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ABSTRACT

In this paper we argue that in the regression model to test for

the possible nonlinearity of the error process, presence of ARCH and

bilinearity should be tested simultaneously, and we suggest a joint

test statistic. One example shows that the individual tests for ARCH

and bilinearity may not be significant while a joint test rejects the

linearity hypothesis. Obviously, our results are also applicable to

pure time series models.





1. Introduction

The Autoregressive Conditional Heteroskedasticity (ARCH) model,

introduced by Engle (1982), has become popular in econometric modeling

[see Engle and Bollerslev (1986) for a survey of ARCH models and their

applications]. Although the errors of the ARCH regression model are

second-order white noise, the squares of the errors are serially corre-

lated. This higher-order dependence causes large deviations in the

error terms to be clustered. The errors of the ARCH model are also

leptokurtic. The ARCH model is appealing for empirical work because

non-normality and the clustering of large residuals is frequently

observed in models of inflation, exchange rates, asset prices and

other economic series which display time-varying volatility.

Granger and Andersen (1978) proposed a class of bilinear time

series models with unconditional moment structure similar to ARCH.

Certain bilinear models, like ARCH, are second-order white noise, but

correlated in the squares. These processes are also leptokurtic.

Bilinear models, however, have not been widely applied in economics.

Although ARCH and bilinear processes have similar unconditional

moments, the conditional moment structures are distinctly different.

In the ARCH model, the conditional variance is a nonlinear function of

past errors, while the conditional mean is constant, whereas in the

bilinear model, the conditional mean is a nonlinear function of past

errors and the conditional variance is constant. Specifying an ARCH

process for the errors when in fact the errors are generated by a

bilinear process may have a significant effect on the efficiency of

the estimators of the regression parameters and may lead invalid
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inference. Hence, when the pattern of the OLS residuals indicate that

ARCH may be an appropriate specification for the error process, the

alternative of a bilinear specification should also be considered and

tested.

A difficulty in considering both ARCH and bilinear alternatives is

that the standard Lagrange multiplier (LM) tests for the individual

alternatives cannot distinguish between the two hypotheses. Luukkonen

et al. (1987) study the power of the LM test for ARCH when the data

are generated by a bilinear process. Although they find that the

asymptotic power of the ARCH test against local bilinear alternatives

does not exceed the size of the test, however, Luukkonen et al. (1987,

p. 17) mention that the ARCH test will be consistent against nonlocal

bilinear models for which the squares of the residuals are correlated.

Hence, a ARCH test statistic may in fact be significant due to the

presence of bilinearity rather than ARCH, and an insignificant ARCH

statistic does not preclude the possible presence of bilinearity.

Weiss (1986) reaches a similar conclusion and asserts that ARCH

and bilinearity should not be considered separately. He recommends

that first bilinearity be tested allowing for the presence of ARCH.

If found significant, the bilinear model is estimated and the residuals

are then tested for ARCH. The test for bilinearity in the presence of

2
ARCH, however, does not have the usual T * R form from an auxiliary

regression. And because the ARCH test requires first estimating a

bilinear model, this poses a computational burden for someone wanting

a simple test for nonlinearity which is sensitive to both ARCH and

bilinear alternatives.
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In this paper we propose an easily computed simultaneous test for

a ARCH and bilinearity. We expect this test to have good power

properties for other alternatives as well, whenever there is time

variation of the conditional mean and/or the conditional variance. We

make use of recent results of Bera and McKenzie (1987) to show that a

joint LM test can be constructed as the sum of the individual LM tests

for ARCH and bilinearity, that is, the tests are additive. Section 2

of the paper reviews the additivity properties of the LM statistic.

In Section 3 we present the joint test statistic, and Section 4 is a

short conclusion. A derivation is given in an appendix.

2. Additivity of LM Statistics

The LM statistic for testing two hypotheses jointly can frequently

be decomposed into the sum of the LM statistics for testing each

hypothesis individually. This property was first noted by Pesaran

(1979). He found that the LM test of the deterministic and stochastic

parts of a dynamic linear regression model can be written as the sum

of two independent parts. In a more complex situation, Bera and

Jarque (1982) showed that the joint LM test for normality, horaoske-

dasticity, serial independence, and functional form is the sum of

standard LM test of each component of the joint hypothesis.

Bera and McKenzie (1987) consider this additivity property in

general and find a necessary and sufficient condition for LM statistics

to be additive. Let 9 be a vector of parameters and assume that the

null hypothesis imposes restrictions which can be written as a vector

valued function of 9, H : h(9) = 0, where H = 3h(9)/39 has full
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column rank. Furthermore, assume H naturally partitions into two

separate sets of restrictions H : h (9) = and IL: h (9) = 0, with

a corresponding partition for H = [H : H ]. For a test principle T,

denote by T
A

the statistic for simultaneously testing both sets of1 AB j e>

restrcitions H
4
and H . Let T denote the statistic for testing theABA

H. restrictions with the IL restrictions imposed and T the statistic

for testing the IL restrictions with the H restrictions imposed. We

formally define additivity with respect to the test principle T as

Definition: The test for hypotheses H^ and % are additive if

TAB
= TA + TB*

We then have

Proposition: A necessary and sufficient condition for the addi-
tivity of the IM tests of the hypotheses % and Hg is that

l[i-% - 0.

where _I is the information matrix and """ denotes quantities evaluated

at the maximum likelihood estimate (MLE), 6, subject to both sets of

restrictions H_: h(0) = [see Bera and McKenzie (1987)]. In the

next section we make use of this result to construct a simultaneous

test for ARCH and bilinearity.

3. Simultaneous Test for ARCH and Bilinearity

Consider the linear model

y
t

= x^B + u t = 1, ..., T (3.1)

where 8 is a (rxl) vector of coefficients and x is a vector of

explanatory variables- which may include lagged values of the dependent
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variable y . The error u is assumed to be generated by the bilinear

process

P Q

u = E Ebu e +e
' p-1 q=l Pq t_P t_q *

(3.2)

where the innovation series e is generated by the ARCH process

e
t'

$t-r
N(0,h

t
)

h
t

= °
2

+ a
l
£
t-l

+ •'• + Vt-k

(3.3)

(3.4)

where $ is the information set at time t, whose elements include the

current and lagged values of e .

Let b denote the vector of bilinear parameters b where p = 1, 2,
pq

..., P and q = 1, 2, ..., Q. Similarly, let a = (a., a , ..., \>'-

denote the vector of ARCH parameters. The joint null hypothesis is

H: b =
A

V a ' °-

We then show

Proposition: For the model (3.1)-(3.4), the hypotheses b = and

a = are additive with respect to the LM test.

Proof: From the joint null hypothesis

H =

rxPQ

PQ

lxPQ

D

kxPQ

rxk

PQxk

lxk

- i\' H
2

]
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where denotes a null matrix of dimension i x j and I denotes an
ixj i

identity matrix of dimension i. The log-likelihood function for a

single observation is

L
t

= - j log (2ir) - \ log (h
t

) - \ e*/h (3.5)

where

P Q
e = u - E Zbu E (

t t , . pq t-p t-q
p=l q=l *"* r *i

(3.6)

In the appendix we show that the information matrix evaluated under

the joint null hypothesis has the form

I =

hi ±6b

I
-be

I
-bb

1 2 2
a a

12
a a

1 2 I—eta

where subscripts indicate the appropriate partition with respect to

the parameters. Therefore, the sufficient condition that

H I
1
H„ = [0 10 ]

1- 2 PQxr PQ PQxl PQxk
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hi 4b

hi ^bb

1 2 2
a a

12

1 2
ao

I
—aa

I

_1

rxk

PQxk

°lXk

\

I
PQxr PQ

-* -1

hi

he

h*

4b

rxk

PQxk

PQxl PQxk I 2 2 I 2
a o a a

I 2 I

-1 i-

lxk

=

is met, and hence, the statistics are additive.

We have shown that the LM statistic for simultaneously testing

ARCH and bilinearity (LM. ) can be constructed as the sum of the stan-

dard LM tests for ARCH and bilinearity. The LM test for ARCH (LM
A )
A

can be computed as T times the squared multiple correlation coef-

ficient from regressing e on an intercept and k lagged values of

e , where e = y - x 6 and is the least squares estimate of [see

Engle (1982)]. Similarly, letting m = (0 ,...,8 ,b ,...,b )', the

2
LM test for bilinearity (LM_) can be constructed as T«R from the

B
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regression of e on 3e /3m, where 3e /3m is computed from (3.6) as-

2
suraing e ~ HD N(0,o ) and is evaluated at $ and b = [see Pagan

(1978)]. Letting z = (l,e _,>•••> e .)' > the simultaneous test
L L JL C K.

statistic can be written as

(Ze. Z .)»(Ez.z;) ^Ze.z.)
LM

AB
= LM

A
+ L^ - T - 1-

E£
t

[Ze (3e /3m)] ' [Z(3e /3m)(3e /3m) 1

]

-1
[Se

t
Oe/3m) ]

+ T *

-2

and under the null hypothesis will be distributed as a chi-squared

2
random variable with k + PQ degrees of freedom (x^-pr,)*

The joint test should be useful for detecting nonlinearity when

only a mild form of ARCH and bilinearity is present in the error pro-

cess. It is easy to imagine a situation in which both of the individ-

ual tests for ARCH and bilinearity just fail to be significant, while

the joint test leads to the rejection of linearity. To illustrate

this possibility, we generated 100 observations from the model

y =25+5x +u t=l,... ,100J
t t t

u = .09u n e _ + e
t t-2 t-1 t

e $ , ~ N(0,h )
t

1 t-1 t

h = 7 + .5c
2

.

t t-1
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2
where x was generated as N(20,9). We computed LM as 100»R from

t A
~2 "2

the regression of e on an intercept and e . Under the null hy-

pothesis of no ARCH or bilinearity, this statistic is distributed as

2 2 -

X • LM was computed as 100»R from the regression of £ on an inter-

cept , x , and e •£ , and under the null hypothesis LM is also
t t— 1 t — 2. B

2
distributed as X-i • LM*™ is given by the sum of LM. and LM, and is

1 AB A B

2
distributed as Xn- The computed values of the statistics and the 10

percent critical values are given in Table 1. For the particular

sample that was generated, the individual tests were insignificant at

the 10 percent level, while the joint test was significant.

Table 1

Individual and Joint for ARCH and
Bilinearity using Simulated Data

Test Computed Critical
value value

LM
4

2.09 2.706
A

LM,, 2.64 2.706
B

LM.„ 4.73 4.605
AB

4. Conclusion

Given the inadequacies of the standard LM tests for ARCH and bi-

linearity discussed above, we argue that ARCH and bilinearity should

be considered jointly as an alternative hypothesis. In this paper we

propose a statistic for simultaneously testing for ARCH and bilinear-

ity which can be easily computed using standard regression programs.
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It should serve as a useful pretest for the model building strategy

outlined by Weiss (1986), providing a safeguard against too eager of a

rejection of nonlinearity in the error process. We provide an example

where both of the individual tests for ARCH and bilinearity fail to be

significant, while the joint test leads to the acceptance of non-

linearity. Recently, a number of tests for nonlinearity have been

proposed in the time series literature [see for example Keenan (1985);

Petruccelli and Davies (1986); Luukkonen et al. (1987) and O'Brien

(1987)]. An extensive Monte Carlo study is underway to investigate

the finite sample distribution and power of the available tests for

nonlinearity under a variety of alternatives.
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Appendix

To prove the additivity result, it is sufficient to show that the

information matrix is block diagonal between the conditional mean

parameters m = ($,, •.., 3 , b , ..., b )
} and the conditional

2
variance parameters v = (a , a , • •., a )' when evaluated under the

null hypothesis. Since explicit expressions for the non-zero elements

of the information matrix are not required, they will not be con-

sidered here.

From (3.5) and (3.6), the first partial derivative of the log-

likelihood function is

3L
t x

3h
t

e
t

3c
t

z\ 3h
t

3m 2h 3m. h 3m. 2h 3m.
i t i t i t i

and the second partial is

2 2
3 L , 3h 3h 3 h e 3h 3e

t lttl tttt
3v.3m, _, 2 3v. 3m. 2h 3v.3m, ,2 3v. 3m,

3 i 2h
t

j i t j i h
fc

j i

2 2 2
e 3h 3h e 3 h

+
,3 3 v. 3m. „, 2 3v. 3m,
h
t

J i 2h
t

j i

The elements of the information matrix are given by the negative of

the expectations of these second partial derivatives summed over t.

The expectations are simplified by taking iterative expectations on

the information set *•__-. and recalling from (3.3) and (3.4) that
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c«
tlW -o. E(E

tl*t-i 5 =h
t

2 2
3 h 3 h

and -E(^V^:)
= -E[E(^7^7 I

$
t-l

)]

" E(
.2 3v. 3m, )

h
t

J *

Noting that

1^7
= 2a

i
c
t-i "^r-

+ ••• + 2\ c
t-k 157ii i

•

is linear in the a's, the above expectation is readily seen to be zero

when evaluated under the null hypothesis, i.e., at a = and b = 0.

Hence, the information matrix will be block diagonal under the null

hypothesis between the conditional mean parameters and the conditional

variance parameters as required.
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