> UNIVERSITY OF ILINOIS LIBRARY
> AT UREANNACHAMPAIGN BOOKSTACKS

CENTRAL CIRCULATION BOOKSTACKS

The person charging this material is responsible for its renewal or its return to the library from which it was borrowed on or before the Latest Date stamped below. You may be charged a minimum fee of $\$ 75.00$ for each lost book.
Theft, mutilation, and underining of books are reasons for disciplinary action and may result in dismissai from the University.
TO RENEW CALL TELEPHONE CENTER, 333-8400
UNIVERSITY OF ILIINOIS LIBRARY AT URBANA-CHAMPAIGN

When renewing by phone, write new due date below previous due date.

L162

FACULTY THORKING PAPER NO. 1115

THE LIBRARY OF THE

UNVEPM 1 GF LAMOIS
URGANAMMAMEMGM

The Iterative Step in the Linear
Frogramming Algorithm of N. Kamarkar
Charies Blair

College of Commerot and Busiress Adrinistration Auraat of Encommic anci Eusibess Pesearch Unルニrsi*y of thmots. Irpana Champaign

BEBR

FACULTY WORKING PAPER NO. 1114
College of Commerce and Business Administration
University of Illinois at Urbana-Champaign
February, 1985

The Iterative Step in the Linear Programming Algorithm of N. Karmarkar

Charles Blair, Associate Professor Department of Business Administration

Digitized by the Internet Archive in 2011 with funding from University of Illinois Urbana-Champaign

```
The Iterative Step in the Linear Programming Algorithm
of N. Karmarkar
i)y (ami!) El=,r
Abstract
```

We simplify and strengthen the analysis of the improvement obtained in one step of Karmarkar's algorithm.

The recently published [1] algorithm of N. Karmarkar uses the following step:

Suppose $x=\left(a_{1}, \ldots a_{n}\right)>0$ is a feasible solution to the LP:

```
minimize cx
subject to }Ax=0,x\geq0, \sum\mp@subsup{x}{i}{}=
```

We will assume the optimal solution to (1) has objective function value ≤ 0, and that $c a>0$. We refer to $[1$, section 6] for proofs that a method of solving this type of problem yields a method of solving any LP.

Let $x=\left(z_{1}, \ldots z_{n}\right)$ be the optimal solution to

$$
\begin{equation*}
\min c\left(a_{1} x_{1}, \ldots a_{n} x_{n}\right) \tag{2}
\end{equation*}
$$

subject to $A\left(a_{1} x_{1}, \ldots, a_{n} x_{n}\right)=0, \sum x_{i}=1, \quad\left\|x-\left(\frac{1}{n}, \ldots \frac{1}{n}\right)\right\| a(n(n-1))^{-\frac{1}{2}}$
where $a<1$ is a parameter to be specified. [1, Theorem 5] shows that (2), which is a minimization of a linear objective function on a sphere, can be carried out using $O\left(n^{3}\right)$ operations.

The next feasible solution to (1) generated by the algorithm is $w=\gamma\left(a_{1} z_{1}, \ldots, a_{n} z_{n}\right)$ where the scalar γ is chosen so that $\Sigma w_{i}=1$.

Let $f(x)=(c x)^{n / \pi} x_{i}^{n}$ (this is the same as the potential function f in [1], except we do not use logarithms). To show that the new solution w is "better" than the previous solution, [1, Theorem 2] shows

Theorem 1: For some $k<1$ (dependent on $a) f(w) \leq k f(a)$.

Since $\sum x_{i}=1$ and $x_{i} \geq 0$ implies $\pi x_{i} \leq n^{-n}$, Theorem 1 implies that, if the optimal solution to (l) has objective function value zero and v is obtained from a after t iterations $(c v)^{n} \leq k^{t} n^{n} f(a)$. As indicated in [1], this property yields a polynomial-time algorithm.

In this note, we give a new proof of Theorem 1 , which gives a slightly better value of k and is more elementary in that logarithms are not used.

Lemma 2*: $\quad \sum c_{i} a_{i} z_{i} \leq n^{-1}(1-\alpha /(n-1)) \sum c_{i} a_{i}$.

Proof: Since the optimal solution to (1) is assumed to have value ≤ 0, there is $a u \geq 0$ satisfying $A\left(a_{1} u_{1}, \ldots, a_{n} u_{n}\right)=0, \sum u_{i}=1$, and $\sum c_{i} a_{i} u_{i} \leq 0$. Since $\| u-\left(\frac{1}{n}, \ldots \frac{1}{n}\right)^{2} \leq\left(1-\frac{1}{n}\right)^{2}+(n-1) n^{-2}=(n-1) n^{-1}$, and z is the optimal solution to (2), $\Sigma c_{i} a_{i}{ }^{2}{ }_{i}$ must be $\leq(1-\lambda)\left(\Sigma c_{i} a_{i} n^{-1}\right)+\lambda\left(\Sigma c_{i} a_{i} u_{i}\right) \leq(1-\lambda) n^{-1}\left(\Sigma c_{i} a_{i}\right)$, where $\lambda=\left(\alpha(n(n-1))^{-\frac{1}{2}}\right) /\left((n-1) n^{-1}\right)^{\frac{1}{2}}=\alpha / n-1$. Q.E.D.
*This is the same as [1, Theorem 3].

Lemma 3: If $Q>R>S>0$, then there exist $\varepsilon, \delta>0$ such that (i) $(Q-\varepsilon)^{2}+(R+\varepsilon+\delta)^{2}+(S-\delta)^{2}=Q^{2}+R^{2}+S^{2}$ and (ii) $(Q-\varepsilon)(R+\varepsilon+\delta)(S-\delta)<Q R S$.

Proof: For δ close to zero, there exists an ε close to zero such that (i) holds. Since $\frac{\varepsilon}{\delta} \rightarrow(R-S) /(Q-R)$ as $\delta \rightarrow 0$, $\operatorname{Lim} \frac{1}{\delta}(Q R S-(Q-\varepsilon)(R+\varepsilon+\delta)(S-\delta))=(Q R-Q S)+\left(S^{2}-R S\right)=(R-S)(Q-S)>0$. Q.E.D.

Lemma 4: If $Q>R>0$, then there exist $\varepsilon, \delta>0$ such that (i) $(Q-\varepsilon)^{2}+(R+\varepsilon+\delta)^{2}+(R-\delta)^{2}=Q^{2}+2 R^{2}$ and (ii) $(Q-\varepsilon)(R+\varepsilon+\delta)(R-\delta)<Q R^{2}$.

Proof: For δ close to zero, there exists ε close to zero such that (i) holds. Since Lim $\varepsilon \delta^{-2}=(Q-R)^{-1}$,
$\operatorname{Lim} \delta^{-2}\left(Q R^{2}-(Q-\varepsilon)(R+\varepsilon+\delta)(R-\delta)\right)=Q-R>0$. Q.E.D.

Lemma 5: If $\left\|x-\left(\frac{1}{n}, \ldots \frac{1}{n}\right)\right\|=\alpha(n(n-1))^{-\frac{1}{2}}$ and $\sum x_{i}=1$, then $\pi x_{i} \geq n^{-n}(1+\alpha /(n-1))^{n-1}(1-\alpha)$.

Proof: By continuity, there is an x^{*} which minimizes πx_{i} among those x which satisfy the assumptions. $\alpha<1$ implies $\left.x_{i}\right\rangle 0$ for all i, since $(n-1)\left(n^{-1}-(n-1)^{-1}\right)^{2}+n^{-2}=(n(n-1))^{-1}$. By Lemma 3, we cannot have $x_{i}^{*}>x_{j}^{*}>x_{k}^{*}$ for some i, j, k. (Note that $\Sigma x_{i}=1$ and $\Sigma x_{i}^{2}=\Sigma\left(x_{i}^{*}\right)^{2}$ imply $\left\|x-\left(\frac{1}{n}, \ldots \frac{1}{n}\right)\right\|=x^{*}-\left(\frac{1}{n}, \ldots \frac{1}{n}\right) \|$. ${ }^{n}$ Thus the components of x^{*} have two different values. By Lemma 4, there cannot be more than one component of x * having the smaller value. Thus x^{*} consists of $\mathrm{n}-1$ components with a larger value, and one component with a smaller value. This occurs only if $n-1$ components of x^{*} are $n^{-1}(1+\alpha /(n-1))$ and one component is $\mathrm{n}^{-1}(1-\alpha)$.
Q.E.D.

Theorem 6: If a is a feasible solution and w the next solution given by the algorithm

$$
\begin{equation*}
f(w) \leq(1-\alpha / n-1)^{n}(1+\alpha / n-1)^{1-n}(1-\alpha)^{-1} f(a) \tag{3}
\end{equation*}
$$

Proof: Recall that $w=\gamma\left(a_{1} z_{1}, \ldots, a_{n} z_{n}\right)$, hence
$f(w)=f\left(a_{1} z_{1}, \ldots, a_{n} z_{n}\right)$. By Lemma 2, $\left(\sum c_{i} a_{i} z_{i}\right)^{n} \leq n^{-n}(1-\alpha /(n-1))^{n}\left(\sum c_{i} a_{i}\right)^{n}$.
Since $(1+\alpha / n-1)^{n-1}(1-\alpha)$ is monotone decreasing as a function of α,
Lemma 5 and $n-\left(\frac{1}{n}, \ldots \frac{1}{n}\right) \| \alpha(n(n-1))^{-\frac{1}{2}}$ imply
$\pi a_{i} z_{i}=\pi a_{i} \pi z_{i} \geq\left(\pi a_{i}\right) n^{-n}(1+\alpha / n-1)^{n-1}(1-\alpha)$. Thus
$E(w) \leq(1-\alpha /(n-1))^{n}\left(\Sigma c_{i} a_{i}\right)^{n} /\left(\pi a_{i}\right)(1+\alpha / n-1)^{n-1}(1-\alpha)$. Q.E.D.
For comparison, [1, Theorem 4] shows that, for $\alpha=\frac{1}{4}$ and n large, $f(w) \leq \exp (-13 / 96) f(a)$. Theorem 6 yields $f(w) \leq \frac{4}{3} \exp \left(-\frac{1}{2}\right) f(a)$.

The right-hand-side of (3) is minimized when $\alpha=(n-1) /(2 n-3)$. This may be the best single choice of α, if it is to be kept constant through all iterations.

Reference

1. N. Karmarkar, "A New Polynomial-Time Algorithm for Linear Programming," Technical Report, AT\&T Bell Laboratories.
ary
$?$

4
\because
?

