




BEBR
FACULTY WORKING
PAPER NO. 89-1616

Joint Tests of Non-Nested Models
and General Error Specifications

The

JAN 2 5 1990

lilinols

of Uriana-Cha>r.paign

Anil K. Bern

Michael McAleer

M. Hashem Pesamn

College of Commerce and Business Administration

Bureau of Economic and Business Research
University of Illinois Urbana-Champaign





BEBR

FACULTY WORKING PAPER NO. 89-1616

College of Commerce and Business Administration

University of Illinois at Urbana -Champaign

November 1989

Joint Tests of Non-Nested Models
and General Error Specifications

Anil K. Bera
Department of Economics
University of Illinois

Michael McAleer
Department of Statistics

Australian National University
and

Institute of Social and Economic Research
Osaka University

M. Hashem Pesaran
Trinity College

Cambridge
and

Department of Economics
University of California, Los Angeles

The authors wish to thank Les Godfrey and Yuk Tse for helpful discussions, and
Essie Maasoumi for valuable suggestions and comments. The first author is

grateful for research support from the Research Board and the Bureau of
Economic and Business Research of the University of Illinois, and the second
author acknowledges the financial support of the Australian Research Grants
Scheme and the Australian Research Council.





ABSTRACT

This paper is concerned with joint tests of non-nested models and

simultaneous departures from homoskedasticity, serial independence and

normality of the disturbance terms. Locally equivalent alternative models are

used to construct joint tests since they provide a convenient way to incorporate

more than one type of departure from the classical conditions. The joint tests

represent a simple asymptotic solution to the "pre-testing" problem in the

context of non-nested linear regression models.

Key Words and Phrases: locally equivalent alternative models; non-normal

errors; non-spherical errors; pre-testing problem.
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1. Introduction

In recent years a substantial literature has been developed for testing non-

nested regression models. While the available procedures are now frequently

used for both testing and modelling purposes, in many cases it would seem that

the non-nested models are presumed to have disturbances satisfying the

classical conditions of serial independence (I), homoskedasticity (H) and

normality (N). In practice, while departures from the classical conditions

occur quite frequently, it is not straightforward to modify the available test

procedures to incorporate all the departures, especially non-normality (N) of

the disturbances. Moreover, in the nested testing situation, most of the popular

tests are "one-directional" in that they are designed to test against only a single

alternative hypothesis, and in most cases the tests are valid only when the

other standard assumptions are satisfied. Many researchers have found that

the one-directional tests are not robust in the presence of other

misspecifications (see Bera and Jarque (1982) and the references cited therein).

In Section 2, the robustness of several well known tests for both nested and non-

nested hypotheses is discussed briefly. In Section 3, we develop a procedure for

testing non-nested models together with simultaneously checking the

sphericality and normality of the disturbance terms. Locally equivalent

alternative models are used to construct joint tests since they provide a

convenient method for incorporating more than one type of departure from the

classical conditions. The joint tests represent a simple asymptotic solution to

the "pre-testing" problem in the context of non-nested linear regression

models. Some concluding remarks are given in Section 4.

2. Robustness of Several Existing Tests

In testing nested hypotheses, two kinds of situations can occur, namely

undertesting and overtesting. When departures from the null hypothesis are

multi-directional and a one-directional test is used, undertesting is said to
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occur. On the other hand, in overtesting, the test statistic overstates the

alternative hypothesis. In both undertesting and overtesting, a loss of power is

to be expected. However, joint testing of several hypotheses is rarely performed

in practice, so that inferences are generally affected by undertesting. By

drawing upon some Monte Carlo results from Bera (1982) and Bera and Jarque

(1982), we highlight the effects of undertesting and the subsequent non-

robustness of a commonly used test of heteroskedasticity.

Three convenient simplifying assumptions are usually made in standard

regression analysis, namely H, I and N. In what follows, we consider the

Breusch and Pagan (1979) Lagrange multiplier (LM) test for heteroskedasticity

(H). The data are generated under different combinations of N (the t

distribution with five degrees of freedom), H (additive heteroskedasticity) and

serial dependence (I) (first-order serial correlation); for further details, see

Bera (1982) and Bera and Jarque (1982). The estimated powers of the test

statistic under different data generating processes (DGP) are given below.

Nature of Alternative Model

Correct Contaminated Misspecified

DGP HIN HIN HIN HIN HIN HIN HIN
Estimated power -726 -660 -270 -302 084 -222 128

When the DGP contains only heteroskedasticity (that is, HIN), the LM test is

asymptotically optimal against the correct alternative and power is estimated to

be -726. However, the estimated powers fall to -660 and -270 when the data are

contaminated by the t distribution (HIN) and first-order serial correlation

(HIN), respectively. The effect of I on the LM test of H is quite substantial.

When both I and N contaminate the DGP, the estimated power is only -302.

The final three cases are completely misspecified in that the LM test is seeking

to detect H when H does not exist but I, N or both I and N are present. The

interpretation of the estimated powers depends on how the tests are to be
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viewed. If the test is seen exclusively as a test of H, then the estimated powers

should equal the estimated significance levels or sizes. It is clear from the

table that the estimated sizes are significantly greater than the nominal size of

the test in all three cases. However, if the test is used purely as a significance

test, the estimated powers seem to be quite low, and are much lower than those

for the case where the alternative model is contaminated. Regardless of the

interpretation, therefore, the test does not perform well. .The one-directional

test is not robust when the alternative model is contaminated and the test is not

satisfactory in the completely misspecified case, regardless of how it is

interpreted.

Turning now to the case of non-nested hypotheses, extensive Monte Carlo

experiments have been conducted by Godfrey and Pesaran (1983) and Godfrey et

al. (1988). The first of these two papers is concerned with the selection of

regressors in two non-nested linear regression models, and examines the Cox

test of Pesaran (1974), two mean- and variance-adjusted versions of the Cox

test, the J test of Davidson and MacKinnon (1981), the JA test of Fisher and

McAleer (1981), and the standard F test applied to the comprehensive model

constructed as a union of the two models. Since the tests are valid only

asymptotically when the disturbances are not normally distributed, Godfrey

and Pesaran (1983) examine the robustness of the tests to errors drawn from

the log-normal distribution and the chi-squared distribution with two degrees

of freedom. Their experiments indicate that the finite sample significance

levels are not significantly distorted and are broadly similar to those for the

case of normally distributed errors. Although estimated powers tend to be

greater when the errors are drawn from the two non-normal distributions

compared with the normal case, the relative rankings of the tests in terms of

power are not affected by the non-normality.

Various procedures are considered by Godfrey et al. (1988) for testing the

non-nested linear and logarithmic functional forms. The test procedures are
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classified as non-nested tests, two versions of the LM test and a variable

addition test based on the more general Box-Cox transformation, and

diagnostic tests of (possible) functional form misspecification against an

unspecified alternative hypothesis. If the logarithmic model is to be taken

seriously, the dependent variable of the linear model cannot take on negative

values and the disturbances of the linear model cannot be normal. Therefore,

it is essential to examine the robustness of the tests to non-normality of the

errors, even if the primary consideration rests with testing the non-nested

functional forms. Godfrey et al. (1988) examine the finite sample significance

levels and powers of the tests when the disturbances follow the gamma (2,1)

distribution, the log-normal distribution and the t distribution with five degrees

of freedom. The two versions of the LM test based on the Box-Cox model are

found to be highly sensitive to non-normality in that the estimated significance

levels are far greater than those predicted by asymptotic theory, even when the

sample size is eighty. On the other hand, the variable addition tests in the

three categories are found to be robust to non-normality of the errors, and their

relative rankings in terms of power are not affected by departures from

normality.

3. Joint Tests

The standard situation for testing non-nested linear regression models

with normal and spherical errors is as follows. It is desired to test the null

model H against the non-nested alternative Hi, where the two models are

given as

2

Ho : y = X(3 + uo ,
uo ~ N(0,a In )

and
2

Hi : y = Zy + ui

,

ux ~ N(0,a1
In) ,



in which y is the n x 1 vector of observations on the dependent variable, X and Z

are n x k and n x g matrices of observations on k and g linearly independent

regressors, p and y are k x 1 and g x 1 vectors of unknown parameters, and uo

and ui are vectors of normally, independently and identically distributed

disturbances. It is also assumed that X and Z are not orthogonal, and that the

limits of n^X'X, nr lZ'Z and n^X'Z exist, with the first two positive definite and

the third non-zero. If X and Z contain stochastic rather than fixed elements,

the probability limits of the appropriate matrices must exist, and X and Z must

be distributed independently of uo and ui under Ho and Hi, respectively.

In considering the consequences of testing for certain departures from

sphericality, it will be convenient to rewrite the two models as

Ho : yt = xt'p + uot (1)

and Hi : yt = zt'y + uu , (2)

in which xt' and zt are the t'th rows of X and Z, respectively, and t = l,2,...,n.

When the assumptions regarding uot and uit are not satisfied, some of the

properties of the tests will be affected. For example, Pesaran (1974) derived a

test of non-nested linear regression models where the disturbances of each

model follow a first-order autoregressive scheme. However, Pesaran's test is

very complicated to apply in practice and a simpler procedure is given in

McAleer, Pesaran and Bera (1989). The effect of heteroskedasticity will be

similar. In particular, a straightforward application of the tests suggested

in Davidson and MacKinnon (1981) and Fisher and McAleer (1981) will not be

valid since the standard errors will not be correct. However, use of a

heteroskedasticity-consistent covariance matrix estimator will circumvent this

problem. When the errors are not normal, Pesaran's test based on the work of

Cox (1961, 1962) is still valid asymptotically, although its small sample

properties will be affected. Normality is required for the test suggested by
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Fisher and McAleer (1981) to have the exact t-distribution under the null

hypothesis; if normality does not hold, the test will be valid only asymptotically.

In the light of the above discussion, a basic requirement for applying

standard non-nested testing procedures to achieve high power is that the

models under consideration be well-specified. This means that tests for

normality and sphericality, for example, are to be performed prior to testing the

non-nested models themselves. An important, and frequently overlooked,

aspect of testing non-nested models in this two-step procedure is the effect that

such "pre-testing" may have on the levels of significance and powers of the

non-nested tests. Therefore, it may be desirable to test the non-nested

specifications jointly with departures from the classical assumptions

regarding the disturbance terms. Such procedures will be particularly useful

when there is a possibility of a non-normal disturbance term of unknown type,

since it is frequently difficult to take account of general forms of non-normality

in a straightforward manner. Joint tests may be constructed in a

straightforward way by developing an approximate model which incorporates

the various departures from the classical conditions into the systematic part of

the model, so that the disturbances of the approximate model are normally,

independently and identically distributed. The advantage of joint tests over the

two-step testing procedure lies in the way the joint testing procedure deals with

the "pre-testing" problem, at least asymptotically.

In the context of deriving Lagrange multiplier (LM) diagnostic tests,

Godfrey and Wickens (1982) suggested a way of obtaining a local approximation

to a given model with a non-standard disturbance structure. Such

approximations are called "locally equivalent alternative" (LEA) models. As

an illustration, consider Ho in (1), where it is now assumed that the

disturbance uot is given by

2
uot = Pouot-i + eot , eot ~ NED(0,a ) , I p 1 < 1 (3)
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for t = 2,3,.. .,n. A LEA model to Ho may be written as

3fc ^*

H
Q

: yt = xt'p + pouot-i + eot

,

(4)

in which uot = yt
-xt'P and p is the ordinary least squares estimate of p under Ho.

The models H
Q
in (4) and Ho in (1) and (3) are "equivalent" in the sense that:

*

(i) when po = 0, Ho and H
Q
are identical;

(ii) when p = 0, then 3it(P»^o»Po^Po = ^t^P,aO»Po^PO' wnere

*

it(P>°2>Po) and ^f (P>a2>Po) are the log-density functions for

the t'th observation under Ho and H
Q

, respectively.

Godfrey (1981) has shown that, in testing po = for local alternatives, the

likelihood ratio test of po = applied to Ho in (1) and (3) and the LM test of po =
*

applied to H
Q

in (4) have similar power. Thus, for values of po in the

*

neighbourhood of zero, Ho and H
Q
may be regarded as equivalent.

Now let us consider (1) and (2) allowing for the possibility that the

disturbances uit (i = 0,1) follow stationary autoregressive processes of order pj

(i = 0,1), namely AR(pj), as follows:

Pi

uit = I PijUit-j + Eit .
i = 0,1

j=l

where t = p+l,p+2,...,n and p = max(po.pi). In this case, a locally equivalent

form of (1) may be written as

* Po ~
H

Q :yt = xt'p+ I pojuot-j + eot

,

j=i

where uot = yt - xt P» as before.

Although several procedures are available in the literature (for a recent

review, see McAleer and Pesaran (1986)), a convenient test of the null model

against both the non-nested alternative Hi and AR(po) disturbances can be

performed by testing a = poi = P02 = ••• = Pop = in the auxiliary linear

regression required for the J test of Davidson and MacKinnon (1981), namely
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PO ^
yt = xt'p + I pojuot-j + ccyu + et ,

where yit is the predicted value of yt from (2), namely

•S •% Pi /N ^
yu = ztY+ I Piju it-j

.

uit = yt - ztY ana"

Y is the maximum likelihood estimate of y under Hi.

An attractive feature of this approach is that other departures from the

classical conditions may be handled in an equally straightforward manner.

Consider the following general form of the distribution of the disturbance term

for Ho of (1), where uot follows an autoregressive process of order po, namely

Po
uot = X Pojuot-j + eot

»

j=l

and eot is independently distributed. The density of Eot, denoted by g(eot)» is

assumed to be a member of the symmetric Pearson family of distributions.

This is not a very restrictive assumption since this family encompasses many

distributions such as the normal, Student t and F. The density of e
't

is then

given by

g(eot) = exp pF(eot)l
J
exp pF(eot)l deot -oo < eot < oo

where
f 2

¥(eot) =
J [ - eotAcot + cie

ot)] deot

When Ci = 0, g(eot) reduces to a normal density with mean zero and variance

cot- Heteroskedasticity is introduced through cot- It is assumed that

cot = h
' qo n

i=l

where the elements of the qo x 1 vector vt = (vit,V2t,.--,vqo t)' are fixed and

measured around their means, h() is a twice differentiable function with h(0)
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- o , and (pi (i = l,2,...,qo) are unknown- parameters. Under these

circumstances, the disturbances for Ho in (1) are now non-normal,

heteroskedastic and serially dependent. A simple local approximation to this

complicated model may be written as

in which

** Po ^ ~ Qo
H
Q :yt = xt'(3+ X pojuot-j + uot I <Pi vit + Cirt + £ot

,

j=l i=l

rt = (u
Qt

- 3uota )/ (4a ) ,

(5)

~2 n ~2
a = n-i I u

Qt ,

L—

A

with Eot ~ NID(0,a ) for all t.

To verify whether model (5) is a LEA model, we first note that, when po =

(poi,p02,...,pOp )' = 0, (p = ((pi,92,...,9q )' = and Ci = c2 = 0, H in (1) and H
Q

in

(5) are identical and eot = uot> so that condition (i) is satisfied. Godfrey and

Wickens (1982) verified condition (ii) above for the case of serial correlation and

heteroskedasticity. It is, therefore, necessary to consider only the non-normal

components. First, it can be shown that there is no contribution from the

Jacobian term. The Jacobian from cirt is asymptotically given by (see Godfrey

and Wickens (1982, p.85))

I in
t

3(u
0t
-o )

1-ci
4o,

which, under local alternatives, reduces to

3C1 2 2.

--^Z(u
ot
-G ),

4o t

which is 0p(l). Therefore, for the purpose of developing a joint test, we can

ignore the Jacobian term.



It can also be shown that the score with respect to Ci is the same under Ho
**

and H
Q

. From Bera and Jarque (1982, p.78), it follows that

3it(P.o '0) u
ot

2
where ^tCP^o^) * s *he log-density function under Ho, with y =

2

(P0i,p02,-..,p0p ,9i,92,-.MCpq ,ci)'. Using the information that eot ~ NID(0,a ) for

all t, it follows from (5) that

dJt
t

(p,a ,0)

r = rt uot/a ,

dci

where Z ^ (•) is the log-density function under H
Q

. Since

n 9it(P,^,0) n
3i

t (P^o.0)

^ ic~i

= ^ dci
t=l

dCl
t=l

x

the score under the original and LEA models is the same. One component of

the LM test for normality is based on this score value (see Bera and Jarque

(1981), and Jarque and Bera (1987)).

If it were desired to test serial independence, homoskedasticity and

normality under Ho, we would test the parameter restrictions

po = 0, 9 = 0, ci =

in equation (5). This joint test procedure has been suggested by Bera and

Jarque (1982). However, they did not consider the possibility of the non-nested

alternative Hi together with the non-sphericality and non-normality of the

disturbance term under Ho-

If suitable predictions yit from a non-nested alternative Hi are augmented

to equation (5) to yield the auxiliary regression given by



Po «- ~ qo ~
yt = xt'p+ £ pojuot-j + uot I 9i vit + cirt + ayn + eot

,

(6)

j=l i=l

then the null hypothesis, namely equation (1) with uot = £ot» involves a joint test

of

H : po = 0, 9 = 0, ci = 0, a = 0. (7)

This joint hypothesis can be tested by applying the LM procedure, for example,

directly to equation (6) or by using an appropriately adjusted F test (see Godfrey

and Wickens (1982)). In computing the LM test, the most convenient form is

nR2
, that is, the sample size times the (uncentred) coefficient of determination

in the auxiliary regression of a vector of ones on the following variables:

**
dJt

~~* •%>)

ap
= xt'uot/a

**

^2 ~~2 ~4
2~= (UOt-<*oy(2CT0>

3g

**

= uotuot-j/a , j = 1,2,. ..,po
3poj

**
ai

f

= (u^v^t/Oo) - vit ,
i = l,2,...,q

a»i
" VOt

**

= (rtuot/o ) - 3(u
0(
.- a )/(4a )

and



**

"sr
= yituot/°o •

The set of regressors given above can be simplified to

(xt'uot,uot- <yo»
u°tuot-i,--,uotuot-p ,(u

ot
- a )vit,...,(uot

- cJ )v
qot,

4rtuota - 3(u
Qt

- a ), yituot).

As noted by Godfrey and Wickens (1982, p.86), it is not valid to apply the

standard form of the F statistic to (6) in testing H in (7). For example, Godfrey

and Wickens have shown that, for testing 9 = 0, the usual regression formula

omits the factor 2 arising from the asymptotic distribution of

n^Zuot(uotv it)- Consider now the F statistic for testing ci = 0. The asymptotic
t

variance of n- ^ £ uotrt is the same as that of
t

h-»I(u
0t
-3u

0t
a )/(4a ).

2
Under H, uot = £ot ~ NID(0,a ) for all t. Therefore, the above variance can also

be expressed as

[E(u®
t
) - (E(uJt

))
2
+ 9ao(E(uQ

t
) - E(uot)2 )

- 6G
2
(E(u

0t) - E(uJt
)E(uQ

t))]/(16ao)

= [(105oo - 9a®) + 9ao(3ao - aj) - 6o
2

Q(15ol
- dafyo&tf

= 21aJ/8.

However, the limiting value of the regression formula is

a plim n- 1 £ {\i
Qt

-Bu^^dGa^ = 30^8 ,

t

which is one-seventh of the correct asymptotic variance.

Denote the standard F statistics for testing
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(po = 0, a = 0), 9 = and ci =

by Fi, F2 and F3, respectively. Note that the regressors corresponding to the

above parameters are asymptotically uncorrelated with each other, and also

the regressors with coefficients 9 and ci are asymptotically orthogonal to the

regressors of the null model. Therefore, the conditions for the decomposition of

the joint test are satisfied (see Godfrey (1988, p.79)). It follows that, under Ho,

(po+DFi + K2q F2 + V7F3 -d* X
2
(po+qo+2).

This test statistic will test the standard linear model (1) with normal and

spherical disturbances against a broader alternative of non-spherical and non-

normal disturbances, as well as against a non-nested alternative. Depending

on the situation, it is possible to specialize the test statistic to particular

alternatives by retaining the appropriate regressors in equation (6). For

example, to test the null model Ho against a non-nested alternative Hi and the

possible presence of heteroskedasticity, it would be necessary to test 9 = and

a = in the auxiliary regression given by

yt = xt'p + uot I <Pivit + otyit + eot •

i=l

This auxiliary regression equation is simply a specialization of equation (6)

with p j
= (j=l,2,...,p ) and C\ = 0.

4. Conclusion

In this paper we have presented some simple joint tests of non-nested

models and general error specifications. The joint tests for non-nested

specifications and for one or more departures from the classical conditions of

serial independence, homoskedasticity and normality were developed within

the context of locally equivalent alternatives. These tests represent a simple

asymptotic solution to the "pre-testing" problem as applied to non-nested linear

regression models. If the null hypothesis is not rejected by the joint tests,
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standard regression analysis would follow for the underlying null model.

However, if the null is rejected, it is not possible to infer whether it is rejected

because of the non-nested alternative or through departures from the classical

conditions regarding the disturbances.
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