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PREFACE
At one time the study of elliptic functions bewail with the inversion

of Legendre's integral. Every young mathematician was familiar with

snu, cnu, and dnu, and algebraic identities between these functions

figured in every examination. But a growing realization that the

inversion of a complex integral raises issues which are not all elementary

brought about a change. To-day, many a good teacher says nothing
of the Jacobian functions until he can utilize theta functions, and many
a good student learns nothing of them at all. Moreover, a theory in

which the definition of the fundamental function takes the form

starts with a handicap of artificiality from which the older treatment,

whatever its faults, was free.

This book is an attempt to restore the Jacobian functions to the

elementary curriculum by exhibiting them as functions constructed on

a lattice. In the course of the general theory of doubly periodic func-

tions, we find that the lowest order possible for such a function is the

second, and that therefore the simplest functions have either one double

pole or two simple poles in a primitive parallelogram. The investigation

of the first possibility is the invariable method of introducing the

Weierstrassian function pz. It is seldom—the first edition of Modern

Analysis was an honourable exception
—that the investigation of the

alternative is recognized as the natural sequel. This is our starting-

point. We associate with an arbitrary Weierstrassian function a sym-
metrical group of functions of the second kind, and this group becomes

a Jacobian system by an appropriate specialization of one of the para-

meters fundamental in the theory. So found, the Jacobian functions

are known in advance to be doubly periodic, no parameters are re-

stricted to be real, and simple functional proofs of addition theorems

and of the transformations of Jacobi and Landen replace the algebraical

proofs demanded by the inverted integral.

For a moment we are tempted to think that the problem of inverting
an integral need not be faced. The classical functions have come easily

into analysis, they display a multitude of fascinating properties, and

their relations to their derivatives imply that they can be used for the

evaluation of integrals of the forms with which they are traditionally
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associated. Lei them be studied, and they will be available when

n anted. Bui \\ ill 1 hey '.' [f 6 and c are certain cril ieal constants in the

theory oi a known Bystem of elliptic functions, the integral

dw

V'{(M-
2 -

//-)(/r
2

r-)\

is identifiable as an inverse function. Hut if it is 6 and c that are given,

as is almosl always the case, in both pure and applied mathematics,

when the integral turns up first, have we any reason to suppose that

a Bystem exists in which the given h and c do play the essential parts?

We are hack at the fundamental question. Every elliptic function is

the inverse of an elliptic integral: is it true also that the inverse of

every elliptic integral is an elliptic function?

There is no logical objection to postponing the consideration of this

question. Even if we ignore the problem altogether, our theory is no

satisfactory than the elementary theory of pz, where precisely the

same problem is ignored: we find that if w — pz, then

OD
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but we do not discuss whether for arbitrary values of ev e2 ,
e3 subject

to the condition e
l -{-e2 -\-e3

= a Weierstrassian function must exist.

For practical purposes, only the answer* to the question is required,

and there is no difficulty in explaining the answer. Nevertheless, even

in an unambitious course something more than a simple question and

Together naturally with the aolution of the mmv elementary problem, also described

sometimes as the problem of inversion: assuming that the system exists, to determine
From t > j»

• constants in the integral either the elliptic function itself or the lattice on
which it hangs. To find tl nlj possible lattice is. as will be seen in the text, a simple
matter; the difficult; is to prove thai the functions on this lattice do provide the

gned 'I, i Merely to construct an inverse function by direct operations does
nol solve the theoretical problem. For example, Hancock's exceedingly thorough

-int of inversion on a Riemann surface [Theory of Elliptic Functions, 1) is beyond
h it inn nf the

|

'i ad ical problem, but begs the whole theoretical question
in the one sentence (p. 163): Enstead of the variable u we may introduce any variable

quantil

It*

No reason ia adduced for supposing thai u(z, »), so defined, can take an arbitrary value.
lmt ii presently becomes the independenl variable, [f a complete solution of the inver-

sion problem along Riemannian linee is wanted, Hancock's treatise needs a supplement
equivalent to the excellenl ninth ohapter ofNeumann's I: mann'a Throrii <l< r Mul'srh, n

:i<ih (Die Umkehnmg des elliptischen Integrates), where the problem of ubiquity
• •

•

i

rly.
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a straightforward answer seems wanted. We dare not say that we

understand the relation between the function and the integral unless

we see how the double periodicity of the function is implicit in the

integral form of the relationship, and in the discovery of double

periodicity from this end the origin of the constants is not relevant.

Since also definition by inversion of an integral is equivalent to defini-

tion by a simple form of differential equation and is not in itself a

suspicious process, a mystery remains for the student unless we put

a finger for him on the ultimate difficulty. In point of fact, the more

precisely the problem of inversion is analysed, the narrower the crucial

gap becomes and the less formidable the task of bridging it appears.

The design of this treatise will now be intelligible. There are three

divisions of the subject, first the direct theory of functions with simple

poles derived from a Weierstrassian function whose periods are arbi-

trary, then the theory of the inverted integral and the solution of the

problem of inversion, and lastly the fertile theory of the classical

system. To the writer the order of exposition is almost inevitable, but

the reader impatient to make the acquaintance of Jacobi's functions

can pass to Chapter X from Chapter IV or even from Chapter III, and

he can return at any time to read Chapter VI, on the connexion

between integration and periodicity, as an independent chapter and

not necessarily as a stage in the inversion argument.

Far from being new to analysis, the three 'primitive' functions

defined in Chapter I have often been studied. Jordan in his Cours

d'Analyse and Tannery and Molk in their Fonctions Elliptiques allow

a few pages to them and define the classical functions in terms of them
;

in papers on Poncelet's poristic polygons, Chaundy and Baker* use the

same three functions, instead of relying explicitly, as does Halphen in

the account of this problem in the second volume of his treatise, on the

Weierstrassian functions pz, az. The point to be emphasized is the

deliberate construction of the functions as functions with simple poles.

As algebraic functions of pz, important in the development of the

theory of pz itself, the functions go back to Weierstrass.

The primitive functions belong to a group of twelve, and it is this

group which is the subject of Chapters II- IV. My notation for the

functions is new, and is designed to reflect both the structure of the

*
Chaundy, Proc. London Math. Soc. (2), 22 (1924) p. 104 and 25 (1926) p. 17; Baker,

Proc. Cambridge Phil. Soc, 23 (1926) p. 92. Chaundy takes a knowledge of the functions

for granted, Baker derives an addition theorem for them from a differential equation.
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functions and their relation to the Jaoobian system. If I rewrote

the book, I should perhaps develop the theory of these functions at

much greater Length, bul al least 1 have avoided the extremes of pre-

senting the theory merely as an elaboration on that of pz and merely

as a preparal ion for thai of sn it.

Chapters V VIII are devoted to a standard elliptic integral and its

inversion. In chapter V we see precisely what relation between an

elliptic function and an elliptic integral is established in the direct

theory of the elliptic function. Chapter VI deals, as I have said, with

the periodicity of the inverted integral. In Chapter VII two proofs are

given of the existence theorem which has been shown to be crucial for

the inversion problem. The first of these is an application, new in

principle as far as I know, of the theory of aggregates; the second is

essentially Comsat's, with adapted notation. Whether the first proof

or the second is the 'simpler' depends entirely on the reader's equip-

ment. Given the requisite knowledge of the theory of aggregates, the

Brs1 proof is brief and straightforward: the line of argument, once

indicated, is obvious, and the details are easily filled in from an

examination of the integral to be inverted. Goursat uses only the

familiar processes of analysis, but economical presentation of his proof
.alls for considerable algebraical ingenuity; the formulae required

belong to the theory of the function with which the inverted integral

is to be identified, and are not suggested by mere inspection of the

integrand, [ncidentally, this proof shows that as a problem in analysis

the inversion problem is not as deep as the better-known solution by
means of a modular equation inclines us to believe. Chapter VIII

brings together the main threads from Chapters VI VI I and completes
the -"hit ion of the fundamental problem; to read this chapter pro-

fitably, it is necc--.ii \ to accept the conclusion of the principal theorem

m ( lhapter VI I. but it is not necessary to have mastered a demonstra-

tion of this theorem.

The essence of Chapter X. which introduces the classical functions,

i- that the functions are regarded as functions constructed on a canoni-

cal lattice. The condition which a '.laeobian' lattice is to satisfy is laid

down after a comparison of integrals: this presents the condition as

a natural condition, while ensuring that the functions will be the

classical functions. Aii arbitrary lattice is rendered Jacobian on multi-

plication by a 'normalizing factor', which is found as the value at a

particular point of the lattice of a definite elliptic function attached

to the lattice; whatever the lattice, the normalizing factor exists and
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is unique. That is to say, a Jacobian lattice may have any shape, l>ut,

for a given shape, is determinate in size and orientation.

Since it is the lattice rather than the system of timet ions attached

to it that is standardized, the theory of the Jacobian functions tends

in its opening stages to repeat the theory developed in Chapters I IV.

The repetition, however, is slight, for the utter lack of symmetry in

the Jacobian system introduces a new element: formulae may be di>-

covered in a typical form, but if they are to be readily available they
must be tabulated in detail.

In one respect the influence of the earlier theory permeates the later

chapters. We see* the subject of investigation not as a set of three

functions but as a group of twelve; in a variety of senses this group is

complete, it stratifies naturally into four triads of copolar functions,

and since the four triads are closely interrelated, any attempt to

express all formulae in terms of the members of one triad is a false

economy in the language. Jacobi's original functions snu, cnw, dnw
constitute one of the four triads, but the poles of these functions are

congruent with iK', not wTith the origin, and from the functional point

of view a treatment in which this triad plays the leading part is strictly

analogous to a version of the Weierstrassian theory which should be

written round the function p(z—a> 2 )
instead of round the function pz.

It is only in deference to tradition and for the sake of readers who will

expect this book to prepare them for the general literature of the

subject that I have frequently given the same prominence to formulae

relating specifically to the classical triad as to the corresponding
formulae relating to the triad"j" cs u, ns u, ds u.

Although few details of mathematical notation are accepted with

the same unanimity as the use of K and iK' for Jacobian quarter-

periods, I usually write instead Kc and Kn . For this iconoclasm I offer

in advance three reasons. First, using Kd for — {Kc -\-Kn ).
with Ks as

* That this view was not long ago universal is one of the minor mysteries of mathe-

matics, or perhaps one of the major examples of mistaken subservience. It was in 1882
that Glaisher recognized that the group should be completed, and devised the perfect
notation, but outside England, from Bobek in 1884 to Tricomi in 1937, Glaisher's nine

functions have been completely ignored, in spite of the suggestive table on p. 150 of the

Wcierstrass-Schwarz Formeln unci Lehrsdtze. The strangest case is that of Tannery and
Molk, since they have an explicit notation for the twelve functions on an arbitrary
lattice. But Cayley could speak of 'the elliptic functions properly so called, the func-

tions sn, en, dn', and dismissed the other nine functions with a curt 'These are not

required'.

|"
It is significant that when M. Roberts in his Tract on th< Addition of Elliptic and

Hyper-elliptic Integrals (1871) applies a general theorem of Jacobi's to the elliptic

integrals, it is the formulae for this triad that he finds first (p. 10), although his work
is wholly in the real domain.

4767 b
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an alternative symbol for the origin, we promote Glaishers notation

from a mere algebraical mnemonic to a structural notation, for pqw is

a function with a zero at A'
y ,
and a pole at K

q
. Secondly, a typical

Bymbol for a cardinal point opens the possibility of typical formulae,

and this, in a Bubjecl threatened with suffocation by the sheer multi-

tude of individual formulae, is no light relief. Thirdly, when the

modulus of the system is arbitrarily complex, the two quarterperiods

are alike complex, and the insertion of a factor i in the second of them

l- for mosi purposes inconvenient if not misleading. But details of

notation arc to be judged pragmatically, not logically, and I can only
ask t lie reader to postpone criticism. There is of course work for which

the classical nutation is wanted, and my intention has been to revert

without hesitation whenever the occasion invites.

The fundamental transformations, the subject of Chapter XIII, are

found by a comparison of patterns of poles and zeros. In every case

the functional relations are obvious, and the ratio of one variable to

another is simply a normalizing factor by which a lattice is made
Jacobian. In this treatment of the transformations, rather than in any
more abstract considerations, is the most powerful argument for an

innovation of which a hint has already been let fall. To say that the

ratio of i K' to A' is arbitrary implies that the customary convention

that 1 in( /A" A') is intrinsically positive has been abandoned. To replace

this convention I introduce into the formulae a constant v which is -\-i

or -i according as Im(iK'K) is positive or negative. The device

sounds childish, and I did not incorporate it without misgiving, but

I hope it will commend itself by its effects.

The heading of the next chapter will mislead; the subject is not the

reduction of algebraic integrals, but the integration of Jacobi-Glaisher

functions and their products. Only one new transcendent is necessary,
but surely it is anomalous to welcome the increase from Jacobi's three

functions to Glaisher's twelve as an advance but to insist that at all

costs twelve corresponding integrals are to be expressed in terms of one

of their number. For each of the twelve functions pqw I denote the

integral of pq*u, with the natural constant of integration, by Pqw.
A table, XIVj. gives the integrating function Pqw in terms of the

classical function E(u), which is \)un. and another, XIV 3, gives Pqw
in terms ol I >< >/. a fund ion which on theoretical grounds has the same

tiding as l>n u.

Chapter XV deals with dependence on the modulus. Bermite's for-

gotten method of writing down the derivat ives of the -Jacobian functions



PREFACE xi

with respect to the parameter c immediately in terms of integrating func-

tions is revived. The results lead naturally to a discussion of the quarter-

periods as functions of c, and the linear differential equations satisfied

by K and K' and by E—c'K and E'—cK' are solved completely.
Theta functions are the subject of Chapter XVI. In accordance with

the general outlook they are introduced as integral functions with

specified lattices of zeros. Partitions of the four fundamental functions

lead by logarithmic differentiation to series for the twelve Jacobian

functions; except for an anomalous first term in six cases, these series

are Fourier series. The reader must be warned that much of the nota-

tion in this chapter, though so natural as to seem inevitable in the

context, is new; in particular, the functions d-s{u), &c(u), &n (u), &d(u)
are constant multiples of Jordan's d(u), 6

x {u), 6.z (u), 63 (u).

The book is an essay in the theory of functions of a complex variable,

but the nature of the functions and integrals as real functions of a real

variable, when the parameters involved are real, is considered in

Chapter IX for the functions of the opening chapters and in Chapter
XVII for the Jacobian functions. In this last chapter dissections of

pq(u-\-iv) and ~Pq(u-\-iv) are tabulated for apjDlication to conformal

representation. A few pages touch on numerical evaluation, first by
Legendre's original process, which uses a succession of Landen trans-

formations, and lastly by direct use of g-serieR. The type of convergence
of a Landen chain is superior in the long run to that of a g-series, but

initially the chain and the series are about equally efficient. It is to

be remembered that the Landen process comes to an end when the

square of a modulus is negligible, and that if k > k' the transformation

can be operated in the direction* in which k' tends to zero. On the

other hand, whereas the Landen transformation, valid always in theory,
is of no practical value unless k and k' are real, ^-series can be used

when k and u are complex.

For the reader already acquainted with the general theory of doubly

periodic functions and with the theory of the Weierstrassian functions

the book begins on p. 50, but I have been persuaded to prefix a sum-

mary of the elements of these theories and of the theory of lattices

rather than to take for granted or to prove incidentally the results

I happened to need. The sole purpose of this introduction is to carry
the work back logically to Cauchy's theorem.

*
Caylev, Elliptic Functions, takes as an example k = sin 75° and reduces k to

0-0228260 in three steps and to 00520 in four, but in the other direction k' is reduced
to O0 4 7.j1 in two steps.
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A collection of annotated exercises at the end of the volume provides

an informal outlet of which 1 have Itch glad to avail myself. Some

of the exercises lead to other proofs of theorems in the text: addition

theorems turn up more than once, and Fourier series are found by
contour integration. Numerical examples demonstrate that the pro-

3see •' ommended in the text for reducing and inverting an integral

are eminently practical. Some standard transformations illustrate the

importance of elliptic functions in the field of conformal representation.

The theory "t the functions defined in the first two chapters is carried

a little way forward by means of a number of formulae extracted for

the most pari from Tannery and Molk. Also there are short excur-

Biona beyond the range of this treatise; readers to whom the develop-

tnents are not new may still be interested to see the results under

a changed perspective or with a structure exposed by a systematic

notation.

.Manifestly this treatise makes no pretence to be in any sense com-

plete in impart ial. hut there is one omission which does call for explana-

tion. As surely as a lattice is the proper background for an elliptic

function, a Kiemann surface is the proper background for an elliptic

integral, but Kiemann surfaces are not even mentioned. Several dis-

tinction- mu>t however be borne in mind. The lattice is indispensable

to our conception of the subject, but to introduce the surface would

be to improve the language rather than to modify the arguments. The

rudiments of lattice theory are simple and are extensively applied, and

every mathematician must acquire them sooner or later. Even the

mosl slovenly description of Kiemann surfaces can not be brief, a

studenl who i- not particularly interested in algebraic functions and

their integration need never know what a Riemann surface is, and a

t heory of elliptic functions dependent on an understanding of Riemann

surfaces is relegated to the category of specialized studies even more

illy than a theory dependent on a knowledge of theta functions.

The incidental uses of the theory of aggregates in Chapter VII and of

symbolical solution- of differential equations in Chapter XV are not

dangerous in the same way. In the lirst case, it is the result that

matters, not this particular proof: also another proof is given. In the

»nd case a reader to whom the method is strange can verify the

inclusions for himself.

Designed to present the subject from one point of view, the book is

almost without references. It would not be hard to asterisk the formulae

which occur explicitly in Funda/nti nt'i Xora. and to find others in
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Glaiaher's writings and in examination papers of the last half of the

nineteenth century, but this would not be to trace the evolution of ideas.

To illness in 1940 I owe six months' uninterrupted leisure, and a

long-projected work, without introduction or exercises, was completed

early in 1941
;
in accepting the book at the most depressing moment of

the war, the Delegates of the Clarendon Press paid me a compliment
which I appreciate at its high value. Production has been slow and

correction difficult. I am not one of those fortunate—or maybe
unfortunate—writers to whom print never reveals defects unnoticed in

manuscript, and I am grateful to the compositors for their patience in

very trying circumstances.

In preparing the volume I have had the best assistance I could have

wished. To enlist my old pupil and friend Mr. W. J. Langford gave
me peculiar satisfaction, since it was for his benefit, so to speak, that

I devised long ago all that is original in my presentation of the subject;

I am proud that he was eager to labour for me, and that his enthusiasm

has not dwindled. He undertook the specific task of verifying formulae

and cross-references, but he was marvellously alert to every detail of

phrasing and printing, and I am confident that few minor blemishes

can have evaded his scrutiny.

My last word belongs to Professor T. A. A. Broadbent, formerly my
colleague. From the roughest of manuscript notes to the printed page,

every sentence and every symbol has come under his eye, and we have

argued about grammar as well as about mathematics. If I say that he

has checked the Tables and verified the Exercises, that the treatment

of the elliptic integral in Chapter VI is the result of his dissatisfaction

with my first draft, and that it was he who insisted that a chapter on

theta functions must be inserted, it is not that these items exhaust the

account but only that they are easy to enumerate. From first to last,

making use in every possible way of his craftsmanship, his knowledge,

and his wisdom, I have exploited gladly and shamelessly the friendship

that has put his help uncalculated and incalculably at my disposal.

reading, E. H. N.

August 1943
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INTRODUCTION : PROLEGOMENA

(i) Lattices

0-1. It is a fundamental principle in the theory of functions of a com-

plex variable that in the absence of a barrier of singularities a function

is determined intrinsically over the whole plane by the distribution of

its values near any one point; more precisely, a single Laurent series,

which may or may not be a Taylor series, determines a function. But this

is not to say that if we know one series we have immediate knowledge
of significant properties of the function. The series -1—z— z2— ...

belongs, so to speak, to the function 1/(3—1), not the function to the

series, and there is nothing in the series 1— z2
/2!-|-z

4
/4!
—

... to indicate

that the function which it represents is a periodic function whose only
zeros are real, or in the series

. 1 1.3
2 ,

1.3.5
3

.

1 -\--z-] zl A z3+...^2 '

2.4 ^2.4.6

to suggest a branchpoint at z = 1. We know a function when we can

describe its behaviour, not when we can somehow specify it.

A simple relation between the values of a function in one region and

the values in another can be regarded in two ways: we may be content

to say that the relation enables us to evade the direct examination of

the function in one of the regions, or we may insist that the relation

is itself a significant property of the function. The aspects are not

distinct; the simpler the relation, both geometrically and analytically.

the more fundamental the property. For example, the relation charac-

teristic of an odd function is/(— z)
— —f(z), and whatever knowledge

we possess of an odd function for values of z whose real part is positive

is extended immediately to values of z whose real part is negative. The

condition /( \jz)
=

f(z) concentrates attention on the interior and cir-

cumference of the unit circle, leaving properties outside the circle to

be inferred, and in particular substituting the neighbourhood of the

origin for the distant regions of the plane.

Of all the conditions to which a function may be subject, by far the

most effective is a condition which consists geometrically of congruence
in the elementary sense and analytically of sheer equality. If two

regions have congruent boundaries, then to any point of the one there

corresponds a point occupying a congruent position in the other, and

if a function has the same values at congruent points, then for that
4767 B
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function one region is a copy of the other. If the whole plane is dis-

sected into congruenl regions, and if the functional equality holds

ltd ween every pair of these regions, then one region represents the

whole plane.

There are numerous ways of dissecting the plane into congruent

regions. Examples, which need not be described in words, are indicated

in Figures 1 2.

Fig. 1.

-i

Fig. 2.

^77
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corresponding points in adjacent strips I
, I

lt
the difference z1—z is

a number o» independent not only of the position of z in I but also

of the choice of 7 , though the difference is replaced by its negative

if I
x

is replaced by the strip on the other side of 7 . Assigning the

symbol I arbitrarily to one of the strips and I
x
to one of the two neigh-

bours of I
,
we can correlate the strips with the series of symbols

..., I_2 , I-V IQ , Ilt /
2vj endless in each direction, and a>, regarded as

a vector, defines a displacement which converts Ir into Ir+l simul-

taneously for all values of r. The points congruent with a point z con-

stitute geometrically a paling, which will be said to have to for a basis;

analytically the numbers z-\-rco, for all integral valuesf of r, compose
a congruence of which w is a modulus. If x an<l ^ are bases of the

same paling, the aggregates ra>, sx coincide; since y is a member of the

second aggregate there is an integer r
x
such that x = r

x
co

'
an^ smce

a) is a member of the first aggregate there is an integer ,9^ such that

o> = s^x; since r
x
s
oj
= l

>
either r

x
== «w = 1 or r

x
== sw = 1 : the only

alternative basis to a> is — co.

The functional relation appropriate to Figure 1
2 is f(z-\-Q)

=
f(z), to

be satisfied if Q. is any step in the characteristic paling, that is, if Q is

any multiple of a basis co. This relation is secured by the relation

•101 f(z+co) = f(z):

the function f(z) has a> for a period.

The two examples which have been considered illustrate the control

which the geometrical form of the congruence exercises over the func-

tional relation. The existence of a functional relation exercises an

equally strict control over the geometry, for if f(z) is an analytic func-

tion of z, a function like f(a>z)—f(z) or /(z-f-o>)—f(z) can not be zero

throughout a restricted region of the plane and different from zero else-

where; in other words, a relation such as/(coz) = f(z) or/(z+o») == f{z)

can not hold throughout one division of the plane and not be universal.

Hence, for example, there can be no functional relation corresponding

to the dissection in Figure 1 3 ,
for although a rotation round the origin

which carries one of the halfstrips into another carries every component

of the pattern into another component, an oblique translation which

carries one of the halfstrips into another changes the pattern completely

except in one or two sectors.

The sectors of Figure l
x
and the strips of Figure 1 2 extend to infinity.

t Negative, zero, and positive; integral, unqualified, is usually to be taken in tins

general sense.
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The elements of the patterns in Figure 2 are bounded, and functions

whose distributions of values are repeated from cell to cell of such

patterns as these run their whole gamut right under our eyes. These

rmirti.ni-.ai-e peculiarly accessible and possess a multitude of fascinating

proper! ies.

From the point of view of a functional relation there is far less

difference between Figure 2, and Figure 2
a
than a casual glance sug-

gests. We are concerned ultimately not with the shapes of the regions

into which the plane is dissected but with the pattern formed by a set

of congruent points, and if the geometrical congruence is taken in its

simplest form, that is. without reflection or rotation although the cell

in Figure 2, has the symmetry which admits both these operations, the

configuration of corresponding points is of the same kind in the two

diagrams. This configuration is known as a lattice. Figure 23 , as the

foundation of a functional relation, presents difficulties, but we can see

at once that in this dissection corresponding points compose a pair of

congruent lattices.

A lattice is perhaps described most easily as the set of points of

intersection of two families of equidistant parallel lines. But we must

recognize that the lines, however convenient, are not fundamental. It

is not merely that our concern is with the points themselves; we can,

as indicated in Figure 3, change the lines completely without changing
the aggregate of points.

Fig. 3.

For analytical purposes a lattice is best specified by an origin and

two vectors, for in the plane of the complex variable points and vectors

alike an- idenl ifiedf by complex numbers. The origin is any point
"I the lattice, [f the lattice is determined by two families of parallel

lines, on.- member '/ of one family and one member b of the other family

pass through 0\ let .1 be one of the two points adjacent to on a,

and let B be one of the two points adjacent to0on&. Then if a, j8
are

No attempt i- mode n> maintain .1 consistent distinction between the language of

geometry and the language of analysis; 'number',
'

vector \ ami 'point in the complex
plane' are interchangeable terms.
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the vectors of the steps OA
, OB, the steps from O to the lattice points

are those whose vectors have the form raa+w/?, where m, n are independent

integers.

We call the pair of vectors a, jS,
or the pair of complex mini hers

zA
— z

,
zB—z for which the same symbols may be used, a basis of the

lattice. A basis at one origin is a basis at any other origin. The basis

is of less significance in the theory of functions than the lattice itself,

for a change of basis does not necessarily affect the lattice and may
therefore have no effect on functions which are being studied. A basis

is none the less essential to the development of analysis.

The pairs of vectors a, /3 and y. 8 are bases of the same lattice if the

aggregates of vectors m<x-\-nP and py+q8 coincide, the coefficients in

each case being integers. Since y and 8 are members of the second

aggregate, there are integral coefficients such that

•102 y = m
y a+ny p,

8 = mS a+n8 P;

since a and
jS are members of the first aggregate, there are integral

coefficients such that

•103 « = :P a y+?a 8, P = l^Y+qpS-

Substituting from one pair of formulae in the other, we have the matrix

relation

• 104 for n
y\(P«> *«\

==
t
1

>

°)
\m 8 ,

nB)\pp. qp) \0, l)
whence

•105
m

y ,
n
y

pp> qp

= i,

m8 , ns

and since the elements of the two determinants are integers,

•106 m
Y
n8—ny

m8
= pa qp—qapp

= ±1.

The condition

•107 m
y
ws
—

WyWig
= ±1

is sufficient as well as necessary to secure that y and 8, defined by -102.

together form a basis of the lattice built on a, jS,
for with this condition

we have from -102,

•108 ±a = nsy—ny 8, ±p = —m sy+m y
8.

From -108, every vector of the form moc+nfi is of the form py-\-qh\

from -102, every vector of the form py-\-qh is of the form m<x-\-nfi: the

aggregates ma-\-nfi, py-\-q8 are identical.

Interchange of a and /3 or of y and 8 reverses the sign of ?n n^—?i y
m 8 .

It follows that if we are to attach significance to this sign we must
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regard the l>asis as an ordered pair of vectors. If «/8 and yS are ordered

pairs, the function m
y n$
—n„Wg is known as the discriminant of the

transformation of >p into yd. obviously tin- alternative of sign pre-

sented in "107 divides the possible bases into two classes, but this

division is in the first place a division in relation to <\/?.
Let a basis

._ be derived from yS by the pair of formulae

and also from ^3 by the pair of formulae

Then me ,
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point C, and the line through J) parallel to OA cuts OH in a definite

point D''; the parallelograms (0;C/>).

(0; CD), (0; CD') have the same area.

Also the relation Ja = n8y—ny 8, writ-

ten in the form

7= (J/n8)a+(nYln8 )S,

shows that the vector of OC is (J/wg)a,

and -lot);, implies that the vector of q
OD' is ws j8.

Returning to the lattice, and remark-

ing that if the coefficients in -lOO^ are integers then J is necessarily

aninteger, we see that if the vectors of OA, OB constitute a basis, and

if C, D are any two points of the lattice, the area of the triangle OCD
is an integral multiple of the area of the triangle OA B.

0-12. The vectors of OC, OD constitute a basis if and only if the area

of OCD is numerically equal to the area of OAB,

and further,

0-13. An undegenerate triangle whose vertices belong to a lattice can not

be smaller than a basal triangle.

When vectors are replaced by complex numbers, the concept of a

direction of minimum rotation must be replaced by a definite analytical

concept. In a sense we know what this concept must be. An angle of

rotation from a to
j3

is an angle of /3/at,
the complex number which

multiplies a to produce /3,
and minimum rotation from a to /3

is there-

fore positive or negative according as /S/a is on the positive or the

negative side of the real axis, that is, according as Im(jS/ct) is positive

or negative. Since however this account of the concept belongs to the

intuitional formulation of the theory of the complex number, it may
be supplemented. Let a, j3

be two complex numbers such that jS/a is

not real, and let y, S be derived from a, p by the pair of formulae

•110 Y = my
a+n

yP>
8 = m8 a+ns /?,

in which the coefficients are real; assuming y not to be zero there is

no loss of generality in assuming n ^ 0. We have now

8
_^
m8+ns(p/<x)

y~ m
y+Wy(^/a)'

that is, »
y (j8/

a)(8/y)+w y(8/y)-ws (j8/a )
///

s>
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and this relation may be written in the form

{nY(pl*)+my}{ny(hly)-n8}
= -J,

where ./ m n^
— n

y
m 8 . 'Hut J is real, and the product of two complex

numbers is nol real unless one of them is a real multiple of the con-

jugate of the other: also the product of two conjugate numbers is

essentially positive. Eence />
y(8/y)

—
w§ is the product of the conjugate

«>t a ,(fila.)+m by a real number /.'. and the sign of A- is opposite to

the sign of ./. Hut since the coefficients are real.

[m{ny(8/y)-»8] »
y Im(8/y), Im{w y(j8/a)+my}

= n
y lm(0/a),

and since n .. ^ 0, the condition

Im{« y(8/y)—nh)
= —kIm{nYipfa)+mY}

is equivalent to Im(S/y) = —
&Im(/3/a):

0* 14. Tin imaginary parts of fijoc
and S/y have the same sign or opposite

signs according as the discriminant of the transformation from aft to yS

with ri'il coefficients is positive or negative.

Thus when the basis a/3 of a lattice is regarded as a pair of complex

numbers, the two classes described in -11 are composed simply of those

bases for which Im(/?/a) is positive and those bases for which Im(j8/a)

is negative.

It follows from -13 that if OCD is a basal triangle, there can not be

a lattice point between and C. To investigate the converse of this

result, let C be any lattice point such that there is no lattice point

between and C. Then the integers m ,
n are prime to each other,

for it these integers had a common factor d, the vector y/\d\ would

Nad to a lattice point. But if m
y ,
n
y
are integers prime to each other,

there exist integers x, y satisfying the equation

m
yy—ny

x = 1,

and it x m
iV y - w

g
is any solution of this equation, and 01) is the

step from with vectur wiga-r-ngjS, then OCD is a basal triangle. Hence

(»•!."». Two lattice /mints <<i,i serve as vertices of a basal triangle if and

only if there is no lattice pain/ between them on the line joining them.

It the ratio of 8 to y is not real, the ratio of />y-{-g& to y is not real

unless 7 0, and therefore the only members of the aggregate py-\-qh
which are r « ;i 1 multiples of y compose the aggregately. Hut if O, P
are an] I WO points of a lattice, there can be only a finite number of lat-

tice points between and /'.and therefore there is a point Cm OP,



INTRODUCTION: PROLEGOMENA 9

which may coincide with /'. such that there is no lattice point between

and C. It follows that the steps from to lattice points in the line

OP are the integral multiples of the one step 00. In other words.

0-10. // a line contains more than one point of a lattice, the lattice

points which it contains constitute a single paling.

If OCT) is one basal triangle, -12 implies that the other basal triangles

with and for two of their vertices have their third vertices either

on the line through D parallel to 00 or on the parallel line at the same
distance on the other side of 00; any lattice point on either of these

lines will serve, and the possible positions of the third vertex therefore

constitute two palings. This is in agreement with the algebraic solution

of the equations

m
yy—ny

x = 1, m
y y
— n

y
x = —

1;

if x = m8 , y = n8 is one solution of the first of these equations, the

general solution of the first equation is x = m8-\-rm , y = n§-\-rn ,

and the general solution of the second equation is x = —m§-\-rm,
y = —n^-\-rny ,

where r in each case is an arbitrary integer.

0-2. If, as in Figures 2
X
and 2

2 ,
the points geometrically congruent

in a dissection of the plane compose a lattice, the distribution of values

of the function f(z) is the same in every cell of the pattern if

•201 f(z+Q) = /(*),

for every value of z and for every value of Q which is a step in the

lattice. The functions to be studied in this book are functions subject

to a condition of this form.

We say that a function /(z) which satisfies -201 belongs to the lattice

Q.. The fundamental condition is sometimes expressed differently. If

z
x
— 22 is a lattice step, the two values zv z2

are said to be congruent,

to modulus CI, and we write zx
= z2 , or, if necessary, z

x
= z2 ,

mod 11
;

the condition -201 is then: The congruence zx
= z2 implies the equality

If a/3 is a basis of the lattice, the congruence zx
= z2 ,

mod a/?, asserts

the existence of integers m, n such that z2 = Zj+raa+w/J, and the

functional relation -201 becomes

•202 /(2+roa+njB)=/(z),

to be satisfied for all integral values of m and n. In the form -202 the

relation is an immediate consequence of the two simpler relations

•203 f(z+a)=f(z), /(2+j8)=/(2),
4767 c
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of which the firsl expresses thai f(z) has the period a, the second that

/'(-.) has the period 0. That is.

0*21, .1 function which satisfies a relation f(z-\-Cl)
=

f(z) in which Q. is

thi typical step in a lattict is afunction which has two periods >rnose ratio

YS i">t rial.

Sin.c the number <>! independenl periods is two, such a function is

known as a doubly periodic function. It need hardly be said that a

doubly periodic Function possesses an infinity of distinct periods; every

number of the form ma-\ />/3, including zero, is a step in the lattice and

is a period <>l t he function. No two periods are the periods in any more

important sense than that they are the periods we happen to be using;

this being understood, we may speak of the periods as freely as we

speak of the coordinates of a point.

Two questions now present themselves. (1) Can a function possess

two periods whose ratio is real? (2) Can a function possess more than

two periods? These questions are bound up with two of a more ele-

mentary kind.
( 1) What is the nature of the aggregate ma+wjS if a, /2

are fixed complex numbers whose ratio is real? (2) What is the nature

of the aggregate ma-\-n^-\-j)y if «> P, 7 are fixed complex numbers?

Let jS
- - uot. where u is real. We can suppose u positive, for the

aggregate m<x+nfS is identical with the aggregate w(— a)+ ?ij8.
With

each value of the integer I associate the integer^ such that

•204 Pi<lu<Pi+l,
and the point E

t
for which the step OE, is lp—pia ;

the point Et
either

coincides with () or lies between O and A on the line OA. If two

points Er ,
Ea coincide, then r^—pr a = sfl—p8 a, and therefore u has

the rational value (p8
—pr)/(s—r). Conversely, if u = h/k, where h, k

are positive integers, the inequalities -204 are equivalent to

•205 Pl+h < (l+k)u < Pi+h+1,
and t herefore

- , " 1

l',,. Pt+h, {l+k)p-pn.k <x= ip-Pl oc.

Thus the sets ofvaluesp0) pj pk ,
and ofpositions^, /•:, Ek ,

recur.

0-22. If fi
x is real, the number of distinct /minis in the set ..., E_ 2 , E_v

A',,. A',. A',. isfiniU or infinite according as (3/a is rational or irrational .

It /' Q are any two aggregate-points on the line, the step PQ is of
the form ma \nft. and an equal step from any aggregate point leads

again to an aggregate point. |, foUowsthal if the number of aggregate-



INTRODUCTION: PROLEGOMENA 11

points between O and A is finite, the distance between adjacent points
is everywhere the same. If E

t
is the nearest to of those of the points

Ev E2 ,...,
Ek_1 which are distinct from 0, the step OEt

is a number 6,

given as tfi—pt a, which is such that a is an integral multiple ad of 9 and

every number of the form 1/3—p{
a. is an integral multiple gt

d of 6.

Since in particular the number f3—p x <x is expressible as g l d, we have

£ = 60, where /; = p1 a-\-g 1
. Since 6 = tfi—pt

<x = (tb—pt a)0, we have

tb—p(
a = 1, and a and b have no common factor: the ratio b/a is the

ratio j8/a, known to be rational, expressed in its lowest terms. Since

a and
ft are multiples of 6, every number of the form m<x-\-nfi is a

multiple of 6; since 9 is given as t/3—p( a, every multiple of 9 is of the

form moc+nft: the aggregate ma +71/3 is identical with the aggregate of

multiples of 9.

0-23. To say that a function has two periods whose ratio is rational

implies no more than that the function has one period of which these two

are integral multiples.

Consider now the case in which jS/a is irrational. If N is any whole

number, the JV-fl points EQ ,
Ev E

2 ,..., EN are all distinct, and if we
divide the interval OA into N equal parts, at least one of these parts
includes as many as two of the points ;

also if A is the length of OA
,

the distance between two points in the same division is not greater than

X/N. Since the step from one aggregate-point to another is a number
of the form mot-^-nf}, it follows that whatever the value of N, there is

a number
p. w of the aggregate ma+nfi such that < |/xiV |

< X/N. Now
let z be any point in the plane, and let p be the radius of any circle

with centre z . Take a value ofN greater than X/p, and with this value

of N choose
fiN . Then the point 2 +/x v lies inside the circle. Hence

if f(z) is a function satisfying the condition f(z-\-moc-\-nf3)
=

f(z), an

arbitrary circle with z for centre contains a point z1 distinct from z

such that/^) = f(z ). It follows that iff'(z ) exists, the value of/'(z )

is zero. Thus if/(z) is an analytic function, the derivative /'(z) is zero

at every point at which it exists:

0-24. An analytic function with two periods whose ratio is an irrational

number is an absolute constant.

With -23 and -24 the question of functions with two periods whose

ratio is real is answered completely, and we proceed to the question of

functions with three periods, a, j8, y. We can assume at once that no

two of the periods have a real ratio, for a rational ratio would reduce

the number of periods to two at most, and an irrational ratio would
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reduce the function t<> a constant. If the ratio of ex to ft is not real,

any third number y can be expressed as ua-\-vft, where u, v are real;

this is "iily to say that any point in the plane can be identified by
coordinates referred to any two axes. If the ratio of u to v is rational,

we have » wh, v wk where h. k are integers; then y = w(ha-\-kft),

and since /< x \-kft is a period, this relation reduces the periods to two

or the function to a constant according as w is rational or irrational.

Similarly it U has a rational value hjk\ the relation kvft
= ky—ha

reduces t he periods or trivializes the function according to the character

of v, and if v has a rational value, the same result follows according

to the character of u. Thus the only case that remains for examination

i- that in which it. v, and the ratio of u to v, are all irrational.

We can suppose u and v positive, for we can replace a by —a or

ft by -ft if necessary, and we repeat, with little modification, the con-

-t i action and the argument leading to -24. With each value of the

integer / we associate the integers ph ql
which are such that

• -« »T
/>, < hi < Pi+ 1, q( <lv < q,+ 1

;

if/ -

0, equality is impossible in either case. The integer / now deter-

mines a number ly—Pia.—qt ft,
and a point E{

such that this number

represents the step 0EV The point E is the origin 0, and for all other

values of/, positive and negative, E, is inside the parallelogram (O; A B).

No two of the points ..., E_ 2 , E_v E , />,. E2 ,... coincide, and any step

from one to another of these points is represented by a number in the

aggregate mu+nft+'py. If N is any whole number, the parallelogram

(0;A />) can be divided into X 2
equal compartments by means of N—l

lines parallel to OA and N—l lines parallel to OB, and if A is the

greatest distance from one point to another of the parallelogram
<<> .1 //). tli.it is. the length of the longer diagonal of this parallelogram,
t In- distance be1 ween t wo points in t he same compartment is not greater
than ,\ X. The N 2

-\-l points E
,
Ex ,

E2
Ex , can not all be. accom-

modated in different compartments, and therefore at least one com-

I'.iitnient contains as many as two points. Hence the aggregate
/'/

i
// -' py includes a member

/<
. such that ») <

|ju, y | < X/N, and it

follows as before that il /(:) satisfies the condition

/(-. m i
| lift | i>7 ) -/(-.).

he derivative /'(z) is zero wherever it exists. Tims

0*25. To say thai a singlevalued analytic function has three periods

implies n>> n><>i< than Unit the function is </<>/th/i/ periodic.
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To sum up, the restriction to two periods and the condition that the

ratio of one of these periods to the other is not real are not arbitrary

limitations but limitations inherent in the subject.

The investigation just completed is not superfluous to our main sub-

ject, for it enables us to deal with such dissections as the one in

Figure 23 . If the parallelograms in this diagram have sides a and
/?,

as now indicated, there are displacements

with vectors a and 2/3, and there is also a

displacement with a vector y which is of

the form wa+/3. A function f(z) can not

satisfy the condition f(z-\-y)
=

f(z) for all

positions of z in one parallelogram without

satisfying this condition everywhere, that

is, without having y for a period, and then the function is trivial and

the pattern ineffective unless u is rational. If 2/3 and u<x-\-fS are periods,

so also is 2ua, and if 2u, in its lowest terms, is hjk, the periods a, 2u<x

are multiples Jed, hd of a single period 9. We have now the three

periods 6, 2/3, \hd-\rfi, and we distinguish two cases. If h is even, 6

and
/3

are periods. If h is odd, ld-\-^ is a period </>,
and we have the

three periods 6, 2<f>
—

d, cf>,
of which the second is a direct combination

of the other two. The two cases are illustrated in Figures O^o, and we

see that the pattern in terms of the smaller parallelograms is of the

same simple form as the patterns in Figures 2j_2 .

Fig.
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To put differently the point just illustrated, the periodicity of any

particular function we construct may* turn out to be better than we

anticipated. The functions sin 2 and cos z have the common period 2tt.

and any rational function of these two has this period, but tan 2, denned

as sins/cos z, is found to have the smaller period 77. To say that /(c)

belongs to the lattice LI means only that the identity /(z+Q) =
f{z) is

satisfied; f{z) may in fact possess a period to which does not belong to

the aggregate L~l. What we have shown is that in this case f{z), unless
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trivial, belongs t<> a lattice V of finer mesh than Q, and thatf the points

nt 12 an- among the points of V. But the determination of the minimum
lattice is not necessarily the firsl problem to be attacked when a func-

tion is introduced, and if several functions occur in the same investiga-

tion, it is a lattice large enough for them all to belong to it that we need,

whether or not finer lattices for the individual functions are known.

By a primitive region for a lattice or for a function which belongs

to the lattice we mean a region which just represents the whole plane;

no two points of the region are congruent, but every point of the plane

is congruent with one point of the region. In other words, if A is a

primitive region, and if \<> is the region to which A is moved by a dis-

placement 12 which is a step in the lattice, every point in the plane

belongs to one and only one of the regions An . In terms of the dis-

section of the plane, with which our discussion began, a primitive region

is one of the congruent regions into which the plane is dissected, but

unless our definition is formal we have difficulty in dealing with the

boundary of a region; a point on the common boundary between two

regions, or a point where more than two regions meet, must not be

assigned to more than one of the regions, and in consequence only part
<jf the boundary of a region belongs to that region.

In no sense is there a unique or fundamental primitive region. We
have only to substitute for any part A of a primitive region A a region

A
S1 congruent with A. and the combination ofA—A and An is another

primitive region. In practice this change usually takes the form of

a change of contour of A, part ofA being transferred to adjacent regions

and the loss being made good by a corresponding transfer on the other

side. For example, in Figure l
x
the lower halves of the hexagons are

all congruent, and by uniting to the upper half of one hexagon the

lower half of one of its neighbours we can form a primitive region

which is a parallelogram. In Figure 72, joining the two ends of each

circular arc and replacing the seg-

ment in each region by the opposite

segment which originally belongs

to an adjacent region, we have a

primitive region bounded by six

1 " : - 7 -

straight lines, and this can be fur-

ther transformed into a parallelogram. In these examples the purpose
of the change i- to simplify the shape of the region. We can use the

The lattice with the finer tneeh i^ a multiple of the lattice with tho ooarser mesh.
Tins i-. the thndanumtal notion in ili<- theory <>f ideals.
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change also to avoid particular points on the contour. If a function

to be integrated has a pole at a point Q on the contour of A, we can

replace the contour near Q by part of a small circumference which

brings Q inside the region; the congruent

changes necessarily remove from the

actual boundaries all points congruent

with Q, and we have one pole definitely

inside the new primitive region and the

congruent poles definitely outside. As 8
i 82

Figure 8
2 illustrates, the inclusion of

one pole may involve the exclusion of more poles than one; that is why
we operate by inclusion, not by exclusion.

If a/3 is a basis of the lattice characteristic of the pattern, any

parallelogram TUWV in which the adjacent sides TU, TV have vectors

a, j8 is a primitive region. Only one of the four corners is to be included.

Opposite sides are congruent, and if we include a point P on one side

we must exclude the corresponding point on the other side. As a rule

we include the whole of the sides TU, TV, except

the points U, V, and exclude therefore the sides VW,
UW. The name! of cell is sometimes reserved for a

primitive region so constructed. If the vertices of the

parallelogram belong to the actual aggregate raa+w/3,

the parallelogram is called a period parallelogram or

a mesh. If T is the origin 0, the mesh is said to be FlG - 9 -

fundamental. The fundamental mesh ajS consists therefore of the

interior of the parallelogram whose vertices are the four points 0, a,

a+j8, j8, together with the point 0, the points between and a, and the

points between and
j8.

There is a distinction to be borne in mind between a parallelogram

which is a primitive region and a period parallelogram. If in Figure 9,

for example, P is any point on the line VW and Q is the point such

that WQ is congruent with VP, the triangles TVP and UWQ are con-

gruent, and the parallelogram TUQP is a primitive region, but this

parallelogram is not a period parallelogram unless P is a lattice point.

It is to be noticed also that a region is primitive with regard to a

lattice, not with regard to any particular function f(z), which belongs

to the lattice. There may be a repetition of values of/(z) inside a region

t Although precise definitions have been laid down, language is free and seldom

misleading. Often any primitive region is called a cell, and any parallelogram z , :,.

2i+ 22— zo» 22 m which z1
— z , z2

— z is a primitive pair of periods is called a period

parallelogram.
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which is primitive for the lattice. A cell of the lattice may be divisible,

with reference to/(z), into a number of compartments in each of which

f(z) takes an assigned value not more than once, but there is no reason

to suppose that even when this is possible different compartments in

one cell are congruent geometrically.

(ii) Elliptic Functions in General

o-:{. By a theorem known as Liouville's, a singlevalued function of

the complex variable, unless a sheer constant, must tend somewhere to

infinity. The function may be, like a polynomial or the exponential

function, bounded in any finite region of the plane, but in that case

the limits as z -> oo are not all finite. Since a doubly periodic function,

if bounded throughout a primitive region, is bounded throughout the

whole plane, and can not tend to infinity with z,

0-31. A singlevalued doubly periodic function which is not a constant

has ut least one singularity in each cell,

or in other words,

•301. Jff(z) is a siii>/h ralucd doubly periodic function which is not a

constant, there is at least one lattice whose points are singularities of f{z).

Every lattice extends to infinity, and a limiting point of singularities

is ,in essential singularity, even if the individual singularities are poles

or branchpoints; hence

0-32. .4 doubly periodic function which is not a constant has the point
at infinity for an essential singularity.

From -31 we learn that the most elementary doubly periodic func-

tions which we can hope to construct are singlevalued doubly periodic

functions whose only accessible singularities are poles. These are the

functions which, for historical reasons with which we need not concern

ourselves, are called elliptic functions. We demonstrate the existence

• •I elliptic functions by particular constructions, but first we prove a

few genera] theorems.

The number of poles of an
elli]

tic function in any bounded region
LB finite, since otherwise the region would include a limiting point of

poles, and this would be an essential singularity of the function.

Furthermore, \ff(z) is a function not identically zero whose only acces-

sible singularities are poles, then with any finite value of a is associated

an expansion

'802 f(z) -.

(
2 - „)»|,-, f Cl (

2_a)+c2(~-«.)
2
+...},



INTRODUCTION: PROLEGOMENA 17

with n an integer and c not zero, valid throughout some neighbour-
hood of a. The point a is a zero of order n, a neutral point, or a pole

of order —n, according as n is positive, zero, or negative; c is the

leading coefficient of f(z) at a. For sufficiently small values of z— a,

|(z-a){c 1+c2(z-a)+ ...}| < |c |,

and therefore within this range /(z) 9^ 0, except at a itself if a is a zero;

that is to say, whether or not a is a zero, a is not a limiting point of

zeros, and therefore in any bounded region the number of zeros is

finite. Hence

0-33. The number of poles and the number of zeros of an elliptic function

in any cell are finite.

In other words,

•303. The poles ofan elliptic function constitute a finite number of lattices,

and so do the zeros of the function unless the function is identically zero.

A set of poles or zeros which includes one and only one member of each

pole-lattice or zero-lattice is called an irreducible set; the pole or zero

is of course given the appropriate multiplicity.

If the only accessible singularities of/(z) are poles, the only accessible

singularities of l//(z) arise from the zeros of f(z); a zero of /(z) of order

n implies a pole of l//(z) of the same order, and if/(z) is not identically

zero the zeros of f(z) have no accessible limiting points and can not

introduce accessible essential singularities into l//(z). Alternatively we

may say that if c ^ 0, then

ll{c +c 1{z-a)+c2{z-a)
2+ ...}

= d +d1(z—a)-{-d2(z—a)
2
-{-...,

where d ^ and the radius of convergence of the series on the right

is not zero; hence the existence of the expansion -302 for f(z) implies

the existence of the expansion

•304 l/f(z)
=

(z
-a)-n{d +d1(z-a)+d2(z-a)*+...}>

and since a is arbitrary in -302, a is arbitrary in -304 also. Thus

•305. // f(z) is a function not identically zero whose only accessibh

singularities are poles, then l//(z) is a function whose only accessible singu-

larities are poles.

If f(z), not identically zero, is periodic, l//(z) has the periods of f(z).

Hence

0-34. If f(z) is an elliptic function not identically zero, then Ijfiz) is

an elliptic function belonging to the same lattice as f(z),

which, taken with -31, implies that
4767 D
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0-3."). An elliptic function which is not a constant has at least one zero

in each cell.

If /(c). g(z).... are elliptic functions, finite in number, with a common
l.i u i.e. any polynomials P{f(z), g(z),...}, Q{f{z), g{z),...} in these func-

tions arc elliptic functions with this lattice, and it follows from -34 that

1 Q{f(z), './(:)] also is an elliptic function unless Q{f{z), g{z),...} is

identically zero: hence P{f(z), g(z),...}/Q{f(z), g(z),...} is an elliptic func-

tion:

0*36. If a Jin il< a umber of elliptic functions have a common lattice, any
rational function of these functions that is not infinite everywhere is an

elliptic function with that lattice.

The common lattice is not necessarily the fundamental lattice for any
of the individual functions. For example, if Q. is a typical period of

f(z), then \Ll is a typical period of /(2s) and 1Q is a typical period of

/(3z), but the typical period of/(2z)+/(3z) is O.

If /(c) is an analytic function, the singularities of the derivative /' (z)

are located at the singularities of/(z), and a pole of order n of/(z) gives

rise to a pole of order n-\-l of f'(z). Also the relation f(z-\-£l)
=

f(z)

implies the relation /'(z-f-Q)
=

/'(z). Hence

0-37. The sner, ssi re derivatives of an elliptic function f(z) are elliptic

fmuttons uit/i the same lattice as f(z).

Integration introduces questions of detail. The relation /(z+Q) = f(z)

iniplic> of course s 2

j /(2+Q) dz =
j f(z) dz,

So Co

provided that the path of integration is the same in the two integrals.

But it is only if the residues of f(z) are all zero that the integrals are

independent of the path and that we can define a singlevalued function

F(z) by the formula

•306 F(z) = j f(z) dz.

Moreover, when this definition is possible, F(z-\-Q) is not

dz,
j f(z+Q)
Co

which can be identified with F(z), but

Z 111

j f(z) dz.



INTRODUCTION: PROLEGOMENA 19

We have, still on the assumption that the paths are irrelevant

F(z+Cl) = j f(z) dz +
$ f(z) dz,

So 2o'+ ft

that is,

•307 F(z+Q) = F(z)+F(z +Q),

and it is only if F(z -\-L~l)
= for every period Q that F(z) is an elliptic

function. If L~l
f and LI" are any two periods, we have, on substituting

z +Q' for z and Q." for Q in -307,

•308 JXzo+Q'+Q") = ^(z +Q')+ ^(z +^")-

Hence if a/3 is a basis of the lattice, and if D. = raa+w/3, then

•309 F(z +Q) = mA+wB,
where

•310 A = F(z +a), B = F(z +P).

Substituting from -309 in -307, we have the most general theorem to

be expected:

0-38. Iff(z) is an elliptic function whose residues are all zero, belonging

to a lattice of which a/3 is a basis, the singlevalued function F(z) defined

by the formula z

F(z) =
j f(z) dz

satisfies the relation

F{z+m*+np) = ^(2)+mA+wB,
2 + a Zo+j3

where A = f f(z) dz, B = f f(z) dz.

2o S

A change in z adds a constant to F(z) and is without effect on the

functional relation or on the values of A and B, but we must leave z

arbitrary, since any particular point we might choose for z
,
such as

the origin, might sometimes be a pole of f(z) and would then be

unsuitable.

If the basis is changed from a/3 to yS by the pair of formulae

•311 y = m
y a-\-ny fi,

8 = raS a+rc8 /S,

the corresponding constants Y, A are derived from A, B by the same

transformation:

•312 T = m
yA+ny B, A = m8A+ns B.

In general we can say that the constant F(z-\-L~l)
—

F(z) is the typical

member of a lattice which is correlated with the period lattice, but we
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have to remember that the one lattice may degenerate when the other

• let's not.

A function (>{-.) which satisfies a relation

313 G(z+a)= G(z)+A

(id to possess pseudoperiodicity of the first or additive kind, with

A lor modulus. The integral in -38 is a doubly pseudopcriodic function

of the first kind, witli a, £ for periods and A, B for corresponding

moduli. Since the derivative of a pseudoperiodic function of the

additive kind is a periodic function, the converse of -38 is true:

0*39. A doubly 'pseudoperioilic jutiction of add it ire type which has no

accessibU singularities except poles is the integral oj an elliptic junction

whose residues are. all zero.

It is to be noticed that the function z itself is additively pseudo-

periodic: any period may be assigned to this function, and the corre-

sponding modulus is equal to the period.

i >-4. Let aj3 be a basis of the lattice to which the elliptic function

j(z) belongs, and let O'A'C'B' be a parallelogram in which O'A', O'B'

have the vectors a, /3.
Since the number of poles of/(s) in the parallelo-

gram or on its boundary is finite, it is possible to draw a line a parallel

to O'A', between O'A' and B'C, which does not pass through any of

i bese poles, and from the periodicity of j(z) in a it follows that a does

not pass t hrough any poles of/(s); similarly it is possible to draw a line b

parallel to O'B', between O'B' and A'C, which does not pass through

any poles of/(s). The lines a, b intersect in a point 0, and the parallelo-

gram OACB for which OA, OB have the vectors a, f3
has no poles of

/(,:) on OA or OB, and therefore has no poles of j(z) on BC or AC: this

parallelogram is a period parallelogram with a pole-free contour.

II OACB is a period parallelogram with a pole-free contour, the

function f(z) can be integrated round the contour. If zQ is the value

of '. a1 0, we have

ft + oc ~o + a

j f(z) dz
\ j(z) dz =

[
f{z+p) dz =

C /(*) dz,

BC c„'i/3 z d.l

and similarly
j

j(z) dz =
j

j(z) dz:

AC OB

401. If a period yarallcloyram oj an elliptic junction has a pole-jree

contour, ih< integral of ih< junction round lh< contour is zero.

Applying Cauchv's theorem, we see that
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0-41. The sum of the residues of an elliptic function at the poles in

a primitive region is zero.

From -37 and -36, the logarithmic derivative /'(z)//(z) is an elliptic

function belonging to the same lattice as f{z). In the neighbourhood

of a point a, from the expansion -302,

f'(z) _ Ji c
1+2c2(z— a)+ 3c

:i(z-a)
2+ ...

f(z)

' '

z—a cQ ~\-c x{z—a)+c2(z— a)
2
+...

and since c =/"= 0, the point a is a neutral point of /'(z)//(z) if n = 0,

a simple pole with residue n if n --£ 0; that is, the poles of f'(z)lf(z), all

simple, are the poles and the zeros of/(z), and the residue oif'(z)/f(z) is m
where f(z) has a zero of order m and is —n where f(z) has a pole of order

n. Applying -41 to f'(z)/f(z) and interpreting the result in terms of/(z),

0-42. The sum of the orders of the zeros of an elliptic function in a

primitive region is equal to the sum of the orders of the poles.

Replacing f(z) by f(z)—c, an elliptic function with the same poles as

f(z), we have

0-43r If f(z) is any elliptic function, the sum of the orders of an irre-

ducible set of roots of the equation f(z)
— c is independent of the value of

c and is equal to the sum of the orders of an irreducible set of poles off(z).

The number whose importance is shown by this theorem is called

the order of the elliptic function; the order of the function is the sum

of the orders of incongruent poles. A multiple root of the equation

f(z)
= c is a root of the equation /'(z)

= 0; this equation has a finite

number of incongruent roots, zv z2 ,..., zk ,
and unless c has one of the

k values f(z x ), f(z2 ),..., f{zk ), the roots of the equation f(z)
= c are all

simple. Hence

0-43
2

. The order of the elliptic function f(z) is the number of incongruent

roots of the equation f(z)
= c for an arbitrary value of c.

A function of order 1 would be a function with one simple pole and

no others in a cell, and by -41 the residue at that pole would be zero:

0-44. There are no elliptic functions of the first order.

But for every value of n from 2 onward there are elliptic functions

corresponding to every partition of n, from the one extreme of func-

tions with a single pole of order n to the other extreme of functions

with n distinct simple poles; this is established in due course by the

construction of the functions. Since a pole of order p in f(z) implies a

pole of order ^4- 1 in f'(z), the derivative of a function of order n may
have any order from n-\- 1 to 2n.
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Let Q(z) be any analytic function which has no singularities on the

pole-free contour OACB and qo singularities except poles inside this

contour. Using the same transformation as in the proof of -401 we have

the integral of the product f(z)G(z) round the contour expressed as

|7(:)!'/(: \-a)-0(z)}dz- \f(z){G(z+p)-G(z)}dz.
OB <ii

It then G(z) is doubly pseudoperiodic, with A, B for moduli corre-

spo ading to the periods a, ft.
this integral reduces to

A
\f(z)dz-B \f(z)dz.

On the other hand, integration round the contour OACBO is in the

positive direction or the negative direction, in the sense required for

the application of Cauchy's theorem, according as the direction of

minimum rotation from OA to OB is positive or negative; that is to

say, the sum of the residues of f{z)G(z) must be multiplied by 2ni or

— 2rr» according as the basis aft is positive or negative. We introduce

v to denote i or — i as the case may be, and we call v the signature of

the basis.

0-45. Let aft be a basis of the elliptic function f(z), and let G(z) be a

doubly pseudoperiodic function belonging to the same lattice as f(z), ivith

A, B for moduli corresponding to the periods a, ft.
Then if OA, OB are

steps, with vectors a, ft,
on which neither f(z) nor G(z) has any singularities,

and if G(z) has no singularities except poles inside the parallelogram

(0;AB), the value of

AJf(z)dz-B \f{z)dz
OB OA

is 1-nv times the sum of the residues of the product f{z)0(z) at poles inside

IIn parallelogram, v being the signature of the basis aft.

In general the residue of a product is the sum of a number of terms,

l>ut it the pole under consideration is a simple pole of one factor and

a neutral point or a zero of the other, the residue of the product is the

product ut the residue of the one function and the value of the other.

The cases of -45 which are of immediate importance are two in which

one or other of the functions f(z), G(z) is in a sense trivial.

Taking /(z) as constant, we have:

0*46. If G(::) is a doubly pseudoperiodic function of additive type with

moduli A. B corresponding to tin pi riods v. ft, whose accessible singularities
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are all poles, then A/3—Ba is 2-nv times the sum of the residues of <!{z) in

any cell of the
<xfi lattice, v being the signature of the basis.

The distribution of finite values of G(z) differs from cell to cell, but

the poles occupy congruent positions in the different cells and the

residues of congruent poles are everywhere the same. To this theorem

we shall presently return.

Next we take G(z) in -45 as z, and we replace f(z) by a logarithmic

derivative f'(z)jf(z). The factor z has no poles, and the poles of/'(z)//(z)

are simple; if a
r
is a pole of f(z), of order pr ,

the residue of zf'(z)/f(z) is

—pr
a

r ;
if bs is a zero of f(z), of order qs ,

the residue of zf'(z)/f(z) is qs bs
.

The sum of the residues is therefore

Z<ls bs- ZPr an
s r

extending to all the zeros and poles in the parallelogram. On the other

hand, since f(z) has the same value at B as at 0, and the same value

at A as at 0, each of the integrals

rf(zydz Cf'(z)dz

J /(*)
'

J f(z)
OB OA

is the difference between two values of the logarithm of the same

number f(z ), and is therefore an integral multiple of 2-ni. Giving A, B
their values a, /?,

we can say that the integral round the contour is

of the form 27ri(ma.-{-nft), where m, n are integers, and since we are not

attempting to identify these integers, the sign of v is irrelevant and the

factors 2-ni, 2-nv can be removed:

0-47!. // the poles of an elliptic function in any cell are av a.
2 ,... with

multiplicities pv p2 ,... and the zeros of the function are bv b2 ,... with multi-

plicities qv q2 ,---,
then the sum ql

b
1
Jr q2 b 2 -\-... differs from the sum

p l
a

1-\-p 2 a 2
J
^-... by a number which is a step in the lattice to which the

function belongs.

We may allow repetition in the enumeration of poles and zeros to

replace the explicit use of multiplicities :

0-47
2 . // av a

2 ,...,
an is an irreducible set of poles and bv b

2 ,...,
b n is

an irreducible set of zeros of an elliptic function, each pole and each zero

being repeated according to Us multiplicity, then ^ a
r
= ^ bs -

If we say that ^ar
— ^ b

s is a period, we must remember that zero is

being admitted as a possibility.

When repetition is allowed in enumeration, a slight extension of

vocabulary is convenient. If the point a is in fact p-io\d, an irreducible
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Bel must include p points congruent with a. but there is no reason to

suppose that these points are identical. With this extension we may,
for example, secure an equality 2 rt

r
= 2 K *° replace the congruence

Z a
r

- 2 ^s' f°r **" w^' 1 ^ ie se^s as originally assigned ]T ar
~ 2 ^ = ^*»

we have only to replace a„ by «„— Q,. If the pole at an is simple, the

change is possible on any convention, but if the pole at an is of multi-

plicity p, this pole is now being enumerated p— 1 times at aH and once

at a„- 12/.

Replacing the function f(z) by f(z)—e, where c is arbitrary, we have

a corollary to -47.,:

0-473 . If f{~) is an elliptic function and zv z2 ,..., zn is an irreducible

set of roots of the ((/nation f(z)
=

c, the congruence to ivhich the sum

z x -\-z2 -\-...-\-zn belongs is independent of c, being the congruence of which

tin sum of "nij irreducible set of poles of f(z) is a member.

From the simplest cases of -36 we derive, following Liouville, two

theorems which give analytical effect to the consideration that an

elliptic function can be identified by its behaviour in one cell.

Let f(z), g(z) be two functions with a common pole a, and let the

functions have the same principal part at a: the finite series of negative

powers of z—a in the Laurent series representing the functions in the

neighbourhood of a are identical for the two functions. Then the dif-

ference f(z)
—

g(z) is represented in the neighbourhood of a by a con-

vergent series of positive powers of z—a, beginning as a rule with a

constant term, and a is not a pole of f(z)— g(z). If then f(z), g(z) are

elliptic functions with a common lattice and with the same poles, and

it at every pole in one cell the principal parts of the two functions are

identical, the difference f(z)—g(z) is an elliptic function with no singu-

larity in the cell, and is therefore, by -31, a constant. We may replace

any pole by a congruent pole for examination, and the result can be

enunciated as follows:

0*48. If two elliptic functions hart a common lattice and the same poles,

and if at every point of an irreducible set of poles the principal parts of
tin twofunctions art identical, then tin difference between the twofunctions
it a constant.

The poles of the quotienl ./(:) g(z) are among the poles of f(z) and

the zeros of g{z). [fc 0, d ^ 0, and if each of the series

'„ f-.i(-") : '•_.(- «)*+..., '/„ d
l (z-a)+(l2(z—a)*+...

has a radius of convergence thai is not zero, the quotienl

{c + Cl (
z -a)+c.,(: a)*+...}l{d()+d1(z-a)+dt(z-a)*+...}
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is expressible as a power series in which neither the constant term nor

the radius of convergence is zero. It follows that a pole of/(z) of order

p is not a pole of f(z)/g(z) if it is also a pole of g(z) of order not less

than p, and that a zero of g(z) of order q is not a pole of f(z)/g(z) if it

is also a zero of f(z) of order not less than q. If f(z), g(z) are elliptic

functions with a common lattice, then f(z)/g(z) is an elliptic function:

0-40
1

. Let f(z), g(z) be elliptic functions with a common lattice; let

a v «.„..., am be an irreducible set of poles of f(z), of orders p x , p2 ,..., pm ,

and let bv 6,,..., b n be an irreducible set of zeros ofg(z), of orders qv q2 ,...< <{„
.

Then if each pole ar is also a pole of g(z), of order not less than pr ,
and

if each zero 6S is also a zero of f(z), of order not less than qs ,
the function

f(z) is a constant multiple of the function g(z).

It follows from the conclusion of this theorem that the two functions

have all their poles and all their zeros the same, in order as well as in

position; that is, the order of ar as a pole of g(z) is exactly pr and g(z)

has no poles incongruent with the set a
lt

a 2 ,..., am ,
and the order of bs

as a zero off(z) is exactly qs and/(z) has no zeros incongruent with the

set bv b 2 ,...,
b n . These results follow at once from -42; the order of g(z)

is not less than the sum of the orders of a
l5
a2 ,..., am as poles of g(z), and

is therefore by hypothesis not less than the sum of the orders of these

points as poles of f(z), that is, not less than the order of f(z); on the

other hand, the order of f(z) is not less than the sum of the orders of

bv b2 ,...,
b n as zeros of f(z), and therefore not less than the sum of the

orders of these points as zeros of g(z), which is the order of g(z). Hence

the two functions have the same order, and there is no margin for

inequality in the orders at any pole or at any zero, or for additional

poles of g(z) or zeros of f(z). We may therefore logically break the

theorem -4^ into two:

0-49
2 . // two elliptic functions f(z), g(z) have a common lattice, and if

every pole of f(z) is a pole of at least as high an order of g(z) and every

zero of g(z) is a zero of at least as high an order of f(z), then the two func-

tions have the same poles and the same zeros, to the same multiplicity in

every case;

0-49.,. // tico elliptic functions with a common lattice have the same

poles and the same zeros, to the same multiplicity in every case, one

function is a constant multiple of the other.

The latter of these theorems is the vivid form of the result. We speak

of the distribution of poles and zeros as the structure of the function,

and we say that an elliptic function is determined, except for a con-

4767 E
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Btanl multiplier, by its structure. Bui '49j remains the form in which

the theorem is used: we seldom investigate a pole or a zero, as -i 1

.).^

would require, to verify thai its order is not higher for one function

than for the other.

(iii) The Wkikkstrassian Functions

0-r>. The construction of specific elliptic functions, to which we pro-

ceed, is rendered easy by the observation that it'll is the typical step

in a lattice, any function that is symmetrical in the whole aggregate

of arguments z—Q. satisfies the fundamental condition

501 /(z+Q) ==/(*).

For example, the distance of z from the nearest lattice point is such

a function. To be analytic in z, and actually to involve the infinity of

arguments il, the function must be a limit, and we have to find a con-

vergent sequence.

Fig. 10.

Let a lattice be determined by two families of parallel lines, and let

P be any point other than a lattice point in or on the boundary C of

a cell B
t)

. The cells which immediately surround ii form with B a block

H
x
of 9 cells, the next ring of cells forms with B

x
a block 2?2 of 25 cells.

and so on. The boundary 6'r of Br
contains 4(2r+l) lattice points, and

il

'

p is the shorter of the perpendicular distances between opposite sides

of a cell, the distance of P from any point on the boundary (\ is

greater than or equal to rp. The series ^ (2r-\-l)r~
k is convergent if k

hi- any real value greater than 2. It follows that, if K is the sum of

this aeries, if fr is any number smaller than the distance of P from the

nearest corner "I C
,
and it A is the distance of P from a typical lattice

point . t hen for /.' -.

502 £ a *
• \(a

'

Kp-
k
).
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the summation being extended to any selection whatever of lattice

points. Now A = \z—Q|, and (z
—

Q.)~
k

'

is singlevalued if k is a whole

number. Hence

•f>03. If k is any whole number >/<>/ smaller than 3, the series 2 (z—il)~
k

extended to all (lie points of a lattice is absolutely convergent at every point

z which is not a lattice point a ml in uniformly convergent throughout any
closed region which does not include any lattice points.

Thus

0*51. For any positive integral value of k not smaller than 3, the series

2 (z—U.)~
k
defines a function £ A

.,~ of z irhich in analytic for all finite values

of z except the lattice values Q.

From its construction,

0-52. The function t,k z defined for k ^ 3 by the summation

£*z = 2(z-n)-*

extended to all the points of a lattice is an elliptic function whose only

poles are the lattice points themselves; these are poles of order k.

Although there is an arbitrary whole number in this theorem, only

a single function is really being introduced into analysis, for

"504 dlk z\dz = —kik+l z,

and the convergence becomes stronger on each differentiation. Once

£3 z has been defined as 2 (z—Q)~
3

,
the other functions would follow

without independent definition:

•505 d»>^z/dz
m = (-)'»i(m+ 2)! im+z z.

The condition k > 2, which is essential for the convergence of the

series 2 (z—Q)~
k

,
raises an urgent question. The function £3 z is of the

third order, and we know that there are no elliptic functions of the first

order. Are there functions of the second order ?

Consider the passage not from t,k z to tk+1 z by differentiation but

from t,k z to Ck-i z by integration. We have

•506
]lk zdz = -~2 {(

32-^)-(fc
- 1)-(2i-")-(t- 1)

} J

and if A — 1 > 3 the two series 2 i
z\~^)'(k ~ l

\ 2 {z^—Q)-^-^ are

separately absolutely convergent, and we can write

•507
JUz dz = -^{I fc-fl)-*-*- 2 fc-O)-*^},
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that is,
r '

1

J
ik zdz = -—

j(C
k-iZ2-tk-iH)-

The formula *506 remains true If As = 3:

•509 f izzdz = -\ 2 {(^-n)-
2-^!-^)-2

}.

But now, although the series on the right is convergent for any two

values of z
l
and z2 ,

the separate series 2 (^i
-^)

_2
> 2 (

z2
—^)

-2 are

u<»t convergent. With an arbitrary value of z
x
we may introduce the

function z

— 2 \
t,z zdz

and identify this function with

510 2{(2-£>)-
2-(zi-")-

2
}>

luit whatever value of zx
we choose we can not avoid the composite

form of the typical term in the sum.

To define a standard function from the series -510, we take z
x
= 0.

This choice, although almost inevitable, involves us in a difficulty on

each side of the equation -509, because the origin is a lattice point:

near the origin, £3 z
~ z~z

,
and therefore can not be used as a limit

of the integral; the series includes a term in which Q — 0, and in this

term we can not put zx = 0. To meet the difficulty, we segregate the

term in which Q. = 0. We have

& = z-3+ r (z-q)-
8
,

where the prime attached to the symbol of summation indicates that

the term in which D. = is omitted, a convention that is maintained,

with products as well as with sums, throughout this subject. Since

f
(h Jl

J Z^ -\-

where the integral is indefinite, or more strictly has oo for lower limit,

and „

t he fund ion l-
s
z can he integrated by means of the singlevalued analytic

function pz defined by the formula
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We liave
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we have

0-57 pz 5"2+3«a
-.-+ 5s3 2

4
4-7s4 2

6
+...,

valid inside the circle whose centre is the origin and whose circum-

ferenoe passes through the nearesl of the other lattice points. The

descriptive formula

0-58 pz = z- 2
+6>(:'-)

adds to -513 only as much as can be inferred from '55, hut presents

the result in the form which is usually the most convenient to use.

If the lattice is referred to a basis ajS, every step Q is of the form

in \ \-nf3, and the powers LI k
. (z—Q.)~

k are homogeneous functions of

degree /,-. the former in the pair of variables a, /3,
the latter in the

set of three variables z, a, jS.
This homogeneity, and its degree, are

independent of the choice of basis, and we may say simply that the

functions are of degree —k in Q, or in z and Q.:

0-5flr The elliptic functions £k z, pz are homogeneous functions, of

ih'jrees —h, — 2, in z and H.

The homogeneity of pz, in the neighbourhood of the origin, is apparent
also in the expansion -57; the sum sr is homogeneous of degree

— 2r

in 12. and therefore the sum of terms of the form sr z
2r~ 2 is homogeneous

of degree
— 2 in z and Q..

If we indicate the dependence of the functions t,k z, pz on the lattice

by writing them in the form £A.(2|Q), p(z\L~l), we can express -59! sym-

bolically:

n:>V 3 £ft(Az|An)
= \-kUz\£l); p(Xz\Ml) = \- 2

p(z\£l).

If the homogeneity is known, its degree is given immediately by the

forms of the functions near the origin.

We can arrive at the homogeneity of the elliptic functions somewhat

differently. Whatever the complex number A. the lattice All which has
•

i I iasis is geometrically similar to the lattice 12 which has the

basis >/?: the former lattice is derived from the latter by rotation

through the angle of A and magnification by the factor |A|. Let w = Xz,

and regard the function pz as a function f(w) of w. Addition of O to

z is equivalent to addition of Ml to w\ hence f(w-\-Ml) = f(iv), and f(w)
is a doubly periodic function belonging to the lattice Ml. A singularity

of/(to) arises only from a singularity of pz; near z = 0,

f(w) = z~ 2+0(z2
)
= \hv-2

+0{iv
2
).

Senoe X -]("') is a function doubly periodic on the lattice Aii. with the

lattice point- for double poles and with no other accessible singularities,
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and such that near w = 0, A- 2
/(m;)

= w~ 2
-\-0(w

2
). These properties are

sufficient, by -48, to identify A-2/(m>) with p(iv\\£l), and replacing w by
Az we have p(Xz\Xil)

= A-2^?(z|Q), as in -593 . To adapt this argument

to £ fc
z we must take into account the value of the limit of £kz—z~

k as

z -> 0; alternatively, -592 follows from -59
3 by differentiation.

The homogeneity of these elliptic functions can be expressed geo-

metrically. The two lattices Ml, £2 are similar, in the elementary

geometrical sense, and the point Az occupies in the one lattice the

position similar to that occupied by the point z in the other lattice.

Apart from constant factors, homogeneous functions are functions of

position relative to the lattice, rather than of absolute position in the

plane. If zv z2 are associated with the lattice Q., then Xzv Az2 are

associated similarly with the lattice AQ, and the ratios

are identical. This is only to say that p(Xz\XQ) = Kp(z\D.), where k is

expressible as p(Xz2 \XQ.)/p(z2 \Q.) and is independent of z.

0-6. Since the residues of pz are zero, to repeat the process of integra-

tion does not introduce a manyvalued function. We have

ft
±U. -(' +'+il

l(z-Q)
2 Ll 2

l

~

(z-O
n Q ' Q2

j

and we therefore define a function £z by the formula

With this definition

0-62 £'z = —
pz,

s

•601 f (pz-z-
2
)
rfz = -(^z-z-1

),

6

•602 ^z-z-1 -» 0,

and from -57 or -61 the Laurent expansion is

£z = z_1— 52 Z
3—s3 z

5— s4 z
7— ... .

Although the condition k > 3 is indispensable to -51, and pz and £z

can not fit into the sequence £k z, the formulae •54, -62 extend the

sequence -504, and we can replace -505 by

•603 dmlz\dz
m =

(
—

)>"m\lm+1 z, m > 2.

Since every residue of £z is 1, the sum of a number of residues can
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not be zero and the function is not an elliptic function. Hence, being

the integral of an elliptic function.

0-63!- The function l,z is />*( hiIojh riodic on the lattice Q..

In repeating the argument by which the periodicity of pz was demon-

strated, we take the basis as {'2u)v 2u>
2 ). This form of basis, in which

the explicit symbols are for halfperiods of the Weierstrassian function

attached to the lattice, not for periods of these functions, proves to be

incomparably the most economical throughout the theory, and is now

to be adopted as the standard form. We have, since £z is an odd

function.

•GOV, £(z+2"i)-& = 2*li, £0M-2a>2)-& = 2V2 ,

where

•6051-2 rj l
= £a; 1; r) 2

= £a>2 ,

and for the effect of addition of a general period,

0-63 2 £{z+2mu) 1+2nw 2 )
= {,z+2mr]l+2nri 2

.

To the function £z we can apply the result of -46, or we may repeat

the argument of that theorem, taking for the cell the parallelogram

whose corners are the four points i^idz^o- ^'ie function has only one

pole in the cell, and the residue there is 1. Hence 4^ 1
to 2
—

4>y 2
aj

1
= 2nv,

that is,

0*64 7
?i

a,
2
— 7?2 aj

i
=

h7TV i

where v is the signature of the basis 2cov 2cu
2

. The presence of the

signature in this formula is easily understood: if the basis is changed
from 2a>v 2a> 2 to 2o>', 2o»" by the pair of formulae

a)' = m'a>
x -\-n'to2 ,

to" = m"a>
l -\-n"a) 2 .

the moduli
17', 77" are given by the pair of formulae

V =
m'rii+n'riz, r,"

= m"-q l+n"r) 2

with the same coefficients, and therefore

1 V

(A)

m
,

n',

m
n"

Vv V-2

to, CD.,

Since the function £z has residues which are not zero, integration of

£g produces a manyvalued Function, but since the principal part of £«

Dears == £2 is 1/(2—12), the multiplicity of the integral is the multiplicity
of the logarithm of a singlevalued function. In other words, we can
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regard t,z not as a derivative but as a logarithmic derivative, and the

function az defined by the formula

z

is singlevalued. Performing the integration, we have

0-65 az = z
Y[' K

1

-^))
6"'"^ 2" 2

)-

whence

The definition of az is equivalent to definition by the relation

a z
0-66 — =

l,z
az

coupled with the condition

•606 ?? -*1.
z

Otherwise expressed,

•607 az =
zexpj

f (&-Z- 1
)
dz\.

'

o
'

It follows from the uniform convergence of the series for £3 2 that

the series for pz and t,z also are uniformly convergent, and therefore

that az has no accessible poles and no zeros except those which are

immediately in evidence:

0-67. The junction az is an integral function which has the lattice jwints

for simple zeros.

The effect on az of addition of a period to z is to be found from -66

and -604. We have

ct'(2+ 2o>
1 )

az

ct(2+ 2o»
1 )

az

and therefore

*h.

•cos
az

where C
x

is a constant to be determined. But since £z—z~ l
is an odd

function, z

exp f (£z—z~
x
)
dz\

o
4767 F
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is an even timet ion. and az is an odd function, and putting z = —co x

in -tins we h.i\ c

•609 Cj = — e27?'"'.

Thus

oils, o{z+2w x )
= — e27M~~ +a»Vz,

and similarly

0-68j ct(z+2o>2 )
= —e^+^oz.

These formulae arc often conveniently taken in the form

or.s.,
, oiz+ toj -e^oiz—wj, a{z+co 2 )

= —e27i* so{z—oj 2 ).

II we substitute z+2cl» 2 for z in •(>S
1
and 2+2o> 1

for z in -68, and

compare the results, we find eir>iWi = e4T?2<Ui
,
that is,

e4(i; 1 to2 -7? 2 a)i) __ 1

whence
rj l

u>2
—

r].2
co

l
is a multiple of Itti, in agreement with -64, but

this argument does not lead to the former precise result.

'flic functions £z, az, like the elliptic functions pz, t,k z, are homo-

geneous in z and Q. As in some other respects, £z is in sequence with

the elliptic functions, and £z is of degree
—

1; the homogeneity of az,

and the degree of this function, are most evident in the explicit formula

•(')."). which shows az as the product by z of a function of degree 0:

()»•,«.», ., £(Az|Ai2)
== X~^(z\il), o{\z\\Ll) = Xa(z\Ll).

Elliptic functions in general, and the Weierstrassian functions in

particular, depend fundamentally on the shape of the lattice to which

they lielong, and only to a trivial extent on its size and orientation,

for the distribution of values of a function attached to a lattice LI can

lie deduced immediately from the distribution of values of the function

attached in the same way to any lattice geometrically similar to 12.

<)". A zero of the derivative p'z is a value of 6 for which the equation

v. pb <t has a multiple root. Since pz is of the second order, no

root of this equation can be of higher multiplicity than two, and there-

fore t he zeros of p'z are necessarily simple. Since the only poles of p'z
are the triple poles at the lattice points, p'z is of the third order. Hence

has three simple zeros. To locate these zeros, return to the equation

pz pb <>. taking the equation in the form pz = pb. One root of

this equation is z = b, and since the function is even, another root is

//: in general these two roots are incongruent, and every root

congruent with one or other of them. Congruent roots can not
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coalesce, and therefore if 6 is a double root, b = —
/;, that is. 2b a 0;

conversely, this condition is sufficient, provided that b is not a pole:

•701. The zeros of p'z are the points other than the lattice points which

satisfy the congruence 2z = 0.

The points given by 2z = are the midpoints of steps from the origin
to the lattice points. Since the congruence .

can be expressed also as 2(z—Q. t )
=

0, the "
.

•

same points are also the midpoints of steps ..

*
. *..

•'•

.

to the lattice points from any other lattice
*

,.

" •

point. The points given by 2z = are the ..

midpoints of steps from one lattice point to
*

.

*

another. If the lattice is referred to a basis • •

'"'

.
'

(2^!, 2a>2 ), the condition 2z = becomes
* *

2z = 2ma> 1+2nio 2 ,

'
.

'
, ".

•

that is, z = mco 1 -\-na> 2 ,
and can be decom-

posed according to the parity of m and n.

If m and n are both even, the aggregate raa^-f-nw 2 is the original

lattice; if m is odd and n even, the aggregate is the congruent lattice

which includes the point tox \
ifm is even and n odd, the aggregate is the

congruent lattice which includes the point a> 2 ;
if m and n are both odd,

the aggregate is the congruent lattice which includes the point a> 1 -\-a> 2 :

•702. Tlie midpoints of steps in a lattice compose the lattice itself and

three lattices congruent with it.

We usually apply the name of midpoint lattice only to the three lattices

which are distinct from the original lattice.

If OACB is a cell in the lattice, the midpoints of OA, OB, and OC
are three points of which no two are congruent, and the three midpoint
lattices can be identified as the three which include these points. But

it is to be emphasized that the midpoint lattices depend only on the

original lattice, not on a particular cell or basis.

If we express -701 in the form that

0-71. The zeros of p'z constitute the three midpoint lattices of the latt'ui

to which pz belongs

we foresee that the set of three lattices plays a leading part in the

theory of the functions. Two of the midpoint lattices are associated

with the halfperiods a>ls co
2 ,
and since there is no intrinsic difference

between the three lattices we associate with these halfperiods a half-

period belonging to the third lattice, that is, a halfperiod o»., congruent
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with o^+to,. To take co
:]
as o^-f-a^ involves a lack of symmetry which

ultimately becomes extremely tiresome; we define o>3 instead by the

symmetrica] relation

•703 toi+eog+oja = 0.

We can use (2co.2 . 2to8) or (2ft>3 , 'Ico^) as a basis for the lattice instead of

(2cL» 1 , 2ojo). audit is sometimes useful

to exhibit the lattice as the set of

points of intersection of three families

of parallel lines.

The signature v is the same for the

bases (2a> 2 ,
2o»3 ) and (2o>3 , 20^) as for

^ the basis (2u>v 2o> 2 ), and may be re-

garded as the signature of the triplet

of halfperiods. We may admit the

result intuitively, but it is evident

analytically from -703, which, written in the form

l+ (co 2/co 1 )+ (oj3/aj 1 )
= 0,

implies that Im(a>3/uj 1 ) has the opposite sign to Im^/a^), that is, that

Im(o) 1 /o>3 )
has the same sign as Im^/a^). The result follows also from

•64: writing r)3
= £co3 , we have from -703 and -632

•704 «?!+%+% =-°»

which with -703 implies

•705 l^o- r).,u) 1
=

r) 2 co3 —r] 3 co 2
=

r)3 co
1—r] l

co3 .

It is sometimes worth while to replace -G3
2 by

0-72 £(z+2wko1+2wa>2+2pw8)
= &+2mr)1+2nr)i-{-2p'i)s .

To *68 we may add

•706j o ct(z+ 2cu3 )
= —e*n&+°>*>(TZ, a(~+w 3 )

= —e***Bo(z—wa).

These formulae can be generalized immediately; we have, by -72,

o'(z-\-ma> 1 -\-nto 2 -\-pix)3 ) a'(z
— m(ju

l
— nai2

—
pco 3 )

a(z-\- mw l -\-nio 2 -\-pu)3 ) a(z
— maj

l
— na)2 —pco.i )

and from t his. since

2>nr
]l+ 2717)0+ 2prj3 ,

mod. Ha>., POi3),a{tno) l -\-7Uo 2 -\- pto3 )
= —

a(

integration implies

0*73 a{z-\-mui1-\-7Uu2-\-pois)
= —e{2m^ +2n^+ 2PV2)=a

^
z —7nco

1
—nco

2 —pa)3 ),

For all integral values of to, n, />. Hence also

707 u(:
; 2mWj -llK,).,

|

ltO)3 )
= — ea"^h>^"V,\2 lnhX; t ww ll na} 2+pcoa)aZi
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We have seen that pz— B has a double zero if and only if B has one

of the three values pcov poj 2 , p<o3 ;
these three values, the values of

pz on the three midpoint lattices, are denoted by ev e2 ,
e3 . Since pz— er

has a double pole at the origin and a double zero at o)n the product

(pz— e
l)(pz

— e
2)(pz

— e3 ) has a sextuple pole at the origin and double

zeros at co
l , co

2 ,
co3 . On the other hand, p'z has a triple pole at the

origin and simple zeros at ojv a>
2 , a>3 . That is to say, p'

2z has the same

structure as (pz
— e

1)(pz
— e2)(pz

— e3 ), and by Liouville's theorem, -49
3 ,

one function is a constant multiple of the other. Near the origin,

pz ~ 1/z
2

, p'z <~ —
2/z

3
. Hence

0-74, p'H = i(pz-e x)(pz-e2)(pz-e3 ).

This fundamental relation between pz and p'z can be expressed in

another form by means of Liouville's other identification theorem, -48.

From the Laurent expansion -57,

pz = z-*+3s,z*-{-5s3 z*+0(z«),
we have

pH = z-6+3s- 2
(3s 2+5s3 z

2
)+ (9(z

2
)

= 2-6+ 9s
2 z-

2+15s3+6>(22
),

and also

p'z = — 2z-3+6s2 z+20s3 z
3+O(z5

),

p'
2z = 4z- 6-24s

2 z-
2-80s3+O(z

2
).

Hence

•708 p'H = 4p
3z-60s2 z-

2-U0s3+O(z
2
)

= 4p
3z—g2pz—g3+0(z*),

where g2
= 60s2 , g3 = 140s3 ,

that is,

•709
x_ 2 g2

= Q0Z'£l-\ g3
= 140 £' Q"°.

But p'
2z— (4p

3z—g2 pz—g3 )
is an elliptic function with no possible

poles except the lattice points; the formula -708 proves that the origin

is not a pole but a zero of this function, and it.follows that the function

has the constant value 0:

0-74
2 p'H = \pH-g2 pz-gz .

Comparing the two formulae for p'
2z we deduce that

0-75r The three midpoint constants ev e2 ,
e3 are the roots of the equation

4t*-g2 t-g3
= 0.

In other words, the midpoint values ev e2 ,
e3 satisfy the relation

0-75
2 ei+ e2+e3

_.
o,
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and the constants gtt gr8,
which are called the invariants of the lattice,

are given in terms of ev e2 ,
e3 by

l)i.)
:! , 9-1

~
- e2 e3 g3 ei

ei e2' G3
= e

i
e2 g3-

Differentiating -~i., we have

710 p"z= Gp*z-y2 ,

whence, substituting the complete Laurent expansions,

32 l+1.1.3*a+2.3.5*8 z
a+3.5.7s4 z

4
+4.7.9*6 z

6
+...

= 3z-4
+0(3s2+5s3 z

2+7s4 z
4+9s5 s

6+ ...)

+ 3s4
(3s2+553 2

2+-) 2-^
implying </.,

= 60*a &s before, and

•711 1.7.9s4+2.9.11s5 s
2+3.11.13s6 z

4+ ...

= 3(3s 2+5s3 z
2+7s4 z

4
+...)

2
,

identically, whence

•712. The sums s4 ,
<s5 ,... are polynomials in s2 and s3 ,

with rational

coejjiiii nts independent of the lattice.

It follows that while a basis is needed for the evaluation of the in-

variants ofthe lattice, the later sums can be deduced from the invariants

\\ ithout further reference to the basis.

When the invariants are known, -742 becomes a differential equation,

•713 (dw/dz)
2 = ±iv3—g2w—g3 ,

from which pz can be determined as the one solution which satisfies

the condition w ~ 1/z
2 near z = ().

An alternative argument, leading to simple general theorems which

we shall find useful, shows very clearly why the zeros of p'z, but not

those of {>z. can be identified in the lattice. For any lattice step Q,

an elliptic function /(z) of which U> is not a pole satisfies the condition

•714 /(- 2a)=/( 2U).

It /(:) is odd. it satisfies also the condition

715 n-m = -wo),
and we have therefore f(\Ll) =-. —

/(J-Q),

implying that ]li. not being a pole, is a zero. Further, if the order of

this zero is ,,. fche derivative /'""(~). which is an even function or an

odd function according as // is odd or even, is an elliptic function of

which 111 is neither pole nor zero, and therefore is not an odd function:

that
is, n is odd. Lastly. if/(z) is an odd function which has U> for
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a pole of order m, then l//(z) is an odd function which has ID. for a zero

of order m, and therefore m is odd :

0-76. Every odd elliptic function has every lattice point and every mid-

point for either a pole of odd order or a zero of odd order.

One corollary, since the derivative of an even function is an odd

function, is

•716. If an even elliptic function has a lattice point or a midpoint for
a pole or a zero, the order of this pole or zero is even,

and another, which leads immediately to -71, is

•717. If an odd elliptic function of the third order has one of the four

points 0, cov cv 2 ,
a>3 for a triple pole, it has the other three points for

simple zeros.

Also

•718. Every odd elliptic function of the second order has two of the four

points 0, a)v to
2 ,

a>3 for simple poles and the other two for simple zeros.

If f(z) is any function of which hO. is not a singularity, f(z)—f(\Q.)
has IQ. for a zero. It follows from -716 that

0-77. If f(z) is an even elliptic function, f{z)—f(H1) has hO. either for
a pole of even order or for a, zero of even order.

The theorem with which this section began, which can be enunciated

in the form

0-78. The function pz—er has the midpoint cor for a double zero,

is a particular case of this general result, but it is a case of fundamental

importance in the sequel.

Since pz— e
x has the origin for a double pole and has the point a>

1

for a double zero, p(z-\-oj 1)—e1 has the origin for a double zero and
has — o)v and therefore w

x ,
for a double pole. Neither function has any

other poles or zerosf ,
and therefore their product, which has the periods

of pz, has no poles, and by -31 is a constant; but, when z = to 2 ,

piz+aij = p(-a)3 )
= pco3 ;

hence

0-79 {p2-eiX0(2+wi)- ei}
= K—%)(«3—H)>

a formula which shows more clearly than an explicit formula for

piz-'rojj) the effect of the addition of a halfperiod to the argument of

the function.

That is, any incongruent with these. This is a laxity of expression which can do
no harm.
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0-8. Unless C =
0, the function A+ Bpz+Cp'z, in which A, B, C

are constants, has a triple pole at the origin and no other poles; this

function has therefore three zeros, and their sum is congruent with 0.

To determine A : B : C by the equations

A+Bpx+ Cp'x = 0, A+Bpy+ Cp'y = 0,
J

where x, y are given eomj)lex numbers, is to take the function in the

form
,

. , .

1
, px, p x

i> &>y, p'y

1, pz, p'z

in which the two zeros z = x, z = y are already obvious. Hence

0-81. Ifx+y+z = 0, then

1, px, p'x
— 0.

!> py, P'y

1, pz, p'z

A more complete enunciation is

0-82. If x, y are given, the equation

1, px, p'x

!> $>y, P'y

1, pz, p'z

is satisfied if z is congruent with x, with y, or with -{x-\-y), but not

otfurwise.

It follows from -82 that the equation

t hat is, the equation

{px-pyfp'H =
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a relation between p(x-\-y) and functions of the separate variables x, //.

In particular, expressing the sum of the roots, we have one addition

theorem which does not involve the invariants:

0-83. For any two values of the variable,

P(x-\-y) -- -- l{{p'x—p'y)l{px—py)Y—px-py.

0-9. The function pz having been constructed, a function J\z) can,

we proceed to show, be built on the same lattice to an assigned speci-

fication. Since pz is an even function, any rational function of pz is

even also, and we suppose first that f(z) is even. Then if 6 is a zero

of/(z), of order q, so also is —6, to the same multiplicity, and if 26 ^= 0,

these two zeros are incongruent. Under the same condition, the zeros

of pz—pb are simple zeros at the points congruent with b or —b, and

the zeros of (pz
—

pb)'
1 are zeros of order q at these points. If 26 = 0,

there are two cases to distinguish. If 6 = 0, no function of the form

pz—pb is available; this case is left aside for the moment. If 6 = a>r ,

the function pz—pb becomes pz— er and has a double zero; the zeros

of any integral power of pz— e
r
are of even order. But we have seen

that a>r ,
if a zero of the even function f(z), is a zero of even order, and

if this order is 2q', then (pz—er )'
1

'

has zeros equivalent to those of/(z)

at the points congruent with a>r . Thus if f(z) is an even function, an

irreducible set of zeros of f(z), excluding a zero congruent with the

origin, can be taken to be ±b lf ^zb 2 ,..., ±bn with orders qv q2 ,..., q n ,

and wv o» 2 ,
a>3 with orders 2q', 2q", 2q'", the last three orders not being

necessarily different from zero, and if we write

•901 Z(z) = (pz-e1)«'(pz-e2)*'(pz-e3)*
m

TJ (pz-pbj"%
s

then Z(z) has, except possibly for the lattice points, which may be zeros

of f(z) but are poles of Z(z), the same zero-structure as f(z), and has

no poles except at the lattice points. Similarly an irreducible set of

poles of f(z), excluding possibly a pole congruent with the origin, can

be taken to be i^, ±a2 ,..., iam with orders pv p2 ,---, pm,
and cov a»

2 ,

cu3 with orders 2p', 2p" , 2p'", and if P(z) is defined by

•902 P(Z)
= (pz- ei)"'(pz-e2y>"(pz-e3 y>- U {pz-par)>\

r

the function 1/P(z) has, except possibly for the lattice points, the same

pole-structure as/(z), and has no zeros except at the lattice points. It

follows that Z(z)jP(z) has, except possibly at the lattice points, the

same pole-structure and the same zero-structure as f(z), and therefore

the quotient of f(z) by Z(z)/P(z) is an elliptic function with no poles
4767 G
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and no zeros inoongruenl with the origin. But, from -31 and -35, an

elliptic function which is not a constant has both poles and zeros, and

the origin, which could serve in one capacity, can not serve in both

capacities. Hence the quotient off(z) by Z(z)jP\z) is a constant, that is,

091 f(z)=f Z(z)IP(z)

where, since both Z(z) and P(z) have unity for leading coefficient at

the origin./,, can be identified with the leading coefficient there of the

function f(z) itself.

The argument just used, which is due to Jordan, can be amplified.
1 at

q = q'+q"+q'"+ I ?., P = p'+p"+p'"+ I Pr

Then if j\z) has the origin for a zero of order q ,
the sum of the orders

of the zeros of /(z) is q -\-2q and the sum of the orders of the poles is

-/>; these sums are equal and therefore p > q, qQ = 2(p—q). If/(z) has

the origin for a neutral point, the sum of the orders of the zeros of

f(z) is 2q and the sum of the orders of the poles is 2p, and therefore

p — q. If /(z) has the origin for a pole of order p , the sum of the

orders of the zeros of f(z) is 2q and the sum of the orders of the poles

is pQ -\-2p, and therefore p < q, pQ
= 2(q

—
p). Thus the origin is a zero

of order 2{p—q), a neutral point, or a pole of order 2(q—p), according
as p is greater than, equal to, or less than, q. On the other hand, near

the origin Z(z) is dominated by p^z and therefore by l/z
2,;

,
and P(z) is

dominated by ppz and therefore by l/z
2p

. Hence Z(z)/P(z) also has the

origin for a zero of order 2(p—q), for a neutral point, or for a pole of

order 2{q—p), aecording as p is greater than, equal to, or less than, q.

That is to say, Z(z)/P(z), constructed to have the same structure as

f(z) except possibly at the lattice points, acquires automatically the

character of/(z) at the lattice points themselves, and Liouville's struc-

tural identification theorem -49 3 is applicable without modification.

The formula -01 gives us the descriptive theorem

o«)2,. Any even elliptic function belonging to the same lattice as pz is

a ratio/nil function of pz.

II

'

f(z) is odd, then /(z)/p'z is even, and therefore

0"922 . Any odd elliptic function belonging to the same lattice as pz is

i)n product by p'z of a rational function of pz.

Lastly, any elliptic function /(z) can be expressed as the sum of the

two functions
\{f(z) f( -z)}, \{f{z)—/(—«)},

of which the first is even

and the second odd. Applying •'.>!%
and -922,
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0-923 . Any elliptic function f(z) can be expressed in the form

R(pz)+p'zS(pz),
where pz belongs to the same lattice as f(z), and R(pz), S(pz) are rational

functions of pz.

If f(z), g(z) are two elliptic functions belonging to the same lattice,

we have
f = R/{p)+ iyS/(p), g = R

a(p)+ p',%(p),

where R
f(p), Sf(p), Rg(p), Sg(p) are rational functions of p. Between

these equations and the relation

P'
2 = ^-92p-9a

the two auxiliary functions p, p' can be eliminated algebraically, and
therefore

0-93. Any two elliptic functions with a common lattice are connected by
an algebraic equation with constant coefficients.

If m, n are the orders of/(z), g(z), an arbitrary value of f(z) implies
not more thanf m possible values of g(z) and an arbitrary value of g(z)

implies not more thanf n possible values of /(z). It follows that if/, g
are connected by an irreducible algebraic equation 4>{f,g)

= 0, the

degree of
<j>

in g is not greater than m and the degree of
<j>

in / is not

greater than n.

It is possible to establish -93 by general functional and algebraical

reasoning without the use of the special function pz, but the argument
is delicate.

From -93 we have the corollary

0-94. Every elliptic function is connected with its derivative by an

algebraic equation.

In other words, ifw is an elliptic function /(z) of z, there is a differential

equation <f>(w',w) = satisfied by w. The function <h is polynomial in

w as well as in w' and does not involve z explicitly. Usually, if the

order of the elliptic function f(z) is n, the degree of
</>

in w '

is n, and
the degree of

cf>
in w is the order of the elliptic function f'(z), and may

have any value from n-\-l to In.

A second corollary to -93 comes from taking f(y-\-z) as a function

of z, where y is independent of z. We infer the existence of an equation

^{/(^+ 2)>/(z)}
= 0, polynomial in the two functions f{y-\-z), f(z), with

coefficients dependent on y; let us write the equation in the form

903
i ®{f(y+z),M;y} = o.

\ Usually the numbers are exactly m and n, but we have only to suppose g(z) defined
as U(z

)}
2 to see that reductions in these numbers are possible.
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Since this equation is satisfied for all values of y and z, we have also

•903 2 <b{f{y+z),f(y)',z}
= o.

I

The two equations -5MI3,. -'.mi:*., are identical, since otherwise we could

eliminatef(y \ z) algebraically and obtain a relation satisfied identically

by y and :. contradicting the assumption that y is independent of 2.

Hence the function 0>{f(y-\-z),f(z)',y} is a polynomial in f(y) as well as

0*95r U f(z)
' s ""!/ elliptic function, there is an algebraic equation

v

J'*{/(#+ ~)-/(//)-/( :;
)}
= 0' wtih, coefficients independent of y and, z, con-

necting f{y I z) with /(//) and f(z).

This result is expressed briefly in the form

0*958 . Every elliptic function possesses an algebraic addition theorem.

Theoretical interest is focused rather on the converse of this theorem,

which, with the obvious exceptions, was established by Weierstrass :

the only singlevalued functions to possess algebraic addition theorems

are rational functions, functions which in a wide sense may be called

circular, and elliptic functions.

The function XF of -§5^ is symmetrical in f(y) and f(z). Also the

relation *F{/(—y+z),f(— y),f{z)}
= is identical with the relation

x

¥{f(z).f(y),f{z—y)} = 0, but this identity does not express symmetry.
If however we apply the argument leading to -O.^ to the function

f(—y—z) instead of to the function f(y+z) }
we have succinctly

904. If f(z) is any elliptic function, there is a polynomial F(X, Y, Z),

symmetrical in the. three arguments X. J\ Z, such that the relation

x-\-y+z = implies the relation F{f(x),f(y).f(z)} = 0.

[f the order of the function f(z) is n, the degree of the equation -!M>2

in f(y-\-z) is usually n, and therefore as a rule the degree of the poly
Domial T in

•'.»">,
in each of its arguments is //. and so also is the degree

of the polynomial F in !K)4. Algebraically this result is somewhat sur

prising. For example, it is evident that if p'y and p'z are removed

from 1 he relation

(py-pz) 2fM>H -) w t (•>--! Wv-P'*)*
h\ means <>f 1 be relations

\>-'j igfly g2py g* w'
2z == ^z-g2 pz-g.^

the resulting equation is of degree two in p(y | z); it is by no means

evident that the coefficients of this equation are not of higher degree
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in py or pz. Or to put the matter differently, the eliniinant of A'\

Y' ,
Z' from the four equations

•90.V4
= 0,1, X, X'

1, Y, Y'

I. Z, Z'

x >2 = 4X*-g2X-gz ,
Y' 2 = 4Y*-g2 Y-g3 , Z'* = ±Z*-g2Z-ga

is obviously symmetrical in X, Y, Z; it is not obviously the product
of {(Y

— Z)(Z— X)(X—Y)}
2
by a function quadratic in each separate

variable. To find algebraically the significant factor of the eliminant,

we remark that -905J implies that there exist numbers A, [x.
such that

X' = AX+/x, Y' = AF+ i[
x, Z' = XZ+fi,

and that therefore, from -9052_4 , X, Y, Z are the roots of an equation
of the form ,,<, . n . , w

4t3-g2 t-g3
= {M+n)

2
,

whence, relating the coefficients to the roots and eliminating A and
/x,

we have

(YZ+ZX-£XY+lg2)*
= HX+Y+Z)(XYZ-lga),

a condition of the fourth degree in the set of variables X, Y, Z but

quadratic as required in X, Y, Z separately. Thus

•906. 7/ x+y+z = 0, then

{pypz+pz{px+pxpy+ig2 )

2 ---- ±{px+py+@z){pxpypz—\gz).

The importance of -923 is for general theorems rather than for parti-

cular applications, for whereas the determination of the functions Z(z),

P(z) in the formula -91 depends directly on the structure of f(z), the

same can not be said of the rational functions in -92 3 ;
the poles of

l{f(z)+f{
—

z)} and \{f{z)—f(
—

z)} are among the poles of f(z) and the

poles of /(— z) and can be identified, but the zeros of these functions,

that is to say, the roots of the equations/(z) = —/(— z) and/(z) = /(
—

z),

are not necessarily discoverable in practice. For example, taking f(z)

as p(y-\-z), we can solve the equation p(y-\-z)
= p(y—z) but we have

no means of solving the equation p(y-\-z)
= —p(y—z); we can there-

fore express p(y+z)—p{y— z) in terms of pz and p'z, but we can not

proceed to obtain a formula for p(y-\-z). The details of the evaluation

of piy+ z)
—p(y— z) are simple and instructive. The function p{y-{-z)

has a double pole at z = —
y; the function p(y

—
z) has a double pole

at z = y. Hence p(y-\-z)—p(y
—

z) is a function of the fourth order,

its poles are the zeros of (pz
—
py)

2
,
and one irreducible set of poles

has the sum zero. Because the function is an odd function, three of
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its zeros are the halfperiods a>
1

. a*.,. a>3 whose sum is zero; hence a fourth

zero is the origin, and {p(y-{-z)
—
p(y—z)}lp'z has no zeros incongruent

with the origin. We have therefore

p(y+z)-p{y-z) = Ap'z/(pz-py)'-,

where A is independent of z. As z -> 0,

{9(y+z)-p(y-z)}/2z -> p'y,

that is, V(/y+z)-p(*/-2) ~ %z$)'y;

on the other hand. p'z/(pz—py)
2 ~ — 2z.

Hence A = —p'y, and finally

•907 p(y-Z)-p{y+z)
= p'yp'zl{py-pzY,

in agreement with -83.

There are developments of a function in terms of £z and of az to

which the criticism directed against -923 does not apply, and with these

developments we conclude our introduction. First let a
r be a pole of

the elliptic function /(z), of order w
r ,
and let the principal part of f(z)

in the neighbourhood of ar be

Mr) Mr) Mr) Mr) Mr)

(z-a,.)^"
1
"

(z-a,.)^-
1
^ ""r

(z-ar )

3 "*"

(z-ar )

2 z-ar

'

With the function £A.z defined as in -52, the principal part of each of

the functions t,mr{z—ar ), £„,,-&—ar),..., £3(z—ar ), p(z—ar ), l(z—ar) near

ar consists of a single term whose numerator is unity, and the principal

part of the sum

+A^Uz-ar)+A^p{z-a r)+A^{z-ar )

is identical with the principal part of/(z). Denote this sum by Zr (z
— a

r ).

In Z
r(z—ar ) every term except A^(z—a

r )
is an elliptic function. Hence

^ Z r(z—ar ), where the summation extends to all the members of an

irreducible set of poles of f(z), is the sum of an elliptic function and

the function (f>(z)
defined by

cf>(z)
= !A[r

K(z-a r ).

r

Now if 12 is any lattice step, £(z+Q) = £2+77, where
17

is independent
of z. Heine
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for ^ A (

{\ the sum of the residues of f(z) at an irreducible set of poles,

is zero. That is to say, although the individual functions £(z ?/,).

£(z
— a

2 ),... an( l *'ie individual functions Z
1(s— r/j),

Z
2 (z
—a

2 ),...
are not

elliptic functions, the particular combinations </>(z) and ]T Z r(z—ar )
are

elliptic functions. The second of these combinations is an elliptic func-

tion whose principal part at every pole in an irreducible set is identical

with the principal part of f(z). Hence, by -48,

0-96! f(z)
= c+ ^ Z

r(2-«r ),

where c is a constant. Conversely, whatever the constants on the right

of '96!, subject to the condition ]T A {

{
} = 0, this expression defines an

elliptic function:

0-962 . An irreducible set of poles of an elliptic function may be assigned

arbitrarily, together with the principal part of the function at each pole,

subject only to the condition that the sum of the assigned residues is zero.

As a first example, take/(s) = \j(py—pz). Near z — y,

py-pz {z-y)p'y, p'yf(z) ~ —(z—y)~\

and near z = —y,

py-pz ~ {z+y)p'y, p'yf(z) ~ (z+tj)~
l

.

Hence, since /(z) tends to zero with z,

•908! P'yl(py-pz) = Z(y-z)+£(y+z)-2£y,

from which -907 follows by differentiation. Interchanging y and z in

•908!, we have

•9082 p'z/(py-pz) = i{y- Z)-i{y+z)+ 2t
)z,

which gives, in combination with -908J

•909 ^+Z)_^_^ = l
2{p'y-p'Z )l {py-pZ

) y

and by differentiation

an unsymmetrical correlative of -907.

From -83 and -909 we have

•911 {^+2)_^_^}2 = p(y+z)+py+pz,

or in a more symmetrical form

•912. Ifx+y+z = 0, then

(£r+£</+£z)
2 = px+py+pz.
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To develop Ij(py-pz)
2 we have to take into account another term

in each Taylor series, and we have

P,%
y\{py-P*)

% ~ {y-z)-
2
+{p"yl@'y)<y-*)-

x

near z = y, and

P'*yl(py-&z)
2~ (y+*)-

2
+i$>"y P'yKy+t)-

1

near z — —y. Hence

p'*y {fpy pz)
2 = $>{y-z)+g>{y+z)-2py+

+(#>"yl&'y){Uy-*)+Z(3/+z)-2Zy},

which on substitution from -DOSj becomes

913 p(y-z)+p(y+z) = p'
2
yl(py-pz)*-fp"yl(py-pz)+ 2py,

that is to say, -910 with y and z interchanged. Since p"z = §@Pz—\g2i

we have
(p"y-p"z)/(py-pz) = 6py+G$)z,

and therefore

•014 p(y- z
)+ fo(y+z )

= ${(p'*y+g>'*z}l(g>y-g)z)*}-2g>y-2pz,

a formula which combines with -907 to reproduce the addition theorem

in the form given in -83.

If the poles and zeros of an elliptic function f(z) are assigned, the

properties of the function az are utilized for the construction of f(z).

Let av a2 ,..., a,, and bv b2 ,..., b n be irreducible sets of poles and zeros of

f(z), subject to the equality ]T bs
= ^ a

r ^
a condition which, as we have

seen on p. 24, imposes no restriction on the function f(z) itself. Then

since a(z— ar ) has the points congruent with ar for simple zeros, and

o(z
— bs )

has the points congruent with b
s
for simple zeros, and neither

function has any other zeros or any accessible poles, the quotient

B(z)/A(z), where

•915M A(z) = = IT o{z-a r ), B(z) = n o{z-b^
r s

is a function with precisely the poles and the zeros of f(z). If 2oj
17 2o>,

i- a basis of the lattice, we have from -683_4 ,
for each value of to and

t he corresponding value of
17,

A(z+u>) ---. {-ye2
v^c-«r)Y[u{z-w-ar )

= (-)"e
27
?-<-~-«'L4(3-oj),

and similarly

916 B(z+oj) = (— )»e^
E^-W5(z— a»).

Bui ^ (
z~ a

r)
= nz- ^ a

r
= nz— 2 bs

= 2 (z-bs ).

fience

•'.•IT B(z+ to)/A(z-\-a>) = B{z-o>)/A{z-uj),
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for all values of z, and therefore the quotient B(z)/A(z) has the period

2co. Thus B(z)/A(z) is an elliptic function with the structure of/(z),

and from Liouville's second identification theorem i {
.).

i ,

0-97 1 f(z )
= gB(z)/A(z),

where g is a constant. Conversely, if only the constants implicit in the

definitions of A(z) and B(z) by -915^2 satisfy the relation

I b, = I «>>

the expression on the right of •dl
l
defines an elliptic function, and

therefore

0-97 2
. The poles and the zeros of an elliptic function may be located at

arbitrary points and have arbitrary multiplicities, subject only to the con-

ditions that, multiplicity being taken into account, the number of poles is

the same as the number of zeros and the sum of the poles is congruent with

the sum of the zeros.

As simple examples of -97\ we have

0-98 py-&z = -a(y-z)(j{y+z)lo
2yo2

z,

from which we can recover -908!, and

0-99 p'z = 2a(z
— o> 1 )ct(2

— a>
2 )(T(2

— (o 3 )/aa) l ctoj., 0W3 ct
3
Z,

which, so to speak, extracts the square root in -1^v

47fi7



THE THREE PRIMITIVE FUNCTIONS

1-1. The simplest elliptic functions are of the second order, and of

these there are two kinds, functions with one double pole in each cell,

and functions with two simple poles in each cell. The Weierstrassian

function pz, of which a brief account has been given in the introductory

essay, is the standard function of the first kind. This book is a study
of standard functions of the second kind.

The existence of an elliptic function with one double pole is demon-

strated by the actual construction of pz. The existence of a function

with two simple poles is established in the course of the development
of the theory of the Weierstrassian function. By the general theorem

0-5)6,, the function

•101 c+A x £(z- ai)+A 2 £(z-a2 )

is an elliptic function if A
x -\-A 2

— 0; it is a function of the second

order with simple poles at a
1
and a2 and an assigned residue at one of

these poles, and it includes an additive constant c. Similarly by the

general theorem 0-97
2 ,

the function

•102 f a(z
— b

x )a(z
— b

2)/o(z— a x)a(z
—a

2 )

is an elliptic function if a
1
Jra2

= b x -\-b2 ,
it is a function of the second

order with simple poles at a
x
and a

2 and simple zeros at b
x
and b2 ,

and

it includes a constant factor / . In each form the function involves

two arbitrary constants in addition to the numbers av a2 which locate

the poles.

We might obtain standard functions with simple poles by choosing

constants in -101 or -102. Rut appropriate constants are not easily

recognized in advance. Also it is one thing to use the functions t,z and

az for evidence of existence, but to rely on these functions for the

definitions and for the most elementary properties of the functions

which are to be fundamental is another matter. We approach the

problem of construction in a more direct fashion.

1-2. (Jiven a function whose poles are all double, we have only to

take a square root to obtain a function whose poles are all simple, but

this function is doublevalued unless the zeros as well as the poles of

tin original function are of even order. The zeros of pz are simple,

and the branches of (pz)* can not be separated. But pz— B, or pz— pb,

where b
,.

<». has the same poles as pz; it is a function of the second
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order, whatever the value of b, and as we have seen in 0-7 its zeros

are double if b is congruent with one of the midpoints u>v cd2 , o»a . Thus

for r = 1, 2, 3 the function pz— e
r has all its poles and all its zeros of

precisely the second order, and

•201. The function (pz
— er )- has no branchpoints.

It follows that the two values of {pz
—e^ are not branches of one

function but, like the two square roots of z 2
,
are separate singlevalued

functions. We can discriminate between the two functions by their

behaviour in the neighbourhood of z = 0; here pz resembles 1/z
2

, and

therefore one square root of pz—er resembles 1/z and the other re-

sembles — 1/z. It is with the first of these square roots that our study

begins. This function Jordan denotes by fr (z) and Tannery and Molk

denote by £r0(z), but to avoid having a suffix as part of the functional

symbol we denote the functions that correspond to the three half-

periods tov co2 ,
o»3 by fjz, gjz, hjz; then we replace a>v a>

2 ,
o>3 and

ev e
2 ,

e3 by co
f , mg,

u) h and e
f , e

(P
eh ,

a departure from current practice

which is trivial in itself but far-reaching in its effect on our notation.

The three functions which we call the primitive functions and denote

by fj z, gj z, h
j
z are thus three singlevalued functions definable in terms

of pz by the formulae

l-21i_3 fj
2z = pz-ef , gj

2z = pz-eg , hj
2z = pz-eh ,

or in another form

1-21
4
_
6 fj

2

3+e/ = gj
22+e3

= hj
22+ e^

= pz,

coupled with the conditions that, as z -$> 0,

1-22^3 zfjz->l, zgjz-»l, zhjz->l,

which also have an alternative form

l-224_6 f\Z ry 1/Z, gj Z ~ 1/Z, llj Z ~ 1/z.

The notation allows us to speak of a typical function pj z, defined by
the formula

l-23
x pj

2z = pz-ep
with the condition

l-23 2 pjz~l/z.
The definitions of the primitive functions can be expressed somewhat

differently, in terms of the Weierstrassian function az, which has no

accessible poles and has simple zeros at all the lattice points of pz.

The quotient a(z—o)p )/az has the zeros and poles of pjz, and therefore

•202 pjz = eAp{s)a(z— <op )j<jz,
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w here -\,(:) is an integral function, a function without accessible poles.

Ti> obtain A
/(
(c) and to Bee this formula in relation to the definition of

pj s, consider the factorization theorem 0-98, which we may rewrite in

the form

, ,
. a(z

—
b)a(z-\-b)

•203 pz-pb = - v ' LZ '.

a-b o*z

The basis of this theorem is thai the roots of the equation pz = pb
fall into two classes, the roots congruent with b, which are the zeros

of a(z
-

b), and the roots congruent with — b, which are the zeros of

/;). In choosing a value of b so that every root of the equation

pz pb is double, we are choosing b so that the functions o(z-\-b),

«r(-. A) have the same zeros. This is easily verified; for all values of 2,

as we have seen in 0-683_4 ,

a{z+wp )
= —e2

VpZa(z—wp ),

and substituting for a{z-\-top ) in -203 we have

e277p-rT2 (;s
— co )

204 pZ-ep
=

<J
2
ojp a

2z

whence, since a(
— cop )

= — oa>p and oz ~ z as z -> 0,

1-4 j)j2
= — - -EL.

OtOj,
oz

This is the required formula of the form -202, with Ap (z) identified as

the linear function — log (
— acop )-\- r)p z, the selection of the branch of the

logarithm being irrelevant.

We make very little use of the explicit formula -24; the distribution

of poles and zeros is shown clearly, but otherwise the fundamental

properties of the function pjz are not in evidence, and two constants

rfp ,
a<op are involved. It is only in the light of the deduction from -23J

thai the function seems well chosen, and we can almost always base

our arguments immediately on the more fundamental definition.

From -21
1 „

we see that we can express the square of one primitive
timet ion in terms of the square of another. For brevity we write e

g
— e

f

- <

w . and so on. Then we have

' '25j , gj
22 = fi

2z-e
/0 , hj

22 = fj
22-eM , j

and also identically

e
tf/,fj

2Z+ e/(/gj2
Z+ e/i/ hj22

= 0-

j

L-3. Since \->{—z) — pz, identically,

;i.|(-2)-fJ2}{fj(-2)+ fJ2}
= 0,
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and one of the two functions fj(— z)
—

fjz, fj(
—

z)+ fjz is zero for all

values of z. As z -> 0, fj(— z)/fjz^-
— 1. Hence this ratio is not identi-

cally 1, that is, fj(
—

z) is not equal to fjz in the neighbourhood of the

origin, and therefore the equality that is valid everywhere is

•301 fj(-z) = -fjz:

1-31. The three primitive functions are odd functions.

Since fjz is odd, so also is fjz— z _1
,
and the value at the origin of

this function, which is regular in that neighbourhood, is zero: near the

origin

•302 fj 2 = 2-i+0(z).

An improvement on this result is derivable immediately from the rela-

tion of fj
2z to pz. Since fjz is odd, we may assume

fjZ = Z^+ aZ+G^Z
3
),

implying

fj
2z-z"2 = (a+0(z

2
)}{2-f-6>(z

2
)}

= = 2a+<9(z
2
),

and since pz—z~ 2 = 0(z
2
),

we have from -21
l9 2« = —e

f ,
that is,

•303 fj 2 = 2-i_ie/Z _j_0(z
3
).

The poles of each primitive function are the poles of pz. Within

a parallelogram that is primitive for pz, each of the primitive functions

has only one pole, and that a simple one; we know therefore that if

the functions are doubly periodic, their periods must differ from those

of the Weierstrassian function from which they are formed.

To discover the effect of adding one of the Weierstrassian periods,

we repeat the argument leading to -301. The identity p(z
Jr 2cok )

= pz
implies that either

•304 fj(z+2a,,) = fjz

everywhere, or

•305 fj(z+2a>*) = -fjz

everywhere. If in -304 we substitute — cok for z, we have on the one

side fj ojk ,
and on the other side, since fjz is an odd function, -fjojA..

But
fjtOfc and — fjoij. can not be equal if a>k is neither a zero nor a pole

of fjz. Hence -304 is not an identity if a)k is a>
g
or o>h ,

and the alter-

native to -304 being -305 we have

l-32x_2 fj(z+2a^)
= -fjz, fj(z+2a,A )

= -fjz,
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whence further

that is.

1-33

Also from 'A'2.

Thus

tj(:-2co!/
-2co

/( )
- -fj(z-2<og)==f}z,

fj(z | 2oj,) =
f]2.

fj(z4-4cos )
= fjz, fj(z+4tuA)

= fjz.

1-34. Tin function I'j
: /'.* doubly periodic and 2^, 4^, ±ioh are JAree

o/ //.s-
jii

linds.

A parallelogram with sides
2a;,, 4<o„ contains only two poles of fjz,

namely, <> and 2a>
(/

, and these are simple; hence a primitive parallelo-

gram for the function can not be smaller than this, and we infer that

"lajf.
4cu

(/
is a primitive pair of periods for this function. The pair 2u>

f ,

4oj
/(
also is primitive, but the pair 4co

ff
,
4o>

/(
is not.

With 2^, -iajg
as a primitive pair of periods, the midpoints of the

primitive period parallelogram are co
f ,

2o>
f/

,
aj

f -\-2coy
. To describe fjz as an

odd function with the two points 0,

2o>
(/

for poles and the two points u>
f ,

Wf-\-
i

ia)
(f
for zeros is therefore to illus-

trate the general theorem 0-76; each

of the four points 0, u)
f ,

2id
,

(x)
f -\-'lo)g

must be either a pole or a zero, and

therefore, since the function is of the

second order, two of them must be

simple poles and the other two must

be simple zeros.

Since 4a>
f ,

4a>
g ,

4o>
/(
are periods of all

three of the primitive functions, while 2to
f

is not a period of gjz or

hj z, we call a>
f ,

oj
ff

, a>
tl quarterperiods of the set of functions, not for-

getting that they are halfperiods of pz and that each of them is a

halfpence! of one primitive function. We continue to call the poles,

which arc common to all the functions, the lattice points of the theory.
A doubly periodic function whose poles are all simple is determinate,

save to an additive constant, by the poles and the residues attached

to them. It is important to be familiar with the patterns formed by
the residues of the primitive functions. These three patterns are

attached to the same lattice, and there is no qualitative difference

between one and another; each pattern consists of alternate rows of

Fir.. 13.
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positive and negative units. But we must recognize the arrangements
of the three patterns relative to one another, and relative to the primi-

tive triad of quarterperiods co
f ,

a>
ir

a> h .

Residues of £j z Residues of gj
z

Fig. 14.

Residues of hj z

The point 2la}
f
-\-2mco

(/
-\-2na>h is a pole of fj 2 for all integral values

of I, m, n; if this point is £2, the principal part of fjz in its neighbour-
hood is 1/(2—12) or — l/(z—Q) according as m-\-n is even or odd, and

Q may be called in the one case a positive pole, in the other case a

negative pole. Since fjz is an odd function of z—Q, to subtract the

principal part is to obtain a function, fjz— l/(z—Q) or fjz+l/(z— 12),

in which the pole D. is not merely removed but replaced by a zero; the

function is of course no longer periodic.

1-4. Since the poles of fjz in the primitive parallelogram 2a>
f ,

4co
ff
are

simple poles at and 2a>
f/

,
there are two values of z at which f

j z takes

an assigned value B and the sum of these values is congruent with 2oj
(J

.

Hence if b is any point in the parallelogram, the only other point in

the parallelogram for which fjz has the same value as at b is the point

congruent with 2a>
(/
—b, which is one of the four points 2to —b, 6aj

g—b,
2w

f+ 2uj
g—b, 2a)

f+6u>g—b.

1-41. The solutions of the equation fjz = f]b fall into two sets,

z = 2lu)
f -\-2ma)g -\-2najh -\-b with m+ n even,

z = 2ltOf-\-2mu)g -\- 2nuih
— b with m-\-n odd.
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Since co
f

is one zero of fjz, another is oj
/ -)-2a>(7

,
and every zero is

congruent with one of these, mod
2a>f, 4etf_, that is to say, is congruent

with to
t

. mod 2^, 2aj
i/

. The zeros of the primitive function pj z com-

pose a lattice geometrically congruent with the lattice of poles, but

with the point iap for one of its points.

A doubly periodic function being determinate, save to a constant

factor, by the distribution of its poles and zeros, we can identify each

primitive function, but for such a factor, by a characteristic pattern.

'Poles and zeros

oFfjz
Poles and zeros

of gjz

Fig. 15.

00
Poles and zeros

of hj z

The poles have the same positions in the three patterns, but the loca-

tion of zeros serves instead of the distribution of residues as a means

of discrimination, and we do not now distinguish between positive poles

and negative poles in the diagrams. In the pattern for fj z, lines through
F parallel to OG and OH accommodate ranks of zeros; on the line OF,

poles and zeros alternate.

1 •">. Neither oj
f)
nor oj

/(
is a pole or a zero of f

j z; the values fj o>
tf

,
fj ioh

of the function at these points are fundamental parameters in the

theory. We denote them by /ff
, ffl

and call them the critical values of

fjz; the critical values are finite constants, different from zero. If

6 = ui
g , the two points b, 2o»

(/

— b coincide; that is, u>
u

is a double root

of the equation fjz = fjoj^:
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1-51. The roots of the equation fjz = fg are double roots at the points

congruent with ou
g ,
mod

'Iwf,
4co

ff
,

from which it follows that the roots of fjz = —
/ are double roots

congruent with — cv
g

. Similarly the roots of fjz = fh and of fjz = —fh
are double roots congruent with a>h and with — ioh . Incidentally we
notice that fg can not be equal to fh or —fh :

1-52. The squares of the critical values f , fh are unequal.

The last two theorems are evident algebraically from the identities

•501 fj
2z+ex

=
gj

2

z+e„ = hj
2z+eA .

When gj z = 0, f
j

2z = e
g
—e

f
. That is,

•502-503 f%
= e

fg , ft = e
fh ,

and since e
f ,

e
g ,

eh are all different, fg , fft are different from zero and

from each other.

From -501 we have alternatively

9}
= e

gf , hf
= e

hf ,

whence

•504 fl=-h% gf=-fl hl=-gl
Although not expressible rationally in terms of e

f , e
g ,

eh ,
the six

constants of the form fg are intrinsically determinate, for they are the

values of definite singlevalued functions at specified points. We have

in fact from -24,

1-53 f e-Waco^

We shall return in a moment to an examination of relations between

the six constants,

The converse of the set of results typified by -51 is true also. If b is

a double root of the equation f
j z
= f

j b, then 26 = 2aj
ff

,
mod 2oj

/(
4co

g ,

and b is congruent with one of the four points o>
3 , Zmg ,

a)
f -\-u)g ,

aj
f -\-3cog ,

£hat is, with one of the four points co
g ,

—a)
g -\-4cog ,

— coh ,
ajh -\-2ujf -{-4a>g

:

1-54. The root b of the equation fjz = fj6 is a double root if and only

if b is congruent with one of the four points i%- zr^/i an& ^\b has one

of the four values ±fg , ±fh .

1-6. It follows from -54 that the zeros of the derivative fj'z are the

points congruent with ±0^ or ±<%- This derivative is an elliptic

function with the same periodicities as fj z and with the poles of f
j z

for double poles. It is therefore of order four, and each of the four

distinct zeros must be simple. Thus fj'z has the zeros of each of the
4767

j
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functions gj z. hj z for simple zeros, and has the poles which are common
to these functions for double poles. In other words, the derivative fj'z

and the product gjzhj;: have the same zeros and the same poles, and

since the functions have the same periodicity, one is a constant multiple

of the other. Near the origin, fj'z
--> — z -2

, gj z hj z ^ z~2 . Hencef

101 fj'z
= —

gjzhjz.

This result may be derived directly from the relation of the functions

to pz. The fundamental formula O-T-lj for p'
2z is equivalent to

•601 p'
2z = 4fj

2
zgj

2
zhj

2
z,

and since p'z ~ — 2z-3
,
this implies

•602 p'z = -2fjz gjzhjz,

whence, from -21,

•603 fjzfj'z = g)zg)'z = hjzhj'z = —
fjz gjzhjz.

The zero
ca,

of fjz is simple, and near this point fjz resembles

fj '0^.(2
—

cd,);
that is, from -61,

162 fj z ~ -gf
h
f(
Z-co

f).

Since 2co,
is a period of the function, the form is the same near —w

f

as near co
f

. Generally, for all integral values of I, m, n, the point

(2l-\-\)u}f-\-2mtog -\-2na>h is a zero of fjz, and if Y denotes this point,

the function resembles —gf
h

f (z
— Y) or gf

h
f (z
— Y) in the neighbourhood

of Y according as m-\-n is even or odd.

Since the step co,
is a step from any zero of fjz to a pole and from

any pole to a zero, the product fjzfj(z+tuy) is a doubly periodic func-

tion without poles, and is therefore a constant. We can calculate this

constant in two ways. Firstly, putting z = a)
u ,
we have

1-63 fj*fj(»+«/)= -fjh .

Alternatively, as z -> 0,

fjz ~ z~\ f}(a>f+z) ~ zfj'eo,,

and therefore

1-64
fjzfj(z+to,) =iytaf

.

From -61,

•604 fycof
= —gf

h
fi

1 Hv •linoMti^ .1 .1 taiiilanl funi'tioii t he square root of pz — e
r
which resembles —

1/c

we oould remove the negative si^n from this funds nta] formula. Tradition apart,
there seems little i>> recommend one choice rather than the other.
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and comparing -63 and -64 we have the identity

1-65 fjh
= gf h„

implying

•605 {"-/- V
h fa 9n

since the third fraction can be added by symmetry. We have seen

already in -504 that the square of each of the fractions in -605 is -1,

but the equality of the fractions themselves is a much less trivial

theorem. Each fraction is the same square root of -1, and we write

•606
•{"
=

y.
= ** = v,

I'i fg (
Ji>

where v 2 = -1. To interchange the symbols f and g is to replace v by

1/u, that is, by —v. There is therefore no question of replacing v by i,

for unless we impose some condition on the sets of quarterperiods to

be used, v is i for some sets, —i for the others.

The significance of v, both geometrically and analytically, can be

deduced from -53. The two formulae

Jg
= —

> 9f
— —

ooij
oa)

g crcDf
ao}

g

give

•607 v = eW^'-VM,

and we have seen in 0-64 that
7]f
w

g
—

r] (/
to

f
is \ni or --\ni. It follows

from -607 that v is i in the one case, -i in the other, and therefore v,

as defined by -606, is the signature of the basis 2o)
f ,

2oj
g ,

as defined in

the course of the proof of 0-45. The equalities -605 might have been

inferred from the equalities 0-705, and the signature can be described,

as on p. 36, as the signature of the triplet a>
f
uj

g
a> h ;

the signature is i or

— i according as minimum rotation oj
f
-> to

g
-> a> h is positive or negative,

or in analytical terms according as Im(to ff/aj ; ), Im(aj /( /a» !/
), Im(co//a>A )

are positive or negative.

Since v can be identified without reference to the elliptic functions,

•606 can be regarded as a set of relations

l-GGi-3 fh
= vh> (Jf

= vfg ,
h
g
- vgk

giving three of the critical values in terms of the other three. Identi-

cally, efh -\-egf+ehg
= 0, and to -66^3 we can add by -503 the relation

i-^, n+a+v = °>

or in the alternative form

i-67
2 n+fi+v = °-
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Of the six critical values only two can be independent, but we retain

symbols for them all. since any elimination destroys the symmetry of

the analysis. We may note however that if we suppose fg, gk ,
h

f ,
con-

nected by »'>T.,. to be given, we have not only the other three critical

values from •(><>, but also, by solving the set of equations

the Weierst rassian constants:

•608 e,
= W]-fl), e

a
= \{Pa -gl), eh

= \{g\-h%

But a more symmetrical form of the last set of formulae is

•609
e,
= tof+hj), e

g
=

|(^+/J), eh
= Wl+uD-
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THE SET OF ELEMENTARY FUNCTIONS

2-1. As we have seen, the functions i'jz, gj z, hj z have common poles

at the lattice points of pz, and have zeros at the points congruent with

tOf,
a>

g , to lr Subtraction of a>
f
from z interchanges the lattice points

with the points congruent with
a>y,

and interchanges the points con-

gruent with co
g
with the points congruent with a>h ;

also this subtraction

brings the particular point a>
f

to the

origin, Hence the functions fj(z
— co

f ),

gj(z
— <o

f ), h](z
— a>

f )
have common poles

at the points congruent with a>
f ,

and

have zeros at the points congruent with

0, oj
/t ,

a>
g ; for each function the principal

part near w
f
is \j(z—oj f ).

To secure a comprehensive notation,

we introduce
a>j

as an alternative symbol
for the origin. We are then able to say
that fjz, gj z, hj z have a positive pole at

tOj
and zeros at oj

f ,
to
g ,

toh ,
and

that fj(z— co
f ), gj(z— oj

f ), hj(z— co
f )
have a positive pole at co

f
and zeros

at
o)j,

coh , o)g..
To perfect the analogy, we may write the functions fjz,

gjz, hjz as fj(z— at,), gjiz-wj), hjiz-coj). The functions fj(2-w f/
),

gj(s— oj
g ), hj(z

— co
(J

)
have a positive pole at co

g
and zeros at <x>h , uip o>

/5

and the functions fj(z
— a)h ), g](z

— coh), hj(z
— ojh )

have a positive pole at

u)h and zeros at a>
g , ajp ojj.

By associating with the three primitive functions the functions

obtained by subtracting a quarterperiod from the independent variable,

we have therefore a set of twelve functions each of which has simple

poles congruent with one of the four points oj^,
a>

f ,
co
g ,
uh and simple

zeros congruent with another of these points. Since the pole and the

zero can be selected in only twelve ways, the set regarded from this

point of view is complete. We call the twelve functions the elementary

elliptic functions, distinguishing still the three which have a pole at the

origin as the primitive functions. We denote the elementary function

which has a zero at ojp
and a pole at a>

q by pqz, a notation which

exposes the structure of the function and is consistent with the nota-

tion for the primitive functions. Thus

2-Hi-a fj(2-^/)
=

jfz, gj^-cu/)
= hfz, h]{z-wf)

=
gfz.
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2*2. Like any other elliptic function of assigned periodicities, the

Function \n\z is determined, hut for a constant factor, by its distribu-

tion of poles and zeros, or, as we may say. by its morphology. The
constant factor is fixed in the tirst instance at the pole oj_, but we need

to be able to make comparisons at any fundamental point. We must

therefore record the leading coefficient ofpqc at each of the four points

tuj.
w

t
, oj

ir
tu lr that is. the coefficient of the tirst significant term in the

expansion of |><|(aj A.-f-/) in powers of t, for the four positions of a>k . If

a»A. is the pole a> the expansion is a Lament series, the first term is

the dominating term I /. and the coefficient is 1. If wk is not toq ,
the

expansion is a Taylor series; if u>k is not the zero w
])y

the first term is the

constant p<|<»j A
.. which is not zero, and this is the leading coefficient; \fiok

iscOp,
the tirst term is / p<|'o y/

. and since the zero is simple, pq'tup does not

vanish and the leading coefficient is now this value of the derivative. The

coefficients are to be expressed in terms of the six critical constants.

For the primitive function fjz, the values of
fjeu,,

and fgo> /(
define

the constants/^ and/,,, and the value of fj'o>, is given by 1-61 as —g,h f
.

Addition of 2oj
/
to wk leaves the leading coefficient of fjz unaltered,

but addition of 2^ or 2cu
/( replaces!, the coefficient by its negative.

The leading coefficients of fj(z
—

to,)
at oj

;
,

a),,
to

f/
,

co h are the leading

coefficients of fjz at oj
f ,

2co
f , co

f ~\-a)(r
to

f -\-w h ,
that is, at w

f ,
2co

f ,

—wh ,

—w
fr

or again at co
f ,

a)
i -{-2u)f y

ojh
— 2a>

/l , oj„— 2co_. The following table

gives the fundamental leading terms of the three functions fj(z
— to

f ),

gj(z
— oj

f ), h}(z
—

a>/),
now denoted by jfz, hfz, gfz.

Table II l
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There is no purpose to be served by adding tables corresponding to

Table III for the sets of functions with poles at a>
(/
and a> lr for only

transliterations are involved, but it is useful to have a table showing

gfgX

Fig. 17.

the leading coefficients of the twelve functions at the origin. Functional

factors in the dominant term are not given.

Table II 2

fjz
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or we may discover from B figure whether the translation moves a

positive pole of one function to a positive pole or to a negative pole

of the other. A complete set of results for the addition of
oj,

is recorded.

Table II 3

fj(;+oj/) = jfr jffc+oi,)
= fjz hg(z+Ct>/)

= -ghz gh(z + to
f )
= -hgz

gj(2+w/) = -hfz hfjz+oj/) = gj 2 jtf(z + cu/)
= •!'- fhfz+w/) = —

jga

hj(z+a>/)
= 60/)= hjz fg(z-fai/)

= jhz jh(zH-a»/)
= fgz

2-4. Since the poles of the elementary functions are all simple, the

product pqzqpz is an elliptic function without poles, and is therefore

a constant. If o»r is one of the two cardinal points distinct from top

and co , the constant is given immediately as pqo)r qpojr
. Alternatively,

near top we have qps ~ \j{z
— iop ), pqz ~ (z

— top )]iq'a>p . Hence

2-41 pqzqpz = pq'cop .

Incidentally,

•401 pq'ojp
= qp'coff

.

In particular,

2-42 jfz= —gf
h

ffi)z,

402 jf'0= -flr,^.

If p and r are different, the product pqzqrz is a function with the

zeros of pqz and the poles of qrz, and is therefore a constant multiple

ofprz. As z -> a»r , qrz/prz -> 1; hence

2-43 pqzqrz = pqoj,prz.

For example, ghz is a multiple of gjz/hjz, and since by definition

gh0 = fj(—wh)
= —fh ,

we have

244 ghz = -/„ gjz/hjz.

By referring to Table II 2 we can avoid direct determination of the

constant factors in such formulae as -42 and -44. When we know! that

jfz is a constant multiple of 1/fjz and that gh z is a multiple of gjz/hjz,

we have only to compare the leading terms at the origin to infer the

exact relationships.

We have defined the functions fjz. gjz, hj c directly, and completed

the set of elementary functions from these three, but the set could be

completed equally well from other triads. For example if jfz, hfz, gfz,

+ If w<- regard th<- group of twelve functions as c pleted algebraically from the three

primitive functions by the use <>f reciprocals ami (piotientB, we arc iii effeel using a

modification of Olaiaher's device for simplifying the notation of Jacobian elliptic func-

tions. Bee l'» i l«-l<i« .
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sharing a common pole oj
f>

are regarded as fundamental, fjz, gj z, hj z

are definable as ]{(z-\-tof), h£(z-\-wf), gf{z+ to
f )
and are seen immediately

to be multiples of 1/jfz, gfz/jfz, hfz/jfz. Or we may use a triad with

a common zero: in terms of jfz, jgz, jhz, we can recover the primi-

tive functions as
jf(z-f-W/), jg(z+co„), jh(z+a>ft)

or as -jftoff jfto /( /jfz,

-jg^/jg^v/jg 3
' "J' 1 W

/J'
la,

y/J
n2 - It is in transformations from one

system to another that these considerations become important; to

express a transformation completely, we need not find the primitive
functions if some other triad is more convenient.

2-5. Like the primitive function pj z, and for the same reason, the

function pqz can be expressed in terms of the function az, with an

exponential factor. Writing for convenience, in agreement with the

formulae 0-604,

•501
Vj
=

£{£(*+2a>,)-£z}
= 0,

identically, we infer from 1-24 that pqz is a constant multiple of

e7tpza(z— ojp )

e7?« 2a(z— o>
a )

'

Near
to,,, pqz ~ l/tr(z— to

a ); hence, writing u>pq
= aj

q
—cop , rjpq

=
r)q-r]p ,

we have the general formula

e^-^Wz— co„)
2-ol pqz = - —-^— —^.

aa)pq a{z
— o)

q )

It is not to be expected that the constant factor in this expression,

namely eM
aOJPQ

'

can be put into the same symmetrical fractional form as the functional

part, for the condition which determines this factor is entirely unsym-
metrical as between a>p and w

q
.

2-6. Ultimately the functions which we are studying depend no less

on the periods than on the argument z, and as functions of the four

variables z, wf ,
w

fJ
,
a>h they are all, like the Weierstrassian function pz,

homogeneous. Exposing the dependence on the periods by writing

pq(z;oj/ ,
a>

fr
ajh )

or less explicitly pq(z, <d) instead of pqz, we can assert

that for any value of A, pq(Az, Ato) = A pq(z, a>), where A is independent
of z and the to, and since pq(Az, Ato) ~ (Az

— Ato
g )

-1 near co
q

and

pq(z, co)
~ (z— (D

q)~
l near the same point, A = A-1 and wre have

2-61 pq(Az,Ato)
= A_1 pq(z, to).

4767 K
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The assertion of homogeneity which we have made can be justified in

two wa\ 3. Since fr>(z.co) is homogeneous, so in turn arep(z,o>)
—

p{cok , co),

which La kj*(z,a>), and kj(c— to
(l
.co). which is the function with the

periods <>t kj(z,a>) and a positive pole at toq
. Alternatively, since the

periods, the poles, and the zeros, of pq(z,a>) are all of the form

lco
f -\-mcou -]-nco lr the function pq(A;:,Aa>) has the same periods and the

same structure as the function pq(z, co), and the quotient of one by
t he 01 her is a constant A.

The homogeneity of the functions may be expressed and utilized in

many ways. We have been considering the functions as dependent
on the three quaj t erperiods co,, co,r coh connected by the relation

co
f -\-cog -\-coh

= 0. We see now that at the cost of symmetry but at no

effective co>1 of generality we can assign one of the quarterperiods

arbitrarily; a second quarterperiod remains as an independent variable,

and the third in this manner of treatment becomes a mere function of

the second. For example,

•«01 apq(z;a,j8, y )
=

pq(
Z

;l,£,-l-£y
\a a

<xj

and the funct ion on the right is explicitly a function of the two variables

z/a, j3/a. If we are in search of trigonometrical analogies, we may replace

co
I by \~ and use the identity

• . / a \ 1* (7TZ TT Tift 77 ( (^~l~/5)\

.More generally, the factor A in -61 is entirely at our disposal, and if

we agree on a normalizing factor A and write u for Az, we express

pq(z,a>) as the product of a canonical function ipq(u,Xco) by a factor

independent of the variable u. This process gives rise to the classical

elliptic functions associated with the name of Jacobi, with which later

chapters are to deal; the choice of the factor is discussed in Chapter X.

Geometrically, the homogeneity in z:co
f
:co

u
:co h means that the

dependence of the functions on the size and orientation of the period

parallelogram is trivial. Any alteration in the shape of the parallelo-

gram dist urbs the distribution of the numerical values of the functions,

bul if the lattice is merely rotated or enlarged, the subsequent value

«>l any of the functions at any point is dedueihle immediately. Thus

a ratio such as
fjf.lojj hgo), is dependent only on shape, or if we divide

all "in functions by any such constant as/f/
we shall have, again at the

cost of symmetry, functions of the two variables
zjco,, oijco,.
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3-1. The relations between the squares of the primitive functions are

unaltered by a change in the argument z, and there is therefore a linear

relation between the squares of any two copolar functions. Substituting

z—
cuf

for z in 1-501 we have

3-H }f
2z+ef

= hf*z+eg
= gi

2z+eh , ,

or in terms of critical values

3-12 jfH = hfH+f* = gfh+ft.

The square of any elementary function can be expressed rationally

in terms of the square of any other. If the functions are copolar the

typical formulae are included in *12; a general formula is

3-13 pq
2z = rq

2z— rq
2
a>p

.

If pqz, rsz are not copolar, then

99 rs z rs to.,314 pq
2z = pq

2
o>s
— —?,
rs 2z— rs 2

a>
g

since the form of the relation is implied by -13 and identity at the

three points a>p ,
io

q ,
cos determines the constants.

The squares of the elementary functions are all even. Each of the

functions is therefore either an odd function or an even function, and

since an odd function has the origin either for a zero or for an infinity,

3\5V The six elementary functions of which the origin is neither a zero

nor a j>ole are even functions.

Since the primitive functions are odd, so also are their reciprocals:

3-152 . The six elementary functions of which the origin is either a zero

or a ])ole are odd functions.

3-2. The derivative fj'(z— oo
q ) is given in terms of the two functions

gj(2
— o)

fl
), hj(z

— cu
q ) copolar with fj(z— a>

f/
) by the formula 1-81 which

gives fj'z in terms of gjz and hjz; that is, if rqz, sqz are the two

functions copolar with pqz,

3-21 pq'z = —rqzsqz.

A formula for integration is evident from -21: we have

rq'z = —pqzsqz, sq'z = —pqzrqz,
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w hence

, „ rq'z-fsq'z
•201 pqz = --^-H

rqz | sq i

and therefore

3-22
J'
pq : dz = log

rqZi+sqz,

rqz.,-r-sqz2
»i

the integral having the same multiplicity as the logarithm.

The step <jj
jui

from a zero to a pole of pqz is a halfperiod of the

function and is also a step from a pole to a zero. Hence the product

pq : pq(z+a)_fl)
is a constant, and the value of this constant is the limit

of the product as z -> o»
/(

. which is pq'%,. Alternatively, if z = o»
r ,
then

z-{-uipq
= cor

—
o>„-f co

q ;
but if kj z is the primitive function coperiodic

with pq z, then

202 pq(z+o>a)
= kjz = -kj(—z)

= —
pq(a>fl

—
z);

hence

pq(o>r+ a>
pg )
= — pq(wp+ a*

tf

— a;r )
= —

pq(a)8+2a>p+2a>fl),

and since 2a>p+2a>fl
, being expressible as 4oj

y,-f
2a>

/>(/
,
is a period of pqz,

u '" have / i \ „„pqK+a>M )
= —pqa>SJ

and therefore

3-23 pq'wj,
= —

pqa>rpq«8,

\\ hence from -21,

3-24 pqajr pqajs
= rqa>p sqa>p .

From i«21j we have at once

3-25
|

fj
2zrfz = (^z 1 +e/

z
1)-(^2+e/

z
2 ),

where £'z = --pz and e
/ may be expressed as --$(/£+/&) Integration

of higher powers of fjz depends on a recurrence. From the formula

•203 fj'
2z = {Ifz-fimH-fl)

we have

•204 fj"z
= 2fj«z-(/«^)fjz

and therefore

3-26
^(fj'" ^zfj'z)

= (m+l)fj»+V //,(./; I ffifj"* ( (m-l)^fj"-
2
z.

I f /// is a push i\ e even number we can therefore determine for
J fj'"z rfz

an expression of I be form
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with constant coefficients. If m is odd. the recurrence brings us t<> the

integrals of f
j
3z and fjz, and the former of these is expressed in terms

of the latter by means of -204. which is -26 for the case m = L; thus

for an odd index the general form of
|
fj"'z dz is

3-27a {am_J}
m-3z+am_B fjm

-5z+...+a2f]h^a )fyz-\-a\og(gjz-\-h]z).

Since in -203 we can substitute z— cok for z, we can replace fjz in -2<)4

and -26 by any one of the coperiodic functions jfz, hgz, ghz, and there-

fore we can express the integral of any odd power of one of these

functions by means of the integral of the function itself, as given by

•22, and the integral of any even power by means of the integral of

the square of the function. If in -26 we take m - = we have

•205 L 9£ = = ffz-jfH t

dz tjz

whence, jfz fjz being constant,

3-28 [}f2z dz = ^-&-ef z,
• jfz

while

3-29
j hg

2z dz =
[

(jg
2

z-0j) dz = i
g Z-

£z-e,z.

Thus all positive integral powers, odd or even, of an elementary

elliptic function, can be integrated, and since negative powers of one

function are positive powers of another, the problem of the integration

of integral powers, positive or negative, is completely solved.

3-3. The derivative fj'z has simple zeros congruent with uj
{I
and a> h .

and double poles congruent with o)r The structure of the logarithmic

derivative fj'z/fjz is simpler, for this quotient has the two points co,r w,t

for simple zeros and the two points to,-, go, for simple poles. Again,

while fj'z has the periodicity of fjz, addition of 2oj
7
or 2a»

/( replaces

fjz and fj'z by their negatives, and therefore the quotient has the

periods of the original function pz. More generally,

3-31. The logarithmic derivative pq'z/pqz has simple poles at a)p
and

co
q
and simple zeros at the other two cardinal points, and has 2co

f , 2aj,r 2w h

for periods.

Since one of the two functions pqz, pq'z is even and the other is odd,

the logarithmic derivative is odd, and referring to 0-718 we recognize

that the logarithmic derivatives are, but for arbitrary constant factors,

the only odd functions of the second order with the Weierstrassian

periods.
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If we compare t he diagram of poles and zeros for the function fj'z/fjz

with the corresponding diagram for gjz, which also has simple zeros

congruent with co„ and simple poles congruent with
tap

we see at once

that the difference is a difference of scale in the direction from the

origin to to
f

. To be precise, if in fjz the quarterperiods a>
f

,
to,,

have

Poles and zeros of jjz/fi*
Poles and zeros of gj z

Fio. 18.

the values 2a, 2j8, we obtain a pattern identical with that of the poles

and zeros of fj'z/fj z by constructing gj z from a Weierstrassian function

with periods 2a, 4jS, instead of with periods 4a, 4/?. Exhibiting the

dependence of each function on its quarterperiods, we can say that

the function gj(z; a, 2j8,y— j8)
has the same morphology as the function

fj'(2;2a,2j8,2y)/fj(z;2a,2j8,2y). Moreover, 4a and 4^3 compose a pri-

mitive pair of periods for both functions, and the leading terms at the

origin differ only in sign. Hence

3-BSm fj'(z; 2 a
, 2/3, 2y)/fj(z; 2a, 2j8, 2y)

= -gj(Z
;
a,2^,y-^) = -hj(z;a,j8-y,2y),

the argument with regard to the third function being the samef.

To replace the logarithmic derivative fj'z/fjz by jf'z/jfz is only to

change the sign, since jfz is a constant multiple of 1/fjz. If we sub-

stitute z— 2y for z, we have

fj(z-2y; 2a, 2)8, 2y) = gh(z; 2a, 2/3, 2y),

gj(z-2y;a,2j8,y-j8) - -gj(2 -2j8;a,2j8,y-)8) = -
jg(z; a, 20, y-0),

hj(z-2y;a,j8-y,2y) - jh(z;a,j3-y,2y),

and therefore

3-33, ., gh'(z; 2*. 2/5. 2y)/gh(z; 2a, 2)3, 2y)

jg(z;a,2j8,y-j8)= jh(z;a,j8-y,2y).

'i j

t There i* a temptation to write -:{2, in tlio form

r\'(z:utf , u>g ,u)hW](z;wj, co , toh )
= -gj(z ; \ti>t , wg , J«J„ ft ),

l. nt the Dotation in the function gjz is logically indefensible. In Table Xllli below,

the eoonomj i- considerable and the fault peiliapH venial.
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The connexion between the logarithmic derivatives of fjz and gh z is

brought to the surface by -32 and -33; the poles of one of these func-

tions are the zeros of the other, and the product of the functions is

constant.

3-4. In •32
1
we have evidently a second means of integrating a pri-

mitive function. With a change of notation we can write -32
x as

fj(*;«,0,y)
= -gj'(»;«,^,y-/5)/gj(*;«,^,y-j8),

and we have therefore

I gJ(z2> oL,lp,y—p)

Comparing this formula with the formula included in -22 for the same

integral, namely

\ i]{z ;<x,p, y) dz = log -7^ . , ..
—~—:,

J
; gj(z2;a,fty)+hj(z2 ;«>fry)

Si

we see that gj(z; <x,/3, y)+ hj(z; a,/?, y) is a constant multiple of

gj(z;«,2j8,y-j8),

and identifying the factor from the form near z = 0, we have

3-42 gj(3;«,j8,y)+hj(2;«,j8,y) = 2gj(z; a, 2j8,y-)8).

The source of this relation is easily detected. The primitive functions

gjz, hjz have the same poles, which fall into three groups. Some, like

the origin, are positive for both functions, some, like 2co
/;

are negative

for both functions, and some, like 2co
ff

,
are positive for one and negative

for the other; but for the existence of poles of the last kind, the func-

tions would be identical. If we add the functions, the unlike poles

disappear, and halving the sum we have a function with a positive

pole at the origin and a negative pole at 2^. The function has periods

4co
/5

4a>
tf

,
4co/p and since it has no poles except and 2a>

f
in the parallelo-

gram 4:co
f ,

4cu
ff

,
this parallelogram is primitive and the periods 4co

f ,
4to

g ,

4:wh form a primitive set. Further, the removal of the principal part

±1/(2—12) near any pole Q. of a primitive function leaves a function

which is not merely finite but zero at Q.
;
hence the poles of gj z and

hj z which disappear when the functions are added are replaced by
zeros. That is, 2a>

g
and 2co

/(
are zeros of gjz+hjz, and since this sum

is of only the second order, these zeros are simple and every zero is

congruent with one or other of them. To sum up, gj z+hj z is an elliptic

function with periods 4o>y, 4^, 4^, and with simple poles at the origin
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and 2tOi ami simple zeros at 2ca
g
and 2o>

/(
: on the other hand, fj'z/fjz

is an elliptic Function with periods 2a*/,
2ai

ff
,
2a>A> and with simple poles

at the origiii and u>, and simple zeros at u>
g
and cl»

/(
. The similarity is

perfect, and comparing the forms near the origin we have

343 gj(z; «,jS>y)+hj(Z ; *,j3,y)
= 2fj'(«; 2«, 2)8, 2y)/fj(z; 2«, 2)3, 2y ),

j

a symmetrica] relation which combines with -32, to give -42.

Subtraction of hj z from gj z replaces the poles at and 2o>
/ by zeros,

Leaving the poles at 2a»
B
and '2oj h effective. In fact, since the product

•

hj z)(gj z—hj z) is a constant, the poles of one factor are the zeros

of the other. We have now. comparing residues at 2/3.

3-44 gj(z; x,j8,y)-hj(z; a,j8,y) - 2hg'(z;2«,2j3,2y)/hg(z;2a,2j8, 2y), I

in agreement with the relation which we have already noticed between

the logarithmic derivatives of fjz and ghz. For the same difference we

have also

3-4.-) gj(z;a,j8,y)-hj(z;a,0,y)
= 2 jg(z; a

, 2j8. y-ft),

and we can combine -42 and -45. The formulae

3-46, , gj(z;a,j3,y)
= gj(z;«,2j8,y-j9)+jg(*;«,2j3,y-j3)

=
hj(z;a,j8

—
y, 2y)—jh(z;«,j3—y, 2y)

are typical of a group.

Since \ plays the part of a)
f
in all the functions, substitution of z— a.

for z gives

3-463 ( hf(z;*,j3,y)
= hf(z;a,2j8,y-0)-fh(z;«,2jB,y-j8)

= gf(z;a,£— y, 2y)+ fg(z;a,£— y. 2y),

formulae which may be found by direct combination of the copolar

functions gfz, hfz with a view to the removal of one set of poles. There

are no results of this kind to be found by combining jfz with one of

the functions gfz, hfz, for although we can find a function with periods

4ov 4w, ;
and with two simple poles, this function has no symmetry

with respect to the origin; it is neither even nor odd. and therefore it

can not be a multiple of an elementary function, however the primitive

pair of periods is selected.

3*5. It is interesting to discover the integrating formula -41 by

investigating the functional character of the integral

ffjzefo.
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Since the poles of fjz are simple, the singularities of the integral are

logarithmic, and since every residue of fjz is a whole number, the

function F(z) defined by

•501 F(z) = exp
|

fjzdz

is singlevalued. Since every residue of fjz is numerically unity, positive

poles of fjz give rise to simple zeros of F(z), and negative poles of fjz

to simple poles of F(z). Near the origin, F(z) ~ Az, where A is a con-

stant dependent on zv and this condition, with the relation

•502 F'{z)jF{z) = fjz,

leads at once to

F(-z) = -F(z), F{z'+2a>f)
= -F(z),

F(z+2a>g)
= B/F(z), F(z+2a> h )

= C/F(z),

where B, C are constants of integration. The identification of F(z)

with a multiple of a function jgz follows immediately, and since

F(z 1 )
= 1, we have

•503 F{z) = }**'**>*:%
jg(z 1 ;a,^,y)

where, in terms of the quarterperiods of fj z, a = m
f , ft

=
1oi,r and

therefore y = a>
gh

.
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IV

ADDITloX THEOREMS FOR THE
ELEMENTARY FUNCTIONS

4-1. The process by which, in the lasl introductory section, an arbitrary

elliptic function is expressed in terms of pz and p'z, is a special ease

of a process devised by Liouville for expressing an elliptic function /(z)

in terms of any coperiodic function
<f>(z) of the second order.

If the pole-sum of <f>{z) is 2y. the sum of incongruent zeros of </>(z)
— C,

for any value of C, is congruent with 2y. That is to say, if 0(c) = C,

then also <j>(2y
—

c) = C; in other words,

•101 £(2y-z) = <f>(z),

for all values of 2. It follows that /(z) can not be a rational function

of <f>(z) unless /'(c) satisfies the same condition, f(2y—z) = f(z), and since

this condition is not implied by the periodicity of/(z), we consider first

a t miction g(z). coperiodic with
</>(-).

for which the condition does hold.

If c is a zero or a pole of g(z), of any order, and if

102 g(2y~z) = g(z),

then 'ly
— c is a zero or a pole of the same order. As in (lit. we must

examine separately the case in which c is a pole of
</>(z).

and the case

in which the two points c, 2y—c are congruent, that is, the case in

which 2c z z 2y. These cases left aside, the zeros of g(z) are the zeros

of a product ] \{(f>(z)
—

<f)(b tj )}
fI* and the poles of g(z) are the zeros of a

product nW 2 )-<AK)!"'-

The points given by the congruence 2c = 2y are the four points

y-j-a> A.,
where oj a. is zero or a halfperiodf of </>(z), and with regard to

these points we have a number of theorems analogous to 0-7(> and 0-77.

Differentiating -102, we have, for any value of n,

103 (-)" f/"
,

(2y-z) = g
(n
\z),

from which it follows that if n is odd, every point which satisfies the

COndit ion z = 2y— z is either a pole or a zero of </'"(z). Hence, if a point

y-\-wk is a zero of f/(z), it is a zero of even order, and since 1 g{z) is an

elliptic function which also satisfies -102. it follows that if y-\- co k is

B pole of g(z), it is a pole of even order-:

- N'.it the Weierstraasian h»ilf|M-ri<>(l ; as yet the function <^(;) is not specialized, and
when we take <1a 1 1 >i^ one of 1 1 »

<
-

elementary functions, two of the Weierstraasian lialf-

perioda are only quarterperioda <>f </>(;).
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•104. // g(z) satisfies the condition g(2y—z) — g(z), the point y-\-u)k , if

not neutral for g(z), is of even order, whether as a zero or as a pole;

•105. If g(z) satisfies the condition g(2y—z) = g(z), the point y-\-ojk w
either a pole of even order of g(z) or a zero of even order of g(z)—g{y-\-cjk ).

In particular,

•100. The point y+co fc
is either a double pole of cf>(z) or a double zero

of <f>(z)—4>{y+(»k)>

and therefore if y-\-<*>k is not a pole of <f>(z), we can allow for a zero of

g(z) located there, of even order 2p, by including with the zeros a

factor {cf)(z)—cf)(y
J
raj k.)}i

>

,
or for a pole of g(z) located there, of even order

2q, by including with the poles a factor
{(f>(z)

—
<f>(y+ u>k )}''

. Thus we con-

struct functions Z(z), P(z), polynomials in <f>(z), such that the zeros of

Z{z) are those zeros of g(z) which are not poles of <f>(z) and the zeros

of P(z) are those poles of g{z) which are not poles of
(f>(z).

Let F(z)

denote the function g(z)P{z)/Z{z); then F(z) is a function coperiodic

with
(f>{z),

and the only points which can serve either as poles or as

zeros of F(z) are the poles of <j>{z).
But F(z) satisfies the relation

F(2y
—

z) = F(z); if one pole of
</>(z)

is a pole of F(z), so is the other pole

of <f>(z),
and if one pole of

<f>(z)
is a zero of F(z), so is the other pole

of <f>(z).
Hence there can not be both poles and zeros of F(z) among the

poles of <f>(z),
and F(z) either lacks poles or lacks zeros, from which it

follows that F(z) is a constant.

4-11. // <f>(z)
is an elliptic function of the second order whose pole-sum

is 2y, and if g(z) is any function coperiodic with <f>(z)
which satisfies the

condition g(2y—z) = g(z), then g(z) is a rational function of (f>(z).

It must not be thought that g(z) can not have the poles of <j>{z)
for

zeros or poles; the character at these points is determined automatically

if the character at all other points is determined deliberately. The

factor cf>{z) may appear in the explicit formula for g(z), but this will be

because the zeros of <f>(z)
are zeros of g(z) and have introduced <f>(z)

into

Z(z), or because the zeros of <f>(z)
are poles of g{z) and have introduced

(f)(z)
into P(z). Also the poles of <f>(z)

are zeros or poles of g{z) if Z{z)

and P(z) are not of the same degree in
<f>(z).

Whatever the function f(z), the half-sum |{/(z)+/( 2r~ z
)}

satisfies

the condition -102 and is therefore a rational function of cf>(z).
To

complete the representation off(z) we must deal with the half-difference

i{j(2)_y(2y— 2
)},

and this is a function h(z) which satisfies the con-

dition

•107 h(2y—z) = —h(z).
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This condition, like -102. implies that the zeros and poles of a function

Bubject to it. other than any that may he located at one of the four

points y+o»A.. fall into pairs. Also, by arguments which need not be

repeated,

108. Any function h(z) which satisfies the condition h(2y—z) = —h(z)

h<ts each of the four points y+^A- Jor " P°^e °f 0(M order or for a zero of

odd order.

Allowing for this peculiarity, to discuss the analysis of a function

satisfying 107 is only to repeat in substance the arguments leading to

•11, but we can take a short cut. From -101,

•109 </»'(2y-z)
=

-<f>'{z),

, +l f h(2y-z) h(z)and therefore ,,
—'- = -^-L

<f>'(2y-z) <f>'(z)

That is to say, the quotient h(z)/<f>'(z) is a function to which -11 applies:

4-12. If (f>(z) is an elliptic function of the second order whose pole-sum,

is 2y. and if h(z) is any function coperiodic with <f>(z) which satisfies the

condition h(2y—z) = —
h(z), then h(z) is the product of the derivative

<f>'{z)

by a rational function of <f>{z).

Combining -11 and -12 we have the general theorem of Liouville's

of which 0-923 is a special case:

413. 7/ <f>(z)
is an elliptic function of the second order, any elliptic

function coperiodic with <f>(z) is expressible in the form

R{4>{z)} + f (z) Sbfa)},

where
Il{<f>(z)}, S{cf>(z)} are rational functions of <f>(z).

4-2. If pqz, rsz are coperiodic elementary functions, -13 asserts a

relation between them, but this relation is in every case evident enough
when attention has been called to the form of relation required. We
have for example

421 ghz = ~f
4l

Z = ^t-
•>J

2z .//"-fj
2z

It is different when we change the argument of one of the functions

from z tof y-\-z; the function rs(// ) z), as a function of z with y playing
a parametric part, has the same periods as rsz, and this function also

can therefore he expressed in terms of pqz and pq'z, with coefficients

Throughout this chapter, as in 0*8 and 0*9, x mid if denote independent complex
iniml»-rs, 1 1 • » t i.il 1 1 1 1 1 1 1 ) >• -i ^ plated to .:.
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dependent on y. When the functions rsz, pqz are identical, the analysis

of rs(y-{-z) is the discovery of addition theorems for pqz.

The application of Liouville's process to rs(y-\-z) requires the deter-

mination of zeros of functions of the form rs(y-\-z)±Ts(y-\-2y— z), that

is, the solution of equations of the form rs u = ^tsv. Now not only

can we solve the equation tsu = rsv, but since —rsv can be expressed

as ts(v-\-2oj( )
we can solve the equation tsu = —rsv also. For this

reason processes which fail to lead to an addition theorem for pz are

effective when applied to the elementary functions.

Being coperiodic, the functions pqz, rsz are derivable from the same

primitive function, and if this primitive function is kj z, we have

•201-202 kj z = pq(z+cog )
= rs(z+co s ).

Since kjz is odd, pq(z4-a>g )
= —

pq(o>g
—

z), as in 3-202, and we can

take this result in the form

•203 —pqz = pq(2oja
—

z).

A fundamental parallelogram can be formed with 2wk for one side; if

the other side is 4o>,, then

•204 pq(s+2aj/ )
= —pqz.

The function rsz also satisfies the same two conditions:

•205-206 -rsz = rs(2coq—z), rs(z+2w<) = —rsz.

The two poles of pqz are w
q
and a) -{-2(Dt

. Hence the pole-sum of

this function is 2^+2^, and to analyse the function m(y-\-z) we write

rs(y-\-z) as g(z)-\-h(z), where

•207 2g(z) = rs(y+z)+rs(2ajq +2ajl+y-z) = ra(y+z)-Ts(2a>q+y-z),

•208 2h(z) = rs( 2/+z)-rs(2%+2aJ/4-i/-z) = rs(y+z)+ Ys(2coq+y-z),

y being regarded as a constant.

The functions g(z), h(z) have the same poles, namely, the poles of

rs(y-fz), which are -y-\-u>s and —
y-\-co8-\-2o)t ,

and the poles of

rs(2cu
(l

-iry— z), which are y-\-2<oq
— <oa and y-{-2toq

— to8-\-2o>t . Except for

special values of y, which need not now be considered, these four poles

are distinct and simple, and the functions are of the fourth order. The

two points
—

y-\-ojs , y—a>a-{-2(oq-\-2a>t ,
whose sum is the pole-sum of

pqz, are zeros of pqz— pq(o> s>

—
y), and the two points —y-\-o)8 -\-2u)l ,

y—ojs -\-2coq
are for the same reason zeros of pqz— pq(a>s

—
y-\-2u>( ),

that

is, of pqz+pq(o>s
—

y). Hence each of the functions g(z), h(z) has for its

poles the zeros of the function pq
2z— pq

2
(oj s
—

y).

Since rsz is of the second order and has the two poles cos ,
oj3 -\-2ojlt
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the equality ret* = rsv implies either u = v or u-\-v = = 2ta8-\-2tat.

Hence the roots of the equation 0(2) = are the solutions of the

congruence

209 y+z = 2wq+y—z,

and the roots of the equation h(z)
= are the solutions of the con-

gruence

•210 y+z = 2a>
q+2a>t+y-z,

for in each case tlie alternative congruence does not involve 2.

Since 209 is simply z = 2toq—z, it follows from -203 that the zeros

of f/(:) arc the zeros and t he poles of pqz, and therefore, since the poles

of pq: must be omitted in the construction of g(z) in terms of pqz,

•211 m- „
Aiy)T ..

.

pq*z—pq
a
(a)8
—

y)

the unknown factor being a function of ?/; the poles of pqz enter as

zeros of g(z) because the degree of the denominator is higher than that

of the numerator. Near w
q , pqz ~ l/(z

— tu
g ); hence

4, ,, • 7(2) i- rs'(«/+z)+ rs'(2oi +w— z)J (y)
= Inn y— = hm —y^ /n

o
v ,/J-^- =

rs'(u)q+y)
Z—+lOq Z CO Z—*Oiq —

=
pq'(2o>a+y— <*>8)

= pq'K—v)>

from -202 and -203.

The congruence -210 is equivalent to z = 2aj
g
—

2a>,— z, since 4to
{

is

a period. From -203 and -204 we have

•212 pq(2oj (/

—
2a.,— 2)

= pqz,

whence

•213 pq'(2wg-2a>,-z)
= -pq'z,

and it follows, since the poles of pq'z are the poles of \h\z and satisfy

t lie congruence z = 2a*
q
—z which is incompatible with z e -2co

(l
—2a>

t—z,

that /he zeros of h(z) are the zeros of pq'z. This could have been pre-

dicted from the general discussion in the last section, for h(z) and pq'z

are both of the fourth order, and therefore h(z) can have no zeros in

addition to those of pq'z. We have now

m ..

/%,,
:;''

T

,
p<r- pq

8K—y)

and since pq'z pq'-z - —1 as z -> w
q

.

B(y) h{u*q) ve(toa+y) pq{2u}q+y—u}8) pq(w8—y).
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Replacing z by x to emphasize that it is only for the purposes of t be

proof that y has been subordinated, we have

4-22 T8(x+y)—rs(2<off

—
xA-y) = = 2pqspq'(aj8

—
y)/{pq*a;—pq

2
(cufl -//)!•

4-23 ra(x+y)+T8(2a>q-x+y) -- -- 2pq':rpq(w8-y)/{pq
2
a:-pq

2
K-y)},

and finally the one general formula

pcprpqVs-2/)+pq'*pqK-?/)4-24 rs(a;-|-?/)

pq
23—pq2

(o>g
—

y)

4-3. Before elaborating this result, we will investigate an equivalent
theorem for the elementary functions by a modification of the method
used in 0-8 in the discussion of the Weierstrassian function pz, which

is due in essence to Abel.

Squaring the fundamental expression
—

gj zhjz for fj'z and substi-

tuting for gj
2z and hj

2z in terms of fj
2
z, we have

•301 (fj'z)
2 =

(fj
2z-e

/r/ )(fj
2z-

e/J,

and since this equality is unaltered if a quarterperiod is subtracted

from z, we can say that if j z is any one of the twelve elementary

elliptic functions,

•302 (j'z)
2 = (?z-A)(jh-B),

where A, B are constants of the form era . If
<f>z

is the function j
2
z, then

•303 (0's)
2 = 4<£z(<£z-yl)(<£z-£).

Since the addition of one of the halfperiods 2co
f ,

2co
g ,

2a>
/(
to z either

leaves jz unchanged or changes jz to —
jz, this addition leaves

</>z

unchanged; that is to say, </>z
has 2co

f ,
2a>

g , 2u)h for periods. Within

a parallelogram that is primitive for these periods, j
z has only one

pole, and this is a simple positive pole to; hence within such a parallelo-

gram <f>z
has only one pole, which is double, and the only pole of

<f>'z

is a triple pole at the same point, co. Further, if a, b, c are any three

constants, a Jr b<j>z-\-c<f)'z is an elliptic function whose only pole in the

fundamental parallelogram is a triple pole at to, and therefore

a-\-b<f)Z-\-C(f)'z is a function F(z) with three zeros whose sum is congruent
with 3o», that is, since 2to is either zero or a period, is congruent with o>.

If a+bcf>-{-C(j>'
= 0, then

•304 (a+bcf>)
2 = ±c2

<j>{cf>-A){<t>-B),

where A, B are the constants in -302. Hence if x, y, t are the three

values of z in the fundamental parallelogram which satisfy the equation

•305 F(z) = 0,
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then <f>x. </>//. ft are three values of
</>
which satisfy the equation

•306 (<i + b<f>)
2 - 4c 2

<f>{<f>-A){<f>-B),

and since this is a cubic equation ill
</>,

these three values are simply

the three roots of the equation. Thus while t is determined from x and

//. save for multiples of the halfperiods 2o>y, 2aj„,
2o>

/t , by the congruence

•:{<>7 x-\-y-\-t
=

co,

<f>t is determined from (f>x
and

</>// by any formula which gives one root

of a cubic equation when two roots are already known; in the present

rase the simplest formula to apply is that for the product of the roots,

since this does not involve A or B, and we have

•3ns <f>x<f>y<f)t
= a2

/4c
2

,

whence

•309 i-rjy}t= ±a/2c.

But if .r and y satisfy the equation

a-\-b(f>z-\-c<f>'z
= 0,

the ratios a :b :c are determined by the pair of equations

a-\-b<f>x-{-C(f>'x
= 0, a-\-b<f>y+c<f>'y

= 0,

and therefore we have
_ . . . J , 6x<f>'y—(f)yJ)'x

fa—<fcj

or in another form, since ]t is either j(
—

t) or —](—$),

•311 l(xA-y-w) = ± J

:?/ •?/

J
.

J

2*-J 2
*/

We can remove the ambiguity of sign from this last equation; near

the positive pole to, j'z
~ —

l/(z— to)
2

,
and therefore as y ^ oo, the

fraction on the right tends to j#. Hence the positive sign must be

taken, and we have definitely

\x\'y—\y\'x
4-31 ](*+</-") = J

j|-ji!
•

To see that this formula is identical, except in notation, with -24. we

have only to substitute y+w8
— 2cu

r/

for y in the latter; on the right,

pq(w,—y), pq'(*>«—y) become pq(2o>c
—

y), pq'(2wa
—

y), that is,
—pqy,

pq'i/, and on the left, rs(x+y) becomes rs{x+y— 2ai
q-\-2ci)8),

that is,

|.(|(r \-y—a>q).

It follows from :51 that in -310 wc must take the positive or the

negative sign according as the function J2 is even or odd; the simpler
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plan is to regard the formula with a positive sign as giving j(— t). We
can express the result differently. The condition x-\-y-\-z

=
. w is sym-

metrical in x, y, z; so also is the product ]xjyi(— z), which whether

jz is odd or even may be written as j(—x) j(—y) j(— z). Hence we

may replace x and y by y and z or by z and x in the fraction to which

2jarjyj(— z) is equated.

4-32. If jz is any one of the twelve elementary elliptic functions, and

if the sum of three arguments x, y, z is congruent with a positive pole of

j z, then

<f>X(f>'y-<f>ycf>'x = <j>y<j>'z-<j>z^'y = (f>z<f>'x-(f>x<f>'z = 2 j'_x)j(__y)\t_z\

(f>x—(f>y <f>y—(f)Z <j)Z—<f>x

where
<f>z

denotes j

2
s.

But the equalities of the fractions in -32 do not really contain additional

results, for each of the equalities is equivalent, but for a factor
cf>x, (f>y,

or
cf)Z,

to

<f)X (f)'x

4>y <f>'y

(f)Z cf>'z

0,

and

cf>x <f>'x

<f>y fiy

<f>z <f>'z

is the simplest linear function of
cf>z

and j>'z that is zero when z is x or y.

4-4. If ay is a pole of
j z, the origin is a pole of j(z— to); thus the

function for which -31 provides a direct addition formula is not jz

itself but the primitive function coperiodic with j z. In other words,

•31 gives in the first place four formulae for each of the three primitive

functions, not one formula for each of the twelve elementary functions.

In -24 no restriction is imposed, but the functions pqz, pq(a>s
—

z) are

effectively different functions unless cos is zero, that is, unless rsz is

primitive. The explicit formula for i]{x-\-y) involves pq(— y) and

pq'(— y), and the ultimate simplification depends on whether pqz is

one of the two odd functions fj z, jfz or one of the two even functions

ghz, hgz. We can avoid the complication by taking as the standard

form

pqftpq'y+pqypq's4-41 fjfc— y)
pq

2# -pq
2
y

which holds ifpqz is any one of the four elementary functions coperiodic
4767 M
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with fjz. The generality of this formula when the argument is taken

as a difference is trivial, for the result is only the particular formula

with x—wq, if
— co

Q
substituted for x, y.

The fundamental addition theorem for f
j
z is this last formula with

the sigD of y restored, when we havef

4-4- li(rf ?/)- fj -rfj
'

//
~

fj?/fj-

As we have already had occasion to remark, if pqz is an elementary

function coperiodic with fjz, then

•401 pq'
2z = (pq

2z-e
/,/)(pq

22-e
/// ),

whence for any two arguments,

•4(»2 pq
2
zpq'

2
//-pq

2
//pq'

2
;r == (pq^-pq^Xe^-pq^pq2

//).

We may therefore, so to speak, rationalize the numerator in -41, and

we have an alternative formula:

4-43. // pqz is coperiodic with fj z, then

pqxpq'y—pqypq'x'
In particular, we have

4-44 fj(g+y) = f

e
/°

e

*r^ {j
y, ,

i]xi)y+f]yf]x

the addition formula given for these functions by JordanJ, whose proof

is that verification of poles and zeros which is of so little value to the

average student if no hint of a process for discovering the result is

provided.

4-f). Addition formulae for the elementary functions whose poles are

not congruent with the origin may be inferred in two ways. Since jfz

is —fyf/Jfjz, a formula for f
j (;r
—

y) gives us at once a formula for

j
f(r
—

y); similarly, since ghz is —//( gjz/hjz, we can writedown formulae

for gh(x-y) from those for g]{x—y) and hj(x-y). Alternatively, by

regarding jfz as i'}(z
— a>

f )
and ghz as fj(z

— a> h ), we can express jf(.r
—

y)

in terms of functions of a: and functions of y+w, and gh(a;
—

y) in terms

of functions of a; and functions of y-\-a) lr and we can then replace the

functions of
y-\-tDj

and //-fcu /( by elementary functions of//; in effect,

Tin- i- tho formula used by Chaundy and l>y Baker in the papers cited in the

Prefao

X Court d'Analyse, 2 (:j ed. L91S), p. 468.
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this is to use the general formula for rs(#-f y) in terms of pq.r and

pq(a>8
—

y) which we found by Liouville's process.

By the first method we have at once for jf(ar— y) the general formulae

4-51i-a

\i(x—y)--
fgfhiVtfx-V^y) LJfM"\ •'!>< I '// I'M // !»m'')

pq'i"r//+pqyi»<i''- <>,„£/> -\ )l f r vn
2
y

where pqz is any one of the four functions fjz, jfz, ghz, hgz. The

addition theorem, in the strictest sense, is

12 iHX^ y} -
Pzjf'y-jfyif'x- e

fg
e
fh-\l*x$*y

'

Since the functions in terms of which g')(x
—

y) is expressible are

coperiodic with gj z and those in terms of which \\]{x—y) is expressible

are coperiodic with hjz, we can not express gj(.r
—

y) and hj(x— y) in

terms of the same function. Nevertheless we can choose expressions

for g](x—y) and hj(x-y) with a common denominator, for the relations

fj'h+e,
=

g)
2
z-\-eg

= hj
2z+e /(

remain true if z— u>
q

is substituted for z and imply that if rqz, sqz are

copolar, then for any two arguments x, y,

•501 rq
2x—rq 2

y = sq
2
x—scfy.

We take then one of the four cardinal points, w
g ,

and we use -41 to

express g](x—y) by means of the function rqz which has a pole at w
q

and is coperiodic with gjz, and h](x—y) by means of the function sqz

which has a pole at aj
q
and is coperiodic with hjz; thus we have

sqx-sq y-]-sqysq x

a formula which in spite of its simplicity does not exhibit well the

structure of gh(x—y), since neither of the functions rqz, sqz is co-

periodic with ghz. To modify the formula, we rationalize the deno-

minator or the numerator. The derivative rq'z is the negative of the

product of the two functions different from rqz but copolar with rqz;

one of these is sqz, and the other, which we will denote by pqz, is the

function which has a pole at a>
q
and is coperiodic with f

j z, and there-

fore with ghz. The derivative sq'z is the negative of the product of

rqz and this same function pqz. Hence

•502 (rq x rq'y+rq y rq'x)(sq x sq'y— sq y sq'x)

= (rq x pq y sq y+rq y pq x sq z)(sq x pq y rq y— sq y pq x rq x)

= (pq
2y—pq2

a;)rq x sq x rq y sqy-\- (rq
2
?/ sq

2.r— rq
2
.r sq

2
#)pq x pq y.
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But the product rqzsqz is --pq'z. and since pqz, rqz, sqz are the

functions fj(z— oj
tl
), gj(z— io

tJ
), h](z

— oj
q ), we have

•503 rM -//sq^-rq-.rsq-// = (efg
—e

fh)(^qhf—pq
2
^)

= —^(pq8^—pqfc).
( >n the other hand,

sq'
2z = (sq^+e^Csq^+e^),

w hence

•504 s(|-Vsq'
J
// sq-//sq'

2 u = (sq
2
?/— sq

2
x)(sq

2
.rsq

2#— e
jh

e
gh )

= (pq
2
?/-pq

2
a:)(sq

2
a:sq

2
?/-e//(

e
(//,),

and removing the common factor throughout we have the required

simplification. The steps involved in rationalizing the numerator are

the same, but for the interchange of rqz and sqz, and they are also

the steps involved in rationalizing the denominator of hg(#— y). Thus

4-.*>4. // pq z is any one of the four elementary functions coperiodic with

ghz, if sqz is the function copolar with pqz and coperiodic with hjz, and

if rq z is the function copolar with pqz and coperiodic with gj z, then

•54 sh(x-u) = =
A^gftpq^pqy-pq^pqV)

1'- 6 V Jl _ _ 9 9..

eM^/t-sq2
^sq

2
2/

=
ACrq^rq^+e^e^)

e^pq^pqy+pq'^pqV'
In terms of the one function pqz and its derivative,

4-5.V2 gh(,-y)= A(^pq«pqy-M^pq'y)Pq
2^ Pq

2
2/~ eM(pq

2
a:+pq

2
2/)+ e

/(7
c
//f

= A{pq
2^pq2

y-g/g(pq
2^+pq2

y)+e/g ^}
vpq^pqy+pq'^pqV

The addition theorem for ghz is explicitly

i -56, ., gh(x+y) = J»(w
h *zh y+zWx zh 'y)

.
/;,(fh

2^fh 2
y+e/g

e
gft )

e
aftgho;ghy—gh'argh'y'

\\ lure if we wish to have no other function than ghz we must substitute

\\\
zx = gh

2.r-e
/A , jh'-y = gh

2y-efh

in the first fraction and

fh 2x = gh
2x-e

/a , flry = %\\hj-ef(l

in tin- second.
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4-6. If we derive addition formulae for the functions other than the

primitive functions directly from -24, the expressions which we find arc

unsymmetrical in appearance, since the functions pqz and pq(a>s
—

z)

are essentially different if cos is not zero. If rsz is the same function

as pqz, then pq(z
— to8) becomes the primitive function coperiodic with

pq z. We have for example

4-(il jf(x+y) = (jf^fj'2/-fJ2/jf'^)/(jf^-fj
2
//),

4-62 hg(x+y) = (hgxfyy+f}yhg'x)l(hg*x-fj*y).

These formulae have the advantage of involving no constants, and they
are easily converted into more symmetrical forms by direct algebra.

In this connexion we may notice the result of trying to avoid one

of the two steps in Liouville's process for obtaining -24. We shall be

able to infer rs(x-\-y) directly from -22 if the interchange of x and y
converts rs(2a>g

—
x-\-y) into its negative; since

rs(2ajg+a:— y) = rs{4a)q—(2u>Q—x+y)}
and 4a>

9
is either zero or a whole period, the requisite condition is that

rsz must be an odd function. In this case we have immediately

4-63 rs(x+y) = PMPqW^J/L = pqypq'K-s)
^

pq
2z-pq2

(a;s-?/) pq
2K-z)-pq2

i/

but algebraical manipulation is necessary to provide a common de-

nominator unless cos is zero, that is, unless we are dealing with the

primitive functions, which from this point of view also are seen as the

simplest of the group.

4-7. A peculiarly terse form of the addition theorem, derivable imme-

diately from -42
2 ,

is

gj<*+y)+hj(*+2,)
-
sU^jgJiMf.

Addition of 2^ to y gives

and therefore the whole mass of addition formulae is recoverable from

'11
1 alone.

Results away from the origin are again more complicated:

4-72 gfr+rt+hffr-Hr) = g/

V*Jfy-4*,
'

4 . 73 it(x+v)+e(ix+!/) = m^y-^m^-^y) .



V

THE NATURE OF THE PROBLEM OF INVERSION

VI . In a tV niii which we have already found useful, the relation between

the function i
j

~ and its derivative is

•K.I {{yz)i={f]2z /JXfjaz-/*).

In other words, it //• :

t'j z, then

:»-ll {dw/dz)
2 E

f(w),

where, in a notation which we shall retain,

lu2 R
f(w)= {w*-fl){w*- jl).

Written as

(h 1

103 p -±^rr-ydw \It
l {tr)

•11 can l>e integrated immediately, and we have

S

'-±J^
(In-

where the path of integration in the w plane is determined by the

transformation w = fjz from some path in the z plane from the origin

to the point z. Also, near z = we have w ~ 1/z, dw/dz ~ --1/z
2

,
and

therefore dz/dw ~ --I/10
2

;
that is, if we make the radical in the inte-

grand precise by requiring it to resemble w2 towards infinity along the

path of integration, and to be continuous along that path, we must

prefix the minus sign or interchange the limits. Thus with no ambiguity,

512. // ir l"]z. there is a path of integration in the w plane such

that along this path ^
dw

I \ /•',(")

For a given value of w, the relation w =
Ij : is satisfied as we know-

by ;ni Infinity of values ofz, and it follows from -12 that if the path

of integration is arbitrary, the integral

00

j*
dw

a-

which, with the understanding that the radical resembles ir'
1 towards

infinity along the path, we shall denote by /,("•). is susceptible of an
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infinity of values: the aggregate of solutions of lh< <</u(ttioit i'j
z w is

contained in the aggregate of values of the integral If(w),
bu1 the identity

of the two aggregates is not yet asserted.

Consider now the relation
oo

'105 /,= -nrr\>

where the path of integration is given and w is a current point of that

path. This relation implies

dL 1

106 7

whence

•107 {dwjdIfY = R
f{w),

and by hypothesis dwjdlf resembles
—

it'
2 for large values of w. In other

words, if I
f
has a given value, the corresponding value of it? is the value

when z =
If

of a, solution w(z) of the differential equation -11.

(dw/dz)
2 = R

f(w),

which is such that w is large and dw/dz resembles —it;2 for small values

of z.

If in -11 we write for a moment w = 1/y, this equation becomes

•108 (dy/dz)*
= (i-/

2
//

2
)(i-/,7.r)-

This equation has two particular solutions for which y = = when z = = 0.

The initial values of dyjdz for these two solutions are 1 and 1. and

therefore the only solutions which vanish at the origin are one that is

expansible near the origin by the power series

z+a.2 s
2+«3 2;3+---

and onef that is expansible near the origin by a power series

— Z+ «2 22+ «3 23+-"-

It follows that the only solutions of -11 which are large at the origin

are one that is expressible near the origin in the form

l/(Z+a22
2+a 3 2

3
+...),

and therefore, since l/(l+a2 z+a3 z
2
+...) can be converted int..

l + 6 2+6 1
z2

+..., in the form

z-1JrbQ -\-b x z-Y ...,

t Obviously the second oftlie.se solutions is the negative of the first, bul this relation

is so irrelevant to the argument that it is hardly worth while to use it t.> shorten the

algebra.
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and one that by the same argument is expressible near the origin in

the form „-i_la'_i_// ~_l

For the first of these, but not for the second, dwjdz resembles — z~ 2

and therefore resembles -
»•'-': the equation -11 possesses one and only

one solution which is such that for small values of z, w is large and

dw <k resembles ir-. Since f
j
z satisfies the equation and has these

characteristic properties, the unique solution is identified as the known

function fj 25,
and it follows that if the relation -105 is satisfied, then

w = fj If'.

5-13. If z is the value of the integral

00

r dw

w
<R

f{w)

along any path, then w = fjz.

Combining -12 and -13 we have a fundamental theorem:

5-14. When the multiplicity of values due to a possible variation of

path is taken into account, the relation

oo

J

dw

<j{(v?-fi)(w*-m

is equivalent to the relation w = f
j z, provided that the radical in the

integrand resembles w2 towards infinity along the path of integration.

5-2. As special cases of -12 we have the three theorems collected in

the following enunciation:

5-21. There are curves in the w plane, from 0, from fg ,
and from fh ,

to infinity, such that if these are taken for the paths of integration, then

oo ' oo

f dw C dw
j*

dir

J vs^j
= = w"

J ^^w
= =

"'•
J vb^j

""""

/„ fh

the radical in the integrand in each case resembling w- towards infinity

along the path.

From 14 we have the more complete results:

5-22. The aggregates of values of the integrals

oo oo oo

f dw C dw C dw

J W^y J vs^j' J v5^i*
// /*
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if the radical in each integral resembles w2 towards infinity along the path,

are respectively la . ,v . /n ,
,»

(2m4-l)%+2?iaj /t
with m-\-n even,

2mco
(/ -\-(2n-\-l)coh with m-\-n even .

The integral of -- l/\Rf(w) along any path from w to oo is the negative
of the integral of l/\'Rf(w) along the path from —w to oo obtained by
reflection in the origin. The aggregate of values of the integral from

to oo is therefore unaltered if the condition on the radical is reversed;

in fact the aggregate
—

(2k-\-l)ajg —(2l-\-l)w h is converted into the

aggregate (2m+l)u)g -{-{2n-\-l)u}h by the substitution of m, n for

-(£+1), — (Z+l). More simply, in describing the aggregate of values

of the integral from to oo we may omit any specification of the radical.

Hut in the integrals from fg and
/,, the specification of the radical is

essential; the aggregate
— (2k+\)wg

—2lu>h is expressed in the form

{2m-\-\)u)g-\-2nu)h by the substitution of m, n for — (A'+l),
—

I, and if

k-\-l is even, m-\-n is odd. That is, the aggregates (2ra+ \)wg -\-2nu)h ,

2mutg-{-{2n-\-\)oih with m-\-n odd consist of the values of the integrals

from —fg,

—
/,, to oo, with the radical subject to the familiar convention.

If p and q are whole numbers, pa>g-{-qa>h is an integral of l/yJRf(w)

from to oo if p and q are both odd, from fg or —/ to oo if p is odd

and q is even, from/,, or —
/,,

to oo ifp is even and q is odd. If p and

q are both even, pcj IJ -{-qa>h
is a typical pole of fJ2. Hence

5*23. The aggregate of values of the integral of l/x
!R

f(iv) along a path
which comes from and returns to infinity is 2m(og-\-2ncoh .

Reflection in the origin does not alter the nature of the path, and

therefore no specification of the radical need be included.

5-3. The relation w = fjz is a particular solution of the differential

equation -11; the general solution is w = fj(8± 2 )> and we have an

elementary function again as a solution if the constant S has one of

the values a>
f

, a>
(!

,
co fr If the equation is taken in the form -103, the

general integral becomes
w
f dir

±
xRAw)

k

where in effect it is the fixed limit of integration that is the constant

of integration of the differential equation; the integrand is unaltered.

With 8 = co
f ,
the elementary function involved is jfz, and since this

function vanishes with z, the fixed limit of integration is zero. The
4767 N
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value of jf2 at the origin is —faffr and the value of the radical to be

selected at any point of the path of integration is determined if the

initial value is selected. For an integration from zero it seems natural

to take the factors of B,{w) in the form f*—w2
, ff,

—w2
. We need not

repeal the details of the argument developed at length for the function

w = f
j c; no transformation of the dependent variable in the equation

•11 is now necessary:

5-31. ////" value of the radical in voiced /*/„//, at the origin, the relation

W
die

I
= z

is equivalent to the relation

iv = —
jfz.

As a matter of elementary calculus we can convert the integral in

one of the theorems -14, -31 into the integral in the other by sub-

stituting fgfjw forw:

5-32. Ifu\w2 =fgfh ,
then

ir, 00

|*
dw f dw

J n {(7)-^
2
)(/£-™

2
)}

= =

J V{(^
2-/2

)K-/£)}'
ir.

In virtue of -14 and -31, the functional theorem

jfzfjz = -fjh

is fundamentally this relation between integrals expressed in a different

language.

With the function fj(o» r/

—
z), which is -hgz, the fixed limit of

integration is / ,
and the point fg in the w plane is a branchpoint of

the radical in the integrand. We have therefore no means of specifying

the radical by a universal rule applicable to an arbitrary path from / ,

though we must necessarily specify it in some particular way along any

proposed path before the integral can have a meaning. With a chosen

path in the z plane from to z, and the corresponding path in the

w plane determined by the transformation w = --hgs, the value of

dzjdw along the w path is cither 1 >JRAw) or I \H,(ir), supposing
V/t

,

/ (?/')
to be a value of the radical specified for the path. Hence if J

g the value of the integral
to

dw

J
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z has one of the two values iJ
,
or in other words, ./ has one of the

two values ±2. Since hg(
—

z) = hgz, we have w - -hgJ in either

case:

5*33. // w = -hgz, there is a path of integration such that for an

appropriate selection of the radical

I

w
(III- = Z.

\R,{w)
fa

At first glance, the deferred selection of the radical is a restriction

on the possibility of discovering a path, but this is not really true.

•. »

Fig. 19.

With a selected radical, let J be the value of the integral along a path

from / to w, and let p be a point of the path such that the arc fap is

simple. Let y be a circuit through p which surrounds the point fg and

the whole of the arc fgp, but has none of the points
—fg , ±fh in its

interior. Let q be a point of the arc fgp so near to fg that the circle 8

through q with / for centre is entirely inside the region surrounded by

y. Then the arc qp and the circuit y form with the circle 8 and the

arc qp the complete boundary of a region throughout which \j"\Rf{w)

is regular. It follows that the integral of l/\'Rf(w) has the same value

K along the path ff/ qp-\-y-\-pw as along the path /^tf+S-fgpw, if the

integrand has the same values along the initial arc fg q in the two cases.

On the second path, the value of the radical at q is changed into its

negative by the description of the circle 8, and therefore the value of

the integrand at every point of the path qpw in this second integral

is the negative of the value at that point in the original integral along

the path fg qpw: the contribution of the path qpw to the value K is
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the negative of the contribution of the same path to the value J.

Hence

•301 ( f i\
dw IT- f

dw
\

8

that is to say. A' = —J+ L where

Now K, as defined by means of the circuit y, is independent of
</.

as

also is J. Hence L is in fact independent of the position of q on the

arc fgp, and can he evaluated as the limit when q tends to fg . The

substitution //• -fg t- renders the integrand finite while the trans-

formed paths still tend to disappear. Hence L = and K = —J.

5-34. // there is a path from fg to w along which the integral

a-

tin-

h

has a mine z. there is also a path from fg to w, coincident with the first

from fg to a point p distinct from fg , along which the integral has the value

—z, although the radical in the integrand has the same value in the two

integrals at any point of the common arcfgp.

Once a second path has been found, it can be deformed out of all

obvious relations!) ip to the first.

It is now clear that not only is it impossible to discriminate naturally

between the two values of the radical *JR
f(w) in the neighbourhood of

the point / ,
but no artificial discrimination would restrict the values

which the integral from fg to a variable point w can assume. In asso-

ciating the function hgz with an integral it is in fact unnecessary to

pay any attention to the ambiguity of the radical involved. This

difference between hgz and fjz or jfz is seen equally well from the

standpoint of the differential equation

•

:{„:} {dwjdz)*= (w
2
-/J)(w

2
-/I).

As an equation of the first order this equation has only a finite number

of solutions with a given initial value oiw\ the number depends entirely

on the number of initial values of dn-il: available, and if ambiguity
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disappears from the first derivative, it is not in any sense transmitted

to a derivative of higher order. We have in fact from '303

•304 dhujdz* = 2u<3- (/*+/,>,

an equation which has one and only one solution with given initial

values of w and dw/dz; this solution of -304 is a solution of 'MM if and

only if the initial values of w and dw/dz satisfy -303. If the initial value

of w is/ ,
the initial value of dw/dz, to satisfy -303, is necessarily zero.

Thus there is one and only one solution of -303 with initial value fy ,

and this unique solution we know to be w = — hgz:

w
C dw

5 ' 3;> - If
J^ = z '

n

then w = --hg2, whichever choice is made of the radical in the integrand

Combining -35 with -33 we have

5-36. // no restriction is placed on the path of integration, the relation

w
C dw

is equivalent to the relation w = —
hgz.

Formally this theorem does not include -34, but -34 is certainly essential

to a real grasp of -36.

5-4. The theory of elliptic functions had its origin in problems of

integration. Legendre made an exhaustive study of integrals involving

the square root of a polynomial of the fourth degree, and in particular

of the integral

dx

f J{(l-x*)(l-kW)}

and integrals closely allied to it, A- being for him a real parameter

between and 1. Making in -31 the substitution w == fg x, we have

the direct relation between an elliptic function and an integral of

Legendre 's standard form:

5-41. The relation

a
r dx
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is equivalent to th< relation

if k = / ///(
<ui(l iftht valvA of the radical in the integrand is 1 at the origin.

Or, since

.45, f
'A '

[
dx

J J{(l-x*)(l-k*x*)}

'

I <]{{z*-l)(x*^k*)Y
IIx

we may connect Legendre's integral with the function which we have

treated as fundamental:

5" L2. The relation
X
r dx

it. =
2

)}

dx

J ^(i_j(i)(i-ttji
o

is equivalent to the relation

hi* = fJNA)

t/Jfc
=

/j,///,
a?w/ ?///«e w7we o/^e radical in the integrand at the origin is 1.

Historically the elliptic functions were discovered when Legendre's

relation
X

dx
•402 u

J V((i- -x2
){l—k

2x2
)}

o

was taken to express a: as a function of u, and it follows from -14 that

the elementary functions which we have studied could in a sense be

defined by the inversion of the integrals, whatever the values offa and

fh . Whether the fundamental integral is taken in the symmetrical form

which appears in -14 or in the form standardized by Legendre is not

a matter of principle.

But it is to be observed that in the relation

00

<lir
•in:;

/ J{(w*-fi)(w*-fi)}

the constants/,. //(
arc already derived from the function fjs: they are

the numbers fjto-, fjw& . The whole of the theory which identities the

integral relation "403 with the functional relation w = fjz rests on

the particular association of the numbers /r/
. //(

with tin 1 function f
j
z.

It follows that unless the function fj z is already known, the integral

in -40.'{ is itself unrecognizable and definition by means of this integral
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means nothing. In other words, although we arc justified by -14 in

asserting that there exists an integral of the form

00

J
dw

<J{(w
2-b2

){w
2—c2

)}

by means of which the function fjs could be defined, in order to

identify the necessary integral we must know the constants f
j
a>

u , fjcu /(
.

In fact, if we are to use the relation

•404 f „, .

dw
, ^= z

! J{(w
2—b2

)(w
2—c2

)}

as the fundamental relation between w and z or specifically as a defini-

tion of w as a function of z, we must regard the constants b, c as given

parameters, leaving the parts which they play in the theory of the

function w(z) to be discovered; we can not assign these parts in advance

while professing ignorance of the nature of the function. Whether we
think of -402 with Legendre as defining u as a function of x or with

Jacobi as defining a; as a function of u, we think of k in the first instance

as an arbitrary constant, not as a parameter whose value is determined

by a part played in a theory already developed. Even if the functions

obtained by inversion of the integrals are the elliptic functions with

which we are already acquainted, their discovery from the integrals is

not just a formal alternative to their definition in terms of a lattice.

The problem of the inversion of the elliptic integral requires the deter-

mination of the lattice if it exists, not merely a proof of its existence.

However approached, the problem of inversion presents difficulties

of a higher order than those of sheer manipulation. Nevertheless, it

should be explained, if not solved, in any account of elliptic functions,

not so much for its historical interest as for its practical importance.
It is the integrals to which the knowledge of the functions was due

which operate to bring the functions into many branches of analysis

and geometry, to say nothing of applied mathematics, and we cut

away from the theory of elliptic functions all its applications if we can

not pass from integral to function.

5-5. For the standard form of the integral to be considered we

shall use

dw

4R(w)

oo

/



96 JACOBIAN ELLIPTIC FUNCTIONS

where /»'("') (w
2 -

b-)(w'
2—

<-
1

)

and it is understood that the radical resembles tr
2 towards infinity

along the path of integration. To emphasize that an integral, either

directly or inversely, is the basis <>!' discussion, we shall denote the

integral by /. We have then a relation between / and w expressed

initially in the form

•501 / = J(ir)

and the problem with which we are concerned is the nature of the

function //(/) defined by this relation if / is taken as the independent

variable.

There are t\\i» ways of attempting to identify the function w(I) with

a function fj /. We may look for a suitable lattice without considering

the timet ion tr(I) itself", or we may investigate the properties of the

function u-(I) with a view to establishing that tc(I) must be an elliptic

function. In the first method, the argument is to be concluded by an

appeal to -14. a suitable lattice meaning indeed a lattice which renders

•14 applicable to the integral. In the second method, we anticipate

that the proof that the function has the essential property of periodicity

involves a determination of periods.

The first method involves the solution, which for practical purposes
must he explicit, of the pair of equations

•502 fj(aj f/
:
— u)

{

—w tr u)
!r

a) h )
-- =

b, fj(o>ft ;

— (vg
—whi ajg, toh)

== c,

or rather, since it is 6 2
, c 2 that are given, of the pair of equations

•
">< 13 fj

2
(tu

;l
;

— u>
g
— toh . (og ,

co h )

- h 2
. fj

2
(oj /(

;

— a)
g
— a> h . a)

g}
a)h )

= c 2
,

as simultaneous equations in u* and co h . Supposing co
ir

co h to be the

pair of halfjperiods from which the function is constructed, we have

from t he definition of pz,

•r><>4 ^a>f

= ]
, v( L ____J 1

(ofc+oifc)"
1 Z [{(2m+l)a>g+(2n+l)a>h}* {2mw (l+2tuo^y

505 pto

= 1+ V'l
11

111,11

1 I

I

[{(2m
• IK, |

2no>A}
a

(2ma>g -\ 2tocua)
8
/'

•506 pa>h

-i+ v! ' l
*

<„
2 Z {{2mwg | (2/M IK}8 (2mwg | 2>uo„yf
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and therefore the equations -503 are explicitly

•507 ^T !
\ — M

Z, ({(2m+l)o>!/
+2na>A}

2
{(2m+l)%+(2^+l)aJ/( }

2
j

•508 V ! - 1 = c2Z l{2wi Wff+ (2»+ 1 K} 2
{(2m+ 1 K+(2w+ 1K}2

j

where the term for which m = 0, n = is now included in the sum-

mation.

There is nothing in the form of '507--508 to suggest that a solution

is always possible. The functions fg , fh are homogeneous functions of

co
g
and co

/t ,
and the equation

.509
fj'K?;

—
°>g— °>h ,ci)g ,u>h) _ b

fj(wft5
—w»—WA' <*V oj^) c

is an equation in the single variable
co^/cu,,.

If to
g ,

u)h are any two values

satisfying -509, and if

A =
b-H]{tx)g, —a}g—ioh,cog,ioh),

then \<a
,
\co

fl satisfy / = b, fh = c. Thus, functionally speaking, the

distinction between the pair of equations -507--508 and the one equa-
tion -509 is trivial. But again it can not be said that from the form

of the two series in -507--508 their ratio is obviously susceptible of an

arbitrary value; the result is true, but it is in establishing it that the

difficulty of this attack on the inversion problem lies.

It may seem at first glance that the solution of the pair of equations

fg = b, fh = c is implicit in -21 or -22. The integrals 1(b), 1(c), that is,

oo oo

f dw C dw

J y/{(w
2-b 2

)(w
2-c2

)Y J y/{(w
2-b 2

)(w
2-~c2

)Y
h c

determine, not indeed two definite numbers, if the paths of integration

are unspecified, but two definite aggregates. Does not the existence of

these aggregates prove the existence of a lattice, and is not the detection

of a primitive pair of periods a problem likely to demand only some

quite elementary technique ? On this question the first comment to be

made is that we have not proved, except in the case in which b, c are

derived from a lattice, that the aggregates of values of the integrals

1(b), 1(c) are connected in any simple way with a lattice; the direct

investigation of the multiplicity of values of these integrals is as much

part of the process now proposed for the solution of the problem of

inversion as it is part of the process which depends entirely on the
4767 q
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study of the integral /(to). But this is no point of principle; the diffi-

cult \ comes later. Suppose that we have found particular values
ft, y

of the two integrals 1(b), 1(c) which we arc satisfied form a primitive

pair iu relation fco the aggregates of values. We can form a function

fjc; —ft— y. ft. y) on the lattice determined by ft
and y. and this function

has determinate values /g, / for the values
ft. y of z. Have we any

reason to assert that fa,fy are equal to the constants b, c? We can not

hope fco answer fchis question by insert ing ft. y as values of a>
(/

, a>h into

the series in •."><)" -.ION. The alternative is to appeal to the relation

between ft, y and /#, f in the form »21: There are paths of integration

front fa, f to go on the one hand and from b, c to oo on the other hand

such that

•510

511

dir
_

r dw

J >/{(w«-/5)(«"-/j)}

= =

J vi("'
2-62

)(^
2-c2

)}'

oo oo

J slC- /l)^
2
-/?)}

= =

J v'K"^ -62)(^
2-c2

)}"

Unless we can prove that these conditions alone are sufficient to

identify Jo./ with b, c, the theorem which directs us to the only lattices

in which b, c could play the required parts supplies us with no reason

for concluding that b, c actually play these parts.

It is the second method of attacking the inversion problem, namely,
the study of the functional character of the relation denned by the

integral, that we shall pursue. Although we have proved the identity

of the functional relation w = fjz with the integral relation

oo

/
(III-

we have said nothing fco explain it, that is, to show how the form of

i he integrand imposes on the aggregate of values of which the integral

becomes susceptible when the path is arbitrary a quality corresponding
fco double periodicity in t he inverse function. Wit hout 1 his explanation,
•It remains unintelligible, and with it . since t he origin of the constants

/,,./',,
is irrelevanl for the purpose and we can deal throughout with the

integral /("•). we are taking one step towards the solution of the larger

problem along the proposed lines.

To avoid misapprehension, it should be said as clearly as possible

t h.it there is no difficulty intrinsic in fche notion of inverting an integral
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to provide a function. On the contrary, a functional relation between

two variables, whatever its formal expression, can not be one-sided. To

say that the relation
•7 00

T
r div

: r

J V/tyr)
•512

can be regarded as defining w as a function of / is logically a platitude,

if mathematically it was a revolutionary discovery. We can go farther:

this relation, from its form, implies the existence oidljdw, and there-

fore the existence, except possibly at certain discoverable points in the

w plane, of dw/dl; we can safely say that w is, generally speakim:.

regular in the sense that if w corresponds to I
,
then w—w is expres-

sible for sufficiently small values of I—I as a power series in I—I .

To put the matter differently, -512 is equivalent to

dw\dl = <JR(iv),

or in rational form to

•513 (dw/dl)* = R(w),

coupled with boundary conditions, and the existence of solutions of

differential equations is guaranteed by a mass of general theory.

It is true that integrals in a complex plane require paths of integra-

tion for their precise determination, but this is not a potential com-

plication of the function w(I). To suppose the path in -512 arbitrary

is to admit that to an assigned value of w corresponds an aggregate

of possible values of /, but this remark, read in the reverse direction.

says only that the function w(I) may have a common value for a

number of distinct values of the argument /.

After this digression the fundamental difficulty in the study of the

inverted integral will not be misunderstood. Although we can deline

w(I) by -512, this formula gives us no clue to the range of values of

/ for which the function w(I) exists. In the construction of the Weier-

strassian function pz and of the functions which we have defined in

terms of pz, an arbitrary value can be given to z; the functions exist

over the whole of the z plane. But there is nothing whatever in the

form of the relation -512 to justify us in taking for granted that if we

equate the integral / to an arbitrary complex number, there necessarily

exist a limit and a path from which the integral acquires the assigned

value; the domain of existence of the function w{I) denned by -512

may well fall short of the complete / plane, and there is no obvious

means of finding the extent of this domain of existence. We are no
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better off if we replace the integral by a differential equation. The

function w(I) is a particular solution of the equation -513, identified

by its character near the origin. All that we learn from the theory of

differential equations is thai there is some circle round the origin

throughoui which this function exists, and that if the function can be

continued analytically across the circumference of this circle it does

not cease to satisfy the equation. If the continuation is held up by
a line of singularities, the particular solution with which we are con-

cerned exists only in a restricted domain: there are values of / which

can not serve as arguments to the function w(I).

Here is the drawback to the classical usef of the integral as the basis

of the theory. We can prove by elementary methods that the function

ir(I) is regular where it exists and that it is doubly periodic where it

exists. But these properties are entirely consistent with the possibility

that the domain throughout which the function exists is some com-

plicated pattern of perforated shreds and patches, and to dispose of

this possibility is a mathematical problem sufficiently serious to be

deferred as long as progress is made without its solution. Only, as we

have said, however much we learn about elliptic functions before

solving the problem of inversion, we can not learn when and how to

use them.

5-6. The course of the next three chapters follows the account we

have given of the problem to be investigated. In Chapter VI we examine

the dependence of the integral I(w) on the path of integration, and

deduce that the function w(I) is doubly periodic. In Chapter VII we

prove first that any point near which a branch of the function exists is

either an ordinary point or a pole of that branch, and next that there

are no finite values of / near which the function does not exist; we infer

that w(I) is meromorphic. Of the existence theorem, which as we have

explained is at the heart of the problem of inversion, two proofs are

given. The first proof derives w(I) from I{w) and depends on proposi-

tions in the t heory of aggregates: these propositions are assumed to be

known. As an appendix to t his proof an argument is given in which the

t It must not be thought that the original introduction of the elliptic functions waa

wildly illogical: Abel arid .lacobi urn- not blind to fallacies that bo us are glaring. But
at firsl only real variables were involved; to reverse the functional relation when the

limit and tin- integral are both real requires little more than the determination of ranges

throughoui which the integral is a naonotonic function of the limit, and these ranges,
I. . I :..l|i '- theorem, are hounded by zeros and infinities of the integrand. The diHiciilty

o! the inversion problem as well as the beauty of the lattice theory belongs essentially

bo the domain of the complex variable.
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multiplicative axiom is used, for this is the argument which is most

easily invented; the axiom may be invalid, hut its use supplies the clue

to the construction of the proof which dispenses with it. The second

proof of the existence theorem takes w(I) as a particular solution of a

differential equation and shows that there can be no upper limit to the

radius of the circle round the origin within which this solution is a

meromorphic function of /. This proof depends on analytical formulae

peculiar to the function under consideration; one feels that it is arti-

ficial, that no recollection of it is likely to be helpful in any problem

except the one for which it was invented, but undeniably it is the easier

of the two proofs to understand, if the harder to reconstruct. In

Chapter VIII the various threads are gathered together, and the solution

of the inversion problem is complete.



VI

THE AGGREGATE OF VALUES OF AN
ELLIPTIC rXTKCRAL

6*1. The Bubjecl of this chapter is the integral

oo

l(w)
I*

dw

where ll(ir) denotes (w
2— b 2

){w
2— c 2

)
and the radical is a continuous

function asymptotic to w2 towards the end of the path of integration.

For a given value ofw the value of the integral depends to some extent

on the path of integration, and it is the nature of this dependence that

we are to investigate. If Ix(w^, /,("'*) are different values of the

integral, corresponding to different paths from the same point u\ to

oo, then when we look at the relation between 7 and w from the other

side, I
x
and 7

2 are different arguments for which the function ir(I) has

the same value w^.
The integral /(//•) is elementary if b or c is zero, or if b 2 = c2

; we
therefore assume that none of these conditions is satisfied, that is, that

in the w plane the four points b, c, —b, —c are all distinct.

We find that discussion of the multiplicity of values of I(w) for an

arbitrary value of >r can be made to depend on evaluation of the

integral along a path which comes from and returns to infinity; we
tirst find a canonical shape into which such a path can be deformed

without alteration in the value of the integral, and we then evaluate

the integral in terms of the necessary constants, which are only two

in number. Returning to the integral /(/'•). we describe the aggregate
of values of the integral associated with one and the same lower limit

ir by means of these constants, which are themselves values of /(h) and

1(c) and which we now find to be quarterperiods of the inverse func-

tion //•(/). In the last section of the chapter we prove thai the ratio

of a value of 1(h) to a value of 1(c) can not be real.

The integral I(w) is regular at infinity, and the branchpoints h. c,

h. c of \ /'(//) arc its only singularities. We assume throughout
that no path of integration passes through a branchpoint. This

assumption is wanted QOt t<> keep our integrals finite hut to keep them
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unambiguous. Near b, for example, R(w) resembles a multiple oftfl -6;

the integrals u>, w,

J j{w-by J w^)
remain significant and Unite if one of the limits tends to b, and there

is no reason why b should not be inserted as a limit. Jmt if we have

a path of integration i(\bw2 ,
each value of \f

R(w) tends to zero as w
tends to h in any way, and it is not possible to specify the function

to be integrated along bw2 by saying that it is continuous at b wit 1 1

the function integrated along wx b. [fa path passes through branch-

points, the integrand requires a separate specification on each section

of the path, and this is a complication seldom worth inclining.

(>-2. If p, q are points on a path of integration, the arc between /;

and q can be replaced by another arc joining these points if the two

arcs together form the boundary of a simply connected region which

includes no singularities of the integrand. Hence the relation between

the integrals Ix{w), I
2(w) from the same point w to 00 along two different

paths Wx ,
W2 is bound up with topographical relations between the two

paths 11^, W2
and the four points b, c, —b, —c.

A preliminary reduction of the analytical problem simplifies the topo-

graphical problem. The two paths Wv W2 together form a path 8 which

comes from and returns to infinity. Let (f>(w) denote temporarily the

function such that {<£(u')}
2 = = R(w), that <f>(ir)

— w2 towards infinity

along Wv and that <j>(w) is a continuous function of w along S; since

]\\ and W2
avoid the branchpoints, so also does #, and <f>(w) has a definite

value at each point of S. Integrating along S in the same direction

as along JJ^, we have

f
dw f dw C dw

JP ::

JP"'JP'
S Wt Wi

since the direction of integration along W%
is opposite to the direction

of integration along 8. Now the integral along Wx
in -201 is It(w) as

already defined. But whether <f>(w), which resembles w2 towards one

end of S, resembles w2 or resembles —w2 towards the other end of S,

depends on topographical relations of 8 to the branchpoints; in the

former case the integral along W2
in -201 is L(>r). but in the latter I2(w)

is the integral along W2
of —<f>{>v) and the last integral in -201 is —I2(w).

Thus defining Js as r dw

s
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we have Ja equal in the one case to I^ir)—I2(w), in the other case to

I1(w)-\-It(w). In other words

tiiM. If the paths Hj. II. together form a path 8, and if the radical

\ li(ir) is Hi, sdini along the part of 8 which coincides with \\\ as along

]\\. tht n if ds is tin integral of \j\li{w) along 8, the integral I2(w) is equal

in
/,(//•)

,/s. or to Ja /,(»•) according as variation of w along S from one

i ml to the other restores or reverses the asymptotic resemblance of y/R(ir)

to ic
2

.

This theorem reduces the discussion of the multiplicity of values of

/(//) at the accessible point w to the discussion of the variation of

\ /.'(>/) and the integration of 1/Vi2(w) along a path which comes from

and returns to infinity, and our next task is to express suitably the

topographical relations of such a path to the four branchpoints; as we

accomplish this, we can see that the evaluation of the integral Js will

follow naturally.

6-3. To describe the relevant topographical relations between the

four fixed points b, c, —b, —c and a variable path 8 which comes from

and returns to infinity, we suppose paths B, C, B'
', C to be drawn to

infinity from the four points; the four fixed paths are subject to the

conditions that B'
, C are the reflections of B, C in the origin, that

i
C

Fig. 20,. Fio. 20 2 .

none of the paths have multiple points, that no two of them have any

points in common, and that any sufficiently large circle with its centre

at the origin cuts each path in only one point. These paths are drawn

once for all. and we call them the critical paths.

There is no difficulty in finding a set of critical paths. If the points

l>. < are not in line with the origin, that is, if bjc is not real, we may
take for />. C the half-lines which prolong beyond l>, c the radii to these

points from the origin. In the excepted case, if b is the more distant

of the points b. c from the origin, we may take H as before; C can not

now lie along t he line joining the origin tor, but may be any half-line

from c which does not lie along this line. Half-line paths arc geometri-

cally the simplest, hut it is not at all necessary that the critical paths
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should be of this form, and to stipulate half-line paths is to invest with

significance details that are accidental.

The purpose of introducing a circle found the origin is easily seen.

If \w\ > max(|6|, \c\), the product of the binomial scries representing
the values of the two square roots

/!_
&V, ft-*]-*

\ tc-J \ w2
)

which tend to I as w -> oo is a convergent series-

1+°^ +^

and at any point the integrand l/Vi?(/r) has one of the two values

A(w), — A(w), where

•301 ^-J-fi+^+a+.A
The two functions A(ir),

—A(w) are distinct functions throughout
the region of convergence of the series in the definition of A(w), and

the integrand is specified unambiguously if it is identified with one of

these two functions. To say that on a path to infinity the radical

\R(w) is ultimately to resemble iv2
,
or to write \

!

R(w) ~ iv
2

,
is only

a way of expressing that beyond the last intersection of the path with

the circle \w\
= m&x(\b\, \c\) the function denoted by ^R(w) is \jA(w).

Outside the circle of convergence we can identify xR(w) with one or

other of the functions 1/A(w), -l/A(iv) at an isolated point or along

a path which does not extend to infinity ; only the assertion of identity

can not then be expressed in the form \'R(w) ~ ir
2 or \ R(w) ~ —w2

without violence to the strict use of the asymptotic symbol. Tf a path

crosses into the circle \w\
= max(|6|, \c\) from outside, the identifica-

tion of l/y/R(iv) with one of the two functions A{w), -A(w) is inter-

rupted, and if the path recrosses and identification with one of the two

functions again becomes possible, there is no reason why the same

function should serve a second term; it is only if the representation of

the integrand with the help of the series is uninterrupted that it is

impossible for one of the functions A(w), —A(iv) to give way to the

other.

If a path pq is entirely outside the circle \w\
= max(|6|, |c|), then

•302 f A{w) dw = G(p)
—

G(q),

v
4767
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where

•303 G{w) = ilf^-fV-1
Two conclusions can he drawn. Firstly, the value of the integral depends

only on the endpoints; in other winds, any two paths from p to q are

reconcilable if neither of them penetrates the circle of convergence.

Secondly, if \p\ ^ p, \q\ ^ />,
then

a

A(ir) die
J
i>

< 2
-±i,

where t -> as p -» oo: if p, <?
can be taken upon or outside a circle of

arbitrarily large radius, the integral from p to q along a path which

does not penetrate the circle \w\
= max(|6|, |c|) is then negligible.

These conclusions apply also to the integrand —A(w), and apply there-

fore to the integrand ljy/Ji(w) which necessarily either coincides with

A{w) along the whole path or coincides with —A{w) along the whole

path:

6-31. // the path of integration pq lies wholly outside the circle

\w\
= max(|6|, \c\), the value of the integral

i

dir

VJ?(w)
p

is independent of the path, and if also \p\ ^ p, \q\ ^ p, then the absolute

value of the integral is less than (2-\-e)/p, where e -> as p -> go.

Given a circle F whose centre is the origin and whose circumference

cuts each of the critical paths in one and only one point, any path S

which comes from and returns to infinity can be deformed, without

passage across a branchpoint, into a path T such that every multiple

point of T and every intersection of T with a critical path is outside Y.

The path T may cross and recross the circle Y any number of times;

if T enters the circle at pv 2h>---> Pn an( l leaves it a*
(Zi, gfo—j QIV we

have T expressed as

where each of the portions

°°2?i, gift,..., Qn-lPn> 9nP°

is wholly outside the circle, and each of the portions

h?!.^^ I'n'lu

is wholly inside the circle and is a path without multiple points which



THE AGGREGATE OF VALUES OF l(w) in:

joins one point of the circumference to another without cutting a criti-

cal path.

Before considering the integration, let us examine a little more closely

the forms of path inside the circle T. A simple path a joining two

points p, q of the circumference divides the interior into two regions

S2 ,
and if a does not cut any of the critical paths, the part of eachM-

critical path inside T lies wholly in one of these regions. We say that

a is impeded on the side of a region S^ or 2 2 by the critical paths

which are partly in that region, or, less exactly, by the branchpoints

from which those paths are drawn. Three cases are distinguishable:

(i) One region contains no branchpoints and the other contains four;

the path is unimpeded on one side, impeded on the other side by the

four critical paths, (ii) The path is impeded on one side by a single

critical path, on the other side by three critical paths, (iii) The path

is impeded on each side by two critical paths.

We can recognize these three cases in other ways. The critical paths

cut T in four points /, g, /', g'; the two points p, q divide the circum-

ference into two circular arcs, and each of these forms with a the

A region contains part of the

Fig. 21!. Fig. 21 2 .

boundary of one of the regions S
l5
2

critical path B if the circular arc which forms part of the boundary

of the region includes the point/, (i) The path a is unimpeded on one

side and impeded on the other side by the four critical paths if one of

the two circular arcs pq includes none of the points /, g, /', g' and the

other includes them all, that is, if the two points p, q are in the same

one of the four circular arcs/p, gf, f'g', g'f. (ii) The path a is impeded

on one side by one critical path and on the other side by three critical

paths if one of the two circular arcs pq includes one of the points /, g

/', g' and the other includes three, that is, if the two points p, q are in

adjacent arcs of the set fg, gf, f'g', g'f. (iii) The path a is impeded on

each side by two critical paths if each of the circular arcs pq includes

two of the four points/, g, f, g', that is, if p and q are on diametrically

opposite arcs of the set fg, f'g, f'g', g'f.
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The classification of loops inside the circle T is applicable to the arcs

inside T of the path T by which the original path of integration S has

been replaced, (i) If the JP-arc }>,„</„, is unimpeded on one side, the

circular arc- pmqm on that side of the T-arc forms with the T-arc the

boundary of a simply connected region containing none of the branch-

points, and the integral has the same value along this circular arc as

along the T-arc. To replace the T-arc from pm to qm by an arc of T

joining the same two points is to remove pm qm from the second set of

T-arcs. and to replace the t wo arcs qm _ x pm, qm />,„ fl in the first set by one

arc qm lpmqmpm+1 ,
thai is. qm^pm+1 : the form of the two sets is un-

changed, and the unimpeded arc is eliminated from the second set. (iii) If

the !T-arc pmqm divides the interior of the circle into two regions each

of which contains parts of two critical paths, we can divide one of these

regions, by a curve joining a point r in pmqm to a point s in the circum-

ference of F. into two regions each of which contains a part of one

critical path and no part of any other; the arcs of the set fg, gf',f'g', g'f

to which pm and qm belong are diametrically opposite, and s must be

taken on one of the other two arcs. The construction is illustrated in

Figure 21 3 . Integration along the T-arc pmqm is then equivalent to

integration along pm rs, srqm in succession, and on account of the con-

struction each of these paths is impeded by one critical path only. The

number of arcs in the second set is increased by one, and for con-

venience an evanescent arc ss may be added to the first set.

Briefly, a path of type (i) can be ignored, and a path of type (iii)

can be replaced by two paths of type (ii) :

0-32. Given a circle of sufficiently large rail ins with the origin for centre,

integration of l/\J{{ir) along a path S which comes from, and returns to

infinity is equivalent to integration along a succession of paths

<x>Pv PiQv 9iP> r-i'ii qn i/v Vn aw '/„*>

in which each of the paths

'/v 7i/'-. qn i/v '/«°o

is outsi'l< tin circle, reducing possibly to a single point, and each of the

paths

is a simple Ino/t insidt tin circle ami 18 impeded by one only of the four

critical paths.

<i-J. There is now only one type of path inside the circle V to be

taken into account, and we proceed to investigate the integral along
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a path of this type. We take a path yq which joins a point p in one

of the two arcs fy, fg' to a point q in the other of these two arcs, and

is therefore impeded by B alone. The integrand has everywhere one

of the values of l/\
/

R(w), and for the sake of definiteness we specify

the value at q; we select, in the notation already adopted, the value

A(q), the function A(w) being the sum of a series

wr vr wb

which is convergent if \w\ > max(|6|, |c|).

The path pq is deformable into a path which begins with the circular

arc j)f, then follows the critical path B from / to a point t between

Fig. 22.

The paths of integration, in this figure and in Fig. 23, are the boundary lines themselves,
not curves vaguely 'just inside' the boundaries. The dotted lines are merely guides to

the actual paths.

/ and b, describes a complete circuit y round b, returns from / to/ along

B, and finishes with the circular arc fq. As we have said in • 1
,
we may

take t as near to b as we wish; near b the dominant part of \j\R(ir)

is one of the branches of l[yj{2b(b
2—c2

)(tv—b)}, and the integral of this

function along a path inside a circle of radius t round b tends to zero

with t, notwithstanding the infinity of the integrand. But however

small the circuit y may be, the passage round this circuit multiplies

yl(w—b) by — 1, and in the return from t to / the integrand 1 \ R(w)

has at each point of B the negative of its value there during the

approach from / to t. This change has two consequences.

Firstly, the value of the integrand at / when / is the end of the path

// and the beginning of the path fq is the negative of the value of the

integrand at / when / is the beginning of the path ft and the end of



110 JACOBIAN ELLIPTIC FUNCTIONS

the path pf. But on account of the choice at q, the integrand along the

concluding arc fq is the function A(w), whose value at/ is A(f). Hence
the value at/ of the function integrated along pf is — A(f), and the

function is —A(ic):

•401. Because the value of the integrand at q is A(q), therefore the value

of the integrand at p is —A(ji).

Secondly, the multiplication of the integrand by —1 cancels the

effect of the change in the direction of integration along B, and the first

integral, from / to /. is equal to the second integral, from t to /: we
can write

•402 /=/+J +2 J + J.
v v y t f

Since the integral along B is convergent at b, we can replace the integral

from / to/ by the difference between two integrals from b, and we have

Q

.H'+J'-M'H +
I

•n » \ v h I I, fp p \y b *
l> f

Since t does not occur, implicitly or explicitly, outside the bracketed

terms, the difference
t

,f-
2

.f

y b

has a value independent of t, and since each term tends to zero with t,

this value is zero, whence more simply

q f f <i

•403
J'

=
/+ 2 .Kf-

p p b f

This formula does not require the circle T to be in any sense 'large':

for example, if the critical paths are radial, T may have any radius

greater than max(|6|, \c\). If however we do anticipate applications in

which integrals along paths that are not inside the circle are to be

disregarded, we see that the significant part of the integral from p to

7 comes entirely from the integral along the critical path B. We can

go farther. The integral from b to /still involves F, but if we replace

this integral by the difference between two integrals to oo, one of these

integrals is independent of T, and the other has its path outside I\

W'c write therefore

•tot

J s'R(w)

' P '
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the path of integration being the critical path B and the radical in the

integrand being asymptotic to w2 towards infinity along the path; ft
is

\

\

--f-__ \
* ->-—<--—

~~~ft nr ^—+
v

r

Fig. 23.

/

I

a constant, a value of 1(b), and is independent altogether of the path

pq. We have now, since the integrand at/ is A(f),

_^- = j8- f.4(M>)dM>,
\!

R(iv) j
b f

and substituting in -403,

q f co 7

•405 f
dw = 2g-r- f {-4(w)} dw -2 f 4(w) dw + f.4(w)dw.

J VJ?(m?) J J J
p p / /

Expressing this result more symmetrically, in a form which suggests

Figure 23, and incorporating -401, which is vital to the result, we have

the fundamental theorem:

6-41. A circle Y round the origin as centre cuts each of the critical paths

in one point only; pq is a loop joining one point of Y to another, lying

wholly inside Y, and impeded only by the critical path B. If the value of

the integrand \j^R{w) at q is A(q), then the value of the integrand at p is

—A(p), and

p p f » /V

oo

where ft
=

\

-.

b

dw

and f is the point in which the circle Y cuts B. The path of integration

for ft is the critical path B, and *JR(w) resembles w2 towards oo in this
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integral; the paths of integration pf, fq are arcs of the circle F, and the

path of integration betwet n f and oo lies along B.

We can evaluate the integrals along the circumference and outside

the circle F as in -:U)-2. and we have explicitly

•406 I*

(

£-, = 2p-G(p)-G(q)s

i>

where as before 0(w) = —+-1

„+ r
JJ

r
. + --- •

Very serviceable is the descriptive theorem, which indeed was foreseen

in the proof of -41:

•407. If pq is a loop inside F, impeded only by the critical path B, the

ralue of

i\
tin-

R{w)
v

along the loop differs from 2y3 by a sum of integrals along paths wholly

outside F, if the integrand has the value A{q) at q.

To replace the integrand in -41 at one point by its negative implies

replacing it by its negative throughout, and as we do not change the

meanings of fi
and A (w) we have to change signs throughout the formula:

6-42. //, ivith the notation of -41, the value of the integrand at q is

—A(q), then the value of the integrand at p is A(p), and

V i'/
' ' f'l

An enunciation similar to that of -407 is of course possible.

In -41 the circular arcs on which p and q are situated are not specified

more precisely than that one of them is fg and the other is fg'. To

reverse the situations is in effect to interchange the allocations of the

Bymbols C, C, and since these allocations do not enter in any way into

the argument, the value of the integral is not altered. This does not

mean that we have an integration in which the direction in which the

path is described is immaterial. In II we can not interchange p and q

without altering the rahn of the integrand at any point, for to retain

the value A(q) is to alter automatically the rule by which the integrand

is selected. If we w rite
q', p for /> '/.

wit h 1 he condil ion t hat the value
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of tlie integrand at p' is A(p'), it is -42 that is relevant if p' is to be

the lower limit of integration, and we have

7

\ R{w)
-2/3+1

V
p

A(w) dw,

p/oo cc/gr

in agreement with the formula in -41, since now the path is reversed

and the integrand is unchanged.
To change the critical path by which a loop is impeded is to make

only a formal change in -41, replacing the integrals along B and the

point of intersection / by integrals along one of the other critical paths
and the point in which Y cuts that path. We write

'408
[
77^3 = 7>

dw

4R{w)

the path of integration being the critical path C and the radical

resembling w2 towards oo along the path; y is a value of 1(c). The

paths B', C do not introduce new constants, for if W is any path from

a point w to oo, and W is the reflection of W in the origin, the integrand

l/^JR(w) has the same value at corresponding points of W and IT' it'

its asymptotic form is the same on the two paths; since the element

of one path is the negative of the element of the other, the integral

from —w to oo along W is the negative of the integral from w to oo

along W. In particular

co oo

-b -c

if the paths of integration are B', C and if \'R(w) ~ w2 towards oo on

each path.

6-5. We can now resume the evaluation of Js ,
the integral, along

a path 8 which comes, from and returns to infinity, of the continuous

function l/\!R(w) which resembles 1/w
2 towards the end of S. Having

drawn a circle T which cuts each of the critical paths once only, we

have S deformed into a succession of paths

°°:Pi> lh<li> <li2h> V-i<ln-> In-iPw 2} >,<lm Qn^-

The form of a path outside V is irrelevant, and we may suppose each

4767 Q
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of the paths q x p 2
. q.2 ]> :i </„ , j> n

to be an arc of V; it is not necessary

to lay down a rule by which to make the choice between the two arcs

of T joining qm - x
to pm> since integrals along these two arcs are in any

case equal. Each of the paths p x qv j'z'l-i P,, an is a simple loop inside

F impeded by a single critical path.

By hypothesis, the integrand along q„oD can be identified with the

function .!(//): hence the value of the integrand at q n is A(qn ), and it

follows from -41 that the value of the integrand at^, (
is —A(p n )\ hence

the integrand along q,,^]),, is the function —A(w), the value of the

integrand at qn_1 is -

A(</ Il
_ 1 ), and by -42 the value of the integrand

a^ P„-i is ^(P„-i)' whence the integrand along qn -2 2}n-i *s the func-

tion ^4(?e):

6-51. The Junction integrated along the paths

?„°°, qn-!Pn , qn-2Pn-i>-> aiP2> °°Pi

outside the circle T is alternately A(w) and —A(w); in particular, the

integrand at the beginning of the path resembles 1/w
2 or --1/w

2
according

as the number of loops inside the circle is even or odd.

Knowing now the terminal values of the integrand on each loop, we
can apply -41 or -406 or a corresponding theorem with a change of

sign. The result to be anticipated is perhaps clear if we first apply the

descriptive theorem -407. If the integral, from the branchpoint to

infinity, along the critical path which impedes the loop pm qm ,
has the

value A,„, a constant independent of the path 8, it follows from -51 and

•407 that

•501. The integral Js differs from

2A,-2A„_1+2A,l
_2-...±2A2T2A1

by a finite number of integrals along paths which do not penetrate the

circle T.

Since the values of J8 and of A„. A
;,_ 1( ..., X

t
do not involve the radius p

of the circle l\ and the values of the integrals outside V are negligible

it p is sufficiently large, we are tempted to say that the difference

between Js and 2A„— 2An_1-r-...^2A]
is arbitrarily small and is therefore

zero. But the argument is not quite as simple as this, for the original

deformation of 8 depends on the choice of the circle T, and we have

no reason to assert that with a different circle the deformation would

have led to the same set of impeding paths arranged in t he same order.

To rescue the argument we must make a deformation accommodated
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to the larger circle from the path as we now have it, and we musl use

the precise results of -41 and -42.

We take then a circle V round the origin, with radius p greater

than p. Let the critical path which impedes the loop pmqm oul Y in fm
and cut P in f'm ;

the initial and final arcs oo p l
and q„oo of 8 may be

deformed in any manner, subject to the conditions of lying outside T,

and they may therefore be assumed to cut F' only once, in points />[

and q'n . In -41 we have the difference

Q

I
2/3

expressed as —
j

—
|

\A(w) dw,

p/oo cofq

or, as we may say for brevity, as —pfoD+ooj'q. In this form, with the

integrand A(w) throughout and with the initial sign
- - or + according

as n is even or odd,

JS-(T2A 1±2A2T--2A, (
_ 1+ 2AJ

= ±COp 1±b 1/1 GO-00/1 g1)Tgi^2T(p2/2 GO- 00 /29'2)±?2P3±-

-^n-iPn-l+iPn-lfn-l^—^fn-lQn-d—^n-lPn-
— (Pn/»°°—°° fn^J+Qn™

= ±cop 1f1 cc^cof1f2 co±...-cofn _ lfn co+cofH qn co

=
±<x>zl.pJifi<x>T<x>flf1faf't co±...

- °0 fn-lfn -ifnf'n °°+ 00 f'J„ q„ q'n CO,

since p[, f[, f!2 ,..., f'„, q'n are points in the paths ^oo, fx co, /2 oo,..., /„ oo,

qn QQ. But the paths 2hPlflf'v flflfifi>— > fn-lfn-lfnfn> fnfn<ln4n and

the circular arcs p[f[, f'Ji— , f'n-if'n> S'n'L, are a11 outside the circle

\w\ = max(|6|, \c\), and therefore the arcs of the circle V may be sub-

stituted for the three-sided paths which include arcs of the circle 1\

and we have

•502 ^-(T2A1±2A2T...-2An_1+2ArJ

= ±oop;/;ooToo/;/;oo±...-oo/;, ../vx+oo/^oo.

Since the left-hand side does not involve the radius p, the value of the

right-hand side is independent of p ,
and since the right-hand side con-

sists of not more than w+1 integrals each of which tends to zero as

p -> oo, the constant value of the right-hand side for all values of p

not less than p is zero, and the value of the left-hand side is zero:
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6*52. If a circlt V whose a ntn is tht origin cuts each of the four critical

paths in din point only, and if the path S which comes from and returns

to infinity is deformabU into a path of which the portions inside F are

n succession of loops trv o., un ,.
crn each of which is impeded by one

and only one critical path, then J8,
the integral of 1 \R(w) along 8, is

.'/''•'
" <>H Js = 2An-2An_1+...±2A2T2A1,

where A,„ is th< integral of 1 \I\'(ic). from the branchpoint to infinity,

along tht critical path which impedes am , provided that the radical in every

integral is asymptotic to w2 towards in fin it//
in tin direction of integration.

Strictly Bpeaking it is superfluous to specify the asymptotic form of the

radical in this theorem, for if W2
is replaced throughout by — iv

2
,
each

term is replaced by its negative and the formula remains valid.

We should perhaps remark that what we have shown in the course

of the proof of •;*)_ is not that any deformation of S which is adapted

fco the circle V must resemble closely a deformation which is adapted to

the circle l\ but that there must exist one deformation with the appro-

priate degree (>t resemblance. The value of the integral J$ is perfectly

definite, but the steps of its evaluation offer infinite variety.

The proof of -52 suggested by -407 is instructive, but the result is

established much more easily by the actual evaluation, by means of

the function 0(w), of the integral along each of the paths which together

compose the path into which S has been deformed. Allowing for the

alternation in integrand, we have, by -302 and -406,

'/-. 1 '111 I

C die
2An-i+G(ft,-i)+G(?„-i).

I

; ^.,
= TGfeliW. j\gg

= T2Al± G<Pl,±G<„>,

'/i l'i

and addition recovers al once fche formula for J8.
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The simplest ease of -52 is that in which onrj one loop occurs. The

path S comes from infinity to a point on a circle whose radius is greater

than max(|6|, \c\), forms inside this circle a loop impelled l>\ only one

of the critical paths, and returns to infinity; the value of the integral

along 8 is then 2A, where A is the value of the integral along the com-

plete critical path; the integrand, which resembles \jw
2 towards the

end of 8, resembles --l/w
2 towards the beginning of 8.

Since each of the terms 2A„, 2A„_ 1 ,..., 2A
t

in -52 can be recognized

as the value of the integral along a simple infinite loop, we may express

52 by saying that

6-53. An arbitrary jxttli which comes from and returns to infinity is

equivalent to a succession of infinite loops each of which is impeded by

one and only one of the critical paths.

But if we break the geometrical continuity of the path we must add

explicitly that the asymptotic form of the integrand is the same towards

the beginning of each loop as towards the end of its predecessor, for

this relation is no longer secured automatically. Nevertheless the lan-

guage of -53 is convenient.

The three
1

•cases of -52 in which only two loops Lv L2 are required

call for' 'separate comment. Taking the loop L2
to be impeded by B,

the loop L\ may be impeded by B, by B', or by one of the other two

paths.

If both loops are impeded by B, then A
x
= A

2
=

jS,
and Js = 0.

Essentially this result is implicit in the discussion, after -42 above, of

the interchange of the arcs on which the endpoints p, q are situated.

If we return along a path without altering the integrand at any point,

we naturally annihilate the integral. But if the integral from p to q

with the integrand specified as A(p) has substantially the same value

as the integral from q top with the integrand specified as A(q), a repeti-

tion of the path from p to q is ultimately equivalent to a return from

q to p along the path that has already been followed.

The repeated loop is derived from a continuous path

oo p+ a+qq'f'p'p+o+q 00,

where a is a loop pq inside the circle F, impeded by B. and q'f'p' is

an arc of a larger circle V which cuts B in/'. The repeated infinite

loop is the limiting form in which p' and q' have tended to infinity

along p oo and q oo. The path p'p+ a+qq' is described twice, once with

the integrand whose value at p is —A{pt) and once with the integrand
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whose value at p is A(p). These integrals from p' to q' cancel out, and

there remains only the sum

(/<'

/< ».

f- |'-f \U{w)dw,
q ,,

which is identically zero, since the value of A(w) at any point is

independent of the path of integration. When we have proved that

the integral along the path

00 p-\-o+qfp+o+q 00

is zero, the result can be extended by the usual methods to any path
into which this can be deformed. For example, instead of elongating

the circuit tr-\-qfp into an infinite loop we can shrink it to a coil, as

small as we please, round the branchpoint b: if |6| < \c\, this coil

may be wholly inside the region of divergence of the series which

defines A(ir):

6-54. The value of the integral f divl\R{ic) along any path which comes

from infinity, describes a complete coil round one of the branchpoints, and

returns unimpeded to infinity, is zero.

This result shows that we do not multiply the value of an integral

along a single loop by repeating the loop. In the formation of a suc-

cession of simple loops from a path S, the same loop may occur k times

• c
•c

.-b
•-U

•-c
• -C

J8 20 Js =
Fig. 24.

consecutively. It /.' is even, the repeated loop makes no contribution

to the value of the integral, and the integrand has the same value at

the end of the last loop as at the beginning of the first loop: the set

of loops has no effect, direct or indirect, on the integral, and may be

ignored altogether in the evaluation. If A
1

is odd. the set of loops makes

the same contribution as its first member, both to the value of the

integral and to the variation of the integrand. In other words, although

the deformation of a path »S' may lead to a succession of loops L\LV
/.

•_,
L, /.„, Lm,

in which kv k2 km are any whole numbers, the most
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general form for evaluation is Lv L
2 ,..., L, in which consecutive loops

are not impeded by the same branchpoint, and the value of the integral

takes the corresponding form 2A,— 2A
/
_ 1+...+ 2A

X
in which consecutive

terms are not formally f equal.

If L1 is impeded by B' and L
2 by B, the path S is equivalent to

a path which has the two points b, h on one side and the two points

's
=

«)S Js =-.
8j8

Fig. 25.

c,
— c on the other side; the value of A

x
is —

/3,
and Js = 4/3. Herein

lies the possibility of multiplying to any desired extent the value of

the integral. The integrand has the same asymptotic form towards the

end of the path as towards the beginning, and if instead of allowing
the path to proceed to infinity we cast coils round b and —6 alternately,

each coil adds 2/3 to the value of the integral. If A' is any whole number,
we can express 2fyS as 2/?— (

—
2/3)+ 2/3— (

—
2/3)+ ..., to k terms, and the

casting of coils round the two points alternately translates this identity.

In this construction 2k
ft

is essentially a positive multiple of 2/3; to obtain

a path along which the integral has the value -2A-/3, we cast coils

round 6 and —b alternately as before, but ending with a coil round —b.

For the third case of a path equivalent to two loops, let L
x
be im-

peded by C and L2 by B. The value of the integral is 2/3+ 2y, and

we must take L
x
to approach between —6 and — c and to recede between

— c and b, and L2 to approach between — c and b and to recede

between b and c. The pair of loops is therefore equivalent to a path
which comes from infinity between B' and C and returns to infinity

between B and C, that is, which separates b and — c from c and -b.

The integral in this case can be expressed in another form, for we may
take for the path a path passing through the origin and symmetrical
with respect to the origin. If we denote the half of this path from the

f We have not yet proved that
/3
can not he accidentally equal to y or to — y ; this is,

however, true, as we shall see in -8 below.
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origin to infinity between />" and (" by .1. and the other half by A',
and if the value of the integral from to oo along A is a, the integrals
from x to <» along .1 and from to x along .4' both have the value

-at. Hence if the asymptotic form of the integrand is the same along
A' as along />'. we have 2j8+2y = — 2a. that is,

•503 a+j8+y=0.
The asymptotic form of the integrand is the same towards each end

of the composite path AA'. It follows that if the path is repeated

again and again in one direction, the value of the integral is multiplied.

We obtain a continuous path equivalent to a repetition of A A' by
casting a coil round the two points —b, c or round the two points

b,
—

c, and we can find in this way a path to give to the integral the

value 2£a where k is any assigned whole number, positive or negative.
The integral along a path which comes from infinity between B' and

J« = 2a Jo = 6a

C and returns to infinity between B and C
,
thus separating b and c

from —6 and — c, has the value 2j3
—

2y, and any positive multiple of

this value can be obtained by the insertion of coils cast round b and c

or round -b and —c. For negative multiples of 2/3— 2y the direction

of integration must be reversed.

Since /3,
—y are integrals from 6,

—c to oo, it is to be expected that

/J+y is an integral from b to — C, as well as an integral from to oo.

In fact 1 he substitution
«2 „•- /,-

w2— c2

implies
(dty {dwy

(/- //-)(/
2-C2

)

"

(/r
2

-6*)(M>2—C
2
)'

and / = 0, go correspond to " - = b,—r. lint to discuss the relations

between a path from 6 to r and a path from to CO would take us

a long way from our present subjeel . since / corresponds to w =s — b
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as well as to w — b, and t = oo corresponds to w = c as well as to

w; = — c.

In the general expression 2A,— 2\
(
_ 1 -\-...

zf 2A
X

for the value of the

integral Js ,
each A has one of the four values ijS, ±y. The value of

Js is therefore of the form 2mfi-\-2ny, where m, n are integers, not

necessarily positive. Conversely, if m, n are integers, 2>>if3-\-2ny can be

expressed, in an infinite number of ways, in the form 2A,— 2A
/
_ 1 -f-..-T2A 1 ,

and since any succession of loops inside a circle can be joined by arcs

of the circle to form a continuous path, every sum of the form 2mft-\-2ny

is the value of the integral Js along some path or other. Thus

6-55. The values of the integral
| dwj\R(iv) along paths which come

from and return to infinity are the numbers of the form 2mfi-\-2ny.

The aggregate of values is the same whether or not the asymptotic
form of the radical is prescribed.

6-6. We can now complete the statement of the multiplicity of values

of the integral I(iv). The integral Js of -21 is the integral evaluated

in -52. The integrand which is A(w) towards the end of S is A(w) or

—A(w) towards the beginning of S according as the number of

terms in the expression for Js is even or odd, and this number differs

from the number m-\-n in -55 by an even number. Hence from -21

and -55,

6-61. // / is one value of the integral I(w) for a given value of w, the

aggregate of values of the integral for that value of w consists of all the

numbers of the form 2mj8+ 2ny-\- 1 in which m-\-n is even and all the num-

bers of the form 2mfi-{-2ny
— / in which m-\-n is odd, m and n being whole

numbers, positive zero or negative, and fi, y being the values of the integrals

1(b), 1(c) along paths subject to certain topographical conditions which are

satisfied in particular if the paths are reconcilable with half-lines.

From the present point of view no special significance attaches to

rectilinear paths, but if for any purpose paths must be specified pre-

cisely, rectilinear paths are naturally the simplest to use.

6-7. Reversed to express properties of w(I), -61 combines the two

relations

6-71 w(2mfi-\r 2ny-\-I)
= w(I) if m+n is even,

6-72 w(2mp+2ny— I) = w(I) ifm-fwisodd,
4767 R
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with the theorem thai

6*73. All the solutions of the equation »•(•/) n-(I) are of one of the

lwo fonna ,i 2mp+2ny+l with m+n even,

.1 -----

'Inift | ~lny— I with m-{-nodd.

It is from 71 that periodicity of the function w(I) is to be inferred;

for this purpose -72 is irrelevant. Clearly 4/? and 4y are periods, for

m-\-n is even if m and n are both even: the function w(I) is doubly

periodic. But 4/3 and 4y can not constitute a primitive pair of periods,

for since m-\-n is even if >n and n are equal, -71 implies that 2/3+2y

is a period, and the parallelogram (2j8+2y, 4/3) has only half the area

of the parallelogram (4/3, 4y). Since the integral a satisfies

(i-74 a+j8+y = <>,

we can replace -71 by

6-75 w(2hcx+4kp+I) = w(I)

with no restrictions on the integers h, k, and since from -73 this formula

gives all the values of Q. such that w(Q.-\-I) = tc(I) for every value of

/, it follows that the pair of periods 2,^, 4/3 is primitive. Equally 2a, 4y

is a primitive pair, and, incorporating the definitions of a, ft, y as

integrals, we have the theorem that

0-7(). The function w(I) is a doubly periodic function, of which values

of 2/(0), A 1(b), 41(c) are periods; with suitable restrictions on the paths

determining the integrals, the first of these periods constitutes with either

of the others a primitive pair.

If m-\-n is odd, mftA-ny has the form ha-\-(2k-\-l)ft; we can therefore

express -73 in the alternative form

G-77. The aggregate of rallies of J satisfying the expiation tc(J)
-

ir(I)

consists of the numbers congruent irilh I and the numbers congruent with

2/3— /, to moduli 2a and 4/3.

In general the congruences to which / and
'2ft
— I belong are distinct,

but they coincide if w has either of the four values I b, | f, when / is

congruent with one of the four corresponding values ±ft, Azy-

Neither nor v.. as a value of w, creates an exception to -77. If

//• is 0, one value of / is t,
and the general value of / is the sum of odd

multiples of
ft
and y. W ir is CO, one value of / is (). and the general

value of / is the sum of even multiples of
ft
and y. in fact the values

of / for which //• is co are precisely the values of those integrals whose
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paths begin and end at infinity with which this chapter has been pre

dominantly occupied.

(i-S. A genuine doubly periodic function can not be built on two

periods il the ratio of one period to the other "is real. We can hardly
doubt that for arbitrary complex values of 6 and c, the ratio of one of

the integrals /?, y to the other is in general complex, and on investiga-

tion we are able to dispose of the possibility of exceptional cases, within

the conditions imposed on l> and c.

We take for the paths of integration the prolongations of the radii

from the origin to b, c; the case in which b/c is real is therefore reserved

for subsequent examination. We make the substitution

•SOI ,r
2 = II,

and we have

b 2
j{w(w-b*)(W-c*)y

'
J j{W{W-b*){w-c%

where the paths of integration are again the prolongations of radii from

the origin. Since for the present purpose a change of sign throughout
is immaterial, we need not attempt to specify the radical, but the

integrand is of course continuous along each path.

In general the half-lines in the W plane from the origin through the

2(v-jx)£>-i

Fig. 27.

points b 2
,

c 2 are the two arms of a simple angle whose measure is

between and it. For definiteness we suppose that rotation through

this angle from Ob 2 to Oc 2
is positive; interchange of the symbols ft

2
,
c2

does not affect the conclusion of the argument. We denote by 2/jl,
2v

the angles of the complex numbers b 2
,
c 2 which are positive and less

than 2tt; then 2(r— /jl)
is the angle of the sector determined, in the most



124 JACOBIAX ELLIPTIC FUNCTIONS

elementary sense, by the halt-lines along which the paths of integration

lie. In the extreme case in which b2
jc

2
is real and negative, 2(v—fx) = tt\

this case can be admitted.

On the first path of integration, dWfy/{W(W—68)} is everywhere real,

and the possible angles of the element of the integral at any point are

the angles of the complex number l/s'(W—c
2
). At any point on the

path, W— c- has an angle not less than 2v—tt, the angle of the step

from c'- to the origin, and not greater than 2/x, the angle of the step

from c 2 to the point at infinity on the path. Hence \(^{W—c
2
), and

the element of the integral, can be taken to have an angle not greater

than —(v—Itt) and not less than —ft.

On the second path of integration, dWlyJ{W(W—c
2
)}

is everywhere
real, W—6s has an angle not less than 2v and not greater than 2/n+ir,

and 1 yj{W—b
2
), and the element of thejntegral, can be taken to have

an angle not greater than —v and not less than — {[i,-\-\n).

We appeal now to a simple lenimaf :

6-82. If at every point of a path of integration the element of integral

(z) dz has its angle within an assigned range, then the angle of the

integral I" f(z) dz also is within that range.

From this it follows that the angle of one of the complex numbers ijS

is in the range from — /x
to — (v

—
\n) and the angle of one of the com-

plex numbers ±y is in the range from — (ia-\-\tt) to —v. Since

-(/H-£tt) < —V < --/A < —{v—fa) < -(/X+H+ 77,

these ranges do not overlap and they are on the same side of one

diameter; in other words, no angle which belongs to one of them either

belongs to the other or differs by -n from an angle belonging to the

other:

6-83. // the ratio of b to c is not real, and if the critical jiaths radiate

from the origin, the ratio of ft
to y is not real.

If 2(v—fx) = 77, that is, if the ratio of b 2 to c2 is real and negative,

one integral has the angle —v and the other has the angle
—

p, and

these, in this case, differ by \tt\

6-84. // the ratio of b to c is purely imaginary , so also is the ratio of

jS
to y, if the critical paths radiate from the origin.

If the ratio of b to c is real, let |6| > \c\. The prolongation of the

t With the transformation w =
f(z), this is merely the theorem that if every tangent

to an arc has its direct inn within a given angular ran^e. the ehnnl of the arc also has a

direction within that range, an immediate corollary to the theorem that there is a tangent

parallel to the chord.
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radius from the origin in the w plane to c passes through b or 6 and

can not be used as a critical path. But this prolongation indented at

the point which must be avoided is reconcilable with a half-line from

c to oo, and in this form it can be used for the evaluation of a quarter-

period y: the indent is needed only to connect the radical on one side

of the branchpoint with the radical on the other side. In the W plane,

the ratio of 62 to c2 is real and positive. The path of integration for

2y is the prolonged radius from c2
,
and ±2y is the sum of an integral

from c 2 to b 2 and an integral from h 2 to oo. The second of these

integrals is ±2/3; to the first, which has therefore one of the four

values ±27^2/3, is applicable the argument which establishes -84,

and the ratio of either y—fi or y+/3 to /3 is a purely imaginary number

which can not vanish:

6-85. // bjc is a real number numerically greater than unity, and if the

critical paths are rectilinear, then y/($ is a complex number whose real part

is I or — 1 and whose imaginary part is not zero.

The steps y+jS, y—fi are steps in the lattice built on
fi
and y, and

therefore this lattice does contain steps at right angles to /3;
the differ-

ence between this case and that of -84 is that y is not itself one of

these steps.

Since -85 deals with the only case omitted from -83, the conclusion

of -83 is general with respect to the values of b and c. Also we can

remove the restriction on the paths. By -61, the general values of the

integrals 1(b), 1(c) are given in terms of particular values
/?, y by

1(b) = (2m1+l)j3+2n1 y, 1(c)
= 2m 2 /3+(2n2+l)y.

Since the ratios (2m 1+l)/2m 2 ,
2ra1/(2w24-l) can not be identical, a real

ratio of any value of 1(b) to any value of 1(c) would imply a real ratio

of
j8

to y. Hence

6-86. // b2
,
c2 are different and neither of them is zero, the ratio of one

of the integrals

00 oo

f dw f dw

J 4{(w
2-b 2

)(w
2-c2

)}' J J{(w
2-b2

)(w
2-c2

)}
b c

to the other can not be purely real, whatever the paths of integration.



VII

THE UBIQUITY OF THE FUNCTION INVERSE TO
AN ELLIPTIC [NTEGRAL

7-1. The sense in which the function ir( I) has been shown to he doubly

periodic is as follows: If wt is a value of w associated with a value 1^

of 1. then w# is associated also with every value of / that is of the

form 2h »
(- AkfS+I*. This does not imply that there are not other values

of W associated with the same set of values of /. or that there are not

values of J with which no value of w is associated; in other words, the

property of double periodicity may belong to a lnanyvalued function

or to a lacunary function, and indeed it must belong to any function

that is an algebraic function or a lacunary function of an elliptic func-

tion. For example, if wz = pz, the three values of w associated with

a value z of z are all associated also with every value of z that is of

the form ~„ -j- 2)nco 1
Jr -na> 2 . Similarly, for the function defined by the

expansion

•101 w = l+pz+p2z+p4
z-\-p*z+...,

if the value w is assumed by w when z has the value zQ ,
the same

value w is assumed when z has any value congruent with z
,
but in

this example w has no meaning unless \pz\ < 1, and since there are

no values which pz does not take, it follows that there are values of

z for which w does not exist. The function defined by vP = pz and

the function defined by the expansion
•
1 01 are douhlv periodic func-

tions of z in precisely the sense in which the function ir(I) has been

shown to be a doubly periodic function of /, but they are not elliptic

functions. An elliptic function is required to be singlevalued. and to

have no singularities other than poles except at infinity. These con-

ditions arc not mere simplifications adopted in a first approach to the

subject only to be abandoned if they become irksome; they are essential

to the arguments thai depend on integration round the perimeter of

a period parallelogram, and the whole general theory presupposes them

in one way or another.

To suppose that every value of / is possible as an argument of the

function w(I) is to suppose that to a value of / given arbitrarily must

correspond at least one path to infinity along which the integral of

l/\
!
H(ii') has the given value. To suppose that //• as a function of / is

singlevalued is to suppose t hat integrals to inlinit \ from different points
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of the ic plane can in no case be equal. W'c have only to state the

assumptions in this explicit language to know that nothing that we

have yet said has any bearing on cither of them.

Taken literally, the question whether integrals from different points

of the w plane can be equal is not a local question: the whole plane,

not only the immediate neighbourhood of one point, is involved. We
recall however that in constructing the function fj~ we did take into

account that a singlevalued function was required, and that in that

case we secured the result by conditions each of which was purely

local: we could see that a branchpoint must be either a zero or an

infinity, and by direct inspection of the zeros and infinities of the

function we proved that there could be no branchpoints; we concluded

that the function was singlevalued. The inference seems immediate,

but there is a tacit assumption, which it would have been pedantic

to emphasize then, that if a function has branches it has branch-

points.

Let us analyse this assumption. If a function w of z is not a single-

valued function or a formal aggregate of a number of distinct single-

valued functions, there is some simple closed circuit Y in the z plane

with the property that if the point z describes the circuit and w varies

continuously, nevertheless the value of w after description of the circuit

may be different from the starting value. To reduce this characteristic

of the function to the local property that there is some point t such

that the function is not singlevalued within a circle drawn round t as

centre, however small the circle may be, we may talk naively of con-

tracting the circuit Y, or we may apply the Heine-Borel theorem f to

a reticulation, but however it is conducted the argument breaks down

if the region in which it is applied is not simply connected, that is, if

the mutating circuit surrounds points at which the function is not

defined. The function i]z is defined from the beginning for every finite

value of z, and is proved to be singlevalued as soon as it is proved . to

have no branchpoints. To search the / plane for branchpoints of the

f Briefly, the argument is as follows. If there are circuits that are not conservative

for the function, we can associate with a variable point P of the z plant- the largest circle

with P as centre which does not surround such a circuit. The radius of this circle is a

continuous function of the position of P, and in any closed region this function attains

its lower bound. If the lower bound is zero, a point where the hound is attained is a

point in whose immediate neighbourhood a passage can be made from one branch to

some other. If the lower bound is not zero, the closed region can be covered by a finite

number of overlapping circles no one of which contains a mutating circuit ; if the region

is simply connected it then follows that the region as a whole does not contain such a

circuit, but this concluding step can not be taken if there is multiple connectivity.
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function w(I) is premature until we know whether the function exists

throughout the whole plane.

As we shall see, to discuss the relation between w and I near a value

of 1 which the integral is known to take is a simple matter. The diffi-

culty in discussing a value of I which the integral is not known to take

is that we do not even know how to connect that value by any expan-

sions with a value which the integral does take. While this is true in

general, there must be at least one point in the I plane where the

difficulty does not arise. For the points of the I plane which are values

of the integral I{ir) compose an aggregate A. If there are finite values

that the integral can not take, the aggregate A does not cover the

w hole plane, and there is at least one accessible boundary point to this

aggregate; that is, either there is at least one accessible point which

does not belong to A but is a limit of members of A, or there is at least

one accessible member of A which is a limit of points that do not belong

to A. As far as logical classification can tell us, there may be any
number of points of each kind, but unless there is one point of one

kind or the other there can be no finite values impossible for I(w).

We proceed to investigate the alternatives, and we consider first the

neighbourhood of a member of A, because results obtained by working

outwards from a known centre are needed in the subsequent more

difficult discussion.

7-2. Assuming the relation
oo

~s , t 1* dw
•201 /*= ,':):

we are to consider the neighbourhood of /„., or rather, to consider

together the neighbourhoods of
/„.

and w# in their two planes.

The definition of I as an integral implies the existence of dl/dw, and

therefore implies the analytic character of the branch of I(w) involved,

near any point at which w, I, and the integrand are all finite, and

implies also the analytic character of the corresponding branch of w as

a function of J unless the integrand dljdw is zero. In detail, there is a

number a such that if \w -W^\ < a the relevant branch of l/\R(w) is

expansible in a series

&o+**i("'-"'*) i
l:A"' "'*)" I•'

;ind if / is the integral along a path which comes from w to w# inside

the circle \w— u\\ < a and then follows the path of /*, we have

202 7—4=- l:
{)(w-v\)—\k\{w u\)-^ Ik.^w-w+f— ....
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Unless k = 0, this expansion is reversible in the form

•203 w-ic* = h1(I-i;)+h2(I-I*)*+h3(I-I,t)*+... i

valid for sufficiently small values of \I— ZJ.
That is, there is a number p, not zero, such that if / is any number

satisfying the inequality \I—I%\ < p, the expansion in -20:} is con-

vergent and determines a value w for which \w— w^\ < a; for this

value of w, the integral to oo has the value I if the path of integration

is the path ivw%oo.

7-21. In general, if 1^ = I(w%), there is a number p such that if

\I
—

1%\ < p, then there exists a point w such that I is a value of I{w).

We must examine the cases, of zero or infinite integrand, not covered

by our proof of -21 to see if there are any exceptions, to the result.

First, the integrand l/\'B(w) is zero at w^ only if w* is infinite, that

is, if I* is the value of the integral along a path 8 which comes from

and returns to infinity. This is the type of integral to which the greater

part of the last chapter was devoted. If w is any point of 8, one value

of I{w) is the integral from w along S, and one value of I%—I(w) is

the integral to w along S. Since 8 comes from infinity, there is a point

v of 8 before which every point of 8 is outside the circle

\w\
= max(|6|, |c|),

and in the notation of 6-3 the integrand along *S' from oo to v is one

of the two functions ±A(w). Thus for any point w of 8 before v, we

have I(w) = I, where

•204 /,-/= ± j
A

{„) to = T w 1+^+ ^+... •

00

For sufficiently small values of I— I* this expansion is reversible in

the form

•205 i = ±(/-/*){l+^(I-/#)
2+A2(J-/*)

4
+...} 5

w

which is further equivalent to

•206 W=±
I1 I

l
1 +9'i(/

-7*)
2+Sr2(^-4)

4
+-}-

From this expansion we can argue as from -203. For any sufficiently

small value of I—1* 3
the expansion gives a definite value of ir, and

we can secure the condition \w\ > max(|6|, \c\) by a reduction if neces-

sary of the limit imposed on \I—1*\. Then it follows that for this

4767 c
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value of iv, given by -200, the integral I(w) has the value I if the path
of integration lies along S. That is to say, the case in which u\ = oo

is no exception to -21.

Incidentally, since the upper sign or the lower must be taken in -204

according as passage along S restores or reverses the integrand at in-

finity, that is, according as the form of /+ is 2h<x-\-4kfi or 2^a+(4A,"-f 2)j3,

we have proved that

7-22. The infinities of the function w(I) are simple poles; those con-

gruent with the origin have residue 1 and those not congruent with the

origin have residue — 1.

Next, the integrand l/^R(w) is infinite at w# if w# has one of the

critical values ±b, ^c. We have already seen that the integral remains

finite if the path starts actually from the critical point; the value of

the integral is of the form ra/?+wy, with m odd and n even at ±b and

with in even and n odd at ic Writing

w—b = t
2
,

we have E(w) = t
2
(2b+t

2

){(b
2—c2

)+ 2bt2
+t*},

and since b(b
2— c2

) ^ 0, l/^R(w) is expansible for sufficiently small

values of t in the form

where k ^ 0; more generally, this is the form of l/\/R(iv) near any
critical point w*, if t denotes either value of^(w— w^). Since dw/dt — 2t,

integration gives

!
- 2k t-\-^k1

t -\-ik2 t +
ylR{w)

w.

if the path of integration remains inside the circle \w— w^\ = S 2
,
where

8 is the radius of convergence of the series k -\-k1 t
2
-\-k2 t

i
-\-... . If then

the path of integration to oo from a point w inside this circle consists

of a path to w^ inside the circle followed by the path which provides
the value 7+ ,

the value / of I(w) is given by

•207 /-4 = -t(2kQ+§k1
t
2
+lk2

t*+ ...),

implying a reversal

•208 t = (I-I*){h +h1(I-I*)
2+h2(I-I*)4+ ...}

and therefore an expansion

•209 w-w* =- (I-I*)
2
{g + gi(I-I*)

2+g2(I-I*)*+...}.
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As before, any value of I sufficiently near to 7+ is a value for which

a point w and a path of integration ww%oo exist: the case in which u\
is a branchpoint is no exception to -21.

We have dealt with the only possible cases: there are no exceptions
to -21, and we can assert that

•210. Any finite value which the integral I(w) assumes is completely

embedded in values which it assumes,

or in other words that

7-23. A finite value taken by the integral I(w) can not be a limit of

values which the integral does not take.

In the language of -1, we have disposed of one alternative regarding

boundary points of the aggregate A.

7-3. From the formulae -202, -204, -207 used to establish -23, it

follows| that

7-31. // I* is a value of the integral I(w%), then 1% is a limit of values

of I(w) as w tends to w*.

What we have now to prove is the converse theorem, that if J is a

limit of values that I(w) can take, then there is some value wt of w
such that J is a value of I{w*). The proof is simple in principle, but

in detail complications arise because I(w) is not a singlevalued function

of w, and iv(I) must not be assumed to be a singlevalued function of /.

We first show that we can, in effect, treat I(w) as singlevalued: we

can surround J by a circle within which there can not be two distinct

values of / associated with the same value of w. The evidence is

naturally to be drawn from the conclusions in 6-77 regarding the

multiplicity of values of /.

If / is at a distance less than p from J, then 2moc-\-4n^-\-I is at

a distance less than p from 2raa+4w/?+J, and 2ma+(4w+2)j3— / is

at a distance less than p from 2ma+(4w+2)/3— J. Let us surround

each point of the form 2m<x-\-4nfS-\-J and each point of the form

2raa+(4w+2)/3— J by a circle of radius p. Then if one value of / is

inside the circle round J, there can not be a second value of / inside

the same circle unless this circle is overlapped by one of the other

circles, and we ask if p can be chosen small enough to m.ake overlapping

impossible.

Since, as we have proved in 6-8, the ratio of /?
to y is not real, the

points 2raa+4w/2 form an undegenerate lattice. A distance between

t The reader will notice that -31 is not a corollary of l'3.
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one point of the form 2ma-f-4n/H-J and another, or between one point

of the form 2///\+ (4w+2)j3— J and another, is the same as a distance

between two points of this lattice, and is at least as large as the smaller

of the perpendicular distances between opposite sides of the period

parallelogram 2a. 4/?: this distance has therefore a minimum value S
x

which is not zero.

Again, since

{2mla+4nip-\-J}-{2mi oc+(4n2+2)p-J}
= 2(w» 1

-wi
2)a+4(n 1

-»2)j3-2(j8-J),

identically, a distance between a point of the form 2m<x+4n[3-{-J and

a point of the form 2w?a-f(4?i+2)/3— J is the same as a distance between

the point 2(j3— J) and a lattice point. As we have just seen, the mini-

mum distance between two lattice points is not zero; hence the aggre-

gate of lattice points can not have 2(/3— J) for a limiting point, and

either 2(j3— J) is an actual lattice point, or the distances from 2(j3— J)

to lattice points, that is, the distances between points of the form

2wa+4wj3+J and points of the form 2m<x+(4?i+2)£— J, have a mini-

mum value 82 which is not zero.

If 2(/3— J) is the lattice point 2ma+4wj8, then J = —mot— (2n— l)j8;

if m is even, J is congruent either with
j8

or with —fi and is a value

either of 1(b) or of I{
—

b); if m is odd, J is congruent either with y or

with — y and is a value either of I{c) or of I(—c). Thus if 2(j8— J) is

a lattice point, J is known already to have the form I(w*), and further

argument to this end is unnecessary.

Setting aside the case in which 2(j8— J) is a lattice point, we have

a distance min^^Sg), not zero, which is the least distance between

two points each of which has one of the two forms 2mocJr 4nf3-\-J,

2raa+(4n-f 2)j3— J, and therefore if every point of each form is the

centre of a circular region of radius i min^, 82), no two of these

regions overlap, and if, for a given value of w, there is a value of

I(w) inside one of these circles, then, for that value of w, there is

one and only one value of I(w) inside each circle.

We can now suppose the point ./, which is a limit of values taken

by I(w) as w varies, to be the centre of a circle within which there is

at most one value of l(w) corresponding to any one value of w. The

radius /' of this circle is not zero, and in dealing with J as a limiting

point we may ignore altogether points outside the circle.

Letp be any radius between and
/<.

and denote by P(p) the interior

of the circular region with centre •/ and radius p. Inside the region
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P(p) there is an infinity of values that I(w) can take, since J is a limit

of these values; since one value of w can not be the source of more

than one value of I(w) inside P(p), the values of w which give values

of I(w) inside P(p) form a set \V(p) which also contains an infinity of

members, and therefore has at least one limiting point. That is, the

limiting points of the set W(p) compose a set D(p) with at least one

member, which may be the point at infinity in the w plane. Now it

< a < p, the circular region P(a) forms part of the circular region

P(p), and the sets W(a), D(a) therefore form partsf of the sets \V{p),

I)(p); also the set D(p) is closed, since the w plane is completed by the

point at infinity. The collection of sets D(p), for all values of p in the

open interval < p < p.,
determines a set IT composed of the values

of iv that belong to every member of this collection, and because the

individual sets are closed and the collection is a nest, the set IT is not

empty J but has at least one member. Let w* be a member of II and

therefore a limiting point of \V(p). By -31, any value of I(w^.) is a limit

of values of I(w) for values of w belonging to W(p), and therefore each

circle of radius p round a point of one of the forms 2ma-\-4n^-{-J,

2wa+(4w+2)j8—J includes, possibly on its circumference, one and only

one of the values of I(w#). That is, if < p < p.,
there is one and

only one value of I{w*) in or upon the circle round J with radius p.

But w* and the values of I(w%) are independent of p ;
the value of

I{w%) belongs therefore to the only point which is common to all the

circles, namely, the centre J itself.

7-32. // J is a finite limit of values which I(w) can take, then J is

itself a value which I(w) can take.

Or, in the form of the enunciation of -23,

7-33. A finite value which the integral I(iv) does not take can not be

a limit of values which the integral does take.

An alternative method of reaching the conclusion -33 will seem simpler;

logically it is less satisfactory, since the controversial multiplicative axiom is

assumed.

Since J is a limit of values that I(w) can take inside the circle round J with

radius p, we can select from these values a sequence Iv I2,... of which J is the

only limit. These values belong to arguments wlf w2 ,...,
and since one value of

t Perhaps the whole, as far as we know at present, but this is immaterial.

% If the collection was formed for values of p in an interval A < p < \i closed at the

lower end, the set TI A of common members would be simply D(X), and the fact that D(p)

is closed would be irrelevant. But since our whole object is to find a set n o and p can not

actually be 0, it is essential to have an argument which allows the interval of values of p

to be open.
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w can not account for more than one of the values of I, the sequence wlt wt ,...

consists of an infinite number of distinct terms and has at least one limit, finite

or infinite. If »•* is a limit of the sequence wx , w2 ,..., there is a subsequence
wm ' wm >•••> where m v < w2 < ..., of which u\ is the only limit. By -31, if if is

a value of I(u\), then if is a limit of values of I{wm ), I(wm ), Since every
value of each of the integrals I(wm ), I(wm ),... is in some circle with radius

^t

round a point of one of the forms 2m<x+ 4nfi+ J, 2ma+(4n+2)j3— J, the limiting

point if is in or upon one of these circles, and therefore each of the circles con-

tains onr and only one value of 1(10+). In particular, there is one value /„, of

1(11'+) in or upon the circle round J, and this value is a limit of the values Im ,

Im .... of I(wm ), I(u',„ ),... which are inside the same circle. But Im , Im ,... are

terms of the sequence Ilt I2 ,... which by hypothesis has only the one limit J.

Hence 1+ coincides with J, that is, J is identified with a value of I(w+).

Essentially what is done in the earlier proof of '33 is to transform this argument
into a form in which picked sequences are not invoked, without losing the thread

which runs so clearly through the unsophisticated version.

7-4. The combination of the two results -23, -33 is the theorem that

•401. There exists no boundary to the aggregate of values taken by the

integral l(w) if the range of w is unrestricted.

This implies that these values cover the whole of the / plane:

7-41. There is no finite value which the integral I(w) does not take for

some value, finite or infinite, of the lower limit w.

In other words, with the convention that a function exists at a point
where its value is unequivocally infinite as well as at a point where it

has a finite value,

7-42. The function w(I) exists for every finite value of I.

It follows now that the discussion in «2 of the character of w(I) in

the neighbourhood of a point determined by an arbitrary value of w
was also a discussion of the function in the neighbourhood of an

arbitrary value of /, and from an inspection of the three types of

expansion -203, -206, -209, we see that

7-43. The only accessible singularities of the function w(I) are simple

poles with residue 1 or — 1 .

In particular, w(I) has no branchpoints, and therefore

7-44. The function w(I) is either a singlevalued function or an aggregate

of distinct singlevalued functions.

The second alternative recognized in this theorem will be under-

stood from the example of such simple relations as w2 =
1/z

2 and

w2 = csc22— 1. In each of these relations w, regarded as a function of

z, satisfies 1 he conditions of both -42 and -43, and it is only our previous

acquaintance with the functions that enables us to see at once that the
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one function is the combination of the two distinct functions 1/z, --I/2

and the other the combination of the two distinct functions cot z,

—cotz.

7-5. For the last step in determining the character of w(I) we replace

the integral relation defining I(w) by the differential equation

•501 (dw/dl)
2 = (w

2-b 2
)(w

2-c2
).

The argument is a repetition of that used in 5-1 and 5-3. Substituting
w = 1/y, we have

•502 (dy/dl)
2 = (l-b

2
y
2
)(l-c

2
y
2
),

whence

•503 d2
y\dl

2 = -{b
2+c2

)y+2b
2
chf.

In -502, y = implies dy/dl = 1 or dyjdl = -1, and there is one and

only one solution of -503 for which initially y = 0, dyjdl = 1, that is,

one and only one solution expansible near / = in the form

•504 y = /(l+ 6 1 /+62 /
2
+...).

Hence there is one and only one solution of -501 expansible near 1 =
in the form

•505 w = I+c +c1 /+c2 /
2
+....

That is to say, near the origin w(I) is one singlevalued function, whence

from -44

7-51. The function w(I) is singlevalued throughout the I plane, except

possibly at infinity,

implying with -43 the fundamental theorem to which we have been

working :

7-52. The function w(I) obtained by inverting the integral relation

00

T
C dw

I
w

^{{w
2-b 2

){w
2-c2

)Y

in which the radical is asymptotic to w2 towards infinity along the path

of integration, is a meromorphic function.

7-6. In 5-1, the identification of the function fjz with a particular

solution of the differential equation

•601 (dw/dz)
2 = (w

2-f2
)(iv

2-f2
)

over the whole z plane was made without comment, and it is worth

while to remark on the difference between -601 and -501 in respect of
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the use that can be made of a particular solution selected at the origin.

The solution of -501 is not necessarily confined to the circle of con-

vergence of the series c +c 1 /+c2 7
2
+... which constitutes the regular

part of the Laurent expansion -505. Ifp is any point inside this circle,

the expansion

•602 _*
,
+ c +c1{p+(I-p)}+ c2{p+(I-p)¥+...

can be rearranged as a power series in I—p, and the function repre-

sented by -505 can be continued analytically from the new series; thus

continued, the function nowhere ceases to satisfy the differential equa-

tion -501. The function exists at a point I* if there isf a curve D
joining p to 7+ with a finite sequence of overlapping circles such that

each point of D lies inside at least one of the circles, that the centre

of each circle is inside the preceding circle, and that each circle is the

circle of convergence of the Taylor series constructed at its centre from

the function defined in its predecessor. Whether such a curve and such

a sequence of circles exist for a specified point 1% depends ultimately

on the sequence of coefficients c
,
c
l3

c2 ,..., and in this sense the domain

of existence of the function w(I) is undoubtedly determined theoreti-

cally by the constants 6 2
,
c2 . From this point of view the extent of

the domain is a subject for investigation, and the proper assumption
to make is that it is only if the constants b 2

,
c2 satisfy some set of

conditions at first unknown that the domain of existence of the function

as a meromorphic function extends over the whole plane, except per-

haps at infinity.

In the case of the equation -601, we make no effort to continue the

solution analytically. The solution being identified with a known func-

tion f
j z, the expansion obtained by rearrangement from

•603 __i
;+ c +c1{p+(z-p)}+c1{p+(z-p)Y+...,

p+{z—p)

where the coefficients depend on fg , fh in precisely the same way as the

coefficients in -602 on 6, c, is the expansion of fj(p+ h) as a power series

in h, and any continuation of fj z from the centre p is equally a con-

tinuation from the series -603. Knowing that f
j
z can be continued to

any point that does not belong to its lattice of poles, we infer that

whatever conditions are necessary for the continuation of -603 must in

f This is the classical form of continuation. For a meromorphic function, continuation

by means of overlapping Laurent circles is more efficient, and no more difficult to justify

theoretically-
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fact be satisfied. In other words, if there are any conditions which b. c

must satisfy in order that a solution of the pair of equations fg = b,fh = c

should exist, these conditions certainly include conditions sufficient to

ensure that the domain covered by the continuation of the series -602 is the

whole plane with the exception of the points forming a single lattice. This

result helps us not at all in the determination of the domain of existence

of the continuation of -505 for arbitrary values of 6 and c.

There is however a method, altogether different from that of analytic

continuation, due in principle to Weierstrass and applied in detail by

Goursatf, for dealing with the inversion problem by extending the region

of existence of w(I) as a meromorphic solution of the differentia]

equation

•604 (dw/dl)
2 = {w

2-b 2
)(w

2-c2
).

We know that ifw(I) is an elliptic function, then w(I-\-J) is expressible

rationally in terms of w(I), w(J) and their derivatives, and in particular

w(2I) is expressible rationally in terms of w(I) and w'(I). A rational

function of two meromorphic functions is itself meromorphic. If then

we can calculate tv(I) as a meromorphic function of / throughout a

region \I\ < p, we can calculate w(2I) as a meromorphic function

throughout the same region, that is, we can extend the calculation of

w(I) to the larger region |/| < 2p, and it follows that there can be no

maximum to p. We propose therefore to use the following lemma:

7-61. // the function w(I) exists as a meromorphic function throughout

some circle round the origin, and if w{21) can be expressed rationally in

terms of w(I) and w'(I), then w(I) exists as a meromorphic function

throughout the whole plane, the point at infinity perhaps excepted.

If w(I) is the solution of -604 for which

•605 w(I)~l/I
near the origin, the first condition in -61 is satisfied, as we have proved
in -505. For the second condition, we are not at liberty simply to quote

an addition theorem for fjz or a formula for fj2z; whatever formulae

we need we must establish from the definition of w(I) in terms of the

differential equation. We can however say that because, from 4-44,

fJ2^(/ff

2
/!-fj

4
^)/2fjzfj'2 ,

it follows that ifw(I) is fj /, then w{21) must be {b
2c2-w\I)}l2tc{l)iv'(I) ;

f Cours d'Analyse Mathematique (1st ed., 1905) II, 505. The notation and the

details of the analysis are adapted to our own treatment. Goursat deals with the

Jacobian function snw.

4767 T
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the glance forwardf does its work in suggesting a formula for veri-

fication.

Suppressing the argument I throughout, we accept for examination

the function W defined by the formula

b 2c2—w*
•606 W

2ww I 9

where w satisfies the differential equation -604 and the initial condition

•605. Writing also

'ill
^ n^r^

•607 T = ^ = A; - (&
2+c2)+w2

we have

•608 T = -2\-A--w\iv' = -4WT.
\wd

J

On the other hand, since -606 can be written

2w'W b 2c2— —w2
,

w w2

we have from -607

±W2T = {T+{b
2+c2

)}
2-4b 2c2

,

that is, 4W2 = T+2(b 2+c2
) +^^, ]

whence

•609 4(W 2-b2
)T = (T-(6

2-c2
)}

2
, 4(W 2-c2

)T = {T+{b
2-c2

)}
2

and also, from -608,

that is,

•610 2WT = ~{T2-(b 2-c2
)

2
}.

From -609, -610,

W' 2 = 4(W 2-b 2
)(W

2-c2
),

so that if J = 21, then

•611 (dWldJ)
2 = (W2-b 2

)(W
2-c2

).

Also, near 7 = 0, from -605, W ~ 1/27, that is, near J = 0,

•612 W{J)~1/J.

f Historically, addition theorems were discovered in the form of relations between

integrals before the integrals were inverted.
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Hence W, as a function of J, satisfies precisely the conditions which

define w as a function of /. That is to say,

W(I) = w(2I),

and the second condition in -61 is satisfied as well as the first:

7-(>2. The solution of the equation

(dw/dl)
2 = (w°--b

2
)(w

2-c2
)

which resembles 1/1 near 7=0 exists as a meromorphic function through-

out the whole I plane, except perhaps at infinity.

It will not be disputed that the deduction from -61 is simpler than

the series of proofs in -3--5. On the other hand, while the earlier pro-

positions depend on general principles that can be expected to have

applications elsewhere, the later proof depends on the exact form of the

differential equation, on a formula that is peculiar to this equation and

not to be discovered without some trouble, and on a lemma of which the

range of usefulness is necessarily limited, since addition theorems are

rare.



VIII

THE SOLUTION OF THE PROBLEM OF INVERSION

8-1. The characterization of the function w(I) inverse to the integral

I(w) is now complete. By 7-52 the function is meromorphic except at

infinity, and by 6-76 it has two periods whose ratio, by 6«86, is not

real. By 7-22 the poles are simple, and by 6-55 and 6-76 there are only

two poles in a primitive parallelogram. Hence

8-11. The function w(I) is an elliptic function of the second order with

distinct simple poles.

Once known to be an elliptic function, w(I) is readily identified by
its structure. By 6-55 the poles form the lattice built on 2j8 and 2y,

and since 2a is a period, a is a step from a pole to a zero, and therefore,

the origin being a pole, a and —a are zeros.

8-12. If b 2 and c2 are unequal and neither of them is zero, and if

00

-J
dw

^{(w
2-b 2

)(w
2-c2

)}

where the radical resembles w2 towards infinity along the patli of integra-

tion, then r-v 7 o \w = f](i; a,£,y),

where a, /3, y are appropriate values of 1(0), 1(b), 1(c) connected by the

relation a+/3+y = 0.

In particular,

• 101-102 6 = fj(]8; -j8-y, j8, y), c = fj(y; -j3-y, ft y).

But this pair of formulae is a corollary of -12, not, as it might be if the

formulae were proved independently, the foundation of the theorem.

8-2. The restrictions imposed in 6-3 on the paths B, C from b, c to

oo, the paths by which
/3, y are defined, had the sole purpose of clearing

the ground for the subsequent discussion. It is easy to see that they
do not render the integrals /3, y determinate: without infringing the

restrictions, we can change the paths in such a way as to change the

integrals also. For example, without altering the path B we may
replace C by a path Cx such that C and Cx together form a simple loop

impeded by B. The integral along Cx ,
which then replaces y throughout

the discussion, has the value 2/3— y, which is necessarily different from



THE INVERSION PROBLEM: ITS SOLUTION III

y, but the resultant function fj(/;y— 3/?, /S, 2j3— y) is identical with

fj(/;_j8-y,/Jf y):

5

Fig. 28.

If B^, C* are any two paths from b, c to oo, the integrals along these

paths are values of 1(b), 1(c) and are given by

•201 £* = (2m1+l)]8+2»1 y, y* = 2m
8 j8+(2n2+l)y,

where m
l5
nt ,

m2 ,
n2 are whole numbers, not necessarily positive, and

mi+wi>
m2~^n2 are even - The function fj(7; a*, /?*, y*) is identical with

fj(/;a,/3, y) only if /?*, y+ is a primitive pair of quarterperiods of the

latter function, that is, only if

•202 (2m1+l)(2n2+l)— 4n1m2
= ±1.

It follows that some restrictions on the paths from b, c are essential

to the identification of w(I) with fj(/;a,/2, y). But the restrictions in

6-3 are of no intrinsic significance.

8-3. The definition of w(I) as a particular solution of the differential

equation
(dwjdlf = £(«)

is almost equivalent to definition as the inverse of I{w). Since the

Weierstrass-Goursat proof that the function is meromorphic avoids the

topographical problems inseparable from the study of the integral /(10),

it is of some interest to see how the double periodicity of the function

can be established from the differential equation alone.

Given a function /(z), if we can express /(z+oi) in terms of/(z), with

functions of oj playing a parametric part, we can easily see if any choice
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of co reduces /(z+oj) identically to f(z). The periodicity of a function

can therefore be verified immediately if an addition theorem is known.

As we verified in 7-6 that w(I) satisfies the duplication formula of

fjz, so we can verify that w(I) satisfies the addition formula

w(I)w'(J)-w{J)w'(I)
•301 w{I+J) —

Write temporarily W —

w2
{I)-w

2
(J)

kw—hw'

w2—h2

where h, k are constants and the argument / of the functions w, w'
,
W

is understood. Since

•302-303

w' 2 = (w
2-b 2

)(w
2— c2 ), w" = 2w*-(b

2+c2
)w,

we have

(w
2-h2

)

2W = (kw'-hw")(w
2-h2

)-2ww'(kw-Mv')

= -kw'(h
2+w2

)+hw{2(h
2w2+b 2c2)-{b

2+c2
)(h

2+w2
)},

on substitution and reduction. Hence simultaneous interchange of h

with w and of k with w' leaves W unaltered. It follows that if

•304 h = w(J), k = w'(J)

then

•305
mm
81 dJ'

whence, with h, k given by -304, W(I, J) is a function </»(/+ J) of I-\-J.

Since / can be connected continuously with the origin, and since W -> h

as / -> 0, the function </>(J) is w(J), that is, W(I, J) — w(I-\-J), and

•301 is proved.

Attention may be called to the part played by 7-62 in this argument. Without

7-62 we reach the point that the function on the right-hand side of •301 is some

function of I-\-J, but if I and J could belong to domains separated from the

neighbourhood of the origin, a condition derived from some point in one of these

domains would be necessary before this function of I-\-J could be identified.

It is for this reason that investigation of periodicity by means of the addition

theorem could not be included in Chapter VI, where it would seem appropriate.
It is a curious feature of the formal development of the theory from the

differential equation that the duplication formula, or some other weakened form

of the addition theorem, appears to be essential to the proof of the general
theorem.

Since w'(I) is an irrational function of w(I), the expression for

w(I-\-J) can not reduce to w(I) for all values of / unless the term

il'(J)w'(I) disappears, on account of the value of J, either absolutely
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or, as we shall see is possible, in comparison with w(I)w'(J). We have

to consider the two possibilities,

•306 (i) w(J) = when J = co,

•307 (ii) w{J)/w'(J) -> as J -> 8.

Firstly, if iv(co)
= 0, that is, if co is a value of 1(0), then from -3<)2

w'2
(w) = b2c* ^ 0,

and we have from -301,

•308 w{I+u>) = w'(a))lw(I).

Hence co is not a period, but writing -308 in the form

w(I)w(I-\-co) = w'(a>)

and replacing / by I -{-co we have, since iv(I-\-oo) is not identically zero,

w{I+2a)) = w{I).

8-31. // co is any value of 1(0), that is, is the integral of l/*JR(w) along

any path from to oo, the function w(I) is periodic in 2co but not in co.

Secondly, to the condition -307 we may add ic(&) =£ 0, since we do

not need to recapitulate the first case. But with this condition added,

•307 requires

•309 w'(J) -> oo,

implying, from the differential equation, iv(J) -> oo, and further

w*(J)

Hence from -301,

•311 w(I+8) = TMI)

according as

312 Um^ = ±l.

Now from the duplication formula, in the form

bW-wWJ)•313 w(J) =
2w(U)w'{uy

it follows that an infinity of w at S is associated with three possibilities

at |8 ;
we may have there (i) a zero of w, (ii) a zero of w', or (iii) an

infinity of w.
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Differentiating -313 logarithmically we have

2w'(J) 4wzw' _ri_vf_
w(J) b2c2—w^ w w'

and therefore, from -303,

w'(J) 4w*w' 2 w'2 2w*-(b 2+c2
)w

2

w%T)
= '

(b
2c2-w*) 2 b2c2—w* b 2c2—w*

~
'

the unwritten argument on the right of -314 and -315 being every-
where \J, and this formula gives us, in each of the three cases, the

value of the limit required for applying *312 to -311.

(i) If w(U) = 0, then w/ 2
(|S)

= b 2c2
,
and -315 gives

w'{J)

W2
(J)

as J -» 8
;
hence w(I-\-h) — w(I). This is -31, reached from the other

end.

(ii) If w'(|S) = 0, then from -302

2w*(±8)-(b
2+c2

)w
2
(±S) = -{b^-w^U)},

and from «315 } T{ -> 1,w2
(J)

whence w(I-{-h) = —
w(I); the condition w/(|S) = implies that w(^S)

is ±6 or ic:

8*32. // fS is any value of 1(b) or any value of 1(c), then w(I) is

'periodic in 23 but not in 8.

(iii) If w(\J) -> oo as J -> 8, then w' 2
(\J)jw*(\J) -> 1, and therefore

from *315, ,, T ^

w(J)
l

w2
(J)

implying w(I-\-&) = w(I). This however is only a deduction from -31

and -32 combined, since 8 is now of one of the forms 2nI(0), ±2n
/(6),

±2n
I(c), with n > 2.

The cumulative argument establishes that

8-33. Every period of the function w(I) is of one of the three forms

2/(0), ±4/(6), ±4/(c),

but does not indicate how a primitive pair of periods is to be found.

The proof of periodicity from the differential equation possesses the doubtful

merit of invoking the minimum of theoretical principles, neither the theory of

aggregates nor the topography of paths being used. But the comment made in 5-5

on 5-14 is again apt. When we construct pz as a doubly infinite series, we are

deliberately constructing a function that will be doubly periodic. When we have
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investigated the effect of varying the path of the elliptic integral, we understand

why the aggregate of values is a pair of douhly infinite congruences. But double

periodicity emerges from the addition theorem as an inexplicable accident, and

the addition theorem though easy to verify is hard to discover. And is not the

use of the duplication formula in the proof of -32 ingenious enough to be pleasing

but too ingenious to be satisfying ?

8-4. The introduction of an elliptic function with simple poles has

now been effected in two ways, radically different. If the sole purpose

is to have such a function to study, there can be no doubt that it is

simpler to construct the function by means of doubly infinite series

than to invert an integral. But, as we have seen, the construction and

the inversion do not really solve the same problem: one process is not

an alternative to the other. The direct process discovers a function

with assigned quarterperiods ;
in the inverse process the function is one

for which given parameters play in the end the part of the critical

values fg , fh . In the one case, fg , fh are implicitly determined from

a>
g ,

u)h ,
in the other case, cx)

g ,
coh are implicitly determined from fa,f/r

It is important to remark that in each case the primary object is

the function fjz itself; any evaluation of parameters associated with

the function is incidental. As we have said, the determination of co
u ,

a>h

from fg , fh is not unique. This is not because the function f
j z is not

unique: the relation
oo

r dw

J V^T)
=•401

determines w as one definite elliptic function, not as one or other of

a group of elliptic functions
;

it is because the lattice to which the

function fjz is attached can be constructed from any primitive pair

of its periods. The points at which f
j
z has the values fg , fh ,

or in other

words the solutions of the two equations

•402 fj(Q(/
;
-a>g—oih ,

co
g ,

coh )
= fg , fj(Qft ;

—wg
—aih,

<o
,
a>k )

= fn

in Q.
g ,

Q.h ,
are

•403 Qg
= (2m1-\-l)tog+(2m1-\-4ai1)a>h,

QA = {4m2+2n2)a>g+{2n2+l)toh.

This is therefore the solution of the pair of equations

•404 fj(Q„; -£lg-Qh,Qg,Qh)
= fg , fj(PA ;

-£ig-Qhiagt
Cih)

= fh

if the lattice built on Q
g ,
Qh is geometrically identical with the lattice

built on
ojg,

toh ,
that is, if

•405 (2m 1+l)(2n2+l)-(2m 1+4n1)(4m2
4-2»2 )

= ±1.
4767 XJ
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The significance of the sign in the last condition was investigated in

the first section of the introduction. Applying 0-14 as a criterion to

•403--405, we see that

8-41. The pairs of quarterperiods Q
g ,

£lh such that the function

fj(z;
— 0.

g
— Q.

/l ,Q.IJ
,Q.h )

is identical with the function fj(z;
— co

g
—ojh ,a>g ,ojh )

and that rotation from, Q.
g

to Qh is in the same direction as rotation from,

a)
g

to uih are given by

•41i Q
ff =(2m1+lK+(2m1+4%K,

Qh
= {4mi-\-2n2)(og-\'(2n2 -\-l)(oh ,

with the condition

•41
2 (2m1+l)(2w2+l)-(2m1+4w1)(4m2+2n2 )

=
1,

the pairs such that the functions are identical and that rotation from Qg

to Q.h is in the opposite direction to rotation from a>
g

to coh are given by

the same pair of formulae with the condition

•41 3 (2w1+l)(2n2+l)— (2w1+4w1)(4m2+2w2 )
= — 1.

It follows from the way in which the formulae have come into our

work, and it can be verified immediately by elementary algebra, that

the aggregate of pairs of numbers given by -41
x
with the condition -41

2

can be constructed from any one of its members by precisely the same

formulae subject to precisely the same condition. For this reason the

aggregate is called automorphic, and because there is no ambiguity of

sign in -41
2 the aggregate is said to be definite. The aggregate given

by the same formulae with the less restrictive condition -405 also is

automorphic : it too can be reconstructed from any one of its members
with the same formulae and the same condition. The aggregate formed

with the ambiguous sign is said to be extended from the definite

aggregate.

There are many types of automorphic aggregate, but since we are

dealing with only one problem we shall not attempt a general definition.

If the formulae -403 are understood, the aggregate can be said to be

conditioned by -41
2 or -405. Alternatively we can speak of the definite

aggregate and the extended aggregate generated by -403.

Every pair of complex numbers belongs to one and only one definite

automorphic aggregate with the generating relation -41
l5
and to one

and only one extended automorphic aggregate with the same generating
relation. Each aggregate, though it has an infinity of members, is

determined by any one of them.

If the ratio of uo
g
to <x>h is real, co

g
and coh are real multiples of one
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complex number oj, and every pair of numbers determined by formulae

such as -403 is a pair of real multiples of oj. Conversely therefore, it

there is one member of the aggregate for which the ratio of Q to il h

is not real, there are no members for which the ratio is real: either the

aggregate degenerates completely, or it has no degenerate members.

We are not concerned with degenerate automorphic aggregate-.

We must be on guard against supposing that because the condition

•405 is resolved into the exclusive alternatives -41,, -41.,, the extended

automorphic aggregate is the sum of two aggregates of different kinds,

a 'positive' aggregate conditioned by -41
2 and a 'negative' aggregate

conditioned by -41 3 . Geometrically, the mistake is clear enough: the

aggregate of pairs of quarterperiods for which rotation from io
g
to u)h

is in one direction is just the same kind of aggregate as that in which

rotation is in the reverse direction. Analytically, the fallacy lies in

overlooking that whereas -403 and -405, or -41
x
and -41

2 ,
define an

aggregate in relation to one of its members, describing as we may say
the internal structure of the aggregate, •41 1 and -41 3 define an aggregate

by a relation of its members to an external term: -41 3 is not satisfied

if mv nv m2 ,
n2 are all zero, and m

gi
toh do not constitute a member

of the alleged 'negative' aggregate. As they stand, -41j and -41 3 give

us no reason to suspect that the aggregate which they define is auto-

morphic. To determine the internal structure of this aggregate, we

must find the relation of the member Q
g ,

£lh to some member of the

aggregate itself. Since -41 3 is satisfied by m1
= 0, n

1
= 0, ra2

=
1,

n2
= —

1, the pair w
g ,

2tD
g
—u)h belongs to the aggregate conditioned

by -41 3 ,
and if we write

w
g
= uig ,

tah
= 2ix)

g
—ojh

the generating formulae become

Q.
g
= (6m1H-8w1+l)c5ff-(2m1+4»i1)a»A,

Qh
= (4m 2+6w2 +2)<7J f/-(2n2 -fl)c7J /( ,

that is,

Cl
g
= (2w1+l)diff+(2m1+4%)diAs

Qh
-- = {4m2+2ri2)(og-\-(2ni+l)uih}

where
mj = 3m 1+4w1 ,

nx
= —2m1-3n l ,

m2
= m2+2w2+l, n2

= —n2
— 1.

Reciprocally,

mx
= Zm^4»l3

nx
= —2m

x
— 3nv

m
2
= m2

4-2w2+l, n
2
= —n2

—
1,
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and therefore the condition that mx ,
nx ,
m2 ,

n2 are integers is equivalent

to the condition that Wj, nx ,
m

2 ,
n

2
are integers, and since identically

2m1+l = (2m1+l)+ 2(2m1+4n1 ),
2m1+4n1

= —(2m1+4n^ i

4m2+2n2
= (4m2+2w2 )+ 2(2n2+l), 2rc2+l = —

(2^2+l),

the 'negative' condition

(2m1+l)(2n2+l)-(2m 1+4%)(4m2+2w2 )
= -1

becomes the 'positive' condition

(2m1+l){2n2+l)— {2m1+4n1)(4m2+2n2 )
= 1.

That is to say, the internal structure of the aggregate determined by -4^
and -41 3 is expressed by a condition of the form -41

2 . The aggregate

determined by -4^ and «41 3 is a definite automorphic aggregate, definite

in the same sense as the aggregate for which the positive sign is chosen

from -405. The extended aggregate is composed of two mutually
exclusive definite aggregates.

The poles and zeros of fj z form in the z plane lattices which exist

independently of the notation by which the function is studied, but

the notation is governed to some extent by the uses to which it is to

be put. To take the simplest example, neither w
g
nor ouh can be used

as a symbol for a zero of fj z. If w
g
and wh are to be replaced by another

pair of quarterperiods without the meanings offg and/7l being changed,
•403 and -405 give the conditions to be observed.

8*42. // the function fjz is given, the pairs of quarterperiods co
g ,

coh

with which it can be associated form an extended automorphic aggregate.

The fundamental existence theorem of the inversion problem can

now be put succinctly:

8-43. // b2 and c2 are unequal and neither of them is zero, the pair of

equations

"43i-2 fJK,; —cog—toh,
co
g ,

toh)
= b, fj(o>& ;

— CO
g
— OJh ,

Oi
gi

coh )
= c

is soluble, and the solutions compose a single extended automorphic

aggregate.

In -42 and -43 we recover in the automorphic aggregate the unique-
ness which one pair of quarterperiods can not display. Of course it is

always possible to secure verbal uniqueness in the solution of any

problem by speaking of the aggregate of solutions rather than of an

individual solution, and we need not even assume that the problem is

soluble if we remember that logically an aggregate may have no mem-

bers, but there is much more in -42 and -43 than a verbal trick: the
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aggregate has been shown not to be nul, and its structure has been

discovered.

The significance in the analytical theory of the geometrical inter-

pretation of the distinction between the two conditions -41
2 ,

-41 3 was
seen on p. 59:

8-44. If the function fjz is given, the pairs of quarterperiods a>
,

coh

for which the signature of (—cog—co fl ,a)g,a)h ) is -\-i compose a definite

automorphic aggregate, and the pairs for which the signature is —i com-

pose the complementary definite aggregate.

That is to say, for every member of the first aggregate,
•406 fg = iQf, 9h = *V h = tfh>

and for every member of the second,

•407
fa
= -V/. 9h = -iK h = -*/*

The two definite aggregates of -44 together form the extended aggregate
of -42.

We have broken the aggregate defined by -403 and -405 into two

halves by taking a definite sign in -405. There is another line along
which we can divide this aggregate. Let us require the function denoted

by gjz as well as the function denoted by fjz to be unaltered. Since

gf and fg are to have the same value in every specification, their ratio

is always the same, and is either i for all pairs of quarterperiods or — i

for all pairs of quarterperiods. Hence the aggregate is necessarily

definite. Also fh , gh ,
and the ratios h

fffh , hg/gh ,
have the same values

for all pairs of quarterperiods. Hence h
f ,

h
g
are unaltered, and the

third function hj z is unaltered|.

8*45. // two of the three functions fj z, gj z, hj z are given, the third

function is determinate, and the pairs of quarterperiods ou
g ,

a>k with which

the set of functions can be associated compose a definite automorphic

aggregate.

The values of Q.
g
which satisfy the equation

hj(^tf
;

— <^
ff

—^> "V «>h)
= K

are given by Q
g
= (4m+l)a)g -\-2ntoh ,

and therefore in -403 the number mx is even if hj z is unaltered; because

gj z also is unaltered, n2 is even, and

8-46. The aggregate of pairs of quarterperiods a>
g ,

a)h such that the three

functions f](z;Q.), gj(z;Q), hj(z;£2) are identical with the three functions

t More simply, if we introduce derivatives, hj z = —
fj'z/gj z.
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fj(z;co), g](z;co), hj(z;a;) is the definite automorphic aggregate generated

by the pair of relations

Q
g
= (4m'+l)Jg+±n'a>h ,

£lh
= 4m'to

g+(4n'+l)wh

with the condition

(4m'+ l)(47i"+l)— 167i'm" = 1.

8-5. To modify -43 to concern one complex variable, not a pair of

variables, we may write

•501-503
w
° = t,

fJK;-^-^^^) = <^ (T)i
b = k

°>h *l(<*>h>
—
<»g— <*>h> °>g> <*>h)

C

The pair of equations •43 1
_
2

is then replaced by the one equation

•504 ^(T )
= k,

and the pair of formulae -403 by a single formula

•505 T = (
2mi+ 1

)
T+(2mi+ 4ni)

'

(4m2+2w2)r+(2w2+l)'

By an automorphic aggregate we now mean an aggregate of values of

one complex number. Examples of automorphic aggregates in one

variable are the aggregates generated by -505 with coefficients subject

to one or other of the conditions -41 2 , -405, the aggregate being definite

in the one case, extended in the other. If the aggregate is definite, it

follows from -41 that its members lie all on one side of the real axis.

The generating relation and condition being given, every complex
number belongs to one and only one definite automorphic aggregate,

and to one and only one extended automorphic aggregate; an unde-

generate automorphic aggregate has no real members.

Translated into terms of one variable, -45 becomes

8-51. // k
2 is finite and neither nor 1, the equation (f>(r)

= k is soluble

and the solutions compose an undegenerate extended automorphic aggregate.

In other words,

8*52. // k2 is finite and neither nor 1, the equation <f>{r)
= k is an

automorphic equation with one and only one solution.

It is to be remembered that the function </>(t) is a defined function of

t, involving no parameters whatever.

If the inversion problem is attacked as the problem of satisfying the

conditions ffJ

= b, fh = c, the fundamental theorem to establish is -52.

The function
</>(t) has the property, easily verifiable, that its value is

unaltered by the substitution -505 if the coefficients are subject to the
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condition -405; for this reason the function itself is called automorphic.
That the equation <£(t)

= k is automorphic is almost trivial; the diffi-

culty lies in proving that it has a solution.

From a slightly different point of view, the theorem -52 asserts thai

if the variable r is subject to no restrictions except that it is not to

be purely real, there are no finite values except 0, 1, and -1 which

the function <£(t) does not assume. Essentially this is a theorem on the

correspondence established between the two complex variables t, k by
the relation </>(r)

= k. It is a theorem of exactly the same kind as the

theorem we have proved in Chapter VII regarding the correspondence
established between w and / by the relation

oo

J
w

dw

\'R(w)



IX

FUNCTIONS AND INTEGRALS WITH REAL
CRITICAL VALUES

9- 1 . If 6 2 and c2 are real, consideration of the possible reality of quarter-

periods falls into three cases.

(i) If 62 > c2 > 0, with b > 0, the integral

00

J
du

V((w
2-62

)(w
2-c2

)}

is real, and the integral
00

idv

! V{(v
2+6 2

)(^
2+c 2

)}
o

is imaginaryf ; thus, in the notation of 6-4 and 6-5, /3 has a real value

and a an imaginary value.

(ii) If b% > > c2
,
with c = iq, b > 0, q > 0, the integral

00

{
du

is real, and the integral
oo

i dv

l V{(v
2+6 2

)(^
2-g2

)}
a

is imaginary; /3
has a real value and y an imaginary value.

(hi) If > 62 > c2
,
with b = ip, c = iq, q > p > 0, the integral

oo

I

du

yl{(u*+p*)(u*+q*)}

is real, and the integral
oo

i dv

l Vft^-F
2

)^
2-?2

)}
a

is imaginary; a has a real value and y an imaginary value.

t Throughout this chapter, and again in Chapter XVII below, it is important to

remember that 'imaginary' is not synonymous with 'complex' ; an imaginary number is

a complex number whose real part is zero, and to call such a number purely imaginary is

redundant if emphatic. A complex number can be called pure if it is either real or

imaginary.
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Thus in all cases the system includes one real quarterperiod and, as

might have been inferred from 6-84 and 6-85, one that is imaginary.
The three cases are not as distinct as they have been allowed bo

seem. If /*, f\ have the real values C, — B, then
gj, h'j

have the real

values — C, B, and since

•loi fl+gl+M = o,

g\, hi have the real values A, —A, where

•102 A+B+C=0;
that is, g\, gj have the real values A, -C, and

hj, hi have the real

values B, —A. Of the three real numbers A, B, C subject to -102, the

one which is algebraically greatest is necessarily positive, and the one

which is algebraically least is necessarily negative. If then A > B >C,
the pah- of numbers A, — C belongs to case (i); if further B > 0, the

pair of numbers B, —A belongs to case (ii) and the pair of numbers

C, —B to case (hi), while if B < 0, the pair of numbers C, —B belongs
to case (ii) and the pair of numbers B, —A to case (hi). That is to

say, the three cases must occur together, one of the three primitive
functions fj z, gj z, hj z satisfying the conditions associated with each

case, and it is the simultaneous occurrence of the three cases in the triplet

of inseparable functions with which we are really dealing. If the triplet

possesses this property, then the system has a real and an imaginary

quarterperiod.

That the converse is true follows immediately from the definition of

pz. If co
f
has a real value to and co

(l
an imaginary value ico',

•103 p{x+iy)

1 <*-" f 1 1 \

(x+iy)'
1 ' Z, \{(x+2mco)+i(y+2naj')}

2
{2ma)+ 2inu}')

2
}'

If y = 0, the first term and the terms for which n = are real, and the

terms for which w^0 can be added in conjugate pairs; if x = 0, the

first term and the terms for which m = are real, and the terms for

which m =£ can be added in conjugate pairs:

9*11. If pz has one real and one imaginary period, then pz is real if

z is either real or imaginary.

In particular, pa>f
and pojff

,
that is, e

f
and e

g ,
are real, and since

e
f -\-eg -\-eh

= 0, eh is real, and so also are the differences which are the

squares of the critical values of the primitive functions. Hence
4767 x
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9-12. A system in which the squares of the critical values of the primitive

functions are all real is a system which has one real quarterperiod and one

imaginary quarterperiod.

9-2. In our direct investigation into the inversion of the integral I(w),

we have identified the particular integrals a, j3, y with the quarter-

periods cop co
g ,

coh and the function w(I) with fj/. To allocate the

integrals differently is to permute the symbols a, j8, y, but to permute
the symbols co

f ,
co
g ,

a>h would be to deny the notation of which these

symbols form part. To put the matter differently, the six functions

fj(z; a,/3,y), gj(z;y,cx,p), hj(z;/3,y, a),

f}(z;a,y,p), gj(z;£ a,y), hj(z;y,/3,a)

are identically the same function of z, but such a collection of sj^mbols

as g](z;coh ,cof,cog )
is literally a contradiction in terms.

If then we are to translate the results of -1 into results concerning

a set of functions in which co
f
is real and co

g imaginary, it is the func-

tional symbol which is different in the different cases, corresponding

in each case to the part played by «: in (i), a is imaginary and coincides

with co
;
in (ii), a is complex and coincides with coh ;

in (iii), a is real

and coincides with co
f

.

9-21. // co
f
is real and co

g imaginary, thenfg and fh are both imaginary,

gf
and gh are both real, h

f
is real and h

g
is imaginary.

We can render these results almost self-evident by locating more

completely the real values of pz. We suppose as above that co
f
has

a real value co and that co
g
has an imaginary value ico'; we do not

assume that the real numbers co, co' are positive, for we have presently

to make comparisons in which this restriction would have to be re-

moved.

One period parallelogram for the function pz is now a rectangle of

which one side extends along the real axis from to 2co and one along

the imaginary axis from to 2ico'. By the midlines of the rectangle

we mean the lines x — co and y = co'
,
which cross at right angles at

the midpoint co-\-ico', which is — coh .

Since e
f ,

e
g ,

eh are real, two formulae typified by 0-79, namely

•201 {pz-ef}{p(z+cof)-ef}
=

(eg
-e

f )(eh
-e

f ),

•202 {pz-eg}{p(z+cog)-eg} = (ef
-e

g)(eh-eg ),

imply that if pz is real, so also are p(z-\-co) and p{z
J
\-ico'). Hence

9-22. // pz has two pure periods, then pz is real along the midlines

of a period rectangle.
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It is convenient to denote the four points 0, cu, ia>', aj-fia>' now by

J, F, G, H, and to call the rectangle of which these points are the

vertices the fundamental rectangle. The function pz is real at everj

point of the perimeter of the fundamental rectangle, and if z describes

this perimeter continuously in the direction JGIIFJ, the value of pz
varies continuously from — oo to +00, being dominated by -l/?/

2 on

the imaginary axis near the origin and by 1/x
2 on the real axis near

the origin; hence pz assumes every real value at least once on the peri-

meter. If zx ,
z2 are two incongruent points where pz has the same

value, z1 -\-z2 = 0, and therefore \{z1 -\-z2 )
is congruent with or with

a halfperiod of pz; but if zv z2 are two points on the perimeter of the

fundamental rectangle, \{zx -\-z2 ) is either inside the rectangle or on

the perimeter and can not be zero or a halfperiod unless zv z
2
coincide

at a corner—in any case \{zx -\-z2 ) is not zero or a halfperiod if z1 ,
z2

are distinct, and pz does not assume any value more than once on the

perimeter. Hence

9-23. As z describes the perimeter JGHFJ of the fundamental rectangle,

pz increases steadily through all real values from —00 to +°o.

Incidentally we have established the inequalities

•203 e
fJ
< eh < e,,

which taken with e
f -\-e -\-eh

= imply that e
/
is positive and e

g nega-

tive, and therefore that in the case under consideration pz is positive for

all real values of z and negative for all imaginary values of z.

Since pz = pzx implies z = ±z l5
we can complete -22 from -23 :

9-24. // pz has the pure periods 2cu, 2ico', then p(x-\-iy) is real if x is

a multiple of at or y of co'', but not otherwise.

To subtract e
f ,

e
g ,

or eh from pz does not affect the monotonic pro-

perty expressed in -23 but brings the zero to a known point. Hence

9-25. On the perimeter of the fundamental rectangle, the squares of the

functions f
j z, gj z, hj z are everywhere real; fj z is real along FJ and

imaginary along FHGJ; gj z is real along GHFJ and imaginary along

GJ; hj z is real along HFJ and imaginary along HGJ .

On the perimeter, each function has only one zero and only one

infinity, and these are the points which divide the real stretch from

the imaginary stretch. Hence there is no change of sign along a real

stretch or along an imaginary stretch, and the signs which the function

has near the origin persist along the two stretches. Near the origin each

function is dominated by the term l/z, which is positive for positive
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real values of z and negatively imaginary for positively imaginary
values of z. The sign of x along JF is the sign of to, and the sign of

y along JG is the sign of to'.

9-26. The real values of f
j z, gj z, hj z along the perimeter of the funda-

mental rectangle have the sign of to, the imaginary values are negatively

or positively imaginary according as to' is positive or negative.

The results of -25 and «26 can be extended immediately to the whole

set of elementary functions. To the function pqz, where p, q are two

of the four letters j, f, g, h, there correspond two points P, Q which

are two of the four points J, F, G, H.

9-27. The function pqz is real with a definite sign along one of the

stretches into which the points P, Q divide the perimeter of the fundamental

rectangle, imaginary with a definite sign along the other of these two

stretches; the function is purely real or imaginary if x is a multiple of to

or y of to', but not otherwise.

Near the point Q the function resembles \j{z—zQ ) or — l/(z— zQ ),

and of the two sides of the rectangle which meet at Q, one is parallel

to the real axis and the other is parallel to the imaginary axis. The

real stretch for the function pqz is the stretch PQ which includes the

former of these sides, the imaginary stretch the stretch PQ which

includes the latter. If Q is J, F, or G, the pole is necessarily positive,

but H is — toh and is a positive pole of ]\\z and a negative pole of fhz

and ghz. Hence the two functions fhz, ghz are real and have the

opposite sign to x—xH at points near H on the line y = yH ;
on the

line x = xH these functions are positively imaginary for small positive

values of y—yH and negatively imaginary for small negative values of

y—yH . In each of the other ten cases, the function has the same sign

as x—Xq near Q on the line y = yQ and the opposite sign to i{y—yQ )

near Q on the line x = xQ . So far the determinations are independent
of the signs of to and to', but the signs of x—xQ and y—yQ on the

perimeter depend on the signs of to and to' as well as on the position

of Q. Results are most easily read from a diagram.

9-3. Combining -25 and -26 to determine the nature of the six critical

values, remembering that the values of fj z and gj z at H are —fh and
—

gh ,
we see that if to and to' are positive, fg is negatively imaginary,

fh is positively imaginary, gf
is real and positive, gh is real and negative,

h
f
is real and positive, and h

g
is negatively imaginary. Thus gf/fg ,

h
gjgh ,

ftJhf
are all positively imaginary, and since the square of each of these
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fractions is — 1, the fractions have the common value i. If the sign

of co is changed, the three critical values that are real change sign

together, and if the sign of to' is changed, each of the imaginary critical

values is replaced by its negative. That is, in agreement with 1-66,

9-31. According as to'/to is positive or negative,

•3l! gflf„
= hjgh

= fjhf
= i

or

• 3 1
2 (Jflf

= h
gJgh

= fhfhf = —i.

The relation between the three real constants gf , gh ,
h
f

is

9-32 gl+hj
=

gj.

To put the results of -31, -32 differently, let b, c, d he the positive

square roots of the positive real numbers e
f
—e

g ,
eh—eg ,

e
f
—eh ;

then

•301 6 2 = c2+d2
,

identically, the three real critical values are given by

•302-304 gf
= ±b, gh = Tc, h

f
= ±d,

the upper or the lower signs being taken according as a> is positive

or negative, and the three imaginary critical values are given by

•305-307 fg = Tib, \ = Tic, fh
= ±id,

the upper or the lower signs being taken according as to' is positive

or negative.

It will be noticed that -302—307 restrict the values possible simultaneously to

the critical values. Naturally gj z and hj z must have the same sign at F, if they
are real along JF, for they have the same approximate form near J and no

change of sign takes place. They are distinct functions, and there is nothing in

our previous work with which this result seems to clash. But gf and gh are the

critical values of the same function gj z, and the qualitative restriction, that these

values must have different signs, needs explanation. It is quite possible to define

a function with real critical values that are both positive; in fact it is quite

possible to arrange for b and c to be the critical values of the very function gj z

with which we are dealing. And there is no fallacy in the proof that the function

has both a real and an imaginary quarterperiod. But what is implied by -302—303

is that a choice of a real period and an imaginary period to constitute a primitive

pair for the function is incompatible with a choice of critical values with the

same sign: the point
— cog is the corner opposite to the origin in the parallelo-

gram oij, coh , and therefore if cog is on the imaginary axis, co
f
and coh are on lines

equidistant from that axis and the values of gj z on these lines have opposite

signs. Without changing the function gj z or the quarterperiod o» we can take

o}h
= oi-\-io)' and secure gf

= b, gh = c, but now wg
= —2co — ioj' and neither ojq

nor co/, is purely imaginary.
If we refer to the conditions imposed in 6-3 and 6-5 on paths from which the

integrals a, j8, y are made definite, we see that the first of these paths and its
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reflection in the origin divide the plane into two distinct parts, and that the

paths to oo from b, c lie wholly in the same division. If 6, c are real, with b2 > c2 ,

we can satisfy these conditions whether or not b and c have the same sign, but

the proof that a, can be real depends on using one half or the other of the imaginary
axis itself as the path of integration from

A / to oo, and this particular choice is impos-
/ ^-n

(
sible if the signs of b and c are different.

_ h»
,'

• •' •
J
• That is to say, if the signs of b and c are

/ different, the transformation in -l(i) is
I

,'f.i impossible and we have no reason to

expect a primitive pair of quarterperiods

of the form co, ico'; what we have now
learned is that in this case such a pair can not in fact exist.

We can write down both to and a/ in terms of b, c, d from any one

of the functions fj z, gj z, hj z. The immediate theorems are

9- 33^3. Expressions for icu as integrals are

CO CO 00

C du f du f du
.

J V{(^
2+62

)(^
2
+^)}' J V{(^

2-6 2)(^-c2
)}' J V((^

2+ c2 )(w2
-d2

)}'
b d

9-334_ 6 . Expressions for ±a>' as integrals are

00 00 CO

r dv r dv r dv

J ^{v2_f)
2
){v

2__d2
)y J ^ (t,2+ 62

)(f;
S+ c2)}' J ^/{(t;»-C»)(w»+ d")}'

b c

The implied equalities between integrals are made obvious by a pre-

liminary substitution u2 = U, v2 = V.

Since the integrals

ib b d

r dw C dw P dw

J J{(w
2+b 2

)(w
2+d2

)Y J J{(w
2-b 2

)(w
2-c2

)Y J <J{(w
2+c2

)(w
2-d2

)}
ic

are combinations of an integral in -33^3 with an integral in -334_6 ,
each

of them has a value zh^zb*^' f°r an appropriate path in the complex

plane. It follows from the investigation in Chapter VI that a path which

does not surround any of the branchpoints is appropriate in this sense,

and therefore that we may take the first path along the imaginary

axis, the second path along the real axis, and the third path to the

origin along one axis and away from the origin along the other axis.

The first two paths pass through branchpoints, and although the sub-

stitution has the same form along the whole path, the radical is real

on one side of the branchpoint and imaginary on the other side; on
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the third path the substitution changes form at the origin. Thus we
have ±u)±iuj' expressed in the three forms

d b

dv f dv

J s/{(b
2
-v*)(d*-v*)}

+
Jy/{(b

2-v2
)(d*-v

2
)}

'

J V{(6
2-«2

)(v
2-^2

)}

!

d

c b

f du . r «fa*

c

c d

and to -^S^q we can add

9-33
7_9 . Expressions for iw as integrals are

b C C

f du r du C du

J V((6
2-w2

)(w
2-d2

)}' J V((6
2-^2

)(c
2-w2

)}' J V{(c
2-^2

T()(rf
2+^2

)}'

9-3310_ 12 . Expressions for ^w' as integrals are

d

r a^ r rfv r dv

J V{(6
2-v2

)(^
2-«;2

)}' J V{(6
2-v2

)(«;
2-c2

)}' J V{(c
2
+*>

2
)(d

2-"2
)y

c

The formulae -338 ,
-339 for co come from -33

2 ,
-333 by the substitutions

of bc/u, cdju for u, and the formulae -3310 ,
-3312 for co' from -334 ,

-336

by the substitutions of bd/v, cd/v for v.

Interchange of c with d interchanges the sets of formulae for co with

the sets for co'. This was to be anticipated, for if pqz is a function

with quarterperiods co, ia>'
,
then -pqiz is a function with quarterperiods

ico, co'. To put co'
,

ico into the parts of co
f ,

co
g
involves minor adjust-

ments equivalent to a change of sign of one quarterperiod, but sub-

stantially the change is from a system in which the critical values

9/> ~9n-> h/ are °, c, d to one in which these values are b, d, c.

Detailed descriptions of the behaviour of the twelve elementary func-

tions are better incorporated in diagrams than tabulated or formulated,

and a set of diagrams for positive values of co and co' constitutes

Figure 30. Lines along which the function is real are continuous, lines

along which it is imaginary, broken. Zeros and infinities are indicated,

and critical values are inserted, with the notation of -302--307: 6, c, d

are positive real numbers definable as gf , —gh , h,.
Barbs show the

direction of algebraic increase, and therefore the values along a stretch
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between a zero and an infinity are positive or positively imaginary if

the barbs point from towards oo, negative or negatively imaginary
if the barbs point from oo towards 0.

The diagrams are extended to cover a complete period parallelogram

of each function. All that is necessary for this extension is to remember

that a direction of increase is unchanged at a zero or an infinity, since

the zeros and infinities are all simple, but is reversed at a critical point

which is neither one nor the other. For the functions f
j z and gj z we

naturally choose as period parallelograms the rectangles 2co, 4ia/ and

4a>, 2ia>'; for hjz no rectangle is available, but by choosing 4a>,

— 2a> Jr 2ia>' as the primitive pair of periods we secure that the funda-

mental rectangle JFHG is included in the period parallelogram.

9-4. We can express -27 as a property of the transformation w = pqz
rather than of the function pqz:

9*41. In the transformation w = pqz, there is a point to point corre-

spondence between the perimeter of the fundamental rectangle in the z

plane and the pair of half-lines bounding a definite quadrant of the w
plane.

This theorem prompts us to ask, before turning to the classification of

real integrals, if the transformation associates points inside the rect-

angle with points belonging to the quadrant.

The lines x = ma>, y = nco' dissect the z plane into rectangles each

of which is congruent geometrically with the fundamental rectangle;

we will call these rectangles cells. Each of the period parallelograms

2oj, 4ia>' and 4co, 2io/ is dissected into eight cells. The period parallelo-

gram 4a>,
—

2u)-\-2iw' of hj z is dissected into six cells and four triangles,

and the triangles have to be associated in pairs to form regions equi-

valent to two more cells. For our immediate purpose we can however

avoid even verbal conventions by recalling the distinction between a

period parallelogram and a parallelogram which is a primitive region.

The rectangle 4a>, 2ia/ is not a period parallelogram for hj z, for 2ito'

is not a period of the function. But the triangle (0, 2ico',
— 2co Jr 2ico') is

congruent with the triangle (4oj, 4a>-\-2ico', 2<x)-\-2icu'), and therefore the

rectangle 4o>, 2ia>', like the period parallelogram 4a>,
— 2oj+ 2*'a>', isf

a primitive region for hj z: of any set of points z-\-mAco-\-n(
— 2tu+ 2ia/)

congruent for the function, this rectangle contains one and only one.

f The reader is invited to consider why both the rectangles 2w, 4ia/ and 4<o, 2ia>',

which are period parallelograms for fj z and gj z, are primitive regions for hj z, whereas
the first is not a primitive region for gj z or the second a primitive region for fj z.
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Thus we can say that each of the twelve elementary elliptic functions

has a primitive region consisting of precisely eight cell-.

-2(o+Zuo' lid)'

Fig. 31.

We can repeat for the interior of a cell the argument used in -2

regarding the perimeter of the fundamental rectangle. If z
l5

z
2 are

inside the same cell, then |(z1+z2 )
is inside that cell and is of the form

(h-]-^)oj-\-(k-\-rj)iu)', where h, k are integers and £, rj
real numbers

between and 1. Hence z
x -\-z2 is of the form 2(h

J
\-^)u)-\-2(k-\-r))ico'

and is not of the form 2ma>-\-2nico' with integral values of m, n,

and therefore the values of pqz1 , pqz2 are n°t equal:

9-42. Two points at which pqz has the same value can not be inside

the same cell.

Again, from -27, no points inside any cell give either real or imaginary
values to pqz; it follows that if zv z

2
are inside the same cell, the arc

in the w plane corresponding to an arc z± z2 which lies wholly in the

cell is an arc which joins w1 to w2 without crossing either the real axis

or the imaginary axis, even at infinity:

9-43. // zv z
2 are in the same cell of the z plane, then wv w2 are in the

same quadrant of the w plane.

Now let wv w2 ,
wz ,

wx be points one in each quadrant of the w plane,

and, for r = 1, 2, 3, 4, let z'r ,
z"r be the two points in a primitive region

of pqz which satisfy the equation pqz = wT . Of the eight points so

defined, -42 implies that two for which r is the same are not in the

same cell, and -43 implies that two for which r is different are not in

the same cell. Hence the eight points are in eight different cells, and

since the primitive region consists of eight cells, there is one and only

one of the eight points in each cell.

4767 v
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Since wv w2 ,
w3 ,

w4 ,
inside their several quadrants, are independent,

it follows that

9*44. Each quadrant of the w plane is associated by the function pqz
with a pair of cells in a primitive region of the z plane.

As a corollary,

9-45. If z2 is inside the same cell as zv the second point in any primitive

region at which pqz has the value pqz2 *s inside the same cell as the second

point at which pqz has the value pqzr

In other words, the function pqz couples the eight cells composing a

primitive region in four pairs. Different functions with a common

primitive region may couple the cells differently.

We can now absorb -41 into a much more complete theorem:

9*46. If one quarterperiod is real and one imaginary, the transformation

w = -pqz establishes a point-to-point correspondence between a rectangle

and its perimeter in the z plane and a quadrant and its boundary in the

w plane.

On the perimeter of a rectangle there are four exceptional points, the

four corners. On the boundary of a quadrant there are only two excep-

tional points, the origin and the point at infinity. Since the angles are

all right angles, the transformation remains conformal at the two

corners cop ,
to
q

in. the z plane since these correspond to and oo in the

w plane, but there must still be two points where the correspondence,

though definite, is not conformal. In the z plane, these are two corners

of the rectangle; in the w plane, they are points on the boundary, with

no geometrical peculiarity.

9-47. The transformation of a rectangle into a quadrant by means of

the functional relation w = pqz is conformal except at the points tor ,
to

t

which are zeros of pq'z in the z plane and the corresponding points pqa>r ,

pqa>f in the w plane.

We anticipate three types of function: if the singularities in the w

plane are both on the real radius of the quadrant, the function is

coperiodic with gj z, if one is on the real radius and one on the imaginary

radius, the function is coperiodic with hjz, and if both are on the

imaginary radius, the function is coperiodic with f
j z. This is the classi-

fication of -1, from another point of view.

9-5. In discussing the evaluation of real integrals we suppose that

to and to', determined from given positive constants b, c, d such that
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b2 = c2-\-d
2
by any of the equivalent formulae in -33, are chosen to be

positive, and that elliptic functions are constructed with to for the first

quarterperiod and ia>' for the second. The radicals in the integrals are

all taken to be positive.

If x is the value of the real integral

/
dt

y/{(t
2-b 2

)(t
2-c2

)y
t

then t = gj x. Even with the restriction to real values the functional

equation alone does not determine x when t is given, but since the

integral is to be real we are supposing t ^ b. As t decreases from oo to

b, the value of the integral increases steadily from to w; that is,

^ x ^ co, and in this range the function gj x is monotonic and can

not assume any value for more than one value of x.

The differential equation

(dw/dz)
2 = (w

2— b2
)(w

2— c2
)

satisfied by gj z is satisfied by the coperiodic functions hf z, jg z, fh z

also, and we see from Figure 30 that as x increases from to to, hf a;

decreases from — 6 to — oo, ]gx increases from to c, and fha; decreases

from c to 0.

9-51. The equations

gj^i = tv hix2
= —t2

with the condition ^ x ^ to determine xv x2 as singlevalued real func-

tions of t1}
t
2 for the range b ^ t, and xv x2 so determined are the values

of the integrals
oo t,

f
dt

[
dt

J j{{t
2-b2

){t
2-c2

)y J yi{(t
2-b2

)(t
2-c2

jy
tf,

b

9-52. The equations

ihxz
= tz , jg^4 =*4

with the condition < x < to determine x3 ,
xA as singlevalued real func-

tions of t3 , t± for the range < t < c, and xz ,
z4 so determined are the

values of the integrals

c i<

r dt C dt

J J{(b
2-t2

)(c
2-t2

)Y J J{{b
2-t2

){c
2-t2

)}-

U o

There are four elementary functions associated with the equation

(dwjdz)
2 = (w

2
+<-

2
)(w

2-d 2
);
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h]x decreases from oo to d and gfa; decreases from —d to — oo, as x

increases from to cu. Since igx and ]hx are imaginary in this range,
— iigx and —ijhx are real; in real terms, these functions, of which the

first decreases from c to and the second increases from to c, satisfy

the equation
(dt/dx)

2 =
(c

2-t2
)(d

2
-\-t

2
).

9-53. The equations

hj*5
=

h? gf*e = ~h
with the condition ^ x < a> determine xb ,

x6 as singlevalued real func-

tions of t5 ,
te for the range d ^ t, and x5 ,

x6 so determined are the values

of the integrals

oo t,

r dt r dt

J 4(t
2+c2

)(t
2-d2

)}' J j{(t
2+c2

){t
2-d2

)y
U d

9-54. The equations

fgx7
= it7 , jha;8

—
it8

with the condition ^ x ^ a> determine x7 ,
x8 as singlevalued real func-

tions of t7 ,
t8 for the range ^ t ^ c, and x7 ,

x8 so determined are the

values of the integrals

f dt r dt

J #^p+^j}' J J{(c
2-t2

)(d
2+t2

)}'
U o

There remain the functions for which the differential equation is

(dw[dz)
2 = (w

2
-\-b

2
)(w

2
-\-d

2
).

As x increases from to a;, fjx decreases from oo to 0, and ]fx decreases

from to —oo. Since hg£ and gh# are imaginary,
—ihgx and —ighx

are real; the first decreases from 6 to d, the second decreases from — d

to — b, and they both satisfy the equation

(dt/dx)
2 =

(b
2-t2

)(t
2-d2

).

9-55. The equations

with the condition ^ x ^ co determine x9 ,
x10 as singlevalued real func-

tions of t9 ,
t10 for the range ^ t, and x9 ,

x10 so determined are the values

of the integrals

CO <10

f dt r dt

J V{^+ 62 )(^
2+^2

)}' J J{(t
2+b 2

)(t
2+d2

)}'
U o
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9-56. The equations

hga;u = itn , ghar12 = — it12

with the condition ^ x ^ o» determine xn ,
x12 as singlevalued real func-

tions of tn ,
t12 for the range d ^ t < b, and xlv x12 so determined are the

values of the integrals

r dt r dt

J j{(b*-*)(i*-ffi)y J V{(&
2-W-<*2

)}"
*11 d

In real terms, the undegenerate integral

dt

i J{±(t*-P)(tz-Q)}'

in which we may suppose t positive, takes one of six essentially distinct

forms. If P, Q have positive values^?
2

, q
2

,
with < q < _p, the character

of the integral is different in the three ranges (0, q), (q,p), (p,<x>); if P
is negative and Q has the positive value q

2
,
the ranges (0,q), (q, oo)

need separate consideration
; only if P and Q are both negative is there

no subdivision. For each of the six forms there are two standard

integrals, for the fixed limit of integration may be taken at either end

of the range to which t is confined. Thus a set of twelve functions,

closely allied analytically, but differing in detail in the real domain,
is naturally associated with this problem of integration.

The sum of the two integrals associated with the same range of values

of t, if the variable limits coincide, is on the one hand the integral over

the whole range of values of t, and on the other hand the difference

between the smallest and the largest values of x, which in every case

is ou. In this way each of the six pairs of formulae -51--56 is bound

up with one of the formulae '33^ 7_9 .

It is particularly to be emphasized that the formulae of this section

are read, without suppressed algebra, from the diagrams composing

Figure 30. An alternative set of formulae is based on the consideration

of values along the imaginary axis. On this axis the functions, written

as functions of iy, are functions of the real variable y. The formulae

are derivable from those already given by the interchange of a>, c, f

with a/, d, g and the substitution of iy, ±it for x, t in the functional

equations. For example, the value yx of the integral

dt

J{(t
2-b 2

)(t
2-d2

)}
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is determined by

fJ*Vi=— ih> ° < Vi < <»•»

and the value of the integral

a

!

dt

is determined by

gf iy7
= — t

7 , < y7 < eo'.

Although it is sometimes ^ and sometimes — it that replaces £, there

is no ambiguity in any individual formula, and it is simpler to refer

to the diagrams than to a set of rules.

Again the expressions for the quarterperiod can be recovered, but

the point that should now be clear is that one formula for to and one

for to' can be read from each of the diagrams in Figure 30 without

subsidiary analysis. The variable in the integral is t or it for o» according

as the function with which the diagram deals is real or imaginary along

the real axis, and is t or it for to' according as the function is imaginary

or real along the imaginary axis. The limits of integration are marked

on the axes. The factors in the radical are w2— r2
,
w2—s2

,
where ±r,

±s are the critical values, real or imaginary, marked on the diagram,

and these factors become t
2—r2

,
t
2—s2 or — t

2— r2
,
—t2—s2

according

as the variable is t or it. Automatically the radical absorbs if necessary

a factor i and is real within the range of integration. In this way the

diagram for hfz gives the formulae -33 2 for a> and -33n for a/. The

whole operation is far simpler to perform than to describe. Each of

the six expressions for each quarterperiod is implicit in two diagrams,

and two diagrams which give the same formula for one quarterperiod

give different formulae for the other.

9-6. A formula expressing one of the elementary functions in terms

of another is a substitution reducing one of the standard integrals

to another. For example, the relation jfzfjz = —
(7/^/,

that is,

jfzfjz = —bd, expresses that the transformation tg
=

bd/t10 converts

the first of the integrals in -55 into the second. Similarly,

gfz

and writing fg z = it
7 , gj z = tv we have the transformation
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which converts the first integral in -54 into the first integral in -SI.

Verification is immediate, but it is from the functional side that the

transformations can be foreseen most readily.

In the same way, the equality of alternative expressions lor the same

integral, by means of a function of x and by means of a function of iy,

depends ultimately on the identity

pq(z;<*,£,y) = Apq(Az;Aa,Aj8,Ay),

which, for A = i, gives

pq(z;o>, ico',
— co— ico')

— ipq(iz;ico, -co', —ico-\-co').

To arrange the periods on the right as —to', ico, co'— ico involves only

an interchange of f with g, if either of these symbols occurs, and the

minor adjustments necessary when the sign of co
f
is changed are obvious

in each individual case.

Table IX i

Relations between functions of z with quarterperiods co, ico', -co— ico'

and functions of iz with quarterperiods co'
, ico, -co'— ico

f
j
z — ig]iz jfz = i jg iz- hgz

— —ihfiz ghz = —ifhiz

gj z — ifjiz hfz = ihgiz jgz — ijfiz fhz = ighiz

hj z = ih] iz gfz = ifgiz fgz = —igfiz jhz =: — ijh iz

9-7. We have said that the classical inversion of the elliptic integral

presented none of the theoretical difficulties which we have found

serious, the reason being that the integrals involved were real functions

of real variablesf . Although we have taken the general solution of the

inversion problem for granted in the present chapter, it is interesting

to discuss the restricted problem. The difficulty is rather in discovering

what has to be proved than in constructing proofs, and explanation

tends to be in language too deliberately elementary.

Given two real numbers co, co', we can construct from them a system
in which the first two quarterperiods are co and ico', and we find as in

•2 and -3 that the critical values gf , —gh ,
h
f
are real numbers with the

same sign satisfying the condition gj
=

gl+h'f. The question is whether,

if b, c, d are given real numbers with the same sign satisfying the con-

dition b 2 = c 2
-\-d

2
,
there necessarily exist two real numbers co, co' such

that b, c, d play the parts of gf , —gh ,
h
f
in the system constructed on

t Strictly speaking, functions and variables that are imaginary in the sense in which

we are using the word were immediately brought into the analysis ; the double periodicity
could not otherwise have been discovered. But the freedom of the complex plane \\.i~

not conferred on the integrals, and it is this freedom, not the formal substitution of it

for t in a real integral, that demands a new discipline.
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co, i(x)'. There is no loss of generality in supposing b, c, d all positive,

for we change their common sign by changing the sign of one of the

numbers co, co'.

We follow the argument which in 5-5 we could not press to a con-

clusion. From the given positive real numbers b, c, d subject to the

condition

•701 62 = c2+d2

we calculate the positive real numbers co, co' by the formulae

oo oo

r dt ,
r dt

1-2 °> ~'"

J V{('
2+W2

+<Z
2
)}'

"

J #2+6 2
)(«

2+c2
)}'

chosen from -33. With the real number w as co
f
and the imaginary

number ico' as co
g
we construct a system of primitive functions, and in

this system the critical constants gf , —gh ,
h
f
have definite positive real

values which satisfy the condition

•702 gf
=

gl+hf.

Can we identify these values with b, c, dl

Suppose first that b has the fixed value 1; then -7^ defines a relation

between the real variables co, d, and -71
2 defines a relation between the

real variables co', c. If c, d are subject to the condition

•703 c2+d2 = 1,

they both lie between and 1 and one increases as the other decreases.

As d decreases from 1 to 0, co increases steadily from \n to oo; as c

increases from to 1, co' decreases steadily from oo to \tt. It follows

that as c increases and d decreases, the ratio of co to co' increases steadily

from to oo, and acquires any given value for one and only one pair

of values of c and d; for this pair of values, co and co' as well as the

ratio of co to co' are determinate. In other words, if co and co' are given,

the conditions

M
2+v2 - 1,

oo co

are satisfied by one and only one set of positive real values of A, ct, v.

If now we substitute tlX for t in the integrals, we find that
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9-72. The equations 2 , 2 __ 1

oo o

C dt C dt

J sJ{(t
2+X2

)(t^X
2,2 )} J ^+ X2

)(t
2+X2

,^:
= o>

are satisfied by one and only one set of positive real values of A, fi, v,

and since these equations are identical with -701, -71, ., with A, ft, v

written for b, c/b, d/b, it follows that, for given positive real values of

a) and a/, the relations Vlj.g with the condition -701 are satisjiol hy one

and only one set of positive real values of b, c, d. Since the relations are

satisfied on the one hand by the set of values b, c, d from which to and

to' are calculated, and on the other hand by the set of critical values

a
f> ~9h> fy m the system of functions with co

f
=

o>, a>
g
=

ico', the

identification of the original constants with the critical values is

complete :

9-73. Given three positive constants b, c, d, none of which is zero, satis-

fying the condition b 2 = c2 -\-d
2

,
there is one and only one system of elliptic

functions in which the quarterperiod a>
f
has a real value to, the quarter

-

period co
g
has an imaginary value itxi

,
and the critical values gf , gh ,

h
f

are b, —c, d; the values of to and to' are given by

to =
oo oo

r dt C dt

This theorem does not include -12, for it does not deny the possibility

of a system with real critical values but without pure quarterperiods;

we could not expect to disprove such a possibility without entering

the complex field. But in the majority of applications the restricted

theorem is sufficient, without the general theory completed in the last

chapter and used to establish -12, to justify the introduction of elliptic

functions when they are required. In particular, the real integrations

in -5 need no deeper foundation.
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10-1. In the study of elliptic integrals and functions, standardization,

reduction to normal forms, naturally plays a part. From a practical

point of view, if a function is to be used in numerical work it is always

worth while in the long run to reduce the number of independent

parameters if this can be done by trivial transformations: we do not

tabulate logrt
;z and sin ax as functions of two variables, although we

are prepared to tabulate log10 x as well as loge
x and sin \nx as well as

sinx. In theoretical work, when there is a question of functional

dependence on parameters, a reduction which makes available the

methods of the theory of functions of one variable may be the first

step to a solution: we have glanced at an illustration of this use of

reduction in connexion with the inversion problem.

By substituting Xw for w, we replace the integral

oo

I
dw

^{(w*-b
2
)(w*-c

2
)}

w

by a constant multiple of

oo

dw

I j{(w*-bi){w*-ci)y
Xw

where 6^ = 6/A, c^
=

c/A, and A is arbitrary. In particular, by a trivial

modification we can deal with an integral involving only one parameter

c/b instead of with an integral involving two that are independent.

From the point of view of the elliptic functions, the change is asso-

ciated most simply with the periods. The identity

pq(z;a,j8,y) = Apq(Az; Aa, Xp, Ay)

implies that the detailed behaviour of an elliptic function depends on

the ratios a)
f
:a)

g
: coh rather than on the values of the quarterperiods,

or, to put it graphically, on the shape of a period parallelogram rather

than on its size and orientation: except for a constant factor, the dis-

tribution of values of the function is governed by position relative to

the cardinal points. To multiply the three quarterperiods simul-

taneously by A is also to divide the six critical values simultaneously

by A.
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We can say that among all the triplets a, /?, y subject to the condition

a+j8+y = and having the same shape, we arc free fco select one; we

agree upon a normalizing factor A, and the triplet Aa, A/3, Ay is then

the canonical triplet of shape oc\fi:y. The factor A must be homo-

geneous of degree
— 1 in a, /3, y, and the choice is otherwise arbitrary :

we could take A = 1/a and secure a unit quarterperiod; we could take

A = 7t/2oc and assimilate the functions to the circular functions by pro-

viding a real quarterperiod \n\ possibly if the theory had originated

on the functional side, one of these selections would have been made.

It was in fact the development of the theory from the side of the

integrals which determined the normalizing factor and the canonical

functions. The first integral to be inverted was Legendre's integral

X

s
dx

J{{l—x*)(l—kh?)Y

and although the functions associated with this integral can not have

the symmetry and the formal simplicity of the functions associated

with an integral in which the radical has the more general form

^{(iv
2—b 2

)(iv
2— c2

)},
their importance now is far more than historical.

The choice of functions and parameters in current use was determined

by the lines along which the subject actually developed, and the choice

can not be made to appear in every respect natural when the whole

subject is approached in another way. But our object is to exhibit the

classical results in a functional setting, and this requires the use of

the classical notation. Only it is to be remembered that, as soon as

we have found how to fit the notation into our scheme, we are dealing

with functions of complex variables, and the parameters we use, what-

ever their traditional origin, are subject only to such restrictions as

prevent functions or integrals from degenerating.

10-2. To reduce the integral

w

yj{(b
2-w2

){c
2-w2

)}

to the form of Legendre's integral, with < k < 1 if < c < b, we

substitute w = ex, and the relation

w

•201
/ j{(b

2-w2
){c

2
-ir-)\
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becomes
x

dx
•202 u =

<J{(l-x
2
)(l-k

2x2
)Y

o

with k = c/b, u = bz. That is to say, since -201 is equivalent to w = jgz

in a system in which gf
=

b, gh = —
c,

10-21. Legendre's relation is equivalent to

kx = —]gu

in a system in which gf
= 1, gh = —k.

Since it was by the inversion of Legendre's integral that Jacobi intro-

duced the elliptic functions with which his name is associated, we

therefore say that

•203. A set of quarterperiods to
f ,

co
ff

,
coh is a Jacobian set if gf

= 1.

In other words, admitting a constant multiplier instead of determining

the specific function gj z by its residue,

10-22. The pair of quarterperiods co
f ,
w
g
determines a Jacobian lattice

if an elliptic function with simple zeros congruent with <o
g
and simple

poles congruent with the origin has its residue at the origin equal to its

value at a>
f

.

Or, replacing the function by its reciprocal,

10-23. The pair of quarterperiods wp co
g
determines a Jacobian lattice

if an elliptic function with simple zeros congruent with the origin and

simple poles congruent with co
g
has its derivative at the origin equal to its

value at co
f

.

To verify the form of the condition in -23, we remark that

jg'O = lmijgzgjs = jgw/gjw,,

whence the condition gf
= 1 is equivalent to jg'O = jg a>

f
.

If a., /?, y is any set of quarterperiods, then gj(Aa; Aa, A/3, Ay)
= 1 if

and only if A = gj(a; a, jS, y). That is,

10-24. There is one and only one Jacobian set of quarterperiods similar

to any given set, and the normalizing factor of the set u)
f ,

oj
g ,

o)h is the

critical value gf .

The Jacobian triplet is the unique representative of the class of

similar triplets to which it belongs. In general the normalizing factor

A is complex and the Jacobian parallelogram Aa, A/? differs in orientation

as well as in size from the parallelogram a, fi
which it represents. For
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example, if a = iu>', /S
= co, where co, a/ are real, then gj iy is imaginary,

and if — 2a/ ^ y ^ 2a/, the sign of gj iy is opposite fco thai of y, and

iygjiy is real and positive in that range; in particular, gf
<x is real

and positive whether co' is positive or negative, and the re. tangle is

turned through a right angle, negatively or positively, as well as brought

to the right size. If a is real and /3 imaginary, gj x is real with the same

sign as x if —2a ^ x ^ 2a, and #gj x is real and positive in that range;

in particular, gf
a is real and positive, implying if a is negative that the

rectangle is turned through two right angles. Since every rectangle is

congruent with some rectangle whose sides are along the real and

imaginary axes, we have proved incidentally that

•204. If io
f
and co

g
are at right angles, the first member of the corre-

sponding Jacobian set of quarterperiods is real and positive and the second

member is positively or negatively imaginary according as rotation from

co
i
to co

g
is positive or negative.

Briefly,

10-25. If a Jacobian parallelogram is a rectangle, its first side is along

the positive half of the real axis.

10-3. Legendre expresses the fundamental elliptic integral in the form

•301

" ™ "
/Tfi^W)
o

as well as, with x = sin
cj>,

in the form

X
dx

J V((i--̂ )(l-&
2*2

)}'

which we have been using. The angle cf>
is called the amplitude of the

integral F(<j>), but in spite of this terminology the functional relation-

ship is not seen as a dependence of
cj>

on F(tf>). The crucial step was

taken when the relation

•303
1

u = F{cf>)

was treated as a relation

•303., <f)
= ainit.

Circular functions of
<f>,

with which Legendre's pages abound, became

sin am u, cos am u, and so on, and the radical ^/(l
— A;

2 sin2
^), which is

d(f>/du, became d am u/du, abbreviated by Jacobi to A am u.

Gudermann introduced a more compact notation, writing snw, en u
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for sin am u, cos am u, andf dn u for A am u. Any exposition that is to

facilitate access to the subject must deal with Jacobi's functions and

conform to Gudermann's notation and its accepted extension.

That sn u is an elliptic function, a multiple of jg u in the Jacobian

lattice, we already know. In symbols, -21 can be written

•304 siim = jgu/jg'O = (l/gh)jgu;

the value of gf
is implicit. It follows that cnu, dnu are multiples of

the copolar functions fgu, hgu, and these also are therefore elliptic

functions. To prove this directly is to repeat the arguments of 1-2:

the functions are doubly periodic functions with simple poles at the

poles of snu, and it has only to be shown that their zeros are not

branchpoints. Alternatively we may utilize the general theory. If

pqz is an elementary elliptic function satisfying the equation

•305 (dwjdz)
2 = {w

2-b 2
){w

2-c2
),

then pq
2z— b 2

, pq
22— c2 are the squares of the elementary functions

copolar with pqz. To replace pqz by a constant multiple jupqz is to

replace -305 by the equation

[x
2
(dx/dz)

2 = (x
2
-fji

2b 2
)(x

2
-ix

2c2 ),

which may appear in the form

(dx/dz)
2 = (kx

2
—{j)(\x

2
—7)),

where k, A are any two constants such that k\ = l//x
2

. But £ = k/x
26 2

,

-q
=

A/x
2c2

,
and the factors kx2—

£, \x2—
-q

are necessarily multiples of

pq
22— 6 2

, pq
22— c2 . It follows from the equation

(dxjdu)
2 = (l-x

2
){l-k

2x2
),

which is implied by the integral relation -302, that cn2
u, dn2u are

multiples of fg
2
u, hg

2
u, that is, that cnu, dnu are multiples of fgu,

hgu, one way round or the other, and since cnw = when snw = 1,

it is en u which is a multiple of fg u and dn u which is a multiple of

hgu. The constant multipliers are determined by the values at the

origin: since cnO = 1 and dnO = 1,

•306 en u = fg u/fg = —
( l/fy,)fg u,

•307 dnu = hgw/hgO = —(l/fg)hgu.

If uj
f

is real and a>
g imaginary, the functions fg u and hg u are real

between co
g
and co

f -\-oig , imaginary for real values of u and in particular

t Also tn u for tan am u, but this symbol is completely superseded by the equivalent

symbol sc u in Glaisher's systematic notation; see -4 below.
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at the origin; fgw/fgO and hgujhgO are real if u is real, but rather

than describe a real function of a real variable in such a mannei that

an imaginary factor has to be removed, we describe the functions

directly in structural terms, and including in one description 1 lie origins I

function snu and the functions enw, dnu we can say that

10-31. The Jacobian elliptic functions snu, cnu, dnu are the functions

constructed with a Jacobian set of quarterperiods co
f ,

co
(/

,
cok to hare simple

poles congruent with a> ,
and simple zeros congruent with the origin, with

co
f ,
and with coh , respectively, and to have unity for leading coefficient at

the origin.

We have followed history in introducing sn u from Legendre's integral, but

whatever the lattice it is not surprising to find jgz/jg'O as a canonical function.

For theoretical purposes, a function is dominated by its infinities; hence the

choice of fj z, with a pole at the origin, for a primitivo function. But for applica-

tions, and especially for calculations, infinities are to be avoided in favour of

zeros: a canonical integral has rather than oo for a fixed limit, the corresponding
function has the origin for a zero rather than for a pole. And if the standard is

to be set at the origin, we shall concern ourselves not with the residue at the

pole which we have been at pains to avoid, but with the coefficient at the zero

which we have located. If the origin is a simple pole it is natural to introduce

the factor which causes a function to resemble 1/z; if the function is a simple

zero we arrangef for the function to resemble z. To this end we may apply
a constant factor either to the function or to the independent variable: if ip(z)

is a function which resembles zjX near z = 0, then A</r(z) as a function of z

resembles z, and ip(Xu) as a function of u resembles u near u = 0. We may say
that having chosen the canonical function as jgz/jga>/ in order to secure the

value 1 at a)
f , we have still in hand a factor A to be chosen so that jg(Au)/jg(Aa>/)

resembles u; this unique factor is the normalizing factor which produces the

Jacobian lattice.

We now introduce an expressive notation J for a Jacobian parallelo-

gram, writing the three quarterperiods a)
f ,

co
a ,

coh as Kc ,
Kn ,

Kd ,
and

using Ks ,
as we have hitherto used

ojj,
as an alternative symbol for

zero. In this notation snu, cnu, dnu are functions with zeros con-

gruent with Ks ,
with Kc ,

and with Kd , respectively, and the three

functions have poles congruent with Kn . But whereas in the earlier

chapters pqz is rendered specific, its structure being implicit in the

notation, by its form near its own pole co
q ,

the Jacobian functions are

rendered specific by their forms near the origin. This change is marked

by the change of symbol for the independent variable as well as for

the quarterperiods. And we have to remember that whereas a)
f ,

a)
g ,

coh

f As we adopt circular measure to secure the condition sin 9 ~ 0.

X The reader must be warned that this notation is not in the literature of the subject.

I would call it new, had I not been using it in lectures since 1 S » - •"» -
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are subject to only the one condition co
f -\-a>g -\-a)h

—
0, the Jacobian

quarterperiods are subject to the characteristic condition

10-32 g](Kc;Kc,Kn,Kd )
= l

as well as to the condition

•308 Kc+Kn+Kd
= 0.

It is sometimes convenient to write K'd for Kc-\-Kn ,
that is, for —Kd ,

to facilitate comparison with classical formulae.

The three quarterperiods in a Jacobian set play distinct parts. In

the characteristic condition -32, Kn corresponds to the function that

occurs, and Kc is the argument. Precisely because the three parts are

distinct, there is nothing artificial in ignoring one of the quarterperiods

in a specification. If a, j8
are the values of Kc ,

Kn ,
we say that the

Jacobian system has the basis a, /3, leaving the value of Kd ,
which is

—
oc—fi, to be inferred.

A set of quarterperiods is Jacobian only with a definite allocation

of parts: if the triplet a, /?, y is Jacobian in this order, there is no reason

to suppose that it is Jacobian in any other order. In symbols, -24

becomes

10-33. The Jacobian triplet similar to a>
f ,

co
g ,

ioh is given by

K
c
= af°>P Kn = 9f<»g>

Kd
=

9f">h-

To permute a, /?, y among the parts co
f ,

ca
g ,
wh is to bring each of the

critical values of one system a, jS, y in turn into the part of gP Each

permutation has its own normalizing factor as well as its own alloca-

tion, and the six permutations give rise to six different Jacobian trip-

lets. The significance of this multiplicity will appear in 13-4.

10-4. Having indicated our right to the classical notation, we now

reverse the deductions and treat -31 not as a theorem but as the defini-

tion of the functions to be studied. The advantage of this course is

that we can develop the theory of the functions in complete generality,

that is, for complex values of the parameter, without assuming the

solution of the inversion problem, while the simple theory of inversion

for a real parameter, as given in 9-7, will justify in the end the uses

to which the functions are commonly put. Logically we could have

dispensed with preliminary analysis and laid down our definitions dog-

matically, but the set of letters s, c, d, n is a queer one to impose

without explanation, and it is better to incur the cost of a little repeti-

tion. In repeating -31 as a definition we incorporate the notation for

the quarterperiods.
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10-41. The functions sn u, cnu, dnuare defined as the elliptic, fund'unis

constructed with a Jacobian set of quarterperiods Kc , K„, Kd ,
to haw simple

poles congruent ivith Kn ,
and simple zeros congruent with the origin, with

Kc ,
and with Klh respectively, and to have unity for leading coefficient at

the origin.

Thus

10-42^3 sn'0 = l, cnO = l, dnO = 1.

Also, because! the lattice is Jacobian,

10-43 sniTc = l.

The whole theory of the functions is implicit in -41 and -43.

Jacobi's three functions are standardized functions with a common

pole at Kn and zeros at Ks ,
Kc ,

Kd , just as the primitive functions

defined in 1-2 are standardized functions with a common pole at
ojj

and

zeros at w
f ,

o)
g ,

a>h . And the Jacobian functions, like the primitive

functions, are best understood as belonging to a set of twelve functions,

each choice of a zero and a pole among the four cardinal points pro-

viding one function. The typical function of the complete set has a zero

at Kp and a pole at K
q ,
and the standardizing factor is chosen in every

case in relation to the origin, where the leading coefficient is required

to be unity; with this condition we denote the function by pqw.

Thus sew, snw, sdw have simple zeros at the origin, and the quotient

of each of them by u tends there to 1 :

•401 sqw~w.
The reciprocal functions csw,. nsw, dsw have simple poles at the origin,

and the product of each of these by u tends there to 1 :

•402 -psu~l[u;

in fact these three functions are the primitive functions of the lattice,

in the sense of our earlier chapters. If the origin is neither zero nor

pole, then

•403 pq0 = l.

The utility, if not the importance, of the set of twelve functions was

first seen by Glaisher, who introduced^ the nine functions which com-

plete the set by defining nsw as 1/snw, sew as snu/cnu, and so on,

t Logically, the relation -43 can not be regarded as a characterizing property of a

Jacobian lattice, since the notation assumes already that the lattice is Jacobian; the

characteristic property must be expressed as gj w
f
= 1. But as regards the Jacobian

functions, nothing more is to be learnt mathematically from one way of expressing the

result than from another.

% Messenger of Mathematics, 11 (1882), p. 85.

4767 A a



178 JACOBIAN ELLIPTIC FUNCTIONS

regarding the notation purely as mnemonical. That the functions we

have defined satisfy the relations

•404--405 -pquqpu = 1, -pquqvu = -pru

and are therefore in fact Glaisher's functions, follows immediately from

Liouville's theorem. No constant factors other than unity now occur,

because the functions are all standardized at the same point: the leading

coefficient at the origin is 1 for every function. Glaisher constructed

the set from Jacobi's functions, the three functions with a pole at Kn ,

but the set can be reconstructed by the same rules from any triplet

with a common pole or a common zero : if the primitive functions cs u,

nsu, dsu are regarded as fundamental, Jacobi's functions are given by

•406--408 snu = 1/nsu, cnu — csu/nsu, dnu = dsu/nsu,

or if we begin with the three functions sc u, sn u, sd u which vanish at

the origin, we have

•409--410 uciu = snw/scw, dnw = snw/sdw.

The set of Glaisher's functions, unlike the set of elementary functions

defined in 2-1, is wholly lacking in symmetry. A formula may be

typical in its algebraical structure of a group of three or more formulae,

but the constants in one formula can seldom be obtained from those

in another by mere transliteration.

Each of the elementary functions built on the Jacobian lattice is

a constant multiple of the corresponding Glaisher function, and in a

sense the factor is known, for it is the leading coefficient of the ele-

mentary function, as given in Table II 2. But the coefficients in this

table are given in terms of the critical values of the earlier theory. If

we propose to translate theorems from Chapters I-IV into theorems on

Glaisher's functions, we shall have to relate the parameters as well as

the functions to the Jacobian system. It is usually better to apply the

methods of the general theory than to translate the results.



XI

PROPERTIES OF THE JACOBIAN FUNCTIONS

11-1. Many of the arguments used in the first part of the book are

unaffected by the presence of constant factors in the functions con-

sidered, and lead to theorems that are true of the Jacobianf functions.

If arguments are repeated, they will be given succinctly.

Since the function pq(— u) has the same poles and the same zeros

as pqw, one function is a constant multiple of the other. If the origin

is neither a zero nor a pole, the functions have the same value there

and everywhere: pqw is an even function. If the origin is a simple pole

or a simple zero, pq(—u)Jpqu -» —1 as u -> 0, and the constant value

of the ratio is —1: the function -pqu is odd.

11-11. The three functions scu, snu, sdu and their reciprocals are odd

functions; the three functions en u, dn u, cd u and their reciprocals are

even functions.

IfK
t
is a step from a zero to a pole of the function pq u, the product

pqwpq(w+^Q) nas no poles and is therefore a constant; hence

pqupq(u+K( )
= pq(u+K()pq(u-)-2Kl )

for all values of u, and therefore

pq(u-\-2K( )
= pqu:

11-12. Any step from a zero to a pole of the function pq u is a halfperiod

of the function.

In particular,

11-13. The step Kpq from Kp to K
q

is a halfperiod of pqu.

IfK
(
is any one of the three numbers Kc ,

Kn ,
Kd ,

the function pq(u-\- -Kt )

has the same zeros and the same poles as pqw, and pq(u-\-2Kt)jpqu is

a constant which can be equated to pq/Q/pq(
—

A^) if K
t
is neither zero

nor pole and can in any case be equated to

M->opq(w—Kt )

Whether -pqu is even or odd, and whether it is a value or a limit which

we find, the constant is either —1 or 1, and therefore each of the numbers

f Usually I speak of the twelve functions as Jacobian, for to attach Glaisher's name,
to the exclusion of Jacobi's, to nine of the twelve would be to exaggerate Glaisher's

contribution to the theory of the subject. If it is necessary to discriminate, sn u, en u,

dn u mav be described as Jacobi's functions.
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2KC ,
2Kn ,

2Kd is a halfperiod if not a period of pq u. From -12 it follows

that one of these numbers is a period, and since pq u has only one pole,

and that a simple one, in the parallelogram 2K
C ,
2Kn ,

it follows that

not more than one of the numbers is a period; thus one of the three

is a period and two are halfperiods:

11-14. Of the three numbers Kc ,
Kn ,

Kd ,
the one which is equal to a step

from a zero to a pole of pqw is a halfperiod of the function, the other two

are quarterperiods.

IfK
(
is a halfperiod, pqwpq(w+^) is constant; ifK

t
is a quarterperiod,

pq(u-{-2Kt)
= —pqw. It is easy to confirm the latter result by a direct

examination of the ratio pq(w+2iQ)/pqw. in the different cases.

If the function pq u is odd, one of the symbols p, q is s and the other

belongs to a halfperiod; if the function is even, p, q are two of the

symbols c, n, d and belong to quarterperiods, while the third of these

symbols belongs to a halfperiod.

Since K
q
—Kp differs from Kp -\-KQ by 2Kp ,

which is at least a half-

period if it is not zero,

11-15. The sum Kp -\-Kq is a halfperiod of the function -pqu.

This form of the result, with the identity

-101 Ks+Kc+Kn+Kd
= 0,

is the clearest analytical explanation of the grouping of the functions

with respect to periodicity: the four terms can be split into pairs in

three ways, and each pair is associated with two functions.

The natural classification of the twelve functions is shown in the

following scheme:

Table XI l

Poles and periods of the twelve Jacobian functions
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to other groups. The reason is, that in this group alone the factor

which renders an elliptic function specific when its poles and zeros are

assigned bears the same organic relation to each of the three functions.

The recognition of the congruences of points a1 u liich a fund ion \h[u

has a common value, or in other words the solution of the equation

pqw = pqa, is implicit in the table of periods and poles. If the func-

tion is an even function, a and —a are distinct solutions of the equation,

and every solution is congruent with one of these. For example, the

general solution of

•102 cnu — cn«

is

• 1 03 u = 4mKc+2nKd±a,
or in terms of Kc and Kn ,

•104 u = 2mKc
Jr 2nKn±La, with m-\-n even;

the general solution of

•105 dnu = dna

is

•106 u = 2mKc+4nKn±a.

If pq u is an odd function, and 2K
r

is one of the halfperiods, the sum

of the two poles is congruent with 2K
r ,
and distinct solutions of the

equation are a and 2Kr—a. Thus the general solution of

•107 snw = snfl

is

•108 u = imKc+2nKn+a or u = (4m+2)Kc+2nKn—a.

11-2. We have explained in 10-1 that the effect of standardizing the

elliptic integral is that only one parameter remains. The constants in

the elliptic integrals are the critical values in the corresponding system

of elliptic functions, and we have in effect asserted that the mutual

relations between the Jacobian functions depend on a single constant.

Since pq(w+2 JK,) is equal to pqw or to —pqw according as K
t

is

a halfperiod or a quarterperiod,

•201 pq
2(w+2^) = pq

2w

in either case. That is, pq
2w is doubly periodic in 2KC and 2Kir and

since there is only one pole in a period parallelogram, the principal part

of the expansion of pq
2% near K

q
consists of a single term Apj(u—Kq )

2
;

a linear term BpJ{u—Kq )
which would supply a residue can not occur. It
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follows that if pqw, rqu are copolar functions, the functions (vq
2
u)/Ap ,

(rq
2
u)/A r have the same principal part l/(u—Kq )

2 near the common

pole, and their difference, a doubly periodic function everywhere finite,

is constant:

11*21. The squares of any two copolar Jacobian functions are connected

by a linear relation with constant coefficients.

The relation is known if two pairs of corresponding values of the related

functions are known; the relation between pq
2w and vq

2u is expres-

sible as

11-22 J^ + I^=l.
Since the functions are known at or near the origin, only one other

point need in fact be examined, but we can not write down a general

formula if we introduce the origin with no regard to its functional rela-

tion to the two functions which are to be connected. The relation -22

is equivalent to

•202 pq%_rq^ _ G
Ap A r

and therefore

•203 A.p : A r
= -pq2Kr : rq

2Kp .

If the pole Kq
is not the origin, the value of the constant C in -202 is

l/Ap—l/A r ,
and *22 implies similarly that

11-23 qp^+qr2^ = 1,

provided that the common zero is not the origin. For a function psw
with a pole at the origin, the principal part of ps

2w there is 1/u
2

;
hence

for two functions -psu, qsu, the difference ps
2w— qs

2u is constant, and

this may be evaluated either at Kp or at K
q

\

11*24 ps
2w— qs

2w = —
qs

2ifp
= ps

2iT
g

.

1 1*3. The three original Jacobian functions are copolar and the linear

relations between their squares are generally regarded as expressing

cn2w and dn2w in terms of sn2w. Since simultaneously at the origin

•301 siim = 0, Gnu = 1, dnw -== 1,

we have cn2w = 1—bsn2
u, dn2u = 1—csn2

w,

where b, c are constants. Since also cnu = 0, snw = 1 simultaneously

when u = K
c ,
the constant b is 1, and we have

11*31 cn2u = 1—sn2
w,

11*32 dn2u = 1—csn2
u,
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where c remains as the one parameter involved in the algebraic n lo-

tions between the functions of the system ;
when we speak of the para-

meter, it is c that we mean. If we put the relations -31, -32 into fche

form of -22, we have

•302-303 sn2u4-cn2w = 1, csn2w+dn 2w = 1,

and we recognize that these relations depend on the specific values of

cnA's ,
dnifs ,

and snKc ,
while 1/c is identified with sn 2

A^:

11-33 c = ns2Kd .

The relation between cn2w and dn2u is

•304 dn2u = c'+ c cn2
w,

where c' defined by

11-34 c' = 1— c

is the complementary parameter of the system, identifiable also from -304:

11-35 c' = dn2iTc .

From -304,

•305 cn2ifd = —c'/c.

We can find the identities similar to -31, -32, -304 for the other pairs

of copolar functions without returning to first principles. Dividing

•31, -32 by sn2w we have

•306--307 cs2u = ns2u— 1, ds2u = ns2w— c.

If we divide -304 by sn2u we obtain not the relation between cs2w and

ds2w but the homogeneous relation

•308 ds2u — c'ns2w+ccs2
w,

and it is from the homogeneous relation

•309 dn2w = c'sn2w+cn2w

that the relation

•310 ds2u = cs2u-\-c'

comes by mere division. We therefore add the homogeneous identity

at each pole, and set out the complete scheme of formulae as follows:

Table XI 2

cs2w-fl=ns2w cs2w+c' = ds2u ds2w+ c = ns2« ccs2u+ c'ns2u = ds2u

sc2w+ 1 = nc2u c' sc-u+ 1 = dchi c' nc2w+ c = dc2w c sc2w+ dc2u = nc 2
it

sn2w+cn2M=l csn%+ dn2u=l ccn2u+ c' = dn*ti »-'su-// <..-,/
- dn-u

c'sd2«+ cd2w = 1 csd2w+ 1 = nd2M ccdtu+c'ndH* = 1 sd2a+ cd2u = nd2M
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To understand the individual formulae in Table XI 2, we must

recognize those which are not homogeneous as identities of the form

•22. For this purpose we must be able to determine, otherwise than

from the formulae themselves, the squares of the critical values of

Glaisher's twelve functions, in terms of the constants of the system.

There is no difficulty in writing down the required values of ns2
u, nc2

u,

nd2
u, since zero and infinite values do not concern us. But if, for

example, we consider cdu as cnu/dnu, we can not write down cd2Kn ,

one of the constants wanted in the determination of the relation

between cd2u and nd2u. Knowing that cd2w and nd2w are simulta-

neously unity at the origin, we have

•311 (nd
2Kc-l)cd

2u = nd2Kc—nd2
u,

and since nd2Ar

c
=

1/c', we can infer cd2Kn ,
but we might as well find

the relation between cd2u and nd2u from the relation between cn2u and

dn2u as write it down in the form -311.

There is however another line of argument. We can evaluate cd2u

as cn2
u/dn

2u even at the common pole Kn if we know the principal

parts of the functions cn2
u, dn2u there. In other words, although we

can not pass directly from the six critical values of one copolar triad

to the six critical values of another, we can pass directly from the

twelve leading coefficients of one copolar triad to the twelve leading

coefficients of another.

If the principal part of sn^ near Kn is as/(u
—Kn ), the leading coeffi-

cient of sn2u at Kn is a2
. Now the product snMsn(w-fA^) has no poles,

and therefore has a constant value, whence

•312 limsnMsn^+A^) = snK
c $n(Kc-{-Kn).

?<->o

But, as u -> 0, (snu)/u -> 1, usn(u-\-Kn )
-> as \

hence

as
= snKc snK'd ,

and the leading coefficient of sn2u at Kn is 1/c. It follows from -31, -32

that the leading coefficients of cn2
w, dn2w at Kn are — 1/c,

— 1.

The leading coefficients of en u at K
c
and of dn u at Kd are values

of the derivatives cn'u, dn'u, but without anticipating the discussion

of derivatives we can find the squares of these leading coefficients by

repeating the argument we have just used. The products

cnwcn(w-j-A^), dnudn(u-{-Kc )

are constants, and therefore

•313 cn(u+Kc)cn(u-Kn )
= cnKd ,

•314 dn(u+Kd)dn(u-Kn )
= dnKc ;
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as we have just seen, as u -»

u2 cn2(u—Kn )
-> — 1/c, u2 dn2(w— A",,) -> --

1;

hence, from -305 and -35,

•315-316 cn2
(tt4-A'c )

^ c'u2
,

dn2{u+K(l )
~ -c'u2

.

Thus the scheme of leading coefficients for the squares of Jacobi's

original functions is as follows:

Table XI 3
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gruent with —a; two of these points coincide, that is, a is a double

root of the equation <J>(u)
=

</>(«)
and therefore a root of the equation

cf)'(u)
= 0, only if 2a = 0, that is, if a is congruent with one of the

four numbers Ks ,
Kc ,
Kn ,

Kd . Of the four numbers, Kq
is a triple pole

of (f>'{u), and therefore each of the other three is a simple zero. Express-

ing <f>'(u)
as 2pqupq'u and removing the pole and the zero of pqu,

we see that

11-41. The derivative pq'u has double poles congruent with K
q ,

and

simple zeros congruent with the two cardinal points other than Kp and K
q

.

It follows from -41 that

11-42. // Kr ,
K

t
are the two cardinal points other than Kp ,

K
Q ,

the

derivative pq'u is a constant multiple of rqutqu.

For a function squ with a zero at the origin, the values of sq'u and

of rqu, tqu at the origin are all 1, and the constant factor is 1:

11-43 sq'u = iqutqu.

For a function ps^t, with a pole at the origin, psu -~
lju, and therefore

ps'u ~ —lju
2 while rsutsu ^ lju

2
:

11-44 ps'u = —rsutsu.

If the origin is neither a pole nor a zero, we have

•401 pq
2^ — 1— qs

2Kp sq2
u,

and therefore

11-45 pq'u = —
qs

2Kp squrqu = ps
2K

q sq u rq u,

where vqu is the third function copolar with pqu and squ; the coeffi-

cient in -45 is supplied by either of the Tables XI 3, XI 4.

We tabulate for reference the coefficients in the twelve derivatives;

the functional contribution to the complete formula for pq'u is supplied

by the two functions with which pqu shares a column in the table.

Table XI 5

cs'w = — lx sc'u =-- 1 x dn'u = —ex nd'w = ex

ns'M = — lx dc'u — c'x sn'u = lx cd'w = — c'x

ds'u = — lx nc'u — 1 x cn'w = — lx sd'u — 1 x

It must be remembered that this table gives the expression of pq'u

as a function of u, not the form of -pqu near the zero Kp . The lead-

ing coefficient of pqu at Kp is the product of the entry in XI 5 by

vqKp tqKp . If the entry against pq'w in XI 5 is ±1, then

pq'
2w = rq

2
utq

2
u,
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and the leading coefficient of pq
2w at Kp is the product of the values

there of rq
2w and tq

2
u; this is the property of Table X I i noticed in

the last section, and we see that in Table Xl3 it is poss< by sn 2w

and cn2w but not by dnhi.

The classical formulae in differentiation are in the third column oi

Table XI 5:

11'4G
1_3 sn'u = cnudnu, criu = —snudnu, dn'u = - cbuuctlu.

These formulae can be regarded as a set of simultaneous differential

equations which with the set of initial conditions

snO = 0, cnO = l, dnO = 1

determines completely the set of functions snw, cnu, dn.u. From this

point of view it is clear that

11-47. There can not be more than one set of Jacobian functions with

a given parameter c.

To prove however that there is a set of Jacobian functions for an

arbitrary value of c, that is, that the set of functions determined from

the set of differential equations is necessarily a Jacobian set of which

c is the parameter, is to meet all the difficulties of the inversion problem.

11-5. Addition of a quarterperiod transfers the poles and zeros of

one Jacobian function to the poles and zeros of another. If 2K
t

is

a period of pqw, addition of K
t interchanges poles and zeros, and

pq(w+A^) is a multiple of qpw. This is the theorem by which we

established the periodicities of pqw and of which we used particular

cases in compiling Table XI 3: sn(u-\-Kn ), cn(u-\-Kd), dn(u-\-Kc )
are

multiples of nsu, ncu, ndu. If 2K
t
is not a period of pqw, the zero

Kp+K(
and the pole Kq+Kt

of pq(w-f A,) are congruent with the two

cardinal points other than Kp and K
q

. For example, sn(w+A
r

c ),

cn{u-{-Kn ), dn{u-\-Kd )
are multiples of cdu, dsu, sew.

The functional change is obvious geometrically in each particular

case. Symbolically we may say that in replacing pq(w+iQ) by rmw,

that is, by vm.(u-\-Ks ), we interchange t with s and we must interchange

at the same time the other two of the four symbols s, c, n, d. But to

ascertain the constant factor we must be able to compare the two

functions pq(w+A',), rmw at some one point. Most simply, if

pq(w+iQ) = Armw,

then A is the leading coefficient of pqw at K
t

. The square of any such

coefficient is determinable from either of the tables XI 3, XI 4; what

we have now to consider is the determination of the coefficient itself.
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As before, we can write down the leading coefficients of any one of

the twelve functions if we know them for one copolar triad. The

leading coefficient of -pqu at the zero Kp is the value of pq'Kp ,
and is

given by Table XI 5 in terms of the values rqKp , tqKp of the two

functions copolar with pq u. Also the product of the leading coefficients

at Kp and K
q

is given in terms of values by an argument that is now
familiar: this product is

limpq(w+A"p)pq(w+ig,

and since K —Kp is a step from zero to pole and from pole to zero,

the product ^q{u-\-Kp)^q{u-\-Kq ) is independent of u and can be

evaluated directly. If pqw is an odd function, either Kp or K
q

is zero,

and since (Kr -\-K) -{- (Kt -\-
Kp )

= 0, the product is expressible as

pq/i,.pq(
—K

t ),
that is, as —pqA^pq A'j.

If pqw is even, neither Kp nor

K
q
is zero and we may take Kr

= 0, Kt
= —(Kp-{-Ka); putting u — —Kp

we have, since 2K
q

is now a halfperiod,

Vq{u+Kp)$q(u+Ka )
= pq0pq(2A^+A,) = -pqif,pqA„

and the result is the same as before:

11-51. The product of the leading coefficients of the Jacobian function

pqw at the zero Kp and the pole Kq
is the negative of the product of the

values of the function at the other two cardinal points.

It follows that to form a complete set of leading coefficients we

require only the values of each of the three members of one triad at

the two cardinal points where that function is neither zero nor infinite.

Taking the original Jacobian triad sn u, en u, dn u, we have by definition

•501-503 snArc = l, cnO = 1, dnO = 1;

the constants unidentified are snKd , cnA^, dnKc ,
of which only the

squares are known:

•504-506 sn2Kd
=

1/c, cn2
A^ = -c'/c, dn2JTc = c'.

As we shall see in the next section, the values of snKd ,
cnKd ,

dnifc
are not only unidentified but unidentifiable: without altering the para-

meters c, c', we can alter the basis and replace any one of these con-

stants by its negative. What we must do therefore is to accept these

values, or a set of constants rationally equivalent to them, as funda-

mental constants in the theory.

Since ns 2
A^ = c, dn2^ =

c', we have in effect first to choose definite

square roots of c and c'. The choice is governed by the consideration

that in the classical case of a positive real first quarterperiod and a
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positively imaginary second quarterperiod, the functions chosen are fco

become the positive square roots of the positive real numbers c, c'. In

the language of Chapter IX, the real values of an elementary fond ion

on the perimeter of the fundamental rectangle all have the same sign.

It follows that in the classical case sn u, which resembles u and is there-

fore positive for sufficiently small positive values of u, is positive when

u = Kc-\-Kn ,
and dnw, which has the positive value 1 at the origin, is

positive when u — K
c

. Accordingly \xs(Kc-\-Kn )
is chosen for one con-

stant, dn Kc for another, and we write

11-521_2 k = w&{K +Kn ), k' = dniTc ,

thus defining the constants known as the modulus, k, and the comple-

mentary modulus, k'. With these definitions,

•507-509 c = k2
,

c' = k' 2
,

k2+k' 2 = 1.

Since the condition Kc-\-Kn -\-Kd = is essential to -51, we have to

notice specially that

•510 nsKd = —h.

There remains the critical value cnKd ,
whose square is now expres-

sible as —k' 2
/k

2
. In the classical case, there are positive real values of

en u along the line from the zero Kc towards the origin Ks ,
and therefore

the imaginary values along the line from Kc towards Kc-\-Kn ,
which

makes a negative right angle with the line from Kc towards Ks ,
are

negatively imaginary; in particular, since k' and k are positive,

cn{Kc-\-Kn) = —ik'/k, and since cnu is an even function, cnA^ has

the same value. We write therefore in general

11-53 cnKd = cn(Kc+Kn )
= -vk'/k,

where

11-54 v2 = —I.

Always v has one of the two values i, —i, but for some bases v has

one value, for other bases the other value, and we can not dispense

with the symbol.
We can now complete the set of leading coefficients, using -46

2 ,
-463 ,

and -51:

•511-513 sn'O = 1, cn'A"c = —snKc di\Kc = -k',

dn'Kd = - k2 snKd enKd
= - vk'

,

and therefore, since

snKc
snKd

= — 1 /k, enKs en Kd
= —

vk'/k, dn Ars dn Kc
= k',
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•51 implies that near KnLn>

,..'.. Ilk vlk , v
•514--516 snu r*.>—'-—_ cnM~ ^=-.. dnw -

u—Kn
' u—Kn u—Kn

In collecting the leading coefficients of the original Jacobian func-

tions into a table we include a column for the point K'd ,
that is, Kc-\-Kn ,

since it is to this point more often than to Kd that classical results

refer, and since in the case of real moduli this point becomes important

as the fourth corner of the fundamental rectangle.

Table XI 6

Leading coefficients of Jacobi's functions
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In the theory of the elementary functions constructed from an

arbitrary set of quarterperiods, the explicit use of the signature is

slight, since the product of one critical value by the signal iin- i- «
• x

j
> i

ible as another critical value, and the six critical values though inter

dependent are all of the same standing. In the Jacobian theory,

equality of standing and symmetry are sacrificed at the outset, and the

signature becomes one of the insistent constants associated with a basis.

If the leading coefficient of pq u at the pole Kq
is ap ,

the quotient

(pqw)/ap is the elementary function, in the sense of Chapter II, con-

structed from the quarterperiods Kc ,
Kn ,

Kd . The set of elementary
functions is therefore as follows:

Table XIs

i"}
u = csu jfw =. —k'scu hgw — udnw ghw = —vk'ndu

gjw = nsM hfn = — dew jgw = ksnu fhw = kedu

hj u = dsw gfw = — k'ncu fgtt — vkenu jhw = vkk'adu

This table, which may be otherwise compiled from Table II 2 and the

set of critical values -517--522, shows the substitutions by which

formulae concerning the elementary functions become formulae in the

theory of Jacobian functions.

11-6. Since the conditions which render the Jacobian functions

specific when their poles and zeros are known are conditions at the

origin, the functions themselves depend only on the distributions of

poles and zeros, not in any way on the pair of quarterperiods chosen

for the basis of the system. Hence the parameter c, which is the con-

stant value of ns2w— ds2
u, is uniquely determinate. But the constants

A;, k'
,
v required for the complete scheme of leading coefficients of the

functions are in a different category. Their squares c, c',
— 1 are deter-

minate, but when the constants are defined as nsi£^, dnifc ,
scKn it is

with respect to the particular set of quarterperiods in use that they

are unambiguous, and their relation to the system of functions is still

in question.

Supposing the system of functions to be given, we may attach the

symbol Kc to any point at which snw = 1 and the symbol Kn to any

pole of snw, provided only that the pair of quarterperiods Kc ,
Kn is

then a primitive pair. That is to say, from -108,

11-61. // a, fi is one basis of a set of Jacobian functions, the general

basis of the same set is given by

•ei^ Kc
= (4w1+l) a+27i1 i3,

Kn
= 2Mi2 a+(2n2+l)0



192 JACOBIAN ELLIPTIC FUNCTIONS

with the one condition

•61 3 (4m1+l)(2n2+l)— 4w1m2
= ±1.

Since 2a is a halfperiod and 2/3 is a period of nsu,

ns(Kc-{-Kn )
= ±ns(a+j8) according as m2 is even or odd;

since 2« is a period and 2/3 is a halfperiod of dnu,

dnifc = ^dn a according as % is even or odd;

since 2a is a period and 2/J is a halfperiod of sc u,

scKn = ±sc/3 according as n2 is even or odd.

In other words, if with the basis a, /3 the values of k, k', v are a, a', 1,

then when Kc ,
Kn are given by -61 l5 -61 2 ,

•601 k = ±a according as m2 is even or odd,

•602 k' = ±a' according as nx is even or odd,

•603 v = ±1 according as w2 is even or odd.

These alternatives are independent, for the condition «61 3 is satisfied

by n2
= 0, m1

= nxm2 and by w2
= -1, %= —nxm2 ,

whatever the

values of m2 and nv Hence for a given set of functions, the eight

possibilities latent in the set of equations

•604-606 k2 =
c, k' 2 =

c', v2 = — 1

are all realized. For a particular choice of Kc and Kn we may ask

which square root of c is playing the part of k, which square root of

c' is playing the part of k', and whether i or — i is playing the part
of v, but the answers depend on the choice ofKc and Kn ;

we can change
the answers by changing the basis.

In -61 3 ,
the sign on the right is positive or negative according as n2

is even or odd; hence v is t or — t according as the transformation from

a, j8
to Kc ,

Kn is direct or reverse. This is in agreement with 0-14. We
can in fact conclude from the simple arguments of the present section

that for a given set of functions the sets of quarterperiods for which

scKn is i are those for which the rotation Kc
^ Kn -> Kd is in one direc-

tion and the sets for which sciTn is — * are those for which the rotation

is in the reverse direction, but we can not tell which direction is asso-

ciated with scKn = i, which with scKn = — i. IfKc is real and positive

and Kn is imaginary, then between the origin and Kn ,
cnu is real and

positive and sn u is positively or negatively imaginary according as Kn

is positively or negatively imaginary; thus in this case scKn is i or —i

according as rotation from Kc to Kn through a right angle is positive
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or negative, and -56 is proved for this case without the analysis used

in Chapter 111. Since i is an absolute constant, the association of the

value of scA'„ with the direction of rotation can not vary from one

Jacobian system to another, and we could in (act appeal to continuity
and identify the v of 1 -600 with the signature retrospectively from -56.

There is a temptation to remove the signature from the formulae

connected with Jacobian functions by including the condition scKn = i

in the definition of a Jacobian basis; the pair of conditions

•607-608 snKc
= 1, scKn = i

is attractively complete. As we have seen, the second condition is a

restriction not on the functions with which we deal, but only on the

period systems with which we work. If a, /3 is a Jacobian basis, so also

is a,
—

/?; the Jacobian functions constructed on the two foundations

are identical, and one of the two values sc/J, sc(— /3) is i and the other

is — i. Since ns(a+/3) and ns(o:— /?) are equal, k has the same value on

each basis, and so also has k'
,
which is dn a. Thus to impose the con-

dition scA^ = i means only that of the two potential bases a, /3 and

a,
—

jS,
one is accepted and one rejected. If a, /3 is an acceptable basis,

the general basis for the same set of functions is given by the sym-
metrical pair of formulae

•609 A; = (4m1+l)a+2%1 iS 3
Kn

= 2m2 a+(4w2+l)i3

with the condition

•610 (4m1+l)(4%2+l)— 4rc1m2
=

1,

which is now definite since the expression on the left can not be equal

to — 1 for any integral values of mls
nv m2 ,

n
2

.

The question is of course purely one of convenience in vocabulary
and notation. If the change is made, the theorem that will be lost is

the first part of 10-24: it will no longer be true that every set of quarter-

periods a)
j,

a)
ip

coh is represented by a Jacobian set geometrically similar

to it. We shall be able to assert only that of the two pairs of numbers

gf
u)

f , gfCog and gf
co

f , —gf
oj
g ,

one is a Jacobian basis and the other is

not; we shall then define the set of quarterperiods (a,
—

/3,
—

a+/8) as

the complement or conjugate of the set (a, /?,
—a— j8),

and instead of

saying that gf
a>

f , gf
cv
g

is necessarily a Jacobian basis and insisting

that its signature may be either i or —i, we shall have to say that

gf
o)

f , g/(Og is either a Jacobian basis or the conjugate of a Jacobian

basis. The duplexity removed from the value of scKn reappears in the

procedure of standardization.
4767 cc
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The alternative vocabulary might be introduced in another way.
The proof that in the system of elliptic functions constructed on the

set of quarterperiods o)
f ,

co
g ,

toh ,
the fractions gf/fg ,

h
g/gh , fh jhf

have

a common value v whose square is — 1 is simple. Also if a>
f

is kept
fixed at a value a and co

g
is changed from

/3
to —

/3,
then gf , gh ,

h
f
are

unaltered and fg ,
h
g , fh are replaced by their negatives, and therefore

v is replaced by —v. It follows that by taking

•oil co
f
= a, coa

=
. p

we have a set of quarterperiods for which the signature is automatically

given the value i. Thus we could define the Jacobian basis corre-

sponding to co
f ,

co
g ,

a>h by
v

•612 Kc
= gf

co
f ,

Kn = -.gf
CO

I

<r

that is, by

•613 K
c
= gf toj,

Kn
=

ifg
co

g ,

and secure the definite identity scKn
= i without attempting the com-

paratively difficult interpretation of the alternatives v = i, v = — i.

It will have been established that of the two sets of quarterperiods

(a,/3,
—a— /3), (a,

—
fi,
—

a+jS) one is geometrically similar to the Jaco-

bian set which represents it and the other is not, and the transformation

formulae -609, -610 will follow from the condition scKn = i as before.

The obvious criticism of this course is that there is no merit in

evading an interpretation; the only question can be whether there are

advantages in postponing it. The content of our theorems will not be

entirely preserved: we shall not know in advance that rotation in a

basis defined by -612 is necessarily positive. From -610 we shall learn

that rotation in equivalent bases is in the same direction, but we shall

have either to appeal to continuity or to develop sooner or later analysis

equivalent to that in Chapter III if we are to compare directions of

rotation in bases that are not equivalent.

There is no doubt that in practice we need to replace the pair of

quarterperiods top co
g by the similar pair gf

a>
f , gftog without knowing

whether rotation from to
f
to co

g
is positive or negative; if we are to be

debarred from the Jacobian notation in the latter case, we shall have

to introduce a notation to indicate that the normalizing factor gf
has

been used. That is, ifKc ,
Kn were defined by -612, we should presently

be writing gf a>
g
= eKn with e defined as 1 or — 1 according as g f

a>
f , gf

co
g

was or was not a Jacobian basis in the restricted sense: an adaptable
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=
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Instead of referring again to Tables XI 5, 2, we can utilize XI 9. The

function -pq(u-\-Kt )
satisfies the same differential equation of the form

•801 as pqw, and if pqit satisfies -801, the function (pqw)//c, where k

is a constant, satisfies the equation

•805 K2
(dx/du)

2 = X(k
2x2

~ix)(k
2x2

-v).

The complete set of expressions for the squares of the derivatives is

as follows:
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11-82. // the radicals have the value 1 at the origin, the relations

„
9

f dx f dx
1-3 u*

==

J V((i+^
2)(i+^2

)}'

U8=
J V((i-^)(i-^

2
)}'

o o

Ti2

"" ~
J VP

da;

+ca;
2
)(l-c'a:

2
)}

o

are equivalent to

11-83. The relations

a-5 a-.

Ro f
<fa

f
^

l

dx

-x2)(x
2
-c')}

are equivalent to

xb
= dcw5 ,

xQ
= ncM6 ,

x7
= dnw7 ,

emo
1

the relations

1 X]

sq f <fa;
f

dx
4-6 "9

"
J V{(c'+^

2
)(i-*

2
)}'

Ul0 ~
J V{(^

2-i)(i-^2
)}'

Xj(

i

r dx
11

"

) V{(1-^
2)(1-^2

)}
a: t i

are equivalent to

If to the variable u in any of the formulae in these three theorems

we give the value K
c ,
we have from Table XI 7 a limit of integration

by means of which this quarterperiod is expressible as an integral.

Since some of the limits of integration involve k and k', we use k2
,
k' 2

instead of c, c' in the integrands also. It is to be remembered that the

variables and parameters are complex, and that the paths of integra-

tion in -81, -82, -83 are arbitrary.

The set of formulae we obtain for K
c
from -81, -82, -83 is both

redundant and in a sense incomplete. On the one hand, dew gives the
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same integral as nsu, and cdw as snu. On the other hand, the integrals

given by ds u and nc u are

oo oo

r dt r dt
m

J \]{{t*+k*){t*-k'*)y J V{(fc'
2
'
2+&2

)(*
2
-i)}'

V 1

the distinction between these is trivial, and if they are both to be

recorded, the equivalent form

oo

!
dt

V{(*
2+l)(W-&'2

)}
k'lk

must be added, although this is not provided by any of our twelve

formulae. With this extension, the ten distinct formulae for Kc
become

sixteen; if we allow the possible changes of this kind to be made

mentally, the ten become six. Further, the substitution of 1/t for t,

equivalent to the use of qpu instead of pqw, is trivial, and if the

possibility of this substitution also is borne in mind, four integrals

remain :

11-84. For each of the integrals

00 1

dt C dt
.84 f ^ - f

t
2
)(i—kn

2
)}

Ilk'

r dt f dt

J V{(i+W)(i-&'
2
*
2
)}' J J{(i-tw-v2

)}
o fc'

there are paths of integration such that the value of the integral is Kc
.

IfKn is substituted for u in -81 or -82, each limit of integration either

has the signature v for an explicit factor or is or oo. By substituting

±vt for x we transfer the factor v from the limit to the entire integral.

In -81 the radical has then to resemble — t
2 towards infinity and the

substitution x = — vt removes the negative sign; in -82 the determining

value of the radical is not affected by the substitution and we put

x = vt. In -83 the limits of integration do not involve v, but for the

sake of comparison we can introduce v as a factor of the integral

by reversing one of the two factors in the radical. These changes

having been made, the discussion is exactly parallel to that leading

to -84:
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11-85. For each of the integrals

f dt C dt

1-4
J V{(<

2
+i)(<

2+*2
)}' J si{(i-t*)(i-k'H*)y

I)

1/fc

r dt r <ft

J VP+F¥)(I-W)}' J V{(i-W-£2
)}

o k

there are paths of integration such that the value of the integral is Kn /v.

The classical integrals giving Kc and Kn are -842 and -85
2 :

11-80. // Kc
= K and Kn

= vK'
,
there are paths of integration such

that
i i

.o fi K f
dt K, . f

dt
x~ 2

J vf(i-<
2)(i-^2

)}'

"

J V{U-<
2)(i-"2

)}'
o o

In the simple theory in which k and k' are real and therefore it is

possible, as we have really shown in 9-7, to take for K and K' the real

values obtained by treating the integrals in -84 and -85 as integrals

along the real axis, the interpretation of the similarity between the

two sets of integrals, and in particular between the two integrals in

•86, is immediate: K' is the same function of A;' as K is of k. But in the

general theory we are not yet in a position to make this comparison,

for we have established no relations between paths of integration.

Among the integral expressions for Kd are two, namely, those given

by nc^ and cnw, in which one limit is 1 and the other has v for a factor.

It is impossible to eliminate v from the formal expression of such an

integral, and if we replace the integral by the difference between two

integrals from or by the difference between two integrals to oo, we

can be doing nothing but putting the integral into the form A-\-vB.

The expressions obtainable for Kd in this way are identifiable im-

mediately with forms of —Ke—Kn derivable from -84 and -85, and

nothing is gained by deriving them from -81, -82, -83. The simplest

formal expressions are

oo 1

dt C dt

J Mt*+k*){t*-k'*)Y JV{(*
2
+A;

2
)(«

2-A;' 2
)}' J V{(1-'

2W2-*' 2
)}'

o o

and if < k' < 1 the formal simplicity of these integrals is a trans-

parent illusion.



XII

ADDITION THEOREMS FOR THE JACOBIAN FUNCTIONS

12-1. The Jacobian system of functions generates a profusion of addi-

tion theorems, and the total lack of symmetry in the system renders

general theorems hard to express and tends to deprive general formulae

of their utility. For the construction of isolated results it is often better

to return to first principles than to attempt a substitution.

For a first example of a general method, let us find a formula for

cn(u-{-v) by Liouville's process. As functions of u, the functions

cn(u-\-v)-\~ cn(u— v), cn(u-\-v)
— cn(w— v)

both have four simple poles, the two poles of cn(u-\-v), which are

— v-\-Kn and — v-\-Kn-{-2Kc ,
and the two poles of cn(u— v), which are

v-\-Kn and v-\-Kn-\-2Kc . Of these four poles, —v-\-Kn and v-\-Kn-\-2Kc

are zeros of cnu—cn(v
—Kn ),

and v-\-Kn and —v-\-Kn -\-2Kc are zeros

of cnu— cn(v-\-Kn ), that is, 2Kn being a halfperiod, of cnw+cn(v—Kn ).

Thus the four poles are the zeros of cn2w— cn2
(v
—Kn). Again, the zeros

of cn{u-\-v)-\-cn{u
—

v) are the solutions of the equation

cn(u-\-v) = cn(u—v-\-2Kc),

and by 11-104, since the difference between the two arguments does

not involve u, these are the points for which the sum 2u-\-2Kc is of the

form 2mKc -\-2nKn with m-\-n even; the points required are Kc and —Kc ,

which are zeros of cnu, and Kn and Kn-\-2Kc ,
which are poles of cnu.

Similarly the zeros of cn(u-\-v)
—

cn(it
—

v) are the solutions of the

equation cn(u-\-v) = cn(u— v) and are identified as zeros of criu. Thus

, ~, / , x , \
2A cnu

•101 en(u+v )+ cn{u— v) = —— — —
,

cn2u—cn2{v—Kn )

, x / n
2Bcn'u

•102 cn{u+v)— cn{u—v) = —=- —¥. =-^,cn%— cn2
(v—Kn )

where A, B are independent of u. Putting u = in -101 we have

A = cnvsn2(v—Kn );

letting u -> in -102, we have, since cn'u ~ —u,

„ 9 . TZ ,,. cn{v+u)—cn(v— u) , „ v .

B = — sn2
(v—Kn )\\m

—-—— — = —cnvsn2(v—Kn ).

u-±o 2u

Hence

(en u cnv-cn'M cn'v)sn
2(v—Kn )

103 cn(u+v) =
cn2M— cn2

(v
—Kn )
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From Table XI 10,

ns2
(v—Kn )

= csn2
v, cs2(v—Kn )

•Jul

-dn 2
v,

whence

cn2wns2
(v— A',,)

— cs2
(v—Kn )

= l-^csn^^cn
2^— 1)

= 1— csn 2um 2
v,

and we have a classical formula

1211 cn(u-\-v) =
en u en v— cn'u cn'v

1—csn 2usn2v

12-2. To illustrate another process, let <j)(u) denote dn2w and let F(w)
denote

1 +(u) *'(«)

1
<f>(v) <f>'(v)

1
<f>(w) cj>'{w)

This function F(w) of w has the periods 2KC ,
2Kn ,

and is of the third

order with a triple pole at Kn ;
it has obvious zeros at u and v, and

therefore a third zero at 3A",t

—w— v. But

•201
<f>'(w)

= 2dnwdn'w;
J

and therefore

•202 {<£»}
2 = A^wK^wJ-^H^-v},

where A, /x,
v are constants whose actual values we do not need. Hence

the equation F(w) = implies that </>(w) satisfies an equation

•203 1 cf>(u) <f>'(u)
2

1
cf>(v) cf>'(v)

1 t

XitM-tivfiHit-riit-v),

and since this is a cubic equation, its roots are <f>(u), cf>(v), cf>(3Kn—u—v).
The product of these three roots is therefore a constant multiple of

{4>{uW(v)-<l>(vW(u)}*

{<f>(u)-<f>(v)}
2

and it follows that dn(u-\-v-\-Kn ) is a constant multiple of

{cf)(u)—(f>(v)}dn. u dn v
'

that is, a constant multiple of

dn u dn'v—dn v dn'u
•204

dn2w—dn2v

Since dn(u-\-Kn) is a constant multiple of csw, the simplest inter-

pretation of this result is that cs(w+v) is a constant multiple of the

Dd4767
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fraction -204; when v = the fraction becomes dn'uj (I
—dn 2

u), which

is cs'W, and therefore the constant factor is unity:

/ dnudn'v—dnvdriu
12-21 cs(u+v) = — j- .

If it is a formula for d\\(u-\-v) that we require, we replace v by v—Kn .

Since dn(v— A'„) is a constant multiple of csv, the numerator in -204

then becomes a multiple of

dn u cs'v— cs v dn'u,

that is, of —dn u ns v ds v— dn'u cs v

and therefore of (dnwdni>+dn'wsnvcnv)ns
2
v.

Thus dn(u-\-v) is a constant multiple of

dn u dn v— (l/c)dn'w dn'v

{dn
2w—dn2

(v—Kn )}sn
2v

'

Substituting
— cs2v for dn2(v—Kn ), we have the denominator

dn2usn2
v-\-cn

2
v,

that is, 1—csn2wsn2
r, and since the fraction becomes 1 when u and v

are zero, the constant factor is again unity, and we have

dnwdnv— (l/c)dn'wdn'v12-22 dn(u+v) = - — ' -

1—csn^wsn^
another classical result.

12-3. Up to a point the argument of the last paragraph is perfectly

general, for the values of the coefficients in the cubic equation -203 are

not used. If pqw is any one of Glaisher's twelve functions, and if

<f>{w)
=

Y>q
2
w, then (f)'(w) has a triple pole at K

Q ,
and AK

Q
is either zero

or a period of <}>{w). Hence i>q(u-\-v-\-Kq )
is a constant multiple of

3Q1 yquvq'v-ipqvyq'u

Y>q
2
u—ipq

2v

The function pq(w-)-A'g ) is infinite at the origin, and is therefore a

multiple of the primitive function which is coperiodic with pqw; if

then this primitive function is rsw, it follows that rs(w+v) is a constant

multiple of the fraction -301. Suppose that for small values of u,

•302 pq(w+Ag )
~ apju.

Then

•303 lim Pq^+ ĝ)pq,^+ -gg)
~
Pq(?;+Ag

'

;Pq/(M+jgg ) - Pq(^+ Â )

b-o pq
2(w+Ag)-pq

2(v+Av ) ap
1

'—< —
.

u
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On the other hand,

•304 ]hnra{u+v+2Kq )
= ts(u+2Kq )

u

the negative sign occurring if 2K
q

is a halfperiod of rs u, that is, if K
q

is not one of the two points Kr ,
K

s :

12-31. // pqw is any one of the four functions coperiodic with the

primitive function rs u, then

rs(^+v) = zli 2

1M
,
FM

-,

pq
Jw—pq^

£Ae 5^w being positive if pq^ is rsw or srw. negative if pqw is one o/ ^Ae

other two coperiodic functions.

This theorem, which gives four formulae for each of the functions

cs(w+v), n&(u-\-v), ds(w+v), and therefore for each of their reciprocals

bc(u-\-v), sn(u-\-v), sd(w+v), is the simplest comprehensive addition

theorem for Jacobian functions. As soon as algebraical combinations

are formed and simplified, the constants c, c' enter and repetitions
are rare.

The expression pqwpq'v—pqvpq'w, is an awkward denominator. If

•305 pq'
2w = Apq%+ju,pq

2
w+i>,

then

•306 pq
2
wpq'

2w—pq2
vpq'

2w = (pq
2w—pq2

v)(j/—Apq
2wpq2

v),

and we replace the reciprocal of the fraction in -31 by

pq u pq'v+pq v pq'w
v—Apq2wpq2v

the coefficients v, A being taken from Table XI 11. Since identically

. 307 qpwqp'v+qpvqp'w pq^pq'w+pqvpq'^
A—vqp 2%qp 2v v—Apq2wpq2v

we record only one of a pair of formulae related in this way.
12-32. Addition theorems for the functions with zeros at the origin are

as follows :

«9 .
. v scwsc'v+scvsc'n dnwdn'v+dnrdn'w

*oZj_ SC^W
—
(- VJ — = —

1—c'sc2wsc 2v dn 2ud\\ 2v— c'

on cm/ i

x snwsn'v-fsnvsn'w cdwcd'v+cdvcd'w
'"•"3-4 ali\U-\-V) — =

1—csn 2^sn2w 1— ccd 2wcd2v

on j/
,

, v sdwsd'v-fsdvsd'w cnwcn'w+cnwcn'w
l+cc'sd 2wsd 2v c'-f-cci^cn

2
!!
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We can recognize the coefficients in the denominator of the formula

giving sq(u-\-v) in terms of squ and sqv and their derivatives. If

•308 sq'
2u = Asq%+ju,sq

2%+r,

then putting u = we have v = 1; also

•309 A = lim (
Sq
^\

2

= qs'
2AV

u^KgXsq^u)

12-33. For a Jacobian function squ which has a zero at the origin,

. . sq wsq'v-fsq vsq'u
sq(u+v) = -^ \-—\

—\.
1— qs -A

g sq*u sq^

If Kp ,
K

q ,
Kr are the three cardinal points distinct from Ks ,

then

•310--311 ps'w = — qswrsw, sq'w = ^quiqu.

We can therefore replace the derivatives in -31 by products without

complicating the formulae if the functions differentiated have poles or

zeros at the origin:

12-34^2 ps(w+v)

qs u rs u ps v— qs v rs v ps u sp u qp v rp v— sp v qp u rp u

ps
2w—ps

2v sp
2w— sp

2v

Similarly from -33

100 _ /it sqwpqvrqv+sqvpqwrqw12-35 sq(w+«) = ,

—?
'

2

r
2
——

,

1— qs
zA

g sq^ &q*v

and in detail from -32J 35

12-36!
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where Kr
is the one of the three points Kc ,

Kn ,
Kd that is distinct from

Kp and K
q

. We have therefore

. rswpq'r— pqrrs'w
•401 pqw+v) = —f^

™
- .

rs 2?t—rs^A^pq^

But rs'w = —pswqsw = —pqwqs2
?*,

rs2w— rs2A^pq
2w = rs2w—rs^^l+ps^sq2

^)
= qs

2w— qs'
2A"

g sq
2
v.

Hence

1— qs
lK

q ^q
z
u^q

zv

Expressing pq'v as —
qs

2A
?J rqi;sq?;,

we have the comprehensive

theorem

12-41. If Tpqu is a Jacobian function for which the origin is neither

a pole nor a zero, then

pq u pq v— qs
2
A~„ sq u rq u sq v rq v

1— qs
2A

9 sq
2w sq

2v

which includes the classical formulae

en ^ en v— sn ^ dn usnvdnv
12-42

x cn(w+v) =

12-422 dn(u+v) =

1—csn2itsn2v

dn w dnv— c sn wcriMsnwcn?;

1—csn2wsn 2v

Alternatively, replacing rqwsqw in -402 by — sq
2A

g pq'w, we have

the numerator expressed purely in terms of one function and its

derivative :

12-43. // pqw is a Jacobian function for which the origin is neither

a pole nor a zero, then

.
, , r>quT)qv—sq 2Kn r>q'ur>q'v

pq(tt+v) = , ,21/ a -2~'
1— qs

2K
q sq

2w sq
2v

This is the theorem of which -11 and -22 are cases; the denominator

can be written

1— sq
2
A~p qs

2A"
r(l
—pq

2
w)( 1—pq

2
v).

By adding a quarterperiod K( simultaneously to u and v we obtain

from -43 other expressions for pq(w+v) in terms of coperiodic functions

of u and v. Two constant factors are involved, one for the functions in

the numerator and the other for those in the denominator, but it is

simpler to adjust a factor to the whole fraction by putting u and v zero

than to attend to the first of these factors. The complete set of explicit
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formulae follows. The classical formulae for cn(u-\-v) and dn(u-\-v)

reappear.

Table XII i

nc(u-\-v)

ncMncw+nc'Miic'w
1— c' sc 2u sc2v

en u en v+ cn'w cn'v

(dn
2M dn2v— c' )/c

ds'w ds'«+ ds u ds w

cs2ucs2v—c'

sd'u sd'v+ sd u sd v

(
1 — c' nd2wnd2

v)/c

dc{u-\-v)

dc m dc v+ ( l/c')dc'w dc'v

1— c' SC2M SC 2V

sn'tt sn'v+c'sn«sn«

(dn
2w drx2v— c')/c

ns'« ns'i>+c'nsMns«
cs2wcs 2«— c'

cdMcdy+(l/c
/

)cd'Mcd'v

(
1 — c' nd2w nd2

v)/e

dn(M+ ^)

dn m dn v— ( l/c)dn'w dn'v

1— c sn 2w sn2v

nd u nd u—
(
1 /c)nd'w nd'v

(
1— c cd2w cd2

v)/c'

cs'w cs'w -ccsmcsj;

SCttSCW— CSCMSCD

(dc
2wdc 2v— c)/c'

cn(w+ u)

enwenw- cn'w cn'v

1 — c sn2w sn2«

sd'w sd'i>— sd u sd w

(
1 — c cd2

tt o,d2v )/c'

ds'w ds'v— ds m ds v

ns2w ns2v— c

ncMncv- nc'w nc '«

(dc
2w dc 2v— c)jc'

cd(u-{-v)

cd m cd v—
(
1 /c' )cd'w cd'v

1 + cc' sd2w sd 2v

dc w dcv— (l/c')dc'u dc'v

c-f-c'nAnc2
!)

ns'w ns'v— c'nsunsv

ds2u ds2v -j- cc'

sn'w sn'v-c'snM sn v

c cn2w cn2v+ c'

nd(w+ w)

nd m nd v+ (
1 /c)nd'w nd'w

1 + cc' sd2« sd2v

SC'U SC'V -fCSCMSCt)

c-\-c' nc 2w nc 2v

cs'm cs'u+ c cs w cs v

ds2uds2v -\-cc'

dn m dn v+ ( l/c)dn'w dn'v

ccn2Mcn2w+c'

If in any formula for pq(w+^) we add a quarterperiod to one variable

and not to the other, we obtain an addition formula in which u and v

are arguments of different functions. There is a very large number of

these mixed formulae, a few of which we have already used incident-

ally, but although their origin is simple they are of no obvious intrinsic

interest. An example is

.. . . dn'wcsv— dnucs'v
dn(w+v) = - =- -,

dn^w+cs^

which was virtually the link between -21 and -22.

Another type of formula for the function pq(w+ v) in which neither
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a pole nor a zero is at the origin comes from -31 by simple division.

The denominators of ps(w+^) and qs(w+r) are effectively the same if

ps(w+v) and qs(u-\-v) are expressed in terms of copolar functions, as

can be done in four ways, the choice of pole determining the functions

that must be used. We have, if K
r

is the fourth cardinal point,

qs
2^— qs

2v = ps
2w— ps

2
v, rp

2w— rp
2v = --ps

2
/v

r(sp
2w— sp

2
v),

sq
2w— sq

2v = —
sq

2A'
r(rq

2it— rq
2
v),

pr
2^— pr

2
t> = pq

iKr(({T
2u—qr2

v),

and noting that a negative sign is introduced if ps(u+v) is expressed
in terms of qru or rqw, or if qs(u-\-v) is expressed in terms of prw or

rpw, we have the general theorem:

12-44. // Kp ,
K

q
are two of the three points Kc ,

Kn ,
Kd , and Kr is the

third of these points, then pq(w+r) is expressible in the four forms

. pswpsV— pst'ps'w „„ spwsp'f—spvsp'w
1-2 r~ ~r~> ps/vr .-

—y— —-—
qswqs v— qsvqs u rpwrp v—rpvrp u

•44 *n*-K rqwrq^v—rqjurq'u 2 qvu^v-qvvqv'u
•±-±3_4 bq i\r . — pq ii .

_— _
.

sqwsq v—sq^sq-w prwpr v—prvpr u

There are six functions to which this theorem is applicable, but since

the fractions, unlike those in -31 and -32, retain their structure if

denominator and numerator are interchanged, there are only twelve

distinct formulae in a complete explicit set.

12-5. From -31, substituting for the derivatives, we have

i.i -, / i \ , / i x pswqsv+psvqsit
rsw+rsv

or in an elegant form, due for Jacobi's functions to J. J. Thomson,

12<52 yr(u+v)-\-qT(u-\-v) pr^qr^+pr^qr^
sr(u-\-v) STU-\-STV

Addition of K
r to v gives on reduction

12-53 spA>r(W+^+ sqA;qr(*+*,) =
S^

1̂— rsKp rsK
q
sr u sr v



XIII

THE JACOBI AND LANDEN TRANSFORMATIONS

13-1. One row of poles and zeros, regularly spaced along a line, is very

like another, and a system of parallel rows of this kind forming a

latticework can always be compared in general terms with a system

associated with a particular Jacobian function. The differences, for

example, between the pattern formed by the poles and zeros of scu

and the pattern formed by the poles and zeros of snit are quantitative,

not qualitative. We have to remember however that in the Jacobian

theory shape can not be divorced from size. The normalizing factor is the

key to every problem of fitting a Jacobian function into a given frame.

Suppose that we do wish to interchange, while retaining geometrical

similarity, the parts played by the first two quarterperiods. We have

a system in which Kc
= a

,
Kn
=

j8.
We can not postulate a system in

which Kc
—

jS,
Kn = a, for we have no reason to think that such a

system exists. But we may legitimately postulate a system in which

Kc : Kn = fi
: a, or in other words postulate a factor

jii
such that

(jii/3, [xa)

is a Jacobian basis, and we can investigate the relation of the system

in which Kc
=

/x/3,
Kn

=
fia to the system in which Kc

= a, Kn = /3.

It is convenient to introduce a comprehensive notation to be used

in the various transformations which we are about to study. We write

v for the new variable fxu, and Hc ,
Hn ,

Hd for the quarterperiods of

the functions of v, with Hs as an alternative symbol for the origin ;
we

use b, b' for the parameters, h, h' for the moduli, and i for the signature,

of the Jacobian system with basis Hc ,
Hn . In each of our problems we

take a relation between the basis H
c ,
Hn and the basis Kc ,

Kn ,
and

we infer relations between b, b' and c, c', or if possible between h, h'
,

i

and k, k', v, and also between functions constructed on the one basis

and functions constructed on the other; we find also the ratio of v to u,

that is, the normalizing factor
/x.

Throughout this work the table of leading coefficients, XI 7, is

invaluable.

13-2. Our first problem is defined by the pair of formulae

•201-202 Hc
= fxKn ,

Hn
=

[jlKc ,

implying at once

•203 Hd
= tiKd ,
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and, since the direction of rotation is reversed,

•204 i = — v.

The relation between the two systems is symmetrical.

Functions for which the origin is neither a zero nor a pole can be

identified by their structure, since the value at the origin is unity in

each system. Thus

•205--206 cnv = new, dnv = dew.

But sn v, which has the zeros and poles of sc u, is given by

•207 snw = /jiscu,

since the relations snt».~«, sew <~ u must be consistent with v = \iu.

We have now only to take u and v at cardinal points to obtain from

•205, -200, -207 relations between the constants of the systems.

Explicitly, since snHc
= 1, and u = Kn corresponds to v = Hc ,

we have

from -207

13-21
fi
= csKn = — v.

From -206,

13-22 h! = dn#c
= &cK„ = k,

and it follows that reciprocally

•208 h = ¥,

a relation which we can verify in the form

•209 h = —nsHd = —vcaKd .

Since sn v is an odd function, the relation

sn({xu;h)
=

ij,sc(u;k),

with /x
2 = — 1

,
is equivalent to

•210 sn(iu;h) = isc(u;k)

whether
ju,

is * or — i, and since env and dnv are even functions, the

relations -205, -206 are equally independent of the signature. The rela-

tion between the parameters is

13-23 b = c', b' = c,

and since it is the parameters rather than the moduli which charac-

terize a system, we express the conclusion in terms of parameters:

13-24. Ifb = c', then

*241_3 sn(iu, b) = isc(u, c), cn(iu, b) = nc(w, c),

dn(iu, b) = dc(u, c).

4767 e e
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This theorem describes Jacobi's imaginary transformation in the form

that is customary, but the nature of the transformation as a sheer

interchange is made more evident if attention is focused on the set of

functions with the origin for a zero:

13'25j_3 sc(iu,b) = isn(u,c), sntiu, b) = isc(u, c),

sd(iu,b) = isd(u,c).

It need hardly be said that although we use the accepted name for the

transformation, we do not think of u as a real variable and in as an

imaginary variable.

If we write

•211-214 K
c
= K, Kn

= vK', H
c
= H, Hn

= iH',

thus defining K', H' in terms of the signatures of the bases to which

they belong, the initial conditions -201, -202 become, on account of the

value of
/x,

•215-216 H = K', H' = K.

This is the theorem foreshadowed on p. 199:

13-26. If a, v8 is a basis with signature v in the Jacobian system in

which the parameter and its complement are a, a'
,
then 8, ta is a basis

with signature i in the Jacobian system in which the parameter and its

complement are a', a.

Instead of reversing the signature we may take the initial conditions

in the form H
c
= ^Kn ,

Hn = —
f^Kc ', ultimately the same functions are

found, for a, —j3 is always an alternative basis to a, /3,
but we have

now Hd
= ix{Kd -\-2Kc ), and since cardinal points in the one system no

longer correspond to cardinal points in the other system, the com-

parison of relevant values of the functions is much more troublesome.

13-3. We consider next the transformation in which the first and

third elements change parts. Again the signature is reversed, and the

initial conditions are

•301-303 Hc
=
^Kd,

Hd
= ^Kc ,

Hn
=^n ,

•304 i = —v.

The functional relations can be taken as

•305—307 cnv = dnu, dnv = cnu, snv = [xsnu,

implying

13-31 p = nsKd = —k,

13-32 h = —nsHd = -
{1 /ix)nsKc

=
1/Jfc,
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•308 h' = dnHc
= cnKd = -

vk'/k,

13-33^2 b = l/c, 1/ = —c'/c.

As before, the sign of
'

fi
is eliminated in the end, and the result takes

the form:

13-34. 7/6 = l/c and /•- r, Mew

•34
x_3 sn(&w, 6) = ksn(u,c), cn(ku, b) = dn(u, c),

(\n{Lii.h) = cn(u,c).

With an alternative triplet,

sc(ku, b) = ksd(u,c), sn(lx-N,b) ksn(u,c), &d(ku,b) == &sc(w, c).

The transformation described in -34 is known as Jacobis real trans-

formation. Its importance in the restricted theory is that by connecting

a modulus greater than unity with a modulus less than unity it enables

all investigations in which the modulus is real to be conducted with

the useful limitation < k < 1.

13-4. The transformations considered in the last two sections can be

combined and repeated, and they generate a group of transformations.

To understand this group, we have only to think of the Jacobian

functions as derived by means of a normalizing factor from the ele-

mentary functions constructed on an arbitrary set of quarterperiods

oj
f , Wg, aih . The normalizing factor and the parts played by the in-

dividual elementary functions in the unsymmetrical Jacobian scheme

depend on the assignment of parts among the quarterperiods, and there

are six Jacobian sets which differ only in factor and notation. The

possible Jacobian bases are

401-402
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transformations can take us outside the group of six sets with a common

origin, and the totality of these transformations is a group in the

mathematical sense. Symbolically, let Jfi denote the transformation of

•2 and 3f the transformation of -3, and denote the six Jacobian sets

for the moment by the affixes in the scheme -401--406. The trans-

formations ^', Jf are symmetrical; f effects a passage between 1 and 2,

between 3 and 4, and between 5 and 6; Jf' effects a passage between

1 and 4, between 2 and 5, and between 3 and 6. Writing J for identity,

we can express the dependence of the six sets on set 1 by the formulae

13-41^ \ = J\, 2 = /l, 3 = /Jfl, 4 = Jfl, 5 = Jf/1,

6 = /JT/1 = JT/Jfl.

The symmetrical or involutionary character of the two Jacobian

transformations is expressed by the formulae

•407-408 / 2 = #, JT2 = J.

If we reverse the formulae -41^,, we have

13-41 7_12 1= J\= /2 = JT/3 = JT4 = /JT5 = /JT/6 = Jf/Jf6.

To find the dependence of the set m on the set n, in terms of the trans-

formations fl ,
Jf

,
we have only to substitute the expression for 1 in

terms of n as given in '41 7_12 into the expression for m in terms of 1 as

given in '41^ and to reduce by suppression off1 and Jf 2
.

The factor by which one Jacobian set is transformable into another

is a ratio of the normalizing factors by which the two sets are derivable

from a common origin. These normalizing factors are given in the first

place as critical values in the elementary set, but if the problem is the

transformation of a Jacobian set, the ratios of the normalizing factors

must be found in terms of the constants of the set to be transformed
,

or, to put the determination differently, the elementary set must be

identified temporarily with that Jacobian set. Thus if the first set is

to be transformed, the transforming factors

^V /^2' /*3> Pi' Phi ^6

can be regarded either as the quotients by gf
of the six normalizing

9f> Jgi kg* 9h> in-* hf,

or as the values in the first set itself of the constants

nsifc ,
csKn ,

dsKn ,
nsKd ,

csKd ,
dsKc ,

and we have

13*42 1_6 fjLm = 1,
—

v,
—

vk,
—

Jc, vie'
,
k' .

We recognize the values of fx2 and jtz4 found already in -21 and -31.
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The signature vm of set m is the constant sc K™
;
the six values are

therefore

fZjSC Kn , fi2 an A',.. /i3 sn Kd , /x 4 sd Kir /x5 sd A'
c , /x6

sc A',, ;

thus

13 '43l-6 vm — y >

— u >
u

>

- u
>
u

>

~~ u
'

as is directly obvious. The modulus km is the value of —naK™; the

six values are therefore
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Now if a, j8, y, 8 are any four numbers, the anharmonic ratio (a/3, yS)i s

a—y /a.— 8

a number depending on the order in which a, j8, y, 8 occur. There are

twenty-four permutations of a, [$, y, 8, but since identically

(«0, yS) = (j8«, Sy) = (78, 0^) = (Sy, j8«),

not more than six of the ratios can be distinct. Also

(ay, 08) = l-(a0,y8), («0,8y) = l/(«0,y8).

Hence if c is the value of one anharmonic ratio of a, /3, y, 8, then ^c,
«^*c are values of other anharmonic ratios of the same four numbers,
and every number generated from c by combinations and repetitions

of the two operators J? ,
3f is an anharmonic ratio of a, /3, y, 8. Since

the group of operators generates from c a set of six numbers which are

in general all different, this set is precisely the anharmonic set to which

c belongs, and regarded as operators on a single variable, $ ,Ctf generate
the anharmonic group.

13-47. Each set of Jacobian elliptic junctions belo?igs to an anharmonic

group of six sets. The group is generated from any one of its members

by combinations and repetitions of Jacobi's two transformations, and the

parameters of the six sets are the members of an anharmonic set of numbers.

The six Jacobian sets are derivable from one and the same set of elementary

elliptic functions by the use in turn of each of the critical values as a

normalizing factor.

The complete set of transformations is given explicitly in the fol-

lowing table, where each column consists of the same function in its

six different forms, and each row contains the three primitive functions

belonging to the same -Jacobian set.

Table XIII 1

The anharmonic group of sets of primitive Jacobian functions

cs(w, c) ns(w, c) ds(u, c)

ins(iu,c') ics(iu,c') ids(iu,c')

ikds(iku, —c'/c) ikcs(iku, —c'/c) ikns(iku, —c'/c)

kds(ku,l/c) kns(ku,l/c) kcs(ku,\/c)
ik' ns(ik'u, 1/c') ik' ds(ik'u,l/c') ik' cs(ik'u, 1/c')

k' cs(k'u, —c/c') k' ds(k'u,
—

c/c') k'riH(k'u,
—

c/c')

If one member of an anharmonic set of numbers is real, the six

members are all real, and in general one and only one of them satisfies
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the condition ^ c ^ J. The only cases in any sense exceptional are

those in which the inequality takes one of its limiting forms c = 0,

c = I; then two members of the set coincide, but the value which

satisfies the condition is still unique. Omitting the case c = which

implies a degenerate set of functions, we can say that Jacobi's trans-

formations can be used to reduce any set for which c is real to de-

pendence on a set for which < c ^ \, and that the conditioned set

is unique.

Fig. 32

When the variable c is complex, the two points c, 1— c lie on opposite
sides of the line through c = \ parallel to the imaginary axis, that is,

the line \c\
=

\c'\, and of the two points c, 1/c, one is inside and one

outside the circle \c\
= 1. The circle \c— 1|

= 1, that is, \c'\
= 1, is at

once the locus derived from the circle |c|
= 1 by the substitution of

1— c for c, and the locus derived from the line \c\
=

\c'\ by the sub-

stitution of 1/c for c. The two circles \c\
= 1, \c'\

= 1 and the line

\c\
=

\c'\ divide the c plane into six regions such that if c is in one of

these regions, the other five points in the anharmonic set to which c

belongs are one in each of the other five regions; this is the anharmonic

dissection of the c plane. To impose the two conditions

•413-414 |c|<l, |C'|<1

is to confine c to two of the six regions, and to add the condition

•415
\c\ < \c'\

is to confine c to a single region, namely, the segment of the circle
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\c'\
= 1 which lies on the same side of the line \c\

=
\c'\ as the origin.

In other words, if cm belongs to the same anharmonic group as c,

the conditions

•416-418 \cm \ < 1, \c'm \ < 1, \cm \
< |4|

provide c with a representative in a fundamental region. In general

the conditions -416—418 determine cm uniquely, but if c lies on one of

the boundaries of the anharmonic dissection, that is, satisfies one of

the equalities

•419-421 |c|=l, |c'|=l, |c|=|c'|,

the anharmonic group consists of three conjugate pairs and the con-

ditions -416--418 are satisfied by both members of one of these pairs;

the two members coincide only in the case already noticed, when c has

one of the real values — 1, 2, | and cm has the value h. The equalities

•419—42 1 are all satisfied simultaneously at the points where the circles

and the line intersect; the anharmonic group consists then of the two

complex cube roots of — 1 each taken thrice, and c has one of these

values, which both satisfy the conditions imposed on cm : the case of

triple coincidence is not an exception to the exception.

13-48. The anharmonic group of numbers to which the parameter c of

a Jacobian system belongs includes one member cm which satisfies the

conditions
|cm | < |cj < 1.

In general this member is unique, but if c satisfies one of the conditions

\c\
= 1, \c'\ =1, \c\

=
\c'\, then cm may have one of two conjugate com-

plex values, unless c has one of the three real values —1, 2, \, when cm
must have the value \.

By describing c as a Jacobian parameter we both indicate the rele-

vance of this theorem to our subject and avoid specific mention of the

degenerate values 0, 1, oo. We can render cm unique in all cases if we

stipulate that in the boundary cases the imaginary part of cm is to be

positive, thus allocating to the fundamental region that part of its

boundary which lies on the positive side of the real axis, but this

stipulation has little functional significance.

The anharmonic group can be studied from the integral side. If in

the relation
00

dx

V{0r
2
-T)(a;

2
-c)}

•422
j

„, . ?* .
= u,
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which is equivalent to x = nsu, we substitute y for x2
,
we see that

13-49. The relation

00

1

J My-m-<y,
"

is equivalent to

•492^4 y == ns2
u, y—1 = cs2

u, y—c = ds2u.

A transformation in which ns2
v, cs2

v, ds 2v are multiples, in some

order, of ns2
u, cs2

u, ds2u is a linear substitution y = kz+A replacing

•49
x by a relation ^

dz

y/{z(Z^l)(Z-b)}
•423

|

In this substitution the values 0, 1, b of z correspond in some order

to the values 0, 1, c of y, and oo corresponds to oo. But b is the value

of the anharmonic ratio (ooO, 16), and therefore, since anharmonic

values are unchanged by a linear substitution, is the value of one of

the anharmonic ratios of the four numbers oo, 0, 1, c, while c is the

value of the particular anharmonic ratio (oo 0, lc) of the same four

numbers. Hence 6, the parameter of the functions of v, belongs to the

anharmonic group which includes c, the parameter of the functions of u.

It is a simple matter to connect each value of 6 with the appro-

priate linear substitution and with the appropriate relation between

H
c : Hn : Hd and Kc :Kn : K

(] ,
but since only the squares of Jacobian

functions are identifiable from -49
2 4 ,

we can not expect to discover

unambiguous relations between the functions themselves. Rather, the

reason why the integral relation -49 x is the simplest foundation for a

theorem concerning a group of values of the parameter is precisely that

the irrelevant distinctions between different bases for the same system
are not explicit in this relation.

13-5. In the Jacobian transformations, the patterns of poles and

zeros are those of the Jacobian functions themselves, modified only by
a kind of rechristening. We turn now to some transformations in which

the Jacobian patterns are first modified by combinations which have

the effect of deleting some of the poles and zeros.

The function dsu has poles with residue 1 at and 2K
C ,
and poles

with residue — 1 at 2Kn and 2Kd ;
the function cs u has poles with residue

1 at and 2Kd ,
and poles with resiaue —1 at 2Kn and 2KC . Hence

the sum dsw-fcsw has a pole with residue 2 at and a pole with residue

4767 F f
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— 2 at 2Kn ,
and the difference dsu—csu has a pole with residue 2 at

2KC and a pole with residue —2 at 2Kd . Since the product ds2w— cs 2m

is the constant c', the poles of one factor are the zeros of the other,

and dsw+csw, which has periods 4=KC ,
4:Kn ,

has poles at and 2Kn and
zeros at 2KC

and 2Kn+2Kc .

A function with a precisely similar pattern of poles and zeros is the

logarithmic derivative sn'w/snw, which has periods 2KC ,
2Kn , poles at

and Kn ,
and zeros at Kc

and Kd . The factor which converts the

pattern of the latter function into the pattern of the former is 2, and

therefore ds2w+cs2w, which resembles \\u near the origin, is identical

with sn'u/snu.

This result is easily confirmed from duplication formulae. From
12-42 2 ,

12-42
x ,

12-36
2
we have, putting v = u,

~~-. -«« i ^ dn2u—csn 2ucn 2u n cn2u— sn2udn2u
•501--502 ds2u = —— -, cs2w = — —— -,2snucnudnu 2 sn u en u dn u
and therefore

•503--504 ds2w+cs2w = ,
ds2u— cs2u =

snu cnudnu'
as required.

Save that the residues at the poles are different, the arguments

applied to the pair of functions ds u, cs u apply also to the pair dn u,

cnu; the first of these has poles with residue — v at Kn and Kn -\-2Kc ,

and poles with residue v at 3A'„ and %Kn Jr 2Kc ,
the second has poles

with residue — v/k at Kn and 3Kn -\-2Kc ,
and poles with residue v/k at

SKn and Kn-\-2Kc . Hence dnw-j-&cnw has a pole with residue — 2v

at Kn and a pole with residue 2v at 3Kn ,
and dnu—kemi has a pole

with residue — 2v at Kn-\-2Kc and a pole with residue 2v at 3Kn-\-2Kc .

Also dn2u—k 2 cn 2u has the constant value c'. Hence dnu-\-kcnu has

periods 4K
C ,
4Kn , poles at Kn and 3Kn ,

and zeros at Kn-\-2Kc and

3Kn -\-2Kc ,
while for dnw—kenu poles and zeros are interchanged.

We now recognize that the patterns of poles and zeros for the four

functions

dsw+csw, dsu—csu, dnu-\-kcnu, dnu—kenu

are geometrically similar to the patterns for the four functions

csv, scv, dnv, ndw

if the quarterperiods in the two systems satisfy the relation

•505 H
c : Hn = 2KC : Kn .

If

•506-507 Hc
= 2(xKc ,

Hn
= ^Kn ,
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the transformation

•508 v — fxu

renders the functions of u constant multiples of the functions of v.

The constant factors are given by comparison at suitable points: Kn ,

If,, correspond, dsKn = —vk, csKn = —
v, and the two systems have

the same signature; also the origins correspond, and dnO = 1, cnO = 1.

Thus we have the first four of the formulae set out in -51 below.

If we write the relation -505 in the form

•509 Kc : Kn
= Hc

: 2Hn ,

we see that another set of similarities is implied: firstly, nsv+dsv has

poles at and 2HC and zeros at 2Hn and 2Hc+2Htl , forming a pattern

similar to that associated with nsw; secondly, dcv+h' ncv has poles

at Hc and 3HC and zeros at Hc-{-2Hn and 3Hc-\-2Hll , forming a pattern

similar to that associated with dew. That is, the four functions

nsv+dsv, nsv— dsv, dcv-{-h' ncv, dev—h'nev

are multiples of nsu, snu, dcu, cdu

if u — w, where Kc
= vHc ,

Kn = 2vHn . We are dealing with the same

pair of quarterperiods Hc ,
Hn as before, since otherwise there would be

two distinct sets of functions with the same ratio for Hc
: Hn . Hence

2/w= 1,

and the transformations v = /jlu, u — w are not the same. Writing for

a moment w instead of v in the second transformation and retaining

v in the first, we have v = yM — yvu\ and therefore w = 2v. Thus,

since u = Kc implies 2v = Hc ,
and ns//c = 1, dsHc

= h', and since

dcO = 1, ncO = 1, we have a second set of formulae, completing the

following theorem:

13-51. In the transformation o = \jm which implies the quarterperiod

relations u Jr u v

the following functional relations hold:

•51^2 ds%+csw = (l+ fc)csv dsw— csi* = (1— £)sc v

•51 3_4 dnu-{-kcnu = (l-\-k)dnv dnu—kenu = (1—k)nd v

•51 5_6 ns2v-{-ds2v = (l-\-h')nsu ns2v— ds2v = (1—h')snu

•51 7_8 dc2v+h'nc2v= {l+h')dcu dc2v—h'nc2v = (l-h')cdu.

We have determined the factors in -51^ and -51 5_6 without reference

to the origin, since comparison there involves the factor
/jl. Making the

comparison in -5^ and -51 5 we have 2/x
= (!+&)> fx(l-\~h')

= 1:
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13-52. In the transformation v = \iu with the quarterperiod relations

Hc
= 2fMKc ,

Hn = fiKn ,
the factor /x

is 1(1 -\-k), and moduli in the two

systems are connected by the relation

(1+70(1+*) = 2.

Other relations between constants can be obtained algebraically from

•52 or functionally by substitutions in the formulae of -51. We have

1—k /1-M 2
io 4fc

•510-512 &' = __ = (__), h2 =
l+&~~\ V f

'

(l+kr

and in the other direction

•513--515 k = -—_ = {___], k' 2 =

518--519 c&m, = h', k' = -—-cs|/ic

1+h' "\ h
)

'

(1+ h'f

If in -51 5 we substitute u = \Kn ,
v = \Hn ,

we have

•516 h = —^-nslKn .

It is easily shown that

•517 ns2P^ = —
^,

and -516, necessarily consistent with -512 and -514, is an instance of

an unambiguous relation between three square roots which can not be

extracted severally. Similarly,

2

1+h'

The set of functional relations in -51 is in a sense complete, for if

the required periodicities are to be preserved, poles can not be removed

by additions and subtractions except in the combinations given in this

enunciation. This is one reason for giving the full tale of eight relations.

A second reason is that, although the relations are interdependent, the

explicit dependence of individual functions in one system on functions

in the other system is by no means obvious unless the eight relations

are all in view. The relations are interdependent, but they are not

deducible algebraically from any one of them without irrationalities,

that is, without ambiguities that have to be removed by functional

considerations.

The transformation described in -51 is equivalent to a transformation

of elliptic integrals discovered by Landen, and it is known by his name.

The usefulness of the transformation in the elementary theory in which

attention is concentrated on real values of the variables will be seen

in our concluding chapter. In the original view of the functional rela-
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fcionships which are now absorbed into the theory of elliptic functions,

the function F(<f>:k) with amplitude <f>
and modulus k is defined as

W; *)=
/v(l-*

2BinW
o

and a transformation is a relation between integrals corresponding to

relations between amplitudes and moduli. From the later point of view,

if u = F((f>;k), v = F(x;h), the amplitudes <f>, x are regarded as func-

tions an\(u;k), an\(v;h), but the transformation expresses the same

correspondence of relations. In practice the relation between ampli-
tudes takes a trigonometrical form, and therefore becomes implicitly

if not explicitly a relation between Jacobian functions, since sin</>, cos</>,

d(f>ldu are identical with snu, cnu, dnu.

The integral ^

dcf>

I V(l-&
2 sin2

c/>)

o

is not of the form of the integrals whose inversion has been studied,

but the relation x = sin</> which converts this integral into Legendre's
form x

dx

I <J{{l-x
2
){l-k

2x2
)}

o

is a familiar relation between complex variables x, <f>,
and the use of the

relation u = F(<f>; k) as a definition of
<j>

as a function of u, with k para-

metric, is entirely justified by the investigation in Chapters V-VIII.

Alternatively, we may define the function am u by the pair of equations

sin(amu) = snu, cos(amw) = cnu.

The amplitude is indeterminate, by an arbitrary multiple of 2-tt, but

a trigonometrical relation which does not involve submultiples of an

amplitude is not ambiguous in any respect.

To find the trigonometrical relation between the amplitudes <f>, x in

the Landen transformation we have only to eliminate dsu between -51j

and -51 2 ;
there results

13-53 2cot0= (l+fc)cotx—(1—&)tan x .

For the determination of
</>

in terms of x we may modify this formula to

(l-ffc)(cotx— cot</>)
= (1— k)(cotcf)-\-tanx),

that is, to

•520
tan((/>

—
x)
— h't&nx-
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If
cf>

is given and x is required, we write instead

coscf> cos 2x~\-k

sin
cf>

sin 2^
implying

•521 sin(2^— cf>)
=

&sin(/>.

Thus we have the two equivalent forms of Landen's theorem:

13-54
1

. // the modulus and amplitude of the elliptic integral F{<f>;k)

are given in terms of the modulus and amplitude of the elliptic integral

F(x;h) by the relations

h = (1—h')l(l+h'), tan(0- x )
= 7t'tan Y ,

then F(cf>;k)
= (l+h')F(x ;h).

13-542
. If the modulus and amplitude of F(x',h) are given in terms of

the modulus and amplitude of F(c/>;k) by

h' = (l-&)/(l-f &), sin(2x -<£) = &sin</>,

then F(x ;h) = l(l+k)F(<f>;h).

13-6. The Landen transformation doubles the ratio of K
c to Kn . It

is therefore one of a set of six transformations, which fall into three

reciprocal pairs. The transformation which doubles the ratio of Kn to

Kc is only the transformation of the last section read in the reverse

direction. We do not however obtain a true comparison between the

two transformations merely by interchanging u and v in the formulae

already found, for if the transformation which implies Hc
=

2[j.Kc ,

Hn = [iKn is written as v = fiu, the transformation which implies

Kc
= vHc ,

Kn
= 2vHn should be written as%= w. Thus if we write

v = 1/2ju. in order to throw the conditions to be satisfied into the form

we require, we must, as we have already noticed, replace 2v by v in

order to present the transformation itself correctly. This done, we can

interchange the two systems throughout:

13-61. In the transformation v = [xu which implies the quarterperiod

relations „ tz norH
c
=

t^Kc>
Hn

= 2PKn>

the factor [i is |(1+A;'), and moduli in the two syste7ns are connected by
the relation

•6l! (l-\-h)(l+ k')
= 2.

The functional relations are
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•61 2_3 nsw+dsw = (1+A:')nsv nsu—dsu = (1— k')snv

•61
4_5 dcu-\-k'ncu — (l-{-k')dcv dcu—k'ncu = (1

—
k')cdv

•61 6 7 ds2v+cs2v = (l-{-h)csu ds2v— cs2v = (1—h)scu

•61 8_9 dn2i;+^cn2v = (l-f/&)dnw dn 2v—hcn2v = (1—h)ndu.

The transformation in this form is sometimes called Landen's second

transformation. The trigonometrical form of the transformation,

obtained by eliminating dsu between -61 2 and -61 3 ,
is

•601 2csc<£= (l+^')cscx+(l— k')sin X -

This relation is not susceptible to modifications corresponding to -520

and -521, the reason for the difference between the two transformations

in this respect being that the relation of the function ami* to the

system is not symmetrical as between the quarterperiods Kc ,
Kn . To

express the second Landen transformation in theorems parallel to -54
x

and -542 ,
it is necessary to introduce a hyperbolic amplitude defined by

•602--603 sinh0 = scu, cosh0 = new

or by
9

dd
•604 u

J V(i+ &' 2 sinh 2
0)

o

The hyperbolic amplitude is connected with the circular amplitude </>

by the relation

•605 cos
cf>
cosh = 1;

that is to say, <j>
is the gudermannian of 0.

If
ifj

is the hyperbolic amplitude of v, then

•606 2coth0 = (l+ ^cothi/r-Kl-fc'Hanhi/j,

whence we have the two trigonometrical forms of -61:

13-62
lt If k' = (l—h)/{l+h) and tanh(0— ifj)

= httmhib, then

9 4>

f dd _ n I n f #
J V(l+A:'

2 sinh 2
0)

" ~
[ + l)

J V(l+^
2
siiili

2
<A)'

o o

13-62 2 . Ifh = (1—k')l{l+k') and sinh(20-0) = jfc'sinhfl, then

4> 9

f # = 1/14.1;') f
dd

J V(l+A'
2 sinh 2

0)"'
2V '

J J{l+ k'**inhWy

Another method of deriving -61 from -51 and -52 suggests a simple
means of completing the set of transformations. In -51 let us apply
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to both the basis Kc ,
Kn and the basis Hc ,

Hn Jacobi's imaginary trans-

formation. We have then bases K'c ,
K'n and H'c ,

H'n such that

•607-608 K'c
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13*63. In the transformation v = \jm which implies the quarterperiod

relations tI n ,* Ir „

the factor /x is h(k-\-vk'), and moduli are connected by the relation

•63! h = {k—vk'f.

The functional relations are

•63 2_9

nsM+cs'W = (k-\-vk')nav nsw— csw = (k-vk')snv

kcdu-{-vk' ndu = (k-\-vk')cdv kcdu— vk' ndu = (k-vk')dcv

ds2v-fcs2v = (l+Zi^dsw ds2v— cs2v = (1—h)ksdu

dn2v-|-7&cn2i> = (l-\-h)cnu dn2t>—hcn2v = (1—h)ncu.

13-64. In the transformation v = p,u which implies the quarterperiod

relations „ p- u o is

the factor /x
is h—vh', and moduli are connected by the relation

•64t
k = {h-vh'f.

The functional relations are

•64
2_9 dsw+csw = {\-\-k)h~

l dsv dsw— csw = (1
— k)hsdv

dnu-{-kcriu = (l-\-k)cnv dnu—kcnu = (1
—k)ncv

ns2v+cs2v = (h-\-vh')nsu ns2v— cs2y = (h
— vh')snu

hcd2v-\-vh' nd2v = (h-\-vh')cdu hcd2v—vh'nd2v — (h-vh')dcu.

13-65. In the transformation v — [jm which implies the quarterperiod

relations tj tt u tzHd
= 2A, Hc

= fiRc ,

the factor /a is h'-\-vh, and moduli are connected by the relation

•65! k' = (h'+vh)
2

.

The functional relations are

65,_9 nsw+dsw = (l+ &')(7&')
-1 dsv nsM-dsu = (1— k')h' sdv

dcu-\-k'ncu = (l-\-k')ncv dcu—k'ncu = (l-k')cnv

ns2v+cs2v = (h-\-vh')csu ns2v— cs2t> = (h-vh')scu

h cd 2v-\-vh' nd 2v = (h~\-vh')nd u hcd 2v—vh' nd 2v = (7i— u^')dn w.

13-66. In the transformation v = \m which implies the quarterperiod

relations u r/ „ o v

the factor /jl
is l(k'—vk), and moduli are connected by the relation

•66! h' = (k'+vk)
2
.

4767 G g
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The functional relations are

•662_9 nsw+csit = (&'
—

vk)csv nsu—csu=(k'-\-vk)scv

k'ndu—vkcdu = (k'—vk)ndv k' ndu-{-vkcdu = (k'-{-vk)dnv

ns2v+ds2v = (l+h'W^dsu ns2v—ds2v = (l-h')k'sdu

dc2v+^'nc2i; = (l-\-h')ncu dc2v—h'nc2v = (l-^')cnM.

While the set of six Landen transformations is in one sense complete,

it is not mathematically a group, for repetitions and combinations

provide an unlimited number of transformations of which no two are

identical. If 3P is the resultant of any succession of Landen transforma-

tions, the inverse transformation £P~X is the resultant of the inverse

Landen transformations taken in the reverse order, and the Jacobian

system with basis a, /3 belongs to a chain

... 0>-\^$) &-\*,P) («,/&) ^(cx,j8) ^2
(a,j8) ...

which is endless in both directions. For example, if j£? is still the trans-

formation of -51, and Je?
-1 therefore the inverse transformation of -61,

there is a Landen chain

•614 ... J^- 2
(a,i8) JSf-H^jS) (a,j8) J2?(«,j8) J^ 2

(
a ,jS) ...

along which the ratio Kc : Kn takes the values

•615 ... a:2 2
£ <x :2j8 a :

]8
2a :

/3
22a :

/3
....

This chain has, as we shall see, special importance for the evaluation

of real integrals and real functions.

13-7. In the practical problem of reducing an integral

dz

V0(z)

in which
<f){z) is a polynomial of the fourth degree to a standard elliptic

integral, the distinction between real and imaginary is paramount, and

this problem belongs to a later chapter, but there are theoretical con-

siderations to which the distinction is irrelevant, by which this problem
contributes to the understanding of the transformations of Jacobi and

Landen. In the practical problem the coefficient of z4 in
<f>(z)

can not

be ignored, since the whole character of the result may vary with the

sign of this coefficient, just as, in a simpler case, the integrals

r dt r dt

)

are associated with functions between which there is very little re-

semblance in the real domain. In the practical problem again we must
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not suppose a polynomial to be decomposed into linear factors unless

we are prepared to recombine conjugate complex terms. But in a

theoretical investigation a constant factor Va is removable by a trivial

change in the variable, and we may take the function (f>(z)
in the form

(z— a)(z— yS)(s
—
y)(z— 8), where, since a repeated factor renders the

integral elementary, we may suppose the roots a, B, y, 8 to be all distinct.

The two standard forms of the elliptic integral which we shall use

are those corresponding to the functions nsw and ns2
w, namely,

•701-702 f *!— f ^ •

x y

if u is the value of the first integral, then x = nsw, and with the sub-

stitution x 1 =
y, the value of the second integral is 2u. The funda-

mental problem is the reduction of the integrand, and a transformation

which affects only the constants of integration is unimportant.
A nomographic transformation

•703 z' = \
Z~^
z—v

converts
j c7z/V0(z) into a multiple of f dz' j\

!

ijj(z'), where the zeros of

ifj(z') correspond under the transformation to the zeros of (f>(z). The

function $(z') is necessarily of the fourth degree unless one of the

factors is removed from </>(z) by the denominator z—v, that is, unless

v is one of the zeros a, B, y, 8; formally, oo on the one side then corre-

sponds to a zero on the other side. Thus one transformation which

converts f dz/\'<f>(z) into a multiple of the integral in y is

_ A . a—y z— B
•704 y = Y- C,

y—p oc—z

where z = a, B, y are chosen to correspond to y = oo, 0, 1; since then

the factor y—c must be provided by the factor z—8, the value of c is

given by
_Ar oc—y 8— B
•705 c = £•--?

y
—
p a— o

That is to say, c is the anharmonic ratio (ocB,yh).

The only arbitrary element in this transformation is the choice among
a, B, y, 8 of the three zeros to play the definite parts allotted here to

a, B, y. If the zeros are permuted in such a way that the anharmonic

ratio is preserved, the same Jacobian system is being used, and the

change is no more significant than the use of cosines instead of sines
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in an elementary integration. Other permutations change the Jacobian

system, but from -705 the only systems that can be introduced are the six

systems composing one anharmonic group.

It follows from the relation between the integral in x and the integral

in y that one transformation for reducing the integral j dzj^<j>{z) to the

form -701 is

13-71 X*=°^1
Z
JZI,

y—p oc—z

and that then

13-72 fc
2 =

(aj8,yS).

But the reduction can be effected also by a homographic transforma-

tion in which the linear factors x—1, x-\-\, x—k, x-\-k correspond to

the linear factors z— a, z—
jS, z—y, z—8. If the correspondence is in

this order, the transformation is identified by the first three factors as

13-73
1-kx+l = ct—y z—fi

k-\-l'l—X y—P'a—z'

and since x = —h corresponds to z = 8, the condition to be satisfied

by the modulus k is

That is, if

s =
«•

then I is a modulus of the system with which the integral \ dzj*J<f>{z)

is associated by the transformation -71. We have seen in -510 that the

ratio (l—k)/(l-\-k) is also the complementary modulus of the system
derived from the system whose modulus is k by the first of the Landen

transformations. To replace I by a complementary modulus is only to

permute a, j8, y, S in the transformation -71; identically,

(o^, y8) = l-( ay,j88),
and if

13-75 & = £!.?=*,
p—y oc—z

then f dz/^<f>(z) is a multiple of
J* dx/y]{(x

2—
l)(x

2—h2
)},

where

13-76 h2 =
(<xy,pS), h' 2 =

(aftyS).

We have now
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l— k
the relation = —h'

is equivalent to ,,
— h'

,

1+(V*)

and to change the modulus from k to Ijk is only to permute a, j3, y, 8

in the transformation -73:

13-77. An integral
J* dz/yf<f)(z) in which

<f>(z)
is a polynomial of the fourth

degree is reducible to the standard form f dx/J{(x
2—

l)(x
2— k2

)}
both by

a homographic relation between z and x2 and by a homographic relation

between z and x. The systems of elliptic functions corresponding to a

reduction of the first kind are derivable from the systems corresponding

to a reduction of the second kind by Landen's transformation.

If we take
<j>{z) already as (z

2
—l)(z

2— k2
), we have Landen's trans-

formation at once in the form

13-78 x* = -JL .?=*,
1+ fc z— 1

where x2 = oo, 0, 1 correspond to z = 1, k, —1, and if x2 = h2 corre-

sponds to z = —
k, then

•708 h2 = 4k

(l+k)
2

as in -512. But the origin and the details of the algebraical trans-

formation are clearest if the problem is seen as a special case of a general

problem.



XIV

INTEGRATION AND THE INTEGRATING FUNCTIONS

14-1. The product of any number of functions belonging to the same

Jacobian system is an elliptic function whose poles and zeros, of

arbitrary multiplicities, are situated at cardinal points; such a function

we shall call a general Glaisher function.

If we treat a zero as a pole of negative order, or a pole as a zero of

negative order, we may say that the typical function of this kind has

poles of orders h, k, I, m or zeros of orders — h,
—

k,
—

I,
—m, at K

s ,
K

c ,

Kn ,
Kd ,

where h, k, I, m are any four whole numbers, positive zero or

negative, subject to the condition

•101 h+k+l+m = 0.

We denote this function by shcknldmu, or by any variation in which

the upper affix is replaced by a lower affix which then defines the order

of a zero. One affix may be omitted, since it can be supplied from -101,

and if a cardinal point is known not to be wanted the corresponding

letter may be omitted. Thus in this notation p^q^w can be replaced

by ~pq
n
u, whether n is positive or negative, and the function so denoted

is the function (pqw)'
1

already denoted in the same way. It is necessary

to agree that pqw is abbreviated from p^w, not from p
1
q1 w, and this

is a natural convention.

We can express the general function in terms of three functions at

whichever of the four cardinal points we wish. For example, in terms

of the primitive Jacobian functions,

•102 scA.nz
dm w = cs fcw ns% dsww,

and in terms of Jacobi's functions,

•103 &hc,jAnip.u = snhuciikudnmu.

The notation is particularly useful for the logarithmic derivatives of

Jacobian functions
;
these are functions with simple poles at two of the

cardinal points and simple zeros at the other two, and although they
can be expressed as products in the elementary notation, this expres-

sion is not unique and compels us to bear in mind that pqurtu is the

same function as ipturqu. We can now write, omitting one affix,

•104—-105 sn'u = c^ntt, sn'w/snw = s^dmw.
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With positive affixes only, there are six types of function, which,

with an arbitrary constant factor included, are

106
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pA_2r
z_2

t
m
w, 'gh_^i>

m~%
u, and by repetition of the process is the sum of

multiples of the functions

•113 ph _rr
l-r

t™u, vh _r_ 2T
l-'tm- 2

u,..., vh_r_sT
l-r

tm-s
u,

114 p^/t^-X vh _s_2r
l-Hm-s

u,..., ph_r^-rtm-s
u,

for any even values of r, s. A single even affix does not now reduce

the type of a function. If I and m are both even, we can take r = /,

s = m, and the sets of functions -113, -114 become

•115 Pmt
m
w, pm_2t

m- 2
u,..., p 2t

2
w, 1,

•116 p,r%, p^r*"
2
^..., p2r

2
%, 1,

composed entirely of functions of type (i). If I is odd and m even, we
can not eliminate the point Kr by any choice of r in -113, but by taking
r = Z-f-1 we convert this point into a zero; the two sets of functions are

• 1 1 7 Pm-lrlt?X Pm-3rlt
m"2

W, • • •
, P^t2

?*, p
Xr

x U,

•118 P/r
z

w, p;
_ 2r

/_2
w,..., pxr%, p

1

^^,

of which the second consists of functions of type (i), the first of func-

tions of type (ii) together with the one elementary function rpw.

Similarly, if I and m are both odd, we take r = l-\- 1, s = m-\- 1 in -113,

•114, and we have the two sets of functions

• 119 Pm-iritWw > Pm-3ritm_2M>-, P 2
rit

3
w, r

xt%, p^t^,
•120 Pi-i&iU, Pz- 3r'"

2
t! u,..., VoT%u, tHj^u, p^r^u,

composed of functions of type (ii) with the elementary functions rt-w.

and tr u. Thus in every case a function of type (iii) is the sum of func-

tions of types (i) and (ii), and -11 is applicable:

14-12. A function of type -phr
ltmu is the sum of functions of type

C~pt
mu and functions of type C~pt

m
wpt'u, with m ^ 0.

Instead of examining the function of type (vi) as it stands, we may
regard this function as the product by ipkq

ku of the function
'Pi+mT

ltmu
which we have just dissected. In the sets of functions -115--120, each

non-constant function has only one pole, and if K
r
or K

t
occurs as a

zero, this zero is simple; moreover, iph^u in -119 and -120 is the only
function in which the points Kn Kt

both occur as zeros. Hence if we

multiply throughout by p^q^w, we obtain, except in this one case,

either a function with not more than two poles and with Kp for the

only zero, that is, a function of type (i) or (iii), or a function with not

more than two poles, with not more than two zeros, and with one of
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its zeros simple, that is, a function of one of the types (i), (ii), (iii), (v'):

the product pk(\
k
'u

j>-i--,
t

,
// may be p'q'i'iti". of type (v'). c^-ij^t x

v/ . of

type (ii), or 'Pk-2clkTi^i u '
°f tyPe (iy )> birt (v') remains the only type

not yet considered.

To deal with (v'), we write the function p^r'f'w as the product

p
1

q1 wp/l+1i
J
t"'w, and multiply throughout -115, -110, -119, -120 by the

factor p'qx^. If K„ is already either a pole or a zero, the resulting

product has only one pole and is of one of the types (i), (ii), (iv); the

functions in which Kp does not figure are the constant in -115 and -1 K>,

and the functions rxt%3
r1

t
1
w in -119, -120, and in these cases the pro-

duct is either the elementary function qpw or a function, q^pH 1
?* or

q 1
t
1p

1r 1
«, with two simple poles and two simple zeros, a multiple of

a logarithmic derivative. To include the logarithmic derivative in the

formula Cpf'wpt'w of -11 and -12 we have only to allow m to take

the value — 1. Replacing ptw by our more familiar pqw, we have the

result:

14-13. The general Glaisher junction is the sum of a number of terms

each of which has one of the two forms Cj>q"
l

u, Cpqm_1
wpq'w, where C

is a constant and m is zero or a positive integer.

The remarkable features of this theorem are that each term involves

only one of the twelve Jacobian functions, and that therefore negative

powers are not invoked except in the case of the logarithmic derivative.

The theorem is not to be confused in character with Liouville's theorem

on the expression of one elliptic function by means of a coperiodic

function and its derivative. Liouville's theorem requires rational func-

tions, not merely positive powers, while in -13 different terms in the

sum may involve different elementary functions, and the elementary
functions are not all coperiodic.

14-2. From -13, since pq'"
_1
^pq'w is immediately integrable, it fol-

lows that the problem of integrating the general Glaisher function rests

entirely on that of integrating positive integral powers of the twelve

Jacobian functions.

For the function pq u there is a relation

•201 pq'
2w = Apq

4
w+/u,pq

2
w-f v,

given in Table XI n, implying

•202 pq"w= 2Apq%+/xpqw.
4767 H h
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We have therefore, for any value of m,

•203 — (pq
m
-%pq'%)

du

= {(m
—

l)(X'pq
i
u-\-fx])q

2
u-\-v)-\-(2Xi[)q

i
u-{-fx'pq

2
u)}])q

m- 2u

= (w+l)Apqw+2w+m/Ltpq'"w+(m— l)vpq
m~2

u,

from which follows a formula of reduction connecting the integrals of

pqm+2u, -pq
m
u, pq

m_2w.

With m = 1, -203 is identical with -202 and gives a formula for the

integral of pq
3w in terms of the integral of pqw; we can therefore

evaluate the integral of any odd power of pqw in terms of that of pqw.
With m = 2, the constant term v occurs in -203, but this term is in-

tegrable and we can express the integral of pq%, and therefore the

integral of any even power of pq u, in terms of the integral of pq%.

14-21. The integral of the general Glaisher function is the sum of con-

stant multiples of functions each of which has one of the forms

Y>q
m
u, -pq

m
uipq'u, u, logpqw, \ ^qu du, pq

2w du,

where m is zero or a positive integer.

We proceed to consider the integration of pqu and pq
2w.

14-3. The Jacobian function pqw can be integrated by means of the

two functions copolar with it, combinations that serve this purpose

being evidentf from Table XI 5.

Table XIV i

ns'u— ds'u da'u— cs'u
cs u = z

— nsw = — as u
nsw- dsw dsM-csM

1 dc'u— k'nc'u
,

nc'u— sc'u
sc u = — —. . ^r— —

—, dew = new

dnw

k'
'

dc u— k' nc u ncM-scw

1 cn'w+ v sn'w

u'cnw+usntt
1 drv'u— kcn'u

k dnu— kcnu

nsu— csu
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Signs can be altered in the numerator and denominator of any of these

fractions if a negative sign is prefixed to the fraction.

The expression for dnw as a logarithmic derivative brings us back

to the place of this function in Jacobi's work, for if
<f>

is such that

cos^ = cnw, sin<£
= snw, then

e^ = cnw-f-*snw, ie'^d^/du = cn'u+isriu,

formulae which together identify dnu with d<f>/du. This alternative

suggests that avoidance of radicals and auxiliary functions has perhaps
been carried too far. If pqw, rqw, tqu are copolar, nqurqu/rqu
is of the form tq'ul^(Xtq

2
u-\-fj.) and can be integrated in this form,

the necessary constants being taken from Tables XI 2 and XI 5. For

example, csu = —
ns'u/dsu where ds2u = ns2u—Jc2

,
and therefore

csu = difj/du if
ifj

is defined by & cosher = nsw, ksinhifj
= — dsu; the

alternative expression for csw, as —ds'u/nsu where ns 2u = ds2
u-\-k

2
,

leads to the same substitution. The following table gives substitutions

which render the integrations immediate.
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•402 Psw = (ps
2w——

|
du — -,

J \ U2
j U

o

defining a function such that Ps'w = ps
2w and that Psw+l/w ->- as

w -> 0. We call the function Pqw the integrating function associated

with pqw.
The function Pqw is a function with simple poles at the poles of

pqw. If ap is the residue of pqw at a pole, the residue of Pqw there

is —a2
,
which has the same value at every pole. Since every residue

of pq
2w is zero, Pqw is singlevalued. Since Pq'(— w) = Pq'w, the sum

Pqw-f-Pq(— w) is a constant, which is zero whetherf or not the origin

is a pole ;
that is, Pqw is an odd function. If K

t
is any quarterperiod

of the Jacobian system, pq
2
(w+2A",)—pq

2w = 0, that is,

Pq'(w+2ig-Pq'w = 0,

whence Jyq(u-\-2Kl )
—Pqw has a constant value which is recognizable

as Pq2A^ if the origin is not a pole, and as PqK(

—Pq(—Kt ),
that is,

as 2PqiQ, if K
t

is not a pole; if neither the origin nor K
t

is a pole,

Pq 2Kt
= 2 PqKt

. Since the two differences

Pq(w+2Ag-Pqw, Pq(w+2AJ-Pqw
are constant, the function Pqw is doubly quasiperiodic. The constants

of quasiperiodicity are discussed in the next section.

There are evident relations between the twelve integrating functions.

From the relations between the squares of copolar Jacobian functions,

given in Table XI 2, we have corresponding formulae.

14'41
1_3 Nsw— Csw = w,

Dsw— Csw = c'u,

Nsw—Dsw = cu;

14«41 4_6 New—Sew = w,

Dew— c' Sew = w,

Dew—c'Ncw = cu;

Dnw—cCnw = c'u;

14-41 7_9 Snw+Cnw = u,

cSnw+Dnw = u,

14-41 10_12 c' Sdw+Cdw = w,

Ndw—cSdw = w,

cCdw+c'Ndw = w.

t It is to secure this result that Ps u is defined from the origin, although the integral
from Kp would be an easier function to handle.
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In addition -203, with m = 0, is a relation between Pqw and Qpw;
using Table XI n, we have the six formulae

14-42J.3 c'Scu—Csu = sc'ufscu,

cSnu—Nsw = sn'u/snu,

cc' Sdu-\-Dsu = ds'w/dsw;

14-42
4_6 cCnM+c'Ncw = nc'u/ncu,

Dcu—cCdu = dc'u/dcu,

Dnw-c'Ndw = nd'u/ndu.

The function pq'w/pqw is not included in -21 among those required
for the integration of the general Glaisher function, and in fact it is

not essential if the integrals of pq
2w and qp

2w are both available, but

clearly the function is one which we should be ready to use.

To the homogeneous relations between the squares of copolar func-

tions correspond the homogeneous relations

14-43^4 c Cs u+c' Ns u—Ds u = 0,

cScw-fDew—New = 0,

Dnw-c'Snw-CnM = 0,

Ndw—Cdu—Sdw = 0.

For themselves these need hardly be recorded, but if we replace Pqw
by Qpw throughout by means of -42, we have the relations

14-44^4 Scw+Snw+Sdw = scVd 1
^,

Csw+c'Cdw+Cnw = —csWnV
cNdw—Nsw+Ncw = nd 1s1 c1

w,

cDnw—c'Dcw+Dsw = —dn1 c1s1
w,

which are less obvious in the differentiated form.

14-5. Since we can connect Pqw with Tqw by a formula from -41,

Tqw with Qtw by a formula from -42, and Qtu with Rtw by a second

formula from -41, we can formulate a direct relation between the two

functions Pqw, Rtw, that is, between any two of the twelve integrating
functions. In other words, it is not untrue to say that the integration
of even powers of the Jacobian functions requires the introduction of

only one integrating function, and the traditional point of view is that

to perform an integration is to express a result in terms of one function

chosen as canonical. If it is anomalous to recognize that the original

Jacobian triad snw, cnu, dnu is not properly understood except as

a section of Glaisher's interrelated dozen, and yet to insist on reducing
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the dozen integrals to the algebraical minimum, again the tradition has

determined the notation and permeates the literature.

The integral from which elliptic functions derive their name, the

integral giving the length of an elliptic arc, has the form

J
*J(a

2 cos2
<f)-\-b

2 sin2
<f>) dcf>,

o

that is, but for the factor a,

f ^(1-Fsimty)^,
o

where k2 = (a
2—b 2

)/a
2

,
and this is Legendre's first elliptic integral E(<f>).

When
(j)

is regarded as the function amw of the second integral u,

defined by $

dcf>
a

J VU- -&2 sin 2
(/>)

we have ,^(1—&
2 sin2

</>)
=

d<f>jdu
= dnw,

and the first integral becomes
u

dn2u du.

o

It was therefore almost inevitable, historically, that this integral should

become the standard integral of its kind, in spite of the leading position

assigned to snw in the beginning. The integral is denoted by E(u), and

we retain this definition, although of course abandoning any restriction

on the parameter k2
. To express the twelve integrating functions in

terms of Jacobi's function E(u) is to relate each of them, in the manner

already outlined, to the function T>nu. Logarithmic derivatives are

expressed in the notation of • 1 .

Table XIV 3

Csm = — E(u)— c
1
d 1

s1n 1w
Nsm = — E(u)-\-u—c^sWm

Dsw = — E(u)-\-c'u
—c^sWw

Sew = {-EM +s^cWu}/^
Dew = — ^(mJ+w+SjC^cWm

New =
{
— E(u) Jrc'u JrS 1

d
1
o 1n l

u}/c'

DnM = E(u)
SnM = {-E(u)+u}/c

Cnw = {E(u)— c'u}/c

Ndw = {E(u)— c s^d^wj/c'
Cdw = {

—E^+ u+ cs^iCPn^/c
Sdu = {E(u)

— c'u— c s^d^wj/cc'
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Generally speaking, there is no reason for preferring one of the twelve

integrating functions to another, and we should use the functions

appropriate to any investigation without supposing that a solution is

unfinished if it is not stated explicitly in terms of E(u).

The value of the difference Pq(w+2/Tc)—Pqw is evident from

Table XIV 3 in terms of E(2KC ), a constant which is equal to 2E{Kr ),

since neither the origin nor K
c

is a pole of dnw. Writing Ec for E{KC ),

we have

-c•501 Cs(u+2KC)-Csu = -2EC

•502 Ns(w+2A:C)-Nsw= 2(Kc-Ec ),

•503 Sn(w+2A
r

c)-Snw = 2{Kc-Ec )/c,

and so on.

We must notice a distinction between the last six functions in XIV 3

and the first six. In the last six we have

•504-507 Dn 2KC
=2T>nKc

= 2EC ,
Sn 2KC =2SnKc

= 2{KC-Ec )jc,

and so on. In the first six, we have CsKc
= —E

c but 2KC is a pole,

Dc2Kc
= 2(KC—EC )

but Kc is a pole, and so on; in no case are Kc and

2KC both available as arguments. This contrast reappears as a difficulty

in the expression of Vq(u-\-2Kn)—Pqw. Since 2Kn is not a pole of dnw,

E(2Kn )
is finite, but \E{2Kn )

needs identification. The immediate solu-

tion is to admit ~Dcu as a second canonical function D{u). Correspond-

ing to XIV 3 we have another table:

Table XIV4

Csm — D{u)—u— i^djS'c
1^

Nsw = D(u)—n
1
d

1
s 1c 1tt

T>au = D(u)— cu— njdjs'c
1^

8c u = {D(u)-u}/c'
Dew = D(u)

New = {D(u)— cu}/c'

Dnw = — D(w)+w+ s 1
d

1n 1c 1
t(

Snu — {D{u)— Sjd^c^J/c
Cnw = {— Z^wJ-t-cw+s^n'c^/c

Ndw =
{
— D{u)+ M+ c's 1

n
1
d'c 1

tt}/c'

Cdw = {DM-c'ajnjdWuyc
Sdw = {

—
Z)(w)+ cw+ c's

1
n

1
d ,c 1

w}/cc'

Writing Dn for D(Kn ), we have now

CsKn = D,-Kn ,
Dn 2Kn = 2(Kn-Dn ),
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while 2Kn is a pole of Cs u and Kn is a pole of Dn u, but

•508-509 Sc 2Kn = 28cKn = 2{Dn-Kn )jc',

•510-511 I)c2#n = 2DcIw = 2Dn
and so on.

If the quasiperiodicity of the function Pqw in the Jacobian half-

periods 2KC ,
2Kn is expressed by the formula

•512 Yq(u+2lKc+2mKn )
= Pqw+2ZA+2mB,

the values of the constants A, B for the twelve functions are given
as follows:

Table XIV 5

Moduli of quasiperiodicity of the integrating functions

Cs u Ns u Ds u

-E
c , -(Kn-Dn ) (Kc-Ec ), Dn -(Ec-c'Kc ), (Dn-cKn )

Sc u Dc u Nc u

-EJc', -(Kn-Dn)/c' (Kc
-Ec ), Dn -(Ec-c'Kc)/c'\ (Dn-cKn )Jc'

Dn u Snw Cn u
E

c,(Kn-Dn ) (Kc
-E

c )/c, DJc (Ee -c'Kc )/c, -(Dn-cKn )/c

Nd u Cd u Sd u

EJc', (Kn-Dn)/c
f

(Kc
-E

c )Jc, DJc (Ec-c'Kc )/cc', -(Dn-cKn )/cc'

One relation between the two functions E{u), D(u) is apparent from

the two tables XIV 3, 4:

14-51 D(u)+E(u) = u+s^c^u.
Also we can express the constant which belongs primarily to one

function as a limit associated with the other function:

14-52, K, -Dn
= lim \e{u)-

-JL I

14-52 2 K-Ec
= lim \d(u)+—A

for lim (s 1d 1
c1n%— -——] = 0, lim s1d1

n1c%+ -—-\ = 0.

But the fundamental relation between the functions is implied in the

interchange of the parts played by Kc
and Kn . Jacobi's imaginary

transformation replaces one of the functions dn u, dc v by the other,

and we have, exhibiting the dependence on the parameter,

•513 T>n(u,c) = v~Dc(v,b)

if v = vu, b = c', b' = c,
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so that we may write

•514 Dn(c)
= vEc(c').

In view of the relation of the primitive functions cs 2
w, ns2

w, ds2u to

the Weierstrassian function $p(u;Kc,Kn,Kd ), there is a third function

to which the integrating functions are naturally reducible, namely, the

function tyi by which pu is integrated. By definition,

u

•615 iu = l~ j(^'^'
lu

'

and therefore

•516--518 Csu+ug)Kc
= Nsu+upKn = T>su-\-upKd = —t,u.

These formulae however introduce the constants pKc , pKn , pKd them-

selves, whereas only differences between these constants are required

elsewhere in our work.

14-6. In the parallelogram whose vertices are 0, 2KC ,
2K

c-\-2Kn ,
2Kn ,

the function sd2^ has only one pole, a double pole at K'd with leading

coefficient — 1/cc'. Hence the only pole of (u—K'd)sd
2u in the parallelo-

gram is a simple pole with residue —1/cc', and the integral of the

function round the perimeter is —2tti\cc' or 2tt%\cc' according as the

description of the perimeter is in the positive or the negative direction
,

that is, according as the signature of the basis Kc ,
Kn is i or --*; in

other words, the value of the integral is —2ttv\cc! . But

,1KC 2K„ v 2KC

f + f
\(U-K'd)sd 2udu = -

J
2Kn sd2udu = -2Kn Sd2Kc

^ 2Ke + 2Kn

'

= -±Kn{Ec-c'Kc )lcc',

,2Ke+2Kn v 2K„

f + f
\(u-K'a)B&2u du=\ 2Kc sd

2u du = 2K
c Sd2Kn

*

2Ke 2Kn
'

= -4K
c(Dn-cKn )/cc'.

Hence

14-61 KcDn+Kn Ec-Kc
Kn
=

\ttv;

that is, writing

•601-604 Kc
= K, Kn = vK', Ec

= E, Dn = vE',

we have

14-62 KE'+K'E-KK' = \-u,

a relation discovered by Legendre.
4767

I 1
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Legendre's relation is unique, for application of the same method to

any of the twelve integrating functions leads, with differences of detail

in the proof, to the same result. For example, to use (u—Kn)dn
2u we

take the parallelogram whose vertices are —K
c ,
Kc ,
Kc-\-2Kn ,

—Kc-\-2Kn \

one pair of sides gives the integral
— 2KH J)r). 2K

C ,
which is —4KnEc ,

and

the other pair gives 2Kc{T)n(Kc+2Kn)—T>nKc},
which is 4JKc{Kn—Dn);

the residue is — 1. Notice that we do not change the integrand to

dn2
(iTc+'M) in this argument.

Priority has been given to the quarterperiods Kc ,
Kn throughout the

discussion of constants associated with the integrating functions. There

is of course a constant ¥q(u-\-2Kd)—Yqu, but this is only

-{Fq(u+2Kc)--Pqu}-{Vq(u+2Kn)-¥qu}
and calls for no comment. The forms taken by Legendre's relation if

Kd replaces Kc or Kn are only trivially different from -61, and when

K, K', E, E' are introduced -62 necessarily reappears.

14-7. From the addition formula 12-33 for a function sqw which has

a zero at the origin, namely,
_„,

, , x sqwsq'v+sq vsq'u
•701 sq(u+v) = -*.—4 -L -~

,

l—Asq^usq'v
where A = qs'

2K
q ,
we have

sq
2
(u+v)—sq

2
(u-v) = n . 2 2 ?2 •

(1—Asq%sq2
v)

2

Integrating with respect to u,

•702 Sq(^+?;)-Sq(W-i;)-2Sq V = 24^.1—Asq~wsq2v

Interchanging u and v and adding the formula so obtained to -702

we have

14'11 1 $q{u-{-v)
—Squ—Sqv = squsqvsq(u-{-v),

or in a more symmetrical form,

14-71 2 . If u-\-v-\-w = 0, then

Squ-\-Sqv-\-Sqw = squsqvsqw.

We must not overlook that in this theorem the sum u-{-v-\-w must be

actually zero; congruence is not enough.

Corresponding results for a function pqw which has neither a zero

nor a pole at the origin can be obtained directly from the addition

theorem 12-43, but it is simpler to derive them from -71 x and -71 2 by
means of the elementary formula

pq
2w = l+ps

2^T
a sq

2
w,
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which implies

•703 Pqu = w+ps2Ar

7 Sqw,

and therefore

14-72! Pq(w+^)~Pqu—Pqv = ps
2A'

7 sqwsqvsq(w+^);

14-72.,. // pqw is « Jacobian function of which the origin is neither

a zero nor a pole, and if u-\-v-{-w = 0, then

Pqu-\-Pqv-{-Pqw = -ps
2K

q squsqvsqw.

Since the differences cs 2w— ns2
^, ds 2w— ns2w are constants, we need

examine only one of the three functions with a pole at the origin. From
the addition formula

„„. / , x nswns'y—nswns'w
•704 ns(u-\-v) = -

ns2w— ns2v

we have Ns(w4-v)—Ns(w— v)
—2Nsw = -

,

ns 2w— ns2v

and therefore

_A _ xt / i \ at at nsvns'v- nswns'tt
•705 Ns(w-f-v)—Nsw—Nsv =

ns 2%—ns2y

The addition formula -704 can be written

ns 2
i*. . ns v ns'v— ns2v . ns u ns'u

•706 nswnsvns(M+v) =
ns2u— ns 2v

and since csucs'u = nsuns'u, the corresponding formula for cs(m+v)
can be written

_~_ ,
, x

cs2w.nsvns'v— cs2v.nswns'w
•707 cswcsvcs^-fv) = —— —

.

ns 2w— ns 2v

Hence

, ,
v / i \ nsvns'v—nswns'M

nsun$,viis(u-\-v)
—cswcsvcs(w+v) = - —

ns2w— ns2v

implying, for each of the three functions psw with a pole at the origin,

14-73
x P&{u-{-v)

—Psw—Psv = nswnsvns(w-fi))- csucsvcs(u-\-v);

14-73 2 . Ifu+v+w = 0, then

Psw+Psv+Psw = nsunsvnsw—csucsvcsw.

The formulae -71
l5 -72!, -13^^ are addition theorems for the integrating

functions. Each of them can be expressed in terms of one function

and its derivative; for example, we have

14-74. Ifu+v+w = 0, then

(Sqw+Sqv+Sqw)2 = Sq'-a Sq'v Sq'w.
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But we have to remember that there is no algebraic relation between

an integrating function and its derivative; the theorems are not alge-

braic addition theorems.

For the classical integrating function E(u) and its companion D(u)

we have

14-75. Ifu+v+w — 0, then

E(u)-\- E(v)-\- E(w) = —csnusnvsnw,

D(u)-\-D(v)-\-D{w) = c' sc u sc v sc w.

14-8. We need not appeal to explicit formulae for evidence that the

function Pqw— 2Pq|w is doubly periodic, and by direct inspection of

periods and poles we have

14-81 csu-\-nsu-{-dsu = Psw— 2Ps|w.

In a sense this result has no counterpart at the cardinal points Kc ,
Kn ,

Kd ,
for it is the form of the left-hand side that is attractive and

Pqw— 2Pq|w has poles congruent with the origin, mod2A'c , 2Kn ,

whether K„ is at the origin or not. The limitation is apparent otherwise.

The differentiated form of -81 is

14-82 ps
2 |w= (psw+rsw)(psw+tsw),

and the addition of 2K
q
to u, which alters the function on the left,

only rings changes of sign on the right.

Formulae for Pqw—2Pq|w are obtainable in a variety of ways, of

which perhaps the simplest is that just indicated, namely, the trans-

formation and reintegration of -82. Particular cases are

14-83 2E{hu)— E(u) = (nsu—csu)(l—dnu),

14-84 D(u)— 2D{hi) = (ns^-csw)(dcw— 1).

The general result can be written

14-85 2Pq|w—Pqw = (qsu—rsu)(qsu— tsu)/Xqsii,

where A is the leading coefficient at K
q
of the square of the primitive

function coperiodic with pqw; this coefficient is given in Table XI 4.



XV
THE DEPENDENCE OF THE JACOBIAN FUNCTIONS AND

QUARTERPERIODS ON THE PARAMETER
15-1. It is as doubly periodic functions of u that the Jacobian functions

engage our attention, and we have thought of the parameter c as a

constant determining a system of functions. In the transformations

examined in Chapter XIII we have allowed discrete changes of the

parameter, but we are now to recognize that c is in fact a second vari-

able. The 'constants' of a Jacobian system are functions of c, and the

'functions' we have studied are functions not of one variable u but of

two independent variables u, c.

The Jacobian functions are differentiable functions of c, and their

derivatives can be written down with unexpected ease, by a process
discovered by Hermite. If in the relation

101 f ... .

*
. ... = u,

I V{(x
2
+l)(^+c')}

x

which is equivalent to x = cs u, u is constant and c varies, then

109 _cxjoc 1 f ax

J{(x*+l)(x*+c')y 2 J (;r>+c')V{(z
2
+l)(z

2
+c')}

"
dx/dc

,

1 f dx

that is,

O U

•103 _ — InsMdsw I
sd2w du.

8c J
o

As in so many problems, isolated formulae are most readily found

from first principles, but in compiling a complete set we utilize relations

between the functions.

Table XV i

The derivatives of the Jacobian functions with respect to the parameter
d cs ujdc d ns u/dc 8 ds u/8c

^nsudsuSdu ^esudsuSdu — %csunsu(Scu -fSnw)

8 sc u/dc 8dcu/8c 8 nc u/dc
— ^ncudcuSdu —

\ sc u nc u Cn u —
\ sc u dc u Sd u

8 dn u/8c 8 sn u/8c 8 cn u/8c

-JsnwcnM Nc u —
\ cn u dn u Sd u \ sn u dn u Sd u

8 nd u/8c 8cdu/8c 8 sd u/8c

£sdwcd«NcM |sd«ndttCn« Jcdwndw(Scw+ Snw)
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To proceed to higher derivatives of the Jacobian functions, we need

the derivatives of the integrating functions, or at least of the five of

these functions which occur in the above table. If we can evaluate one

derivative, we can evaluate the others by means of the relations in

14-4, but except for the functions with a pole at the origin a direct

method is shortest.

Actually the form of the results is clearest if the problem is general-

ized. Each of the formulae in Table XV l is of the form

<104 Spq^) = gpqfoc)
f

dc du J
o

and this formula implies

u u u

•105 —
~pq

m
(u,c) du = -pq

m
(u,c) f{u,c) du — ipq

m
(u,c)f(u,c) du,

o oo
provided that as u ->

u

•106 pq
m
(w,c) [f{u, c)du^0,

o

a condition that is satisfied except for the functions with a pole at

the origin.

We have for example

u u

•107 snmudu= — ^sn
m^Sd%+2 snmusd2udu,

o o

whence in particular

no M

•108 —-— = — isn2wSdw+i sn2usd2u du.
8c "J

o

The last integrand is a function of the kind considered in 14-1; since

ns 2u— ds2u = c, we have

csn2usd2u = sd2u— sn2
u,

u

c I sn2usd2u du = Sdw— Snw,

whence

•109 c
SSnw = i(dn

2uSdu-Snu).
dc
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Applying -109 to 14-42
2 we have

—_ = l(dn
2wSdw+Sntt)- (cnudau)

8c
"

dc

= |{Snw+cs
2
w(Scw+Snw)}

= J(cs
2wScwH-ns2

wSn^).

On account of the relations between the integrating functions their

c-derivatives may be expressed in a variety of forms. One set of

formulae is as follows:

Table XV2

The derivatives of the integrating junctions with respect to the parameter

28 Cs u/dc 2 8 Ns u/8c 28 Ds u/dc

cs2itScM+ ns 2wSn?< cs 2MScM+ ns2MSn?( cs2m Sc m+ns2M Sn m- 2m

2c'8ScuJ8c 2c'd~Dcu/dc 2c'8Ncu/8c
Scm— c1c 2mSc1m — Sew— dc 2wSdw Sett— dc zuSdw

2c8T>nu/8c 2c 8 Sn u/dc 2c8Cnu/8c
— Snw— dn2wSdw — Sn w+ dn2w Sd w Snu— dn2uSdu

2c'8Nd uj8c 2c 8 Cd u/8c 2cc'S Sd u/8c

Nd u— cd 2n Nc u — Cd u -f-nd2u Cn u (c
—

c')Sd u— c cd 2u Sc u -f- c' nd 2
tt Sn u

Other expressions for the derivatives of Dnw and Dew will presently

be useful. Substituting from Table XIV4, we have

2cc'8Dnuj8c = (dn
2w— c')D(u)

—cudn2
u,

that is,

15-11! 2c'8E(u)/8c= -c'u+cn2
u{D{u)-cu}',

similarly,

1511 2 2c8D(u)l8c = cu—nc 2
u{E(u)—c'u}.

In a more reciprocal form

15-12! 2c'8{E{u)—c'u}l8c
= c'u+cn2

u{D{u)
—

cu},

15-12 2 2c8{D(u)—cu}l8c= —cu—nc 2
u{E(u)—c'u},

or briefly,

15-13! 2 8{c' Nc u)/8c
= —u—nc 2uCnu,

15-132 2 8(cCnu)/8c = w+cn2wNcw.

The duality in -11, -12, -13 becomes exact if we replace the differentia-

tions in -11
2 ,

-12
2 , -132 by differentiations with respect to c', thus

changing the signs on the right-hand side.

In terms of Jacobian functions the amplitude am u is definable by
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the pair of equations

sin am u = snu, cos am u = cnu,

cnud&muldc = 8 snu/8c,

•110-111

implying

whence

15-14 h dn u Sd u.8amuj8c =

The other functions introduced as auxiliaries in Table XIV 2 can be

differentiated with respect to c in the same way.

15-2. Evaluation of derivatives with respect to c reveals the approxi-

mate forms of functions near a value of c for which the Jacobian

systems degenerate, that is, near c = and near e = 1.

When c = 0, the integral relation equivalent to x — cs u becomes

•201 u =
j

dx

x2+l

and identifies csu with cotu; then nsw and dsu both reduce to cscu;

each of the functions dnu, ndu becomes constant, consistently with

having c for a factor of its derivative. The integrating functions are

found by elementary integration.

cs(w, 0) = cotu

sc(«, 0) = tanw

dn(i*,0) = 1

nd(w, 0) = 1

Cs(w, 0) = — cotu—u
Sc(w, 0) = taxvu—u

Dn(M,0) = u

Nd(w, 0) = u

Table XV 3

ns(u, 0) = cscm

dc{u, 0)= secw

sn(w, 0) = s'mu

cd(u, 0) = cosm

Ns(tt, 0) = — cotu

Dc(m, 0) = tantt

Sn(w, 0) = ^(u—sinucosu)
Cd(w, 0) = l(u-\-sinucosu)

From this table, with XV l, we have

15-21. To the first order in c,

ds(u, 0) = cscm

nc(u, 0) = sec u

cn(w, 0) = cost*

sd(w, 0) = sinw

Ds(m, 0) = — cotu

Nc(w, 0) = tanw

Cn(w, 0) = \(u-\-sm.ucosu)

Sd(w, 0) = \{u
— sinwcosw)

21
1-6 gs(u,c) = cotu-\-lccsc

2
u(u—sinucosu)

ns(u,c) = esc u-\- ^c cot u esc u(u— sinu cos u)

ds(u,c) = cscu— ^c cot u esc u(2ta,nu— sin u cos u—u)

sc(u,c) = ta,nu—lcsec
2
u(u—sinucosu)

dc(u, c)
= secw— ^c tan u sec u(u-}- sin u cos u)

nc(u,c) = secu— lc tan u sec u(u— sin u cos u)
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•21
7_ 12 dn(w, c)

—
1— icsin2^

sn(u, c)
= sinw—|ccosw(m—sinwcosw)

cn(u, c)
= cosw+Jcsinw(w—sinwcosw)

nd(w, c)
= 14-|csin

2w

cd(w, c) = cosw+|csinw(w+sinwcosw)

sd(w,c) = sinw+£ccosw(2tanw— sin w cos it— w).

It will be noticed that no two functions which coincide when c =
remain indistinguishable to the first order in c.

The amplitude amw is not a singlevalued function of u, but for the

branch which reduces to u when c = we have to the first order in

c, from -14,

15-22 am« = u— \c(u—sinwcosw).

When c = 0, the value of Kc is \tt, for the relation sin u = 1 is not

satisfied when u = —\n\ other multiples of \tt are not primitive

quarterperiods of the set of circular functions. The value of Kn ,
and

therefore of every primitive quarterperiod except \tt, is infinite. The

signature plays no part, for it does not enter into the leading coefficients

at Ks and A'e ,
the two cardinal points which remain accessible.

When c = 1, the relation equivalent to x = snu is

X
dx

•202 u =y X2

that is, x = tanhw, and cnu and dnu both reduce to sechw; the

functions which degenerate to constants are cdu and dew.

Table XV4
cs(w, 1) = cschw ns(w, 1)

= cothw <ls(u, 1) = csehu

sc(m, 1) = sinhw dc(w, 1)
= 1 nc(u, 1) = coshw

dn(u, 1)
= sechw sn(w, 1) = tanhw cn(w, 1)

= sechw

nd(u, 1) = coshw cd(«, 1) = 1 sd(u, 1)
= sinhw

Cs(w, 1) = — cothw Ns(m, 1) = — cothw+ w Ds(w, 1) = —cothw

Sc(w, 1) = %(smh u cosh u— u) T>e{u, 1) = u Nc(?<, 1)
= |(sinhwcoshii-f-u)

Dn(w, 1)
= tanhw Sn(w, 1) = w— tanhw Cn{u, 1) = tanhw

Nd(«, 1) = |(sinliMcoshw+ ii) Cd(w, 1) == u Sd(w, 1) = £(sinhw coshw— u)

Since c' is 1— c, not c— 1, or, to put it differently, since derivatives

with respect to c' are the negatives of the c-derivatives tabulated in

XV l, we have

15-23. To the first order in c'
,

4767 K k
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'23i_12

cs(u, c)
= cschw— £c' coth w csch w(sinh w cosh w— u)

ns(u,c) = cothw— ^c' csch
2
w(sinh m cosh %— w)

ds(w, c)
= csch w+jc' cothwcschw(sinliMcoshM+w— 2tanhw)

sc(^, c)
= sinh^+4c

'

cosh'^(sinh?^coshit— w).

dc(w, c)
= l-f|c'sinh

2w

nc(w, c)
= cosh w+ |c'sinhw(sinhw cosh u—u)

dn(u,c) = sechw+^c'tanhwsechw(sinhwcoshw+%)

sn(w, c)
= tanhw+|c'sech

2
w(sinhwcosh%— w)

cn(w, c)
= sech u— lc' ta,nh u sechu(sinh u cosh u—u)

nd(u, c)
= coshw— jc'sinhw(sinh wcoshw+w)

cd(u,c) = l— ^c' sinh
2u

sd(u, c)
= sinhu— lc' cosh u(sinh u cosh u-\-u

— 2 ta,nhu).

There is no finite value for Kc . The conditions to be satisfied by Kn

may be taken as scKn = v, dcKn
= k; since dc(u, 1) is a constant, the

second of these is an identity, while the first gives Kn
=

\ttv. The

signature remains in the formulae, and Kn is ambiguous until the signa-

ture is prescribed.

The equations to be satisfied by the amplitude am(«, 1) are

•203--204 sinam(w, 1)
= tanhw, cosam(w, 1)

= sechw,

and these are the equations which define the gudermannian function

gdu, the function which links circular and hyperbolic functions:

15-24 am(w, 1)
= gdu.

To the first order in c',

15-25 amw = gdu-\-\c' sechu(s\nhucoshu—u).

15-3. If u is not independent of c but is a function of c, then

3Q j
dyq(u,c) _ gpq(^,c) du 8pq(u,c)

dc du dc dc

The partial derivative with respect to u is the derivative previously

denoted by pq'w, that with respect to c is the derivative investigated

in -1. Each partial derivative has the product of the two functions

copolar with pqw as a factor, and we can combine Tables XI 5 and

XV l into a single table showing the function by which this product is

multiplied to give the complete derivative dpq(u,c)/dc. For brevity

du/dc is denoted in this table by u.
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But in view of the forms of the expressions for dKJdc and dKJdc, we

may use '12
X_2 . Since

•303 d{E(u)—c'u}ldu = dn2u—c' = ccn2
u,

•304 8{D{u)—cu}l8u = dc 2u—c = c' nc2
u,

it follows that

<L{E{Kc)-c'Kc) ^{E(u)-c'u}

and that ti-

de
{D(Kn )-cKn }

=
8c
{D(u)—cu}

u =Kc

u=K,

thus -12^2 give at once

lS-34^2 2d(Ec-c'Kc)/dc = Kc , 2d{D,-cKn)jdc A„

We do not alter the form of the relations -32 2 ,
-342 if we remove the

signature. In the notation of 14-601-14-604,

lS-35^2 2cc'dKldc = E-c'K, 2cc'dK'\dc = -E'+cK',

15-36 1_2 2d(E-c'K)/dc = K, 2d(E'-cK')/dc = -K'.

15-4. Combining -32 and -34, we see that

15-41. As functions of the parameter c, the Jacobian quarterjperiods

K
c ,
Kn are solutions of the differential equation

-\cc'—\
dc\ dc\

From the form of this equation it is satisfied also by —Kc
—Kn and

KJv, that is, by Kd and K' .

The solution of the equation, for sufficiently small values of c, is

readily found. The equation can be written

•401
,
d

J
dx\ dx

x

dc\ del dc
0;

that is, if # denotes the differential operator

d_

dc'

the equation is

•402 {(1— c)&
2
—c&-\c}x = 0,

or, since &2x = implies x = A 4- B log c,

•403 {#
2-c(#+ \)

2
}x
= &2

{A+B log c),
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where A, B are constants. Hence

•404 x={\-Q)- l
{A+ B\ogc)

= (l+0+0 2
+0»+...)(4+ JBlogc),

where is the operator defined by

= 1{C(»+OT =
cg±f)

S

;

applying repeatedly the fundamental property of &, namely,

F{&){cV} = cF($+l)V,

we see that, for the operator 0,

0" = cn<*„(&),

wheref

f(2#+2rc-l)(2#4-2rc-3)...(2#4-l)]
2

.400 «.(*)
=

J

(

(2&+2n)(2&-{-2n—2)...{2&+2) \

'

Substituting

•408 «„(*). log c = [«,m {>^ogc+ [da ll($)ld&]^ o
,

we have

•409-410 0"1

where

•411

•412

=
a,
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the choice of a primitive pair of quarterperiods still open, and no

restriction on this choice is implicit in the work leading to the dif-

ferential equation.

The fallacy is in forgetting that although, as we have seen in -2, \n
is the only value for Kc when c = 0, a value of Kc which is legitimate

when c^O need not tend to \tt as c —.> 0. In fact, as we have seen in

11-61, if a, /3 is one pair of values of Kc ,
Kn ,

the general pair of values

is given by

Kc
= (4m1+l)a+2wli8, Kn = 2m, «+ (2^+1)0

with the condition

(4m1+l)(2w2+l)— 4w1m2
= ±1;

if n
1
= 0, then 4m

x+l is a factor of il and therefore m
1
= and

Kc
= a. Hence if a. -> \n and

/3
-» oo, one and only one value of Kc

has

a finite limit; all the other possible values of Kc tend to infinity and

are outside the discussion of the periodicity of the limiting function.

The form of the solution of the differential equation is now intel-

ligible: writing K for K
c ,

15-43. Either K =
\ir{\+ ai c+ a2 c

2
+...)

for \c\ < 1, with <xn defined by -411, or K has a logarithmic infinity at

c = 0.

The differential equation in -41 is unaltered if c and c' are inter-

changed, and therefore, with the same values of an , /3n as before, the

general solution is expressible as

15-44 x= (A'-\-B'\ogc')(l-\-ocl
c'+ a2 c'

2
+...)+

+ 4iT(a1 /31
c'+ a2i82 c'

2
+...)

inside the circle \c'\
= 1. Also ifKn = vK'

,

15-45. Either K' = i77(l+ ai c'+ a2 c'
2
+...)

for \c'\ < 1, or K' has a logarithmic infinity at c = 1.

In any event, K' has a logarithmic singularity at c = and K has

a logarithmic singularity at c' = 0.

Throughout our work one set of quarterperiods has been regarded

as essentially equivalent to another. In a discussion of functions with

real constants the distinction between real and imaginary leads to a

special choice of quarterperiods, and in 6-8 and elsewhere we have used

special paths of integration for technical convenience, but the emphasis
has been on the view that intrinsically one basis is no different quali-
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tatively from another. We now see that if this is true of Kc , Kn as

a basis for a system of Jacobian functions, it is far from true of Kc

and Ku as individual functions of c. Within the unit circle round c = 0,

one value of Kc does behave quite differently from every other value,

and within the unit circle round c' = 0, the same is true of one value,

or rather, since there is an ambiguous sign, of two values, of Kn . We
must therefore devote some attention to these special values of Kc and

Kn ,
defined in the first place inside the two circles. We denote the two

functions by Xc ,
Xn , writing

•413 X =
\tt{\ + <x

x C+oc2 C
2
+...),

•414 X' = |77(l + ai c'+ a2 c'
2
+...),

•415-41 6 Xc
= X, Xn

= iX',

where i
2 = — 1 and as in -411

/1.3 (2w-l)\
2

a.
2.4 2n

For any value of c such that \c\ < 1, the Jacobian system with para-
meter c has a basis in which the first member is Xc ;

for any value of

c such that \c'\ < 1, the system has a basis in which the second member
is Xn . The two regions \c\ < 1, |c'| < 1 have a common part, in the

shape of a lune, but we can not say without investigation whether or

not when c is in this lune Xc and Xn can be associated to form a basis

of the system.

Let us return to expressions for
A",,,

Kn as integrals. The theorems

11-84, 11-85 do not specify paths for the integrals given, and therefore

do not enable us to recognize the associations of values that are pos-
sible. It is through the general theorems of Chapter VI that paths are

made precise: for the function obtained by inverting the integral

oo

/
dw

V{K-5)K-C)}'

a possible pair of quarterperiods is provided by .

•417-418

, If dW If dW
"

2 J J{W(W-B)(W-C)}'
y ~~

2 J J{W(W-B)(W-C)}'B C

where the paths of integration are any half-lines. To apply this result
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we use the function dsu: since ds2iTc = c' and ds2Kn = —
c, the Jaco-

bian system with parameter c has a basis defined by
oo

TT \ C dt „ 1 f dt
•419-420 ^ =

-j T ,^ 9
Kn

2 J j{t(t-c')(t+c)Y
n

2 J J{t(t-c')(t+c)}

with rectilinear paths, or, writing t+c = u and then restoring the

symbol, by
oo oo

•49T-492 K -
1

f
dt K --[ dt

c
~"

2 J V(^-l)(*-c)}'
n

2 J V(^-l)(«-c)}'
1

still with rectilinear paths.

Provided that c is not real and greater than 1, we can take for the

path in Kc
the real axis beyond t = 1, and the substitution t = l/u

then replaces this path by the segment of the real axis between

and 1 :

i

dti r dt
'423 C

"
2 j yl{t(l-t){l

But this integral remains finite as c -> 0. Hence iTe ,
defined by -423 or

•421, is the particular quarterperiod Xc ;
that is, with the assigned path,

and with the appropriate radical,

If dt
*424 A: =

2j J{t(l-t)(l-ct)Y
o

There is no difficulty in verifying this conclusion: the expansion of

1/^(1— ct) is a binomial expansion, and the integral

a.

I
t
n dt

o

is elementary.

According to the definitions -413--414, X' is the same function of c'

as X is of c; it follows, since the path of integration in -424 is indepen-

dent of c, that with the same path, and the same determination of the

radical, 1

1 C dt
'425

2 J J{t(l-t)(l-c't)Y
o

If the path of integration in Kn ,
in -422, is to lie along the real axis,

then since the point t = 1 must not be in the path, the path is the

negative half of the line and c is assumed not to be real and negative.
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To replace the path by the segment between and 1 we substitute

(u—l)/u for t, and since t = c corresponds to u = 1/c', we have

i l

K i r dt i r dt

in agreement with -425, since the integral in Kn remains finite as

c'-*0.

We can now use -424 and -425 instead of -413 and -414 as definitions

of the functions X, X'. Two advantages appear at once. Firstly, the

range of values of c for which the functions are defined is far less

restricted: instead of being confined for each function to the interior

of a circle, the point c is subject for that function only to the condition

that there is one half-line on which it must not lie; the common domain

of existence of the two functions is not the lune common to two circles,

but the whole plane except the parts of the real axis outside the

segment from to 1 which is the path of integration. Secondly, since

the association of the integrals in one basis was assured from the

start,

15-46. If c has any value other than a real value greater than 1 or less

than 0, the functions X, ±iX' together constitute bases for the Jacobian

functions of which c is the parameter; the first of these functions tends to

\n as c -> 0, the second to ± hni as c' -> 0.

The bearing of the restrictions imposed on c on the character of the

integrals is seen in another transformation of -421 and -422. The

substitution ,

t-l= U~ C

\—u

replaces a path from £ = lto£ = oobya path from u = c' to u = 1;

to u = oo, correspond t = 0, c. If t is real, u is on the line through
u = c' and u = \. Thus

i

•426 X =-[ -
c'

where the path is a rectilinear segment, and this segment must not

contain the origin if the integral is to be unambiguous ;
the radius from

1 to c' does not contain the origin unless c' is real and negative, that

is, unless c is real and greater than 1. To express the matter graphically,

the radius from 1 to c' sweeps the plane, rotating round the fixed point

1, and this radius is unlimited in every direction except the direction
4767 Ll



258 JACOBIAN ELLIPTIC FUNCTIONS

in which it encounters the origin. Similarly, since t is real and negative

along the path of the integral in -422, the substitution

u—c
v

\—u

converts the path into the rectilinear segment from c to 1, and since

the integral becomes
i

dt

j{-t(i-w-c)y

it is now c that must not be real and negative.

The relation between the formulae -424, -425 and the formulae -413,

•414 may be expressed in another way. The series define the functions

Xc ,
Xn only inside certain circles, but these circles are not natural

boundaries and the functions can be continued analytically across them.

The only singularities of the analytic function of which the series in

•413 is one element are c = 1 and c = oo, and if the c plane has a simple

cut from one to the other of these points, the continued function is

a singlevalued function analytic everywhere in the slit plane; if the cut

is along the positive half of the real axis, this is the function given by
the integral formula -424, since the two functions coincide throughout
the domain of existence of the series. Similarly, if the plane is cut along
the whole of the negative half of the real axis, -425 represents the

continuation of -414 throughout this slit plane.

From the point of view of continuation, the cuts are arbitrary except
for their endpoints. We could for example slit the plane along the

positive half of the imaginary axis and continue the series -414 into

the second quadrant across the negative half of the real axis; the

function so found would be different in the second quadrant from

the function defined by the integral -425, but it would be equally valid

as a standard solution of the differential equation in -41, finite near

c = 1. But since the two cuts which are essential if the paths of the

integrals are to be rectilinear are also adequate to the purpose of

defining the continuations of the series, to utilize these cuts for a double

purpose is a natural simplification.

As solutions of the differential equation, the functions X, X' are

rendered specific, the one by its form near c = 0, the other by its form

near c = 1. To be in a position to express an arbitrary solution in

terms of these two functions, we must, so to speak, reduce the functions

to a common origin. We must find the values of the constants A, B
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in -42 if this solution is X', or the values of the constants A', B' in -44

if this solution is X.

The infinity of the integral

i

I
dt

V{*(l-*)(*-c)}

at c = arises from the coalescence of the two factors t, t—c in the

radical, and is not modified in character by the presence of the factor

1— t. Omitting this inoperative factor we have an integral whose

infinity must be substantially the same as that of 2X', and this integral

is elementary:
1

dt

J <J{t(t-c)}
[2krf^+V(*-e)}£

log-

Thus as c -> 0,

= logi+ 21og(l-
C—n-).6

c
g

( 2(l+jfc')|

Jvw^- Iog^ '

4

-c)} "°c
c

where the logarithm, which is singlevalued because the plane is cut

along the negative real axis, and is real for real values of c between

and 1, has in any case an angle between — tr and n. Also

1 11
Id— f

dt
f

dt
f I

f~ c dt

c c c

1

dt

V(i-*){i+V(i-*)}'

and since the value of the last integral is log 4,

•428 X'-Uog—^O.
c

Hence -42 represents X' if

A+ Blogc = |log(16/c),
that is, if

•429--430 A = log 4 B = -\.
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15-47. If \c\ < 1 and c is not real and negative, then

X' = (X/77)log(16/c)-2(ali81 c+ a2i82 c
2
+...),

where the logarithm has its principal value and <xn , /?„ have the values

given in -411, -412.

The same analysis identifies X near c = 1, for the integral involved

differs only by the substitution of c' for c:

15-48. If \c'\ < 1 and c' is not real and negative, then

X = (Z777)log(16/c')-2( ai /31 c'+ a2i82 c'
2
+...),

where the logarithm has its principal value and <xn , fin have the same values

as in -47.

The relation between -47, -48 and the simpler theorems -43, -45 may
be expressed differently. Without any attention to the source of the

differential equation i , i ,

dc\
CC

'dc\

= *
where c-\-c' = 1, we find that the general solution of the equation is

expressible for \c\ < 1 in the form

(A+ B\ogc)(l+ oc1 c+oc2 c*+...)+ 4B(oc1 p1 c+«2 P2 cZ+...)

and for \c'\ < 1 in the form

(^'+ 5'logc')(l+ a1
c'+ a2

c'
2
+...)+ 4 JB'K^1

c'+ a2i82 c'
2
+...),

where an , /3„ are given by -411, -412, and A, B, A', B' are constants

of integration. These local investigations give us no means of identi-

fying in one neighbourhood the integral determined by a jmrticular

pair of constants in the other neighbourhood; general theory tells us

only that there must be coefficients A
l5 jxv A2 , /x2 such that the integral

determined for \c\ < 1 by A, B coincides with the integral determined

for \c'\ < 1 by A', B' throughout the lune common to the two circles

of convergence if and only if

A' = \x A+ixx B, B' = \
2 A+fji2

B.

What we can now do is to evaluate these coefficients: to A —
\tt,

B = correspond A' = log 4, B' = —\, and to A' = \-n, B' =
correspond A = log 4, B = —

|. The relation between the pairs of

constants A, B and A', B' is symmetrical, and

,. ^ ^ log 16 (logl6)
2-772

,
1 log 16

15-49 X
1
= -^~, ^ = ^—5—i

,
A2 =— -, /a2

=--5— .

77 77 77 77
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The differential equation puts Legendre's relation in a new light. If

xv x2 are any two solutions of the equation

d ( ,dx\ ,

,, d I f dx2 ,dxA
then — {x,.cc —i—rK_.cc —-M = 0.

dc\
1

dc
"

dc)

Hence, taking X, X' for the solutions,

cc'lx
dX '

X'
dX

)

\ dc dc J

is constant. Now let c -> 0. Then c'->l, X -> \tt, and because the

infinity of X' is logarithmic, cX' -> 0; also dX/dc has no singularity at

c = 0, and from -47, cdX'/dc -> — ^. Hence

But, for a given value of c, any basis K, vK' is derivable from X, iX'

by a pair of formulae

K = mjX+WjiX', vK' = m2X+n2 iA
7'

/

,

where m1 n2—n1m2 is 1 or —1 according as v is i or — i. Hence

vIk'—- KdK'\
v
Jx'— - XdX '\

\ dc dc ) i
\ dc dc j'

implying

•432 2cc' K'^-K'Ik'
dK „dK'\

j
o7T,

dc dc J

and replacing the derivatives from -35 we recover Legendre's relation

as given in 14-62.

15-5. We derived -41 from -32 and -34 by eliminating Ec—c'Kc and
DH—cKn . Alternatively by eliminating Kc

and Kn we have the com-

panion theorem:

15-51. As functions of c, Ec—c'Kc and Dn —cKn are solutions of the

differential equation i2

Naturally E'—cK' also is a solution.

From the form of this differential equation, every solution which is

a regular function of c near c = is zero at that point. We have just

seen that cdX'Jdc -> — \ as c -> 0, implying from -322 that for the basis

Xc , Xn ,
the function Dn

—cKn has the finite value 1 at c = 0. Hence
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the functions E—c'K, E'—cK' derived from the basis Xc ,
Xn are

independent solutions of the equation, and we denote these solutions

by Y, Y', writing also Yc = Y, Yn = iY', where t is the signature of

Xc ,
Xn .

The general solution of the equation in -51 can be written

•501 y = OT+DT',

where C", D" are constants. A solution which is zero at c = is

identifiable by the value of its derivative: Y is the solution which

resembles \ttc near c = 0, and Y' is the solution which resembles \ttc'

near c = 1.

Since the equation in -41 is transformed into the equation in -51 by
the substitution

•502 y = 2cc'dx/dc,

independent investigation of the later equation can be avoided, but

the details of interpretation of operators are not without interest, and

the coefficients are found immediately in their simplest forms. The

equation is

•503 {(l_ c)#(#_l)_i cty
= o,

that is,

•504 {#(#_i)_ c(#_!)2^ = #(#-l)(Cc+Z>),

where C, D are arbitrary constants, and the symbolical solution is

•505 y = (l+0+(D 2
+...)(<7c+ JD),

where

•506 O = c

(#+!)#'

o» = cyn(&)±,

(2fl-l)»
Vl{ '

~
(20+2)2'

{(2fl+2rc-3)(2fl+2w-5)...(2fl+l)(2fl-l)}
2

(2#+2?i){(2#+2rc-2)...(2#+2)}
22

Interpreting, we have first

•509 Onc = cnyn (d-).c
= yjl)c

n+1 = yn cn+l
,

and therefore
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where
l 2

•510 yx
=

^4,

{1.3 (2n-l)}
2

.
'5U y

"=2{4.6 2n}*(2n+2)'
* > L

Secondly,

•512 <&»1 = c»yB(0). log c - ^{[^(^^logc+^W/d^J;
evaluating, we have

•513-514 ri (0)
= I [dyi(m#]^ = -5yi(0) = -|,

and for n > 1,

•515 y„(0) = iy^l) = Jy«_,i,

and, differentiating logarithmically,

•516 [dyn(*)/^ko
= - 4>

/»(°)8»-i
= -Vn-iSn-i.

where

•517 Sn_x
= 1

-(i72
+ri+-+ (2W-3)(2n-2))

+4^'

and if we take conventionally

•518-519 yo = 1
> So^i+i

then

•520 <DW 1 = yn^cHllogc-S^).

Hence the solution of -503 is

15-52 y = (C+lDlogc)(c+y1
c2+y2 c

3
+...)+

+D(l-y S c-y1
S

1
c 2-

...),

a solution which is valid if \c\ < 1.

To compare this solution with the general solution -42 of the quarter-

period equation, we substitute

•521-522 yn = -&-, 8, = l-j8n+n+V n rn Mn+iy
relations that hold even for n — since we must suppose £ = 0. We
have then

y = (C- JD+ilogc)(c+Kc2+W :J+...)+

+Z>{l-i(c+ia1
c 2+ia2 c3+...)+(Ki31

c 2+KiS2 c
3
+...)},

implying that

•523 dy/dc = \x



264 JACOBIAN ELLIPTIC FUNCTIONS

if the constants C, D are given in terms of A ,
B by

•524-525 C = \A+ 2B, D = 2B.

If y is found from -42 by direct integration, there is a constant of

integration to be determined. Alternatively, y is obtainable, from the

same expansion -42, as 2cc' dx/dc; the algebra is more substantial, but

the determination is complete.

Since Y/c ->• \n as c -> 0, the constants in -52 for this solution are

G = \n, D = 0.

15-53. For \c\ < 1,

and for \c'\ < 1,

7' = 1T7(C'+ I
ai c'2+ Ia2 c'3+...),

where "* =
(''Ia.'^

1

)

2

-

Since Y' = 1 when c = 0, the expression of Y' in the form -52

requires D = 1, but we must not suppose that C = 0; on the contrary,

•52 implies, for small values of c,

•526 dy/dc = lD\ogc-\-{C-D)+ 0(c\ogc),

and from -47 we have

•527 dY'/dc = —\X' = -±log(16/c)+ 0(clogc),

confirming the value D = 1 and giving also C—D — —\ log 16, that

is, C = 1—log2:

15-54. For \c\ < 1,

y = {4-77log(16/C)}F+(l- ao 3 c-| ai SlC
2-i

a2 S
2 c

3
-...),

and for \c'\ < 1,

7 = {4-7rlog(16/c')}7'+(l- ao 3 c'-K8 1 c'
2-i

a2 8 2 c'
3
-...),

where the logarithms have their principal values and

1

)+_L-
(2?i—l)2nj^4:{n+l)

a
D\

a

, 8„= i_ _L+-L+...+/l U.2^3.4 T
\

2.4 2n J

with the conventional values a =
1, S = 1+i-

Taking the general solution near c = 1 as

15-55 y= (C"+ i
JD'logc')(C+y1 c'

2+y2 c'
3
+...)+

+ JD'(l- ro S c'-y1
S
1
c'

2
-...),

we can say that the solution for which C = In, D = in -52 is the

solution for which C = 1—log 2, D' = 1 in -55, and that the solution
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for which C =
\tt, D' = in -55 is the solution for which G — 1— log 2,

D = 1 in -52:

15-56. For the equation

cc'd 2
y(dc

2 = \y,

the solution near c — given by -52 and the solution near c = 1 given by

•55 coincide throughout the slit plane if

rrC = 4(l-log2)C-{4(l-log2)
2 -l7r2

}7A

ttD' = 4C-4(l-iog2)Z>.

The functions Yc , Tn of c have been defined from the basis Xc ,
Xv .

They are therefore defined for the whole region throughout which Xc

and Xn are defined, that is, for all values of c except real values greater

than 1 or less than 0. The expansions in -53 are particular representa-

tions, valid only within restricted domains. We can obtain integral

representations of Y and Y' valid throughout the domains of existence

of the integrals defining X and X' in -424 and -425 by differentiation:

The values of the functions Ec—c'Kc ,
Dn—cKn for an arbitrary basis

are implicit in the entries against T>\\u and Dew in Table XIV5. If

Kc
= (4m 1+l)Zc+2n1 X„, Kn

= 2m2Xc+(4rc2+l)Xn ,

then since, on the basis Xc ,
Xn ,

the values of Ec ,
Dn are Yc-\-c'Xc ,

Yn-\-cXn ,
we have, on the basis Kc ,

Kn ,

•530 Ec
= (^n 1+l){Yc+c'Xc}+2n1{Xn-(Yn+cXn)},

•531 Dn = 2m2{X-(Yc+c'Xc)}+(±n2+ l){Yn+cXn },

and therefore

•532--533 Ec-c'Kc
= {4m1-\r l)Yc—2n1Yn ,

Dn-cKn
= -2m2 Yc+(4n2+l)Yn ,

in agreement with the fact that E
c
—c'Kc and Dn—cKn satisfy a linear

differential equation of which Y
c
and Yn are independent solutions.

4767 m in
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THETA FUNCTIONS

16-1. The Jacobian functions are elliptic functions adapted by means

of constant factors for use with a standardized lattice. The integrating

functions, and more particularly the functions E(u) and D{u), replace

the function £z when the lattice is Jacobian. We anticipate therefore

a parallel modification in the function az, with a representation of the

Jacobian function pqw as a quotient of integral functions of u.

We recall that the function az plays a double part. As a function

which facilitates the integration of £2, this function satisfies the formula

and the condition ,

a z v az ,— = £z,
—>l.

az 2

As the integral function whose zeros are the lattice points 2moi
x -\-2no) 2 ,

n{(i

-ah*
fl

i'
where Q. = 2moj 1-\-2nw 2 and the product extends over all values of m
and n except simultaneous zeros. If we are to introduce a special

function into the Jacobian theory and not simply to use a sigma func-

tion constructed on the Jacobian lattice, we must verify that the double

part is still played.

Since the aggregate of values 2rrnr for integral values of m is the

aggregate of solutions of the equation eiz = 1, the aggregate

•101 u=2mKc

is the aggregate of solutions of the equation

•102 e2iv = 1,

wheref

•103 v= (7t/2Kc)u.

In other words, 1—e2iv
,
as a function of u, is a function whose zeros

are simple zeros at the points u = 2mKc .

For a fixed value np of n, the condition

u = 2mKc+2nKn

is equivalent to u—2npKn
= 2mK

cc

f At the moment the variable (ir}Ke)u would seem simpler, but %n corresponds as a

quarterperiod to K
c , and we shall find that in the long run the insertion of the factor 2

effects a considerable economy.



THETA FUNCTIONS 2G7

and therefore if p = ttKJI\ (
„ then

1 e2i(v-np p)

is a function whose zeros are simple zeros at the points

u = 2mKc+2npKir

Hence for any finite number of values nx , n2 ,..., nr of n, the product

TJ|l_ e2/(r-«p
p)j

is a function with simple zeros at the points u = 2mKc-\-2nKtl
for all

values of m combined with the assigned values of n.

If we are to extend this result to an infinity of values of n, the

product must converge and therefore eW'^nrP) must tend to zero as r

tends to infinity. Now whatever the value of v, t&&-*p) tends to zero

as n -> -j-oo only if Hl(ip) is positive, and tends to zero as n -» — oo

only if Rl(t/>) is negative. But ~R\(ip) is positive or negative according
as Imp is negative or positive, that is, according as the signature v of

the basis Kc ,
Kn is — i or i; in other words, Rl(up) is necessarily negative.

If we write as before K, vK' for Kc ,
Kn ,

and define a, q by the formulae

•104-105 a = nK'/K, q = e~°,

then, by the fundamental property of v, RIct is positive and

•106 I?|<1-

And now, p = va; if v = i, then

g2?'(»-«p) == Q-2ng2iv

tending to if n -> — oo and to oo if n -> +oo, while if v — —i, then

g2i(v—np) __ Q2ng2iv

tending to oo if n -> — oo and to if n -> -foo. In either case, np must
be restricted in one direction or the other if the product

JJ {l—e
2i<v-n

pP)}

is to converge.

We need not conclude, however, that a functional product con-

vergent in both directions can not be constructed. The equation

e-2i(v-np) _ i

has the same roots as the equation

e2i(v-np) — i

and for each value np of n we may use the factor 1— e-2u(c-» p p) or

the factor 1— e2* v
-»pp\ that is, the factor 1—

gr
2n»e-2v0 or the factor
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l—q-2npe2vv
, according as np is positive or negative: we secure a positive

power of q by selecting the exponential function appropriately. Since

the two values v,
— v are i,

—
i,

16-11. The aggregate of values

u = 2mKc+2nKn
consists of the zeros of the two functions

\ ^2»ig2iv Y «2ng-2iv

for all positive integral values of n, together with the zeros of the function

\—e2iv
.

The function 1— e2iv is anomalous in the enunciation of -11; there is

no reason to prefer this function to 1— e~2iv
,
but to admit both func-

tions would be to introduce their zeros as double members of the

aggregate. We may take the function more symmetrically as eiv— e~iv
;

alternatively, we may give the whole theorem a trigonometrical form:

16-12. The aggregate u = 2mKc-\-2nKn consists of the zeros of suiv

and the zeros for all positive integral values of n of the function

l— 2q
2n
cos2v+q*

n
.

16-2. Since \q\ < 1, the infinite productsf

JJ (1—£
2we2™), IK1-q

2ne~2iv
)

are convergent for all values of v, that is, for all values of u:

16-21. Regarded as a function of u, the function

sin v JJ (
1— 2q

2n cos 2v+q
in

) ,

where v = (7t/2Kc)u, q = e7™-2^^,

is an integral function with simple zeros at the points

u = 2mKc+2nKn .

Before applying this theorem to the expression of elliptic functions,

we consider the transformation of the product into a series. We write

temporarily

•201 /(^na-rt
•202 g(t)

= (1-t) IT (l-e^-M-i)-^ = (l-t)f(t)f(t^).

00

f Throughout this chapter, if no range is indicated, IT an denotes II an ; Cayley in
l

his Elliptic Functions denotes this infinite product by [o„], but the notation has not

gained currency.
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The function /(0 is an integral function of t, expansible in the form

•203 f(t)
= \-a

x t+a2 t
2—az t*+...,

the coefficients being functions of q. For the function /(£
-1

)
we have,

for all finite values except 0,

•204 fit-
1
)
= l—a1 t-

1+a2 t-
2-a3 t-

3
+... .

Since identically

•205 t-ig{P) = -tg(t~
2
),

the expansion of the odd function t~xg(t
2
) is of the form

-b 1(t-t-i)+ b2(t*-t-s)-b3(t*-t-s)+ ...,

and therefore for g(t) there is an expansion

•206 g(t)
= 61-(61 i+6 2

^-1
)+(6 2 ^+63^ 2

)-... .

If in -201 we substitute q
2
t for t, we lose the first factor; we have

therefore

•207 (l-q
2
t)f(qH)

=
f(t).

If we make the same substitution in the product J [ (1— #
2n

£
_1

), we gain

a factor (1— t-1
); that is,

tf(l/q
2
t)
= -(1-0/(1/0.

Hence

•208 tg(q
2
t)
= -g(t).

Substituting the series from -203 in the functional relation -207 and

comparing coefficients we find

•209 ^(1+%) = av ?
4K+a2 )

=
«2> q

6
(a2+az )

= a3 ,

whence

•210 a
x
= q

1 - 2
/^, a2

= q
2-3

/c2 ,
az
= q

3A
jc3 ,

where

•211 Ci={1_ q
2
h C2 = (l-q*)(l-q*),

c3 =U-<72
)(1-<7

4
)(1-<7

6
),

Similarly, substituting from -206 in -208 we find

•212 b2
= q

2bv bz
= q%, 64

= q%,
whence

•213 b 2
=

qi-
2bv b3 = q

2
-zbv 64

=
q*
Abv

To determine bv we turn to the relation between the two functions

/(*), g(t). From -209,

(1-0/(0 = \-q- 2a
l t+q-*a2 t

2
-q-«azt*+...,
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and therefore bn ,
the coefficient of

(
—

)
n
t
n

,
for positive values of n, in

the product of this series and the series in -204, is given by

bn = q-
2nan+q-^-*a1

an+1+q-z
n-ia

2
an+2 +....

When we substitute from -210 and -213, we have a series for b x ;
the

index of q in the numerator of the term containing cr cn+r is

r{r-\-\)-\-(n-\-r)(n-\-r-\-\)
—

2{n-\-r)
— (n— l)n,

that is, 2r(n-{-r), and therefore, for all values of n,

1 n2(n+l) /y4(w+2) n6(n+3)
•214 bx

= _+*-_+? |_? j.....
Cn Cl Cn+l C

2
Ch+2 C3 C«+3

Now the sequence c
x ,

c2 ,
c3 ,... converges to a non-zero limit and no

terms in this sequence are zero; hence the aggregate of values \c x \, |c2 |,

|c3 |,... has a lower bound
fi
which is not zero, and l/\cr cH+r \

^ l//x
2 for

all values of r and n. Also

| ?2(«+l)_|_?4(n+2)_|_06(n+3)_|__ |

< \q\*
n
/{l— \q

2
\).

Hence as n -> oo, b,—— -> 0;

that is,

•215 b
l
= l/\imcn .

Absorbing the factor 1—q
2n of cn into the typical factor of the func-

tion g(t), and replacing t by e2iv
,
we have the fundamental identity

16-22 sinvTl{(l—q
2n

)(l
—

2q
2n
cos2v+q*

n
)}

= 2 (
—

)

n ~ 1
q
{n ~l)n sin(2n—l)v.

16-3. For the standard integral function of u with zeros at the lattice

points 2mKc-\-2nKn we multiply the function for which -22 gives two

expressions by the constant 2e_CT/4
;
the series on the right of -22 is

formally a Fourier series, and it is always convenient to have an explicit

factor 2 in the coefficients of the sines and cosines in a Fourier series
;

the exponential factor e_a/4
,
taken in the form g

1/4
,
converts the index

(n— \)n of q in the typical coefficient into {(2n— 1)/2}
2

,
thus bringing

this coefficient more clearly into relation with the trigonometrical func-

tion sin(2n—l)v. With this modification, the function, Jacobi's eta

function, is denoted by JI(u):

16-31 H (u)
= 2q

1l* sin v— 2q^ sin Sv+ 2q
2bl4 sin 5v— . . .

,

where v = (ttI2Kc)u and q
m denotes unambiguously e~ma

,
whatever the

value of m. From -22,

16-32 H(w) = 2q
1 li sinvYI{(l-q

2n
)(l-2q

2
"cos2v+q

in
)}.
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Addition of 2KC to u is equivalent to addition of -n to v; hence

•301-302 H(w+2A
r

c )
= -H(w), H{u+4Ke)

= H(w).

Addition of 2Kn to u is equivalent to addition of va to v, that is, to

multiplication of evv by q. If e2vv = t, the function H(u) defined by
•32 is a constant multiple of e~vvg(t), where g(t) is the function defined

by -202; hence the functional relation -208 is equivalent to

•303 H(u+2Kn )
= -q-xe-2wYL{u),

whence

•304 H(w+4A"„) = ?-
4e-4wH»,

the exponential factor in H(u-\-2K)l ) supplying a further factor q~
2

.

From -301 and -303 it follows that if E(u) is defined as the logarithmic

derivative H'(%)/H(w), then

•305-306 E{u+2KC )
= E(u), Z{u+2Kn)

= E(u)-ttv/Kc ,

and therefore E'(u) is doubly periodic in 2KC and 2Kn . Since H(w) is

an integral function with simple zeros at 2mKc -\-2nKn , E(u) is a func-

tion whose only accessible singularities are simple poles with residue 1

at each of these points, and E'(u) is an elliptic function with principal

part
— lj(u—2mKc—2nKn )

2
. Hence E'(u) differs by a constant from

— cs2w. But if E'(u) = A— cs 2
u, then since E(u) and Cs u are both odd

functions,

•307 E{u) = Au—Csu.

Since E{u+2KC )
= E{u) and Cs(w+2ZC )

= Csu—2EC ,
-307 implies that

AK
C
= —E

c
and we have

16-33 H'(w)/H(w) = E{u) = -(EJKc)u-Csu,

•308 E'(u) = -(Ec/Kc)-cs
2u.

From the expression of H(u) as a product,

•309 E(u) = -^-(cotv+4sin2v V -—
a „

g
"

n , ),v; 2K
C \

Z, 1— 2q
2n cos2v+q

in
)

•310 E'(u) = (^V(-csc2v+8cos2v Y ^ 9

q
"

- —
\2KJ \

Z, 1 - 2q
2» cos 2y+^4»

^Cf

— 16sin 2 2v Y —^ (1

As u -> 0, v -+ 0,

(1
—

2g
2"cos2y+g

4
")
l/M'-l

CSm— —:->—
,

CSC^V s~>Xj
u2 3 v2 3
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and therefore from -308 and -310,

.311 fi_i+£-/jLV/
1 _ 2 V *

2"

K
c 3

-
UJ 112

2
2(1=^i2,n\2Y

16-4. There is no need to revert to first principles to obtain integral

functions with zeros congruent with the cardinal points Kc ,
Kn ,

Kd .

The function H(u-\-Kc )
has simple zeros at all the points

u= (2m+l)Kc+2nKn .

Addition of Kc to u is equivalent to addition of \n to v, and we have

16-41! H_(u+Kc )
= 2qW cos v-\-2q^ cos 3v+2g25/4 cos 5v+...,

16-41
2 H.(u+Kc )

= 2q
1l*cosv JJ {(1—q

2n
)(l+ 2q

2n
cos2v+q

in
)}.

Addition of Kn to u alters more substantially the form of the func-

tion. This addition is equivalent to the multiplication of evv by g
1/2

,

and it is convenient here, and occasionally elsewhere, to write r for

this parameter. Whether v is i or — i, sin raw = (e
vmv—e~vmv)/2v, and

we have from -31,

vqWB.(u+Kn )
= r(re

vv—r-1e-vv)—r5
(r

3eSvv—r-3e-3vv
)+

I ^.13/y5g5iw y—5g—5vv\ *»25/y7g7t>i; y—lc—lvv \
_|_

_ r18(g6u
V
_|_g-6uv)^ i-

| j

that is,

16-42 H(u+Kn )
= vq-We-^Qiu),

where

16-43! G(u) = 1— 2g cos 2v+2q* cos±v—2q
9 cos 6v+....

Similarly from -32,

u^H^+ifJ = r(re
vv—r^e-™) J[ {(1—g2»)(l— gr2»+ie

2w
)(l— g

2"-1e-2,n
')}

= — e-ur IJ {(1— ?
2w
)(l—g

2w_1e2w)(l—g^^e-2
^)},

the bracket outside supplying the missing factor 1— qe
2vv

required to

restore the symmetry; thus as a product,

16-432 Q(u) = IJ {{l~q
2n
)(l-2q

2n ~1 cos 2v+qin~ 2
)}.

The constant factor vq~
x^ and the exponential factor e~vv do not affect

the zeros of the function, and

16-44. The function Q(u) is an integral function with simple zeros at

the points u = 2mK
c-\-(2n

Jr \)Kn .

It is remarkable that Q(u), which is connected with the lattice that
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includes Kn and not with the lattice that includes the origin, is struc-

turally somewhat simpler than H(w).

Adding 77 to v we have

•401 @(u+2Kc )
= Q(u),

and from -42 and -303,

Q(u+2Kn )
= -vqW.qe^Kiu+SKJ,

H(«+JUy = -q-Kq-ie-*»m(u+Kn),

H.(u+Kn )
= vq-^e-

vv
Q{u),

whence

•402 G(u+2Kn )
= —

gr-
1c-2w0(^),

a result easily confirmed from -43
2

. From -42 and -303 we have also

Q(u+Kn )
= vqW .qWe

vv
.q-H-^Yliu),

that is,

•403 0(u+Kn )
= vq-We-wKiu):

the relation between the functions ~H(u), Q{u) is symmetrical.
The logarithmic derivative Q'(u)/Q(u) is a function Z(u) such that

Z'(u) is periodic in 2KC and 2Kn and has for its only accessible singu-

larities double poles congruent with Kn . NearKn , Z'(u) ~ — \J(u—Kv )

2
,

and since this is the form of dn2w in this neighbourhood,

Z'(u) = dn2u-B,

where B is a constant. Since Z(u) and Dnw are odd functions,

•404 Z{u) = T>nu—Bu,

and since Z(u+2KC )
= Z(u) andDn(w+2Zc )

== T>nu+2EC ,
-404 implies

KC B = E
C :

16-45 ®'(u)l®{u) = Z(u) = T>nu-(EJKc)u.

From -43
2 ,

•405 Z(m) = ^sin 2v > —4 j—.;>w Zc
Z, l-2^2ra-1 cos2v+24ri-2

2/ ,—. „2n-l
•406 Z'(w) = UM 2cos2v V —4 3—5-

\ifc/ \ Z, 1— 2gr2»-i cos 2v+q*
n~ 2

2 q
4n-2

(l
—

2q
2n-1

cos2v+q*
n

-4sin2 2^ T - - - .^"l .-_
2)2),

and therefore

•407 w-* = *«2 pr5«ji-
In Q(u-\-Kc ) we have an integral function whose zeros are at the
4767 n n
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points (2m-\-l)Kc
Jr {2n

Jr l)Kn \ substituting v-\-^tt for v in •43
1
and -432

we have

16-46J ®{u+Kc )
= l+ 2g'cos2v+2g

4
cos4z;+2^

9
cos6?;+... 3

16-46
2 ®{u+Kc )

= IJ {(l-g
2M

)(l+ 2g
2w-1 cos2v+^-2

)}.

16-5. On account of the part played by circular functions in their

construction, the four functions H(u), H(u-\-Kc), &(u), ®(u-\-Kc )
are

simply periodic; we have in fact

ie-51^2 H(u+2KC )
= -H(«t), Q(u+2KC )

= @(u),

and u-\-Kc may be substituted for u in these relations. For addition

of 2Kn we have, since addition of n to v replaces e~vv by — e~vv
,

16-52! H(w+2ZTO)
= —gr-V-^Hfa),

16-52
2 E.(u+Ke+2Kn )

= q^e-^miu+K^,
16-523 @(u+2Kn )

= —
gr-ie-»*0(«),

16-524 0(%+ JKc+2iC/i )
= ^-^"©(tt+JS;).

Hence the quotient of one of the four functions by another is a doubly

periodic function, and this function is easily identified, save for a con-

stant factor, since its zeros and poles are known.

To express the Jacobian function pqw as a quotient, we replace the

four functions ~Hl(u), H.(u-\-Kc), Q(u), ®(u-\-Kc ) by functions whose

leading coefficients at the origin are 1, writing

We can supply the constant factors piecemeal from the formulae for

the functions themselves; in writing down formulae for &s(u) we have

to remember the factor dvjdu, of which the value is n'j2Kc .

Taking the original functions in factors we have

„ r , ,,, v 2KC . j-jl-2q*
n cos2v+q

in

1 * w 11 (1—o2n )
2

16-54
2 #

C (
W

)

~ C0S V
\

(l-q
2n

Y<

l+ 2q
2n

cos2v-{-q
in

{\+q
2nf
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If the original functions are developed in series, then equally

2KC sinv—^1,2 sin 3y+gr23 sin5v— ...

16-55! &
8(u)

=

16-552 &c(u)
=

16-55a &n(u) =

16-554
&d(u) =

n l-3^- 2+5^2 -3-...

cos v+q1 -2 cos 3v+<7
2 '3 cos 5v-\- ...

l+q12+q2 -3
+..-

1 — 2# cos 2v-\- 2q* cos 4v— 2^
9 cos 6v+ • •

1— 2g+2#
4—

2#
9
+...

1 -f 2</ cos 2v+ 2</
4 cos 4v-\- 2q

9 cos 6v-f- • • •

l+ 2q+2q*+2q9
+...

These adjustments secure that the quotient &p{u)l$q (u), which is an

elliptic function with the periods the zeros and the poles of pq u, also

has the same leading coefficient as pqw at the origin:

16-56. For all values of u, the Jacobian elliptic function pqw is the

quotient &p (u)l&q (u).

16-6. If in -56 we express the theta functions as products, we can

combine the typical factors of the two functions and express the elliptic

function also as a product. We have for example

7T T-r f/1— q
2n

\
2 l+ 2q

2n
cos2v+q

4n
\

•601 csu = —-cotv J-—V ,

' *
'-V •

2KC
1 1 l\l+?

27 1— 2q
2n
cos2v+q*

n
j

To find a series for pqw, we recall that pq u is expressible as a multiple

of a logarithmic derivative; if conditions of convergence are satisfied,

a product for f(z) leads immediately to a series for f'(z)/f(z). If rqu,

tqu are the functions copolar with pqw, then rq'w is a multiple of

tqwpqu and tq'u is a multiple of rqupqu; hence for an appropriate

value Xp of A, rq'u—Xtq'u is a multiple of (rqu—Xtqu)])qu, that is,

ipqu is a multiplef of (rq'u—Xtq'u)/(rqu— Xtqu). The poles of the

logarithmic derivative of a meromorphic function are the zeros and

the poles of the function itself; thus the zeros and the poles of

rqu— Xp tqu constitute a partition of the poles of pqw, that is, a parti-

tion of the zeros of &
q (u).

These zeros are the common poles of rqu
and tqu: the constant Xp has such a value that the combination

rqu— Xp tqu loses some of the common poles, and these poles are not

merely lost as poles but replaced by zeros. If a pole of tqu is a zero

of rqu—Xtqu, that is, of (rtu—X)tqu, it is a double zero of rtu—X,

f This is the form in which pqw is expressed in Table XIVl ; of the two combina-

tions available, the one chosen for the table is the one which has K„ for a zero,
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and since the only values of rtu at poles of tqu are rtK
q
and —rtK

q ,

these are the possible values of Xp .

We can verify this conclusion. Since rt2u—rt2K
q

is a multiple of

qt
2
u, every zero of qtu is a zero of one of the two factors rtu—rtK'

,

Ttu-\-rtKQ ,
and since these functions have no zeros in common, all the

zeros of each of them are double. The quotient (rtu—rtKq)/(rtu-\-rtKq )

has all its zeros and all its poles precisely double, and is a multiple of

{(rtu—YtKq)/qtu}
2

,
that is, of (rqu—rtKq tqu)

2
:

16-61. An elliptic function whose logarithmic derivative is a multiple of

pqu is a multiple of one of the functions rqu—rtKq tqu, rqu-{-rtKq tqu;
the zeros of these two functions constitute a partition of the zeros of &q (u),

and the zeros of one function are the poles of the other.

Constant multiples being naturally ignored in the enumeration, there

are twelve pairs of functions of the form rqu^frtKq tqu. From the

relation to pqu this is evident, and in fact tqu^trKq rqu is simply

^trKqirqu^frtKqtqu). The factorization of qt
2u can be effected

either by means of rt2u— rt2K
q
or by means of -pt

2
u—-pt

2K
q ,
and leads

to two pairs of functions, but the factorization of qr
2u by means of

tr2u— tr2K
q
leads to the same pair of functions as the factorization

of qt
2u by means of rt2u— rt2K

q
.

To express the functions rqu—rtKqtqu as infinite products, with

a view to expressing pqu as an infinite series, we consider more closely

the partitioning of the zeros of &
q {u).

We can describe the zeros of

&
Q(u) as the points congruent with K

q
to moduli 2KC ,

2Kn ,
2Kd . These

moduli are not periods of the Jacobian system, but they give rise to

the three sets of Jacobian periods

2KC ,
4Kn ,

4Kd ;
4K

C ,
2Kn ,

4Kd ;
4K

C , 4£n ,
2Kd .

We can therefore partition the zeros of &
q(u)

in three ways into con-

gruences whose moduli are periods of Jacobian functions :

(i) u = K
q ,
mod 2KC ,

4Kn ;
u = K

q+2Kn , mod 2KC ,
4Kn ;

(ii) u = K
q ,
mod 4KC ,

2Kn \
u = K

q+2KC ,
mod 4KC ,

2Kn ;

(iii) u = K
q ,
mod 4KC ,

2Kc+2Kn ;
u = K

q+2KC ,
mod 4KC ,

2Kc+2Kn .

Applying each partition to the four possible values of K
q ,
we have the

twelve pairs of aggregates required for the zeros and poles of functions

of the form rqu^rtKq tqu. Each aggregate can be associated with an

integral function whose zeros it provides. We stipulate that the pro-
duct of two functions whose zeros together comprise the zeros of &

q{u)

is to be the function &
q(u),

that the quotient of one of these functions
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by the other is to be doubly periodic, and that the leading coefficient

at the origin is to be 1 in every case; as we shall see, with these con-

ditions the functions are determinate. We denote the two factors of

&
q(u)

each of which has zeros separated by the interval 2Kk by &f-(u),

d%
+
(u), using the minus sign for the function which vanishes at K .

To determine a function whose zeros are the points 2mKc-\-4nKn is

to repeat the argument of -1 and -2, with the equation

e2i(v-2np) _ l

replacing the equation eWv-np) _ j

that is, with q
2
replacing q throughout. Hence

•602 &c
s~(u) = Ae^sinvJl (l

—
2q*

n
cos2v+q

fin
),

where A is a constant and f(u) is an integral function which vanishes

with u. It follows, since &g~ (u)&%
+
(u) = &s (u), that

•603 &c
s
+
(u) = Be-M JJ (l-2q*

n -2
cos2v+q

8n
-*).

From these formulae

di-(u+4Ke )
= e«"+4^)-«»>^-(u) 3

&c
s+(u+4Kc )

= e-M"+4KJ-««Wc
s
+
(u),

and since &c
s ~(u)l&

c
s
+
(u) is to be periodic in 4KC ,

•604 2/(^+4iQ = 2f(u)+2^i,

where /x is an integer. Again, since by -303

#s(u+2Kn )
= -r*r*WJLu),

we have, replacing Kn by 2Kn and &
s(u) by ^4_1e-/(M)^_

(w),

•605 &c
s-(u+4:Kn )

= —
g-ae

-2««e««+4Xn)-A«)^-(%) j

and therefore, since by -304

&s(u+4Kn )
= q-'e-^Uu),

we have

•606 ti*
+ (u+4£n )

= —
gr-2e

-2«l'e-{/(«+4X»)-A«)}^C+(tt );

from -605 and -606, since d*~(u)ld%
+
(u) is periodic in 4Kn ,

•607 2f{u+4Kn )
= W0+&"*.

where v is an integer. From -604 and -607, the derivative f'(u) is a

doubly periodic integral function, and is therefore a constant A, and

having inserted the constants A, B in -602, -603 in order to postulate

a zero value of /(0), we have f(u)
= Xu. But with this form of the

function, -604 and -607 imply

4Aifc = /A7rt, 4\Kn — viri,
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and since the ratio of Kc
to Kn is not real, these conditions can not be

satisfied unless
fj,, v, A are all zero. Hence f(u) is zero, identically, the

factor e/(M) is unity, and

irro *-/ x
2K

c • TT l-2g4M
COs2w+g

8w

16-62, &% (u) = —?sin?; ±- —-——
,1 6 v '

77 11 (1— q
in

)

2

To infer &%~(u) from &s(u), we substitute \o for v, and \a for a and

therefore
<?
for q

2
; again there is no exponential factor, and we find

iaao an-/ \
4^c •

l T~T 1— 2(t C0S ^+Q,2w

16-623 0*
(
tt )
- -—csm^ | |

-

(1-^)2

i/jro a* + / \ l T~T
l+ 2^

n COSV+g2M

16-624 d»+(u) = cos^ [ I (i+g»)»
;

whereas in •621_2 the individual factors of &s(u), as written in -54^ are

distributed unbroken, some to compose di~(u) and the others to com-

pose di
+
(u), in -623_4 each factor of &s(u) is broken and contributes

a component to each function.

The aggregate kmKc-\-2n(Kc -\-Kn )
consists of those members of the

aggregate 2mKc-\-2nKn for which m and n are both even or both odd,

and therefore the factors of d^~{u) are the factors of d^~{u) for which

n is even and the factors of &^
+
(u) for which n is odd, together with,

possibly, an exponential factor; after verifying that there is no ex-

ponential factor, we have

Tfifto <&-, \
4Kc •

i TT l-2(-q)n cosv+q2n

16-625 &* (u) = —?sin£i; —
,\ , v -,, ,5 s v '

77
"

1 1
{1
— (— q)

n
}
2

ippo ad+^ i TT l+ 2(-g)
n cosv+g2w

16'626 ^+(W )
= cos i« | |

{i+ (_g)^2
'

We derive partitions of &c(u) from partitions of #s(w) by substituting

v— 177 for v. Exponential factors can not become necessary, since the

periodicities are unchanged, but the constant factors must be supplied

after the substitution; since none of the functional factors vanish when
v = 0, we have only to divide each separate factor by its value there.

iaaq ac-t \ T-rl+ 2q
in
cos2v+q

!in

16-63] m (u) = cosv ——
-, , ,„ ,
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1— 2g''sinj)+{
2"

16-63., *»-(«) = V2sin(i7r-W Yl

16.63, **<•> = v2coS(j„- j.)n 1+2
*;;

i

;:
r,i

";

16-635 (S-(,| = V2si„a„-i,)H 1

-X-gy+«- ,

i6.636 *f*M = v2coB(i,-wn 1+-(

7|";r
+gte

-

To substitute g^e
2"* for e2w in ^"(w) and &c

s
+
(u) we must take the

numerators of the typical factors in the factorized forms

(l—q^e
2vv

){l—q
4ne-2vv ), (l—q

in -2e2vv)(l—q
in- 2e-2vr

).

The factors can not be recombined after the substitution, and the

numerator of the typical factor of #£
+
(w) remains as

(
1 _q4n-3e2vv)(l _g4n-lg-2w)

It follows from -543 that the numerator of the typical factor of &%~(u) is

(
1—q

in -ze
-2vv

)(l—q
in -1e2w ) ;

we can derive this factor alternatively by absorbing into the first factor

deduced from df~(u) the factor 1— q-
le2vv given by the extraneous

factor sin v, and representing the factor

(
1_ qin-le2vv) (

l_ gin +lg-2i;r
)

as (l_ g
4/i -le2ur)( 1_ 5

4(n +
l)-3g-2ur) -

We have now

•608 &c
r -(u) = Ae«" TJ {(l-9

4 ''- 3e- 2l' !,

)(l-?
4n -1e2

<"•)},

•609 di
+
(u)

= Be-M> Yl {{\-qi
n -*e2vr){\-q*

n - le-2vv
)},

where A, B are constants and f{u) is an integral function of u which

vanishes with u. The infinite products are unaltered if v-\-2tt is sub-

stituted for v; hence the periodicity of &c
n
~
(u)fti^ (u) in 4KC implies

•610 2/(w+4iQ = 2f(u)+ 2fjLTri,

where
//,

is an integer. Substitution of q
2evv for evv reproduces the infinite

products, except that in the first the factor 1— q-
3e~2vv replaces 1—q

3e2vv

and in the second the factor \—q-1e~2vv replaces 1—qe
2vv

. Thus

•611 #£-(tH-4A»)= -q-*e-
2vve«u+iK«>-Hv)&l-(u),

•612 0£+(tt+4Kn )
= -q-ie-

2vl-e-M u +4Kn)-H H)}&c
n
+
(u),

and the condition of periodicity of the quotient &n~{u)l&%
+
(u) is

•613 2/(tt+4£n)
= 2f{u)-2a+2v7ri,
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where v is an integer. As before, f'(u) is a constant, and f(u) is a

multiple of u, which we may take to be kv. We have now, from -610,

•613, since the addition of 2KC to u is equivalent to the addition of tt

to v and the addition of 2Kn to u is equivalent to the subtraction of

a from vv, that is, to the addition of va to v,

•614--615 2/C77 = /Z7rt, 2kov = —
a-{-viri.

We must again take v = 0, but the conditions then require k = \v,

and are satisfied if
/x
=

v/i
= ±1. Hence

v
1 g e A 1 g e j

(l_g*-»)(l_j*»-l)
'

v
1 g 6 A 1 g e )

The complete denominator in each function is simply ] 1(1—q
2n ~x

).

To write down $*~{u) we have only to replace 2K
C by 4/Tc in #n(w),

that is, to replace g
2
by g and v by Jv. To avoid fractional indices we

use, as in *4, an explicit symbol r for e~ia :

•616 r2 =
q.

No exponential factors are required, and we have

16 .643 <rw -n x- 2r

;;:rr;
r4°" 2

.

*M =n 1+2
,:;;:

s

-;t

r4°'2

-

To find #£-(%) and #£
+
(w), we replacet evv by r-V in -625_6 . Apart

from constant factors and an exponential factor eivv
,
•62

5_6 give the

products

(1— e-w1
'){(l+r

2
e'

,,,

)(l+r
2e- |",

)}{(l— r
4ew,,

)(l—r^-^x
x{(l+r

eevv)(l+r
ee-vv

)}...,

{l+e-
vv
){(l— r2evv)(l— r2e-" ,,

)}{(l+r*e
,,1

')(l+r
4e-l

"')}x

X{(l—r
6evv){l—r

6e-vv
)}...,

and these are transformed into

{(l—re-
vv
)(l+re

vv
)}{(l+r

3e-vv)(l--rh
vv
)}{(l—r

5e-vv)(l+r
5evv

)}...,

{(l+re-
vv
)(l—re

vv
)}{(l—r

3e-vv)(l+r
zevv)}{(l+r

5e-vv)(l—r
5evv)}....

Substitution of r4euv for evv multiphes these products by the same

factor,
— r

~ie~2vv . Hence the quotient of one product by the other is

t The reader may consider why we can not apply to -643_4 the process by which
•626_6 are derived from •623_4 .
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periodic in 4Kn , and since each product is periodic in 4KC , no exponential
factors are wanted and we have

16-64, «*(„) = TT '-'W^*"-*-.

Lastly, the partitions of &d(u) are derivable from those of &n {u) by
the substitution of v—\tt for v:

16-65, dj-ju) = e|W rT (1+g4n
"
8e
"
2t,g)(1+g4n

"
le2W)

1 d v y 11 (l+g
4"-3

)(l+2
4
"-l)

(l+g4W
-3)( 1+g4n-l)

i6-6o3 ^-^-rr 1" 2^"18111^^"
-,

16-65, WW = TT l+^-Hinv+r>-*
4 d V ' 1 1 l_|_ r

4/i-2

To replace the products in -62--65 by series is in most cases only to

apply, with a change of variables, the identities implicit in the double

expressions for the functions &p {u) in -54 and -55. With the series, the

fact that the product of the two functions &%~(u), &^{u) is the function

&
q{u) is no longer obvious.

2KC r sin v— r9 sin 3w+r25 sin 5v— ...

16-66! dr-(u)
TT r— 3r9+5r25—

...

,p nn qc+( , 1— 2r4 cos2v+2r16 cos4v— 2r36 cos 6v
-)-..._

'

2 s
"

1— 2r4+2r16— 2r36+...

16-66 d»-(u) =—c sin^-r^sinfv+r^sinlt;-...
3

77

'

i_3ri.2+5r2.3_

16-66 W+(u\ -- cos |^+r12 cos fa+r2 -3 cos |v+ ...
.

4 "i W"
i +ri.2+r2.

3+>->

16-66 #*-(tt) -- IS ^sin 1

;
i;4-r9

sinf?;-r
25
sm|2;-r

49
sinlt;4-.. .

5 S
"

TT

"

r+ 3r9_5r25_ 7/.49+--

1 G . 666 &d + hi)
— r cos 2v

— r* cos %v—r25 cos lfo+r
49 cos |t;+... .

* ^*9 . /**2o I *»49_l

o o
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the signs alternate in pairs in -665_6 ,
as they do below in *673_4 ,

•681_ 2 ,

•685_6 ,
and -693_4 .

16-67^

r cos y-j-r
9 cos 3v+r25 cos 5v+ .

a*
|_ <y" J <y25 |

0g+(«) =
1 -f 2r

4 cos 2v -f- 2r
16 cos A.v+ 2r36 cos 6v+ . . .

l+ 2r4+2r16+2r36
+...

16-673-4

0?-M =

16-67 5_6

d*+(u)

(cos|v— sin|t>)
—r^cosfy+sinfv)— r2 -3

(cos§t>— sin|v)+.
^1.2. r2.3 I

(cos §v-f-sin \v)—/-^(cos |v— sin |v)—r2 -3
(cos |v+sin |w)+ ...

.

.
I . 2t ;-_'.>

/*
2 '3+.

r(cos \v— sin ^v)+r
9
(cos fv+sin |v)-l-r

25
(cos \v— sin |v)+ •

r(cos|v+sin-|i>)-f r9(cosfy—sinfv)+r
25
(cos|v-l-sin|v)-)--..

r+r9+r25
+...

No products like those in -64^2 and •651_2 occur in -5, but we can avoid

a functional examination by making a substitution directly into ^j^.
Except for constant factors, d%~ (u) and #£+ (u) are derivable from #g

-
(u)

and #g+(tt) by substitution of q-
1e2vv for e2™, that is, of i-V* for evv

,

and multiplication by an exponential factor; the exponential factor is

e-iw jn each case, for the factor 1— e~2vv has been taken from sinw in

the formation of -64^ from -62
l5
and it is a factor e~ivv that must be

imported to produce the explicit factor e$vv . The relation between the

pairs of functions is in no way dependent on the form in which the

functions are written, and therefore the series required for d^[u),
&c
n
+
{u) are

g-lvvfyfy-lgW re—vv ) y9/y—3g3t/r y3g-3uj>\ I ^25/^-5g5ui; ?.5g-5uy\ \

g-hvvf J r4f^.-2g2vv_\_ lf.2g-2vv\ I ^.16^-4g4uv I ^4g-4ny\

^36/^-6g6ui'_|_^.6g-6uv\_J_ >
\

Supplying the denominators, we have

gjuu yl.2g-Ju« ^2.3gfui;_|_y.3.4g-lut)_)_

16-68! i?r(«) = -

i_ ri.»_ r2J+fM+ ...

—
'

i6-682 VM = e—^rl.8_y+^„.
+ ""

-
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Transformation of -643 6 is immediate, since these products are formally
identical with the products for &n(u) and &d(u):

* a oa Q » / n
1—2rcosv+2r4 cos2v— 2r9 cos3v+...

16-683 V»-(u) =

16-684 &p (u) --

16-685 d*-(u) =

1— 2r+2r4— 2r9
-f...

1+ 2r cos v-\- 2r
4 cos 2v-\- 2r

9 cos Sv-\- . . .

l+ 2r+2r4+2r9
+...

1+ 2vr sin v— 2r4 cos 2v—2vr9 sin 3v -f- 2r
16 cos 4v+ . . .

1— 2r4+2r16— ...

^ ™ 0,74-/ x
1— 2ursini?— 2r4 cos2v+2yr9 sin3v+2r16 cos4u+...

16-686 «*+(«) = 1-V+ar"—
'

Lastly, subtracting \tt from v in -68^ we have

l+r1 -2+r2-3+r3-4
+...

gjvw_(_|.1.2g— |uu_l_ ^.2.3giuv_|_^.3.4g-Jut;_j_

16-69
1
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Table XVI i

2(ns«— dsu) 2snu _&
c
s~(u)

k2
=

1+dnw
=
&e

s
+
(u)

2(dsu— csu) _ 2sdu _&'*~(u)P =

l+cdu
_

d^
+
{u)

2snw M~(u)
2(nsu— csu) = ——- - = Q ,, . .

v ' l+cn« &d+ (u)

dcu—k'ncu _ (l+ &')cdw _ &c
c~(u)

\-k'
~ =

1+k'ndu
~~
&c

c
+
(u)

cnu &%~{u)new— scu
1+snw &%

+
{u)

cdu d^~(u)dcu—k'scu —

ncM ffir(u)
cnw+ usnw =

1+ k'sdu &d
c
+
{u)

new &1r(u)

1+USCW &n
+

(
u

)

dnu—kenu _ (l+k)ndu _ &",~(u)

1—k 1+kcdu
""

&l
+
{u)

cdu—vk' sdu =
dew l9^ (it)

l+u&'scw ^+
(w)

_
,

. dnw ^"(m)ndw+ fcsdw =
1-fcsnw j?2

+
(m)

&cdw+ t>A;'ndw (k— vk')dcu _ #$~(m)

&+u&'
"

fc— ufc'ncu ^+
(")

Particularly interesting is the expression for cnw+usnM, for this

function is evamu . Inserting from -M^ the values of ^(u) and ^(u)
as products, we have explicitly

gvamii _ ew» 7 T I
1 g e A 1 g g )

1 I (l— gf4»+ie
2u,

')(l— gf
4B+8c- 2u1

')"

~, co oo ,

But logll (l—q
in+Pe2vv

)
= — V Y —

gf™(*»+^e
2mi>y

m
n= m=l

m = l
ra(l—2

4m
)'

//fc A

and therefore

IqIH q3))iWg2mw) g—2miw\
am w

"i
»+2 um(l— g-

4m
)

5



THETA FUNCTIONS 285

that is,

.„ _ ft ,

2*7 sin 2v
,

2o2 sin4v 2a3 sin6v
16-72 am» = »+S_+i

q:^+!_+ ... )

if the expansion of the logarithms is valid, that is, if |<7e
2/

"| and ] ^e
— 2*v

[

are both less than 1; this condition can be written as |e
±2iy-a

|
< 1,

that is, as Rlcr;±;2Imv > 0: the point u is in the strip

-Rlcr < Im{(7r/K)u} < Rla.

The rearrangement just applied to the logarithms can be applied to

logarithmic derivatives. If A is any constant such that \Xe
iv

\
< 1, then

d °°

— log(l—Xe
iv

)
= — i 2 Xmemiv

,

dv m=l

and therefore, if |A| < 1,

-fiogn (i-AV") = -i y ±±—
.

dv n=l Z, 1—Am
ra=l

In each of the quotients &^~(u)/&p
+
(u) the products are of the form

suitable for this transformation, and only the restrictions on the range
of v have to be supplied. The factor dv/du, that is, 7t/2K, enters through-

out, and a second factor has to be inserted from Table XIV l, for the

logarithmic derivative of rpw—rqKp qpu is not necessarily the func-

tion tpw but is a constant multiple of tpw. The complete set of

formulae is contained in the following pair of theorems.

16-73. Within the strip
— tt RlfiT/Z) < Imw < ttRIIK'/K),

K 2Kv , q
2 sin2v o4 sin4w q

6 sinGv
•/3,

— cs = icotv— -
...,1

277 77
4

l+£2 l+£4 1+g6

K 2Kv t , gsinv a3 sin3w
,

<7
5 sin5v

•73 2
— ns = |cscv+i- j-*
2n 77

*
\-q

'

1-q*
'

1-q*
'

'

K , 2A'v . g-sinv
3 sin3v 5 sin5v

•/33
— ds = icscv— i- s -

...,3
2tt tt

4
1+g 1+g3 1+?5

__ //A' 2Av
, J

o2 sin2v o4 sin4i> oG sin6i>
,

•/34
—— sc = itanv— L-—— =-+••4
2t7 77

4
1+?2 T 1+g4 1+?6 T

_„ A" , 2Kv ,
, qcosv o,3 cos3v

, <7
5 cos5v

•/35 x-dc = fsecv-f- ;r-+ -
? •••,

2t7 77
4 ^

\-q 1-q*
T

l-?5

_ A:'A' 2Av , <7cosv tf
3 cos3v <7

5 cos5v
,

•736 -^— nc = jsecv— -—— +
2t7 77

*
1-fg l+£3 1+?

5
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16-74. Within the strip -^miK'/K) <
: Imw <

: lirBliK'/K),

'7*i
K , 2Kv— on
277

•74, 1-

TT

2KvkK
sn-

27T TT

1 # cos 2^
, <?

2 cos 4v g
3 cos 6v

4
+

1+g2 + 1+?4 +
1+?6 + ""

rsinv r3 sin3v
,
r5 sin5v

,

74,

•74,

•74 c

•74,

kK 2Kv—- en—-
2tT TT

k'K ,2Kv
nd

1-q
rcosv

1-q3

r3 cos Sv

1—q5

r5 cos 5v
+

2tt

kK
TT

2Kv
cd

2TT TT

kk'K ,2Kv
sd

77

1+q
'

1+q3 '

1+q5

1 gcos2v <?

2 cos4v g
3 cos6v

4~ 1+g2 ~"

1+g4
l+g«

r cos v r3 cos 3v
.
r5 cos 5v

+ -».

1-2
rsinv

1-q3

r3 sin 3v

1— q
5

r5 sin 5v

2tt tt 1+ q 1+q3 '

1+q5

In these formulae iT, K' denote Kc , KJv, and therefore by the

definition of v, Jil(K'IK) is essentially positive. In -74, as elsewhere,

r is a definite value of g
1/2

.

16-8. In the formal sense, theta functions and ^-series solve superbly

the problem of inverting the elliptic integrals. If we express dau as

d~d{u)l&n[u) and substitute v = \tt in -553_4 ,
we have

'l— 2q+2qi—2q9+.
16-81 k' =

3-l+ 2q+2q*+2q
9+,

whence, if h' 2 = k', one value of h' is connected with q by the relation

• 801 in£ 2g+2g9+2g
25+-

1+A'~~ l+ 2g
4+2216+2236

+...*

If q is given, this relation determines h', and therefore determines

k'
, c', and c. Conversely, if the parameters are given, and if

e = l{l-h')l{l+ h'),

the equation

•802 g+g9+?25+- = .
l+2q*+2q™+2q3

s+...

has only one solution which vanishes with e, and this solution is de-

velopable as a power series

•803 q = e+a1 e
5+a2 e9+...

which can be shown to be convergent if |e| < \.

With q known, the condition snKc
= 1 gives a variety of expressions

for K
c ;

in particular, from -73
2

16-82
27L = 1

H
TT ]

4^3 4^5

~73+ l-g5
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and from -SSj and -553

Ififlq ^0 l-3g2+5g6-7g12
+... l+ 2g+2g4+2g9

+...

And from the definition of q, the value of Kn follows immediately from

the values of q and Kc .

These developments do not touch the theoretical inversion problem,

the problem of ubiquity, except by providing powerful means of attack.

The problem in this form is to prove that the equation -81, as an

equation in q, possesses solutions for every finite value of k' except

k' = 0, and that the aggregate of solutions for a given value of k' other

than k' = 1 is an automorphic aggregate corresponding to the aggregate

of values of vKJKc belonging to one and the same Jacobian system.

16-9. The effects of halfperiod and quarterperiod additions on theta

functions are summed up in (i) the pair of formulae

16-9V2 K(u+2KC )
= -H(«), &{u+2Kn) = Q(u),

given above as -Sl^, (ii) a comprehensive induction from -42 and -403,

namely,

16-92. If<£>(u) is either of the two functions H(u), Q(u), then

0>{u+mKn )
= vmq-

m^e-™vX
¥(u),

where Y(u) is the same function as O(w) if m is even and is the other of

the two functions if m is odd,

and (iii) the following permutations:

16-93, &8{u+Kc)
= {H(A-c)/H'(0)}^»,

16-932 *.(«+**) = u{?-
1/4e(0)/H'(0)}e-^n(tt),

16-93, &e(u+Ke )
= -{H'(0)/H(A;)}#»,

16-934 Uu+KJ = {q-^®{Kc)mKc)}e-™%(u),

16-935 ^.{u+KJ = {®(Kc)IQ(0)}Uu),
16-936 KiV+K) =

ufe-
1/4H'(O)/0(O)}e-^8(u) 5

16-93
7 #>+iQ = {®(O)/0(JQ}*»,

16-938 Hu+K) = {q-^K{Kc)mKc))e-™&c{u).

These results are all derived from the definitions of H(w) and Q(u)

as series, and if doubly periodic functions with simple poles have not

been constructed otherwise, theta functions provide an austere method

of introduction. The variable is at first v and one quarterperiod is Itt;

the transition to u is again made with a view to the function snw,

but the general lattice does not come into the picture, and the Jacobian

lattice is seen rather as an alternative to one other lattice than as the

canonical representative of a class.



XVII

REAL FUNCTIONS AND REAL INTEGRALS

17-1. If the parameter c is real, the six members of the anharmonic

group of numbers to which c belongs are all real. Of the six numbers,

two are negative, two are positive and greater than 1, and two are

positive and less than 1. In dealing with Jacobian systems with a real

modulus, we lose nothing by adopting as a canonical system one whose

parameter and modulus satisfy the conditions

< c < 1, < k < 1.

A system whose parameter does not satisfy the first of these conditions

can be derived from a canonical system by one of the transformations

of the anharmonic group, that is, by a combination of Jacobi's two

transformations .

With < k < 1, the integral relation

00

dx
101 u

1 J{(x
2
-l)(x

2-k 2
)}

is a case of the relation studied in Chapter IX. There is a basis composed
of a real quarterperiod K and an imaginary quarterperiod iK', where

K, K' are given by
oo oo

17 11 K f dt
K> f

dt
1IM

j j{{ti
_

1){ta
_

kt)y
-

j ^+l)(*2+&2
)}'

1

the integrations with respect to t being along the positive half of the

real axis and the radicals being positive. The integral

oo

/

dt

V{(*
2
-i)(*

2-*2
)}

is mixed, whatever the path of integration.

Since K, iK' are values of u in -101 corresponding to the values 1,

of x, it follows that if x is regarded as a function of u, then iK' is a zero

of this function and the value of the function when u = K is unity.

That is to say, K, iK' is a Jacobian basis, and the integral relation

•101 is equivalent to the functional relation x = nsu on this basis.

In terms of the Weierstrassian function §){u;Kc,Kn,Kd ), where

Kc
= K, Kn

= iK', Kd
= -K-iK',
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we have

•102--104 cs2u = pu—ec ,
ns2u = pu—en , ds2w = pu—ed ,

where ec ,
en ,

ed denote pKc , pKn , pKd . From the double series defining

pu in terms of K and iK'
,
the function is real if u is either real or

imaginary; in particular ec and en are real, and therefore, since

ec
Jr en

Jr ed — 0> ed also is rea l- It follows that the two products

{pu-ec}{p{u+K)-ec}, {pu-en}{p{u+iK')-en},

which have constant values, are real, and therefore that p(w-j-A") and

p(u-\-iK') are real whenever pu is real. Hence if S, C, D, N denote

the points 0, K, K-\-iK'', iK', the function pu is real on the perimeter
of the rectangle SCDN, and from -102--104 the same is true of the

three functions cs 2
w, ns2

u, ds2u. The property extends algebraically to

reciprocals and quotients:

17-12. // < c < 1, the squares of the twelve Jacobian functions are

all real on the perimeter of the fundamental rectangle SCDN.

The function pq u has one of the four points S, C, D, N for a zero

and one for a pole. These points, which may be denoted by P, Q,

divide the perimeter SCDNS into two stretches. If u describes the

perimeter, it is only as u passes through P or Q that pqw can change
character from real to imaginary, or can change sign from positively

real or imaginary to negatively real or imaginary. At the origin, or for

small positive real values of u, each of the Jacobian functions is real

and positive. Hence j>qu is real and positive throughout that stretch

from P to Q which includes the side SC. The two sides of the rectangle

which meet at P meet at right angles, and because the zero of pqw
at that point is simple, the function, which is real in one direction from

P, is imaginary in the perpendicular direction; the real values being

positive, the imaginary values are positive or negative according as

rotation from the real side to the imaginary side through one right

angle is in the positive or in the negative direction. We can therefore

recognize geometrically both the character and the sign of pq u on each

stretch of the perimeter, and since we can write down from the classical

formulae 9 , 9 , „ , 19 9cn*u = 1— sn-w, dn'u = 1—k^sn^u

the values of pq
2
w. at the corners where it is not zero or infinite, we can

complete without difficulty the set of diagrams on p. 290.

We can insert leading coefficients at the poles and zeros in these

diagrams: at the origin in csu, nsu, dsu the leading coefficient is 1,

4767
pp
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and since the derivative of each of these functions is the negative of

the product of the other two, the leading coefficients at their zeros are

—
k', k, ikk'; any other function is derivable as a reciprocal or a quotient

from these three.

_|5
A
I

cs u
I

I

-ik

CO* cO CO*

SCtt

0> »oo

co- *-0

-ik
! >0

ds ii

OO c ; K

0: >ik/k'
Y

nc ii

v
-*-co

dn u

1«> ^k

oo> >-ik/k

en it

v

^0

0> ->oo

nd a

k- -*-co

r

cd a

(

l/k
l*- ^0

i/k>
->oo

sd u

.1/k'

Fig. 33.

The continuous lines show the sides along which the functions are real, the dotted

lines the sides along which the functions are imaginary. Arrowheads point towards zero

from negative real or negatively imaginary values, away from zero towards positive real

or positively imaginary values.

A function of u can not change from real to imaginary as u describes

a path without a sudden change of direction, if the only singularities

of the function on the path are poles, whether or not the path passes

through any zeros. Hence the character of the function pqw along

a side of the fundamental rectangle is maintained along the whole

infinite line of which that side forms part. In particular,

17-13. With a real parameter between and 1, all the J acobian func-

tions are real for all real values of u; for imaginary values of u, the six

even functions are real and the six odd functions are imaginary.

The variation of a function along a produced side of the fundamental

rectangle is seen most readily in terms of zeros and poles.
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Suppose first that P, Q are opposite corners of the rectangle, and

denote the rectangle by PRQT. On the lines PR and PT there are

zeros and no poles; on the one line, pqw oscillates between —
pq/Q.

and +pqAr ,
on the other line, between —pqA, and +pqA); one set

of values is real, the other imaginary. For example, along the real axis

cnw oscillates between —1 and -\-l, and along CD this function oscil-

lates between —ik'/k and -\-ik'/k. On the lines QR and QT there are

poles and no zeros; pqw remains outside the range (—pqAr , -fpqAr )

on QR, outside the range (—pq A,, -fpq A,) on QT, and is real on one

of these lines, imaginary on the other. Along the imaginary axis, en u
falls from +00 to +1 and rises again to -fooasM increases from — iK'

to -\-iK' ,
rises from — 00 to — 1 and falls again to — 00 as u increases

from iK' to SiK'; along the line ND, cnu rises from — ioo to —ik'/k
and falls again to —ioo as u—iK' increases from to 2A, falls from

+ *oo to ~\~ik'/k and rises again to -\-ioo as u—iK' increases from 2A
to 4A, and so on.

Secondly, let P, Q be adjacent corners of the rectangle, which can

now be denoted by PQRT. The variations along the lines PT and QR
are of the two kinds already described. For example, along the real

axis sn u oscillates between — 1 and -f- 1
, along the imaginary axis sc u

oscillates between —i and -\-i. Along ND, snu is real and either

greater than -\-ljk or less than —l/k, and along CN, sew is imaginary
and takes no values between — i\k' and -\-i\k' . But now there are two

other types of variation. On the line RT
, pqw has no poles or zeros,

and oscillates between pqAr and pqiQ, which in this case necessarily

have the same sign. For example, along the real axis dnw oscillates

between -\-k' and +1, along CD, snu oscillates between +1 and -\-l/k,

and along ND, csu oscillates between —i and — ik'. Lastly, on the

line PQ the function pqw has zeros and poles alternating, and takes

all values of the right kind, that is, all real values or all imaginary

values, changing sign at each pole as well as at each zero, and therefore

showing the same direction of increase everywhere along the line. Thus

the values of scu increase steadily from —00 to +00 as u increases

through real values from —K to K, and repeat this increase as u

increases fromK to 3A
,
from 3A' to 5A, and so on; similarly sn u increases

steadily from —ioo to -\-ioo as u increases through imaginary values

from —3iK' to — iK', from —iK' to iK', from iK' to ZiK'
,
and so on.

17-2. We made occasional use in Chapters VII and VIII of the

generation of an elliptic function as a particular integral of a differential
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equation of the first order which when made rational in the dependent
variable is of the fourth degree in the variable and of the second degree
in the derivative. If we generate a copolar triad of Jacobian functions

by means of simultaneous equations, the individual equations are much

simpler. Writing

•201—203 snu = x, cnu = y, dnu = z,

we have

•204—206 dx/du = yz, dy/du = —
xz, dz/du = —cxy,

with the initial conditions

•207-209 x(0) = 0, 1/(0)
=

1, 2(0) = 1,

and in this definition of the functions there are no ambiguities to be

resolved. The initial values of x, y, z, substituted in -204—206, give
the initial values of the first derivatives, and by successive differentia-

tion of -204—206 we obtain initial derivatives of as high an order as

we wish, and so, theoretically, Taylor expansions for the three func-

tions near the origin. From these expansions the functions can be

continued analytically.

It is no part of our design to develop the subject logically and

thoroughly on a fresh foundation, nor does this method offer any of

the advantages of a method in which the double periodicity is known
in advance, but assessed as an illustration of the manipulation of a set

of equations, the examination of real and imaginary values of the

functions x, y, z defined by -204—206, in the case in which c is real,

is instructive.

For definiteness, we suppose from the first that < c < 1. Because

c is real, all the derivatives, of whatever order, are real for real values

of x, y, z, and the functions are real for sufficiently small real values of

u. By integration,

•210-211 x2+y2 = 1, c£2+22 = 1,

and therefore x

•212 u -i V((l-*
2
)(l-c^)}'

with the positive value of the square root near t = 0. The formula

persists as far as x = 1, since by hypothesis c < 1.

With the square root positive, the formula

_ r dt
=

J V{(i-*
2
)(i-c*

2
T}

•213 u
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defines u as a real monotonia function off from f = --1 to fj
= 1, and

therefore defines f as a real monotonia function f(u) of u from u = - A'

to ?* = it
,
where

f eft
=

J V((i *
2
)(l-c<

2
)}'

a value easily identified, if c = A;
2

,
with i£ as defined in -ll^ With

£(u) so defined, the set of equations -204-*206 with the initial conditions

•207--209 has for its unique solution over the range
—K ^.u ^ K

•215 x(u) = £(u), y(u) = J{l-g*(u)}, z(u) = ^{l-c^(u)},

where the square roots are defined to be positive. Within the range,

•216 x(— u) = —x(u), y{—u) = y(u), z(—u) = z(u),

and the extreme values are

•217 x(-K)=—l, y(-K) = 0, z{-K) = h',

•218 x(K) = 1, y(K) = 0, z(K) = k'
,

where h' is the positive square root of 1— c.

To extend the range, we consider the set of values at K as a set of

initial values operating to maintain the identity of our set of solutions

of the set of differential equations. At K, since xz is positive, dy/du
is negative, and therefore for sufficiently small positive values of u—K,
y is the negative square root of 1— a;

2
,
and if the radical is read as

positive,
du^_ 1

dx
=

^{(l-x
2
)(l-cx

2
)'

Beyond K, x decreases from 1, and we have

i

Tjr C dtu—K
J V((i *

2
)(l-c*

2
)}'

a relation that persists until the radical becomes zero, that is, while

x decreases from 1 to — 1 and u—K increases from to 2K. Thus for

K < u ^ 3K,

1 X X

U~K =
(J

~
J JW^W^)}

= K~
J V(a-*

2
)0 ct*)Y

0'

that is,

•219 x(u) = i(2K—u) = —i(u-2K) = -x(u-2K).
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It follows that y(u), z(u) are numerically equal to y(u
— 2K), z{u—2K),

and since y(u) is negative and z(u) positive,

•220 y{u) = —y(u—2K), z{u) = z{u-2K).

At the other extreme of this second range,

•221 x(SK)=-l, y(SK) = 0, z(3K) = k',

and this is the same set of values as the set -217 for —K; hence 4K" is

a period of the three functions, as functions of a real variable, and

•219--220, which may be written

•222 x{u+2K) = —x(u), y(u+2K) = -y(u), z(u+2K) = z{u),

hold for all real values of u. The variation of the three functions along

the whole of the real axis can now be described.

Next we consider the functions as functions of the real variable v,

where u = iv. The differential equations become

•223 dxjdv = iyz, dy/dv = —
ixz, dz/dv = —icxy,

and to remove i from this set of equations we have only to introduce

i as a factor into one of the dependent variables. If we are not thereby
to introduce i into one of the initial values -207--209, it is x that we
must modify, and we write

•224 u = iv, x(u) = ix(v), y(u) = y(v), z(u) = z(v).

We have then the set of equations

•225 dxjdv = yz, dy/dv = xz, dz/dv = cxy,

with the initial conditions

•226 £(0) = 0, £(0) = 1, 2(0) = 1.

On account of the changes of sign in the differential equations,
•2 10--211 are replaced by

•227-228 y*-x2 = 1, z 2-cx2 =
1,

and the relation between x and v is given, for some finite range of

values of v, by £

•229 v=
f

dt

V{(l+*
2
)(l+c*

2
)}'

with a positive radical. The relation

v

-l V{(i+'
2)(i+^2

)}
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defines v as a real monotonia function of
77,

and
77 inversely as a real

monotonia function tj(v) of v; the range of
77

is unlimited, but the

integral „,

•231 f
*

has a finite value K', and it is only for the range —K'^.v^.K' that

the function t)(v) is available. The solution of -225, -226 for this range is

•232 x(v) = tj{v), y(v) = J{l+ r)*(v)}, z(v) = Vfl+c^)},

and for the same range

•233 x(w) = irj(v) t y{iv) = Vftl+'jW}. 2M = ^(l+c^)},

all square roots having their positive values.

At ?; = K' the functions f(v), ?/(v), z(v) become infinite, and extension

of the range presents a fresh problem ;
two solutions may be indicated.

We can provide finite values by changing the functions, writing

x(v) = 1/A», y(v) = Y(v)/X(v), z(v)
= Z(v)/X(v)

and crossing over by means of the values

X(K') = 0, Y(K') = 1, Z(K') = k.

Alternatively, we have from -230, -231, for small values of K'—v,

1/k
7]{V) K'-v

implying

•234 x(v)~ ——L, y(v)~ L, z{v) ~ — .

v-K" JK ' v-K" v ' v-K"

and these asymptotic formulae must persist through the pole from

negative to positive values of v—K'. It will be found that for the

succeeding range K' ^ v < 3K',

•235 x(v) = x(v-2K'), y{v) = —y{v—2K'), z(v) = -z(v-2K').

From the point of view of the complex variable, the asymptotic
formulae -234, in the form

/'
• 236 *<U)~i' yM~-CT' zM ~-^iK
are effective not merely along the imaginary axis but throughout the

neighbourhood of iK', and they serve to identify the solutions, from

whatever direction the point iK' is approached.
Just as the zero of snw at the origin enables us to reduce the
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discussion of the functions sn iv, en iv, dn iv for real values of v to the

solution of a set of differential equations satisfied by real functions of

v, so the zero of en u at u = K enables us to deal with the functions

sn(K-{-iv), cn{K-\-iv), 6n(K-\-iv). The set of equations satisfied by this

set of functions is again -223, but we must now introduce iasa factor

into y, since the initial values of x and z are finite and different from

zero. Writing

y(K+iv) = iy(v), z(K+iv) = z(v),

- — xz, dz/dv = cxy,

, o, 2(0) = k',

cy
2
-\-z

2 —
c',

where c' = 1— c. We require a monotonic function l,(v) denned by

} dt
242 v

•237 x(K+iv) =
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the three functions since now it is only through the functions that i can

enter. If we propose to use the values -245, we write

•246 z(K+iK'+w) = x(w),

y(K+iK'+w) = iy(w),

z(K+iK'+iv) = iz(w).

The differential equations are

•247 dx/dw — —yz, dyjdw — —xz, dz/dw = —cxy,

with the conditions

•248 x(0) = 1/Jb, y(0) = -k'/k, z(0) = 0,

and the quadratic relations are

•249-250 ex2—z 2 = 1, cy
2-z 2 = c'.

The formula m

•251 w -
j{{t

2
+\){t

2
+c')}

defines vr(w) over a range easily identified as —K^iw^K, and over

this range,

•252 x(w) = J{l+m2
(w)}/k, y(w) = -J{c'+vT2

(w)}/k, z(w) = m(w).

Hence, for —K^.w^.K,
•253 x(K+iK'+w) = <J{l+ >aT

2
(w)}lk,

y(K+iK'+w) = -iJ{c
f

+vT2
(w)}/k,

z(K+iK'+w) = im{w).

For large negative values of to-, w-\-K is small and positive, and

1
TtT(w)

w+K'
writing K-\-iK'-\-w — u, we have

1
TtT(w) u—iK />

and since the square roots in the formulae for x(K-\-iK'-{-w) and

y(K-\-iK'-\-w) are essentially positive, we recover -236, for small positive

real values of u— iK'; to reach small negative real values ofu—iK' we
have to extend the range of w, and -253 is no longer applicable.

It need hardly be said that the results proved in this section are

established by the arguments used here onlv for the lines along which
4767

Q q
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the functions have been studied. We have not, for example, proved
that 4K is a period of the Jacobian functions of a complex variable.

17-3. Like 9-2, sections -1, -2 deal with the perimeter of the funda-

mental rectangle. We can appropriate the result of 9-46, since the

factors which convert the functions of the earlier chapters into Jacobian

functions are purely real or purely imaginary.

17-31. // x and u are complex variables, and if the parameter c of the

Jacobian function pqw is a real number between and 1, the transforma-

tion x = ~pqu maps the fundamental rectangle and its boundary in the

u plane on a quadrant and its boundary in the x plane.

Since the real values of pq^ on the boundary of the fundamental

rectangle are positive, the quadrant of the x plane that is mapped is

either the first or the fourth; if k as well as c is positive, the quadrant
is the first for the three functions with the origin for a zero, and for

the three functions ncu, ndu, dcu.

The mapping is conformal except at the two points x
r ,

x
t
on the

boundary of the quadrant which correspond to the two corners K^., Kt

of the rectangle ;
the values of xr ,

x
t , namely pq K,., pqKt ,

are the values

shown explicitly in Figure 33. As in 9-4, we can distinguish three cases:

x
r ,
x

t may be both on the real radius of the quadrant, one on the real

radius and one on the imaginary radius, or both on the imaginary
radius. There is, however, as the figure shows, no equality now between

the third case and the first; the two exceptional points are on the real

radius in six cases, on the imaginary radius in only two cases.

If xr ,
x

t
are given, that is, if a quadrant with a given pair of excep-

tional points is to be mapped, a suitable value of the parameter is seen

at once from the set of diagrams: if xr and x
t
are on the same radius,

the smaller of the ratios xrjxt ,
x

(/xr can be taken either for k or for k';

if xr and x
t
are on different radii, the numerical ratio

|

xr\xt |

can be used

either for k/k' or for k' \k.

If it is the rectangle that is given, we have the ratio of K to K' .

We can construct a function gj(s; ai
f ,

a>
g ,
wh ) with to

f
: u> = K : iK' and

find the normalizing factor from this function. We have now very little

choice in the numerical values of xr and x
t ,
but since our choice among

the twelve functions on the Jacobian basis K, iK' is still free, we can

choose the radii on which the points x
r ,
x

t
are to be found.

17-4. For real integration, the diagrams composing Figure 33 render

vivid the formulae of Table XI 11. The results are similar to those in
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9-5, but it is the essence of the Jacobian theory that the functions are

real and positive for the definite range ^ u < K, and differences in

detail make explicit enunciations necessary.

17*41j_2. If ^ xv ^ #4 ,
the values uv uA of the integrals

CO xt

r dt r dt

J v'{(*
2
+i)(*

2+&' 2
)}' J VKi+^Ki+ft'*)}

x x

are determined by x ±
— csuv x± = scw4

with the conditions ^ ux ^ K, ^ w4 ^ K.

17-42^0. If \^xz ,
1 ^ xb ,

the values u2 ,
ub of the integrals

CO xs

r dt r dt

J V((«
2
-i)(«

2-^2
)}' J V««

a
-i)(*

2'-*a
)}

x 3 1

are determined by x2
= ns u2 ,

xs
= dc w5

with the conditions 0^.u2 ^K,0^u5 ^.K.

17-43 1_2 . If k' <! xz ,
1 ^ x6 ,

the values u3 ,
u% of the integrals

CO X<i

r dt r dt

J V{(*
2+&2

)(*
2-&' 2

)}' J VP /2
«
8+*a

)(«
a
-T)}

are determined by x3
= ds w3 ,

.t6
= nc w

w&A ^e conditions 0^u3 ^.K,0^.u6 ^K.
6

17-44
1_ 2 . If h' < x

1 < 1, 1 < x10 < 1/&', 2/*e values u
7 ,

u10 of ih<

integrals x Tio

f
dt 7 dt

X, 1

are determined by x
7
= dn u7 ,

x10
= nd u10

with the conditions ^. u7 ^. K, ^ u10 ^ K.

17*45
1_ 2 . If ^. xtl ^ 1, ^ x8 ^ 1, 2Ae values ulv u 8 of the integrals

C dt r
dt^

J V{(i-«
2
)(i-W)}' J V((T^

2
Ki-*2)(i-W)}

are determined by xlx
= cdwn ,

#8
= sn« 3

with the conditions < un ^. K, ^. u8 ^. K.
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17^G^. If ^ x9 ^ 1, ^ x12 ^ 1/k', the values w9 ,
u12 of the

integrals

I
dt

V{(&'
2+w)(i-*2

)}'

x12

I
dt

PCn Cll x(aj 12 sdw."12are determined by

with the conditions ^. u9 ^ K, ^ u12 ^ K.

As in 9-5, the six possible forms of the radical, each associated with

two natural values for the fixed limit of integration, provide twelve

types of real integral, and by means of the twelve functions a standard

integral of each type is given. Thus the evaluation of either of the

integrals x
C dt C dt

J V{(^
2
+A)(/x*

2
+v)}' J V(M2

+A)(^
2
+v)}'

for any combination of signs for which the radical can be real, requires

only a substitution t = yw with a positive real value of y; the necessary
value of y is obvious, and the result, in the form x = ypqw, unam-

biguous. A definite integral can be evaluated from either end of its

range, that is, by either of two complementary functions.

The substitution t
2 = w replaces the integrals in -41—46 by standard

integrals such as

•401-402

co

I
dw = v

oo

/

dw

*J{w(w-{-l)(iv
J
rc')} J ^l{w(w— l)(w— c)}

Vi v-.

with evaluations

•403-404

and so on. Conversely, the six integrals of each of the forms

v

r
2'

yx
= CS 2

\VX , y2
= ns 2

\v2 ,

dw

J{w(KW-\-A)(/jiW^-v)y I
dw

*J{w(kw-\-A)(jjlw-}-v)}

for which the integrand is real for positive values of w are covered by
a preliminary substitution w = St2

,
and the six of each form for which

the integrand is real for negative values of w by a preliminary sub-

stitution w = — St2
,
where S is positive in each case.

Although we use twelve functions in order to express each integral

by means of a function appropriate to its sign-combination and to the

range of integration, this does not mean that for practical applications

we have to tabulate the twelve functions. If the value of one function
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is known, the value of any other can be inferred from the algebraic
relation between the squares of two functions. For example, if the

integral is of the type which provides the value xu of cd un ,
we have

"n nd2un 1—k2
x\x

and un can be identified from a table of the function snw. To put the

same conclusion differently, the substitution

1— r2

x 8l-k 2x2
u

transforms the integral

into

X

I

I

dxlx

V{(l-*!i)(l-***!i)}

dx8

V{(i-^i)(i-^I)}

and could be applied first if Legendre's integral was the only one to

be recognized. But it is to be noticed that the substitution involves

the modulus k and can be applied more readily to the function when
the modulus is known than to the integral when the modulus has still

to be found.

Fundamentally the distinction between the set of theorems 11 -Si-

ll -83 and the set -41--46 is that in the earlier set it is the identity of

one manyvalued function with another that is affirmed—each value

which occurs on one side occurs somewhere on the other side also—
while in the latter set a particular value of the one function is identified

with a particular value of the other. In the same way, the integrals

derivable for K, namely
00 i

J W+W+Jny J

dt

o

1/ft'

V((i-*
2
)(i-w)}

;

f dt r dt

J V((i+w)(i-&' 2
*
2
)}' J yl{(i-tw-v2

)}'
o k'

though formally identical with those in 11-84 are now integrals from
which K is determinable, since the paths of integration are assigned.

17-5. In this section we consider briefly the reduction to a standard

form of the integral f
dx/^J(f>(x),

where
<f>{x)

is a general polynomial of
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the fourth or third degree with real coefficients. It is sufficient if we

bring the polynomial in the radical to one of the forms

(i<t
2
+\)(ixt

2
-{-v), w{kw-\-\){ixw-\-v),

without regard to the combination of signs; the processes of the last

section are then applicable.

If
(f)(x) is of the fourth degree, there is no loss of generality in sup-

posing cf)(x) expressed as the product of two quadratic factors 6{x), ifj(x)

with real coefficients. If there are real constants such that

•501-502 0(x) = k(x-oc)
2
+A(x-P)

2
, ifi(x)

= n(x-a)
2
+v{x-p)

2
,

the substitution

X—a
17-51

x—j8

reduces the integral j dx/J<f>(x) to a multiple of
J dtj^{{Kt

2
-\-\)(yit

2j
r v)}.

Alternatively, the substitution

reduces the integral to a multiple of
J dw/yJ{w(KW-\-A)(iAW-\-v)}, and

therefore the substitution

into 0(X )
17-53 -~ = yy

is equivalent to a bilinear transformation between w and y in which

the factors kw-\-X, /jlw-{-v correspond to y, 1/y, and reduces the integral

to an integral j* dy/^{y(my-{-p)(ay-\-T)},
where the factors nry-\-p, oy-\-T

correspond to x— a, x—j3, and are therefore multiples of (x—a)
2
/if/(x),

(x—[3)
2
/ift(x). The constant y is available for bringing the factors pre-

cisely to the standard forms, but in a numerical problem it may be

best to give y a definite value in the first place, at the cost of a second

substitution when the form
j dyj^j{y{'my

Jrp){ay-\-r)} is reached.

The simultaneous expression of 6(x), ifj(x) by means of real squares

is possible unless| these quadratic functions both have real roots and

the pairs of roots are interlaced. If both functions have real roots, then

whether or not the two pairs of roots are interlaced, the transformation

13-704 is available as a real transformation. The anharmonic group of

f Geometrically, if 6(x, y), ip(x, y) denote the homogeneous functions y
2
6(x/y), y

2
ifj(x/y),

the simultaneous reduction is possible if there are conies 8(x, y) = c, ifi(x, y) = d which

touch each other, and the only case in which this does not occur is that in which the

two families of conies 6(x, y) = A, tjj(x, y) = jx are both composed of hyperbolas and
the two pairs of asymptotes are interlaced.



REAL FUNCTIONS AND RKAL ENTEGRALS 303

the four roots is real, and a substitution can be chosen for which the

ratio is between and 1. There may be a negative constant factor in

the radical, but this signifies only that one of the factors must !><•

reversed before the appropriate elliptic function can be detected.

The reduction of
J dx/J^x) when (f>{x) is cubic connects the Jacobin n

and Weierstrassian functions, but we are not here concerned with the

Weierstrassian side of the problem. We suppose (f>(x) to be given in

the form (x— a)6(x), where a is real. If 6(x) has real roots
)3, y, a reduc-

tion to the form
J* dyj^{y{my-{-p)(ay

J
r r)} is immediate. If the roots of

6(x) are complex, the substitution

17-54 x—a = z2

converts the integral into the form f dz/yj{az
iJr 2hz

2
-{-b}, in which real

quadratic factors of the form az2
-\-*J(ab)±cz are obvious. Alternatively,

regarding x—a as a degenerate form of a quadratic factor i/j(x), we
make the substitution

17-55 —— =
y,

X—a.

suggested by -53; if 6(x) = a(x— oc)
2
-\-2h(x— a)+6, we have

b
\a- - dx = dy,

(a;- a)
2 '

{a(x-a)
2
-b}

2 = {x-a)
2
{{y-2h)

2
-±ab},

and the integral is a multiple of f dy/s!x(y), where

x(y)
= ±y{(y-2h)

2
-4ab}

and the quadratic factor has real roots because the roots of 6(x) are

not real.

17-6. The numerical evaluation of the Jacobian functions is reducible

for sufficiently small values of c to the evaluation of circular functions,

for sufficiently small values of c' to the evaluation of hyperbolic func-

tions
;
the formulae required are expansions in ascending powers of c

or c', and we have seen in 15-2 how the expansions can be found. But

in these expansions the functions of u which multiply the successive

powers of the parameter become cumbersome very rapidly, and the

series are of little practical use beyond their first or second terms. In

choosing a system for use in an actual problem the immediate choice

of the parameter is choice within a real anharmonic group, and we can

always suppose the parameter to be positive and not greater than \
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and the modulus to be not greater than ^V2, but this restriction is

altogether inadequate to the purpose of using power series.

It is the Landen transformations which enable us to diminish the

value of c or the value of c' to any desired extent. In the real field,

K decreases steadily to \n and K' increases steadily without limit as

c -> 0. We know the order of increase of K': from 15-428',

K' = Alog(16lc)

where A -> \. Hence c = 16e~K 'IA
,
and for large values of K'

17-61! c^l6e-°,

where the symbol denotes practical indistinguishability, and where

•601 a = ttK'/K,

as in Chapter XVI.

The effect of the second Landen transformation is to double the value

of cr, and therefore ultimately to replace c by approximately c2/16: if

cx
=

1/4, then c2
=£= 1/4

4 and c3 =^= 1/10
6

. With such a rate of decrease

as this, it is better to repeat the transformation until c is negligible

than to use series in which c and c 2 are multiplied by functions laborious

to evaluate. For small values of a,

17-61 2 c'^lGe-1
'",

and the effect of the first Landen transformation is to halve a and to

diminish c' accordingly.

While the asymptotic relations '61^2 show clearly why the operation

of the Landen transformations is effective, we must use an exact rela-

tion between consecutive values of the parameter until we find that

this has merged in one direction or the other into the asymptotic rela-

tion. If a Jacobian system U has moduli Jc, k', and if the system J?U
derived from U by the first Landen transformation has moduli h, h',

then from 13-512, 13-515

4-h Ah'
•602-603 h2 = ,_... , k' 2

(1+&)
2 '

"

(1+fc')
2

"

If we have a Landen chain

..., U_3 , U_2 , U_i> U
, Uj, U 2 ,

U 3 , ...,

where U n
= J£\3n_x

for all values of n, then

•604-605
S-jiJfey.

KU =^
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Since £(l+&)
2 decreases from 1 to £ as k decreases from 1 to 0, kn_x

is always between k\ and \k\, and k'n is always between k'
1?_ l

and \h^. x \

in accordance with the asymptotic formulae, k^^/k
2 -> £ as w -> — oo

and k'n /k'n
i
__ 1

-> £ as w -> +00.
Let us write

•606-607 kn = &>„, &; = b'n/an ,

and consider the relations -604—605 in the forms

•608-609
«n

"

IK-i+^-i)' <-i
"

IK \-b'n )'

From any pair of unequal positive numbers a
,
b

,
of which we sup-

pose aQ to be the larger, we can form a sequence of pairs of arithmetic

and geometric means by the recurrence formulae

17-621_2 an = £K-i+^-i)> K = VK-i fen-i)-

This pair of formulae can be reversed : since an > bn > 0, the roots of

the equationM
x2— 2an x+b* =

are real, positive, and unequal; an_x is the larger and bn_x the smaller

of these roots. The pair of formulae -62 therefore generates a chain

of pairs of numbers which can be extended indefinitely in both direc-

tions; this chain is called an arithmetico-geometric chain. A given pair

of unequal positive numbers belongs to one and only one arithmetico-

geometric chain, and the chain can be developed from any one of its

members.

Since bn _1 < an_ 1 ,
we have

•610-611 an < an_v b n > b,^;

also (a,-bn )
= U^n-i-^n-i) 2

_ VCn-i-Vft,-!
1( _ b

v— TZ 1

—
71

' 2\wn-l un-\)i
V.an_1+V6w_1

whence

•612 K-6J < hK-i-K-i)-

Hence as n -> +oo the decreasing sequence {an} and the increasing

sequence {b n} have a common limit. This limit is a definite function

of the initial pair of numbers a
,
b

,
called by Gauss their arithmetico-

geometric mean and denoted by M(a ,b ). Since the sequence of pairs
4767 Rr
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of numbers may be developed from any of its members, M(ar ,
br )

has

the same value as M(a ,b ), whether r is positive or negative; the

arithmetico-geometric mean belongs in fact to the chain rather than

to any one pair of numbers in the chain.

In the opposite direction, the inequality -612 becomes

K-i-bn-i) > 2K-&J,

implying that as n -> — oo, an -> oo. Since bn+1 < M(a ,
bQ ),

an bn < {M(a ,
6

)}
2

,

for all values of n, positive and negative, and therefore if an -> oo,

K -> o.

17-63. In the arithmetico-geometric chain determined by a pair of

unequal positive numbers (a ,b ), an tends downwards to M(a ,b )
and

bn tends upwards to M(a ,b ) as n^- +oo, while an tends upwards to oo

and bn tends downwards to as n -» — oo; the ratio b.Jan tends upwards
to 1 as n -> +oo and tends downwards to as n -> — oo.

It is to be observed that an arithmetico-geometric chain has a definite

direction; we can assign the suffix to any member of the chain we

please, and the allocation of all other suffixes is then determined

unambiguously.
We can now express the relations '604--605 as follows:

17-64. In a Jacobian system U in which k and k' have real positive

values, let aQ ,
bQ and a'Q ,

b'Q be any two pairs of positive numbers such that

and for both positive and negative values of m, let (am ,
bm ) and (a'm ,

b'm )

be the mth members of the arithmetico-geometric chains evolved from (a ,
b )

and {a' ,
b'G ); then if 3? is the Landen transformation which doubles the ratio

of K to K'
,
the moduli kn , k'n of the system J?n\J are given by

^n = °nlan> ^n = °-nla -n>

whether n is positive or negative.

To take a and a'Q as unity would obscure slightly the completeness of

the relation between the Landen chain of Jacobian systems and the

two arithmetico-geometric chains; with U
,

fc
,
k'Q written for U, k, k'

',

this relation persists throughout the length of the chains, but no two

values of am or of a'm are equal, and to assign unit values at the parti-

cular system U is arbitrary.
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The arithmetico-geometric chains giving k n and k'n have opposite

directions; symbolically the correspondence is

... ^-2U .Sf-iUo U J?U ^ 2U ...

... (a_ 2,b_ 2 ) (a^b^) (« ,b ) KA) (a2,b2 )

(a2,b2 ) K,6i) «,&o) (ali.ftli) (al 2>&L 2 )
••••

As 7i -» +00, kn -> 1, A4 -> 0; as w -> — oo, &n -> 0, fc^-»-l. In other

words, the Landen chain hangs between the two extremes of a system
in which the functions are circular and a system in which the functions

are hyperbolic, and in view of the rapidity of the convergence in each

direction, in practice all but a few of the sets composing the chain are

sensibly indistinguishable from one or other of the limiting forms; it

is the few which are distinguishable that interest us.

The relation between the variables u, v in the systems U, <¥\J is

v = nu, where
^=1(1+^ = 1/(1+^');

also v = \HC corresponds to u = Kc . If then un is the variable and

K
{n)

is the quarterperiod Kc
in the system <j£?

nU, we have

•613-614 un_ x
= (1+A4K, K

(n _ v = i(l+lQKw.

Since

•615-616

implying that the ratios

i+*; =
a-t6

'
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and combined with the equality of ratios

2«uJK{n)
= u/K,

•617 and •651 give the relation between the variable un and the central

variable u in the form

•619 2nun M{l,k'n )
= uM(l,k'),

whether n is positive or negative.

Turning now to the transfer of functional values along the chain,

we have to extract from the results in 13-5 formulae adapted to itera-

tion. If we eliminate d&u from 13-51 1_2 and cnw from 13-51 3_4 we
have

•620 csw — |(l+&)csv— 1(1— &)scv,

•621 dnu = !(l+&)dnv+!(l— k)ndv.

Analytically the difference between these two formulae is trivial, for

cs(u-{-Kn) = —vdnu and Kn in the one system corresponds to Hn in

the other. Writing ur ,
ur+1 for u, v we have

17-66
x csur

= f(l+ &r)cs%r+l
Co ^r-f-l

1(1—& )
17-66

2 dnur
^= ^(l

Jrkr)dnur+1 -\-^ -.
dn ur+1

Even these simple recurrences can be for some purposes improved, for

cs(Kc—u) = k'scu, dn(Kc—u) = k'ndu,

and therefore, since h' = (l—k)/(l-\-k),

•622 (l-k)scv = (l+k)cs(Hc-v),

•623 (l-k)ndv= (l+k)dn(Hc-v).

Hence •QQ1-2 are equivalent to

17-663 csur
= l(l+kr){csur+1

—
cs(if (/

.+1)
—ur+1 )},

17-664 dnur
= ^(l+ &

r){dnwr+1+dn(iT (,.+1)
—ur+1 )}.

We can not reverse -620 and -621 rationally, to express csv and dnv
in terms of cs u and dn u. That is to say, we can track the functions

csw and dn^ in only one direction along the Landen chain, the direction

of diminishing index, or briefly the negative direction. But from 13-51 5_6

and 13-51 7_ 8 we have

•624 ns2v = i(l+^')nsw+i(l—h')snu,

•625 dc2v = i(l+^')dcw+|(l-^)cd^,
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and therefore, writing v as \ur and u as lur_x ,

17-665
nswr

= \{l+k'r)w K-i+ j~ ,

ns .yUr_ i

17-666 dcur
= i(l+Av)dcK-i+^ ^

C1C 2 r— 1

Tims in the positive direction we can track the functions nsu and dew.

Modifications of -624 and -625 by formulae corresponding to -622 and

•623 are of no practical value in the present connexion, for the argu-
ment introduced is Kn—u and Kn is imaginary. Formally, -624 and

•625 are equivalent, for ns(u-{-Kc)
= dcu and u = K

c corresponds to

2v = He.

That we do not track the same function in both directions is of no

consequence. In any case a function pqw that we require may not be

one of the functions we can track, and it does not matter if we have

to connect pqu with csu for one purpose and with nsw for another

purpose. If we are thinking of the tracking of particular functions as

auxiliary to the determination of the whole system of Jacobian func-

tions at one end or the other of a series of transformations, it is the

squares of the functions with which we are concerned, and we may
prefer to track the squares:

17-67! csX = ±(l+ £v)
2 cs2wr+1-p;2+ *(1

~
f*

,

Co ^r-f-i

17-672 cs2ur
= l(l+kr )

2
{cs

2ur+1+cs
2
(K(r+i)—ur+1 )}

—W 2
,

17-673 ns 2wr
= Hl+%)2 ns2K-i+Pr+ *(1~^)2

-

ns2
|wr_ 1

From a recurrence for the square of any one Jacobian function we

derive also a recurrence for an integrating function. For example,
•66

4 gives

17-68! Dn«
r
= h(l+ kr){Dnur+l -\-T>n(ur+1-K(r+^)+ 2k'r+1 ur+1};

by 14-74, E{u—Kc )
= E(u)-Ec+csnusn(u-Kc),

and therefore

17-68, E(ur )

= (l+kr){E(ur+1)-hE(r+l) -htc
2
+1 snur+1 cdur+1+ki+l ur+1 }.

When ur+1 = /Qr+1) , E(ur )
= 2E(K(r) )

= 2EM ;
hence

•626 E
(r)
= i(l-hkr)E{r+1)+i2 (l-kr)K{r+i) .



310 JACOBIAN ELLIPTIC FUNCTIONS

Expressed for iteration along a chain, the relations 13-520, 13-521

between consecutive amplitudes take the form

•627 tan(^r_x
—

<f>r )
=

£,'.tan</»r ,

•628 sin(2^r+1
—

r )
= &r sin0r .

The appearance of tracking the same function am u in both directions

is deceptive, for the actual relations are between circular functions of

the amplitude, and at each stage we have the problem of identifying

the argument, <f>r-i—<f>r or
2cf>r+1—^>n from the tangent or sine. It is

only for real values of the amplitude that this treatment is practicable,

whereas the recurrences of -66 and -67 can be used if the values of the

functions are complex. But unless the theory of the arithmetico-

geometric mean is extended to complex pairs of numbers, by the

resolution of an ambiguity at every stage, a real value of the modulus

between and 1 is essential to the application of this theory to the

Landen chain.

The practical use of the Landen chain is to connect a system U with

a system in which the numerical relations between the functions and

the argument are known, to whatever order of accuracy may have been

prescribed. Suitable systems are to be found in both directions along
the chain: whatever standard of tolerance is laid down, for sufficiently

large positive values of m, j£?-mU is a system V in which the modulus

is negligible, the amplitude of v is indistinguishable from v, and the

elliptic functions degenerate to circular functions; for sufficiently large

positive values of n, j£?wU is a system W in which the complementary
modulus is negligible, w is effectively the hyperbolic amplitude, and

the elliptic functions degenerate to hyperbolic functions. Moreover,—
and this is of course of prime importance—convergence along the chain

is so rapid that the loss of accuracy in relating U to the nearer of the

two systems V, W is negligible. The nearer system is V or W according
as c < h or c > f ;

with c < \, c_2 < \. 10~4
,
and with c>\, c!

2 < \. 10-4 .

There are two problems of evaluation : we may require the values of

functions of a given argument, or conversely, as in the evaluation of

elliptic integrals, it may be the value of a function that is given and

the value of the argument that is to be inferred. The first step is to

determine the value of m or n for which c_m or c'n is negligible; V or

W is then a known system. If u is given, v or w as the case may be

follows from -619; the passage from V to U is in the positive direction

along the chain, ns v is effectively esc v, and ns u is found from ns v by

repeated use of -66
5 ,

or ns 2w from ns2v by repeated use of -67
3 ; the
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passage from W to V is in the negative direction, csic is identified

with cschw, and csu is found from csw by means of •6Q
l
or -663 or

cshi from cs 2w by means of -67]^ or -67
2

. Any other of the twelve func-

tions of u is then found algebraically from ns2w or cs2u. If it is the

inverse calculation that is to be performed, the value of a function of

u being given, we have first to calculate csu if V is the intermedi;n v

system, nsw if W is the intermediary system; then csv, that is, cotv,

can be found from cs^, or nsw, that is, cothw, from nsw; it is assumed

that v can be deduced from cotv or w from cothw, and finally the

required value of u is given by -619.

The function dnw, being nowhere zero or infinite for real values of

u, might seem to be a 'safer' and less troublesome function to carry

through a chain of operations than cs u, but it is for that very reason

a less sensitive function; if it is dnu that is actually wanted or given,

naturally this function is used, but it is less fitted than csu for the

reconstruction of the whole system or for the determination of u.

We have expressed the evaluations as operations in finite terms, the

standard of accuracy being premised. They may also be expressed as

operations determining a convergent sequence whose limit is the re-

quired value. To illustrate this form of expression, let us enunciate

two theorems in which the amplitude is introduced.

If k_m is negligible, M(l,k
'

m ) is indistinguishable from unity, and

•619 takes the form

•629 2-mu_m ^uM(l,k').

A trivial change of notation puts the recurrence -627 into a clearer

form for negative values of r, and we have

17-69
:

. If <f>m is determined, for positive values of m, by the recurrence

tan(<L+i-<D = £-™ tan<L
with the initial value

</>
=

<f>,
then as m ->• oo,

This form of the theorem reveals plainly that when h'_m has become

indistinguishable from unity, no further change in 2-m$m can be

effected.

From -613, for positive values of n,

•630 ulun =(l+K)(l+ K)...(l+h'n ).

As n -> oo, the product on the right converges to a limit A' which is
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a definite function of k', and we have for sufficiently large values of n

•631 un ^u/A',

while from 15-24,

•632 0«-gd^.
Hence

17-69
2 . If cf>n is determined, for positive values of n, by the recurrence

sm(2<j>n+1 -(f>n )
= kn sm.<f>n

with the initial value
<f>
=

<f>,
then as n -» oo,

gd-^n ->F(<f>;k)/f[(l+k'n ),
1 i

where the function on the left is the inverse gudermannian.

17-7. The Landen transformations are not restricted theoretically to

real values of variables and parameters, but for practical purposes the

simplicity of many of the formulae is deceptive in the complex field :

to calculate
cf> numerically from h' and x by means of the relation

tan(0— x)
= h' tan x when the numbers are all complex is a formidable

undertaking.
An alternative process of computation is provided by the (^-series of

Chapter XVI. If the value of q is known, K is given, as we have noticed

in 16-8, by the substitution v = \n in the condition &s(u)
= &n (u), and

the four functions &s(u), &c(u), &n(u), &d(u) can then be computed for

any value of u. The g-series in 16-55 converge very rapidly, for although

they are power series, they are power series with lengthening gaps: the

index of the typical effective term is either n2 or n(n-\-\). From the

four cardinal theta functions, the twelve elliptic functions come im-

mediately.

If it is k that is given, q is to be found as in 16-8 from the equation

.701 g+g9+g25+- = e
l+ 2^

4+2^16+2^36
+...

where, if h' 2 = k',

•702 e = \{\-K')l{l+h') = ±(l-k')l(l+h')
2 = lk

2
/(l+ k')(l+h')

2
.

As we said previously, the solution of -701 takes the form

q = e+a1 e5+a2 e
9
+... .

No formula is known for the coefficient an ,
but the early coefficients

can be found by the crudest methods:
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17-71 q == e+2e5+15e9+150e13+1707e17+ 20910e 21
-f 0(e

25
).

If the parameters are complex, the ^-series give the only method of

computation that can he called practicable. We can not say this if the

parameters are real, for Legendre's tables were in fact compiled by
means of the Landen transformation; it is true that these are tables

of elliptic integrals, not of elliptic functions as we now use the name,
but numerical inversion is a simple operation and it is certainly possible

to compute an amplitude either by inverse interpolation in Legendre's
table or by direct use of the process described in -69. For an isolated

determination this method is still to be recommended, but for sys-

tematic tabulation to a moderate degree of accuracy the advantage is

perhaps with the g-series. The four cardinal theta functions once

recorded, the user finds by one simple division the value of any one

of the twelve elliptic functions which he needs.

The problem of avoiding division by small values of &s(u) or &,.(u)

is solved by the use of 16-73. If the functions

{TTJ'2K)cotv— csu, nsu—(7TJ2K)cscv, (tt/2K)cscv—dsu

are tabulated for small values of v, and the functions

(irJ2k'K)taxLV
—acu, dcu—(Tr/2K)secv, (Tr/2k'K)secv—ncu

for values of v near \tt, interpolation in these neighbourhoods takes the

familiar form of interpolation for the circular functions, the subsidiary

functions tabulated being regular and tending to zero. But the series

in 16-73 and 16-74 converge much less rapidly than the series in 16-55,

and it is only for a special purpose that they are to be preferred in

numerical work.

17-8. A few words may be added on the case of a real parameter
and a complex variable. We can deal with this case by means of the

theta functions at the cost only of computing circular functions of a

complex argument. Alternatively, addition theorems reduce pq(w+*#)
to combinations of functions of u and functions of iv, and by Jacobi 's

imaginary transformation of 13-2 the functions of iv are replaced by
functions of v; if k is real and between and 1, the complementary
modulus k' which serves as primary modulus to the functions of

v is subject also to these conditions, and ~R\{pq(u-\-iv; k)} and

Im{pq(w— w>; &)} are both determinable as combinations of real func-

tions of u and real functions of v. A complete table, constructed from

12-31, 12-32, and Table XII l, foUows:
4767 ss
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Table XVII i

cs(w+ m;) cswcsvdsv— insudsunsv

ns(u-\-iv) nswnsvdsv—icsudsucsv -r ds2w+ ds2v

ds(u-^-iv) dswcsvnsv—icsunsudsv

sc(u-\-iv) scwcnvdnv+incwdcwsnv
dc(u-\-iv) dc u dn v -\- ic' sc uncusnv en v

}
-r l + c'sc 2wsn2v

nc(w+ ?'v) ncMcnu+isewdcMsnwdnt)

dn(u+ tv) dn udev— ic snMcnMscwncw

sn(M+ w) snt/ncvdcv+ icnwdnMscu }
-r l + csn2wsc 2v

cn(M+ w) cnwncD-isnwdnwscvdc?;

nd(w+*v) ndwcdv+tcsdwcdwsdvndv
cd(w+ tv) cdwndt)- ic' sdundusdvcdv

)
-f- 1 — cc' sd2

?* sd2v

sd(w-j-w) sdMcdvndw+icdMndwsdv

The primary modulus of the functions of v is equal to the

complementary modulus of the functions of u-\-iv and of u

The dissection of an integrating function requires little but the

application of these results to the addition theorems in 14-7.

Table XVII 2

Cs(u-\-iv) Csu—iNsv+ S \ , „ . , ,

xt /
• xt -^ o l. o c^d^u— ^c 1

n
1
d

1s
3v

Ns(w+ tv) Nsu— iC&v+ S }
where S =

T>s(u-\-iv) T>su— iDsv-\-S

Sc(u-\-iv) Scu—iSnv—C
T)c(u-\-iv) Dcw+JDnw-c'C }

where C
Nc(u+ iv) NcM+iCnv- C

Dn(u-\-iv) Dnu-\-iT)cv-j-cN

Sn(u-\-iv) Snu—iScv—N
}
where N -

Cn(u-\-iv) Cnu+iNcv+N

Nd(u+ iv) Ndu+iCdv-cD
Cd(u+ iv) Cdu+iNdv+ c'D

Sd(u+ iv) Sdu—iSdv—D

ds2u -4- ds2v

n 1d1c
1s1w— i c 1d1

n1s1w

cs2m ns2v+ c'

c
1
d

1
n1s1M— i n1d1c

1s1u

ns 2«cs 2v+ c

c 1
n

1d
1s1w— i c 1n 1d

1s1v

ds2wds2v— cc'

The moduli are related as in Table XVII i

The association of real modulus with complex argument, far from

being artificial, is of the utmost practical importance, since it is in-

evitable if conformal transformations are to be applied in detail. The

fundamental property of the simple transformation x = pqw is ex-

pressed in -31 above; we conclude with two transformations in which

elliptic functions operate through a parameter.
If z = ds 2

£ and w = Ds£, then

•801 dz/dw = -2cs£ns£/ds£ = -2(z-c')
1l2z-1 l2(z+c)

l l2
.
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It follows from the Schwarz-Christoffel theorem on polygonal contours

that if c and c' are real and positive, the real axis in the z plane corre

sponds to a 'rectangle' with one corner at infinity and with a re-entrant

angle at the point w — ~Ds(Kc-\-Ktl ):

17-81. // the variables z, w are connected through the variable £ by the

relations z = ds 2
£, w = Ds£, with < k < 1, the halfplane Imz > is

represented conformally on the part of the second quadrant of the w plane
which lies outside the rectangle whose corners are

0, -(E-c'K), -{E~c'K)+i(E'-cK'), i(E'-cK').

Lastly, writing u—\Kn for u in the relation

anusn(u-\-KH )
= snKcm(Kc+Ktl ),

we have

•802 sn(^+tt)sn(iJS^—u) = —
1/ifc,

implying, in the classical case,

•803 |sn(iiir+0| = 1/vX-

for all real values of t. Hence, if z = sn£, the line in the £ plane from

UK'-\-K to \iK'
—K yields in the z plane a semicircle from 1/V& to

—
-1/V&, and since the line from K to K-\-\iK' yields the stretch of the

real axis from 1 to 1/Vfc, the interior of the rectangle whose corners

are zkK±%iK' corresponds to the circular area \z\ < l/\
!k with slits

from
1/V/fc to 1 and from —\j\lk to —1. But, if w = u-\-iv = sin(£/A),

where A is a real constant, the interior of the £ rectangle whose corners

are zk^irX^zihX corresponds, for every real value of h, to the interior

of the ellipse w
2
/cosh

2A+v2
/sinh

2^ = 1, slit from the vertices (icosh h, 0)

to the foci (± 1> 0). We secure coincident rectangles by taking A = 2K/7T,

h = ttK'/4K. and the circular z region then corresponds to the elliptical

w region. The slits can be obliterated, for they are occasioned only by
discontinuities in the variable £, and it is easily verified that the

functional values of both z and w are continuous across them :

17-82. By the parametric relation

x-\-iy
= sn£, u-\-iv = sin(7r£/2A

r

),

with < k < 1
,
the interior and the boundary of the ellipse

u2 sech 2
(TrK'/4:K)+v

2 csch 2
(7rK'/4K) = 1

are represented conformally on the interior and the boundary of the circle

x 2+y2 =
l/k.



EXERCISES

For notes on these exercises see pp. 323-31 below

1. fjz+ gjz+ hjz = 2££z-£z.

2. p\z = pz+gjzhjz+hjzfjz+fjzgjz.
3. fj

2
£zfj'z

=
gj

2
izgj'z = hj^hj'z = fj'zgj'zhj'z.

4. f
j
2
|^/ = 0/fy» gj

2
i^/ = 9f(9f+ h

f ), hj^oj/ = h
f(gf+ h

f ),

f
J i^/gj i^/hj 4^/ = -9f hf(9f+ h

f)-

5. e
(7ft fj.rfJ2/fj(.r-2/)+ e

7j/ gj»gJ2/gj(x-2/) + e
/(7 hja;hjt/hj(a;-2/)

= 0.

6. egh fixfj{z-x)fjyf](z-y)+ ehf gixgi(z-x)g}ygi(z-y) +
+ efghjxhj(z-x)h]yhi(z-y) = -egh ehl e

lg
.

7. If z 1+ z2+ z3+ z4 — 0, then

(
i ) frtll f i

zr+ eV 11 gj z
r+ e

/ff TI h
J *r= — e h ehf e

fg ,

r r r

(ii) c
{rfcjfz1 jfz2 fjz3fjz4-ew hfz1 hfza gjzs giz4-e/„gfz1 gfz 8 hjz,hjz4

= — egh ehf e
fo>

(iii) e
fffcfjsiJfz1 hgZ3ghz4 4-ew giz1

hfz a jgz3 fhz4 4-e/„hjz1 gfz 1 fgZ3Jhz4

= — egh ehf e
fg-

8. The function (gj ajfg^-j-hj a;jg?/)/(f j .r-j-hgy) is symmetrical in x- and y.

9. For any value of the constant a, the functions przpr(z+ a), qrzqr(z+ a)

have the same periods and the same poles.

10. Unless one of the points cor , io
t
is a zero of pqz and the other is not, the

zeros of the function (pqz— pqaj r)(pqz
—

pqco^) are all double or quadruple and

the poles are all double.

11. If p, q, r, t are the four cardinal symbols, the integral

pqz dz

/ A+Bpq2z

is reduced to an elementary integral by the substitution rtz = w.

12. If a, j8, y are the values of the integral J dw/^J(w
i —l) to infinity, (i) from

the origin along the bisector of the angle between the positive halfaxes, (ii) from

w = 1 along the positive real halfaxis, (iii) from w = —i along the negative

imaginary halfaxis, the relation a+jS+y = is equivalent to the relation

oo oo

f dt ,„ f dx
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15. The Wronskian of any triad of copolar Jacobian function- i ;i non-zero

constant .

16. Regarded as functions of u, tho tlu'ee functions

cswcs(«+ v), nswns(w+ v), dswds(M \-v)

have the same periods and the same poles, and tho two combinations

csvnswns(M-fv)— nsvcsucs{u-\-v), dsvnsuns(u-\-v)— nsvds uds(u \-v)

aro constants.

17. snudnvns(u+ v)
Jt-dnusnvcs(u+v) — env,

snucn.vns(u-\-v)-\-cnusnvds{u-{-v) = dnu.

18. As equations in u, the four equations sn3w = ±1, sn3t* = ±1/A; have

only double roots; in terms of snw, each equation is of the ninth degree and has

one simple root and four double roots.

1 — en 2m /snttdntA 2

14-cn2w \ cnti /1 -f- en 2u \ en u

(")
sc 3u— i scu-\-i(c'scht

— 2ic'sc3u— 2iscu—lY2

\c'sciu+ 2ic'sc3u+ 2iscu—lJsc 3m+ i sc u— i \c'sc4u+ 2?'c'sc3i*+ 2i sc i

20. (i) s^ch^w = tan(£am2w); (ii) sc(%Kc+ u)sc(%Kc
—

u)
—

\jk'.

(hi) If
j8
= a,va.\Ke , then dn \KC

=
cot/?, k' = cot2

/?,
and

Qd{u-\-\Kc )
= —

cscj8(dmw
— csc2

/3snMcn«)/(cnw
— snwdnw).

21. Functional equivalents of

"J V{(3«
2+ 4)(2f

2 +H)}'
W '

J V{(3^
2+ 4)(2«

2 +|]);
o <

are (i) t = v/(4/3)sc(v\
,

33), (ii) t = V(H/2)cs(u v'33), with c = 25/33 in each case.

22. Functional equivalents of

3/2 <

r eft r <ft

(1) V==
J V{(9-4*

2
)(5*

2+ 7)}'

=

J V{(4*
a
-9)(5*

a
+7)}

t 3/2

are (i) « = §cn(W73, 45/73), (ii) t = fnc(W73, 28/73).

oo

23. If
/
o
V{(£+a

2
)(«+a

2 sin2
j3)(f+a

2 sin2

y)}'

then cn(\al cos y; cos j3 secy)
= siny.

24. The relations
co

=

J V««-l)(«-4)(«-6)(«-9»'
t

<H> »°
J 7{(t

_ IK,_4K6-«K»-t»
' **>" :6,

5

1

dt

0(4-0(6-0(9-0}'
(i") ^J V{(1.

- ^ .. ,„ «<1.



318 EXERCISES

are equivalent to

(i) t = 5+ 4ns4w, (ii) t = 5+ sn4u, (iii) t = 5— 4dc4v,

with k = 1/4 in each case.

25. The relations

<" ' =i ff+1)l(U- l)r
0<«< 5/2,

4

are equivalent to

(«) *=f iltta,, ,w,7, *w, ,m » 4 <*>
dt

J{(2t+l)t(2t-5)(t-±)}'

5— 5cdav .... 5dcav+ 3

5+cdav 3— dcav

with & = 3/5, a = 5V3/2 in each case.

26. The relations

(1) ^Jvo^' (n) " =
J V(T+^)'

« t

are equivalent to

(i) 2V3/(V3+ l-«) = l+cn{w-V3,(2+V3)/4},

(ii) 2V3/(«+l-V3) = nc{«<V3,(2+V3)/4}-l.

t

dt
27. The relation f

d

o

is equivalent to

(i) (1-f
2
)
= (l + «

2
)cn(2v,i), (ii) t = s^cm1

^, i),

(iii) <= i(l+i)sd{(l-iKi},

(iv) (l_*)/(l+0 = (V2-l)sc{i(2+V2)(v1-«),l-(V2-l)*} J

where t^ is a value of the integral when the upper limit is 1.

28. The integrals
X X

r\ f
dx

( ~\ f ?x ii-\ f ^
{1)

J Jil-x*)'
(U)

J V(6^
4+19^2+ 15)'

* '

J V(6*
4 -19a;2+ 15)'

a;
2 > 5/3

are converted into Legendre's form by the substitutions

(i) x2 =
2/

2
/(2
—

2/
2
), (ii) x* = 5(1— 2/

2
)/3i/

2
, (iii) .r

2 = (10— 92/
2
)/6(l

—
2/
2
).

29. The substitution (3x+ 2)
2
/(2x— l)(x

—
4) = ft/

2 converts

J V{(2x-l)(x-4)(5a;
2+ 4)}

into a multiple of .

—
.

J V((!+2/
8
)(i+*y )}

30. The interior of an isosceles rightangled triangle is represented conformally

on a halfplane by the transformation z = dcwdnw with parameter 1/2.
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31. The interior of an equilateral triangle is represented eonformally on a

halfplane by the transformation

z = (csw-{-nsw)(cdw-\- ndto)

with parameter (2+ V3)/4.

32. The interior of a rightangled triangle which is half of an equilateral i rian^le

is represented eonformally on a halfplane by the transformation

(l_z)/(l+2) = (1-V3s2d2c
2n2

w)
s

,

with parameter (2+ V3)/4.

33. The interior of an isosceles triangle each of whose base angles is one-third

of a right angle is represented eonformally on a halfplane by the transformation

z-2 = 1 -
(
1 4- V3c2n2d

2s2w)-
3
,

with parameter (2— V3)/4.

34. If p, q, r, t are the four cardinal symbols,

—~
=? = aPtw+prttt,

3- w — yptu+ Sqtu,
J pqw+pqA, r

J pqtt+ pq/\,

where a, /3, y, 8 are constants.

35. k -—
z = ksdu+ ndu, k2 - —r-. — Dc u— k sc u,

J 1— ksnu J dnw+ A;

i dij C dc u dill= Csw— dsw, k' 2 -—-z = D(u)— k2u— kdcu.
J new— 1 J 1 + fcsnw

u

36. V f — -^ yr =
nCM+ 2

-lo8
°BW+

y

1

/ -Jb-(Ncu+Nsu+ ds W ).

J (l+ cn«)(dnM+ r) cstt+nsw dsw+ A;

o

37. (i) Writing A = 1 — csn2wsn2
v, let

d{^-
x ^G xd^u)\du = A~2iVM , d{^-^Q xa x

dxxvH)\dv == &~ 2NV ;

if<f>(v)
= csn4

t>, then </>Nu—Nv , as a function of snw, is divisible by A, the quotient

being A 2— 2cn2wdn2w. If further /(v) = ns 2
t>, then

/0e(A-
1 s

1c 1
d 1n

3
M)/a«-a(/A-

1 s 1c 1
d

1
n3

w)/Sv = /A.

(ii) For an appropriate range of values of v,

K

c.d.s'n'c I ; ^- r = —KCsv— Ev.
J 1 — c sn2u sn^v
o

38. If the functions of v have for parameter the complement of the parameter
c of the functions of u, then for appropriate ranges of values of v,

K

(i) efBjOjdWviz iP-r-r = c'KCdv-Ev,
J 1— sn2udn 2 y
o

K
i 7

(ii) d,n,s
1c 1v

;

—r- = KT>cv— Ev-{-&tt.
J l-fsnn* cs2v
o

39. If
sinifj

— sin a sin 9, then, with modulus sin a,

w/2 w/2

f

-cosy Q = 3
f
cos

.

COH26dd _ (
Cac»a+l)^-/iCcot«a.

J 1— COS2
)// J
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40. If (X, iX') is the fundamental Jacobian basis, that is, the basis such that

X —> \ti as c -> and X' —> \tt as c' —> 0, the series

(1

k\2 /i k q\2

2~l)
(CC,)2+

(2f4T6) (CC,)3+ -

converges to (2/7t)X inside the loop of the lemniscate
\cc'\

= \ that surrounds

c = and to (2/tt)X' inside the loop that surrounds c' = 0.

41. Near c = \, if < ex < 1, then

l

j |1 -,l-Var '°8 r-.+^°"-""'
o

l

where A = f (——J j i(l__L_)) <fc.

o

integration is along the real axis of the t plane, but c may be complex.

42. With the notation of Ex. 41,

L ff c)f , ~/(i.i)(i°g^-+x)- f/c
'>-/<' ')

di>
J (1— ^-"(l — ct)

a Jy
'\

B l— <•< ) J 1-f

if the integral on the right exists.

43. In the notation of hypergeometric functions,

X(c) = frrF(hbhc).

44. Inside the circle which has c = 0, c' = for the ends of a diameter,

^{i.i;i;(c'-c)
2
}
= (X+x')/B,

(
C'_ C)2?{f,f;f;(c'-c)

2
}
= (X'-X)/C,

where
x :

B = 2Klh = i
J i3/4(1

_
<)3/4

, C = 2E
lli
-Klk

= J
J <1/4(1

_
<)1/4

-

o o

45. If/(w), <7(m) satisfy the conditions

f(u+ 2IQ =/(«), gr(t*+2^) = -gr(M ),

and are regular throughout the parallelogram whose vertices are ^fi^^-K^, then

J{/(w+KJ+/(
M-iQ}dn M dw = 277/(0),

J
{g(u+Kn)—g(u—Kn)}saudu = —2rrvg{0)/k,

-Ke

J
{g(u+Kn)+g(u—Kn)}cnudu = 27rg(0)/k,

where u is the signature of the basis (Kc , Kn ).

46. In the notation of Ch. XVI, with a rectilinear path of integration and for

integral values of n,

K c

C rrq
n

dn u cos 2nv du = 47rsech nr = -—
=-5-,

J l-\-g-
n

-K
K
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J
(I

Kc

snwsin(2ri \)v du = \-l:
L

csch(n4-£)r =
-r :n+l

cnwcos(2n+ l)w du = JirAr
1
sech(n-f-^)T =

J k( 1

_,.2n+l

fc(l+g*H-x)

47. If the lino from — 7\". to A.',,
is indented to avoid the origin, the integral

of cs« along the path formed is — ttv or nv according as the indent docs or do«s

not pass between and Kn on the line joining these points.

48. If the parallelogram whose vertices are Kn^Kn^Kc has parallel indents-
tions at and 2Kn , and if the indented contour surrounds the origin, then the

integral of (1— e2nvv)csu round the contour is expressible as

Ke

(l + q
2n

)
|

(l-e*nvv)csudu 7rv(l—q*
n
),

-Kc
where the path of integration may be rectilinear.

K,

J
77 — "2U

cs u sin 2nv du =

o

n l-q2

2' 1+q 2 "'

K 2 2Kv KE 2qcoa2v 4^
2 cos4v 6g

3 cos6v

77
2

77 77
^

l-q2
l-q* l-q 6

51. If&p(u r )
is denoted by p r . and if u1 ~\-u 2+ u3+ut

—
0, then

^'8^28384—cc 1
c 2c3c 4

— c'n
1
n

2
n 3n 4 -i-d 1

d
2
(l 3d 4

= 0,

cCiC2s3s4
— 08^^304+ d 1d 2n 3n4

— n
1
n 2d3d 4

= 0,

c
' n

i
n2s3s4

— did 2c3c4
— c

/
s
1
s 2n3n4+ c

1
c 2d3d 4

= 0,

d1d 2s3S4
—

11^20304+ c
1
c 2n3n4

— s 1s 2d3d4
= 0;

also s
1
c 2n3d4+ c

1
s 2d3n4+ n

1
d 2s3c4+ d 1

n 2c3S4
= 0.

52. If p 1; p2 , p denote &p(u), &
f)(v), d-^u+ v), the sets of ratios c:n:d, s:n:d,

s:c:d, s:c:n satisfy four sets of equations, as follows:

cCjCj.c-fc'n^.n- dpl 2 .d = 0, csxc 2 .s— n 1
d 2 .n-{-d 1

n 2 .d = 0,

cs1s2.c—d1d2.n+n1n2 .d
—

0, cC]S2 .s
—d

1
n

2
.n+ n

1
d 2 .d = 0,

d
1
d 2 .c+ c's1s 2 .n— c

1
c 2 .d = 0, nxd2 .s

— sxc2 .n
— c

x
s2 .d = 0,

11^2.0— 0402.11+ 8x82^ = 0; dp^.s— CjSa-n
—

S4C2 .d — 0;

c's
1
n 2 .s+ c

1
d 2 .c

—
d4C2 .d = 0, s

1
d 2 .s+ c

1
n 2 .c

— n
x
c2 .n = 0,

c'n 1s 2 .s+ d 1c2 .c
—

C4d 2 .d = 0, (l
1
s
2 .s+ n

1c2 .c
— c 4n2 .n = 0,

o
x

l 2 .s
—

S4n 2 .c
— n 4S2.d = 0, c

1
n2 .s— s

x
d 2 .c

—
djS2 .n = 0,

d
1c 2 .s—njSg.c— Sjn 2 .d = 0; n4C 2 .s

—
djSa.c

— Sjd^n = 0.

53. If £{/} denotes the Laplace-transform of the function /(i) of the positive
real variable t, that is, the function of the positive real variable p denned by

£{/<*)} = / «r»*f(t) dt,

then

(i) Qie-vW/JiTTt)} = e-«V»/Vp,

(ii) £{[\'</2t7]} = {e-^'p+ e-16"*P+ e-36" ,P+ ...
l

l 'p.

4767
T t
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54. If the relation of the several functions to the lattice, and their dependence
on the parameter a (where q = e~a ), are indicated by the notation

H(m) = H,(r;(j). B.(u+Kc) = H-c{v,o),

©(«) = Sn(v;a), @{u+Kc )
= ®d(v;a),

then for — J < v < i.

£{~H.s(7rv,7rH)}
= -(l/Vp)smh(2i'Vp)sechVp.

£{0 r) (7rr:7r
2
i)}
= (l/Vjp)cosh(2y Vp)csch \/>.

antl for < v < 1,

£{H,(77r;77
2
0} = -(l/\p)sinh{(2-u- 1) Vpjsech \p,

2{e il(7Tv;7T
2
t)}
= (l/^)cosh{(2y-l)Vp}csch \j>.

55. If a'm , b'm is the typical member of an arithmetico-geometric chain in which

ao'b' — 1:&'» antl if Tan X'»
= V(am/^m)tan 2xm_i with tan^n

=
y/k'taatf), then as

W_>00 '

2-'"xm ->M(l,k')F( (
j) ;k).

56. If in the transformation x = pq u the Jacobian parameter c is a real

number between and 1, and the points P, Q are adjacent corners of the funda-

mental rectangle, then the line which joins the midpoint of PQ to the midpoint
of the opposite side of the rectangle is represented in the x plane by a circular

quadrant of radius |pq \{Kn
—Kv )\

whose centre is the origin.

57. If two variables z, w are connected through an intermediary by the rela-

tions z — pq
2
£, w = Pq £, with < k < 1 , and if the pole and the zero of pq £

are adjacent vertices of the fundamental rectangle, the halfplane Imz > corre-

sponds to a w quadrant enlarged by the addition of a rectangle in the corner of

an adjacent quadrant.
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1. By comparison of periods and principal parts; since the functions are odd,
the additive constant is zero. Cf. 14-81 on p. 244.

2. From Ex. 1 by differentiation.

3. Trivially from Ex. 2,

(fjz+gjz)(fjz+hjz) (gjz+hjz)(gjz+fjz) (hj a+fj «)(hj 2+gj z)

4. Ex. 2 gives p'£o>/ unambiguously.

5. Since 2fjref j yij(x-y) = {$>'x(fpy-ef)+p'y(t;jx-ef)}l($)x-py).

6. For arbitrary values of x and y, the function of z on the left can have no

poles that are not simple, and the possible residues are all zero by Ex. 5. To
find the constant, put z = 0.

Alternatively, by elementary algebra in terms of the p function.

7. (i) An alternative enunciation of Ex. 6.

(ii) Replacing zu z2 by z1 -\-cof , z2—ojf
.

(iii) Adding co
f , wg , coh to z2 , z3 , z4 .

Writing z4 = we have a multitude of pairs of formulae from which addition

theorems are deducible; see Ex. 51, 52.

Results equivalent to those in this exercise are given by Tannery and Molk.

8. In terms of primitive functions the relation to be verified is

gi
2
xf]

2y-f 2
h)

2x = fi
2
xgi

2y-f 2
h]

2
y.

The function given is jg(x-\-y)-\-fg(x-\-y), found from 4*71! by the substitution

of y—o)g fori/.

9. Addition theorems can be deduced; see Ex. 16.

10. The only case of quadruplicity is that in which co
t
= (or and pqa»r ^ 0.

11. Since the difference between the two fractions l/(a
—

ftpqz), l/(a+ bpqz)
is intcgrable, the integration of the fraction l/(a

—
fcpqz), and therefore of any

rational function of pq z, can be effected in terms of the integral of the sum of

the two fractions, that is, in terms of the integral of a function of the form

1/(^4. -j-Bpq
2
z). This is Legendre's standard integral of the third kind. The

integral of the first kind is the integral of pq
2z and is in effect standardized by

the Weierstrassian function £z and by the functions we have called the integrating

fimctions; the integral of the second kind is the inverse of a Jacobian fimction.

See further Ex. 37, 38.

12. For direct verification we have, by the substitution t = \jy,

1 oo oo

f
dt

f
dt 1 f

dt

o :i o

and by the substitution t
2 = (x— l)/(x+l),

l

r dt C dx

J V(^+I)
~

J V{2(*
4
-i)}*

o 1

The relation
<x-\-fi-\-y

= is that between quarterperiods; see (5-503.

4767 T t 2
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13. The source of this result is given in Ex. 52, where it can be seen that

addition of quarterperiods yields only three results essentially distinct from this.

14,15. Independent proofs are easy, but either result may be inferred from the

other, since the determinant \xy'z'"\ is the derivative of the Wronskian \xy'z"\.

The functions x, y, z satisfy a set of simultaneous differential equations

x' = ayz, y' = bzx, z' = cxy,

where a, b, c are constants. Hence x" = ax(bz
2
-\-cy

2
), and therefore x'" — 6x'-\-<f)X,

where 6 = bcx2
-{-cay

2
-\-abz

2
, (f>

= Sabcxyz. Alternatively,

x2 =
a(ifj+A), y

2 =
b(if,+ B), z2 = <#+ C),

where
iff'
= 2xyz and A, B, G are simultaneous values of x2

/a, y
2
/b, z2

/c, whence

the value of the determinant \xy'z"\ is a2b 2c2(B— G)(G—A)(A— B).

16. Putting u — Kc
in the first difference, u — Kd in the second, we have

cs«ns«ns(«+«)-nsvcsucs(u+ v) = dsv,

dsvnsuns(u-{-v)—nsvdsuds(u-{-v) = ccsv.

Combining those formulae with the two derived from them by interchange of

u and v we have two pairs of simultaneous equations from which cs(w-j-v),

ns(w+ y), ds(w-f-v) can be found.

17. By adding Kn to both u and v in Ex. 16.

By adding quarterperiods to u, v independently, or by arguing on any two

functions prwpr(w-|-v) ami qr uqv(u-{-v), we obtain a profusion of equations of

which sixteen in all are essentially distinct; these sixteen, found by an alternative

process which organizes them, are given in Ex. 52.

18. The argument is functional: sn'3w is zero in all four cases. In algebraical

verification, evaluating sn3w as sn(2u-{-u) we find, if snu = x,

l-sn3w l+x(l-2x+ 2k2x3-k2xi
\
2/l-2x+ 2k2x3-k2xi

y
\l+ 2x-2k2x3-k2xi)l+sn3w 1— a;\l+

l-fcsn3^_ l+ kx /l-2kx-\-2kx3-k2xi
\
2

l+ksn3u~ l— kx\ l + 2kx- 2kx3- k2xV
'

The roots of sii3m — 1 which are double in terms of snw are congruent,

mod4iirc , 2Kn , with Kc -\-^K^^K^^K^ the roots which are simple are con-

gruent with SKC .

20. (i) The functions are uniform, their squares are equal, by Ex. 19 (i), and

they both resemble u near u = 0.

(ii) A version of scusc(Ke— u) = snKc sdKc
. If k and k' are real and positive,

we have |sc(Plc+^)| = 1/V&'. See Ex. 56.

(iii) In this form of the results there are no ambiguities to be resolved. The

values of dn ^Kc and k' are given by (i) and (ii), and the formula for cd(w+2^c)
is a case of 12-444 .

21. We can scan Table XI 11 for the sign pattern, but a moment's preliminary
consideration discovers the functions wanted. The critical values are both

imaginary, and therefore the points P, Q are the corners of the fundamental

rectangle which are on the real axis, and the functions available are sew and

csm, of which the first, with zero at the origin, is the better suited to (i), and

the second, with pole there, to (ii). We have now only to assimilate (i) to

(dx/du)
2 = (l+c'x

2
)(l+x

2
)
and (ii) to (dx/du)

2 = (x
2+ l)(x

2+ c').
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Alternatives still remain, for we could take t
2 = (ll/2)x-

2 in (i) or t
2 —

(4/3)x
2

in (ii); the results are functionally accurate, but they imply a negative value for c.

Tin to is no real need to use different fuuet ions, for the relation (ii) is equivalent,
from (i), to t — ^/(4/3)sc{(Voo

—
u)V33}, but when the fixed limit has one of the

four natural values there is one specially appropriate function.

22. In each case one critical value is real and is at the origin, and the othei

is imaginary; hence P, Q are diagonally opposite and have the origin between

them, and the functions available are cnw and new. In (i) the real values of

the function are less than the value at the origin and the function is en;/; in

(ii) the real values increase with t and the function is new. After making the

substitution which reduces the first factor of the radical to l—x2 or x2 —l, we
have only to divide the second factor by the sum of its coefficients to reduce

it to c'-f-ac
2 or c'x 2

-\-c.

24. Since the two critical values are real, P, Q are adjacent corners of the

fundamental rectangle.

(i) In general, oo as a limit is of no significance before the radical has been

transformed, but here it is clear in advance that the substitution will be of the

form t— 5 = Xx, and therefore that oo has the same significance for the function

before transformation as afterwards. Hence the function, with a pole at the

origin and two real critical values, is nsw. To vary the procedure, we substitute

t— 5 = Ansav, and compare the given relation

(dt/dv)
2 = {(*-5)

2-42
}{(«-5)

2 -l 2 >

with the relation

(dt/dv)
2 = (a!X)

2
{(t~r,)

2-\2
}{(t-5)

2 -cX2
},

(ii) The origin becomes a zero after transformation; we substitute

t— 5 = Asnav,

and compare the two relations

(dt/dv)
2 = {4

2 -(*-5) 2
}{l

2 -(<-5) 2
},

(dt/dv)
2 = (a/A)

2
|A

2 -(f-5)2
}{A

2 -c(*-5)
2
}.

(iii) The integral is the same as in (i), with 10— t for t, that is, with the sign

of t— 5 changed, but the fixed limit is now a zero under the radical; that is, the

function acquires one of its critical values at the origin, and the form in which

the result is given is more compact than t = 5— 4ns4(i5
—

v), in which v is the

complete integral for case (i) and 4v is Kc .

25. The range of zeros under the radical is not symmetrical, and the homo-

graphic transformations must be constructed. In each case the function required

has two real critical values of which one is at the origin, and since a critical

value at the origin is necessarily 1, the association is of x = 1 with t = in (i)

and of x — 1 with t
— 4 in (ii). Hence in (i) the values —l/k, —1, 1, \/k of x

correspond to the values 4, 5/2, 0, —1/2 of t, and in (ii) the values —1, —k,k, 1

of x correspond to the same values of t in the original order — 1/2, 0, 5/2, 4. In

each case {(1
—

k)/(l+ k)}
2 can be equated to the cross-ratio (

—
1/2, 4; 0, 5/2),

and k = 3/5.

The two transformations are

1 5-2t _ 1 1+x 1 21-5 _ 1 5.T-3
(1) u-~2T "4-1-x-' (U)

6' 2t rru: + 3'
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and the two functional relations are (i) x = cdav, (ii) x = dcocv. Substitution

gives the two values of a, which are necessarily identical.

26. (i) By finding the values of A for which (l + £+22
)+A(l — t) is a perfect

square in t, we construct the identities

4(l+t+ t
2
)
= (2-V3)(V3+l-*) 2+ (2+V3)(V3-l+*) 2

,

4V3(l-0 = (V3+l-*)*-(V3— 1+t)
2
.

The function required has one real critical value and one imaginary critical value,

and the real critical value corresponds to a zero value of the integral, that is,

is at the origin. Hence the function is either cnw, with factors c'-j-cx
2
, 1—x2

,

or new, with factors c'x2
-\-c, x2 —\.

From Ex. 19 (i), the relation can be written explicitly in the simple form

t — 1 — V3 s2d2c
2n2

\u.

Remark that t = has no significance for the function and is not a natural

limit for the integral; in other words, if we invert the relation

t

r dt
v ~

J V(i-'
3
)'

the argument of the elliptic function must take the form oc(v
— vQ )

with vQ =£ 0.

On the other hand, oo is a natural limit, and if we take l/*J(t
s—

1) for integrand,
the integral from t to oo inverts economically in the real field.

27. (i) Writing t
2 = y and transforming the new radical by means of the

identities 4y = (l+y)*-(l-y)*, l +y* = i(i +2/ )2+ |(i_ w) 2.

(ii) Immediately from (i); see Ex. 19. While (i) is the more useful for com-

putation, (ii) presents t as a uniform function of v.

(iii) Actually more obvious than (i), using a fourth root of — 1; transformation

to (ii) is a straightforward exercise in separation of real and imaginary parts.

(iv) Applying the standard process to the factorized quartic by means of the

identities
2V2(1±*V2+ *

2
)
=

( V2±l)(l+i)
2+ (V2T 1)(1-*)

2
-

A transformation of functions whose modulus is 1/V2 to functions whose com-

plementary modulus is (V2— l)
2 is a Landen transformation.

28. (i) The sign-pattern of (1—x2
)(\-\-x

2
)

is that of sdw and enw, but with

enw it is the lower limit of the integral that is variable. To render the factors

multiples of 1 — c'sdhi, l-f-csd
2
w, we must take c = c' = %; then

x2 = %sd
2u = Jsn

2
w/(1

— Jsn
2
w).

(ii) The sign-pattern and the position of the variable limit indicate csw, and
the factors 2x2

-\-3, 3x2+ 5 are to become multiples of cs2m+ 1, cs2m+ c'. To secure

c' < 1 we associate the factor cs2w+l with the larger of the two numbers 3/2,

5/3. Thus 3x2 = 5cs2u = 5(1
— sn2

u)/sn
2u. As it happens, we have not needed

to determine the parameter, but from the identity

3(2x
2+3) = 10cs2m+ 9 = 10(cs

2«+ c')

we have c' = 9/10.

(iii) The function is dew, the factors are to become multiples of dc2w— 1,

dc2w— c, and to have c < 1 we associate dc 2w— 1 with the larger of 3/2, 5/3.

Thus 3a;2 = 5dc2w = 5(l-csn2
w)/(l-sn

2
u), while c = 9/10.
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29. From the identities

14(-).r
2 + 4) - (5.r-6)

2+ 5(3.r+ 2)
2

, 8(2*- l)(x-4) = (5.r-6)
2
-(3.r-f 2)-.

the substitution \(>(3.<;+ 2)/(5*
—

6) = t converts bhe integral v into the form

associated with sd //. with c' = 1/6; that is, t sd(av, 5/6) where v is a constant.

The integral in y belongs to sew, and is therefore the result of the t ransformation

implied in the relation sc 2w = sdaw/(l— c'sd
a
w), namely,

y
2 -

t°~/(l-ll
2
)
= 6(3.K+ 2)

2
/{(5a;-6)

2
-(3.r + 2)-;.

30. If the origin in the z plane is to correspond to the righl angle and the

points £ 1 to the base angles, the Schwarz-Christoffel form of the t ransformation

may be taken as 2

f
dz

J ZV2(2
2-

1)3/4'

the factor 2 being introduced for convenience. The substitution s2 — 1 == zH* gives

t t

2w

-/••-/*£*
o d

implying <V2 = sdw, with c = \.

Although z is not a singlevalued function off, we have shown incidentally that,

with the tacit choice of radicals that we have made, z = dwjdt
— V2dcw;dnw.

It follows that z, as a function of w, has no branchpoints, and that in fact the

expression of z by way of t defines two separate uniform functions of w which

are equally effective for the representation.
To drop the factor \'2 from z now only alters the scale in the z plane.

31. The Schwarz-Christoffel transformation

oo

, f dz
2

""J Z2
/
3
(z

2-l)2
/
3

z

is converted by the substitution z 2— 1 = z2
t
3 into

i l

t t

Since 1/z = dt/dw, and scale factors are unimportant, it follows from Ex. 26 (i)

that one solution is z = (l-fcnw)
2/snwdnw, with the parameter given.

32. With appropriate values of the constant C and of the constant of integra-

tion, the transformation

dz/dw = CzV2
(l-z)

2
/
3
(l+z)

5
/
6

is converted by the substitution \—z = (l+z)/
:1 into

,')

which, by Ex. 26 (i), is equivalent to

,
l-cn2u> 2+V3
l+cn2ui 4
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33. The substitution z~ 2 = \ — t~3 converts the Schwarz-Christoffel transforma-

tion, in this case
dz/dw = Cz^-l)**,

to the form dt/dw = —
(2/M3)<J(t

3
—l). But it is to be noted that z is not now

a uniform function of w. This is not mere want of ingenuity. It follows from
Briot and Bouquet's discussion, J. de I'lUc. Poly. (1856), of the differential

equation afterwards shown by Schwarz and Christoffel to be at the heart of the

problem, that the only triangles for which uniform conformal representations
exist are the three considered in Ex. 30-32.

34. The integrands are multiples of

pq w(pq u—pqKt )qthi, rq w(pq u—pqKt)qtht.

36. Since Nsw-j-1/w tends to zero with u, so also does Nsw+ dsw. In terms

Nsw+ dsw = snw/(cdM+ndw)+w— E(u).

37. (ii) By repeated integration from (i). On each side the function vanishes

when v = K and is an odd function resembling K/v near v = 0.

Let y denote the path of integration for u from to K, let y' denote the

reflection of y in the origin, and let T denote the curve obtained by translation

of y'+y repeatedly through a step 2K in either direction. Then there must be

a path of integration for v from which does not cross either of the curves

obtained by the translation of T through ±iK'. In favourable cases, and in

particular if the u path is straight, the two v barriers are the edges of an infinite

strip; restriction of v to a strip of this kind is apparent in the form of the result,

for the function on the right is periodic in 2K but not in 2iK'.

38. Identities similar to that in Ex. 37 (i) are constructed, the v numerator

being snwcnvdnw in (i) and csvnsvdsv in (ii). In (ii) one v barrier is obtained

by rotating T through a right angle round the origin, and the function on the

left is discontinuous at v = 0, tending to -f \tt or to — \tt according to the relation

between the directions from which u and v approach the origin.

Except in notation, the results of Ex. 37 (ii) and Ex. 38 are due to Legendre,
and the method is his. The integral is the complete integral of the third kind,

in the three forms possible with real values. It is only the complete integral

that is reducible; the indefinite integrals of Ex. 34-36 do not involve an arbitrary

constant independent of the Jacobian system, and if they are regarded as

involving integrals of the third kind, these integrals are degenerate. Substitution

ofK' for v in 38 (ii) is equivalent to one of Legendre's proofs of his identity 14*62.

39. Substitute at once 6 = am«. The product by fi?
3 sin2a is the volume

common to two circular cylinders of radii R, Rsiaa with perpendicular axes

which intersect; the first integral uses polar elements of area, the second cartesian

elements of area, in a plane perpendicular to the axis of the more slender sol i< I .

40. The series satisfies the quarterperiod differential equation.

41. The integral is identically log \l(\
—

c)
— I

x -\-I2 , where

Tl
~~ =

J \~t~ {l-t)
l
—(l-ct)«l

dt' /a
==

J (l-0l-a
(l -<*)"'

o c
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Willi the substitution c't/(l— t)
— u, where c' = 1—c,

c 1

where

7 _ f (1 L_)j^__ fd ! \*» , ,

*-/('-irF5?}*-°M.
c

c

7 = fd LJ-*
4

""

J I (1 +«)<*/ u(c'

dw
'+ u)

Without the factor <', the integral 74 would be divergent for c' 0; lli;it is, /,

is not O(c'). With the classical restriction, c'-\-u > 2c' 1
/
2w 1

/
2
, and sinco

ffl M-
is finite, 74 = 0(c

n
l-) Immediately. For a complex value of c', let the half-line

from through c' cut some fixed circle whose radius is independent of C and less

than 1 in b, and deform the path Oc into 06+&C; the integral ./ along <>6 is <)(c'
]

l-),

by a slight modification of the argument just used, and the integral J5 along be

is O(c').

With the substitution 1 — t
—

c'u,

1 1

and /3 , Ib , and the unevaluated part of I2 are all dominated by J.

44. The functions satisfy the quarterperiod equation, the first is unchanged,
the second changed only in sign, if c and c' are interchanged.
The values of B, C in terms of K^ and E1 j2 arc obvious, since the hyper-

geometric functions become unity when c = c'. For the integral forms, we have,
from Ex. 41, near 3 = 1,

1 1

C dt
j j j f

dt 1

J «3/4(i-«)3/4^i'i
; i ;z )

=
)

j3/4( !
_

t)3/i(fZ^)ir4

= loS fZ^ + °( l )'

1 1

J^-V*^*^ =
J ^(i-^(i-^/4

= to8rb+°( 1 )»

giving, when z = (1
—

2c)
2

, the dominant term as log(l/c) in each case; on the

other hand, X'+X = £log(l/c)+ 0(l).

Appeal to symmetry and skewsymmctry avoids the evaluation of constants

in the application of Ex. 42.

45. By integrating the functions /(m)csw, g(u)nsu, g(u)dsu round the parallelo-

gram. The difference in postulated behaviour between /(w) and <y(«) is wanted
because csw is not negatived by the addition of 2K

C
to u, and the form of the

integrand differs in the second and third integrals because the addition of 2A'n
to u negatives dsu but not nsw.

The parallelogram ^pK^Kd provides similar theorems for the functions mlw,
cdw, sdw. Parallelograms with centres at other cardinal points produce the
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same six theorems. A function with a pole at or Kc can not occur in theorems

equally general if the path of integration is to be from —Kc to Kc .

46. By taking /(m) = e2nvv , g(u) = e<
2n+1 > l", in Ex. 45. The results, with trivial

additions, are equivalent to the Fourier expansions 16-741_3 , and 16-74 4_ 6 can

be found in the same way; the factor KJ2tt enters because the Fourier integration

is with respect to v, not to u.

47. The integral is a value of log(
—

1), but instead of examining the various

configurations, integrate cs u round the boundary composed of the given path,

a congruent arc joining
—K

c -\-2Kn to Kc
Jr 2Kn , and the lines from T^c to

::fKc+ 2Kn . The integral is doubled, and the value of the contour integral is

2rrv times the residue at the included pole, which is at or at 2Kn according to

the lie of the indent.

48. Immediately from Ex. 47.

49. From Ex. 48, by changing the sign either of n or of u and combining.
The formula does not give a Fourier series, since 2 (1

—
2
2
")/(l+9

2 '1

)
is divergent,

nor is such a series to be expected, since csw has a pole at the origin, but 16-73!

follows immediately if the fraction is written as 1 — 2q
2n

/(l-\~q
2n

). There are

similar proofs of 16-73 2_ 6 .

51. The first formula is the result of Ex. 7 (i) rewritten. Then u lf
u 2 are

replaced by M x+ ii
c , u 2

—Kc , by u^+K^ u2—Kn , and by ux -\-Kd , u2—Kd ,
in turn.

Lastly u 2 , u3 , w4 are replaced by u 2 -\-Kc , u3 -\-Kn , w4 +-£Q-

There are no other typical forms, but when the arguments are permuted, a

total of sixteen formulae, distinct for assigned arguments, is obtained. Each

formula may be divided by a product Piq 2r3t4 to provide a relation between

Jacobian functions, but if the results are presented in this form duplication is

harder to avoid and the structure of the group becomes harder to appreciate.

52. From the complete set of sixteen formulae implied in Ex. 51, by writing

ut
= 0, u3

= —
(u1

JrU2 ). Any two formulae in the same set can be utilized, in

three distinct ways, as a pair of simultaneous equations giving addition theorems

for two copolar Jacobian functions. For example, sn(u-\-v) and cn(w-f-u) can be

found algebraically from

snudnvsn(u-\-v)-\-cnucn(u-\-v) = cny,

dnusnvsn(u Jrv)-\-cnvcn(u-\-v) = cnu.

Since an addition theorem has been used to establish Ex. 5, this process is not

an independent proof of addition theorems from first principles.

The Jacobian equivalents of the individual formulae in this example can all

be established by an examination of poles; they provide excellent material for

practice in this kind of analysis, and an attractive short cut to the addition

theorems themselves. Some of the results can be anticipated in form and con-

structed in detail; see Ex. 16, 17.

53. In (ii), the function operated on is the greatest integer in *Jtj2ir; on the

right, the numerical coefficients in the indices are the squares of the even numbers,
zero excluded, and the series within the brackets is \{®{K)— 1} for q = e~i7Ttp

,

that is, for K'/K = lirp.

54. The notation is improvised. For results in this field, see Doetsch, Theorie

und Anwendung der Laplace-Transformation (Springer, 1937).
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55. The substitution tan<£,„
= A,„tan y l/f converts the recurrence

into the form tan^w ., fim tan2^m if'/^A;,, = 1. This formal simplification of

the Landen recurrence is due to (lauss. 'I'll,' auxiliary variable y seems i" have

no other pari to play. The recurrence for the hyperbolic amplitude 6 is modified

in the same way: if tanhi/rfl
=

J(<i „ 6B)tanh2^m_1 with tanhi/r
. Jlctanhd, then

88 " ~J" 00'

2~V« -
M(l,fc)G(0;fc'),

where Q{8;k') is the integral in 13<><>4.

A wealth of arithmetico-geometric formulae is given m L. \ . King's monograph
On tin Direct Numerical Calculation of Elliptic Functions and Integrals (Cam-

bridge, 1!»24). His explicit recurrences all follow the positive half of the chain

based on (l.A'). hut since he deals with functions whose modulus is /.•' as well

as with functions whose modulus is k, lie does in effect use the positive halt

of the (l,ifc) chain also. His serious handicap is the restriction to the classical

functions.

56. ~2\o formulae are needed: see Ex. 20 (ii) and compare the proof of 17-803

in tlie rexr.

57. Compare Th. 17*81. The accessible re-entrant angle of the infinite 'rect-

angle' is now on one of the axes: a trench is dug at the foot of a wall.

Unlike the transformations in Ex. 30-33. this transformation and that ol

Th. 17-81 have a variable element in addition to scale factors. To apply 17-s|

to a rectangle of given proportions we have to determine c from the ratio of

Ds Ke
to Ds K„. that is. in effect, of c'K— E to cK!— E' .
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