

Digitized by the Internet Archive in 2008 with funding from Microsoft Corporation

JOURNAL OF BOTANY BRITISH AND FOREIGN

EDTTEM BY

J A MES BRITTEN, K. C.S. G., F.L.S. late Senior Assistant, Departmext of Botany, British Museum.
Vo H. L V I I l.

LONDON

$$
\begin{aligned}
& \text { TA I L O II A N D F R A N C I s } \\
& \text { RED LION COURT, FLEET STREET }
\end{aligned}
$$

$$
19: 0 .
$$

CUNTRIBCHORS TU THLS VOLUME．

E．G．Baker，F．L．s．
E．J．Bedford．
Arther Benvett，A．L．s．
E．B．Bishop．
G．A．Boclenger．D．sic．．F．R．．． G．s．Boclaer，F．L．S．
Jumes Britter，F．L．s
C．E．Brittoz．
B．Meriel Bristul，D．sc．
Nellie Carter，I．s＇c．
A．H．Cifurch．M．A．．D．sc．
H．N．Dixoz，M．A．．F．L．s．
F．Drcee，M．A．，F．L．S．
H．Downes，M．B．，F．L．S．
Elinotit，Jessie S．，D．sc．
Elliott，W．T．，F．L．․
W．Faweett，B．Sc．
Astony Gepp，M．A．，F．L．心．
Lilitis S．Gibbs，F．L．s．
M．J．Godpert，F．L．
IV．B．（irote，M．A．
Jimes Groven，F．L．s．
R．T．Gisther，M．A．，F．L．＇
N．G．Hadder．
．I．W．Heslop－Hahrisos，M．D．
W．P．Hiers，M．A．，F．R．s．
IV．J．Hodeetts，M．sc．
A．s．Horve．D．sc．．F．L．
（．P．Herst．
A．B．Jacksos，A．L．S．
James Ladbrook．
C．C．Licatta，M．A．，F．L．s．
L．V．Lester－Garlayid．M．A．． F．L．s．
E．F．Linton．M．A．，F．L．心．

G．Lister，F．L．s．
Lidiay Lile，F．L．s
J．R．Matrhews，M．A．，F．L．․
J．Cosmo Mervili，M．A．．F．L．s．
Elaier D．Merrili．
spexcer le M．Mombe．B．sic． F．L．s．
W．A．Nehulsos，F．Ls．
H．W．Рtgilet，B．A．，F．L．↔．
J．Rimsbottom，M．A．，F．L．s．
J．K．Rimsbotton．
R．F．Rasd，M．D．
A．B．Rexdie．D．fic．，F．R．今．
H．J．Riddelsdelf．M．A．
H．N．Rideet．M．A．．F．L．ङ．
F．Rilstoxe．
IV．Roberts．
R．A．Rolfe，A．L心．
E．J．Shlisbtry，D．sic．．F．L．s．
（c．E．Smmox，F．LA＇
W．Shoolbred，F．L．ら．
A．Lorrais Smiti，F．L．s．
E．Pimifip Simtif．
T．Stepienson，I．1）．
T．A．Stephensos．M．sc．
H．S．Thompos，F．L．s．
（chrl Triaes．
Mardorie F．Wifaer．
W．Wataos，1）sc．A．L．s．
W．W．Witts．
J．Weathers．
H．F．Weryhay，D．s．
J．A．Wheldos．
A．J．Wharote，B．A．，F．L．s．
A．H．Wotmer－Don．

1 ORKIGENDA.


```
    -linm&-
F, %| 21, =1 ., veul 15.,
```


I NDEX.

 distinguisherl hy (en asterish.

Acanthaceur, Pupuan. 1:m,
Adatns, Alfred +127.
Arrican plants, inew. 44, 7t, 219, 237, 279.

Alihnetra dirersa, 4t, 74, 187, 219, 267.

Alchemilla acutidens. 112 .
Alga, (A Awerican. 12 ': Birminghatn,
suppt. iii.; Guernsey, supp.t. ii.
"Allwoodii," 183.
Almquist's Siredish Roses rev.), (11.5.
Alsine, 294.
Alternaria pomicola,* 24 ?
American Hones Plants (rer.) 156.
Ammophila breviligulata, 1st.
Amphichroms. 202.
Angiosperms, Repro ${ }^{7}$ netioni of, 96 .
Anisopus Batesii,* 268.
Annals of Botany, 63, 183, 232. 500 .
Anmal, Bot. Gard. Peradenira, 231.
Arher's (MCr.) Water Plants (rer.), -3! 16.
Aristulochia ceropegioides,* 269; Juји,* * - ®
Arum itaicoun, 27 .
A-pidinu goggilurlus, 153.
A-pilia coneoensis,* t.
Asteropyrum, 232.
Astrantia maxima, 11 t.
Atriplex calutheca. 295.
Azolla filiculoides, $1 \underset{\sim}{2}$.
Gailey's 'Gentes Herbarmu.' 230.
Baker, F. C.., 'Madras Flom' (rev. I. $\quad-7$: Afican Lenmminear. it; Erodian cicutariatis (1.5 F), 121 .
Daker, J. G., ${ }^{+}$233.
Bunks, Centenary of, 18t; his Chepstow plants, 179.
Batesanthus intrusus,* $24 i$.
Bedford (Luke of). Science and Fruit Growing (res.), 28.

Buctiord. E. J.. Orehis hircina. 2n2 : Orchurl lramives, $2: 31$.
Bedfordshire Planis, !il.
Bennett, A., Lintman's 'svansk Fhora' (rev.), li:3; Atriplex calothect, 20.7.
Bibliographimal Notez. 159, 20t), 248, 241.

Bilimbia cambrica,* 15.
Bumingham Flagellates and Alge, Suppt. iii.
Bishop, E. P., Astrantin maxima, 116.
Blatter's 'Flora Arabica,' 54.
Boletus sangumeus, 249 .
Bornetia secuudiflora. Suppt. ii. 22.
Bose, Sir J., Life of, 2u9.
Botanical Congress, 14.
Bot. Exch. Club Report. 32.
Boulenger, G. A., 1)orset Roses. 16: to Brussels Museura, 184 ; Rusa britannica, 185.
Bonlger, G. S., 'Science and Fruit Growing' (rev.): 2s; Martin's'Agricultural Botany ${ }^{\circ}$ (rev.), 29; ; Foreats and Hygiene (rer.), 1.7: 'Timbers' (rev.), $23 t$)
Bristol, B. M., Flagellates and Alge of Birmingham (Suppt. iii.).
Britten, J., E. S. Marslall (portr.), 1; Salsola c:affra, 24; Johu Fothergill (rev.), 56 . Sehrankia miernphylla. 80; Engenia lucid:, 151: QEianthe erocata, 152 ; 'Ampriean Honey Plants, (rev.). 1:G; Lsc and Abise of the (ienus, 156 ; Lehnamn: Pugilli, 19ic, 292: Impatiens glandulifera. 201; 'British Charmpyra' (wer.), 20t: Cape Botaniots, こtio: scilla campanhata. 22-: J. G. Baker, 233; Moelimagia rinemit, 20; 'Flora of Tamatica' (rer), 2-5; Dymes's "Nature-studs of Piants" (rer.), :-77; J. R. Jackson, 2 ²

Drition, C. E.. Plantago Cynope, 204; Saturejo montana, 2!
Browne, 1'atrick, 276.

(lleatitre 137, 1-1. I- 1.

I) rly. 113.

It $1 / \mathrm{F}$.
$11 \mathrm{ram}, 1 \mathrm{i} .14!$.
J.trlum, 11 !.
$1-\infty=1,!$
1:1murasos, 111.

11 reil ril, 11 !
110:4\%. 11 .

1 mev re, こ1.
$11 \mid 1$, 1510 - -
y $110 \pi=11.174$
A=etianto 11%.
(1) /ntl. - (た)

Vexiler=er $-\therefore$.
R finim 111.

-urre! 1si, -12.29.

II. AEr" $=$ ahil II

II los 1111%.
II $0-0,=\mu \mathrm{a}$ a)
Imb 11.

Coll if \& $1: 11$

Lrimi ine 1...

whic:

Crstnpteris montana， $2+$
Cytisus Battanheri， 100 ．
Cylology（rev．）， 205.

Dates of Publication， 200 ．
Dermatitis， $130,173$.
Jewerrella congensis，＊$S 0$ ．
Disappearing Wild Flowers． $1: 15$.
Dixon，H．N．，Rhaphichostegimm coss－ pitosum， 81 ；Neir Guincar Dlusses． 6． 9 ）．
Doncaster＇s＇Cytolugy＇（req．）， 205.
Dumbes，$H ., J$ Juncns pygmatus， 56 ； Herbarium Pests， 251 ．
Drnce， F ．，Echinm plantagineum， 275.
Druce，G．C．，Oxford Herbariun，l2U； ＇Adrentire Flora， $1 \because$ U．
Drepetes Guasmeileni，＊ 271 ；pelto－ phora，＊270；Taylori，＊ 270 ．
］Jimes＇s＇Natmre－Study of Piants＇（rer．）， 277.

F．chium plantaginetrm，27．5．
Edinbu：yh，Nutes from Bot．Gardens， 279， 300.
Ehrhart＇s nanes， 278.
Elliott，J．S．and W．＇T．，Sequence of Fungi and Mycetozoa，273．
Ellis，G．S．M．，＇Applied Butany＇（rer．）， 93.

Entada Sclıefferi，＊ 195.
Enterumorpha elathrata，Suppt．ii． 5.
Epipactis，69：in Britain（t． 555 ）， 209 ； atroviridis， 210 ；media， 210 ；pur－
 210.

Erodium cicntarinm， 121 ；Ballii， 126 ； cteutatum， 123 ；glutinusum，1ご， Lebelii（t． $\left.55 \frac{1}{4}, ~ 1\right), 125$ ；neglectum＊ （t． $55 \frac{1}{4}, \mathrm{~B}$ ），124．
Erylhrea scilloides． 23 ；major， 101.
－Essex Naturalist，＇リכ．
Eugenia lucida， 151.
Euphrasia hirtella， 25 ；Normegian， 111.

Ereruia Prunastri， 136.

Farwell on Nounenclature， 62,278 ．
Filwcett，W．，bis＇Flota of Jamaicat （rer．），275；Pithecellobicta，ごい： W．Harris－：

Flagellates，Birmingliam，Suppt．iis．
Flora C＇apensis，＇lúu．
Forests and Iygiene， 157.
Forstor，B．M．， 95.
Fothergill，Juhn（rev．）， 56.
Fucus，Suppt．ii． 11.
Fuckelia butryoidea，＊ 241 ．
Fungi．Morpiolory of，131；fro：n ＇sputted＇Apples，235．

Grallpe＇s Lichens of Iceland（res．， $2!5$.
GamMle＇s＇Jiadras Flora＇（rer．），27．
＇Gardeu，Tbe，＇ 183.
Gelidiam latifolium rar．．Suppt．ii． 15.
fig． 2 ；tornlosum，ii． 15 ，tiš． 3 ．
Genus，Lse and Abuse of the， 1915 ．
Gepp，A．，＇Thalassiophyta＇（rer．），S！： American Myxophyceæ，l：U；＇Ice－ land Lichens＇（rev．），29t．
Geranium Robertianunn， 277.
Gibbs，L．S．，Calobryum， 275 ．
Godfery，M．J．，Epipactis riridifl，m （t． 553 ）， 33 ；Cephaianthera or Epi－ pactis？，69；British Marsh Orciuitis， 236.

Groundsel， 96.
Greares＇s＇Garden Annuals，＇ 159.
Grove，W．B．，Flagellates and Algre of Birninghan（Supt．iii．）；M）culu－ gical Nutes， 249.
Groves，J．，Cornelius Varler，50；News－ paper 13utany， 55 ；Sex Terms， 55 ； his＇British Charoplyta＇（rew．）， $20 \pm$ ．
Guernsey，Narins Algw of，Suppt．ii．
Gunther，R．T．，Walter Stomehouse， 17U；Trailescant＇s Guralen C＇utalogue， 248 ．

Hadden，N．G．，Somerset Uredincie， is．
Ifardy＇s（M．E．）＇Geography of Plants，＇ I－0．
Harris，W．†，2eき．
Harrey－Gibsou＇s＇IIstory of Butany＇ （rer．）， 91.
Hawaii， 159.
Hawkweeds，British， 281.
IIay Fever， 10.
Ilayward＇s（I．M．）＇Adrontive F゚loria，＇ 120．
Helleborme latiolia，2．0．2．


```
    far
```



```
MO- M=-311
1%-A0r-1% 1%=1%
```



```
IILC
```



```
|1 --- &-i=यूत!
Nru-i=-N-*
b=c=an= - N
```



```
    *)
```



```
\=0 [1-m0ns-4
ded=a i 0 jowimody y
2FL=2: % ! =as
-\=0-!
dewoncoll
```



```
    II
```



```
d=real IAL al
L_1-2-4, lma|,
```



```
A=2,},=1\mp@subsup{0}{}{4
```



```
\(3+5 x-18+1+1\) \(\rightarrow\).
```


 1.15

Conker (
1 hime - I'milh, 1! - - - !2.

1 : $1-1 . .1 .1$
 ren. 1.i.
 \rightarrow
 1B1 Fean ounk 1:7.

 -ill. 11.

lifia 1 I.

II ramili y
 $\because i$
Nerail. $1-1$ proll 1.
 -

 - Hy=i is $16=-2.11$

ME. 1. , 1N1
 2081

 \therefore 분․․ $=1$
a) lone ly! :

Moore，Spencor，Alubastra Diversil．tt． 7t．187，219，267；Origin of Com－ pusite（rev．），20？
Morgan＇s，E．Merbariu：n，1：0．
Mycetozoa，Curnish．127．
Mycological Notes， $2+9$.
Myxophycex，American：120．

Namaqualand，Notes from， 53.
＇Nature－situdy of Plant＝＇（rer．）．2TT．
Nectaropetalum congolense， $21!$ ．
Nemastoma dichotoma，Suppt．ii．－2 4.
Sephrodiam gongyludus，＊ 153 ．
New Pioytulugist，Gf，16U，let，ㅇot． $\because 79$.
Newspaper Botany，55，117，136，208．
Nicholsun，W．A．，Enanthe crocata， 의 1 ．
Nomenclature，62，63，2－7．
Nurunhea comurel＊，＊ 189.

Obitiary：－

Adams，Alired．1：7．
B．aker：J．G．， 233.
C＇Halmers，A．I．，ITマ．
Culgan，Nathan！el， 113.
Harri，W．，2！は。
Jacksm，J．R．， 29^{2} ．
Marshalı，E．S．（portr．）， 1.
Raine，F．．．
Fogers，W．M．（purtr．， 161.
＝nell，J．，15s．
Cenamthe crucata，152， 201.
Oe－trup＇s Iceland Diatoms（rer．）， 295.
Ophrys apifera，1衣，－29；Raini， 30.
Urchids，Britiah Miarsh，2sti；on Mendelian principles，$-\frac{2}{3}$ ；d dawines
 $\because ⿹ 𠄎 ⿰ 丿 丿 ⿱ 二 ⿺ 𠃊 ⿻ 丷 木 斤 . ~$
Orehis ericetorum．259；Fuchsii，259： lierina．17T， 202 ；incarnata， 257 ； latilula，2ins． $2 \sim 6$ ；pretermissa，
 171
Osford Herbarium， 120.

Papuan Acantharex， $79,190$.
Paraquilegia，こe：2．
Paulson on Erernia， 136.
Yeliett＇：＇American Hones Plants＇ （rev．） 155.
Pembertun＇s＇Ruses＇（rer．．18：．

Peripatasma＊polyanthum，＊ 147.
Philippine Bulletus．II！．
Playliathus Ey lesii，＊ 7 －
Phylletaxis． 2 2e．
Patuecellobinm，276．
Plant iermatitis， $1: 30$ ． 173.
Pla：tagn apma of I＇．Maritima， 1 ！！，

Plenspusa pomorum，＊ 239.
Pua unteiensis，$\because 5,2 \int 5$.
Pollinusis． 40.
 1，om，＊ $2+1$ ；purparens，＊－40；recur－ vathe．＊ 240 ．
Porplyra umbilicalis，suppt．ii．12．
Potertilla hispanica， 100.
Pratt＇s＇Tild Fluwers，＇ 159.
Primula poisoring， 151 ；scotica，：ith ．
Prompll＇z laciniata，245．
l＇senderanthemman comfertum，＊ 191 ； Armit．i， 192 ；Brallkei，＊1！2．2．
Publication，Dates of，20）
Pugsley，H．W．，Plantago alpina is P．in ritiana，I49；British Hawk－ weede， 281 ．
P！renacantha sslvestris，＊22：3．
Riaine．Frederick，+30.
Ramsbuttum，J．，John Snell，15＊： 1. J Chathers，15－；＂Murphoang！of Fungi（vev．）， $1=1$ ．
Ramsbottom，J．K．，Lel－w orm Disease， liv．
Rammenlus Ficaria，154；Lingria， 275 ；rejens，りま．
Rendle，1．E．，Pua omeiensi－．25；his －Flora of Jamaica’（ret．）， 275.

Review：－
Le Mythe des Symbiotes，A．Lumière， 26．
Structural Botans，A．H．Churelt， 27.

Malras Flora，J．S．Gamble， 27 ．
sctence and fruit－growing， 20 ．
Agricultural Duturiy，J．N．Martin， 29.

Dr．Fothergill，R．H．Fox， 5 fi．
Thalassiopliyta，A．H．Church，ES？ Histury of Rotany，A．J．Harver （inbom， 41.
Applied Butany，（t．S．MI．Ellis， 3.
sierig s Ruser，ミ，ilmaisis，115．

15．n＝1－ 1 －
 （L－lowi 1－is 1 \＆of \＆\＆ F － 1 liet！
 $1040110211+1+1$

（4）10 1－3－－－

4e－-11 －
7 － $1 .-1$－ 1 ．
 $2 \pi 2$
 Th＝ii

f

 iti 0 （

$\mathrm{t}-$ is Mitacimitit．

 Cl

 noll

 $3=0$
Tッロ

 IBilail 10 ：

 H－r：

Fromer：of．＇Trema Si．of Viril river L．．．3．

＝amehna mice phyla．が

 2．，
\therefore bom tht ratthum $\quad \therefore$

－ 1 －

－menara 1 lie 117 ．

 －．
 III．
A．Dable 2.2 ．
－midmel lo
Ail＝u $=\operatorname{lin} n=1=73$.

 1at＝5．7－－－

 St，lin I：ow，lowale oromis n ．

 116
 （for ai）．

Strombosia．22J；Cossmeileri，＊207； majuscula．＊296；retevenia，＊2．${ }^{-r}$ ； foroemsis，＊2．2．
Strombosiopsis buxifolia，＊22R．
＇Strensk Flora＇（rev．）， 153.
Symbiosis，Lichen，213，26？．

Thompson，H．S．Enphrasia hirtel＇a． 20：Frereriek Raise，3！！；the Milu Season，I13；Hutchinsia［etrixa， 2.2.

Timbers， 230.
Twzer，H．F．，12）．
Tratn，Carl，Swedish Roses（rev．）， 115.

Tradescant，John，171．248．
Trans．Bot．Soc．Edinb．， 63 ．
Tweedside，Flora of， 120 ．

U＇ubellulantlus，＊220；floribundus，＊ $2: 0$.
Lredinex of Somerset， 37

Tarley，Comelius， 50.
Vaughan＇s（d．）＇Music of Wild Flowers，＇ ごロ。
Tanghania，＊1S8；diosmæfolia，＊1SE．
Vimpeliia， 48 ：hispidissima，＊ 49 ．

Ternonia dirngata，＊ $4 t$.
Virgil，Trees etc．of（rer．），2iz3．

Warner，M．F．．Rheede＇s＇Hortus malabaricus，＇ 291 ．
Warner＇s（E．）EJerbarium， 120.
Watson，W．，Llanberis Lichens，lor； Sisyrinehmm angnstifolium， 178.
Watts，W．W．，Aspidium goggilodus， 153.

TVeathers，J．，＇Roses＇（rev．）， 182.
Welsh Lichens， $11,108$.
Wernham．H．F．，Dewerrella congensis， 80；Ellis＇s＇Applied Botany＇（rer．）， 9\％；the genus Couponi， 11 ；；＇Geo－ graphy of Plants＇（rev．），1s0．
Wheldon，J．A．，Llanberis Lichens， 11.
Wheler＇s（Gr．）Merbarium， 120.
iVhytockia， 63.
Wilmott，A．J．，Erythrea scilloides， 23.

Wilson＇s（W．F．）＇Hawain，＇ 159.
Wilts Bryophytes， 1 ± 1 ．
Wolley－Dod，A．H．，Collecting Rosec， 23；Rerised Arrangement of Britioh Roses，Supplement i．

Zea Mars， 61.

J OURNAL () F IOTAXY。

BRITISH AND FOREIGN.

IN MEMORY OE
EDWARD sHEAlibURN MARSHALL
(1858-1919)
With Portraits.

Edfard Shearberv Mashide was bom on March 7th, 15.58, in Park Lane, London. He was privately educated, partly in England and partly in Germany, acquiring in the latter country a good knowledge of the language. In September 1573 he entered Marlborongh College, where he remained until Midsummer, 1 nit; while there he obtained an Old Marlburian Scholasship, (1876), an Exhibition (187T), and a Scholarship at Brasenose College. Oxford. At Oxford lie took a Second Class in Classical Molerations in 1879 and a Thind Class in History in 1881, in which year he graduated B.A.; he took his M.A. in 1884. In 1892 Marshall was at Wells Theological College; he was ordained deacon in 1853, and was appointed to the Marlborough Mission at Tottenham as curate; here he remained until 185i, taking priest's orders in 1854.

On leaving Tottenham, Marshall became curate at Witley, Surser, and it was during his residence there that he married (on Augnst 16 , 1857) Miss Famy Isabel Foster-a niece of the well-known watercolour artist Birket Foster (1.2.)-99). some of whose pictures adomed the Monkton drawing-room. The union was a very happy one, and indeed could hardly have heen otherwise, for Mrs. Masilatl was a woman of exceptional charm and boundless tact, with an unfailing sense of humour and a brichtness which communicated itself to all who came in contact with her. A devoted Churchwoman, she was a centre of parochial life, possessing that gift of sympathy which is not always rouchsafed to earnest workers, with an entire absence of the fussiness which sometimes attends and mars their efforts. She was possessed of considerable musical ability, training the village choir and playing the organ in the church.

Although herself not a botanist. Mrs. Marshall took the keenest interest in her husband's botanical work. especially during their summer holidars: in Scotland. It was on one of these occasioms that a new Hawkweed was found which was described by Mr. Marshall in

Jolraml of Botamy.- Vol. js. [Jaxiary, 1920.] b

 Lis

 tr

Fy)

Oxford that he became interested in botany. On the blank pages of the Journal are lists of species noticed in 'Teestale in July, 1b৯is, and of Dorset and Hants plants at the beginning of July, 1sst; later in that month he was in the west of France, chicfly in C"harenteInferieure, where he drew up a list; on his return, a stay at Eastbourne for two hours enabled him to note 159 species.

Marshall:s first contribution to this Joumal. of which he was to become a leading supporter. was in 164., when le publi,hed (1, :311) a short note on Pinguicula alpina in sutherland The following year saw mothing from his pen, but in $150 \rightarrow$ he began the series of notes upon the plants collected during the ammal liolilay of the preceding vear, which have almost without intermission, formed an interesting feature for wore than thirty volumes. I had int nded to append to this notice a bibliography of Marshall's contributions, but this would reguire space which present restrictions make it imposible to afford: I must therefore content myself with a summary of the more important, referring those who want a fuller account to the yearly indexes, in which Marshalls name is always to be found, usually with many references attached.

Before he becane a contributor, however, Marshall was a subseriber to the Journal ; the first letter the Editor received from him is dated Aug. 31, 1554. and was written while he was stationed at Tottenham. It relates to a review of the third edition of Hooker's S'tudent's Flor" (Journ. But. 1ş4. ¿थ(1) and takes exception, on classical grounds, to the statement that "Tirngopoit mimus Miller (1768) must replace T. minus Fries (182 b)." It is written in the ex cathedion style which Marshall never entirely abandoned: "Why so, 1 venture to ask? $\pi \omega^{\prime} \gamma \omega$ er is masculine, not neuter: and surely it is most unworthy of any seience to perpetuate errors. If the principle of priority is to over-ride the consideration of all linguistic properties $1 n$ our own day, surely a more critical age will re-revise this arbitrary revision." ln common with all intelligent folk, Marshall, as time went on, modified his opminons ; it is amusing to find him in 1918 (p.152) regarding as "unjustifiable "Mr. Lacaita's assertion of the principle thus energetically maintained, and endorsing the view that "the author's spelling, even in extreme cases," should be adopted. Marshall, however, never thoroughly accepted the principle of priority, as may be seen from his notes on Curex depurperuta (J. Bot. 1896, 229) and Stelluria mmbros" (J. Bot. 190t, 152)-the latter a good example of the vigorous style in which he often expressed his opinions.
In the letter quoted above he considers that the frequent changes of nomenclature have a deterrent effect upon workers: "I am positive that the services of many who would have done first-rate field work are lost from this one cause. An eager and careful field-worker I can claim to be, as far as time allows, but nothing more; and as such I can't but speak out on behalf of my long-suffering class."

Our correspondence thus begun became frequent and intimate, especially after Marshall went to West Monkton, where, as he told me, he intended to remain for the remainder of his clerical life. About ten years ago he invited me to vinit him there, and thus began a personal friendship, not only with larshall but with
 the phation of how ow Mr．Mar－hall and of sharing in the life

 Lemal－Wh in the amman whieh hanshall refered to my visits．

 Fonaln－a haming intimatity．I donht whether any matrden

 our lom their，hatim．
 （the 11 ，
 rybly from lin penc．Ammer the mast intoreting are the lists．

 Whame wher lit Foml Aixyriurhiam ralifirnionm in such

 phation in manh of thene in whith I was th have ascompathed
 ty ＇tomall aith li I＇Mhatas．Kuit with Mr．Hanlomy，whon the

and collecting; thus "some hours " at Hayling Island enabled him to examine the various forms of Salicornia and to note other things of which a record will be found in J. Bot. 1901, 144; even a wait between trains was utilised. When it is remembered that Marshall was a keen fisherman, and also that he himself dried his often very mumerous gatherings, it will be understood that his " holidays" were by no means periods of rest, except such as is aftorded by change of occupation. How thoroughly he investigated the plants of his county the "somerset Plant-Ňutes" which have appeared amually in this Journal since 1907 sufficiently show. The notes relating to critical genera such as Hieracium and Rubus, and later Sarxifiagn and Euphrasia, give, as has already been said, a special value to Marshall's lists; few have seen so many British and Irish plants growing in their natural conditions, and none have turned their knowledge to better account.

Although possessed of a very adequate knowledge of British phanerogans in general, Marshall paid special attention to certain genera besides those just mentioned, among them Erophila, Fiola, Epilobium, Sulicornia, and Carex. It was principally among these that he found material on which to base the new forms which he described in this Journal-e. g. Ranuиculus petiolaris (J. Bot. 1892, 259-a name afterwards changed to scoticus), Cochlearia micacea (1894, 2s9), Tiola \times Smithiana (1915, 361), Helianthemum \times Bichhami (1913. 1S2), Stellaria umbrosa var. decipiens (1902, 215), Suxifiaya Drucei, S. Sternbergii var. gracilis, S. hypnoules var. robusta (1918, 65-7), S. \times Cranfordii (1909, 95), Epilobium \times Waterfullii (1916, 114), Hieracium anfiuctuosum (1592, 18, 183), H. dotrense vars spectabile (1594, 216), II. Istabellce (1913, 120), H. Shoolbredii (1913, 122), Salicornia disarticulata var. humifusa (1915, 361). The last is associated in my mind with Marshall's enthusiasm as a collector: we had started in the morning for Dawlish Warren, hut arrived at Exeter in such pouring rain that Mrs. Marshall and I preferred to explore the city mather than to face an expedition ; Marshall, however, persevered, and was rewarded with a tinfull of Salicornias which he showed us with trimph when he arrised in the afternoon, wet and weary, at Exeter Station.

Marshall's critical notes on the genera mentioned and on others, scattered through his lists, also supplied material for special articles. A warm defence of the "critical" as against the "lumping" school will be found in his account of Cochlearia micacea (J. Bot. 1594, 290), where he speaks of the "Benthamic" treatment as "hardly calculated to increase knowledge or promote accuracy" and condemms "Mr. N. E. Brown's crude and offhand dismissal of the Epilobium hybrids" and "Sir J. D. Hooker's laconic condemnation of the Hanburian Hieracia." "For my own part," he continues, "I itan . atat tipil" botanists have some ground of complaint when carefui and deviber 9 conclusions, arrived at as the result of long research in the (pen. the garden, and the study, are hastily tossed as worthless, without hem properly investigating the matter, by those whose expressim. - of opinion deservedly carry great weight, and whose reasoned cr"timems would be very valuable." His nun notes wore always hased. Is far as

 -4 को

 Int | 1 -

 poil ablation.

下ि: पन्ता.

 II

 स्री "

the bramble flora." Other critical species were founded on material collected by Marshall-e. g. Ruhus hesperius and R. iricus, two Irish species described by Mr. Moyle liogers in J. Bot. 1s96, jut-6. Haussknecht gave his name to a hybrd Epilobium (E. Harshalliaпит Hausskn.).

Althongh Marshall's work finds its chief record in this Journal, it was by no means confined thereto. It is to him that we are indebted for the publication of the Florll of Kent (1599) on which the joint author and originator, Mr. F. J. Hanbury, had been working since 187%. In the pretace to the book Mr. Hanbury expresses his regret "for so long a delay," and continues: "Had not his friend and co-editor kindiy consented to bring the critical portion up to date, recast the mass of accmmulated facts into timal shape for press, and, correct the proofs. the Flura could not even now have appeared. He desires to pay his highest tribute to the energy and untiring work that his collearue has thus ungrudgingly given, as well as to the excellent critical field-work which, with little time at his disposal, he has managed to accomplish." Botanists will rerret that Marshall was not also called in to complete Mr. Hanmores Monograph of the British Hieracio, which, after the issue of theht numbers at dates ranging from $1 \sim 59$ to 1.95 , remains a splendid fiagment of what might have been. In 1901 Marshall prepared for the Victoria County History (published in 190s) an account of the Phanerogams of Kent-a careful and interesting epitome of the Flora.

In 1914 was published the surpl ment to the Flora of Somerset (see Journ. But. 191t, 2n0i, which was undertaken by Marshall at the request of the Somersetshire Archreulugical and Natural History Society, of whose Botanical Section he was President and in whose Transactions (lix. part 3) it first appeared. He took great interest in the societr, joining in its excursions and presenting to its herbarium, preserved in the Taunton Museun, specimens of his somerset plants. In the preface to the sumplement Marshall refers to R. P. Murray, the author of the Florn, whose acquaintance he had made when at Wells, as his " first real helper in the study of critical plants we were intimate friends from the autumn of $15 \leq 2$ until his death " in 1905: a more detailed acknowledgement will be found in the notice of Murray contributed by Marshall to this Journal for 1909 , p. 1.

The account of Betula (one of his favourite genera) in the Cambridge British Flora (191t) must also be mentioned among Marshall's publications. His help is, moreover, acknowledged in various publications, e.g. in The Floie of Bristol, where Mr. White pays a warm tribute to his critical knowledge ; the Reports of the two Exchange Clubs, of both of which he was a member-he joined the B. E. C. in 1892 and the Watson Club in 1900-contain numerous notes on plants which had been referred to him for his opinion.

Almost from the beginning of his botanical career, Marshall was intimately acquainted with the leading British botanists. Some of them, as has already been mentioned, shared his summer holiday; others were entertained at the rectory or were themselves his hosts, or joined him on short excursions. He was accustomed to speak with

 , |r , 1 i

 the reats of the limmen Sociots, of which he hexame al Frllow in

 Y

questioned this. Nine years later, however, Marshall himself (J. Bot. 1599, 3.57) expressed his conviction that " Mr. Beeby was right in considering Festuca heteropliylla as probably introduced at Witley."

I detail the incidentat some length beeause it shows that Marshall, although difficult to convince, was willing to own up when he was convinced, and also becanse it illustrates his somewhat over-readiness to regard as British, plants whose antecedents suggested the improbability of this-Sisyrinchium californicum, atready mentioned, is a case in point. On the other hand, he did much towards estalblishing the claims of plants whose nativity had been regarded as doubt-ful-p. g. the one standing in our books as Aconitum Napellus; this he regarded as "a true native in Somerset and in several other western counties" (Fl. Som. Supp. 8), and it was difficult to regard it as otherwise in the stations where he showed it to me. Marshall was also a staunch defender of the nativity of Paonia corallina and Allium Ampeloprasum on the Steep Hohn-of which R. P. Murray gives the Hora in f. Bot. 1891, 269; he made several excursions to the istand and introduced from it to his gavden the two plants above mentioned: he also regarded A. triquetrum as native in Cornwall (J. Bot. 191S, 56).

His views as to specific rank also underwent modification: thus the Ranunculus first mentioned by him (J. Bot. 1859, 230) as R. Flammula var. petiolaris and subsequently published and figured (J. Bot. 1892, 259, t. 32s) as R. petiolaris-a preoccupied name for which R. scoticus was substituted (J. But. 1595, 10:3)-was later (J. Bot. 1900, 185) "after much consideration" regarded as a subspeeies -a view which had been previously urged upon him by Mr. Arthur Bennett and other botanists.

It seems right to add that, although so much of his time was devoted to botany, Marshall's clerical work was in no way neglected: the ordinary duties of a country clergyman, which are perhaps more numerous than is sometimes supposed, were conscientiously and methodically performed. His parish, though straggling, was not a large one, as reckoned by inhabitants, and he had the help of a curate, but he took his full share of work, usually preaching twice on a sunday. His sermons were much appreeciated by the more educated members of his tlock, but were, I gathered, regarded by the poorer classes as rather over their heads-"too clever," as one of them expressed it. Marshall was a thorough "Chureh and State " man-a moderate High Churchman of the degree indicated in the Anglican thermometer as "E.P. and altar lights," but with no sympathy with the more advanced members of that school. Although he did not readily brook contradietion, he was a most pleasant companion.

It would be presumptnous on the part of one who claims no high position among British botanists were he to attempt to estimate that which Marshall had attained. But a letter received since his death, from one who himself stands in the first rank of our botanists, contains an appreciation which appears to me so just that I propose to print it in place of expressing any opinion of my own:
"His death is a great loss to British Botany. He was unsurpassed as a collector of the critical flowering plants, both in point of

 - - . .
 - 2

 sheme 130:

 s.e of llam ninel vilios.

National Herbarium or at the Linnean Society for the consultation and eomparison of books and sjecimens neeessary for his work. In everrthing eomected with his herbarimm-as. indeed, in other respects -Marshall was exceedingly methodical: the ample space of the Rectory enabled him to derote a room to the aecommodation of his phants and books, and things not dealt with at once were carefully endorsed-e. g. some papers which I had sent him for notice came back to me after his cleath labelled " Important: for review in J. of. B. after settling at Offias Drke."

This tribute to Marshall's memory has run to greater length than I had anticipated, but I do not think that those who knew him, either personally or by correspondence, will consider it too long: rather will they note cinissions whiel they would have been able and willing to supply. By his cleath, the Editor has lost a valued friend and the Journal a principal contributor: and this memoir may fittingly conchude with a reference to the assistanee rendered by Marshall to both at a critical period. It will be remembered that owing to the War and other circumstances a serions deficit was experienced at the end of 1916. By the generosity of friends and in response to a cireular signed bre five leading British botanints, the deticit was made up, as stated in the volume for 1917, p. 143; but it could not then be said that the circulation of the appeal, the receipt and acknowledgement of subseriptions, and other ineidental trouble was entirely undertaken by Marshall, who was also, with his wife, the most hberal subscriber.

Jayes Britten.

(The aecompanying portraits are from a photograph taken in July 1919.)

LLANBERIS LICHENS.

By J. A. Wheldon.

The following list was compiled in the district around Llanberis between the 3rdand the Sth of August. In company with the Misses Armitage and Cobbe, and Messrs. Druce, Jones, Rhodes and Travis, a considerable proportion of that time was devoted to the examination of the Phanerogams and Bryophyta of the ricinity. Two days were somewhat spoiled ly mfarourable weather. The list camot, therefore, be regarded as an exhanstive one, and many of the lichens known to oceur in the district were not seen at all. Others, sueh as Cercania cormicularis, were unexpected, because not recorded in the Flora of C'arnarconshire or Leighton's British Lichens, and it is singular that so conspieuons a species, occuring close by the path from Llanberis to the snowdon summit in some abundance, slould have been overlooked. The comparatively few corticole species ineluded, is due to the fact that most of our time was spent on the hills, above the tree zone, and not to any porerty of species in this group. The arrangement is that of A. Lorrain Smith's British

 -manto.

varima sumeln Xeh. Watmp ledges on voleanie ash. Cwon 1.L

Peremphay hasks Ach. ('ommon, with forms lubrosu and

 I' atyonthe deh. Very tine on hoth trees ind rocks. P. probos-

 1. Whe ", tembler- at the font of sinowdon.- P. omphatorles Whe 1 ars the fy-1.t thronghout the district, and oceasionally firnit-

 3.6合

- I matar woventuris \& F limy: On the hate shonders of

 -

Placodium pyraceum Anzi var. pyrithromzm A. L. Sin. An athalline form on a foreign white thallus, the apothecia in small groups, amongst decaying mosses above 3000 ft . on Snowdon.P. ferruginenm Hepp. Very sparingly on a tree near the Castle.

Candelariella ritellina Miüll.-Arg. Frequent around Llanberis.
Physcia pulverulenta Nyl. Somewhat rare on trees in Llanberis Pass.-*P. stellaris Nyl. var. cercitlia Nyl. Observed once near Nant Perris.-P. hispida Tuckerm. Frequent, the f. leptulea (Ach.) on trees, and f. tenella (Scop.) on rocks near Llyn Padarn.
*Rinolina demissa Arn. On slate near Llyn Padarn.
Lecanora gelida Ach. Rocks in Llanberis Pass and above the tarn in Crm Glas Mawr.-L. subfusen Ach. var. *ehlarona Ach. Trees near Llanberis. Far, allophena Ach. Trees near the Castle.L. rugosa Nyl. Apparently rare, seen once on trees near Llanberis. -L. atra Ach. Frequent, and ascending to 3500 ft . on Snowdon.* L. Hayeni Ach. On small stones in Llanberis Pass.-*L. carpinea Wain. On branches of trees, frequent.-*L. raria Ach. Sparingly on old worked wood near Llanberis.-*L. farinaria Borr. var. comizcoildes A. L. Sm. On larch near Llanberis.-L. sulphurea Ach. Rocks and walls in Llanberis Pass and below Cwm Glas.* L. epanora Ach. Noticed in several places in Cirm Glas, and on the ascent of Snowdon from Llanberis.-L. polytrope Schrer. Seen very sparingly on Snowdon.-L. badia Ach. Frequent on boulders, Llanberis Pass, Snowdon, and below Clogwyn.-* L. utriseda Nyl. Wall in Llanberis Pass, with Lecidea geographica.-L. tartarea Ach. Frequent, and fruiting well on tree-trunks and rocks; the var. frigida Ach. on Snowdon above Cwm Glas Mawr.-L. parella Ach. Occasional on walls and rocks.-L. lacnstris Th. Fr. Abundant on stones below Llanberis Waterfall, and at intervals in the bed of the stream down to the lake.-L. Dichsonii Nyl. Frequent, ascending from near the Llyn Padarn to the summit of Snowdon.

Acarospora fiuscate Th. Fr. Rocks in Cwm Glas.-*A. smaragdula Massal. Rocks below Clogivyn.

Pertusaria globnlifera Nyl. Rare, on trees near Llanberis.P. faginea Leight. Rather frequent on trees.- ${ }^{*} P$. multipuncta Nyl. Trees near the base of Snowdon, rare.-*P. 7actea Nyl. Frequent, but always sterile, ascending to the summit of Snowdon.P. commmis Dalla Torre and Sarnth. Only noticed once on a tree near Llanberis.- P. dealbatu Cromb. Boulders in Llanberis Pass. Frequent on Snowdon and Clogwyn.-P. leioplaca Schaer. Trees near Nant Perris.

Crocynia lannginosa Hue. Shady mossy wall in Llanberis Pass.

* Racorlium rupestre Pers. Rocks in Cwm Glas.

Gyrophora polyphylle Hook. f. congregate T. \& B. Rocks below Clogwyn, and near the foot of Crib Goch.-G. cylindrica Ach. Near the summit of Snowdon and on rocks below Clogwyn. forma denudata Mudd and var. fimbriatn Ach. Clogwyn. *T'ar. denticulata Ach. Rocks above Cwm Glas near the summit of Snowdon.-* G. torreficta ('romb. Observed very sparingly below Clogwyn.

Baomyces roseus Pers. Seen in a sterile condition only on Snowdon.-B. mufus I)C. liocks in Llanleris Pass.

 I'una

 lang 1 is

 toke Hoatuy

 Llederer ramo

* Bilimbia cambrica, sp. nov. Thallus indeterminatus granulatosquamulosus rel squamulosus, squamulis contiguis rel dispersis tia ridocinereis, marginis prominentes pallidioribus. Apothecia nigra primo plana marginata deinde cunvexa immarginata et extate tuberculata, sæpe conglomerata. Epithecium in plagas tenues dissectum brumneum. Hypothecium saturate nigro-fuscum. Paraphyses bene discreta subcapitatre graciles, apicibus fuscescentibus. spori $21-36 \times j-\bar{\jmath} \mu$ fusiformes 3 -septatæ.

Thallus rellowish greer, subeffuse, squamulose. squamules roundish and nodulose or larger and irregularly Hexuose. admate, depressed in the centre, whitish at the elevated margins, scattered or congregate. Apothecia rather small, hack. opaque. scattered or several together, in age convex and tuberculate with the margin excluded. Epithecium brown in section; hypothecimm black, becoming brown upwards. Paraphyses slender. subeapitate. Spores fusiform, $3-$ - septate; $-4-36 \times \overline{5}-7 \mu$. On rocks of voleanic ash on snowdon. above 3000 ft . This lichen is very near Bitimbia lencophaposis A. L. Sm., the only locality for which is on Ben Lawers. Like that species it is associated with Sirosiphon saxicole, which forms dark patches between the thalline squamules. It may be only a varietr of that species, but is distinguished from it by the whitish margins of the squamules, and the darker thallus.

Bilimbia melana Arnold. On decaring mosses and hepatics on Snowdon.-B. lignuria Massal. Encrusting decaring mosses high up in Cwm Glas. and over-rumning CTadomice and mosses amongst Cerania on Snowdon.

Bacidia umbrina Branth \& Rostr. Rocks in the wood by Llyn Perris, vars. turgida Th. Fr. and compacta Th. Fr. On walls amongst small mosses in Llanberis Pass.

Buellia myriocarpa Mudd. On a tree-stump near Llanberis.B. colludens 'luck. Rocks in ('wm Glas.

Khizocarpon geographicum D('. Common, with forms contigua Leight. and wrceola Leight. *R. Edeari Koerb. Boulders in Llanberis Pase, on Clogwin, and near the summit of Snowdon.R. petroum Massal. By the lake in Llamberis Pass.-R. conferroides DC!. Ori stones near ilanberis, and on Snowdon.

A \mathbf{t} honia radiata Ach. and var. Surartziana Sydow. On oaks near Llanberis Castle ; also a brown form on alders near Nant Perris, Mr. G. Travis.

Graphis scripta Ach. Woods near Llanberis Castle.
Pheographis inusta Müll.-Arg. ${ }^{*}$ var. mactlaris A. L. Sm. With the preceding species.

Dermatocarpon aquaticum A. Zahllor. Stream between Crib Goch and Cwm Glas.

* Terrucuriu lerata Ach. Stones in the stream near Llanberis Castle.

Arthopyrenia epidermidis Mudd. On birch and oak near Llanberis and Nant Perris.- A. submictns A. L. sm. On smooth bark near Llanberis Castle; also found on alders near Nant Perris by Mr. Travis.

Porina carpinea A. Zahlbr. Trees near Lly Padarn.

 notes－low how mon han le abled to ome kmowhedere of this most
 －$y^{-l+1}=1$

Rosa ptychophyila，sin．
A has．anct．las hasho foet hierh，mather seantily foblated，the

 ame th prichlas ory emapionome ；in full hloom in the lirst half of

 or in chater of thex or fonm：pure white when fully open，feebly

 11 inolla．

 1 Ler las l il me err．

When I domerat th m on dnls zom they wew in full hloom，

the pistils [rojectine 3 mm. ; the sepals folded down ; no change in the colvur of the foliage. In November. I received ripe hips, with tough, leathery coat, cherry-red (Dauthenar, Répert. de Couleurs, pl. 91, tone 4), 15 to 15 mm . long by 9 to 11 wikte, pedicels is to 20 mm .; dise dark brown, projecting jistils 2 to 3 mm. lung. One which I opened contained 6 well-formed akenes (6 mm . by 4) in addition to as many imperfectly developed.

When I came across these bushes, their appearance struck me as utterly unlike anything I hat seen before, I was as much startled as when I first saw R. rubrifoliu alive, and I have since been unable to identify the species from the descriptions of British and Continental authors or after a diligent search through the herbaria in the Britinht and Paris Museuns, at Kews, and in the Rouy herbariun in Paris, to which Prince Ruland Bonaparte has kindly siven me access.

This Rose falls under the deimition of the Stylosa stection of the genus, whatever the value of the qromp, may be as a matural association. I have compared it with R. stylosa, of which the Déséglise herbarimn contains an example, from the Dept. Vieme, sent by Desraux as absolutely typical. In this example, the folioles, 5 or 7 in number, are also sessile, although Desvaus describes them as petiolulate, and bear 15 to 15 teeth on each side, but they are very hairy above as well as beneath, and more attenuate at the base. Of R. Teucoclivoa, I have seen an authentic specimen from Poitiers (Desvaux, April 1513) at hew; it has broader folioles, pubescent on the ribs only, and the flowers are said to emit a pronounced odour of $m u n k$. The type of the valr. microphyllu Rouy, from L'Arboie. I sère, seems to me to represent nothing more than a mall-leaved form of R. stylosa ; folioles pubescent above, not glalmons as stated by Rour, with 18 to 22 serree on each side; sepals longer tham thie petals, which are stated to be pink; pedicels smooth. R. systyla, which I have found at Studland, is a high bush similar in halit to the larger forms of R. caninn, with larger pink flowers, much larger leaves with petiolulate folioles, projecting beyond the flowers, as in the specimens of R. stylosu and R. leucochrou figured by Desvaux as well as in all our linses of the R. canina and R. stylosa groups: my specimens agree well with some in the Déséglise collection (R. fastigiata Bast.), also with Christ's description in Rosen dev. Schueeiz, as well as with a specimen from the Basle Jura sent by him to Déséclise.

I cannot suggest a hybrid origin for this remarkable form. The only Rose-bush growing quite near was, as I have said alove, a R. rubiginoser; not far off there were bushes of R. canina which seem to fall under the var. dumalis, with white Howers and mostly 7 . foliolate leaves. Bechstein's R. dumalis in the strictest sense has rose flowers and j-foliolate leaves on the flowering branches. I am well acquainted with it in Belgium (Fameme), where, owing to its more shiny and darker foliage and smaller Howers, I can tusually distinguish it at a distance from the typical R. cunina (lutetiuna) in hedges where the two grow side by side. White-flowered var. dumalis also occur in the same district in Belwium. but are the exception and not the rule as round studland, where the half-open petals are often vellow at the base. There is no R. arensis in the

Jolreah of Botajy.-Yol. us. [Jallary, 1920.] c'

 1- rquaving velyent in -t aly.

 hai for the fint that there is an carlior h. umbellath (at varicty ot

S, allabe wrom on the site of the mod from studland to

 /. wo.

 affolista onf tin midhe has of the Howering hamehes in his kers to

 man S^{-}

and every specimen in the British Museum (British collection and Déséglise colleetion) and Kew herbaria, I have not yet come across R. areensis without any pinnæ at all, in spite of the ustal definition in books "sepals usually quite entire or very slightly pimate." In K. bibructeata Bastard the flowers are rosy white: a specimen from Aujou, sent under that name by Bastard to Kew, seems to be R. systyla pure and simple.

This is not a sharply-defined variety, as I have come aeross specimens with large leaves and solitary or geminate flowers, and others with small leaves and umbellate or corymbuse fluwers.

Rosa artensis \times micrantita?

A bush about 3 ft . high, growing in a hedge with R. areensis and R. micrantha, should perhaps be regarded as a hylrid between these two species.

In habit similar to R. arenenis, but stems without purplish tinge and leaves extending beyond the solitary flowers, which are pure white and measure 40 mm . in diameter. Pedicel thickly beset with stipitate glands, 4 to 5 times as long as the calyx-tube, which is oval and abundantly though less profusely glandular; sepals short, pubescent on the imer side, with stipitate glands on the borders and two pinne on each side, these longer than usual in R. arvensis. Leaves all --foliolate; folioles sessile, eglandular beneath but hairy on the mid-rib, which may bear a few prickles, small, $1 \frac{1}{3}$ to 2 times as long as broad, the terminal 20 to 25 mm . by 10 to 14 , acuminate at both ends, with 8 to 12 teeth on each side, each usually bearing one or two glands; petioles with glands and prickles. Prickles on floweriug branches feebly curved, with narrow base.

I am not aware of such a supposed hybrid having been described before, but Burnat and Gremli (Suppl. Mon. Roses Alpes Marit. p. 82) mention, without giving it a name, a variation of R. arvensis with 5 -foliolate leaves and glandular calyx-tube, which is perhaps to he regarded in the same light, R. microntha being recorded from the same locality (Cosio). R. arcensis, var. setosa Bagnall (Midland Natur: г. 1882, p. 181), from Warwickshire, which I have seen at Kew, is perhaps the same hybrid (" arehed scrambling bushes, not at all prostrate"). A R. micrantha from Plymouth (Briggs, 1857, Herb. Kew), with long smooth pedicels, is probably another hybrid form between these two speeies.

Wolley-Dod says of the typical R. arvensis that the pedicels "always bear sessile or shortly stipitate glands which do not extend to the fruit." I have, however, come across specimens in Surrey with small glands scattered over the whole ealyx-tube, as well as others in which the glands are absent, or reduced to a rery few, on the pedicel. Christ describes the form repens from Switzerland as with the pedicels smonth or beret with sessile glands. In the South of England and in Belgium the glands are usually distinctly stipitate. A R. arvensis in the Kew Herlarium, from between Ednaston and Hollington, Derbyshire (Exch. Club Rep. 1887, p. 181), named by ('répin R. reptans, has doubly serrated folioles, the smaller serrations with 2 or even 3 glamls; the Howers project beyond the leares.

 (Cral
 104.
 ($51.10 \cdot 1$

 "ן:
 At

 - nese 8.
 Rlanhatin ball. rimerera.

 fitentir var, raxilis.

Th. .t:

Rosa micrantifa, var. Lussert.

Rosa Lusseri Lagger and Puget, 1s73, was deseribel from Bovernier in Valais, switzerland ; it was placed in the synonymy of R. permixtu Déségl. by Déséglise, in whose herbariun an authentic specimen from Buvernier, sent hy Lagger, is preserved; the leaves are much less hairy than in others, likewise from Bovernier (Lagger), at Kew, which explains how ('répin (1552), who hat also seen authentic specimens, thought it suggestive of eertain varieties of R. tomentosa. In my opinion it must be regarded as a variety of R. micrantha Smith (permista Déségl.), approaching the rar. Brigysii Baker, of which I have examined the types at kew; but its glandular pedicels preclude identification with the latter. Christ's var. salvifolia, from the Western Alps of Switzerland, is probably a mere moditication of this rarietr, and Coste's rar. macrophylla, from the Charente-Inferieure and the Ain, may be the same; Rouy and Foncaud's key leads to it.

The following description is taken from a bush observed on the road from Studland to C'orfe C'astle:-

A robust, tall bush, about 6 ft . high, with Hexuous branehes. Flowers 2-3; corolla bright pink, as in R. rubiginosa, 40 mm . in diameter; dise convex, strles smooth; seprals nearly as long as the petals, with 2 or 3 long, simple or barked pinne hearing stipitate glands on the back and on the margin ; calyx-tube elongate, contracted at the neek, $1 \frac{1}{2}$ to $1 \frac{2}{3}$ times as long as broad, with stipitate glands at least at the base; pedicel longer than the calyx-tube, densely stipitateglandular. Lea ves large, up to bj mm. long, bright green, paler and duller beneath; young leaves tinged with red; folioles $5,1 \frac{1}{3}$ to $1 \frac{2}{3}$ times as long as broad, the largest 42 mm . long, perfectly rounded or more or less acuminate at the end, more or less narrowed at the base, sometimes truly obovate, petiolulate, with scattered hairs on both sides, densely tomentose on the ribs, with small sessile glands on the lower surface ; serrature deep, open, compound, with numerous glands, feeble or obsolete at the base; the larger folioles with 12 to 18 principal teeth on each sile; petioles tomentose-glandular, with numerous acicles and rather strong, curred prickles. Prickles on flowering branches uniform, strong and hooked.

One of the best characters for distinguishing R. micrentha from R. rubiginose appears to me to be the more convex disc in the former, beyond which the smooth styles project considerably after the fall of the stamens, sometimes answering to the definition of R. stylosa.

THE HOME OF INULA HELENIUM.
Be C. C. Lachita, M.á., F.L.s.
Elecampane has been cultivatel for the properties of its root from time immomorial in sundry parts of Europe. This has led to its establishment here and there ats a maturalion ahten in many regions where it has no chaim to be indigenous; such, for instance, are Great

 at

Thater and limano, who explored the vally of the 'ervaro-
 fonar Nime or Ipulia, and moler the mame of Vial di Bumo wis

 - 至

 -

 4. .

SHORT NOTES.

Erfthrfa scilloides Chaubard. In the 1918 Report of the Botanieal Exchange Club (p. 290, "July," 1919) Dr. Druce treats Mr. Arnett's Pembrokeshire plant as a variety of the Azores speeies and names it portensis, which is the name of the Portuguese form. He says that Malinrand ". held the plants to he distinct speeies," and that Le Jolis "also considered it to be a distinct speeies." Dr. Druce evidently has not read Le Jolis" paper of 1896 -for references see my artiele in Journ. Bot. 191s, 321-where that author goes very fully into the matter and regards the two as identical; nor did he in any of his previous works express the opinion implied in Dr. Druce's remarks. Dr. Druce's observations about "Malinvaud " are also erroneous: I omitted to refer to him because he mas only writing a notice, in which he gives no opinion of his own, of Le Jolis' paper: moreover, the remark quoted as from Malinraud does not exist. I note that Dr. Druce makes no reference to $m y$ article; when his attention was called to this at the meeting of the Limnean Society on Nov. 6, he explained that the B. E. C. Report-which. although dated "July $1919^{\text {" }}$ did not reach the members of the Club until late in Oetoberwas already in type when my paper appeared in November, 1918; certain coincidences of expression must therefore be regarded as accidental. The only tangible difference between the Azorean and the European plant seems to be that the former is "always whiteflowered." When investigating the matter I started br supposing that the plants might be different not only in the Azores but in Portugal and North France. In the Azores the species is stated to be extremely variable, and Le Jolis says the same of the French plant. Mr examination showed that the habit of the species in the Azores sometimes more resembles that of an ordinary Erythroa than it does in Europe, but I could find no way of separating them. I have a distinct impression that I have read somewhere a statement by one who had gathered the plant in the Azores that the flowers were as often pink as white, but at present I camnot find it. Since the history of the Limnean name is unsatisfactory, it may be well, at any rate for the present, to call the British plant E. portensis Brot.A. J. Wilmott.

Oy Collectivg Roses. I should like to impress upon collectors of Roses the extreme importance of eollecting well-developed fruitnot necessarily fully ripe which has become pulpr, but that whieh has fully reddened, though if the sepals have already fallen it is not necessary to wait for the reddening stage provided the fruit is fully grown. I would rather have a specimen to name gathered in late October, or even November, than in June. I have just been looking through a collection of about sixteen specimens from Ireland by Mr. Stelfor, in which he at first sent me flowering specimens, or young fruit, promising me ripe fruit later. I named these provisionally and kept them br me till the fruiting specimens arrived; these showed that I was wrong in my provisional names in three eases, and I was able to give names to three others I had given up, in the flowering stage. In fact, I could have named every one

 - \#l

 (10.
 111.11 in 1.1 |1, 1.

[^0]by a gentleman from England and sent to me as a rarity" (p, 212). I camot find any note of the occurence of this species in Banffshire in Dickie's Gmide (Is60), Top. But., Craib's Banffishire Flore (1911), or elsewhere. This mountain, the most northerly outlier of the Grampian (hain, which rises to 275.5 feet, seems a very likely spot for the plant, and one hopes the discovery may be contirmed.C. E. Salmon.

Poa omeiensts, comb, nov. Mr. C. V. Piper has kindly drawn my attention to the preoccupation of the name grocillima, under which I described a Poa from Mt. Onei, Szechuen, in Joum. Limn. Soc. (Bot.) xxxvi. 424 (1904). I regret to have overlooked the previously described Poa gracillima Tasey (Contrib. U.S. National Herbar. i. 272, 1593). The Chinese species may take the name Pou omeiensis.-A. B. Rendia.
H. W. Beraess (Joum. Bot. 1915, 223). Burgess's "official position " is explained by the fact that in 1833-and probably some rears earlier-he was Landscape Painter in ordinary to William IV. He exhibited at the Royal Academy from 1S09 to 1811, and most of his exhibits were of trees and landscapes-in 1812 and 1413 he exhibited pictures of ilex and cedar trees. The art of painting was partised by several suceessive generations of the Burgess family for ahout a century and a half: William Burgess, father of Henry William, was an exhibitor at the Royal Academy 1774 to 1811.W. Roberts.

Euphrasia hirtella Jord. Too late for an additional paragroph to my paper in the Decembor number (p. 336), I have received from Mr. Pugsley robast specimens of E. Kivtella collected last August by Miss Armitage near Llanberis. These are barely distincrishable from specimens I gathered at the head of the Roseg Valler, Engadine (6500 ft .), July 1900 , which the late Mr. Townsend had determined as E. minimu, but which to me seem good hirtella. The Swiss specinens are 11-15 cms. high, considerably taller than any L. minima I remember seeing. Ther are naturally less mature than the later specimens from Llanberis gathered at a much lower elevation; and notwithstanding the lower internodes being longer than in the Welsh specinens, a feature which Mr. Pugsley says is not constant and was omitted from Wettstein's diagnosis, I lelieve both gatherings to be kirtella.-H. S. Thonisos.

Satureja moxtaya L., in Hints. In 1912, I first gathered this South-European plant in the station in which Hyssopus officinalis L. has been known for centuries to occur, viz., the crevices in and summits of ruined walls at Beaulien Abbey, New Forest, Hants. It seems more abundant than the Hyssop, and is mostly difficult to obtain, growing some distance out of reach. Being a perennial, its stems become thick and almost gnarled, and it is not surprising that it has been, till now, considered an attemate variety of Hyssopus. As such I sent specimens to the Botanical Exchange Club some years ago, but I was never satisfied with this determination, and worked it down to S. monteme L. ; Mr: E. G. Baker has contirmed my view, as well as Mr. (i. C. Druce. to whom I also sent specimens. The latter informs me that Miss ('. E. Palmer grathered

にはいたいた。

 sher iell．

 tppet

A．H．

Elementary Totes on Structural Botany. Oxford Botanical Memoirs, No. 4. By. А. Сherch, M.A. Pp. 1-27. Price 2s. net, Oxford University Press, 1919.
This short " memorr" is a series of schedules intended to cover a course of twelve lectures with accompanying practical work of twelve periods of two hours each. The general treatment follows closely the conventional lines, and the suggested objects for practical study are most! ! those in common use. In reference to the latter, howerer, we note that the specialized lamine of Ficus. elastica, Tympheen, and Lavendula are employed, whilst in the mierochemical reactions the use of $2.5 \% \mathrm{H}_{3} \mathrm{SO}_{4}$ with phloroglucin is adrocated in place of hydrochloric acid.

Starting with the conception of the cell, the author deals in succession with the growth of the shoot, the leaf, Photosynthesis. Transpiration, Stem-structure, Root-structure, the Transpirationstream, and perennating organs. The anatomical details are interspersed throughout with oceasional notes regarding the physiological functions, a feature which could with advantage have been carried further. The outcome is a series of lessons which follow a logical sequence in a connected whole. The adrocacy of micrometer measurements by elementary students is a suggestion that might well be adopted as calculated to inculcate greater accumer of observation.

The only serious omission we have noted is that of light as a controlling factor in the stomatal mechanism. It is also to be regretted that the word proteid is used throughout in place of the more modern protein.

Whether the practical work involved could be adequately compassed in the time allotted we have considerable doubts, but teachers in general will find the scheme u-eful if only for comparison with that which they themselves adopt.
E. J. S.

Flora of the Presidency of ILadras. By J. S. Gamble. Part II I. (pp. 391-575). 10s. net. Adlard \& Son.
Trits part deals with the Flora from the Leguminosce Cosaloinioidece to Caprifoliacece. We have tested various genera and tind the work carefully done, though we are not always in agreement with the author in his conclusions. He supplants Poinciana L. by Delonix Rafinesque (Fl. Tellur, ii. 92 (1936)). Limmeus (Syst. ed. i. 1735) took Poinciana from Tournefort who founded it on the plant now referred to Casalpiniat as C. pulchervima sw.: Linnæus (Cent. ii. 16 (1756) ; Amoen. iv. 313 (1759)) added P. elata. Bentham and Hooker, Dalla Torre, and Harms retain Poinciana for three African and Asiatic species; we should be inclined to follow this course, and to start the genus from the Centuria or the Amanitates rather than suppress it altogether.

The genus Acucia is of peculiar difficulty, especially as to the diserimination and limitation of the species allied to A. Cotecher Willd. In his elari* Mr. Gamble states the spines are hooked and short in A. Summe Buch. Ham., A. Cutechu, and A. Sundre DC'.,

 -1) 1 1ahela.

E. (i, 13 .

 - ... ar.

 4tata

A detailed diseussion of various fungicides aud insecticides leads to a serious arraigmment of the Food Production Department for their wholesale advocaer of a single spraying solution and that a faultilycomposed one; but the investigations of greatest scientific interest are, perhaps, those discussed in chapters axy-xxix, as to the sterilizing effects of heat and of ansesthetics on soils, the production of chemical changes independent of their bacterial contents, the difference in the soil conditions desirable for germmation and for subsequent growth, and the demonstration (by a process of exhaustion in which aëration, bacteria, alkalinity, water-supply, and general impoverishment are in turn dismissed as insufficient explanations) that plants produce toxic substances in the soil which are for a short time detrimental to the growth of others.

The book contains excellent portraits of its authors and wellchosen photographic plates and illustrations in the text.
G. S. Botlger.

Botany for Agricultural Students. By Jomn N. Martin, Professor of Botany at the Iowa State C'ollege of Agrieulture. New Sork : John Wiley \& Sons. London : Chapman \& Hall, 1919, pp. x, 5 55 . Price $12 \mathrm{~s} .6 \%$. net.

We are told in the Preface that "this book is intended for elementary courses in Botany in colleges and universities," that its "aim has been to present the fundamental principles," and that it is intended for one year"s work, accompanied by laboratory work. The first half of the work is devoted to the anatomy and physiology of Spermatophytes, in which, to suit the time of year at which the Iowa course begins, flowers, seeds, and fruits are dealt with before histology and the vegetative organs. Special sections are devoted to seed-analysis, the testing of germinative capacity, the soil as the home of roots, pruning, grafting, etc. The second half deals with "Plants as to kinds, relationships, evolution and heredity," which means a tolerably full account of alga, myxomycetes, bacteria, fungi, bryophytes, pteridophytes, and gymmosperms, and a very brief description of twenty-seven families of angiosperms, followed by a chapter on ecology and three others giving an excellent if not very critical sketel, in some fifty pages, of the conclusions of Lamarek, Darwin, De Vries, Weismam, and Mendel as to evolution, mutations, heredity, and plant-breeding.

Students intending to devote themselves to agriculture are hardly likely to be interested in so detailed an account of algee, or bryophy tes, horsetails or club-mosses ; and, except under a system savouring overmuch of "eram," we should have thought the book sutficient as a manual for three years rather than one-year's study. Certainly until students have açuired considerable first-land knowledge of plants they cannot well be in a position to appreciate at their true value the wide-reaching conelusions dealt with in the last three chapters.

If American text-book writers wish their books to be adopted for English use, they must add the scientific names to smeh popular ones as "Wandering "Jew," "Beggar Tick," or "Horse Nettle." The second of these names belongs to Bidens, the third to Solanum carolinense: "Jimson weed" may be well known to be Datura

 the ermen of ill-halth. It combins motes on the plants uf spereial

 by

 P

dHyères (Paris, 1914), which the brothers Jahandiez compiled, illustrated, and printed in their house at Carpueirame.-H. S. T.

Dr. Janes Smale has reprinted in pamphlet form from the Pharmucentical Journal (17 Bloomsbury square, W.C., 1s. net) an interesting and very comprehensive essay on The Application of Botany to the Ctilisation of Medicinal Plants. The aim of the author" "is in the first place to demonstrate the value of botany to the pharmacist, and in the second place to interest the present generation of students in the many interesting problems which, although they have a direct bearing on the exploitation of the plant as a healer, are also purely botanical in the methods reguired for their solution and in many of the results of such solution. In fact, [the paper is] an attempt to revive the Theophrastian point of view which considers the medicinal plant primarily as a plent and only secondarily as medicinal, in contradistinction to the Dioscoridean point of view, which considers the medicinal plant only as a drug, very little notice being taken of the life and atfinities of the drugyielding organism. In order to make any considerable progress we must learn from the past, by a rational study of the history of medicinal plants, what method, may be used, what results may be expected, and what dangers may be avoided. A rapid review of the subject from palaolithic times to the begiming of last century will, therefore, be put forward, not in an attempt to summarise the history of such a period, but to elucidate and illustrate the chief lessons it has to teach us." The type-that used in the Jourual-is mupleasantly small, and one wonders whether it would not have paid to have produced the essay in book-form in larger type, to which its merits seem to entitle it.

The Kew Bulletin (no. 9) contains an exhaustive paper by Mr. Lacaita on the history and name of the "Jerusalem Artichoke" (Helianthus tuberosus), in which the introduction of the plant into Europe is traced; the tubers first reached England in 1617. The section on the name is at least as interesting as that on the plant: the former dates from 1620, when it appeared in the second edition of Yenner's Tia recta. The popular explanation, originated by J. E. Smith in 1807, that "Jerusalem" is a corruption of the Italian girasole, is conclusively set aside: "there has never existed such an Italian combination as the girasole articiocco assumed by Smith as the origin of our Jerusalem artichoke," nor does Mr. Lacaita's tentative suggestion seem conclusive. In the same number is an equally important and exhaustive essay by Sir David Prain and Mr. Burkill on "Dioscorea sativa," whieh contains much matter of bibliographical as well as of botanical value. Biographies of the late Willian Gilson Farlow, the eminent American myeologist (18441919), and J. W. H. Trail (with bibliography) are included in the number, which contains more than seventy pages and, happy in the possession of a well-bestowed Government subsidy, is published at fivepence!

At the meeting of the Limean Society on Nov. 20 last, Dr. G. C. Druce exhilited specimens of, and made remarks on, what were annomeed as "Two New British Plants." Of one, Erythrea scilloides Chaub, a full account was given in this Joumal for 1918.

 unduabialy vasion

1: 16 -
 Abownd pion of baltinultacio in the devehping soma cell of

 phason - Shand thath the momal sex stmulus which initiates
 noulat mim. himating the perind of maximm difhrentiation.

 as Rerenw -ill.

 tharye that limelm (g: lint).

Toy hes if Woha low ritrol from the so wharralip, of the

A BOTANICAL BOYCOTI:

AN OPEN LETTER TO
A. J. WILMOTTT, Esrz., B.A., F.L.心.

> 41 Boston Road.
> Brentford, Middleses.
> January 2. 1920.

My dear Wilmott,
The MS. of your note on Erythrcal scilloides printed in the Journal of Botany for this month (p . 르) contained a reference to a statement made br Dr. Druce, in comection with his observations on that plant, at the meeting of the Linnean Society on November 6th last year. That reference, at my suggestion, you kindly withdrew, my reason being that it did not seem to me desirable that the Journal should publish, and thus place upon pernment record, an allusion to what was largely a personal matter of but passing interest and that only to a limited number. of its readers. On the other hand, the statement, having been publicly made and reflecting as it does on my position as Editor of the Journal of Botany, seems to demand notice: I am therefore dealing with it in the following letter.

As you point out in your published note, Dr. Druce stated that the absence from his account of the plant in the Report of the Botanical Exchange Club, dated July 1919, of any reference to the Journal of Botany of the previons November in which your paper appeared, was due to the fact that his article was at the latter date already in print. To a subsequent question to the same effect, calling attention to the ouission of any mention of the Journal in his remarks, he replied that he had been .- ordered " not to refer to that publication. To the assertion thus publicly made it becomes necessary to oppose the facts of the case.

In the Journal for September 1917 (p. 26ㄹ) 1 remarked that its pages had been "somewhat extensively laid under contribution " in the current Report of the Botanical Errchenge"

It will be observed that the extract is incomplete, but even as it stands it is evident from the words I hare italicized that my refusal related not to any ieference to the . Fomimel or its contents, but to the "pproprietion. "either whole or in part," of prapers publisher therein. That the prohbition was regarded by Dr. Druce in the same light, and this quite recently is elearly shown by the numerous references which he makes to the ofmemml in the D.E. ('. Report published last July ; it would seem that it was not matil he was challenged to support the allegration that he had heen "ordered." not to refer to it that this view of the prohibition oeverred to hime. As I have not been allowed to see my letter, I of comse camot tell what else it may (ontain: but, judging from that of br. I renee to which it was a reply, 1 am inclined to think it included other matter bearing upon the point. Should Dr. Drate desire to pollish my letter, he is at full liberty to do so: should he do so, he will 1 no doubt be willing that I shouk print his to which mine was an answer.

It is on the mutilated extract given above that Dr. Druce bases his statement that he was "orlered " to omit all reference to the Sourmel, and that he attempts to justify the " ignoringe" which lie hat indicated as a possible consegunece of my refusal to allow him the full use of its contents -its very name is omitted from the lists of the rears publications printed in the lieports: It will he remembered that, as was pointed out on another occasion, the Reports, although issued in the name of a " society, ${ }^{\text {a }}$ are muler Dr. inneés sole control: it is impossible to suppose that steh boyeotting could receive the approval of any body. claming to be scientiric, which was governal in the ordinary way hy officers and a council. How far the extract suphorts Dr. Dreee assertion, which eaused as much surprise to others who heard it as it did to yourself and to me, you and they will be able to judge: but J venture to think that the words do mot conver, as they certamly were not intended to convey, the interpretation which Dr. Druee has placed upon them.

I am,
Vours very truly,
Iames Britten.

EplPACTIS YTRIDIFLORA Reich.

By Colonel M. J. Godfery, F.L.S.

(Plate 553.)

In the Journal of Botany for 1919 (pp. 37-42) I described and named the var. leptochila of E. viridiflora lichb., contrasting it with E. violacea Dur. Duq. Owing to the necessary drawings not being completed, I could not then go into the question of its specific distinctness from E. latifolia All., of which most Continental authors regard it as a mere form or variety. I now repair this omission.

Differences in the Vegetative Organs.

The root-system in E. latifolia consists of a bunch of fleshy eylindrieal processes springing from the base of the stem and forming a dense tassel round it. Last August I found E. latifolia with seven stems growing in a tuft from one root-crown, a habit which appears to be rare. Here then, if anywhere, was an opportunity to see a fully developed rhzome. The number of roots was very great-they radiated in a circle in every direction, packed tight together, forming a raised mass or crown, from which arose seven Howering stems, and eight new buds. On turning the root upside down, it was seen to be dome-shaped in its original position. The roof of this dome consisted entirely of brownish-white cylindrical roots tightly pressed together. There was no central rhizome or descending root; I then cut a vertical section through the thick root-crown, with a view to discovering the expected internal rhizome. The section showed that the mass consisted almost entirely of rootlets, the white circular sections of which occupied most of the space in the cut surface. In the neighbourhood of the new buds there were irregularly triangular sections of what appeared to be small separate solid bodies. There was no common rhizome.

In E. viridiflora there is a long descending rhizome from which fleshy roots spring at the nodes at different levels throughout its length. At the base, above the roots, there is a thick common rhizome from which the stems arise. The plant is deep down in the soil and difficult to dig up, whilst latifolia is easily unearthed.

In viridiflora each bud has only one rootlet, springing from its base, on the outside, whilst in latifolia there are tro, one on each side, in the angle between the bud and the stem.

The leaves in both plants vary in different specimens, and no clear line of demarcation can be drawn. They are, however, differently arranged. In riridiflora they are nearly distichous, except sometimes the uppermost bract-like leaves. In latifolia the three lowest leaves spring from the stem at approximately an angle of 60° from each other, forming a kind of false rosette (but of course at different levels from each other) round the base of the stem.

The sepals and petals are entirely green in ciriliflora (very rarely Jourval of Botany.-Vol. 5S. [February, 1920.] D

 low-1 an I sion el as in latifiolin.

 tom "por whe of the stigata: in Rl it is sesile thicker, mome Whater, anl doen mot project wrom the stiemat at all. In A 1 the 1-0|linat prowt oner the stimat, in 131 they are antirely hehime it. In AI the ro-than hat disaphated (the flower having heen open

In A 2, a brok siew if the wolmm of riveliflore. the stalk on whith the antlor is preheol. amb the tapurine of the anther to and

 ine

期

the former threaten the continuity of the species. Consiler, for instance, the anther in Anacamptis pyramidalis, which has to be placed with such unfailing aceuracy that the caudicles of the pollinia shall find their way to and attach themselves exactly to the minute viscid dise of the rostellum (which is part of the stigma). The viscid disc is saddle-shaped, and when withdrawn by an insect curls round its proboscis, thereby causing the pollinia to diverge. so that, after the morement of depression has taken place, they are pointing forward and outward at such an angle that their tips will touch the stiginas when the proboscis is inserted into another thower: In this plant there are two stigmas separated by a median space. If the ends of the caudicles fasten themselves to the viscid disc too close together, they will not diverge enough when the dise curls round the proboseis, and would strike the median space between the two stignats. If, however, they are cemented too far apart, they would diverge too much, and would tonch points outside the effective stigmatic area. This example is enough to show the necessity of aceurate standardization in the reproductive parts of the Hlower. Any new departure in these essential organs is therefore of paramount importance. If differences in the leares, bracts, and floral envelopes are sutficient ground for specific distinction -and they are commonly so regarded differences in the essential mechanism of reproduction are of still greater weight.

If adequate consideration is given to the above-mentioned morphological differences between E. latifolia and E. viridiflora, they should be amply sufficient to prove that these plants are specifically distinct. The clearness of view of the elder Reichenbach is all the more remarkable, in that he recognized this apart from the evidence of the structural differences in the reproductive organs. It is curions that the younger Reichenbach, who made such excellent anatomical drawings of so many orehids, should have omitted to do so in the case of E. vividiflora. He does not seem to have suspected any difference of structure as compared with E. latifolia.

THoreover, these morphological differences involve remarkahle functional changes. E. latifolia is fertilized by wasps. to whose forehead the viscid gland becomes firmly attached, so that the pollinia are bodily and cleanly withdrawn, and carried to another flower. 'The pollen is not friable, and only when it comes in contact with the viscid stigma of another Hower are fragments detached. Self-fertilization appears to be impossible; the pollinia lie at the back of the stigma, and can only be removed by some extemal agency. If not withdrawn, they wither in situ.

In E. viridiflora var. leptochila the viscid sland is present in the newlr-opened flower. but it is impperative. If tunched with any snitable object, it does not adhere to it as a whole; a few strings of viscid matter can be withdrawn, but these are far too weak to remove the pollinia, which ordinarily do not come into contact with the rostellum. Once, indeed, I succeeded in removing a small fragment of pollen adhering to the viscid gland, but I am inclined to think that in touching the gland with a pencil I prohally pressed it out of place, and cansed it to cone in contact with the poliminn, which it

Wath not wherwise haw done．By the time the next flower above it has opromet，the siociul slamb has disappeared，leaving a smatl Frombish mark whioh imblicates it former pusition（tig．A 3，r．）． Fiontlization by insects dons mot wecour，of if it happens on rare

The ：mbthor projects wer the iplerer entare of the stioma for uparal－of half its bongth．The chloshaped pollinia are joined at the apex，whilat their thickened lower ends are slightly divergent， frmum an inserten V ．Wwine to the forwarl pusition of the anther， the wade ehame，instat of bebine immediately opposite the point of junction of the pullinit，as in E ．latifolin，is opposite the V －shaped agate letwem them．As the anther is face downsamels in its natural 1^{6}－ition，when the anther－cells open，the pullinia sink downwards，and their apiem mot heing amestal by the vised gland，they pass over it， shiting down over the sloping uppere edoes of the stignia，and finaly eoming to rest on its frontal visedel surfice（fig．A 3，p．）．At the same time a marked change comes over them．They increaso notice－ ably in size and become Huffy in appeanance．An outgrowth of pollew－tube weenrs，cousing them sometimes to appear hairy under a pmorerful lens．These penctate the stigma，anchor the pollinia，and fortulize the ovars in the usual way．Self－fertilization thus appears t_{0} Ine inevitable，and the subsequent vigour of the eapsules shows its effecturness．

In E．virill／tore var．dmuensis（．J．B．1913，p．343，and 1918， P．1）the pollein is so friable that，even before the flower opens， mincoms tetrala of pullem，looking like single pollen grains，fall on the lip．I did mot wherve a single instance of this in lepotochila． I have sean minnte protions of pollen althering to the immer walls of the anthereeells．but as a whole the pollen remains in situ on the polloma．Wermann Mitler sats that in the Westphatian plant the whole pallinimm themmes felted together hy pollon－tubes，so that in the later taxay pollon can omly he detacheat by foreible removal （Vorhmill．des N．II．Veremes der promss．Rhembads，fe．，1stis）． The same is the case with ome plant．Ho alse says that mothing whiterr is to be sen of a matellom（which with us is sisible in hud athe arly thewer），sum that the whole prellinia cmerere over the edge of thin stamas．Forming two pyramids，whose basen rest on its upper
 nematising lu himel the atigma．

 of oly whel theners，show elorty that the flower was designed to 4！
 sith E rivolat ra．Ho fimm\} :uphill ancking nectar, in one case With wheront gralise of pilles．Hoalsu many times wherwed small inter lorsm（＇Thrif：），whationes with a feiw prillen－grains on the

therefore, that these small creatures may carry a few pollen-grains from one flower to another, but whether they are likely to convey them from one plant to another is perhaps doubtful, as it is scarcely probable that they would leave a plant where they lave abundant food. If cross-fertilization occurs in this way it is probably accidental, self-fertilization is the rule. I repeatedly saw E. latifolia and E. violacea visited by wasps, and several times caught these insects with pollinia on theil heads. I saw no insects visit viridiflora, but I had not so many opportunities for watching the latter plant.

Müller studied most minutely the reproductive organs of E. viridiflora, both from a morphological and physiological point of view, in comparison with E. latifolia. His opinion therefore is of more weight than that of those botanists who have confined their observations to the more obvious characters of the leaves, bracts, and perianth: he says (l.c.) that we have in E. latifolia and E. viridiflora two form-cycles which differ from one another by thoroughly essential characters, and have the same claim to be considered distinct species, as any two species of a genus.

Explanation of Plate 553.
A. Epipactis viridiflora var. leptochila. B. E. latifolia. C. E.violacea. 1. Side view of flower, sepals and petals removed. 2. Back view of column. 3. Front view of do. : a., anther ; p., pollinia ; o., ovary ; $r_{\text {., }}$ rostellum ; s., stigma ; st., staminode.

THE UREDINEE OF WEST SOMERSET.

By Normax G. Hadden.

As there appears to be no published account of the Rust Fungr of the district with which this paper deals, it may be as well to put on record those species which I have observed here during the last four rears. The district covered is a narrow strip about twelve miles in length and four in width, forming the extreme north-western corner of Somerset: it is bounded on the north by the Bristol Channel, on the south by Exmoor Forest and on the west by the Devon county boundary-line. Taking the village of Porlock as the centre, all the species recorded have been found within a few miles' radius. Owing to the variety of plant associations in the neighbourhood, the list of Uredinece is a long one and includes a number of rare and interesting species. The salt-marshes, rich pasture land, large old woods, young plantations and open moorland naturally support a great variety of phanerogamic plants with the consequent number of parasitic rusts.

I am greatly indebted to Mr. Carleton Rea for his kindness in assisting me in the determination of some of the more critical species.

The nomenclature adopted in the following list is that employed by Mr. J. Ramsbottom in his list of British Uredinales, published in the Transactions of the British Mycological Society, vol. iv. :-

Uromyces Ficarice Lév. On Ranunculus Ficaria, frequent.U. caryophyllinus Schroet. On border Camations in my garden-

 mons. numar. li,l 'Tul. On Berln marilima. linsinctan-

 Antaraties formitu.

 toreme lath. Un lachmis dinion. ('mmmen. P', sifness sidmet.

Scorodonia. Porlock woods.-P. Acetosc Koern. Rather common.P. Polygoni-Convolvuli DC. West Porluck and Bossington; un-common.- P. Iridis Wallr. On Tris feetidissima in gardens.P. oblonguta Wint. On Luzula pilosu. Culbone voods.- P'. obscura Schroet. ※cidia on Bellis perennis, teleutospores on Luzulu.P. Caricis Rabent. Ecidia on Lrtica dioica, teleutospores on Carex. Common.-P. sylvatica Schroet. Eeidia on Taraxacum. Porlock woods.-P. graminis Pers. On Dactylis, common. Avidia on Berberis not seen.- P. coronata Cordi. L'redospores on Agrostis.P. Lolii Niels. Uredospores on Lolium, Avena and Arrhenatherum. Common.-P. Ayropyrina Eriks. On Agropyron repens, rather common.-P. Anthoxanthi Fuckel. Porlock woods; rare.-P. Baryi Wint. On Brachypodium syluaticum. Porlock; uncommon.P. Fistucce Plowr. Telentospores on Festucta ocina. Porlock.P. Phraymitis Koern. Ecidia on Rumex, teleutospores on Phragmites. Common.-P. Poaruin Niels. Ecidia on Tussilago Furfara; common.

Triphragminm Ulmarice Link. On Spircea Ulmaria. Exford.
Phraymilium Fragariastri Schroet. Common.-P. Sanguisorbre Schroct. On Poterium Sanguisorbo in a garden at Lynch.-P. subcorticium Wint. Abundant on wild and cultivated Roses.-P. albidum Ludw. Frequent on Rubus firuticosus.-P. Rubi Wint. Rather searce.- P. violaceum Wint. Abundant.- P. Rubi-idळi Karst. (Sommon.

Coleosporum Euphrasia Wint. On Eiphrasiu, Rhinanthus and Bartsia. Common.-C. Melampyri Kleb. Teleutospores frequent on Melampyrum. Fcidia found on Pinus sylvestris probably belong to this species.-C. Petusites de Bary. Rather scarce. BussingtonC. Senecionis Fr. Abundant.-C. Tussilayinis Kleb. CommonC. Souchi-arvensis Lév. Abundant.

Pucciniastrum Circace Schroet. Porlock; scarce.-P. Tacciniorum Diet. Common.

Uredinopsis Scolopendrii Rostr. Porlock woods ; not uncommon.
Melempsora Helioscopice Cast. Abundant.-M. Hypericorum Schroet. On Hypericum Androsamum; scaree-M. Larici-capre arum Kleb. Common.-M. Rostrupii Wagn. Coomata on Mercurialis peremnis. Luccombe.

Melampsoridium betuliurm Klel. Abundant; especially on seedling birches.

Melampsorella caryophyllacearum Schroet. Telentospores on Cerastium culgatum and stellaria Holostea. West Porlock and Horner woods - MI. Symphyti Bulák. Bossington. - II. Blecleni Sydow. Searce: Porlock woods and Exmoor.-M. dieteliena Sydow. On Polypodium cullyare. Porlock woods.

Br E. Pumir Smitu
\section*{(Butamic Department, Oxforl).}

 han In or and: than is preferable to the older "hay-ferer," as lying
 mans. L'onder the pepular term "hay-ferer" are chassed tugethere almut as many ahmormal conditions of the masal membanes as meler. the lumbing of "common cond." regardless of their ctiohery: Any math corarth, wha the it merely takes the form of :amomal serertion

 15. aperialty if it neenrs in the smmor or antumn, mhesitatingly deariluel ats "hay fever."

Fior the furpine of these notos, it is propused to set aside all types

 whith gathers in limaries, ley expusure to bright light-this will bee fomblun men lator-ur her the amimal detritus from the coats of
 If the ather t! pes, the deftition of har-fierer is sutliciently wide to moke it of int ret to mans, ant of panful interest to its retims.

The clisioal pinture is well kmown. The omset of the attack,
 a werthen time rorying from tixe mimutes the half an home, is markerd

 The - promery attuk ma! late only a fow minutes, or it maty lex pro-

 Dide the masal mucon, the conjumetral surfaces, and exem the hronelia
 pindues an attack, "ren withent further expmene to pulten, the stiming up of diat from lanke, a dromght of cold air, comp expusure to bright.

 hationg tran apmes bll the firet frot in antam, that few peopla Wothe rulment the rigial arclusion from vegetation which would be nemary fire an arfurate "xperiment to h_{H} made on the relative coportano of the prothery and secomblary cansos.
 alimanat to mak. it if mieret to the hetanitit to strely the phant-
products which cause it from a purely technical standpoint, in contrast to that of the immuno-chemist, which dominates current literature. The standpoint from which the problem has hitherto been approached is that of the immunologist, who interprets the phenomena observed in terms of toxins and antibodies, of protein-sensitization and anaphylaxis. The earliest notable work in this line is that of Dunbar and Prausnitz. These workers made an elaborate investigation into the toxicity of various kinds of pollen, using an extract of the pollenprotein in very dilute solution of sodium chloride. The following is a summary of the commoner plants in their list, which includes 25 Gramineæ and S Cyperacer, as well as numerous other forms.

1. Grasses, as :-P̌hleum pratense, Agrostis alba, Poa pratensis, Anthoxanthum odoratum, Dactylis glomerata, Secale cereale, Triticum sativum, Agropyrum repens.
II. Various plants, as :-Rohinia Pseudacacia, Castanea dentata, Acer rubrum, Chrysanthemum Leucanthenam, Rosa spp., Lonicera Caprifolium, Ligustrum vulgare. (No indication is given as to which of the latter plants are common causes of hay-fever and which are merely rare instances.)

The following plants which cause late hay-fever are mostly found in the United States, namely :-Ambrosia trifida, A. artemisiafolia, Solidago canadensis, S. nemoralis, Chrysanthemum sp., Dahlia, Clematis virginiana, and Aster spp.

In addition to these, the following grasses are given by Macdonald as causing hay-fever in this country :-Poa pratensis, P. trivialis, P. nemoralis, Arhenatherum avenaceum, Lolium perenne, and Alopecurus pratensis.

From personal experience, the following Gymnosperm pollens were effective:-Abies concolor, Pimus excelsa, Pinus Pinsapo. After prolonged exposure ($40-50$ minutes) to the pollen of Pinus excelsa while harvesting it, slight symptoms were felt: i.e. irritation of the eyes and nose, feeling of intense dryness in the posterior nasal cavities. Later in the same day exposure for a few minutes to a mixed hayfield (Phleum pratense being the principal grass in flower), produced an acute attack, quite characteristic, with implication of the bronchi and distinct rise of temperature. After this initial attack, fresh exposure to Pinus-pollen reproduced it with monotonous regularity, after an "incubation period" of about 10 minutes. For the succeeding four weeks every effort was made to avoid aceidental infection with grass or other pollen, and during the intervals between the purposeful exposure to pollen of various kinds, the symptoms were slight and in fact almost negligible. Each attempt at excitation by direct insuffation of pollen was successful in producing an attack. 'The pollen used prineipally was Pinus excelsa, owing to the ease with which large quantities were obtainable. The susceptibility to Phleum made laboratory experiments with grass-pollen almost impossible, owing to the difficulties of harvesting. For an account of experimental pollinosis in animals, see Ulrich, in the Journal of Immunology, Nov. 1918.

Unfortunately the lists previously given are not strietly comparable,

- 1 h

 FII.
 tif melf 2

the mechanism by which pollen-proteid an come into contact with the nasal mucosil, the cell-tontents may be dismissed from the rôle of active agent. It remains to consider:-
(1) The question of the mere mechunical iritation, tue to the presence of a foreign boly, being sulficient to cause the symptoms.
(2) The possibility of some substance on the outer wall (exine) of the grain being responsible.
In answer to the first question, it may be said that the presence of foreign bodies on an otherwise undamaged mucous membrane may produce transient sneezing and seretron, but nothing like a real paroxysm. Of course, where the foreign boty is atmospheric dust, which may contain particles of alien protein, grit, etc., the irritation may be more pronounced; and such irritation, or even the action of cold air, superimposed upon a previous eatarrhal condition, may, as mentioned before, produce effects rery similar to a primary hay-fever attack. The second point is more difficult and more important. The microspores of Angiosperms and Gymnosperns are formed in tetrads within the microsporangium, which is lined by a mutritive tapetum. This tapetal layer furnishes food-material for the developing spores, but disorganizes before they are shed. Consequently the pollengrains are coated on the outside, as is seen in the yellow colour, by tapetal débris, which may be almost anything (eommonly oily matter), and in which it is conceivable that protein and enzyme-residues may be present in minute quantities. The yellow colour of many pollengrains is in all cases ontside the cuticle, and consists of carotin dissolved in a film of oil. The function of this oil is conjectural, but it may conceivably assist in sealing the grain still better, protecting it from excessive wetting, and preventing the grains from adhering (cf. the curions way in which Pinus pollen "pours"). From analogy witl the well-known irritant wils in Primuln obconica, P. sinensis, etc., it seemed probable that this oily film on the pollen-grains was the irritant principle, and experiments were undertaken to demonstrate this, but the results are not ret collected. For example, a snggestive preliminary trial was made with the pollen of Hibiscus. The pollen was shaken up with cold ether, the ether then being filtered off and allowed to evaporate. The oily residue, when applied to the unbroken skin of the fore-arm, raised a severe blister, almost as bad as that produced hy Poison Iry (Rhus Toxicodendron).
'This would seem to indieate a more natural method of approaching the problem, being hased upon a botanical consideration of the microspores involved. It is quite possible that most microspores are coated with a film of oil, but only a certain number of pollens are produced in sufficiently large quantities to be of any practical importance. This includes the wind-pollinated trees, both Angiosperms and Gymnosperms, and the Grasses, particularly the common hay-grasses. Species of Plantago also give muth pollen, and a laboratory trial with Plantago-pollen alone gave a positive result. If this idea that one of the poisonous principles of pollen is merely that of an irritant oil is correct, it will throw a new light on the nature of the danage
 whirlo wall rabe a scovere hister＂pon the umbrokn epidemis will Lamea still more destrmetive antion on the delicate ciliated eppthelimm lumat the masal eovitios．and on the materying nerverandines）， prlay－

 comatrs，anl which prentht even mure striking examples in the tropies．

GENERGM，Litentitue．

[^1]

 lit spmader Le M．Momae，B．sce，Fil．s．

 filtring pige．－
（＇いますOsIT．F．

mombranaceis utrinque eleganter reticulatis nitidisque leviter scabrinsculis; capitulis submediocribus circa 30 -flosculosis in corymbum elongatum optime laxum ordinatis pedunculis propriis quam involucra manifeste longioribus ; involucri subhemisphærici 4 -serialis puberuli phyllis oblongis interioribus gradatim longioribus appendice brevi obtusissima (intimorum angustiori necnon acuta) in siceo brunnea coronatis; corollis exsertis; acheniis cylindricis callo basali sat prominente instructis 5 -costatis breviter setulosis ; pappi setis scabriusculis dilute stramineis paucis extimis abbreviatis.

Gamboni ; Vanderyst, 365S. Wombali, abundant in places; Id., 4217. Bandunvu; Id., 5171.

Folia radicalia plerumque circa $8-10 \times 2-4 \mathrm{~cm}$., quam caulina majora vel minora horum summa sæpe magnopere imminuta. Inflorescentia longit. 50 cm . sæpe attingens, ramis striatis puberulis. Capitula pansa circa 10 mm . long. Involucrum 8.5 mm . long.; phylla extima circa 3 mm ., intermedia $4 \cdot 5-7 \mathrm{~mm}$., intima 8 mm . long. Corolla 11 mm , long.; tubus anguste infundibularis quam lobi lineari-oblongi manifeste longior. Styli rami exserti, 2.5 mm . long. Achænia adhuc vix matura ægre 3 mm . long. Pappi setre extimæ 1 mm ., ceteræ $5-7 \mathrm{~mm}$. long.

Though apparently a common plant, I have been unable to identify this from the descriptions of species unseen by me. A reason for this may perhaps be that it has been mistaken for V. precox Welw., which it greatly resembles, differing chiefly in the foliage (slightly only) and the shape of the involucral leaves.
O. Hoffman would have placed this in his § Lachnorrhiza, but, as has been mentioned elsewhere, it seems inadvisable to disregard the involucres in the case of a few species, seeing how convenient for sectioning purposes the involucre has proved itself.

Aspilia congoensis, sp. nov. Caule saltem superne sparsim ramoso tereti striato scabriusculo; foliis brevipetiolatis lanceolatis acuminatis apice ipso acutis basi obtusis trinervibus margine serrulatis firme membranaceis supra scabridis subtus sparsim pubescentibus; capitulis mediocribus in corymbos laxos bracteatos oligocephalos digestis; pedunculis proprits involucris plerumque longioribus; involucri subhemisphrrici phyllis 3 -serialibus ovato-oblongis exterioribus superne herbaceis et obtusis et scabridis necnon plus minus reflexis intimis apice herbaceis acutisque; ligulis 10 sat alte bifidis; acheeniis compressiusculis anguste ovoideo-oblongis pilis brevibus appressis strigillosis onustis cupula sat perspicua setis carente coronatis.

Upper Welle province ; Lacomblez, 67.
Folia usque ad $9-10 \times 2-2.5 \mathrm{~cm}$., pleraque vero minora, e.g. $\pm 6 \times 1.2 \mathrm{~cm}$., in sicco griseo-fusca; petioli latiusculi, $2-4 \mathrm{~mm}$. long. Bractex foliis similes sed minores, plerumque $1: 5-3 \mathrm{~cm}$. long. Pedunculi proprii $1-2 \mathrm{~cm}$. long. Involucra cirea $8 \times 8 \mathrm{~mm}$.; phylla extima 4 mm ., intermedia 4.5 mm ., intina 5 mm . long. Ligulæ aurantiacere, $10 \times 2.5 \mathrm{~mm}$. Recepticuli palex oblongæ, apice indurato-mucronate, 7 mm . long. Achrenia dilute grisea, fusco-purpureo-maculata, 4 mm . long. (pappo 1 mm . long. incluso).

To be inserted in the genus close to A. asperifolia O. Hoffm., but easily distinguished on account of the lanceolate leaves, longer proper peduncles and 10 -rayed heads with narrower involucral leaves.

Crassoceplalum longiramenm, sp, nov. Therber crect: verisimi-

 Ohat romis appemliee filifnmi chmgata proditis: ucharnis (hucuspme (onalis) limeribur j-contatis contio minutu pilosulis; papmi setis saliolabulis allois.

Iinulumla: Finuderyst, 350.2

This womlal be taken on sight for an Émilia. The narow haties
 pollaritio.

A・パthence.

Hyerophila ist:n-It!trophita) Vanderystii, q. \&ove. Hirla

 alaned s.inal suume thar.w.l.

Brielantaisfa patula T. And.
Upper Welle and Ituri rivers; Lacomblez, 80. Dumn, Tanderyst, 497 s . Var. Welwitschii Burkill. Buyeka near Coquillatville; Nemnan, 33.

Whitfielnia loxgifolia T. And. Yambata; Moutchal, 183. Chenal; Funderyst, tov1. 'Tua, common in the forests; Tunderyst, $4 \mathrm{~s}_{62}, 4974$.

Pharlopsis obliquis. Moore. Buyum; Temeryst, 4296.
Barleria alata S. Moore. Dumu; I'underyst, 4sto. Bokala; iu., 4950 .

Erastiemum stgritianta T. Aud. Kimbwa and Bokala; Tanderyst, sine no.-E. hi pocratertforme Roem. \& Sch. Leopoldville; İanderyst, 301s.

Justicla insularis T. And. Kitebe; Vanderyst, 4126.
Justicia (§Culophanoides) fistulosa, sp. nor. Herba erecta, ramosa, subsparsim foliosa ; ramis erecto-atlscendentibus tetragonis uti caulis fistulosis neenon paree puberulis et sub nodis tumidis breviter pubescentibus; folios brevipetiolatis ovatis obtusissimis nisi rotundatis basi rotundatis margine undulatis in nervis pag. inf. breviter appresseque pubeseentibus; floribus axillaribus pro axilla paucis subsessilibus; bracteolis 0 ; calycis segmentis 5 inter se quadammodo inequalibus linearibus acutis ciliatis; corollce tubo calycem breviter superante dimidio inf. coartato superne dilatato limbi labiis subæquilongis lobis omnibus ovatis obtusis; ocario ovoideo-oblongo minute prberulo; stylo basi sparsim piloso ; capsula puberula.

Bokala ; Spurano, 26.
Folia $4 \times 2.5-3 \mathrm{~cm}$. attingentia, plerumque vero $\pm 2 \times 1.5 \mathrm{~cm}$., in sicco sursum brumnescentia, inferne viridia; petioli $2-6 \mathrm{~mm}$. long., pubescentes. Calyx $\overline{5}-6 \mathrm{~mm}$. long.; hujus segmenta breviora 4 mmn , longiora 5 mm . iong. Corolla 13 mm . long.; tubus 7 mm . long., dimidio inferiori circa 1 mm . lat., sub limbo 2.5 mm.; labia 61 mm . long., posticum 3 mm ., anticum 4 mm . lat.; amborum lobi 1.5 mm . long. Discus prominens, 1 mm . alt. Ovarium vix 2 mm . long.; stylus 8.5 mm . Capsula dilute brumnea, 8 mm . long.

Affinity with J. Whytei S. Moore and J. Melampyrum S. Moore; from both easily distinguished on sight by the short and broad leaves. From the fistular stem one judges the plant to be an aquatic, but there is no note to surport this.

Justicla extersa T. And. Dumu; Tanderyst. 4829.
Rhivicisthes Detwevrei De Wildem. \& Durand (R. parviflorus T. And.). Boyeka : Nannan. 94. Used for poisoning fisll.
R. parmiforus has never been described: it is mentioned as a nomen mudum in Bull. Suc. Roy. Bot. Belg. xxxviii. p. 106. There seems no reason to doubt its conspecificity with R. Dewerere i, which itself appears mistinct from R. commuis Nees, though Clarke thought otherwise.

Rhinacanthus minimus. sp. nov. Herba parva, spithamea vel paullulum ultra; coule basi decumbente radicanteque inde aseendente tenui sparsim ramoso puberulo; foliis petiolatis oratis acutis nisi breviter acuminatis basi rotundato-cuneatis nervis pag. inf. puberulis exepptis fere slabris ; fusciculis pateifloris ad apicem ramorum
axillarinm floriformm temussimorum minute pubescentium vel iishlem laturaliter atlixio ansilihumpe; bractris nti hacterlie angustie linearibus calree mimoribus; calycis segmentis anguste linearibus anotis minute pulnesentibus: corolle puberula tubo calycem bene excedente (im) sub limbo levissime constricto lahio antico hate obovato quan p"utiom watum apiee emargimatum longiore; staminilus breviter "Nartis anthearmu loe. paullulum inferiori breviter calcarato; ovario pulerolu in stylum breviter sparsimque strigillown desinente; capsula pulverula.
hu,kala ; Finderyst, 4:32.
Folia temuiter membranacea, in sicen viridia, nsque $5 \times 3 \mathrm{~cm}$., sed
 lone, minorum sape modo t mm. Florum fasciculi ramis interdum 10 am. longe etsi interdum insigniter breviorihns insidentes: ramms

 sigmenta aliquantulum inarqualia. Corollie tulns. 6.5 mmm . long. 15 mm . lat. ; lahium anticum $4 \times 3.5 \mathrm{~mm}$. ; anticun 2 mm . long. Autherarum loce. sup, (6i5 mm. longe, hoc. inf. (incluso calcari obinso) agre 1 mm . long. Ovarium 1.5 mm ., styhs S mm. long. ('ipisula 12 mm. tong. Semina to fusen-brumea, serobiculata, 1 mm . diam.

Remarkable for its slender labit and very small flowers together with the owate leares.
liviba cungopesis (llarke. Kunzulu; T'anderyst, H97.-R.

2. V́aupelia A. Braml.

This in 16 Lems propmseld (Fedle Rep. xiii. p. S2) for plants till then mumbel in the gem. Trichotesma, the flowers of which they Ler ath riwable. 'The meason for taking this step comerns the pusithen of the rapels mun the remplacke, ats evervone knows a fumbamobtal chander in the classitivation of Borrayinuce or. 'The 'TrichoIf ofat hare carpent with their inmer on at least their lower face Whane th the conieal or convex kembise, whereats the grmolase of the fapelian in fint, and the empluare attached to it only be their that lawe On this acenunt brand suggets the remonal of fianpelia

 I witelen sull Cyotastemon Balf. f. from Somotra.

Is thes chamerized Vouplin (maging from somatiland to

 (I. wereren'lo ruas Ciarke): (i. Mfechomii (T. Mechomii Vanpel). Whls the frost thre of the sin are fouml in the Flora of 'lrope. Afr. (10 2. (1, 45), the mhere, with the exceptisen of macranthera, having hoen phllablel hater in FI. Trop. Afr. marroutheren is wrongly rowren in Malum. from whith it is coptainly distinet. The mistake

as "Trichodesma macranthera (sic) Giurke, sp. nov.," whereas the type is Dekindt no. 8, unrepresented in this country. The plant can be at once recognized by its short calyx; it is represented at the Museum by Gossweiler no. 3537 from Mumua woods at Kiakonda.

To the six species mentioned above is now to be added a seventh, namely:

3*. Vaupelia hispidissima, sp. noy Frutex ultriorgpalis, conlibus simplicibus e rhizomate ascendentibus validis hispidis saltem superne crebro foliosis; foliis alternis rigidis sessilibus oblongolanceolatis apiee mucronatis basi obtusis utrobique pilis strigosis appressis basi conspicue bulbosis creberrime indutis; infloresceutios folia longe excedentibus e cymis scorpioideis pluribus sat longe pedunculatis uti pedicelli calycibus plane longiores fulvide hispidissimis eompositis; bracteis foliis consimilibus nisi minoribus; culycis campanulati hispidissimi segmentis lanceolatis acutis; carolla tubo calyce breviore pentagono glabro lobis tubo duplo longioribus lanceolatis dimidio distali gradatim attenuatis sed haud linearibus apice acutis dorso appresse griseo-pubescentibus; antheris quam corollie lobi paullulum brevioribus superne rectis inferne minnte pubescentibus.

Angola, in thickets between old Munonque and U'jaio; Gossueilm, 3132 . To be referred here we also specimens found by the same collector in grassy open woods of Berlinia Baumii, near Kutato, no. 3958.

Caules ex schedis el. delectoris eæspitosi, usque ad 7 ped. alt., fistulosi etsi lignosi, circa 6 mm . diam. Folia pleraque inf. $6-10 \mathrm{~cm}$. long., juxta medium $13-15 \mathrm{~mm}$. lat.; costal centralis pag. inf. prominens; folia juniora eirea $3-45 \times 1 \mathrm{~cm}$., summa imminuta in bracteas transeuntia. Inflorescentia usque $25 \times 13 \mathrm{em}$. Cyma ascendenti-patentes, summum circa 7 em . long. Pedicelli plerique 1.) mm. long. Calyx 12 mm . long. ; segmenta basi 3 mm . lat. Corollee tubus 6 mm . long., basi 3 mm . sub limbo 4 mm . lat.; lobi 14 mm . long., juxta basin 4 mm . lat., apicem versus 1.5 mm . Anthere 13 mm., stylus 25 mm . long. De fiructu sileo.

Differs from $V_{\text {. Medusa Brand chiefly in the tall habit, the }}$ densely hairy leares, the much more hispid inforescences.and the larger flowers on longer pedicels, with larger ealyx provided with broader segments and much broader corolla-lobes, which do not run out into a linear prolongation and are finely pubescent upon the back. Among other characters Γ. barbata Brand is entirely different in foliage and corolla.
'The flowers would seem to vary in colour, those of no. 3182 Mr. Gossweiler notes as "purplish green throughout," while of no. 395 s whites. "calyx purplish violet ; corolla segments whitish blue outside, brilliant violet-blue inside."
(To be continued.)

 （17ら1－1ぢ：3）．

13y JimF：Gizontis，İ．L．S．

It is aratifying to le alole to include in the roll of British bomints A rimarkable a man as（＇ommelius Vialley．A chance

 m1－1！in vol．ii．（ 11 ， $113-101, \mathrm{tt}$ ．11－21）uf that sucicty＇s Trans－ achons．The fopro alpeare to hare escaped notice，as it is not in tula in the famally eomprehensive hibliographes of the group； it in the the fore it burprise to me to lime in it a work of great merit． It consists of twelre paines of matter with eight coloured plates， contmaner thity fonm ligures，all but one of which are much magni－ diol．In the eve Varley deseribes in plain but presise lamguage，and d．pieis with his pencil in firm vigorous lines，jnst what he saw under lis microseope with no hias as to what he might be expected to see． 1t stamk ont in consegtuter as a tine origmal piece of work，and the drawing－fro－ent a matheal contrast to the extratorlinarily clumsy and ammentional monstrosities which appar in some histolocieal flates of＂haromptat of the carline half of last contury．
＇The aceurate manmer in whieh he worked out the structure and dosifument of the stomecortex in its ascending and descending

 ＇Iha drawing in ditail of the varions part－of the anthoridime and of the（angnian and ominere are also excellent，the little two－storied ＂以上，＂at the han of the latter being abmiathy shown．＇Themgh he
 lof shaw 1 its limital trminal proeess，and traced the origin of the： cortiaf．phat th a holl ariving within the proembryonic whorl． Hie drawing of the yomer plant（t．15）are very ervlitahle．Varley －Hroselab the sulject rather as a microserpist than as a hotanist：
 If phant．Im．i the primeipul objeets of leoth text and figmes was to Whow the r_{0} alt of his ularestienis of the evelosin or＂streaming＂in the varifo part，in mot of which lie worlied out the direction of the

 amnoi llexamier Branis masterly paper．＂I her die Richtmerr

 مriortandatent

The Finiritg if the phatas is mfortumately both crude and

 geme ally k wob n N．C．vulyoris．

Varley wrote, but in a much earlier paper on the use of the microscope in rol. 4.5 of the Transuctions of the Society of dits (1.531), the structure of, and cireulation in, Chara was described at considerable length. This paper gives evidence of an immense amoment of careful work, and it appears that the author had hundreds of the germinating plants under observation. A number of figures of the various parts of the plant, which in this instance was evidently C. vulgaris, accompanied the paper (t. 5. ff. 31-50), and these though rougher and less complete than those of the 1545 paper clearly show many important details of structure. Ther include drawings of the young plants with the rhizoid nodes and proembryonic whorl, a " branch with a naked lase," a section of the oogoniuin and oospore walls and of the limeshell, which Varley styles "the seed-skin the shell and the tubu'ar envelope." The lime-shell is aptly described as "quite brittle, something like egg-shell, white and transparent." In the earlier part of the paper, with all the enthusiasm of the expert "glass and brass", man, he enlarges on the construction of the microscope, and the most efficient methods of lighting dic., with a view to obtaining the very best uptical results. The following volume of the Transactions, xlix. ii (1833) pp. 179-194, contained a "Letter from Mr. C. Varley in aldition to his Observations on the Circulation in Chara rulgaris already published." In vol. l. pp. 159-190, t. 7 (1836), in a paper entitled "Mr. C. Varler on his Vial Microscope," still further information is given as to the Chara, and there is in addition a description and figure of Nitella tenuissima from Cambridgeshire under the name of N. hyalinn, to which species it had then been referred. It is no wonder that these excellent papers and illustrations have escaped general notice, appearing as they do under such mulikely titles. Varley evidently gave a great deal of attention to the construction of apparatus for the continuous examination of living plants and animals. Braun. in his paper already mentioned, refers to Varley as being the first to obscrve the exit of the antherozoid, from the cells of the antheridial filaments.

The following particulars are mostly gleaned from Cosmo Monkhouse's articles in the Dictionary of National Biography and Mr. A. T. Story's book, James Hoimes and John Tarloy. For the loan of the latter, and for further information, I am indebted to the courtesy of Mr. Perey Varley, a grandson of the subject of this notice.

Cornelius Tarley belonged to a particularly gifted family. Ht was the second son of Richard Yarley hy his narriage with Mannar Fleetwood, who, there is some reason to believe, was a direct descendant of General Charles Fleetwood by his marriage with Bridget, daughter of Oliver Cromwell. Not much is known of Richard Varler, but, according to Story, he was "a man of some mechanical ability and of considerable scientific attaimments." His fanily consisted of five children, of whom four-John, Cornelius, William Fleetwood, and Elizabeth (who married William Mulready, R.A.) -distinguished themselves as artists. John, the eldest, whom Monkhouse summarises as "landscape painter, art teacher and astrologer " (he might have added mechanician and pugilist!) was a remark-

Ahbe m-tance of the combination of genius amt eceentricity. A big mat of immenn physical stranth amb emdnamer, in lis young days a putimalals rater and sumendinl water-colour painter, one of the

 wav the 1 an frome of William Blake and the associate of Bulwer Covton. lideral Burtun, and many other man of mark.

C'orm.llas was in his uncle's worksop at the age of twelve, and - 0 on shwed an atrandinary aptitude for the construetion of optieal at whor philmophieal instruments, and at the age of fourtern mate lumaif a mix rompre. Kases and all. His inventions and improve. monts in conmexion with seientific intrmments and applances were rery mumeroms, amb induded graphic mioposeopes amb telesenpes. He was awadeal the (iohl Isis Wedal of the society of Arts for his lever mikroserpe for watching the movements of anmaleula, and in 1 s 51 a prize medal for his cimphic 'relescope, forty years after its introduetion. He contributed a number of articles to the publications of the surety of Arts, mostly in reference to optical instrmments.

He was Chaimatn of the Fixhibition of 1851 , and lived to be the ohbent member of the siecety of Arts. ('urionsly enough, from his barl gata ho hat atmong hias in the direction of art, especially water-andan paintine Buth he amd his brother dohn were amomig th. fmaters of the (1d Witer-Colom suevery, the idea of which he in atal to hase originated. In its earlier years he contributed a munher of loulseatees to its exhihitions, but later on sent his pietures t. ihn Roval Academy, where he exhihited up to 1859 . He scems to have lown apually attracted by the invention and construction of - montlie applianees and by landseaje painting. the two unlike prorath taking turn about in absurhing his attention. It is musual in hal an evtomelinary aptitule for medanisal seimere compled with the a- hatice fanity of the pietorial artist. Both sides of the man are whent in the skeblen of ('harm. the firm sume hand of the
 thgnithes them lima almast all other histulageal thatwings of these $1^{4-11}=$

A incit of Varkey's parsomal maracter is disclosed hy the following

 *ppobiname anl everthing whe armaged for his voyage: lut on

 man, at I Lhatrite of the intonar averam he had all throngh life to any hiol of tymany whether physion or momal." 'Thomgh more aronly-lalanat tam im thotient than his brother John, he was appat rently newn teat proviral in the aftairs of everyolay life, since some of hat fimbly lwasl amb rather reanted that bickens had drawn from
 1-9! m he !wnu ser.

Thro of his ente wri well-known rlestrical rngineers and in-

in the design of the first Atlantic cable. Another son, Samuel Arthur Varley (now in his eighty-eighth year), was, I understand, the discoverer of the Dynamo, and the first person to construct a selfexciting dynamic machine, independent discoveries of the same principle being made very shortly afterwards by Sir Charles Wheatstone and Professor Siemens respectively.

WAYFaring notes from great namaqualand.

Bi R. F. Rasd, M.D., late Lt.-Colonel S.A.M.C.

(Continued from Journ. Bot. 1912, 60.)
Namaqualand, Damaraland, Ovampoland, were familiar names to the men of the earlier Victorian days. All are now comprised within the South-West African Protectorate, for the government of which the Union of S. Africa has now accepted the mandate.

To-day, travelling by rail and crossing the Orange River at Upington, one can in a day or two traverse country which took the old explorers weeks, and eren months, of effort to accomplish. Uncertain rainfall and scarcity of water by the way were the great deterrents. The writer's risit was in early October 1919, and only a few days were a vailable. Windhuk was the furthest point reached to the north. Thereafter a visit was paid to Liidentzbucht (Angra Pequena). Travelling by rail from the Orange River, right up to Windhuk, one rarely catches sight of running water; sand-river beds there are in plenty. Much of the country resennbles the Cape Karroo. The surface may be rocky, stony, or sandy ; sometimes it is bare, sometimes dotted over with isolated patches of bush, tufts of grass, and here and there a tree. It is the home of the xerophyte. Succulent forms are many. Patches of desolate country are occupied by the "milk-bush," a leafless Euphorbia which grows in isolated clumps like a large rush, with stalks the thickness of a raspberry-cane. It is a social plant of exclusive habits, thriving where little else can. Upon the mountain sides and upon the level, species of Aloe are to be seen: A. dichotoma very conspicuously. At a wayside halt, Kalkrand, species of the following were seen in flower-Lycium, Blepharis, Leptosimum, Helichrysum, and others, with a moody Asparagus of straggling habit. From the train window one frequently saw dwarfed and woody undershrubs, and ericoid types were common.

In a stony sandy desert, regetation is hard put to it to live. The desert-plant has to resist drought, to resist the hunger and thirst of wandering buck or bird, and to recist the wind-usually a strong wind greedy of moisture. Hence the herbaceous and shrubby plants run to Hlesh, thorn, and wood, and indulge in leaves very sparingly. Vegetation clings to the river-bed and its near neighbourhood: in the Protectorate it is mostly a sand-river bed, where, at varying depths beneath the surface of the sand, water may be triekling. Sand and grit are the

 "1- 1 ghwt of white silk hatir. conelosed within a membranons

 canseren in probinion. 'This Asclepiad is a pestikent wed and

Thes sul-riser arice very mueh, acemeline to the type of comentry
 tho ded wits ho. -mall athl the valley withe, the sand-river spmeals

 of andontonil oufl!

Mater of thet pirte ompe sen are the despair of the eollector ;

 ather man hat thevin uif pale vellow. The Hectly stem liristles

Near Lüdentzbucht (Angra Pequena), amid erevices of the rock and elose to the sea, two species of Pelargonizm were seen in flower, as also three species of Mesembryanthemum; all sueculents. Several Howering Composites were also seen and two small species of Euphorbia. This in early October, 1919; but in April 1915, during the eampaign, the writer saw many more.

No arborescent forms were seen near the coast (Angra Pequena), the plants seen were all herbaceous, and usually fleshy. It is not until one has proceeded some miles inland, and the country has risen 1000 feet and more that larger forms appear. Probably the high winds which sweep the littoral are responsible for this. In dry desert regions the wind is a potent agent and determines many forms, even that of earth itself.

SHORT NOTES.

Nemspaper Botany. As a rule one disregards the semi-scientific effusions in the newspapers, but I cannot allow the following, which appeared in the Daily Telegraph of the 14th January, to pass without protest, especially as it emanates from a Fellow of the Linnean society. In an article headed "Noxious Weeds," Mr. Donald MeDonald makes the following extraordinary statement:-"There is a weedy grass which in recent years has established itself on the confines of Poole Harbour. It bears the name of Spartina Tounnshendii [sic] and is supposed to have found its way across the Atlantie." It is difficult to imagine the mental outlook of a man who could deseribe Spartina Townsendii as "a weedy grass," particularly for one who, like myself, has the privilege of seeing the glorious stretches of golden brown-the beauty of which in the sunshine it would be impossible to exaggerate-that it forms in autumn and winter at the mouths of our Hampshire and Isle of Wight rivers. To speak of the plant as a "noxious weed" is a gross libel, considering that it has been found of immense service in fixing the loose mud-banks in the estuaries of our southern rivers, and has been planted for the purpose in several localities to which it had not naturally found its way, thus fulfilling a rôle analogous to that of the Marram in relation to the sand-hills. From Mr. McDonald's remark one would suppose that the plant had originated in this country at Poole Harbour. Is it possible that he has entirely missed the various papers by Dr. Otto Stapf and others, in which the almost eertainly hybrid origin of the plant, its utility, and its progressive distribution have been demonstrated?

James Groves.
[Mr. Groves's entirely justifiable protest omits reference to the faet that he and his brother were the original describers of Spartina Townsendii in the Report of the Botanical Exchange Club for 1880 (reproduced in Journ. Bot. 1881, 347) ; a fuller description by them, with an excellent plate by Mr. Henry Groves, appeared in Journ. Bot. 1882 (p. 1, t. 225).-Ed. Jorrn. Bot.]

Sex-teriss for Plants. I should like to add a few words to my note on this subject in last years Journal (p. 285). It seems to
me that if ：m，mother，for the purpose he has in hame，desires to ger
 in ．．Fer 2 particularian hae two kimls of individuals met with in

 Ahathag＂male－d lement－learinge＂and＂female－chement－hearing．＂

 in incildental，ame the really important distimetive element of sex is E－2mated in them．The coditication of hotanial terminolegy serms：a ＂ryme moseaty：One marely nowalays reads a book or extensive prom，dealing with wriginal work，which deses not contain some new torn or wome＂whting term nised in a spectialized sonse ；and it is not annsual on time the same term appled differently by different authors．
 with this constantlyegrowing vocabulary ：moreover，a shassary alone 11．－sut mowt the newt．One realizes that such a emblitication is a I male an tave．hat I think some attempt might be made to deal with if it - otions at futame Intumational botanical Congresses．It is，I

 t_{1} Humbent．tw min a fresh ome ；but the resalt of such action has 1．is 1 ，haidel up ath chentomens and unwieldy mass of torminology and th halen the erience round with manecessary diflioulties．－

にだいたいた。

 Is thila willerintel an－l ribluly volume，Dr．Hingston Fox las 2．le sur ingerait athotobt at aliki to the hisfory of butaty and to
 －La lay matrine．I a luly ypremintivemutice in the Times liferary

Born in Yorkshire in 1712, he graduated M.D. at Edinburgh in 1736 and in 1740 settled in London, as a physician, where he died in 1780 : his " public repute during the latter years of his practice throughout Great Britain and Ireland, in some parts of Europe and in the North American colonies and the East and West Indies was probably greater than that of any other London physician." Dr. Fox has not only embodied in his book the not inconsiderable amount of material already published relating to Fothergill, but has supplemented it by an abundance of information derived from various sources, including MSS. in the Botanical Department and at the Royal and Linnean Societies, and by others in the possession of the Society of Friends, to which body Fothergill belonged, and of the Fothergill family. One of the most notewrorthy features of the volume is the completeness of its references and footnotes, the latter containing much information relating to persons incidentally mentioned and evincing minute and careful research.

Fothergill's interest in botany is associated with his celebrated garden at Upton ; to this Dr. Fox devotes a chapter, wherein he traces its history and describes its present condition: it now constitutes West Ham Park-"an open space of 80 acres, surrounded by the teeming population of this eastern suburb." Fothergill bought the estate, which he afterwards enlarged, in 1762 : a letter from him to Linnæus in the Limnean Society's Library, written in 1774 in Latin, translated by Dr. Fox, shows that the suggestion was due to Collinson, who " urged me to form a garden, himself giving me many things ; and opportunity favoured the collection of others. Thus has come into being a paradise of plants of small extent, whose master, if slenderly furnished with botanical science, has at least a burning love of botany itself" (p. 183). The garden thus modestly described was regarded by those who knew it far more appreciatively : according to Banks, with the exception of Kew "no other garden in Europe, royal or of a subject, had nearly so many searce and valuable plants." On this subject Banks was well qualified to speak: we have in the Potanical Department the "Day-book" from 1777 to 1797 of the Banksian collections, which were at that period the chief source of botanical information for horticulturists. In this book are determi-nations-mostly in the writing of Solander or Dryander, but with occasional entries by Banks-of plants sent from Kew and other gardens to be named: among these the lists of plants from Fothergill's garden occupy twelve pages, ranging from May 1777 to 1780 , the year of his death. There are notes on many of the species by the botanists mentioned and several are indieated as new; some of these are described in the Solander MSS. and were subsequently published in Aiton's Hortus Kewensis. The specimens from Fothergill in the National Herbarium to which Dr. Fox refers (p. 199) were for the most part sent from the Upton garden for the purpose of naming; many are types for the descriptions in Hortus Kewensis-a list of the plants from Fothergill therein and elsewhere described is given by Dr. Fox (pp. 203-7).

With characteristic energy, Fothergill took every opportunity of enriching his garden - by correspondence at home and abroad, by the
 Romber wher Arehiall Menzico，then a yomm man of twenty－ Iom．Ifllan lira ．Hary smenthan，and varions Amerieans， modilu＝the Bartam and Humphry Marshall．The garden was －womel．robin North Am rican phats；a letter from F＇othergill to
 ＂ af 2 monl，in wrinn Ammeren phants，in（ireat Britain．

I＇a biath of some of the mone interesting plants is piven in

 the sulye＇t of a papre ley Ehtret in Phit．＇Trans．Wvii． 121 （17（i7）； the of noempaniel hy an exertlent plate，the sketeh for which is anong the late colloction of Vhret＇s dawings in the Department of Fhenlls（no．（13 e）．＇The tree was srown from sieds sent to Fother－
 a yocimen of which Vinct made the drawing（no．93b）．whence thentantions on the puldialet plate were taken．Curionsly enough， the Alvalus does mot appers in the list of phants in Rusell＇s Natural Il atwey of ．If pro，now is there a specimen from him in the National Herterinas，whith eontains on many of his phants．

Amone the tra s which still remain from Fothergill＇s time，Dr．Fox norions（p．2010＂an ancient Euonymus＂－this we maderstand is ralls lihatemes cathartious：one or two slips on this and the
 ＂－2th that Br．Fin is not altugether familiar with hotany an
 liallwin is＂ahin tithurnum＂a mistake doubthess arising from
 the autlae f or the getural accuracy of his lotanieal references．The lantmon whumbontal hy Baldwin（cfr．Reliquice Balduriniancr， （201）was．is its hatlor expresily states，Jolm－mot Willian，as

 Tha dintabes of ant hind are astonishingly few and those of hoit 1．

 anerler unali livel thaty liffore the departure of the former for 1：ms．

 comatery of eoone of sume the mot interesting in the hook．We gater r inai the twin bat if the seven hetters from Bartram to

 17：1）lamone momplate of fintmagill：－ilumen，to which he had
already referred in the letter of the previous September, "which inclines me to conjecture he has taken some afront which if he hath l am intirely inocent $\&$ ignorant which way $\&$ he should candidly \& friendly advertised me thereof." With Collinson Fothergill's personal relations, which began about 1740 , were for many years of the most cordial nature, as is shown in the "Account" published amonymously two rears after his death as "a Letter to a Friend ": in this it is noted that Collinson had "a vast treasure of dried specimens of plants," of whose subsequent history we have no trace.

As we said at the beginning of this notice, our remarks must be mainly confined to the botanical interest of the book; but this forms only a portion, and that not the largest portion, of its contents. We have indeed seldom met with a volume which, while never unduly diseursive, appeals to so many various interests: the members of 1)r. Fox's own profession will appreciate the chapters which deal with Fotheruill's work as a physician and with his medical friends-some, e.g. Lettsom, themselves connected with botany ; historians will like the chapters which deal with Fothergill's intimate relations with America, both before and after the War of Independence, and with Benjamin Franklin ; the chapters relating to the society of Friends, especially that on Acworth School, should interest a wider circle than the members of that body ; those on his pioneer work as a philanthropist and social reformer and on his other scientific interests afford cridence of Fothergill's energy and breadth of view : there is an account also of "Home Life in London " from the MS. journal from the diary of a niece who visited Fothergill in Harpur Street in 1769-70. The hook, which has portraits and other illustrations, ends with a careful and sympathetic appreciation of Fothergill's character; and there is of course an excellent index. from which however the Upton garden is omitted.

Thalassiophyta and the Subaerial Transmigration. By A. Ti. Ciferch, M.A. Botanical Memoirs. No. 3. Oxford Úniversity Press, 1919. 95 pp . Price $3 s .6 d$. net.
Ix this remarkable treatise Dr. Church expresses his views as to the marine origin of all land regetation. In a previous memoirThe Building of an Autotrophic Flagellate (noticed in this Journal for 1919, p. 288)-he prepared the way by showing that Life itself must have originated solely from the ions of sea-water, and he indicated the inevitable steps by which the resultant unicellular organisms of the Plankton Epoch were developed and acquired those fixed crtological characters which all subsequent cells have inherited. Autotrophic plant-cells those early organisms mostly were; but with them were associated animal derivatives. In the present memoir the story is carried forward : and it is shown how after long ages, when the ever-rising sea-bottom had become elevated to within a hundred fathoms of the surface of the all-enveloping ocean, and thus had afforded a safe and consenient anchorage to both plants and animals to settle on, the second or Benthic Epoch began. And now tor the first time multicellular sessile algae (and animals) came
intu luinu and chdumated thome morphologieal and anatomical chat－ ractar which we timl in marime alyse of the present time－e．\％． filanchtons of paremblmatoms fromds，all sorts of ramitication，leaf－ like rammli，Ambling hahit，apical and meristematie frowth，haptera，

 （omme richt up to the surlac＂，exposing whole continents of benthic life to the severe ordeal of an arrial enviromment．Thus began the Fanch of the Land Fhora ；and any algee that failed to adapt thenselses to the nowel and exacting conditions perished miserably． The severity of the struerye was mereifully tempered by the －Treceling slownes of the changes hy the daily tides，and hy the newly atequired admatatges of a vastly inereased supply of sum－ shime and oxygen．The chnef problems to be met were the risk of de－iecation，the luss of food－salts，the need of a stiffening endu－ shelrfon，ats woll as the adaptation of the organs and modes of reprometion to meet the repuirements of the new aerial conditions， ami the monlifation of the spore－mechanism to seeure aerial dispersal． Hr．Chureh has much to tell us about these matters－such as the pronduction of ronts，the origin of the tmaspiation current and of stomata，the polyphyletie claboration of that sucecostul alaptation
 of the ganmephyte，the sure－wastage of the Fem，heterospory，de．
 on the dry land．and of these only the highest topes survived；but so eompletely altered have they become in shate，strueture physindngy， and remertuetion，that their algal ancestry is mow matraceable．We

 abl Forms imbuste that the eleavage between these two phyla reaches lank th the I＇laniton lipoch．）＇Two other interesting groups that dhe from the stane period of lent－emergence are the（hamacee and the Frumsi．＇To the latter a long and instructive ehapter is devoted pinting ont their markedly puly phytic origin（o．\％Phyompeetes，
 wwn hiveran of mbjetiner a saprophertio or parasito life，and hy

 frew in se degic atrata，sime they were earlier than the sedimentary $r=h=$ The！develymel intu land－plants and left wo trace in thi
 Is the tmansugration，the hrown heing inalequately developed in

 ＊urporit then that th，had－monmols ate malike the lish．
 Ir e＇lour his monor ami the orginalits of his views．No such

evolution has ever before been achieved. Incidentally it shows that the answer to such fundamental questions as-why are plants composed of cells? or, why is their reproductive mechanism so complex?-must be sought in the sea. "The beginnings of Botany are in the sea"; and the equipment of the land-plant is necessarily inherited from its marine ancestors. No student or school of botany can afford to neglect or overlook this illuminating contribution to a much debated branch of natural science.

Dr. Church's writings constitute a new era in the study of botany. It is perhaps to be regretted that his hypotheses are presented in so condensed a style; the reading demands sustained effort to follow the close reasoning and to retain and grasp the logical conclusions. Dr. Church has laid the botanical world under a great obligation; and it is with the greatest interest that we look forward to further publications by so inspiring and suggestive a writer.
A. G.

BOOK-NOTES, NEWS, etc.

Three recent contributions (1919) to the Journal of the College of Science of the Imperial University of Tokyo reach us for notice: all are written in German and are suitably illustrated.-In Researches on Water-Absorption by Cut Branches (xliii. 2), Taneyoshi Matsushima emphasizes the fact that diminution of absorptive activity is insignificant in plants with abundant woody parts, but very considerable in forms with latex, mucilage, or resin-secreting tissues. In the latter case burning the cut ends assists water-absorption. The presence of acids, especially organic ($\cdot 1$ to 1%), normally increases the capacity, alkalies depress it; but the converse holds for the forms with mucilage, resin, ete.

In Ecological Studies on the Vegetation of the Ota Dunes (xliii. 3), Yoshiji Yoshii gives a general account of this dune of the Pacific Coast, between a River Toné and the Kashima Sea, and its special flora. Characteristic vegetation ranges from Dune forest of Pinus Thunbergii to bushes of Juniperus rigidus and Eleagnus fragrans. The tops of the sand-hill include special types, as Carex macrocephala, C. pumila, Phellopterus littoralis, Ischremum anthephoroides and I. muticum. On the sandy beach Wedelia prostrata is conspicuous, with Calystegia Soldanella; these types are discussed in detail. Carex macrocephala is the first colonist of moving sand, with rhizome-system spreading a foot beneath the surface at 6-10 ft . a year, and is an essential factor in dune-building; vertical rhizomes thrusting upwards raise the level at 6-14 inches a year. Ischomum anthephoroides forms tussocks in the sand, and Phellopterus littoralis is also effective in binding the surface.

Yoshinari Kuwada continues observations on the chromosomenumber of Zea Mays (xxxiv. 10). The haploid number, as seen in meiosis of pollen-development varies from 10-12, and the diploiu number (in root-apices) from 20-24, in various cultivated races as Sugar-corn, Black Starch, Amber Rice Pop-corn, Black Mexican.
 alsays eomatabt for the same type From the fant that wher

 mutations and powihly hyridization with some hypothetical form

 chroman mese ats fome and short; the lomger whes bemer refered to

 for the additional units, with variants dominant in the hyrid lomms.

 mentioned variotice In view of the interest attachine to the
 of affisim, it is atater of resret that the paper should hate been written in Gemmans.

Mr. OtMFR Arkiss FabWELL sends ms from time to time
 chlo f olject of which appars to be the formation of new rome himations. We have more than one frotested abainst this perverted form of imlustry, which can moly result in the addition of mew and
 twn examplom: Mr. Finwelt (in Di"g!gists Cirndar. N. Vork, laiii.

 (ther copitals, always employed, are of the oricinal mote) (inner Forster's name-S゙rophulariondes arborea-is a nomen mulum and
 name" has not the slightest clain to reengnition.
 C'usso for Ilnqenin alymsiaica (= Brayrera anthelmintica) : had he rifored tw braces lasok instead of taking the refereme from the Firs Inder the facite somme of many litemery mother than lostanion 1. mmbations her womd have seen that, fir from intending ('usan
 the phant-the phate is lettered " ('ussin wr Buntisin Abysingion."
 thet. Kiew. Hut Itr. Farmill gmote this. In this case, howerer. Mr Farw. II. Iral he earied his investimations a litthe lamher, mitht r Il! have semmel : "N. Comb,": for "byssinice is certanly the

 It is re dermhe tw combthme thin criticiom, Mr. Varwell surplies

That the protest given above as to new combinations resulting only from literature is not without justification is shown by the following extract from a recent paper by Mr. J. F. Macbride (Contrib. Gray Herbarium, no. lix. p. 33 : Sept. 1919) :-" Mr. G. Claridge Druce, Bot. Exch. Club, v. 38 (1918), has reduced the genus Allocarya to Lappula. It is to be regretted that he has not given the reasons which induced him to make this, to say the least, striking reduction, for the genera Allocarya and Lappula are even more distinct than Eritrichium and Lappula, genera universally accepted. It seems almost inconceivable that Mr. Druce had a specimen of Allocarya before him at the time he referred it to Lappula (L. stipitata (Greene) Druce, l. c.). Rather does it seem probable that the plant collected as a waif in England was, in fact, one of the annual species of Lappula, although the fact that the determination was made by Dr. Thelling decidedly weakens that theory."

THE Kew Bulletin (no. 10, 1919) contains an account of the arrangements made for the Botanical Survey of the Union of South Africa, to which Miss A. G. Corbishley, B.A., of the University of South Africa, has been appointed assistant at Kew. Mr. W. B. Turrill has a revision of Mendoncia, which now includes twenty-five species, whereof five are new, and Mr. W. B. Grove continues his enumeration of species placed by Saccardo in the genus Phoma.

The Annals of Botany (January) contains a long paper by R. Muriel Bristol "On the Algal-Flora of some desiccated English Soils: an important Factor in Soil Biology" "; there are descriptive notes, with figures, of the nineteen species found, two of whichChlamydomonas pluristigma and Gongrosira terricola are new. Dr. Salisbury writes on "Variation in Anemone apennina and Clematis Vitalba, with special reference to Trimery and Abortion "a continuation of his observations on Eranthis and Ficaria published last year in the Annals. Dorothy Bexon discusses "The Anatomy of some Polycotylous Seedlings of Centranthus ruber": and B. Salmi, Professor of Botany at Benares, writes on "Certain Archaic Features in the Seed of Taxus baccata, with Remarks on the Antiquity of the Taxinea."

The Transactions and Proceedings of the Botanical Society of Edinburgh (vol. xxvii. pt. 4)-which, like the Kew Bulletin and several other important publications, makes no use of its page-headings -contains papers by Mr. Arthur Bennett on Calamagrostis stricta and C. strigosa and on the Flora of Caithness, with notes on Hagströn's "Critical Researches on Potamoyeton," excluding the British species which were discussed in this Journal for 1919 (pp. 1020), and a note on P. longifolius Gay. Captain W. B. Gourlay writes at length on Faccinium intermedium Ruthe, on which, with Captain G. M. Vevers, he contributed to the same volume of the Journal an account (p. 259) to which no reference is made. Mr. W. W. Smith establishes a new genus of Gesneracea-Whytochaa, commemorating the President of the Botanical Society-for Stauranthera chivitaflora Oliv., and there are obituaries of Dr. R. C. Davie and IV. B. Boyd.

J＇ur：Rov．Eithelhert Blatter．S．J．，is publishing in the Records of the lifummon surtery of Imlia（hovermment Press，Caleutta）a Fllma Arabior，on the lines of his Plora of Aten which appeared in the same periodical：the first part（Records，vol．viii．no．1）contains the moners limumentaces to Moringucese．The synonymy and d atrilutimare vers fully given；there are no new species，but a few b，W varivies of well－kbown plants，as well as new combinations， rombered mocesary by the reduction of genera－two in Balaniters and （wn）in bilis．We are sory to note that the usefulness of page－ bembings is ignored as is tow frequently the ease；＂liceords＂Se．on the left hamd and＂Flora Arabica＂on the right oceupy throughout shate which might protitably he filled by the mame of the order and Lembe muler consideation，after the fashion of all the best flomas．
＇Tıur：Bulletin de la Sucióté Poyule de Botanique de Belyique． （liii．）．which，dated 191－t，has hat lately come to hatnd，contains a fall hography ly F．Marehal of Theophile Durand（1555－1912），with protait amd hibliography．
＇T＇us：Seur Phytologist（xviii．no．8；1）ee．4，1919）contains a Pupur hy Dr．A．H．Chureh on＂The Iomie Phase of the seat＂and ＂（）hsersations on the Perianth in Ranunculus auricomus and Ane－ mene＇coronaria＂by W．13．＇Turrill．
＇Ine：leport of the Watson Botanieal Fxelange（＇lab for 191S－19 han laen manvodably delayed ；it is proposed to issme this with the Linport for $1!919-20$ eary in the present year．Mr．d．E．Little will lee the distributur．

As a slight expression of sympathy with M．Carlot，of Charle－ ball，in his lesses thromgh the oeeupation and destruetion of most of his prowsumbs hy the（iermans during the War（sec Jomm．Bot．191t， 31：3），a fund is hemg raised to enable the l＇aris Musemm of Natmal Hintory to purchase his herbarium of Mosses，pactically the only fart of his belongings that remains intact．The herbamm is a very batualio one contamine the types of many wew species and the material on which is lased his manerous and well－kown hrolugial treation．It is M．Campots great desire that the herbarimm shall herome the propurty of the Fremeh mation，hat unfortmately with his Ir \quad－$n t$ natricted menna he is not in a position to make a gift of $i t$ ， whale the fumds at the command of the Musemm anthurities seamerly permit of its purchase at what would be ans adequate value．The Mus man authorition howe lowerom，agrad to find half the price
 balf can her mivel among friomts and sympothiners．Botancal frimels in the L゙心．A are undertaking to raise half of the balaner，lewving the

 thi fol I will be eratuflly recoivel hy Mr．M．N．Dixon， 17 Nt．Mat－
 ful．

ROYA ANGLICA G. S. West, A NEW DESMID ;

WITH AN EMENDED DESCRIPTION OF THE GENUS ROFA.

By Whliam J. Hodaetts, M.Sc.

Turs new species of Roya was found in early April 1916 in some very shallow water in the swampy corner of a meadow at Quinton, near Birmingham. It occurred in practically a pure growth (the only other Alga present being a few Diatoms) which formed soft gelatinous pale-green masses, floating on the surface of the water. Countless numbers of vegetative cells, many of them in process of conjugation, were present, while zygospores occurred in thousands. The Alga as soon as found was submitted to the late Prof. G. S. West, who pronounced it to be a new and very interesting species of Roya: one, moreover, which made necessary some modification of the characters on which this genns is founded. Prof. West made drawings of the Alga-which he named Roya anglica-and was to have published an account of it in the "Algological Notes" which he was contributing to this Journal; but his untimely death prerented this from being carried out. The drawings have been placed in the hands of the present writer, and it seems desirable that a short description of the species should be published. Unfortunately, the Alga quickly disappeared from its original locality and has never been observed since, except very occasionally as isolated cells in water from the corner of the same meadow.

The facts concerning this Alga have been taken from some notes and drawings made in 1916 and from characters observed in some permanent preparations, and from Prof. West's drawings.

The form of the vegetative cell is cylindrical or subcylindrical, unconstricted, and very slightly tapering towards the extremities, the latter being subtruncate (A-D). The cells are sometimes quite straight but generally somewhat asymmetric, a slight but never regular curvature being present, especially in the longer cells, while the greatest width of the cell is often not in the middle but nearer to one end than the other (see A) ; in extreme cases the shape is ahnost clavate. The size varies considerably, the length being 35-80 (-112) μ, the greatest width $7 \cdot 5-9 \mu$; the ends are $5-7 \mu$ wide. The cell-wall is colourless and quite smooth, of moderate and uniform thickness, except at the ends of the cell where it is somewhat thicker than elsewhere (A-D). It is impossible to distinguish the line of demarcation between old and new semi-cells, but the younger end of the cell can often be determined by the fact that the thickening of the extremity of the cell-wall at this end is frequently less pronounced than it is at the older end.

Neither in the unstained condition nor after staining with gentianviolet could any signs of pores or of any other structure be observed in the cell-wall, even under very high powers. Lütkemüller* has examined the cell-wall in other species of Roya and always found it

* "Zur Kenntnis der Desmidiaceen Böhmens," Verhandl. der k.-k. zool.-bot. Ges. Wien, lx. 479, 1910.

[^2]to ho quite stmefureless amb ans result of his observations he eonsideral that the grmus should he removed from the pusition near ('lustr rium, asignend in it by W゚. Iti.s. West (Brilish Desmidiacere, 1. I(xi, l! 4 4), and placed among the sateoderm Desmids, in the Tribe

A. Fabrly gumg vegatative enll, whowing pingle chlorophast, Interal muclene, und , wh ramen. B. Sumawhat whor vegetativa cell. C, D. Fully maturend vagetatson colla in whith the ehlerephath hans dividen in the middle into two
 j-gatmon, olowing the extruled gaumen uniting. F. Mature zygoapore. All, :
 (ti) the rearge

The ehbermplat is generally single, axile, with (t?) longitudinal

 thon are theremoidy in a central series. The chloroplast was
usually observed to be in this condition, but in the ease of older cells, and almost always in very long individuals, it was frequently completely divided in the middle, the nucleus then being in a central position between the two half-chloroplasts (C, D). This division of the chloroplast appears to be preliminary to cell-division, but exactly how long the condition persists before the cell actually divides, or whether the divided chloroplast is to be considered a normal feature of the adult cell cannot definitely be stated.
W. \& G. S. West (in Journ. R. M. S. 1896, t. iii. fig. 23 a ') have given a figure of Roya obtusa, var. montana showing the chloroplast completely divided in the middle, but no mention of this is made in the test. Liitkemiller* also figures an example of this condition in Roya obtusa, and says: " kommen aber auel oft genug Exemplare des Cl. obtusum zur Beobachtung deren Chlorophoren in der Zellmitte nicht einen seitlichen Aussehnitt, sondern eine vollständige Unterbrechung zeigen."

As sueh individuals might be mistaken by a beginner for a species of Closterium, it should be noted that in the latter genus division of the chloroplast into two takes place very early, and is usually completed before the young daughter-cells have separated. The greatly delayed division of the chloroplast is thus very characteristic of the genus Roya. In R. cambrica-which has been found several times in some marshes at Bearwood, near Birmingham-such cells with two chloroplasts were only rarely seen, in fact the condition was observed only in cells obviously soon going to divide.

Lütkemüller (l.c.) states that some species of Closterium are known in whieh "das Chlorophor in der Zellmitte der Regel nach nicht unterbrochen sondern nur seitlich ausgeschnitten ist (Cl. Linea, Cl. acutum)." But W. \& G. S. West's figures (Desmidiacere, i. t. xxiii.) of Cl. Linea Perty $[=C l$. acutum var. Linea (Perty) W. \& G. S. West], and Cl. acutum (Lyngb.) Bréb. show two distinet chloroplasts, and it may be that Lütkemüller's statement was based upon observation of abnormal specimens. Cl. acutum was found by the present writer in a small pond near Birmingham, in 1918, but the cells always showed two ehloroplasts.

Very striking in R.anglica is the fact that the distal extremities of the ehloroplast are always markedly concave, and at each end of the celi there is a conspienous vacuole in which, however, no granules of any sort were ever seen (see A-D). These characters at once distinguish the present species from the three previously deseribed speeies of Roya. W. \& G. S. West (op. cit. 106) considered that the rounded ends of the chloroplast, and absence of terminal vacuoles, to be amongst the most characteristic features of the genus Roya, but such characters cannot now be regarded as of generic importance.

With regard to the presence of apical vacuoles in R. anglica it is interesting to note that Lütkemüller (l.c.) has described a species of Closterium (Cl. carniolicum) in which terminal vacuoles are absent,

[^3]4) that just as ajpal wamblas am met constantly present in Closlornto thy are mot constantly alsent in Royw. In Prninm, lihemine aj i al sacuoles are present in seme but absent in other - ferers. 'The aborne of prambles in the terminal vacmoles of R. Anylion is hatills to be consibered of mush importance: under

 1.1. lig 11) atn imlividual of ('l. pusillum var. momolillnm with no granal. in the emb-vactobe, althomerls normally a single moving Frambe in cor hamente is present in this Desmit.
A. alra ly mombat, a ber lare number of cells were in consjuzatom. T'in cellv alomet tompurate apmroximate amo levome combehted in at man of mucilag'. 'I'he mucilatinous masses ohserved

 water, and apmared to develop very little if any macilage. Fanch of thir two conjugating cells puts ont a protnlerance. which, by local disondution if the cedl-wall. heromes a pore, throngh which the cell-content- emerge as a gamete (E). The prove is ciroular, and the coll-wall romml it las a slight outward comb, making the apertme somewhat inhmlar; this aprarenty may be probued at any point in the eell-wall, wepet at the thickemex extremities. 'The zyguspore (r) is globroce, whth a thick, hyaline, smonth wall. 'This agrees with R. ohfusa ($=$ (\%, whtuxum Bréb.). observem in wonjugation by Kirehner * who stafes that the \% \% gospores of this spotes are "kngelig,
 however, who foumd R. ahtusin var. montana \mathbb{W}, \& (i. S. West in conjugation in luge on 1)artmoner, recorls the zegospure as elligisoid and amomth $\left(-\frac{1 z e}{}-2 \mu \times 1.5 \mu\right)+$; hat the tigure given ly him (t. xix. fige 11) dow sut show the peres in the eell-walls uf the empty cells, thromeh which presumally the gametoc comererit. As far as I am
 in comjutation.

In $1 t$, mulienf comjusatime $I P$, angliea recalls Gonulnzygon mather then Clastotmo but the chanacters of cell-wall and chlumplast at when distmbu* it from the former eremus. In the fiet that it has apinal baneles, concave emb to the ehluroplast, and the latter. in mature rills, frugnontly completmly disited in the mithlle. R. anglica rowmhle Clostrium and Pr nium much more closely than duany
 suisling darentors om which Royo can he retained are (1) the simplos *Tre tura lace nature of the cell-wall, athe (2) the fact that division of 11. dhlervplat mito halves is di layedmotil the cell has reached mature age. or arwn motil it in alont to divide.

[^4]Whether these characters alone are sufficient to base a genus upon, or whether it would be better to consider Roya as a subgenus of Closterium, or even to drop it altogether and include the four known species in Closterium, depends, of course, upon the degree of importance which observation shows can be attached to such characters. For the present, at any rate, it seems desirable to retain the genus on the following moditied basis:-

Roya W. \& G. S. West in J. R. M. S. 1896, 152, descr, emend.
Cellulæ non constrictie, cylindraceæ rel subcylindraceæ, rectæ vel leviter incurve, utrinque levissime attenuate, apicibus plus minusve truncatis vel obtuso-rotundatis ; membrana cellularum sine poris, levi, achroa; chromatophora singula, vel, cellulis maturis, in medio in duas partes divisa, axili, extremitatibus vel rotundatis et prope apices attingentibus, qui tum nullum locellum apicalem habent, vel extremitatibus concavis, et tum cellulæ locellis apicalibus instructæ; nucleo vel laterali, in mediana incisura chromatophore singule posito, vel, in cellulis maturis, centrali, inter duas chromatophoras; pyrenoidibus pluribus mediana serie dispositis.

Rofa argitica West, sp. nov. R. cellulis parvis, cylindraceis vel subcrlindraceis, utrinque levissime attenuatis, rectis vel leviter incurvis, apicibus subtruncatis, diametro $5-15(-20)$-plo longioribus ; membrana cellularum levis, achroa, ad extremitates leviter incrassata; chromatophora axilis, jugis longitudinalibus ($4:$) predita, extremitatibus concavis, primo singula, postea cellulis maturis in medio in duas partes divisa; cellulæ locellis apicalibus instructæ; nucleus vel lateralis in mediana incisura chromatophoræ singulæ positus, vel, in cellulis maturis, centralis inter duas chromatophoras; quæque cellula pyrenoidibus 4-6 medianis instructa. Zygospore globosæ leves.

Long. cell. $35-80(-112) \mu$; lat. max. cell. $7 \cdot 5-9 \mu$; lat. apic. $5-7 \mu$; diam. zygosp. 20-26 μ.

Hab. in aqua minime profunda, Quinton, prope Birmingham (April 1916).

My best thanks are due to Mr. W. B. Grove, M.A., who kindly helped me to look up several obscure references in connection with this paper.

CEPHALANTHERA Richard or EPIPACTIS Crantz?

By Colonel M. J. Godfery, F.L.S.

Ix Oest. Bot. Zeitschrift (1859, pp. 395-9, 422-430) appeared an extremely able and interesting paper by Dr. R. v. Wettstein, the main object of which was to show that the genus Cephalanthera has been wrongly separated from Epipactis, and which further suggested that Cephalanthera, Epipactis, and Limodorum should be re-united in one genus-Epipactis Crantz.

In 1815 L. Richard (De Orchid. Eur. Adnot. pp. 51-2) first separated Cephalanthera from Epipactis, characterizing the genera as follows:-

（｀）トリALANTHERA．

－Onzr．nevale：mon contortum，
 amplewart morrmpiam Wypmohhmm SArsi gibhum：Ejicbilinm apioe re－

 I：${ }^{\text {en }}$ ．nullam．Juth．margimalis；ellip－

 －tum sugerats ；louli conmention if－is

 миm partom a theremectutee：gramula sturplicis．＂

Eribartis．

＂Orar．pedierllatum；non contor－ tum．C＇al．juturns：luemiis subeon－ formilus．Lah．imrmo：deorsím jul－ tentinsculum nec amplexuna ；interrup－ tum：Hypochilimen coneavo－giblmm ； Epichilimm introrsim md hasim hi－ gibimm．Cignosl．brevissimum：ratione ovarii me posteriora declinuns．（iymiz． subyuadrutns，leorsmm promiuens． Fost．apiculare，brevissimum ohtasum． Anth．inargimalis；peatien；eordatat obtumi acmmimata．Poll．massue wh－ Jongo－ovativ：propi upioron adgelatin－ alos：granula veluti trigualriglobn－ lata．＂

11．（i．Limichmbach（Irones，xix．1siob）differentiates them as follows：－
＂Lalu－lli mbelio constrieti，sumarti－ mulas par－iaferior enm kynustemion parallofa bu－in rermu cum eonlem connata．liynotomiun semiteres， grarili，anthera chlonga．glambulae nulle＂（p，1：33）．
＂Labellum merljo emenstrictum，arti－ culatum，ch：n gymstemio revangulum． fignosteminu hreve，anthera ahtnsi triangula erecta，flamlula rotumia． （p．13！））．

Bontham aml Howker（Gen．Plant．iii．1na，1．543）give the following：－
＂大icpala comniventia．Iabollum

 lobamatila．Cunla folintus，farilus （1）nuliminuerecti＊．
> ＂Sopnla patontia．Lalmilum supra basin latam comeavam constrictum． Conlis folintus，toribus capsulicque nutantibus r．pemhlis．＂

 fanley．He aseren that the bength of the flower－stalk，and the

 －
 （だ laf！elm）or romudel SE．pmlustris）．Further，the anther in

 fore chome 11 it tho only remamiug differemon is that the petals and

 at the wigth，he tharator，of relatively anall value．The eriticism of ite ：＂imathmuerv i chiefly fominder on the＂narly quad－
rangular" stigma of Co cucullata. We shall see later that that species is untrustwortly as evidence of the existence of a quadrangular stigma in the genus Cephalanthera, so that Richard's diagnosis in this respect still holds good. The explanation as to the pollen-grains appears to be somewhat disingenuous. The tetrads of pollen in Cephalanthera resolve into separate grains in situ, in Epipactis they do not then separate at all. Only when they come into contact with the viscid secretion of the stigma do they swell and disintegrate, as is usually the case in the Orchidacer. Disintegration before pollination is a very different thing from disintegration brought about by the action of the stigmatic Huid. Even assuming that the author is correct in his statement that in Cephalanthera the pollen-grains are originally bound together in tetrads, the difference in the pollengrains pointed out by Richard is undiminished in importance.

He next deals with the new character adduced by Reichenbach fil.-the absence of a viscil gland in the case of Cephalanthera, its presence in Epipactis. He sars, in effect-I could reasonably pass over this character as of very little value, if indeed the very mention of it does not prove the difticulty of fixing a boundary between the two genera. Real viscid glands, i.e. a thorough transformation of the tissue of the rostellum contiguous with the anther into a viscid gland, certainly occur in some species of Epipactis, yet it generally decreases with the reduction of the rostellum, the species with a short rostellum (e.g. E. palustris) show only sinall viscid glands, whilst the development of the latter in species of Cephalanthera with a scarcely discernible rostellum entirely fails to take place.

In this the learned author shows an absolute failure to understand or appreciate the capital importance of the viscid gland, which is the most outstanding and weighty character in Orchidacer, is peculiar to that order, and is the root-idea of its floral construction. The one unique character of the Orchidaceæ, which puts them on a different plane from all other natural orders (except perhaps the Asclepiadacea), is the extremely ingenious mechanical device by means of which insects are unconsciously induced to conver the pollinia from one flower to the stigma of another, usually that of a separate plant.

One of the most remarkable things in the morphology of the order is the absence of a rostellum in Cephalanthera, an absence which reduces that genus from the exalted position of possessing one of the most ingenious contrivances for the transport of pollen in the regetable kingdom, to the status of ordinary self-fertilized plants. Self-fertilization is the simplest of all conceptions-it needs no honey, no scent, no colour, no co-operation of insects, or even of wind or water. Cephalanthera is a decadent genus, which has fallen from its high estate, assuming that it is really the case that it is entirely self-fertilized, and that we have not simply so far failed to understand the mechanism of the flower. It was evidently originally designed for insect-fertilization. From a biological point of view it is now more widely separated from Epipactis than is the latter from genera possessing a rostellum. The presence or absence of a rostellum is of much greater importance than the presence or absence of caudicles,though these latter characters are used to differentiate the two great
divisions of the sulfamily Monemdre-Basitonce and Acrotonce for come..fertibation can and does take place without caudicles, but but withont iomblatands. All the other differences bet ween Cephatonthera and Eipuractis. such as the presence or alsence of a pedmele, che proition of the Hower, the extent to which it upens, the shape of the lip, de: are ot lout secombary importance, and not differeness of the firt mank, like the absence of a rostellum.

The anthris argument that the rostellum is smaller in E. palustras, and therefore on the way to disappeamene, seems to be mere - Weitial pleading so lome as a rostellum in effective, its size is of 116 Impmortance. It will be noticed that the author does mot refer tor
 "rphalouthore, and "gromm. hreve" for Epipmetis. let thes is a distinetim of emosiderable importance, the relatively long cylindrimal column of the former being in sharp eontrast to the short symat colmun of the litter.

The anthor having thus minimized or explaned away the differantating chameres of previons writers, not mmaturally fonsiders that the thme has come to remmite the two genera. He gives a Inamifilly drand serime of lips to show how they gradually merge into eat other, and form a homorenems whole.

Ho further points ont that the epiehite in Ceph. cucullatu has a distinct though short spur, and that in the very similar lip of Limodoram ahartirnm the -pur is merely more developent. He therefore
 Fpponctas and propmes that it shmbl he included in the later.

Having newer eron ('fyh, cuculluta, I was anxims to learn what 1 coull alumt a plant which bulkel so largely in the anthors argn-
 120() I wate ment struck he its remankable aspect. It suggests alon mallity. 'The thew lawer haves ate represented by lonse fumed-
 -riet. cultracing the sum. The Howers reambla thase of Coph. grombllew. hut have a very shont spur. Altugether it is a most romarhable phant. 'Tarning wext th the fignre of Limodnrum abm: enom in Tah, 12? I wan astumished to find how extmordinarily

 beare lof raw of the migne charanter of the leaves of Limodormon thas rim mhanere (ow bally be aceidental. I think that anyone
 on mompartig that tigures, will almit that there is a stronge pre-

 of Cey blambora, the colman is that of her latter; whilst the short

known, individual hybrids incline sometimes to one parent, sometimes to the other.

His statement (l. c. 187) that C. cucullata had only once been found confirms the supposition that it is a hybrid-had it been an indigenous species it would hardly have been so excessively rare, unless on the verge of extinction. The following points in his description appear to indicate the influence of Limodorum-Caulis validus, vagine tres membranaceex, amplissimæ, ore obliquo acutiuscula, rostellum obtuse $4-5$ dentatum (apparently the upper edge of the stigma is referred to). It may be added that Dr. Wettstein's figures show considerable similarity between the lips of C. cucullata and Limodorum.

If this supposition is correct, the author's arguments based on C. cucullata are put out of court, and his plea for the inclusion of Limodorum in the genus Epipactis falls to the ground.

It is interesting to note the circunstance under which Dr. Wettstein's paper was written. He had just been studying a hybrid between C'. grandiflora and E. ruliginosa, and the need of chuice of a generic name for it led him to make an exhaustive study of the two genera. He had evidently a strong bias against the probability of the occurrence of bi-generic hybrids, for he argues that the very existence of this hybrid pleaded for the union of the two genera in one. I might adduce, he says, as a new proof of the correctness of my riew, that in most cases the occurrence of bi-generic hybrids ought to suggest the homogeneity of the genera concerned. Hंe was thus handicapped by a preconceived idea. In botanical investigations an open mind is essential. A hiassed mind cannot exercise unbiassed judicial functions--the judge is at heart an adrocate. The link which in Dr. Wettstein's opmion joined, in the one case Cephalanthera and Epipactis, in the other Epipactis and Limorlorum, was in each case a hybrid. His prejulice against bi-generic hybrids prerented him from giving due weight to the unanswerable evidence of former writers as to the differences between the genera in question, and to lay undue stress on the occurrence of a spur in C'. cucullata, which might have been, and in all probability actually was, due to lybridity.

A careful study of Dr. Wettstein's otherwise very able paper leads to the conclusion that ('phalauthera, Epipactis, and Limodorum are generically distinct, for his arguments entirely fail to shake the position taken up br earlier writers.

C'ephalanthera cucullata is, in all probability, a hybrid between C. grandiftora and Limodorum ubortirum. When Reichenbach wrote his description he was not sure whether the flowers were white or rose, and mairely states that in his figure he has shown them as white, but that this can easily be altered should they eventually prove to be rose. In his second supplement, however ($($. c. 181), he announces that they are 'luride alba,' as in C. grandiffora.
P.S.-Since writing the above I have come across a footnote by Dr. G. R. r. Beek to his paper Erwiderung auf Dr. Wettsten's's

 －aw Fimparlis cou＂ullala comald doubt that it and Limoduram mu－

＇Ghis is interesting as showing that Wettstem clearly recosnizod

13y sippacer Le M．Moure，B．s．ic．，F．L．S．
8．Phayte Rouershase－ V ．
（C＇ontinued from Journ．But．1919，91．）
Fins mon of the descriptions in this serthon 1 am imbleted to Nr．Fitmmal Baker．Who kindly comsonted to exanime and repurt ＂fon the Leynminosse．For the remaining descriptions I an myself いがいがい。

lafatimises．

frotitatha APAMEA land．
linkim（
 ：3．． 1111 mm ．

X．II：Rhendean：Kiflime station，sil9．
Crotalaria（Encrotulurin）cataractarum Iak．fil．，sp．now．

 carata，hin in ratim louginn attemata，in tutu 1719 mm ．

natis. Texillum cum ungue $10-11 \mathrm{~mm}$. longum. Carina dorso rotundata, lineis violaceis notata, $\pm 11 \mathrm{~mm}$. longa. Ovarium linearioblongum, stipitatum, multiovulatum. Legumen ignotum.

Belgian Congo: Elisabethville, 10978.
Allied to C. Nicholsoni Bak. fil., from Nyasaland and Rhodesia, but the leaflets much narrower.

Crotalaria (Eucrotalaria) macrotropis Bak. fil., sp. nov.
Caulis erectus, ramosus, longitudinaliter striatus. Stipule parre 2-2.5 mm. longæ. Folia trifoliolata, foliolis angustis linearibus vel lineari-oblongis glauco-viridibus pubescentibus, $12-25 \mathrm{~mm}$. longis, petiolo communi $8-10 \mathrm{~mm}$. longo predita. Racemi pluriflori, laxi, terminales. Flores pedicellati. Bractece paryæ. Calyx in toto $6-7 \mathrm{~mm}$. longus, dentibus subacuminatis. Vexillum in siceo violaceun. Carina dorso angulo recto curvata hine in rostrum longum et rectum attenuata, in toto $1.5-17 \mathrm{~mm}$. longa. Legumen oblongum, $\pm 25 \mathrm{~mm}$. longum, polrspermum, breviter stipitatum.

Belgian Congo : Elisabethville, 10941.
Crotalaria (Eucrotalaria) rigidula Bak. fil., sp. nov.
Canlis erectus lignosus. Folia parviuscula mediocriter petiolata, foliolis oblongo-obovatis glaucis glabris $6-10 \mathrm{~mm}$. longis, $3-\overline{5} \mathrm{~mm}$. latis, petiolo communi stricto $10-15 \mathrm{~mm}$. longo suffulta. Inflorescentia laxe paucitlora. Calyx in toto $8-9 \mathrm{~mm}$. longus, lobis triangularibus 5 mm. longis quan tubo paullo longioribus. Texillum 1214 mm . longum. Alee in toto $12-13 \mathrm{~mm}$. longx, $4-5 \mathrm{~mm}$. late, basi unguiculate. Carina dorso rotundata apice sursum curvata, in toto $13-15 \mathrm{~mm}$. longa. Legumen oblongum, basi stipitatum, cum stipite $15-20 \mathrm{~mm}$. longum.

North Transvaal: Tzaneen, 125:31.
Allied to C. Monteiroi 'Tankert, but petioles longer, leaflets narrower, calyx glabrous.

Crotalaria (Eucrotalaria) homalocarpa Bak. fil., sp. nov.
Caulis ramosus, ramis junioribus pilosis. Stipulce lineares. Folia trifoliolata, foliolis oblongis vel oblongo-lanceolatis, $15-20 \mathrm{~mm}$. longis, $3-7 \mathrm{~mm}$. latis, petiolo communi $8-12 \mathrm{~mm}$. longo suffulta. Flores solitarii vel subsolitarii, pedunculati, pedunculis strictis pilosis $\pm 20 \mathrm{~mm}$. longis. Bracteč ${ }^{2}$ conspicuæ, infra calycem posite, lanceolate, 6-7 longæ. Caly. x in toto $\pm 9 \mathrm{~mm}$. longa, lobis lanceolatis quam tubo longioribus. Fexillum in sicco luteun. Carina basi unguiculata, marginibus interioribus barbata, in rostrum acuminatum sensim attenuata, in toto $\pm 12 \mathrm{~mm}$. longa. Legumen $\pm 2 \mathrm{~cm}$. longum et 1 cm . latum, glabrum, suboviforme, seminibus numerosis.
S. Rhodesia : alt. 2400 ft ., 13302.

Allied to C. geminiflora Dinter, but leaflets narrower and pol glabrous. A pilose plant with solitary or subsolitary flowers. The two bracts below the Howers are conspicuous, as in C. geminiflora.

Crotalaria (Eucrotalaria) longistyla Bak. fil.. sp. nov.
Suffrutex erectus ad C. lukwangulensem Harms. accedens, ramis junioribus strictis cano-tomentosis. Folia parviuscula, trifoliolata, foliolis oblongo-oblanceolatis vel elliptico-oblanceolatis latemalibus 6-10 mm. longis, $4-\bar{j} \mathrm{~mm}$. latis, terminalibus majoribus $10-18 \mathrm{~mm}$.

 ans. 17 is inm. longum. Carinn lurso angulo recto curvata inde in mistrmu longun gradatim attennatit. Otarinm marginibus hirtis, stipitatum. Leryumen ikest.

Suth Khodesia: Inetweon Satishury and C'mali, 4064.
Aotiecah on aceome of the rather large solitary or sulsolitary flower, the earina heme shaply lent and the rostrum 1215 mm 1.mb. The style is also long. Belongs to the subsection Oliganther.

Šuffintor ramosiwimus. Folia subsessilia, foliolis mhongis wol

 Lemmera ± 1 cm. hanga. Legnmen oblongum, pilis vestitum 1i21) cm. luggin.

Differs fom tye in the longer ealyx and pod, \&e. The typical furm onems at Bukenk and Buddu.

Promnis: Folin 3-1 jugat cum impari, foliolis gnam iis typi
 imeras: 3 (i mas. latis. Fhores racemani, atemis pedanculatis. ('inly, x
 1.nex. Carina 6 min. Konga, longe unguiculata. Lorgmern angus-

 lualis!, (intincer, ti?.

Thi tym from Ahymia has louger leathets and more hairy penls. atul is an atmat.

 latow doponti, racomis gnam in typo laximihus. fersillum quan carma patlot hovins 56 imm. lomgun et latum. Cerime naviculari-
 " ${ }^{}$ Timinn.

diames mive hav and mowers lunger than in tyge.

Connemiti:

rentibus tortis margine revolutis supra glabris neenon nitidis subtus albo-tomentosis ; capitulis pluribus in glomerulum globosum congestis; involucri oblongo-obovoidei phyllis oblongo-lanceolatis acutis (extimis paullo brevioribus) scariosis exterioribus pilosis interioribus glabris in sicco dilute brunneis; cosolla subinclusa; antherarum caudis brevibus; styli ramis truncatis brevissime penicillatis; achenio adhuc crudo oblongo apice ipso leviter contracto; pappi setis circa 10 ima basi connatis corolla plane brevioribus sparsim plumosis albis.

Cape, Caledon division, Steenbras ; Moss \& Rogers, 1583.
Planta alta spithamea vel semispithamea. Folia 2-3 mm. long. vel paullulum ultra; ; 3 mm . lat. Capitulorum glomerulus 6-9 mm. diam. Involucrum $3 \cdot 2 \mathrm{~mm}$. long.; phylla ext. 2 mm ., int. 3 mm . long. Corollæ verisimiliter albe tubus 2.2 mm . long.; hujus lobi $\bullet 5 \mathrm{~mm}$. long. Styli rami ægre 1 mm . long. Achænia 1 mm ., pappus $1: 5 \mathrm{~mm}$. long.

Near S. athiopica Linn., but entively different in foliage and with much smaller heads.

Stæbe affinis, sp. nov. Fruticulus ramosus, bispithameus; ramis onnimodo foliosis cito glabris; foliis (ramulorum juniorum imbricatis) lineari-subulatis acutis spiraliter tortis supra glabris subtus albo-tomentosis; capitulorum glomerulis globosis; incolucri phyllis oblongis apice truncatis ipso mucronulatis ext. dorso pilosis scariosis in sicco dilute brunneis; corolla inclusa; antherarum caudis brevibus; styli ramis truncatis penicillatis; achanio oblongo compresso glabro ; pappi setis circa 12 corollæ tubo æquilongis ima basi connatis sparsim plumosis albis.

Cape, Ceres, 1500 ft ; 17605.
Folia 5 mm . long., 3 mm . lat. Capitulorum glomeruli usque 10 mm . diam., sepius vero $7-9 \mathrm{~mm}$. Involucrum 3.5 mm . long.; phylla ext. 2 mm ., int. 3.25 mm . long. Corollæ roseæ tubus 2.25 mm . long. Styli rami 75 mm . long. Achænia 1 mm ., pappus 2 mm . long.

This also is near S. athiopica Linn., and can be told from it on sight by the leaves and small heads. Heads, except for some minor points, like those of S. Mossii, except that the corollas are rosecoloured, but foliage dissimilar.

Metalasia (§ Glomerata) Rogersii, sp. nov. Eruticulus prolixus diffuse pauciramosus; ramis gracilibus ascendentibus bene foliosis minute albo-tomentosis tandem glabrescentibus; foliis parvulis lineari-subulatis mucronulatis parum spiraliter tortis coriaceis supra glabris nitidisque subtus albo-tomentosis maxima pro parte ex ramulis subevanidis oriundis hinc pseudoverticillatis; capitulis subsessilibus 3 -flosculosis in glomerulos mediocres lana alba dense conjunctos aggregatis; involucri cylindrico-turbinati $4-5$-serialis phyllis oblongis vel anguste oblongo-obovatis obtusis glabris scariosis roseis; flosculis inclusis; antherarum caudis abbreviatis apice microscopice ranosis; styli ramis truncatis; achaniis (crudis) oblongis compressis glabris; pappi setis paucis superne leviter incrassatis seabriusculis albis.

South Africa, 17620.
limit teretes, cires 1 mm, crass. Foolia pleraque 1 -2 mm. long.

Alhnt! with M. C'ephalutes leess. but inter alia with entirely different foliage.

Cunvoriviace.f.

1/aromiar hemtrocaulos lbomble var. pinsatificla N. V̌. Br.
'Irmanalal, \%ontpansherg Wir., Messima, こUSIU.
'Thas is an addition to the 'liansaval floma.

SULANACEI.

Solanum (SLoptostomonum) Rogersii, sp. nov. Verisimiliter suffruter. spom-un ; remis teretihus creho foliosis pilis gramblosis denw pulnocemtinus spinis rectis sat longris a hasi gradatim attematis rulorentihns sat copunse inchutis; folizs solitariis petiolatis ambitn watio alte pinnatilidis segmentis lanceolatis acoutis acute dentatolobat is pag. utaris pilis gramblosis stellat is intermixtis puleseentibus co- ta madia utrolique subsparsim longiuscule spinosa costis lateralibus spinas pancas debiliores ustendentibus ; c!mis ex axillaribus pedun-
 dense arlamelulono-pulnescentibus pedanculo satis valido spinosu; prdiceller calyeo sapius lomgioribus uti callyx spinis parvis mustis; colucis compamulati pubesemtis segmentis triangulari-lanceolatis
 wilas ovatio ohtusis mox reflexis extus pilosis verisimiliter dilatissime cor ruleis: filumentis intur se liberis quan anthere libere superne boster ancmatata poris parvis solmmondo dehiseontes plane breviorbons; stylo ex antheris cminonte glaber.

Jamormon pina maxima pro parte $3-$ man. long. Folia (petiolo 3 (tm. long incluso) nsugue 12 cm . long., sed sapins $6 ; 10$ em. (petiolo $1:$ (rm.) : rhathis infirnc 1-2 mon. lat., superme 5 mm. vel etian magio (fulia jompe apicom lobatat); summenta plerague $1: 5$ cme
 lant 1-1 5mm. lat. Cymar \& ! em. long., cirea f cm. diam. ; peelum-

 bug. luar 2 mm.. apice fero 1 mm. lat. Stylns 1 cm. long.

(Gusy-be with tha luit with somewhat smatler and apparently
 froll bath. Witwateramel Wiv. This is a larger specimen and ahenst 1 ore of the plant ind huluge the lowne part of the stem, whieh
 aftimblal, robloh torme mataring 10 man. in diancter. The

4. Phyllantei ex Rhodesia species nota.

Phyllanthus Eylesii, sp. nov. Herba monoica, pro rata elata, glabra; ramis ramulis que aliquanto angularibus his bene foliosis; folios brevipetiolatis late oblongis vel anguste oblongo-obovatis obtusissimis apice ipso brevissime apiculatis membranaceis opacis; stipulis petiolos excedentibus setaceis decoloribus; floribus of subsessilibus sepalis 6 ovato-oblongis obtusissimis glandulis minutissimis inter se liberis antheris 3 filamentis perbrevibus connatis insidentibus; floribus of quam δ majoribus neenon longius pedicellatis sepalis ovato-oblongis obtusis costa prominente percursis glandulis 6 in cupulam lobatam brevem plus minus connatis ovario globoso glabro stylis 3 superne divergentibus bicruris.

Rhodesia, Victoria Falls, rain forest; Eyles, 1296.
Folia usque $20 \times 8 \mathrm{~mm}$., pleraque $\pm 15 \times 7 \mathrm{~mm}$., supra in siceo viridia, subtus glaucescentia; petioli modo 1 mm . long. Stipulæ pleræque circa 2 mm . long. Fll. masc. pedicelli 3 mm ., sepala .6 mm ., anthere $\cdot 5 \mathrm{~mm}$. long. Fll. fem. pedicelli $1-1 \cdot 15 \mathrm{~mm}$. long.; sepala cito 1.5 nmm . long.; ovarium 5 mm . diam. Capsula fere 3 mm . diam. Semina $1 \cdot 2 \mathrm{~mm}$. long., brunnea, dorso eleganter striatula.

Near P. leucanthus Pax, which, besides lanceolate stipules, has larger flowers, the males with anthers on a distinct column among other features.

5. Acanthacee Papune a cl H. O. Forbes lecte.

In the course of some work upon the Acanthacea of New Guinea advantage was taken of the opportunity to name the undetermined specimens belonging to that group forming part of Mr. H. O. Forbes's collection from that island. The full list of species here given contains none new to science, but two (Ruellia Forbesii and Aporuellia versicolor) were described in this Journal for 1914, 294-5.

Ruellia Forbesit S. Moore. Mt. Sogere at 2000 ft . No. 839 a.
Ruellia bracteata R. Br. Fort of Astrolable Range, 1200 ft. Sine no.

The leaves of the specimens are somewhat smaller than those of tropical Australian ones, and the plant is more hairy with rather coarse hispidulous hairs: also the flowers are white, not blue as Bentham says of the Australian. But with the rather unsatisfactory material before one, it is difficult to find any points to justify the suspicion of a new, and in any event certainly very closely allied species. This has not hitherto been reported from New Guinea.

Aporuelita versicolor S. Moore. Mit. Sogere 1750-2500 ft. Nos. 73, 781.

Flowers cream-coloured or bright orange.
Hemigraphis reptans T. And. Mt. Sogere, 2000 ft . No. 841. German writers give Engler in Bot. Jalırb. vii. 474 (1886) as the authority for this name, but it should be assigned to T. Anderson ex Hemsley in Bot. Voy. Challenger, i. iii. 173 (1885). It is the Ruellia reptans of Forster.

All the leaves are guite rontre.

 verns, which serm hetter fommbed, it felougs to § ('alophanoides.

A starating and trailing shont: flowers white or eream-enlomet.
 lamban phacos it in § Moncehom, bitt as it has a relatowely long wary with two ovules, buth evilently developing intos sededs, in each coll, while News's main charanter for Monechma depends mon the shont
 it is clear that the plant has mothing to dow with Mowerlma.

Ghap

(Clarke (NS. in herlo. Kew.) was the list to refer this plant to if proper gomas thonsh, for what reasom is not apmarent, he gate it a mammoript nam, of his own which, of comse, is mot pmhlished lome. From G. pictnm (iriff. it ean be told on sight ly the marow lobes of the comolla-lips.

An excellent specimen of this line plant. Clarke has recombed (IS. in herh. Kew.) his donht whether the gemas shonld mot be
 ui -taminodes, hut overtooking the corollis with its very long lipes and therer short Jobes.

DEWEVIRELAA CONGENSIS, phov.

By H. F. WERMham.

 as 1 tho hy Wo Wildemath, upen several specomens collected in the "ryitorial region of the (m mbobasin ley members of the Lament
 deationted to bue of them, . It. Alfred Dewerve.

The single sperime eleseriberl, I). cochliostemen, was foumed in the "urimens of Kisla, which lins close to the point where the tributary rowr Ikndmba emptim itsilf into tho (ongon that is at the bopuator.
 of then 13 gean Agrieultural Department. I have deseriberl already s me liubincenus novelties of this latter eolloction in this Jommal for 1:11s (sol Ivi. 111. 30s-31:3). I now deseritse a serond suecies of Jererrerlla, reblily distinguinhed from 1). rochliostemu by the size arnl whape uf the leaves ami the callyx-segments, and gathered by Nimnan in the same diatriet.

Dewerrella congensis, sp. nove
Fruter altusenle seambone cirhosus, ramulis eracillimis juniorihus

Folia inter minora (pro familia inter minima) papyracea, opposita, plerumque ovato-lanceolata, leniter acuminata apice acuta, basi trun-cato-obtusissina, petiolo notabili nisi breviusculo, utrinque nisi medianâ in venâ subtus prominula supra impressa rufo-puberula glabra, in siccitate discoloria supra fusco-olivacea subtus lave brunnea venis lateralibus obscuris raro manifestis. Flores parvi eymosis in inflorescentiis corymbosis ebracteolatis laxe dispositi alaribus paucifloris foliis manifeste brevioribus; pedunculis brevibus nonnunquam obsoletis, qua pedicelli elongati minute ferrugineo-puberulis tenues, |bructeis exiguis. Calycis lobi angusti lineari-laneeolati acuminati acuti; corolla tubus brevissimus infundibularis lobis lineari-oblongis obtusissimis.

Nannan 104 ! Boyeka (Equator), 28 August, 1914. Herb. Mus. Brit.!

This is described as a " . . . grande liane, latex blanc ; petite fleur jaune. Peu repandue." 'The native name is given as Teili.

The specimen taken as type consists of a few twigs, with very slender stems, obviously twining. The leaves are approximately $3 \cdot 5 \mathrm{~cm}$. long at most, and 1.5 cm . broad, with petiole about 3 mm . in length, rarely longer. A typical inflorescence consists of six to ten flowers arranged sub-corymbosely, with very slender pedicels a centimetre or more in length, set upon peduncles barely one-third as long. The calyx barely exceeds a millimetre in length, its lobes narrow and pointed. Corolla 5 mm . long, over four-fifths of this length attributable to the lobes.

RHAPHIDOSTEGIUM CEESPITOSUM (Sw.) AND ITS AFFINITIES.

By H. N. Dixon, M.A., F.L.S.

Mr first introduction to Rhaphidostegium spharotheca (C. M.) Jaeg. was a very pleasant one. It came in a box from Table Mt. with a magnificent bouquet of white "Cape Lilies"; it was a large and well grown form, and it gave the impression of being, among Rhaphidostegia, a distinct and well-marked species. That was when my acquaintances among South African mosses were very few.

I cannot say that closer familiarity has ripened the friendship. As more specimens acerued, it became evident that the original plant was by no means the only form, nor indeed the most frequent-rather, indeed, an extreme and unusually fine form, under the glamour of which the species had acquired in my eyes an undeservedly high reputation, which the subsequent forms did little or nothing to support. Not only were these, while structurally identical, much smaller and more commonplace, as a rule, but they began to evince an inclination to vary, and to diverge from what 1 had fondly considered a well-marked type, and to approach other Rhaphidostegia of a much more ordinary character, until it becane evident that one had to do, not with a single, well-defined type, but with a "Formenkreis" of considerable radius and an uncomfortably indefinite circumference; so that in course of time it happened with R. sphereotheca as with Journal of Botany-Mol. 58. [March, 1920.] G
cortor uther mat mals of late, that what to me had once heen a
 a)

 11 on 1 mot onls (as Brothems himself hat alreaty dome) that it

 that if - |rathe, with hin what homwheme of continental and insular

 whoth hail ernt into su far romavel a gronis as Leucomium. She duspilion abetal fimm-amel varictios of the species.

Nins 1 has latmed that in the sombwhat rume eases when a

 [d. mets. 16 , mity of these two. hat of seberal other deserilnel species

Theswh demeineman! West ludian plant, of this group have

nut to be included in the "Formenkreis" of R. caspitoszm, but it is at the far extreme of the forms; if it is to be so considered there would certainly be no need for the present paper, for all the characters which have been held to separate the plants $i=$ an here miting are of minute importance as compared with these two extremes. Apart from this consideration, then, C. Mueller's description of H. loxense gives no distinctive characters as separating it from H. coespitosum that will stand cros-examination. He describes the leaf-margin of H. crespitosum as " erecto vel vix reflexo," and that of H. loxense as "valde revoluto," but any stem of the plants under consileration will almost certainly show leares with margins erect and others more or less strongly recurved or reflesed side by side on the same branch. The form of capsule indicates, it is trne, some difference, which is certainly manifested on the actual plants, but it is not correlated with any other characters, and it depents to a considerable extent on the degree of maturity of the froit when gathered. 'The African phants show a greater diversity in form of capsule, while preserving the other characters unimpared.

Mrs. Britton and Mr. R. S. Williams have given some study to this group, and have a wide acquaintance with the South and Central Ameriean forms of Rhaphidosteginm. Mrs. Britton writes, in answer to my enquiries, that they have not had an opportunity of studying the principal types, which are in Europe, but that they have given some attention to the group and been puzzled by their variations; she has considered that R. loxense and R. galipense differ from R. cuspitosum in having the leaves more secund and the perichaetimm more serrate. She adds that Mr. Williams has not seen the West Indian plant growing, but is inclined to recognize R. lorense as distinct, and relies on differences in the perichaetial leaves, and the anownt of seration of the leares.

It was clear that the only way to resolve the problem was to examine the types. Fortunately, most of these are to be found at Kew; Hooker's H. loxense is there in good material ; there are two branches of Swartz's II. coespifosum in Herb. Hooker; and Mrs. Britton has transcribed for me some notes and sketches made by Dr. A. Leroy Andrews from the type at Stockholm. There is also an original specimen of H. lithophilum Hornsch., and a large series of plants muder various names from the West Indies and Tropical America.

As regards the perichatial leaves, these in R. loxense and R.cosspitosum types are absolutely ilentical. In neither are they denticulate; nor have I found anything amounting to denticulation in nearly all the forms I have examined; at the most they show an oceasiomal olscure subdenticulation or sinuation. I have rarely indeed found the perichretial bracts in any species of Rhaphidostegium so constant as they are through the whole range of at least the more robust forms of this series of plants; only in one (R. replicatum Besch. from Réunion) have I seen them at all markedly denticulate. Bescherelle separates this species from R. Duisaboanum mainly on the ground of the perichatial bracts "fortement dentées"- in the diagnosis it is simply "denticulata"-but this condition does not necur on the type specimens in his herbarium, where they are often distinctly dentieulate but mo more, and often mot that.

The difection of the leaves is certainly of no value; no series of thea phant enn the axamed withont finding every possible position, from pr ticills equally inhricated to strongly homonallous, with no eromhthentans : the types of R. loxense and R. cospitosum are neth or of them extreme furms, and that of R. loxense does nut show the hem sery strongly homomathous; while there is a deeded wenl mo (w) this direction of the leaves on one of the two hanches of 18. araphosum at Kew; and 1r. Andrews, in his notes on the type at Stwhhlm, writes: " Branches largely erect and not branching forther, lame falcate, secmul." He also indiates the variability in Whe capenle form hy demeribing them as "nearly as wide as long up to twon as long as wide."

The lases show some varialility as to acmmination and as to erectmen or wherwise of margin in both plants. The only print as th which there combl he any gnestion of difference, and that a minute onne, is that the leaves in R. cospitosum type show frequently, hut mut comtontly, a minnte close dentenlation of the margin near aper. This, however, is mot comstant. and 1 have scarecty seen it on any othr phant of R. cospitosum that I have examined, at least as at all a comstant chamarter. No. 2l113 of Mr. R. S. Williams's exsiowata of lmbivian plants, issued as sematophyllum corspitosum (sw.) , is instructive in this respect. It has many of the leaves fincly amoneulate as in the type, but at least an equal momber on the same stem show me dentienlatum at all. Most of the West Indian and South American phats under this mame show no denticulation whatcer of the leat-hargin.

There is some slight variation in leaf form, in length of seta, and form of capula, on the specimens, and as these variant forms occur on louth, phonts they rather contirm than otherwise their identity. I tho not domin for a moment that an impartial examimation of the two types, even without takine inte consideration the various forms in whech they oceur in luth their arats, womld lead anyme to pronounce them identioal, and 1 an inclined th think that the only cause that they hase heen on long hept apart is due to Hedwig's diawings and "Dand redmeription having ied to Lersken cusplitosa of Hedwig being taken as reprounting the II. corspitosum of Swartz.

My amm lunims, after stulying the types of 11 . cerspitosum Sw. and II. Iorraxe llank, as well is the original specimens of II. lithophilum Homoch. and II. Juisubuanum Mont., can perhaps lest bee

 *Tougemast if the kawn on the hatachers, I should be execedingly
 them .ust 11

Harige, wa 1 thatk. .ataldalul the iflentity of the two main gromps ai the wenft tmoncm phanto, and their identity with the African

 i a owele Ifouth, of wh h 1 have seen specimens of the originas
gatherings, are exactly identical with the plants already discussed. The species is, in fact, a practically cosmopolitan one throughout the tropical and subtropical regions of the Nouthern hemisphere, extending also into the temperate zone.

This point, however, having been reached, a much more perplexing one is to fix the limits of the species. In its more normal forms it is recognized at once by its robust habit and comparatively wide, and widely pointed-often, indeed, obtuse-leaves, very concave, with the margin usually more or less widely reflexed, especially where the leaf contracts to the apex; the erect, shortly and widely pointed entire or subentire perichretial bracts, the seta ranging round 1 cm . in length, but generally a little over, and the short, often turgid, capsule, with a more or less distinct neck, and usually suberect and only slightly asymmetrical, but often distinctly curved and sometimes horizontal or almost nodding. 'The areolation is often one of the most marked characters, the cells being rather short, with a linear-elliptic lumen, which in the broadly-pointed leaves often becomes much wider and shorter at apex, often quite widely and shortly elliptic, but is in most cases rendered more or less obscure and opaque by the cell contents or primordial utricle: the effect being a greyish appearance quite different from that of many species of Rhaphidostegium, where it is frequently chlorophyllous, elongate, and pellucid. 'This rather marked character, however, of areolation occurs in some other species which can hardly be included here, and its presence can therefore scarcely be taken as certainly indicating R. cospitosum; while quite a number of forms which I cannot separate from that species show a very narrow and not conspicuously opaque areolation. Broadly speaking, the short wide type of cell is associated with a wide and widely pointed, even obtuse leaf, while the narrower and more acuminate forms show the narrow and less opaque cells.

It may reasnnably be asked how a species supposed to embrace such extremes of leaf form is to be defined, and the difficulty must be admitted. At the same time, after examining many scores of specimens from all parts, I have only found one direction in which I have experienced any difficulty in defining the limits of the species. The perichætial bracts in Rhaphidostegium appear to me, as also in the allied genus Sematophyllum, to afford one of the most effective specific characters, and in R. cospitosum these leaves, erect, not greatly differing in size but usually narrower than the stem and branch leaves, with rather broadly tapering, not very finely acuminate points, entire or nearly so, are fairly constant throughout the range of plants which I refer to R. coespitosum. Add to this the short and turgid capsule, with a short but usually distinct neck, erect or slightly inclined, and usually slightly curved or asymmetric, not pendulous and very rarely horizontal, on a seta varying from $\cdot 7-1.5 \mathrm{~cm}$. in length, and one has a combination of fruiting characters not found, I think, in any other species with at all the vegetative characters of R. cospitosum. The difficulty that does occasionally arise is with the smaller and more slender forms, where both leaves and perichretial bracts tend to be narrower and more finely acuminate, with longer and more pellucid cells, usually correlated with a smaller capsule and

 the bame forms mader sarictal heads. 'Ther variations rinn on wh

 thos but a purdy ambicial elas.ibeation. One of the most distinet

 of the drican specter which 1 hatee vedued come mater this hate. bot I hase alo, fimml the samm leal limen in som, Sunth Americon

 atomat h^{\prime} sarspilosum, the forms with wide homamathons leaves aod on or wide e. ll.

 athe the - 15 fire it that it is shather with grite cative haves, more

show narrow and acuminate leaves, they pass insensibly into the form represented by No. 2135, and I even detected on Hampe's type a perichretiun which was just half-way between the filiform pointed bracts prevailing trere and the exactly cospitosum-like bracts of No. 2135 . R. agnatum must, therefore, be brought under R. coospitosum, and with it one or two other species which Mrs. Britton has identified with R. agnatum.
R. cucullatifolium (Hampe), type, coll. Lindig. Night well be the type of R. ccespitosum. apart from the entire leaves, and might well have been collected on Table Mt.!
R. subspharicarpum (Hampe © C. M.), type, coll. Glaziou. Has leaves rather narrowly acuminate and cells somewhat pellucid, but in all other respects agrees, and R. pulcinale (Hampe), also coll. Clazion, forms an adnirable connecting link.
R. Cutillum (C. MI.), coll. Sehweinfurth, ex Herl. C. MI. in Herb. Besch., shows a fine varietr of leaf apex, within the limits of a single branch; many being rounded and quite obtuse, but others apiculate, or acute; on some branches the leaves are complanate, on others homonallons.
R. fluminale (C. MI.), Cameroons, coll. Dusen, No. 665. Might well be the trpe of R. locense!
R. perlaxum (C. MI.), Cameroons, Coll. Dusen. Is simply a large lax form, such as occurs abundantly in S. American collections as R. lithophilum, \&e.
R. inconspicuum (Hornsch.), Brasilia, Rio Grande, ex Herb. Martii, Herb. Hamp., is simply R. coespitosum. The fruit is characteristic. C. Mueller's description in the Synopsis scarcely implies any difference from R. loxense.

Sematophyllum subuervatum Mitt. I have given this as a synonym without examination of specimens on the following grounds:In the first place, Nitten lad evidently been in two minds about raising it to the rank of a separate species, as he actually cites the type and only specimen on which it is based, under S'. coespitosum, only four pages earlier ; and in the second place, because the only difference he suguests as separating it from R. coespitosum is that the leaves are "superne angustiona."

So far, then, as I have been able to examine authentic specimens of the plants of this group, I propose the following synonymy :-

Rhluphidostegium cespitostal (Siw.) Jaeg. Adumbr, ii. 454 ($157.5-6$).
Hypnum cospitosum Sw. Prodr. 142 (1788).
Leskiea coespitosa Sw. Fl. Ind. Occ. iii. 1807 (1806).
II. densifolium Spreng. et H. pallidisetum Brid. Bryol. Univ. ii. 591. fide C. M.
H. lithophilum Hornsch. in Mart. Fl. Brasil. i. S1!
II. loxense Hook. in Kmuth. Syn. Pl. Equinoct. i. 62!

Neckera straminea Hornsch. op. cit. p. $54=$ Leskea circinalis Hampe, fide C. MI. Syn. ii. 326.
Hypnum inconspicunm Hornsch. op. cit. i. S6!
H. subsecundum Arnott, Disp. d. MI. 62, fide C. MI.

11．oblinnifolium C．M．in But．Zeit．1945，p．110，fide C．M．
liestors Duisulmana Mont．in Amm．Sc．Nat．18tū，p．97！
L．cmecinales Hampe．Ic．Musc．t．5！
Ilonterrin Leducemna Mont．Syll．p．13，fide Besth．as var． Lenluceanum．
 C．M．fide（C．M．Syn ii．325，et E．G．Britton in Bryologist，小i．ごい。
Hy／nun ！natipense C．M．in But．Zeit．1S．4s，p．iso，filde C．M．
II．tmomiense（C．M．loc．cit．，fide C．M．
Lesken Figelinna C＇，M1．in Limaa，1841，p．198！
H！proum spherothera（＇．M．Syn．ii．：33：3！
 fille C＇． 11.
H．dissulutum Sull．in I＇roc．Amer．Acad．v．249（1ヶ6i）＝Tr．guli－ prowe fide Jawe．
11．ntmistum sillt．op．cit．1861，p． $289=I I$ ．agnatum Hampe， file E．A．Britton in litt．
Serreodin tristıculus Mitt．in Joum，Linn．Soc．，Bot．iii．Suppl．， p．102：
Hypmum cncullatifolium Hampe in Ann．Se．Nat．sér．v．1sGon， 1．324！
Sematophyllum lamprophyllum Mitt．in Journ．Linn．Soc．，But． xii． $4: 16=R$ ．gulipense，fule E．（i．Britton in litt．
S．Inpluthecinm Mitt．op．cit．p． $482=$ H．agnatum Hampe，fide E．G．Britton in litt．
Rhynchostegium Hampri Besch．Proilr．Bryol．Mexican．p．105！
Hyphum Lecoulfrid Hub．Mem．Phyt．Sire．Genève，xxiv．S＇， file Berch．
11．Rewhillurdui Julb．np．cil．p．9，fide Besch．
lecucomam Robillardii Jaeg．Allumbr．p． 540 ．

 Fr．p．T®！
Pitisum hromaluphyllum Bexch．FI．Bryol．Antill．Fir．p．Tw！
 1． 7.36 ！
$1 /$ pminnale Hampe，op，cit．p．7：55！

－ に！
1：

11 alro－lomasum C．M．in Abhandl．Brem．vii．212！

li moln lirnth．in（lify．af Finska Yit．－A kad．Förh．1s90，p． 107 ！
l：Burnesh Ken．\＆Caral．in Bull．Soc．Roy．Belg．1590，i．p．152！

Aptychus longicollis Hampe ex C. M. in Bull. Herb. Boiss. 1897, p. 213.
A. semitortulus C. M. op. et loc. cit.
R. peralare Broth. in Engl. Bot. Jahrb. xx. 206!

Pterogoniella Stuhlmanni Broth. op. cit. p. 208!
R. perlaxum (C. M.) in Dus. MI. Camer. et Par. Ind. p. 1102!
R. Dicnemonella (C. M.) Broth. in Engl. Bot. Jahrb. xxiv. 273 !
R. Sauloma (C. M.) Broth. loc. cit.!
R. subcurvulum (C. M.) Broth. loc. cit.!
R. fluminale (C. M.) Broth. op. cit. p. 274!
R. chrysotis (C. M.) Broth. loc. cit.!
R glutinosum (C. M.) Broth. op. cit. p. 275!
Aptychus grammicarpus C. M. in Malpighia, 1896, p. 517!
A. concinuas C. M. op. et loc. cit. p. 275 !

SCHRANKIA MICROPHYLLA.

By James Britten, F.L.S.

In the Contributions from the Gray Herbarium, lix. 9 (Sept. 1919) Mr. J. F. Macbride publishes "Scuraykia microphilla (Dryand.) comb. nov." as the name to be substituted for the plant usually known as S. angustata Torr. \& Gr. I had made the identification in a paper on "Smith's Georgian Plants" published in this Journal for 1898 (p. 301), which Mr. MeBride has apparently overlooked, but had not made the combination-in those days many of us considered that the first name under the genus should be retained, and Dryander's description was published under Mimosa. It is, I think, evident that S. microphylla stands, but the circumstances connected with its publication are somewhat peculiar; and as the history which I gave (l. c.) has been somewhat amplified by further observation I will recapitulate here what is necessary of the former note and bring it up to date.

The description in the Natural History of the rarer Lepidopterous Insects of Georgia, ii. 123 (1797) is prefaced by Smith with the following heading and note:
" Mimosa microphylla Ait. Hort. Kew. ed. 2 ined. The plant in the plate is a species of Minosa, which will appear in the second edition of the Hortus Kewensis, and for the following specific character and synonym of which we are obliged to Mr. Dryander."

Neither name nor description appears in ed. 2 of Hortus Kewensis (1813), but their plare is supplied by Schrankia uncinata Willd. (Sp. Pl. iv. 1043 ; 1805) whose diagnosis is transcribed, with which Dryander subsequently identified his species. The history of the reduction is shown in the page of the Solander MSS. (xxi. 265) from which the description published by Smith was taken. Although Dryander was doubtless the sender of this, the MS. shows that Solander was the author both of the name and of the diagnosis; each was founded on a specimen from Bartram, in Banks's herbarium, which bears the name in Solander's hand. At a later period, Dryander practically rewrote the description, added synonymy, and identified the plant with Schrankia uncinata Willd., whose diagnosis

 －ロロゴ，1－5！an｜was aldal the therhamm，where it now is ；at

 fonl whe．Nof far ats atarly large series of herlatimm specimens

 tul in the National Herlarimu a speeimen labelleal by him＂s．．umri－
 wormonnls with S ．mocooplhylla and was distrilmted ly liugel
 a I thlin vim！e vansa．＂＇The two allu certainly，as Mr．Machoride ahr＂＂d abdy mated＂：it will have heen moted that Dryander was anem． 1 of thet iflutity atml that smith aloo matal them．

 I fatia（1）Wramer has writum＂mictophylla＂：his note in sol．

 ＜10105

 Lival ${ }^{\prime}$

SHOR'T NO'TE.

Bedfordsimie Plants.-Last Jume 1 met with a small patch of Carex dicisa in a damp pasture by a foot-path in Woburn Park, alout a fuarter of a mile nortl of the Abbey. All the plants I saw were slender in habit, and appear to come under the var. chatophylla Kiikenthal (C. chatophylla Steudel), but ripe fruit is needed to decide the point, and I did not gather the plant later in the year. This, so far as I ann aware, is the first certain record for Bedfordshire; there is no mention of it in Ablot's Flora, nor by any subsequent writer on the plants of the comnty, and the sedge recorded as this from Flitwick Marsh some vears ago turned out to be only C. oralis (ride specimen in Herb. Mus. Brit.). Inland localities for C. divisa are rare-indeed, the British books do not indieate that it is ever found far away from the sea. It has, however, been recently gathered on the banks of the Thames between Putney and Barnes, and I have also seen specimens obtained in $1: 575$ from near Hampstead Heath. In the Florall of Middlesex it is mentioned on the authority of L. W. Dillwyn as being plentiful in the Isle of Dogs. In West Gloucester it has been fuund in marshy pasture near the Wye at Beachler.Hypericum dubium Leers. In the autumn of 1918 I saw two or three plants by the roadside near Little Brickhill, on the borders of Beels and Bucks. Albot (Fl. Beds. p. 167) states that it was foume by Mr. Vaux near Luton, but there is no subsequent record.-Culamingrost is Epiypeios, a rare grass in Bedfordshire, was seen last year in some quantity by the side of a ride in the Woburn Evergreens. A. Brece Jackson.

REYIEWS.

Outlines of the Mistory of Botany. By R. J. Harvet-fidson, D.L., M.A. Demy swo, cloth, pp. x, 27.t: price lus. net. London: A. \& C. Black. 1919.
Few works on Botany could he more opportune at the present time than this handy volume, and all botanical students will be grateful to Professor Harver-Gibson for finding the time, during a long period of war-work, for putting together such a charming collection of exsays on the History of Butany, bringing the subject up to recent times.

The older standard work on the subject, that of Sachs (1875), although a elassic in its day, stopped short at 1860, and hence fails to visualize the rapid extension of more modern Botany, notwithstanding the elegance of the English translation by H. E. Garnsey (1890); and has even become tedious to read in view of the prosy specnlative and philosophical attitude of the older German writers, with whom it was more particularly concerned; while the prolix compilation of Reynolds Green (1909), written as a sequel to bring it up to 1900 , also fails to supply the deficieney.

Professor Harrey-Gibson's work has the advantage of having been tried on a class of students, and may be said to be written from the stamdpoint of the rising generation, to whom diseussion of such

Pensures an Erolutim an！lepigenesis，Spiral Theory and Metamor－ phons of effete－astms of classification，have nombang in view of the wider omthonk available since the time of Darwin，with a more correct appeciation of what evolutionary morphologr really consists in，non further introdnction to the gencral principles of systematy，

The new whme is concise invigoting，and wot too lomg．It is arrangenl in twelve chapters，each covering special ground；the lat three being deroted the the mure striking developments since 1901．Farlier chapters show a marked divergence from the stand－ puint，familiar in Sichs＇s History，which after all wals devoted more
 Lha for the German sebom．Thus Theophastus，as smmme up the lwanic iden of the Cireeks and adder civilizations，all largely hased on the is hation and cultivation of phant－types still of primary cconomic importane is given much ereater signifieanee；thongh this may be furty dhe the accessibility of the admiable translation of the diruk text ley Hort（1：116）．A similar eriticism－that Sachs had probally not taken the trouble to read the book－applies with equal fore to the dawn of phat－amatomy，as represented hy the remark－ abl．wolume by Neflemiah（ifew（ 1642 ）emphasized in Chap．II．No sperial interest attaches to the evolution of systems of classitication， when all were about equally wrong；and theoretical systematy eombld have little importance so long as the number and variety of forms de－cribal was insulticent to make any genemalizations possible．Of the earlier Eunfish systematists Ray is prefered to Morism；the lather is esen alluded to as a cantankerons persom，though a glanee at the volumes of his Mistoria，with their numeroms eopper－ phate and coats of arms of the mobility who paid for them，is very illominative of the indomitable persevemace of Morison and of his worrien in publation；an encmuntuee from which Ray was wholly free．The writinge of the serat Linnarus are also fitted into their jun pusition ：s tivishing off the brok－work of his predecessors，and conmalidating the fommations of the scemer without necessarily adding anything new；mal similarly the＂Natural System＂of Jussien （178：？）is batancel by the even more signifiemut obsorvations of Surane（ 1 gan on the relation hetween flowers and insects，as open－ the up one eho to what dhwers really mesn ：as in other tranches of
 A，施年 of the phytulley if autrition．

 we cone to tome withe lin ins emenory，hone dombthully of historical aluo：anil th rable ertention of the science in cerery direction camot

 and whalohas of minthen，aseont of sip and even stelar theory，
open up so many new vistas beyond the dreams of older schools, that the subject of Botany attains a wholly new connotation. In summing up some of the more important lines of development, the author ingeniously solves the problem by introducing lengthy quotations from authorities still living; and thus Bower is made responsible for views on the origin of antithetic alternation of generations (p. 179), Seott for the relation of Spermatophyta to Ferns (p. 257), and Hallier (p. 259) on the relation of Angiosperms to Bennettite.

The final chapters (since 1900) again emphasize equally new and striking aspects of the science, as the rise of Mendelism, and conclude with interesting pronouncements on the remarkable extension of Fossil Botany, Ecology, Energy Relations, and Sensitivity, as also the future systematy of Angiosperms. It must not be forgotten that the History of Botany includes not only the story of the progression of the human intellect in approaching the more intimate comprehension of a great and independent section of living organism, often with most imperfect tools; but is quite as much the record of human stupidity and perversity, adherence to preconceived ideas, theological, philosophical, and even in recent times zoological, anything rather than direct appeal to the living plant itself.

Even if one may not be always inclined to agree whole-heartedly with the author in estimates involving so many conflicting standpoints, it is a matter of congratulation that an English botanist can have opinions of his own, and does not mind printing them. Each lecture has a useful bibliography, restricted to papers which should be within the reach of students. A useful table expressing the parallel progression of the different branches of the science, in terms of the leading lights of the older and more modern world, would have been clearer if set up in type. The book is neatly got up; considering the enormous amount of digestible information, it is not expensive, and it is easy as well as delightful to read.

A. H. C.

Applied Botany. By G. S. M. Ellis. Pp. i-viii, 1-248. With 67 figures and 2 maps in the text. Hodder \& Stoughton. 4s. 6d. net.
This beantifully-printed volume, neatly bound in dark-green cloth, is one of "The New Teaching Series of Practical Text-Books" -a series which, announces the wrapper, " is one of the first-fruits of the New Humanism, and breathes the inspiration of the hour's occasion : it strives to build up the New Humanism on the basis of the student's immediate economic interest and enviromment."

As to how far the rolume before us realizes these lofty ideals we do not renture an opinion; but we can say without hesitation that Mr. Ellis has produced one of the best introductions to botanical science that we have seen. The title, however-derised, doubtless, to fall in line with the "New Teaching Series,"-is scarcely appropriate. An intelligent student of farming, having studied the book, might have some claim to a knowledge of the broad general principles of Botany, and be prepared to assimilate rapidly higher branches of the subject; but his studies would not help him to improve his crops by any application of his knowledge.

 bis mien jeronle wim. But the simple stye is alwats attenderl by

 whi h the taill up their tissus ": amil fremontly throush the lirst

 then ats of re torlearly in al heok which hass for the title of its liss! "huter the theal onm of octhe living llant."

Ih diot tive chapters leal principally with the water-factor:

 "It romment." the bext sixare devoted tothe soil alance. C'haptersis.
 trove werty than any other section of the book; but it comprists

H. W. W.

applications of botany as well as the pure science. A circular letter sent to representative overseas botanists elicited replies in favour of holding such a Congress. The matter was eonsidered at a meeting of British botanists at the Limean Society's rooms on Jannary 2s, and a circular letter has also been sent to a number of botanists who were unable to be present at that mecting. In view of the somewhat divided opinion among home botanists as to the desirability of holding a Congress in the present year, and having in mind a suggestion from a prominent overseas otficial botanist as to the advisability of holding a British Botanical Congress simultaneously with the proposed British Empire Exhibition in September 1921, the Executive Committee have recommended postponement until that date.

The Essex Nuturalist (xix. part 2; July 1919-Feb. 1920) contains an interesting paper by $M 1$. Percy Thompson "On an Annotated Copy of Richard Warner's Plantre Woolfordienses." Mr. Thompson shows that the notes are in the hand of Benjamin Meggot Forster ($1764-1529$), whose plants are in the collection of his better-known brother Edward, now incorporated in the British Herbarimn at Cromwell Road. The history of the rolume is traced, and the MS. additions are printed, with facsimiles of two pages of Wamers book and two of B. M. Forster's letters; the whole is the result of full and careful investigation. The part also contains the conclusion of Mr. Miller Christřs paper on Samuel Dale, and a Presidential Address "On some Water-Plants" by Niss Lister-an excellent example of a paper which is at once popular, scientific, and of local interest. We note that Alisma natans "grows in more than one of the [Epping] Forest ponds, introduced probably by the agency of a hotanist - the same, it may be assumed, who was responsible for the introduction of Actinocarpus to various localities. Mr. Hemry Whitehead has a note on the Rubi in the Essex herbarium. An account of the October fungus foray contains the description of a new species-Marasmius obtusifotius Rea.

We have received, somewhat late for notice, two papers published by M. E. L. Gerbanlt in the Bull. Soc. d'Agriculture Sciences et Arts de la Sarthe which should be of interest to British botanists. The earlier (1916) deals with Selum micranthum Bast., which has been usually considered by British authors (Hooker, Babington, etc.) as a varietr of S. album, but in Lond. Cat. ed. 10 was raised to the rank of a species. M. Gerbault shows that the two plants may be satisfactorily distinguished by habit, leaves, and flowers, and adds figures explaining the text. 'S. miciranthum differs from S. album in heing smaller in all its parts, by its more spreading dichotomy, its shorter blunter and less compressed leaves, more rounded sepals and more globular buds, smaller seeds, etc. In vol. xlvi. (1917-1S) the author treats exhaustively of the forms of Ramunculus repens, of which he distinguishes six subspecies: Bernardii, latifolius, Desportesianus, angustifolius, scriptus and reptabundus-the last already deccribed as a species by Jordan, lately admitted as British. Distinguishing characters are taken from habit, leaves, hairs, sepals, petals, nectaries and stamens; the author has gone very carefully into the more minute differential points, as to which the slietches and plates are of great assistance.-C. E. S.

Flemenfary Notes on the Meproduction of Angiosperms, hy d. H. ("hunh, M.. (Oxfonl C'niversity Press; Botanical Memoirs, No. 5 . Z̈s. nt.), contains the seherlales of ten leetures, each oecupyW上 the twosides of a page, which cover every aspect of the subjeet, the las lenture treating even of hybridigation. Schlom have we seen so moth information crowded into so small a compass; the " mute." in fact, womld mate an excellent resumé upon which to base an exhaustive detaled account, a volmme of a thousand pages. " "ram-lxoks"-and the one hefore us recalls analyses of Politieal sid the and l'aley's Ėbitences of ante-" L'relim." days-need an apmbey: and Dr. 'Church has provided one concluding his lectureahertules, which he heals, signiticantly "Minimum Botany." The Hast we cons say of this proxuction is that we are inelined to envy the stul onts who hat the privilege of hearing l)r. Chureh's lectures.H. F. W:

Tue Eleventh Reprort of the Botany ('ommittee of the Devonshire Assoriation for the Advancement of Science, edited by Mr. Hiern, comtains an amonunt of what has heen pmhlishel recently on the flom of the comity in which the papers lyy Mr. C. I'. Hurst and . Hiss Lister in this Jommal for 1915 are summarised and the additions, inchuling cryptugans, made hy local observers for each distriet are chnomielel. 'Ther Poppies and Violets of the 'Torquay distriet have rectised mach attention, and Miss Larter records a curions form of ('ornus Ranguinra "with long drooping meemes formed ly the gall ()ligorrophus Corni; they had the appearance of ivory flowers dennoling from the stems."

T'wn years ago we photed from the Evening Veus some verses on ther ('oltafori, as commemorating a plant whose praises wore not often swag. The same justification applies in at least equal degrec to the Gromndal, to whom the same author hats now, in the same paper (F゙ib. lit), dedieated the following :
"The groundsel is a homely follow Who seldonn gets his due.
Who cares if his small thag of yellow Flies all the winter thrmgh ?
He has nu claim to strungth or grace, No subtle charm of form or face.
" But in this year of springtime wonder ('ompanions lirave as he
Whon push the prison liars asmmer Anl, daring to lie frew,
Attract all fos and leave him more
Nesglected than he was lo fore.
" And is the gromedsel, then, dujected : No, splemdid little chapp.
"I" somly just what herexpected, 11. dinemn't care a rap!?
11. is content. If that lie yields

The richest crop on fallow firlds.
(. 1\%. 13."

THE BOTANY OF THE MAROCCAN MIDDLE ATLAS.

By L. V. Lester-Garlayd, M.A., F.L.S.

In the summer of 1919 Captain Hubert Lynes, R.N., thanks to the assistance of General Lyautey, the Governor of French Marocco, was enabled to make a stay of ten weeks at Azrou, a poste militaire about 70 km . S.E. of Meknez, on the lower slopes of the Middle Atlas range. His first object was to study the birds, but he also made a collection of plants which he has kindly presented to the Herbarium of the British Museum (Natural History). In view of the inaccessibility of the Atlas owing to the hostility of the Berber tribes-even in the daytime Captain Lynes was not allowed to explore the neighbourhood without an armed guard-it seems desirable to publish a list of the plants which he brought home, some of which are of considerable interest.

The plants all came from what may be described as the middle zone of the range, between 4000 and 6000 feet. An account of the geology and topography of the district will be found in Captain Lynes' paper "On the Ornithology of the Maroccan Middle Atlas" in the Ibis for January, 1920. It must suffice here to give one or two of the main features. Immediately above Azrou there is an abrupt incline of about 2000 feet, which is more or less densely covered with forest. At about 6000 feet this is succeeded by a considerable plateau, the greater part of which is devoid of trees, but which is studded in places with "volcanic kopjes" on which Cedars grow and extinct craters which are richly clothed with vegetation. The plateau in places succeeds the forest zone abruptly ; in other places there is an intermediate region of "barrens" and scrub. The slope consists chiefly of Jurassic limestone, the plateau "almost entirely of voleanic tufa and basalt."

The plants in the following list have been divided into four groups according to their distribution: (1) Those which reach Mid or even North Europe; (2) Widespread Mediterranean species; (3) "Local," i. e. those only found at the extreme west of the Mediterranean region ; (4) Endemic in Marocco or the Atlas. The order followed is that of Engler and Prantl :-

Taxus baccata L. Edge of barrens, uncommon. (Mid Eur.) Cedrus atlantica Manetti. $5000-6000 \mathrm{ft}$., abundant. (Endemic.) Juniperus Oxycedrus L. (Medit.)
J. phoenicea L. Barrens, 6100 ft . A few trees. (Medit.)

Ductylis glomerata L., Poa pratensis L., P. bulbosa L., Festuca arundinacea Schreb.? Common on the plateau. (Mid Eur.)

Frstuca indigesta Boiss. Plateau, 6200 ft . (Local.)
Haynaldia hordeacea Hackel. Platean, 6200 ft . (Endemic.)
Tulipa Celsiana Redouté. Linestone, edge of upper forest. (Medit.)

Scilla hispanica Mill. Mid forest tapis. (Local.)
Ornithogalum umbellatum L. Plateau, (Mid Eur.)
Muscari neglectum Guss. Mid forest. (Medit.)
Journal of Botamy.-Vol. 58. [April, 1920.]

U，hays terthometaren Willd．（Medit．）

Qumerus I ar 1．Fornt．（Medit．）
（ \quad mastum derense L．（Twoforms．）Plateau．（Mill Eur．）

silne fivist，Link．Fomet．（Mclit．）
Dianthus riryinens L．Foon－hills and harrens．（Mid Fime．）
Patnin wrallina Ricte vals，cortacen（Boiss．）．Mid forent． （lowal var．）

Romunculus rharophinllus L．f．Plateau．（Medit．）

Bisentilln firutrstrans Cors．Limestone rocks in upper forest． （lamal．）

Hheris fumeran D（：Mid forest．（Medit．）
Isatis tincloria L．Un tufa．Timadit voleano，6200 ft．（Mid Eur．）

Arobis albilla stur．Ipper forest．（Medit．）
Er＇ysinum mustrule J．Gay．Platan．（Min？Eirs．）
－Il！nssum montanum h．Sial forent tipis．（Miol Einr．）
－A．＂pestre L．On limestane，（ilou ft．（Mill Eur．）
Resolu luteola L．I．Scorbaceous sides of＇Timadit meleano．（Ilid 1：ur）

Astrocurpus（＇lusilis Gay．Volamin rocks．Plateant．（Medit．）

Sursifong＂granulata L．var．allantica B．© li．Forest．（Mid Eiur．）

Rihiss（irossularial．Mid forch．（Mid Eur．）
Pirus tarmmalix Mill．
C＇ratuegus munogynu Jaty．Ahmudant on the＂barrens．＂（Mlid E：ir．）

Patentilla hispranica Zimm．Ciorge in forest．（Lacal．）
Prunus prostrata Lat．（rater int the platam．（Medit．）
P＇．Malahich L．L＇pur forest．（Mid Eur．）
Ciemista whem＂spath．Latwer foreat．（Bimdemic．）

Anthyltix rulnerarial．f．＂pper formatedge．（Nid Eur．）

（i．railla matentrin L．All ittitudes．（Medit．）
Oualirycheratura L．f．Liatens．（AD Eidr．）
Lathyrus（ 1 roblus）cancecns（iren．©（iontr．Limestone in upper frome（Maht）

Vimen tenufinlia Roth．（Mid Eiur．）
1．onsurychomber 1．Furest．（Medit．）

G. molle L. (Mid Eur.)

Erodium mauretanıcum Coss. \& Dur. Ain Leuk, 5000 ft . (Endemic.)

Linum tenue Desf. Foot-hills, 4400 ft . (Local.)
Euphorbia nicaensis All. Volcanic kopje, 6200 ft. (Medit.)
Ilex Aquifolium L. Mid forest, abundant. (Mid Eur.)
Acer monspessulanum L. Upper forest. (Mid Eur.)
Pistacia Terebinthus L. Lower slope. (Medit.)
Malope malacoides L. (Medit.)
Malva Tournefortiana L. Lower slopes. (Local.)
Hypericum montanum L. Upper forest clearings. (Mid Eur.)
H. perforatum L. Foot-hills. (Mid Eur.)

Cistus laurifolizs L. Upper clearings and kopjes. (Medit.)
Helianthemum glaucutm Boiss. Common. (Medit.)
Halimium Libanotis Lange. Common in the forest. (Local.)
Tuberavia guttata Gross. var. plantaginea (Willd.). (Mid Eur.)
Lythrum flexuosum Lag. Forest. (Medit.)
Sanicula europara L. Forest tapis. (Mid Eur.)
Anagallis linifolia L. var. collina (Schousb.). Forest clearings. (West Medit.)

Jasminum finticans L. Lower forest. (Medit.)
Eiythraa major Hoffm. \& Link. Among Ilex scrub. (Medit.)
Convolvulus althrooides L. Open forest. (Medit.)
Cuscuta Epithymum Sm. Barrens: on Thymus. (Mid Eur.)
Cynoglossum cheirifolium L. Scoriaceous sides of Timadit. (Medit.)

Onosma echioides L. Scoriaceous sides of Timadit. (Mid Eur.)
Teucrium Polizm L. var. Terrace, 4700 ft . (Medit.)
Nepeta reticulata Desf. Barrens. (Local.)
Salvia lanigera Poir. Forest. (Medit.)
Calamintha alpina L. var. parviflora Ball. Plateau. (?Endemic var.)

Thymus ciliatus Benth. Lower forest. (Local.)
T. hirtus Willd.? Plateat. (Local.)
T. zygis L. Lower slopes. (Local.)

Atropa Belladonna L. Upper forest clearings. (Mid Eur.)
Scrophularia cunina L. Timadit volcano. (Mid Eur.)
Linaria heterophylla Desf. Upper forest and plateau. (Medit.)
Teronica rosea Desf.? Plateau.
Bartsia Trixago L. Lower slopes. (Medit.)
Galium lucidum All. Terrace. (Medit.)
Asperula hirsuta Desf. Forest. (Local.)
Sambucus Ebulus L. Forest. (Mid Eur.)
Tiburnum Tinus L. Forest. (Medit.)
V. Lantana L. Mid forest. (Mid Eur.)

Lonicera implexa L. Lower forest. (Medit.)
L. arborea Boiss. Forest. (Local.)

Centranthus Calcitrapa L. Plateau. (Medit.)
Fnautia arvensis Koch? Barrens. (Mid Eur.)
Campanula Trachelium L. Glabrous form. Mid forest. (Mid Eur.)

 Ifiachrysun luctoun（ioss of Dur．Platem．Abundant．
（？Buld mic．）
－folleyah intrarifilial Lower shopes．（Memit．）

Stomen grimutous．Ihes．By a stream．＂Stem four inches in

Colanera pullata L．（Killow thowers．）Oןen forest and phaten（bucil．）

C．arollara Wilh．Phateau．（Nid Eur．）
O．sulmanticen L．Vobeanic kopje．（Malit．）
honemphyllwn lanntum ）（＇．Trertace．（Mcelit．）
（intuchtis tummontusu Manch．
（＇utumberhe cormlou L．Rife on voleanic koppies．（Mrdit．）
Cochorum Intybus L．var．＇Termec，among wheat．（Mid Eur．）
I＇erhap the mest markable feature of this list，so far as it goes， io the large proprtion of species chamateristic of the hill distriets of ＇：mpal Fhron．．Howker and Ball unted the same fact in comection with the momentan thora of the（ireat Athas further south．It may therefore be recrambed as welmitely established that there is a very chase comention liet ween the flera of the whale range and that of the hills and mementain－of Europe．

The lustany of the Lesser Atlas and the other momitain－masses of Age ran in petty well known，thanks to the resurnes of Battandier and Trathe sal ail the phant－fomm lef Captain lanes，with the：exeeption
 T．Alpitie．Un the wher hand，all we know of the flom of the cireat Athis is derivel from Howker and Ball＇s Jourmal of＂Tour in Sheran an！the（iroul Allas（1くら），aml a collertion of plants
 plant－meorded in Lailis patur on＂The Momatain Flora of Two tatlesa in the＂ireat Athas＂in Appempix \＆it the Journal，only 34

 Dall and Thomson were alde to penetrate into the＂pper reginis above

The followinz phats require a spomal note：－
Pecentallu hispunion \％mom．This is the plant which Willknm and lanke call f^{\prime} gransulpunicul L ．．and has heen recembed under that name from sumben Somand Matoceo．But Wolf in his Monn－ graph of Pamentulla has shown that this was a mistake，and that there are ther．rellated，lint distinet，phants with different areas of darohatumb－（1）I＇．penusytranion 1。．North America and East
 whith is famd in somth Sipin（ $1.500-1400$ ）metres），and the mom－ tans of Algers．Marono，and Alysinia，with a varioty in the Chmenn．The materinat athe Britioh Musem and at kew bears

1915, p. 72, plate; Battandier, Contrib. Fl. Atlant. p. 25) is another remarkably fine plant with drooping racemes of large flowers and silvery leaves, of which no specimen seems to have existed in this country up to the present time. Captain Lynes informs me that it grows among the cedars and springs up in great quantities where there has been a clearing or after a tire.

Erythrea major Hotfm. \& Link is a plant of the type of E. ramosissimu Pers., but is distinguished by the larger, deeper-coloured flowers, with a longer corolla tube and more deeply-divided limb with acute segments. The anthers are exserted, and after dehiscence contract into a very elegant spiral coil.

Veronica ?rosea Desf. I have seen no specimen, and suggest the name with some diffidence; but judging from the description the plant appears to correspond very closely to what Battandier and 'Lrabut understand by V. rosea.

BRITISH RUBI, 1900-1920.

By the Rey. H. J. Riddelsdell.

This paper is an attempt to summarize the changes in our ideas about Rubus (in Britain) which have taken place since Mr. Rogers published his Handbook. In the majority of cases, the changes are directly due-so far as English botanists are concerned-to his work; the remainder have always been made under his guidance and with his consent.

My aim is simply to reduce these changes, most of which find their record in this Jommal, to convenient shape for working purposes. Mr. Rogers some months ago kindly expressed complete approval of the plan, and indeed lent me his interleaved Handbook, which contains all the material and references here grouped. The paper, therefore, does nothing more than mention new forms, revisions of nomenclature and arrangement, corrections in description, and the like, belonging to the last twenty years. The distribution question is hardly touched. The tenth edition of the London Catalogue, of course, marks a stage in the process of development which is here sketched. There is nothing original in the paper, but it is hoped that it may enable workers in Rubus-now, alas, too few !-to carry on with greater ease.

The numbers referred to are those of the Handbook: any number followed by " a " indicate a species not in the Handbook and the position which it should hold in the list:-
6. R. plicatcs Wh. \& N. var. hemistemon (Genev.) $=$ pseudohemistemon Focke. Joum. Bot. 1905, pp. 73, 199.
7. R. vitides Wh. \& N. subsp. opacus Focke becomes a full species. Journ. Bot. 1914, p. 180. In the description of sepals delete "greyish-green."
9. For R. integribasis P. J. Muell. read R. cerestensis Sudre \& Gravet var. integribasis Rogers (non P. J. Muell. '). Journ. Bot. 1914, p. 179.

 y barter of the whote.
 an mature is of exaptimally strong plants: the temm. It. is mur' uthen mitite or emaranate.

 1) 194.

201). Ii. vivembuts P. I. N. After var. Nilumam, add var. (1. I.

 wi.h mone tramate and irmenlarly-toothint tup. I'an. nsually withent -ample Horat lo.. lant with many short-ntalkme glands. Newinay diatrit. N. Cimmatl, atmmbant. See Jomm. Bot. 1909, p. 171.
liar yluhoutis bah. ". P'an. . . less leafy above." Fom this,

 or *
21. Li. Sint'ran lombeh. Stem is subghations. or glabrous.

 ('humbl lamb formi. This var. has at par. with 1 ur : simple ls.

 otto tive glienfoll at lims

perics Rogers. Now treated by Focke as a distinet species. Journ. Bot. 1914, p. 181.

35 a. R. chlorothirses Foeke. Journ. Bot. 1914, p. 207. Derbrshire.

3̊. R. Questrerii Lefv. \& Muell. Delete last sentence; the Co. Down form is now described as R. Lettii liogers.
42. R. orthoclados Ley. Stem is hairy or subglabrous, polished. On the suggested hylrid origin of R. orthoclados, see Journ. Bot. 1914, pp. 1১1, ?.
43. For R. molys Gren. \& Godr. read R. hrpoletcels Lefv. \& Muell. Journ. Bot. 1905, p. $2^{2} 2$.
44. I. himtifolies Muell. \& Wirtg. For var. danicus (Focke) read var. orbifolius (Lefv. exs.) Boulay in Rouy \& Cam. Fl. Fr. vi. 22: for var. mollissimus (Rogers) read var. subcanus P. J. Muell. in Boulay, Rone. Vosg. p. 34, No. 27 (1866). Journ. Bot. 1914, p. 204.
45. R. ificus Rogers. Add var. or f. minor Rogers MS. Stem densely hairy. Lts. rather small and narrow, with nearly parallel sides and more deeply incised irregular teeth towards the point. Pan. narrower, mueh less robust, and more nearly pyramidal in outline, usually considerably glandular above. See Journ. Bot. 1910, p. 318.
47. R. ueccostaches. Read "Sm. (not Schleich.)."

For var. gymuostachys Genev. read macrothyrsus J. Lange. Journ. Bot. 1914, p. 203.
48. R. lasioclados Focke var. longus Rogers \& Ley. Journ. Bot. 1906, p. 58.

Before 49 add [R. egregitus Focke] var. plymensis Focke, var. nov. Near Plymonth. Journ. Bot. 1914, p. 204.

49 a. R. Lettir Rogers. Journ. Bot. 1901, p. 381.
$53 a$. K. mucronatoides Ley. Hundbook, p. 55, 1. 8 from bottom. Journ. But. 1907, p. 446 .
55. R. anglosaxomicts Gelert subsp. vestitiformis. Read "Prk. many, unequal, rather scattered." Note: remarkable for its range of variation from trpe unglosaxonicus to leucostachys. Usually (mueh) nearer to the latter in general aspect, though with different armature and flowers and rather less hairy stem.-W. M. R., Sept. 1913.
56. For R. melayoytloy Muell. \& Wirtg. read R. furticolor Foeke. Endemic. Journ. But. 1914, p. 206.
60. R. Drejert G. Jensen rar. hibernicus Rogers. Delete "roundish" in deseription of term. It.

Add var. dunensis Rogers. Journ. Bot. 1901. pp. 3S2, 3. This covers the " more strongly-armed allied forms" of Haulbook, p. 63.
61. R. radela Weihe subsp. sertiflorus (P. J. Muell.) is removed to the sub-Koehleriani as a subspecies of R.ericetorum Lefv.; see Journ. Bot. 1906, p. 59. The "nearly allied form in 3 Scottish Counties" (Handbook, p. 64) is var. scoticus Rogers \& Ley. (Journ. Bot. 1906, p. 60) placed also under R. ericetorum.
64. R. olgocladeds. For" Muell. \& Lefv.?" read "Rogers." It is not Muell. \& Lefv.'s plant. Journ. Bot. 1914, pp. 205, 6.

Var. Newbouldii is of Rogers, not of Bab. Journ. Bot. 1905, p. 364.

Vir．B7arrmmans（＇alem．Delete＂rather short＂in description ＂f puini．l．：
 1．1：9．1．＋frem 1．p．
（is．Ii Mrhanmamas Fonke．Delete＂short＂in deseription of

（i）If lismonioval bell－salt．Liemove var，phyllothyrsus （F゙oter \％

 いたみごい。

 fiom his intar as： 1 Itamllowho and alparently was not homght into fromal for her him whon he was in ative work．
 spmetiee rank．

 from Ibamank．

 1s a math fi－1

 1！n1．1．1：

All fith co cale rorus Ringer Mis：dintinct from buth（：）sull－

TROPICAL AMERICAN RUBIACEE.-XIII.

By H. F. Wernhlam.

(Continued from Journ. Bot. 1919, Supplement (Manettia).)

The Genus Coupour.

At the end of his Histoire des Plantes de la Guiane Francoise (1775), Aublet adds a supplement, and with the expressed purpose of including therein "..... plantes dont on n'a pu se procurer des caractères complets." The very nature of this arrangement should inspire a certain confidence in the author's descriptions; but the result has been very different, as the sequel shows, in the treatment of the genus Coupoui, described for the first time on pp. 16, 17 of this supplement and figured in plate 377.

The conspicuous tree ("arbor procera") upon which Aublet founded this new genus was generally familiar enongh locally a century ago to have a name in the Caribbean vernacular-Coupoui-Rana; the first part of this Aublet adopted for the generic name. He describes the regetative parts-form, branches, wood, bark, and leaves - with the care with which so many of his genera were founded and have borne the test of subsequent research. The flowers, he tells us, he has never seen-"je ne lai point vu en fleur." The fruit he describes in detail, in Latin and in French :-" sa forme approchoit de celle d'un citron . . . couronné par cinq lobes du calice. Il ne renfermoit qu'une seule amande. Il étoit en fruit dans le mois de Mai." Aublet found it growing on the banks of the Galibi river, and so he named the species C. aquaticu. He offers no suggestion as to its affinities, generic or otherwise.

It was left to John Miers to associate flowers with this plant, more than a century later. Miers found Aublet's type-consisting of two of the very characteristic leaves, detached-in the National Herbarium; and he matched them, accurately it would seem, with specimens collected by Nartin at the end of the eighteenth century in Guiana, now preserved in the same herbarium. These latter bear leaves and flowers clustered together at the extremity of twigs, all arising apparently at one transverse level.

In his Apocynacere of South America (1878) Miers introduces a genus Cupirana (p. 15). This, he says, " is the Coupoui of Aublet, who figured the plant and unripe fruit only, which is represented as if crowned with a superior calyx-a mistake originating in the inversion of the detached drupe." Miers offers no kind of evidence to support the all-important statement that I have italicised ; but, after pointing out that, as a result of this " mistake," most botanists had referred this genus to Afyrtacece, he draws the entirely unwarranted conclusion that "its true place is unquestionably "in Apocynacece, as I have ascertained by flowering specimens of the same plant collected in Cayenne by Martin."

It is clear that the flowers of this plant were unknown to the leading systematists in the interval between Aublet and Miers; all accepted the description due to the former. The genus is umoticed
throughont the Lamem literature. Lamarek (Eneyel, Mcth. ii. 117

Mortum dubia." with the remark "Flores igmoti." Bentham and Howher wor the first statematiats to gness the family to which this
 tiow er their determination amomes to little more than a gressas withes their erromens surgestions of its atlinition within the
 rem ios Coupmi from Myrtacear and relogates it to Prontayonia, in the group ('ateshorece of liubinere-a tribal atfinity inadmissible
 and the astivation of the comolla.

Mres tratame of Anblet: momelature is more than dratic

 art. His). ('ompuri, ho feans, might lie conformedel with ('ouprin, (mupur, and r'upia, wh he procereds thereate real confusion be naming th." ц"mus C'upirmu, i.e. "wild "Cupi, "to distinguish it from the

 Bullon, in his Hastuire des Pluntes, x. 17ti (1535), restores the

 © Blthont.

It all the rimentrancon it would smom hest to follow Patlon in

 than mens ofler name that till stand withut question.

1 han ermbinal the flowers of Martin's specimens referred to

 it the has-usmel fanls. I lave foum no femate flowers, mufor-

pentamerous (op, cit. 17-"couromé par cinque lobes du calice "). An isomery as between male and female is a condition by no means unusual in the case of declinous fluwers.

The inferior fruit and sympetalous corolla point clearly to Rubiucea as the family to which Conpoui may be assigned; and this conclusion is supported by the whorled arrangement of the simple leaves, with their entire inargins. The fruit is Heshy, apparently, containing a single large seed; but in spite of the last-named character, it would seem that Coupoui should be relegated to the multiovulate section of Rubiacece (see Wernham in Journ. Bot. liv. 320 (1916)). The diocism, the contorted astivation, and the external aspect of the plant leave little doubt that the genus is related to Duroin and other allied members of the tribe Gardeniece in which the sexes are separated-eonstituting the subtribe Cordierea. 'The buds of the male flowers in Coupoui bear a striking resemblance to those in Amujoun, Durnia, ete. Moveover, the Eugardeniea display a decided general tendency to reduction in the number of ovules and seeds, correlated, probably, with the tendency to increased size of the latter: many species of Triccelysio, for example, and its allies Diplospora, Kralssia, etc.. have fruits with few seeds-from three to one. This tendency, however, has not been noted in the Cordierea hitherto, so that Coupoui is readily definable as a genus upon this character alone. Other critical chamacters are the arrangement of the male flowers in many-Howered clusters, and of the female, two or three together temmally npon the twigs ("bini aut termi, subsessiles, terminales," according to Aublet); and the whorled arrangement of the leares, with the fugacions stipules.

Miers deseribed a second species of his Cupirana, based upon another plant of Martin's collection, and a third, collected in the Para district of Brazil by Ducke, is deseribed below. It is remarkable that this should have escaped the notice of Brazilian collectors prior to the present century; Couponi has no place in the Flora Brasiliensis.

The genus, then, comprises three species, all in the National Herbarium, readily distinguishable by the following clavis:-

Leaf-stalks much exceeding the flowers; leafbase auriculate-cordate.	aquatica.
Leaf-stalks not exceeding the flowers, or barely so: leaf-base acute.	
Calyx-limb truncate, entire	Martiniana.
Calyx-limb conspicuously toothed	brasiliensis.

1. Coupoli aquatica Aublet, Pl. Guian. ii. Supp. 16, t. 377 (1775). Cupirana Aubletianu Miers, Apoe. S. Amer. 15 (1878).

Gelana. Galibi river, French Guiana, Aublet! Cayenne, Martin!
2. Coupoti Martisina Wernham, nom. nov. C'upirana Martiniana Miers, Apoc. S. Amer. 17 (157).

Guiana. Cayeme, Martin!
3. Coupoui brasiliensis Wernham, sp. nov.

Arbor, ramulis validissimis subteretibus insigniter corticatis apicem
 prsitarmon omstis con－pienis．Folin magna subertacea，elliptieo－
 vix acuminata ha－i acuta lere cuncata，supma glaberma subpolitat suhtus in somis primariis meenm retionda intervenionte manifesto munti－ame strispllusa aliter glabrata，venis primariis subtus promi－

 － 1 pra aly

 tuhus цracilinaculis；entycis tubus tubulari－infundibularis magus लिtus brevitar memon motabiliter serieens．dontibus acotissimis con－ －picuis limenti－lameonlatis coronatus：coronle extus suriceae tubus latus ancuste infumblabaris lohis brevior ovato－laneeolatis acmminatis acont小－imis．
liuntu．Para，Rion＇lapajoz，rógion dos C＇atametes inforienres：
 ＇Timanha，Riw＇Trombetas，Durlie $1116: 3$
latace about 10 am．long．Is cm．hroad；petiole 6 cm ．or more in loneth：primary lateral weins．In patice Frlomal pediects nearly ：cmin．in length，with aprage transerse diameter of 1 \％man at

 is bery hort，hut comspiemmsly shanp，teeth．＇The corollit－thene， 1.7 cm ．or longer，hrodens，somewhat．from a diameter of about I 1mme at the hase to 5 man or more at the month；the spreading limh of the corollat meanme about 5 em．in diancter，each of the six
 midile．

> lis W. Whtnon, D)心(., A.I.心.

 rembers．caitant hemplal as chammise．In 1915 I spent a weck 11 Whatation and lace year ishortly aftor Mr．Wheldon＇s visit）a forthaint，a｜｜atn thins ablu to ald a fow notes to the above－ meetherellit．
 as is lowizht to my minen thot a plant wholl I owertorked as a © तlle berm of l ．swifhuren wis thi much rarer plant．Sume of the

"New Rare or Critical Lichens." Bcomyces roseus, which Mr. Weldon only saw in a sterile condition, was observed with abundant apothecia on the side of the path leading from Llanberis to Helfa. Most specimens of Lecidea lupicidu I examined gave a yellow reaction with potash, and are therefore referable to L. polycarpa Flk.

The following are additions to Mr. Wheldon's list, and also to those recorded from the district by me in the papers already mentioned. Where no locality is siven Llanberis must be understood.

Thermutis relutina Th. Fr. On damp precipitous rocks from Glyder, overlooking Pass. Only a few apothecia were seen.

Ephebeia hispidula Nyl. ('wm-y-glo.
Collema ceraniscum Nyl. Moist rocks overlooking Pass. Rock ledges, Clogwrn. C. pulposum Ach. Rare, on mortar of house, Hebron. C. cheileum Ach. On walls, Dinorwic.

Leptogium scotinum v. sinuatum Malbr. L. lacerum Gray, not common; var. lophceum Nyl. Beddgelert; var. pulvinutum Krb. On mortar and surrounding rock with Placynthium nigrum Callopisma rupestre, C. calrum, and Physcia casia.

Pannaria nebulosa Hoffm. On wall-top, Pass.
Mrassalongia carnosa Krb. Frequent, 400 to 2000 ft .
Peltigera rufescens Hoffm. and P. polydactyla v. hymenina Nyl. are frequent.

Solorima saccata Ach. In addition to the stations given, this was noticed at Clogwyn, Glyder (3200 ft.), and Beddgelert.

Stictina fuliginosa Nyl. and S. limbata Nyl. Cwm-y-glo and Beddgelert.

Coniocybe furfuracea Ach.
Sphcerophorus compressus Krb. Snowdon, 3000 ft . S. coralloides form conyestus Lamy. Common.

Ramalina calicaris Fr., R. farinacea Ach., and R. fastigiata Ach. are rather frequent, especially near Cwm-y-glo. $\quad R$. subfarinacea is occasional.

Parmelia subconspersa Nyl. On wall near Llanberis Church. P. omphalodes f. casiopruinosa Nyl.

Usnea florida Web. Llanberis and Baddgelert.
Alectoria nigricans Nyl. Near summit of Glyder Fawr with Parmelia corniculata, P. pubescens, Cladonia gracilis form amaura, C. degenerans f. pleolepidea and C. lepidota f. hypophylla near it.

Placodium murorum DC. On wall.
Callopisma citrinum Krb. On mortar and surrounding rock. C. ferrugineum v. festivum Mudd. On hard rock near Llanberis waterfall.

Lecanora subfusca Nyl., L. intumescens Krb., L. palliila Schær., and L. conizœa Nyl. are occasional on trees. L. campestris Nyl. is apparently rare. L. intricata Ach. On rock near Hebron. L. gangaleoides Nyl. and L. subtartarea Nyl. On rock, Snowdon, 2500 ft . L. umbrina Mass.

Hamatomma ventosum Mass. Snowdon.
Pertusaria communis f. rupestris DC. P. wulfenii DC., P. dealbata f. corallina Cromb. Snowdon, 2500 ft .

Urceolaria scruposa Ach. Walls, Nant Peris.

(iyrophoro proboscidera Ach. and f. fimbrata Mudd. Snowdon. llime fl.

Bemyers ruftus i. prostif Harm. On roek near hamberis wat rlall.

 reng itemis 11 ffim. Lhanturis and Beddelemt. C. coccifera v. phemil S-har. Eilyter. I. Alarkeana f. hrochypoda Ny. Not

 pratrusa Fra., L. Latyprea Ach. L.. contigua f. calcarea Leeght. On

 -imilan. L. parasema r. elreochoma Ach. Frequent on trees.

But mina lentiouluris v. erubestens. On rocks near Llaniseris wat rfall.

Bilimhia sabutetorum B. \& K . Freguent on deeaying bryophyt, wn walls: var. obscuratum A. L. Sm. Nant Peris.

Litrida inundata Kirl. On reeks by the side of Dlyn Peris. A hark form from the same loeality agrees fairly well with 13 . caliynue A. 1. sm.
linellu , ethentea Ach. Oo roeks near waterfall, Llankeris.

 dap osmm (Laght.). On rocks mar Alamberis waterfall.
"prymphu aton Pers. and x. denigrata scharr.
Ciraphes eleyons Ach. Cwm-y-glo. (i. scripule Ach.
Derantacmpon minutum Th. Fr. Ldankris, Snowdon, Glyder: 1. complocutum Th. Fir. annl f. decipiens A. L. Sun. On damp preHptom rowh from the cilyker, near lase. D. Inchueum A. L. Sim. 1/bexyan smwin.
-iernowra utholonla Wahl. In stream, Lhauberis and J' Garn
 Finmp Froguent on slaty rocks, Llanlaris, Winorwic, liwleh-ewm11

Thehnlum microcarpum A. 1. Sim. On wall of old house, 11 lirim.

Aepararilu, bifurmis Oliv.
Arthoprornia follux Arn.
P'yrmela mhida Ach.
Butrydina entyatia Brà). Comman.

NORWEGIAN EUPHRASRAS.

Die Euphrasia-Arten Norwegens von E. Jörgensen. Bergens Museums Aarbok 1916-17: Naturvidenskabelig række nr. 5. pp. 337, 11 maps, 14 plates, 54 figures in text. Bergen: John Griegs, 1919.
Of this paper the following is an abstract:-
In common with the rest of the European species, the Norwegian Euphrasias belong to Bentham's section Semicalcarate, which is thus divided :

Subsection I. Angustifolice Wettst.
Contains only E. salisburgensis.
Subsection 1I. Ciliata Jörg.
Capsulæ margine longe ciliatæ.
Series 1. Minoriflore. Corolla small, 7 mm . long or shorter: E. latifolia, E. minima, E. scotica, E. micrantha, E. curta, E. nemorosa, and E. cerrulea.

Series 2. Majoriflora. Corolla 8 mm . long or longer: E. breripila, E. tonuis, E. stricta, E. suecica, E. borealis, E. atlantica, and E. hyperborea.

Series 3. Grandiflora. Corolla 10 mm . long or longer: E. rostkoviana.

The following key to the species is an abbreviated form of that given by the author:

A. Glands stalked.

I. Glands numerous.

a. Glands short ; flowers large, corolla $\delta \mathrm{mm}$. or longer, often shorter; bracts awned; corolla-tube during flowering at least 1 mm . long
E. brevipila (early summer form E. tenuis).
b. Glands long, relatively small-headed; bracts not clearly awned; corolla-tube during flowering about 1.5 mm . long
E. rostioviana (early summer form E. montana).
II. Glands very few, short.
a. Large-flowered, similar to E. latifolin in northern Norway
E. hyperborea.
b. Small-flowered
E. latifolia.
B. Stalked glands absent except sometimes on corolla.
I. Flowers large, corolla 8 mm . or longer.
a. Late summer forms.

1. Fruiting calyx not (or little) enlarged with long
narrow teeth................................... E. stricta, subsp. eustricta.
2. Fruiting calyx sometimes much enlarged with large
broad teeth E. borealis, subsp. subbrevipila.
b. Early summer forms.
3. Corresponding to E. stricta, subsp. a, E. srecica.
4. Corresponding to E. borealis, subsp. a, E. atlantica.
5. Similar to E. latifolia. Leaves and bracts with a more or less wedge-shaped base. E. hyperborea in northern Norway.
II. Small-flowered. Corolla 7 mm . long or longer.
a. Capsule either without hairs on the edge or with only short hairs
E. salisburgensis.
```
h. 'mpunte wath mumarons hatirs on the edge.
    1. Fraitum calyx ulmust smooth.
    Ilante of a parplish colnur or dark green.
            Lnder-lip longer than the agmer. Late sammer
                f(rms
                    E. micrantha.
            U'nler-lip about us long as tho upper. Moor
                    form-
            Westurn hill plants ... ............................. E. scotica.
            Apune phant . .. .. .. ............... E. minima, var. palustris.
    Girem or githengreen. Corolla only 35 mm . In
                Northern Norway …............ E. latifulia, var. inumetute.
2. Fruting colye more or lises strongly hatiry.
    Farly summer types. Seds large, \(1 \%-0.0\) min.
            long. Alpue or northern phants.
        Curale rhlitical .. .. ................................ E. minima.
        Caysile marrow, oblong, large. In northern
                Nurway
                        E. Latifolia.
        Late nummer type. Sedasmall, a hout 1 unm. long.
            Only in phin* and generully hairy
                    E. curta.
```

The monograph is in German with the exception of a short －mmmary of the prinary peints discussed in English on pp．317－322． It in remarkable that the commom British E．nemorosa is very doubt－ fully Nowwejan．In the key，E．．gracilis Evies＝E．microntha litichenb．

E．G．13．

SHORT NOTES．

 24．）Late in lume lyl！，during an experlition in the farssington dotrict，Yorkhire，acompanied ly Mossrs．s．（ryer，＇T＇．J．Foggittand d．W．White， 1 notieed a peculiar－looking Alchemilla which did not som happily placol moder A．alpestris，althomerh that seemed its noares ally．＇The hosality would be at an elevation of about 900 feet lntwern Cimssington and（onistone．A week or so later Mr．E．（i． laker gathored．in the same neighbumbod，somewhat similar （amplis．In the meantime on ．Inly 7 th，the late Anthony Wallis and If bent a day exploring the lower slopes of Cross Fell and were rewarlal by fimbing a number of interesting plants of which I hope th gibe an account lotur．At an elevation of between $1500-1600 \mathrm{ft}$ ． a smbill patch of an Alchomilla was found on a wht ledge of rocks， growbig with it alpestris，lont which，even at first sight，proelamed 1：If so be momben！A．asutilens．The low－growing habit．the stems dermbent at the hase．the pecularly rlaneons leaves with acute aml 3 rugnlar tewth，and the promounced hairiness of the plant
 car fol examintion at home．I fomm the leafeontline matehed well that leural in this Jommal（l．r．2．4．．．2 ）and moted that the deep sims latwent the lotes of the lower foliaecons hracts were often romarkatly promomoed a geond diatinction，seomingly，between this specierari ．1．alpestres．Our examples grew upen the We whmoreland promin of the mountains．but I have little doulit a longer seareh womli remal its presence \quad pron the same hill further west in the county of Cimberland．

Since writing the above I have had an opportumity of submitting a parcel of Alchemillas to Prof. Lindberg in Finland. He unhesitatingly determines as A. acutidens the Cross Fell gathering; of the Grassington plant he says "I believe that this beautiful plant is a form of the very variable A. acutidens," and he considers Mr. E. G. Baker's specimens as that species. Prof. Lindberg also confirms as acutidens my naming of a plant gathered in 1914 by the late E. S. Marshall on Beimn a Chroin, Glen Falloch, West Perth, at an elevation of about 2500 ft .

According to the map given by Lindberg (Nord. Alchemilla vulgaris-formen; Act. Soc. Sci. Fenn. axxvii. No. 10, Pl. 18, 1909), the Yorkshire locality is some 270 miles further south than that at which A. acutidens occurs in Scandinavia; althongh away in the East it is known from Tula, Russia (S. of Moscow), nearly on the same degree of longitude as Grassington.
A. acutidens var. alpestriformis, to which I refer the British plant, may thus now be placed on record for r.c. 64, Mid west Yorkshire! ; v.c. 69, Westmoreland!; and v.c. 87 , West Perthshire! (or $87 \frac{1}{2}$ Lomond, as suggested by Mr. Barclay in this Journal for 1915, p. 250).-C. E. Shlmon.

Some Records. Mr. Bennett has kindly confirmed my naming of a Callitriche from E. Gloster: it is C. polymorpha Lönnr. . I gathered the specimen in 1909 in the low ground north of Chipping Campden, not far from the county border. C. obtusangula Le Gall. grew in the same spot. Mr. Bennett also names a plant from Fairwater, v.c. $41, C$. vernalis $\mathrm{Koch}=$ C. palustris L. -My herbarium contains specimens of Zamichellia gibberosa Reichb., from Deal (1901), and Welsh St. Donat's, v.c. 41 (1904), of Z. pedunculate Reichb., from Oxwich (1897) and Aberafan (1904) v.c. 41.-Among my Potamogetons are P. zosterifolius Schum. f. major Zapalowiez, from Derbyshire (Purchas, 1854), obtusifolius Mert. \& Koch, Groby Pool, Leics. (T. Kirk, 1851), Friesii Rupr., from both v.c. 33 \& 34, the probable hybrid Friesii \times pusillus from v.c. 34 , panormitanus Biv.-Bern., Llyn Coron, v.c. 52, flabellatus Bab., and pectinatus L. from both v.c. 33 \& 34.-Eleocharis uniglumis Schultes was sent me in 1917 from Swansea Bay (v.c. 41) : and I have Carex Leersii F. Schultz, from v.c. 3:3 \& 34, C. Pairai F. Schultz=(C. muricata L.) from v.c. 33 \& 41, C. divulsa Stokes, from v.c. 33 \& 34, C. gracilis Curt. var. personata Fr., \& var. prolixa (Fr.) v.c. 33 \& 34, CO. facca Schreb. var. aggregata Reich., v.c. 33, and a curious form akin to both binervis and distans from v.c. 33. The naming of the majority of these is due to Mr. Bennett.--H. J. Riddelsdell.

The Mrld Season. The following are among the more noteworthy of early flowering-plants in the Bristol district during this remarkable season. By January 18 some of the Wych Elins in Clifton were already in blossom. On Feb. 12 I saw Hutchinsia petraen flowers, and a few young capsules, on seedlings half an inch high. By March 3rd some two dozen umbels of s'myrnium were in flower and a few in young fruit by the Avon, immediately below the sulspension bridge. Early in March a friend at clevedon reported Lathicea. On the 12th Thlaspi alpestre was seen by H. Corder Jolrnal of Botanf. - Vol. j6. [April, 19こ0.]

 mon of bmang pallam tren which are begmang to do so. Silver If nh cathor mow (Mard 20) showing their stanens; and a Anmeniu $1 . h_{1} \quad P^{\prime}$. fm'unfrin) has leaves of five inehes and good
 volly dat - Shot of White Bryony are from one to two feet long in at the het ('lifton Down. Nat Axbridge, below the sums - lape of Jomlip. the beatetation is patienlarly remarkable. On

 lo well had their red hade just waiting to upon and turn ultamamine: Nos until the and of June is the usmal fleweringotime. Near hy
 hhe. diarlie with wrelleweloped leaves and moprened spathes $1 \frac{s}{4}$ inch lomg. Mndio-grass with flowering-shonts a foot high and practically "ont." ('arosfium morense (very rare in somerset) in bud, and flaw on of Potontilln reern spoted the gromud of an upland slope with erllow. I hase we poond of sum preenciots flowering during
 the fant -ix yeas- H. ふ. Thumpson.
lans: Reonens. Col. Wolley-bud has recently been so kimb as to nane a large mumber of Roses from my eollection. They were gathered in rarous counties, chichly in Gloncestershire. One group of them have a sperial interest, for they were the last roses gathered his Mr. Lars (1919). They hat gone to Dingler, who owing to illhatth wav ohligen in l! ll th retmrn them withont working at them. The mest interetimer renods are the following: Glamorgats, v.e. +1 ;

 curga Jogi. ur-hen Chr.. Roulrei and its var. suborvistuta Baker,

> H. .I. Rindeismetu,

There were some hundreds of plants, with at least fifty or sixty flowering-spikes, massed in an area of several square yards. Mr. C. E. Salmon, who contirms the determination, informs me that it is a non-European species, a native of Caucasia, Trans-Caucasia and Armenia, and it consequently must have been introduced. Both my sister and I feel reasonably certain that it was not deliberately planted, and no non-European trees or shrubs were observed in the woods. The nearest houses are about two hundred yards above, on the edge of the wood, and are of the usual small industrial trpe. I should not have considered the species sutticiently decorative for garden purposes, but it is included in Cassell's Dictionary of Gardeuing and Robinson's English Flower Garden. I have never seen it in cultivation, neither has Mr. Salmon. Mr. ©. C. Druce intorms me that A. maxima was recorded from Scotland as a planted alien in the Bot. Exch. Club Report for 1908.-E. B. Bishop.

REVIEW.

Sreriges Rosce. By S. Almquist. Stockholm, 1919.

Is this work the author presents the results of his lifelong study of roses in the form of a remarkable work involving an entirely new classification of the genus Rosa, based chiefly on the form and serration of the leaflets of the flowering shoots. Whilst studying the different sections of Rosa Afzelicua Fr. ($=R$. glaucu Vill. $+R$. coriifolia Fr.), the author found that there were types of species rumning through all, or most, of the groups of roses. These types include species belonging to different groups, but nevertheless essentially alike in the form and serrations of the leatlets, the prickles, colour, etc. Each special type normally displays two species, one having leaves with a well-developed waxy "bloom" and the other with the bloom more or less weakly shown; each of these species in turn may occur with smooth and with hairy leaves.

According to the author the total number of such special types is 31, vielding in Sweden $z 24$ species; to determine them a concise key illustrated by clear line-drawings is provided, and a synoptic tabular statement of groups and types shows very clearly the relationship of the species.

Naturally enough, the catalogue of the Swedish species occupies the greatest part of the book; nevertheless, in the account of the types and their distribution, many foreign species are named.

Amongst the novelties of classification one notes that R. coriifolia Fr. and R. dumetorum Thuill are regarded merely as single species of the acutiformis and cuneatula types. Further, all species with subfoliar glands (other than on the midrib), usually assigned to the Afzeliance or Canince, are transferred to the Rubiginosce and Agrestes; with the same groups are also classified species such as Jundzilliana, rhatica, uriensis, tomentella, etc., sometimes treated by other authors as forming special groups. R. rubrifolia (auct.) (the oldest name of which, R. ylauca Pourr., is reinstated) is separated
 the ('sunnmomere. In this lattere sronp and that of Pimpincllifolice

Fion the mant part the syatem is carried thomgh strietly on the
 - hear tratment as the tope constithte the tie mitine the erompe ; tinis nat mally mean- a latre mamber of new manes which, in the ease
 A forn ahd mane are retamed, which most be emphoyed in the postripal whap lemamded hy Almonist's scheme.
'The drowing are so eariful that it wonld seem relatively easy fur th. tmineal ese to determitu the types by their aid; mesertheless, dithenltio- - xin arme owing to the great breadth of variation seen at all point-when details are insertigated.

Acenrliner to Abmuist the qeographical distribution of the varions tyenes is greatly different; some are Holaretic, others are labametic, whilst still wthers are eonfined to Europe. Even in Fintope some are weatern and some eastern; one, indechl, is contined to ※amdina via.

At this stage the athor provides many facts of great interest, 0.\%. We anmtome that in the Faroe lslands R. pimpincllifalia is
 of the former: R? , mimtnlis is similarly a semi-villusam. R. pimpi-
 Beatis are bet further ablaneed thatn the stage of an " a " leatlet, whine the 4 em beare the prickle amature of a normal second-year shume of bilur rave

Nrereyes $R_{\text {ase }}$ is an impertant contribution to the literature of

 wry mondty stimulate a mew ami frutlol study of the gemms, therety

 balue if the work.

> CABL. TuIAEN,
> Staback, Norway.

We are imbethed for this motice to Dr. J. WV. Heshop-Harrison of Armatrong Culleg口, N(weatle-an-Tyne to whon it was forwarded hy ther anthor for pmhlication in this Immal. Wr. Marrisen has rraberel the trandation somewhat more idionatie, lat otherwise the raflif is en it wan witt. Jr. Harrison writes: "Almquist's views ager. dhand with mine derived from :n intensive stady of the gemes
 the liment onie of the. Howering shout in Almonist's nomenelature ; to

 Bind

THE SHAMROCK.

As St. Patrick's Day comes round, the newspaper botanist usually enlightens his readers with his views about the Shamrock: this year, however, he has surpassed himself in the ingenuity and inaccuracy of his conclusions. The palm must be given to the Daily News, which had already (Feb. 25) distinguished itself by tha following paragraph relating to the "Blue Primrose," of which the writer seems now to have heard for the first time :-
"Among the exhibits yesterlay at the Royal Horticultural Society was the blue primrose, a flower recently discovered by Mr. Wilson, the famous plant cultivator, and double primroses were shown closely resembling the purple lilac in colour. A flower related to the English cowslip, namely, the Italian primrose, was also on view. When the wind blows over the Italian hills, whereon this Hower grows, the lea ves, which are dappled, ruftle, and suggest to the onlooker a cloud burdened with snow."

On March 19 the following paragraph appeared in the column headed "Under the Clock," in which from time to time appear many things " hard to be understood " in so far as they relate to facts.

- There was a fair amount of shamrock worn in London yesterday, or, rather, the common elover which passes for shamrock. 'I'his plant is now quite common in Ireland, and I received a small box of it from Cork yesterday morning labelled "Shamrock from Ireland." But it was not shamrock at all. Gemine shamrock is the beautiful little wood-sorrel, the trefoil leaf of which is a brilliant green, and which bears a geranium-like white flower. The clover which has usurped the place of the traditional shamrock has no Hower [!], and the four-leaf variety is quite common."

Comment upon this would only spoil it: an attempt to correct some of its absurdities resulted in the following (March 20) : -
"There are, it seems, at least four possible claimants to the honour of being the real thing: White (or Dutch) clover, Black medick, Wood Sorrel, Lesser yellow trefoil. I gather that the last holds the field, and can be tested at the right time of year by its yellow flowers, but wood sorrel has a kind of semi-official claim. "The famous four leases may happen on any of these varieties, I believe."

How the shamrock is to be "tested by its yellow flowers," and what is "the right time of year" for applying the test, the writer does not say, but it is satisfactory that he has discovered that it has flowers.

The Westminster Gazette, usually better informed, announced (Mar. 17) that, "botanists believe that the genuine shamrock is the wild wood-sorrel." Aganst this aspersion a protest was sent, in which it was pointed out that general as well as local testimony identified the shamrock with Trifolium memus, as evidenced by the Dictionary of English Plant-Names and by the late Nathaniel ('olgan's exhaustive paper on "The Shamrock in Ireland," to which reference is made on p. 118. This, however, was combatted (Mar. 19) by a correspondent who rehashed the farrago of inaccuracies given in the unfurtunate "popular" portion of Syme's Euglish Botuny, and,

 "frec that the shamock was mblike and the wook-somed has been

 tha: "iln diamkinn will break out again, somewhere abont the

 with pertrat, of Nimaver, ('omass, whese keath oeenred in

 from when serview he retiend in 1916. Interested in gencral litera-

 (p.15i). In 1s:94 Ciolgan pmblishod his Frlorn of the ('onen!! Dullin, anl is I I! ! , in conjunction with Mr. Scolly, the second edition of
 $15: 15$ and by hiv will appuinted the two butanists to eomplete the work and sine it through the press: looth of these volumes are almimaly dom": the intrextuetion to the former contans much
 for the limsh liatmolist and some to this Jommal; amoner the

 Sumly amb the shammek" which was subserpently emborlied in his

 I Whe. H1: tomk part in the ("lare land surver set on foot hy the
 aromunt of the flant and animal names in use in the island, with theil acomiatiod fillh-lurr.
 at is was homght luefore the someter antitled "A Comtribution to wir Kinewlemge of the Butany of N゙w ('atedonia" relating to the

formation which covers the southern portion and occurs in larger or smaller areas throughout the island. The climate is mesothermic; the rainfall is relatively abundant, but owing to evaporation and the porous nature of the soil, many parts of the country have an arid appearance. The flora is rich, and the proportion of endemic forms exceptionally high. The relative proportions of the different families of Howering plants in the present collection are very similar to those recently worked out by Mr. Guillammin for the Hora as a whole, the four families which contain the highest number of species being in each case Euphorbiacec, Rubiacecs, Orchidacect, and Myrtacece. The main affinities of the flora are with Indo-Malaya and South-East Australia, the former represented chiefly in the forest regions and the latter in the scrub and savamah regions; and a study of it suggests that New Caledonia is a rery ancient land mass which has been isolated for a very long period.

Is common with all kindred bodies. the Linnean Society has had to face the altered condition of affairs created by the War, and with a view to meeting the emergencr the Council has suggested certain measures which were submitted to the meeting of the Society on March 18 and adopted. The most important of these is the increase of the annual subscription from $£ 3$ to $£ 4$: the decision of the Council was arrived at with reluctance. but the economies already adopted, including the suspension of the Transactions, have proved inadequate to meet the growing expenses.

The Flora of the District of Columbia and Ticinity, by A. S. Hitcheock and Paul C. Standley, "with the assistance of the botanists of Washington " forms Vol. 21 of the Contributions from the U.S. National Museum. It consists of a series of keys-the first to the families, based mainly on vegetative characters, followed by one based mainly on floral characters; under each order is a key to to the genera and under each genus a key to the species followed by a list with notes as to habitat, distribution, etc. "The nomenclature is in accord with the American Code of Botanical Nomenclature, except that so-called duplicate binomials are not used ": some of the names will be unfamiliar to British botanists-thus Barbaren is superseded by Campe of Dulac, with Co verna (Michx.) Heller, C. stricta L. (Andrzej.) W. F. Wight, and C. Barbarea L. (W. F. Wight) as the names of our three species. There is a very full glossary and a single index with 42 plates, mostly of individual plants. No use is made of the page-headings, which throughout give merely the title of the volume - even the glossary is headed "Flora of the District of Columbia"! The Flora contains 646 genera and 1630 species.

The recent Bulletins of the Philippine Department of Forestry contain Philippine Bamboos (no. 15), with $\$ 33$ plates: Philippine Forest Products as Sources of Paper. Pulp (no. 16) ; and descriptions of the species of Philippine Mangrove Suramps (no.17) with 47 plates, which include figures of the ant-inhabited Myrmecodia and Hyduophytum and of Polypodium sinuatum, also ant-inhabited. Dr. W. H. Brown and Mr. A. F. Fisher, of the Bureau of Forestry, are jointly responsible for the three Bulletins.
 A．Sathell aml 1）r．N．La．（iarolner on the marine algre of Western America．＇lla armits are now being combined by the anthors into a complete comme wf the thate the lirst part of which is issumed mbler the tith－The Vmeine Alye of the P＇mer！ic Const of North America， P＇are l．：Jy rophycer（ C＇niversity of California l＇ublications，Botany． viii．1！1！！．｜p．1 13s，s plates ；and the three remaming parts are stated to be in adrameal preparation．＇The Myxuphece contan thirts Lenem，umber which are phated minetr－six speties atul some vareetwe．Thbee are all elearly and eonefoly described，and are often illuminatel with valualde eritical notes．Farther，the dentifieation of specimens is facilitated hy the key prosided．Judging from the present part．this monugraph．limif meded，will provide a complete and most

＇Tas．arcome part of the Account of the Hemburimm of the
 1．1．I．．which has lately ben issued hy the Claremon Press，contains an Index of contributors the the Horbarium and of wther eollections exising in foxford，on which there are interesting motes．They include volumes at Marton C＂ullewe eollected by Robert Huntingron and Charle Willughy in the seventemth century：two herbaria Hequathod to Watham（＇ollege he Richard Warner（ITI：3？－75）；the larbarium of E，lward Morcin（ $11.1(: 39-7: 2)$ and that of Sir George Whedrer（ 16.501721 ）－these at the Bonlleian．

Tue Alventire Flora of Turedside，by Ida M．Hayward．V．I＿．S．， amd（inorge（＇laridge Drmee，LJ．I）．（Arbatath，Buncle）is an exhanstive acount of the adventitions or alien flom of Tweedside which during roment reare has attructed much notice．The work，which is fully lecoriptive and is profaced by a useful introduction，contains mufh interesting matter，but as a cong has not reached us for review we must contont ouraclves with calling attention to its publication． Ir．Thellunge th whom the look is dedicaterl，has lately puhlished （Hitth．Bot．Mus．Zärich，Mxxiii．）a thiml instalment of his＂Beiträge zur Adsentivflora der sehwoiz．．
＇TıE：ドゥи Bullefin（No．1，1920；Mareh）contains papers on ＂The Indian Equeies of Mimosn．＂hy J．s．（iamble，which inclades descriptions of three mowelties：on the sweds of Mumordica rochin－ chomensis：nn＂Crmatopsis，a primitive semus of（＇lematiden，＂by Mr．J．Hutchinson，with live new speries；＂Diagmoses A frieane，＂relat－ mig to varions orters：a note on＂the Rus．H．F．Tozer［1829 1916］ and plante colloned by him in the Nearer Eant＂；and an motioe of Sir William Vactiregor（isf（i－1！919），whose plants，like those of Tozer， aro at K゙いい

Torf bubaney in the Regins Profresorship of Botany in Aberdeen I＇mseraty．Camsed by the death of I＇rof．＇I＇rail，has heme fillerl hy the apmintment of Mr W．（i．（＇mit，who las lately been lecturing on formiry in bidinhmegh moler Prof．IBalfour．Mr．（＇raih，was at one thene supr routondent of the f＇alentta Botanic（iandens，aud on his retura to England herame Acsintant for India at K゙ew．

 Mr Jami－Mロズ－

AF F thankiploter
A ERODIUIA NEGLECTUM Baker \& Salmon
B E LEBEL// Jord

SOME SEGREGATES OF ERODIUM CICUTARIUM L'Hírif.

Br Edmund G. Baker, F.L.S., and C. E. Salmon, F.L.S.

($\mathrm{P}_{\mathrm{t} . \mathrm{ATE}}$ 554.)

The segregates of Erodium cicutarium growing in Britain have never heen very satisfactorily determined. ln the present paper it is proposed to deal only with the maritime forms, leaving discussion of the various inland varieties for a future note.

Through the courtesy of Dr. De Wildeman of Brussels, we have been enabled to study the types of Dumortier's species, E. glutinosum \& E. dentatum, described in Bull. Soc. Bot. Belg. iv. 345 (1865), and as we have also had access to many authentically named specimens of Jordan's species, a few notes on a comparison of these with plants growing in Britain may be of interest. "E. glandulosum Dum," often mentioned by authors, does not actually exist.

The segregates of E. cicutarium may be conveniently divided into two sections:-A. Plants confined to sand dunes or other places near the sea. B. Inland plants, which. it must be noted, often may be found in sandy places near the coast also.

In 1882, Clavaud in Act. Soc. Limm. Bord. xxxv. p. 425, published a classification of the forms and varieties of E. cicutarium, based minly on the presence or absence of a furrow surrounding the pit of the carpel. The main features of his key are as follows :-
A. cinctum. "Segments des feuilles ordinairement non découpés jusqu' à la côte. Fossettes apicilaires du fruit entourées d'un sillon concentrique lisse plus ou moins marqué."
a. charophyllum.
a. pallidiflorum (including parviflorum Jord. and Borcanum Jord.).
b. rubriflorum ($=$ triviale Jord.).
b. pimpinellafolium.
a. ochrostigma ($=$ commixtum Jord.).
b. porphyrostigma (=pretermissum Jord.).
B. fossum. "Segments des feuilles ordinairement découpés jusqu' à la côte ou très près de la côte. Fossettes apicilaires du fruit non entourées d'un sillon concentrique."
a. arenarium (=pilosum Bor.).
a. glutinosum.
b. restitum.
c. subglabrum.
b. laxum.

It should be noted that Clavaud's arenarium is stated by him to equal Boreau's E. pilosum; the latter is founded upon the Geranium pilosum of Thuillier (Fl. Paris, ed. 2, 346, 1799), an inland plant from the Bois de Boulogne and forest of Fontainebleau, described as being very pilose, but no mention is made of glands. Borean, however, amplifies Thuillier's diagnosis and admits glandular plants under that name, probably including some maritime forms.

In 1905, Brumhard (Monog. Uhers. Gatt. Erodium) gave a Jourial of Botany.-Vol. 58. [Mat, 1920.] E
comphote list of the whale semus with a clavis，but we eamont concur

1．＂Faren plirn conerntrien drstituta．P＇dunculi 2－1 flari．＂－

 \therefore mosaltulnm L＇llerit．
H1．thus vomsilers E．sululicolum Jordan（with which wo hate

 S：cioulnimm L’llirit．This puint will he dealt with lator．
（）ur stmely of the british forms rombined to the coast leads us to adopt the following elassification，omitting for the present，phants Which，worurvine momally intand，may frequently be found on sandy gromed in provimity to the sat．We have included E ．dendatum in the clasis an it is a speries very likely to deeme on ome coasts．
lit of cappel mot surrombleal lye a furow．Fortilo stamens with filuments subedentate or suldenly enlarged at the base．

Dedumeles few（2：3）fownerl．\pm shorter than the leaves．
1．Very ghtutimus．Beak of earpel $15-20$ mm．Vong． E．glutinnsum．

I＇edunclin many（：3－i）flowed，\pm longer than the leaves． ：3． E．neylectum．

4．（ilandular．I＇rluncles many－flowered．Teatlets limal ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．E．Ledelii．

 demfore or amblenty enlaremb at hase．

 （1いに．う）．
 1ヵ म．i（－i．i．）menen．

 Fonmall．Kim h，vese）place thin phant as a varioty of E．hipinnotum Willd．．whe h．ab hlow puinted out，diffor－sperifically from E．cirn－

Cavanilles (Diss. bot. r. 273, t. 126, f. 3, 17ss) from Northern A frica, and in riew of its glabrons stem, remarkably finely-cut leaves with narrow linear segments, beak of about to mm., fertile filaments with pronounced erect acute teeth as in E. moschutum, and geographical range, we doubt the advisability of considering E. glutinosum a variety of this species.
E. cıcutarium L'Hérit. B. glandulosum Van den Bosch (Prod. Fl. Batav. 55, 1850), to which, of late years, many British plants have been referred, is probably, from the description, synonymous with Dumortier's glutinosum, but we have not been able to examine authentic material. E. snbulicola Lange (Willkomm \& Lange, Prodr. Fl. Hisp. iii. 537, 1578) seems evidently a form of E. glundulosum Dum., but Lange's own plant has not been seen.

Plant small, \pm compact with no long straggling branches, provided with an abundance of glandular hairs to which sand adheres. Stems patent-erect, not prostrate. Leaves small, \pm bipinnatifid, finely cut, segments short, ovate, subacute. Peduncles 2-3-flowered, shorter than or slightly exceeding leaves. Flowers small, about 6 mm . in diameter, fleshy-white ; petals subequal, unspotted; sepals $\pm 3-5 \mathrm{~mm}$. long. Fertile stamens with tilament suddenly enlarged near the base or sub-dentate with a "shoulder." Anthers pate yellow: pollen orange. Stigma cream-coloured or at any rate not dark as in E. dentutum. Carpels $4-5 \mathrm{~mm}$. long, very attenuate-stipitate at base : pit small. destitute of outer furrow ; twists of awn 3-5; be: k $1.5-20 \mathrm{~mm}$. long.

At once distinguished from other forms of E. cicutarium by its small flowers, short and few-flowered peduncles, and short beak, and, on closer examination, by the carpel-pit lacking the outer furrow.

Exsiccuta. Billot, F'l. gall. et germ. 1845! (as E. sabulicolum Jord. ined.).

Distribution. Britain. Cheshire, v.c. 58; New Brighton! 1868. No.A. John Barrow (as E.cicutarium) (Hb. Manchester). Rather less glutinous than type. Lancashive south, v.c. 59. Seaforth Common! 1860 \& 1866 - not the 1870 plant, which is another species -H. S. Fisher (as E. cicutarium var. pilosum) (Hb. Manchester). Less glutinous than trpe. Isle of Man, v.c. 71. Point of Ayre! 1917. H. J. \& J. A. Wheldon (as E. bipimutum Willd. var. sabulicolum Lange) (Hb. Mus. Brit.).-Belatum. Dunes of Flanders! Inmort.-France. Finistere. Penmarek! 1900. A. Pellat (as E. cicutarium var. $=$ E. sabulicola Lange) (Hb . Nanchester). Tendée. Dunes de la Tranche! 185\%. P. N. Ayraud. Billot, 1845 (as E. sabulicolum Jord. ined.) (Hb. Mus. Brit.). Charente-Infér'. Fourras! 18S4. R. P. Murray (as E. cicutarium) (Hb. Mus. Brit.).Spais. Pontevedra and Vigo (Lange).
2. E. dentatuar Dumortier, l. c.

This was placed by the author in a special section with E. moschatum, distinguished by having the fertile stamens bi-dentate at the hase. Upon dissecting Dumortier's type, however, we were surprised to find that the filaments were merely suddenly enlarged or with a right-angled "shoulder"-exactly as in glutinosun-and were quite malike those of E. moschatum (see above).

Plant small. compact, with mo long straggling banches, with many hairs. \pm glamdular, hut mo athering sand. Stems short, prosthate. Lemers anall, \pm hipmatifin, tinely ent, segments short, acute. Poluncles 2 -ftherent, sharter than or slightly excoeding leaves. Flomers small, abont 7 imm. in diameter, rosecoloned ; petals mon-
 Fircile stamens as in E. iglutinosum. Poblen vellow. Stigmn purple. Compla is onm. lung very attemate-stipitate at base ; pit small,

Compared with E. glutinosum, it will be seel that E. dronlutum difters, intern uline by it larger flowers with mergal petals :mand its prostate stems; it is distinguished from E : chouturium ages by its tewer-flowered and shomer peduncles, earpel-pit wanting onter furrow.

Distrihution. Beadara. Dmes of Flanders! Dumortier.-

Athnugh this - pecien in as yet maknown in Britain, a deseription socms desirahle, as it probably eceus upon our eastem or southeastu mores which front its continental labitats.

Pedturles:3-5-fowered, honger.

3. E. neglectum nol.

Plome cither small and compact or more rolnist with clongated hamelne, coptonsly glamblar with adbering sand-grams. Siems prontationseending. elongated. Lerores medimesized, mather deeply pinatifid, suments \pm obtuse. Pedmeles: 3 -ä-tlowered, exceeding the laves. Floneres large, alout 12 mm, in diameter, pale lilac ; putal- Sighty hot distuctly unequal, unspotted, execeding the sepals: sprals ± 35 umu. long. Vortile stamens as in li. ylutinosum. Anthers claret-colomed; pollen omange. Stigmu pale claret. Cor-
 shall, dutitute of outer furrow; twists of awn $1-2$; beak glathons, $\therefore 020$ min. long.

We have hem reductantly compefled to add a mew mame to the maly alranty in eriftume an we can tind mo dencription to fit this flate which may the conciserly diagnomed as follows:-

I'anta dense glaudulusa, ad E: glutiunsum Dum, valde aceerlens

From many form of f: cirulur'm that may be distinguished ly
 the earjulphit laking an onter finrow
 (Wirford)! No. 25.5: (Glamergan)! (All Hb, Mus. Brit., labelled E. cirutarium sar. glamiultasum Bumero.).

Joxtratutom. Berrus. Isko of Wight, v.e. 10. Bembridge? Mios R. M. Carluw, (Hb, Mus, Brit.). たent east, v. c. 15.

Sandwich! 1888; coast E. of Littlestone! 1893. E. S. Marshall. No. 104 s (Hb. Mus. Brit.) ! Glamorgan, v.e. 41 . Pendine! 1856. Hb. Benthan; Three eliffs Bay near Swansea! 185s. Hb. Bentham (Hb. Kew.). Sker Sands near Portheawl! 1901. E. S. Marshall. No. 254.5 (Hb. Mus. Brit.). Pembrokeshive, r.e. 45. Holloways \& Penally Burrows, Tenby ! 187:3. C. Bailey (Hb. Mus. Brit. \& Manchester). Carnarronshive, v.c. 49. Llandudno! 1867. John Barrow (Hb. Manchester). Anglesey, v.c. 52 . Sandy ground S. of Llyn Maelog ! 1916. C. E. S. Cheshive, v.e. 5s. Wallasey Sand dunes! 1592. J. A. Wheldon. Lancashire south, v.c. 59 . Southport! 1894. (. Bailer (Hb) Manchester). Sand dures, Hightown ! 1918. J. A. Wheldon. Lencashive, West, r.e. 60. Sandhills, St. Annes-on-the-Sea! 1901 \& 1904 . C. Bailey (Hb. Manchester). Id. loc.! 1912. J. A. Wheldon. Clyde Isles, v.e. 100. Bute! 1ヘ27. Greville (Hb. Kew.).-Ireland. Wexford (v.c. 12). Plentifal on the sandhills, Rosslare! 1596. E. s. Marshall. No. 1656 (Hb. Mus. Brit.).

Through the kindness of M. Beille of Bordeaux we have seen examples of many of Clavaud's plants. As regards his E. cicutarium a. avenarium a. glutinosum, a specimen so labelled collected on the dunes of Soulac (Gironde) by M. Brochon in 1886 seems elosely allied to our E. neglectum, and the example is most probably the early acaulescent state of that plant.

It must be noted, howerer, that (lavaud (l.c.) states that arenarium (under which glutinosum is grouped) has spotted petals which we have not, so far, noted in flowers of neglectum. However, it is evident that the spotting or non-spotting of petals in E. cicuturium forms is not a truly constant character, although fairly reliable in most eases.

Pit of carpel surrounded by a furrow. Fertile stamens with filaments gradually enlarged at base.
4. E. Lebelii Jordan, Pugillus, pl. nov. 48 (1852).

The E. cicutarium L'Hérit. var. appressum De Wild. \& Dur. (Prod. Fl. Belg. iii. p. 377, 1899) is very likely, by the description, the early compact state of E, Lebelii, but we have not seen the authors types.

Plant rather robust, at first compact, then slightly diffuse with elongated branches, copiously hairy, with many sessile glands, especially on sepals. Stems prostrate-ascending, not very elongated. Leaces medium or large, rather shallowly pinnatifid, leaflets broadly ovate, segments \pm acute, blueish- or yellowish-green. Peduncles 3-6flowered, exceeding the leaves. Flowers large, very pale pinky-white, about 16 mm . in diameter; petals broad, unequal, unspotted, considerably exceeding sepals ; sepals e. 4.5 mm . long. Fertile stamens with filaments gradually enlarged at the base. Anthers pinky-yellow; pollen reddish-orange. Stigma pale pinky-rellow. Carpels' c. 6 mm. long, considerably attenuate-stipitate at the base; pit conspicuous with a shallow outer furrow ; twists of awn $5-6$; beak glabrous, 22 24 mm . long.

This beautiful plant may usually easily le recos nized by its very pale pink or whitish flowers with broad petals, reddish-orange pollen,

 lirit.).

Plont apporently mather eompat, ertambalar. Leares mather

This mather nisagre deseription is based mon domban's shout
 * E. ballii Joml. Sahbs marit. A (irenmeville Manche, 1 seit.

Whangh we have, so fiar. sean mo britioh examplen that comblat ronse mader this mame. the interent lien in the fact that doman dearihad the plant P'uyillus. p. If) froms speedmens gathered hy

 -1. Ball aroptam, in horto pariter ex seminibus empai. Habitu

 Ori, \therefore li. Caracteres antem ommes in vivo nomlum ammotavi. F.malem, ai fallun, plantum I.l. Lelnel mihi ex Numstria maritimis
 phant and - "lyly a fuller description.

The flliming phants, which seent to lu allied to E. glutiunsum

 i'. Nustor Inrig.

Wheldon for the loan of specimens: we have also had the opportunity of examining the Erodiums in the herbarium of the late E. S. Marshail.

Explanatioy of Plate 554.

A. E. neglectum nob, from Anglesey, with filament enlarged 12 times.
B. E. Lebelii Jord. (1) From Anglesey. (2) From Broad Sands, Devon,
with filament enlarged 12 times.

MYCETOZOA FRON CORNWALL.

By G. Lister, F.L.S.

Tue accompanying list of Mreetozoa found in Cornwall is due very largely to the observations of the late Dr. Alfred Adams. As long ago as 1906 , specimens were sent by him from Looe and the surrounding country to my father and me for identification; and since 1911, when I first had the pleasure of meeting him at a foray of the British Mycological society at Taunton, until his death in October 1919, few months have passed without my receiving packages of interesting specimens which he wished to discuss with me. Not only was he a good collector, but he was also a keen and accurate student of living Myeetozoa. He carried on many successful cultivations of plasmodia found in the open, and one year kept Badhamia nitens in the active stage for nine months, feeding it on the leathery fungus Stereum hirsutum. He was the first to record the three arboreal species Badhamia versicolor, B. affinis, and Diderma arborerm for England.
B. cersicolor was first discovered by the Rev. William Cran in Aberdeenshire, on the bark of exposed trees; it has since been recorded from East Canada and Colorado; B. affinis and Diderma arboreum were found in Britain for the first time by Mr. Cran; the tormer has been recorded, besides the trpe from Chili, from Pennsylvania, from .Japan, and South Africa. The type of Diderma arboreum was found in Cerlon; it has also been recorded from the Malay Peninsula by Mir. A. R. Sanderson, and from Japan by M K. Minakata.

Dr. Adams was the first to find Physarum nucleatum in Britain, when in July 1911 he obtained a considerable development on decayed wood. Up to that time this species, which is not uncommon in the tropics, in the United States and Japan, had been recorded in Europe only once, from a greenhouse in Zürieh. It has since been obtained in North Devon by Mr. N. G. Hadden, and in Roumania by Dr. Marcel Brandza. The sporangia from England and Roumania differ from the elegant tropical specimens in being shortly stalked or even, occasionally, sessile, and the characteristic ball of ealcareous matter in the eentre of the capillitium is not conspicuously developed, but in other respects they are typical.

There are two other collectors to whom we are especially indebted for motes on Mycetozoa from Cornwall. Mr. G. H. Fox, of Glendurgan, Falmouth, obtained, besides more abundant species, fine specimens of Physarum citrinum and Stemonitis splendens var.

 noma nitens and Cormuria sieppula，buth foumd in large develop， mants on spent tan in a tant－yand at（irampund：this is the only reeoral of Cornuria čapula in Britain．

It was Dr．Ahams intemtion to publish a paper on Myeetuzo： fonmel in Comwall，and he Wal left ample notes on the subject．In the following list the－pecimens were celle etod hy him，mass other－ wise spectiterl．＇Iho intitals（i．H．F＇，ame J．M．C＇，refer to Mr．Fux＇s and Mr．C＇oun＇s anllections reane tively．

A full list wit the lomaties where Dre Altans＇s（atherings were
 from his lather＂motes．

Balhamin öpsulifira（Bull．）Berk．Kilminarth Wood；Sl． Martins：and（＇inh yes C＇antle，Št．Anstoll（．I．M．（＇．））

B．Utrionleries ，lbull．）Berk．Kihmonth Wood；Monval； st．Martins，Se．

13．witens berk．Monval．

15．！！finis lant．＇Trelawne，，mase on a living beech－trunk．
B．punters（for．）Row．Lambeath；St．Martais．
I＇hysurum rifionum Nolman．Niatr F゙alamouth on mess！womd （（i．H．E．））

I＇．mufuhil，（ Fonst．）Lister．Lamreath；lamsallos，amomgst short turf on ：lawn．

P．parllacinum Ditm．Fomml several times，Kilminmels Woul．
P ．rimbe（Bull．）I＇eve．Kilminorth Wimul．
I＇．nurlentum line．Kihninoth Wimel．
 T＇relawne．

I＇．nutans l＇ers．Abmmlant．
I＇．mulans var．lemonflanm Lister．A mamiant．
I^{\prime} ．nutans var．roolustum Listur．Lamer．

P．mexeross lhtm．Kibasmorth Winul．
F̈llogn srplear dimel．Kilmimorls Womel．
 unc｜inm．
 211 orange pha mactom，which developent in at fortnight；Vinton Vanes．

C. aureum (Schum.) Rost. Kihminorth Wood; found several times.

Leocarpus fragilis (Dicks.) Rost. Kilminorth Wood. St. Austell (J. M. C.).

Diderma hemisphericum (Bull.) Hornem. Frequent.
D. effusum (Schw.) Morg. Lanreath; Polperro; Trenean.
D. testaceum Pers. Lanreath.
D. radiutum (L.) Lister var. umbilicatum (Fr.) Meyl. Kilminorth Wood.
D. arboreum G. Lister \& Petch. Trelawne, on beech trunks.

Diachaa leucopoda (Bull.) Rost. Not unfrequent.
Didymium difforme (Pers.) Duby. Frequent.
D. difforme var. comatam Lister. Not unfrequent.
D. complanatum Rost. Kilminorth Wood ; twice.
D. Clavus (Alb. \& Schw.) Rabenh. Kilminorth Wood; Trelawne.
D. melanospermum (Pers.) Macbr. Muchlarnick. St. Austell (J. M. C.).
D. nigripes Fries. Frequent.
D. nigripes var. xanthopus Lister. Looe.
D. squamulosum (Alb. \& Schw.) Fries. Frequent.

Mucilago spongiosa (Leyss.) Morg. Frequent.
Stemonitis fusca Roth. Frequent.
S. splendens Rost. Glyn Valley, the typical form, merging into var. Webberi.
S. splendens var. Webberi Lister. Glendurgan (G. H. F.).
S. ferruginea Ehrenb. Kilminorth Wood.
S. flavogenita Jahn. Not uncommon.

Comatricha nigra (Pers.) Schroet. Frequent.
C. nigra var. alta Lister. Looe.
C. Taxa Rost. Shortcross; Redgate, Liskeard.
C. pulchella (Bab.) Rost. Kilminorth Wood; St. Martin's.
C. tenerrima (Curtis) G. Lister. Portnadlar.

Enerthenema papillatum (Pers.) Rost. Kilminorth Wood; Trenean.

Lamproderma arcyrionema Rost. Kilminorth Wood; Herodsfoot.
L. scintillans (Berk. \& Br.) Morg. Frequent.
L. columbinum (Pers.) Rost. Kilmiuorth Wood; St. Martin's.
L. violaceum (Fries) Rost. Looe, on leaves.

Brefeldia maxima (Fries) Rost. Lanreath. Falmouth (G.H.F.).
Cribraria argillacea Pers. Trenean, \&c.
C. vulgaris Schrad. Several times found.

Dictydium cancellatum (Batsch) Macbr. Not rare.
Reticularia Lycoperdon Bull. Frequent.
Lycogala epidendrum (L.) Fries. Frequent.
Trichia farogenita Pers. Near Bodmin.
T. affinis de Bary. Frequent.
T. persimilis Karst. Frequent.
T. seabra Rost. Once found.
T. variol Pers. Frequent.
T. contorn (1itus.) lint. 'Trumarivk Mill; Trenean; Murval.

T. Bormfis Pirs. Prequent.

-1. cimerou (liall., D …s. Froment.
A. pmentornis (lars) list. HIll Wool, lelynt.

A. incoronuta leose Frequent.
I. nuthns (Boll.) (ives. West lame.
 Mill.

P'. cortaterlis (Batrin) Rust. Not uncommon.
P. rermionluris (sichar.) Rost. \& Nimer Lave.

Dimmene depmessinm Lister. Kilminorth Wool.
P'rotot, ichan metullica (Berk.) Mass. ©Near Lroe
The abonve list contains eighty-two species and four varicties.

PANTR DERMATTTISーI.

$$
\begin{aligned}
& \text { (Butnicical 1) partacme, Whand). }
\end{aligned}
$$

Phat Dematitis (It matilis rementle of modical writers),

 dingmod and trat-1 as -nch. A mure stringent imuiry into the

 are hamen to haw di-atron- offects upen the skin of thene who *ome in whtat with than, in ont what they may be aroided; and
 mal?

F'ate comsens irritation in the shin maly he roughly speakiner,
 montanal on the cell-s.ap or in latex, and than in which it is secreted

 conver is ry whe rank of phamman, metmbing those due to
 raphines, whiels wht ther w? in mulne the skin and su cause an

1. P'cthap the common'st case of all, and one which is known to
everyone in this country, is the case of the Stinging Nettle. The plant, particularly the leares, is provided with stinging hairs, each consisting of a long stiff shaft, narrowing towards the point, and provided with a simall bulbous tip. The portion of the shaft immediately under this tip is not thickened and silicified like the rest, so that a very slight touch is sutticient to break off the bulbous end. The tip breaks oft at a slant, leaving a finely pointed hollow shaft, like the needle of a hypodermic stringe, which makes a puncture in the slin through which the secretion can enter. The secretion, which contains albuminoid substances, is injected through this into the skin, and is apparently accompaniel by formic acid, which was formerly thought to be the toxic principle; this, however, is quite inadequate to account for the severe symptoms that are sometimes observed (e.g. the effect of the sting of tropical nettles, such as Lrtica stimulans and Cirtica urentessima, has been known to cause severe continuous pain, tetanus-like srmptoms, and even death). A burning, pricking sensation follows the sting, and very soon each spot touched is marked by a raised whitish wheal, surrounded by a zone of reddened skin. In most cases in this country, this is the worst that happens, hat occasionally persons with very delicate skins, who are stung over considerable areas, or where the face and eyes are affeeted, may be rendered quite severely ill. In the Tropies, howerer, much more striking effects are recordel." The most virulent of the stinging nettles of India is Laporter cremuluta. It has minute stinging hairs which cause acute pain when tottched, and the pain is increased on bathing the affected part in water. Girardinia heteropliylla causes at most stinging pains, and the young tops are eaten as a vegetable, as the Common Nettle is used in this country. On the other hand, Girardinia zeylunica yie!ds a fibre which has been used for making clothes. with umpleasant results, owing to the extreme difficulty experienced in entirely remoring the stinging principles. even in the severe processes to which the plant is subjected in order to extact the filme.

Since the Stinging Nettle is never cultivated as a plant for domestic decoration, injury from it is always accidental, and the results are so immediately apparent as to leave no doubt of their origin. The effects, ton, are usually transitory, the wheals commonly subsiding in a few minutes. In most cases no application is necessary, the cure loeing rapid and spontaneous. If the irritation is severe and seems likely to le prolonged, the use of strong spirit is soothing, partly becanse it coagulates any proteid present, and by its rapid evaporation has a cooling and analgesic effect. The "Glyco-thymoline" of Messrs. Kress \& Owen is also very useful, if applied full strength on gauze or cotton-wool.
11. The cases of Primula porisoning, however, are sometimes very mrstifying. Primula-dermatitis attracted a great deal of attention about ten or fifteen rears ago. although of course plenty of earlier references to it are to be found. There is a certain monotony about the clinical histories. In nearly erery case the patient is afllieted with an erythematous eruption accompanied by more or less sweliing, generally bergming on the hands, and spreading to the arms, face,
ame wen other parts of the borly．The itehing and fever may be intolerable，completely preventing sleep，and rapidy wearing out the 1atient hy has of rest and lapk of apretite．＇There may be only a single attack，wr they may be remoment at shot intervals over several month，of the year，and fundly settle down inter athonic comelition which is extremely distroning．＇The ereat resularity with which
 relaphe on retmonisg home（th the somme of irviations），might leat to

 by glambula hais all wer the laver and stalls．Fixternal eonditions
 －o that ：person whon han hitherto been immme，may，on coming into contant with plants in another lowality，he harly personed［We erahal，
 sist of three cell－：$\{$ wo more or loss chongated as a stalk．amd one smaller，rombleal hari－cell with dense eontents．＇The wily sulstanere is areretent in the manal way heneath the catiele of the hearl－cell，su
 is punmer out and tricklu－down the hair．（F゙or stages in the develop－ ment of tine sermetion in Promula obeonicors P ．sinmsis．ant
 and eavily benken，connepmently the－kin is readily affereted ly the wily substance amb in fle e：口se of sumeptihle individuals the nsual n！apleasint somptom，follow，It is extromely easy to tramsfer the irritant on other parts of the lmely，ame were flace tomethed will be
 ruticle at the sput．

III．A similar hut even more seriome type is the poisoning produced hys species of Rhas，such as Rhas Thoricodradrom（＂loison
 IR．C＇otinns．R．Coriario．R．monicifern．（＇The last is the plant from which dapan－lacymer is obtained，and will be dealt with later．）Khus Toricombdoon was put out the market in recent vars as an ornamental plant mular the trandr－mame of＂Ampelopsis
 Ampirlopsis qum！n！fulm，Virginian Creeper，of enmmeres，from which it ran be distingnished at ware hy havg thee instrad of tive leallets in ite compmome loaf．Maspuerailing moder this mame，the plant was
 of whom soff rewl atomely for their ignorames．A case is kown where the plans grew up and suromaded a bedrome window：the owner of the lane and his wif．＂．whw wermped the romen，were hoth pmisoned wn the face whle hamelling the foliage when apening or shatture the whatow，with wert serions ramble．
＇Thue active primeiple of Rhins Toricolendron and R．renemata was Hrontigatel by l＇foff．An oldar view aseribud the toxic gualities to in ainl which was extrutiol from the plant．juat as the stinge of

acid in a pure condition and found it to be merely acetic acid. By distilling the crushed leares and stem in a current of steam, there was obtained, in addition to this acid, small quantities of an oily substance, which proved to be an aetive irritant. This oil was obtained in larger quantities by extracting with alcohol and then distilling off the spirit, leaving a black oily residue which was washed with water and taken up in ether. The etherial solution on washing with water and then dilute solution of sodium carbonate, yielded an impure sample of the oil, which was contaminated by resinous oxidation produets. The oil was prepared pure by treating with 10-15 times its bulk of 95% alcohol. After standing, fractional precipitation with lead acetate gave a preeipitate from which the free active oil could be obtained by treating with ammonium sulphide. The free oil, which Pfaff named "Toxieodendrol," was not analyzed, though the pure lead salt gave a provisional formula of $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{~Pb}$. This oil occurs in all parts of the plant: stems, leaves, fruit, and even on the pollen. It is non-volatile, and the least trace of it is irritant : e. g. in one ease $\cdot 005 \mathrm{mg}$. in two drops of olive oil eaused severe pain and swelling. Experiments with the purified free oil produced results exactly similar to a severe case of Rhus-dermatitis. That is to say, the attack was eharacterized by swelling, localized redness, and the furnation of papules which developed in the course of a few days into vesieles (which became confluent in many eases), with considerable exudation of serous fluid and the formation of erusts. The attack lasted about 15 days, and at its height the pain and fever were considerable. 'The poison being a very sticky, non-volatile oil, apparently exereted by the epidermal cells of actively photosynthetic leaves during the warm season (the plant is considerably more virulent in Ameriea than in this country, and the leaves are not poisonous in autumn, i. e. when photosynthesis is not active owing to cold, etc.), which is slowly oxidized in contact with air to a resin, the usual methods of treatment by bland ointments such as earbolized vaseline, by lotions, ete., are only too well calculated to spread the trouble instead of checking it. These substances, such as mutton fat or retroleum jelly, become almost liquid at body temperature, and so dissolve the oil and carry it to other parts of the body. This was elearly denonstrated in the case described above; the fingers of the unaffected hand, which eame in contact with the other while dressing it, became poisoned, and so did the arm wherever the dressing had reached. On the other hand, immediate relief was experienced when the injured arm was scrubbed with soap and water, and the swelling, ete. rapidly subsided under this treatment. Dr. Pfaff found that in all eases the best treatment was vigorous mechanieal removal of the poisonous oil by scrubbing with soap and water, with or without a preliminary treatment with aleohol. This method answered at any stage of the attack. One point about this dermatitis which makes it rather diffieult to diagnose is the fact that there is a "latent period" after contact with the plant before the attack begins. This time varies from $18-24$ hours, to as long as $7-9$ days, the average time being four or five days, by which time most people would have forgotten an accidental contact with the plant. This "latent time" probably indicates the time taken for the oil to infiltrate the skin,
and so is a function ut the thichness of the individnal entiche. 'This
 severity of it - 1.1 ture and the domerer of a womer diasumis.
 which attocks patcubaly the thwor-phekers in the sully lales,
 for mathet. It attacks the pickers chafly during the harvestang -atans when they are continually exponed to the sap from the cont lates and stmas althoner every part of the phant, incholiner the bull, is said to be vmbently emetic amd irritant (Sowerly d dolmson). It would 1,0 impensible to give an exhatust lise of the mamy varieties of Dafmil ami Narcisus Erown for market, and it wonld pobably be mane esary sine it is malikely that there womld be muchdifference betwent them loom this puint of view. 'The following, however, are d. finit. ly singled ont for mention ly Walsh in his article on "hily
 f"urlicus vals. ormims: I. Tuzetla, in the commereial varieties - (ivand Jomaryme, 'sully White" and 'Gloriosiss.' These are
 but all the varieties are sabl to be dincoroms at times. The flowers are erown in the open lichl, "xempthas intended for the very earlient 11 arket. Which are fored mater orlas. In the latter ease the piekers
 phonty of surface is expond tu the sap. In the lichls the main crop is erthered towards the emb of liarelt, and in thene islands the sun is
 lame. The thowe and leaves are cot, and then made up in bumeles

 inelmbine the pathiner in lat lakets for shipment. Eiver oppor-

 fley a grat part in the development of this dermatitis, sime some Workers cacape entirely, others give a history of a single attack, while
 laven or thowns. All are armond. however, that anything which
 for a long time, or athy lowal injury, such as a bruise on smbome, 1 diam an of an attack. Acomplater to Walsh. the msh is "an or the $11 . a$ of pamlar. vestonlar, wr pustalar type, wf varing legrews

 "hem applial to the ator of bin which had hom lichtly atiraded with

slighter effect. It is probable that the abundant raphites of calcirm oxalate which are present in the silp might provile the abrasioe action, without which the sap dues not appear to aftect the average person. The succus is said to act phrsiologically like a member of the Digitalin group, which may affurd a clue to the nature of the toxic principle. The chief points of interest about this dermatitis are the apparent necessity of an abraded skin, and the variations in individual susceptibility.

"DISAPPEARING WILD FLOWERS."

The Times has recently published several letters calling attention to the destruction of our wild flowers, and one which suggests a remedy as objectionable as the disease. In its issue of A pril 20 the correspondence is summarized in an article headed as above, which we reproduce:
"It is time that additional steps were taken to protect wild plants and flowers. Possibly many people to whom Devonshire seems the very home of primoses may hare been surprised at the letter from the Bishop of Exeter, which we lately published, describing their disappearance in many parts of that as well as of other comnties. There are very few primroses left within a line drawn round Lomlon, which is not quite equidistant at all points, but which a rerages abont 25 miles radins. The roots have been dug up and sold in London, almost all to perish. For many years past the eradication of many species of ferns has been even more general; while certain plants which at all times were rare, such as the most local and conspicuous British orchids, have been almost completely extirpated. To see our rare plants in bloom must always be a pleasure for the comparatively few. though to allow any plant to be exterminated is an inexcusable offence against posterity But the destruction of primroses remores from the landscape of spring one of its delights with the most general appeal ; and the effective enforcement of protective legislation should enlist the active support of every class. Eren in areas such as public parks, where special prohibitions are in force, there has been increased defiance of them during and since the war, mainly owing to the diminution of effective supervision. Bluebells have hitherto suffered less than primroses, owing to their being less conveniently removed and transplanted. But from at least one London park, in the eastern suburbs, many bluebell plants were pillaged this year during the Easter holidays, while torn fragments were strewn on all sides. The suggestion of one of our correspondents that wild plants should be systematically disseminated by school children is open, unless very carefully controlled, to the objection of disturbing the natural floral associations, and to the risk of introducing new species which might become an aggressive pest. But where protective rules already exist, they should again be more effectively enforced; and they should be adopted and maintained with equal determination in rural areas where pillagers of roots, whether streethawkers or collectors of the rarer species, have hitherto enjoyed a vicious immunity."

Newspaper Botavy. 'The Daty Sens, which, as our last issue shmwerl, occupies a prominent fosition among botamical blunderers, Writes on A pril $1 \ddot{2}$ that ${ }^{\circ}$ wayside hedgerows and wastes are now getting to the stage when it is hardly jassible to do anything but catalogue the wild thowers." 'The list given, howerer, is mot ex-tom-ive but it inclules loe "white tormentil," with which we are sun familiar. It also tells nes that the wild arma is "realy to supply the enckow, when it conses, with a drink" : aceording to the old tolkname, conckor-pint, it serves this uscful purpose-a reference to Prom's Popular - lames will dispel this ilhason. On the following day in an artiche on " vergetables that grow wild," wherein varions strange thines were mentionod-e.g. "wild aspamens," which "we fiml in the young shoots of certain ferns- the royal fern is the really grond ance." There is also "- Anthyllis arvensis, homoumbly known to C'ulperper and the medical herbalists of today ats parslex pient"; this rows in "domm-like chasters of tightly-packed areen, rapinly reathene the dimensions of a fomthall; you pall up each boss by the ront: amd soon have an armfull or even a cart load, which yon can try ame sell to the makers of liver menticines, or your armfull you ean buil for dimere" The writer adds." I have not vet tried it that way" ; perhaps some of our readers can report.

1311 n-wspaper botaby is likely to be eelipsed by the magazines, if the following, from N'ash's Magazine for Mareh (p. 5:37), whicha correnpment sends mo, may le taken as a sample : "The hembeck, - Wotbed from beat to foot in thin smoke amd expusito follage, canght his attention. Usmally they hat the power to arome his chthanisan, for he considered them the most hantiful uf all conilers. Now they reminded him only of the fact that soerates had couded has troubles with a bowl of bemberk. He wombered if it combl have been the same kind of hemberk. He thomerht mot." We also think not.

At the meeting of the Limmen socioty on Apmil listh, Mr. K. I'ankon showed lantern-sliches jlhstatiner rlolinite stages in the spornhation af gonitia within the thallos of the lichen Evernia J'runcostri Ach. He -tated that it has for a considamble time luen geol rally acoepted that the bright-green shorical gonitimm, which is combun to many lichems and in reforme to in the litemature of the shliject as C'ysiococrus, Prolococens, or Pleurococcus, multiplies we tatively whly, while it remains the algal constituent of the lichen 1hnilus. Fommintan (lscis), Baranctaki (1s (is), Woronin (1s72), Bormet (14i:3), aml ('humat (1!1]:3), state that the gomidia (Cystocorcus :) of ertain lichens proxtuen \%oospores after heing isolated from the Lomidial layer and sulsombently coltivated in, or on, different medne. He had mot been able to find that the gonsilia of Eecernia
 - Joven senem, divile regetatively within the thalas, but in all these ran - the weproluction of gonidia was found to be the result of the -necembe bigartition of the origimal protoplast of the eell into four, - ight, or sixteren s.aparate masses each of which mapidly develops a cill-wall of its own while within the mother cell. These daughter
 wall pormm - diflumit. Thoy frhibit all the characteristics of the farentall infore thoy are set lice.

CHESHIliE ROSES.

Br J. R. Matthews, M.A., F.L.S.

Is the Flora of Liverpool District by Green (1902) it is stated that critical genera such as Rubus and Rosa were not revised by the committee entrusted with the preparation of a new edition of the Liverpool Flora. The account of the roses given in Green's Flora seems to be based to some extent on the earlier records published in Lord de Tabley's Flora of Cheshire (1899) ; these records, though revised and brought up to date with regard to nomenclature by the Rev. W. Moyle Rogers, represent largely the work of Webb, a wellknown botanist and rhodologist, who resided in Birkenhead for several years, and who was chiefly responsible for the Flora of Liverpool, published by the Liverpool Naturalists' Club in 1872.

In a series of papers on the genus Rosa, published as Supplements to this Journal (1908, 1910, 1911), Colonel Wolley-Dod incorporates valuable notes on species and rarieties collected in Cheshire, but the writer is not acquainted with any recent publication dealing especially with the Rose flora of this county.

The material which forms the basis of the following account was collected at odd intervals during the summers of 1917 and 1915 in the district known as the Wirral Hundred of Cheshire. The greater part of the area lies between lat. $53^{\circ} 15^{\prime}$ and $53^{\circ} 25^{\circ}$, and the highest point in the district is Heswall Hill, 360 feet. As might be expected, the boreal and montane elements of the British Rose Flora are rather seantily represented, but the area provides abundant material of those species having a more general distribution.

In the list which follows, I deal mainly with those Cheshire Roses I have myself seen or gathered, but I have also made considerable use of Colonel Wolley-Dod's notes on forms from the county in order that the list may present as full an account as possible of the roses occurring in the district under review. I have throughout attempted to give segregate names to the plants collected, although I have done so with considerable reserve for reasons I shall not attempt to discuss here. Forms not recorded in Flora of Cheshire or Flora of Liverpool District, nor given for v.c. 5 S in List of British Roses, are marked with an asterisk, and are presumably additions to the county flora.

I am much indebted to my friend Mr. W. Barclay for kindly looking over my material and confirming my determinations.
R. artersis Huds. Abundant and widely distributed. *Var. ovata Lej. occasional; it seems to pass into the trpe, and it is doultful if it is even varietally distinct. *Tar. erronea Rip. in a lane neal Greasby.
R. lutettaxa Lém. Exceedingly common. An example from Meols has slightly hairy peduncles, and although Léman describes the peduncles as glabrous or naked, I am convinced the Meols plant must be placed to his species. Mr. Barclay agrees. Var. sphcerica Gren. not uncommon. Var. separabilis Déségl. frequent. *Var. flexibilis Déségl. between Bromborough and Raby. Var. senticosa Ach. recorded for v.c. ss by W.-Dod.

Joursial of Boflity.-Vol. js. [Juae, 1920.$]$

R．IVsumis boserg．et liph，which I have taken as the repre－ sentative specere of the Tiransitorice，is not unemmmon．＊V：ar．s．gn－ trichostyla lip，near Brimstage．A plant from Greashy with marow， beaked fruit seems to be efferable to＊var．vhenchocarpa Rip．

R．dumatas Bechst．V＇ery common．Viur leiostyla Rip，near Greashy．＊Var．hisermata Mér．near railway－crossing between More－ ton and Jeols．There has been some dombt regarding the oecurrence of this plant in Britain．Mérat’s deseription is certainly incomplete in some proints，hut if Disforlises atcount can be aceepted，the glohose fruit，short villous styles，and ascending or erect sepals should divenguish the phant from other forms of R ．dumatis．Threre is a sheet in Herth．Brit．Mus．（No．Ht，Merb．Ley）from Bmanton Ablots，Herefort，which argrees in most partieulars with my speci－ hums，but the sepals appear loosely reflexed，whereas the Cheshire examples have ascomling，almost erect sepals．A Cheshire specimen collected by Wolley－Dod，referred to R．biservata Mér，by Dingler and sudre，＂doparts greatly from the type．＂

R．ventichlacasina Mér．＂L゙piton Roal．Between Moreton and lloylake．＂Flora of Lixmpool District．A specimen from Bramley Valley in Herb．Brit．Mus．（No．13s̃̈6，Herb）．Wolley－Dud） is feebly characterized，sime there are only one or two glands on a few of the peduncles．It therefore emmes very near R ．dumalis．

12．sedmbata（＇rép．This mame was employed by Crepin to cover a surics of forms of K ．canina L．having lisemate leaflets，smbinhar ghands，amd smonth perduncles．I have not formol any such form in C＇hehire，lomt a specimen collecterl at C＇lifflank，（＇imhen，in Herb）． ISrit．Mus．（No．14ll，Herb．Wolley－Dod），labelled R．vinacea Baker， comes umber this series．

R．Bhovobasa lip．The following motes are quoted from Col．Wolley－1hod＇s aceoment of the subsection En－canme，p．6；3． ＂There are two British plants in this cover in herb．Déséglise．One is from West Kirby，Cheshise，hy Wehb，labelled hy Mr．Baker －IR．arvatica，excellent． Execept for its glabrous midribs， this in rally much nearer arratica than Blondanan．．．．．The other is alsu froin Wobh，collected at Hoylake，which is quite near West liobr．It is a very similar－lowking plant，but having hairy midribs is．I think，indiaputably R ．arrutica Baker．＂I confine the name li．Blomilofana Rip．to plants of the R ．canina gronp having bisertate leaflets，sulfoliar glanks，amd hispide perluncles．The only （＇heshire＂xample I have sem is one hy Wolley－Dod from Broxton quarry in Herlo．Brit．Mus．It has large leabets，not very strongly limerate，a few mlonds on the pimary veins lemeath，and feebly glanlular jmilumeles．

R．remea lom．The emmmonest species of the group R ．dume－ trirum Thmill．Var．Remiglation Kip．not meommon．A form of thin varioty with globose fruit Mr．Barelay thinks may be referred to＊ar．gloluta Diságl．Var．spherrocarpa Pug．near Brimstage． A plant from liaby Mare with very small leaflets only slightly pulwerent lo neath，aml small，almosi globose fruit，I manot refer

It seems to approach var. calophylla Rouy, but is not identical with specimens so named in Herb. Brit. Mus.
R. arvatica Baker p.p. Although some confusion surrounds this name, I retain it, in the meantime, to cover the series of forms of the R. dumetorum group having biserrate leaflets. It seems perfectly clear what Baker meant by R. arvatica when he states in Monoyraph of British Roses, p. 229, that it "bears much the same relation to urbica that dumalis does to lutetiana." I have not encountered any rose in Cheshire that could be described as a biserrate mbica, but there is a specimen from Grange Farm in Herb. Brit. Mus. (No. 145J, Herb. Wolley-Dod) labelled R. hemitricha Rip. teste Dingler. Ripart describes his plant as differing from R. urbica " in its villous and glandular petioles and its doubly dentate leatlets." As Colonel Wolley-Dod points ont, specimens are scarcely more than irregularly serrate, so they differ but slightly from forms of R. urbica Lém.
R. Deseglisei Bor. Duckington Wood. No. 1499, ex herb. Wolley-Dod in Herb. Brit. Mus.
R. gladea Vill. sp. agg. This boreal or montane aggregate is very sparsely distributed in Cheshire.
R. Crepiniaxa Déségl. $=R$. Reuteri God. A uniserrate form and the type of Villars's R. glauca. "Hedges of the fields between Moreton and Hoylake," Flora of Liverpool District.
*R. subcristata Baker. This is the commonest form of the glauca group. I have it from between Newton and Hoylake, Brimstage, Thornton Hough, Raby, and Irby.
R. fugax Gren. Two plants, one from Raby Mere, the other near the bridge that crosses Arrow Brook between Moreton and Meols, are referable to this segregate, although the peduncles are rather feebly hispid.
R. corifolla Fries sp. agg. Rare. Recorded in Flora of Cheshire as occurring in good quantity at West Kirby, and there is a specimen by Webb from this station in Herb. Déségl. Var. frutetorrm Bess. and var. implexa Gren. are recorded for the county in List of British Roses.
*R. subcollina Chr. Very rare. Extremely well-characterized specimens of this were obtained from a single plant between Bromborough and Raby. I am not certain that this is not a new record for England.
R. tomentella Lém. Not common. Specimens from four localities, all in the neighbourhood of Meols, show considerable variation in the density of the subfoliar glands, and it does not appear possible to distinguish varieties readily by different degrees of glandularity. The peduncles in my specimens are more or less hairy, and although Léman's key gives glabrous or naked peduncles for R. tomentella, I think the Meols plants must be referred to his species. The alternative is to place them to R. Borreri Woods, which has peduncles "with weak setæ or white hairs or even dense pubescence." But if large leaves and a lax habit are, as WolleyDod believes, distinguishing characters of \boldsymbol{R}. Borveri, then my plants

li. ntoranow la Ginen recorts a few plants above the Red Nosin, Now brightom. A -geximen from a bush growing in a hedge no:ar Four Lames Eind helones to the Robliginosa, but as neither
 any named orgmerate.
R. mersaris sm. levomben for Cheshime in List of British Roses.
Ii. yndins sm. 'The type and var. caralen Wowds are reportad as rare in Plora of limepgonl Distriet. I have seen meither, nor are they remoted for ('lueshire by Wrolley-Dord.

1i. Tumbrosis sim. This is deseribed by Green as frequent. I dombt very unth the ocemreme of real, typieal fomentosu in the Wirma distriot at least. Considerable attention was eriven to this fuestim, ant mor rose was discomered that cond be referred with eertainty tosmith's plant. Prohably, mach of what has been calleal R. tomentosa sim. is, in reality, R. omissa Déségl., a species that has been comsiderably misunderatood by some british Botanists.
*R. nmssi Désig. Not infrepuent, ocemring chielly on the higher grommd. *Var. sulmollis Ley by the footpath from Brimstage to 'Thoriton.
*li, spmbecra Ley. Near lrby, agrecing well with the author"s descriptions, althongh ley's own specimens seem to vary considerably. *V: glahrota lay. Ne:ar Irbomill Hill.
K. scaumastria Sm. Romorded furv.c. St in List of british Rosis.
K. Juxa\%nalusi laker. For an account of this plant, gathered originally by Wrobl, mear Mareton, reforenee should be made to Baker's Rerirur of British Roses, p. 2l, and to Willey-Dorl's paper, The liritish Roisrs, p. Iti.

 grantity in a firld went of Moreton; in a henge near the cross-roals at lour Ianes Ent; he the fontpath betwenn Brimstage and Raby. 'Tho fruit is almost miversally abortive All my gatherings are reforathe to $/ 8$. Sulimi Woonds. From whsorvations in the firld and from the charaters of the helorid itsolf. 1 am inclined to the view that the soomel parent is alvige a form of R. omissa, which is the
 Whbrid wa- motiond. Sinme li. pimpinellifolien is also eommon, there
 a limen las donn in. Ine"l of Limmonl listriet.

 Var glabera li.h. A Emal colony on Trhymill Ilill. It is, I think,
 ränna. The laph ta woth, ramow, vightly amminate, and puite

however, that the second parent is a form of R. glauca Vill., which has erect or ascending sepals. This aggregate, as we have seen, is sparsely distributed in the district, while R. canina and its forms are abundant. Further, I can tind nothing in the features of the hybrid itself to suggest a glauca parentage except the erect sepals, and this feature might well be derived from R. pimpinellifolia.

EAST WILTSHIRE BRYOPHYTES.

By Cecil P. Hurst.
(See Journ. Bot. 1916, 17, 266 ; 1918, 181.)
The following mosses and hepatics were observed growing around Great Bedwyn, near Marlborough in East Wiltshire, during 1918 and 1919. This locality continues to produce rare and interesting plants, the character of the country, woodland, water, marsh, meadow, and downland, and the diversity of soil, chalk, sand, and clay tending to produce a varied flora. Including subspecies aud seven mosses occurring on sarsen stones near Aldbourne and Marlborongh, which are situated a little distance away from our district, I have noted 184 mosses and 45 hepatics in the neighbourhood of Great Bedryn; the present list records 74 mosses comprising 20 species and 6 rars. new to North Wiltshire and 3 species and 4 vars. which are new to South Wiltshire, and also includes 24 hepatics, 20 of which have been hitherto unrecorded for North and G for South Wilts. There is a tract of sandy ground in the north part of Tottenham Park bordering on Savernake Forest and rising to nearly 600 ft ., which produces a very interesting moorland flora, rare in in this chalky country; here grow the mosses Rhacomitium canescens, hoary greyish green in colour, and the conspicunusly red-fruited Funaria ericetorum, while the hepatics Sphenolobus exsectiformis with its clusters of orange gemmæ and the typically moorland Gymnocolea inflata find a congenial habitat among the heather and the ground is white with lichens, the lichen flora including Cladonia sylvatica, C. furcata, C. uncialis, C. coccifera, Cetraria aculeata var: hispida, Parmelia physodes, a small state of which thickly encrusts the stems of the heather and Bcoomyces roseus forming a pale-grey crust on the earth prettily relieved in the winter months by its pink fruits borne on slender stalks. The sandy clay strata of the Reading Sands are very prolific in interesting plants, and it is on this substratum in Chisbury Wood that many rare mosses and hepatics occur. Some noteworthy moss-records are Philonotis caspitosa rar. adpressa in a bog on Burridge Heath new to the British Islands, the fine rar. elatuin of Innium affine growing luxuriantly on boggy ground in Hungerford Marsh, the curious form of Inium rostratum with obsolete leaf-teeth which occur on the gravel of Rhododendron Drive, Savernake Forest, the rare Amblystegium Kochii plentiful and fruting copionsly in one place in an Epilobium hirsutum swamp at the source of the Shalbourne Stream near Shalbourne, the uncommon A. varium growing on brickwork by a pool at Crofton, and Hypuum
gigantom in 1 lmurndind Nansh, a relic of the primeval morass, the draming of which has redheod it to a small and impoverished combliton, whil, internting hepatices are the rave ('rystalwort Piceia bifneca fomme on ridus © Chislury and Belwy Brails Woods, li. commuluta, rather flentiful in a stubble fied near Froxtield, it is a phant of comparatively recent intronluction to the british hepatic
 ('ohhan F'ritlo Wiond, and the mare C'epluloziella limprichtii grow-
 a vi-it to at samem-strewn valley in West Womds, near Marlhorongh, hoping to lind some of the alveriant samen-stome mosses which form
 chalk-down valleys in the meighbomphod. But in this I wats disapfuinted, for the salsels stobes were conered with a dense growth of breyum coupillare. Hypmum cuperssiformer, and other eommon species, anl with the exeeption of a little Grimmia brichoplylla, the sarsenstone sueces were eomspieuous by their absence; Mr. Dixon wrote :* I smomise that the spechal sarsen-stome spectes are rather markedy xombistic and get a hold on stones in the open where other mosses find it ditlicult to live, hut that in the wooded valley your refere to there is mote shate or moisture, so that these eommoner species have fout their fonting and exelnded the (irimmancere, cete. But this is rather ghew-work." The following twenty-nine mosses, which are er berally mommon or rave with eapsules, I have fomd fruiting
 schuchiamu. Zeygulon riridissimus, Orthotrichum Layrllii. Philonot is
 pistulo-trigulturm, Aninm uffine vald. vlatum (a simgle seta), Vechirn mmila. I. complanuta.'Perogonium gracile. Thuilium tamavisrianm. Bumeluythrcium allicans. B. Firnlure. B3. illecelnom,
 Phu!inllecium silculicum, Amblystrginm fiochii, A. , filiciunm,

 ami /f squmrensum. Nr. Niebolson writes:-" 'The list of fruiting-
 Pmatity, but i am inclined to think it beass move bestmony to your wrufil -arela than to any wry exceptional conditions in pour Alotric: ; I has fomblall bint four fruting in Sussex, and I think all

 freels in the Mulitemancain region. lont most of form plants are father incthern, ami a mitahle degree of hmmidity is perhaps the
 (1907) and $/ 1$ fertios ($1: 11: 3$) have been followed in recording the followinf [hats, amd my lonst thank are due to Messurs. II. N. Dixon, W. LI дinn. W. U. Kinisht. W. E. Nicholsm, and J. A. Wheldon For intereating 11 ho and murh kind assistance in identifieation;

great interest. $\quad 7=$ North Wilts ; $8=$ South Wilts ; c.fr. $=$ with fruit; * = new vice-comital record.

Mosses.

Sphagnum cymbifolium Ehrh. S. In a small pool near Foxbury Wood.

C'atharinea tenella Röhl. 7*. Rather sparingly on the sandy clay of the Reading Sands on a ride in Chisbury Wood; the plants were sterile. This is extremely rare and seems to be recorded only from Bedgebury Wood, Goudhurst, Kent.

Polytruchum piliferum Schreb. and P. juniperinum Willd. 7, 8. Not uncommon in sandy places in Savernake Forest and Tottenham Park,

Pleuridium axillare Lindb. 7, 8. Abundant on the insides of cart-ruts in Bedwyn Brails and Chisbury Woods and damp places in Savernake Forest, always fruiting. - P. subulatum Rabenh. 7, 8. C.fr., abundant on sandy ground in the district.

Dicranella rufescens sichp. 7*. On damp clay by a pool near the Column, Savernake Forest, c.fi.-D. varia Schp. 7, 8. Widely spread, often on the bare surface of the chalk.-D. Schreberi Schp. 7*. Chisbury Wood, with Pleuridium subulatum.

Campylopus flexuosus Brid. 7. Fruiting in the north part of Tottenhan Park and also in Rhododendron Drive; capsules appear to be rare in this species.-C. brecipilus B. \& S. i^{*}. In very swall quantity in the north-east part of Tottenham Park, near the (trand Avenue (teste Knight).

Dicranum Bonjeani De Not. 7. In small quantity in the north part of Tottenham Park.

Leucobryum glaucum Schp. 7. Rather sparingly in one place in Chisbury Wood; also in Cobham Frith Wood.

Fissidens exilis Hedw. 7*. On clay in Chisbury Wood.F. crassipes Wils. 7*. C.fr., on the brickwork of a sluice by the Kemnet and Avon Canal; also in a similar situation by the Kennet near Ramsbury.

Grimmia trichophylla Grev. 7. On sarsen stones in West Woods, Marlborough.-G. subsquarrosa Wils. 7. A form almost without hairpoints on sarsen stones in Lockeridge Dean, Marlborough. This is extremely rare in fruit; as to its method of propagation, Mr. Dixon wrote :-"This frequently, if not normally, has multicellular gemme in the axils of the upper leaves, and I expect the propagation is chiefly by these; in fact, Limpricht gives - G. subsquarrosi' as a synonym of his ' G. Mühlenbeckiï forma propagulifera.'"

Rhacomitrium canescens Brid. 7*. In small quantity on earth in the north part of Tottenham Park.

Pottia intermedia Fürms. 7, 8. Plentifully in a fallow field at Fosbury; Savernake Forest.-P. minutula Fürnr. forma. 7. On the ground near Savernake Lodge ; "a form with rather narrow and elongate capsules." Dixon.

Tortula lavipila var. lavipilaformis Limpr. 7*. On trees in Tottenham Park, near the Durley Gate.-T. papillosa Wils. 7.

Fraw mar Chobury Wimed: thinly seatereal throughout the distriet

Eincolyptio stroptocurpa Hedw. 7. Chatky hank near Ramsbury.

Or-thatrichemm pulchellumsimith. i. In small quantity on old Wher mar khatedeman Drise, Savernake, e.fr.

Énhemurum strerutum H:mp. 7^{*}, S* *. (C.fr., un bave spaces in
 ('fro, on sumdy day in Chishury Wonl.-EE, sessile var. brerifolinm solp). σ^{*}. C'lr... on sandy clay soil in Chishury Womb. The Census Comaloyme reemels this mily from Bant Sussex and Cheshire.
 the downs near 'Jideombe, S. W'ilts, near Polestown's Farm, Shathompor: hear styp Wiond and Ghishory Wood.

Finnaria (riertornm Dixon. i^{*}. U.fr., heathy gromul in the morth-cast part of 'louthemhan Park.

Philmotis fontana lBrid. T. S. Alnudant all over Savernake
 or irnit. - P' cespitose Wils. S. Dronlucins mate thowers freety in a hagem Lumdon Clay wear Burvidere Hoath; the eapsules have not Inwn fonmd in Pritain.-P'. cerspitosa var, alpmersa Dismier. S*. Sparingly with type in a bog near Burridge Heath, new to the Priti-h iske: it is curimes that this amb P. salcarea var. lara biamier should be almost conlined to the meightombore of Gerat B-alwan. I have taacel the latter into Berkshite, where it grows ley the she of the Kemet and A wom (Ganal at Hungerford.

U'ebria uutans Hedw. i^{*}. On samely soil in Chishury Wooul; heathy eromed in the north part of Tottombin Park, e.fr.- Cr annotima schwaeg. \&. Dal': Down Brickworks, where it fruits freely:11. unnofina var. erefta Correns. 7. Widely spread in Savernake Fomen; the brown ovate grmma in the axils of the upper leaves in than war. are so large that they pish the leaves ontwards. - If. curnen sohp. S. Win wet clay in (Chishory Wiond; very plentiful on the Water side of the shathourne strean between lhangerford and Shathurne ; ako on clay at Morle bown lirickwork.
 in a small lwe bear Wichion cinlly Wonnl, and more frecty in a

 (:fr., ands gromed in Clistury Woul, with radicular crimson frans-

Lencoulon sciuroides Schwaeg. 7. In Savernake Forest, with the numerous gemmiform branchlets which are mentioned in Dixon's S'tudent's Handbook (p. 465).

Leskea polycarpa Ehrh. 7, 8. C.fr., by a watercourse near Little Bedwyn.

Anomodon viticulosus Hook. \& Taylor. 7, 8. Widely spread around Great Bedwyn.

Thuidium tamariscinum B. \& S. 7. I found about half a dozen capsules in a wood near Savernake Lodge.-T. Philiberti var. pseudotamuriscinum Limpr. S^{*}. By roadside near Botley Down.

Climacium dendroides Web. \& Mohr. 7*, S. Boggy ground by railway north of Stagg's Lock on the K. and A. Canal. V.c. 7.

Brachythecium albicans B. \& S. 7. Fruiting copiously on thatch by London and Bath Road near Hopgrass Farm, Hungerford.B. rutabulum B. \& S. 7. With capsules about as large as those of B. velutinum in a hedgebank near Chisbury Camp.

Eurhynchium piliferam B. \& S. 7, S. Widely spread among short grass throughout the district, but always sterile.-E. Suwrtzii Hook. S. A form approaching to var. rigidum Boul. oceurred near Merle Down Brickworks.-E:. pumilum Schp. 7. In a shady place on the ground at Chishury Camp.-E. curvisetum Husn. 7. C.fr., in three or four places by the side of the. Grand Avenue, Sivemake Forest.-E. striatum B. \& S. 7. C.fr., in a wood near Savernake Lodge, the only place where I have seen it with capsules. - E. murale Milde. 7. Stone by side of London and Bath Road near Woronzoff Lodge, Savernake Forest, etc. Scarce and stunted in this district.

Amblystegium Kochii B. \& S. S. In considerable quantity and fruiting copiously in an Epilobium hirsutum swamp at the source of the Shalbourne Stream.- A. varium Lindb. 7*. On brickwork by water at Crofton Engine House.-A. filicinum De Not. 7. Fruiting in Hungerford Marsh.

Hypmem riparium L. C.fr., by water in Chisbury Wood.-HI. stellatum var. protensum Rönl. Plentiful in bog near Webb's Gully Wood.-H. chrysophyllum Brid. 8. Clayey meadow upon Conyger Hill.-H. adrencum group typicum forma falcata Ren. 7*, S*. $_{\text {* }}$ Very sparingly with the previous species; "characteristic forma falcata," J. A. Wheldon ; also in N. Wilts on marshy ground to the north of the K. and A. Canal between Little Bedwyn and Froxfield.II. aduncum group Kneiffi var. polycarpon Bland. S. By the margin of a dewpond on the downs near Tidcombe. H. aduncum group Kneiff var. intermedium Schp. 8*. Plentifully in a pool forming part of Wilton Water; "typically var. intermedium," J. A. Wheldon.- H. aduncum group Kneiffi var. intermedrum forma penna. 8*. Pool on London Clay at Dod's Down.-H. Auituns var. Jeanbernati Ren. 7^{*}. In small quantity by pool near the Column, Savernake Forest; Mr. Wheldon writes:-"The Hyp$n u m$ is fairly typical Hyp. fluitans var. Jeanbernati. The nerve is wide, but still within the range of Jeanbernati and not reaching the diameter of that of aflanticum, and the cell-structure is quite typically that of var. Jeanbernati; it is a small example of
 Marsh near the Boalwan Brook．－H．Patimatiep Lindlb． $\mathbf{7}^{*}$ ．A very small form on samdy clay 11 （hhshury Wood．－H ．straminemm． buks． 7^{*} ．A form with ipreading distant leaves qrew submerged wry spabiny with $I I$ ．fluituns var．gracile in a pool which dries up in the summer on peaty soil at ahout 5 oto ft．in Chisbury Wood．－ 17．gigunterum sidp． 7^{*} ．Very sparingly in Hungerford Marsh Erowing with Mnium affine vals．elutum：this is prohatly a relic of：a time when Hungerford Marsh was in a much wetter and more mudrained condition．

IIEpitics．

Micera bifura 1 olfm． T＊$^{*}, 8^{*}$ ．Sparingly on rides in Chishury and lkedwon limals Wouls（trste Nicholson）；the Census：Cutaloyue records it from only seven viee－enunties．R ．commututa Jack． 7^{*} ． Plentifnl in a stubble tield by the London and Bath Road mear Frox－ fidd with R ．sorocarpa and R ．glanca．－R．glanea L． 7^{*} ．Situbhle dichl near Froxlield，alsu in Saveruake Forest．R ．sorocarpu Bisch． －＊，s＊．Not uncommon on damp earth throughout the district，easily recognized hy its haish－green eolour and deeplr－furrowed fromb．

Conncrpikalum comicum（L．）I）um．S．Very fine on the briek－ work of a sluice near shalbourne；on brickwork inside the Bruce Thund on the K．and A．Canal at Savernake．

Pellia Piahbroniana Raddi． 7,8 ．（＇ommon on damp grommd， and in wery wet places throughont the district ；this species gremerally affecta caleareons soil；the fureate aphees of the thallus are a con－ －piomons chameter in antuma ame winter．

Fossombronin pusilla（1．．）Dum．7＊．S．Ilentiful on the insiles of a carterut and in other places in Chishary Wood ：also in Fox－ hury Wood．Fi．Wondinczeki（Corla）1）un． 7^{*} ．Chisbury Wood an i on damp clay by the side fund mear the（＇olmm，Savernake
 gunatity on samly clay $\quad 1$ pon rioles in Chisbury Wood；very rate
 phat learing a single capsule on simdy clay soil in Chishury Wood ； Mr．Nieholson writes：－Mr．Macvicar semmed to be quite satistied about tha Foss．（＇mandsu，su I think you would be justified in record－ ing it．I am inclinel to acroo with Mr．Manevar that it is rather
 lint ala phan from the lizant in Jomm．Wnt．I！nt．p．10；the iden－ t fication was combrmad ly M．Wonin．but the plant was mot yuite topical，anl four phat agron hetter with the twe than mime＂

 Sいいmik．
 north part of＇ C ＇ 1 tenh ham l＇ark．
 onn pilace on hathe erembl in the morth part of Tottenham Park．

1．phenza tromate I limhli）Stuph． \boldsymbol{T}^{*} ．In small guantity in

Park; also on a ride near Eight Walks, Savernake Forest; it can be recognized by its scent.

Sphenolobus exsectiformis (Breidl.) Steph. 7*. In rather small quantity among heather in the north part of Tottenham Park ; the orange gemme which are thickly clustered on the leaf-apices give this plant a tawny appearance.

Chiloscyphus pallescens (Elurh.) Dum. 8*. Very wet place in Bedwyn Brails Wood; by a rivulet in Foxbury Wood; bog near Burridge Heath; previously erroneously recorded as C. polyanthus, not yet found in Wiltshire.

Cephalozia bicuspidata (L.) Dum. 7^{*}, 8. North part of Tottenham Park, with perianths; small form in Forbury Wood.

Cephaloziella byssacea (Roth.) Warnst. 7*, 8^{*}. North part of Tottenham Park; Chisbury Wood, with perianths; on clay at Dod's Down Brickworks; Foxbury Wood.-C. integerrima (Lindb.) Warnst. $\quad 7^{*}$. Some small colonies on the sandy clay of the Reading Sands upon rides in Chisbury Wood, with perianths; this is only recorded from Sussex.-C. stellulifera (Taylor MS.) Schiff. 7^{*}. North part of Tottenham Park; also on sandy clay in Chisbury Wood.-C. Limprichtii Warnst. $7^{*}, 8^{*}$. On earth upon a walk in the north part of Tottenham Park; also upon a ride in Bedwyn Brails Wood (teste Knight and Nicholson).

Scapania irrigua (Nees) Dum. and S. curta (Mart.) Dum. 7. Rather frequent in Savernake Forest on rides.

Microlejeunea ulicina (Tayl.) Evans. 7*, 8*. Rather common on beeches near Rhododendron Drive, Savernake Forest; on beeches in a copse near Ramsbury and in Foxbury Wood.

Frutlania Tamarisci (L.) Dum. $\underset{\text { t. }}{ }$. On sarsen stones in the " Yaller of Rocks" near Marlborough.

NEW MALAYAN PLANTs.

Bi H. N. Ridlet, M.A., F.R.S.

Peripetasma Ridl., n. gen. (Menispermaceæ).
Frutex gracilis scandens glabra. Folia alterna subherbacea elliptica oblonga cuspidata trinervia. Paniculce axillares racemorum longorum gracilium. Flores copiosi parvi pedicellis gracilibus. Sepalu 6 in seriebus duabus ad basin connata lanceolata acuminata, exteriora angustiora crassiora. Stamina 6 libera filamentis ad bases incrassatis superne gracilibus arcuatis, authere loculis discretis. Pistillodium minimum triquetrum.
P. polyanthum Ridl., species unica. Folia basi rotundata nervis tribus a basi, nervulis e costa 6 paribus cum reticulationibus laxis subtus elevatis, 15 cm . longa, 5 cm . lata, petiolo 2.5 cm . longo. Panicla rachide $\overline{5}-10 \mathrm{~cm}$. longo, racemis $20-2 \mathbf{2} \div \mathrm{cm}$. longis pendulis. Flores dissiti parvi, pedicellis 2 mm. longis. Bractece dimidio æquantes. Sepala 6 ad basin in tubo campanulato connata lobis longis acuminatis bicostatis puncticulatis. Stamina breviora vix tubum superantial arelata.

In ubis al Kiwala lampur and Batu 'liga in ditione Selamgor, FOl. Fir. Mareh (Ridley 11!:3t).

Thin mions plant, if which I have only seen male flowers, seems th hee most clonely allied to Piunsporn. It is chicelly prentiar in
 sopals amb one of petals commate in athort tube and with a minnte trigurtrous pistilnde in the contre. 'The thee-nerved leaves
 I have twice met with it in Sclaturor - first in the Batu 'liga distriet, now gnite demmed of its original thara by the rublere enttivation, and a stonnl time in a wome moar Kiwala lampers.

Tinospora Curtisii lidll., ı. sp.
sumbuns. Follon suberiacea ovata ad basin breviter endata, apicibus mumomulatis, nervis : parilua, sulatus com motienktionibus
 ©ntia laxe et parce paniculata ramis ! cm. longis vel hrevioribus.
 acmmanatie. P'edicelli triplo longiores. S'epale 3 rotundata lata.
 latis liburis, antheri subghonsis. Filores fommei at fruetus desment.

Jemans, Batu Feringhi, near the beach, Mareh 1900, Curtis 2161.
'This has the chameteristic pate lawn-eolomed leose bark with wat commen to most sece'tes of the bembs. 'The leaves are more coriacents than in any species known to me, and mearly entire at the base instatl of heiner conspicumsly cordatem trancate. The nevere of the
 oppmite and rumbing halfway up the leaf parallel the the mogin. 'Th inthoneconce is mimately puberolons and has more of the
 ginosa Mers; the flowers are as laree as those of that specios, lat

 this ami may pr rhaps be idnotical with it.

Scaphocalyx Rinl.. n. \&en. (Flacourtiaerat).

Artmes glatori. F̈lla nlterna trimervia. Flures masexnaltes in

 uresulanter in polper lispres.
*i

 but matamel in this eronp, and the stamens are feener than is usnal. Tlin offor path wous somembat leathery ealy which eventually
dehisces into a boat-like organ in one species and breaks up at the tip into 4 lobes in the other recalls Trichadenia and allied genera.
S. spathacea Ridl., n. sp.

Artbor parva $10-25$ pedes alta. Folia alterna coriacea elliptica oblonga basi cuneato, apice acuminato, trinervia, costa supra elevata, subtus trinervia a basi elevata, nervis lateralibus circiter 18 paribus subhorizontalibus, nervulis ferme æque prominentibus $15-20 \mathrm{~cm}$. longa, $5-7.5 \mathrm{~cm}$. lata, petiolo 3 mm . longo. Flores masculi in tuberculis in ramis pedunculis brevissimis sericeis, pedicellis gracilibus 1.5 cm . longis. Alabastra fusiformia. Colyx spathacea rostrata cymbiformis in uno latere dehiscens 2 cm. longa. Petula ad basin connata linearia acuminata, stamina filamentis brevissimis petalis oppositis hirtis, antheris linearibus acuminatis, petalis dimidio equalibus. Flores feminei ignoti. Bacca globosa alba 2.5 cm . crassa. Stigmata 6-8, semina plura.

Malacea, Bukit Kanuning, Derry 1023; Negri Sembilan, Tampin Hill, Gondenough, Burkill; Selangor, Ulu Gombak, Ridley 142; Weld's Hill, Abdul Rahman.

S. parviffora Ridl., n. sp.

Arbor parva, ramis angulatis. Folia ovata elliptica acuminata trinervia basi cuneato, nervis exterioribus in parte superiore folii cum nervulis 13 paribus a costa anastomosantibus, 22.5 cm . longa, 10 cm . lata, petiolo 2 mm . longo. Flores in fasciculis parvis supra axillaribus, pedicelli 3 mm . longi. Calyx spathacea in 4 lobis acuminatis pilis terminatis fissa 4 mm . longa. Petala 4 breviora alba lanceolata acuta. Stamina 6 antheris lanceolatis basibus retusis filamentis brevissimis.

Perak, in sylvis Temengoh, Ridley 14736.
The foliage much resembles that of the previous species, but is larger and more ovate in outline. The flowers are very much smaller on short pedicels, the petals hardly longer than the calyx which splits into 4 points, the stamens are lanceolate and shorter than the petals.

PLANTAGO ALPINA AND P. MARITIMA

By H. W. Pugstey, B.A.

Tue points of distinction between Plantago alpina L. and P. maritima L., the dwarf shore and mountain forms of which often bear a close resemblance, when in flower and fruit, to the alpine species, are not well marked and usually not very clearly described. When the plants begin growth in the spring, however, their aspect is entirely different, and it may therefure be worth recording their features as seen at this early season.

These notes are taken (23 February) from plants that I have under cultivation, as follows:-P, maritima, olitained from Poole Harbour in 1913; P. alpina, from Mürren, in the Bernese Oberland, in 1914; and an inland form of P. maritimu, from hills near Crianlarich, Perthshire, in 191.5. In all three cases the plants examined
are thase arigimally collected, su that they are all evidently fairly hong-lived peremaials.
l' $^{\prime}$ murilimen, from l'oole, has grown into a dense tuft, with many ereet. clusely-matted bamehes, on which last yearos dead leaves and prabucles, and hown leaf-sheaths from provous years remain. 'Ihe carlinst two or three leaves of the new scason's growth, which has hut lately emmmened, are subulate, about 12 mm . long and less than 1 mm . hroad, suberect, fleshy, nerveless, whemedy chamelled above, and with an abruptly dilated base sheathing the stem. The next leaves are much longer, linear, subacote, soon attabing 10 cm . in length. but seareely exceeding 2 mu. in breadth. They possess similar hasal sheaths, and beome successively amore involite rather than channelled, and recured towards the apex. 'They still show m definite midrib. At about the seventh leaf the denticulate margin sometimes appears.

In l^{\prime}. alpina the rootstock is divided into horizontally spreadingr hranches, which are mated and searred from the decay and disappearance of the previous year's foliage. The leaves do not shathe the stem as in P. maritima, and the tirst ones, which appear some weeks farlior than those of P. maritimo, are triangular-ovate, $\overline{5}-(\mathrm{imm}$. long and I man. broad near the hase, aceute or acmmate, flat amd herbacens, distinetly 3 -nerved, and spreaditig or slightly recurved in a small rusette. These carliest leaves are furitive and are quickly followed by mmerous others, which are linen-lancolate in form, ": 3 em. long and if mam. brond below the madele, acuto, flat alove and carimate umdernath, with 3 distinct nerves, and the margins sometimes distanty denticulate. 'These leaves som boenme spreadingroflexed, cowering the shorter primordial ones and forming a dense ronette. While in January a tuft simulates a miniature P. major, at this date the remblance lies with l '. Iancerolata.
'I'lue P', marilima from Criaularich, thourh much dwarfer', is essontially identieal with the Poole Harbour plant, showing the same crect branching and similar persistent leaf-sheaths. Its early leaves are linar-subulate, $15-20$ mm. long ame about 1 mum. brome, obtuse, nearly erect, theshy, nerveless, but tlat above and neither channelled nor inwhlate.

With the advance of spring the leares of P. alpina become lonerr ($1-5 \mathrm{~cm}$) and relatively narmwer, till at longth thoy are not esuily dintingnishable from those of the (rianlarich l'. maritima, which by that time form a spreading rosette. Both plants then have a quite different aspaet from the Poole P. maritima, which continns to produce throughent the smmmer subereet leaves that may attain 2.5 cm . or more in length.

In my garien P^{\prime}. alpina tlowers earlier and much more sparingly flan the other 1 wo plants, and dows not dweloj fruit. The two forms of P^{\prime}. marilima produce abmadant froit, hit as no seedlings haw enor appored in thoir viemity, I dombt whether :my seed is jurfectel.

EUGENLA LUCIDA Banks.

By Jimes Britter, F.L.s.

The presentation by Mr. E. D. Merrill to the library of the Department of Botany of a copr-one of the six prepared-of his type-written Commentary on Loureiro's 'Flora Cochinchinensis' has impelled ine to make a list of Loureiro's plants in the National Herbarium, adding such notes upon Mr. Merrill's admirable work as the specimens suggest. The list is not yet ready for publication, but in the course of its preparation I have come upon a small matter that, relating as it does to a plant unconnected with Loureiro and involving the correction of an error published in the first volume of this Journal, which has led even Mr. Merrill astray, may as well be printed now.

In this Journal for 1863 (p. 280) Seemann, writing of Loureiro's genus Opa, cited as synonyms of his O. odorata, Syzygium odoratum DC. and S. lucidum Gaertn., adding that authentic specimens of Loureiro's plant were in the British Museum. If this synonymy had been accurate, Gaertner's name for the species, as being the oldest, would undoubtedly stand, although I do not think the plant could tre called Eugenia lucida Banks, as Gærtner published it as Syzygium, citing Banks's herbarium name as a synonym.

Mr. Merrill, accepting Seemann's determination, as, in view of the reference to Loureiro's specimens, he was justified in doing, takes up lucida as the trivial name, citing Opa odorata Lour. and S. odoratum DC. as synonyms. Gaertner's plant, however, which was only known from his description and figure, was cited by De Candulle (Prodr. iii. 17; 1828) with an expression of doubt; Hooker and Arnott (Bot. Beech. 187) also quote S. lucidum doubtfully under their S. odoratum, which they say "agrees much better with the description given by Loureno than with the character of De Candolle." A discussion of S. odoratum is, howe ver, beyond my present purpose, which is to clear up the confusion which has surrounded S. lucidum.

The promulgation of the erroneous identification is due to Seemann, who cites positively what De Candolle had regarded as doubtful. Seemann was br no means a careful worker, and often took his references at second hand; he must have done in this case, for had he referred to Gaertner's figure of the fruit of S. lucidum (t . xxxiii), he would have seen that it could not belong to Loureiro's Opa odorata.

In this Journal for 1899 (p. 248) I have given the history of Gaertner's plant, the sheet containing which had lain unnoticed in the Banksian herbarium for more than a hundred years until I found it among unidentified species at the end of Eugeria. It was not seen by Bentham when engaged on the Flora Australiensis-his investigation of the National Herbarium was always somewhat perfunctory, and was practically limited to an examination of the arranged species from Banks and Solander and of Robert Brown's herbarium, which at that period was Bennett's private property and so was not incorporated in the general collection. The sheet, which is endorsed in Itryander's hand "New South Wales: Endeavour's River. J. B." (Banks) bears the names, also written by him, "Ergenio lucilla

 the plant hy solander，the names quoted alove hasing heen athed hy the everemaref hryamer．For the hotanical history of the phat， which was mot refomb matil $1 s!11$ ，reference must be made to my

 M！！／1us．

心ルOlil NOTES。

 contains an interesting paper by Mr．（．13．Woltat in which lie disensaes the chatatere of E＇manthe eroenta as a poisomms phant．A smanary of the opinions of varions writers．pulbliahed in Vature for
 overy part of the phant vimbently poisomons＂；pet carelul experiments undertaken liy sif Robert（＇lnistison，while proving its virulene as grown near Wroolwich and mar liverponl，showed that as grown near Filimburgh it was dewod of toxic properties．Ar．Noffat observed that in 1915 amel 191！1，at Ballyhylam，（＇o．Wexford，＂three different herals of cows were fomm to make remular pmetion of ating it？， not as a last resourer，lint as a favourite artiele of diet．＂of which ＂ther made a substantial meal＂with mo disastrons results．In another locality，the deaths of cows were traned to the reots of the plant，hut their poisomons nature has never beren called in fonstion． The account of the prisuning of＂a Dutehman＂which Threlkell，as quoted by Mr．Moffat，cpitomizes，will be fomm in Phil．＇Trans．xs． S（ 1608 ）；it was in the first instance sont hy Frameis Vanghan on Lisy，who sent it to slome（see Correspondenee of Pa！，jr，31：3）． The＂classical instance＂relating to the puisminer of beys by eating ther roots is well known，but it may le worth whike to yuote the ease of the Dutehman in full：＂There was also a Dutchman，alout two year－Ance，within eight miles of this place［Clommel，Co．＇Tiplomary？ poisonel hy lwiling ant eating the lops of this plant sharel intu his pottage：lie was soon after fommed dead in his Pat，ame his little Irish boy babe acommt－of the cause of his death to le vating this herb， which lor forewarmel his mastor against，hut in vain，the Dutwhan asserting that it was game alan in his ematry．＂Ray refors to other cimen＂uf the mandable destraction of divers jersens by the eating of ther ronts of this promicions and deleterioms plant．＂but does met montion another in which the folliage produced fatal reants．Licht－

 m＇stahe，dithor for water－parange or for celeri，which last it reambles

 member to have herat the lato Mr．Christopher D．Vihrot，that relbhatal Cotank pathores s．y．that while he was drawing this phat，

times oblig'd to quit the room, and walk out in the fresh air to recover himself; but recollecting at last what might probably be the cause of his repeated illness, he opened the door and windows of his room, and the free air then enabled him to finish his work without any more returns of his giddiness."-James Britten.

Aspidium goggilodus Schkuhr. In 1809 Schkuhr (Kr. Gew. i. 193) published as Aspidium goggilodus, a fern which Robert brown described in the following year (Prodr. 145) as Nephrodium unitum. Schkuhr's specific name has now taken precedence, but has been changed to gongylodes - as it seems to me, wrongfully. The author was, of course, in error in his spelling, which should have been gong.ylodus, but the substitution of e for u is arbitrary and misses the whole point. I take it that Schkuhr*s name was made up of the two words $\gamma 0 \gamma \gamma \dot{u} \lambda o s$, rounded, and ojoús, tooth, whereas gongylodes can
 not at all "roundish," but its lobes or teeth are certainly "rounded." I therefore submit that the fern should be known as Nephrodium gongylodus (Schkuhr).-W. W. Watts.

West Glotcestershire (v.c. 34) Records. Miss Todd, of Aldbourne, Wilts, informs me that she has found Polypodinm Dryopteris and Jasione near St. Briavels; this is a first record of the latter for v.c. 34 , although it occurs just over the Wye in Monmouthshire and plentifully in Glamorganshire. It was recorded long ago from Painswick (v.c. 33), but I am unable to confirm either record by specimens; S'cabiosa Columbaria is not infrequently mistaken for it. Miss Todd has also shown me excellent Cratcegus oxyacanthoides from Hawkesbury-the first trustworthy record for v.c. 34; this is frequently recorded from E. Gloster-and also a beantifill sheet of Limosella from a pond in the Forest of Dean; this contirms Winch's record in Baxter's British Flowering Plants (iii. 2I?).-IH. J. Riddelsdell.

Crepis rireys and C. tectorum. Mr. E. B. Babcock, of the University of California, writes: "The genus Crepis is coming into prominence because of its unusual promise as a subject for genetical research. We have been working at C. vivens and C.tectorum for about three years, and find ourselves in need of more of the many forms found among them, and we should be grateful for any material that might be sent us. In addition to the variations between these species, I wish to secure achenes of all other species of Cirepis. We find this to be necessary because we hare already met difficulty in producing viable hrorids between virens and tectorum.". Mr. Bahcock's address is :-College of Agriculture, Berkeley, California.

REVIEWS.

Svensk Fanerogamflora af C. A. M. Lindman. Pp. 639, 300 illustrations. Stockholm. Price $14 \frac{1}{2}$ kroner ($16 s$.).
This latest Swedish Flora-which, though dated August 1918, only came to hand towards the end of last year-is the size of Hartman's Skandinaviens Flora, and follows Engler's arrangement; it is

Journal of Botavi.-Yol. 5s. [JUNe, 1920.]
profuedy illmetated with some 3000 －mall（but in most eases ex－ coflent figum comiting of the parts most alapted to show the differences．The value taken of the speries is a moderate one in most
 bahlitedt and 20．1．of Ras＂．

Thu history of the siwdish Flom from 18\％年，when Berlin pub－ lisheel at siturkhom at rery nectul table showing the distriluation from Somia up to Swednolh Lapland and North and Suntir Norway is a curims reoml of oweies making and monaking．Berlin＇s list had 1 Titroreronm．2！2 Rubi， 19 Rones，and 105 Hirreciu：in 1891 the
 9：Li，wes，and 570 Hemorin：in 1907 the land society＇s list had 5．5）Rowes，른 Ruhi，and 20以 Hirracia．In 1917 a second edition of this had 2er Tarorourum and 71 hybrid solices．Nemman＇s Sirrigrs Flora（1904）had $1(i$ Roses， $4 i$ Rubi， 7 Toraxacum，and 96 lineracia．

Taking the present Flora in its seguence，the Potanngetons hy Harstrom matmally follow his work of 1918 ；for Sweden he gives 22 species with 14 hybrids－if thin semus were taken up on the lines of Tirrarnerm we should pronluce a ironl army of so－called apecies！ There is certainly ome clement．The chan conition of the specimens of the aquatic plants of the swedi．h Flom is remarkable：with the mont caroful treatment of our specimens it is hard to proluce any－ thing like thu specimens issued in Tiselins＇s Swedish exsiccata of the genus and the heantiful series I possess other than those from Dr．Tiserlins： 1 suppose this results from the purity of the water and the enmparative ahsence of Agar．The Graminea show a near apprach to our Flom so far as regasde the walue phaced on species ； as an example－P＇on lanfomrii l＇arn，is placed as a subsp．of P＇．glauca Fahl，and an c－timate of l ．glancon may he foment by the symmeny

 nsenl fur the shomodurus Fr．part of Bromure．Colummgrostis is
 fion which I have contenterl in＇Trans．lait sue，Fidinh，xxvij． 307 （1919）．Konlorial las only ylanco and gincilis．There are 90 species of＇ourer：the illustations hem are wery gexd．The author wisely has C．salina Waht，with one onlopereme and the remark that the Swobls furm is＂var．liattequtensis（Fr．）Almg．＂＂he nses dirersi－

 If EVIrro and is British：at a oulspecim．He questions whether
 wh ther A flute All，is the stme．＇The list is very British，watept of
 mite Anocus，gising tigure of the fruits．

Wf the tran lambinall ligure leaves，or half leaves，with their
 thats rotent be tizhre－is forms of Prombus and I think he whis tras theme lis thase will fail．Vombr Sinlix 21 ：pecies are given
and about 110 hybrids; in Betula the fruits as well as the leaves are figured. In Rumex he places aypestis Fr., obtusifolius Wallr., dicaricatus Fr. and siluestris Wallr. under R. obtusifolius L. In Polygonum P. tomentosum Schr. (emend. Kern.) = P. lapathifolium Ait.; P. lapathifolium L. is doubtfully referred to P. nodosum Pers. ; P. heterophyllum Lindman is established for P. aviculare L. p.p., and under this there are five other names; the Scandinavian form of P. Ruii Bab. is P. acaliense Fernald. Under Atriplex Edmonston's A. glabriusculum supersedes A. Babingtonii Woods. A. hastata L., Wg. includes A. calotheca Fr., and A. hastifolium Salisb.=our hastata: there is a new species-4. precox Hülphers.

In Caryophyllaceex Lindman has Cerastium subtetrandium Murb. -a useful name for specimens it has been difficult to associate with tetrandrum on account of the length and direction of the capsules. Alsine rubella is kept up; Arenaria norvegica Gunn (1772) is named A. ciliata L. var. humifusa (Wg.) Hartm. ; A. gothica is retained as a species. To the ordinary British botanist it seems odd to see Ceratophyllum placed between Suphar and Ranunculacea. Under Ramunculus the outlined leaves might easily lead astray; the Batrachian Rununculi are under 7 species, divaricutus Schr. being used for circinatus sibth. In Cruciferce, Cochlearia has only 3 species-our common ones; Rudicula is used for Nasturtium; Draba (12 species) is monographed by Elisabeth Ekman. Suxifiaga has 15 species; S. caspitosa L. is referred to S. groenlandica L.; this is perhaps strictly right, but the British groentandica of Ben Lawers and Cwm Idwal is very different from the true caspitosa of the Arctic regions and Ben Avon. In Cratagus we have 6 species, two of them new-C. curcisepala and C. Palmstruchii. In Rubus leaves are shown in black on a grey ground ; it is impossible to see what useful purpose these can solve : let any one take a Bramble from May to Sept. and match the various leaves and compare the result with the figures on p. 309. Of the 40 Rubi only one bears the name of a British author. In Aichemilla we have 15 species with two pages of figures of leaves: in Rosa 4 pages, with a table extending over six pages showing the relations of the Swedish plants. In Trifolimm, of the 13 species there only two are not British. Callitriche has 5 species. stagnalis being retained; Tiola has 20 specien, rupestris being used for arenara; in the tricolor series are only two species. Epilobium has 17 species, adnatum being used for tetragomum. Oxycoccus quadripetalus Gilib.-a name which can hardly stand-is used for Taccinium Orycoocus L. Primulu sentica Hook, is retained as a full species. In Dtutice there are only two species-S. humilis C. E. Sahmon and N. rariflora Drej. In I'eronica, spicutu is given (not hybrida), and judging from the leaf figured it is correctly named. Euphrasia has 9 species; Rhinanthus has R. minor Ehrh. subsp. stenophyllus Schur. and R.grentandicus Chab. In I'aleriana, T. baltica Pleijel=simplicifolin Ľed.

In Composita we have C'urduus and Cirsium Hill, and 9 lybbrids. Taraxacum has a key of 13 pages to the 99 species. Hieracimm (by Dahlstedt) has 89 species, but grouped under some names are other
 in swable there womh have hom many of tha \boldsymbol{i} e forms described by
 are erven for luth. Surely the climatal comelitions in fianland,
 of suadn: amb does mot this go lia to show these are loeal forms

 16. Nembedt of Lame tell me that the mbly work which appronehes

Kiss - to all wemera with mome than three suecers as well as to the St wion themether combined with dear pribting and general arrangewont make Inr. Limbman's berk a desimble aeguisition; but one has a limering regret that the style of Hartmann's Flora was not aloptenl.

Arthuli Benvett.

Thas. Whied is ammomed "as the timst book in tha English

 anthmit! hat wath the phant- lom whinh the whemets of his staly小rise ther m:atroul.

The tith Liwa a somenhat inampate motion of the eontents of

 GTOM hat whe h the ane mon whlely komwn. the Latim and other mames

Trifolium pratense is discussed at some length and decided in the affirmative.

In addition to his own observations, Mr. Pellett has availed himself of those of "a multitude of beekeepers" whose help he gratefully acknowledges. Sometimes curions items of information are given, such as the account of the introduction of the honeybee into Alaska in 1809 by a monk named Cherepenin: "These bees came from the Department of Kazan, in Siberia, and were brought that honey might be added to the scanty food supply of the pioneer-teachers of the Faith as well as to supply the candles for the church services. By decree of [the] Church, only wax candles can be used, and it is recorded that at Sitka in 1816 no services could be held for six months because the supply of wax ran out. . . . It should be observed that a majority of [the honey-yielding] plants have pendulous flowers. In a climate such as at sitka, where the normal precipitation is 120 inches, only pendulous flowers could protect the nectar."

As we have already said, the book is attractively produced; the trpography is excellent and the convenience of the reader is considered by the addition of an excellent index. Our own bee-keepers will find in it much of interest: we note the inclusion of species not. we think, usually regarded as bee-plants. such as Arctium and Polyyonum Concolvulus. and notally of "Fireweed" (Epilobium angustifolizm) - so called because "it springs up following forest fires and covers the burnt district with a dense growth "-which is important as a source of honey-very light in colour and of high quality-in much of eastern Canada and in many of the States.

Forests, Woods, and Trees in relation to Mygiene. By Augustine Hevri, M.A., F.L.S., M.R.I.A., Professor of Forestry, Royal College of Science, Dublin. Constabie \& ('o. Ltd., 1919, pp. xii, 314 , with 50 illustrations. Price 188 . net.

The recent abnormal felling of our timber has brought home to us the often-urged importance of afforestation. This has been forcibly maintained from the point of view of the inevitable future national need of timber by Mr. E. P. Stebbing in writings previously noticed in this Journal. Dr. Henry treats the sulject from a different standpoint, that of national health, the present work being an expansion of three lectures given by him at the Society of Arts in May 1917, under the Chadwick Memorial Trust. His main sanitational topics are the question of the proximity of trees to sanatoria, the value of parks, open spaces, and trees in towns, and the species best suitel for such planting; the hygienic importance of the afforestation of pitmounds in mining districts ; and the great importance of the afforestation of our public water-catchment areas. This last topic ocelupies more than four-fifths of the volume, all the large urban water-catchment areas in the United Kingdom being described seriation with maps and plans, and one chapter deroted to a discussion of the most suitable species of trees for the purpose. These chapters constantly exhibit Dr. Henry's well-known knowledge of the ecology and cultural characteristics of the native and introduced trees of our islands, and
 The thime chaptar whilit, is atrikime momer the vacillating, in-
 it - methok - or want of methoul the preceding pates rontain a brief

 Inme in mind that lra. Hemry is concerned only with temprate latituln and mainly witl " incular" comditions: but we certainly experted to have found a speater recongition of the presmably differont effect- uf mases of xerophetice enafers with limited tramspi-

Eants chapter is furnished with a valuahbe set of referemees, and there is an adegnatu index. We hope that the book will attan the whaet stated in the Profian-that of interesting " the statesmant the stadent of monmmies, the engranere, the phesieian, and the layman, at well at the forenter."

(i. S. Buthamb.

'Tomse interested in the patetioal aspects of phant pathologe will rempet the dath of Jons sivelat, whe died at Preston on April l!th,

 Butan! at bablacelk ('ollege He was a very eapable manipulator atm, in 19)12. touk up the pert of demonstrator in Histoloney at the Widheres Howpital. 'fler followine year be was appeninted one of the

 tom with the Graskink Potath 'lriad, where he tested vameties

 appreciation in a very manked mammer at the ammal Grmskirk mertinses. J. R.

 in l!ll:s he was ajpminted to Khartomm. The stmly of disn:asecansug fung was of pecular interest to "hathers: he pullisherl

Hawati Net 128 Years Ago is the title given by Mr. W. F. Wilson, of Honolulu-its editor,- to the portion of the Journal of Archibald Menzies ($1754-1842$), kept during Vancouver's Voyage on the 'Discovery,' which relates to his three visits to the Sandwich Islands (1792-4). The Journal itself is in the Library of the British Museum (AddI. MS. 32641), and, although the account of the ascent of Hualalai, which forms its most interesting portion, has been published more than once, the full account of the three visits is now printed for the first time. This contains many interesting observations in regard to the leading Hawaian kings and chiefs, and about the primitive mamers and customs of the natives, which we agree with Mr. Wilson in thinking well worthy of publication. The editor has done his work exceedingly well. He has prefixed to the Journal an excellent biography of Menzies, with a reproduction of the crayon portrait by Eddis preserved at Kew; there are a number of illustrations of the vegetation and of topographical features, taken from original photographs, with reproductions of portraits from old engravings, including one of Kamehameha, King of Hawaii, taken in 1817 : crossheadings and useful footnotes have been added, and there is an excellent index: the diary itself makes interesting reading. We find no indication of price or of publisher's name, but copies can doubtless be obtained from Mr. Wilson.

Mure than sixty years ago, the Religious Tract Society published a little shilling book by Anne Pratt (who died in 1893 at the age of 87) entitled Wild Floucers of the Year; and the same Society has now once more reissued the work in more ambitious guise as a six shilling volume. It is no small testimony to the accuracy of the anthor, to whom so many have in their early days been indebted, that it should be possible to issue the little book practically unchanged ; the style, with its frequent references to religion, seems curiously out of harmony with the present-day attitude, but the botanical portion is as useful now as it was when it first appeared. The present edition is illustrated by numerous coloured plates of German origin, which have we think done duty at least once before in a similar capacity; these include plants that are neither British nor referred to in the text, and were "selected, described in an appendix, and indexed by the Rev. Professor George Henslow."

Messrs. Holden and Hardingham send us Ererybody's Book of Gavden Annuals (1s. n.), by Mr. Hazlehurst Greaves, F.L.S., which they have recently published. It contains cultural directions and an alphabetical list of the plants recommended with descriptive notes on the more attractive varieties-we doubt whether the Cornflower known as "Emperor William" is likely to be "much sought after " at present! Many of the names are misspelt or have misplaced capitals; the "illustrations by the author" are about the worst we have ever seen, and disfigure rather than embellish the little book.

Tue fifth part of the Journal of the Botanical Society of South Africa (1919, but only just to hand) contains a paper on "Our Aloes" by Dr. I. B. Pole-Evans and "Notes on Kirstenbosch Leguminosce," in which, short as it is, three ladies have coöperated. The Journal, which is edited by Mr. I. H. Compton, Director of the

 letters at it fomt thus. "Page One ": the ingemity of the human
 inathility to make we of patent oppertmities. Of this lat ter seriencer

 has- the purehading any refation to the paper orer which it stands. la the April isum. 1) S.alishury and hr. Kidd summarise the "Recent
 treatem as - parate subjerets.
 Mar. (4) contains two papers on Fossil Botany-"Branclites

 Culumites. with a Revision of the British Sprecion of Cellummphlorios :mmi Dictun-Culumites." hy the late E. Newell Arher and F. W. Lawtield

 laseal on the memoin on Thulussioplayth lye Dr. A. H. Church, which

 lahol Brownc: "Mutations and Evolution" he Mr. R. R. (iates;

 II: II. Trail.

 D'ain: Colmereor ly Mr. N. F: hrown; and the hegiming of the Nowore lis Mrsac, Brown and Hutdinson.

 After acenot pears of experiment he hats shew that the diseme Wheh thertene the Xarcions induter with deatrumen can be

 damere is atme to the flowem of the treatment is carrien out in duls,

Fon the mon mienero of thene who may wi-h to have it smarately:
 Britioh law. "haw lonen printend in pamphet form and may twe harl
 pite ho bile prist fec.

W'LLLAM MOYEE ROGERS.

(1535-1920.)

(Wifh Portrait.)

"There is no one who knew him with any degree of intimacy who does not feel that he has lost a personal friend, and that the world is power by the death of Thomas Richard Areher Briggs. Hishmility, his single-heartedness, bis great gentleness, his patient goodness, made his quiet influence a potent factor in erery circle in which he moved." These opening sentences of a brief "In Memoriam" notice appeared in a Plymouth paper just after Briggs's death in January 1891, and were quoted by the late W. Moyle hogers in the Memoir he contributed to this Journal for 1891° (p. 97). I recall them here because they describe as truly the subject of the present Memoir.

William Morle Rogers wais born at Helston, Comwall, on July 12, 1835, and was educated at Helston Grammar School; here he was later on Assistant-Master under the late Dr. Augustus Jessopp, afterwards Head Master of the (irmmmar School, Norwich, and ('anon of Norwich, the well-known author of The Coming of the Friars and manr other books.

I had often wondered how it was that so able a man as logers undoubtedly was, had taken no degree at a University: his daughter has explained this. His father was a laweer at Helston, and, while the son was still at school there, proposed to send him to Exeter College, Oxford; but he lost his moner in a bank failure, and the University was thus out of the question. Morle Rogers went to Dublin for a time, hoping to support himself by taking pupils, and reading for a degree in that University ; but his health, never very strong, could not stand the strain of the double work. At this time he fell in with Bishop Gray, who was home on the look-out for men for his diocese of Capetown; and the Bishop secured his services, took him out to South Africa, and appointed him Vice-Prineipal of his college there. This Bishop it was who there admitted him to deacon's orders, and afterwards ordained him priest. While stitl a deacon he was placed in charge of Riversdate, as no priest was then a vailable for the parish. Directly he was admitted to priest's orders. Rugers took charge of Gcorge Town, while the incumbent went home to be consecrated Bishop of St. Helena. During that time he resided with Bishop Welby's family at George (1860-62) .

It appears that the climate did not suit Rogers very well; and in 1862 he sailed for home, and for a short time took a post with his cousin, Rev. J. S. Tyacke, then Vicar of Old 'Torr, afterwards Canon of Truro. Rogers was then successively Curate of Yarcombe, Devon ; of Holy Trinitr, W. Cowes, I. of W.; of Upton-on-Severn, Worcestershire, and of Chetnole, Dorset. 'To continue the list of his clerical appointments, he became Incumbent of Wolland, Dorset, in 1569 ; Ticar of Stapleford, Wilts, in 1872 ; C'urate of Trusham, Devon, 1876-1882; and Vicar of Bridgerule, Devon, in 1882. In 1885 his health gave way, and he was advised to retire to the climate of Bournemouth, where he resided mutil his death.

Jotrall of Botasy.-Vol. is. [Jily, 1920.]

Duriner his incombuncy of Womlamd, Rogrex married Alicia Rubece damertion of Majo Chadwiek, of chetmole. 'Their son, the lien. Ro. A. lineres, inherited his liather": lontanieal tastes, and is well known th meters of this Jommal ats andelatigalle collector of Snth driean phant- many of which have fown time to time been decorned in there jatere

It wombl lee tedions to thmerate the papers which lingers has
 at his work. I lowked thromplithe indexes for some thirty-eight years, and was astonished at the momber of his eontributions-at first on British phant- enmeall! of late years on labi almost exelasively. A serin- on the flom of bevon appeared in 1575 and the three followine ? ear ; to ma lisu onwards several papers recorded Dorset plants. A hamdantme arknowhedrement of lingerses work was made hy Mr. . . (1. Man- I-l'levilell in the preface to the second edition of his Flora of Dorset: \therefore The frequent vecumence of his name, in almost "Pery paces, show how much I am imdebted in him for the reeords of new stations. and in sume instances of new plants."

Ja Jol Rogers was elocted a Fellow of the Limean suciety. In the two following yars two on thre long papers on the bevon likna thowed from his pen, reomling his numerous notes. Ite had leflore this mate the acpmaintance of Areher Brifos -an adequantame which -own riperal into a wam pervonal fricmikhip, which le recoms
 (1,97), in " amoner the ehoice hlessings of his life": in 1475 "I imbueal him to come and spend a few days lith us at 'Trusham, wear Chadletish, in the Trien Valley.... This powed the lirst of a serie- of , mmmal visits to my homse, patel, I beliceve withont inter-
 resultent in the long pater on "The F'ona of the 'Teign bisin, S. Wevon"
 rale, the latter writes that "in brief visits in fome smecessive fears
 lumbine distriets, as at Trmsham he had helped me in the Teign Villey. In fort, in luth meighbournoms he went further atield than I was able to do: and the paters which I pmblished in this Jomrnal.

 althomgh Roneros hat hecrum to staly Palif sombe years before, he stall
 "hiol h. \mathbf{W}.に nut f.amili:r.
 late E. ㅊ. Marolall, whe was then Cimate of Witley, sumey;
 the neighlumphoml, whinh risultal in "Noten on somes. W. Surrey Kuhn," jmblishal in the fommal for lsol. The following pear

prepares the way for something better." These worls may he taken as an intimation that Rogers had in mind a more complete work on the subject: this idea gradually took form, and resulted in the publication, in 1900, of the Handbook of British Rubi, which was reviewed in the Journal for that year (p. 401). The reviewer pointed out that it was thirtr-one years since Prof. Babington brought out his British Rubi, and that the number of species had increased in the interval from 41 in that work to 100 in the Handbook: "Names had been freety imported from Germany in the past, and in some cases tacked on too hastily to English plants; and it has required years of patient investigation and toilsome correspondence with continental specialists to establish our present list on a sure foundation. In this labour Mr. Rogers has taken the principal part. Great as the work of defining the suecies and tracking out the symonymy must have been-a work for which a wide knowledge of the recent history of the genus was necessary,-still greater mental effort was recpuired for the grouping of the various allied forms, and constructing. the Keys and Conspectus, which introduce the fruticose section."

The late R. P. Murray owed much to Rogers for mumerous contributions to his Somerset Flora, and in the preface expressed his grateful thanks. Many members of both Botanical Exchange C'luhs will have reason to regret the passing away of one whose umivalled knowledge of Rubi has been fur so many years placed at their service.

Among Rogers's collaborators in the Rubi may be mentioned the Rev. Augustin Ley (1812-1911) of whom a memoir from his pen appears in this Journal for 1911, p. 201 : "In Rubus," Rogers writes, " for the last twenty years Ley has been my indefatigable and most helpful fellow-worker," and to him Rogers declicated his Rubus Leyi.

Other species of Rubus were described by liogers from time to time in these pages, with a numerous array of varieties. The species inelude R. lacustris, R. ivicus, R. Lettii, R. cinerosus, R. Giriffithianus, R. dusyphyllus; R. Marshalli was named by Focke and Rogers in combination.

The distribution of Rubi in the comnties of Great Britain was, of course, dealt with in the Handbook, and on this account was entirely omitted from Mr. Arthur Bennett's "Supplement to Topographical Botany," ed. 2, published with the Journal for 190.5. To remedy this omission, Rogers compiled a complete list of the comital distribution, on the same lines as this Supplement: this was published in the Journal for 1909, and forms a very serviceable record; this he brought up to date in 1915 . In 1916 (p. 37) was published a a note-his last contribution-asking that specimens should be sent to Mr. Riddellsdell, whose summary of additions to the Handbook, compiled with Rogers's help and approval, appeared in these pages in April last.

Since he retired to Bournemouth, Rogers continually helped at the daily or Sunday services of one or other of the neighbouring churches, so far as his health allowed. A devout Churchman of the school of C'anon Liddon and Dean Church, he readily found clergy near at hand who were congenial to him. While living at Pine Dene, Branksome

F＇ark，he would help the cherey at All stants＂or st．Allhelm＇s ；after usoning to＂（＇hetmole，＂he assisted at sit．Ambrose＇s，which was con－ wenienty mear．He had lately ben fatiner in health mather mpidly， and pasced a way guide em Nay obith．There were largely attemed
 atul the lamial followed at the cemotery．Thas conded the lonse earthly （atero of one whan was knomat for all his friems as a very chamming and lovalike matn．

においard Frances Liston．

A NEW MARSH ORCHIS．

It is donbthe．a ventureome thing to mame and describe a mew －peceics of Marsh orehis muler present conditions；but the step is not hastily taken．The plants in question have been muder com－ timmens staly and whervation for the last five yens，during which time the whate group hats heren were carefully staded．The determination wit the new forms can be lest catalialied by a complete disenssion of the whole group．This we have worked out and hope to puhbinh in some form on other．To butanists who have decided that U．Intifiolia in Britain is a mere jumble of hyrmbe，this patere will he amathema： hut we ask that the guestion shomht went set be lineelosed．It masy alan Ine sald that a complete description of all the forms erowing in the chief station wif form A womlel erceatly chacilate its value；hut －pace formids．

Orchis purpurella，11．－p．

 long and tapering．Stem more than half solid．Leaves keeded， Imeolate，mather hoad，taperiner tor blont point，with long sheaths， the longest alomit 7 －IL cons．Ponge，the hroadest about 1.75 － 3 cm ． ＂whe with smatl，often wery mall solid spots，regulanly distributed or wften only at the tipe of the ls．，asisly worlooked，never with lires－pets，rings，or hotehes．Lower inates pmplish，seareply
 ．Il tribhend，of a hhant diamond－shape．Alightly cramlate，smmewhat thick in texture，with mather heave markings，mosty mar the centre

 bral．eroct，spur very sout，surter than the wary．

distributis ant juxta apicem congregatis. Bracteis inferiorihus vex flores excedentibus, purpurascentibus. Floribus colone claro purpureorubente, labello plano, integro vel obscure trilobate, format obtuse rhomboidea, minime crenulato, textura aliquanto casa, maculis plerumque perspicuis et juxta linean median sitis, marginibus sepissime incurvatis, presertim junta marginem, nunquam reflexis, long. c. 6 mm ., lat. c. 0.8 mm ., calcare eximie crass, breviore qua ovarium, sepalis latis, erectis.

Format B (a form A) differt colone minus claro flory, labello minus integro, plus rotundato, see major ($10-6 \mathrm{~mm}$. lat., $9-6 \mathrm{~mm}$. long.), media loba para, cuneiforma.

It will be best to discuss first form A, about which least difficulty is likely to arise. It grows near Aberystwyth, in a very old hillpasture, along with several other species of Orchids, which include O. pretermissa (Druce), O. latifolia L., O. ericetorum Linton, and O. Fuchsia Druce. It is a vigorous and flourishing plant of which many scores of individuals are growing with but slight range of variation amongst themselves, and very distinct from all other plants on the ground. The habit is dwarf, about $12-15 \mathrm{~cm}$. being the usual height of the plant.

Sketches of enlarged flowers of O. incarnate and O. purpurella to show main features.

> A. O. purpurella, Ambleside form.
> B. o. purpurella, Aberystwyth form.
> C. O. incarnata, a common rose-pink form.

Note the flatter and broader lip of purpurella, with less regular pattern. The rendering in black and white is necessarily very harsh and the pattern looks too marked without its coloured background.

A rather large specimen measures 16 cm . above the ground, and 20 cm . including the tubers. Tubers 4 cm ., narrow, tapering into roots. Sheaths dark. Stem slightly hollow. Leaves seven in mumber, the two topmost narrow, bract-like, the highest just reaching the base of the spike, the longest $7 \cdot 5 \mathrm{c} . \mathrm{m}$., the widest 17 mm . They are slightly hooded and keeled, with numerous very small spots of

 furphe, with raher rent-purple matis in the eentre, of and irvegular diamomi-shape with eentre lobe seareely distinerishmble, side-hobes fantly demulate we whth whit tisomes. 'Throat wide. pale. Sepals erout, with dark hhoteles imide. Spur stanight, stout, slightly
 themer: There are fomp paints to which speedal attention may be alleal: (1) the furn of the lip. ((1) its colome, (c) the spots on the ls., and (d) the dwarf hahit.
(a) Fin'm of the lif'. The lip is more nearly entire than in any wher allied form, of a roushly diamomb-shape, more or less honad in frometion to the length. The sides are sometimes much mure s'romely cromblate than in areage specimens, and a slight centre-lone is foumd. This is more evilent in dried speedmens. The outline of the lip may be continuons, but for a slight mick. At any mate, the Fromeal appearane of the lipe is quite distinet, as the figne will show. Lerinhmbarla in his clatsilication distingomishes this type of lip as " rhmmbilalia," in which he inchates O. sulina 'lurez and O. croufutw Niill. 'This puint is important, hecause our plant is very near U. "rnentu.

The - لngiontion will no donht be made that the pointed lip is due to a erons with U. Fuchsii ar O. mrirtorum. 'The nearest O. incornufle are milen away, and all have blunt lips. O. Fuchsii is in
 W゙. hase -een a all if then the contre-lahe is long in proportion to the whole lip, and is mathen off fom the side-lohes ly deep elefts. (inl. Gonlery, who has weon the plant- growing in sitn, thinks that they may be a mee promedins fron a hylmid ot O. incomuta amb O. Pinchsii. This is fromber: bat in any case we slombl suppert the vien that we have

(b) Therolu,n, of the flomen is a tine, vivid red-purple, with heary "rimeon lime atat hatehen for the liphattern. It is more brilliant

 be refored were it ont fiom the spotted leaves. It does not appar to

 for that form in mot fimme in the vicinity. Nodenbt at strong ealome
 ditam- Wit wi su. lon likelihond that sueh a eontingeney is to be
 or hisk ame of pale with dork unes) are known, and in all rases the
 colonir leas in int firm of O. murulata. A mutation of O. in-

[^5]carnata or O. pretermissa is the most likely conjecture. It may be said that a few plants of O. pretermissa are growing in the same field with O. purpurella; but no O. incarnata. The nearest station for the latter, of which we know, is seven miles away at least.
(c) The leaves are normally spotted. If it were not for this fact, the plant would be certainly set down as a dwarf form of O. pulchella. As it is, on the ground of these spots the influence of O. maculata may be suggested, and certainly will be by those who do not admit any plants with spots to be other than O. maculata and its hybrids. In most undonbted hybrids, however, the marks tend to be somewhat irregular patches, or, in the opinion of some, rings often very faint, but here they are always very small spots, fairly well-defined and of a uniform dark brown colour. Sometimes they are thickly scattered over the whole leaf, but often are only found near the tip, aud then are easily overlooked. Sometimes they are absent. To us the facts suggest not a cross, but a mutation in the direction of spots.
(d) The plants are normally dewarfs. It may be difficult to decide in many cases when the dwarf character is merely due to impoverishment and when it is constitutional. The var. dunensis of O. incarnata is a case in point. We think in this case (O. purpurella) that the dwarf habit is constitutional. The plants grow in a field side by side with hundreds of tall orehids of other species. Nineteen twentieths of them will be 35 cm , high or less. A very fine hybrid of the species with O. latifolia (as we think) is found in two forms, both tall and short, the two forms intermixed within the same square yard of ground, and these may be Mendelian segregates with tall and dwarf characters. Here also is a case in which external conditions might favour a dwarf race. The field is an old pasture, and the plants are at their best about June 15. Two vears ruming, when going to the field a little later than that date, we have had the sorrow of finding that a lot of young calres had been turned into the field and had cut off the heads of a great many flowers, often spoiling our observations.

Under sueh conditions, if Darwinian prineiples have any practical weight at all, we are entitled to say that a dwarf strain would have a better chance of establishing itself than a tall one. As a matter of fact, the plants of O. purpurella were very little interfered with.

Our belief that we have here a good species is based on the convergence of these characters, not specially on ans one of them more than another. The species differs from O. incarnata in having spotted ls. and flat, pointed, slightly incurved lip, of bright purple with heavy markings, with less erect and narrow ls. It agrees with it in having rather small fls., with very wide throat and very stout spur, and broad, erect sepals.

It differs from O. pretermissa in having spotted ls. and pointed, incurved lip. The flower is very near indeed in colour and markings to O. pretermissa v. pulchella (Druce). Apart from the dwarf habit and spots, the leaf-scheme is one that would suit ordinary O. prectermissa but not is. pulchella, which as a rule is much more slender.

It differs from O. lutifilia in the form of lip, the bright colour
and hean: futtern, in its sanall siace and the minute dots on the leaves. It atho han the -pur propertionately stouter. It differs completely from : heantifal form of 0 . latifiolin orvoning in the same tieh, with whioh (a- we think) it fredy hyhrilizes.

The most protent whjection to reeording this phant as a mew species is that it mitht tam out (1) la. (). cruenta (). Fr. Muell. 'This plamt
 least. in the dempigtion of the lip as "indiviso, subordate, crenato" ; hut the flate (t. Siti) hows copiomaly hotehed ls. amd a very short -pike wf dull purper the. The colone is probably wrong. it any

 lign are mund lombor that wide, imegnlar, amd with mother light mathines. Ifare apart fom the modiviled lipo all the details differ.

 nownlar and barying buch in form, with bor narow markings. (1ur is like the Fil. Wan. lip, hat others are decply trilahed, in an! (at- Iphite wnhke thane of anm plant. 'The lowers were almont of :

 --1.

 - but bay far from Bumpodake of which some wote sent to Mr.

We are therefore of the opinion that these plants all belong to one trpe. We have seen Mr. (ioss's plant at Kew, and judge that. as far as may be detemined from the dried plant, it is the same as those from Arran and Hawkshead. Now in regard to this plant all the eumsiderations which make us doubt that O. purpurelle form A is to be referred to O. cruentor apply, with this added that the form of the lip is, for the most part, obscurely but definitely trilobed.

The tirst grathering whieh we had from Hawkshead was sent by Miss Wilson on June 17, 1916. It consisted of dwarf phants, $10-15 \mathrm{~cm}$. high, with few, broady-lanceolate leaves, in some cases overtopping the spike, having the same very small spots as in the "ase of the Aherystwy plant, often only at the tips of the ls. A number of plants sent from the same place on June 29,1917 , were larger, $20-25 \mathrm{~cm}$. high, but otherwise precisely the same: 'The tlowers a lich, dark purple, not the bright red-purple of the Aberrstwyth plant; lip slighty trilobed-this is more evident when the plant is dry: The form varied from the rounded lip-type of O. pretermissa to the pointed trpe of form A. The leaf-pattern is of heavy crimson marks. On July 8, 1916, we received from Arran a number of plants, gathered by Mr. Allen, precisely similar to the Cumberland plants. They were growing in company with O. maculata and the maronn form of O. iucarnata v. dunensis. In both loealities hybrids with O. maculata oceurred.

With Mr. (ioss, we should have called these forms a rather dwarf variety of O. Tutifoliu, had it not been that they were so evidently to be considered along with the plants already named O. crumentu. It the same time the short habit and rather diamond-shaped lip, and expecially the peculiar type of leaf-spots, bronght them into connection with the Aberrstwy form. Finally, when we had considered the difheulties in the way of ranking them as O. cruenta, we were driven to grouping them together under a new specifie name as O. purpurella.

It may be added that form A is more distinet from all others of the grouj than form B, and we should rest our case mainly on that, if anr serious objection were maintained against form B.

An a verage plant of form B, taken from the taller 1917 gathering, is 26.5 cm. high, tubers included. 'Jubers narrow, tapering, divaricate. Stem-sheaths large, dark at the tijs, strongly veined. Leaves longlanceolate. blunt, lowermost smatl. second (broadest) 28 mm . broad, thirl (longest) 1 dm. long, topmost bract-like, just short of the base of the spike. Spike $3 \cdot 5 \mathrm{~cm}$., globose. Bracts broad below, strongly veined, rather short. Flowers bright purple. Lip cuneate, about 8 mm . wide by 6 mm . long, crenulate below, centre-lobe blunt, small, markings heary, of dark crimson. Sepals erect, spur of medium length. slightly tapering, moderately stont.

Hybrids of O. purpurella. We have so determined some vers beautiful plants growing in fair numbers with form A. They appear to lee crossed with a dwarf form of O. latifolia, which is also growing in the vicinity. A few plants which appear to be crossed with O. erieptorion also ocecur.

Of form B, buth from Aman and Hawkslead, we have received
phats intormminte hetwern the type and O. pricetorum. Space forbids a full deseription and diseussion of these forms.

A, to the origin of the forms, as we have indicated already, we thank thes meng have arisen from lybrid conssings of O. incurnatu or (1) proplormisia with sume form of O. lutifielin or O. maculatu. At the stme time we much prefer the theory that we have here two cans of mutation from O. incornata (ov less probally O. pretermissa). The whole subjeet is too complaated for discossion howe but we hope to go into it more fully in comsexion with the general question ul U. lutifulia.

 (1.507-10.0.5.)

Whater Sovemotse has led a domble life in history. One Mr. Sitomehome is komon to Botamists as a searehor after rate plants in the morthern eomenties and in Wales. The Rev. Walter Stenthonse is fimmilia to the readers of the Register of the Pellomes of Maydalen ("olloye. ()comel, hy Macmy, who, while cullecting many other facts abont hime was not aware of his lontanical researehes. I have recently becon Fortmaste cmongh the tind amone mannseripts begrathed to Nampalen Colleng ly doln Goodrer in lifif the missing links and his wwa anaram, which identify the botamst with the Divine. They estahlish the maty of the two and shew him in a wew light as a
 hat not the Parliamentary Commissioners put him in prison.

The liont docoment that drew my attention to him was an

 vulume of It leaves, known as Masklalen Colluge MS. No. 2!3!), which is reprinted in the (indeners' ('loronicle for May 15, 1923), and

 hation hav buen still further camoulaged hy a printed reference to it by Dr. Druce, who (Suph. An But. Exch. ('lab) Report for 1916,
 that the writer ham mot examined the cloady writun Ms. When

 of lortmil, tw whim he was institut it in li:3): lint ath almalatoly

To Juhn Trarlescant the youn-

 ger, surviving.Anagr: : Johy Tradescast. Cunnot hide Aits.

Heire of thy Fathers groods, and his good parts,
Which both preservest, and augment'st his store,
Tracing th' ingenuous steps he trod before: Proceed as thou begin'st, and win those hearts, With gentle curt'sie, which admir'd his Arts,

Whilst thou conceal'st thine own, and do'st deplore Thy want, compar'd with his, thou shew'st them Modesty clouds not worth; but hate diverts,

And shames base enry, arts he canvot hide
That has them. Light through every chink is spy'd.

> Nugas has ego, pessimus Poütu
> Plantarum temen, optimique amici
> Nusquam pessimus aestimator, egi.
> G Lalterus Stonehousts.
> Theologus servus natus.

By rearranging the letters of John Tradescant's name he composed the anagram Cunnot hide Arts, and by a similar process his own name, Gualterus Stonehousus, became Theologus sercus natus-words quoted by Macray, who, however, did not grasp their meaning, as occurring on the titlepage of a volume of Sermons in Magdalen College Library.

By piecing together varions scraps of information we find that Walter Stonehouse, born in 1597, was a Londoner-a relative of Sir William Stonehouse, Bart., of Fiadley, since he referred to Sir Willian's daughter, Mrs. Langton, wife of the President of Magdalen College, as "cousin." He came up to Oxford as one of the first Scholars of the newly founded Wadham College. There, at the age of 16 , he wrote a Turcarum Historia generalis in 213 pages. He took his B.A. on 25 th Feb. $161_{\tilde{\tilde{F}}}^{6}$, and came to Magdalen as a Fellow in 1617, filling the office of Pralector in Logic in 1619-20. He remained in residence for some years, preaching occasional sermons at the University Church and in the College, including the funeral sermon at President Langton's funeral in 1626 . In 1629 he took his degree as Bachelor of Divinity and resigned his fellowship, probably on marriage, since his son Walter was born in the following year. The University presented him to a rectory in the diocese of Canterbury, 7 th March 1633^{0}, and it may have been then that he made the acquaintance of Thomas Johnson, then engaged on the description of his second botanical tour in Kent (published 1632).

Stonehouse was presented to the rectory of Darfield by John Savile of Methley, who held him in great esteem. He became a member of the literary circle of Sir J. Jackson of Hickleton, in which Lightfoot, Sir H. Wotton, and Bishop Morton were sometimes found. With Laud he is remembered as being one of the first Englishmen to make a collection of coins and medals: these eventually formed the

 (landon, l(ili). 'fle comstitution of this travolliner clal) is thus

 C'he serp, hovins apollt the previons night at stockport, where he hat non been fiavomably impressed with the imn. 'Their roule took them h゙ C'onway, l'enmacmmawr, Bangor, and Carmarvon to Glynn-lhivonas, whore the were the ernests of 'lhomas Gilyon, to whom Johnsom derlicated his aceoment of the expedition. After discomsing on the pribl of elimbins sumwion。 Jolmann wives a list of the plants fomme hy the phorty. At Bammaris they emjoyed the hospitality of Richamb

 mint and in form of nesting cateres, but saw little of botanical interost. Jitur a farewoll visit to filym-lhivonat the party jommeyerl to H.arlech aml Pamonth. 'I'heiz homeward jommey lay through Wr rionathshite: at fimsumber siomelonse left them and went home

 (xy)alition.

 'Frade 2':

 wif whell w. have alrealy quatwl.

st mbly

about England and commmicated notes and localities of :36 plants, noted in his journeys or at home to How, who printed them with due acknowledgement in his Phytologia (16.50). The notes associated with Stonehouse's name number 36, and include localities in the counties of Wilts, Berks, Oxford, Northampton, Nottingham, Derby, Chester, Lancaster, and York. Stonehouse's notes indicate both botanical observation and literary knowledge : that on "Cerasns syl. fructu minimo cordiformi non descripta" (Prunus Acium L.) may be cited as an example: "The least wild Heart Cherry-tree, neere Stockport, and in other places of Cheshire. The Country people there call it the Merry-tree. Whence I should thinke it the Merasus of the Hungarians (mentioned by Clusius Pamon, lib. cap. 나) had not hee said that hath Black Berries, whereas this hath them of a delayed red ; which notwithstanding they may bee severall species."

I am indebted to Mr. Britten for this supplementary note, for the scholarly care with which he has noted the circumstances of the first excursions of the "socii itinemates," and for other suggestions.

PLANT DERMATITIS.-II.

By E. Phlif Smith

 (Botanical Department, Oxford).Cases of Lacquer Poisoning are not common in this country, but are very frequent in Japan and China where the lacquer industry is considerable. Lacquer is made from the sticky brown sap, which exudes from the Rhus rernicifera plant when it is wounded. The dermatitis is aequired either by direct contact with the lac, or even by exposure to the fumes given off as it is evaporated. The poison, whatever it is, is much less virulent when dry than while in the process of manufacture, although cases have been recorded of susceptible persons in this country being affected while handling old lacquer-work. The symptoms are fever, tension and øedema of the skin of the face and limbs, nasal and conjunctival catarrh, and a papular eruption on the odematous skin of the legs and forearms. As in the cases of other Rhus poisonings, the best treatment is with soap and water. The Chinese, however, have a quaint method of prophylaxis: "They rub the hands and face with rape-seed oil in which a ham has been boiled, and wear a linen mask for the face and a leathern apron for the body while at work. After work the exposed parts are rubbed with a decoction of chestnuts, pine-bark, saltpetre, and amaranth" (Castellani). This elaborate method does not seem to be very effective, since the workers are attacked in spite of it, and in Japan no such prophylaxis is attempted. It is in any case hardly likely to commend itself to Europeans.

In addition to those plants already mentioned as causing diseases of the skin, there are a number of industries where the handling of plant-products is known to cause dermatitis. Thus persons engaged in the confectionery trade sometimes suffer from Vanilla dematitis. This takes the form of a rash on the hands and ams, and is believed
 tor improse the contomr ete of the pents. 'Ihis C'ishew oil is the irrit.alt.

Agam, a eonsiderable namber uf the raver and more beatifal womb, such as are used for tine fumbure pianos, ete., and in the makiner of umberla-hathles and walking-sticks, or the particularly hanl womls used for shattles, are well known to have an irritather effect on the skin of the workers ; and wheremmel turning is invored, the time dhat created maty allecet the eyes amd mose. 'Thus satinWond (huth the bast and West lodian varictics), prohuces a rash which chonly resmuldes Primuln puisming. 'The arms and lane are

 closed up, and the attack terminates by the destuamation wit the affoced skin. It has lexem demonstrated that the puimonoms suh. stame is an alkatom, which han heen called rhlomorytontine. 'The following are some of the words doserilned ats catuing irritation: -

 won? (Amlima imrmis).

Thene indmetrial eases are important beeanse of the questions they involve of comprensation for imluntrial disease, and are of don extremely puraking to a practitomer who is mew to the work of. Raport of the Deparlmental ('ommission on Comprensulion fin Industrinl Disemsers,
 of Firctories. 1907.
'I'he mocential lotanieal interest of the sulhject semms to centre in the fact that the poismons substances are apparently normal prosducts of metathelism in the plants comeremed, ame that the tuxic effeet prombeed may only be motieed by accirlent of some economie associaton with the phants. hy whieh a lave mumber of persons are hrought into contact with thein or their promhets. 'This casmal relationhip perhapes aceounts for the seemingle irmeralar and speradie oecourence of perimoms members of a genms: the reason for this leeine that only
 laree quantition. It wombl he enterine tom far into debatable ground eren io attemper to discon- the prosible significance of these prisons in 1) w ordinary metatobism of the plant producing thom. The smbspances thembelvas are on varimb, including organice acids (e.\%. the

 the protertion of the plant from attack hy animals or insorts.

Qur ations as to the semonlary biological utilization of such comepounda hy the plant can mby he antwored hy aceurate nharvations In the attack anl rombeion of ancmak or binsects by the plant in

nettle do not protect it from the attacks of swarms of caterpillars : many other so-called " means of defence" seem to be very doubtfully intentional or effective.

From the point of view of human contact with plants, the irritant materials may be divided into two classes: those substances which are soluble in water (nettle type), and those which are of an oily nature or are soluble in oily secretions (Rhus type). In both cases soap and water, freely applied, is the most natural and effective remedy, and one which is within the reach of all. In addition, it seems likely that any rough hairs or prickles may abrade a delicate skin; that almost any cell-sap may act as an irritant, and that the combined effect of the two on a susceptible person may produce a case of so-called "poisoning." This would account for the inclusion in the lists of poisonous plants of such apparently innocuous forms as Doronicum, Helianthus, Lycopersicum, Myosotis, etc. At the same time it cannot be denied that there are plants which produce results much too serions to be trifled with, and it is adrisable to know and avoid them. In dealing with all such plants it cannut be too strongly insisted upon that the most important factor is personal cleanliness. This applies with all the more force to industrial cases in which compensation may be sought.

The cases clescribed above have been selected as examples of the commoner and better-known types of Plant Dermatitis, especially those in which there is some experimental evidence of the nature of the actual irritant. A great deal of work remains to be done in that field, in isolating the toxic principles, determining their chemical composition, and examining their actual mode of action on the skin. This, however, rather leaves the domain of Botany and trenches upon that of Medicine. The poisonous principles are not necessarils characteristic of all the members of a single genus, and they are so dependent upon external conditions for their development, that the whole subject is of practical rather than of academic interest, since it is unlikely that any valuable clues to classification or evolutionary ideas will be obtained from the study of a subject in which individual idiosyncrasy plays such a large part as it does in plant dermatitis.

The following plants have been known to cause Dermatitis:Anacarlium occidentale (J. C. White, Boston Med. Journ. 1897); Aictium Lappa; Angelica (Brit. Journ. Dermatol. xi. p. 287); Asparagus; Balsam; Catalpa bignonioides; Chrysanthemum sp. (Dawson, Brit. Journ. Dermatol. 1906, p. 439) ; Citrus Aurantium var. Bigaradia; Colchicum; Convallaria; Cotoneaster (Cooper, Brit. Journ. Dermatol. xiii. 1900, p. 183) ; Cucurbita; Cypripedium Calceolus; Daphne M㢈ereum; Delphinium; Doronicum (Brit. Med. Journ. 1898, vol. i. p. 1244) ; Eucalyptus hemiphloia (J. Maiden, Lancet, 1904, vol. i. p. 1204) ; Euphorbia; Ficus; Helianthus ; Heracleum; Humea elegans (N. Walker, Introd. to Dermatology); Humulus Lupulus; Laportea gigas; Narcissus spp.; Nerium Oleander; Pastinaca sativa; Polygonum punctatum (Llovd, Brit. Med. Journ. 1914, vol. ii. p. S3i) : Primula obconica, P. mollis, P. sinensis; Psoralea esculcnta; Rhus Cotinus, R. Toxicodendron.

 MmI. i. 1. 1 W .

 p. $6+2$.

 1. Hiヶ.
 1. is.
 Mel. Jomrn. vol. ii. p. il9.
 vil. xxxi. 1.30 .
 Itomen. Viter. Mi, 1. ril. ii. I. 1sl.

Winte, I. Prosserr, " (hompational Alfections of the sikin."

(J)partment of Butaly, British Masomm).

 lo (haractorml it fullown:

Branchlets straight, slender, later stout and rugose, glabrous. Leates ustally 4 -whorled, small for the genus, glabrous on looth sides, obovate-lanceolate, rounded at apex, not acuminate, gently narrowed toward the base, entire, about 20 cm. long, 6-8 em. broad above the middle ${ }_{6}$ petiole 2 em. long, primary latem veins $6-8$ pairs. Flowers $10-12$ in a terminal sessile umbel. Floral pedicels $1 \frac{1}{2}-2$ cm. long, nearly ${ }^{2}$ mm. thick, very hairy. Caly. x^{2} cup-shaped, 4 mm . long and 5 mm . in diameter at the month, hairy. Corolla-tule cylindrical, 15 mm . long, the cross-section 5 mm . in diameter about mildle; lobes 6 spreading oblong-lanceolate, contorted, about 15 min. long and 4 mm. broad. Style 15 mm . long, hairy at the base, stamens 6 , anthers 10 mm . long.

SHOR'T NOTES.

Orchis Simia in Kevt. It is interesting to record that the very rave Orchis simia has again been found wild in East Kent, a spike having been received at Kew from Mrs. S. Hall, of Tombridge Wells. It was found growing in very rough, coarse grass, in a chalky locality near Canterbury, with Orchis Morio and Acras anthropophora, examples of which were also sent. It was in full bloom on May 15 th. There are several old county records, among them Dartford, in West Kent, where it was found by William Peete [see Journ. Bot. 1916, 139]: a specimen collected by him was figured in English Botany, t. 1873, under the erroneous name of O. militaris, and another specimen from the same source is preserved in Mr. Borrer's Herbarium at Kew. Messrs. Hanbury \& Marshall, Fl. Kent. p. 331, record the species as "very rare, perhaps extinct"-it is satisfactory to be able to remove the latter supposition. A painting of Mrs. Hall's plant has been made, and is at Kew. In order to prevent any misunderstanding as to the identity of the plant it may be added that O. Simiu is easily distinguished from O. militaris by the narrow, very distinctly curved lobes of the lip, which are of darker purple colour. In O. militaris the lip is flatter, and the front pair of lobes distinetly dilated upwards.-R. A. Rolfes.

Orchis hircina L. We leam from the Westminster Gajette that "a Central News correspondent reports that a fine specimen of the lizard orchid (Orchis hurciua) (sic) has been found in Ashford (Kent) district. This extremely rave orehid was regarded for a long time as extinct in Great Britain, and a great stir was created by the discovery of a specimen in Kent a few vears ago. Since then not more than one specimen has been found in a season, and some years have passed without any being found."

Istresion of the Bee-Orchis. During some three years of the War, my chief lawn was let alone and allowed to run wild. In 1918 and 1919 I noticed the root-leaves appearing of several plants of some Orehid. Early this rear my son, Captain E. ('. Linton, R.A.M.C., was home after a period of some years' service in India, and as the job of transplanting was irksome to me, he took the trouble of coilecting about thirty of the plants from the one lawn and replanting them in another lawn at une side, where I could allow

them to debenp，interestend to see what they would turn ont to be． Very shaty mant of then produced a spike，and the spike bats matolded， but till the tirst tlowers unered it was not eleat what the Orehid was． At lat Opherys apiffert Huds．stamds reveated！About a dozen plants have reached the flowering stage；they vary in height from eight to ten ineles，with the exeeption of one plant，which happens to hase had two moves，and that has reachoal ：athl loot！We have bune hand the bew－orehin in the neighbombord．but the nearest

 in an apparently＂ild localit！（o）which it was subseynently shown to have hem introlned from the Butanic（iarden，hats this year been disenvered in sumsex in comsiderable quatity，under cireminstancers which eomsered the impression that it formed part of the native flom． ＇The result of inpuiries entallishes the fiat that here too the plant， which evidently lends itsolf realily to mathmasation，has hern intro－ dued．In riew of a reecent converpmalence in the Times，in the course of which such action was sugereted，and still more in commec－ tion with the recent action of the anthorities of the Cambridge
 mome than were necensiry that full inguiry into the ciremmstances should he made Lufore any plant，espeecially if of striking apjearance． is reoordertas British．
 ronchiam angust！fintiom in thwer，Gatherad hy Mr．H．Nowey in
 did but find at acond example－W．Witans．

によVしたいミ。

 A Francis．

 the in antiful Wy，Valley for the sake of its scencer and the mumber of enterentimg plants fomme there．The area covered hy the flome
 and the mo dombe wownt－for the very large number of species
 san ide of Joman arr alon reendenl．By far the larger mumber belong

 （＂mbloularath mative＂），and（＇ares digituln．＇The district suems

the banks of the Wye." Stellaria apetala and neglecta are given -we consider rightly-full rank as species.

Rubi records occupy eight pages, Roses but two. The group Sorbus is well represented-S. latifolia, S. Aria, and var. tomentosa G. \& G., S. mupicola Hedl. (Syme's plant, deservedly raised to specific rank), and S. Mongeoti Soy-Will. subsp. anglica Hedl. The hybrid S. Aria \times torminalis also occurs.

Amongst the Potamogetons, one is surprised to note that P. lucens, P. pusillus, and P. densus are wanting. Carex Leersii F. Schult\% is superseded by C. muricata var. virens Koch, although as long ago as 1898 Kükenthal wrote " C. virens Koch est inextricabilis." The critical hybrid Glyceria declinata \times plicata is reported.

It is not pleasant to read that " many of our rare plants, especially Orchids and Ferns, are rapidly disappearing through the thoughtlessness and greed of collectors," and tlat on this account "it has been deemed adrisable not to state the exact spots where they can be found." We fear that some gatherers for the Exchange Clubs have been to blame for this in the past, and we trust that any ground for complaint will be avoided in the future.

We mote with some surprise that Mr. Shoolbred dismisses "with little doubt" the claims to nativity on the rocks below Chepstow Castle of Brassica oleracea, which he considers became established there "from seed" thrown down with rubbish from the Castle garden. His knowledge of the locality entitles his opinion to respect, but the plant in situ conveys to the visitor the impression of a native. Mr. Shoolbred quotes the record in the New Botanists' Guide (1837), but the plant was observed by Banks in 1767 "growing everywhere among the rocks and in great plenty upon the walls" of the Castle (see his Journal published in Proc. Bristol Nat. Soc. ix. 17). A specimen collected by Banks on his second visit (with Lightfoot) to Chepstow in 1773 (see Journ. Bot. 1905, 298) is in the National Herbarium. It is curious that Mr. Shoolbred should have omitted any allusion to Lightfout's early references, as his name is mentioned by Mr. Riddelsdell in connection with them on the page cited. It is interesting to note that, besides the Brassica, Banks found Cochlearia anglica and Lepidium ruderale as long ago as 1767 at Chepstow, where the latter now is only a casual. Alopecurus bulbosus, Hordeum sylvaticum, Triticum caninum, Rubia peregrina, Sedum rupestre, Ophrys apifera, O. muscifera, Cephalanthera ensifolia, Euphorbia stricta, and Mentha rotundifolia were all found at Chepstow by Banks and Solander in 1773 (see Journ. Bot. 1.c.) and a Bromus entered as "tectorum" which Mr. Riddelsdell identified (1. c.) as "B. madritensis L. and a N.C.R."-a plant not included in Mr. Shoolbred's Flora.

There is a useful and interesting introduction, in which are summarised the most striking features of the flora, the geological formations, and the sources of information (which, as has been shown above, have not been exhansted), with acknowledgements of help from various botanists, including the late W. Moyle Rogers and E. S. Marshall, to the latter of whom, with his wife, the volume is dedicated. Among the books quoted is the somewhat slight Flora of

 lant thin wombl ham entailed at mush larger lomk with its attembant dolierltí－

The Flome is will printed，but the mumbers attached tor the
 Fom those of the diveriet－hy different type．The absence of an
 erion in the pare hatime of the Orders immerliately beneath them； hitt this is net－ulplicet．
 （＇lamulun I＇ress．I＇p，i－xii，1－322；ligs．I15．7s．（id．net．
＇Tlus attractive－bokiner volume is the＂more atsaneed book ponmised in the anthors Introduction la Plant Genyropliy．amb is， in the profice states，＂in some sont an expansion of Part III．＂of 2hat work．＇The hiof acoome of the eontiments there given has forment the hani of the how lefore us，：ant has heoll enlarged intu： full dis⿻日禸－ion of the emblitions in which plants flourish，and their

 form phota－raphs，which，rom－ihering lhair size（the bow is but

 thomghont umall the Amotugh of verertation in the different divisions

 －valué it ai fla⿱⿱亠䒑日\zh20

that he has undertaken; and the result is that the book is difficult to read, in view of its consequently cramped style. We cammot refrain from expressing regret that he has not confined himself to the purely descriptive side of the subject, referring to his earlier volume for general considerations of soil, climate, ete. Nevertheless the book will form a valuable addution to the library of any student familiar with the general principles of phant geograply, though it can scarcely be recommended to a beginner.
H. F. Wermiam.

Elementary Totes on the Morphotogy of Fungi. Br A. H. Cuurcir. Butanical Memoirs, No. 7, 1920. P1. 29. Price 2s. Oxforl University Press.
One of the outstanding features of recent botanical literature is the sudden outhurst of publication on the part of the author of this memoir. Previously, one had associated him mainly with the backwaters of Phyllotaxy-mow it is with the theory of subaerial tramsmigration and its slogan "The beginuings of Botany are in the sea."

The lecture notes under review are arranged as follows :-(1) Algæ (Introduction); (2) Fungi (Introduction), Heterotrophy; (3) Somatic and reproductive organization ; (4) Bacteria ; (5) Phycomyeetes; $(6,7)$ Ascomyettes; $(8,9)$ Basidionycetes; $(10,11)$ Uredinez and Ustilaginere; (12) Lichens; (13) Root-tubercles and Myeorhiza. Each lecture occupies two full pages. The matter is put forward in note form, but nevertheless makes stimulating reading. The usual "types" are given, but with far more information than is customary in text-books. A few statements are a little out of date-and "fungology" and "Ecidiomycetes" are oljectionable.

The author's contention is that the fungi consist of large and isolated groups with no direct relation to one another or to any modern algal forms: they are saprophytic and transmigrant derivatives of marine alge. It is always a good thing in elementary lectures to give students a clear lead. There is no ambiguity in Mr. Chureh's case, and a reasonable lypothesis is interwoven with the facts concerning the more commonly studied fungi. Norchella is regarded by the author as a typical "primitive" Ascomycete. It may be the "mere speculation" mentioned in the text, but it does seem that genem such as Eremascus more nearly approach ancestral forms: minutemess has nothing whatever to do with the matter from this point of view. There are whole serics of furgi with differentiated sexual organs, more or less globose asci, and ill-defined peridia; these appear to make distinct ascending series from forms like Eremascus, where there is furthermore an absence of ascogenous hyphr. The author's remarks on Lichens are also open to argument, but the striking fact in this short, well-printed, and cheap pamphlet is that there is so much that stimulates disenssion.

J. Rimsbottom.

Roses: thrm Ihstory, Derelopment and ('ultiration. By the

Wort lamks that have been written on roses of late years have doalt with them in a more or less popular veln, ignoring andthing in the -hape of hatany or sefonce. This of comese is matumb, as those Whe wish tw eron rase for the decoration of the saten or the erreetshomse, or lion diaplay on the walifition table are ledped very little by the -tinly of hataniol details. In the work before us, however, the anthor has been bohd emongh tor deal with the butany of the Rose
 coxhbitum purposes. Ihhis has evidently been no drawharek to the pepmlarity of the work, which has mow reached a seemad edition, amb mity therefore lre sial to justify Mr . Pemberton's wethods. 'The - - tem of elasification adopted has been that of Cropin, who divited hosn into sistenn different sertions, aneording to the perenlanities of the womb, pridkes, leaves, thowers, and frats. 'lhos we have a ereat
 and others which have :3, $5,7,9$ and mome leathets. In the mattor of prickles also. there is a vast differenee between the almost "spinetom" Bathkian Rose and the " lledgeloge" or Ramanas Ruse

 - hows ther reputed patentage of the varions types of the moshern

 know how -

 low will ferd that the knowlender was worth acopuring. Althongh we haseremphoizal the |rotanical silde of the work, it is only fate to atel that grite twothirds of the whome is deventerl to the coltivation and frongation, prasing, training. and exhihiting of the Rowe.

> .I. Whalliehs.

Is a motp in the Ruyel Iromy Vodical (orps. Iomenal for April ('syp. II Fo. Jumiresin writes on "The" passible I'se of Azolla

 Wator flluta, itwofomil that AEnlle filienloides plared in a breedmis tatk rapily speal, and mo ara were depmital in the tank.

the surface of the water in breeding places were of general application; but it is difficult to imagine how the necessary conditions would obtain in some of the Macedonian death-traps. It is probable that in the attack on the mosquito-an attack which will have to be made from many sides-botany will play a considerable part. In aldition to such points as the above there is the question of larval food, which is mainly algal; algie caln be removed by using very weak copper sulphate solution. Furthermore, larve frequently suffer from fungus attack, one or more Saprolegniacee being concerned ; such fungi are easily cultivated, e. g. ou ant eggs.-J. R.

We note with surprise that The Garden, in its issue for May 1, $^{\text {I }}$ publishes an advertisement headed " Pyrola," offering to supply "one square foot of sod, containing numbers of this beautiful and interesting native, post paid, on receipt of $4 s$." The address leaves no doubt that the reference is to the rare and beautiful sandhill form of Pyrola rotundifolia, which is already scarce in its localities and which is thus in danger of being exterminated. A somewhat feeble protest is made in the same journal for May 29, but it seems to us little short of seandalous that a paper so widely circulated and so deservedly popular should allow such in advertisement to appear in its columns.

The Annals of Botany (April) contains contributions on the Vascular System and on the Anatomy of the Cone of Equisetum, by Miss Kate Barratt and Lady Isabel Browne respectively ; on the 'Brown-Rot' Diseases of Fruit-trees, with special reference to Monilic cineren, by H. Wormald; on Puccinia malcacearum and the Myeoplasm Theory, by M. A. Bailey; and on Plant Succession and Plant Distribution in South Africa, by Dr. J. W. Bews: Dr. Nellie Carter continues her Studies on the Chloroplasts of Desmids. The papers are fully illustrated.

A vorelty in nomenclature is presented by the name Allucoodii, which Messrs. Allwood Brothers, of Wivelsfield, have applied to a " new race of garden plants": "half Pink and half Carnation, they possess distinctive qualities which must appeal to all lovers of flowers, and with their delightful perfume and compact Pink-like habit of growth; they will undoubtedly find a place in every garden." The name apparently takes generic rank in horticultural circles: we real of Allwoodii Jean, Allwoodii Harold, ete.

Mr. C. E. Salmox's Nele Flora of Survey is amomed for publication to subseribers at chirty shillings net, post free, the exceptionally high price for a local flora being rendered necessary by the cost of printing and material. More than half a century has passed since the publication of Brewer's Flora, which in the new work will be brought up to date; it will be illustrated by photographs and will contain two maps. The book will be published by the author, Iilgrims' Way, Reigate.

The Kew Bulletin (No. 4) contains an elaborate diseussion by Dr. Stapf of the claims of Setaria and Chcetochloa, the latter of which has been proposed by Dr. Seribner for retention: the decision is in favour of the former. New Indian plants of varions orders are described by Mr. Dunn, and new Orehids by Mr. Liolfe; there is

 in lintain.

 cations in $1: 91517$. The present paper ineloble whervations during 1917-1!9, amd dath dhatly with flomal sarition: they were mostly

 whtaned in the same focalitico lom 1 ! $1.5-17$ is added lor purpenses of compration with the mare recent tables. The patper shows at vat almome of eareful observation and is an example of what maty be done in inventigatine the lite-history of our common british phants.

 mematain smmot plateans of 'Tasmania; a papur on " Marine boology
 ('aliformia: and a " 1) maft seheme for the reprementation of British

1) \& G. A. Botreviels. who is retirine from the British Musemm (N:atmal Hintory), ham acoptend a pust in the [bonssels Musema, whore he will be in charee of the ('repin llathatime. As anm pages hase alrendy shown, 1h: Bunhenerer is devoting himselt th the study of lanes, in the pursuit of which he pronmaes to visit the Vonges abil other reerions.

T'se: New Phytologist (March amd April: puhlished May 1s)
 tion of Dr. Fates's paper on " Mntations amd Evolution." and a
 fimowh " ley varions writ.ers.
'Tur centenary of sir Joseph Banks (11, Junc 19, 10:0) was

 r-pectively. At the Amiversary Xeether of the Suciety on Nay

 A. hireviltinuluta.

A troith of congratulation from the whicers past amb present of

ON ROSA BliITANNTCA DÉsfibuse.

By G. A. Bollexger, LL.D., D.Sc., F.R.S.

Tue Rose to which 1 desire to draw attention appears to have a wide distribution in this country, but I have long been embarrassel as to the name it should bear. It seenis to have appeared as R, tomentose Surith, foetida Bastard, 1512 (non Hermman, 1762). Jundzilliuna Baker (non Besser), silvestris Woods (non Herrmann), seabriusenla Suith; and it would, I suppose, fall under R. tomentosa sul-group Scabriuscula of Wolley-Dod's latest arrangement (Suppl. 1!20), p. 18), but for the sepals being only exceptionally reflexed.

The name scabriuscula is certainly inapplicable, as the type figured by Smith has the pedicel scarcely longer than the calyx-tube. Christ's P.. scabriuscula (in Rosen der. Schuceiz) appears to be based on a variety of R. micrantha, and Keller's definition in Ascherson and Graebner's Synopsis der Mitteleurop. Flora is clearly derived from Christ's description.

This Rose has been confounded by Woods with R. micrantha, a specimen so named by him (from near Golstone, 1815) being preserved in the Kew Herbarium; this explains Woods's statenent
 pentine odour which is generally to be perceived in the family of R. tomentosa." The Kew Herbarium also contains a specimen inder the name of R. conina, labelled as having been used in the preparation of Miss Willmott's book.

The name here used was first introduced by Déséglise in 1577 (Catal. Rais. p. 304) as a substitute for Baker's Jundzilliana, and I propose to take it up as the only one about which there can le no question. As it is necessary to be very cautious in the application of names given by Déséglise, I wish to point out that two specimens only (from Menai Bridge, Cheshire, F. M. Webb) are preserved in his herbarium with the label R. britannica; the name was afterwards withdrawn, as being in the author's opinion a mere synonym of Bastard's R. fotida. An earlier name may some day be found, but the application of Déséglise's R. britannica to the following description is certainly correct in the strictest sense.

The best way out of the difficulties which confront the student of our Roses appears to me to provide him with careful and detailed descriptions of the critical forms, based not upon fragmentary herbarium specimens, but upon living bushes both in fluwer and in fruit. Such a deseription I have endeavoured to draw u], from several bushes growing in Surrey, at Oxted and Limpstiell, in helges and thickets on the Lower Greensand. The type specimens in the Déséglise Herbarium are embraced by it.

Rosa britanntca.

Strong, not densely foliated bush, 2 to 3 metres high; larren year's shoots stiff, erect; flowering branches not eurved hat with superposed internoles often forming angles, somewhat zigzag; the
intheremene mot projerting beyond the terminal leases of the bamehes bearing it，sulitary，gominate，or in clastors of 38 to 7. Comolla swed－scented，hut cally and perlieds emitting at strong odour of turnentime，which is absent on only vory ferbly noticeable on the leanc．I wish here to whereve that the oflour of the laves and other If elaterme parts in lioses is mot always in relation with the gramds，as whally－tated in books；I hatw come acmoss bushes uf f ．mirementha the laves of which，thomerh very elamhar，were devoid of ondome， － 11 when rubled：whils，un the other hame，the haves of a l ．dumer－ torum（a simgh．Lomb at Hatley Wood．Niddeses）had the sweet scent of rasoptapple chameteristic of the sweet－hrier，amd Layd
 ghamlular K ．（＇ariomii I）́ségl．，an＂orkenr rubiginense，ynoigu＂ faibl．＂

Pricklen staight on fochly curved，rarely faleiform，varying mand in size and hape，strongly amd Emamally diated towards the hase． 1）to 1 thmes as long at homd at the hase，which is strongly comb－ prosad ；small near the inloresence，large on the thieker stems． where they maty the ver crowidel ame aceompaniod hy smaller，more －buncer prickles．the state of things surgesting the＂heteracanth＂ tyn－：few but very large on the ohd worly stems almut 20 min．in diameter：then prickles pate hrown or omatge，on yomms shoots sanmetimes red，or red at the lase and areonish yellow at the emd．

 mane or les rommled at the lasio，acintely pinted at the and． 13 to

 （1）Llamons hemeath，with distant bery short hairs above，elosely hairy
 （1）the lown surface，wwine to which it may alpuar shot with roll whens vieworl oblignely these ghands sometimes much rednewl and

 Manl－：is to 27 prineipal proth on ach side．Prtiolos tomentose． with sipitate mal slanls and small，comem，rellowish prickles．
 wah rel glamk alume and wn the seles．

 shorer thon the petals，strongly elamblar on the back，wowly on the
 ruetel，imme liately after the fall of the pelals．Pedicels very longe

 shite aft pricklas．the lattur with similar shands more or less

Fruit orate, rarely spherical, up to 17 mm . in length, $\frac{1}{3}$ to $\frac{1}{2}$ the length of the pedicel, orange-red, smooth or with scattered glandular prickles, usually crowned almost up to maturity by the sepals, which are usually erect or obliquely divergent but sometimes reverted ; dise reldish brown, the styles sometimes slightly projectirg.

Flowers in June, fruit ripe end of September or early in October.

ALABASTRA DIVERsA.-Part XXXIII *.

By Spercer Le M. Moore, B.Sc., F.L.S.

1. Plantarum Mascarevsium pegillus.

Homaliopsis Flacourtiacearum genus novum.
Culy x superus, tubo campanulato lobisque 5 astivatione imbricatis. Petala 5 , ad marginem disci inserta, æstivatione late imbricata. Stamina ∞, epigyna, in plalanges 5 petalis oppositas circiter 15 -andras ordinata. Discus orarii tectum obtegens glandulis minutis olsitus. Orarium omnino inferum, 1-loculare; ovula as placentis 2 crassis approximatis loculi parte superiori affixis seriatim insidentia. Stylus indivisus, stigmate capitato terminatus. Capsula coriacea, calyce inclusa limboque persistente coronata, 1 -locularis, valvis 5 dehiscens. Semina -.-Folia alterna vel subopposita, petiolata, integra, punctis microscopicis translucentibus donata. Stipule (nisi fugacees) 0 . Flores parvi, in paniculas axillares breves digesti.

Honaliopsis Forbesii, sp. unica. Ramis sat validis foliosis minute griseo-tomentellis deinde glabrescentibus; foliis oblongooblanceolatis obtusis nisi obtusissimis basi in petiolum gradatim desinentibus tenuiter coriaceis supra tandem fere glabris subtus minutissime griseo-tomentellis; floribus breviter pedicellatis in paniculas pedunculatas quam folia manifeste breviores griseo-tomentellas ordinatis; calycis tomentelli tubo anguste campanulato quam lobi suborbiculares longiore; petuits calyeis lobis paullo longioribus suborbicularibus breviter lateque unguiculatis; staminum phalangibus petalis paullulum brevioribus, stylo erecto crassiusculo glandulis minutis sessilibus insperso.

Madagasear; J. Forbes.
Foliorum limbus $9-12 \times 2-3.5 \mathrm{~cm}$, in siceo griseo-viridis; coste laterales pag. sup. prominulæ, utrinque usique 10 , ascendentes, obscure arcuatæ; petioli $1-2 \mathrm{~cm}$. long. Panicula florescentes $3-4 \times 3 \mathrm{~cm}$.; harum pedunculus vix 2 cm. long. Pedicelli $\pm 1.5 \mathrm{mmn}$. long. Calycis tubus 3 mm . long., ore 4 mm . lat.; lolii 1.5 mm . long. Petala 25 mm . long., vix totidem lat. Staminum phalanges fere $2 \mathbf{2} \mathrm{~mm}$. long.; filamentorum pars connata $1 \cdot 2 \mathrm{~mm}$. loug., 5 mm . lat., pars libera $\cdot 75 \mathrm{~mm}$. long.; anthere ovoidex, 4 mm. long. Stylus 2 mm . long. Fructus $5 \times 5.5 \mathrm{~mm}$.

At first it was thought this might perhaps be proposed as another subgenus of that comprehensive genus Homalium, but the following

[^6]eno-ideratoms formid that view: firstly, the alsence of a gland alternatine with eath staminal phalunx secomelle, the large number of stamens to the phalanx ; thirelly, the wholly inferior ovary with its that rool lined liy the multiglathlala disk and in ennsequenee the

In placing this plant in Flacourfincere one cannot help feeling the incontronty of imelmbing it in the same " matumb" orter or family
 in tha. ." Pilanzonfamilien " make up a most heterogeneons group, and one far from an impowement on older elassifications.

 unsue horissimo fultum, intus mohum; alar hreviter mushembate, inter s. necton at carina libera; carma ampla, crabiformis, sursman incurva, apice olitusa. Stame'n vexillare umnims liberom ; libamenta filifurmia: antherar inter se similes. Orarium breviter stipitatum, spti dustutum, phriovalatum; stylus inllexus, complanatus, plaber. Lagman -. Verismiliter fritax ramosis. Folia efoliohm latum constantia putiolu late alatu insilens. Stipulae parvular. Flores in becomos axillaro maxime ablimeviatos bracteis arete jmbri-
 dispusiti.

Vaughania dionærfolia, sy. misa. Trmmis sat valinlis erlaturis ;

 apion maxume rotumlato ipen "pe stipita ahbreviati foliolo eonjumeto informe eradation attomatos imal hasi toreti pulserulo: infloractulue
 matis coriaceis vix mming glabois: ealyevis puheseentis dentilms
 rotumbato mareme criopula donata alis duam carina patho longioribus; monrio laneari incurve shabo.

M uliga-c:ar; .J. V'mullon Thompison.

This-i a ouri w- phant of which no deserijetion uroms to have been hitherto pmblithat. Ther gonus womld appar to be a mumber of the

 wrillum among tifer charactors The foliage suremets Desmotium
§ Pteroloma or Droogmansia; but the non-septate pod nullifies the suggestion.

Noronhea comorensis, sp. nov. Planta glabra, ramulis sat tenuibus ad nodos tumidis cortice pallido eircumdatis paucifoliosis; folies oblongo- vel ovato-lanceolatis caudato-icuminatis apice obtusis basin versus in petiolum brevem attenuatis tenuiter coriaceis nitidis; floribus in axillis paucis (sepe solummodo 2) pedicellis petiolos excedentibus basi breviter bracteatis insidentibus; calycis segmentis tubo eequilongis deltoideis acutis margine mierospice ciliolatis; corolla alte partite ambitu subcircularis lobis ovato-oblongis obtusis in sicco nigris tenuiter crassiusculis; antheris sessilibus ovoideis ; ovario compresso in stylum equilongum desinente; drupa ovoideo-oblonga stib apice compressa acuta.

Comoro Islands; Humblot. 3 ī6.
Folia pleraque $6-7 \times 2-5-35 \mathrm{~cm}$. ; horum cauda terminalis circa S-10 mm. long., basi 3 mm ., apice 1.5 mm . lat.; costæ laterales tenues, utrinque $6-\overline{\boldsymbol{-}}$, pag. utravis mediocriter visibiles ; petioli inferne dilatati lignosique, circa 5 mm . long. Pedicelli 10 mm . long. Calycis tubus 1 mm ., lobi 1 mm . long. Corolla $6 \times 6.5 \mathrm{~mm}$.; lobi cirea 2 mm . lat. Anthere 2 mm . long. Ovarium 1.25 mm . long. Drupa $15 \times 7 \mathrm{~mm}$.

As the description shows (Bull. Mus. Hist. Nat. Paris, xiii. 550), this is near N. Boivini Dub., which has somewhat larger only slightly acuminate leaves of thicker consistence with scarcely risible nerves, shorter pedicels, and anthers only half the size; the ovary also is much smaller, and this points to a difference in the fruit. Beyond noting that the corolla is about as large, one can say nothing, inasmuch as M. Dubard describes it as shortly lobed, a mistake easily made seeing how the fleshy induplicate-valvate segments remain, at least in the dry state, apparently united except for their tips.

Lasiosiphon hibbertioides, sp. nov.; ramis rigidis cortice fuscocinereo obductis ramulos breves copiose foliaceos pubescentes emittentibus; foliis sessilibus oblongis obtusis basin versus gradatim angustatis firme membranaceis utrobique sed presertim pag. inf. pubescentibus; capitulis subsessilibus plurifloris pedunculo valido pubescente apice villoso insidentibus; involucri phyllis paucis lanceolatis acutis quan folia brevioribus extus pubescentibus intus glabris; calycis tubo anguste cylindrico infra articulamentum albo-villoso supra dense sericeo lobis oblongis oltusis dorso sericeis; squamis \bar{y} petaloideis late obovatis calycis lobis cireiter xquilongis; antheris inclusis anguste linearibus; orario anguste oblongo-ovoideo glabro; stylo filiformi basi geniculato glabro.

Madagascar; I'anghen Thompson \& Forbes.
Ramuli cicatricibus prominentibus foliorun delapsorum crebro ornati. Folia $15-2 \mathrm{~cm}$. long., 3-4 mm. lat., in sicco lrunnea. Pedunculi 3 mm . long. Involueri phylla cirea 10 mm . long. Calyeis tubi pars infra articulamentum 5 mm . long. vel paullulum ultra, pars reliqua superne leriter dilatata, 17 mm . long., inferne ' 6 mm . superne 1 mm . lat.; lobi $5 \times 1.75 \mathrm{~mm}$. Squame $6 \times 4 \mathrm{~mm}$. Anthere sup. faucibus insertx. 1 mm . long.; inf. medium versus tubum aftixe, $1 \cdot 5 \mathrm{~mm}$. long. Ovariuiu $\supseteq \mathrm{mm}$. long., stylus 3 mm .

Evidently near L. madngusemiensis Deene, which has, intor alin, differentls staped glabrous leases, capitula on long peduncles, and oluama half as long as the lones of the calya.

2. Achathace.e Pabrive.

The - feanthucte deseribed lefhen were sent for detemination by
 the pheimens were collected hy himsedf.

Hymophila sulicimbin Nees.
linle lhamd. Nus. 732.27.
Rumllin Fombesio s. Mowe.
British New (ininea; W. E. Armit.
thrmigrophthis mptans 'T'. And.
1hoku: Ms, H. P. Nichtrucker.
Hemigraphis suborbicularis, op. now. Herla fere spithamea: cothle erectu subimplici pilosu-pulnocente mox glabreacente; folios petiohtis parvis sulmincularibus mon late aratis urimpe rotumbatis mamerne eremulatis in parina utrapue sed inf. densins) strimeno

 stylo vix muntuo glabon; capsonla calyei agutumga apice pulernla (j-y.)

Finkrom limbus time membamaerns, in sied srisco-viridis, rimo

The small unally suburbionlar hates serve to distinguish this sperime which is clow th H. motans 'T. And.

Hemigrap' is Whitei, sp. mus. 'amle repente gracili spasim
 hatio watio whans lani sulnotmolatio magrime subtiliter crenatios

 pila rula tioqurma.

long. Capsula acuta, 7 mm . lous. Semina fusca, diam. 1 mm . panlluham excedentia.

The dense spikes with broad, closely imbricated bracts coupled with the very small leares are the distinctive marks of the species.

Hemigraphis ciliata, sp. nov. Cuule inferne repente necnon ad nodos radicante superne ascendente paucifoliato puberulo; foliis brevipetiolatis lanceolatis interdum acuminatis apice basique obtusis margine undulatis vel undulato-dentatis supra glabris subtus in nervis pubescentibus; spicis terminalibus abbreviatis breviter peduneulatis paucifloris; bructeis foliaceis calyce longioribus lanceolatis obtusis marginibus longe piloso-ciliatis alibi fere glabris ; bracteolis 0; calycis ultra medium soluti secmentis inter se subsimilibus anguste linearibus (inferne paullo latioribus) piloso-ciliatis; corolla tubo calyci circiter aequilongo basin versus angustato lobis ovatis obtusis tubo brevioribus; capsula calyci zequilonga apice puberula 6 -sperma seminibus ovatis duobus (capsule unice scrutatie) imminutis verisimiliter sterilibus.

Mekeo district; White, 796.
Folia $35 \bar{J}-6 \times 1-2 \cdot 3 \mathrm{~cm}$., in sicco griseo-viridia; petioli circa 5 mm . long. Pedunculi 2 mm . long.; spicae $1-1.5 \mathrm{~cm}$. long. Bractea longit. 1 cm . paullo excedentes. Calycis tubus 2 mm ., segmenta 4 mm . long. Corollae tubus 6.5 mm . long., basi 1 mm ., cito usque 2 mm . dilatatus sub limbo 2.5 mm. lat.; lobi circa 2 mm . long. Capsula $\overline{7} \cdot 5 \mathrm{~mm}$. long. Semina majora fere 2 mm ., minora modo 1 mm . long.

The species is best recognized by the strongly pilose-ciliate bracts.

Acanthus ilicifolius Linn.
Milne Bay; Le Hunte. The leaves of the specimen are all entire. Acanthus colubilis Wall.
Karavara Island, Bismarck Archipelago ; Wr. Bradtiee, No. 349.
Pseuderanthemum confertum, sp. nov. Frutex semiorgyalis; ramis saltem superne bene foliatis ad nodos aliquanto tumidis pubescentibus dein glabris; folios breviter petiolatis ovatis vel ovatooblongis acuminatis apice obtusis basi in petiolum cmeatim coartatis supra glabris rel fere glabris subtus in nervis puberulis; flovibus in paniculam spiciformem terminalem abbreviatam pancifloram pubescentem aggregatis; bracteolis parvulis smbulatis calyce multo brevioribus; culycis fere usque basin divisi seqmentis linearibus sursum angustatis apice acutis pubescentious ; corolla calyce 4 -plo longiori tubo ina hasi necuon ipso sub limbo leviter dilatato extus pubescente lobis tubum semiæquantibus inter se subæqualibus anguste ovatooblongis obtusissimis; filamentis complanatis antheris breviter exsertis; capsula anguste ovoidea acuta parte seminifera stipiti circiter æquilonga.

Very common on Yule Island; C. T. White, No. 722.
Folia $9-12 \times 3-6 \mathrm{~cm}$, in sicco supra griseo-subtus pallide viridia; petioli pubescentes, $4-5 \mathrm{~mm}$. long. Infloreseentia (corollis exemptis) $1-1.5 \mathrm{~cm}$. long. Bracteæ foliaceæ, dorso pubescentes, $\pm 7 \mathrm{~mm}$. long. Bracteole $1 \cdot 5-2$ mm. long. Calycis tubus 15 mm ., segmenta 35 mm . long. Corolla ex schedis cl. repertoris alba; tubus 22 mm . long.,

 lone.. infeme pilasus, superne glabor. Capsula in toto 15 mm . long.; hajns stipes 7 mon. Semina suburticularia, minute foveolata, late

A plant of Nr. White's from the Mekeo district (No. TS(i) is to
 (011., hut in all wther puints aterees well with the type execpt for the socels, which are pale an colnur and somewhat langer.
\therefore far as concerns the thwest and judgriner from the deseription. this wombld seem to atsere in most details with P. melutimum lindan: lint the indmachtam of this latter and its infloreseence are gute different.

Psenderanthemum Bradtkei, sly nov. limtex glaher cira

 alte partiti scrementis lamendatis acmanatis: comoller tulo sublimho

 prote intermentia $1 . \overline{5}$ mom. lat.: limbi lubi pusteri is 1 man.. antioi

 tillor halit, lates with only fi pairs of sile merves, mbind longer in-

Psonderanthemm Armitii, sj, mos: limmis sat घranilihns ad

mentis aliquanto complanatis antherarum loculis exsertis acutis; stylo apice bifido; capsula acuta minute pubescente.

Papua, Simarai; W. E. Armit.
Folia $5-7 \times 1.5-2.5 \mathrm{~cm}$. petioli $5-10 \mathrm{~mm}$. long. Pedunculi S-10 mm., pedicelli $2-3 \mathrm{~mm}$. long. Bractere $2-3 \mathrm{~mm}$. long., bracteolae circa 15 mm . Calyx in to to 6 mm ., hujus lobi 5 mm . long. Corolle tubus 24 mm . long., 1 mm . lat., sub limbo 1.5 mm ; lobi postici $10 \times 5 \mathrm{~mm}$., antici $12 \times 6 \mathrm{~mm}$. Filamenta necnon antheræ 1.5 mm . long. Ovarium 2.25 mm ., stylus 24 mm . long. Semina minute tuberculata, brunnea, fere 2 mm . diam.

Aftinity with P bicolor Radlk., but the smaller flowers on short pedicels with narrower calyx-segments and corolla with a narrower pulescent tube and smaller lobes.

Lepidagathis hyalina Nees.
Mafulu; White, 507.
Justicia Chalmersii Lindau ex descript.
Kwato Island, Samarai district; E. Couley.
Justicta Chalmersit Lindau var. latifolia, var. nov. Folia elliptica usque ad $45 \times$ fere 2 cm ., sepius vero $\pm 15 \times 8 \mathrm{~mm}$., alia minora ovata, obtusissima, circa $10 \times 7-5 \mathrm{~mm}$. -Justicia hygrophitoides Bail. non F. Muell.

Sapphire Creek; White, 15t: Boku; Mrs. H. P. Schlencker.
The former of these is a very poor specimen, but should evidently be named as above: it is in fruit, the 5 mm . long. capsule being oblong, acute, and glabrous with 4 subquadrate seeds nearly 2 nm. in length. The true J. hygrophiloides of Queensland is a plant of more robust habit, with different leaves, flowers, and fruit.

Justicia (§ Rhoplidospora) platyphylla, sp. nov. Fruticosa; ramis paucistriatis glabris ad nodos tumidis super nodos constrictis; foliis amplis petiolatis ovatis vel ovato-lanceolatis acuminatis apice obtusis base in petiolum attenuatis tenuiter membranaceis utrobique glabris: paniculis laxis foliis brevioribus ex axillis summis oriundis paucifloris puberulis; bracteis bracteolisque parvulis filiformibus; calycis segmentis 5 inter se similibus linearibus acutis puberulis; corolla calycem plane excedentis tubo inferne amplificato labii antici lobis late oratis obtusissimis lobo intermedio quan laterales paullo majori ; antherarum loc. inf. breviter ac tenuiter calcarato; capsula acuta minute pubescente 4 -sperma.

Astrolabe liange ; C. T. White, 270.
Foliorum limbus summum $17 \times 7 \mathrm{~cm}$, superiora minora, e. g. circa $12 \times 5 \mathrm{~cm}$., summa $6 \times 2.5 \mathrm{~cm}$., in sicco viridia; costre latere utroris 7 , tenera, parum visibiles; petioli graciles, usque 5 cm . long., foliorum jurenilium multo breviores. Paniculre $3-6 \mathrm{~cm}$. long., pedunculi attenuati, $1 \cdot 5-3.5 \mathrm{~cm}$. long. Bracter bracteoleque $1-1.5 \mathrm{~mm}$. long. Calycis segmenta $4 \overline{\mathrm{j}} \mathrm{mm}$. long. Corolla alba: tubus 9 mm . long., inferne 2.5 mm . superne 2 mm . lat.; labii antici lobus intermedius $2 \times 2 \mathrm{~mm}$. Antherarum loculi 1.5 mm . long.; loc. inf. calcar ${ }^{2} \mathrm{~mm}$. long. Capsula in toto 14 mm . long., pars seminifera 7 mm . long.; retinacula sursum angustata, 25 mm . long. Semina dilute brunnea, minute serobiculata, 2 mm. diam.

 comsmecitic with Kionig＇s plant．lat the dowers of this are ghite diftione from thase of J．platyphylla．

This might easily be taken for a Diantheren，but the spure to the lomor coll of the anther althongh small and weak is mamistakable．

White＇s No．iftifom lhilata，a spermen in fruit only，is evidently to the associated whth this；indeed the eapsule（and seeds）have hern dencribed from it．

Hulemacanthus．Acanthurarum e tribu Justicearnm，gen．nor．
（＇uly． 5 －partitus．segmentis pro ordine latis inter se abyabibus．
 dilatato：limbus broviter＂－labiatus，labio antico 3 －lobo lobo inter－ medin majore in estivatione extimo lalion pertico intecroo．Staminn T．infta metimm tuhm inserta；tilamenta exsecta；antherae hasi

 culam sat chomgatam anguste thermileam ample bacteatam digesti．

Hulemacanthus Whitei，sp．mica．Folies petinlatis lamen－ lator－dipticis apicem veras atmminatis apice ohtusiusculis deonsum in contimationem late petinliformen extematis marginc leviter mombatis papmoris pablite nitilis；panionla foliis certe brevinitms

 lys．Ifers．IL．I＇．Schlenctior at Bukn，and Whiters ：3st from Sugere，a

Giaptophyllum Gilliganis Moore (Justicia Gilligani Bail.). Astrolabe Range; White, 236, 353 : Mekeo district, No. 791.
This is easily distinguishable from G. pictum Griff. by the narrow lobes of the corollia.

Calycacanthus Mfaynusianus K. Schum.
Bisiatuba, near Rona Falls; White, 360 .
The corollas are not yet expanded, the largest being only a little over 2 cm . in length; but they agree with others at a similar stage of Forbes's No. 857, which undoubtedly belongs to this species.

Dicliptera Burmanni 'T. And.
I ule Island; White, 72?3.
This is believed to be new for Papua.
(To be continued.)

NEW MALAYAN PLAN'TS

Bi H. N. Rideet, M.A., F.R.8.
(Continued from p. 149.)

Entada Schefferi, n. sp.

Entuda scandens, Benth. in Hook. Lond. Journ. Bot. iv. 33 ? (1845) was hased on Mimosa seandens L., Sp. Pl. cd. 2, 1501, which includes at least five species of the genus, all distinct-E. Pursetha DC. and E. monostachya DC. from India and Ceylon, E. Rumphii Scheffer from Amboina and the Philippines, and two or more species from Polynesia and South America. Bentham added some African species; De Candolle separated some of these, and Scheffer described two-one the very distinct E. Rumphii, the other he described (Obs. Phyt. iii. 90, t. xvi, xviii A) as E. Pursatha: this is not the Indian E. Pu>sethen of De Caudolle, but the species which occurs in the Malay Peninsula and Java. Prain's Entada scandens (in Journ. As. Soc. Beng. lxvi. pt. ㄹ, p. 242) includes E. Pursatha from the Andamans, and some specimens of E. spiralis Ridl. as well as the E. Purscotlu, Scheffer. This latter species I propose to separate under the name of E. Schefferi.
E. Schefferi Ridl. n. sp. E. Pursetha Scheffer, Obs. Phyt. iii. 90 , t. xvi, xviii A, not of De Candolle. Frutex scandens ad 15 m . longus, caule ad basin 1.50 cm . crasso, ramis gracilibus pendulis glabris. Folia 1.50 cm . longa, petiolo 5 mm . longo, cirrho terminali ; pinme 4 oppositæ, $1-1 \cdot 25 \mathrm{~cm}$. longæ, foliolis paucis subcoriaceis atro viridibus obovatis vel oblongis obtusis vel apice rotundatis sepe obliquis $\cdot 25-31 \mathrm{~mm}$. longis 12 mm . latis, breviter petiolulatis. Spicre singule extra-axillares $1.25-2 \mathrm{~cm}$. longe, basi $25-50 \mathrm{~mm}$. nuda, rachide puberula. Flores 2 mm . longi dense congesti. Bractere minute acuminate persistentes. Caly.x cupulatus dentibus minutis. Corolla flava lobis oblongis obtusis, tubó calyci æquali. Stamina 10, duplo longiora. Legumen 62 dm . longum, 1 dm . latum, marginibus suture crassis latis dorso rotundatis obscure ad articulationes indentatis, segmentis 13 , oblongis rotundatis 16 dm . longis, 6 mm . crassis. Semen elliptieum rotundatum 37 mm . longum, 31 mm . latum, 6 mm . crassum, atrohrunneum.

Math. In ripis fluminis Peminsular Malaice, Muar, Sungei Panh,

 (E:utulu menustuchyu) ; Aser Hitam, C'urlis; Jisa, Jocjokartas, dun!lu"un.

In the $\mathbb{C o w}$ Wusem thore is a perd very closely resembling that
 whor evidence of the wecmenee of the plant in bumath. The -mall w-malls movate momalipped leaves. green un both sides. amb tho wer small thewers distimernish this speopes readily, and the wery stout iomad-haked ribl rmming on each site of the pod, the - erment- of which are tansw mely wrimkled is distinctive. 'The only sead f hase seen is smaller in most specios and considerably thicker. This is the maly speres in the Matay Penmsula, except the very distanet $l:$ spirulis, with lamere leaflets. ghaneous hemeath, and the singular erven spinal pord braking up into joints, eath of which dehisees, athe expencea a larger thick light-hown seed with a thin testat. Distinet as this latter species is, Wrallich distributed some laves of L_{2}. spiralis with his lemang plant isme!3, and Pran (. Mutrimls for the F゙lora of' the Matuy P'eninsula) quotes two

E. Shefefferi nowally wecurs drapiner the foren on the river-hanks far away lron the river-month, but I foum a lave plant of it in a villare in Kedmon, wheh smplied the villase chef with suap: the hatk of the phant is used for this purpose piome heiner chopped off ats repmete The mative mame of the phat is Nhar Belaros or in Kelantan, Akar Vha.

THE L'SE AND ABUSE OF THE GENL'S.

EXDER this tithe Dr. Wilmor stome pmblishes in Scerues fore April ith an atrtarle containing what appears to ns a much meedeal

 rivenion the ehone in momemelature which the law of pronity

 prins out, are "entirels dpemhat upon pramal opinion, with nu

other words, has become useless, and we might just as well have a mononomial. The very object for which the generic name was proposed has been lost.
"To illustrate the point further, suppose that we subdivide an old genus into three, and use three generic names where previously we used but one, we emphasize, it is true, that there are differences between these three groups, but by the very same act we obliterate the fact, formerly indicated by the single generic name, that there are resemblances which join these three groups together as compared with other groups in the same family. One of these facts would seem to be of quite as much importance as the other, and by the ereation of the new genera we lose quite as much as we gain. We should earefully guard against allowing our enthusiasm for the discovery of differences to blind us to the fact that the real object of systematic researeh is the discovery of true relationship.
"Now the whole trouble in this matter-and a vital flaw, to my mind, in our system of nomenclature-is that we try to make a double use of our system with the result that it is gradually breaking down from the impossible burden. A generie name as we use it to-day is made to serve two purposes. It is (1) a term by which we indieate to others what we are talking or writing about, and (2) a term by which the systematist indicates what he regards as a recognizable phylogenetie group. It is suicidal for any system of nomenelature that names for 'things' should be constantly changed to fit our ever ehanging ideas of their relationships. Surely there should be some way of indicating the progress of our studies in the relationships of birds, for instance, without rendering unintelligible to all save a few specialists, the very names by which we refer to those birds
"The main point would be to eheck the excessive generic subdivision which is to-day rampant in certain quarters. If some such reform be not inaugurated, technical nomenclature will soon be-if it is not already-useless to anyone but a narrow specialist. For example, the botanist has long known of the differences between the so-called flowering dogwoods and those without involucral leaves; but what profit does he gain by changing the generic name of the former to Conoxylon [sic] comparet to the loss that he intlicts upon the ornithologist, the entomologist, or the student of general scientific interests, who know them under the name Cornus and who, unless they be Greek scholars, have no conception of what sort of herb, shrub or tree a Cynoxylon may be."

Dr. Stone's suggestion is. "Why not adopt an arbitrary set of genera de convenience [sic] so far as nomenclature is concerned and use sulgeneric terms when we desire to call attention to more refined phylogenetic groups. At the present time we constantly make use of 'group ' names in discussing the relationships of different sets of species in a large genus without in any way interfering with the nomenelature, and the practice could just as well be extended."

We do not quite understand what is intended by "an arbitrary set of genera."

Ma. Arrmor Bexvere has called my attention to the passage in Mr. Williams's Prombomus (i. 316) in whirh the latter cites for the tir-t pmblication of Clliculuria neylecte Lehan.: "Schul-pnotramm und Vorlesumsverzeichniss des Hamburg Gymmasimms fïr 182. p. 3s - this ohd patmphet eonsists chiefly of a list of childenattembing a lexeal sehonl, with ath outline of the eourse of lessons for the term, a simpular medimen for the publieation of new plants." Mr. Bemnett adds: "Ihis certainly wonll leeso, hat the real pultication is eontaned in . Dohann ljeorg ('hrintian Lehmamn's first Pugillus P'unturnm, Hamharg. I ごㄴ, and how it came in the other place it is now impossilile 10 ascertalil.

From a momenclatorial puint of view the matter in of no ime priance, for the date as will hase been sem is identieal m eately casa. an that the quention of the rabidity of publication in a "Sehnl-
 comsent refered ta the carlier C°. major. But a few pronts in conmertion with the Pugilli seem of sulfievent interest to platee on record.

The first Puybllus, contabing 299 spectes, appeated in Nova Acta
 alditional fontmote on the lirst pagre which explains its orituin: "E.a Indice Sicholaram, in Momburyrusium (iymmasio -lembemico "

 dam stirpinm raromme exmmavims." From this it will be seem that the plates which appear in the reprinted Pagillas did mut anommpany

 of "impteprecies of C'retus, with plates; this bears on its title the
 it was perhaps miginally imtumberl to form a pertion. When the

 thane right species are comecomed, for, as has heren shown, these did mot appar umt laise. Apart from then, the text of the rejsule, which was reset and indopmolentle ponemp is identical with that of the Sova defa, ave for an atuled nut. ("Ohs. ii") on Potentilla Sie. mrnewna (p. 33) : the platce, with the exceptions of the Curti, are
 aie of the reprint.

In an interming intrometion to the reprint. Lehmann, whan had
 wheh he suhe pamtly hewame lievers) gives an aceont of the wigin
 of the work of wheh hi. hant printerl an aceromat Brovicht iiber den
botanischen Gurten hiesellst: Hamburg 1S23. He had ahready published in the ammal seed-lists of the Garden, beginning with 1521, brief diagnoses of new plants grown therein, and these, which are reprinted textnally in the Pugillus, are there amplified by full descriptions. The lists I have seen, although duly published with title-page and date, bear no author's name, nor are the diagnoses signed. The only plant published for the first time in the Pugillus is the Utricularia which suggested this note-a fact to which Lehmamn calls attention in his introduction.

I have been unalle to see the original Schul-programm cited ly Mr. Williams; this he thought he had seen in the Library of the Linnean Society, but it cannot be found there, nor is it at the National Herbarimm nor at Kew. Mr. Williams tells me that he once purchased a copy with a miscellaneous bundle of tracts; this he subsequently disposed of at a price exceeding that which he paid for the collection.

The second Pugillus appears to have been published independently of the Index Scholurum; it has a title-page, dated "Hamburgi, 1830," and the species described are first published therein; they include some of Donglas's Californian plants, which had been communicated to him by W. J. Hooker. The four following (3-6) bear no date on the title-page, but are stated to be reprinted respectively from the Indices for 1831, 1832, 1833, and 1834; the fourth and fifth have prefaces dated December 1831 and January 1833. The seventh and eighth are also referred to the Index, and have title-pages dated $18: 38$ and 1844 . The ninth and tenth were issued independently (1851, 1857): to the latter is added an index to the ten Pugilli.

The third Pugillus has no preface; in that to the fourth, which is entirely ievoted to Heputicee, Lehmann thanks W. J. Hooker, who had sent him Wallich's specimens, and acknowledges plants from "alii Botanices cultores per Angliam, Francogalliam, Danian, Germaniam obvii" as well as from "rir amicissimus J. B. G. Lindenberg," who is again mentioned in the "premonenda" to Pugillus 5; this is also entirely, as are the ninth and 6-8 in great part, occupied by Heputica.

The first portion of Pugillus 6-which has no preface-"De Plantis Cycadeis presertim Africe Australis"-was also issued separately in the same year (1834) with a titlepage and a dedication to C. F. Eeklon-"peregrinatori experientissimo amico aestumatissimo d. d. Auctor." The copy in the Department of Botany was presented to James Yates ($1759-1871$) whose specimens and drawings of Cycads are also in the Department; the latter will afford material for a future note. The five plates in Yates's copy are replaced by Milde's drawings from which they were made; bomd with it is no. 11 of the Allgemeines Gurtenzzitung for 1834, which contains a German rendering by Lehmann of his paper in Pugillus 6 .

Pugillus 7 contains, besides the Heputicce already mentioned, a history of the Hamburg Botanic Garden "ex ipsis Actis collecte" from May, 1818-the date of Lehmam's appointment as Professor of Natural History. In the Sth, the second part is nceupied by a description of some of Preiss's New Holland plants, of which a com-
 in 1s H.

The 9th f'ugillus, which has un preface, is cutirely ocenpied with Potentilld-a gemas to which lehmamn paid partioular atten-tion-inchaling a complete enmmeration of the species, with syon-nym-: wh the titho of this amd the mext, as well as an that of Planta
 lonh, also withent preface, contatins only Hepaties, with an index to all the parts.

There is monem to discuss lehmam's other botanieal work, which is sulliciontly wrll known, but it may le well to call attention
 by lilwam Ottu iwho succoeted him as cimator of the llamhmer bianken, which is likely to te owerlooked. 'The herharimu was sub-

James Bhatites.

L.NX. I).ites of Penhication.

A mantan and distinetly ropremensible practice on the part af cortain publishors, that of climinatime the date of pmbleation from the titlepates of imlivilual whmmes. should he severely comblomed, wpecially in sciontilie litemoture. The matter is prollaps of slight
 t.onatists will arree that the date of pmbleation is of prime importance.

 a complimentary copy from the anthor in May 19|:3, with Mr. laniley s
 prefatory motus wore dated Nownmbur $2.2,1!49$, and this womld noturally he the date anedpted hy an individnal who made only

 mamoripet for thic particular fart of the work was unhmithal the the printer. Mr. (*. 'T. Whitw. Gowrmont Botanist, Brishame. (Zueens-
 ment Irrinter combl give hims no delinite information as to the exaet date of fuhbieation of the work. Hestates that a single volnme, lasking a few of the coloured phates, was in Mr. Bailey's hands at the che of l!1!2. lant that delisery of it for distribution did mot take

EIMfr J. Menmat.,
Buran of Sefence, Manila.

sHOR'I NO'TEs.

Tmpatiens glaydelfera Royle (I. Roylei Walp, see Journ. Bot. 1900, 87) forma alba. Although 1 am not able to tind any definite botanical characters by which this handsome plant is differentiated from the type, I think it deserves a name and a note. It does not seem to be generally known--Sir David Prain tells me they do not have it at Kew, and the only garden in which I have seen it save those to which I have introduced it is that of Miss Jekyll at Munstead, where in 1914 it was growing in masses at the back of a long mixed border, for which it formed an admirable background and whence my seeds were derived. 'The plant is always of very erect and robust habit and sometimes attains a height of six feet; the flowers are pure white, and during the six years I have grown it have never shown the slightest tendency to revert to type-this is also Miss Jekrll's experience; the stems, the branching of which is very symmetrical, are light green and the foliage is usually lighter in hete than that of the type. Miss Jekyil does not know whence she obtained the plant, but thinks it was from Norwich. It is a most prolific seeder, and hence may readily become a nuisance; but for rough open spaces where it will not interfere with anything else, it would be exceedingly effective. Later in the season I shall be glad to send seeds to anyone who cares to send a stamped envelope for the purpose: I have already introduced it to gardens in England and Ireland to the satisfaction of those who have grown it, save for the drawbacks presented by its great fertility. The form seems to me at least as worthy of a name as that figured and deseribed by Sir Joseph Hooker (Bot. Mag. t. 7617) as I. Roylei var. pullidï-flove-Jimes Brittes.

Exaythe crocata L. In Bentham \& Hooker's Handbook it is stated that the juice of this plant becomes yellow when exposed to the air. Beyond a yellowish tinge on a broken piece of stem, 1 have not succeeded in seeing the yellow juice. 1 smeared a piece of paper with the juice, and it left no stain. You will, perhaps, excuse my troubling you with such a simple point, but the statement seems misleading, especially to beginners.-W. A. Nicholsos.
[Withering (Awangement, ed. 7 , ii. 35^{2}) speaks of the ront as "abounding with an orange-coloured, fetik, very poisonous juice, such as exudes less plentifully from all parts of the herb when wounded." An editorial note quotes Miller as saying that "the juice is at first like milk and turns afterwards to a saffron colour": Miller also says (Dict. ed. S) that "the stalks, being broken, emit a yellowish fcetid juice." The editorial note quoted meutions on the authority of Prof. (afterwards Sir W. J.) Hooker "a remarkable variety, if not a new species, occasionally observed in the neighbourhood of Plymouth, yielding merely a watery fluid instead of a fetil yellow juice."-Ed. Journ. Bot.]

Orchis hirciea in Sussex. A specimen of Orehis hipcine was found near Lewes, Sussex, in June last by Miss May French, a school-girl who was collecting a bunch of wihd flowers for a village flower-show. The spike was in bud when picked, and she thought it Jolraial of Butani.-Vol. js. [Aigl'st, 1920.]
was a Buttertly (owhis, but when the flowers opromed her mother
 sperimen was rabibitud at the Wihl Flower Exhibition at Lewes, and has leen preasited to the Nitional Herbarimm, The spike bore sixteen fowers! - E. .J. Ji:nforar.
(1)r. A. H. ('hume informs us that a specimen of O. hirciun, col-

RENHENS.

The Origin anel I) er fopment of the (',mpneitace By Jwars Simuth
 hasts. 11' 3:31. Wushey dim. Lrice liss. net.

Aveminent sciontist with a pernchont for spiritualism some years ago lamouronsly conplaned that his secptical fritmls were wont to armign hin as leeines like the man in the comie peen who lorged at at baker's. "two simgle gentlenmen rolled into one": while his feret remained on the "sulid gromad of mature" loe was Orthoeromkes, hat the beeanor Prasteremkes the monnent he deviated into the supermatumal. The promal of this collention of reprints from the Nice

 give valualle information concomer the ('mpmesite: the other a

 self, like lame Jamle, askine " why:" when eronfonted with these confidently wferm assumptions.

Whe are to combilur, it alpanars, the trmeate-penicillate style as
 with colt fomeate aml matpmondarel at the base constitute "alsomaly the primitive and elameteritio stamen for the lamily."
 in a sory intereatine mumer-lads Tr. Small tor comelnde that, of
 frimitise laceme it insblye only onn stap-the contraction of hat

ness, really amomnting to virtual non-existence, of the geological record, whether he has ever realised the errors a zoologist, in the absence of fossilised remains, would most likely fall into who should endeavour to apply that hypothesis to, say, the Mammalia: And if palpable mistakes would ahnost certainly be made in dealing with the animal world, what assurance have we of safe ground for speculation when plants are in question? In accordance with the lyppothesis, Dr. Small considers Senecio to be clearly marked out as primitive on account of its wide distribution in space. Ginaphalium is the only genus, he says, which can claim anything like equality with Senecio on this ground; but here he overlooks Aster, for he cannot be una ware that the Southern Felicio and Olearia are merely geographical offsets which have actually been included in Aster by botanists of repute. The question then is where did this primitive genus arise? The centre of origin is indicated "by the coincidence of the region of concentration of local species with the region of the overlapping of the areas of the widespread species," and this shows the centre of origin of Senecio (from a Lobelioid ancestor) to be the Bolivian region. Similar conclusions.drawn from present-day distribution are pat forward with respect to all the Composite tribes. These are pure assumptions, which may be true in some cases and hopelessly erroneous in others; as applied to Senecio they do not seem very happy. All that can safely be said is, that at some time after the Andine uplift began, Senecio was represented in that part of the work: the contingent earth-movements resulted in the formation of hundreds of isolated valleys, thus bringing about conditions most favourable to specific differentiation. This woukd account for the large number of Andine species, but it tells us nothing concerning the first appearance, there or elsewhere, of the genus.

The author's treatment of the pappus, although ingenious, is by no means satisfactory. To say that the sete are composed of hairs variously united and to infer from this that all forms of pappus are similarly composed, is surely to ask more than can be granted. And when we find the main point evaded round which controversy has raged-namely the homologies of the pappus-the only conclusion to be drawn from the claim that the application by him "of a little microscopy combined with an obvious application of elementary physiological facts removes the clouds of controversy " from this vexed question is that he is the victim of delusion.

Of course we have the inevitable phylogenetic tree; but why Senecio should appear comfortably installed in the Upper Cretaceous period when no remains att:ibutable with any certainty to the genus have been found in strata below the Pliocene, is known to Dr. Small alone. But this is solriety itself when compared with the last chapter headed "The Stury of the Compositie in Time and Space." A short extract from this will give an idea of its tenour. "Just as its" [Chuquiragua's] "eousin, or rather niece, Chaptalia raced along the mountaln ranges on regaining an efficient pappus in a suitable enviromment, so did Chuquiragua. Like Chaptalia also, this new genus was transformed on crossing the Alaska-siberian bridge by an inerease in the corolla material, which was rendered possible by the

 mens－at a ereater development of the papme which mate migration

 fanta－tio－t：atroments at their face value．

It is ent pheasalnt tw write like this，amt the lens at ats the work is that of a compatrint．Hat Wr．Small restricted his ambitime the the

 sorvice th－fablent of the（＇omponsitar：everl ats it is his book is well worth－tm！in parts，as ham abredy beem remarked．But in his main thesi low mat he held to hase latmaland that mot from want either
 for atiank is，at lean in the persent state of one knowledge，fankly insulnlile．

S． M ．

＇lins first instalument of at work that was to have heen issmat

 uf tase work has splaterd－the qualifications of the berthers （imose for momaraphine the plants at which they hat worked for sor

 howlonge of the litwature relatione to the comblaty have bern

 re ondel and figmod in thic Jommal；forme of the plates（imelarling
 damel in the whone lupore we：1he other thres．with twelse now

th:m twenty years, and has made important contributions to our knowledge of the group: so that the monograply could not have been in abler hands.

After an introduction in which are discussed the position of the gromp, its antiquity and geographical distribution-we note with pleasure that in the second rolume Mr. Groves will give some acconnt of the fossil remains of Clearoplyyta found in this country, to which, in conjunction with the late Clement Reid, he has deroted much attention-conditions of growth, and economic uses, we have an important chapter, extending over more than fifty pages, containing a very full account of "Structure and Development," with twentrfive illustrations in the text from varions sources. A "conspectus of distinctive characteristics of oospores and membranes" is followed hy al glossary and a table of Latin adjectival terms. Then comes the srstematic accomnt, the introductory portion of which is reprinted from the "Review" already mentioned up to the date of its publication, and supplemented by a summary of what has been done since. In nomenclature the rule of strict priority has been observed; on this subject the authors have some sensible remarks. The keys to the genera and species relate to the whole work: we observe that Chara aspera var. desmacantha, published and figured by the brothers in Journ. Bot. 1898 (p. 410, t. 391), is raised to specific rank as C. desmacantha-a publication which will date from the present volume, although the full description will not appear until later.

The genera described are Nitella, with 10 species, and Tolypella, with 4: in the former genus N. capitata A gardh is superseded by N. capillaris comb. nov., as the plant is the Chara capillaris of Krocker, its first describer. The descriptions, in English throughout, are very full; the distribution in the British Islands is carefully worked out; there is an extensive synonymy, and a list of exsiccata. It will thus be seen that the treatment is exhaustive-the only addition we can suggest is a few words on the preparation of specimens, in which, as those who are acquainted with their fasciculi know, the Messrs. Groves were experts.

The book is well if somewhat extravagantly printed; to the excellence of the plates we have already referred. It cannot be doubted that the aspiration of the authors-that the issue of these volumes may result in a large number of British botanists being attracted to the study of the Charophyta-will be fulfilled; and we trust that the second volume will be published with the least possible delay, in order that the gromp may be studied in its entirety.

An Introduction to the Study of Cytoloyy. By L. Doncaster. 2s0 pp., xxir plates and 31 text-figures. Svo. Cambridge University Press, 1920. Price 21 s .
It has been the mavoidable misfortme of Botany that interpretations of Cytological phenomena in plants have had always to foilow haltingly behind the advance of studies on the more highly organized nuclear mechanism of anmals. Botanists have still to
 with the remarlible constane? of their seheme of sexual reprotuction, a rexamblat onthonk on the varicty of phemomena of eytulogieal lifehivhat promatal in phants, fired fiom concentions of "maturation"

I rev full and chatr statement of the gememal facts of mitosis

 fion. 'Th mest the bian wif the work is distanetly zondugieal and

 1月. mul int at foce reat a lengeth.
A. H. C'.

sepalum) by Mr. N. E. Brown, from a unique specimen in the Limnean Herbarium, make up a number of unusual interest.

Science Progress for July contains a long paper by Dr. F. H. Perry Coste and his daughter on "Cornish Phenology," in which observations made systematically at Polperro during 1912-1919 are summarized and tabulated. They are selected from the diaries kept by Miss Perry Coste in connection with the "Wild Flower Society" "the members of which, divided into some twenty branches, keep diaries of the dates of flowering of all the wild Howers they can find, and compete for first place in the branch..... two marks are given for the earliest recork .. . and the system has resulted in the accumulation of records which have indubitable phenological value and should certainly be utilised": this has been done in the paper referred to with great care, and the results are of considerable interest. It may be noted that, from an early period, Cornwall has been associated with phenological observations. In the Tenth Annual Report of the Royal Cormoall Polytechnic Society (1812: pp. 33-40) is a "Calendar of Natural History" extracted from diaries kept at Polperro by Jonathan Couch (1789-1870), the dates, which include those relating to birls, etc., and are not very numerous, begin with 1808. In the Sixtenth Report of the same Society (pp. 25-28) his son, Thomas Quiller Couch (1826-1884), published a " Botanical Register for 1848 kept at Polperro " in which are given the dates of first and last flowering and of foliation and defoliation. His olservations were based on the lines laid down by Quételet, of which he gives a full summary in the important Calendars kept at Bodmin from 1864 to 1875 published in the Journal of the Royal Institnte of Cormoall for 1S54-1878 (vols. i.-v.). Perhaps the most extensive series of phenological observations was that made by T. A. Preston (18:33-1905) when master at Marlborough, where he had the cooperation of members of the School Natural History Society ; these will be found in this Journal for 1865 (p. 203) and 1868 (p. 180) and, for a series of yeare, in the Reports of the Marlborough N. H.S., and in the Quarterly Journal of the Meteorological Society. When Preston left Marlborough, he became rector of Thureaston, wheresomewhat on the lines of J. S. Henslow (1796-1861) at Hitcham-he interested the children of his school in "first appearances," offering a reward of a farthing for a satisfactory report. An indieation of the first and latest date and mean time of flowering is a noteworthy feature of his Flora of Wiltshire. It is to be regretted that I)r. Coste's paper should be disfigured by numerous misprints, of which Potentilla tonmentilla, Eupatorium cannabiense, Heracleum spondyllium are examples: the rule by which generic names used for species are spelt with a capital is ignored throughout.

The New Phytologist for May and June (published July 10) contains a continuation of Dr. R. R. Gates's observations on " Mrutations and Evolution," the botanical portion of which is mainly ocenpied with Enothera, and a paper by Dr. J. C. Th. Uphof, illustrated by numerous figures, on the "Physiological Anatomy of Xerophytic Selaginellas."

Professor Mitsumulis's useful Icones Plantarum Koisikuen-ses-figures with descriptions of new and rare plants in the Tniversity
nf＇Tokio－is men in it：fourth solme．The mumber for May com－ tains exedlent ligntes and descriptions（in Latin and dapanese）of Lemutopentium lriolepis，P＇ertya macrophylla，and Aconitnm hon－ dense，We T＇．Nakai．
＇Tus：History of Tomq，Shopshire（ed．2：1594）ly（rearge birftith contains a long acount of the tree shown as the＂Boseotel （lak，＂with quatation．from sarions writers concerning it．The anthor records his conviction that this is＂one and the same tree ＂hich sholterecl the royal and jorial，if morthy，king＂and this conviction＂prompt，him？to commit to paper sume notices and noters to guell the stoms of detraction which gather romd this and similar marks of antignity．＂of White Ladies Aher，neat＇Tomer he says： ＂Here grew the yellow salfirm or autum croces，which an ohd herpati－t informs ince，grew at Toug（sic）and all Romish phaces； there still grow the Myrhis Odmata，a relic of the Nums herb－ carden，and other rare phants．＂What plant can have been intended be＂vellow saffrom＂？

The Duily Neurs，whose butany we have more than once had weation to criticize，published on Jily 19 this interesting note＂on （ iarden－flumer Names＂：－＂A frieml＇in kent was wery much struck he the gharien of a homder of pentatemons in a cot tage garden，and she shinwed to elat with the old man in charge of it．A few days later be preanted how with a hig bunch of bomms．＇I thought．＇he said， ＂as yomid like a few of my l＇rench demons．＂＂Gay ladies．＇for cail－ lartias，is another wersion－－a guite good one－of a grarten－flower natme．Those who know the firey mange of the eschacholtzia，or Colifomian poppr，will think the＂ommen＇a seother＇an equally appropriato name．Fontunately in the comentry we still stick to the whd manes for shap－dragoms，larkoprs，monks－hool，and so forth． You hase to go to the dambon street markets to set the Latimixal forms，which are mally rembered in some such wrimes as these： Antirynemm，Amty－Rinum；Dhphyemm，Dorlimymm；Alkonitum
 Antirthimm and pirethrm are the two plants which are most often callew mat of their names．＂

From the same sontre romes the following which are perhaps too frivolons for nur surions Jommal：＂The park had onee been a private catate，and the wh gardener has spent the greater part of his life teach－ ing the gromal to ay arow：flowers．Combly youl me to what family this plant bedongs：＇inguired a teaelor conducting her dass thromigh the park．＇I happoll to know it dont belong to no family，＇ returnen the ofl man indigenatly，＇it belongs to this here park．＇
＂The－story of the gatemer and the plant reminds a correspombent of the other gardener at kew．He listened to a teacher discomesing in his chan umber a tree in the Gamlens．He walled the tree an －hon，and painting out that herem had heon introduced into Britain his the Romatis，noked rhetorically：－If this otro combld mhty spatk what history it combld toll un！I womber what it womld say．＇And
 hrak！＂

THE GENUS EPIPACTIS IN BRITAN.

By T. Stephexson, D.D., axd T. A. Stephenson, M.Sc.

(Plate 555.)
We have made the eritical species of the genera Orchis and Epipactis our study for several years, and had prepared a paper on the subject with numerous illustrations, which we find would be too costly to produce as a whole; but we hope to print two of the plates and the more important part of the text in a series of short contributions to this Journal. The Plate accompanying the present note will illustrate some of our points with reference to Epipactis, the next communication will deal sinilarly with Orchis. We are pubishing the Plates first, with a summary of our ideas corresponding to each, so that reference can be made to the figures in later papers amplifying the text of the summaries.

Our present concern is with Epipactis. We have had unusually good opportunities of observing numerous specimens of the commonest forms, and also, to a lesser extent, the rare ones. The main part of our material for the E. latifolia group is from Aberystwyth, but we have obtained living specimens from various distant luealities for confinmation. We would add a warning that nothing can be dome with the gemus Epipactis from pressed plants, and but little with Orehis-fresh material is essential. By way of compensation, it is very easy to preserve the flowers in spirit-the colour, of course, is lost, but the form is perfectly retained and withut shrinkage.

Our conclusion is quite definitely that the genus Epipactis is represented in Britain by five good species only:-E. pulustris Crantz, E. atropurpurea Raf., E. vividiflora Rehb., E. purpurata sim., E. latifolia Allm.
E. palustris is so distinct that it requires no comment. E. atropurpurea $(=E$. oralis Bab., $=E$. rubiginosu. Crantz, $=$ E. atrorubens Sch.) is, in our experience (we have seen forms from Great Orme, Ireland, and Grassington), quite easily recognised and not to be confused with E. lutifolia at all. Its small flowers with a broad epichile, which has usually 3 very rugged elevations, often confluent, its rough ovary, and its small neat leaves, the bottom one usually purple beneath, are points which distinguish it from E. latifolia, apart from its tupically small size and often rich dull purple flowers. Even if the flowers are green, however. other points distinguish it.
E. purpurata ($=E$. violacen Bor., $=E$. sessilifora Peterm.) is equally distinct. Whether or not the stems grow in tufts, the leaves are generally much smaller and more delicate in texture than in E. latifoliu, and are tinted with a fine violet which turns their green to grev, except in an odd plant here and there which has green lint delicate leaves. The bracts may be very long and narrow. The Hower seems to have a constant colour-scheme-the ovary dark green or purple-tinged, the petals pale whitish green, the sepals more definitely green, especially outside, the lip whitish green with usually pale tilac elerations on the epichile. The lip nsually has a more or

Journal of Botayt.- Vol. as. [September, ligu.] R
 Which sary from mearly smonth to mom wrinkled.
 there is no meal for this, hecaluse, although it varies very much in
 'They are amaneed for odf-fertivation: the lriable pollenfalls on the
 "tropu"purect, and purp"minla the pollen is less lriable. the rostellum is well developerl, amd the stigna is pushed an lar forward that the pellem cammot fall wh la it. Solar as the rest of the plant is eon-

 thowers at the very leat a fortuight matier. The leaves are often small, the flower amall tomedimm, the wolow grem or whitish green, with not math lomwn tinge. lije a triangle with a long point in worlland forms. the print cimbed mather in danc-forms: usually not
 smonther than in the other spee ies, may be almost erlatrous.
E. latifolin in our sheme is a name whiod includes $E:$ mediu Fir. and $E:$ atrorivialis Lintun as somonyms. We hope to amplify our peralts an this species in a later paper, hat may give the conclusion hore as follows:-

 wht. We have independently eondeland that no distinction is possible

 lamet. and that the lije hats two smouth busces or alevations on the "pichite; whereas in $E \therefore$." media" the leabes are marower and the transition to batets in ermanal, the "pinhile hasing two "plieate-

 labse tow, from lymal on marow, and one kets narow leaves with

 wher worls, onc limk "modin" Itowers with "lutifiele" leaters and

 rueter of thas in that theme are there romelishl lowsen on the epichike.

with the others. Also, there may be 3 bosses on the lip combined with any possible type of leaf-scheme, broad or narrow, bracts large or small, narrowing from the leaves gradually or suddenly. We think, therefore, that E. atiorividis camot be a valid species, but that it is a term only applicable to some specimens of E. lutifolio.
iii. We come, therefore, to the conchusion that lip-bosses and details of leaf-scheme are so very unstable that they camot possibly be considered grool specitic characters, and should be dropped; that the common British species is E. latifolia, and that "media" and "atrorimidis" should be merged in it and allowed to lapse. The species is obviously very variable in minor details, but could not be mistaken for any of the others, in our experience. It may or may not be possible to distinguish rarieties within it. The flower may be almost any colour, from deep purple (and this may grow in deep shade !) to greenish of various kinds, and nearly white.
iv. The suggestion will, of course, be made that E. latifolia, E. media, and E. atrovividis are really distinct but hybridize freely. We do not think this to be the case. We have had a good deal of practice in the detection of hybrids, and in the genus Orchis have found that it is possible with fair certainty to distinguish clearly definite species among the palmate forms, and to identify hybrids between them: there are stable characters for distinction. In Epipuctis, however, the variation in the E. latifolia group is quite a different sort of thing, and to distinguish species and hybrids is not possible. When a hybrid in this genus does come forward it can be clear at once-we have a fine specimen from Grassington of E. atropurpurea \times E. latifoliu, about which there is no doubt.

We may now consider the accompanying Plate in more detail, which will illustrate some of the above points. We cannot unfortunately afford to print our figures of leaf-schemes to complete the demonstration, but will refer to those in more detail later.

Explavation of Plate .5.5.

All the figures except nos. 24 and 26 are enlarged views of the epichiles of various plants.

Figs. 1 to 3. E. viridiflora. Note the absence of any very considerable ruggedness in these lips. Fig. 1 is the dune-form from southport, with the tip of the lip curled under so that it gives the lip a broad appearance, and the bosses more wrinkled than in the woodland forms. Figs. 2 (rectensis) and 3 (leptochila) show the longpointed triangular form with the bosses moderately inconspicuous and not much wrinkled.

Figs. 4 and 7. E. purpurata. These are from Surrey specimens. There is nothing very particular to notice here beyond the fact that there is a small central boss and that the lateral bosses are more wrinkled in one than the other. Fig. 7 is from a young lip not quite fully unfolded, which accounts for its narrow form.

Fig. 6. E. atropurpurea. From N. Wales. This shows the rounded form of lip and the very markedly roughened bosses, the central one large and conspicnous, though not very sharply separated from the others, with which it is sometimes confluent.

Pig. :". E. afropurpuran \times E. latifolia. We give the lip of this
 le wenl in the husars, but, of comse, the determination of the leybrid wa- latrely eommected with the rest of the plant. Nute the distinetly ineurseal ingers of this lip.

Frys. 8 to 2:3, uml fiy 2. E Futifolia.
Hare it should be noted that there is not mueh to be gained hy eomsidering the relative langth and hreadth of the lip. It varies very much, and the are so many dergees of emone moder of the tip that this affeets the appearane when the lip is seen from the front-many of the fignors look lwoml because the peint happens to be tueked back so as to be invisille.

Fig. s. (('anterhury) Lip with 3 grite distince hosses, mot smouth. Latase of this plant were of medimm bradth, passing gradnally into hracts.

F゚ig. ! . (Owl Wond, Surne.) Lip with two cleaty marked off side-busses, which are very timely wrinkled with a minnte hut detinte eentre-hoss hetween them. Leaves of the broad trpe with abrupt transition to biacts.

Fig. 10. (Cardiman.) A lip with 3 busces, the central one large and prominent, all three of then with a few simple wrinkles. Leaves of the" merlia" tyr".

Fis. 11. (Carligan.) A slenderer lip tham 10. with the tip not cuated umber. lonaes forming a mither varue gemematiced elevation and fairly smonth. Jeares fairly marow.

Fig. İ. (('arligan.) This shows the extrome wrinkled type, and the three bosses mome on less contluent.

Fig. 18. ('amplisam.) This is a lip with well-wparated, smonthish - bule-hmses, with a shallow contal elevation, mot a concentated boss.

Fig. 11. (Camligam.) Buscen slightly marked and fairly smonth, slight central rider. Lasmo of almont the marowest tyere, transition in liracta not very ertarlual.
 Javam harrus.

Fig. lif (Cordicas.) The buses here are eonemtrated into a knot in the midalo, and there is a long shallow moedian tongene. La: a M - all loranl.

Fig. 17. (Comligan.) Minnte di-tinet centre-boss and fairly

F゙is. Is. 'This in a lip from a plant wont un lis fov. Fo. F. linton

Fig. 21. (Cardigan.) Here the bosses are very elevated and clearcut, and the narrow central boss is clearly marked out from the others.

Fig. 릉. (Cardigan.) smooth side-bosses and a shallow triangular central elevation with a small boss upon it.

Fig. 23. (Owl Wood, Surey.) No centre boss. Side-bosses fairly rugged. Leaves broad.

Fig. 25. (Cardigan.) Fairly wrinkled side-bosses and slight central elevation. Leaves rery broad.

Figs. $2 \pm$ and 26. Reproductive organs.
Fig. 2t shows the organs of E. latifolia, and Fig. 26 those of E. viridiflora v. leptochula. The difference between the slender' organs of viridiflo a with receding stigma, friable pollen-masses, and rostellum so small as to be barely visible; and the stouter organs of latifolia with stigma pushed well forward, more coherent pollenmisses, and large rostellum, is well brought out.

It will be clear from a study of the lips of E. Iatifolia shown above how very much and in what elusive ways these lips yary as far as most of their details are concerned. The grades of variation, indeed, are so difficult to separate that hardly any two people will quite agree as to the exact words which should be used to describe any given lip. We hope that the figures will illustrate our case where verbal description is at fault.

Errata in paper on Orchis purpurella in July issue :-

$$
\begin{aligned}
& \text { p. } 167 \text {, line } 23: \text { for "35 cm." read " } 15 \text { em." } \\
& \text { p. } 169 \text {, line } 18: \text { for "leaf-pattern" read "lip-pattern." }
\end{aligned}
$$

THE LICHEN SIMBIOSIS.

By A. H. Church.

"Lichens are symbiotic organisms, they consist of higher Fungi, chiefly Ascomycetes, more rarely Basidiomycetes, and unicellular or filamentous alya, living in intimate connection, and toyether forming a compound thallus or' 'Consortium' and have been so evolved as consortia that it is more convenient to treat them as a separate class . . . From the symbiosis entered into by a Lichen Fungus wiill an alga, a dual organism results with a distinctive thallus, of which the form. (influenced by the mode of nutrition of the independently assimilating alya) differ's greatly fiom that of the non-symbiotic Eumycetes" 1.

These sentences admirably illustrate the manner in which it is usual to teach the Lichen at the present day, emphasizing (1) the marvel of the symbiosis, (2) the 'dual' organization, and, above all, (3) the novelty of the growth-forms thus produced-so distinct from other vegetation-that (4) the plants require to be taken in a special chapter ${ }^{2}$ or section ${ }^{3}$ away from Fungi proper; as also they

[^7]

 istio biolory, the expression elual orgatism’ being meaningless, males it alow implian a divided control. amd that the lichens so to - peak, has mut a soml to call its own. On the other hame it is often
 thing in the phemmena brewnd the pure holopatasitism of a special
 wf parantiom, atme that the "ermbiosis is wholly imatinary or
 fore examinel in further detail; sinee whaterer be the present state wif the relation of the compunent neranisms. there can he me question that smels a biolegical phemomemon mast have had a remarkable wrigin: and all the ereater interent will centre in the disenssion of the comblions which may lave imhued such at state of affairs.

The worl sumbiosis, borrowed frem zoological usage is admitted]y a profectly meanimeles expressom, in that any strict definition as to what is intuseled, from the vaguest commensalism is pure holoporasitism. ham fole read into it athtravily ; and in surh case, as olten happors, it may he moployed as a dangorous half-tmoth to obseme the really inturntine fact- of the mane fumdamental nature of the assuciation ${ }^{\dot{3}}$.
 howe wer suall the alvantare maty the to one of them, there ean he no
 - the evolution of at dath wganism. It is the 'eomsontimm' which reynime fuller justibation: what exatly may he intended in the conmotation of shrh a thens and how it is hologically expressed in nowel form, as somethines quite distinct in the realn of mondern

 somatic orsanization is redmeed to the limit of simplicity ${ }^{5}$, amb reproductin" organization is wholly wanting or omitlel. Cases in-

 suma: as d such cance Erade jnto the comelition of simple parasitio

[^8]protonemata of Mosses ${ }^{1}$, the prothallia of Pteridophyta, not to mention the comnection with larger algae as the endoparasites of Fueoids ${ }^{2}$. Such phenomena at once introduce the difficulty of determining what is really a simple Fungus-attack, and what is to be regarded as attaining the dignity of a Consortium. The Fungi, again, follow the general forminla of known Ascomyeete or Basidiomyeete groups; there is nothing very exceptional about them in their more characteristic reproductive processes ${ }^{3}$; the hymenium is always normal; as, for example, in details of ascus-production, or protection, as also in spore-discharge or septation, with few anomalies; they show nothing that is new beyond what may be expected in quite ordinary holosaprophytic Fungi 4. But, once 'synthesized,' to use the commonly accepted expression, they apparently acquire a wholly new somatic organization, giving them a morphology and habit all their own; and it is this latter relation that is to be expressed by the term - consortium' and 'dual organization.' The botanists who first demonstrated the algal nature of the 'gonidia,' being more concerned with the story of the reproductive processes. or the actual establishment of the synthesis, were less impressed by this remarkable conse quence (De Bary, 1865; Schwendener, 1868 ; Stahl, 1877 ; Bonnier, 1859) ; and later writers (Reinke. 1ऽ95; Goebel, Organography, Eng. Trans. 1900) first drew attention to it. The expression 'dual organism,' of course, may be used quite as well for a Cordyceps growing from a living caterpillar, or even for a tree-trunk with abundant Polypori emerging from it, or, again, smothered in Mistletoe ; but such combinations are clearly not intended to be ineluded in the conception of a 'consortium'-that is to say, the expression 'dual organism ' is meaningless unless it is intended to cover a dual control; though it may be difficult to determine exactly where such dual control may be localized, when two organisms are not in direct protoplasmic continuity, beyond each going its own way irrespective of the other, so far as possible. Definite examples of dual organism are presented in grafted trees, with fusion of conductive tissues; but this would not be regarded as a suceessful natural type of organism. The most perfect expression is that of Plant-chimeras, with plasmic fusion and growing point in common, with ready separation of the two constituents (cf. Cytisus Addemi and Solamum tubingense; Winkler, 1905; Berichte, p. 595). But even in these most inti-
${ }^{1}$ Cf. Bonnier, Ann. Sci. Nat. Sér. 7, ix. p. 29 (1889), for the germination of the spores of Physcia on Vaucheria, with failure to produce symbiotic union, as ' no false tissues.'
${ }^{2}$ Cotton, Brit. Myc. Soc. Trans. iii. p. 92 (1909), for 9 species of Pyrenomycetes parasitic in marine Algæ: Mycosphærelle of Pelvetia and Ascophyllum.
${ }^{3}$ The process of fertilization (spermatogamy) involving a 'trichogyne' is left for further discussion.
${ }^{4}$ Much the same applies to the so-called Basidiomycete Lichens (cf. Cora, in which there is very little special 'soma' that can be called a consortium). Old Polypori, growing on trees in this comntry, commonly become bright green on the upper surface with encrusted Pleurococrus, and section shows that green algal pockets may be 'intrusive' to a depth of 100μ or more, as a 'gonidial' zone, without being regarded as forming a lichen consortium. It is evident that the phenomenon may exist in all grades of 'intrusion' and 'parasitism.'
mate dualitios，the whole print is that there is no mew factor intro－
 of prosexistmer somatio fathos，which may separate out withont

 itself，ame hence dommed to rapiel extinetion．Liehons grow and thrise，within theis uwn limitations．and have done so for indelinite

 apart from the fact that the whwons tembene of all howheral exnla－

 nervons systom and the life of the imlivilual．On the other haml， mutnal alvantage may be mone chearly expersed as motual dependenere： and in this sense the fomerns is interpmed as being depermbent in
 supposed to take salts and water from the sulbstatum riat the loyphar of the fomern－alppatently on the ansmuption that heing wholly enchosed within the myerelimen it combl not gre them other－ wise．＇That the alsa atepures a certain amoment whelter from
 it is grite manotitiable to supprse that in the ormemal vase it is
 of wheh is mombloted！

 jrim！

 Write of the lat faw deathe in this eometry fat the same mental

 of an alea ame a fomgus and ret clearly states that the algar are ＂imprisnmeal hy the lattor，hoaling tha pago＇commensalism．＇（On the．wher hami，themerh be sues the problem of the＇forme of the －omplex as the symbionta aname forms＂otharwise proper only to

1 Siranlurgir，np．cil．
：If rilt，Amil．Sci．Nat．xvii， 5 \＆（1873）．

typical chlorophyll-containing plants," - he does not discuss it further; the conclusion that the "restrictive significance of the chlorophyll for the whole contiguration of the vegetable world at once makes itself prominent again," being really in the best style of his despised Nature-Philosophers. On the other hand, West l, as a modern algologist, sees clearly the deteriomtion of the algal constituent, where this has anything that might be called a somatic factor, and the degradation so far as this component is concerned. Hence he discards the idea of 'symbiotic commensalism' in favour of an obvious condition of 'helotism' on the part of the alga ; the fungus being elearly dominant, and the control so far unified, as in the cases of the Green Hydra and the fresh-water Spongilla with intrusive Chlorella, which cannot be said to present much indication of the "restrictive significance" of chlorophyll. Yet this does not touch the real point at issue ; since, while the latter animals retain their respective complex natural morphology entirely unaffected, the Lichen-srmbiosis gives what is apparently a wholly new growth-form, "previonsly wanting to either constituent.' Thus Sehenck (in Strasburger's text-book) even goes so far as to state that the numerous lichenic acids are products of metabolism pecnliar to the group, and that their procluction is due to the "mutual chemical influence" of the alga and the fungus-a wholly gratuitous conception when it is remembered that chrysophanic acid (parietin), one of the best known, is widely distributed, and occurs in relatively enormous quantities in the rhizome ete. of Rheum.

The attitude of Sachs is further emphasized by Goebel ${ }^{2}$, who implies that the conception of a prinary lichen-thallus is neeessarily ' dorsiventrol,' since unavoidably following the organization of a 'leaf-mechanism.' He further expresses the remarkable deduction that all radiai organization of a liehen-thallus must be hence wholly secondary in origin and have been evolved from dorsiventral structure in one of three different was; though the application of these principles to the case of the fruticose Usmea is wholly unconvincing. The beautiful thallus of Cladonia verticillata (loc. cit. p. 72) is put forward, from its distant resemblance (on paper) to a coticated Chara, as illustrating how from the most different standpoints a smilar morphological expression may be attained-an ingeniously perverted view of homoplasy. One thus gets a general idea that in a dorsiventral Lichen a photosynthetic lamina acquires these properties in the same way as does the dorsiventral lamina of the leaf of a higher land-plant (Sachs) - the obvious conchsion of a botanist of landHora alone,-but this only begs the question; the point still remains as to how the land-plant itself ever came to attain such a space-form and organization. Even the building of an elongated centric axis of growing hyphre is clearly an extremely elaborate process, for which one has to enquire (1) the conditions of the enviromment to which it is the response, (2) the factors involved in working it out, and (3) the mechanism by which such factors may be inherited. The merest weft of hyphal mycelium is in itself a construction of

[^9]
 whly attomel fin a periosl of antotrophic filamentuns and probably mash matm phytulnenthm，itacte in tam the highly elaborated alapt tion of a plankton life－history．＇Tha inlea hegins to comerge that the phy－inherial resemblaner in lunctional organization hetween a
 grone wh widely diverembl series of the plant－kingrdon，whieh only buet in than common ancestry in the seat amd the point arises as to what factors they may have had in common at that epoch．sachan as the typablablabomist takes the lambplant for eranted，as if one
 ＂thor was．

On ilu other hamb，after climmations all that ean he said with ferand to（l，the Holoparasitisun of the Fungos：（ 2 ）the Helotism of the alas in the protective amb sechaled recesses of the fungus－

 the laalinlarian with its Zownanthelles of the ervern fresh－water
 marime wom，Commolntn，there ret remoins a reailnal factor，which is the offe cosered hy the term＇ronsortimm，as the malonhted fact that the myedian of the Fimgos enneerned，herimbing ontorencti－
 firm－factons，realily identitiod ley rollectors，in torms of thalloid

 －thy of the dominant Fiungus：（a）the stome of the Alsa in a

One lowk in vain ：moner the writugs of Jiohemongists for any whynate appreciation，analysis，of even in most eases intelligible
 sullicutis efter that if thes hase ariace de moro，sume the subaterial

become interesting. Beyond older bare generalizations as to fruticose, crustaceous, gelatinous, etc., forms, the homiomerous and heteromerous types of Wallroth (1525), and the radial as opposed to dorsiventral of Goebel (1900), one gets little from a text-book of Lichens beyond a mass of particularly elegant but vague terminology (Crombie, 1894, p. 1).
(To be continued.)

alabastra diversa.-Part XXXIII*.

By Spexcer Le M. Moore, B.S'c., F.L.S.

(Continued from p. 195.)
3. Miscellanel Africisa.

Erythronylace.e.
Nectaropetalum congolense, sp. nor. Arbor 25-metralis superne breviter ramosus; ramulis subteretibus cinereo-corticatis foliosis glabris juvenilibus ramentis arcte approximatis onustis; folios brevipetiolatis ovato-oblougis obtusis breviterve acuminatis basi obtusis integris pergamaceis glabris costis lateralibus utrinque 8-12 paullo ultra medium dichotomis haud bene aspectabilibus; stipulis cymbiformibus obtusis vel acutis cito evanidis; floribus in cymàs pro inflorescentia perpaucas breves paucifloras ex axillis ramentorum ortas ordinatis: pedicellis Horibus subiequilongis ; calycis segmentis triangularibus obtuse acutis ; petalis calyce paullo longioribus breviter unguiculatis oblongo-oboratis obtusissimis juxta basin nectario brevi iutegro onustis; filamentis ima basi connatis superne angustatis; onario anguste oblongo-ovoideo 2 -loculari; stylo perbrevi stigmate majusculo peltato-bilobulato terminato; orulis quove in loculo solitariis uno solummodo maturante.

Mayumbe, river Lufo; Gossueiler, 7939. To this belongs 7173 from the Curanda river between the N'Zanga and the Lufo; also 8154 from Belize.

Folia usque $10 \times 45 \mathrm{~cm}$., sæpius $\pm 7 \times 3 \mathrm{~cm}$., pag. sup. nitidula, in sicco fusco-olivacea, subtus pallidiora neenon opaca; petioli 5 mm . long. Inflorescentiae circa 10×7 mun. Pedicelli mox nutanter, $2-3 \mathrm{~mm}$. long. Calyx totus 2 mm ., lobi soli 1 mm . long. Petala alba, 35 mm . loug., unguis solus 7.5 mm . Filamenta ima basi leviter dilatata, $2.5-3 \mathrm{~mm}$. long., antheree suborbiculares, fere 1 mm . diam. Ovarium 1.75 mm. lung.; stylus modo $\because \mathrm{mm}$. long.; stigma $\cdot 8 \times 1 \cdot 2 \mathrm{~mm}$. Fructus verisimiliter drupaceus hucusque valde crudus, oblongus, 5 mm . long.

With its nearly sessile quasi-peltate stigma this might perlaps be regarded as the type of an undescribed genus, particularly as the fruit of Vectaropelalum is unknown; but the stigma is plainly dimerous, and as for the shortness of the style, the Howers may be heterostylous, which is frequently the case with the Erythroxyluns,

* Types in the National Herbarium.

 Sectaropertalnm from Linucere, which Einerler thomght its true
 of the rament an ehatateristic of EErythororglon on the young hrambun of I. comynlemse. I'p till tho persent time the genus has
 that its oxamenee in Weat Africa matis a motable enlargement in the di-trihution.

Umbellulanthus, qemus novmon. Sópulu í, lihera, interga, Pe-

 Forntex wanhens, fore eraber. Folia oprosita, fitiolata, interga,

 rulis apatio compositas digesti. Fructus írnotus.

Umbellulauthus floribundus, sp. unc:a. Plantia rommlis suls-

This ambum plant dimerges fiom lifythoorylon in having wo alym mige to the perals, hat the astivation and the stamens puint to in - melman in this grony rather than in Liancear propre. The
 a villary inflomesoboce, with each peelicel hoaring I seales at the hase

The stipmles were mathe omt only with grat ditlimelty; there seem on he two nf them on eall shle luotwon the pars of leaves, very

 and witembly forment of two malenert, aml in this can the ovary

Icacinace.e.
Monocephalium, genus norum. Flores feminei Isolun cogniti. Sepala \pm, libera, estivatione valvata. Petalu 0 . Androceii vestigia 0. Ocarium omnino liberum, appresse villosum, 1-loculare, in stylum crassum exiems. Stigmata plura, crassiuscula. Orula 2 ab apice loculi pendula, arcte approximata. Fructus 1 -spermus, velutinus, endocarpio spinis ralidis longiusculis endospermum pungentibus onusto.-Plante verisimiliter scandentes. Ramuli crebro foliosi. Folia alterna, brevipetiolata. Flores parvuli, in glomerulos spheroideos axillares plerumque solitarios densifloros dispositi.

Monocephalium Batesii, sp. nov. Ramis subteretibus, ferru-gineo-velutinis demum glabrescentibus; foliis ovato-oblongis breviter acuminatis apice mucronatis basi obtusis margine denticulato-undulatis pergamaceis supra costis pilis appressis onustis exceptis glabris subtus seabriuscule puberulis ; florum glomerulis quam petioli paullo brevioribus plurifloris; bracteis a calyce superatis subulatis relutinis; sepalis inter se sæpe inæqualibus erectis oblongis vel anguste oblongoobovatis obtusiusculis extus velutinis; orario calyce paullo breviore late ovoideo; stigmatibus circiter 12 teretibus; fructibus pro glomerulo pancis subsphreroideis apice brevissime umbonatis ferrugineovelutinis.

Cameroons, Bitye, mixed growth on abandoned ground ; Bates, 127.

Folia sub lente punctis pellucidis minutissimis predita, $10-13 \times$ $45-55 \mathrm{~cm}$. . in sicco riridi-griseola, subtus pallidiora ibique prominenter reticulata; petioli validi, superne anguste canaliculati, velutini, $6-10 \mathrm{~mm}$. long. Florum glomeruli 6 mm . diam. ; horum pedunculus validus, velutinus, vix 2 mm . long. Bractere circa 1 mm . long. Sepala usque 3 mm . long. Ovarium cum stylo 2 mm . long. (incluso indumento), 1.5 mm . diam. Stylus ovario continuus pariterque rillosus, 5 mm . long. Fructus $12 \times 10 \mathrm{~mm}$.

Monocephalium Zenkeri, sp. nov. A precedenti abhorret preesertim ob folia minora: glomerulos paullo minores, sepe pro axilla 2 vel etiam plura, pedunculis usque 3 mm . long. insidentes; flores minores, neenon ovarium minas in stylum breviorem desinens; stigmataque brevissima.

Cameroons, Bipinde; Zenker, 4904.
Folia $6-10 \times 2-4 \mathrm{~cm}$. Glomeruli 5 mm . diam. Sepala usque 2 mm. long. Orarium cum stylo 1.75 mm ., stylus solus ${ }^{2} \mathrm{~J} \mathrm{~mm}$. long. Fructus haud suppetunt.

The floral structure of this genus is that of Pyrenacantha, but in its glomerate flowers it resembles Polycephatium, the female flowers of which, however, have a corolla.

Stachyanthns nigeriensis, sp. nor. Planta scandens?, ramis validis subteretibus striatis lenticelliferisque sparsion folinsis; folios pro rata longe petiolatis oratis cuspidato-acuminatis apice obtusis basi rotundatis tenuiter coriaceis pag. utraris leviter nitidis tenuiter coriaceis glabris costis lateralibus utrinque 5 apertissime arcuatis pag. inf. eminentibus reticulo sublaxo utrobique optime risibili; spicis foliis multo longioribus ex ramis defoliatis (anne ex trunco!) ortis
 panulata di－d

 evolute antheris angre ：inpuilenco．

South Nigeria，（）han！Talhot，sime mo．

 wrisimiliter 10（6m．long．．exemplarii unci mohis olvii ob theres

 $1: 3 \mathrm{~mm}$ ．，anthera fere 3 mm ．long．Radimentum of whongo－ovoidemm，

bistinguished eaty from ぶ．Zenterer Engl．hy the leaves，the loner spikes ampler nearly qhatoms calyx．stamens with shortor filamonts and honger anthers and larger modimentary grnoedme． The hexamerons flowers were at tirat thonght to he another point of differemes ；lut examination of Zanker los：3，on whioh the gemus Was fonmeded．prowe Einefer to have lreen wrong in deseribing the thowre as peratamerons，for beth species lase a forlenticulate calys． 6 petals and 6 stamous．

Stachyanthus obovatus，sp．nuw．Planta semulens，romis sub－

 whtusis hasi breviter comatio membanaeris sumatheris nithlulispue

 ample campannlato fi－tenticulato uti putala seabrinsento petalis ob－ longis acutinamlin filamentis phan anthera panlon longioribus moti－ mento of sur－mm inflexu fere ghlaro ：floribns of calyere quam is maris
 primu sal fe alte（ommatio）dian 11 wario ohmgo（eito owoider）

 thing with still larer leabes（ 11 p to $20 \times 10 \mathrm{~cm}$ ．
 nally，in the herabler lawes wider at the hase，the mome conspienous valyx，the Jomar filatults and the hent mearly erlahons rudiment of
the ovary. Difference in the of Hower, if ans, cammot be stated until the q plant of s. Zenkerr comes to light.

Pyrenacantha sylvestris, sp. nov. Planta scandens, caule volubili prima juventute ferrugineo- vel brumeo-velutino deinde glabrescente ; foliis petiolatis oblongo-obovatis obovatisve nomnunquam levissime subpanduriformibus acutis nisi acuminatis basi obtusis prino margine denticulatis dein summum undulatis nisi denticulis perpaucis obscurissmis preditis pergamaceis supra cito glabris pallideque nitidis subtus strigilloso-pubescentibus costis lateralibus utrinque $4-5$ vix arcuatis prope marginem dichotomis una cun reticulo laxo pag. inf. optime eminentibus; inflorescentios ot et fasciculatis (his rarius solitariis) sat elongatis laxifloris pubescentibus illis gracillimis; floribus ơ pedicellatis; perianthii phyllis chlongis obtusis; antheris parvulis subsessilibus; floribus 오 pedicellatis; perianthii phyllis of similibus nisi majoribus; ovario anguste ovoideo brumneo-velutino in stylum perbrevem desinente; stigmatibus pluribus brevissimis; ovulis 2 altero subobsoleto; bacca ovoidea brumeovelutina stylo persistente coronata.

Mayumbe, abundant in shady woods at Buco Zau; Gossweiler, 6811.

Folia $17.5 \times 8 \mathrm{~cm}$. attingentia, pleraque vero $\pm 12 \times 6 \mathrm{~cm}$., nonnunquam adusque 7×4 cm. redacta, supra in sicco olivacea subtus pallidiora; petioli validi, $15-3.5 \mathrm{~cm}$. long., sepe torti, velutini. Inflorescentiee of $4-\overline{7} \mathrm{~cm}$. long. ; bractere 5 mm ., perlicelli $1-1.5 \mathrm{~mm}$., perianthii phylla 2 mm., anthere 3 mm . long. Inflorescentise 3-4 tandem usque 6 cm. long.; bractea ㄹ mm., ovarimm \& mm., stylus 5 mm . long. Bacea $1 \underline{2} \times S-10 \mathrm{~mm}$; endocarpium album, extus scrobiculatum, intus valide spinosum.

A very distant species. The naterial under the above number consists of δ and fruiting specimens: under 6901 from the same locality are sent f in flower, which have been used in the description.

Rhaphinstites ferricinel Engl. var. parvifolia, var. nov. A typo distat ob folia minora ($4.5-6 \times 1.5-2.5 \mathrm{~cm}$.$) petalaque$ longiora (9 mm. long.) extus ferruginea. Maiumbe, Belize; Goss. weiler, 6990.

Olacacee.

Strombosia retevenia, sp. nov. Arbor? glabra, ramulis teretibus crebro foliosis; foliis obovato-oblongis breviter acuminatis apice obtusis basi in petiolum cuncatim coartatis pergamaceis pag. utravis pallide nitidis costis lateralibus utrinque sepissime 5 parum arcuatis costulis optime visibilibus inter se $1 \cdot-3 \mathrm{~mm}$. distantibus sepe dichotomis et adjurantibus aliis tenuioribus retionlum perspicuum referentibus; fascicutis axillaribus vel ex-axillaribus pancittoris squamelliferis; floribus subsessilibus; alabastris ovoideis; calycis dentibus brevibus rotundatis; petalis anguste ovato-oblongis acutis ; filomentis juxta basin petalis insertis complanatis crassiusculis antheris ob comectivum expansum late ovatis; orario ovoideo disco crasso valde prominente abscondito ; stylo incrassato punctis 5 stigmatosis predito ; orulis 5.
S. Nigeria, Oban ; Talbot, 1465.

Folia $15-20 \times 5.5-5.5 \mathrm{~cm}$. in sicco griseo-viridia ; petioli $\pm 15 \mathrm{~cm}$. long., superne incrassati. Peaicelli crassi, 1 mm . long. Calyx 75 mm ,
 (a) disen -i. minn. eminno.

Diftera irom s. grandifulin Hook. f. entirely in the flowers, as well at in the nervation of the leaves.

Strombosia majnscula, sp, mov, Arlou ghabm, ramulis teretibus
 Lewtipetiolatis anguste ovato-ohfongis basi obtusis pergamaceis leviter nitidis enstis lateralions utrinume $7-8$ subtus optime eminentilms contulis utrolingue bene visibilibus inter se 3 - $\mathbf{6}$ mun. distantibus;
 stipatis: floribus subsessilibus; alabastris ohowodeo-evindreicis oh-
 watis ubtusi" crassumenlix; "utheros sessilitus basin versus petalis insutis: disco parum prominuln; ornvio diseo $\frac{1}{2}$-immerso in stylum whongorenoidum crassum apice punctis 5 stigmatosis donatum demente; mrmis.

Portugnese (ongo. Hombe regiom, hanks of river Lufo; Gossureilen, 790

Aron 1.5 m , alt. Folia $2.5-30 \times 7-9 \mathrm{~cm}$; in sicco srisen-viridia :

 whomga, apice ohtusiwima vel hifiter, commeetivo lato imstruetio, fere
 ownidens, juxta medium religuiis calyeis fure ewamidis notatus. 19×17 min.

Ton he inarted in the gonns next s. Noblefferi Engl. from which it can the at once fok ly the larger leave with wider intervals betwen the nervules and the larem sulnewile flowers.

Strombosia toroensis, sp. men. Armo glatman ramis dependentilns; ramulis subterethus bue follosis; foliis prtiolatis ovatis apher-batiotusis pergamaeros supm pallide nitiolis montis later-
 a-pectahilibus; fusciculis axillarihns on maxillaribus phoritheris

 wnlex:3.

 s. Scheflere Sinis.

Strombosia Gossweileri, sp. nov. Arbur ghlabra, 2.5 m. alt.; ramalis ultimis gracilibus ancepitibus bene foliosis; folits oblongocellipticis superne caudato-acuminatis apice obtusis basi in petiolum brevem cuncatim angustatis pag. utravis pallide nitidis papyraceis costis lateralibus utrinque $4-5$ superioribus valde inferioribus paullo arcuatis costulis parmu aspectabilibus: fuscicutis axillaribus vel exaxillaribus pancitoris basi squamelliferis; floribus parvulis breviter valideque pedicellatis; alabostris anguste oroideis ; calycis lobis triangularibus crassiusculis; petulis ovato-oblongis obtusis; filamentis juxta medium petalis aftixis antheris subpuadratis ; clisco valde promi nente ovarium obtegente; stylo quam petala plane breviore; orulis 3 fructu ovoideo 1 -spermo exocarpio in sicco cinereo pustulatoque.

Mayumbe, common in shady humid woods at Belize ; Gossueiler, 7007.

Folia pleraque $1217 \times 45 \mathrm{~cm}$., in sicco griseo-viridia, costa media costieque laterales pag. inf. prominentes; petioli $\pm 1 \mathrm{~cm}$. long.,
 long. Ovarium 's mm., stylus 4 mm. long. Fructus $16 \times 12 \mathrm{~mm}$.; semen 10×8 min., in sicco rugulosum.

Wasily distinguished from S. Zenkeri Engl. by the two-edged hamelilets of the larger candate-acumate leaves. Though without mature flowers, Nu. 764 S from the same place is evidently conspecific.

Following Engler in his clavis of Strombosia (But. Jahrb, xliii. 1 (i.5), an arrangement sufticiently grood to answer temporarily, the genus as now known may be exhibited as follows:-
Leaves more or less shining.
Nervules comecting the side-nerves prominent.
Nervules forming a network S. retecenia, sp. n.
Nervules rumning straight or almost so.
Nervules close together
S. gramedifolia Hook. f.

Nervules subdistant.
Leaves $15-20 \mathrm{~cm} . l \mathrm{long}$. Flowers $3 \mathrm{~mm} .$. pedicels 3 mm . long... S. Schefleri Engl. Leaves $2.5-30 \mathrm{~cm}$. long. Flowers 5 mun., pedicels 1 mm . long... S. majuscula, sp. n. Leaves $10-15$ (20) cm. long. Flowers 5-5.5 mm., perdicels $3-3: 5 \mathrm{~mm}$. long................ S. toroeusis, sp. n.
Nervules connecting the side-nerves obscure.
Lea ves strongly coriaceous S. Manuii Engl.
Leaves papery.
Branchlets terete. Lea ves shortly acuminate
S. Zenkeri Engl.

Branchlets two-edged. Leaves calu-date-acuminate

> S. Gossweileri, sp. n.

Leaves opaque.
Leaves flat, mucronate, closely pustular beneath
S. pustulata Oliv.

Leaves flat, obtuse, slightly pustular beneath. S. glaucesceus Engl.
Leaves complicate, not pustular S. minor Lingl.
Journal of Botayy.-Vol. 58. [September, 1920.] s

Strombosiopsis buxifolia，＊p，m以：Artne 10－1．5 m，alt．，ramulis ultimis sat aracilibus erebro fulusis furo－velutinis dein eflabres－ centibus：folias pro mata parvis subsessilihns ovato－obhongs apice
 costa mediar suphat imponsal subtus eminente costio lateralibus ditficile bi－is：florilus sulsesoliluns axillaribus vel extar－axillaribus aliis ex ramblis ortis solitaris vel perpane alis ex manis jam defoliatis

 matuma dilute flava．
 from Diali\％e is conspeceite ；it has only a lew very smatll buts．

ドolia $+1 \times 1 . j$ emb，in siceo griseo－viridia，utmhigue microseopice

 sicue）hevitar munlosis．Semen $11 \times 7 \mathrm{~mm}$ ．
bewiles frat，the epecemens hear only very yome huds，so that

 acmminati apico ohtmsis hasi obtmsi leviterve rotumbatis papraceis
 contuli mumerosis inter eontan fere metis parmm aspertabilibus；flo－
 culyer parvalu ore undulato：petalis triangularibus whtuse acut is

Commun in the Masumbe combtry：Cossucilere 6ヶ3．\％．

Rinthlishat hy Ballon maty sixty year ago，this gems has

 －．－ile stigmos are the chinf point－alunt thi－phat．

（＇T＇ob benntimed．）

SHORT NOTES

Scilla campaxilata Ait. The posters issued on the Underground liailway have long attracted attention for their artistic qualities, and those representing wild flowers have been universally admired, not only on this gromed, but on account of their seientifie aceuraey. It was therefore with some surprise that I moted in a reeent picture of *Richmond Park", an admirably drawn group of unmistakeable Scilla campanulata depicted as growing wild at the foot of the trees, and I called the attention of the railway authorities to the matter. They commmicated with the artist, Mr. Tafani, whose agent replies that the plant "actually grew in Richmond Park; after making the sketelh he [Mr. Tafani] plucked the flower and took it home to his studio and made a detailed study ": the drawing for the poster was thus evidently not made in situ. Mr. A. Oliver, the agent in question, whose letter shows that he is not quite an fuit as to the botanical aspect of the matter, writes: "You are of comse aware that there are many varieties of the Bluebell; and I beg to say that I have myself diseovered this particular species frequently in the West of England, and on occasions in damp spots in woods in Middlesex." In answer to further inquiry Mr. Oliver wrote: "Concerning the instance which I quoted of my having seen the Scilla campanulata growing wild, I have a clear recollection of notieing the plant growing in a very moist and mossy spot in a wood, whilst waiting to shoot wood pigeons. I mention my errand on that occasion, as although it may not be significant I have noted that in each instance of my seeing this plant it was among trees in which woodpigeons were building, with one exception where it was annong willowtrees which were full of starlings' nests. The instance mentionel above oceurred off the road between Perramporth and 'Truro in the county of Cornwall. The willow-trees' locality was a little village called Northolt, in Middlesex; and this is the one case in which the plant was growing not very far from cultivated ground and flowergardens. I should not have been aware of the variety of this flower had it not been pointed out to me, when I was displaying it to a friend, as a fine specimen of a bluebell, believing it to le Scilla cutumualis, as I have barely a nodding acquaintance with botany. I also saw a specimen in some woods not far trom Watford in Herts, and in this case the woods were aetually infested with wood-pigeons. I believe I can trust my memory sufficiently to say that in each case the flower has been in an isolated group of two or three." A West of England record will be found in Journ. Bot. 1912, 216-near Stoke St. Mary, Somerset, where, in company with the late E. S. Marshall, I found the plant in fair guantity over a small area in a hill copse, associated with Melissa officinalis and a dark-red garden form of Cohumbine.- James Brityen.

Mosotropa Hypopitis. On July 31st I was pointing out to Mr. C. E. Sahmon, who was staying here. a big colony of Helleborus atroriridis growing beneath some oid beeches between the Wyndeliffe and Tintern, when, to my surprise, 1 found two small specimens of Monotropa Hypopitys, which I had never seen on several previous visits to the spot. It is, I believe, a new record for v.e. $3 \overline{5}$, not being reeorded in Watson's Top. Bot, or in the Supplement. A few
days premosly Mise Manshall showed it to me growing in fair
 sile of the 11 ye in s.e. :3l. It is mot : new record for that bioncomenty, lat 1 hat mot mutil then sem it growing allowho in this

にEVIEWS.

 t:mic:al Mımoirs, No. ©.

 matically-ineline h homerist and of the butaneal mathemativian. It is mot cmmmon to timl as sementio man fully comprent on cacla aspert of the starl:

In me place, p. 6 , the mathor states: "The great dithenlty of phyllotaxis diseussions appears to he to sterer cleat of mathemathes

 diretly lomen phat-romstructions. The value of this angle is su

 that the luvalute of the emree i all egual and alsn similar comve.

the eminent Swiss mathematieian, James Bernoulli, that he usually denominated it spira mirabilis; and in a paper published in the Leipsie Acts in 1692 he concluded his artiele on this curve with a fuaint paragraph, adding the epigraph, eadem numero mutata resurgo. He directed that an Equiangular Spiral should be engraved on his tomb, as an image of Immortality.

As to the general principles of phyllotaxis, Mr. Chureh asserts that modern botany has but little to do merely with the effeets which appeal to the eye on an adult plant-shoot. It seek- to determine how these phenomena originated, what is the mechanism of their production, what factors lie behind the meehanism, and how it was originally ealled into operation: that is to say, for what original function, or by what response to conditions of external environment. A short historieal aceount of earlier writings on the matter is given ; and illustrations expressing some of the more important features of construction are produced in the figures.

Numerous examples of phyllotaxis are instancel, inefuding plants belonging to the following thirty-four natural orders of phaneromams: Conifere (Pinus Pinea L., fig. vi. ; Araucaria excelsa R. Br., figs. x., xi), Cyperacere, Cyeadacer, Pahmæ, Pandanacer, Araceæ, Liliaces, Figaceæ, C'asuarinaeer, Nymphæасеæ, Ranuneulaceæ, Calyeanthacear, Berheridacea, Papaveracee, Crassulacea (Sempervicum calcaratum Hort., fig. xii.), Rosacere, Geraniacea, Euphorbiacere (Euphorbia W'ulfenii Hoppe, fig. vii.), Sapindacese, Onagracese, Myrtacezx, Passitloracese, Cactacea, Fievides, Haloragacer, Araliaces, Oleacese, Gentianacer, Apocrnacer. Polemoniacere (Cobaa scandens C'ar., fig. xiv.), Lilvatre, Dipsacere (Dipsacus fullomm L., fig. viii.), Campanulacere, and Composite.

Fig. i. exhibits the geometrical eonstruction for uniform centric growth-expansion, showing method of obtaining orthogonally intersecting pairs of log-spirals for any required ratio, symmetrical or asymmetrical, to be used as curve-rules for drawing any required construction as a standard of refercuce. Fig. xriii. exhibits retarla-tion-effects in the distiehous $(1+1)$ system.

A separate chapter deals with Phyllotaxis-phenomena in eryptogams and Thatloplyyta: Pteridophyta, Bryophyta, and Alge, ineluding the fossil, Lepilostrobus (sp.), fig. xr. Another ehapter is deroted to zoological and geological examples, such as, in Foraminifera, Quinqueloculiza valyaris, Q. ssminulum (fig. xiii.), ete.

The following note (p. 56) is interesting: "A nalogies are not wanting in other departments of biology ; for example, a man's nose, with distinctly heritable minor details, is derived from the pointed end of the body of a benthic fish; the latter espresses the pointed ead of a thagellate. overhanging the primary oral aperture (cytortome), in tum the conseguence of a phase of elementary polarity berond the original surface-tension sphere of agueous plasma, and so far tracing hack to phenomena associated with surface-tension. let few would suggest that the nose is modelled in the human embryo, at the present time, solely as a result of surface-tension. As the organism beeomes more complex, s, the mechanism produeing it may be elaborated beyond recognition, or new meehanism may replace the old; such

A- womld be expected in a work pmbished ly the Oxford Lasersity I'res. the format is exerlemt the onle misprint detected is at the

> W. I. H.

A Guide to the Jelrntifiention of nur more usreful Timbers, bein! " Henmut for the Lise of studruls of Forestry. By HEmaint srosr, Vacturer in Forestry (Womb. Cambidge Cniversity

Mr. srose: phanse is profesocdly educational, and we fully agree with his upinom that " thome is mothour hetter than a stmer of the - tracture of weml" as "at tainine in observation." For his own
 1ho "fmakly empirical" keys for their discrimmation, will mor doubtedly be of the greatest value. 'The puhlications of this luoklet. howerer, wen at the exombant priee of 7 s . (irl. net-which seems to imply that the parents of maxorsity stmbents may he expected to pat anthone askel for prescribed text-hooks-implies an alpual to a larere puldie. and the m! y sugestion we wish to make for some-
 not the alsabtage of Ilr. Stume tearhing alt Cinmbrilge. We forl inelined to gromble at his list of "omr more natul timbers." which does met inchade Gemenheart. Mom, Jarmah, Kiami Pbus, or men

 Which "amot amourately tormed timbers, are inchuled.
whly indiectly does Dr: Stome admit the extreme dillionlty of
 mothing as th the ervat likemes hotween the wonts of other sperefo of
 (me might inagian that all the struetures he dearibes in the luxty of the lume combl la sump with a lens, which is far from heing the c:as. It wonld be very helptal if in the mext edition some deserphtion combld

 tion, atmot in diameter, in tho plato obvionsly inadequate. A.

> (i. S. Fiov1.a1ER.

Mr. I. H. Patiley semte the the lint momber of Gentes /Ifre
 at Sthara. N..n lork. 'Thi- i-sme i- devoted to a collection of plants

The arrangement is that of Engler and Prantl ; the species under each order are placed alphabetically, not according to relationship. Numerous new species, varieties, and forms are figured and described: the species are Carex chikungana, C'. Kulingana, Salix Baileyi Schneider, s. chikungensis Schneider, Ficus Baileyi Hutchinson, Pilea Hemryana Wright, Rubus kulinganus, Lespeleza distincta, L. Stottse, Maackia honanensis, Vicia kioslunica, L. Kulingana, Lysimachia argentata, L. chikungensis, Sabria honania, Stuchys arrecta, Atractylis separata. In place of the abbreviation "n. comb." two new terius are proposed:-"n. tr. (trans. nov.) : new transfer, for the cases in which n . comb. is customarily used: n. st. (st. nov.) : new status (status nocus) to denote the transfer of a plant to another status or standing, as from a variety to a speeies and the like."

The Journal of Ecology for June contains the conelusion of Miss L. S. Gibbs's "Notes on the Plants, Geography, and Fanna of the mountain summit plateaux of Tasmania" and a paper by Mr. Tansley on "The Classification of Vegetation and the Concept of Development."

In riew of the interest in British Marsh Orchids, it may be noted that at the meeting of the Linnean Society on May 6 Mr. Edward J. Belford exhibited a beautiful series of water-eolour drawings, which he further illustrated by lantern-slides from photographs of the plants in situ and of enlarged views of the lip. Mr. T. A. Dymes showed a series of fruit capsules and remarked on the eharacters afforded by the fruit and seeds of these variable plants.

Tire contents of the Amals of the Royal Botanic Gaiclens, Peradeniya, are entirely from the pen of the editor, Mr. T. Petch, who writes on Saccolabium longifolium and S. Wightianum, and on the Hypocreacece of Cevion (with deseriptions of many new species) and summarises "Recent Revisions of Cerlon Botany."

The Journal of the Royal Horticultural Society (xlv. pts. 2, 3 ; July) contains an interesting account, with illustrations, of "Oaks at Aldenham," by the Hon. Vicary Gibbs, which is introduced by a violent attack upon botanical terminology and nomenclature. The author seems to assume that by his use of the former "a botanist desires to prevent a zealous, if imperfectly educated, gardener or amateur from understanding his deseriptions." As to nomenclature, "it is not merely the changing of names whieh gives cause for complaint, but also the frightful grammatical blunders and false concorls " by which it is disfigured: "I suppose it would be unreasonable to expect from the names an elementary knowledge of Greek and Latin before making use of those languages, but one would think they might submit their name coinage to some school teacher or schoolboy for correction before putting it into circulation." Mr. G. C. Gough has a paper on "Wart Disease of Potatos" (sic) (Synchytrium endobioticum), but the part as a whole is somewhat laeking in botanical interest. With the Journal is issued a circular in viting subseriptions for the Society's "New Pritzel," which, we are glad to learn, " is now well on its way," but for which, in riew of the terribly increased cost of living, money is urgently required.

The Kew Bulletin (No. 5) contains an interesting "Revision of Isopyrum and its nearer Allies" bẙ Miessrs. J. R. Drummond and

1. Hutchanom. heriming with a full :mul raveful acemol, buth literary and hentomical, of the gemus as hitherto understome, the anthers proced to at disenssion of the saecies : the former is mow divitad intusencm Leptopyrum Recibl.. E'neminn Raf., Sominquileym Mak.. Nomlier Franch.-to which are added Astrorop!rym
 Dnlzirlii, heing new) are retained muler Isop!grum. 'The paper, which is acempanien by excellent ligners, is in crepy way a momed of "hat such thines should he:

Is No. ti uf the Bulle tim Mr. W. B. 'Turrill comtimes his cometrihations to the thon of Macedmia: the prosent instahment is lamed

 phant of Collnan culyaris from Aluess. N.R...showing parple:and white
 in Bow. Notiser. 19n7, in which a similar phant is dweribed and a
 abou recorls the oremrence near lindsewick, Sussex, of a strikine form of C'omamine paransis which has un-flowered pmolunches ahmit (9) contmetres high, quite destitnte of canline haves or hates. This was haseritued by Stemherg amd Hoppe in 181.5 as C. protensis var. "niftorn, and was collected lie II. (C. Wation in Branmar in 141t. hut, Lrowing as it did among glamtites of the ordinary form. "may he

 Whish he mames smithidla: "therems is respectfolly denteated to Di-. Matild smith, and the specitic name [mprianthoj mot inappopriately refers to its immmerable thewers as well as to the very large munber of heantifn! drawings amt pantings of thewers with which Mis. Smith has for sumany years demotan the Botanical Maguzine, thi I-murs Plantarnm, and the lern Bulletin."

TuE Annols of bofrony for July rontains a continuation of "Stulies on the ("hlompliats of Dhamids" by Dr. Nellie ('arter: a
 So dling of Impulims Rontri Walp." = I. glandulifarn liongle]; Or. Sottomber write on "The (irowth of Lermn" Plants in Mineral Solutime and in their Xitumal Melium," and "in "The Effects of Wremic Mathe on the (irumth of varions Watar Planta in Conlture
 Aharption of Gnon-Int Lravis" Dr.J.F. Dastur writes on "The

 Thmprome" : and Mr. V. II. Blankina has a note on "liadioantivty and Numal lhysiongial limetion."

We note with greit reget the death, in his sith year. of Mr.
 lith of lat month. We hope to pmblish in an carly monter a full : rilmate to hiv me mery.

JOHN GILBERT BAKER. (1834-1920.)

By the Editor.

Br the death of John Gilbert Baker at his house at Kew on the 16 th of last month, one of the few remaining links which comeet the past and present readers of this Journal has been broken. From the tirst number (published in 1863) until the last volume but one (1918) his name has been of frequent recurrence of these pages; the British botanists with whom he was intimately and constantly associated here and elsewhere-Babington, Newbould, Syme, Trimen, Townsend, to mention only a few of the more prominent-had long pre-deceased him; the number of those who knew him in the days of his activity grows fewer year by year, and to the younger generations he, like those just mentioned, is little more than a name. Yet for those who survive, and for others who may be interested in the history of British botany, some record seems demanded, and this may perhaps best be supplied by one who, for a long course of years, has been familiar with the man and his work.

John Gilbert Baker was born at Guisbro' in the Cleveland district of Yorkshire on Jan. 13, 1834; in the August of that year the fatmily removed to Thirsk, where he was later established in business. He was educated at the Friends' Schools at. Aekworth and York; while at the former (in 1546) he began eollecting plants, and in the following year became curator of the herbarium at the well-known school at Bootham, whose Nature Study Soeiety-the first of its kind, established in 1836-has implanted in so many of its alumui tastes which have been developed in later years. His first published note was a brief record of Carex Persoonii in the Phytologist for 1850 (iii. 735), to which periodical he became a frequent contributor.

In 1854, being then of the age of twenty, Baker published his first independent work- A Supplement to Baines's Flora of Forkshive : the introductory matter includes an outline of the relations of the physical geography of the county to its vegetation-a subject treated at considerable length in his important rolume on North Forkshire (1863), of which a second edition (completed in 1906) was published in the Transactions of the Forkshire Naturatists' Union. Botanical geography and plant distribution were among B aker's favourite subjeets, and furnished the theme for sereral of his papers; in 1875 he published a very useful little volume entitled Elementary Lessons in Botanical Geography, which had previously appeared in serial form in The Gardeners' Chronicle. In that journal also appeared his paper on the botany and physical geography of the Holy Land, but this, although not published until 1917, had been written many years before.

In 1859 a Botanical Exchange Club-the origin of the body still bearing that name-was established in connection with the Thirsk Natural History Society; for this Baker wrote the Reports and acted as distributor. In the following year he married Hamah Unthank, of Journal of Bothyt.-Yul. j̄b. [October, 1920.]

Newer－the，whe meth hem shath in 1902 was actively interested in
 lectures．＇Their som，ats the pages of this and other journals show， has inherited his father＂s devotion to botany＂．

In blia\} the fonmal of Butun! was established by Berthold Semamn（ $18:-\tilde{j}-7)$ in sucersion to the lomer list of Kew Journals， the last of which appeared in 1not；its sub－title＂British and Foreign＂imblicated that it womble give due prominonce to British hutaly．＇The lixat munder eontamed a paper by Bakw＂（On some of the British l＇ansies．Aerestal and Montane．＂The the sureeeding volume seemann dedieated to him the gemus Bulorion，s patated from Plamulder，to which it is now frenemally restomed：Bakeriar of
 reman to commemorate hime．Bakers compibutions to the dommal whe very mumerous，smetimes exteming ow many mumbers， dembine principally with the petaloid monocotylalons：his momosraph of siduyimella oecmpied a consiterahle portion of the volumes for 184．3－A．i．In 1470，with a view to olitaining more support from British loutanists，Baker and＇J＇rimen were appointed assistant－editors． The former took no atotive part in the work，althomph his mame
 （ver，contmud until lath，when the strabed relations then existang
 contrilutions，although his interent in the dommal continned．For a list of these，reforence mmst be mate to the lowal suendy＂s Cafa－ logne of＂scientilie l＇upers，wherwin［alicers contributions to jeriodicals oceupy many pares．

In May istit oceurre？a catastrophe which，distressing as it was in its immediate effects，was attended by haploy results for hotany－ baker＇s house aml husiness premises wore completely destroyed hy fire，aml his herbarimm（with that of John storey）and library inchutine mpmblished Dss．．provished in ther flames．A subseription Was at when art on fowt hy the leading British Iotamists，which was
 ：＂those wher had comtributent，＂is far more than sulficient to replace all my hotanical belonerings which momy can restore．＂ln Jamary

 1 い！！！

Thu forty－flume vars spment at the kiow Therbarim formed a perime of wawleas lutamial activity：：completecatalogne of Baker＇s ontght woull fill many more paces that are at onv lisposal．Jlis lirat work at Kew was the comphetion uf sir Willian I mokers

 thas＇s filura Ficasilumsis and in 1457 puldi－hent a llomillonoli of

at were the Yascular Cryptogams and Petaloid Monocotyledons "; to the latter he deroted three Handbooks-Amaryllidea (1SSS), Bromeliacece (1589), and the Iridece already mentioned: the Liliacere were treated in vols. xi.-xxiii. of the Jommal of the Limean Society. He contributed largely to the series of colonial floras prepared at Kew: the sixth volnme of the Flora Capensis-Hamodoracece to Liliacece ($1596-\overline{7}$) -is entirely from Baker's pen ; the same orders were also undertaken by him for the Flora of Tropical Africa, to which he had already contributed the Papilionacear, Labiata, Verbenucece and other orders, beginning in 1568: he monographed the Brazilian C'ompositce (2 vols.: 1573-84) for Martins's Flora, and the Leguminosce for the Flora of British India. Of the extensive collections of the Rev. R. Baron and others in Madagascar. Baker deseribed in the Journal of the Linnean Society (1sit-1905) more than a thousand new species. The seventeenth vohume of Hooker's Icones Planturum, devoted entirely to fernsand eomprising a thousand species, is frum Baker's pen; he also undertook The Flora of Mauritins and the Seychelles (1875)-perhaps the least satisfactory of his works. He also prepared for Mr. Wilson Saunders the text for four of the tive volumes of his Refugium Botanicum (1868-73).

Meanwhile, as his contributions to this and other journals show, Baker always maintained his interest in British botany. In 1564 he published in The N'aturalist, then edited by C. P. Hobkirk, a "Review of British Roses," and in the same year published and distributed a set of specimens under the title Herbarinm Rosarum Britannicarum; this paper he amplified later in the 'Monograph' published in the Linnean Societr's Jourmal (xi. 1869). The genus Rosa, one of the first which he studied, always retained its attraction for him ; a classification of it appeared in this Journal for 1885^{5} and in revised form in Journ. Linn. Soc. xxxvii. 70-79 (1905). His chief undertaking, after his retirement from the Kew Herlarimm, was in connection with Miss Willmott's magnificent work on Roses (1910-14), to which he contributed the introduction and teehnical descriptions.

In 18005 Baker published in this Journal a monograph of British mints, and notes on the plants colleeted in England and Wales during his holidays appeared from time to tine: his interest, indeed, continued to the end, as is shown by the list of Burnham Beeches plants printed in 1917. In 1868 appeared the New Flora of Northumberland and Durham, in which he collaborated with G. R. Tate. His Flora of the English Lake District (1855) was the result of many visits, and included the "widely-seattered records of [his] forerumners in the botanical exploration of the district": it is prefaced by a bibliography in which particulars are given of some of the authors. Biography always had an attraction for Baker, as many contributions to these pages show-the sketch of his friend H. C. Watson (Jomm. Bot. 18 1, 265) may be cited as an example : "The Fathers of Yorkshire Botany" (Bot. Trans. Yorksh. Nat. Union, i. 185-201 and "Biographical Notes on the Early Botanists of Northumberland and Durham" (Nat. Hist. Trans. Northumber-
lami de. xus. (5)- bit (entain much information of interest to hioemphers. Tin tho thind edition of Hooker's S'menters Floren (1sio) he contrimated the "acomot of Rulons, Rosed, and Hieracium," and his gencrab asist:mee is akkowledged in the preface th that work.

Beathen these more impurtant works, Baker was a emstant comfributer to lentanical perionlicals-amone them the balletins of the Bimaer Herlamim, the Roval Botanical Socioty of Belpimm, and

 -Ifmlegra. de.), and the liotanieal Mayazine, in the preparation of which, apart from his own comtributions, he was of the greatest
 Butany and Physical (exoraphe of the Holy hand "-appeated in the Gardners (Kromicle for December, 1917.

This emmons output combld only have been acheeved hes stemery and strenuons work, and bakres industry was mflatgring, int only during his oflecial homs at the Herbarime but at home; when he wat living at lichmond, before he took up his residence at the Horlarimn, his tall figure, with a bundte of dried plants moder his arm. was a familian , ofeet as he passed across the Gardems. He was a wery raphe worker ; and this, while enalbing him to bring together in an lition to his own ohservations a aast amment of material, thus Ervatly facilitating the work of those who suceederl him, was not withont its dambacks: the eriticism of a friondly reviewer of the
 sayine that "Mr. Baker is a rapid worker and gets over a great deal of eromul, but le lacks a certain fineness of touch, an that a want of linial is oecasionally wident." In the same way his offlamd deter-minatims- - in a large sense," to quite one of his frepurnt "xpres nims- were sometimes open to chatlenge, as he himself was always rasaly to almit.

Althomeh be mo means dewod of other interests her had a keen literary mone and a great low of pareter, of which he eonld repeat vast ghantites-botany was the ohief eomeern of his life, and he was alwas-ready to place his knowledge at the disposal of all who com. sulted him, whe ther promally at the Herlarium or by letter. This was mperally the cate in comnection with the Botanical Bxehange ('lont, towhow limporta he was a constant contributor ; but it extembel tu) the homblest inquirer. Doring my two yars at kew, it was ammsing to motiore the different attitude assmed by Oliver and Baker th the manal visitor-the former discomanging, almost to meness, the latter frimed! ant sympathotic, sometimes of Oliver's hardly di-mbised disapprosal. On my first day in the Herbarime (Angust 14! !), when I had lwen smewhat wer-awed by an interviuw with Howker and a little terrifeel he Olivers abompt mamor. Paker at once
 " hi_h tuas " which his intimates will always romember with pleasure, som introlowe me to his lamily, inctuding his sm, whose name is

 problans of clementory withmetic. I meall. ton, a pleasant sumblay
afternoon when he took ine to see Hewett Watson, from whom I had already received much encouragement, at Thames Ditton, when I was delighted at my cordial reception-thanks to my introducer-by one whose writings were chatacterized by considerable asperity. A reference to these " quiet Sundar afternoms," when Baker was a frepuent risitor, will be found in his memoir of Watson (Journ. Bot. 1881, $264)$.

The kindness which Baker showed to all with whom he came in contact was, I think, his most striking eharacteristic-no kinder man can ever have lived; the following tribate from The Gurden tur November 9, 1901, aptly expresses the general feeling common to all who knew him:-
"The wide extent of Mr. Baker's public work is written in the history of botanical science, but this slight memoir would be incomplete did it not put on record the pleasant memory of that unfailing kindness and tender beauty of character that so greatly endeared him to his colleagues and subordinates, as well as to his large circle of personal friends. Students and workers in the Royal Gardens felt that in Mr. Baker they had a genial friend as well as an instructor, while many a botanically-ignorant amateur, whether acquainted with him or not, became aware that the learned botanist would with infinite patience and kiudness give time and trouble to enlighten him."

The feeling of his colleagnes, past and present, fomd expression on the occasion of Baker's eightieth birthday, when an address of congratulation was presented to him, signed hy those who had been assoeiated with him during his long connection with the Herburimm. The Morning Post on the following day pullished an interesting autobiographical aecount which will be found in this Journal for 1913, p. 42-Baker's correction of the astounding statement which attributed to Mr. Amaury Talbot the collection in Nigeria of 10,000 genera and 200,000 species, will be found on p. 77. Among the many expressions of sympathy addressed to his son which I have been privileged to see, one seems to me so accurate and so admirably expressed that I venture to reproduce it: "He was of the best of men. In his serene disposition he was at peace with God and man. His life was one of cheerful derotion to useful and conscientious work, and in it he leaves behind him a worthy monument. To those who knew him his memory will always be fragrant."

This notice would be incomplete without some reference to the posts which Baker held and to the distinctions which were conferred upon him. In 1869 he was Lecturer on Botany to the London Hospital and for thirty years (1874-1904) to the Kew Gardens: "his lectures" says The Jominal of the Kew Guild (1897) "have always been popular, his emphatic lucid style being easy to follow, whilst his kindly encouragement, pleasanthess, and vein of humour tend to give the tyro a relish for botany which might otherwise be missing " : from 18S2 to 1596 he was Lecturer on Botany to the Society of Apothecaries at their garden in Chelsea. In 1597 he reeeived the Victoria medal of the Royal Horticultural Society, of whose Scientific Committee he was an original and the oldest surviving
momber. and in 5 S! 9 tho end medal of the Limean Society. Ste lueatur a frollow of the Limmen sinety, on whase comal he fre-
 hat was dected a Mombery of the Royal heish Academy, and in 1919 the l'niversity of laeds confermen on him the dereree of Doctor of sobence. He was also an honomar member of varoms other hodies, inchutang the Mancherter Literary and [hibsomheal society of Mandhenter, the Estinhmerh Botanical society, the 'Tynesile Natumalists' Ficld C'lul, the Horticultural Societies of Boston and Massachmsetts, the Belgian Sociéte de Botanique, and the Imperial Acalemy Nature

Althourh Daker"s physical activity was restricted with advancingr years, his intellectual interests remained mompaired to the last, and his death, when it came, was the natmal segnemee of whe ace. He was huried on Aupust loth near his former collearme, Janiel Oliver, in the Friends' Burial-gronnd at Isleworth, when the stafts of Kiew and the Natural History Musemm, with Mr. N. N. Willians, the prosent writer, and personal friends attended to do homomr tu his memors.
'Thee fritmats of laker have been publisherd in this. Jommal: the
 Layal Academy Exhilition of that sear, repmanting him at work "pont forms in at puse which all who knew baker will recornise as chamateristie: he is shown smilaly mempiod in the portat with
 the same rear: the fromtiopiene to our volume for lathl a very

 pro. lincr vlame.

 man! diftrment surintion cultivated in Britain. Thess fungi do mot b-milly form ferte reproblutive bulies in silu: they spornlate,

 1ut in He tombisel. The lather are mow recarden as new spectes,

* The wrin rif gratly indehtiod th hin wife for earrying on this work, therely

Ascomicetes.

Pleospora pomorum nov. sp.

Hyphis varie ramosis, subrepentibus, septatis, fuligineis; peritheciis sparsis r. subagyregatis in maculas brunneas in fructu subimmersis, erumpentibus, prriformibus, rectis v. curvatis, atris, as jeris, circa 1 mm . long., ostiolo circa $94 \mu \mathrm{~d}$. ; ascis cylindraceis, rectis, brevistipitatis, octosporis, $160-220 \mu$ long, circa 23μ lat.; sporidiis ovato-oblongis, subelavatis, medio constrictis, inordinate distichis, muriformi-septatis, 7 -septatis, longitudinaliter 1-2 rarius 3 seriato-septatis, initio aureis deni fuscis, $31-40 \mu$ long., $10 \cdot 3-15 \cdot 5 \mu$ lat. (aureis), $25-34.5 \mu$ long., $13-14 \mu$ lat. (fuscis). Conidiis stemphyliformibus in ramulis acrogenis stipitatis circa 150μ long., $2 \cdot 3-3.5 \mu$ lat., ex apice ramulorum inflato colorato, sphero-quadrilateralibus v . irregularibus, tuberculatis, septis plerumque 3 transv. et 1 longit. divisis, $23-38: 5 \mu$ long., $185 \cdot 5-$ 23μ lat. fuligineis.

Varieties from which Pleospora pomorum has been obtained:Allington Pippin, Ben's Red, Bismarck, Bramley Seedling, Byford Wonder, Calville Boisbunel, Cardinal, Charles Loss, Cox's Orange Pippin, Domino, Duke of Devonshire, King of Tomkins Co., Loddington, Rival, Royal Jubilee, Tower of Glamis, Wealthy, Winter Quarrenden.
N.B.-Only infertile perithecia have been found in apple "spots."

Hyphomicetes.

Phomitales (Spheropsidacex).

The non-stromatoid hyalosporous amerosporous Phomatales hitherto described by systematists comprise genera with simple pycnidia. The prenidium of such a fungus-for example, that of a Phoma or Phyllosticta-consists of a spheroidal body from which the spores issue by way of a circular orifice, or in some species the body is terminated antically by a conoidal elevation, which, for example, in Phoma lingam (\dot{P}. olerecea Sacc.) is $50 \mu-140 \mu$ long, and measures $200 \mu-3.50 \mu$ in diameter at the base. The pyenidia of the species isolated from apple, however, although unilocular as in Phoma, differ from the strictly phomoid type in developing one or more tubular neck-like outgrowths, which are often bent or curved and even branched.

Accordingly a genus has been established possessing these unusual characteristics, and the name Polyopeus * has been given to it. The genus comprises a series of forms ranging from species with pyenidia oucurring singly, and more rarely aggregated (P. purpureus and P. pomi), to others in which the prenidia develop as a ruie in closely associated groups presenting a stromatoid appearance as well as singly (P. aureus and P. iecurvatus).

Polyopeus nov. gen.

Pycnidia immersa v. subimmersa, solitaria, aggregata v. congesta, unilocularia, hyalina v. sub-carbonacea, subglobosa v. irreqularia, unirostrata vel multirostrata, membranacea; rostra tubuliformia; sporulæ continue plerumque ellipsoide:e, hyalinæ vel rarius coloratæ.

[^10]
Polyopeus purpureus mov. sp.

Hyphis roneis, purpmeis r. hyalinis; prendion subghobosis, atris,
 boner. $1(x)=20 \mu$ lat.; $1-6$ rostratis; rostris $15-120 \mu$ lomir., and basum et an apicem 2b-60 μ lat., versus medimm marius 110μ lat. ; spmis hyalinis, ellipuiteis, $\overline{-}-8 \cdot \bar{j} \mu$ long., $2-3 \cdot 5 \mu$ lat., in cirros varios rasens $\begin{aligned} \text { a halinos exsilientihns. }\end{aligned}$

Viar erous: hyhis rosels.
Var. incolomblus: hyphis non roseis : pyenidios atris.
Var. latirostratus: hyphis mon roseis; prenidies atris; rostris latis.
Viar. Nigriontratus: hyphis non roseis; pyendias hyalinis sed nigrimontatios; rostris latis.
Varieties from which Polyopeus purpureus has heen obtained:Bismarek。Byford Womder, Camlinal, Charles Ross, Christie Mansom,
 Morniner, Lames P Prince Aibert, Loddinerton, Newton Wonder, Pott's Somlling. Royal Inhilece, september Beanty, Stirling (astle, Winter Hawthmmen, Winter Quaremen, Wolf River. Fertile pyendia were fomm in Fialy River and Stirling Casthe
 phase in ('mbill's medimm (('. 11. Crabill in Amer. Jumr. But. ii. $1!155)$.

Polyopeus pomi nov. sp.

Hyphis allis v. fusescentibus; pyenidiis sulyololosis v. irregn-
 |-maltirontatis; rostris rectis v. curvatis, smplicilms v. furatis, vorsus :211 μ long., ad hasmm $j(1) \mu$ lat., ad apicem fo-(60μ hat., veras metinm, so μ lat.: spmis. hyalinis, ellipsoidets, $\delta-9 \mu$ long.. 2- 3μ lat., in cirros hyalinos cexilientibus.

Var. veros: pyenillis atris intus hyalinis.
Var. compidus: pendidio hyalinis sed nigrimostatis intus maseis.

Polyopeus recurvatus nov. sp.

11yphis allis v. olivascentibus; peniliis aggregatis v. congestis,

 (mmltirustmatis); rostris pacis, rectis, curvatis vel reflexis. 10 I20 12
 - llapmideis, $1-\bar{\mu}$ long., 1 - 2μ lat., in cimos hyalinos exsilientilus.

Var. rorme: rustris wourvatis.
Vas. rurmentas rontric curvatis.
Indated in 19IS from the variety Hoary Moming. sulsegnently uhtaned from Lance's I'rince Allert.

Polyopens aureus now, -p.

Hyphis ocheroventibus; pyonilios aggregatis v. comerestis rarius

circa $37 \mu \mathrm{~d}$. ; sporis aureis, fuscescentibus, oblongatis v . ovoideis, $5-6 \cdot 8 \mu$ long., $2 \cdot 4-3 \mu$ lat. in cirros aureos v. fuligineis exsilientibus.

Isolated in October 1915 from Cox's Orange Pippin. Reisolated from the same variety in Janmary 1918, and later from Margil (Jan. 31st), American Mother (Jan. 31st), and Alfriston (Feb, 2.5th).

Sriopsis of the Species and Varieties of Polyopeus.

This synopsis has been devised from observations on growth and pyenidial development in Crabill's medimn, with wheat stareh substituted for maize starch. A spore inoculant was used and the cultures were incubated at $20^{\circ} \mathrm{C}$: $:$

Pyenidia usually oceuring singly.
Pyenidia paucirostrate (usually 1-6).
Vermilion colour absent, mycelium rose to purple or not coloured
P. purpurens.

Pyenidia angustirostrate.
Aerial mycelimm coloured ; pyenidia usually niyrirostrate, numerical increase rapid; spore masses pink.

Var. revus.
Aerial mycelium scanty and not coloured ; pyenidia dark, numerical increase rapid; spore masses almost hyaline

Var. incoloratus.
Pyenidia latirostrate.
Aerial mycelium scanty and not coloured ; pyenidia dark, numerical increase rapid; spore masses almost hyaline

Var. lativostratus.
Aerial mycelium white; prenidia usually nigrirostrate, numerical increase rapid; spore masses pale pink

Var. nigirirostratus.
Pyenidia multirostrate.
Vermilion colour develops late, mycelium not coloured purple
P. pomi.

Aerial mecelium scanty ; pyenidia dark, numerical increase rapid; spore masses almost hyaline

Var. verus.
Aerial myceliun present; pyenidia usually nigrirostrate, numerical increase slow; spore masses rose

Var. torpiclus.
Pyenidia usually in stromatoid aggregations.
Spores relatively small, "necks" bent or
recurved
P. recurvatus.
"Necks" recurved.................................... Var. verus.
"Necks" bent Var. curratus.
Spores coloured
P. aureus.

Fuckelia botryoidea nov. sp.
Stromatibus rarius solitariis v. botryose cæspitoso-aggregatis r. pulvinato-congestis, glabris, hyalinis, roseis v. nigrescentibus, solidis,
intus in locellos pancos v ．mumerosissimos partitis，multirostratis v ． multiontiolatis ；sporis hyalinis，ellipsoileis，biguttulatis $6-7 \cdot 2 \mu$ long．， －－μ lat．

Isolated in October 1915 from Cox＇s Orange Pippin and later from the Maryil（Nor．15，1917）and Frogmore Prolitic（1）ec．以） 1：317）varrietics．

The pheoxporons Spheropsidacear indule two species．One of thene， an umdualted Conioflyyrium，which exhihit，cultural dimorphism＊， is ifemtileet as a sariety of c＇oniothyrinn cydonice．The other，whith differs from a typical Coniothyrium in possessing lobed perenidia，is named C＇oniothyrium convolutum．

Coniothyrium cydoniæ Brun．var．mali，nov．var．

Hyphis in zmas brumeas dispositis v ．allois；prenidiis sparsis， cirea 2u0 $\mu \mathrm{d}$ ．；sporis ghobesis v ．oblongo－globosis，olivaceis， $\bar{j}-6 \mu$ hous．．1 $\bar{j} \mu$ lat．

1solatel from Cox＇s Orange Pippin Jan．31st， 1918.
Coniothyrium convolutum nor．sp．
Hyphis fuligeserntihus；prenidiis solitariis，atris，sulghowsis，ad basim frequenter lobatis \because ．irregularibus，sabimmersis，ostiolatis，

 ensilicutil．us．
lowlated from the variety Afriston on Oetober 30th， 1917.

Melincomales．

Alternaria pomicola nov．Ap．

Hyphis allis，mistementilns．septatis；comistis in comiliophoris
 diopositis），et interthon in comecptanolis immersis olivaten－fulicime is
 （f）－tio μ lons．， $10-14 \mu$ lat．．ad sopta vis constrictis，b－9 transwers．， 1 lompit．paralitis．

Sulatal from Cox＇s Orance Pippin（Hailsham，1915）．

Micema stemba．

Sclerotium stellatum nov．sp．

Tlyphis albis：tuberenlin superficialibus v．immersis，solitariis v ．

 sur wheh it jrisent－when grom in putate agar phate coltur．．．

The anther is indehtal to the lwimisal anthoritios of the British Hhemtom of Natural Hivory for hotp，in proparing the techmeal

[^11]
The british marsh orchids in relation to MENDELIAN PRINCIPLES*.

Br Ret. T. Stephensox, D.D., and T. A. Stephensor, M.Sc.

The briff discussion here presented is by way of introduction to a forthoming paper on the groups of Orchis latifolia L. The present tendency is to deny that the species occurs in Britain at all, whilst at the same time conceding that probably it does occur on the Continent. Our orn impression is that a very similar set of forms exists in both cases, only much more complex in the greater area. Pending critical experiments, it will do no harm to explore some of the possible cunditions of the problem. As a good deal of work is being done at the present time in this group, we may at once refer to some of the most recent papers. In the Reports of the Winchester College Natural History Society for 1915-1917, and in preceding issues, there are some excellent recorls and discussions, together with several photographs of interesting types: the forms dealt with all grow near Winchester, and many exceedingly interesting hybrids are described. Independently of Dr. Druce, a type of unspotted Marsh Orehis was separated as a second form of O. incernata, which now hat the rank of a species as O. pretermissa (Druce). The Butanical Exchange Club Reports for some years past have devoted much attention to the group: the 1917 lieport contains a review of the Mamsh Orchids, by Dr. Druce, who also summarizes the Winchester Reports. In these Reports are full discussions of the species founded by Dr. Druce-namely O. pretermissa, O. Fuchsiit. and O. Ơ hellyi, as well as some new varieties. In the Orchid Reriew for July 1915 (xxil. 162) Mr. Rolfe has written upon the whole group, and in Sept.-Dec. 1919 a list of natural hybrids is given. In this Jommal for 1919 (137-142), Col. Godfery writes on "The Problem of the British Marsh Orehids "; his knowledge of Continental species makes his obstrrations of much value. Researeh in this group owes very mueh to Dr. Druce, who has probably examined Marsh Orchids in situ in almost every county of the British lsles: the present writers camot claim such wide experience, and are glad to acknowledge a great debt to his published work and to assistance privately given.

Col. Godfery presents two general hypotheses of the relations of the Marsh Orchids: (1) that there are only two main species, namely O. incarnata and O. protermissa, the rest being hybrids of these species with forms of O. maculata; (2) that there are three main species, namely the two just mentioned and ring-spotted O. latifolia. In this case, reckoning O. Fuclisii as distinct from O. ricetorum, nine hybrid varieties are possible, not reckoning O. Fuchsii \times O. erricetorim ($=0$. transiens Druce). WC decidedly prefer the second alternative, only we by no means think that O. latifolia necessarily

[^12]haringed spots．It cortainly often has them，especially in luxuriant －romens．hat is just as often withont them：we have limud plants of mate than one ty whe when differ in morticular of importance ＂xeept that some had sold spots and others rimes．We should anrees， ：a a atinst Dr．Wrace that the presenee of rings is no sure test of the forsane of a crass ：in many cases the rines planly indieate a fulness amberan excess of pigment，not its dilation－fur instance，ringed spots atre sometimes formal in pure O．ericetomam．We have seen phast of this species on Tregaroug Bog with very stromgly marked ring on the leaves；on the other hand，it is guite common to see bery fant rings or blotehes or spots，and here probably a cross is iowolvel．

In cases of mombhted natmal hyhrids there is much variation in the matter of spots，thongry we have not as much evidenee on the point as we should like．Hybrids of O．ericetornm with Gymmedenia ronoppore late heen seen by us（ 1 ）with unspotted leaves，（b）with slight and few spots，（c）with mamerous small spots，and（d）with botehes hat but rings．Hybrids between O ．mondala and species with monsotted leaves may therefore have mepotted leaves；but in fais case ome womld have to be sure that the parent maculata itself was withont spots．Until a pent like this has been much mone fully inwotigated，we eamme saly whether spots are necessabily a dommant ＂hameter：full notes about the ocemorence of spots in plants of U．Keplnmeni aml（）．Scompstomensis would le of consiklerable in－ twent in this commection．Mr．St Quintin repmerts in a letter that the lythrias ol O．folios＂with O．Furlsii at seampeton Hall hame in shan cats spots．in whers hotehes；sometimes well－marked rings and sommetme very faint rines．
 When mentateal fom man！districts，be of ereat signifieanere．It womlal

 to orcoms．The fart is that O．merelafa，in some form，is so ubiguitoms that it is ditlioult to lime ams place where arehids grow from which it iv alisent．
＇The genemal primeipie an which we aro working in regatel to 1ho loaf－chntantor is that（）．imerrmate amb O．prortormisen（athl

 leater，thongh in each ase some inclisiduals are without them． Mr．1．11．Welister，who has atmlied cavefally the variation of
 I have noter that the poprotion ol these（masmoted plants）th that of the typimal platit is as there to severs．＂Ho can fimil mos callse for the variation e ither in soil．altitude or situation．

In re gerrl th the semetic relations of the forms，we are in the

 onler thent light on the smond ghention of 6 ．lelifolin．we nered
experimental crosses of various kinds, and the raising of the progeny of these crosses, if fertile, through at least three generations. The difficulty here is both the uncertainty of germination at the outset and the slow growth to the flowering stage. This has been set down as seven years; but that period would probably be much shorter under favourable conditions. In any case it would seem that the experimental work could best be carried on at some plant-breeding institution, where continuous work through many years might be assured. It would not be enough, by a cross, to get some plant very near to O. latifolia. It would be necessary to find out whether this form were fertile; if it were, there is no reason why it might not establish itself in numbers and perpetuate itself as a separate species.

In the absence of guiding experiments, we are bound to discuss the origin and connections of these types with some ideas in our minds as to the manner in which one form has arisen out of another. Presumably we all believe either in evolution (in the strict sense) or in epigenesis, and for the purposes of this study they mean the same thing. We are bound to have some theory of the origin of types so fully segregated as suy O. ustulata and O. morio, and such types as the Marsh and Spotted Orehids, in a state of "polymorphic mixture." For this we are obliged to fall back upon Mendelian study and to seek what assistance we can get from the laws of mutation and segregration so far as they have been elucidated. Perhaps not much help is here to be expected; but we may at least be able to determine what is possible, if not what is probable or necessary.

In these matters the opinions of botinists seem to be very much in chaos. One will deny that mutation is a vera causa of new species, and another that crossing may so result; and between the two we are left with no theory at all. One will say that mutations only affect single characters and species are built up on numerous characters; or that if you get hybridization at all freelr, the result is a jumble of polymorphic forms, out of whieh no species can be distinguished, and in the midst of which nothing is stable. This would seem to lead us straight back to the old position that if two forms crossed they must be reckoned to belong to the same species. Here we might do well to quote a sentence or two from Bateson's Presidential Address to the British Association at Melbourne in 191 :--" Who conld have foreseen that the Appie and the Pear-so like each other that their botanical differences are evasive-could not be crossed together, though species of Antirrhinum so totally unlike as mujus and molle can be hybridized without a sign of impaired fertility? "--and then, "The only definable unit in classification is the homozygous form which breeds true" (p.13). We know as yet very little, if anything, about the conditions of compatibility where crossing occurs : in the meantime it seems to us most important to keep in mind the possibility that in cases of polymophic mixture we may have true-breeding races which also freely cross with other species. The problem is to distinguish the pure from the heterozrgous forms, where all are growing in close association.

In our view, buth mutation and erossing ate true wases of mew
 imbleate the trend of expert opinion. Mr. Rolfe (Orehid Previene, x xiii. pr. 2e? (), in an article on "The Meehanism of Heredity," says : * I complete blembing of character" - i. c. in the case of a pertectly sumerefal erossing - "- would result in a batela of miform secombary hatbrils, and Membel himself appreceiated the fact when he pointed ont that hybids in which the diverse elements were permanent! acommodated together repondued themselves true from semd, and had all the attributes of species." Here it may be moted that, if a eross afferting arveral chameters is fully fertile, mot only are there types in Whieh protect and stable hemting may owew (in the seeond hybrod E-Doration). lut types in whin it must and will ocenr. From that pint, smated contimud fertity and rimally favomble enviromment, thons. trpers can never be swamperl amblost.

Mr: Ihateson evidently rergorda mutation as the chief cause of new sp) eins, cronsing coming in as a fimther contributury eanse. In his Presilential Address alrealy puoted he sums up the ease for variation ats fundamentally due to an "aceidental" change, i. e. mutation, of Erminal tisme, and then silys," !istinet types mee arisen, no dombt a profu-ion of the forms called speries have been derived from tham hy smple crosking and subsequent reembination. New suecies maly he now in course of cration liy this means, but the limits of the process are obvionsty narmo."

This seems to nis the trme relation of the two processes. The first deviation from the mom arises, from causes as yet hardly even Envond, in some indivilual, as in the ease of the Shirles puipy or the Vouturia plam. If mow self-furtilization is possihle, the strian my -mvive of be artif inlly preservel; but if it is cons-fertilized, it is anly in the secomil hyrid enomem that it may reappons in its. pure form, and conteme as a species. Such a history may umberlie "ur acyuisition of a "thathable wheat," of which Mr. Batesom salys,

A. to whentrer a similar or even iblentieal mutation minht arise in Wratal imdividuals simmitanmoly, in the same or in lifferent places,
 of thing one might expert. vering that no form ean vary just anyhow: It has alresty, by hime what it is, heen ent off from a vast number of monles of ehance. The gronp of urganisms to which it lefonge las acepuixd a certain comstitution, which may detemane that variations must he in some delinite sencemal direntions. The Gume consideration will make it reasomble to surgest. Without at all denyine the initial "Eenemal" variability of all orqanisms, that mulatoms in any given -potes are likely for follow in a serial order
 From an iribimal parent sterk sevemal such sories suight arise, following a rumzhly prallel comrs.

Vimen the contention that mutations affect only single characters,
 shon!? L. wharem that since the change is first of all in the ferminal
constitution, it is inevitable that it should affect more than one external character. This fact has been disgnised, as Prof. Pumett has privately suggested, by the fact that, in the beginning of the genetic studies, some one conspicuous character was isolated for the purposes of report and discussion. A more exact study would show many allied external changes. But eren if only a very few external characters are different, and the form breeds true, we get what, if classitication has any real value, is a distinct species.

Where forms freely cross, as in the case of the Marsh and Spotted Orchids, it may be argued that alongside the pure parents there will arise a confused multitude of hybrids, with so many cross-variations that no attempt to classify them is possible, and no true species will emerge. We do not believe that the facts, as we interpret them, support this view. In any large assembly of these plants we may note, first, the orcurrence of individuals, either solitary or in very sparse numbers, which are certainly hybrids, but show no sign of originatirg new strains, and, secondly; of hybrids in fairly large numbers and usually of fairly uniform type, which may or may not be fertile, and, in fact, established species. It may be said with some confidence of most of these groups that they have been known and observed in many localities ever since botany as a science has been in existence, and probably they have changed but little either in type or in comparative numbers. It also seems generally observed that where there are hybrids present in good numbers, nevertheless one or both parents are present in far greater numbers. That is, the population is fairly stable, and the freest crossing never seems to result in the swamping of the parent forms. That hybridization does not necessarily involve a chaotic confusion of characters is made quite plain in a paper by Hardy in Science, July, 1908, to which Prof. Punnett has kindly called our attention, where it is shown that, in a mised population, "there is not the slightest fommdation for the idea that a dominant character should show a tendency to spread ore r. a whole population, or that a recessive should tend to die out." A stable condition of balance is soon reached, and once reached is not seriously disturbed, apart from special external conditions. See also Mimicry in Butterflies, by R. C. Punnett, 1915, pp. 154-156. Our reading of the evidence would be that we have a large number of assemblages of Marsh Orchids in which some may be non-fertile hybrids, resembling each other because their parents resemble each other. Others may be groups of plants which are pure strains derived from second generation hylrids. Others, again, may be groups which have originated in a mutation. In this last case, unless on the rare condition of more than one identical mutation at the same time and place, and a crossing of these, the new strain would emerge from the second hybrid generation of a cross between the mutation and the original or normal form. Thus we may have several pure strains growing tugether in various habitats and freely hybridizing. This will result in a great confusion of individuals, capable nevertheless of being reduced to some sort of order by careful study and comparison of assemblages of plants growing in many different localitics.

Is his article on A Sementernth－century Potmmist Friondshif！ （．lourn．But．191s，pr．19：7）Mr：Bouker has pmblished some interesting detank relating partly to the trees found growing in the dambeth diarlen when it came into the pussession of Elias Ashmole in 166% on the death of Tohn Tradeseant the younger：partly to plants received
 and motes are attributed to John Tradescant the ekder．

Ir．Bouger follows the usual practice of matumlists who refer （1）the Truleseants，in puoting the Musaeum Tradescantianum printed in Lombon by dohn（irismond and sold by Nathanicl Brooke at the Angel in Combill in 1 （ioni，nincteen years after the leath of the chler Pradescant．I have therefure come to the conclusion that the cony of the elder Tradescant＇s uwn catalogue which I have usually consulted is a very rare if not mique pssesession．It was bequeatheil hy John（inodyer to Magdalen College and is duly mentioned in the printed Catalogne of the libuary（1s62）．I know of no other copy．

The title is ：
＂pLANTARV゙M
IN HORTO
Iomannem Themb：－
sconti miscentinm
C＇atalogus
SONIV゙A SOH，MMOHO
Solis vulyatu rathi－
bens．Anmu 16：3！＂

At the heat of the first phen（sig．A 2 ），the title is repeated
 Then follows a list of some 7 ond specios aml varieties of phants diatingnished by their Latton names in alphatuetion order．A Cata－ hoge of fromes fills the last live pares．Altuge her the lists are much shomer thon thow in the leat calition of the Catalogne，and a come phrian of the two wonld how what glants mistht have heon introduced in the．intronening priml．

 apparontly all the other planta montionert hy Mr．Bongere．The
 a fair indieaton of Tradescants illitemes，some lutter sholar must hase latel a hame in the con－mmetion of the Catalogene and in the realling of the proofs．I hope to reprint the complete list shortly．
R. 'T. Guxthen.

MYCOLOGICAL NOTES．V．
 By W．B．Grore，M．A．
 （Continued from Journ．Bot．1919，210．）

Rússula claroflayi Grove．
This speeies was first deseribed in the Midland Maturalist，185S， p． 265 ，from specimens found near the bog at the top of Windley Pool，Sutton Park，in that year．A figure was sent to Cooke and appeared in his Illustrations of British Fungi as plate 1196；Cooke added a sketch from a fungus found at Queen＇s Cottage，Kew， which does not seem to represent the same species．I have since fund exactly the true form，keeping its characters unchanged，in three other places ：（1）the boggy ground by Bracebridge Pool，Sutton Park；（2）the similar ground at Coleshill Bog，both in Warwickshire ； and（3）a bog at Burnham Beeches，last year，i．e．four times in thirty－one years．The fact now becomes evident that this fungus grew，in each instance，in a place of preeisely similar eharacter－namely， on grassy ground among seattered trees on the edge of a Sphagmum bog．It is evidently very uncommon，and does not seem to be a variety of any other described species．It has a pileus approaching that of R．fingibilis Britz．，pl．1048，but of a distinct ehrome－yellow， while the stem is like that of R ．ochroleuca Pers．，pl．1049，but the edge of the pilens never turns up as in that species．Massee，in his Fungus Flor＂，iii．65，mistakenly added to the description the word＂Acrid？＂A revised description is appended：－

Russula claroflaca mihi．Pileus $5-10 \mathrm{~cm}$ ．across，firm，convex， then depressed，margin even or faintly striate，turned down even when old，deep chrome－yellow，paler on the margin，stained here and there （where abraded）with a rufous tinge；Hesh yellow beneath the cutiele． Stipe $5-6 \times 2 \frac{1}{2} \mathrm{~cm}$ ．，white，spongy within，somewhat granular，ocea－ sionally stained with pale ehrome－yellow patches when young，rugose exactly as in R ．ochroleuca and ultimately becoming covered with dark－cinereous streaks as in that species．Gills rather thick，straight， not forked，but often joined in pairs near the stem，obtuse and broad in front，narrowed behind，adnexed，altogether tinged with pale yellow，then becoming pale subochraceous；evstidia elliptic－lanceo late，not much projecting．Spores globose，echinulate， $8-9 \mu$ diam．

On grassy ground among trees on the margin of Sphagnum bogs． Flesh of pileus firm，but cheesy；smell faint，but not unpleasant； taste becoming unpleasant，but not acrid，with age ；colour of pileus rieh，pure，and bright．

Boletles saygulaels With．

In his Botanical Arrangement of British Plants，ed．2，iii．1．4， Withering deseribed what he called the crimson Boletus（ B ．san－ guineus）from Edgbaston Park．No one else seems to have met with a fungus exactly agreeing with his deseription，but this summer I had the pleasure of finding in my own garden，which is less than a mile distant from Edgbaston Park，what is evidently the same plant． The description is as follows：－

Boletus sanguineus With．Pileus 6－7⿺𠃊⿳亠丷厂⿰㇒⿻土一𧘇 cm ．across，convex or Joursal of Botasy．－Vol．5S．［October，1920．］u゙
llattish, when wh concave, i. e. turnel up all romed the magrin, bloodred. dull, opatue, then dark rechlish-brown, nearly miform all over, hut - lightly baler ar with subpallid spots in the eentre, not cracked, not distinetly tomentose, lut grmmose with little shallow irregnlan jits when ohl, slightly viscid; thesh whitish, tuming slowly blue when ent, begimang near the pores. Pores yellow, $\frac{1}{2}-\frac{3}{4}$ em. long. shorter near the stem, but slighty decurrent, large and somewhat eompound when ohd, turning dark blue on greenish where tomehed. Stipe $33_{2}^{2}-5 \times 1_{4}^{\frac{1}{4}-1} \frac{1}{2}$ em., flabous (not filmillosely striate), even, vellow like the gills, chomed here and there with dilnte crimsom, somewhat thicker below; tleshy yellaw, tinged with red within. Spores fusuid, pale olivaccons, $12-13 \times 1-1 \frac{1}{2} \mu$.

Among grass in my garlen, July, 1920. A colomed sketeh will be dupusited in the collection of fignres at kew.
'This is a satistactory identification of a mare and duhous Midlamel fungus; there is more pleasure in such a recognition of what was intented hy one of the old pioncers than in finding a new species. Withering seems to have found it first in the button state, but he also describes the more advanced state which was absolutely identical with my specimens, so far as worls gro. But, sn long ago as lShti, I found amongst grass in l'aekington l'ark (ten miles away) a fomgus which semed to combine the ehameters of B. sanguincns with these of 73. subtomentosus. The pilens differed from that just described in being slightly eracked, feeting like kid-leather when dry, the stem was rihbed and tapered downwands, amb the tlesh of the pilens reddiah brtow the enticle. Also there have oceured at Barnt firech and Burkswell specimens referved to B. repsicolor liost. (the mame was confimer at $\mathbb{k}(\mathbf{w})$ which had the pilens of a beautiful pinkish-purphe (no trace of olive), uniform all over and fantly grame lated, not crackid, pores and stem much as in B . chrysenteron.

The similarity of all these sperimens prowes that they should be classed mulor one head, say, B. chrysenterom. The only reasomable solution of the diflioulty lies in a system of super-species and subsperies, the latter being enchrysenterom, samyminens, subtomentosns, and rersicolor. 'The constimental mithemee, which has set us against. the adnution of this commonsernse device for representing the facts, is now happidy declining in om milst.

Fertile hyphat forming short agergaterl tufts, villowish, then whitish, erect of divergmg, at lenget irwenlany limached abow,
 (omblia in shatt chains (up to five or six in cach chain), springeng from small dentides on the lyphar near the smamit of the upere cells. lomon-shaped, hyaline or laintly coloured, $15-18 \times!10 \mu$.

On a met wrion woml. ('alton lank, near Barnt Green, July, 1!2! 。
'This fungh- cxactly agrows with Saceavhe's deseription and figure, but it is mure internsting beramse it semms likely that it is the same as the minnt. Fungers whinh l'monermonals in his famous Midlard Forom (1-21. vil iii. 1. S20) matar the mame Aloniliar raspitos"

accurate drawing taken from the fresh plant by my niece Miss Cooper, of Hampstead." There has been considerable doubt about the identity of this fungus, which is described and figured as having ternate spikes of spores. Saccardo (following P'urton) considers it, in Syll. iv. 3.5, to be the species called M. racemosa by Persoon (Syn. p. 692) and Mucor ccespitosus by Bolton (pl. 132, f. 2), and he attributes to it "ex icone" globose spores.

Purton considers it also to be the "Aspergillus terrestris, cespitosus, ac ramosus, albus" of Micheli (pl. 91, f. 4), and at the same time his "Aspergillus albus, tenuissimus, graminis dactyloidis facie, seminibus rotundis" (pl. 91, f. 3). Bolton's figure is undoubtedly the same fungus as Micheli's fig. 4. Purton's figure, which is almost identical with that of Micheli (fig. 4), is very similar to that of Bolton and evidently contains suggestions of both.

All these latter show constant ternate spikes of spores. The Cofton Park Fungus bad many ternate, but also many with one or several spikes, also some with unbranched stems as in Micheli's fig. 3. With the low powers which these authors had to use the spores do look round, although with modern microscopes they are seen to be lemon-shaped. I would suggest that, as the fungus which they met with was no doubt common (it is referved to by many authors of those times, as by O. F. Muller in Flor. Fridr. p. 228), they have misled us by representing the teruate spikes as universally present, instead of being only occasional. The reason why they are often ternate is that there is usually a denticle on the summit of a branch with often two denticles at a slightly lower level. The figures of Bolton and Purton show that the draughtsmen were under the influence of Micheli's fig. 4.

Note.-In "Myeological Notes.-IV." in this Journal for 1919 there were two omissions. On p. 207, last line, a Phyllosticta is mentioned without a name; this should be P. bellunensis Mart. In the description of the many-septate spores of Spharulina intermixta, f. calde-evolula (p. 210), it was not mentioned that these were in no sense begimning active germination. The branches were still attached to the bush, and they and the perithecia were quite dry. Brefeld has figured exactly similar spores in the same species as occurring in his cultures when active germination was beginning.
(To be continued.)

SHORT NOTES.

Herbaricar Pests. The method of poisoning herbarium specimens by means of perchloride of mercury in spirit is often objected to, and comparatively few amateur botanists resort to it. For cleaning sheets that have become affected with pests, as well as for treating specimens before they are put away, I am in the habit of using a saturated solution of naphthalin in petrol. This is applied rapidly by means of a large camel-hair "mop" brush, the petrol quickly eraporating and learing the naphthalin as a crystalline deposit in the interstices of the plants. A large number of sheets can be dealt with in a short time by this method. The petrol leaves no stain, and has no injurious effect. Of course, the process must be carried out in
atulight and the highly inllammable mature of petmo vapour home in mime. When the getrol hats evapmater, which takes only.a liew mimber, the theets can he grite sately replaced in the horbanime. 'The sulntion is also nsed for wommeaten wood. being injected into the wom-holes hy means of at syringe with a the mozale. Where tle -nmell of maphthalin is ubjected to prohably eamphor could he used in (tue same mamer.- H. Dows as.

 *hierie momulifolia" of Ray's Nynopsis (en. 1, "Ll(0) with this plant
 It.r.arimu, vol. 91. fol. |7." 'The identifeation, which had heron imbiated by Newbond in the Departmental cone of the $-1 /$ magestum (1 . 20 2) is donbtless correct ; hat the lahel attached to the spectmen dees bent hear the Rayan mame- the inseription roms: "Alsine minne folliis rotmolis C'. S. pin. Alsines minoris alia species 'l'lalii obimi
 ynoting Banhin's as a dombtful symonym. Whether the specimen in How, sloane actually eamo from the Hertfordshire lowality is I lhink dumbtlul: it is mot localized, and the "Herbarimm Vivom" in whinh it apxam is a creneal collection,--I ames Burtras.
 thi- phat has bere imonght to me, which slows that muder fasomable comblition it con Erow to dimmsons much in excess of those stated in t+Mt-lowhs. This Hellehorine towered straight from the gromad to :at heright of 8 ft. 11 in., and bove perfeet leaves, and no less than is lowers, all of which were expanded at the same time on a spile 17 influm longe It grew at the edge of a small opeoning in a Shmerat worl cluse to bristol, where the plant wh ordinary size has lnemme math mome phontiful in recent sears. Ins M. Ropera.

do not perceptibly shrink in size. I was told that one or two botanists barely succeeded in finding Hutchinsia at Clifton three or four seasons ago, when directed to one of its stations at a time when many thousands of the minute plants were visible; but these require careful searching for in the right habitat. The little wiry plants have a distinct protective colouring, and are usually most abundant and finest on the edges of certain limestone screes, partly protected by low thicket. It needs far less moisture or humus than the milliwhite, more leafy H. alpina, a lover of loose shingle in the Alps; and the bare or even moss-coverel rock is not the best place to look for petrear. Hudson recorled the plant from Uphill, Somerset, and Collins from Cheddar. Repeated seareh by modern botanists in those and rarious other likely spots has not yet disclosed this small Crueifer from any Somerset locality beyond the Avon lank; and yet the species is intermittently spread firom Yorkshire to Bristol and Pembroke. It is remarkably distributed on the continent, and recorded from N. Afriaa to westem Asia.-H. Ste.let Thompson.

REYIEW.

The Trees, Shrubs, and Plants of Tirgil. By Johy Sargeatit. Oxford: B. H. Blackwell, Svo. cl. pp. rii, I49.
Is speaking of this modest but pleasant and pleasantly turnectout little book, we feel an uncomfortable sense of likeness to a topsytury Balam. It is no pleasant task to pick holes in the work of a scholar who loves his plants. loves Virgil and the fair land of Italy, which he seems to know in all its length - he speaks familiarly of the hills of Bologna, of Taranto, of Sicily, and even of the Iomian const between Cotrone and Capo Naw, trodlen by few foreign and even fewer Italian feet, other than those who earn their daily breat on those desolate shores.

The subject is approached in the right spirit by pointing out that Virgil had a native power of observation, combined with a young mans passion for the beantiful language of the Greek pastoral poets--tendencies not always in accord ; the literary influence prerails, for " Virgil seems at times" [we should say, oftener than mot] "to think less of the oljects with which he deals than of his desire to reproduce in the graver, not to say heavier, language of Rome the beauties of the Sicilian poets" But this point of view is not always maintained in the attempt to identify nearly all the poet's phaitmanes with definite species, for the most part natives of Italy.

Although Virgil owned a small estate near Mantua, where he was born, we must not, except in certain cases, look for his plants in northern Italy. The Georgies were-at least in part-written at Naples, where he is said by Macrobius to have learned Greek as a young man; he had accompanied Horace on the famous journey to Brindisi before the Georgics were begun, and he saw with his own eves the more brilliant flora of Greece. Nevertheless, his flora, like his agriculture, when not a mere echo of Theocritus or other Greek poets, is certainly that of Central Italy. It is impossible to say how
mach of the limming of the deorgies is deseribed from Virgil's own knowledtere, amb how much is taken from those showd ohd waters Jo re rustien, C'ato and Vamo. ('ators home was at Thasenlum, on the mastern spurs of the Alhan hills, whalst Varro had an estate near the same plate and another at C'mate: hence the describe farming as practised in cental-mot in northern or sonthern-Italy, a limitation contimed by the internal evidence of theirwritings. Colmmella's luller treatise, oil which commentators chictly rely to interper the Georsics, is later than Virgil's own works.

But we camot confine the plants of Virgil, as distinct from his arriculture to the matise llom of laty alome. We must seareh for then among those known to his mokel, the sieilian 'Theorritus, and above all among those commonly grown in Roman gardens of the time. And here, if Roman taste were smilar to that of the modem Italians, we shall expect tor lind that seent-sweet. aromatie, or pungent - was the ehief attraction. The herh esteem in which seent Was held may explain the use of the name Viola for the sweet-seented stock as well as for the sweet violet, which to us seems so strange a coonfusion of malikes.

We fear that Mr. Sargeamens book falls between two stouls; it is mot thorough enongh for the botanist, who wathts bibliographies and roferences and evilence of the deteminations laid down; whilst for the non-botanical reader, to whom plant-names convey no connotation, the aceounts of the speries are not clear and striking enough to consury distanct ideas inded, to make Virgil's flom thoromghly intelligilhe to such readers mothing short of figures of some kind woukd sutlice.

Fxclusive reliance on Areangeli's hambonk for the distribution uf Italian species and for their modern mames has resulted in mot a few Froms as to the former, amel to one or two absurdities in the latter. a- whon Pino di scozill (Seoteln fir) is given as the Italian mame of Pimus silurstris. 'ilhe realer must he warned that the 'Thsean popular names given hy Areangeli amd for the most part taken from 'largioni-'lozatti's Dizionario Bolanico are mot only mot eurrent, lat would be mintelligibe in the greater part of ltal!: A praver fanlt is the lack of distinction hetwen determinations that are practirally cortain and others that are only probable, or sometimes rary dunitful. For instance, Burerar is unhesitatingly identitied with Cyplamen enronernm: this is the opinion of Bortoloni, who siys that iif the hills of Prescia that speries is known as hacrore. On the other haml, beccure and leecoro are used of other plants-e. \&., Sperculurin Sperulum. Vinus' Lonking-glass-in other districts. 'Thre worl is nhwonsls the Greck Busacapos, of which Dioseorides satys that it is
 that he did not know what the mame really meant. Porhaps the ancionts like the mokions nared it of sumdry quite mmrelated plants, and it is a mattro of pmm speoulation what Virusil intunded, if indead ho intombed anmblime more than to intronluce in his verse a smmel like that uf a mumical tiveek worl.

C'ytisus in manally, is in His bouk, taken to mean Maticago? niforera. Thas, however, is a mare slomh, in laty. thought hy Föni (in Fl. Aral. ifltalia) anly tor exist there an at mathatized alien,
which may account for Mr. Sargeannts not having been able to find any common Italian name for it. Eren beyond the Adriatie it is not abmudant. In Lemaire's edition of Pliny, vol. v. (1829), there is an excursus of ten pages by Destontaines on the question, deciding, though inconclusively, for Medicago ; but probably the safest opinion is that of Bertoloni-"de quo Cytiso loquatur (Virgilius) dictu difficile, nee concordant interpretes. Sive vero pertineat ad Cytisus mostros, sive ad Coronillas, Medicagines aut Lotos elare patet agi de planta in pascuis obvia "-which Medicago arborea is not.

Hyacinthus, whether in this Latin form or as the Greek vaiseros, has always been a puzzle. The original meaning seems to have been one or more kinds of Scillu; then the worship of Dionysus transferred the name to the plant of Theocritus, the petals of which bore the marks AI AI. We cannot abambon the old identification of this with the Larkspur, Delphinium Ajucis (accepted by Sir W. Thisselton Dyer in his contribution on " Flora" to the Cambrilge Campanion to Greek Studies) in favour of Mr. Sargeaunt's not very happy sugrestion of Glatiolus segetum. Virgil's use of Hyacinthus seems to be merely literary, not botanical.

Whilst in many cases there is no doubt about the genus to which Virgil's plants belong, we must protest against our author's labit of selecting a particular species without special evidence in its favour, when others of the same genus are equally wide-spread in Italy. Take for instance Caltha, Carduzs, and Carex. Why must Caltha be the garden marigold from Africa only, when the fields in south Italy are golden with wild marigolds, which in Sicily are of several species? Carduus must be taken to mean any common thistle such as an Italian peasant would call curdone, whether a true Carluus or not. The farmer's worst enemy is not, as in England, Circium arvense-C. lanceolatum, Gulactites tomentosa, Scolymus hispanicus, Cinnara horrila and several spiny Centaureas are among the most troublesome-nor should Carex be restricted to Carex acuta.

The oak is very inadequately dealt with. The statement that modern botanists refuse specific rank to the two forms of English oak represents an opinion that is quite out of date. The remark about Pliny's Robur on p. 109 is extremely misleading. Pliny's oaks are six in number"; "glaudem ferunt robur, quercus, esculus, cerrus, ilex, suber," to whieh he adds cagilops later on. He does not identify cerrus, the Turkey oak, with robur, as Mr. Sargeaunt says. One of the finest Italian oaks bears the name of Quercus Tirgitiana: it has edible acorns, and is known to woodmen as quercia castagnara.

Olea, too, is not very satisfactory. The olive fiowers in Junein Calabria and Sicily as early as the end of April, not in August; but the olive is too large a subject to enter on here. Under Taxus we might have been reminded how Casar tells us that Cativoleus, ling of the Eburones, poisoned limself with yew, "enjus magna in Gallia Germaniaque copia est." It will be noticed that when speaking of A conitum the author forgets that A. Lycoctomum, or its variety neapolitanum, is plentiful in the higher parts of the Apennines, especially towards the south. Perhaps it is just because this speeies as well as Anthore and the blue kinds are confined to the monntains that Virgil could speak as if there were no aconite in Italy. Then it
is hamelly fan for sive risciulo ats the ltalian equisatent of ('forsus:
 in the sonth; riserolo wonld not be gemerally moderstood, ame is maly (1) fre used in a special sense. Themgh it is trme that in many parts wh the comator ferulu is absent or mate eet it thickly covers many mikes of the Apulian platin. The ateonme of Halle horws, thours comeret, is so obscurely worded that the mom-butanist might suppose that Limatms had given this mame th the gemus Veratrum! As for Ahyrion, Temetere ffiveunt is just as phontifal as genllice on the whthern and sicilian coasts. Thymmm, as we are tolle, probably included buth Thymes rulymris and Thymus cotilatus to the exclusom of serpyllum. 'The thyme of 'latentum prased hy Horace as annal to that of llymettes is itcentieal with the Attic in secont amel H:anme. which deproded on the profision of Thymen capilatus ame Satumia conneffelin on the rocky hills, hat monhere is T. rnlymeis
 Howner In the cance of C'rocus Alaws monograph would have been a fretter entide thath Areanereli.

There remain a few real "howhers" that we cannot pass over. 'Ther Italian name fon the silver tir, Alhes pertinnta, is abre beteme but abre rosso, which is the sprace and dees mot exteme to the Apromines. Actulhus mollis is not "a serofnlarions plant," hmt
 Laternge implies that 'Therphastus was wrong in believine the

 from 'lamanto to Iont said as a dark pateh on the momatans. Finder Laurns we are tuld that "the true lamed is the hay-Lamon mobilisfrom which we get camphor aml cinnamom": those products womh In. luas expensise if the statement were trme. It is a ernel trap for the generat reader who may not know that the generat (amphora and

 suppased Persian (se. Malian) wrigin, lant I du not fime that it ocems

 the dominant pinne thare is the Corsiath (Darieio) mot the Alepy" (hulepremis). Which is an inhalitant of the coanto amblower hills

In apite of sush blumdere the many goscipe digressiom and yraint

 Prodalily a dotimite judgement on many of Virgil's plants will
 futany would be tho first step. If Mr. Sareeame would muler-
 do a service in madem plant nomenclature as well as to clasabal sthely.

THE BRITISH PALMATE ORCHIDS.

By Let. T. Stepieeson, D.D., and T. A. Stephenson, M.Sc'.

(Phate 506.)
The present contribution is offered as a summary of the result of several years' work on the Marsh and Spoted Urehids, and to explain the accompanying Plate. We hope to amplify it in the case of some of the forms in later issues.

The decision resulting from our work is that, although the forms ia question run into each other very much, they are not a hopeless tangle, and it is quite possible to recognize certain definite lamedmarlis or species among the mass of forms, and to detect many intermediate hylbrils. This does not controvert the fact that a series of intermediates between some of the species is found, but a little careful study reveals rery definite trpes.

According to our idea the British Palmate Orchids comprise the six following species:-O. incurnata L., O. purpurella Stephenson, O. ericetorum Linton, O. piatermissa Druce, O. latifolia L., O. Fuchsii Druce *.
O. incariata can always be elearly recognized from its swordlike, never-spotted leaves and its musually small flowers with rery stout spur; stittly erect sepals, and lip as a rule longer than wide, reflexed, not deeply lobed, and with a pattern ahmost always composed of definite lines inside a single more or less continuons enelosing boundary-line. The exact form of lip and leaf is varialle, hut the whole plint is umistakeable. The flower maty be white, pale yellow, pink and yellow, mahogany-red, deep crimson, rose-pink, light or dark purple. The habit is dwarf or tall, the leaves are broad or narrow.
O. premermissa has been a good deal criticized, but it is, in our opinion, a perfectly good species, and camot be confused with O. incarsata. The flower is always puple of crimson-puple of some shade, lilac, or white. The lip is typically broader, flatter. and larger than in O. incornuta, and in the type-forms has a less definite and stroug pattern, often of small dots, and a somewhat less stout spur. There is, however, a form common in the north more particularly, in which the flower-colour is red erimson-purple, the lip-pattern heavier, and the lip nay be somewhat diamond-shaped-this is a very distinct form, and there seems to be a somewhat similar variety distinguishable in O. incarmata, the v. pulchellu of Druce (see .1. B. 1920, p. 166). The leaves are never spotted in O. pretermissa, and are less sword-like than in O. incternata. This species is evidently considered by some botanists to be typical O. latifolia, but to that we will refer later.

* We use the names ericetorum and Fuchsii rather than ericetormm and maculate simply to aroid confusion, beeause different botanists will take the word " maculata" to mean quite different things. We prefer to use the name maculata as a general term of reference to both, an aggregate speeies-name. We will refer to this later in more detail.

Journaf, of Botiny.-Yol. i8. [November, 1920.] is
(). promporada is billy deseribed in this Jommal for duly lant (p. lif1). 'The plant is more or less dwarl', and, stre in exeeptional cos- which are few, the leasos are spotted either all over or only at the tipe (mometimes the tips of only the upger leaves) with little dots-never rines or hotehes. The dhwers and deep crimsom-porple with Vive stomt spur and more or less diamond-ahaped that lip with a pattern which is faily heary hat less mentar than that of O. incormuta. Theme are several considerations which ennvince us that this is a semmine speries and mot a hybrid:-
(a) In the first plate it appears to be watremely constant in each locality in which it ecours. In the soot lest known to us it grows vigoronsly and somingly in increasing mmbrers, and with less indivilual variation than in the case of any other speries in the gromp. Always the phants are short, the hases with their very small dots. the lipes diamomd-shaped, and the fhwers of rich deep erimson-pmople.
(h) None of these points shegest a hybrid migrin. In a hythid between ane form with and one withoit sotted leaves there is a gombleal of variation in every case known to us some phats have rimes on the leares, smme blotehes, somu larer and some small spots. 'The lip also is a combination, in a lyemial, of thase of the parents. 'The de:m-cot dismond of O. pucrperella is not derived from anys parible combination. Its demp billiant colome, arath, puints in the same dive tion. line if it were a hymid ane would expect dilation of
 Wrehis sertes. A lumtheremsideration is this, that whererer O. pure
 more di-tinct and ease tu itentify than those of other suecers. The

 her pealiand at all. The form of the lip its theo helorick is intermalate low wem that of 0 . purpmollo and the other parent, be it

 tion with O. Intifular. Our reasoms for resisting identitication with O. crumta were erimen in the paper on this sueces in the .Jnly issue thi- sear. In allitional point is mentioned ly Con. Gondfiry in
 nental Floms as wery heavily spottod, having spots on heth sibles of the leave.

 "hite or pil. lila, for dark pomples, the lip is lroad and thit with
 a hews lime mitera. Sipur alway stonter than in reicelomim, but variable-mat he very stant. Shephe erect. Dut often lens rigid than in O. incurnatratul foripuralla.
O. ERtcerorum is very variable, but camot be confused with any Marsh Orchis muless it be a pale specimen of O. latifolia. Leaves usually narrow and keeled, but may be broad, spotted or blotehed, or unspotted, only with rings as a rare exception. Stem solid *. Flowers nearly always with spreading or drooping sepals, slenderer spur than in any other form, and broad lip which is sharply 3 -lobed, but with the central lobe very much smaller in area than the lateral lobes and often shorter than they are. 'The flower may be white, lilae of various shades, pink, or light purple, and there are darker markings on the lip as a rule, which may form almost any conceivable pattern of either dots or lines.
O. Fuchsir has the leaves typically blotehed or ummarked and often flat, the lower leaves usually broad, and the lowest of all with a blunt rapidly-narowing end, a contrast to the more gradual tapering typical of O. ericetornm. Flowers with fairly slender spur, sepals spreading to fairly erect, lip sharply cut into three subequal lobes by deep clefts. At its best the lip has the middle lobe about equai in area to the side-lobes. The flower-colour is white or lilac or light purple with darker markings, which, although they frequently make a rather regular little pattern of lines in the middle of the lip, may extend orer its whole surface as they so often do in O. ericetorum. A very distinct race of O. Fuchsii with pure white flowers and unspotted leaves occurs in Ireland and seotland, which Druce has named O. O`hellyi.

With the above preface we may proceed to the description of our Plate, which will supplement the former paper on O. purpurella and illustrate any later ones on Marsh Orchids. It is not casy to describe these critical forms in words, and we hope the Plate will clear up our meaning. Leaf-schemes we had prepared, but cannot, unfortunately, print them.

Explanition of Plate.

The figures on this Plate are not all drawn to quite the same scale, so should not be compared with each other from that point of view. They are done, however, with great care as regards proportions, form, and markings of each flower. Allowance should be made for some loss of depth and brilliance in some of the colours due to reproduction.

Figs. $1-1$ and 24. O. incaryati. These show the narrow, more or less reflexed lip, small in proportion to the rest of the flower, and not deeply, though distinctly, trilobed; and also the characteristic pattern of lines inside a more or less continuous enclosing line in the typical forms, on the lip. Note the erect sepals and the very wide throat where lip and petals join. The colour-range is greater here than in any other species. Fig. 1 is from a Kidwelly specimen, with

[^13]lonth dull pinh and whow in the flower. Fig. 3 is from al Cardigans--hice form "ith priple colons: The purple in sone forms is dather thon this. Fier. 3 is the palle pellow fomm common at kislwelly.

 amb when ilwat comes bubler the var. dumesis of bruce. It is fon-ihly a chasing of this form with the pale gellow one which pro-
 ruse-pink form fonmed in vabous pats of Eagland.
 (kiluell! how the ?!picall form of this spereses with the lip lonth
 thater, and with a hoss distinet pattern, composed of dots and slight lines. 'The throat is not so wifle as that of O. incarmutu. Shpats
 -rper, with variations in the dreetion of magenta, red, and pink, but \# ver the empons reals :and yellows of many forms of O. incurnute. -

 thom is ustal in U. protermissor, but which is mot like that uf (). indormente. It should be whemed that this fomm vere decededly

 form from kidwelly, of whiol we fommd sevemal examples. The lip
 of 11 . prortromissit.

 tairly wide thant, atul the prophe colone. 'Tlue lip-pattern is fatly heary but imenalar, and gnite differs from that al either typial

 fig. ! sometime or in wthe (abe bremer more towards O. protere messin. 'Ther rich con mif of the Ahersinyth form is altogether tow
 sulplemented by the immenation, luebog an mear the reality as We combld mate it.

 Into - hather. 'The Ihate honi- catmple of foum of these. All
 - pla, atrl a where throat than that uf (). rricrformon. The typieal

 dark purph lin folarn on a phle erommi. Fig. 1 t is from a dark

clear in spite of the purple ground, and this fact holds good for most of the dark-flowered forms. Fig. 15 is from a Kidwelly plant. This shows a pale form with a slighter pattern, which is represented in many places ly sets of similar plants, and has almost the appearance of a hybrid. Our experience leads us to believe, howerer, that it is pure O. Intifolia. Fig. 16 (Isle of Wright) is a curious and uncommon form with large, stiff, way flowers with most peculiar heart-shaped lips. The pattern is regular, though not heary. This is the most easily distinguished form we know, but it is not typical of the species as a whole.

Figs. 1\% -19. O. ericetorus. These figures show the lax sepals and narrow throat, the large flat lip with the lateral lobes much larger in area than the central lobe, but cleanly marked off from it. The colonis are usually pale, and the pattern may vary to any conceivable extreme, though the plant can never be confused with any other species on that account, and the pattern is perhaps most often composed of small dots or lines, which often corer the whole lip. Figs. 17 and 18 are typical forms from Aberystwrth, fig. 19 being a curious and mather distinct form from Tregaron, which typically has pinkish-purple flowers and very narow leares, often unspotted, and a slightly narrower lip than usual.

Figs. 21 and 22. O. Fuchsin. Both figures are from Aberystwyth plants, and show the rery decply cleft lip with a middle lohe larger in area than that of ang of the other species. The pattern is frequently of the rather regular sort shown, but may vary a good deal, and is sometimes more like those of E. evicetormm. Colon's usualiy pale.

Figs. 11, 12, 20, ant 23. Hrbries.-Fig. 11 is O. purpurella (Aherystryth form) $\times O$. latifulia (heath form shown in fig. 13). This shows an almost perfect combination of the parent flowers, both size, shape, and colour of lip and width of throat being intermediate between those of the parents. The hear line-pattern is derived from O. Intifolia. The leaves are heavily blotehed.--Fig. 12 is 0 . purpurelle: (Aberrstryth form) \times O. ciricetorum. The intluence of O. ericetorum is well seen in the broad crenulate lip and narrower throat, that of O. purpurella is the purple colour and stiffer sepals. The leaves were spotted.-Fig. 20 is probably O. incarmaia $\times O$. Tatifoliu (Shrewsbury specimen). The reflexed lip and wite throat suggest O. incomata, the large flower and spotted leaves of the plant, O. latifolin or O. evicetorum. We prefer the former beause of the lack of cremulation of the lip, the incmata reftexion not being mueh overcome. The pattern is not verr typieal of either parent.-Fig. 23 is O. incarnatu $\times O$. latifotin from Kidwelly. The form of the lip is due to both parents, the small size of the flower, the rost-pink colour, and stiff blunt sepals being due to O. incurnata. Leaves spotted.
N.B. The hybrids in figs. 11 and 12 are found in considerable numbers at A berrstwyth, especially no. 11. Those in figs. 20 and 23 are isolated examples.

We should like to mention a few isolated points that do not fit in very well above. The Plate, of course, onlyoinclurles a selection of forms, and does not in any way clam to show even all the main forms
in an! wiven fuene it simply has as many as could be insertent. With remat to the hybrids, if anyome else has serol hyluths with the :ame parentage as those illustrated, hut with gute a different

 and difterent prophrtions of the pratents are formad in different eases. Alan the particular form of its species to which cach parent belonse alfert- the hybrid.

We have examined the charanter sometimes used in classifyines
 and hatre foum that wo reliancer ean he placed on it, as it varies withan the sume speries. Dumower, beares maty he llat abd delame or keded and thieker in texture in the same spee ees, aceordine th hathitat. If an O. prioforum with thick hat natmon and keched latwes he

 in -hate in at wend have the that delicate leasers, thase in a lied in the -1 have the leaves sherhtly thioker and mome inelined to be keeded. thoneh mot an matse in texture as those of () eroceformm and mot. afferted as to shapre.

 with no more somatic organiation thath that of the l'almelloid phase
 sybles is may peent form-andors of wer delinite chameter, shonht imply that certain far tom may heraribed to the symbinsis. Again,

 for whitions on the sheme. That is 10 sty , if there is one sym-

 the consid. ration of a few of the commonnot amb most familiar of Broti-h 1 . Whens. Wwing for the fasmable moist atmonphere of the

ization may be expressed in terms of : (1) dorsiventrality; of (2) unifacial trpe; (3) lubing or proliferation; (4) ramification, appearing more or less dichotomous; (5) continued growth at the end ; (6) a certain amount of intercalary extension, responsible for the broad area so readily attained; (7) marginal apothecia, otherwise of normal Discomycete category. The general organization is that of a mere blanket-type of hyphal weft, formed of felted septate hyphis, $10-12 \mu$ diam. Beyond the normal production of ascospores in apothecia on marginal lobes or ramuli, three or four undoubted form-factors may be isolated, without straining, as calling for comment or explanation as to the causes which may have produced them as part of an elaborate physiological mechanism.

1I. From such a trpe Physcia parietina, the common yellow crustaceous lichen of slate-roofs, with included Cystococcus, differs only in adding dorsiventral bifacial construction, as the peripheral pseudoparenchymatous weft is differentiated on the lower surface of the thallus as well, inhibiting the extensive rhizine-system of Peltigera, and suggesting a further xerophytic adaptation and control in terms of a far more substantial pseudoparenchymatons screen. Otherwise there is no special ramification beyond a mere peripheral lobing of the thallus-margins. That is to say, taking such types of dorsiventral and crustaceous lichen only, there seems much to be said for the new somata being much alike, since with different Fungi and different Alge, the form-factors present much in common.
III. But in the case of Csnea barbata one finds a thallus of quite a different trpe, presenting factors of (1) centric, or radial organization; (2) copions ramification; (3) any lateral may extend as a leader, without rule, or remain a short filamentous process; (4) the ramuli show apical growth and differentiation; (5) intercalary extension is restricted; (6) the internal differentiation of an axial strand of hyphe, mainly parallel in direction, of skeletal value, may be distinguished from (7) the loose weft of the cortex, with again a dense and continuous peripheral tract of pseudo-parenchyma; (8) broad apothecia with normal details terminating special ramuli as in Peltigera; the whole organization a well-marked branching 'fruticose ' type, attached by a definite hapteron of hyphal filaments, as a bushy type of growth which may attain a length of a foot or more in associated species, presenting so close a eopy of an autotrophic plant-form that one forgets to remember that it is merely a product of a dual 'synthesis.'
IV. Cladonia sylvatica, again, as a minor variant on the bushy growth of the Reindeer Moss (C. rangiferina, erect and as much as $1 \frac{1}{2} \mathrm{ft}$. high), presents a similar miniature 'arboreal' habit, as a fruticose ground-form, with main trunk and laterals; but (1) the main axis is hollow, and has no skeletal strand, also it may be perforated locally, as at the axils; the primary laterals are somewhat irregularly spaced, though more definitely in acropetal series ; ultimate ramuli acquire a more or less dichotomous habit, which may be very pronounced in minute end-ramifications on which the apothecia are borne. Lateral systems, again, may take on a distinct unilateral or drooping halit: the larger types are bushy masses $1-1 \frac{1}{2} \mathrm{ft}$. high.

 that any adis，in which evoll aseonmons hyphe may momily is still a purt of the erametophyte myedimes and，as in the east of a hong－ stalkul Prezizoroup，the rutial or centrie urganzation of a massive ancis the puint that repuires explamation．

Withon erning mo wher complex somatic forms of Lichor，suth

 1．crins themerar that the lichem－somai is extremely variable；the

 the lichemotornt to trace the meanime of every factor．Scientific
 rifermer and fietor to its phesologial origin amb finmem in the eronomy of the orgamism．Wholly grathitens bepotheses of more ablaptation to light－anplly，for example，in the donsiventral Pellige ren
 the eromme amone erass，aml both dry up equally on desioration to

 mopholos？of hiofor atotrophic vegetatom，is of comse the solu－
 lace cit．）：latt the sierniticame of the evolntion ol erom the faters al

 ＂．
 Whanher fillowed the proserman，similaty whally de noro of the

 af lub： 17． 1 in fut of whervations．Limally they shanlil bee the mast eritio

[^14]sortia both grow on the bark of trees, or those of Peltigera and Cladonia both among grass, and yet be so widely divergent in their new factors? The only factor that appears to be common to all is the differentiation of a close weft of pseudo-parenchyma as a sereen over the tract of dissociated photosynthetie algee ; and even this is not always done in the same way [cf. Ephebe and the fine thalloid shoots of Rocella fuciformis; wholly wanting also in many genera (C'rocyma) or more clearly simulating an aqueous epidermis].

One begins to donbt the symbiont partnership as having anything to do with the matter, thougl one may be put off with the idea that the range of variability in such a 'nascent,' and hence 'labile' organism (Reinke, 1895., p. 69) initiating new departures, may be excessive; just as Sachs (loc. cit.) put it all down to the chlorophyll. Perhaps the somatic organization is not so very new after all : even among Ascomycetes of holosaprophytic habit very striking growthfurms may still be retained; the case of Tylaria polymorpha with hilateral, ereeted, stromata, branched more or less irregularly or dichotomusly at the distal "end, and bearing indefinite 'eystocarpie' perithecia in its cortex, presents suspicionsly comparable form-factors. And one's doubts are confirmed when a little consideration shows that not one of these factors is anything new after all. They are, in fate, only a repetition of the commonest of commonplaee faetor: of the somatic organization of algae, as seen in modern seaweeds. in whieh centrie cable-stranded axes, hollow, or with skeletal axial strand-or, again, dorsiventral shoot-systems attached by rhizoidal processes, indefinite in ranifieation, or proliferating subdiehotomonsly, with differentiation of a dense 'cortical' layer, more or less protective against intrusion-are the prevailing methods of somatic elaboration. Again, these and no other, in similar filamentous wefted growthforms ('cable-strand types of aggregation'), are the working mechanism of Green (Siphonex), Red (Floridex), and Brown (Pheospores) algal phyla of the sea. For example, the building of massive madially symmetrical axes, with prefercntial apical growth, and capacity for throwing out laterals of similar organization, repeating the construction, is a mechanism involving numerous controlling form-factors, tath of which can be only established in marine organism as resfonse to changes in a certain enviroment by rigorous natural selection. So far as known, such factors of organization can be only evolved in the conditions of marine plyytobenthon, consequent on the attachment of encysted plankton-flagellates to a substratum within the range of light-penetration. It is to the sea that one must look for the analogne of any specialized lichen-thallus; and a glance over the pages of any set of illustrations of liehen-types at onee diseloses their essential morphological identity with forms of autotrophic marine oryanism, more partieularly in the mamer of Floridean types of somata, as the small, elustered, or enerusting growths of reef-pool formations. That is to say, since a seaweed can only arise in the sea, as the response of antotrophic life to special benthie conditions in sea-water, the presumption is that any plant presenting similar somatie charaeteristics must have arisen in the sea also.

The resemblance of such plants, hoth in general size and shoot-
com-troctmon, to depanperated sea-weeds is so striking that it emmot be blinked in the canco of the liner type of the Liehen-series. Thongh minnte aml microsaphe forms may show fower charatoristies, there are aloo many equally rednced relics of Fhoridne and Pherophyeeae in the wa whith retath little special somatice orsanization. It is to the times and most complex types that ane must lonk for the culninating expresions of respense th the enviromment which hat produced them. Whantence and extreme imporerishment preatil in tide-pool veretar-
 sarily" "primitive maty be lommel in the sea; while the very mone of life of a lichen implies the ahded precarionsuess of existenees, as anclining the organism to all ultamate fhases of somatic despadation. Adminable illustrations are given ly labine (1'rings. Jalarb, xavi.,

 -trikine pmints of smilarity in external morpholory for quite ordinary 15 pm of foride: ${ }^{2}$, wen inchuling ealeitiod forms ans lithothamions.

 bomoplasy to here the yrutions. 'Thore is, in lact, little idnotits of hiohtreal factors on physiohugieal meedmaism in the case of it lablen erowing on a rock exponel to air and a submerged alga of the

(1) The form and strmetare of the consomtion in relation to ('0), - metaliolis.m.

The protection of the gronilia (from desiceation-ecrtamly mot from - tarvation ur weath hy exhanst ionn.
(:3) The fumation al reapre-storing tiosuc.

 (10) yto - tion uf protaction from slesiceation in the seat: (3) stores

 In awisling the flrag of a moviner medimm. Laminate expansionis anl y-tems of ramitionton repmeant the manns of sumplying the former: tavare, enhesiun, and strongth of axes the latter. Narine a Le are also tilamentoms, gelatmons, massive, om calcareons; such

enviromment. There is no means of conceiving the origin of even a filament of mycelimm, except as originating in aqueous environment, and the sea is the original watery solution holding the food-supplies. Even a filamentous soma must have a long marine ancestry behind it. If Lichens present the form-factors, filamentous growth, not to mention reproductive phases and a life-cyele, still characteristic of sea-weeds, the presumption is that they inherit this somatic equipment directly from marine algre ; and such features of equipment are retained (though more or less open to deterioration) since they have proved useful, in the long run, or at any rate not injurious, under new subarial conditions. The adu't lichen-thallus is now a heterotrophic fungus-soma to which intrusive alge have been addel, and is not to be julged by early stages of 'synthetic' development, merely because it can no longer exist without its algal helots ; any more, apparently, than can many orehids without their attendant mycorhiza-and the 'consortium' is a picturesque myth.

Lichens thus present an interesting case of an algal race, deteriorating along the lines of a heterotrophit existence, yet arrested, as it were, on the somatic down-grade, by the adoption of intrusive algal units of lower degree to subserve photosynthesis (much in the mamer of the marine worm Convoluta). Thus arrested, they have been enabled to retain more definite expression of more deeply inherent factors of sea-weed habit and construction than any other race of F'ungi ; though closely paralleled by such types as Tylaria (Ascomyeete) and Clavaria (Basidionycete), which bave followed the full fungus-progression as holosaprophytic on decaying plant-residues.

There can be little doubt that such a view will enlarge one's conception, not only of the remarkable history of these often despised fungus-races, as compared on one hand with the surviving Floridere of the sea, and on the other with the great range of Ascomycetous phyla; butalso it must throw light on the general problems of the changes of liological environment, which may have been effective in such a striking response, as included within what has been termed the periol of the subatrial transmigration.

alabastra diversa.-Part XXXIIT*.

By Spencer Le M. Moore, B.Sc., F.L.S. (Continued from p. 226.)
3. Miscellinei Aericana (cont.).

Asclepiadacere.

Batesanthus intrusus, sp. nov. Planta glabra, coule volubili distanter folioso uti inflorescentia saltem in sicco fusco-purpureo; foliis amplis petiolatis ovato-cordatis breviter acuminatis apice acutis utrobique pallide nitidis papyaceis; paniculis axillaribus pedunculatis foliis circiter aequilongis laxe plurifloris; pedicellis minute bractertis quam Hores longioribus; calycis segmentis parvulis del-

[^15]

 irve-pective of the difterent lomal strexture, it can be told on sight ly

 bum \& that he rath reatl only one smilar (atse amomir Nfriean

It shath be matal that, when inial, the thowes aprase to low
 tume the contullas rumain expamed.

Anisopus Batesii, - Jow, I'lata voluhilis: ramulis wracilihus

 1.4.aryb hitite.

 4 min. What

 1 :i mun lons.

This whelle diffor from A. Wumai N. E. Pre in the more

Aristolochiacere.

Aristolochia ceropegioides, sp. nov. Planta volnbilis, glabra; cante alifuanto compresso distanter fulioso paucicostato; foliis petiolatis ovatis vel orato-oblongis acuminatis apice ipso obtusis basi seper obliyuis truncato-rotundatisque trinervibus membranaceis; foribus pro rata parvis pedicellatis in racemos breves pancilloros bracteatos minute puberulos ordinatis; bractcis linearibus oppositiforis; pedicellis ovario subæquilongis; periunthii in sieco nigri utriculo ambitu subeireulari quan tubus infundibularis plane breviore lobis 3 inter sese subsimilibus inferne triangularibus superne in caudam aliquanto tortam sat brevem excurrentibus; columna genitall breviter stipitata 6-loba; antherarum locnlis oblongis obtusissimis: stigmatibus antheras bene superantibus inter se similibus oblongis murginibus stigmatusis contluentibus ; orrario cylinitrico minute puberulo.

Yaunde, Bitye; Butes. 12:3.5.
Folia (limbus) $\delta-10 \times 1-5 \mathrm{~cm}$., in siceo grisea, subtus pallidiora; costre costulaegue neconon reticulium laxum pag. inf. bene asjectabiles; petioli $15-20 \mathrm{~mm}$. long., hasi torti. liacemi (axis) $1: 5 \mathrm{~cm}$. long. L'elicelli 5 man, ovarium 7 mm . long. Lerianthii utriculus ! mm. long., inferne 4 superne 6 mm . lat. ; tubus 18 mm . long., basi 2 mm., medio 3 mm., ore 7 mm. lat. ; lobi $1 \bar{J}-17 \mathrm{~mm}$. long.. basi 4 mun. lat.. cito usque 1 mm . contracti. Columnæ genitalis stipes 1 mm . long. ; antherarm loculi totidem; stigmata ultra antheras fere $\because \quad$ mm. eminentes, superne libera.

Known anong hexandrous African species by the B-lobed limb. When dried the Howers look somewhat like those of a Ceropegia with free corolla lobes.

Aristolochia Ju-ju, sp. nov. "Planta volubilis, cante valido cortice cinereo prominenter rugoso lenticelliferoque oblucto jam efoliato Hormm racemos perbreves emittente; foliis - ; pedicellis sat elongatis minute puberulis ; perianthio majusculo utriculo oblique inflato ovoideo intus minute pubescente quam tubus elongatus subeylindricus incurves intus pilis chasinsculis hac atque illac preditus multo breviore lobis 3 abbreviatis inter se requalibus triangularibus apice breviter acuminatis interjectis lobulis 3 multo minoribus: columme genituli breviter stipitata 10 -loba; antherarum loculis anguste oblongis obtusis; stigmatibus ex antheris eminentibus oblongis apice liberis marginibus stigmatosis confluentibus ; orario cylindrico perlicello subæquilongo.

South Nigeria, Degema Division; Tulhot, 3766.
Caulis $10-14 \mathrm{~mm}$. crass. Racemi (axis) vix 1 cm. long. Bractere lineari-oblongæ, circa $7-8 \mathrm{~mm}$. long. Pediceltus cum orario 4-5 chn. long., ille solus $1 \cdot 5-2$ cm. Perianthii utriculus $3 \times 2-20$ cin. ; tubus usque $\overline{7} \mathrm{~cm}$. long., inferne fere 1.5 cm. , ore 2.5 cm. lat. ; lobi 2 cm . long., ima basi totidem lat.; lobuli cirea j mm. long. Columnee genitalis stipes 1 mm ., anthere 3 mm . long. Stigmata ultra antheras $\underset{2}{ } \mathrm{~mm}$. protrusa.

So far as concerms its flowers, this should, be placed close to A. Mannii Hook. f. and A. triuctina Hook. f.; from the latter of these the perianth lohes scrve at once to distinguish it. The perianth of \mathcal{A}. Mamii has a smaller utriculns and very short lobes without

 the type material at Kew shows this to he neaty denble the true lourtis.

A: its namo implies, this is one of the ".Ju-ju" plants. Before Leaving Daghand for what manpily powed har last visit to Afrian, Ars. 'fallont promised to seedme leates if prssible of this line speces,
 from anything hitherto described that mo andery is movessary for dowerihing the species withont leaves. The material comsists of a piene of -tem with a sinerle inflorescence amd a pencil drawing made from the living plant.

Drypetes peltophora, sp. nor. Ramulis bene foliosis primo miero-
 fotiolatis oblongo-laneeolatis apieen versus sappins coartatis obtusis rave acmtis basi ohtusis netnon alignatutulum obliguis margine un-
 inf. summum le rissime puberulis: floribus subsessilihns in faspiculus hreves pryancithos spamais minatis sericeis stipatos ex axillis mama-

 11 IO-lubatu fire ammino shalmo: gluribus of deticientibs.

F:umbe, litye: Bates, 129.).

The lo inserted in the gembs next D. Dinklagei Hutehins., from which it is di-timenished ly the smalhor, net gmie entire leaves, and
 lisk.

Drypetes Taylorii, spows. Vorisimiliter frutox, Llabre: romulis

 thater earian is pallide nitidi- matis latemblans utrimpue cireiter In phuribus aliis ornt. inf. interjectis omalous mas eum rete pag. whyme optime eminentilns: slipulis ; fasciculis multi- vel fluritoris "x ramis jam folles orlos vel fore orhis oriundis; floribus asolummman comptis breviter perlicellatis : soprolis if sulhiseriatis

 fuan anthera phane longiorihu-; disen sat elevato latere rugoso
 umbunatum цerente.

Folia $15-20 \times 5-7 \mathrm{~cm}$., in sicco brumescentia; petioli $2-3.5 \mathrm{~cm}$. long., basi neenon sub limbo incrassati. Pedicelli circa 3 mm . long. Sepala $2-3 \mathrm{~mm}$., filamenta $2-3 \mathrm{~mm}$., antherae oratæ 1 mm . long. liscus diametro 1 mm . paullo excedens.

The six sepals are somewhat aberrant from the genus, also the stamens placed sometimes between ruga of the disk, a character, although shared by some species of the genus, pointing to Lingelsheimia, but the labit of that is different. The plant does not seem closely allied with any known species.

Drypetes Gossweileri, sp. nov. Arbor erecta trunco sat gracili predita; ramis robustis aliquanto tortnosis cortice cinereo rimoso lenticellifero circumdatis; ramulis fusco-corticatis foliosis glabris; foliis petiolatis ovato-oblongis obtusis brevissimeve cuspidato-attenuatis basi late rotundatis paprraceis margine undulatis glabris supra nitidulis subtus opacis costis lateralibus utrinque 6-S aperte arcuatis ut reticulum utrobique bene eminentibns; fusciculis pauci- rel plurifloris plerumque ramulis defoliatis insidentibus; pedicellis validis quam flores longioribus minute fulvo-vehtinis; sepalis florum of pro rata magnorum 5 oblongo-ovatis apice rotundatis pag. utraçue presertim vero dorso fulvo-velutinis; staminibns fere 40 inter disci lobulos sepe insertis filamentis yram anthere oblongro obtuse paullulum longioribus; rudimento of submullo.

Portuguese Congo, Mayumbe, rare in forests at Buco Zau; Gossweiler, 6567.

Truncus sec. cl. inventorem 30 m . alt. Folia pleraque $14-18 \times$ $6-8 \mathrm{~cm}$. (nomunquam modo $10 \times 5 \mathrm{~cm}$.) petiolo $1-1 \cdot 5 \mathrm{~cm}$. long. exempto, supra in sicco brumnescentia. Stipule haud visæ. Pedicelli usque 3.5 cm . long., sed sape breviores, sub flore incrassati. Flores odorem pungentem ingratum spirantes. Sepala alba (dorso dilute viridia), $1: 3 \times 11 \mathrm{~mm}$. Filamenta 5 mm ., antheree 4 mm . long. Discus 7 mm . diam. Flores o ignoti.

Allied to D. Staudtii Hutchins., but somewhat different in the shape of the undulate (not serrate) leaves and with larger flowers on longer pedicels, velvety (not glabrous) sepals, and nearly 40 (instcal of about 15) stamens.

PLANTAGO CYNOPS L. IN KENT.

By Hexry N. Ridlet, M.a., F.R.S.

Plentago Cynops L. is a low shrubby plant forming a good-sized tuft or cushion. The stems are woody and for about 6 inches bare of leaves. The leaves are narrow and semiterete, linear acute, and grooved above, of a grey-green, and like most of the plant hairy. From the axils spring hairy peduncles little longer than the leaves, hearing at the top globose heads of flowers. To each head is a pair of ovate rounded green cuspidate bracts tinted with purple; the sepals are short and enclose the corolla tube, which is rather long for a Plantain; the wide spreading lobes are lanceolate and acute, translucent and whitish. The whitish filaments are very long and hairy, and the anthers pale yellow; the slender and long persistent strye, at first pale, becomes hrown ; the capsule is conie with oblong lanceo-
lato smonth sends. 'Tlue plant is a mative of the Meditemament
 Tombon, Villefanche (iap, and Ain; also in Spain, ltaly, swit\%er-
 (1) se it growing amb apparently eertanly wild on elalk downs

'The phant was first fomm he \$1r. ('harles bakor, who resides in thin distriet, in May bat, who gave a seremen to Miss L. F'lomene laider, who sent it to me. I risited the locality on sept. Sth with Xr. Whaer and Miss Rialley and fomed the plant in flower.
'The beality is a very dry haren hank of chalk with very little soil, ewvered, however, with dwarf fomms of Oifigunnm ralyare, buth pink and white, only a few inches tall-Colina, Eirigeron ucre. Praslime ${ }^{\circ}$ and other chalk-hill plants, with seattered wild rose-

 have hern centivated of even phourhal; at the hase of the valley below attempts have been made to conltivate, but withont mom sureess. Though there is a puantity of Mustad on the fiothere hill. 1 combd mot sen a single phant of antheng which comblate lued intrinlaced where the Planlayg was ervowing.

There is whe clump of the plant in an wal form almant two feret acrow. the ventre of which has died out and the edeses are pushing ont all rombl: the stroner worly steme show that the chmmp is an whe che

 woml, an that it is extremely improbable that the plant comblate

 has exar lawn in cultivation in binelaml. It is clearly mot introduced os a combledel wed, as it is shmbly amb does mot grow in marle Eronme ; nor is there ons mbhish from elsewhere thrown there or in the wishlamphost.
'This rugion of kiont, however, is peroliar in hating forayal very Jash plant which are hardly wihd elsewhere in bobstand, surh as Salria protrmsis, Illha" himsula, and Orchis hacima, all of whish Urow sithin a fen mila of this spet. It may le worth recombing

 fome: a liver quatit! hat spung up) I knew the wool when I was - les! fiequenty aploring it. Int I camot rembember ever to haw - +m the Illhen ther, though it was a plant I kurw well.

The remarkulate thing abont the wecurverner lowe of Plantagn

 dowss, but mont of thec are mom of lea giaterel over. It is seldom that nom fime a dewn un wer lamen and muphoviled with smil as this.

THE SEQUENCE OF EUNGI AND MYCETOZOA.

By W. T. Elliott, D.D.S.. F.L.S., iñ Jessie S. Elliotr, D.Sc.

As oak branch about 1.5 ft. in length and about $1 \frac{1}{4} \mathrm{ft}$. in diameter that was blown down in a gale at 'Tanworth-in-Arden in the autmonn of 1912 has been carefully kept under obserration with the object of noting the sequence of fungi or mycetozoa which might grow upon it. It was in the first instance quite sound with the leaves attacherl and showed no trace of decay. In the autum of 1913, after lyiug on the ground in a conifer plantation for twelve months, it was profusely covered with a dense growth of the black gelatinous. cups of Bulyaria polymorpha which issued through the cracks in the bark. In the foilowing autumn (191t) a further dense growth of this same fungus appeared, and at the same time on the samn ent of the branch were seen traces of the purple fruiting bodies of Coryne sarcoides. During the next antumn (1915) Bulyuria polymorphat again made its appearance, but less in quantity; and at the same time coming up through the same cracks in the bark was observed everywhere the fruiting structures of Coryne sarcoides. Again, in the autumn of 1916 Coryne surcoides appeared in abundance and with it at the same time a still further diminished quantity of Bulyaria polymorpha. The latte: has never been seen there again. During the winter (1916-17) a small patch of Stereum hirsutuin appeared.

In the autumn of 1917 only a trace of Coryne sarcoilles made its appearance, and since then has never been seen there: also, a small growth of Stereum hirsutum as well as as small patch of Pamus stypticus came up, and the latter remained in evidence until the following March. In 191s, during the autumn, a cluster of the sporophores of Hypholoma fuscicnluris appeared on one of the ends of the log as well as the small patch of Sterenm hirsutum.

In the autumn of 1919 after seven years of observation the first Mycetozoon appeared, an area of about four square feet being covered with a dense growth of Physarum mutans Pers., which appeared through those cracks in the bark which in previous years had been occupied by Bulgariu polymorplut and Coriyne sarcoides: at the same time a large patch of Physamim mutuns also developed on the sawn end of the \log; the wood even then was so hard and dense that much difficulty arose in cutting any away. Sulseguently, on the side opposite that on which the Myectozoon developed Phlebia merismoides appeared, covering an area of about three square feet: also, clusters of IIypholomu fiscicularis and Hypholome sublateritia developed at opposite ends of the log.

In June 1920 one sporophore of Plutens cercinns appeared, and during June, July, and August the Mycetozoon Physarium Rutenes sent up a continuous crop of its minate grey sporagia covering the same area it occupied in the autumn of 1919, and in aldition the space which was then occupied by Phlebia ILerismoiles. In July (1920) a secund species of Mycetozom-Stemonitis fistica (Roth) made its appearance; its white plasmodimu emerged in two places

Jocral of Botayt.-Yol, 55. [Notelieer, 1920.] y

 place in this conitur plantation fine aight vears. The entive dis-

 \therefore - in that their merelia were abourbed amb destroved during the

 on the mwodime fin atont there sans helone it provereded to the stage of tractitication.

SHOlil NOTEふ。

Rantweters Lixqua. In Camb. Brit. Fl. iii. 127 (1920) we read in reference to this species- " We have not noticed any glahrous form (R. linyuu var: glubrutus Wallroth, Sched. Crit. 2sis (1422)) in this country, where the plants conform to R. lingue rar. hirsutus Wallroth loc. cit." Upon examining the examples in my herbarinm I was interested to see this point horne out in all the sjecimens save one. This important exception, which agreed with Walloth's diagnosis of his glabratus-" "Caule, calycibus foliisque utringue glaber-rimis,"-was gathered by my friend A. J. Crosfied in 1919 in South Buckinghamshire; the locality lies in Bistrict IS of the botanical map accompanying Dr. Drecis aceount of the botany of the county in the Victoria History, 1905.- C. E. Samox.

Echicm plistuinein L. A single plant in full flower was found by me in a meadow near a farm at Boxame ahout $3 \frac{1}{2}$ miles N.E. of Chichester, on Angust 2 lith last. It has, I beliere, never beifore been recorded for Sussex. Mr. A. J. Wihuott has confirmed the identity of the plant.-F. Irtce.

The Gencs Calobryus. Profesom Douplas Campbell in his paper "Studies in some East Indian Hepaticere: C'alobryimm Blumei, N. ab E." Amn. Bot. cxxsiii. 1 (1920)) gives three species in this genns as known at present. He has, no doubt inadrertently, overlooked the fact that a fourth speeies is known from New Zealand, riz. C. Gibbsice Steph., first recorded ly me in this Journal for 1911 (xix. 265), and subsequently described by Stephani (Sp. Hep. vi. 76 (1917). Other new species recorded in mr prper. and sinee deseribed, are: Anemra Gibliana Steph. (op. cit, p. 2S) and A. papulolimbata Steph. (p. 36).-s. S. Gibrs.

REVIEWS.

Flora of Jamaica, containing Descriptions of the Flowering Plants known from the Island. By Whasam Faweert. B.Sc., \&c., and Alfred Bartos Rexdie, D.se. \&e. Vol. ir. Leguminose to Callitrichacese. Sro, cloth, pp, xw, 369: 114 test illustrations. Trustees of British Museum, Longmans, \&c. 1920. Price £ 1 s.
Thus volume, the third in order of publication, was among the many looks delayed by the War. In character it resembles its predecessors, which were noticed in this Journal for 1911 (p. 172) and 1915 (p. 116), hence there is no need to repeat what has been said as to details of arrangement. We may sum these up by saying that, by its numerous illustrations, its careful investigation of the earlier authors, and above all by its thorough examination of the material from old collectors preserved in the National Herbarimm, the Flora, whether regarded from the standpoints of science or of general utility, is in adrance of any previous work of its kind.

The arrangement being that of Engler and Prantl, the statement that the rolume includes "Leguminose to C'allitrichacere" will not conver much indication of its contents to those who follow other classifications. It comprises Euphorbiacer, Rutacere, Geraniacere, Polygalace:e, and numerous other groups, and is moreover somewhat

 alreal！loen printerl in latin in this dommal in complimere with the

 fiom the Gomedelated rexgrition of lhilip，Millere work in the

＇The－nlatitution of P＇illoratluhium lan P＇ilhecolubium（1．Ili）．
 phand．Mr．Fanceot kimelly give u－the following mote：

 remad ：luir cars．

 －＇luna by＂Io de Lomrei．＂

 －Lumbl，we thanh，hame luen refirmer to in the preface．It is as follow．

 of the ： the limay of the lommont suciet！，limathe addeal the himomial as at

stances these specimens were the foundation of species published hy Linncus in the Systemm, edit. 10, 1759, for instance, C'assia riminea; other represented species which Browne har failed to identify were those in the Species Pluuturmm, for instance, C. biflorro. Sometimes a specimen in Browne`s herbarium has not been identified by Linneus with any diagnosis of Browne, but has been published in the Systeme, for instance, ('. pilosa."

We hope that, in the interests of West Indians and of botanists generally, this important addition to our colonial floras will proceed with all possible specerl.

The Siature Stuly of Plants in Theory and Practire for the Hobly-

 Boturist. 13y Thomas Arfred Dranes, F.L.s. With an Introduction by Prof. F. E. Werss, F.li.s. Svo, pl. xviii, 17:3; 54 illustrations. Price $6 s$. net. S.P.C.K.Ir might be thought that there was not room for another introduetion to botany based on British plants, and it must be owned that one or two recent pretentions works of the kind might have been dispensed with; but MIr. T. A. Demes's little book on The Neture Study of Plants (S.P.('.K., 6s. net) deserves a weleome and will, we think, receive one, not only from "the nobby-botanist," for whom it is specially intended, but from the teacher, who will find in it much that is useful and suggestive.

The volume is divided into two parts: in the first ("Theory ") we have a description, in their various bearings, of "the seven factors of life, animal and vegetable "-five (Respiration, Nutrition, Growth, Protection, and Rest) "which are concerned with the preservation of the individual," and two (Reproduction and "t the care of the childreu") "which are concerned with the preservation of the race." The second part (" Practice") is devoted to a life-history of the Herb Robert (Geronium Robortiouum) : "it is easy," says Mr. 1)ymes, " to watch our friend from its babyhood to its grave," but we doubt whether anrone has undertaken the task before, and it could harlly have been fulfilled with greater completeness. For example, Mr. Dymes had been "struck by the fact that the Herb Robert in [his] borkers, which are a well-stocked menagerie of small and voracious wild heasts," seemed hardly ever to be attacked by any of these; and this set him thinking about its means of protection, which he finds in the hairs and in the strong smell. A series of experiments with slugs, woodlice, and eaterpillars, who were confined to a dist of the leaves, showed that in many eases these were not eaten at all, or the eaters came to a premature end-notably in the ease of a large brown slug (Limax maximus), "who began eafing during the second night, but by the next evening he lad turned a fearful colour and was dead." "Mr. Dymes began to think that the Herb liobert had to all intents and purposes solved the problem of complete protection," but the grub of a weevil (C'eliodes) "habitually feeds upon it."

We regret that want of space prevents us from notieing the volume at greater length, but a word must be said in praise of the mumerous migmal illustrations, and of the clear simple literary style in which it

 berted form of imhtustry wheh dimb its matal in the reation of

 as we hefore remarkil，can only mont in the aldition wi wew and

 Inlox to Ehrlant＇：Ihytmphylurimm puhlishad in hiv lbrilrä̈e，iv． 1 16，where and on the hhat attarhed totheremen it stamh as

$$
\begin{aligned}
& \text { 7. I's. Haphom: ('urex pulamia lime. }
\end{aligned}
$$

 writhen anl well－inlommed：weacimall！we think the information

pullication misht have been mentioned: it is of interest to know that the white-flowered form of $O_{p}, k r y s$ apifera found by Dean Garnier-the anthor referred to (see Jomrn. Bot. 1873, 256)-was seen by Camon Vaughan in the sume locality a hundred years later. The publisher must, one assumes, have some reason for issning with ment edges a book printed on soft paper, but it is difficult to conjecture what this can be.

The Kex Bulletin (no. 7) contains an account of "A T'rip to the Knysua," undertaken in eonnection with the work for the Botanical Surver of the Union of South Africa which was begun in 1918 by Mr. S. Schouland ; a description of two new species of Oculariopsis from the West Indies by Miss E. M. Wakefield; notes on Seffersomin and Plegirhegma (the latter united with the furmer by Bentham and Hooker) by Mr. Hutchinson, and on Amoore spectabilis and A. Wallichii by H. H. Haines; a revision of the cultivated species of Phellodentron, by Mr. Sprague ; and a continuation of the "D Deades Kewenses," mortly by Mr. J. S. Gamble.

Tue latest issue of Fotes from the Royal Botanic Garden, Edinburgh (nos. 57,55), contains descriptions of forty new species of Rhododendion, mainly from the apparently inexhaustible collections of this genus which were made in Yuman and e'sewhere by Mr. G. Forrest, whose name is associated with Prof. Balfour's in most of the descriptions. We note that the dite on the wapper is "March 1920 "; that of the stationery Offee on the first page is "9, 20° " in riew of the difficulties comnected with dates which at one time and for a long period characterized the Ker Bulletin it seems desirable to call attention to a possible source of confusion.

Tue Sere Phytoloyist (July and Oet., published Aug. 24) has a long paper on "Hyltidism and Classification in the Genus Rose" by Mr. J. R. Mathews, which should interest British botanists: the author "Would at present strongly support any systematist who returned to the Linnean ennception of the species $[R$. camina $]$, denoting its various combinations ly some purely symbolical method," and thinks that "if a single aggregate species were submitted to systematic crossing and fully worked out along the lines of Mendelian research, we should obtain results which woud form a real contribution to our knowledge of this most difficult genus." Dr. Gates continues his observations on "Mutation and Exolution" and Mr. J. H. Priestley mites on "The Mechanism of Root Pressure."

Tue first memoir of the Botanical Survey of Sonth Africa (Pretorit, 2ss. 6d.) is devoted to a Phanerogamic Flora of the divisions of Uitenhage and Port Elizalveth, by Dr. S. Schonland. It contains notes on the systematic elements of the Flora and on plantformations and plant-associations, followed by a list of the plants known to occur in the districts, with localities and oceasional notes: a table of the genera with an indication of the number of species in each brings the useful memoir to a close.

We have received the 35 th and 36 An Annal Reports (191. -19 , 1019 - 20), 1ssued together, of the Watson Botanical Exchange Club, which contain as usual much interesting matter, wherefrom we hope later to print extracts. An excellent portrait of the late E.S. Marshall faces the title.

＇TO OL゙に 心じ1BS（＇IIJBER心．

It seems right that our subseribers should be made acguainteed with the difticulties which at present attem the protuction of the ．Tomal and seriously threaten its continamee．The cost of printine steadily increases and shows no prospect of diminution，and，in spite of help remdered by frioms in rarions ways the ammal accounts －how a serious deficit．

The fisme for lant rear resulted in a lons of E：3Z 15s．Bd．：this， however．was partically defrayed ba suall balane remaining from the sum mised be the late E．S．Marshall in 1：917，and hegenerons donations from Dre．Briton of New Sork and Mr．C．F．Salmom．

For the present year this position is far more serions．The areome deliwerd at the end of Jme，by which time pactically all
 1．s．！n，with which te cary on the remaming six months．Allowing fon reerepts from sales of umbers，reprints，ete．，it is estimated that at the end of the year there will he defieit of over it homedred pames， and this although the const of the two supplements and of phates has loen defratyed he the authors，and hedp towards the proluetion

 acepmaintel with the presition of atfaise hat it will he sien that much mone will he neded in arder to proted the bititer from serions low．

This hoing ow，tho mothok in 1921 is exen more highly matis－ furmors ame it is dombtful whether it will mot he mecessaly to 1wminate the＂xistome of the domenal with the Decomber manare． The pmsibilit！of this has resulted in mumeren expressoms of hape that what in regrated hy many in the light of at matatomphe may he

 must pactionl：but it mily be dombted whether this would be sullicient to put the Jommat on a sulatantial foreting．And mothiner aim the mon matafactery than that it should demend for sumpert

NOTES ON BRIJISH HAWKWEEDS.

By H. W. Pútisley, B.A., E.L.S.

'Tue following notes have been compiled during an attempt to work out the hawkweeds (abont:50 gatherings falling under some 70 species) that 1 have collected in various parts of Great Britain during the last 25 years. The genus, affecting principally, as it does, the rocks of hilly and mountainons districts and embracing many conspienous and handsome forms, readily clams the attention of the botanist with a taste for climbing, and its complexity is sufficient to satisty the sy'stematist's most voracious appetite for new speeies and varieties.
'The first account of the British Hieracia, the monograph of James Backhouse, Jun., published in 1856, gives satisfactory descriptions of $3: 3$ species, correlating them, as far as possible, with known continental forms. Backhonse's interest, however, was langely centred in the Alpina section, and his explorations were mainly contined to 'Teestale and the Baemar and Clova Districts of Scotland. In more recent years Mr. Hambury, the brothers Linton, and the late E. S. Marshall collected in many other Highland localities while Augrstin Ley did similar work in Wales, with the result that many new forms were discovered and described. Mr. Hanbury mate notable additions to the Oreadea, and both he and the Lintons greatly extended the lists of Suboulyata and Ciesia. Finally, Augustin Ley elaborated the Eu-rulgata, introtncing a number of new forms identified with Scandinavian plants.

A complete account of the genus appeared in 1902 in Mr . F. N. Williams's Prodromes, in which some important characters, hitherto overlooked, were brought to notice; and in 1905 W . R. Linton's British Hieracia was published, with deseriptions of 124 species and 131 varieties. This last-mamed book is by far the most useful to the student, but a larger work, with a full and aceurate clavis aceomoting for every species, is still a desideratum; and in this connection the eomparatively early deaths of W. R. Linton and Augustin Ley are much to be regretted.

Sub-genus Pilosella, Sect. Collinia.

Hieracium pratensf Tausch.-I collected this plant in 1916 at Aviemore-apparently a new vice-county record for Easterness. It wats growing with other hawkweeds on broken ground near the railway, where its status is uncertain. Nägeli and Peter, in their Hieracien Mittel-Europas (Piloselloiden), and Gremli, in his Swiss How, adopt for this species the earlier name II. collinum Gochnat, 'Tent. Cichor. p. 17 (1808).

Sub-genus Arciiferacium, Sect. Amplexicalida.

H. pulmonarioides Villars, Fl. Delph. iii. 133 (1789).

Exsicc. F. Sehultz, Herb. Norm. 707 ; Billot (continué) 3640.
On July 31st, 1907, I collected this species on an old wall near Kenmore, in Perthshire. In this situation it had presumably been introduced, but its oceurrence seems worthy of mention, as it dooes Journal of Botani.-Vol. 58. [December, 1920.]

 the－Im what similar／1．ampltariombel．

 －urfac．with soft．pilase hairs，intersperad．aspuctally abore with

 with tine dark，ylamhlar hars；cambine leares $3-\pi$ ，the fower lameodathe boad－based of－ubanmpeximal，amd tonthed below，the upher wate
 ralical latse．Achdiman ami hamehes demaly elothed with stellate
 ehothed with－imilar rlamblala hairs．Lisules pilose－tipped．Sityes livil．

11．pulmonmrinides differs firom 11 ．amplexicomule in its dhan green，mom－siacid follare，with a lanere popertion of the hairs not
 Whe chameteristie lams，dak，glamblar hatis of the indomeremer．Its

 other e－ghall sepamble forms of this pulymphic phat still raman to he distimenthed．＇The Pathshime hill－prohuce dwaf＇forms guite malike the hambomme lamer－handed＇Temalale plamt，with a simele

 marledi！flearina．

Scel．O16KいいL．

11．1＇\＆

stylose-flowered hawkweeds in the lake District is peculiar, for this condition of I. anglicum var. jacnlifolinm and of 1 . cluriceps var. craconiense also grows in the neighbourhood of Keswick. It may be noted that in habit and foliage H. proximum somewhat resembles I. iricum.

Sect. Velgata, Sub-sect. Siltitica.

II. srlfaticur Gonan.-The varieties placed under this species in British Ifieracia show great diversity of form, and it is difticolt, judging by the arerage standard of Hieracium species, to regard such a form as the suall-headed variety microcludium Dahist. an conspecific with W. R. Linton's varieties tricolor and subcyanenm. Dahlotedt's variety appears to have some attinity with his if. curiicolor.

Sect. Velfata, Sub-sect. Sub-tedeata.

H. rublenostar F. J. Hanh.-There occurs in Wharfedale, growing at intervals along the stream from Bolton Wools at least as firm as Grassington, a well-marked form of this species that has been referred to the spocific type. but which, as Mr. Linton suggests, approaches the Derbyshire variety peccense W. R. Lint. Its radical leaves are few and coarsely hairy on both sides, with rather small teeth; and the lowest of the 2-d cauline leaves are narrowed below to short broadly-winged petioles. The stem is pilose throughout, and is clothed above, like the peduncles, as in var, peccense. The subacmminate phyllaries, however, differ from those of that varicty in that the simple dusky hairs predominate, the glamduar ones loing but few. The phat is probably similar to that mentioned in British Hicracia (p.4.) as growing at Llyn Dulyn.

Of Backhouse's II. vulyatum var. mbescens, on which H. rubiginosum was founded by Mr. Hanbury, there is only one poor specimen from Backhouse in Herb. Mus. Brit., hut two good Giggles. wick examples exist at kew. This form, which I failed to find last year at diggleswick and cordate, differs considerably from the Wharfedale plant and var. peccense, for it shows a more developed radical rosette and fewer canline leaves, and the stem and leaves are less pilose. Its phyllaries, also, appear broad and olituse. although descriterl as "subacuminate" by Backhouse and in Babington"s M(rmunt, ed. 9.

This typical I. rubiginosum bears a resemblance to H. sogittutum var. muculigerum W. li. Lint., which Ley separated as a new specine, If. Lintoni (Journ. Bot. xlvii. p. 16 (1909)), hut it is distinguishable by its larger heads. with broader ant less glandular phyllarie's.

Like II. holophyllum W. R. Lint., H. cubiginosum (especially var: peccense and kindred forms) recalls the sub-section Eu-T Tulyntu ly its cauligerous rather than scapigerons habit.
H. holopurdicy W. \%. Liht.-It seems posible that this species is identical with Backhouse's 11 . culgatum var. cimereum (Mon. p. (Gl), but no specimens from Backhonse to confirm this can be traced in Herb. Mus. Brit. or at Kew. The deseription, except perhaps for the glaucous foliage, pionts to H. holophyllum, and it is not casy to see what other forme growing on the Great Orme's Head can have heen intended.

In 190$)^{2}$ I collected at ('heddar an example of the hawkwed gathered there three years later ly Angustin Ley and refermed to II. rubiginosum. 'This identilication appeared to me dombttul, and as the britinh Musemm pussesses two specimens only of the plant, I have ohtaned further matmial for examination throngh the kimhess of Mr. .I. Wr. White, and am comfirmed in the opinion that the name U. Imbiginosum canmot stand for this plant. Mr. Linton also donbts the correctures of the identilieations.

The ('haddar form differs from II. rubiginosum (I) by its stem heiner momally shender, reddish, slightly pilose below aml flocenlose above instead of rohnst. purple-tinted, pilose throurlmut and with batek-lasesd and ghandular hairs above; (2) by its madical haves hemer aval, more or lese romeded at both ends (the outer ones oceat sonallf retase apienlate. sulmentire or distantly dentienlate, coriacous, subglabous above and sparingly pilose amd reddish benoath, while those of H. rubiginosum are more ovate, acute, irregulary toothed, and pilose on buth surfaces; (3) hy its perluncles beins densely theculose, with a very few seattered simple and tine, erlamblar haire, instead of less floceulose, with mumerous dark, ghambar amd simple blatek-batere hairs: and (t) ly its smaller heals, with the phyllaries marow amd linear, but olotnes, grevermen and abmombly Hocese instead of hamel linear-lancenlate, obtuse on subacmanate, and dark whe-rreen, on! y slightly Itoecose.

 latter mollectend on the Great Orme. Moreover, shme of the Chembar -iw imens examinel are shade-forms, problueing thimer haves, hairy om hoth surfites. precisely like shade-foms of $/ I$. holnghyllum from Whartielale. In panclo, however, the ('heddar plant seems distanct. heving rather more mamerons harls on lomer perlmules, each of "hioh hats one or more narmw, linear, miate hacts. The insolucere, tow, arw less broal amd trmente, with distinctly narower thonerl ohtua phyllaries showing mome abmbant pilose and glandular hairs. It in therefore proposed to associate this hawkeed of the 'heddar "liff, with $I /$. hulophyllem of the limestone districts of Derhyshive, lorks, and Carnarwon.

 (1!91).

Fixice F. A. Itar-hall, 3usou.

 feri- bostitas. sitsli latio vol furesemens.
 dals. It mham, 100:?

Sect. Vulfita, Sub-sect. ('esin.
H. Cesicar Fro-A plant collected near Winch Bridge and High Force, Teesdale, in 1896 and $190: 3$, appears to me to resemble II. lusiophyllum rar. planifotium F. J. Hanb., but Mr. Linton does not assent to this name, although recognizing that the heads look like those of H. lasioplyyllum. Its position must be held doubtful for the present, but it may be pointed out that it substantially coincides with Backhonse's description (Mon. p, 56) of H. casium. It is believed to be a widely-spread form in Teesdale.

An entirely different plant, with coarsely dentate leaves, similar to well-authenticated Swedish examples of \dot{I}. casium Fr., was also found on the Durham side of Upper Teesdale in 1903,
H. farrexse F. J. Hanb.-Specimens agreeing with this High land hawkweed were found in 1919 in Hesleden Glen, West Yorks. Mr. Linton assents to the naming.

Sect. Vulgita, Sub-sect. Eu-Vefata.

H. pinsatifidum Lomm.-A very slender form. seemingly referable here, with few-flowered panicle and long acladium, occurred sparingly by the Lawers Burn, Loch Tay, in 1907.
H. scanicum Dahlst.-The plant sent to the Watson Exchange Club by Mr. Waddell in 1902 from Saintfield, Co. Down, as H. sciaphitum, and determined as H. diaphanoides, is identical with II. scanicum, which at that date had not been introduced to the British Flora. It is stated by Ley (Jomen. Bot. xlv. 111 (1907)) to be widely distributed in Wales and the west of England, so that its occurrence in Ireland is not remarkable.

The sub-umbellate panicle seems to be a marked character of this plant.

Sect. Folios.

H. boreale Fr.-A number of puzzling forms of this species were growing in company near Bethesda, Carnarronshire, in 1902. All of them have blackish phyllaries, but while in some the heads are of moderate size, with livid styles, in others the heads are very large and showr, with bright yellow styles. In some the foliage approaches that of Scotch H. corymbosum, except for the hairclothing, and in others the leares are all narrow and subsimilar as in H. rigens Jord. The panicle in nearly every specimen is racemosecorymbose, with rather short, suberect branches.

The form of H. boreale occuring round London appears to be usually the variety Hervieri Arvet-Touret, which may be known not only by its pilose peduncles and grev-green, pilose heads, but by its frequently more laxly-branched panicle.

(siee Jompm, But. 1:11!!, 137.)

 leasco. ame alde a wike variation in the markings of the lip. Bats

 humber of phata 1 and fomm 1 wh "ithont spots. Tha markinge

 same extent is in the latter sperios.

Below are zisen hief characheristics of a momber of specimens:-

 rom:ME-N.

1. Abmbintly sunted with amall ringen -fot-: Hower pate,
 lale wer short tomill hace.

 ringenl.

 Howne; - pmenther shater
 Homentirbur titac.

2. At mitmity -puttal with bere amall apots: yike down:

 -pur larin col merel.

3. Leaves heavily spotted with ringed spots; flowers large, dark red-violet.

15 . Yerr robust, 41 cm . tall. spike 13 cm ., rery leafy, leaves erect, slightly spreading; probably the var. foliose of Continental authors, but only due, I think, to exceptionally favourable conditions; it has nothing to do with the Madeiran O. foliosa. Leaves $20-23 \mathrm{~cm}$. long. $3 \frac{1}{2}$ to $5 \frac{1}{2} \mathrm{~cm}$. broad, firm, Hat at tip, with sparse minute spots on apical half onic. Bracts ($5 \frac{1}{2} \mathrm{~cm} \times 9$ mm.) much exceeding fiowers, spike comose. Elowers red-purple, throat wide whitish, sepals unspotted, lip broader than long ($13 \times 11 \mathrm{~mm}$.) spur conical. This plant grew on the side of an irrigation canal where water trickled duwn.

The following bore a considerable resemblance to O. picetermissia Druce :-
16. Flowers pale lilac, lip flat, entirely eovered with markings and dots: leares with small sparse spots on apical half only.
17. Flowers delicate mave, lip flat, covered with rows of tiny dots radiating in a fan, very like those of proctermissu; leaves unspotted, exeept for a few tiny spits at the tip of one leaf.
15. Flowers large, pale maure; spur nearly white, short, conical, almost saccate, but in upper flowers more cylindrical and half as long as ovary. Leaves unspotted.
19. Flowers darker. red-lilac, leaves unspotted.

To sum up:--The leares vanied from elliptieal-oblong ($23 \times 5 \frac{1}{2} \mathrm{~cm}$. $)$, to broadly ovate-lanceolate (10×38 cm. $)$, with the majority of intermediate dimensions ($12-1.5 \mathrm{~cm}$. long by $-\frac{1}{2}$ to 3 cm . broad), oblonglanceolate to lanceolate. The spots varied (1) in amount, from dense to rery sparse, sometimes covering the whole leaf, sometimes entirely confined to the apical half, sometimes restricted to a very few isolated spots near the tip; (2) in shape and size, e.g. large elliptical trimsverse spots, usually solid, not infrequently ringed, small circular spots, and minute almost imperceptible spots ; (3) in depth of colour, sometimes dark and conspicuous, often faint, occasionally almost reaching vamishing point; but the leaves were practically always spotted. The flowers varied in colour from manre or pale lilac to dark purple-red, with many intermediate shatles. Two or three plants at Thorenc had pink Howers. Sometimes the central area of the lip within the markings is much paler, or even nearly white. The pattern of the markings varied very little except in depth of colour, in fact it was remarkably uniform, consisting of two parallel longitudinal loops, one on each side of the lip, formed of continuous lines, often with a smaller more or less imperfect loop within the larger ones, and not infrequently supplemented by small or irregular spots outside the area enclosed by the loops. The lip is at first nearly flat, later the sides slope gradually downwards, and sometimes become decidedly reflexed. but occasionalit fully opened spikes can be found in which even in the lowest flowers the sides only slope quite gently downwards. The mid-lobe is small, triangular and often tooth-ike, hardly longer than the side-lobes; in one spike it was tongue-shaped and $i \mathrm{~mm}$. long, but this was due to the incision between it and the side-kobs being deeprr. The sepals are usually, but by no means

 flat－the spme was dorally eompressed，and in one it was very shart and almost ateate．lout in the upper flowers it was longer and meany normal．

In the valley of＇Thorene， 3600 ft．above seaterel，in dunce． （）．letifolia L．Was very abmolant in the damper madows，with mo other marsh wehisl present，thom，morio，coriophora，and Gigmun－ denin conoper were plentifal，the lirst－mamed alrealy ont of flower． （）．muculatu was almodant．Sut was mostly emblined to the pine

 amd was very miform．Malle A．（＇amms（liviera seiontifige．

 innalicient tu emable me to distingrish them satisfartarily from the tym．Single plants were olsemed here and there amomest the trex ia which the spike was an loner as tonecelpy most of the stemalume the
 one spreimen of lutifislin with ingarently white flowers．hat an phemer it hesde a pure white mactula it was seen to be very laintly

 abml presistent is the temdency to spotted haves，evoll in an almost
 Thar iwo lowet flower：had very loner shender waries f froms the 11 bate－next almoe these arowe instead of an oxary ame themer，a

 it was ut momal lengeth in propertion to the si\％of the llowers ；two tlower hat no（o）lame．
＇Flue bet reanlt of my ohmotations was that 1 beeame convincer

 －iwtleal on luth sillos

Mhlll 1 Chans，joint anthor with her father and MI．Dereme of

The difficulties in connection with the British marsh orchids have manly arisen from the following canses:-
(1) The suggestion that O. pretermissa Druce is the true O. Lutifolia L., a proposition for which no definite proof is forthcoming, and which is in opposition to Continental experience and opinion.
(2) The supposition that the spotted-leaved British marsh orchid is a hybrid between pretermissu and muculata, whereas it appears to be simply O. latifolia L.
(3) The confusion which has arisen through the erroneous identifieation of the hybrids pretermissa \times maculuta and incarnata \times muculuta as O. latifolia L. In view of the facts that pratermissa and incorincta are both closely allied to latifolia, and that the leafspotting and also the lip-markings of maculate are very similar to those of latifolia, it will be seen that hybrids of either preetermisse or incarnata, into which the above two eharaeteristics of maculuta have been introdnced by the part parentage of the latter species, are bound to hear a superficial resemblanee to latifolia. But to assume that O. letifolia L. is therefore pretermissa \times maculate is to base a wide generalisation on observations limited to a restricted and insular floma, and is a conelusion absolutely at variance with the fact that latifolia is a very widely distributed European species which grows in immense numbers where both the supposed parents are non-existent.

It is not only in England that the marsh orchids present difficulties. Dr. Keller wrote on March 1.5th, 1920 : "The more one studies the group latifolia-Trannsteineri, the more perplexed one becomes. 1 believe, however, whilst reserving final judgment, that true latifolia always has spotted leaves, and that the forms with narrow leaves without spots are to be elassed under the extremely polymorphic species angustifolia or Traunsteineri. 1 possess forms from Lẹchen (ficmany), the water-colour drawing of which is almost identical with yours representing pretermissa, but these forms from Lychen were sent to me as Trannsteineri." As I do not know the latter species, I eannot express any opinion on Dr. Keller's suggestion, but it appears always to have narrow leaves, which is not at all the ease with pretermissa. I found two or three plants of the latter with quite narrow leaves at Punfield, near Swanage, though the broaderleaved type was more mumerous. Dr. Keller, Aarau, Switzerland, is anxious to reeeive specimens of pretermissa, dispatehed immediately after gathering, for comparison with Continental forms. Nos. 16-19 above would, I think, if found in England, have been classed with pratermissa mather than with latifolia, though not typieal enough to be definitely assigned to it. They were exeeptional specimensno more were found like them-and were undoubtedly only individual variations of latifola in the direction of pratermissa. This expression, however, though convemient, is misleading. Probably species A does not vary in the direction of speeies B, but only in the direction of their common ancestor, C. There is always the possibility that some charaeter of C, which has always been transmitted to B, but has long been eliminated from. or become latent in A, may exeeptionally re-appear in the latter, either through partial reversion, or by

 fo Mr. At. 思nintin. Ambiner (A) twn plants jelentilied as pualere

 : 1 H1m

 ן

 If then lo

BIBLIOGRAPHYCAL NOTES.

LAXXII. 'The Dates of lineede's' Hurtus Malabarices.'

Enrons in dates, like misspelled names, once committed to print. are diticult to get rid of. As a number of modern library eatalogues have stumbled over the dates of Rheede's Hortus Indicus Mínlabaicus, it is apparent that some earlier recorts which explain the discrepancies are in danger of being overlooked.

Among a dozen catalogues examined, at least three uncritieally accept the misprinted date 1673 for Pars ir.-nor can we assume that in all eases where inclusive dates are stated correctly, the interveming volumes have all been carefully serutinized. While many cataloguers place their chief reliance on Pritzel's Thesan'us, one would suppose that their curiosity would be roused, at least, by finding the date for this volume given as 1653 in the second edition of Pritzel ($1872-77$). though the tirst (18.51) gives it as " (errore) 1673 (1683)," an explanation unhappily omitted in the revision of the bibliography. Seguier (Bibl. Bot., 1740) and Miltitz (Bibl. Bot., 1829) merely give the correct date without comment. Dryander however (Cat. Bill. Banks. iii. 179, 1797) gives it as " 1673 (1683)," while Hatler (Bihl. Bot. i. 559 (1771), says: " Iomus iv. He arboribus frnctiferis malabaricis . . . 1653 (male 1673)." As detinite proof that Pars iv. was actually publislsed in 1653 , one may cite the review of this volume in Acta Elmlitorm anno adocxxxir. (i.e. for 1683), p. 159, which quotes the title quite fully, though it gives the date 1683 without comment. Every copy of the Hortus Malabaricus onght to have this correction noted on the title of Parsiv. to a roid future confusion.

Beside the date of l'ars iv., the work offers another stumbling block to the cataloguer in the title-page for the first volume. Although published in 1678 , many copies do not have the original title, but the one dated $16 S 6$, which was reprinted verbatim from that of pars vi., but with the sole change of the volume number; hence we frequently find 168(6-1703 carelessly given as inclasive dates for the entire work. Dryander (l.c.) explains the dates of pars i. as follows:"Duae adsunt editiones Tomi 1 mi , quarum utraque in titulo impresso habet ammm 1678 , sed in titulo seulpto, altera 1678 , altera $1656 . "$ I have not been able to confirm this distinetion between the printed and engraved titles; in copies I have seen both are alike, and judging from information in various eatalogues, copies with both dates in the first volume cannot be common. Such a possibility, howerer, is suggested by the copy in the John Crearar Library of Chicago, with an engraved title dated 1652 in the first volune, though its main title-page has the original date 1678, while Pars iii. (166^{2}) also has an engraved title of the same date, but not identical with that in pars i. Again, the Gray Herbarimm of Harvard University has two sets of the first six volumes, with imprints varying considerably, though the dates are the same for the respective volumes, and in one of them Pars i. (167 S) even has a totally different printer's device, a basket of flowers in place of the usual landseape enclosed by the motto: "Non aestas est laeta Diu, componite midos." These examples indieate that ahmost any combination of dates might have been possible in early volmmes.
 （haside the abomelity of repeating the contents：＂be varii womeris

 tithopare of lars i．：＂Nontis mamsit，de commentariis illnstravit Ammkhas Sion＂－though he is culogized he his sumeessen dan Com－

 to hase left litae else in the way of bentancal work save ome shont papar＂We Herma Fumama＂in Aclu Hafuicusin，iii．10：3 10．i
 of the tirst volime of the Hordus Mulabaricus，whith might well be his chici memorial．Just how math eredit is due to cateh of the
 givan in the varions prefaces of the work itself，there are considerable

 written as anl introdnction to bemastedt＇s schlïssel zum Horlus Malalumicus．
lertach indeed rases the guestion of earlier dater for cortain volumes，citing the prefiace，dated I）ecember lfind，of（＇aspar（＇mm－

 monemer，delinitely refers to erery plate in all twelve volmone of the

 that intommeh as l＇ats si，was issted in lates，the material for the remamine volume was all ready and ebeb in print for somse time
 555．1761）\＆ives diati as date of the first volmme，which is not
 \therefore A．1410）；nevertheless the prefites to this volume．which are all

 pmblication mat low in mistume which wonld suppret thene intima－
 such information woml make it pmblic．

> Mabsonie Fo. WABNER, Washington, D.C., L.SA.

Is mate on l．ehmamis Penfilli（p．104）much of what was sait recarling the firs of these reguien cometion．＇Ihe statement， lasal on inalogthat information．that mo copy of the original issme

 L．Chman and learl an outograph inceriptim，rims ：
"Index scholarum in Hamburgensium gymnasio academico in pascha 1525 usque ad pascham 1829 habendarum, editus ab Joan. Georg. Christiano Lehmanno (etc.). Continetur his plagulis pugillus novarum quarundam plantarmm in botanico Hamburgensium horto occurrentium Hamburgi, 1S2S."

The most important of the corrections necessitated by this discovery relates to the eight species of C'acti, which, in the absence of the original issue, I had concluded were first published in Nor. Acta, xvi. (1832) and interpolated by Lehmann in his reissue of Pugillus i. For this inference and what is based upon it there is no foundation; the Cacti appear in the original just where ther did in the reissue, and my misleading statement would not have been made had I been a ware at the time of writing of the review published in the LiteraturBericht issued with Limæa, vol. iii., to which Miss Alice C. Atwood, Biblingraphical Assistant of the U.S. Department of Agriculture at Washington, has called my attention. The erroneous inference that the reissue was reset from the Nov. Acta was based on the fact that the cops of the volume of Pugilli in the Department of Botany-I hare seen no other-which is apparently in the original binding, contains the plates from Nor. Acta, which of course were not in the original issue.

The note as to the plates (op. cit. xiv. 799) was, from considerations of space, somewhat abridged in my paper: in full, after "ex Indice" etc., it runs: "pugillum hunc plantarum, in Acta nostra translatum, figuris quarundam stirpium rariorum exornavimus, Cactorum, in eodem programmate illustratorum, historiam et effigies in proximum volumen Actormm reservantes." This, properly interpreted, makes it clear that the Cacti were in the original issue, from which they were separated only for the purposes of the Acta.

The four plates themselves present a certain puzzle which, although of no particular importance, may be briefly indicated. Although the Index Scholarum is dated 1525 , the plates in Nov. Acta bear date $18: 27$-the first "June," the fourth "July"; the first, second, and fourth are signed with a monogram "C.M."; the third is by a different (and much superior) hand; the name of the lithographer and printer are given, but the place of production is not stated. The four plates of the Cacti (Nov. Act. xvi. 1832) were printed in Breslau: the first was drawn by Lehmann, the remainder are by H. v. Meyer.

I had already noted the Kew copy of the original issue when I received the interesting communication from Miss Alice Atwood to which reference has already been made, wherein the errors corrected above were pointed out. With her letter she sends an account of the two sets of the Pugilli in Washington, "neither of them complete and both lacking the original Pugillus : the set in the Library of Congress consists of reissues, except for no. ii., while that in the Library of the Department of Agriculture is made up of originalsthat is, of the Pugilli as they appeared in the programs of the Gymmasium." From this it seems that it would be of interest to know whether the original Pugillus exists elsewhere than at Kew.

James Brittey.

sHotit Notme

 that the type of Alsine is I. medin L.; this " thus lecomes symur-
 mational tank londer the Amersean ('onk, howerer, the former
 of phate.' in spite of six strong anguments in fasour of Shellarii. This shregets that 'priority of place' as remate ememem stombld ho abambened as leading to molesimble results." (It may be mond
 will he fommi in this Jommat for 1 site, 1p. 2!es s, at a period when the momenclature of Sjperpularion was muler disension.) ". /lsiume
 (1i.5:3)." This was lirat pminted ont hy Mir. Hiern in a papro. to which Mr. Sparne refers, in this Joumal for 15999 . $3=0$) ; his comelu-

 romelum mat re the laternational lable: : the name Alsime thus dis".luars alt wrethr."

 oll the higher shons of at hill betwen Coblam amd Laddadenn and

 hat han troncht imder the fometh, and the phant had disippeareal. It is phating to know that it atill exi-ts in the mechammand. A.
 julpine from the homlite in which it incumel in 1902, it ment

l'runelf. lacintita in Kext. Mr. Wr. R. Shemin has kindly given me a specimen of the above, which he collected near Herue Bay in 1909. This appears to be an addition to r.e. $15 . \quad P$. laciniuta is now on record for the following nine comties :--Somerset N.! (v.c. 6), Hants S. (v.c. 11), Sussex E.! (v.c. 1t), Kent E.! (v.e. 15), Surrey ! (r.e. 17), Herts (v.c. 20), Berks! (v.c. 22), Cambridge! (v.c. 29), and Gloucester E. (v.c. 33).-C. E. Salaon.

Situreda montaxa L. in Hants (p. 25). The securrence of this plant at Beaulieu Abbey must have been surely well-known to botanists of a preceding generation. I have a sheet of specimens, duly mamed, collected by the late A. Grugeon at Beaulien Abbey in Aug. 1873.- C. E. Bratton.

Atriplex cilotimeci Fries " A. hastata L. Wg." teste Limdman, Srensk Fanerogamilora, p. 22S (1918). Mr. Lillie gathered this growing with A. arenuria Woods on the east coast of Caithness in Sept. 1915. These are the first certain specimens I have seen from Scutland.-Artučr Bexvett.

Poa onetensis (p. 25). In creating this name, Dr. Rendle had overlooker his previons correction (domm. Bot. 180s, 17:) where he had substituted P. szechuensis for his P. gracillima. P. omeiensis is thus an abortive name.

REVIEWS.

Iceland Botany.

The Botany of Iceland. Vol. i. pt. 6. The Lichen Flora and Lichen Vegetation of Iceland. By Olaf Galloe. Vol.ii.pt. 1. Freshwater Diatums. By Erast Oestrup. Copenhagen, 1919$19 \div$ U.
Galloe has divided his study of Iceland lichens into five sections:(1) A list of Iceland lichens : (2) a diseussion of the means of prolagation; (3) the biology of lichens; (4) Ecolngy; and (5) the rertical distribution. It is the ecology of plants in an island subject to wind-storms and to extreme cold that offers most points of interest. The list of lichens gives us the subject-matter: it contains 25.5 species, among which the lichens of warmer regions and those that grow on trees are poorly represented : crustaceous rock-lichens and soilJichens predominate. The author has added to each a statement of its presence or absence in Great Britain on the one hand and Greenland on the other. The large majority are to be found in our islands, though Dr. Gallse has credited us with species the recort or which is unknown to on floras; and, at the same time, he has failed to note some of our quite common species. He is also somewhat inconsistent in his citation of authorities, giving sometimes only the earliest, as in "Coniocybe firfiuracea L.," at other's carefully relegating that authority to the usual bracketted position as " Cledonie coccifera (L.) Willd."

In the disenssion on Eenlogy the " Associations" are divided into
(1) Bark-lichen, (2) Eanth-lichen, and (i) Rock-lichen. Unter these hatabes, which reprewnt the substata, be describes the
 sill. wh stonc. aml the ulfeet even in leedand of valiations of climates. Ir. (iallue emsiders that somere end alfects the growth of lichens adreredy. 'This has not hern altosether the experience al liehenolo-
 (t) he ampletely chotheal with lichon vegetation; a great proint in
 whor phats, an achantate which we are tohl is shared ly the rocklichern of lechand.

In at provions part of the Botany of Iorland, Ilessellow gave mand attontion tor the intluence of hot sprome on the mosis rearetation in
 the lichons (if there be athy) trowing in these areas wonld have berol wif exteme interest, amb it is to le resretted that the operntumity to

As resards vertical distribution, the author concludes from hos whervations that lichons are least abmonat where the cold is monst sewore that both as revards the momber of shecies and mass-
 tim herghts which is hare of all wthere competitors." He fomm! that

 alomml in original olservation, aml shows how much of interest is - till to he lamed alout liehens and their habitats.

The -pecial thanks of British stulents are due to the anthor for Lisine us his sturly in English. The reference (p, iii) to " Crombie, lBriti-h lichens, LS:H-1:111 " reguiten correction.
A. 1. 犬.

Frant Onstrup's posthmmons paper on the Freshwater biatmms from leeland is hased npon $5 \boldsymbol{6} 2$ samples of diatom-matiorial, gathered ly som sixtern collectors mostly in the (atst, sonth, and somblhweatern pats of Teeland. The work is divided into two parts: (1) a sh ntomatio list with references to literature and giving deacriptions of $\therefore \begin{gathered}6 \\ 0\end{gathered}$ $\bar{\sigma}$ phate : and (2) an :ulphetieal list with tahles showing the distri-
 wider distribution is the Aretic resion amb in the live contine of the worla. 'The hambere of forms previonsly recurded lior the indonl was 1:31; so its diatom-floma is mow throw-ithl-ithall times as

 fine the mont part they we fonem in the living state-that is, fomtiming entorlirme.
A. C .

It is always interesting to sech how Menkem lbotany of the sebools wall approach the suliject of the indigenous floma, and explain what
there is to do when one knows the names of all the plants available. Since expansive acconnts and an exhanstive nomenclature of critical sub-species have little interest for students hrought up to contemplate the mutants of Enothera, and the facile assmmption of hybrids which rest on no experimental evidence does not excite those who are tanght that such forms will Mendelize out. Floras devoting space to such conventions are obsolete before they are issued. and a working account of the bology and ecology of the living plant is a desideratum far berond even the anthentic herbarium-specimens of an Exchange Club.

Starting from the standpoint that the special plants of fresh-water streans and ponds are particularly arailable in the C'ambridge district, Mrs. Arber has attemperd a review of esentially arqatic types of Howering plant which may serve as a model for the examination and illustration of other biological groups of the British flora. As the anthor points out. no indigenous Angiosperm vegetation is so markedlyaberrant from what passes as normal habit, as the regressive flowering plants of ponds and even of the sea; while in these days of rapid enclosure of woods and common land, and the marel of cultivation implied by improved agriculture, such aquatic stations alone tend to retain their original inhabitants comparatively unaffected, as well as ready of access to the casmal botanist.

The text inchodes a rery full description of the organization and habit of such plants as Sugittarie, Nrmpheat, Hydrochuris, Potamogetons, Utricularias, and Water-Ranunculi, with chapters on their -pecial anatomy, their flowers and fruits physiological processes and ecology, taking the last term in its widest significance. In order to sive a wider outlook, more striking exotic examples are touched on, as: Podnstemacear anh the marine Halophila and Posiloniu. More speculative sections introduce refereners to the Law of Age and Area,' and the 'Law of Loss': thongh, as in the case of the • Law of the survivor of the Fittest, it is doultful whether one gains more than a definition of the terms employed. It is refreshing in such a volume to find sistematy kept well in the backgromed: for example, Limeanthemmin is bracketed with Symphoere. 'The text may run thin in places, as in the account of the foral mechanismo of the Nympharacere. and in details of fruit and seed-formation. and there is an excusable hias for recording ancient history ; but the rolume covers a wide range of introductory work, and as such will be welcomed by the student of the British Flora as a standard compendium of information on aquatics.

The methon of interpretation reflects the attitude in which students of the last gemeration have been tanght to consider the mechanism of derivation and adaptation, however much one may wonder sometimes if the prohlem is stated the right way : since the 'Law of Loss' is but a corollary of the hasis on which it has been possible to build the science of comparative morphology. A deep respect for authority, again, which is less required when one has the living plant to deal with, finds expression in the extension of the uwal list of references to 65 pages, thus swollen by the addition of brief notes on the content and scope of the memoirs-a somewhat

Journal of Botanf.-Vul. 5S. [December, 1920.] 2 1
 wh Mati in are werth at tol of literature.

 lowibly whe will wet new in time to the price of recent pullieations of the ('imbriture l'res.
A. 11.1 .

 nisul in ald the motion ol him that hatr appearel, an well ats in

Superintendent in each of the five Gardens in the island. and was always thorough in his work, and a most loyal and helpful assistant. In 1.90 s. on $m y$ retirement, Harris was made superintendent of Public (iarlens under the Department of Agrienlture; in 1917 he was made (Goremment Botanist, and in 1920 Assistant Director. He distinguished himself as a collector of specimens for the local Herbarium, and I gare him every opportunity to derote himself to this work. He spent his holidarsi in collecting tours, thus becoming acquainted with the flora in every part of the island. His journers were sometimes arduous, and often lasted for several dars in the bush; frequently the only shelter he conld get at night was a negro's hut. In the last letter I receivel from him. dated \&th Angust. 1920 , he told me that he had had a break-down in health, and was compelled to go on three months* sick leare. Later I heard that a trouble in the throat of which he had complained was cancer, and he had gone to the Cnited States to consult a specialist: he went to his eldest son": home in Kiansas City, where he died in hospital. By his death botanical exploration in Jamaica has suffered a severe loss. and I lose a personal friend who has alwars been very hel,fin, and particularly of late vears in my work on the Flora of Jamaica. Harris is commemorated in the genera Harrisin (Cactacese) and Harrisella (Orchidacese), and in the specific names of many of his discoveries.W. Fimeett.

Is a handsome rolume issued hy Messro Longmans, Professon (ied hles has published an acconnt of The Life mul Work of sio, Jugulis E. Bose, with portraits and illustrations (16% net). Notiees of Bose"s earlier works-Plont Respoise as a mentes of Plysiologiral Inmotigution and Response in the Livingmat Som-Liviny-appeared in this Jommal for 1003 (p. 2s) and 1906 (1). 24.5): his later book: on the irritability of plants and on their life-mosements are summarized by Professor Geddes, who also gives an account of Bose's other observations. To many the most interesting portion of the rolume will be the narrative of the struggles for recognition that ended rimmphantly in May last in Boses election as a Fellow of the Royal societr, which, twentr years before, had rejecterl the paper enntaining his first results in plant response. The endeavour to doprive Bose of the credit of his researches, as presented br him, after the Royal society rejection, to the Limean Society is not pleasant ratling: Professur dealdes, who expreses the indignation generally felt at the period, mast have been sorely tempted to give the name. which however many will be able to supply, of the phrsiologist who clamed to have anticipated Bose. The accome of Bose's early struggles and later thasels is written from personal knowledge in the graphic style of which his biographer is a master, and the book. apart from its selentific value, is very interesting reading.

At the meeting of the Linnean Society on Nor: 4, Mr. H. N. Dixon enmmunicated a paper on ." The Mosses of the Wollaston Expedition to Duteh New Guinea." These mosses were not described with the higher plants, but have since been worked out and have provel of great interest. Although consisting of only some 60 gatherings. the collection contained trpes of at least two new genera.

 1: (lark, of the Lombon Mionimary sompety, in the wiquhompont of

 a lunami-1.

 B;ith Ifrime

 [10

 b, whel- the deticit will the pintol in oum danary fome.

By Lr.-Col. A. H. Wollet-Dod.

Tref difficulties surrounding the naming of our species and varieties of Roses increase rather than diminish as I see a greater number of specimens, though I am convinced that a sutticiently prolonged study of them will show that they can usually be segregated into varieties of which the individuals sutficiently closely resemble one another to be satisfactory, which at present is not the case. But if this be done, either the Subgroups or even the larger Groups will hare to be abolished. There is little doubt in my mind that varieties. for example, with slightly hairy leatlets, or with glandular-hispid peduncles may in many cases be linked to those which do not present these characters, and thercfore now appear in different Groups. In other words. I believe we should be guided at least as much by general habit and appearance as by technical characters, but this will be difficult with dried specimens.

Most of the very detailed descriptions of Déséglise, Ripart, and others, even those of Woods, can hardly be other than those of an individual bush or specimen, which eannot be completely matched by eany other. Some descriptions, on the other hand, are so short and vague that, in the absence of authors' trpes, it is impossible to say what they mean, and authors' types are often so small and scrappy as to be useless.

The more I see of Déséglise"s herbarium, the more umnecessary confusion and misture I see in it, and I fear I have been misled by many of his names. Yet I think few rhodologists will dispute that we have a large number of distinguishable forms, which can be more or less well segregated. The difficulty is that of deciding which features are of importance, the relative values of which also depend on the Group into which they fall.

In the subjoined paper the characters, which only touch on the main features, are drawn up partly from descriptions and partly from specimens named on good authority, though, as said before, I may have been misled by some of Déséglise's names. They are for the present. I fear, only provisional, until further study confirms or alters then. It seems more than likely that some of the Subgroups will have to be expanded. and others curtailed, but a satisfactory solution is almost berond the powers of an individual.

I should be very glad to see any collection of Roses and to name them in accordance with these riews, and still more glad to receive criticisms on the arrangement, or the names given to specimens. It is only with the help of such criticism and the advice of those who have studied the genus that progress can be hoped for, as there are many parts of the kingdom I am unable to visit in order to study the growing plants and their habits.

Finally, it is hoped that this expression of the difficulties, rather than suggestions for their remoral, will not cause botanists to a void the genus. Knowledge can only be obtained by study and experience, and if collectors would send me good specimens, not the ends of flowering shoots, which are almost useless, and study their local forms.

Jucrajal of Botasf. Aprle, 1920. [Supplemext 1.] b

 with a cign of doult these which are more thatm unally dombtinlly contert.

 sumbariac thon here lor rimy relereme: -

$$
\begin{aligned}
& \text { (iROHP OF R. splosessama. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1. Primary Group of R. canina. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { A. Sulyeroup Latutianse. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1). Sulurowi Andermonses. }
\end{aligned}
$$

> B. Sulyerong, 1) -aydiaci.
> ('. Sulagronp Acionlat:r.
> 己. Primary Gromp of R. glanca.

> A. Sularoupl licutroi.
> B. Suluroup sulnaninse.
> (S. Sularoun) Coriilulia.
> 1). Sulngory sulworilalier.
> 3. Primary Gronp of R. tomentella.

> A. Sulyroup 'Tomentora.
> B. Suburan, sablorinambar.

$$
\begin{aligned}
& \text { Z limotp or li. varovill. }
\end{aligned}
$$

I. SECTION SYNSTYLA.

Grotp of R. apreasts.

Habit weak and trailing, prickles stont, leaflets pale green, often glaucous, peluncles long, glandulan, sepals entire, styles in a very long quite solid column, with stigmas in an elongate head. The clusters of flowers overtop the uppermost leaves.
R. arversis Huds. simply or nearly simply serrate leaflets, glabrous or very sliohtly hairy on milribs and petioles, and globose or broadly ovoid fruit. V.c. 13, 14, 16, 17, 29, 32, 39, 10, 41, 55, 58 , 60, so, sl.
f. majoi Coste. Stouter, more erect, many flowers in a cluster. Y.c. $2,3,13$ or $14,17,32,62$.
[f. repens (scop.) is a weak form ; I have not hitherto distinguished it, but it is doubtless common.]
f. scabio Baker. Glandular petioles, often spreading to midribs. V.c. $3,13,17,34,41$, 55, 5. 8.

Var. orata (Lej.). Ovoid or elongate fruit, leaflets variable. I include forms of mejor, ir pens, and scabro if the fruits are of this form. V.c. 2, 3, 13 or $14,17,19,36,37,62,63$?.

Yar. Diserpotn Crép. Leaflets fully biserrate. Y.e. 57.
Var. laripes (rremli. Peduncles all or mostly smooth. Y.c. 17, $15 ?, 19,41 \%$.57, 62 or 65% ?
f. pilifolia Borb. Leatlets pubescent all over the lower surface. V.c. 17.
R. arrensis \times systylu (R. dibracteate Bast. non auct. britt.). Intermediate between the two parents, with very large white flowers.「.c. 5, 19?.
R. arrensis \times gallica (R. gallicoites Déségl.). Stem and sometimes the fruit with glandular acicles or sessile glands. V.c. 36, $37,38, .57$.

II. SECTION STYLOSE.

Groct of R. striosa.

Erect. Stout hooked prickles, styles in a glabrous column (but often loose), usually salient from a conical dise, with stigmas in a narrow conical or cylindrical hearl, long glandular peduncles not overtopping the uppermost lea ves, rather large, dark, shining green leatlets, well spaced on the petioles, and pinnate sepals.
R. sticos. Dex. Rather broad leaflets, hairy on both sides, or at least rather densely so beneath, and white flowers. Y.c. 8, 9, 11.
f. corymbesa Desv. (var. opaca Baker). Like type, but with smonth peduncles. T.c. $3.9,13,14$.

Sar. stylosa Baker. Large narrow leaflets, glabrons above, and thinly hairy beneath. sometimes on mitlibs only. Flowers rose. K.c. $1,2,3,4,6,9,11,13,15,16,17,21,22,23,24,29,31,32,34$, 35, 36, 37, 41.
f. leucochroa (Desv. non auct. hritt.). Flowers white, otherwise as in var. systyla. V.e. 3, 15, 17, 31.

Var. ptychophylla (Boulenger). Smaller, with smaller finer-
toothed leathets. White thowers which projeet alowe the uppermost lealom. V....!

 Yi. 17.

 1.c. 31. 31.

(irotp of li. Sirvasissmat

 \rightarrow とllaに.

 V.1. 16, fin, 1! Path:-

Var. mitissime (Gimel.). Almon marmenl. hallets larmer amb

 athl midrios Llamlular. I.r. 17.

 11.07

 27. (il, G\%, 90, |1x).
f. Subini (Woods)=R. Doniana Woods. Prickles straight, leatlets fully biserrate, pubescent both sides, more or less densely so bencath, and often with subfoliar glands. R. Domiana is said to have more hairy leattets, entire sepals and white flowers. V.c. 13, 14,
 E. Mayo.
f. yracilis (Woods). A large plant, with main priekles falcate, leatets like Sabini, and peduncles often cernuous. V.e. $21,62,70$.
f. Robertsoni Baker. Main prickles eurved, leatlets not fully biserrate, rounded and subohtuse like those of R. spinosissima, sepals pinnate, fruit subglobose, usually smooth. V.e. $17,62,66$ or 67 , Derry.
f. gracilescens Baker. A stout form, with large, fully biserrate, thinly pubeseent, eglandular leatlets, petioles almost eglandular, Howers many in a cluster, and fruit smooth, ellipsoid. S.c. Antrim.
R. spixosissima \times mollis and R. sptiostssima \times omissa. Several forms from sootland, which do not fall readily into any of the ahove-named forms, have been referred direct to their aggregate parentage.

2. Grotp Pimpineliffolie \times Ev-Cinive.

lrickles mostly hooked, acicles usually few, leatlets uniserrate in most forms, some rarer one with them biserrate, ghatrous or only thinly hairy, peduncles usually smooth, sepals usually retlexed, fruit smonth, with hispid rarely villous styles.
R. hibersica Templ. Prickles uniform, stout-based, leatlets miserrate, thinty hairy on midribs and prinary nerves, or the latter glabrous, peduncles smooth, fruit subglobose or broadly ovoid, sepals erect, pimate, styles villous. V.e. 5b, 65, 70, s2, 94, Derrr, Down. .
f. Ilubra Baker=var. Giroresii Baker. A form with glabrous leattets. V.e. 17, 5 S, 63 or $65,70,94,107$, Antrim.
f. Wilsoni (Burr.) = var. corlifolia Baker. A small bush, with more mixed armature, main prickles ahnost or quite straight, leaflets large, uniserate, oblong, emarginate at base, thinly hairy, peduneles glandular-hispid, fruit large, urceolate or subglobose, ustally smooth, sepals entire, rarely pinnate, ereet, rarely reflexed, styles very thinly hispid. Y'.e. 44,68 , Derry.
f. Icerıgutu Baker=var. Webbii Baker. Leaflets fully biserrate, more hairy than ustal, peduncles smooth, fruit subglobose, sepals sulentire. V.e. 5s, 64, 65, 83. Derre.
f. Margerisoni W.-Dud. Small, very like R. spinosissima, leaflets uniserrate, slightly hairy at least on midribs, peduncles smooth, Howers pink, styles villous. Y.e. 64, 65.
f. occidentulis Baker. Very near the last, but with den ely aciculate and glandular-hispid peduncles and pinnate sepals. V.e. Ireland.

3. Group Pinpinellifolie \times Rcbiainose.

Known by their abundant and prominent fragrant subfoliar glands.
R. spinosissima \times irnliginosa f. cantima W.-Dod. (R. biturigeisis auct. britt., non Bor.). Very mixed armature, the larger prickles

 1., ᄂ! いこ - ! !

 !11. !

1. Primary Group of R. canina,

A. Suhgromp latelian:

Tiar.seporabitis (Déségl.). Trpieally unarmed, leaflets of medinm size. shining. coriaceons, fruit obovoid or ellipsoid, styles hispid. V.c. $3,17,23,32,36,39,12,55,62,65$, 内S.

Var. nemophilu (Déségl. \& Ozan.). Leaflets large or medium, flowers rose, fruit oroid, strles in an elongate fascicle, glabrous or nearly. V.c. 3, 7. 14. 17, 23, 24, 333, 57.
f. flexibilis (léségl.). Prickles stouter and more hooked, leatlets more narrowed at the base, flowers white, fruit more elongate, styles quite glabrous. V.e. 3, $13 \% 14.517,29,36,40,62,80$.

Var. senticosu (Ach.). Leaflets small or rather small. petioles often pubeseent, fruit small, broadly ovoid, styles hispid, often only thinly so. Closely associated with its subvarieties and with var. curticola in the next subyroup. V.c. $3,16,17,21,2 \cdot 2,23,32,33,34,35,36$, $40,55,59,62$.
f. oryphyllo (Rip.). Like var. senticosa, but leaflets small, rarely rather large, narrow, acute at each end. Fruit rather broady ovoid, strles hispid. V.c. $17,5 s$.
f. mucronulata (Déségl.). Like var. senticosa but styles quite glabrous, fruit oroid. V.e. 17, 23?, 33, 34. 65 ?.
f. Amansii (Déségl. \& Rip.). Like var. senticose but fruit quite globose. Its strles are hispid. V.c. $15,16,17,36,55,6: 3$ or $6 t \%$.

B. Subgrote Transitorie.

Intermediate between the last and next Subgroups. Leaflets mostly simply sermate, but some of them, especially the lower ones of the flowering shoots, distinctly biserrate, the primary teeth bearing 2-3 dentieles which are often gland-tipped.
R. hetethine var. transitoria R. Kell. $=R$. insignis Déségl. \& Rip. As in type lutetionc, except for the incipient biserration. The petioles are often glandular. V.e. $3,4,17,22,23,24,31,32$, 34, 36. 55. 57, 58, 59, 60, 64, 69, 70, 80, Antrim.

Var. whychocarpa (Rip.). Fruit elongate-ovoid or obovoid, much constricted below the dise so as to be almost beaked. Leaflets normally large, but variable, styles glabrous or subglabrous. V.e. $17,42$.

Var. globularis (Franch.). Fruit subglobnse or broadly ovoid, sepals often rising. Y.e. 3, 5, 17, 22, 23, 32, 34, 36, 37, 55, 55, 60, ST, Antrim.

Var. syntrichostyla (Rip.). Leaflets small or medium, styles densely villous, usually salient. V.c. $2,3,55,17,34,36 ?$

Var. curticola (Pug.). Near var. senticosa, with small leaflets, small oroid or subglobose fruit, and glabrous styles on a conical dise. V.c. $5,14,17,34$.
f. ramosissima Rau. This appears to differ from the last ehiefly in its numerous short unarmed flowering branclies. Its leaflets are larger and more narrowed at base, more unformly serrate, styles more hispid and dise flatter. T.e. 17, 22, 23, 24, 32, 64.

C. Subgroup Dumales.

These have all or most of their leaflets biserrate, not alwars strongly so, nor with the dentieles always gland-tipped; they are

 －lamb．
＇Tha suheromy may have bexts ton mumb sublivided，but its

 tetion＂lout whh more ar less hisermate leatlets，the frat is manally

 1）erys，Intrim．
f．rulurllyllora（lijp．）．I see nothing in this lant a bright red Howered form of the varicty．lijart credits it with fewer and stmaghter pridiles，sulsmale lateral leallets and broad stipules．

Viar．sphuroulern（lips．）．Thas differs from vars．yloluluris and spherion only in its bisemate katleto．Thae sepralo，as in thane
 A1tr゙m．Wしいい．
 hiamate than in var．dumalis，fruit sulghobese，and styles worlly．

 Town．

 It has rather small of matimn－sized leathets，mot mush hisemato， therefore mot asily sepamble from barictice of the lan suluramp． If stye are mather lomer and densely hiopid．the frout small，sul，

 17．31；54．1i7：－

Var. recognita Rouy is remarkable for its leaflets and fruit being elongate and narrowed at each end. Its styles are usually hispid, but sometimes glabrous. It might be regarded as an extreme form of var. stenocarpa, but with more hispid styles. V.c. $3,17,23 ? 42$, 58 ?, Down.

Var. Schlimperti Hofm. (sub R. canina). Laatlets rather large and rather narrow, usually narrowed at each end, fruit ovoid, styles glabrous or nearly so, and remarkable for its very rising or even subereet sepals, though they are deciduous. T.e. $42,43,58$.

Var. sylvularum (Rip.). Priekles ustally straightish, rarely hooked, leaflets quite small, fully biserrate, fruit subglobose, styles thinly hispid, rarely woolly. Resembles var. senticosu. V.c. 17, 58.
f. parisiensis Rouy is a form with very small fully bisermate leaflets, usually narrowed at each end, fruit ovoid, and styles glabrous or subglabrous. V.e. $16,24,26,58$.

D. Subgroup Andegatenses.

These are the varieties which have at least some of the peduncles glandular-hispid. The leaflets have all degrees of serration, but are without subfoliar glands.
R. lutetiana var. andegavensis (Bast.). Prickles often small and straightish, leaflets large, uniserrate, rarely slightly biserrate, variable in shape, typically elliptical and narrowed at each end, and well spaced on the petioles, fruit usually ovoid but variable, sometimes more or less glandular-hispid, styles hispid. V.c. $3,13,15,17$, $32,34,36,38,40,57,58$.
f. agraria (Rip.). The only important difference is that the styles are glabrous or subglabrous. Y.c. $3,11,13$ or $14,15,16,17$, 22, 24, 57, 5S, 68, 70.
f. surculosa (Woods). I think this is only a luxuriant state of the type, with stout hooked priekles and a tendency to form large clusters of Howers, of which the peduncles are often only slightly hispid. Fruit very variable, but deseribed as ellipsoid, styles very thinly hispid. V.e. 13, 21, 22, 36 ?.

Var. Rousselii (Rip.). Leaflets suborbicular, uniserrate, fruit broadly ovoid, styles subglabrous. V.e. 17 ?, 34 ?, 55, 58.

Var. litigiosa (Crép.). Very short flowering branches, small uniserrate leaflets, small narrow ellipsoid fruit, and glabrous styles are the leading features. I do not feel satisfied that my specintens correspond, as they have broadly ovoid fruit, but they are nearest to this. V.c. 17?, 32?

Var. verticillacantha (Mér.) $=R$. inconspicua Déségl. Leaflets biserrate, peduncles not much glandular-hispid and ovoid fruit not at all so, with hispid or subglabrous styles. The supposed prickle arrangement in a whorl is not peculiar to, nor indeed common in, this variety. V.e. 7 or $8,22,23,32,34,38,40,58,62,65,70,99$, Down?, Antrim.
f. Lemaitrei (Rip.). Leaflets smaller, fruit ovoid, and styles glabrous or subglabrous. Not easily separable from var. verticillacantha, or the less biserrate forms from f. agraria. V.e. 2, 10, 17, 33, 34, 58, 70.
Jotrial of Botayy, May, 1920. [Scpplemext I.] c

Yar, Schotliana Ser. (sub R. canina) differs from var. erevicillacantho mainly in being almost marmed, its leatlets also are more strongly hiverate. fruit ovoid and styles villons. V.e. sis.

Var. aspernata (Dosigh.). Typieally this shomb have its peduncters and froit strongly armed with stont actoblar sete, many of them rglandular, but mang forms with them mhe glandular-hisphid have heen placed here for want of a helter mame. Leatlets of medimm size, hiserate, fruit momally ovein, but in the abermant forms globese, and styles hispid or sulglahorous. V.c. $3,17: 23,31 \%, 364,54 \%$

Yar. latebrosn (Désert.). Stems with ateles in clusters here and there, leallets rather small, bisermate, froit owoid and styles hispind. It may be a hymod, though similar acicles appear in varioties of ather Groms, the hybrid origin of which has not heen suggested. V.c. 1 or $2,3,23,3 \%$

ii. Secondary (hbutp of R. mumpmana.

Leallets clahrons, fully glandular-bisemate, often narmw, with subfoliar glands at least on primary nerves, tarely on mid-ribs only, peduncles smonth or glandalar-hispinl, fruit and stives variable. It is perhaps wrong to admit specinens without sublobiar glands, but these organs are often so elusive, and frequently appar only on a few leaves, that 1 have induded forms withont them on ateomint of their very rompomd glamblar hiserration, and their strong resemblane to forms which have them. The Gomp inchudo ('rumins sicabrata.
R. noosmbasa lijp. I.eatlets lage, sometimes hoal. pedmeles
 front is woid, and forms exist with glabroms or with noolly styles.

Var. rinucen (Baker). Leatlets typimally marrow and well spaced (n) their petioles, pedmules smonth. front anind or allipmid, and styles hispid. Forms without smblibliar glambate freguent, and the position of the varime is donltful, Baker havine firet cerelteed it with subfolian glands and afterwands making it a form of var. biservatu. V.c. $43,54,63$.

Var. Beatricis (Bum, if Cirem.). Leatlets small, often quite narmow at mach mul. Numally wery ghmentar, but British forms have few and inemspicmons sulforiar glames. Frnit ovaid or cllipsuid, stylen sulughturous. V.e. 36, 40, is.

Thas includics all sariaties of the D'rimary (irmp (\mathbb{R}. canina). having hairy leatlets, emb though the hairs are commed to the mid-rils, hat not thise with pubereme on the patiole only. In some forms the sepals are sprodine and in whe variete the atre subered,
 them from the C'orrifulite.

A. Sulgroup Dumetumm.

Pedmeles smooth, leafle to simply or hisurate.

 $31 ? 30,0 \%, 21$.
f. urbica (Lém.). Very near R. dumetorum, but leaflets less hairy, usually glabrous above and thinly pubescent all over beneath, fruit oroid, and styles hispid. Usually larger stronger bushes than in the type. V.c. $2,3,8,17,21,23,32,34,36,37,39,43,58$, 62, 70.
f. trichoneura (Rip.) differs only in the pubescence being confined to the mid-ribs and primary nerves. V.c. $6,13,14,17,22,27,32$, 34, 36, 40, 43, 50, 5ऽ, $70 \div, 78,95$, Derry.
f. semiglabra (Rip.) is still more glabrous, being pubescent on mid-ribs only. It.s styles are more hispid, often villous. V.c. $3,5,6$, $14,17,22 ?, 23,32,40,57,59,62,65,70$, L. Neagh.
f. jactata (Déségl.). Leatlets larger, irregularly serrate, thinly hairy beneath, usually on mid-ribs and primary nerves only. V.c. 17, $24,31,32,55,58,70,92$?.

Var. hemitricha (Rip.) is thinly hairy and normally biserrate, but many subsimply and even simply serrate forms have been placed here by Déséglise-wrongly, I think. Its petioles are more often glandular than in the type. V.c. $3,6 ?, 17,21$?, 23, $32,34,36 ?, 40,57,58$, 59, 65, 70, 77 ? 79.

Var. Gabrielis (F. Gér.). Leaflets smaller, often quite small and narrowed at each end, hairy on mid-ribs and primary nerves only, fruit ovoid or ellipsoid. V.c. 3, 14, 17, 31, 32, 34, 36, 40, 58, 59, 69, s s.

Var. platyphyllat Clir. Leaflets large, very broadly oval or suborbicular, hairy on midribs and primary nerves, fruit large, ovoid, styles villous. V.c. 3, 13, 17, 19 .

Var. spherocarpa (Pug.). Near the type, but with broader less hairy leatlets, quite globose fruit, and thinly hispid styles. V.c. 3, 4, 17, 23, 24, 34, 41 ?, 5S, 62, L. Neagh.

Var. spinetorum (Déségl. \& Ozan.). Often umarmed, leaflets large, sub-biserrate, typically obtuse, fruit globose, styles densely hispid. V.c. 5.

Var. ramealis (Pug.). Peculiar in its elongate-ovoid or obovoid fruit, leaflets thinly hairy beneath. V.c. 17, 24, 31, 34, 58 .

Var. erecta W.-Dod ined. Remarkable for its very long peduncles in clusters and suberect sepals. Its leaflets are irregularly serrate and thinly hairy, fruit ovoid, and styles hispid, sometimes densely so, but not villous. V.c. 17,21 ?, $40,43,58,70,88 ?$

B. Subgroup Deseglisei.

These are the pubescent-leaved varieties without subfoliar glands, simply or subsimply serrate, and glandular-hispid peduncles, sometimes also the fruit. Some forms approach the Stylosa and the Corifolice, from which their Group characters should distinguish them.
R. dumetorum var. Deseglisei (Bor.). Leaflets normally small, but variable in size, broad for their length, hairy on both sides, rarely glabrous above, strles hispid, and fruit small, ovoid or roundish. V.c. 13 or $14,23,31$?, $32,36,58,65,67,68$.

Var. incertu (Déségl.) has narrower leaflets, glabrous above and hairy on mid-ribs only beneath, usually somewhat irregularly serrate
lont mot liocrate, and our forms are patctically simply so, fruit larger, amd styles manally hispiel hat varying to ghabrons. Glabrons-
 lout their stoles, prickles, amd pememblahit serve to distinguish them. 【.c. $3,10 \div, 23,3: 3,31,36,40,55 ?, 5(6,57,54,6: 2,67,70$.
f. imitata (1)éserl.). Leallets very thinly puleseent, fruit elon-gate-edlipsind, and thinly hispid styles. V.c. 36%

C. Subgroup Aciculatie.

Like the last Subgroup, but with hiserrate leaflets.
IR. dumrtornm var. "ciculata Rouy (sub R. runina). By Rouy's key this shouk have long very prickly thowering banchos, slader straightish prickles. sumall hiseriate leateets, hairy on primary nemes
 spectmon is peothling for the presence of smatl acieles and gland tipled seta towads the ends of its thowering hamehes. V.e. 17%
 groen, inne or less pulescent on both sides, peduncles nsuatly mather stomgly glamblar-hinpid, and sommimes also the buadly orovid froit, styles lispich. Forms with maller leallets, mamower fruit and villons styles aceur. It has been misealled R. cersia in britain. V.c. 5%.

2. Primary Gromp of R. glanca.

The important ehameters are short pedunches, bomed bracts and
 kotal of very villons stigmas, which hamelly ever projeet almoe the narrow dici.

This envers the glabrons-lataved variefies. The deaves are often Llamonn, mismate on hisermte, amb with or without snlfolian glamhs. The young shoots, stipules, and hrate are offen rembish.

A. Kularomp Reuteri.

In theme the sepals rise above the dise, or are even subered after thworing. and persist till the fimit riperns.
 I'rickl, rather -mall, lathets simply verate, withont subfoliar glamb,

 (i7, is. 44, !11, Antrinll:
f. intricula (tirnl.) = var. transiens lisen. The only important

Viar. sulmeislaln Bakir=li. complecaln (iren. Labllets mure or

 lone fr-intont, of that the frait risembles that of li. mollis sm.,

Var. fugax (Gren.). Leaflets bisermate, not subfoliar-glandular peduncles glandular-hispid, fruit normally subglobose, but more often ovoid or ellipsoid in our forms. Y.c. 36 ?, 58, 65, 81, 88, 98, Down?

Var. stephanocarpa (Déségl. \& Rip.). Leaflets biserrate, with subfoliar glands on the primary nerves, peduncles smooth, fruit broadly ovoid or subglobose. V.c. 57, 70, 85, Down.

Var. cenensis R. Kell. As in the last, but peduncles glandularhispid. The leaflets vary much in size and shape in our forms. V.c. 40,57 ? , 70, 88.

B. Subgroup Subcaninæ.

I define this Subgroup as having the characters of the Group of R. Reuteri, but with the sepals not rising above the dise, and often quite retlexed and deciduous, but this is neither Crépin's nor Keller's definition. The former credits it with hairy nerves, which would include it in the Subcoriifolia subgroup, while Keller describes it as a series of varieties much nearer the R. canina Group than that of \boldsymbol{R}. Reuteri. The absence of the most conspicuous feature of the Group makes its varieties difticult to recognise.
R. Reuteri var. subglancu W.-Dod. Like R. Reuteri, i. e., leaflets simply serrate, peduncles smooth, fruit ovoid, but sepals reflexed. V.c. 13 ?, 23 ?, $40,69,78$?, 79 ?, 88.

Var. montivaga (Déségl.). Leaflets irregularly serrate, fruit subglobose. Though deseribed as a Canina form, both deseription and specimens clearly indicate a variety of R. Reuteri. V.c. 36, 57, 60.

Var. denticulata R. Kell. This includes all the forms with biserrate leaflets, the other characters being variable. It therefore probably requires suldivision. V.c. $34,58,70,88$.

C. Subgroup Coriifolise.

The counterpart of the Subgroup Reuteri, with more or less hairy leaflets, at least on the mid-ribs. Its prickles are rarely stout, usually rather small but hooked, though sometimes long, rather slender, and curved.
R. Reuteri var. coriịfolia (Fr.). Leaflets variable in size, simply serrate, hairy on both sides, or at least on the lower surface, without subfoliar glands, fruit subglobose. V.c. 39, 57 ?, 58, 62, 65,69 ?, 70, S0, SS, Down.
f. subbiservatu Borb. (sub R. coriffolia) has its leaflets irregularly serrate or slightly biserrate. V.c. 3 ?, 38, 39, 57, 58, 92.

Var. implexa (Gren.). Leaflets often irregularly serrate, thinly hairy, often on mid-ribs only, withont subfoliar glands, though Grenier has named examples with them on the primary nerves, sepals often less erect, connecting it with var. subcollina. V.c. $57,58,65, \$ 8$.

Var. Bakeri (Déségl.). Somewhat ill-defined both by Baker and Déséglise. Leaflets fully biserrate, rather densely hairy, often with a few subfoliar glands, typically narrowed at the base, but not always so, peduncles smooth or a little glandular-hispid, fruit ovoid, ellipsoid, or urceolate, smonth. V.c. $43,62,67,69$?, 70 ?, 88.

Vap. Ẅ̈tsoni (Baker). Jeatlets mather large, biserate, variable in hatriness. hut typically thinly so, without sulfoliar grands, predmeles -month, rarely with a few glamlular seta, fruit sub-

Var. reprovtu (Baker). Leathets small, homal and fully biscrmate,
 smouth, firuit sulurloluse V.e. 3: 3 .

1). Sulowroul Subeorifolste.

These have all the elanaters of the ('orifolice. but with seprals redlexed, or at most mot rising above tha dise. 'The absence of suberect sepala maken its varicties dillieult to separate from some of these of the Dumeforrum (iroup.
R. Renteri var. suhcollina ('hr. (sul) R, coriffotia). I.eallets - imply servate, mather lares, narrowed at the hase, hatry on primary norves or on whole lower surface without subfoliar orlamls, fruit latree deceribed an roundish or a little woid, but more of ten cllipsoid in sur ce:mples. V.c. $17 \div, 70 \%, 85,!5,94 \%$

Viar. cresin (sm.). Leatlets erer-veren, small, elliptical, narowed helow, without subfoliar glands, slightly donhly sermate, pedunches slighty Elamdular-hispit, fromit ellipsobl, smonth. V.e. Perth, !99.

Viar. incona Borr. (sub R. ćesia). l'rickles strongly hooked, beathets very glameons. fully hisemate, namond latiry both sides, with subfoliar inlamb, peduncle hairy, not glandular-hispid, sepals spread-

f. subcorioffilat (Bareday). Very mear var. incana, hut prickles less stout and less homked, leallets bomker. loss hatiry, sulfoliar glambs
 65. 90, 106, Antrim ?
 strongly hismate, rommend on -uhourdato at hase. peelumeles smooth,

Viar. Lucomliana (lénégl. \& (iill.). Láallets large, oval, fully hisemate, rombled at hase, modarately hairy, without subfoliar glands,
 V.e. 3, 63: 70.

Val. Lintoni Bohent\% (sub R. coriifonlia). Near var. Baterio.

 The suldinliar glambin a bummen from the locus classicus aro very
 4! ! ! 11? ! ! .
 lite samill. fully linerate, whovate, ohtuse, with subfoliar glands, pedmulles anowih, fruit ornid!: V.c. bit, 106 :-

3. Primary Gromp of R. tomentella.

Pricklw normally stont and honked, with hroad hases, hut more - loulor once are ailmissible. Leatlets in most sarictics small and
broad, biserrate or simply so, always more or less pubescent and usually with subfoliar glands on the primary nerves, but often eglandular, sepals rather short, broad, and much pinnate.
R. tomentella Lém. Prickles variable, leatlets small, broad, rounded at base, hairy both sides, with subfoliar glands on the primary nerves, which are often difficult to see, fruit rather small, subglobose, styles hispid or thinly so. A small bush. V.c. 3, 16, 17, $21,22,23,24,32,36,40,55,57,58,62$.
f. decipiens Dun. Like the type, but with glandular-hispid peduncles, leatiets often eglandular. V.c. $14,16,17,23,26,33$?, 34, 57, 58.

Var. Carionii (Déségl. \& Gill.). Larger. Leaflets as in type, but not so broad, and longer, without subfoliar glands, flowers white, styles hispid or subglabrous. V.c. 3. 17, 19 ?, 23, 24, 32, 33, 34, 37, $56,57,58,62$ or 65.

Var. Borreri (Woods). Large and stout, with long internodes, prickles few, very stout and hooked, leatlets oval, thinly hairy, with or without subfoliar glands, peduncles often in large clusters, smooth or thinly glandular-hispid, fruit ovoid or ellipsoid, rarely subglobose. V.c. 3 ?, 13 or $14,16,17,18,21,22,23,24,31$?, $32,36,40,57,58$.

Var. sclerophylla (Scheutz). Prickles hooked but not stout, leaflets lanceolate, narrowed at each end, fully biserrate, subglabrous beneath, usually with subfoliar glands, peduncles smooth or glandularhispid. V.c. 16 ?, 32, 36, 58, 62, 64 .

Var. Nicholsoni Chr. Prickles rather stont but straightish, leaflets large, oval, subsimply serrate, slightly hairy but eglandular on primary nerves, fruit small, subglobose, peduncles occasionally slightly glandular-hispid, styles rather densely hispid. It is very near the Deseglisei Subgroup. V.c. 17 ?, 58 ?, 65.

Var. Rothschildii (Druce). Peculiar for the presence of acicles on the stems, not always present on all specimens. Leaflets oval, irregularly serrate, rarely glandular-biserrate, often only slightly hairy or subglabrous on the mid-ribs, subfoliar glands very variable, peduncles more or less glandular-hispid, sometimes smooth, fruit subglobose, styles subglabrous. V.c. 17, 31, 32 .

Var. obtusifolia (Desv.). Like the type, but quite simply serrate, without subfoliar glands, and with white flowers. Y.c. 2, 3, 4 ? ?, 11 or $12,13,14,17,34,36,40,58$.
f. concinna (Baker). As in var. obtusifolia, but with glandularhispid peduncles. V.c. 3,17 .

B. Subsection Villose.

Prickles nsually more slender and straighter than in the Euconince, leaflets more constantly tomentose on both sides, and fully biserrate, often, not always, glandular on the whole lower surface, the glands often scented, but often inconspicuous and in some varieties absent. Peduncles usually glandular-hispid, sepals more or less erect and persistent, and styles usually woolly. Most of the exceptions belong to the Group of R. tomentosa.

1. (imotr of R. Pombeeri.

Of low growth, with staight stems and hamehes, prickles momally mather home stathot, and skmber, spals long amb little pimate: Hanally theshy at the hase and mot disarticulating, hut conwning the fruit till it falls. Thac leathets are nomally larger and mone rommed at the apex, with mone compenmel tonthing than in the wther two lirougs, the amieles also are broader and faleately incomed towarde the petioles, and the amatme of the peduncles and fruit more aciculate.
R. pomartai Herm. Leallets very large, pamallel-sited, said to le thimer than in R. mollis, with or without subfoliar glands, petals ciliate (\because), and fruit violet when ripe (\because). A doultful mative. V゙.c. $15,31,75 ?, 50,51,95,100$.
R. Mon, Lis Sim. Leatlets smalleve amd more oval, some sulfenliar Lhanls always present, hut very variable in quantity and often hiddon in the hairs, peeluncles more or less densely gramblutar-hispuid, but hoss dispmed to be acieulate than in R. pnmifero. V.e. $43,57,60,6=2$,

f. cerulen Woods (sul, R. villasa). I'uluncles and fruit smonthor almost so. Woods says it is a smaller hush with more subfulare glands.

Viar. (imenterii (l)esergl.). All the chatateres of R. mollis, hut without subfolian ghand. A parallel form to f. cwrulea oceurs. V.c. $36,11,12,(61,12,151,69,7(0,75,7!, 30,83,92,95$.

Var. pseudo-rubiginosa (Láj.). I'rickles msmally few and very lones, leatlets smaller, marower, darkers green and more ghabrous, amb mure conspicuonsly glamdular, sepals manally more pimate. V..e. 17

IR. mollis \times coriffulia. Lating features of I. mollis f. cormen, hut with stouter, lonerer-based prickles, more pimate sepals, and with appearance of the Glauca (iromp. V.c. To.

2. (imoUr of R. omissa.

Habit and technical characters just intermediate hetween the lant and mext (iromps, making its varieties often dithenlt to assign to the corroct one. 'The laok chamaters, as eompaned with the last bow, are stems and brambhes lees straight. prickles more often mompal and curved, with larger hasta, leaflets smatler and more atente, amriches fore acominate and not converginge sepals shorter mal more pimate, -reet or oftem only prearling mot theshy at base persistont till the fruit is rope, lont inot till it falls. Insume varieties the styles are hispil, nut woolly.
 leallons smaller, barrower, and more acinte than those of his mollis, with subfoliar ghands. perlumeles oftom omly lalf as long as fruit.
 rarily donsely glandular-hispich, supals shorter and usually less erect than in 18 . mollis. V.c. $333,31,36,40,41,42,51,55,57,58,65$, 73, 44, 96, 106.
f. ersinosniles (C'ríp.). Pricklesfower, stont and curved, leathets with conspienoms aubfoliar elamis. fruit almost always glandular-
hispid. V.c. $17,36 ?, 43,55 ?, 62,6.5,67,70,78,79 ?, 80,5 S, 8!$, 92 , Antrim, Down, Mayo?.

Yar. Sherardi (Davies). Prickles stout, filcate, leaflets densely tomentose, broadly elliptical, often subsimiply serrate, and usually without subfoliar glands, peduncles rather long, often in clusters, glandular-hispid, fruit smooth, subglobose or ovoid, sepals pinnate, suberect or spreading. V.c. 3, S. 13, 14, 15. 16, 17 ?, 24, 27, 31, 32, $34,38,40,42,43,57,55,70,73$, Down, Antrim.
f. submollis (Ley). Very near var. Sherardi, but prickles normally straight; leaflets fully biserrate, eglandular, peduncles longer, and fruit ovoid. Sume anthor's specimens have quite falcate prickles. V.e. 14, 23?, 35, 36, 39, 40, 41, 43, 69, 70, 73, 75, 80, 91, 95, Antrim, Armagh :, Down.
f. eminens (Harrison). Near submollis, but leaflets dark green, with subfoliar glands. peduncles and fruit smooth. I have seen no specimens. V.c. 66 .
f. uncinutu Lees (sub R. tomentosa). Prickles stout and hooked, leaflets of medium size, rather close-set, oval or broadly so, with some subfoliar glands on the primary nerves, fruit rather small, subglobose or broadly urceolate, smoth or nearly so, styles hispid, sepals darkcoloured, pinnate, spreading-erect. V.c. $364,40.42 .49$.
f. pseudo-mollis E. G. Baker (sub R. tomentos"o). Very near f. minenutu, but priekles less stout and less hooked. V.c. 20, 으, $36.42 .4: 3,80$.

Var. cimeroscens (Dum.). Prickles straight or curved, petioles eglandular, leaflets unisemate, without subfoliar glands, fruit globose, more rarely oroid, styles hispid, not woolly. Y.e. 39, 57, 70, 58.

Var. IVodsiunc H. \& .I. Groves (sub R. tomentosa). Prickles small, considerably falcate, leaflets narrow, dark green, thinly hairy with some subfoliar glands, fruit narrowly ovoid, glandular-hispid or smooth, sepals long, dark, very glandular-hispid, with long pinnr, styles hispid or thinly so. V.c. $17,32,65$?
R. suberecta Ley. Prickles long, stout, straightish, often unequal, leaflets rather large, narrowly oval, dark green. but densely pubescent, usually with many subfoliar glands, sometimes few. very rarely absent, petioles densely clothed with pricklets, acicles, and glands, peduncles and fruit strongly glandular-aciculate, sepal, broad, dark, densely covered with dark red glands, with long narrow pinnæ, fruit described as globose, but more often ovoid or broadly so. V.c. 49 ?, 66 ?, 59?, 62, 67, 69, 70, 78, 79, 92, 106, 108, Derrv.
f. glabrete Ley is a glabrous-leaved form, with fewer subfoliar glands. V'.c. 97, 10ё, 106?.
R. suberectu \times motlis has intermediate characters, some specimens running very near R. mollis f. carulea. V.c. $105 \div 106 \div 10$ s.
R. suberectu \times coriffotia is simply serrate with some of the characters of both parents. V.c. 106 .

3. Group of R. tomentosa.

Habit of the Er-canince, shoots not as a rule glaucons, prickles often but not always stouter and more hooked than in the last two Groups, leaflets paler, less bluish green, more often acuminate,

Jourval of Botayi, May, 1920. [Supflement I.] d

 －thi the－tler wforn quite so．

1．Sutherary＇Tomentusin．

li． 1 msmatosi sm．Priokles very variable，leathets hiserate．

 lиtrim．｜ими．

 Glarous．
 －trathtioh，rambly falcate，hathets large，celliptieal，normally wall

Var．com／us＂n（logg．）．Very man var．sculuriuscriln，but leathets

 $2: 3 \div 31,336,10,51$.

 $\therefore 1.11,11,16,17,21,32,31 \div 3!10,53,54$ ，（i2，Corth．

 ぶン，11． $7!1$.
 Praklen num roms，longe stont，dectinime or falcate，rarely looked．
petioles strongly armed, leaflets large, densely tomentose, with many but often inconspienous subfoliar glands, peduncles long, in a cluster, strongly glandular-hispid as well as the ellipsoid fruit, sepals dark, very glandular-hispid, loosely reflexed, styles glabrous, V.c. 32, is.

C. Subsection Rubiginose.

Subfoliar glands very numerous, conspicuous, often sticky, and strongly scented, The other characters vary considerably.

1. Group of R. rubiginosa.

Low erect bushes, usually with unequal prickles, some of them often reduced to acicles in clusters on the stems, and especially below the inflorescence, leaflets small or rather small, roundish or oval, obtuse, rounded at the base, peduncles rather short, glandular-hispid (except in var. Jenensis), sepals spreading or suberect, subpersistent, stigmas: in a short hispid or villous head.
R. rebiginosa $\mathrm{L}=$ R. apricorum Rip. Main prickles uniform, stout, and hooked, with aeicles as in the Group, leatlets medium or small, pubescent at least on mid-ribs and primary nerves, fruit globose. less frequently ovoid, sepals spreading or suberect, but falling before the fruit ripens. V.c. 5 or $6,11,15,17,23,24,27,324,37,49,69$, 70 ?, 74, 78, 79, 80, 88, 89, 95, 96, Down.
f. Gremlii Chr. is a name given by Crépin to a white-flowered form, of which there several on the Continent. V.c. 59 ?.
f. Corstophince (Druce). So far as I know this, it is only a luxuriant form. V.c. 90.

Var. comosa (Rip.) has sepals erect and persistent till the fruit ripens, fruit usually ovoid. V.c. $3,8,9,16,17,26,27$ or 28,72 , in, 79, 80, 98, Down.
f. comosella (Déségl. \& Oz.). Near the last, but with straight prickles. Leaflets sometimes as small as in var. rotundifolic, and fruit sometimes with long eglandular acicles. V.c. 17, Down.

Var. echinocarpa Gren. Prickles very numerous, the main ones hooked but not always stout, mixed with many smaller straight ones, peduncles and fruit with long eglandular acicles as well as glandular seta, fruit large, broadly ovoid, sepals erect but not persistent, styles hispid. V.c. $15,17,27$ or 28 , Perth.

Var. rotundifolice Rau. A small bush with unequal straight, or only slightly curved, often long, prickles, and very small suborbicular leaflets, fruit rather small, subglobose or ovoid, smooth. V.c. 3, 49, $16,17,22,40 ?, 62,67$ or 68 .

Yar. Jenensis M. Schulze. Like the type, but fruit and peduncles: quite smooth. V.c. 15.

2. Grout of R. micrantha.

Taller and less erect, like the Eu-caninc. Prickles uniform. rarely with acicles under the inflorescence, leaflets larger, more acute, and often less glandular, fruit more urceolate, sepals reflexed, and styles glabrous, usually exserted.
R. micrantha Sm. $=$ R. permixta Déségl. Characters of the Group, leaflets variable in size, more or less pubescent beneath, ravely glabrous, usually reddish when young, fruit glandular or smooth.

V゙ar. sifticoln (Desiorl.). Pricklen many, stont, honkent, leatlet-

 hispid. V.e. 11 (10 10, 15, 16, 1T, :3:3, is.

Var: he!strix (baker). Latlets small, math marmwed at the hase

 $17 \div \because 1,3 \because$

 - motimes sumphoular. V.e. 18, 16.17.
 xome with them monnal, fruit and pedumeles smonth. V.e. in.

 -1! len villoms ow hiopil. V.e. 1; : 3-

[^16]
THE MARINE ALG压 OF GUERNSEY.

Br Lilian Litle, F.L.S.

I. Introduction.

The little island of Guernser is well known for its rieh harvests of seaweed, whiel at stated times of the year are gathered for fuel, manure, etc. Such fertility among the coarser kinds extends to those of more delicate structure, for, though maturally not so profuse, there is a wide range of species of considerable interest to the marine botanist.

Having spent several months of the years 1911, 1912, and 1914 in collecting round these coasts, my efforts were rewarded by the discovery of varions species. new either to Guernsey, to the Chamel Islands, or to Britain. It is therefore hoped that a revised list of all the known species of Guernsey Marine Algwe will prove of interest to students. The gatherings were made between Mareh and November of the respective years, along the shore, among the rocks at low tide, or from a boat by neans of a dredge-some specimens were found floating.

The results of an attempt to study the growth and distribnition of the seaweeds of Guernsey from an ecological point of view are also given. They are very inadequate and far from complete. In 1914, 1 had intended making measurements and caretul observations throughout the year, but after four months' work my plans had to be changed, owing to the outbreak of the War.

My thanks are due to Dr. Rendle, at whose suggestion this aecount was undertaken, and to Miss Lorrain Smith and Mr. Gepp, all of the Department of Botany, British Museum (Nat. Hist.), for their valuable advice and suggestions; to Mr. E. M. Holmes, for help in naming Algre; to Mr. Paulson, for naming liehens; to Mr. and Mrs. Lemesurier, of Guernsey, for their interest and assistance in the matter of dredging : and to Captain Cameron, N.Z.s.C., for information regarding winds and tides affecting the Channel Islands. I was also indebted to the late Mr. Best, of Guernsey, for linits on the economics of Alge.

Previols Lists.

The rich and varied marine vegetation of the Chamel Islands has attracted the attention of many botanists. Of these the late Mr. Marquand is well known; his Flora of Guernsey (1901) includes 236 species of seaweeds found mostly by himself, together with lists of such earlier collectors as Greville and Le Lièvre. In 1908 he published still further additions to the Marine Algre of Guernsey, making a total of 257 species for the island. A new edition of Holmes and Batters's Marine British Alge appeared in 1902, in which Mr. Marquand's lists up to date were included. Dr. Van Heurek eolleeted in the Channel 1slands, more especially in Jersey, which he worked most thoroughly. His Prodrome de la Flore des Alyues Marines des Iles Anglo- Tormends (1908) contains Mr. Marquand's list for Guernsey, as also does Chalon's Liste des Alyues Marines (1905).

In view of these exhanstive gatherings, it seemed almost hopeless Jourall of Butate, Juae, 1920. [Supplemeat II.] b
that further somplo would yied any additimat sueves. When it is remombered, bwerer, that "some speces atre very maertan in then appeatance, oceurfing in abondance, perhaps, during one season and then disappearing for years," and when it is also horne in mind that carrent- and other agents frequently hring mew species or their spmes from long distances to establish thomselves and even spread aloniromr masts - as, for example. Culpomenia sinuosa. Bonnemarsonin
 diseovertes. 'This was, inded, my forture, for 1 was able to timd 16 -perdas. 2.2 varietics and 4 fomms new to the "hammed Islands; 11; precies, diaricties, new to Ginernser ; 3species and ? forms new tu Britan; 1 species and 1 form now to arience.

The total mamber of algar for Gumpery, inelmeline thene abready

Mr. Marpuand throws some donht on the existence of certain alya montioned in the lists of Mis- Le liove and Dre (ireville, or on their correct determanation, as, after yars of diligent seareh, he failed to find them. Thume ane:-

C'ystoseiva barbuta, liucus corannidrs, spororhans pedunculutus,

 tribllligerum. C'allilhamnion arluscula. C'九llilhumnion roserum, amb

 as a waif. Fincus coromomios is malally fonmd in the entuarien of
 world tend to prochale the ibea of its rxistence on these shores.
 Tilopleris Merolensii ate all mentimed in lattors's Mmrine Alyme as

 replaterd ly C. sponyinsutn in the south: with the exception of
 for intance, on the west const of lrelanel, the two species never grow tosether. It is therefore hatrlly likely that C^{\prime}. "rimesculu was col-
 Nilophyllum Gimelini and ('ladophorn ropens are inlicaterl lyy Margrand in lis lints fior Aldermer, hat they have not been found in Guernary.

An rewarls the other miscinge spectec. Mr. Marpuand suggests that they may have disappeated for at time to reappear later on. 'The

 larcus in 1912: and Mpluserlaria Nerfuluria in l! It is in favour of ham view. In nu two ? ears denes it wemp prosille to find all the same Alus.

I was alife to find threw of Mr. Marpuand's four adlitions to the

the locality given and elsewhere, I was nable to find the fourthPolysiphonia opaca.

II. Systematic List.

The following list includes all the species hitherto recorded, as well as those of my own gathering. To facilitate quoting localities, the island is divided into six districts, each locality heing numbered as shown in the table below. The figures and initials in the square brackets refer to Mr. Marquand's lists:-

East.

1. Paradis Hommet.
2. Bordeaux.
3. Vale Coast.
4. Spur Point.
5. Pike's Corner.
6. Belgrave Bay.
7. North Beach.
8. Castle Cornet.
9. Bathing-place.
10. Fermain Bay.
11. Bec-du-Nez.
12. St. Martin's Point.

Soutif.

1. Jerbourg Point. 1. Pezèrie.
2. Petit Port. 2. Les Portes
3. Moulin Huet.
4. Saint's Bay.
5. Petit Bot.
6. Les Tielles.

North-West.

1. L'Erée bay.
2. Vazon.
3. Albeeq. 1. Grande Havre.
4. Cobo.
5. Grandes Roc!ues.
6. Port Soif.
7. Port Grat.

West.

3. La Varde.
4. Portelet.
5. Rocquaine Bay.
6. L'Erée.
7. Lihou Canseway.
8. Lihou Is.

North.
2. L'Ancresse.

South-West.
Pleimmont.

The classification and nomenclature coincide, so far as possible, with Holmes and Batters' Catalogue of 1902. Here and there, as indicated in the notes, the work of more recent algologists has necessitated certain changes-e.g., the older generic name Chantransia has replaced Achrochectium. With regard to the calcareons algre, I have followed Dr. Lemoine's classitication as given in Mr. A. D. Cotton's Clare Island Survey (Proc. R. Irish Acad. xxxi. part 15: 1912).

The following abbreviations have been adopted throughout:-
E. =East. S. = South. S.W. = South - West. W. $=$ West. N.W. $=$ North-West. N. = North. M. = Marquand. H. \& B. = Holmes and Batters. C.I. $=$ Channel Islands (new to). G. $=$ Guernsey (new to). B. $=$ Britain (new to). $c==$ common, f.c. $=$ fairly common. $\mathrm{a}=$ abundant. l.a. = locally abundant. r. = rare. v.r. $=$ very rare.

MYXOPHYCEE.

Coccogonee.

c.t. Aphanocapsa mariva Hansg. N.W.1. W. 4, 8. f.c.
c.i. Axactstis parastitica Kütz. (Polycystis pallida H. \& B. Rev. List). On Calothrix sp. and Cladophora sp. W. 8.
(f. Dermocarpa Leibleinie Born. On Calothrix crustacea. r.
g. D. prasina Born. On various alga. c.

Hobmogosem．

 （）n（＇urallina officinals．
 Amone Oscillatoria margarilifera．S．W．
 N．W．i．S．W．
（）．Nhimurnmols＇Thw．S．j．On wet rock．
（）．corabdas：（iom．（O．lilloralis C＇arm．）．©．［K．I．］ぶ．W． （1）Comalline officinalis．

「．J．（）．L．BTEVIRENS（＇m．S．．
O．b，mosa Kïtz。 ๕．Mmbdy rocks．S．W．WV．

©．1．I＇．corma（iom．S．s．On wet rock．
（i．Jàgilira rateibit liebm．Mmildy sand．
L．Majescila Marv．［N．W．4．］W．1．c．In rock－pools on other alua．

 W． 1, ．
 plam＂．

 mully sand and on alsie．

 On rucks．
Jucraf riat＇Thur．（R．plana Harv．）．［N．W．2．］ぶ．W．

 lima $\begin{aligned} & \text { F．}\end{aligned}$
 rits．
 ․ W．（O）varth．
 Licluna plyguman．1 to．

c．I．N．Linckta Born．\＆Flah．（Monormia intricata Berk．）．Among O．margaritifera．
Anabena torulosa Lagerh．（Sphcerozyga Carmichalii Harv．）． ［N．W．4．］On Cladophora，etc．

CHLOROSPERMEむ。

Protococcivi王．

c．i．Codiolum Petrocelidis Kuck．In Petrocelis cruenta．
Conferyoidee．
c．t．Gitella polyrhiza Rosenv．（Schizogonium disciferum H．\＆ B．）．Pulias pool．
g．Pringsheima scetata Rke．On Chetomorpha sp．Pulias pool．
g．Enteromorpha clathrati J．Ag．［Pulias pool．］N．W．3， 4，7．E．2．On Rho．palmata，etc．－var．gracilis（Le Jol．）． ［M．］Indicated by Batters．

The Guernsey specimens of Enteromorpha have been named on broad lines and in a general sense．

It is interesting to observe how the germinating spore－ lings of E ．clathrata grow into flat expansions one cell in thickness，over the surface of stones，before sending up erect filaments．The latter begin as little pimple－like elevations which appear here and there over the procumbent portions． A circle of cells elongates and arches over at the top；they increase in size and divide，until a tube of indefinite length is formed－its base，as is characteristic of this genus，being additionally strengthened by the downward prolongations of the cells composing the lower part of the tube．This ten－ dency to become procumbent in the initial stages，is common to various alge；it has been referred to by Kendo（Proc．R． Dublin Soc．ii．105）and in my notes on＂Developmental Forms of Marine Algre＂（New Phytologist，xvii．231）．
E．torta Reinb．（percursa Harv．）．［Pulias pool．］
G．E．prolifera J．Ag．（ $=$ E．compiessa var．piolifera Grev．）． Pulias pool．
E．ramulosa Hook．var．rolusta Hauck．［E．2．］Var．tenuis Hauck．N．W．7．W． 7.
E．compressi Gree．c．On Fucus serratus and on stomes．
E．entestivilis Link．c．
E．Lisza J．Ag．c．
Ulta lacteca var．Litisstma DC．（ ．latissima J．Ag．） v．c．
c．t．Pheophila dendrotdes Batt．（Ochlochcete dendroides Crin． and Phaophila Horidearum Hauck．）On S＇tilophora ihi－ zoides and＂er．echinotum．
f．Bolbocoleos milferum Pringsh．On Cei．echinotum．
g．Endoverma Itride Lagerh．In Poly．maciocaipre and C＇alli－ thamnions spp．

 W．4．7．On Choroln filum．

 N．W． 1.
（．．a mea K゙̈̈t\％．［Batt．］
 P＇ulias pool．
（i．R．Ru＇anư Harv．E． 7 ．
 N．．2．N．W．．

 E．6．r．－var．dis／al！s Kït\％．（（C．diffinsa Harv．）．Fi． 7. N． 2.
1．bectavaloabls Harv．E．7．Thrown up－（c．ı．）var．

According to bitters．（．rectanymbers is very mate on the south conat of Fingland：Mrs．lane Clarke mentions having fommet it in Cinemsey among Zostora beds．In 1911 and 1912，a fow small pieces were lhown up，hut in 1914 it
 ware taken from the Zoserem lode momb of the White Renck．
（＇．R1 PFATBIs K゙ït\％c。

 ffaresirns llars．mon Kït\％）．［Julias poos）］

 formis Harv \＆W． 2

 N． 1 ．
B. plemos Ag. [S.3. E. 2, 4.] E.2.-(c.t.) f. nuda Holmes. S. 3.

Bryopsis plumosa flourishes from spring to late autumn, even lasting till December. Mr. Holmes's specimen of the f. nuda was gathered in September. The rank of variety which is given to it in H. \& B. is doubtless an oversight.

The plant is an annual, and the form nuda is very probably only an old stage in which most of the pinne have disappeared previous to the dying away of the plant itself. Three small pieces were gathered in Guernsey about August, which had every appearance of being the remnants of mature plants.

MIrs. Gatty has observed that B. plumosa, when kept in aquaria, degenerates into a denuded form which is probably identical with Deibesia Lamourouxii Solier (B. Balbisiana var. Lamourouxii J. Ag.), figured in Kutzing, vi. t. 74.
Codium adhareas Ag. [S. 4.] N. 2. r.
C. tomentosum Stackh. v.c.
C. Burs. Ag. [S. 2, 3. Dec. '05.]

FUCOIDEE.
Piegospore.e.
Desmirestia tiridis Lam. H. \& B. '02.
D. aculeita Lam. c. Thrown up from deep water, and on bulbs of Sacchoriza. N.W. 2. N. 2.
D. ligelits Lam. c. Low tide, quantities thrown up. [N.W. 4. S. 5.] S. 3.

Dictiosiphon fentcleaceus Grev. H. \& B. N. 1. Rockpools.
Litosiphox pusillus Harv. c. [E. 2, 10, 6.] W. 4, 7. On Asperococcus fistulosus and Chorla filum.
g. Phleospora brachiata Born. (Ectocarpus brachiatus Hart., Stictyosiphon Griffithsianus H. \& B.). r. On Rhodymenia palmata. N. 1. 2.
Pexctaria plantaginea Grev. [N.W. 4.]
P. latifolia Grev. [S. 5.$]$
c.i. Phicolapathesi crispata Batt. One specimen thrown up. N. 1.

Phillitis Fascia Kütz. (Laminaria Harv., P. caspitosa Le Jol.). [N. 1, 2.]
Scytosiphon lomertaries J. Ag. (Chorda lomentaria Lyngb.). [r.] E. 6. On stones.
c.i. Colpomenta sintosa Derb. \& Sol. Twice found thrown up. E. 6. N.W. 4 .

This plant is a native of the Indian Ocean. Good specimens were found on rocks at low tide at St. Peter's Port and Cobo. The distribution of the species and its appearance and growth along the southern shores of England have been fully dealt with by Cotton in Kew Bull. 1908, 11.
Asperococces fistchoses Hooker (A. echinatus Grev.). e. [E. 6.] W. 4. On stones.

 u＇u rierscons．V．10．N．IV．T．（ai．）var．simplex Batt． In thallu．of stitophorn hizondes amb Vematimn lubricum． E．2．3．W． 7.
 kentitormis．［E．（i，10．］．E．！
 coides．Mrs．Homber．N．W．4．1！no．
 S．（i．On Ilimamenalia lureen．
 riverems．F：．S． 10.
 phace betwion E ． 10 and \therefore ． 1.01 On Zostera．
（1．E．C＇mu ANM Thur．（Ert．fenestratus Berk．）．r．N．IV：3．On Poly．uffinis．
 ＂rrons Kjellm．（Er\％，arctus Kiit\％．et Eir\％psendosiliculusus （＇rn．）．e．：mid on Succh，polyschides．
 wher alga．

 nomponm and le，resimblosms．Fi，ti．
＇The sar．remion is ：an intmon from the north；its halbitats
 Cromarts Fioth． 1 fomul spomal wellogrown smemens

 will theselit．are ane．＂

M. steflillata Batt. (Elachista stellulata Griff.). On Dictyota. [E. 10.] E. 11.
Edachisti fecicoha Fries. On small alga and Fuci. N.W. 4. N. 2.
E. flaccida Aresch. On $C y$. gramulosa and $C y$. fibrosa. [N.W. 5. S. 2.]
E. scetclata Duby. [E. 10, 2. N.W. 5.] S. 6. On Himanthalia.
Sphacelarla radicass Harv. [N.W. 2.]
S. olftacea Pringsh. H. \& B. 'O2.
S. cirrifosa Ag.-var. pennata Hauck. c. On Corallina officinalis, etc.-(G.) var. fusca H. \& B. (S. fusca Harr.). E. 2, 7, 11. a. On vertical rocks.-(c.I.) var. patentissima Grev. r. Entangled among Enteromorpha clatherata and on shell of spider-crab. W. 1, 4. N.W. 7.

I have followed Batters in placing the var. patentissima under cirhosa. Sauvageau, however, questions this, and points out that since neither propagulas nor spores have been seen on the plant it might equally be allied to S. plumula. Specimens have also been found to possess transverse divisions in the secondary articulations-a fact which wonld comnect those plants with S. plumigera. He therefore concludes that the var. patentissima, usually attributed to cimbosa, is a form which several species take when certain unknown conditions have produced parallel modifications, such as that of sterility. My own specimens have so much the appearance of S. plumula that it is difficult to distinguish between them ; the resemblance is much closer than to Sphacelaria cirrlesa.
c.i. S. phemula Zan. (S. pseudo-plumosa Holm. Fac. no. 24). Dredged, entangled among small alge and on F. serratus. E. 8, 11. W. 4.

The characters which separate this from S. plumigera and Chatopteris are the absence of transverse septa in the secondary articulations of the branches, and the scarcity of rhizoidal filaments; those that occur lie close to the axis of the plant, but do not form a cortex. It is an inhabitant of the temperate zone in Europe, extending from the Mediterranean as far north as the southern shores of England.
Ciadostephlis spoygiosu's Ag. c. E. 2. W. 4. On stones in sand.
C. verticillates Ag. c. E. 2. S.6. W. 4. On stones iir sand.
Halopteris filiciva Kütz. (Sph. filicina Ag.). At low tide all round the island, but scantily distributed. [S. 2, 3, ј. N.W. 2. N. 2.] E. 11. W. 1.-var. Sertularia (Bomem.) (H. filicina Kütz., B. patens Harv.). v.r. Entangled among Ent. clathrata. W. 5. N.W. 7.
Stypocallox scoparica Kütz. (Sphacelaria scoparia Ag.). c. Among Zostera.-(c.I.) var. scoparioides H. \& B. (Sph. scoparioides Ag.). 1. Entangled among Ent. clathrata. N.W. 7.

(.11. pumetifurme llars and M. intermedium Fosl.). On ('er. ruhrum. [K.. (i. W'. \&.]
11. meptus Fosil. (Ascorylus reptans Reinke; Chiliomemn
 palyschides, liholichorton sp.

1. Ireatourma muculans satus. On Comallina officinalis. 1. N. W.
2. spectiosum Cotton. vir. W. J. On stipes of Succorhizu and on Desmarestiu nculeata.

The specimen was kindly determined by Mr. ('otton as intentifieal with the species collected hy him it Clame Islaml.
 pro parte). (e.

 N.W. \&, $\overline{\text { N. }}$ W E. 11 . S.W. Limpet-shells and small stons.
 r. N. L. Floating amb on Cystoseirn filmosa.
 C'ystosmiou cricoiles.
 IV. \&
 N. I. ()n stomes and where ales.
 N. I. ()n stones.

 E. B, 10. N.W. 1. W. 1. S.W. Fi. 6. W. ゥ. N. 1.
 N.W. B. r.

 ․ N. . $\because .2$.
 a.

 loal form, half-tide. Fi.. (i.
1.s. I. ('busturi lidm. I I. hupinlomen Fonsl.). a.

This in a well-a-tahliond inhalintant of the shores of the
 Uy Cotcon, the - waide " erens in atront la fathoms of water.

the rough erect stipes forms a conspicuous feature of the sublittoral.

A few stunted specimens were formed in pools at low tide.
Sacchoriza polischides Batt. (S. bulbosa De la Pyl.).
Alarla esculenta Grey. H. \& B.
Zavardinia collaris Crm. (Zonaria collaris Ag.). [N.W.2.] v.r.

Cutleria multifid. Grev. [Lelièrre].
Aglazonla reptans Cim. (Zonaria parvula Grev.). [N.W.2.] W. 4. On Lith. polymorphum.

Fucinee.

c.i. Fecus spiralis L. (F. Aieschongii Kjellm.). c.-var. platycarpus Batt. (F. platycarpus Thur.). e.

A detinite zone of these alge grows round the whole of Guernsey, interrupted only here and there by a sea-wall or by the absence of rocks at a suitable level. It is incomprehensible how F. spivalis can have been overlooked, as it occurs all along the coast, broadening occasionally into var. platycarpus according to the degree of shelter experienced.
F. vesiculosus L. e.-(c.i.) var. evesiculosus Auct. a. S.W. W. 1. On exposed rocks.

This is another plant which has escaped notice on the island. It is a distinctive feature in the flora of exposed regions, where it takes the place of F. vesiculosus and Ascophyllum nodosum of other localities. The plants are short and stout, about 4 inches in length, with thick leathery stems, firm and devoid of air-vesicles, as the name indicates; the colour is very dark, almost black.
F. serrates L. c. On low rocks.

Ascophillum nodosum Le Jol. a. W. 1, 7. N.W. E. 6.
Pelvetia caxalicclata Dene. \& Thur. (F. canaliculatus L.). a.
Bifurcaria tuberculata Stack. f. (Pyenophycus tuberculatus Kütz.).
Himantilala lorea Lyngb. l.a.
Halidrys siliquosa Lyngb. 1.a.
Ctstoseira ericoides Ag. 1.a. N.W.4. S.W. On stones and in pools.
C. granelata Ag. [N.W.4. N.2.] E.2. On stones and if pools.
C. fibrosa Ag. N.W. 4. On stones and in pools.
C. discors Ag. (C. feniculacea (irev.). [E. 2, 10. W. 7, 5.] N.W. 4.

Tilopteridee.

Tilopteris Mertexsii Kütz. (Ect. Mertensii Harv.). H. \& B, 02.

Achinetospora ptsille Born. (Ect. pusillus Harv.). [S. 2.] S. 5.-(c.f.) var. crinita Batt. (Ect. crinitus Carm.). On U. latissima. E. 6.

मowhorman memblutcen Batt. (Haliseris pmlyporlioides
 rock-jomels.

Flolllleme.

Ponepishame.

 v.r.
 E. 11. on Cer. ciliatnm.] On Rho. Rothii.

E. Welwarami Batt. v.r. H. \&. B.

 calis. J. Aes.

The markedly seanty distribution of this speceies alone the "xpmed and moderately expmed onasto of Gurnow durine the
 fact that Porphyra is said to be a winter and spring plant in the sumth of Einglaml. On the other haml, haxmiant grewthe in very shaltered combitions persisted throm the smmen and still Hemrished in Nowmher. There were alon quite

l'. umbitiontis hang- down from the rexks and lamblews. griving place to 1 '. Inciniatn where there is shatter, on low meks often half harien in the samb. Lutermediate stanes hetween the two forme show the relationship distinctly. Along the thathus little holes on slits appans. which by their "xtomion lengtheree, amse the splitting op into the la miniate form. These tramitions would soem to indicate that vars.

 the preand of ormal urgats in an incrasine momber of -poria. Kasemsinge hat mitell them all moder C'lometronsin.

 Kism. Fi- On wheralga:

C. Difiesil Thur. [S.4, 5. E. 10, 11. W.7.] S.4, 6. W.1. N. 2. E. 11. On other algre.
C. Lorrain-Smithiæ Lỵle, sp. n. On stipes of Saccorhiza polyschides. W. 2. (Fig. 1.)

Fig 1.-Chantransia Lomain-Smithix.
a. Tuft of plants, natural size.
c. The same. \times abont 200 .
b. Base of plants, showing rhizoidal
d. Terminal branchlets. $\times 25$. filaments. $\times 80$.
e. The same. \times about 200 .
f. Monosporangia. \times about 200 .
Frondibus erectis, e strato pseudo-parenchymatico, decumbenti ascendentibus, copiosis, roseo-carnis vel pallide viri-
 artionli- $4.5-60 \mu$ long., $1.5-20 \mu$ lat. compositis ; ramis whasis fastigiatis versus ad upices eorun ramos breves secundarios gerentibns; ramis secuntariis:-3 ramulo :ubaxiales plewrmque monesprangiferos ?-:3 cell. longos emittentibus; monosporangies alaxialiter obvenientibus, ovatis, pedieellatis ant sessilibus, $30-35 \mu \times 15-20 \mu$.

A luxuriant growth of this species was found on the stipes of Nathoriza polyschilles in October and November of $1!1$? and 1914, in an exposed region. The phant is assigned to the genus ('hantronsia on account of the monosporons reproduction and the basal dise of fusing rhizoidal tilaments; it chasely appronches Daviesio, but differs in the lax disposition of the sporangilerous bramehlets which are situated towands the summits of the main branches, whereas in (! Daceirsii the sporangiferous. lrane hes are longer, more numerous and cow whed in or near the axils of the secondary bramblets on any part of the lilament. The species is much morr robust than C. Inacirsio and possesses quite remarkably thick eellwalls. The absence of the terminal hairs is mimmortant; liosevinge peoints out that they are mot of emstant oceurrence; some species never bear them and some only in their early stages.
 exponl rock-
 the waves at low tide. Sembernem to thin gemme as and flomithine hest where adotion of the water is perfect, i.f. when anrommed hy white fomm.

 :als:".
Sollu lobevititi Bivona. (fiannania furerlluta Mont.).
 1. 11 .
 Poly. fustigimata ; also N.W. 3, 4.

 Vi. 3, 1. F: ㄹ. (i. Ow rocks.
(6.) (ighbtil (RINIDE I. Ag. (G. cornom var. crimule Auct.). E. 15.
 (т马putneum I. AL.). W. 1. Op rocks.
 W. 1. I. 1; ㅍ. 7. (On rowk.-(c.s.) var. nlnorme Batt. (${ }^{2}$. corncum var. abnorme Girer.). E. 7.
G. pulchellum Kütz.-var. genuinum Batt. (G. corneum var. pulchellum Grev.). E. 8. W. 3. N.W. 4. f.c. In shady pools.-var. setaceum Batt. (G. corneum var. setaceum Kütz.). [E. 10.] E. 2.-(c.I.) var. clavifer Batt. (G. corneum var. clavifer Grev.). S.W.
c.i. G. attendatem Thur. (G. corneum var. attenuatum Hook.). N.W. 4, 7. W. 1, 4, 5. S. 4.
G. corneum Lamour. W. 1, 3. 5.
G. latifoltum Born. (G. corneum var. latifolium Grev.; var. plumula Kütz.). [E. 2.] N. 2. W. 1. On rocks.-var. Hystrix n.f. conlensata Holmes. S.W. (Fig. 2.)

Fig. 2.--Gelidum latifolium var. Hystrix f. nov. condensata Holmes $\frac{2}{3}$ nat. size. a. Fruiting ramuli.

Ramuli simplices vel dichotome aut pinnatem divisi ad apices obtusi.

The form differs from the variety in the obtuse character of the short branchlets; a few fruiting ramuli are scattered over the surface. One specimen was found hanging from an overarching rock among huge boulders, and thus locally sheltered in an otherwise exposed position. It is curved in the urper part and measures $7 \frac{1}{2}$ centimetres. The ultimate branchlets measure a little over 1 mm . in length.
G. rorcloscm Kütz. W. 3. (Fig. 3.)

This is new to Britain; it was described by Kützing as a new species (Tab. Phyc. Bd. p. 18, pl. 57. f. 1) as follows:-

Plant 2-3 inches in height. Fronds lax, very narrow, flat, irregularly tripinnate, or breaking up above ; pinnacles opposite, patent, with constricted articulations. Cystocarps are borne
on the terminal swollen branches. Native of Brazil; Chamiow.

De Tomi has me hergated this to a list of those spectere needing further invertigatim. Than single specmen enllected m (inerney agrees fully with the abuse description.

Fig. 3.-G딘um tinvlusum Kintz. Nat. size.
Cumsmues chaspes stach, Fiverwhere. Rowho, stomes, and
 - van. filiformis Tum. W. I. var. petens 'Turn- var. Šarnimusis 'Turn.-var. lucerns Thru., H. id P.
 of ruck-pinol.
 roch-polls.

 () n small stomen in situl.
 (th rocks.

Hith,rth the moly Britioh lucality for thin wat Palstow, in

 bacimealen.

Ahafelth plicata Fries. f. R.2. S.5. On stoncs in samd. c.t. Actinococers Aggregates Sehm. r. On Gymnogongres Griffithsice. S.5. E. 3.
A. pelteformis Schm. r. On G. norregicus and G. putens. S. 5.
g. Colacolepis incrutspans Schm. On Phyllophora epiphylla. W. 2, 4. E. 1.

Callopitylis laciviata Kütz. f. E. 10, 6. W. 5, 1, 8. N. 2. On rocks.
c.i. C. flabellata Cin. E. 2, 11. Dredged.
G. Callocolar veglectes schm. On Ć. Zaciniata. S. 3. E. 6. W. 1.

Calmmenta reviformis J. Ag. r. [S. 5, 3. N. 2.] W. 4. S.W.-var. Ferverii J. Ag. H. \& B.
(i. (. microphilli J. Ag. I: E. 2.
c.i. ('. Labteria Holmes. r. F. 6. Floating.

Cystocloniem perplrety Batt. c. W. 8. On stones.
('itenelda repeys Batt. (Catenella Opuntia Giev.). c. E. 2. [E. 11. W. 7.] On sandy rocks.
Rhodopitillis bifida Kütz. f.c. E. e, 7, 6. W. 1. On stalks of Lam. Cloustoni.
R. appendiculata J. Ag. [E. 2, 10, 11. N.W. 4.] N. 2. W. 2, 4. S. 6.

Spherococces corovopifolits Grev. [Fragments washed up at S. 5. E. 11.?
Grachlaria confertoides Grev. f.c. E. 2, 6, 10. S. 5. W. 3.

Calliblepharis chliata Kütz. [E. 2, 10. N. 2.]
C. lanceolata Batt. (Calliblepharis jubata Kutz.). e. E.2,6. W. 4, 5. N.W. 7. \&. 5.

Rhodmema Palmetta Grev. [S. 5. E. 10. N. 2.] W. 5. S. 3. E. 1, 11.
R. pamata Grev. f. typica. e.-var. marginifera Harv. W. 5.-var. samiensis Grev. [E. 2] E. 3. S.W.-var. simplex Harv. c.-var. sobolifera J. Ag. [E. 10, 11.] E. 5. On Lam. C'loustoni.
a. Cordylecladia erecta J. Ag. v.r. W. 5. In sandy pool.

Lomentaria articulata Lyngb. (Chylocladia articulata Grev.). c. On Lam. Cloustoni and on rocks.
L. clatellosa Gaill. (Chrysymenia clarellosa Harv.). [N.W. 4. E. 2. W.5.] E. 6. N. 2.

Champla partela Hayv. (Chylooladia pareula Hook.). [S. 5. E. 2, 10. W. 4.] N. 2. W. 4.

Chilocladia kaliformis Hook. f.c. E. 2, 6. W. 1.(c.t.) var. patens Harv. E. 10. W. 1.-var. squarrose Harv. E. 2.
C. ovata Batt. (Ch. oralis Hook.). f.c. E.6. On stones.
(. reflexa Lenorm. [N.W. 4.] In a rock-pool.

Plochmicm cocciverm Lyngh. W. 1. E. 2. N. 2.
Nitophillèm pexatitcis Grev. [N:W.4.] S.3. E. 2, 6. O_{1} Corlinnu tomentosmm.-var. ocellntum J. Ag. s. 3, 5. N.W. 4. 7 W. 1. N. .

Jofral of Botay, Jite, 1920. Suplemext H.?

 Phyt. xvii. p. ᄅ231, a. comb. On Laminarian stipes, and Lith.

 ドï\% W. .
 umber lake of rocks.

1). wata Lamom: f. Fi, ti. W. T. On stipes of Lam. Clousfomi and on ravk.

There is a motion he K. Kilin, see Jomm. Mismoserp.

 likernted on the ideth of the phont he the hometine of the handers. "The iodine stabis bhe ans starch solution, and leasio: hlue mank on paper." The Fimetion of thene cells is
 Which mat alkie.

 in on cypacel prition. Whwom 'Turner's specimen of this
 Wath anl with matly altermate hranding The (inemser

 rucke at lins tite.
 E．6．N． $\mathrm{IV}^{\text {．}}$ 4．In sand．
 S．J．N．W．4．］E．ㄹ，6．On stones in samd．
（．I．（＇．cemblescess of．Ag．rir．S．4．Ln a rock－pool at luw tide．
A large and luxuriant pateh of this rate alyat grew in an extremely shelterel prosition in finemser．Its only other British habitats are Hastings and Felixstowe．
Podestphosta macociarsa Harv．（ P ．pulcintel Phy：Br．if P．sertuluivides Holm．\＆laitt．lier．Listı \＆．．？．E． 4. S．W．S．4．W．1，j．On Lith．incoustaus and in chinks of rock．
summer specimens are typieal，those gathered in antumn are more robust，characterized by thickencl tilanents，darker in colour，much broken，densely tufted，and interwoven． Particles of sand，shells，ete．，helil in the interstices of the filaments afford a shelter for sporelings．
P．fibrata Harv．f．W．1．心．5．N．W．3．
I＇．Irceolata Giev．－var．typica J．Ag．［S．う．］E．．2．5， 7. N．W．士 W．1．N．1．f．－（a．）var．pateus J．Ag．心．W． W．1．S．S．On Lem．C＇loustnuiand on roeks．－rar：formose J．Ag．（P．formose suhr：）．W． 1.
G．P．elosgata Grev．W．4，6．E．2．On stones in sand and ropes of lobster－pots．－var．demmeteti disev．W．I．

This seems to have reappeared recently．It figures in the old lists for（inemser，but Mr．Marguand was unahle to find it．Abundant specimens oecurved in shallow sandy pools at Rocquane Bay and Lihou in 1911：in the autumn of the same year the ropes of some lobster－pots at Pezèrie were pro－ fusely covered with f．uudu．Only a few old plants were to be seen in 1911 ；they were begimning to put forth new shoots．
P．volacea direr．c．On rocks and other algie．
P．fibrillosa Girev．r．N． 2.
I．Fistiginti Grev．
e．
In addition to its nsual habitat on Ascopliyllem nodosmm this was found on Fucus resiculosus vals．reesiculosus in exposed localities．
f．P．ceramidformas Cru．r．l．E．6．One small specimen．
P．smequs Hajr．E．t．10．\＆．3．］E．․，7，s．N．W．2，3，t． N．：．Fringines deep pools．
P．opaca Zan．－f．simplicioi．S．I．In sand at half－tide level．］
P．Nigrat Batt．（ P ．atro－iubesceus（irev．）．LS．2．N．W．．．．］ S．W．E．6．N．1，こ．
P．obsctra．J．Ag．［N．W．．2．］W．4，5．r．In sand．
P．mgrescers Grer．c．N．W．t．S．：．E．10．］E．2．6，8． W．1，3，4，5．N．1．ふill． 1 n sand－rar．effinis J．Ag． （P．affiuis Moore）．E．…
1．Brodiet Grev．［ङ．5．N．W．4．E．10．］S．2，6．W．1．2，4， 5．7．S．E．2，6．N．1，2．
P．stbuliferi Harv．E．6．ふ．i． 7

 IV. 1. S. 6

 l.1filla

Thallus prostrate and creeping, adtixed to the substratum by its under surface, rounded and gradually tapering. Apex incurved, ecorticate. Branching altemately on either side, and then afterwards irregularly. $12-18$ pericentral siphons. Stichidia formed in the terminal segments of the branches, slightly incurved, enclusing a double longitudinal series of tetrasporangia. Crstocarps and antheridia hitherto mknown.

Ctenosiphonin differs from Polysiphonia by the arrangement of the tetrasporngia, which form two longitudinal series within the stichidimm; on account of this, the genus approaches in a certain measure to Halopithys. but differs from it in the number of pericentral siphons. Colour, a dull purple, turning black when dry.
C. heypuoiles was foum in chinks of rock at half-tide in an exposed locality and is a new arrival on the coasts of Britain. Dense mossy tufts of dull purple filaments, about $\frac{3}{4}$ inch high, were closely matted and entangled; they measured 1-2 inches across and held sand, small shells, and stones in their meshes, serving as a shelter for spores of other algie. The speeimens were gathered in autumn, and did not show any reprodnctive bodies. The plant is a native of Spain, Portugal, and Moroceo.
Dasta corymbifera Cim. (Dasyu remuste Harv.). Miss Le Lièvre's list.
D. arbescela Ag. [E.10, 11. N.W. 4.] E. 2, 6. 8. S. உ, 万. N.2. N.W.3.-(c.r.) var. coespitose J. Ag. S. こ.

Heterosiphosta plemosa Batt. (Dusya cocrenen Ag.). e. S. 3. On rocks and stones.

Sphondybothamios multetdual Näg. a. s. 3 . E. $6,8,9$. Hanging from rocks.
Spermothamion Teraeri Aresch. (Callithummion Turneri Ay.). f.c. Vertical rocks. [W. ј. N.W. 5. L. 2, IO.] S.W. W. 2, 4. S. 2, 5. E.6. N.W.4.-(c.t.) var: monoica Schm. (Call. Tumeri var. čariabile J. Ags.; var: repens Auct.; S. roseolum Pringsh.). S. 1, 2, 4. N.W. 1. W.1, \%. N. 2. c. On Fucus serratus and Furcell. fastigiata.-(c.r.) var. subrerticillutum Cotton. E. Il. V.x.

This was added to the British Flom by Mr. A. D. Cotton. Some small specimens were dredgerl at Bec du Nez in 1911 and 1912.
c.i. S. irmegtlite Artiss. f.r. E. 10. Wr. 3.

Ptieotilamion plema 'Thur'. (('all. phema Ag.). [S.5.] N.W. 5. W. 1. On Lam. ('Tonstoni.

Griffithsia coradinotdes Batt. (Griffithsia coraliona Ag.). f. N. 2. E. .2. On rocks.
G. floscclosa Batt. (fri. setucea Ag.). c. E. 2. W. 1.

Halures equisetifolits Kütz. (G.equisetifolia Ag.). [N.W. 4. E. 2.] W. 2, 4, 7. On rocks.

Bornetia secendiflora Thur. (G. secundificia J. Ag.). [N.W. 4. S. 3. E. 10, 11. W. 4.] E.7. N.W. 3. On vertical rocks. (Fig. \%.)

 \therefore "y

Pleorosporicm Borrebt Näg. (Call. Borreri Harv.). [E. 10, 11. S. 2, 5.] E. 5, 6.

Rhodochortos Rotilit Näg. c. S. 3 .
R. floridelem Näg. [S. …N. 2.] S. 2. W. 1, 4, 5. In sand and on sandy rocks.
g. Calfithamion textissimem Kütz. r. E. 6. N. 1. S. 4.
C. btesomes Arı. [S.3. N.TW. 4.] E. 2. W. 1. On sides of rocks and other algr.
C. polisperay Ag. r. S. 4. On Chondrus crispus.
C. rosedy Harr. Miss Lelièvre.
(c: Dudresciai Crn. (C'. uffine et C'. purpurascens Harr.). r. E. 2.
C. Hookert Ag. (incl. C. lanosum et C. spinosum Harv.). [E. 6, 2. N.W. 5. N. 1.] E. 2, ธั, 10. N. 2. W. 1. S. .j. f.c. On other algæ.
c.i. (. Brodifi Hary. S. 4. E. 1. W. 8. r.
G. C. freticulosty J. Ag. S.W. E. 2, 6, 10. r. On Poly. thryoides.
C. tetragovers Ag. a. yenuinum Hauck. f.c. On Rho. palmata and Saccorhiza polyschides.-var. brachiatum .J. Ag. (Call. brachiatum Harv.). W. 5, 6. On stipes of Lam. Cloustoni.
(.. tetricta Ag. c. S. 3. W. 1, 5. E. 6, 8. Hanging from rocks.
C. Cortmbosta Lyngb. f.c. W. 1. E. 10.
C. erayulatur Åg. (Call. spongiosum Hart.). [E. 10. S. 2, 3, 5.] E. 6, 7, 8. N. 2. S. 4. W. 8. On rocks and Ch. crispus.
g. Seirospori Griffithshata Harv. On Fucus sp. Two very small specimens.
Compsothmintos thefoides schm. [E. 10.] N.W. 3. E. G.
c.i. C. Gbacillimey Schm. v.r. E. 6.

Plemarta elegats Schm. (Ptilota sericea Harv.). c. E. 5, 6, 8.
Artithamion Plemila Thur. N.W. 2. E. 11. Rock-pools.
G. A. crispem Thur. In Le Jolis' Liste, p. 112 (A. Plumula var. crispum J. Ag., Batters Cat. p. 89). N.W. 4. N. 2. Rockpools.
I have followed Mr. Cotton in giving specific rank to this plant, thus differing from Batters, who classified it as a variety of A. Plumula.
Crocasia attencata J. Ag. f. S.W. N. 2. W. 1. On Coralline e, etc.
Ceramicm tentissincm J. Ag. (C. nodosum Harv.). [W. 5. N.W. 4.] W. 5. E. 2.-(G.) var. arachnoideum Ag. r. W. 1.
C. strictem Harv. [N.W. 5.] S. 3. E. 6. N. 1. In craunies of rock.- (c.I.) var. zostericola Le Jol. W. 1. r.
a. C. fasfiglatem Harv. W. 5. S.W.
C. diaphastar Roth. [N.W. 4, 5. E. 2.] S. 3, 2. W. 2. N.W. 4.

 F. ㄹ.. 3, 7.

('. M1 HBI M Ag. e.

(…

 N.W. 1. W. s.

Only a single small specimen wis collecteal in 1912; but in 1:111 a prolitic growth ocemom in ons locality which was moberately "xposmb. high bomblem producingr some slight
 thromg which ramela of wator st reameal after the ebhbing tide.

 F. 1 .

 |ll. F. Fi.

Fige. A. Vimmatumat didiatoma J. Ag. a. Nat. mize.
b. Trishabrae -retton of thallow. 天 aloout (110).

! い., =1aall weecitions.

 of1...h. |li-1;

This species, found growing in a rock-pool in a moderately exposed situation in September, is new to Britain. It is a native of the Meditermaean, whence it has travelled to the shores of Guernsey. The following description is taken from D. 1 min, p. $1666^{2}:-$

Frond Heshy-gelatinous ; stem round to compressed, loosely dicnotomons, sub-fastigiate; segments patent, narrow linear, or cameate, with obtuse ends mostly elongated.

Habitat: Ligurian Sea at Nice, the Tyrrean Sea, coasts of Sudinia, Ionian Isles, Sicily, and Adriatic sea.

Frond 4-10 cm. long, more or less regularly dichotomous, fastigiate; segments above the axils romeded, distinctly patent or sub-divaricate, below the axils linear, somewhat wedgeslaped, $2-j$ min. broal. The lower portion of the frond is generally narower, the middle parts wider, the extremities again narrower. The terminal branches often $6-10 \mathrm{~mm}$. long, linear attenuate but obtuse, sometimes short cuneate obtuse, sometimes sub-cornutely branched. Structure and fructification of the gemus. Immer threads very dense, peripheral ones immersed in a small yuantity of mucilage. Substance gelatinous-fleshy, thick and tirm when dry, only slightly cartilaginous. Dried pecimens adhere firmly to the paper. When fresh of a purple, almost wine colour.
Polyides roturdes Grev. [E. 1. S. j.] W. i. Shallow sandy pools and rocks.
Petrucelis crienta J. Ag. [E. 10.] N. 1. E. 2. S.W.
Cruoriella Dubiy Schm. (Peyssomelia Dubyi Crm.). [E.2, 10. S. ©. 〕 N. .. E. 11.

Hifdenbuandta prototypes Narlo. e. Rocks and stones. S'hmitziella exdopildea Borm. \& Flah. On C'lad. pellucida. S. 2. N.W. 2.] N. … 1 .
(. Choreonema 'Tiluetil Sehm. N.W. 4. 1.

Melobesla farmosa Lam. [On Chy. kaliformis. E. 6]; and on Zostera and Clad. rupestris. c.
M. Lejolisil Rosen. [On Zostera. N.W. 2. S. 2.]

Litifofilllèi (Dermitolithon) plistilatia Fosl. (Melcbesia pustulatu Lam. and M. verrucatu Lam.). [N.W. 2, 4. E. 10." S. 2.] W. ј. N.W. j.-var. Corallina Fosl. (Melobesia Corallince Crno). [S. 5.$]$-var. Laminarice Fo:lil (M. Laminarice C'm.). [E. 2, 10.]
L. Nerestans Phil. e. On rocks.
L. Expansum Hevdr. [E. 2, 10. N. 2. N.W. 2.] N.W. 1 On rocks.
L. Licinevondes Phil. f. Lining rock-pools and on other algas.

Lfthothamytos polymorphem Aresch. (Phymatolithon poijmorphum Fosl.). e. On rocks.
L. Lesormandi Fosk. c. On rocks, stones, and limpet-shells.

Epilithon membranacerm Heydr. (Lith. membranaceu; Fosl. and L. corliciforme Fosl.). [E.10. S.5. N.W. 4 N. 2.] S. 亠. E. 3. 6. W. 6. On nther algix.

CorabiNa ofrecinalis 1 . c.

 II. I. SW.

111. Some Ecological Factors.

 bedue of the sulbjort.

 demmastates the exmection hetwern a mad-fomation amd an lla

 comitant "asonciations." Four thomgh formign algologists, sumbls as

 marinc alsal distrilution in liditan.

(1) Physital Pesition of the Island.

 stant-right ant in the somthern pertion of the stran and intormpts the momal thw of the lunly of water. Striking agatmst the ('hamel I-laml. the - 1 rean divildes and thows on either side of them amb also

 ㅍr.1p hical praition.
(こ) Tirles.
Mo.an fring tides rioc alont 2fift., with a corvesponding fall. Ans
 tha, thus afforther a wile area for collecting: lunt the rapiol rian

(3) ('wivents.

A note in Nirture for Siept. 1, 1913, on the Oceanography of the Meditermanan-quoted from a Report of the 1)arish Expeclition of 100×-10 to the Melitermmean and adjacent seas,- describes a * current of wam and highly salme water which tlows eastwarls and then northwark along the deep depressions of the sea-botton, till it appoaches the shores of Britain. It nommally flows to the west of Ireland . . . but if unusually strong, it may enter the shalluwer sea-Jasins. It has been suggested that it is owing to the presence of this highly saline Meditermanan water that the high salinities of the English ("hannel and the hrish sea are due." The presence of this current would accoment for the appeamance of many sonthern species, whose spores have been bronght thither in its flow. Paliun Paromiu, for example, is an inhabitant of the Mediteranean, but is well-estallished as a member of the British Flora: Lithothammion expons:"m, Cormlimu meditorraneu, Nemustomu dichotomum, (1, pomenia simense are among the more recent arrivals on our wheres. amf may have travelled hither by this means. The familiar Gulf stream is also a carrier of spores and detached portions of seaweed, which are able to germinate and grow in the congenial warmeth of the current which has brought them.
(4) Nuture of the Substiatum.

Apart from Ilankton and other Hoating algee it is obvious that seaweeds reyuire an anchorage or point of attachment; mud and sand are of too shifting a nature, and few species will he found growing on them. The abuntant and varied marine flora of Guensey indicates the peculiarly suitable and varied substratum which is alforded by the structure of the Island coasts. The following quotations, which will explain briefly the conformation of the island, are taken from Anstead's Chamuel Islands and from De la Mare's paper" On the Correlation and Relative Age of the Rocks of the Chamel Islands," 'Trans. Gnernsey Suc. Nat. 1hist. Sci. ii. 1ヵ90 94:-
.- The northern part of Gnerasey consists of diorite sometimes approthing homblende rock with senitic and granitic veins." - 'These rocks are of a dark bluish-grey colour, remarkably fine gram, excessirely hard, heary and tongh" (Anstead). "The southern part consists chietty of gheiss, but diorite occurs in various parts The diorite appears. . . . to be associated with the gneiss in the form of inclusions rather than of intrusions There is a considerable patch of fine-grained granite east of L'Ancresse." At Cobo the oranite resembles some Jersey granite described thus". genembly of a pink colom due to the orthoclase felspar, which is abumdant and contains hoth mica amd hornblende..... The mica traps are composed chiefly of mica and felspar" (De la Mare). The relative ages of these rocks De la Mare smmmarizes as follows:"Some of the rinemser granites, a large proportion of the dark blue diorite or diahase dykes, and perhaps some of the pink felsites are Archean (pre-(imbriaii). The Cobo granite, the remainder of the diabase dylkes, the guartz felsites and rhyolites are comprised within the limits of the Cambrian srstem The mic:a twap-dykes belong to the C'aboniferons period With the
exoption of amme superticial pheintocome depnsits no wewer rocks are
 fixamed ly minemal veins, the emoloning rowk and its reins heing of dhfferent dergeres of hatimes. and the equal ate tion of the seat on ronk of uncenal hambers has prombeed those lone liase of projecting rocky isleth. the mang narmw inlets, and the interaceting thoors of ronk latworn high atml low wator mats An extreme comb-
 pecoliarity." A more beal hahtat for the growth of semweeds than

Further infomation on the seoloner of the island is to be fommen in contribmions ly (oullinethe and Whriek in their peresident ial addresses,

 mable. cta., onems in the interstices of the elifts and on the lower levels of ther inlanl.

 awd loato-; (i) 'The varied anil of the islaml."

The •las-are of two kimk.

 clas ate mather bumamos, the daty action of the the lasterning the

The Shand of 1 inw me! is a right-angled triamele: the cact mast form- onse side, that of the sumth :a swomel. white the thime or liypo-

 mathells.

 the di daner protect it from romgh weathore to at grat exteat. 'The

or three inlets. Sand and pebbly beaches-with great upstanding boulders covered, or forming islets, at high tide,-reefs, platforms, and low-lying rocks, hollowed out into pools or chinks, comprise the main characteristics of the eastern side.

The south of the Island has two wide bars, within which are creeks ruming into the cliff: : this region is well sheltered and the temperature is wamer: Further along, the coast is difficult of access and moderately exposerl, for the rocks rise sheer ont of the water to a considerable height, but here and there are some marrow openings where the climb down to the boulder-beach, with rocky floors and pools, is steep and difficult. I was only able to examine one of these, Les Thielles. Pleimmont, the extreme south-west corner, is the most exposed part of the Island ; the shores are rocky: vers jagged and rough, and boulders of all sizes lie scattered about. The gigantic walls of rock sereen off and affork some local shelter. Clefts between descending terraces give passage to rmmels and streams, after the tide has receded. There are deep channels, pools, and lanes between the rocks.

The north-west coast is moderately exposed. Along it are five deep bays, sandy down the centre, but intersected with reefs, and rocky at the extremities. Large patches of Zostera occur low down on the buach. The northern arm of Rocquaine Bay is connected at low tide with the lsland of Lihou by a canseway ; on either side there is a vast area of sand and pebbles interspersed with rocks, pools, and Zostera beds. This is all covered at high tide and swept by a chammel with a strong current. Here and there the rocks half encircle a terraced creek and give exceptional shelter. The whole coast from Pleimmont Point to Grandes Rocques is thickly fringed by countless islets, harriers, and reefs of rock, whose jagged and sharplyjutting erags break the huge waves which come rolling up the Chamel into an enormous tract of surf and foam. The shores beyond and north of Grandes Rocques are much flatter and moderately exposed. 'There are several small bays with boulder-beaches. The rocks are less high and rough, the whole district lies at a much lower level than the south, the slope of land being from the sonth to the north downwads. Grande Have and L'Ancresse are deep and land-locked bays; the former is a large quiet expanse with sandy beach and scattered masses of rocks. L'Ancresse is so hemmed round by rocks as to form a locally sheltered district with sharplydescending shores.

The coasts of Guernsey therefore possess aspects which range from extremely sheltered to quite exposed with the intermediates of moderately exposed or locally sheltered. The shores consist of sand, mud, and Zostera beds, with boulders and rocks of rarying height and roughness.

(6) Salinity.

Owing partly to the smallness of the Island, there are only a few unimportant streams and an absence of any large body of firesh water discharging its contents into the sea. The general luxuriance of the marine regetation is therefore unchecked by great variations in the degree of salinity, which, in the English" Channel, is unnsually

 fizure inlicate fatly enteretly the degree of salinty for the wathe
 if salinity which affect- the ermoth of seaweols ats chathere in its Werter which in hambinl to them.

 in hatakiah pewhs wher rallowater is comservel.

At l'alas, on the moth-went ramst, there is a lame hatckish punl:

 ololion acess to it.

Many wh the lichl- Iringe along the shomen of the west amd nowth

All availahle fromme which in mot hait on or malere cultivation is

 hidatanta uf barachi harmbition-:-

(7) Temperature.
"The mean winter temperature of the atmosphere is 6 degrees higher than that of Greenwich, the summer temperature being rather cooler. The mean temperature is $2 \frac{1}{2}$ degrees higher than that of Greenwich" (Blaek). As the temperature of the Island has a range of 8 degrees, this comparative equability has a distinctly favourable effect on the growth of Algre, especially those exposed for several hours by the falling tide. The average annual sunshine is 42 per cent., and the average sunshine per day is 5 hours; the average rainfall in the island is about 29.07 inehes (Colfinette).

Aceording to Rattray, temperature has a distinet influence in hastening the production and emission of spores and prolonging the reproductive eapability of Algw. The maintenance of an even and mild elimate must therefore assist in promoting the marine fertility of this island. Harver noticed "how those small and delicate kinds whieh grow within tide-marks are found in greater luxuriance or in more abundant fruit in a warm than in a cold season." He also remarked "how Parina Paconia attains in warm summers on the south eoast of England a size as large as it dnes in sub-tropical latitudes, while in a eold season it is dwarfed and stunted." The summer of 1912 was exeeptionally cold and wet, and the specimens were then plentiful, but small in size.

With regard to the temperature of the sea, Diekson has observed that " the upper larers of water from 3 to 5 fathoms are apparently subject to temporary focal weather conditions which may or may not produce a distribution similar to that formed underneath." At a depth varying from 17 to :30 fathoms, this writer has reported the temperature to be 50.5 to 54 C .

IV. Arrangement.

(a) Terminology.

Owing to differences of opinion as to the exact definitions of the various terms employed in marine eeology, I have restrieted myself tor the use of such geographical expressions as "Region" and "Zone" or "Belt."
"Region," as used by Kjellman, is a term miversally accepted to denote a portion of the shore with relation to the tide. He divided off the algal regetation into three regions:-" 1 . The Littoral region stretehes between the high-tide and the low-tide mark, and includes many Green alga, Brown alga, and some Red alga. ‥ The Sublittoral ranges from below low-tide mark down to a depth of 20 fathoms (40 metres). Here alge of all three colours are represented, but Green algae cease, and Red algae beeome more numerous with increased depth. 3. The E-littoral region is below the preeeding and descends as deep as light; it is poorer in species and indi-viduals- the latter are smaller and distorted. There is also a charaeteristie underlying vegetation of epiphytes requiring less light."
"Zone" or "Belt" indieates the lateral continuity of a genus or species along the shore. There is often over-lapping and intermingling of alge in the respective zones: those of one zone may form undergrowt hs of others.

(1.) Tiyp mes in rolution t") Mabital amd Climete:

Thae cenat of finerney heing mainly of a rocky mature, the marine

Here and there where dismegration of the rock is complete, malting in patehers of same aloug hage me.. the Floma is of a
 getatimons =luathe hold particles of sand twenther: "their theads fermeate the sand to a depth of hime millimetre" (Waming), Catenclla reppens. Rhotuchorton flurithlum. Palysiphenin nigressens, P. obsornen, ete., are aloo sambliwellers: they hold the samd liy means of filamentoms rhazids, thus forming tufts ir pals which extend into compet masses. When dismongation is partial, exhithting the intermediate stagen of low rocis and pebles, the chanacter of the regetation is rrmsitionat, pertaming partly to sumb and partly th
 phantsare onally short hashy and much divided. The regreation of sallow peols and cham, is also helongs to this catereme which

Eatreme conditions of di-mangration have proluced modyy pate he: oftem thinkly hest with Zostere. This marime phaneregan In it horizontal ront ants an a capture of the mat (Wamines);

 wrime merge comstantly into each other. following the variod nathe of the conat-line.

 conditions. The dominant speries are as follows:-

$$
\begin{aligned}
& \text { lige 1. The expuent, on the s. W. cmast: }
\end{aligned}
$$

Inminarin digitutu. Corrallinu, Jilluthumnian.

Porphyra. Eintrommaphaninlestinulis, Finous msich-

Tran-itionai forn with murh intomingling of (m)
 tilti.

I. The Exposed Type.

This type is well represented at Pleimmont, where the shore is rugged with a moderate slope, and the general appearance is desolate and bare. According to Rattray this bareness of rocks in an exposed position is "owing to the force of waves from deep water, whereby rhizoids or thalli are remeved from the substratum, and the maturation of fruit is prevented. In such places there are fewer plants and of stunted growth." In view of this it is interesting to note in the chinks and fissures the occasional presence of certain matted species-e. g. Polysiphonia macrocarpa, Ctenosiphonia hypnoides-which hold sand, shells, etc., in their interstices and serve as a nidus for spores of other species, patches of Lichina pygmea on the rocks and boulders also form whole uurseries for sporelings of Fucus, etc. Laminaria digitata occurs profusely, whilst beyond the limit of low tide, the erect snaky stipes of \dot{L}. Cloustoni are seen standing up out of the water. There is very little Pelvetia or F. spiralis.

It was not possible to observe the extent of these growths owing to the difficulty of obtaining a boat. The inky jatehes of lichens, the dark tufts of Fucus vesiculosus var. eoesiculosus along the midlittoral, and the dull pads of Cyanophycece along the upper littoral, produce a sombre effect. Deep clefts and masses of rock afford considerable shelter, which brings about minor modifications of the general type.

II. The Semi-exposed Type.

The west and north-west coast of Guemsey, with its five bays, is distinctly exposed to the north-westerly winds and the force of Channel waves; the bays are cut by reefs ruming at right angles to the shore, and they are further sheltered by a fringe of islets and sharp rocks which form a barrier shutting them in from the open sea; these sheltering rocks profoundly modify the stormy wature of sueh a coast and give rise to conditions of semi-exposure.

Though not dominant, Pelvetia appears here and there in the upper areas in scattered tufts, inereasing occasionally into large patches. Fucus spiralis also is well marked, but gives place lower down to Ascophyllum nodosum. The latter, according to Cotton, grows only in conditions of considerable shelter, but the opposite was found to be the case in Guernsey, where it prefers the semi-exposed and moderately sheltered habitats. It evidently thrives in the surf set up by the rocky conditions, and an enormous tract of this alga forms the great feature of the Semi-Exposed coast. F. servatus is infrequent, and is replaced in many instances by F. vesiculosus. Himanthalia is also scarce. Stretches of sand in this area form habitats for Polysiphonia nigrescens, Ahnfeltia plicata, Cladostephus verticillatus, Graciluria confervoides, and Chondria tenuissima. Zostera beds with intervening groups of rock occur at lowwater mark. Another dominant note is Rhodymenia palmata: heavy growths hang from rocks and boulders along the lower littoral, and take the place of Ascophyllum nodosum where there is less surf; for instance, along Portelet, Rocquaine Bay, ete. The Laminurice Jocheqh. of Botivi, Afgist, 1920. [sifphement IL.] d
are represented mostly by L. digitata and Succorhiza polyschides at low tide, but further from the shore towards the open seat they are replaced ly L. Cloustoni (see p. 12)

III. The Shellered Type.

In deep creeks and inlets in the south, Bondeaux in the east, and LiAneresse in the north, this type of veretation, as would be expected, is extremely laxuriant and diversified, and comprises many rare speces.

The (ihlorophycece are much in evidence, as are also profuse growths of P'orphyra, Rhorlymenia pulmata, Chondrus crispus, Gigartina stellata, Gracilaria confervoides, etc. Of the Fuci,F. spiralis var. platycarpus, F. vesiculosus, and F. scroutus are the most noticeable species; Ascophyllum nodosum is only represented by a fow plants here and there. Along the sides of bays, low rocks, when half buried in the sand, as at Petit Port, are often covered with tufts or cushions of liholochorton floridulum, etc. Patehes of soft encrusting algar such as Codium adherens, Petrospongium Berkeleyi, Millenbrandtia rubra, and lialfiaiz sp, are found seattered over houlders and stones; the mare Gigartina pistilluta, Crouania attcuunta, Vitophyllum Millise, Cluilophora pellucida, and Melminthoclodia purpurascens, may be gathered at low tide, or from slady rock-pmols. Dudresunya rerticillata, Bonnemaisonia asparagoiles, ete., frequently drift from deep water into the guiet hays, together with long fronds of Desmarestia ligulata. D. aculcita, and Halidrys siliquosa. Enormous plants of C'lo latissima are also chameteristic of these Incalitios. Laminaria saccharina is the typical plant of that gemus in sheltered districts, as Mr. Cotton observed at Clare Bay.

IV. The Moderately Sheltered Type.

The foatures of this type are very variod and constitute a mingling of saxicolons, μ sammophilons, and transitional tloras, together with th. Serutation of Zostera lueds. Pelvetia is extremely local-here absent, there scanty, then foming an emomous expanse of many spuare yanls, as at Port dirat, ite. Porphyra is mostly a spring growth and aceurs jut ahout high-water mark. P. lencosticta aphearb alonit the same time, hut at half-tide lewe. Enteromorphas and Cladephoras arw almalint, and su arw the species of the "Prucus 1. 1t." F. plontycurpus and F. servatus luing those most in evilence. Ascophyllum mnilosnm is prosnt. though only in patches here and thorr, but mot so scanty as in the prosions type. 'Thore is moch inturningling of the lwown alga. A witompad frowth of Chondrus crispus onews among the bhilluw rock and pouls, and masses of Rh lyment palmatul hang from phatforms and rocky ledges. The entrotilis algo- Pryssonmelia sp. and Ra!fain sipp.-aro very Promment from lalf tile down to low water on small stomes, they alternate. with anl-ilwollers such as Khodochorlon, Chondriu desyphyllw. 'badustophus spmigiosus where there are patehes of sand;

Laurencia pinnatifida exists as an undergrowth from half down to low-tide level.

Along the sub-littoral, there is a mixed assembly of brown weeds: Bifucaria tuberculata forms large patches, or mingles with Laminaria saccharina. Himanthalia lorea occurs only in colonies here and there along the eoast; its best development seems to be in moderately and even locally sheltered positions on rocks at about the limit of low tide. A group of rocks north of the White Rock bears an extensive crop of these plants; at Pleinmont, which is an exposed locality, it grows only in deep pools. The growth is so restricted that a zone of the genus can hardly be said to exist. Few plants were seen along the W. and N.W. coasts, and then only where locally sheltered.

(c) Zonation.

The segregation of species into zones, and their arrangement at different levels along the shore with regard to the tide, is the result of various influences; among these may be mentioned the amount of insolation and desiccation that the respective species require or are able to withstand, and the periodic tidal exposures, rates of growth, etc. These have been indicated by Rattray and by Misses S. M. Baker and M. H. Bohling, who made extensive experiments and published valuable papers dealing with the causes of the zoning of Fuci.

Notwithstanding the mixed character of the Guernsey Marine Flora, the zones or belts are distinctly traceable. They vary considerably in width, become discontinuous and patchy, or even disappear for some distance where climate or substratum are unfavourable to their growth. The following notes deal with some of the most conspicuous zones and indicate in a small measure the interesting work a waiting a careful worker.

Beginning with the Upper Littoral and descending to low water, the various zones may be obscrved in the following sequence:-

Alge.

Lichens.
Verrucaria maura. Lichina confinis. V. тисоsa.

Lichinu py!

 Fismentia Zane.

Fimencoriat manra grows over the dry, jacged rocks, giving them a mottled appeantuce and forming a well-matked hand a short thatane above the Pelowfon zome. 'This extends round the island independent of aspeet, but is intermpted hem and there by the concoachment of sea-wall or dykes, or the absence of suitable rocks. Γ^{5}. mucosar oceus in infrequent pratehes, often dry and exposed to sunshine for a comsilemble perion of time; it extends from the limit of F^{5}. manea down to about half tide, where it forms dark green, almost black greasy stains among Ascophyllum notosum. Both of these Vemucarias have been fully dealt with by K゙nowles and Cotton.

Pelirtion, which oceupies the upper raches of the littomal. is most semsitive to exposire, and its line is very varied in width. It is scantaly developed in the exposed districts, growing only on rocks covered at high tide and disappears altogether with extreme exposure. Where the projection of a reef sereens a portion of the shom, the Prlerfia hand immediately widens, to the extent of several yarls, acending to the slope of the shore. In smmer the orange-colomed receptacles lend a distinet note to the surommlings. Along the north arm of Rocquane Bay. Lihon Cansway, and likre Buy, where the
 depth. Acrian, with moderate shelter, and where the shore is very flat, the zonce witens out erommonsly, as at loor Gart, and Grand Hure, a land-luckenl hav; int at no point is there much Pelretia alove high-water mark. In several localitios of modemete shelter there is only a soanty growth on aceomat of the stempess of the rocks; where a wall and roadway skirt the shore, the Pelectio hand disapyears for long distancos.

Rivoluriu and Calothriar Zone.

Alwint high-water mark. lut just lenlow the I^{r}. manera helt, a line of Risuluria and of P'elothrior oceurs to a depth of 2 or 3 feet in dots and patchers, and corresumds to the Rirularia and C'nlathriax association ilescribed her uther workers. It comsists of Gutothriae

'The zone is more apparent in expmend and semi-expesel regions ; it dewrases with moderate shelter, :mm with the exepption of a wide seathoring uf Rimbluria bullufa almost vanishe's from shelterme pmations.

The Fint romorpha Vome is very hroad and consints for the most part of $E:$ infostmulis. It extonds from ther Rimblurin and C'ulotherer line down thromer) the oflur ledt, to low-wator mark, oftom as an un lergenth. In expored ragions the development is poor, forming only :o soanty grasile nu low rooks, or in pmols. With shelter it

 shelfor.

Porphyra Zone.

Thin, even patchy at places, and abnormally wide in others, the zone is more or less continuous round the island, sometimes the line is so narrow as to consist of single plants. The poorest development seems to be in exposed localities, where the plants are umbilical in form, short and tufted, and occur mostly as a scattered undergrowth among F. spiralis and Enteromorpha spp. With semi-exposure the zone increases in width and takes a lower range. The growth is generally very unequal, and frequently mingled with F. vesiculosus. On one side of Lihou Causeway it measured 2 feet; at Cobo, Albecq, and along the north arm of Rocquaine Bay there are large patches 13 feetacross. Increased shelter produces larger plants of more continuous growth, as at L'Ancresse Bay, where there is a broad band of the species several feet wide along the mid-littoral. A remarkable case is seen at Petit Bot in extreme shelter: the principal feature is a prolific growth of Porphyra down one side of the Bay which mingles at first with F. spiralis and Enteromorpha spp., and descends through the zone of F. vesiculosus to low-water mark. The plants here are of considerable size, laciniate in form on low rocks, but umbilicate on boulders.

Mid-Littoral.

The Fucus Zone.

Fucus spiralis is very sensitive to climate. In exposed localities it is found only in chinks of the rocks, more especially choosing those which run parallel to the shore, the band therefore is patchy and discontinuous. With semi-exposure F. spiralis begins annong the Pelvetia and then forms a well-marked belt about 5 or 6 feet wide. Where the beach is pebbly and the rocks are low, F. spiralis grows over them, but if the shore is very rough and composed of sharp, high-standing rocks, with deep clefts, this species is absent. With a little local shelter, F. spiralis develops into the var. platycarpus, particularly on the sheltered sides of boulders; the fronds are often as much as six inches in length.

There is besides an abundant undergrowth of the following species:-Ceramium rubrum, Spermothammion Turneri, Cladophora rupestris, Rhodochorton Rothii, Catenella repens, Enteromorpha intestinalis, Ectocarpus littoralis, Hildenbrandtia prototypus, sporelings of Fucus spp., Ascophyllum nodosum, and Cladostephus spp.
F. vesiculosus occurs about half tide on low rocks and stones: it appears either above or below Ascophyllum nodosum, according to the nature of the rocks (see p. 38). It may ascend up into the F. spiralis band, or descend and mingle with \dot{F}. serratus. In moderately exposed districts, as at Cobo, F. vesiculosus sometimes takes the place of F. serratus and extends down to the limit of low tide; the line is then rather wide, ill-defined, and sparse. The greatest development is in sheltered situations. The epiphytes of this species are :-Polysiphonia fastigiata and Pylaiella littoralis. The following plants frequently occur as undergrowths:-Rhodymenia palmata, Cladostephus spp., Chondrus crispus, and Lithothamuion Lenormandi.

In combitions of extreme exposure, F. resiculosus disilphears altorether: it is superseded by the var. emesioulosus, a characteristie flant on expesed shores, which forms the continuation of the band of F. maiculosus along such listriets at about half tide. The fronds are short, stout, about 4 inches long, very dark, with strong basal disks and bramehes of equal length, as if ent with a knife. The plants witen protrude from patehes of Lichina P!gmata, or from holes and chinks of the rock, wherever a little shelter is to be found for the sporelings to start growth. Polysiphonia firsligiala is a frequent epiplyyte.

Ascophyllum nodosum extends in varying profusion from Pezèrie Point to Grambes Roeques, where the climate is semi-exposed. A vast. expanse round Lihou and the adjaeent islets measures many symare yards. As imbiated by (button this plant largely depemds upon suitability of substratum, for it ean only grow on rocks of a heirht that emalles the fromls to hang down; where roeks are that or give place to sand, it disuppears.

The relative positions of Ascophyllum nodosum and Frucus rersiculosus on the shore are interehampeable along the Guernsey shores; sometimes the one, sometimes theoother, takes the higher range and sucereds F. spirnlis. The detemming factors, as alrealy pointed out, are very pussibly the size and beight of the rocks at tho respective lavels: the two alga fremently intermingle.
'The lommonek and moks round bihou seem speceially favourable for the growth of Ascophyllum. Its luxuriamen there is also pros bathy due in eraat measure to the prevalence of surf; ware the "xtrome ronghmess of the const ereating this comblion reases, as bryond Gimbles liongues, it no lomger figures as at eonspinemos feature of the show. Fiather aloug the band becomes manh hooken.

 but in extrome sheltor ouly al low plants are th he foum seattered

 a lorak in the eontimity of the hatat ments. 'Tha growth is very
 -helter. hat expmoner is inimionl. Oftom, where there is partial

 where conlitions of extreme expusitre presail. Spermathammion

 Lathothmanana lenomanalla, (iclidium crimale, Enteromorpha comprossel, ete

Lichimn Zome.

describes this species as "semi-marine, and usually occurring along the inner fringe of high tide mark letween the orange lichens and Verrucaria maura, and slightly overlapping these belts but it is occasionally coextensive with that of V. maura." It is found in the latter position along the shores of Guernsey in semi-exposed conditions.
L. pygmaa is conspicuous along the exposed districts of the Guernsey coasts. It grows in patches over the upper parts of rocks, more especially on stretches of boulder beaches where there are no alge except in pools; this is contrary to the observations of Cotton, who points out the bad effect of extreme exposure on this species. According to Miss Knowles "L. pygmea prefers rough surfaces and stecp rocks which face the breeze and around which the sea breaks. Its range extends from the lowest limits of V. maura as far as low neap tide, and the growth is best developed in the upper part of its range among the Pelvetias and immediately below them." In the district round Pleinmont the maximum development was at about half-tide level. The growth of this lichen dwindles as shelter increases, though it can still be tracod all along the coast. Wherever it occurs it affords a convenient site for the germination of sporelings of F. spiralis, F. vesiculosus, and several other species.

Zonation of Boulders.

It was interesting to observe how constantly tufts of Ascophyllum nodosum hung down from the lower parts of boulders in semi-exposed localities. Above them grew a few scattered plants of F. spirales anong the patches of Lichina pygmea; further up appeared more Lichina, but the tops were bare. On the side of the rocks facing the sea there was less growth than on the landward side.

Rhodymenia Zone.

There is little or no Rhodymenia palmata in the soutl of the island; on the other coasts it frequently forms wide and extensive zones from below half-tide level down to the sub-littoral. Its luxuriance is for the most part unaffected by differences in climate, though changes of form accord with certain changes in climatic conditions. In the exposed district round Pleinmont, the plants of the littoral region are sparse, and nestle in chinks of the rock or hang from beneath over-arching boulders. They measure about 4 inches in length ; the colour is dark red, and the stalks are stout and leathery with strong attachment disks. The prevalent form is wedge-shaped, with numerous stalked ovate proliferations along the edges. The plants of the sub-littoral are deeper in colour, thicker in texture, and considerably longer, increasing even to 2 feet in length. The form in this area varies from wedge to strap-shaped, with similar growths or proliferations superposed in stages upon each other, and apparently of greater significance than the leaflets of the var. marginifera. The undergrowths are Chylocladia ovalis, Laurencia pinnatifida, and Hildenbrandtia sp.

All alonge the west coast, where there is less exposure, the roeks at luw thle ate thick!y covered with R. palmata var. marginịero. 'The plants are about t inches or so in length, reddish yellow in colour, monh thinner in textme, and thelify fringed along their edged with long narow processes. Oecasimal plants of F. serotus mingle here and there among the rrowth. With the moderately sheltereve eonditions of the east eosast there is acrabs a widely spread shaggy dewoprmont were rocks of the same level, chietly of f. typion, with frombs of (inches in length. Were and there are specimens of vass sumiensis and muryinifere. Among the madergrowths ate Griffillsia sefneen, G. cornllima, Callithammion tetrionm, and Plilota sericera.

With increaser shelter, as at Bordeara and l'etit Bot. etc., the sume comspichons and heaty growths are provalent over the rocks at hall-tide level, bower down the plants grow to cormons size, abl ave bright in colour and thin in texture. The epiphytes are Phlaospore Wiochialu, L’olysiphonia Brorlisei, Ectocurpus granulosus.

Lerurenciu Zome.

L. finuatiforla ocenpies a similar position along the shone th that of lihmbymenin, but appars mostly as an undergrowth. Scanty, arembinh peramment patehes creep over old Lilholhamaion Lunormundianl L. imeruslunsat alsut half tide, where the permial plants
 towats the sub-littoral ame the growth inereases in luxuriane. 'The leset development was olserved in moderate shelter.

('houdives Zanc.

('. rrispus is failly ubiquitons from the Mil-littoma down into than sublittomal regions. It is seanty in extreme exposure. last fairly abmadant along the semieexposed west eoast, where masses of thie dec| water form are constant! theown up: with greater shelter the zone is encmathed on by wther species-viz. Cigfartille slellntu.

 grewn in pathere here and there along the enast or inlubits rock-puols atod flomivhe; best with morlerate conditions of climate.

Zone of Soft E:ucrusting Alyoe.

In shelteral districts Mildrulirandlia sp. grows over rocks and binnes umber the belt of Fiurns rpirulis, and dessemds oecasiomally to the lower littoral : at alont half tide Prtenspongium Berliclryi and Cinlum molhicrons form sutheral patehes over hare moks down to lowude level, a* at L'Ancressu Payy aml saint's Bay. Relfsia spp. and Prygronurlun spare chamoteristic of greator exposure and have a wide rabge ower the shome from above half tide down into the Solslittoral, whes! - wn amall stones and limpet-shellh under the shelter of the larger ales. Pofomelis rruent" wemes very sparkely, irrespective of rlimate ronnlitions. st almon the level of low:water mark.

Zone of Calcareous Algre.

This Zone can be definitely traced round the island excepting where patches of sand or Zostera beds intervene. It is the widest of all the \%ones, spreading over the whole of the Littoral and Sub-littoral regions and extending beyond all other alge to a considerable depth. Its maximum development is round Pleinmont in extreme exposure.

Corallina officinalis is at first short and tufted, increasing gradually in length as low-water mark is approached: it is replaced at lowtide level by C. squamata. C. comiculata and C. mediterranea appear with greater protection from storms.

Lithothamnion Lenormandi is always the uppermost of the calcareous encrusting species, appearing a little above the Mid-littoral. It prefers shady positions in chinks and crannies where some moisture is retained, and descends below half tide, mingling with and giving place to L. incrustens.

The delicate and beantiful Lithophyllum lichenoides forms a constant feature on the upper edges of rock-pools from half down to low-tide levels along the west, east, and north coasts. L. incrustans lines basins and pools up to the water's edge, then ceases abruptly, being unable to withstand desiccation. It occupies the lower Midlittoral from about half tide to nearly low-water mark, and then mingles with Lithothamnion polymorphum. Where rocks have a smooth surface these Lithothamnions, by lining the pools and basins, create a roughness which affords a foothold for other algre. L. polymorphum belongs exclusively to the Sub-littoral regions and beyond. It has a rounded knobby thallus.

Sub-hittoral Region.

The various species of brown algre connecting the Sub-littoral with the Littoral region, form a more or less continuous band along the shore, consisting chicfly of Bifirearia tuberculata and Cystoseira spp. Where conditions of moderate shelter prevail, Himanthalia lorea mingles with the Bifurcaria or forms patches over the rocks and boulders at the same level ; but with extreme exposure it disappears from the open and occurs only in locally sheltered pools. The conrlition of things therefore differs from that described by Cotton for Clare Island where he alludes to the plant as characteristic of moderately exposed shores. On the other hand, his statement that this alga is of a surf-loving habit in the British Isles is fully corroborated in Guernsey.

> Zone of Calcareons Algce.

The Zone of Calcareous Algre is continued from the Littoral and extends fir down into the Sub-littoral region, mostly as an undergrowth of other species. Corallina squamata and Lithothamnion polymorphum are most in evidence; they flourish best in fully exposed situations. With more moderate conditions, the following plants are often found creeping over the surface of L. polymorphum: Gelitium crinale, Nitophyllum rumosmm f. repens, Zonaria parmula.

Laminaria Zone.

Owing to the impossibility of obtaining a boat except along the east coat. the study of the Laminarias was limited to observations at Gring tides or of the weed thrown up on the shore. The enomons fanatities of the latter heaped up in banks along the west coast, expecilly in autumn, lead one to conclude that there must be an extremely wide Zone of the genus in this district. Further round the island the debloris decreases consilerably, so possibly the Zone is marrower along the other shores. The influences of climate on a genus, resulting as pointed out by Cotton in changes of species according to changing conditions, are elearly illustrated by the Laminarias of Guernsey:

In the exposed type of flora, round Plemmont, the Laminaria Zome consists in its upper portion of L. digitata and Sacomhiza polyschites, whilst extremely low tiles reveal the presene of L. Cloustoni. Those plants nearest the shore are short, further out they increase tu:3 or 4 ft . in tength. The rough stipes of L. Cloustoni hear a phontiful erop of epiphytes, among which may he mentioned Eictocunnus siliquosus, Rhorlymenin palmatu. Ptilothammion pluma, Delesseria simuosn, I). alata, Phyllophora palmettoides, Polysiphonia urceulata var. patens, Lomentarin articulata. A plentiful growth of ('allithumnion tetragonum oceurs on the hates of L. digitatn.

The miphytes on the stipes of Suchorhizo polyschides are Ectocarpus Ilinchisior. E: aretus. E. Croutni, Myriomemareptans, a thick fult of Chuntrunsin Lorrain-Smithire.

Corionly chongh some larte and fine species of L. succharina wre sen in this district usinally comeneted with shelter, they had pasithy grown in dec. fix-ares.

In the flem of Type II., the somi-expmand, alone the west comst, there is first a small :nmomit of L. socharoma mixed with Chorda filum and Clead lutissimu; these are suceceled liy L. digitate mixed with Sacchorhiza polyschides, whilst still further out L. Cloustoni beomes the deminant onerics. As shelter increases L. sacchatina, the characteristie phant for protweted areas. gathe ground and finally dioplame wher speeties. It is ahmont the only Laminaria fomen in sechuled crecks and iguiet hays.
L. Clunstoni was mot chliserved along the cant and south consts: it may have lowe "rectowked is the open sua is the more suitable batistat for this plant, viz. along the morth and west monsts of

 coan" ire bas farmiralh to it armeth.

(d) Paod Vembtuthes.

Shery pals hate ligh-water mark are more of luss hatackish, as

 Aurme twims lesome phite warme They contain fow nlgac;

within reach of the tide, Cladophora spp. and Chatomorpha spp. make their appearance.

Half-tide pools are sometimes shallow, with sand and pebbles. They contain such species as Asperococcus fistulosus, Polysiphonia nigrescens, Cladophora rupestris, and Rhodomela subfusca. Where the bottom is rocky, Padina pavonia, Halopithys incurvus, Polysiphonia elongata, ete. grow luxuriantly; whilst Gelidium pulchellum, Griffithsia spp., Callophyllzs laciniata, Laurencia spp., Lithothamnion Lenormandi, ete, are to be found where there is sufficient shade.

Below half tide the vegetation of rocky pools becomes varied and abundant, including many sublittoral species. The edges of some pools are lined with the beautiful and brittle Lithophyllum lichenoides, below which there is a heavy growth of Bifurcaria tuberculata or Cystoseira spp. At the lower depth Nitophyllum uncinatum or Calliblepharis lanceoluta send up hooked shoots which climb among the brown weeds. Other pools contain Bryopsis plumosa, Codium tomentosum, Enteromorpha clathrata, Cladophora pellucida, C. distans, Dictyota dichotoma, Nitophyllum punctatum, N. ramosum, N. Hillice, Delesseria sanguinea, Ċhylocladia ovata, etc.

Corallines and Lithothamnions line the bottoms of most of these pools with their pink and mauve incrustations: Corallina officinalis, C. squamata, Lithophyllum incrustans, Lithothamnion polymorphus are the most conspicuous species.

V. Composition of the Flora.

The mixed character of the Marine Flora which flourishes on the shores of Guernsey is doubtless owing to the gengraphical position of the island, which is so sitmated (see p. 26) that it lies well within the range of the Atlantic Flora. Guernsey is sufficiently near the shores of the English Channel and the west coast of France to participate also more or less in the type of regetation fringing these littorals; this is composel very largely of a southern type of Flora, along with certain types of Atlantic and cosmopolitan marine vegetation.

Northers Element.

There is in Guernsey a well-marked element which belongs to the vegetation of the North Atlantic, a Flora which extends to the Norwegian Polar Sea; many of the species, however, do not penetrate farther north than Scotland or the Faeröes. Orring to the influence of the Gulf Stream, which flows along the coasts of Norway and round Cape North, the temperature there is much higher than in other parts of the Polar Seas, so that the district characterised by Kjellman as the "Norwegian Polar Sea " is not purely Arctic; the Flora there is very closely allied to that of the North Atlantic, and is of varied composition with luxuriant littoral and tidal-pool vegetation. Brown algre are dominant, though green algie are abundant, with a fair number of red species. Southwards, this Flora ceases gradually along the Scotch and English coasts, the coasts of Spain forming the southermmost limit of many species.
l'ylumlla littoralis van. rurim has not heen recoralerl further south than seotlant; it is a mative of the Norwegrian Folar sea, and oceurs alan in the Aretic Sas. The presence of this plant in Gummsey is whecommable: it may have travelled southward in a current that thows down the east coast of England, and, being caught in some of the eross-curents of the Channel, have drifted timally to Gueruser ; or it may have been brought byesome other agency, such as ships or evern seatgulls. Alaria is also a northern species belonging to the Faerou-s. 'The Atlantic coast of France forms the southern limit of its distribution; it has been fomm in Guemsey and Aklemers. According to simwagean, Chordu filum descends as far south as Gigon in Spain, but specimens have been found in the Mediteramean; the same writer also mentons the Corngne as the southern limit of Acinetosporu pusilln. Fucus servetus is said hy Harvey to extend as far as spain: it does not oceur in the Mediteranean; while (roum has noted that Tilopteris Mertensii ceases to appear beyond the Spanish coasts.

The following are some northern elements of the Atlantic Ocenn and the Norwerian Polar sea which alse exist in the Guernsey Flora: those marked with an asterisk vecur also in the Aretic seas:-

Bulhocolron pilifirum.
Rhizuclonium rijnrium.**
('ladophoren ylnucesscens.*
('. arrola.*
(:. In lunsa.
Hesmarastia viridis.*
1). "culıutu.*

Dirtynaiploon firuirnlarems.*
Lithosiphon Lamamarice.
Puncluria plantu!incu.*
Eictacarpus tomentosias.
F.: Lemirli.

Pylairlla lillorulis var. romin.*
Alyratrichin filifurmis.*
Ëlarhiston furirnla.*
šphucrlurin oliructa.*
S. cimhusiz.*

M!rionrmi revtions.
Cordaria Altyrllifarmis.*
「'ashiguón rimerir Cl .
C. duraricuta.

(Morila filum.
I.ambanriu xuschurima.
l. drgilnlı.
L. (') (oustom?.

Alurin rasulcula.

Fucus spiralis.
F. cesiculosus.
F. scroulus.

Ascophyllum noulusum.
Pelicelim cunaliculuta.
Mimanthalia dorra.
Porphyr" lacininla.*
Chuntronsin virgatula and var. speundata.*
(. Dariasii.*

Gigurtina strlluta.
Phiyllophora memliranifolia.
Rhonlymenian pulmutu.*
Plyycodrys ruliens.
belossarial sanguinea.*
b). "lut".
1). "!!!nstissima.

I'w! !siphania, filrillosa.
P. ni!jr".
('ıllilliamnion piolysparmum.
(: Wonkeri.
Plumavia rlryans.
Crramium aranthountum.
Palyider raturilus.
Pelioncrlis crurnta.
Epilithon memliranacrum.

There in mormser in the Atlantic F゙lora an endemic Aretic element, wheh, acoording to Kijellman, originated in a glacial sea and passerd
from thence into the North Atlantic. The Aretic Algae occurring in Guernsey are given below; they are also common to the English and French coasts, and three of them, marked with an asterisk, are cosmopolitan :-

> Rhodochorton Rothii.
> Fucus vesiculosus.*
> F. ceranoides.

> Chorda filum.
> Ralfsia deusta. Elachistea fucicola.
> Scytosiphon lomentarius.*
> Desmarestia viridis.
> D. aculeata.

> Dictyssiphon foniculaceus.

Chatopteris plumosa. Ectocarpus confervoides. Pylaiella littoralis.* Enteromorpha compressa. Rhizoclonium riparium. Urospora penicilliformis. Lithothamnion polymorphum. Rhorlymenia palmata. Ahnfeltia plicata. Ceramium rubrum.

The origin of this Aretic element is graphically described by Borgesen, from whom the following is taken:-"The EuropeanAmerican algal Flora of the North Atlantic has originated from a mixture of Atlantic and Arctic species. In tertiary times there was a land-connection reaching from Europe by means of the Faeröes and Iceland to America....... The Arctic Flora has gradually developed north of the land-connection; it is an old Flora, which has developed in the seas about the Pole, and has been very rich in endemic species. But when the land-connection was broken up, probably in the later tertiary period, a commingling of the species from the two formerly separated territorics began and continued into the Glacial Period. During the latter, when the Polar Sea and the northern part of the Atlantic Ocean were covered by great masses of ice, the algal Flora was forced to go southwards, so that a Flora of Aretic character probably occurred as far down as the coasts of South England and North France. On its way south, however, this Arctic Flora met and became intermingled with the species of the Atlantic Flora, which had been able to resist the climatic changes. When the ice again receded after the Glacial Period, this algal flora, now composed of species from two different territories, again wandered towards the north, yet a few Arctic forms which were able to adapt themselves to a higher temperature remained on the coasts of England and France, while others withdrew to the Polar Sea proper:"

Southerv Element.

The southern element of the Guernsey Flora includes a very large number of Mediterranean species; some are even natives of the Indian Ocean, Brazil, West Indies, etc. There is a contimual immigration northward of these southern species; many have long. established habitats in the warmer parts of the Atlantic Ocean, whence they have travelled to the shores of Northern France, Guernsey, South of England, and even Scotland. The Floridere dominate the southern type of Flora, though the Pheophycere and
（hhorophyeat are failly well represented．The following are sume of these more southerly forms：－

Oscillatmia Cormllince．
O．amphibia．
Isactis plana．
Pherophila dendroides．
C＇adnphora prolifera．
（＇．Mutchinsier and var．distuns．
（＇．rectanyularis．
C．repens．
Codium Bursa．
Phycolupathum crispretum．
Ėcturarpus V＂uillantii．
Myreuctis pulviunta．
Mulopteris filicina var．ser－ luluria．
Mesogloin Leveillei．
1L．limesa．
C＇usta！nen contorta．
P＇etrospongium Berlieleyi．
Zanariliniu colluris．
G＇utlrriu multifila．
Aglazonia reptans．

Cystosiriva ericoides．
C．grumulata．
Taonia atomaria．
Pulina Paronia．
Dictyopteris membranaccu．
Gelidium attcnuutum．
Gymnogongrite pulens．
Callymenia microphylla．
ILalopithys incurvas．
Polysiphoniu opraca．
P．obscura．
（＇tenosiphonia hypmoiles．
Spermothamnion irreyulure．
Bornetia secundiflora．
Pleonosporium Borveri．
Cullithammion byssmiles．
Autilhamnion crispmm．
Gutcloupia filicina．
G．dicholomer．
Nemastoma dichotoma．
Lithophyllum corpensum．

Besides these there is a considerable number of species having a wide range in the Amditermanean and the Athatie．

The following speejes，thongh oeewring here and there on the French and spanish coasts，have not yet appeared farther north than linernsy ：－Polysiphonia obscura，native of Caliz．Ahriatic Sea； P ．opuce，native of the Mediterransan；Ctemosiphoniu hymooiles， native of Spain；Temastoma lichotoma，native of the Mediterrancan ； Lithothumnion expansum，native of the Neditermasam．All these are forrely southern forms，and may possibly be consitered as alims， hare it is quite likely that their range will extemb，and in the future， when fully costablished，they may come to be manded as part of the Isritisla lioma．

The following is a comparison of the（inernsev Flom with neigh－ lumring colasto，ete．：－

There are 300 spectios and 78 varieties and forms of Marine
 are common to the south of Fingland abd 333 to Ireland．There are alo） $1: 3$ speebe aml varioften which do mot ocewr on the somthern shor of Emplame；32 of thom are found in Leeland and North liritain， 10 being of a southorn tym，amb mate is a new species．The chone combetmon of the Guernsey Filom with Treland and the south of Fingleml in therefore evident．On the other hand，there is rather more of the Athatic blement in finernaey than in the sonth of

As regards the Continent, Guernsey has 356 species and varieties in common with the north and west coasts of France, and 230 in common with North Spain ; so that here again there is a greataftlnity, though in a lesser degree. The Flora of Guernsey corresponds more to the British than to the continental type of marine vegetation.

The species listed for Jersey number 317, with 54 varieties and forms; of these, 264 species and rarieties are common to Guernsey. Guernsey has 161 species and varicties not yet recorded for Jersey, as against 81 Jersey species and varieties not recorded for Guernsey. Mr. Lester Garland attributes the differences in the terrestrial Floras of the two islands to the variations of level owing to their complete or partial submergence at different periods, leading to the destruction of certain species. Inversely, it is possible that periods of elevation of varying degree to which the islands have also been subjected in past ages, may have caused the disappearance of many Marine Alga.

The ecological factors that prevail in Guernsey are often different in Jersey: thus Jersey lies farther to the south and is less open to the influence of the Channel Stream bringing various new elements in its wake; the shores are more protected by the coasts of France, and the climate is warmer than that of Guernsey ; the configuration of the coast is different, being characterized by wide sandy bays on the south, west, and east, the shores having a very gradual incline, while on the north there are high standing cliffs. These are only a few of the physical conditions that would tend to control the character of the Floras of Jersey and cause it to differ from that of Guernsey.

VI. Economics.

The inhabitants of Guernsey utilise the abundant harvests of marine vegetation to a considerable and praiseworthy extent. At stated seasons of the year the vraic (Fuci, ete.) is cut, and enormous masses of weed, thrown up especially on the west coast, are gathered from the shores, to the extent, according to Black, of at least 30,000 tons annually. While these activities are in progress, as many as twenty or thirty carts can be seen on the beach, whence they bring a varied assortment of species. Both drift and cut weed are spread on the adjacent land to dry ; some is used for fuel, the rest burnt for kelp or employed as manure.

Kelp.-There is much indiscriminate burning of weed for kelp by the cottagers, who sell it for about $1 s$. per bushel. It varies in quality according to the species burnt. Sharp practice occurs among the less honest of the burners, who only partially burn the weed and even mix it with sand to increase the bulk.

The late Mr. Best of Guernsey established factories for preparing potash and iodine, which found a ready sale on the island : he told me that drying-frames had been crected on the island of Lihou in stacks one above another with intervals of about 18 inches between each; the weed was placed on the frames or racks and dried in the open. There was also a drying machine heated by the burning weed, and kelp was thus produced at the same time. The work met with such success that in 1916, 1 S tons of 90% muriate of potash, and over 18 tons of chloride of sodium containing 15% of sulphate of potash
were obtamed from seawerd. Wr. Best's success in extracting potash with the methols at his disposal, justily one in mising the guestion Whether the vast gnantities of weed that atre allowed to rot on our eoranto mierat not be utilized to some protit. He was of the opinion that this might be done if the problem of latour conk be solved.

Momure.-The firmers plongh the wed into the gromblad use it in a ereneral way. There is ath old (iuerney saying: "No seatweed
 detailed in a pamphlet published by the Board of Agrienlture and revised "1] to $1!91: 3$. It eontains mach valuahle information as to chemien emostitumats, cte.

Fonder:- Ithomeh it is known thet the sheep on lidnoresse combun straty owe the shores and howse with grasto on the Fuei, motheng is done on the islamel by way of utilizing seamed as fomber. Fincus wesculosus might well lex used for this purpose in winter, while Chomblos: crispus is valable in fattening ealves and pies. lacidomally, it is interesting to mote that suecessful experiments have reorntli berem mado with laminarias as forage for horses instead of fats. The alge were frepred and wiven to the aminals, who atecepted, digestenl, and assimilted the movel ford.

Fond for Mran. (onsderable attention has been direeted inwards the use of seaweeds as fool for man, more especially during the late Wir. According to Alsherg there is mo proof that seaweels have more them a modorate food-value, thongh they have a eomsimemble value as antiscorlmtice like ealbage amd lettuce. Almost mothing is known alxant the protedis of scaweds; but according to Camoron they have not anything like the fond value of ereals. 'The value uf seavioneds as a foul is to a lame extent due to the mucilage produend he the mombanes of the cellular tissue, which is rich in peeties and hembeellnhoses: it dissolses roadily in boiline water and forms a jolly when eold. (On account of this property the attention of experts is buing directed towards the utilization of seaweeds both in cookery and in varions commere ial preparations.

Vory little, howerer, is known about the chemimal compasition uf there momblatase Among the green seaweds the codlulose is assor
 and contaming a freat abmulane of xyme: theme is atsm an insoluhbe pertion rieh in dextane. Another hedrocarlon which has
 fhure aced, and tums lown with indines it is loealized in the midhe lamella. Again, dextome, and methylfurfural oseme in the brown
 galactans, mamans, laverbeans, devtmans, amd smetimes methyl
 sonme of energy, hat how fior is mot koww. Fiat is a merlizible fuantity.

As remate the peneral combliments of maweeds. the amalyses below indicate for cone extent how far one is justified in consilering the sulue of soaweeds as fool.

Avalises by Turbevtise (Cameron).
Gelidium corueum.

Water	22.29
Protein	6.55
Carbohydrates	(60.32
Ash..	3.81
Fibre	$6 \cdot 7$

Laminerite spp.

Water	22-52-24.44
Protein	5-49-5.52
Fat	1:52- 74
Soluble mate	47.53-45.57
Fibre	4.55-6.44
Ash	18.60-17.00

Of other substances found in seaweed, bromine oecurs more abundantly in Fucus serratus; Laminaria digitata, L. saccharina, and F. vesiculosus are richest in iodine, Succorhiza bullosa containing somewhat less. It is not yet known whether this element is contained in the form of alkaline salts or in organic combinations.

Perrot and Gatin state that minute quantities of arsenic have been found in marine algex: it is possible that the tonic properties with which food or medicine prepared from seaweed is credited are owing in some measure to the presence of this substance.

The incrustations of calcareous alge when produced in large quantities have a manurial value. Along the west coast of Ireland there are beaches composed of broken fragments of Lithothamnions, cartloads of which are conveyed inland for the sake of the carbonate of lime as a soil-dressing (Cotton). In Guernsey it would be quite possible to collect appreciable amounts of the calcareous alge for agricultural purposes.

For suggestions of what might be done with our seaweeds, I have had recourse to Cameron's Report on the Fertilizer Resources of the U.S. of America, 1911, from which the following particulars have been extracted:-

Formerly the Americans imported the whole of their potash for agriculture and other purposes; they are now working up the resources of their orm country, mineral and marine. A yield of $\$ 16,000,000$ worth of potash has already been obtained from seaweed, and by organization of the industry and regulation of the harrests and preparation of the weeds, it is proposed to build up a recognized source of wealth and industry for that nation. Recent experiments have discounted the methods of drying and burning, whereby many valuable constituents of the seaweed are lost or destroyed; and the

Jotrall of Botavy, September, 192(0. [Stppemeat [1.] e
hamine uf atawed for the sule purpese of whtaming iodine hats hedn
 " Sumainz down a cottage to lail a kettle." By the newer methohs. all the suluhle salts amb a maximmom amone of forline ean lee extane ted froms s.iweed. In addition, the proluction of eertain rexiduals and by-ponluets, as a result of these methods, serems to josse's sueh a prosible future value in textile and other induatres as to warmant a return to the utilization of seawed for the production of iorline. 'Thus, when seatwed is smbmitted to the process of partial bmoner athd distillation in clused rintorts, a porous and valuable chareoal results, from which all the soluble salts, including the iodides, van he disublved ont with realinces, leaviner such residuals as ammonia, tar, amil patatin wil. 'This marime chareoal might serve as a fuel moler the retort or pans used for the purposes of distillation. Its extreme pormsity makes it an effectisedeodonant and decolorizer and a valuable tilter, for it hats been sulpeeted to the thiekest town-sewage for several month, withont the least clogering. and its effeiency after this treatment remained umimpared. As a substitnte for bonc-hank, it is most highly recommended. 'Ihe oily tar producod by the distillation of seawed mentioned abover, viedds, on redistillation, larse fuantitios of paraflin oil. As much ats 617 galls. of oil can le ohtained from one ton of Fucus.

In another methorl, devised hy stanford, the seawerd was sulmitted to repeated direet lixiviations or macerations indilntes solutions of carlmote of sosla or wher alkaline sulatamees. Aftor whtabing the remuisite salts and iodine, the resimbals weme algan, collulose, and dextril.

Algin, when tratay with sulphuric acial and other chemical pro-

 If timm the viscosity of starlo, amd 37 times that of grmm anabic ; it

 in wokery it mient he w-al in thickening armp, pmblinge, and

 -hateonl, stalimen alyinate might serve as at mating for beilers amd wetal work: emmhinel with shalle it fomm a fine varnish, and owing
 Collulas, if eombined with wher materials which furnioh the myni it, amment of film, (:an he mate into pater of an rexeilent graule.

Laminario. After the salts have been extracted the portions are boiled in flavoured syrup. "Seatron" is the name given to these preparations.

According to a writer in Chambers's Journal for 1917 (p. 5.55), seaweed is one of the many sources for obtaining acetone, a chemical used in the manufacture of cordite. Large quantities are obtained and used for that purpose in America.

Culture.-In view of the careful culture of seaweeds in Japan, as narrated by Yendo, and their productiveness as a source of revenne, it seems worth while to give the matter some attention. There is no neeessity to sow the spores: a suitable substratum alone is requisite. In Seotland and Ireland where Fucus farms exist, stones are set down on that sandy or muddy fore-shores on whieh abundant growths of vegetation soon appear: The rocky shores of Guernsey hardly require such preparation. Should, however, the seaweed industries of the Island increase, and necessitate further supplies of the weed, its growth might be augmented by putting down boulders and stones of suitable size, where there is a sandy bottom. The vast tracts in Grande Havre, on either side of Lihou canseway, and along the Vale eoast, ete., could be treated in this way.

VII. Bibliography.

Adrian. "Sur l'emploi de certaines Algues marines pour l'alimentation des cheranx." Comptes Rendus Acad. Sci. Paris, tom. clxvi. 1918, p. 54.
Anstead \& Lathon. The Chamel Islands. London. 1862.
Ardissone, F. Florictee Italiche, i., ii. Milan. 1869-78.
Baker, S. M. "On the Causes of the Zoning of Brown Seaweeds." New Phytol. viii. 196 ; ix. 54, 1909-10.-"On the Brown Seaweeds of the Salt Marsh." Journ, Limn. Soc. xl. 275-291, 1912; xliii. 325, 1916.
Batters, E. A. L. ": Marine Alge of Berwick-on-Tweed." Trans. Berwickshire Naturalists' Club. Alnwick. 1889.-Handlist of the Algre of the Clyde Sea Area. 1891.-"New or Critical British Algæ." Grevillea, xxi. 97, 1892.-"Some New British Marine Algæ." Ann. Bot. ix. 168, 307, 1895 : Journ. Bot. xxxiv. 384, 1896.-"Catalogue of the British Marine Algæ." Supplement to Journ. Bot. xl. 1902.
Börgesen, F. The Algæ I'egetution of the Faeröese Coasts. Copenhagen. 1905.

Börgesen, F., \& Helfi Jónsson. "Distribution of the Marine Algæ of the Aretic Sea and of the Northernmost Part of the Atlantic." Boteny of the Faröes, appendix iii. Copenhagen. 1905-8.
Bornet et Thuret. Notes Algologiques, i., ii. Paris. 1876-80.
Buffrait, T. H. "The Plurilocular Zoosporangia of Asperocaceus bullosus and Myriotrichia clareformis." Journ. Bot. xxix. 321, 1891.
Cameron, F. G., and others. A Report on the Fertilizer Resources of the United States. Washington. 1912. Senate Document No. 190.
Chalon, F. Liste des Algues Marines. Autwerp. 1905.
Clarke, Mrs. Lane. Common Seareeds. London. 1865.
Collinette, F. C. S. Presidential Address. Rept, and Trans. Guernsey Soc. Nat. Sci. iii. pp. 25-32 and 80-84, 1895-99.-The Sunshine and Rainfall of Guernsey, 1917 ; op. cit. 62, 66.
Colmeiro, D. Enzmeracion de las Cryptogamas de Espana y Portugal. Madrid. 186 ․
Cooke, M. C. British Fresh-Water Algæ. London. ii. 1882-84.
Cottor, A. D. "Some British Phæophycee." Journ. Bot. xlv. 368, 1907."Colpomenia sinnosa in Britain." Kew Bulletin, 1908, 73; 1911, 153.-

- On the frowth of "lra hatissima." Royal Commiskion om Sownge lise pral. Tth Fipport. Appendix W゙. 121-112, 1911. " Murine Agre." Clare Thand survey, Proc. R. Iriml Aeal, xxxi. No, 15, 1912.
'1ron iv. Flure de Pinistire. Paris. 18tion.
 No. 9. Rombenr. 1902.
Denear. "Florule des Algues Marinen du Nord de la Franee." Bull. Sici. Wht, du Norl xavii, 184?.
1'f: La Make: "On the Correlation and Relutive Age of the Rooks of the

 Hemied. Gramala. 187,
 14i5, 18:5-99-" (iuernsey Clays." Op. cit. ii. 212, 189101.

Du kstex, II. N. "The Physical Comitions of the Whaters of the Engli-h, c'lammel." Scotti-h teourr. Mag., Jam. 1s9:3.
Imsonp. "On the superficial bepositw of tinernsey." Ropt. Cnerncey sion:

 fruphie No. ©5. Berlin. Is:91.
Fablow, W. A. Morine Alyer of Neur Emglumd. Whahingtom. 1 sisl.
Gamiand, L. V. Lhester. Flora of the Ishend of Jerserg. Lamdon. 1!日!3.

Ghbos, R. J. Maryer. "Development of Somes of Briti-h Marine sperins

 xvi, 1s!

 Ammal licport, 57 134, 14:5.

 Comblora Enivervilale. isse.

Jusens. H. The Rotmey I lemend. Part i. 'Ih, Marine Agal Vegetation. lamem. 1912.

 the. Do. B, lum. 1:41:.

 231, 1919.

 sufh1r. in. 11. 1:01112.

Rattray, J. "Distribution of the Marine Algæ of the Firth of Forth." Trans. Bot. Soc. Edinb. xvi. 420, 1886.
Reinke, J. Atlas deutscher Meevesalgen. Berlin. 1859-92.
Rosentinge, L. Kolderup. "Les Algues Marines du Groenland." Ann. Sci. Nat. Bot. sér. 7, xix. p. 53, 1894.-"The Marine Algæ of Denmark." Kgl. Dansk. Vidensk. Selsk. Skrift 7 ser., Afd. vii. 1. Kobenhavn. 1909.
Sauvageau, C. "Sur quelques Myrionémacées." Ann. Sci. Nat. Bot. (8) y. 161, 1597.-"Rémarques sur les Sphacelariacées." Journ. de Bot. xr. 107 et 116,1901 ; xvii. $45-50,1903$.
Skinner, S. G. "Observations ou the Tide-pool Vegetation of Port Renfrew." Minnesota Bot. Studies, (3) ii. 145, 1903.
Stanford, E. C. C. "Economic Aspects of Seaweeds." Journ. Soc. Arts, xxxii. 717.

Van Heurck, H. Prodrome de la Flore des Algues Marines des Mes AngloNormandes. Jersey. 1908.
Warming, E. Ecology of Plents. Oxford. 1909.
West, G. S. British Freshuater Algæ. Cambridge. 1904.-Algæ. Vol. i. Cambridge. 1916.
Yendo, K. "On the Cultivation of Seaweers, with special Accounts of their Ecology." Economic Proc. R. Dublin Soc. ii. 105-122, 1914.
Zanardini, G. Iconographin Phycologia Adriatict, i.-iii. 186076.

TABLE OF CONTENTS.

Page
I. Introduction 1
Previous Lists 1
II. Systematic List 3
III. Some Ecological Factors 26
(1) Physical Position of the Island 26
(2) Tides 26
(3) Currents 27
(4) Nature of the Substratum 27
(5) Configuration of the Coctst 28
(6) Salinity 29
(7) Temperature 31
IV. Arrangement 31
(a) Terminology 31
(b) Types in relation to Habitat and Climate 32
I. The Exposed Type 33
II. The Semi-exposed Type 33
III. The Sheltered Type 34
IV. The Moderately Sheltered Type 34
(c) Zonation 35
(d) Pool Fegetation 42
V. Composition of the Flolia 43
VI. Economics 47
VII. Bibliography 51

THE FLA(iELLATES AND ALGE OF THE DISTRICT AROLND BHRMLNGHAM.

(Compiled from records left by the late Professor G. S. Wess,
M.A., D.Sc.)
By W. B. Grove, M.A., B. Meriel Bristul, D.sce, and Nellie Cabter, D.E.c.

Introdecteley Nute.

Tue following lists of Flagellates and Algae found in the district around Birminghan are compiled and arranged ahnost entirely from the records made ly Professor (G.s. West during the last thirteen yars of his life (1906-1919). Besides the large amount of material which he collected himself, it was his enstom to look carefully through the numerons collections hrought from rarions localities by the mudersigned, and by his students and others, making a list of all the different species he saw. These lists were kept by lim with a view to publication at a future date. His lamented death leaves them very incomplete, and without the benefit of his final revision and the motes which he would have added from his unrivalled knowledge: yet it is thought that it would be well to publish them, since the determinations are particularly valuable as leeing those of one who was the foremost British expert on the Freshwater Algiz.

The large number of recorls from sutton Park is the result of the - pecial attention deroted by Professor West to that area, which owing to its extensive moorland tracts and submontane character is very different from most other parts of the district. Here, during the years 1906-1909, he collected material in esery month of the year", including month!y samples of the plankton of the pools. It was his intention to use these records as the basis of an ecological account of the Alge of that area, but no attempt seems to have been made at begiming this work, except his accomit of the "Peridiniex of Sutton Park," which was published in the New Phytologist, 1909, 1p. 181-196.

In the records from the Park reference is frequently made to three bogs; of these Bos I is the large bosyy area above Longmoor Pool, Bog II is the similar ground situated on the south-west side of Little (Lpper) Bracebridge Pool, and Bog IUI is that above the upper end of Blackroot Pool.

All the species contained in the following lists, by whomsocver collected, where the locality is not followed by the finder's name, were seen and named or confirmed by Professor TWest; those collected by any whose names are appended may be taken as having his approval, except those which have been diseovered since his death ; these latter have been identified by Mr. W. J. Holgetts, M.Sc.. and have the locality enclosed in square brackets and followed by his initials.

The localities have been arranged under three heads:-wк. $=$ Warwickshire, ws. $=$ Worcestershire, st. $=$ Staffordshire. The actual months in which the varions species were collected are indicated, after the name of the species, by the Arabic numerals 1-12.

Thanks for liberal assistance in defraying the costs of this publicaJolryal of Botayi, October, 1920. [Supplement Ill.] b

 if the limminsham Natmal Histery ame Philosophical societs．

II．J．Giture．

Nit．1．1E：C＇urer．
1：tanimal Labmatury，Hirminghan．

FLAGELLATA．

－1／．Ionyisi tı Lamm．

IV．Volror Filanal．7－10．

C．ammulnciss Stokers．

 Nit1．1hali，ix．17\％．

1）protiols，ines la mom．T，11．
＂ん．

r＇arata Filr．liute．
wi Kı上゙く Nurtor，IV．．／．／／．
1＇Vindaleltu（llmanz）sim．（i）

Elglefa Ehrenb.
E. viridis Ehr. 3-5, 10.

Common, and generally distributed.
E. intermedia (Klebs) Schmitz. 4.
st. [Bearwood, W. J. HI.]
E. sanguinea Ehr. 5-7.
ws. King's Norton.
F. acus Ehr. 5, 6, 12.
wк. Sutton Park. ws. King's Norton, W. J. IH.
E. oxyuris Schmard. 6.
wk. Harborne and Sutton Park, IV. J. II. ; Pond at Berkswell.
E. tripteris (Duj.) Klebs. 5.
st. [Bearwood, IV. J. H.]
E. spirogyra Ehr. 4, 5, 8, 10.
wк. Sutton Park; Henley-in-Arden; Berkswell. ws. King's Norton, IV. J. H.
E. deses Ehr. 8-10.
wk. Common. Sutton Park; Berkswell, etc. ws. Stapenhall Farm, King's Norton. Movement very sluggish.

Lepocisclis Perty.
L. orum (Ehr.) Lemm. 5.
ws. [King's Norton, W. J. H.]
Picacus Dujardin.
P. anaccelus Stokes. 10, 11.
wr. Earlswood.
P. Iongicauda (Ehr.) Duj. 5-7, 9.
wк. Harborne; Henley-in-Arden. ws. King's Norton; ('anal, Lifford.
P. pleuronectes (O. F. M.) Duj. 3-7, 9, 10.
wk. Sutton Park; Berkswell. ws. King's Norton ; Calral, Lifford; Warstock.
P. pyrum (Ehr.) Stein. 10, 11.
wr. Earlswood. ws. King's Norton.
P. parvula Klebs. 4.
ws. [Hawkesley Hall Farm, King's Norton, W'. J. H.]
Trachelonovas Ehrenb.
T. volvocina Ehr. 1, 6, 7, 10, 11.
wr. Earlswood; Bradnock's Marsh, etc. Ws. King's Nurton.
T. ohlonga Lemm. 6, 7.
ws. [King's Norton, W. J. H.]
T. inconstans Carter. 1, 5, 7-9, 12.
wh. Sutton Park. See New Phytol. 1919, xviii. 118.
T. hispida (Perty) Stein. 5-7, 9-11.
wк. Sutton Park ; Earlswood ; Bradnock's Marsh, cte. Ws. King's Norton; Warstock. st. Pool House Farm.
T. rugulosa Stein. 4.
st. [Bearwood, IV. J. H.]
('umedua Fhemb.
－＂ryluscula sitein．
Finmal attached to the Preesmimming lintilers Inmiore amb Sobholion．

Eutmertu Perty．
E．rimilis Perty． 6.
AT．［Be：rwoul， H^{-}．J．I／．］
Victodabia Cienk．
ノ．，imeserns（＇ionk．A．
Ws．［Humingron，IV．J．II．］

MYXOPHYCEE．

Gileocitate lagerth．
（i．Willmorkmu＂Las． 10.
＂к．Bracebridge Pend，sutton l＇ark．
sramerococers Niig．
N．aruginnsus N゙itg．lo．
wた．Sitton J＇ark；studler．
A．mujur schrot． 1.
wк．sutun louk．
Aplusutaf：ce Nög．
A．smmenla Niís．2，6， 11.
いh．Plankton of Bracelnidge I＇ool，Sutton P＇ark．

＂h．I＇lankton of Bracelridge and Langmour I＇ools，Sutton I＇ark．
－sto！nimen（spemer．）A．Br．is．

 11：111－Tcinl．

Wict yoncuctoprsis Hansg．
f）．manlunn WV．d（i．S．Wiont．I．
＂h．Futton C＇ollialil．II．．．II．］

（＇mbomects Nitr．

wh．＇lanhton of Eracohridge Iowl，sutton Park：Olton ；Wind．
 liary l＇ark．

りк．大uttur lark，ling III．

＂к．Frowedrilige I＇arl，sutton Park．
（：murrousncrus（Kiut\％）Rabulul．：3．
ws．Jlathohrs（ommon．

C'. pallidus Näg. 6.
wh. Sutton Park. Bog III.
C. limneticus Lemm, 1-12.
wk. Plankton of Bracebridge, Blackroot, Windley and Powell's Pools, Sutton Park. ws. Stourport.

Microcestis Kütz.

11. elabens (Menegh.) Ǩütz. 5.
wк. Lapworth.
J. ichthyoblabe Kïtz. 6, 7.
wк. Sutton Park.
1I. marginata (Menegh.) Kiitz. 5, 6.
wк. Olton ; Lapworth.
12. arvginosa Kiutz. ($=$ C!athrocystis ceruginosa Henfr.). 3-12.
wr. Plankton of Sutton Park; Iardley Wood; Studley ; Arler. ws. Stourport ; Kidderminster.

1I. incertı Lemm. 4-6, 10, 11.
wh. Plankton of Windley and other pools, Sutton Park.
M. pulcerea (Wood) De Toni. 1, 4-6, 9-1!.

Wк. Plankton of Bracebridge Pool, Sutton Park; Olton; Shirler. st. Great Barr Park.
M. holsatica Lemm. 1-7, 9-12.
wк. Plankton of Bracebridge Pool, Sutton Park.
11. ochiracea (Brand) Forti. 8.
ws. Kidderminster and Stourport (see Griffiths, in Limn. Soe. Journ.. Bot. 1916, xliii. 429). New to Britain. What is probably the same species was found in the plankton, sutton Park, but was not definitely named. See also West, Journ. Bot. 1912, p. 79.

Clathrocystis roseo-persicina Cohn $=$ Lamprocystis i.-p. Schröt., which has often been described as an Alga, is now considered to be a Schizomyeete and ealled Cohnia roseo-persicina Wint. It is not uncommon in stagnant ponds.

Asterocystis Gobi.

A. halophila (Hansg.) Forti. 11.
wк. Studley, on the older filaments of Clarlophora crispata. See West, Journ. Bot. 1912, p. 331. First reeord for Britain.

Gomphospherid Kütz.

G. aponina Kïtz. 7, S, 10.
wк. Plankton, Bracebridge Pool, Sutton Park. ws. Kidderminster; Stourport. st. Himley lark.
G. lacustris Chod. : $2, ~ i-11$.

末к. Plankton, Bracebridge, Blaekroot and Powell's Pools, Sutton Park; Olton; Studley; Shinley. ws. Canal, Lifford; Staper!abl Farm, King's Norton. st. Himley Park.

Celospherium Näg.
C. minutissimum Lemm. S.
wк. Plankton of Windley Pool, Sutton Park.

wh．I＇hukion uf lizacebridere I＇oul，sutton l＇ark．

Memasortems．

 Nortur．

 Viar．rinlacea Kalumh．I 1 ．
wた．Stulley．

 1＇mill．．

1＇．multimonla A．Lir．I－fi，Jo．
 lanmt limen．－I Himbey Park．

＂）jremerpos liamell．
＂ん．Sag II，sulton Park．

（1）カrögen ドиtz．3，5，6，111，12．
＂h．Plankton of Brace hriler I＇anl，sutton l＇ark：Olton Russmonir，
「．

11 st miticissimu Eium．1i．
＂th．Humpton－in－drden．
1）＂1mplushan A！e $5,10,12$.

（1）intulalimev．4．11， 11.

wh Fixutt law ilit lo ft dombthol．
U．locilamtuli ：Wi．

Phormidica Kütz.

P. tenue (Menegh.) Gom. 2-6, 9-11.

Very common and generally distributed.
P. Bohneri schmidle.
wк. In soil, Edgbaston and Harborne. St. West Bromwieh.
P. Retzii (Ag.) Gom. 6.
ws. Hagley.
P. inundatum Kiitz. 5.
wк. Lapworth.
P. corium (Ag.) Gom. 5
wk. Solihull.
P. autumnale (Ag.) Gom. 2-4, 9-12.

Very common, especially on damp ground.
Lixgbia Ag.
L. Maitensiana Menegh. 10.
wк. Studley. sт. Great Barr Park. The elosely similar species,
L. Fïtzingii Schmid., is recorded in soil from all three counties.

See Bristol, Annal. Bot., 1920.
L. ochracea (Kuitz.) Thur. 1-12.
wk. Common; Sutton Park, in great plenty. st. Great Barr Park. This species has been usually considered to be a filamentons Schizomyeete, viz. a Leptothrix.
L. major Menegh.
5. 10 .
wh. Studley, very fine specimens. st. Great Barr Park.
Srmploca Kütz.
S. muralis Kiitz. S.
ws. [Wyre Forest, on damp earth, IF. J. H.]
Plectonema Thur.
P. Buttersii Gom.
st. In soil only, Baggeridge and Tettenhall.
Artifrospira Stizenb.
A. Jenneri Stiz. 6, \&, 10.
ws. Among species of Spirogyia, King's Norton; Bewdley, W. J. H.

Spirclifa Turp.
S. tenuissima Kütz. 7.
ws. [In brackish water, Droitwich, IT. J. II.]
Nostoc Vauch.
N. palulosum Kütz. 1, 6.
wк. Hampton-in-Arden, etc. ws. Trimpley.
N. muscorum Ag.
wк. In soil, Edgbaston; Harborne. ws. In soil, California, near Harborne. st. In soil, Sedgley.
N. foliacerm Moug.
ws. In soil, Chadwick. First record for Great Britain. The

1．raviッlıグ心 Kït\％

いー，K゙いど，N゙川tいい。

1．W．ssullii（ドï1\％）W゙itt．ゝ．
wh．In plankion．Bramernilere Pook．Sintan I＇ark．
－1．rivionlis（Kiitz．）\｜いい－s．s．

．Asphorice lome d lilalı．

－1．as ill miniles Bumy 7 ．
い ，Kinč Vorton． Viar．Hirotentres liristal，f．minar．
 いい。

＂h．lacel，lilglantwh．
1－muscionla バはノ。
 for limat liritalio．IS IL B ．

Nodetaria Mert.

N. spamigena Mert. 1-12.
ws. Stapenhall Farm, King': Nurton.
N. Harreyana (Thwaites) Thur.
st. In soil, Baggeridge.
Toltpotirid Kïtz.
T. tenuis Kïtz. 1.
ws. Trimpler.
T. lanata (Desr.) Wartm. 3, 4.
wr. Sutton Park. ws. Halesowen.

Sctoxema Ag.

S. jaranicum (Kütz.) Born.
ws. In soil, Harborne. These spores never completele dereloped. but it is probable that ther were the spores of the above-named species, which has been found in soil from Wiltshire. See Bristol. 7. c. 1920 , p. 6 . 5 . First record in Britain.

Revelarta Ag.

R. dera Roth. (6-¢.
ws. In ponds. Barnt (ireen, on stems of aquatic plants.
Glatcoctstis Itzig.
G. Nostochinearum Itzig. 1. 2. 11.
ws. stapenhall Farm pond, King"s Norton: Trimpler, abundant.

PERIDINIEE.

Hemidricar Stein.
H. nasutum Stein. 5.
wh. [Botanic Crardens, Elghaston, W. J. If.]; Sutton Park, T. Bolton.

Gramodixitar Stein.
G. er ruginosum stein. 4. J.

шк. In ponds. Berkswell.
G. sp. (allied to G. tenuissimum Lauterb.), 1.
wк. Pond at Stapenhall Farm, King's Norton, Jan. 1919, IF. J. II. These specimens were seen by Professor West, who said that they were probably the same species as some he had found presiously in a pond near Birmingham (exact locality not mentioned): he save it the name G. C'ampylodiscuss. but seems to have left no description. It is not certain that the two forms were identical.
[Length 42- 50μ. breadth about 3) μ, thickness $5-7.5 \mu$. The cells are remarkably tlattened on buth siles, and frequently have a slight spiral twist. Chromatophores numerous. light broivn; no stigma. Anterior extremite of cell somewhat apiculate. This form. if mut identical with G. tennissimm Lantert... is at any rate closely allind to it.-IT. J. H.?

（3）P

 1－．Simut drati．

${ }^{\prime}$ ．hifus Mcin．\therefore ．

＂s．In the plankton，sutton I＇ark．
I^{\prime} ．I＇Msillum（ I＇Cll．）Lamm． 7 ．

 111.

（1）
（：hicumlmello（ Mill．）shrank．1－11．

BACILLARIERE

入ぃいいいは，

 （ir il lime jorh．

11 armatil il in is．

 11．（＇ilul．का lics li．sा lioth．

1．mit lín I＇ol

('relotella Kütz.

C. operculatu Kiitz. 5. 6.
wк. Lapworth; Bracebridge Pool, Sutton Park.
C. Meneghiniana Kiitz. 6, 10.
wk. Shirley, IV. J. M.; Sutton Park; Olton Reservoir.
C. Futzingiana (lhauv. 5. (6. 10.
wк. Bradnock's Marsh; Lapworth; Studley; Shirley. st. Cireat Barr Park.

Stepinanodiscts Ehrenb.

S. Hantzschian": Grun. 10.
st. Great barr Park.
Rhizasolevia Ehremb.
R. morsa W. \& (B. S. West. 9.
ws. Lifford Canal, an musual habitat.

Tibeldarla Ehrenb.

T. fenestrata (Lyngb.) Küt\%. 1-5. 7, 10-12.
wк. Berkswell; Knowle; in a ditch and in the plankton of Bracebridge l'ool, Sutton Park. ws. Hawkesley Hall, King's Norton, 7. flocculosa (Roth.) kitz. 1-7, 9-12.
wk. Earlswood ; Solihall; Harborne; in the plankton of Bracebridge Pool and in Bog MII, Sutton lark. ws. Warley. st. Bearwood.

Devticula Kütz.

D. tenuis Küitz. 9, 10.
wr. Studley. ws. Wyre Forest.

Meridion Ag.

M. circulare Ag. 2, 4-6.
wk. Coleshill; Whitacre; Henley-in-Arden; Solihull ; Bog II, Sutton Park. ws. Quinton.

Var. constrictum Van H. 3-5.
wk. Earlswood. ws. Clent. st. Barr Beacon; Pool House Farm.

Diatoma DC.

D. vulgave Bory. 1, 4-7, 10, 11.
wk. Bradnock's Marsh; R. Blythe; Berkswell; Hampton; Earlswood; Solihull; Studley; in a ditch, Sutton Park. ws. Wyre Forest; Warstock; King's Norton. sт. Great Barr P'ark.
D. elonyatum Ag. 2-6, 9, 10.
wr. Coleshill; Whitacre ; Hampton-in-Arden ; Lapworth; Earlswood; Knowle; Studley; in a ditch and in plankton, Sutton lark. ws. Wyre Forest; Barnt Green. sr. Great Barr Park; Himley Park; Quarry House, Hamstead. (It was also brought from the neighbourhood of Tewkesbury.)
D. parasiticum W. Sm. 6, 7. 10.
wr. Hampton-in-Arden (on Nitzschia sigmoidea); Bog II, Sutton Park (on C'ymatoplewra Solert).

F゙batilatha lự品h．

\therefore rimencens laalls．$\overline{5}, \mathbf{i}, 4,10$.
 Harr l＇ark：Manley Hall，Wieforml．

w．k．Lapworth：Earlaworl ；（hlton：in the phaskon of Brace－ lavider Poml，suthom lark．

Vory troquent aml emerally distributed．

いた．Pang．II，suttom l＇ark．

 l＇mel anl in litehes，sutton l＇ark．

> sunone Ehrenh.

Viry freguent and gembally distrimond．

lommons and qeameally distributed．
Viar．delicalissimu（irmo．（＝s゙．delicatissimu W．sm．）． 1 ，万．9－11．
Wh．Eintrwome in the planktom of Bramednider and Wimbley

 Banr J＇ark．

Sors mommon amd wammally distributer．

s1．Cirat B．ar I＇ark．

 I＇． $1 \cdot h$

1＇r BITいNEIS Ehront．

EV，位I Vhemb．

 or Gout lion louh．
E. major (W. Sm.) Rabenh. 3, ti, 10.
wk. In Bog I. Sutton Park.
E. gracilis (Ehr.) Rab. 1-3, 5, 7, 9, 10.
wh. Whitacre: in Bogs I, II, and III, sutton Park. ws. Trimpley; Hartlebury Common. st. Great Barr Park.
E. pectinulis (Ǩtz.) Rabenh. 2-5, 10, 12.
wк. Coleshill; Henler-in-Arden : Chelmsley Wood; Earlswood; Tardley ; in Bogs I \& II, Sutton Park. ws. Quinton; Hawkesley Hall, King's Norton. st. Cireat Barr Park; Bearwood.

Var. undulata Ralfs. 5, 12.
wk. In Longmoor Pool, Sutton Park. ws. In the C'anal, Droitwich.
E. Soleirolei Kïtz. 4. 6.
wк. Berkswell. ws. Warley. st. Bearwood.
E. incisa Greg. (=E. Veneris Kiitz.). 5, 11.
wk. Coleshill; Bracebridge Pool, Sutton Park.
E. Tunaris (Ehr.) Grun. 1-7, 9, 10, 12.

Very common and generally distributed. Var. bilunaris (Ehr.) Grun. 4.
ws. Quinton.

Achninthes Bory.

A. brevipes Ag. 12.
ws. In the Canal, Droitwich.
The presence of this marine species is accounted for by the salt springs in the neighbourhood.
A. coarctata Bréb. 3, 5, 6.
wk. Whitacre; Solihull; Bog II, Sutton Park. ws. Clent; Harvington Hall.
A. subsessilis Kütz. 7.
ws. In salt water, Droitwich.
A. microcephala Kütz. 4, 5, 9, 10.
wк. Henlev-in-Arden; Sutton Coldfield. ws. Wyre Forest; Quinton. st. Great Barr Park.

Material bronght from Tewkesbury was also found to contain this species.
A. exilis Kütz. $\quad \pm-6,10,11$.
wk. Coleshill; Lapworth; Studley; Bracebridge Pool, Sutton Park. ws. Clent; Halesowen. st. Himley Park; Quarry House, Hamstead.
A. linearis W. Sm. $\quad t-6,9,10$.
wk. Henley-in-Arden ; Hampton-in-Arden; Lapworth ; shirler ; Olton; Studley. Ws. Wyre Forest; Barnt Green.
A. lanceolata Bréb. 3-5.
ws. Quinton; King's Norton. st. Bearwood.

Achsintuidilug Kütz.

A. flexellum Bréb. 4.
wk. Bog II, Sutton Park.
Nattecta Bory.
T. nobilis Ehr. 2, 4, 5, 7, 10-12.
wk. Berkswell ; Earkwood ; Bog II and Bracebridge Pool, utton Park. Ws. Clent: King's Norton.

V．ır．Ductylus（V：lr．）Vín H． 11.

いょ．If：11，siutton I＇ark．
ミ．い！Kit\％1－1！．

I．，｜ritis K゙ït\％1－1シ．
Common and gemerally distributed．
－1．ל ionerlis Filr．1，33，5－7，！1，12．
wк．Burkwell：Barlawomi；Sutton P＇ark：in there soike，Eilg－ hatun：in mil，dravelley Hill and Harhorne．Ws．Ju the Gamal，
 Wouls ami Buarworl．

Fonmul only in cultures of suils from this district：－
 －r．Hationdide Wind－；Himley ：（iospel End．

1．बlecrytus W．sin．$\because, ~ \therefore, 7,10$ ．
＂h．Lapworth；Stulley；Bues I and II，sutton Park．
－V．Ficlosssomal Kïtz。 1－7，10－12．
（ ＇ummon aml wemmally distributed．
Vir．minutu Vail Il．（soil forme）．
wh．Ederhatom：Harbome．ws．Northfild：C＇lambick；C＇ali－

S intromadin Lagremet．
Foumblamly in culture of smils in this district：－

S．Tirlulluriu Fihr．I 11.
＂h．In linge I and II．Sutton I＇ark．

－men liti Ele $\because 11$.

＂$=$ In the limal．Writwiel．
 thail！of tha watir in ilio plame

 P＇に
I. arenacea Bréb. 10.
st. Great Barr Park.

1. radiosa Kütz, 1-12.

Common and generally distributed.
Var. acuta (W. Sm.) Yan H. 4, 6, 7, 9, 10.
wк. Olton; Bog II and Bracebridge Pool, sutton Park. st. Great Barr Park.
N. cryptocepherla Kiitz. 4-6, 10, 11.

Wr. Laprorth; Shirler; Olton Reservoir; Solihull; Studler. ws. Alvechurch: Barnt Green. st. Oldhill; Great Barr Park.
N. rhynchocephala Kütz. 4-6, 10, 11.
wk. River Biythe; Lapworth; Shirler; Bog II, Sutton Park. ws. Quinton; Barnt Green; Warley. st. Bearwood; Great Barr Park; Himley Park.
N. anglica Ralfs. 4-6, 10.
wk. Bradnock's Marsh ; Henley-in-Arden ; Berkswell; Lapworth; Bracebridge Pool, Sutton Park. st. Great Barr Park; Quarry House, Hamstead.
N. Semen Ehr. 5.
wh. Lapworth.
N. dicephala W. Sim. 5, 6.
wk. Henler-in-Arden. ws. Wyre Forest; Alvechurch.

1. interrupta Kiitz. 4, 6, 10 .
w : Bugs I, II, and III, Sutton Park.
IT. ovatis Hilse. 3.
wк. Bog II, Sutton Park.
N. elliptica Kütz. 1-6, 5-12.
wr. Bradnock's Marsh; Hampton-in-Arden; Bug 1I, Sutton Park. ws. Hartlebury Common; Wyre Forest; Clent; Quinton. Var. minima Van H .
wr. In soil, Harborne.
N. tervicola Bristol, l. c. 1920, p. 67.
we. In soil, Harborne.
N. hualina Donk. var. minima Bristol, l. c. 1920, p. 65.
st. In soil at Sedgley and Tettenhall.
2. mutica Kütz. 5.
st. Gieat Barr Park, in pool. This species, though rarely foumel in ponds. ett., occurred in the cultures of a good many soils, e.g.:wк. Edglaston ; Harbome. ws. Warley. sf. West Bromwich; Cos,el End; Sedgley; Himley.

> Var. quinquenodis Del.
st. In soil, Sedgley; in soil, Himley Park.
工. cuspidata Kütz. 3-11.
wк. Berkswell; Lapworth; Bog II, in a ditch and in the plankton of Bracebridge Pool, Sutton Park. ws. Alvechurch; Harvington Hall; Quinton ; in the Canal, Lifford; King's Norton; Halesowen. st. Great Barr Park.
N. sphicerophora Kiitz. 4-6, 10.
wк. Henler-in-Arden; Studler; Bog II, Sutton Park. ws. Alvechurch. st. Great Barr Park.
N. exilis Grun. 2-7. 9-1?

Very commen aur generally distriluterl.

wк. latwortl.

 lriter loml, sutton latrk. ws. ('lont: Warlay.

い-. In the (anal. Wmitwich.

 い-. ILalıs,

 llimbey lank.
V. Itomms Niars.

 ¿adelog: Bacermider Wimels.
S. conlonta Gimu. var. licrope |) l.

Fonmal only in culturw of -nils:-

wh. shirley.

1: Paliculus litur. :3 1; !!, 1u.

 lay. Damt limen st. (ireat lame l'ark: llimley l'ark.

1: Placmenl" lihr. 1, :3 (i, !!, 11).
Commmon and gemerally di-trilmonl.

 or. (irmit Lisre l'ark.

St. giracilis Ehir. 3.
wк. Bracebridge Pool, sutton I'ark.
St. "cut" IV. Sm. 1, 7. 11.
Wk. Bogr II. Siutton P"ark.
St. auceps Ehr. 4-6, s.
wк. Berkswell; Knowle; Bog II and Bracebridge Pool, sutton P'ark. ws. Barnt Green ; King"s Norton.

Vinheurckia Bréb.
I. Thomboides Bréb. var. saxonica Rab. 3, 5, 6, 11.
wk. Bog I and Bracebridge Pool, Sutton Park. ws. Bog on Hatrtebury Common.
I. rulyaris (Thw.) Van H. 5, 6.

Wh. Bog II, Sutton Park; Harborne. ws. California; C'lent (nome narrow and blunt than is usual).

Amphipleyra Kütz.
A. pellucille Kütz. 4, 5, 7, 10 .
wк. Studley ; Bracebridge Pool, Sutton Park. ws. Halesowen. sl. Quary Huuse, Hamstead.

Plelfosigma W W. Sir.
P. atteaneatrm W. Sm. 1, 5, 6, 10-12.
wh. Riser Blythe; Studley; Lapworth ; Shirley; in the plankton of Bracebridge Pool, Sutton Park. ws. Clent. st. Great Barw Park.
P. acuminatım (Kütz.) Grun. ($=$ P. lacustre W.Sm.). 4-6, 9-11.
wк. Hampton-in-Arden; Earlswood; Studley ; in the plankton, Sutton Park. ws. Alvechureh; Hagley; Barnt Green; in the C'mal, Lifford. st. Great Barr Park.
P. Spenceri (Quek.) W. Sm. 1, 3, 5, 6, 8-11.
wk. Henler-in-Arden ; Earlswood ; in the plankton of Bracebridge Pool, Sutton Park. ws. Wyre Forest; Clent; Halesowen. sr. Barr Beacon ; Great Barr Park.
P. scalproides Rab. t.
ws. Barnt Green.
Amphiprord Kütz.
A. paludosa W. Sin. 6, 7.
wh. Studley.
Rhoicosperexid Grun.
R. cur゙atィ (Kiitz.) Grun. 4-6, 10, 11.
wк. Bradnock's Marsh; Coleshill; Berkswell; Shirler; Earlswood; Solihull: Studler. ws. Wyre Forest; Alvechurch; Hagley; Barnt Green. sr. Great Barr Park.

> Gompironema Ag.
G. constrictum Ehr. 1-6, 9-12.

Common and generally distributed.
G. acuminatum Elx. 4-8, 10, 11.
wк. Bradnock's Marsh ; Coleshill ; Shirley ; Olton Reservoir ; in Bow II and Bracebridge Pool, Sutton Park. ws. Clent; Churchill; Barnt Green ; King's Norton. st. (ireat Barr Park.

Jovryal of Botayi, Notember, 1920. [Supplement IIJ.] c

wh. Ilampon-in-Arden: River Blythe: Bracomilge lool, suton Parh.

(i. gracile Elar. J
wк. Ib rhawrll.
(i. dichotomum W. sin. is, 4, 10.
wк. Finl-womel; stmellev. ws. ljarnt (ireen.
(8. intriantum Kiit\%. i, I-6, s. 10.
wh. Hentes-in-Smenn; Chelmsley Wond: Shirley; Stmbley; Bog 11. sumbin Park. Ws. 'Trimpley; Barnt (ireen; Hankeayy Hall, Kiner: Nortom.
(i. J゙ilıin Ehır. 2. ㅈ. (i, !). 10.

Wh. Whitame Sturley; Kag 1I, Sution l'ark. Ws. Wfyre

(i. an!!usintum Kït\%. 1.
wh. (!linton.

 hills. st. Cimat lane lark.

wh. Bradmekts Marsh; in the plankton of batechridge l'oul,

wh. Parkswell: Bues 11 and in diteh, Sutton Park.

(: lancrulata kilir. 1, :3-1i, !)-12.
Common and crowerall! diatributent.

 This species was aloo molloted at Tewke-hury.

wh. Stumby, Ws. Wyte Founst.

wк. Stullos.

 wis. Bant timen: Kimg - Norton. st. Emat liar lark.
C. muculala $\mathrm{K} u \mathrm{u} \%$ 1 li
"к. Lapworth. wa. Ihecharch: lbant dimen. st. lireat Barr.

§ Encyonema.

Cymbella prostrata Berk. 3, 5, 6.
wк. River Blythe. ws. Quinton, W.J. H. st. Great Barr Park. C. turgida Greg.
wк. River Blythe. ws. Quinton, W. J. H. st. Great Barr Park.
C. ventricosa Ehr. 3, 6, 10.
wh. In the plankton of Bracebridge Pool, Sutton Park.
C. cespitosa Kiitz. j, 10, 11.
wk. Bracebridge Pool, Sutton Park. st. Great Barr Park.
C. gracilis Rabenh. 5.
wк. Lapworth.

Mastogiola Thwaites.

M. Smithii Thw. 6.
wк. Rowton's Well, Sutton Park (prohably this species, but the name is miswritten "Mastogloia Thwaitesii").

Amphora Ehrenb.

A. ovalis (Bréb.) Kütz. 1, 3-10.
wк. Bradnock's Marsh; Henley-in-Arden; Hampton-in-Arden ; Lapworth; Olton Reservoir (very small) ; Studley; Bog II, and plankton of Bracebridge and Blackroot Pools, Sutton Park. ws. Wyre Forest; King's Norton. st. Great Barr Park; Himley Park; Quarry House, Hamstead. Var. Pediculus (Kütz.) Van H. 6.
wk. Hampton-in-Arden.
A. minutissıma W. Sm. 5, 6.
wк. Bradnock's Marsh; Hampton-in-Arden ; Henley-in-Arden. st. Great Barr Park.

Epithemfa Bréb.

E. turgida (Elır.) Kuitz. 1, 4-7, 9-12.
wк. Henley-in-Arden; Berkswell; Lapworth ; Knowle; Yardley ; Studley; Bog II and in the plankton of Bracebridge Pool, Sutton Park. ws. Wyre Forest; Trimpley; Barnt Green ; Hawkesley Hall, King's Norton, st. Great Barr Park. Var. Westermanni Kütz. 5.
wк. Henley-in-Arden.
E. Sorex Kiitz. 2, 4, 6, 10,11 .
wh. Yardley. ws. Barnt Green ; Stapenhall Farm, King's Norton.
st. Great Barr Park.
E. gibba Kütz. 1, 4, 7-11.
wк. Studley; Bog II and plankton of Bracebridge Pool, Sutton Park.

Var. ventricosa (Kütz.) Van H. 6, 10.
wк. Berkswell ; Bracebridge Pool, Sutton Park.
E. Argus Kütz. 9.
wr. Bog II, Sutton Park.
E. gibbernla Kütz. 6.
wr. Bracebridge Pool, Sutton Park.
lillopatoma（）．Miill．

wh．Bug If，suttun l＇ark．Ws．Wyre Forest．ST．（ireat Barr P．ark

wh．Siadloy．st．limat bar l＇ark．

ws．Clent：एलutwibh．
－b．duline 11．sim．i，（i，11）． 11

S．rione IV．Su．！
wた。 Bur II，S゙uttun Park

 Nomehurdi：Hagleg．st．（ireat Barr l’ak；Quary House， Hamstual．

V：ar．čurroln（bilı．）Grum．f，10， 11.

S．whtusa W．Sim．var．scelpelliformis Grum． 1.

 l＇ark． Vill．Irmuis（imm．1，1－6，！1－11．
wк．H：mptou－in－Arilol：Lapworth：Farlswoel：Solihull； Bone Il，sutton P＇ark．ws．In the（＇anal，hiffond．sr．（ireat Barr l＇ark．

wh．Viry conmmon．Ws．Vive common，sp，Pary Buacon；Grat

Var．delitix V：an H．？， 11.
wh．心hirley．ws．W゙ye F゙orent． lior．fonlicoln limu．
wr．In suil enlturen，Vilfrastenn．
S．incunspicnal（irmu．（F゙omm only in cultures of soils．）
wh．Ealghaton：Harmome．＂s．（＇alifonia．st．Sedgley．

D．actomlaris W．Sim．：3 ij ， 411.

Hantzschia Grun.
H. Amphioxys (Ehr.) Grum. 2, 3, 5, 6.
wк. Hampton-in-Arden; Studler. ws. Halesowen. st. Oldhill; Bearwood.

Var. civax (Hantzseh) Van H. 4.
ws. Barnt Green.
Bacilfarata Gimel.
B. paradoxa Gimel.
st. Disused arm of canal, Allion station, near West Bromwich, T. Bolton; small stream, near the same place, A. W. Wills.

Crmatopletra Turp.
C. elliptica (Bréb.) W. Sin. 2, 3, 5, 7, 9-12.
wr. Farlswood: Bogs I and II and in ditch, Sutton Park.
Var. hibernicu (W. Sm.) Van H. 5.
wк. Solihull.
C. Solea (Bréb.) W. Sm. 1, 1-7, 9-12.
wk. Bradunck's Marsh; Henler-in-Arden; Hampton-in-Arden; Shirley; Earlswood: Solihull; Bog II and in the plankton of Bracebridge Pool, sutton Park. ws. Wyre Forest: Alrechurch; Clent; Barnt Green ; King's Norton. sr. Great Barr Park.

> Stmermedt Turp.
S. linearis W. Sm. 1, 4-12.
wh. Bradnocks Marsh: Slinler: Bogs I, II. III and in the plankton of Braceloridge Pool, Sutton Park. Ws. Hartlebury Common; Clent; Warley. st. Bearwood; Great Barr Park.
S. biseriata Bréb. 1-3, s-11.
wk. Shirler; Bogs II and III and in the plankton of Bracebridge Pool, Sutton Park. ws. In the C'anal, Litford.
S. robusta Ehr. ($=$ S. nobilis W. Sm. $=$ S. splendida W. Sm.). $1,3-5,7,8,11$.
wк. Shirley; Bog 11 and in plankton of Bracebridge Pool, Sutton Park. sr. Great Barr Park.

Var. spiendida (Ehr.) Van H. 1-8, 10-I2.
we. Bradnock's Marsh: Hampton-in-Arden; Earlswood; Bogs II and III and in the plankton of Bracebridge and Windley Pools, Sutton Park. Ws. King's Norton.
S. striatula Turpin. 7, 12.
ws. In the Canal, Droitwich. Evidently owes its existence in this locality to the brine springs in the neighbourhood.
S. ovalis Bréb. 1-6, 10, 1丷.
wk. Braduock's Marsh: Colenhill ; Berkswell: Solihull; Studley. ws. Alvechurch ; in the Canal, Droitwich. st. Oldhill; Pool House Farm.

Yar. minuta (Bréb.) Van H. 4-6.
wr. Henley-in-Arden : Earlswood; Solihull.
Yar. angusta Kiitz. 6.
wк. Berkswell. ws. Alvechurch.

Via：pinnи！и IV．Sm．3－6．
wk．Manlnoek＇s Marsh；Stmlley ；Hampton－in－Amlen，ws．Hales－ owen：（Qninton：Wyre Forest Alverhureh．sr．（irat Barr Park．
 f．21．10．
wk．Braceloridere Poul，Sutton Park．
S．comstritlt W．sim．S．
wк．「sutton Park，W．．／．II．］

wk．IBn II，Snton l＇ark．Ws．Clent．Sce West，Joum，But． 1912，p．32こ．lig． 2.
（＇tuprinmisicos Ehrent）．

wк．Bradmork＇s Mash；shinley；in the plankton of Batachridere Poul，sutton l＇ark．

CHLOROPHYCEE．
ISOKONTE．
platococcales．

ws．stanklin loml，near Kinderminstrr．

ws．Wninton，1920．This speetes，which is not yet deseribed． differs froms lnoth P ．drlicumbus liritliths amd P ．ietrombynchus s．hmamat，aml is probally new，IV ．I．II．

（＇ル，（0）

 woml，II．．／．／／．
（＇a litteri licsinc．
（：multifilis（Frum．）bill．：3．i， 1012.
Wh．In pluktom，Pmonhrilge I＇nol．Sutton I＇ark：（＇anal，Dapororth；

1．．，llusa l lill．

C. Pulvisculus (Müll.) Ehrenb. 5, 6.
wк. Berkswell: Lapworth. ws. King's Norton.
C. Debaryunu Gorosch. 2, $\mathbf{5}, 6,10$.
wr. Pond at Sutton Coldfield. Ws. King's Norton ; Hartlebury Common. st. Himley Park.
C. communis show.
wis. In soil, Chatwick. New to Britain; see Bristol, in Annal. Bot. 1920, p. 72 , with text-figs.
C. intermedia Chod. 4-6.
wh. In small farm-pond, Harborne.
C. monalina Stein ($=$ C. Braumii Gorosh.). 2.
ws. Quinton, with anisugrmous gametes and zrgotes. The remarkable grametes of this species have not previously been recorded for this country, $W . J . H$.
C. gigantea I ill.
wк. [Harbome, W^{\top}. J. H.]
C. variubilis Dang. 2, 4.
wк. In a small pond, Studley (forma anglica) ; see West, Journ. Bot. 1915, p. 76, fig. .2, A-E. Ws. Quinton; World's End, Harborne.
C. globulosa Perty. 4, 5, 10, 11.
wh. Longinoor Pool, Sutton Park; in moat, Earlswood; Coleshill. See West, Journ. Bot. 1915, p. 74, fig. 1, D-F.
C. pulutinu Nehmid. (Ber. Dentsch. Bot. Ges. 1903, xxi.352). 3, 4.
wr. Harborne, in a small farm-pond. New to Britatin.
C. pluristiyma Bristol, in Annal. Bot. 1920, p. i2, with text-figs.
st. In soil, Sedgler.
C. reticulater Gorosh.
wк. In ponds, Berkswell. New to Britain ; see West, Journ. Bot. 1915, 1. 74.
C. microscopica (1. S. Wrest in Journ. Bot. 1916, p. 1 (=C. gracilis G. S. West, l. c. 1915, 1. 77, fig. -2, F-1, non Snow, 1903). 4, 5.

Wk. In a bogroy spring, Sutton Park.
C. elegans (\%. 今. West, l. c. 1915, p. і7, fig. 2, J-o. 5.
wк. In a rain-pool, Sutton Park.
C. Giorei G. S. West, 1. c. 1916, p. 6, fig. 4. 6, 7.
wr. In a water-butt, Studley Castle, in two successive years. ws. In a drinking-trough for horses, Dunhampstead.

This minute Alga has been found also at C'ambridge ; in all cases it occurred in great quantity, and was maccompanied by any filiform Alga whatever.

Politoma Elir.

P. Tiella Ehr. 5.

Ws. King's Norton, W. J. H. st. Great Barr Park.
Phacotes Perty.
P. lenticularis Stein. $\mathbf{6}$.
wк. Berkswell.

Pteromoras Selig.

P. anyulosa (Cart.) Dang. 10.
wh. Lin ponls, Berkswell: see West. Journ. Bot. 1916, p. T, fig. 5.
P. Tukedunn (i. S. Wist in Jomme Bot. 1916, p. 8, lig. ©

P^{2}. ('hudati la'mum. IO.
sr. Girat Barr l'ark. New to Britatu; see West, l. c. lollo, 1. :3:31.
P. aculenta lamm.
us. Spring (ifow Ponls, near Stomport. See Grilliths, in Limm.

I'. mulis (atlithe, bid. p. 4330, pl, 3t, tige (i.
ws. Sprime Gioner, Jawer Iomb, in very small mumbers, associated with l^{\prime}. m"uleuln.

(8いNirm Miill.

G. pectornle Mii!l. \therefore T. 11, 11 .

(B. sseriele (Dи!.) W:arm. \therefore, 10, 11.

G. lucustre (i. A. Wers. is is.
 lierk-well. ws. Bannt limedr, cte.
P. Mor"um (Miill.) Jiry 1 (6, lo, 11.

 H.11: Trimpler. יte.
 fomil.
${ }^{\prime}$. illimisernis kolond. :3. 4.

 ly th... wh, hown it- hishote.
V. globator (L.) Ehrenb. 3-8.
wh. Yardley, intermixed with \boldsymbol{T}. aureus. ws. King's Norton; Northfield; Westhills; in moat, Harvington Hall.

Undoubtedly more common than these records imply, but most of the specimens called by this name by collectors are Γ. uureus.

Spilerocystis Chod.

S. Schröteq;i Chod. 6-9, 11.
wh. In the plankton, Bracebridge, Blackroot, and Windley Pools, Sutton Park; Olton Reservoir ; Winduill Pool, Shirley.

Coccomrxa Schmidle.
C. Solorince Chod. forma, Bristol in Annal. Bot. 1920, 1. 73.
wк. In soil, Edgbaston. First record for the British Isles.
st. West Bromwich; Gospel End ; Sedqley.
C. subellipsoidea Acton ($=$ C. Viigelianu Choul.).
wh. Edghaston, on damp sandstone rocks and walls, and in greenhouses. Ws. Quinton. See Acton, Annal. But. 1909, xxiii. 576.

Apfocystis Näg.

A. Braumiuna Näg. $\overline{5}, 6,9,10$.
wk. Bracebridge Pool, Sutton Park; Olton Reservoir, ete. ws. King s Norton.

Schezochlames A. Br.
S. gelatinosa A. Br. J-S.
wк. Sutton Park; C'uleshill.
Tetraspora Link.
T. gelatinnsa (Vauch.) Desr. 4.

Wk. In a ditch, Sutton Park; Volvox Pool, Yardley. ws. Quinton. T. Inlorice Ag. 3.
wк. Yardler.
Gleocistis Näg.
G. resiculosa Näg. $\overline{-7}$.
wh. In the plankton, Bracebrilge Pool, Sutton Park; Henler-inArden.
G. gigas (Kütz.) Lagerl. 1, \&-S, 10, 11.

Wк. Sutton Park, Bogs II and III ; plankton, Longmoor Pool; Olton Reservoir: Chehnsley Wood; Hampton-in-Arden; Lapworth. いк. King.s Norton; Kiderminster, ete.

『asmometron Kïtz．

P．rivide kït\％\＆
Wк．Burhswell；near l゙arlle！W゙onl．TV．Bolfon．Ws．Quinton．

Asterownors suherff．

1．suprothus（（＇ienk．）siclserff．（＝Gilcocystis infusionum IV．\＆ （i．ㄴ．Wín）．1，i，7．－10．
 nil！どが，

Wk．Wltom．Ws．Jomels near Ilawkishey Ilall and Stapenhatl

Wh．Ia the phakion，limadriter and Blackront Pouls，Sutton

Viar．arifurme＂$=D$ ．nriforme laxpuh．）．I－fi， 9.
 Lifforl：Wiarley．

Westerda De Wild．

Pbotorosers Mg ．

Ahum lant wevwhere on trees，walls，stontes，soil，de．

ws．In a min－water tank，Buwdey，making it bood－red．

（111414114 li ij．
\therefore rulyalior I？ij．

 ealleal \％wochlowilla．
（ mルコルノ゙に К゙い！）Willo．

ActospordCe无。
 Oocystis Näg.

O. solitaria Wittr. 2, 5, 7, S, 10, 11.
wh. Bracebridge Pool, Sutton Park; Studley. ws. Hawkesley Hall and Stapenhall Farm ponds, King s Norton, Kidderminster.
O. lacustris Chod. 6,9, 10.
wh. In the plankton, Bracebridge Pool, Sutton P'ark.
O. parva W. \& G. S. West. 8,9.
ws. Canal, Lifford; Kidderminster.
O. alliptica W. West. 10.
ws. Pond near Hawkesley Hall, King's Norton.
Nepirocytila Näg.
N. Agardhianum Näg. 7, s.
wk. Longmoor Puol, Sutton Park. ws. King's Norton.
Eremosphera De Bary.
E. viridis De Bary. 1-12.
wк. In logs I and III, and in Bracebridge and Longmoor Pools, Sutton Park. ws. Hartiebury Common.

Micractivium Fies.

M. pusillum Fres. (=Richteriella botryoides Lemm.). 6, 7, 9.
ws. Pond at stapenhall Farm, W. J. H. Canal, Lifford. See Journ. Bot. 1911, p. it.
M. radiatum (Chod.) Wille ($=$ Golenkinia radiutu Chod.). 6.
ws. [Pond at Stapenhall Farm, King's Norton, W. J. $I_{\text {. }}$]
Lageriletmita Chod.
L. generensis Chod. $5, \mathrm{~S}-10$.
ws. King's Norton; in the plankton, Blackroot Pool, Sutton Park. st. Great Barr Park. See West, Journ. Bot. 1911, p. א.T, fig. 2, .

Var. subglobosa (Lemm.) Chod. 4, 10.
wk. Studley. in a small pool; in the plankton, Bracebridge Pool, Sutton Park. See West. l. c. p. 85, fig. 2.
L. wratislaciensis schröd. 5, 10.
wr. Studley. First British record; see West, Journ. Bot. 1911, p. 85, fig. 2, (t. Ws. King's Norton.

Chonatelah Lemm.
C. quadriseta Lemm. 10.
wк. Studley.
C. ciliuta Lag. ($=$ Lagerheimia ciliata Choul.). T, S.
ws. [C'anal, Lifford, IV. J. H.]
Tetraedros Kütz.
T. mutimm (A. Br.) Hansg. 6.

Wr. Botanic Gardens, Edylaston.

 pers near kinhlerminater. I'here is alan a recom from 'rewkeshury.

 Norton: Kidurminttr.

ws. K゙ウer: Nortun, II. . H.

wh. Eialswand.
1., rolphillimides If isch. $\overline{1}$.
wh. Surlwell ; a matrathereme.

 1!111. J. 4i, fier. :3

 Hall. St (ivin birm l'ath.

$$
\text { Vill. mi inlinls li.s. } 11 .
$$

11 4. J! mil. W Ifle.

 l.arh.

 S. Iforl.
S. gracile Reinsch. 2, 7, 10.
wк. Longmoor Pool, Sutton Park. ws. Pond at Stapenhall Farm, King's Nurton.

Actrantry Lagerh.
A. Hantaschii Lagerh. i, !, 10 .
ws. Canal. Liffurd. st. (ireat Barr Park.
Kimenaertehla Schmidle.
K. oliesa (West) Schmidle. J-12.
wk. In the plankton, Mracelridge Pool, Sutton Park. ws. King's Norton.
h. sulsolitariu (. S. West. 10.
wh. Studley.
h. Imunris' (Kirchn.) Möb.
wk. In plankton, Bracebridge Pool, Sutton Park.

Scexedesius Meyen.

S. bijugatus (Turp.) Kiütz. 4-11.

Frequent and generally distributed.
f. urcurtus (Lemim.) W. \& G. S. West. (6, 8, 10.
wк. In the plankton, Bracebridge Pool.
S. denticututus Lagerh. 5 .
wk. Lipworth.
Var. linearis Hass. j-12.
wк. Bracelrilge Longmoor, and Windley Pools, Sutton Park. ws. Pond near Hawkesler Hall, King's Norton; Kiderminster, etc.
S. quadrictude (Tupr.) Bréb. 3-12.

Frequent and genemally distributed.
Var. cbumetens Kirchn. j, t, S, 10.
wk. Yery abundant in the plankton, Bracebridge and Windley Pools, Sutton Park; Butanic Gardens, Edgbaston ; Olton; Yardley ;
Shirley ; Lapwortll. st. Great Barr Park.
Var. horridus Kirchn. S.
wk. Windler Pool, Sutton Park.
Var. opoliensis (Richter) W. \&f (t. S. West. 5, 6, 9.
we. Bradnock's Marsh; Lapworth. ws, Canal, Lifforl.
S. obliquus (Turp.) Kütz. 4-11.

Frequent in pools and ponds everywhere.
Yar, dimorphus (Turp.) Rabenh. 5-7, 10.
wк. Yardley; Berkswell ; Shirley; Lapworth.
S. antennatus Bréb. 9.
ws. Canal, Lufford.
S. Raciborskii Wolosz. S.
us. Wilden Pool, near Stourport.
S. acutiformis Schröd. 5, 10.
ws. Pond near Harkesley Hall, King's Norton. Var. brasiliensis (Bohlin) W. \& G. S. West. 5, 6.
wk. In the plankton, Sutton Park; Olton Reservoir.
S. spicatus W. \& G. S. West. 10.
st. Great Barr Park.

> Dactrlococers Näg.

1）．birmulutus A．Br．-1.
ws．Warler．
Chuchema Mortem．
（C．apiculaten（Lemm．）Schmidl．6，s．
wh．Windmill l＇onl，Shirley．ws．Wilden Pool，near Stourport． Very tare．
（＇．riniformis（iriftiths，Journ，Limm．Sue．，But．191（i，xliii．431， 11．34，tig．14．S．
ws．Wialem Pool．near Stomport．
（：rectenyularis（Nar．）Gay．（6－10．
wк．In the phankton，Bracebridge Pool；Shirley．ws．Pools near kidderminster．

Temastacm（＇hod．

T．staurngeniiforme（Schroul．）（howl． 7.
wh．Borkwell．A remarkable species and very rare．ws．Upper lool，spring（irove，near Kidderminster．

Cemasthum Näg．

C．splucricum När．1－12．
wh．Frerguent．In all the pools，Sutton Park；Botanic Gardens， Eilekaston：Studley，etc．ws．（＇anal，Lifforl；King＇s Norton； Wilden Pool，Stourport．st．（iveat Barr Park；Himley Park．
（ $:$ cambracum Arch．12．
wh．In the planktom，Bracelnidge Pool．ws．Asland Pool，near Stumpert．
（：meroportm Naig．3，5， 10.
wh．In the phankton，Sutton Park；Earlswood．Also recorded from near＇Twkeshury．
（！．m ticulatum（ Dang．）Sems．7－10．
wh．In the plankton，Bracebridge I＇ool，sutton Jark．sr．Bear－ workl．

Surastmex Kiitz．

S．spinulosmm Näg．7， 10.
ws．J＇ond at Stapenhall Farm，King＇s Nortom．

> Chefopetridaceme.

Cus：тоspumanom Kiletahm．
（＇：glohnsmm（Nordh．）Kleb．2， 11.
ws．Fond at Stapenhall Firm，King＇s Norton．

$$
\begin{aligned}
& \text { Phasospobaces. } \\
& \text { Cumococum Prias. }
\end{aligned}
$$

C．humionle（Nits．）Rabenh．
Found wrywhere in smil．Siee Bristol，Jomm．Linn．Suc．，Bat． 191：3，xliv． 473 ，and Amal．Bot．1920，xxxiv． 7.5.

（mionocmimem Cohn．

wk．Hentev－in－Atden；Harborne，II．J．H．ws．Barnt Green．

These are the only records made, but the species is really rather common wherever Lemnu trisulca abounds.
C. paraloxum (Klebs) (i. S. West.
wr. In soil, Sutton Coldtield. st. In soil, Himley Park. See Bristol, Journ. Linn. Soc., Bot. xlv. BU1, 1920.
C. Fucciola (Borzi) Bristol. 10.
st. Great Barr Park. See also Bristol, l. c. supru.

Dicravochate Hieron.

D. reniformis Hieron var. lavis Hodgetts in New Phytol. 1916, xv .10 S . 4.
wк. Harborne, in a small pond, epiplytic on Ranunculus aquatilis, etc.
[The small pond in which this alga has occurred regularly for the last five years dries up completely in the summer months, the alga peremating upon dead shrivelled leaves of Cullitriche, etc., in a resting condition. In this state the gelatinous sheath of the cells is well developed, being thicker than in orlinary individuals growing under water; doubtless it is this thick gelatinous sheath which enables the alga to resist desiccation. These resting-cells possess no seta, or at any rate only the short fragmentary remains of the base of a seta. In other respects they are normal in appearance, and have a bright green chloroplast which is packed with minute starch-grains.-W.J. H.]

Cimaracium A. Br.

C. Sieboldi A. Br. 2, 4, 10.
wk. Berkswell. Ws. King's Norton; Quinton.
C. longipes A. Br. 4, 10, 11.
ws. Pond near Hawkesley Mall, King's Norton.
C. orrithocephalum A. Ḃr. $\overline{5}$.
wк. Lapworth.
C. temue Herm. 2, ј.
wr. Coleshill. ws. Moat at Harrington Hall.
C. Pringsheimii A. Br. 3.
ws. [King's Norton, W. J. H.]

Hydrodictyacee.
 Pediastruar Meyen.

P. Boryanum (Turp.) Menegh. 1-12.

Very common and generally distributer.
Var. granulatum Kïtz. 5.
st. No other record than Great Barr Park was made, but it is really almost as common as the type.
P. duplex Meven. 1-12.

Common and generally distributed.
Var. clathratum A. Br. 4-12.
$\pi \kappa$. In the plankton, Bracebridge and Blackroot Pools, Sutton Park; Olton Reservoir.

Viar．reficulatum Latgerh．5－12．

wк．In the plankton，Bracehridge Pool，Sutton Park．ws．I＇und at Stapmblall Farm，Ninars Norton．
P imlegrum Noiig．I 1 ．
This is rewnded，among the motes，from near Tewkesbury．
I^{\prime} ．Telions（Ehnenlo）Lialfs．i－ 11.
Wh．latheplanktun，Button lark；Shirley；Berkswell．Ws．Camal， Liftorl：King－Norton．

H．reticulatum 1．）Lamerh．－．

心HリUNALES．

Many spedes，no dombt，are commom，but the records refer only to those which were found in frint．

1．sessilis（Vituch．）1）（1．1－6，9－I2．
WK．Sinton Jark：solihull ；Studler：Henker－in Arden．Ws．Quin－ tan ；barnt（ireen ：Alsechmeh．ar．Beanwod：Great Barr lark．

「．lımmita（Vanch．）Langb． 10.
wк．Eilerhastom；Stulley．

Wh．Harborme：Filghastom，cte．Ws．Woorlgate，ete．
I．yeminula（Vimuch．）DC．：3－5，IO．

Var．romemoser（Vamch．）Wal\％．
wh．lomd at Matbome，II．J．II．］

$$
\text { F. aroisu Has. } 1, \text { (i, 10. 12. }
$$

wк．Hartorne．ws．［（quinton；K゙iners Norton，IV．J．II．］ st．Buarwod．A fregnent pucies in many prods during winter and carly pring，and ushall！fruiting abundantl！II．J．$/ 1$ ．

SHPHONOCLADIMLEA．

（ \because fionlı Kiit\％，s．

 Hamstual．

C．crispul木（linth．）Kiit\％．（i 10．
wh．Jarrley Womed；Lapworth；Studter．Us．Neerhurel；

Chetomorpia Kütz.

(. Linum (Mïll.) Kïtz. .).
wk. Coleshill.
C. sutoru (Berk.) Rabenh. U, 11.
wr. Rowton's Weil, Sutton Park; near Yardley Wood. ws. Hagley.

Rhezoclonhem Kütz.
1R. hieroglyphicum Kïtz. 2-11.
('ommon and generally distributed.
Var. riparium (Harv.) Stockm. 12.
ws. Canal, Droitwich. A remarkable form.

UlWALES.

> ULTACEE.

Exteromorpha Harvey.
E. intestinulis (L.) Link. 7-10.
wh. In canals, Earlswood, Tardebigge, Whitacre, ete. ws. lool on Hartlebury Common; Droitwich, ete. st. Himley Park; (ireat Bam Park, ete.
E. percurse (Ag.) J. Ag., non Havv.
ws. [In a ditch near the canal at Sulwarp, II. J. II. 'The water was brackish.]

Monostromi Wittr.
1I. bullosa (Roth) Wittr. t.
wк. Solihull. Very rare.
SCHIZOGONLALES.

> Prasiolicele.
> Prasiolidg.
P. crispu (Lightf.) Menegh.

Common everywhere, remarkably so in towns. It ean be found in plenty on the flat grave-stones of St. Philip's Churchyard and elsewhere in the centre of Birmingham. The filamentons form (f. muralis G. S. W. =Schizogonium murale Kütz.) is more frequent than the foliaceous form, into which it at times develops. This typieal form (foliaceous) sometmes occurs abundantly at the foot of old gateposts in the eountry, where there is a plentiful nitrogenous food-supply.

ULOTRICHALES.

Ulotrachace.e.
 Geminella Turp.

G. intervupte Turp. 7, 8.
ws. Quinton; Island Pool, near Kidderminster. A rare species.
G. (Hormospora) mutabilis (Brél.) Wille. 5.
wr. In a bog near Bracebridge Pool, Sutton Park. Rare. Journal of Botafy, December, 1920. [Supplement III.] d

じ10かいたいに゙ït。

 wi flac．In rapislly－rmanine water．Clent．

 （1）ない日！Ervomil．

－r．（iment Sur lorli．

＂h．Fitulla．
 にれは）

N．scomblims IIa\％n．12丷．

M．Microsin（ V．an h．）＇Th＇r．3－12．

 vs．WIF 1int．

 い N W ，Nはたい。
II. abbrevieta (labenlı.) Lagerh. 3, 5, 11.
wk. Bogs I and III and Bracebridge Pool, Sutton Park; Henley-in-Arden.
M. stagnorum (Kütz.) Lagerh. \&, 10, 11.
wk. In ditch, Sutton Park; Berkswell; Earlswood, ete. ws. King's Norton; Warley:
15. tumidula Hazen. 6.
sr. ? Manley Hall, Weeford (identified with doubt).

> Crlimdrocapsaces.
> Cylivdrocapsa Reinsch.
C. geminella Wolle var. minni Hansg. 7, 10.
wк. Bracebridge Pool, Sutton Park. ws. King's Norton.

> ('H. ет OPHORACEE.
> CHモTOPHOR」 Schrank.
C. pisiformis (Roth) Ag. 4. \bar{J}.
wк. Berkswell ; Coleshill; Whitacre. ws. Quinton, W. J. H. st. Great Barr Park.
C. eleyans (Roth) Ag. 5, 10.
wk. Bracebridge Pool. Sutton Park. ws. Clent, on sheils of Limuca.
C. tuberculosa (Roth) Ag. 5.
ws. Clent.
C. incrassata (Huds.) Hazen. ($=$ C. Cornu-Dumce $\mathrm{Ag} .=$ C. endiciafolia Ag.). 9, 10.
wK. Bracebridge and Keeper’s Pools, Sutton Park; Hill Hook; Earlswood. ws. Wyre Forest.

Draparvildia Bory.

D. plumosa (Tauch.) Ag. 3, 4.
wk. Earlswood, ete., with resting spores. Ws. Quinton. st. Quarry Honse, Hamstead.
D. glomerata (Vauch.) Ag. 3, i.
wh. Berkswell; Yardley. ws. Quinton.

$$
\begin{aligned}
& \text { Srigeoclonicar Kiit/. } \\
& (=\text { My.xonema Fr.) }
\end{aligned}
$$

S. tenue Ag. 3, 4, 6, 9.

Common and generally distributed.
S. lubricum Kütz. 7 .
wh. Tanworth-in-Arden.
Protoderma Kütz.
P. virile Kütz. \quad J, 6.
wk. Not uncommon on all kinds of submerged parts of aquatic plants: e.g. Olton (on Elodea): Solihull (On Tencheria); Harmome (on Cullitriche), etc. ws. Equally common: e. y. King's Xorton (on Raiunculus) ; Barnt Green (oin Jryriophyllum).

Abstract

Mickothamsun Niig. 11. N̈̈tzinyiumus! Naig. 4, (i, 7, 10.

ик. Lanemon l'onl, Sutton Park; Berkwell: Earlswood.

 Ws. I'ond near Hawkwley Hall. K゙iners Norton; Barnt Giren.
Wh. Brameluden amb wher paols, sutton Park; Harlurne; Coless fill. Ws. Hartlebury ('mmmon, IV. J. II. sit. Bearwood.

(ionimusira Kïtz.

sr. liaumpridere in mil. Also louml in Wilts and Nomthant.
(i. Ahbmillei lioliter. (i.
 Firet recorel in the british Isles.

Exnoderma Lagerh.
E. C Cavtuphorice Homblor. New Phytol. 1919, p. H1. (i.
 convere as noturring on ('ladophome and Rhizoclonillm mily, hat it hats since heen fomm, in the original foeality, in the coll-wall of ('hutumorythe sutario. 11 . . II.

 TuEx repollai Mart.

ws. (On racks, Malsern llills. st. On trees, lagereritge Wionls.

$$
\begin{aligned}
& \text { Arumocumen A. Br. }
\end{aligned}
$$

-1. mpros A. Br. $\because, ~-~(3,10$.
Freprent: "piphytic on varions filamentoms algile and other alyutic plants.

1. pilosisnimm (Sohmill.) (i. S. Wris. 1,

C: sculular livíh. 1, 1-19, 11.

 Barnt Greve: "Trimploy"

Bracebridge Pool, Sutton Park, both on Nitella flextlis. ws. King's Norten, in fruit.

Previously recorded only from Glasgow.

AKONTA.

CONJUGATE.

Zygamacex.
 Morgeotla Ag.

JI. scnluris Hass. 1-6, 9-12.
Wr. Bog II, sutton Park: Bracebridge Ponl: Solihull; Whitacre, ete. Ws. Barnt Green; Clent; Warstock; Wyre Forest; King's Norton (in conjugation). st. Bearwood (in eonjugation).

This species is one of the first algae to appear in plenty when the sealson opens.

1. parvula Hass. 1, 5, 6, 10.
wr. Bows I and II anl Braeebridge Pool, Sutton Park (in fruit).
M. genuflexa (Dillw.) Ag. (= M. mirabilis Wittr.). 3, 4, 10.
wh. Bug II, Sutton P'ark. st. Himley Park.
II. viridis (Kütz.) Wittr. -3.5.
wh. Bog 11, Sutton Park: in diteh, Bracebridge Pool; Harborne. ws. Warley; Hartlebury Common. st. Bearwood. In conjugation in all these places.
M. gracillima (Hass.) Wittr. 4, 5.
wr. In a ditch, Satton Park (fruiting in April).
II. capucina (Bory) Ag. 5.
ws. Barnt Green.

Ziginema Ag.

Z. ericetorum (Kuitz.) Hansg. 2, :3, 7, 9.
wк. Earlswoud. ws. King's Norton; Hartlebury Common; Wre Forest, in conjugation! Nee Hodgetts in New Phytol. 191s, xvii. 238.
Z. stellinum (Vauch.) Ag. J, 6.
wk. [Upper Bracebridge Pool, abundant in conjugation, W. J. H.]
Several other species of Ziygucma and Mongeotia have been found, but not in conjugation.

Spirogitra Link.

S. longata Cram. \& Br. 5, 10.
wk. Bog H, Sutton Park; Solihull. ws. King's Norton (in conjugation).
S. porticatis (Vauch.) (lleve. 5.
st. [Bearwond, II. J. II.]
S. Jürgensii Kiitz. 5.
ws. Pool near Hawkesley Hall, King's Norton (in conjugation).
S. cateniformis (Hass.) Kiit\%. ($=$ S. arcta Kütz. var. cateniformis Kirehn.). 5.
ws. [King's Norton, in conjugation, IV. J. II.]

いー．！！ninton：Cllont：Barnt tireen．sT．Bearwood．All in

＂h Comenhll（in comjumation）．Ws．Barnt lireen．st．Bear－ ward（ in conjus：ation）．

＂к．Jiofkwell．ws．Kinǵs Norton．
ハ．．merreimer W゚ittr．\therefore ．
＂s．K゙iner：Norton（in comjugationt）．
N．romsict kït\％\＆，万．

s．mioalilis（Haw．）l＇etit．5．s．

́．grourilis（llaso．）K゙ıi\＆\％：3．

wヶ．sulıull：

s．I／Issullii ．l－1m．$\overline{\text { ．}}$
＂s．（＇lent；banut fireen．
\therefore raluspora（＇lave \therefore ．

wh．Jone II．sutton I＇ark．
 1 fi．1！．

 pasa 4 rall－at sheir jumbians．

gensii，S．longata，S．maxima，S．mirabilis，S．nitida，and S．Webpir－ six of these and S．Girecilleane were again found in eonjugation in May，1920，WT．J．H ．

HEsMidyACEE．

Saccodermeæ．

Goxitozygos De Bary．
G．Monoternium De By： 10.
wк．Sutton Park．
Gr．Biebissonii De By．2，5－7，10， 11.
wk．Longrmore Pool，Sutton Park；Butanic Gardens，Elgbaston． ws．Pond at stapenhall fiarm，King Norton：Halesowen．

G．limahani（Areh．）Rabenh．2－i，9，10．
wh．Sutton Park；Eirlswood．ws．Pund at Stapenhall Farm， King＇s Norton；Wyre Forest．

Sprroteenti Bréb．

S．comensate Bréb．5，7，12．
Wk．Longmoor l＇oul，ete．，Sitton Park；Lapworth．
ぶ．obsctira Ralfs．1， 7.
wh．Bracebridge and Longmoor Pools，sutton Park．
S＇．coulospira（Kütz．）Arch．
Ws．［Wre Forest，WT．J．II．］

Crlindrocistis Menegh．

C．Bielissonii Menegh．1－12．
wк．Longmoor Pool；Edgbaston；Harborne；Earlswood． ws．Quinton；Warley；Hartlebury Common，in eonjugation． st．Bearwood，in conjugration．

Tar．minoi W．de G．S．West． 4.
wк．Earlswood．
C．corassa De By．т， 10.
Wк．Sutton Park．

Netrium Näg．

T．Digitus（Ehrenb．）Itzig．\＆Roth．1－12．
Wh．Bogs I，II，and III，and Longmoor Pool，Sutton Iark． st．Bearwoud，WT．J．HI．

N．Ňïgelii（Bréb．）W．\＆（G．S．West．
wк．Sutton Park，A．W．Wills．
I．oblonguin（De By．）Liitkem．3，5．
Wh．Bog III，Sutton Park．
Var．cylindricum W．\＆（x．S．West．2．3，6．
wh．Suttun Park．ws．Warley．
N．interruptum（Brél．）Liitkem．
wh．Sutton Park，A．WT．Wills．
Mesotrentar Näg．
M．chlamydosporım De By．3，t．
wh．Harborne；Earlswood．

 1．in．firs．3， 4.

3．E＇mllirhrianum Ňiar．3．

Row W゙．dic．s．Wient．
R．combirien W：\＆（2，心．West．3．I．
 R．unglicn（i．太．W゙いさ．3．1．
 11 1 （

Placodermeæ．

Pexitar Bréb．
P．Jentir liall－
Wh．suttom lauk， 1 II IVills．

Br．Suttan lank．

＂к．Bon I，Šutw lath．

wк 13心1：anl II．Sutom Park．

wh．Ká 1．Sutton liak．

 Via．intormumm II．it ti．s．Wist．（i）
＂к．Pase 111 ，Sutton Park．

（4．（9muther D）Ni． 11 I！
＂h．Bess I ．med II，sutten lonk

wh．liay 1，sthto lark．
1% ，m！！M sutum kint（i）

 Nirtint．

 Timples os Homk link．
Cl. intermedium Ralfs. 1-12.
wк. Bogs 1 and III. Suttom I:ark.
Var. hibernicum West.
wk. Sutton Park.
Cl. Lllna Focke. 5, 6, 11.
wh. Bog I, Sutton Park very rare). ws. Quinton, IT. J. II.
Cl. juncilum lialfs. 1-12.
wh. Bog I, Sutton Park. ws. King's Norton, Wr. J. I.
Cl. Diance Ehrenb. 1-12.
wh. Bracebridge Pool. etc., Sutton Park; Earlswood. ws. Pond at Hawkesley Hall, King's Norton; Warley ; Canal, Lifford ; Hunnington, in conjugation: (Quinton, st. Bearwood.
(\%. parvulum Näg. 1-12.
wk. Bogs I, II, and IIl, and Bracebridge Pool, Sutton Park; Berkswell; Earlswood, in conjugation. ws. Warley. st. Bearrood; Himley Park.
Cl. Jenneri lialfs. 1-3, 6, 7.

Wh. Bogs I and III, and Bracebridge and Longmoor Pools, Sutton Park. Ws. Quinton, W. J. H.
Cl. Temus Kiitz. 1-12.
wк. Bogs I, II, IIl, and Bracebridge and Longmoor Pools, Sutton Park; Bradnock's Marsh; Berkswell ; Shirley ; Olton. ws. Ponds at Stapenhall and Hawkesley Hall Farms, King's Norton ; Quinton. sт. Bearwood.

C!. Leibleimii Kiitz. 1-12.
wh. Frequent. Sutton Park; Earlswood, etc., etc. Ws. King's Norton; Halesowen: Trimpley; Harvington Hall; Churehill; Wyre Forest, etc. st. Himley Park.

C'. moniliferum (Bory) Ehrenb. 1-12.
wк. Common. Sutton l'ark; Earlswood; Olton, ete., etc. Ws. Frequent. King"s Nurton; Barnt Green; Hagley, etc. st. Great Barr Park.
Cl. Ehrenbergii Menegh. 3-6, 10.

Wh. Bracebridge Pool. Sutton Park: Vardley, with zygotes; Bradnock's Mirsh; Lapworth; Shinley. ws. King's Norton; Warley ; Quinton; Wyre Forest. st. Bearwood, in conjugation, W. J. H.
('\%. aceiosum (ふchrank) Elrenb. 3-11.
wr. Frequent. Sutton Park; Berkswell ; Earlswood, etc., etc. ws. King's Norton, in conjugation: Camal. Lifford; Hagley; Quinton (in conjugation, May, zrgospores very abundant); Clent; Harviugton Hall: Wyre Forest. st. Great Barr Park.

Var. elonǧatum Bréb. 7.
wh. Bracebridge Pool, Sutton Park. Ws. King's Norton, W. J.H.
C'7. Zanceolatum Kütz. 4-6.
Wк. Henley-in-Arien; Berkswell ; Sulihull; Sutton Park, etc. ws. Near Harborne; King's Norton, in conjugation. st. Bearwood, in conjugation.
Cl. Lumula (Müll.) Nitzsch. 1-12.
wh. Bogs I and II, and Bracebrikge Pool, Sutton Park; Harborne. Ws. King's Norton.

wh. Lapwoth: Wimbmill Pool, Shimey: Ws. Malesowon, very

> Vire pleymus. (i. A Wist.

いぃ. Viandunck: Mans.
(\%. Inllomelle (ialy. 1.
wk. Ilart mm: If . ./. I/.
1\%. t/1mиiln "| .lohns. :3.
 But. 1!911. 1. - I, tir. 1: Hartome, II. ./. II.

wк. Eivswonl, typieal aml very abmmant.

 Ws. ('in:al, liftom: Kingrs Nontom.
Vin. limerns West. :3, i, is.

"к. Bur II. sinttom I'ark.
(\%. Pritalardianmm Arels. S3.!
"h. Pamentrilage Poml. sutton l'ark. Ws. Kingrs Norton, II. . I. 11.

 11.11.

wh. |:

$$
\text { Var. brerispinum West. } 3,4,6 \text {. }
$$

wk. Sutton Park. ws. Warley. st. Bearwond, in conjugation, II. J. H.
Cl. setaceum Ehr.

WE. Sutton Park, A. IU Wills.
Plelhotenium Näg.
P. truucutum (Bréb.) Näg. 3-i, 7, 12.
wk. Longmoor Pool and Bug $[\mathrm{T}$, sutton Park.
P. Eluenbergii (Bréb.) De Br. 2, 4-7, 11.
wк. Bracebridge Pool, Sutton Park; Shirley. Ws. Stiapenhall and Hawkesley Hall F'arms, King's Norton.
P. Trabecula (Ehrenb.) Näg. 1-12.
wk. Bracebridge Pool, Sutton Park; Marborne; Shirley; Perkswell ; Yarley ; Olton. ws. stapenhall and Hawkesley Hall Farms, King's Norton; Trimpler, etc. st. (ireat Barr Park. Var. claratum (Kïtz.) W. \& G. S. West. 10.
wк. Bracelridge Pool, sutton Park.
P. nodlosum (Bail) Lund. 7 .
wk. Bog II, Sutton Park.
Tecmemores Ralfs.
T. Biebissonii (Menegh.) Ralfs. :, 10.

Wk. Sutton Park. ws. King's Norton, W. J. H. ; Hartlebury Common.
T. gramulatus (Bréb.) Ralfs. 1-12.

Wк. Bracebridge and Longmoor Pools, and Bogs I and III, Sutton l'ark. Ws. King's Norton, W. J. H.; Hartlebnry Common.
2. laris (Kütz.) Raulfs. $\mathbf{2}^{-11 .}$

Wk. Bog. I and III, Sutton Park. st. Bearwood, IT. J. H.
Evastrua Elirenb.
E. oblongum (Grev.) Ralfs. 3-12.
wк. Bracebridge and Longmoor Pools, and Bogs I and III, sutton Park. Ws. King's Norton, etc.
E. Didelta ('Turp.) Ralfs. 1-1ٌ丷.
wк. Bog's I and II, sutton Park. ws. Hartlebury Common.
E. affine Ralfs. 10.
wk. Bog I, sutton Park.
\boldsymbol{E}. ansatum. 1-1…
wк. Bogs I and III, Sutton Park*.
E. rostratum Ralfis.
wк. Sutton Park, A. W. W'ills.
E. bideutatum Näg. 1-12.
wr. Longmoor Puol, and Bogs I and III, Sutton Park; Berkswell.
E. Aubium Näg. 2, 7.
wк. Bog III, and Longmoor Pool, Sutton Park.
E. elegans (Bréb.) Kiitz.

Wh. Sutton Park, A. W. Wills.
E. binale (Turp.) Ehrenb. 3, 11.
wk. Bog II, Sutton Park (forma). ws. Hartlebury Common.

Var．Gufminstil Sichmall．1－11．

いょ．Bッチ．Sitton Bark．
O pertontant lirith．$\because-11$ ．

\therefore raroucosum Vhnemb．－ 11.

Morbaterian Aer．

 Suttur，Park．

11．．／emeri R：alfi－

15．＂piculut＂（Ehmonh．）Momegh．
Viar．fimbrintn（Raltis）Nomelst．
Wh．心int
11．pupillifion lirals． 7

 laf！．

 Silion Park．

Wh lbe 1，Sintton l＇ark．

uh ́n 11 tom l＇ark．

（ハいいいにばい（＇omala．

＂15．！？！inton．

wh Hatared wa．Whaty．ar．Fatormonl．

（ lin！！｜linll ：

C．Cucumis（Cord．）lialfs． 7.
wк．Longuoor Pool，sutton Park．
C！．subeucumis schmidl．』．\＆ 11.
wк．Earlswood．ws．Stapenhall Farm，King＇s Norton．
C．undulatum Cord．2， 11.
wh．Sutton Park，A．W．Wills．ws．Stapenhall Firm，K゙ing＇s Norton．

C．bioculatum Bréb．2，4－7．
wk．Botanical Gardens，Edgbaston；Sutton Park．Ws．Males－ owen ；Strpenhall Farm，Kiners Norton．

Var．hians W．\＆G．ふ．West．2
ws．Stapenhall Farm．King＇s Norton．
C．tinctum Ralfs． 7.
wK．Longmoor Pool and Bog I，sutton Park．
C．contractum Kirchn． 1.
wк．Bracebridge Pool，Sutton Park．
C．pyramidatum Brél）．
wк．Sutton Park，A．W．Wंills．
C．pseudopyiramidatum Lund．
wh．Sutton Park，A．W．Wills．
C．clepressim（Näg．）Lund．6， 11.
wk．Plankton of Bracebridge Pool，sutton Park．ws．King＇s Norton．

C．granatum Dréb．1．5－8，10， 11.
wк．Plankton of Bracebrilge Poul，Sutton Park．ws．＇Trimpley ； Kidderminster．Also near Tewkesbury in Gloncestershire．

Var．subyranatum Nordst．2，4－7， 10.
wk．Bog II，Sutton Park；Coleshill；Vardley ；Shirley；Berks－ well．ws．Stapenhall Farm，King＇s Norton．st．Great Barr Park； Himley Park；Quarry House，Hamstead．

C．cymatopleurum Nordst．
Var．tyrolicum Nordst．2， 9.
wh．Bog II，Sutton Park．
C．notrlile Bréb．$\pm, 10$.
ws．Quinton．st．Great Barr Park．
C．subarctoïm（Lagerh．）Racib． 4.
ws．Warley．st．Bearwood．
C．pseudarctoim Nordst． 4 ．
st．Bearwood．
C．arctoüm Nordst． 4.
ws．Warley．
C．Regnesi Reinsch．4，10， 11.
wк．Berkswell ；Harborne．ws．Pond at Stapenhall Farm， King＇s Norton．

Var．montanum Schmidl．7， 11.
ws．Pond at Stapenhall Farm，King＇s Norton．
C．quadratum Ralfs．1，3，5－7，9．
wh．Longmoor Pool and Bogs I and II，Sutton Park；Lapworth． ws．King＇s Norton ；Trimpley．

C．pyynceum Areh．S．
wh．Blackroot Pool．Sutton Park．
（＇．alunervintum liacib，（i．
＂к．Ul！川．

いん．Suttull lark．
C．imforesulum Filfs：1，1－1， 11.
wh．Bracehtidere Poul，sutton l＇ark；Olton．Ws．Pond at

（＇．Peynrllii Wille．2． 11.
W－Stapenhall Form，Kimer• Norton．
（？．Dle n！ghinii lirith．（i ll）．
wh．Bracopriler R＇aul，Suthon lark；Oltun：Studley：ws．Staper－ hall Fiam，Kinど：Nortum：Stoupurt．
f．Intiuseulum ．Jacoles． 7 ．
wk．Bug II，sutton l＇ark．
（：an！ulusum lincil．U．ti． 16.
wк．Bracebridge I＇oul，Sinton I＇ark．ws．Ponds at Itawkesley Hall and stapmhall forms，King゚ Nortm．

wк．Perk－well：（1ton．
（．la me lialumh．

いた．Stulloy．
（＇．Thw
ws．！！inton，WF．．／．／I．
C：（＇mon－liln lonily．1．：3－12．
wh．l’us I amd Ill，inton l＇ark．Ws．＇Trimpley．
（：gundionlulum（tiay）be＇Toni． 10.
wh．Sutton liak．
C：Gelutum lialls．Ju．
＂к．IBur II，sutton lark．
1：denlificum Comal．（i，！！111－1！．
Wh．Sutton l＇ark．
（：Birlissamii Menersh \quad ．
wh．J，（1）
（：．FI！！mome（lialfs．）Arel．I li，10， 11.

us．Sullon Park．
（＇．Sjurertollo brits．

wh．Vangumon l＇anl，sutton l＇ark．

 lariles．

Var painhornm（intw：｜l）．
Wh．Auttouldrh．
Var．rimum ti \＆W． 11 ．
Nar Tienheshars．Citersa－timbe．

wh．Bowlrilger lowl，Sutwol＇sh．
C. picemorsum Brél), 2-4, $7,10,11$.
wk. Longmoor Pool, Sutton Park; Earlswood; Henler-in-Arden. ws. Hawkesley Hall and Stapenhall Famms, Kiners Nurton; Halesowen : Barnt (rreen. st. (ireat Barr Park.
C. margaritiferum Menegh.
wh. Sutton Park.
C. punctulutum Bréb. 4, 5, 7, 9-11.
wk. Bracebridge Pool, Sutton Park; Berkswell; Lapworth; shimler; Studler.
C. bipunctatem Börg. 1.

いк. Trimpley.
C. humile (Gay) Nordst. 9-11.

Wk. Bracebrilge Pool. Sutton Park. Ws. Hawkesley Hall Farm, King': Norton. st. Himley Park.
C. subcienatum Hantzsch. $\sim 2-6,10$.
wh. Bracebridge Pool, Sutton Park: Earlswood: Berksweli. Ws. Pond at Stapenhall Farm, King's Norton; Clent, in loggy diteh. sr. Great Barr Park.
C. tumens Nordst. 4.
ws. Quinton-very rare.
C. subprotumidumi Nordst. 2, 7, 10, 11.
wr. Bracebridge Pool, sutton Park. Ws. Stapenhall Farm, King ${ }^{\circ}$ Norton.

Var. Gregorii (R. \& B.) W. \& G. S. West. ©.
wた. Olton. Ws. King A Norton.
C. Beckiii Wille. 2, 6, 7, 9-12.
wh. Bracelridge and Longmoor Pools, Sutton Park. Ws. Stapenhall Farm, King's Norton.

C'. subcostatum Nordst. 7.
wh. Longmoor Pool, Sutton Park.
f. mimus W. \& G. S. West. 6

Wk. Olton.
C. formosulum Hoff. 2, 4-7, 9 .

Wk. Longmoor and Bracebriclge Pools, Sutton Park; Berkswell: Olton; Studler ; Harborne. Ws. Quinton, W^{*}. J. H.; Stapenhall Farm, Kingrs Norton. Var. Nathorstii (Boidt) W. \& G. S. Weet.
WK. Sutton Park.
C. speciosum Lund. 1, 7, 9.
wk. In a ditch. Sutton Park. ws. Quinton; Wyre Forest.
C: subalatum WV. \& G. S. West. S, 11.
ws. King's Norton.
C. tetraophthalmum Bréb. 7.

Wh. Longmoor Puol, sutton Park.
C. Botrytis Menegh. 1-11.

Common and generalls distributed. Var. gemmiferum (Bréb.) Nordst. इ.
wк. Berkswell. Var. emarginatum (Hansg.). 1.
ws. Trimpler, rare.

Var．medmonere Wreat．10．
－r．Gisat liw lark．
Var．dipmasum W．d（i，A．West． 1.
w－＇lrimpley．

＂s ！！иinton，in a small poml：Hartlebury（＇ommm，

wた．Buacolpidere［anl．sutom l＇ark．
（：h matron liarit．（i． 11.

Var．Ariyilbormm Norlst．！） 11.

Xavandru lihrenls．

いヶ．sutton l＇ark，i．II．IV ills．
1．antilopurnm（ lirél．）Kït\％．I．í，ll．

， 1 ／urus llas．

 f．minor W．A（i，A．Wint．
wh．Sutton lark．I．II Hills．

A．Jrimini lalli－ I ，（i，lo．
Is．Ilankesloy Hall Form，Kiners Nouton．

1 h．Sutton！’ark．I．If IIIlls．
A groumblam lalf－ 10 ．

天 TV，＂tm linlf \therefore ．

＂h．Sn fluhtun，sutton l＇ark．Ws．Hawknalny Hall Fiam，

－Mapadatan liseli．1，12

S．Avicule Bréb．1－5，7－12．
wh．Bracebridge Pool，sutton Park．ws．Stapenhall Farm， King＇s Norton．

Var．subarcuatum（Wolle）West．5，6，Il． ＝var．cerrucosum West．
wk．Plankton of Bracebridge Pool，Sutton Park（probably）．
S．denticulatum（Näg．）Arch．う．
ws．Halesowen．
S．hirsutum Bréb．B， 7.
wk．Sutton Park，A．Wr．Wills．ws．Hartlebury Common．
S．pilosum Näg．4，6－12．
wк．Plankton of Bracebridge Pool，sutton l’ark．
S．Brebissonii Arch． $7,7$.
wк．Longmoor Pool，Sutton Park；Harborne．
心．polytiochum Perty． 7.
wh．Longinoor Pool，Sutton Park．
S．asperam Bréb．
wr．Sutton Park，A．W．Wills．
S．orbiculure Ralfs． 7.
wk．Longmoor Pool and Bog III，Sutton Park．
This is probably var．Ralfsii W．\＆G．S．West．
S．punctulatum Bréb．2－7，10， 11.
wк．Longmoor Pool（f．tetragona）and Bogs I and II，Sutton Park；Olton ；Berkswell ；Earlswood．ws．Stapenhall Earm，King＇s Norton ；Westhills ；Warley ；Quinton；Hartlebury Common． st．Bearwood；Manley Hall，Weeford．

Var．pygmaum W．\＆G．S．West（＝S pygmaum Brél．）．5． wк．Lapworth．
S．turgescens De Not． 7.
wk．Longmoor Pool，Sutton Park．
S．Meriani Reinsch． 7.
ws．Hartlebury Common．
S．alternans Brélb．6，7， 10.
wк．Plankton of Bracebridge Pool，Sutton Park．
S．dilatatum Ehrenb． 7.
wk．Longmoor l’onl，Sutton Park．
Var．obtusilobum De Not． 3.
wk．Bracebridge Pool，sutton l＇ark．
S．Bieneamum Rabenh． 10.
wh．Plankton of Bracebridge Pool，sutton Park．
S ．muticum Wréb．
wr．Sutton Park，A．W．W＇ills．
S．cwratım W＇est． 10.
wк．Plankton of Bracebridge Pool，Sutton P＇ark．
S．hexacerum Wittr．4－7．
wh．Bracebridge and Longmoor Pools，Sutton Park；Botanical Gardens，Edgbaston ；Berkswell ；Earlswood．ws．Stapenhall Farm， King＇s Norton．

S．muricatume Bréb． 7.
wk．Longmoor Pool，Sutton Park．
Jotrata of Botait，December．1920．［stpplement IlI．］e

S．inflexum IBrel．2，4． $5,10-12$.
Wк．In the plankton and in ditches，Sutton Park；Berkswell． ws．Hawleskey Mall and stapenhall Fams，Kinges Norton．

wk．［＇lankton of batebridqe Pool and Bog II，Sutton Park； Lapworth．Ws．大itompert and Kidderminster．

wh．Plankton of Bracebridere Pool，Sutton l＇ark：Olton． いs．K゙inges Nurton；Sitomport．

S．sponyios＂um 13ヶテ力．
いた．Suttun lark，1．II Wills．
S．puralusum Meven．1，3，j－10．
＂к．P＇lankton of Bracelndige，Blackroot，ame Powell＇s Ponls， Sutton Park．

$$
\text { Var". lomyipes Nomdst. } 2, \text {, }-11 .
$$

Wに，In the same ponde，sutton Park．
f．biraliatu．（i．
wк．Plankton of Bmarebridge Poul，Sutton Park．
s．groucile lalfs．S－10，IO．
wк．Plankton of Bracebridge Pool，Sutton l＇ark．
A．Manfirlitii l）elp．3，6 10.
wk．Dlankton of Pracelnidge Poul；W＂indmill Pool，shartes．
s．finiofignom Rabronh．1－12．
Wk．J＇ankton of Bracebridere Pool，sutton l＇ark．Ws．Winley ； Hawkrley Hall F゙arm，Kingr：Norton．

wк．sutton Park，A．Wr．Wills．
バ：scoreostutum libéls．var．protuctum West． 7.
WK．Longrmour l＇oul，sutton l＇ark．
S．trimeroum Ralf：2． $1,(i, 10,11$.
wh．Wiadmill Pool，Shirley．Ws．Stapmhall Famm，Kiners Norton．

C：cunstriefom Arch．© 11.
いに．In the plankton，Sutton Park．
spllatozosma Corla．
S．gromulutum line d lBis．\quad ． 10.11.
 Nortor．
\therefore racamatum lialfs．
Wh．Filton lialk，A．If IV ills．
sposbrasify brób．

 いに．大ut！u l＇ark，－I．IV IIlls．

Hralotheca Ehremb.

H. dissiliens (Sm.) Bréb. 1, 3-11.
wk. Bracebridge and Longmoor Pools, and Bogs II and III, Sutton Park; Berkswell; Knowle. ws. Warler; Hawkesley Hall Farm, King's Norton ; Hartlebury Common.

$$
\text { f. tividentula Nordst. 4, } 10 .
$$

wr. Bog III, Sutton Park.
f. major Delp. 12.
wr. Bog II, Sutton Park.
II. mucosa (Dillw.) Ehrenb.
wk. Sutton Park, A. W. Wills.

Desmidium Ag.

D. Suartzii Ag. 1, 7, 10, 11.
wr. Longmoor and Bracebridge Pools, Sutton Park.
D. cylindricum Grev. ($=$ Didymoprium Grevillei Kütz.).
wk. Sutton Park, A. W. Wills.

STEPHANOKONTE.

(EDOGONIALES.

Edogoniacee.
Bulbochete Ag.
B. intermedia De By. 5.
ws. [King's Norton, in fruit, TV. J. H.]
B. angulosa Wittr. \& Lund. 10.
wh. Sutton Park, in fruit.
B. minor A. Br. 5.
ws. [King's Norton, in fruit, W. J. H.]
B. subintermedia Elfv. 10.
wк. Sutton Park, in fruit.
Species of Bulbochcete, not in fruit, are by no means infrequent, attaehed to Equisetum limosum. Myriophyllum, ete.
© Eogorius Link.
(E. cryptoporum Wittr. 5, 6.
wк. Olton. ws. Pond near Hawkesley Hall, King's Norton; Westhills. st. Bearwood. Var. culgare Wittr." 3, 4.
wк. Berkswell. ws. Warley.
(E. crispum Wittr. 5.
ws. [King's Norton, W. J. H.]
(E. rarians Wittr. \& Lund. J.
wк. Coleshill.
(E. irregulare Wittr. 2, 6.

Wк. Harborne. ws. Westhills; zoogonidia germinating by the second method (see West, Algre, i. p. 390).
(E. Braunii Kütz. 5.
ws. King's Norton ; Barnt Green.
（Fi．marrondrum Wittr．\quad ．
s．Bearwood．IV．J．II．

wк．Harborme，H．J．II．Pond near Hawkesley Hall，King＇s Nontur．
（た．rugulosum Nomdet．－
Ws．［K゙mŕs Norton，W「．J．II．］
（E：．gallicum llirn． 5.
いh．Coleshill．
（E．rimultre（L心（リ．）A．Rr．1－12）．
Wk．Bracelnidge Panl，sutton Park．on Bequiselum limosum （we Wies，fomm，Bot．1912，p，B2I，fig．1，1）．
（la．fonticola A．Br． 6 ．
Wк．Henler－in－Arden，on stomes in a small stream（see West． l．c．1919．p．3201，fig．1，13－11）．
（E．echinospermum A．Br．ন．
ws．［Pond at Hawkesley Hall Farm，Kingr＇s Norton．W．J．H．］
（E．Bosceii（Le（l．）Wittr． ）．
wた．［Haborne，in pond，${ }^{\text {Wr．J．II．］}}$
（E．sphueramdrimm Wittr．\＆Lamm．i．
wк．［Pond at llarhome，I^{*} ．J．MI．
Nimmerons species of（Edogonimm，not in fruit and therefore mot determinable with certainty，are very eommon everwhere，altached to arpatic phants in ponds．

HETEROKONTA．

（＇II I．OROSACCACER．

Miscuncococos Niais．

11．confervionle N゙äg．：3． 16.
Wк．内וtton lark．Ws．King＇s Norton，／V．J．／／．st．Wolser－ hampton：stafome A．W．IVills．

＂ha．Ponds，Berkawell；Sudhy：plankton of Pataromidere Ponl，

 IV．I（i．st．West．

13．sulilirus limmon．3．S．

 C＇ifurnapopsts Buma．

1．Iniquila W．A 1；犬．West．戶．
Wh Whit：ur

C'. saccata Carter in New Phytol, vol. xviii. 1919, p. 17\%. 4, 11. wr. Yard'ey; Pool Hollies Wood, Sutton Park, on dead leaves of oak.
C. Stregelii (A. Br.) Lemm. 11.
wh. Pool Hollies Wood, Sutton Park.

> Chforobotrydacem.
> Bothediopsis Borzi.
B. arhiza Borzi. 4.
wh. Berkswell.
C'hlorobotrys Bohlin.
C. ireqularis (West) Bohim. 4, 5, T-16, -12.

Wк. Bogs I and ili, Sutton Park.

(Eevtritractes Lemm.

C. belonophorns (Schmidle) Lemm. 7.
wh. Berkswell-remarkable.

Ophioctitace.
 Opiriocitium Näg.

O. parculum (Perty) A. Br. 3-7, 10.
wк. Hampton-in-Arden; Berkswell; Chelmsley Wood; Knowle; Bug III, Sutton Park. ws. Hartlebury Common; Hawkesley Hall Farm, King's Norton. st. Great Barr Park.
O. majus Näg. 2-8, 10, 11.
wк. Coleshill; Whitacre; Henley-in-Arden : Hampton-in-Arden; Berkswell; Chelmsley Wood; Bracebridge and Bog III, Sutton Park. ws. Fenny lough; Westhills; Barnt Green; Hawkesley Hall Farm, King's Norton. sr. Barr Beacon.
O. Arbuscula (A. Br.) Rabenh. 5, 10.
wк. Henley-in-Arden; Berkswell.
O. bicuspidatum (Borge) Lemm. 10.
wк. Bracebridge Pool, Sutton Park.
Ophiocytium cochleure A. Br. is recorded by A. WV. Wills for the district.

Tribonemacef.
Tribonema Derb. \& Sol.
T. bombycinum (Ag.) Derb. \& Sol. 1-7, 10, 11.

Very common and generally distributed.
f. minor (Wille) G. S. West. 2-7, 10, 11.

Frequent, usually with the type.
T. affine (Kütz.) W. \& (. S. West. 4, 5, 9, 10.
wк. Coleshill; Berkswell; Bug II, Sutton Park. Ts. Quinton; Wyre Forest.
T. utviculosum (Kütz.) Hazen. 4.
wh. Knowle-very remarkable.

Bumilleria Borzi.

B. exilis Klebs. 5, 6.

Wк. Edghaston, from several localities; Harborne; Gravelly

Hill．In pumb，Berliswell．Ws．Warley：Califoraia：Northtield；
 h．ill．

Fiout remads for the British Islamis．All the seremens，except than from Parkwoll，were ahtained liom cultures of soil．（Soe

Botisumばッ W゙allr．

 Blackwell．

RHODOPHYCEA．

lorpirymdoum Niar．

＂s．Wherlaston，on damp walls．Ws．Hartlehury ；Northtirhl，on the churehamel－wall．ate．

Sacinema stimor．

S．mamillosor siret．I．
Recordedfrom Bridцumth，Salop．
N．Jlmbintilis（AEr）Simot．
 severn．＂

Butabodosperaigu lioth．
B．momiliforme kuth．5．（i，10， 11.
＂к．Bracombile Poul，sutton Park，with cerstocarps in abmodane almost ververar．

W，Haluawen，II ．．／．I／．
B．atrum（1）illw．）Harv．
us．Halwowen，A．W．Wills．

w ：．（＇lent．

Summary of Species．

Flosthata	$\because: 3$	（h）nophyers：－	
	$4: 3$	Isokontir	151
	11	Akontir（incluting	
liu ill ri．．．	1．5．	1901）	2019
Chlomplyan	H1	Stephanokontar－．．．．	14
	（i）	Heturokontir．	19
Tut，｜	73.5	＇Tıtal ．．．	111

Bibliography relating to the Algæ of the Birmingham District.

Boltox, Tifomas.-Miero-organisms in a swampy Ditch in Sutton Park. Mill. Nat. 1ss6, ix. 173-6.

Bristol, B. Muriel.- On the Retention of Vitality by Algae from old Stored Soils. New Phytol. 1919, xriii. 92?.

Bristol, B. Merlel.-On the Life-history and Cytology of Chlorococcum humicolu. Journ. Linn. Soe., Bot. 1919, xliv. 47%.

Bristol, B. Mcriel.-On the Alga-Flora of some desiceated English Soils. Aunal. Bot. 1920, xxxiv. 35.

Bristol, B. Mlriel--A Review of the Genus Chlorochytium Cohm. Journ. Linn. Soc., Bot. 1920, xlv. 1-28, pls. i.-iii.

Cirier, Nelfie.-Trachelomonas inconstans, a new Flagellate. New Phytol. 1919, xviii. 118-9.

Carter, Nellie.-On the Cytology of Two Species of Chetaciopsis. New Phytol. 1919, xrini. 17T-186.

Griffiths. B. M.-On Two new Members of the Volvocaces. New Phytol. 1909, viii. 130.

Griffiths, B. M.-Algee of Stanklin Pool, Worcestershire. Proc. Birn. Nat. Hist. \& Phil. Soc. 1912.

Griffiths, B. M.-The August Heleoplankton of some North Worcestershire Pools. Journ. Limn. Noc., Bot. 1916, xliii. 423-432.

Grove, W. B.-Pleodorina illinoiensis Kofoid in Britain. New Phytol. 1915, xiv. 169-182 ; ibid. xvi. 180.

Hodeetts, William J.-Dieranochate reniformis Hieron. A Fresh-water Alga new to Britain. New Phytol. 1916, xv. 105.

Hodeetts, William J.-Uronema elongatum, a new Freshwater Member of the Ulotrichaceæ. New Plytol. 1915, xrii. 159.

Hodeetts, William J.-The Conjugation of $Z_{\text {ygogonium erice- }}$ torem Kütz. New Phytol. 1918, xvii. 238.

Hodgetts, Wilitia J.-Roya anglica G. S. West, a new Desmid, with an emended Description of the Cienus Roya. Journ.

Hongetts, Willtim J.-A new Species of Spirogyra. Amal. 13ot. 1920, Oct.

West, G. s.-A Biological Investigation of the Peridiniere of Sutton Park, Warwickshire. New Phytol. 1909, viii. 181-196.

West, G. S. -Algological Notes. Journ. Bot. 1911-1916.
West, G. S.-Handbook for Birmingham Meeting of the British Association, 1913. Algee, pp. 46:5-9.

West, W., and West, (a. S.-A Monograph of the British Desmidiacere. 4 vols. $1904-12$.

Wilds, A. W.-List of Desmidiete found in Sutton Park, Warwickshire. Midl. Nat. 1sso, iii. 26jo-6.

Winhs, A. W.-Handbook of Birmingham prepared for the Nembers of the British Association. 1ss6. Alga, pp. 335-5.

University of Toront

 Library REMOVE THE CARD FROM THIS POCKET

Acme Library Cara pocket LOWE-MARTIN CO. Limite

[^0]:
 nemetal 1R..

[^1]:

 Conke，Flomb，wal Con（1！：17），＂Hay－Fever，＂op，cit．p．2et．

 titt．nii．
 ＂ates（lals），＂Jompopment of Microngores in（Enotherio＂（Antation Factor ith Erolution，is．1न̈）．
 Mocminalt 1917．＂Hay Ferer．＂EMcyelop，of Medicine，p． 509.

 （ingempefte，Ib rhom，Klin．Weohemecher．xlii．p． 227.

[^2]: Journal of Botany.-Vol. 58. [March, 1920.]

[^3]: * "Desmidiaceen aus der Umgebung des Millstättersees in Kärnten," op, cit. 1. 61 (1900).

[^4]: 1817.
 (1915.

[^5]:

[^6]: * Types in the National Herbarium.

[^7]: ${ }^{1}$ Strasburger, Textbook of Botany, Engl. Trans, p. 417 (1912).

 - Schenk in Strasburger, loc. cit.
 ${ }^{3}$ Funtstuick in Engler aud Prantl (1898-1907).

[^8]:
 (ar iur liरít).

 a frimt tre 1, lin í

[^9]: 1 West, Algæ, i. p. 37 (1916).
 ${ }^{2}$ Goebel, Organography, Engl. Trans. i. p. 71 (1900).

[^10]: * I owe the suggestion of the name to Professor J. B. Farmer.

[^11]:

[^12]: * Owing to an unavoidable delay in the printing of the Plate illustrating the speeies of Orchis, the present paper appears out of its due order.
 \dagger N.B. - We are using the names 0 . Fuchsii Druce and O. exicetorum Linton for the sake of clearness, to distinguish the two British groups of Spotted Orehids: by U. muculata L, we indicate the aggregate species.

[^13]: * We may mention here that we find that the solidity or hollowness of the stem is not eonstant in all species. In O. incarnata the stem is always deeidedly hollow, in O. evicetorum and O. Fuchsii it is always solid, but in O. pretermissa and O. latifolia it varies from truly hollow to quite solid throngh degrees where it is three-quarters or more solid with a tiny central cavity.

[^14]:
 －＂I af｜1 İ．

[^15]: * Types in the National Herbarium.

[^16]:

