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The Iterative Step in the Linear Programming Algorithm
of N. Karma rkar

\yy tfa'/tf fil ;>

Abstract

We simplify and strengthen the analysis of the improvement obtained

in one step of Karmarkar's algorithm.

The recently published [1] algorithm of N. Karmarkar uses the

following step:

Suppose x = (a,,... a ) > is a feasible solution to the LP:

minimize ex

(1)

subject to Ax=0, xX), £x.=l

We will assume the optimal solution to (1) has objective function

value <_ 0, and that ca > 0. We refer to [1, section 6] for proofs

that a method of solving this type of problem yields a method of

solving any LP.

Let x = (z1t ...z ) be the optimal solution to
I n r

min c(a. X, , . . .a x )11
1 1 .1 <2)

subject to A(a
1
x 1 ,...,a x )=0, £x.=l, !i x- (—,...—) :| < a(n(n-l)) 2II nn i nn —

where a < 1 is a parameter to be specified. [1, Theorem 5] shows that

(2), which is a minimization of a linear objective function on a

3
sphere, can be carried out using 0(n ) operations.

The next feasible solution to (1) generated by the algorithm is

w = y(a.z .,..., a z ) where the scalar v is chosen so that £w.=l.'linn ' l



— ? —

n

Let f(x) = (ex) /n x. (this is the same as the potential function
1

X

f in [1] , except we do not use logarithms). To show that the new

solution w is "better" than the previous solution, [1, Theorem 2]

shows

Theorem 1 : For some k < 1 (dependent on a) f(w) [ kf(a).

Since £x. = 1 and x. > implies yrx. < n , Theorem 1 implies
l l — i —

that, if the optimal solution to (1) has objective function value zero

and v is obtained from a after t iterations (cv) k n f(a). As

indicated in [1] , this property yields a polynomial-time algorithm.

In this note, we give a new proof of Theorem 1, which gives a

slightly better value of k and is more elementary in that logarithms

are not used.

Lemma 2 * : "c.a.z. < n ( l-ct/(n-l) )Ec . a. .

Proof : Since the optimal solution to (1) is assumed to have value <! 0,

there is a u > satisfying A(a 1 u 1 ,...,a u ) = 0, £u.=l, and Zc.a.u. < 0.— ' ° 1 1 nn i ill —112 12 -2 -1
Since n u-(— , . . .—)" < (1 ) + (n-l)n " = (n-l)n , and z is the

n n — n

optimal solution to (2), Zc.a.z. must beill
(H)(Eca.n" ) + xClca.u.) _. (l-\)n~ (^c^a.), where

X = (a(n(n-l)) 2)/((n-l)n )2 = a/n-1. Q.E.D.

:This is the same as [1, Theorem 3].
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Lemma 3 : If > R > S > 0, then there exist e, 6 > such that (i)

(Q-s)
2

+ (R+s+6)
2

+ (S-6)
2

= Q
2

+ R
2

+ S
2

and (ii) (Q- E )(R+e +5)(S-5) < QRS

Proof : For 5 close to zero, there exists an e close to zero such

that (i) holds. Since f- * (R-S)/(Q-R) as 5 > 0,
o

Lim i (QRS-(Q-e)(R+e+5)(S-5)) = (QR-QS) + (S
2
-RS) = (R-S)(Q-S) > 0.

o

Q.E.D.

Lemma 4 : If Q > R > 0, then there exist e, 6 > such that (i)

(Q-e)
2

+ (R+e+6)
2

+ (R-6)
2

= Q
2

+ 2R
2

and (ii) (Q-e )(R+e+5)(R-5) < QR
2

Proof : For 6 close to zero, there exists e close to zero such

-? -i
that (i) holds. Since Lim e5 = (Q-R) >

Lim 5~ 2
(QR

2
-(Q-e)(R+£+5)(R-6)) = Q - R > 0. Q.E.D.

11 - I
Lemma 5: If II x-(—,...—) II

= cc(n(n-l)) 2 and T.x. = 1, then
n n i

ttx. > n^CHtx/Cn-D^Cl-o).

Proof : By continuity, there is an x which minimizes nx. among

those x which satisfy the assumptions, a < 1 implies x. > for all i,

-1 -1 2 -2 -1
since (n-l)(n -(n-1) ) + n " = (n(n-l)) . By Lemma 3, we cannot have

* a * 2*2
x. > x. > x. for some i,j,k. (Note that Ex. = 1 and Ex. = E(x.)"
1 J K >J>V

£ 11
imply i|x-(—, . . .—)l| =!lx* - (— , ... —) fl . ) Thus the components of x* have

n n n n

two different values. By Lemma 4, there cannot be more than one com-

ponent of x* having the smaller value. Thus x* consists of n-1 com-

ponents with a larger value, and one component with a smaller value.

This occurs only if n-1 components of x* are n (l+a/(n-l)) and one

component is n ( 1— ct )

.

Q.E.D.
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Theorern 6 : If a is a feasible solution and w the next solution given

by the algorithm

f(w) : (l-a/n-l)
n
(l+a/n-l)

1_n
(l-a)"

1
f(a) (3)

Proof: Recall that w = y (a, z, , . . . ,a z ), hence'11 n n

f(w) = f(a z ,...,a z ). By Lemma 2, (Zc.a.z.) ! n (l-a /(n-l)) (Zc.a.) ,

n_ i

Since (1+a/n-l) (l-a) is monotone decreasing as a function of a,

11 -I
Lemma 5 and |! z-(—, . . .—)il < a(n(n-l)) 2 imply

n n —

IU.z. = la.nz. >_ (na. )n~
n
(l+a/n-l)

n_1
(l-a). Thus

f(w) _< (l-a/(n-l))
n
(lc.a.)

n
/(^a,)(l+a/n-l)

n" 1
(l-a). Q.E.D.

For comparison, [1, Theorem 4] shows that, for a = -r and n large,

f(w) _< exp(-13/96)f(a) . Theorem 6 yields f(w) _< -j exp(- j)f(a).

The right-hand-side of (3) is minimized when a = (n-1) /(2n-3)

.

This may be the best single choice of a , if it is to be kept constant

through all iterations.

Reference
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