}{2} E_{\jmath}=\sqrt{\left(\frac{1-e}{1+e}\right)} \tan \frac{1}{2}\left(u_{\jmath}-\omega\right), \quad(\jmath=1,2 \text { or } 3)
$$

The times t, are here corrected for aberration (§ 87)

CHAPTER IX

DETERMINATION OF PARABOLIC AND CIRCULAR ORBITS

90 The method explamed in principle in the last chapter requines no assumption as to the eccentricity of the orbit Its practical convenience is greatest, however, when the eccentricity is comparatively small On the other hand the majority of comets move in orbits almost strictly parabolic For these it is important to have approximate elements aftex the first observations have been secured, in order that an ephemeris may be calculated to guide observers as to the position of the object For this purpose the method of Olbers (published in 1797), which depends on the assumption ot a parabolic orbit, has continued in use to the present time Although only five elements have in this case to be determined we still use three complete observations of the comet giving the longitude and latitude (λ_{j}, β_{j}) at the three times t_{j} We again take (R_{j}, L_{j}) as the corresponding radius vector and longitude of the Earth and ρ, the geocentric distance of the comet, so that as before

$$
x_{j}=a_{j} \rho_{\jmath}+A_{\jmath} R_{r}, \quad y_{j}=b_{\jmath} \rho_{\jmath}+B_{\jmath} R_{\jmath j}, \quad z_{j}=c_{j} \rho_{\jmath}+C_{j} R_{j}
$$

Here (x_{j}, y_{j}, z_{j}) are the helocentric coordinates of the comet, (a_{j}, b_{j}, c_{j}) the direction cosines of ρ_{j} and $\left(A_{1}, B_{j}, C_{j}\right)$ the direction cosines of R_{j} In the ecliptic system of axes adopted,

$$
a_{j}=\cos \lambda_{\jmath} \cos \beta_{j}, \quad b_{J}=\sin \lambda_{\jmath} \cos \beta_{J}, \quad c_{l}=\sin \beta_{J}
$$

We shall express ρ_{3} in terms of ρ_{1} and for this purpose it is possible to elimuate ρ_{2} and R_{2} from (1), (2) and (3) in § 82 The same result may, however, be deduced from the condition that the orbitis plane in another way

91 If S is the $\operatorname{Sun}, E_{1}, E_{2}, E_{3}$ the three positions of the Earth, and C_{1}, C_{2}, C_{3} the three positions of the comet, S, C_{1}, C_{2}, C_{3} are coplanar Hence

$$
\begin{aligned}
& \frac{\left[r_{1} r_{2}\right]}{\left[r_{2} 7_{3}\right]}=\frac{\text { tetrahedron } S E_{2} C_{1} C_{2}}{\text { tetrahedron } S E_{2} C_{2} C_{3}} \\
& =\left|\begin{array}{cccc}
0 & 0 & 0 & 1 \\
A_{2} R_{2} & B_{2} R_{2} & C_{2} R_{2} & 1 \\
a_{1} \rho_{1}+A_{1} R_{1}, & b_{1} \rho_{1}+B_{1} R_{1}, & c_{1} \rho_{1}+C_{1} R_{1}, & 1 \\
a_{2} \rho_{2}+A_{2} R_{2}, & b_{3} \rho_{2}+B_{2} R_{2}, & c_{2} \rho_{2}+C_{2} R_{2}, & 1
\end{array}\right|
\end{aligned}
$$

$$
=\left|\begin{array}{ccc}
A_{3} & B_{2} & C_{2} \\
a_{1} \rho_{1}+A_{1} R_{1}, b_{1} \rho_{1}+B_{1} R_{1}, & c_{1} \rho_{1}+C_{1} R_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right|-\left|\begin{array}{ccc}
A_{2} & B_{2} & C_{2} \\
a_{2} & b_{3} & c_{2} \\
a_{3} \rho_{3}+A_{3} R_{3}, B_{3}, \\
b_{3} \rho_{3}+B_{3} R_{3}, & c_{3} \rho_{3}+C_{3} R_{3}
\end{array}\right|
$$

or, representing determinants by single rows,
$\left[r_{1} r_{2}\right]\left\{\rho_{3}\left|a_{3}, A_{2}, a_{2}\right|+R_{3}\left|A_{3}, A_{2}, a_{2}\right|\right\}+\left[r_{2} r_{3}\right]\left\{\rho_{1}\left|a_{1}, A_{2}, a_{2}\right|+R_{1} \mid A_{1}, A_{3}, a_{2}\right\}=0$
But if, leaving the directions of $\rho_{1}, \rho_{2}, \rho_{3}$ unaltered, we move the plane of the orbit into conncidence with the ecliptic, we see that in the limit

$$
\left[R_{1} R_{2}\right] R_{3}\left|A_{3}, A_{2}, a_{2}\right|+\left[R_{9} R_{3}\right] R_{1}\left|A_{1}, A_{2}, a_{2}\right|=0
$$

must be an identity Hence

$$
\begin{aligned}
\rho_{3} & \left.=-\frac{\left[r_{2} r_{3}\right]}{\left[r_{1} r_{2}\right]}\right] \frac{\left|a_{1}, A_{2}, a_{2}\right|}{\left|a_{3}, A_{2}, a_{2}\right|} \rho_{1}+\left\{\left[\begin{array}{l}
{\left[R_{2} R_{3}\right]} \\
{\left[R_{1} R_{2}\right]}
\end{array} \frac{\left[r_{2} r_{3}\right]}{\left[r_{1} r_{2}\right]}\right\}\right\} \frac{\left|A_{1}, A_{2}, a_{2}\right|}{\left|a_{3}, A_{2}, a_{2}\right|} R_{1} \\
& =M \rho_{1}+m
\end{aligned}
$$

Now

$$
\begin{aligned}
\left|\begin{array}{ccc}
a_{1}, & A_{2}, & a_{2} \\
b_{1}, & B_{2}, & b_{2} \\
c_{1}, & C_{2}, & c_{2}
\end{array}\right| & =\left|\begin{array}{ccc}
\cos \lambda_{1} \cos \beta_{1}, & \cos L_{2}, & \cos \lambda_{2} \cos \beta_{2} \\
\sin \lambda_{1} \cos \beta_{1}, & \sin L_{2}, & \sin \lambda_{2} \cos \beta_{2} \\
\sin \beta_{1}, & 0, & \sin \beta_{2}
\end{array}\right| \\
& =\sin \beta_{1} \cos \beta_{2} \sin \left(\lambda_{2}-L_{2}\right)-\sin \beta_{2} \cos \beta_{1} \sin \left(\lambda_{1}-L_{2}\right)
\end{aligned}
$$

and the other determinants can be written down by simple substitutions Thus
$M=\frac{\left[r_{2} r_{3}\right]}{\left[r_{1} 1_{2}\right]} \frac{\sin \beta_{1} \cos \beta_{2} \sin \left(\lambda_{2}-L_{2}\right)-\sin \beta_{2} \cos \beta_{1} \sin \left(\lambda_{1}-L_{2}\right)}{\sin \beta_{2} \cos \beta_{3} \sin \left(\lambda_{3}-L_{2}\right)-\sin \beta_{3} \cos \beta_{2} \sin \left(\lambda_{2}-L_{2}\right)}$
and
$m=R_{1}\left\{\left[\begin{array}{l}{\left[R_{2} R_{8}\right]} \\ \left.R_{1} R_{2}\right]\end{array}-\left[r_{2} r_{8}\right]\right\}\left[\begin{array}{rl}{\left[r_{2} r_{2}\right]}\end{array}\right\} \frac{\sin \beta_{8} \sin \left(L_{1}-L_{2}\right)}{\sin \beta_{2} \cos \beta_{3} \sin \left(\lambda_{3}-L_{2}\right)-\sin \beta_{8} \cos \beta_{2} \sin \left(\lambda_{2}-L_{8}\right)}\right.$
In the practical problem the time intervals are usually small and it is possible to substitute the ratio of the sectors for the ratio of the triangles, both for the comet and the Earth, so that

$$
\begin{equation*}
\frac{\left[r_{2} r_{3}\right]}{\left[r_{1} r_{2}\right]}=\frac{\left[R_{2} R_{3}\right]}{\left[R_{1} R_{3}\right]}=\frac{t_{3}-t_{2}}{t_{2}-t_{1}} \tag{2}
\end{equation*}
$$

Thus $m=0$ and with sufficient accuracy we may write

$$
\begin{equation*}
\rho_{3}=M \rho_{1} \tag{3}
\end{equation*}
$$

where M has the value given by (1) and (2), unless the comet is near the Sun and describes large arcs in comparatively short intervals The effects of parallax and aberration are entrrely neglected

92 The next step 18 to express r_{1}, r_{3} and the chord c joining the extremities of these radu in terms of ρ_{1} We have

$$
\begin{align*}
& r_{1}^{2}=\Sigma\left(a_{1} \rho_{1}+A_{1} R_{1}\right)^{2}=\rho_{1}{ }^{2}+R_{1}^{2}+2 \rho_{1} R_{1} \cos \beta_{1} \cos \left(\lambda_{1}-L_{1}\right) . \tag{4}\\
& r_{3}^{2}=\Sigma\left(M a_{3} \rho_{1}+A_{8} R_{3}\right)^{2}=M^{2} \rho_{1}{ }^{2}+R_{3}^{2}+2 M \rho_{1} R_{3} \cos \beta_{3} \cos \left(\lambda_{3}-L_{3}\right) \tag{5}
\end{align*}
$$

and

$$
\begin{align*}
c^{2} & =\Sigma\left\{\left(M a_{3}-a_{1}\right) \rho_{1}+\left(A_{3} R_{3}-A_{1} R_{1}\right)\right\}^{2} \\
& =h^{2} \rho_{1}^{2}+g^{2}+2 \rho_{1} h g \cos \phi \tag{6}
\end{align*}
$$

where

$$
\begin{aligned}
& h^{2}=\Sigma\left(M a_{3}-a_{1}\right)^{2}=M^{2}+1-2 M\left\{\sin \beta_{1} \sin \beta_{3}+\cos \beta_{1} \cos \beta_{3} \cos \left(\lambda_{1}-\lambda_{1}\right)\right\} \\
& g^{2}=\Sigma\left(A_{3} R_{3}-A_{1} R_{1}\right)^{2}=R_{3}{ }^{2}+R_{1}^{2}-2 R_{1} R_{3} \cos \left(L_{2}-L_{1}\right)
\end{aligned}
$$

$h g \cos \phi=R_{3}\left\{M \Sigma a_{3} A_{3}-\Sigma a_{1} A_{3}\right\}-R_{1}\left\{M \Sigma a_{3} A_{1}-\Sigma a_{1} A_{1}\right\}$

$$
\begin{aligned}
&=M \cos \beta_{3}\left\{R_{3} \cos \left(\lambda_{3}-L_{3}\right)-R_{1} \cos \left(\lambda_{3}-L_{1}\right)\right\} \\
&-\cos \beta_{1}\left\{R_{3} \cos \left(\lambda_{1}-L_{3}\right)-R_{1} \cos \left(\lambda_{1}-L_{1}\right)\right\}
\end{aligned}
$$

If $E_{1} C$ is drawn equal and parallel to $E_{3} C_{3}$ it is clear that $C C_{3}=E_{1}^{\prime} E_{3}=g$, $C C_{1}=h \rho_{1}, C_{1} C_{3}=c$ and $C_{1} C C_{8}=180^{\circ}$, ϕ

But Euler's equation gives

$$
6 k\left(t_{3}-t_{1}\right)=\left(r_{1}+r_{3}+c\right)^{\frac{b}{b}}-\left(r_{1}+r_{3}-c\right)^{\frac{1}{2}}
$$

and this must be satisfied by the appropriate value of ρ_{1} in (4), (5) and (6) This value must be found by a process of approximation and for a suitable starting point we may consider c small in comparison with $r_{1}+r_{3}, r_{1}=r_{3}$ and $R_{1}=1$ Then

$$
6 k\left(t_{3}-t_{1}\right)=\left(r_{1}+r_{3}\right)^{\frac{8}{2}} 3 c /\left(r_{1}+r_{3}\right)=3 \sqrt{ } 2 \quad c \sqrt{ } r_{1}
$$

or

$$
2 h^{2}\left(t_{8}-t_{1}\right)^{2} / h^{2}=\left(\rho_{1}^{2}+2 \rho_{1} \cos \phi g / h+g^{2} / h^{2}\right)\left\{\rho_{1}^{2}+2 \rho_{1} \cos \beta_{1} \cos \left(\lambda_{1}-L_{1}\right)+1\right\}^{\frac{1}{2}}
$$

With approximate values of the numbers which occur in this equation it is easy to find by trial a value of ρ_{1} which is correct at least to one decimal place Then with this value of ρ_{1} it is possible to calculate c in two ways (1) directly by (6), (11) through r_{1}, r_{3} given by (4) and (5) and inserted in Euler's equation, which may be written (§52) in the forin

$$
3 k\left(t_{3}-t_{1}\right) / \sqrt{ } 2\left(r_{1}+r_{3}\right)^{\frac{\pi}{2}}=\sin \Theta, \quad c=2 \sqrt{ } 2\left(r_{1}+r_{3}\right) \sin \frac{1}{3} \Theta \sqrt{ } \cos g(\theta) \quad(7)
$$

or solved by special tables Two values of c thus correspond to a hypothetical value of ρ_{1}, and the latter must be varied until the discrepancy between the former is made to disappear A rule analogous to that given in $\S 88$ leads quickly to the desired value of ρ_{1} For if the values $\rho_{1}^{\prime}, \rho_{1}^{\prime \prime}$ lead successively to the differences $\Delta_{1} c, \Delta_{2} c$ in c, it is easy to see that the value of ρ_{1} to be inferred is given by

$$
\rho_{1}=\rho_{1}^{\prime \prime}+\left(\rho_{1}^{\prime \prime}-\rho_{1}^{\prime}\right) \Delta_{2} c /\left(\Delta_{1} c-\Delta_{2} c\right)
$$

In ordinary cases the correct result is quickly obtained in this way
93 When ρ_{1} and $\rho_{3}=M \rho_{1}$ have been obtained it only remains to determine the elements of the orbit The formulae of $\S 86$ are agan appropriate, namely

$$
\begin{aligned}
& r_{\jmath} \cos b_{j} \cos \left(l_{,}-L_{\jmath}\right)=\rho_{\rho} \cos \beta_{\rho} \cos \left(\lambda_{\jmath}-L_{\jmath}\right)+R_{\jmath} \\
& r_{j} \cos b_{j} \sin \left(l_{j}-L_{j}\right)=\rho_{\rho} \cos \beta_{\rho} \sin \left(\lambda_{\jmath}-L_{j}\right) \\
& r, \sin b, \quad=\rho, \sin \beta_{1}
\end{aligned}
$$

($j=1,3$), for the heliocentric distances, longitudes and latitude of the comet Here r_{1}, r_{3} should reproduce the values finally arrived at in the course of determining ρ_{1} Also

$$
\begin{align*}
& 2 \tan \imath \sin \left\{\frac{1}{2}\left(l_{1}+l_{3}\right)-\Omega\right\}=\sin \left(b_{1}+b_{3}\right) / \cos b_{1} \cos b_{3} \cos \frac{1}{2}\left(l_{3}-l_{1}\right) \tag{8}\\
& 2 \tan \imath \cos \left\{\frac{1}{2}\left(l_{1}+l_{3}\right)-\Omega\right\}=\sin \left(b_{3}-b_{1}\right) / \cos b_{1} \cos b_{3} \sin \frac{1}{2}\left(l_{3}-l_{1}\right) \tag{9}
\end{align*}
$$

$\left(0<1<90^{\circ}\right.$ if $l_{3}>l_{1}, 90^{\circ}<\imath<180^{\circ}$ if $l_{3}<l_{1}$) give Ω and \imath The arguments of latitude are given by

$$
\tan u_{j}=\tan \left(l_{j}-\Omega\right) \sec \imath
$$

($\jmath=1,3$), where in this case $0<u_{\jmath}<180^{\circ}$ if $b_{j}>0 \quad$ By the equation of the parabola

$$
\begin{equation*}
\sqrt{ } q=\sqrt{ } r_{1} \cos \frac{1}{2}\left(u_{1}-\omega\right)=\sqrt{ } r_{3} \cos \frac{1}{2}\left(u_{3}-\omega\right) \tag{10}
\end{equation*}
$$

whence

$$
\frac{\sqrt{ } r_{3}-\sqrt{ } r_{1}}{\sqrt{ } r_{3}+\sqrt{ } r_{1}}=\frac{\sin \frac{1}{4}\left(u_{1}+u_{3}-2 \omega\right) \sin \frac{1}{4}\left(u_{3}-u_{1}\right)}{\cos \frac{1}{4}\left(u_{1}+u_{3}-2 \omega\right) \cos \frac{1}{4}\left(u_{3}-u_{1}\right)}
$$

$$
\begin{equation*}
\tan \frac{1}{4}\left(u_{1}+u_{3}-2 \omega\right)=\frac{\sqrt{ } r_{3}-\sqrt{ } r_{1}}{\sqrt{r_{3}+\sqrt{ } r_{1}}} \cot \frac{1}{4}\left(u_{3}-u_{1}\right) \tag{11}
\end{equation*}
$$

which gives $\omega=\sigma-\Omega$ and also q, the perihelion distance Finally, T being the time of perihelion passage, we have (§ 29)

$$
\begin{equation*}
T=t_{\jmath}-q^{\frac{3}{2}}\left\{\tan \frac{1}{2}\left(u_{\jmath}-\omega\right)+\frac{1}{3} \tan ^{3} \frac{1}{2}\left(u_{\jmath}-\omega\right)\right\} \sqrt{2} / k \tag{12}
\end{equation*}
$$

$(\jmath=1,3)$ This completes the determination of the five elements
94. It is to be noticed that whle the tirst and third observations have been completely used, the second observation has only entered partially into the calculation In fact the five elements have been determined from six given coordinates in a unique way because λ_{2}, β_{2} have not been used independently but only in the form $\cot \beta_{2} \sin \left(\lambda_{2}-L_{2}\right)$ in the equation (1) for M Consequently it cannot be expected that the elements will satisfy the second place exactly and the magnitude of the discordance is an immediate test of the derived orbit The second place is therefore calculated by findıng (§29) $w_{8}=u_{2}-\omega$ from (12) $(\jmath=2), r_{2}=q \sec ^{2} \frac{1}{2} w_{2}$, and hence the coordinates of the comet by means of

$$
\begin{array}{ll}
\rho_{\mathrm{g}} \cos \beta_{\mathrm{a}} \cos \left(\lambda_{2}-\Omega\right) & =r_{2} \cos u_{2}-R_{2} \cos \left(L_{2}-\Omega\right) \\
\rho_{2} \cos \beta_{2} \sin \left(\lambda_{2}-\Omega\right) & =r_{2} \sin u_{2} \cos \imath-R_{9} \sin \left(L_{2}-\Omega\right) \\
\rho_{\mathrm{g}} \sin \beta_{2} & =r_{\mathrm{g}} \sin u_{2} \sin \imath
\end{array}
$$

If the residuals are small the elements may be considered satisfactory If the residuals appear large, on the other hand, there are several possible reasons for the fact There may be an error in the calculation, there may be an error in the observations, or the assumption of a parabohc orbit may be unjustried The evidence of further observations must be the final test But without additional material it is possible to improve the orbit obtaned
by reconsidering the quantities which were 1gnored in the course of finding the first elements Parallax and aberration may be allowed for In the place of (3) may now be written

$$
\rho_{s}=\rho_{1}\left(M+m / \rho_{1}\right)
$$

where M and m are given by (1) and the following equation At this stage an approximate value of ρ_{1} is known and $\left[r_{2} r_{3}\right] /\left[r_{1} r_{2}\right]$ can be calculated with greater accuracy than by means of (2), for example by the applcation of the formulae of Gibbs or by durect calculation of the areas, since the sides of the trangles and the included angles are now approximately known Thus the approximate M in (3) can now be replaced by the improved value $M+m / \rho_{1}$ and the remainder of the work can be repeated from this point There are, however, shorter practical methods of removing a discrepancy in the middle place, which serve the purpose well enough since a provisional orbit is in general all that is required

95 The eccentricities of planetary orbits are in general small and hence a circular orbit may prove a useful approximation to the true path, just as a parabolic orbit is a useful preliminary step towards the orbit of a periodic comet As the eccenticity vanishes and the position of perihelion ceases to have a meaning, the number of elements to be determined is reduced to four and two complete observations of position only are required Thus if a minor planet has been found on two photographs of the sky and no other observations are immediately available, a search ephemeris based on a circular arbit may be a useful guide in examining other plates which may have been taken at the same or at other observatories

To consider the problem in a general form let (X_{1}, Y_{1}, Z_{1}), $\left(X_{2}, Y_{2}, Z_{2}\right)$ be the geocentric coordinates of the Sun at the times of observation t_{1}, t_{2} and let $\left(l_{1}, m_{1}, n_{1}\right),\left(l_{2}, m_{2}, n_{3}\right)$ be the direction cosines of the observed directions of the planet The axes may be any fixed system with the Sun at the origin The planet is observed to lie on the lines

$$
\begin{aligned}
& \left(a+X_{1}\right) / l_{1}=\left(y+Y_{1}\right) / m_{1}=\left(z+Z_{1}\right) / n_{1}=\rho_{1} \\
& \left(a+X_{2}\right) / l_{2}=\left(y+Y_{2}\right) / m_{\mathrm{g}}=\left(z+Z_{2}\right) / n_{2}=\rho_{2}
\end{aligned}
$$

ρ_{1}, ρ_{2} being the geocentric distances Hence, if a is the radus of the orbit,

$$
\begin{aligned}
a^{2} & =\left(l_{1} \rho_{1}-X_{1}\right)^{2}+\left(m_{1} \rho_{1}-Y_{1}\right)^{2}+\left(n_{1} \rho_{1}-Z_{1}\right)^{2} \\
& =\rho_{1}^{1}-2 \rho_{1}\left(l_{1} X_{1}+m_{1} Y_{1}+n_{1} Z_{1}\right)+X_{1}^{2}+Y_{1}^{2}+Z_{1}^{2} \\
& =\rho_{2}^{2}-2 \rho_{2}\left(l_{2} X_{2}+m_{2} Y_{2}+n_{2} Z_{2}\right)+X_{2}^{2}+Y_{2}^{2}+Z_{d}^{2}
\end{aligned}
$$

and, if n is the mean motion and $t_{2}-t_{1}=\tau$,

$$
\begin{aligned}
u^{2} \cos n \tau= & \left(l_{1} \rho_{1}-X_{1}\right)\left(l_{2} \rho_{2}-X_{2}\right)+\left(m_{1} \rho_{1}-Y_{1}\right)\left(m_{2} \rho_{2}-Y_{2}\right)+\left(n_{1} \rho_{1}-Z_{1}\right)\left(n_{2} \rho_{2}-Z_{2}\right) \\
= & \rho_{1} \rho_{2} \cos \theta-\rho_{1}\left(l_{1} X_{2}+m_{1} Y_{2}+n_{1} Z_{2}\right)-\rho_{2}\left(l_{2} X_{1}+n_{2} Y_{1}+n_{2} Z_{1}\right) \\
& +X_{1} X_{2}+Y_{1} Y_{2}+Z_{1} Z_{2}
\end{aligned}
$$

where θ is the angle between the observed drections Since θ is a small angle the equation

$$
\cos \theta=l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}
$$

is unsuitable for its determmation, but the proper modfication depends on the choice of coordınates Simularly n cannot be accurately determined from $\cos n \tau$

If we now put
we have

$$
\begin{array}{ll}
A_{1}=l_{1} X_{1}+m_{1} Y_{1}+n_{1} Z_{1}, & A_{2}=l_{2} X_{2}+m_{2} Y_{2}+n_{2} Z_{2} \\
B_{1}=l_{1} X_{2}+m_{1} Y_{2}+n_{1} Z_{2}, & B_{2}=l_{2} X_{1}+m_{2} Y_{1}+n_{2} Z_{1}
\end{array}
$$

$$
\begin{aligned}
a^{2} & =\rho_{1}^{2}-2 A_{1} \rho_{1}+X_{1}{ }^{n}+Y_{1}^{2}+Z_{1}^{2} \\
& =\rho_{2}^{2}-2 A_{2} \rho_{2}+X_{2}{ }^{2}+Y_{2}^{3}+Z_{2}^{2} \\
u^{3} \cos n \tau & =\rho_{1} \rho_{2} \cos \theta-B_{1} \rho_{1}-B_{2} \rho_{2}+X_{1} X_{2}+Y_{1} Y_{3}+Z_{1} Z_{2}
\end{aligned}
$$

Hence
$4\left(c^{2} \sin ^{2} \frac{1}{2} n \tau=\rho_{1}{ }^{3}+\rho_{2}^{3}-2 \rho_{1} \rho_{\mathrm{g}} \cos \theta-2\left(A_{1}-B_{1}\right) \rho_{1}-2\left(A_{2}-B_{2}\right) \rho_{2}\right.$

$$
+\left(X_{1}-X_{1}\right)^{2}+\left(Y_{2}-Y_{1}\right)^{2}+\left(Z_{2}-Z_{1}\right)^{2}
$$

$=\cos ^{2} \frac{1}{2} \theta\left\{\rho_{3}-\rho_{1}-\frac{1}{2}\left(A_{2}-A_{1}-B_{2}+B_{1}\right) \sec ^{2} \frac{1}{2} \theta\right\}^{2}$
$+\sin ^{2} \frac{1}{2} \theta\left\{\rho_{3}+\rho_{1}-\frac{1}{2}\left(A_{2}+A_{1}-B_{2}-B_{1}\right) \operatorname{cosec}^{2} \frac{1}{2} \theta\right\}^{2}$
$+\left(X_{2}-X_{1}\right)^{2}+\left(Y_{2}-Y_{1}\right)^{2}+\left(Z_{2}-Z_{1}\right)^{2}$
$-\frac{1}{4}\left(A_{2}-A_{1}-B_{2}+B_{1}\right)^{2} \sec ^{2} \frac{1}{2} \theta-\frac{1}{4}\left(A_{2}+A_{1}-B_{2}-B_{1}\right)^{2} \operatorname{cosec}^{2} \frac{1}{2} \theta$
The equations, which must be solved by trial, can theiefore be reduced to the form
where (without the transformations appropriate to the coordnate system)

$$
\begin{aligned}
M_{1}^{2} & =X_{1}{ }^{0}+Y_{1}^{2}+Z_{1}^{2}-A_{1}^{2}, \quad M_{2}^{2}=X_{2}^{2}+Y_{2}^{2}+Z_{2}^{2}-A_{2}{ }^{2} \\
b_{1} & =\left(A_{2}-A_{1}-B_{2}+B_{1}\right) / 2 \cos ^{2} \frac{1}{2} \theta \\
b_{2} & =\left(A_{2}+A_{1}-B_{2}-B_{1}\right) / 2 \sin ^{2} \frac{1}{2} \theta \\
c & =\left(X_{2}-X_{1}\right)^{2}+\left(Y_{2}-Y_{1}\right)^{2}+\left(Z_{2}-Z_{1}\right)^{2} \\
& \quad-\left(A_{2}-B_{2}-A_{1}+B_{1}\right)^{2} / 4 \cos ^{2} \frac{1}{2} \theta-\left(A_{2}-B_{2}+A_{1}-B_{1}\right)^{2} / 4 \sin ^{2} \frac{1}{2} \theta
\end{aligned}
$$

A trial value of a gives, by (13), ψ_{1}, ψ_{2} and hence ρ_{1}, ρ_{2}, these lead to a value of n and the process is continued untrl values are obtained consistent with the relation $n^{2} a^{3}=k^{2}$ In the case of a minor planet $\log a=04$ is indicated as the appropriate initial value With the above formulae the calculation can be performed directly in equatorial coordinates, and little will be gained by introducing the ecliptic system When a and n have been
found, $\rho_{1}, \rho_{\mathrm{g}}$ are also known by (13) and hence the heliocentric coordinates of the planet

$$
\begin{array}{lll}
x_{1}=l_{1} \rho_{1}-X_{1}, & y_{1}=m_{1} \rho_{1}-Y_{1}, & z_{1}=n_{1} \rho_{1}-Z_{1} \\
x_{2}=l_{2} \rho_{2}-X_{2}, & y_{2}=m_{2} \rho_{2}-Y_{2}, & z_{2}=n_{2} \rho_{2}-Z_{2}
\end{array}
$$

96 Gauss has given a method for finding a curcular orbit, based on ecluptic coordnates Let $\left(R_{1}, L_{1}\right),\left(R_{2}, L_{2}\right)$ be the heliocentric distances and longitudes of the Earth at the times t_{1}, t_{2} and $\left(\lambda_{1}, \beta_{1}\right),\left(\lambda_{2}, \beta_{2}\right)$ the corresponding observed longitudes and latitudes of the planet If in the plane triangle $S E_{1} P_{1}$ the angle at P_{1} is denoted by z_{1} and the exterior angle at E_{1} by $\delta_{1}, P_{1} S E_{1}=\delta_{1}-z_{1}$ and

$$
\begin{equation*}
a \sin z_{1}=R_{1} \sin \delta_{1} \tag{14}
\end{equation*}
$$

Similarly in the triangle $S E_{2} P_{2}$, with similar notation,

$$
\begin{equation*}
a \sin z_{2}=R_{2} \sin \delta_{2} \tag{15}
\end{equation*}
$$

The directions of the sldes of the two triangles are now represented on a sphere of unit raduus, $S E_{1}, S E_{2}$ being represented by E_{1}, E_{2} on the ecliptic, $S P_{1}, S P_{2}$ by two points P_{1}, P_{2} If G_{1}, G_{2} represent $E_{1} P_{1}, E_{2} P_{2}$, these points he respectively on the great circles $E_{1} P_{1}, E_{2} P_{2}$ and the arcs $E_{1} G_{1}$, $E_{2} G_{2}$ are δ_{1} and δ_{2} Let the circles $E_{1} G_{1}, E_{2} G_{2}$ cut the ecliptic at the angles γ_{1}, γ_{2} Then the projections of the raduus through G_{1} on the radius through E_{1}, the radius through the point on the ecliptic 90° in advance of E_{1} and the radius through the pole of the ecliptic give
and similarly

$$
\begin{aligned}
\cos \beta_{1} \cos \left(\lambda_{1}-L_{1}\right) & =\cos \delta_{1} \\
\cos \beta_{1} \sin \left(\lambda_{1}-L_{1}\right) & =\sin \delta_{1} \cos \gamma_{1} \\
\sin \beta_{1} & =\sin \delta_{1} \sin \gamma_{1} \\
\cos \beta_{3} \cos \left(\lambda_{2}-L_{2}\right) & =\cos \delta_{2} \\
\cos \beta_{2} \sin \left(\lambda_{2}-L_{2}\right) & =\sin \delta_{2} \cos \gamma_{2} \\
\sin \beta_{3} & =\sin \delta_{2} \sin \gamma_{2}
\end{aligned}
$$

whence δ_{1}, δ_{2} and $\gamma_{1} \gamma_{2}$ Let the circles $E_{1} P_{1}, E_{0} P_{2}$ meet in D at an angle η If $D E_{1}=\phi_{1}$ and $D E_{3}=\phi_{2}$, the analogies of Delambre applied to the triangle $D E_{1} E_{2}$ in which the side $E_{1} E_{2}$ is $L_{2}-L_{1}$ and the adjacent angles are $\gamma_{1}, \pi-\gamma_{0}$, give

$$
\frac{\sin \left\{\frac{\pi}{4} \pm\left(\frac{\pi}{4}-\frac{\phi_{1} \mp \phi_{2}}{2}\right)\right\}}{\left.\sin \left\{\frac{\pi}{4} \pm \frac{\pi}{4}-\frac{L_{2}-L_{1}}{2}\right)\right\}}=\frac{\sin \left\{\frac{\pi}{4} \mp\left(\frac{\pi}{4}-\frac{\pi-\gamma_{2} \pm \gamma_{2}}{2}\right)\right\}}{\cos \left\{\frac{\pi}{4} \mp\left(\frac{\pi}{4}-\frac{\eta}{2}\right)\right\}}
$$

or more explucitly

$$
\begin{aligned}
& \sin \frac{1}{2} \eta \sin \frac{1}{2}\left(\phi_{1}+\phi_{2}\right)=\sin \frac{1}{2}\left(L_{2}-L_{1}\right) \sin \frac{1}{2}\left(\gamma_{2}+\gamma_{1}\right) \\
& \sin \frac{1}{2} \eta \cos \frac{1}{2}\left(\phi_{1}+\phi_{2}\right)=\cos \frac{1}{2}\left(L_{2}-L_{1}\right) \sin \frac{1}{2}\left(\gamma_{2}-\gamma_{1}\right) \\
& \cos \frac{1}{2} \eta \sin \frac{1}{2}\left(\phi_{1}-\phi_{2}\right)=\sin \frac{1}{2}\left(L_{2}-L_{1}\right) \cos \frac{1}{2}\left(\gamma_{2}+\gamma_{1}\right) \\
& \cos \frac{1}{2} \eta \cos \frac{1}{2}\left(\phi_{1}-\phi_{2}\right)=\cos \frac{1}{2}\left(L_{2}-L_{1}\right) \cos \frac{1}{2}\left(\gamma_{2}-\gamma_{1}\right)
\end{aligned}
$$

whence ϕ_{1}, ϕ_{2} and η But since the arc $E_{1} P_{1}=\delta_{1}-z_{1}$ and $D E_{1}=\phi_{1}$, $D P_{1}=\phi_{1}-\delta_{1}+z_{1}$ and $D P_{2}=\phi_{2}-\delta_{2}+z_{2}$, while $P_{1} P_{2}=n\left(t_{2}-t_{1}\right), n$ bemg the mean motion Hence

$$
\cos n\left(t_{2}-t_{1}\right)=\cos \left(\phi_{1}-\delta_{1}+z_{1}\right) \cos \left(\phi_{2}-\delta_{2}+z_{2}\right)+\sin \left(\phi_{1}-\delta_{1}+z_{1}\right) \sin \left(\phi_{2}-\delta_{2}+z_{2}\right) \cos \eta
$$ or better, snce $n\left(t_{4}-t_{1}\right)$ is a small angle,

$\sin ^{2} \frac{1}{2} n\left(t_{2}-t_{1}\right)=\cos ^{2} \frac{1}{2} \eta \sin ^{2} \frac{1}{2}\left(\chi_{1}+z_{2}-z_{1}\right)+\sin ^{2} \frac{1}{2} \eta \sin ^{2} \frac{1}{2}\left(\chi_{2}+z_{2}+z_{1}\right)$
where

$$
\begin{equation*}
\chi_{1}=\phi_{2}-\delta_{2}-\left(\phi_{2}-\delta_{1}\right), \quad \chi_{2}=\phi_{2}-\delta_{2}+\left(\phi_{1}-\delta_{1}\right) \tag{16}
\end{equation*}
$$

The solution is conducted in the usual way Since $\delta_{1} ; \delta_{2}$ are known an assumed value of a gives z_{1}, z_{2} by (14) and (15) Then χ_{1}, χ_{2} and η being known, the value of $n 1 s$ deduced from (16), and the process is continued until values are found which satisfy the relation $n^{2} a^{3}=k^{2} \quad$ When this has been done, the values of z_{1}, z_{2} have also been found, and hence the geocentric distances are given by

$$
\rho_{1} \sin z_{1}=R_{1} \sin \left(\delta_{1}-z_{1}\right), \quad \rho_{2} \sin z_{3}=R_{2} \sin \left(\delta_{2}-z_{2}\right)
$$

but these distances are not actually required Since the arc $E_{1} P_{1}$ on the sphere is $\delta_{1}-z_{1}$ and makes the angle γ_{1} with the ecliptic, we have the hehocentric longitude and latitude of P_{1} (as in the case of G_{1}) given by

$$
\begin{aligned}
\cos b_{1} \cos \left(l_{1}-L_{1}\right) & =\cos \left(\delta_{1}-z_{1}\right) \\
\cos b_{1} \sin \left(l_{1}-L_{1}\right) & =\sin \left(\delta_{1}-z_{1}\right) \cos \gamma_{1} \\
& =\sin \left(\delta_{1}-z_{1}\right) \sin \gamma_{1}
\end{aligned}
$$

with similar formulae for $\left(l_{2}, b_{2}\right)$ the heliocentric longitude and latitude of the planet in its second position

97 If $\left(l_{1}, b_{1}\right),\left(l_{\mathbf{s}}, b_{\mathbf{s}}\right)$ have been thus obtaned the remaming elements are easily found For by (15) of $\$ 86$ the node and inclunation are given by

$$
\begin{aligned}
& 2 \tan \imath \sin \left\{\frac{1}{2}\left(l_{1}+l_{2}\right)-\Omega\right\}=\sin \left(b_{1}+b_{2}\right) / \cos b_{1} \cos b_{2} \cos \frac{1}{2}\left(l_{2}-l_{1}\right) \\
& 2 \tan \imath \cos \left\{\frac{1}{2}\left(l_{1}+l_{2}\right)-\Omega\right\}=\sin \left(b_{2}-b_{1}\right) / \cos b_{1} \cos b_{2} \sin \frac{1}{2}\left(l_{2}-l_{1}\right)
\end{aligned}
$$

and then the arguments of latitude by

$$
\tan u_{1}=\tan \left(l_{1}-\Omega\right) \sec \imath, \quad \tan u_{2}=\tan \left(l_{2}-\Omega\right) \sec \imath
$$

with the check $u_{8}-u_{1}=n\left(t_{2}-t_{1}\right) \quad$ As the fourth element the argument of latitude u_{0} at a chosen epoch t_{0} may be taken, and this is simply

$$
u_{0}=u_{1}+n\left(t_{0}-t_{1}\right)=u_{2}+n\left(t_{0}-t_{2}\right)
$$

where t_{1}, t_{2} may be antedated tor planetary aberration
If, on the other hand, the helocentric coordnates $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{3}, y_{2}, z_{2}\right)$ have been found as in §95, and i^{\prime} is the inclination of the orbit to the

102 Determinatoon of Paraboluc and Circular Orbzts [cн Ix

plane $z=0$ and Ω^{\prime} is reckoned in this plane from the axis of z towards the axis of y, the plane of the orbit is

$$
x \sin \Omega^{\prime} \sin \imath^{\prime}-y \cos \Omega^{\prime} \sin \imath^{\prime}+z \cos \imath^{\prime}=0
$$

and as this is satisfied by the two points on the orbit we have

$$
\frac{\sin \Omega^{\prime} \sin \imath^{\prime}}{y_{1} z_{2}-y_{2} z_{1}}=\frac{\cos \Omega^{\prime} \sin \imath^{\prime}}{x_{1} z_{1}-x_{2} z_{1}}=\frac{\cos i^{\prime}}{x_{1} y_{2}-x_{2} y_{1}}
$$

The solution can then be completed as before, the arguments u being now reckoned in the plane of the orbit from the node in the plane $z=0$

The meaning of the quantities b_{1}, b_{2} and c in $\S 95$ may be seen thus Let an axis of z be taken perpendicular to ρ_{1} and ρ_{1}, and an axis of x midway between the directions of ρ_{1} and ρ_{2}, so that (l_{1}, m_{1}, n_{1}) become ($\cos \frac{1}{2} \theta,-\sin \frac{1}{2} \theta, 0$), $\left(l_{2}, m_{2}, n_{2}\right)$ become ($\left.\cos \frac{1}{2} \theta, \sin \frac{1}{2} \theta, 0\right)$, and $\left(X_{1}, Y_{1}, Z_{1}\right),\left(X_{2}, Y_{2}, Z_{2}\right)$ become $\left(X_{1}^{\prime}, Y_{1}^{\prime}, Z_{1}^{\prime}\right),\left(X_{2}^{\prime}, Y_{2}^{\prime}, Z_{2}^{\prime}\right) \quad$ Then

$$
\begin{aligned}
b_{1} & =\left(X_{2}^{\prime}-X_{1}^{\prime}\right) \sec \frac{1}{2} \theta \\
b_{1} & =\left(Y_{2}^{\prime}-Y_{1}^{\prime}\right) \operatorname{cosec}{ }_{2}^{1} \theta \\
c & =\left(Z_{2}^{\prime}-Z_{1}^{\prime}\right)^{2}
\end{aligned}
$$

If the difficulties of reducing this apparently simple problem to a practical form of calculation are carefully considued, in view of the small quantitie4 which occur, the merit of the method in $\S 96$ will be better understood The reader must realize that the general problem of determining orbith fiom observations close together in time is essentially a question of aithmetical technique, and not of any paricular mathematical difficulty This 15 well illustrated in the history of the problem, especially in the eighteenth century

It is to be remarked that the problem of findung a cincular orbit to satisfy the given observations cannot alwayy be solved That a solution 18 not necessarily to be expected with arbitrary data can be readily seen, though the equations, not being algebranc, are too complicated to mak(a general discussion of the conditions feasible It 14 enough to say that carey have occurred in practice in which a circular approximation to the orbit has proved impossible The number of minor planets already discovered is approaching a thousand, and the most fiequent eccentricity 14 in the neighbourhood of 012

CHAPTER X

ORBITS OF DOUBLE STARS

98 There exist in the sky pars of stars the components of which are separated by no more than a few seconds of arc, and frequently by less than one second So close are they that they can only be seen distinctly in powerful telescopes, if indeed they can be clearly resolved at all Such pars are so numerous that probability forbids the idea that the contiguity of the stars can be explained by chance distribution in space They must be physically connected systems for the most part and it is to be expected that the relative motion of the stars will reveal the effect of mutual gravitation That this is actually true was discovered by Sir W Herschel

The motion is referred to the brighter component as a fixed point The relative motion of the fainter component takes place in an ellipse of which the principal star occupies the focus (§ 24), unless there are other bodies in the system, or there proves to be no physical connexion between the pair The apparent orbit which is observed is the projection of the actual orbit on the tangent plane to the celestial sphere, to which the line of sight to the principal star 18 normal, and since the point of observation $1 s$ very distant compared with the dimensions of the orbit the projection can be considered orthogonal Hence the law of areas holds also in the apparent orbit, which is equally an ellipse But in this orbit the brighter star does not occupy the focus its position gives the means of determining the relative situation of the true orbit

The observations give the polar coordinates, ρ, θ, of the companion, the principal star being at the origin The distance ρ is expressed in seconds of arc and the linear scale remains unknown unless the parallax of the system has been determined The position angle θ is reckoned from the North direction through 360° in the order N, E or following, S, W or preceding The planes of the actual and apparent orbits intersect in a lnee called the line of nodes and passing through the principal star The position angle of that node which hes between 0° and 180° will be designated by Ω Thus if the line of nodes is taken as the axis of ξ,

$$
\xi=\rho \cos (\theta-\Omega), \quad \eta=\rho \sin (\theta-\Omega)
$$

On the other hand, in the plane of the actual orbit, the longitude of penastion λ is the angle measured fiom this node to periastron in the direction of orbital motion Hence in this plane, if the line of nodes is taken as the axis of x,

$$
a=r \cos (w+\lambda), \quad y=1 \sin (w+\lambda)
$$

where r is the radus vector and w the tiue anomaly of the companion But if \imath is the inclination of the two planes to one another, $\xi=x$ and $\eta=y \cos \iota$, so that

$$
\begin{aligned}
& \rho \cos (\theta-\Omega)=r \cos (w+\lambda) \\
& \rho \sin (\theta-\Omega)=r \sin (w+\lambda) \cos \imath
\end{aligned}
$$

Here the limits contemplated for \imath are 0° and 180° If $0^{\circ}<\imath<90^{\circ}, \theta$ and w increase together with the time and the inotion is direct If $90^{\circ}<\iota<180^{\circ}$, θ decreases with the time and the motion is retrograde This is a departure from the more usual convention according to which τ is always less than $90{ }^{\circ}$ It is then necessary to state whether the motion is duect or retrograde, and in the latter case to reverse the sign of cos ardinary visual observations of double stars, however, must leave the position of the orbital plane m one respect ambiguous, since there is nothing to indicate whether the node as defined is the approaching or receding node The two possible planes intersect, in the line of nodes and are the mages of one another in the tangent plane to the celestial sphere

In addition to the three elements, Ω, λ, \imath, now defined, foum other elements are requured These are a, the mean distance in the truc orbit, "xpmassed like ρ in seconds of are, e, the eccentricity of the true orbit, T, the time of perrastron passage, and P, the period (or $n=2 \pi / P$, the mern motion) (x. pressed in years

99 The measurement of double stars is difficult and the carly mensures were very rough indeed As the accuracy of the observations is not high refined methods of treatment are seldom justified and graphical processess have been largely employed The observed coordinates may be plotied on paper and the apparent ellipse drawn through the points as well as may be Let C be the centre and S the position of the principal star The problem consists in finding the orthogonal projection by which the actual orbit is projected into this ellipse and the focus F into the point S

The direction of the line of nodes can be determined by the principlay of projective geometry Conjugate lines through the focus F form an on thogromal involution They project into an overlapping involution of conjugate lines through S Of this involution one pair is at inght angles and as in this cruse a right angle projects into a right angle it is clear that the lime of noder an parallel to one of the pair Let $S A, S A^{\prime}, S B, S B^{\prime}$ be two pars of conjugatu lines through S When the apparent ellupse has been drawn the cese can be-
found by drawing tangenis at the extremities of chords through S, or by inscribing quadrangles in the ellipse, for each of which S is a hanmonic point On $C S$ as diameter describe a circle, centre K Let $A_{1}, A_{1}{ }^{\prime}, B_{1}, B_{1}{ }^{\prime}$ be the points in which the conjugate lines intersect this circle and let $A_{1} A_{1}^{\prime}, B_{1} B_{1}^{\prime}$ intersect in 0 Corresponding points of the same involution on the circle are obtained by drawing chords through O, and if $O K$ meets the circle in $N, N^{\prime}, S N, S N^{\prime}$ are the orthogonal parr of the involution pencil required Let $C A B N A^{\prime} B^{\prime}$ be a transversal of the pencll drawn parallel to $S N^{\prime}$ so that $A A^{\prime}, B B^{\prime}$ subtend obtuse angles at S This is an involution range of which N, since it corresponds to the point at infinity, is the centre, so that $A N \quad N A^{\prime}=B N \quad N B^{\prime} \quad$ On $N S$ take the point F such that $N F^{\prime n}$ is equal to this constant product Then F is the intersection of circles on the dameters $A A^{\prime}, B B^{\prime}$ and $A F A^{\prime}, B F^{\prime} B^{\prime}$ are right angles Hence if $N F$ be rotated about

Fig 4
$C N$ untrl $F S$ is perpendiculan to the plane $C N S$ (the plane of the apparent orbit) right angles at F will be orthogonally projected into the involution of conjugate lines at S The position of the focus F of the actual orbit has therefore been found, and the orthogonal projection by which the true and the apparent orbits are related

The true orbit may be plotted point by point on the plane of the paper, with its centre C and focus F For if P^{\prime} is a point on the apparent orbit and P the corresponding point on the true orbit $P P^{\prime}$ is perpendicular to $C N$ and $P F$, $P^{\prime} S$ meet on $C N$ In particular, if X^{\prime} (fig 5) is a point where $C S$ meets the apparent orbit, the corresponding point X in which the perpendicular through X^{\prime} to $C N$ meets $C F^{\prime}$ is a vertex of the true orbit and $C X=a$ The eccentricity is given by

$$
\frac{C S}{C X^{\prime}}=\frac{C F}{C X}=e
$$

and the inclination by

$$
\frac{S N}{F N}=1 \cos 21
$$

where $0<\imath<\frac{1}{2} \pi$ if the motion is direct and $\frac{1}{2} \pi<\imath<\pi$ if the motron is retrograde Also $\Omega(<\pi)$ is the position angle of $C N$ and λ is the angle between $C N$ and $C F$ measured in the direction in which the motion takes place The five geometrical elements of the orbit have therefore been found

100 It is to be noticed that this method does not require the ellhpse which represents the apparent orbit to be actually drawn When the observed positions have been plotted five points may be chosen to define the ellupse These points need not be actual points of observation it is better if they are graphically interpolated among the observed positions Let them be denoted

Fig 5
by $1,23,4,5$ Draw a line through 1 parallel to 23 The second point in which this line meets the ellupse can then be found by Pascal's theorem with the ruler only This gives two parallel chords and hence a diameter Similarly a second dameter is drawn and the two intersect in the centre C of the apparent ellipse Again, by a similar use of Pascal's theorem, the points in which the hnes $1 S, 9 S, 3 S$ meet the ellupse agann are determined This gives three pairs of lines each of which determines a quadrangle inscribed in the ellipse If tro of these be completed the sides of the harmonic triangles which meet in S determine two pairs of conjugate lines From this point the construction fullows as before The point X^{\prime} in which $C S$ meets the apparent ellipse can be constructed by projective geometry But it is unnecessary If F^{\prime} is the second focus of the real orbit and P the point $F P+P F^{\prime}=2 a$ and $C F=a e \quad$ Hence a and e

101 When the apparent ellipse has been drawn the eccentricity is known, for if $C S$ meets the ellipse in X^{\prime}, the projection of the vertex of the true orbit, $C^{C} S / C X^{\prime}=e$ since the ratio of segments of a line is unaltered by orthogonal projection Let $C Y^{\prime}$ be the conjugate diameter to $C X^{\prime}$ and therefore the projection of the minor axis of the true orbit If the oblqque ordnates parallel to $C Y^{\prime}$ are produced in the 1atio $1 \quad \sqrt{ }\left(1-e^{2}\right)$ an auxilary ellipse will be constructed which is clearly the projection of the auxilary circle to the true orbit and has double contact with the apparent orbit, CS being the common chord But the orthogonal projection of a circle is an ellipse of which the major axis is equal to the diameter and is parallel to the line of nodes, while the minor axis is the dinect projection of the diameter Hence the major axis of the auxiliany ellipse is $2 a$, the minor axis $2 a \cos \imath$, the eccentricity $\sin \imath$ and Ω is the angle which the transverse axis makes with the N direction The circle on the major axis as diameter is the auxilary circle of the true orbit turned into the plane of the apparent orbit Let X be the point in which this circle is cut by a perpendicular from X^{\prime} to the major axis of the auxilary ellipse The point X will project into the point X^{\prime} and therefore represents the position of periastron on the auxilary circle Hence the angle (taken in the right sense) which $C X$ makes with the major axis of the auxilary ellipse, or line of nodes, is the angle λ This is the graphical method of Zwiers

It is evident that the line of nodes and the inclination will be equally indicated by constructing the projection of any circle in the plane of the true orbit Now the parameter p (or semi-latus rectum) is a harmonic mean between the segments of any focal chord Hence the circle on the latus rectum as diameter has radu along any focal chord which are equal to the harmonic mean of the focal segments The projection of this circle is an ellipse with its centre at S, its majon axis equal to $2 p$ and lying in the direction of the line of nodes, and ats eccentricity equal to sin 2 This ellipse can be actually derived fiom the apparent orbit by laying off on radu through S lengths equal to the harmonce mean of the intercepts on the same chord between S and the curve, since the ratios are unaltered by projection This principle, of which another use will be made, is due to Thicle

102 Such graphical methods are tedious and may be avoided by a slight calculation when the apparent orbit has been drawn Since the eccentricity is known when this has been done, there remann four geometrical elements, a, i, Ω, λ, to be determined Four independent quantities are required and the four chosen by Sir John Herschel and others are 2a, the dameter through $S, 2 \beta$ the conjugate diameter, and χ_{1}, χ_{2} the position angles of these diameters The length of the chord through S^{\prime} parallel to β, or the projection of the latus
rectum of the true orbit, is therefore $2 \beta \sqrt{ }\left(1-e^{2}\right)$ Hence the relations between the positions in the true and apparent orbits ($\$ 98$) give

$$
\begin{aligned}
\alpha(1-e) \cos \left(\chi_{1}-\Omega\right) & =a(1-e) \cos \lambda \\
\alpha(1-e) \sin \left(\chi_{1}-\Omega\right) & =a(1-e) \sin \lambda \cos \imath \\
\beta \sqrt{ }\left(1-e^{2}\right) \cos \left(\chi_{2}-\Omega\right) & =-a\left(1-e^{-}\right) \sin \lambda \\
\beta \sqrt{ }\left(1-e^{2}\right) \sin \left(\chi_{2}-\Omega\right) & =a\left(1-e^{2}\right) \cos \lambda \cos \imath
\end{aligned}
$$

sunce $w=0^{\circ}$ at periastron and 90° at the extremity of the latus rectum Hence Ω is given by

$$
\alpha^{\prime}\left(1-e^{0}\right) \sin 2\left(\chi_{1}-\Omega\right)+\beta^{\prime} \sin 2\left(\chi_{2}-\Omega\right)=0
$$

or

$$
\tan \left(\chi_{1}+\chi_{2}-2 \Omega\right)=\tan \left(\chi_{1}-\chi_{2}\right) \cos 2 \gamma
$$

where

$$
\tan \gamma=\sqrt{ }\left(1-e^{2}\right) \alpha / \beta
$$

This equation in Ω is satisfied by $\Omega \pm \frac{1}{2} \pi$ as well as Ω But

$$
\cos ^{2} \imath=-\tan \left(\chi_{1}-\Omega\right) \tan \left(\chi_{2}-\Omega\right)
$$

and this rejects $\Omega \pm \frac{1}{2} \pi$ since $\cos \imath<1$ and determines \imath The first and third of the above set of four equations give both a and λ with its proper quadrant and the second or fourth gives also the proper sign of $\cos 2$ (according to the convention of §98) The solution is then free from ambiguity, understanding that χ_{1} is the position angle corresponding to periastron and χ_{2} the position angle when the companion has moved through one quadrant in its plane beyond this point

103 Another method employs the general equation

$$
a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0
$$

of the apparent orbit referred to the pincipal star as origin Without loss of generality c may be put equal to 1 The other coefficients are to be chosen to satisfy the observations as well as may be But an elaborate solution is not justified because the one accurate element in the observation, the time, is not involved in this stage The intersections of the ellipse with the axes and anf tifth point give the result in the simplest way The elements of the true orbit can then be derived in a varnety of forms Let us find the projection of the circle on the latus rectum The above equation may be written

$$
a \cos ^{2} \theta+2 h \cos \theta \sin \theta+b \sin ^{2} \theta+\frac{2}{\rho}(g \cos \theta+f \sin \theta)+\frac{c}{\rho^{2}}=0
$$

For a particular value of θ, ρ has two values, ρ_{1} and $-\rho_{2}$, one positive and one negative sunce the orign is inside the curve Hence, if ρ represents the harmonic mean,

$$
\begin{aligned}
& \frac{1}{\rho^{2}}=\frac{1}{4}\left(\frac{1}{\rho_{1}}+\frac{1}{\rho_{2}}\right)^{2}=\frac{1}{4}\left(\frac{1}{\rho_{1}}-\frac{1}{\rho_{2}}\right)^{2}+\frac{1}{\rho_{1} \rho_{2}} \\
& =\left\{(g \cos \theta+f \sin \theta)^{2}-c\left(a \cos ^{2} \theta+2 h \cos \theta \sin \theta+b \sin ^{2} \theta\right)\right\} / c^{2} \\
& =\left(-B \cos ^{2} \theta+2 H \sin \theta \cos \theta-A \sin ^{2} \theta\right) / c^{2}
\end{aligned}
$$

where, in the usual notation,

$$
A=b c-f^{2}, \quad H=f g-c h, \quad B=a c-g^{2}
$$

Hence the equation

$$
B x^{2}-2 H x y+A y^{2}+c^{2}=0
$$

represents the projection of the circle on the latus rectum (§ 101), or an ellipse with axes $2 p$ and $2 p \cos \imath$ and its transverse axis coinciding with the line of nodes It is therefore identical with the equation
and thus

$$
\frac{(x \cos \Omega+y \sin \Omega)^{2}}{p^{2}}+\frac{(y \cos \Omega-x \sin \Omega)^{2}}{p^{2} \cos ^{2} \bar{i}}=1
$$

$$
\begin{aligned}
-B / c^{2} & =p^{-2} \cos ^{2} \Omega+p^{-2} \sec ^{2} \imath \sin ^{2} \Omega \\
H / c^{2} & =\left(p^{-2}-p^{-2} \sec ^{2} \imath\right) \sin \Omega \cos \Omega \\
-A / c^{2} & =p^{-2} \sin ^{2} \Omega+p^{-2} \sec ^{3} \imath \cos ^{2} \Omega
\end{aligned}
$$

or

$$
\begin{aligned}
& p^{-2} \tan ^{2} \imath \sin 2 \Omega=-2 H / c^{2} \\
& p^{-2} \tan ^{2} \imath \cos 2 \Omega=(B-A) / c^{2} \\
& 2 p^{-2}+p^{-2} \tan ^{2} \imath=-(B+A) / c^{2}
\end{aligned}
$$

which determine Ω, p and \imath
Agan, the perpendicular from the focus on the directrix is $a\left(e^{-1}-e\right)=p e^{-1}$ Hence the intercepts on the line of nodes and on the line perpendicular to it between the focus and the directrix are $p / e \cos \lambda, p / e \sin \lambda$ The projections of these intercepts, also at right angles, are $p / e \cos \lambda, p \cos 2 / e \sin \lambda$ But the projection of the directrix is the polar of the origin, or the line $q x+f y+c=0$ Hence

$$
\begin{array}{r}
(g \cos \Omega+f \sin \Omega) p / e \cos \lambda+c=0 \\
(-g \sin \Omega+f \cos \Omega) p \cos \imath / e \sin \lambda+c=0
\end{array}
$$

so that e and λ are given by the equations

$$
\begin{aligned}
& e \sin \lambda=-p \cos \imath(f \cos \Omega-g \sin \Omega) / c \\
& e \cos \lambda=\quad-p(f \sin \Omega+g \cos \Omega) / c
\end{aligned}
$$

Equations for the five geometical elements in the above form were first given by Kowalsky

The form of the equation which represents the projection of a circle is defined by the fact that the asymptotes of the projected ellipse are parallel to the projection of the circular lines and therefore to the tangents from S to the apparent orbit It will be found that the projection of the auxiliary circle, referied to its centre, is in the usual notation

$$
C^{2}\left(B x^{2}-2 H x y+A y^{2}\right)+\Delta^{2}=0
$$

and that of the director cincle

$$
C^{2}\left(B x^{2}-2 H x y+A y^{2}\right)+\Delta(\Delta+C c)=0
$$

while the eccentricity of the true orbit is given by

$$
1-e^{2}=C c / \Delta
$$

104 In some few cases a double star has been observed over more than one complete revolution The period P is then known approxinately and the date T of periastron passage, when the companion is situated on the diameter of the appaient orbit through S^{\prime} Otherwise, when the geometrical elements have been determined, two dated observations suffice to determune these two additional elements For two obseived position angles θ_{1}, θ give the corresponding true anomalies w_{1}, w_{3} and hence the eccontic anomalies E_{1}, E_{2}, since

$$
\tan (\theta-\Omega)=\tan (w+\lambda) \cos 2, \quad \tan \frac{1}{2} E=\sqrt{ }\binom{1-e}{1+e} \tan \frac{1}{2} w
$$

Then

$$
n\left(t_{1}-T\right)=E_{1}-e \sin E, \quad n\left(t_{2}-T\right)=E_{2}-e \sin E_{2}
$$

determine $n=2 \pi / P$ and T In practice a larger number of such equations will be employed in ordel to reduce the cffect of errors in the obscrvations The law of areas can also be apphed directly to the apparent orbit, for if a_{1} is the area described by the adius vector between the dates t_{1}, t_{2}, and A_{1} is the area of the ellhpse, $P=\left(t_{2}-t_{1}\right) A_{1} / a_{1}$, and simularly T can be determined A primitive method which has been used for measuring the areas consists in cutting out the areas in cardboard and weighing them

When the parallax \approx of a double star is known, a / σ is the mean distance in the system expressed in terms of the astionomical unit Hence (§ 24), it m, m^{\prime} are the masses of the components,

$$
k^{2}\left(m+m^{\prime}\right)=4 \pi^{2} a^{3} / \varpi^{3} P
$$

while $k^{2}=4 \pi^{2}$ if the mass of the Sun-Earth system and the sidereal ycar anc taken as units For this purpose the mass of the Earth is negligible and thus, P being expressed in years,

$$
m+n^{\prime}=a^{3} / w^{3} P^{2}
$$

is the combined mass of the system, compared with that of the Sun
105 The appaient orbit can be reconstructed, on an arbitialy scale, from observed position angles alone This course was advocated by Sir J Herschel, who considered the measured distances of his day very inferior in accuracy With this object the position angles are plotted as oldinates with the time as abscissa Owing to inaccuracies the points will not he exactly on a smooth cuive, but such a curve must be drawn through them as well as possible Let ψ be the angle which the tangent to the curve at the point
(t, θ) makes with the axis of t, so that $d \theta / d t=\tan \psi$ But sunce Kepler's law of areas is preserved in the apparent orbit, $\rho^{2} \theta=h$, an undetermined constant Hence $\rho=\sqrt{ }(h \cot \psi)$ and the apparent orbit can thus be derived graphically from the (t, θ) curve The elements with the exception of a can then be obtained and finally a is determined by the measured distances, of which no other use is made in the calculation

The opposite case may arse, and is illustrated by the star 42 Comae Berenices, in which the determination of the elements must be based on the distances Here the plane of the orbit passes through the point of observation, $\tau=90^{\circ}$ (or practically so) and the position angles serve only to determine Ω If the star has been observed over more than one revolution the period P may be considered known Corresponding to the point $(a \cos E, b \sin E)$ on the orbit, the observed distance is

$$
\begin{aligned}
\rho & =a \cos E \cos \lambda-b \sin E \sin \lambda-a e \cos \lambda \\
& =R \cos (E+\beta)-a e \cos \lambda
\end{aligned}
$$

while

$$
n(t-T)=E-e \sin E
$$

If the observations are plotted for a single period, from maximum to maximum, the result is to give the curve

$$
\begin{aligned}
& x=n t=n T+E-e \sin E \\
& y=\rho=R \cos (E+\beta)-a e \cos \lambda
\end{aligned}
$$

which is a distorted cosine curve Maximum and minimum correspond to $E=-\beta, \pi-\beta$ and give

$$
\begin{array}{ll}
n t_{1}=n T-\beta+e \sin \beta, & y_{1}=R-a e \cos \lambda \\
n t_{2}=n T+\pi-\beta-e \sin \beta, & y_{2}=-R-a e \cos \lambda
\end{array}
$$

whence R and ae $\cos \lambda$, whule in addation

$$
n\left(t_{2}-t_{1}\right)=\pi-2 e \sin \beta
$$

These equations may be supplemented by a simple device Taking the origin of x at the first maximum let the curve

$$
y=R \cos x-a e \cos \lambda
$$

also be drawn Let P be a point on this curve and Q the corresponding point on the first curve such that the ordinates at P and Q are equal Then at $P, x=E+\beta$, so that

$$
Q P=E+\beta-n\left(t-t_{1}\right)=e \sin E+\beta-n\left(T-t_{1}\right)
$$

Hence the curve

$$
y=e \sin (x-\beta)+\beta-n\left(T^{\prime}-t_{1}\right)
$$

can be constructed by laying off on each ordinate through P a length equal to $Q P$ This is a simple sine curve, the form of which will serve to show
any irregularities in the ($n t, \rho$) curve from which it is derived The amplitude is $2 e$, represented on the scale by which 2π corresponds to the period in x The value of e being thus known gives β from $\left(t_{z}-t_{1}\right)$ and hence a and λ, sunce

$$
a \cos \lambda=R \cos \beta, \quad a \sin \lambda=R \sin \beta / \sqrt{ }\left(1-e^{3}\right)
$$

T is then given by the maximum and minimum of the onginal curve But the sune curve has its maximum at $x=\beta+\frac{1}{2} \pi$ and its centidl line 14 $y=\beta-n\left(T-t_{1}\right)$ These conditions must also be tanly satisfied by the adopted solution

106 Graphical methods, such as those shetched above, only provide a first approximation to the solution ot a problem Here in gencral the observations are too rough to make a closer approximation feasible Buti if it 14 necessary to improve the elements thus found, each obsel vation gives onc equation in the following way Let $d a, d \Omega, \quad$ be the requined corrections to the approximate elements, a, Ω, \quad For the time t of an observation θ (or ρ) can be calculated Its value is

$$
\theta_{c}=f(t, a, \Omega, \quad)
$$

But the observed value is

$$
\theta_{o}=f(t, a+d a, \Omega+d \Omega, \quad)
$$

If then the elements have been found with such an aceuracy that squares, products and higher powers of $d a, d \Omega$, can be neglected,

$$
\theta_{o}-\theta_{c}=\frac{\partial \theta}{\partial \prime \prime} d a+\frac{\partial \theta}{\partial \Omega} d \Omega+
$$

a linear equation in $d u, d \Omega$,

$$
\begin{aligned}
& \frac{\partial \theta}{\partial a}=0, \\
& \frac{\partial \theta}{\partial \Omega}=1, \\
& \frac{\partial \theta}{\partial \imath}=-\frac{1}{2} \sin 2(\theta-\Omega) \tan \imath, \\
& \frac{\partial \theta}{\partial \lambda}={ }_{\rho^{2}}^{2} \cos 2_{4} \\
& \frac{\partial \theta}{\partial \bar{T}}=-\frac{n a^{2}}{\rho^{2}} \cos 2 \sqrt{ }\left(1-e^{2}\right), \\
& \frac{\partial \theta}{\partial n}=-\frac{t-T}{n} \quad \partial \theta, \\
& \frac{\partial \theta}{\partial e}=\frac{r^{3}}{\rho^{2}}\left(\frac{a}{r}+\begin{array}{c}
1 \\
1-e^{2}
\end{array}\right) \sin w \cos 2 . \\
& { }_{\partial \alpha}^{\partial \rho}={ }_{a}^{\rho} \\
& \frac{\partial \rho}{\partial \Omega}=0 \\
& \frac{\partial \rho}{\partial \iota}=-\rho \sin ^{\prime}(\theta-\Omega) \tan \imath \\
& \frac{\partial \rho}{\partial \lambda}=-\frac{1}{2} \rho \sin 2(\theta-\Omega 2) \sin \imath \tan \imath \\
& { }_{\partial \rho}^{\partial \rho}=-{ }_{r^{2}}^{n a^{2}}\left\{e \rho \sin E+\sqrt{ }\left(1-e^{d}\right)_{\partial \lambda}^{\lambda \rho}\right\} \\
& \begin{array}{ll}
\partial \rho \\
\partial n & \left.=-\begin{array}{cc}
t-T & \partial \rho \\
n & \partial T
\end{array}\right]
\end{array}
\end{aligned}
$$

And sumulally with ρ The coefthe rents are
the verification of which may be left as an exercise

107 In some cases the position of a binary system has been measured relatively to some neighbouring star C which is independent of the system Let A be the principal star, m_{1} its mass, $\left(x_{1}, y_{1}\right)$ its coordinates at the time t, and simularly let B be the companion, m_{2} its mass, (x_{2}, y_{2}) its coordinates A series of measures of $A B$ gives

$$
x_{2}-x_{1}=\rho \cos \theta, \quad y_{2}-y_{1}=\rho \sin \theta
$$

while the measures of $A C$ give $x_{3}-a_{1}, y_{3}-y_{1},\left(x_{1}, y_{3}\right)$ being the position of C Let (ξ, η) be the $\mathrm{c} G$ of $A B$, so that

$$
\left(m_{1}+m_{2}\right) \xi=m_{1} x_{1}+m_{2} x_{2}, \quad\left(m_{1}+m_{2}\right) \eta=m_{1} y_{1}+m_{2} y_{2}
$$

But the motions of C and of the CG of $A B$ are unform and independent Hence

$$
\xi=x_{3}+\alpha+\beta t, \quad \eta=y_{s}+\alpha^{\prime}+\beta^{\prime} t
$$

where β, β^{\prime} are the proper motions of the CG relative to C, and $\left(\alpha, \alpha^{\prime}\right)$ is 1 ts position relative to C at the chosen epoch to which t refers Thus
or

$$
\left(m_{1}+m_{2}\right)\left(x_{3}+\alpha+\beta t\right)=m_{1} x_{1}+m_{2} x_{2}
$$

and

$$
\alpha+\beta t-f\left(x_{2}-x_{1}\right)+x_{3}-x_{1}=0
$$

sımılarly, where

$$
\alpha^{\prime}+\beta^{\prime} t-f\left(y_{2}-y_{1}\right)+y_{3}-y_{2}=0
$$

$$
f=m_{\mathrm{a}} /\left(m_{1}+m_{\mathrm{a}}\right)
$$

From a series of such equations $\alpha, \alpha^{\prime}, \beta, \beta^{\prime}$ and f can be determined and therefore the ratio of the masses of A and B But if a is the mean distance, P the period and w the parallax of the system $A B$,

$$
m_{1}+m_{2}=\alpha^{3} / \varpi^{3} P^{2}
$$

and the masses of the indıvidual stars, expressed in terms of the Sun, become known

108 In certain cases the absolute coordinates of stars apparently single have exhibited a variable proper motion It is then assumed that the variation is periodic and due to orbital motion in conjunction with an undetected body The motion to be investigated is relative to the CG of the system, which itself is supposed to move unuformly In the plane of the orbit the coordinates are $a^{\prime}(\cos E-e), b^{\prime} \sin E$, and therefore in the plane of projection, when referred to the line of nodes and the line at right angles, they become

$$
\begin{aligned}
& x=a^{\prime}(\cos E-e) \cos \lambda-b^{\prime} \sin E \sin \lambda \\
& y=\left\{a^{\prime}(\cos E-e) \sin \lambda+b^{\prime} \sin E \cos \lambda\right\} \cos \imath
\end{aligned}
$$

Hence the orbital displacement in the direction of the position angle Q is

$$
\begin{aligned}
\xi & =x \cos (\Omega-Q)-y \sin (\Omega-Q) \\
& =g \cos E+h \sin E-g e
\end{aligned}
$$

where

$$
\begin{aligned}
& g=a^{\prime}\{\cos \lambda \cos (\Omega-Q)-\sin \lambda \sin (\Omega-Q) \cos \imath\} \\
& h=-b^{\prime}\{\sin \lambda \cos (\Omega-Q)+\cos \lambda \sin (\Omega-Q) \cos 1\}
\end{aligned}
$$

and $Q=90^{\circ}$ tor displacements in $\mathrm{RA}, Q=0^{\circ}$ for displacements in declination The observations of one coordinate, say δ, therefore give a cories of equations of the form

$$
\delta=\delta_{0}+\mu_{0} t+g \cos E+h \sin E-g e
$$

with

$$
E-e \sin E=n(t-T)
$$

From these e, n (or P), $T, \mu_{\delta}, \delta_{0}, g$ and h can be determined Since g and h are functions of $a^{\prime}, \Omega, \lambda$ and a, these four elements cannot be deived trom observations of one coordinate alone But from observations of the wther coordinate, say a, the corresponding quantities q^{\prime} and h^{\prime} can be found und the elements of the motion are then completely determinato, including a^{\prime}, the mean distance from the CG of the system

In the two notable examples of this kind, Simus and Procyon, the companion was discovered afterwards It thus became possible to find the relative mean distance a and hence the iatio of the massecs, unc

$$
m_{1} \alpha^{\prime}=m_{-}\left(a-a^{\prime}\right)
$$

Hence, the parallax being known, the individual masses of the compenents have been determined It is to be noticed that, when the companion connot, be observed, the function of the masses which can be found $1 s m_{d}{ }^{\prime}\left(m_{1}+m\right)$: For this is equal to $a^{3} / \omega^{3} P^{2}$

CHAPTER XI

ORBITS OF SPECTROSCOPIC BINARIES

109 Another class of orbits which are based on pure elliptio motion is presented by those systems which are known as spectroscopic binaries It is now possıble to determine the radial velocities of the stars in absolute measure with high accuracy This follows from the application of Doppler's princuple to the inter pretation of stellar spectra. On the simple wave theory of light this principle is easily explaned A light disturbance travels outwards from its source in a spherical wave front which expands in the free ether of space with the uniform velocity U Let a fixed set of rectangular axes be taken in this space, and let $\left(x_{1}, y_{1}, z_{1}\right)$ be the position of the source at the origin of time Let (u_{1}, v_{1}, w_{1}) be the velocity components of the source, supposed to be in uniform motion, and t the time at which a light disturbance is ernitted Similarly let (x_{2}, y_{2}, z_{2}) be the position of the observer, also supposed to be moving uniformly, (u_{2}, v_{2}, w_{2}) the velocity components, and τ the time at which the specified disturbance reaches him For simplicity the motions have been considered uniform, but obviously they are immatenal except as regards the source at the instant t and the observer at the instant τ Let the corresponding positions be A, B respectively and let the distance $A B=R \quad$ Then

$$
\begin{aligned}
R^{2} & =\Sigma\left\{x_{i 2}+u_{2} \tau-\left(x_{1}+u_{1} t\right)\right\}^{2} \\
\frac{d R}{d t} & =\Sigma \alpha\left(u_{2} \frac{d \tau}{d t}-u_{1}\right)=V_{2} \frac{d \tau}{d t}-V_{1}
\end{aligned}
$$

where (α, β, γ) are the direction cosines of $A B$ and V_{1}, V_{2} are the projections of the velocities $\left(u_{1}, v_{1}, w_{1}\right),\left(u_{2}, v_{2}, w_{2}\right)$ on this line But since the wave reaches B from A in the time $(\tau-t)$, -

$$
R=U(\tau-t), \quad \frac{d R}{d t}=U\left(\frac{d \tau}{d t}-1\right)
$$

Hence

$$
\frac{d \tau}{d t}=\frac{U-V_{1}}{U-V_{2}}=1+\underline{V}_{2}-V_{1} \underline{V}^{2}+\frac{V_{2}\left(V_{2}-V_{1}\right)}{U\left(U-V_{2}\right)}
$$

Now ($V_{2}-V_{1}$) 18 the component of relative velocity of A and B, measured in the direction of separation of the two points This is a definite quantity But V_{2} is a component of the observer's absolute motion in free ether, and this is unknown Presumably it is small in comparison with U, and the last term can be rejected as a negligible effect of the second order Or , on the theory of relativity, V_{8} is not only unknown but unknowable, and the effect is completely compensated by a transformation of the ideal coordnatos of space and time into another set which is the subject of observation All this has its counterpart in the theory of aberration, with which it is intimately related Whether the limitation is imposed by the imperfection of practical observations or by the ultmate nature of things, it is necessary to be content with the effect of the first order

If the light emitted at A has the wave length λ, the fiequency of a particular phase in the wave train at A is U / λ But the number of waves emitted in a time $d t$ is received at B in the tune $d \tau$ It then the apparent wave length of the light received at B is λ^{\prime} and the apparent fiequency U / λ^{\prime},

$$
U \lambda^{-1} d t=U \lambda^{\prime-1} d \tau
$$

and therefore

$$
\frac{\lambda^{\prime}}{\lambda}=\frac{d \tau}{d t}=1+\frac{V}{U}
$$

where V is the relative radial velocity of A fiom B Thus the application of Doppler's principle gives

$$
V=U \quad \Delta \lambda / \lambda
$$

where $\Delta \lambda$ is the increase of wave length (or displacement measured positively towards the red end of the spectrum) of a spectral line, of which the natural wave length in the star is supposed known Further details on the practical methods of reduction would be out of place here, and this explanation must suffice It is usual to express $V \mathrm{in} \mathrm{km} / \mathrm{sec}$, and the velocity of hight may be taken to be $U=299860 \mathrm{~km} / \mathrm{sec}$

110 From the measured radal velocity must be deduced the radial velocity of the star relative to the Sun, or rather relative to the centre of gravity of the solar system This requires the calculation of certan corrections, of which the most important are due to (1) the diurnal iotation of the observer, and (2) the annual elliptic motion of the Earth relative to the Sun The effects of perturbations of the Earth and Sun are comparatively small

An observer situated on the equator is carried by the Earth's rotation over $40,000 \mathrm{~km}$ in a sidereal day This means a velocity of $046 \mathrm{~km} / \mathrm{scc}$ Hence the velocity of an observer in latitude ϕ is $046 \cos \phi \mathrm{~km} / \mathrm{sec}$ always directed towards the E point If θ is the angular distance of the star from this point at the time of observation, $\cos \theta=\cos \delta \cos \left(h+90^{\circ}\right)$, where δ is the
declination and h the W hour angle of the star Hence the additive correction corresponding to (1) is

$$
v_{d}=+046 \cos \phi \cos \theta=-046 \cos \phi \cos \delta \sin h
$$

Again, the Earth's elliptic velocity is compounded (§26) of one constant velocity V_{1} perpendicular to the radius vector and another $e V_{1}$ perpendicular to the major axis, e being the eccentricity of the orbit These vectors are directed to points in the echptic of which the longitudes are $\Theta-90^{\circ}$ and $\Gamma-90^{\circ}$, where Θ is the longitude of the Sun and Γ the longitude of the solar perigee Let (l, β) be the stan's longitude and latitude Hence the required correction for the Earth's orbital motion is

$$
v_{a}=+V_{2} \cos \beta\left\{\cos \left(l-\Theta+90^{\circ}\right)+e \cos \left(l-\Gamma+90^{\circ}\right)\right\}
$$

Now V_{1} is precisely that vector on which the constant of stellar aberration depends, so that if $k^{\prime \prime}$ is this constant,

$$
V_{1}=k^{\prime \prime} U / 206265^{\prime \prime}=2976 \mathrm{~km} / \mathrm{sec}
$$

when the standard value of $k, 20^{\prime \prime} 47$, is adopted with the value of U given above Hence the correction for (2) is

$$
v_{a}=+2976 \cos \beta\{\sin (\Theta-l)+e \sin (\Gamma-l)\}
$$

It is evident that the process might be reversed and the value of k determined by observing the apparent radial motion of one or more stars at different times of year This has been done at the Cape Observatory, with the result that the standard value of k was reproduced very exactly, an excellent test of the theory Indeed this is probably the best available method of finding the constant of aberration it will be noticed that the adopted value of U, being a factor of both V_{1} and V, will scarcely affect the resulting value of k

When the necessary corrections have been apphed to the apparent radial velocity of a star, the star's radial velocity is obtained relative to the solar system This is affected by the motion of the latter relative to the stellar system as a whole Hence conversely when the radial velocities of a number of stars scattered over the sky are known, it becomes possible to deduce the motion of the solar system relative to the average of those stars in absolute measure If, further, w is the parallax of a star, and μ its total annual proper motion, its transverse velocity is μ / w when expressed in astronomical units per year Now with the solar parallax $8^{\prime \prime} 80$ and the Earth's equatorial radus 6378249 km , the astronomical unit (or Earth's mean distance from the Sun) is $149,500,000 \mathrm{~km}$ Hence this unit of velocity is equivalent to $4737 \mathrm{~km} / \mathrm{sec}$ and the star's transverse velocity is $4737 \mu / \omega \mathrm{km} / \mathrm{sec}$ Thus the velocity of a star relative to the Sun can be completely determined in absolute measure This concerns questions of stellar kinematics which are now entering the region of dynamics but he outside our present scope

111 Repeated determinations of the radjal velocity of a star yield values which in the majorty of cases are constant within the errors of observation The motion of the star is apparently uniform But in other cases, perhaps a third of all the brighter stars, changes are obser ved which prove to be regular and periodic These are attributed plausibly to the motion of one component in a binary system Such spectroscopic binanies differ from visual doubles only in the scale of their orbits, which prevents them fiom beng resolved even in the most powerful telescopes, while their periods ano to be reckoned in days instead of years or even centuries It may appear that the spectrum of the second component should also be seen When the components are farrly equal in brightness, as in β Aurigae, this is so, the lines of the spectrum are seen periodically doubled But with other stars, and this is the more common type, the companion is relatively so taint that only one spectrum is shown it is quite unnecessary to suppose that the compamion is then an absolutely dark body Even when both spectra are visible the secondary spectrum is often difficult to detect and usually difficult to measure As a particularly interesting example Castor (α Geminorum) may be quoted The telescope reveals this star as a visual double, and the spectroscope shows that both components are themselves binary systems More complex systems can be inferred from spectroscopic measures alone Thus Polaris, which appears in the telescope as a single star, has been shown to be a triple system, consisting of a close pair revolving round a more distant third body Here the motion will be considered in the first instance of one component of a binary system about the common centre of gravity, and it will be seen how far the elements of an elliptic orbit can be deduced from the measured radial velocities, these being based on the comparison of the star's spectrum with that fiom a teriestrial source (usually the spark spectrum of ron or titanum)

112 Since the period is generally short, the observations extend over several revolutions and the period P is determined by obvious considerations with fair exactness This being known, the observed velocities can be referred to a single period with arbitrary epoch and plotted as ordinates with the time as abscissa in a dagram called the radial velocity curve Such a curve is illustrated in fig a, while the relative orbit is shown in fig b, corresponding points being indicated by the same letters The focus of this orbit is G, the centre of gravity of the system The line of nodes $A G B$, passing through A the receding node and B the apploaching node, is the line drawn through G in the plane of the orbit at right angles to the line of sight The points P_{1}, P_{2} mark the position of periastron and apastron, and the angle from $G A$ to $G P_{1}$, measured in the direction of motion, is the long1tude of perastron, ω The true anomaly at any point of the orbit being w, the longitude of this point from A is $u=\omega+w$ Let $\imath\left(0^{\circ}<\imath<90^{\circ}\right)$ be the
inclination of the orbit, this being the angle between its plane and the plane which is normal to the line of sight, and let e be the eccentricity

Fig 6 (a) upper, (b) lower
The orbital velocity of the star is compounded (§26) of one constant velocity V_{8} transverse to the radius vector and another $e V_{8}$ perpendicular to the major axis These may be resolved along and perpendicular to the line of nodes The former components contribute nothing to the radial velocity The latter are $+V_{2} \cos u$ and $+e V_{2} \cos \omega$ in the direction $G E$ which is
drawn at right angles to $G A$ This line makes the angle $\left(90^{\circ}-\iota\right)$ with the line of sight, and hence the radial velocity which is measured is

$$
V=\gamma+(\cos u+e \cos \omega) V_{2} \sin \iota
$$

where γ is the radal velocity of the point G, that is, of the system relative to the Sun It is at once evident that V_{2} and \imath cannot be determined independently from the radal velocities alone, and the equation may be written

$$
V=\gamma+K(\cos u+e \cos \omega), \quad K=V_{2} \sin \imath
$$

or again,

$$
V=\gamma^{\prime}+K \cos u, \quad \gamma^{\prime}=\gamma+K e \cos \omega
$$

where K, γ and γ^{\prime} are to be taken as constant
113 When the velocity curve has been drawn the maximum and mmmum ordnates are approximately known These are $y=\gamma^{\prime}+K, y=\gamma^{\prime}-K$, which require $u=0, u=180^{\circ}$ The maximum and minimum points, A, B, therefore correspond with the receding and approaching nodes the line $y=\gamma^{\prime}$ can then be drawn in the diagram, intersecting the velocity cuive in E, F These points require $u=90^{\circ}, 270^{\circ}$ and the conesponding points in the orbit are the extremities of the focal choid at right angles to the line of nodes The velocity cuive is thus divided at A, E, B, F into tour parts corresponding to four focal quadrants, each bounded on one side by the lime of nodes The part which contains the periastron passage will be described in the shortest time and that which contans the apastion passage will require the longest time The opposite extremities of any focal chord give equal and opposite values to ($V-\gamma^{\prime}$) In particular, the periastion and apastron points, P_{1}, P_{2}, are located on the velocity curve by the further condition that their abscissae differ by $\frac{1}{2} P$, the half penod, and the penints L_{1}, L_{2} corresponding to the ends of the latus rectum by the condition that they are equidistant in time from P_{1} or P_{2} The four points $P_{1}, P_{3}, L_{1}, L_{2}$ on the velocity curve are easily found graphically by trial and erion

Again, let O be the centre of the orbit and $C O D$ the dameter which is conjugate to the daameter parallel to the line of nodes, so that the tangents to the orbit at C and D are also parallel to this line Hence $V=\gamma$ at C and D on the velocity curve Let an axis of z be taken parallel to $G X E^{\prime}$ in the plane of the orbit, so that

$$
\begin{gathered}
V=\gamma+\frac{d z}{d t} \sin \iota \\
\int_{t_{1}}^{t_{2}}(V-\gamma) d t=\left(z_{2}-z_{1}\right) \sin \imath
\end{gathered}
$$

Now the integral represents the area of the velocity curve measured from the line $y=\gamma$ Hence by taking the limits at A, C, B, D it follows that the positive area of the velocity curve from A to C is equal to the negative area from C to B, and the negative area from B to D is equal to the positive area
from D to A These conditions, which can be tested by a planimeter or some equivalent method, make it possible to draw the line $y=\gamma$ in the diagram

At K_{1}, K_{2}, the extremities of the minor axis, the radial velocities relative to G are equal and opposite Hence on the velocity curve K_{1} and K_{2} are at equal and opposite distances from the line $y=\gamma$ and equidistant in time from P_{1} or P_{2} Thus these points can also be found graphically without difficulty

114 It is supposed that the period $P_{\text {is }}$ known, and this gives the mean darly motion, $\mu=2 \pi / P$ The other quantities which can be derived from the velocity curve are five in number, namely T the time of periastron passage, $K=V_{2} \sin \imath, \gamma$ the radial velocity of the system, ω the longitude of the node, and $e=\sin \phi$ the eccentricity of the orbit The most satisfactory direct method of finding these elements is based on the representation of the curve (see Chapter XXIV) by a harmone series in the form

$$
V=V_{0}+\Sigma r_{j} \sin \left(\jmath \mu t+\beta_{\jmath}\right)
$$

where t is reckoned from some arbitrary epoch This is always possible by Fourrer's theorem But

$$
\begin{aligned}
V= & \gamma+K \cos \omega(e+\cos w)-K \sin \omega \sin w \\
=\gamma & +2 K \cos \omega \cos ^{2} \phi e^{-1} \sum J_{j}(\jmath e) \cos \jmath M \\
& -2 K \sin \omega \cos \phi \sum J_{j}^{\prime}(\jmath e) \sin \jmath M
\end{aligned}
$$

by $\S 41$, (28) and (29) Now $M=\mu(t-T)$ and therefore $V_{0}=\gamma$ and

$$
\begin{aligned}
r_{j} \sin \left(\jmath \mu T+\beta_{j}\right) & =2 K_{1} \quad e^{-1} J_{j}(\jmath e) \\
-r_{j} \cos \left(\jmath \mu T+\beta_{j}\right) & =2 K_{2} \quad J_{j}^{\prime}(\jmath e)
\end{aligned}
$$

where

$$
\begin{equation*}
K_{1}=K \cos \omega \cos ^{2} \phi, \quad K_{2}=K \sin \omega \cos \phi \tag{1}
\end{equation*}
$$

There are now only four quantities to be determined, which may be taken to be K_{1}, K_{2}, T and e Thus the four equations corresponding to $j=1,2$ are alone required those of a higher order are useful only when there is reason to suspect that the motion is not purely elliptic Now these give (§ 47)

$$
\left.\begin{array}{rl}
r_{1} \sin \left(\mu T+\beta_{1}\right) & =K_{1}\left(1-\frac{e^{2}}{8}+\frac{e^{4}}{192}-\right) \tag{2}\\
-r_{1} \cos \left(\mu T+\beta_{1}\right) & =K_{2}\left(1-\frac{3 e^{2}}{8}+\frac{5 e^{4}}{192}-\right)
\end{array}\right\}
$$

showing that r_{2} / r_{1} is of the order of e Hence, by division,

$$
\begin{aligned}
& r_{2} \\
& r_{1} \\
& \frac{\sin \left(2 \mu T+\beta_{2}\right)}{\sin \left(\mu T+\beta_{1}\right)}=e\left(1-\frac{5 e^{2}}{24}+\frac{e^{4}}{96}-\right) \\
& \frac{r_{2}}{r_{1}} \frac{\cos \left(2 \mu T+\beta_{2}\right)}{\cos \left(\mu T+\beta_{1}\right)}=e\left(1-\frac{7 e^{\prime}}{24}-\frac{e^{4}}{96}-\right)
\end{aligned}
$$

and, by subtraction and addition,

$$
\begin{aligned}
& \frac{r_{2}}{r_{1}} \frac{\sin \left(\mu T+\beta_{2}-\beta_{1}\right)}{\sin 2\left(\mu T+\beta_{1}\right)}=\frac{e^{3}}{24}+{ }_{96}^{e} \\
& \frac{r_{2}}{r_{1}} \frac{\sin \left(3 \mu T+\beta_{2}+\beta_{1}\right)}{\sin 2\left(\mu^{\prime} T+\bar{\beta}_{1}\right)}=e-\frac{e^{\prime}}{4}
\end{aligned}
$$

the last equation contanning no term in e Eecenticitiey as lugh as 075 are met with occasionally, but even so it is evident that $\left(\mu T+\beta-\beta_{1}\right)_{14}$, very small angle which can scarcely exceed 2° and 14 generally neerhgibl If then

$$
\alpha=\mu T+\beta-\beta_{1}
$$

it is possible to neglect α^{2} and the last equations become

$$
\begin{align*}
& \frac{r_{2}}{r_{1}} \alpha \operatorname{cosec}\left(4 \beta_{1}-2 \beta_{2}\right)=\frac{e^{3}}{24}+\frac{e^{y}}{96} \tag{.3}\\
& \frac{r_{2}}{r_{1}}\left\{1+\alpha \cot \left(4 \beta_{1}-2 \beta_{2}\right)\right\}=e-\frac{e^{3}}{4}
\end{align*}
$$

whence

$$
\frac{r_{2}}{r_{2}}+\left(\frac{e^{s}}{24}+\frac{e^{s}}{96}\right) \cos \left(4 \beta_{1}-2 \beta_{2}\right)=e-\frac{e^{3}}{4}
$$

From this equation e is easily found by trial and enor, and then α, whin gives T, is found from (3) The equations (2) give K_{1} and K_{1}, whener fimall K and ω are denved by (1) The process is theretore very smple, "ren without special tables, when once the har monic representation of the velowity curve by two periodic terms has been obtanod This can be dome very easily and with all needful accuracy by taking a sufficent number of equa distant ordinates from the cuive

115 It is, however, more usual in practice to find appooximate preliminary elements by methods which are largely graphreal and to mprown them, if thought necessary, by a least-squares solution giving differential corrections Thus $2 K_{1 s}$ the apparent range of the velocity (uive, and when the periastron point P_{1} has been located on the curve, T is known, while the areal property which fixes the position of the line $y=\gamma$ has been "xplamed (§ 113) The remaning elements to be determined ane thenconte e and ω, and these are connected by the relation $K e \cos \omega=\gamma^{\prime}-\gamma$ A number of interesting properties have been used tor the purpose

Among these are the properties connected with a fucal chord of thr. orbit Let t_{1} be the time at a certain point of the orbit and w and E_{1}^{\prime} the
corresponding true and eccentric anomalies Let t_{2} be the time at the other end of the focal chord through the point and $180^{\circ}+w$ and E_{2} the true and eccentric anomalies Then

$$
\begin{aligned}
& \quad \begin{aligned}
(1-e)^{\frac{1}{2}} \tan \frac{1}{2} w & =(1+e)^{\frac{1}{2}} \tan \frac{1}{2} E_{1},
\end{aligned} \quad \mu\left(t_{1}-T\right)=E_{1}-e \sin E_{1} \\
& -(1-e)^{\frac{1}{2}} \cot \frac{1}{2} w=(1+e)^{\frac{1}{2}} \tan \frac{1}{2} E_{2},
\end{aligned} \quad \mu\left(t_{2}-T\right)=E_{2}-e \sin E_{2} .
$$

$$
-(1-e)=(1+e) \tan \frac{1}{2} E_{1} \tan \frac{1}{2} E_{2}
$$

or

$$
e \cos \frac{1}{2}\left(E_{2}+E_{1}\right)=\cos \frac{1}{2}\left(E_{2}-E_{1}\right)
$$

and therefore

$$
\begin{aligned}
\mu\left(t_{2}-t_{1}\right) & =E_{2}-E_{1}-2 e \sin \frac{1}{2}\left(E_{2}-E_{1}\right) \cos \frac{1}{2}\left(E_{2}+E_{1}\right) \\
& =\left(E_{2}^{\prime}-E_{1}\right)-\sin \left(E_{2}^{\prime}-E_{1}\right)
\end{aligned}
$$

Also

$$
\tan \frac{1}{2}\left(E_{2}-E_{1}\right)=-\frac{1}{2}\left(1-e^{2}\right)^{\frac{1}{2}} e^{-1}\left(\cot \frac{1}{2} w+\tan \frac{1}{2} w\right)
$$

$=-\cot \phi \operatorname{cosec} w$
Hence, if $2 \eta=E_{2}-E_{1}$,

$$
\mu\left(t_{2}-t_{1}\right)=2 \eta-\sin 2 \eta, \quad \tan \phi \sin w=-\cot \eta
$$

Similarly, if t_{n}, t_{4} are the times at the ends of the perpendicular chord, where the true anomalies are $90^{\circ}+w, 270^{\circ}+w$,

$$
\mu\left(t_{4}-t_{3}\right)=2 \eta^{\prime}-\sin 2 \eta^{\prime}, \quad \tan \phi \cos w=-\cot \eta^{\prime}
$$

The angles η, η^{\prime} are easily found, especially with the help of a suitable table of the function $(x-\sin x)$, and hence ϕ or e and $w=u-\omega \quad$ But the ordinate at the point t_{1} gives $y-\gamma^{\prime}=K \cos u$ and therefore u, whence the value of ω can be inferred The equations

$$
\begin{array}{ll}
\tan \frac{1}{2} E_{1}=\tan \left(45^{\circ}-\frac{1}{2} \phi\right) \tan \frac{1}{2} w, & \mu\left(t_{1}-T\right)=E_{1}-e \sin E_{1} \\
\tan \frac{1}{2} E_{3}=\tan \left(45^{\circ}-\frac{1}{2} \phi\right) \tan \left(\frac{1}{2} w+45^{\circ}\right), & \mu\left(t_{3}-T\right)=E_{3}-e \sin E_{3}
\end{array}
$$

will give two independent values of T
Sets of four points related in this way are easily located on the velocity curve, for they are given by $y-\gamma^{\prime}= \pm K \cos u, \pm K \sin u$ Thus the four points $y-\gamma^{\prime}= \pm K / \sqrt{ } 2$ are very suitable for the puipose Here $u=45^{\circ}$, $w=45^{\circ}-\omega$ Two special sets have been mentioned in §113, namely, $A B$, $E F$ where $u=0^{\circ}, w=-\omega$, and $P_{1} P_{2}, L_{1} L_{2}$ where $w=0^{\circ}$ In the latter case $y-\gamma^{\prime}= \pm K \cos \omega, \pm K \sin \omega$, giving ω immediately, $t_{1}=T$, and e is given by $\phi=\eta^{\prime}-90^{\circ}$

116 There are also properties connected with a diameter of the orbit If E is the eccentric anomaly at a point, $E+\frac{1}{2} \pi$ and $E+\frac{1}{2} \pi$ are the eccentric anomalies at the ends of the diameter conjugate to that which passes through the point Let t_{1}, t_{2} be the corresponding times Then

$$
\begin{aligned}
& \mu\left(t_{1}-T\right)=E+\frac{1}{2} \pi-e \cos E \\
& \mu\left(t_{2}-T\right)=E+\frac{3}{2} \pi+e \cos E
\end{aligned}
$$

so that

$$
\begin{aligned}
& \frac{1}{2} \mu\left(t_{1}+t_{n}-2 T\right)=E+\pi \\
& \frac{1}{2} \mu\left(t_{2}-t_{1}-\frac{1}{2} P\right)=e \cos E
\end{aligned}
$$

Now the points C, D, in which the line $y=\gamma$ cuts the velocity curve, satisfy this condition and the conjugate diameter being parallel to the line of nodes makes the angle - ω with the major axis Hence in this case

$$
-\tan \omega=\cos \phi \tan E
$$

and therefore

$$
\begin{aligned}
\frac{1}{2} \mu\left(t_{2}-t_{1}-\frac{1}{2} P\right) & =e\left(1+\tan ^{2} \omega \sec ^{2} \phi\right)^{-\frac{1}{2}} \\
& =e \cos \omega\left(1-e^{2} \cos ^{2} \omega\right)^{-\frac{1}{2}} \cos \phi
\end{aligned}
$$

which gives $e=\sin \phi$ when $e \cos \omega=\left(\gamma^{\prime}-\gamma\right) / K$ is known Also

$$
-e=\frac{1}{2} \mu\left(t_{2}-t_{1}-\frac{1}{2} P\right) \sec \frac{1}{2} \mu\left(t_{1}+t_{2}-2 T\right)
$$

which gives a relation between e and T
Another pan of such points is K_{1}, K_{2}, corresponding to the ends of the minor axıs Since $E=0$ in this case,

$$
\begin{aligned}
& \frac{1}{2} \mu\left(t_{1}+t_{2}-2 T\right)=\pi \\
& \frac{1}{2} \mu\left(t_{2}-t_{1}-\frac{1}{2} P\right)=e
\end{aligned}
$$

Let u_{1}, u_{2} be the longitudes at K_{1}, K_{2} Then the radial velocities at these points, relative to G, are
$\pm \frac{1}{2} K\left(\cos u_{1}-\cos u_{2}\right)= \pm K \sin \frac{1}{2}\left(u_{2}-u_{1}\right) \sin \frac{1}{2}\left(u_{2}+u_{1}\right)= \pm K \cos \phi \sin \omega$
This quantity is therefore given by the ordinates at K_{1}, K_{2} on the velocity curve, relative to the line $y=\gamma$

117 The velocity curve also possesses interesting integral and differential properties which may be useful It is necessary to have a consistent system of units, and since those of time and velocity have already been adopted, the unit of length is fixed and the natural system is

> Unit of time $=1$ mean solar day $=86400$ mean secs, Unit of length $=86400 \mathrm{~km}=00005779$ astronomical units, Unit of velocity $=1 \mathrm{~km}$ per second, Unit of mass $=$ that of the Sun

Now the constant of areal velocity in the orbit is
so that

$$
p V_{2}=2 \pi a b / P=\mu a^{2} \cos \phi
$$

$$
a \sin \imath=V_{2} \mu^{-1} \cos \phi \sin \imath=K \mu^{-1} \cos \phi
$$

The argument relative to the areas of the velocity curve in $\S 113$ can now be made more precise For the tangents to the orbit at C and D, referred to the principal axes of the ellhpse, are

$$
x \sin \omega+y \cos \omega= \pm \sqrt{ }\left(a^{2} \sin ^{2} \omega+b^{2} \cos ^{2} \omega\right)
$$

and the perpendiculars on them from the focus G are

$$
z_{1}, z_{2}= \pm a e \sin \omega+a \sqrt{ }\left(1-e^{2} \cos ^{2} \omega\right)
$$

Measured from the line $y=\gamma$ let A_{1} be the area of the velocity curve from A to $C,-A_{1}$ from C to $B,-A_{2}$ from B to D, and A_{2} from D to $A \quad$ Then

$$
\begin{aligned}
\frac{1}{2}\left(A_{1}+A_{2}\right) & =K_{\mu^{-1}} \cos \phi \sqrt{ }\left(1-e^{2} \cos ^{2} \omega\right) \\
\frac{1}{2}\left(A_{1}-A_{2}\right) & =K \mu^{-1} \cos \phi e \sin \omega \\
A_{1} A_{2} & =K^{2} \mu^{-2} \cos ^{4} \phi
\end{aligned}
$$

When A_{1}, A_{2} have been measured in the proper units these equations determine ϕ (or e) and ω

118 If the tangent to the velocity curve makes an angle ψ with the axis of time,

$$
\tan \psi=\frac{d V}{d t}=-K \sin u \frac{d w}{d t}
$$

and r being the radius vector in the orbit, the constant areal velocity is

Hence

$$
\mu a^{2} \cos \phi=r^{2} \frac{d w}{d t}
$$

$$
\begin{aligned}
\tan \psi & =-\mu K \cos \phi \sin u(a / r)^{2} \\
& =-\mu K \sec ^{3} \phi \sin u(1+e \cos w)^{2}
\end{aligned}
$$

and at special points on the curve $\tan \psi$ has these values

$$
\begin{array}{lll}
A, B & u=0^{\circ}, 180^{\circ} & \tan \psi=0 \\
E, F & u=90^{\circ}, 270^{\circ} & \tan \psi=\mp \mu K \sec ^{3} \phi(1 \pm e \sin \omega)^{2} \\
P_{1}, P_{2} & w=0^{\circ}, 180^{\circ} & \tan \psi=\mp \mu K \sec ^{3} \phi \sin \omega(1 \pm e)^{2} \\
L_{1}, L_{2} & w=90^{\circ}, 270^{\circ} & \tan \psi=\mp \mu K \sec ^{3} \phi \cos \omega \\
K_{1}, K_{2} & w= \pm\left(90^{\circ}+\phi\right) & \tan \psi=\mp \mu K \cos \phi \cos (\omega \pm \phi)
\end{array}
$$

If $\tan \psi$ is found graphically at any of these points attention must be paid to the scales in which ordinates and abscissae are represented These expressions can then be used in order to find ω and ϕ

Since

$$
r \propto(\sin u \cot \psi)^{\frac{1}{2}}, \quad w=u-\omega
$$

and u at any point on the velocity curve is given by the ordinate measured from the axis $y=\gamma^{\prime}$, it is possible theoretically to plot the actual orbit to an arbitrary scale, point by point This is scarcely a practical method, but deserves mention as the counterpart of Sir John Herschel's method for double star orbits (§ 105)

119 The values of the elements found by any of these graphical methods alc appioximate only They can be improved by the addition of differential corrections, δK to K, δe to $e, \delta \omega$ to $\omega, \delta T$ to T and $\delta \mu$ to $\mu \quad$ Thus each observation gives an equation of condition of the form

$$
V_{o}-V_{c}=\delta \gamma^{\prime}+\cos u \delta K-K \sin u \delta \omega-K \sin u\left(\frac{\partial w}{\partial e} \delta e+\frac{\partial w}{\partial T} \delta T+\frac{\partial w}{\partial \mu} \delta \mu\right)
$$ and it is easily found that

$$
\begin{aligned}
& \frac{\partial w}{\partial e}=\sin w(2+e \cos w) \sec ^{-} \phi \\
& \frac{\partial w}{\partial T}=-\mu(1+e \cos w)^{2} \sec ^{3} \phi \\
& \frac{\partial w}{\partial \mu}=\left(t-I^{\prime}\right)(1+e \cos w)^{2} \sec ^{3} \phi
\end{aligned}
$$

It is more usual to give γ, the radial velocity of the system, than γ^{\prime}, but this quantity can be derived finally from the relation $\gamma=\gamma^{\prime}-K e \cos \omega$

120 When the elements of an orbit specified above have been obtained, by whatever method, some information can be gained as to the dimensions and mass of the system An equation already found in $\S 117$ gives

$$
a \sin \imath=K \mu^{-1} \cos \phi \quad 86400 \mathrm{~km}
$$

when the unit of length there adopted is explicitly introduced Let m be the mass of the star whose spectrum is observed, and m^{\prime} the mass of the other star Then

$$
\mu^{2} a^{3}\left(1+\frac{m}{m^{\prime}}\right)^{3}=\left(m+m^{\prime}\right) C
$$

where C is a constant depending on the units employed These being as stated in $§ 117$, the special case when $m^{\prime}=1, m=0$, gives

$$
C=\frac{4 \pi^{2}}{(36525)^{2}} \quad \frac{1}{(00005779)^{3}}, \quad \log C=618557
$$

[t follows that

$$
\begin{aligned}
m^{\prime 3}\left(m+m^{\prime}\right)^{-2} \sin ^{3} \imath & =[381443-10] K^{3} \mu^{-1} \cos ^{3} \phi \\
& =[301625-10] K^{3} P \cos ^{3} \phi
\end{aligned}
$$

ind it is only this function of the masses, involving the unknown inclination of the orbit, which can be determined when only one spectrum can be bserved

If, however, the radial velocity V^{\prime} of the second component of the system an be measured at the same time, which is possible when the two superposed pectra are of comparable intensity,

$$
m(V-\gamma)+m^{\prime}\left(V^{\prime}-\gamma\right)=0
$$

One such equation will give the ratio $m m^{\prime}$ when γ is known and two will give γ in addition without any knowledge of the orbit It has been supposed that the radial velocities have been determined by referring the stellar spectrum to a comparison spectrum from a terrestrial source, as mentioned in § 111 When there is no comparison spectrum, as when an objective prism is used, and the stellar spectrum shows double lines, it is still possible to deduce the orbit of the system from the relative displacements of corresponding lines But the orbst is then the relative orbit, a is the mean distance of the components from one another, and it is easily seen that ($m+m^{\prime}$) $\sin ^{3} \imath$ must be substituted for the above function of the masses

121 The true spectroscopic binary cannot be resolved in the telescope But one or both components of a visual double can, when bright enough, be observed with the spectrograph, and very interesting results can be gained in this way Let a, a^{\prime} be the mean distances of the components relative to the centre of mass, expressed in terms of the linear unit 86400 km The astronomical unit contans 7730 such units Let $a^{\prime \prime}$ be the visual mean distance and $\boldsymbol{\sigma}^{\prime \prime}$ the parallax of the system both expressed in seconds of arc Then

$$
\begin{aligned}
m a=m^{\prime} a^{\prime} & =\frac{m m^{\prime}}{m+m^{\prime}}\left(a+a^{\prime}\right) \\
& =1730 \frac{a^{\prime \prime}}{\sigma^{\prime \prime}} \frac{m m^{\prime}}{m+m^{\prime}}
\end{aligned}
$$

and therefore

$$
\begin{aligned}
V & =\gamma+K(\cos u+e \cos \omega) \\
& =\gamma+\mu a \sin \imath \sec \phi(\cos u+e \cos \omega) \\
& =\gamma+1730 \mu \sin \imath \sec \phi(\cos u+e \cos \omega) \frac{a^{\prime \prime}}{\sigma^{\prime \prime}} \frac{m^{\prime}}{m+n^{\prime}}
\end{aligned}
$$

while for the otheı component similarly

$$
V^{\prime}=\gamma-1730 \mu \sin r \sec \phi(\cos u+e \cos \omega) \frac{a^{\prime \prime}}{\overline{\sigma^{\prime \prime}}} \frac{m}{m+m^{\prime}}
$$

If then the elements of the visual orbit have been independently determined and the radal velocity of the first component alone can be observed at different dates, the two quantities γ and $\left(1+m / m^{\prime}\right) \sigma^{\prime \prime}$ can be inferred If the radial velocity of the second component can also be observed, the parallax, the ratio of the masses and hence the individual masses themselves in terms of the Sun (§ 104) can also be deduced From the relative radial velocity alone,

$$
V-V^{\prime}=1730 \mu \sin \imath \sec \phi(\cos u+e \cos \omega) a^{\prime \prime} / \sigma^{\prime \prime}
$$

the parallax can be found, and hence the total mass of the system
One question remains in the determination of the true orientation of a double star orbit in space, which can only be decided by radial velocity
observations For the spectroscopic binary \imath has been defined so that $0<\imath<\frac{1}{2} \pi$, while for the visual double $0<\imath<\pi$ This difference does not affect sin \imath, which is positive in either case Hence if V_{1}, V_{2} are the radial velocities of the principal star at different times, the two expressions

$$
V_{1}-V_{2}, \quad \cos \left(w_{1}+\omega\right)-\cos \left(w_{2}+\omega\right)
$$

have the same sign, where ω is the longitude of periastion of this star, reckoned from its receding node in the direction of motion But λ is the longitude of periastron of the companion at its first node $\Omega(<\pi)$ Hence if the expressions

$$
V_{1}-V_{2}, \quad \cos \left(w_{1}+\lambda\right)-\cos \left(w_{2}+\lambda\right)
$$

have the same sign, $\lambda=\omega$ This means that the principal star is receding and the companion is approaching when the latter is at its node Ω If on the other hand the expressions are of opposite signs, $\lambda=\omega+\pi$ and the companion is receding at Ω

Otherwise it may be possible to determine the velocities V, V^{\prime} of the principal star and the companion respectively at the same time Then the expressions

$$
V-V^{\prime}, \quad \cos (w+\omega)+e \cos \omega
$$

have the same sign, and therefore of the expressions

$$
V-V^{\prime}, \quad \cos (w+\lambda)+e \cos \lambda
$$

have the same sign, $\lambda=\omega$, while if they have opposite signs, $\lambda=\omega+\pi$ The same consequences follow as before Thus a knowledge of either $V_{1}-V_{2}$ or $V-V^{\prime}$ removes the ambiguity with regard to the true position of the orbital plane, which remains after the elements of a double star have been determined from visual obser vations alone

CHAPTER XII

DYNAMICAL PRINCIPLES

122 It will be convenient in this chapter to recall some of the salient features of dynamical theory and to consider as briefly as possible the form of those transformations which are of the greatest importance in astronomical apphcations We shall start from Lagrange's equations

Let the system consist of a number of particles whose coordınates can be expressed in terms of n quantities $q_{1}, q_{2}, \quad, q_{n}$ and possibly of the time t Let \dot{m} be the mass of a typical particle situated at the point (x, y, z) Then

$$
x=\frac{\partial x}{\partial t}+\frac{\partial x}{\partial q_{1}} q_{1}++\frac{\partial x}{\partial q_{n}} q_{n}
$$

so that

$$
\frac{\partial x}{\partial q_{r}}=\frac{\partial x}{\partial q_{r}}
$$

Hence

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{1}{2} m \frac{\partial x^{2}}{\partial q_{r}}\right) & =m \frac{d}{d t}\left(x \frac{\partial x}{\partial q_{r}}\right) \\
& =X \frac{\partial x}{\partial q_{r}}+m x \frac{\partial x}{\partial q_{r}}
\end{aligned}
$$

where X is the component of the force acting on m If T^{\prime} is the knetic energy of the whole system,

$$
T=\Sigma \frac{1}{2} m\left(x^{2}+y^{2}+z^{2}\right)
$$

Hence addıng all the equations of the preceding type for the three coordmates and all the particles,

$$
\frac{d}{d t}\left(\frac{\partial T}{\partial q_{r}}\right)=\Sigma\left(X \frac{\partial x}{\partial q_{r}}+Y \frac{\partial y}{\partial q_{r}}+Z \frac{\partial z}{\partial q_{r}}\right)+\frac{\partial T}{\partial q_{r}}
$$

Now the forces which occur in astronomical problems are in general conservative, and we can write

$$
\Sigma(X d x+Y d y+Z d z)=-d U
$$

where $d U$ is a perfect differential U represents the work done by the forces in a change from the actual configuration to some standard configuration and is called the potential energy We therefore have

$$
\frac{d}{d t}\left(\frac{\partial T}{\partial q_{r}}\right)=\frac{\partial(T-U)}{\partial q_{r}}
$$

But U does not contain q_{r}, and hence, if we write $T=U+L$, this becomes

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial q_{r}}\right)=\frac{\partial L}{\partial q_{r}},(r=1,2, \quad, u) \tag{1}
\end{equation*}
$$

which is the standard form of Lagrange's equations
The function L is often called the Kinetic Potential In the absence of moving constraints (or some analogous feature) within the system $\frac{\partial x}{\partial t}=0$ Then T is a homogeneous (positive definite) quadratic form in q_{1}, \quad, q_{n}

123 If L does not contain t explicitly, the equations admit an integral called the Integral of Energy For in this case
so that

$$
\begin{aligned}
\frac{d L}{d t} & =\sum_{r}\left(\frac{\partial L}{\partial q_{r}} q_{r}+\frac{\partial L}{\partial q_{r}} q_{r}\right) \\
& =\sum_{r}\left\{\frac{d}{d t}\left(\frac{\partial L}{\partial q_{r}}\right) q_{r}+\frac{\partial L}{\partial q_{r}} q_{r}\right\} \\
& =\frac{d}{d t}\left(\sum_{,} \frac{\partial L}{\partial q_{r}} q_{r}\right)
\end{aligned}
$$

$$
\begin{equation*}
\sum_{r} q_{r} \frac{\partial L}{\partial q_{r}}-L=h \tag{2}
\end{equation*}
$$

where h is a constant of integration Replacing L by $T-U$, where T is a homogeneous quadratic form in q_{r} and U does not contain q_{r}, we have

$$
h=2 T-(T-U)=T+U
$$

which shows that h is the sum of the kinetic and potential energies
More generally, let L contain t explicitly through U and let T no longer be a homogeneous function in q_{r} but of the form $T_{2}+T_{1}+T_{0}$, where T_{2} is a in q_{r} Then simularly

$$
\begin{aligned}
\frac{d L}{d t} & =\frac{d}{d t}\left(\Sigma_{r} \frac{\partial L}{\partial q_{r}} q_{r}\right)+\frac{\partial L}{\partial t} \\
& =\frac{d}{d t}\left(\Sigma_{1} \frac{\partial T}{\partial q_{r}} q_{r}\right)-\frac{\partial U}{\partial t} \\
& =\frac{d}{d t}\left(2 T_{2}+T_{1}\right)-\frac{\partial U}{\partial t}
\end{aligned}
$$

$$
\frac{d}{d t}\left(T_{2}-T_{0}+U\right)=\frac{\partial U}{\partial t}
$$

an equation which applies to relative motion When U does not contain t

$$
T_{2}-T_{0}+U=h
$$

When U does contann t the equation

$$
T_{2}-T_{0}=-U+\int \frac{\partial U}{\partial t} d t+h
$$

is a purely formal integral because it is to be understood that any coordinates occurring in $\partial U / \partial t$ are expressed in terms of t before integration This imples a knowledge of the complete solution of the problem But the equation is not without its uses Thus if $U=U_{0}+U^{\prime}$, where U_{0} does not contann t and the effect of U^{\prime} is small in comparison with the effect of U_{0}, prelmmary values of the coordnates in terms of t may be found When these are inserted in $\partial U^{\prime} \partial t$ a closer approximation to the true integral will be obtained and the process can be repeated The true meaning of the equation is therefore connected with a method of approximation

124 The above form (2) of the integral of energy is directly connected with the Hamiltonian form of the equations of motion whereby the n Lagrangian equations of the second order are replaced by a system of $2 n$ equations of the first ordor For we may write

$$
\sum_{r} q_{r} \frac{\partial L}{\partial q_{r}}-L=H, \quad \frac{\partial L}{\partial q_{r}}=p_{r}
$$

The n equations for p_{r} are linear in q_{r} and when solved express q_{r} in terms of (q_{r}, p_{r}), this symbol being used, wheie no ambiguity is to be feared, to denote all the quantities $q_{1}, q_{2}, \quad q_{n}, p_{1}, p_{3}, \quad, p_{n} \quad H e n c e ~ L$ and H can be expressed either in terms of (q_{r}, q_{r}) or of (q_{r}, p_{r}) Thus
and therefore

$$
\begin{aligned}
\delta L & =\Sigma_{r} \frac{\partial L}{\partial q_{r}} \delta q_{r}+\sum_{r} \frac{\partial L}{\partial q_{r}} \delta q_{r} \\
\delta \Sigma q_{r} \frac{\partial L}{\partial q_{r}} & =\sum_{r} q_{r} \delta p_{r}+\sum_{r} \frac{\partial L}{\partial q_{r}} \delta q_{r}
\end{aligned}
$$

$$
\delta H=\sum_{r}\left(q_{r} \delta p_{r}-p_{r} \delta q_{r}\right)
$$

since

It follows that

$$
p_{r}=\frac{d}{d t}\left(\frac{\partial L}{\partial q_{r}}\right)=\frac{\partial L}{\partial q_{r}}
$$

$$
\begin{equation*}
q_{r}=\frac{\partial H}{\partial p_{r}}, \quad p_{r}=\frac{\partial H}{\partial q_{r}}, \quad(r=1,2, \quad, n) \tag{3}
\end{equation*}
$$

and this is the form of the equations which is called canonical
When L has its natural form, $H=T+U$ If L does not contann t explicitly, netther does H, and the integral of cnergy (2) becomes simply $H=h$

125 Let us consider the differential form
or

$$
d \theta=\sum_{\boldsymbol{r}} p_{1} d q_{\imath}-H d t
$$

$$
d\left(\sum_{2} p_{1} q_{r}-\theta\right)=\sum_{r} q_{2} d p_{r}+H d t
$$

If $d \theta$ is a perfect differential, the right-hand side of both equations must also be perfect differentials, and this requires that

$$
\frac{d p_{r}}{d t}=-\frac{\partial H}{\partial q_{r}}, \quad \frac{d q_{r}}{d t}=\frac{\partial H}{\partial p_{r}}
$$

or the canomical equations must be satisfied Let us suppose now a transformation fiom the variables $\left(q_{r}, p_{i}\right)$ to the variables $\left(Q_{r}, P_{r}\right)$ such that

$$
\begin{equation*}
\sum_{r} P_{1} d Q_{r}-\sum_{r} p_{r} d q_{r}=-d W \tag{4}
\end{equation*}
$$

where $d W$ is a perfect differential and $W_{\text {is }}$ expressible either in terms of (q_{r}, p_{r}) or of $\left(Q_{r}, P_{r}\right)$ Such a transformation is called a contact transformatron, or in the particular case when $\left(q_{r}\right)$ can be expressed in terms of $\left(Q_{r}\right)$ alone [by relations not involving $\left(p_{r}\right)$ or $\left(P_{r}\right)$] an extended point transformation If W contains t in addition we may write

$$
\sum_{r} P_{r} d Q_{r}-\sum_{r} p_{r} d q_{r}-\frac{\partial W}{\partial t} d t=-d W-\frac{\partial W}{\partial t} d t
$$

so that when $d \theta$ is introduced

$$
\Sigma_{r} P_{r} d Q_{r}-\left(H+\frac{\partial W}{d t}\right) d t=d \theta-d W-\frac{\partial W}{\partial t} d t
$$

Each side of this equation is a perfect differontial provided $d \theta$ is a perfect differential, and in this case
where

$$
\begin{equation*}
P_{r}=-\frac{\partial K}{\partial Q_{r}}, \quad Q_{r}=\frac{\partial K}{\partial P_{r}} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
K=H+\frac{\partial W}{\partial t} \tag{6}
\end{equation*}
$$

Since these equations equally with the form (3) express the conditions required if $d \theta$ is to be a perfect differential, they must be equivalent to (3) Thus we see that any transformation of variables satisfying the condition (4) leaves the equations of motion in the canomical form

126 In consequence of (4)

$$
\begin{equation*}
P_{r}=-\frac{\partial W}{\partial Q_{r}}, \quad p_{r}=\frac{\partial W}{\partial q_{r}} \tag{7}
\end{equation*}
$$

Hence K will vanish in virtue of (6) provided

$$
\begin{equation*}
H\left(q_{1}, \quad, q_{n}, \frac{\partial W}{\partial q_{1}}, \quad, \frac{\partial W}{\partial q_{n}}\right)+\frac{\partial W}{\partial t}=0 \tag{8}
\end{equation*}
$$

This equation is known as the Hamilton-Jacobi equation But when $K=0$,

$$
P_{r}=\beta_{r}, \quad Q_{r}=\alpha_{r}
$$

where a_{r} and β_{r}, by (5), are arbitrary constants Hence if any function W can be found which satisfies (8) and contains n arbitrary constants (a_{r}) in addition to $\left(q_{r}\right)$ and t, the solution of the problem is completely expressed by the $2 n$ equations (7) written in the form

$$
\begin{equation*}
\frac{\partial W}{\partial \alpha_{r}}=-\beta_{r}, \quad p_{r}=\frac{\partial W}{\partial q_{r}} \tag{9}
\end{equation*}
$$

where (β_{n}) are n additional arbitrary constants
If H does not contan t explicitly we may write

$$
W=-\alpha_{n} t+W^{\prime}
$$

where W^{\prime} is a solution, containing ($n-1$) constants (α_{r}) apart from α_{n} but not t, of the equation

$$
\begin{equation*}
H\left(q_{1}, \quad, q_{n}, \frac{\partial W^{\prime}}{\partial q_{1}}, \quad, \frac{\partial W^{\prime}}{\partial q_{n}}\right)=\alpha_{n} \tag{10}
\end{equation*}
$$

The solution (9) is therefore replaced by

$$
\left.\begin{array}{ll}
\frac{\partial W^{\prime}}{\partial \alpha_{r}}=-\beta_{r}, & p_{r}=\frac{\partial W^{\prime}}{\partial q_{r}},(r=1,2, \quad, n-1) \tag{11}\\
\frac{\partial W^{\prime}}{\partial \alpha_{n}}=t-\beta_{n}, & p_{n}=\frac{\partial W^{\prime}}{\partial q_{n}}
\end{array}\right\}
$$

127 In the set of equations (7) W is an arbitrary function of $\left(Q_{r}, q_{r}\right)$ Instead of making W a solution of (8) let it satisfy the equation

$$
H_{0}\left(q_{1}, \quad, q_{n}, \frac{\partial W}{\partial q_{1}}, \quad, \frac{\partial W}{\partial q_{n}}\right)+\frac{\partial W}{\partial t}=0
$$

where H_{0} is the Hamiltonian function of another problem also presenting n degiees of freedom Hence as before

$$
P_{r}=\beta_{r}, \quad Q_{r}=\alpha_{r}
$$

where (α_{r}, β_{r}) are the $2 n$ arbitrary constants of the problem defined by H_{0} Hence the equations (5) and (6) become

$$
\begin{equation*}
\alpha_{r}=\frac{\partial K}{\partial \beta_{r}}, \quad \beta_{r}=-\frac{\partial K}{\partial \alpha_{r}} \tag{12}
\end{equation*}
$$

where

$$
K=H+\frac{\partial W}{\partial t}=H-H_{0}
$$

Thus if the H_{0} problem has been solved and the constants of a solution of the corresponding Hamilton-Jacobi equation are known, the same form of solution applies to the H problem with the difference that the quantities which remain constant in the first problem undergo variations in the second
problem which are defined by (12) This is the foundation of Lagiange's method of the varation of as bati ary constants The simple form of (12) depends essentially on the function K being expiessed in terms of the constants which occur in a solution of a Hamilton-Jacobr equation and which may be called a set of canonical constants

If we suppose that the problem defined by H_{0} has been solved by some other method than through the medium of a Hamilton-Jacobi equation, a different set of constants will be obtained Let A_{m} be a typical member of such a set Then A_{m} is some function of $\left(\alpha_{2}, \beta_{r}\right)$ Hence

$$
\begin{aligned}
A_{m} & =\sum_{r} \frac{\partial A_{m}}{\partial \alpha_{r}} \alpha_{r}+\sum_{r} \frac{\partial A_{m}}{\partial \beta_{r}} \beta_{r} \\
& =\sum_{r}\left(\frac{\partial A_{m n}}{\partial \alpha_{r}} \frac{\partial K}{\partial \beta_{r}}-\frac{\partial A_{m}}{\partial \beta_{r}} \frac{\partial K}{\partial \alpha_{r}}\right) \\
& =\sum_{r} \sum_{s}\left(\frac{\partial A_{m}}{\partial \alpha_{1}} \frac{\partial K}{\partial A_{s}} \frac{\partial A_{s}}{\partial \beta_{r}}-\frac{\partial A_{m}}{\partial \beta_{r}} \frac{\partial K}{\partial A_{s}} \frac{\partial A_{s}}{\partial \alpha_{s}}\right) \\
& =\sum_{s}\left\{A_{m}, A_{s}\right\} \frac{\partial K}{\partial A_{s}}
\end{aligned}
$$

where $K=H-H_{0}$ as before, and

$$
\left\{A_{m}, A_{s}\right\}=\Sigma_{r}\left(\frac{\partial A_{m}}{\partial \alpha_{r}} \frac{\partial A_{s}}{\partial \beta_{r}}-\frac{\partial A_{m}}{\partial \beta_{r}} \frac{\partial A_{s}}{\partial \alpha_{r}}\right)
$$

a form of expression which will be defined later ((130) as a Poisson's bracket
128 Let us consider the integral

$$
\begin{align*}
J & =\int_{t_{0}}^{t_{1}} L d t=\int_{t_{0}}^{t_{1}}(T-U) d t \\
& =\int_{t_{0}}^{t_{1}}\left(-H+\Sigma p_{r} q_{r}\right) d t \tag{13}
\end{align*}
$$

by the first set of equations in $\S 124$ We have theiefore

$$
\begin{aligned}
\delta J & =\int_{t_{0}}^{t_{1}}\left(-\delta H+\Sigma q_{r} \delta p_{1}+\Sigma p_{r} \delta q_{r}\right) d t \\
& =\left[\Sigma p_{,} \delta q_{r}\right]_{0}^{1}+\int_{t_{0}}^{t_{2}}\left(-\delta H+\Sigma q_{r} \delta p_{r}-\Sigma p_{,} \delta q_{r}\right) d t
\end{aligned}
$$

where δ denotes a change in $\left(q_{r}, p_{r}\right)$ but leaves t at each point unaltered Hence $\delta J=0$ if $\delta q_{r}=0$ at the limits and if the canonical equations are satisfied And this pioves Hamilton's pronorple that in the passage from one fixed configuiation to another the integral J has a stationary value for the actual motion as compared with any other neighbouring motion in which the time at corresponding points is the same

If however δ denotes a change in t,

$$
\begin{aligned}
\delta J & =-\delta \int_{t_{0}}^{t_{1}} H d t+\delta \int_{0}^{1} \Sigma_{r} p_{r} d q_{r} \\
& =-[H \delta t]_{0}^{1}
\end{aligned}
$$

Hence when two neighbouring forms of motion, each compatible with the canomical equations, are compared, the complete variation between two positions 0 and 1 is

$$
\delta J=\left[\Sigma p_{r} \delta q_{r}\right]_{0}^{1}-[H \delta t]_{0}^{1}
$$

Accordingly, if the initial time is taken as fixed and (α_{r}, β_{r}) are the initial values of (q_{r}, p_{r}), we have

$$
\frac{\partial J}{\partial q_{r}}=p_{r}, \quad \frac{\partial J}{\partial a_{r}}=-\beta_{r}
$$

and

$$
\frac{\partial J}{\partial t}=-H\left(q_{r}, p_{r}\right)=-H\left(q_{r}, \frac{\partial J}{\partial q_{r}}\right)
$$

But this is the Hamilton-Jacobl equation Hence the integral J is a particular solution of this equation And further, since we have reproduced the equations (8) and (9) of $§ 126$ except that J is written in the place of W, we see that J is that solution which contans the initial values of the coordinates as its n arbitrary constants

129 Let us suppose now that H does not contann t explicitly, so that the integral of energy $H=h$ exists Then if

$$
\begin{align*}
J & =\int_{t_{0}}^{t_{1}} \Sigma p_{r} q_{r} d t=\int_{t_{0}}^{t_{1}}(L+h) d t \tag{14}\\
\delta J & =\left[\Sigma p_{r} \delta q_{r}\right]_{0}^{1}+\int_{t_{0}}^{t_{1}}\left(\Sigma q_{r} \delta p_{r}-\Sigma p_{r} \delta q_{r}\right) d t
\end{align*}
$$

But

$$
\begin{aligned}
\Sigma q_{r} \delta p_{r}-\Sigma p_{r} \delta q_{r} & =\Sigma \frac{\partial H}{\partial p_{r}} \delta p_{r}+\Sigma \frac{\partial H}{\partial q_{r}} \delta q_{r} \\
& =\delta h
\end{aligned}
$$

and therefore

$$
\delta J=\left[\Sigma p_{r} \delta q_{r}\right]_{0}^{1}+\int_{t_{0}}^{t_{1}} \delta h d t
$$

This is the complete variation of J and it vanishes between fixed terminal points if $\delta h=0 \mathrm{in}$ each intermediate position, ie if the time is assigned to each displaced position in such a way that the equation $H=h$ is satisfied in the varied motion Under these conditions the integral

$$
J=\int_{t_{0}}^{t_{1}}(L+h) d t=\int_{t_{0}}^{t_{1}}(T-U+h) d t
$$

has a stationary value in the course of the actual motion as compared with motion in any neighbouring paths

This integral is called the action and the proposition established is known as the princople of least action When T is a quadratic function of the velocities $h=T+U$ and the integral becomes

$$
\begin{equation*}
J=2 \int_{t_{0}}^{t_{1}} T d t \tag{15}
\end{equation*}
$$

and in problems which involve only one material particle this is simply

$$
\begin{equation*}
J=\int_{t_{0}}^{t_{1}} v^{2} d t=\int_{0}^{1} v d s \tag{16}
\end{equation*}
$$

where v is the velocity of the particle (of unit mass)
The integrals which we have found to be stationary are not necessarly minuma The necessary conditions in order that an integral

$$
J=\int_{t_{0}}^{t_{1}} f\left(q_{r}, q_{r}\right) d t
$$

shall be an actual minimum are
(1) The first variation δJ vanishes between fixed termunal points
(2) The function of $\left(\epsilon_{r}\right)$

18 a minimum

$$
\phi\left(\epsilon_{r}\right)=f\left(q_{r}, q_{r}+\epsilon_{r}\right)-\Sigma \epsilon_{r} \frac{\partial f}{\partial q_{r}}
$$

(3) Between the terminal positions 0 and 1 no intermediate position P exists such that 0 and P can be joined by a neighbouring path which satisfies the dynamical conditions and is other than the path considered The nearest point to 0 on the path which does not satisfy this condition is called the hinetrc focus of the point 0

130 It is necessary to study the properties of certain expressions connected with the transformations which are frequently employed Let $u_{1}, u_{2}, \quad, u_{2 n}$ be $2 n$ distinct functions of (q_{r}, p_{r}) The first expression is

$$
\begin{equation*}
\sum_{l}\left(\frac{\partial q_{r}}{\partial u_{l}} \frac{\partial p_{l}}{\partial u_{m}}-\frac{\partial q_{r}}{\partial u_{m}} \frac{\partial p_{r}}{\partial u_{l}}\right)=\sum_{r} \frac{\partial\left(q_{r}, p_{r}\right)}{\partial\left(u_{l}, u_{m}\right)} \tag{17}
\end{equation*}
$$

which is called a Lagi ange's bracket and is denoted by [u_{l}, u_{m}] The second expression is

$$
\begin{equation*}
\sum_{r}\left(\frac{\partial u_{l}}{\partial q_{r}} \frac{\partial u_{m}}{\partial p_{r}}-\frac{\partial u_{m}}{\partial q_{r}} \frac{\partial u_{l}}{\partial p_{r}}\right)=\sum_{r} \frac{\partial\left(u_{l}, u_{m}\right)}{\partial\left(q_{r}, p_{r}\right)} \tag{18}
\end{equation*}
$$

This 1s called a Porsson's bracket and will be denoted here by the symbol $\left\{u_{l}, u_{m}\right\} \quad$ It is evident that we have

$$
\begin{array}{cc}
{\left[u_{l}, u_{m}\right]=-\left[u_{m}, u_{l}\right],} & (l \neq m) \\
\left\{u_{l}, u_{m}\right\}=-\left\{u_{m}, u_{l}\right\}, & (l \neq m) \\
{\left[u_{l}, u_{l}\right]=\left\{u_{l}, u_{l}\right\}=0}
\end{array}
$$

There are also relations between the two types of expression, and these we shall now investigate

Let two linear substitutions be defined by
and

$$
x_{l}=\sum_{r}^{n} \frac{\partial q_{r}}{\partial u_{l}} y_{r}+\sum_{r}^{n} \frac{\partial p_{r}}{\partial u_{l}} y_{n+r}
$$

$$
y_{r}=\sum_{m}^{2 n} \frac{\partial p_{r}}{\partial u_{m}} z_{m}, \quad y_{n+r}=-\sum_{m}^{2 n} \frac{\partial q_{r}}{\partial u_{m}} z_{m}
$$

where r can have all values $1, \quad n$ and l and m can have all values $1, \quad, 2 n$ The result of eliminating y_{r}, y_{n+r} is to give

$$
\begin{align*}
x_{l} & =\sum_{m}^{2 n} z_{m} \sum_{r}^{n}\left(\frac{\partial q_{r}}{\partial u_{l}} \frac{\partial p_{r}}{\partial u_{m}}-\frac{\partial p_{r}}{\partial u_{l}} \frac{\partial q_{r}}{\partial u_{m}}\right) \\
& =\sum_{m}^{2 n}\left[u_{l}, u_{m}\right] z_{m} \tag{19}
\end{align*}
$$

But the substitutions can be reversed by writing

$$
\begin{aligned}
& y_{r}=\sum_{l}^{2 n} \frac{\partial u_{l}}{\partial q_{r}} x_{l}, \quad y_{n+r}=\sum_{l}^{2 n} \frac{\partial u_{l}}{\partial p_{r}} x_{l} \\
& z_{m}=\sum_{r}^{n} \frac{\partial u_{m}}{\partial p_{r}} y_{r}-\sum_{r}^{n} \frac{\partial u_{m}}{\partial q_{r}} y_{n+r}
\end{aligned}
$$

The equivalence of these forms is easily verified since

$$
\sum_{l}^{2 n}\left[\frac{\partial u_{l}}{\partial q_{r}} \frac{\partial q_{r}}{\partial u_{l}}\right]=1, \quad \sum_{l}^{2 n}\left[\frac{\partial u_{l}}{\partial q_{r}} \frac{\partial p_{r}}{\partial u_{l}}\right]=0
$$

When y_{r}, y_{n+r} are eliminated, these give

$$
\begin{align*}
z_{m} & =\sum_{l}^{2 n} x_{l} \sum_{r}^{n}\left(\frac{\partial u_{l}}{\partial q_{r}} \frac{\partial u_{m}}{\partial p_{r}}-\frac{\partial u_{m}}{\partial q_{r}} \frac{\partial u_{l}}{\partial p_{r}}\right) \\
& =\sum_{l}^{2 n}\left\{u_{l}, u_{m}\right\} x_{l} \tag{20}
\end{align*}
$$

The resultant substitutions (19) and (20) must therefore be equivalent, and accordingly their determinants, written in the forms
are reciprocal This means that any constituent of either determinant is equal to the co-factor of the corresponding constituent in the other determinant divided by that determinant Any Lagrange's bracket is thus expressible in terms of Poisson's brackets, and vice versa.

131 Let us now consider the explicit conditions for a contact tiansformation We have in this case

$$
\sum_{l} P_{r} d Q_{l}-\sum_{r} p_{r} d q_{r}=\sum_{l} P_{r} d Q_{r}-\sum_{l} \sum_{l} p_{r}\left(\frac{\partial q_{r}}{\partial Q_{l}} d Q_{l}+\frac{\partial q_{r}}{\partial P_{l}} d P_{l}\right)
$$

a perfect differential Hence

$$
\begin{aligned}
& \frac{\partial}{\partial P_{n}}\left(\sum_{l} p_{,} \frac{\partial q_{r}}{\partial P_{l}}\right)=\frac{\partial}{\partial P_{l}}\left(\sum_{r} p_{r} \frac{\partial q_{r}}{\partial P_{m}}\right) \\
& \frac{\partial}{\partial Q_{m}}\left(\sum_{r} p_{r} \frac{\partial q_{r}}{\partial Q_{l}}\right)=\frac{\partial}{\partial Q_{l}}\left(\sum_{r} p_{r} \frac{\partial q_{r}}{\partial Q_{m}}\right)
\end{aligned}
$$

always, and

$$
\frac{\partial}{\partial P_{m}}\left(\sum_{r} p_{r} \frac{\partial q_{r}}{\partial Q_{l}}\right)=\frac{\partial}{\partial Q_{l}}\left(\sum_{r} p_{r} \frac{\partial q_{r}}{\partial P_{m}}\right)
$$

unless $l=m$, in whuch case

$$
\frac{\partial}{\partial P_{l}}\left(\Sigma_{r} p_{1} \frac{\partial q_{r}}{\partial Q_{l}}-P_{l}\right)=\frac{\partial}{\partial Q_{l}}\left(\sum_{l} p_{r} \frac{\partial q_{r}}{\partial P_{l}}\right)
$$

It is at once evident that these conditions may be written for all values of l and $m, \quad\left[P_{l}, P_{m}\right]=0, \quad\left[Q_{l}, Q_{m}\right]=0$

$$
\left[Q_{l}, P_{m}\right]=0
$$

for all unequal values of l and m, and

$$
\left[Q_{l}, P_{l}\right]=1
$$

for all values of l In other words, in the case of a contact transformation all the Lagrange's brackets vanish with the exception of those which are of the form $\left[Q_{l}, P_{l}\right]$, and these are all unity

Let us now put

$$
u_{r}=Q_{r}, \quad u_{n+r}=P_{r}, \quad(r=1,2, \quad, n)
$$

Then the substitution (19) becomes simply

$$
x_{r}=z_{n+r}, \quad x_{n+1}=-z_{r}
$$

But this shows that all the Poisson's brackets occurning in (20) vanish except those which are of the form $\left\{u_{l}, u_{l \pm n}\right\}$, and these may be written

$$
\left\{Q_{l}, P_{l}\right\}=1 \text { or }\left\{P_{l}, Q_{i}\right\}=-1
$$

The conditions for a contact transformation are therefore of the same simple form whether expressed in terms of Lagrange's or of Poisson's brackets

Again, the substitations of $\S 130$,

$$
\begin{aligned}
& x_{l}=\sum_{r}^{n} \frac{\partial q_{r}}{\partial u_{l}} y_{r}+\sum_{r}^{n} \frac{\partial p_{r}}{\partial u_{l}} y_{n+r} \\
& z_{m}=\sum_{r}^{n} \frac{\partial u_{m}}{\partial p_{r}} y_{r}-\sum_{r}^{n} \frac{\partial u_{m}}{\partial q_{r}} y_{n+r}
\end{aligned}
$$

become identical when $m=n+l$, since $z_{n+l}=x_{l} \quad$ Hence

$$
\frac{\partial q_{r}}{\partial Q_{l}}=\frac{\partial P_{l}}{\partial p_{r}}, \quad \frac{\partial p_{r}}{\partial Q_{l}}=-\frac{\partial P_{l}}{\partial q_{r}}
$$

But when $l=n+m$, they are identical except for an opposite sign throughout, since $x_{n+m}=-z_{m}$, and thus

$$
\frac{\partial q_{r}}{\partial P_{m}}=-\frac{\partial Q_{m}}{\partial p_{r}}, \quad \frac{\partial p_{r}}{\partial P_{m}}=\frac{\partial Q_{m}}{\partial q_{r}}
$$

These relations hold for all values of l, m or r not exceeding n
132 Let us consider the transformation

$$
Q_{r}=q_{r}+\epsilon q_{r}^{\prime}, \quad P_{r}=p_{r}+\epsilon p_{r}^{\prime}
$$

where $q_{r}^{\prime}, p_{r}^{\prime}$ are any functions of $\left(q_{r}, p_{r}\right)$ and ϵ is an infinitesimal constant
If the transformation is an infinitesimal contact transformation,

$$
\begin{aligned}
d W & =\sum_{r}\left\{\left(p_{r}+\epsilon p_{r}^{\prime}\right) d\left(q_{r}+\epsilon q_{r}^{\prime}\right)-p_{r} d q_{r}\right\} \\
& =\epsilon \sum_{r}\left(p_{r}^{\prime} d q_{r}+p_{r} d q_{r}^{\prime}\right)
\end{aligned}
$$

is a perfect differential Hence we may write

$$
\begin{aligned}
\epsilon \sum_{r}\left(p_{r}^{\prime} d q_{r}-q_{r}{ }^{\prime} d p_{r}\right) & =d\left(W-\epsilon \sum_{r} p_{r} q_{r}^{\prime}\right) \\
& =-\epsilon d K
\end{aligned}
$$

where K may be any function of $\left(q_{r}, p_{r}\right) \quad$ Accordingly

$$
q_{r}^{\prime}=\frac{\partial K}{\partial p_{r}}, \quad p_{r}^{\prime}=-\frac{\partial K}{\partial q_{r}}
$$

and the general form of an infintesimal contact transformation is given by

$$
\begin{equation*}
Q_{r}=q_{r}+\epsilon \frac{\partial K}{\partial p_{r}}, \quad p_{r}=p_{r}-\epsilon \frac{\partial K}{\partial q_{r}} \tag{22}
\end{equation*}
$$

where K is an arbitrary function of $\left(q_{r}, p_{r}\right)$
If for ϵ we write δt, the equations (22) become

$$
\frac{\delta q_{r}}{\delta t}=\frac{\partial K}{\partial p_{r}}, \quad \frac{\delta p_{r}}{\delta t}=-\frac{\partial K}{\partial q_{r}}
$$

and comparing this form with that of the canonical equations of motion we see that the progressive motion of a system from point to point corresponds to a succession of infinitesimal contact transformations

The effect of substituting $\left(Q_{r}, P_{r}\right)$ in any function f of $\left(q_{r}, p_{r}\right)$ is to produce an increment

$$
\begin{align*}
\Delta f & =\Sigma_{r} \frac{\partial f}{\partial q_{r}} \epsilon \frac{\partial K}{\partial p_{r}}-\Sigma_{,} \frac{\partial f}{\partial p_{r}} \epsilon \frac{\partial K}{\partial q_{r}} \\
& =\epsilon\{f, K\} \tag{23}
\end{align*}
$$

133 Let us consider a disturbed motion in which (q_{r}, p_{r}) become $\left(q_{r}+\delta q_{r}, p_{r}+\delta p_{r}\right)$ at the time t If this motion is compatible with the canonical equations
we must have

$$
q_{r}=\frac{\partial H}{\partial p_{r}}, \quad p_{r}=-\frac{\partial H}{\partial q_{r}}
$$

$$
\frac{d}{d t}\left(\delta q_{r}\right)=\sum_{s}\left(\frac{\partial^{2} H}{\partial p_{r} \partial q_{s}} \delta q_{s}+\frac{\partial^{2} H}{\partial p_{r} \partial p_{s}} \delta p_{s}\right)
$$

wrth similar equations for δp_{r} Now let us suppose that the new variables are those given by (22) These will lead to a particular solution of the varied motion provided

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{\partial K}{\partial p_{r}}\right)= & \Sigma_{s}\left(\frac{\partial^{2} H}{\partial p_{r} \partial q_{s}} \frac{\partial K}{\partial p_{s}}-\frac{\partial^{2} H}{\partial p_{r} \partial p_{s}} \frac{\partial K}{\partial q_{s}}\right) \\
= & \frac{\partial}{\partial p_{r}} \Sigma_{s}\left(\frac{\partial H}{\partial q_{s}} \frac{\partial K}{\partial p_{s}}-\frac{\partial H}{\partial p_{s}} \frac{\partial K}{\partial q_{s}}\right) \\
& -\sum_{s}\left(\frac{\partial H}{\partial q_{s}} \frac{\partial^{2} K}{\partial p_{r} \partial p_{s}}-\frac{\partial H}{\partial p_{s}} \frac{\partial^{\circ} K}{\partial p_{r} \partial q_{s}}\right) \\
= & \frac{\partial}{\partial p_{r}} \Sigma_{s}\left(-p_{s} \frac{\partial K}{\partial p_{s}}-q_{s} \frac{\partial K}{\partial q_{s}}\right) \\
& +\sum_{s}\left(p_{s} \frac{\partial^{2} K}{\partial p_{r} \partial p_{s}}+q_{s} \frac{\partial^{2} K}{\partial p_{i} \partial q_{s}}\right) \\
= & \frac{\partial}{\partial p_{r}}\left(\frac{\partial K}{\partial t}-\frac{d K}{d t}\right)+\frac{d}{d t}\left(\frac{\partial K}{\partial p_{r}}\right)-\frac{\partial}{\partial t}\left(\frac{\partial K}{\partial p_{r}}\right)
\end{aligned}
$$

or

$$
0=-\frac{\partial}{\partial p_{r}}\left(\frac{d K}{d t}\right)
$$

with a simular set of conditions arising from the equations tor δp_{r} But it is evident that all these conditions will be satisfied of K is an integral of the system, for then $K=0$ We thus see that if K is an integral, the equations (22) are a particular solution of the equations for the disturbed motion

134 Let u be another integral of the undisturbed system Then $u+\Delta u$ must also have a constant value in the disturbed motion But by (23)

$$
\Delta u=\epsilon\{u, K\}
$$

when the disturbed motion is that obtauned by the infinitesimal contact transformation derived from K Hence $\{u, K\}$ must be constant, and we have Poisson's theorem if u and K are two integrals of a system, the Poisson's bracket $\{u, K\}$ is also an integral It maght be supposed that a knowledge of two integrals would thus lead to the discovery of all the
integrals of a problem This is not so in general The known integrals are more often of a generic type, particularly in the case of those gravitational problems with which we have to deal, and fall into closed groups For example, if we start from two integrals of area we obtain by Poisson's theorem the third integral of the same type and no further progress can be made in this way In order to obtain fresh mformation it is necessary to start from integrals which are special to the problem considered

Let $u_{1}, u_{2}, \quad, u_{2 n}$ be $2 n$ distinct integrals of the problem Then each Poisson's bracket of the type $\left\{u_{r}, u_{8}\right\}$ is constant throughout the motion But we have seen in $\S 130$ that a Lagrange's bracket $\left[u_{r}, u_{s}\right.$] can be expressed in terms of all the Poisson's brackets Hence $\left[u_{r}, u_{s}\right.$] is also constant throughout the motion But this gives no means of finding additional integrals of the problem, for in order to calculate [u_{r}, u_{8}] it is first necessary to express (q_{r}, p_{r}) in terms of the $2 n$ integrals (u_{r}) And this presupposes that the problem has been completely solved

CHAPTER XIII

VARIATION OF ELEMENTS

135 The Hamilton-Jacobi equation corresponding to elliptic motion about a fixed centre of attraction is very simply solved when the varcables are expressed in polar coordnates (r, l, λ), so that (l, λ having the same relation to one another as longitude and latitude)

$$
q_{1}=r, \quad q_{2}=\lambda, \quad q_{3}=l
$$

Then, after suppressing the factor m in the potential energy U and therefore treating the mass factor in the momenta as unity,

$$
\begin{aligned}
U & =-\mu r^{-1}, \quad \mu=h^{2}(1+m)=n^{2} a^{3} \\
2 T & =r^{2}+r^{2} \lambda^{2}+r^{2} \cos ^{2} \lambda l^{2} \\
p_{1} & =r, \quad p_{2}=r^{2} \lambda, \quad p_{3}=r^{2} \cos ^{2} \lambda l \\
H & =T+U=\frac{1}{2}\left(p_{1}^{2}+r^{-2} p_{2}^{2}+r^{-2} \sec ^{2} \lambda p_{3}^{2}\right)-\mu r^{-1},
\end{aligned}
$$

The Hamilton-Jacobi equation ($\$ 126$) therefore takes the form, since H does not contain t,

$$
\left(\frac{\partial W^{\prime}}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial W^{\prime}}{\partial \lambda}\right)^{2}+\stackrel{1}{r^{2} \cos ^{2} \lambda}\left(\frac{\partial W^{\prime}}{\partial l}\right)^{3}=2 \alpha_{1}+\frac{2 \mu}{r}
$$

where $W=W^{\prime}-\alpha_{1} t$ Integration by separation of the variables is then easy For

$$
\begin{aligned}
& \left(\frac{\partial W^{\prime}}{\partial l}\right)^{2}=\alpha_{3}^{2}, \quad\left(\frac{\partial W^{\prime}}{\partial \lambda}\right)^{2}=\alpha_{2}^{2}-\alpha_{3}^{2} \sec ^{2} \lambda \\
& \left(\frac{\partial W^{\prime}}{\partial l}\right)^{2}=2 \alpha_{1}+\frac{2 \mu}{1}-\frac{\alpha_{2}^{2}}{r^{2}}
\end{aligned}
$$

obviously satisfy the equation Hence

$$
W^{\prime}=\int_{r_{0}}^{r}\left(2 \alpha_{1}+\frac{2 \mu}{r}-\frac{\alpha_{2}^{2}}{r^{2}}\right)^{\frac{1}{2}} d r+\left.\right|_{0} ^{\lambda}\left(\alpha_{2}^{2}-\alpha_{3}^{2} \sec ^{2} \lambda\right)^{\frac{1}{2}} d \lambda+\alpha_{3} l
$$

is an integral which contains the three independent constants $\alpha_{1}, \alpha_{2}, \alpha_{3}$ Therefore the complete solution of the problem is given by the equations

$$
\begin{aligned}
& t-\beta_{1}=\frac{\partial W^{\prime}}{\partial a_{1}}=\int_{r_{0}}^{r}\left(2 \alpha_{1}+\frac{2 \mu}{r}-\frac{\alpha_{2}^{2}}{r^{2}}\right)^{-\frac{1}{2}} d r \\
& -\beta_{3}=\frac{\partial W^{\prime}}{\partial \alpha_{2}}=-\int_{r_{0}}^{r} \frac{\alpha_{2}}{r^{2}}\left(2 \alpha_{1}+\frac{2 \mu}{r}-\frac{\alpha_{2}^{2}}{r^{2}}\right)^{-\frac{1}{2}} d r+\int_{0}^{\lambda} \alpha_{2}\left(\alpha_{2}^{2}-\alpha_{3}^{2} \sec ^{2} \lambda\right)^{-\frac{1}{2}} d \lambda \\
& -\beta_{3}=\frac{\partial W^{\prime}}{\partial \alpha_{3}}=l-\int_{0}^{\lambda} \alpha_{3} \sec ^{3} \lambda\left(\alpha_{2}^{2}-\alpha_{3}^{2} \sec ^{2} \lambda\right)^{-\frac{1}{2}} d \lambda
\end{aligned}
$$

where $\beta_{1}, \beta_{2}, \beta_{3}$ are three additional constants The lower limit r_{0} is also arbitrary It may be identrfied with the pericentric distance, and then the integrals depending on r will vanish at the pericentre

136 We have now to determine the meaning of the six constants of integration Since the integral in the first equation vanishes at peribelion, β_{1} is clearly the time at this point Also, by the same equation,

$$
\begin{aligned}
r^{2} & =\frac{2 \mu}{r}-\frac{\alpha_{2}^{2}}{r^{2}}+2 \alpha_{1} \\
& =2 \alpha_{1}\left(r-r_{1}\right)\left(r-r_{2}\right) / r^{2}
\end{aligned}
$$

But at an apse, $r=0$ and $r=a(1 \pm e) \quad$ These then are the values of r_{1}, r_{2}, and hence
or

$$
\begin{array}{ll}
\mu=-2 a \alpha_{1}, & \alpha_{2}^{2}=-2 a^{2}\left(1-e^{2}\right) \alpha_{1} \\
\alpha_{1}=-\mu / 2 a, & \alpha_{2}^{\prime}=\sqrt{ }\left\{\mu a\left(1-e^{2}\right)\right\}
\end{array}
$$

Also if we put $\alpha_{3} / \alpha_{2}=\cos \imath$ the second and third equations become on integration

$$
\begin{gathered}
-\beta_{2}=-f_{1}(r)+\sin ^{-1}(\sin \lambda / \sin \imath) \\
-\beta_{3}=l-\sin ^{-1}(\tan \lambda / \tan \imath) \\
\sin \lambda=\sin \imath \sin \left\{f_{1}(r)-\beta_{2}\right\} \\
\tan \lambda=\tan \imath \sin \left(l+\beta_{3}\right)
\end{gathered}
$$

or

This last equation shows that the motion takes place in a fixed plane making the angle i with the plane $\lambda=0$, which may be taken to represent, for example, the ecliptic, with l and λ as the longitude and latitude of the planet Thus the meaning of $\alpha_{3}=\alpha_{2} \cos \imath$ is defined, and $-\beta_{3}$ is simply the longatude of the node The preceding equation then shows that $f_{1}(r)-\beta_{2}$ 1s the angle between the radius vector of the planet and the line of nodes, 1 e the argument of latitude But at perihelion the integral $f_{1}(r)$ vanishes Hence $-\beta_{2}$ is simply the angle in the orbit from the node to perihelion, or $\varpi-\Omega$ in the ordinary notation The canonical elements which we
have introduced can therefore be expressed in terms of the usual elements (T being reckoned from the epoch when the mean longitude is ϵ) thus

$$
\begin{array}{ll}
\alpha_{1}=-\mu / 2 a, & \beta_{1}=T=-(\epsilon-\varpi) / n \\
\alpha_{2}=\sqrt{ }\left\{\mu a\left(1-e^{2}\right)\right\}, & \beta_{2}=-\varpi+\Omega \\
\alpha_{3}=\sqrt{ }\left\{\mu a\left(1-e^{\circ}\right)\right\} \cos \imath, & \beta_{3}=-\Omega
\end{array}
$$

The homogeneity of these constants will be increased by introducing $\alpha=\sqrt{\mu a}$ instead of α_{1} This makes $2 \alpha_{1}=-\mu^{2} / \alpha^{2}$ and $W=W^{\prime}+\mu^{2} t / 2 \alpha^{2}$ Hence β_{1} will be replaced by β, where

$$
\begin{aligned}
-\beta & =\frac{\partial W}{\partial \alpha}=\frac{\partial W^{\prime}}{\partial \alpha}-\frac{\mu^{2} t}{\alpha^{3}}=\frac{\mu^{2}}{\alpha^{3}}\left(\frac{\partial W^{\prime}}{\partial \alpha_{1}}-t\right) \\
& =\frac{\mu^{2}}{\alpha^{3}}\left\{\int_{r_{0}}^{r}\left(2 \alpha_{1}+\frac{2 \mu}{r}-\frac{\alpha_{2}^{2}}{r^{2}}\right)^{-\frac{1}{2}} d r-t\right\}
\end{aligned}
$$

Since the integral vanıshes at perihelion, and $t=T$ at this point,

$$
\beta=\frac{\mu^{2} T}{a^{3}}=\sqrt{\frac{\mu}{a^{3}}} T=n T=-\epsilon+\varpi
$$

The other constants are easily seen not to be affected by the change in α_{1}, β_{1}, which can accordingly be replaced by

$$
\alpha=\sqrt{ }(\mu a), \quad \beta=n T=-\epsilon+\varpi
$$

where ϵ is the mean longitude of the planet at the time $t=0$
137 The expressions for $\alpha, \alpha_{2}, \alpha_{3}, \beta, \beta_{2}, \beta_{3}$ in terms of the ordnary elliptic elements which have just been found make it very easy to calculate the Lagrange's brackets

$$
[u, v]=\Sigma\left(\frac{\partial \alpha}{\partial u} \frac{\partial \beta}{\partial v}-\frac{\partial \beta}{\partial u} \frac{\partial \alpha}{\partial v}\right)
$$

where u, v are any paur of the six elements $a, e, \imath, \Omega, \varpi, \epsilon$ Since $\alpha_{,}^{4} \alpha_{2}, \alpha_{3}$ are functions of a, e, \imath alone and $\beta, \beta_{2}, \beta_{\mathrm{s}}$ are functions of Ω, w, ϵ alone, the Lagrange's bracket for any parr of either set of three elements vanishes It is equally evident on inspection that $[e, \epsilon],[\imath, m]$ and $[\tau, \epsilon]$ also vanish, the two constituents never occurring in a corresponding parr of canonical constants Hence the complete array of Lagrange's brackets may be set out thus

	a	e	\imath	Ω	ϖ	ϵ
a	0	0	0	$[a, \Omega]$	$[a, \varpi]$	$[a, \epsilon]$
e	0	0	0	$[e, \Omega]$	$[e, \varpi]$	0
\imath	0	0	0	$[\imath, \Omega]$	0	0
Ω	$-[a, \Omega]$	$-[e, \Omega]$	$-[2, \Omega]$	0	0	0
ϖ	$-[a, \varpi]$	$-[e, \varpi]$	0	0	0	0
ϵ	$-[a, \epsilon]$	0	0	0	0	0

where the first constituent of each bracket taken positively is placed in the column on the left and the second constituent in the line at the top The brackets in the second diagonal really contam only one term and are at once seen to be

$$
\begin{aligned}
& {[a, \epsilon]=-\frac{1}{2} \sqrt{\mu / a}} \\
& {[e, \varpi]=e \sqrt{\mu a} / \sqrt{ }\left(1-e^{2}\right)} \\
& {[\imath, \Omega]=\sqrt{\mu a\left(1-e^{2}\right)} \sin \imath}
\end{aligned}
$$

while the remaining three brackets contain two terms and are

$$
\begin{aligned}
& {[a, \Omega]=\frac{1}{2} \sqrt{\left(1-e^{2}\right) \mu / a}(1-\cos \imath)} \\
& {[a, \varpi]=\frac{1}{2} \sqrt{\mu / a}\left(1-\sqrt{1-e^{2}}\right)} \\
& {[e, \Omega]=-e \sqrt{\mu a}(1-\cos \imath) / \sqrt{1-e^{2}}}
\end{aligned}
$$

The value of the whole determinant depends simply on the constituents in the second diagonal and is evidently

$$
\begin{aligned}
\Delta & =[a, \epsilon]^{2}[e, \varpi]^{2}[\imath, \Omega]^{2} \\
& =\frac{1}{4} \mu^{3} a e^{2} \sin ^{2} \imath
\end{aligned}
$$

138 It is now easy to form the reciprocal determinant, the constituents of which are the Poisson's brackets of pairs of elements On account of the large number of zeros in the above determinant a corresponding number of minors vanish and the rest can be calculated without difficulty It can in fact be verified by simple inspection that the reciprocal determinant takes the form

	a	e	2	Ω	ш	$\boldsymbol{\epsilon}$
a	0	0	0	0	0	$\{a, \epsilon\}$
e	0	0	0	0	$\{e, \infty\}$	$\{e, \epsilon\}$
$\stackrel{1}{2}$	0	0	0	$\{2, \Omega\}$	$\{2, \infty\}$	$\{2,6\}$
Ω	0	0	$-\{\imath, \Omega\}$	0	0	0
©	0	$-\{e, \varpi\}$	$-\{2, \infty\}$	0	0	0
ϵ	$-\{a, \epsilon$	$\{e, \epsilon\}$	$-\{2, \epsilon\}$	0	0	0

the first constituent of each bracket (written positively) being indicated in the column on the left and the second constituent in the top line as before It is also clear that the partial substitutions (§ 130)

$$
\begin{aligned}
& x_{1}=[a, \Omega] z_{4}+[a, \varpi] z_{5}+[a, \epsilon] z_{6} \\
& x_{2}=[e, \Omega] z_{4}+[e, \varpi] z_{5} \\
& x_{3}=[\imath, \Omega] z_{4}
\end{aligned}
$$

and

$$
\begin{aligned}
z_{4} & & \{\imath, \Omega\} a \\
z_{0} & = & \{e, w\} x_{2}+\{\imath, \varpi\} x_{3} \\
z_{6} & =\{a, \epsilon\} x_{1}+\{e, \epsilon\} & \alpha_{2}+\{\imath, \epsilon\} x_{3}
\end{aligned}
$$

must be equivalent, and it readrly follows that

$$
\begin{aligned}
\{a, \epsilon\} & =1 /[a, \epsilon]=-2 \sqrt{a / \mu} \\
\{e, \varpi\} & =1 /[e, \varpi]=\sqrt{1-e^{2}} / e \sqrt{\mu a} \\
\{\imath, \Omega\} & =1 /[\imath, \Omega]=1 / \sqrt{\mu a\left(1-e^{2}\right)} \sin \imath \\
\{e, \epsilon\} & =-[a, \varpi] /[a, \epsilon][e, \varpi] \\
& =\left(1-\sqrt{1}-\bar{\sim}-e^{\prime}\right) \sqrt{1} \overline{-}-e^{2} / e \sqrt{\mu a} \\
\{\imath, \varpi\} & =-[e, \Omega 2] /[e, \varpi][\imath, \Omega] \\
& =(1-\cos \imath) / \sqrt{\mu} a\left(1-e^{2}\right) \sin \imath \\
\{\imath, \epsilon\} & =-\{[a, \Omega][e, \varpi]-[e, \Omega][a, \varpi]\} /[a, \epsilon][e, \varpi][\imath, \Omega] \\
& =(1-\cos \imath) / \sqrt{\mu a\left(1-e^{2}\right)} \sin \imath
\end{aligned}
$$

The six Poisson's brackets are thus all known
139 A solution of the Hamilton-Jacobi equation, involving the sir arbitrary constants $\alpha, \alpha_{2}, \alpha_{3}, \beta, \beta_{2}, \beta_{3}$, has been found tor the case of undisturbed elliptic motion relative to the Sun When the action of the othes planets is taken into account, the potential energy U becomes $U-R$, where R is the disturbing function and is expressed by ($\S 23$)

$$
R=k^{2} \Sigma m_{\imath}\left(\frac{1}{\Delta_{2}}-\frac{x x_{2}+y y_{2}+z z_{2}}{r_{2}^{3}}\right)
$$

Hence H becomes $H_{0}-R$ and consequently by $\S 127$ the constants of the approximate problem are in the more complete problem subject to vanations which are defined by the equations

$$
\frac{d \alpha_{1}}{d t}=-\frac{\partial R}{\partial \beta_{1}}, \quad \frac{d \beta_{r}}{d t}=+\frac{\partial R}{\partial \alpha_{1}}
$$

Here R is supposed to be expressed in terms of the constants mentioned in § 136, which refer to the motion of the planet considered undisturbed, and the time as it occurs in the expiession of the coordinates of the disturbing planets When instead of the canonical constants ausing in the solution of the Hamilton-Jacobl equation the ordinary elements of elliptic motion arc employed, the equations for the variations are no longer of the above simple type, but take the more complicated form

$$
\frac{d A_{r}}{d t}=-\sum_{s}\left\{A_{r}, A_{\varepsilon}\right\} \frac{\partial R}{\partial A_{s}}
$$

where A_{r} represents any one of such elements Since we have found the expressions for all the Poisson's brackets, the equations for the variation of
the usual elliptic elements can at once be written down in an explicit form They are as follows

$$
\begin{aligned}
& \frac{d a}{d t}=2 \sqrt{a / \mu} \frac{\partial R}{\partial \epsilon} \\
& \frac{d e}{d t}=-\frac{\cot \phi}{\sqrt{\mu a}} \frac{\partial R}{\partial \sigma}-\frac{\tan \frac{1}{2} \phi \cos \phi}{\sqrt{\mu a}} \frac{\partial R}{\partial \epsilon} \\
& \frac{d \imath}{d t}=-\overline{\cos \phi \sin \imath \sqrt{\mu a}} \frac{\partial R}{\partial \Omega}-\frac{\tan \frac{1}{2} \imath}{\cos \phi \sqrt{\mu a}}\left(\frac{\partial R}{\partial \sigma}+\frac{\partial R}{\partial \epsilon}\right) \\
& \frac{d \Omega}{d t}=\frac{1}{\cos \phi \sin \imath \sqrt{\mu a}} \frac{\partial R}{\partial \imath} \\
& \frac{d \pi}{d t}=\frac{\cot \phi}{\sqrt{\mu u}} \frac{\partial R}{\partial e}+\tan \frac{1}{2} \imath \\
& \frac{\cos \phi \sqrt{\mu a}}{\partial z} \\
& \frac{d \epsilon}{d t}=-2 \sqrt{a / \mu} \frac{\partial R}{\partial a}+\frac{\tan \frac{1}{2} \phi \cos \phi}{\sqrt{\mu a}} \frac{\partial R}{\partial e}+\frac{\tan \frac{1}{2} \imath}{\cos \phi \sqrt{\mu a}} \frac{\partial R}{\partial \imath}
\end{aligned}
$$

A slight simplification has been made by writing $\sin \phi$ in place of e in the coefficients of the partial differentials of R

140 The above set of equations for the variations of the elements is fundamental An important point must be noticed in regard to thein The variation of a entalls a corresponding valiation of n which is determined by the relation $n^{2} a^{3}=\mu \quad$ Now the disturbing function R is a periodic function of the mean anomaly and is expressed in terms of cucular functions of multiples of $n t$ Hence the derivative of R with respect to a would contan the same circular functions multiplied by t and this intioduction of terms not purely periodic would be inconvenient The difficulty is avoided by an artifice which should be carefully noted

We consider n (as distinct from α) to occur only in the arguments of these periodic terms Otherwise a is used exphicitly or if it is more convenient to use n outside the arguments, n is simply a function of a given by $n^{2} a^{3}=\mu$ Now ϵ enters into R ouly in the form $n t+\varepsilon$ through the mean anomaly, so that

Hence

$$
\frac{\partial R}{\partial \epsilon}=\frac{1}{t}\left(\frac{\partial R}{\partial n}\right)_{a=1 \text { onst }}
$$

$$
\begin{aligned}
\frac{d \epsilon}{d t} & =-2 \sqrt{a / \mu} \frac{\partial R}{\partial a}+ \\
& =-2 \sqrt{a / \mu}\left\{\left(\frac{\partial R}{\partial a}\right)_{n=\text { const }}+\frac{d n}{d a}\left(\frac{\partial R}{\partial n}\right)_{a=\text { const }}\right\}+ \\
& =-2 \sqrt{a / \mu}\left\{\left(\frac{\partial R}{\partial a}\right)_{n=\mathrm{const}}+t \frac{d n}{d a} \frac{\partial R}{\partial \epsilon}\right\}+ \\
& =-2 \sqrt{a / \mu}\left(\frac{\partial R}{\partial a}\right)_{n=\text { const }}-t \frac{d n}{d a} \frac{d a}{d t}+
\end{aligned}
$$

or

$$
\frac{d \epsilon}{d t}+t \frac{d n}{d t}=-2 \sqrt{a / \mu}\left(\frac{\partial R}{\partial a}\right)_{n=\mathrm{const}}+
$$

If then we tahe ϵ^{\prime} instead of ϵ, where

$$
\frac{d \epsilon}{d t}+t \frac{d n}{d t}=\frac{d \epsilon^{\prime}}{d t}
$$

or

$$
\epsilon+n t=\epsilon^{\prime}+\int n d t
$$

the form of the above equations for the variations of the six elements will be unaltered, since

$$
\frac{\partial R}{\partial \epsilon}=\frac{\partial R}{\partial \epsilon^{\prime}}
$$

but their natural meaning will be so far altered that (1) n in the mean anomaly is not to be varied in forming the derivative with respect to a, and (2) $n t$ in the mean anomaly is to be replaced by $\int n d t$ The secular terms which would arise from the cause mentioned are thus avorded

The value of n is deduced directly fiom the value of a, and we have

$$
\int n d t=\mu^{\frac{1}{2}} \int a^{-\frac{1}{t}} d t
$$

If this integral be denoted by ρ we have also

$$
\frac{d^{2} \rho}{d t}=-\frac{3}{3} \sqrt{\mu / a} \frac{d a}{d t}=-\frac{3}{a^{2}} \frac{\partial R}{\partial \epsilon}
$$

or

$$
\rho=-3 \iint \frac{1}{a} \frac{\partial R}{\partial \epsilon} d t^{2}
$$

which gives the finite variation of this part of the mean longitude in the disturbed orbit

141 When e (and therefore ϕ) is small, and this is commonly the case, the coefficients in the valiations of e and ϖ which contain $\cot \phi$ as a factor become large This gives rise to a difficulty which can be avoided by introducing the transformation

$$
h_{1}=e \sin \pi, \quad k_{1}=e \cos \pi
$$

The result of making this change, which can be verified without difficulty, is to substitute for the corresponding pair of equations

$$
\begin{aligned}
& \frac{d h_{1}}{d t}=\frac{\cos \phi}{\sqrt{\mu a}} \frac{\partial R}{\partial k_{1}}+\frac{h_{1} \tan \frac{1}{2} \imath}{\cos \phi \sqrt{\mu \iota}} \frac{\partial R}{\partial \imath}-\frac{h_{1} \cos \phi}{2 \cos ^{2} \frac{1}{2} \phi \sqrt{\mu a}} \frac{\partial R}{\partial \epsilon} \\
& \frac{d h_{1}}{d t}=-\frac{\cos \phi}{\sqrt{\mu a}} \frac{\partial R}{\partial h_{1}}-\frac{h_{1} \tan \frac{1}{2} \imath}{\cos \phi \sqrt{\mu a}} \frac{\partial R}{\partial \imath}-\frac{h_{1} \cos \phi}{2 \cos ^{2} \frac{1}{2} \phi \sqrt{\mu a}} \frac{\partial R}{\partial \epsilon}
\end{aligned}
$$

Sumilarly, when the angle between the plane of the orbit and the plane of reference is small, a pair of coefficients in the variations of \imath and Ω become large, and the transformation

$$
h_{2}=\sin \imath \sin \Omega, \quad k_{2}=\sin \imath \cos \Omega
$$

is useful The result, which can be verified with equal ease, is to replace the equations named by the pair

$$
\begin{aligned}
& \frac{d h_{2}}{d t}=\frac{\cos \imath}{\cos \phi \sqrt{\mu a}} \frac{\partial R}{\partial k_{2}}-\frac{h_{2} \cos \imath}{2 \cos ^{\frac{2}{2}} \imath \cos \phi \sqrt{\mu a}}\left(\frac{\partial R}{\partial \varpi}+\frac{\partial R}{\partial \epsilon}\right) \\
& \frac{d k_{2}}{d t}=-\frac{\cos \imath}{\cos \phi \sqrt{\mu a}} \frac{\partial R}{\partial h_{2}}-\frac{-k_{2} \cos \imath}{2 \cos ^{2} \frac{1}{2} \imath \cos \phi \sqrt{2}}\left(\frac{\partial R}{\partial \sigma}+\frac{\partial R}{\partial \epsilon}\right)
\end{aligned}
$$

142 Another form of the equations for the variations of the elements, in which the disturbing forces appear explicitly, is of great importance Let S, T be the components of these forces in the plane of the orbit along the radius vector and perpendicular to $1 t$, and W the component normal to the plane Let u be the argument of latitude and (λ, μ, ν) the direction cosines of the radius vector, so that ($\$ 65$)

$$
\begin{aligned}
\lambda & =\cos u \cos \Omega-\sin u \sin \Omega \cos \imath \\
\mu & =\cos u \sin \Omega+\sin u \cos \Omega \cos \imath \\
\nu & =\sin u \sin \imath
\end{aligned}
$$

The direction cosines of the transversal and of the normal to the plane may be written

$$
\frac{\partial \lambda}{\partial u}, \frac{\partial \mu}{\partial u}, \frac{\partial \nu}{\partial u} \text { and } \frac{1}{\sin u} \frac{\partial \lambda}{\partial \iota}, \frac{1}{\sin } \tau \frac{\partial \mu}{\partial \imath}, \frac{1}{\sin u} \frac{\partial \nu}{\partial \imath}
$$

which must satisfy the conditions

$$
\begin{gathered}
\Sigma \lambda^{2}=\Sigma\left(\frac{\partial \lambda}{\partial u}\right)^{2}=\frac{1}{\sin ^{2} u} \Sigma\left(\frac{\partial \lambda}{\partial \imath}\right)^{2}=1 \\
\Sigma\left(\lambda \frac{\partial \lambda}{\partial u}\right)=\Sigma\left(\lambda \frac{\partial \lambda}{\partial \imath}\right)=\Sigma\left(\frac{\partial \lambda}{\partial u} \frac{\partial \lambda}{\partial \imath}\right)=0
\end{gathered}
$$

If σ be any one of the elliptic elcments, we have also

$$
\frac{\partial R}{\partial \sigma}=\frac{\partial R}{\partial x} \frac{\partial x}{\partial \sigma}+\frac{\partial R}{\partial y} \frac{\partial y}{\partial \sigma}+\frac{\partial R}{\partial z} \quad \frac{\partial z}{\partial \sigma}
$$

But the component of the disturbing forces along the axis of $x_{1 \mathrm{~s}}$

$$
\frac{\partial R}{\partial x}=\lambda S+\frac{\partial \lambda}{\partial u} T+\frac{1}{\sin u} \frac{\partial \lambda}{\partial \imath} W
$$

Hence

$$
\begin{aligned}
\frac{\partial R}{\partial \sigma} & =\Sigma\left(\lambda S+\frac{\partial \lambda}{\partial u} T+\frac{1}{\sin u} \frac{\partial \lambda}{\partial \imath} W\right) \frac{\partial(\lambda r)}{\partial \sigma} \\
& =S \frac{\partial r}{\partial \sigma}+r T \Sigma\left(\frac{\partial \lambda}{\partial \dot{u}} \frac{\partial \lambda}{\partial \sigma}\right)+\frac{r W}{\sin u} \Sigma\left(\frac{\partial \lambda}{\partial \imath} \frac{\partial \lambda}{\partial \sigma}\right)
\end{aligned}
$$

by the conditions mentioned Now

$$
\begin{aligned}
& \imath=a(1-e \cos E), \quad \tan \frac{1}{2} w=\sqrt{ }\left(\frac{1+e}{1-e}\right) \tan \frac{1}{2} E \\
& u=\pi-\Omega+w, \quad E-e \sin E=n t+\epsilon-\infty
\end{aligned}
$$

In accordance with $\S 140$ we treat n, as it occurs implicitly in u, as independent of a, and replace $n t$ by $\int n d t$

Hence

$$
\begin{aligned}
& \frac{\partial R}{\partial a}=S \frac{\partial r}{\partial a}=\frac{\imath S}{a} \\
& \frac{\partial R}{\partial \imath}=\frac{r W}{\sin u} \Sigma\left(\frac{\partial \lambda}{\partial \imath}\right)^{2}=\imath W \sin u \\
& \frac{\partial R}{\partial \Omega}=\imath T \Sigma \frac{\partial \lambda}{\partial u}\left(\frac{\partial \lambda}{\partial \Omega}-\frac{\partial \lambda}{\partial u}\right)+\frac{\imath W}{\sin u} \Sigma \frac{\partial \lambda}{\partial \imath}\left(\frac{\partial \lambda}{\partial \Omega}-\frac{\partial \lambda}{\partial u}\right)
\end{aligned}
$$

(since λ contains Ω both exphcitly and implicitly through u)

$$
\begin{aligned}
& =r T\left\{\Sigma\left(\frac{\partial \lambda}{\partial u} \frac{\partial \lambda}{\partial \Omega}\right)-1\right\}+\frac{r W}{\sin u} \Sigma\left(\frac{\partial \lambda}{\partial \imath} \frac{\partial \lambda}{\partial \Omega}\right) \\
& =r T(\cos \imath-1)+\frac{r W}{\sin u}(-\sin u \cos u \sin \imath) \\
& =-2 \imath T \sin ^{2} \frac{1}{2} \imath-r W \cos u \sin \imath
\end{aligned}
$$

The remaining elements enter into (λ, μ, ν) only mplicitly through u, so that in therr case

$$
\begin{aligned}
\frac{\partial R}{\partial \sigma} & =S \frac{\partial r}{\partial \sigma}+r T \Sigma\left(\frac{\partial \lambda}{\partial u}\right)^{2} \frac{\partial u}{\partial \sigma}+\frac{r W}{\sin u} \Sigma\left(\frac{\partial \lambda}{\lambda_{\imath}} \frac{\partial \lambda}{\partial u}\right) \frac{\partial u}{\partial \sigma} \\
& =S \frac{\partial \imath}{\partial \sigma}+r T\left(\frac{\partial \sigma}{\partial \sigma}+\frac{\partial w}{\partial \sigma}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
\frac{\partial R}{\partial \epsilon} & =S a e \sin E \frac{\partial E}{\partial \epsilon}+r T \frac{\partial w}{\partial E} \frac{\partial E}{\partial \epsilon} \\
& =S a^{2} e \sin E / \imath+a T \sin w / \sin E \\
& =u S \tan \phi \sin w+a T \sec \phi(1+e \cos w)
\end{aligned}
$$

Since r and w are both functions of $\epsilon-\infty$,

$$
\frac{\partial R}{\partial \bar{\omega}}=\gamma T-\frac{\partial R}{\partial \epsilon}
$$

and finally

$$
\begin{aligned}
\frac{\partial R}{\partial e} & =S \frac{\partial r}{\partial e}+r T \frac{\partial w}{\partial e} \\
& =a S\left(-\cos E+e \sin E \frac{\partial E}{\partial e}\right)+r T\left(\frac{\sin w}{\sin E} \frac{\partial E}{\partial e}+\frac{\sin w}{1-e^{2}}\right) \\
& =a S\left(-\cos E+\frac{e \sin ^{2} E}{1-e \cos E}\right)+r T \sin w\left(\frac{1}{1-e \cos E}+\frac{1}{1-e^{2}}\right) \\
& =a S \frac{e-\cos E}{1-e \cos E}+r T \sin w\left(\frac{1+e \cos w}{1-e^{\prime}}+\frac{1}{1-e^{2}}\right) \\
& =-a S \cos w+\imath T \sin w(2+e \cos w) \sec ^{2} \phi
\end{aligned}
$$

It only remains to carry the expressions found for the derivatives of R into the equations of § 139 for the variations of the elements The results are as follows
$\frac{d a}{d t}=2 \sqrt{a^{3} / \mu}\{S \tan \phi \sin v+T \sec \phi(1+e \cos w)\}$
$\frac{d e}{d t}=\sqrt{a / \mu} \cos \phi\{S \sin w+T(\cos w+\cos E)\}$
$\frac{d \imath}{d t}=r W \cos u / \cos \phi \sqrt{\mu a}$
$\frac{d \Omega}{d t}=r W \sin u / \cos \phi \sin 2 \sqrt{\mu a}$
$\frac{d \omega}{d t}=\left\{-a S \cos ^{2} \phi \cos w+r^{\prime} I^{\prime} \sin w(2+e \cos w)+r W \sin \phi \tan \frac{1}{2} r \sin u\right\} / \sin \phi \cos \phi \sqrt{\mu} \bar{a}$
$\frac{d \epsilon}{d t}=-2 r S / \sqrt{\mu a}+2 \sin ^{2} \frac{1}{2} \phi \frac{d \sigma}{d t}+2 \cos \phi \sin ^{2} \frac{1}{2} \imath \frac{d \Omega}{d t}$
From the first two equations we get for the variation of the parameter $p=a\left(1-e^{2}\right)$

$$
\frac{d p}{d t}=\cos ^{2} \phi \frac{d a}{d t}-2 a \sin \phi \frac{d e}{d t}=2, T \cos \phi \sqrt{a / \mu}
$$

It has been convenient to derive the above important set of equations from those which involve the derivatives of the disturbing function But their form would be the same if the components of the forces were not such as can be expressed as the differentials of a single function Thus they hold, for example, in the case of elliptic motion disturbed by a resisting medium

Since $n^{2} a^{3}=\mu$ is constant, the equation for the variation of a may be replaced by

$$
\frac{d n}{d t}=-3\{S \sin \phi \sin w+T(1+e \cos w)\} / a \cos \phi
$$

Also

$$
\begin{aligned}
\frac{d}{d t}(\epsilon-\varpi) & =-2 r S / \sqrt{ }(\mu a)-\cos \phi \frac{d \sigma}{d t}+r W \sin u \tan \frac{1}{2} \imath / \sqrt{ }(\mu a) \\
& =\left\{\left(a \cos ^{2} \phi \cos w-2 \imath \sin \phi\right) S-r T \sin w(2+e \cos w)\right\} / \sin \phi \sqrt{ }(\mu a)
\end{aligned}
$$

which gives the variation of the mean anomaly,

$$
\frac{d M}{d t}=\frac{d}{d t}(\epsilon-\varpi)+\int \frac{d n}{d t} d t
$$

part of the variation of $n t$ being included in ϵ as explained in $\S 140$ and mentioned above

143 It has been seen in § 139 how the canonical solution of the problem of undisturbed elliptic motion leads to the canonical equations appropinate to the form of motion which follows from the intioduction of disturbing forces With a slight change of notation,

$$
\begin{array}{ll}
L=\alpha=\sqrt{ }(\mu a), & l=n t-\beta=\epsilon-\varpi+n t \\
G=\alpha_{2}=\sqrt{ }\left\{\mu a\left(1-e^{2}\right)\right\}, & g=-\beta_{2}=\varpi-\Omega \\
H=\alpha_{3}=\sqrt{ }\left\{\mu a\left(1-e^{2}\right)\right\} \cos \imath, & h=-\beta_{3}=\Omega
\end{array}
$$

and the canonical equations become

$$
\begin{array}{ll}
\frac{d L}{d \bar{t}}=\frac{\partial R}{\partial l}, & \frac{d l}{d t}=-\frac{\partial R}{\partial \bar{L}} \\
\frac{d G}{d t}=\frac{\partial R}{\partial g}, & \frac{d g}{d t}=-\frac{\partial R}{\partial \bar{G}} \\
\frac{d H}{d t}=\frac{\partial R}{\partial h}, & \frac{d h}{d t}=-\frac{\partial R}{\partial \bar{H}}
\end{array}
$$

But there is here a change in the meaning of R due to replacing the element $-\beta$ by the mean anomaly l If the disturbing function in the usual form quoted in $\S 139$ be denoted by R_{0}, the variation of l follows froin
and therefore

$$
\frac{d}{d t}(l-n t)=-\frac{\partial R_{0}}{\partial L}, \quad \frac{\partial R}{\partial L}=\frac{\partial R_{0}}{\partial L}-n
$$

$$
R=R_{0}-\int n d L=R_{0}-\int \mu^{2} L-3 d L=R_{0}+\mu^{2} / 2 L^{2}
$$

This change in R has no effect in the other equations, and since R is a function of $\epsilon-\sigma+n t, \partial R / \partial l$ is the same thing as $-\partial R / \partial \beta$ The above canonical equations are precisely those on which Delaunay's theory of the Moon is based

Whthout changing L let the transfor mation

$$
L-G=\rho_{1}, \quad G-H=\rho_{2}, \quad-g-h=\omega_{1}, \quad-h=\omega_{2}, \quad l+g+h=\lambda
$$

be made Then

$$
\lambda d L+\omega_{1} d \rho_{1}+\omega_{2} d \rho_{2}-(l d L+g d G+h d H)=0
$$

and this expression is therefore a perfect differential Hence by § 125 the transformation from the variables
to the variables

$$
L, G, H, l, g, h
$$

$$
L, \rho_{1}, \rho_{2}, \lambda, \omega_{1}, \omega_{2}
$$

is one which leaves the equations of motion in the canonical form The angle $\lambda=\epsilon+n t$ is the mean longitude, and $\omega_{1}=-\omega, \omega_{2}=-\Omega$ are the long1tudes of perihehon and the node, reversed in sign

Again, consider the transformation

In this case

$$
\xi=(2 \rho)^{\frac{1}{2}} \cos \omega, \quad \eta=(2 \rho)^{\frac{1}{2}} \sin \omega
$$

$$
\begin{aligned}
\eta d \xi-\omega d \rho & =-2 \rho \sin ^{2} \omega d \omega+\sin \omega \cos \omega d \rho-\omega d \rho \\
& =d\left\{\rho\left(\frac{1}{2} \sin 2 \omega-\omega\right)\right\}
\end{aligned}
$$

is a perfect differential Hence the variables $L, \rho_{1}, \rho_{2}, \lambda, \omega_{1}, \omega_{2}$ can be changed to

$$
L, \xi_{1}, \xi_{2}, \lambda, \eta_{1}, \eta_{2}
$$

and the canonical form of the equations will still be preserved These varıables have been used extensıvely by Poncaré Since

$$
\rho_{1}=L-G=2 \sqrt{ }(\mu a) \sin ^{2} \frac{1}{2} \phi
$$

$(\sin \phi=e), \xi_{1}, \eta_{1}$ are of the order of the eccentricity, and are called by him the eccentric variables Similarly, since

$$
\rho_{2}=G-H=2 \sqrt{ }(\mu p) \sin ^{2} \frac{1}{2} \imath
$$

$\xi_{2}, \eta_{\mathrm{a}}$ are of the same order as the inclination, and are therefore called the oblque varrables

144 The account which will be given of the lunar theory in later chapters will be based on a method which is quite different from Delaunay's But the latter is in reality very general and therefore Delaunay's mode of integrating the canonical equations of the previous section will now be indicated The form of the disturbing function will be taken to be

$$
\begin{aligned}
R & =-B-A \cos \left(\imath_{1} l+\imath_{2} g+\imath_{3} h_{1}+\imath_{4} n^{\prime} t+q\right)+R_{1} \\
& =-B-A \cos \theta+R_{1}=R_{0}+R_{1}
\end{aligned}
$$

where R_{1} represents an aggregate of periodic terms simular to the one written down and n^{\prime}, q are constants The term B and the coefficients A are functions of L, G, H only and in comparison with B these coefficients are small quantities of definite orders Let

$$
\theta_{1}=\imath_{1} l+\imath_{2} g+\imath_{s} h=\theta-\imath_{4} n^{\prime} t-q
$$

Then the vanables

$$
L, G, H, l, g, h
$$

can be replaced by

$$
L, G^{\prime}, H^{\prime}, \imath_{1}^{-1} \theta_{1}, g, h
$$

provided

$$
\left(\imath_{1}^{-1} \theta_{1}-l\right) d L+g d\left(G^{\prime}-G\right)+h d\left(H^{\prime}-H\right)=d W
$$

is a perfect differential, and this condition is clearly satisfied if

$$
G^{\prime}=G-\imath_{1}^{-1} \imath_{2} L, \quad H^{\prime}=H-\imath_{1}^{-1} \otimes_{3} L
$$

for then $d W=0$ If now $R_{1}=0$, a solution of the problem can be found For corresponding to the equation

$$
R=-B-A \cos \left(\theta_{1}+\imath_{4} n^{\prime} t+q\right)
$$

the Hamilton-Jacobi equation takes the form

$$
-B-A \cos \left(\imath_{1} \frac{\partial W}{\partial L}+\imath_{4} n^{\prime} t+q\right)+\frac{\partial W}{\partial t}=0
$$

and a solution involving three constants $C, g^{\prime}, h^{\prime}$ is

$$
W=C t+\imath_{1}^{-1} \int \theta d I-\imath_{1}^{-1} L\left(\imath_{4} n^{\prime} t+q\right)+g^{\prime} G^{\prime}+h^{\prime} H^{\prime}
$$

provided

$$
-B-A \cos \theta+C-\imath_{1}^{-1} L \quad \imath_{4} n^{\prime}=0
$$

This equation, which is in fact one integral, may be written

$$
C=B_{1}+A \cos \theta, \quad B_{1}=B+\imath_{4} n^{\prime} a_{1}{ }^{-1} L
$$

The solution, by $\S 126$, takes the form ($\alpha_{r}=C, g^{\prime}, h^{\prime}, \beta_{1}=c,-G^{\prime},-H^{\prime}$)

$$
\begin{aligned}
& t+c+\imath_{1}^{-1} \frac{\partial}{\partial C} \int \theta d L=0, \quad \imath_{1}^{-1} \theta_{2}=\imath_{1}^{-1}\left(\theta-\imath_{4} n^{\prime} t-q\right) \\
& G^{\prime}=\text { const }, \left.\quad g=g^{\prime}+\imath_{1}^{-1} \frac{\partial}{\partial G^{\prime}} \right\rvert\, \theta d L \\
& H^{\prime}=\text { const }, \quad h=h^{\prime}+\imath_{1}^{-1} \frac{\partial}{\partial H^{\prime}} \int \theta d L
\end{aligned}
$$

The lower limit of the integral involved is a function of $C_{n} G^{\prime}, H^{\prime}$, but the integral is so defined that the integrand θ vanishes at this limit The solution can also be written

$$
\begin{aligned}
L & =\imath_{1} \Theta, \quad G=\imath_{9} \Theta+G^{\prime}, \quad H=\imath_{3} \Theta+H^{\prime} \\
C & =B_{1}+A \cos \theta, \quad B_{1}=B+\imath_{4} n^{\prime} \Theta \\
t+c & =-\int \frac{\partial \theta}{\partial \bar{C}} d \Theta=\int \frac{d \Theta}{\sqrt{\left\{A^{2}-\left(C-B_{3}\right)^{2}\right\}}} \\
g & =g^{\prime}+\int \frac{\partial \theta}{\partial G^{\prime}} d \Theta, \quad h=h^{\prime}+\int \frac{\partial \theta}{\partial H^{\prime}} d \Theta
\end{aligned}
$$

At this point ($C, g^{\prime}, h^{\prime}, c,-G^{\prime},-H^{\prime}$) are absolute constants, resulting from the solution of a Hamilton-Jacobi equation when the Hamiltonian function is $R-R_{1}$ Hence, by $\S 127$, the further treatment of the problem depends on taking these constants as new variables, and solving the canonical system

$$
\begin{aligned}
& \frac{d C}{d t}=\frac{\partial R_{2}}{\partial c}, \frac{d G^{\prime}}{d t}=\frac{\partial R_{1}}{\partial g^{\prime}}, \quad \frac{d H^{\prime}}{d t}=\frac{\partial R_{1}}{\partial h^{\prime}} \\
& \frac{d c}{d t}=-\frac{\partial R_{1}}{\partial C}, \quad \frac{d g^{\prime}}{d t}=-\frac{\partial R_{1}}{\partial G^{\prime \prime}}, \quad \frac{d h^{\prime}}{d t}=-\frac{\partial R_{1}}{\partial \bar{H}^{\prime}}
\end{aligned}
$$

But circumstances now arise which require further examination For R_{1} is now a function of the new variables, instead of the old, and the form of the function is important

145 In the partial solution

$$
C=B_{1}+A \cos \theta, \quad \frac{d \Theta}{d t}=\sqrt[V]{ }\left\{A^{2}-\left(C-B_{1}\right)^{2}\right\}=A \sin \theta
$$

where B_{1}, A are functions of Θ (and the constants $\left.C, G^{\prime}, H^{\prime}\right)$, and Θ, θ are functions of t to be determined The forms to be expected may be seen in this way The above equations give

$$
\Theta=f(\cos \theta), \quad-f^{\prime}(\cos \theta) \frac{d \theta}{d t}=A
$$

and therefore

$$
t+c=\int \phi(\cos \theta) d \theta=\theta / \theta_{0}+\Sigma t_{1} \sin r \theta
$$

when θ vanishes with $t+c$ Hence $\theta-\theta_{0}(t+c)$ is an odd periodic function of θ and therefore of $\lambda=\theta_{0}(t+c)$ Thus, θ_{0} being some constant,
and

$$
\theta=\lambda+\Sigma \theta_{r} \sin r \lambda, \quad \lambda=\theta_{0}(t+c)
$$

$$
\Theta=f(\cos \theta)=\Theta_{0}+\Sigma \Theta_{r} \cos \imath \lambda
$$

These forms, which without a critical examination of the conditions have only been made plausible, are actually found in practice I_{t} follows that $L=\imath_{1} \Theta_{0}+\imath_{1} \Sigma \Theta, \cos r \lambda, G=G^{\prime}+\imath_{2} \Theta_{0}+\imath_{2} \Sigma \Theta_{r} \cos \eta \lambda, H=H^{\prime}+\imath_{8} \Theta_{0}+\imath_{\mathrm{s}} \Sigma \Theta_{,} \cos r \lambda$

$$
\begin{aligned}
& g=g^{\prime}+\int \frac{\partial \theta}{\partial G^{\prime}} \frac{A \sin \theta}{\theta_{0}} d \lambda=g^{\prime}+g_{0}(t+c)+\Sigma g, \sin r \lambda \\
& h=h^{\prime}+\int \frac{\partial \theta}{\partial H^{\prime}} \frac{A \sin \theta}{\theta_{0}} d \lambda=h^{\prime}+h_{0}(t+c)+\Sigma h_{1} \sin r \lambda
\end{aligned}
$$

and the original variable l is given by

$$
\begin{aligned}
\imath_{1} l & =\theta-\imath_{4} n^{\prime} t-q-\imath_{2} g-\imath_{3} h \\
& =\lambda-\imath_{4} n^{\prime} t-q-\imath_{2}\left\{g^{\prime}+g_{0}(t+c)\right\}-\imath_{3}\left\{h^{\prime}+h_{0}(t+c)\right\}+\Sigma\left(\theta_{1}-\imath_{2} g_{r}-\imath_{3} h_{1}\right) \sin \imath \lambda
\end{aligned}
$$

Now, since θ and Θ contain $C, G^{\prime}, H^{\prime}$, these constants also enter into q_{0}, h_{0} and therefore into the coefficients of t in the arguments of the terms in R_{1} Hence t will appear outside the circular functions in the derivatives of R_{1} with respect to $C, G^{\prime}, H^{\prime} \quad$ This inconvenient circumstance must be avoided by a change of variables Now

$$
d \int \theta d \Theta=\theta d \Theta-(t+c) d C+\left(g-g^{\prime}\right) d G^{\prime}+\left(h-h^{\prime}\right) d H^{\prime}
$$

by the form of the partial solution, and therefore

$$
d\left(C t-\int \Theta d \theta\right)=-\Theta d \theta-c d C+\left(g-g^{\prime}\right) d G^{\prime}+\left(h-h^{\prime}\right) d H^{\prime}+C d t
$$

This is a perfect differential and when each side is expanded in the form of a secular and a periodic part, the same must clearly hold true for each part separately, at least when the number of periodic terms is finite, and in practice the remainder after a certain number of terms must be treated as negligible But

$$
\begin{aligned}
\Theta \frac{d \theta}{d \lambda} & =\left(\Theta_{0}+\Sigma \Theta, \cos r \lambda\right)\left(1+\Sigma r \theta_{2} \cos r \lambda\right) \\
& =\Lambda_{0}+\Sigma \Lambda_{r} \cos r \lambda, \quad \Lambda_{0}=\Theta_{0}+\frac{1}{2} \Sigma r \Theta_{1} \theta_{2}
\end{aligned}
$$

Hence, when the periodic terms are omitted,

$$
C d t-\Lambda_{0} d \lambda-c d C+g_{0}(t+c) d G^{\prime}+h_{0}(t+c) d H^{\prime}
$$

is a perfect differential, to which $d\left(\Lambda_{0} \lambda\right)$ may be added, and therefore the variables

$$
C, G^{\prime}, H^{\prime}, c, g^{\prime}, h^{\prime}
$$

can be replaced by

$$
\begin{gathered}
\Lambda_{0}, G^{\prime}, H^{\prime}, \lambda, \kappa, \eta \\
\kappa=g^{\prime}+g_{0}(t+c), \quad \eta=h^{\prime}+h_{0}(t+c)
\end{gathered}
$$

where

This follows from § 125 , which shows that at the same time R_{1} must be replaced by $R_{1}-C$ All is now expressed in terms of the last set of variables, and secular terms are thus iemoved from the arguments of the terms in R_{1}

It is convenient to make a final simple transformation Since
If

$$
\left(\imath_{1} \lambda^{\prime}-\lambda\right) d \Lambda_{0}+\imath_{2} \kappa d \Lambda_{0}+\imath_{3} \eta d \Lambda_{0}=-d\left\{\Lambda_{0}\left(\imath_{4} n^{\prime} t+q\right)\right\}+\imath_{\mathrm{s}} n^{\prime} \Lambda_{0} d t
$$

$$
\imath_{1} \lambda^{\prime}=\lambda-\imath_{2} \kappa-\imath_{3} \eta-\imath_{1} n^{\prime} t-q
$$

the variables

$$
\Lambda_{0}, G^{\prime}, H^{\prime}, \lambda, \kappa, \eta
$$

can be replaced by

$$
\Lambda^{\prime}=\imath_{1} \Lambda_{0}, G^{\prime \prime}=G^{\prime}+\imath_{2} \Lambda_{0}, H^{\prime \prime}=H^{\prime}+\imath_{3} \Lambda_{0}, \lambda^{\prime}, \kappa, \eta
$$

but at the same time it is necessany to add $\imath_{4} n^{\prime} \Lambda_{0}$ to $R_{1}-C$ Thus finally, if

$$
R^{\prime}=R_{1}-C+\imath_{\star} n^{\prime} \Lambda_{0}
$$

the system of canonical equations

$$
\begin{aligned}
& \frac{d \Lambda^{\prime}}{d t}=\frac{\partial R^{\prime}}{\partial \lambda^{\prime}}, \quad \frac{d G^{\prime \prime}}{d t}=\frac{\partial R^{\prime}}{\partial \kappa}, \quad \frac{d H^{\prime \prime}}{d t}=\frac{\partial R^{\prime}}{\partial \eta} \\
& \frac{d \lambda^{\prime}}{d t}=-\frac{\partial R^{\prime}}{\partial \Lambda^{\prime \prime}}, \quad \frac{d \kappa}{d t}=-\frac{\partial R^{\prime}}{\partial G^{\prime \prime}}, \quad \frac{d \eta}{d t}=-\frac{\partial R^{\prime}}{\partial H^{\prime \prime}}
\end{aligned}
$$

is obtained
146 If the value of λ^{\prime} be compared with the expression for l in terms of λ it will now be seen that

$$
\imath_{1} l=\imath_{1} \lambda^{\prime}+\Sigma\left(\theta_{r}-\imath_{2} g_{1}-\imath_{3} h_{1}\right) \sin r \lambda
$$

and thus λ^{\prime} and l differ only by periodic terms The same is true of κ, g and η, h The periodic terms would disappear with A, as also those in Θ and θ, and Λ_{0} would councide with Θ_{0} and Θ Hence the final variables are the same as the original variables when $A=0$ The form of R^{\prime} differs from that of R mannly in the complete removal of the term $A \cos \theta$, and naturally the most important term wall be first selected for elimination Periodic terms will be introduced into the arguments of R^{\prime}, but it is easily seen that on expansion they give rise to periodic terms of a higher order than $A \cos \theta$

The same process can be repeated indefinitely, until all sensıble terms are one by one removed, together with those of a higher order introduced at an earler stage It has been assumed that i_{1} is not zero If $\tau_{1}=0, \imath_{2} g$ or $\imath_{3} h$ can take the place of $\imath_{1} l$ There are also terms for which $\imath_{1}=\imath_{2}=\imath_{3}=0 \quad$ In the lunar problem these depend on the mean longitude of the Sun and are removed by a single preliminary operation analogous to the above

Delaunay's expression for the disturbing function contains over 300 periodic terms, and ther removal involves practically 500 operations of the above kind, reduced to the application of a set of formal rules This immensely laborious task was carried out unaided But the result is the most perfect analytical solution which has yet been found for the satellite type of motion in the problem of three bodies The solution is not limited to the actual case of the Moon since it is expressed in general algebranc terms The satellite type of motion may indeed be defined as that type for which the Delaunay expansions are valld It seems an interesting problem of the future whether such satellites as Jupiter VIII and IX will be found to satisfy this definition Their conditions differ widely from those of the lunar problem, in particular in the tact that the motions are retrograde

CHAPTER XIV

THE DISTURBING FUNOTION

147 The development of the disturbing function R in a suutalle forms gives rise to many difficulties, partly of analysis, partly of piactical computation, and is the subject of an extensive literature* It in prosulble ter deal here only with a few of the more important points

The principal part of the disturbing function for two planety involvers the expansion of Δ^{-1}, the reciprocal of their mutual distance It in thenctome important to consider the nature of this expansion, on rather of $\Delta^{-24} \mathrm{~m}$ general where s is half an odd integer For this more gencial form will give the derivatives of Δ^{-1}, Δ^{3} being a rational (quantuty, and thoser will naturally occur when Δ^{-1} as expanded in terms of any contwinell pruame tex

It is convenient to consider first the case of two circular, (ophanar onbits Then, if H is the difference of longitude in the plane,

$$
\Delta^{2}=a_{1}{ }^{2}+a_{2}{ }^{2}-2 a_{1} a_{\star} \cos I I
$$

a_{1}, a_{2} being the radn of the orbits Let
and therefore

$$
a_{1}<a_{2}, \quad \alpha=a_{1} / a_{n}, \quad \iota H=\log z, \quad \iota^{2}=-1 .
$$

$$
a_{2}^{-2} \Delta^{\circ}=1+\alpha^{2}-2 \alpha \cos I I=(1-\alpha z)\left(1-\alpha z^{-1}\right)
$$

Hence the function to be examined is

$$
\begin{aligned}
F^{-s} & =(1-\alpha z)^{-s}\left(1-\alpha z^{-1}\right)^{-s}=\frac{1}{2} \sum_{-\infty}^{\infty} b_{s}^{2} z^{2} \\
& =\left(1+\alpha^{2}-2 \alpha \cos H\right)^{-s}=\frac{1}{2} b_{s}^{0}+\sum_{1}^{\infty} b_{s}{ }^{2} \cos 1 H
\end{aligned}
$$

Since the function is unaltered when z and z^{-1} are interchanged, $b_{n}^{\prime}-b_{n}^{2}$, and \imath may be treated as positive The cocfficients $b_{g^{2}}$ are called Laplete's coefficents By Fourier's theorem,

$$
\left.\begin{array}{rl}
b_{s}^{2} & =\frac{1}{\pi \iota} \int(1-\alpha z)^{-s}\left(1-\alpha z^{-1}\right)^{-b} z^{2-1} d z \tag{1}\\
& =\frac{2}{\pi} \int_{0}^{\pi}\left(1+\alpha^{2}-2 \alpha \cos t\right)^{-s} \cos \imath t d t
\end{array}\right\}
$$

The first (complex) integral is due to Cauchy, the path of integration is taken round a circle of unit raduus By introducing the Weierstrassian ellhptic function

$$
\rho(u)=z-\frac{1}{3}\left(\alpha+a^{-1}\right)
$$

Cauchy's integral clearly becomes an elliptic function, and Poincaré has shown how this function can be reduced to a calculable form But another method will be followed here

The coefficients $b_{s}{ }^{2}$ are easily developed as power series in a^{2} For, with the use of gamma functions,

$$
(1-\alpha z)^{-s}\left(1-\alpha z^{-1}\right)^{-s}=\sum_{p} \frac{\Gamma(s+p)}{\Gamma(s) \Gamma(p+1)} \alpha^{p} z^{p} \sum_{q} \frac{\Gamma(s+q)}{\Gamma(s) \Gamma(q+1)} \alpha^{q} z^{-q}
$$

and therefore, when $p=q+\imath$,

$$
\begin{aligned}
\frac{1}{2} b_{s}{ }^{2} & =\sum_{q} \frac{\Gamma(s+q+\imath) \Gamma(s+q)}{[\Gamma(s)]^{\top} \Gamma(q+\imath+1) \Gamma(q+1)} a^{2 q+\imath} \\
& =\frac{\Gamma(s+\imath)}{\Gamma(s) \Gamma(\imath+1)} a^{2} \sum_{q} \frac{\Gamma(s+q)}{\Gamma(s)} \frac{\Gamma(s+\imath+q)}{\Gamma(s+\imath)} \frac{\Gamma(\imath+1)}{\Gamma(\imath+1+q)} \frac{a^{2 q}}{\Gamma(q+1)}
\end{aligned}
$$

But this can be recognized as a hypergeometric series, and when it is expressed in the ordinary notation,

$$
\begin{equation*}
b_{s}{ }^{2}=2 \alpha^{2} F\left(s, s+\imath, \imath+1, \alpha^{2}\right) \frac{\Gamma(s+\imath)}{\Gamma(s) \Gamma(\imath+1)} \tag{2}
\end{equation*}
$$

By the known properties of the hypergeometric series, this expansion is convergent when $\alpha<1$ There are many equivalent forms, but (2) is enough for the present purpose

148 Laplace's coefficients are subject to several formulae of recurrence, which facilitate their calculation That such exist follows from the known relations between sets of three contiguous hypergeometric functions Instead of finding them durectly, a more gencral function

$$
B_{s}{ }^{2, j}=a^{2}\left(\frac{d}{d \alpha^{2}}\right)^{j}\left(a^{-i} b_{s}{ }^{2}\right)
$$

may be considered, for this reduces to $b_{s}{ }^{2}$ when $J=0$ In the integral (1) write $z=\alpha \zeta$, and then

$$
\pi \iota \alpha^{-l} b_{s}{ }^{2}=\int\left(1-\alpha^{2} \zeta\right)^{-s}\left(1-\zeta^{-1}\right)^{-s} \zeta^{\llcorner-1} d \zeta
$$

It follows that

$$
\pi \iota a^{-2} B_{s}{ }^{s, j}=\frac{\Gamma(s+j)}{\Gamma(s)} \int\left(1-\alpha^{2} \zeta\right)^{-s-j}\left(1-\zeta^{-1}\right)^{-s} \zeta^{+j-1} d \zeta
$$

The equivalent forms

$$
\begin{aligned}
\pi \iota \alpha^{-2} B_{8}{ }^{2, j} & =\frac{\Gamma(s+j)}{\Gamma(s)} \int\left(1-\alpha^{2} \zeta\right)^{-s-\rho-1}\left(1-\zeta^{-1}\right)^{-s}\left(\zeta^{i+j-1}-\alpha^{2} \zeta^{2+j}\right) d \zeta \\
& =\frac{\Gamma(s+j)}{\Gamma(s)} \int\left(1-\alpha^{2} \zeta\right)^{-s-j}\left(1-\zeta^{-1}\right)^{-s-1}\left(\zeta^{2+j-1}-\zeta^{2+j-2}\right) d \zeta
\end{aligned}
$$

show at once that

$$
\begin{align*}
(s+\jmath) B_{s}^{2, \jmath} & =\alpha B_{\delta}^{2-1, \jmath+1}-\alpha^{0} B_{s}^{2, \jmath+1} \tag{3}\\
\alpha B_{s}^{2 \jmath} & =s B_{s+1}^{2+1, \jmath-1}-s \alpha B_{s+1}^{2 \jmath-1}
\end{align*}
$$

Agann,
$\frac{d}{d \zeta}\left[\left(1-\alpha^{\rho} \zeta\right)^{-s-\rho+1}\left(1-\zeta^{-1}\right)^{-s+1} \zeta^{(+)}\right]$
$=\left(1-\alpha^{2} \zeta\right)^{-8-\jmath}\left(1-\zeta^{-1}\right)^{-s}\left\{(s-\imath-1) \alpha^{2} \zeta^{\imath+\jmath}+\left(\imath+\jmath+\imath \alpha^{2}\right) \zeta^{\imath+\jmath-1}-(\imath+\jmath+s-1) \zeta^{+\jmath-\lambda}\right\}$
When these expressions are integated along a path lying between the limits $1<|\zeta|<\alpha^{-2}$, where the functions are regular, the first integrand ietume to its orignal value Therefore

$$
\begin{equation*}
(\imath-s+1) \alpha B_{b}{ }^{2+1} \jmath-\left(\imath+\jmath+\imath \alpha^{2}\right) B_{s}^{{ }^{2}, \jmath}+(\imath+\jmath+\jmath-1) \alpha B_{b}^{,-1 \prime}=0 \tag{4}
\end{equation*}
$$

The identity

$$
\begin{aligned}
&\left(1-\alpha^{2} \zeta\right)^{-s-1}\left(1-\zeta^{-1}\right)^{-8} \zeta^{(+j-1} \\
&=\left(1-\alpha^{2} \zeta\right)^{-s-1-1}\left(1-\zeta^{-1}\right)^{-1-1}\left\{\left(1+\alpha^{\prime}\right) \zeta^{(+i-1}-\alpha^{-} \zeta^{1+1}-\zeta^{(1+-2}\right\}
\end{aligned}
$$

gives similarly on integration

$$
(s+\jmath) B_{s}^{2, s}=s\left(1+\alpha^{a}\right) B_{s+1}^{2,}-s \alpha B_{s+1}^{2+1}-s \alpha B_{q+1}^{\imath-1},
$$

and after eliminating the last term by means of (4) with $s+1 \mathrm{~m}$ the place of s,

$$
\begin{equation*}
(\imath+\jmath+s)(\jmath+s) B_{s}^{2 \jmath}=s\left[s+(\jmath+s) \alpha^{2}\right] B_{q, 1}^{2}-s(\jmath+2 s) \alpha B_{s+1}^{2+1} \jmath \tag{5}
\end{equation*}
$$

When $\jmath=0$, (4) and (5) give formulae which apply to Laplacci's confficientis Derivatives of the latter with respect to α can then be expressed is linear functions of $B_{8}{ }^{2,}$

149 Newcomb's method of calculating the coofficients b_{8}, tugethes with their derivatives in the form subsequently required, can now be explained Let

$$
2 s=n, \quad \delta=\frac{d}{d \bar{x}^{1}}, \quad D=\alpha \frac{d}{d \alpha}=2 \alpha^{2} \delta
$$

and let

$$
c_{n}^{2} \jmath=2^{j} \alpha^{9+2 j-\frac{1}{j}} B_{\varepsilon^{2}} J=2^{j} \alpha^{\ddagger(n-1)+1+2 j} \delta_{j}\left(\alpha^{2} b_{g}^{2}\right)
$$

This is not Newcomb's definition of $c_{n}{ }^{2,1}$, but it is the equivalent Thus

$$
\left.D c_{n}^{2, j}=\left\{\frac{1}{2}(n-1)+\imath+2\right\}\right\} c_{n}^{1, J}+c_{n}^{2, j+1}
$$

and therefore

$$
\begin{equation*}
D^{k+1} c_{n}^{2, J}=\left\{\frac{1}{2}(n-1)+\imath+2 \jmath\right\} D^{k} c_{n^{1}}, \jmath+D^{k} c_{n}^{2, \rho+1} \tag{6}
\end{equation*}
$$

so that these derivatives of a higher older are easily deduced from those of the next lower order Let

$$
p_{n}{ }^{2, j}=c_{n}{ }^{1,3} / c_{n}^{2-1, j}=B_{s}^{2,3} / B_{s}^{2-1,}, 0
$$

and then, by (4),

$$
\begin{equation*}
p_{n}{ }^{2, j}=\frac{P_{n}{ }^{2, j}}{1-Q_{n}{ }^{2, j} p_{n}{ }^{1+2, j}} \tag{7}
\end{equation*}
$$

where

$$
P_{n}{ }^{2, \jmath}=\frac{\left(\imath+\jmath+\frac{1}{2} n-1\right) \alpha}{\imath\left(1+\alpha^{2}\right)+\jmath}, \quad Q_{n}{ }^{2}, j=\frac{\left(\imath-\frac{1}{2} n+1\right) \alpha}{\imath\left(1+\alpha^{2}\right)+\jmath}
$$

The development is to be carried to a definite order fixed by $\imath=k$, say 11 In the first place $p_{n}{ }^{k, \rho}$ is calculated tor the required values of n, \jmath by a direct method Next $p_{n}{ }^{k-1, j}, \quad, p_{n}{ }^{1, y}$ are deduced in succession by (7) For $\imath=1$, $s=\frac{1}{2}$, the formula (3) becomes

$$
(2 \jmath+1) \alpha c_{1}^{1, \rho}=c_{1}^{0, \rho+1}-\alpha c_{1}^{1, j+1}=c_{1}^{0, j+1}\left(1-\alpha p_{1}^{1, \rho+1}\right)
$$

or

$$
\begin{equation*}
c_{1}^{0, j+1}=\frac{(2 \jmath+1) \alpha p_{1}^{1, j} c_{c^{0, j}}^{0, j}}{1-\alpha p_{1}^{1, j+1}} \tag{8}
\end{equation*}
$$

The first coefficient $c_{1}^{0,0}{ }_{1 s}$ calculated directly Then (8) gives $c_{1}{ }^{0, \jmath}(\jmath=1,2, \quad)$ in succession The formula (5), when $\imath=0$, gives

$$
\left(\jmath+\frac{1}{2} n\right)^{2} \alpha c_{n}^{0, \jmath}=\frac{1}{2} n\left[\frac{1}{2} n+\left(\jmath+\frac{1}{2} n\right) \alpha^{J}\right] c_{n+2}^{0, \jmath}-\frac{1}{2} n(\jmath+n) \alpha c_{n+2}^{1, j}
$$

or

$$
\begin{equation*}
c_{n+2}^{0 \jmath}=\frac{\left(\jmath+\frac{1}{2} n\right)^{2} \alpha c_{n}^{00}}{\frac{1}{2} n\left[\frac{1}{2} n+\left(\jmath+\frac{1}{2} n\right) \alpha^{2}\right]-\frac{1}{2} n(\jmath+n) \alpha p_{n+2}^{1, \jmath}} \tag{9}
\end{equation*}
$$

whence $c_{n}{ }^{0, \rho}(n=3,5, \quad)$ are found in succession It only remains to form $c_{n}{ }^{2, j}=p_{n}{ }^{2, j} c_{n}{ }^{2-1, j}(\imath=1,2, \quad)$ and the calculation is then complete The successive derivatives are finally derived by the use of (6)

The employment of a chann of recurrence formulae in practical computations requires care, because they are apt to involve an accumulation of numerical error It is the merit of Newcomb's method here described that it is not only simple but very accurate

150 The quantities which must be calculated directly are $c_{1}^{0,0}$ and $p_{n}{ }^{k, 3}$, where $n=1,3, \quad, \jmath=0,1,2, \quad$, and k is the highest valuc of \imath to which the expansion is carried Now

$$
c_{1}^{0,0}=b_{\frac{1}{2}}^{0}=\frac{2}{\pi} \int_{0}^{\pi}\left(1+\alpha^{2}-2 \alpha \cos t\right)^{-\frac{1}{2}} d t
$$

a complete ellhptic integral which can be found in a great variety of ways Newcomb commends for the purpose the arithmetic-geometic mean, which follows from the identity

$$
\int_{0}^{\frac{3}{2} \pi}\left(a_{n}{ }^{2} \cos ^{2} \phi+b_{n}{ }^{2} \sin ^{2} \phi\right)^{-\frac{1}{2}} d \phi=\int_{0}^{\frac{1}{2} \pi}\left(a_{n+1}^{2} \cos ^{2} \psi+b_{n+1}^{n} \sin ^{2} \psi\right)^{-\frac{1}{2}} d \psi
$$

where

$$
2 a_{n+1}=a_{n}+b_{n}, \quad b^{3}{ }_{n+1}=a_{n} b_{n}
$$

$$
\left.\operatorname{sm\phi } \phi=\begin{array}{c}
21_{n} \cup \ln \psi \\
\left(a_{n}+b_{n}\right)(1)^{2} \psi+2 a_{n}
\end{array}\right)
$$

 sequences a_{n}, b_{n} have a common hamt 1 and hat the the whe it the integral in $\pi / 2 A$ In the preserut, arse

 clear that

$$
\delta H^{\prime}\left(x, 1+1,1+1, a^{\prime}\right) \quad \begin{gathered}
1(s+1) \\
1 \mid 1
\end{gathered} H^{\prime}(x+1 \times 1|1| 1+2 \mid
$$

and therefone gemerally

$$
\delta^{J} h^{\prime}(s,)=\begin{array}{lll}
I^{\prime}(s+1) & I^{\prime}(4+1+1) & I^{\prime}(1+1) \\
I^{\prime}(4) & I^{\prime}(s+1) & \left.I^{\prime}(1) 1+1\right)
\end{array}
$$

Hence, by (2),

$$
B_{b}^{\prime \prime}{ }^{\prime}=\begin{array}{ll}
I^{\prime}(s+1) & \Gamma^{\prime}(4+1 \mid 1) \\
\left|\Gamma^{\prime}(s)\right| & \Gamma^{\prime}(a+1+1)
\end{array} 2 \alpha^{2} k^{\prime}(a|1++1+1| 1 \mid=1
$$

and therefore, smee $n=2$,

 determmed the requined valum of $p_{n}{ }^{\text {a, }}$,

151 In order to obtam the derned form of the antmuid tisetmen 1
 following cquation,
and by (4),

$$
\begin{aligned}
& p_{n}^{\prime \prime 1)}=\begin{array}{lll}
B_{1}^{\prime 1,1} & \alpha B_{*}^{\prime 1,111} & B_{1}^{\prime \prime} \\
B_{*}^{\prime} & \alpha B_{1}^{\prime \prime 11} & B_{n}^{\prime, 11}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { * Chyystul's IImina, n, p an, }
\end{aligned}
$$

These are three linear equations in $B_{s}{ }^{2+1, j+1}, B_{s}{ }^{2, j+1}, B_{g^{2}}{ }^{2-1}{ }^{j+1}$, which can be eliminated The result may be expressed in the form

$$
\left|\begin{array}{ccc}
(\imath-s+1) \alpha & \imath+\jmath+\imath \alpha^{2}+1 & (\imath+\jmath+s) \alpha \\
1 & \alpha+p_{n-2}^{2, \jmath+2} & \alpha p_{n-2}^{2}+2 \\
\alpha & 1+\alpha p_{n}^{\iota+1, \jmath} & p_{n}^{\imath+1, \jmath}
\end{array}\right|=0
$$

After expansion and division by ($1-\alpha^{2}$) this gives

$$
(\imath-s+1) \alpha p_{n}^{2+1, \jmath} p_{n-2}^{2, \jmath+2}-(\imath+\jmath+1) p_{n}^{\imath+1 \jmath}-\imath \alpha^{2} p_{n-2}^{2 \jmath+2}+(\imath+\jmath+s) \alpha=0
$$

or

$$
\left\{(\imath-s+1) p_{n}^{2+1, \jmath}-\imath \alpha\right\}\left\{(\imath-s+1) \alpha p_{n-2}^{2, \jmath+2}-(\imath+\jmath+1)\right\}+(s+\jmath)(1-s) \alpha=0
$$

Ther cfore (7) gives ($2 s=n$)

$$
\begin{aligned}
& p_{u}^{\imath, \jmath}=(\imath+\jmath+s-1) \alpha \\
& \imath+\jmath+\imath \alpha^{2}-(\imath-s+1) \alpha p_{n}^{\imath+1, \jmath} \\
&= \imath-\left(\imath+\jmath-(s+\jmath)(1-s) \alpha^{2}\left\{\imath+\jmath+1-(\imath-s+\overline{1}) \alpha p_{n-2}^{2}\right\}^{-1}\right\}^{2} \\
&(\imath+\jmath+s-1) \alpha(s+\jmath)(1-s) \alpha^{\prime} \\
&= \frac{(\imath+\jmath}{1-} \frac{(\imath+\jmath)(\imath+\jmath+1)}{1-} \frac{(\imath-s+1) \alpha p_{n-2}^{2, \jmath+2}}{\imath+\jmath+1} \\
& \frac{(\imath \pm \jmath+s-1) \alpha \frac{(s+\jmath)(1-s) a^{2}}{\imath+\jmath}}{1-} \frac{(\imath-s+1)(\imath+\jmath+s) \alpha^{2}}{(\imath+\jmath)(\imath+\jmath+1)} \\
&= \frac{(\imath+\jmath+1)(\imath+\jmath+2)}{1-}
\end{aligned}
$$

and this is the required form The relation between the alternate constituents is obvious enough, for the substitution of $\jmath+2$ for \jmath and $n-2$ for n (or $s-1$ for s) clearly has the effect of increasing each factor by 1 in the numerators and by 2 in the denominators As $\imath=k$ is a fanly lauge number in the direct calculation of $p_{n}{ }^{2,3}$, the even constituents are small and the calculation is based on an odd number of terms (generally five) With the use of subtraction logarithms the process is rapid

152 The next step is to consider two circular orbits in planes inclined at an angle J Let L_{1}, L_{2} be tho longitudes in the two planes, reckoned from the common node, and let

$$
\begin{array}{lll}
\mu=\cos ^{2} \frac{1}{2} J, & \nu=\sin ^{1} \frac{1}{2} J, & \mu+\nu=1 \\
x=L_{1}-L_{2}, & y=L_{1}+L_{y} &
\end{array}
$$

Then the angular distance between the planets is given by

$$
\begin{aligned}
\cos H & =\cos L_{1} \cos L_{2}+\sin L_{1} \sin L_{2} \cos \cdot T \\
& =\mu \cos x+\nu \cos y
\end{aligned}
$$

and
where

$$
\begin{aligned}
a_{2} \Delta^{-1} & =\left(1+\alpha^{2}-2 \alpha \cos H\right)^{-\frac{1}{2}} \\
& =b^{0,0}+2 \sum_{\imath=1} b^{2,0} \cos 2 x+2 \sum_{j=1} b^{0, \jmath} \cos \jmath y+4 \sum_{\imath=1} \sum_{j=1} b^{2, j} \cos 2 x \cos \jmath y
\end{aligned}
$$

$$
b^{2 j}=\frac{1}{\pi^{2}} \int_{0}^{\pi} \int_{0}^{\pi}\left(a_{2} \Delta^{-1}\right) \cos 2 x \cos j y d x d y
$$

When ν is small Δ^{-1} can be expanded in powers of ν Thus
$a_{s} \Delta^{-1}=\left\{1+\alpha^{2}-2 \alpha \cos x-2 \alpha \nu(\cos y-\cos x)\right\}^{-\frac{1}{2}}$

$$
\begin{equation*}
=\sum_{n=0} \frac{\Gamma\left(n+\frac{1}{2}\right)}{\Gamma(n+1) \Gamma\left(\frac{1}{2}\right)}(2 \alpha \nu)^{n}(\cos y-\cos x)_{n}^{n}\left(1+\alpha^{2}-2 \alpha \cos x\right)^{-n-\frac{1}{2}} \tag{10}
\end{equation*}
$$

or

$$
2 \sum_{2,0} b^{n}, j \xi^{n} \eta^{s}=\sum_{n} \frac{\Gamma\left(n+\frac{1}{2}\right)}{\Gamma(n+1) \Gamma\left(\frac{1}{2}\right)}(\alpha \nu)^{n}\left(\eta+\eta^{-1}-\xi-\xi^{-1}\right)^{n} \sum_{2} b_{n+\frac{1}{2}} \xi^{n}
$$

$$
\iota x=\log \xi, \quad \iota y=\log \eta, \quad \iota^{2}=-1
$$

It is only necessany to compare the coefficients of $\xi^{\imath} \eta^{3}$ in these expressions in order to have b^{2} as a power series in ν, the coefficients being functions of α Thus, for example, as far as ν^{2},

$$
\begin{aligned}
& 2 b^{2,0}=b_{\frac{1}{2}}{ }^{2}-\frac{1}{2} \alpha \nu\left(b_{\frac{2}{2}}{ }^{l+1}+b_{2}^{2-1}\right)+\frac{9}{8} \alpha^{2} \nu^{2}\left(b_{\frac{5}{2}}{ }^{2+2}+4 b_{\frac{5}{\frac{5}{2}}}{ }^{2}+b_{\frac{\pi}{2}}{ }^{2-2}\right)- \\
& 2 b^{b^{1}}=\quad \frac{1}{\frac{1}{2} \alpha \nu} b_{\frac{3}{2}}{ }^{2} \quad-\frac{3}{4} \alpha^{2} \nu^{2}\left(b_{\frac{1}{2}}{ }^{6+1}+b_{\delta}{ }^{2-1}\right)+ \\
& 2 b^{3,2}= \\
& \frac{3}{8} \alpha^{2} \nu^{2} b_{\frac{5}{5}}{ }^{2}-
\end{aligned}
$$

It is easy to continue these developments further, and this is the method used by Le Verrier and Newcomb But ats validity is limited The binomial expansion (10) of $a_{2} \Delta^{-1}$ is convergent only when

$$
\nu<\left|\begin{array}{l}
1+\alpha^{2}-2 \alpha \cos x \\
2 \alpha(\cos y-\cos x)
\end{array}\right|
$$

and since the most unfavourable case, $\cos x=-\cos y=1$, must be included

$$
\sin ^{\prime} \frac{1}{2} \cdot r=\nu<(1-\alpha)^{2} / 4 \alpha
$$

It has been proved by $H \vee$ Zeipel that the same limit applies to the expansion of Jacobr's coefficrents brej This condition is satisfied in all cases by the small inclinations of the orbital planes of the major planets

153 Among the orbits of the minor planets, however, are some whose inclinations to the plane of Jupiter exceed the above limit It is therefore desirable to find a more general form of development Let

$$
F^{-s}=\left(1+\alpha^{2}-2 \alpha \sigma\right)^{-b}=\Sigma C_{s}^{n} \alpha^{n}
$$

The coefficients $C_{8}{ }^{n}$ are polynomials in σ, which are in fact Legendre's polynomials when $s=\frac{1}{2} \quad$ Differentiation with respect to σ, and $\log \alpha$ gives

$$
\begin{aligned}
\frac{F^{s+2}}{2 s \alpha} \Sigma \frac{d C_{s}^{n}}{d \sigma} \alpha^{n} & =1+\alpha^{2}-2 a \sigma \\
\frac{F^{s+2}}{2 s \alpha} \Sigma \frac{d^{2} C_{8}^{n}}{d \sigma^{2}} \alpha^{n} & =2(s+1) \alpha \\
\frac{F^{8+2}}{2 s \alpha} \sum n C_{8}^{n} a^{n} & =(\sigma-\alpha)\left(1+a^{2}-2 \alpha \sigma\right) \\
\frac{F^{\prime s+2}}{2 s \alpha} \Sigma n^{2} C_{s}^{n} \alpha^{n} & =(\sigma-2 \alpha)\left(1+a^{2}-2 \alpha \sigma\right)+2(s+1) \alpha(\alpha-\sigma)^{2} \\
& =(\sigma+2 s \alpha)\left(1+a^{2}-2 \alpha \sigma\right)-2(s+1) a\left(1-\sigma^{2}\right) \\
& =\frac{F^{s+2}}{2 s \alpha} \Sigma\left[-2 s n C_{s}^{n}+(2 s+1) \sigma \frac{d C_{8}^{n}}{d \sigma}-\left(1-\sigma^{2}\right) \frac{d^{2} C_{s}^{n}}{d \sigma^{2}}\right] a^{n}
\end{aligned}
$$

Hence $C_{s}{ }^{n}$ satisfies the differential equation

$$
\begin{equation*}
\left(1-\sigma^{2}\right) \frac{d^{2} C}{d \sigma^{2}}-(2 s+1) \sigma \frac{d C}{d \sigma}+n(n+2 s) C=0 \tag{11}
\end{equation*}
$$

Now in the present case

$$
\sigma=\cos H=\mu \cos x+\nu \cos y
$$

and the problem is to develop $C_{\theta^{n}}$ in the form

$$
\begin{equation*}
C_{8}^{n}(\sigma)=\sum_{i, j} d^{n}, j \cos 2 x \cos \jmath y \tag{12}
\end{equation*}
$$

where the coefficients $A^{n}{ }_{i, j}$, considered generally as functions of μ, ν, are Appell's hypergeometric serics in two variables μ^{2}, ν^{2} But the solutions required can be deduced from the well known equation (11) by a certan treatment It will be seen that this treatment is very special, but it is adequate for the purpose in view

Let μ, ν, which are not in fact independent, for $\mu+\nu=1$, be considered as functions of a vaiable t Their derivatives with respect to t will be denoted by $\mu^{\prime}, \mu^{\prime \prime}, \nu^{\prime}, \nu^{\prime \prime} \quad$ Then

$$
\begin{aligned}
& \frac{\partial^{2} C}{\partial x^{\prime}}=-\mu \cos x \frac{d C}{d \sigma}+\mu^{2} \sin ^{2} x \frac{d^{2} C}{d \sigma^{2}} \\
& \frac{\partial^{2} C}{\partial y^{2}}=-\nu \cos y \frac{d C}{d \sigma}+\nu^{2} \sin ^{2} y \frac{d^{2} C}{d \sigma^{2}} \\
& \frac{\partial C}{\partial t}=\left(\mu^{\prime} \cos x+\nu^{\prime} \cos y\right) \frac{d C}{d \sigma} \\
& \frac{\partial^{2} C}{\partial t^{2}}=\left(\mu^{\prime \prime} \cos x+\nu^{\prime \prime} \cos y\right) \frac{d C}{d \sigma}+\left(\mu^{\prime} \cos x+\nu^{\prime} \cos y\right)^{2} \frac{d^{2} C}{d \sigma^{2}}
\end{aligned}
$$

It will now be seen that if with the help of these equations a partial differential equation can be deduced fiom (11), such that $\sigma, \cos x$ and $\cos y$
do not appear in it, a differential equation satisfied by A^{n}, will be deducible on comparing the coefficients of $\cos 2 x \cos \jmath y$ Now

$$
\begin{aligned}
n(n+2 s) C= & \left(\mu^{2} \cos ^{2} x+\nu^{2} \cos y-1+2 \mu \nu \cos x \cos y\right) \frac{d C}{d \sigma^{2}} \\
& +(2 s+1)(\mu \cos x+\nu \cos y) \frac{d C}{d \sigma} \\
= & \frac{\mu \nu}{\mu^{\prime} \nu^{\prime}} \frac{\partial^{\circ} C}{\partial t^{\prime}}+\frac{d^{\prime} C}{d \sigma^{2}}\left[\mu^{2} \cos 2+\nu^{\prime} \cos ^{2} y-1-\frac{\mu \nu}{\mu^{\prime} \nu^{\prime}}\left(\mu^{\prime 2} \cos ^{2} x+\nu^{\prime 2} \cos ^{2} y\right)\right] \\
& +\frac{d C}{d \sigma}\left[(2 s+1)(\mu \cos x+\nu \cos y)-\frac{\mu \nu}{\mu^{\prime} \nu^{\prime}}\left(\mu^{\prime \prime} \cos x+\nu^{\prime \prime} \cos y\right)\right] \\
= & \frac{\mu \nu}{\mu^{\prime} \nu^{\prime}} \frac{\partial^{2} C}{\partial t^{\prime}}+\frac{d^{2} C}{d \sigma^{2}}\left[\mu^{2}+\nu^{2}-1-\frac{\mu \nu}{\mu^{\prime} \nu^{\prime}}\left(\mu^{\prime 3}+\nu^{\prime 2}\right)\right] \\
& +\left(\mu^{\prime} \nu-\mu \nu^{\prime}\right)\left(\frac{1}{\mu \nu^{\prime}} \frac{\partial^{2} C}{\partial \mu^{2}}-\frac{1}{\mu^{\prime} \nu} \frac{\partial^{2} C}{\partial y^{2}}\right) \\
& +\frac{d C}{d \sigma}\left[\left\{2 s \mu-\frac{\nu}{\mu^{\prime} \nu^{\prime}}\left(\mu \mu^{\prime \prime}-\mu^{\prime \prime}\right)\right\} \cos x+\left\{2 s \nu \& \frac{\mu}{\mu^{\prime} \nu^{\prime}}\left(\nu \nu^{\prime \prime}-\nu^{\prime 2}\right)\right\} \cos y\right]
\end{aligned}
$$

and therefore if

$$
\begin{gathered}
M=\mu^{2}+\nu^{0}-1-\frac{\mu \nu}{\mu^{\prime} \nu^{\prime}}\left(\mu^{\prime 2}+\nu^{\prime 2}\right)=0 \\
2 s \frac{\mu}{\mu^{\prime}}-\frac{\nu}{\nu^{\prime}}\left(\frac{\mu \mu^{\prime \prime}}{\mu^{\prime 2}}-1\right)=2 s \frac{\nu}{\nu^{\prime}}-\frac{\mu}{\mu^{\prime}}\left(\frac{\nu \nu^{\prime \prime}}{\nu^{\prime 2}}-1\right)=N
\end{gathered}
$$

the equation takes the requined form

$$
\begin{equation*}
n(n+2 s) C=\frac{\mu \nu}{\mu^{\prime} \nu^{\prime}} \frac{\partial^{2} C}{\partial t^{2}}+\left(\mu^{\prime} \nu-\mu \nu^{\prime}\right)\left(\frac{1}{\mu \nu^{\prime}} \frac{\partial^{2} C}{\partial x^{2}}-\frac{1}{\mu^{\prime} \nu} \frac{\partial^{2} C}{\partial \eta^{2}}\right)+N^{\partial C} \tag{13}
\end{equation*}
$$

154 At present μ and ν are any functions of t Let

$$
\mu^{2}=\left(1-\rho_{1}\right)\left(1-\rho_{2}\right), \quad \nu^{\prime}=\rho_{1} \rho_{2}
$$

Then it will easily be found that the first condition becomes

$$
4 \mu \mu^{\prime} \nu \nu^{\prime} M=\left(\rho_{1}-\rho_{2}\right)^{2} \rho_{1}^{\prime} \rho_{2}^{\prime}=0
$$

Hence either $\rho_{1}=\rho_{3}$ or ρ_{2} is independent of t The first case has the more obrious importance since it gives directly

$$
\nu=\rho_{1}=\sin ^{\circ} \frac{1}{2} J, \quad \mu=1-\rho_{1}=\cos ^{2} \frac{1}{2} J
$$

The second condition may be written

$$
\begin{equation*}
2 s-1=\frac{\mu \nu}{\mu^{\prime} \nu^{\prime}} \frac{\mu^{\prime \prime} \nu^{\prime}-\mu^{\prime} \nu^{\prime \prime}}{\mu \nu^{\prime}-\mu^{\prime} \nu} \tag{14}
\end{equation*}
$$

and the inght-hand vanishes because $\mu+\nu=1$ Hence the method can only be pursued further when $s=\frac{1}{2}$, but this happens to be the most mportant special case If now $t=\nu, \nu^{\prime}=-\mu^{\prime}=1, \mu^{\prime \prime}=\nu^{\prime \prime}=0$, and the partial differential equation (13) in C becomes

$$
n(n+1) C=-\nu(1-\nu) \frac{\partial^{\circ} C}{\partial \nu^{2}}-\frac{1}{1-\nu} \frac{\partial^{2} C}{\partial x^{\prime}}-\frac{1}{\nu} \frac{\partial^{\circ} C}{\partial y^{2}}+(2 \nu-1) \frac{\partial C}{\partial \nu}
$$

On inserting the series (12) and comparing the coefficients of $\cos 2 x \cos \rho y$ this gives

$$
n(n+1) A_{\imath, j}^{n}=-\nu(1-\nu) \frac{d^{2} A^{n} n_{2, j}}{d \nu^{2}}+\left(\frac{\imath^{2}}{1-\nu}+\frac{j^{2}}{\nu}\right) A_{\imath, j}^{n}+(2 \nu-1) \frac{d A^{n}{ }_{n, j}}{d \nu}
$$

But the direct expansion of F^{-8} shows that sunce $\cos 2 x \cos j y$ arises from terms of the foim $(\mu \cos x+\nu \cos y)^{m}, A^{n}{ }_{2, j}$ must contann $\mu^{2} \nu^{\nu}$ as a factor It is therefore proper to write

$$
A_{\imath, 1}^{n}=(1-\nu)^{2} \nu \nu^{n} B_{2, \jmath}^{n}
$$

and this gives, with a little reduction,
$n(n+1) B^{n}{ }_{\imath, \jmath}=\left(\nu^{2}-\nu\right) \frac{d^{2} B^{n}{ }_{\imath, \jmath}}{d \nu^{2}}+\{2 \nu(\imath+\jmath+1)-2 \jmath-1\} \frac{d B_{\imath, \jmath}^{n}+(\imath+\jmath)(\imath+\jmath+1) B_{\imath, j}^{n}}{d \nu}$ or
$\left(\nu^{2}-\nu\right)-\frac{d^{2} B^{r_{2, \jmath}}}{d \nu^{2}}+\{2 \nu(\imath+\jmath+1)-2 \jmath-1\} \frac{d B^{n}{ }_{2, \jmath}}{d \nu}+(\imath+\jmath-n)(\imath+\jmath+1+n) B_{\imath, \jmath}^{n}=0$
Now $B_{i, j}^{n}$ is a polynomial in ν with a constant term, and this equation gives the law of its coefficients But the equation is clearly of the form satisfied by a hypergeometric series Hence

$$
\begin{equation*}
A_{\imath, \jmath}^{n}=c \mu^{\imath} \nu \nu F(\imath+\jmath-n, \imath+\jmath+1+n, 2 \jmath+1, \nu) \tag{15}
\end{equation*}
$$

where c is a constant depending on \imath, \jmath, n This gives the form of Hansen's development in powers of α, namely

$$
a_{2} \Delta^{-1}=\sum_{n, 2, y} \alpha^{n} A_{2, j}^{n} \cos 2 x \cos \jmath y, \quad(n>\imath+\jmath)
$$

The determination of the constant c may be deferred
155 This is the simplest, most obvious application of the method But its possibilities, though limited, are not exhausted The first condition for its use $1 s$ also satisfied by making ρ_{2} a constant This may be expressed by

$$
\rho_{1}=\sin ^{2} \frac{1}{2} J, \quad \rho_{2}=\sin ^{2} \frac{1}{2} J_{0}, \quad \mu=\cos \frac{1}{2} J \cos \frac{1}{2} J_{0}, \quad \nu=\sin \frac{1}{2} J \sin \frac{1}{2} J_{0}
$$

where J_{0} is to be treated mitially as constant, though finally it will be identified with J The relation $\mu+\nu=1$ no longer holds formally, but is replaced by

$$
\mu^{2} / \cos ^{2} \frac{1}{2} J_{0}+\nu^{2} / \sin ^{2} \frac{1}{2} J_{0}=1
$$

and the result of differentiating this twice with respect to t and eliminating $\tan \frac{1}{2} J_{0}$ shows that the right-hand side of the second condition (14) is 1 Therefore $s=1$ At first sight this case has no present interest, since 8 is not half an odd integer, but the reason for considering it further will be seen later

The development will be in powers of $\sin ^{2} \frac{1}{2} J$ as before, but it will be convenient first to make $t=\frac{1}{2} J$, so that

$$
\mu^{\prime}=-\sin \frac{1}{2} J \cos \frac{1}{2} J_{0}, \quad \nu^{\prime}=\cos \frac{1}{2} J \sin \frac{1}{2} \cdot J_{0}, \quad \mu^{\prime \prime}=-\mu, \quad \nu^{\prime \prime}=-\nu
$$

Then the partial differential equation (13) for C becomes

$$
n(n+2) C=-\frac{\partial^{2} C}{\partial t^{2}}-\sec ^{2} t \frac{\partial^{2} C}{\partial x^{2}}-\operatorname{cosec}^{2} t \frac{\partial^{2} C}{\partial y^{2}}-2 \cot 2 t \frac{\partial C}{\partial t}
$$

The foim of the solution resembles the previous case, suggesting

$$
C=\sum_{2 j} \mu^{2} \nu T_{i, j}^{n} \cos 2 x \cos j y
$$

and the comparison of coefficients of $\cos 2 x \cos j y$ atter the substitution gives $n(n+2) T^{n}{ }_{\imath}, \jmath=-\frac{d^{2} T^{n}{ }_{\imath, j}}{d t^{2}}-\{(2 \jmath+1) \cot t-(2 \imath+1) \tan t\} \frac{d T^{n}{ }_{2}}{d t}+(\imath+\jmath)(\imath+\jmath+2) T_{\imath, \jmath}^{n}$ Now let the independent variable be changed to $\tau=\sin ^{2} t=\sin ^{2} \frac{1}{2} J$, so that

$$
\frac{d}{d t}=2 \sin t \cos t \frac{d}{d \tau}, \quad \frac{d^{2}}{d t^{2}}=4 \tau(1-\tau) \frac{d^{2}}{d \tau^{2}}+2(1-2 \tau) \frac{d}{d \tau}
$$

and the previous equation becomes

$$
4\left(\tau^{2}-\tau\right) \frac{d^{2} T^{n}}{d \tau^{2}}+4\{(\imath+\jmath+2) \tau-(\jmath+1)\} \frac{d T^{n}, \jmath}{d \tau}+(\imath+\jmath-n)(\imath+\jmath+2+n) T^{n}{ }_{\imath, \jmath}=0
$$

Now $T^{n}{ }_{2}$, 18 a polynomial in τ with a constant term, and this equation determines the formation of its coefficients But again it is an equation of the type satisfied by a hypergeometric series Hence

$$
T_{{ }_{2}}{ }_{\jmath}=\iota_{1} F\left(\frac{\imath+\jmath-n}{2}, \frac{\imath+\jmath+2+n}{2}, \jmath+1, \tau\right)
$$

where c_{1} is independent of $\tau \quad$ But μ and ν, and therefore $T^{n}{ }_{r, \rho}$, involve J_{0} symmetrically with J, and therefore it is evident that c_{1} contains as a factor the same polynomial with τ replaced by $\tau_{0}=\sin ^{2} \frac{1}{2} J_{0}$ Hence

$$
T_{\mathrm{k}, \mathrm{j}}^{n}=c_{2} F^{\prime}\left(\tau_{0}\right) F^{\prime}(\tau)
$$

where c_{2} is a constant independent of τ and τ_{0} This is clearly general, whatever the values of J and J_{0} A return to the actual problem can now be made by putting $J_{0}=J$, and then $\tau=\nu$ and

$$
T_{1, j}^{n}=c_{2} F^{2}\left(\frac{\imath+\jmath-n}{2}, \frac{\imath+\jmath+2+n}{2}, \jmath+1, \nu\right)
$$

which gives the form of expansion

$$
a_{2}^{2} \Delta^{-2}=\sum_{n, 2, j} a^{n} T_{2,}^{n} \mu^{2} \nu^{\prime} \cos 2 x \cos \rho y
$$

$(2+\jmath<n) \quad$ The form of proof is essentially that of Stieltyes The squared (terminating) hypergeometric series is a polynomial of Trsserand

The more general utility of this result will now be easily seen For

$$
\begin{aligned}
a_{2}{ }^{2} \Delta^{-2} & =\left(1+\alpha^{2}-2 \alpha \cos H\right)^{-1}=(1-\alpha z)^{-1}\left(1-\alpha z^{-1}\right)^{-1} \\
& =\left\{z(1-\alpha z)^{-1}-z^{-1}\left(1-\alpha z^{-1}\right)^{-1}\right\}\left(z-z^{-1}\right)^{-1} \\
& =\sum_{n} \alpha^{n}\left(z^{n+1}-z^{-n-1}\right)\left(z-z^{-1}\right)^{-1} \\
& =\sum_{n} \alpha^{n} \sin (n+1) H / \sin H
\end{aligned}
$$

Hence, by comparing the coefficients of α^{n},

But

$$
\sin (x+1) H / \sin H=\sum_{2, j} T^{\prime n}{ }_{2}, \mu^{2} \nu^{\nu} \cos 2 x \cos j y
$$

$$
\begin{aligned}
\left(a_{2}{ }^{-1} \Delta\right)^{-8} & =\frac{1}{2} b_{8}{ }^{0}+\sum_{1}^{\infty} b_{s}{ }^{n} \cos n H \\
& =\frac{1}{2} b_{8}{ }^{0}+\sum_{\frac{1}{2}} b_{8}{ }^{n}\{\sin (n+1) H-\sin (n-1) H\} / \sin H
\end{aligned}
$$

and therefore

$$
\begin{equation*}
\left(a_{2}^{-1} \Delta\right)^{-s}=\frac{1}{2} b_{s}{ }^{0}+\frac{1}{2} \sum_{n=1}^{\infty} b_{s}{ }_{2} \sum_{2}\left(T_{\imath, j}^{n}-T_{\imath, \rho}^{n-2}\right) \mu^{2} \nu^{\nu} \cos \imath x \cos \jmath y \tag{16}
\end{equation*}
$$

which is Tisserand's development in a series of Laplace's coefficients
156 To complete the result it is necessary to find the numerical factor c_{2} Now the final teim of $F(-\alpha, \beta, \gamma, x), \alpha, \beta, \gamma$ being positive integers, is

$$
\frac{\left.(\alpha+\beta-1))^{\prime}(\gamma-1)\right)^{\prime}}{(\alpha+\gamma-1)^{\prime}(\beta-1)^{\prime}}(-x)^{a}
$$

Hence the term contaning the highest power of ν in $T^{n}{ }_{i, ~} \mu^{2} \nu^{\nu}$ is

$$
(-1)^{2} c_{2}\left\{\frac{\left.n\right|^{\prime} 1}{\left[\frac{1}{2}(\jmath-2+n)\right]^{1}\left[\frac{1}{2}(2+\jmath+n)\right]}\right\}^{2} \nu^{n}
$$

But

$$
\begin{aligned}
a_{2}^{2} \Delta^{-2} & =\left\{1+\alpha^{2}-2 \alpha \cos x-2 \alpha \nu(\cos y-\cos x)\right\}^{-1} \\
& =\Sigma(2 \alpha \nu)^{m}(\cos y-\cos x)^{m}\left(1+\alpha^{2}-2 \alpha \cos x\right)^{-m-1}
\end{aligned}
$$

and the highest power of ν associated with a^{n} is given by the terms

$$
\begin{aligned}
& (\cos y-\cos x)^{n}(2 \nu)^{n}=\left(\eta+\eta^{-1}-\xi-\xi^{-1}\right)^{n} \nu^{n} \\
& =(\eta-\xi)^{n}\left(1-\xi^{-1} \eta^{-1}\right)^{n} \nu^{n} \\
& =\sum_{m, k} \frac{\left(n^{\prime}\right)^{2}}{m^{1}(n-m)^{\mid k} \mid(n-k)!} \eta^{m}(-\xi)^{n-m}(-\xi \eta)^{-k} \nu^{n} \\
& =\sum_{2, \rho} \frac{\left.(-1)^{2}(n)\right)^{2} \xi^{2} \eta^{\jmath} \nu^{n}}{(\jmath-\imath+n)]^{1}\left[\frac{[}{2}(\imath-\jmath+n)\right]^{\prime}\left[\frac{1}{2}(n-\imath-\jmath)\right]^{\prime}}{ }^{\prime}\left[\frac{1}{2}\left(n^{-}+\overline{2}+\jmath\right)\right]^{1}
\end{aligned}
$$

when

$$
m=\frac{1}{2}(\jmath-\imath+n), \quad k=\frac{1}{2}(n-\imath-\jmath)
$$

The same terms appear in the form

$$
\sum_{\imath, j} T_{i, j}^{n} \mu^{2} \nu^{j} \cos 2 x \cos j y=\kappa \sum_{2, j} T_{i, j}^{n} \mu^{2} \nu^{j} \xi^{2} \eta^{j}
$$

where $\kappa=1$ when \imath and $\jmath=0, \kappa=\frac{1}{2}$ when \imath or $\jmath=0$, and $\kappa=\frac{1}{4}$ otherwise The highest power of ν has already been found in this form, and comparison of the coefficients of $\nu^{n} \xi^{\boldsymbol{\eta}} \eta^{\boldsymbol{j}}$ gives finally

$$
c_{2}=\kappa^{-1} \frac{\left[\frac{1}{2}(n+\imath+\jmath)\right]\left[\left[\frac{1}{2}(n-\imath+\jmath)\right]\right.}{(\jmath 1)^{2}\left[\frac{1}{2}(n+\imath-\jmath)\right]\left[\left[\frac{1}{2}(n-\imath-\jmath)\right]!\right.}
$$

The development (16) is now completely defined

The numencal factor c in Hansen's development (15) can be tound similarly For the term contaning the highest power of ν in $A^{n}{ }_{3,0}$ is

$$
(-1)^{n-\rho} c \frac{(2 n)^{\prime}(2 \jmath)!}{(n+\jmath-\imath)^{\prime}(n+\imath+\jmath)!} \nu^{n}
$$

On the other hand the terms associated with a^{n} and the highest power of ν in $a_{n} \Delta^{-1}$ are by (10) contaned in

$$
\frac{\Gamma\left(n+\frac{1}{2}\right)}{\Gamma(n+1) \Gamma\left(\frac{1}{2}\right)}(\cos y-\cos x)^{n}(2 \nu)^{n}
$$

and these are now known As before, the coefficients of $\nu^{n} \xi^{2} \eta^{j}$ in the two forms of $a_{0} \Delta^{-1}$ can be compared, and thus

$$
(-1)^{n-\jmath} \kappa c \frac{(2 n)!}{(n+\jmath-\imath \jmath)!} \cdot \frac{(2 \jmath)}{(n+\imath+\jmath)!}=\frac{\left.(-1)^{\iota}(n)\right)^{2}}{\Pi\left\{\left[\frac{1}{2}(n \pm \imath \pm \jmath)\right]\right\}} \frac{\Gamma\left(n+\frac{1}{2}\right)}{\Gamma(n+1) \Gamma\left(\frac{1}{2}\right)}
$$

where Π denotes the product of four factorial factors Now $\frac{1}{2}(n-\imath-\jmath)$ is an integer, $n-\imath-\jmath$ is even, and the slgn is the same on both sides Also

Hence finally

$$
\Gamma(n+1)=n!, \quad 2^{2 n} \Gamma\left(n+\frac{1}{2}\right) n^{\prime}=\Gamma\left(\frac{1}{2}\right)(2 n)!
$$

$$
c=\frac{\left(2^{n} \kappa\right)^{-1}}{(2 \jmath)^{\prime}} \frac{(n+\imath+\jmath)^{\prime}(n-\imath+\jmath)^{\prime}}{\left[\frac{1}{2}(n+\imath+\jmath)\right]^{\prime}\left[\frac{1}{2}(n-\imath+\jmath)\right]^{\prime}\left[\frac{1}{2}(n+\imath-\jmath)\right]^{\prime}\left[\frac{1}{2}(n-\imath-\jmath)\right]^{\prime}}
$$

which completes the determination of Hansen's development
The results obtained for inclined circular orbits may now be summarized Since

$$
\begin{aligned}
\cos \imath x \cos \jmath y & =\cos \imath\left(L_{1}-L_{2}\right) \cos \jmath\left(L_{1}+L_{2}\right) \\
& =\frac{1}{2} \cos \left[(\imath+\jmath) L_{1}-(\imath-\jmath) L_{2}\right]+\frac{1}{2} \cos \left[(\imath-\jmath) L_{1}-(\imath+\jmath) L_{2}\right]
\end{aligned}
$$

it is possible to write

$$
\Delta^{-1}=\Sigma A\left(p_{1}, p_{2}\right) \lambda_{1}^{p_{1} \lambda_{2} p_{2}}, \quad 2 \imath=\left|p_{1}+p_{2}\right|, \quad 2 \jmath=\left|p_{1}-p_{A}\right|
$$

where $\log \lambda_{1}=\iota L_{1}, \log \lambda_{2}=\iota L_{2}$, and it has been shown how the cocfficient $d\left(p_{1}, p_{2}\right)$ can be developed (1) in powers of $\nu=\sin ^{2} \frac{1}{2} J$, (2) in powers of $\alpha=a_{1} / a_{2}$, (3) as a serres in Laplace's coefficients

157 The preceding developments of Δ^{-1} or $\Delta^{-2 s}$ apply to circular oibits, but they are not on that account to be regarded as mere approximations to the forms actually appropriate to the orbits of the solar system On the contrary they constitute the essential source from which the latter forms must be generated by the most convenient means Now quibe generally

$$
\Delta^{2}=r_{1}{ }^{2}+r_{2}{ }^{2}-2 r_{1} r_{2} \cos H
$$

and L_{1}, L_{2} must be replaced by $\omega_{1}+w_{1}, \omega_{2}+w_{2}$, where ω_{1}, ω_{2} are the longitudes of perihelion reckoned from the common node, and w_{1}, w_{2} are the true anomalies When the eccentricities e_{1}, e_{2} vanish the radin r_{1}, r_{2} become
the mean distances a_{1}, a_{3}, and w_{1}, w_{2} can be identified with the mean anomalies M_{1}, M_{2} The coriesponding value of Δ may be written Δ_{0}

Taylor's theorem can be expressed in the familatr symbolical form

$$
f(x+y)=\exp \left(y \frac{d}{d x}\right) f(x)=\exp (y D) f(x)
$$

which means simply that if the exponential function be expanded as though $y D$ were an algebraic quantity, the result otherwise known to be true is formally reproduced Thus generally,

$$
f\left(x_{1}+y_{1}, x_{2}+y_{2}, \quad\right)=\exp \left(y_{1} D_{1}+y_{2} D_{2}+\quad\right) f\left(x_{1}, x_{2}, \quad\right)
$$

where D_{r} operates on x_{1} alone Now when $e_{1}=e_{2}=0$,

$$
\Delta_{0}^{-1}=f\left(a_{1}, a_{2}, L_{1}, L_{2}\right)
$$

is an expansion of which the form has been completely determined The more convenient developments refer not to $r-a$ but r / a, and the change from the argument a to the argument r is made additive by taking $\log a$ as the variable instead of a Thus in the present case

$$
\begin{array}{ccc}
x_{1}=\log a_{1}, & x_{3}=\log a_{2}, & x_{1}=L_{1}=\omega_{1}+M_{1}, \\
y_{1}=\log \lambda_{1} / a_{1}, \quad x_{4}=\log I_{2} / a_{2}, & y_{1}=\omega_{2}+M_{2}-M_{1}, & y_{4}=w_{2}-M_{2} \\
D_{1}=\frac{\partial}{\partial \log a_{1}}=a_{2} \frac{\partial}{\partial a_{1}}, \quad D_{2}=\frac{\partial}{\partial \log \overline{a_{2}}=\alpha_{2} \frac{\partial}{\partial a_{-}},} \\
D_{\mathrm{d}}=\frac{\partial}{\partial L_{1}}=\iota \lambda_{1} \frac{\partial}{\partial \lambda_{1}}, \quad D_{4}=\frac{\partial}{\partial L_{2}}=i \lambda_{2} \frac{\partial}{\partial \lambda_{2}}
\end{array}
$$

Then generally

$$
\begin{aligned}
\Delta^{-1} & =F\left(r_{1}, r_{1}, w_{1}, w_{2}\right) \\
& =\exp \left[\log \frac{\eta_{1}}{a_{1}} D_{1}+\log \frac{\eta_{2}}{a_{2}} D_{2}+\left(w_{1}-M_{1}\right) D_{1}+\left(w_{2}-M_{2}\right) D_{4}\right] f
\end{aligned}
$$

But in the notation of Hansen's coefficients (\S 45)

$$
\left(\frac{r}{a}\right)^{n} z^{m}=\sum_{\imath} X_{\imath}^{n, m} z^{2}, \quad\left(\frac{r}{a}\right)^{n}\left(\frac{x}{z}\right)^{m}=\sum_{\imath} X_{\imath+m}^{n, m} z^{l}
$$

where $\log a=\imath w, \log z=\iota M \quad$ Hence in a conesponding symbolic notation, since $\log x / z=\iota(w-M)$,

$$
\Delta^{-1}=\sum_{1}^{\sum} X_{\imath \rightarrow-1 D_{1}}^{D_{1}-\sim D D_{1}} z_{1}^{\prime} \sum_{1} X_{j-\left(D_{4}\right.}^{D_{2}-\omega D_{4}} z_{2}{ }^{3} f
$$

Simplifications are now possible owing to the form of f In the first place Δ_{0}^{-1} is homogeneous, and of degree -1 , in u_{1}, u_{z} Hence

$$
D_{1}+D_{2}=a_{1} \frac{\partial}{\partial a_{2}}+a_{2} \frac{\partial}{\partial a_{2}}=-1
$$

But further f has been expanded in the form

$$
f=\Sigma A\left(p_{1}, p_{2}\right) \lambda_{1} p_{1} \lambda_{2}^{p_{2}}
$$

and

$$
D_{3} q\left(\lambda_{1} p_{1} \lambda_{2}{ }^{p}\right)=\left(\iota p_{1}\right)^{q} \lambda_{1}^{p_{1}} \lambda_{2}^{p}, \quad D_{4}{ }^{q}\left(\lambda_{1}{ }^{p_{1}} \lambda_{2} p_{2}\right)=\left(\iota p_{2}\right)^{q} \lambda_{1} p_{1} \lambda_{2}{ }^{p}
$$

so that D_{3}, D_{4} can be replaced by $\iota p_{1}, \iota p_{2}$, and D_{1}, D_{2} do not operate on λ_{1}, λ_{2} Hence the symbolic form of the complete expansion becomes

$$
\Delta^{-1}=\sum_{p_{1}, p_{2}} \lambda_{1} p_{1}^{p_{1}} \lambda_{2}^{p} \sum_{i j} X_{\imath+p_{1}}^{D_{1}, p_{1}} X_{j+p}^{D} p_{2} A\left(p_{1}, p_{2}\right) z_{2}{ }^{2} z_{2}{ }^{j}
$$

where $\log \lambda_{1}=\iota\left(\omega_{1}+M_{1}\right), \log \lambda_{2}=\iota\left(\omega_{2}+M_{2}\right), \log z_{1}=\iota M_{1}, \log z_{2}=\iota M_{2}$, und the symbols X are respectively functions of e_{1}, D_{1} and e_{2}, D_{2}

158 This leads mmediately to Newcomb's operators as defined by Poncaré For the functions X can be expanded in positive powers of e, so that

$$
X_{\imath+p_{1}}^{D_{1} p_{1}}=\sum_{n_{1}} \Pi_{2}^{m_{2}}\left(D_{1}, p_{1}\right) e_{1}^{m_{1}}, \quad X_{\jmath+p}^{D_{-}} p_{2}=\sum_{m_{2}} \Pi_{2}^{m}\left(D_{2}, p_{2}\right) e_{2}^{m_{2}}
$$

where $m_{1}-|\imath|, m_{2}-|\jmath|=0,2$, since $X_{2}^{n m}$ is of the order $e^{|\imath-m|}$ at least, The operators Π are combined by Newcomb in the notation

$$
\Pi_{\imath}^{m_{1}}\left(D_{1}, p_{1}\right) \Pi_{2}^{m}\left(D_{2}, p_{2}\right)=\Pi_{\imath, j}^{m_{1} m}=\Pi_{\imath 0}^{m_{1}{ }_{0}^{0}} \Pi_{0, j}^{0, m}
$$

but the combined symbols, though tabulated by him over a wide iange, serem to present no practical advantage over the constituent operators

The final form of the development of Δ^{-1} can therefore be written $\Delta^{-1}=\sum_{p_{1}, p} \lambda_{1}^{\rho_{1} \lambda_{2}^{p}} \sum_{m_{1}, m} e_{1}^{m_{2}} e_{2}^{m} \sum_{m, 9} z_{1} z_{2} z_{2} \Pi_{2} m_{1}\left(D_{1}, p_{1}\right) \Pi_{3}^{m_{2}}\left(-1-D_{1}, p_{2}\right) A\left(p_{1}, p_{2}\right)$ and the completion of this part of the problem depends on the practical treatment of Newcomb's operators Π, which are polynomials in D, p of degree m, with numerical coefficients

The definition of the symbols is given by

$$
\sum_{m, \imath} \Pi_{\imath}^{m}(D, p) e^{m} z^{i}=\sum_{z} X_{\imath+p}^{D, p} z^{i}=\left(\frac{r}{a}\right)^{D}\left(\frac{x}{z}\right)^{p}
$$

Hence in particular

$$
\sum_{m, z} \Pi_{\imath}^{m}(D, 0) e^{m} z^{z}=\left(\frac{r}{a}\right)^{D}, \sum_{m} \Pi_{z}^{m}(0, p) e^{m} z^{2}=\left(\frac{x}{z}\right)^{p}
$$

and therefore

$$
\sum_{m, 2} \Pi_{\imath}^{m}(D, p) e^{m} z^{2}=\sum_{m, z} \Pi_{\imath}^{m}(D, 0) e^{m} z^{2} \sum_{n, j} \Pi_{i}^{n}(0, p) e^{n} z^{j}
$$

Comparison of the coefficients of $e^{m} z^{2}$ an both sides then gives

$$
\Pi_{2}^{m}(D, p)=\sum_{n, j} \Pi_{\jmath}^{n}(D, 0) \Pi_{\imath-\jmath}^{m-n}(0, p)
$$

where $n=0,1,, m$, and \jmath has all the values which make $n-|\jmath|$ and $m-n-|\imath-\jmath|$ positive integers (including 0) This formula, due in another
notation to Cowell, makes the calculation of $\Pi_{\imath}{ }^{m}(D, p)$ depend on the expansion of r / a and x^{p}

But these are known forms The first is given by (22) in Chapter IV Means of deriving the latter have been given in $\S 45$ In fact

$$
X_{\imath+p}^{0, p}=\sum_{m} \Pi_{2}{ }^{m}(0, p) e^{m}
$$

and therefore it is necessary to expand $X_{\imath+p}^{0, p}$ in powers of e and the resulting coefficients will represent $\Pi_{2}{ }^{m}(0, p)$ They are purely numerical and can be tabulated for all moderate values of m, r and p Other methods have been suggested to facilitate the calculation of Newcomb's operators But the above will suffice to make clear the principles involved

159 The disturbing function due to the complete action of a single planet can now be considered By (3) of $\S 23$ this is

$$
R=G m^{\prime}\left\{\frac{1}{\Delta}-\frac{1}{r^{\prime 3}}\left(x x^{\prime}+y y^{\prime}+z z^{\prime}\right)\right\}
$$

where $(x, y, z),\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ are the heliocentric coordinates of the disturbed and disturbing planets, r^{\prime} is the radius vector of the latter The constant G may be reduced to unity by the choice of appropriate units, and the disturbing mass m^{\prime} may be understood as a common factor to be restored ultımately Thus

$$
R=\left(r^{2}+r^{\prime 2}-2 r r^{\prime} \cos H\right)^{-\frac{1}{2}}-r r^{\prime-2} \cos H
$$

where H has its previous meaning, the mutual elongation of the two planets as seen from the Sun The principal part, already discussed, is symmetrical in r, r^{\prime}, but the madirect part is not so Hence a distinction must be drawn, according as the disturbing planet is superior, when $r=r_{1}, r^{\prime}=r_{2}$, or the disturbing planet is inferior, when $r=r_{2}, r^{\prime}=r_{1}$ Now when the eccentricities vanish, by §152,

$$
\begin{aligned}
& a_{\mathfrak{n}} \Delta^{-1}=b^{0,0}+2 b^{1,0} \cos x+2 b^{0,1} \cos y+ \\
& \cos H=\quad \mu \cos x+\quad \nu \cos y
\end{aligned}
$$

and

$$
R-\Delta^{-1}=\delta R=-\alpha a^{\prime-2}(\mu \cos x+\nu \cos y)
$$

is the correction required to change Δ^{-1} into R This can be effected by giving corrections to $b^{1,0}$ and $b^{0,2}$, thus

$$
\begin{aligned}
2 \delta b^{1,0} / \mu=2 \delta b^{0,2} / \nu & =-a_{2} a a^{\prime-2} \\
& =-\alpha\left(a^{\prime}>a\right),-a^{-2}\left(a>a^{\prime}\right)
\end{aligned}
$$

where $\alpha<1$ always and α^{\prime} is the mean distance of the disturbing planet If these corrections are carried into the expansion in terms of ν (§ 152), as used in
the chief planetany theones, it will affect the Laplace's coefficients only to this extent

$$
\begin{array}{lll}
\delta b_{\frac{1}{2}}{ }^{1}=-a, & \delta b_{2}{ }^{0}=-2 & \left(a^{\prime}>a\right) \\
\delta b_{\frac{1}{2}}{ }^{1}=-a^{-3}, & \delta b_{\frac{3}{2}}{ }^{0}=-2 \alpha^{-\delta} & \left(a>a^{\prime}\right)
\end{array}
$$

for it is easily verified that these changes will give the required conections to $b^{1,0}, b^{01}$ In the exponential form they apply equally to $b^{-1,0}, b^{0,-1}$, and $b_{\frac{1}{2}}{ }^{-1}$ Thus the indnect term is very simply incorporated in R_{0}, in which $e_{1}=e_{3}=0$, and the full expansion of R in terms of the eccentricities can then be deduced in the manner explained for the development of Δ from Δ_{0}

It is most important to remark that while the indirect part modifies the coefficients of certain elementary periodıc terms, it affects in no way the constant term which is independent of the time
160. Another order of development is possible by expanding Δ^{-1} mitially in terms of r_{1} / r_{2} If this ratio is small, as in the case of the solar perturbatrons of the lunar orbit, this method has great advantages By § 153 this expansion takes the form

$$
\Delta^{-1}=\sum_{n, 2} r_{\rho}^{n_{1} n_{2}-n-1} A_{\imath}^{n}, \cos 2 x \cos \jmath y
$$

where $A^{n}{ }_{i, j}$ is given by (15) and x, y have their true meanings,

$$
W_{1} \mp W_{2}=\omega_{1}+w_{1} \mp\left(\omega_{2}+w_{2}\right)
$$

It is more convenient to use the exponential form, and with a slight change of notation for the coefficients,

$$
\Delta^{-1}=\sum_{n} \sum_{p_{1}, p_{2}} r_{1}^{n} r_{2}^{-n-1} A_{n}\left(p_{1}, p_{2}\right) \mu_{2}^{p_{1}} \mu_{2}^{p_{2}}
$$

where $\log \mu_{1}=\iota\left(\omega_{1}+w_{1}\right), \quad \log \mu_{2}=\iota\left(\omega_{2}+w_{2}\right), \quad\left|p_{1}-p_{2}\right|=2 \imath, \quad\left|p_{1}+p_{2}\right|=2 \jmath$ and $n-\left|p_{1}\right|, n-\left|p_{2}\right|$ are even positive integers Hence

$$
\Delta^{-1}=\sum_{n} \sum_{p_{1}, p_{2}} r_{1}^{n} r_{3}^{-n-1} A_{n}\left(p_{1}, p_{2}\right) \lambda_{1} p_{1} \lambda_{2}^{p}\left(x_{1} z_{1}^{-1}\right)^{p_{1}}\left(x_{2} z_{2}^{-1}\right)^{p_{2}}
$$

where $\log \lambda_{1}=\iota\left(\omega_{1}+M_{1}\right), \log \lambda_{2}=\iota\left(\omega_{2}+M_{2}\right), \log z_{1}=\iota M_{1}, \log z_{2}=\iota M_{2}, \log x_{1}=\iota \omega_{1}$, $\log x_{2}=\iota w_{2} \quad$ But this form can clearly be expressed in terms of Hansen's coefficients Thus

$$
\Delta^{-1}=\sum_{n} \sum_{p_{1}, p} \sum_{q_{1}, q_{2}} a_{1}^{n} a_{2}^{-n-1} A_{n}\left(p_{1}, p_{2}\right) \lambda_{1}^{p_{1}} \lambda_{2} p_{2} X_{q_{1}+p_{1}}^{n, p_{1}} X_{q_{2}+p}^{-n-1, p_{2}} z_{1}^{q_{1} z_{2} q_{2}}
$$

where q_{1}, q_{0} have all integral values, positive and negative, and the symbols X are respectively functions of e_{1}, e_{2}, while $A_{n}\left(p_{1}, p_{2}\right)$ is a function of $\nu=\sin ^{2} \frac{1}{2} J$ which has been determined

The indirect part of the distuibing function when $r_{1}\left(<r_{2}\right)$ refers to the disturbed body, is clearly allowed for by simply excluding the terms corresponding to $n=1$, for these are equal to $r_{1} r_{2}{ }^{-2} \cos H$

By either method the fundamental importance of Hansen's coefficients and their relation to Newcomb's symbohc operators is clearly seen Numerical developments of their coefficients dccording to powers of e have been calculated by several authors, including Cayley, Newcomb and, for the purposes of the lunar theory, Delaunay

161 It has been seen that the generating expansion is of the form

$$
\begin{aligned}
R & =\Sigma 2 A \mu^{p} \nu^{q} \cos p x \cos q y \\
& =\Sigma \quad \mu^{p} \nu^{q} \cos \left[(p+q) L-(p-q) L^{\prime}\right]
\end{aligned}
$$

where $L=\omega+M, L^{\prime}=\omega^{\prime}+M^{\prime} \quad$ The subsequent process introduces e, e^{\prime} into the coefficient A, which already contans powers of $\nu=\sin ^{2} \frac{1}{2} J$, and adds multiples of M, M^{\prime} to the argument In the ordinary notation for the elements,

$$
\omega=\omega-\Omega-\chi, \quad \omega^{\prime}=\omega^{\prime}-\Omega^{\prime}-\chi^{\prime}
$$

where χ, χ^{\prime} are the distances of the intersection of the orbits from their ecliptic nodes Hence R takes the form

$$
\begin{aligned}
R=\Sigma A \mu^{p} \nu^{q} \cos [h M+ & h^{\prime} M^{\prime}+(p+q)(\varpi-\Omega) \\
& \left.-(p-q)\left(\omega^{\prime}-\Omega^{\prime}\right)-p\left(\chi-\chi^{\prime}\right)-q\left(\chi+\chi^{\prime}\right)\right]
\end{aligned}
$$

Now the two orbits with the ecliptic form a spherical triangle $A B C$ in which

$$
\begin{array}{ll}
a=\chi^{\prime}, & b=\chi,
\end{array} c=\Omega_{2}-\Omega_{1},
$$

where \imath, \imath^{\prime} are the inclinations of the orbits to the ecliptic Hence, as in § 67 , if the intersection be taken as the ascending node of the disturbing orbit on the disturbed orbit,

$$
\begin{aligned}
& \sin \frac{1}{2}\left(\chi+\chi^{\prime}\right) \sin \frac{1}{2} J=\sin \frac{1}{2}\left(\Omega^{\prime}-\Omega\right) \sin \frac{1}{2}\left(\imath^{\prime}+\imath\right) \\
& \cos \frac{1}{2}\left(\chi+\chi^{\prime}\right) \sin \frac{1}{2} J=\cos \frac{1}{2}\left(\Omega^{\prime}-\Omega\right) \sin \frac{1}{2}\left(\imath^{\prime}-\imath\right) \\
& \sin \frac{1}{2}\left(\chi-\chi^{\prime}\right) \cos \frac{1}{2} J=\sin \frac{1}{2}\left(\Omega^{\prime}-\Omega\right) \cos \frac{1}{2}\left(\imath^{\prime}+\imath\right) \\
& \cos \frac{1}{2}\left(\chi-\chi^{\prime}\right) \cos \frac{1}{2} J=\cos \frac{1}{2}\left(\Omega^{\prime}-\Omega\right) \cos \frac{1}{2}\left(\imath^{\prime}-\imath\right)
\end{aligned}
$$

and therefore
$\nu^{\frac{1}{2}} \exp \frac{1}{2} \iota\left(\chi+\chi^{\prime}\right)=\sin \frac{1}{2} \imath^{\prime} \cos \frac{1}{2} \imath \exp \frac{1}{2} \iota\left(\Omega^{\prime}-\Omega\right)-\sin \frac{1}{2} \imath \cos \frac{1}{2} \imath^{\prime} \exp -\frac{1}{2} \iota\left(\Omega^{\prime}-\Omega\right)$ $\mu^{\frac{1}{2}} \exp \frac{1}{2} \iota\left(\chi-\chi^{\prime}\right)=\cos \frac{1}{2} r^{\prime} \cos \frac{1}{2} \imath \exp \frac{1}{2} \iota\left(\Omega^{\prime}-\Omega\right)+\sin \frac{1}{2} \imath \sin \frac{1}{2} r^{\prime} \exp -\frac{1}{2} \iota\left(\Omega^{\prime}-\Omega\right)$
It follows that

$$
\begin{aligned}
\nu^{q} \cos q\left(\chi+\chi^{\prime}\right) & =\Sigma b_{8} \cos s\left(\Omega^{\prime}-\Omega\right), \\
\mu^{p} \cos p\left(\chi-\chi^{\prime}\right) & =\Sigma a_{8} \sin q\left(\chi+\chi^{\prime}\right)=\Sigma b_{8} \sin s\left(\Omega^{\prime}-\Omega\right),
\end{aligned} \mu^{p} \sin p\left(\chi-\chi^{\prime}\right)=\Sigma a_{8} \sin s\left(\Omega^{\prime}-\Omega\right)
$$

where a_{8}, b_{s} represent simple coefficients involving \imath, \imath^{\prime} Thus $\chi \pm \chi^{\prime}$ can be eliminated from R, which now takes the form
$R=\Sigma A \cos \left[h M+h^{\prime} M^{\prime}+(p+q)(\omega-\Omega)-(p-q)\left(\omega^{\prime}-\Omega^{\prime}\right)-\left(s+s^{\prime}\right)\left(\Omega^{\prime}-\Omega\right)\right]$
where A now contans $a, a^{\prime}, e, e^{\prime}, \imath, z^{\prime}$ and also powers of ν But from the above analogies of Delambre,

$$
\begin{aligned}
\nu & =\sin ^{2} \frac{1}{2}\left(\Omega^{\prime}-\Omega\right) \sin ^{2} \frac{1}{2}\left(\imath^{\prime}+\imath\right)+\cos ^{2} \frac{1}{2}\left(\Omega^{\prime}-\Omega\right) \sin ^{2} \frac{1}{2}\left(\imath^{\prime}-\imath\right) \\
& =\frac{1}{2}\left(1-\cos \imath \cos \imath^{\prime}\right)-\frac{1}{2} \sin \imath \sin \imath^{\prime} \cos \left(\Omega^{\prime}-\Omega\right)
\end{aligned}
$$

Hence these powers of ν can be removed from the coefficient without altering the form of the arguments, which are only changed by the addition of some multiples of $\Omega^{\prime}-\Omega$ Thus finally

$$
\begin{aligned}
R & =\Sigma A \cos \left[h M+h^{\prime} M^{\prime}+g \sigma+g^{\prime} \sigma^{\prime}+f \Omega+f^{\prime} \Omega^{\prime}\right] \\
& =\Sigma A \cos \left[h(n t+\epsilon)+h^{\prime}\left(n^{\prime} t+\epsilon^{\prime}\right)+g \varpi+g^{\prime} w^{\prime}+f \Omega+f^{\prime} \Omega^{\prime}\right]
\end{aligned}
$$

where the coefficient A is now a function of $a, a^{\prime}, e, e^{\prime}, \imath, \imath^{\prime}$ only, and the argument contains the six elements $\Omega, \Omega^{\prime}, \varpi, w^{\prime}, \epsilon, \epsilon^{\prime}$ and the time And this is the final form of the disturbing function, involving the twelve elements of the two orbits exphcitly, and expressed in the desired way

CHAPTER XV

ABSOLUTE PERTURBATIONS

162 The disturbance of a purely elliptic motion may be illustrated in a quite elementary way by supposing the motion to take place in a resisting medium Let the tangential resistance per unit mass be $\alpha v / r^{2}$, where v is the velocity and r the radius vector, so that the radial and tangential components are

$$
-\frac{\alpha v}{r^{2}} \frac{1}{v} \frac{d r}{d t}=-\frac{\alpha}{r^{2}} \frac{d r}{d t}, \quad-\frac{\alpha v}{r^{2}} \frac{r}{v} \frac{d \theta}{d t}=-\frac{\alpha}{r} \frac{d \theta}{d t}
$$

When other powers of v and r are assumed in the expression for the resistance the general results are very much the same, and this simple form is sufficiently typical to represent fairly an interesting problem

Let u be the reciprocal of r and δW the work done by external forces in a small radial or transversal displacement Then

$$
-u^{2} \frac{\partial W}{\partial u}=-\mu u^{2}+\alpha \frac{d u}{d t}, \quad u \frac{\partial W}{\partial \theta}=-\alpha u \frac{d \theta}{d t}
$$

*where μ is the constant of attraction, and the kinetic energy is 1 ', where

$$
2 T=r^{2}+r^{2} \dot{\theta}^{2}=u^{-4} u^{2}+u^{-2} \theta^{2}
$$

Hence the equations of motion are

$$
\begin{aligned}
& \frac{d}{d t}\left(u^{-4} u\right)+2 u^{-5} u^{2}+u^{-8} \dot{\theta}^{2} \\
& =\mu-\alpha u^{-2} \frac{d u}{d \dot{t}} \\
& \frac{d}{d t}\left(u^{-2} \theta\right) \quad=-\alpha \frac{d \theta}{d t}
\end{aligned}
$$

Now let

$$
u^{-2} \theta=H, \quad \frac{d}{d t}=H u^{2} \frac{d}{d \bar{\theta}}
$$

and the first equation of motion becomes
or

$$
H u^{2} \frac{d}{d \theta}\left(H u^{-2} \frac{d u}{d \theta}\right)+2 H^{2} u^{-1}\left(\frac{d u}{d \theta}\right)^{2}+H^{2} u=\mu-\alpha H \frac{d u}{d \theta}
$$

$$
H^{2}\left(\frac{d^{2} u}{d \theta^{2}}+u\right)+H\left(\frac{d H}{d \theta}+\alpha\right) \frac{d u}{d \theta}-\mu=0
$$

But by the second equation of motion

$$
H=h-\alpha \theta
$$

where h is constant Hence

$$
\frac{d^{2} u}{d \theta^{2}}+u-\frac{\mu}{(h-\alpha \theta)^{2}}=0
$$

It is enough to retann the first power of α, so that

$$
\frac{d^{2} u}{d \theta^{2}}+u=\frac{\mu}{h^{2}}\left(1+\frac{2 \alpha \theta}{h}\right)
$$

and the integral 18

$$
\begin{equation*}
u=\mu h^{-2}\left\{1+e \cos (\theta-\gamma)+2 \alpha h^{-2} \theta\right\} \tag{1}
\end{equation*}
$$

where e and γ are constants
163 The osculating ellipse at the point $\theta=\theta_{1}$ is obtamed by supposing the resisting medium to disappear at this point and the subsequent motion under the central attraction to be undisturbed The path is then

$$
u=p_{1}^{-1}\left\{1+e_{1} \cos \left(\theta-\gamma_{1}\right)\right\}
$$

The motion at the instant is the same in the actual trajectory (1) and in this ellipse, and thus $\theta=\theta_{1}, u=u_{1}, u$ and θ, and therefore $H=H_{1}$ and $d u / d \theta$ are the same for both curves Let $\mu h^{-2}=p^{-1} \quad$ Now H_{1} is the constant of areal velocity in the ellipse, and hence

$$
p_{1}^{-1}=\mu H_{1}^{-2}=p^{-1}\left(1-\alpha h^{-1} \theta_{1}\right)^{-2} .
$$

To the first order in α then

$$
p_{1}^{-1} \Delta p_{1}=-2 a h^{-1} \theta_{1}
$$

Again, by equating the values of u and $d u / d \theta$,

$$
\begin{aligned}
& p_{1}^{-1}\left\{1+e_{1} \cos \left(\theta_{1}-\gamma_{1}\right)\right\}=p^{-1}\left\{1+e \cos \left(\theta_{1}-\gamma\right)+2 \alpha h^{-1} \theta_{1}\right\} \\
& p_{1}^{-1}\left\{-e_{1} \sin \left(\theta_{1}-\gamma_{1}\right)\right\}=p^{-1}\left\{-e \sin \left(\theta_{1}-\gamma\right)+2 a h^{-1}\right\}
\end{aligned}
$$

and to the first order in a

Hence

$$
\begin{aligned}
& e_{1} \cos \left(\theta_{1}-\gamma_{1}\right)=e \cos \left(\theta_{1}-\gamma\right)-2 \alpha h^{-1} e \theta_{1} \cos \left(\theta_{1}-\gamma\right) \\
& e_{1} \sin \left(\theta_{1}-\gamma_{1}\right)=e \sin \left(\theta_{1}-\gamma\right)-2 \alpha h^{-1}-2 \alpha h^{-1} e \theta_{1} \sin \left(\theta_{1}-\gamma\right)
\end{aligned}
$$

$$
\begin{aligned}
& e_{1} \cos \left(\gamma_{1}-\gamma\right)=e-2 \alpha h^{-1} e \theta_{1}-2 \alpha h^{-1} \sin \left(\theta_{1}-\gamma\right) \\
& e_{1} \sin \left(\gamma_{1}-\gamma\right)=2 \alpha h^{-1} e \cos \left(\theta_{1}-\gamma\right)
\end{aligned}
$$

and, still to the first order,

$$
\begin{aligned}
& \Delta e_{1}=-2 a h^{-1}\left\{e \theta_{1}+\sin \left(\theta_{1}-\gamma\right)\right\} \\
& \Delta \gamma_{1}=2 \alpha h^{-1} \cos \left(\theta_{1}-\gamma\right)
\end{aligned}
$$

Between these terms an important practical distinction is at once apparent That in Δe_{1} depending on θ_{1} will diminish the eccentincity indefinitely until the orbit becomes circular It is a secular term The other terms are
perroduc, and when α is small their effect, not being cumulative, is small also In practical applications, to Encke's comet for example, they can be neglected Then $\Delta \gamma_{1}=0$ and the direction of the apsidal line is unaffected by the resisting medium

In a complete revolution the secular effects are given by

$$
\frac{\Delta e_{1}}{e_{1}}=\frac{\Delta p_{1}}{p_{1}}=-\frac{4 \pi \alpha}{h}
$$

and the corresponding changes in the mean motion and the mean distance are given by

$$
\frac{\Delta n_{1}}{n_{1}}=-\frac{3}{2} \frac{\Delta a_{1}}{a_{1}}=-\frac{3}{2} \frac{\Delta p_{1}}{p_{1}}-\frac{3 e_{1} \Delta e_{1}}{1-e_{1}^{2}}=\frac{1+e_{1}^{2}}{1-e_{1}^{2}} \frac{6 \pi \alpha}{h}
$$

since $a_{1}=p_{1}\left(1-e_{1}^{2}\right)^{-1} \quad$ Thus the most important effects of a resisting medium are a steady increase in the mean motion and a steady decrease in the mean distance, which must ultimately bring the disturbed body into contact with the centre of attraction
164. This simple example has been chosen, apart from its intrinsic interest, because it illustrates certain important points There is, in the first place, the osculating or instantaneous ellipse, which is
and not

$$
p_{1} u=1+e_{1} \cos \left(\theta-\gamma_{1}\right)
$$

$$
p u=1+e \cos (\theta-\gamma)
$$

The latter is a definite curve which may be called an intermediate orbit and may seave usefully as a curve of reference Indeed it has been so used in what precedes But it is not the osculating orbit at any time There is also the distinction drawn between periodic and secular disturbances in the motion, of which the former may be relatively unimportant compared with the latter because these, however slow, are cumulative in effect

The general nature of disturbed planetary motion can now be considered For two planets only, the disturbing function has the form, found in the last chapter,

$$
\begin{aligned}
& R=\Sigma F\left(a, a^{\prime}, e, e^{\prime}, \imath, \imath^{\prime}\right) \cos T \\
& T=\left[h(n t+\epsilon)+h^{\prime}\left(n^{\prime} t+\epsilon^{\prime}\right)+g \varpi+g^{\prime} \varpi^{\prime}+f \Omega+f^{\prime} \Omega^{\prime}\right]
\end{aligned}
$$

where ($a, n, e, \imath, \Omega, \varpi, \epsilon$) are the elements of the disturbed orbit, ($a^{\prime}, n^{\prime}, e^{\prime}, \imath^{\prime}$, $\Omega^{\prime}, w^{\prime}, \epsilon^{\prime}$) the elements of the disturbing orbit The equations of $\S 139$ are now avalable for finding the variations of the elements In accordance with the artifice explained in $\S 140$ the mean longitude ϵ is taken in a special sense there defined, and a in the coefficient and n in the argument of any term are treated as independent in forming the partial differential coefficients of R Therefore

$$
\frac{\partial R}{\partial a}, \frac{\partial R}{\partial e}, \frac{\partial R}{\partial \imath}
$$

are all of the form $\Sigma C \cos T$, and

$$
\frac{\partial R}{\partial \Omega}, \frac{\partial R}{\partial \sigma}, \frac{\partial R}{\partial \epsilon}
$$

are all of the form $\Sigma C \sin T$, where T is the argument of the term Hence the equations for the variations are themselves of the form

$$
\begin{aligned}
& \frac{d a}{d t}=\Sigma C_{1} \sin T, \\
& \frac{d \Omega}{d t}=\Sigma C_{2} \cos T,
\end{aligned}
$$

In the first approximation the right-hand members (which contain the disturbing mass as a factor) are calculated with the osculating elements of both orbits for a certain epoch, and these elements are treated as constant The equations can then be integrated, and in fact

$$
\begin{aligned}
& \delta_{1} a=-\Sigma C_{1} \cos T /\left(h n+h^{\prime} n^{\prime}\right), \\
& \delta_{1} \Omega=\Sigma C_{2} \sin T /\left(h n+h^{\prime} n^{\prime}\right),
\end{aligned}
$$

These are the absolute perturbations of the first order Simularly the perturbations of the first order in the masses can be calculated for all the distuibing planets concerned and the results can be combined by addition

165 Each term in the perturbations represents a distinct inequality in the motion of the disturbed planet It will now be seen that the mequalities are of two kinds The multipliers h, h^{\prime} have all integral valucs, positive and negative, including 0 When $h=h^{\prime}=0$ the disturbing function R is reduced to that part which does not contain the time Thus

$$
\begin{aligned}
& \frac{d a}{d t}=C_{1}, \quad, \quad \frac{d \Omega}{d t}=C_{2}, \\
& \delta_{1} a=C_{1} t, \quad, \quad \delta_{1} \Omega=C_{2} t,
\end{aligned}
$$

and the inequalities are secular From the present limited point of view they will increase indefintely and in the course of time will modify the conditions of the planetary system profoundly, uncompensated by any check

But one remark can be made immediately The most important element as regards the stability of the system is clearly the mean distance a Now when $h=h^{\prime}=0$, not only does t disappear from R but also ϵ Hence

$$
\frac{d a}{d t}=\frac{\partial R}{\partial \epsilon} 2 \sqrt{ }\left(\frac{a}{\mu}\right)=0
$$

and in the previous set of equations $C_{1}=0$ There is therefore no secular inequality in a of the first order in the masses How far this important theorem can be extended to the higher orders must be seen later It follows that the mean motion n is also free from any secular inequality of the first order

The other inequalities, when h and h^{\prime} are not both zero, are evidently purely periodic, unless $h n+h^{\prime} n^{\prime}=0$ The meaning of this qualification is that the mean motions must not be commensurable Now mean motions are never commensurable, except perhaps instantaneously, since in fact they are not constant But there are, as it were, degrees of incommensurability In any case integers can be found to make $h n+h^{\prime} n^{\prime}$ smaller than any assignable quantity If the incommensurability of n, n^{\prime} is high, the corresponding integers h, h^{\prime} will be large In general the coefficients in R which correspond to arguments of a high order diminish rapidly with the order Then the occurrence of a small divisor $h n+h^{\prime} n^{\prime}$ on integration will have no very serious effect But if the incommensurability of the mean motions is low, this divisor may become very small for quite moderate values of h, h^{\prime}, and a faurly small term in the disturbing function may be greatly magnified by integration

Thus in the case of Jupiter and Saturn

$$
5 n-2 n^{\prime}=n / 30=n^{\prime} / 74
$$

nearly, and this fact causes a considerable inequality in the motion of both planets, with a period of nearly 900 years The period of such an mequality is $2 \pi /\left(h n+h^{\prime} n^{\prime}\right)$ and therefore mequalities of the class just considered are always connected with long periods They hold an intermediate place between ordinary periodic mequalities and secular mequalities

The mean longitude is affected in a double degree For (§ 140) this is

$$
\epsilon+\int n d t=\epsilon+\rho
$$

where

$$
\frac{d^{2} \rho}{d t^{2}}=-\frac{3}{u^{2}} \frac{\partial R}{\partial \epsilon}=\Sigma C_{\sin } T
$$

and therefore

$$
\delta_{1} \rho=-\Sigma C \sin T /\left(h n+h^{\prime} n^{\prime}\right)^{2}
$$

The long-period mequalities in the other elements have the divisor $h n+h^{\prime} n^{\prime}$ in the first degree only Hence the principal effect is to be observed in the mean longitude

166 It is in the next place necessary to consider the perturbations of the second order in the masses, for the first approximation does not in general suffice, and in the theories of Jupiter and Saturn it is even necessary to go beyond the third order It is convenient to write

$$
\begin{aligned}
a=a_{0}+\delta_{1} a_{0}+\delta_{2} a_{0}+ & , \epsilon=\epsilon_{0}+\delta_{1} \epsilon_{0}+\delta_{2} \epsilon_{0}+. \\
a^{\prime}=a_{0}^{\prime}+\delta_{1} a_{0}^{\prime}+\delta_{2} a_{0}^{\prime}+, & , \epsilon^{\prime}=\epsilon_{0}^{\prime}+\delta_{1} \epsilon_{0}^{\prime}+\delta_{2} \epsilon_{0}^{\prime}+
\end{aligned}
$$

where $a_{0}, \quad, \epsilon_{0}, \alpha_{0}^{\prime}, \quad, \epsilon_{0}^{\prime}$ are the osculating elements for a chosen epoch, and δ_{1} indicates the perturbations of the first order, the derivation of which has been
explamed, δ_{2} those of the second order, and so on The equations for the varations of the elements can be written, for example, in the form

$$
\frac{d \Omega}{d t}=\frac{(\mu a)^{-\frac{1}{2}}}{\cos \phi \sin \imath} \frac{\partial R}{\partial \imath}=m^{\prime} f\left(a, a^{\prime}, \quad, \rho+\epsilon, \rho^{\prime}+\epsilon^{\prime}\right)
$$

and after substituting the above expressions for a, e^{\prime} and expanding by Taylor's theorem,

$$
\frac{d}{d t}\left(\delta_{2} \Omega\right)=m^{\prime}\left\{\delta_{1} a_{0} \frac{\partial f}{\partial a_{0}}+\delta_{1} a_{0}^{\prime} \frac{\partial f}{\partial a_{0}^{\prime}}+\quad+\left(\delta_{1} \rho_{0}+\delta_{1} \epsilon_{0}\right) \frac{\partial f}{\partial \epsilon_{0}}+\left(\delta_{1} \rho_{0}^{\prime}+\delta_{1} \epsilon_{0}^{\prime}\right) \frac{\partial f}{\partial \epsilon_{0}}\right\}
$$

The reduction of the right-hand side to a suitable form will be readily understood in geneial terms, apart from the complexities which will naturally arise in the practical calculation, and a simple integration, requiring the introduction of no arbitrary constant, will give the expression of $\delta_{2} \Omega$ Simmlanly the perturbations of higher orders, so far as they are of sensible magnitude, can be found successively, when those of the lower orders have been determined, for all the elements

167 The general form of the results will now be apparent In the first order the inequalities are of the forms

$$
A \cos (\nu t+h), \quad A t
$$

only In the higher orders the terms obtaned by the algebratc composition and subsequent integration of these two forms will clearly belong to one of the three types

$$
A \cos (\nu t+h), \quad A t^{m}, \quad A t^{m} \cos (\nu t+h)
$$

which may be called respectively periodıc, purely secular and mixed terms The term order may be retanned to denote the degiee α of A in the masses As A is also a function of the eccentricities and inclinations, which are also in general small parameters, it may be limited to a homogeneous function in these parameters Then the degree of the term is the degree of this function and represents its order in respect to the eccentricitios and inchnations

A further classification is used by Poincaré The ondeı of a term being α, the rank of a term is represented by $\alpha-m$, or by the order less the exponent of t A term of high order is mitially small, but if m is large it will grow rapidly in importance, so that ultimately the terms of the lowest rank will have the greatest sıgnuficance

The occurience of long-period terms with small divisors has been noticed In the higher orders these divisors wall be combined and raised to higher powers by the subsequent integrations Let m^{\prime} be the sum of the exponents of such divisors in any term Then the class of that term is defned by the number $a-\frac{1}{2}\left(m+m^{\prime}\right)$ It will now be clear that the value of these different categories depends on the length of time contemplated For relatively short
intervals the most important terms are those of low order In longer intervals the terms of low class nise into prominence And finally it is the terms of low rank which have the greatest influence in the ultimate destiny of the system

But here a question naturally arises How far is the form in which the terms present themselves natural to the problem, and how far are they the artificial product of the particular method by which they are obtaned? It is evident that the physical importance of this question is not quite the same mall cases Thus a mean motion in the position of the node or peribelion may be admitted without any serious direct consequences to the nature of the system On the other hand, a purely secular term in the mean distance or the eccentricity, taken by itself without compensating circumstances, must ultimately prove fatal to the stability The general problem suggested is very difficult and the reader is referred to the first volume of Poincare's Legons de Mécanaque Céleste for a thorough discussion

It must, however, be pointed out that the form of the results may be perfectly legitimate, so far as it goes, and at the same time not in any way inconsistent with the stability of the system, though a decision is beyond the range of the above elementary methods It is impossible to be satisfied with the solution here described as a final representation, and this feeling is obviously suggested by considering the mixed terms Since the corresponding oscillations increase in amplitude indefinitely with the time the departure from the original configuration will become so great that the fundamental assumption of small displacements in forming the equations for the variations will be contravened Then one of two things will happen Either the mutual forces will tend to restore the original configuration, and there will be stability, or the forces will tend to magnify the disturbance, and there will be instability But in either case equally the method adopted breaks down and the fundamental question remains unanswered

How then are the statements to be reconciled, that the method-which is the method on which the existing theories of the major planets are actually based-may be perfectly legitimate, and that, while the form of the terms to which it leads obviously suggests instability, complete stability is nevertheless entirely possible? The simple answer is that it is only necessary to imagine that ν in the argument of any term is itself a function of the disturbing masses Now the above method involves a development in powers of the masses, and when the parameters which represent the masses are thus forced out of the circular functions they carry the time t explicitly with them, and the appearance of secular and mixed terms is a natural consequence Yet the development in terms of the masses may be convergent and entirely legitimate In this way it will be seen that the occurrence of secular and mixed terms is compatible with stability, though a profound discussion is necessary for a positive conclusion on this point

The case of a planet moring in a resisting medium is quite different There is then a definite loss of energy and the effect of the secular changes is not doubtful

168 In the theories of the planets on which the existing tables have been based the coordinates of the planets relative to the Sun have been used and this fact governs the form of the disturbing function, which is distinct for each parr of planets For practical purposes this choice of coordinates is an obvious one But for theoretical purposes it is unsuitable, chiefly because, like the common system of elliptic elements, it is ill adapted to the transformations which are an essential feature of the dynamical methods initiated by Hamilton Another system of coordınates, due to Jacobi, will therefore now be introduced

Let $\left(\xi_{1}, \eta_{2}, \xi_{2}\right)$ be the coordnates of the mass m_{2} in a system of n masses $m_{1}, m_{2}, \quad, m_{n}$, the origin being any fixed point The masses are taken in any fixed order, represented by the suffixes, which is quite independent of any arrangement which may be visible in the system Let

$$
m_{1}+m_{2}+\quad+m_{2}=\mu_{2}, \quad m_{2}=\mu_{2}-\mu_{n-1}, \quad \mu_{0}=0
$$

Let $\left(X_{2}, Y_{2}, Z_{2}\right)$ be the coordnates of the point G_{2}, which is the centre of mass of the partial system $m_{1}, m_{2}, \quad, m_{2}$, so that

$$
\begin{gathered}
\mu_{2} X_{2}=\mu_{1} \xi_{1}+\left(\mu_{2}-\mu_{1}\right) \xi_{2}+\quad+\left(\mu_{2}-\mu_{2-1}\right) \xi_{2} \\
\left(\mu_{2}-\mu_{r-1}\right) \xi_{2}=\mu_{2} X_{2}-\mu_{2-1} X_{2-1}, \quad \xi_{1}=X_{1}
\end{gathered}
$$

Let $\left(x_{2}, y_{i}, z_{2}\right)$ be the coordinates of m_{1} relative to $G_{n_{1}}$, so that

$$
x_{2}=\xi_{2}-X_{2-1}, \quad\left(\mu_{2}-\mu_{2-1}\right) x_{2}=\mu_{2}\left(X_{t}-X_{2-1}\right)
$$

Thus $\left(x_{2}, y_{2}, z_{2}\right)$ are the coordnates of m_{1} relative to m_{1}, or $\left(\xi_{2}-\xi_{1}, \eta_{8}-\eta_{1}, \zeta_{2}-\zeta_{1}\right)$, (x_{3}, y_{3}, z_{3}) are the coordnates of m_{3} relative to G_{2}, the centre of mass of m_{1}, m_{9}, and so on There are no coordnates (x_{1}, y_{1}, z_{1}) By the above

$$
\begin{aligned}
& \left(\mu_{2}-\mu_{r-1}\right)^{2} \xi_{2}^{2}=\left(\mu_{2} X_{2}-\mu_{r-1} X_{t-1}\right)^{2} \\
& \left(\mu_{2}-\mu_{r-1}\right)^{2} x_{i}^{2}=\mu_{1}^{2}\left(X_{i}-X_{i-1}\right)^{2}
\end{aligned}
$$

and on addition of all the equations of this type

$$
\begin{gathered}
\sum_{i=1}^{n}\left(\mu_{\imath}-\mu_{r-1}\right)\left(\xi_{2}^{2}-\mu_{i-1} x_{i}^{2} / \mu_{i}\right)=\mu_{n} X_{n}^{2} \\
\sum_{i=1}^{n} m_{\imath} \xi_{2}^{2}=\sum_{i=2}^{n} m_{\imath} \mu_{r-1} x_{2}^{2} / \mu_{\imath}+\mu_{n} X_{n}^{2}
\end{gathered}
$$

The relations between the coordinates have been written down for one only But they are linear and the same for all three coordnates separately

Therefore they also apply to the velocities Hence if T is the kinetic energy of the system,

$$
\begin{aligned}
2 T & =\sum_{\imath=1}^{n} m_{\imath}\left(\xi_{\imath}{ }^{2}+\eta_{i}{ }^{2}+\dot{\zeta}_{\imath}{ }^{2}\right) \\
& =\sum_{\imath=2}^{n} m_{\imath} \mu_{\imath-1} \mu_{\imath}-1\left(\dot{x}_{i}{ }^{2}+y_{\imath}{ }^{2}+z_{\imath}{ }^{2}\right)+\mu_{n}\left(X_{n}{ }^{2}+Y_{n}{ }^{2}+Z_{n}{ }^{2}\right)
\end{aligned}
$$

But (X_{n}, Y_{n}, Z_{n}) are the coordinates of the centre of mass of the system. They are absent from the potential function and are in fact ignorable coordinates The known integrals for the centre of mass follow immediately and these coordinates can be suppressed The problem of n bodies is thus reduced to a problem of $n-1$ fictitious bodies and the total order of the differential equations of motion is reduced by 6

169 The new form of the areal integrals is easily found For

$$
\begin{aligned}
\left(\mu_{\imath}-\mu_{\imath-1}\right)^{2}\left(\eta_{\imath} \dot{\zeta}_{\imath}-\zeta_{\imath} \eta_{\imath}\right)= & \left(\mu_{\imath} Y_{\imath}-\mu_{\imath-1} Y_{\imath-1}\right)\left(\mu_{\imath} Z_{\imath}-\mu_{\imath-1} Z_{\imath-1}\right) \\
& -\left(\mu_{2} Z_{\imath}-\mu_{\imath-1} Z_{\imath-1}\right)\left(\mu_{\imath} Y_{\imath}-\mu_{\imath-1} Y_{\imath-1}\right) \\
\left(\mu_{\imath}-\mu_{\imath-1}\right)^{2}\left(y_{\imath} z_{\imath}-z_{\imath} y_{\imath}\right) & =\mu_{i}{ }^{2}\left(Y_{\imath}-Y_{\imath-1}\right)\left(Z_{\imath}-Z_{\imath-1}\right)-\mu_{\imath}{ }^{2}\left(Z_{\imath}-Z_{\imath-1}\right)\left(Y_{\imath}-Y_{\imath-1}\right)
\end{aligned}
$$

and hence

$$
\begin{aligned}
\left(\mu_{2}-\mu_{2-1}\right)\left\{\left(\eta_{i} \zeta_{2}-\zeta_{2} \eta_{2}\right)\right. & \left.-\mu_{2-1} \mu_{2}^{-1}\left(y_{2} z_{2}-z_{2} y_{i}\right)\right\} \\
& =\mu_{2}\left(Y_{2} \dot{Z}_{2}-Z_{2} Y_{2}\right)-\mu_{i-1}\left(Y_{\imath-1} \dot{Z}_{2-1}-Z_{2-1} \dot{Y}_{\imath-1}\right)
\end{aligned}
$$

The sum of all equations of this type gives

$$
\sum_{\imath=1}^{n} m_{2}\left\{\left(\eta_{2} \dot{\zeta}_{2}-\zeta_{2} \eta_{2}\right)-\mu_{2-1} \mu_{2}^{-1}\left(y_{2} z_{2}-z_{2} y_{2}\right)\right\}=\mu_{n}\left(Y_{n} \dot{Z}_{n}-Z_{n} Y_{n}\right)
$$

But it is possible to write $X_{n}=Y_{n}=Z_{n}=0$, that is equivalent to taking the centre of mass of the system as the orign of the coordnates $\left(\xi_{1}, \eta_{1}, \zeta_{2}\right) \quad$ Thus the areal integrals now take the form

$$
\begin{aligned}
& \sum_{i=2}^{n} m_{2} \mu_{\imath-1} \mu_{\imath}^{-1}\left(y_{2} z_{i}-z_{2} y_{i}\right)=c_{1} \\
& \sum_{i=2}^{n} m_{2} \mu_{i-1} \mu_{\imath}^{-1}\left(z_{i} x_{2}-x_{i} z_{2}\right)=c_{2} \\
& \sum_{i=2}^{n} m_{2} \mu_{i-1} \mu_{\imath}^{-1}\left(x_{2} y_{i}-y_{v} x_{2}\right)=c_{3}
\end{aligned}
$$

where (c_{1}, c_{2}, c_{3}) are the angular momenta of the system about fixed axes through the centre of mass The direction of the axes has remaned the same throughout

Let (c_{1}, c_{2}, c_{3}) be considered as the components of a constant vector C, $n_{2} \mu_{i-1} \mu_{2}^{-1}\left(x_{i}, y_{2}, z_{2}\right)$ as the components of a vector M_{i}, and $\left(x_{i}, y_{2}, z_{2}\right)$ as the
components of a vector r_{i} Then in quaternion notation the above three integrals may be represented by the single equation

$$
\sum_{2=2}^{n} V\left(r_{2} M_{2}\right)=C .
$$

Hence in the problem of three bodies

$$
V\left(r_{2} M_{2}\right)+V\left(r_{3} M_{3}\right)=C
$$

These three vectors are therefore coplanar But $V\left(r_{2} M_{2}\right)$ is normal to the plane of r_{2}, M_{2}, that 1s, to the instantaneous orbit of the fictitious planet 2 Similarly $V\left(r_{3} M_{3}\right)$ is normal to the instantaneous orbit of the fictitious planet 3, and clearly $C_{\text {is }}$ normal to the invariable plane Hence the nodes of the instantaneous orbits of the two fictitious planets on the invariable plane coincide

This important property explams the so-called elimination of the nodes, which in an explicit form is due to Jacobi In the more common system of astronomical coordinates it disappears from view The reader who is unacquainted with the elements of quaternions will have no difficulty in finding an alternative form of proof, as in $\S 22$

170 The body denoted by 1 will now be identified with the Sun, and \imath or ρ will have the values 2,,n The potential energy of the system, when the units are chosen so that the constant of gravitation is unity, is
where

$$
U=-\Sigma \frac{m_{1} m_{2}}{\Delta_{1, \imath}}-\Sigma \frac{m_{\imath}, m_{j}}{\Delta_{\imath, 1}}
$$

$$
\Delta_{1, j}=\left(\xi_{2}-\xi_{2}\right)^{2}+\left(\eta_{j}-\eta_{2}\right)^{2}+\left(\zeta_{3}-\zeta_{2}\right)^{2}
$$

Also the kinetic energy, when the coordınates (X_{n}, Y_{n}, Z_{n}) are ignored, is T, where

$$
2 T=\sum_{\imath=2}^{n} m_{\imath} \mu_{\imath-1} \mu_{\imath}{ }^{-1}\left(x_{\imath}{ }^{2}+y_{\imath}{ }^{2}+z_{\imath}{ }^{2}\right)
$$

Let

$$
x_{\imath}^{\prime}=\frac{\partial T}{\partial x_{i}}=m_{\imath} \mu_{\imath-1} \mu_{1}^{-1} x_{i}, \quad, \quad H=T+U
$$

Then the equations of motion of the system may be written (§ 124)

Now

$$
\frac{d x_{2}}{d t}=\frac{\partial H}{\partial x_{2}^{\prime}}, \frac{d x_{2}^{\prime}}{d t}=-\frac{\partial H}{\partial x_{i}}, \quad(x, y, z)
$$

$$
\left(\mu_{2}-\mu_{n-1}\right) \xi_{2}=\mu_{2} X_{2}-\mu_{r-1} X_{2-1}=\mu_{2}\left(\xi_{2+1}-a_{2+1}\right)-\mu_{2-1}\left(\xi_{2}-x_{2}\right)
$$

and therefore

$$
\xi_{2+1}-\xi_{2}=x_{\imath+1}-\mu_{\imath-1} x_{2} / \mu_{\imath}
$$

Hence by the addition of such equations

$$
\xi_{2+1}-\xi_{1}=x_{1+1}+m_{2} x_{2} / \mu_{2}+\quad+m_{2} x_{2} / \mu_{2}, \quad \xi_{2}-\xi_{1}=x_{2}
$$

which expresses the relative coordınates $\xi_{2}-\xi_{1}$, in terms of the coordinates x_{2}, , and shows that the latter differ from the former only by quantities of the first order in the small masses In particular, for the body 2 , which may be identified with any one of the planets, there is no difference

Let U be reduced to its terms U_{1} of the lowest order in the small masses, which is the first Then

$$
U_{1}=-m_{1} \sum m_{i} / r_{i}, \quad r_{i}^{2}=x_{i}^{2}+y_{i}^{2}+z_{2}^{2}
$$

for r_{2} differs from $\Delta_{1,2}$ by a quantity which involves the masses The equations of motion reduce to

$$
\frac{d x_{2}}{d t}=\frac{\partial H_{1}}{\partial x_{2}^{\prime}}, \quad \frac{d x_{\imath}^{\prime}}{d t}=-\frac{\partial H_{1}}{\partial x_{2}}, \quad H_{1}=T+U_{1}
$$

or in more explicit form

$$
\mu_{\imath-1} \mu_{2}^{-1} x_{\imath}=-m_{1} x_{2} / r_{2}^{3}, \quad(x, y, z)
$$

These are the equations of undisturbed elliptic motion, and in particular

$$
x_{2}=-\left(m_{1}+m_{2}\right) x_{2} / r_{2}^{3}, \quad(x, y, z)
$$

which agnee naturally with the usual equations of a planet relative to the Sun in undisturbed motion, and give a mean distance a_{2} with the usual meaning For the other bodies the equations are of the same form and have precisely similar solutions, but the elements a_{2} will differ from the ordinary elements slightly because $\left(x_{i}, y_{i}, z_{i}\right)$ are not coordinates relative to the Sun unless $\imath=2$ This is not material to the purpose in view because the body 2 represents any planet and any proposition which is proved for it must be true generally
171. These equations for the undisturbed motion can now be solved in terms of canonical constants When the latter are treated as variables, they satisfy canonical equatiuns formed with $R=U_{1}-U \quad$ As in $\S 143$ this value of R may be modified by addang $\Sigma m \mu^{2} / 2 L^{\prime 2}$, where $m=m_{\imath} \mu_{\imath-1} / \mu_{\imath}$ and $\mu=m_{1} \mu_{2} / \mu_{r-1}$ in view of the explicit form of the undisturbed equations Then any of the different sets of variables explained in that section can be used, and the last set, now denoted by ($L^{\prime}, \xi_{1}^{\prime}, \xi_{2}^{\prime}, \lambda, \eta_{1}^{\prime}, \eta_{2}^{\prime}$), will be chosen The equations for the perturbations can now be written
where

$$
\begin{aligned}
& \frac{m_{2} \mu_{\imath-1}}{\mu_{2}} \frac{d L_{2}^{\prime}}{d t}=\frac{\partial V}{\partial \lambda_{\imath}}, \frac{m_{\imath} \mu_{\imath-1}}{\mu_{\imath}} \frac{d \lambda_{2}}{d t}=-\frac{\partial V}{\partial L_{2}^{\prime}} \\
& \frac{m_{2} \mu_{\imath-1}}{\mu_{\imath}} \frac{d \xi_{2}^{\prime}}{d t}=\frac{\partial V}{\partial \eta_{2}^{\prime}}, \frac{m_{\imath} \mu_{\imath-1}}{\mu_{\imath}} \frac{d \eta_{2}^{\prime}}{d t}=-\frac{\partial V}{\partial \xi_{2}^{\prime}}
\end{aligned}
$$

$$
V=-U+U_{1}+m_{1}^{2} \sum m_{2} \mu_{2} / 2 \mu_{r-1} L_{2}^{\prime 2}
$$

There are $n-1$ pairs of equations in $\left(L_{2}^{\prime}, \lambda_{2}\right)$ and $2(n-1)$ pairs in $\left(\xi_{2}^{\prime}, \eta_{2}{ }^{\prime}\right)$, but there is no need here to distinguish between the eccentric and oblique
variables From this point the former use of $\left(\xi_{2}, \eta_{2}, \xi_{2}\right)$ as the rectangular coordinates of m_{\imath} disappears

A little explanation may be necessary to account for the appearance of the mass factors of the momenta x_{i}^{\prime} in the equations In § 135 giving the Hamilton-Jacobi solution for undisturbed elliptic motion the single factor m, representing the mass of the moving body, was removed consistently from U, T and H Similarly in $\S 139 U-R$ was written in the place of U, R being the disturbing function in its common form, whereas the true increment in the potential energy is $-m R$ But here it is not possible to divide the more general function $U-U_{1}$ as a whole by any particular mass, though it is possible to do so as regards the set of equations corresponding to a particular value of \imath Hence it was necessary to restore the mass factors in the manner shown But now they can be removed by the change of variables,

$$
L_{2}=\frac{m_{2} \mu_{2-1}}{\mu_{i}} L_{2}^{\prime}, \quad \xi_{2}=\left(\frac{m_{2} \mu_{2-1}}{\mu_{i}}\right)^{\frac{1}{2}} \xi_{i}^{\prime}, \quad \eta_{2}=\left(\frac{m_{2} \mu_{2-1}}{\mu_{i}}\right)^{\frac{1}{2}} \eta_{i}^{\prime}
$$

and the equations then become

$$
\begin{array}{ll}
\frac{d L_{2}}{d t}=\frac{\partial V}{\partial \lambda_{2}}, & \frac{d \lambda_{2}}{d t}=-\frac{\partial V}{\partial L_{2}} \\
\frac{d \xi_{2}}{d t}=\frac{\partial V}{\partial \eta_{2}}, & \frac{d \eta_{2}}{d t}=-\frac{\partial V}{\partial \xi_{2}}
\end{array}
$$

where

$$
\nabla=-U+U_{1}+m_{1}{ }^{2} \Sigma m_{2}{ }^{3} \mu_{\imath-1} / 2 \mu_{2} L_{i}{ }^{3}
$$

The terms added to $U_{1}-U$ depend on the L_{\imath} only, and affect one type of equation, namely

$$
\frac{d \lambda_{2}}{d t}=\frac{\partial}{\partial L_{2}}\left(U-U_{1}\right)+\frac{m_{1}^{2} m_{2}{ }^{3} \mu_{2-1}}{\mu_{2} L_{1}^{3}}=\frac{\partial}{\partial \bar{L}_{1}}\left(U-U_{1}\right)+n_{2}
$$

so that $\lambda_{2}=n_{2} t+h$ and n_{2} is the mean motion in the preliminary solution The first-order perturbations of λ_{2} will require the first-older perturbation of L_{i} to be included in the term from which n_{ι} originates

172 It is not at present very necessary to consider in detanl the form of expansion of $U-U_{1}$ It can in the first place be expanded in powers and products of the small masses m_{2} and of the coordınates (x_{2}, y_{2}, z_{2}) The latter can be expanded in powers of L_{2}, ξ_{2}, η_{1} with purely periodic functions of λ_{2} Hence $U-U_{1}$ can be expanded in the same form, and arranged in orders of the masses, beginning with the second since the first has been removed by U_{1} Thus if the fourth order in V be neglected, $V=V_{2}+V_{3}$, where V_{2} is of the second order and V_{s} of the third, and V_{2} contans at most two, V_{s} at most three, mean longitudes λ_{1} in 1ts arguments, the coefficients of the periodic terms being rational and integral functions of L_{u}, ξ_{v}, η_{v}

The perturbations of the first order can now be obtained in the usual way by neglecting V_{8} and substituting mitial values of L_{i}, ξ_{i}, η_{i} in V_{2}, moluding $n_{2} t+\lambda_{2}{ }^{0}$ for λ_{2} This process gives

$$
L_{2}=L_{2}{ }^{0}+\delta_{1} L_{2}{ }_{2}, \quad \lambda_{2}=n_{2} t+\lambda_{2}{ }^{0}+\delta_{1} \lambda_{2}{ }^{0}, \quad \xi_{2}=\xi_{2}{ }^{0}+\delta_{1} \xi_{2}{ }^{0}, \quad \eta_{2}=\eta_{2}{ }^{0}+\delta_{1} \eta_{2}{ }^{0}
$$

where $L_{i}{ }^{0}$, are constants and $\delta_{1} L_{i}{ }^{0}$, are the perturbations of the first order Owing to the form of $V_{2}, \partial V_{2} / \partial \lambda_{2}$ is purely periodic and free from anv term independent of λ_{2} Hence $\delta_{1} L_{2}{ }^{\circ}$ is also periodic and free from a secular term But the other elements will contain a term multiphed by t, ansing from the terms independent of λ_{2} in the partial derivatives of V_{2}, together with periodic terms To the second order let

$$
\boldsymbol{L}_{\imath}=L_{\imath}{ }^{0}+\delta_{1} L_{\imath}{ }^{0}+\delta_{2} L_{\imath}{ }^{0}
$$

In V_{3}, which must now be retained, it suffices to substitute the constant values $L_{2}{ }^{0}$, for L_{2}, and $n_{2} t+\lambda_{2}{ }^{0}$ for λ_{0}, but in V_{2} it is necessary to substitute $L_{i}{ }^{0}+\delta_{1} L_{2}{ }^{0}$, for L_{2}, though only the first powers of these perturbations are required Hence the equation

$$
\frac{d}{d t}\left(L_{\imath}^{0}+\delta_{1} L_{i}^{0}+\delta_{2} L_{\imath}^{0}\right)=\frac{\partial}{\partial \lambda_{\imath}}\left(V_{2}+V_{3}\right)
$$

gives, when account is taken of the solution for the first order,

$$
\frac{d}{d t}\left(\delta_{2} L_{i}{ }^{0}\right)=\sum_{j}\left(\frac{\partial^{2} V_{2}}{\partial \lambda_{2} \partial L_{j}{ }^{0}} \delta_{1} L_{j}{ }^{0}+\frac{\partial^{2} V_{2}}{\partial \lambda_{2} \partial \lambda_{j}} \delta_{1} \lambda_{j}{ }^{0}+\right)+\frac{\partial V_{3}}{\partial \lambda_{i}}
$$

By the same argument as applied to ∇_{2} in the first approximation the last term gives rise to periodic terms only Hence a search for secular terms can be confined in the first place to the expression

$$
\sum_{j}\left[\frac{\partial^{2} V_{2}}{\partial \lambda_{2} \partial L_{j}{ }^{\circ}} \int \frac{\partial V_{2}}{\partial \lambda_{j}} d t-\frac{\partial^{2} V_{2}}{\partial \lambda_{2} \partial \lambda_{j}} \int \frac{\partial V_{2}}{\partial L_{j}{ }^{\circ}} d t+\frac{\partial^{2} V_{2}}{\partial \lambda_{1} \partial \xi_{j}^{0}} \int \frac{\partial V_{2}}{\partial \eta_{j}^{0}} d t-\frac{\partial^{2} V_{2}}{\partial \lambda_{2} \partial \eta_{j}^{0}} \int \frac{\partial V_{2}}{\partial \xi_{j}} d t\right]
$$

Here the multiphers of the integrals are all purely periodic, owing to dufferentiation with respect to λ_{2} The integrals themselves contain secular terms in t Hence on integration the products will give rise to periodic and mised terms, but not to purely secular terms on this account The latter must arise, if at all, from a constant term in the products The only way in which this could happen would be connected with terms in the development of V_{2} of the form

$$
V_{2}=B \sin \left(k_{2} \lambda_{2}+k_{j} \lambda_{j}\right)+C \cos \left(k_{2} \lambda_{2}+k_{j} \lambda_{j}\right)=B \sin \psi+C \cos \psi
$$

But for these

$$
\begin{aligned}
& \quad \frac{\partial^{2} V_{2}}{\partial \lambda_{\lambda} \partial L_{j}^{0}} \int \frac{\partial V_{2}}{\partial \lambda_{j}} d t-\frac{\partial^{2} V_{3}}{\partial \lambda_{\partial} \partial \lambda_{j}} \int \frac{\partial V_{2}}{\partial L_{j}{ }^{\circ}} d t \\
& =k_{\imath}\left(\frac{\partial B}{\partial L_{j}{ }^{0}} \cos \psi-\frac{\partial C}{\partial L_{j}{ }^{j}} \sin \psi\right) \cdot \frac{k_{j}}{k_{\imath} n_{\imath}+k_{j} n_{j}}(B \sin \psi+C \cos \psi) \\
& +k_{\imath} k_{j}(B \sin \psi+C \cos \psi) \frac{1}{k_{\imath} n_{\imath}+k_{j} n_{j}}\left(-\frac{\partial B}{\partial L_{j}{ }^{j}} \cos \psi+\frac{\partial C}{\partial L_{j}{ }^{j}} \sin \psi\right) \\
& =0
\end{aligned}
$$

In a simular way those terms which might produce constant terms neutralize one another between the other pairs of products and therefore no purely secular part of $\delta_{2} L_{i}{ }^{0}$ can arise in this way

But the above expression is not complete, because $\delta_{1} \lambda_{j}{ }^{\circ}$ depends on $\delta_{1} L_{j}{ }^{0}$ as well as on ∇_{2} For, by the last equation of $\S 171$,

$$
\frac{d \delta_{1} \lambda_{j}{ }^{0}}{d t}=-\frac{\partial V_{2}}{\partial L_{j}{ }^{0}}-\frac{3 m_{1}{ }^{2} m_{j}{ }^{3} \mu_{j-1}}{\left.\mu_{\jmath}\left(L_{j}\right)^{4}\right)^{4}} \delta_{1} L_{j}{ }^{0}
$$

so that there is an additional part of $\delta_{2} L_{i}{ }^{0}$ not yet considered It is given by

$$
\frac{d}{d t}\left(\delta_{2} L_{\imath}^{0}\right)=A \Sigma_{g} \frac{\partial^{2} V_{2}}{\partial \lambda_{2} \partial \lambda_{j}} \int \delta_{1} L_{j}^{0} d t=A \sum_{j} \partial_{2}^{2} V_{2} \partial \lambda_{j} \int d t \int \frac{\partial V_{2}}{\partial \lambda_{j}} d t
$$

where A is a constant But terms in V_{2} of the above type, taken in the form $D \sin (\psi+h)$, lead to

$$
\begin{aligned}
\frac{d}{d t}\left(\delta_{2} L_{\imath}{ }^{0}\right) & =A k_{\imath} k_{\jmath} D \sin (\psi+h) \frac{k_{j}}{\left(k_{2} n_{\imath}+k_{j} n_{\jmath}\right)^{2}} D \cos (\psi+h) \\
& =\frac{A k_{\imath} k_{j}^{2}}{2\left(k_{2} n_{2}+k_{j} n_{\jmath}\right)^{2}} D^{2} \sin 2(\psi+h)
\end{aligned}
$$

Therefore this part of $\delta_{2} L_{i}{ }^{0}$ is purely periodic
Hence there are no puiely secular terms in $\delta_{2} L_{2}^{0}$, a proposition which Poincaré has proved in the more general form these are no purely secular perturbations of L_{\imath} in any order of rank lower than 2

This apples in particular to L_{2} But $a_{9}=M L_{2}{ }^{2}$, where M is a constant mass factor Hence

$$
\begin{gathered}
a_{2}+\delta_{1} a_{2}+\delta_{2} a_{2}=M\left(L_{2}+\delta_{1} L_{2}+\delta_{2} L_{2}\right)^{2} \\
\delta_{1} a_{2}=2 M L_{2} \delta_{1} L_{2}, \quad \delta_{2} a_{2}=M\left\{\left(\delta_{1} L_{2}\right)^{2}+2 L_{2}\left(\delta_{2} L_{2}\right)\right\}
\end{gathered}
$$

the affix ${ }^{0}$ being now omitted But $\delta_{1} L_{2}$ is purely periodic, and $\delta_{2} L_{2}$ has no purely secular term Hence to the second order in the masses there is no secular inequality in the mean distance, for it has been remarked that a_{2} represents the mean distance of any of the planets This is Poisson's theorem, an extension of Laplace's corresponding theorem for the first order, and it is the most important elementary result bearing on the stability of the solar system

173 On the other hand there are evidently mixed terms of order 2 and rank 1 in L_{2} Hence the existence of purely secular terms of order 3 and rank 2 in a_{2} can be anticipated For even without pushing the approximation further and examining $\delta_{8} L_{8}$ it is obvious that $2 M \delta_{1} L_{2} \delta_{8} L_{8}$ constitutes a part of $\delta_{3} a_{2}$ Therefore the combination of a term $A \cos m t$ in $\delta_{1} L_{2}$ with a term $B t \cos m t$ in $\delta_{2} L_{8}$ will give a term MABt in $\delta_{3} \alpha_{2}$ Such terms were first shown to exist by Spiru-Haretu in 1876

On one condition true secular mequalities of the first order occur in the mean distances Since

$$
U-U_{1}=\Sigma A \cos \left(k_{2} \lambda_{2}+k_{j} \lambda_{y}+h\right)
$$

to 1 ts lowest order,

$$
\partial V / \partial \lambda_{2}=\Sigma A k_{2} \sin \left(k_{2} \lambda_{2}+k_{j} \lambda_{j}+h\right)
$$

For perturbations of the first order the coefficients are constants and $\lambda_{2}-n_{2} t$, $\lambda_{j}-n_{j} t$ are also constant Hence

$$
d L_{\imath} / d t=\sum A k_{\imath} \sin \left(m t+h^{\prime}\right)
$$

A constant term results, producing a secular mequality, if $m=k_{2} n_{2}+k_{1} n_{\rho}=0$, which is possible only if n_{2}, n_{j} are commensurable This possibility was considered in the previous form of discussion and excluded But it is in effect ruled out by its own consequences For if a body were artificially or fortuxtously projected in such a way as to have a mean motion commensurable (eg $\frac{1}{2}, \frac{2}{3}$,) with the mean motion of a disturbing body, its mean distance would be subject to a secular disturbance from the beginning, and therefore the commensurability of its motion would be definitely destroyed Hence if the minor planets be arranged in order of distance from the Sun, it is to be expected that gaps will be found in the frequency at distances corresponding to mean motions commensurable with that of Jupiter, and it is so And similarly divisions in the rings of Saturn can be attributed to the secular perturbations of the constituent meteoric bodies, produced by the commensurable motions of any satellite which may be effective This also has been verified for the action of Mimas by Lowell and Slipher

Nevertheless among the many minor planets a few are naturally found whose motions are nearly commensurable with Jupiter's mean motion For these the long-period terms with small divisors are highly important, and the terms of low class play a far larger part than in the theories of the major planets The special difficulties thus presented require special methods of treatment, and such have been suggested by Hansen, Gyldén and others Pouncare has used an application of the principle of Delaunay's method The proper treatment of this class of minor planets presents perhaps the most interesting problems to be found in dynamical Astronomy at the present time

CHAPTER XVI

SECULAR PERTURBATIONS

174 In the preceding chapter it has been shown that the mean distances in the planetary system are free from purely secular inequalities when developed to the second order in the masses The general nature of the secular perturbations in the other elements will now be examined It may be convenient to modify slightly the equations obtained in $\$ \$ 170,171$ By reducing U to its terms of the lowest order the equations of motion there took the explicit form

$$
\mu_{r-1} \mu_{2}^{-1} x_{i}=-m_{1} x_{2} / r_{i}{ }^{3}, \quad(x, y, z)
$$

which are satisfied by the osculating motion of a planet, according to its ordinary definition, when $\imath=2$, but not otherwise But if U_{1}^{\prime} be substituted for σ_{1}, where

$$
U_{1}^{\prime}=-\Sigma\left(m_{1}+m_{2}\right) m_{2} \mu_{2-1} / \mu_{2} r_{2}
$$

a form which will be found to differ from U_{1} by terms of the third order only, the explicit equations of motion become

$$
x_{i}=-\left(m_{1}+m_{2}\right) x_{2} / r_{i}^{3}, \quad(x, y, z)
$$

which are the ordinary equations in the undisturbed problem of two bodies, and are satisfied by the osculating elements taken in their usual sense The mass tactors of the momenta are as before $m_{2} \mu_{n-1} / \mu_{2}$, but the constants of attraction are $\mu=m_{1}+m_{2} \quad$ Hence the equations for the variations will now be based on

$$
\begin{aligned}
V^{\prime} & =-U+U_{1}^{\prime}+\Sigma\left(m_{1}+m_{2}\right)^{2} m_{2} \mu_{r-1} / 2 \mu_{2} L_{2}^{\prime 2} \\
& =-U+U_{1}^{\prime}+\Sigma\left(m_{1}+m_{\imath}\right)^{2} m_{2}^{8} \mu_{\imath-1}^{3} / 2 \mu_{1}^{8} L_{2}^{2}
\end{aligned}
$$

The relation between L_{\imath} and L_{\imath}^{\prime} is the same as before, but the meaning of both is changed (except when $\imath=2$) in such a way that L_{\imath} bears generally the same form of relation to a_{i}, the osculating mean distance in its ordinary sense, as L_{2} to a_{2}

Thus the transformations of § 143 give, with those of § 171,

$$
\begin{aligned}
& L_{2}^{\prime}=\left(m_{1}+m_{i}\right)^{\frac{1}{\frac{1}{2}} a_{2}^{\frac{1}{2}}, \quad G_{2}=L_{i}^{\prime} \cos \phi_{2}, \quad H_{2}=G_{2} \cos \imath \quad 2 .} \\
& l_{2}=\epsilon_{2}-w_{2}+n_{2} t, \quad g_{2}=w_{2}-\Omega_{\imath}, \quad h_{2}=\Omega_{2} \\
& \rho_{2,1}=2 L_{i}{ }^{\prime} \sin ^{2} \frac{1}{2} \phi_{\imath}, \quad \rho_{2,2}=2 L_{i}{ }^{\prime} \cos \phi_{2} \sin ^{2} \frac{1}{2} r_{2} \\
& \lambda_{2}=\epsilon_{2}+n_{2} t, \quad \omega_{2,2}=-\omega_{2}, \quad \omega_{2,2}=-\Omega_{2} \\
& L_{\imath}=m_{\imath}\left(m_{1}+m_{\imath}\right)^{\frac{1}{2}} \mu_{\imath-1} \mu_{\imath}^{-1} a_{2}^{\frac{1}{2}} \\
& \xi_{i, 1}=2 L_{2}^{\frac{1}{2}} \sin \frac{1}{2} \phi_{2} \cos \sigma_{2}, \quad \eta_{2,1}=-2 L_{2}{ }^{\frac{1}{2}} \sin \frac{1}{2} \phi_{2} \sin \sigma_{6} \\
& \xi_{\imath, 2}=2 L_{\imath}^{\frac{1}{2}} \cos ^{\frac{1}{2}} \phi_{\imath} \sin \frac{1}{2} v_{2} \cos \Omega_{\imath}, \quad \eta_{\imath, 2}=-2 L_{\imath}^{\frac{1}{2}} \cos ^{\frac{1}{2}} \phi_{\imath} \sin \frac{1}{2} \tau_{\imath} \sin \Omega_{\imath}
\end{aligned}
$$

Here $\sin \phi_{2}=e_{2}$ and no confusion is possible between the inclination \imath and the subscript τ, which is merely a distinguishing mark for the several planets

175 It is obvious that $U-U_{1}^{\prime}$ can be expanded in powers of $x_{2}-a_{2}$, $y_{i}-b_{i}, z_{2}-c_{2}$ where (a_{2}, b_{i}, c_{2}) are what (x_{i}, y_{i}, z_{2}) become when $\xi_{2}=\eta_{2}=0$ Now (§65) the heliocentric coordinates are generally

$$
\begin{aligned}
x & =r \cos \Omega \cos (w+w-\Omega)-r \cos 2 \sin \Omega \sin (w+\varpi-\Omega) \\
& =r \cos ^{2} \frac{1}{2} 2 \cos (w+w)+r \sin ^{2} \frac{1}{2} 2 \cos (w+\varpi-2 \Omega) \\
y & =r \sin \Omega \cos (w+w-\Omega)+r \cos 2 \cos \Omega \sin (w+w-\Omega) \\
& =r \cos ^{2} \frac{1}{2} 2 \sin (w+\varpi)-r \sin ^{2} \frac{1}{2} \imath \sin (w+\varpi-2 \Omega) \\
z & =r \sin 2 \sin (w+\varpi-\Omega)
\end{aligned}
$$

w being the true anomaly Let

$$
X=r \cos (w-M), \quad Y=r \sin (w-M), \quad M=\lambda-\varpi
$$

M being the mean anomaly Then

$$
\begin{aligned}
x= & X\left\{\cos ^{2} \frac{1}{2} \imath \cos \lambda+\sin ^{2} \frac{1}{2} \imath \cos (\lambda-2 \Omega)\right\} \\
& -Y\left\{\cos ^{2} \frac{1}{2} \imath \sin \lambda+\sin ^{2} \frac{1}{2} \imath \sin (\lambda-2 \Omega)\right\} \\
y= & X\left\{\cos ^{2} \frac{1}{2} \imath \sin \lambda-\sin ^{2} \frac{1}{2} 2 \sin (\lambda-2 \Omega)\right\} \\
& +Y\left\{\cos ^{2} \frac{1}{2} \imath \cos \lambda-\sin ^{2} \frac{1}{2} \imath \cos (\lambda-2 \Omega)\right\} \\
z= & X \sin \imath \sin (\lambda-\Omega)+Y \sin \imath \cos (\lambda-\Omega)
\end{aligned}
$$

The coefficients of X and Y here involve, besides periodic functions of λ, the quantities
$\cos ^{2} \frac{1}{2} r, \quad \sin ^{2} \frac{1}{2} 2 \cos 2 \Omega, \quad \sin ^{2} \frac{1}{2} r \sin 2 \Omega, \quad \sin 2 \cos \Omega, \quad \sin 2 \sin \Omega$
and since

$$
\begin{array}{ccc}
\xi_{1}^{2}+\eta_{1}^{2}=4 L \sin ^{2} \frac{1}{2} \phi, & \xi_{2}^{2}+\eta_{2}{ }^{2}=4 L \cos \phi \sin ^{2} \frac{1}{2} 2 \\
\tan w=-\eta_{1} / \xi_{1}, & \tan \Omega=-\eta_{2} / \xi_{2}
\end{array}
$$

it is easily verified that the five quantities can all be expanded in powers of $\xi_{1}, \eta_{1}, \xi_{2}, \eta_{2} \quad$ Also

$$
r \cos w=a(\cos E-e), \quad r \sin w=a \cos \phi \sin E
$$

E being the eccentric anomaly, and therefore

$$
\begin{aligned}
X / a=- & e \cos M+\cos ^{2} \frac{1}{2} \phi \cos (E-M) \\
& \quad+\frac{1}{4} \sec ^{2} \frac{1}{2} \phi\left\{e^{n} \cos 2 M \cos (E-M)-e^{2} \sin 2 M \sin (E-M)\right\} \\
Y / a=e & \sin M \\
& \quad-\frac{1}{4} \sec ^{2} \frac{1}{2} \phi\left\{e^{2} \cos 2 M \sin (E-M)+e^{2} \sin 2 M \cos (E-M)\right\}
\end{aligned}
$$

which are forms easily verfied Since $\cos ^{2} \frac{1}{2} \phi, \sec ^{2} \frac{1}{2} \phi$ can be expanded in terms of $e^{2}=\sin ^{2} \phi$, these forms show that X, Y can be expanded in powers of $e \sin M, e \cos M$ it this is true of $\sin (E-M), \cos (E-M) \quad$ But Kepler's equation may be written

$$
\theta-x \cos \theta-y \cos \theta=0, \quad \theta=E-M, \quad x=e \sin M, \quad y=e \cos M
$$

and θ can be expanded in powers of x, y Hence $\sin (E-M), \cos (E-M)$ can be expanded in powers of $e \sin M, e \cos M$, and therefore also X and Y But this shows that X, Y can be expanded in powers of $e \sin \pi, e \cos \sigma$ with coefficients involving periodic functions of λ, since $M=\lambda-\infty \quad$ And $e \sin \pi$, $e \cos$ a can be expanded in powers of ξ_{1}, η_{1}, as can easily be seen, with coefficients mvolving L Hence (x, y, z) can be developed in powers of $\xi_{1}, \eta_{1}, \xi_{2}, \eta_{2}$ with coefficients involving L and periodic functions of λ Therefore finally $U-U_{1}^{\prime}$ can be expanded in powers of $\xi_{2}, \eta_{2,1}, \xi_{2,2}, \eta_{2,2}$ with coefficients involving L_{2} and periodic functions of λ_{2}, and the supplementary part of V^{\prime} involves L_{\imath} only

It is assumed that the inclinations of the orbits are very small Now there are two ways of regarding retrograde motion in an orbit whose plane differs little from the orbits of planets moving in the opposite sense It is possible to take the mean motion n_{\imath} as positive Then the inclination is near π and is not small Or it is possible to take the inclination as small, and to regard n_{2} as negative Then since $n_{2} L_{i}{ }^{8}$ is a positive mass function, L_{2} is negative and therefore ξ_{2}, η_{2} are imaginary All the orbits will therefore be supposed to be described in the same (direct) sense, which is true of the planetary system but not always of the satellite systems

This remark has an obvious bearng on theories of cosmogony For if high inchnations and in particular retrograde motions were unstable, such forms of motion would not be permanently manntaned Now the nebular hypothesis of Laplace is very largely based on the observed fact that the planetary motions are nearly coplanar If, however, such a type of motion is alone stable, the observed fact loses its significance in this connexion and no deduction of the kind is to be drawn from it The question of stability in general, beyond the range of inclinations to be found in the actual planetary system, is therefore important, though beyond the range of this work

When the secular part

$$
\left[-U+U_{1}^{\prime}\right]=\Sigma A \xi_{21}^{p_{1}} \eta_{\imath, 1}^{q_{1}} \xi_{\imath, 2}^{p_{2}} \eta_{\eta_{2}, 2}^{q_{2}}
$$

which is free from λ_{t} is considered, certan properties of the development are easily seen For this being independent of the direction of the chosen axes, the substitutions

$$
\begin{array}{rrrr}
\xi_{2,1}, & \eta_{2,1}, & \xi_{2,2}, & \eta_{2,2} \\
-\xi_{2,1}, & -\eta_{2,1}, & -\xi_{2,2}, & -\eta_{2,2} \tag{a}\\
\eta_{2,2}, & -\xi_{2,1}, & \eta_{2,2}, & -\xi_{2,2} \\
\xi_{2,1}, & \eta_{2,1}, & -\xi_{2,2}, & -\eta_{2,2} \\
\xi_{2,1}, & -\eta_{2}, & \xi_{2,2}, & -\eta_{2,2}
\end{array}
$$

are all possible without affecting the result Thus (a) follows when Ω_{i}, ϖ_{2} are altered by π, or when the axes of $x y$ are rotated through π in their own plane Similarly (b) follows when this rotation is made through $\frac{1}{2} \pi$ Again (c) is produced when Ω_{2} (but not π_{v}) is altered by π, and this is equivalent to reversing the axis of z Finally (d) is obtaned by changing the signs of all the angles $\lambda_{i}, \Omega_{\imath}, w_{i}$, which is equivalent to reversing the axis of y The change $\operatorname{in} \lambda_{2}$ is of no further importance here since λ_{2} is absent from the terms now considered

Certan properties of the exponents in the expansion are now obvious For $\Sigma\left(p_{1}+q_{1}+p_{2}+q_{2}\right)$ must be an even number to satisfy (a), and $\Sigma\left(p_{2}+q_{2}\right)$ to satisfy (c) Hence $\Sigma\left(p_{1}+q_{1}\right)$ is also an even number Similarly (d) requires $\Sigma\left(q_{1}+q_{2}\right)$ to be even, and therefore $\Sigma\left(p_{1}+p_{2}\right)$ must be even Hence in the second degree there can be no terms of the form $\xi \eta$ or $\xi_{1} \xi_{2}, \eta_{1} \eta_{\mathrm{s}}$ But if terms of the fourth degree be neglected, only terms of the second degree involving ξ, η remain These terms can therefore be written down in the form

$$
\left[-U+U_{1}^{\prime}\right]=\sum_{\frac{1}{2}} A_{2, j}\left(\xi_{2,1} \xi_{j, 1}+\eta_{l, 1} \eta_{j, 1}\right)+\sum_{\frac{1}{2} B_{2, j}}\left(\xi_{2,2} \xi_{j, 2}+\eta_{2,2} \eta_{j, 2}\right)
$$

where the coefficients of $\xi_{2} \xi_{j}, \eta_{2} \eta_{\text {, }}$, are taken to be the same, both for the eccentric and the oblique variables, in accordance with the substitution (b), and terms $\xi_{2} \xi_{j}, \eta_{2} \eta_{j}$ are reckoned twice when \imath, \jmath are different, but $A_{2, j}=A_{j, 2}$, $B_{\imath, j}=B_{3,2}$

177 It will be of interest to obtain the explicit values of $A_{\imath, j}, B_{2, j}$ for the lowest order in the masses The principal part of the disturbing function is $\sum m_{\imath} m_{j} \Delta_{z_{2} j}^{-1}$ and it has been seen in $\S 159$ that the complementary part contains periodıc terms only The distances $\Delta_{i, j}$ involve coordınates (x_{i}, y_{1}, z_{2}) which themselves contann the masses But to the lowest order these coordinates are identical with the relative coordinates commonly in use, and the methods of Chap XIV can therefore be employed Two planets, 1, 2, will be first considered Then in the notation of $\S 152$, when the orbits are circular,

$$
a_{2} \Delta^{-1}=b^{0,0}=\frac{1}{2} b_{\frac{1}{2}}{ }^{0}-\frac{1}{2} \alpha \nu b_{\frac{\partial_{2}}{}{ }^{1}}+
$$

with the exclusion of all periodic terms The triangle formed by the two orbits and the ecluptic gives

$$
\cos J=\cos \imath_{1} \cos \imath_{2}+\sin \imath_{1} \sin \imath_{2} \cos \left(\Omega_{1}-\Omega_{2}\right)
$$

or to the second order in \imath_{1}, \imath_{2},

$$
\nu=\sin ^{2} \frac{1}{2} J=\frac{1}{4}\left\{\imath_{1}^{2}+v_{2}^{2}-2 \imath_{1} v_{\mathrm{g}} \cos \left(\Omega_{1}-\Omega_{2}\right)\right\}
$$

Since ν is of the second oider the Laplace's coefficient $b_{\frac{5_{2}}{}{ }^{1}}$ is derived immedately from the circular motion But $b_{\frac{1}{2}}{ }^{\circ}$ must be modified to include the eccentricities, the orbits being now treated as coplanar Let

$$
\Delta_{0}^{2}=a_{1}^{2}+a_{2}^{2}-2 a_{1} a_{2} \cos \theta, \quad \theta=\varpi_{1}-\varpi_{2}+M_{1}-M_{2}
$$

Then in the notation of $\S 157$,

$$
\Delta^{-1}=\left(\frac{r_{1}}{a_{1}}\right)^{D_{1}}\left(\frac{r_{2}}{a_{2}}\right)^{D_{2}} \exp \left\{\left(w_{1}-M_{1}\right) D_{3}+\left(w_{2}-M_{3}\right) D_{4}\right\} \Delta_{0}^{-1}
$$

and, by (22) of $\S 40$ and (30) of $\S 41$,

$$
\begin{aligned}
r / a & =1+\frac{1}{2} e^{2}-e \cos M-\frac{1}{2} e^{2} \cos 2 M+ \\
w-M & =2 e \sin M+\frac{5}{4} e^{2} \sin 2 M+
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \left(a^{-1} r\right)^{D}=1-e \cos M D+\frac{1}{2} e^{2}(1-\cos 2 M) D+\frac{1}{4} e^{2}(1+\cos 2 M) D(D-1) \\
& \quad \exp (w-M) D=1+2 e \sin M D+\frac{5}{4} e^{2} \sin 2 M D+e^{2}(1-\cos 2 M) D^{2}
\end{aligned}
$$

All operating terms which do not combine M_{1}, M_{2} in the form $M_{1}-M_{2}$ will clearly produce periodic terms only And terms already of the second degree are combined with no others Therefore, when ineffective terms are omitted, since $D_{1}+D_{2}=-1$,

$$
\begin{aligned}
& \Delta^{-1}=\left(1-e_{1} \cos M_{1} D_{1}-\frac{1}{4} e_{1}^{2} \quad D_{1} D_{2}\right)\left(1-e_{2} \cos M_{2} D_{2}-\frac{1}{4} e_{2}^{2} \quad D_{1} D_{2}\right) \\
&\left(1+2 e_{1} \sin M_{1} D_{3}+e_{1}^{2} D_{3}^{2}\right)\left(1+2 e_{2} \sin M_{2} D_{4}+e_{2}^{2} D_{4}^{2}\right) \Delta_{0}^{-1} \\
&=\left\{1+\frac{1}{2} e_{1} e_{2} \cos \left(M_{1}-M_{2}\right) D_{1} D_{2}+2 e_{1} e_{2} \cos \left(M_{1}-M_{2}\right) \quad D_{3} D_{4}\right. \\
&-e_{1} e_{2} \sin \left(M_{2}-M_{1}\right) D_{1} D_{4}-e_{1} e_{2} \sin \left(M_{1}-M_{2}\right) D_{2} D_{3} \\
&\left.-\frac{1}{4}\left(e_{1}^{2}+e_{2}^{2}\right) D_{1} D_{2}+e_{1}^{2} D_{3}^{2}+e_{2}^{2} D_{4}^{2}\right\} \Delta_{0}^{-1}
\end{aligned}
$$

where again terms involving M_{1}, M_{2} or $M_{1}+M_{2}$ are omitted Now $D_{3}=-D_{4}=\partial / \partial \theta$ and, since $\alpha=a_{1} / a_{3}$,

$$
\begin{aligned}
D_{1} D_{2} \Delta_{0}^{-1} & =a_{1} a_{2} \cos \theta \Delta_{0}^{-s}+3\left(a_{1}^{2}-a_{1} a_{3} \cos \theta\right)\left(a_{2}^{2}-a_{1} a_{2} \cos \theta\right) \Delta_{0}^{-5} \\
& =a^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& =a_{2}^{-1}\left\{\alpha \cos \theta \quad a_{2}^{3} \Delta_{0}^{-3}+3 \alpha\left[\frac{3}{2} \alpha-\left(1+a^{2}\right) \cos \theta+\frac{1}{2} \alpha \cos 2 \theta\right] a_{2}^{8} \Delta_{0}^{-8}\right\}
\end{aligned}
$$

$D_{3}{ }^{2} \Delta_{0}{ }^{-1}=D_{4}{ }^{2} \Delta_{0}{ }^{-1}=-D_{9} D_{4} \Delta_{0}{ }^{-1}=-a_{1} a_{2} \cos \theta \quad \Delta_{0}{ }^{-3}+3 a_{2}{ }^{2} a_{2}{ }^{2} \sin ^{2} \theta \quad \Delta_{0}{ }^{-8}$
$=a_{2}{ }^{-1}\left\{-\alpha \cos \theta \quad a_{2}^{3} \Delta_{0}{ }^{-3}+\frac{3}{2} \alpha^{2}(1-\cos 2 \theta) a_{2}^{5} \Delta_{0}{ }^{-8}\right\}$
$D_{1} D_{4} \Delta_{0}^{-1}=a_{1} a_{2} \sin \theta \quad \Delta_{0}^{-3}-3 a_{1} a_{2} \sin \theta\left(a_{1}^{2}-a_{1} a_{2} \cos \theta\right) \Delta_{0}{ }^{-6}$
$=a_{2}{ }^{-1}\left\{\alpha \sin \theta \quad a_{2}{ }^{8} \Delta_{0}{ }^{-8}-3 a^{2}\left(\alpha \sin \theta-\frac{1}{2} \sin 2 \theta\right) a_{2}{ }^{5} \Delta_{0}{ }^{-5}\right\}$
$D_{2} D_{3} \Delta_{0}^{-1}=-a_{1} a_{2} \sin \theta \quad \Delta_{0}^{-3}+3 a_{1} a_{2} \sin \theta\left(a_{2}^{2}-a_{1} a_{2} \cos \theta\right) \Delta_{0}^{-5}$
$=a_{2}^{-1}\left\{-\alpha \sin \theta a_{8}{ }^{3} \Delta_{0}{ }^{-3}+3 \alpha\left(\sin \theta-\frac{1}{2} \alpha \sin 2 \theta\right) a_{8}{ }^{5} \Delta_{0}{ }^{-3}\right\}$

For the secular terms it is possible to write

$$
\begin{aligned}
& \cos \left(M_{1}-M_{2}\right)=\cos \left(\theta-\varpi_{1}+\varpi_{2}\right)=\cos \theta \cos \left(\varpi_{1}-w_{2}\right) \\
& \sin \left(M_{1}-M_{2}\right)=\sin \left(\theta-\varpi_{1}+\varpi_{2}\right)=\sin \theta \cos \left(\varpi_{1}-w_{2}\right)
\end{aligned}
$$

since sine terms and cosine terms must combine separately
178. The secular terms of the second degree in the eccentricities can now be written down in terms of Laplace's coefficients (§ 147) thus

$$
\begin{aligned}
& \Delta^{-1}=+\frac{1}{4} e_{1} e_{2} \cos \left(\omega_{1}-\omega_{2}\right) a_{2}^{-1} \\
& \left\{\frac{1}{2} \alpha\left(b_{\frac{3}{2}}{ }^{0}+b_{\frac{3}{2}}{ }^{3}\right)+3 \alpha\left[\frac{3}{2} \alpha b_{\frac{3}{2}}-\frac{1}{2}\left(1+\alpha^{2}\right)\left(b_{\frac{0}{2}}{ }^{0}+b_{\frac{2}{2}}{ }^{2}\right)+\frac{1}{4} \alpha\left(b_{\frac{2}{2}}{ }^{1}+b_{\frac{3}{2}}{ }^{3}\right)\right]\right. \\
& +2 \alpha\left(b_{\frac{3}{2}}{ }^{0}+b_{\frac{2}{2}}{ }^{2}\right)-3 \alpha^{2}\left(b_{\frac{b_{2}}{}{ }^{1}}-b_{\frac{8}{2}}{ }^{3}\right) \\
& +\alpha\left(b_{\frac{1}{2}}{ }^{0}-b_{\frac{2}{2}}{ }^{2}\right)-3 a^{2}\left[\alpha\left(b_{\frac{b_{2}}{2}}{ }^{0}-b_{\frac{\mathbf{b}^{2}}{2}}{ }^{2}\right)-\frac{1}{2}\left(b_{\frac{1}{2}}{ }^{1}-b_{\frac{1}{2}}{ }^{3}\right)\right] \\
& \left.+\alpha\left(b_{\frac{9}{2}}{ }^{0}-b_{\frac{2}{2}}{ }^{2}\right)-3 \alpha\left[\left(b_{\frac{b_{2}}{}{ }^{0}}-b_{\frac{1}{2}}{ }^{2}\right)-\frac{1}{2} \alpha\left(b_{\frac{b_{1}}{}{ }^{1}}-b_{\frac{1}{2}}{ }^{8}\right)\right]\right\} \\
& -\frac{1}{8}\left(e_{1}{ }^{2}+e_{2}^{2}\right) a_{2}^{-1}\left\{a b_{\frac{3}{2}}{ }^{1}+3 \alpha\left[\frac{3}{2} a b_{\frac{1}{2}}{ }^{0}-\left(1+\alpha^{2}\right) b_{\frac{1}{\underline{1}}}{ }^{1}+\frac{1}{2} a b_{\frac{2}{2}}{ }^{2}\right]\right\} \\
& +\frac{1}{2}\left(e_{1}^{2}+e_{2}^{2}\right) a_{2}^{2-1}\left\{-\alpha b_{\frac{2}{2}}{ }^{2}+\frac{3}{2} a^{2}\left(b_{\frac{5}{2}}{ }^{0}-b_{\frac{5}{2}}{ }^{2}\right)\right\}
\end{aligned}
$$

To simplify this expression the recurrence formulae (4) and (5) of § 148 with $\jmath=0$ are avalable

$$
\begin{gathered}
(\imath-s+1) \alpha b_{s}^{2+1}-\imath\left(1+\alpha^{2}\right) b_{s}^{2}+(\imath+s-1) \alpha b_{s}^{2-1}=0 \\
(\imath+s) b_{s}^{2}=s\left(1+\alpha^{2}\right) b_{s+1}^{2}-2 s a b_{s+1}^{2+1}
\end{gathered}
$$

Thus

$$
\begin{aligned}
b_{\frac{5}{2}}{ }^{2} & =\frac{3}{8}\left(1+\alpha^{2}\right) b_{\frac{5}{2}}{ }^{1}-\frac{f}{8} \alpha b_{\frac{5}{2}}{ }^{2} \\
& =\frac{8}{8}\left(-\frac{1}{2} \alpha a b_{\frac{5}{2}}{ }^{2}+\frac{5}{2} a b_{\frac{5}{2}}{ }^{0}\right)-\frac{f}{8} a b_{\frac{2}{2}}^{2}=\frac{3}{2} \alpha\left(b_{\frac{1}{2}}^{0}-b_{\frac{5}{2}}{ }^{0}\right)
\end{aligned}
$$

and the last line of the expression disappears Again

$$
\begin{aligned}
& \frac{3}{2} \alpha b_{\frac{b_{2}}{2}}-\left(1+\alpha^{2}\right) b_{\frac{1}{2}}+\frac{1}{2} \alpha b_{\frac{5}{2}}{ }^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{2}{8}\left(1+a^{2}\right) b_{\frac{5}{2}}{ }^{1}+\frac{4}{8} \alpha b_{\frac{5}{2}}{ }^{2}=-\frac{2}{3} b_{\frac{3}{4}}{ }^{1}
\end{aligned}
$$

Hence the penultimate line of the expression reduces to

$$
+\frac{1}{8}\left(e_{1}^{2}+e_{2}^{2}\right) a_{2}^{-1} \alpha b_{\frac{1}{2}}^{1}
$$

which represents all the terms in e_{1}^{2}, e_{2}^{2}
The coefficient of $+\frac{1}{4} e_{1} e_{2} \cos \left(w_{1}-w_{2}\right) a_{2}^{-1} \alpha$ is

$$
\begin{aligned}
& +\frac{9}{2} b_{\frac{9}{9}}{ }^{0}+\frac{1}{2} b_{\frac{8}{2}}{ }^{2}-\frac{9}{2}\left(1+\alpha^{2}\right) b_{\frac{1}{2}}{ }^{0}+\frac{21}{4} \alpha b_{\frac{1}{9}}{ }^{1}+\frac{3}{2}\left(1+\alpha^{2}\right) b_{\frac{b_{2}}{2}}+\frac{3}{4} a b_{\frac{5}{2}}{ }^{3} \\
& =\frac{1}{2} b_{\frac{4}{2}}{ }^{2}-\frac{1 k}{4} \alpha b_{\frac{5}{2}}{ }^{1}+\frac{3}{2}\left(1+\alpha^{2}\right) b_{\frac{\sigma_{2}}{2}}{ }^{2}+\frac{3}{4} b_{\frac{5}{2}}{ }^{3} \\
& =\frac{1}{2} b_{\frac{2}{2}}{ }^{2}-\frac{18}{14}\left[2\left(1+\alpha^{2}\right) b_{\frac{5}{2}}{ }^{2}-\frac{1}{2} \alpha b_{\frac{1}{2}}^{8}\right]+\frac{8}{1}\left[\left(1+\alpha^{2}\right) b_{\frac{5}{2}}{ }^{2}+\frac{1}{2} \alpha b_{\frac{1}{2}}{ }^{8}\right] \\
& =\frac{1}{2} b_{\frac{2}{2}}{ }^{2}-\frac{8}{14}\left[3\left(1+\alpha^{2}\right) b_{f}^{2}-6 a b_{\frac{1}{2}}{ }^{3}\right] \\
& =\frac{1}{2} b_{\frac{2}{2}}{ }^{2}-\frac{3}{2} b_{\frac{2}{2}}^{2}=-b_{\frac{2}{2}}{ }^{2}
\end{aligned}
$$

and the whole of this term is therefore

$$
-\frac{1}{4} e_{1} e_{2} \cos \left(\varpi_{1}-\varpi_{2}\right) a_{2}^{-1} \alpha b_{\frac{2}{\sigma}}^{2}
$$

Hence the terms of the second degree in the eccentricities and inclinations for two planets give finally

$$
\begin{aligned}
& {\left[\Delta^{-1}\right]=a_{2}{ }^{-2} a_{1}\left\{\frac{1}{8}\left(e_{1}^{2}+e_{2}^{2}\right) b_{\frac{5_{2}^{1}}{1}}-\frac{1}{4} e_{1} e_{2} \cos \left(\varpi_{1}-\varpi_{2}\right) b_{\frac{2}{2}}{ }^{2}\right\}} \\
& -\frac{1}{8} a_{2}{ }^{-2} a_{1}\left\{\imath_{1}^{2}+a_{2}{ }^{2}-2 u_{1} i_{2} \cos \left(\Omega_{1}-\Omega_{2}\right)\right\} b_{\frac{8}{8}}{ }^{1}
\end{aligned}
$$

But to this order (that is, neglecting the third order in e, \imath)

$$
\begin{array}{ll}
\xi_{1}=e L^{\frac{1}{2}} \cos \varpi, & \eta_{1}=-e L^{\frac{1}{2}} \sin \varpi \\
\xi_{2}=\imath L^{\frac{1}{2}} \cos \Omega, & \eta_{2}=-\imath L^{\frac{1}{2}} \sin \Omega
\end{array}
$$

By translating from one system of variables to the other and taking the sum for each parr of planets, it follows that
where

$$
\begin{aligned}
& {\left[-U+U_{1}^{\prime}\right]=\frac{1}{8} \sum m_{2} m_{\jmath}\left\{\left(\frac{\xi_{\imath, 1}^{2}}{L_{\imath}}+\frac{\eta_{2,1}^{2}}{L_{\imath}^{2}}+\frac{\xi_{j, 1}^{2}}{L_{j}}+\frac{\eta_{j, 1}^{2}}{L_{j}}\right) B_{1}\left(a_{\imath}, a_{j}\right)\right.} \\
& \quad-\frac{2}{L_{\imath}^{\frac{1}{2}} L_{j}^{\frac{1}{2}}}\left(\xi_{\imath, 1} \xi_{j, 1}+\eta_{\imath, 1} \eta_{\jmath, 1}\right) B_{2}\left(a_{\imath}, a_{j}\right) \\
& \left.\quad-\left[\frac{\xi_{i 2}^{2}}{L_{\imath}}+\frac{\eta_{\imath, 2}^{2}}{L_{\imath}}+\frac{\xi_{j, 2}^{2}}{L_{j}}+\frac{\eta_{j, 2}^{2}}{L_{j}}-\frac{2\left(\xi_{\imath, 2} \xi_{\nu, 2}+\eta_{2,2} \eta_{j, 2}\right)}{L_{\imath}^{\frac{1}{2}} L_{j}^{\frac{1}{2}}}\right] B_{1}\left(a_{\imath}, a_{j}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& B_{1}\left(a_{\imath}, a_{j}\right)=\frac{a_{2}}{a_{j}} b_{b_{2}^{2}}\left(\frac{a_{2}}{a_{j}}\right)=\frac{2}{\pi} \int_{0}^{\pi} \frac{a_{\imath} a_{j} \cos \theta d \theta}{\left(a_{\imath}{ }^{\circ}+a_{j}{ }^{2}-2 a_{\imath} a_{j} \cos \theta\right)^{9}} \\
& B_{2}\left(a_{\imath}, a_{j}\right)=\frac{a_{2}}{a_{j}{ }^{2}}{\frac{b_{2}}{}{ }^{2}}^{2}\left(\frac{a_{2}}{a_{j}}\right)=\frac{2}{\pi} \int_{0}^{\pi} \frac{a_{2} a_{j} \cos 2 \theta d \theta}{\left(a_{\imath}{ }^{2}+a_{j}{ }^{2}-2 a_{\imath} a_{j} \cos \theta\right)^{2}}
\end{aligned}
$$

The coefficients of Laplace are positive Therefore the quadratic terms in the oblique variables are a negative definite form Further, by the recurience formulae,

Therefore

$$
\begin{aligned}
& 0=\frac{5}{2} \alpha b_{\frac{2}{2}}{ }^{1}-2\left(1+\alpha^{2}\right) b_{\frac{4}{2}}{ }^{2}+\frac{3}{2} \alpha b_{\frac{4}{4}}{ }^{3} \\
& \frac{5}{2} b_{\frac{1}{2}}{ }^{2}=\quad \frac{1}{2}\left(1+\alpha^{2}\right) b_{\frac{1}{2}}{ }^{2}-a b_{\frac{3}{2}}{ }^{3} \\
& \frac{3}{2} b_{\frac{1}{2}}{ }^{2}=\alpha b_{\frac{9}{2}}{ }^{1}-\frac{1}{2}\left(1+\alpha^{2}\right) b_{\frac{2}{2}}{ }^{2}
\end{aligned}
$$

But
and therefore

$$
\frac{\frac{3}{2}}{2} b_{\frac{1}{2}}=\frac{1}{2}\left(1+a^{2}\right) b_{\frac{1}{2}}{ }^{1}-a b_{\frac{1}{2}}{ }^{2}
$$

which shows that

$$
\begin{gathered}
3\left(b_{\frac{1}{2}}{ }^{1}+b_{\frac{1}{2}}{ }^{2}\right)=(1+\alpha)^{2}\left(b_{\frac{1}{2}}{ }^{1}-b_{\frac{2}{2}}{ }^{2}\right) \\
b_{\frac{3_{2}^{2}}{}{ }^{1}}>b_{\frac{2}{2}}{ }^{2}, \quad B_{1}>B_{2}
\end{gathered}
$$

Hence the quadratic terms in the eccentric variables are a positive definite form

179 The problem of the small eccentricities and inclinations of the planetary system is now brought within the range of the general theory of small oscillations about a steady state of motion Indeed a knowledge of the principles of this theory shows at once that the variations in the eccentricities and inclinations are periodic and stable, for this follows from the definite (positive or negative) forms of the quadratic terms

Since (§ 176)

$$
\left[-U+U_{1}^{\prime}\right]=\Sigma_{\frac{1}{2}} A_{\imath, j}\left(\xi_{2,1} \xi_{j, 1}+\eta_{2,1} \eta_{j, 1}\right)+\Sigma_{1} \frac{1}{2} B_{2, j}\left(\xi_{\imath, 2} \xi_{j, 2}+\eta_{2,2} \eta_{j, 2}\right)
$$

the corresponding canonical equations are

$$
\begin{array}{ll}
\frac{d \xi_{i, 1}}{d t}=\sum_{j} A_{\imath, j} \eta_{j, 1}, & \frac{d \eta_{\imath, 1}}{d t}=-\sum_{j} A_{i, j} \xi_{j, 1} \\
\frac{d \xi_{\imath, 2}}{d t}=\sum_{j} B_{\imath, 2} \eta_{j, 2}, & \frac{d \eta_{2,2}}{d t}=-\sum_{j} B_{i, j} \xi_{j, 2}
\end{array}
$$

forming two distinct sets of linear equations with constant coefficients The results will clearly be of the same general kind for both, and it is only necessary to consider the eccentric variables

Let the linear transformations

$$
\xi_{2}=\Sigma a_{2, j} p_{j}, \quad \eta_{2}=\Sigma a_{i, y} q_{j}
$$

be orthogonal, so that

$$
\begin{aligned}
\Sigma \xi_{i}{ }^{2} & =\Sigma p_{i}{ }^{2}, \quad \Sigma \eta_{2}{ }^{2}
\end{aligned}=\sum_{i} q_{i}{ }^{2} .
$$

Thus

$$
\Sigma \xi_{2} d \eta_{2}=\sum_{2} \leq \sum_{j} a_{k} a_{2}, a_{2, k} p_{j} d q_{k}=\Sigma p_{2} d q_{2}
$$

which shows that such a transformation is also canonical Now let

$$
\sum A_{2, j} \xi_{2} \xi_{j}=\sum a_{i} p_{i}^{2}
$$

Then

$$
\Sigma A_{\imath, j} \xi_{2} \xi_{2}-\alpha_{k} \Sigma \xi_{2}{ }^{2}=\Sigma \alpha_{1} p_{\imath}{ }^{2}-\alpha_{k} \Sigma p_{\imath}{ }^{2}
$$

is an expression which is independent of p_{k} Therefore, product terms being reckoned twice,

$$
\begin{aligned}
0 & =\sum_{2} \xi_{2}\left(\sum_{j} A_{2, j} \frac{\partial \xi_{j}}{\partial p_{k}}\right)-\alpha_{k} \Sigma \xi_{2} \frac{\partial \xi_{2}}{\partial p_{k}} \\
& =\sum_{2} \xi_{2}\left(\sum_{j} A_{2, j} a_{j, k}\right)-\alpha_{k} \Sigma \xi_{\imath} a_{2, k}
\end{aligned}
$$

This is an identity, satisfied by all values of ξ_{2} Hence

$$
\sum_{1} A_{2, j} a_{j, k}-\alpha_{k} a_{\imath_{2}, k}=0
$$

and this system of equations, for the values $\imath=2,3, \quad, n$, gives a consistent solution for $a_{j, k}$, provided α_{k} is a root of the equation

$$
\left|\begin{array}{ccc}
A_{2,2}-\alpha & A_{2,3} & A_{2,4} \\
A_{3,2} & A_{3,3}-\alpha & A_{3,4} \\
A_{4,2} & A_{4,3} & A_{4,4}-\alpha
\end{array}\right|=0
$$

This is a symmetrical determinant of familiar type, and it is well known that all its roots are real For the system of the eight major planets it is of the eighth order It is most unlikely that the equation would have exactly equal roots in a case like this, nor does it in fact happen But it is to be observed that the occurrence of repeated roots would alter in no way the essential circumstances The main point is that the definzte quadratic form can always be reduced to the form $\sum \alpha_{\iota} p_{2}{ }^{2}$ by a linear transformation to normal coordinates The effect of repeated roots can be seen when there are three planets Then $\Sigma \alpha_{1} p_{v}^{2}$ corresponds to an ellipsoid, which is one of revolution when two roots a_{1} are equal An arbitrary element enters into the direction cosines of the principal axes, which are the coefficients of the transformation But this does not affect the form of the result or the stabiluty of the motion It is not necessary to examine the algebra of the subject further, but so much should be mentioned because from the time of Lagrange to Weierstrass in 1858 it was supposed that the occurrence of repeated roots would result in the appearance of the time outside the periodic functions and would be fatal to stability It is not so

180 It has been seen that the orthogonal transformation to normal coordinates is also canomical and that the principal function, as far as the eccentric variables are concerned, takes the form

$$
V=\Sigma_{\frac{1}{2}} \alpha_{2}\left(p_{2}{ }^{2}+q_{2}{ }^{2}\right)
$$

where α_{2} is positive, since V is a positive definite form The canonical equations therefore become
and the solution is

$$
\frac{d p_{2}}{d t}=\alpha_{2} q_{2}, \quad \frac{d q_{2}}{d t}=-\alpha_{2} p_{2}
$$

$$
p_{2}=C_{2} \cos \left(\alpha_{2} t+h_{2}\right), \quad q_{2}=-C_{2} \sin \left(\alpha_{2} t+h_{2}\right)
$$

where C_{2}, h_{2} are arbitrary constants This gives the quadratic integrals

$$
p_{i}{ }^{2}+q_{2}{ }^{2}=C_{2}{ }^{2}
$$

These results are immediately expiessed in terms of the previous variables ξ_{2}, η_{1}. Thus

$$
\begin{aligned}
& \xi_{\imath}=\Sigma a_{i, j} p_{j}=\Sigma a_{2,} C_{j} \cos \left(a_{j} t+h_{j}\right) \\
& \eta_{\imath}=\Sigma a_{i, j} q_{j}=-\Sigma a_{i, j} C_{j} \sin \left(a_{j} t+h_{j}\right)
\end{aligned}
$$

where $a_{1, j}$ are definite constants When the transformation is reversed,

$$
p_{j}=\Sigma a_{i, j}, \xi_{2} \quad q_{j}=\Sigma a_{i, j} \eta_{2}
$$

and the quadratic integrals become

$$
\left(\sum_{2} a_{n}, j \xi_{2}\right)^{2}+\left(\sum_{2} a_{n, j} \eta_{v}\right)^{2}=C_{j}^{2}
$$

The general solution may also be written, with the degree of approximation adopted,

$$
\begin{aligned}
& e_{\imath} L_{\imath}^{\frac{1}{2}} \cos \varpi_{\imath}=\sum_{j} a_{\imath, j} C_{j} \cos \left(\alpha_{j} t+h_{j}\right) \\
& e_{\imath} L_{\imath}^{\frac{1}{2}} \sin \varpi_{\imath}=\sum_{j} a_{\imath, j} C_{j} \sin \left(\alpha_{j} t+h_{j}\right)
\end{aligned}
$$

which determine the eccentricities and the motions of the perihelia The question then arises in every case has the perihelion a mean motion? In other words, is the motion of perihelion, to use the analogy of the simple pendulum, of the circulating or the oscillating type ?

The problem, stated in general terms, is not a simple one But there is one simple case which will serve to explan what is meant and the necessary condition of which is satisfied more often than not The preceding equations may be regarded as applying to certain coplanar vectors whose tensors are $e_{i} L_{i}^{\frac{1}{2}}, a_{i, j} C_{j}$ From this point of view the one vector is represented as the sum of a set of vectors each rotating uniformly Let the tensor of one vector of the set exceed in length the sum of the tensors of the rest, and let this vector terminate at the orign, the others forming a chan from the other end It is then geometrically obvious that the representative point at the end of the chain must share in the circulation round the orign of the predominant vector The peribelion in this case has a mean motion therefore, and it comcides with that, α_{1}, associated with the large coefficient The sense of this mean motion is always direct, since α_{2} is positive In the same circumstances e_{i} cannot vanısh, but has a lower positive limit

The condition is clearly satisfied when there are only two planets, unless the two tensors are equal In this exceptional case it 18 evident that the mean motion of a perihelion is the same as that of the resultant of the two vectors and is the arithmetic mean, $\frac{1}{2}\left(\alpha_{2}+\alpha_{3}\right)$, between their angular motions

The elght roots of the fundamental determinant range between the values $0^{\prime \prime} \cdot 616$ and $22^{\prime \prime} \cdot 46$ (Stockwell) These are annual motions, so that the corresponding periods lie between 58,000 and $2,100,000$ years Sunce they are of this order it is evident that e_{2}, w_{2} can be developed in powers of the tume and that the lowest terms of such expressions will suffice to represent the changes for several centuries These are the secular inequalities as commonly understood, and it will be seen that they exhibit the minial changes, apart from those of short period, rather than truly secular effects

181 These results for the eccentricities and perihelia apply almost without change equally to the inclunations and nodes But there are two differences to be noted In the first place the principal function is a negative definite form, which may be written after the transformation to normal coordınates,

$$
V=-\frac{1}{2} \Sigma \beta_{\imath}\left(p_{2}^{2}+q_{2}{ }^{2}\right)
$$

where β_{\imath} is positive In the second place, one β_{\imath} is zero, or, in othel words, the discriminant or Hessian of V (a quadratic form) vanıshes For the pait which involves the oblique variable ξ, may be written (§ 178)
and therefore

$$
V_{1}=-\frac{1}{2} \Sigma B_{2,0}\left(L_{2}{ }^{-\frac{1}{2}} \xi_{2}-L_{3}-\frac{1}{2} \xi_{J}\right)^{2}
$$

$$
\begin{aligned}
& \frac{\partial V_{1}}{\partial \xi_{2}}=-\sum_{\rho} L_{2}{ }^{-\frac{1}{2}} B_{2, j}\left(L_{2}{ }^{-\frac{1}{2}} \xi_{2}-L_{j}^{-\frac{1}{2}} \xi_{\jmath}\right) \\
& \frac{\partial^{V} V}{\partial \xi_{2}^{2}}=-\sum_{j} L_{i}^{-1} B_{2, j}, \quad \frac{\partial^{2} V}{\partial \xi_{2} \partial \xi_{j}}=L_{2}{ }^{-\frac{1}{2}} L_{j}^{-\frac{1}{2}} B_{2, J}
\end{aligned}
$$

If then \imath is the characteristic of a row and \jmath of a column in the Hessian, and each column is multiphed by the correspondng $L_{j}{ }_{j}^{\frac{1}{2}}$, the sum of each row will vanish Hence the disciminant is identically zero and $\beta=0$ is a root of the fundamental equation

The physical reason for this is easily seen Fol the canonical equations become

$$
\frac{d p_{2}}{d t}=-\beta_{2} q_{2}, \quad \frac{d q_{2}}{d t}=\beta_{2} p_{2}
$$

Corresponding to the root $\beta_{\iota}=0$,

$$
p_{\imath}=\Sigma b_{2, g} \xi_{\jmath}=\text { const }, \quad q_{\imath}=\Sigma b_{\imath, j} \eta_{j}=\text { const }
$$

which are two linear integrals The constants need not be zero, and the inclnations may be finite, while their variations vanish This in fact is the case when the orbits are all coplanar and melined to the plane of reference This explans why the fundamental determinant has a zero root The other seven negative roots when calculated for the solar system are quite sumilar in magnitude to the positive roots of the determinant in α

The general solution of the equations when a finite root is in question is

$$
p_{2}=D_{2} \cos \left(\beta_{2} t+k_{2}\right), \quad q_{2}=D_{2} \sin \left(\beta_{2} t+k_{2}\right)
$$

giving the quadratic integrals

$$
p_{2}{ }^{2}+q_{2}{ }^{2}=\left(\sum_{J} b_{J, 2} \xi_{J}\right)^{2}+\left(\sum_{j} b_{j, 2} \eta_{J}\right)^{2}=D_{2}{ }^{2}
$$

From the general solution it follows that

$$
\begin{aligned}
\imath_{2} L_{2}^{\frac{1}{2}} \cos \Omega_{\mathrm{a}} & =\xi_{2}=\Sigma b_{2, j} p_{y}=\Sigma b_{1, y} D_{\jmath} \cos \left(\beta_{t} t+h_{y}\right) \\
-\imath_{2} L_{2}^{\frac{1}{2}} \sin \Omega_{2} & =\eta_{2}=\Sigma b_{2, j} q_{j}=\Sigma b_{2}, D_{j} \sin \left(\beta_{\jmath} t+h_{\jmath}\right)
\end{aligned}
$$

where $b_{2,0}$ are the definite constants of the transformation to normal coordinates O wing to the zero root in β, t disappears from one term on the righthand side of each equation, leaving seven periodic terms and one constant, but the form is undisturbed by this fact

These equations determine the inclinations and the motions of the nodes The plane of reference is fixed and arbitrary, except in so far as it lies near the average plane of the orbits Considered as applying to a set of rotating coplanar vectors, the equations show immedately that if one coefficient on the right exceeds the sum of all the rest (taken positively), the node has a mean motion equal and opposite to that of the corresponding vector, and this mean motion is therefore ietrograde When this simple criterion is satisfied, as it is more often than not, it is also evident that the tensor of the vector $\tau_{\imath} L_{2}^{\frac{t^{2}}{3}}$ cannot vanish and that i_{2} has a lower limit

182 The sum of the quadratic integrals gives

$$
\Sigma\left(p_{i}^{2}+q_{v}^{2}\right)=\Sigma\left(\xi_{2}^{2}+\eta_{v}^{2}\right)=\text { const }
$$

and this apples separately to the eccentric and to the oblique variables It follows immediately from the canonical equations of $\S 179$ without any transformation Now ξ_{2}, η_{2} contan the factor L_{2}, which is $m_{2}\left(m_{1}+m_{2}\right)^{\frac{1}{2}} \mu_{n-1} \mu_{2}^{-1} a_{2}{ }^{\frac{1}{2}}$ or to the lowest order in the masses $m_{2} m_{1}^{\frac{2_{2}^{2}}{2}} a_{1}^{\frac{1}{2}}$ Hence

$$
\begin{aligned}
& \sum m_{\imath} a_{2}^{\frac{1}{2}} e_{i}^{2}=\text { const } \\
& \Sigma m_{2} a_{n}^{\frac{1}{2}} u_{2}^{2}=\text { const }
\end{aligned}
$$

or, as the latter $1 s$ more usually written,

$$
\sum m_{2} a_{\imath} \frac{1}{2} \tan ^{2} q_{l}=\text { const }
$$

for the degree of approximation adopted allows of no discrimination between these forms The constants being small initially it follows that the orbit of no considerable mass in the system can acquire an indefinitely large eccentricity or inclination at the expense of the others as a result of mutaal perturbations These propositions, due to Laplace, clearly have an importance analogous to that of Poisson on the invariability of the mean distances.

The areal velocity in any orbit is

$$
(\mu p)^{\frac{1}{2}}=\left(m_{1}+m_{2}\right)^{\frac{1}{2}} a_{2}^{\frac{1}{2}} \cos \phi_{2}=G_{2}
$$

The mass factors being $m_{\imath} \mu_{\imath-1} \mu_{\imath}{ }^{-1}$ as in $\S 170$, the components of angular momentum are

$$
\begin{aligned}
& G_{\imath} m_{2} \mu_{\imath-1} \mu_{\imath}^{-1}\left(\sin \imath_{\imath} \sin \Omega_{\imath},-\sin \imath_{2} \cos \Omega_{\imath}, \cos \imath_{\imath}\right) \\
& =L_{\imath} \cos \phi_{\imath}\left(\sin \imath_{\imath} \sin \Omega_{\imath},-\sin \imath_{\imath} \cos \Omega_{\imath}, \cos \imath_{\imath}\right)
\end{aligned}
$$

when the direction cosines of the normal to the orbit are introduced These components may be written (§ 174)

$$
-\eta_{2,2} L_{2}^{\frac{1}{2}} \cos ^{\frac{1}{2}} \phi_{2} \cos \frac{1}{2} \imath_{2},-\xi_{2,2} L_{2}^{\frac{1}{2}} \cos ^{\frac{1}{2}} \phi_{2} \cos \frac{1}{2} \imath_{2}, \quad L_{2} \cos \phi_{2} \cos \eta_{2}
$$

or since

$$
\xi_{\imath, 1}^{2}+\eta_{\imath, 1}^{2}=2 L_{\imath}\left(1-\cos \phi_{\imath}\right), \quad \xi_{\imath, 2}^{2}+\eta_{\imath, 2}^{2}=2 L_{\imath} \cos \phi_{\imath}\left(1-\cos {\eta_{\imath}}_{\imath}\right)
$$

they can also be expressed in terms of these quantities The areal integrals then become

$$
\begin{array}{r}
-\Sigma \eta_{\imath, 2}\left\{L_{\imath}-\frac{1}{2}\left(\xi_{\imath, 1}^{2}+\eta_{2,1}^{2}\right)-\frac{1}{4}\left(\xi_{i, 2}^{2}+\eta_{i, 2}^{2}\right)\right\}^{\frac{1}{2}}=\text { const } \\
-\Sigma \xi_{\imath, 2}\left\{L_{2}-\frac{1}{2}\left(\xi_{\imath, 1}^{2}+\eta_{\imath, 1}^{2}\right)-\frac{1}{4}\left(\xi_{\imath, 2}^{2}+\eta_{i, 2}^{2}\right)\right\}^{\frac{1}{2}}=\mathrm{const} \\
\Sigma\left\{L_{\imath}-\frac{1}{2}\left(\xi_{\imath, 1}^{2}+\eta_{i, 1}^{2}\right)-\frac{1}{2}\left(\xi_{\imath, 2}^{2}+\eta_{\imath, 2}^{2}\right)\right\}=\text { const }
\end{array}
$$

If the plane or reference is the invariable plane the first two of these constants are zero In that case, when there are only two planets, η_{2} / ξ_{2} is the same for both and the nodes comncide, which is the property already noticed in § 169 and referred to as the elimination of the nodes

These integrals, being satisfied identically, remain true when developed according to order and rank Thus the third equation gives

$$
\begin{gathered}
\frac{d}{d t} \Sigma\left(\xi_{i, 1}^{2}+\eta_{\imath, 1}^{2}+\xi_{\imath, 2}^{2}+\eta_{2,2}^{2}\right)=\frac{d}{d t} \Sigma L_{\imath}=0 \\
\Sigma\left(\xi_{\imath, 1}^{2}+\eta_{\imath, 1}^{2}+\xi_{2,2}^{2}+\eta_{i, 2}^{2}\right)=\text { const }
\end{gathered}
$$

which is the sum of the quadratic integrals both for the eccentric and the oblique variables For L_{8} has no terms of zero rank, and the purely periodic terms of the first order are excluded from consideration

Thus L_{\imath} is for the present purpose to be regarded as constant The neglect of terms of the fourth degree in the disturbing function implies the neglect of the third degree in the variables ξ, η themselves Hence to the same approximation the first two areal integrals give

$$
\Sigma L_{2}^{\frac{1}{2}} \eta_{i, 2}=\text { const }, \quad \Sigma L_{2}^{\frac{1}{2}} \xi_{\imath, 2}=\text { const }
$$

These then are the two linear integrals found above for the oblique variables, and their physical meaning is thus explaned The constants are now interpreted (to a factor) as the angular momenta of the system about two rectangular axes in the arbitrary plane of reference In particular, if the invariable plane of the system is taken as the plane of reference, both the constants will become zero

183 The interpretation of the equations

$$
e_{2} L_{2}^{\frac{1}{2}}{ }_{\sin }^{\cos } \sigma_{i}=\sum_{j} a_{i, j} C_{j}{ }_{\sin }^{\cos }\left(a, t+h_{j}\right)
$$

in a vectorial sense has been seen to give a lower limit of e_{2} when one of the tensors $\left|a_{n, j} C_{\jmath}\right|$ exceeds the sum of the rest In all cases sumılar reasoning shows that

$$
e_{2} L_{2}^{\frac{1}{2}}<\sum_{j}\left|a_{\imath, j} C_{j}\right|
$$

gives an upper limit of the eccentricity Similarly the inequality

$$
a_{\imath} L_{\imath}^{\frac{1}{2}}<\sum_{j}\left|b_{\imath, j} D_{j}\right|
$$

gives an upper hmit of the inclination The actual limits found in this way by Stockwell are of interest and are therefore reproduced

	Eccentricity		Inchnation	
	Max	Min	Max	Min
Mercury	0232	0121	$9^{\circ} 2$	$4^{\circ} 7$
Venus	0071		33	
Earth	0068		31	
Mars	0140	0018	59	
Jupiter	0061	0025	05	02
Saturn	0084	0012	10	08
Uranus	0078	0012	11	09
Neptune	0015	0006	08	06

The effect of periodic inequalities is ignored, and the inclinations are referred to the invariable plane Minimum figures are given only when a preponderating term exists

Since $L_{l}{ }^{\frac{1}{2}}$ contains $m_{2}^{\frac{1}{2}}$ as a factor these limits have no value when the mass m_{t} is very small To consider this case let an infinitesimal mass m_{0} be added to the system Then for the eccentric variables,

$$
\left[-U+U_{1}^{\prime}\right]=\Sigma_{\frac{1}{2}} A_{2, j}\left(\xi_{2} \xi_{j}+\eta_{2} \eta_{j}\right)+\Sigma_{j} A_{0, \rho}\left(\xi_{0} \xi_{j}+\eta_{0} \eta_{j}\right)+\frac{1}{2} A_{0,0}\left(\xi_{0}{ }^{2}+\eta_{0}{ }^{2}\right)
$$

Inspection of the explicit form in $\S .178$ shows that $A_{t, 0}$ is of the order of m_{n}, any of the masses, assumed comparable, of the finite planets, that $A_{0, j}$ is of the order of $m_{0}{ }^{\frac{1}{2}} m_{2}^{\frac{1}{2}}$, and that $A_{0,0}$ is again of the order m_{2}

The canonical equations give for the infinitesimal planet

$$
\begin{aligned}
& \frac{d \xi_{0}}{d t}=A_{0,0} \eta_{0}+\Sigma A_{0, j} \eta_{j} \\
& \frac{d \eta_{0}}{d t}=-A_{0,0} \xi_{0}-\Sigma A_{0, j} \xi_{j}
\end{aligned}
$$

As the new mass is regarded as infinitesimal, the motion of the finite planets will not be influenced, and the former solution
holds good Hence

$$
\begin{aligned}
& \xi_{2}=\Sigma a_{j, 2} O_{2} \cos \left(\alpha_{2} t+h_{2}\right) \\
& \eta_{j}=-\Sigma a_{j_{2}, 2} C_{2} \sin \left(\alpha_{2} t+h_{\imath}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d \xi_{0}}{d t}-A_{0,0} \eta_{0}=-\sum_{i, j} A_{0, j} a_{j, 2} C_{\imath} \sin \left(\alpha_{\imath} t+h_{\imath}\right) \\
& \frac{d \eta_{0}}{d t}+A_{0,0} \xi_{0}=-\sum_{i, j} A_{0, j} a_{j, i} C_{\imath} \cos \left(\alpha_{\imath} t+h_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{\xi}=, \cdots, 1+-h_{1}-\mathbf{E}_{1} A_{1}\left(C_{1}^{\prime}, A_{3},-a_{1}\right)^{-1} \cos \left(a_{2} t+h_{2}\right)
\end{aligned}
$$

 if fulh' of it tr, nuran but wer frim the Sun 195 , or near the inner limit of

 linated de w' pmient if the disturbing function must be remembered*

CHAPTER XVII

SECULAR INEQUALITIES METHOD OF GAUSS

184. A beautiful method of calculating the secular perturbations of the first order, due to the action of one planet on another, was proposed by Gauss in 1818 It was this method which was applied by Adams to the path of the Leomd meteors Further developments have been given by several writers, and references will be found in an article* by H v Zeipel

The prrnciple of the method is extremely simple Equations for the variations of the elements have been found in a suitable form in §142. As an example we may take ($\mu=n^{2} a^{3}$)

$$
\frac{d \imath}{d t}=\frac{1}{n a^{2}} \cdot \frac{r W \cos u}{\cos \phi}
$$

Here the right-hand side can be developed in terms of M, M^{\prime}, the mean anomalies of the disturbed and disturbing planets, in the form

$$
\frac{d \imath}{d t}=A_{0,0}+\Sigma A_{j, j} \cos \left(\jmath M+\jmath^{\prime} M^{\prime}+q\right)
$$

and hence, the coefficients being constant in the first approximation,

$$
\imath-\imath_{0}=A_{0,0} t+\Sigma A_{j, j^{\prime}} \sin \left(\jmath M+\jmath^{\prime} M^{\prime}+q\right) /\left(\jmath n+\jmath^{\prime} n^{\prime}\right)
$$

If therefore the mean motions n, n^{\prime} are incommensurable, so that ($\jmath n+\jmath^{\prime} n^{\prime}$) can never vanish, $A_{0,0} t$ constitutes the secular inequality in 2 Now

$$
\begin{align*}
A_{0,0}=\left[\frac{d i}{d t}\right]_{0,0} & =\frac{1}{4 \pi^{2}} \int_{0}^{2 \pi} \int_{0}^{2 \pi} \frac{d 2}{d t} d M d M^{\prime} \\
& =\frac{1}{2 \pi n a^{2} \cos \phi} \int_{0}^{2 \pi} r \cos u\left[\frac{1}{2 \pi} \int_{0}^{2 \pi} W d M^{\prime}\right] d M \tag{1}
\end{align*}
$$

The component W contains as a factor $k^{2} m^{\prime}=n^{3} a^{3} m^{\prime} /(1+m) \quad$ We therefore write

$$
\frac{n^{2} a^{3} m^{\prime}}{1+m} W_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} W d M^{\prime}
$$

with sumilar reduced mean values S_{0}, T_{0} corresponding to S, T If then a series of values of S_{0}, T_{0}, W_{0} can be calculated for a number of points

[^1]reg aidry ditnbisted round the disturbed orbit, they can be introduced into the , wati in fir the rariations and a simple quadrature will give the atcuar η^{n} rtarbutions of the several elements, that of a bemg zero

185 In calculating $\zeta_{1}, \Gamma_{3}, W_{0}$, the disturbed planet occupies a given fird ${ }^{n}$ mint P in its ,rbit It :s clear that S_{0}, T_{0}, W_{0} are components of the mean artruction, with respect to the time, exercised at P by a unit mass durnir ag the dintarbag orbit, uith unit constant of gravitation They are the wint in woud result if the disturbing orbit were permanently loaded so as tu curatitutr a naterial ring of the same total mass, when the density 18 prifurtiondit $d M d s^{\prime}$ Thus it is necessary to calculate the attraction of an thiptic ring of this hind

Lat any asstem of rectangular axes $x y z$ be taken, with origna at P Let $\left(x_{0} y_{0} z_{3}\right)$ be the cordinates of the $\operatorname{Sun},\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ those of a point P^{\prime} on the dastirbing 'ritst, and let $d \sigma^{\prime}$ be the area of an elementary focal sector, $d V^{\prime}$ the winime of the tetrahedron on the base $d \sigma^{\prime}$ with its apex at P Then

$$
2 p d \sigma^{\prime}=\operatorname{tin} t V^{\prime}=x_{0}\left(y^{\prime} d z^{\prime}-z^{\prime} d y^{\prime}\right)+y_{0}\left(z^{\prime} d x^{\prime}-x^{\prime} d z\right)+z_{0}\left(x^{\prime} d y^{\prime}-y^{\prime} d x^{\prime}\right)
$$

Whart p is the perpendicular from P on the plane of $d \sigma^{\prime}$ Hence one crmpinint of the required attraction at P is

$$
P_{x}=\frac{1}{2 \pi}-\int_{0}^{9 x} \frac{x^{\prime}}{د^{3}} d M^{\prime}=\frac{1}{\pi a^{2} b^{\prime}} \int \frac{x^{\prime}}{\Delta^{3}} d \sigma^{\prime}=\frac{3}{\pi a^{\prime} b^{\prime} p} \int \frac{x^{\prime}}{\Delta^{3}} d V^{\prime}
$$

Wher " b^{\prime} are the semi-axes of the disturbing orbit and $\Delta^{2}=a^{\prime 2}+y^{\prime 2}+z^{\prime 2}$ This tales account of the first (principal) part of the disturbing function rn's the wcond (indirect) part has been left out of consideration because 15159 int givea rise to no secular terms in the perturbations of the first order It 14 nmw to be observed that $x^{\prime} \Delta^{-3} d V^{\prime}$ is a bomogeneous function of degree 0 in $x^{\prime}, \jmath^{\prime} z^{\prime}$, and can therefore be expressed, smee $z^{\prime} d y^{\prime}-y^{\prime} d z^{\prime}=z^{\prime \prime} d\left(y^{\prime} \mid z^{\prime}\right)$, , in terms of $x^{\prime} z, y^{\prime} z^{\prime}$, which are connected by some relation

$$
f\left(x^{\prime} z^{\prime}, \quad y_{1}^{\prime} z^{\prime}\right)=0
$$

which is the cquation of the cone having its apex at P and the attracting ring as its section Thus the integral factor of P_{x} (and similarly of P_{y}, P_{z}) depends on'v on the form of the cone and not on the particular section This is true whatever the shape of the ring may be But in the present case the cone 10 of the second degree, and the axes may now be identified with 1ts principal dxes, $P(X, Y, Z)$ Let $P Z$ be the internal axis and α, β the semi-axey of the section $Z=1$ The coordinates of P^{\prime} can be written

$$
X^{\prime}=\alpha \cos \tau, \quad Y^{\prime}=\beta \sin \tau, \quad Z^{\prime}=1
$$

where τ is the eccentric angle in the section, and

$$
د^{2}=1+\alpha^{2} \cos ^{2} \tau+\beta^{2} \sin ^{2} \tau, \quad 6 d V^{\prime}=\left(-\beta X_{0} \cos \tau-\alpha Y_{0} \sin \tau+\alpha \beta Z_{0}\right) d \tau .
$$

Hence

$$
\begin{aligned}
P_{X} & =\frac{1}{2 \pi \alpha^{\prime} b^{\prime} p} \int_{0}^{2 \pi} \frac{\alpha \cos \tau\left(-\beta X_{0} \cos \tau-\alpha Y_{0} \sin \tau+\alpha \beta Z_{0}\right) d \tau}{\left(1+\alpha^{2} \cos ^{2} \tau+\beta^{2} \sin ^{2} \tau\right)^{\frac{8}{2}}} \\
& =\frac{-2 \alpha \beta X_{0}}{\pi \alpha^{\prime} b^{\prime} p} \int_{0}^{2 \pi} \frac{\cos ^{2} \tau d \tau}{\Delta^{3}}
\end{aligned}
$$

and simularly

$$
P_{Y}=\frac{-2 \alpha \beta Y_{0}}{\pi a^{\prime} b^{\prime} p} \int_{0}^{\frac{1 \pi}{2} \pi} \frac{\sin ^{2} \tau d \tau}{\Delta^{3}}, \quad P_{Z}=\frac{2 \alpha \beta Z_{0}}{\pi \alpha^{\prime} b^{\prime} p} \int_{0}^{\frac{1 \pi}{2} \pi} \frac{d \tau}{\Delta^{3}}
$$

These components can now be expressed in terms of the complete elliptic integrals

$$
F=\int_{0}^{\frac{1}{2} \pi} \frac{d \tau}{\sqrt{\left(1-k^{2} \sin ^{2} \tau\right)}}, \quad E=\int_{0}^{\frac{1}{2} \pi} \sqrt{ }\left(1-k^{2} \sin ^{2} \tau\right) d \tau
$$

For, sunce

$$
\begin{aligned}
& \frac{d}{d \tau} \frac{\sin \tau \cos \tau}{\sqrt{\left(1-k^{2} \sin ^{2} \tau\right)}=\frac{\cos ^{2} \tau-\sin ^{2} \tau+k^{2} \sin ^{4} \tau}{\left(1-k^{2} \sin ^{2} \tau\right)^{\frac{3}{2}}}} \\
& 0=\int_{0}^{\frac{2}{2} \tau} \frac{\cos ^{2} \tau d \tau}{\left(1-k^{2} \sin ^{2} \tau\right)^{\frac{3}{2}}}-\frac{1}{k^{2}}(F-E)=\frac{1}{k^{2}} E-\frac{1-k^{2}}{k^{2}} \int_{0}^{\frac{2}{2} \pi} \frac{d \tau}{\left(1-k^{2} \sin ^{2} \tau\right)^{\frac{3}{2}}} \\
&=\int_{0}^{\frac{1 \pi}{2}} \frac{\sin ^{2} \tau d \tau}{\left(1-k^{2} \sin ^{2} \tau\right)^{\frac{\pi}{2}}}+\frac{1}{k^{2}} F-\frac{1}{k^{2}} \frac{1}{\left(1-k^{2}\right)} E
\end{aligned}
$$

Hence

$$
\begin{aligned}
& P_{X}=\frac{-2 X_{0}}{\pi a^{\prime} b^{\prime} p}\left(\alpha^{2}-\beta^{2}\right) \sqrt{\left(1+a^{2}\right)}(F-E) \\
& P_{Y}=\frac{-2 Y_{0}}{\pi a^{\prime} b^{\prime} p} \frac{\alpha \beta}{\left(a^{2}-\beta^{2}\right) \sqrt{\left(1+a^{2}\right)}}\left[\frac{1+\alpha^{2}}{1+\beta^{2}} E-F\right] \\
& P_{Z}=\frac{2 Z_{0}}{\pi a^{\prime} b^{\prime} p} \frac{\alpha \beta}{\left(1+\beta^{2}\right) \sqrt{\left(1+a^{2}\right)}} E
\end{aligned}
$$

where the modulus k of E and F is given by

$$
k^{2}=\frac{a^{2}-\beta^{2}}{1+a^{2}}, \quad 1-k^{2}=\frac{1+\beta^{2}}{1+a^{2}}
$$

186 It is now necessary to consider the geometry of the problem Let the angular elements of the disturbed orbit be Ω, τ, ω, and of the disturbing orbit $\Omega^{\prime}, i^{\prime}, \omega^{\prime}$ These are 1 eferred to the ecliptic, which it is convement to eliminate by referring the latter orbit directly to the former With some change in the notation of $\S 67$ the equations there found give

$$
\begin{aligned}
& \sin \frac{1}{2}\left(\Omega^{\prime \prime}+\omega^{\prime}-\omega^{\prime \prime}\right) \sin \frac{1}{2} \imath^{\prime \prime}=\sin \frac{1}{2}\left(\Omega^{\prime}-\Omega\right) \sin \frac{1}{2}\left(\imath^{\prime}+\imath\right) \\
& \cos \frac{1}{2}\left(\Omega^{\prime \prime}+\omega^{\prime}-\omega^{\prime \prime}\right) \sin \frac{1}{2} \imath^{\prime \prime}=\cos \frac{1}{2}\left(\Omega^{\prime}-\Omega\right) \sin \frac{1}{2}\left(\imath^{\prime}-\imath\right) \\
& \sin \frac{1}{2}\left(\Omega^{\prime \prime}-\omega^{\prime}+\omega^{\prime \prime}\right) \cos \frac{1}{2} \imath^{\prime \prime}=\sin \frac{1}{2}\left(\Omega^{\prime}-\Omega\right) \cos \frac{1}{2}\left(\imath^{\prime}+\imath\right) \\
& \cos \frac{1}{2}\left(\Omega^{\prime \prime}-\omega^{\prime}+\omega^{\prime \prime}\right) \cos \frac{1}{2} \imath^{\prime \prime}=\cos \frac{1}{2}\left(\Omega^{\prime}-\Omega\right) \cos \frac{1}{2}\left(\imath^{\prime}-\imath\right)
\end{aligned}
$$

 node of the disturbed orbint, $i^{\prime \prime}$ is the mutual mimation of the iwn fint
 intersection

 oobit Let v be the true anomaly at l^{\prime}, and

$$
\omega+\| \quad \Omega^{\prime \prime} \quad n
$$

the destance of P fiom the mentertion of the onfint. The n the whe ete between the two सystemy of coudmatere are goven in the romen

ξ	η	*
$a \cos \omega^{\prime \prime} \cos \nu_{1}+\sin \omega^{\prime \prime}$ 4in $\nu_{1} \cos ^{\prime \prime \prime} 1^{\prime \prime}$		里!
$y-\sin \omega^{\prime \prime} \cos \nu_{1}+\cos \omega^{\prime \prime} \sin v_{1} \cos \iota^{\prime \prime}$		(s)
- $\sin n_{1} 41 \mathrm{~m}!^{\prime \prime}$		

 disturbing orbit is the tover elliper

$$
a^{2}, \frac{y^{2}}{b^{\prime}}=1
$$

 $\left(x_{1}, y_{1}, z_{1}\right)$ are given by

$$
\begin{gathered}
x_{1}^{2} \\
a^{2}+\lambda^{+} b^{1 / 1}+\lambda+\lambda_{1}^{2} \\
\lambda
\end{gathered}
$$

on ay the roots of the cubs

$$
\begin{aligned}
& \lambda^{\prime}-\lambda^{2}\left(x_{1}^{2}+y_{1}^{2}+z_{1}^{2}-a^{2}-b^{\prime}\right) \\
& \quad+\lambda\left(a^{2} b^{2}-a^{2} y_{1}^{2}-b^{2} x_{1}^{2} \quad a^{\prime 2} z_{1}^{2} \quad b^{2} a^{2}\right) \quad a^{\prime} b^{2} ; \quad, 11
\end{aligned}
$$

the cone Hence the relations between the sets of coordinates (X, Y, Z) and (x, y, z) are given by the scheme

	x	y	z
X	$p_{1} x_{1}\left(a^{\prime 2}+\lambda_{1}\right)^{-1}$	$p_{1} y_{1}\left(b^{\prime 2}+\lambda_{1}\right)^{-1}$	$p_{1} z_{1} / \lambda_{1}$
Y	$p_{2} x_{1}\left(a^{\prime 2}+\lambda_{2}\right)^{-1}$	$p_{2} y_{1}\left(b^{\prime 2}+\lambda_{2}\right)^{-1}$	$p_{2} z_{1} / \lambda_{2}$
Z	$p_{3} x_{1}\left(a^{\prime 2}+\lambda_{3}\right)^{-1}$	$p_{3} y_{1}\left(b^{\prime 2}+\lambda_{3}\right)^{-1}$	$p_{3} z_{1} / \lambda_{3}$

where p_{1}, p_{2}, p_{s} are such that

$$
p_{1}^{2}\left\{x_{1}^{2}\left(a^{\prime 2}+\lambda_{1}\right)^{-2}+y_{1}^{2}\left(b^{\prime 2}+\lambda_{1}\right)^{-2}+z_{1}^{2} \lambda_{1}^{-2}\right\}=1,
$$

When combined with the scheme given above for $(x, y, z),(\xi, \eta, \zeta)$, this gives the relations between (X, Y, Z) and (ξ, η, ζ)

The equation of the cone is

$$
\frac{\left(z x_{1}-x z_{1}\right)^{2}}{a^{\prime 2}}+\frac{\left(z y_{1}-y z_{1}\right)^{2}}{b^{\prime 2}}=\left(z-z_{1}\right)^{2}
$$

for this is clearly homogeneous and of the second degree in $x-x_{1}, y-y_{1}$, $z-z_{1}$, and its section by the plane $z=0$ is the disturbing orbit Transposed tc) parallel axes through its vertex $\left(x_{1}, y_{1}, z_{1}\right)$ it becomes

$$
\begin{aligned}
& -\frac{x^{2}}{a^{\prime 2}}-\frac{y^{2}}{b^{\prime_{2}^{2}}}-\frac{z^{2}}{z_{1}^{2}}\left(\frac{x_{1}^{2}}{a^{\prime 2}}+\frac{y_{1}^{2}}{b^{\prime 2}}-1\right)+\frac{2 y z}{b^{\prime 2}} \frac{y_{1}}{z_{1}}+\frac{2 z x}{a^{\prime 2}} \frac{x_{1}}{z_{1}} \\
& \equiv X^{2} / \lambda_{1}+Y^{2} / \lambda_{2}+Z^{2} / \lambda_{3}=F_{-1}=0
\end{aligned}
$$

Tha justitication for identifying these two forms is seen on comparing the t.haree functions of the coefficients which remain invariant under a rotation of the axes It will then be found that the results are equivalent to the reelations between the coefficients and roots of (2)

It is convement to write down the equation of the reciprocal cone The cocefficients are the minors of the discrimmant of the previous equation $\boldsymbol{F}^{\boldsymbol{T}}{ }_{-1}=\mathbf{0}$. Hence with due care in choosing the right multipher the desired *(fuation may be written

$$
\begin{aligned}
& x^{2}\left(x_{1}^{2}-a^{2}\right)+y^{2}\left(y_{1}^{2}-b^{2}\right)+z^{2} z_{1}^{2}+2 y z y_{1} z_{1}+2 z a z_{1} x_{2}+2 x y x_{1} y_{1} \\
\equiv & \lambda_{1} X^{2}+\lambda_{2} Y^{2}+\lambda_{3} Z^{2}=F_{1}=0
\end{aligned}
$$

the invariant relations being identical with those between the coefficients send roots of (2)

Also

$$
x^{2}+y^{2}+z^{2} \equiv X^{4}+Y^{2}+Z^{2}=\xi^{2}+\eta^{2}+\zeta^{2}=F_{0}
$$

annd it is evident that F_{-1}, F_{1} can also be readuly expressed, by means of the transformation scheme of $\S 186$, in terms of ξ, η, ζ

188 Two of the roots of the cubic (2) are negative and one positive, since two of the corresponding quadrics are hyperboloids and one an ellipsold Let

$$
\lambda_{1}<\lambda_{2}<0<\lambda_{3}
$$

The axis of Z is then the internal axis of the cone F_{-1} and it follows that

$$
\alpha^{2}=-\frac{\lambda_{1}}{\lambda_{3}}, \quad \beta^{2}=-\frac{\lambda_{2}}{\lambda_{3}}, \quad k^{2}=\frac{\alpha^{2}-\beta^{2}}{1+\alpha^{2}}=\frac{\lambda_{2}-\lambda_{1}}{\lambda_{3}-\lambda_{1}}
$$

The elliptic integrals F, E can therefore be found The coordinates of the Sun relative to the point P are $x_{0}=a^{\prime} e^{\prime}-x_{1}, y_{0}=-y_{1}, z_{0}=-z_{1}$ in the system (x, y, z) and (X_{0}, Y_{0}, Z_{0}) can be deduced by the transformation scheme of $\S 187$ Hence P_{X}, P_{Y}, P_{Z} become known, and the components $P_{\xi}=S_{0}$, $P_{\eta}=T_{0}, P_{\zeta}=W_{0}$ may be derived by applying the two transformations of § 186 and 187

It is unnecessary here to consider the equations for all the inequalities As a type, (1) now becomes

$$
\left(\frac{d v}{d t}\right)_{0,0}=\frac{n a m^{\prime}}{(1+m) \cos \phi} \frac{1}{2 \pi} \int_{0}^{2 \pi} r \cos u W_{0} d M
$$

Suppose that \jmath values ψ_{s} of $\psi=r \cos u W_{0}$ have been found, corresponding to ρ points around the disturbed orbit at which M has equidistant values, $0,2 \pi / \jmath, \quad, 2(\jmath-1) \pi / \jmath \quad$ Then (Chapter XXIV)
where

$$
\psi=a_{0}+\Sigma a_{2} \cos \imath M+\Sigma b_{\imath} \sin \iota M
$$

$$
a_{0}=\frac{1}{\jmath} \sum_{s} \psi_{s}, \quad a_{2}=\frac{2}{\jmath} \sum_{s} \psi_{s} \cos \frac{2 s \imath \pi}{\jmath}, \quad b_{\imath}=\frac{2}{\jmath} \sum_{s} \psi_{s} \sin \frac{2 s \imath \pi}{\jmath}
$$

Hence

$$
\begin{equation*}
\left(\frac{d v}{d t}\right)_{0,0}=\frac{n a m^{\prime}}{(1+m) \cos \phi} a_{0} \tag{3}
\end{equation*}
$$

and it is only necessary to calculate the average value of ψ_{8} to have the secular inequality For the major planets $j=12$ practically suffices The summation formula for a_{0} really gives $a_{0}+a_{3}+\quad$ It is therefore necessaxy to take ρ large enough to make α_{ρ} neghigible The number of points to be taken on the disturbed orbit thus depends on the practical convergency of the series a_{0}, a_{1}, a_{0},

It is, however, preferred to take points equidistant in E, the eccentric anomaly, instead of M, since this secures a more even distribution in ars The advantage of this course seems scarcely obvious, because it appears to weight unduly the part of the orbit which is passed over rapidly But the modufication is easily made In this case

$$
\psi=a_{0}+\Sigma a_{1} \cos \imath E+\Sigma b_{2} \sin \imath E
$$

where again

$$
a_{0}=\frac{1}{\jmath} \sum_{s} \psi_{s}, \quad a_{2}=\frac{2}{\jmath} \sum_{s} \psi_{s} \cos \frac{2 s \imath \pi}{\jmath}, \quad b_{2}=\frac{2}{\jmath} \sum_{s} \sin \frac{2 s \imath \pi}{\jmath}
$$

but the meaning of ψ will be changed For

$$
d M=(1-e \cos E) d E=a^{-1} r d E
$$

and (1) may be written

$$
\left(\frac{d \imath}{d t}\right)_{0,0}=\frac{n u m^{\prime}}{(1+m) \cos \phi} \frac{1}{2 \pi} \int_{0}^{2 \pi} a^{-1} r^{2} \cos u W_{0} d E
$$

Hence (3) will still hold good if a_{0} is the simple mean value of ψ, where ψ is now $a^{-1} r^{2} \cos u \quad W_{0}$

189 The cubic (2) has three real roots and can be easily solved It is now to be seen that the solution can be avoided Let the equation be written

$$
\lambda^{s}+3 k_{1} \lambda^{2}+3 k_{2} \lambda+k_{3}=0
$$

the roots being $\lambda_{1}, \lambda_{2}, \lambda_{3}$, and let the result of removing the second term be

$$
4 \lambda^{\prime 3}-g_{2} \lambda^{\prime}-g_{3}=0
$$

of which the roots are e_{1}, e_{2}, e_{3} Then

$$
\begin{aligned}
& g_{2}=-4\left(e_{2} e_{3}+e_{3} e_{1}+e_{1} e_{2}\right)=12\left(k_{1}^{2}-k_{2}\right) \\
& g_{3}=4 e_{1} e_{2} e_{3}=-4\left(2 k_{1}^{3}-3 k_{1} k_{2}+k_{3}\right)
\end{aligned}
$$

and

$$
\begin{gathered}
3 e_{1}=2 \lambda_{1}-\lambda_{2}-\lambda_{3}, \quad 3 e_{2}=2 \lambda_{2}-\lambda_{3}-\lambda_{1}, \quad 3 e_{1}=2 \lambda_{3}-\lambda_{1}-\lambda_{2} \\
e_{1}<e_{2}<e_{1}, \quad e_{1}+e_{2}+e_{3}=0
\end{gathered}
$$

Thus

$$
\begin{aligned}
\Delta^{2}=1+\alpha^{2} \cos ^{2} \tau+\beta^{2} \sin ^{2} \tau & =\lambda_{3}^{-1}\left\{\left(\lambda_{3}-\lambda_{1}\right) \cos ^{2} \tau+\left(\lambda_{3}-\lambda_{2}\right) \sin ^{2} \tau\right\} \\
& =\lambda_{3}^{-1}\left\{\left(e_{3}-e_{1}\right) \cos ^{2} \tau+\left(e_{3}-e_{3}\right) \sin ^{2} \tau\right\}=\lambda_{3}^{-1} \Delta^{\prime 2}
\end{aligned}
$$

and the components to be calculated are

$$
\begin{align*}
& P_{X}=\frac{-2 X_{0}\left(\lambda_{1} \lambda_{2} \lambda_{3}\right)^{\frac{1}{2}}}{\pi a^{\prime} b^{\prime} p} \int_{0}^{\frac{1}{2} \pi} \frac{\cos ^{2} \tau d \tau}{\Delta^{\prime 3}}, \quad P_{Y}=\frac{-2 X_{0}\left(\lambda_{1} \lambda_{2} \lambda_{3}\right)^{\frac{1}{2}}}{\pi a^{\prime} b^{\prime} p} \int_{0}^{2 \pi} \frac{\sin ^{2} \tau d \tau}{\Delta^{\prime 3}}, \\
& P_{Z}=\frac{2 Z_{0}\left(\lambda_{1} \lambda_{2} \lambda_{3}\right)^{\frac{1}{2}}}{\pi a^{\prime} b^{\prime} p} \int_{0}^{\frac{1}{2} \pi} \frac{d \tau}{\Delta^{/ 3}} \tag{4}
\end{align*}
$$

where $\lambda_{1} \lambda_{2} \lambda_{3}=-k_{1}$ It is cle,rrly possible to write consistently

$$
\sin ^{2} \tau=\frac{e_{3}-e_{1}}{e_{2}-e_{1}} \frac{s-e_{2}}{s-e_{3}}, \quad \cos ^{2} \tau=\frac{e_{9}-e_{3}}{e_{2}-e_{1}} \frac{s-e_{1}}{s-e_{3}}, \quad \Delta^{\prime 2}=\left(e_{3}-\frac{\left.e_{1}\right)\left(e_{2}-e_{3}\right)}{s-e_{3}}\right.
$$

whence

$$
2 \sin \tau \cos \tau \frac{d \tau}{d s}=\frac{\left(e_{3}-e_{1}\right)\left(e_{2}-e_{2}\right)}{\left(e_{4}-e_{1}\right)\left(s-e_{3}\right)^{2}}
$$

and

$$
\frac{4}{\Delta^{\prime 2}}\left(\frac{d \tau}{d s}\right)^{2}=\underset{\left(s-e_{1}\right)\left(s-e_{2}\right)\left(s-e_{8}\right)}{1}
$$

But this can be written

$$
\Delta^{\prime-1} d \tau=d u, \quad \wp(u)=s
$$

where $\varphi(u)$ is the Weierstrassian elliptic function formed with the roots e_{1}, e_{2}, e_{3} When $\tau=0, \wp(u)=e_{2}, u=\omega_{2}$, when $\tau=\frac{1}{2} \pi, \wp(u)=e_{1}, u=\omega_{1}$ Hence

$$
\begin{gathered}
\int_{0}^{2 \pi} \frac{d \tau}{\Delta^{\prime 3}}=\int_{\omega_{0}}^{\omega_{1}} \frac{\varphi(u)-e_{3}}{\left(e_{4}-e_{1}\right)\left(e_{2}-e_{3}\right)} d u=\left[\frac{\zeta(u)+e_{3} u}{\left(e_{3}-e_{1}\right)\left(e_{2}-e_{3}\right)}\right]_{\omega_{1}}^{\omega_{2}}=\frac{\eta+e_{3} \omega}{\left(e_{3}-e_{1}\right)\left(e_{2}-e_{3}\right)} \\
\int_{0}^{2 \pi} \frac{\sin ^{2} \tau d \tau}{\Delta^{\prime 3}}=\int_{\omega_{2}}^{\omega_{1}} \frac{\varphi(u)-e_{2}}{\left(e_{2}-e_{1}\right)\left(e_{2}-e_{3}\right)} d u=\left[\frac{\zeta(u)+e_{2} u}{\left(e_{2}-e_{1}\right)\left(e_{2}-e_{3}\right)}\right]_{\omega_{1}}^{\omega_{2}}=\frac{\eta+e_{2} \omega}{\left(e_{2}-e_{1}\right)\left(e_{2}-e_{3}\right)} \\
\int_{0}^{2 \pi} \frac{\cos ^{2} \tau d \tau}{\Delta^{\prime 3}}=\int_{\omega}^{\omega_{1}} \frac{\varphi(u)-e_{1}}{\left(e_{2}-e_{1}\right)\left(e_{3}-e_{1}\right)} d u=\left[\frac{\zeta(u)+e_{1} u}{\left(e_{2}-e_{1}\right)\left(e_{3}-e_{1}\right)}\right]_{\omega_{1}}^{\omega_{3}}=\frac{\eta+e_{1} \omega}{\left(e_{2}-e_{1}\right)\left(e_{3}-e_{1}\right)}
\end{gathered}
$$

where

$$
\eta=\zeta\left(\omega_{2}\right)-\zeta\left(\omega_{1}\right), \quad \omega=\omega_{2}-\omega_{1}
$$

The quantities ω and η will now be found
190 The reader who is unacquainted with the theory of elliptic functions will notice that nothing beyond the definitions of the functions $\psi(u), \zeta(u) 18$ here involved, and that these can be easily mferred In fact, if the variable s be retanned, it is easily seen that

$$
\omega=\int_{e_{1}}^{e_{2}} \frac{d s}{\sqrt{ }\left\{4\left(s-e_{1}\right)\left(s-e_{2}\right)\left(s-e_{1}\right)\right\}}, \quad \eta=-\int_{e_{1}}^{e_{1}} \overline{\left.\sqrt{\left\{4\left(s-e_{1}\right)\right.}\left(s-e_{2}\right)\left(s-\bar{e}_{3}\right)\right\}}
$$

where

$$
4\left(s-e_{1}\right)\left(s-e_{2}\right)\left(s-e_{9}\right)=4 s^{3}-g_{2} s-g_{3}, \quad e_{1}<e_{2}<e_{3}
$$

The range of integration is the finite interval between the roots in which the integrals are real Let

$$
s=\left(\frac{1}{3} g_{2}\right)^{\frac{1}{2}} \cos \theta, \quad \cos 3 \gamma=\left(27 g_{\mathrm{q}}^{2} g_{2}^{-s}\right)^{\frac{1}{2}}=q^{-\frac{1}{2}}
$$

The values of θ corresponding to e_{1}, e_{2}, e_{1} in order are clearly

$$
\theta_{1}=\frac{2}{3} \pi+\gamma, \quad \theta_{2}=\frac{2}{3} \pi-\gamma, \quad \theta_{3}=\gamma<\frac{1}{3} \pi
$$

since

$$
4 s^{9}-g_{2} s-g_{3}=\left(\frac{1}{3} g_{2}\right)^{\frac{4}{4}}(\cos 3 \theta-\cos 3 \gamma)
$$

Hence

$$
\omega=\left(\frac{1}{3} g_{2}\right)^{-\frac{1}{2}} \int_{\theta_{2}}^{\theta_{1}} \frac{\sin \theta d \theta}{\sqrt{(\cos 3 \theta-\cos 3 \gamma)}}, \quad \eta=-\frac{1}{2}\left(\frac{k}{3} g_{2}\right)^{\frac{1}{4}} \int_{\theta_{2}}^{\theta_{1}} \sqrt{ }(\sin 2 \theta d \theta
$$

Now the Mehler-Dirichlet integral* gives

$$
\left.P_{n}(\cos 3 \gamma)=\frac{1}{\pi} \int_{-\gamma \gamma}^{4 \gamma} \overline{\sqrt{(2}} \frac{e^{(n+1)} \cos \phi}{\phi}-\overline{2} \cos 3 \gamma\right)
$$

where P_{n} denotes Legendre's function of the first kind and order n Let $\phi=3 \theta-2 \pi$, and then

$$
\int_{\theta_{2}}^{\theta_{1}} \frac{e^{s(n+t) c \theta} d \theta}{\sqrt{(\cos 3 \theta-\cos 3} \bar{\gamma})}=\frac{1}{} 2 \pi e^{(2 n+1) \iota \pi} P_{n}(\cos 3 \gamma)
$$

[^2]whence
$$
\int_{\theta_{2}}^{\theta_{1}} \frac{\sin 3\left(n+\frac{1}{2}\right) \theta d \theta}{\sqrt{(\cos 3 \theta-\cos 3 \gamma)}}=\frac{1}{3} \sqrt{ } 2 \pi \sin (2 n+1) \pi P_{n}(\cos 3 \gamma)
$$

Now put $n=-\frac{1}{6}$ and $+\frac{1}{8}$ in succession Thus

$$
\begin{aligned}
& \int_{\theta_{2}}^{\theta_{1}} \frac{\sin \theta d \theta}{\sqrt{(\cos 3 \theta}-\cos 3 \gamma)}=6^{-\frac{1}{2}} \pi P_{-\frac{1}{6}}(\cos 3 \gamma) \\
& \int_{\theta_{2}}^{\theta_{1}} \frac{\sin 2 \theta d \theta}{\sqrt{(\cos 3 \theta-\cos 3 \gamma)}=-6^{-\frac{1}{2}} \pi P_{\frac{z}{8}}(\cos 3 \gamma)}
\end{aligned}
$$

But the Legendre's functions can be expressed in the form of hypergeometric series* $F^{\prime}\left(-n, n+1,1, \sin ^{2} \frac{3}{2} \gamma\right) \quad$ Hence finally

$$
\begin{aligned}
& \omega=\pi\left(12 g_{2}\right)^{-\frac{1}{2}} F\left(\frac{1}{8}, \frac{\pi}{8}, 1, \sin ^{2} \frac{9}{2} \gamma\right) \\
& \eta=\frac{1}{12} \pi\left(12 g_{2}\right)^{\frac{1}{2}} F\left(-\frac{1}{8}, \frac{7}{6}, 1, \sin ^{2} \frac{9}{2} \gamma\right)
\end{aligned}
$$

where $\sin ^{2} \frac{3}{2} \gamma=\frac{1}{2}\left(1-g^{-\frac{1}{2}}\right)$ Thus ω and η are expressed in a form not requing the solution of the cubic equation

These hypergeometric series are not the same as those originally found by H Bruns as the solution of the problem But the latter are easily deduced For $P_{n}(z)$ satisfies the differential equation

$$
\left(1-z^{2}\right) \frac{d^{2} y}{d z^{2}}-2 z \frac{d y}{d z}+n(n+1) y=0
$$

The result of changing the independent variable to $x=1-z^{2}$ is

$$
x(x-1) \frac{d^{2} y}{d x^{2}}+\left(\frac{3}{2} x-1\right) \frac{d y}{d x}-\frac{1}{4} n(n+1) y=0
$$

which is satisfied by the hypergeometric series $F\left(-\frac{1}{2} n, \frac{1}{2} n+\frac{1}{2}, 1, x\right) \quad$ When $z=\cos 3 \gamma, x=\sin ^{2} 3 \gamma=g^{-1}(g-1)$ and since there can be only one convergent series for y in powers of x, this is it The above series may therefore be replaced by

$$
F\left(\frac{1}{12}, \frac{6}{12}, 1, \sin ^{2} 3 \gamma\right), \quad F\left(-\frac{1}{12}, \frac{7}{12}, 1, \sin ^{2} 3 \gamma\right)
$$

which are the series obtanned by Bruns
191 Let the origin of coordinates now be taken at the Sun, the point P beng at (X, Y, Z) or ($-X_{0},-Y_{0},-Z_{0}$). Then the components P_{X}, P_{Y}, P_{Z} (4) can be derived by partial differentiation from the potential

$$
\begin{aligned}
V & =\frac{\left(-k_{3}\right)^{\frac{1}{2}}}{\pi a^{\prime} b^{\prime} p} \int_{0}^{\hbar \pi} \frac{X^{2} \cos ^{2} \tau+Y^{2} \sin ^{2} \tau-Z^{2} d \tau}{\Delta^{\prime 3}} \\
& =\frac{\left(-k_{3}\right)^{\frac{1}{2}}}{\pi a^{2} b^{\prime} p} \frac{\eta G_{1}+\omega G_{2}}{\left(e_{3}-e_{2}\right)\left(e_{3}-e_{1}\right)\left(e_{2}-e_{1}\right)}
\end{aligned}
$$

* Ot Whittaken's Modern Analys2s, p 214, Whittaker and Watson, p 305
where

$$
\begin{aligned}
& G_{1}=\left(e_{3}-e_{2}\right) X^{2}+\left(e_{1}-e_{3}\right) Y^{2}+\left(e_{2}-e_{1}\right) Z^{2} \\
& \dot{G}_{2}=e_{1}\left(e_{3}-e_{2}\right) X^{2}+e_{2}\left(e_{1}-e_{3}\right) Y^{2}+e_{3}\left(e_{2}-e_{1}\right) Z^{2}
\end{aligned}
$$

Now by ordnaary multiplication of determinants

$$
\left|\begin{array}{ccc}
X^{2} & Y^{3} & Z^{2} \\
\lambda_{1} & \lambda_{2} & \lambda_{3} \\
1 & 1 & 1
\end{array}\right|\left|\begin{array}{ccc}
\lambda_{1} & \lambda_{2} & \lambda_{3} \\
1 & 1 & 1 \\
\lambda_{1}^{-1} & \lambda_{2}^{-1} & \lambda_{3}^{-1}
\end{array}\right|=\left|\begin{array}{ccc}
F_{1} & F_{0} & F_{-1} \\
\Sigma \lambda_{1}^{2} & \Sigma \lambda_{1} & 3 \\
\Sigma \lambda_{1} & 3 & \Sigma \lambda_{1}^{-1}
\end{array}\right|
$$

and

$$
\left|\begin{array}{ccc}
X^{2} & Y^{2} & Z^{2} \\
\lambda_{1}^{-1} & \lambda_{2}^{-1} & \lambda_{3}^{-1} \\
1 & 1 & 1
\end{array}\right|\left|\begin{array}{ccc}
\lambda_{1} & \lambda_{2} & \lambda_{3} \\
1 & 1 & 1 \\
\lambda_{1}^{-1} & \lambda_{2}^{-1} & \lambda_{3}^{-1}
\end{array}\right|=\left|\begin{array}{ccc}
F_{1} & F_{0} & F_{-2} \\
3 & \Sigma \lambda_{1}^{-1} & \Sigma \lambda_{1}^{-2} \\
\Sigma \lambda_{1} & 3 & \Sigma \lambda_{1}^{-1}
\end{array}\right|
$$

where

$$
\begin{gathered}
\lambda^{3}+3 k_{1} \lambda^{2}+3 h_{2} \lambda+k_{3}=0 \\
4 \lambda^{\prime 3}-g_{0} \lambda^{\prime}-g_{3}=0, \quad \lambda+k_{1}=\lambda^{\prime}
\end{gathered}
$$

and e_{1}, e_{2}, e_{3} are the roots in λ^{\prime} corresponding to $\lambda_{1}, \lambda_{2}, \lambda_{3}$ The first determinant is clearly $-G_{1}$ and the determinant below it is

$$
\Sigma X^{2}\left(\lambda_{2}^{-1}-\lambda_{3}^{-1}\right)=-k_{3}^{-1} \Sigma \lambda_{1}\left(\lambda_{3}-\lambda_{2}\right) X^{2}=-k_{3}^{-1}\left(G_{2}-k_{1} G_{1}\right)
$$

The multiplying determinant in both identities is

$$
-\left(\lambda_{1} \lambda_{2} \lambda_{3}\right)^{-1}\left(\lambda_{3}-\lambda_{1}\right)\left(\lambda_{3}-\lambda_{2}\right)\left(\lambda_{2}-\lambda_{1}\right)=\frac{1}{4} k_{3}^{-1}\left(g_{2}^{3}-27 g_{3}^{2}\right)^{\frac{1}{1}}
$$

and the determinants on the right-hand side are easily expressed in terms of $k_{1}, k_{2}, k_{3} \quad$ They are respectively $9 k_{3}{ }^{-1} H_{1}$ and $-9 k_{3}-{ }^{-} H_{2}$, where

$$
H_{1}=F_{1}\left(k_{1} k_{2}-k_{3}\right)+F_{0}\left(3 k_{1}^{2} k_{2}-2 k_{2}^{2}-k_{1} k_{3}\right)+2 F_{-1}\left(k_{1}^{2}-k_{2}\right) k_{3}
$$

and

$$
H_{2}=2 F_{1}\left(k_{2}^{2}-k_{1} k_{3}\right)+F_{0}\left(3 k_{1} k_{2}^{2}-2 k_{1}^{2} k_{3}-k_{2} k_{3}\right)+F_{-1}\left(k_{2} k_{3}-k_{3}\right) k_{3}
$$

Hence

$$
\begin{equation*}
V=\frac{144\left(-k_{3}\right)^{\frac{1}{2}}}{\pi a^{\prime} b^{\prime} p} \frac{H_{2} \omega-H_{1}\left(\eta+k_{1} \omega\right)}{g_{2}^{3}-27 g_{s^{2}}{ }^{2}} \tag{5}
\end{equation*}
$$

But F_{1}, F_{0}, F_{-1} have been expressed ($(\mathbb{1 8 7}$) in terms of (x, y, z) Hence the system of coordinates (X, Y, Z) has been completely eliminated from the problem

192 Now V is a homogeneous quadratic function in (x, y, z) and can be reduced to the same form in (ξ, η, ζ) But its complete expression is not required, because S_{0}, T_{0}, W_{0} are its partial differential coefficients at the point $P(r, 0,0) \quad$ It is therefore

$$
\begin{equation*}
\nabla=\left(S_{0} \xi+2 T_{0} \eta+2 W_{0} \xi\right) \xi / 2 r+ \tag{6}
\end{equation*}
$$

and the terms which do not contan $\boldsymbol{\xi}$ can be neglected Thus $F_{0} 18 \xi^{2}$ simply Let the transformation scheme of $\S 186$ be written

$$
\begin{array}{ll}
x=l_{1} \xi+m_{1} \eta+n_{1} \zeta, & x_{1}=l_{1} r+a^{\prime} e^{\prime} \\
y=l_{2} \xi+m_{2} \eta+n_{2} \zeta, & y_{1}=l_{2} r \\
z=l_{3} \xi+m_{3} \eta+n_{3} \zeta, & z_{1}=l_{3} r
\end{array}
$$

with the usual relations of an orthogonal substitution Then

$$
\begin{aligned}
F_{1} & =\left(x x_{1}+y y_{1}+z z_{1}\right)^{2}-\left(a^{\prime} x^{2}+b^{\prime} z^{2}\right) \\
& =\left(a^{\prime} e^{\prime} x+r \xi\right)^{2}-\left(a^{\prime 2} x^{2}+b^{\prime 2} y^{2}\right) \\
& =r^{2} \xi^{2}+2 a^{\prime} e^{\prime} r \xi x-b^{\prime 2} F_{0}+b^{\prime 2} z^{2} \\
& =\xi\left\{\xi\left(r^{2}-b^{\prime 2}+b^{\prime 2} l_{3}^{2}+2 a^{\prime} e^{\prime} r l_{1}\right)+2 \eta\left(a^{\prime} e^{\prime} r n_{1}+b^{\prime} l_{3} m_{2}\right)+2 \zeta\left(a^{\prime} e^{\prime} r n_{1}+b^{\prime 2} l_{3} n_{3}\right)\right\}
\end{aligned}
$$

with neglect of terms not containing $\boldsymbol{\xi}$ Similarly

$$
F_{-1}=z^{2} / z_{1}^{2}-\left(z x_{1}-x z_{1}\right)^{2} / a^{\prime 2} z_{1}^{2}-\left(z y_{1}-y z_{1}\right)^{2} / b^{\prime 2} z_{1}^{2}
$$

The last term does not contain $\boldsymbol{\xi}$ and hence

$$
\begin{aligned}
a^{\prime 2} r^{2} l_{\mathrm{s}}{ }^{3} F_{-1} & =a^{2_{2}}\left(l_{3} \xi+m_{\mathrm{s}} \eta+n_{3} \zeta\right)^{2}-\left\{a^{\prime} e z+r \eta\left(l_{1} m_{s}-l_{3} m_{1}\right)+r \zeta\left(l_{1} n_{3}-l_{3} n_{1}\right)\right\}^{2} \\
& =b^{\prime 2}\left(l_{3} \xi+m_{3} \eta+n_{3} \zeta\right)^{2}-2 a^{\prime} e^{\prime} r l_{3} \xi\left(-n_{2} \eta+m_{2} \zeta\right)
\end{aligned}
$$

or

$$
F_{-1}=\left\{b^{\prime 2} l_{\mathrm{s}} \xi+2 \eta\left(b^{\prime 2} m_{3}+a^{\prime} e^{\prime} r n_{2}\right)+2 \xi\left(b^{\prime 2} n_{3}-a^{\prime} e^{\prime} r m_{\mathrm{a}}\right)\right\} \xi / a^{\prime 2} r^{2} l_{\mathrm{s}}
$$

Thus F_{1}, F_{0}, F_{-1} are now expressed, as far as necessary, in terms of ξ, η, ζ It remains to calculate H_{1} and H_{2}, and then the sumple comparison of the coefficients of $\xi^{2}, \xi \eta, \xi \xi \ln (5)$ and (6) gives S_{0}, T_{0}, W_{0}

It must be understood that it is not the object here to obtan the most practical form of calculation in its final shape, but rather to explan the mathematical principles involved and to be content with showing how the computation might be carried out The method was not developed by Gauss in the complete form which is necessary for practical computations This was done by Hill The introduction of elliptic functions in the modern form is due to Halphen

CHAPTER XVIII

SPECIAL PERTURBATIONS

193 In Chapter XV some explanation has been given of the various classes into which planetary perturbations naturally fall when regarded from a practical point of view There 1s, however, another kind of distinction which can be drawn among perturbations, depending on the mode of calculation and expression When they are expressed in an analytical form, from which their values can be deduced for any time simply by giving t its appropriate value, they are called absolute perturbations For all the major planets a theory has been developed in this form But such a theory, if it is to be complete and accurate, demands immense labour, which is justified if positions of a planet are constantly required Moreover questions of general theory must nearly always be based on analytical forms On the other hand there are bodies which are observed durng one short period only, like the majority of comets, or at relatively long intervals, like the periodic comets In such cases, which include also the orbits of the minor planets, the method of quadratures is resorted to, partly in order to save labour and paitly to avoid difficulties which have not hitherto been surmounted by analysis Perturbations calculated in this way are called special perturbations The advantage of the method is that it is generally applicable, though agamst this must be set the frequent necessity of continuing the calculation without a break through long intervals when no observations have been made, and the 1 m possibility of making any general inference as to the motion outside the actual period covered by the computations There are exceptions to this statement, because important researches have been made with success into the ongun of comets by the method of special perturbations, and the perioduc solutions of the problem of three bodies have also been largely investigated by the method of quadratures But generally the services of this method have been of a practical rather than a theoretical kind

The method of quadratures involves an arithmetical technique with which the reader may not be familiar It therefore hes strictly outside the intended scope of this work, which is not concerned with the actual detanls of practical calculation But the computation of special perturbations tills so large a place in the practice of astronomy at the present time that it cannot be dismissed
without some description Accordingly, in order to interrupt the treatment of dynamical questions as little as possible, a brief account of the algebra of difference tables is given in the final chapter of the book, and the results will be quoted here without proof

194 Let y_{n} be a tabulated function of the argument $t=a+n w$, where n represents a series of consecutive integers and w is a constant tabular interval As the practical formulae of quadrature depend on central differences, it will be convenient to represent the difference table thus

Here y_{n} is tabulated in a vertical column and the successive differences on the right are formed directly in the usual way Thus $\Delta y_{n}=y_{n+1}-y_{n}$, and the commutative operator K, which is clearly appropriate to central (or horizontal) differences, represents a move two places to the right on a horizontal hne of the table Similarly K^{-1} represents a horizontal move two places to the left Two columns are shown on the left of the tabulated function, and these are known as the first and second summation columns The relation of each to the adjacent columns on the right is precisely the same as that holding between any two consecutive difference columns Thus the first summation column contains the differences of the second, and the differences of the first are the successive values of the function itself The first column can therefore be based on an arbitrary constant and formed in the downward direction by adding the numerical values of the function successively The second summation column is based on a second arbitrany constant and formed from the first in the same way

The table thus constructed has alternate blank spaces These are now filled by the insertion of the arithmetic meuns of the entries standing immeduately above and below each space In its completed form the table may be represented thus

$$
\begin{array}{cc|c|ccccc}
K^{-1} y_{n} & & & & y_{n} & {\left[k y_{n}\right]} & K y_{n} & {\left[l K y_{n}\right]}
\end{array} K^{2} y_{n} \quad\left[k K^{\mathrm{s}} y_{n}\right]
$$

where the mean differences are distinguished by h to the right of a simple difference or by k^{\prime} Lelow a simple difference. As a matter of fact,

$$
k^{\prime}=1+\frac{1}{2} \Delta, \quad k=\Delta\left(1+\frac{1}{2} \Delta\right)(1+\Delta)^{-1}, \quad K=\Delta^{2}(1+\Delta)^{-1}
$$

but for the immedrate purpose in view these operators serve merely to define the position of entries in the difference table They are all algebrac

195 The formulae avalable for executing the necessary quadratures can now be given Numbered as in the last chaptei of the book, to which reference can be made for proofs, they are these

$$
\left.\begin{array}{rl}
w^{-1} \int_{0}^{a+m v} y d t & =k\left(K^{-1}-\frac{1}{12}+\frac{11}{720} K-\frac{191}{60480} K^{2}+\right) y_{n} \\
w^{-1} \int_{0}^{a+m w} y d t & =\Delta\left(K^{-1}+\frac{1}{24}-\frac{17}{5760} K+\frac{367}{967680} K^{2}-\right) y_{n} \\
w^{-2} \int_{b}^{a+n w}\left[\int_{0}^{x} y d t\right] d t & =\left(K^{-1}+\frac{1}{12}-\frac{1}{240} K+\frac{31}{60480} K^{2}-\right) y_{n} \\
w^{-2} \int_{b}^{a+m v}\left[\int_{0}^{x} y d t\right] d t & =k^{\prime}\left(K^{-1}-\frac{1}{24}+\frac{17}{1920} K-\frac{367}{1935} \overline{3} 6\right. \tag{31}
\end{array} K^{2}+\right) y_{n} .
$$

where m is written in the upper limit in the place of $n+\frac{1}{2}$ The commutative operator k must of course be carefully distinguished from the Gaussian constant k

The lower himits, b and c, are arbitrary and correspond with the arbitrary constants involved in forming the first and second summation columns it the lower limit is to be $c=a$,

$$
\begin{equation*}
\Delta K^{-1} y_{0}=\frac{1}{2} y_{0}+k\left(\frac{1}{12}-\frac{11}{720} K+\frac{191}{60480} K^{2}-\quad\right) y_{0} \tag{29}
\end{equation*}
$$

which fixes one constituent of the first column, and the rest follow If the lower lunit is to be $c=a+\frac{1}{2} w$,

$$
\begin{equation*}
\Delta K^{-1} y_{0}=\Delta\left(-\frac{1}{24}+\frac{17}{5760} K-\frac{367}{9676 \overline{8} \overline{0}} K^{2}+\quad\right) y_{0} \tag{27}
\end{equation*}
$$

Similarly, if the lower limit b of the second integration is a,

$$
\begin{equation*}
K^{-1} y_{0}=\left(-\frac{1}{1 \overline{2}}+\frac{1}{240} K-\frac{31}{60480} K^{2}+\right) y_{0} \tag{32}
\end{equation*}
$$

and the value of this particular constituent makes the whole of the second summation column determinate If the lower limit is $b=a+\frac{1}{2} w$,

$$
\begin{equation*}
K^{-1} y_{0}=-\frac{1}{2} \Delta K^{-1} y_{0}+k\left(\frac{1}{24}-\frac{17}{1920} K+\frac{367}{1935} \overline{3} 6 K^{2}-\quad\right) y_{0} \tag{33}
\end{equation*}
$$

In general, $b=c$ and (29) and (32) are used together, or (27) and (33) In the latter case (33) may also be written

$$
\begin{equation*}
K^{-1} y_{0}=\left\{\frac{1}{24}(1+\Delta)-\frac{17}{5760}(3+2 \Delta) K+\frac{367}{9676 \overline{8} \overline{0}}(5+3 \Delta) K^{2}-\quad\right\} y_{0} \tag{34}
\end{equation*}
$$

In whatever way the lower limits are determined, (28) and (30) will give the integrals to the upper limit $a+n w$, and (26) and (31) to the upper lumit

$$
a+\left(n+\frac{1}{2}\right) w
$$

196 The application of quadratures to the solution of differential equations such as anse in dynamical problems can be explaned by a simple but farrly general form Consider the equation

$$
\frac{d^{2} x}{d t^{2}}=f(x, t)
$$

or, as it may be written,

$$
D^{2} x=X
$$

Hence, by (30),

$$
\begin{aligned}
x & =w^{2}(w D)^{-2} X \\
& =w^{2}\left\{K^{-1}+\frac{1}{12}-\frac{1}{240} K+\frac{31}{60480} K^{2}-\right\} X
\end{aligned}
$$

or

$$
\begin{equation*}
K x=w^{2}\left\{1+\frac{1}{12} K-\frac{1}{240} K^{2}+\right\} X \tag{1}
\end{equation*}
$$

Now suppose that we have a solution in progress, giving at a certain stage,

t_{n}	x_{n}		$K x_{n}$	X_{n}	$K X_{n}$	
t_{n+1}	x_{n+1}	$a_{n+1}-x_{n}$		$K x_{n+1}$	X_{n+1}	$K X_{n+1}$

Here X_{n} is a known function of x_{n} and t_{n} It is required to find a_{n+8} and X_{n+8} which depend on t_{n+9} and on one another, so that they cannot be calculated directly For simplicity the time interval w may be imagined to be so small that $\frac{1}{240} K^{2} X_{n+1}$ is negligible The general run of the differences $K X$ will suggest a close guess to the value of $K X_{n+2}$, though the true value requres a knowledge of X_{n+3} and therefore of x_{n+1} itself This leads to a corresponding provisional value of $K x_{n+8}$ by (1) and hence to $x_{n+s}-x_{n+2}$ or x_{n+8} Then X_{n+8} can be calculated, in general, with the accuracy which is finally necessary If this be no, $K X_{n+2}$ is now accurately known, and hence x_{n+8} by a simple repetition of the same process, in which if need be an allowance for $K^{2} X$ can be made After every tow steps in the calculation the whole can be rigorously checked by the difference formula (1) and either verified or corrected of necessary In general small corrections of x_{n} do not entanl a re-adjustment of X_{n}

197 This is the princrple of the method employed by Cowell and Crommelin in calculating the path of Halley's Comet during the two revolutions 1759-1835-1910 It is the cindest possible method in the sense that it ignores completely what is known of the approximate orbit and as based on the equations of motion in their primitive form, but it is none the less extremely effective for ats practical purpose. The origm of coordinates is taken
at the centre of gravity of the solar system, with the axis of x towards the equinox, the axis of y towards longitude 90° and the axis of z towards the \mathbf{N} pole of the ecliptic for a stated fixed epoch The equations of motion are then (§20)

$$
m x=-\frac{\partial U}{\partial x}, m y=-\frac{\partial U}{\partial y}, m z=-\frac{\partial U}{d z}
$$

where

$$
U=-k^{2} m \Sigma m_{1}\left\{\left(x-x_{j}\right)^{2}+\left(y-y_{j}\right)^{2}+\left(z-z_{j}\right)^{2}\right\}^{-\frac{1}{2}}
$$

and Σ includes the Sun and all the disturbing planets Thus the typical equation may be written

$$
K x=\left(1+\frac{1}{12} K-\frac{1}{240} K^{2}+\frac{31}{60480} K^{3}-\quad\right) X
$$

where

$$
X=-\Sigma\left(k^{2} w^{2} m_{\jmath}\right)\left(a-x_{\jmath}\right) 1_{\jmath}^{-8}
$$

and $h^{2} w^{2} m$, is a constant for each attracting body The problem, being in three dimensions, involves the parallel solution of the thiee similar equations for x, y and z It is convement to change the time interval from time to time according to circumstances, in order to economise labour in computing the forces by making the interval as long as experience may show to be practicable In the example referred to, $w=2^{p}$ days, where p has integral values ranging from 1 in the neighbourhood of the Sun to 8 in the most distant part of the orbit As the comet recedes from the Sun it becomes feasible to treat first Venus and later the Earth and Mars as forming a centrobanic system with the Sun, so that the separate computation of them attractions is avoided The solution is started by deriving the rectangular coordinates of the comet on two consecutive dates from the osculating clements at the intermediate epoch 1835

A similar treatment has been applied to the path of Jupiter's cighth satellite, which is so distant from its primary that the solal perturbations are relatively very considerable

198 The above process is closely related to the more usual method of calculating special perturbations in rectangular coordinates, which dates from Encke Here the origin is taken at the centre of the Sun and a fixed ecliptic system of axes is generally chosen Let (a, y, z) be the position of the disturbed body $P,\left(x_{j}, y_{j}, z_{j}\right)$ of the typical disturbing planet P_{j}, and let $S P=r, S P_{j}=\rho_{j}$ and $P P_{j}=\Delta$, Then the equations of motion of P relative to the Sun are of the form (§ 23)

$$
\frac{d^{2} x}{d t^{2}}=-k^{2}(1+m) \frac{x}{r^{3}}+h^{2} \Sigma m_{\rho}\left(\frac{x_{I}-x}{\Delta \jmath^{3}}-\frac{x_{\rho}}{\rho_{j}^{3}}\right)
$$

But the undisturbed motion is given by

$$
\frac{d^{2} x_{0}}{d t^{2}}=-k^{2}(1+m) \frac{a_{0}}{r_{0}^{8}}
$$

where (x_{0}, y_{0}, z_{0}) and r_{0} can be calculated at regular intervals of time from the osculating elements Hence of (ξ, η, ξ) are the perturbations, where

$$
\begin{gathered}
\xi=x-x_{0}, \\
\frac{d^{2} \xi}{d t^{2}}=k^{2}\left\{\Sigma m,\left(\frac{x_{j}-x}{\Delta_{j}^{3}}-\frac{x_{j}}{\rho_{j}^{3}}\right)+(1+m)\left(\frac{x_{0}}{r_{0}^{3}}-\frac{x}{r^{3}}\right)\right\}
\end{gathered}
$$

The right-hand side contains (ξ, η, ζ) implicitly, and therefore extrapolation is necessary as in § 197 But in the first member ξ, which is of the first order in m_{j}, is multiphed by m_{j} and hence if the second order in m_{j} be neglected (x_{0}, y_{0}, z_{0}) can be directly substituted for (x, y, z) This is consequently known as the direct member, but it is quite possible to include approximate values of the perturbations as they become known in the course of the work, and thus to make allowance for the higher orders of the disturbing masses The second member, which has been called the indirect member, has no small multipher and besides is expressed as the difference of two nearly equal quantities To avoid this inconvenience the transformation

$$
\frac{r^{2}}{r_{0}^{2}}=1+2 q, \frac{r_{0}^{3}}{r^{3}}=(1+2 q)^{-\frac{1}{2}}=1-f q
$$

is made, where

$$
\begin{gather*}
q=\left(r^{2}-r_{0}^{2}\right) / 2 r_{0}^{2}=\left\{\left(x_{0}+\frac{1}{2} \xi\right) \xi+\left(y_{0}+\frac{1}{2} \eta\right) \eta+\left(z_{0}+\frac{1}{2} \zeta\right) \zeta\right\} r_{0}^{-2} \\
f=3\left(1-\frac{5}{2} q+\frac{57}{2} q^{2}-\frac{579}{23} q^{3}+\right) \tag{2}
\end{gather*}
$$

and f is tabulated as a function of q, which is a small quantity The equation for ξ now becomes

$$
\begin{align*}
\frac{d^{2} \xi}{d t^{2}} & =k^{a}\left\{\Sigma m _ { j } \left(x_{j}-x\right.\right. \\
\Delta \Delta_{j}^{3} & \left.\left.-\frac{x_{j}}{\rho_{j}^{3}}\right)+{ }_{r_{0}^{3}}^{1+m}(f q x-\xi)\right\} \tag{3}\\
& =\Sigma X+h f q^{x}-h \xi
\end{align*}
$$

with parallel equations for η and ζ This treatment is not applied to the planets with sensible masses, but only to bodies whose masses are neghgible and generally unknown Hence $h=k^{4} r_{0}{ }^{-3}$

Suppose that $n-1$ steps in the quadrature have been carried out, so that ξ_{n-1}, ξ_{n-1} are known and ξ_{n} is required As in $\S 197 w^{8}$ can be omitted by substituting $w^{8} k^{a}$ for $k^{a} \quad$ Then, by (30),

$$
\begin{align*}
\xi_{n} & =\left(K^{-1}+\frac{1}{12}-\frac{1}{240} K+.\right) \xi_{n} \ldots \tag{4}\\
& =\left(K^{-1}-\frac{1}{240} K\right) \xi_{n}+\frac{1}{12} \Sigma X_{n}+\frac{1}{12} h f q x_{n}-\frac{1}{12} h \xi_{n}
\end{align*}
$$

or

$$
\begin{equation*}
\xi_{n}\left(1+\frac{1}{12} h\right)=S_{x, n}+\frac{1}{12} h f q x_{n} . \tag{5}
\end{equation*}
$$

Here $S_{x, n}$ comprises the terms which can be directly calculated, for ΣX_{n} represents the direct terms, $K^{-1} \xi_{n}$ follows from the previous stage of the quadrature, and $K \xi_{n}$ can be extrapolated easily owing to its small multipler Also $x_{n}=x_{0}+\xi_{n}$ is known well enough since it is multiphed by q But q itself is not accurately known By combining the three parallel equations of the same type as the last with the above equation for q, it follows that

$$
q r_{0}^{2}\left(1+\frac{1}{12} h\right)=\Sigma\left(x_{0}+\frac{1}{2} \xi_{n}\right) S_{x, n}+\frac{1}{12} h f q \Sigma\left(x_{0}+\frac{1}{2} \xi_{n}\right) x_{n}
$$

where Σ refers to the three coordınates Thus, f being easily extrapolated, q can be calculated The combination of (3) and (5) now gives

$$
\xi_{n}=\Sigma X_{n}+h\left(1+\frac{1}{12} h\right)^{-1}\left(f q x_{n}-S_{x, n}\right)
$$

whence ξ_{n} can be calculated, and therefore ξ_{n} by (4) Thus the quadrature, once started, proceeds step by step

In order to start the quadrature the four dates are taken such that the epoch of osculation coincides with the centre of the middle interval With $\boldsymbol{\xi}=0$ the direct terms in ξ are calculated and the difference table is formed By applying (27) and (34) approximate values of ξ are obtained whereby the indirect terms can be brought in The process is then repeated until the final approximation is reached The rest of the calculation, giving the results by means of (30), has already been explanned

199 Special perturbations may also be directly calculated for polar coordinates Let the cylundrical coordinates of the disturbed mass m be (ρ, θ, z), the fundamental plane being the plane of the osculating orbit itself at the epoch t_{0}, and the initial line passing through the ecliptic node The rectangular coordinates of the typical disturbing planet, of mass m_{j}, relative to the Sun are

$$
x_{j}=r_{\rho} \cos B_{\rho} \cos L_{\rho}, \quad y_{j}=r_{\rho} \cos B_{\rho} \sin L_{\rho}, \quad z_{\jmath}=r_{\rho} \sin B_{\rho}
$$

The kinetic energy of m is $\frac{1}{2} m\left(\rho^{2}+\rho^{2} \dot{\theta}^{2}+z^{\prime}\right)$, and therefore the equations of motion are, since $r^{2}=\rho^{2}+z^{2}$,

$$
\begin{aligned}
& \frac{d^{2} \rho}{d t^{2}}-\rho\left(\frac{d \theta}{d t}\right)^{2}=-k^{2}(1+m) \rho r^{-3}+\frac{\partial R}{\partial \rho}, \\
& \frac{d}{d t}\left(\rho^{2} \frac{d \theta}{d t}\right)=\frac{\partial R}{\partial \theta}, \quad \frac{d^{2} z}{d t^{2}}=-k^{2}(1+m) z r^{-3}+\frac{\partial R}{\partial z}
\end{aligned}
$$

where (§ 23)

$$
\begin{aligned}
R & =k^{3} \sum m_{j}\left\{\Delta_{j}^{-1}-\imath_{j}^{-s}\left(x x_{j}+y y_{\jmath}+z z_{\jmath}\right)\right\} \\
& =k^{2} \sum m_{j}\left\{\Delta \Delta_{j}^{-2}-r_{j}^{-s}\left[\rho r_{j} \cos B, \cos \left(L_{j}-\theta\right)+z r_{j} \sin B_{j}\right]\right\} \\
\Delta_{j}^{2} & =\rho^{2}+z^{2}+r_{j}^{2}-2\left[\rho r, \cos B, \cos \left(L_{j}-\theta\right)+z r_{j} \sin B_{j}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
\rho-\rho \theta^{2} & =-k^{2}(1+m) \rho r^{-3}-k^{2} \sum m_{j}\left\{\rho \Delta_{j}^{-3}-\left(\Delta_{j}^{-3}-r_{j}^{-3}\right) r_{j} \cos B_{j} \cos \left(L_{j}-\theta\right)\right\} \\
d\left(\rho^{2} \theta\right) / d t & =k^{2} \rho \sum m_{j}\left(\Delta_{j}^{-3}-r_{j}^{-3}\right) r_{j} \cos B_{j} \sin \left(L_{j}-\theta\right) \\
z & =-k^{2}(1+m) z r^{-8}-k^{2} \sum m_{j}\left\{z \Delta_{j}^{-s}-\left(\Delta_{j}^{-3}-r_{j}^{-3}\right) r_{j} \sin B_{j}\right\}
\end{aligned}
$$

Let

$$
z^{2} / \rho^{2}=2 q, \quad \rho^{3} / r^{3}=(1+2 q)^{-\frac{5}{2}}=1-f q
$$

where f is the same function of q as in (2) and can usually be replaced by 3 simply, because z is merely the perturbation in latitude reckoned from the osculating plane The equations of motion can now be written

$$
\begin{gathered}
\rho-\rho \theta^{2}+k^{2}(1+m) \rho^{-2}=\rho H \\
d\left(\rho^{2} \dot{\theta}\right) / d t=U, \quad \dot{z}+W_{2} z=W_{1}
\end{gathered}
$$

where

$$
\begin{aligned}
H & =\frac{1}{2} k^{2}(1+m) f \rho^{-s} z^{2}+k^{2} \sum m_{j}\left\{\rho^{-1}\left(\Delta_{j}^{-s}-r_{j}^{-8}\right) r_{j} \cos B_{j} \cos \left(L_{j}-\theta\right)-\Delta_{j}^{-8}\right\} \\
U & =k^{2} \rho \sum m_{j}\left(\Delta_{j}^{-s}-r_{j}^{-s}\right) r_{j} \cos B_{j} \sin \left(L_{j}-\theta\right) \\
W_{1} & =k^{2} \sum m_{j}\left(\Delta_{j}^{-8}-r_{j}^{-s}\right) r_{j} \sin B_{j}+\frac{1}{2} k^{2}(1+m) f \rho^{-5} z^{8} \\
W_{2} & =k^{2} \sum m_{j} \Delta_{j}^{-8}+k^{2}(1+m) \rho^{-s}
\end{aligned}
$$

The third equation is now in the required form to determine 2 . The first two must be transformed in order to obtain ρ and θ

200 The second equation gives

$$
\rho^{2} \dot{\theta}=h+\int_{t_{0}}^{t} U d t
$$

where h is the undisturbed constant of areas, so that

$$
h=\left\{k^{2}(1+m) p_{0}\right\}^{\frac{7}{2}}=n_{0} a_{0}{ }^{2} \cos \phi_{0}
$$

$p_{0}, n_{0}, a_{0}, \sin \phi_{0}$ being the osculating parameter, mean motion, mean distance and eccentricity Hence

$$
\begin{aligned}
\theta & =\theta_{0}+h \int_{t_{0}}^{t} \rho^{-\imath} d t+\int_{t_{0}}^{t_{1}}\left[\rho^{-2} \int_{t_{0}}^{t} U d t\right] d t \\
& =\omega_{0}+V
\end{aligned}
$$

where θ_{0} is the initial value of θ and ω_{0} as the distance of the undisturbed perihelion from the node The angle $\Delta \omega$, which represents and is defined by the double integral, would vanish in the absence of disturbing forces In the same circumstances V would be the undisturbed true anomaly Thus V may be regarded as the disturbed true anomaly and $\Delta \omega$ as a rotation of the apse

In the rotating orbit thus defined, in which the elements $p_{0}, a_{0}, e_{0}, \phi_{0}$ keep their osculating values, let $\rho(1+\nu)^{-1}$ be the radius vector corresponding to the true anomaly V, so that, since $\dot{V}=h \rho^{-s}$,

$$
\begin{aligned}
1+e_{0} \cos V & =p_{0}(1+\nu) \rho^{-1} \\
-e_{0} \sin V & =h^{-1} \rho^{2} p_{0}\left\{-(1+\nu) \rho^{-2} \dot{\rho}+\nu \rho^{-1}\right\} \\
-e_{0} \cos V & =h^{-2} \rho^{2} p_{0}\{-(1+\nu) \rho+\rho \nu\} .
\end{aligned}
$$

H.,
is

$$
\otimes A^{x}+1 \quad \mid+1,02-\alpha, 1+m i 1+2^{-1} \rho^{-2}
$$

h.

$$
p^{n-2}-\mu^{-1}: 1 d t^{2}
$$

$$
\mu H=1-1 \cdots+x^{2}+1-\cdots 1+1,-2, D^{-}-\left.\rho^{-2}\right|_{t_{0}} ^{2}\left(\left.C^{-} d t_{1}^{1}\right|_{t_{0}} ^{t} C d t+2 h\right)
$$

$$
z_{i}+H_{i}=H
$$

$$
\begin{aligned}
& H=H-\left.\rho^{-1}\right|^{2} l^{-} d t i^{t} \Gamma d t+2 h \\
& H_{1}=A^{*} 11+m_{1} \rho^{-s}-H
\end{aligned}
$$

 hy riotara riontix

$$
\begin{aligned}
L_{1}-\operatorname{ain} E & =M_{1}+n_{t}\left(t-t_{0}\right)+N \\
\left.2,1-\operatorname{en} \cos E^{\prime}\right) & =\rho(1+\nu)^{-1}
\end{aligned}
$$

Herhe f : $1: 27$
sud

$$
\because M 1-e_{1} a m E_{1} Z=\rho_{1} 1_{-}-(1+\nu)^{-1} V d E d V
$$

$$
=\frac{w_{1}}{N}+1+\frac{h_{1}}{\nu} \frac{1-p_{8} \cos E}{c_{10} \phi_{1}}=\frac{n_{0}}{(1+\nu)^{\prime}}
$$

$$
S=-r_{4}+\left(2+\nu+(1+\nu)^{-2}\right.
$$

201 Th. Wh, fowtha . thinforc reduced to the mechamical solution of the miant tan

$$
\begin{aligned}
& \frac{d d^{2}}{d r^{2}}+H_{1} \nu=H_{1}, \quad \frac{d S}{d t}=-n_{0} \nu \frac{\partial+\nu}{(1+\nu)^{2}} \\
& \frac{d \Delta t}{d t}=\rho^{2} \int_{m^{2}}^{R} C d t_{1} \quad \frac{d^{2} z}{d t^{2}}+W_{3} z=W_{1}
\end{aligned}
$$

 gund by

$$
\begin{aligned}
& \left.t-\operatorname{Can}_{4} \operatorname{dn} E=E_{1}+n_{0} t-t_{0}\right)+N
\end{aligned}
$$

$$
\begin{aligned}
& N=V^{2}+m_{1}+\Delta m, \quad r^{2}=\rho^{2}+z^{2}, \quad \rho \tan \lambda=z
\end{aligned}
$$

Perturbations to the first order will be obtained by calculating the quantities occurring in the differential equations according to the osculating elements, but as they become known in the course of the work their approximate effect on the coordmates of the disturbed planet can be introduced before integration The integral of U, and also N and $\Delta \omega$, can thus be found by durect quadrature by applying (27) and (28) For ν and z, which require exactly simular treatment, the case is slightly different As before, the time interval w is removed by writing $w^{2} k^{2}$ for k^{2}, which is equivalent to making this interval the unit of time Then at any stage n, when z_{n-1} and $K^{-1} z_{n}$ are known,

$$
\begin{aligned}
z_{n} & =W_{1}-W_{2} z_{n} \\
z_{n} & =\left(K^{-1}+\frac{1}{12}-\frac{1}{240} K+.\right) z_{n} \\
\left(1+\frac{1}{12} W_{2}\right) z_{n} & =\left(K^{-1}-\frac{1}{240} K\right) z_{n}+\frac{1}{12} W_{1} \\
W_{2} z_{n} & =W_{2}\left(1+\frac{1}{12} W_{2}\right)^{-1}\left\{\left(K^{-1}-\frac{1}{240} K\right) z_{n}+\frac{1}{12} W_{1}\right\}
\end{aligned}
$$

and this last equation will determine z_{n} with the needful accuracy, and hence z_{n} and $K^{-1} z_{n+1}$ for the next stage

This method is due in principle to Hansen The perturbations start from zero values and remain small for a considerable length of time This conduces to accuracy and is an advantage The method is less simple than that of rectangular coordinates, and tor the easier construction of an ephemeris requires the determination of new osculating elements by a process which is itself complicated and is omitted hese Perturbations of the coordinates are recommended by the fact that there are three coordmates as aganst six elements to be determined by quadratures, and their computation is suitable for practical needs in the case of a body, such as a periodic comet, which can only be observed at relatively long intervals Otherwise it is preferred to perform the calculation on the elements directly

202 With slight changes which will be readly understood the equations found in $\S 142$ for the perturbations of the elements may bo written

$$
\begin{aligned}
d v / d t & =r W \cos u / k \sqrt{ } p \\
d \Omega / d t & =r W \sin u / k \sqrt{p} \sin \imath \\
d \phi / d t & =\{S \sin v+T(\cos v+\cos E))\} \sqrt{ } / 2 / k \cos \phi \\
d w / d t & =\{-p S \cos v+(p+\imath) T \sin v+r W \sin \phi \tan t \imath \sin u\} / k \sqrt{p} \sin \phi \\
d n / d t & =-3(r S \sin \phi \sin v+p T) \cos \phi / p \prime \\
d M / d t & =\left\{(p \cos v \cos \phi-\imath \sin 2 \phi) S-(p+r) T^{\prime} \sin v \cos \phi\right\} / h \sqrt{p} p \sin \phi+\int_{t_{0}}^{t} d n d t
\end{aligned}
$$

where v represents the true anomaly and m is neglected, so that $\mu=k^{2} \quad$ Let

$$
w S=k F_{1} \sqrt{ } p, \quad w T=k F_{2} \sqrt{ } p, \quad w W=k F_{3} \sqrt{ } p
$$

Then the equations are of the form

$$
\begin{aligned}
w d z / d t & =[2,3] F_{3}, \quad w d \Omega / d t=[\Omega, 3] F_{3} \\
w d \phi / d t & =[\phi, 1] F_{1}+[\phi, 2] F_{2}, \quad w d n / d t=[n, 1] F_{1}+[n, 2] F_{2} \\
w d \sigma / d t & =[\sigma, 1] F_{1}+[w, 2] F_{2}+[\sigma, 3] F_{3} \\
w \frac{d M}{d t} & =[M, 1] F_{1}+[M, 2] F_{2}+w \int_{t_{0}}^{t} \frac{d n}{d t} d t
\end{aligned}
$$

where
$[\imath, 3]=r \cos u, \quad[\Omega, 3]=r \sin u / \sin \imath$
$[\phi, 1]=p \sin v \sec \phi, \quad[\phi, 2]=p(\cos v+\cos E) \sec \phi$
$[\sigma, 1]=-p \cos v / \sin \phi, \quad[\sigma, 2]=(p+r) \sin v / \sin \phi, \quad[\pi, 3]=r \sin u \tan \frac{1}{2} r$
$[M, 1]=-\{[\varpi, 1]+2 r\} \cos \phi, \quad[M, 2]=-[\pi, 2] \cos \phi$
$[n, 1]=-3 k \sin \phi \cos \phi \sin v / \sqrt{ } p, \quad[n, 2]=-3 k \cos \phi \sqrt{ } p / r$
For a minor planet disturbed by Jupiter, 40 days is generally found a suitable value for the interval w

The disturbing function R may be taken in the form found in $\S 199$ except that the argument of latitude is now $u=v+w-\Omega$ instead of θ Thus

$$
R=k^{2} \sum m_{\jmath}\left\{\Delta_{\jmath}^{-1}-r_{\jmath}^{-3}\left[\rho r_{\jmath} \cos B_{\jmath} \cos \left(L_{ر}-u\right)+z r_{\rho} \sin B_{\jmath}\right]\right\}
$$

and if the durections of the components S, T, W be recalled,

$$
S=\frac{\partial R}{\partial \rho}, \quad T=\frac{1}{\rho} \frac{\partial R}{\partial u}, \quad W=\frac{\partial R}{\partial z}
$$

where after differentiation $z=0$, because the plane of reference is the plane of the instantaneous orbit For the same reason $\rho=r \quad$ Hence

$$
\begin{aligned}
& F_{1}=p^{-\frac{1}{2}} \sum\left(k w m_{\jmath}\right)\left\{\left(\Delta_{\jmath}^{-3}-r_{j}^{-3}\right) r_{\jmath} \cos B_{\jmath} \cos \left(L_{\jmath}-u\right)-r \Delta,^{-3}\right\} \\
& F_{2}=p^{-\frac{1}{2}} \sum\left(k w m_{\jmath}\right)\left(\Delta_{\jmath}^{-3}-r_{j}^{-3}\right) r_{\jmath} \cos B_{\jmath} \sin \left(L_{\jmath}-u\right) \\
& F_{3}=p^{-\frac{1}{2}} \sum\left(k w m_{\jmath}\right)\left(\Delta_{\jmath}^{-3}-r_{j}^{-3}\right) \imath_{\jmath} \sin B_{j}
\end{aligned}
$$

$$
\Delta_{j}^{2}=r^{2}+r_{\jmath}{ }^{2}-2 r r_{\jmath} \cos B_{\jmath} \cos \left(L_{\jmath}-u\right)
$$

203 Let l_{y}, b_{j} be the heliocentric longitude and latitude of the disturling planet, which with $\log r$, are given in annual tables like the Nautical Almanac The relations between ecliptic coordmates (x, y, z) and the orbital coordinatess (ξ, η, ζ), the axis of ξ passing through the ecliptic node, are shown by

	x	y	z
$\boldsymbol{\xi}$	$\cos \Omega$	$\sin \Omega$	0
η	$-\cos \imath \sin \Omega$	$\cos \imath \cos \Omega$	$\sin \imath$
ζ	$\sin \imath \sin \Omega$	$-\sin \imath \cos \Omega$	$\cos \imath$

which is the scheme derived in § 65 Hence

$$
\begin{aligned}
\xi & =\cos B_{j} \cos L_{j}
\end{aligned}=\cos b_{j} \cos \left(l_{j}-\Omega\right) .
$$

and thus F_{1}, F_{2}, F_{3} can be calculated, so far as the coordmates of any disturbing planet are concerned

But F_{1}, F_{2}, F_{3} and the coefficients $[2,3]$, , involve also the varyng elements and coordinates which depend on them The elements may be identified with the osculating elements at the mitial epoch t_{0} and the coordinates may be calculated as in undisturbed motion Then the result of mechanical integration will give the perturbations of the first order When these are known for the several dates covered by the work, the calculation can be repeated with the improved values and a higher approximation can be obtanned The work can be arranged so as to obviate this repetition by including the perturbations to date at each step
204. The five elements $\imath, \Omega, \phi, w, n$ require only a single quadrature The lower limit $a+\frac{1}{2} w$ is made to comerde with the epoch of osculation and the tables are formed in accordance with (27) The corresponding perturbations are then given by (28) or (26) accordıng as $a+n w$ or $a+\left(n+\frac{1}{2}\right) w$ is preferred for the final date It is to be noticed that the differential equations for the elements have been reduced to a form in which w occurs explicitly as a coefficient of the derivatives on the left-hand side It will disappear when the quadratures are effected, its function being to make the unit of time agree with the tabular interval But the unit of time is not really changed, and with the ordinary Gaussian constant k occurring in the combination $k w m_{j}$ for each disturbing planet remains one mean solar day Thus the perturbation in n which will be drawn by this process will be the increment in the mean dally motion Sunce all the elements are in the form of angles, it is convenient to express k, so far as it occurs in F_{1}, F_{3}, F_{3} through the combination kwm j_{j}, by ats value in arc $\left(\log k^{\prime \prime}=355\right)$) But in $[n, 1],[n, 2] k$ has its purely numerical value $(\log k=8235$.)

The perturbation in M can be conveniently divided into two parts The first,

$$
\delta_{1} M=w^{-1} \int\left\{[M, 1] F_{1}+[M, 2] F_{2}\right\} d t
$$

is calculated in precisely the same way as the other five elements The second is

$$
\left.\delta_{1} M=\int_{t_{0}}^{t} \iint_{t_{0}}^{t} \frac{d n}{d} d t\right] d t
$$

The table having been prepared for the first quadrature on the basis of (27) and (28), the second can be performed by means of (34) and (30) The
immedate result will give $w^{-2} \delta_{2} M$, which must therefore be multiphed by w^{\prime} To avoid this large multipher it is usual to calculate $w \delta n$ fiom $u^{2} d n / d t$ at the first quadrature (giving the increment in the w-day mean motion) This alters the time unit of the acceleration and therefore no multiphor will be required by $\delta_{2} M$, a result which can be otherwise seen by noticing that, all the tabular entries are multiplied by w, while the integiand is divided by w, being in fact $d n / d t$ instead of $w d n / d t$ as in the first quadiature actually performed on this plan

205 In the case of parabolic and nearly parabolic orbitis some modifnation is necessary The equations for $2, \Omega$ and \approx remain valid, "xce ept, thati, 1 t is well to replace ϕ by e The equation for e itself becomes

$$
\begin{aligned}
w d e / d t & =[e, 1] F_{1}+[e, 2] F_{2} \\
{[e, 1] } & =p \sin v, \quad[e, 2]=\frac{p}{e}\left(\frac{p}{r}-\frac{r}{a}\right)
\end{aligned}
$$

But the equations for n and M become inconvenient, it not, illusony (One suitable substitute is easily obtained by forming the equation tor q, the perihelion distance Since $q=a(1-e)$,
where

$$
\begin{aligned}
w \frac{d q}{d t} & =(1-e) w \frac{d a}{d t}-a w \frac{d e}{d t}=-\frac{2 a w}{3 n}(1-e)^{d n}-a w \frac{d e}{d t} \\
& =[q, 1] F_{1}+[q, 2] F_{2}
\end{aligned}
$$

$$
\begin{aligned}
{[q, 1] } & =-\frac{2 a}{3 n}(1-e)[n, 1]-a[e, 1] \\
& =\frac{2 a k}{n p^{\frac{1}{2}}} \sin \phi \cos \phi(1-e) \sin v-a p \sin v \\
& =2 a^{2} e(1-e) \sin v-a^{2}\left(1-e^{2}\right) \sin v=-a^{2}(1-e)^{2} \sin v \\
& =-q^{2} \sin v
\end{aligned}
$$

and

$$
\begin{aligned}
{[q, 2] } & =-\frac{2 a}{3 n}(1-e)[n, 2]-a[e, 2] \\
& =\frac{2 a k}{n r} p^{\frac{1}{2}}(1-e) \cos \phi-\frac{a p}{e}\left(\frac{p}{r}-\frac{r}{a}\right) \\
& =\frac{2 a^{2} p}{r}(1-e)-\frac{a p^{2}}{e r}+\frac{p r}{e} \\
& =\frac{p r}{e}-\frac{a p^{2}}{r}\left[\frac{1}{e}-\frac{2}{1+e}\right]=\frac{p r}{e}-\frac{p^{3}}{r e}(1+e)^{-2} \\
& =\frac{p r}{(1+e)^{2}} 4 \sin ^{2} \frac{1}{2} v\left(1+e \cos ^{2} \frac{1}{2} v\right)
\end{aligned}
$$

Thus a valid form for the perturbation of q is obtained If F_{1}, F_{2} have been calculated with the angular value of the constant k the results for δe and δq will require to be multiplied by $\sin 1^{\prime \prime}$

Again, an equation can be formed for the varation of T, the time of perhelion passage Since

$$
\begin{gathered}
n(t-T)=M=\epsilon-\varpi+\int n d t \\
(t-T) \frac{d n}{d t}-n \frac{d T}{d t}=\frac{d}{d t}(\epsilon-\varpi)=\frac{d M}{d t}-\int \frac{d n}{d t} d t
\end{gathered}
$$

it follows that

$$
\begin{aligned}
w \frac{d T}{d t} & =n^{-1}(t-T)\left\{[n, 1] F_{1}+[n, 2] F_{2}\right\}-n^{-1}\left\{[M, 1] F_{1}+[M, 2] F_{2}\right\} \\
& =[T, 1] F_{1}+[T, 2] F_{2}
\end{aligned}
$$

where

$$
\begin{aligned}
{[T, 1] } & =n^{-1}(t-T)[n, 1]-n^{-1}[M, 1] \\
& =-\frac{3 k e\left(1-e^{2}\right)^{\frac{1}{2}} \sin v(t-T)}{n p^{\frac{1}{2}}}+\frac{\left(1-e^{2}\right)^{\frac{1}{2}}}{n}\left(2 r-\frac{p \cos v}{e}\right) \\
& =\frac{2\left(1-e^{2}\right)^{\frac{1}{2}}}{n}\left\{r-\frac{p}{2 e} \cos v-\frac{3 k e}{2 p^{\frac{1}{2}}} \sin v(t-T)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
{[T, 2] } & =n^{-1}(t-T)[n, 2]-n^{-1}[M, 2] \\
& =-\frac{3 k\left(1-e^{2}\right)^{\frac{1}{2}} p^{\frac{1}{2}}(t-T)}{n r}+\frac{\left(1-e^{2}\right)^{\frac{1}{2}}(p+r) \sin }{n e} v \\
& =\frac{2\left(1-e^{2}\right)^{\frac{1}{2}}}{n}\left\{\frac{1}{2 e}(p+r) \sin v-\frac{3 p^{\frac{1}{2}}}{2 r} k(t-T)\right\}
\end{aligned}
$$

But these coefficients are in a form absolutely unsuitable for calculation, especially in the case of a parabola, for which in fact they are required The difficulty can be, and is best, met for such orbits by calculating special perturbations in rectangular or polar coordinates, anstead of directly in the elements

206 The reduction of $[T, 1],[T, 2]$ to a culculable form is not altogether easy It can be effected in the following way. The required expressions can be written, sunce $n^{2} a^{3}=k^{2}, p=a\left(1-\theta^{2}\right)$,

$$
\begin{aligned}
& {[T, 1]=\stackrel{2 p^{\frac{1}{2}} r}{k\left(1-e^{y}\right)}\left\{1-\frac{\cos v(1+e \cos v)}{2 e}-\frac{3 k}{\left.\frac{(t-T)}{2 p^{\frac{1}{2}} r} e \sin v\right\}}\right.} \\
& \left.[T, 2]=\underset{k\left(1-e^{0}\right)}{2 p^{\frac{2}{2}} r} \begin{array}{c}
\sin v(2+e \cos v) \\
2 e
\end{array}-\frac{3 k(t-T)}{2 p^{\frac{3}{2}} r}(1+e \cos v)\right\}
\end{aligned}
$$

Now

$$
\begin{aligned}
k(t-T) & \left.=a^{\frac{3}{2}}(E-e \sin E)=\frac{p^{\frac{3}{2}}}{\left(1-e^{2}\right)^{\frac{3}{2}}}(E-\sin E)+(1-e) \sin E\right\} \\
& =\frac{p^{\frac{3}{2}}}{(1+e)^{\frac{3}{3}}} \frac{E-\sin E}{\tan ^{3} \frac{1}{2} E} \tan ^{\frac{3}{2}} v+\frac{2 p^{\frac{3}{2}}}{(1+e)^{2}} \cos ^{2} \frac{1}{2} E \tan \frac{1}{2} v \\
& =\frac{4 p^{\frac{3}{2}}}{3(1+e)^{3}} \cos ^{2} \frac{1}{2} E\left\{(1-S) \tan \frac{1}{2} v+\frac{3}{2}(1+e)\right\} \tan \frac{1}{2} v
\end{aligned}
$$

where

$$
1-S=\frac{3(E-\sin E)}{4 \tan ^{3} \frac{1}{2} E \cos ^{2} \frac{1}{2} E}=1-\frac{1}{20} E^{2}+
$$

But (§ 27)

$$
r \cos ^{2} \frac{1}{2} v=a(1-e) \cos ^{2} \frac{1}{2} E=p(1+e)^{-1} \cos ^{2} \frac{1}{2} E
$$

and therefore

$$
\frac{3 k(t-T)}{2 p^{\frac{1}{2}} r}=\frac{\sin v}{(1+e)^{2}}\left\{(1-S) \tan ^{2} \frac{1}{2} v+\frac{9}{2}(1+e)\right\}=Y
$$

Let $[T, 1],[T, 2]$ be written in the form
where

$$
\begin{aligned}
& {[T, 1]=\frac{2 p^{\frac{3}{3}} r}{k\left(1-e^{2}\right)}\left\{1-\frac{\cos v(1+e \cos v)}{2 e}-Y_{1}\right\}} \\
& {[T, 2]=\frac{2 p^{\frac{2}{3}} r}{k\left(1-e^{2}\right)}\left\{\frac{\sin v(2+e \cos v)}{2 e}-Y_{2}\right\}}
\end{aligned}
$$

$$
Y_{1}=e \sin v \quad Y, \quad Y_{2}=(1+e \cos v) Y
$$

and therefore

Hence

$$
\begin{aligned}
& Y_{1} \cos \frac{1}{2} v-Y_{2} \sin \frac{1}{2} v=-(1-e) \sin \frac{1}{2} v Y \\
& Y_{1} \sin \frac{1}{2} v+Y_{2} \cos \frac{1}{2} v=(1+e) \cos \frac{1}{2} v \quad Y
\end{aligned}
$$

$$
\begin{aligned}
Y_{1} \cos \frac{1}{2} v-Y_{2} \sin \frac{1}{2} v & =-\frac{1}{2} \sin \frac{1}{2} v \sin v \frac{1-e}{1+e}\left\{\left(\frac{1-S}{1+e} 2 \tan ^{2} \frac{1}{2} v\right)+3\right\} \\
Y_{1} \sin \frac{1}{2} v+Y_{2} \cos \frac{1}{2} v & =-\frac{1}{2} \cos \frac{1}{2} v \sin v\left(\frac{S}{1+e} \frac{2 \tan ^{4} \frac{1}{2} v}{\tan ^{2} \frac{1}{2} E}\right) \frac{1-e}{1+e} \\
& +\frac{1}{2} \cos \frac{1}{2} v \sin v\left\{2(1+e)^{-1} \tan ^{2} \frac{1}{2} v+3\right\}
\end{aligned}
$$

The expressions involving S are finite and they are multiphed by $1-e$, which is a necessary factor For the other terms, let

$$
\begin{aligned}
& y_{1} \cos \frac{1}{2} v-y_{2} \sin \frac{1}{2} v=-\frac{3}{2} \sin \frac{1}{2} v \sin v \frac{1-e}{1+e} \\
& y_{1} \sin \frac{1}{2} v+y_{2} \cos \frac{1}{2} v=\frac{3}{2} \cos \frac{1}{2} v \sin v+(1+e)^{-1} \cos \frac{1}{2} v \sin v \tan ^{2} \frac{1}{2} v
\end{aligned}
$$

Then

$$
\begin{aligned}
y_{1} & =\frac{1}{2}(1+e)^{-1} \sin ^{2} v\left(3 e+\tan ^{2} \frac{1}{2} v\right) \\
& =\frac{1}{2}(1+e)^{-1}(1-\cos v)\{3 e(1+\cos v)+(1-\cos v)\} \\
y_{2} & =(1+e)^{-1} \sin v\left\{\frac{3}{2}(1+e) \cos ^{2} \frac{1}{2} v+\frac{3}{2}(1-e) \sin ^{2} \frac{1}{2} v+\sin ^{2} \frac{1}{2} v\right\} \\
& =\frac{1}{2}(1+e)^{-1} \sin v(4-\cos v+3 e \cos v)
\end{aligned}
$$

It is now possible to write, with a little simple reduction,

$$
\begin{aligned}
& {[T, 1]=\frac{2 p^{\frac{7}{2}} r}{k\left(1-e^{2}\right)}\left\{-\frac{1}{2} \frac{1-e}{1+e}\left(\cos 2 v+\frac{\cos v}{e}\right)+y_{1}-Y_{1}\right\}} \\
& {[T, 2]=\frac{2 p^{\frac{7}{2}} r}{k\left(1-e^{2}\right)}\left\{\frac{1-e}{1+e}(1+e \cos v) \frac{\sin v}{e}+y_{2}-Y_{2}\right\}}
\end{aligned}
$$

and y_{1}, y_{2} have been determined in such a way that

$$
\begin{aligned}
& \left(Y_{1}-y_{1}\right) \cos \frac{1}{2} v-\left(Y_{2}-y_{2}\right) \sin \frac{1}{2} v=-\frac{1}{2} \frac{1-e}{1+e} \sin v g \sin G \\
& \left(Y_{1}-y_{1}\right) \sin \frac{1}{2} v+\left(Y_{2}-y_{2}\right) \cos \frac{1}{2} v=-\frac{1}{2} \frac{1-e}{1+e} \sin v g \cos G
\end{aligned}
$$

where

$$
\frac{g \sin G}{\sin \frac{1}{2} v}=\frac{1-S}{1+e} 2 \tan ^{2} \frac{1}{2} v, \quad \frac{g \cos G}{\cos \frac{1}{2} v}=\frac{S}{1+e} \frac{2 \tan ^{4} \frac{1}{2} v}{\tan ^{2} \frac{1}{2} E}
$$

Hence

$$
\begin{aligned}
& {[T, 1]=\frac{p^{\frac{7}{2}} r}{k(\overline{1+e})^{2}}\left\{-\cos 2 v-\frac{\cos v}{e}+g \sin \left(G+\frac{1}{2} v\right) \sin v\right\}} \\
& {[T, 2]=\frac{p^{\frac{2}{2}} \sin v}{k(1+e)^{2}}\left\{\frac{2 p}{e}+r g \cos \left(G+\frac{1}{2} v\right)\right\}}
\end{aligned}
$$

which are farrly simple forms, but still require the calculation of $g \sin G, g \cos G$ In the limiting case of the parabola, $S=\frac{1}{20} E^{2}$ and

$$
g \sin G=\tan ^{2} \frac{1}{2} v \sin \frac{1}{2} v, \quad g \cos G=\frac{f}{t a n} \frac{1}{2} v \cos \frac{1}{2} v
$$

which then completes the solution
The more general case of a very eccentric ellipse can be related to the method of $\S 34 \mathrm{In}$ the notation of that section,

$$
A=\frac{15(E-\sin E)}{9 E+\sin E}, \tau=\tan ^{2} \frac{1}{2} E=\frac{A}{1-\frac{5}{8} A+C}
$$

Hence

$$
\begin{aligned}
& \frac{10 A \sin E}{15-9 A}=E-\sin E=\frac{4}{8}(1-S) \tan ^{3} \frac{1}{2} E \cos ^{2} \frac{1}{8} E \\
& 1-S=\frac{15 A}{15-9 A} \\
& \cot ^{2} \frac{1}{2} E=\frac{1-\frac{4}{8} A+C}{1-\frac{8}{8} A} \\
& S=\frac{\frac{1}{2} A-C}{1-\frac{8}{8} A}, \quad \frac{S}{\tan ^{2} \frac{1}{2} E}=\frac{1-\frac{4}{8} A+C}{1-\frac{3}{8} A}\left(\frac{1}{5}-\frac{C}{A}\right)
\end{aligned}
$$

Now by the method of $\S 34 A$ (of the order E^{2}) is found in calculating v, and C (of the order E^{4}) is tabulated with argument A With the same argument it is possible to tabulate* $\log \xi$ and $\log \eta$, where

$$
1-S=\xi^{-1}, \quad S \cot ^{2} \frac{1}{2} E=\eta
$$

Then

$$
g \sin G=\frac{2 \tan ^{2} \frac{1}{2} v \sin \frac{1}{2} v}{(1+e) \xi}, g \cos G=\frac{2 \tan ^{4} \frac{1}{2} v \cos \frac{1}{2} v}{1+e} \eta
$$

and the problem is thus solved in a practical way Similar treatment can be appled to hyperbolic orbits

207 It sometimes happens that a comet approaches a planet (generally Jupiter) so closely that the disturbing force due to the planet is actually greater than the force due to the solar attraction It is then mole convenient to refer the motion to the centre of the planet and to treat the solar action as the disturbing force

In the ordmary case the equations of motion of the comet are of the form

$$
\frac{d^{2} x}{d t^{2}}=-k^{2} M \frac{x}{r^{3}}+k^{2} m\left(\frac{x^{\prime}-x}{\Delta^{3}}-\frac{x^{\prime}}{\rho^{3}}\right)
$$

where M is the mass of the Sun, m the mass of the planet, and the ongin is at the centre of the Sun If S, P, C are the positions of Sun, planet and comet, $C S=r, C P=\Delta, S P=\rho \quad$ The equations involve no assumption as to the relative masses of the Sun and planet, and if they are interchanged the equations of motion of the comet take the form

$$
\frac{d^{2} \xi}{d t^{2}}=-k^{2} m \frac{\xi}{\Delta^{3}}+k^{2} M\left(\frac{\xi^{\prime}-\xi}{r^{3}}-\frac{\xi^{\prime}}{\rho^{3}}\right)
$$

where the origin is at the centre of the planet, so that $x=x^{\prime}+\xi, \quad, x^{\prime}+\xi^{\prime}=0$, The advantage of either form depends on the ratio of the total disturbing force to the corresponding central attraction, and it will rest with the latter if

$$
\frac{M}{m} \Delta^{2}\left\{\Sigma\left(\frac{\xi^{\prime}-\xi}{r^{3}}-\frac{\xi^{\prime}}{\rho^{3}}\right)^{2}\right\}^{\frac{1}{2}}<\frac{m}{M} r^{2}\left\{\Sigma\left(\frac{x^{\prime}-x}{\Delta^{3}}-\frac{x^{\prime}}{\rho^{3}}\right)^{2}\right\}^{\frac{1}{2}},
$$

that is, if $\mu=m / M$, when

$$
\Delta^{4}\left(\frac{1}{r^{4}}+\frac{1}{\rho^{4}}-\frac{2}{r^{2} \rho^{2}} \cos C S P\right)<\mu^{4} r^{4}\left(\frac{1}{\Delta^{4}}+\frac{1}{\rho^{4}}-\frac{2}{\Delta^{2} \rho^{2}} \cos C P S\right)
$$

Let $C P S=\theta \quad$ Then

$$
\begin{aligned}
& r \cos C S P=\rho-\Delta \cos \theta \\
& r^{2}=\rho^{\circ}-2 \rho \Delta \cos \theta+\Delta^{2}
\end{aligned}
$$

Now in the nature of the case Δ is small compared with ρ Hence

$$
\begin{aligned}
r^{-4}= & \rho^{-4}+4 \rho^{-5} \Delta \cos \theta+2 \rho^{-6} \Delta^{2}\left(-1+6 \cos ^{2} \theta\right)+ \\
r^{-s}= & \rho^{-3}+3 \rho^{-4} \Delta \cos \theta+\frac{8}{2} \rho^{-5} \Delta^{2}\left(-1+5 \cos ^{2} \theta\right)+ \\
& \text { * Bauschinger's Tafeln, Nos xivir, xxvirr }
\end{aligned}
$$

and therefore

$$
r^{-4}+\rho^{-4}-2 r^{-3} \rho^{-2}(\rho-\Delta \cos \theta)=\rho^{-6} \Delta^{2}\left(1+3 \cos ^{2} \theta\right)+
$$

To gain an idea of the planet's sphere of influence the approximation need not go further On the other slde of the inequality the first term preponderates and it can be further simplified by taking $r=\rho$ Thus the significant terms of the lowest order in Δ give the inequality

$$
\rho^{-6} \Delta^{6}\left(1+3 \cos ^{2} \theta\right)<\mu^{4} \rho^{4} \Delta^{-4}
$$

and the polar equation, with coordinates (Δ, θ) and origin at the centre of the planet,

$$
\Delta\left(1+3 \cos ^{2} \theta\right)^{\frac{1}{10}}=\mu^{\frac{?}{8}} \rho
$$

represents a meridian of the bounding surface, which is one of revolution and differs little from a sphere Its radius for Jupiter, Saturn and Uranus is about a third, and for Neptune rather more than half, of an astronomical unit

When the comet enters this sphere of influence its relative coordinates $\left(x_{1}-x_{1}^{\prime}, y_{1}-y_{1}^{\prime}, z_{1}-z_{1}^{\prime}\right)$ or ($\xi_{1}, \eta_{1}, \zeta_{1}$) and its relative velocity ($\xi_{1}, \eta_{1}, \xi_{1}$) are known and its orbit about the planet can be found, with the constant of attraction $k^{2} m$ It remains within the sphere so short a time that the solar perturbation can generally be neglected and on emergence a return is made to the heliocentric orbit, based on the new position ($\xi_{2}+x_{2}^{\prime}, \eta_{2}+y_{2}^{\prime}, \zeta_{2}+z_{2}^{\prime}$) or $\left(x_{2}, y_{2}, z_{2}\right)$ and the velocity $\left(x_{2}, y_{2}, z_{2}\right)$

CHAPTER XIX

the restricted problem of three bodies

208 The general problem of three bodies is reduced to a relatively sumple and ideal form when two of the masses describe cucles in one plane about therr common centre of gravity and the thind body has a mass so small as not to affect this circular motion in any appreciable degree Let $O X Y Z$ be a set of rectangular axes rotating with angular velocity n about $O Z, O X$ followng $O Y$, and let the coordnates of the masses μ, ν be $\left(-c_{1}, 0,0\right),\left(c_{1}, 0,0\right)$ where $\mu c_{1}=\nu c_{2}$ The velocity components in space of a small body at $P(\xi, \eta, \zeta)$ are $(\dot{\xi}-n \eta, \eta+n \xi, \dot{\zeta})$ and hence the kmetic energy of unit mass is

$$
T=\frac{1}{2}(\xi-n \eta)^{2}+\frac{1}{2}(\eta+n \xi)^{2}+\frac{1}{2} \zeta^{2}
$$

The equations of relative motion are therefore

$$
\begin{aligned}
\xi-2 n \eta-n^{2} \xi & =\frac{\partial V}{\partial \xi} \\
\eta+2 n \xi-n^{2} \eta & =\frac{\partial V}{\partial \eta} \\
\zeta & =\frac{\partial V}{\partial \zeta}
\end{aligned}
$$

where in this case

$$
V=k^{s}\left(\mu / \rho_{1}+\nu / \rho_{2}\right)
$$

ρ_{1}, ρ_{2} being the distances of P from μ, ν The result of adding these equations, multiphed respectively by ξ, η, ζ, gives Jacobi's integial of energy

$$
v^{2}=\xi^{2}+\eta^{2}+\zeta^{2}=2 V+n^{2}\left(\xi^{2}+\eta^{2}\right)-C
$$

and in accordance with Kepler's law

$$
k^{2}(\mu+\nu)=n^{2}\left(c_{1}+c_{2}\right)^{3}
$$

209 This integral has a very simple and important practical application Let us return to fixed axes through μ, so that

$$
\xi+c_{1}=x \cos l+y \sin l, \quad \eta=y \cos l-a \sin l, \quad \zeta=z
$$

where l is the longitude of ν and $l=n \quad$ Then

$$
\begin{aligned}
& \xi^{2}+\eta^{2}=(x+n y)^{2}+(y-n x)^{2} \\
& \xi^{2}+\eta^{2}=x^{2}+y^{2}-2 c_{1}(x \cos l+y \sin l)+c_{1}^{2}
\end{aligned}
$$

Hence Jacobr's integral becomes

$$
x^{2}+y^{2}+\dot{z}^{2}+2 n(y x-x y)=2 V-2 n^{2} c_{1}(x \cos l+y \sin l)+n^{2} c_{1}^{2}-C
$$

The special circumstances under which this integral can be usefully employed are these A periodic comet between two appearances in the neighbourhood of the Sun may pass in close proximity to a large planet, Jupiter for example In that event the elements may be so altered that at the second return the identity of the comet is doubtful At times when the perturbations are small and the heliocentric motion is sensibly elliptic,

$$
\begin{aligned}
x^{2}+y^{2}+z^{2} & =k k^{2}\left(2 \mu / \rho_{1}-\mu / a\right) \\
x \dot{y}-y x & =k \sqrt{ }(\mu p) \cos 2
\end{aligned}
$$

the latter being the projection of the areal velocity on the plane of the disturbing planet Hence

$$
-k^{2} \mu / a-2 k n \sqrt{ }(\mu p) \cos \imath=2 k^{2} \nu / \rho_{2}-2 n^{2} c_{1}(x \cos l+y \sin l)+n^{2} c_{1}^{2}-C
$$

It is supposed that the change in the observed osculating elements takes place almost impulsively within the region of the planet's influence This region is small and nearly spherical Hence ρ_{2} is the same at the beginning and end of the encounter, and the changes in x, y and l are small These can be neglected together with the other planetary perturbations, and therefore approxımately

$$
\mu / a^{\prime}+2 k k^{-1} n \sqrt{ }\left(\mu p^{\prime}\right) \cos \imath^{\prime}=\mu / a^{\prime \prime}+2 k^{-1} n \sqrt{ }\left(\mu p^{\prime \prime}\right) \cos \imath^{\prime \prime}
$$

where $a^{\prime}, a^{\prime \prime}$ are the mean distances of the comet, $p^{\prime}, p^{\prime \prime}$ the parameters, and $\imath^{\prime}, \imath^{\prime \prime}$ the inclinations of the orbit to the orbit of the disturbing planet, before and after the encounter For the Sun $\mu=1$ and $k^{2}(1+\nu)=n^{2} a^{3}$, where a is the mean distance of the planet, and if ν be neglected

$$
a^{\prime-1}+9 a^{-\frac{8}{2}} p^{\frac{1}{2}} \cos \imath^{\prime}=a^{\prime \prime-1}+2 a^{-\frac{3}{2}} p^{\prime \prime \frac{1}{2}} \cos \imath^{\prime \prime}
$$

which is the criterion of identity proposed by Tisserand It has been assumed that the orbit of the disturbing planet is crecular, but some allowance can be made for the eccentricity of tho orbit by taking into account the actual motion of the planet at the time of the suspected encounter

210 Let the problem of $\S 208$ be now reduced to two dimensions $(\zeta=0)$ Then

$$
\begin{aligned}
\mu \rho_{1}^{2}+\nu \rho_{2}^{2} & =\mu\left(\xi+c_{1}\right)^{2}+\mu \eta^{2}+\nu\left(\xi-c_{2}\right)^{2}+\nu \eta^{2} \\
& =(\mu+\nu)\left(\xi^{2}+\eta^{2}\right)+\mu c_{1}^{2}+\nu c_{2}^{2}
\end{aligned}
$$

Let the units be so chosen that $k=1$ and $c_{1}+c_{2}=1$, with the consequence that $\mu+\nu=n^{2} \quad$ The equations of relative motion may now be written

$$
\begin{aligned}
\xi-2 n \eta & =\frac{\partial \Omega}{\partial \xi} \\
\eta+2 n \xi & =\frac{\partial \Omega}{\partial \eta}
\end{aligned}
$$

where

$$
2 \Omega=\mu\left(2 \rho_{1}^{-1}+\rho_{1}^{2}\right)+\nu\left(2 \rho_{2}^{-1}+\rho_{2}^{2}\right)
$$

and the integral of relative energy is

$$
v^{2}=2 \Omega-C
$$

These are the equations used by $\operatorname{Sir} G \operatorname{H}$ Darwin, with the masses $\mu=10$, $\nu=1$, in his researches on periodic orbits Now it is obvious that v^{2} cannot become negative under any circumstances Hence the curves of the family given in bipolar coordnates by the equation

$$
2 \Omega=C
$$

are of great importance in the restricted problem of three bodies, because they represent barner curves which cannot be crossed by trajectories characterized by corresponding values of C Thus if the barrier curve, or curve of zero velocity, is a simple loop within which a part of the trajectory lies, then the trajectory can never pass outside If the lunar theory can be compared with this simpler problem it is found that the orbit of the Moon hes within such a closed curve surrounding the Earth, and theretore the Moon cannot recede beyond a certain limiting distance from the Earth This remark is due to Hill

The simplest view of the general character of the curves of zero velocity is ganed by considering them as the contour lines of the surface

$$
2 \Omega=z, \quad z=C
$$

If the axis of z is taken vertically upwards, and motion for a given valuc of C is supposed to take place on the actual contour plane $z=C$, then it is evidently restricted to those parts of the plane which lie underneath the s urface, since elsewhere in the plane the velocity becomes imaginary Now the main features of the surface are easily represented topographically At the points where the masses μ, ν are situated the surface rises to infinity, but in the neighbourhood of these singular points may be treated as two peaks At any considerable distance from them the terms $\mu \rho_{1}{ }^{2}+\nu \rho_{2}{ }^{2}$ are predominant, and the surface rises indefinitely in all directions Now 2Ω may be expiessed in the form

$$
2 \Omega=3(\mu+\nu)+\mu\left(\rho_{1}-1\right)^{2}\left(1+2 \rho_{1}^{-1}\right)+\nu\left(\rho_{2}-1\right)^{2}\left(1+2 \rho_{2}^{-1}\right)
$$

and clearly has an absolute minimum value $3(\mu+\nu)$ when $\rho_{1}=\rho_{2}=1$, e at the vertices of the equilateral triangle on the line joining the masses μ, ν These points represent the bottom of two valleys, and a simple consideration of the continuity of the surface shows that these valleys must be connected by three passes, one between the two masses and the others on the same line but on opposite sides of the two masses and separating them from the rising surface as it recedes in the distance If it be added that the highest pass is
that which hes between the masses and the lowest is on the other side of the greater mass, the general order of development of the contour lines should be sufficiently evident The critical curves for Darwin's special case, $\mu=10$, $\nu=1$, are illustrated in fig 7 The whole is symmetrical about the line $S J$

211 The points at which the ovals coalesce or disappear evidently correspond to critical values of $\Omega \quad$ Take $\nu<\mu$ The critical values are given by

$$
\begin{aligned}
& \frac{\partial \Omega}{\partial \xi}=\frac{\partial \Omega}{\partial \rho_{1}} \frac{\partial \rho_{1}}{\partial \xi}+\frac{\partial \Omega}{\partial \rho_{2}} \frac{\partial \rho_{2}}{\partial \xi}=0 \\
& \frac{\partial \Omega}{\partial \eta}=\frac{\partial \Omega}{\partial \rho_{1}} \frac{\partial \rho_{1}}{\partial \eta}+\frac{\partial \Omega}{\partial \rho_{2}} \frac{\partial \rho_{2}}{\partial \eta}=0
\end{aligned}
$$

which show immediately that such points are points of relative equilibrium for the third body These equations are satisfied in the first place by

$$
\frac{\partial \Omega}{\partial \rho_{1}}=\frac{\partial \Omega}{\partial \rho_{2}}=0
$$

or $\rho_{1}=\rho_{2}=1$ This gives the "equilateral" points mentioned above, where Ω is an absolute minimum But other solutions are given by

$$
\frac{\partial\left(\rho_{1}, \rho_{9}\right)}{\partial(\xi, \eta)}=\frac{1}{\rho_{1} \rho_{3}}\left|\begin{array}{cc}
\xi+c_{1}, & \xi-c_{2} \\
\eta & \eta
\end{array}\right|=0
$$

or $\eta=0$, together with $\partial \Omega / \partial \xi=0$ This will lead to the three points collinear with the masses For the first, lying between the masses,

$$
\rho_{1}+\rho_{\mathrm{g}}=1, \quad \frac{\partial \rho_{1}}{\partial \xi}=-\frac{\partial \rho_{8}}{\partial \dot{\xi}}=1
$$

so that

$$
\frac{\nu}{\mu}=\frac{\rho_{1}^{-2}-\rho_{1}}{\rho_{8}-2}-\rho_{2}=\frac{\rho_{2}^{2}\left(3 \rho_{8}-3 \rho_{2}^{2}+\rho_{8}^{3}\right)}{\left(1-\rho_{8}^{3}\right)\left(1-\rho_{3}\right)^{4}}
$$

This is a quintic in ρ_{s}, with only one real root The actual solution in a particular case is easily found by trial and error from the first expression The second expression, when expanded, gives

$$
\begin{aligned}
\frac{\nu}{\mu}=3 a^{3} & =3 \rho_{2}^{3}\left(1+\rho_{2}+\frac{4}{3} \rho_{2}^{2}+\quad\right) \\
\alpha & =\rho_{2}+\frac{1}{3} \rho_{2}{ }^{2}+\frac{1}{3} \rho_{2}^{3}+ \\
\rho_{2} & =\alpha-\frac{1}{3} a^{2}-\frac{1}{8} \alpha^{3}
\end{aligned}
$$

and to the same order

$$
\begin{aligned}
C & =\mu\left(3+3 \rho_{2}{ }^{2}+2 \rho_{\mathrm{a}}{ }^{3}\right)+\nu\left(2 \rho_{2}{ }^{-1}+\rho_{2}{ }^{2}\right) \\
& =\mu\left(3+3 a^{2}\right)+\nu \alpha^{-1}\left(2+\frac{2}{3} \alpha\right) \\
& =\mu\left(3+9 a^{2}+2 a^{3}\right)
\end{aligned}
$$

For the second collnear point, on the further side of the smaller mass ν,
and hence

$$
\rho_{1}=1+\rho_{2}, \quad \frac{\partial \rho_{1}}{\partial \xi}=\frac{\partial \rho_{2}}{\partial \xi}=+1
$$

$$
\frac{\nu}{\mu}=-\frac{\rho_{1}^{-2}-\rho_{1}}{\rho_{2}^{-2}-\rho_{2}}=\frac{\rho_{2}^{2}\left(3 \rho_{2}+3 \rho_{2}^{2}+\rho_{2}^{3}\right)}{\left(1-\rho_{2}^{3}\right)\left(1+\rho_{2}\right)^{2}}
$$

again a quintic in ρ_{2} with only one real root For the approximate solution

$$
\begin{aligned}
\frac{\nu}{\mu}=3 a^{3} & =3 \rho_{2}^{3}\left(1-\rho_{2}+\frac{4}{3} \rho_{2}^{2}-\quad\right) \\
\alpha & =\rho_{2}-\frac{1}{3} \rho_{2}^{2}+\frac{1}{3} \rho_{2}^{3} \\
\rho_{2} & =a+\frac{1}{3} \alpha^{2}-\frac{1}{3} a^{3}
\end{aligned}
$$

and to the same order

$$
\begin{aligned}
C & =\mu\left(3+3 \rho_{2}{ }^{2}-2 \rho_{2}^{3}\right)+\nu\left(2 \rho_{2}{ }^{-1}+\rho_{2}^{2}\right) \\
& =\mu\left(3+3 a^{2}\right)+\nu a^{-1}\left(2-2{ }_{3} \alpha\right) \\
& =\mu\left(3+9 a^{2}-2 a^{3}\right)
\end{aligned}
$$

For the third collnear point, on the further side of the larger mass μ,
and therefore

$$
\rho_{2}=1+\rho_{1}, \quad \frac{\partial \rho_{1}}{\partial \xi}=\frac{\partial \rho_{2}}{\partial \xi}=-1
$$

$$
\frac{\nu}{\mu}=-\frac{\rho_{1}-2}{\rho_{2}-\rho_{1}}-\rho_{2}=-\frac{(2+\sigma)^{2}\left(3 \sigma+3 \sigma^{2}+\sigma^{3}\right)}{(1+\sigma)^{2}\left(7+12 \sigma+6 \sigma^{2}+\sigma^{3}\right)}
$$

where $\rho_{1}=1+\sigma, \rho_{2}=2+\sigma \quad$ Hence
and

$$
\frac{\nu}{\mu}=\frac{-\sigma\left(12+24 \sigma+19 \sigma^{2}+\quad\right)}{7+26 \sigma+37 \sigma^{2}+}
$$

$$
\frac{\nu}{\mu+\nu}=\frac{-12 \sigma(1+2 \sigma)-19 \sigma^{3}-}{7(1+2 \sigma)+13 \sigma^{2}+.}
$$

which shows that

$$
\sigma=\frac{-7 \nu}{12(\mu+\nu)}=\frac{-7 \alpha^{3}}{4+12 a^{3}}
$$

is a very close approximation. The approximate value of C at this point is

$$
\begin{aligned}
C & =\mu\left(3+3 \sigma^{2}\right)+\nu\left(5+\frac{7}{2} \sigma\right) \\
& =\mu\left(3+\frac{147}{18} a^{6}\right)+3 \mu a^{3}\left(5-\frac{49}{8} a^{3}\right) \\
& =\mu\left(3+15 a^{3}-\frac{147}{18} a^{6}\right)
\end{aligned}
$$

When $\nu / \mu=3 a^{3}$ is small, as in the case of the planets compared with the Sun, the above approxımations are generally more than sufficient In the limiting case $\mu=\nu$ and the arrangement of the points of relative equilibrium is obviously symmetrical with respect to the rotating masses

212 Let $\xi=\xi_{0}+x, \eta=\eta_{0}+y$, where $\left(\xi_{0}, \eta_{0}\right)$ is a fixed point The equations of motion may then be written

$$
\begin{aligned}
& x-2 n y=\Omega_{10}+\Omega_{20} x+\Omega_{11} y+ \\
& y+2 n x=\Omega_{01}+\Omega_{11} x+\Omega_{02} y+
\end{aligned}
$$

where

$$
\Omega_{v j}=\frac{\partial^{2+j} \Omega}{\partial \xi_{0}{ }^{2} \partial \eta_{0}{ }^{j}}
$$

provided Ω is regular at the point $\left(\xi_{0}, \eta_{0}\right)$ and x, y are not too large If (ξ_{0}, η_{0}) is a point of relative equilibrium, or as it has been called a point of hbration, and x, y are very small, the linear equations

$$
\begin{aligned}
& x-2 n y=\Omega_{\mathrm{n0}} x+\Omega_{11} y \\
& y+2 n x=\Omega_{11} x+\Omega_{02} y
\end{aligned}
$$

are obtained, and these determine the nature of the equilibrium at (ξ_{0}, η_{0}) For they are satistied by the solution

$$
x=h \cos (n t-\alpha), \quad y=k \cos (m t-\beta)
$$

provided

$$
\begin{aligned}
-2 m n k \sin \beta & =\left(m^{2}+\Omega_{20}\right) h \cos \alpha+k \Omega_{11} \cos \beta \\
2 m n k \cos \beta & =\left(m^{2}+\Omega_{20}\right) h \sin \alpha+k \Omega_{11} \sin \beta \\
2 m n h \sin \alpha & =h \Omega_{11} \cos \alpha+\left(m^{2}+\Omega_{02}\right) k \cos \beta \\
-2 m n h \cos \alpha & =h \Omega_{11} \sin \alpha+\left(m^{2}+\Omega_{08}\right) k \sin \beta
\end{aligned}
$$

These equations, which result from equating coefficients of $\cos m t, \sin m t$, are equivalent to

$$
\begin{aligned}
\left(m^{2}+\Omega_{20}\right) h \sin (\alpha-\beta) & =2 m n k \\
k \Omega_{11} \sin (\alpha-\beta) & =-2 m n h \cos (\alpha-\beta) \\
\left(m^{2}+\Omega_{02}\right) k \sin (\alpha-\beta) & =2 m n h \\
h \Omega_{11} \sin (\alpha-\beta) & =-2 m n h \cos (\alpha-\beta)
\end{aligned}
$$

There are only three independent equations here, and this should be so because the only quantities which can be determined are the ratio of
amplitudes h / k, the difference of phases $\alpha-\beta$, and m The three equations may be written

$$
\begin{aligned}
h^{2}\left(m^{2}+\Omega_{20}\right) & =k^{\prime}\left(m^{2}+\Omega_{02}\right) \\
\Omega_{11} \tan (\alpha-\beta) & =-2 m n \\
\left(m^{2}+\Omega_{20}\right)\left(m^{2}+\Omega_{02}\right) & =4 m^{2} n^{2}+\Omega_{11}^{2}
\end{aligned}
$$

and these determine a series of infintesimal elliptic orbits about a point of libration when m has a real value With certan simple developments such a series can be traced into a family of finite periodic orbits

213 The third equation, that is the quadratic in m^{2},

$$
m^{4}-m^{9}\left(4 n^{2}-\Omega_{20}-\Omega_{03}\right)+\Omega_{00} \Omega_{02}-\Omega_{11}^{2}=0
$$

decides the question of stability and may be examined more closely If the roots in m^{2} are complex or negative, real exponential functions of the time enter into the disturbed motion and equilibrium is unstable If the roots are real, but of opposite sign, an unstable mode of motion is associated with a possible elliptic mode and equilibrium is agann unstable Here the point is surrounded by an unstable family of orbits initially elliptic This is illustrated by the collmear points of libration For it is easily found that when $\eta=0$

$$
\Omega_{11}=0, \quad \Omega_{x 0}=\mu\left(2 \rho_{1}^{-3}+1\right)+\nu\left(2 \rho_{2}^{-3}+1\right)
$$

so that Ω_{n} is positive Now at the point of libration between the masses

$$
\rho_{1}+\rho_{2}=1, \quad \frac{\partial \rho_{1}}{\partial \xi}+\frac{\partial \rho_{2}}{\partial \xi}=1, \quad \frac{\partial \Omega}{\partial \rho_{1}}=\frac{\partial \Omega}{\partial \rho_{2}}
$$

and therefore, since $\eta=0$,

$$
\Omega_{02}=\frac{1}{\rho_{1}} \frac{\partial \Omega}{\partial \rho_{1}}+\frac{1}{\rho_{2}} \frac{\partial \Omega}{\partial \rho_{2}}=\left(\frac{1}{\rho_{1}}+\frac{1}{\rho_{2}}\right) \mu\left(\rho_{1}-\frac{1}{\rho_{1}^{2}}\right)
$$

which is negative sunce $\rho_{1}<1$ Similarly Ω_{02} is negative at the other collinear points of lubration Hence at these three points the absolute term of the quadratic in m^{2} is negative and the roots are real and of opposite sign Each of the points is therefore surrounded by a family of unstable poriodic orbits It has been suggested by Gyldén and by Moulton that the phenomenon known as the Gegenscheun is due to sunlight reflected by meteors which, in spite of the instability, are tempoiarily retained in the neighbourhood of that centre of libration in the Sun-Earth system which is opposite to the Sun and at a distance of about 938,000 miles from the Earth

When both values of m^{2} are positive the disturbed motion is the resultant of two elliptic motions, and equilibrium is stable This may be illustiatecl by the "equilateral" centres of libiation At one of these

$$
\begin{gathered}
\frac{\partial \Omega}{\partial \rho_{1}}=\frac{\partial \Omega}{\partial \rho_{2}}=\frac{\partial^{2} \Omega}{\partial \rho_{\rho} \partial \rho_{2}}=0 \\
\frac{\partial \rho_{1}}{\partial \xi}=-\frac{\partial \rho_{2}}{\partial \xi}=\frac{1}{2}, \quad \frac{\partial \rho_{1}}{\partial \eta}=\frac{\partial \rho_{2}}{\partial \eta}= \pm \frac{\sqrt{ } 3}{2}
\end{gathered}
$$

and therefore

$$
\begin{aligned}
& \Omega_{20}=\left(\frac{\partial \rho_{1}}{\partial \xi}\right)^{2} \frac{\partial^{2} \Omega}{\partial \rho_{1}{ }^{2}}+\left(\frac{\partial \rho_{2}}{\partial \xi}\right)^{2} \frac{\partial^{2} \Omega}{\partial \rho_{2}{ }^{2}}=\frac{8}{4}(\mu+\nu) \\
& \Omega_{02}=\left(\frac{\partial \rho_{1}}{\partial \eta}\right)^{2} \frac{\partial^{2} \Omega}{\partial \rho_{1}{ }^{2}}+\left(\frac{\partial \rho_{2}}{\partial \eta}\right)^{2} \frac{\partial^{2} \Omega}{\partial \rho_{2}{ }^{2}}=\frac{9}{4}(\mu+\nu) \\
& \Omega_{11}=\frac{\partial \rho_{1}}{\partial \xi} \frac{\partial \rho_{1}}{\partial \eta} \frac{\partial^{2} \Omega}{\partial \rho_{1}{ }^{2}}+\frac{\partial \rho_{2}}{\partial \xi} \cdot \frac{\partial \rho_{2}}{\partial \eta} \frac{\partial^{2} \Omega}{\partial \rho_{2}{ }^{2}}= \pm \frac{3 \sqrt{ } 3}{4}(\mu-\nu)
\end{aligned}
$$

Hence the quadratic in m^{2} becomes, since $n^{2}=\mu+\nu$,

$$
m^{4}-m^{2}(\mu+\nu)+\frac{27}{4} \mu \nu=0
$$

and the roots are real and positive if

$$
(\mu+\nu)^{2}>27 \mu \nu
$$

an inequality which is satistied if μ / ν is 25 or greater In that case the equilateral centres of libration are surrounded by two distinct families of stable periodic orbits which are ellipses in their elementary form, with periods tending to $2 \pi / m$ If the masses are more nearly equal, the roots of the equation in m^{2} are complex, and no such periodic orbits exist

Since the masses in the system Sun-Jupiter satisfy the condition of stability, and the disturbing influence of Jupiter predominates over the minor planets, it might be expected that planets would be found in this group approximating to the equilateral configuration Such planets, with a mean motion nearly equal to that of Jupiter, have actually been discovesed

214 A valuable insight into the general character of the solutions of the problem of three bodies is obtaned from the periodic solutions because they repeat themselves after every period These solutions have therefore been the subject of much laborious study But such orbits will not be indefinitely permanent unless they are also stable Hence it is necessary to study them in relation to those orbits which initially differ but little from them

The original equations of motion give

$$
\xi \eta-\eta \xi+2 n\left(\xi^{2}+\eta^{2}\right)=\xi \frac{\partial \Omega}{\partial \eta}-\eta \frac{\partial \Omega}{\partial \xi}
$$

or

$$
\begin{equation*}
\frac{v^{3}}{R}+2 n v^{2}=-v \frac{\partial \Omega}{\partial p}=v N \tag{1}
\end{equation*}
$$

where R is the radius of curvature of the orbit, δp is an element of the outward drawn normal, and N may be called the component of effective force along the inward normal Hence if the tangent to the orbit makes the angle ϕ with the axus of $\xi, R=v / \phi$ and

$$
v(\phi+2 n)=-\frac{\partial \Omega}{\partial p}
$$

Also the equation of relative energy gives, when the constant C remains unaltered,

$$
v \frac{\partial v}{\partial s}=v=\frac{\partial \Omega}{\partial s}, \quad \frac{v \partial v}{\partial p}=\frac{\partial \Omega}{\partial p}
$$

Let the undisturbed orbit at P be defined by the quantities s and ϕ, and the corresponding point P^{\prime} on the neighbouring orbit by δs along the undisturbed orbit and δp normal to it Then

$$
(v+\delta v)^{2}=\left(v+\frac{d \delta s}{d t}+\phi \delta p\right)^{2}+\left(\frac{d \delta p}{d t}-\phi \delta s\right)^{2}
$$

or to the first order

Hence

$$
\begin{aligned}
\frac{d \delta s}{d t}+\phi \delta p & =\delta v=\frac{\partial \Omega}{\partial p} \frac{\delta p}{v}+\frac{\partial \Omega}{\partial s} \frac{\delta s}{v} \\
& =-(\phi+2 n) \delta p+v^{-1} v \delta s
\end{aligned}
$$

$$
\begin{equation*}
2(\phi+n) \delta p=v^{-1} v \delta s-\frac{d \delta s}{d t}=-v \frac{d}{d t}\left(\frac{\delta s}{v}\right) \tag{2}
\end{equation*}
$$

Again, let (u, u^{\prime}) be the components of velocity in space of P in durections coinciding with δs, δp Since these lines are rotating with the absolute velocity $(\phi+n)$ the kinetic energy of unit mass at P^{\prime} is

$$
T=\frac{1}{2}\left\{u+\frac{d \delta s}{d t}+(\phi+n) \delta p\right\}^{2}+\frac{1}{2}\left\{u^{\prime}+\frac{d \delta p}{d t}-(\phi+n) \delta s\right\}^{2}
$$

Hence Lagrange's equation for δp is
$u^{\prime}+\frac{d^{2} \delta p}{d t^{2}}-2(\phi+n) \frac{d \delta s}{d t}-\phi \delta s-(\phi+n) u-(\phi+n)^{2} \delta p=\frac{\partial V}{\partial p}+\frac{\partial^{2} V}{\partial p^{2}} \delta p+\frac{\partial^{2} V}{\partial p} \partial_{s} \delta s$
Now this equation must be satisfied when $\delta p=\delta s=0$, and when the terms which do not vanish have been removed, it becomes

$$
\frac{d^{2} \delta p}{d t^{2}}-2(\phi+n) \frac{d \delta s}{d t}-\phi \delta s-(\phi+n)^{2} \delta p=\frac{\partial-V}{\partial p^{2}} \delta p+\frac{\partial^{2} V}{\partial p \partial s} \delta s
$$

Also it must be satistied when $\delta p=0 \delta s=v \delta t$, where δt is constant, for this also represents a point moving on the unvaried orbit Thus

$$
-2(\phi+n) v-\phi v=\frac{\partial^{\circ} V}{\partial p \partial s} v
$$

and therefore

$$
\frac{d^{2} \delta p}{d t^{2}}-2(\phi+n)\left(\frac{d \delta s}{d t}-\frac{v}{v} \delta s\right)-(\phi+n)^{2} \delta p=\frac{\partial^{2} V}{\partial p^{2}} \delta p
$$

which owing to (2) becomes

$$
\frac{d^{2} \delta p}{d t^{2}}+3(\phi+n)^{2} \delta p=\frac{\partial^{2} V}{\partial p^{2}} \delta p
$$

But

Hence finally

$$
\Omega=V+\frac{1}{2} n^{2} r^{2}, \quad \frac{\partial^{2}\left(r^{2}\right)}{\partial p^{2}}=\frac{\partial^{2}\left(r^{2}\right)}{\partial \xi^{2}}=2
$$

$$
\begin{equation*}
\frac{d^{2} \delta p}{d t^{2}}+\Theta \delta p=0 \tag{3}
\end{equation*}
$$

where

$$
\Theta=n^{2}+3(\phi+n)^{2}-\frac{\partial^{2} \Omega}{\partial p^{2}}
$$

a well-known result due to Hill
Again, Lagrange's equation for δs is
$u+\frac{d^{2} \delta s}{d t^{2}}+2(\phi+n) \frac{d \delta p}{d t}+\phi \delta p+(\dot{\phi}+n) u^{\prime}-(\phi+n)^{2} \delta s=\frac{\partial V}{\partial s}+\frac{\partial^{2} V}{\partial s \partial p} \delta p+\frac{\partial^{2} V}{\partial s^{2}} \delta s$ which must be satısfied when $\delta p=\delta s=0$ and also when $\delta p=0, \delta s=v \delta t$ Hence, after removing the terms which are independent of δp and δs and then those which contain δp,

$$
\frac{d^{2} v}{d t^{2}}-v(\dot{\phi}+n)^{2} \doteq v \frac{\partial^{2} V}{\partial s^{2}}=v\left(\frac{\partial^{2} \Omega}{\partial s^{2}}-n^{2}\right)
$$

This result may be used to give Θ another form, namely

$$
\begin{equation*}
\Theta=\frac{1}{v} \frac{d^{2} v}{d t^{2}}+2 n^{2}+2(\phi+n)^{2}-\nabla^{2} \Omega \tag{4}
\end{equation*}
$$

where $\nabla^{2}=\partial^{2} / \partial p^{2}+\partial^{2} / \partial s^{2}=\partial^{2} / \partial \xi^{2}+\partial^{2} / \partial \eta^{2} \quad$ This form may be more convenient than Hill's because ∇^{2} (not to be confounded with the three-dimensional ∇^{2}) does not depend on any particular direction

For some purposes it is necessary to take the arc s instead of t as the independent variable Then (3) becomes

$$
v \frac{d}{d s}\left(v \frac{d \delta p}{d s}\right)+\Theta \delta p=0
$$

or again, if $\delta p=v^{-\frac{1}{2}} \delta q$,

$$
\frac{d^{2} \delta q}{d s^{2}}+\Psi \delta q=0
$$

where

$$
\begin{aligned}
\Psi & =v^{-2} \Theta-\frac{1}{2} v^{-\frac{1}{2}} \frac{d}{d s}\left(v^{-\frac{1}{2}} \frac{d v}{d s}\right) \\
& =v^{-2} \Theta-\frac{1}{2} v^{-2} \frac{\partial^{2} \Omega}{d s^{2}}+\frac{3}{4} v^{-4}\left(\frac{\partial \Omega}{\partial s}\right)^{2}
\end{aligned}
$$

215 When the unvaried orbit is periodic, Θ is a periodic function of t with the same period T The equation (3) is therefore a particular case of a linear differential equation with periodic coefficients Its general theory may be indicated Since the equation is unaltered when t is replaced by $t+T$, $g(t+T)$ is a solution if $g(t)$ is one But every solution is a linear combination
of any two others which are independent Hence if g represents $g(t)$ and G represents $g(t+T), g_{1}, g_{2}$ being any two solutions,

$$
G_{1}=\alpha g_{1}+\beta g_{2}, \quad G_{2}=\gamma g_{1}+\delta g_{2}
$$

where $\alpha, \beta, \gamma, \delta$ are constants, not unrelated For since g_{1}, g_{2} are two solutions of (3)
and therefore

$$
g_{2} g_{1}=g_{1} g_{2}
$$

$$
\begin{aligned}
g_{2} g_{1}-g_{1} g_{2} & =\text { const }=G_{2} G_{1}-G_{1} G_{2} \\
& =\left(g_{2} g_{1}-g_{1} g_{2}\right)\left(\alpha \delta-\beta_{\gamma}\right)
\end{aligned}
$$

Hence $\alpha \delta-\beta \gamma=1$ Let f_{1}, f_{2} be two other independent solutions Then

$$
\begin{array}{ll}
g_{1}=a f_{1}+b f_{2}, & g_{2}=c f_{1}+d f_{2} \\
G_{1}=a F_{1}+b F_{2}, & G_{2}=c F_{1}+d F_{2}
\end{array}
$$

and the result of eliminating $g_{1}, g_{2}, G_{1}, G_{2}$ is
where

$$
F_{1}=A f_{1}+B f_{2}, \quad F_{2}=C f_{1}+D f_{2}
$$

$$
\begin{aligned}
& (a d-b c) A=a d \alpha+c d \beta-a b \gamma-b c \delta \\
& (a d-b c) B=b d(\alpha-\delta)+d^{2} \beta-b^{2} \gamma \\
& (a d-b c) C=-a c(\alpha-\delta)-c^{2} \beta+a^{2} \gamma \\
& (a d-b c) D=-b c a-c d \beta+a b \gamma+a d \delta
\end{aligned}
$$

Hence $A+D=\alpha+\delta$ is a constant independent of the choice of particular solutions, as well as $A D-B C=\alpha \delta-\beta \gamma=1$ But it is now possible to choose b / d and a / c so that $B=C=0 \quad$ Then

$$
F_{1}=A f_{1}, \quad F_{2}=D f_{2}, \quad A D=1
$$

and the functions f_{1}, f_{2} are defined by the property that they are multiphed by constants when the argument is increased by the period T Hence the general solution of the differential equation may be written

$$
\delta p=a_{1} e^{k t} \phi_{1}(t)+a_{2} e^{-k t} \phi_{2}(t)
$$

where ϕ_{1}, ϕ_{2} are periodic functions with the same period as Θ and $\cosh h T=\frac{1}{2}(\alpha+\delta)$, a constant which can be derived from any pair of independent solutions The quantities $\pm k$ are what Poincaré has called characterstic exponents If k is a pure imaginary circular functions adre involved and δp has no tendency to increase beyond a certan limit The periodic orbit is then stable If on the contrary k is real or complex real exponential functions are involved and δp will increase indefinitely The orbit is then unstable

The question of stability therefore involves essentially the determination of k But this is a matter of great difficulty in general What is known as Mathieu's equation, generally written in the form

$$
\frac{d^{2} y}{d z^{2}}+(a+16 q \cos 2 z) y=0
$$

of which the solutions are elliptic cylinder functions, is only a particular case of the general type (3) and it is the subject of an extensive literature $O n$ the astronomical side the reader may consult Poincare's Méthodes Nouvelles, Tome II See also Whittaker and Watson, Modern Analysss, Ch xIx

216 The original equations of motion,

$$
\xi-2 n \eta=\frac{\partial \Omega}{\partial \xi}, \quad \eta+2 n \xi=\frac{\partial \Omega}{\partial \eta}
$$

can also be given a canonical form Let

$$
\begin{aligned}
& p_{1}=\xi-n \eta, \quad p_{2}=\eta+n \xi \\
& H=\frac{1}{2}\left(p_{1}+n \eta\right)^{2}+\frac{1}{2}\left(p_{2}-n \xi\right)^{2}-\Omega+\frac{1}{2} C
\end{aligned}
$$

and then evidently

$$
\begin{aligned}
\xi & =\frac{\partial H}{\partial p_{1}}, \\
\eta & p_{1}=-\frac{\partial H}{\partial \xi} \\
\partial p_{2} &
\end{aligned} p_{2}=-\frac{\partial H}{\partial \eta}
$$

are equivalent to the above, and they are of the required form The integral of energy is $H=0 \quad$ Now consider the integral

$$
J=\int_{t_{0}}^{t}\left(-H+p_{1} \xi+p_{2} \eta\right) d t
$$

Between fixed limits its variation will vanish along a trajectory in virtue of the canonical equations Therefore it is a minimum (or at least stationary) along a trajectory as compared with its value along any neighbouring path Let the time along any such path be determined by the equation of energy $H=0 \quad$ Then the integral becomes

$$
\begin{aligned}
J & =\int_{t_{0}}^{t_{1}}\left(p_{1} \xi+p_{2} \eta\right) d t \\
& =\int_{t_{0}}^{t_{2}}\left\{\xi^{2}+\eta^{2}+n(\xi \eta-\eta \dot{\xi})\right\} d t \\
& =\int_{0}^{1}\{v d s+n(\xi d \eta-\eta d \xi)\}
\end{aligned}
$$

from which form, since $v^{2}=2 \Omega-C$, the time is absent Now

$$
\begin{aligned}
\delta \int v d s= & \int_{0}^{1}\left(\delta v d s+v \frac{d \xi}{d s} d \delta \xi+v \frac{d \eta}{d s} d \delta \eta\right) \\
= & \int_{0}^{1}\left\{\delta v d s-d\left(v \frac{d \xi}{d s}\right) \delta \xi-d\left(v \frac{d \eta}{d s}\right) \delta \eta\right\} \\
& +\left[v \frac{d \xi}{d s} \delta \xi+v \frac{d \eta}{d s} \delta \eta\right]_{0}^{1}
\end{aligned}
$$

and

$$
\begin{aligned}
\delta \int_{0}^{1} n(\xi d \eta-\eta d \xi) & =n \int_{0}^{1}(\delta \xi d \eta-\delta \eta d \xi+\xi d \delta \eta-\eta d \delta \xi) \\
& =2 n \int_{0}^{1}(\delta \xi d \eta-\delta \eta d \xi)+n[\xi \delta \eta-\eta \delta \xi]_{0}^{1}
\end{aligned}
$$

Therefore, if $\delta \xi=\delta \eta=0$ at the limits,

$$
\delta J=\int_{0}^{1}\left\{\delta v d s-\delta \xi d\left(v \frac{d \xi}{d s}\right)-\delta \eta d\left(v \frac{d \eta}{\bar{d} s}\right)+2 n(\delta \xi d \eta-\delta \eta d \xi)\right\}
$$

Let the tangent to the orbit make the angle ϕ with the axis of ξ, and let δp be the normal distance to an outer neighbouring curve, so that

Then

$$
\begin{align*}
d \xi & =d s \cos \phi, \quad d \eta=d s \sin \phi, \quad \delta \xi=\delta p \sin \phi, \quad \delta \eta=-\delta p \cos \phi \\
\delta J & =\int_{0}^{1}\{\delta v d s-\sin \phi d(v \cos \phi) \delta p+\cos \phi d(v \sin \phi) \delta p+2 n \delta p d s\} \\
& =\int_{0}^{1} K \delta p d s \tag{5}
\end{align*}
$$

where

$$
\begin{aligned}
K & =\frac{\partial v}{\partial p}+v \frac{d \phi}{d s}+2 n \\
& =\frac{1}{v} \frac{\partial \Omega}{\partial p}+\frac{v}{R}+2 n
\end{aligned}
$$

R being the radus of curvature Along an orbit $K=0$ thercfore, and this 2 as a result already expressed in (1) It is fuither to be noticed that

$$
\begin{aligned}
\frac{\partial K}{\partial p} & =\frac{1}{v} \frac{\partial^{2} \Omega}{\partial p^{2}}-\left(\frac{1}{v^{2}} \frac{\partial \Omega}{\partial p}-\frac{1}{R}\right) \frac{\partial v}{\partial p}-\frac{v}{R^{2}} \frac{\partial R}{\partial p} \\
& =\frac{1}{v}\left\{\frac{\partial^{2} \Omega}{\partial p^{2}}-\left(\frac{1}{v} \frac{\partial \Omega}{\partial p}-\frac{v}{\bar{R}}\right) \frac{1}{v} \frac{\partial \Omega}{\partial p}-\frac{v^{2}}{R^{2}}\right\} \\
& =\frac{1}{v}\left\{\frac{\partial^{2} \Omega}{\partial p^{2}}-\left(\frac{2 v}{R}+2 n\right)\left(\frac{v}{R}+2 n\right)-\frac{v^{2}}{R^{2}}\right\}
\end{aligned}
$$

when $K=0$, and since $v=R \phi$ comparison with (3) shows that

$$
\Theta=-v \frac{\partial K}{\partial p}
$$

It follows that the action J round a closed orbit is greater than for any adjacent parallel curve when Θ is positive at every point In this case the periodic orbit is in general stable Similarly the action $J_{\text {is }}$ a real minımum when Θ is negative at every point Then, as (3) shows, the poriodic orbit is obviously unstable

217 This remark is due to Prof Whittaker, who has given another application of equation (5) The quantity K can be calculated for all points on a given curve Now let K be negative everywhere along a simple closed
curve A Then by (5) the value of J will be diminished when taken round another curve adjacent to and surrounding A Again, let the quantity K be positive everywhere along another simple closed curve B external to A The value of J will also be dimimshed when taken round a curve adjacent to and surrounded by B Now consider the aggregate of all the simple closed curves which can be drawn in the ring-shaped space bounded by A and B There must exist, if the space contans no singularity of Ω, one of these curves which will give a smaller value of J than any other, and it cannot councide with A or B for any part of its length It represents therefore a periodic orbit characterized by the constant of energy C, and thus the existence of such an orbit is established when the two curves A and B can be found which satisfy the conditions stated The orbit is necessarily unstable

The same author has given another elegant theorem By Green's theorem

$$
\iint \nabla^{2}(\log v) d \xi d \eta=\int\left[\frac{\partial}{\partial \xi}(\log v) d \eta-\frac{\partial}{\partial \eta}(\log v) d \xi\right]
$$

where the first integral is taken over the area of a closed curve, and the second over its boundary But if the curve is a trajectory, $K=0$ and therefore

$$
\begin{aligned}
0 & =\frac{\partial}{\partial p}(\log v)+\frac{d \phi}{d s}+\frac{2 n}{v} \\
& =\frac{\partial}{\partial \xi}(\log v) \frac{\partial \xi}{\partial p}+\frac{\partial}{\partial \eta}(\log v) \frac{\partial \eta}{\partial p}+\frac{d \phi}{d s}+\frac{2 n}{v} \\
& =\frac{\partial}{\partial \xi}(\log v) \frac{d \eta}{d s}-\frac{\partial}{\partial \eta}(\log v) \frac{d \xi}{d s}+\frac{d \phi}{d s}+\frac{2 n}{v}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\iint \nabla^{2}(\log v) d \xi d \eta & =-\int\left(\frac{d \phi}{d s}+\frac{2 n}{v}\right) d s \\
& =-\int(d \phi+2 n d t) \\
& =\phi_{0}-\phi_{1}+2 n\left(t_{0}-t_{1}\right)
\end{aligned}
$$

This assumes that the enclosed area contains no singularity of the integrand But this function becomes infinite at the centres of attraction Surround the mass μ at $\left(-c_{1}, 0\right)$ with a small carcle κ_{1} of raduus ρ Then sunce

$$
v^{2}=2 \Omega-C \sim 2 \mu \rho_{1}^{-2}
$$

the integral round the curcumference becomes

$$
\begin{aligned}
\int_{\kappa_{1}}\left(d \eta \frac{\partial}{\partial \xi}-d \xi \frac{\partial}{\partial \eta}\right) \log v & \sim-\int \frac{1}{4 \rho_{1}^{2}}\left(d \eta \frac{\partial}{\partial \xi}-d \xi \frac{\partial}{\partial \eta}\right) \rho_{1}^{2} \\
& =-\frac{1}{2 \rho^{2}} \int\left[\left(\xi+c_{1}\right) d \eta-\eta d \xi\right] \\
& =-\pi
\end{aligned}
$$

Similarly the corresponding integral round a small circle κ_{2} surrounding the mass ν tends to the same limit Now if the outer boundary contans either of the attracting masses or both, the boundary integral must be diminished by subtracting the integrals taken round κ_{1} or κ_{2} as the case may be Hence the final result is

$$
\iint\left(\frac{\partial^{2}}{\partial \xi^{2}}+\frac{\partial^{2}}{\partial \eta^{2}}\right) \log v d \xi d \eta=\jmath \pi-\gamma-2 n T
$$

where $\jmath=0,1$ or 2 according as the loop of the orbit contans neither or one or both of the attracting masses, γ is the total angle through which the tangent to the orbit turns, and T is the time from one end of the loop to the other In the case of a periodic orbit in the form of a single closed curve $\gamma=2 \pi$

218 The equations of relative motion are capable of a transformation which is very useful in some cases This may be deduced from the introduction of conjugate functions in a general form Let the original equations be

$$
\begin{aligned}
& \xi-2 n \eta-n^{2} \xi=\frac{\partial V}{\partial \xi} \\
& \eta+2 n \xi-n^{2} \eta=\frac{\partial V}{\partial \eta}
\end{aligned}
$$

or in the Lagrangian form

$$
\begin{aligned}
& \frac{d}{d t}\left(\begin{array}{l}
\frac{\partial T}{\partial \xi}
\end{array}\right)-\frac{\partial T}{\partial \xi}=\frac{\partial V}{\partial \xi} \\
& \frac{d}{d t}\left(\frac{\partial T}{\partial \eta}\right)-\frac{\partial T}{\partial \eta}=\frac{\partial V}{\partial \eta}
\end{aligned}
$$

$$
T=\frac{1}{2}(\xi-n \eta)^{2}+\frac{1}{2}(\eta+n \xi)^{2}
$$

and the integral of energy is
Now let

$$
\frac{1}{2}\left(\xi^{2}+\eta^{2}\right)=\frac{1}{2} n^{2}\left(\xi^{2}+\eta^{2}\right)+V-h
$$

so that

$$
\xi+\imath \eta=f(u+\iota v), \quad \iota^{2}=-1
$$

and

$$
\frac{\partial \xi}{\partial u}=\frac{\partial \eta}{\partial v}, \quad \frac{\partial \xi}{\partial v}=-\frac{\partial \eta}{\partial u}
$$

Also let

$$
\frac{d}{d t}=u \frac{\partial}{\partial u}+v \frac{\partial}{\partial v}
$$

Then if

$$
J=\frac{\partial(\xi, \eta)}{\partial(u, v)}=\frac{\partial \xi}{\partial u} \frac{\partial \eta}{\partial v}-\frac{\partial \xi}{\partial v} \frac{\partial \eta}{\partial u}
$$

$$
T=T_{2}+T_{1}+T_{0}
$$

where the suffix denotes the degree of the terms in u, v (or ξ, η), it will be found that

$$
\begin{aligned}
& T_{2}=\frac{1}{2} J\left(u^{2}+v^{2}\right) \\
& T_{1}=n u\left(-\eta \frac{\partial \xi}{\partial u}+\xi \frac{\partial \eta}{\partial u}\right)+n v\left(-\eta \frac{\partial \xi}{\partial v}+\xi \frac{\partial \eta}{\partial v}\right) \\
& T_{0}=\frac{1}{2} n^{2}\left(\xi^{2}+\eta^{2}\right)
\end{aligned}
$$

The equations of motion may now be written

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial T_{2}}{\partial u}\right)+\frac{d}{d t}\left(\frac{\partial T_{1}}{\partial u}\right)-\frac{\partial T_{1}}{\partial u}=\frac{\partial T_{2}}{\partial u}+\frac{\partial T_{0}}{\partial u}+\frac{\partial V}{\partial u} \\
& \frac{d}{d t}\left(\frac{\partial T_{2}}{\partial v}\right)+\frac{d}{d t}\left(\frac{\partial T_{1}}{\partial v}\right)-\frac{\partial T_{1}}{\partial v}=\frac{\partial T_{2}}{\partial v}+\frac{\partial T_{0}}{\partial v}+\frac{\partial V}{\partial v}
\end{aligned}
$$

and the integral of energy is

$$
T_{2}=T_{0}+V-h
$$

It can be verfified without difficulty that

$$
\frac{d}{d t}\left(\frac{\partial T_{1}}{\partial u}\right)-\frac{\partial T_{1}}{\partial u}=-2 n J v
$$

Also

$$
\begin{aligned}
\frac{\partial T_{2}}{\partial u}+\frac{\partial T_{0}}{\partial u}+\frac{\partial V}{\partial u} & =\frac{1}{2} \frac{\partial J}{\partial u}\left(u^{2}+v^{2}\right)+\frac{\partial T_{0}}{\partial u}+\frac{\partial V}{\partial u} \\
& =\frac{1}{J} \frac{\partial J}{\partial u}\left(T_{0}+V-h\right)+\frac{\partial}{\partial u}\left(T_{0}+V\right) \\
& =\frac{1}{J} \frac{\partial}{\partial u}\left\{J\left(T_{0}+V-h\right)\right\}
\end{aligned}
$$

Hence the equations of motion become

$$
\begin{aligned}
& \frac{d}{d t}(J u)-2 n J v=\frac{1}{J} \frac{\partial}{\partial u}\left\{J\left(T_{0}+V-h\right)\right\} \\
& \frac{d}{d t}(J v)+2 n J u=\frac{1}{J} \frac{\partial}{\partial v}\left\{J\left(T_{0}+V-h\right)\right\}
\end{aligned}
$$

Now let

$$
d t=J d T, \quad \Omega^{\prime}=J\left\{V+\frac{1}{2} n^{2}\left(\xi^{2}+\eta^{2}\right)-h\right\}
$$

and we have

$$
\begin{aligned}
& \frac{d^{2} u}{d T^{2}}-2 n J \frac{d v}{d T}=\frac{\partial \Omega^{\prime}}{\partial u} \\
& \frac{d^{2} v}{d T^{2}}+2 n J \frac{d u}{d T}=\frac{\partial \Omega^{\prime}}{\partial v}
\end{aligned}
$$

with the equation of energy

$$
\left(\frac{d u}{d T^{\prime}}\right)^{2}+\left(\frac{d v}{d \tilde{T}}\right)^{2}=2 \Omega^{\prime}
$$

It is convenient to write

$$
f_{1}=f(u+\imath v), \quad f_{2}=f(u-\imath v), \quad \xi^{2}+\eta^{2}=f_{1} f_{2}
$$

and then

$$
J=\left(\frac{\partial \xi}{\partial u}\right)^{2}+\left(\frac{\partial \eta}{\partial u}\right)^{2}=\frac{\partial f_{1}}{\partial u} \frac{\partial f_{2}}{\partial u}=f_{1}^{\prime} f_{2}^{\prime}
$$

219 What is needed when V is the potential due to two masses μ, ν at a distance $2 c$ apart is a transformation of the coordinates which will rationalize both the distances ρ_{1}, ρ_{2} Such a transformation is

$$
\xi+\imath \eta=b+c \cos (u+\imath v), \quad b=c(\mu-\nu) /(\mu+\nu)
$$

where b is the distance of the middle point between the masses from their centre of gravity For

$$
\begin{aligned}
& \rho_{1}^{2}=(\xi-b+c)^{2}+\eta^{2}=4 c^{2} \cos ^{2} \frac{1}{2}(u+v v) \cos ^{2} \frac{1}{2}(u-\imath v) \\
& \rho_{2}^{2}=(\xi-b-c)^{2}+\eta^{2}=4 c^{2} \sin ^{2} \frac{1}{2}(u+v v) \sin ^{2} \frac{1}{2}(u-v v)
\end{aligned}
$$

and hence

$$
V=\frac{\mu}{\rho_{1}}+\frac{\nu}{\rho_{2}}=\frac{\mu}{c(\cosh v+\cos u)}+c \frac{\nu}{c(\cosh v-\cos u)}
$$

Also

$$
J=f_{1}^{\prime} f_{2}^{\prime}=c^{2} \sin (u+v v) \sin (u-\imath v)=\frac{1}{2} c^{\circ}(\cosh 2 v-\cos 2 u)
$$

and

$$
\xi^{2}+\eta^{2}=f_{1} f_{2}=b^{2}+2 b c \cosh v \cos u+\frac{1}{2} c^{2}(\cosh 2 v+\cos 2 u)
$$

Hence

$$
\begin{aligned}
\Omega^{\prime}= & \mu c(\cosh v-\cos u)+\nu c(\cosh v+\cos u) \\
& +\frac{1}{4} n^{2} b c^{3}(\cosh 3 v \cos u-\cosh v \cos 3 u)+\frac{1}{1} n^{2} c^{4}(\cosh 4 v-\cos 4 u) \\
& -\frac{1}{2} c^{2}\left(h-\frac{1}{2} n^{2} b^{2}\right)(\cosh 2 v-\cos 2 u)
\end{aligned}
$$

and the equations of motion are

$$
\begin{aligned}
& \frac{d^{2} u}{d T^{2}}-n c^{2}(\cosh 2 v-\cos 2 u) \frac{d v}{d T}=\frac{\partial \Omega^{\prime}}{\partial u} \\
& \frac{d^{2} v}{d T^{2}}+n c^{2}(\cosh 2 v-\cos 2 u) \frac{d u}{d T}=\frac{\partial \Omega^{\prime}}{\partial v}
\end{aligned}
$$

The time is given by a final integration

$$
t=\frac{1}{2} c^{2} \int(\cosh 2 v-\cos 2 u) d T=\int \rho_{1} \rho_{2} d T
$$

These equations are in general very complicated, although they offer essential advantages in studying the motion in the immediate vicinity of
one of the masses Two particular cases may be noticed In the first the masses are equal, $\mu=\nu$ and $b=0$ The equations of motion then become

$$
\begin{aligned}
& \frac{d^{2} u}{d T^{2}}-n c^{2}(\cosh 2 v-\cos 2 u) \frac{d v}{d T}=-c^{4} h \sin 2 u+\frac{1}{4} n^{2} c^{4} \sin 4 u \\
& \frac{d^{2} v}{d T^{2}}+n c^{2}(\cosh 2 v-\cos 2 u) \frac{d u}{d T}=2 \mu c \sinh v-c^{2} h \sinh 2 v+\frac{1}{4} n^{2} c^{4} \sinh 4 v
\end{aligned}
$$

which are equivalent to equations given by Thiele and employed by Stromgren and Burrau The other case represents the problem of two centres of attraction fixed in space, so that $n=0$ Then the equations become simply

$$
\begin{aligned}
& \frac{d^{2} u}{d T^{2}}=(\mu-\nu) c \sin u-c^{2} h \sin 2 u \\
& \frac{d^{2} v}{d T^{2}}=(\mu+\nu) c \sinh v-c^{2} h \sinh 2 v
\end{aligned}
$$

Here the variables u, v are separated and the equations lead immediately to a solution in elliptic functions The comparison of this problem with the simplest case of the problem of three bodies is instructive as to the difficulty of the latter

CHAPTER XX

LUNAR THEORY I

220 The theory of the Moon's motion relative to the Earth has been discussed with generally increasing elaboration and completencss by vanious authors from the time of Newton to the present day The methods which have been employed also duffer considerably, presenting peculaa advantages in different respects, so that it cannot be said definitely that any one method possesses an exclusive clam to consideration But at the present time three modes of treatment are certainly of outstanding importance, those adopted by Hansen, Delaunay and G W Hill respcctively Hansen's theory was reduced to the form of tables by the author, these tables were published in 1857 and are still in common use, but will shortly be superseded Delaunay's work took the form of an entirely algebraic development of the Moon's motion as conditioned by the Earth and Sun alone $H_{1 s}$ theory has been completed by others and made the basis of tables recently published Hill's researchea, which bear a certain relation to Euler's memoir of 1772, deal only with particular parts of the theory, but the whole work on these linos has now been carried out systematically and completely by E W Brown and will form the foundation of a new set of lunar tables now in course of preparation

Here it is only possible to attempt a slight sketch of one method For this purpose Hill's theory will be chosen, partly because it is destined to receive extensive practical application, and partly because it contains original features of the greatest theoretical interest The reader who wishes to gain a comparative view of the different methods which have been used in the lunar theory will study Brown's Lunar Theory and may also be referied to the third volume of Tisserand's Mécanıque Céleste

221 Let the mass of the Earth be E, of the Moon M and of the Sun m^{\prime}, the unit being such that the gravitational constant $G=1$ Let the origin of rectangular axes be $E,(x, y, z)$ the coordnates of M and $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ the coordnates of m^{\prime} Further, let r be the distance $E M, r^{\prime}$ the distance $E n^{\prime}$, and Δ the distance $M m^{\prime}$ Then ($\$ 23$) the forces on the Moon per unit mass relative to E can be derived from the force function

$$
F=\frac{E+M}{r}+\frac{n \iota^{\prime}}{\Delta}-\frac{m^{\prime}}{r^{\prime 3}}\left(x x^{\prime}+y y^{\prime}+z z^{\prime}\right)
$$

by differentiation with respect to x, y, z, and sımilarly the forces on the Sun per unit mass relative to E can be derived from the function

$$
F^{\prime \prime}=\frac{E+m^{\prime}}{r^{\prime}}+\frac{M}{\Delta}-\frac{M}{r^{3}}\left(x x^{\prime}+y y^{\prime}+z z^{\prime}\right)
$$

by differentiation with respect to $x^{\prime}, y^{\prime}, z^{\prime}$ Hence the x-component of the Sun's acceleration relative to G, the centre of gravity of E and M, is

$$
\begin{aligned}
\frac{\partial F^{\prime \prime}}{\partial x^{\prime}}-\frac{M}{E+M} \frac{\partial F}{\partial x}= & -\left(E+m^{\prime}\right) \frac{x^{\prime}}{r^{\prime 3}}-M \frac{x^{\prime}-x}{\Delta^{3}}-M \frac{x}{r^{3}} \\
& +\frac{M}{E+M}\left\{(E+M) \frac{x}{r^{3}}+m^{\prime} \frac{x-x^{\prime}}{\Delta^{\mathbf{3}}}+m^{\prime} \frac{x^{\prime}}{r^{\prime 3}}\right\} \\
= & -\frac{E+M+m^{\prime}}{E+M}\left\{E \frac{x^{\prime}}{r^{\prime 3}}+M \frac{x^{\prime}-x}{\Delta^{3}}\right\}
\end{aligned}
$$

This expression will be derived by differentiating the function

$$
F_{1}^{\prime}=\frac{E+M+m^{\prime}}{E+M}\left(\frac{E}{r^{\prime}}+\frac{M}{\Delta}\right)
$$

with respect to x^{\prime}, or with respect to x_{1}, where (x_{1}, y_{1}, z_{1}) are the new coordinates of m^{\prime} when parallel axes are taken through G instead of E Let r_{1} be the distance $m^{\prime} G, \theta_{1}$ the angle $m^{\prime} G M$ and $S=\cos \theta_{1} \quad$ Then

$$
\begin{aligned}
r^{\prime-1} & =\left\{r_{1}^{2}+\frac{2 M}{E+M} r r_{1} S+\frac{M^{2}}{(E+M)^{2}} r^{2}\right\}^{-\frac{1}{2}} \\
& =r_{1}^{-1} 1-\left\{\frac{M}{E+M} \frac{r}{r_{1}} P_{1}+\frac{M^{2}}{(E+M)^{2}} \frac{r^{2}}{r_{1}^{2}} P_{2}-\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\Delta^{-1} & =\left\{1_{1}^{2}-\frac{2 E}{E+M} r r_{1} S+\frac{E^{2}}{(E+M)^{2}} r^{2}\right\}^{-\frac{1}{2}} \\
& =r_{1}^{-1}\left\{1+\frac{E}{E+M} \frac{r}{r_{1}} P_{1}+\frac{E^{2}}{(E+M)^{2}} \frac{r^{2}}{r_{1}^{2}} P_{2}+\right\}
\end{aligned}
$$

where P_{1}, P_{2}, are Legendre's polynomials

$$
P_{1}=S, \quad P_{2}=\frac{8}{2} S^{2}-\frac{1}{2}, \quad P_{3}=\frac{5}{2} S^{3}-\frac{8}{2} S,
$$

Hence, when expanded in terms of r / r_{1},

$$
F_{1}^{\prime}=\frac{E+M+m^{\prime}}{r_{1}}\left\{1+\frac{E M}{(E+M)^{2}} \frac{r^{2}}{r_{1}^{2}} P_{\mathrm{a}}+\right\}
$$

Now the Moon's parallax is of the order 1°, the solar parallax is of the order $9^{\prime \prime}$ and the ratio M / E^{\prime} is of the order $1 / 80 \quad$ It follows that the second term in $F_{1}^{\prime \prime}$ is of the order 10^{-7} as compared with the first It can be neglected, at least in the first instance F_{1}^{\prime} is therefore reduced simply to the first term, and the meaning of this is that the motion of G about n^{\prime}, or of m^{\prime} about G, is the same as of the masses E and M were united at their centre of gravity

This motion is elliptic and the coordınates (x_{1}, y_{1}, z_{1}) can be treated as known functions of the time according to undisturbed elliptic motion The influence of the other planets is left out of account in the first instance and finally introduced in the form of small corrections The first task, and the only one considered here, is to find an appropriate solution of the problem of three bodies, the problem being already so far simplified that the relative motion of the Sun and the centre of gravity of the Earth-Moon system is supposed known

222 The force function F is expressed in terms of ($x^{\prime}, y^{\prime}, z^{\prime}$) and not the coordmates (x_{1}, y_{1}, z_{1}) now supposed known It is necessary to considel the effect of this The x-component of the Moon's acceleration is

$$
\begin{aligned}
\frac{\partial F}{\partial x} & =-(E+M) \frac{x}{r^{3}}-m^{\prime} \frac{x-a^{\prime}}{\Delta^{s}}-m^{\prime} \frac{x^{\prime}}{r^{\prime 3}} \\
& =-(E+M) \frac{x}{r^{3}}-\frac{m^{\prime}}{\Delta^{3}}\left(\frac{E}{E+M} x-x_{1}\right)-\frac{m^{\prime}}{r^{\prime 3}}\left(\frac{M}{E+M} x+x_{1}\right)
\end{aligned}
$$

sunce

$$
x^{\prime}=x_{1}+M x /(E+M), \quad x-x^{\prime}=-x_{1}+E x /(E+M)
$$

This component is clearly derivable fiom the force function

$$
F_{1}=\frac{E+M}{r}+\frac{m^{\prime}(E+M)}{E \Delta}+\frac{m^{\prime}(E+M)}{M r^{\prime}}
$$

when r^{\prime} and Δ are expressed in terms of (x_{1}, y_{1}, z_{1}) instead of ($x^{\prime}, y^{\prime}, z^{\prime}$) When $\Delta^{-1}, r^{\prime-1}$ are expanded in terms of r / r_{1} this becomes

$$
\begin{aligned}
F_{1} & =\frac{E+M}{r}+\frac{m^{\prime}}{r_{1}}\left\{\frac{(E+M)^{2}}{E M}+\frac{r^{2}}{r_{1}^{2}} P_{2}+\frac{E^{2}-M^{2}}{\left(E^{2}+M\right)^{2}} \frac{r^{3}}{r_{1}^{3}} P_{3}+\frac{E^{3}+M^{3}}{(E+M)^{3}} \frac{r^{4}}{r_{1}^{4}} P_{4}+\right\} \\
& =\frac{E+M}{r}+\frac{m^{\prime} r^{2}}{r_{1}^{3}}\left\{P_{2}+\frac{E-M}{E+M} \frac{r}{r_{1}} P_{s}+\frac{E^{2}-E M+M^{2}}{(E+M)^{2}} \frac{r^{2}}{r_{1}^{2}} P_{4}+\right\}
\end{aligned}
$$

for the term in $1 / r_{1}$ does not contain $(x, y z)$ and can therefore be suppressed
As a matter of fact the force function which is commonly used for the motion of the Moon is netther F_{1} nor the function

$$
F=\frac{E+M}{r}+\frac{m^{\prime}}{\Delta}-\frac{m^{\prime} r}{r^{\prime 2}} \cos \theta
$$

where θ is the angle $m^{\prime} E M$, but the function

$$
F_{2}=\frac{E+M}{r}+\frac{m^{\prime}}{\Delta_{1}}-\frac{m^{\prime} \eta}{r_{1}^{2}} S
$$

which is derived from F by substituting the coordinates of the Sun relative to G for the coordinates relative to E Thus

$$
\begin{aligned}
\Delta_{1}^{2} & =\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}+\left(z-z_{1}\right)^{2} \\
& =r^{2}-2 r r_{1} S+r_{1}^{2}
\end{aligned}
$$

and therefore in the expanded form

$$
\begin{aligned}
F_{2} & =\frac{E+M}{r}+\frac{m^{\prime}}{r_{1}}\left\{1+\frac{r}{r_{1}} P_{1}+\frac{r^{2}}{r_{1}^{2}} P_{2}+\right\}-\frac{m^{\prime} r}{r_{1}^{2}} S \\
& =\frac{E+M}{r}+\frac{m^{\prime} r^{2}}{r_{1}^{3}}\left\{P_{2}+\frac{r}{r_{1}} P_{3}+\frac{r^{2}}{r_{1}^{2}} P_{4}+\right\}
\end{aligned}
$$

after suppressing m^{\prime} / r_{1} This is not the same as F_{1}, but for practical purposes it can be brought into agreement by a simple device Let a, a^{\prime} be the mean values of r, r_{1} It is found that to a term of the series involving $\left(r / r_{1}\right)^{j}$ correspond inequalities wath the factor $\left(a / a^{\prime}\right)^{j}$ If then

$$
(E-M) a /(E+M) a^{\prime}
$$

be substituted for a / a^{\prime} in the results which follow from the use of F_{2}, they will be very nearly the same as if they had been derived by using F_{1}^{\prime} It may be left to the reader to examine the order of the chief outstanding discrepancy after this treatment of F_{3} It is easy to make the adjustment exact

223 Let the axis $E z$ be taken normal to the ecliptic and let $E X, E Y$ rotate in the ecliptic plane of ($x y$) with the Sun's mean motion n^{\prime} The equations of motion of the Moon are then

$$
\begin{aligned}
X-2 n^{\prime} Y-n^{\prime 2} X & =\frac{\partial F_{2}}{\partial \bar{X}} \\
Y+2 n^{\prime} X-n^{\prime 2} Y & =\frac{\partial F_{2}}{\partial Y} \\
z & =\frac{\partial F_{2}^{\prime}}{\partial z}
\end{aligned}
$$

Now of $E+M=\mu$, since $n^{\prime 2} a^{\prime 8}=m^{\prime}$ (more strictly $m^{\prime}+\mu$),

$$
F_{2}=\frac{\mu}{r}+n^{\prime 2} \frac{a^{\prime 3}}{r_{1}^{8}}\left(\frac{8}{2} r^{2} S^{2}-\frac{1}{2} r^{2}\right)+\ldots
$$

the higher terms containing r / r_{1} and therefore the solar parallax as a factor Let v^{\prime} be the true longitude of the Sun and let $v^{\prime}=\epsilon^{\prime}$ when $t=0$ Then the Sun's coordinates are

$$
X^{\prime}=r_{1} \cos \left(v^{\prime}-n^{\prime} t-\epsilon^{\prime}\right), \quad Y^{\prime}=r_{1} \sin \left(v^{\prime}-n^{\prime} t-\epsilon^{\prime}\right), \quad z^{\prime}=0
$$

the axis of X being always directed towards the Sun's mean place When the solar eccentricity is neglected and the Sun's orbit treated as circular, $v^{\prime}=n^{\prime} t+\epsilon^{\prime}$ and $r_{1}=a^{\prime}$, so that

$$
X^{\prime}=r_{1}=a^{\prime}, \quad Y^{\prime}=z^{\prime}=0, \quad r S=\left(X X^{\prime}+Y Y^{\prime}\right) / r_{1}=X
$$

Hence when the solar parallax and eccentricity are both neglected

$$
F_{2}=\mu r^{-1}+n^{\prime 2}\left(\frac{9}{2} X^{y}-\frac{1}{2} r^{2}\right)=\mu r^{-1}+n^{\prime 2}\left(X^{2}-\frac{1}{2} Y^{2}-\frac{1}{2} z^{2}\right)
$$

and when, still further, the latitude of the Moon is ignored, the equations of motion become simply

$$
\left.\begin{array}{rl}
X-2 n^{\prime} Y-3 n^{\prime 2} X & =-\mu X / r^{3} \tag{1}\\
Y+2 n^{\prime} X & =-\mu Y / r^{3}
\end{array}\right\}
$$

These two-dimensional equations represent the simplest problem beaning any real resemblance to the actual circumstances of the lunar theory It is the degenerate case of the restricted problem of three bodies when the two finte masses are relatively at a very great distance apart and refers strictly to the motion of a satellite in the immediate neighbourhood of its primaly These equations have great importance in Hill's theory

Again, when the solar parallax alone is neglected, F_{2} may be written in the form

$$
F_{2}=\mu r^{-1}+n^{\prime 2}\left(\frac{9}{2} X^{2}-\frac{1}{2} r^{2}\right)+n^{\prime 2}\left\{\frac{9}{2}\left(\frac{a^{\prime 3}}{r_{1}^{3}} r^{2} S^{2}-X^{2}\right)-\frac{1}{2} r^{2}\left(\frac{a^{\prime 3}}{r_{1}^{9}}-1\right)\right\}
$$

where the third term, which vanishes with the solar eccentricity, is a quadratic function in X, Y, z Thus

$$
\begin{aligned}
& F_{2}=\mu r^{-1}+n^{\prime 2}\left(X^{2}-\frac{1}{2} Y^{2}-\frac{1}{2} z^{2}\right)-\frac{1}{2}\left(A^{\prime} X^{2}+2 H^{\prime} X Y+B^{\prime} Y^{2}+C^{\prime} z^{\prime}\right)
\end{aligned}
$$

where $A^{\prime}, H^{\prime}, B^{\prime}, C^{\prime}$ are functions of t to be derived from the elliptic motion of the Sun The equations of motion now become

$$
\begin{aligned}
X-2 n^{\prime} Y-3 n^{\prime 2} X+A^{\prime} X+H^{\prime} Y & =-\mu X / r^{3} \\
Y+2 n^{\prime} X+H^{\prime} X+B^{\prime} Y & =-\mu Y / r^{3} \\
z+n^{\prime 2} z+C^{\prime} z & =-\mu z / r^{3}
\end{aligned}
$$

and these are the foundation of the researches of Adams into the puncipal part of the motion of the lunar node

224 It is now necessary to give Hill's transformation of the general equations of motion Let

$$
\begin{array}{cll}
u=X+\iota Y, & s=X-\iota Y, & \iota^{2}=-1 \\
m=\frac{n^{\prime}}{n-n^{\prime}}, & \kappa=\frac{\mu}{\left(n-n^{\prime}\right)^{2}}, & \nu=n-n^{\prime}
\end{array}
$$

Then, since $r^{2}=u s+z^{2}, n$ being undefined as yet,

$$
\begin{aligned}
2 \nu^{-2} F_{2} & =2 \kappa / r+2 \mathrm{~m}^{2} \frac{a^{3}}{r_{1}^{3}}\left(P_{2} r^{2}+P_{3} r^{3} / r_{1}+\right) \\
& =2 \kappa / r+\Omega_{2}^{\prime}+\Omega_{3}+
\end{aligned}
$$

where $\Omega_{2}^{\prime}, \Omega_{3}$, are homogeneous functions in u, s, z of degiee 2,3 , and of degree $0,-1, \quad$ in $a^{\prime} \quad \operatorname{Let} \Omega^{\prime}=\Omega_{2}^{\prime}+\Omega_{3}+$

The kinetic energy of the Moon $T_{\text {is }}$ given by

$$
\begin{aligned}
2 T / M & =\left(X-n^{\prime} Y\right)^{2}+\left(Y+n^{\prime} X\right)^{2}+z^{2} \\
& =\left(u+n^{\prime} c u\right)\left(s-n^{\prime}(s)+n^{2}\right.
\end{aligned}
$$

The equations of motion are therefore

$$
\begin{aligned}
u+2 n^{\prime} \iota u-n^{\prime 2} u & =2 \frac{\partial F_{a}}{\partial s} \\
s-2 n^{\prime} \iota s-n^{\prime 2} s & =2 \frac{\partial F_{2}}{\partial u} \\
z & =\frac{\partial F_{2}}{\partial z}
\end{aligned}
$$

Let

$$
\log \zeta=\iota\left(n-n^{\prime}\right)\left(t-t_{0}\right), \quad D=\zeta \frac{d}{d \zeta}=-\frac{\iota}{\nu} \frac{d}{d t}
$$

where t_{0}, like n, is a constant at present undefined The previous equations become

$$
\begin{aligned}
D^{2} u+2 \mathrm{~m} D u+\mathrm{m}^{2} u & =\kappa u / r^{3}-\frac{\partial \Omega^{\prime}}{\partial s} \\
D^{3} s-2 \mathrm{~m} D s+\mathrm{m}^{2} s & =\kappa s / r^{3}-\frac{\partial \Omega^{\prime}}{\partial u} \\
D^{2} z \quad & =\kappa z / r^{3}-\frac{1}{2} \frac{\partial \Omega^{\prime}}{\partial z}
\end{aligned}
$$

It is, however, convenient to separate from Ω_{2}^{\prime} (accented for this reason) the part which is independent of the solar eccentricity This is

$$
\Omega_{2}^{\prime}-\Omega_{\mathrm{a}}=\mathrm{m}^{2}\left(3 X^{2}-r^{2}\right)=\frac{3}{4} \mathrm{~m}^{2}(u+s)^{2}-\mathrm{m}^{2}\left(u s+z^{2}\right)
$$

With this change the equations of motion take the form

$$
\left.\begin{array}{l}
D^{2} \iota+2 \mathrm{~m} D u+\frac{\frac{3}{2} \mathrm{~m}^{2}(u+s)-\frac{\kappa u}{r^{3}}=-\frac{\partial \Omega}{\partial s}}{D^{3} y-2 \mathrm{~m} D s+\frac{1}{2} \mathrm{~m}^{2}(u+s)-\frac{\kappa s}{r^{3}}=-\frac{\partial \Omega}{\partial u}} \\
D^{3} z-\quad-\mathrm{m}^{3} z-\frac{\kappa z}{r^{3}}=-\frac{1}{2} \frac{\partial \Omega}{\partial z} \tag{2}
\end{array}\right\}
$$

wheie $\Omega=\Omega_{2}+\Omega_{3}+\quad$ Thus

$$
\begin{equation*}
\Omega_{2}=3 \mathrm{~m}^{2}\left\{\frac{a^{\prime 3}}{r_{1}^{3}} r^{2} S^{2}-\frac{1}{4}(u+s)^{2}\right\}-\mathrm{m}^{1} 1^{2}\left(\frac{a^{\prime 3}}{r_{1}^{3}}-1\right) \tag{3}
\end{equation*}
$$

which vamshes with the solar eccentricity
225 The next object 19 to transform the equations in u and s so as to remove the terms involving r^{-1} Since (§ 123)

$$
\frac{d}{d t}\left(T_{2}-T_{0}+U\right)=\frac{\partial U}{\partial t}
$$

and F_{2} contans terms involving t explicitly only in Ω, in this case

$$
\dot{u} s+z^{u}-n^{\prime 2} u s=2 F_{2}-\nu^{2} \int \frac{\partial \Omega}{\partial t} d t+h
$$

or in the later notation

$$
D u \quad D s+(D z)^{2}+\frac{3}{4} \mathrm{~m}^{2}(u+s)^{2}-\mathrm{m}^{2} z^{2}+\frac{2 \kappa}{r}=C-\Omega+D^{-1}\left(D_{t} \Omega\right)
$$

where C is a constant of integration, D^{-1} is the inverse operator to D, and D_{t} represents the operator D applying to Ω only in so far as Ω contains t explicitly This corresponds to the equation of energy

$$
\begin{aligned}
& \text { Again, since } r^{2}=u s+z^{2} \text {, the equations of motion (2) give } \\
& \begin{aligned}
s D^{2} u+u D^{2} s+2 z D^{\prime} z+2 \mathrm{~m}(s D u-u D s) & +\frac{3}{2} \mathrm{~m}^{2}(u+s)^{2}-2 \mathrm{~m}^{\prime} z^{3}-2 \kappa / r \\
& =-\left(s \frac{\partial \Omega}{\partial s}+u \frac{\partial \Omega}{\partial u}+z \frac{\partial \Omega}{\partial z}\right)=-\sum_{p} \cdot p \Omega_{p}
\end{aligned}
\end{aligned}
$$

by Euler's theorem, Ω_{p} being a homogeneous function of degree p in u, s, z The result of adding the last two equations is

$$
\begin{array}{r}
D^{2}\left(u s+z^{2}\right)-D u D s-(D z)^{2}+2 \mathrm{~m}(s D u-u D s)+\frac{9}{4} \mathrm{~m}^{2}(u+s)^{2}-3 \mathrm{~m}^{2} z^{2} \\
=C-\sum_{p=2}(p+1) \Omega_{p}+D^{-1}\left(D_{t} \Omega\right) \tag{4}
\end{array}
$$

This is one equation of the required form
The other equations are obtained simply by eliminating the terms with r^{-3} as a factor between different pars of the equations of motion Thus from the first pair
and when the third equation is used,

$$
\begin{equation*}
D(u D s-s D u-2 \mathrm{~m} u s)+\frac{3}{2} \mathrm{~m}^{2}\left(u^{2}-s^{2}\right)=s \frac{\partial \Omega}{\partial s}-u \frac{\partial \Omega}{\partial u} \tag{5}
\end{equation*}
$$

$$
\begin{aligned}
& D(u D z-z D u)-2 \mathrm{~m} z D u-\frac{1}{2} \mathrm{~m}^{2} z(5 u+3 s)=z \frac{\partial \Omega}{\partial s}-\frac{1}{2} u \frac{\partial \Omega}{\partial z} \\
& D(s D z-z D s)+2 \mathrm{~m} z D s-\frac{1}{2} \mathrm{~m}^{2} z(3 u+5 s)=z \frac{\partial \Omega}{\partial u-\frac{1}{2} s \frac{\partial \Omega}{\partial z}} \\
& \text { ombined give }
\end{aligned}
$$

These combined give

$$
\begin{aligned}
D\{(u \pm s) D z-z D(u \pm s)\}-2 \mathrm{~m} z D & (u \mp s)-\mathrm{m}^{3} z W \\
& =z\left(\frac{\partial \Omega}{\partial s} \pm \frac{\partial \Omega}{\partial u}\right)-\frac{1}{2}(u \pm s) \frac{\partial \Omega}{\partial z}
\end{aligned}
$$

where with the upper sign $W=4(u+s)$ and with the lower $W=u-s$ In this more symmetrical form the real and imaginary parts of u and s are clearly separated

Equations in the form of (4) and (5) have two advantages In the first, place the left-hand members are homogeneous in u, s, z of the second degree Except for the constant C this apphes also to the right-hand members when the parallax of the Sun is neglected, and the parallactic terms need rarely bor taken beyond the third and fourth degrees In the second place, whereas X and Y can be expressed as trigonometrical series in terms of t, u ands can be expressed as algebraic (Laurent) series in terms of ζ, and such serien
can be more easily manipulated Also if $u=f(\zeta), s=f\left(\zeta^{-1}\right)$ and therefore when either u or s has been calculated the other can be derived immediately

226 The general method of the lunar theory, which is common to all foims, consists in choosing an intermediate orbit which bears some resemblance to the actual path of the Moon and in studying the variations which it must undergo in order that the path may be represented accurately and permanently This intermediate orbit, since it merely serves as a subject for amendment, will naturally be chosen with a view to simplicity At the same tume, the more closely it represents the permanent features of the actual motion, the less burden will be thrown on the subsequent variations Thus one might take the osculating elliptic orbit of the Moon about the Earth as the intermediary, neglecting the effect of the Sun altogether The intermediate orbit adopted by Hill is called the variational curve and this must now be defined ${ }^{\circ}$

When the solar eccentricity (e^{\prime}) and the solar parallax are neglected, $\Omega=0 \quad$ Also, when the Moon's latitude is neglected, $z=0 \quad$ Equations (4) and (5) then become

$$
\left.\begin{array}{ll}
D^{2}(u s)-D u D s+2 \mathrm{~m}(s D u-u D s)+\frac{9}{4} \mathrm{~m}^{2}(u+s)^{2} & =C \tag{6}\\
D(u D s-s D u-2 \mathrm{~m} u s)+\frac{8}{2} \mathrm{~m}^{2}\left(u^{2}-s^{2}\right) & =0
\end{array}\right\}
$$

which must be equivalent to (1), whence in fact they can be directly deduced The constant κ (or μ) has been eliminated and the constant C has been introduced There must be a relation between them which can be found by reference to the original equations of motion Hill's variational curve is defined as that particular solution of (1) or (6) which represents a periodic orbit Since the axes of reference rotate at the rate n^{\prime} the period of this oibit must be $2 \pi /\left(n-n^{\prime}\right)$ where n is the mean motion of the Moon From this it follows that the coordinates X, Y of the solution have this period and can be expressed in the form of Fourier series in $\left(n-n^{\prime}\right) t$, while u, s can be expressed in the form of Laurent series in ζ The coefficients will be developed in powers of m, and this is an essential advantage of the method, smee it is precisely this development which is less easy by the earher methods As a particular solution of the equations the symmetrical periodic orbit involves no arbitrary constants beyond those already introduced, namely n, which depends on the actual scale of the lunar orbit, and t_{0}, which gives an arbitraiy epoch corresponding with the fact that (6) do not involve the andependent variable explicitly

The existence of such periodic orbits is assumed The question has been discussed analytically by Poincaré (Méthodes Nouvelles, Tome I), who has proved that they do exist in general To some extent the assumption will be found practically justified by the results But there is no doubt on the point The periodic orbit in the actual circumstances could be found by the method of quadratures

227 The assumption that the periodic orbit required is symmetrical about both axes at once limits the form of the expansions For with this limitation X, Y must be of the form

$$
X=\sum_{0}^{\infty} A_{2 \imath+1} \cos (2 \imath+1) \xi, \quad Y=\sum_{0}^{\infty} A_{2 n+1}^{\prime} \sin (2 \imath+1) \xi, \quad \xi=\left(n-n^{\prime}\right)\left(t-t_{0}\right)
$$

where $Y=0$ when $t=t_{0} \quad$ Hence

$$
\begin{aligned}
& u=\sum_{0}^{\infty}\left\{\frac{1}{2}\left(A_{2 n+1}+A_{2 n+1}^{\prime}\right) \zeta^{2 n+1}+\frac{1}{2}\left(A_{2 n+1}-A_{2 n+1}^{\prime}\right) \zeta^{-n-1}\right\}=\mathbf{a} \sum_{-\infty}^{\infty} a_{2 n} \zeta^{2 n+1} \\
& s=\sum_{0}^{\infty}\left\{\frac{1}{2}\left(A_{2 n+1}-A_{2 n+1}^{\prime}\right) \zeta^{2 n+1}+\frac{1}{2}\left(A_{2 n+1}+A_{2 l+1}^{\prime}\right) \zeta^{-2 n-1}\right\}=\mathbf{a} \sum_{-\infty}^{\infty} a_{-2 n-2} \zeta^{2 n+1}
\end{aligned}
$$

where

$$
A_{20+1}=\mathbf{a}\left(a_{21}+a_{-2 n-2}\right), \quad A_{2 n+1}^{\prime}=\mathbf{a}\left(a_{21}-a_{-2 n-2}\right)
$$

As it is necessary to multiply such series together and to exhibit the products as double summations, it is convenient to write

$$
\left.\begin{array}{c}
u=\mathbf{a} \sum a_{22} \zeta^{2 \imath+1}=\mathbf{a} \sum_{\imath} a_{2 \eta-2 \imath-2} \zeta^{2 \eta-2 \imath-1} \tag{7}\\
s=\mathbf{a} \sum a_{-2 \imath-2} \zeta^{2 \imath+1}=\mathbf{a} \sum_{\imath} a_{-2 \jmath+2 \imath} \zeta^{2 \eta-2 \imath-1}
\end{array}\right\}
$$

or sımilar equivalent forms, so as to retain always a fixed coefficient $a_{2 n}$ and a fixed power ζ^{2} in the typical constituent The result of substituting the series in (6) is

$$
\begin{aligned}
& \mathbf{a}^{-} C=\sum_{\imath} \sum_{j} 4 \jmath^{2} a_{2 \imath} a_{-2 \jmath+2 \imath} \xi^{2 \jmath}-\sum_{\imath} \sum_{j}(2 \imath+1)(2 \jmath-2 \imath-1) a_{2 \imath} a_{-2 \jmath+2 \imath} \zeta^{2} \\
& +2 \mathrm{~m} \sum_{\imath} \sum_{\jmath}(4 \imath+2-2 \jmath) a_{2 n}\left(a_{-2 \jmath+2} \xi^{2}\right) \\
& +\frac{9}{4} \mathrm{~m}^{2} \sum_{2} \sum_{j} a_{2 x}\left(2 a_{-2 \jmath+20}+a_{2 j-2 \eta-2}+a_{-2 \eta-2 u-2}\right) \zeta^{2 j} \\
& 0=\sum_{i} \sum_{\jmath} 2 \jmath(2 \jmath-4 \imath-2) a_{22} a_{-2 \eta+2 \imath} \zeta^{2 \jmath}-2 \mathrm{~m} \sum_{i} \sum_{1} 2 \jmath a_{2 \imath} a_{-2 j+2 \imath} \zeta^{2 j} \\
& +\frac{3}{2} \mathrm{~m}^{2} \sum_{\imath} \sum_{\rho} a_{2 n}\left(a_{2 \eta-2 n-2}-a_{-2 \eta-2 n-2}\right) \zeta^{2 j}
\end{aligned}
$$

where \imath and \jmath have all positive and negative integral values The coefficients of every power of ζ must vanish identically, and theiefore

$$
\begin{equation*}
\mathbf{a}^{-2} C=\sum_{2}\left\{(2 \imath+1)^{2}+4 \mathrm{~m}(2 \imath+1)+\frac{9}{2} \mathrm{~m}^{2}\right\} a_{2 \imath}^{2}+\frac{9}{2} \mathrm{~m}^{2} \sum_{\imath} a_{2 \imath} a_{-2 l-2} \tag{8}
\end{equation*}
$$

when $\jmath=0$, and

$$
\begin{aligned}
& 0=\sum_{\imath}\left\{4 \jmath^{2}+(2 \imath+1)(2 \imath+1-2 \jmath)+4 \mathrm{~m}(2 \imath+1-\jmath)+\frac{y}{2} \mathrm{~m}^{2}\right\} a_{2 \imath} a_{-2 j+n} \\
& +\frac{9}{4} \mathrm{~m}^{2} \sum_{2} a_{2 n}\left(a_{2 \eta-2-2}+a_{-2 j-22-2}\right) \\
& 0=-\sum_{\imath} 4_{\jmath}(2 \imath+1-\jmath+\mathrm{m}) a_{2 \imath} a_{-2 \imath+2 \imath}+\frac{3}{2} \mathrm{~m}^{2} \sum_{i} a_{2 \iota}\left(a_{2 \eta-2 l-2}-a_{-2 j-n-2}\right)
\end{aligned}
$$

when J has any other value

228 Owing to the introduction of a, one coefficient a_{0} may be made equal to 1 , though retamed for the sake of symmetry Then, if m is a small quantity of the first order, a_{p} is found to be of order $|p|$, being a function of m alone This fact makes it possible to obtain the coefficients by a process of continued approximation, provided m is sufficiently small The terms contaming $a_{0} a_{\vartheta j}, a_{0} a_{-2 j}$ in the last equations are obtained when $\imath=\jmath$ and $\imath=0$, and they are respectively
$\left\{4 \jmath^{2}+2 \jmath+1+4 \mathrm{~m}(\jmath+1)+\frac{9}{2} \mathrm{~m}^{2}\right\} a_{0} a_{2 \jmath}+\left\{4 \jmath^{2}-2 \jmath+1-4 \mathrm{~m}(\jmath-1)+\frac{9}{2} \mathrm{~m}^{2}\right\} a_{0} a_{-2 j}$ and

$$
\begin{equation*}
-4 \jmath(1+\jmath+m) a_{0} a_{2 \vartheta}-4 \jmath(1-\jmath+m) a_{0} a_{-2 \jmath} \tag{9}
\end{equation*}
$$

Let the two equations be combined so as to eliminate the second of these terms The result may be written

$$
\begin{equation*}
\left.\sum_{\imath} a_{22}\{[2\}, 2 \imath] a_{-2\}+22}+[2 j,+] a_{2 \vartheta-n-2}+[2 j,-] a_{-2 \vartheta-2 n-2}\right\}=0 \tag{10}
\end{equation*}
$$

where

$$
\begin{aligned}
& {[2 \jmath, 2 \imath]=-\frac{2}{\jmath} \frac{8 \jmath^{2}-2-4 \mathrm{~m}+\mathrm{m}^{2}+4(\imath-\jmath)(\jmath-1-\mathrm{m})}{8 \jmath^{2}-2-4 \mathrm{~m}+\mathrm{m}^{2}}} \\
& {[2 \jmath,+]=-\frac{3 \mathrm{~m}^{2}}{16 \jmath^{2}} \frac{4 \jmath^{2}-8 \jmath-2-4 \mathrm{~m}(\jmath+2)-9 \mathrm{~m}^{2}}{8 \jmath^{2}-2-4 \mathrm{~m}+\mathrm{m}^{2}}} \\
& {[2 \jmath,-]=-\frac{3 \mathrm{~m}^{2}}{16 j^{2}} \frac{20 \jmath^{2}-16 \jmath+2-4 \mathrm{~m}(5 \jmath-2)+9 \mathrm{~m}^{2}}{8 j^{2}-2-4 \mathrm{~m}+\mathrm{m}^{2}}}
\end{aligned}
$$

the common divisol being chosen so that the coefficient of $a_{0} a_{2 j},[2 j, 2 j]$, is -1 , while $[2 j, 0]=0$

If, on the other hand, the term in $a_{0} \alpha_{2 j}$ be eliminated, the result will be found to be

$$
\sum_{2} a_{2 n}\left\{[-2 \jmath, 2 \imath-2 \jmath] a_{-2 j+2 n}+[-2 \jmath,+] a_{-2 j-2 n-2}+[-2 \jmath,-] a_{2 j-2 n-2}\right\}=0
$$

which can be deduced from the same series of equations (10) by changing the sign of \jmath and then writing $\imath-\jmath$ for \imath in the first term This single series is therefore sufficient The last equation can also be written

$$
\sum_{2}\left\{[-2 \jmath,-2 \imath] a_{2 j-2 i} a_{-2 i}+[-2 j,-] a_{2 j-x-2} a_{2 n}+[-2 j,+] a_{-q j-n-2} a_{2 n}\right\}=0
$$

and hence the rule for connecting the parr of equations corresponding to $\pm \jmath$ in terms multiphed by [29,22] change the signs of \jmath and \imath throughout (both in coefficients and in suffixes), in the other terms write $[-20,-\rceil$ for $[2 \eta,+]$ and $[-2 \jmath,+]$ for $[2 \jmath,-]$, the suffixes being unchanged

229 Since the coofficients [$27, \pm$] are of the second order in m, the orders of the three terms are respectively

$$
2|\imath|+2|\imath-\jmath|, \quad 2|\imath|+2|\imath+1-\jmath|+2, \quad 2|\imath|+2|\imath+1+\jmath|+2
$$

which are at least

$$
2|\jmath|, \quad 2|\jmath-1|+2, \quad 2|\jmath+1|+2
$$

Let the equations be written down so as to include all quantities of the sixth order (neglecting m^{8}) This requires $\jmath= \pm 1, \pm 2, \pm 3$ The orders of the terms with the only possible values of \imath are

$$
\begin{aligned}
& \jmath=1, \quad \imath=2(6,10,14), 1(2,6,10), 0(2,2,6),-1(6,6,6),-2(10,10,6) \\
& \jmath=2, \quad \imath=2(48,16), 1(4,4,12), 0(4,4,8) \\
& \jmath=3, \quad \imath=3(6,10,22), 2(6,6,18), 1(6,6,14), 0(6,6,10)
\end{aligned}
$$

Hence the required equations are

$$
\begin{aligned}
& a_{0} a_{2}=[2,4] a_{2} a_{4}+[2,-2] a_{-2} a_{-4}+[2,+]\left(2 a_{2} a_{-2}+a_{0}^{2}\right)+[2,-]\left(2 a_{0} a_{-4}+a_{-2}^{2}\right) \\
& a_{0} a_{-2}=[-2,-4] a_{-2} a_{-4}+[-2,2] a_{2} a_{4}+[-2,-]\left(2 a_{2} a_{-2}+a_{0}^{2}\right) \\
& +[-2,+]\left(2 a_{0} a_{-4}+a_{-2}^{2}\right) \\
& a_{0} a_{4}=[4,2] a_{2} a_{-2}+[4,+] 2 a_{0} a_{2} \\
& a_{0} a_{-4}=[-4,-2] a_{2} a_{-2}+[-4,-] 2 a_{0} a_{2} \\
& a_{0} a_{6}=[6,4] a_{-2} a_{4}+[6,2] a_{2} a_{-4}+[6,+]\left(2 a_{0} a_{4}+a_{2}^{2}\right) \\
& a_{0} a_{-8}=[-6,-4] a_{2} a_{-4}+[-6,-2] a_{-2} a_{4}+[-6,-]\left(2 a_{0} a_{4}+a_{2}^{2}\right) \\
& \text { Thus, since } a_{0}=1, \text { if } \mathrm{m}^{6} \text { be neglected, } \\
& \qquad a_{2}=[2,+], a_{-2}=[-2,-]
\end{aligned}
$$

and then, neglecting m^{8},

$$
\begin{aligned}
& a_{4}=[4,2][2,+][-2,-]+2[4,+][2,+] \\
& a_{-4}=[-4,-2][2,+][-2,-]+2[-4,-][2,+]
\end{aligned}
$$

These values will give a_{6}, a_{-6} as far as m^{9}, and inserted on the right-hand side of the first parr of equations they give second approximations to a_{2}, a_{-2} of the same order It is to be noticed that each stage of further development carries an equation four orders higher

The ratio of the mean motions of the Sun and Moon, and therefore the numerical value of m, is known with great accuracy from observation $H_{1} l l$ adopted the value

$$
\mathrm{m}=n^{\prime} /\left(n-n^{\prime}\right)=0080848933808312
$$

Hence it is practicable to intioduce the numerical value of m from the beginning, and the approximation to great accuracy in the calculation of $a_{ \pm 2}$, is then extremely rapid by the above method This is the process which has been adopted in the latest form of lunar theory It is also possible by giving m other values to trace the development of the whole family of periodic orbits of lunar type These orbits are of great theoretical interest, especially for larger values of m But it is evident that the effect of the neglected parallactic terms will become more considerable, and such results may differ sensibly from true solutions of the restricted problem of three bodies Also when m exceeds $\frac{1}{3}$ the question of convergence begins to introduce practical difficulties and the method of quadratures, followed by Sir G H Darwin and others, becomes necessary

230 To find the value of a recourse must be had to an equation of motion which has not been reduced to a homogeneous form in u, s Since $\Omega=z=0$ and $r^{2}=u s$, the first of (2) becomes in the present case

$$
\left(D^{2}+2 \mathrm{~m} D+\frac{3}{2} \mathrm{~m}^{2}\right) u+\frac{3}{2} \mathrm{~m}^{n} s=\kappa u(u s)^{-\frac{4}{2}}
$$

or

$$
\mathbf{a} \sum_{2}\left\{(2 \imath+1)^{2}+2 \mathrm{~m}(2 \imath+1)+\frac{8}{2} \mathrm{~m}^{2}\right\} a_{2 n} \zeta^{2 i+1}+\frac{3}{2} \mathrm{~m}^{2} \mathrm{a} \sum_{2} a_{2 n} \zeta^{-2 n-1}=\kappa u(u s)^{-\frac{2}{2}}
$$

This equation must hold for all values of ζ, mecluding $\zeta=1 \quad$ Then $u=s=\mathbf{a} \Sigma a_{2 i}$, and therefone

$$
\mathbf{a} \Sigma\left\{(2 \imath+1+\mathrm{m})^{2}+2 \mathrm{~m}^{2}\right\} a_{2 \imath}=\kappa \mathrm{a}^{-2}\left(\Sigma a_{2 \mathrm{n}}\right)^{-2}
$$

But (§ 224) $\kappa=\mu(n-n)^{-2}=\mu(1+m)^{2} n^{-2}$, so that

$$
\begin{equation*}
n^{2} \mathbf{a}^{3}=\mu(1+\mathrm{m})^{2}\left(\Sigma a_{22}\right)^{-2}\left[\Sigma\left\{(2 \imath+1+\mathrm{m})^{2}+2 \mathrm{~m}^{2}\right\} a_{2 n}\right]^{-1} \tag{11}
\end{equation*}
$$

It has been usual to write $n^{2} a^{8}=\mu, a$ being the mean distance which would correspond to the mean motion n in the absence of solar or other perturbations Thus $a=a(1+$ powers of $m)$ when the values of a_{22} are inserted The precise form of this relation is requred only when it is desired to compare two theories expressed in terms of a and a respectively The constant a fixes the scale of the orbit and therefore depends on the parallax, which is observed directly

When the coefficients a_{n} and a have been determined, (8) gives the value of C, if it be required

For the transformation to polar coordnates,

$$
\begin{aligned}
& r \cos (v-n t-\epsilon)=r \cos \left(v-n^{\prime} t-\epsilon^{\prime}-\xi\right)=X \cos \xi+Y \sin \xi=\frac{1}{2}\left(u \zeta^{-1}+s \zeta\right) \\
& r \sin (v-n t-\epsilon)=r \sin \left(v-n^{\prime} t-\epsilon^{\prime}-\xi\right)=Y \cos \xi-X \sin \xi=\frac{1}{2}\left(s \zeta-u \zeta^{-1}\right) \iota
\end{aligned}
$$

where $\epsilon=\epsilon^{\prime}-\left(n-n^{\prime}\right) t_{0}$, since $\xi=\left(n-n^{\prime}\right)\left(t-t_{0}\right)$ and $\iota \xi=\log \zeta$ Hence

$$
\left.\begin{array}{ll}
r \cos (v-n t-\epsilon)=\mathbf{a}\left\{1+\left(a_{2}+a_{-2}\right) \cos 2 \xi+\left(a_{4}+a_{-4}\right) \cos 4 \xi+\right. & \} \tag{12}\\
r \sin (v-n t-\epsilon)=\mathbf{a}\left\{\quad\left(a_{2}-a_{-2}\right) \sin 2 \xi+\left(a_{4}-a_{-4}\right) \sin 4 \xi+\right. & \}
\end{array}\right\}
$$

which lead to the determination of 1 and v, the more simply because $v-n t-\epsilon$ is evidently of the second order in m

231 The use of rectangular coordinates is a distinctive feature of Hill's method But for some purposes polar coordmates present advantages By a sumple change of units and notation (1) become

$$
\begin{aligned}
& \frac{d^{2} p}{d t^{2}}-2 \frac{d q}{d t}=3 p-\frac{p}{r^{3}} \\
& \frac{d^{2} q}{d t^{2}}+2 \frac{d p}{d t}=-\frac{q}{r^{3}}
\end{aligned}
$$

which can be reduced to canonical form by putting (cf \S 216)

$$
\begin{gathered}
p^{\prime}=p-q, \quad q^{\prime}=q+p \\
H=\frac{1}{2}\left(p^{\prime}+q\right)^{2}+\frac{1}{2}\left(q^{\prime}-p\right)^{2}-\frac{3}{2} p^{2}-r^{-1}
\end{gathered}
$$

The transformation to new variables, $r, l \quad z^{\prime}, l^{\prime}$, defined by

$$
\begin{array}{ll}
p=r \cos l, & p^{\prime}=r^{\prime} \cos l-r^{-1} l^{\prime} \sin l \\
q=r \sin l, & q^{\prime}=r^{\prime} \sin l+r^{-1} l^{\prime} \cos l
\end{array}
$$

will leave the canumical form unchanged, since

$$
p^{\prime} d p+q^{\prime} d q-\left(r^{\prime} d r+l^{\prime} d l\right) \equiv 0
$$

and therefore it is an extended puint transformation (§ 125) Let t be eliminated from the equations by taking l as the independent variable After writing out the equations in exphcit form make the transformation

$$
r=1^{\prime} \sigma, \quad r^{\prime}=\rho^{\prime} \sigma, \quad l^{\prime}=\omega / \sigma^{2}
$$

and finally put $\epsilon=\sigma$ The result is to give the equations

$$
\begin{aligned}
& (\omega-1) \frac{d \epsilon}{d l}=-3 \rho \epsilon \\
& (\omega-1) \frac{d \rho}{d l}=\omega^{2}-\rho^{2}+\frac{3}{2} \cos 2 l+\frac{1}{2}-\epsilon \\
& (\omega-1) \frac{d \omega}{d l}=-2 \rho \omega-\frac{3}{2} \sin 2 l
\end{aligned}
$$

and the integral $H=h$ becomes

$$
\frac{1}{2} \rho^{2}+\frac{1}{2}(\omega-1)^{2}-\frac{3}{2} \cos ^{2} l-\left(h \epsilon^{3}+\epsilon\right)=0
$$

Assume a solution in the form

$$
\rho=\iota \sum_{-x}^{\infty} a_{2 n} e^{a_{n} l k}, \quad \omega=\sum_{-\infty}^{x} b_{2 n} e^{e^{2 n} l k}, \quad \epsilon=\sum_{-\infty}^{\infty} c_{2 n} e^{2 n n l / k}
$$

For a periodic orbit described always in one direction as regards l these series are cunvergent and it the coefficients are real, $a_{2 n}=-a_{-2 n}, b_{2 n}=b_{-2 n}$, $c_{2 n}=c_{-2 n}$ and therefore

$$
\begin{aligned}
& \rho=\frac{1}{\gamma} \frac{d r}{d t}=-2 \sum_{1}^{\infty} a_{2 n} \sin \frac{2 n l}{h} \\
& \omega=1+\frac{d l}{d t}=b_{0}+2 \sum_{1}^{\infty} b_{2 n} \cos \frac{2 n l}{k} \\
& \epsilon=\frac{1}{r^{2}}=c_{0}+2 \sum_{1}^{\infty} c_{2 n} \cos \frac{2 n l}{h}
\end{aligned}
$$

The index h is arbitrars It may be proved that of k is an odd integer the orbit is completed in h circuits and is symmetrical about both axes, and if h is an even integer the orbit is completed in $\frac{1}{2} k$ circuits and is symmetrical about the axis of p only For Hill's variational curve $k=1$

The rubstitution of the assumed series in the equations leads to three series of equations which must be solved by continued approximation as in

Hill's method A most interesting result is that the series for ϵ converges with exceptional rapidity, so that the equation

$$
r^{-3}=c_{0}+2 c_{2} \cos 2 l
$$

where $c_{0}=93 c_{2}$ nearly, represents the variational curve with an error which on the scale of the lunar orbit is no more than half a mile No simpler idea of the nature of this curve could possibly be given

It may be left as an exercise to the student to fill in the detanls of the outhne conveyed in this section*

232 The method by which the variational curve can be determined with any required degree of accuracy has been fully explaned But it must not be supposed that this curve represents the lunar orbit in any true sense It is merely a particular solution of equations which are themselves only a degenerate torm of those which characterize the Moon's motion, and the only signuficant parameter involved is the mean motion of the Moon The next step is to seek the form of the general solution of the same equations With this object it is necessary to study the variation of the particular solution and to determine a fundamental quantity c

With some change of notation (3) and (4) of §214 give

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}} \delta N+\Theta \delta N=0 \tag{13}
\end{equation*}
$$

where, in the application to (1),

$$
\Theta=2 n^{\prime 2}+2\left(\psi+n^{\prime}\right)^{2}-\nabla^{2} F+\frac{1}{V} \frac{d^{2} V}{d t^{2}}, \quad F=\mu r^{-1}+\frac{s}{2} n^{\prime 2} X^{2}
$$

δN being the normal displacement to the variational curve, ψ the inclination of the tangent to the axis of X, and V the relative velocity In terms of u, s,

$$
V^{2}=X^{2}+Y^{2}=u s=-\nu^{2} D u D s
$$

since $d / d t=\iota \nu D \quad$ Hence, R being the sadius of curvature,

$$
\psi=V / R=(Y X-\ddot{X} Y) / V^{2}=\frac{1}{2} \iota\left(s u-u^{s}\right) / V^{2}=\frac{1}{2} \nu\left(\frac{D^{2} u}{D u}-\frac{D^{2} s}{D s}\right)
$$

Also

$$
\begin{aligned}
& \frac{1}{\bar{V}} \frac{d^{2} V}{d t^{2}}=\frac{1}{V} \frac{d}{d t}\left(\frac{1}{2 V} \frac{d V^{2}}{d t}\right)=\frac{d}{d t}\left(\begin{array}{c}
1 \\
2 V^{2}
\end{array} \frac{d V^{2}}{d t}\right)+\frac{1}{4 V^{4}}\left(\frac{d V^{2}}{d t}\right)^{2} \\
& =-\nu^{2} D\binom{D V^{2}}{2 \overline{V^{2}}}-\nu^{2}\left(\frac{D V^{22}}{2 V^{2}}\right) \\
& =-\frac{1}{2} \nu^{2} D\left(\frac{D^{2} u}{D u}+\frac{D^{4} s}{D s}\right)-\frac{1}{4} \nu^{2}\left(\frac{D^{2} u}{D u}+\frac{D^{2} s}{D s}\right)^{2}
\end{aligned}
$$

* Of J F Steffensen, Royal Danish Academy, Fon hanalinger (1909)

Finally

$$
\nabla^{2} F=\left(\frac{\partial^{2}}{\partial X^{2}}+\frac{\partial^{2}}{\partial \bar{Y}^{2}}\right) F=\frac{\partial^{2}}{\partial \bar{X}^{2}}\left(\frac{3}{2} n^{\prime 2} X^{2}\right)-\mu\left(\frac{\partial^{2} r^{-1}}{\partial z^{2}}\right)_{z=0}=\mu / r^{3}+3 n^{\prime 2}
$$

Therefore, since $\nu=n^{\prime}-n, n^{\prime}=\mathrm{m} \nu$ and $\mu=\kappa \nu^{2}$,

$$
\begin{align*}
\nu^{-2} \Theta & =-\kappa / r^{3}-\mathrm{m}^{2}+2\left\{\frac{1}{2}\left(\frac{D^{2} u}{D u}-\frac{D^{2} s}{D s}\right)+\mathrm{m}\right\}^{2} \\
& -\frac{1}{2} D\left(\frac{D^{2} u}{D u}+\frac{D^{2} s}{D s}\right)-\frac{1}{4}\left(\frac{D^{2} u}{D u}+\frac{D^{2} s}{D s}\right)^{2} \tag{14}
\end{align*}
$$

Now sunce $u=\zeta \Sigma a_{22} \zeta^{22}, s=\zeta^{-1} \Sigma a_{22} \zeta^{-2 u}$ and $D=\zeta d / d \zeta=-\zeta^{-1} d / d \zeta^{-1}$,

$$
D^{2} u / D u=\sum_{\imath} U_{\imath} \zeta^{2 l}, \quad D^{2} s / D s=-\sum_{\imath} U_{\imath} \xi^{-2 v}
$$

and U_{i} can be calculated by equating coefficients in

$$
\sum_{\imath}(2 \imath+1)^{2} a_{22} \zeta^{2 n+1}=\sum_{\imath}(2 \imath+1) a_{2 n} \zeta^{2 n+1} \sum_{l} U_{\imath} \zeta^{2 n}
$$

Simularly, by the first of (2) when $\Omega=0$,

$$
u\left(\kappa r^{-3}+\mathrm{m}^{2}\right)=2 u \sum_{2} M_{\imath} \zeta^{22}=D^{2} u+2 \mathrm{~m} D u+\frac{1}{2} \mathrm{~m}^{2}(5 u+3 s)
$$

so that
$2 \sum_{\imath} a_{2 \imath} \zeta^{2 n+1} \sum_{\imath} M_{\imath} \zeta^{n}=\sum_{2}\left\{(2 \imath+1)^{2}+2 \mathrm{~m}(2 \imath+1)+\frac{5}{2} \mathrm{~m}^{2}\right\} a_{n} \xi^{2 n+1}+\frac{3}{2} \mathrm{~m}^{2} \sum a_{-2 l-2} \zeta^{2 n+1}$
whence M_{\imath} can be calculated in the same way When U_{\imath}, M_{\imath} have been found it remains to substitute the series in (14), a process which involves squaring two series, and the result may be written in the form

$$
\nu^{-2} \Theta=\Sigma_{1} \Theta_{2} \zeta^{2}
$$

Thus (13) becomes

$$
\begin{equation*}
D^{2} \delta N=\left(\sum_{2} \Theta_{2} \zeta^{27}\right) \delta N \tag{15}
\end{equation*}
$$

and the derivation of Θ_{2} has been fully explanned It is easily seen that $\Theta_{-\imath}=\Theta_{\imath}$ and that M_{\imath}, U_{\imath} and Θ_{2} are of the order $|2 \imath| \mathrm{in} \mathrm{m}$

233 Owing to the symmetry of the variational curve Θ is a periodic function with the half period of the curve, $\pi /\left(n-n^{\prime}\right)$ Hence by $\S 215$ one solution of (15) has the form

$$
\delta N=\zeta^{c} \Sigma b_{\imath} \zeta^{n}
$$

and c is the quantity which is now required The result of substituting this series is

$$
\sum_{\jmath} b_{\jmath}(\mathrm{c}+2 \jmath)^{2} \zeta^{(++j}=\sum_{\iota j} \sum_{\jmath} \Theta_{2} b_{j-\imath} \zeta^{c+2 j}
$$

which must be an identity, and therefore for every value of J

$$
b_{\jmath}(c+2 \jmath)^{2}=\sum_{\imath} \Theta_{\imath} b_{j-\iota}
$$

or more fully, since $\Theta_{2}=\Theta_{-\imath}$,

$$
-\Theta_{2} b_{\jmath-2}-\Theta_{1} b_{j-1}+\left\{(c+2 \jmath)^{2}-\Theta_{0}\right\} b_{j}-\Theta_{1} b_{j+1}-\Theta_{2} b_{j+2}-=0
$$

These equations are of infinite order Nevertheless, let the coefficients b_{i} be eliminated in the same way as though their number were finite Then $\Delta(c)=0$ where $\Delta(c)$ represents the determinant of infinite order

$$
\begin{aligned}
& , \frac{(c-4)^{2}-\Theta_{0}}{4^{2}-\Theta_{0}}, \frac{-\Theta_{1}}{4^{2}-\Theta_{0}}, \frac{-\Theta_{2}}{4^{2}-\Theta_{0}}, \frac{-\Theta_{3}}{4^{2}-\Theta_{0}}, \frac{-\Theta_{4}}{4^{2}-\Theta_{0}}, \\
& , \frac{-\Theta_{1}}{2^{2}-\Theta_{0}}, \frac{(c-2)^{2}-\Theta_{0}}{2^{2}-\Theta_{0}^{-}}, \frac{-\Theta_{1}}{2^{2}-\Theta_{0}}, \frac{-\left(\Theta_{2}\right.}{2^{2}-\Theta_{0}}, \frac{-\Theta_{3}}{2^{2}-\Theta_{0}}, \\
& , \frac{-\Theta_{2}}{0^{2}-\Theta_{0}}, \frac{-\Theta_{1}}{0^{2}-\Theta_{0}}, \frac{c^{2}-\Theta_{0}}{0^{2}-\overline{\Theta_{0}}, \frac{-\Theta_{1}}{0^{2}-\Theta_{0}}, \frac{-\Theta_{2}}{0^{2}-\Theta_{0}},}, \\
& , \frac{-\Theta_{3}}{2^{2}-\Theta_{0}}, \frac{-\Theta_{2}}{2^{2}-\Theta_{0}}, \frac{-\Theta_{1}}{2^{2}-\Theta_{0}}, \frac{(c+2)^{2}-\Theta_{0}}{2^{2}-\Theta_{0}}, \frac{-\Theta_{1}}{2^{2}-\Theta_{0}}, \\
& \frac{-\Theta_{4}}{4^{2}-\Theta_{0}}, \frac{-\Theta_{3}}{4^{2}-\Theta_{0}}, \frac{-\Theta_{2}}{4^{2}-\Theta_{0}^{2}}, \frac{-\Theta_{1}}{4^{2}-\Theta_{0}}, \frac{(c+4)^{2}-\Theta_{0}}{4^{2}-\Theta_{0}},
\end{aligned}
$$

each row being divided by such a factor that the constituent in the leading diagonal becomes 1 when $c=0$ This is Hill's celebrated determinant, which introduced the consideration of the meaning and convergence* of determinants of infinite order into mathematical analyeis

234 The determinant $\Delta(-c)=\Delta(c)$, for the change only reverses the order of the constituents in the leading diagonal Also $\Delta(c+2 \jmath)=\Delta(c)$, for the displacement of the leading diagonal along itself may be compensated by moving the divisors of the rows Hence if c_{0} is a root of Δ (c), $\pm c_{0}+2 j$ are also roots The highest power of c in the development is given by the product of terms in the leading diagonal, and this product is

It follows that

$$
\begin{aligned}
\Delta_{0}(c) & =\prod_{-\infty}^{\infty} \frac{(c+2 \jmath)^{2}-\Theta_{0}}{4 \jmath^{2}-\Theta_{0}}=\prod_{-\infty}^{\infty} \frac{c^{2}-\left(2 \jmath+\sqrt{ } \Theta_{0}\right)^{2}}{\left(2 \jmath+\sqrt{ } \Theta_{0}\right)^{2}} \\
& =\left(\cos \pi c-\cos \pi \sqrt{ } \Theta_{0}\right) /\left(1-\cos \pi \sqrt{ } \Theta_{0}\right)
\end{aligned}
$$

$$
\Delta(c)=\left(\cos \pi c-\cos \pi c_{0}\right) /\left(1-\cos \pi \sqrt{ } \Theta_{0}\right)
$$

for this contans the right number of roots, the same as Δ_{0} (c), and the same coefficient of the highest power of c The roots are those already found, and there are no others But this equation shows that

$$
\Delta(0)=\left(1-\cos \pi c_{0}\right) /\left(1-\cos \pi \sqrt{ } \Theta_{0}\right)
$$

and therefore c_{0} is a root of

$$
\begin{equation*}
\sin ^{2} \frac{1}{2} \pi \mathrm{c}_{0}=\Delta(0) \sin ^{2} \frac{1}{2} \pi \sqrt{ } \Theta_{0} \tag{16}
\end{equation*}
$$

[^3]The solution of $\Delta(c)=0$ is thus reduced to the calculation of $\Delta(0)$ The latter determinant is convergent if $\Sigma_{2} \Theta_{2}$ is convergent, and this may be assumed for sufficiently small values of m

As a matter of fact in the present case $\Delta(0)$ is not only convergent but, very rapidly convergent It may be written in the form

$$
\Delta(0)=\left\lvert\, \begin{array}{ccccc}
\\
, & 1 & & -\beta_{\jmath} \Theta_{1}, & -\beta_{\jmath} \Theta_{2}, \\
, & -\beta_{\jmath-1} \Theta_{1}, & 1 & , & -\beta_{\jmath-1} \Theta_{1}, \\
, & -\beta_{\jmath-1} \Theta_{2}, \\
, & -\beta_{\jmath-2} \Theta_{2}, & -\beta_{\jmath-2} \Theta_{1}, & 1 & -\beta_{1-2} \Theta_{1}, \\
, & , & -\beta_{\jmath-3} \Theta_{2}, & -\beta_{\jmath-3} \Theta_{1}, & 1
\end{array}\right.,
$$

where

$$
\beta_{\jmath}=1 /\left(4 \jmath^{2}-\Theta_{0}\right)
$$

Suppose every Θ_{0} to be multiplied by θ^{0} If then the sign of θ be changed the sign of every alternate constituent in every row and every column is changed Multiply every alternate row and every alternate column by - 1 and the orignal determinant is restored This involves multiplication of $\Delta(0,-\theta)$ by an even power of -1 , since the number of rows and columns is equal Hence $\Delta(0,-\theta)=\Delta(0, \theta)$, and $\Delta(0, \theta)$ is an even function of θ But the power of θ in any term of the development of $\Delta(0, \theta)$ is the sum of the suffixes of the Θ_{j} associated with it Therefore the sum of the suffixes in any term of the development of $\Delta(0)$ is even Since Θ_{0} is of the order $|2 \jmath| \mathrm{mm}$, this means that the order of every term is a multiple of 4

It is endent that the determinant $\Delta(0)$ must be developed axially, the term of zero order, 1 , coming from the leading diagonal alone There can be no term in Θ_{j} alone, for Θ_{j} ncapacitates by its row and column two units from the leading didgonal as cofactors Similarly a product $\Theta_{2}\left(\Theta_{3}\right.$ incapacitates more than two such units unless their rows and columns intersect, on the leading diagonal Thus $\imath=\jmath$ and the only terms of binary type involve squares

235 The mode of developing $\Delta(0)$ will be sufficiently understiood it m^{12} be neglected The sum of the suffixes can only be 0,2 or 4 Hence the only possible terms are of the type

$$
\Delta(0)=1+A \Theta_{1}^{2}+B \Theta_{2}^{2}+C \Theta_{1}^{2} \Theta_{2}+D\left(\Theta_{1}^{4}\right.
$$

It is also easy to see how each of these terms arises Thus

$$
\begin{gathered}
A \Theta_{1}^{2}=\sum_{J}\left|\begin{array}{cc}
0 & ,-\beta_{J} \Theta_{1} \\
-\beta_{J-1} \Theta_{1}, & 0
\end{array}\right|, \quad B \Theta_{2}^{2}=\sum_{J}\left|\begin{array}{cc}
0 & ,-\beta_{J}\left(\Theta_{2}\right. \\
-\beta_{J-2}(\Theta) & 0
\end{array}\right| \\
A=-\sum_{J} \beta_{J} \beta_{J-1}, \quad B=-\sum_{J} \beta_{J} \beta_{J-2}
\end{gathered}
$$

The next term corresponds to three consecutive diagonal constituents, and

$$
C \Theta_{1}^{2} \Theta_{2}=\Sigma_{\jmath}\left|\begin{array}{ccc}
0 & -\beta_{\jmath} \Theta_{1}, & -\beta_{\jmath} \Theta_{2} \\
-\beta_{\jmath-1} \Theta_{1}, & 0 & ,-\beta_{\jmath-1} \Theta_{1} \\
-\beta_{\jmath-2} \Theta_{3}, & -\beta_{\jmath-2} \Theta_{1}, & 0
\end{array}\right|=-2 \Sigma_{\jmath} \beta_{\jmath} \beta_{\jmath-1} \beta_{\jmath-2} \Theta_{1}^{2} \Theta_{2}
$$

Finally, the term in Θ_{1}^{4} must correspond to four diagonal constituents only and $1 t$ is therefore

$$
\begin{aligned}
D \Theta_{1}^{4} & =\sum_{\imath} \sum_{J}\left|\begin{array}{cc}
0 & -\beta_{\imath} \Theta_{1} \\
-\beta_{\imath-1} \Theta_{1}, & 0
\end{array}\right|\left|\begin{array}{cc}
0 & -\beta_{\jmath} \Theta_{1} \\
-\beta_{\jmath-1} \Theta_{1}, & 0
\end{array}\right| \\
D & =\sum_{\imath J} \sum_{J} \beta_{\imath} \beta_{\imath-1} \beta_{\jmath} \beta_{\jmath-1}=A^{2}-\sum_{J} \beta_{J}^{2} \beta_{J-1}^{2}-2 \sum_{J} \beta_{\jmath+1} \beta_{\jmath}^{2} \beta_{\jmath-1}
\end{aligned}
$$

for, as the two munors must not overlap, \imath cannot have the values \jmath or $\jmath \pm 1$
It remains to calculate the values of these coefficients Let $\Theta_{0}=4 \alpha^{2}$ Then

$$
\begin{aligned}
& \quad \sum_{\jmath} \beta_{\jmath} \beta_{\jmath-1}=\sum_{\jmath} 16\left(\alpha^{2}-\jmath^{2}\right) \frac{1}{\left\{a^{2}-(\jmath-1)^{2}\right\}} \\
& =\sum_{\jmath} \frac{1}{32 \alpha(2 \alpha-1)}\left(\frac{1}{\alpha-\jmath}+\frac{1}{\alpha+\jmath-1}\right)-\sum_{j} \frac{1}{32 \alpha(2 \alpha+1)}\left(\frac{1}{\alpha+\jmath}+\alpha-1\right. \\
& =\sum_{-\infty-1}^{\infty} \frac{1}{8 \alpha\left(4 \alpha^{2}-1\right)} \frac{1}{\alpha+\jmath}=\frac{1}{8 \alpha\left(4 \alpha^{2}-1\right)}\left\{\frac{1}{\alpha}+2 \alpha \sum_{1}^{\infty} \frac{1}{\alpha^{2}-\jmath^{2}}\right\} \\
& =\frac{\pi \cot \pi \alpha}{8 \alpha\left(4 \alpha^{2}-1\right)}=\frac{\pi \cot \frac{1}{2} \pi \sqrt{ } \Theta_{0}}{4 \sqrt{\Theta_{0}\left(\Theta_{0}-1\right)}}
\end{aligned}
$$

The other coefficients can be calculated simularly by first reducing to the form of partial fractions Hill's results include all terms of order less than 16 , and with the value of m already given (§ 229) he obtained the value

$$
c_{0}=10715832774,16012
$$

Without going further than the term of which the form has actually been found here,

$$
\begin{equation*}
\Delta(0)=1+\frac{1}{4} \pi \Theta_{1}^{2} \cot \frac{1}{2} \pi \sqrt{ } \Theta_{0} /\left(1-\Theta_{0}\right) \sqrt{ } \Theta_{0} \tag{17}
\end{equation*}
$$

The argument given above as to the order of the terms refers to Θ_{1}, Θ_{2}, and not to effects arising from Θ_{0} But $1-\Theta_{0}$ is 1 tself of the first order, and therefore this expression neglects m^{7} instead of $m^{8} \quad$ Since $m=008$ the error in c_{0} maght be expected to occur at about the seventh decunal place, and in fact it is about 5 units in this place This simple expression, involving only Θ_{0} and Θ_{1}, 1s therefore very approximate

It may be noticed that $\pm \mathrm{cc}\left(n-n^{\prime}\right)$ are the characteristic exponents of the variational curve Since cis real this curve represents a stable orbit for small variations

236 The introduction of the elmmant of mimite order was a bild and original expedent on the part of Hill, though justafied later by analyan But an analogous method had been used carles by Adams, whose 14 sult were published after the appearance of Hill's They refer to the intugnatan of the third equation of (2) when $\Omega=0$, or

$$
D^{2} z-z\left(\kappa \gamma^{-3}+\mathrm{m}^{2}\right)=0
$$

If z be neglected in the coefficient of z, that 14 m , ', the senes already und in § 232 may be inserted, and the equation beeomes

$$
D^{2} z=\left(2 \sum_{2} M_{2} \zeta^{-v}\right) z
$$

which, since $M_{2}=M_{-2}$ is of the order $|2 \imath|$ m m, is of exactly the sume firm as (15) A solution is known to be of the type

$$
z=\zeta_{2}^{8} \Sigma \beta_{2} \zeta^{n}
$$

and g must be determined from the infinite set,

$$
\beta_{j}(\mathrm{~g}+2)^{2}=\sum_{i} 2 M_{2} \beta_{y \ldots z}
$$

Hence the eliminant is $\Delta^{\prime}(\mathrm{g})=0$, and the solution is given by

$$
\sin ^{2} \frac{1}{2} \pi g_{0}=\Delta^{\prime}(0) \sin ^{2} \frac{1}{2} \pi \sqrt{ }\left(2 M_{0}\right)
$$

where $\Delta^{\prime}(0)$ is the result of replacing $(-)$, by $2 M_{\imath}$ in $\Delta(0)$
Adams used the valae $m=n^{\prime} / n=00748013$ exactly, which is not quit, the same as Hill's value He thus obtaned the corresponding numbers

$$
\mathrm{m}=0080848903051852, \quad \mathrm{~g}_{0}=108517 \quad 13992746869
$$

CHAPTER XXI

LUNAR THEORY II

237 It is now necessary to consider the form of the general solution of the equations (6), in the present chapter equations will recerve reference numbers in continuation of those assigned in the previous chapter, so that the latter will suffice without referring specifically to the chapter or section in which they occur The solution of (15) may now be written

$$
\delta N=\zeta_{1}{ }^{ \pm 0} \Sigma b_{2} \zeta^{2 n}, \quad \log \zeta_{1}=\iota\left(n-n^{\prime}\right)\left(t-t_{1}\right)
$$

The arbitrary constant t_{1} makes it possible to assign any required phase to the variation in relation to the periodic solution and as δN is supposed small (so that δN^{2} has been neglected) the coefficients b_{\imath} may be considered to have a small arbitrary factor These two arbitiaries make the small variation otherwise general Since c has been determined it would clearly be possible to determine real values of the coefficients (except for the arbitrary factor) by substituting the scries in (15), equating coefficients, and procceding by continued approximation

Again, if $\delta \sigma$ be the displacement in arc corresponding to δN, by (2) of § 214 adapted to the present notation,
or (§ 232)

$$
2\left(\psi+n^{\prime}\right) \delta N=-V \frac{d}{d t}\left(\frac{\delta \sigma}{V}\right)
$$

$$
\left(\frac{D^{2} u}{D u}-\frac{D^{2} s}{D s}+2 \mathrm{~m}\right) \delta N=-\iota V D\left(\frac{\delta \sigma}{V}\right)
$$

Hence, V being an even function of ζ, $\delta \delta \sigma$ has the same form as δN But since

$$
\begin{array}{ll}
V \cos \psi=\dot{X}, & V \sin \psi=Y \\
V_{e^{\iota \psi}}=\iota \nu D u, & V e^{-\iota \psi}=\iota \nu D s
\end{array}
$$

and

$$
\begin{aligned}
& \delta N=\delta X \sin \psi-\delta Y \cos \psi=\frac{1}{2} \iota\left(\begin{array}{ll}
\delta u & e^{-\iota \psi}-\delta s \\
e^{\iota \psi}
\end{array}\right) \\
& \delta \sigma=\delta X \cos \psi+\delta Y \sin \psi=\frac{1}{2}\left(\delta u e^{-\iota \psi}+\delta s e^{\iota \psi}\right)
\end{aligned}
$$

it follows that

$$
\delta u=\frac{\nu D u}{\bar{V}}(\delta N+\iota \delta \sigma), \quad \delta s=\frac{\nu D_{s}}{V}(\iota \delta \sigma-\delta N)
$$

Hence δu, δs, like $D u, D s$, are odd functions in ζ with ical cocfficients, and it is possible to write

$$
\delta u=\zeta_{1}{ }^{ \pm} \zeta \sum_{\imath} b_{2 l} \zeta^{2 n}, \quad \delta s=\zeta_{1}{ }^{ \pm c} \zeta^{-1} \sum_{2} b_{2 n} \zeta^{-2 u}
$$

the coefficients as expressed being the same in the two sencs since $\delta u+\delta s=2 \delta N^{r}$ is real For the purpose of this argument it is necessary to associate the +1 solution for δu with the - c solution for δs, and to notice that $\left(\zeta_{1} / \zeta\right)^{\text {" }}$ we constant conjugate imagnaries with absolute valuc 1 which have been ugarded as external factors of the series with real cocfficients for $\delta N, 1 \delta \sigma, \delta / 1$ and δs At the same time $\delta u-\delta s$ is a pure imaginary

Hence the general solution of (6), differing but little from the vanutional curve, may be written

$$
u=\mathbf{a} \zeta \sum_{2} \sum_{p} A_{2 x+p c} \zeta_{2}^{2 a} \zeta_{1}^{p c}, \quad s=\mathbf{a} \zeta^{-1} \sum_{i} \sum_{p} A_{-x-p c} \zeta^{2 l} \zeta_{1}^{2 x}
$$

where \imath has all integral values between $\pm \infty$ and p has the values 0 and ± 1 Also $A_{22}=a_{22}$ as in the variational curve and c is a determined function of m which has been denoted by c_{0}

238 But the solution which is now sought differs by a finite amount, from the variational curve The above form must therefore be regarderd merely as the beginning of the full development Hence the restriction on p will now be withdrawn and its values will be allowed to range between $\pm \infty \quad$ The coefficients of the tirst order $A_{2 x \pm}$ contain a sinall arbitiay parameter e and the higher coefficients $A_{20 \pm p c}$ will be obtained by successive approximation in the ordinary way, so that $A_{2 t \pm p}$ will be of the order $|p|$ in e The introduction of e into the solution will affect both A_{2} and c, and $a_{2 x}$ and c_{0} represent those parts only which are functions of m alone and not of e

It is assumed that this process will produce convergent series it they converge they are true solutions of the differential equations, and not otherwise This recurrent question in dynamical astronomy cannot be dealt with here But the reader must iealize its fundamental importance, and he will understand why so much attention has been given, by Poineare espectally, to discussions of this kind, although they may seem unproductive of new and striking results

It is now to be noticed that

$$
D\left(\zeta^{2 n+1} \zeta_{1}^{p c}\right)=(2 \imath+1+p \mathrm{c}) \zeta^{2 n+1} \zeta_{1}^{p c}, \quad D \zeta^{2+1+p c}=(2 \imath+1+p \mathrm{c}) \zeta^{x+1+1 \mu}
$$

and therefore that the result of putting $\zeta_{1}=\zeta$ will affect in no way the process of calculating the coefficients If this substitution is made it is only necessary to retain cexplcitly in the index of ζ and to remember that the argument of the trigonometrical term corresponding to $\zeta^{-1 \mid 1+p c} 19$

$$
(2 \imath+1)\left(n-n^{\prime}\right)\left(t-t_{0}\right)+p \mathrm{c}\left(n-n^{\prime}\right)\left(t-t_{1}\right)
$$

With this understanding the form of solution becomes

$$
\begin{equation*}
u=\mathbf{a} \zeta \sum_{2} \sum_{p} A_{2+p c} \zeta^{22+p c}, \quad s=\mathbf{a} \zeta^{-1} \sum_{i p} \sum_{p} A_{-v^{2}-p o} \zeta^{2 x+p c} \tag{18}
\end{equation*}
$$

Comparison of these series with (7) shows immediately that the effect of substituting in the differential equations and equating coefficients of $\zeta^{\eta}+q$ will follow as before if

$$
A, \quad \sum_{\imath p} \sum_{p}, \quad 2 \imath+p \mathrm{c}, \quad 2 \jmath+q \mathrm{c}
$$

be substituted respectively for

$$
a, \quad \sum_{\imath}, \quad 2 \imath, \quad 2 j
$$

Thus to (10) conesponds the equation

$$
\begin{align*}
& \sum_{\imath} \sum_{p} A_{3+p c}\{[2\}+q \mathrm{c}, 2 \imath+p \mathrm{c}] A_{-2\}+\imath-q c+j \mathrm{c}} \\
& \left.+[2 \jmath+q \mathrm{c},+] A_{2 \jmath-2 u-2+q \mathrm{c}-p_{0}}+[2 \jmath+q \mathrm{c},-] A_{-3,-2 \sim-2-q 0-p \mathrm{p}}\right\}=0 \tag{19}
\end{align*}
$$

which holds unless $\jmath=q=0$ The form of the symbolical coefficients has been given with (10), $[2 j+q \mathrm{c}, 2 \jmath+q \mathrm{c}]=-1$ is the coefficient of $A_{0} A_{2 j+q 0}$, and $[2 \jmath+q \mathrm{c}, 0]=0$ is the coefficient of $A_{0} A_{-2 \jmath-q \mathrm{c}} \quad$ The counterpart of (8) is

$$
\begin{aligned}
\mathbf{a}^{-2} C=\sum_{i} \sum_{p}\left\{(2 \imath+1+p \mathrm{c})^{2}+4 \mathrm{~m}(2 \imath+1+p \mathrm{c})\right. & \left.+\frac{9}{2} \mathrm{~m}^{2}\right\} A^{2}{ }_{x+p \mathrm{c}} \\
& +\frac{9}{2} \mathrm{~m}^{2} \sum_{2} \sum_{p} A_{\mathrm{aq}+p \mathrm{c}} A_{-\imath \imath-2-p 0}
\end{aligned}
$$

239 Of the first importance are the terms which depend on the first power of the parameter e When δN^{2} was neglected $A_{\Delta 2}$ was identical with $a_{2 n}$, and theretore $A_{2 x}=a_{22}$ when ϵ^{2} is neglected Let

$$
A_{2 v+0}=\mathrm{e} \epsilon_{\iota}, \quad A_{2 \iota-0}=0 \epsilon_{\imath}^{\prime}
$$

The limitation to the first order in e means a return to the equations at the end of $\S 237$ and the only admissible values of q are ± 1 With either value p must be chosen so that e occurs only once in the suffixes of any term, or terms involving e^{2} will be introduced Hence (19) gives

$$
\begin{aligned}
& \sum_{\imath}\left\{[2 j+c, 2 \imath+c] a_{-\lambda j+2 i} \epsilon_{\imath}+[2 j+c, 2 \imath] a_{n \imath} \epsilon_{-j+\imath}^{\prime}\right. \\
& \left.+[2 J+c,+]\left(a_{2 j-n-2} \epsilon_{i}+a_{2 \iota} \epsilon_{j-u-1}\right)+[2 J+c,-]\left(a_{-2 j-n_{-1}} \epsilon_{i}^{\prime}+a_{2 \iota} \epsilon_{-\jmath-\imath-1}^{\prime}\right)\right\}=0 \\
& \sum_{\imath}\left\{[2 \jmath-\mathrm{c}, 2 \imath-\mathrm{c}] a_{-2 j+2 \iota} \epsilon_{\imath}^{\prime}+[2 \jmath-\mathrm{c}, 2 \imath] a_{2 \iota} \epsilon_{-\jmath+1}\right.
\end{aligned}
$$

Permissible changes in ι make it possible to reduce all the suffixes of $\epsilon, \epsilon^{\prime}$ to the form a, and the simpler equations
are thus obtaned Since the numerical value of m is introduced from the outset and c has been determined, the coefficients of $\epsilon_{2}, \epsilon_{2}^{\prime}$ are number, which in general become rapidly smaller at a distance fiom the central term The equations can therefore be solved by contmued approximation As they determine the ratios only of $\epsilon_{i}, \epsilon_{i}^{\prime}$, it is possible to put

$$
\varepsilon_{0}-\epsilon_{0}^{\prime}=1, \quad \epsilon_{2}=b_{2} \epsilon_{0}+\beta_{2} \epsilon_{0}^{\prime}, \quad \epsilon_{\imath}^{\prime}=b_{2}^{\prime} \epsilon_{0}+\beta_{\imath}^{\prime} \epsilon_{0}^{\prime}
$$

The equations for $\jmath= \pm 1, \pm 2, \quad$ will then serve to determine the confficuents $b_{i}, \beta_{1}, b_{i}^{\prime}, \beta_{\imath}^{\prime}$, where $b_{0}=\beta_{0}^{\prime}=1, \beta_{0}=b_{0}^{\prime}=0 \quad$ For $\jmath=0$,

$$
\left.\begin{array}{rlr}
0=+[c, 2+c] a_{2} \epsilon_{1}+[c, 2] a_{2} \epsilon_{1}^{\prime} & +2[c,+] a_{-4} \epsilon_{1}+2[c,-] a_{-1} \epsilon_{1}^{\prime} \tag{21}\\
& -a_{0} \epsilon_{0} & +2[c,+] a_{-2} \epsilon_{0}+2[c,-] a_{-2} \epsilon_{0}^{\prime} \\
& +[c,-2+c] a_{-2} \epsilon_{-1}+[c,-2] a_{-2} \epsilon_{-1}^{\prime}+2[c,+] a_{0} \epsilon_{-1}+2[c,-] a_{0} \epsilon_{-1}^{\prime}+
\end{array}\right\}
$$

with a similar equation obtained by changing the sign of c and inter changing $\epsilon \epsilon^{\prime}$ Either of these two equations, with $\epsilon_{0}-\epsilon_{0}^{\prime}=1$, determunes ϵ_{0} and $\epsilon_{0}{ }^{\prime}$, and hence $\epsilon_{2}, \epsilon_{i}^{\prime}$ in general The two must lead to the same result, and together are merely a check on the value of c , which, had it not been determined otherwise, could in theory be deduced fiom the whole set of these equations

240 Before continuing the development of a method the whole dum of which is a systematic advance towards great accuracy in the complete revults, and which is therefore apt to obscure the man features of the actual motion of the Moon, it will be well to consider the hind of results which have alrealy been obtained implicitly or can be readily deduced For this purpose a low order of approximation must be adopted and m^{4} will be neglected Then it is easily found that

$$
\begin{aligned}
a_{2} & =[2,+]=\frac{3}{16} \mathrm{~m}^{2}+\frac{1}{2} \mathrm{~m}^{3}, \quad a_{-2}=[-2,-]=-\frac{19}{18} \mathrm{~m}^{2}-\frac{5}{5} \mathrm{~m}^{1} \\
2 M_{0} & =1+2 \mathrm{~m}+\frac{5}{2} \mathrm{~m}^{2}, \quad 2 M_{1}=2 M_{-1}=\frac{3}{2} \mathrm{~m}^{2}+\frac{19}{4} \mathrm{~m}^{3} \\
U_{0} & =1, \quad U_{1}=\frac{9}{8} \mathrm{~m}^{2}+3 \mathrm{~m}^{3}, \quad U_{-1}=-\frac{19}{8} \mathrm{~m}^{2}-10 \mathrm{~m}^{3} \mathrm{~m}^{3} \\
\Theta_{0} & =-2 M_{0}+2\left(U_{0}+\mathrm{m}\right)^{2}=1+2 \mathrm{~m}-\frac{1}{2} \mathrm{~m}^{2} \\
\Theta_{1} & =-2 M_{1}+2\left(U_{0}+\mathrm{m}\right)\left(U_{1}+U_{-1}\right)-\left(U_{1}-U_{-1}\right)=-\frac{15}{2} \mathrm{~m}^{2}-{ }_{4}^{7} \mathrm{~m}^{1}
\end{aligned}
$$

To the order named, the combination of (16) with (17) gives
and sımularly

$$
\begin{aligned}
\mathrm{c}_{0} & =\sqrt{ } \Theta_{0}+\frac{1}{4} \Theta_{1}^{2} /\left(1-\Theta_{0}\right) \sqrt{ } \Theta_{0} \\
& =1+\mathrm{m}-\frac{3}{4} \mathrm{~m}^{2}-\frac{20}{32} \mathrm{~m}^{3}=107263 \\
\mathrm{~g}_{0} & =\sqrt{ }\left(2 M_{0}\right)+M_{1}^{2} /\left(1-2 M_{0}\right) \sqrt{ }\left(2 M_{0}\right) \\
& =1+\mathrm{m}+\frac{3}{4} \mathrm{~m}^{2}-\frac{33}{32} \mathrm{~m}^{3}=108521
\end{aligned}
$$

The numerical value of g_{0}, corresponding to $m=008085$, is much nearer the truth than that of c_{0} Also it follows from (11) that

$$
\mathbf{a}=a\left(1-\frac{1}{6} \mathrm{~m}^{2}+\frac{1}{3} \mathrm{~m}^{3}\right)
$$

Then (12) give
whence

$$
\begin{aligned}
r \cos (v-n t-\epsilon) & =\mathbf{a}\left\{1-\left(\mathrm{m}^{2}+\frac{7}{8} \mathrm{~m}^{3}\right) \cos 2 \xi\right\} \\
1 \sin (v-n t-\epsilon) & =\mathbf{a}\left(\frac{11}{8} \mathrm{~m}^{2}+\frac{18}{6} \mathrm{~m}^{3}\right) \sin 2 \xi
\end{aligned}
$$

$$
\begin{gathered}
v=n t+\epsilon+\left(\frac{11}{8} \mathrm{~m}^{2}+\frac{18}{6} \mathrm{~m}^{3}\right) \sin 2 \xi \\
r=a\left\{1-\frac{1}{6} \mathrm{~m}^{2}+\frac{1}{3} \mathrm{~m}^{3}-\left(\mathrm{m}^{2}+\frac{7}{8} \mathrm{~m}^{3}\right) \cos 2 \xi\right\}
\end{gathered}
$$

Terms depending on m only are called variational terms The coefficient of the principal term of the variation in longitude is thus

$$
\frac{11}{8} \mathrm{~m}^{2}+\frac{13}{6} \mathrm{~m}^{3}=001013=2090^{\prime \prime}
$$

which is some $16^{\prime \prime}$ in defect of the true value This term was discovered observationally by Tycho Brahe, and its period, indicated by 2ξ (or $2 D$ in Delaunay's notation), is half a synodic month

241 The equations (20) for $y= \pm 1$, when the leading terms only are retained, become simply

$$
\begin{aligned}
\epsilon_{1} & =\left\{[2+\mathrm{c}, \mathrm{c}] a_{-2}+2[2+\mathrm{c},+]\right\} \epsilon_{0}+[2+\mathrm{c}, 2] a_{2} \epsilon_{0}^{\prime} \\
\epsilon_{-1} & =[-2+\mathrm{c}, \mathrm{c}] a_{2} \epsilon_{0}+\left\{[-2+\mathrm{c},-2] a_{-\Omega}+2[-2+\mathrm{c},-]\right\} \epsilon_{0}^{\prime} \\
\epsilon_{1}^{\prime} & =[2-\mathrm{c}, 2] a_{2} \epsilon_{0}+\left\{[2-\mathrm{c},-\mathrm{c}] a_{-2}+2[2-\mathrm{c},+]\right\} \epsilon_{0}^{\prime} \\
\epsilon_{-1}^{\prime} & =\left\{[-2-\mathrm{c},-2] a_{-2}+2[-2-\mathrm{c},-]\right\} \epsilon_{0}+[-2-\mathrm{c},-\mathrm{c}] a_{2} \epsilon_{0}^{\prime}
\end{aligned}
$$

It is to be noticed that $[x, y],[x, \pm]$ contain as a divisor

$$
D_{x}=2 x^{2}-2-4 \mathrm{~m}+\mathrm{m}^{2}
$$

and that this has the factor m when $\pm x=2-\mathrm{c}$ It is casily found that

$$
\begin{aligned}
& {[2+c, c]=-\frac{7}{24}, \quad[2+c, 2]=-\frac{5}{8}, \quad[2+c,+]=\frac{5}{18} m^{2}} \\
& {[-2-c,-c]=-\frac{1}{8}, \quad[-2-c,-2]=-\frac{1}{2} \frac{1}{4}, \quad[-2-c,-]=-\frac{71}{102} \mathrm{~m}^{2}} \\
& {[-2+\mathrm{c}, \mathrm{c}]=\frac{4}{4} \mathrm{~m}^{-1}+\frac{58}{18}, \quad[-2+\mathrm{c},-2]=\frac{3}{1} \mathrm{~m}^{-1}+\frac{5}{10}} \\
& {[-2+c,-]=\frac{45}{2} \frac{5}{2} m+\frac{49}{\frac{1}{2}} \frac{5}{8} m^{2}, \quad[2-c,+]=-\frac{35}{3} m-\frac{20}{1} \frac{1}{2} m^{2}} \\
& {[2-c, 2]=-\frac{1}{4} \mathrm{~m}^{-1}-\frac{5}{1} \frac{\pi}{8}, \quad[2-\mathrm{c},-\mathrm{c}]=-\frac{1}{1} \mathrm{~m}^{-1}-\frac{7}{\mathrm{~T}} \mathrm{C}}
\end{aligned}
$$

as far as the present low order of approximation requires Hence with the approximate values of a_{2}, a_{-2},

$$
\begin{aligned}
& \epsilon_{1}={ }_{1}^{1} \frac{18}{18} \mathrm{~m}^{2} \epsilon_{0}-\frac{18}{18} \mathrm{~m}^{2} \mathrm{~m}_{0}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \epsilon_{-1}^{\prime}=-\frac{25}{128} \mathrm{~m}^{3} \varepsilon_{0}-\frac{9}{128} \mathrm{~m}^{\circ} \epsilon_{0}^{\prime}
\end{aligned}
$$

It has been seen how the order of $\epsilon_{-1}, \epsilon_{1}^{\prime}$ is lowered by the divisor D_{x} A sumilar circumstance affects the coefficients of (21) more seriously, sunce

$$
D_{\mathrm{c}}=2 \mathrm{c}^{3}-2-4 \mathrm{~m}+\mathrm{m}^{2}=-2 \frac{2 \mathrm{~g}}{8} \mathrm{~m}^{3}
$$

The disappearance of the terms below m^{3} explans why an extremely aec untitr value of c is required in the numerical development Without contmung the series for c beyond $\mathrm{m}^{3}, D_{\mathrm{c}}$ is here limited to a single term, and therefore only the terms of the very lowest order in (21) can bo taken into account, This equation is thus reduced to

$$
[\mathrm{c}, 2] a_{2} \epsilon_{1}^{\prime}-\epsilon_{0}+[\mathrm{c},-2+\mathrm{c}] a_{-2} \epsilon_{-1}+2[\mathrm{c},+]{a_{0} \epsilon_{-1}}=0
$$

where

$$
[\mathrm{c}, 2]=[\mathrm{c},-2+\mathrm{c}]=-\frac{1 \mathrm{c}}{125} \mathrm{~m}^{-1}, \quad[\mathrm{c},+]=-\mathrm{T}^{2}, \mathrm{~m}^{-1}
$$

Hence

$$
\frac{1}{75}\left(\frac{3}{64} \epsilon_{0}+\frac{41}{64} \epsilon_{0}^{\prime}\right)-\epsilon_{0}+\left(\frac{19}{225}-\frac{4}{15}\right)\left(\frac{9}{61} \epsilon_{0}+\frac{123}{67} \epsilon_{0}^{\prime}\right)=0
$$

which gives quite simply $3 \epsilon_{0}+\epsilon_{0}{ }^{\prime}=0$, and with $\epsilon_{0}-\epsilon_{0}{ }^{\prime}=1, \epsilon_{0}=\frac{1}{4}, \epsilon_{0}{ }^{\prime}=-1$ These values, though representing only the terms of cero order in m, are t, tue within 1 per cent It follows that

$$
\begin{aligned}
& \epsilon_{1}=\frac{3}{16} \mathrm{~m}^{2}, \quad \epsilon_{-1}=-\frac{45}{3} \frac{\mathrm{~m}}{2}-\frac{555}{15} \mathrm{~m}^{2} \\
& \epsilon_{1}^{\prime}=\frac{15}{3} \mathrm{~m} \\
& \mathrm{~m}+\frac{277}{128} \mathrm{~m}^{\prime}, \quad \epsilon_{-1}^{\prime}=-\frac{1}{12} \mathrm{~m}^{2}
\end{aligned}
$$

where, owing to the imperfect values of $\epsilon_{0}, \epsilon_{0}^{\prime}$, the second terms in $\epsilon_{-1} \epsilon_{1}^{\prime}$ may also be defective

242 The terms thus found in (18) are

$$
\begin{aligned}
& u=\mathbf{a} e \zeta\left(\epsilon_{0} \zeta^{\mathrm{o}}+\epsilon_{0}^{\prime} \zeta^{-\mathrm{c}}+\epsilon_{1} \zeta^{\zeta^{+\mathrm{c}}+\epsilon_{-1} \zeta^{-0}+\mathrm{c}}+\epsilon_{1}^{\prime} \zeta^{\prime-\mathrm{c}}+\epsilon_{-1}^{\prime} \zeta^{-a-c}\right) \\
& s=\mathbf{a} \zeta^{-1}\left(\epsilon_{0} \zeta^{-\mathrm{c}}+\epsilon_{0}^{\prime} \zeta^{\mathrm{o}}+\epsilon_{1} \zeta^{-a-\mathrm{c}}+\epsilon_{-1} \zeta^{2-\mathrm{c}}+\epsilon_{1}^{\prime} \zeta^{-2+\mathrm{c}}+\epsilon_{-1}^{\prime} \zeta^{2+c}\right)
\end{aligned}
$$

to which correspond (§ 230)
$r \cos (v-n t-\epsilon)=\mathbf{a e}\left\{\left(\epsilon_{0}+\epsilon_{0}^{\prime}\right) \cos \phi+\left(\epsilon_{1}+\epsilon_{-1}^{\prime}\right) \cos (2 \xi+\phi)+\left(\epsilon_{1}^{\prime}+\epsilon_{-1}\right) \cos \left(2 \xi^{\prime}-\phi\right)\right\}$
$r \sin (v-n t-\epsilon)=\mathbf{a e}\left\{\left(\epsilon_{0}-\epsilon_{0}^{\prime}\right) \sin \phi+\left(\epsilon_{1}-\epsilon_{-1}^{\prime}\right) \sin (2 \xi+\phi)+\left(\epsilon_{1}^{\prime}-\epsilon_{-1}\right) \sin (2 \xi-\phi)\right\}$ where

$$
\phi=c\left(n-n^{\prime}\right)\left(t-t_{1}\right)
$$

is the argument of the trigonometrical term corresponding to ζ^{c} These terms are additive to the variational terms already obtamed

The fundamental terms are

$$
\begin{aligned}
& r \cos (v-n t-\epsilon)=\mathbf{a}\left(1-\frac{1}{2} e \cos \phi\right) \\
& r \sin (v-n t-\epsilon)=\mathbf{a e} \sin \phi
\end{aligned}
$$

Now in elliptic motion (24) and (25) of Chapter IV give, to the first order in e,
whence

$$
\begin{array}{r}
r \cos w=a\left(-\frac{3}{2} e+\cos M+\frac{1}{2} e \cos 2 M\right) \\
r \sin w=a\left(\quad \sin M+\frac{1}{2} e \sin 2 M\right)
\end{array}
$$

$$
\begin{aligned}
\imath \cos (w-M) & =a(1-e \cos M) \\
1 \sin (w-M) & =2 a e \sin M
\end{aligned}
$$

These can be identified with the former by putting $\mathbf{a}=a, \mathrm{e}=2 e, \phi=M$, and

$$
\begin{aligned}
v & =n t+\epsilon+w-M \\
& =w+\left\{n-\mathrm{c}\left(n-n^{\prime}\right)\right\} t+\epsilon+\mathrm{c}\left(n-n^{\prime}\right) t_{1} \\
& =w+\{1-\mathrm{c} /(1+\mathrm{m})\} n t+\mathrm{const}
\end{aligned}
$$

This shows that to this extent the motion of the Moon is purely elliptic, with eccentricity $\frac{1}{2} e$, but that this motion is referred to a line rotating unformly, given by

$$
v_{0}=\{1-\mathrm{c} /(1+\mathrm{m})\} n t=\left(\frac{3}{4} \mathrm{~m}^{2}+\frac{177}{32} \mathrm{~m}^{3}+\quad\right) n t
$$

Thus c determines the motion of the lunar perigee, which completes a revolution in the direct sense in rather less than 9 years The above approximation gives 128 sidereal months or 3500 days

In the older lunar theories, beginning with Clarraut, the rotating elliptic orbit is adopted in the first approximation

243 The result of collecting the terms found so far as necessary is

$$
\begin{aligned}
& r \cos (v-n t-\epsilon)=\mathbf{a}\left\{1-\mathrm{m}^{2} \cos 2 \xi-\frac{1}{2} \mathrm{e} \cos \phi\right. \\
& \left.\quad-\left(\frac{15}{15} \mathrm{~m}+\frac{139}{64} \mathrm{~m}^{2}\right) \mathrm{e} \cos (2 \xi-\phi)+\frac{5}{32} \mathrm{~m}^{2} \mathrm{e} \cos (2 \xi+\phi)\right\} \\
& 1 \sin (v-n t-\epsilon)=\mathbf{a}\left\{\frac{11}{6} \mathrm{~m}^{2} \sin 2 \xi+\mathrm{e} \sin \phi\right. \\
& \left.\quad+\left(\frac{1}{8} \mathrm{~m}+\frac{13}{2} \mathrm{~m}^{2}\right) \mathrm{e} \sin (2 \xi-\phi)+\frac{7}{32} \mathrm{~m}^{2} \mathrm{e} \sin (2 \xi+\phi)\right\}
\end{aligned}
$$

The effect of dividing the latter by the former is to add to the second series the terms

$$
\mathrm{m}^{2} \mathrm{e}\left(\cos 2 \xi \sin \phi+\frac{11}{6} \sin 2 \xi \cos \phi\right)=\mathrm{m}^{2} \mathrm{e}\left\{\frac{2}{3} \sin (2 \xi+\phi)-\frac{5}{32} \sin (2 \xi-\phi)\right\}
$$

Hence the longitude is approximately

$$
\begin{aligned}
v=n t+\epsilon+\frac{11}{8} m^{2} \sin & 2 \xi+e \sin \phi \\
& +\left(\frac{1 k}{8} m+\frac{2 n}{32} m^{2}\right) e \sin (2 \xi-\phi)+1 \frac{7 \pi}{\delta} m^{2} e \sin (2 \xi+\phi)
\end{aligned}
$$

As a constant of integration introduced at one stage of the present method, e may be defined in any suitable way for the later stages Its value depends on the exact definition adopted and will be found by comparing the final results with observation Thus $\frac{1}{2} e$ as defined by Brown is not to be identified with the e of Delaunay, for example The difference $1 s$ not great, however, and its value may be taken to be 00549 Thus the coefficient of the principal elluptic term in longitude, e $\sin \phi$, is of the order $6^{\circ} 3$

The term next in importance has the argument $2 \xi-\phi$ (or $2 D-l$ in Delaunay's notation) The coefficient is right to the order given, though the above derivation left this doubtful, and its value gives

$$
\left(\frac{25}{8} \mathrm{~m}+\frac{2098}{32} \mathrm{~m}^{2}\right) \mathrm{e}=73^{\prime} \text { nearly }
$$

The true coefficient, depending on e alone, is 4608" This nnequality is the largest true perturbation in the Moon's motion and is known as the Evection Its discovery fiom observation is due to Ptolemy

 depending on eclone It wall be motered that the gionter funt it it in

 longitude

 $\Omega=\Omega_{\mathrm{g}}$ and (4), (5) beeme

$$
\begin{aligned}
& D\left(u D_{s}-s D u-2 u u s\right)+\operatorname{lm}\left(u^{\prime}-v^{\prime}\right) \quad-4^{\prime \prime 2} l_{y} u^{1 s 2}
\end{aligned}
$$

where (3) gives

Now
where (§223) $\chi^{\prime}=v^{\prime}-n^{\prime} t-\epsilon^{\prime}-v^{\prime}-\phi^{\prime}$ th whe wilar rymathin it tho wht Hence
and therefore

$$
r^{2} S^{2}=f\left(u^{2}+s^{\prime}\right)\left(\omega_{0}=\left.1 \quad\right|^{\prime} u s \quad f\left(u^{2} \quad x^{\prime}\right) \times 42 x^{\prime}\right.
$$

 anomaly is

$$
\phi^{\prime}=n^{\prime}\left(t-t_{1}\right)-m\left(n-n^{\prime}\right)\left(t-t_{1}\right)-\cdots \operatorname{lng} \zeta_{x}^{\prime \prime \prime}
$$

 immedate purpose it is cayly verifaci that fut the first under m.

Hence

$$
\frac{a^{\prime 3}}{r_{1}^{3}}=\frac{a^{\prime 3}}{r_{1}^{\prime}} \cos 2 \chi^{\prime}=1+3 e^{\prime} \cos \phi^{\prime}, \quad n_{1}^{\prime 3} \text { sim } 2 \chi^{\prime} \text {, her sin } \phi
$$

Thus the right-hand members of the equations at the legnuma, at thax section will be of the form
for, as in $\S 238$, the suffix of ζ_{a} may be suppressed in the culenhatum wilh ther
 The solution 18 of the form
where

$$
A_{2 \imath}=a_{2 \imath}, \quad A_{2 \imath+\mathrm{m}}=e^{\prime} \eta_{\imath}, \quad A_{2 \imath-\mathrm{m}}=e^{\prime} \eta_{\imath}^{\prime}
$$

and p has the values $0, \pm 1$ only, until higher powers of e^{\prime} are taken into account The solution follows the same course as in § 239 except that there are now terms on the mght-hand side of the equations The equations of condition corresponding to (20) are thus

$$
\begin{aligned}
\sum_{\imath}\{[2 \jmath+\mathrm{m}, & 2 \imath+\mathrm{m}] a_{-2 \jmath+2 \imath} \eta_{\imath}+[2 \jmath+\mathrm{m}, 2 \imath+2 \jmath] a_{2 \imath+2 \jmath} \eta_{\imath}^{\prime} \\
& \left.+2[2 \jmath+\mathrm{m},+] a_{2 \jmath-2 l-2} \eta_{\imath}+2[2 \jmath+\mathrm{m},-] a_{-2 \jmath-2 \imath-2} \eta_{\imath}^{\prime}\right\}=E^{\prime \prime}
\end{aligned}
$$

This form results from the linear combination of a pair of equations obtained by comparing coefficients of ζ^{23+m} and in these the leading terms by analogy with (9) are respectively

$$
\begin{aligned}
& +\left\{4 \jmath^{\prime 2}+2 \jmath^{\prime}+1+4 \mathrm{~m}\left(\jmath^{\prime}+1\right)+\frac{9}{2} \mathrm{~m}^{2}\right\} a_{0} e^{\prime} \eta_{j} \\
& +\left\{4 \jmath^{\prime 2}-2 \jmath^{\prime}+1-4 \mathrm{~m}\left(\jmath^{\prime}-1\right)+\frac{9}{2} \mathrm{~m}^{2}\right\} a_{i 1} e^{\prime} \eta_{-j}^{\prime}+=e^{\prime} E_{2 j+\mathrm{m}} \\
& -4 \jmath^{\prime}\left(1+\jmath^{\prime}+\mathrm{m}\right\} a_{0} e^{\prime} \eta_{\jmath}-4 \jmath^{\prime}\left(1-\jmath^{\prime}+\mathrm{m}\right) a_{0} e^{\prime} \eta_{-j}^{\prime}+=e^{\prime} E_{2 j+\mathrm{m}}^{\prime}
\end{aligned}
$$

where \jmath^{\prime} is written for $\jmath+\frac{1}{2} \mathrm{~m}$ The combination is such that the coefficient of η_{-j}^{\prime} vanishes and that of η_{j} becomes - 1 Hence

$$
E^{\prime \prime}{ }_{2 j+\mathrm{m}}=\frac{4 \eta^{\prime}\left(1-\jmath^{\prime}+\mathrm{m}\right) E_{2 j+\mathrm{m}}+\left\{4 j^{\prime 2}-2 j^{\prime}+1-4 \mathrm{~m}\left(\jmath^{\prime}-1\right)+\frac{8}{2} \mathrm{~m}^{2}\right\} E^{\prime}{ }_{j j+\mathrm{m}}}{4 \jmath^{\prime 2}\left(8 \jmath^{\prime 2}-2-4 \mathrm{~m}+\mathrm{m}^{2}\right)}
$$

The divisor, which appears also in the symbolical coefficients [], becomes small only through the factor \jmath^{\prime}, when $\jmath=0,4 \jmath^{\prime 2}=\mathrm{m}^{2}$

245 The calculation of $\eta_{3}, \eta_{j}{ }^{\prime}$ when m is given its numerical value at the outset, proceeds as in the case of $\epsilon_{j}, \epsilon_{j}^{\prime}$ with this difference, that the equations contain definite right-hand members A particular solution of the differential equations is required, representing a forced disturbance of the steady variational motion Hence no new constant ot integration enters

The machnery is of course absurdly elaborate when only the main parts of the leading terms are sought, but thas plan wall be pursued It is easily found that

$$
\Omega_{2}=\frac{3}{4} m^{2} e^{\prime} a^{2}\left\{-\frac{1}{2}\left(\zeta^{2+m}+\zeta^{-2-m}\right)+\frac{7}{2}\left(\zeta^{2-m}+\zeta^{-2+m}\right)+\left(1+6 a_{-\infty}\right)\left(\zeta^{m}+\zeta^{-m}\right)\right\}
$$

with the neglect of m in the coefficients of $\zeta^{ \pm 2 \pm m}$, but not $\zeta^{ \pm m}$ The operator D_{t} apphes to $\zeta^{ \pm \infty}$ only and gives a multipher $\pm m$ to every term, while the operator D^{-1} apphes to ζ generally and gives divisors $\pm 2 \pm m$ or $\pm m$ Hence to the same order in m

$$
D^{-1}\left(D_{t} \Omega_{2}\right)=\frac{3}{4} m^{2} e^{\prime} \mathbf{a}^{2}\left\{\left(1+6 a_{-2}\right)\left(\zeta^{m}+\zeta^{-m}\right)\right\}
$$

Also

$$
s \frac{\partial \Omega_{2}}{\partial s}-u \frac{\partial \Omega_{2}}{\partial u}=\frac{3}{2} m^{2} e^{\prime} a^{2}\left\{\frac{1}{2}\left(\zeta^{2+m}-\zeta^{-2-m}\right)-\frac{7}{2}\left(\zeta^{2-m}-\zeta^{-2+m}\right)+8 a_{-\infty}\left(\zeta^{m}-\zeta^{-m}\right)\right\}
$$

Hence

$$
\begin{aligned}
& E_{\mathrm{m}}^{\prime \prime}=\left(-\mathrm{m}^{-1}+\frac{1}{2}\right) E_{\mathrm{m}}^{\prime}-\frac{1}{2} \mathrm{~m} \quad E_{\mathrm{m}}^{\prime} \quad \frac{1}{\mathrm{~m}}+\quad{ }_{4}^{\prime \prime} \mathrm{m} \\
& E^{\prime \prime}{ }_{-\mathrm{m}}=\left(\mathrm{m}^{-1}-\frac{1}{2}\right) E_{-\mathrm{m}}-{ }_{-1}^{1} \mathrm{~m}^{-2} E^{\prime \prime} \mathrm{m}-1 \mathrm{~m} \quad{ }^{1} \mathrm{~m}
\end{aligned}
$$

 and for the lowest order they groe mumedratels

$$
\begin{aligned}
& -\eta_{1}=E^{\prime \prime}{ }_{\mathrm{A} \mathrm{~m}}=\frac{1}{8} E^{\prime \prime}{ }_{\cdot \mid \mathrm{m}}{ }^{-} \quad \therefore \mathrm{m}
\end{aligned}
$$

$$
\begin{aligned}
& -\eta_{-1}=E^{\prime \prime}{ }_{-2+\mathrm{m}}=-\frac{1}{1} E_{2+\mathrm{m}}^{\prime}+{ }_{4}^{7} E^{\prime \prime} \quad 1 \mathrm{~m} \quad 1,1 \mathrm{~m}^{\prime} \\
& -\eta_{-1}^{\prime}=E^{\prime \prime}{ }_{-2-\mathrm{m}}=-\frac{1}{L_{2}^{\prime}}{ }_{2} \mathrm{~m}+\left.\mathrm{i}_{1} E^{\prime \prime} \mathrm{m}_{\mathrm{m}} \quad\right|^{\prime \prime} \mathrm{m}^{*}
\end{aligned}
$$

Coefficients of the form $[\mathrm{m}, y]$ are of the ouder 1 mm , but the v matipls terms of at least the fouth onden in the muations ton \mid o Thene wive therefore to the second order
where

$$
\begin{aligned}
& -\eta_{0}+2\left[\mathrm{~m},+\mid a_{0} \eta_{1} \quad 12\left[m,-\mid u_{i n} \eta_{1}^{\prime} \ldots b_{m}^{\prime \prime \prime}\right.\right. \\
& -\eta_{0}{ }^{\prime}+2\left[-\mathrm{m},+\left|a_{0} \eta_{1}^{\prime}+2\right|-\mathrm{m}-\mid a_{n} \eta_{1} \quad b^{\prime \prime \prime}{ }_{m}\right.
\end{aligned}
$$

Accordingly

$$
[m,+]=\mid-m,+]=-4, \quad|m, \quad| \quad|\quad m, \quad| \quad \mid
$$

$$
-\eta_{0}=\frac{1}{2} \mathrm{~m}-9_{1} \mathrm{ma}^{2},-\eta_{0}^{\prime}-1 \mathrm{~m} \mid \int \mathrm{m}^{2}
$$

 in the form

$$
\begin{aligned}
& 1 \cos (v-n t-\epsilon) \\
& =\mathbf{a} e^{\prime}\left\{\left(\eta_{0}+\eta_{0}{ }^{\prime}\right) \cos \phi^{\prime}+\left(\eta_{1}+\eta_{-1}^{\prime}\right) \cos \left(2 \xi+\phi^{\prime}\right)+\left(\eta_{1}{ }^{\prime}+\eta_{1}\right) \text { (1) }(2), \phi^{\prime}\right)_{1}^{\prime} \\
& =\mathbf{a} e^{\prime}\left\{\frac{3}{2} \mathrm{~m}^{2} \cos \phi^{\prime}+\frac{1}{2} \operatorname{man}^{2} \cos \left(2 \xi+\phi^{\prime}\right)-3 m^{2} \cos \left(2 \xi \quad \phi^{\prime}\right\}\right. \\
& r \sin (v-n t-\epsilon) \\
& =\mathbf{a} e^{\prime}\left\{\left(\eta_{0}-\eta_{0}{ }^{\prime}\right) \sin \phi^{\prime}+\left(\eta_{1}-\eta_{1}^{\prime}\right) \sin (2\} \mid \phi^{\prime}\right)+\left(\eta_{1}^{\prime} \quad \eta, \sin \left(2 \xi_{0} \quad \phi^{\prime}\right)^{\prime}\right.
\end{aligned}
$$

In deriving the longitude there are no moteremge ferma of than order, ant the last line without, a gives the adduthomal temm depending on e^{\prime} 'The
 The value of e^{\prime} is 001675 and the coedforent, of this pant of the torma, $-3 e^{\prime}\left(\mathrm{m}-\mathrm{m}^{2}\right)$, is $-770^{\prime \prime}$ as compared with the complete walue bind Fut

 considerable and show that the paits depending on higher jriweres of an at large As senes in me coofferents convige nlowly, and hernee the grat
advantage of the Hill-Brown method, which by employing an accurate numerical value of m from the beginning avoids expansions in this parameter altogether

246 In deriving the terms with the characteristic $a^{\prime-1}$ alone, e^{\prime} is neglected and therefore $\Omega_{2}=0, D_{t} \Omega=0$, and

$$
\begin{aligned}
\Omega & =\Omega_{3}=2 \mathrm{~m}^{2} a^{\prime-1} P_{9} r^{3}=\mathrm{m}^{2} a^{\prime-1}\left(5 r^{2} S^{3}-3 r^{3} S\right) \\
& =\frac{1}{8} \mathrm{~m}^{2} a^{\prime-1}\left\{5(u+s)^{8}-12 u s(u+s)\right\}
\end{aligned}
$$

since $r S=X=\frac{1}{2}(u+s)$ when $e^{\prime}=0$ The terms on the right-hand side of (4), (5) are thus

$$
\begin{gathered}
-4 \Omega_{3}=-\frac{1}{2} \mathrm{~m}^{2} a^{\prime-1}\left\{5\left(u^{3}+s^{3}\right)+3 u s(u+s)\right\}=\mathbf{a}^{3} a^{\prime-1} \Sigma E_{2 n+1} \zeta^{n+1} \\
s \frac{\partial \Omega_{3}}{\partial s}-u \frac{\partial \Omega_{3}}{\partial u}=-\frac{8}{8} \mathrm{~m}^{2} a^{\prime-1}\left\{5\left(u^{3}-s^{3}\right)+u s(u-s)\right\}=\mathbf{a}^{3} a^{\prime-1} \Sigma E^{\prime}{ }^{\prime 2+1}
\end{gathered} \zeta^{n+1} .
$$

respectively The additional terms required in the solution must be of the form

$$
u=\mathbf{a}^{2} a^{\prime-1} \zeta \sum \alpha_{22+1} \zeta^{22+1}, \quad s=\mathbf{a}^{2} a^{\prime-1} \zeta^{-1} \sum \alpha_{-22-1} \zeta^{22+1}
$$

in order to produce odd powers of ζ Similarly Ω_{4} has the factor $a^{\prime-2}$ and gives rise to terms with the same arguments as the variational terms The solution follows the same course as for the terms with characteristic e^{\prime}, and the relation connecting $E^{\prime \prime \prime}{ }_{2+1}$ with $E_{2 j+1}, E^{\gamma+1}, 1$ is the same as before when $\jmath^{\prime}=\jmath+\frac{1}{2}$

The principal terms are given by $2 \jmath+1= \pm 1, \pm 3$ The divisor $D_{2, \prime}$ is of the order m when $\jmath^{\prime}= \pm \frac{1}{2}$ only But Ω_{3} contains m^{2} as a factor Hence, when terms of the onder m^{3} are neglected in $E^{\prime}{ }_{2+1}, \mathrm{~m}^{2}$ can be neglected in $\mathrm{m}^{-2} \Omega_{9}$ and the variational coefficients a_{n}, a_{-2} are not requined Thus it is enough to write

$$
\begin{aligned}
-4 \Omega_{3} & =-\frac{1}{2} \mathrm{~m}^{2} \mathrm{a}^{3} a^{\prime-1}\left\{5\left(\zeta^{3}+\zeta^{-9}\right)+3\left(\zeta+\zeta^{-1}\right)\right\} \\
s \frac{\partial \Omega_{3}}{\partial s}-u \frac{\partial \Omega_{3}}{\partial u} & =-\frac{3}{8} \mathrm{~m}^{2} \mathbf{a}^{3} a^{\prime-1}\left\{5\left(\zeta^{3}-\zeta^{-9}\right)+\left(\zeta-\zeta^{-1}\right)\right\}
\end{aligned}
$$

and therefore

$$
\begin{aligned}
& -\alpha_{3}=E_{3}^{\prime \prime}=-{ }_{4}^{18} E_{3}+{ }_{1} \frac{7}{4} E_{9}^{\prime}=-\frac{r_{1}^{2}}{} \mathrm{~m}^{2}
\end{aligned}
$$

Also, to the same order in m,

$$
\begin{aligned}
& E_{1}^{\prime \prime}=\left(-\frac{1}{4} \mathrm{~m}^{-1}-\frac{9}{10}\right) E_{1}+\left(-\frac{1}{4} \mathrm{~m}^{-1}-\frac{9}{10}\right) E_{1}^{\prime}=\frac{75}{2} \mathrm{~m}+\frac{13}{2} \frac{\pi^{2}}{} \mathrm{~m}^{4}
\end{aligned}
$$

The equations for α_{1}, α_{-1} can be adapted from (21) and its correlative by putting $\mathrm{c}=1, \epsilon_{0}=\epsilon_{1}^{\prime}=\alpha_{1}$ and $\epsilon_{0}^{\prime}=\varepsilon_{-1}=\alpha_{-1}$ To the second order in m these give

$$
\begin{aligned}
& {[1,2] a_{2} \alpha_{1}-\alpha_{1}+[1,-1] u_{-2} \alpha_{-1}+2[1,+] a_{0} \alpha_{-1}=E_{1}^{\prime \prime}} \\
& {[-1,1] a_{2} \alpha_{1}-\alpha_{-1}+[-1,-2] a_{-8} \alpha_{-1}+2[-1,-] a_{0} \alpha_{-1}=E^{\prime \prime}{ }_{-1}}
\end{aligned}
$$

whence

$$
\begin{aligned}
& -{ }_{3}^{3} m \alpha_{1}-\alpha_{1}+\frac{1}{2} m \alpha_{-1}-{ }_{8}^{2} m \alpha_{-1}=\frac{15}{2} m+\frac{1}{1} \sum_{5}^{2} m
\end{aligned}
$$

and therefore

$$
-\alpha_{1}=1_{2}^{r} m+1_{1}^{15} m^{\prime}, \quad-\alpha_{1}=-15 m-111 m
$$

The additional terms in then elementury form are than

$$
\begin{aligned}
& 1 \sin (u-n t-\epsilon)=\mathbf{a}^{\prime} \alpha^{\prime}{ }^{1}\left\{\left(\alpha_{1}-\alpha_{-1}\right) \sin \xi+\left(\alpha_{1}-\alpha_{1}\right) \text { 4n " }\right\}
\end{aligned}
$$

and the last line, divided by a, gives the consesponding finm in lomithin The mean parallax of the Sun is $8^{\prime \prime} 80$ and of the Mosm $3422^{\prime \prime} 7$. In the above order a/ $/ u^{\prime}=0002571$ This given - $114^{\prime \prime}$ for the wethent it the frost term (argument ξ or I) and $1^{\prime \prime}(6$ tor the (oxflemt of the 4ramb (argument 3ξ or $3 D$), wheress the completer values, with the what hisith a/ a^{\prime} alone, are $-125^{\prime \prime}$ and under $l^{\prime \prime}$ The term with atgum nt. I) whown as the Parullactuc Inequality Iti period is one lunutam (on symolt month)
 probably the best detemmation of the sold parallas watal the hatet ar "

 because the Moon camot be obereved throughout, a compheto lamatom atm systematic eror may be suspected, due to the vajugh illumanatme of the lunar disc

247 Hetherto the texms of $11, s$ wheh wr of the ferst when in the
 z be assumed to bo of the fust onder the finst two equations of (2) whow that u, s contain in addition only terms of the second and hughes adras 'Ihs third equation of (2) has alowdy been consudered in $\$ 236$, and when 52 t neglected terms in z of the first oxder are given by the "quatwom

Let

$$
D^{2} z=\left(2 \Sigma M_{1} \zeta^{2 i}\right) z
$$

$$
\eta=g\left(n-n^{\prime}\right)\left(t-t_{2}\right)=-\iota \log \zeta^{\hbar}
$$

Then the general solution is of the form

$$
\iota z=\operatorname{ak} \Sigma k_{1}\left(\zeta^{a+g}-\zeta^{-21}\right)
$$

where a preliminary value of g has been found in $\$ 2 t 0$ and k, t wrent
 suppressed because it does not affect the calculatmon, though the punat
argument must be retained in the results The coefficients k_{i} are determined by equating terms in ζ^{23+8}, so that

$$
k_{\jmath}(2 \jmath+\mathrm{g})^{2}=\Sigma 2 M_{\imath} k_{j-\imath}
$$

and it is possible to write $k_{0}=1$
In obtaining k_{1}, k_{-1} to m^{2} only it is possible to neglect k_{2}, k_{-2} and approximate values of $M_{0}, M_{1}=M_{-1}$ have been found in $\S 240$ Thus the equations are

$$
\begin{aligned}
& (2+\mathrm{g})^{2} k_{1}=2 M_{0} k_{1}+2 M_{1} k_{0} \\
& (2-\mathrm{g})^{2} k_{-1}=2 M_{0} k_{-1}+2 M_{-1} k_{0}
\end{aligned}
$$

where
$(2+\mathrm{g})^{2}-2 M_{0}=8,(2-\mathrm{g})^{3}-2 M_{0}=-4 \mathrm{~m}-3 \mathrm{~m}^{2}, 2 M_{1}=2 M_{-1}=\frac{3}{2} \mathrm{~m}^{2}+\frac{19}{4} \mathrm{~m}^{3}$ Hence

$$
\text { and to this order in } \mathrm{m} \text { kin } k_{1}=\frac{3}{16} \mathrm{~m}^{2}, \quad k_{-1}=-\frac{3}{8} \mathrm{~m}-\frac{39}{3} \mathrm{~m}^{2}
$$

$$
\begin{aligned}
z & =\mathbf{a k}\left\{\zeta^{5}-\zeta^{-8}-\left(\frac{3}{8} \mathrm{~m}+\frac{29}{3} \mathrm{~m}^{2}\right)\left(\zeta^{-2+8}-\zeta^{2-8}\right)+\frac{3}{16} \mathrm{~m}^{2}\left(\zeta^{2+8}-\zeta^{-2-8}\right)\right\} \\
z & =2 \mathrm{ak}\left\{\sin \eta+\left(\frac{3}{8} \mathrm{~m}+\frac{23}{3} \mathrm{~m}^{2}\right) \sin (2 \xi-\eta)+\frac{3}{10} \mathrm{~m}^{2} \sin (2 \xi+\eta)\right\}
\end{aligned}
$$

248. Here the fundamental term is

$$
z=2 \mathbf{a k} \sin \eta=2 \mathbf{a k} \sin \left\{g\left(n-n^{\prime}\right)\left(t-t_{2}\right)\right\}
$$

and its general meaning is easily seen, though the exact definition of k must be adapted to the final approximation and then determined (like e) by direct comparison with observation The maximum value of z is 2 ak But it is also approximately $\mathbf{a} \tan I$, a being the mean distance in the orbit projected on the plane of the ecliptic and I being the inclination of the orbit to this plane Hence k is nearly $\frac{1}{2} \tan I$, and differs little from Delaunay's $\gamma=\sin \frac{1}{2} I$ Its provisional value may be taken to be $00448866=9260^{\prime \prime}$

Ata node $z=0$ and the period between successive returns to the same node ${ }^{18} 2 \pi / \mathrm{g}\left(n-n^{\prime}\right) \quad$ In this time the mean motion in longitude is $2 \pi n / \mathrm{g}\left(n-n^{\prime}\right)$ Hence the mean rate of change in the position of the node is

$$
\begin{aligned}
\left\{2 \pi n / \mathrm{g}\left(n-n^{\prime}\right)-2 \pi\right\}-2 \pi / \mathrm{g}\left(n-n^{\prime}\right) & =n-\mathrm{g}\left(n-n^{\prime}\right) \\
& =n\{1-\mathrm{g} /(1+\mathrm{m})\}=n\left(-\frac{3}{4} \mathrm{~m}^{2}+\frac{57}{32} \mathrm{~m}^{3}\right)
\end{aligned}
$$

with the approximate value of g tound in $\S 240$ Since this expression is negative the lunar node has a retrogade motion and completes a circuit in 6890 days or 189 years, which is reduced by about 100 days when the complete value of g is used These tacts have an important bearing on the theory of eclupse cycles

In deniving the elomentany terms in latitude with the characteristic k it is enough to take from the variational solution

$$
r=\mathbf{a}\left(1-\mathrm{m}^{2} \cos 2 \xi\right)
$$

and $t n$ the order m^{2} the latitude ${ }_{1 s}$

$$
z / r=2 \mathbf{k}\left\{\sin \eta+\left(\frac{3}{3} \mathrm{~m}+\frac{1}{3} \frac{1}{2} \mathrm{~m}^{2}\right) \sin (2 \xi-\eta)+\frac{1}{16} \mathrm{~m}^{2} \sin (2 \xi+\eta)\right\}
$$

The first term, with argument η (or F in Delaunay's notation) is the pincipal term in latitude Its coefficient is $5^{\circ} 8^{\prime}$ The second term, with argument $2 \xi-\eta$ (or $2 D-F$), has been called the evection in latitude Its cuefficient as found above is $610^{\prime \prime} 6$, the true value beng $618^{\prime \prime} 4$, The third ter m, with argument $2 \xi+\eta$ (or $2 D+F^{\prime}$) has the coefficient $83^{\prime \prime} 2$ as compared with the true value $94^{\prime \prime}{ }^{\circ}$)

249 It is now possible to sketch the whole method of the subsequent development The greater part of the practical work of calculation has ber 11 based not on the homogeneous equations used above, which present advantages in special cases (especially the calculation of long-period terms), but on the original equations (2),

$$
\begin{aligned}
& D^{2} u+2 \mathrm{~m} D u+\frac{3}{2} \mathrm{~m}^{2}(u+s)-\frac{\kappa u}{r^{3}}=-\frac{\partial \Omega}{\partial s} \\
& D^{\imath} z-\mathrm{m}^{2} z--\frac{\kappa z}{r^{3}}=-\frac{1}{2} \frac{\partial \Omega}{\partial z}
\end{aligned}
$$

It is unnecessary to use the equation in s because $s=f\left(\zeta^{-1}\right)$ if $u=f(\zeta)$, two real equations are replaced by a single complex one Also the characteristics entering into u and z are distinct Hence the treatment of the equations in u and z is also distanct The order of a characteristic is the sum of the positive powers of the parameters e, $e^{\prime}, \mathbf{a} a^{\prime-1}, \mathrm{k}$ which compose it m is a mere number for this purpose, and retans its identity only in the arguments Now suppose that a complete solution $u=u_{1}, s=s_{1}, z=z_{1}$ to the order μ in the characteristics has been obtained The next step is to find the solution $u=u_{1}+u_{2}, s=s_{1}+s_{2}, z=z_{1}+z_{2}$, where u_{2}, s_{2}, z_{2} represent, the terms of order $\mu+1$ Insert these values in the equations, retaining only the first powers of u_{2}, s_{2}, z_{2} The result 1s, snnce $\imath^{\circ}=u s+z^{2}$,

$$
\begin{aligned}
(D+\mathrm{m})^{2}\left(u_{1}+u_{2}\right)+\frac{1}{2} \mathrm{~m}^{2}\left(u_{1}+u_{2}\right. & \left.+3 s_{1}+3 s_{2}\right)-\kappa\left(u_{1}+u_{2}\right) r_{1}^{-3} \\
& +\frac{3}{2} \kappa u_{1} r_{1}^{-5}\left(u_{1} s_{2}+u_{2} s_{1}+2 z_{1} z_{2}\right)=-\frac{\partial \Omega}{\partial \mathrm{s}} \\
\left(D^{s}-\mathrm{m}^{2}\right)\left(z_{1}+z_{2}\right)-\kappa\left(z_{1}+z_{2}\right) r_{1}^{-3} & +\frac{3}{2} \kappa z_{1} r_{1}^{-s}\left(u_{1} s_{2}+u_{2} s_{1}+2 z_{1} z_{2}\right)=-\frac{1}{2} \frac{\partial \Omega}{\partial z}
\end{aligned}
$$

Now terms of order less than $\mu+1$ must be satisfied identically and therefore terms linear in u_{1}, s_{1}, z_{1} may be omitted Also terms of ordes higher than $\mu+1$ can be neglected Hence u_{1}, s_{1}, z_{1} may be used in calculating Ω, and in conjunction with u_{2}, s_{2}, z_{2} it is possible to write $u_{1}=u_{0}, s_{1}=s_{0}, z_{1}=0$, $1_{1}{ }^{2}=u_{0} s_{0}=\rho_{0}{ }^{2}$, where $u_{0}, s_{0}, z=0$ is the variational solution of zero onder Hence the equations reduce to

$$
\left.\begin{array}{rl}
(D+\mathrm{m})^{2} u_{2}+u_{2}\left(\frac{1}{2} \mathrm{~m}^{2}+\frac{1}{2} \kappa \rho_{0}^{-s}\right)+ & s_{2}\left(\frac{3}{2} \mathrm{~m}^{2}+\frac{3}{3} \kappa u_{0}^{2} \rho_{0}^{-5}\right) \\
& =-\left(\frac{\partial \Omega}{\partial \mathrm{s}}\right)_{1}+\kappa u_{1} 1_{1}^{-3}-\left(D^{\prime}+2 \mathrm{mD}\right) u_{1} \tag{22}\\
D^{\prime} z_{2}-z_{2}\left(\mathrm{~m}^{2}+\kappa \rho_{0}^{-0}\right) & =-\frac{1}{2}\left(\frac{\partial \Omega}{\partial z}\right)_{1}+\kappa z_{1_{1} 1_{1}-3}-D^{2} z_{1}
\end{array}\right\}
$$

where the terms with D have been retanned on the right-hand side, though apparently of order not higher than μ, for a reason to be explained later For the moment they can be left out of sight

250 Since the treatment of the two equations is separate but quite similar it will be enough to consider the first It is convenient to write $u_{1}=u_{0}+u_{1}^{\prime}, s_{1}=s_{0}+s_{1}^{\prime}$ and to expand the term $\kappa u_{1} r_{1}{ }^{-3}$ in terms of $u_{1}^{\prime}, s_{1}^{\prime}, z_{1}$, rejecting the variational part $\kappa u_{0} \rho_{0}^{-s}$ and the linear terms The form of the known solution has been made sufficiently obvious, and it is clear that the right-hand side, when developed, will contan an aggregate of character1stics λ each of order $\mu+1$ and each associated with one or more series Each constituent part may be taken to be of the form

$$
A=\mathbf{a} \lambda \zeta \sum_{\imath}\left(A_{\imath} \zeta^{n+r}+A_{-\imath}^{\prime} \zeta^{-2 n-r}\right)
$$

where

$$
\tau=q_{1} \mathrm{c}+q_{2} \mathrm{~m}+q_{3} \mathrm{~g}
$$

q_{1}, q_{2}, q_{3} having fixed integral values (positive or negative) in the series considered, while $2 \imath$ may have odd integral values when a a $a^{\prime-1}$ occurs in λ

The part of the solution required to satisfy this series is of the same form

$$
u_{2}=a \lambda \zeta \sum_{2}\left(\lambda_{n} \zeta^{n+r}+\lambda_{-2}^{\prime} \zeta^{-n-r}\right)
$$

and $\lambda_{2}, \lambda_{2}^{\prime}$ are to be found by inserting this expression in the equation This may be written

$$
(D+\mathrm{m})^{2} u_{2}+M u_{2}+N s_{2} \zeta^{2}=A
$$

where

$$
M=\frac{1}{2} \mathrm{~m}^{2}+\frac{1}{2} \kappa \rho_{0}^{-3}=\Sigma M_{v} \zeta^{22}, \quad N \zeta^{2}=\frac{3}{2} \mathrm{~m}^{2}+\frac{3}{2} \kappa u_{0}{ }^{2} \rho_{0}^{-b}=\zeta^{2} \Sigma N_{2} \zeta^{2}
$$

The series M, in which $M_{2}=M_{-i}$, has already occurred in the determination of c_{0} and g_{0} After substitution of the series for u_{2}, s_{2} comparison of the terms in $\zeta^{ \pm(2 j+\tau)+1}$ on both sides of the equation gives

$$
\left.\begin{array}{l}
(2 \jmath+\tau+1+m)^{2} \lambda_{j}+\sum_{2} M_{\imath} \lambda_{\jmath-\imath}+\sum_{2} N_{\imath} \lambda_{\imath-\jmath}^{\prime}=A_{\jmath} \tag{23}\\
(2 \jmath+\tau-1-m)^{2} \lambda_{-j}^{\prime}+\sum_{\imath} M_{\imath} \lambda_{-j-2}^{\prime}+\sum_{\imath} N_{\imath} \lambda_{j+2}=A_{-\jmath}^{\prime}
\end{array}\right\}
$$

This series of hnear equations, in which the coefficients M_{i}, N_{\imath} rapidly diminish, must then be solved by successive approximation When this has been carried out for each series A and every characteristic λ, all the terms of order $\mu+1$ in u, s have been determined The treatment of z is precisely similar

251 But one important question clearly arses Is the set of linear equations consistent and definite? If the modulus of the set, which can be written as a symmetrical determinant of infinite order sunce $M_{i}=M_{-i}$, $N_{2}=N_{-1}$, is not zero, the solution is certannly definite This is the general case But consider the determination of $\epsilon_{i}, \epsilon_{i}^{\prime}$ the co-factors of the character1stic e of the first order By the above method these will be obtaned from (23) by putting $A_{j}=A^{\prime}-\jmath=0$ and $\tau=\mathrm{c}$ The consistency of the equations
now requires the modulus to vanish It is obvious that this condition in fact, must lead to a determination of τ which will be identical with the value of c_{0}, though the latter was found above in a formally different way When the equations have thus been made consistent the solution only becomes definite when the arbitrary condition $\epsilon_{0}-\epsilon_{0}{ }^{\prime}=1$ is added, and this condition is equivalent to a definition of e .

It is now evident that the modulus vanishes whenever $\tau=c$, or for every series based on the same argument as that of the principal elliptic term The consistency of the linear equations requires a relation between the coefficients $A_{j}, A_{,}^{\prime}$ which may be expressed by equating the modulus to zero after replacing any column in it by the series A_{j}, A_{j}^{\prime} But owing to the symmetry of the modulus this relation is capable of a much umpler form Let the equations (23) be multiphed by $\epsilon_{j}, \epsilon_{-, j}^{\prime}$ and let the sum be taken tor all values of \jmath Then the coefficient of λ_{\jmath} is

$$
(2 \jmath+\tau+1+\mathrm{m})^{2} \epsilon_{\jmath}+\sum_{\imath} M_{\imath} \epsilon_{j+2}+\sum_{\imath} N_{\imath} \epsilon_{-1+2}^{\prime}=0
$$

because, since $\Sigma M_{\imath} \epsilon_{j+\imath}=\Sigma M_{-\imath} \epsilon_{-\imath \imath}=\Sigma M_{\imath} \epsilon_{j-\imath}$, this is one of the equations of condition Similarly all the coefficients on the left-hand side vanish, and the required relation appears in the form

$$
\begin{equation*}
0=\sum_{J}\left(A_{j} \epsilon_{\jmath}+A_{-\jmath}^{\prime} \epsilon_{-,}^{\prime}\right) \tag{24}
\end{equation*}
$$

The reason for retanning the terms $\left(D^{2}+2 \mathrm{~m} D\right) u_{1} \mathrm{~m}$ (22) will now be understood Without them there is no reason why the relation (24) should be satisfied, and in fact it will be contradicted But let u_{1} contann terms of the form

$$
\begin{gathered}
\left(u_{1}\right)=\zeta \sum_{\iota}\left(E_{\imath} \zeta^{\imath+c}+E_{-\iota} \zeta^{-2 \iota-c}\right) \\
\left(D^{2}+2 \mathrm{~m} D\right)\left(u_{1}\right)=\zeta \sum_{\imath}^{\{ }\left\{\mathrm{c}^{\mathrm{a}}+2 \mathrm{c}(2 \imath+1+\mathrm{m})\right] E_{\imath} \zeta^{2 \imath+c} \\
\\
\left.\quad+\left[\mathrm{c}^{2}+2 \mathrm{c}(2 \imath-1-\mathrm{m})\right] E_{-\iota}^{\prime} \zeta^{-2 u-c}\right\}
\end{gathered}
$$

where terms obviously of order less than $\mu+1$ are omitted Then clearly, it the value of c here be regarded as unknown, it will be possible to adjust its value so as to satisfy the relation (24)

252 The matter is made clearer by considening the actual tacts I_{n} the first order there is one such series, with the coefficients ϵ_{ι}, $\epsilon_{\imath}^{\prime}$ In the second order there is no such series and the question does not arise The primitive value c_{0} suffices In the third order senes of this type reappear, associcated with the characteristics e^{3}, $\mathrm{e}^{\prime 2}$, ek $\mathrm{k}^{2}, \mathrm{e}\left(\mathbf{a} \alpha^{\prime-1}\right)^{2} \quad$ The contemplated change in (is associated with e through the first order terms Hence the relation (24) in the third onder will give in succession the parts of c which contam $\mathrm{e}^{2}, e^{\prime 2}, \mathrm{k}^{2}$ and $\left(\mathbf{a} a^{\prime-1}\right)^{2}$ Similarly still higher parts of c may be found in conjunction with the mequalities of a higher order It is natural that the motion of the perigee (and the value of the characteristic exponent) which was determined for highly simplified conditions, should requine adjustment
when the conditions are more complicated and the deviation from the periodic orbtt is no longer infintely small

For c let $c_{1}+\lambda^{\prime} \delta \mathrm{c}$ be written, where $\lambda^{\prime} \delta \mathrm{c}$ is the part to be determined, its characteristic being λ^{\prime}, and let

$$
A_{\jmath}=B_{\jmath}+D_{\jmath} \delta \mathrm{c}, \quad A_{-\jmath}^{\prime}=B_{-\jmath}^{\prime}+D_{-\jmath}^{\prime} \delta \mathrm{c}
$$

where $B_{J}, B_{-\jmath}^{\prime}, D_{J}, D_{-\jmath}^{\prime}$ are calculated numbers With the new value of c the quantities A_{j}, A_{-j}^{\prime} satisfy a certain relation identically as required, and the equations (23) become consistent, but the solution is not definite because any one of the equations can be derived from the rest An arbitrary condition can be imposed, and the form $\lambda_{0}{ }^{\prime}=\lambda_{0}$ is chosen The solution is then conducted in the following way

The equations for $j=0$ are left aside Three separate solutions are then made of the remaming equations (1) $\lambda_{j}=b_{j}, \lambda_{-\jmath}^{\prime}=b_{-, ~}^{\prime}$ when $\lambda_{0}=\lambda_{0}^{\prime}=0$ and $A_{\jmath}=B_{j}, A_{-\jmath}^{\prime}=B_{-j}^{\prime}$, (2) $\lambda_{\jmath}=d_{j}, \lambda_{-j}^{\prime}=d_{-j}^{\prime}$ when $\lambda_{0}=\lambda_{0}^{\prime}=0$ and $A_{j}=D_{\jmath}$, $A_{-\jmath}^{\prime}=D_{-\jmath}^{\prime}$, and (3) $\lambda_{\jmath}=f_{\jmath}, \lambda_{-\jmath}^{\prime}=f^{\prime}-\jmath$ when $\lambda_{0}=\lambda_{0}^{\prime}=1$ and $A_{\jmath}=A_{-\jmath}^{\prime}=0$ The last, which under the different condition $\lambda_{0}-\lambda_{0}{ }^{\prime}=1$ would have led to $\epsilon_{j}, \epsilon_{-j}^{\prime}$, is independent of A_{j}, A_{-j}^{\prime} and applies in all cases The complete solution is therefore

$$
\lambda_{\jmath}=b_{j}+d_{j} \delta c+f_{j} \lambda_{0}, \quad \lambda_{-\jmath}^{\prime}=b_{-j}^{\prime}+d_{-j}^{\prime} \delta c+f_{-,}^{\prime} \lambda_{0}
$$

When these are inserted in the equations for $j=0$ the result is of the form

$$
b_{0}+d_{0} \delta c+f_{0} \lambda_{0}=b_{0}^{\prime}+d_{0}^{\prime} \delta c+f_{0}^{\prime} \lambda_{0}=0
$$

and δe and λ_{0} are thus determined The value of δc must also satisfy the relation (24), so that a check on the accuracy of the work is provided The solution of the equations (23) for the case when $\tau=c$ is therefore complete, and the derivation of the higher parts of c has been explanned It may be noted that on the left-hand side of these equations the primitive value c_{0} is to be retaned for τ at every stage, both because it is associated with terms of the full order $\mu+1$ and because the theory of the equations depends on the fact that the modulus vanishes On the other side c will receive its full value so far as it has been determined When a new part of c comes to be determined in conjunction with inequalities having the characteristic $\lambda, \delta c$ is always associated through $\left(D^{2}+2 \mathrm{~m} D\right)\left(u_{1}\right)$ with the terms in u_{1} of the first order in e Hence the new part of c itself always has the characteristic $\lambda^{\prime}=\mathrm{e}^{-1} \lambda$, and the numbers d_{j}, d_{-j}^{\prime}, like $f_{j}, f^{\prime}{ }_{-j}$, are the same in all cases

253 With the equation for z matters follow a precisely simular course, and the exceptional case arises when $\tau=g$ The conditions are simpler, because $\lambda_{\rho}+\lambda^{\prime}-\jmath=0$ always, and therefore the arbitrary relation has the form $\lambda_{0}=\lambda_{0}{ }^{\prime}=0$ The terms of the first order with suitable arguments have the characteristic k, and the part of g found in conjunction with inequalities having the characteristic λ contains the charactcristic $k^{-1} \lambda$

The arbitrary condition $\lambda_{0}=\lambda_{0}{ }^{\prime}$ adopted in all cases has an importanter. beyond that apparent in the actual calculation The aggiegate of the twrm considered up to the final stage of approximation gives for the one digument,

$$
\begin{aligned}
u & =\mathbf{a e} \zeta\left(\epsilon_{0} \zeta^{\mathrm{c}}+\epsilon_{0}^{\prime} \zeta^{-c}\right)+\mathbf{a} \zeta\left(\zeta^{\mathrm{c}}+\zeta^{-c}\right) \Sigma \lambda \lambda_{0} \\
s & =\mathbf{a e} \zeta^{-1}\left(\epsilon_{0} \zeta^{-\mathrm{c}}+\epsilon_{0}^{\prime} \zeta^{\mathrm{c}}\right)+\mathbf{a} \zeta^{-1}\left(\zeta^{c}+\zeta^{-c}\right) \Sigma \lambda \lambda_{0} \\
u \zeta^{-1}-s \zeta & =\mathbf{a e}\left(\epsilon_{0}-\epsilon_{0}^{\prime}\right)\left(\zeta^{\mathrm{o}}-\zeta^{-c}\right)
\end{aligned}
$$

The last expression remans unaltered throughout the course of the approsimations Hence the constant e is defined as "the coofficient of a $\ln l \mathrm{ln}$ the final expression of $\rho \sin (v-n t-\epsilon)$ as a sum of periodic terms, where $v-n t-\epsilon$ is the difference of the true and mean longitudes and ρ is the projection of the Moon's radius tector on the plane of reterence"

Similarly the terms of the form

$$
\iota z=\mathbf{a k} k_{0}\left(\zeta^{g}-\zeta^{-g}\right)
$$

in the first approximation have no addition made to them subsequentl\}, since $\lambda_{0}=\lambda_{0}{ }^{\prime}=0$ Hence the constant k is defined as "the coefficient of 2a $\sin F$ in the (final) expression of z as a sum of periodic term""

There is no reason to alter the detinition of \mathbf{a}, which is based on the variational curve But it is then to be noticed that the constant of distamk. in the projection on the z plane will no longer be $\mathbf{a} a_{0}$, where $a_{0}=1$, but will be affected by terms with various characteristics which mise in the counse of the approximations as the constant parts of $u \zeta^{-1}$ or $s \zeta$ Hither in or a, sume they are connected by a certan relation (11), may be reganded an an alntinay constant of the solution

The remaning three arbitraries have been denoted by t_{0}, t_{1}, t_{2} There may be replaced by ϵ, ϖ, θ, the mean longitudes of the Moon and its perigu " and node at the epoch $t=0$ Then

$$
\begin{aligned}
& D=\left(n-n^{\prime}\right)\left(t-t_{0}\right)=\left(n-n^{\prime}\right) t+\epsilon-\epsilon^{\prime} \\
& l=\mathrm{c}\left(n-n^{\prime}\right)\left(t-t_{1}\right)=\mathrm{c}\left(n-n^{\prime}\right) t+\epsilon-\infty \\
& l^{\prime}=\mathrm{m}\left(n-n^{\prime}\right)\left(t-t_{3}\right)=n^{\prime} t+\epsilon^{\prime}-\sigma^{\prime} \\
& F=\mathrm{g}\left(n-n^{\prime}\right)\left(t-t_{2}\right)=\mathrm{g}\left(n-n^{\prime}\right) t+\epsilon-\theta
\end{aligned}
$$

where ϵ^{\prime} is the mean longitude of the Sun at the epoch $t=0$ and w^{\prime} is the (constant) longitude of the solar perigee The time t_{3} is not an arbitian it, depends on the Sun alone and is one of the data of the problem

The formulae for transformation to polar coordinates were given in § 2:30 for two dimensions only It is necessary to replacer by ρ, its projection on the plane of the ecliptic, where $\rho^{2}=X^{2}+Y^{2}=u s \quad$ Then

$$
\begin{aligned}
& u \zeta^{-1}=\rho \exp \iota(v-n t-\epsilon) \\
& s \zeta=\rho \exp -\iota(v-n t-\epsilon) \\
& z=\rho \tan \phi
\end{aligned}
$$

where ϕ is the latitude Hence the true longitude and the latitude are

$$
\begin{aligned}
& v=n t+\epsilon+\frac{1}{2} \iota\left(\log s \zeta-\log u \zeta^{-1}\right) \\
& \phi=\tan ^{-1} \frac{z}{\rho}=\frac{z}{\rho}-\frac{1}{3}\left(\frac{z}{\rho}\right)^{3}+\frac{1}{5}\left(\frac{z}{\rho}\right)^{5}-
\end{aligned}
$$

The constant of the Moon's horizontal equatorial parallax is based on a, where $n^{2} a^{3}=E+M \quad$ To obtain the parallax at any time this constant must be multiplied by

$$
\frac{a}{r}=\frac{a}{\mathbf{a}}\binom{u s+z^{2}}{\mathbf{a}^{2}}^{-\frac{1}{2}}
$$

In these expressions for v, ϕ and $a_{n}{ }^{-1}$ the variational parts u_{0}, s_{0} are separated from the other terms u_{1}, s_{1}, z, and the expressions are then expanded in terms of the latter Advantage can thus be taken of the expansions already obtained in the course of the previous work The conversion to the final form of coordinates therefore entalls no great amount of extra labour

254 This completes in outline the solution of the mann part of the pioblem, in which the Earth, Moon and Sun are treated as centrobaric bodies, and the orbit of the Sun, or the relative orbit of the centre of mass of the Earth-Moon system, is treated as an undisturbed ellipse in a fixed plane. A large number of comparatively small but highly complicated corrections are still necessary in order to represent the gravitational motion of the Monn in actual circumstances They may be classified thus
(1) The effect of the ellhpsoidal figuie of the Eath, and possibly of the Moon
(2) The duect action of the planets on thc relative motion of the Moon
(3) The indurect action of the planets, which operates by modifying the coordmates of the Sun These indirect effects are in general larger than the direct effects, and are sometimes sensible in the lunar motion when they are insensible in the relative motion of the Earth and Sun Among the indirect actions of the planets may be specially mentioned
(4) Lunar inequalities produced by the motion of the ecliptic, and
(5) The secular acceleration of the Moon's mean motion, which arises from the secular change in the solar eccentricity e^{\prime} under the action of the planets

It is impossible to discuss these matters profitably in a short space The reader will tind references in Professor Brown's Treatise and detarled results in the memorr* which contans his complete and orignal theory

[^4]
CHAPTER XXII

PRECESSION, NUTATION AND TTME

255 In order to investigate the motion of the Earth about ith centse of gravity O we take a set of rectangular axes $O X Y Z$ fixed in space and a second set Oxyz conciding with the principal axes of mertia There ane fixed in the Earth and move with it The two sets are drawn in such a sense that the positive directions of the corresponding axes can be brought. into coincidence by a suitable rotation Their relative situation is defmed by the three Eulerian angles θ, ϕ, ψ, where θ is the angle between () Z and $O z, \phi$ is the angle between the planes $O X Z$ and $O Z z$, and ψ is the angle between the planes $O Z z$ and $O z x$ Then the coordinates are related by the scheme

	X	Y
	$\cos \theta \cos \phi \cos \psi-\sin \phi \sin \psi$	$\cos \theta \sin \phi \cos \psi+\cos \phi \sin \psi$
	$-\sin \theta(1) \psi \psi$	

$$
\sin \theta \sin \phi
$$

$\cos \theta$
The result of resolving the angular velocities θ which is a rotation in the plane $O Z z, \phi$ which is a rotation about $O Z$, and ψ which is a rotation aloust, $O z$, about $O x, O y, O z$ is to give the equivalent angular velocitics about theres. axes, namely

$$
\left.\begin{array}{l}
\omega_{1}=\theta \sin \psi-\phi \sin \theta \cos \psi \tag{1}\\
\omega_{2}=\theta \cos \psi+\phi \sin \theta \sin \psi \\
\omega_{3}=\psi \quad+\phi \cos \theta
\end{array}\right\}
$$

which are Euler's geometrical equations
Let A, B, C be the moments of inertia about the axes $O x y z$ and L, M, N the moments of the external forces about these axes Then the dynamucal equations may be written in the well-known form

$$
\left.\begin{array}{l}
A \omega_{1}-(B-C) \omega_{2} \omega_{3}=L \tag{2}\\
B \omega_{2}-(C-A) \omega_{3} \omega_{1}=M \\
C \omega_{3}-(A-B) \omega_{1} \omega_{2}=N
\end{array}\right\}
$$

256 The external forces which are here considered are due to the action of the Sun and Moon An approximate expression for the action of either of these bodies is sufficient and eassly found The potential of the Earth (mass m) at a distant point P has been found (§18) to be

$$
V=G \Sigma \frac{d m}{\rho}=G\left(\frac{m}{r}+\frac{A+B+C-3 I}{2 \imath^{3}}\right)
$$

where $O P=r$ and I is the moment of inertia of m about $O P$ This expression is true as regards terms of the second order in the coordmates of points in m relative to the centre of gravity 0 Terms of the third order will clearly vanish in the sum provided that the mass m possesses three rectangular planes of symmetry and this is sensibly true in the case of the Earth Terms of the fourth order are small in consequence of the ellipsordal figure of the Earth and are neglected Now V is the work done by unit attracting mass at P when the particles of the mass m are brought from infinity to their actual configuration Hence the work done by a finite mass near a distant point O^{\prime} is

$$
\begin{aligned}
U & =G \Sigma\left(\frac{m}{r}+\frac{A+B+C-3 I}{2 r^{3}}\right) d m^{\prime} \\
& =G\left\{\frac{m m^{\prime}}{R}+m\left(A^{\prime}+\frac{B^{\prime}}{2}+C^{\prime}-3 I^{\prime}\right)\right\}+\frac{1}{2} G \Sigma \frac{A+B+C-3 I}{R^{3}} d m^{\prime}
\end{aligned}
$$

by similar reasoning, if O^{\prime} is the centre of gravity of the attracting mass $m^{\prime}, O O^{\prime}=R, A^{\prime}, B^{\prime}, C^{\prime}$ are the principal moments of inertia of m^{\prime} at O^{\prime} and I^{\prime} is the moment of inertia of m^{\prime} about $O O^{\prime}$ Now since A, B, C and I are of the second order in the linear dimensions of m, terms of the second order in the linear dimensions of m^{\prime} can be neglected when associated with them Let the coordinates of O^{\prime} relative to O be (x, y, z) and of P relative to O^{\prime} be $(\xi, \eta, \zeta) \quad$ Then

$$
\begin{aligned}
r^{2} & =(x+\xi)^{2}+(y+\eta)^{2}+(z+\zeta)^{2} \\
r^{2} I & =A(x+\xi)^{2}+B(y+\eta)^{2}+C(z+\zeta)^{2}
\end{aligned}
$$

But since O^{\prime} is the centre of gravity of the mass m^{\prime}

$$
\Sigma \xi d m^{\prime}=\Sigma \eta d m^{\prime}=\Sigma \zeta d m^{\prime}=0
$$

Hence if the expression to be summed be expanded in terms of ξ, η, ζ, the terms of the first order vanish in the sum and terms of the second order are neglected To this order of approximation

$$
G \Sigma \frac{A+B+C-3 I}{r^{3}} d m^{\prime}=G m^{\prime}\left\{\frac{A+B+C}{R^{3}}-\frac{3\left(A x^{2}+B y^{2}+C z^{2}\right)}{R^{3}}\right\}
$$

and if I now represents the moment of inertia of m about $O O^{\prime}$, the complete expression for U becomes

$$
U=G\left\{\frac{m m^{\prime}}{R}+\frac{m\left(A^{\prime}+B^{\prime}+C^{\prime}-3 I^{\prime}\right)}{2 R^{3}}+\frac{m^{\prime}(A+B+C-3 I)}{2 R^{3}}\right\}
$$

This represents the mutual potential of two masses m, m^{\prime} with sufficient, accuracy In the usual astronomical units ($\S 24) G=k$ 'The mans of the Sun is unity and for the masses of the Earth and Moon we take E and $+L^{\prime}$ Then if the mean distances of the Sun and Moon are $a^{\prime}(=1)$ and $a^{\prime \prime}$ and the mean motions n^{\prime} and $n^{\prime \prime}$,

$$
\begin{aligned}
& G(1+E)=n^{\prime 2} a^{\prime} \\
& G E(1+f)=n^{\prime / 2} a^{\prime / 3}
\end{aligned}
$$

257 The moments of the external forees about the axes $O x y z$ berng L, M, N, the work done by them when the Earth recerves a small twist defined by the rotations $d \omega_{1}, d \omega_{2}, d \omega_{3}$ about the same axes is

$$
d U=L d \omega_{1}+M d \omega_{2}+N d \omega_{3}
$$

But U depends on the orientation of the Earth only through the occurnconce of I, and

$$
R^{2} I=A x^{2}+B y^{n}+C z^{2}
$$

(x, y, z) being the centre of granity of the attracting body Hence

$$
d U=-3 G m^{\prime}(A x d x+B y d y+C z d z) / R^{5}
$$

But with due regard to sugn, when the axes are rotated,

$$
d x=y d \omega_{3}-z d \omega_{2}, \quad d y=z d \omega_{1}-x d \omega_{3}, \quad d z=x d \omega_{2}-y d \omega_{1}
$$

Hence, equating the coefficients of $d \omega_{1}, d \omega_{2}, d \omega_{3}$ in the two exprestons tor $d U$,
$L=3 G m^{\prime}(C-B) y z / R^{5}, \quad M=3 G m^{\prime}(A-C) x z / R^{5}, \quad N=3 G m^{\prime}(B-A) x y / R^{2}$ These apply to a body possessing three distinct principal axes But the Earth may be reganded as an ellipsond of revolution, for which $B=A$ and C'>A Under these circumstances

$$
L=3 G m^{\prime}(C-A) y z / R^{5}, \quad M=-3 G m^{\prime}(C-A) x z / R^{5}, \quad N=0
$$

On the other hand, the term in U which depends on the orientation of the Earth is more generally

$$
\begin{aligned}
U^{\prime} & =-\frac{3}{2} G m^{\prime} I / R^{3}=-\frac{3}{2} G m^{\prime}\left(A x^{2}+B y^{0}+C z^{2}\right) / R^{5} \\
& =-\frac{3}{4} G m^{\prime}\left\{(2 C-A-B) z^{2}+(A-B)\left(x^{2}-y^{0}\right)+(A+B) R^{2}\right\} / R^{5}
\end{aligned}
$$

a useful form for sorne puiposes The last term on the right, being independent of the orientation, can always be rejected, and when the Earth is considered uniaxal, it is possible to use simply

$$
\begin{equation*}
U^{\prime \prime}=-\frac{3}{2} G m^{\prime}(C-A) z^{\prime} / R \tag{3}
\end{equation*}
$$

258 With $B=A$ and $N=0$, the third equation of (2) gives

$$
\omega_{3}=0, \omega_{3}=n
$$

and the other equations of the set become

$$
\begin{aligned}
& A \omega_{1}+(C-A) n \omega_{2}=L \\
& A \omega_{2}-(C-A) n \omega_{1}=M
\end{aligned}
$$

The actual motion of the Earth is a steady state of rotation disturbed by the external forces and this steady state will be found by putting $L=M=0$ The equations then give

$$
\begin{aligned}
\omega_{1}+\mu^{2} \omega_{1} & =\omega_{2}+\mu^{2} \omega_{2}=0 \\
\mu & =n(C-A) / A
\end{aligned}
$$

Hence the steady state is given by

$$
\omega_{1}=h \cos (\mu t+\alpha), \quad \omega_{2}=h \sin (\mu t+\alpha)
$$

But the instantaneous axis of rotation in the Earth is the line

$$
x / \omega_{1}=y / \omega_{2}=z / \omega_{3}
$$

or

$$
x / h \cos (\mu t+\alpha)=y / h \sin (\mu t+\alpha)=z / n
$$

which indicates that if h is farrly small the terrestrial pole describes a small circle of raduus h / n about the axis of figure in the period $2 \pi / \mu$ This is the Eulerian period of $A /(C-A)$ (roughly 300) days Now the angle between the Zenith of a place and the Pole is the co-latitude of the place, an angle which can be constantly observed Hence the latitude of any place should exhibit a variation with a period of about 10 months Until a quarter of a century ago no variation of latitude had certanly been detected Since that time variations (of the order of $0^{\prime \prime} 3$) have been systematically observed and studied and have also been traced in the older observations But analysis has proved conclusively that these variations contain no part which conforms with the Eulerian period They cannot therefore be explaned by the free motion of the Pole on a rigid Earth Hence observation justifies the belief that h / n is insensibly small

The variations of latitude observed are always very small and constitute a highly complex phenomenon The periods of the chief components of the motion of the Pole are about 12 and 14 months

259 Corresponding to the free movement of the Pole on the Earth's surface we have, by (1),

$$
\begin{aligned}
\theta & =\omega_{1} \sin \psi+\omega_{2} \cos \psi=h \sin (\mu t+\alpha+\psi) \\
\phi \sin \theta & =\omega_{2} \sin \psi-\omega_{1} \cos \psi=-h \cos (\mu t+\alpha+\psi)
\end{aligned}
$$

For the plane $O X Y$ we take the plane of the ecluptic which varies but slightly in consequence of planetary perturbations The value of θ is about 23° Hence θ and ϕ are very small in comparison with n, a fact in accordance with observation even when the disturbing effects of the Sun and Moon are operative Hence, further, ψ differs only slightly fiom n

The rotational energy of the Earth is T, where

$$
\begin{aligned}
2 T & =A\left(\omega_{2}^{2}+\omega_{2}^{2}\right)+C \omega_{3}{ }^{2} \\
& =A\left(\theta^{2}+\phi^{2} \sin ^{2} \theta\right)+C(\psi+\phi \cos \theta)^{2}
\end{aligned}
$$

Hence the Lagrangian equations of motion are

$$
\begin{aligned}
& \frac{d}{d t}(A \theta)-A \phi^{2} \sin \theta \cos \theta+C \phi \sin \theta(\psi+\phi \cos \theta)=\frac{\partial U}{\partial \theta} \\
& \frac{d}{d t}\left\{A \phi \sin ^{2} \theta+C \cos \theta(\psi+\phi \cos \theta)\right\}=\frac{\partial U}{\partial \phi} \\
& \frac{d}{d t}\{C(\psi+\phi \cos \theta)\} \\
&=\frac{\partial U}{\partial \psi}
\end{aligned}
$$

But since

$$
\frac{\partial U}{\partial \psi}=N=0, \psi+\phi \cos \theta=n
$$

the first two equations become

$$
\begin{aligned}
A \theta-A \phi^{2} \sin \theta \cos \theta+C n \phi \sin \theta & =\frac{\partial U}{\partial \theta} \\
\frac{d}{d t}\left(A \phi \sin ^{2} \theta+C n \cos \theta\right) & =\frac{\partial U}{\partial \phi}
\end{aligned}
$$

It has been seen that n is very large compared with θ and ϕ, and it follows that those terms are of predominant importance which contam n as a factor Neglecting the other terms on the left the equations become simply

$$
\begin{aligned}
& \phi=\frac{1}{C n \sin \theta} \frac{\partial U}{\partial \theta} \\
& \theta=-\frac{1}{C n \sin \theta} \frac{\partial U}{\partial \phi}
\end{aligned}
$$

The complete justification for omitting the terms rejected must be sought by substituting in them the results which follow from the latter simple form of equations, when it will be found that they are practically insensible The form to be used for U is given by (3), so that

$$
U=-\frac{3}{2} G(C-A) \Sigma m^{\prime} z^{2} / R^{5}
$$

a sum of two terms corresponding to the Sun and Moon For each disturbing body it is necessary to find the product of z^{2} / R^{2} and a^{3} / R^{3} expressed in appropriate terms and with a suitable degree of approximation

260 The axes $X Y Z$ being fixed in space are defined so that $O Z$ is directed towards the pole of the ecliptic for 18500 and $O X$ towards the equinox for the same epoch By the scheme of transformation

$$
z=X \sin \theta \cos \phi+Y \sin \theta \sin \phi+Z \cos \theta
$$

The position of a disturbing body, such as the Moon, is more conveniently referred to a similar set of axes for another epoch t The necessary changes may be considered successively, thus
(1) Rotate the axes about $O Z$ through the angle Ω so as to bring $O X$ to the position $0 X_{1}$ Then

$$
X=X_{1} \cos \Omega-Y_{1} \sin \Omega, \quad Y=Y_{1} \cos \Omega+X_{1} \sin \Omega, \quad Z=Z_{1}
$$

where Ω is the node of the ecliptic for epoch t on the ecliptic for 18500
(n) Rotate the axes about $O X_{1}$ through the angle \imath so as to bring $O Y_{1}$ to the position $0 Y_{2}$ Then

$$
X_{1}=X_{2}, \quad Y_{1}=Y_{2} \cos \imath-Z_{2} \sin \imath, \quad Z_{1}=Z_{2} \cos \imath+Y_{2} \sin \imath
$$

where \imath is the inclunation of the ecliptic for epoch t to the ecliptic for 18500
(iil) Rotate the axes about $O Z_{3}$ through the angle $N-\Omega$ so as to bring $O X_{2}$ to the position $O X_{3}$ Then

$$
\begin{aligned}
X_{2} & =X_{3} \cos (N-\Omega)-Y_{3} \sin (N-\Omega), \\
Y_{2} & =Y_{3} \cos (N-\Omega)+X_{3} \sin (N-\Omega), \quad Z_{2}=Z_{3}
\end{aligned}
$$

where N is the longitude of the Moon's node reckoned through Ω in both echptic planes
(1v) Rotate the axes about $O X_{3}$ through the angle c so as to bring $O Y_{3}$ to the position $0 Y_{4}$ Then

$$
X_{3}=X_{4}, \quad Y_{3}=Y_{4} \cos c-Z_{4} \sin c, \quad Z_{3}=Z_{4} \cos c+Y_{4} \sin c
$$

where c is the inclination of the Moon's orbit to the ecliptic for epoch t
But, if (X_{4}, Y_{4}, Z_{4}) are the Moon's coordinates,

$$
X_{4}=r \cos (v-N), \quad Y_{4}=r \sin (v-N), \quad Z_{4}=0
$$

where r is the radius vector and v is the longitude of the Moon at epoch t reckoned in its orbit, this longitude is the sum of three arcs in the two ecliptic planes and the plane of the lunar orbit Now $\imath<1^{\circ}$ and, for the Moon, c is of the order 5° Terms of the order \imath^{2}, c^{3} and $\imath c$ are therefore neglected Then the result of eliminating $\left(X_{3}, Y_{3}, Z_{3}\right),\left(X_{4}, Y_{4}, Z_{4}\right)$ gives

$$
\begin{aligned}
& X_{2}=r \cos (v-\Omega)+\frac{1}{2} c^{2} r \sin (v-N) \sin (N-\Omega) \\
& X_{2}=\imath \sin (v-\Omega)-\frac{1}{2} c^{2} r \sin (v-N) \cos (N-\Omega) \\
& Z_{2}=c r \sin (v-N)
\end{aligned}
$$

and the result of eliminating $(X, Y, Z),\left(X_{1}, Y_{1}, Z_{1}\right)$ gives

$$
\begin{aligned}
z=X_{2} \sin \theta \cos (\phi-\Omega)+Y_{2} \sin \theta & \sin (\phi-\Omega)+Z_{2} \cos \theta \\
& +\imath\left\{Y_{2} \cos \theta-Z_{2} \sin \theta \sin (\phi-\Omega)\right\}
\end{aligned}
$$

Hence

$$
\begin{gathered}
z / \imath=\sin \theta \cos (v-\phi)+c \cos \theta \sin (v-N)-\frac{1}{2} c^{2} \sin \theta \sin (v-N) \sin (\phi-N) \\
+\imath \cos \theta \sin (v-\Omega)
\end{gathered}
$$

In squaring this expression terms not involving θ or ϕ can be rejected, because they disappear on differentiation Also terms involving v with
coefficients above zero order are found to be negligible in effect Under these conditions the result becomes

$$
\begin{align*}
z^{2} / 2^{2} & =\frac{1}{2} \sin ^{2} \theta+\frac{1}{2} \sin ^{2} \theta \cos 2(v-\phi) \\
& +c \sin \theta \cos \theta \sin (\phi-N)+\imath \sin \theta \cos \theta \sin (\phi-\Omega) \\
& +\frac{1}{4} c^{2} \sin ^{2} \theta \cos 2(\phi-N)-\frac{3}{4} c^{2} \sin ^{2} \theta \tag{4}
\end{align*}
$$

261 Certain expansions in terms of the mean anomaly in undisturbed elliptic motion are now required When e^{3} is neglected in the formulae of $\S 40$, (22), (26) and (27) of Chapter IV become

$$
\begin{aligned}
r / a & =1+\frac{1}{2} e^{0}-e \cos M-\frac{1}{2} e^{2} \cos 2 M \\
a^{\circ} x / r^{3} & =\left(1-\frac{3}{8} e^{8}\right) \cos M+2 e \cos 2 M+\frac{27}{8} e^{2} \cos 3 M \\
a^{2} y / \imath^{3} & =\left(1-\frac{5}{8} e^{2}\right) \sin M+2 e \sin 2 M+\frac{27}{8} e^{2} \sin 3 M
\end{aligned}
$$

The latter give, w being the true anomaly,

$$
\begin{aligned}
a^{4} \sin 2 w / r^{4} & =\left(1-e^{2}\right) \sin 2 M+4 e \sin 3 M+\frac{43}{4} e^{2} \sin 4 M \\
a^{4} \cos 2 w / r^{4} & =\frac{1}{4} e^{2}+\left(1-e^{2}\right) \cos 2 M+4 e \cos 3 M+\frac{43}{4} e^{\prime} \cos 4 M \\
a^{4} / r^{4} & =1+3 e^{2}+4 e \cos M+7 e^{?} \cos 2 M
\end{aligned}
$$

whence, after multiplication by r / a,

$$
\begin{aligned}
a^{3} \sin 2 w / r^{3} & =\left[-\frac{1}{2} e \sin M\right]+\left(1-\frac{5}{2} e^{2}\right) \sin 2 M+\left[\frac{7}{2} e \sin 3 M+\frac{17}{2} e^{2} \sin 4 M\right] \\
a^{3} \cos 2 w / r^{3} & =\left[-\frac{1}{2} e \cos M\right]+\left(1-\frac{5}{2} e^{0}\right) \cos 2 M+\left[\frac{7}{2} e \cos 3 M+\frac{17}{2} e^{2} \cos 4 M\right] \\
a^{3} / r^{3} & =1+\frac{3}{2} e^{2}+3 e \cos M+\left[\frac{9}{2} e^{0} \cos 2 M\right]
\end{aligned}
$$

The eccentricity being small, of the same order as c, the terms [] which involve M and are not of zero order, are immediately rejected Now

$$
\begin{aligned}
& M=n^{\prime \prime} t+\mu-\varpi \\
& v=w+\varpi
\end{aligned}
$$

where $n^{\prime \prime} t+\mu$ is the mean longitude of the Moon in its orbit and wis the longitude of the lunar perigee, both being measured partly in the two ecliptic planes for 18500 and the epoch t and partly in the plane of the lunar orbit From the expression (4) can now be denived

$$
\begin{aligned}
& a^{3} z^{2} / r^{5}=\left(\frac{1}{2}-\frac{3}{4} c^{2}+\frac{3}{4} e^{2}\right) \sin ^{2} \theta+c \sin \theta \cos \theta \sin (\phi-N) \\
& \quad+\imath \sin \theta \cos \theta \sin (\phi-\Omega)+\frac{1}{4} c^{2} \sin ^{2} \theta \cos 2(\phi-N) \\
& \quad+\frac{1}{2} \sin ^{2} \theta \cos 2\left(n^{\prime \prime} t+\mu-\phi\right)+\frac{3}{2} e \sin ^{2} \theta \cos \left(n^{\prime \prime} t+\mu-\varpi\right)
\end{aligned}
$$

the final term being retained though periodic and not of zero onder
For the Sun $c=0$ and hence similarly

$$
\begin{aligned}
a^{\prime 3} z^{\prime 2} / r^{\prime 5}= & \left(\frac{1}{2}+\frac{3}{4} e^{\prime 2}\right) \sin ^{2} \theta+\imath \sin \theta \cos \theta \sin (\phi-\Omega) \\
& +\frac{1}{2} \sin ^{2} \theta \cos 2\left(n^{\prime} t+\mu^{\prime}-\phi\right)+\frac{3}{2} e^{\prime} \sin ^{2} \theta \cos \left(n^{\prime} t+\mu^{\prime}-\varpi^{\prime}\right)
\end{aligned}
$$

262 These expressions give the means of forming U, for
For the Moon (§ 256)

$$
U=-\frac{3}{2} G(C-A) \sum m^{\prime} z^{2} / R^{\diamond}
$$

$$
\frac{G m^{\prime}}{a^{3}}=\frac{G E f}{a^{1 / 3}}=\frac{f n^{\prime \prime 2}}{1+f}
$$

and for the Sun

$$
\frac{G m^{\prime}}{a^{\prime}}=\frac{G}{a^{\prime 3}}=\frac{n^{\prime 2}}{1+E}
$$

Let

$$
\begin{equation*}
K_{2}=\frac{3}{2} \frac{C-A}{C n} \frac{f_{n}^{\prime \prime}}{1+f}, \quad K_{1}=\frac{3}{2} \frac{C-A}{C n} \frac{n^{\prime 2}}{1+E} \tag{5}
\end{equation*}
$$

Then

$$
\frac{U}{C n}=-K_{2} \frac{a^{3} z^{2}}{r^{5}}-K_{1} \frac{a^{\prime 3} z^{\prime 2}}{r^{\prime s}}
$$

$=-\left\{K_{2}\left(\frac{1}{2}-\frac{9}{4} c^{2}+\frac{3}{4} e^{2}\right)+K_{1}\left(\frac{1}{2}+\frac{3}{4} e^{\prime 2}\right)\right\} \sin ^{2} \theta-\frac{1}{2}\left(K_{1}+K_{2}\right) 2 \sin 2 \theta \sin (\phi-\Omega)$
$-K_{1}\left\{\frac{1}{2} \cos 2\left(n^{\prime} t+\mu^{\prime}-\phi\right)+\frac{3}{2} e^{\prime} \cos \left(n^{\prime} t+\mu^{\prime}-\omega^{\prime}\right)\right\} \sin ^{2} \theta$
$-K_{2}\left\{\frac{1}{2} \cos 2\left(n^{\prime \prime} t+\mu-\phi\right)+\frac{3}{2} e \cos \left(n^{\prime \prime} t+\mu-w\right)\right\} \sin ^{2} \theta$
$-K_{3}\left\{c \sin \theta \cos \theta \sin (\phi-N)+\frac{1}{4} c^{2} \sin ^{2} \theta \cos 2(\phi-N)\right\}$
The dynamical equations (\$259)

$$
\begin{gather*}
\phi=\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\frac{U}{C_{n}}\right) \tag{6}\\
\theta=-\frac{1}{\sin \theta} \frac{\partial}{\partial \phi}\left(\frac{U}{C n}\right)
\end{gather*}
$$

which result must be solved by continual appioximation This process, when guided by the facts of observation and limited to practical requirements for a period of a century or two, is very simple For it is known that θ is very nearly constant, while ϕ changes progressively but very slowly Hence it is possible to discuss the secular effects, or precession, and the periodic effects, or nutation, separately

263 The last three lines in the expression for $U / O n$, containing six terms, give rise to periodic terms in θ, ϕ, which can be neglected in the first instance The secular changes come fiom the terms in the first line With sufficient acculacy we may write

$$
\imath \sin \Omega=g t, \quad \imath \cos \Omega=g^{\prime} t, \quad e^{\prime}=e_{0}+e_{2} t
$$

the quantities $e_{0}, e_{1} g$ and g^{\prime} being given by the theory of the Sun's motion The corresponding changes for the Moon are negligrble in effect or rather are treated differently Hence the equaitions for the secular movements of the Earth's axis are

$$
\begin{aligned}
\dot{\phi}= & -\left\{K_{2}\left(1-\frac{3}{2} c^{2}+\frac{3}{2} e^{2}\right)+K_{1}\left(1+\frac{3}{2} e_{0}^{2}\right)\right\} \cos \theta \\
& -\left(K_{1}+K_{2}\right) \cos 2 \theta\left(g^{\prime} \sin \theta-g \cos \phi\right) t-3 K_{1} e_{0} e_{1} t \cos \theta \\
\theta= & \left(K_{1}+K_{2}\right) \cos \theta\left(g^{\prime} \cos \phi+g \sin \phi\right) t
\end{aligned}
$$

When $t=0(18500), \theta$ is the mean oblqquity of the ecliptic for that date and may be denoted by ϵ_{0} Also ϕ, being the angle between the phanes $O X Z$ and $O Z z(\$ 255)$, is 90° by the definition of the axis $O X$ The penordic effects at the time $t=0$ are excluded from consideration here, but then influence is small Hence initially

$$
\left.\begin{array}{rl}
\phi=90^{\circ} & -\left\{K_{2}\left(1-\frac{3}{2} c^{2}+\frac{3}{2} e^{2}\right)+K_{1}\left(1+\frac{3}{2} e_{0}{ }^{2}\right)\right\} \cos \epsilon_{0} t \tag{7}\\
& \quad-\left\{\frac{1}{2}\left(K_{1}+K_{2}\right) \frac{\cos 2 \epsilon_{0}}{\sin \epsilon_{0}} g^{\prime}+\left\{K_{1} e_{0} e_{1} \cos \epsilon_{0}\right\} t^{2}\right.
\end{array}\right\}
$$

The length of time during which these expressions will be valid deperinds on the numerical values of the quantities involved For a short interval from 18500 (a centuy or two) the preceding equations hold good, and may be written

$$
\left.\begin{array}{l}
\phi_{m}=90^{\circ}-\alpha t-\beta t^{2} \tag{8}\\
\theta_{m}=\epsilon_{0}+\gamma t^{2}
\end{array}\right\}
$$

the suffix m denoting mean values from which periodic changes are excluded Thus ϕ_{m}, θ_{m} define the position of the mean equator at the time t relative to the fixed ecliptic (18500), the coefficients α, β and γ being now determmerd by (7) The motion of the mean equator on the fixed ecliptic, measured by $90^{\circ}-\phi_{m}$, is called the lunz-solar precession in longitude The angle $\theta_{m}-\epsilon_{0}$ may be called the luni-solar precession in obliquity

264 It has been convenient to use a fixed set of axes $X Y Z$, wherc* Z represents the pole of the ecliptic for 18500 and X the mean equinox tin the same date It is now necessary to introduce a new set of axes $X^{\prime} Y^{\prime} Z^{\prime}$, where Z^{\prime} represents the pole of the echptic for the epoch t and X^{\prime} thet corresponding mean equinox, 1 e the intersection of the mean equator and ecliptic at the epoch t Let z represent the N pole of this mean equator, its position being defined by ϕ_{m}, θ_{m} The longitude of Z^{\prime} in the $X Y^{\prime} Z$ system is $\Omega-90^{\circ}$ and $Z Z^{\prime}=\imath$, where

$$
\begin{gathered}
\imath \sin \Omega=g t+h t^{2} \\
\imath \cos \Omega=g^{\prime} t+h^{\prime} t^{2}
\end{gathered}
$$

the terms of the second order being omitted above because they clearly give rise to terms of the third order only in the luni-solar precessions

Let us consider the spherical triangle $Z Z^{\prime} z$, of which two sides are $Z Z^{\prime}=2$ and $Z z=\theta_{m}$ Since $X Z Z^{\prime}=\Omega-90^{\circ}$ and $X Z z=\phi_{m}$, the angle $Z^{\prime} Z z=\phi_{m}-\Omega+90^{\circ}$ The side $z Z^{\prime}$, which is the mean obluquity of the ecluptic at t, will be denoted by θ_{m}^{\prime}, and the angle $Z z Z^{\prime}$, which is called the planetary precession, will be denoted by a Hence

$$
\cot \imath \sin \theta_{m}=\cos \theta_{m} \sin \left(\Omega-\phi_{m}\right)+\cot a \cos \left(\Omega-\phi_{m}\right)
$$

and to the second order

$$
\begin{aligned}
\alpha & =\frac{\imath \cos \left(\Omega-\phi_{m}\right)}{\cos \imath \sin \theta_{m}-\imath \sin \left(\Omega-\phi_{m}\right) \cos \theta_{m}} \\
& =\frac{\left(g^{\prime} t+h^{\prime} t^{2}\right) \cos \phi_{m}+\left(g t+h t^{2}\right) \sin \phi_{m}}{\sin \theta_{m}-\left\{\left(g t+h t^{2}\right) \cos \phi_{m}-\left(g^{\prime} t+h^{\prime} t^{2}\right) \sin \phi_{m}\right\} \cos \theta_{m}} \\
& =\frac{\alpha g^{\prime} t^{2}+g t+h t^{2}}{\sin \epsilon_{0}+g^{\prime} t \cos \epsilon_{0}}
\end{aligned}
$$

snce it is enough to take $\theta_{m}=\epsilon_{0}$ and $\phi_{m}=90^{\circ}$-at Hence to the required order

$$
\begin{equation*}
a=\frac{g t}{\sin \epsilon_{0}}+\frac{t^{2}}{\sin \epsilon_{0}}\left(h+\alpha g^{\prime}-g g^{\prime} \cot \epsilon_{0}\right) \tag{9}
\end{equation*}
$$

Fig 8
Again, in the same triangle,

$$
\cos \theta_{m}{ }^{\prime}=\cos \imath \cos \theta_{m}+\sin \imath \sin \theta_{m} \sin \left(\Omega-\phi_{m}\right)
$$

whence, to the second order,

$$
\left(\theta_{m}-\theta_{m}^{\prime}\right) \sin \frac{1}{2}\left(\theta_{m}+\theta_{m}^{\prime}\right)=-\frac{1}{2} \imath^{2} \cos \theta_{m}+\sin \theta_{m}\left(\alpha g t^{2}-g^{\prime} t-h^{\prime} t^{2}\right)
$$

To the first order, therefore,

$$
\theta_{m}-\theta_{m}^{\prime}=-g^{\prime} t, \quad \sin \frac{1}{2}\left(\theta_{m}+\theta_{m}^{\prime}\right)=\sin \epsilon_{0}+\frac{1}{2} g^{\prime} t \cos \epsilon_{0}
$$

Hence to the second order

$$
\begin{align*}
\theta_{2 n}^{\prime}-\theta_{m} & =\frac{\frac{1}{2}\left(g^{2}+q^{\prime 2}\right) t^{2} \cos \epsilon_{0}+\left(g^{\prime} t+h^{\prime} t^{2}-\alpha g t^{2}\right) \sin \epsilon_{0}}{\sin \epsilon_{0}+\frac{1}{2} g^{\prime} t \cos \epsilon_{0}} \\
& =g^{\prime} t+h^{\prime} t^{2}-\alpha g t^{2}+\frac{1}{2} g^{2} t^{2} \cot \epsilon_{0} \tag{10}
\end{align*}
$$

Therelations between the varioussets of axes are shown in figg The equatin $X^{\prime} y$ (epoch t) cuts the fixed ecliptıc $X Y$ in x, where $X x=z Z Y=90^{\circ}-\phi_{m}$, the luni-solar precession, and $x X^{\prime}=x z X^{\prime}=Z z Z^{\prime}=a$, the planetary prrcession Let $Z X^{\prime}$ cut $X Y$ in D, so that $X D$ is the negative mean longitude (18500) of X^{\prime}, the mean equinox at t This are is called the qeneral precession and will be denoted by $90^{\circ}-\phi_{m}{ }^{\prime}$, so that $a D=\phi_{m}{ }^{\prime}-\phi_{m}$ The angle $D x X^{\prime}=Z z=\theta_{m}$ and $x D X^{\prime}$ is a right angle Hence

$$
\tan \left(\phi_{m}{ }^{\prime}-\phi_{m}\right)=\tan a \cos \theta_{m}
$$

and to the second order

$$
\phi_{m}^{\prime}=\phi_{m}+a \cos \epsilon_{0}
$$

Thus by (8) and (9) the general precession may be expressed in the form

$$
90^{\circ}-\phi_{m}^{\prime}=P t+P^{\prime} t^{2}
$$

where

$$
\begin{aligned}
& P=\alpha-g \cot \epsilon_{0} \\
& P^{\prime}=\beta-\cot \epsilon_{0}\left(h+\alpha g^{\prime}-g g^{\prime} \cot \epsilon_{0}\right)
\end{aligned}
$$

and by (8) and (10) the mean obliquity of the ecliptic is
where

$$
\theta_{m}^{\prime}=\epsilon_{0}+Q t+Q^{\prime} t^{2}
$$

$$
\begin{aligned}
& Q=g^{\prime} \\
& Q=\gamma+h^{\prime}-\alpha g+\frac{1}{2} g^{2} \cot \epsilon_{0}
\end{aligned}
$$

265 To find the periodic effects, or nutation, it is necessaly to return to § 262 and write

$$
\phi=\phi_{m}+\Phi, \quad \theta=\theta_{m}+\Theta
$$

Now ϕ_{m} and θ_{m} have been calculated so as to satisfy the seculdrix terms which arise in the equations of motion from the first line of the expression (6) tor $U / C n$ Hence the six periodic terms of the last three lines alone are now relevant, and the dynamical equations become

$$
\begin{aligned}
\Phi= & -K_{1}\left\{\cos 2\left(n^{\prime} t+\mu^{\prime}-\phi\right)+3 e^{\prime} \cos \left(n^{\prime} t+\mu^{\prime}-\varpi^{\prime}\right)\right\} \cos \theta \\
& -K_{0}\left\{\cos 2\left(n^{\prime \prime} t+\mu-\phi\right)+3 e \cos \left(n^{\prime \prime} t+\mu-\varpi\right)\right\} \cos \theta \\
& -K_{2}\left\{c \sin (\phi-N) \cos 2 \theta / \sin \theta+\frac{1}{2} c^{2} \cos 2(\phi-N) \cos \theta\right\} \\
\dot{\Theta}= & \left\{K_{1} \sin 2\left(n^{\prime} t+\mu^{\prime}-\phi\right)+K_{2} \sin 2\left(n^{\prime \prime} t+\mu-\phi\right)\right\} \sin \theta \\
& +K_{2}\left\{c \cos \theta \cos (\phi-N)-\frac{1}{2} c^{2} \sin \theta \sin 2(\phi-N)\right\}
\end{aligned}
$$

The Moon's node makes a circuit of the ecliptic in $18 \frac{2}{3}$ years in the retrograde direction, so that it is possible to write

$$
N=N_{0}-N_{1} t
$$

To the first order in t, which is alone necessary, $\theta=\epsilon_{0}$ and $\phi=90^{\circ}-\alpha t$, the coefficient α can clearly be incorporated with $n^{\prime}, n^{\prime \prime}$ and N_{1} before integration in those terms in which ϕ occurs, though the change in $n^{\prime}, n^{\prime \prime}$ is unimportant Then on integration

$$
\begin{aligned}
\Phi= & K_{1} \cos \epsilon_{0}\left\{\frac{1}{2 n^{\prime}} \sin 2\left(n^{\prime} t+\mu^{\prime}\right)-\frac{3 e_{0}}{n^{\prime}} \sin \left(n^{\prime} t+\mu^{\prime}-\varpi^{\prime}\right)\right\} \\
& +K_{2} \cos \epsilon_{0}\left\{\frac{1}{2 n^{\prime \prime}} \sin 2\left(n^{\prime \prime} t+\mu\right)-\frac{3 e}{n^{\prime \prime}} \sin \left(n^{\prime \prime} t+\mu-\varpi\right)\right\} \\
& +K_{2}\left\{\frac{c}{N_{1}} \sin \left(N_{0}-N_{1} t\right) \cos 2 \epsilon_{0} / \sin \epsilon_{0}-\frac{c^{2}}{4 N_{1}} \sin 2\left(N_{0}-N_{1} t\right) \cos \epsilon_{0}\right\} \\
\Theta= & \sin \epsilon_{0}\left\{\frac{K_{1}}{2 n^{\prime}} \cos 2\left(n^{\prime} t+\mu^{\prime}\right)+\frac{K_{2}}{2 n^{\prime \prime}} \cos 2\left(n^{\prime \prime} t+\mu\right)\right\} \\
& +K_{2}\left\{\frac{c}{N_{1}} \cos \epsilon_{0} \cos \left(N_{0}-N_{1} t\right)-\frac{c^{2}}{4 N_{1}} \sin \epsilon_{0} \cos 2\left(N_{0}-N_{1} t\right)\right\}
\end{aligned}
$$

It is unnecessary to add integration constants because these are incorporated in ϕ_{m} and θ_{m}, and, except as so far explained, annulled by definition at the initial epoch $t=0$ (1850)
266Θ is the nutation of the oblqquity of the ecliptic, and $-\Phi$ is the nutation of longitude, ϕ and Φ being measured in the direction of increasing longitudes The numerical quantities involved are of such an order of magnitude that a fair standard of accuracy has already been obtanned in the formulae If more precise results were needed, it would be necessary (1) to carry the expansions for the disturbing bodies further, and (2) to continue the process of integration by successive approximation to a higher stage The latter process would clearly introduce terms of the form at $\sin (n t+\alpha)$ Among the terms of the former origin those depending on three times the Sun's mean longitude ($n^{\prime} t+\mu^{\prime}$) are the most important, and it may be left as an exercise to the reader to determine them

By far the most important terms in the nutation are those with the argument ($N_{0}-N_{1} t$) The other terms being omitted, let

$$
\begin{gather*}
\mathscr{N}=K_{2} c \cos \epsilon_{0} / N_{1} \tag{11}\\
x=[\Phi] \sin \epsilon_{0}=\mathscr{N} \sin \left(N_{0}-N_{1} t\right) \cos 2 \epsilon_{0} / \cos \epsilon_{0} \\
y=-[\Theta] \quad=-\mathscr{N} \cos \left(N_{0}-N_{1} t\right)
\end{gather*}
$$

Sunce $\mathcal{N}^{\text {is }}$ an angle of a few seconds only, x and y may be considered as the rectangular plane coordinates of the Earth's pole relative to the mean pole, x being measuied in the direction of increasing longitudes and y upwards towards the pole of the ecluptic The relative path of the true pole $1 s$ therefore the small ellipse

$$
x^{2} \cos ^{2} \epsilon_{0}+y^{2} \cos ^{2} 2 \epsilon_{0}=\mathscr{N}^{2} \cos ^{2} 2 \varepsilon_{0}
$$

described in a period of about 18 years Since $\cos \epsilon_{0}>\cos 2 \epsilon_{0}$ the major axis is durected towards the pole of the ecliptic and, since x has the same sign as y, the sense of description is such that the relative longitude of the true pole is increasing when it lies between the mean pole and the pole of the echptic, that is, it is clockwise when viewed from a point outside the celestial sphere The centre of this elliptic motion is carried by precession almost uniformly in the direction of decreasing longitudes round the pole of the echptic

267 Since the manner of the investigation has been controlled by the actual magnitude of the various quantities involved, it is necessary to intioduce numerical values if the results are to be properly understood Three quantities are based on observation, and not derived from theory, namely, the obliquity ϵ_{0} at the fundamental epoch 18500 , the precession constant P and the nutation constant \mathscr{N} The values now accepted are

$$
\epsilon_{0}=23^{\circ} 27^{\prime} 31^{\prime \prime} 7, \quad P=50^{\prime \prime} 2453, \quad \mathscr{N}=9^{\prime \prime} 210
$$

The eccentricity of the Earth's orbit is given by

$$
e^{\prime}=e_{0}+e_{1} t=00167719-0000000418 t
$$

and the position of the ecliptic by

$$
\begin{aligned}
\imath \sin \Omega & =g t+h t^{2}=+0^{\prime \prime} 05341 t+0^{\prime \prime} 00001935 t^{2} \\
\imath \cos \Omega & =g^{\prime} t+h^{\prime} t^{2}=-0^{\prime \prime} 46838 t+0^{\prime \prime} 00000563 t^{2}
\end{aligned}
$$

the unit of time bemg a Julian year of 36525 mean solar days The Sun's period relative to the equinox is the tropical year, and the corresponding mean motion is therefore

$$
n^{\prime}=2 \pi \times 36525 / 3652422=628332
$$

The eccentricity and inclination of the Moon's orbit are

$$
e=005490, \quad c=5^{\circ} 8^{\prime} 43^{\prime \prime}=0089802
$$

The tropical period of the Moon is 2732158 days, and hence the mern motion in a Juhan year is

$$
n^{\prime \prime}=83997 \text { radıans }
$$

The retrograde motion of the Moon's node has a sidereal period of $679: 35$ days The corresponding mean motion, corrected for precession, is

$$
N_{1}=033757 \text { radıans }
$$

It is now possible to derive the values of K_{1} and K_{2} In the first place, by (11),

Also

$$
K_{2}=\mathcal{N N}_{1} / c \cos \epsilon_{0}=37^{\prime \prime} 74
$$

$$
\alpha=P+g \cot \epsilon_{0}=50^{\prime \prime} 2453+0^{\prime \prime} 1231=50^{\prime \prime} 3684
$$

But, by (7) and (8),

$$
\alpha \sec \epsilon_{0}=K_{2}\left(1-\frac{3}{2} c^{2}+\frac{3}{2} e^{2}\right)+K_{1}\left(1+\frac{3}{2} e_{0}^{2}\right)
$$

whence

$$
54^{\prime \prime} 91=0992425 K_{2}+1000422 K_{1}
$$

and thus

$$
K_{1}=17^{\prime \prime} 45
$$

Since any error in \mathcal{N} affects K_{2} directly and hence K_{1} equally, greater accuracy would be superfluous The expressions for the lunı-solar precession (§ 263) now become

$$
\begin{aligned}
90^{\circ}-\phi_{m} & =\alpha t+\beta t^{2}
\end{aligned}=50^{\prime \prime} 3684 t-0^{\prime \prime} 0001077 t^{2}, ~=\theta_{m}+\gamma t^{4}=23^{\circ} 27^{\prime} 31^{\prime \prime} 7+0^{\prime \prime} 0000066 t^{2}
$$

while the general precession ((264) becomes

$$
90^{\circ}-\phi_{m}^{\prime}=P t+P^{\prime} t^{2}=50^{\prime \prime} 2453 t+0^{\prime \prime} 0001107 t^{2}
$$

and the mean obliquity of the ecliptic

$$
\begin{aligned}
\theta_{m}^{\prime} & =\epsilon_{0}+Q t+Q^{\prime} t^{2} \\
& =23^{\circ} 27^{\prime} 31^{\prime \prime} 7-0^{\prime \prime} 46838 t-0^{\prime \prime} 0000008 t^{2}
\end{aligned}
$$

268 In giving the numerical values of the terms in the nutation (§ 265) the notation is changed to that employed in the Nautrcal Almanac The results which follow from substituting the above constants are

$$
\begin{aligned}
\Phi= & +17^{\prime \prime} 23 \sin 8-0^{\prime \prime} 21 \sin 28+1^{\prime \prime} 27 \sin 2 L \\
& -0^{\prime \prime} 13 \sin (L-\pi)+0^{\prime \prime} 21 \sin 2 \mathbb{(}-0^{\prime \prime} 07 \sin g_{1} \\
\Theta= & +9^{\prime \prime} 21 \cos 8-0^{\prime \prime} 09 \cos 28+0^{\prime \prime} 55 \cos 2 L+0^{\prime \prime} 09 \cos 2 \mathbb{Q}
\end{aligned}
$$

where L is the Sun's mean longitude $\left(n^{\prime} t+\mu^{\prime}\right), \pi$ is the longitude of the Sun's perigee (σ^{\prime}), © is the Moon's mean longitude ($n^{\prime \prime} t+\mu$), g_{1} is the Moon's mean anomaly ($n^{\prime \prime} t+\mu-\varpi$), and δ is the longitude of the Moon's ascending node $\left(N_{0}-N_{1} t\right)$ In the N autrcal Almanac the nutation of the obliquity of the ecliptic (Θ) is called $\Delta \omega$, and the nutation of longitude ($-\Phi$) is called ΔL Comparison shows that no term with coefficient exceeding $0^{\prime \prime} 05$ has been omitted here

Two important astronomical constants are involved implicitly in the constants of nutation and precession, namely the mass of the Moon and the ratio $(C-A) / C$, which has been called the mechanical ellipticity of the Earth For the equations (5) may be written

$$
\frac{f}{1+f}=\frac{K_{2}}{K_{1}} \quad \frac{n^{\prime 2}}{n^{\prime \prime 2}}, \quad C-A=\frac{2}{3} \frac{n K_{1}}{n^{\prime 2}}
$$

the mass of the Earth, $E=1 / 333432$, being negligrble Here K_{1} and K_{3}, expressed above in seconds of arc, are angular motions in a Julian year, and n, n^{\prime} and $n^{\prime \prime}$ are sidereal mean motions in the same unit of time With sufficient accuracy the above values of n^{\prime} and $n^{\prime \prime}$ may be used, and for n the value $2 \pi \times 366 \frac{1}{4}$ Hence

$$
f /(1+f)=0012102, \quad f=1 / 816
$$

for f, the ratio of the mass of the Moon to the mash of the Eulth, and

$$
\stackrel{C-A}{C}=\begin{gathered}
1 \\
304,2
\end{gathered}
$$

for the mechanical ellipticity of the Earth The mass of the Mom in alsu obtained as a by-product fiom the observatums of a muno planet in a afimed determination of the solar parallas The value of f tound by Himh m thas way was $1 / 8153$

269 The practical application of the results obtamed tor prexesum and nutation belongs to the doman of Spherical Astionomy and will nut be pursued in detall here Nutation is so small that its affectis (an be, and are, treated independently of those due to precessom of the latta sum. thing more may be said in order to define the two quantines rmplueded in calculating the effects of precessom in aght, ascension and derlmation

Let α, δ be the RA and declmation of a harat at the eporh t Thares ather to the system of axes $X^{\prime} y^{\prime} z$ (hg 8), which differs by a smple rotathon through the angle a about z from the systiom $x y z$ Hence the condinatin of the star in the latter system are

$$
x=\cos \delta \cos (\alpha+u), \quad y=\cos \delta \sin (\alpha+u), \quad z=\sin \delta
$$

whence, by differentiation with respect to t, it casily follows that,

$$
\begin{gathered}
\alpha+a=(x y-y x) / \cos ^{2} \delta \\
\delta=z / \cos \delta
\end{gathered}
$$

Now the relations between the systems $x y z$ and $X Y Z$ an" \times punsend by the scheme

	X	Y	Z
x	$\sin \phi$	$-\cos \phi$	0
y	$\cos \theta \cos \phi$	$\cos \theta \sin \phi$	$-\sin \theta$
z	$\sin \theta \cos \phi$	$\sin \theta \sin \phi$	$\cos \theta$

Here $X Y Z$ are constant, and differentiation of the linear formula to $1 y$, when $X Y Z$ are finally expressed in terms of $\alpha y, z$, gives

$$
\begin{aligned}
& x=(y \cos \theta+z \sin \theta) \phi \\
& y=-x \cos \theta \phi-z \theta \\
& z=-x \sin \theta \phi+y \theta
\end{aligned}
$$

Hence, when x, y, z are expressed in terms of α, δ,

$$
\begin{aligned}
\alpha+a & =-\cos \theta \phi-\tan \delta \sin (\alpha+a) \sin \theta \dot{\phi}-\tan \delta \cos (\alpha+a) \theta \\
\delta & =-\cos (\alpha+a) \sin \theta \dot{\phi}+\sin (\alpha+a) \dot{\theta}
\end{aligned}
$$

These differential expiessions are requared to the fust order in t, and at being of the second order may be rejected at once Hence (the symber n being used here in a new sense)

$$
\begin{aligned}
& \alpha=m+n \sin \alpha \tan \delta-p \cos \alpha \tan \delta \\
& \delta=n \cos \alpha+p \sin \alpha
\end{aligned}
$$

where

$$
m=-a-\cos \theta \quad \phi, \quad n=-\sin \theta \quad \phi, \quad p=a \sin \theta \quad \phi+\theta
$$

and θ may be replaced by ϵ_{0} With the numerical values given in $\S 267$, (9) gives

$$
\begin{aligned}
& a=+0^{\prime \prime} 1342 t-0^{\prime \prime} 0002380 t^{2} \\
& a=+0^{\prime \prime} 1342-0^{\prime \prime} 0004760 t
\end{aligned}
$$

and from the lumi-ヶolar precessions

$$
\begin{aligned}
\phi & =-50^{\prime \prime} 3684+0^{\prime \prime} 0002154 t \\
\theta & =\quad+0^{\prime \prime} 0000132 t
\end{aligned}
$$

Hence

$$
\begin{aligned}
& m=+46^{\prime \prime} 0711+0^{\prime \prime} 0002784 t \\
& n=+20^{\prime \prime} 0511-0^{\prime \prime} 0000857 t
\end{aligned}
$$

while $p=+0^{\prime \prime} 0000002$ and is altogether negligible Thus m and n are the important quantities known as the annual precessions in $\mathrm{R} \mathbf{A}$ and declination The total precession in R A from 1850 for a point on the equator is

$$
\int_{0} m d t=m_{1} t+m_{2} t^{-}=46^{\prime \prime} 0711 t+0^{\prime \prime} 0001392 t^{2}
$$

The expressions found for a, δ are the coefficients of the first power of the time and these terms suffice for short intervals only The further development of formulae for the transfurmation of coordinatos from one epoch to another according to the methods of astronomical practice must be sought in such works as Newcomb's Compendrum of Spherical Asti onomy

270 It is now possible to consideı in some detall the astronomical measure of time The third equation of (1) is

$$
\omega_{3}=\psi+\phi \cos \theta
$$

Here ω_{3} is the angular velocity of the Earth about its axas of figure and is a constant previously denoted by n As this symbol has been used with another meaning in $\S 269$ it will now be replaced by ω The angle ψ is the angle between a meridian plane ($O z x$) fixed in the Eaith and rotating with it and the plane (OZz) passing through the pole of the fixed ecliptic For the fixed meridian we adopt the meridian of Greenwich The rotation ψ refers therefore to the Greenwich merıdian relative to $z a$ in fig 8, and $\tau=\psi-a$ will measure the same rotation relative to $z x^{\prime}$ But the angle between the Greenwich meridian and $z x^{\prime}, x^{\prime}$ being the equinoctial point at the time t, is the hour-angle of the First Point of Aries, 1 e the sidereal time at Greenwich Thus, τ being Greenwich sidereal time,

$$
\tau=\psi-a=\omega-a-\phi \cos \theta
$$

 nutatia - :his

$$
\phi=\theta_{n}+\phi \quad \theta=\theta_{x}-\theta
$$

H. ne.

$$
\begin{aligned}
& =\omega-1-3_{m}-\hat{f}_{m}-1,-\theta+\phi_{m} \theta \sin \theta_{m}
\end{aligned}
$$

$$
\begin{equation*}
==--\omega t-m t \rightarrow m_{t} t^{2}-\Phi \cos \epsilon_{s} \tag{12}
\end{equation*}
$$

 and unt are it :h. hi, un it it apritance unly so far as they condition the
 is nit umf ram beisin wfict I Is toular and periodic terms Hence τ is merly on mitru dater sandid if the But this in nu way affects its prartical uthls Bu far the larg at $t \cdot r m$ in $\Phi \cos \epsilon_{0}$ is

$$
15 x 03 \sin 5=1^{2} 054 \sin 5
$$

it whech themadin ink 1 't vears and m_{2} is very small The irregulanties in T dre therfin iors onal and gradual, and far less than the natural urr-guantues in the rate if the most perfect sidereal clock Since thas
 the raght doction in in in in meridan, and this principle serves both tu detw rmin the ctrir the chech and to measure the apparent positions of the - tam

271 In the ne r: I^{\prime} h. a mean sum is defined which moves in the plane of the equatur with th. whirm onteral mean motion μ Its RA at time t, reck ned from the tro equanes is therefore

$$
A=A_{n}-\mu t-m_{2} t+m_{2} t^{2}-\Phi \cos \epsilon_{0}
$$

and its huur anglt

$$
T=\tau-A=\tau_{n}-A_{t}+(\omega-\mu) t
$$

1s the masasure if Girt nwich mean time The constants occurring in A are aiduated as far os pumbiba to *cure identity with the mean longitude of the actual Sin affected by aberratin This mav be writen in the form

$$
\begin{aligned}
L & =\left(\lambda_{1}+\lambda_{1} t-\lambda_{t^{2}} z^{2}\right)-h+\left(P t+P^{\prime}\right) \\
& =L_{t}+L t+L_{z^{\prime}} z^{2}
\end{aligned}
$$

where λ_{0} is the true mean longitude of the Sun when $t=0, \lambda_{1}$ is the sidereal mean motion, and $2 \lambda_{2}$ is the secular acceleration which arises indirectly from the perturbations of the other elements of the Earth's orbit, $k=20^{\prime \prime} 47$ is the constant of aberration, and $\left(P t+P^{\prime} t^{2}\right)$ is the general precession in longitude The adjustment of the constants in A and L gives

$$
A_{0}=L_{0}, \quad \mu+m_{1}=L_{1}
$$

and leaves outstanding between L and A the secular discrepancy $\left(L_{2}-m_{2}\right) t^{2}$ which would lead ultimately to a departure of the actual Sun, apart from periodic effects, fiom the meridian at mean noon This quantity is small and far from certan in amount, and will have no practical effect for many centures to come Now at 1850 Jan 0, Greenwich mean noon,

$$
T=t=0, \quad \tau_{0}=A_{0}=L_{0}
$$

and the effect of adding one mean day to T or t 1s

$$
24^{\mathrm{h}}=360^{\circ}=(\omega-\mu) / 36525
$$

whence

$$
\begin{aligned}
\omega / 36525 & =24^{\mathrm{h}}+\left(L_{\mathrm{1}}-m_{1}\right) / 36525 \\
\left(\omega+m_{\mathrm{I}}\right) / 36525 & =24^{\mathrm{h}}+L_{1} / 36525
\end{aligned}
$$

Now, according to Newcomb,

$$
\begin{aligned}
& L_{0}=279^{\circ} 47^{\prime} 58^{\prime \prime} 2=18^{\mathrm{h}} 39^{\mathrm{m}} 11^{\mathrm{s}} 88 \\
& L_{1}=1296027^{\prime \prime} 6674=86401^{\mathrm{s}} 84449 \\
& L_{2}=+0^{\prime \prime} 0001089=+0^{\mathrm{s}} 00000726
\end{aligned}
$$

while in the latter unit ($1^{\mathrm{s}}=15^{\prime \prime}$)

$$
m_{1}=+3^{8} 07141, \quad m_{2}=+0^{8} 00000928
$$

so that

$$
L_{1} / 36525=236^{\mathrm{s}} 55533, \quad\left(L_{1}-m_{1}\right) / 36525=236^{\mathrm{s}} 54692
$$

Hence in numbers the equation (12) for Gr sidereal time becomes

$$
\tau=18^{\mathrm{h}} 39^{\mathrm{m}} 11^{\mathrm{s}} 88+\left(24^{\mathrm{h}} 3^{\mathrm{m}} 56^{\mathrm{s}} 55533\right) D+0^{\mathrm{s}} 00000928 t^{\mathrm{a}}-\Phi \cos \varepsilon_{0}
$$

where $D=36525 t$ is the number of days reckoned from 1850 Jan 0 When D is given an integral value this expression gives the sidereal time at Gr mean noon and its value (less a multiple of 24^{h}) is tabulated for every day in the Nautcal Almanac When the nutational term is omitted,

$$
\Delta \tau=\left(24^{\mathrm{h}} 3^{\mathrm{m}} 56^{\mathrm{s}} 55533+0^{\mathrm{s}} 00000005 t\right) \Delta D
$$

The secular term $1 s$ also negligible, and hence

$$
\frac{1 \text { mean day }}{1 \text { sidereal day }}=\frac{86636^{5} 555}{86400^{\frac{3}{8}}}=10027379
$$

$$
L=I-L t-L t
$$

$$
\begin{aligned}
& 24
\end{aligned}
$$

$$
\begin{aligned}
& 4035
\end{aligned}
$$

$$
\begin{aligned}
& =3052+2202 \mathrm{Z}-10 \text { (ल) } 000 \mathrm{ub1}+t
\end{aligned}
$$

 121 duy- whera- he titalar marr- 12 hap days between 1850 and 1900 Ha the is the min ingitult the 1900 Jan 05 The mean longitude

 totir iv 4 The require- 031.5 me m days, and the beginning of

 - 14004 I - : the no an equmos of the date that the observations of the yeir ar, renducelm the then instance

273 जhin , uthe an the main teatures in the astronomical methods of reth ming thir Phy mok, certan cunstants wheh, being based on
 Hat thipe 1, he atmlute standide of time Cltimately no doubt the con-
 thin os that i, wribud abose will bring to hight discrepancies in the motions it the hemilf Endice of a hind which cannot be attributed to errors of
observation Then the question will arise whether these discrepancies can be removed by a mere adjustment of an accepted system of constants involved in the measure of time or whether the fault hes in the theory This is the ordinary experience of practical astronomy It may, however, prove that what have been regarded as constants are not really constant at all Thus ω, the rate of rotation of the Earth on its axis, may vary owing to such causes as the secular cooling of the Earth and the effect of tidal friction. There 1s, indeed, reason to think that this is so But ultimately it is only possible to adopt such a system of measuring time as will reconcile all celestial phenoinena as far as may be with the simplest possible body of laws In the meantime to deal with discrepancies as they arise is among the most critical problems of technical astronomy

CHAPTER XXIII

LIBRATION OF THE MOON

274 The form of solution found suitable in discussing the rotation of the Earth depends on special crrcumstances and is by no means general The Moon's rotation sumilarly presents quite special features which require very different treatment This movement is governed to a high degree of approximation by Cassinı's laws
(1) The Moon rotates uniformly about an axis which is fixed with respect to the Moon itself The period of this rotation is identical with the sidereal period of the Moon in its orbit, namely 27321661 days
(2) The pole of the lunar rotation z makes a constint angle ($1^{\circ} 35^{\prime}$) with the pole of the ecliptic Z, which may here be regarded as a fixed point on the celestial sphere
(3) In consequence of the nearly uniform regression of the lunar node on the plane of the ecliptic and the nearly constant inclination of the lunar orbit ($5^{\circ} 9^{\prime}$), the pole of the Moon's orbit P is known to descube a small circle about Z in a period of $18 \frac{2}{3}$ years The arc of a great circle $z P$ contans also the pole Z In other words, the planes of the lunar orbit and the lunar equator intersect on the ecliptic, the latter plane being intermediate between the two former

These laws were discovered by observation and they are so exact that later work with more refined instruments has faled hitherto to determine any divergences from them with a satisfactory degree of certanty They define as it were a steady state of motion, and it is necessary to mquire under what conditions such a state is possible, and to what oscillations it is subject according to theory

275 The first of the above laws corresponds with the well-known fact that the Moon always presents the same face to the Earth, or more truly that a large fraction of 1 ts surface (nearly $\frac{3}{7}$) is always concealed from observation In order that exactly the same face should be seen at all times three further conditions would be necessary and the fallure of these conditions gives rise to three distinct components of what is called the apparent or
optical libration of the Moon These conditions and the corresponding effects of their departure from the facts are
(1) The motion of the Moon in its orbit about the Earth must be unform But owing to the equation of the centre and periodic perturbations the actual place of the Moon may differ from its mean place by as much as 8° Hence an oscllation in the central meridian, which is known as the labration in longitude
(2) The axis of the Moon must be normal to the plane of its orbit Actually the angle which it makes with the normal to the orbit is

$$
1^{\circ} 35^{\prime}+5^{\circ} 9^{\prime}=6^{\circ} 44^{\prime}
$$

The monthly effect of this is called the labration in latitude
(3) The point of observation must be the centre of the Earth Owing to the position of the observer on the Earth's surface, which varies with the rotation of the Earth, there is a parallactic effert which is called the durnal lıbration

These three effects which together constitute the optical libration of the Moon are purely geometical consequences of the known conditions, and entirely independent of the dynamical libration which is now to be examined

276 When the rotation of the Moon is in question the action of the Earth as a disturbing body is clearly preponderant and the action of the Sun is neglected Let O be the centre of gravity of the Moon, OXYZ a set of echptic axes fixed in space, and $O x y z$ a set fixed in the rotating body and conciding with the principal axes of the Moon, the correspondıng moments of mertia being A, B, C Now since the axis of rotation is nearly or quite fixed in the body it must practically concide with a principal axis, for a permanent axis in any other position would require a constraint which is obviously absent in this case This principal axis will be identified with $O z$. As in § 255 the two sets of axes are connected by the angles θ, ϕ and ψ, and $\theta=Z O z$ being always of the order $1^{\circ} 6$, 1ts square may be neglected The relations between the coordinates are then given by the scheme

	X	Y	Z
x	$\cos (\phi+\psi)$	$\sin (\phi+\psi)$	$-\theta \cos \psi$
y	$-\sin (\phi+\psi)$	$\cos (\phi+\psi)$	$\theta \sin \psi$
z	$\theta \cos \phi$	$\theta \sin \phi$	1

and Euler's geometrical equations become

$$
\begin{aligned}
& \omega_{1}=\dot{\theta} \sin \psi-\phi \theta \cos \psi \\
& \omega_{2}=\dot{\theta} \cos \psi+\dot{\phi} \sin \psi \\
& \omega_{3}=\psi+\phi
\end{aligned}
$$

The dynamical equations are agan of the form

$$
\begin{aligned}
& A \omega_{1}-(B-C) \omega_{2} \omega_{3}=L \\
& B \omega_{2}-(C-A) \omega_{3} \omega_{1}=M \\
& C \omega_{3}-(A-B) \omega_{1} \omega_{2}=N
\end{aligned}
$$

where (§ 257)

$$
L=3 G m(C-B) y z / r^{\prime}, \quad M=3 G m(A-C) a z / r^{5}, \quad N=3 G m(B-A) x y / r^{\prime}
$$

m beng the mass of the Earth, (x, y, z) its coordinates and r its distance from the Moon Let (X, Y, Z) be the ecliptic coordmates of the Earth relative to the Moon The inclination of the Moon's orbit, $c=5^{\circ} 9^{\prime}$, is so small that c^{\prime} will be neglected Then (cf §65)

$$
-X=r \cos (\Omega+\omega+w), \quad-Y=\imath \sin (\Omega+\omega+w), \quad-Z=r c \sin (\omega+w)
$$

where Ω is the longitude of the Moon's node, $(\Omega+\omega)$ the longitude of the Moon's perigee, and w the Moon's true anomaly But

$$
\lambda=\Omega+\omega+w
$$

is the longitude of the Moon in its orbit Hence, by the above relations between the two sets of coordnates,

$$
\begin{aligned}
-x= & r \cos (\lambda-\phi-\psi), \quad-y=r \sin (\lambda-\phi-\psi) \\
& -z=r \theta \cos (\lambda-\phi)+r c \sin (\lambda-\Omega)
\end{aligned}
$$

the product $c \theta$ being neglected in x and y Let

$$
C-B=A \alpha, \quad A-C=B \beta, \quad B-A=C_{\gamma}
$$

Then the dynamucal equations of motion become

$$
\begin{align*}
& \omega_{1}+\alpha \omega_{2} \omega_{3}=3 G m a r^{-3} \sin (\lambda-\phi-\psi)\{\theta \cos (\lambda-\phi)+c \sin (\lambda-\Omega)\} \\
& \omega_{2}+\beta \omega_{3} \omega_{1}=3 G m \beta r^{-3} \cos (\lambda-\phi-\psi)\{\theta \cos (\lambda-\phi)+c \sin (\lambda-\Omega)\} \tag{1}\\
& \omega_{3}+\gamma \omega_{1} \omega_{2}=\frac{3}{2} G m \gamma^{-3} \sin 2(\lambda-\phi-\psi)
\end{align*}
$$

As the figure of the Moon is to all appearance sensibly sphencal, α, β and γ must be farry small quantitics And since, further, the instantaneous axis is nearly fixed in the body and very close to the axis of z, ω_{1} and ω_{2} must be very small in comparison with ω_{1}

277 It follows that in the last equation the tem $\gamma \omega_{1} \omega_{2}$ can be neglected Hence this equation becomes, in view of the third geometrical equation,

$$
\begin{equation*}
\phi+\psi=\frac{3}{2} G m \gamma \lambda^{-3} \sin 2(\lambda-\phi-\psi) \tag{2}
\end{equation*}
$$

The Moon's mean longitude is $n^{\prime} t+\epsilon$, where n^{\prime} is the Moon's mean motion and ϵ is a constant The Eath's mean longitude, as seen trom the Moon, is therefore $\pi+n^{\prime} t+\epsilon$ But according to Cassin's fust law,

$$
\omega_{3}=\phi+\psi=n^{\prime}
$$

or

$$
\phi+\psi=n^{\prime} t+\text { const }
$$

the constant depending on the choice of a fixed meridian on the Moon's surface Let it be so chosen that the latter expression is equal to the Earth's mean longitude The corresponding meridian is called the first lunar meradian In order now to allow for a possible mequality in the Moon's rotation an angle χ is introduced such that

$$
\begin{equation*}
\phi+\psi+\chi=\pi+n^{\prime} t+\epsilon \tag{3}
\end{equation*}
$$

This angle represents an oscillation in the position of the first meridan According to Cassin's laws $\chi=0$ and observation proves that χ is certannly very small The equation (2) now becomes

$$
\begin{equation*}
x=-\frac{s}{2} G m \gamma r^{-3} \sin 2\left(\chi+\lambda-n^{\prime} t-\epsilon\right) \tag{4}
\end{equation*}
$$

It is clear that the conditions of stability are only complicated by the inequalities in the motion of the Moon Therefore we substitute for the moment a uniform circular orbit with mean distance a^{\prime}, so that $\lambda=n^{\prime} t+e$, $r=a^{\prime}$ and

$$
\begin{align*}
\chi & =-\frac{3}{2} G m \gamma a^{\prime-3} \sin 2 \chi \\
& =-\frac{3}{2} n^{\prime \prime} \gamma(1+f)^{-1} \sin 2 \chi \tag{5}
\end{align*}
$$

where f is the ratio of the mass of the Moon to the mass of the Earth, sunce by Kepler's thrd law

$$
\begin{equation*}
G m(1+f)=n^{\prime 2} a^{\prime 3} \tag{6}
\end{equation*}
$$

But the equation of motion of a simple pendulum of length l and inclined to the vertical at an angle θ is

$$
\theta=-g l^{-1} \sin \theta
$$

which can be identrfied with (5) by taking $\chi=\frac{1}{2} \theta$ and $3 n^{\prime 2} \gamma(1+f)^{-1}=g l^{-1}$ Both equations can of course be solved generally in elliptic integrals But it is enough to notice the physical fact that the pendulum is capable of small vibrations provided θ is small initially and g is positive Similarly χ if initially small will remain small provided γ is positive, $1 \in \mathcal{B}>A \quad$ Now, if the inclination of the lunar equator to the lunar orbit be neglected, $(\phi+\psi)$ measures the displacement of the axis of x from the equinox from which the longitudes are reckoned Under these simplified conditions the first meridıan contains the axis of x and always comncides with the central meridian of the apparent disc The avis of x is therefore directed approximately towards the Earth and this defines the axis about which the moment A is less than the moment B This is the first condition of stability It is also to be interred that $A \neq B$ For if $A=B, \chi=0$ and a small disturbance would intioduce a secular term in χ which observation shows to be absent

278 If $\gamma^{\prime}=\gamma(1+f)^{-1}$ the more gencial equation (4) for χ beconcs

$$
\chi=-\frac{{ }_{2}^{3}}{} n^{\prime} \gamma^{\prime}\left(a^{\prime} / \imath\right)^{3} \sin 2\left(\chi+\lambda-n^{\prime} t-\epsilon\right)
$$

Now $\left(\lambda-n^{\prime} t-\epsilon\right)$ is of the order of the eccentricity of the lunar onbit (055) $\chi{ }^{19}$ still smaller and a^{\prime} / r ditters trom 1 also by a quantity of the
ordel of the cecentricity Hence if the square of the eccentricity be neglected,

$$
\begin{gathered}
\chi=-3 n^{\prime 2} \gamma^{\prime}\left(\chi+\lambda-n^{\prime} t-\epsilon\right) \\
\chi+3 n^{\prime 2} \gamma^{\prime} \chi=-3 n^{\prime 2} \gamma^{\prime} \Sigma H \sin \left(h t+h^{\prime}\right)
\end{gathered}
$$

or
where the terms under Σ iepresent the equation of the centre and periodic mequalities of the lunar motion This is the ordmary equation for forced vibrations and the solution may be written in the form $\chi=\chi_{1}+\chi_{2}$ where χ_{1} is a particular solution, corresponding to the forced vibrations, and χ_{2} is the complementary function, corresponding to an arbitrary free vibration It is eassly venfied that

$$
\chi_{1}=3 n^{\prime 2} \gamma^{\prime} \Sigma \frac{H}{h^{2}-3 n^{\prime 2} \gamma^{\prime}} \sin \left(h t+h^{\prime}\right)
$$

and

$$
\chi_{2}=K \sin \left[n^{\prime} t \sqrt{ }\left(3 \gamma^{\prime}\right)+k^{\prime}\right]
$$

where K, h^{\prime} are arbitrany Teins in χ_{1} can only become sensible by reason of H large or h small, and the most promising terms in the lunar theory are consequently the equation of the centre (or principal elliptic term)

$$
h t+h^{\prime}=g_{1}, \quad H=+22639^{\prime \prime} 1, \quad h=47033^{\prime \prime} 97
$$

and the annual equation

$$
h t+h^{\prime}=\odot, \quad H=-668^{\prime \prime} 9, \quad h=3548^{\prime \prime} 16
$$

where g_{1} is the Moon's mean anomaly, O is the Sun's mean anomaly, and the unit of time is the mean solar day, so that $n^{\prime}=47435^{\prime \prime} 03$ The corresponding terms in χ_{1} are

$$
\begin{equation*}
\chi_{1}=\frac{377^{\prime}}{03277-\gamma^{\prime}} \quad \gamma^{\prime} \sin g_{1}-\frac{11^{\prime} 15}{0001865-\gamma^{\prime}} \gamma^{\prime} \sin \odot \tag{7}
\end{equation*}
$$

It is casily seen that, γ^{\prime} being certainly very small, it is the second of these terms which is the larger But the determination of ats coefficient from observation has not yet been made with satisfactory certainty Since the Earth's distance is about 220 tımes the Moon's radius a geocentric angle of $1^{\prime \prime}$ is the equivalent of 4^{\prime} in selenographic arc near the centre of the lunar dise As the quantities to be looked for are llkely to be of this order, or rather still less, and the observations are very difficult, positive results must be awaited from the study of the large-scale photographs of the Moon which are now avalable According to Franz, using the helometer observations of Schluter, the coefficient of $\sin \odot$ is about 2^{\prime}, giving γ of the order 00003 , and the arbitrany libration K, which should have a period of rather more than 2 years, is practically negligible

279 Since, by (3), $\omega_{3}+\chi=n^{\prime}$ where χ may now be supposed very small, the first two dynamical equations may be written

$$
\left.\begin{array}{l}
\omega_{1}+a n^{\prime} \omega_{2}=L / A \tag{8}\\
\omega_{2}+\beta n^{\prime} \omega_{1}=M / B
\end{array}\right\}
$$

Now let
so that

$$
\xi=\theta \cos \psi, \quad \eta=\theta \sin \psi
$$

$$
\left.\begin{array}{l}
\xi=\theta \cos \psi+\phi \theta \sin \psi-(\phi+\psi) \theta \sin \psi=\omega_{2}-\omega_{3} \eta \\
\eta=\theta \sin \psi-\phi \theta \cos \psi+(\phi+\psi) \theta \cos \psi=\omega_{1}+\omega_{3} \xi \tag{9}
\end{array}\right\}
$$

Again ω_{s} may be replaced by n^{\prime}, being multiphed by ξ and η which are small Hence (8) become

$$
\begin{aligned}
& \eta-(1-\alpha) n^{\prime} \xi+\alpha n^{\prime 2} \eta=L / A \\
& \xi+(1+\beta) n^{\prime} \eta-\beta n^{\prime 2} \xi=M / B
\end{aligned}
$$

Expressions for $L / A, M / B$ have been given in (1), and if $f=1 / 81$ be neglected in (6) these are

$$
\begin{aligned}
& L / A=3 \alpha n^{\prime 2}\left(a^{\prime} / r\right)^{3} \sin (\lambda-\phi-\psi)\{\theta \cos (\lambda-\phi)+c \sin (\lambda-\Omega)\} \\
& M / B=3 \beta n^{\prime 2}\left(a^{\prime} / r\right)^{2} \cos (\lambda-\phi-\psi)\{\theta \cos (\lambda-\phi)+c \sin (\lambda-\Omega)\}
\end{aligned}
$$

and as they are already of the order θ or c multiphed by α or β, the other quantities involved are only required to the first order in e, the eccentricity of the orbit Now g_{1} being the mean anomaly, by Ch IV (9) and (30)-or in a more simple way-
where

$$
a^{\prime} / r=1+e \cos g_{1}, \quad w-g_{1}=2 e \sin g_{1}
$$

$$
g_{1}=n^{\prime} t+e-w, \quad w=\lambda-w
$$

w being the true anomaly and w the longitude of perigee Also χ is insignificant here, so that by (3)

$$
\begin{equation*}
\phi+\psi=\pi+n^{\prime} t+\epsilon=g_{1}+w+\pi \tag{10}
\end{equation*}
$$

Hence

$$
\lambda-\phi-\psi=w-g_{1}-\pi=2 e \sin g_{1}-\pi
$$

$$
\sin (\lambda-\phi-\psi)=-2 e \sin g_{1}, \quad \cos (\lambda-\phi-\psi)=-1
$$

$$
\left.\begin{array}{l}
\left(a^{\prime} / r\right)^{3} \sin (\lambda-\phi-\psi)=-2 e \sin g_{1} \tag{11}\\
\left(a^{\prime} / r\right)^{3} \cos (\lambda-\phi-\psi)=-1-3 e \cos g_{1}
\end{array}\right\}
$$

Agan,

$$
\begin{align*}
\cos (\lambda-\phi) & =-\cos \left(\psi+2 e \sin g_{1}\right)=-\cos \psi+2 e \sin g_{1} \sin \psi \\
\theta \cos (\lambda-\phi) & =-\theta \cos \psi+e \theta \cos \left(g_{1}-\psi\right)-e \theta \cos \left(g_{1}+\psi\right) \tag{12}
\end{align*}
$$

and finally

$$
\begin{align*}
\lambda-\Omega & =w+\varpi-\Omega=g_{1}+\varpi-\Omega+2 e \sin g_{1} \\
\sin (\lambda-\Omega) & =\sin \left(g_{1}+\varpi-\Omega\right)+2 e \sin g_{1} \cos \left(g_{1}+\varpi-\Omega\right) \\
c \sin (\lambda-\Omega) & =c \sin \left(g_{1}+\varpi-\Omega\right) \\
& +c e \sin \left(2 g_{1}+\varpi-\Omega\right)-c e \sin (\varpi-\Omega) \tag{1}
\end{align*}
$$

It is now necessary to introduce (11), (12) and (13) into $L / A, M / B$, to reject terms of the third order in e, c and θ, and to resolve the products
of circular functions which occur into single functions The result of this smple reduction gives

$$
\left.\begin{array}{c}
L / A=3 a n^{\prime 2}\left\{e \theta \sin \left(g_{1}+\psi\right)+e \theta \sin \left(g_{1}-\psi\right)-e c \cos (\varpi-\Omega)\right. \\
\left.+e c \cos \left(2 g_{1}+\varpi-\Omega\right)\right\} \tag{14}\\
M / B=i \beta n^{\prime 2}\left\{\frac{5}{2} e \theta \cos \left(g_{1}+\psi\right)+\frac{1}{2} e \theta \cos \left(g_{1}-\psi\right)-\frac{1}{2} e c \sin (\varpi-\Omega)\right. \\
\\
\left.-\frac{5}{2} e c \sin \left(2 g_{1}+\varpi-\Omega\right)-c \sin \left(g_{1}+\varpi-\Omega\right)+\theta \cos \psi\right\}
\end{array}\right\}
$$

The last term in M / B is $3 \beta n^{\prime 2} \xi$, which may be transferred immedıately to the other side of the corresponding dynamical equation This leaves one term only of the first order in M / B the remanning terms in L / A and M / B are entirely of the second order

280 Let the actual dynamical equations, after transferring the term $3 \beta n^{\prime 2} \xi$, be replaced by the forms

$$
\left.\begin{array}{l}
\eta-(1-\alpha) n^{\prime} \xi+\alpha n^{\prime \prime} \eta=3 \alpha n^{\prime 2} P^{\prime} \cos \left(p n^{\prime} t+q\right) \\
\xi+(1+\beta) n^{\prime} \eta-4 \beta n^{\prime 2} \xi=3 \beta n^{\prime 2} P \sin \left(p n^{\prime} t+q\right) \tag{15}
\end{array}\right\}
$$

A particular solution is $\xi=Q \sin \left(p n^{\prime} t+q\right), \eta=Q^{\prime} \cos \left(p n^{\prime} t+q\right)$, provided

$$
\left.\begin{array}{l}
Q^{\prime}\left(-p^{2}+\alpha\right)-Q(1-\alpha) p=3 \alpha P^{\prime} \tag{16}\\
Q\left(-p^{2}-4 \beta\right)-Q^{\prime}(1+\beta) p=3 \beta P
\end{array}\right\}
$$

or

$$
\left.\begin{array}{c}
\alpha \overline{(1+}+\beta) p P^{\prime}-\beta\left(p^{2}-\alpha\right) P^{=} \beta(1-\alpha) p P-\alpha\left(p^{2}+4 \beta\right) P^{\prime} \tag{17}\\
=\frac{3}{\left(p^{2}-\alpha\right)\left(p^{2}+4 \beta\right)-(1-\alpha)(1+\beta) p^{2}}=\frac{3}{\Delta}
\end{array}\right\}
$$

In this way any periodic terms on the right of the equations can be represented by corresponding terms in ξ and η But the coefficients Q, Q^{\prime} involve P, P^{\prime} multiplied by the small quantities a or β, and ane therefore extremely small unless Δ is also very small Now $\Delta=p^{\prime}\left(p^{2}-1\right)$ when α and β are ignored and therefore, ceteris paribus, sensible terms can be obtaned only when p is very near to 0 or ± 1

Solutions of the same form constitute the complementary function and are determined by (17) when $P=P^{\prime}=0 \quad$ Then p is given by

$$
\Delta=p^{4}-p^{2}(1-3 \beta-\alpha \beta)-4 \alpha \beta=0
$$

or

$$
2 p^{2}=1-3 \beta-\alpha \beta \pm \sqrt{ }\left\{(1-3 \beta-\alpha \beta)^{2}+16 \alpha \beta\right\}
$$

It is enough to retain in p the terms of the first order in α, β, and thus

$$
2 p^{2}=1-3 \beta-\alpha \beta \pm(1-3 \beta-\alpha \beta+8 \alpha \beta)
$$

so that if p_{1}, p_{2} are the two roots,

$$
p_{1}=1-\frac{3}{2} \beta, \quad p_{2}=2 \sqrt{ }(-\alpha \beta)
$$

Thus the periods of the two possible terms are determined with sufficient accuracy, the former being nearly a month, and if the corresponding coefficients are $Q_{1}, Q_{1}^{\prime}, Q_{2}, Q_{2}^{\prime}$, then by (16) to the lowest order only

$$
Q_{1}^{\prime} / Q_{1}=-1, \quad Q_{2}^{\prime} / Q_{2}=2 \sqrt{ }(-\beta / \alpha)
$$

Hence a solution of (15) when 0 is substituted on the right-hand side is

$$
\begin{aligned}
& \xi_{1}=Q_{1} \sin \left\{\left(1-\frac{3}{2} \beta\right) n^{\prime} t+q_{1}\right\}+Q_{2} \sin \left\{2 \sqrt{ }(-\alpha \beta) t+q_{2}\right\} \\
& \eta_{1}=-Q_{1} \cos \left\{\left(1-\frac{8}{2} \beta\right) n^{\prime} t+q_{1}\right\}+2 \sqrt{ }(-\beta / \alpha) Q_{2} \cos \left\{2 \sqrt{ }(-\alpha \beta) t+q_{2}\right\}
\end{aligned}
$$

and as these expressions contain four arbitrary constants $Q_{1}, Q_{2}, q_{1}, q_{2}$ they represent the required complementary functions

These arbitrary terms again appear to be insensible The important point is that $\alpha \beta$ must be negative, for otherwise the circular functions would be changed into hyperbolic functions and the motion would be unstable This means that $(C-B)(A-C)$ is negative, or again that C is not intermediate in magnitude between A and B This is the second condition of stability which has been found

281 To terms of the first order only,

$$
L / A=0, \quad M / B=-3 \beta n^{\prime 2} c \sin \left(g_{1}+\varpi-\Omega\right)
$$

where, the secular mequality of the node being taken into account,

$$
g_{1}+\varpi=n^{\prime} t+\epsilon, \quad \Omega=\Omega_{0}-\mu n^{\prime} t, \quad \mu=+0004019
$$

Thus in applying (17), $P^{\prime}=0, P=-c, p=1+\mu$, and therefore
$\frac{-Q}{(1+\mu)^{2}-\alpha}=\frac{Q^{\prime}}{(1-\alpha)(1+\mu)}=\frac{-3 \beta c}{(1+\mu)^{2}\left(2 \mu+\mu^{2}\right)+(1+\mu)^{2} \beta(3+\alpha)-4 \alpha \beta}$
It α, β and μ be regarded as small quantities of the first order and those of the second order be neglected,

$$
\begin{equation*}
Q=-Q^{\prime}=3 \beta c /(2 \mu+3 \beta) \tag{19}
\end{equation*}
$$

so that ξ and η contain the terms

$$
\begin{equation*}
\xi_{2}=\frac{3 \beta c}{2 \mu+3 \beta} \sin \left(g_{1}+w-\Omega\right), \quad \eta_{2}=\frac{-3 \beta c}{2 \mu+3 \beta} \cos \left(g_{1}+\infty-\Omega\right) \tag{20}
\end{equation*}
$$

These terms contan the explanation of the steady motion of the Moon's axis, which is expressed by Cassini's laws

For the coordinates of the Moon's pole of rotation relative to the pole of the ecliptic may be taken as

$$
\begin{aligned}
X & =\theta \cos \phi
\end{aligned}=\xi \cos (\phi+\psi)+\eta \sin (\phi+\psi), ~(\phi \sin \phi=\xi \sin (\phi+\psi)-\eta \cos (\phi+\psi) .
$$

Let the free components ξ_{1}, η_{1} be ignored and also the forced oscillations of the second order which have still to be found Then

$$
\begin{aligned}
& X=Q \sin \left(g_{1}+\varpi-\Omega-\phi-\psi\right) \\
& Y=Q \cos \left(g_{1}+\varpi-\Omega-\phi-\psi\right)
\end{aligned}
$$

But by (10)
and therefore

$$
\phi+\psi=g_{1}+w+\pi
$$

$$
X=Q \sin \Omega, \quad Y=-Q \cos \Omega
$$

But the longitude of the pole of the lunar orbit is $\Omega-\frac{1}{2} \pi$, so that its coordinates are simılarly

$$
X^{\prime}=c \sin \Omega, \quad Y^{\prime}=-c \cos \Omega
$$

Hence these two poles are always exactly on opposite sides of the pole of the echiptic provided Q is negative This requires, since Q is given by (19), $0>\beta>-\frac{2}{3} \mu$ Hence $C>A$, which is a third condition to be satisfied by the moments of inertia The resultant of the three places the moments in the order

$$
C>B>A
$$

where C refers to the axis of rotation and A to that axis which in the mean is directed towards the Earth

It as now clear that the further conditions necessary in order that the second and third laws of Cassim shall reman approximately true are one and the same, namely that those terms which have been neglected in the above argument aie really small in comparison with Q This quantity is the mean value of θ, and its numerical value is $91^{\prime} 4$ accordmg to Frans With $c=308^{\prime} 7$ and $\mu=0004019$ it follows that

$$
-\beta=(C-A) / B=0000612
$$

which should be tolerably well determined It is to be noticed that α, β, γ are not independent, but connected by the identity

$$
\alpha+\beta+\gamma+\alpha \beta \gamma=0
$$

The product is negligible and if $\gamma=00003$ as given above, then α is of exactly the same order as γ

282 The terms of the second order in e, c, θ can now be found without difficulty, since here it is legitimate to give θ and ψ their values in the steady motion Thus $\theta=\theta_{0}$, its constant mean value, and since in the stededy motion $\phi=\Omega+\frac{1}{2} \pi$,

$$
\psi=g_{1}+w-\Omega+\frac{1}{2} \pi
$$

Hence without the terms of lower order already treated, the expressions (14) become

$$
\begin{aligned}
& L / A=3 \alpha n^{\prime 2}\left\{e\left(\theta_{0}+c\right) \cos \left(2 g_{1}+\varpi-\Omega\right)-e\left(\theta_{0}+c\right) \cos (\varpi-\Omega)\right\} \\
& M / B=3 \beta n^{\prime 2}\left\{-\frac{5}{2} e\left(\theta_{0}+c\right) \sin \left(2 g_{1}+\varpi-\Omega\right)-\frac{1}{2} e\left(\theta_{0}+c\right) \sin (\varpi-\Omega)\right\}
\end{aligned}
$$

The corresponding terms in ξ, η can be found in the way explanned in $\S 280$ But since ω and Ω change slowly p is nearly 2 in the case of the terms which contan $2 g_{1}$ in the argument Their counterpart in ξ, η is therefore negligible With the other pair p is very small The secular changes in the node and perigee may be expressed by

$$
\Omega=\Omega_{0}-\mu n^{\prime} t, \quad \varpi=\varpi_{0}+\nu n^{\prime} t
$$

so that $p=\mu+\nu$, and $2 P=P^{\prime}=-e\left(\theta_{0}+c\right) \quad$ Hence (17) give

$$
\begin{aligned}
\frac{Q}{2 \alpha(1+\beta) p-\beta\left(p^{2}-\alpha\right)} & =\frac{Q^{\prime}}{\beta(1-\alpha) p-2 \alpha\left(p^{2}+4 \beta\right)} \\
& =\frac{-\frac{3}{2} e\left(\theta_{0}+c\right)}{\left(p^{2}-\alpha\right)\left(p^{2}+4 \beta\right)-(1-\alpha)(1+\beta) p^{2}}
\end{aligned}
$$

which, when simplified by the removal of all but the most significant quantities in the denominators, become

$$
Q / 2 \alpha=Q^{\prime} / \beta=\frac{3}{2} e\left(\theta_{0}+c\right) / p
$$

The terms of the second order are therefore simply

$$
\begin{equation*}
\xi_{3}=3 \alpha e \frac{\theta_{0}+c}{\mu+\nu} \sin (\varpi-\Omega), \quad \eta_{3}=\frac{3}{2} \beta e \frac{\theta_{0}+c}{\mu+\nu} \cos (\varpi-\Omega) \tag{21}
\end{equation*}
$$

Now $\nu=0008455, \mu+\nu=1 / 80$ nearly, and $\theta_{0}+c=400^{\prime}$ Also $e=00549$ and with the above values of α and $\beta, 3 \alpha e=-\frac{3}{2} \beta e=000005$ Hence both coefficients are numerically $1^{\prime} 6$, and

$$
\xi_{3}=1^{\prime} 6 \sin (\varpi-\Omega), \quad \eta_{3}=-1^{\prime} 6 \cos (\varpi-\Omega)
$$

the period being 80 lunar months or 6 years
283 When the several terms found are combined,
and by (9)

$$
\begin{aligned}
\xi=\xi_{1}+\xi_{2}+\xi_{3}, & \eta=\eta_{1}+\eta_{2}+\eta_{3} \\
\omega_{1}=\eta-\omega_{3} \xi, & \omega_{2}=\xi+\omega_{3} \eta
\end{aligned}
$$

Now with the approximate forms (20)
and from (21)

$$
\xi_{8}=-n^{\prime} \eta_{2}, \quad \eta_{2}=n^{\prime} \xi_{2}
$$

$$
\xi_{3}=n^{\prime}(\mu+\nu) \eta_{3}, \quad \eta_{3}=-n^{\prime}(\mu+\nu) \xi_{3}
$$

Hence, putting $\omega_{3}=n^{\prime}$ here and neglecting the arbitrary terms ξ_{1}, η_{1}, the existence of which has not been established by observation,

$$
\omega_{1} / n^{\prime}=-(1+\mu+\nu) \xi_{3}, \quad \omega_{8} / n^{\prime}=(1+\mu+\nu) \eta_{3}
$$

and $(\mu+\nu)$ is relatively unimportant here
One remark is necessary however For the sake of simplicity and in order to concentrate attention on the man feature of the motion, the coefficients of ξ_{2} and η_{2} in (20) were made numerically equal by the simple expedient of neglecting $\mu^{2}(=0000016)$ in comparison with μ Consistently with this
the factor $(1+\mu)$ has been omitted in finding $\xi_{2}, \dot{\eta}_{2}$, and the result is that ξ_{2}, η_{2} do not appear in ω_{1}, ω_{2} This tactor can only be reinstated correctly after μ^{2} has been restored in $\xi_{2}, \eta_{2} \quad$ Now by (18) ξ_{2}, η_{2} are of the form

$$
\xi_{2}=\left\{(1+\mu)^{2}-\alpha\right\} G \sin g \quad \eta_{2}=-(1-\alpha)(1+\mu) G \cos g
$$

where $g=g_{1}+\varpi-\Omega \quad$ Hence

$$
\begin{aligned}
& \xi_{2} / n^{\prime}=(1+\mu)\left\{(1+\mu)^{2}-\alpha\right\} G \cos g \\
& \eta_{2} / n^{\prime}=(1+\mu)^{2}(1-\alpha) G \sin g
\end{aligned}
$$

and the contributions to ω_{1}, ω_{2} are given by

$$
\begin{aligned}
& \Delta \omega_{1} / n^{\prime}=-\alpha\left(2 \mu+\mu^{2}\right) G \sin q \\
& \Delta \omega_{2} / n^{\prime}=(1+\mu)\left(2 \mu+\mu^{2}\right) G \cos g
\end{aligned}
$$

The factor α shows that $\Delta \omega_{1}$ is very small and if μ^{2} as well as α be now rejected,

$$
\Delta \omega_{1} / n^{\prime}=0, \quad \Delta \omega_{2} / n^{\prime}=-2 \mu \eta_{-}
$$

Hence in a numerical forin the forced rotations are finclly given by

$$
\begin{aligned}
& \omega_{1} / n^{\prime}=-\xi_{3}=-1^{\prime} 6 \sin (\varpi-\Omega) \\
& \omega_{0} / n^{\prime}=\eta_{3}-2 \mu \eta_{2}=-1^{\prime} 6 \cos (\varpi-\Omega)-0^{\prime} 7 \cos \left(g_{1}+\varpi-\Omega\right)
\end{aligned}
$$

since $G=-91^{\prime} 4$ and $\mu=0004$
With the more exact expiessions the coeftcient in ξ is numerically greater than that in η_{2}, the difference being $-\mu(1+\mu+\alpha) G$ or $-\mu G$ This amount, $22^{\prime \prime}$, may be divided equally between the two coofficients without disturbing the observed mean inclination of the lunar "quator to the lunal orbit, and thus

$$
\xi_{2}=-91^{\prime} 6 \sin \left(g_{1}+\infty-\Omega\right), \quad \eta_{2}=91^{\prime} 2 \cos \left(g_{1}+\omega-\Omega\right)
$$

Lastly, by (7), if χ_{2} the fiee libration in longitude be ignored,

$$
\omega_{3} / n^{\prime}=1-\chi^{n^{\prime}}=1-\begin{gathered}
011 \\
033-\gamma^{\prime}
\end{gathered} \gamma^{\prime} \cos g_{1}+\frac{0000242}{0001865^{\prime}-\gamma^{\prime}} \quad \gamma^{\prime}(1) \odot
$$

where the coefficients are expressed in circulan measure Thus the pountion of the instantaneous axis, relative to the principal axes of the Moon,

$$
x / \omega_{1}=y / \omega_{2}=z / \omega_{3}
$$

is determined It has therefore been seen under what comditions ('assum's laws are approximately true, and how far they must necissianly be modition by disturbing actions

The latest results from observation, by M Puberux of Pans, eeem to be at variance with the foregoing theory It is probahbin th it it will be necersuly to treat the Moon as a deformable body, as the chandvill wathom of latitule have shown to be requisite in the case of the Eath The above theory is very largely due to Poisson

CHAPTER XXIV

FORMULAE OF NUMERICAL CALCULATION

284. If we consider a function of one variable or argument only, for the sake of definiteness, it can be represented in three distinct ways, namely
(1) By an analytical form, eg sin x or a hypergeometric series $F(\alpha, \beta, \gamma, x)$ The effectiveness of such a form depends on the knowledge of its properties and the facility with which it submits to the ordinary operations of mathematics
(2) Graphically, by a curve This gives a continuous representation Values of the function corresponding to particular values of the argument can be obtained and the processes of differentiation and integration can be performed mechanically But the accuracy of the results is limited in practice
(3) Numerically, by a series of isolated values This gives a discontinuous representation, but one capable of very gieat accuracy In theory this does not serve to define the function, for it may vary in any manner between the given values Even in piactice the representation does not cover terms in the function with a period of the same order as the intervals between the values But with due carc this limitation causes little inconvenience

Each mode of repiesentation has distinct advantages of 1 ts own and to pass from one to another is a problem frequently arising and often attended by great difficulty The form (1) may be considered the ultimate expression of natural truth, but it has no absoluto superionty Thus integration may be practically impossible in this form and must be replaced by a mechanical quadrature

A function determined by a series of obscrvations ol experunents talls generally under the form (3) Now the vaiable quantities which occur in Astronomy, eg the coordinates of the Moon, are in general so complicated, even when an expression in analytical form is available, that for practical purposes it is necessary to use an ephemer cs, or a table of values calculated for equal intervals of time (not necessarily one day, as the name would mply) It is therctore necessary to consider how functions represented in
this way may be manıpulated so as to give intermediate values by interpolation for comparison with the results of obser vation, and also to render numerical differentiation and integration possible

285 Let w be the constant interval of the argument and $y_{n}=f(a+n w)$ be the function to be considered, the values of y_{n} being given for consecutive integral values of $n \quad$ A simple difference table can be formed thus

$$
\begin{array}{c|lll}
a+(n-1) w & y_{n-1} & & \\
a+n w & y_{n} & y_{n}-y_{n-1} & y_{n+1}-2 y_{n}+y_{n-1} \\
a+(n+1) w & y_{n+1} & y_{n+1}-y_{n} &
\end{array}
$$

Now let two operators Δ, δ be introduced such that

Then it follows that

$$
\Delta y_{n}=y_{n+1}-y_{n}, \quad \delta y_{n}=y_{n}-y_{n-1}
$$

$$
\Delta \delta y_{n}=\Delta\left(y_{n}-y_{n-1}\right)=y_{n+1}-2 y_{n}+y_{n-1}=\delta\left(y_{n+1}-y_{n}\right)=\delta \Delta y_{n}
$$

Hence the operators Δ, δ are commutative, and similarly it is easily seen that they obey all the laws of ordnary algebra The inverse operators Δ^{-1}, δ^{-1} may be defined so that $\Delta \Delta^{-1}=1, \delta \delta^{-1}=1$ Then the table of differences may be replaced by a table of operations which, acting on y_{n}, will reproduce the difference table, thus

$$
\left\lvert\, \begin{array}{ccc}
\Delta^{-1} \delta & & \delta^{2} \\
1 & \delta & \Delta \delta \\
\Delta \delta^{-1} & \Delta & \Delta^{2}
\end{array}\right.
$$

The two operators are not independent, for the position of $\Delta \delta$ in this table shows that they are connected by the homographic relation

$$
\begin{equation*}
\Delta \delta=\Delta-\delta, \quad \delta=\Delta(1+\Delta)^{-1}, \quad \Delta=\delta(1-\delta)^{-1} \tag{1}
\end{equation*}
$$

Let x be the variable, so that $y=f(x)$, and let $D=d / d x$ Then

$$
\begin{align*}
(1+\Delta) f(x) & =f(x+w) \\
& =f(x)+w f^{\prime}(x)+\frac{1}{2} w^{2} f^{\prime \prime}(x)+ \\
& =\left\{1+w D+\frac{1}{2} w^{\circ} D^{2}+\quad\right\} f(x) \\
& =e^{w D} f(x) \tag{2}
\end{align*}
$$

or $1+\Delta=e^{w D} \quad$ Hence

Thus

$$
\begin{aligned}
(1+\Delta)^{q} f(x) & =e^{q w D} f(x) \\
& =f(x)+q w f^{\prime}(x)+\frac{1}{2} q^{\prime} w^{\prime} f^{\prime \prime}(x)+ \\
& =f(x+q w)
\end{aligned}
$$

$$
f(x+q w)=\left\{1+q \Delta+\binom{q}{2} \Delta^{2}+\right\} f(x)
$$

is Newton's original formula of interpolation and can be written in ${ }^{\circ} \mathrm{m}$

$$
\begin{equation*}
y_{n+q}=\left\{1+q \Delta+\binom{q}{2} \Delta^{2}+\right\} y_{n} \tag{3}
\end{equation*}
$$

$|q|$ by a proper choice of n may always be taken $<\frac{1}{2}$, and in any case not exceed 1 The coefficients are simple binomial coefficients

6 The differences Δ, Δ^{2}, are diagonal differences in the table ie most useful formulae involve central differences, lying on or adjacent orizontal line in the table If the blank spaces in the odd columns are oy the arithmetic means of the entries immediately above and below, lerators in the complete central line are

$$
1 \quad \frac{1}{2}(\Delta+\delta) \quad \Delta \delta \quad \frac{1}{2}(\Delta+\delta) \Delta \delta \quad(\Delta \delta)^{2}
$$

can also be written, by introducing two new operators K, k,

$$
\left.\begin{array}{ccccc}
1 & k & K & k K & K^{2} \\
k=\frac{1}{2}(\Delta+\delta), \quad K=\Delta \delta=\Delta-\delta \tag{4}\\
\Delta=k+\frac{1}{2} K, & \delta=k-\frac{1}{2} K, \quad k^{2}-\frac{1}{4} K^{2}=K
\end{array}\right\}
$$

k cannot be expressed rationally in terms of K, and in order to find a la in terms of central differences it is necessary to expand in terms keeping only the first power of k Thus

$$
\begin{gather*}
(1+\Delta)^{q}=\left(1+k+\frac{1}{2} K\right)^{q}=k u_{q}+v_{q} \tag{5}\\
u_{q}=\binom{q}{1}\left(1+\frac{1}{2} K\right)^{q-1}+\binom{q}{3}\left(1+\frac{1}{2} K\right)^{q-3}\left(K+\frac{1}{4} K^{2}\right)+ \\
v_{q}=\left(1+\frac{1}{2} K\right)^{q}+\binom{q}{2}\left(1+\frac{1}{2} K\right)^{q-2}\left(K+\frac{1}{4} K^{2}\right)+
\end{gather*}
$$

assly verified that

$$
\begin{gathered}
u_{q}\left(1+\frac{1}{2} K\right)+v_{q}=u_{q+1}, \quad u_{q}\left(K+\frac{1}{2} K^{2}\right)+v_{q}\left(1+\frac{1}{2} K\right)=v_{q+1} \\
\binom{q}{r}+\binom{q}{r-1}=\binom{q+1}{r}
\end{gathered}
$$

$\sum_{r}\binom{q}{2 r}\left\{\frac{1}{2}(q-2 r)\left(1+\frac{1}{2} K\right)^{q-2 r-1}\left(K+\frac{1}{4} K^{2}\right)^{r}+r\left(1+\frac{1}{2} K\right)^{q-2 r+1}\left(K+\frac{1}{4} K^{2}\right)^{r-1}\right\}$
$\Sigma\left\{\frac{1}{2}(q-2 r)\binom{q}{2 r}+(r+1)\binom{q}{2 r+2}\right\}\left(1+\frac{1}{2} K\right)^{q-2 r-1}\left(K+\frac{1}{4} K^{9}\right)^{r}$
$\Sigma \frac{1}{2} q\left\{\binom{q-1}{2 r}+\binom{q-1}{2 r+1}\right\}\left(1+\frac{1}{2} K\right)^{q-2 r-1}\left(K+\frac{1}{4} K^{2}\right)^{r}$
$\frac{1}{2} q \Sigma\binom{q}{2 r+1}\left(1+\frac{1}{2} K\right)^{q-2 r-1}\left(K+\frac{1}{4} K^{2}\right)^{r}=\frac{1}{2} q u_{q}$

It is therefore possible to write

$$
v_{q}=1+q \Sigma b_{1} K^{r}, \quad u_{q}=q+2 \Sigma(1+1) b_{r+1} K^{r}
$$

Let b_{r}, become b_{r}^{\prime} in v_{q+1}, u_{q+1}, and equate the coefficients of K^{r-1} in the first, and of K^{1} in the second, recurrence formula Thus

$$
\begin{aligned}
2 r b_{r}^{\prime} & =2 r b_{2}+(r-1) b_{1-1}+q b_{1-1} \\
(q+1) b_{r}^{\prime} & =2 r b_{1}+\frac{1}{2}(1-1) b_{r-1}+q b_{r}+\frac{1}{2} q b_{r-1}
\end{aligned}
$$

and, on eliminating $b_{r}{ }^{\prime}$,

$$
2 r(2 \gamma-1) b_{r}=(q+1-1)(q-1+1) b_{r-1}
$$

This shows that

$$
b_{1}=\binom{q+1-1}{2 \eta-1} \frac{A}{\overline{2 r}}
$$

where A is a constant, and since $b_{1}=\frac{1}{2} q, A=1 \quad$ Hence

$$
\begin{equation*}
u_{q}=q+\Sigma\binom{q+r}{2 r+1} K^{r}, \quad v_{q}=1+q \Sigma\binom{q+r-1}{2 r-1} \frac{K^{r}}{2 r} \tag{6}
\end{equation*}
$$

and ${ }^{8}$ the first terms of the complete formula are therefore

$$
\begin{align*}
& y_{n+q}=\left\{1+q k+\frac{q^{2}}{2!} K+\right. \frac{q\left(q^{2}-1^{2}\right)}{3!} k K+\underline{q}^{2}\left(q^{2}-1-\right) \\
& 4, \tag{7}\\
&\left.+\frac{q\left(q^{2}-1^{2}\right)\left(q^{0}-2^{2}\right)}{5!} h K^{2}+\right\} y_{n}
\end{align*}
$$

This seiıes was found by Newton, but is generally known as Stıling's formula It is here taken as fundamental, and other results are deduced from it

287 The formula of Gauss depends on the even central differences and the odd differences of the line below, the operators being therefore

$$
\begin{array}{ccccc}
1 & & K & & K^{\circ} \\
& \Delta & & \Delta K
\end{array}
$$

These are, in terms of k, K,

$$
1, \quad k+\frac{1}{2} K, \quad K, \quad\left(k+\frac{1}{2} K\right) K, \quad K^{2}
$$

But (5) may be written in the form

$$
(1+\Delta)^{q}=\left(k+\frac{1}{2} K\right) u_{q}+\left(v_{q}-\frac{1}{2} K u_{q}\right)=\Delta u_{q}+V_{q}
$$

where by (6)

$$
\begin{align*}
V_{q}=v_{q}-\frac{1}{2} K u_{q} & =1+\Sigma\binom{q+r-1}{2 r-1}\left(\frac{q}{2 \eta}-\frac{1}{2}\right) K^{\prime} \\
& =1+\Sigma\binom{q+1-1}{2 r} K^{\prime} \tag{8}
\end{align*}
$$

This gives the coefficients of the even central differences, the coefficients of the odd differences of the adjacent line being still given by u_{q} The first terms of the complete formula are therefore

$$
\begin{align*}
y_{n+q}=\{1+q \Delta & +\frac{q(q-1)}{21} K+\frac{q\left(q^{2}-1^{2}\right)}{31} \Delta K+\frac{q\left(q^{2}-1^{2}\right)(q-2)}{41} K^{2} \\
& \left.+\frac{q\left(q^{2}-1^{2}\right)\left(q^{2}-2^{2}\right)}{51} \Delta K^{2}+\right\} y_{n} \tag{9}
\end{align*}
$$

If the order of the difference table were reversed, $-\delta$ would take the place of Δ and the sign of w would be changed Hence similarly

$$
\begin{equation*}
y_{n-2}=\left\{1-q \delta+\underset{21}{q(q-1)} K-\frac{q\left(q^{2}-1^{2}\right)}{3!} \delta K+\right\} y_{n} \tag{10}
\end{equation*}
$$

By choosing either (9) or (10) q can always be taken between 0 and $+\frac{1}{2}$
288 The formula of Bessel contains the odd differences in the line immediately below the central function, with the mean even differences of the same line, so that the operators are

$$
1+\frac{1}{2} \Delta, \quad \Delta, \quad\left(1+\frac{1}{2} \Delta\right) K, \quad \Delta K, \quad\left(1+\frac{1}{2} \Delta\right) K^{2},
$$

The odd differences are thus the same as in the formula of Gauss, and therefore

$$
\begin{aligned}
(1+\Delta)^{q} & =\Delta u_{q}+V_{q}=\left(1+\frac{1}{2} \Delta\right) V_{q}+\Delta\left(u_{q}-\frac{1}{2} V_{q}\right) \\
& =\left(1+\frac{1}{2} \Delta\right) V_{q}+\Delta U_{q}
\end{aligned}
$$

where, by (6) and (8),

$$
\begin{align*}
U_{q}=u_{q}-\frac{1}{2} V_{q} & =q-\frac{1}{2}+\Sigma\left\{\binom{q+r}{2 r+1}-\frac{1}{2}\binom{q+r-1}{2 r}\right\} K^{r} \\
& =\left(q-\frac{1}{2}\right)\left\{1+\Sigma\binom{q+r-1}{2 r} \frac{K^{r}}{2 r+1}\right\} \tag{11}
\end{align*}
$$

This gives the coefficients of the odd differences, and the coefficients of the even (mean) differences are given by V_{q} Hence the first terms of the complete formula are

$$
\begin{align*}
& y_{n+q}=\left\{\left(1+\frac{1}{2} \Delta\right)+\left(q-\frac{1}{2}\right) \Delta+\frac{q(q-1)}{2!}\left(1+\frac{1}{2} \Delta\right) K+\left(q-\frac{1}{2}\right) \frac{q(q-1)}{3!} \Delta K\right. \\
& \left.+\frac{q\left(q^{2}-1^{2}\right)(q-2)}{4!}\left(1+\frac{1}{2} \Delta\right) K^{2}+\left(q-\frac{1}{2}\right) \frac{q\left(q^{2}-1^{2}\right)(q-2)}{5!} \Delta K^{2}+\right\} y_{n}
\end{align*}
$$

Bessel's own form differs from this in the first two terms, being written

$$
y_{n+q}=\left\{1+q \Delta+\frac{q(q-1)}{2 \mid}\left(1+\frac{1}{2} \Delta\right) K+\right\} y_{n}
$$

which is of course equivalent, but is not symmetrical with respect to the middle of the tabular interval To make this symmetry clearer, let $p+\frac{1}{2}$ be substituted for q in (12), which then becomes

$$
\begin{gather*}
y_{n+\frac{1}{3}+p}=\left\{\left(1+\frac{1}{2} \Delta\right)+p \Delta+\frac{p^{2}-\frac{1}{4}}{2!}\left(1+\frac{1}{2} \Delta\right) K+p p_{-}^{2}-\frac{1}{4} \Delta K\right. \\
\left.+\left(p^{2}-\frac{1}{4}\right)\left(p^{2}-\frac{9}{4}\right)\left(1+\frac{1}{2} \Delta\right) K^{2}+p \frac{\left(p^{0}-\frac{1}{4}\right)\left(p^{2}-\frac{9}{4}\right)}{51} \Delta K^{2}+\right\} y_{n} \tag{13}
\end{gather*}
$$

When the sign of p is reversed, the terms of even order are unchanged and the terms of odd order are simply reversed in sign If teims of the two orders are computed separately, two interpolations-corresponding to $\pm p$ are obtained at the same time This is of great advantage in systematic interpolation to regular fractions of the tabular interval, eg in reducing the 12-hourly places of the Moon to an hourly ephemeris Strrling's formula presents a similar advantage But (13) becomes particularly simple at the middle of an interval, for then $q=\frac{1}{2}$ or $p=0$, and the odd differences disappear Thus

$$
\begin{align*}
& y_{n+\frac{1}{2}=\left\{\left(1+\frac{2}{2} \Delta\right)-\frac{1}{8}\left(1+\frac{1}{2} \Delta\right) K\right.}+\frac{3}{128}\left(1+\frac{1}{2} \Delta\right) K^{2} \\
&\left.-\frac{5}{1024}\left(1+\frac{1}{2} \Delta\right) K^{3}+\right\} y_{n} \tag{14}
\end{align*}
$$

and this gives intermediate values with great ease and accuracy
289 When the values of a function y are known only at irregular intervals of the argument x, as in an ordnary series of observations, the function is strictly indeterminate in the absence of other information as to its form Nevertheless, when n values $y_{1},, y_{n}$ are known, corresponding to x_{1}, \quad, x_{n}, a formula

$$
y=a_{0}+a_{1} x+\quad+a_{n-1} x^{n-1}
$$

can be found, which is satisfied by the n values and within the interval x_{1} to x_{n} will generally resemble the true function closely The n coefficients can be determined by the linear equations

$$
y_{r}=a_{0}+a_{1} x_{r}+\quad+a_{n-1} x_{2}^{n-1}
$$

$(r=1, \quad, n)$ These can be solved in the ordinary way, but it is inmedately obvious that the result can be written

$$
\begin{equation*}
y=\Sigma y_{r} \frac{\left(x-x_{1}\right)}{\left(x_{r}-x_{1}\right)} \quad\left(x-x_{n}\right) \tag{15}
\end{equation*}
$$

where the numerator of the fraction written does not contain $\left(x-x_{r}\right)$ For this equation becomes an identity when x_{r}, y_{r} are substituted for x, y The expression on the right is a polynomial of degree $n-1$ in x and the equation, since it is satisfied by every pair (x_{r}, y_{r}), must be identical with the previous equation, the coefficients in which can be witten down by comparison The formula (15) is due to Lagrange and is directly suitable for interpolation,
differentiation and integration An illustration of its use in a case where $n=3$ has been given in § 71 When n is large the formula naturally becomes inconvenient for practical purposes

290 Returning to the function with known values at regular intervals of the argument, let us consider the process of mechanical differentiation By (2)

$$
\left.\begin{array}{rl}
w D & =\log (1+\Delta) \tag{16}\\
w^{2} D^{3} & =\{\log (1+\Delta)\}^{3} \Delta^{2}+\frac{1}{3} \Delta^{3}- \\
=\Delta^{2}-\Delta^{3}+\frac{1}{1} \frac{1}{2} \Delta^{4}-
\end{array}\right\}
$$

These formulae are suitable only in simple cases where great accuracy is not required The loss of accuracy is a natural tendency when differentiation is concerned The forms (16) also apply only to the tabulated value of the argument But since

$$
x=a+(n+q) w, \quad w D=w d / d x=d / d q
$$

a formula of differentiation can be derived from every formula of interpolation Thus Bessel's formula (12) gives

$$
\left.\begin{array}{rl}
w y^{\prime}{ }_{n+q} & =\left\{\Delta+\frac{1}{2}(2 q-1)\left(1+\frac{1}{2} \Delta\right) K+\frac{1}{12}\left(6 q^{2}-6 q+1\right) \Delta K+\quad\right\} y_{n} \\
w^{\prime \prime} y^{\prime \prime}{ }_{n+q} & =\left\{\left(1+\frac{1}{2} \Delta\right) K+\frac{1}{2}(2 q-1) \Delta K+\frac{1}{12}\left(6 q^{2}-6 q-1\right)\left(1+\frac{1}{2} \Delta\right) K^{2}+\quad\right\} y_{n}
\end{array}\right\}(17)
$$

and analogous forms may be derived simılarly by differentiating (7) and (9) with respect to q

But there are some particular cases of special simplicity and importance in the formulae of central differences According to (6) u_{q} is an odd function and v_{q} an even function of q Now when $q=0, d / d q$ is the coefficient of q and $d^{2} / d q^{2}$ is twice the coefficient of q^{2} in $k u_{q}+v_{q}$ These coefficients can easily be taken from louqq and v_{q} respectively, and give, by (6) or (7), .

$$
\begin{align*}
& \left.w D=k\left\{1-\frac{1^{2}}{3!} K+\frac{1^{2} 2^{2}}{5!} K^{2}-\frac{1^{2} 2^{2} 3^{2}}{7!} K^{3}+\right\}\right\} \tag{18}\\
& w y_{n}^{\prime}=\left(k-\frac{1}{5} k K+\frac{1}{30} k K^{2}-\frac{1}{150} k K^{3}+.\right) y_{n}
\end{align*}
$$

and

$$
\left.\begin{array}{l}
\frac{1}{2} w^{2} D^{2}=\frac{1}{2!} K-\frac{1^{2}}{4!} K^{2}+\frac{1^{2} 2^{2}}{6!} K^{3}-\frac{1^{2} 2^{2} 3^{3}}{8!} K^{4}+ \tag{19}\\
w^{2} y_{n}^{\prime \prime}=\left(K-\frac{1}{12} K^{2}+\frac{1}{8 万} K^{3}-8 \frac{10}{} K^{4}+\quad\right) y_{n}
\end{array}\right\}
$$

Both (18) and (19) involve the alternate differences in the central tabular line

Similarly when V_{q}, U_{q} are expressed in terms of $p=q+\frac{1}{2}$ instead of q as in (8) and (11), V_{q} is an even function and U_{q} is an odd function of p When $q=\frac{1}{2}, p=0$ and $d / d q$ is the coefficient of p and $d^{2} / d q^{2}$ is twice the
coefficient of p^{2} in $\left(1+\frac{1}{2} \Delta\right) V_{q}+\Delta U_{q} \quad$ These coefficients can readuly be taken from (13), which sufficiently indicates the law of formation, and thus

$$
\left.\begin{array}{rl}
w D(1+\Delta)^{\frac{1}{2}} & =\Delta\left\{1-\frac{1^{2}}{3!} \frac{K}{4}+\frac{1^{1} 3^{2}}{5^{\prime}}\left(\frac{K}{4}\right)^{2}-\frac{1}{}^{2} 3^{-5^{2}}\left(\frac{K}{4}\right)^{3}+\right\} \\
w y_{n+\frac{1}{2}}^{\prime} & =\left\{\Delta-\frac{1}{6} \frac{1}{4} \Delta k+\frac{3}{40} \frac{1}{4^{2}} \Delta K^{2}-\frac{5}{11^{2}} \frac{1}{4^{3}} \Delta K^{3}+\right\} y_{n} \tag{20}
\end{array}\right\}
$$

and

$$
\begin{align*}
& \frac{1}{2} w^{2} D^{2}(1+\Delta)^{\frac{1}{2}}=\left(1+\frac{1}{2} \Delta\right)\left\{\frac{K}{2^{\prime}}-\left(1^{2}+3^{0}\right) \frac{K^{2}}{4^{\prime} 4}+\left(3^{0} 5^{2}+1^{2} 5^{2}+1^{2} 3^{2}\right) 6 \begin{array}{c}
K^{3} \\
K^{3}
\end{array}\right. \\
& -\left(\begin{array}{lllllll}
3^{2} & 5^{2} & 7^{2}+1^{2} & 5^{2} & 7^{2}+1^{2} & 3^{2} & 7^{2}+1^{2} \\
3^{2} & \left.5^{2}\right) & \frac{K^{4}}{81} 4^{3}
\end{array}\right\} \\
& w^{0} y^{\prime \prime}{ }_{n+\frac{1}{2}}=\left\{\left(1+\frac{1}{2} \Delta\right) K-\frac{5}{6} \frac{1}{4}\left(1+\frac{1}{2} \Delta\right) K^{2}+\frac{258}{58} \frac{1}{4^{2}}\left(1+\frac{1}{2} \Delta\right) \hat{K^{3}}\right. \tag{21}\\
& \left.\left.-\frac{3299}{5} \frac{1}{4^{3}}\left(1+\frac{1}{2} \Delta\right) K^{1}+\right\} y_{n}\right)
\end{align*}
$$

The distinction between the operators $(1+\Delta)^{\frac{1}{2}}$ and $(1+1 \Delta)$ must be carefully noted That on the left, $(1+\Delta)^{\frac{1}{2}}$, mdicates an addition of half the tabular interval to the argument, so as to apply the differentiation at the right point, which is the middle of the interval That on the right, $\left(1+\frac{1}{2} \Delta\right)$, merely denotes the mean of adjacent differences in a vertical column of the difference table

291 Convenient methods for mechanical integration or quadrature can now be deduced The formulae-for differentiation just found, (18), (19), (20), (21), are of the form

$$
\begin{aligned}
w D & =k S_{1}(K), & w^{2} D^{2} & =S_{2}(K) \\
w D(1+\Delta)^{\frac{1}{2}} & =\Delta S_{3}(K), & w^{2} D^{\prime}(1+\Delta)^{\frac{1}{2}} & =\left(1+\frac{1}{2} \Delta\right) S_{4}(K)
\end{aligned}
$$

$S(K)$ denoting a power series in K Hence

$$
\begin{aligned}
w^{-1} D^{-1} & =k^{-1} / S_{1}(K), & w^{-0} D^{--} & =1 / S_{2}(K) \\
w^{-1} D^{-1}(1+\Delta)^{\frac{1}{2}} & =(1+\Delta) \Delta^{-1} / S_{3}(K), & w^{-2} D^{-0}(1+\Delta)^{\frac{1}{2}} & =(1+\Delta)\left(1+\frac{1}{2} \Delta\right)^{-1} / S_{4}(K)
\end{aligned}
$$

The coefficients of the reciprocals of the K senes must be expressed more appropriately, thus

$$
\begin{aligned}
k^{-1}=k / k^{2} & =k\left(K+\frac{1}{4} K^{2}\right)^{-1}=h K^{-1} /\left(1+\frac{1}{4} K\right) \\
(1+\Delta) \Delta^{-1} & =\delta^{-1}=\Delta K^{-1} \\
(1+\Delta)\left(1+\frac{1}{2} \Delta\right)^{-1} & =\left(1+\frac{1}{2} \Delta\right)\left\{1+\frac{1}{4} \Delta^{2}(1+\Delta)^{-1}\right\}^{-1}=\left(1+\frac{1}{2} \Delta\right)\left(1+\frac{1}{4} \Delta \delta\right)^{-1} \\
& =\left(1+\frac{1}{2} \Delta\right) /\left(1+\frac{1}{4} K\right)
\end{aligned}
$$

It is therefore necessary to multiply S_{1} and S_{4} by $\left(1+\frac{1}{1} K\right)$ before finding the reciprocals of the series by division in order to have results for D^{-1}, D^{-2} of
exactly the same form as those already found for $D, D^{2} \quad$ These results are eassly found to be

$$
\begin{align*}
w^{-1} D^{-1} & =k\left(K^{-1}-\frac{1}{12}+\frac{11}{72} K-\frac{191}{0480} K^{2}+\right) \tag{22}\\
w^{-2} D^{-2} & =K^{-1}+\frac{1}{12}-\frac{1}{240} K+\frac{31}{60480} K^{2}- \tag{23}\\
w^{-1} D^{-1}(1+\Delta)^{\frac{1}{2}} & =\Delta\left(K^{-1}+\frac{1}{24}-\frac{17}{6700} K+\frac{387}{967080} K^{2}-\quad\right) \tag{24}\\
w^{-2} D^{-2}(1+\Delta)^{\frac{1}{2}} & =\left(1+\frac{1}{2} \Delta\right)\left(K^{-1}-\frac{1}{24}+\frac{17}{1920} K-\frac{967}{19853 \sigma} K^{2}+\quad\right) \tag{25}
\end{align*}
$$

The development is heie carried as far as differences of the fifth order This is generally sufficient

It is now necessary to examine the meaning of these purely formal results The operator K, like its components Δ, δ, is such that $K K^{-1}=1$, and therefore, as K represents a move two places to the right in the table, K^{-1} represents a move two places to the left The difference table now requires an extension not hitherto contemplated, and the central line of the table of operators, with the adjacent lines above and below, now becomes

Here 1 corresponds to the original entry y_{n} in the table The natural differences as directly formed are expressed simply, while those which are means of the entries 1mmediately above and below are enclosed by [] But while the symbols occurring in the columns to the right of the central column (representing the function itself) will be readily understood, the construction of the columns to the left must now be explaned The numbers in the first column to the left are such that their differences appear in the central column Thus

$$
\left(\Delta K^{-1}-\delta K^{-1}\right) y_{n}=y_{n}, \quad \Delta K^{-1} y_{n}=y_{n}+\delta K^{-1} y_{n}
$$

and when one number in this column is fixed, the rest are formed by adding successively (when proceeding downwards) the tabulated values of the function The entries in this column therefore contain an additive arbitrary constant The second column to the left is related to this first column in exactly the same way as the first column to the central column, and therefore contains anothel arbitrary constant, but is otherwise definite

The use of four different operators in the table may seem excessive, since they are all expressible in terms of one In fact

$$
\Delta=e^{w D}-1, \quad \delta=1-e^{-w D}, \quad k=\sinh w D, \cdot K=4 \sinh ^{2} \frac{1}{2} w D
$$

and this suggests another mode of development which has here been deliberately avoided But all these operators have sumple special meanings
and it is important to notice that $k \delta^{-1}$ and $\left(1+\frac{1}{2} \Delta\right)$ are equivalent, but quite distinct from $\Delta k k^{-1}$, though in the complete table, in which the mean differences are filled in, they all three denote one vertical step downwards

292 As with Δ^{-1} and the other operators, D^{-1} is such that $D D^{-1}=1$, or D, D^{-1} represent inverse operations And since D represents differentiation, D^{-1} represents integration Thus take the formuld (24) The column Δk^{-1} being formed with an arbitrary constant, the right-hand side of the equation, operating on y_{n}, will produce a function (represented in tabular form) which is $w^{-1} D^{-1}(1+\Delta)^{\frac{1}{2}} y_{n}=w^{-1} D^{-1} y_{n+\frac{1}{2}}$ On the application of D or differentiation, this becomes $w^{-1} y_{n+\frac{1}{2}}$ Hence the meaning of the formula is

$$
\begin{equation*}
w^{-1} \int^{a+m w} y d x=\left(\Delta K^{-1}+\frac{1}{24} \Delta-\frac{17}{5760} \Delta K+\frac{397}{967680} \Delta K^{2}-\quad\right) y_{n} \tag{26}
\end{equation*}
$$

where m is written for $n+\frac{1}{2}$ The lower limit is arbitrary But the righthand side also contains an arbitrary constant, and this constant can now be chosen so as to fix the lower limit of integration For let this limit be $a+\frac{1}{2} w$ If then $m=\frac{1}{2}, n=0$ in (26)

$$
\begin{equation*}
0=\left(\Delta K^{-1}+\frac{1}{24} \Delta-\frac{17}{376 \delta} \Delta K+\frac{367}{967080} \Delta K^{2}-\quad\right) y_{0} \tag{27}
\end{equation*}
$$

and the value of $\Delta K^{-1} y_{0}$ is now determined With it the whole of the corresponding column can be definitely calculated by successive additions of the values of the function When this is done, (26) represents the definite integral of y between the limits $a+\frac{1}{2} w$ and $a+\left(n+\frac{1}{2}\right) w$

Quite similarly the meaning of (22) is seen to be

$$
\begin{equation*}
w^{-1} \int^{a+n w} y d x=\left(k K^{-1}-\frac{1}{12} k+\frac{11}{720} k K-\frac{19}{60480} l k K^{2}+\right) y_{n} \tag{28}
\end{equation*}
$$

where the lower limit is a when

$$
0=\left(k K^{-1}-\frac{1}{12} k+\frac{11}{720} k K-\frac{191}{60480} k K^{2}+\quad\right) y_{0}
$$

But the latter form is not convenient, because $k K^{-1} y_{0}$, which is hereby determined, is the mean of two numbers not yet known Now

$$
2 k K^{-1} y_{0}=\Delta K^{-1} y_{0}+\delta K^{-1} y_{0}, \quad y_{0}=\Delta K^{-1} y_{0}-\delta K^{-1} y_{0}
$$

and therefore

$$
\begin{equation*}
\Delta K^{-1} y_{0}=\left(\frac{1}{2}+\frac{1}{12} k-\frac{11}{120} k K+\frac{.19}{60480} k K^{2}-\quad\right) y_{0} \tag{29}
\end{equation*}
$$

Thus $\Delta K^{-1} y_{0}$ is determined, and the calculation proceeds as in the previous case It is to be noticed that, though (27) has been derived from (26) and (29) fiom (28), (26) can be used in conjunction with (29), giving a and $a+\left(n+\frac{1}{2}\right) w$ as the limits of integration, or (28) with (27), giving $a+n w$ as the upper limit and $a+\frac{1}{2} w$ as the lower limit

293 In a similar way (23) and (25) give the second integrals, thus

$$
\begin{align*}
& w^{-2} \int_{b}^{a+n w}\left[\int_{c}^{x} y d x\right] d x=\left(K^{-1}+\frac{1}{12}-\frac{1}{240} K+\frac{91}{60480} K^{3}-\right) y_{n} \tag{30}\\
& w^{-2} \int_{b}^{a+m w}\left[\int_{c}^{x} y d x\right] d x=\left(1+\frac{1}{2} \Delta\right)\left(K^{-1}-\frac{1}{24}+\frac{17}{1920} K-\frac{387}{199538} K^{2}+\right) y_{n} \tag{31}
\end{align*}
$$

where $m=n+\frac{1}{2}$ as before The lower limit c of the subject of the second integration is arbitrary But if the first summation column, on the left of the function y, has been based on (29), $c=a$, if it has been based on (27), $c=a+\frac{1}{2} w$ The lower limit b of the second integration is also arbitrary and corresponds with the additional arbitrary constant in the second summation column K^{-1} The latter is easily determined by taking the case $b=a, n=0$ of (30) Thus

$$
\begin{equation*}
0=\left(K^{-1}+\frac{1}{12}-\frac{1}{240} K+\frac{31}{80480} K^{2}-\quad\right) y_{0} \tag{32}
\end{equation*}
$$

This gives $K^{-1} y_{0}$, and the whole of the second summation column becomes determinate when the first column has been fixed Or again, if the lower limit b is to be $a+\frac{1}{2} w$, (31) gives when $b=a+\frac{1}{2} w, m=\frac{1}{2}, n=0$,

$$
0=\left(1+\frac{1}{2} \Delta\right)\left(K^{-1}-\frac{1}{24}+\frac{17}{1920} K-\frac{887}{198586} K^{2}+.\right) y_{0}
$$

or

$$
\begin{equation*}
K^{-1} y_{0}=-\frac{1}{2} \Delta K^{-1} y_{0}+\left(1+\frac{1}{2} \Delta\right)\left(\frac{1}{24}-\frac{17}{1920} K+\frac{887}{18838 \mathrm{E}} K^{2}-\quad\right) y_{0} \tag{33}
\end{equation*}
$$

This is quite general whatever the value of c, or of $\Delta K^{-1} y_{0}$, may be But as $c=b$ usually, (27) can be used in this case, and then

$$
\begin{equation*}
K^{-1} y_{0}=\left\{\frac{1}{24}(1+\Delta)-\frac{17}{678 \sigma}(3+2 \Delta) K+\frac{987}{867080}(5+3 \Delta) K^{2}-\quad\right\} y_{0} \tag{34}
\end{equation*}
$$

When the second summation column is based on (34) and the first on (27) $x=a+\frac{1}{2} w$ is the common lower limit for the double integration When (29) and (32) are used in forming these columns, $x=a$ is the common lower limit In either case (30) and (31) give the values of the double integrals to the upper limits $x=a+n w$ and $x=a+\left(n+\frac{1}{2}\right) w$ respectively

No attention has been given here to the limitations of the method which are imposed by the conditions of convergence of the expansions employed In general the question is settled in practice by obvious considerations But for a critical estimate of the accuracy attainable it is clearly important
294. Theie is also a trigonometrical form of interpolation, otherwise known as harmonic analysis, which is of great importance This is intimately related to Fourier's series, and indeed amounts to the calculation of the coefficients of this expansion It will be well to recall the principal properties of the series, which may be stated thus

The sum of the infinite series

$$
a_{0}+\Sigma\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

(n a positive integer), wheie

$$
a_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) d x, \quad a_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \cos n x d x, \quad b_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \sin n x d x
$$

is $f(x)$ throughout the interval $0<x<2 \pi$, provided $f(x)$ is continuoun
At any point x in the interval where $f(x)$ is discontinuous, the sum of the series is $\frac{1}{2}\{f(x-0)+f(x+0)\}$

It is assumed that the number of finite discontinuities and the number of maxima and minima of $f(x)$ are finite These conditions are more than sufficient and are always satisfied by the empincal functions of practical computation

The expansion is unique in the sense that no other coefficients can make the given series represent the same function over the stated interval so long as n remans integral

If the series as absolutely convergent for all real values of x it is also uniformly convergent Its sum has then no discontinuities and has the same value at $x=0$ and $x=2 \pi$

The sum of the series is a periodic function, with the period 2π If $f(x)$ is also periodic with the same period, it coincides with the sum of the senes for all values of x, but otherwise the functions coincide only in the interval $0<x<2 \pi$ If $f(x)=f(-x)=f(x+2 \pi), f(x)$ is represented by a Fourier series containing cosine terms only ($b_{n}=0$) If $f(x)=-f(-x)=f(x+2 \pi)$, $f(x)$ is represented completely by a series containing sine terms only ($a_{0}=a_{n}=0$) Similarly an arbitraiy function can be represented within the interval 0 to π either by a sune series or by a cosine series when one of the functions $\pm f(2 \pi-x)$ is assigned to the inter val π to 2π

295 When the function is given-and the term function has hole an exceptionally wide meaning-the coefficients in 1 ts expression as a Fourier's series can be calculated by a special kind of integrator, hnown as an Harmonic Analyser, of which several forms have been invented But here the equivalent arithmetical processes will be considered

When the function is iepresented by a definite number of distinct values it is obvious that only a finite number of terms in the series can be determined, and it is necessary to assume that the practical convergency of the series is such that the remainder after a certain point is negligible Let the finite series be

$$
u=a_{0}+\sum_{l=1}^{n}\left(a_{l} \cos 2 \theta+b_{l} \sin 2 \theta\right)
$$

with $2 n+1$ corresponding paurs of values, $u=u_{1}, \theta=\theta_{1}$ From the linear equations

$$
u_{1}=a_{0}+\Sigma\left(a_{\imath} \cos 2 \theta_{1}+b_{\imath} \sin 2 \theta_{1}\right)
$$

the coefficients a_{0}, a_{i}, b_{2} can be found in the ordınary way It is also easy to represent the result by a formula analogous to Lagrange's formula of interpolation (15) But when $\theta_{r}=2 r \pi /(2 n+1)$ the solution can be effected in a very simple way

It is necessary to consider the sums of two very simple series In the first place

$$
\begin{aligned}
\sum_{r=0}^{s-1} \sin r \alpha & =\sum_{0}^{s-1}\left\{\cos \left(r-\frac{1}{2}\right) \alpha-\cos \left(r+\frac{1}{2}\right) \alpha\right\} / 2 \sin \frac{1}{2} \alpha \\
& =\left\{\cos \frac{1}{2} \alpha-\cos \left(s-\frac{1}{2}\right) \alpha\right\} / 2 \sin \frac{1}{2} \alpha \\
& =\sin \frac{1}{2} s \alpha \sin \frac{1}{2}(s-1) \alpha / \sin \frac{1}{2} \alpha
\end{aligned}
$$

and this is 0 if $\alpha=2 p \pi / s$ Even when $p=p^{\prime} s, p$ and p^{\prime} being both integers, and therefore $\sin \frac{1}{2} \alpha=0$, this remains true, for every term of the series is then zero Similarly

$$
\begin{aligned}
\sum_{r=0}^{s-1} \cos r \alpha & =\sum_{0}^{s-1}\left\{\sin \left(1+\frac{1}{2}\right) \alpha-\sin \left(r-\frac{1}{2}\right) \alpha\right\} / 2 \sin \frac{1}{2} \alpha \\
& =\left\{\sin \left(s-\frac{1}{2}\right) \alpha+\sin \frac{1}{2} \alpha\right\} / 2 \sin \frac{1}{2} \alpha \\
& =\sin \frac{1}{2} s \alpha \cos \frac{1}{2}(s-1) \alpha / \sin \frac{1}{2} \alpha
\end{aligned}
$$

and this is 0 also if $\alpha=2 p \pi / s$, unless $p=p^{\prime} s$ In the latter case each term of the series is 1 and the sum is s Thus both the series vanish for $\alpha=2 p \pi / s$, except the cosine series when $\alpha=2 p^{\prime} \pi$

296 Let $u=u_{r}$ be the value of the function corresponding to the value of the argument $\theta=r a$ The series will not now be limited to a finite number of terms Then

$$
\begin{aligned}
\sum_{r=0}^{8-1} u_{r} \cos \jmath r \alpha & =a_{0} \sum_{r} \cos \jmath r \alpha+\sum_{\imath} \sum_{r}\left(a_{\imath} \cos \jmath r \alpha \cos \imath r \alpha+b_{\imath} \cos \jmath \imath \alpha \sin \imath r \alpha\right) \\
& =a_{0} \sum_{r} \cos \jmath r \alpha+\frac{1}{2} \sum_{\imath} \sum_{r} a_{\imath}\{\cos (\imath+\jmath) r \alpha+\cos (\imath-\jmath) r \alpha\} \\
& =\frac{1}{2} \sum_{\imath} \sum_{r} b_{\imath}\{\cos (\imath-\jmath) r \alpha-\cos (\imath+\jmath) r \alpha\}
\end{aligned}
$$

When $\alpha=2 \pi / s$, for all the sine terms vanish immediately in the sum with respect to r The cosine terms also vanish in the sum unless $\jmath, \imath+\jmath$ or $\imath-\jmath$ is a multiple of s (including zero) Thus, \jmath having in succession all values from 1 to $\frac{1}{2}(s-1)$, or $\frac{1}{2} s$,

$$
\left.\begin{array}{l}
\frac{1}{s} \sum_{r=0}^{8-1} u_{r}=a_{0}+\sum_{m=1} a_{m s}, \quad(\jmath=0) \tag{35}\\
\frac{2}{s} \sum_{r=0}^{s-1} u_{r} \cos \frac{2 j r \pi}{s}=a_{j}+\sum_{m=1}\left(a_{m s-j}+a_{m s+j}\right) \\
\frac{2}{s} \sum_{r=0}^{s-1} u_{r} \sin \frac{2 \jmath r \pi}{s}=b_{j}+\sum_{m=1}\left(b_{m s+j}-b_{m s-j}\right)
\end{array}\right\}
$$

When s equidistant values, $u_{0}, \quad, u_{s-1},\left(u_{s}=u_{0}\right)$, are known the operations indicated on the left are easily performed Then, if the series converges so rapidly that the higher coeflicients can be neglected, a_{0}, a_{1}, b_{1}, are determined, as far as $a_{\ddagger(s-1)}, b_{\ddagger(s-1)}$ if s is odd, and as far as $\alpha_{\frac{2}{8}}, b_{k^{s}-1}$ if s is even The lower coefficients will naturally be calculated much more accurately than the higher, for there is little reason to suppose $a_{4 s+1}$ small in comparison with a_{18-1} But it is well to compute the higher coefficients as a practical test of convergence

297 It is usually convenient to make s an even number, and indeed a multiple of 4 , so as to divide the quadrants symmetrically Let $s=2 n$ and let the terms of higher order than a_{n}, b_{n-1} be neglected Then (35) become

$$
\begin{equation*}
a_{0}=\frac{1}{2 n} \sum_{r=0}^{2 n-1} u_{1}, \quad a_{\jmath}=\frac{1}{n} \Sigma u_{r} \cos \frac{j r \pi}{n}, \quad b_{j}=\frac{1}{n} \Sigma u_{r} \sin \frac{j r \pi}{n} \tag{36}
\end{equation*}
$$

$(\jmath=1,2, \quad, n-1) \quad$ When $\jmath=n$,

$$
\frac{1}{n} \Sigma(-1)^{r} u_{r}=2 a_{n}, \quad 0=b_{n}-b_{n}
$$

so that a_{n} is determined, but not b_{n}, and this is natural, for $2 n$ coefficients in addition to a_{0} cannot be derived from $2 n$ values u_{r}

Let $n-\jmath$ be written for \jmath in (36) Then

$$
\begin{aligned}
& a_{n-\jmath}=\frac{1}{n} \sum_{r=0}^{n-1} u_{r} \cos \left(r \pi-\frac{\partial r \pi}{n}\right)=\frac{1}{n} \Sigma(-1)^{r} u_{r} \cos \frac{j r \pi}{n} \\
& b_{n-\jmath}=\frac{1}{n} \Sigma u_{r} \sin \left(r \pi-\frac{j r \pi}{n}\right)=-\frac{1}{n} \Sigma(-1)^{r} u_{r} \sin \frac{j r \pi}{n}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\frac{1}{2}\left(a_{\jmath}+a_{n-\jmath}\right) & =\frac{1}{n}\left\{u_{0}+u_{2} \cos \frac{2 \jmath \pi}{n}+\quad+u_{2 n-2} \cos \frac{2 \jmath(n-1) \pi}{n}\right\} \\
& =\frac{1}{n}\left\{i_{0}+\left(u_{2}+u_{2 n-2}\right) \cos \frac{2 \jmath \pi}{n}+\left(u_{4}+u_{2 n-4}\right) \cos \frac{4 \jmath \pi}{n}+\right\} \\
\frac{1}{2}\left(a_{\jmath}-a_{n-\jmath}\right) & =\frac{1}{n}\left\{u_{1} \cos \frac{\jmath \pi}{n}+u_{3} \cos \frac{3 \jmath \pi}{n}+\quad+u_{2 n-1} \cos \frac{(2 n-1) \jmath \pi}{n}\right\} \\
& =\frac{1}{n}\left\{\left(u_{1}+u_{2 n-1}\right) \cos \frac{\jmath \pi}{n}+\left(u_{3}+u_{2 n-3}\right) \cos \frac{3 \jmath \pi}{n}+\right\} \\
\frac{1}{2}\left(b_{\jmath}+b_{n-\jmath}\right) & =\frac{1}{n}\left\{u_{1} \sin \frac{\jmath \pi}{n}+u_{3} \sin \frac{3 \jmath \pi}{n}++u_{2 n-1} \sin \frac{(2 n-1) j \pi}{n}\right\} \\
& =\frac{1}{n}\left\{\left(u_{1}-u_{2 n-1}\right) \sin \frac{\jmath \pi}{n}+\left(u_{3}-u_{2 n-3}\right) \sin \frac{3 \jmath \pi}{n}+\right\} \\
\frac{1}{2}\left(b_{j}-b_{n-\jmath}\right) & =\frac{1}{n}\left\{u_{2} \sin \frac{2 \jmath \pi}{n}+u_{4} \sin \frac{4 \jmath \pi}{n}+\quad+u_{2 n-2} \sin \frac{2 \jmath(n-1) \pi}{n}\right\} \\
& =\frac{1}{n}\left\{\left(u_{2}-u_{2 n-2}\right) \sin \frac{2 \jmath \pi}{n}+\left(u_{4}-u_{2 n-4}\right) \sin \frac{4 \jmath \pi}{n}+\right\}
\end{aligned}
$$

$(j=1,2, \quad, n-1)$, and

$$
\begin{aligned}
& a_{0}+a_{n}=\frac{1}{n}\left(u_{0}+u_{2}+u_{4}+\quad+u_{2 n-2}\right) \\
& a_{0}-a_{n}=\frac{1}{n}\left(u_{1}+u_{3}+u_{5}+\quad+u_{2 n-1}\right)
\end{aligned}
$$

By this arrangement $a_{n-\jmath}, b_{n-\jmath}$ are calculated together with a_{j}, b_{j} with scarcely more trouble than a_{j}, b, alone As a practical check on the convergence of the series these higher harmonics should be found

298 The arrangement can be greatly simplified in special cases For example, in the case $s=12, n=6$, let the data be arranged thus

	u_{0}	u_{1}	u_{2}	u_{3}	u_{4}	u_{5}	u_{6}
		u_{11}	u_{10}	u_{9}	u_{8}	u_{7}	
Sums	v_{0}	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}
Differences		w_{1}	w_{2}	w_{3}	w_{4}	v_{5}	
	v_{0}	v_{1}	v_{2}	v_{3}	w_{1}	w_{2}	w_{3}
	v_{6}	v_{5}	v_{4}		w_{5}	w_{4}	
Sums	p_{0}	p_{1}	p_{2}	p_{3}	r_{1}	r_{2}	τ_{3}
Differences	q_{0}	q_{1}	q_{2}		s_{1}	s_{2}	

The equations for the coefficients are

$$
\begin{aligned}
& \frac{1}{2}\left(a_{j}+a_{6-\jmath}\right)=\frac{1}{6}\left(v_{0}+v_{2} \cos \frac{1}{3} \jmath \pi+v_{4} \cos \frac{2}{3} \jmath \pi+v_{6} \cos \jmath \pi\right) \\
& \frac{1}{2}\left(a_{j}-a_{6-\jmath}\right)=\frac{1}{6}\left(v_{1} \cos \frac{1}{6} \jmath \pi+v_{3} \cos \frac{1}{2} \jmath \pi+v_{5} \cos \frac{5}{6} \jmath \pi\right) \\
& \frac{1}{2}\left(b_{j}+b_{6-j}\right)=\frac{1}{6}\left(w_{1} \sin \frac{1}{\left.6 . \jmath \pi+w_{3} \sin \frac{1}{2} \jmath \pi+w_{6} \sin \frac{5}{6} \jmath \pi\right)}\right. \\
& \frac{1}{2}\left(b_{j}-b_{6-\jmath}\right)=\frac{1}{6}\left(w_{2} \sin \frac{1}{3} \jmath \pi+w_{4} \sin \frac{2}{3} \jmath \pi\right)
\end{aligned}
$$

Hence two cases, according as \jmath is even or odd

\[

\]

and these forms can easily be made more general

Then, for $\jmath=2$,
for $\jmath=1$,

$$
\begin{array}{ll}
\frac{1}{2}\left(a_{2}+a_{4}\right)=\frac{1}{6}\left(p_{0}-\frac{1}{2} p_{2}\right), & \frac{1}{2}\left(b_{2}+b_{4}\right)=\frac{1}{6} s_{1} \cos 30^{\circ} \\
\frac{1}{2}\left(a_{2}-a_{4}\right)=\frac{1}{6}\left(\frac{1}{2} p_{1}-p_{3}\right), & \frac{1}{2}\left(b_{2}-b_{4}\right)=\frac{1}{6} s_{2} \cos 30^{\circ}
\end{array}
$$

$$
\begin{array}{ll}
\frac{1}{2}\left(a_{1}+a_{5}\right)=\frac{1}{6}\left(q_{0}+\frac{1}{2} q_{2}\right), & \frac{1}{2}\left(b_{1}+b_{5}\right)=\frac{1}{6}\left(\frac{1}{2} r_{1}+r_{3}\right) \\
\frac{1}{2}\left(a_{1}-a_{5}\right)=\frac{1}{6} q_{1} \cos 30^{\circ}, & \frac{1}{2}\left(b_{1}-b_{5}\right)=\frac{1}{6} r_{2} \cos 30^{\circ}
\end{array}
$$

$$
a_{3}=\frac{1}{6}\left(q_{0}-q_{2}\right), \quad b_{3}=\frac{1}{6}\left(r_{1}-r_{3}\right)
$$

and finally, for $\jmath=0$,

$$
a_{0}+a_{6}=\frac{1}{6}\left(p_{0}+p_{2}\right), \quad a_{0}-a_{6}=\frac{1}{6}\left(p_{1}+p_{3}\right)
$$

The calculation of the required terms is therefore extremely simple The case when $s=24, n=12$, 1 s almost equally so, but would require more space to exhibit in detall

299 The mode of solution for the harmonc coefficients can be considered from another point of view Let the s equidistant values $u_{0}, u_{1}, \quad, u_{s-1}$ be given as before, and let the first p harmonics-uncluding $a_{p} b_{p}$-be required If $2 p=s-1$, the number of unknowns is equal to the number of values and the solution is unique If $2 p<s-1$, the number of equations is in excess of the number of coefficients to be determined The latter can then be found by the rule of least squares, that 1 s , so as to make the sum of the squared residuals a minimum The equations being of the form

$$
u_{r}=a_{0}+\sum_{\imath=1}^{p}\left(a_{\imath} \cos \frac{2 \imath r \pi}{s}+b_{\imath} \sin \frac{2 \imath r \pi}{s}\right)
$$

the quantity which is to be made a minimum is

$$
U=\sum_{i=0}^{s-1}\left\{a_{0}+\sum_{i=1}^{p}\left(a_{\imath} \cos \frac{2 \imath r \pi}{s}+b_{\imath} \sin \frac{2 \imath \tau \pi}{s}\right)-u_{r}\right\}^{2}
$$

The conditions are

$$
\frac{\partial U}{\partial a_{0}}=\frac{\partial U}{\partial a_{1}}=\frac{\partial U}{\partial b_{j}}=0, \quad(\jmath=1, \quad, p)
$$

which, being $2 p+1 \mathrm{in}$ number, determine a_{0} and the $2 p$ coefficients They give in fact

$$
\begin{aligned}
& \sum_{i=0}^{s-1}\left\{a_{0}+\sum_{\imath=1}^{p}\left(a_{\imath} \cos \frac{2 \imath r \pi}{s}+b_{\imath} \sin \frac{2 \imath r \pi}{s}\right)-u_{r}\right\}=0 \\
& \sum_{r=0}^{s-1} \cos \frac{2 \jmath r \pi}{s}\left\{a_{0}+\sum_{\imath=1}^{p}\left(a_{\imath} \cos \frac{2 \imath r \pi}{s}+b_{\imath} \sin \frac{2 \imath r \pi}{s}\right)-u_{r}\right\}=0 \\
& \sum_{i=0}^{s-1} \sin \frac{2 \jmath r \pi}{s}\left\{a_{0}+\sum_{i=1}^{p}\left(a_{\imath} \cos \frac{2 \imath r \pi}{s}+b_{\imath} \sin \frac{2 \imath r \pi}{s}\right)-u_{r}\right\}=0
\end{aligned}
$$

But since $2 p<s-1,0<\jmath<p+1$ and $0<\imath<p+1$, nether \imath nor $\imath+\jmath$ is a multiple of s (including 0) Hence the only terms which do not vanish in the sum with respect to r arise when $\imath-\jmath=0$, and therefore the equations become

$$
\begin{gathered}
s a_{0}-\sum_{r-0}^{s-1} u_{r}=0 \\
\frac{1}{2} s a_{1}-\sum_{r=0}^{s-1} u_{r} \cos \frac{2 \jmath r \pi}{s}=0, \quad \frac{1}{2} s b_{j}-\sum_{r=0}^{s-1} u_{r} \sin \frac{2 \jmath r \pi}{s}=0
\end{gathered}
$$

($\jmath=1, \quad, p$) But these are identical with the earher equations of the group (35) when the distant harmonics are omitted Hence the harmonics to any order p derived by the general rule (36) from $2 n$ equidistant values ($p<n$) are the same as would result from a least-square solution Thus if the function is represented by a curve and the coefficients are calculated by the rule, a_{0} gives the best horizontal straight line, $a_{0}+a_{1} \cos \theta+b_{1} \sin \theta$ the closest simple sine curve, and so on, in the sense defined This important property emphasises the independence with which the several coefficients are determined Each apart from the rest is found with the greatest possible accuracy from the data accoiding to the principle of least squares

300 The method can be extended to the development of a periodic function in two variables,

$$
F=\Sigma a_{i j} \sin \left(2 \theta+j \theta^{\prime}+\alpha\right)
$$

For this may be wuitten

$$
F=a_{0}+\sum_{2}\left(a_{2} \cos 2 \theta+b_{2} \sin 2 \theta\right)
$$

where a_{0}, a_{l}, b_{l} are each of the same form as F with θ^{\prime} in the place of θ With any particular value of θ^{\prime} and $2 n$ equidistant values of F in respect to $\theta, a_{0}, a_{\imath}, b_{\imath}$ can be determined according to the rule expressed by (36) Each of these is a function of the chosen value of θ^{\prime}, and if the process is repeated with $2 n$ equidistant values of θ^{\prime}, each coefficient can be expressed in the form

$$
a_{j}=\alpha_{0}+\sum_{\imath}\left(\alpha_{\imath} \cos \imath \theta^{\prime}+\beta_{\imath} \sin \imath \theta^{\prime}\right)
$$

by the same rule When these expressions are inserted in the second form of F, the first form is readuly deduced This method was employed by Le Verrier in his theory of Saturn

INDEX

(The numbers refer to pages)

Aberration, 91, 116, 117
Absolate perturbations, 180, 218
Action, 136, 248
Adams, 207, 258, 272
Annual equation, 282, 316
Annual precessions, 307
Apollonius, 2
Apparent orbit, 81
Appell, 165
Apse, Apsidal angle, 6
Argument of latitude, 65
Arithmetio-geometric mean, 161
Astronomua Nova, 1
Astronomical units, 19
β Aurigae, 118
Barker's table, 26
Bauschinger's Tafeln, 26, 31, 32, 54, 58, 71, 234
Bernoull, D , 48
Bertrand, 5, 8
Bessel, 37, 48, 327
Bessel's coefficients, 35, 36, 41, 42, 45-48
Boys, C V, 10
Braun, K, 10
Brooks, 67
Brown, 254, 279, 291
Bruns, 15, 82, 215
Burrau, 253
Canonical equations, 131, 152
Cape Observatory, 117
Cassini's laws, 312, 314, 315, 819, 320, 322
Castor, 118
Cauchy, 41, 159
Cauchy's numbers, 42, 43
Cavendish, 10
Cayley, 175
Characteristic exponents, 246, 271
Characteristics, order of, 286
Charleer, 76, 80, 81, 206
Chrystal, 162
Clairaut, 279
Class of perturbation, 182, 191
42 Comae Berenuces, 111

Comet a 1906, 67, 68
Commensurability of mean motions, 181, 191
Conjugate functions, 250, 258
Contact transformation, 132
Continued fraction, 162, 163
Copernioan system, 1
Cosmogony, 194
Cowell, 173, 221
Crommelin, 221
Darboux, 6
Darwin, G H , 238, 239, 264
Degree (of perturbation), 182
Delambre, 69, 100, 176
Delaunay, 152, 153, 157, 175, 191, 254, 277, 279, 285
Descartes, 77
Difference table, 219, 324, 331
Differential corrections, 112, 126
Disturbed motion, 140, 243-245

1) 1 sturbing function, 19

Diurnal libration, 313
Doppler, 115, 116
Double stars, 3, 19, 103
Eccentric anomaly, 3
Eccentric variables, 153
Elements, elliptic, 65
of double stars, 104
of spectrosoopio binary, 121
parabohe, 67
Elimination of the nodes, 186, 204
Elliptic functions, 159, 214, 253
Encke, 58, 64, 222
Ephemeris, 75, 85, 323
Equation of the centre, 35, 40
Eros, 206
Euler, 48, 53, 96, 254, 260, 292, 313
Eulerian nutation, 295
Evection, 279, 286
Extended point transformation, 132, 266
Fist lunar meridian, 315
Fourier, 35, 40, 46, 121, 158, 261, 333, 334
Frans, 316, 320

Gauss, 19, 31, 32, 69, 71, 85, 88, 89, 100, 162, $207,217,326,327$
Gaussian constant, 20, 229
Gegenschein, 242
General precession, 69, 302
Geodetic curvature, 82
Gibbs, 62, 63, 91, 98
Gravitation constant, 10
Green, 249
Guder manmian function, 27
Gyldén, 191, 242
Halley's comet, 221
Halphen, 3, 6, 217
Hamilton, 131, 134, 184
Hamilton Jacobi equation, 133-135, 142, 146, $154,155,188$
Hansen, 45, 167, 170, 191, 227, 254
Hilunsen's coefficients, 44, 46, 171, 174, 175
Harmonic analyser, $33 \pm$
Harmonic analysis, 333
Havmonuces Mundr, 1
Herschel, J , 107, 110, 125
Herschel, W, 103
Hessian, 202
Hill, G W , 46, 217, 238, 245, 254, 258, 261, 264-267, 269, 271, 272
Hinks, 306
Hodograph, 30
Hypergeometric serieq, 45, 159, 162, 16さ, 167, 168, 215

Inclunation of oibit, 65
Infinitesimal contact transformation, 189
Integral of energy, 15, 16, 130, 131, 236, 260
Integrals of area, 15, 185, 204
Inter meduate orbit, 261
Invariable plane, 16, 17, 204
Jacobı, 16, 164, 184, 186, 236
Jupiter, 69, 164, 181, 191, 205, 224, 228, 234, $235,237,243$
Jupiter VIII and IX, 157, 222
Keple1, 1, 2, 8-10, 111, 236, 315
Keplei's equation, 4, 24, 27, 29-31, 194
Kinetic focus, 136
Klinkerfues, 82
Kowalsky, 109
Lagrange, 34, 46, 48, 74, 129, 130, 134, 200, $244,245,328$, 355
Lagrange's brackets, 136-138, 141, 144
Lambert, 51, 55, 56, 81, 88
Laplace, 17, 73, 190, 194, 203
Laplace's coefficients, $158-160,169,170,174$,

Laurent, 40, 260, 261
Least action, 136
Least squares, 122, 338
Legendre, 13, 165, 214, 215, 255
Leonid meteols, 207
Le Verrier, 164, 339
Light equation, 72, 91
Limiting curve, 79
Locus fictus, 71, 72
Longitude in the olbit, 65
Longitude of perihelion, 65
Long period inequalities, 181
Lowell, 191
Lunation, 284
Luni-solar piecession, 300
Major planets, 164, 200, 218
Mars, 1, 66, 205, 222
Mass of Moon, 305, 306
Mathieu's equation, 246
Mean anomaly, 24
Mean longitude, 66, 155
Mean motion of node, 203 of perihelion, 201
Mean oblıquity of eclıptıc, 300, 302
Mean Sun, 308
Mean time, 308
Mechanical differentiation, 75, 329
Mechanical elhpticity of Earth, 305, 306
Mehler Dirichlet integral, 214
Mexcury, 205
Mimas, 191
Mino1 planets, 69, 102, 164, 191, 206, 228,
243, 284, 306
Motion of lunal node, 285
of lunar peligee, 279
Moulton, 242
Napier, 70
Nautlıal Almanac, 67, 68, 71, 72, 85, 228, 305, 309
Nebular hypothesis, 194
Neptune, 205, 235
Newcomb, 20, 160-162, 164, 175, 307, 309
Newcomb's opeators, 172, 173, 175
Newton, 3, 9, 10, 25, 254, 325, 326
Nodes, 65
Nutational ellipse, 303
Nutation constant, 304
Oblıque vauıables, 153
Olbers, 94
Optical hibiation, 313
Order of perturbation, 182
Osculating orbit, 19, 178, 179
Parallactic ınequality, 284

Parameter, 22
Pascal, 106
Periodic orbits, 218, 238, 242, 243, 249, 261, 264, 266
Planetary precession, 300
Poincaré, H , 15, 153, 159, 172, 182, 183, 191. 246, 247, 261, 274
Point of libration, 241
Poisson, 140, 141, 190, 203, 322
Poisson's brackets, 134, 136-138, 140, 141, 145, 146
Polaris, 118
Position angle, 103
Potential, 11
Precession constant, 304
Princıpal elliptic term, 279, 316
Princıpıa, 3, 5, 7, 25
Procyon, 114
Projective geometry, 104, 106
Ptolemaio system, 1
Ptolemy, 279
Puıseux, 322
Quadrature, 218, 330
Quaternions, 186
Radıal velocıty, 115
Rank of perturbations, 182
Relativity, 116
Repulsive forces, 27
Resisting medium, 177
Retrograde motion, 157, 194
Satellite motion, 157, 258
Saturn, 181, 191, 205, 235, 339
Schluter, 316
Secular acceleration of Moon, 291
Secular inequalities, 180
Sidereal time, 307
Singular ourve, 80

Sirius, 114
Slipher, 191
Special perturbations, 218
Spectroscopic binaries, 115, 118
Sphere of influence, 235
Spiru Haretu, 190
Stability, $16,180,183,190,194,199,242,243$, 246, 248, 271, 315, 319
Steffensen, 267
Stellar kınematıcs, 117
Stieltjes, 168
Stirlıng, 326, 328
Stookwell, 201, 205
Strömgren, 253
Taylor, 24, 171
Theoria Motus, 31, 32
Thiele, T N , 107, 253
Tisserand, 45, 168, 169, 237, 254
Tropical year, 310
True anomaly, 23
Tycho Brahe, 1, 2, 277
Uranus, 205, 235
Variable proper motion, 113
Variation, 277
Variational curve, 261, 266, 267
Variation of constants, 134
Variation of latitude, 295
Velocity curve, 118
Venus, 205, 222
Weierstrass, 159, 200, 214
Whittaker, 46, 48, 214, 215, 248, 269
Whittaker and Watson, 46, 214, 215, 247, 269

Zerpel, H von, 158, 164, 207
Zwiers, 107

THE REALM OF THE NEBULAE

by Edwin Hubble

The discovery of the true nature of extragalactic nebulae as separate "island universes" opened the last frontier of man's exploration of the vast reaches of space This book is an exciting and scientifically invaluable record of the steps which led to this concept and its impact on astronomy as reported by one of the great observational astronomers of the century

Using no mathematics beyond very elementary high school algebraic formulae, Mr Hubble covers such topics as the formulation of the theory of island universes, the nature of nubulae, the velocity-distance relation, classification of nebulae, distances of nebulae, nebulae in the neighborhood of the Milky Way, the general field of nebulae, and cosmological theories such as Einstein's general and Milne's kinematical relativity 39 striking photographs illustrate nebulae and nebulae clusters, spectra of nebulae and velocity-distance relations shown by spectrum comparison 16 additional figures cover sequence of nebular types, apparent distribution of nebulae, corrected distribution of nebulae, apparent distribution of nebulae in depth, and similar information
"A clear and authoritative exposition of one of the most progressive lines of astronomical research," THE TIMES (London)

New introduction by Dr Allan Sandage 55 illustrations including 14 full-page plates. Index xvi +210 pp. $53 / 8 \times 8$

[^0]: * Oeuvres, IIt, p 130 This reference, which seems to have been overlooked, is due to Prof Whittaker

[^1]: * Encyklopadie d nath Wres, vi 2, p 682

[^2]: * Of Whittaker's Modern Analysis, p 210, Whittaker and Watson, p 308

[^3]: * Cf Whittaker's Modern Analysis, p 35, Whittaker and Watson, p 36

[^4]: * Mrmolrs R. Astr Soc, Lili, pp 39, 163, niv, p 1, Lyif, p 51, Lix, p 1

