

TECHNICAL REPORT

INVESTIGATIONS OF DEEP-SEA SEDIMENT CORES

II. MASS PHYSICAL PROPERTIES

ADRIAN F. RICHARDS

OCTOBER 1962

U. S. NAVY HYDROGRAPHIC OFFICE WASHINGTON 25, D. C.

A B S TRACT

Thirty-five gravity- and piston-type cores were collected by the Hydrographic Office in depths of 400 to 5120 m from 8 different areas in the North Atlantic, Central Pacific, and West Mediterranean Sea. Most cores were composed of terrigenous silt- and clay-size particles. Mass physical property laboratory measurements of more than 700 samples included: grain size, specific gravity of solids, wet unit weight, water content, void ratio, pore-water saturation, liquid and plastic limits, and compressive and/or vane shear strength. Also computed were porosity, liquidity index, plastic index, cohesion, sensitivity, activity, and modulus of elasticity.
Depth in cores generally was found to be directly related to wet unit weight and cohesion, inversely related to measures of water content, and a variable relation to median diameter, sand- and claysize fraction, and plasticity index. Specific gravity of solids ranged from 2.68 to 2.89 , without correction for salt content, and showed a tendency to be directly related to wet unit weight and inversely related to porosity. Wet unit weight ranged from 1.23 to $1.86 \mathrm{~g} / \mathrm{cm}^{3}$ and was inversely related to porosity. All samples, except one, were effectively 100 percent saturated. Water content ranged from 37 to 237 percent dry weight, corresponding to porosities of 51 to 86 percent. Surface porosities averaged by area ranged from 72 to 86 percent. Straight-line relationships between porosity and claysize fraction and also the logarithm of cohesion are related to relative rates of deposition in the different areas. Liquid limit ranged from 25 to 109 percent and plastic limit from 15 to 46 percent, with most values between, respectively, 50 to 80 percent and 20 to 30 percent. Most samples were highly plastic; extremes of plasticity index were 1.6 and 81 . In surface sediments, water content always was greater than liquid limit. Liquidity indices commonly were about 200 percent, with a few values greater than 1,200 percent. Cohesion ranged from 4.2 to $234 \mathrm{~g} / \mathrm{cm}^{2}$ in "undisturbed" samples. The mean of surface cohesion measurements in predominantly terrigenous sediments was about $20 \mathrm{~g} / \mathrm{cm}^{2}$, and in calcareous sediments about $40 \mathrm{~g} / \mathrm{cm}^{2}$. Sensitivities of 1.6 to 26 are reported. Porosity appeared directly related to sensitivity. Activity ranged from 0.06 to 1.7 with most values between 0.25 and 1.25. Moduli of elasticity, computed from compressive strength test measurements, ranged from 0 to $870 \mathrm{~g} / \mathrm{cm}^{2}$.

FOREWORD

This second report on Investigations of Deep-Sea Sedimeni Cores is a comprehensive study of the laboratory measurements of the mass physical properties of 35 deep-sea sediment cores from various oceanic areas of the world.

Procedures described for marine sediment core onalysis are those being used at the U.S. Navy Hydrographic Office.

Resulis of this study are presented in this report through the cooperation of the Bureau of Public Roads and three estabilishments within the Navy: the Hydrographic Office, she Bureau of Yards and Docks, ond the Navy Electronics Laboratory.

$$
550+15810
$$

$$
\cdots: 8+6
$$

$\therefore \quad \cdots$
\qquad
\qquad
\qquad

$$
\begin{aligned}
& \text { biage set is }
\end{aligned}
$$

CONTENTS

Page

1. INTRODUCTION AND ACKNOWLEDGMENTS 『
2. CORE COLLECTION 3
III. SEDIMENT CLASSIFICATION 9
IV. MASS PROPERTIES
A. Introduction 14
B . Grain Size
Procedure 84
Results 15
Discussion 18
C. Specific Gravity of Sollds
Procedure 18
Results 18
Discussion 20
D. Wet Unit Weight
Procedure 20
Resulits 20
Discussion 22
E. Water Content
Introduction 22
Results 25
Discussion 25
F. Plasticity and the Atterberg Limits
Determination of Limits 31
Results 32
Discussion 33

CONTENTS (Cont'd)

Page
G. Shear Strength
Iniroduction 35
Cohesion 35
Sensitivity 41
Discussion 43
H. Modulus of Elasticity 46

1. Mineralogy and Activity
Procedure 47
Mineralogy 47
Activity 47
V. SUMMARY AND CONCLUSIONS 53
REFERENCES 95
APPENDICES
A. Salinity Correction for Specific Grovity Measurements 107
B. Data Table for Each Core Tested 109
FIGURES
2. Location of Areas 4
3. Relation of Cores Within Each Area 5
4. Nomenclature of Sedimenis by Area 10

FIGURES (Cont'd)

Page
4. Plasticity Chart 12
5. Relation of Void Ratio to Median Diameter 16
6. Relation of Porostity to Median Diameter 17
7. Relation of Porosity to Specific Gravity of Solids 19
8. Relation of Porosity to Wet Unit Weight 21
9. Relation of Depth in Core to Water Content for Close Interval Sampling of Piston Core G 5 26
10. Relation of Porosity to Clay-Size Fraction 29
81. Relation of Porosity to Logarithm of Cohesion by Area 38
12. Relarion of Porosity to Logarithm of Cohesion by Area Average 39
13. Relation of Cohesion to Clay-Size Fraction 40
14. Relation of Porosity to Sensitivity 42
15. Relation of Logarithm of Sensitivity to Liquidity Index 44
16. Activity Chart of Core Samples with Known Clay-Size Mineralogy 51
17. Activity Chart 52
Plates

1. Parameters versus Depth for Core A 23 81
2. Parameters versus Depth for Core A 31 62

PLATES (Cont'd)

Page
III. Parameters versus Depth for Core A 33 63
IV. Parameters versus Depth for Core B 83 64
V. Parameters versus Depth for Core B 85 65
V1. Parameters yersus Depth for Core B 87 66
VII. Paramefers versus Depth for Core C 16 67
VIII. Parameters versus Depth for Core C 18 68
IX. Parameters versus Depth for Core C 19 69
X. Parameters versus Depth for Core C 20 70
X1. Parameters versus Depth for Core D Ig 71
XII. Parameters versus Depih for Core D 2 71
Xill. Parameters versus Depth for Core D Ip 72
XIV. Parameters versus Depth for Core E 46 73
XV. Parameters versus Depth for Core E 47 74
XVI. Porameters versus Depth for Core E 48 75
XVII. Parameters versus Depth for Core F 6 76
XVIII. Parameters versus Depth for Core F 10 77
XIX. Parameters versus Depth for Core Fil 78
XX . .Parameters versus Depth for Core F 12 79
XXI. Parameters versus Depth for Core F 13 80

PLATES (Cont'd)

Page
XXII. Parameters versus Depth for Core $\mathbb{F} \$ 4$ 81
XXIII. Parameters versus Depth for Core F 15 82
XXIV. Parameters versus Depth for Core F 16 83
XXV. Parameters versus Depth for Core G 2 84
XXVI. Parameters versus Depth for Core G 3 85
XXVII. Parameters versus Depth for Core G 4 86
XXVIPA. Parometers versus Depth for Core G 5 87
XXIX. Parameters yersus Depth for Core G 6 88
XXX. Parameters versus Depth for Core G 8 89
XXXI. Parameters versus Depth for Core G 9 90
XXXII. Parameters versus Depth for Core G 10 91
XXXIII. Parameters versus Depth for Core G 11 92
XKXIV. Parameters versus Depth for Core H 12 93
XXXV. Parameters versus Depth for Core H 13 94
TABLES

1. Core and Corer Summary 6
2. Comparison of Grain-Size Scales 9
3. Summary of Surface Water Content 27

TABLES (Cont'd)

Page
4. Summary of Surface and Near Surface Cohesion 36
5. Classification of Fine-Grained Sediment Sensitivity 41
6. Summary of the Greater than 9 phi Fraction and Whole Sample Mineralogical Analysis 48
7. Summary of Coarse-Fraction Analysis 49
8. Generalized Summary of Parameter Variation with Increasing Depth in Cores 57
9. Summary of Measured or Computed Minimum and Maximum Parameters in Area A-H Cores 60

NOTATION

$ब_{C}$	activity (PI/clay-size fraction)
B	liquidiry index (w-PL/PI)
c	apparent cohesion
c_{0}	area or Kerf ratio
C_{c}	compression index
C_{i}	inside clearance ratio
C_{0}	outside clearance ratio
$\mathrm{D}_{\text {e }}$	minimum inside diameter of core mose
$D_{\$}$	minimum inside diameter of core barrel or Aner
D_{8}	ouiside diameter of core barrel
D_{w}	miaximum outside diameter of core mose
e	void ratio $\left(V_{v} / V_{s}\right)$
ei	initial void ratio
ef ${ }^{\text {P }}$	final void ratio
$e_{s a t}$	void ratio at 100 percent saturation ($\left.G_{s} w / 100\right)$
G_{S}	specific grovity of solid particles
G_{f}	specific gravity of distilled water af temperature f
H	penetration of corer
1	Arer
L_{9}	distance from top of core 80 core nose cutting edge
42	liquid limis
Ad	median diamefer
0	porosity ${ }_{\text {g in }}$ in percent ($\left(V_{v} / N\right)$
Pl	plasticity index (LL-PL)
Pl	plastic limir
p	pressure

NOTATION (Cont'd)

P_{c}	compressive strength
P_{f}	final pressure
P_{8}	initial pressure
pcf	pounds per cubic foot
psi	pounds per square inch
R_{g}	gross recovery ratio
5	percent saiuration of void space
$S_{\text {t }}$	sensitivity (undisturbed strengih/remoided strength)
s	shear strength
V	volume of sediment mass
V_{s}	volume of solid particles
V_{v}	volume of voids
W_{c}	weight of sample container
W_{s}	dry $\left(1710^{\circ} \mathrm{C}\right)$ weight of solid particles
W_{w}	weight of water in a given sediment mass
W_{8}	weight of volumetric flask, sediment, and air-free water
W_{2}	weight of volumetric flask and air-free water
W_{3}	weight of sample plus container
w	water content in percent dry ($110^{\circ} \mathrm{C}$) weight
we	water content in percent wet weight $\left(W_{s}+W_{w}\right)$
γ	unit weight
γ_{m}	wet or mass unit weight of sediment
γ_{W}	unit weight of water
μ	micron (0.001 mm)
p	density
$\bar{\sigma}$	effective stress
ϕ	phi ($-\log _{2}$ particle diameter in mm) or, angle of shearing resisiance
6_{50}	phi median diameter

1. INTRODUCTION AND ACKNOWLEDGMENTS

In a recent book on marine sediments, Shepard (Shepard and others, 1960, p. 3-4) states that there are two principal methods to obtain characteristics of sediments sampled in the field: (1) microscopic and laboratory investigation of the constituents, and (2) physical and geochemical investigation of the constituents, for example, x-ray study, polargraphy, and electron microscopy. I would add an important third method, one that has been largely neglected by marine geologists: (3) physical and chemical properties of the sediment in mass. This paper considers only the mass physical properties of 35 sediment cores collected by the U. S. Navy Hydrographic Office during 1958 and 1959; it is the second in a series of three principal reports on these cores.

The first paper (Richards, 1961, -- hereafter called part one) described and discussed sampling procedure, laboratory preparation of samples for the tests, shear strength related to depth in the cores, and the practical application of shear strength and data derived from laboratory consolidation tests in the computation of bearing capacity and consolidation of sea-floor sediments when overstressed by an applied load. A third paper, in preparation, considers results of measured (laboratory) and computed (sedimentation compression -- Terzaghi, 1941, p. 215) pressure-void ratio relationships, and the influence of overburden pressure on the shear strength.

Soil mechanics terms and symbols in general conform to those published in 1958 by the joint Committee on Glossary of Terms and Definitions in Soil Mechanics of the American Society of Civil Engineers (ASCE) and the American Society for Testing Materials (ASTM). Notation has been presented. All logarithms are to the base ten unless otherwise noted.

Most of the tests reported were performed in the Soil Mechanics Laboratory of the Bureau of Yards and Docks (BUDOCKS) by personnel under the direction of Mr. C. M. Yeomans. Practically all of the size analyses and a few other tests were performed in the oceanographic laboratory of the Hydrographic Office under the direction of Mr . J. H. Recknagel. Clay mineralogy and certain other mineralogical analyses were made in the Physical Research Division of the Bureau of Public Roads under the direction of Mr . E. B. Kinter.

In addition to those persons and organizations previously acknowledged in part one, 1 wish to thank Messrs. E. B. Kinter and S. Diamond, Bureau of Public Roads, for performing mineralogical analyses. Dr. J. C. Hathaway, U.S. Geological Survey in Denver, reviewed the mineralogy and activity section of this report, made helpful suggestions in light of recent advances in this field, and kindly made available an unpublished report. I am particularly grateful to Mr. G. H. Keller of the

Hydrographic Office for his close cooperation and assistance in nearly all phases of the study after May 1958, and to my colleagues at the Navy Electronics Laboratory for helpful discussions on different aspects of the investigation. I also thank the numerous individuals who helped in the compilation of the data tables, performed typing, and drafted the final illustrations.

The report was written while I was a National Academy of Sciences-National Research Council Postdoctoral Resident Research Associate at the U. S. Navy Electronics Laboratory in San Diego, California.* I am pleased to acknowledge the cheerful support of many persons at the laboratory, especially Dr. E. L. Hamilton, my advisor, for his continued encouragement.

A preliminary draft of this paper was reviewed by Mr. P. P. Brown, Dr. G. H. Curl, Dr. E. L. Hamilton, Mr. G. H. Keller, Dr. R. T. Martin, Mr. D. G. Moore, Dr. G. Shumway, and Mr. C.M. Yeomans, to whom I am appreciative for helpful suggestions.

[^0]
II. CORE COLLECTION

Thirty-five sediment cores were collected from eight different areas of the continental shelf, continental slope, and deep-sea floor in the North Atlantic Ocean, West Mediterranean Sea, and Central Pacific Ocean (Fig. 1). Relation of cores within each area is shown in Figure 2; geographic coordinates cannot be published at this time.

Table 1 summarizes the equipment used to obtain the cores, sonic depth of water, and pertinent information about each core. The name of the corer refers to the U. S. Hydrographic Office (1955, p. 54-66) model of corers originally designed or described by Kullenberg (1947), Ewing (Heezen, 1952), and Phleger (Phleger and Parker, 1951, p. 3-5). The Hydroplastic corer was developed in the Hydrographic Office for use in this program (Richards, 1960; Richards and Keller, 1961).

The gross recovery ratio (Hvorslev, 1949, p. 100), R_{g}, listed in Table 1 is related to the distance from the top of the core to the core nose cutting edge, L_{g}, and the penetration of the corer, H , by

$$
\begin{equation*}
R_{g}=\frac{L_{g}}{H} \tag{1}
\end{equation*}
$$

This ratio is assumed to be 100 percent for piston cores. For gravity cores, the gross recovery ratio appears dependent on the clearance and area ratios of the corer (part one). In Table 1, this ratio is based on the extreme condition that core shortening is the same throughout the length of the core and that core penetration equals corer penetration. A further discussion of the problem has been given in part one .

No corrections for core shortening are applied to the data presented. For each and every core, the distance given in tables and graphs is the distance from the top of the core measured in the laboratory.

Hvorslev (1949, p. 105-109) defined ratios affecting performance of corers as

$$
\begin{equation*}
C_{i}=\frac{D_{s}-D_{e}}{D_{e}} \tag{2}
\end{equation*}
$$

where C_{i} is the inside clearance ratio that controls inside friction, D_{s} is the minimum inside diameter of the core barrel or liner, and D_{e} is the minimum inside diameter of

FIGURE 2. RELATION OF CORES WITHIN EACH AREA
TABLE 1. CORE AND CORER SUMMARY

Area	Core (No.)	Approx. Water Depth ${ }^{1}$ (m)	Predominant Sediment ${ }^{2}$ Type	Core Diameter (cm)	Core Length (cm)	Estimated Penetration (cm)	Gross Recovery Ratio, Rg^{3} (\%)	Corer Type ${ }^{3}$ $G=$ Gravity $P=$ Piston	Inside Clearance Ratio, C_{i} (\%)	Core Nose Outside Clearance Ratio, C_{o} (\%)	Area Ratio, Ca_{a} (\%)	Collector
A	23	1125	T, clayey silt	4.75	76	150	50	Kullenberg-G	3.6	10.1	105.5	A.F. Richards
	31	400	T, clayey silt	4.75	104	150	68	Kullenberg-G	3.6	10.1	105.5	
	33	1060	T, silty clay	4.75	97	150	63	Kullenberg-G	3.6	10.1	105.5	
B	83	1315	T, silty clay \&	4.75	102	180	57	Kullenberg-G	3.6	10.1	105.5	A.F. Richards
	85	730	T, clayey silt	4.75 4.75	79	180	43 44	Kullenberg-G	3.6 3.6	10.1 10.1	105.5 105.5	
	87	1125	T, clayey silt	4.75	81	180	44	Kullenberg-G	3.6	10.1	105.5	
C	16	1115	T, elayey silt	4.75	79	180	100	Kullenberg-P	3.6	10.1	105.5	A.F. Richards II II $\$ 1$
	18	1115	T, clayey silt	4.75	117	170	100	Kullenberg-P	3.6	10.1	105.5	
	19	1460	T, clayey silt	4.75	76	120	100	Kullenberg-P	3.6	10.1	105.5	
	20	1610	T, clayey silt	4.75	51	120	100	Kullenberg-P	3.6	10.1	105.5	
D	1	1240	C\&T, clayey silt	2.5	36	75	60	Phleger-G	10.2	0	62.2	S.W. Oliver II
	2	2010	C\&T, sand-silt-	2.5	30	90	33	Phleger-G	10.2	0	62.2	
	1	2560	clay C, clayey silt	6.35	511	610	100	Ewing-P	0.6	22.7	84.5	
E	46	2010	T, clayey silt	4.75	142	180	78	Kullenberg-G	3.6	10.1	105.5	G.H. Knoop, Jr.
	47	2010	T, clayey silt	4.75	157	180	86	Kullenberg-G	3.6	10.1	105.5	
	48	2195	T, clayey silt	4.75	109	180	60	Kullenberg-G	3.6	10.1	105.5	

${ }^{\text {IU }}$ Uncorrected sonic depth. One meter equals 0.547 fathoms or 3.28 U.S. feet.
2 = terrigenous source, $C=$ calcareous source, and $P C=$ pelagic clay source of material.
${ }^{3}$ See text.
TABLE 1. CORE AND CORER SUMMARY (Cont'd)

Area	Core (No.)	Approx Water Depth ${ }^{1}$ (m)	Predominant Sediment ${ }^{2}$ Type	Core Diameter (em)	Core Length (cm)	Estimated Penełra tion (cm)	Gross Recovery Ratio, Rg^{3} (\%)	$\begin{aligned} & \text { Corer Type }{ }^{3} \\ & G=\text { Gravity } \\ & P=\text { Piston } \end{aligned}$	Inside Clearance Ratio, $\mathrm{C}_{\mathbf{i}}$ (\%)	Core Nose Outside Clearance Ratio, C_{0} (\%)	Area Ratio, Ca_{a} (\%)	Collector
F	6	2270	T, clayey silt	8.2	269	280	100	Hydroplastic-G	1.3	13.4	56.3	A.F. Richards
	10	2450	T, clayey silt	4.75	175	180	100	Kullenberg-G	3.6	10.1	105.5	
	11	2450	T, clayey silt	8.2	152	-	-	Hydroplastic-G	1.3	13.4	56.3	"
	12	2430	T, clayey silt	4.75	168	170	96	Kullenberg-G	3.6	10.1	105.5	${ }^{*}$
	13	2415	T, clayey silt	4.75	142	140	100	Kullenberg-G	3.6	10.1	105.5	"
	14	2395	T, silty clay	4.75	173	140	100	Kullenberg-G	3.6	10.1	105.5	
	15	2415	T, silty elay	4.75	155	120	100	Kullenberg-G	3.6	10.1	105.5	${ }^{1}$
	16	2415	T, silty clay	4.75	170	130	100	Kullenberg-G	3.6	10.1	105.5	${ }^{\prime}$
G	2	455	T, silty clay	6.35	557	610	100	Ewing-P	0.6	22.7	84.5	G.H. Keller
	3	455	T, silty clay	8.1	152	400	39	Hydroplastic-G	1.3	13.4	56.3	
	4	455	T, silty clay	8.1	229	370	100	Hydroplastic-P	1.3	13.4	56.3	"
	5	455	T, silty clay	6.35	1204	1310	100	Ewing-P	0.6	22.7	84.5	"
	6	455	$T_{\text {P }}$ silty clay	8.1	152	210	71	Hydroplastic-G	1.3	13.4	56.3	"
	8	455	T, silty clay	8.1	244	300	100	Hydroplastic-P	1.3	13.4	56.3	"
	9	455	T, silty clay	8.1	137	210	64	Hydroplastic-G	1.3	13.4	56.3	"
	10	455	T, silty clay	8.1	81	240	75	Hydroplastic-G	1.3	13.4	56.3	"
	11	455	T; silty clay	8.1	122	210	57	Hydroplastic-G	1.3	13.4	56.3	18
H	12	5120	PC, silty clay	6.35	511	-	100	Ewing- P	0.6	22.7	84.5	R.H. Michel
	13	5120	PC, sility slay	4.75	142	-	-	Kullenberg-G	3.6	10.1	105.5	

the core nose or core cutter;

$$
\begin{equation*}
C_{o}=\frac{D_{w}-D_{f}}{D_{t}} \tag{3}
\end{equation*}
$$

where C_{O} is the outside clearance ratio that controls outside friction, \mathbb{D}_{w} is the maxiimum outside diameter of the core nose ${ }_{\text {a }}$ and D_{p} is the outside diameter of the core barrel; and

$$
\begin{equation*}
C_{a}=\frac{D_{w}^{2}-D_{e}^{2}}{D_{e}{ }^{2}} \approx \frac{\text { Volume of displaced sedimenf }}{\text { volume of the sample }} \tag{4}
\end{equation*}
$$

where C_{a} is the area or Kerf ratio. These ratios, shown in Table B, are significant, and their application to the cores collected in this program has been discussed in part one, where if was concluded that all cores are, strictly speaking, disturbed samples; those obtained with the Hydroplastic corer appear to be among the least disturbed.

III. SEDIMENT CLASSIFICATION

Index or classification properties of sediments used in this report are derived from measurements of the grain size, water content, liquid limit, and plastic limit; the latter two collectively are called Atterberg limits.

Geologists and civil engineers in the United States commonly use slightly different grain-size scales, respectively the Wentworth (1922) scale and the Massachusetts Institute of Technology or M.I.T. scale developed by Gilboy (Glossop and Skempton, 1945). These scales are compared and the scale used in this paper is given in Table 2. At the Hydrographic Office, the distinction between silts and sands follows Wentworth and is made at 62.5μ or about 4ϕ units ${ }^{1}$. Clay-size particles are of particular significance in fine-grained sediments and the maximum size of clay minerals (comprising most of the clay-size fraction) appears to be nearer 2 than 4μ according to Grim (1942, p. 229; 1953, p. 1) ${ }^{2}$.

TABLE 2. COMPARISON OF GRAIN-SIZE SCALES

	Wentworth Scale		M.I.T. Scale		Scale Used In This Paper	
	microns	phi	microns	phi	microns	phi
Sand	2000 to 62.5	-1 to 4	2000 to 60	-1 to 4.06	2000 to 62.5	-1 to 4
Silt	62.5 to 3.9	4 to 8	60 to 2	4.06 to 9	62.5 to 2	4 to 9
Clay	<3.9	>8	<2	>9	<2	>9

${ }^{1}$ After Krumbein (1936)
Consequently, the M.I.T. silt-clay separation at 2μ or $9 \varnothing$ is preferred (Table 2). Nomenclature (Fig. 3) follows the triangular diagram system devised by Shepard (1954). In Table 1, the modifying prefix to the name of the sediment is based on its predominant source.

In the phi notation (Krumbein, 1934, p. 76), phi is equal to the negative logarithm to the base two of the diameter in millimeters.
${ }^{2}$ Baver (1940, p. 14-17) relates the development of 2μ as the upper limit for clay. On the other hand, Mielenz and King (1955, p. 213-216) summarize evidence for farger clay-size particles.

FIGURE 3. NOMENCLATURE OF SEDIMENTS BY AREA. POINTS OUTSIDE OF AREA D INDICATED BY LETTER

Atterberg (1911, p. 20-22) originally defined seven limits of plasticity. Two of his limits, the liquid limit ("Fliessgrenze") and the "roll-out". limit ("Ausrollgrenze")-now called the plastic limit, were adapted by Terzaghi (1925a, p. 20-29; 1925b, p. 799) for use in soil mechanics. Liquid limit is defined (ASCE) as the water content (in percent of ovendry weight) corresponding to the arbitrary limit between the liquid and plastic states of consistency of a sediment; plastic limit is the water content corresponding to an arbitrary limit between the plastic and semisolid states. The numerical difference between the liquid and plastic limits was called the plasticity number by Atterberg (1911, p. 29-30; 1913, p. 293); it is now known as the plasticity index. Determination of Atterberg limits is discussed later.

A system of classification developed by Casagrande (1948) for application to design and construction of airfields uses a plasticity chart relating plasticity index to liquid limit (Fig. 4). In this chart the A-line represents an important empirical boundary (Casagrande, 1948, p. 919) between fypical inorganic clays generally above the line, and plastic sediments containing organic colloids and typical inorganic silts and silty clays below it. The plasticity chart shows two especially interesting relationships that have been emphasized by Terzaghi (1955, p. 564): (1) Atterberg limits of grain-size fractions of ground minerals plof in a straight line roughly parallel to the A-line and may be located above or below the line depending on mineralogical composition, and (2) points representing different samples from a geologically well-defined sedimentary deposit also are located on such a line because of the likelihood of similar mineralogical composition of the clay-size fraction. A corollary of the last statement is that if points representing two members in the plasticity chart are located on different lines then it is almost certain that the sediments have different sources (Terzaghi, 1955, p. 565). Trask and Rolston (1950; 1951, p. 1092) confirmed these relationships for San Francisco Bay sediments. These relationships also are valid for the sediments investigated. All sediments shown in Figure 4, with two exceptions, have a similar depositional environment, despite the wide variation in water depth and geographic location. These sediments are composed of terrigenous material and plot on a line above and parallel to the A-line. One of the two exceptions was the Area D cores, which are of calcareous material, the other was core B 83, which was collected farthest from land and probably consists of mixed terrigenous material and deep-sea (Foraminifera) ooze; samples from core B 83 plot as points on and below the A-line between liquid limits of 50 and 60 percent. The marked difference in liquid limit and plasticity index of Area D gravity cores 1 and 2 (very low plasticity index) and pistion core 1 (high plasticity index) probably results from the greater proportion of sand-size material in the gravity cores. It is noteworthy that samples from the calcareous D Ip core, although plotting above the A-line, fall on a dissimilar slope compared to those samples having a terrigenous origin. The sediments in Area F with low liquid limit are exclusively from core 6 and have different physical properties compared to other cores from the same area (see Fig. 3).

In conclusion, the use of a plasticity chart appears to provide rapid identification of similar and dissimilar depositional environments. It has been suggested (Richards, 1959) that use of a plasticity chart together with a triangular diagram provides a more satisfactory basis of marine cohesive sediment classification than by using grain size alone.

IV. MASS PROPERTIES

A. INTRODUCTION

Mass physical and classification properties of more than 700 samples from 35 cores were determined in the laboratory. The tests included measurement of: (1) grain size, (2) specific gravity of solids, (3) wet unit weight, (4) water content, (5) degree of pore space water saturation, (6) liquid and plastic limits, (7) void ratio, and (8) compressive and/or vane shear strength. From these measurements the following properties were computed: (1) percentage of sand-, silt-, and clay-size particles, (2) grain median diameter, (3) void ratio at 100 percent saturation, (4) porosity, (5) liquidity index, (6) plasticity index, (7) cohesion, (8) sensitivity, (9) activity, and (10) modulus of elasticity. The mineralogy of a few samples also was investigated.

A unit volume of any deep-sea sediment, in simple terms following the conception of Rosenqvist (1955, p. 3), may be considered a two-phase system consisting of: inorganic and arganic particulate matter, principally mineral grains and skeletons of small plants and animals, and water containing soluble salts. It was not feasible to determine the quantity of salt (loosely-speaking salinity) of the interstitial water in the laboratory program, and no salt corrections have been applied. Computation of percentage of water saturation shows that the void space of samples tested can be considered 100 percent saturated with water. Consequently, water content is expressed as porosity or the volumetric weight of water. Organic content was low and gas, when it existed, was considered a negligible quantity.

Parameters measured in the laboratory are related to the measured distance below the top of each core. The length of each sample tested is graphically shown in Plates 1 through XXXV by a vertical line. Mid-points of sample lines are connected to show the profile, except for specific gravity where minor variations with depth would be obscured. In the plates, the abbreviations pcf and psi respectively indicate pounds per cubic foot and pounds per square inch; explanation of symbols is given in text and under notation; unless specified, all cohesions were computed from compressive strength tests. The pattern for showing the percentage of sand-, silt-, and clay-size fraction closely follows a standard soil mechanics representation (Anonymous, 1960).

B. GRAIN SIZE

Procedure -- Most samples were mechanically analyzed in the Hydrographic Office Laboratory using the following method. A 25 g representative sample having a natural water content was placed in a beaker of water and stirred by hand. The resulting suspension then was poured into a milkshake container and mechanically
mixed for 15 minutes. The sample next was wet sieved in a U. S. Standard 220 mesh (4 phi) sieve. The size fraction coarser than 4ϕ was ovencried and then sieved again for 15 minutes using a nest of sieves (openings: $2 \mathrm{~mm}, 1 \mathrm{~mm}, 0.5 \mathrm{~mm}, 250_{\mu}, 125_{\mu}$, and 62.5μ) in an American Instrument shaker. The size fraction finer than 4ϕ was placed in a cylinder of water or a solution of either soditum hexametaphosphate or sodium metaphosphate ($10 \mathrm{~g} / \mathrm{l}$), and allowed to stand for several hours. Usually the samples in a pipette analysis, which in general follows the procedure of Krumbein and Pettijohn (1938, p. 166-172), were selected only ar settlement times corresponding to 4,6 , and 9 phi. A pipette analysis was not made if the sample contained 85 percenf or more sand-size material. Results of the grain-size analysis were graphed to show a cumulative frequency distribution by weight, from which the phi median diameter, ϕ_{50}, was selected. The few grain-size analyses made in the BUDOCKS Soil Laborafory in general follow ASTM designation D422-54T (ASTM, 1958, p. 1119-1129), except that the sample was not dried prior to testing. Several identical test samples were processed by each laboratory for a check of accuracy and precision; differences in the percentage of sand, silt, clay, and median diameter of the samples were negligible .

Practically all of the samples analyzed were sufficiently fine grained to make the 75 th or 84 th percentiles unobtainable by 9ϕ. Consequently, it was impossible to compute either the Trask (1932, p. 70-72) sorting coefficient or the phi deviation measure of Inman (1952). In some instances, even the 50 th percentile had to be estimated from an extrapolation of the cumulative curve. Converting phi units to microns was facilitated using a conversion table (Page, 1955).

Resulis -- Cores from Areas C and D and core Fó were predominantly composed of clayey silt-size particles with more than 10 percent sand-size material (Fig. 3). Cores from Areas A, B, E, and F. were predominantly composed of both silty clayand clayey silt-size particles with less than 10 percent sand-size material. Area G and H cores almosi entirely consisted of silty clay with less than 5 percent sand-size grains.

The correlation between porosity and grain median diameter is shown as a band with an eye-fitred mean line when void ratio ${ }^{3}$ is related to median diameter in phi units (Fig. 5). This relationship is much less obvious when porosity instead of void ratio is related to grain median diameter, and when samples from other areas (Shumway, 1960; Sutton and others, 1957; and Trask, 1953) also are plotted (Fig. 6). (In converting water contents to porosity -- Table 16 in Trask 1953, a grain density of 2.7 was assumed; a density of 2.6 instead of 2.7 will change the porosity less than one percent). The range of values shown suggests that when more figures(such as shown in a

[^1]\% "ALISOyOd

band by Emery, 1960, Fig. 210) are plotted the only clear relationship remaining will be that fine-grained sediments ($\mathrm{Md}_{\phi}>7.5$) do not have very low porosities, as indicated by the empirical dashed boundary line extending from 7.5ϕ to 75 percent poroslify in Figure 6.

Discussion -- Particle size is inversely related to particle surface area and to interstitial water content. This relation is graphically shown in Figure 5 and also in Figure 9, which will be discussed later .

C. SPECIFIC GRAVITY OF SOLIDS

Procedure -- Most samples were analyzed in the BUDOCKS Laboratory following ASTM test designation D 854-58 (ASTM, 1958, p. 1149-1151); the same procedure was used on those samples analyzed at the Hydrographic Office. Briefly, a 25 g sample was ovendried at $110^{\circ} \mathrm{C}$ overnight, cooled in a desiccator, weighed, and placed in distilled water. Entrapped air was removed by subjecting the sample in a volumetric flask to a partial vacuum. Afterwards, the flask was filled with air-free distilled water and then reweighed. Specific gravity of solids, G_{s}, was determined from

$$
\begin{equation*}
G_{s}=\frac{W_{s} G_{t}}{W_{s}-W_{1}+W_{2}} \tag{5}
\end{equation*}
$$

where W_{s} is the dry weight of solid particles, G_{\dagger} is the specific gravity of distilled water at temperature t, W_{1} is the weight of the volumetric flask, sediment, and airfree water, and W_{2} is the weight of the volumetric flask and air-free water. Values reported are based on a water temperature of $20^{\circ} \mathrm{C}$.

Corrections for salt content in the specific gravities were not made. A discussion of salt corrections is given in Appendix A.

Although earlier it was stated that all samples were entirely water saturated, when boiling off entrapped air an occasional sample was observed to liberate gas after all the air presumably had been expelled. Neither quantity or quality of gas was determined; the amount is considered less than 5 percent of the degree of saturation and of little importance.

Results -- Specific gravities of solids of nearly 500 samples (Fig. 7) fall between the limits of 2.68 and 2.89. The bulk of sample values are between 2.72 and 2.82. An approximate average for all samples is about 2.76 to 2.77 . There is a tendency for specific gravities to be inversely related to the porosity, or water content, and

directly related to the wet unit weight (Fig. 8). A particularly clear example is shown in the graph of core F 6, Plate XVII. At a depth of 208 to 248 cm (82 to 90 in), the sand-size fraction decreases from about 37 to 25 percent. Particle specific gravity decreases from a normal value of about 2.76 to 2.73 over this interval.

Discussion -- Few comparative values of the specific gravities of solids of deepsea sediments are available. Sykes (1960, p. 31) measured specific gravities, which were not corrected for salt content, ranging from 2.78 to 2.83 in clay-size sediments .

D. WET UNIT WEIGHT

Procedure -- It is appropriate to first remark that the term density as used in physics rarely is used by soil engineers. Density, p_{f} is defined as mass per unit volume, while in soil mechanics unit weight, γ, is defined as weight per unit volume. The two ferms are related by equating unit weight to the product of density and the acceleration of gravity, $g,(\gamma=\rho g)$. The reader is referred to soil mechanics texts (for example, Hough, 1957, p. 27; Spangler, 1960, p. 55) for further discussion.

Wet or mass unit weight, γ_{m}, is defined as the weight per unit of total volume of sediment mass, irrespective of the degree of saturation (ASCE), or

$$
\begin{equation*}
\gamma_{m}=\frac{W_{3}-W_{c}}{v} \tag{6}
\end{equation*}
$$

where W_{3} is the weight of the sample plus container, W_{c} is the weight of the container alone, and V is the volume of sediment in the container. The degree or percentage of saturation is the ratio of the volume of water in a given sediment mass to the total volume of intergranular space or voids (ASCE); its determination is given by equation 16. Although wet unit weight is semantically correct, all samples at the time of test were sufficiently close to 100 percent saturation to permit the use of the term saturated unit weight, which represents the in-place unit weight or bulk density. Values are reproducible only to 0.1 because of the difficulty in eliminating very small voids between the sample and cylinder wall with consequent loss of precision in the volumetric measurement .

Results -- Values of wet unit weight range from a maximum of $1.86 \mathrm{~g} / \mathrm{cm}^{3}$ at 50.35 percent porosity in Area F to a minimum of $1.23 \mathrm{~g} / \mathrm{cm}^{3}$ at 86.4 percent porosity in Area G.

The straight-line relationship of wet unit weight to porosity (Fig. 8) previously has been shown by Hamilton and Menard (1956, p. 760) and Nafe and Drake (1957, p. 542),

FIGURE 8. RELATION OF POROSITY TO WET UNIT WEIGHT. (SEE TEXT FOR EXPLANATION OF LINES LABELED 2.6, 2.7, and 2.8)
but with fewer data. In Figure 8, lines of equal specific gravity (2.8, 2.7, 2.6) meet at 100 percent porosity and $1.03 \mathrm{~g} / \mathrm{cm}^{3}$, the unit weight of sea water; at zero porosity specific gravity equals unit weight.

Discussion -- Ratcliffe (1960, p. 1538) reports quite a different relationship. His wet density-water content (in percent wet weight) line (Ratcliffe, Fig. 4) intersect's zero water content (zero porosity) at about $2.1 \mathrm{~g} / \mathrm{cm}^{3}$, and at $1.03 \mathrm{~g} / \mathrm{cm}^{3}$ a water content of about 82 percent is indicated, which corresponds to a porosity of only 91 or 92 percent depending on whether 2.1 or $2.35 \mathrm{~g} / \mathrm{cm}^{3}$ is used for the particle density. Ratcliffe's data indicate abnormally low water contents, suggesting that the sediment fested was desiccated. Alternatively, a different test procedure may account for different values. The likelihood of this second possibility is increased with reference to wet unit weights and water contents of selected samples presented by von Herzen and Maxwell (1959, p. 1562), whose values fall to the left (low water content) of the 2.6 particle specific gravity straight line in Figure 8.

E. WATER CONTENT

Introduction -- Water content, w, used herein is the ratio, in percent, of the weight of water in a given sediment mass, W_{w}, to the weight of the ovendry solid particles, W_{s} (ASCE). It is determined by weighing a representative portion of the sample, ovendrying at $110^{\circ} \mathrm{C}$ overnight, cooling in a desiccator, and reweighing.

Lambe (1950, p. 494-495; 1951, p. 10-12) demonstrated that variations of temperature in different locations in non-heat distributing "constant-temperature" ovens may exceed $100^{\circ} \mathrm{C}$; and that variations in the amount of water driven off at any given temperature are greatest in fine-grained sediments having a high colloid content. Investigators would do well to follow the example of Correns (1937, p. 38) and specify the percentage deviation from 105° or $110^{\circ} \mathrm{C}$ whenever possible. Temperature variations of 0° to -41° from $110^{\circ} \mathrm{C}$ were found in the BUDOCKS oven by C. M. Yeomans (1961, written communication), corresponding to a precision of water content measurement of about one percentage point. Although reproducibility may be less than indicated by the number of significant figures given in this report, these figures are retained following engineering convention.

Corrections have not been made for salt content; values of water content consequently are slightly low.

In addition to water content (also called moisture content), previously defined as

$$
\begin{equation*}
w=\frac{W_{w}}{W_{s}} \times 100 \tag{7}
\end{equation*}
$$

two ofher measures commonly are employed. Geologists often use

$$
\begin{equation*}
w c=\frac{W_{w}}{W_{s}+W_{w}} \times 100 \tag{8}
\end{equation*}
$$

where wc is the water content expressed as a percentage of the total wet weight $\left(W_{s}+W_{W}\right)$ of the sediment sample; a useful conversion is

$$
\begin{equation*}
w=\frac{100 w c}{100-w c} \tag{9}
\end{equation*}
$$

The third measure, particularly applicable to water-saturated sediments, is the void ratio, e, which is the ratio of the volume of void space, V_{V}, to the volume of solid particles, V_{s} in a given sediment mass (ASCE), or

$$
\begin{equation*}
e=\frac{V_{v}}{V_{s}} . \tag{10}
\end{equation*}
$$

Void ratio is determined in the laboratory from

$$
\begin{equation*}
e=\frac{G_{s} \gamma_{w} V}{W_{s}}-1 \tag{11}
\end{equation*}
$$

where γ_{w} is the unit weight of water .
In Appendix B tables, void ratio also is recomputed at 100 percent safuration from the equation

$$
\begin{equation*}
e_{\text {sat. }}=\frac{G_{s} w}{100} \tag{12}
\end{equation*}
$$

Porosity, n, is the ratio in percentage of the volume of voids in a given mass, V_{v}, to the total volume of the sediment mass, V (ASCE), or

$$
\begin{equation*}
n=\frac{V_{v}}{V} \times 100 \tag{13}
\end{equation*}
$$

In this report, porosity was computed from the measured void ratio using the relationship

$$
\begin{equation*}
n=\frac{e}{1+e} \times 100 \tag{14}
\end{equation*}
$$

This ratio is little affected by minor numerical differences in the degree of saturation. At 100 percent saturation, water content is related to the volumetric weight or porosity (in percent) by

$$
\begin{equation*}
w=\frac{n}{(100-n) G_{s}} \times 100 \tag{15}
\end{equation*}
$$

The percent or degree of saturation, S, is computed from

$$
\begin{equation*}
s=\frac{W_{w}}{\gamma_{w}\left(v-\frac{W_{s}}{G_{s} \gamma_{w}}\right)} \tag{16}
\end{equation*}
$$

where $V-W_{s} /\left(G_{s} \gamma_{w}\right)$ is the volume of voids, V_{V}.
In Appendix B tables, saturation occasionally is shown exceeding 100 percent by a plus sign. This impossibility results from analytical errors.

It should be readily apparent that in order for values of water content to be significant the percent saturation must be stated. All too often marine geologists have assumed that water loss from cored samples is low or nil. As shown by Keller and others (1961). certain methods of sealing plastic core liners are inadequate to prevent water loss. Furthermore, even if the degree of saturation of the in-place sediment is close to, or at 100 percent, when the external hydrostatic pressure is removed, gas may be released from the water and expand the sample (Terzaghi, 1955, p. 560). If percent saturation were determined at the time water content was measured and published together with water content values, there would be no need for assumption or uncertainty by others in the use of the data.

As an expression of saturated water content, the use of void ratio, which has a constant denominator and a variable numerator, is technically preferable to porosity where both denominator and numerator are variables. Although void ratio is a more sensitive measure at high water contents, porosity is related to other parameters in this paper so that values can be compared directly to results obtained by other geologists.
it is a well known fact that water content in marine sediments may vary with depth of burial; an inverse relationship is most common. It is less well known that the length of the core sample measured affects this relationship to some extent; as the sample size increases, variations in water content may be reduced or entirely concealed. An experiment to investigate the effect of sample length in core G 5 is described by Richards and Keller (1962). They concluded that within a 10 cm (4 in) sample length of relatively homogeneous sediment, variations of water content were less than ± 4 percent from the 10 cm value when sand layers of small thickness were absent. Actual variations in the upper 215 cm of core $G 5$ are shown in Figure 9.

Results -- The least water content measured was 50.7 percent porosity in core F 6 , and the maximum 85.7 percent in core G 3 . Surface porosities ranged between 56.0 percent, core C 16, and 86.5 percent, core G 2 (Table 3); the latter value was computed from equations 12 and 14 with an assumed particle specific gravity of 2.73 Average surface porosities by area are given in Table 3; they range from 71.6 percent in Area B to 85.5 percent in Area G.

Porosity in general is inversely related to depth in all cores, except those from Area F; cores from Area H and D lp show only a very slight decrease of parosity with increasing depth. The porosity profile in core F 6 is variable with depth. In the remaining Area F cores, the porosity profile decreases down to an intermediate depth and then increases to the bottom of the core. At an unknown greater depth, an inverse relation presumably again is established. The reason for the change appears to be related to the decrease in the percentage of the clay-size fraction at mid-depth and the resulting increase in particle median diameter.

Relation of porosity to most other parameters is considered elsewhere in this report. Porosity also is directly related to percentage of the clay-size fraction (Fig. 10).

Discussion -- The fine-grained fraction in marine sediments usually is predominantly composed of minerals, particularly the platy clay minerals and/or skeletons of micro-organisms. An inverse relation of mineral particle size to surface area is well known; however, that skeletal remains of micro-organisms, particularly diatoms, have large surface areas is somewhat less well known. Electron photomicrographs of siliceous diatom shells by Helmcke (1951) and Helmcke and Krieger (1951, 1952) show that the surface area of diatoms is enormous. In a clay-mineral investigation of selected Area C samples, J. C. Hathaway (report in preparation) determined the amount of skeletal remains of diatoms, coccoliths, and other micro-organisms by electron microscopy of the fine silt-and clay-size fraction. He found that the high water contents of these samples correlated with large concentrations of skeletal remains. In samples possessing essentially identical clay mineralogy, water content appears more closely related to

AREA G CORE 5

FIGURE 9. RELATION OF DEPTH IN CORE TO WATER CONTENT FOR CLOSE INTERVAL SAMPLING OF PISTON CORE G 5. (EACH DOT REPRESENTS ONE SAMPLE 0.5 INCHES LONG. AFTER RICHARDS AND KELLER (1962))

TABLE 3. SUMMARY OF SURFACE WATER CONTENT

Core	Sample (cm)	Water Content (\% dry wh)	Porosity (\%)	Porosity Area Average ${ }^{1}$ (\%)	$\begin{gathered} \text { Void } \\ \text { Ratio2 } \\ (100 \% \text { sat }) \end{gathered}$	Clay-size Fraction ${ }^{3}$ (\%)
A 23	0-5	125.42	78.4		3.500	--
A 31	0-5	.116.10	77.0		3.246	43
A 33	0-5	135.07	79.2	78.2	3.793	53
B 83	0-5	84.13	70.8		2.354	47
B 85	0-5	95.03	73.0		2.657	50
B 87	0-5	83.79	70.9	71.6	2.359	47
C 16	0-5	41.6	56.0		1.152	34
C 18	0-5	64.31	65.2		1.804	26
C 19	0-5	161.69	- 82.0		4.488	33
C 20	0-5	173.57	83.1	71.8	4.836	35
D 1 g	0-5	107.77	75.5		3.076	26
D 2	0-5	91.13	72.1	73.8	2.553	35
D 1p	11.5-23	87.01	70.7		2.398	ca20*
E 46	0-5	119.91	76.5		3.281	40*
E 47	0-5	113.46	75.8		3.093	52*
E 48	0-5	128.81	77.9	76.7	3.513	45*
F 6	0-11.5	48.67	$57.2{ }^{4}$		1.334	30**
F 10	0-5	113.25	75.5		3.060	47*
F 11	0-10	111.24	75.4		3.096	48*
F 12	0-5	140.54	79.5		3.851	46*
F 13	0-6.5	127.29	--		-	--
F 14	8-13.5	116.37	75.0		3.039	48*

${ }^{2}$ Values with only 3 significant figures are computed from assumed values of specific gravity of solid particles.
3 Based on $0-15 \mathrm{~cm}$ average unless asterisk indicated, in which event see the appropriate table in Appendix B.
${ }^{4}$ Not included in Area F average.

TABLE 3. SUMMARY OF SURFACE WATER CONTENT (Cont'd)

Core	Sample (cm)	Water Content (\% dry wt)	Porosity (\%)	Porosity Area Average ${ }^{1}$ (\%)	$\begin{gathered} \text { Void } \\ \text { Ratio2 } \\ (100 \% \text { sat }) \\ \hline \end{gathered}$	Clay-size Fraction ${ }^{3}$ (\%)
F 15	0-5.5	121.94	77.3		3.339	50^{*}
F 16	0-5	156.52	81.0	77.7	4.298	48*
G 2	0-10	232.28	86.5		6.33	59*
G 3	0-10	235.22	86.4		6.363	59*
G 4	0-10	226.30	86.3		6.25	58*
G 5	0-10	73.08	--		--	--
G 6	0-10	236.90	86.4		6.35	55*
G 8	0-10	206.70	84.7		5.56	55^{*}
G 9	0-10	202.20	84.7		5.54	51^{*}
G 10	0-10	184.00	83.6		5.04	51^{*}
G 11	0-10	136.30	--	85.5	--	--
H 12	30.5-35.5	116.84	76.9		3.307	59**
H 13	16.5-21.5	127.06	77.8		3.528	ca64**

the quantity of free water in the interstices of micro-organism skeletal remains than with free interstitial water associated with platy clay minerals.

Practically all mass physical properties are related to the amount of interstitial water in a sediment. Although water content is very easy to determine in the laborarory, there are remarkably few published measurements of sediments collected from depths greater than 132 m (72 fms), which corresponds to the average depth of the continental shelf edge (Shepard, 1948, p. 143). The degree of saturation apparently has not been determined on previous measurements of water content. This means that all earlier data should be questioned, although many samples reported in the literature may have been protected adequately against desiccation prior to test.

An example of the effect of a small amount of desiccation is shown in Area A through C cores. These cores were less well protected from drying before testing than those collected subsequently, which shows by measurements of less than 100 percent saturation in the tables of Appendix B. Saturations greater than 95 percent in soil mechanics laboratories usually are considered to represent 100 percent, the difference being due to analytical errors (C.M. Yeomans, personal communication). Nevertheless, when protective measures were better developed it is significant that the measured percentage of saturation rarely was less than 98 percent.

FIGURE 10. RELATION OF POROSITY TO CLAY-SIZE FRACTION. (SAMPLE VALUES FALL WITHIN THE LIMIT LINES FOR EACH AREA SHOWN)

Surficial porosities are of particular interest to investigators in sedimentation and engineering. An early study of nearshore Atlantic Ocean "muds" resulted in a range of water contents (porosity?) of 40 to 90 percent (Shaw, 1915). Terzaghi (1925c, p. 912) states that the volume of voids may be 98 percent of the total volume in clays. More recently, Emery (1960, p.258) reported a maximum submarine sediment water content of 670 percent, corresponding to a porosity of 94.6 percent ${ }^{4}$; Correns (1937, p. 158) measured a maximum surficial water content of 86.6 percent wet weight, or a porosity of 94.6 percent ${ }^{4}$, in an equatorial Atlantic pelagic clay; and Arrhenius (1952, p. 79 and his appendix plate $2.55 \mathrm{~B}-2.55$) illustrates a maximum surficial salinity of 105×10^{3}, corresponding to a porosity of 91.4 percent ${ }^{4}$, in the East Pacific eupelagic area. Some examples of the more usual range of fine-grained ($\mathrm{Md}_{\phi}>5$) surficial porosities in sediments from water depths greater than 400 m are: an average of 86 percent off Southern California (Emery, 1960, p. 258), 35 to 84 percent in the Pacific Ocean (Arrhenius, 1952, p. 79), 60 to 86 percent in the Pacific and Arctic Oceans (Shumway, 1960, p. 458-463), 59 to 86 percent in the Gulf of Mexico (Trask, 1953, p. 103, 120), 46 to 71 percent in the North Atlantic Ocean (Sutton and others, 1957, p. 796), and, as previously mentioned, 56 to 86 percent in this investigation. Studies of shallowwater marine sediments by Moore (1931), van Andel (1954), Shepard and Moore (1955), and Füchtbauer and Reineck (Engelhardt, 1960) show a similar porosity upper limit of about 86 percent. It is apparent that approximately 86 percent appears to represent the usual maximum porosity in fine-grained submarine sediments, although exceptional values may be higher. The observation that the average porosity of a clay at the time of deposition is about 50 , percent (Yoder, 1955, p. 506) is not corroborated.

Shepard and Moore (1955, p. 1580) related the deposition rate in Gulf of Mexico sedimentary environments to the slope of a straight line representing average values of water content related to the percentage of the clay-size fraction. Their data indicated that the steepness of the slope was inversely related to the rate of deposition. A similar relation was found by Seibold (1956, p. 465-467) for sediments from other areas. The application of this hypothesis to the sediments investigated by the writer is equally satisfactory ${ }^{5}$:

Emery's porosity values computed from equations 12 and 14 , assuming a specific gravity of 2.65; Correns' porosity values from equations 8,12 , and 14 , assuming a specific gravity of 2.7 ; and Arrhenius' porosities from his equation $W=3.75-24$, equations 12 and 14 , and an assumed specific gravity of 2.7 .

5 The following analysis admittedly is subjective. Nevertheless, the calculated relative rates cited were arrived at before Figure 10 was prepared, and the corresponding agreement later was found to be good.

Particle-by-particle, deep-sea deposition of pelagic clay, Area H, results in the slowest rate of deposition, and this area shows the least slope of a straight-line relationship between porosity and the clay-size fraction (Fig. 10). Each area in this figure is represented by two lines marking limits of plotted values. Reference is made in the following discussion to an imaginary line, which is not shown in Figure 10, located equidistant between the limit lines for each area. Area D, in the vicinity of the Blake Plateau, is in a region of slow deposition, which is shown by the presence of manganese nodules in the surficial layer of some cores and in dredge hauls collected by the Hydrographic Office. A moderate amount of pelagic. deposition is indicated by the texture and mineralogy of Area C cores, and the resulting relative rate probably was fairly rapid. Area G is close to land, but swept by currents, and the expected rate of deposition is moderate. All other areas, A, B, E, and F , have similar depositional environments on the continental slope. With decreasing distance from land the relative rate of deposition should increase; this results in the sequence: $\mathrm{F}-\mathrm{E}-\mathrm{B}$ and A . However, the amount of sediment contributed from land influences the sequence and a more probable one, from slow to fast, is: $\mathrm{E}-\mathrm{F}-\mathrm{B}$ and A . The calculated relative deposition rate from these, and other less important considerations, is (relatively slow to fast): H-D-F,F6, and G (about the same) - E-A, B, and C (about the same). The observed sequence from Figure 10 is (relatively slow to fast): $H-D-F, F 6$, and $G-A-E-C-B$.
Differences between the two sequences are not considered significant.

F . PLASTICITY AND THE ATTERBERG LIMITS

Determination of limits -- Measurement of the Atterberg liquid limit, LL, was standardized three decades ago by use of a mechanical liquid limit machine designed by Casagrande (1932a). Liquid limit is arbitrarily defined by the ASTM (1958, p. 1132) as the water content at which two halves of a sediment cake will flow together for a distance of $1.25 \mathrm{~cm}(0.5 \mathrm{in}$) along the bottom of a groove separating the two halves when the cup containing the cake is dropped 25 times for a distance of 1 cm at the rate of two drops per second. An ASTM machine with a hard rubber base was used for all tests, together with an ASTM grooving tool. The plastic limit, PL, test briefly consists of measuring the lowest water content at which the sediment sample can be rolled into threads 3 mm (one-eighth in) in diameter without them breaking into pieces (ASTM, 1958, p. 1137).

Casagrande (1932a, p. 130; 1948, p. 922) reported that ovendrying fine-grained samples, as prescribed by ASTM designations D 423-54T (LLi) and D 424-54T (PL), radically affects the limits of organic sediment and less markedly the limits of inorganic sediment; limits generally are higher for non-dried material. This relationship has been confirmed by Selmer-Olsen (1953) and Rosenqvist (1955, p. 72) for marine clays of normal salt content, although an opposite effect was found by Rosenquist when clay
sensitivities were greater than 8. Samples were not dried prior to testing on limit tests at BUDOCKS and the Hydrographic Office, following recommendations by Casagrande (1948, p. 922) and a recommended British test method (Norman, 1959). One other difference in test procedure from that prescribed by the ASTM is that the limits were determined from the entire size fraction rather than from only that portion finer than $1.25 \phi(0.42 \mathrm{~mm})$.

Dawson (1960) has shown that different operators may obtain slightly different results in the limit tests, despite test standardization. Furthermore, the type of material the base of the liquid limit machine is made of affects the measurement. Differences between British and American machines recently were summarized by Norman (1958). These and other problems in determining Atterberg limits are discussed by Baver (1960).

Dr. Martin (1961, written communication) kindly informed me that the Atterberg limits of certain sediments are very sensitive to changes in interstitial water salt concentration, and that because the salt content is unknown in the samples investigated, the resulting data may be unreliable .

Results -- Measured values of liquid limit range from 25 (core F 6) to 109 percent dry weight (core D lp). A more normal range is between 50 and 80 percent. Measured values of plastic limit range from 15 (core F 6) to 46 percent dry weight (core F 15). Most values lie between 20 and 30 percent. Emery (1960, p. 260) has reported that in cores tested at the University of Southern California the limits reflect changes in water content; cores with large variation in water content gave smaller variation for liquid limit and smallest variation for plastic limit. In general, this relationship was found in the cores tested.

The plasticity index, PI (LL-PL), affords a quantitative measurement of the plastic characteristics of a completely remolded sediment sample by defining the range of water content in which the sediment is plastic. Previously, it was mentioned that the A-line of the plasticity chart is an empirical boundary separating organic and inorganic clays, the former located below the line and the latter above. Considering only inorganic clays, those having liquid limits greater than 50 percent are highly plastic; the majority of samples tested are in this category (Fig. 4). Inorganic clays with liquid limits between 20 and 50 percent have low or medium plasticity: core F 6 and certain samples from Area C and E cores. Terzaghi and Peck (1948, p. 35) place the division between inorganic clays of low and medium plasticity at a liquid limit of 30 pércent. Using this classification, only the 4 samples from core F 6 having water contents less than 40 percent have low plasticity. Burmister (1960, p. 98) considers the overall plasticity of clay sediments with plasticity indices greater than 40 to be very high.

Discussion -- Atterberg limits were determined on a number of cores collected from the continental borderland area off Southern California by Emery and his associates (Emery and Rittenberg, 1952, p. 765; Emery and Terry, 1956, p. 276-277; and Emery, 1960, p. 260-261). Reported values of water content in percent dry weight always were higher than liquid limits in the surficial sediments, although the reverse often occurred at depths greater than several feet. Emery (1960, p. 260) conclüded that tops of the cores, where the water content is greater than the liquid limit, are liquid although they may not be mobile. With respect to this statement, I wish to emphasize that such sediments are "liquid" only in the remolded condition. In their undisturbed, in-place condition they may possess considerable structural strength, relative to their remolded strength; as stated by Terzaghi (1955, p. 563): "the strength of the sediment in situ at a water content equal to the liquid limit can amount to several hundred grams per square centimeter." At water contents about equal to the liquid limit, found at some distance below the top of the cores tested in the Hydrographic Office program, measured cohesion ranged from about $34 \mathrm{~g} / \mathrm{cm}^{2}$, core A 23 , to $234 \mathrm{~g} / \mathrm{cm}^{2}$, core B 83^{6}. With respect to the quantitative distinction between solid and liquid, the reader is referred to a discussion by Reiner (1958, p. 465-467, 542).

It is noteworthy that the only instance where the surface 0 to 5 cm water content was less than the liquid limit is in core C 16, where surface desiccation following core collection is shown by a measured 90.5 percent saturation (Appendix B).

An oftrepeated statement is that at the time of sedimentation water content approximates liquid limit (for example, Terzaghi, 1927, p. 41; Jones, 1944, p. 145; Skempton and Bishop, 1954, p. 433). On the other hand, Hough (1944, p. 1185) reports that water content is well above liquid limit in St. Lawrence River clay. Results of Emery and his associates and this paper show that the surficial sediments, often down to depths of several meters, possess water contents appreciably higher than the liquid limit. Occasionally, the liquid limit is exceeded by more than 80 percentage points (Emery, 1960, Fig. 211; this paper, core C 20). Not realizing the magnitude of this difference may lead to meaningless conclusions; for example, naturalwater content of a sediment a few percent higher than the liquid limit constitutes evidence that little desiccation has occurred between the time the core was collected and the time tested (Sykes, 1960, p. 49).
$6_{\text {These }}$ values are appreciably greater than cohesion at the liquid limit reported by Skempton and Bishop (1950, p. 99).

Other relationships derived from the Atterberg limits are the liquidity index ${ }^{7}$ (Terzaghi, 1936), B, which relates the water content to the limits and is defined as

$$
\begin{equation*}
B=\frac{w-P L}{P I} \times 100 \tag{17}
\end{equation*}
$$

and colloidal activity (Skempton, 1953a, 1953b), a_{c}, which is defined by equation 21. The liquidity index denotes the ratio of excess natural water content above the plastic limit to the plasticity index (Capper and Cassie, 1960, p. 57). At a liquidity index of unity, or 100 percent when expressed as a percentage as recommended by the ASCE, the water content equals the liquid limit. Terzaghi (1955, p. 563) notes that although the liquidity index is close to 100 percent in the surficial layer of a normally consolidated ${ }^{8}$ clay deposit, it is always greater than 200 percent in a sediment formed on the bottom of a vessel filled with a clay suspension-an under-consolidated deposit. On page 566 of his paper, however, Terzaghi mentions that marine clays in their original state have liquidity indices of about one hundred percent. The surface samples of the cores examined possess liquidity indices of approximately 200 percent. Appreciably higher liquidity indices are found in several cores. A surface layer liquidity index greater than 1,200 percent, as a result of very low plasticity index, was found in the two calcareous gravity cores from Area D. The consolidation history of the cores will be discussed in a paper being prepared, as was previously mentioned.

[^2]
G. SHEAR STRENGTH ${ }^{9}$

Introduction -- Compressive strength and laboratory vane shear test analytical procedure and depth related to strength previously was described and discussed (part one). In brief, shear strength, s, is defined by the relation

$$
\begin{equation*}
\mathrm{s}=\mathrm{c}+\bar{\sigma} \tan \phi \tag{18}
\end{equation*}
$$

where c is the apparent cohesion, $\bar{\sigma}$ is the effective stress normal to the shear plane (total stress minus pore pressure), and ϕ is the angle of shearing resistance. Finegrained, saturated sediments stressed without change in water content behave with respect to applied stress as if they were purely cohesive materials having an angle of shearing resistance equal to zero $(\sigma=0)$. In this special instance $s=c$. Compressive strength, p_{c}, is related to the cohesion or shear strength by

$$
\begin{equation*}
c=\frac{P_{c}}{2} . \tag{19}
\end{equation*}
$$

The compressive strength test also is known as the U (for unconfined) test. Laboratory vane shear tests give results directly in shear strength .

Cohesion -- Values of cohesion in the samples tested range from 4.2 to 234 $\mathrm{g} / \mathrm{cm}^{2}$. Most cores have minimum cohesions near the top and maximum values usually at some depth other than the bottom. Table 4 summarizes surface or near surface cohesions. An average of the fifteen 0 to 5 cm cohesion measurements of predominantly terrigenous sediments is $19.8 \mathrm{~g} / \mathrm{cm}^{2}$. The stronger calcareous Area D sediments have an average of $43.2 \mathrm{~g} / \mathrm{cm}^{2}$ (2 measurements) in the 0 to 5 cm interval.

Cohesion generally shows a direct relationship to wet unit weight and an inverse relationship to water content or porosity. Relation to median diameter, percentage of the sand- or clay-size fraction, and plasticity index is variable, sometimes direct and sometimes inverse.

[^3]TABLE 4. SUMMARY OF SURFACE AND NEAR SURFACE COHESION
\(\left.$$
\begin{array}{lccc}\hline & \begin{array}{c}\text { Sample } \\
(\mathrm{cm})\end{array} & \begin{array}{c}\text { Cohesion } \\
\left(\mathrm{g} / \mathrm{cm}^{2}\right)\end{array} & \begin{array}{c}\text { Cohesion } \\
\text { Area Average }\end{array}
$$

Core \& 0-5 \& 4.2 \&

\left.\hline A 23 \mathrm{cm}^{2}\right)\end{array}\right]\)| A 31 |
| :--- |
| A 33 |

1Values from compressive strength tests and equation 20 unless followed by an asterisk,
which denotes vane shear test.
${ }^{2}$ Excluding values not including the surface.

TABle 4. SUMmARY OF SURFACE AND NEAR SURFACE COHESION (Cont'd)

Core	Sample (cm)	Cohesion $\left(\mathrm{g} / \mathrm{cm}^{2}\right)$	Cohesion Area Average2 $\left(\mathrm{g} / \mathrm{cm}^{2}\right)$
G 3	$10-20$	14.4^{*}	
G 8	$20-30$	252^{*}	
G 9	$20-30$	14.3^{*}	
G 10	$20-30$	17.1^{*}	
H 13	$16.5-21.5$	71.7^{*}	

The logarithm of cohesion related to porosity, with an eye-fitted straight line representing the suggested average, is shown for each area (Fig. 11). Scatter of values about the straight line varies from small in Area B to large in Areas E and G.

It was stated previously that the slopes of lines representing averages in each area, shown on a porosity-percentage of clay-size graph, denote relative rates of deposition in the sequence (from slow to rapid): H--D--F and F 6--G--A--E--C--B (Fig. 10). A similar correlation between relative rates of deposition and the slope of lines representing averages appears on a logarithm of cohesion-porosity graph (Fig. 12). The sequential relationship shown in Figure 12 is identical to that of Figure 10 , except that the position of Area B and core F 6 in the sequence is reversed in Figure 12.

Since there is a clear relationship between porosity and percentage of the claysize fraction, a similar relation between the latter and cohesion was expected but not found (Fig. 13). The variable relationship of cohesion to the percentage of the clay-size fraction in each area is shown graphically in this figure.

For most engineering purposes, cohesion or shear strength in fine-grained, cohesive sediments from a given area can be estimated with reasonable accuracy from a knowledge of the water content (compare Figs. 11 and 12) and slope of the line representing the average relationship of porosity to cohesion. Measurement of water content by neutron moderation ${ }^{10}$ and measurement of wet unit weight by gamma-ray

[^4]

FIGURE 12. RELATION OF POROSITY TO LOGARITHM OF COHESION by area average. CORRELATION LINES fROM FIGURE 11 ARE SHOWN SUPERIMPOSED TO INDICATE DIFFERENT SLOPES

FIGURE 13. RELATION OF COHESION TO CLAY-SIZE FRACTION. SAMPLE VAlUES FALL WITHIN THE LIMIT LINES FOR EACH AREA SHOWN
methods is now routine (see, for example, Kuranz, 1960; Meigh and Skipp, 1960); recently density determinations have been made on in-place marine sediments (Caldwell, 1960, p. 27-28). An extension of the method would be to estimate shear strength directly on suitable in-place or laboratory samples with a neutron probe calibrated for the water content-strength relationship of the particular sediments under investigation.

Sensitivity -- Defined by Terzaghi (1944, p. 613) as

$$
\begin{equation*}
S_{\dagger}=\frac{\text { undisturbed strength }}{\text { remolded strength }}, \tag{20}
\end{equation*}
$$

sensitivity, S_{t}, is a measure of the loss of strength when the structural strength of sediment is destroyed by remolding; the higher the sensitivity the greater the loss of strength in the remolded condition. A classification of sensitivity proposed by Skempton and Northey (1952, p. 31), modified by Rosenqvist (1953, p. 195), and with a percentage loss of strength added by me, is given in Table 5. Samples range from slightly insensitive to very sensitive with a few values of medium quick sensitivity in Area H cores not shown in Figure 14. Porosity possibly may be directly related to sensitivity, as shown by the dashed line between two limiting lines (Fig. 14), although the scatter of values is very large.

TABLE 5. CLASSIFICATION OF FINE-GRAINED SEDIMENT SENSITIVITY

Sensitivity	Description	Percentage of "Undisturbed" Strength Lost in Remolded State
ca 1	Insensitive	0
$1-2$	Slightly insensitive	0
$2-4$	Medium sensitive	to 50
$4-8$	Very sensitive	50 to 75
$8-16$	Slightly quick	to 87.5
$16-32$	Medium quick	87.5 to 93.8
$32-64$	Very quick	93.8 to 96.9
>64	Extra quick	96.9 to 98.4
		>98.4

FIGURE 14. RELATION OF POROSITY TO SENSITIVITY. THE EYE-FITTED DASHED LINE REPRESENTS A SUGGESTED CORRELATION BETWEEN THE TWO LINES DENOTING GENERALIZED LIMITS

Skempton ($1953 \mathrm{~b}, \mathrm{p} .61$) reported that the liquidity index, defined by equation 17, may be used as a measure of sensitivity. The available data (Fig. 15) indicate that this relationship may be valid if each area is considered separately and correlation lines are forced through the origin. Two lines are shown, however, for Area C samples. The two C 16 and bottom C 19 samples plot with those from Area F, while the C 18 and C 20 samples have lower sensitivities and plot separately. The middle C 19 sample ($\mathrm{LI}=400$) has a high plasticity index that is anomalous compared to the other Area C samples shown in Figure 15. If correlation lines are not forced through the origin, a clear relationship between the logarithm of sensitivity and liquidity index does not exist.

Discussion -- Hvorslev (1936; 1937, p. 148) established that the cohesion of saturated sediments was dependent on the water content and independent of the stress history of the sample. Rutledge (1947, p. 21, 67) showed that the logarithm of cohesion was a straight-or slightly curved-line function of water content. Trask and Rolston (1950) confirmed this relationship in sediments of San Francisco Bay. Bierrum (1951, p. 217; 1954a, p. 60, 89, 92) reported the same relationship to be unique for normally consolidated clays. This paper gives further confirmation in deep-sea sediments.

It is difficult to assess the relative importance of subordinate factors affecting strength, such as grain size and clay type. In laboratory experiments relating clay content and grain size to strength, Trask and Close (1958) and Trask (1959) found: (1) at a given water content, strength increased from kaolin and illite (very slightly stronger than kaolin) to montmorillonite; (2) at a given water content and sand-clay ratio, strength increased as the sand grain size decreased above 2.9ϕ (below 135μ); and (3) at a given water content and grain size, strength of all clays increased as the ratio of clay to sand increased. Comparison of clay mineralogy (see Table 6) in the $15-$ to $30-\mathrm{cm}$ (6 to 12 in) samples of cores B 87 and C 18 suggest the reverse of condition (1) above; however, two samples are of little significance. The other two conditions cannot be compared because of the variability of parameters held constant by Trask.

Sediment structure, thixotropy, and salt content of interstitial water also affect strength and sensitivity. Until very recently it was uncertain whether the structure of cohesive sediment was principally honeycomb (Terzaghi, 1925a, p. 10-11; 1925c; p. 914; Casagrande, 1932b, p. 180-186) or cardhouse (Goldschmidt, 1926--cited by Rosenqvist; Lambe, 1953, p. 38; and others). Rosenqvist (1958, 1960) published stereo photographs, obtained with an electron microscope, of fresh water clay and remolded and undisturbed marine clay that appear to confirm the Goldschmidt-Lambe cardhouse structure hypothesis in undisturbed marine clays. The photographs show a very open mineral arrangement with principal contact between corners and planes (Rosenqvist, 1960, p.6).

FIGURE 15. RELATION OF LOGARITHM OF SENSITIVITY TO LIQUIDITY INDEX. THE CORRELATION LINES ARE FORCED THROUGH THE ORIGIN, SEE TEXT FOR DISCUSSION. (LETTERS B, M, AND T FOLLOWING SAMPLE NUMBERS DENOTE BOTTOM, MIDDLE, AND TOP OF CORE, RESPECTIVELY)
LIQUIDITY INDEX, \%
FIGURE 15.
THROUGH

It was mentioned previously that Hathaway (report in preparation) demonstrated that the quantity of micro-organism skeletons was directly related to the water content in selected Area C samples. It is likely that this relation also is valid in other areas subject to pelagic deposition. Both skeletons of micro-organisms and platy clay minerals are characterized by very large surface areas; the former, however, probably contribute relatively little cohesion or plasticity to a sediment, while the latter has an opposite effect. An abundance of skeletal remains in fine-grained sediments influences the structural properties, in addition to the relation of increased interstitial water content to reduced cohesion. It appears reasonable to suppose that parallel rearrangement of cardhouse structure following disturbance will be inhibited by an abundance of microskeletal remains. Consequently, it also is likely that sensitivity will tend to be inversely related to the quantity of microskeletons.

Thixotrophy is defined by the ASCE as the property of a material that enables it to stiffen in a relatively short time on standing, but upon agitation or manipulation to change to a very soft consistency or to a fluid of high viscosity, the process being completely reversible. Van der Waals forces and Coulombic forces are the principal interparticle forces affecting clay particles. Van der Waals forces normally cause attraction, but decrease with about the sixth power of the distance from the particles; Coulombic forces, decreasing with the square of the distance, are the electrostatic attraction between the positively charged edges and negatively charged faces of different particles and also the electrostatic repulsion between two edges or two faces of adjacent particles (Hvorslev, 1961, p. 170-171). A detailed discussion of these forces and their relation to cohesion is given by Lambe (1961). According to a recent hypothesis (Mitchell, 1960, p. 29-31), externally applied shearing energy in remolding causes the platy clay particles (previously in cardhouse structure) to be rearranged in a parallel structure leaving adsorbed water layers and ions in a high energy structure where the attractive forces are much greater than repulsive forces immediately after shearing stops. With time, thlxotropic hardening produces structural rearrangement to a lower energy condition, and the attractive forces decrease. A new equilibrium results when water returns to a low energy structure, attractive and repulsive forces are equal, and clay minerals once again have a more or less cardhouse structure. Thixotropic strength regain may be inversely related to the abundance of microskeletons in clayey skeletons, because a large quantity of skeletal material will inhibit electrochemical forces tending to produce rearrangement of the clay minerals.

As stated in Appendix A, it is uncertain whether or not the salt content of pore water in the surface few meters of submarine sediments generally is constant or variable. Should the salt contents prove to be variable, and particularly if it should be inversely related to depth, investigations of salt leaching from marine clays reported by Rosenqvist (1946-published in English, 1953; 1955), Skempton and Northey (1952), Bjerrum (1954b), and Bjerrum and Rosenqvist (1956) may prove highly applicable to marine geological
studies. The principal conclusion reached by these investigators was that reduction of pore water salt content, or leaching, decreases the undisturbed shear strength of clay and increases the sensitivity; although, Skempton and Northey (1952, p. 43) found a reduction of the remolded strength but not of the undisturbed strength. It is suggested that variability of submarine sediment sensitivity may be, at least in part, explainable by changes in pore water salt content. Measurement of interstitial water salinity is of importance, and it is to be regretted that so few measurements exist.

In conclusion, natural marine sediment, predominantly composed of mineralogenous matter, apparently has a cardhouse structure that will be rearranged into a parallel orientation if disturbed by sampling for instance. It is hypothesized that rearrangement may be directly proportional to the quantity of microskeletal remains in the finegrained fraction. A corollary of the hypothesis is that at about the same water content sediments rich in microskeletons will tend to have lower sensitivities than those composed entirely of clay minerals. Following structural rearrangement, a regain of strength due to thixotropic hardening will occur with time. If the clay consists of an ideal, purely thixotropic plastic material, the strength regain will be complete. Skempton and Northey (1952, p. 35, 38) found that most natural clays were not purely thixotropic materials. Furthermore, coarse-grained cohesive sediments, composed of sand and possibly containing less than 5 percent clay minerals, possessing thixotropy are mentioned by Mielenz and King (1955, p. 223). It is probable that most deep-sea sediments once disturbed likewise will not completely regain lost strength. The answer to the question how much of the original strength in slightly disturbed sediment cores will be regained over a specific time will have to wait until less disturbed samples than those at present are collected, or until it proves feasible to make in-place tests on the ocean floor.

H. MODULUS OF ELASTICITY

The modulus of elasticity is defined by the ASCE as the ratio of stress to strain for a material under given loading conditions; it is numerically equal to the slope of the tangent or the secant of a stress-strain curve. Values reported in Appendix B were determined from results of the compressive strength tests; they range from 0 to $870 \mathrm{~g} / \mathrm{cm}^{2}$ (0 to 12.4 psi).

This modulus sometimes is used in settlement computations where deformation occurs in accordance with Hooke's law (see, for instance, Skempton and Bierrum, 1957, p. 169, who note that the modulus of elasticity--called Young's modulus--is sensitive to sampling disturbance, especially in normally consolidated clays). Further discussion of stress, strain, elasticity, and plasticity can be found in books on these subjects (for example, Westergaard, 1952) and need not be considered here.

I. MINERALOGY AND ACTIVITY

Procedure -- A few samples were investigated for clay mineralogy to examine the relationship between clay mineralogy, clay-size fraction, and plasticity index. X-ray diffraction, differential thermal analyses, and surface area studies were made by Messrs. E. B. Kinter and S. Diamond of the Physical Research Division, Bureau of Public Roads. Their X-ray analytical procedure is described by Kinter and Diamond (1956). In these studies, a General Electric XRD-3D direct-recording X-ray diffraction machine was operated as follows: 40 KV at 20 ma , nickel-filtered CuK \propto radiation, scans at 2° per minute, and 1° beam and 0.2° detector slit widths. Clay mineral surface areas were determined using the method of Diamond and Kinter (1958) from glycerol retention measurements (Kinter and Diamond, 1958).

In the Hydrographic Office, the grain-size fraction coarser than 4ϕ was cursorily examined under a binocular microscope by laboratory personnel to obtain an estimation of the percentage of skeletal material and mineral grains.

Mineralogy -- Results of the greater than 9ϕ fraction are summarized in Table 6. Montmorillonite percentage is based on surface area measurements (Areas A and B composite sample: external area $62 \mathrm{~m}^{2} / \mathrm{g}$, internal area $173 \mathrm{~m}^{2} / \mathrm{g}$) and are believed by Kinter to be accurate within a few percent. Other percentages in this table are based on an "educated guess" by Kinter and Diamond, following similar reasoning to that made by Johns and others (1954). These estimates may be in error ± 40 percent from the stated value, although Kinter believes ± 5 percent is more reasonable. According to J. C. Hathaway (1961, written communication), who also has studied the mineralogy of certain Area C core samples, the mixed layered montmorillonite-mica contains about 30 percent mica layers. Percentage of quartz and calcite (± 5 percentage points) in the whole sample, plasticity index, and computed activity are also presented in Table 6.

Results of an estimation of carbonate content by hydrochloric acid treatment and microscope estimations of the coarse fraction are summarized in Table 7 for comparison with the data presented in Table 6. It is evident that calcareous skeletal material and shells account for the majority of material in the coarse fraction from Areas A and B, and mineral grains are more abundant than carbonate in Area C.

Activity -- More than a decade ago Skempton (1948) established a relation between the ratio of the liquid limit and the clay fraction greater than 9ϕ (less than 2μ), which he called activity. By activity is meant the increased surface activity of the clay fraction, for example, the increased ion exchange capacity and adsorption of water with decreasing grain size. Clays were classified as: inactive clay, $a_{c}<0.75$, normal clay, $a_{c}=0.75$ to 1.25, and active clay, $a_{c}>1.25$. This ratio was redefined later (Skempton, 1953a, p.42-43; 1953b, p. 58) in terms of the direct linear relationship
TABLE 6. SUMMARY OF THE GREATER THAN 9 PHI FRACTION AND WHOLE SAMPLE MINERALOGICAL ANALYSIS

Sample	$\%$ Sample > 96	\% Composition of >96 Fraction ${ }^{2,4}$	X-ray Diffraction Anglysis of Whole Sample ${ }^{2}$		Plasticity$\text { Index }{ }^{3}$	$\left(\frac{\left.\begin{array}{c} \text { Activity } \\ \text { clay fraction } \end{array}\right) .}{}\right.$
			\% quartz ${ }^{5}$	\% calcite ${ }^{5}$		
A 31, 6-12 in	46	mica 40	29	9	39	0.85
A 31, 30-36 in	40	kaolinite 20	36	10	36	0.9
A 33, 6-12 in	55	mixed layered montmorillonite-mica 20	26	8	49	0.9
A 33, 30-36 in	51	calcite 5 to 10	24	11	47	0.9
B 87, 6-12 in	46	quartz, feldspar (?),	15	36	27	0.6
B 87, 24-30 in	49	and chlorite 10 to 15	19	18	32	0.65
C 18, 6-12 in	25	mixed layered montmorillonite-mica 50	\cdots	--	26	1.0
C 20, 6-12 in	28	mica 20 kaolinite 10 chlorite (high Fe) 10 quartz and feldspar 10	-	\cdots	39	1.4

[^5]${ }^{2}$ Determined at the Bureau of Public Roads.
${ }^{3}$ Determined at the Bureau of Yards and Docks . ${ }^{4}$ Area A and B samples: percentage determined from X-ray analysis on each sample, augmented by differential thermal
analysis (DTA), and measurement of montmorillonite surface area by glycerol retention on a composite of all samples prior to X-ray diffraction analysis; DTA and glycerol treatment were not made .
calcite. Aragonite was not found in the diffraction.
TABLE 7. SUMMARY OF COARSE-FRACTION ANALYSIS

Sample	\% Sample < $4 \chi^{1}$	\% Composition of < 4 6 Fraction			
		Carbonate Removed by HCl Treatment (<4.25申) ${ }^{2}$		Microscopic Estimation ${ }^{1}$	
				Tests, etc. ${ }^{3}$	Mineral Grains ${ }^{4}$
A 31, 6-12 in	5	--		80	20
A 31, 30-36 in	9	minerals carbonate	$\begin{aligned} & 60 \\ & 40 \end{aligned}$	85	15
A 33, 6-12 in	2	--		90	10
A 33, 30-36 in	5	--		90	10
B 87, 6-12 in	7	carbonate minerals	$\begin{aligned} & 95 \\ & 05 \end{aligned}$	100	0
B $87,24-30$ in	3	--		95	05
C 18, 6-12 in	18	quartz and feldspar		20	80
C 20, 6-12 in	17	miscellaneous	10	35	65

> 'Determined at the Hydrographic Office.
${ }^{2}$ Determined at the Bureau of Public Roads.
${ }^{3}$ Skeletal material and shell fragments, inclu

[^6]between the plasticity index, instead of the liquid limit, and the clay fraction, where
\[

$$
\begin{equation*}
a_{c}=\frac{\mathrm{PI}}{\text { clay fraction percentage }<2 \mu} \tag{21}
\end{equation*}
$$

\]

The same activity classification was retained. Skempton (1953b, p 57) showed that the activities of a number of samples plot about a straight line that extrapolates back to the origin of a plasticity index-clay fraction graph, or activity chart.

The relationship between surface activity of colloidal particles, clay minerals, and quartz and calcite found by Skempton is shown in Figure 16 together with data from the samples investigated. Agreement of data is reasonably good. The higher montmorillonite content of the two samples from Area C is reflected in higher activities. Although the clay mineralogy of Area A and B samples was found nearly identical, the latter are less plastic and, as a result, have lower activities. Greater scatter about an average line (not drawn in Fig. 17) for samples from each area results when all available samples are plotted on an activity chart (Fig. 17). In this Figure, Hathoway (1961, written communication) is of the opinion that the term "illite" should be replaced with "mixed layered mica-montmorillonite," having a probable range of activity from about kaolinite to between Ca - and Na -montmorillonite. Yoder and Eugster (1955, p. 252-254) ${ }^{11}$ discuss problems with the term "illite."

A further subdivision of Skempton's classification is indicated in Figure 17 with additional lines at activities of 0.25 and 1.75. A tentative activity classification of: inactive <0.25, slightly active, 0.25 to 0.75 ; normal, 0.75 to 1.25; active, 1.25 to 1.75 ; and very active >1.75 is suggested for sea-floor sediments. More data are needed, however, before it will be known whether or not these additional categories are significant elsewhere. Using this nomenclature, the very highly plastic Area C core samples are active. Most Area B, E, and all of the F 6 samples are slightly active. Area D samples are mostly inactive, except piston core D 1. This core is relatively homogeneous in composition and has a plasticity index of 81 and a 20 percent clay-size fraction, that results in the exceptionally high activity of 4.0, which is not plotted in Figure 17. All other samples, Area A, C, and F, have normal activity.

Elsewhere, Fisk and McClelland (1959, p. 1383) found that late Quaternary continental shelf clays off Louisiana have an activity of about 0.9 and hence are normally active.
${ }^{11}$ This reference kindly was called to my attention by Dr.J.C. Hathaway.

FIGURE 16. ACTIVITY CHART OF CORE SAMPLES WITH KNOWN CLAY-SIZE MINERALOGY. NUMBERS INSCRIBED ALONG THE CIRCLE REFER

TO ACTIVITY. SEE TEXT FOR DISCUSSION

V. SUMMARY AND CONCLUSIONS

Measurements of mass physical properties were made in the laboratory on 35 gravity-and piston-type sediment cores, ranging in length from 30 to 511 cm , collected from ocean depths of 400 to 5120 m . Sample composition was predominantly silty clay- and clayey silt-size material, chiefly of terrigenous origin.

The M.I.T. grain-size scale was used in classifying sediments instead of the Wentworth scale because a silt and clay particle division at 9ϕ or 2μ appears more significant in mass studies. A plasticity chart is applicable to deep-sea sediments; its use, together with a triangular diagram, is recommended to marine geologists. Terrigenous inorganic sediments plot above and parallel to the empirical A-line on the plasticity chart. Mixtures of terrigenous and calcareous sediments either plot below the A-line or above it on a distinctly different axial slope from that of terrigenous inorganic sediments.

Grain-size was measured to 9ϕ and estimated to 10ϕ. Statistical measures other than median diameter were not applicable, because the size fraction finer than 10ϕ was greater than 25 percent in most samples. Median diameter of particles showed a variable relation with depth, in certain cores increasing and in others decreasing or fluctuating with depth. Void ratio was found to be directly related to median diameter for all 8 areas, although values scattered widely about the averages. When porosity and median diameter data from other investigations were added to that of the present one, the only clear relationship resulting was that low porosity sediments do not have small median diameters. It was demonstrated that the field below a curvilinear line extending from 7.5ϕ at 50 percent porosity to 10ϕ at 75 percent porosity, in an arithmetic plot of porosity related to median diameter, was devoid of values.

Corrections for salt content of interstitial water were not made in determining the specific gravity of solids, wet unit weight (corresponding to in-place bulk density), or measures of water content, because of the uncertainty of the magnitude of variations in submarine sediments. Unfortunately, measurements of the salinity of interstitial waters were not made. Specific gravity of solids for nearly 500 samples varied between 2.68 and 2.89 , with an approximate average about 2.765 . A first report is made of a tendency for specific gravity of solids to be directly related to wet unit weight and inversely related to porosity.

Sediment wet unit weight ranged from 1.23 to $1.86 \mathrm{~g} / \mathrm{cm}^{3}$ and increased with increasing depth in most of the cores. Porosity was found to be inversely related to wet unit weight, with values corresponding to those previously cited by others. The different relationship of water content (porosity in water-saturated sediments) to wet unit weight reported by Ratcliffe (1960) is not corroborated.

It is strongly urged that if measures of water content of marine sediments are to be meaningful the following information must be concurrently published: (1) the drying temperature, (2) degree of temperature variation in the drying oven, (3) percentage of pore-space saturation, and (4) salt content. Regrettably, in the past, the latter three factors rarely have been stated. Percentage of saturation was determined each time a water content was measured, and it was found that all samples reported except one were effectively 100 percent saturated. The exception was a surface sample that had become desiccated between the time of collection and test.

Water content (porosity) generally decreases with increasing depth in the cores, although a number of exceptions were found. Porosity varied between 51 and 86 percent; surface (0 to about 5 cm) porosities averaged by area ranged from 72 to 86 percent. Measurements made by other investigators are compared to show that although the maximum reported porosity is about 95 percent the usual maximum in fine-grained surficial sediments is approximately 86 percent.

A relationship between deposition rates and correlation of water content related to percentage of the clay-size fraction was demonstrated by Shepard and Moore (1955), investigated by Seiboid (1956), and further confirmed in this paper. Slowest depositional rates have the least axial slope, and fastest rates possess the greatest slope of correlation lines plotted on an arithmetic graph of porosity and percentage of clay-size material.

Measurements of the liquid limit and plastic limit showed an extreme range from 25 to 109 percent and 15 to 46 percent, respectively. A more normal range was 50 to 80 percent for liquid limit and 20 to 30 percent for plastic limit. Confirmation is given Emery's (1960) statement that the Atterberg limits reflect changes in marine sediment water content; the largest variation occurring in water content, less variation for liquid limit, and least for plastic limit.

Emery and his associates demonstrated that the water content in surficial submarine sediments always is greater than the liquid limit. His findings are confirmed by Sykes (1960) and this paper. In surficial sediments, the liquidity index commonly was found to be 200 percent or more, with a few values greater than 1,200 percent in calcareous sediments having very low plasticity indices.

It is emphasized that when the water content is greater than the liquid limit, sediment is "liquid" by definition only in the remolded condition. Sediment possesses considerable strength in an undisturbed (in-place) condition relative to the remolded strength. Even in the completely remolded state all samples tested showed measureable strength and hence strictly speaking cannot be considered liquid. It is generally recognized by workers in soil mechanics that remolded sediment at the liquid limit has a strength of a
few tens of $\mathrm{g} / \mathrm{cm}^{2}$, and that undisturbed sediment at the liquid limit has a strength about an order of magnitude greater.

A quantitative measure of the plastic characteristics of a completely remolded sediment is afforded by computation of the plasticity index, which defines the range of water content in which sediment is plastic. Most of the predominantly inorganic sediments of terrigenous origin and one core of calcareous clayey silt possessed high plasticity (values located above the A-line on the plasticity chart with the liquid limits greater than 50 percent).

Shear strength is expressed as cohesion because tests were made on water-saturated, fine-grained cohesive sediments without change in water content during the tests. Cohesion ranged from 4.2 to $234 \mathrm{~g} / \mathrm{cm}^{2}$. Minimum values usually occur at the surface and maximum values at some depth other than at the bottom of the cores. An average of surface, 0 to 5 cm , measurements is about $20 \mathrm{~g} / \mathrm{cm}^{2}$ in predominantly terrigenous sediments and about $40 \mathrm{~g} / \mathrm{cm}^{2}$ in calcareous sediments.

In a given sedimentary environment, wet unit weight generally was directly proportional to porosity and inversely related to cohesion. Median diameter, the sandor clay-size fraction, and plasticity index sometimes showed direct and sometimes an inverse relation to cohesion.

Further confirmation is given the (usually straight-line) relationship between porosity and the logarithm of cohesion. Comparison of the different axial slopes on porosity-logarithm of cohesion plots of each of the 8 areas suggests almost the same relationship of relative deposition rates found in graphs of porosity as a function of the clay-size fraction, although the porosity-logarithm of cohesion slopes are negative. Cohesion was found to have a variable relationship to the clay-size fraction.

It is a well-known fact that the logarithm of cohesion is closely related to water content. This indicates that a simple means of rapidly making a large number of shear strength measurements in suitable laboratory samples, or in-place on the sea floor, would be by measurement of the water content using a neutron probe that has been calibrated for the water content-strength relationship of the particular sediments under investigation.

Measurements of sensitivity by compression and vane tests show that porosity may be directly related to sensitivity, although there is a very large scatter of values about the suggested average. The liquidity index has been considered by others to be a measure of sensitivity. This generally is confirmed in the samples tested if each area is considered separately and correlation lines are forced through the origin; otherwise there does not appear to be a clear correlation between these two parameters.

The Goldschmidt-Lambe hypothesis of cardhouse clay mineral structure in undisturbed marine sediments recently appears confirmed. Hathaway (report in preparation) demonstrated that high water contents correlate with large concentrations of skeletal remains of diatoms, coccoliths, and other micro-organisms. It is hypothesized that cardhouse structure will be modified by the presence of microskeletons; following structural disturbance it is likely that rearrangement of cardhouse structure to a parallel orientation of platy minerals will be inhibited by microskeletons. Consequently, it is suggested that sensitivity and thixotropic strength regain will tend to be inversely related to the quantity of microskeletons.

Complete thixotropic strength regain in deep-sea sediments following disturbance caused by sampling is considered unlikely.

It is suggested that variations in submarine core sensitivity may be related to changes in pore-water salt content, however, data presently are not available for evaluation of this idea.

Modulus of elasticity, determined from compressive strength tests, ranged from 0 to $870 \mathrm{~g} / \mathrm{cm}^{2}$.

A few clay-size (>9 ¢) samples from Areas A-C were examined for clay mineralogy. In Areas A and B, mica was more common than mixed-layered montmorillonite-mica (illite) or kaolinite; in Area C, mixed-layered montmorillonite-mica was more common than either mica or kaolinite.

Skempton (1953a, 1953b) showed that the plasticity index was a function of the clay-size fraction, and he designated the ratio of the two parameters activity, which was related to clay mineralogy. This relation has been confirmed by a number of investigators, including Fisk and Mc Clelland (1959) for late Quaternary Lovisiana continental shelf clays, and it appears valid for the few submarine sediments examined. The spread of the reported data suggests a further extension of Skempton's classification, which is considered tentative until more information from submarine sediments becomes available.

A general summary of the variation of the more important parameters with increasing distance below the top of each core is presented in Table 8. Although elsewhere distances or depths are given in centimeters, in this table depths are in inches to facilitate location of values in the plates and Appendix B. The extreme ranges of the more significant measured or computed parameters found in this investigation are summarized in Table 9 for ready reference.
table b. Generalized summary of parameter variation with increasing depth in cores ${ }^{1}$

Core	$\begin{gathered} \begin{array}{c} \text { Length } \\ \text { Tested } \\ \text { (in) } \end{array} \\ \hline 30 \end{gathered}$	\qquad	Sond-Size Material (\%)	$\begin{gathered} \text { Clay-Size } \\ \text { Material } \\ (\%) \end{gathered}$	5pecific Gravity of Solids	Wet Unit Weight ($\mathrm{g} / \mathrm{cm}^{3}$)	Plostic Limit	Liquid Limit	Plosticity Index	Warer Content	Cohesion Profile $\left(\mathrm{g} / \mathrm{cm}^{2}\right)$	Notes
A 23	30		n.d.	n.d.	n.c.	incr.	n.t.	s/. deer .	decr. 0-24	decr.	incr.	
A 31	41	$\begin{aligned} & \text { decr. } 18-30 \\ & \text { iner. } 30+ \end{aligned}$	higher 18-30	sl. decr. 0-30	n.c.	iner.	n.e.	lower 18-30	$\begin{aligned} & \text { ince. } 24+ \\ & \text { n.c. 0-18 } \end{aligned}$	decr. 0-32	incr.	
A 33 B 83	36 36	n.t.	n.c.	n,d.	n.c.	$\begin{aligned} & \text { incr. } 0-14 \\ & \text { n.c. } 14-22 \\ & \text { incr. } 22^{+} \end{aligned}$	n.c.	decr. $0-18 \times 18+$	$\begin{aligned} & \text { incr. } 24+ \\ & \text { decr. 0-18 \& } 18+ \end{aligned}$	$\begin{aligned} & \text { n.c. } 32+ \\ & \text { dect. } 0-14 \\ & \text { incr. } 14-22 \\ & \text { decr. } 22+ \end{aligned}$	iner.	
B 83 B 85	36 30	$\begin{aligned} & \text { decr. } 0-18 \\ & \text { incr. } 18+ \\ & \text { decr. } \end{aligned}$	higher 24-30 n.c.	$\begin{aligned} & \text { s1. decr. } 0-18 \\ & \text { s1. iner. } 18+ \\ & \text { n.c. } \end{aligned}$	n.c. sl. decr.	incr. incr.	$\begin{aligned} & \text { sl. decr. } 0-14 \\ & \text { n.c. } 14+ \\ & \text { n.e. } \end{aligned}$	$\begin{aligned} & \text { s1. decr. 0-14 } \\ & \text { n.c. } 14+ \\ & \text { decr. } \end{aligned}$	$\begin{aligned} & \text { n.c. } \\ & \text { decr. } \end{aligned}$	decr.	decr.	
B 87	30	$\begin{aligned} & \text { decr. 0-15 } \\ & \text { iner. } 15+ \end{aligned}$	sl. deer.	s1. decr. 0-18 sl. iner. 18+	n.c.	incr. 0-22 s1, deer. 22+	$\begin{aligned} & \text { decr. 0-18 } \\ & \text { incr. } 18+ \end{aligned}$	$\begin{aligned} & \text { decr. } 0-18 \\ & \text { iner. } 18+ \end{aligned}$	n.c. 0-12 \& 12+	decr. 0-22 \$1. incr. 22+	$\begin{aligned} & \text { ince. } 10+ \\ & \text { incr. } 0-22 \\ & \text { dect. } 22+ \end{aligned}$	
C 16	30	$\begin{aligned} & \text { n.e. 0-12 } \\ & \text { deer. } 12+ \end{aligned}$	$\begin{aligned} & \text { decr. } 0-18 \\ & \text { iner. } 18+ \end{aligned}$	higher 0-12	$\begin{aligned} & \text { incr. 0-16 } \\ & \text { dect. 16-22 } \end{aligned}$	$\begin{aligned} & \text { decr. } 0-8 \\ & \text { incr. } 8-22 \end{aligned}$	n.c.	$\begin{aligned} & \text { incr. 0-12 } \\ & \text { decr. } 12-24 \end{aligned}$	higher 6-12	$\begin{aligned} & \text { incr. 0-8 } \\ & \text { deer. } 8-14 \end{aligned}$	incr.	
C 13	42	deer. 0-12 incr. 12-36 deer. $36+$	$\begin{aligned} & \text { decr. } 0-36 \\ & \text { incr. } 36+ \end{aligned}$	$\begin{aligned} & \text { n.c. } 0-18 \\ & \text { incr. } 18-36 \\ & \text { decr. } 36+ \end{aligned}$	incr. 22+ s). iner. 0-16 n.c. $16+$	decr. 22+ incr. 2-14 n.c. 14-22 decr. 22-34	sl. dect . 0-18 s1. incr. 18-36 decr. 36 +	$\begin{aligned} & \text { decr. 0-18 } \\ & \text { iner. } 18-36 \\ & \text { deer. } 36+ \end{aligned}$	dect. 6-16 incer. 16-36 decr. $36+$	$\begin{aligned} & \text { n.c. } 14+ \\ & \text { decr. 2-16 } \\ & \text { incr. } 16-34 \\ & \text { decr. } 34+ \end{aligned}$	incr. 2-22 decr. 22-34 incr. $34+$	
C 19 C 20	30 18	decr. 0-18	higher 12-24	lower 12-24	n.c.	incr. 34+ 31. incr. 2-10 n.c. $10-16$ incr. 16+	$\begin{aligned} & \text { n.c. } 0-12 \\ & \text { s1. decr. } 12+ \\ & \text { decr. } \end{aligned}$	obrupt decr. at 12 sl. incr, $24+$ decr.	high 0-12 low 12+ decr.	variable decr. decr.	incr. n.d. 0-2	
C20	18	decr.	sl. incr. 0-12 sl. decr. 124	higher 0-6	sl. incr.	incr.					$\text { iner. } 2+$	
Dig	16	si. incr.	sl. lower 8-12	51. lower 0-4	5l. decr.	sl. incr. 0-8	higher 4-8	higher 4-8	lower 4-8			
D 2	9	decr.	incr.	decr.	n.c.	$\begin{aligned} & \text { n.e. } 8+ \\ & \text { iner. 0-6 } \end{aligned}$	sl. decr.	decr.	decr.			
D 1p	180	n.d.	n.d.	n.d.		decr. $6+$				incr. 6+	small $6+$	
					n.c.	n.c.	n.c.	variable	varioble	n.t.	n.c.	

table 8. generalized summary of parameter variation with increasing depth in Cores 1 (Cons'd)

Core	$\begin{aligned} & \text { Length } \\ & \text { Tested } \\ & \text { (in) } \end{aligned}$	Particle Medion Diameres (phi)	Sand-Size Material (\%)	Clay-Size Material (\%)	Specific Gravity of Solids	Wet Unit Weight $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	Plastic Limit	Liquid Limit	Plasticity Index	Water Content	$\begin{gathered} \text { Coheslon Profile } \\ \left(a / \mathrm{cm}^{2}\right) \\ \hline \end{gathered}$	Nores
E 46	54	n.e.	n.c.	n.c.	n.c.	incr. 0-12	'n.e.	decr. 0-46	decr. 0-46	decr. 0-12	Incr. 0-12	
E 47	60	higher 0-16	lower 56+	lower 56+	sl. Incr.	incr.	higher 0-16	much higher 0-16	higher 0-16	decr. 0-20	inc. 0-16 \& $20+$	sund layer 16-20;
E 48	40	sl. ince.	lower 254	higher 26+	sl. incr.	$\begin{aligned} & \text { Incr. 0-20 } \\ & \text { n.c., } 20+ \end{aligned}$	n.e.	much higher 0-12		$\begin{aligned} & \text { rel. n.e. } 20+ \\ & \text { decr. } 0-20 \\ & \text { n.c. } 20+ \end{aligned}$	incr. 0-10 decr. $14+$	no tests sand layer 12-14: no tests
F 6	101	dect. 4-24	s1. decr, 0-50	sl, incr. 0-50		Incr. 0-19		decr. 0-19	decr. O-19	decr. 0-19	Inat. 0-13	40\% sand layer
		incr. 24-54	n.c. $50+$	n.c. 50t	(lower 81-90)	decr. 19-54	(lower 81-90)	Incr. 19-54	Incr. 19-54	iner. 19-54	der. $13-49$	81-90
		decr. $54-90$	(higher 81-90)	(lower 81-90)		51. iner. 54+		$\text { n.c. } 54+$	varioble 54+	deer. 54-90	31. Incr. 49+	
F 10	65	higher 24-36 \& 47+	n.c.	higher $24-36$ \& 47+	sl. incr.	Incr. 0-36	31. lower.	deer. 0-36	lowere 12-36	decr. 0-36	31. Incre.	
						decr. 36+	24-36	n.c. $36+$		incr. $36+$		
F 11	57	lower 19-32	n.c.	higher 36t	..c		31. decr. 0-36 s1, Iner. $36+$	decr. 0-36 s1. incr. $36+$	$\begin{aligned} & \text { decr. 0-36 } \\ & \text { n.c. } 36+ \end{aligned}$	decr. 0-27 Iner. 27+	Incr. 0-27 decr. 27+	
						decr. $48+$						
F 12	56	31. dear. 0-34	п.c.	lower 23-30	Incr.	incr. 0-32	n.c.	deer. 0-23	decr. 0-23	deer. 0-32	incr.	
F 13	54					s1. decr. 32		iner. $23+$	incr. $23+$			
		incer. $24+$	n.c.	sil. higher 48+	ni. higher 48+	incr. 0-35 decr. 35+	s1. decr. 0-35 31. Incr. 35t	$\begin{aligned} & \text { decr. } 0-35 \\ & \text { Iner. } 35+ \end{aligned}$	$\begin{array}{ll} \text { decr. } 0-24 \\ \text { Sorer } \end{array}$ Incr. 24+	$\begin{aligned} & \text { decr. 0-26 } \\ & \text { Incr. } 26+ \end{aligned}$	$\begin{aligned} & \text { incr. 0-47 } \\ & \text { decr. 47+ } \end{aligned}$	
F 14	64	s1. decr. 3-22	n.c.	n.c. $3 \rightarrow 30$	si. Incr.	Incr. 3-28	n.c.	decr. 3-30	decr. 3-30	decr. 3-28	incr. 3-42	n.d. $0-3$
		incr. 22+		s1. Incr. 31+		docr. $28+$		iner. $30+$	incer. 30-42	Incr. $28+$	dect. 42+	
F 15	59	decr. 0-22	п.e.	s1. decr. 0-22	31. Incr.	Incr. 0-27	decr. 0-28	decr. 0-29	lower 18-29 \& 44-51	deer. 0-27	Iner. 0-17	
		Incr. 22-51		sl. Iner. 2^{2+}		decr. 27-48	Iner. 29-51	incr. 29-51		incr. $27+$	31. Incr. 17-43	
F 16	62		n.c.		s1. incr.	3. Incr. $48+$			decr. 0.26			
				${ }_{31}$. incr. $26+$		31 . docr. $30+$	n.c.	31. incr. $36+$	incr. 26-58	incr. $30-58$	$\begin{aligned} & \text { incr. 0-40 } \\ & \text { decr. } 40 \end{aligned}$	
									decr. 58+	decr. 58+		
G 2	66	$\begin{aligned} & \text { n.c. } 0-43 \\ & \text { incr. } 43+ \end{aligned}$	п.е.	$\begin{aligned} & \text { n.c. } 0-43 \\ & \text { iner. } 43+ \end{aligned}$	incr.*	$\begin{aligned} & \text { Incr. } 0-48 \\ & \text { diecr. 46+ } \end{aligned}$	n.d.	n.d.	n.d.	large decr. 0-27 s1. decr, 27-50	Incr.*	*based on discont. dota
G 3	29	n.c.	n.c.	п.e.	n.d.	al. Incr.	n.d.	n.d.	n.d.	large dear.	n.d.	

table b. generalized summary of parameter variation with increasing depth in Cores 1 (Cont'd)

Core	Length Tested (in)	Particle Median Dicmeter (phi)	Sand-Size Material (\%)	Clay-Size Material (\%)	$\begin{gathered} \text { Speeific Grovity } \\ \text { of Solids } \end{gathered}$	$\begin{aligned} & \text { Wet Unit Weight } \\ & \left(\mathrm{g} / \mathrm{cm}^{3}\right) \end{aligned}$	Plastic Limit	Liquid Limit	Plosticity Index	Water Content	Cohesion Profile $\left(9 / \mathrm{cm}^{2}\right)$	Notes
G4	$\begin{aligned} & 68 \\ & 28 \end{aligned}$	n.c. sl. incr, 0-13 sl. deer. 13+	$\begin{aligned} & \text { n.e. } \\ & \text { n.c. } \end{aligned}$	n.c.	$\begin{aligned} & \text { n.d. } \\ & \text { n.d. } \end{aligned}$	sl, incr. s1. incr. 0-8 n.c. 8-17	$\begin{aligned} & \text { n.d: } \\ & \text { n.d. } \end{aligned}$	$\begin{aligned} & \text { n.d. } \\ & \text { n.d. } \end{aligned}$	$\begin{aligned} & \text { n.d. } \\ & \text { n.d. } \end{aligned}$	large decr. sl. incr. 0-13 sl. decr. 13+	$\begin{aligned} & \text { n.d. } \\ & \text { n.d. } \end{aligned}$	
G 6	59	s1. iner. 0-56	n.c.	higher 36+	31. incr.	sl. Incr. 17+ Iner. 0-40 decr. 40-52 Incr. 52+	n.d.	n.d.	n.d.	large decr. 0-40 incr. 40-52 decr. 52^{+} dear.	sl. Incr.* incr. 0-40	*based on discont. dota
G 8	70	c.	c.	n.e.	34, Incr.*	st. incr.	n.d.	n.d.			n.d. $40+$ *	
$\begin{aligned} & \text { G } 9 \\ & \text { G } 10 \\ & \text { G } 11 \end{aligned}$	$\begin{aligned} & 52 \\ & 64 \\ & 46 \end{aligned}$	п.c.* variable incr. 0-16 decr. 16-30 incr. $30+$	$\begin{aligned} & \text { n.c.* } \\ & \text { higher } 16-60 \\ & \text { n.c. } \end{aligned}$	$\begin{aligned} & \text { n.e.* } \\ & \text { rel. n.c. } \\ & \text { n.c. } \end{aligned}$	si. Incr.* sl. Incr.* n.d.	sl. incr.* sl. Incr. 31. decr. 0-12 sl. incr. 12+	$\begin{aligned} & \text { n.d. } \\ & \text { n.d. } \\ & \text { n.d. } \end{aligned}$	$\begin{aligned} & \text { n.d. } \\ & \text { n.d. } \\ & \text { n.d. } \end{aligned}$	n.d. n.d. n.d.	decr.* decr. incr. 0-12 deer. 12+	incr.* sl. incr .* n.d.	*based on discont . data *based on discont. data
$\begin{aligned} & \text { H } 12 \\ & \text { H } 13 \end{aligned}$	$\begin{array}{r} 201 \\ 57 \end{array}$	$\begin{aligned} & \text { n.d. } \\ & \text { n.d. } \end{aligned}$	$\begin{aligned} & \text { n.e. } \\ & \text { n.c. } \end{aligned}$	$\begin{aligned} & \text { n.c. } \\ & \text { n.c. } \end{aligned}$	variable variable	$\begin{aligned} & \text { n.c. } \\ & \text { rel. n.c. } \end{aligned}$	n.d. n.d.	$\begin{aligned} & \text { n.d. } \\ & \text { n.d. } \end{aligned}$	$\begin{aligned} & \text { n.d. } \\ & \text { n.d. } \end{aligned}$	n.e. decr. 12-16 incr. 16-39 decr. $39+$	n.c. but variable large Incr. 7-16 decr. 16-37 n.e. 37-53 incr. 53+	

$\widehat{T}_{\text {All measurements in inches from the top of the core. Where parameter variation with increcsing depth is slight or does not }}$ occur, it is onitted.
Abbrevations: n.d. $=$ no data, n.e. $=$ little or no change, sh $=$ slight, rel. $=$ relatively, decr. $=$ decrease, incr. $=$ increase, diseont. $=$ diseontinuous.

TABLE 9. SUMMARY OF MEASURED OR COMPUTED MINIMUM AND MAXIMUM PARAMETERS IN AREA A - H CORES

Parameter
$\begin{array}{lll}\text { Activity } & 0.06 & 1.7\end{array}$
Cohesion, "undisturbed," $\mathrm{g} / \mathrm{cm}^{2}$
Cohesion, remolded, $\mathrm{g} / \mathrm{cm}^{2}$
Liquid limit
Liquidity index, \%
Median diameter of particles, \varnothing
Modulus of elasticity, $\mathrm{g} / \mathrm{cm}^{2}$
Plastic limit
Plasticity index
Porosity, \%
Sensitivity
Specific gravity of solids
Void ratio, 100% saturated
Water content, \% dry weight
Wet unit weight, $\mathrm{g} / \mathrm{cm}^{3}$

Minimum
234.1
4.2
2.1
$25 \quad 109$
76
3274
$5.1>10$
$0 \quad 870$
15 46
1.6

81
50.7
86.5
1.6
25.9
2.68
2.89
1.015
6.363
36.7
236.9
1.23
1.86

PLATE V. PARAMETERS VERSUS DEPTH FOR CORE B 85

PLATE VIII. Parameters Versus depth for core C 18

PLATE XI: PARAMETERS VERSUS DEPTH FOR CORE D lg

PLATE XII. PARAMETERS VERSUS DEPTH FOR CORE D 2

PLATE XV̄I. PARAMETERS VERSUS DEPTH FOR CORE E 48

PLATE XVII. PARAMETERS VERSUS DEPTH FOR CORE F 6

PLATE XXII. PARAMETERS VERSUS DEPTH FOR CORE F 14

PLATE XXIII。PARAMETERS VERSUS DEPTH FOR CORE F 15

PLATE XXIV. PARAMETERS VERSUS DEPTH FOR CORE F 16
AREA G CORE 2

PLATE XXV. PARAMETERS VERSUS DEPTH FOR CORE G 2

PLATE XXVI. PARAMETERS VERSUS DEPTH FOR CORE G 3

PLATE XXVII。 PARAMETERS VERSUS DEPTH FOR CORE G 4

PLATE XXIX. PARAMETERS VERSUS DEPTH FOR CORE G 6
AREA G CORE 8

PLATE XXX. PARAMETERS VERSUS DEPTH FOR CORE G 8

PLATE XXXI. PARAMETERS VERSUS DEPTH FOR CORE G 9
wว

PI ATE XXXIV. PARAMETERS VERSUS DEPTH FOR CORE H 12

PLATE XXXV. PARAMETERS VERSUS DEPTH FOR CORE H 13

REFERENCES

American Society for Testing Materials (1958) 1958 book of ASTM standards including tentatives, part 4. Philadelphia, Pa., 1426 p.

American Society of Civil Engineers (1961) Research conference on shear strength of cohesive soils. New York, 1164 p.

Andel, Ti. van (1954) Sedimentary petrography, p. 65-112 in 'Recent sediments of the Gulf of Paria. Reports of the Orinoco Shelf Expedition, vol. 1'. Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen, Afd. Natuurkunde, Eerste Reeks, vol. 20, no. 5, 245 p.

Anonymous (1960) Standard representation for foundation soils. Géotechnique, vol. 10, p. 33.

Arrhenius, G. (1952) Sediment cores from the East Pacific. Reports of the Swedish Deep-Sea Expedition 1947-1948, vol. 5, fasc. 1, 227 p.

Atterberg, A. (1911) Die Plastizität der Tone. Internationale Mitteilungen für Bodenkunde, vol. 1, p. 10-43.

- - (1913) Die Plastizität und Bindigkeit liefernden Bestandteile der Tone. Internationale Mitteilungen für Bodenkunde, vol. 3, p. 291-330.

Bauer, E. E. (1960) History and development of the Atterberg limits tests, P. 160-167 in Papers on soils, 1959 meetings. Symposium on Atterberg limits. American Society for Testing Materials Special Technical Publication no. 254, 375 p.

Baver, L. D. (1940) Soil physics. New York, Wiley, 370 p.
Bjerrum, L. (1951) Fundamental considerations on the shear strength of soil. Géotechnique, vol. 2, p. 209-218.

- - - (1954a) Theoretical and experimental investigations on the shear strength of soils. Norwegian Geotechnical Institute Publication no. 5, 113 p.
- - - (1954b) Geotechnical properties of Norwegian marine clays. Géotechnique, vol. 4, p. 49-69.

REFERENCES (Cont'd)

Bjerrum, L., and Rosenqvist, 1. Th. (1956) Some experiments with artificially sedimented clays. Géotechnique, vol. 6, p. 124-136.

Burmister, D. M. (1960) Strain-rate behavior of clay and organic soils, p. 88-105 in Papers on soils, 1959 meetings. Symposium on time rates of loading in soil testing. American Society for Testing Materials Special Technical Publication no. 254, 375 p.

Caldwell, J. M. (1960) Development and tests of a radioactive sediment density probe. U.S. Corps of Engineers, Beach Erosion Board Technical Memorandum 121, 29 p .

Capper, P.L., and Cassie, W.F. (1960) The mechanics of engineering soils. 3d ed. London, E. \&F. N. Spon, 315 p.

Casagrande, A. (1932a) Research on the Atterberg limits of soils. Public Roads, vol. 13, p. 121-130, and p. 136.

- - (1932b) The structure of clay and its importance in foundation engineering. Boston Society of Civil Engineering Journal, vol. 19, p. 168-209.
- - - (1948) Classification and identification of soils. American Society of Civil Engineers Transactions, vol. 113, p. 901-931.

Committee on glossary of terms and definitions (1958) Glossary of terms and definitions in soil mechanics. Soil Mechanics and Foundations Division Journal, American Society of Civil Engineers Proceedings, vol. 84, no. SM4, 43 p.

Correns, C.W. (1937) Die Verfahren der Gewinnung und Untersuchung der Sedimente, p. 1-42 in 'Die Sedimente des äquatorialen Atlantischen Ozeans.' Deutsche Atlantische Expedition METEOR 1925-1927, vol. 3, pt.3, 298 p.

Dawson, R.F. (1960) Investigations of the liquid limit test on soils, p. 190-195 in Papers on soils, 1959 meetings. Symposium on Atterberg limits. American Society for Testing Materials Special Technical Publication no. 254, 375 p.

Diamond, S., and Kinter, E.B. (1958) Surface areas of clay minerals as derived from measurements of glycerol retention, p. 334-347 in Clays and clay minerals. National Academy of Sciences-National Research Council Publication 566, 560 p.

REFERENCES (Cont'd)

Emery, K. O. (1960) The sea off southern California, a modern habitat of petroleum. New York, Wiley, 366 p.

- - - and Ritfenberg, S. C. (1952) Early diagenesis of California basin sediments in relation to origin of oil. American Association of Petroleum Geologists Bulletin, vol. 36, p. 735-806.
- - - and Terry, R.D. (1956) A submarine slope of southern California. Journal of Geology, vol. 64, p. 271-280.

Engelhardt, W. von. (1960) Der Porenraum der Sedimente. Berlin, Springer-Verlag, 207 p.

Fisk, H. N., and McClelland, B. (1959) Geology of continental shelf off Lovisiana: its influence on offshore foundation design. Geological Society of America Bulletin, vol. 70, p. 1369-1394.

Glossop, R., and Skempton, A. W. (1945) Particle-size in silts and sands. Institution of Civil Engineers Journal (London), no. 2, 1945-46, paper 5492, p. $\overline{81-105 .}$

Goldschmidt, V. M. (1926) Underspkkelser over lersedimenter. Nordisk Jordbrugsforskning, no. 4-7, p. 434-445.

Grim, R.E. (1942) Modern concepts of clay materials. Journal of Geology, vol. 50, p. 225-275.

- - (1953) Clay mineralogy. New York, McGraw-Hill, 384 p.

Hamilton, E. L., and Menard, H. W. (1956) Density and porosity of sea-floor surface sediments off San Diego, California. American Association of Petroleum Geologists Bulletin, vol. 40, p. 754-761.

Heezen, B. C. (1952) Discussion of methods of exploring the ocean floor by R. S. Dietz, p. 200-205 in Oceanographic instrumentation. National Academy of SciencesNational Research Council Publication 309, 233 p:

Helmcke, J. -G. (1951) Feinbau von Diatomeenschalen in Einzeldarstellungen. $\frac{\text { Zeitschrift für Wissenschaftliche Mikroskopie und für Mikroskopische Technikg }}{\text { vol. } 60 \text {, P. } 85-100 \text {. }}$

REFERENCES (Cont'd)

Helmcke, J. -G., and Krieger, W. (1951) Feinbau von Diatomeenschalen in Einzeldarstellungen, 2. Die Gattung Achnanthes Bory. Zeitschrift für Wissenschaftliche Mikroskopie, vol. 60, p. 197-202.

- - and Krieger, W. (1952) Feinbau der Diatomeenschalen in Einzeldarstellungen, 3. Die Gattung Melosira Ag. Zeitschrift für Wissenschaftliche Mikroskopie, vol. 61, p. 83-92.

Herzen, R. von, and Maxwell, A. E. (1959) The measurement of thermal conductivity of deep-sea sediments by a needle-probe method. Journal of Geophysical Research, vol. 64, p. 1557-1563.

Hough, B. K. (1944) Discussion of relation of undisturbed sarnpling to laboratory testing by P. C. Rutledge. American Society of Civil Engineers Transactions, vol. 109, p. 1184-1186.
-. (1957) Basic soils engineering. New York, Ronald Press, 513 p.
Hvorslev, M. J. (1936) Conditions of failure for remolded cohesive soils. International conference on soil mechanics and foundation engineering, Proceedings. 1st Cambridge, Mass., vol. 3, p. 51-53.

- - (1937) Über die Festigkeitseigenschaften gestörter bindiger Böden. Ingeniørvidenskabelige Skrifter, A, no. 45, (Danmarks Naturvidenskabelige Samfund), Copenhagen, 159 p .
- - (1949) Subsurface exploration and sampling of soils for civil engineering purposes. Vicksburg, Miss., U.S. Corps of Engineers, Waterways Experiment Station, 521 p .
- . - (1961) Physical components of the shear strength of saturated clays, p. 169273 in Research conference on shear strength of cohesive soils. New York, American Society of Civil Engineers, 1164 p.

Inman, D. L. (1952) Measures for describing the size distribution of sediments. Journal of Sedimentary Petrology, vol. 22, p. 125-145.
Johns, W. D., Grim, R.E., and Bradley, W. F. (1954) Quantitative estimations of clay minerals by diffraction methods. Journal of Sedimentary Petrology, vol. 24, p. 242-251.

Jones, O. T. (1944) The compaction of muddy sediments. Geological Society of London Quarterly Journal, vol. 100, p. 137-156.

Keller, G. H., Richards, A. F., and Recknagel, J. H. (1961) Prevention of water loss through CAB plastic sediment core liners, Deep-Sea Research, vol. 8, p. 148-151.

Kinter, E. B., and Diamond, S. (1956) A new method for preparation and treatment of orientated-aggregate specimens of soil clays for X -ray diffraction analysis. Soil Science, vol. 81, p. 111-120.

- - - (1958) Gravimetric determination of monolayer glycerol complexes of clay minerals, p. 318-333 in Clays and clay minerals. National Academy of Sciences-National Research Council Publication 566, 560 p.

Krumbein, W. C. (1934) Size frequency distributions of sediments. Journal of Sedimentary Petrology, vol. 4, p. 65-77.

- - - (1936) Application of logarithmic moments to size frequency distribution of sediments. Journal of Sedimentary Petrology, vol . 6, p. 35-47.
- - and Pettijohn, F. J. (1938) Manual of sedimentary petrography. New York, Appleton-Century-Crofts, 549 p .

Kullenberg, B. (1947) The piston core sampler. Svenska hydrografisk-biologiska kommissionens skrifter. Tredie serien: Hydrografi, vol. 1, 46 p.

Kuranz, J. L. (1960) Measurement of moisture and density in soils by the nuclear method, p. 40-54 in Symposium on applied radiation and radioisotope test methods. American Society for Testing Materiols Special Technical Publicafion no. 268; 112 p .

Lambe, T. W. (1950) How dry is a dry soil? National Research Council, Highway Research Board, Proceedings 29th annual meetings, p. 491-496.

- - (1951) Soil testing for engineers. New York, Wiley, 165 p.
- - (1953) The structure of inorganic soil. American Society of Civil Engineers Proceedings, vol. 79, separate 315, 49 p.

Lambe, T. W. (1961) A mechanistic picture of shear strength in clay, p. 555-580 in Research conference on shear strength of cohesive soils. New York, American Society of Civil Engineers, 1164 p.

Meigh, A. C., and Skipp, B.O. (1960) Gamma-ray and neutron methods of measuring soil density and moisture. Géotechnique, vol. 10, p. 110-126.

Mielenz, R. C., and King, M.E. (1955) Physical-chemical properties and engineering performance of clays, p. 196-254 in 'Clays and clay technology.' First national conference of clays and clay technology, Proceedings, California Division of Mines Bulletin 169, 326 p.

Mirchell, J.K. (1960) Fundamental aspects of thixotropy in soils. Soil Mechanics and Foundation Division Journal, American Society of Civil Engineers Proceedings, vol. 86, no. SM3, p. 19-52.

Moore, H.B. (1931) The muds of the Clyde Sca area, III. Chemical and physical conditions; rate and nature of sedimentation; and fauna. Marine Biological Association Journal, New Serics, vol. 17, p. 325-358.

Nafe, J.E., and Drake, C.L. (1957) Variation with depth in shallow and deep water marine sediments of porosity, density and velocities of compressional and shear waves. Geophysics, vol. 22, p. 523-552.

Norman, L.E.J. (1958) A comparison of values of liquid limit determined with apparatus having bases of different hardness. G'eotechnique, vol. 8, p. 79-83.

- - (1959) The one-point method of determining the volue of the liquid limit of a soil. Géotechnique, vol. 9, p. 1-8.

Page, H. G. (1955) Phi-millimeter conversion table. Journal of Sedimentary Petrology, vol. 25, p. 285-292.

Phleger, F.B, and Parker, F. L. (1951) Ecology of Foraminifera, northwest Gulf of Mexico. Geological Society of America Memoir 46, 152 p.

Ratcliffe, E.H. (1960) The thermal conductivities of ocean sediments. Journal of Geophysical Research, vol. 65, p. 1535-1541.

Reiner, M. (1958) Rheology, p. 434-550 in Encyclopedia of Physics, vol. 6, 'Elasticity and plasticity.' Berlin, Springer-Verlag, 642 p.

REFERENCES (Cont'd)

Richards, A. F. (1959) Engineering properties of epicontinental sediments (abstract), p. 656-657 in International oceanographic congress, Preprints. Washington, American Association for the Advancement of Science, 1022 p.

- - - (1960) Plastic-barrel corer and its use in studies of engineering and mass physical properties of deep-sea sediments. Association internationale d'océanographie physique, Union géodésique et géophysique, General Assembly at Helsinki, July-August 1960, Abstracts of Communications, p. 154-155.
- - - (1961.) Investigations of deep-sea sediment cores, 1. Shear strength, bearing capacity, and consolidation. U. S. Hydrographic Office Technical Report no. $63,70 \mathrm{p}$.
- - - and Keller, G.H. (1961) Plastic-barrel sediment corer. Deep-Sea Research, vol. 8, p. 306-312.
- - - and Keller, G.H. (1962) Water content variability in a silty clay core from off Nova Scotia. Liminology and oceanography, vol. 7, p. 426-427.

Rosenqvist, I. Th. (1946) Om leirers kvikkaktighet. Statens Vegvesen, Veglaboratoriet, Meddelelse, no. 4, p. 5-12\%.

- - - (1953) Considerations on the sensitivity of Norwegian quick-clays. Géotechnique, vol. 3, p. 195-200.
- - - (1955) Investigations in the clay-electrolyte-water system. Norwegian Geotechnical Institute Publication no. 9, 125 p .
- - - (1958) Remarks to the mechanical properties of soil water systems. Geologiska Föreningen i Stockholm, Förhandlingar, vol. 80, p. 435-457.
- - - (1960) Physico-chemical properties of soils: soil water systems. Norwegian Geotechnical Institute Publication no. 37, p. 1-16; a reprint with additions and corrections from: Soil Mechanics and Foundation Division Journal, American Society of Civil Engineers Proceedings vol. 85, no. SM2, p. 31-53, 1959.

[^7]
REFERENCES (Cont'd)

Rufledge, P. C. (1947) Review of the cooperafive friaxial research program of the War Department, Corps of Engineers, covering the period February 1940 to May 1944, p. 1-178 in Soil mechanics fact finding survey, progress report: friaxial shear research and pressure distribution studies on soils. Vicksburg, Miss., U.S. Corps of Engineers. Waterways Experiment Station, 332 p.

Seibold, E. (1956) Wasser, Kalk und Korngrossenverteilung in einem Adria- und Bodensee-Sedimentkern. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, Monatshefte, vol. 10, p. 451-470.

Selmer-Olsen, R. (1953) About the plastic properties of the Norwegian Quaternary clays. International conference on soil mechanics and foundation engineering, Proceedings. 3d-Zurich, Switzeriand, vol. 1, p. 51-54.

Shaw, E.B. (1915) Discussion of the role and fate of connate water in oil and gas sands by R.H. Johnson. American Instifute of Mining Engineers Bulletin no. 103, p. 1449-1459.

Shepard, F. P. (1948) Submarine geology: New York, Harper, 348 p.

- . - (1954) Nomenclature based on sand-silt-clay ratios. Journal of Sedimentary Petrology, vol. 24, p. 151-158.
$\infty-\infty$ and Moore, D. G. (1955) Central Texas coast sedimentation: characteristics of sedimentary environment, recent history and diagenesis. American Association of Petroleum Geologists Bulletin, vol. 39, p. 1463-1593.
\ldots Phleger, F. B, and Andel, Ti. H. van (Editors) (1960) Recent sediments, northwest Gulf of Mexico. Tulsa, Oklahoma, American Association of Petroleum Geologists, 394 p .

Shumway, G. (1960) Sound speed and absorption studies of marine sediments by a resonance method. Parts 1 and 2, Geophysics, vol. 25, p. 451-467 and 659-682.

Skempion, A. W. (1944) Notes on the compressibility of clays. Geological Society of London Quarterly Journal, vol. 100, p. 119-135.

REFERENCES (Cont'd)

Skempton, A. W. (1948) A possible relationship between true cohesion and the mineralogy of clays. International conference on soil mechanics and foundation engineering, Proceedings. 2d-Rotterdam, Netherlands, vol. 7, p. 45-46.

- - (1953a) Soil mechanics in relation to geology. Yorkshire Geology Society Proceedings, vol. 29, p. 33-62.
- - - (1953b) The colloidal activity of clays. International conference on soil mechanics and foundation engineering, Proceedings. 3d-Zurich, Switzerland, vol. 1, p. 57-6 1.
— - - (1960) Terzaghi's discovery of effective stress, p. 42-53 in From theory to practice in soil mechanics. New York, Wiley, 425 p.
- - - and Bishop, A.W. (1950) The measurement of the shear strength of soils. Géotechnique, vol. 2, p. 90-108.
- - and Bishop, A.W. (1954) Soils, p. 417-482 in Building materials, their elasticity and inelasticity. Amsterdam, North-Holland, 560 p.
- - - and Bjerrum, L. (1957) A contribution to the settlement analysis of foundarions on clay. Géotechnique, vol. 7, p. 168-178.
- - and Northey, R.D. (1952) The sensitivity of clays. Géotechnique, vol. 3, p. 30-53.

Spangler, M. G. (1960) Soil engineering. 2d ed., Scranton, Pa., International Textbook, 483 p.

Sutton, G. H., Berckhemer, H., and Naie, J. E. (1957) Physical analysis of deep-sea sediments. Geophysics, vol. 22, p. 779-812.

Sverdrup, H. V., Johnson, M. W., and Fleming, R. H. (1946) The oceans, their physics, chemistry, and general biology. New York, Prentice-Hall, 1087 p.

Sykes, L.R. (1960) An experimental study of compressional velocities in deep sea sediments. B.S.\&M.S.Thesis, Massachusetts Institute of Technology, 74 p.

Terzaghi, K. (1925a) Erdbaumechanik auf bodenphysikalischer Grundlage. Leipzig, Franz Deuticke, 399 p.

Terzaghi, C. (1925b) Principles of soil mechanics: II-Compressive strength of clay. Engineering News-Record, vol. 95, p. 796-800.

- - (1925c) Principles of soil mechanics: V-Physical differences between sand and clay. Engineering News-Record, vol. 95, p. 912-915.
- - (1927) Principles of final soil classification. Public Roads, vol . 8, p. 41-53.

Terzaghi, K. (1936) Stability of slopes of natural clay. International conference on soil mechanics and foundation engineering, Proceedings. Tst - Cambridge, Mass., vol. 1, p. 161-165.

- - (1941) Undisturbed clay samples and undisturbed clays. Boston Society of Civil Engineering Journal, vol. 28, p. 211-231.
- - (1943) Theoretical soil mechnaics. New York, Wiley, 510 p.
- - (1944) Ends and means in soil mechanics. Engineering Journal (Canada), vol. 27, p. 608-615.
- - - (1955) Influence of geological factors on the engineering properties of sediments. Economic Geology, 50th Anniversary Volume 1905-1955, p. 557-618.
- - and Peck, R. B. (1948) Soil mechanics in engineering practice. New York, Wiley, 566 p.

Trask, P. D. (1932) Origin and environment of source sediments of petroleum. Houston, Texas; Gulf, 323 p.

- - (1953) The sediments of the western Gulf of Mexico. Part 2, Chemical studies of sediments of the western Gulf of Mexico. Papers in Physical Oceanography and Meteorology, Massachusetts Institute of Technology and Woods Hole Oceanographic Institute, vol. 12, no. 4, p. 47-120.
- - (1959) Effect of grain size on mixtures of clay, sand, and water. Geological Society of America Dulletin, vol. 70, p. 569-580.
- - - and Close, J. E.H. (1958) Effect of clay content on strength of soils. Sixth conference on coastal enginecring, Proceedings, vol. 6, p. 827-843.

REFERENCES (Cont'd)

Trask, P. D., and Rolston, J. W. (1950) Relation of strength of sediments to water content and grain size. Science, vol. 111, p. 666-667.

- - - and Rolston, J. W. (1951) Engineering geology of San Francisco Bay, California. Geological Society of America Bulletin, vol. 62, p. 1079-1110.
U. S. Hydrographic Office (1955) Instruction manual for oceanographic observations. 2d ed., Hydrographic Office Publication no. 607, Washington, 210 p.

Wentworth, C. K. (1922) A scale of grade and class terms for clastic sediments. Journal of Geology, vol. 30, p. 377-392.

Westergaard, H. M. (1952) Theory of elasticity and plasticity. Cambridge, Mass., Harvard University Press; and New York, Wiley, 176 p.

Yoder, H. S., Jr. (1955) Role of water in metamorphism, p. 505-524. in Crust of the earth. Geological Society of America Special Paper no. 62, $\overline{7} 62 \mathrm{p}$.

- - - and Eugster, H. P. (1955) Synthetic and natural muscovites. Geochimica et Cosmochimica Acta, vol. 8, p. 225-280.

APPENDIX A.

SALINITY CORRECTION FOR SPECIFIC GRAVITY MEASUREMENTS

Unanimity of opinion does not exist at present on the salt content or salinity ${ }^{12}$ of interstitial waters of marine sediments. Physical measurements based on assumed oceanic salinity of pore water (for example, Ratcliffe, 1960, p. 1536) may be of questionable validity until the distribution of interstitial salinity is better known. Arrhenius (1952, p. 78-79) reported a linear correlation between salinity and water content in deep-sea Pacific and Atlantic Ocean cores. Salinity varied markedly with depth in most east Pacific cores (Arrhenius, 1952, Appendix plates 1-62). Emery and Rittenberg (1952, p. 803) in studies of cores from basins off Southern California found that the salinities of interstitial waters were relatively constant with depth of burial. Pore water chlorinity was slightly greater than 19 parts per thousand ($\mathrm{p} .788-789$), which represents a salinity of about 35 parts per thousand--a normal oceanic value. A more variable relationship of salinity to depth is reported by Shepard and Moore (1955, p. 1582) and Sutton and others (1957, p. 792-793).

Hamilton and Menard (1956, p. 755) give a formula correcting grain density, or specific gravity of particles, for salt content and discuss procedure.

[^8]
APPENDIX B

DATA TABLE FOR EACH CORE TESTED

All parameters listed in the data tables have been defined and discussed in the text, except the compression index and slump. The compression index, C_{c}, is defined (ASCE) as the slope of the linear portion of the void ratio-logarithm of pressure, p, (e-log p) curve, or

$$
\begin{equation*}
C_{c}=\frac{e_{i}-e_{f}}{\log _{10} \frac{P_{f}}{P_{i}}} \tag{23}
\end{equation*}
$$

where subscripts i and f are respectively the initial and final conditions. Skempton (1944, p. 126) demonstrated a straight-line, linear relationship between the compression index and liquid limit, LL. This relation is defined (Terzaghi and Peck, 1948, p. 66) as

$$
\begin{equation*}
C_{c}=0.009(L L-10 \%) \tag{24}
\end{equation*}
$$

Compression indices in the tables were determined from the liquid limit in accordance with equation 24 and from the laboratory e-log p curves by equation 23 . These figures will be used and discussed in the report on consolidation, which is in preparation.

Slump percentage is the ratio of the amount of height change immediately before the compressive strength test to the original height of a cylinder of the sediment. Certain samples slumped under their own weight before the compressive strength test could be started.

Porosities were estimated from assumed specific gravities (equations 12 and 14) in certain Area G cores. All such estimated data are shown within parentheses in the tables.

$\stackrel{\sim}{n}$	$\begin{aligned} & \text { o } \\ & \text { M } \\ & \text { N } \end{aligned}$:	1		1	1	1	1	1			1			1	1	1	1	,	1	1	1	1.	1	-		1	,
$\stackrel{+}{-1}$	$\begin{aligned} & \infty \\ & \text { N } \\ & 1 \\ & \text { ल } \end{aligned}$	∞	$\left.\begin{array}{\|c} n \\ n \\ i \end{array} \right\rvert\,$		$\begin{aligned} & m \\ & m \\ & k \end{aligned}$	$\left.\begin{array}{\|c\|} \hline 8 \\ -1 \\ c \\ c \end{array} \right\rvert\,$	$\begin{array}{\|c\|} \hline \stackrel{N}{0} \\ \underset{\sim}{n} \\ \stackrel{\rightharpoonup}{*} \end{array}$	$\begin{aligned} & 1 \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	8	-	9	$\stackrel{+}{9}$		黛		$\left\lvert\, \begin{gathered} 10 \\ 0 \\ 0 \end{gathered}\right.$	$\begin{aligned} & 8 \\ & 0 \end{aligned}$	1	1	$\begin{aligned} & 9 \\ & \overrightarrow{9} \\ & 0 \\ & 0 \end{aligned}$	1	∞	1.	1	1	1	1	1
m	N N \sim \sim	$\begin{gathered} \infty \\ 0 . \\ 0 \\ 0 \end{gathered}$	$\left\lvert\, \begin{gathered} \text { in } \\ i n \\ i \end{gathered}\right.$		$$	$\begin{aligned} & \text { a } \\ & \text { Ǹ } \\ & \text { ले } \end{aligned}$	M N. ले	$\begin{gathered} 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & m \\ & \dot{\alpha} \end{aligned}$			7				$\left\|\begin{array}{l} n \\ n \\ -1 \end{array}\right\|$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	1	1		1.	m	1	1	1	1	1	1
$\stackrel{\text { cf }}{ }$	N N N	1	1		1	1	1	t	1			1			1	1	1	1	1	1	1	1	1	1	1	1	,	1
\vec{C}	N1 1 O N	$\begin{aligned} & \stackrel{\rightharpoonup}{c} \\ & \stackrel{y}{n} \end{aligned}$	$\begin{aligned} & m \\ & i \\ & i \end{aligned}$		$\left\lvert\, \begin{gathered} m \\ n \\ \infty \\ \infty \end{gathered}\right.$	$\begin{gathered} M \\ ल \\ ल \end{gathered}$	$\begin{aligned} & \vec{r} \\ & \stackrel{\rightharpoonup}{0} \\ & \text { cu } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\left\lvert\, \begin{aligned} & r-1 \\ & \dot{\Omega} \end{aligned}\right.$	N	앙	त	$\xrightarrow{\sim}$	$\left\|\begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \end{array}\right\|$	1	$\left.\begin{aligned} & n \\ & 0 \\ & i \end{aligned} \right\rvert\,$	8	1	1	$\begin{array}{lll} 5 & 0 \\ \underset{y}{n} \\ 0 & 1 \\ m \end{array}$	1	\pm	1	1	1	1	1	1
$\stackrel{-}{-1}$	$\begin{aligned} & \text { C} \\ & \text { N } \\ & \text { o } \\ & \text { H- } \end{aligned}$	$\begin{aligned} & 7 \\ & n \\ & n \end{aligned}$	$\begin{gathered} 0 \\ i \\ i \end{gathered}$		$\begin{gathered} q \\ \infty \\ \infty \\ \infty \end{gathered}$	$\begin{array}{\|c\|} \overrightarrow{0} \\ \mathrm{~m} \\ \text { ले } \end{array}$	$\begin{aligned} & \text { n } \\ & m \\ & \text { ú } \end{aligned}$	O				$\begin{gathered} 6 \\ \stackrel{N}{1} \\ \underset{1}{2} \end{gathered}$			1	$\begin{aligned} & 0 \\ & \text { in } \\ & \text { ri } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1	1	$$	1	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \end{aligned}\right.$	1	1	1	1	t	1
σ	∞ \cdots -1 1 -1	1	1		1	1	1	1	'			1			-	t	1	1	1	1 :	1	1	-	1	1	1	1	:
∞	$\begin{aligned} & 0 \\ & \underset{1}{1} \\ & \frac{1}{-1} \end{aligned}$	$\left\|\begin{array}{c} N \\ \dot{0} \\ 0 \end{array}\right\|$	$\begin{gathered} n \\ i \\ -i \end{gathered}$	$\begin{aligned} & 8 \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\left\lvert\, \begin{gathered} -1 \\ -1 \\ \infty \\ \infty \end{gathered}\right.$		$\begin{gathered} \mathrm{m} \\ \underset{\sim}{c} \\ \text { ci } \end{gathered}$	$\begin{gathered} \mathrm{O} \\ \mathrm{C} \end{gathered}$	0	in	\cdots	$\begin{gathered} \infty \\ 9 \\ y \end{gathered}$	$\underset{\sim}{\boldsymbol{m}}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{gathered} 0 \\ \stackrel{1}{c} \\ \text { cu } \end{gathered}$	$\begin{aligned} & -1 \\ & 0 \end{aligned}$	1	1	$\begin{aligned} & \text { ले } \\ & \text { on } \\ & 0 \end{aligned}$	1	$\stackrel{+}{0}$	1	1	1	1	1	,
H	- ¢ त1	$\begin{aligned} & m \\ & \dot{m} \\ & \dot{\alpha} \end{aligned}$	- $\begin{gathered}9 \\ - \\ i\end{gathered}$		$\left.\begin{gathered} m \\ - \\ -i \\ \sigma \end{gathered} \right\rvert\,$	$\begin{aligned} & \text { 응 } \\ & \text { in } \end{aligned}$	$\begin{gathered} o \\ \sim \\ \sim \\ \text { n } \end{gathered}$	$\begin{gathered} \mathrm{m} \\ \mathrm{~N} \\ \mathrm{H} \end{gathered}$	$\begin{aligned} & n \\ & 1 \\ & 0 \\ & 0 \end{aligned}$			$\underset{\sim}{\mathrm{H}}$			1	$\left\|\begin{array}{l} 0 \\ 0 \\ i \\ i \end{array}\right\|$	$\begin{gathered} \frac{a}{6} \\ 0 \\ 0 \end{gathered}$	-	1	$\begin{array}{ll} \text { 방 } \\ 0 & 0 \\ 0 & -1 \end{array}$	1	$\begin{gathered} 3 \\ n \end{gathered}$,	1	1	1	t	1
\bigcirc	4 -1	1	1		,	,	1	1.	1			,			1	1	1.	1	1	1 '	1	1	;	1	1	1	t	1
in	O-1	$\begin{aligned} & v \\ & \text { ni } \end{aligned}$	$\left[\begin{array}{c} \infty \\ -\underset{\sim}{-1} \end{array}\right.$	$\left\|\begin{array}{c} \overrightarrow{0} \\ 0 \\ 0 \\ c \end{array}\right\|$	$\begin{aligned} & \circ \\ & 0 \\ & \text { m } \end{aligned}$	$\left.\begin{array}{\|c} \infty \\ 0 \\ 0 \\ \text { s } \end{array} \right\rvert\,$	$\begin{gathered} 5 \\ 0 \\ 0 \end{gathered}$	$$	$\begin{aligned} & c \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 7 \end{aligned}$		\xrightarrow{N}	$\underset{\sim}{\sim}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & c \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ 0 \end{gathered}$.	1	$\begin{array}{c\|c\|} \substack{\approx \\ \infty \\ 0 \\ 0 \\ 0 \\ -1 \\ 0} \end{array}$,	\pm	1	1	1	1	1	1
\pm	$\begin{gathered} 0 \\ 10 \end{gathered}$	$\begin{aligned} & \sigma \\ & \dot{8} \end{aligned}$	$\left\|\begin{array}{c} -7 \\ -i \\ -i \end{array}\right\|$		$\begin{gathered} \infty \\ -1 \\ -1 \\ -1 \\ 0 \\ -1 \end{gathered}$	$\left\|\begin{array}{c} \infty \\ \infty \\ \infty \\ \infty \\ 0 \end{array}\right\|$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{gathered} \infty \\ m \\ n \end{gathered}$	$\begin{aligned} & N \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\left\lvert\, \begin{gathered} \infty \\ \underset{-1}{ } \end{gathered}\right.$			-	c $\begin{gathered}8 \\ \text { in }\end{gathered}$	M		-		1	i	1	1	1	1	i	1
m	$\xrightarrow{1}$	1	1		1	1	1	1	1			1			1	1	1	,	1	1 1	1	1	1	1	1	1	1	1
N	$\begin{gathered} \stackrel{\rightharpoonup}{1} \\ \stackrel{y}{c} \end{gathered}$	$\begin{gathered} \infty \\ 0 \\ \infty \end{gathered}$	$\sqrt{-\ddagger}$		$\begin{aligned} & - \\ & m \\ & 0 \\ & 0 \\ & -1 \end{aligned}$	$\left\lvert\, \begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \\ & m \end{aligned}\right.$		$\begin{aligned} & 3 \\ & 4 \\ & 5 \end{aligned}$		-	-	\%	H	$\begin{array}{r} -1 \\ 0 \\ 0 \end{array}$,	-	con	:	1	$\begin{array}{c\|c} \overrightarrow{-} & \infty \\ \stackrel{0}{0} & 0 \\ 0 \end{array}$,	N-	,	1	1	1	1	1
H	1 0	-	$\begin{aligned} & 4 \\ & \hline \end{aligned}$		$\begin{gathered} \underset{\sim}{n} \\ \underset{\sim}{n} \\ \underset{\sim}{n} \end{gathered}$	$\left\lvert\, \begin{gathered} n \\ 0 \\ 0 \\ m \end{gathered}\right.$		$\left[\begin{array}{l} -土 \\ \infty \\ - \end{array}\right.$	$5 \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			8			1	$$	7 0	,	1		1	$\stackrel{+}{0}$	1	1	1	1	1	1
		$\left\{\begin{array}{l} \infty \\ - \\ 0 \\ 0 \end{array}\right.$								$\stackrel{1}{2}$	PLASTIC LIMIT					SLUMP, \%			$\begin{aligned} & 2 \\ & r \\ & 2 \\ & 2 \\ & n \\ & 2 \\ & w \\ & w \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & w \\ & 0 \end{aligned}$					\square	E E N N V Z 0 0 1 1 0 0 0 0 2 4 0		$\text { CLAY, } \%<2 \mu$	

1	1
0	1
0	1
0	1
0	-1
0	1

 \square

 - $77 T \mathrm{TS}-\kappa$ ESBTD

AREA A CORE 33
CRUISE: 1958. SOMIG DEPTH UNGORRECTED: 580 fms . CORER: 400 ib . Gravity Kullenberg
APPROX. GORER PENETRATION: 60 im . CORE: 38 in . LONG, DIAM. 1.875 in .

SAMPLE NUMBER		1.	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
DISTANCE FROM TOP OF CORE, in		0-2	2-4	4-6	6-8	8-10	10-12	12-14	14-16	16-18	18-20	20-22	22-24	24-26	26-28	28-30	30-32	32-34	34-36
WET UNIT WEIGHT	16 ¢ t^{-3}	85.7	86.8	-	88.1	89.2	-	90.5	90.5	-	90.9	90.2	-	91.2	92.0	-	93.4	93.9	-
	$9 \mathrm{~cm}-3$	1.37	1.39	-	1.42	1.43	-	1.45	1.45	-	1.44	1.44	-	1.40	2.47	-	1.50	1.50	-
SPECIFIC GRAVITY OF SOLIOS		2.808	2.309	-	2.788	2.788	-	2.789	2.809	-	2.791	2.798	-	2.800	2.774	-	2.790	2.816	\cdots
WATER CONTENT, \% DRY WEIGHT		$\underline{125.07}$	12054	-	104.99	108.12	-	98.46	99.43	-	101.44	100.93	-	96.41	92.95	-	89.55	86.87	-
VOID RATIO DETERMINED IN LAB. AT 100% SATURATION		3.806	3.454	-	3.012	3.065	-	2.817	2.861	-	2.898	2.889	-	2.763	2.630	-	2.533	2.497	-
		3.793	3.386	-	2.924	3.016	-	2.746	2.793	-	2.831	2.824	-	2.699	2.578	-	2.498	2.446	-
POROSITY, \%		72.2	77.5	-	75.1	75.4	-	73.8	74.1	-	74.3	74.3	-	73.4	72.5	-	71.7	71.4	-
SATUAATION, \%		99.6	93.0	-	97.7	98.4	-	97.5	97.6	-	97.7	97.8	-	97.7	93.0	-	98.6	98.0	-
LIOUIO LIMIT			34			79			76			83			81			77	
PLASTIC LIMIT			30			30			30			31			30			30	
LIQUIDITY INOEX\%		194	168	-	153	159	-	149	151.	-	135	134	-	130	123.	-	127	121	-
PLASTICITY INDEX			54			49			46			52			51			47	
COMPRESSION INDEX	FROM LL		0.66			0.62			0.59			0.66			0.64			0.60	
	FROM e-log P	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SLUMP, \%		2.05	0.67	$=$	0	0	-	0	0.10	-	0	0.10	\checkmark	0.10	0	-	0.21	0.50	-
COMPRESSIVE STRENGTH	STURAED" PSI	0.21	0.26	-	0.34	0.38	-	0.44	0.58	-	0.65	0.61	-	0.78	0.75	-	0.82	0.83	-
	OLDED, PSI	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
REMOLDING SENSITIVITY		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
COHESION ${ }^{\text {PSI }}$		0.21	0.13	-	0.17	0.19	-	0.22	0.29	-	0.38	0.31	-	0.39	0.38	-	0.41	0.42	-
		7.7	9.1	-	12.0	13.4	-	15.5	20.4	-	26.7	21.8	\sim	27.4	26.7	-	28.8	29.5	-
ACTIVITY			1.02			0.89			0.90			0.98			1.00			0.92	
MODULUS OF ELASTICITY, PSI		2.4	3.9	-	5.0	5.0	-	9.7	22.3	-	8.0	15.3	-	24.2	10.0	-	18.1	14.4	
GRAIN MEDIAN DIA.	phí		2.2			9.3			2.1			9.3			9.1			9.2	
	microns		1.7			2.6			1.9			1.6			1.9			1.9	
SAND, $\%>60 \mu<2 \mathrm{~mm}$			2			2			3			4			5			5	
SILT, $\%>2 \mu<60 \mu$			45			43			45			43			44			4	
			53			55			51			53			51			51	
CLAY, \%<2		Silte	Clay		Silty	Clay		3 3ilty	Cley		Silty	Clay		Silty	Clay		Silty	Clay	

AREA B CORE 83

SAMPLE NUMBER	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
DISTANCE FROM TOP OF CORE, in	0-2	2-4	4-6	6-8	8-10	10-12	12-14	14-16	16-18	18-20	20-22	22-24	24-26	26-28	28-30	30-32	32-34	34-36
WET UNIT WEIGHT ghft^{-3}	93.7	95.9	-	99:0	100.8	104.3	102.4	102.1	-	103.5	104.5	-	105.7	104.7	-	105.4	-	107.6
	1.50	1.54	-	1.59	1.61	1.63	1.64	1.64	-	2.66	1.67	-	1.69	1.68	-	1.69	-	1.72
SPECIFIC GRAVITY OF SOLIDS	2.798	2.807	-	2,815	2.800	2.806	2.792	2.822	-	2.807	2.805	-	2.800	2.804	-	2.784	-	2.794
WATER GONTENT, \% DRY WEIGHT	84.13	80.03	-	69.94	66.11	59.64	60.46	62.32	-	57.74	55.73	-	53.90	54.52	-	52.94	-	52.36
DETERMINED IN LAB.	2.425	2.289	-	2.012	1.882	-	1.732	1.801	-	1.667	1.611	-	1.545	1.584	-	1.519	-	1.680
VOIO RATIO ${ }^{\text {a }}$ AT 100% SATURATION	2.354	2.246	-	1.969	1.851	1.673	1.688	1.759	-	1.621	1.563	-	1.509	1.529	-	1.474	-	1.463
POROSITY, \%	70.8	69.6	-	66.8	65.3	62.7	63.4	64.3	-	62.5	61.7	-	60.7	67.3	-	60.3	-	59.5
SATURATION, \%	97. 1	98.1	-	97.9	98.4	92.6	97.5	97.6	-	97.2	97.0	-	97.7	96.5	-	97.0	-	99.6
LIQUID LIMIT	58	57	-	57	53	-	53	57	-	54	53	\bullet	-	54	53	54	51	52
PLASTIC LIMIT	35	34	-	31	31	-	28	29	-	30	30	-	30	29	30	31	29	28
LIQUIDITY INDEX,	213	200	-	146	159	-	128	128	-	117	113	-	96	104	-	96	-	100
PLASTICITY INDEX	23	23	-	26	22	-	25	28	-	24	23	-	-	25	23	23	22	24
COMPRESSION INDEX	0.43	0.42	-	0.42	0.39	-	0.32	0.42	-	0.40	0.39	-	-	0.40	0.39	0.40	0.37	0.38
	2. 3	0.	-	-	-	0.35	. 22	-	-	-	-	-		-	-	-	-	-
SLUMP, \%	6.21	3.87	-	1.64	-	-	1.04	0.99	-	0.84	0.84	-	0	0	-	- -	-	0
"UNDISTUREED" PSi	0.68	0.65	-	1.08	1.15	-	2.12	1.67	-	2.65	2.35	-	3.70	6.65	Vertic	al crac	in	2.95
STRENGTH REMOLDED, PSI	-	-	-	-	-	-	-	-	-	-	-	-	-	-	sample	-	-	-
REMOLDING SENSITIVITY	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	
COHESION PSi $9 \mathrm{~cm}-2$	0.34	0.33	-	0.54	0.59	-	1.06	0.84	-	1.33	1.18	-	1.85	3.33	Vertic	al crac	in	7.48
	23.9	23.2	-	37.9	41.5	-	74.5	59.0	-	93.5	83.0	-	130.0	234.1	sample	-		104.0
ACTIVITY		0.49			0.48			0.65			0.50			0.51			0.45	
MODULUS OF ELASTICITY, PSI	4.4	5.4	-	9.1	11.2	-	21.2	22.4	-	27.5	46.6	-	80.0	104.7	Vertic	el crac	k in	37.2
GRAIN MEDIAN DIA.		8.8			8.6			8.3			8.6			8.8	sample		8.9	
		2.3			2.5			3.2			2.5			2.3			2.1	
SAND, $\%>60 \mu<2 \mathrm{~mm}$		8			7.			4			4			14			11	
SILT, \% $\% 2 \mu<60 \mu$		45			47			53			50			37			40	
CLAY, \% < 2μ,		47			46			43			46			49			C78y	
	Silt	Clay		CLay	y Silt		Cley	y Silt		Clay	dy Silt		Silty	clay		Silt	Clay	

SAMPLE NUMPER		1	2	3	4	5	6	T	8	9	1.	11	12	13	14	15
DISTANCE FROM	OP OF CORE, in	0-2	2-4	4-6	$6-8$	8-10	10-12	22-14	14-16	16-18	18-20	20-22	22-24	24-26	26-28	28-30
WET UNIT IVE:GHT	$1 \mathrm{~b}+t^{-3}$	90.6	93.0	-	94.6	94.5	-	97.5	100.6	-	102.9	203.3	-	106.0	104.8	-
	$9 \mathrm{~cm}-3$	1.45	1.49	-	1.51	1.52	-	1.56	1.51	-	1.65	1.65	-	1.70	1.68	-
SPECIFIC GRAVITY OF SOLIDS		2.796	2.791	-	2.785	2.773	-	2.794	2.757	-	2.774	2.771	\rightarrow	2.772	2.781	-
WATER CONTENT, \% OPY WEIGHT		95.03	84.39	-	32.36	83.12	-	73.46	63.56	-	58.46	57.20	-	51.97	51.32	-
VOID RATIO	MINED IN LAB.	2.759	2.448	-	2.356	2.344	-	2.206	1.786	-	1.667	1.632	-	1.481	1.494	-
	\% SATURATION	2.657	2.355	-	2.299	2. 305	-	2.053	1.752	-	1.622	1.585	-	1.441	1.427	-
FOROSITY, \%		73.4	71.0	-	70.2	70.1	-	67.3	64.1	-	62.5	62.01	-	59.7	59.9	-
SATURATION, \%		96.3	96.2	-	97.6	98.3	-	97.5	98.1	-	97.3	97.1	-	97.3	95.5	-
LIGUID LIMIT			69			64			55			52			52	
PLASTIE LIMIT			23			26			26			25			25	
LIQUIDITY INOEX, \%		163	137	-	149	150	-	104	1291	-	124	119	-	100	97	-
PLASTICITY INDEX			41			38			29			27			26	
COMPRESSION INDEX	FROM LL		0.53			0.49			0.41			0.37			2.37	
	FROM e-log P	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SLUMP, \%		0	0.22	$=$	2.55	3	\sim	2	3	-	-	0	-	3	0	-
$\begin{aligned} & \text { COMPRESSIVE } \\ & \text { STRENGTH } \end{aligned}$	STURBED", PSi	0.57	0.53	-	0.53	0.66	-	1.37	2.000	-	2.19	2.32	-	2.85	2.55	-
	OLDED, PSI	-	-	-	-	-	-	-	0.71	-	-	-	-	-	0.37	-
FEMOLDING SENSITIVITY		-	-	-	-	-	-	-	2.2	-	-	-	-	-	2.9	-
C=HESION		5.29	2.27	-	0.32	2.33	-	0.59	0.301	-	1.20	2.15	-	2.43	1.26	-
		20.4	12	-	22.5	23.2	-	4.5	56.3	-	34.4	31.6	-	100.5	80.0	-
ACTIVITY			2.32			0.32			0.65			0.53			0.62	
MODULUS OF ELASTICITY, PSI		14.9	14.0	-	5.3	21.8	-	19.7	26.4	-	31.3	35.0	-	34.9	28.6	\cdots
GRAIN MEDIAN DIA.	phi		9.0			6.7			8.4			3.1			3.0	
	microns		2.0			2.4			2.9			3.5			3.8	
SAND, \% $\% 60 \mu<2 \mathrm{~mm}$			2			4			3			4			2	
SILT, $\%>2 \mu<60 \mu$			48			50			51			53			56	
CLAY, $\%<2 \mu$			50			46			46			43			42	
SEDIMENT TYPE		Clay	y Silt		Cla	ey Sili		C1ay	ey Silf		C1a	ey Silt		Clays	y Silt	

AREA B CORE 87

CRUISE: 1958. SONIC DEPTH, UNCORRECTED. 620 fms . CORER: 450 ib . Gravity KUllenberg APPROX. CORER PENETRATION: 72 iN. CORE: 32 in. LONG, DIAM. 1.875 in .

 | 24 | 103.5 |
| :--- | :--- | 11

\qquad .1 .1 .1.

1	1
\vdots	
1	0

 1
MM

6	7	8

- तु
$\begin{array}{cc}0 & \\ 0 & 0 \\ 0 & 0 \\ -i & 0 \\ 0 & -1 \\ 0\end{array}$
ज1 $\sim 1 \infty$
0.28
1 C
0
0
0

1					
m					
mis					
0				0	
:---:	:---:	:---:			
0	1	1			
-1	0		3 ∞		

∞
0

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
-1 \\
\hline-1 \\
-1
\end{tabular} \& 7

-

-1 \& I
in

\hline 1 \& 1 \& ,

\hline
\end{tabular}

1.0
1
1
1

± 0	
0	
0	0

0
0
-1 10

$\stackrel{1}{-1}$ त्व 49 | |
| :--- |
| |
| 0 |

 , 1 1.1. 1. 1 1

$$
\begin{array}{|l|l|l}
\hline \pi \tau & \varepsilon \tau & ट ा \\
\hline
\end{array}
$$

AREA C CORE 19
Piston Kullenberg

$\xrightarrow[H]{H}$	$$	1	1	11	1	1	1	1	1	O	-	1	\cdots	$\left.\begin{gathered} m \\ m \\ 0 \end{gathered} \right\rvert\,$	1	
m	$\begin{aligned} & \text { Cy } \\ & 1 \\ & \text { त̃ } \end{aligned}$	$\begin{gathered} 0 \\ \text { un } \\ 0 \\ H \end{gathered}$	∞	$\begin{gathered} 0 \\ \infty \\ \infty \\ \stackrel{1}{0} \end{gathered}$	$\begin{gathered} \underset{y}{x} \\ m \\ \dot{N} \end{gathered}$	$\begin{aligned} & N \\ & N \\ & n \\ & i \end{aligned}$	$\begin{gathered} u n \\ 0 \\ -1 \\ n \\ -1 \end{gathered}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$				∞			1	
Y	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	1	1	1	1	1	1	1	1			1			t	

1	1	1	1	1	1	0	1	$m m$	${ }^{-1}$	H	ल	+ +1 $0-1$ 0
\bigcirc		$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{N}{\mathbf{N}}$		$\begin{aligned} & H \\ & m \\ & n \end{aligned}$		$\stackrel{m}{m}$					c

ç/

111

\section*{:

:
 $$
\begin{array}{ll} * \\ 2 & 0 \end{array}
$$

i

AREA C CORE 20

GRUISE: \quad 1958, SONIC DEPTH, UNCORRECTED; 880 fms. CORERs 350 lb . Piston APPROX. CORER PENETRATION: 48 IN. CORE: 22 in. LONG, DIAM. 1.875 in.

SAMPLE NUMEER				1.	2	3	4	5	6	- 7	8	9
DISTANGE FROM TOP OF CORE, in				0-2	2-4	4-6	6×8	8-10	10-12	12-14	14-16	16-18
WET UNIT WEIGHT			t^{-3}	80.2	81.0	-	84.6	87.5	-	99.7	95.0	\cdots
			-3	1.28	1.30	-	1.35	1.40	-	1.60	1.52	-
SPECIFIC GRAVITY OF SOLIDS				2.786	2.815	-	2.831	2.813	-	2.76	2.846	-
WATER CONTENT, \% DRY WEIGHT				173.57	171.93	-	142.02	118.87	-	78.70	88.97	-
VOID RATIO	DETERMINED IN LAB.			4.917	4.882	-	4.051	3.386	-	-	2.532	-
	AT 100\% SATURATION			4.836	4.840	-	4.021	3.344	-	2.178	2.532	-
POROSITY, \%				83.1	83.0	-	80.2	77.2	\cdots	68.5	71.7	\cdots
SATURATION, \%				98.3	99.1	-	99.2	98.7	-	100	100	-
LIQUIO LIMIT					89			68			54	
PLASTIC LIMIT					36			29			25	
LIQUIDITY INDEX \%				260	256	-	290	230	-	185	221	-
PLASTICITY INDEX					53			39			29	
COMPRESSION INDEX		FRO	OM LL		0.71			0.52			0.49	
		FR	OM e-log P	-	-	-	-	-	-	0,60	-	-
SLUMP, \%				-	2.07	-	1.29	-	-	-	1.79	-
COMPRESSIVE STRENGTH	"UNDISTUREED"; PSi			-	0.31	-	0.79	0.79	-	-	0.73	\cdots
				-	-	-	-	0.26	-	-	-	-
REMOLDING SENSITIVITY				-	-	-	-	3.0	-	-	-	-
COHESION P	PSI			-	0.16	-	0.40	0.40	-	-	0.37	-
	9cm-2			-	11.2	-	28.1	28.1	-	-	26.0	-
ACTIVITY					1.51			1.39			1.07.	
MODULUS OF ELASTICIT Y, PSI				-		-	-	I	-	-	4.5	-
GRAIN MEDIAN DIA.			phi		7.7			4.4			6.2	
			microns		4.9			11.4			13.6	
SAND, $\%>60 \mu<2 \mathrm{~mm}$					13			17			7	
SILT, \% > $2 \mu<80 \mu$					52			55			66	
CLAY, \% $<2 \mu$					35			28			27	
SEDIMENT TYPE				Clayer	Sild		Clasey Silt			Cleyey Silt		
				-	-	-		20.		-.	-	-
				-	-	-		10		-	-	-
				- -	-	-		50		-	-	-
				-	-	-		10		-	-	-
				-	-	-		10		-	-	-
				1								

AREA D CORE lg

CRUISE: 1958 . SONIC DEPTH. UNGORRECTED: 680 fms. CORER: 80 lb. APPROX. CORER PENETRATION: 30 IN. CORE: 18 in, LONG, DIAM. 1.37 in

SAMPLE NUMEER		1	2	3	4	5	6	7	8
OISTANCE FROM TOP OF OORE, in		0-2	2-4	4-6	6-8	8-10	10-12	12-14	14-16
WET UNIT WEIGHT	If ft^{-3}	90.7	93.0	94.2	94, 7	96,2	95.6	96.0	-
	gcm^{-3}	1.45	1.49	1.51	2.51	1.54	1.53	1.54	-
SPECIFIC GRAVITY OF SOLIDS		2.854	2.841	2.842	2.835	2.845	2.818	2.825	-
WATER CONTENT, \% DPY WEIGHT		107.77	92.99	-89.49	88.55	81.40	83.45	82.90	-
VOID RATIO	RMINEO IN LAB.	3.083	2.663	2.568	2.546	2.350	2.376	2.361	-
	$\%$ SATURATION	3.076	2,641	2.543	2.510	2.316	2. 352	2. 342	-
POROSITY, \%		75.5	72.7	72.0	71.9	70.1	70.4	70.4	-
SATURATION \%		99,8	99.2	99.0	98.6	98.9	99.0	59.2	- -
LIQUID LIMIT		35.	8	38	7	36.	5	38	2
PLASTIC LIMIT		32.	0	37	1	32.	7	33	2
LIQUIDITY INDEX \%		1994	1605	3274	3216	1281	1335	994	-
PLASTIGITY INDEX		3.	8		6	3.	8		. 0
COMPRESSION INDEX	FROM LL	0.	23	0	26	0	24		. 25
	FROM e-logr	-	-	-	-	-	-	-	-
SLUMP, \%		1.28	0	0.49	0.74	0.29	0	0.74	-
$\begin{aligned} & \text { COMPRESSIVE } \\ & \text { STRENGTH } \end{aligned}$	STUREED", PSI	1.58	3.22	2.78	4,49	4.93	4.31	5.92	-
	OLOED, PSI	-	-	-	-	-	-		-
REMOLOING SENSITIVITY		-	-	-	-	-	1-	-	-
COHESION PSI gcm		0.79	1.61	1.39	2.25	2.47	2.16	2.96	$=$
		55.5	$\underline{213.2}$	97.7	158.2	173.6	151.9	208.1	-
ACTIVITY			15	0	06		. 14	0	17
MODULUS OF ELASTICITY, PSI		16.9	42.2	28.2	48.7	43.7	36.6	65.9	-
GRAIN MEDIAN DIA.	phi	5.		5	5	5.	5	5	6
	microns	23.4		22	2	22.	1	20	6
SAND, $\%>60 \mu<2 \mathrm{~mm}$				15			6		
SILT, $\%>2 \mu<60 \mu$			3				6		4
CLAY, \% < 2μ		2	$\underline{1}$	2			8	2	9
SEDIMENT TYPE		Send-6	1.1t-cla	Clayd	$y-s i l t$	Claye	V-silt	Clayet	-silt

AREA D CORE ${ }^{2}$

CRUISE: 1958. SONIC DEPTH, UNCORRECTEDI 1100 fms. CORER: 80 lb. Gravity Phleger
APPROX. CORER PENETRATION: 36 in. CORE: 12 in . LONG, DIAM. 1.37 in .

SAMPLE NUMBER		1	2	3	4	5			
distance from tor of oore, in		0-2	2-4	4-6	6-8	8-9			
WET UNIT WEIGHT	$16+t^{-3}$	93.2	98.1	99.0	95.8	-			
	gcm^{-3}	1.49	2.57	1.59	1.53	-			
SPECIFIC GRAVITY OF SOLIOS		2.801	2.809	2.818	2.797	-			
WATER CONTENT, \% DRY WEIGMT		91.13	76.59	71.23	77.66	-			
VOIO RATIO De	DETERMINEO IN LAB.	2.587	2.157	2.042	2.240	-			
	\% SATURATION	2.553	2.151	2.007	2.172	-			
POROSITY, \%		72.1	68.3	67.1	69.1	-			
SATURATION, \%		28.7	99.7	98.3	97.0	-			
LIQUIO LIMIT		51	14		44.9				
PLASTIC LIMIT		40	4		38.6				
LIQUIDITY INDEX, \%		1268	905	513	620	-			
PLASTIGITY INDEX		11	0		6.3				
COMPRESSION INDEX	FROM LL	0	37		0.3				
	FROM e-loge	-	-	-	-	-			
SLUMP, \%		2.75	0.20	0	0	-			
COMPRESSIVE "U STRENGTH R	"UNDISTUREER", PSI REMOLDED, PSi	0.88	2.75	3.29	3.37	-			
		\because	-	-		-			
REMOLDING SENSITIVITY		-	-	-	-	-			
COHESION ${ }^{\text {PSI }} \mathrm{Pa}$		0.44	1.38	1.65	1.69	-			
		30.9	97.0	116.0	118.8	-			
activity		0	11		0.29				
MODULUS OF ELASTICITY, PSi		7.6	22.9	33.3	56.2	-			
GRAIN MEDIAN OIA.	phi	5	9		5.5				
	microns	1	5		22.1				
SAND, $\%>60 \mu<2 \mathrm{~mm}$		2	3		33				
SILT, \% > 2 只 $<60 \mu$		4	2		45				
CLAY, \% < 2μ			5		22				
SEDIMENT TYPE		Sand	-Silt	- Clay					

AREA D GORE IH
1959. SONIC DEPTM, UNCORRECTED, 1400 fms . CORER: 1200 Ib . Piston Ewing
APPAOX. COREH FENETRATION: 240 iN. CORE: 201 in. LONG, DIAN. 2.2 in.

CRUISE:																							
SAMPLE NUMEER		2	2	3	4	5.	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
DISTANCE FROM TOP OF CORE, in		$\begin{aligned} & 0 . \\ & 4.5 \end{aligned}$	$\begin{aligned} & 4.5- \\ & 9 \end{aligned}$	$\begin{aligned} & 9- \\ & 13.5 \end{aligned}$	$\begin{gathered} 15.5 \\ 20 \\ \hline \end{gathered}$	$\begin{array}{r} 20.0 \\ 24.5 \end{array}$	$\begin{aligned} & 24.5- \\ & 29 \end{aligned}$	$31 .$	$\begin{aligned} & 35.5- \\ & 40 \end{aligned}$	$\begin{aligned} & 40 . \\ & 44.5 \end{aligned}$	$\begin{aligned} & 46.5 \\ & 51 \end{aligned}$	$\begin{aligned} & 51- \\ & 55.5 \end{aligned}$	$\begin{aligned} & 55.5- \\ & 60 \end{aligned}$	$62 .$	$\begin{aligned} & 66.5-1 \\ & 71 \end{aligned}$	$\begin{aligned} & 75.5- \\ & 77.5 \end{aligned}$	$\begin{aligned} & 102 . \overline{106.5} \\ & \hline \end{aligned}$	$\begin{aligned} & 106.5- \\ & 108.5 \end{aligned}$	$\begin{array}{ll} 133 \\ 137.5 \end{array}$	$\begin{aligned} & 137.5= \\ & 139.5 \end{aligned}$	$\begin{aligned} & 168.5- \\ & 170.5 \end{aligned}$	$\begin{aligned} & 170.5 \\ & 175 \end{aligned}$	$195.5-$
WET UNIT WEIGHT	$16 . \mathrm{t}^{-3}$	4.5	94.3	94.5	94.6	24.3	94.4	94.1	94.1	94.7	94.1	94.1	94.21	94.2	94.1	94.4	94.6	94.3	-94.8	94.7	94.9	94.2	94.8
	gcm^{-3}	-	1.51.	1.51	1.52	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	2.51	1.51	2.51	1.52	1.51	1.52	1.52	1.52	1.51	2.52
SPECIFIC GRAVITY OF SOLIOS		-	2.756	2.766	2.779.	2.759	2.769	2.758	2.770	2.758	2.758	2.766	2.768	2.757	2.757	2.747	2.755	2.741	2.759	2.756	2.759	2.755	2.755
WATER CONTENT, \% ORY WEIGHT		-	87.01	88.68	87.89	89.87	89.83	90.95	89.20	91.00	89.67	89.68	89.73	88.18	88.35	89.67	86.21	89.92	85.63	87.46	87.98	86.60	87.23
VOIO RATIO ${ }^{\text {DETEREMINED IN LAB. }}$ AT IOO\% SATURATION		-	2.411	2.446	2. 446	2.469	2.475	2.494	2.476	2.495	2.472	2.484	2.484	2.436	2.448	-	2.384	-	2.373	-	-	2.406	-
		-	2.398	2.453	2.442	2.480	2.487	2.508	2.471	2.510	2.473	2.481	2.488	2.431	2.436	2. 462	2.375	2.464	2. 364	2.410	2.427	2.386	2. 402
POROSITY, \%		-	70.7	71.0	7.0	71.2	71.2	71.4	71.2	71.4	71.2	71.3	71.3	70.9	71.0	71.2	70.4	71.2	70.4	70.7	70.8	70.6	70,6
SATURATIO $\%$ \%		-	89.5	$100+$	99.9	$100+$	100+	$100+$	99.8	100+	100	99.9	100	99.8	99.5	100	99.6	100	99.6	100	100	99.2	100
LIQUIO LIMIT		-	$-$	-	103	89	77	94	105	106	104	109	109	106	104	-	98	-	103	-	-	206	-
PLASTIC LIMIT		-	-	-	27	30	27	29	29	28	29	30	28	32	26	-	29	-	29	*	-	26	-
LIOUIDITY INDEX, \%		-	-	-	80	102	126	95	79	81	81	76	76	76	80	-	33	-	7	-	-	76	-
PLASTIGITY INOEX		-	-	-	76	59	50	65	76	78	75	79	81	74	78	-	69	-	74	-	-	80	-
COMPRESSION INOEX	FROM LL	-	-	$-$	0.65	0.56	0.49	0.59	0.66	0.67	0.66	0.69	0.69	0.67	0.66	$1-$	0.62	-	0.65	-	-	0.67	-
	FROM e-log P	-	$-$	-	0.65	,	,	-	-	-	-	-	-	-	-	0.75	-	0.65	-	0.62	0.59	\cdots	0.62
SLUMP,\%		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
COMPRESSIVE STRENGTH	STUREED", PSI	-	2.2	2.8	3.0	2.6	2.6	2.5	2.5	2.4	2.4	2.6	2.5	2.5	2.4	-	2.5	-	2.8	-	-	2.3	-
	OLDED, PSİ	-	1.0	-	-	-	-	-	0.9	-	-	-	-	-	1.1	-	-	-	-	-	-	-	-
REMOLDING SENSITIVITY		-	2.2	-	-	-	-	-	2.8	-	-	\cdots	-	-	2.2	-	-	-	-	-	-	-	-
COHESION PSt 9 cm		-	1.1	1.4	1.5	1.3	1.3	1.3	1.3	1.2	1.2	1.3	1.3	1.3	1.2	-	1.3	-	1.4	-	-	1.2	-
		-	77.3	98.4	105.5	91.4	91.4	91.4	91.4	84.4	84.4	21.4	91.4	91.4	84.4	\rightarrow	91.4	-	98.4	-	-	84.4	-
Activity		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	$-$	-	-	-	-	-	-
MODULUS OF ELASTICITY, PSi		-	37.4	58.1	58.4	67.2	66.3	49.2	48.1	47.5	45.7	46.2	46.8	49.1	42.5	-	40.2	-	38.1	-	-	44.4	-
GRAIN MEDIAN DIA.	phi	-	-	-	-	-	-	-	-	-	-	-	8.0	-	-	-	-	-	-	-	\cdots	-	-
	microns	-	-	-	-	-	-	-	-	-	-	-	4	-	-	-	-	-	-	-	\square	-	-
SAND, \% $\% 80 \mu<2 \mathrm{~mm}$		-	-	-	-	-	-	-	-	-	-	-	2	-	-	-	-	-	-	-	-	-	-
SILT, \% $\% 2 \mu<60 \mu$		-	-	-	-	-	-	-	-	-	\cdots	\cdots	78	-	-	-	-	-	-	-	-	-	-
CLAY, \% < 2μ		-	-	-	-	-	-	-	-	-	-	-	20	- -	-	-	$-$	-	-	-	-	-	\cdots
		-	-	-	-	-	-	-	-	\bullet	-	-	clayes	-	-	-	-	-	-	-	-	-	-

ब \qquad

1. -1

-

AREAE CORE 46
CRUISE: $\quad 1959$. SOMIC DEPTM, UNCORRECTED: 1100 fms . CORER: 300 lb . GFavity KuLlenberg APPAOX. COREA PENETAATION: 72 IN. CORE: 56 in. LONG, DIAM. 1.875 in

 $\underset{\sim}{2}$? .1 $\begin{array}{|cc|}1 . & 1 \\ \mid-20 m m a n\end{array}$
 ?
3
2
2

\qquad

CRUISE: $\quad 1959$. SONIC DEPTM, UNCOARECIED: 1100 imis. CORER: 260 Ib. Oravity Kullenbers
DISTANCE FROM TOP OF CORE, In

LIOUDITY INDEX $\%_{0}$	194	163	156	152	127	120	96
PASTIGITY INOEX				43			

$\stackrel{\otimes}{-1}$	
,	
,	

[^9]\qquad Shear
gtrength remolded, pol
Vone sensitivity
AREA E CORE 48
CRUISE： 1959 ．SONIC DEPTH，UNCORRECTED： 1200 fms．CORER： 260 tb Gravity Kullenberg
APPROX．CORER PENETRATION： $72 \mathrm{iN}$. CORE： 43 in ．LONG，DIAM． 1.875 in ．

읏	$\begin{aligned} & \text { of } \\ & \text { pon } \end{aligned}$	$\begin{array}{\|c\|c\|} \hline 0 & न- \\ 8 \\ 0 & -1 \\ -1 \end{array}$						年				，m \cdots -1. 1		10		\cdots				
9	$\begin{aligned} & \infty \\ & 1 \\ & 1 \\ & 0 \\ & \hline \end{aligned}$	$$			\＃－			$\xrightarrow{7}$		，	11	，	，	． 1		＇				
\cdots	$\begin{aligned} & 0 \\ & \substack{1 \\ \mathbf{j}} \end{aligned}$	－						O		，	， 1	$\left[\left.\begin{array}{c} c \\ \vec{y} \\ i \end{array} \right\rvert\,\right.$		त－		81				
\cdots	$\begin{gathered} \stackrel{\rightharpoonup}{\underset{~}{N}} \\ \stackrel{\sim}{\mathbf{N}} \end{gathered}$		$\begin{aligned} & \vec{A} 8 \\ & \text { in } \\ & \text { in } \end{aligned}$				Mo	O	－1－	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		＇ 1	，1	11	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	，${ }_{0}^{\infty}$	0	\bigcirc	4	\％
9	$\begin{gathered} \text { v } \\ \stackrel{\circ}{m} \end{gathered}$	$\begin{array}{\|c\|c\|} \hline n & \\ 0 \\ 0 & -1 \\ -1 & -1 \\ \hline \end{array}$						न्ल̈		，		－		1080		\cdots				＋
\sim	io		$\begin{aligned} & A+ \\ & \text { à } \\ & \text { ad } \end{aligned}$		AM, Mo			9		1	1.	1＇1．	1.	＇ 1		${ }^{\prime}$				
تf	$\begin{aligned} & \infty \\ & \\ & \stackrel{L}{n} \end{aligned}$	$\begin{array}{\|c\|c} 0 & 0 \\ \hline 0 ⿴ 囗 十 介 & 0 \\ -1 \end{array}$	$\begin{gathered} -10 \\ n_{1} \\ 0 \\ 0 \end{gathered}$		$\begin{array}{ll} 9 & 0 \\ 0 & 0 \\ 0 \end{array}$			H1		＇	， 1		1.	閣		\vec{g}		，		
\cdots	$\begin{aligned} & \text { N } \\ & \text { i } \\ & \text { N } \end{aligned}$	$\begin{array}{\|c\|c\|} \hline \infty & -1 \\ 0 & 0 \\ 0 & 1 \\ \hline 1 \end{array}$						$\underset{\sim}{\infty}$		＇	，	1.	＇	11.		：				
9	$\begin{aligned} & \pm \\ & \\ & \text { ci } \end{aligned}$	$\begin{array}{\|c\|c\|} \hline 0 & 0 \\ \dot{j} & 0 \\ -1 & 0 \\ \hline \end{array}$	क्ष 0 0 0		Nor			$\begin{aligned} & \text { O} \\ & \cdots \end{aligned}$		，		，品風，	， 1			in				
7	$\begin{aligned} & \text { N } \\ & \text { 1 } \\ & \hline \end{aligned}$	$$	$\begin{gathered} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{array}{lll} 0 & \infty \\ 0 & -\infty & 0 \\ 0 & -1 & -1 \\ \hline \end{array}$				N-N		＇	1.	1.	1	11	0	0	\cdots	9	9	－${ }^{3}$
9	$\begin{aligned} & \text { ou } \\ & \text { N } \\ & \text { o } \end{aligned}$				Bo		$\operatorname{nn}_{4} \mathrm{C}$	$\stackrel{\square}{0}$	\cdots				． 1			\sim				－
0	$\begin{aligned} & \infty \\ & \underset{1}{6} \\ & 9 \end{aligned}$	（	ma 0 n n 0	（2000				気		＇	，	11	1	，		＇				
∞	$\begin{array}{l\|l} 10 \\ 7 & \\ -1 & \\ -1 \end{array}$	$$			0^{0}			\cdots		，	，	$\begin{aligned} & 0 \\ & 0 \\ & \text { in } \end{aligned}$	1.	m－		\pm				
	$\begin{aligned} & \therefore \\ & \underset{\sim}{2}=1 \end{aligned}$	，＇，	1.	1.	1.1			1		＇	＇＇	，	1.	＇ 1			$\hat{0}^{\circ}$	\％）	NO	等
6	$\begin{array}{lr} 1 & \mathrm{H} \\ 9 & -1 \end{array}$	， 1		＇$\cdot 1$	，1．			，			11	11	，	11		1				
in	$\underset{\substack{-1 \\ \\ \hline \\ \hline}}{ }$	$\begin{aligned} & m \\ & 18 \\ & 1 \\ & -1 \end{aligned}$						9			＇ 1	＇	， 1	11		1				
－	0							\cdots				ci，	1	－ $\begin{gathered}0 \\ 0 \\ -1 \\ 0\end{gathered}$		＋				
	$\stackrel{9}{9}$	N19					n	\cdots	－	－		111	11	，	H－1	0°	\cdots	0	¢	
＊	－		¢					$\stackrel{-1}{7}$		1		寺	，	Mo		＊＊				\％
	N	－		$\begin{array}{l\|l\|l\|} \substack{n \\ 0} & m \\ n & n \\ n & n \\ m & n \\ \hline \end{array}$				ल		＇	$1{ }^{1}$	1.11	＇	11		1				

	，			
	0			
＇	，．			
	\％			
，	． 1.	－		
	an			
＇	． 1.			
		\dagger		
			i	
	\square	I		
＇	． 1.			
	－			
	1.7			
＇	． 1.	i		
	11			
	$\begin{gathered} -1 \\ 0 \\ -1 \\ 0 \end{gathered}$			
，	．1．			
		$1 .$		
＇	， 1			

AREA FCORE 6
CRUISE: 2959. SONIC DEPTM, UNGORAECTED, 1240 fms. COREA, 225 lb . GTAVIty Hydroplastic appaox. Corer penetrationi 122 in . CORE: 306 in . LONG, diam. 3.22 in .

AREA F CORE 10 cRuige: 1959. sonic appmox. corea penetration	$\begin{aligned} & \text { ofpre, } \\ & 1, \end{aligned}$	unco	E:	$\begin{aligned} & \text { TED. } 133^{4} \\ & 69 \mathrm{in} . \mathrm{to} \end{aligned}$	$\begin{aligned} & 340 \text { f } \mathrm{ms} \text {. } \\ & \text { Loms, } 01 \end{aligned}$	3. COR DIAN.	$\begin{aligned} & \text { PER: } 400 \\ & 1.875 \end{aligned}$	$s \mathrm{in} .$	ravito	Kullenz									\rightarrow													
SAnple number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	15	17	${ }^{38}$	19	20	21	๕	23	24	25	26	37	28	29	30	31	32
Oistance from top of coresio	0-2	2	46	6-8	8-10	10-12	12-14	1416	16-18	13-20	20-2	2-24	24-26	26-28	28-30	30-32	32-34	3436	36-38	38-40	40-42	42-45	45-47	47-49	49-51	51.53	53-55	55-57	57-59	59-61	51-63	63-65
WET UNIT WEIGHT ${ }^{\text {it } \mathrm{ifo}^{-3}}$	88.0	88.7	99.	-	91.3	91.2	93.6	90.5	92.5	\% 4.1	93.5.	94.1	9.0	94.3	94.9	94.3	94.3	95.3	93.7	92.9	92.6	92.8	91.0	92.7	90.5	90.2	92.1	90.8	89.7	89.4	91.6	90.7
	$\frac{1.41}{2.703}$	$\frac{1.42}{2.224}$	1.431		$\frac{1.46}{2.733}$	2. ${ }^{1.4 .4}$	2.7.50	$\frac{1.45}{2.722}$	2. ${ }^{1.2}$	L.51,	$\frac{1.50}{2.762}$	2.51	$\frac{1.51}{2.752}$	$\frac{1.51}{2.751}$	$\frac{1}{2.552}$	2.52	${ }^{1.51}$	$\frac{1.53}{2.765}$	$\frac{1.50}{2.768}$	$\frac{1.49}{2.755}$	$\frac{1.48}{2.760}$	$\frac{1.47}{2.762}$	1. 2.46	$\frac{1.47}{2.739}$	$\frac{1.45}{2.765}$	2. 2.43	$\frac{1.46}{2.761}$	$\frac{1.45}{}$	1.44	243	1.67	2.45
	$\frac{2.702}{11.25}$	2, 113.59	2.238	2.732.85	2.733	${ }^{2.74 .3}$	\%7.3?	2.723	2.724	27.723	2.762	58.90	${ }^{2.757 .55}$	${ }^{2} 8.751$	2.747	${ }^{2.755}$	26.65	$\frac{2.765}{81.60}$	2.760 91.9	2.755	$1{ }^{2.760}$	2.762	2.554		$\frac{2.765}{102.79}$	2.733	2.763	2.782		$\underline{2} 788$	$\frac{2.761}{98.91}$	2.7m
	3.082	3.09	2.883		2.744	2.65	2. 423	2.778	2.573	2.559	2.521	-	2.417	2. 433	2.377	2.442	2.430	2.250	2.538	2.52	2.616	2.718	2.892	2.320	2.866	2.953	2.865	2.870	3.056	3.052	2.742	2.897
	$\frac{3.060}{3.5}$	- 3.09	2.86	2.829	$\frac{2.737}{73.5}$	2.56	2.394	2.758	2.570	$\frac{2.550 .1}{2 \cdot 1}$	2.523	-	2. 3.67	${ }^{2} .428$	2.389	2.446	2.385	2.258	2.566	2.189	[2.606	$\frac{2.709}{73.1}$	$\frac{2.293}{74.3}$	2.840	$\frac{2.842}{74}$	2.947	2.882	2.84	3.057	3, 7520	2.731	2.887
	99.2	150	99.3	-	1.3.0+	97.4	90. 3	98.2	99.9	1	99.6	-	99.1	99.8	1	$\frac{102+1}{10}$	90.4	998.	100	98.7	99.6	99.7	$1.00+$	${ }^{10} 10$.	$\frac{74.2}{99.2}$	29.5	- 14.2	99.3	${ }^{150}$	75.3 9.0	$\frac{73.3}{99.6}$	29.7
$\frac{\text { ate }}{\text { Satuation, \% }}$			63						74						75						82					82				80		
-ilastic limit	S		$\frac{32}{142}$						${ }_{3}{ }^{34}$						29	146										30				31		
	159	160	51	132	15	12	13	16	40	1	123.	13	142	145	${ }_{41}^{141}$	146	14	128.	120	116	${ }_{51}^{124}$	132	147	140	140	$\frac{346}{58}$	143	146	143	158	132	142
			0.32						0.26						0.261						0.32					${ }_{0} 2.33$				0.31		
	-	-	-	.	-	-	-	-		-	-	-	-	-		1-	-	-	-	-	\bigcirc	-	$=$	-	-	\bigcirc	-	-	-	-	-	-
5, $\mathrm{LOMp} \%$ \%	,	-	L	-	\cdots	-	-	,	-	,	-		-	-	-	-	-	-	\bigcirc	-	\checkmark	-	-	\cdots	-	\cdots	-	-	-	-	-	-
	0.82	0.91	1.02	-	1.6	1.90	3.12	$0 . \mathrm{B}_{2}$	1.29	1.6	$\underline{1.39}$	2.45	1.4	1.64	1.21	1.43	1.58	2.31	1.28	2.98	1.74	1.63	1.24	1.5	1.61	2.31	1.46	1.9	1.39	$\underline{1.16}$	1.55	3.34
	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-									
	0.41	0.46	0.51	$-$	0,82	0.95	1.55	0.41	0.65	0.22	0.65	0.73	0.72	0.62	0.56	0.72	0.72	1.15	0.59	0.99	0.67	0.62	0.57	0.79	0.81	0.66	0.73	0.96	0.69	0.58	0.78	$\underline{\square}$
	33, ${ }^{\text {a }}$	32.3	35.2	-	57.7	66.8	139.7	23.8	45.7	64.0	L8. 8	52.3	50.6	57.7	39.4	50.61	55.5	81.6	41.5	69.6	61.2	57.7	40.1	55.5	56.9	46.4	51.3	67.5	L0. 5	40.8	54.8	47.2
agtivity mooulus of Elasticitr, psi				2.1					0, 8 .							0.7					1.1					0.9				0.9		
Sraim veoiam oia Pric $_{\text {micion's }}$		9.0	9.1	8.6	19.	12.2	33.2	9.	${ }^{13 .} 6$	19.	14.	13.1	17.	10.9.	1.6	2.6	26.2	42.9	24.2	4.8	${ }^{8} 8.3$	39.4	30.6	20.9	35.2	9.6	2.6	34.5	23.8	9.5	3.4	30.0
				2.6					2.5							1.3					2.3					1.3				1.		
				3					3												3											
				50					5																	4				49		
				47	Clas,	29 511			4						511	Sisy					Le	${ }^{\text {Silt }}$				5	S11	${ }^{\text {c iney }}$		5		

27
 CORE
 AREA F

CRUISE: 1959 SONIC DEPTH, UNCORRECTED, 13406 ms . CORER, 275 tb. Gravity Effroplastic
APPROX. CORER PENETAATION INO dELAF. CORE: 60 in. bONG. DIAM. 3.22 in.

SAMPLE NUMEER		2	2	3	4	5	6	7	8	9	10	11	12	13	14	25	16
DISTANCE FROM TOP OF CORE, in		O-4	$4-8$	8-12	22-13	15-19	19-23	23-27	27-28	28-32	32-36	36-40	40-41	44-48	48-52	52-56	56-57
WEY UNIT WEIGHT	16 $9 t^{-3}$	88.8	90.6	91.4	92.2	94.2	96.7	97.5	97.9	24.9	95.1	94.8	94.6	94.6	91.5	91.1	91.6
	$9 \mathrm{~cm}-3$	1.42	1.45	1.4 C	1.48	1.51	1.55	1.50	1.57	1.52	1.52	1.52	1.52	1.52	1.47	2.46	1.47
SPECIFIC GRAVITY OF SOLIDS		2.783	2.746	2.752	2.740	2.753	2.747	2.759	2.742	2.761	2.761	2.773	2.764	2.771	2.783	2.780	2.761
WATER CONTENT, \% DRY WEIGHT		117.24	202.63	98.6	95.9	85.4	78.4	75.8	73.93	86.6	85.6	$86 . C$	85.72	97.0	101.3	102.6	99.17
VOID RATIO	DETERMINED IN LAB.	3.073	2.830	2.731	-	2.300	2.163	2.102	-	2.300	2.362	2.395	-	2.601	2.821	2.858	-
	\% SATURATION	3.096	2.818	2.713	2.628	2.351	2.154	2.092	2.027	2.391	2.363	2.385	2.369	2.688	2.819	2.852	2.736
POROSITY, \%		75.4	73.9	73.2	72.4	70.4	63.4	67.8	67.0	70.5	70.3	70.5	70.4	72.2	73.8	74.1	33.3
SATURATION, \%		92.3	99.6	99.4	\bigcirc	95.8	99.6	oc, ${ }^{6}$	∞	200	100	200	99.6	200%	99.9	99.8	99.7
LIQUID LIMIT		83	76	-	..	72	-	68	-	-	72	-	-	76	-	75	-
PLASTIC LIMIT		34	33	-	-	, 31	-	30	-	-	29	-	-	31	-	33	-
LIQUIDITY INDEX\% $\%$		- 158	162	-	-	133	-	121	-	-	132	-	-	24	-	166	-
PLASTICITY INDEX		49	43	c.	-	41.	-	32	-	-	43	-	-	45	-	42	-
COMPRESSION INDEX	FROM LL	0.52	0.280	-	-	0.45	-	0.41	-	-	0.45	-	-	0.48	-	0.47	-
	FROM eroge	0.	-		56. 95	-	-	-	0.72	-	-	*	0.79	-	-	-	0.83
SLUMP. \%		-	-	-	-	\cdots	-	-	-	-	-	-	-	-	-	-	-
$\begin{aligned} & \text { COMPRESSIVE } \\ & \text { STRENGTH } \end{aligned}$	"UNDISTUAREAE PSI	0.8?	142	2.25	-	2.75	1.99	2.07	-	1.34	1.75	1.79	-	1.81	1.53	2.23	-
		-	..	-•	-	-	-	-	-	-	-	-	-	-	-	. -	-
FEWOLDING SENSITIVITY		-	-	-	.	-	-	-	-	\square	-	-	-	-	\bigcirc	-	-
COHESION PSI		0.41	0.72	0.63	-	0.88	c. 5 cl	2.04	. -	0.69	0.88	0.89	-	0.91	0.77	0.62	-
		28.8	49.9	4.4	-	61.9	69.6	73.1	-	48.5	61.9	62.6	-	64.0	54.1	43.6	-
Activiry		1.0	0.9	-	-	0.9	-	8.6	-	-	0.8	-	-	0.8	--	1.8	-
MODULUS OF ELASTICITY, PSI		9.5	21.9	53.4	-	30.4	31.8	40.8	-	29.2	30.1	33.6	-	62.6	28.9	26.0	-
GRAIM GIEDIAP: D:A	Phi	6.8	8.6	8.5	8.5	E. 5	8.2	8.4	-	8.5	9.1	9.5	$=$	9.5	9.4	9.4	-
	micron: 5	2.2	2.5	2.7	2.7	2.7	3.5	3.0	-	2.7	1.9	1.4	-	1.4	1.5	1.5	-
SAND, \% > $60 \mu<2 m m$		3	3	4	4	5	8	4	-	3	3	3	-	3	2	2	-
SILT. $/ \mathrm{c}>2 \mu<60 \mu$		43	50	50	51	50	50	52	-	51	± 6	42	-	42	43	43	-
CLAY, \% < 2		43	47	46	45	45	42	4	-	16	52	55	-	55	55	55	-
SEDIMENT TYPE					51	- 317							Sil	Cle			

AREA F CORE 12 CRUISE: 1959. SOMIC approx. Corer penetration:	DEPTH, $69 \mathrm{in}$			$\begin{aligned} & T E D: 1 \\ & 56 \mathrm{in} . \end{aligned}$	$\begin{aligned} & \text { 1330f } \mathrm{ms} . \\ & \text { Long, } \end{aligned}$		$\begin{aligned} & E R=35 \\ & 1.875 \end{aligned}$	$30 \mathrm{lb} \cdot \mathrm{Gr}$ in.	avity	Kullenb																
SAMPLE NUMBER	1	2	3	4	5	6	7	8	9	10	$\underline{11}$	12	13	14	15	16	17	18	19	20	21	2	23	24	25	26
DISTANCE FROM TOP OF CORE, in	0-2	2-4	4-6	6-8	8-10	10-12	12-15	15-17	17-13	19-21	21-23	23-25	25-27	$27-30$	30-32	32-34	34-36	36-32.	38-40	40-42	42-45	45-47	47-49	49-51	51-53	53-56
	84.5	87.7	87.8	90.0	89.9	$\frac{91.1}{1.45}$	89.2	92.9	92.9	93.1	95.4	95.8	94.1	95.8	95.8	94.5	94.9	95.1	93.6	92.3	92.0	93.5	92.	91.4	92.6	91.0
	1.35	1.40	1.415	1.42	1.44	1.45	1.43	1.49	1.49	1.49	1.53	1.53	1.51	1.53	1.53	1.51	1.52	1.52	1.50	1.48	1.47	1.50	1.48	1.46	1.48	1.46
SPECIFIC GRAVITY OF SOLLIDS	2.740	2.738	2.715	2.725	2.734	2.738	2.746	2.727	2.725	2.740	2.733	2.744	2.727	2.740	2.750	2.7π	2.71	2.758	2.775	2.764	2.763	2.766	2.760	2.769	2.755	2.73
- AT 100% Saturation	3.851	3.394	3.223	2.966	2.990	2.829	2.956	2.485	2.591	2.602	2.37	2.288	2.404	2.208	2.273	2.539	2.472	2.306	2.549	2.681	2.751	2.612	2.642	2,805	2.630	$\frac{2,867}{2,860}$
Porosity, \%	79.5	77.1	76.3	74.7	74.8	73.8	74.9	71.4	72.0	72.1	70.1	69.5	71.1	69.0	69.4	71.5	71.0	70.0	71.9	72.8	73.3	72.1	72.5	73.7	72.5	2,862
SATURATIOM, \%	99.6	$300+$	100+	$100+$	$100+$	$100+$	98.8	99.3	100+	$100+$	$100+$	$100+$	$100+$	92.3	100	$100+$	$100+$	99.3	99.8	100	100+	$1200+$	$100+$	100	$100+$	99.8
				83					76					76					80					88		
PLASTIC LIMIT				32					30					30					29					32		
LIQUDITTY INDEX, \%	233	180	170	151	152	140	169	133	142	141	130	116	1.34	111	124	122	118	107	123	133	138	122	12	124	$\underline{12}$	127
PLASTIGITY INDEX				51					46					46					51					56		
COMPRESSION MDEX				0.52					0.47					0.47					0.50					0.55		
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	$-$	-	-	-	-	-	-	$-$	-	-	-	-	-	-	-	\checkmark	-	-
	0.21	0.56	0.72	0.91	0.78	1.00	0.94	2.06	$\underline{3} .32$	1.05	1.30	-1.49	-1.47	1.89	2.31	1.44	1.81	1.86	1.72	1.58	1.67	1.85	2.35	1.70	2.02	2.64
STRENGTH REMOLDED, PSi	\cdots	-	-	-	-	-	:	\cdots	- 0.50	\div	-	-	-	-	-	-	-	0.44	-	-	-	-	-	-	0.49	
${ }^{\text {cohesion }}$	0.11	0.28	0.36	0.46	0.39	0.50	0,47	1203	0.66	0.53	0,65	0.75	0.74	0.95	1.16	0.72	0.91	0.93	0.86	0.79	0.84	0.93	1.16	0.85	1.01	1.32
	7.7	19.7	25.3	32.3	27.4	35.2	33.0	72.4	46.4	37.3	45.7	52.7	52.0	66.8	81.6	50.6	64.0	65.4	60.5	55.5	59.1	65.4	81.6	59.8	71.0	$\underline{2.8}$
ACTIVITY			-	1.1			33.0	72.	1.0	37.3.	. 1.7	2.	5.0	1.2	-	20.6	64.	.	0.9	3.5	S	6.4	-1.6	1.0	7.0	
MOOULUS OF ELASTIGITY, PSi	-	4.5	7.2	12.3	13.3	12.9	11.9	23.8	13.7	13.6	18.4	21.3	21.9	35.4	33.9	18.5	25.7	36.8	26.9	35.9	26.8	28.4	32.7	26.4	46.3	35.0
GRAIN LEDIAN OIA.				8.5					8.4					8.2					2.3					9.5		
SAND, $\%>60 \mu<8 \mathrm{~mm}$				2.7					2.2					3.3					1.6					1.3		
				4					3					5					4					2		
SILT, $\%>2 \mu<80 \mu$				$\frac{50}{46}$					52					55					42					41		
				46					45					40					54					57		
SEOIMENT TYPE								Clay	y Sillt												Silly	Clas				

CRUISE: 1959. SONIC DEPTH, UNGORRECTED: 1320fms. CORER: 300 lb . Gravity Kullenberg
APPROX. CORER PENETRATION: $56+$ IN. CORE: 56 in . LONG, OIAM. 1.875 in .

∞	1	-	\cdots	- ${ }^{\circ}$	Nos	$\xrightarrow{\text { a }}$ -	$\stackrel{N}{\sim}$	9	$\lim 0$	-	(9)	,	
		$\stackrel{9}{8}$		붕		$\begin{aligned} & { }_{c}^{0} \\ & \text { cu} \\ & \text { an } \end{aligned}$						1	
\checkmark	불	$\left\lvert\, \begin{array}{l\|l} 0 \\ 0 & -7 \\ -1 \end{array}\right.$					8					,	
		-	$\begin{array}{\|c} 73 \\ \\ \sim \end{array}$	Nin	N	ヘ்		\cdots	mp	\cdots	0	,	
-	∞	-		A-		ล่	$\dot{8}$			\cdots		,	
		$\stackrel{-7}{8}$	-				$\dot{\circ}$			\cdots		,	
\sim	$\begin{aligned} & \text { Nu } \\ & \text { N- } \end{aligned}$		1	($\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 7\end{aligned}$	1	1.		1	4.1	11		,	
	©	1'	-	哭				,	,	1.	'	,	
				\square		$\left.\begin{array}{c\|} \hline \\ \hline \\ \hline \end{array} \right\rvert\,$							

AREA F CORE 14
CRUISE: $\quad 1959$. SONIC OEPTM, UNCORRECTEO: 13104 ms . CORER: 250 lb . Gravity Kullenberg
APPROX. CORER PENETRATION: 53+ IN. CORE: 68 in. LONG, DIAM. 1.875 in.

MPLE NUMEER	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
ANCE FROM TOP OF CORE, in		$\begin{aligned} & \text { 3.2- } \\ & 5.2 \end{aligned}$	$\begin{aligned} & 5.2- \\ & 7.2 \end{aligned}$	$\begin{aligned} & 7.2- \\ & 9.2 \end{aligned}$	$\begin{aligned} & 9.2- \\ & 11.2 \end{aligned}$	111.2-	$\begin{aligned} & 13.2= \\ & 15.2 \end{aligned}$	$\begin{aligned} & 15.2- \\ & 17.7 \end{aligned}$	$17.7-$	$\begin{array}{\|l\|} 19.7- \\ 21.7 \end{array}$	$\begin{aligned} & 21.7-1 \\ & 23.7 \end{aligned}$	$\begin{aligned} & 23.7- \\ & 26 \end{aligned}$	8	26-30	$\begin{aligned} & 31.2-1 \\ & 34 \end{aligned}$	34-36	36-38	38-40	40-42	44-46	46-48	

 $\xrightarrow{\circ}$ 0.

AREA PCORE 15
CRUISE: 1959 . SONIG OEPTM, UNGQRRECTEDI 1320 ms. CORER: 200 th. Gravity Kullenberg APPAOX. CORER PENETRATIOM: 48 IM. CORE: GIIN. LONG, DIAM. 1.875 in.

OISTANCE FROM TOP OF COAE, in			1	2	3	4	5	6	7	¢	9	12	11	12	13	14	15.	16	17	16	19	20	21	22	23	24	25	26	27	28
			O-2	2.2-	$\begin{aligned} & 4.5- \\ & 6.7 \end{aligned}$	${ }_{9}^{6.7-}$	92.	$\begin{aligned} & 11.2- \\ & 13.5 \end{aligned}$	${ }_{12}^{23.5-}$	$\begin{aligned} & 14.2- \\ & 16.5 \end{aligned}$	${ }_{19}^{16} 5$	$\begin{aligned} & 18 . \\ & 2.2 \end{aligned}$	$52.5=$	$\begin{aligned} & 22.5- \\ & 24.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2^{14.7-7} \\ & 27 \\ & \hline \end{aligned}$	$87-2$	$\begin{aligned} & 29.2- \\ & 31.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 31.5-1 \\ & 33.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 33.70 \\ & 35.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 35.2- \\ & 37.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 37.5- \\ & 39.7 \\ & \hline \end{aligned}$	39.7-	42. ${ }^{2}$	$\begin{aligned} & 44.2- \\ & 46.5 \end{aligned}$	$46.5=$	$\begin{aligned} & 48.7-1 \\ & 51 \end{aligned}$	$\begin{aligned} & 51 \\ & 53.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 53.2= \\ & 55.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 55.5- \\ & 57.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 57.7= \\ & 59.2 \\ & \hline \end{aligned}$
WET UNIT WEIGHT		$16{ }^{10^{-3}}$	35.2	$2 \overline{6} .8$	87.9	80.6	39.5	90.1	-	13.1	-	94.0	94.3	55.2	23.6	85.3	94.3	94.4	93.5	92.9	93.1	93.6	92.1	90.7	90.8	92.0	91.2	92.9	91.9	-
		gcm^{-3}	1.33	1.39	1.42	1.45	1.43	1.44	-	1.45	-	1.54	1.51	1.5	1.55	1.53	1.51	1.51	1.50	1.49	1.49	1.50	1.48	1.45	2.45	2.47	1.46	1.47	1.47	-
SPECIFIC GAAVITY OF SOLIDS			2.728	2.146	2.73	2.727	2.732	2.746	-	2.727	-	2.73	2.743	2.74	2.753	2.751	2.761	2.763	2.770	2.776	2.758	2.770	2.758	2.757	2.755	2.769	2.770	2.712	2.765	
WATER CONTENT, \% ORY WEIGMT			121.24	222.33	112.18	97.80	105.43	106.23	-	86.21	-	3.3 .3	88, 3.3	82. 49	72.7	34.43	89.27	88.28	22.33	95.67	23.45	21.54	99.25	104.05	103.39	99.88	102.23	99.22	99.92	-
VOIO AATIO	DETERNINEO IN LAE. AT 100% SATURATIOM		[31.397	3.397	3.252	2.727	2.912	2.223	-	2.412	-	2.34	2.422	2.289	2.182	2.320	2.455	2.441	2.561	2.651	2.573.	2.535	2.703	2.873	2.84 g	2.757	2.839	2.751	2.751	-
			3.339	3.359	3.254	2.667	2.380	2.918	-	2.354	-	2.32	2.412	2.201	2.171	2.322	2.465	2.439	2.558	2.656	2.577	2.536	2.720	2.869	2.849	2.766	2.832	2.750	2.763	$=$
POROSITY, \%			77.3	77.3	76.5	73.2	74.4	74.5	-	70.7	-	70.7	70.8	69.6	68.6	69,9	71.2	70.9	71.9	72.6	72.0	71.7	73.0.	74.2	74.9	73.4	74.0	73.3	73.3	
SATUAATION \%			93.3	98.2	100	98.3	93.9	99.8	-	97.5	-	29.1	92.2	29.1	97.5	100	100	99.9	92.2	100*	100.	200	$100 \cdot$	99.9	100	$100+$	99.7	100	109	-
Ligulo Livit			85			82			78		-	66			65		76				7				78			74		
			38			32			33		-	29			28		31				31				46			32		
$\text { LIOUIDITY INOEX } 9$			179			174			153		-	151			147		130				136				381			167		
PLASTICITY INOEX			47			50			45		-	37			37		45				46				32			42		
COMPRESSION INDEX		FROM LL	0.54			0.52			0.49		-	0.42			0.41		0.48				0.49				0.48			0.47		
		FROM R-IOG P	-	-	-	-	-	-	-	-	-	-	$=$	-	$-$		-	-	-	-	-	-	-	-	-	-	-	-	-	-
			-	-	-	-	-	-	-	-	-	-	-	$=$	-	-	-	$=$	-	-	-	-	-	-	-	-	-	-	-	-
SLUMP, $\%$COMPRESSIVE "UNDISTURBED: PSI			0.60	0.50	0.84	1.58	1,20	1.20	-	2.391	-	1.54	1.52	1.72	2.42	1,86	1.64	1.78	2.07	1.58	1.91	2.58	1.65	1.42	1.45	2.26	1.34	1.7	1.62	-
STRENGTM AEMOLOED, PSI			-	-	,	1.	-	-	-	-	-	-	-	\bigcirc	-	$-$	-	1	,	-		,	-	-	-	$-$		-	-	-
			-	\checkmark	-	-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-	-	-	-
COHESION ${ }^{\text {PSSI }}$			0.30	0.25	0.42	0.80	0.60	0.60	-	1.19	-	0.75	0.76	0.86	1.21	0.93	0.82	0.89	1.04	236	0.96	1.29	0.83	0.71	0.79	1.13	0.67	0.86	0.81	$=$
			21.1	17.6	29.5	56.2	42.2	42.2	-	83.7	-	52.7	53.4	60.5	35.1	65.4	57.7	Ei2. 6	73.1	53.2	67.5	90.7	58.4	49.9	52.7	19.4	47.1	60.5	56.9	$-$
activity				09		1.0			1,0		-	0.8			0.8		0.9				0.2				0.6			0.2		
modulus of Elasticity, psi			4.8	3.4	6.5	17.0	13.0	10.3	-	29.6	-	13.6	9.7	15.9	23.7	15.4	12.5	13.2	18.2	16.4	17, 1	23.8	12.2	13.7	13.8	12.6	13.9	13.0	13.6	-
grain median oia.		phi		9.0		9.0			8.7		-	8.	4		8.8		9.2				2.5				9.6			9.4		
		microns		2.0		2.0			2.4		-		0		2.2		1.1				1.4				1.3			2.5		
SAMD, \% $\%$ ¢00 $\ll 2 \mathrm{~mm}$				4		3			4		-		5		4		3				3				2			2		
SILT, \% > 2 只 $<80 \mu$				46		47			50		-	5	-		48		45				43				41			42		
$\begin{aligned} & \text { CLAY, } \%<2 \mu \\ & \text { SEOIMENT TYPE } \\ & \hline \end{aligned}$				50		50			46		-	4			48		52				54				57			56		
					SIIty	Clay				Cla	-	silt			flity clay			Suly	clay		Silty	Clay			iliy clay			Sulty	lor	

CRUISE: 1959. SONIC DEPTH, UNCORRECTED: 250 fms. COREA: 1200 Ib . PIston EWIng APPAOX. CORER PENETRATION: 240 IN . CORE: 222 in . LONG, OIAM. 2.5 in .

SAMPLE NUMPER		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
DISTANCE FFOM TOP OF CORE, IT		0-4	4-8	8-12	12-16	16-20	$\begin{aligned} & 20- \\ & 23.4 \end{aligned}$	$\begin{aligned} & 23.4- \\ & 27.4 \end{aligned}$	$\begin{aligned} & 27.4- \\ & 31.4 \end{aligned}$	$\begin{aligned} & 31.4- \\ & 35.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 35.4- \\ & 39.4 \end{aligned}$	$\begin{aligned} & 39.4- \\ & 43.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 43.4- \\ & 46.5 \end{aligned}$	$\begin{aligned} & 46.5- \\ & 50.5 \end{aligned}$	$\begin{aligned} & 50.5- \\ & 54.5 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 54.5- \\ 58.5 \\ \hline \end{array}$	$\begin{aligned} & 58.5- \\ & 62.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 62 .-5 \\ & 66.5 \\ & \hline \end{aligned}$
WET UNIT WEIGHT	$16 \mathrm{ft}^{-3}$	77.2	77.3	78.9	80.9	82.5	79.5	85.8	85.9	86.2	85.7	86.9	89.2	88.7	87.8	87.3	86.8	86.8
	$9 \mathrm{~cm}{ }^{-3}$	1.24	1.24	1.26	1.30	1.32	1.27	1.37	1.38	1.38	1.37	1.39	1.43	1.42	1.41	1.40	1.39	1.39
SPECIFIC GRAVITY OF SOLIOS			2.73)	2.730	2.734	2.751			(.76)		2.768				2.76)			2.769
WATER CONTENT, \% ORY WEIGKT		232.28	230.05	210.7	175.91	159.54	148.44	129.46	127.23	125.82	122.87	122.68	117.07	108.65	115.10	120.31	122.42	123.24
VOIO RATIO	RMINED IN LAE.	-	-	5.714	4.822	4.401	-	-	-	-	3.493	-	-	-	-	-	$-$	3.442
	\% SATURATION	(6.33)	(6.28)	5.754	4.809	4.388	(4.10)	(3.58)	(3.52)	(3.54)	3.401	(3.39)	(3.24)	(3.05)	(3.18)	(3.33)	(3.38)	3.413
POROSITY, \%		(36.5)	(86.4)	85.1	82.8	81.5	(80.5)	(78.2)	(77.9)	(78.0)	77.7	(77.3)	(76.5)	(75.4)	(76.0)	(76.9)	(T7.2)	77.5
SATURATION, \%		-	-	100+	29.7	99.7	-	-	-	-	97.4	-	-	-	-	-	-	99.1
LIQUID LIMIT		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PLASTIC LIMIT		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LIQUIDITY INOEX, \%		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PLASTIGITY INDEX		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
COMPRESSION INDEX	FROM LL	-	-	-	\bullet	-	-	-	-	-	-	-	-	-	-	-	-	-
	FROTA e-log P	-	-	-	-	-	-	-	-	-	-	-	-	-	\bullet	-	-	-
SLUM P, \%		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
COMPRESSIVE STRENGTH	STUREED" PSI	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	OLDED, PSi	*	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
REMOLOING SENSITIVITY		-	-	-	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
COHESION		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		-	-	-	-	-	-	-	…-	-	-	-	-	\bullet	-	-	-	-
Activity		-	-	-	-	\bullet	\bullet	-	-	-	-	-	-	\cdots	-	-	-	-
MODULUS OF ELASTICITY, PSi		-	-	$-$	\checkmark	-	- =	-	-	\cdots	-	-	-	-	-	-	-	$-$
GRAIN MEDIAN DIA.	phi	9.4	9.3	9.5	9.5	9.3	9.4	9.3	9.4	9.4	9.3	9.3	9.5	9.6	9.8	9.7	9.7	10.0
	microns	1.5	1.6	1.4	1.4	1.6	1.5	1.6	1.5	1.5	1.6	1.5	1.4	1.3	1.3	1.2	1.2	1.0
SANO, \% $\%$ > $20 \mu<2 \mathrm{~mm}$		3	3	3	3	3	2	2	2	2	3	3	3	3	2	3	3	3
SILT, \% > $2 \mu<60 \mu$		38	39	37	38	40	38	40	40	39	29	39	35	34	33	32	30	30
CLAY, \% < 2μ		59	58	60	59	57	60	58	58	59	58	59	62	63	65	66	67	67
SEOIMENT TYPE									Silty	Clay								

AREA G CORE

CRUISE: \quad 1959. SONIC DEPTM, UNGORRECTED: 250 fms . CORER, 300 lb . PIston Eydroplastic
APPROX. CORER PENETRATION: 144 IN . CORE: 90 in . LONG, DIAM. 3.18 in .

新

+ * 1.1 .1 .1 .1 .1 .1 .100 c

AREA CORES

SABPPLE NUNAER		1.	2	3.	4	5	6	7	8
DISTAHOE PEROM POP OF DOAE, RA		0.4	$4-8$	8-9	9-13	13-17	17-21	21-24	24-28
WET UPAIT WEIGHT	18 98^{-8}	92.5	96.9	-	95.7	95,8	97.1	98.3	97.2
	gem^{-3}	1438	1.55	-	1.53	2.53	2.56	1.57	1.56
SPEOIFIO GRAVIPY OF SOLIO8						- -	-	\cdots	
WATEA GONTENT, \% DRY HEIOHT		73.08	81.12	\cdots	82.52	80.44	79.65	76.50	76.12
VOIO RATIO DETERMINEO MM LAB.		-	\square	-	-	-	-	\bigcirc	-
- 10.0 at 100	\% SATURATISN	-	-	-	-	-	-	-	-
POROSITY, \%		\cdots	-	\cdots	-	-	-	-	-
SATURATION \%		-	-	-	-	-	-	-	-
LIQUIO LIMIT		*	\cdots	.	-	-	-	-	-
PLASTIO LIMIT		$-$	-	-	-	\%	-	-	-
LQQuldiry inotx, \%		$=$	-	-	-	-	-	-	-
PLASTIOATY INOEA		-	-	-	-	-	\cdots	-	-
COMPRESSION INDEX	FROM LL	-	-	-	-	-	-	-	\square
	FROM Q-log.	-	\square	-	-	-	-	-	-
SLUAP\% \% ,		\square	-	-	-	.	-	-	\bullet
COMPRESSSIVESTRENGTH	BYURBED P P	-	\cdots	-	-	-	-	-	-
	OLDED, PSI	-	-	-	-	-	\cdots	-	-
AEMMOLOING SENSITIVIPY		\checkmark	-	-	\cdots	-	-	-	-
CONE 810 N		-	-	-	-	-	-	-	-
		-	-	-	-	-	-	$\stackrel{\square}{-}$	-
Activipy		-	-	-	-	-	-	-	-
MODULUS OF ELASTICITV, PgI		-	-	-	-	-	\cdots	-	-
GARAIN MEDIAMN DIA.	phi	9.4	9.5	\cdots	9.7	9.4	2.5	2.3	9.3
	mlarons	1.5	1.4	-	1.2	1.5	1.4	1.6	1.6
SAMO $0 \%>80 \mu<2 \mathrm{~mm}$		2	4	\ldots	2	1	1	2	1
SILT, \% $\% 2 \mu<80 \mu$		43	40	-	140	40	40	41	43
CLAY $\%<2 \mu$		55	56	\cdots	58	52	59	57	56
SEDIAENT TYPE					1 ty Cld				

AREA G CORE 6
APPROX. CORER PENETRATION: 84 IN . CORE: 60 in , LONG, DIAM. 3.18 in
CRUISE: 1959. SONIC OEPTM, UNCORAECTED: 250 \%ms. CORER, 150 Ib. Gravity Hydroplastic

SAMPLE NUMBER	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
DISTANCE FROM TOP OF CORE, $\angle 4$	$0-4$	$4-8$	$8-12$	$12-16$	$16-20$	$20 .-$	21.3	$24-28$	$28-32$	$32-36$	$36-40$	$40-44$	$44 .-3$	$48-52$	$52-56$
56.3															

mi

', 1, ',		
\cdots		
, 11.1		
, $11 \begin{aligned} & 1 \\ & 1\end{aligned}$		
. 1.11		
, ', ',		
- 1.1.		
- '1, 1		
, ', ', 1		
Nos		
- $\cdot 1$.		
H.1.1.		
	-	

AREA G CORE 9

CAUISE: 1959. SOMIC DEPTH, UNGORRECTEDI 250 fins, COREA: 300 ib. Gravity Hydroplastie
APPROX. CORER PENETRAFION: 84 IN . CORE: 54 in . LONG, OIAM. 3.10 in .

AREA G CORE 11													
GRUISE: $\quad 1959$. SONIC DEPTH, UNCORRECTED, 250 fms , CORER: 300 lb. Gravity Hydroplastic													
APPROX. CORER PENETRATION: 84 IN. CORE: 43 in. LONG, DIAM. 3.1													
SAMPLE NUMEER		1	2	3	4	5	6	7	8	9	10	11.	12
DISTANCE FROM TOP OF CORE, in		-4	$4-3$	S-12	12-1	10-2i	2-2\%	$24-2 i 3$	28-32	32-36	36-40	40-44	$44-45.6$
WET UNIT WEIGHT	$16+t^{-3}$	85.1	83.7	B2.	32.9	33.7	35.1	85.	83.0	35.3	35.1	37.2	89.6
	g cm-3	1.33	1.3 3	1.32	1.33	1.34	1.36	1.36	1.34	1.35	1.38	1.40	1.44
SPECIFIC GRAVITY OF SOLIDS		-	-	-	-	-	-	-	-	--	-	-	-
WATER CONTENT, \% DRY WEIGHT		136.30	145.70	157.8	150.80	148.80	142.00	143.43	147.2	135.93)	133.30	124.6	116.70
VOIO RATIO	DETERMINEO IN LAB.	-	-	-	-	-	-	-	-	-	-	-	-
	AT 100% SATURATION	-	-	-	\sim	-	-	$-$	-	-	-	-	-
POROSITY, \%		-	-	-	-	-	-	\cdots	-	-	-	-	\cdots
SATURATION \%		-	-	$-$	-	-	\sim	-	-	$-$	-	-	-
LIQUIO LIMIT		-	-	-	-	-	-	-	-	-	-	-	-
FLASTIC LIMIT		-	-	-	-	-	-	-	-	-	\rightarrow	-	-
LIQUIDITY INDEX, \%		-	-	-	-	-	-	-	-	-	-	-	\checkmark
PLASTIGITY INDEX		-	-	-	-	-	\cdots	-	-	-	-	-	-
COMPRESSION INDEX	FROM LL	-	-	-	-	-	-	-	-	-	-	-	-
	FROPA elog P	-	-	-	-	-	-	-	-	-	-	-	-
SLUMP, \%		-	\sim	-	-	-	-	-	-	-	-	-	-
COMPRESSIVE STRENGTH	"UNDISTURAEQ", PSi	-	-	-	$=$	-	-	-	-	-	-	-	-
	OLDED, PSi	-	-	-	-	-	-	-	-	-	\checkmark	-	-
REMOLOING SENSITIVITY		-	-	-	-	-	-	-	-	-	-	-	$\stackrel{\square}{-}$
COHESION		-	-	--	-	-	-	\cdots	-	-	-	-	-
		-	-	-	-	-	-	-	-	$-$	-	-	$-$
ACTIVITY		-	-	-	-	-	-	-	-	-	-	-	-
MODULUS OF ELASTICITY, PSi		-	-	-	-	-	-	-	-	-	-	-	-
GRAIN MEDIAN DIA.	phi	0.1	6.3	2.3	9.6	0.5	$0 .+$	2.1	\%..	2.2	9.1	2.4	2.3
	microns	1.6	1.5	1.0	1.3	1.4	1.5	1.8	2.3	1.7	1.3	$\underline{1.5}$	1..
SAND, $\%>60 \mu<2 \mathrm{~mm}$		2	1	1	1	1	1	2	2	2	2	2	3
SILT, $\%>2 \mu<60 \mu$		'+í	4	45	43	$\underline{+1}$	44	46	45	45	46	45	4
CLAY, \% < 2μ		52	33	54	55	55	55	$\overline{32}$	40	53	52	33	33
SEDIMENT TYPE							111% Cl	1:					

AREA I CORE 22
CRUISE: 1959. SONIC DEPTM, UNGOARECTEO, 2300 fms. CORER: 1200 lb P1aton Eving
appaox. Corer penetration, a.L. in. core: 203 in. LONG, diam. 2.5 in.

OISTANCE FROM TOP OF CORE, in		1	2	3	4	5	6		8 -	9	10	II	12	13	14	15	16	17	18	19	20	21	2	23	24	25	26		28								
		0-12	12-14	14-16	16-18	18-20	20-22	23.7	${ }_{25}^{24}{ }^{24}$	${ }_{26.7}^{25}$	${ }_{\text {27.7- }}^{28}$	${ }_{2}^{27.7-}$	$\begin{aligned} & 29.7 \\ & 30.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 30.5-1 \\ 31.5 \end{array}$	$\begin{aligned} & 31.5- \\ & 32.5 \end{aligned}$	$\begin{aligned} & 32.5- \\ & 34.5 \end{aligned}$	34.5- 35.5	${ }_{37.5-}^{35-5}$	37.5-	${ }^{39.5-}$	41.5	43.5-	45.2-	47.2-	49.2-	51.2-	53.2	[55.2-	${ }_{58}^{56} 7$	58.7-	60.7	${ }^{62} \times 2$	$\frac{32}{4.7}$	65.7-	68.2-		
WET UNIT WEIGMT SPELIFIC GAAVITY	$16.7{ }^{-13}$	-	88.	88.4	88.3	ē̄. 1	38.6	-	88.9	-	- 88.6	88.3	-	88.9	${ }^{88}$	-	90.6	89.6			43.5	45,2.	47.2	49.2		53.2	55.2	56.7	58.7				$65: 7$	68.2		72.	
	$\underline{\mathrm{cm}}{ }^{-3}$	-	1.44	1.42	1.41	1.41	1.42		1.42			1.4		1.42			1.45	1.4					88.3	87.6	88.6	88.8	83.6	-	89.0	88.2	88.9	88.6		88.6	89.5		
	SPECIFIC GRAVITY OF SOLIOS		-	2.830	2.714	2.713	2.78 ?	2.724	2.327	2.897	2.887	$\underline{2.287}$	$\frac{1}{2.657}$	2.887	2, 3 B ${ }^{\text {a }}$	${ }^{2.56} 7$	2.887	2.45	- 2.736	${ }^{2} 2.821$	2.4.7.		2.854	$\frac{1.41}{2.782}$	$\begin{array}{r} 1,40 \\ 2.832 \end{array}$	$\frac{1.42}{2.840}$	2. 2.42	$\frac{1.42}{2.790}$. 840	1.43	1.421	-1.42	1.42	. 3.	1.489	1, 43	-
			.	${ }^{115.832}$	17.72	129.92	231,23	47.89	13.6	121.59	$\underline{12.6}$	122.3	121.3	118.(9)	118.9	피․5	115.96	110.09	114.63	121.03	188.3	122.	120.28	118.9	121.24	$\frac{120.8}{2}$	19.96	119.70	220.92	${ }^{120} 0.20$	2.76.60	2.009	2.245	2.848	2.858	2.859	
VOIO RATIO DETERAINED IN LAB. AT IOO SATURATION		-	3.332	3.183	3.217	3.353	3.179	-	3.490	-	3.530	3.513	-	3.4.5.	3.45	-	3.179	3.091	3.386	3.273	3.460	-	3.304	3.477	3.415	3.353	3.331	.	3.370	3.231	3.319	3.450	$\underline{4}$	$\frac{1}{3.426}$	$\frac{1}{3.278}$		
		-	3.307	3.10	3.245	3.373	3.211	-	3.55	-	$\frac{3.530}{770}$	3.50	-	3.435	3.423	-	3.179	3.136	3.424	3.30.	3.459		3.310	3.453	3.433	3.37	3.351	-	3.401	3.212	3.343	3.473	-	3.426	3.278	3.45	
$\text { POROSITY, } 90$		-	70.8	100+	76.3	T ${ }^{\text {T }}$	200				77.	90, ${ }^{\text {a }}$		77.5 9.7	71.9		$\frac{75.1}{100}$	75.6.	7.2	76.6	71.9		76.8	T. 3	7.4	7.0	76.9	-	77.1	76.4	76.8	7.5	-	77.4	76.6	77.5	
$\text { SATUAATION, } \%$		-	-	-				-		-				99.1.		-	100	$100+$	$100+$	$100+$	1004	$=$	$100+$	99.3	$100+$	$1100+$	$200+$		$100+$	99.4	$100+$	$200+$		100	200	10	
$\frac{\text { LlQulo Lluit }}{\text { PLastic Limit }}$		-	-	-	-		-	-	-	-		-		-		-		-							-	-	-	\div	-	-		-	-	-	-	-	
LiquIDity INOEX, \%		-	-	-	-	-	-	-		-		-	-						\cdots	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
plasticity inoex		$\frac{-}{2}$	-	$-$	-	-	-	\div		-		-					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
COMPRESSION INDEX	FROM eloge	-	-	-	-				-	-			-	-	-	-	-	二	-	-															-	-	
Stump.\%		-	2.53	-	3.7	-	2. 63	-	-	-	-	-	-		-			3.51	-	0	.	-	3.94		2.12	.	2.7			8.26	\cdots	-		-	-		
		-	1.22				${ }^{1.14}$								-		-	1.50	-	1.3	-	-	1.29		$\frac{2.2}{1.35}$	-	2.73	-		8.26	$\frac{3.74}{1.29}$		-	-	$\stackrel{-}{-}$		
				-						-					-		-		-	0.5	-	-	0.58	-	\bigcirc	-	0.5	-	\div		1.29	-	\bigcirc	\cdots	$\stackrel{-}{-}$	\div	
		-	0.2	1.			2.57					-						0.7		2.4			2.0	-		-		-			0.6			$=$			
		-	42.8		43.		4	.										52.7	-	46.4			4, 4.5	-	47.8	-	4.4		$-$	4	${ }^{0.65}$		-	-	-		
$\begin{aligned} & \text { ACTIVITY } \\ & \text { MOOULUS OF ELASTICITY, PSI } \end{aligned}$		-	-	-	-							-	-		$=$	-	-	-			-	-	,	-	-	-		-	-		-	-	-		-	-	
		-	$\stackrel{\square}{\square}$:	\bigcirc			-	-	-		-	-	-	-			12?	\cdots	0		-	0		0	-	10.	-	-	8.4	\bigcirc	-	-	\because	-	-	
		Greas	5-tay	12	2l3 5																																
5an0, $\%$ \% $>60 \mu<2 \mathrm{~mm}$									tr	tr.	$\underline{\text { tr }}$	r	tr							0	0	0					0	0	0		0						
																								36		37	33	35	33	34	35	33		-	-	-	
												-	-			-	-	63	67	65	67	61	66	64	66	63	67	65	67	64	65	67		-	-	\cdots	
																Sill	clay																				

	$-$,	,	-		-		-	\cdots		,	-	I	-	-	0.62	-	0.34				-	0.51		-	10.44	-		0.38		-	-	
	$-$		${ }^{+1.3} 3^{3}-$	良. 1	-	${ }^{29.8}$	--	-		\because	-	-			\cdots	-	43.7	-	23.6	17.6	-	21.0	-	135.8	-	-	31.2	-	-	26.2	\cdots	-	\cdots	\cdots
	-	-	8,2 -	$\stackrel{\square}{\square}$			\because	$=$	-	\because	\cdots	\because	\because	\because	\because	-	$\underline{0.16}$	$-$	-	-	-	-	-	-0.32	-	-	0.02	-	-	-	-	-	-	-
														-	-		3.8	-	-	-	\cdots	-	-	1.6	-	-	28.5	.	-	\therefore	-	-	-	-
							.		-									-																
																-	I																	
										-		-			-	--	-	--			-	---	-											

AREA E CORE 12 （contimead）
 APPROX．GOREA PEMETGATIOM，D．d．im．COBE： 203 in．LONG， 0.14 m ． 2.5 in ．

 Bo

SAMple mumber	36	3	38	39	40	4	4.	43	4.	45.	46	47	L 43	49	50	51	32.	57	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70
Oistance fron top or core，n	${ }^{72} 5$	${ }_{76} 7.7$	${ }_{78.7}^{76.7-}$	${ }^{78.78}$	${ }_{8}^{80.7-}$	${ }^{82.7-7}$	${ }_{86.7}{ }^{34 .}$		${ }^{88.7-7}$	90．7－	32．7－		¢ 98.7	${ }^{90.7-}$	120．2．	－ 202.2 －	204．21	16．2	208．2	1212.2	$\frac{121}{12}-\frac{11}{21}$	$\frac{1.146}{1015}$	176	${ }_{20} 18$	－		${ }^{124}{ }^{21}{ }^{-}$	$\frac{128}{129}$	${ }_{129.2}^{128}$	120．2	${ }^{1313}{ }^{131}$		235．5	237.5	141.2
			－	889	88.9	88.6	88.0	88.8	39.2	89.2	39.1	89．2	89.1		39.4	89.1	39.2	36.3	\＄9．5．		86， 8	88.6	88.3	88.6	91.2	9	39.9	89.1	－	89.2	89.0	88.8	88.2	28.7	
WET UNIT WEIGHP ${ }^{\text {gem－3 }}$					1．42		1.42	1.42	1.43	2.41	1.43	2.43	1.43					． 4	1.43		1.39	1．42		1，42		1.4		2.43				，		1．4 ${ }^{2}$	
Specific ogavity of solios	2.856	2.856	2，808	2.812	2.883	2．797	2.84	2.723	2．785	3．789	2.75	2.720	2.752	2.783			23	2．23	2.763	$\underline{2.768}$	2.731	2.223				2，800	2.807	2.775	2.725	2．843			2.79	2．863	
MATER CONTENT，\％ORY MEIGMT	121.95	18．13		121．78	1220.27	120， 89	116.56	120， 17	123．9	足	\＄7．79	12538	114.4	12.1	127.9	123.85	$1: 3.24$	12， 5	124．24	2．99，40	121.77	120．89	1120.54	121．39	105.67	2120．08	129.39	217．769	213.68	129.92	155．86	122.19	121.5	12227	15.8
voio matio ofteraineo in lab．	3． 483	3.374	－	3，202	3．354	3．394	1．3945	3．401	3． 366	3．261	3.254	3.120	3.256	－	3.232	3．337	2.975	3．2．3	3．124		3，371	3，390	3.396	1．356	3．046	3.053	3.275	3.230	－		3.21	3．3	3．38		
			－	3，312	3， 393	3， 331	3．316	3.272	3.151	3．24	3.268	$\frac{3.146}{76}$	150	－	3.3	3.18		3.11	3.15		3.339	3.412	3.40	3.391		3.10	3.351			3.409	3．2				
5atuaation．\％	100	1.	－	$\xrightarrow{100+1}$	$\frac{100+}{100}$	17.0	99，	${ }^{100}+$	150	99．2	$\xrightarrow{100+}$	100＋	100＋	－	$\frac{100+}{10+}$	$100+$	150＋	150			$\frac{7.2}{98.9}$	T 7.2	T7．2	700＋	${ }^{75.3}$	750．		100．		$100+$	$\stackrel{1504}{100}$	${ }^{100 .}$	700＋	100＋	
Liquio Likit	－	$=$					－									－	－			－	－	－													
Plastic Limit	－	－			．	－	－	．	．	－	－	－	－	－	－	．	－		－	－	\cdots	－	－	－	－	－		－						－	
Liquioity InOEX，\％o	－	－			－	－	－	－	．	－	－	－	－	$=$	－	－	．	－	－	$-$	$=$	－	－			－					－				
PLASTICITY INOEX	－				－		－	：	－	－		－	－			\bigcirc			－	\div				\div		－	－	－	－	－	－	－	－	－	
COMPRESSION NDEX FROM $^{\text {Floge }}$	－	－	－	－		－	－	－	－	－	－	－	－	－	－	－				．	．	－				－	－	－	－	－		－		－	
Stump，\％	－	－		－	5.15	－	6.57	$=$	1.52	－	3.08		7.07	－	5	－	3.21		1.3		－	4.75		2.83	－	0	－	0		－	2.12		3.	－	
（e）	－			：	1.18	－	1.28	$=$	2．28	．	1，29	－	1.34	－	1.36				1.41	－		1.24				2,3		2.4						．	
Remoling semsitivity	－	－		，	\bigcirc	\cdots	$\frac{0.51}{2.4}$	－	0.66				55	－	－								－		－	$\frac{0.8}{2.7}$	－		－	－		－	2，47	－	
conesion Psi					0.5	－					0.65			－	8.58	，		．	c． 71	－	－	0.62		0.5	．										
O－ $\mathrm{gcm}^{\circ} \mathrm{z}$	－	－	－	－	41.	$-$	42.	－	45.0	－	45.7	－	47.2	－	47.8	－	－17．3	－	49.9	－	．	43.6	－	4.	$=$	${ }^{33.7}$		55.5		．	46.4	．	${ }^{36}$ ．		
$\frac{\text { activity }}{\text { Mosulus of Elasticity，Psi }}$	$=$	－																									－								
隹		der that			${ }_{\text {miles }}$	－	．	－	\bigcirc	$=$	32.	．	0	．	10.1	－	3.3	$=$	13.	－	－	2.2	－	4.9		35.	－	0	－	－	0		，		
graim neoiam orat mictions	Leas	trach	fer a																																
					\bigcirc		\bigcirc	－	0		r	tr_{2}		tr．				\because	\bigcirc	－	\bigcirc	$=$	\bigcirc	－	\bigcirc	－	0	－	0	－	\bigcirc	－	\bigcirc	－	
SLIT，\％$\quad 22 \mu \leq 80 \mu$	$=$	－	\div	$:$	${ }_{65}{ }^{3}$	\div	${ }^{36}$	－	35	－	${ }^{3}{ }^{3}$	\div	${ }_{5} 3_{5}$	三	${ }_{66}$	\because	${ }^{3}$	\cdots	${ }^{3}$	－	${ }^{34}$	\div	${ }^{34}$	－	$\frac{36}{54}$	－	${ }_{5}^{24}$	－	$\frac{33}{57}$	－	$\frac{34}{60}$	－	${ }_{66}$	－	
SEOImENT TYPE																																			
				I	－	0，47	－	2.35	－	2.43	－	1.4	．		．				－	C．L6	－						3.56			0.3		． 2			
Siear＂undisturied，gem－2	－			112．		－33．3	－	． 24.3		30.4	－	12.3				35.2		z		33.0	$=$	－	15．0	－	4 4， 6	－	39.2	－	$=$			25.7	－	22.	2.7
俍	\cdots			5.4			－		－			0.0										－	${ }^{0} .05$	－	\div	－	6.2			${ }_{\text {c．} 3.4}^{1.4}$	－				
								2				S．									$=$	－	4.1												

-AREA I EDRE 12 (Comtinued) 																																	
5AMPRE MUMERER OISTAWCE FROM TOP OF GDRE, in	T.	32	73.	74	75	95	7	75	75	6.	c_{2}	82	83	84	85	86	87	88	69		4	9	93	94	95	26	g7	98	92	200	120	102	
	- 14.42	C4i.2.	144.2-	147.2 149.2	${ }^{259}$ 2-	$\begin{gathered} -151- \\ 253 \\ \hline \end{gathered}$	$\begin{aligned} & 155- \\ & 155 \end{aligned}$	$\begin{aligned} & 2550 \\ & 357 \end{aligned}$	$\begin{array}{\|l\|l\|} \frac{257-}{25 r} \end{array}$	$\left.\right\|_{1 \in 2} ^{13 k}$	$\frac{3612}{165}$	${ }^{165}$	${ }_{157}^{25}$	${ }_{269}^{267-}$	${ }_{172}^{265}$	${ }_{272}^{172}$	1727.7	${ }^{175}$	${ }^{275}$	${ }_{179}^{178}$	279-	$281-$	283-	284.7	186.7	128.7-	190.7	192.7	294.7-	296.5-	198.5	200.5	
	$85 \cdot$	88.7	88.7	837		68.9	86:	af		5	\%											283	184.	185.7	183, 3	2007	2927	294	5	108.5	200.5	202.5	
			2, 4,2	1.42		1.42			2, ${ }^{2}$		2.45		$\frac{1.43}{}$	- 0	80,	$=$	-	8, 1	88.0	88.8	-8.6	89.	-	88.9	88.9	88,8	89,8	88.7	-	88.6	88.2	89.0	-.
SPE CIFIC GRAVITY OF SOLIDE WATEA CONTENT, Q DRY WEIOMT	2.750	2,732	2.73	$\underline{2-727}$	2.253	2.5	2,725		$2=$	5	${ }_{2}^{2} .45$		$\frac{2.43}{2.725}$	$\frac{1.42}{2.225}$	$\frac{1.45}{2.26}$	2.794	-	$\frac{12,43}{2.35}$	$\frac{2.42}{2.818}$	$\frac{1.42}{2.755}$	2, 230	$\frac{1.43}{283}$	2.833	$\frac{1.42}{767}$	2.42	3. 42	1.42	1.42		2.42	2.41	1.43	
	-114.56	$\underline{115.81}$	220.47	2 $24 . c \mid$	212.5	280. 6.5	$\underline{125.25}$	2,	122.08	1-5.	24.08	212. 4	23.12	$\frac{3.23}{312}$	214.26	$\frac{3}{13.54}$	-	$\frac{2.738}{214 .}$	2.217 .95	2176.65	2730	28.83	2.833	2.767	2.722	2.725	2.731	2.751	2.758	2.732	12753	2.836	2.718
VOID ARTIO DETEMWINEE IN LAE.	3.255	3, 2140	5.653	3.210	-	3.354	3.212	动怯	3.38		3.2\%	3,538	3, 728	3.5	3 n 357	-	-	3.246	3.312	3.224	3.122	3.337	1.	3.253	3.008	3.205	3.155	3.293			+ 3.234	13, 365	
	140	3.163	3.2	5.122	$=$	3.357	3.23	3, 5	3.	1 M	3.25?	3, 6.5	3.58	3.25]	3,35	$=$	-	3, 2,52	3, 34	3.233	3.285	3,349	-	3.153	3.113	3.140	3.281	3,207	$=$	3.320	3.232	3.393	
POROSITY, Y\% SATURATION \%	35.	75.6.	76.5	75.7	$=$	75.02	76.	$7{ }^{7}$	-	75.?	75.5	-5.3	75.5	35,4	75.3	\because	-	T5. 2	76.8	76,	757	36-9	-	75.9	75.6	75,6	75.9	76.2	-	76, 7	76.4	7\%2	
	220	$\stackrel{200}{ }$	$\underline{1007}$	$\underline{102}$		$\underline{120}$	$\underline{120}$	$\underline{-}$	$120+$	2	3004	200+	1,	$302+$	1004			1005	100t	3004	1004	3004		100	200. +	1004	$100 \pm$	$100+$		200+	99.9	200+	
CiSUID LIETT,	-	.	-	-	$=$	-	-	-	-	\square	-	-	-	-	-	-	\div	-	\cdots	\div	-		$\overline{-}$	\cdots		\cdots		-			\bigcirc	\cdots	\cdots
PLASTIT LIMIT	-	-	-	$-$	-	\cdots	$-$	$=$	-	-	-	-	-	-		$\underline{-}$					-	-	\cdots	\div				-	\cdots	-	-	-	
PLASTICITY INDEX	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	$+$	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
$\begin{array}{\|c\|c\|} \hline \text { Comeression racex } & \text { FROM Lu } \\ \hline \text { FROM THOg P } \\ \hline \end{array}$	-	$=$	-	-	-	-	-	-	-	-	.	-	-	-	-	\cdots	-	-	-	$=$	-	-	-	-	-	-	-	-	$-$	-	\square	\square	
	\cdots	$=$	-	-	-	-	-	\cdots	-	\bigcirc	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	$-$	-	-	-	\cdots
	1.72	$=$	2.53	-	-	2.02	-	1.31	-	1.52	-	1.72	-	2.32.	-	-	-	0	-	2.53	\bigcirc	0.02	-	-	3.01	-	0.91	-	-	-	3.4	-	-
	1.22	-	1.35	$=$	-	1.30	-	$\underline{2.28}$	-	1.40	-	2.53	-	2.26	-	-	-	2.28	-	1.21													
Remolomis Sensitivity		$=$	0.56	-		${ }^{-178}$	\cdots		-	0.64	-	2.	-	$\underline{0.59}$		-	\cdots	$\frac{1.27}{0.77}$	-	1.21	-	$\underline{1.35}$	$=$	$=$	2.36 0.67	$=$	$\underline{3.24}$	-	-	-	0.50	-	
$\text { conesion } \frac{\mathrm{PSI}}{\mathrm{SCO}-8}$	-	-	2.43	-	-	1. 67	-	-	$=$	2.19	-	\cdots	-	2.17	-	-	-	2.66	\cdots		$\overline{-}$	2.0	-	+	$\frac{0.67}{2.0}$	$=$		-	-		$\frac{0.59}{1.7}$		
	c. 61	$=$	0.68	$=$	-	0.65	-	0.64	\sim	8.72	-	0.35		-0.63			-	2,64		0251	-	0.65	-	-	0.68		0,62	\because			0.19		
MOTIVTY OL ELESTETTY, PSi	24.39	-	$\frac{17.8}{0}$	-	-	45.7	-	$\frac{46,4}{0}$	-	$\frac{49.2}{0}$	-	$\frac{52.2}{0}$	-	4	\div	\cdots	-	45.0	-	42.0	-	45.7	-	-	42.8	$=$	43.6	-	$=$	-	33.0	-	
oran vediar dia. $\frac{\text { phi }}{\text { mictons }}$	Greste											0	.	-	\because	$=$	-	4.8.	-	0	-	0	-		0	-	0	-	$=$	-	0	$-$	
	Les6	hand 1	or al	58																													
	-	tr,	tr.	tr.	tr.	t	-	c	$=$	\bigcirc	-	-	-	0	-	0.	-	$=$	0	$=$	\bigcirc	-	\$r.	tr.	tr.	tr.	tr.	-	0	-	0	-	$=$
SILT, $\%>2, \mu<60 \mu$ CLAY, $\%<2 \mu$ EEDIMEMT TYPE	-	33	-	- 34	-	37	-	$\frac{35}{65}$	-	35	-	35			$=$				3		35	-	3	-	34		33	-	35		34	-	$-$
		C2ey	$=$		-		\cdots	E		65	-	62	-	65		65	-	-	5	$=$	65	-	64	-	66	-	63	-	65	-	6	-	
	-	-0.62	-	0,40	0,33	-	0, 42	-	2, 63	-	0.33	-	0.35	-	0.46	0.29	$=$	-	C, 42	$=$	0,35	-	2.31	0.8	-	0.52	-	0.53	0.43	0.27		0.82	
	-	43.0	-	27.8	23.1	-	$3 \cdot 5$	-	44,6	-	23.2	-	24.8		32.2	20.6	\cdots	$=$	20.5	-	26. 2	-	21.9	8.5	-	\$6.6.		3515	30.4.	18.9		15.5	
		-	=	-	-	-		-	0.28		-	-	-		$=$	-					-		-	0.06	-	$-$	-	10.71	-	\cdots	\square	-	-
	-	-	-	-	-	-	-	-	3.5	-	$=$	-	-	-	\square	$=$	-	-	-	-	-	-	-	7.0	-	-	-	$3-1$	-	-	-	-	

AREA M CORE I3
D.A. IM. COFE: 56 in. LONG, DIAM. 2.875 in

SAMPLE MUMEER	1	2	3	,	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19.	20	21	22	23	24	25	26	27
DISTANCE FROM TOP OF CORE, M		$\begin{aligned} & 6.5- \\ & 8.5 \end{aligned}$	$\begin{aligned} & 8.5= \\ & 10.5 \end{aligned}$	$\begin{aligned} & 10.5- \\ & 12 \end{aligned}$	12-34	14-16	16-18	18-20	20-22	22	$\begin{aligned} & 22.2- \\ & 24.2 \end{aligned}$	$\begin{aligned} & 24.2- \\ & 26.2 \end{aligned}$	$\begin{aligned} & 26.2- \\ & 28.2 \end{aligned}$	$\begin{aligned} & 28.22 \\ & 30.2 \end{aligned}$	$\begin{aligned} & 30.2- \\ & 32.2 \end{aligned}$	$\begin{aligned} & 32.2- \\ & 34.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 34.7- \\ & 36.7 \end{aligned}$	$\begin{array}{r} 36.74 \\ 38.7 \end{array}$	${ }_{41}^{38.7-}$	$\begin{aligned} & 410 \\ & 42.5 \end{aligned}$	$\begin{array}{r} 42.5= \\ 44.5 \end{array}$	$\begin{aligned} & 4.5= \\ & 46.5 \end{aligned}$	$\begin{aligned} & 46.50 \\ & 48.5 \end{aligned}$	$\begin{aligned} & 48.50 \\ & 50.5 \end{aligned}$	$\begin{aligned} & 50.5-1 \\ & 52.5 \end{aligned}$	$\begin{gathered} 52.5= \\ 54.5 \end{gathered}$	$\begin{aligned} & 54.5- \\ & 56.5 \\ & \hline \end{aligned}$
16 ¢ 4^{-3}	-	87.3	87.4	-	88,5	89.5	89.9	89.5	88.9	\cdots	88.5	89.5	88.8	88.4	87.9	88.0	86.2	86.8	87.4	-	88.6	88.2	88.4	89.0	88.6	89.0	89.5
gcm^{-3}	-	1.40	1.40	$-$	1.42	1.43	1. 4	1.43	1.42	-	2. 42	1.43	1.42	7.42	1.42	1.43	1.38	1.39	1.40	-	1.42	2.42	1.42	2.43	1.42	1.43	12.43
SPECIFIC GRQVITY OF SOLIOS	2.792	12.77	2.7701	2.820	2.800		-	$2.77^{\text {b }}$	2.801	-	2.868	2.858	12.830	2.824	2.760	2π	2.757	2.861	2.754	2.872	2.783	2.695	2.747	2.825	2.780	2.740	12.848
WKTER CONTENT, \% DPY WEİMT		1376	220.03	26.88	137,50	212.73	223.28	215.22	2364	113,20	1216.83	016.36	1219.25	129.16	121.21	123.63	127.06	129,10	$12^{4}, 25$	118.70	115, 67	126.04	127.10	215,45	218.64	123,45	1120.89
VOID RATIO DETERMINED IN LAB.	-	13.459	[3,4931	-	13.294	3.127	1-	3.264	13.254		+3.387	3.323	13.359	3,336	- 3.337	3.403	3,550	13.711	3.408		3.282	3.135	3.208	3,252	3.283	-3.10	3.188-1
VIo Ratio at 100% SATURATION	-	13.528	2. 219	-	3.290	3.27	-	13.296	3.261	-	3.351	3.325	3.372	3.341	3.346	3.433	3.528	3.694	3.422	-	3.214	3.152	3.227	3.250	3.298	3.108	3.258
POROSITY, \%	-	77.8	7T. 8	-	76.7	75.8	-	76.9	76,5	-	71.2	76.8	7.1	76.2	76.9	T7. 3	78.0	78.8	71,3		76.3	75.8	76.2	76.5	76,7	75.6	76.1
SATUAATIO\% \%	-	1300	$100+$	-	99.9	$1100+$	-	100.	$100+$	-	98.9	$10 \mathrm{C}+$	$100+$	$100+$	$100+$	$100+$	99.4	99.5	$100+$	-	99.7	$100+$	$100+$	99.9	$100 \pm$	$100+$	99.1
Liquid Linit	-	-	-	-	-	-	-	-	-	-		$=$	-		-	-	-	-	-	-	,	.	-	\cdots	-		
-LASTICLichit	-	-	-	-	-	-	-	-	-	-	-				-	-	*	-	-	-	-	-	-	-	-	-	
LIQUIDITY Index\%	-	-	-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	$=$	*	-	-		
PLASTIGITY IMDEX	-	-	-	-	-	-	-	-	-	-	.	-	-		-	-	-	-	-	-	-	-	-	-	-	-	
COMPRESSION INDEX FROM 12	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	+	-	\pm	-	-	.
FRDM elogp	\cdots	-	-	-	-	-	-	-	-	-				$=$			-	-	-	-	$=$	-	-	-	-	-	
SLUMP.\%			$16 ?$		0		0.		1.52			0	0	0	0.7	0	0	-	1.52	-	0	0	0,20	1.82	2.08	1.32	2.
COMPRESSIVE PUNPISTURBER: PSI	-		2.09	-	3.62		3,70:	-	2.74			4×20	3, 66	3.30	2.90	3.92	2.50	-	2.50	$=$	2.55	2. 72	2.66	2.51	2.56	2.98	3.
STREMGTN REMOLDED, PSI	-	-	-	-	.	-	-	-	0.81	\cdots		-	0.92	-	0.63	-	0.51	-	-	-	0.47	-		0.45	-		
REMOLDING SENSITIVITY	-	$\stackrel{ }{ }$	-	-	-	-		-	3.4			-	4.2	-	4.8	-	4.9	-	$=$	-	5.4	-	-	5.6	-		
COMESION PSI	-	-	1.04	-	1.81	-	2.85		1,37	-		2.10	2.93	1.65	2.45	1.49	2.25		3.25		2.28	1.36	1.33	1.26	1.28	2.49	2.6
砤-2	-	-	73.11	-	127.3	-	130.1	-	26.3	-	-	247.6	135.7	126.0	102.0	104.8	87.2	-	87.9	-	90.0	9.6	93.5	88.6	190.0	124.8	215.3
activity																											
MODULUS OF ELASTICITY, PSI			26.91		79.2	-	72.7		30.3			223.6	89.8	39.7	27.7	60.2	21.4	-	28.6		36.5		42.8	32.2	29.8	29.2	18.6
grain median ois. $\frac{\text { Phi }}{\text { mictors }}$	Grea	ter tha	210%	8011	(amples																						
SAMC O $>50 \mathrm{c}$ - micions	Les	tran 1	zor	12																							
SAMC, $\%$ \% $>60 \mu<2 \mathrm{~mm}$	1				1		0				0	-		-					0		\bigcirc					-	
SILT, \% $\%$ >2 $\mu<80 \mu$	$\frac{34}{65}$	-	36	-	34		35		36		37	-	33	-	32	\cdots	36	$=$	41		39		38		38	$=$	39
CLAY, \% < 2μ	65	-	63	-	66	.	65	-	64		63.	-	67	-	67	\because	64	\because	59		61	-	62		61	-	60
SEDIMENT TYPE											S11ty	Clay															

 8
$\frac{8}{1}$
$\underset{y}{c}$
0
\dot{x}
\vdots
\vdots

INVESTIGATIONS OF DEEP-SEA SEDIMENT CORES, II. MASS PHYSICAL PROPERTIES, October 1962. 146 P., including 17 figf., 35 plates, 9 tables. (H. O. TR-106). The second of three Hydrogrophic Office reports describing results of on investigation of mass physical properties of 35 sediment cores collected from Hydrographic Office oceanogrophic ships in 1958 and 1959. This report discusses resulis of laboratory measurements of the mass physical properties of more than 700 somples including: grain size, specific grovity of solids, wet unit weight, water content, void ratio, porewater saturation, liquid and plastic limits, and compressive and/or vone shear strength. Aiso computed were porosity, liquidity index, plostic index, cahesion, sensitivity, attivity, ond modulus of elaticity. Appendix A contairs o discussion of solinity correction for specific grovity meosurements. Appendix B contairs data tables for 35 eares

 U. S. Navy Hydrographic Office
INVESTIGATIONS OF DEEP-SEA SEDIMENT
CORES, II. MASS PHYSICAL PROPERTIES,
Oetobe 1962 . 146 p., including 17 fige., 35
plates, 9 tables. (H. O. TR-106).

The second of three Hydrographic Office reports describing results of an investigation of mass physical Hydrogrophic Office oceanographic ships in 1958
and 1959.

This report discusses results of laboratory measurements of the mass physical properties of niore thon
700 samples including: grain size, specific grovity of solids, wet unit weight, water content, void ratio, porearoter saturation, liquid and plastic limits, and
compressive and/ar vane shear strength. Also computed were porosity, liquidity index, plostic index, puted were porosity, liquidity index, plastic index,
cohesion, gensitivity, activity, and modulus of
desticity. Appendix A contoins a discusston of solinity Appendix B contoins dato tables for 35 cores
. Bottom Sediments-mass physical

Westem Mediterroneon Seo -
bottom sediments
Centrol Pocific - bettom sediments Ships - USS SAN PABLO
Ships - USS REHOBOTH

Title: Investigotions of Deep-Sed Sediment Cores, II, Mass
Physicol Properties. Author: Adian F. Richards
H. O. Tk̃-106

1. Bettom Sedimanta - was physicol Mropesties Nerth Aflantic Ocean - betion Eediments Westen Meditertonean Sea Centrol Pracific - botrom sediments
Ships - USS SAN PABEO Shipe - USS REHOBOTH Title: Investipotions of Deep-Seo Physical Properties. Aurtor: Adian F. Richerchs iii. H.O. TR-106
U. S. Noy Hydrogrophic Office INVESTIGATIONS OF DEEP-SEA SEDIMENT
CORES, II. MASS PHYSICAL PROPERTIES, Octobe 1962 . 146 p., including 17 figs., 35
plates, 9 tables. ($\mathrm{H} . \mathrm{O}$. TR- 306).

The second of three Hydrogrophic Office reports
describing results of an investigotion of mos physica! describing results of an investigotion of mass physical
popperties of 35 sediment cores coiliected from
Hy yrographic Office oceamogrophic ships in 1958 and 1959.

This report discuuses results of laboratory mecsure-
 of solids, wet unit weight, wata, contrent, void rotio, pore-woter soturation, liquid ond plostic limits, and
compressive ond/a vane heer simeth Alis comcompressive ond/ar vane sheor strength. Aiso com-
puted were porosity; liquidity index, plastic index, puted were porosity, liquidity index, plastic index,
cohession, sensifivity, activity, and modulus of
elaticity

Appendix A contains a discussion of sol inity
orfection for specific grovity meessurements.
Appendix B contrirs deta tables for 35 cores
(2)

[^0]: * Author is presently a member of the staff of Office of Naval Research Branch Office, American Embassy, London, England.

[^1]: Rario of volume of voids to the volume of solids.

[^2]: ${ }^{7}$ The liquidity index was computed for each sample having a measured water content. In most instances, the plastic limit and the plasticity index were usually averaged over several samples rather than determined on each sample because of small variability in the limits. Liquidity indices will be somewhat less than shown in Appendix B tables in the few instances where a marked decrease in water content occurs over the interval measured for liquid limit.
 ${ }^{8}$ A sediment deposit that has never been subjected to an effective pressure greater than the existing overburden pressure and one that is also completely consolidated by the existing overburden is normally consolidated (ASCE).

[^3]: ${ }^{9}$ An extremely important book by the American Society of Civil Engineers (1961) on its research conference on shear strength of cohesive sediments appeared after this report ' was written. Unfortunately, it has not been possible to incorporate recent results reported in this paper, except for a few instances, because other commitments upon my time precluded an opportunity to assimilate its contents.

[^4]: ${ }^{10}$ The number of moderated or slow neutrons detected per unit time is a measure of the concentration of hydrogen atoms that are contained in molecules of free water, assuming absence of organic material. A slow neutron count thus becomes a measure of the sedi $=$ ment water content.

[^5]: Determined at the Hydrographic Office.

[^6]: ${ }^{4}$ Predominantly quartz, feldspar, and mica.

[^7]: * Not seen.

[^8]: 12The definition of salinity is "the total amount of solid material in grams contained in one kilogram of sea water when all the carbonate has been converted to oxide, the bromine and iodine replaced by chlorine, and all organic matter completely oxidized" (Sverdrup, and others, 1946, p. 50). Salinity, in consequence, is not strictly speaking synonymous with salt content, although it is often used in synonymy.

[^9]:

