(

Journal of the
 Royal Inicroscopical Society

containing its transactions and proceedinas

ANI
A SUMMARY OF CURRENT RESEARCIIES RELATING TO

(principally Invertebrata and Cryptozamia)

MICPOSCOPY, \&C.

EDITED EY

R. G. HEBB, M.A. IM.D. F.R.C.P.

Phisician Pathologist to W'stminster Hospital
with the assistance of the Publication Committee and
J. AR'THUR THOMSON, M.A. F.R.S.E.

Resrizs Profissor of Natural History in the University of Aberdecn
A. N. DISNEY, M.A. B.Sc.

FEl,LOWS OG THE SOCIETY

A B. RENDLE, M.A. I.Sc. F.L. I. J. DOUGLAG, M.D. F.R.C.P.E
Aswistant in Liotrmy, British Museno:

Minimis partibus, per totum Naturæ campum, certitudo omnis immtitur quas qui fugit pariter Naturam fugit.-Lintueus.

FOR THE YEAR 1903

TO BE OBTAINED AT THE SOCIETY'S ROOMS, 20 HANOVER SQUARE, LONDON, w.
of Mbisks. IVILLiAMS \& NORGATE, 14 Henrietta Street, Lindon, W.C. Ann of Messrs. Dulau \& CO., 37 Soho Square, London, IV.

$$
248
$$

THE

Guoul Etlictustopical Socrutus.

(Established in 1839. Incorporated by Royal Charter in 1866.)

The Society was established for the promotion of Microscopical and Biological Science by the communication, discussion, and publication of observations and discoveries relating to (1) improvements in the construction and mode of application of the Microscope, or (2) Biological or other subjects of Microscopical Research.

It consists of Ordinary, Honorary, and Ex-officio Fellows of cither sex.
Ordinary Fellows are elected on a Certificate of Recommendation signed by three Ordinary Fellows, setting forth the names, residence, and description of the Candidate, of whom the first proposer must have personal knowledge. The certificate is read at two General Meetings, and the Candidate balloted for at the second Meeting.

The Admission Fee is $2 l$. 2s., paid at the time of election, and the Ammual Subscription is 21.2s., payable on election, and subsequently in advance on 1st January in each year, but future payments may be compounded for at any time for 31l. 10s. Fellows elected at a meeting subsequent to that in February are only called upon for a proportionate part of the first year's subscription. The annual Subscription of Fellows permanently residing abroad is 1 /. 11s. 6 d. or a reduction of one-fourth.

Honorary Fellows (limited to 50), consisting of persons eminent in Microscopical or Biological Science, are elected on the recommendation of five Ordinary Fellows and the approval of the Council.

Ex-officio Fellows (limited to 100), consisting of the Presidents for the time being of any Societies having objects in whole or in part similar to those of the Society, are elected on the recommendation of ten Ordinary Fellows and the approval of the Council.

The Council, in whom the management of the property and affairs of the Society is vested, is elected annually, and is composed of the President, four Vicc-Presidents, Treasurer, two Secretaries, and twelve other Ordinary Fellows.

The Meetings are held on the third Wednesday in each month, from October to June, at 20 Hanover Square, W. (commencing at 8 p.m.). Visitors are admitted by the introduction of Fellows.

The Journal, containing the Transactions and Proceedings of the Society, and a Summary of Current Researches relating to Zoology and Botany (principally Invertebrata and Cryptogamia), Microscopy, \&c., is published bi-monthly, and is forwarded post-free to all Ordinary and Ex-officio Fellows residing in countries within the Postal Union.

The Library, with the Instruments, Apparatus, and Cabinet of Objects, is open for the use of Fellows daily (except Saturdays), from 10 a.m. to 5 p.m. It is closed for four weeks during August and September.

Forms of proposal for Fellowship, and any further information, may be olitained by application to the Secretaries, or Assistant-Secretury, at the Library of the Society, 20 Hanover Square, W.

HIS MA.JESTY THE KIN(\%.

phast-presiomts.

Electal
*Sir Richard Owen, K.C.B., D.C.L., M.D., LL.D., F.R.S. 1840-1
*John Lindley, Ph.D., F.R.S 1842-3

* Thomas Bell, F.R.S. 1844-5
*James Scott Bowerbank, LL.D., F.f.S. 1846-7
*George Busk, F.R.S. 1848-9
*Arthur Farre, M.D., F.R.S 1850-1
*George Jachson, M.R.C.S. 1852-3
*William Benjamin Carpenter, C.B., M.D., LL.D., F.R.S. 1854-5
*George Shadbolt 1856-7
*Edwin Lankester, M.D., LL.D., F.R.S 1858-9
*John Thonas Quekett, F.R.S 1860
*Robert James Farrants, F.R.C.S 1861-2
* Charles Brooke, M.A., F.R.S. 1863-4
: Janes Glaisher, F.R.S 1865-6-7-8
*Rev. Joseph Bancroft lieıde, M.A., F.R.S 1869-70
* William Kitchen Pariere, F.R.S. 1871-2
* Charles Brooke, M.A., F.R.S. 1873-4
Henry Clifton Sorey, LL.D., F.R.S 1875-6-7
* Henry James Slack, F.G.S. 1878
Lionel S. Beale, M.B., F.R.C.P., F.R.S 1879-80
*Peter Martin Duncan, M.B., F.R.S. 1881-2-3
Rev. Whllam Hy. Dalifnger, M.A., LL.D., F.R.S. 1884-5-6-7
Charles Thos. Hudson, M.A., LL.D. (Cautal.), F.R.S. 1888-9-90
Robert Braithwaite, M.D., M.R.C.S. 1891-
Albert D. Michael, F.L.S 1893-4-5-6
Edward Mililes Nelsos 1897-8-9
William Carbuthers, F.R.S., F.L.'., F.(i.S. 1900-1

COUNCIL．

Elected 21st January， 1903.

forsiont．
Henry Woonqard，Esq．，LL．D．，F．R．S．，F．G．S．，F．Z．S．
Wice－hresionts．
＊Williay Carruthers，Esq．，F．R．S．，F．L．S．，F．G．S．
＊George C．Karop，Esq．，M．R．C．S．
－A．D．Michael，Esq．，F．L．S．
＋E．M．Nelson，Esq．

> ereasumer.

J．J．Vezey，Esq．

Serectaries．

Rev．W．H．Dallinger，LL．D．，D．Sc．，D．C．L．，F．R．S． I．G．Hebe，Esq．，M．A．，M．D．，F．R．C．P．

（1）Comary 解lembers of ©ouncil．

Jas．Mason Allen，Esq．
Wynne E．Baxter，Esq．，J．P．，F．G．S．，F．R．G．S．
Conrad Bece，Esq．
＂Robert Brithwaite，Esq．，M．D．，M．R．C．S．，F．L．S． Rev．Edmund Carr，M．A．，F．R．Met．S．
＊A．N．Disney，Esị．，M．A．B．Sc．
Jas．Wa．Giffori，Esq．
＇The Right Hon．Sir Forn North，P．C．，F．R．S．
Heniy George Plinmer，Esq．，M．R．C．S．，F．L．‥ Thomas H．Powell，Esq．
Percy E．Fadley，Esq．
＇（＇harles F．Rousselet，Es！ 1 ．
塑ibrarian．
Pericy E．Radley，Esq．
©imator。
C＇bahles F．Foubselet，Esq．

$$
\begin{aligned}
& \text { Assistime Secuetary. } \\
& \text { Mr. F. A. Parmone. }
\end{aligned}
$$

[^0]
CONTENTS.

transactions of the societt.

I.-The Rotatorian Genus Diasehiza: A Monographic Study, with Inserip- tion of a New Species. By F. I. Dixon-Nuttall, F.I.M.S., aml Lies. R. Freeman, M.A. (I'lates I. to IV.) 1, 12!;
11.- An Arrangement for Obtaining Monochromatic Light with the Mixed Jet. By Edmmnd J. Spitta, F.R.A.S.. \&c: (Fig. 1) 1.5
1LI-The President's Address: Some Ideas on Life. By Heny Woodward. LI.D. F.I.S. (Figs. 3t-:i6) $14 \div$
IV.-lieport on the Recent Foraminifera of the Malay Archipelago collected by Mr. A. Durrand, F.I.M.S.-P:rt XIV. By Fortescue William Millett, F.R.M.S. (Plate V.) 2.8
V.-A New Mcthod of Using the Electric Are in Photomicrogmphy. Hy. E. B. Stringer, B.A. F.li.M.- $27!$
VI.-The Helmhultz Theory of the Mirroscope. By J. W. Gordon. (Plate VI.) (Figs. 76-116) 381
MII.-On the Theory of Optical Inages, with \mathbf{S}_{p} eeial litference to the Micro- scope. By Lord Rayleigh. (Figs. 117-120) 47
VIlI.-On the Theory of Optical Images, with Special Reference to the Micro- serpe. (Supplementary Paper.) By Lord layleigh 471
IX.-On the Rendering Visible of Ultra-Microscopic Particles and of Cltra- Microscopic Bacteria. By H. Siedentopf, Ph.D. ī: .
X.-A Micrometrir Corrction for Minute Objects. By Edward M. Nelson. (Figs. 189-142) 37
XI.-On the "Lag" in Microseopic: Vision- (continued). By Eilward M Nelsun is:
XII.- lieport on the Recent Foraminifera of the Malay Arehipelago collected by Mr. A. Durranc, F.R.M.N.-Part XV. By Fortescue Willian Millett, F.R.M.s. (P'late VII.).65:

NOTES.

ACK
ACK
A Two-speed Fine Arljustment. By Elward M. Nelson. (Fig. 르) 19
An Old Nom-Achromatic Simple Mirrosenve. By Elward M. Nelsnn. (Figs. 14:3-148) 5×7
An Early Compound Microscope with a Mirror attached to its Limh. By lidward1I. Nelson. (Fig. 149)90
An Improved Horseshoe Stage. By Edward M. Nelson. (Figs. 1.on anl 1:1) 511
obITUARY.
Jumes Glaisher, F.R.S. F.R.A.'. F.R. Met. S. F.R.M.N 1.85
Rev. Thomas Wiltshire, M.A. D.Sc. F.L.S. F.G.S. F.R.A.א. F.R.M.S. $1.5!$
sUMMARY OF CURRENT RESEARCHES
Relating to Zoology and Botany (principally Invertemeata and Oryptogamia), Microscopy, \&e., including Original Commivications rfom Fellows and Others.*
ZOOLOGY.
VERTEBRATA.
a. Embryology.
Melafe, Yves-Curbonic Acid as a Prooncative of Artificial I'uthenogenesis 21
Agency of Carbon Dioxide in Inducing Artificial I'arthenogrn"sis $\because 1$
Viguler, C.—Artificial P̈urthenogenesis.. \because
Charrin, A., \& ophers-Rerappearance in Offspring of Lesions. Artificially imlncenin the Mother..$\because 2$
Winiwarter, Hans von-Note on Oogenesis in Mimmals. $2:$
Bühler, A.-Ketrogressive Changes in Ocarian Follicle of Amphibinns.. $\because 2$
Ieard, John-Germ-Ceils and Germinul Continuity $\because 2$
Lomsta, (i.-Spermatogenesis in Sparrow ㅇ:;
Meves, F . R.- Mimorphism of Spermatozont $\because 3$
Korfr, K. von-Spermatogenesis in Phalangistu rulpint $\because 4$
Torrex, H. B.-Prepotency in Polyductylous Cats 21
1)ean, Bashford-Biometric Evidence beuring on Theory of Limh-Origin $\because 4$
cmon, L. - Notes on Development and Structure of Bradypus. -4
Rabl, (Aall-Development of External Budy-Form $\because 4$
I'mlo, ().-S7eletal Changes in Flat-Fishes in the Course of Hecelopment 25
Moser, Fannx-Development of Vertebrate Lung 2.
Eisenmann, Carl H.-Solution of the Eel Question 2.
Hermwa, O.-Treatise on Comparative and Experimental Limbryology of Vertehrates 160
('zermaf, N.-Fertilisation in Salmon 160
Wedekind, W.-Vestigial Function 160
Houssay, F.-Orqunic Sexual Dimorphism in Foul. 160
Welsmann, August-liegeneration in Veuts 161
Wemer, 1.-Torsion of Birl-Embryo 111

* In onler to mabe the Contents complete, the papers printer in the • Transactions, ind the. Notses printed in the 'Procecdings' are included here.
page
- minitt, F.-Gantrulation of Double-Decelopment in Trout 161
Pllegrin, J.-Curvature of the Spine in Fislee 1;1
Hicker, V.-Parental and Grend-parenfal ('ompouents di the Vucleus. 281
Luboscis. W.-Maturation in Newt's Ooet and in (irns ial 281
Rovee, L.-Hermaplnoditism in Fishes 2×2
Houssay. F.-Carnivorous Fonls of the Semul Gentrution $28: 2$
Wilson, J. 'T.-Early Stages in Development of Oinithorhynctins 28:
Männici, H.-Development of Vertebral conumn if Penguin 28:3
Lewin, M.-Development of Deali of I'enguin 28:;
I enhussík, M. von-Devetopment of Corpus Vitrenm $\because 8: 3$
Hentwif, O.—Treatise on Comparatire and Experimental Embryology 183
Minot, Charles Sedgwick-Laboratory Tert-lhul: of Embryelongy 483
Вонs, (x.-Influence of hadirm Rays on Tadpoles 483
Intuence of Radium Rays on Ora 483
Ziegleer, J. E.-Influence of Alcoliol on Development 484
Marsifall, F. H. A.- Detrous Cycle am. 8 Corpus Luteum in shepp.. 484
skrobansky, K. v.- Yolli-N'ucleus or Corpus Balliani in Tertebrates 48.5
schultze, B. S.-Determination of Sex. 485
Tonkoff, W.-Development of Spleen in Tropidonette metric. 485
Laaser, P.-Development of Teeth in Seluchines. 186
Cousant-Preputial Gilands of liablit 186
Marino. F.-Nom-Existence of "Neutrophit" tiremulations in Leucocytes of Man and Momlify 486
Tonkoff, W.-Inthence of Sult solution on Eirly Decelopment of Newt's Egy 93
Kopseh, F'r.- Irtificial Fertilisation of the Oca aj C'risticeps argentatus 59:
Retzess, i.-Dipermatozoo of Acanthies velgoris 593
Leiber, Adolf-Structure aml Decelopment of Femele Gonals of Lancelet. 594
Loyez, Marif-Follicular Epithelinm in Birts 594
Wallace, W.-Ovarien Oed and Follicles in Fishes. 594
Wintreblert, P.-Influence of Ceutral Nercous system on Development of Limbs in Amphibians 94
Cameron. J.-Derelopment of Pineal Body in Ampluilia 594
Hocghton, H. S.-Development of Muscnhuture and Slieleton in Spelerpes tongi- candus 595
Broman, Ivar-Circulation in Embryonic stmunde 195
shultze, O.-Defermination of sex: $\quad . \quad$. $\quad . . \quad . . \quad$. 705
Beard, John-Embryology of Thmours 70.5
Conklin, Edwin C.-Canse of Inrerse Symmetry $70 t$
Bateson, W.-Mendelian Heredity $70 ;$
Allan, Bennet M.-Emhryonie Mevelopment \dot{y}^{\prime} Mnmmalidn Oeary and Testis 704
Pittard, E.-Results of Castration in Man 707
Monteomery, Thomas H. sr.-Meterotypic Muturation-Mitoris in Amphibia 707
Powers. J. H.-Accelevition and Retardution of Metemorplenvis in Amblystoma tigrinum 707
Woltenstoff, W.-Hybrid Niture of Triton blasii 70
Gorigio, E.DDevelopment of Lungs in IIscoglossus pietus 701
Moser, Fanny - Comprarative Embryolngy of the sirim-Blalder 708
Excleshymer, A. ․-Farly Iecelomment of Lepidostem: 7118
Damany, P. le-lirolution of Vertehrate Lim's 708

l. Histology.

Giardina, A-Theen y of Cell-Division..
Holmgren, E-Trophospongium of Nerve-Cells ant Puncreatic Cells 3 ;
Tellyesniczey, K.-Criticism of Theories of Nurlear structure
Pexsa, A.-Structure of Curtilage- ('ells.
Eycleshymer, A. C.-Nurleer Changes in strifu-l Uu*cle-Cell of Necturu: 27
Persa, A.-Endinus of Nerces in salicury Glamb.
Perroncito, A.-Muscrlar Terminations of Neme-Filmes..

IAGE
Schaefer, Fr.-Femoral Glands of Lizards. 27
Bethe, A.-Cell-Division 161
Bouin, P.-Spindle-Residues in Cell-Division 162
Holmgren, E.-Trophospongia 162
Solgen, B.-"Intracellular Threads" in Ganglion-Cells of Electric Organ of Torpedo 162
Schlater, Gustav-Intranuclear Space in Liver-Cells 162
Sidinko, O. V.-Structure and Development of Cartilage 163
Bertacchini, P.-Development and Sirncture of Vitreous Humour.. $16: 3$
Beguin, F.-Structure of Digestive Canal in Reptiles. 163
Vosselef, F.-Structure of Intestiual Villi 164

 Brader, A.-So-callel "Telescopic" Eye of Some Abyssul Fishes. 164
Voinov, D. N.-Nature of the Centrosome 28:3
Dangeard, P. A.-Laus of Division 28:
Hereick, C. J.-Size of Nerve-Fibres in Fishes 284
Coco, A. Motta, \& S. Distefano-Nerve-Enling: in White Musele $\because 84$
Zietzschmann, E. H.-Iutegumentary (rgans of Cervidae 284
Gross, J.-Optic Chiasma of Reptiles 285
Scheberg, A.-Intercellu!ar Connections 487
Boeke, J.-Minute Structure of Amphioxus 487
Hatai, Shinkishi-Efjerent Newons in Electric Lobes of Torpedo 487
sterzi, G.-Blood-Vessels of the Spinal Cord of Birds 487
Burchilardt, R.-Historieal Aspects of Zoology 487
Nemiloff, A.-Amitotic Division in Vertebrata 595
Prenant, A.-Myoblasts: 595
Müncii, K.-Structure of Nucleus in Smooth Mescle 596
" , Cross-Striped Mascte 594;
Holmgren, E.-Intrucellular Threads in Nerve-Cells. $5: 0$
Trophospongia in Glandular Cells 596
Reižičica, Vladislav-Structure of Red Blood-Corpuscless 596
Zachariades, P. A.-Axial Filament in the Adult Comectice Tissue Fibril 591
Babes, V.—Origin of Gient Cells 597
Retterer, E.-Transformation of Epithelium into Connectice Tissue 597
saint-Hilaire, C.—Intestinal Epithelium in Amphiumu 597
('iaccio, C.-Intracellular Canuliculi in Supre-rentl Cipsudes 597
Villard, J.-Cellular Niture of Zoochlorelle 597
Neufeld, Rachel Pewsyer-Canaliculi in Gunglion Cell. 708
Ciaccio, C.-Secretory Processes in Suprarenul Capsules 709
Kolnzoff, N. K.-Formative Elastic Structures in Cells 709
Bensley, R. R.-Brunner's Glınds $70: 1$
Howard, Arthur D.-Structure of the Outer Segments of the Rods in the Retina of Vertebrates 710
c. General.
Vaschide \& Cl. Vurpas-Vital Rhytlm 28
Wienersheim, R.-Comparative Auctomy of Vertebrutes 2.
Jordan, D. S.-Colours of Fishes 28
Mertrani, (i.-Arsenic in Animals $2!$
Rodier, W.-Rabbit Pest in Austrulia ?!
Dean, Bashfond-Origin of I'aired Limls of Vertelrates. 29
Shinkisiit Hatai-Interscupular Glanel in Human Embryos 2!
Hanna, W.-Suake Venoms :30
Andres. Angelo, \& L. P'esci-Permeubility of Frog's stion 30
Zolotnitsky, N.- Toxotes jaculator in Captivity :3)
Annandale, Nelson-Euting Mubits of Galeopithecus rolens. 30
Batelli-Adrenuline 31
Lapicque, L.-Hzmatolytic Function of Spleen 30
Galtier, Armand-Fıbrinogenic Substance in Albumen of Birl's Eqg 31
Schmidt-Nielsen, S.-Autolytic Proccsses in Pickled IIerring $: 1$
Woodward, Henny-Some İleres of Life 14 를
Werner, F.-Biological (obstrations on lieptiles and Amphilians. 165
pagf
内imi:0тн, H.-Plylogenetic Speculations. 164
Goette, A.-Text-book of Zoology 166
Govgr, L. H.-Anomalies on Head-Shields of Sualies. 1166
M‘Intosh, W. C.-Abnormul Coloration in Pleuronectids 166
Palacký, J.-Geographical Distribution 167
1.eche, W.-Phylogeny of Erinaceida 167
Zacharias, O.-Throwing-Net and Mud-Sucleer 167
Buffa, P.-Fauna of Alpine Lakes 167
Verworn, Max-Biogen-Hypothesis 285
Delage, Yves-Note on Physiological Injertions 285
Bouchard, C'h., \& H. Clacde-Experiments with Adrenalin 285
ILoussay, F.-Modifications ()bserved in Carnicorous Fowls $28 ;$
Shufeldt, R. W.-Classification of Birds $\because 81:$
Ridgway, Robeit-Birls of North and Middle America 286
Cushing, H.-Course of the Taste-Filures -381;
Racovitza, E. G.-Note on the Great sech Serpent $\because 87$
Riggs, Elmer, S.-Largest hnown Dinosaur $\because 87$
Parker, G. H.-Optic Chiasma in Teleosts 287
Allis, E. Ph., Jr.-Lateral Canals and Cranial Bones of Polyodon folime 288
Barbett-Hamilton, G. E. H.-Flight of Flying Fisll 288
Bukihardt, R.-Brain of Isistius brasiliensis $28!$
Vaillant, L.-Fresh-zuater Fislues of Bornen $28!$
Wagner, F. von-Parasitism among Amimals 487
Ayers, Howard, \& C. M. Jackson-Morphology of the Myxinoids 45
Edwards, C. L.-Note on Phrynosoma 488
Albarran, J.-Functional Luequality of the Kidneys 488
Bertrand, G.-Normal Presence of Arsenic in Animals 488
Arsenic in Eags of Foul 485
Gessard, C.-Formation of Blach Pigment in Tumours of Ilorse tos
Stefanowska, M.-Growth in Weight of White Mice.. $48!$
Legros, R.-Vascular System of Amphioxus. 489
Alcock, A.-Deep-Sea Life in Indian Sets 597
Gadtier, Armand-Arsenic in Animuls. 598
Sherborn, (:. Davies-Index Animalium 598
Weber, $M_{A x}$-IIistory of the Fanna of the Indo-Australien Archipelago 598
Fürth, Otto von-Chemical Plysioloyy of Incertelrates.. 598
Waleer, Augrstus D., \& A. Durig-Electrical Criterion of Vitality 50, 8
Maurel, E.-Relation between Weight of Liver and Total Surfuce 594
Dean, Bashford-Coloration of Myrinoids. 59
Plate, L.-Studies on Cyclostomes $5!9$
Wiedersheim, R.-"Larynx' of Gumoils and Dipmoi 810
Goitel, F.-Specific Differences in the Kilneys of Lepadoqaster fillo
Bounhiol, J. P.-Study of the Respiratory Exchanges in II ater :00
Portier, P.-Temperature of the Thany bor
Eigenmann, C. H.-Unilateral Coloration with Bilateral Effect 601
Brown, E. E.-Variations of Garter Sualies 601
Case, E. C.-American Pelycosuuria 601
(iadead, H.-How Birrls make themselves understool by Man 602
chester, W.-Bird and Man 1002
Carlsson, Albertiva - Marsupial Region of Mersupialia 710
Ramè, Dr.-Meckel's Dicerticulum anch Conromitant Absenre of Cecal Ap- pendix 710
Broom, Ri.-Plyylogeny of Vomerinc Bones 711
Harrison, H. Siencer.-Homology of the Lagena throughout Vertebrates 710
Shambacgh, G. E.-Circulation in Lubyrinth of Eur of Pig 711
Ravther, M.-Genital Apparatus of Bats 711
Ridgeway, Prof.-Urigin of the Thorough-bred Horse 711
Hatcher, J. B. - Ancestral Canidæ 711
Weysse, Artiul W.-Perforation of a Vein ly an Aitery in the Cat 711
Hézier, 'T.-Albinism in Birds and Mammuls 712
Lönnberg, Einar-Adaptations to Molluscivorous Diet in T^{\prime} aranus niloticus 71%
Tayder, Julius-Structure of Geclio's Toes $71 \because$
PAGE
Bradley. O. Cilarnoce-Museles of Mastication in Lacertilia $71 \because$
Hollo, Louis-1'hylogeny of Chelonians 712
Siebenrock, Fr.-Classificution of Trionyehide 713
Phisalix, M.-Origin of Poison Glands in the Land Salamander 71:
Parker, G. H.-Semse of Herring in Fishes 718
Schöndorff, Albeist-Chunge of Colour in Thout 718
Siedlecki, MI.-Resistunce of Gasterostems aculeutus to the Osmotic Pressure of different Media 714
Zander, Enoch-Gill-Filters of Freshwater Fi:hes 714
Sollas, W. J. \& Igerna B. J. Sollas-Palaospondylus 714
Pattes, W.-Appendeges of Tremataspis 714
Lastman, C. R.-Peculiar Modificution in Permian Dipnoans 715
Scharff, R. F.-Lost Atlantis 715
Verrill, Addison E.-Bermuda 1slouds 71 ;
Tunicata.
Golincimidt, R.-Development of Appeqdicularia 1;7
Magnus, R.-Function of Gicunglion in Cima intestinali. 489
Inent, A.-Digestive Glunds of Monuscidia 489
Bonnier, J., \& C'h. Perez-Nez Type of Sulpa-Chain 490
Hartmeyer, R.-Aretic Variety of Ciona intestinalis.. 50:
Buorne, G. C.-New Molgulid (i) 2
INVERTEBRATA.
Deflandre, (.-Adipogenic Function of Lirer in Invertebrates 31
Cuenot. L.-Agglutinating and Chlo-phagocytic Organs 31
Wesenderg-Lund, C.-Relict Fauma of Lalie Furesöo $\because 89$
Diday, E. von.-Microscopic Freshacter Animuls of Buluton 716
Mollusca.
a. Cephalopoda.
Williams, L. W.-Vascular System of Squid :
Ohun, Carl-Nature and Development of Chromatophores 167
Jourdain, I.-New Cuttle-fishes 168
sumeikart, A.-Chorion und Micropyle in Cephulopods 168
Bergmann, IW.-Structure of Overy in Cephalopods 490
Gessard, C.-Oxidising Ferments in Ink of Cuttlefishe: $4!10$
Gravier, Cii- -Nervous system of Neutilus $4!10$
Chun, C.-Liemarlable Young Form of Cephaloporl 711
Hamlix-Hafire, R.-Statocysts of Cephalopors. 716
Joubin, L.-Loligo media 716
Joubin, L.-Iletroteuthis weberi 716
Thesing, Curt-Spermatogenesis in Cephelopuds 717
γ Gastropoda.
-mith, B.-Notes on Species of Fulgur. 32
-impotii, I.-Recent hesearches on Gastropods :2
Ancel, P.-Sex Determination of Gametes in Llermaplirorlite Gonads $: 12$
Berfa, R.-Opisthobranchs from Gulf of Siam 3:
Hlese, R.-Retina of Gastropod Eye 16 s
Illingworth, J. F.-Structure of Lucapina cremulata
$16:$
$16:$
Debois, R.-Purple of Dog-Whetl: 170
Torzaler, K. J.-Relations of Kidneys aul Goneds in Heliotis
171
171
\{imaban, Amadecs W.-Dtudies of Gustropued shells: 290
ctiasny, G.-Kidney of helix pomatia $2!0$
Yuxg, Emile-Sense of smell in Shails 290
Letellier, A.-Purple of Purpura lapillus $2!0$
Silaser, O. C.-Nematocysts of Nudibranchs 41
(ilanans, (i.-Tracheopulmonate Gustropeds $2 \cdot 1$
FdGI
FdGI
Kïnkel, К.—Locomotion of Slugs $1!19$
Lioemler, R.. \& (. Vaney-Entosiphon Deimutis Purusitic in eth Abyrsal Holothurvid $4!+1$
Pace, S.-Structure of Pontiothanma $4!1$
Davis, J. R. Ainsworth, \& H. J. Flecre-Memoic on the Limpet. $+91$
Heath, H.-Function of Subruduler Organ in Chitone $4!2$
Brefne, C. de-Folliculur Cells in Gounds of Gastropods $49 \because$
Bavay. A.-Aëriferous Canal in Shell of certain Pulmonatu 492
Westerlund, C. A.-Synopsis of Pulaurctic Forms of Clausili, 49%
Meisenheimer, J.-New P'teropod 603
Künkel, K.-Breediuy Experiment: with Simistrul Sinails.. 60:3
Nierstrasz, H. F.-New Solenogastres 717
F'ahringer, J.-Storing-Tidney in Carinaria mediterranert 717
Cockerell. T. D. A.-Variation in the Gemus Ashmunella 717
Grabau, Amadeus-Gestropod Stulies 718
Ancel, P.—Sexual Differentiation in the Hermaphrodite Gland of Limax maxi- mus $71=$
б. Lamellibranchiata.
Baker, F. C.-Monstrosities in Biculves :3:
Boutan, L.-Innervation of Mantle of Pecten $3:$
Jameson, H. Lyster-Formution of Pearls 170
Jobert-Muscular Apparatus of Anomia 171
Dall, W. H.-Symopsis of Carditacen $^{\text {D }}$ 171
Doboss, R.-Origin of Pearls in Mytilus galln-provinciulis -29)
M-Intosh, W. C.-Frequency of Occurrence of Pearls.. $49:$
Andrusoff, N.-Brackish Water Cockles 4:\%
Vorges. Donet de.-Utilisation of Carbonate of Lime by Anodonta 71 s
Bafer, F. C.-Rib Variation in Cardium 715

Arthropoda.

a. Insecta.

Holmgren, Nils-Morphological Siqnificance of Chitinous Cuticle $: 3: 3$
Snow, Letitia M.—Insects of the Drift Line $3: 3$
Bachinetjew, P.-Calorimetric Measurements in reference to Pupa of Lepidoptera 3:
Verhoeff, K. W.-Innervation of Metacephalic Seqment 34
Holmgren, Nils-Excretory Processes in Insects. 34
Kellogg, V. L.-Mouth-parts of Insect 34
Cobelli, Ruggero-Striclulation of Death's Head Moth 31
Godman, F. D., \& O. Salvin-Butterflies of Borderland between North and Eouth America 34
Dixey, F. A.-Seasonal Dimorphism in Butterfies 3.5
Levrat, D., \& A. Conte-Colour of Sill: :5
Field, Adele M.-Study of an An 85
Melander. A. L.-Gynandromorphism in Hilara wheeleri sp. n. 31
Voïnov, D. N.-Spermatogenesis in Cybister roselii $3 i$
Annandale, Nelson-Malayan Phasmide and a Flower-like Beetle Larva $3 ;$
Carazzi, D.-Berlese's Bursa in Acant'ia lechulariu L. 3
Kellogg, V. L.-Larva of Giant crane Fly 31
Miall. L. C.. \& G. Gllson-Cricliet of Aquatic Halits : 14
McClung. C. E.-Spermatogenesis of Locustidre $: 7$
Escherich, K.-Development of Nervour System in Muscida 37
Bordi, A.-Species of Mosquitos concerned in Diffusion of Malaria 37
Tavares, J. da Silva-Studies on Zoocecilia 38
Kellogg, V. L., \& Shineai I. Kewana-Mallopleaga from Galapagos Birds 38
Forel, A., \& H. Dufour-Sensitiveness of Ants to Ultra-Violet and liüntgen Rays 171
Sosnowski, J.—Physiological Study of Metamorphosis 17.
Wasmann, E.-Pseudogymy in Formicu, and its: Cause 172
page
Ducke, A.-Stingless Bees (Melipona) of Purá 172
Wasmann, E.-New Termites. T'ermitophils, aud Myrmecophils 172
" ", Guests of the Doryline 172
Tower, W. \neq L.-Exurial Glands in Insects 173
Porta, A.-Hepatic Function in Insects 17:;
Metalninoff, ふ-Excretion in Gnat Larva 17:
4iadd, G.-Food.Canal of Larve of Cuckoo-Spit 174
Enderlein, Günther-Normal Asymmetry of the Wings in Naucoris cimicoides 174
Vevey, $上$ Artault ie-Injurious Inftuence of Thrips on Man 174
Reh, I.-Statistical Study of Scale Insects on Fruit 174
Vosseler, J.-Chemical Defence amd other Adaptations in North African Orthopterce 174
Linden, M. Gräfin von-Sensory Mairs on Pupa of Papilio podalirius 175
Wandolleck, B.-Appendicular Nature of Abdominal styles 175
Verioeff, K. W.-Trochanter and Prefemur 175
Grünberg, K .-Studies on the History of the Germ-Cells in Lepidoptera 175
Lister, J. J.-Notes on Lipurids 176
Johnson, W. F., \& J. N. Halbert-Beetles of Ireland 176
Felt, E. P.-Grapevine Root Worm 177
Mayer, A. G.-Evolution of Colour-Patterns in Lepidoptera 2!! 1
Kellogg, V. L.-Net-winged Midges 292
Petronkewitsch, A.-History of Polar Bodies in Drone-Ova 2!:
Tower, W. L.-Development of Wiags in Beetles $29:$
Griay, St. George-Serew-Worms in St. Luciu 293
Wesché, W.--Parasite of the Wallaby $2!4$
1.ÉGER, Louls-Parasitic Bacteria in Intestine of Chironomus Larve 294
'chenk, O.-Antennary Sense-1 ryans in Lepuiloptera and Hymenoptera $2!4$
Ribaga, Costantino-Inveet aquinet Insect 24
Pictet, Arnold-Changes in Imaqines inducel by Change of Diet in Caterpillars $2!14$
Gulde, J.- Dorsal Glands of Larve of IIemiptera-Heteroptera 29.1
silvestri, F.-A Most Primitive Insect 29.1
Escherich, K.-Studies on Thysamura.. 29.5
Pantel, J., \& R. de Sinéty-Development of Spermatid of Notonecta glauca 295
Acrosome of Spermatid of Notonecta 295
"Nebemkern" and Nuclein Movement in Spermatid $2!{ }^{2} ;$
of Notonecta glauca $2!6$
Regen, J.-Stridulating Organs in Saltatoriul Orthopteru $29 ;$
Bordas, L.-Structure of Gizzard of Caralide 296
Sellards, E. H.-Palæozoic und liecent Cochroaches e!!
1 apouge, G. de-Phylogeny of Carabus 493
Deegener. P.-Post Embryonic Development of Intestine 493
Wagner, Fr.-Variations of Pieris mupi 493
Shelford, R.-New Case of Protective Mimicry in a Caterpillar 494
Disey, F. A.-Notes on Seasonal Dimorphism. 494
'Tichosimoff, A.-Artificial Parthenogenesis in Sill: Moth 494
Brues, C. T.-Development of Stylopidx 494
Dyar, Harrison G.-Lepidoptera of North Americu 495
Bordas, L.-Mandibutar Glanuls of Larral Lepúloptera 495
Gritinberg, K.-Oogenesis in Lepidoptera 496
Börner, Carl-Joints of the Walling Legs in Insects and Myriopods 604
Bater, V.-Metamorphosis of Nerrous System in Insects 604
Bulamn, G. W.-Insects and Petal-less Flowers 604
Lowe, Ernest, E.-Iusects and Flowers $60 t$
Voinov, D. N.-Dimorphic Spermatozoa in Buttertlies (i05
Kolbe, H.-Irecocious Development of Pupal aud Imaginal Organs in Caterqillars 60.5
Zander, E.—Male Genital Appendages in Lepidoptera 605
Harris, W. H.-Teeth of Diptera 606
Mecnier, F.-Diptera from Amber (i) 6
Galli-Valerio, Bruno, \& (4. Rochaz-Mosquitos in Winter 606
Pititaluga, G.-Anopheles in the Iberian l'eninsula 606
Vaney, C., \& A. Conte-Dipterous Parasite of the Vine-pest Haltica 606
Wesché, W.-Male Organs of Scatophaga 607
Bordas, L.-Alimentary Truct of Silphidre 607
PAGE:
Lauterborn, L.-Tracheal Gills on Legs of Letreal Perlid 615
Kiohler, A.-Formation of Clorion in Pyrrlucoris ajterus. 107
Verhoeff, K. W.-Systematic Position of Hemimerus 607
Seaton, Frances-Compound Eyes of Michilis 608
Lovell, Joins H.-Insect: and Floral Colour. 718
Oudemans, J. Th.-Position of Repose in Lepidoptere $71!1$
Rogers, W. S.-Protectice Resemhlance in Butterties 719
Meves, F.-Spermatogenesis in Drones $71!$
Dreyling, L.-W'ax-maling Organ of liee 719
Cobelli, Ruggero.-Mibernation of Iuts 719
Rengel, C.-Connection betucen Mid-Gnt and Hind-Gut in Lartal Hymenoptera 720
Grünberg, K. - Interesting Case of P'arasitisum 7211
Sharp, D.-Beetle Embedded in Wi'all of IIumun Intestine 7211
'Tower, W. L-Coloration of Coleopterie 7211
Peal, H. W.-Vasiform Orifice of the Alvurodide 721
Pine-Beetle 721
Stebring, E. P.-Economic Éhtomolry 721
Enderlein, Gunther-Copengueflae from hameroon 721
Lea, Arthur M. - Tusmanian Phusmid 721
Aquatic Insects of New Yorli State 722
Monse, Max-North Americau Trichodectidit 72.
ß. Myriopoda.
Rossi, G.-Structure of Myriopods 177
Bruntz, L.-Labial Excretory Wrqums and a Thagocytic "rgan in Itiplopoda 177
Rossi, G.-Odoriferous Glands of Juhus communis 297
Attems, Carl Graf-New Myrioporls 297
Pocock, R. I.-New Clasping Organ in a Centipete 496
Williams, S. R.-Variution in Lithobius jorficutus 608
Hennings, Curt-Marine Myriopoels 722
Verhoeff, K. W.-Intercalary Degments $7 \div 2$
γ. Prototracheata.
Bouvier, E. L.-Modes of Dev-lopment in (Inyehophora $2!17$
Evans, Richard-New Śpecies of Meriputus. 608
万. Arachnida.
Bösenberg, W.-Monograph on German Spiders.. 38
'Trouessart, E.-Gamasus uuris 177
Thor, Sig.-Thick skinned Acarina 177
Stschelfanovtzeff, J. I'-Segments of Peeuloseorpionidie $\because 15$
Pappenheim, \mathbf{P}.-Development of Dolomeder fimbriutus $2!8$
Ribaga, C.-New Hydrechnida and Icodidx from South America $2!18$
Sheer Scab 298
Halbert, J. N.-Irish Fresh-wuter Mites 496
Neumann, L. G.-Species of Lxodidre 496
Bösenberg, W.-Spiders of Germany 497
Dahl, Fr.-Copulation in Spiclers. 609
Soar, C. D.-Living Hydrachmid Larve in Trout's Stomuch 609
Rucker, Augusta-New Species of Licmenia 130:3
Schmeswitsch, W.-Development of Telyphonus caudatus 723
ϵ Crustacea.
Labbé, A.-Fibrillar Contimity of Epitheliul Cells and Muscles in Nebalia.. :
Bruntz, L.-Excretory Organs in Ihlacontraca 3
late
Lerat, P.-Maturatiom-Phenoment in Oigenesis and Spermatogenesis of Ctplops stremus $3!$
Morlin. J. R.-Absorption aml servetion in Terrestrial Isopods 3:
Koeppel, E.-Gemus Ampliome $3:$
Lavnoy. L.-Nucleolar Changes inscretion of Ilepato-Panereatic $\ddot{\text { Cells }}$ of Hermit- Crab. 17
Jordan, H.-Function of Miel-Gut Gland of Craufish 178
Bunnier, J.-Two New Types of Epirarilit 17゙
Chevretex, Ed.-Marine species of Hyalella 175
Melsenheimer, J.-Crustacto and Pioutopod 178
Kotte, E-Integmentary Sense-l regats of Deep-Sea Decapods $2!1!$
Brentz, L.-Excretion in Cirripedia $2!!!$
Halpern, B.-Tentral Neve-Cord of Cruytish $3!1!$
C'aullery, M., \& F. Mesnil-Gifl-formimy Copepoll in an Anemone :300
Sayce, O. A.-Australian Inyhlopmis. :010
Hansen, H. J.-New Speeies of Sergestes 4.9
Ridewood, W. G.-Nett Gemus of Copepord 497
Kirkaldy. (.) W.-Note on l'hototropism of Daphenia 497
Scourfield, D. J.-Synopsis of British Fresh-water Cladocera $4!7$
Keeble, F., \& F. W. Gamble-Colour-Pliysiolog!! of Higher Crustacen 61%
Thienemann, A.-Statocysts in em Isoporl. 610
Thompson, Millet T.-hare Thalassinit and its Larva 611
Walker, Alfred O.-Auturctir Amphipods.. 611
Lönnberg. Eimar-Intermediute Form lutueen $\ddot{M}_{y s i s}$ oculate and Mysis relicta 611
(Hevreve, E.-Abyssal Lysiannassids (ill
Hansen, H. J.-Anuropus and Bathynomus. 611
Scotт, Thomas-Copepotu from Furve Clumel. 612
Holmes. F. J.- Deatl-Feigning in Terrestrial Amphipod: 723
Fabre-Domergue \& E. Biétrix-Kmerqence of Lobster Larvap $72:$
Harris, J. Arthur-Habits of Combern: $7: 3$
Holmes. S. J.-North American Ampliprode 72:
Annulata.
Foot, K., \& E. C. Strobell-Cocome of Eatlaworm. 40
Abel, Max-liegeneration in Limicolie.. 179
Debosce. O.-New Species of Alma 180
Livanow, N.-Hemiclepsis and allind Geneta 181
Rosa, D.-Typical Cheragoten of oliguelizten 300
Mlayer, A. G.-Atlantic Pulolo 300
Gravier, C h-Fresh-elater Polychats :301
Fauvel, P.-Otocysts of Polychita 301
Cowles, R. P.-Notes on I'olygordius ::01
spiess, Camille-Alimentury Truct of the Leerch 302
Socler, A.-Revision of Annelids of the Cette Region 498
Treadwell. A. R.-Artificial Partlienogenesis in Egg of Podurke obscura 495
Kowalevsky. A.-Phchomena of Fertilisation in Hxmenteria costata 498
Stevens, N. M.-Oogenesis and Spermatogenesis in Sagitta bipunctata $4: 8$
Spiess, C.-Minute Structure of the Alimentary Canal of the Leeeh 612
Hércbel, Marcel A.-Distribution curd Afjinities of Sipuneulide $61 \because$
Notes on Sipunculids.. 613
Hérubel, Mareel A.-Endothelial Ierivatives and Pigment-Bahlies in Gephyreans 613
Bergmann, W.-Gonads of Hesione sicula 613
Malaquin, A.-Derelopment of Metumeres in Salmacina dysteri 1613
Foot, Katherine, \& E. C. Strobell-Sperm Centrosome and Aster of Allolobo- phora fetida 741
Siedlecki, M.-Röle of Amobocytes in Polymmia nelulowa 724
Izika. Akira-Observations on the etoman'se Palolo (Ceratocephule osavai sp. n.) 72
Augener, H.-Studies on Geplyrea 725
Gënther. K. T.-Distribution of Mid-urater Cliatognatha in North Atlentic 72. 72.
Nematohelminthes． page
Bancroft，T．L．－Tutermediate Host of Filaria immit is 40
stiles，C．W．，\＆W．A．Franiland－Fineyer Lel in Human Bladeler 40
Michel，A．－Species of Rhablitis 180
Voltzenlogel，E．－IIind－End of Ascaris 180
Low，（土．C．－Filaria perstans 310
Goldscimidt，R．－Sense－Orgens of Ascaris 49.
Manson，Sir Patrick－Life－span of Filaria medinensis． 614
Miura，K．，\＆V．Nishitcei－Unfertilisel Ova of Ascaris in Human Fieces 614
Montgonery，Thomas H．，jr．－Structure of P＇tragordiu：varius Leidy 725
Platyhelminthes．
Inering，I．von－Parasitic Worms as Ails in Zongeogrephieal Investigution 40
Zacharias，O．－Vew T＇urbelluriun． 41
（xhaff，L．von－Notes on Gyrutor hermaphrudins Ehrlg． 41
Müller，Jos．－Studies on Bipulinm Species． 41
Looss，A．－Trematodes from Murine Turtles 41
Pratt，H．S．－North American Trematorles 41
Stafford，J．－American Representatives of Dintommen veriegutam 41
Perronctro－Production of IIyatil Cysts from scolices 42
Scinemer，G．－Life－Mistory of Bothriotania probussidea 42
Linstow，O．v．－Lehinococcu‘ ilveolaris 181
Boas，J．E．V．－Triplotania mirabilis 181
Bartels，E．－Cysticereus fesciolaris 181
Rössler，P．－Minute Structure of Cysticerei 182
Buttel－Reepen，II．von－Distomum clacatum 182
Stafford，J．－American Representatives of Distonum rymoides 18：
Müller，J．－Contributions to Study of Bizulialie 182
Stcamer－Thaympels，R．Ritter von－Fiesh－water I＇olyehad 18：
Bergendal，D．－Cullinera biargeri．． 182
Stiles，C．W．，\＆I．Taylor－Aniutic Mumur P＇urenit＇s． 302
Haswlel．W．A．－New Gyrocotyle $30:$
Pratt，H S．－North Amerien Trematodes 303
Mareinowsir，E．－Sub－（Esophageal Gan！lion of Liver－Fluke 30：
Osbonn H．L．－P＇eculiar Flutie 30：
Zschonke，F．－Marine Parasites in Fresh－atater Prishes
$4!9!$
$4!9!$
Neve Case of Dipylidium ceminnm in Man $49!$
Rosseter，$\overparen{\text { T．B．－Dreprnidotenia temuirostris }}$ 499
Maclaren，N．－Shiu of Tremutoles 500
Cohn，I．－Notes on Tiemutorles 500
Juhnstun，S．J．－New IDistomm from 心㇒urhish Sharli $5(1)$
Curtis，Winterton（．－Life－Mistnry and Requabuction of Plenaria menculata lill
MacCliless，W．（i．－New Monostome from Einepping Turile 181.5
Janicki，C．v．－Behariour of Chromatin in Segmentation of Ocum of Gyroductylus 61.7
Lëne，Max－Pernliar Cestode from Arantlias 61.5
Schnempen，Gudo－Bothrincephulus in the Baltic Merring 61.5
Gamble，Dr．F．W．，\＆F．Keeble－Bionomics of Convolufa Roscotiensis プミ
Haswele，W．A．－Tuo Rementulle Spormists from Mytilus lutus＂．．．．．．．． 72
Punnett，R．C．－Nemerfeans of Nortay 721
Incertæ Sedis．
Vaney，C．，\＆A．Conte－Bulding of Rhubdoplewrie mormomuia 42
Ritter，W．Li．－Mpett of Entrropueusta $4 \because$
Movements of Enteropmensla $4:$
Klunzingeli，C．B．－F＇tyhodera erythrate from the Red Sen $18: 3$
 ；0：；
Poche，Fr．－Correct Name of Cienus ithoronis $50!$
C＇alvet，L．－．Veu sipecies of Alryonidinm 500
Dec．15th， 1003l．
page
Cumings, E. T.--Evolution of Platystrophiet 61.5
Rohertson, Alice-Embryonic Fission in the Gieme Crisia 726
Stulies in P'arific Corst Entoprorta $7 \cdot 27$
Ascorlizu and Related Alc!emidia $7 \because 7$
Rotifera.
Digon-Nuttala, F. R., \& Rev. R. Fhemmá- The Totatorien Gemas Dieselize. A Monogretphic Stutly with Descriptionof a Varsperies (Plates I.-IV.) , 120
Wesché, W.-New Male Liotifros 183
Rotatoria.
 riadr 727

Echinoderma.

Koehler, R., \& F. A. Bather-Neq Cemoid 13
Doncaster, 1s.- liearing Later Stages of Echionoid Lurrer 18:
Brlle, F. Jeffrey-Autarctic Efhinolerm. 303
Stevens, N. M.-Esperimental Sturlies on Eygs of Lhhimus mirrotuherculutux 501
Loeb, Jaçues-Experiments on Oct of Sturfish 501
Mones, Sarail P.-Reqfueration of the Bort! of a Starfish ili;
 Echinucardiam cordatum 727
Grabau, A. W.-Merelopment of the Biserial Arm in Corterin Cimoins. $7 \because 8$
Nichols, A. I.-List of Irish Echimoterm. 728
Norman, Canon A. M.-Echinuterms of Eust Fiumarli 724
Cœlentera.
Aders, W. M.-Dicision of Protoly, 44
Billarid, A.- (Issertations amb Experiments on Claten squamuta 4
Cirros, E.-- Mimute Struchare of Symeryme sarsii 44
Tonney, H. B.- Hyplroids of linciaie ('enst of North America 4
Gravier, Ch.-Adult l'elagic Cerianthid. 44
Callgren, O-Actiniaria of the ongu Expeditione 44
Duenden, J. E.-Significance of Budding and Fission in Madrepmaria 4.5
Torney, M. B.-Notes an Anemones aml Variation in Mrtridlum 45
Gardiner, J. Stanley-Structure aud Dechlopment of Flabllam 181
Nutes on Variation, I'rotandry, and Senescr uce i" Flahellum 181
Mororr, Tu.-New Pennatulacea and Gorgonacen 184
Törnquist, Sv. L.-Studies on Graptolites $18 t$
Aders, W. M.-Spermatogenesis in Hydra ame Aurelia 304
Günthes, R. T.- Colentera from Intermediate Waters of $\ddot{\text { North }} \ddot{\text { Atlantir }}$ $: 304$
Ierkins, H. F.-Development of Gonionemu murbachii 01
Tonfey, II. B.-Hydroids of Pacific Coast of North America 502
Kremre, A.-Peculiar Structure in Certain Hexucaralliu. 502
Billard, A.-Excretory Cells in Hydroids 616
Bourne, (i. U-Some New and Rare Corals from Finufiti $611 ;$
Kishinouye, Kamakichi-Species of Corallium 616
Hafgitt, C. W.-North American Ścyphomeduse $1: 17$
Leon, N.-Prophysema heckeli; 617
Büıger, Otto-Commensalism between Sea-Anemone and Crab $7 \div 8$
Kürenthal. W.-Revision of the Nephthyide 728
Hall, 'T. S.-Occurrence of Monagriptus in New Soutl, Wales 728
Kerfonne, E.-Development of Giraptolites 729
Beecher, Ciarles E.-The Genus Romingerít 720
Porifera. PdiE
C'ot te, J.-Ingestion of Fuor-P'articles in siycendru motuenns: :304
Metabolism in sionq"s 314
Scholze, F. E.-Indian Triaromit :34
Thma, Isao-Studies on Ilexutimellids. 502
Lendenfeld, R. v.-Note on spmailla fragilis 502
Vosmaer, (E (). J.-Shlicpous sipimetes 503
Zacilarias, O.-Certerius Ntepumued Iyge, 617
Topsent, E.-Asterostrutidia 72:
Thiele, Joir.-Insufficiontly Dewribed Moncermin $72:$
Preswiscis, Joser-Calictreous spmutes from the I'acitio. 724
Baar, R.-Pacific Homy spomes: 729
Protozoa.
Porta, A.—Reprorurtiom of Acantlometriale 4.7
Bongert, A.-New 'I rypylen 45
Perrovaito-Lamblin intestinalic Fital to Rabbit: 4 t;
Moroff, 'Th.-Nell Speries of Chilolon 16
Laveran, A., \& F. Meenh-l'arasitps of all Asiatic Tortore 46
Iaveran, A.-Trypano:omes: firm Tranevedel Cattle 46
Laveran, A..\& F. Mesnil-Miamufozod in Marine Fivhes $41 ;$
Earland, A.-Cimblulopera bulloides 18.5
Siedlecki-New Coccidion 18.5
Mileett, F. W.-Renot on the liecent Foraminiferte of the Itulay Arehipelago collected by Mr. A. Imarmand. F.R M.心.-Part NI'. (Ilate V.) $25: 3$
Conte, A.. \& C. Vaney- Vuelear Emissions in I'rotozoa $: 010$
Penatid, E.-New Rhizoporl 30,5
Dangeard, P. A.-Nuelfor llivision of Ammbe : 01.
Sherloce, R. L.-Formminifere of Ricived Roffe of Fiji :0)
Enriques, P.-Aluptubility of Mitrine Infusorimus of Fresh W"uter :30;
Renavlt, B.- Fossil Infusoriaus $: 304$
Pocue, Fre- Flagellate Parasites in Siphonophora $: 301$
Dangeard, P. A.-Structure of Trepomonas ugilis Dujurliat $: 304$
Manson, Patrick-Trypanosomeuris $: 307$
Foì, Anna-Nature of Cytorycts racina $: 07$
llanchard, L. F.-Colomic: Gregarine in a lieetle $: 307$
layeran, A.-Hzmogregarine of Ophidiu $: 30$
Mengarini, Margherita T.-Comjuqution of Amobee 503
Schewiakoff, W.-Observations on Achenthometree $50: 3$
Loised, G.-Senescence and Comjugation in Infusorians 503
Ayrton, W.-New Vorticellid. 504
1'almer, T. Chalkley-New Speeies of Trachelomomas 501
Castellani, A.-Trypanosomu found in Sleeping Sichuess. 50 i
Dreyer, Georges-Influence of Light on Amoba und their Cysts 617
Prenant, A.-Myonemes of I'rotezoa 618
Penard, E.-Multicilia lacustris Lauterborn 618
Dangeard, P. A.-(bservations on Monas vulgaris 618
Babes, V.-Parasite of Texas Fever 618
Crawley, Howard-Myxospenidian Parasite of Geophilus 618
Argutinsky, P.-Plasmodium prerox 619
Voges, O.-Parasite of a Central sonth American Horse Disease 61:
Musgrave, W. E.-Tripanosomiusis of Horses in the I'hilippines 619
Léger, L., \& O. Duboseq-Development of Gregarines $61!$
Millett, F. W. - Report on the Recent Foraminifer, of the Malay Archipelago collected by Mr. A. Durrand, F.R.M S.-Part XV. (Plate VII.) 68.
Léger, L., \& O. Duboscq-Sexuol Reproduction of Pterocephalus 729
," , ., New Parasite of Hermit-Crabs 730
Holmes, S. J.-Phototaxis in Volvox 730
Lë́ne, M.-Progress in Study of Coccidia 730

BOTANY.

GENERAL,

Including the Anatomy and Physiology of Seed Plants.

Cytology,

including Cell-Contents.

Feinberg, L.-Nuclei of Thicellular Animuls contrested with thove of Plant Cell:. 47IdGE
Kraemer, H.-Continuity of Protoplasm 47
Ensst, A.-Nuclear Reduction and Fertilisation in Paris and Trillium..
Werselingh, C. van-Nucleus of Spirogyru 48 48
('avara, F.-Obserrations on the Nucleolus $4!$
Hariden, A., \& W. J. Young-Glycogen from Yerest $1!$
Donard, H ., \& H. Labbé-New Proteid from Maize. $4!$
Liénard, L.-Reserve Carboloydrates of the Albumen of Palms. $1!1$
Ancangeli, A.-Detection of 1'losphorus in Plants $4!$
Cuevalier, Aug.-Ctoutchouc-ypelding Landophias of the French Congo $4!$
Ibaker. R. 'T., \& H. (i. Smith-Lerf-Tenation and Chemical Constituents of Eucalypts 50
Manden, J. H.-Gums, Rexins, and other Vegetuble Lrmations of Australio 50
Wale, Gustav v.-Specific (irority of Cell-wetp. 186
(iaftier, Aminnd-Amenic in Plants and Amimals 186
Inussell, W.-Lnealisation of Daphine in Ihaphne Lanteola 187
Ewart-r'rotoplasmic streaming 308
Petit, L.-Distrilution of Spherulin amom! Plant Families 309
Motmer, D. M.-Behweiour of the Chromemones in the Spore-Wother-Cells of Higher Plonts. 505
Grégoire \& Wrgaelsts-Recomstitution and Formation of Chromosomes in Somatic Nuclei 505
Rosenbeng, O.-Dehaciout of the Chromosomes of Mybrids 505
Comonn, W. A.-Beluriour of Nuclei in Plent Ilylrides: 506
Nemed-Non-Sexual Nuclear Fusions. 5019
Lanson, A. A.-Relationship of the Nuclear Membrane to the Protoplast 506
Schrammen, F. R.-Ffice of T'emperiture on Groncing Cells 507 507
Kiraemer, H.-Structure of the Starch-Gruin 507
Matrechot, O., \& M. Molliabn-Action of Freezing on Plunt-Cell: 50 s
IIcsek, G.-Starch-Crmins in the Bioot-Cipp of the Onion 508
Farst, E. S.-Acocantherin: an Afrian Arow-I'vison 508
Stevens, T. L. \& A. C.-Mitoxis in Synclatrium. 620
Chamberlaln, O. J.-Mitonis in Pelliu 620
1 awson, A. A.-Stulies in spiudle Pormation 731
 $7: 2$
 732
Ileys, G.-Alluloids of Jicentre formose $7: 3$
Structure and Development.
Vegetative.
Lamarlière, L. Géneal de-Comifir Wood from the Therf-Pits 80
 1
Kessino. S.-P'arasitism of Buclileya Quadrinlu.. $\therefore 1$
Beyer, I -Ancotomy of Anonuccie.. 51
MAnsGing, A.-Protection of Voung Folingr Leates and Seed Leares il
page
('usmman, J. A.-Localised Stuges of Growth 51
Hamers, J. A.-Thorns of Glelitschia Triueanthos 51
Dagulleon, A.-Distribution of IFairs on the Surfece of the stom 52
(iamble, J. S.-Manual of Iudian Timbers 52
Worsdell, W. C.-Evolution of Vaseular Tissue. 187
Golden, K. E.-Histology of the Wood in Sjecies of I'inos 188
Endriss, W,-Pilostyles Ingre. 188
Schoite, J. C.—Stelar System in Flowering Plents 309
Villemin, P.-Intermediate Wool 309
Rodrigue, A.-Anatomy ant Movements of Porliera Ihygrometrica 310
Flot, Lén-Foliar Origin of the Stem 508
Col, M.-Bundle Arrangement in the Petiole and Leuf-Veins in Dicotyledons 509
Bocygues, M.-Existenee of a Pith in the Leaf-stalli of Phaneroyums 509
Queva, C. - Unipoler Stele in liootlets of Trupie 509
Joesting, F.-Anatomy of certain Groups of Caryophylltece 510
Thouvenin, M.-Petiolar Glands of Viburmum (1pulu: 510
Daniel, L.-Modificution of IA, itit by Grafting 510
Experiments on Grajted Iluits 511
Esteva, J.-Abnormal Grouths in Woorly I'lant: 511
Chick, Edith-Seedling of Torrone Myristice 621
Küster, E.-Pathologieal P'lunt-Auctumy (i2) 1
Chauveacd, (C .-New Seeretor! Apparutus in Conifers (i21
Pibliggraphy 62:-
Matte, H.-Meriphyte of the Cyeuds: 73:3
Irgang, G.-Sap-excreting Elements. in Tropeolum majus.. 7:
Pisminger, F.-Regeneration of the Assimilating Merhonism in Streptocarpus ant
Monophyllæa 733
Bibliograthy $7: 31$
Reproductive.
Whaner, R.-Lagoehilus. 52
Barsanti, L.-Cause of Floral Zyefomorphiam 52
Clos, D.-Theory of the Petiole in the Flower 52
Dor, Patl-Development of Pollen in Avclepiculw 33
Richer, P. P.-Germination of Pollen-Graim: 8:
Guignard, L.-Double Fertilisatiom in Crueifers. $5: 3$
Caminell, D. H.-Recent Investigutions in the Enhryo-sue of Angionperm: 03
Schmin, 13.-Development of the Einbryo of some Dicotyledons. 185
Lanis, W' G.-Morphologicel Stuly of Thuja 189
Mennechet, L. A.-Fruit of Jetequinia ruseifolia and Tridhome: in Myrsinnece 189
Coulter, J. M., \& C. J. Cinamberlain-Einbryngeny of Zamiu 310
Murbeck, Sv.-Life-Mistory of Ruppict 311
Reed, H. S.-Development of Macrosporangiam of Yucat 312
Theels, M.-Embryogeny of Ficus hirte. 313
Bllings, F. H.-Chellazegumy in Carpe oliceformis. 313
Hochreutiner, B. P. Q.-Biology of Fruit in Mulaneat 313
Niduloff, 'Tin-Floral Structure of Jughunlea 314
Jonnson, D. S.-Devclopment in l'iperteres 511
Frye, T'. C.- Morphologicul Stuly of Asclepiulacea 512
Renarlt, B.-Vegetutive Acticity in the Carboniferous Eproch 513
Wagner, R.-Notes on Compositie $51: 3$
Bonzi, A.-Seeds of Inya 51:
Grélot, P.-Laticiferous Tissue in Flomr's of Convolvalacea $51:$
Oliver, F. W.-Lugenustomu Lomuxi, the Sied of Lyginodnution 6을
(tuerin, J.-Derelopment and structure of the stent-C'out in rientianncere 12:
Worsdele, W. (!-Abnormel Flowors of Helenium catumnate.. 12:
Bibliograritiy ie::
Corer, W. C.-Gumetophytus un. Limbryo of Tarodiume 70.4
Morpitinogy of Angiosprime 73.1
Juel, II. O.-Merelopment of the Ovele in Cesuntrine $7: 3$
1.aurent, M.-Formation of the Legly comt lhirision of en Antipulnt Cerl in ther Jиисасез 738
Bibliograpify $7: 37$

Physiology.

Nutrition and Growth PAGE
Bernard, Noel-Plysical Contitions of Tuberivation in Plant. it
Griffin, E., \& R. O. Herzog-I'hotosynthesis it
Bokorny. Th. -Assimilation of Teests 5.5
Cinapin, P'.—Influence of Curbonic Acid Gas on Growth $18!$
(zapek, F.-Nitrogen Äsimilation in. Moulds 190
Dorner, H. B.-Effect of Composition of Soil on Ilfents 190
Sablon, Leclerc du-Varation in Curbohydrate lieserves in stem and Root of Woody Plants 191
Macchiati, 1.-Photorynthesis outside the I'lant. $31 t$
Mazé, P.-Ripening of Seetls and the Power of Germinution 315
Danineno, J. B.-Effects of Water unl Aqueous Solutions on Foliuge Leates 315
Bouliliac, R.-Formic Aldhyde as a Foot-stuft for Frenh-urater Alga $81 t$
Laurent, Em., \& Em. Marchal-Signthesis of Proteids by Ilents 513
Pollacci, G.-Assimilation in Green Plants. $51 t$
Buscalioni, L., \& G. Pollacci-Use of Collution for Detecting Transpiration $51 t$
Amar, M.- Iunction of Calcium ()xulute in Plent Nutrition 515
'Tammes, Tine-Periodicity of Mormhological Phenomena in Plants. 515
Chick, Marriette, \& P. Ci. Chahenther-Nitrogenou: Metabolism in Minute Algæ 623
André, G.-Nutrition of Plents tlemiced of their Cotyletons $6 \div 1$
Bibliograiliy (i-4
Lutz, L.-Alkaloids as a Source of Nitrogen 737
IIébert, A., \& G. 'Triffaut-Nutrition of Chrysanthemums 737
Bernard, N.-Germination of Orchids: it sigmbiotic lielutionehip 737
Irritability
Heinricher, E.-Influence of Light on Seed-Germination is
Plowman, A. B.-Relations of Plant-Growth to Ionisation 56
Robertson, R. A.-Functional Inertia of I'lant-I'rotoplasm 191
Bungerstein, A.-Movement of Perianth Leaves of Tulip and Crocus 191
Newcombe, F. C.-Thigmotropic lioot-Curvatures 192
Wiedersherm, W. - Influence of Loading on the Formation of Wood and Bast Elements in Weeping Trees $1!2$
Macdocgal, D. T.-Inghence of Light aml Darkiuess on Plant-life 316
Trayereo, G. B.-Stomuta of Cotyleduns 515
Darwin, F.-Statolith Theory of Geotropism 515
Dixon, H. H.-Resistanee of Seeds to High Temperatures (i24
Bibliography 624
Jurie. A.-Morphological Variation in Leares of the Vine as a consequence of Graft- $i n g$ 738
Chemical Changes.
Newton, (4. R.-Enzyme in Ripening Plantains 56
Bokorny, Th.- Yeast Ferment 56 56
Meynck, A. de-Sugar in hipe Fruits 192
Suzuki, U.-Formation of Asparagine in Metabolism 192
Aso, K.-Lime in Phanerogamic P'arasites 192
Suzuer, U.-Composition of Seeds of Gingho biloba 193
Balicka-Iwanowska, Gabrielle-Decomposition and Fiegeneration of Alluminoids in Plants 317
Chodat, R.. \& A. BaciI-Function of Peroxiles in the Living Cell 317
Pollacci, G.-Hylarogra and Curmuretted Mydrogen formed by Plants 516
Dríal, E.-Experiments with Potutoes 516
Verschaffelt, E-I'rissie Acid in (opening Buds of I'rumus. 516
Slade, 11. B.-Mydrocyemic Acill in senghum 517
Kelleman, K. F.-Effects of Chemical Agents on the Starch-concerting Pouer of 517
Taka Diastase 517
Page
Bourquelot, Em.--IIydrolysis of Polystachurides 517
Lampanse, E. O. von-Nomenrlather of buzymes 517
Wervers, Th.-Changes in Śulicion in Plant Nutuition 518
Pakamasi, T.-Production of Alcohol in Seeds. 515
Loew, O.-Action of Urewiem on Plents.
Aso, K., \& S. Sczuei-Artion of Sodinm Flumide and Iotassimm Iodide and Putassiam Ferrocyatuide on I'lents il8
Bokonvy, Th.-Nature of I'rotoplasm and Enzymes $6: 4$
Javillier, M.-Proteolytic Ferments 62.5
General.
Premins, Jinet-Notes on Styrucea 57
Revision of the species of Lixicuthe: 57
Chevalier, Aug.-Monompop of the Myriancere. 57
Tacoand, I. - Floral Distribution in the Alpine Zone 57
Podpera, I.-Plant-Formutions and Flore of siouth Bulgaria. 37
Masters \& W. T. Thiselton-Vyel--Chimese F/oru 57
Anechavaleta, J.-Florce of L'ruguty. 7
Greenman, J. M.-Monogriphl of Nortle and Central American Spccies of Senecio 7
Cambage, R. H., and othens-Noles ou Austrulian Potany 7
Penzig, O.-Plent Teratolog!, is
Zimmermann, ('. - l'Lent Microvop?! is
Forbes \& llemsley-Chinese Flora $1: 3$
Harshbenger, J. W.-Struud Flora of Nem Jewey $1: 9$
Vayreda-Plants of Cutulonia 318
African Flme XXIV. 318
Plateae, F.-Puppies and Insect Visitors i1s
' Ornens-Determination of Dominance in the Colour Characlers of Hybrids 519
Montemartini, L.-Avistolochioces $51!$
schute, Th., \& K. W. von Dabla Tome-German flora 519
Wright, C. H.-Flora of Chinue 519
Maiden, J. H.-Plants of Loml Honre Istaml 51!)
Pinchot, G.-Forest Dextruction in the L'uitcal Stutes 520
Power, F'. B., \& P. E. F'. Periánes-Poisonons Aetion und Histolog! of Stem of Derris uliginosa 52)
Buscalioni, L.-Mercerisation of Cutton Fubrics 520('oulter, J. M.—Origin of Antiosprm:
Smiti, Wenfred-iIyrmecoquily in Mucarengat triloba 6%
Schiclz, O. E.—Monograph of the Genus Cardamine $6: 6$
African Flora 126
Bonnaüllee, I.-Flora of Fera" 126
Veriille, A. E.-Bermuita Islamis. (i26
Micheli, M.—Mexican Leguminose
$6: 9$
$6: 9$
 620
Bibliography 627
Benry, E. W.-American sipecics of Thënnfeldia 73s
Nash, G. V.-Revision of the Fumily Fouquierace:e 738
Comens, C.-On the Characlers of Hylirits 739
L.ovele, J. II.-Colours of Northern Gamopetalous Floxers $7: 3$
Parkin, J., \& H. H. W. Pearsun-Botany of the Ceylon Patanas 739
Bibliogiaphy 740

CRYPTOGAMS.

Pteridophyta.

Davenport, Gr. E., \& others-Fern Étul! in North Amurict is
Unberwood, L. M., \& W. I. Maxon-Cubem Ferns is
Scott, 1). H.-Primury structure of et rtuin Puldeozoic 心tem.s 1:\%
Stembrinck, C.-l'ermeability of Cell-uculls to Air $19 t$
Maxon, W. Ji., \& L. M. Undenwood-Frus ume Forn Allies of North Amriace .. 195
Bennett, A.-Equisetam hyemule .
Bower, F. O.-Morpholony of Spore-prorlucing Members: General Comparisons and Conciusion 320
Underwood, L. M - Botrychium 320
Ccker, W. C.-Spore-cavity Nucleus in l'rothallia of Marsilia 320
Schmendener, S.-Opening Mechanism of the Macrosporangia of Selaginella 321
Leavitt, R. G.-Root-Development in Azolla $5: 2$
Puole, M. S.-Stigmaria 521
Luersen, C.-German P'teridophyta 521
('lete, ${ }^{W}$. N., \& others-North American P'terideplyita 521
Farmer, J. B., \& others-Cytology of Apegamy 740
Yabe, Y., \& others-East Asiatic I'teridophytı 740
Maxon. W. R., \& others-North American P'teridophyta 741
Bryophyta.
Quelle, F.-Rhizont-Initials of Marchantia 58
(onb!ème, L.-Riella 59
Lett, H. W.-British Heqatics $5!$
Müller, K.-Mepatics of Baden $5!$
Evans, A. W., and others - North American Hepatics TH
Salmon, E. S.-New Zealund Hequtirs. 59
liergevin, E. de-Interconversion of Sexual Organs in a Moss 9
Ghot t, A. J.-l'eristome 60
Geheeb, A.-Siapression of Redundant Moss-Species 60
Kindberg, N. (.-Genus 'Thammium 60
Salmon. E. S.-Notes on Orculatia and Schuretschiea 60
Wieldon, J. A., \& others- Mritish Moss Flora. 60
Camus, F., \& others-French Mose Flora 61
Lamarliere, L. Giénead iee-Mos* Floru of French Cacems 61
Cypers, V. v.- Giprman Mosses 61
Paris, E. G.-Jepanese Mosses 61
Muscineæ of South-East Asia.. 61
 62
Schiffner, V.-Musciner of the Atlantic Islands 62
Ikeno, L. -Firmation of Antherozoids in Marchentid 821
Benecie, W.-Culture of Heputirs 321
Massalongo, C.-Scopunia 821
Dutin, I.-Papillate Ilepatics. 320
Corbiere, L.-Fiossombrouíl $3 \because 2$
Warxstorf, C.-German Heputies aul splagnu $32 \cdot 3$
Barisali, E.. \& (. Massalovgo-Ituliun Mequtics 82:
Haynes, ('. C.-American Hepatirs 322
Barbolt, W. C.-Lejeunen in North America 湤
Evans, A. W.-Meputive of Puerto Rico 82:3
Conri, W. C.-Tuco Efg-Cells in Mmium $8: 3$
Braithwaite, R.- Brilish Moses $3: 3$
Ingham, W.-Yorlishire Muscinez 3:3:
Bagnall, J. E.-Ticciocarpus mutens 3.3
Crozals, A.-French Voleanic Muscincer 32:
Henzuf, Tir.-Europeen Mosses $32: 3$
Roll, J., \& others-Germun Mosses 32:3
Matolschek, F.-Austrian Muscimea 324
Bottini, A.-Itelian Mosses 324
Kinimeti, N. C.-North Imerican Mosses $32+$
Cariot, J., d others-Mosses of Alusliet $3 \because 4$
Holzinger, J. M.- Incomspicuous Musses 325
Willians, li. N-TPilmuilum 3:5
Drsme, 1'-Mosses of Last !'remhened. 825
The Mosis Exchange Cldb- Ti port for 190:; $3: 5$
Sobiffar, V., \& J. M. Holzlnger-K. G. Limpicht 32
 $5 \geq 1$
Gmmare, A.-Fatilisation and Epore-lipenimy in Dhosers. 52
Howe, M. A., \& L. MI. Underwoud-Riella 52․․
PAGi:
Docin, I.-Spherocarpus tervestris 5%
McArdle, D., \& H. W. Lett-Irish IIeputics 52:3
Horrall, E. C., \& D. A. Joxes-Sphagna of Lpher Tersdule 52.;
Casares-Gil, A.-Homalia lusitanica 52:3
Krieger-Catharinea $52:$
Dixos, H. N.-Michodontium 52
Kindperg, N. C.-Anomoton Toccore 52:
Stinton, J.. \& utiers-British Mosses 523
Ostermald, K., \& O. Jaap-German Inscinez 524
Bottini, A.-Italian Mosses 524
Groct, A. J., \& otnens-North American Mosses 5-4
Watts, W. W., \&'T. Wintelegge-Moss Florn of Austrelia i24
Valiel, F.-Morphology of Muscinex 627
Pacl, H.- lihizoids of Mosses. $6: 7$
Beer, R.-Chromosomes of Funaria lygrometrica 628
Rutn, G.-European Mosses 628
Groct, A. J.-Amerifum Mosses 628
Cavens, F.-Asexual Reproduction 628
Biology of Heputica 629
Ineso-Development of Spermatozoids in Metrchentiu 741
Limphicift, W., \& others-European Mosses 7.11
Nicholson, W. E.- Weisia sterilis sp. n. 7.12
Kindberg, N. ©.-Thamnium. 742
Britton, E. (i.. \& otiers-Amerirm Mosses 742
Paiis, E.-West African Musses 742
Stabler, G.-British Mepatica 7.2
Dound, ${ }^{\dagger}$ I., \& otmens-European Heputice 7 ± 2
Coliffener, V.—Ggmnomitrium and Marsupella. $74: \%$
Evans, A. W.-North Americten Iteputicze $74:$
Bilihfograpiy 74
Mosses.
Warnstorf, C.-European Inerpidiut 19.5
Salmon, E. S.-Streptopogon $1!+5$
Culyptopogem.
Culyptopogem. $1!19$ $1!19$
Britaon, $\ddot{E} . \mathrm{G}$-Sematophyllum in Vorth America 194;
Grout, A. J.-Orthotrichum in the l'nited stutes $1!14$
Hennings, P.-Microthemniou 197
Lohcis, W.-Leaf-cells of Ephutmum 197
Echiffaer, V., \& A. Casares Cith-Europeen Muscinpe 197
Musines of the Athontic Islands: 197
Macyicar, S. M.. \& others-Miritiv Meputice 198
Müller, K., \& $\boldsymbol{\&}$. Holler-Europern Hepatica 198
Limpricht, W., \& others-Eurnpen Hosses 198
Keleer, R.—Moses of Central suritzerlamal 19:7
Fiecher, F.-sturss Ciryptug tmas 199
Thallophyta.
Algæ
Blackman, V. H.-The Pyrocystea (2)
Melilin, A. A.—Mimute Siructure in Triceratium 62
Fritsen, F. E.-I'hytoplenliton of the Themes 63
Vogler, P.-Tariations-Statisties as applied to I'lankon-Ihintoms 0
Mills, F. W., \& R. H. Pimlip-Diatomaere of the Hull Ihistriat
13
13
Merescunowsky, U.-Licmosphenia, a New Cemus of Díhfom:
(6)
(6)
 1.4
Linst, A.-A New Grme of Siphonere. 1; 4

(i.)
(i.)
 65
rage
Fritsch, F. E.—保oromium Gif:
Tobren, F.-Vegetative He production of Da-gu eletran 66
Ievoricu, F.-New Gemus of Delesseriuces 64
chwendener, s.-spionl Arongtment in Flavilex. tit
Howe, Marsinala A.-Culoglossa Lemrieurii C6
Batoris, E. A. L.-Celulogre of Dritiole Marine allgw 66
Börgesen, F-Marine Alga of the Fueroes. 67
-velelius, Nils-Marine Alge from /"af('. 19
Satvageav, ('amille-Australusine Solencelerire 19
Farlow, W. (x.-Alger of the Galapergos Islemels. 6
Laing, R. M.-New Zealand Murine A!ge 68
Keissler, C'arl von-Planliton of the Alf-Aurseer Lalir 199
Meresthkowsky, U.-Diatoms of the bituch Nea 1!:!
I'antueser, J.-Inuqurín Diutoms: Lalie Buluton 200
Menencheowsky, ("-Pymenoids aud Elaoplests in Diatoms: 200
Lanzi, Matteo-Fussil Dietoms in Reme $20!$
Hiatome of Lalie Cotroniat.. 200
Bomlin, Knut-Centronellit and Phamductylon 200
West, W.-Debaryn inmersa II ext 201
Besoey, Charles E.-Comjurutze 201
Fhisch, F. B.-Fresh-atater Alga of the lionel Giardens, Kem 201
Yineng Plants of stignoclonime 201
 201
Melobesia 20
Holiz, L.-Cherrceze of Marl: Brendentury 20
Wist, W. \& (i. S.-Fresh-icater Alga of the North of Irelum 212
Batters, E. A. L-mottixle Alga 203
Gutwiósin, R.-Jacan Alga 20:3
White, D.-Fossil Alga 203
Comère, J.-Action of Sult IHater on certuin Fresleuater Algat 203
Went. WI. \& (\%. S.- British Fresh-uater Algo 326;
Hansgirg, A.-Fresh-water Algre 321
Ginnukow, N.-Literature on the Algal Flona of Inassia $3: 6$
Bohlin, K.- Fresli-mater Alyz of the Azores 326
Schmide, W.- Plauliton of Lalie N'gussu $3 \div 7$
Whlee, N.-Fresh-tater Alga from Zambesi 27
(chhman, J. A.-Desmils from Iridquetuter (Muss) 52
Collins, F'. S.-North American Merine Alyat :27
Bonge, O.-Fresh-vater Alge from South F'atngoniu. $3: 3$
Grintzesco, J.-Cultication of Chlorella rulyaris :38
Lïtremëller, J.—Cell-membraue of Desmitucre 3
Envst, A.-Dichotomosiphon tuberosus $32!$
Whight, E. Perceval-Bryopsis plumosa $32!$
Mastogloia fimbriatce and M. binotata.. 32:
Shottsbeig, C.-Macrocystis pyrifera 32:
Yenno, K. - Eisenia and Echilonia 329
Onamula, K. Vegetative Reprotuction in Chromeria erassicanlis 330
Furti, A.-Fresh-water Diatoms 330
Ostenfeld. ('. H, \& E. Oestrup-Diutoms of Koh Chan? 3301
Muliscin, II.-Dlue Diatom 380
Mermscheowsir, (C.—Classificution of Ifiatoms. $3: 31$
Polynesian Diatrms 331
Tobleli, F'. - Germination of certain Florilea 331
Kecklek, P., \& othens-Germun Alge and Perilinias 52-4
Cinintzeso, J.-Ahorphology aud Plysiolng! of scenedesmu: acutu: 505
liowley, F. Ii.—Ntructure and Life-Histary of Diatoms 525
Ifenibal D, F.- Fussil Diatoms of Aurorgue. 52.5
sminn, A.-Lincolnelitie Dictoms 526
Dhown, I. N. Iit dmose-Atlentic Plunlitom $5 \cdot 24$
Somminle, W.-I'lunlon of Lalie Nigesist aml other Mid-Atrican Lulees 5-4
 524;
Miynbé. Lingo-Laminariacere and Laminuria Industi ies of Molikaido, Japan 527

Fungi．
liuhland，W．－Fertilisation in the Phycomycetes ．．．．．．．．．．．．．．bis
＇Turquet，J．－Amylomycetes hiouxii ．．．．．．．．．．．．．．．．．．．．．fic
Hischbrech，Albert－s＇prouting of Yeust－Cells ．．．．．．．．．．．．．．6í
Gullermond，M．A．－ぶpore－formation in Yeast ．．．．．．．．．．．．．．6ヵ
Odin，G．—Origin of Yeast ．．．．．．．．．．．．．．．．．．． $6 \mathrm{~s}^{\mathrm{s}}$
Marpann－Cell－Nuleus of Succharomycetes and Bacteria ．．．．．．．．．．6is
Tassi，F．－New Spharopsidez ．．．．．．．．．．．．．．．．．．．．．． $6!$
Juel，H．O．－Tevelopment of Dipolascur albidus ．．．．．．．．．．．．．．6：
Gleck，H．－Nectria mo＊hlette．．．．．．．．．．．．．．．．．．．．．．．．bit
Hill，H．－Cordiceps Liohertsii ．．．．．．．．．．．．．．．．．．．．．．6！！
Magncs，P．－Guoselerry Mildew ．．．．．．．．．．．．．．．．．．．．．．by
Delacroix，G．－Diseases of the Vemilla ．．．．．．．．．．．．．．．．．70
，，D，Diseave of Bunanas ．．．．．．．．．．．．．．．．．．．
Thaxter，Roland—Laboulbeniacez ．．．．．．．．．．．．．．．．．．．．ToIAGE
Loistel, A.-Neiv French Lichen Flora 70
Lichen Flora of the Tyrol 70
Morteo, E.-Rure Lichen from Liguria 70
Steiner, J.-Lichen Flora of Algiers 71
Harres, C. W.-Umbilicaria in N. America 71
Zahlbruckner, A.-Califormian Lichens 71
Zrizi, V.-Perforation of Vine-Leaves. 71
New Parasitic Botrytis 71
Mchlpine, D.-Black Spot of the Apple 71
Massee, G.-Diseased l'elargonium. 71
syouw, P. \& H.-Monograph of the Credinex 72
Erinsson, Jakob-Specialisation of Liusts 72
Delachorx, G.-Rust on Vanilla 72
Freeman, E. M.-Experiments on the Brown Rust of Bromes 72
Fischer, E.-Researches on Ruts 72
Boldier, M. E.-Gemus Amanita 72
Murinll, W. A.-Nurth American Polyporea 72
Drdley, I'. H.-Lentimus lepidius. 73
Hennings, I.-New Member of the Phulloider. 73
ILoyd, ('. G-Genera of Gastromycetes 73
Toneend, C.- F'ungi of the Setabal liegion 73
Sthaner, P. P.-Fungu: Fiora of Somtagberg 73
Ferraris, T.-Fungi of Piedmont. 73
Hexnings, P., \& otheris-Japanese Fungi 73
Lloyd, (.. (i.-Notcs on American Fungi 74
McAlpine-Fuagu: Diseases in Australia 74
Pampaloni, L.-Fos*il Fungi 74
Othemans, 1. A. J. A., \& (́. J. Koning-Fungus Flora of Humus 74
(oune. M. ('- Pests of the Flower Garden 7.
Frieman, E. M.-Seed-Fungus of Lolium temulentum 7.
Aheuvy. Josef-Leptothrix racemosa 75
Haishbergra. John W.-Fungous Diseases of White Cedar 75
Falek, Ricilard-Oidium Production and the Cultuve of the Migher Fungi 75
Otuemans, U. A. J. A.-Critical Notes.. 76
Ghleat, X.-Sap of Fungi as an Antidote to the Venom of Serpents 76
Roland, Léon-Photography of Fungi 76
Traverso, G. B.-Sclerospora. 204
Magnes, P.-Urophlyctis bohemica. 204
Henneberg, W.-Research on Amylomyces β 2) 4
Matrechot. L.-Biology of Piptocephalis 204
Geillermond, A.-Cytolony of Yeast 205
Feinbera-Sturly of Nuclei in Yeast anel Animal Cells 205
Hilschirceli, Albert, \& Fritz Thibalt-Yeast 205
Hansen, Emit. Chr.-Life-history of Yeusts 205
Salmox, E. S.-Notes on Erysiphatex 206
Bareer. I' 'F. I'.-Morphology and Development of the dscocarp in Monascus 206
Massee, (x.-Chatomium Bostrychoides 206
Muntemalifini, L., \& others-Now Parasitic Fugi 206
Henvings, P', de (1. Linhart-Distribution of I'lant Diseases $\boxed{6} 97$
Abbado, Mivhele-Allescherina and Cryptovalsa 207
ENGelie, ('.- 'laviceps purpurea 207
Baccarine, P.-New Hypomyces 207
Klebain, II.-Study of Related Forms 207
(xtegrex. F.-itocosporinm phomoides 208
Nontox, J. B. S.-Monilia fruthgent $\because 08$
smen, A. Lonemin - Sclerotimia Fuldelana 248
Fënstion, M.-lesenreh on Lichens 208
JATTA, A.- - 'hinese lichens 208
'Ga: Raminine, (amlo-Lichen. Fince 209
Fabluw, W. (t.-Limens fiom (intupagos $20!$
Alhlsemir, Anmmas-kiryphomen-Flora: Fungi in prefecii 209
 29
Farneta，R．－Polymorphism of Microfungi1．AG：
Vingelke，C．－Sceptromyces Opizi 205
Bos，Ritzema－Botrytis parasitica $\bullet(14$
Takahashi，Y．－Ustilugo Panici miliacei 211
Magnes，P．－Uredo bistortarum D．C． 210
Hyalospora Aspidiotus 10
Ward，Marsilall－Effect of Mineral Starvation on the Purasitism of Puccinia $\because 11$
Bubák，Fr．－Cultures of Uredince 210
Blackman，V．H．－Germination of Teleutospores 211
Maire，René－Rcsearch on Busidiomycetes 인
Hartig，Robert－Dry－rot and other Wood－destroying Fungi 11
Petri，L．－Spore－formation in Gastromycetes -11
Gleguen，F．－Adventitious Growths in Fungi
Lanzi Matteo－Itelian Agaricacce 912
Farneti，Rodolfo－Boletus Briosicmum sp．n $\because 1 \because$
Barbier，M．－Study of Fungi． 1：
Lanzi，Matteo－Value of Spore Characters リ！
Rolland，L．，\＆others－Poisoning by Fungi 212
Shibata－Cytology aml Physiologiy of Endophytic Mycorhiza －13
Potter，M．C．－Potato Diseases ， 1 ：
Belosi，Giovanni－F＇ungus Diseases in Ituly ＂1：
Lagande，J．－Fuengi of Mount Veutoux． -11
Magnaghi，Angelo－Fungi of Lomellina 211
Fungus Ftora 11
Hensings，P．－Africen Fungi 1t
Fungus Flura of Sao Paulo -11
Farlow，IV．（x．－Fungi from Galapagos 14
Patoullard，N．－Eatre－European Fungi 21,
Lanzi，Matteo－Il Truttuto dei Funghi 215
Jeel，H．O．－Taphritium，a New Genus of Protomycete： ？
Dangeard，P．A．－－Protescus，a New Gemus 33
Baccainin，I．－Endogone． 3：）：
Trayerso，G．B．，\＆others－Sclerosporil （1：3）
Serdinow－New Chytrilititese． 3：3：；
Mangin，L．－Disease of Chestnut Trees．． ：i．：
Matruchot．L．，\＆C．W＇ehmer－Mucorine ：i：3
Tullemin，Pacl－Stury of Absitio 3．；：
Hennings，I．－New Discomyctes．． i．it
Marr，H．－Diseuse of Fir Trees ：3．1
Hensings，P．－Rudidudiella b rulinensis g ．et ap ：i．）
Müller－Thlrgay，Herm－Disease of the Tine 3it
JalZEWskl，A．vos－lisease of Sorbus Aucuparia 3： 5
Salmon，E．S．－Gonselerry Millew in Europe （3．，
sanders．J．（r．－Notes on Erysiphaces 3：．，
Stabbäck，Karl－Nylarie of south America ：3．う
Lereschinin，W．W．－Stuly of Meredity 3．0．）
（xullliermond，A．－Cytilogy of Yeast ；i．．）
IIansen，Chis，Eml－Fommation of Yeast－Spores 3．4；
IWANuWsKi－Derelopment of Yenst in Sugar Solntion without Formentalion ：．57
Nevtille，H．－Indnstrial Ferments of Etotern Asia 3：17
Syow，II．\＆P．－Asterconinm Succurdoi 3.3
Porter．M．（＇．，\＆others－Septoria $3: 3$
Constantin \＆Ltcet—Aterigmutocystis pseudomigra ：i，
＇ocrin，Menil－Nutrition of Sterigmatorystis niger． ： $1:=$
Hall．C．van－sit．Jolm Disease of Peas 3：
Voglino，Pietru－Polydesmene exitiosus and Altormariu Brassicie ： 30
Czaren，F．－P＇roteid Formation in Moulds いい
liarp，T．－Liennet－lilie Enzyme from Yeast っこと
livegeen，F．－Itelminthosporinm macrocarpum －
Renitzel．F．－Disease of Ampes i－3！
Comblimezix，Kahl，\＆uthens－Monilia Diserne 024．
Bos．J．Litzema－Motrytis parasiticu 529
page
l'be net, A.-Motrytis rulgaris on Figs 529
Mongan \& Rolind Thaxter-Now Hyphomyctes $52!9$
Long, Willam, H. - Linemelias of the L'mited States amb Mesice 530
Hulway, E. W. D.. \& others-Notes on Urelinez $5: 30$
Arthur, J. C'.. \& W. A. Lelleqman-Cultures of Credineer 230)
Dietel, I'-Rou-ts of Leguminosex 231
Imaik, Fre-Nen or Critical Speries of Cromyces 231
Mangin, 1., © P' Viala-"Ihthiriose" a Disease of the Viue 53 I
 331
Míller, A lere D-Mernlitu: lierymans 582
 583
Godfrin. Julien-Critiond igarics 532
Inollis, L--Speries of Miseiscedn $5: 3$
Johsston, John, R.-Canloglosum trensuersarium 532
(inore, M. (…\& otiens-British Mycology $5: 3$
 533
Meller, P. E., d F. Cavers-Myromiza 533
McKenzie, A., \& A. Marden-- Biological Method for Resolviny Inhetice Acints intos their Optically Actice Components 533
Ohiveli, F. W., \& Envest S. Salmon-Fossil Fungi $5: 4$
Hollemsg, M.-Jahresheriah dor I'flanzonhranhileiten 534
Wehmen, O.-Decompos tion of Lactic Acid loy Fumgi $5: 4$
('zapek-l'motial Furmation in Mondeds 2:34
'Teichert, Kuat-Fhagi in Inairy Prohucts : $: 14$
Dremer. Winheim-Fit-destroying Fungi of Seeds 534
Fertaris, Temdoro-Fungu: Fleatiof Piedmont 53.5
Allesiner, A - Kr?ptoganern-Fhora 535
Bresamola, J.-Fangi Polomici 035
Ilariot, P'., a N. Patodillard-Fumif from New Caledonie 835
Vesterciaen, 'Tvcho-Micrma!retos variores selecti 53%
('avala, F.-Rare siciliun Fingi $5: 5$
Bärmler, J. A.- ('ruptoqumic Florce of I'resbury 536
Murril, W. A.-Polyporacere of North Ameriea 536
Bubik, Fiancis, \& others-Americem Mycolog!y $531 ;$
Saccamo, P'. A. - Nota mycoloutice 537
Henvinges, I'.-Eert Africhan Fungi 537
Zopf, Wiliela-I'roincts of Metebolism in Lichens: 537
Lieed, M., \& 1: M. Davls-Two Mariue Lichens. 537
Fink, Bhece, \& Mabel A. Mesband-Notes on Cherlonins 538
Lafar, Franz-Eumyretic l-ermentetion 538
Thaxter Roland-Notes on Momoblepharis 640
Kolewtiz, R.-Leptomitus lactets. 640
Bubak, Fr.-Phyromycetes 641
Rothert, W.-S'pore-Development in Aphanomyces 641
Deckenbach, Cons. von-C'onomyces consuens g. et sp. 1. $1 ; 1$
New Eingland Choemeqhore 641
Stevens, F. L.-Fertilisation in Sclerospora 642
Davis, B. M - Oengenesis in suprolegnia 642
Matruchot, Lolis, \& others-Cultivation of Trufles (i4:)
Petri, L.-I'rziza resiculova 644
Pralion, V.-Potuto Hiseuse 644
," ., Destruction of Seeds by Fungi 644
Nyples, Paul-Disease of the Ahler 644
Guillifrionis, A.-Epiplasm of Ascomyectes 644
Dangearid, P. A.-Sexuality of the Ascomycetes 644
salmon, E. s, \& Em. Marchal-Infection Pouers of Ascospores in Erysiphace: 645
Lesage, P.-Influence of Substratum on Germination of Spores of Penicillinm 645
Dale, E.-Ohservatioms on Gymnouscex $6+6$
Gullemiond, A.- 'ytology of Yeast 646
Will, H - Observations on the Vitality of Yeast $6+6$
Henneberg, W., \& uthers- Yeast Forms, de. 646
I'Oins, E.-hesearch on Klein's Yeast 647
ratie
Bukonny，Th．－Ition of Verst in Albumen． $1 i 17$
 $1 i 17$
Prizi，UGo－Botrytis citricolars．n ． （i4）
Voglino，Pietro－Development of homulariu iequiroch 6に
Marchal，Em－Rusts of＇éeuls difs
Tacky，Ernst，\＆W．Bandi－Experiments mith．I＇ucciaite isis
Ward，H．Marsilale－Puccina disperse aml its arlaptice P＇omsitism 1i1！
Inindrotir，J．Ivale \＆others－Rasts of siperial Natural foders 184！
Mangen，L．，\＆I＇．Viala－homptina Corimm （i．） 0
Dietel，P．－Uromyces of Lapins （15．5）
Magnes，P．－Nomemfatare of Civelinese 18.51
 （63）
Bucholiz，F．－P＇magi leypogai （ī）
Hennings，P．－Pensisture of Fumad Parasites in altered combitions of the Ihost （i．） 1l＇ents
Emmerling，O．，\＆E．Abderimaldex－Climical Action of Croring Funfi 651
Mollard，M．，\＆II．Cucpis－－（uthere of sterigmutorystis nigrol （i．5）
Alcangeli，G．－Notes on Various Fomepi （i．） 1
Sidow，H．\＆P．－Nutes on Somenclature （5is）
Brzezineki，Josifi－Camer of Fruit Thers （i．i 2
Moss，R．J．－Vmuticites 4i5：
Ferramis，J．，\＆otiers－Furgus Hiseques 153
Mabchal，Em．，\＆G．Jelachoix－I＇ligtoputluldogy に．）；＂
（＇ottos，A．D．－Will P＇lants as Nimeries af Plant Disease fis：
Limesanola，J．－Fumi Potonici （i．）．
Mcrrill，W．A．，di athers－American Fmayi fi．i 4
Ilennings．I＇．，\＆D．M•A lpine－fustrelian Prmei （655
Vestergren，＇T＇．，\＆others－New hecorts of Fumei （i．j．
Patochlard，N．．\＆Otiers－Eystemutic Niedes on Fumgi （i．i）；
Rosenberg，O．－Fertilisation in I＇lusmopare 745
Matruchot，L．\＆MF．Mollianis－Action of Firmentetion on the Cell 745
Swingle，Deane B．－Spore－Formution in ILemerini 745
Vullemin，P＇aul－Zygospores of Muchrini 746
Ineno，s．－Sustemutic Position of Momacus purpmens 7tt
Martin，Ch．Ed．－Buletus subtomentosus： 7110
Stager，Rob．－Infoction Erperiments with Clurieps．．． itis
Engenise，C－Ohstrutions on the bitot of（haciceps parpura 717
Diedicke，H．－Ritationship betueen I＇lowipra and Ifclmintlosionitme 74
Neger，F＇．W．－Studies of Ery＊iphez 747
Will，H．－Yeast－forms of F＇ungi $7+7$
C＇cumber Leaf Disease its
Scalia，C．－New Diserse of Asclepiax curcuswarion 748
Erissson．Jafob，\＆Fr．Brliak－lihizuctonice violncen 74
Mansky，Bojana－Aspergillee Parasitic on Mumun Beings $74!$
Dubak，Fr．，\＆othens－Nutes on Uredibrat $74!$
Eriksson，J．－Mycoplasma Hypothesis $74!$
Magnes，Oscar－Changes produced in the I＇eridial Cell－walls of the Uredinee $74!$
Voss，W．－Clamp－Connections and Fusion in the Uredinew 751
Marne，Iexé－Toxonomic and Cytoloqical Votes am Botryosporinm pulchellum 7.11
Bameeke，Van－Nuclear Behaciour aud spore－Formation in Hydnantwm carneum 751
Paminel，L．H．，\＆others－Disenses of Grarex 751
Massalongo，（＇．－Mycological Notes 751
Gulliermond，M．A．－Metachromatic Corpuedes in thee Asromyretes 751
Smith，A．Lorran－British Microfumgi 751
Muller，P．E．－Myeorhiza 751
Laurent，Emile－Production of Glycogen in Fungi 752
Heinze，Bertiold－l＇roduction of teids by Fumgi 752
Véllemin，Padl－Dacteriopleagous Acranize 752
Olive，Edgar W．—Acrasiree ．．．．．．．．．．．．．．．．．．．．．．．． 752
Malme，Gust．O．A．N．－Rimodina 7.53
Zahlbrücenek，A．－Brazilian Lichens 753
Nilson，Birger－Merphology of Lichens 753
Zahbbrückner，A．－Lirluen Flora 753
Bibliography 7.3

Schizomycetes

GRefi－Smith，R－New Gum Pucterium 77
Gomini，（．－Acid－Rennet－forminy Bucteria in Mill： 77
Lambotte，V．－Mierole of the＂Loque＂Hisense of Bees． 77
Malvoz，E－Compound Cilia． 77
Hinnel，J．－Use of Neutrel Rod in the Stuly of Phatocytozix，d c ． $7 s$
Achalme，P．－Dilentification of some Anuerolic Bacteria． 78
Nicolle \＆Trenel－Agylutimution 7s
Schadmen，F．－Structure of liacteria $7!$
Sommidr－Nielsen．S．－－Psychrophilic Burteria 7：
Bodn，E．，\＆：Pamberiet－Ation of Alcololic Fermentation on the Bacillas typhosus． 80
Klemperer，Felix，d Mas Émbiet－Identity of Ihhinoscleromu Bucillus with 80
Krause，F－Differoutiation of Bacillus typhi abdominalis and Bucillu：coli com－ munis SI
Eichinolz，IV．－Bucterium Fragi 81
Uffenhemer，A．－Bacillu：neroffones verophilus agilis SI
（＇ole．Is．－Bacillus uerofones capualatu＊in Circulating Bloorl． 8
 se
New Ascoburterinm from the Sugur－Cane ミ゙ロ
（ionini，C．－Burterin of the Milli－thets of the Cow N：
lisiletr．（8．v．－Bucteriolog！of Netural Mineral Waters ぶ；
Besangon，I＇，\＆othels－Bucillus of Suft Sore s；
Johson，W．B．－Gonocrecus in the General．Circulntion si
Wiley，II．W．－A！ficulture and Bacteria $s 1$
Jachson，D．D．－Gemus Cremoflitix $\because 15$
Foulerton．A．G．R．，\＆othen－Streptuthrix 21.5
Gimzaszez－Mirroorg＇guisms of liarley and Malt 214
Greber，Th．－Corens lactix riseosi and the Canses of Sliminess and Threads in Milh： $\because 16$
Ellrodt，（iustay－l＇enctration of I＇lants ly Bucteria $\because 16$
Emmerling，O．－l）evtruction of Nom－nitrogenous（organic Substances by Bacteria ．． 211
I＇ennee，G．J．－Rout－tubercles of Merlicago dentionleta amt other Lequminous I＇lunts 217
Macfadyfn，A．，\＆S．Mowland— Iutreelluter Toxin of the T＇yphoid Bewillus $\because 17$
Defalle， IV^{T} ．－Andimdies af Spores of Buteria $\because 14$
Iwaniow，IV．W．－Leprosy Iacillus 218
T＇issiele \＆Marteliy－I＇utrefuction of Ment 218
Eyre，I．W．11．－Mucteriologely 218
Praneland，Miss．Perict－Dierteria in Duily Life $21: 1$
Matzeschita－l＇hysioloty of śpure－formution in Bacteria ：3：3：
sinitu，R．Grieg－Bactrrial brigin of Jegetable Gmas 39：）
Beiderinci \& Van Delden-Colourless Bucterium oltaining Carbon from the Air 340-ー
Hasslauer-Bacterial Flora of the Nose
Weichselbaum, A.-Cultieution of Ancerobic Burteria 340 340
Koninski, Karl-Biology of Anuerobic Bucteriu 340
Kunpuoweit-Effect of Oil on Bacteria 340
Rodella-Bucteria iu Pus from a Gus-containing Abscess.. 341
Fernandez, D.--Pigment Bucteriu of Wuter 341
Toyama-Bacterium Pathogenic for House Rats 341
Esmarch, Erwin von-Pussage of Bucterio through Filters 341
Petrow-New Red Pigment-forming Bacilhas $3+2$
Buhlert, H.-Question of S'peties in the Bucteria of Lequminous Thbereles $3+2$
Kovírzik, Karl-Epidemic of Guineu-Pigs cunsed liy a Variety of Buterium coli 342
Wolff, Alfred-Influenza-like Bucillus from a Rat 342
Friedberger, E.—Influenzu-like Bacillus from a Hog $_{\text {og }}$ 342
Sohwer-Micro-organism inferting small Amimals in the Laboratory 342
Stefansky - Leprons Sewer Affection of the Shia and Lamph-glands of Ruts 34
Kilens, E.-New Puthogenic Microbe of the Diphtheria Burillus Gronjp 343
Bronstein, J.. \& G. W. Grünblatt—Differentiation of the Diphtheriu and F'seudu- Diphtheria Bucillus 343
Jochmann, Georg-Rapid Diagnosis of Typhucs Dacilli 343
Jaeger, H.-Clutacters of Meningococeus intracellutaris 343
Kindborg, A.-Pneumococcus which liquefies Gelatin 3 ± 8
Harrisun, F. C., \& M. Cumming-New Bacteriam in freshly-drame Milh 343
Feyfer, De, \& otiers-Paratyphoid Fever 344
Castellani, Aldo-Etiolugy of Sleeping Sichuess 344
Tsiklinsey-Thermophilou: Bucteria 539
lterson, G. yan, Jun.-Acramulution Experiments with Denitrifying Bacteria 539
Gerlach \& Vogel-Nitrogen-fixing liacteria 540
Fremlin, H. S.-Culture of the Nimoso-Diacterimm 540
Schneider, A berert-Motility of Rhizohinm S. 40
Ellis, David-Observations on Surcina, Streptocorcus, and Spirillum 540
Nathansoin, A.-New Group of Simphur-Lincteria 540
Fucus, E.-Staining of Streptotrichuccz 541
Andnewes, F. W.-Resisting Pouers of stophylococcus pyogenes aureus. 541
Macfadyen, Allan-Inmunising Effiects of Contents of Typhoid Bucillus 541
Vaillakd, L., \& Ch. Dupter-Bucillus of Eluilemic líysentery. 659
Freudenreich, Ed. v.--Nitroyen-assimiluting Bucteria
659
659
Dean, G.-Disease of the Iiut cuused by an Acin-fast Bucillus
640
640
Hausemann, V.-Aciel-fast Bacilli in Pythom reticularis 660
Behrens, J.-Retting of Flax aud Hemp till
Rodella, A.-Pres nuce of strictly Ancerohic Butyric Acid Buteilli aud of other Anaerobic Sperirs in hard Cheese
661
661
Meyer, H., \& F. Ransom-liesearches on Tetamus 661
Issatchenko, M. B.-Experiments with Bucterial Light 662
Grandi, Silvio de-Obsercations on the Flagella of the Tetanus Bacillus 663
Catterina, G.--Flagellated Micrococeus found in a s'epticamia of Rabbits 663
Hinze, G.-Thiophysa volutans 754
Zacharias, Otтo-Achromutium oxaligerum 755
Patterson, J. Hume-Sulinou Disease 755
Martin, Sydney-Chemical Products of Diarhoer-poducing Bucteria 75.5
Bafnard, J. E., \& Allan Macfadyen-Luniinous Bucteria 756
Balinard, J. E.. \& H. de R. Morgan-The Buctericidal Action of some Ultrit- violet Radiations as Prolluced by the Continnous-Current Arc 756
Klein. E.-Agghtination by Blool of Emulsions of Mirrobes, with Special Reference to Specificity
756
756
Marchoux, E., \& A. Salinbeni-La Garotilhe 750
'Tissier, H., \& E. Gascming-Researches on the Fermentation of Milli 756
Mycetozoa.
Pinox-Culture of My Momycetes
84
Morgan, A. F.-Lepidoderma 344

MICROSCOPY.

A. Instruments, Accessories, \&c.

(1) Stands.

(2) Eye-pieces and Objectives.

Barbour's Pocket Magnitier (Fig. 9) 91
Bourguet's New Index Ocular (Fig. 10) 91
Bibliography 91
Hun'ter, J.-Eye-pifce Lens Interval as arranged for dchromatism (Fig. 39) .. 221
Sichmint, H.-Graplic liepresentation of the Correction Distance of un Objective 762
Eberhard, G.-The Injurious Lffect of Cement upon Objectives 7er
Bibliography 76:;
(3) Illuminating and other Apparatus.
PAIAE
Watson \& Sons' Macro-Illuminutor 91
Incantescent Gas Lamp (Fig. 11) 92
G. Johnstone Stoney's Improred Heliostat (Fig. 12)| 92
('heshire, F. J.-Method of Using Albe's Apertometer (Fig. 13) 93
Simple Method of Fucometry and Apertometry (Figs. 14 and 15) 94
Watsons' New Standarll Electivc Lamp (Fig. 16) 95
Schepren, W.-Small Electric Light for Photomicrograph!y (Figs. 17-19) 95
Lee, A. B.-Illuminationsand the Use of the Comdenser in Mistological Microgrepley 97
Illcminating Apparatus for Metallography (Figs. 20-24) 98
Origin of the Davis Shutter 99
('hesime, F. J.-Simple Form of Reflceting Polariser (Fig. 2b) 99
Bibliograpily 100
Koristen's Latrge Reftecting Miorur (Fig. 69) 349
Pull, H.-New Electrical illicroscope Lamp (Fig. 60) 350
Engelmann's Mierospectral Ohjectice with Intachuble Thorp's Grating and Detack- able Polariser (Figs. 61-65).. 351
Elliott, L. B.-New Projection Apparatus for Scientific Wort: (Figs. 131-134). 549
Koristka's Apparatus for the Microscopic Projection of Liynid Preparations (Fig. 135) 5.3
Albe Camera Lucidu with Lens-Holder (Fig. 1:it) 554
Dowdy, S. E-Colour. Illumination of Microscopic Oljects (i71
Nelson. E. M.-Early Glass Micrometers 672
Barts-Method of Demonstrating Nemton's Colours by Transmitterl Light 172
"Villagro," \& J. Rheineerg-Winle Illuminuting Comes. (i73)
Monochionatic Lieflet Apparatus (l'ig. 158) 674
Biblingraphy 674
Tubetf's Druving Apperatus (Fig. 168) 763
Fuess’ Hemispherical Gypsum and Netal Reflectors (Fig. 16!4). 763
4) Photomicrograpiny.
Scheffen, W.-Stereostopic Photugrephy of Microscopic Objects 100
Improrements in the Vertical Microphotographic Camera (Fig. 26) 100
Bagshaw'"' Elementary Photomicrographey. 101
Bibliography 101
T'raner, E. R.-On a Neu Arrangement for thling Photomicrographs in Colours 118
Ives, F. E.-New Device for Stereoscopic Photmierography (Figs. 40 and 41) 243
Terras, J. A.-New Upright Photomicrographic Apparatus (Fig. 12) 224
Bibliography 226
Rowe, A. W. - On the IThotomicrography of opurue Objots as applien to the Delineation of the Minute structure of Challi Fossils 242
Koristra's Simplified T'ertical Camera (Fig. (i0) 355
Müllen, l'. W.-Apparatus for Photographing with Light incilent from above and below (Figs. 67-70) 355
Scheffer's Stereoscopic Photomicrograplly with Wenk Manification (Figs. 159-I61) $1 ; 74$
Foot, Katharine, \& Ella (․ Strobell-New Method of Fochssimy in Photomiero- araphy 677
Beck, U., \& H. Animews-Photogruphic Lenses. 677
Billiograpily 678
Watson, IV. F.-Photography by Natural Lenses 764
Bibliograpity 764
(5) Microscopical Optics and INanipulation.
Spitta, E. J.-An Arrangement for obtaining Monochromatic Light with the Mired Jet (Fig. 1) 15
Rheinberg, J.-Common Basis of the Theories of Microscojic Vision, treated without the Aid of Mathematical Formula 102
Steinheil \& Voit's 'Handbuch der Angewendten Optili' 102
Bibliography 102
rAGE
Leiss' New Crystal Refractometer for the Determiaation of the Refractive Index of Large and Microscopically small oljeets (Figs. 43 and 44) ${ }^{\circ}$ 226
Hilger, Adam-Michelson Echelom Diffraction Gruting 228
Siedentopf, H., \& R. /sigmondy-Visibilit! of Ultri-Microseopic I'articles.. 228
Stringer, E. B.-A New Method of Using the Electric Arc in Photonicrography 276
Siedentopf, H.-Engelmann's Microspectrulphotometer with Grating Spectrum (Figs. 71-73) $35!$
Koentisbenger's Microphotometer for the Measurement of Light-Absorption (Figs. 74 and 75) 31%
Gordon, J. W.-The Melmholtz Theory of the Mirroscope (Plate VI. Figs. 70-116) 381
Rayleigh, Lomd- 1 in the Theory of "ptiral Images, with special Raference to the Microscope (ivigs. 117-120) 447
(In the Theory of Optical Images, with special Reference to the Microscope (supqumentary Puper). 474
Siedentopf, H.- () n the liendering Visible of Ultra-Microsequic Particles and of Ultra-Mieroseopic Bacteria 573
Nelson, E. M.-A Micrometric Correction for Mimute (hjects (Figs. 13:-142) $57!$
On the "Lag" in Microscopic Vision-(continued) 583
Bibliograthy なふ
Drede's Theory of Optics 765
Conrady, W. A. E.-Numerical Aperture aul liapidity 765
Remec, B.-Specific Doulile licfraction of Plant Tissues 76.5
Von Kries, J.- Visual Perple 766
Kime, J. W.-Some Experiments with Actinio Light (Eigs. 1-2, plate VIII.). 766
Bibliography 7135
(6) Miscellaneous.
Glazebrook-Cintor Lectures, 1902: Gluss for Optical Purposes 102
Moliscu's New Freezing Appuratus (Fig. 27) 10:
Bibliografhy $10: 3$
 perature 364
Jena glass. 554
Percival, A. S.-The Microscope ${ }_{6} 68$
Bieliography 678
B. Technique.
(1) Collecting Objects, including Culture Processes.
Wiley, H. W.-Apparatus for Collecting samples of Eerth for Bactericlogical Examination 104
Rivas, D.-Auaerobic Cultivation (Figs. 28 fud 29) 1114
Czaplewsei, E.-Cultirating the Influenan Bacillus. 105 105
Bibliografhy 105
Klian, E.-Method of Detecting the Presence of Bacillus coli communis in Shellfish 229
Bibliogratiny 229
Fremine, H. S.-Anaerolic Plate Cultures 366
Grunbs, S. B., \& E. Francis-Ring Test for Iudol 346
Bronstein, J., \& E. N. Grünblatt-Differentiation of True and False Diplitheria Bacilli 366
Zielleczeey, R.-Differentiation of B. coli and P. typhosus $3: 37$
Rivas, D.-Anacrobic Cultivations 347
Fitzgerald, Mabel P., \& G. Dreyer-Difïcrentiation of B. typhosues and B. coli 367
Altschéler, E.-Eurichment Method for Typhoid Bacilli. $: 48$
Behrens, W.-Apparatus for Decanting off Culture Fluids (Fig. 137) 557
Tonzig, C.-New Economical Thermostut of Simple and Light Construction (i75
Freddenreich, E. v., \& others-Mill-Agar as a Medium for the llemonstration of the Production of the Proteolytic Lnzyme 679
Montgonery, F. L.-Method of Preparing Sugur-free Bouillon 767P. I_{1},
Moone, (土, 'I'-Cultivation Medinm for Algie 767
Moore, (t. 1,-Clitiontion Ne rom Jo sus
Moore, (t. 1,-Clitiontion Ne rom Jo sus
Nebel, A.-Demonstrution of Tuhercle Bacilli in sputum 767
Bandi, J.-New Method of 1solating B. icteroides
Bartarelli, E.-Tubes for the Preparution of Sërohic and Anuërobic Cultures under. the Influence of Coloured Ritigs 768
(2) Preparing Objects.
Nutting, E. S.-Fixation of Bloml-Films and the Trineinl Stuin 229
Gage, (!. S.—Cimple Device for Carrying Mimute objeets through the Grades of Cedar (ill and Paration. 2:30
Ostergren. Huamali-Ether as a Nareotising Medium for Aquatic Animml: 365
Mazzarelli, (:.-Demonstratiut the Stracture of Gastropoils 345
Schaffer, J.-Deculcification Method 558
Dowdy, s. E.-Rergent Bottle. 558
Broughton, S.- Mecantation Methorl for Cleaniu! Diatoms $67:$
Bolton, B. M., \& D. L. Harris - Tiapid Methorl of LIardening and Minherleling Tissues 715
Keeley, F. J.-Preparation of Diatoms. 743
Schoenfeld, H.-Fixation of the Miemmalion Eyg in the Lterine Cavity 769
Mïller, F.-lmprovements of Aubertin's Method for Stiching on Celloillin Sections $71: 1$
Little, E. O.-P'reparing sections of Cancellous Bone 769
Bert, W.-Contributions to the Theory of Fixation, with particular regard to the Cell-muclers and its Albuminous botics 760
(3) Cutting, including Imbedding and Microtomes.
Kolmer, W.. \& H. Wolff—Simple Method of Making Thin Parupizin Sections 10.5
Ncriven, J. B.-l'reparing Serial Seetions of Insects. 106
Abel, M.-Examining Oligochrete 10%
Jung's New Stulent's Microtome (Figs. 45 and 44) $2: 0$
Pierce, N. B.-Sectioning Fresh Plunt-Tissue.: 231
Starlinger, J.-Improvement in lieichert's Sliding Microtome (Fig. 47) 231
Lefevre, G.-New Method of Imbedding Small (Hjects (Figs. 48-51) 233
Gage, S. H.-New Razor-holder and Adjustable Clamp for the Minot Microtome $2: 4$
Bibliography 234
Retterer, E.-Fixing and Imbedhling dense Comnective Tissue 369
Pranter, V.-New Methods of Paraffin Imberdling 369
Plečnik, J.-Carbon Tetrachlorile ces a clearing Flaid 370
Marpanan, G.-New Imbedding Medium 558
Solger, B.-New Freezing Plute for Hand. Mierotome (Fig. 13心) 558
Bain, S. M. -Manipulation of Sections of Leaf-cuticle 770
Miller, C. H.--Imbedding in Celloidin 770
Streeter, G. L.—Use of Parafinn Imberding for Melnllary Sheath Staining.. 771
Rennsci, P. F. - New Methorl for the Preparation of IIorizontal Sections of thin
Laminated Vegetable Flat Tissues 771
Bibliograpily 771
(4) Staining and Injecting.
Golovine, E.-Fixing Neutral Red. $10 ;$
('hilesotti, E.-Staining Axis-Cylinders with Carmin 107
Schoenemann, A.-Staining and Preservation of Series of Sections on Paper stip: 107
Horniker, E.-Steiminy the Plague Baeillus 10 •
Reuter, K.-Staining Malaria Parasiles with A-Metlylen-Blue-Eosin 103
Maurer, G.-Staining the Parasites of Mularia perniciove 108
Ellis, D.-Demonstrution of Flagellic in Coccucea 109
Stebbins, J. H., Jum.-Stain for Elastic Fibres $10!!$
Crosbie, F.-Staining Directions for Phofomicrograply 2:31
Ciaccio, C.-Method of Demonstrating the Secretory Canaliculi in Supra-renal Carsules 295
IAGE
Schalfflee, W. G.-Staining Diphtheria Bacilli and Cholera Vibrios 235
Gemelli, E.-New Methorl of Staining Flagella 235
Woolley, P. G.-Staining the Reticular supporting Networle of Maliguant Neo- plasms thy Mallory's Method 2:36
Mileor, J. A.-Sturining lieactions of Proteid Crystals 236
Ross, Ronald-Improved Method for the Microscopical Diagnosis of Intermittent Fever 231
Little, E. O.-Method for Demonslrating Nematocyst Cells in Hydra 237
Ficker, M.-New Method of Staining Bacterial Granules $2: 3$
Valenti, ($\mathrm{F} . \mathrm{I}$.-Easy Method of Staining the Flagella of Bacteria 237
Hamlin-Hariss, R.-Apparatus for Facilitating the Manipulation of Celloidin Sections (Fig. 52) 238
Bibliography 239
I'еск, J. W.-Differential Stuin of B. Diphtheriz 270
Liossi, (x. de-Flagella Stainiug 370
Elmassian, M., \& E. Migone-Demonstrating Trypamosomutu. 37
Schafrer, J.-New Gluss Steining Trough 371
Ficher, M.-Methol for Staining Pacteritil Granules. 371
Schoenemann, A.—Strining anit I'resercation of Serial Sections on Paper Strips 371
 : :2
Smiti, W. H.—Method for Staining Sputam for Bacteriological Examination 37
Schiötter, H., \& H. Aronson-Steining Nevvous Tissue vith Gallein 5.59
Morel \& Doléris—Modification of the Method for Staining with the Ehrlich Triacid Solution 30
Bibliography i60
Jung's Apparatus for the quicli amr unifom Staining of Serial Sections and for the Treatment of them in Number aith lieagents 159
Halris, H. F.-Modificution of the Romanorskiy Stain 680
Smith. W. H.-Methorl of Staining Sputum for Bacteriological Examination 722
'Tomra, V. A.-Two Dotanical Staining Method. 772
Fomanoff, B.- Vital Staining of Miero-(rgemisms 773
Pcoheerger, G.-Vital Staining of Blood I'lates in Man with "Brillanthresylhau" 773
(i root. J. (i. De--Iron Carmalum 773
Chmesottr, E.-Molification of the Unuinm Carmine Staining of Schmurs. 73
Hintlinerger, A.-Thermophore for use in Staining 774
(5) Mounting, including Slides, Preservative Fluids, \&c.
Downy, S. E.-Muling Preparetions of Crystals for the Micropolarisope 110
$\because 39$
Biblingraphy 373 373
Kozlowski, B.—Stainimy and Aonatiny Urinary Sediment 540
Mafpmann, G.-New Medium jen Mounting Microscopicul Prepurations 50
Hill, I. A.-Method of Mounting Bucteria from Fluid Media. 561
Fischer, C. E. M.-Soluble Glass as Monting Medium for Extmination of Paper 714
(6) RMiscellaneous.
Interisting Extract from Hooke 110
Handmok of Instructions for Collectur: 10
Mann, Cx-I'lysiological IIistology. 110
Crass. M. I., \& M. J. Coliः- Medern Microscopy 111
Whitney. W. Li., \& A. (x. Woodman-Microscopic Exumimation of Paper Fibres 111
Kellerman, K.-Methorl of Maling Collodion Tubes 112
Unva, I'. (i.-Inli for Uriting on Glass 112
Hower, J.-New Micrometer (Fig. : ${ }^{(0)}$ 112
Lioss. L. N.-Nea Culony-Counter (Figs. :31-33) 113
Bibliogiaphy 114
Mell, I'. H.-Biolngical Laboratory Methods 240
MacMIunn, C. A.-Counting the lied Corpuscles of the Bloorl 240
(ilage, F.-Fusille Metal stopper for Test-tubes. 240
Pibliograpity $\because 40$
Encyclopadia of Microsconical Technique 373
page 374

Eyre's Bacteriological Technique

Eyre's Bacteriological Technique
Bibliography 374 374
Greevish, H. G.-Microscopical Ertumintion of Foods and Drugs 561
Kob \& Co.s New Sterilisalle Hypodermic Eyringe for Aseptic and Bucteriologicul Injection Experimeuts (Fig. I62) 65^{1}
Strong, W. M., \& C. G. Seligmann-New Method of Counting the Corpuscles of the Blood (i80)
Bibliograpiry 681
Hïbner, J.-Microscopical Examination of Paper. 774
Castellani, A.-Detection of Trypanozomes 775
Sollas, W. J.-Mefhod for the Investigution of Fossils by Serial sections 775
Kelly, B. E.-Application of the Cinematograph Priaciple to the Sturly of Serial Sections 776
Frost, W. D.-Simple Method of Maling Collodion Suce for Bacteriological Worli 776
Schuberg, A.-Bottle for Immersion Oil 777
Friedlānder, F. V.-A Modification of the P'antograph for the Iratin! of Micro- scopical Preparation* 776
Metallography, \&c.
Hiorns, A. H.-Metallography: an Introduction to the Study of the structure of Metals chiefly by the Aid of the Microscope 111
Ewing, J. A., d. J. C. W. Hompharey-Fracture of Vetals under requented Altermio- tious of Stress.. 11.1
Holborn, L., \& F. Henning-Volatilisation and Re-crystallination of the Platimum Metul: 11.5
Bibliograifyy 11.5
Andrews, 'T.-Microscopic Appearunces of $\mathrm{V}_{\text {olemic Dust }}$ 87.
Briarley, H., \& F. Ibmotson-Auulysis of Steel-Worlis Meteriuls 37.5
Ioberts-Austen, W. (:, \& T. K. Rose-Certain Properties of the Alloys of the Gold-Silver Series $: 37$
Ekeats, E. A.-Chemical Composition of Limestones. Microscopical Meflools (is1
(imapman, F., \& H. J. Grayson-Red híuin (is:
Speller, F. N.-New Etching Reatent for Polished Nteel Seflions (182
Mahon, J. J.-The Micros'ope in Crucible Steel Manufacture (i8:
Linge. E. F.-Simultaneous Presence of Ferrite aml Cementite in siteel 683
Hall, J. L.-Effect of Superheated Sterm upon the Tensile Streugth of Alloys $68: 3$
Joly, J.-Improved Method of Identifying Crystals in Liock Sections by uee of Bire- fringence, and Improved Polarising Vertica? Illmminator. 68:3
Bibliography 684
Longmure, P.-Mierograplicic Shudy of Cast Iron.. 77
Wemman, S.-Note ou the Amphibole Mudsomite previously anllerl a Pyroxene 775
Bihliography 778
PROCEEDINGS OF THE SOCIETY.
Meeting, December 17, 1902
PAGE 116
Anniversary Meeting, January $\bumpeq 1,1903$
Meeting, February 18, 190:3 241
, March 18. 244
April 15, 376
May 20, 378
June 17, 562
October 21, 779
., November 18. 782
Iieneral Index to Volume 78

J O U R N AL

OF THE

ROYAL MICROSCOPICAL SOCIETY.

FEBRUARY 1903.

TRANSACTIONS OF THE SOCIETY.

I. -The Rotatorian Genus Diaschiva:

A Monogreaphic Study, with Description of a New Species.
By F. I. Dixon-Nuttall, F.R.M.S., and The Rev. R. Freeman, M.A.
(Read December 17th, 1902.)
Plates I. to IV.
It is with a certain amount of diffidence that we venture to put hefore the Fellows of this Society a monograph with the above title.

The genus Furcularia has, since its foundation by Lamarck (1816), been made to contain such a heterogeneous mass of generically distinct rotifers as Notommata aurita, Diglena catellina, Serridium longicaudum, Dinocharis pocillum, de.

From time to time various authors have divided and subdivided this genus; whilst other authors have referred some of the species to other genera already in existence.

Explanation òp plate I.

All figs, except fig. 2, $\times 476$.
Fig. 1.-Diaschiza gilba Ehren. Lateral view.

$1 a$	"	The male, lateral view.
2	"	tenuiseta Burn. Lateral view.
3	"	sterea Gosse. Lateral view.
4	"	Eh Don. L
$4 a$	"	, The male, lateral

Feb. 18th, 1903

It is evident that Ehrenberg himself acted on the principle that matters had heen so much confused, especially in this group of Rotatoria, that he was obliged to pass over without consideration much of the work of his predecessors.

This confusion, however, does not affect us much in the matter of the Diaschiza, for most of the species are of later date. We only want to point out that chaos has reigned in Furculariadom.

At last Gosse, discovering more accurate detail of lorica, invented a new genus Diaschiza, in which he placed vulga, cxigua, somiapcrta, Hoodii, pata, and tenuior. Of these, all were new to science except semiaperta and prota. The first is most evidently Furcularia gibba of Ehrenberg; the second, Gosse's own F. cecca. At one time, seeing the dorsal cleft, Gosse re-names them Diaschiza semiaperte and pecte; at another time, failing to observe the cleft, he calls them Frurouleriu gibbe and cace. Of these species, gibba, being the first Ehrenberg described, will serve well as the type species of the gemus Diaschiza; and in future will stand as Diaschize gibba.

Hence it is not without precedent that we are dissatisfied with the name Furcularia; and, thinking the name Diaschiza more descriptive of this section of the old genus Furcularia, we have no hesitation in taking those Furcularie which satisfy the demands of this genus, and establishing the genus on a sound basis as what may be in future described as Diaschiza (Gosse). This will give students a homogeneous genus, and enable them to identify such of the Notommatade as fall within its limits.

Generis Charact.-Diaschiza are Notommatadie with the integument of the trunk slightly stiffened into four plates, two subdorsal and two subventral, and with the dorsal and two lateral clefts between these plates strongly marked; also with a bunch of stiff setæ projecting from the foot just above the base of the toes.

There are three divisions of the genus:-I. With frontal eye. II. With cervical eye. III. Without eye.

The following is a list of the fourteen species of this gemus which we have been able to observe. One of these, No. 8 (fig. 13), and the males of Nos. 1, 4, and 7 (figs. 1, 4, and 5), are here described for the first time. No. 14 has, however, a very uncertain clain for its position here.

I. With frontal fie.

	Diaschi	gilbre Ehrbg.	Greatest size	289 μ) A .
2.	"	globatu Grasse		${ }_{200}^{10} \mathrm{in} .(127 \mu) \mathrm{K}$.
3.	"	sterea Gosse	"	${ }_{1+\overline{0}} \mathrm{in}$. $(181 \mu) \mathrm{F}$.
4.	"	gracilis Ehrenberg	,	${ }_{1} \frac{1}{0} \mathrm{in}$. $(149 \mu) \mathrm{H}$.

II. WITII CERVICAL EVE.

5. Diaschi:a lacinulutu Müller. Greatest size $\frac{1}{110} \mathrm{in} .(158 \mu)$ G.
6. " ventripes Dixon-Nuttall " $\frac{10}{190}$ in. (133μ) J.
7. " Hoodii Gosse ", $\frac{1}{130} \mathrm{in}.(195 \mu) \mathrm{E} 1$.
8. ", Derbyi sp.n. Nuttall and ", $\frac{11}{180}$ in. (141μ) I.
9. " exigua Gosse. „ ${ }^{\frac{1}{26 \pi} \mathrm{in} . ~}(98 \mu) \mathrm{L}$.

IIf. NO EYE.

This genus comes as a connecting link between the Loricata and the Illoricata.

The integument of the greater part of the trunk is stiffened in four plates (in future called the lorica), two latero-dorsal and two ventral. In between these plates, and also to the rear of these plates, the integument is very soft and flexible.

From a front view the cleft between the dorsal plates is seen as a V ; that between the lateral plates as a U ; and that between the ventral piates is flat as an - .

The head is covered with somewhat stiffened integument, not so stiff as the plates on the trunk but stiffer than that ou the rear of the trunk. It is separated clearly from the trunk by a neck which is formed by the frontal edges of the four plates.

In shape the body is more or less cylindrical, sometimes laterally, sometimes dorso-ventrally compressed, sometimes neither.

The antennæ are, as usual, three in number, one dorsal, on the head, about three-quarters back from the front. The two lateral are symmetrically placed in the lumbar regions about three-quarters of the way down the tronk in the latero-dorsal plates.

The trunk projects from the larica into a flexible, somewhat retractile foot, poorly jointed, from which extend two furcate toes.

There are three divisions of the genus, the first possessing a frontal eye; the second a cervical eye on the occiput or hinder part of the brain ; the third without a coloured eye-spot.

In every species of the genus the lips of the buccal orifice project more or less. In some, as in D. Hoodii q. v., this projection is so marked that it was mistaken by some authors for a projection of the trophi. In no case do the jaws, or any part of them, project through this orifice.

The ciliary wreath is a continuous ring round the outside of the corona, inside which there is a variable arrangement of stiff setæ.

The bunch of setæ on the foot, which is one of the marks of this gemns, consists of four or five stiff hairs pointing back in a divergent pencil, just over the base of the toes.

The gastric glands vary but little in shape and size, being usually rather large irregular sacs. In D. cacca they are generally pigmented red ; in tenuior sometimes pigmented brown; in lacinulata sometimes pigmented pink. We have never observed anything approaching this in the other species.

The lateral canals are normal, each canal carrying five vibratile tags.

The construction of the jaws of this genus is exceedingly difficult to elncidate either by drawings or deseription. They consist of the usual parts, but these are attached to plates. By a speeial arrangement of the muscles which work the unci and rami, it is able suddenly to expand the cavity enclosed within these plates, thus sucking in its food. This suction is its method of securing its food; not, as Gosse suggests, a protruding and prehensile action of the jaws. His drawings in Mandue. org. in Class Rotif. Phil. Trans. Roy. Soc. pp. 432, 433, pl. 17, figs. 32-37 (lacinuluta and yibbat, are much more accurate than his description.

Take, for example, either D. eva or D. centripes. The food of these two species is chiefly diatoms. These they secure simply by the suction caused by the rapid expansion of the mastax cavity and the rush of outside matter to fill the vacuum. We have many a time observed a whole hard diatom almost one-third as large as the trunk of the animal sucked in, and without any mastication, pass straight on through the cesophagus right to the stomach, there to be acted upon by the gastric fluids alone.

All the other species feed on spores or flocculent matter, which are sucked in in a similar manner without any attempt at mastication. In fact the jaws of this genus are not used for mastication.

In giving the sizes of the different species, the maximum size observed by us is taken, and in those cases where the immature specimens fall much short of this standard special note is made of that fact. The words "total length" are used to describe the measure taken from the most projecting point of the head to the tip of the toes when carried straight behind. The "breadth" is the width at the widest part of the animal from a dorsal view. The " height" or "depth" signifies the maximum transverse section or elevation from a lateral view. All these measurements vary in every speeies; but the proportions between them are fairly constant.

All the figures of the plates (except 2 and $8 b$) have been
drawn at the uniform amplification of 476 diameters, so that the relative sizes of the various species allow direct comparison.

A Dichotonous Scheme of the Genus Diaschiza.

A. Eye present.
B. Eye frontal.
C. Body long and large. laterally compressed
CC. Body slurt, not laterally compressed.
D. Body almost spherical, small, toes decurved

DD. Body gibbose, but of mediam length.
E. Toes sharp, straiglit, lorica moderately stiff, with a projecting tail..

EE. Toes blunt, slightly recurved, lorica remarkably flexible, no projecting tail.
BB. Eye cervical.
F. Head large, body short, rapidly tapering ..

FF. Head not conspicuously large, body longer, gradually tapering.
G. Foot ventral, lorica projecting over the foot.
GG. Foot not ventral, lorica not projecting.
H. Large species, buccal orifice very projecting, toes much decurved ..
HH. Small species.
K. Buccal orifice fairly projecting, toes nearly straight, slightly recurved, body normal.
KK. Buccal orifice not prominent, toes distinctly decurved, body wedgeshaped.
AA. Eye absent.
L. Toes of normal lengtl and form, considerably less than half the rest of body.
M. Lorica fairly stiff, body laterally compressed.
of even breadtin throughout, toes upcurved, gastric glands usually tinted red.
MM. Lorica very flexible, body not laterally compressed, tapering slightly fore and aft, toes outcurved, gastric glands sometimes tinted brown.
LL. Tocs of abnormal length or form.
N. Toes flexible, less than two-thirds rest of body, curved.
O. Toes about half length of rest of body, tapering rapidly about their middle to a flexible thread.
OO. Toes very short, less thau one-fourth rest of body, flexible throughout, head abnormaliy large, clefts doubtful, no setee on foot.
NN. Toes not flexible, more than two-thirds rest of body, recurved.
D. gilba, $\frac{1}{90}$ in. (282 μ)

No. 1.
D. globata, $\frac{1}{200}$ in. (127 μ).

No. 2.

No. 3.
D. gracilis, $\frac{1}{170}$ in. (149μ) No. 4.
D. lacinulata, $\mathbf{1}^{1}{ }^{1}$ in. ${ }^{\text {in }}$ (158μ)

No. 5.
D. ventripes, $\frac{1}{190}$ in. (133μ) No. 6.
D. Hoodii. $1^{\frac{1}{3} \overline{0}}$ in. (195 μ) No. 7.
D. Derbyi, ${ }_{18}^{1}{ }_{50}$ in. (141μ) No. s .
D. exigua, $\frac{1}{\frac{1}{\overline{0}}}$ in. (98μ) No. 9 .
D. cxca, ${ }^{1} \frac{1}{2} \overline{5}(204 \mu)$

No. 10 .
D. tenuior $\frac{1}{130}$ in. (19.5 μ) No. 11 .
D. eva, ${ }^{\frac{1}{5}}$ in. (267 μ)

No. 12.
D. ? megalocephala ${ }_{\frac{1}{2} 7} \mathrm{in}$. (200μ)
No. 14 .
D. tenuiseta, ${ }_{95}^{1}$ in. (267μ) No. 13

Diaschiza gibba Ehrenberg.

Pl. I. figs. 1 and $1 a$.

Synonymy.
Furcularia gibba Ehrenberg. Diaschiza semiuperta Gosse. Furcularia gibba Gosse.

BIBLIOGRAPHX.

Ebrenberg, G. F.-Die Infusionsthierchen. Leipzig, 1838, p. 420, pl. 48, fig. 3.
Gosse, P. H.-Manduc. Org. in class Rotif. Phil. Trans. Roy. Soc. London, 1855 , p. 433, pl. 17, figs. 35-37.
Hudson \& Gosse.-The Rotifera. London, 1889, vol. ii. p. 80, pl. 22, fig. 10; and vol. ii. p. 43, pl. 19, fig. 13.

Spcc. Char.-Body long, large; back highly gibbous, laterally compressed, abruptly falling off steep to the foot, flat ventrally; face slightly prone; lorica normal diaschiza type, somewhat flexible ; dorsal cleft narrow, straight ; lateral cleft normal; eye small, frontal ; foot short, stout; toes about two-fifths the length of the rest of the body, furcate, thin, style-shaped, slightly acute, and slightly upcurved.

Ehrenberg described this species as Furcularia gibla. Gosse, observing the dorsal cleft, re-described it as Diaschiza semiaperta. Then, in his account of Furcularia gibba, vol. ii. p. 43, he failed to observe this cleft, which in some specimens is difficult to define. Pl. xix. fig. 13, compared with pl. xxii. fig. 10, will show that his two species are identical even to the jaws.

This is the largest species of Diaschiza, varying from $\frac{1}{90} \mathrm{in}$. downwards.

The very peculiar eye, which is small and absolutcly frontal (not semioccipital as in Gosse's drawing), consists of a hollow hemisphere the flat front of which is clear and transparent, the rest pigmented red.

The foot-glands are very prominent.
The setæ on the foot are especially well marked.
The toes vary in length, shape, and curvature. In some cases they are almost straight, but never observed by us as straight as drawn by Ehrenberg, pl. xlviii. fig. ? ; and by Gosse, pl. xix. fig. 13. In other cases they are distinctly recurved, as in Gosse, pl. xxii. fig. 10. All gradations between these two extremes have been noted at various times. As a rule they are thin, tapering gradually to a point, but sometimes they are to be found stouter at the base, yet we have never seen them quite so stout as in Gosse, pl. xix. fig. 13.

This rotifer has a habit of raising its toes over its back.

It sometimes makes a run of flocculent matter as mentioned in Gosse's description of Furcularia forficula.

It is rather an active species, feeding rapaciously on floccose matter, which often gives a brilliant red or green colouring to the stomach.

The jaws have the incus short and stout, slightly swelling at the fulcrum, and the manubria crutch-shaped at the end.

Si:c.-Total length from $\frac{1}{90}$ in. (282μ) downwards. Toes alone $\frac{1}{340}$ in. (75μ); greatest width $\frac{1}{80}$ in. (72μ); greatest depth (from dorsum to venter) $\frac{1}{3} \frac{1}{0}$ in. (85μ).*

Common and generally distributed.
The Male.-Pl. I. fig. 1a. This sex made its appearance on the 2nd May, 1901, in about a dozen examples in water from Dundee, sent by Mr. J. Hood; and again on April 29th, 1902, in the Big Lake, Knowsley, Lancashire. It has the four plates, the sete on the foot, the three antenme, the lateral compression, and the frontal eye, just like the female. It is remarkably large for a male.

The toes are, strange to say, decurved, sharp, and short. This is the main point of external difference from the female. It is without manducatory organs, and is very restless. The sperm-sac is large, and fills the greater part of the body-cavity.

This sex is, as usual, very soft and flexible, contracting and elongating itself, and, in fact, contorting itself into all sorts of shapes and sizes.

The figure is drawn from a stout and well-developed specimen, and the measurements made from a more elongated one. It assumes its most elongated attitude when swimming.

Sizc.-Total length $\frac{1}{109}$ in. (233 μ); toes alone $\frac{1}{700}$ in. (36μ); breadth about $\frac{1}{700} \mathrm{in}.(36 \mu)$; height $\frac{1}{600}$ in. (42μ).

This sex is very rare.

Diaschiza globata Gosse.

$$
\text { Pl. III. figs. } 9 \text { and } 9 a .
$$

> Synonymy.
> Furculeria sphericu Gosse.

BIBLIQGRAPHY.

Gosse, P. H.-Twelve new Species of Rotifera. Journ. Roy. Micr.' Soc., 1887, p. 361.
——Twenty-four more new Species of Rotifera. Journ. Roy. Micr. Soc., 1887, p. 861.
Hudson \& Gosse.-The Rotifera. London, 1889, Suppl. p. 37, pl. 31, fig. 30. - The Rotifera. London, 1889, Suppl. p. 26, pl. 31, fig. 16.

Spec. Chuti.-Body short and stout, subpiriform; head slightly narrower than the body; face not prone; neck only slightly

[^1]marked ; corona encircled by a prominent ring or collar ; lorica normal diaschiza type ; dorsal cleft broad, well marked; lateral cleft very distinct ; eye frontal, large; foot stout; toes short, about one-sixth length of rest of body, furcate, style-shaped, slightly decurved.

Gosse's description gives a very good idea of this species.
The eye, as he states (Suppl. p. 37), is on rare occasions difficult to define, and is always of the nature of scattered pink pigment rather than of a spherical mass.

The "collar" round the corona was in all our examples easily observable.

The jaws are of the same type as those of D. gibbu; the incus, however, is slightly thinner.

This species is uncommon, and only found in small numbers and in few localities. It is lethargic in its habits whether swimming or crawling.

It feeds on flocculent matter.
For further description we refer our readers to Gosse, only adding that his H. sphcerica, from the figure and also from the somewhat vague description, evidently belongs to this species.

Siz.-Total length $\frac{1}{200}$ in. (127μ); toes alone $\frac{1}{12 \pi 00}$ in. (20μ); greatest breadth $\frac{1}{507} \mathrm{in}$. (50μ); height $\frac{1}{4} 8 \overline{0}$ in. (53μ).

Local and uncommon.

Diaschiza sterea Gosse.

> Pl. I. figs. 3 and $3 a$.
> Srxonymy. F'ureulariu stereca Gosse.
> bibliography.

Gosse, P. H.-Twenty-four more new Species of Rotifera. Journ. Roy. Micr. Soc., 1887, p. 861.
Hudson \& Gosse.-The Rotifera. London, 1889, Suppl. p. 25, pl. 31, fig. 15.
Spec. Char.-Body ovate, cylindric, with a soft projection over foot ; head thick, truncate ; neck a marked constriction ; face sub-

Explanation of plate il.

All figs. $\times 476$.

prone; corona extending well down ventral surface of head; lorica not unusually flexible; dorsal cleft wide, fairly distinct; lateral cleft wide, especially towards posterior extremity; eye frontal, double; foot stout, about one-quarter length of lorica; toes about one-third length of rest of body, straight, furcate, styleshaped.

Gosse describes this species from a single specimen, and his drawing is so weak, that were it not for his mention of the massive foot with its over-arching tail, it would be difficult to identify.

From a lateral view the body is slightly arched dorsally, almost straight ventrally.

The lorica ends somewhat abruptly over a stout foot.
The distinctive feature of this species, the above-mentioned tail, is a fleshy projection which varies somewhat in the extent to which it projects. Viewed dorsally, it comes to an almost acute point.

The setæ on the foot are exceedingly short and fine, and hence very difficult to observe, and it was not until one of Zeiss's apochromatic oil-immersion lenses was brought to bear upon them that they were discovered.

The projection over the foot, by its contact with the point from which they invariably originate, has probably reduced them to these small dimensions.

The dorsal and lateral clefts are so distinctly marked, that we have no hesitation in transferring this species to the genus Diaschiza.

The dorso-frontal point of the collar projects slightly.
The eye, which is distinctly frontal, consists of two quite separate reniform red spots inside a clear hollow sphere.

The jaws are of the gibba type with a very marked crutch to the manubria.

In the toe, the under edge is quite straight, the upper curves down from the wide base to meet the lower in an acute point, hence Gosse's description gives it as slightly decurved.

This species is often very beautiful owing to the green or yellow spores with which it fills its stomach. We have seen specimens which exhibit quite a cluster of vivid emeralds.

Size.-Total length $\frac{1}{1+0}$ in. to $\frac{1}{20} \overline{0}$ in. $(181-127 \mu)$; toes alone $\frac{1}{6} \frac{1}{10}$ in. to $\frac{1}{850}$ in. $(41-34 \mu)$; breadth and height $\frac{1}{410}$ in. to $\frac{1}{60}{ }^{1}$ in. ($62-42 \mu$).

The larger examples were from Dundee; the smaller were adult specimens from this neighbourhood (Lancashire).

Not common, but occurring frequently in certain localities.

Diaschiza gracilis Ehrenberg.

Pl. I. figs. 4 and 4μ.

Synonymy.

Furcularia gracilis Ehrenberg. Furcularia gracilis Gosse.

BIBLIOGRAPHY

Ehrenberg, C. G.-Die Infusionsthierchen. Leipzig, 1838, p. 421, pl. 48, fig. 6 .
Hudson \& Gosse.-The Rotifera. London, 1889, vol. ii. p. 42, pl. 19, fig. 14.
Spcc. Char.-Body slender, laterally compressed; head round in front; neck a very slight constriction ; face sub-prone; corona extending very little down rentral surface of head; lorica flexible; dorsal cleft distinct; lateral cleft distinct, widening posteriorly; eye frontal, normal in shape and pigmentation; foot ample, stout, rather short; toes about $\frac{1}{4}$ length of rest of body, almost straight, furcate, style-shaped.

Gosse's description is on the whole accurate; but we are certain that the jaws never protrude.

This misconception has been already explained in the treatment of the genus. We might, however, add that the fleshy projection over the foot is present to a small degree though nothing like so marked as in D. sterea.

The short, sharp, furcate toes are usually carried straight behind and rarely approach the back. A lateral view shows that in each toe the ventral edge is slightly recurved, the dorsal almost straight.

The eye is frontal and consists of a simple sphere of red pigment.

The jaws have the incus thin and ending in a fine point. The mallei are also long and thin and not crutched.

These two latter points, together with the flexible and graceful body, serve to distinguish it readily from D. sterea.

The food of this species is flocculent matter.
Size.-Total length $T_{1}^{1}{ }^{1}$ in. (150μ); toes alone ${ }_{9} \frac{1}{50}$ in. (27μ); breadth $7 \frac{1}{00}(36 \mu)$; height $\frac{1}{635}$ in. (40μ).

Common everywhere.
The male, Pl. I. fig. 4a.-Early in July 1902, Mr. C. F. Rousselet sent a small quantity of moss which contained hundreds of females and a large quantity of males, from which fig. $4 a$ was made.

It is a very hyaline, soft, restless male, contorting itself into a variety of form which it is impossible to represent in one drawing. The drawing has been made from an average form not so fully

extended as when the animal swims freely. It has a frontal eye, slightly marked clefts, short toes, almost straight, slightly recurved. The sperm-sac fills the greater part of the body-cavity.

It is without manducatory organs.
The three antennæ are to be found in their usual situations.
Its length is a little more than half that of the female.
This is the last of the group with a frontal eye. The second group consists of those species with a cervical eye.

Diaschiza lacinulata Müller.

Pl. II. figs. 6 and $6 a$.
Sinonymy.
Vorticella lacinulata Müller.
Ecclissa Lacinulata Schrank.
fclis Oken.
Fureularia lacinulata Lamarck.
lobata Bory de S. Vincent.
Plagiognatha lacinulata Dujardin.
Notommata lacinulata Ehrenberg. Gosse.
", onulum Gosse.
Proutes gilba Gosse (nec Ehrenberg).
Notostemma bicarinata Bergendal.
Notommata cuncata Thorpe.
Plagiognatha lecinulata Tessin-Bitzow.
BIBLIOGRAPHY.
Müller, O. F.-Animale. Infusor. Haunix, 1786, p. 292, pl. 42, figs. 1-5.
Schrank.-Fanma boica, iii., 1803, 2, 107, 109.
Onen.-Lehrhuch d. Naturg., iii. 1815, 1, pp. 45, 844.
Lamarck.-Hist. Nat. d. anim. s. vert., ii. 1816, p. 38.
Bory de S. Vincent.-Encyclop. method. Vers., 1824.
Ehrenberg, C. G.-Die Infusionsthierchen. Leipzig, 1838, p. 428, pl. 51, tig. 4.
Dujardin, F. M.-Hist. Nat. d. Zoophytes Infusoires. Paris, 1841, p. 652, pl. 18, fig. 6.
Leydig, F. V.-Ueber den Ban u. d. syst. Stell. d. Räderthiere. Zeitsch. f. wiss. Zool., Bd. vi. 1854, p. 38.
Gosse, P. H.-Manduc. Org. in class Rotif. Phil. Trans. Roy. Soc. London, 1855, p. 432, pl. 17, figs. 32-34.
Bartsch, S.-Dic Riderth. u. ihre hei Tübingen beob. Arten. Stuttgart, 1870, 1. 35.

Echstein, C.-Die Rotatorien der Umgeg. von Giessen. Zeitsch. f. wiss. Zool., Bi. 39, 1884, p. 364, pl. 24, fig. 22.
Eyferth, B.-Die einfachsten Lebensformen. Brunswick, 1885, p. 107, pl. vii. fig. 18.
Blochmann, F.-Die mikrosk. Pflanz. u. Thierw. des Siisswassers. Brunswick, 1886, p. 100.

Plate, L.-Beiträge z. Naturg. d. Rotator. Jen. Zeitsch. f. Naturw., Bd. 19, N.F. Bd. 12, 1886, p. 23, pl. i. fig. 6.

Tessin-Bützow, G.-Rotatorien d. Ungeg. v. Rostock. Arch. 43, d. Frid. Naturg. i. Mechlbg., 1886, p. 149, pl. i. fig. 9.
Hodson \& Gosse.-The Rotifera. London, 1889, vol. ii. p. 26, pl. 17, fig. 9 ; p. 37, pl. 18, fig. 8; Suppl. p. 20, pl. 31, fig. 7.

Thorpe, V. Gunson.-New and Foreign Rotit. Journ. Roy. Micr. Soc. London, 1891, p. 305, pl. 7, fig. 5.
Bergendal, D.-Zur Rotatorienfama Grönlands. Lund, 1892, p. 70, pl. 2, fig. 18.
Bilfingfr, L.--Zn Rotatorienfanna Wiirttembergs. Zweiter Beitr. Jahresh. d. Vereins für vaterl. Naturk. in Württ., 1894, p. 44.

Kertesz, Kalman.-Bulapest es Kornyekenek Rotat.-Fam. Budapest, 1894, p. 30.

Levander, K. M.-Materialien z. Kemutı. d. Wasserfama, etc. Act. Soc. pro Fama et Flora femica. Helsingfors, 1894, xii. No. 3, p. 43.
Scorikow, A. S.-Rotat. d. env. d. Kharkow. Kharkow, 1896, p. 86.
Stenroos, K. E.-Das Thierl. im Nurmijarve-See. Act. Soc. pro Fama et Flora femica. Helsingfors, 1898, xvii. No. 1, p. 156.
Weber, E. F-Fame Rotator. d. Bassin d. Líman. Genève, 1898, p. 545, pl. 18, figs 5-7.

For the alove billiography we are indebted to the last work quoted.

Spec. Char.-Body round, back highly gibbous, venter flat; head long on the dorsum in proportion to body; neck well marked; face sub-prone; corona extending obliquely down to the ventral side of neck; lorica very transparent, normal diaschiza type ; dorsal cleft very wide, especially in front; lateral cleft also wide : eye cervical, on the end of the brain; foot short, scarcely projecting from lorica; toes about $\frac{1}{4}$ length of rest of body, decurved, slightly outcurved.

This is the oldest of our genus, having been described by Müller in 1786. His original description is remarkably good, accurate, and detailed, considering the early date and the poor lenses which he must have had. Strange to say, he did not fall into the error into which several subsequent anthors have fallen, viz. that of stating that the jaws protrude. He clescribes the arrangement of the "lacinule" or flaps as such that "apertura rosacea appareat."

Ehrenberg's figure is good, his description inaccurate as to the jaws, and he transfers it to the genus Notommata.

Gosse retained the generic name Notommata. He fell into the error of supposing that "the tips of the rami were habitually projected from the front." These, as we have already explained in treating of the genus, are really the projecting lios of the buccal orifice.

Weber follows Gosse in this mistake, but adds a note from Mr. C. F. Rousselet, which gives a correct view of the case. He rightly, however, transfers this species to the genus Diaschiza.

This species is exceedingly abundant, and is to be found in nearly every pond which one visits.

It varies very greatly in size from $\frac{1}{2 \frac{1}{5} 6}$ in. (90μ) to $\frac{1}{160}$ in. (160μ), and also in shape, some examples being very globular, others more lengthened.

Viewed laterally, it is more or less cuneiform, but the back varies considerably in its rotundity.

Viewed dorsally, it varies from an approximately cylindrical form to a wedge shape, a marked constriction separating the head from the body.

The head is covered up to the face with the usual stiff integument, and is not, as Weber infers, totally illoricated.

The protruding lips of the buccal orifice give the dorsal view of the face that triangular shape to which Weber also refers.

The rotatory organ extends obliquely down to the ventral surface of the head, where it is amply furnished with long vibratile cilia. A bunch of stiff sete surrounds the buceal orifice.

The lorica is soft and transparent, of the normal type of the genus. The dorsal cleft is easily observed, wide and well marked. Its edges diverge considerably from the back to the front of the trunk. The other clefts, lateral and rentral, are broad and conspicuous.

The brain is almost clear.
The eye, which is cervical, and situated on the lower end of the brain, consists of an elliptical mass of red pigments.

The foot is short, and scarcely projects beyond the lorica.
The toes, which are about $\frac{1}{4}$ the length of the body, vary considerably in size and shape. Sometimes they are alnost straight, and can be closely appressed to one another; but as a rule they are slightly outcurved and decurved.

The gastric glands are usually tinted in adult specimens with some shade between brown and pink.

The mastax is normal, with strongly striated muscles.
The jaws have the incus long, and are very robust from a lateral view. The mallei are small and thin.

The stomach is often coloured with food of any colour from ruby red to brilliant emerald green.

In habit "this tiny sprightitly atom" frequently (Gosse: "rarely") anchors itself by the mucous secretion of its foot-glands. It has also a pretty habit of jerking itself rapidly from one position to another without weighing anchor.

Siee.-Total length downwards from $\frac{1}{159}$ in. (160μ); toes only ${ }_{6 \frac{1}{35}}$ in. (40μ); breadth $\frac{1}{420}$ in. (60μ); height $\frac{1}{380}$ in. (67μ). Abundant everywhere.

Diaschiza ventripes Dixon-Nuttall.

Pl. II. fig. 7.

BIBLIOGRAPHY.

Dixon-Nuttall, F. R.-On D. ventripes, a new Rotifer. Journ. Quek. Micr. Club, London, April 1901, p. 25, pl. 2, figs. 1-3.
Spec. Char.-Body almost cylindrical, dorsum arched, venter slightly concave; head separated by slight constriction, deflexed; neck well marked on dorsal surface; face sub-prone; corona extending down ventral side of head; lorica normal Diaschiza type, projecting over base of foot; dorsal cleft well marked, narrow, deep, straight, widening a little aft; lateral cleft well marked, rather wide; eye cervical, double, on the end of brain; foot short, ventral ; toes about $\frac{1}{4}$ length of rest of body, short, sharp, slightly decurved.

This species was described in the Quekett Journal (loc. cit.). Since then we have had great quantities of specimens from many ponds in this neighbourhood.

On further acquaintance it turns out to be at times as large as ${ }^{\frac{1}{90}}$ in. (183μ).

One of the leading features about this rotifer is its arched back, which gives a bent form to the whole body. This, and the ventrally situated foot, are very striking.

The lorica has the appearance of being too large for the trunk, culminating in a clear projection over the foot.

The face is really sub-prone relatively to the head; but as the whole head is depressed by the curvature of the body, it appears quite prone.

The lorica and its clefts are normal.
The eye consists of a pair of red pigmented, hollow hemispheres, fused together at their point of contact.

The foot is short and distinctly ventral.
The toes are remarkably constant in shape and length in this species, being somewhat short and stout and slightly decurved.

The jaws have the incus short, very stout, and specially widened at the fulcrum.

The food consists mainly of diatoms, but also of flocculent matter.

It is slow and graceful in its habits, and seldom found swimming.

The general curve of the body, the projecting lorica, the double eye, the ventral foot, and the short stout incus, mark this species as very distinct from D. Hoodii and the rest.

Size.-Over all $\frac{1}{190}$ in. (133μ) : toes alone $\frac{1}{9} \frac{1}{6}$ in. (27μ); breadth $\frac{1}{60 \overline{0}}$ in. (42μ); height $\frac{1}{45 \overline{0}}$ in. (53μ). Well distributed in Lancasliire ponds.

II.-An Arrangement for Obtaining Monochromatic Light with the Mired Jct.

By Edmund J. Spitta, F.R.A.S., \&c.

(Read November 19th, 1902.)
Since resolution in the Microscope depends upon two functions, the wave-length of the light used and the N.A. of the objective, it is very obvious, as the latter has reached its practical limit so far as our present knowledge permits us to see, the only hope for increasing the separating power of an objective is to employ monochromatic light composed of the shortest wave-length possible.

The first means which suggests itself to obtain this desirable end is the employment of suitable screens, but it is well known no glass exists, or at present can be made, that is truly monochromatic, save perhaps in the red end of the spectrum, which is of no use for the purpose under consideration. Of course, blue-violet glass is made, but what we mean is that, spectroscopically, the screen passes too much light of other colours, usually red. It has been argued, and in a sense truly, that in photography, provided the sensitive plate is not an orthochromatic one, this does not so much matter, seeing the emulsion is not affected by the red ray, so any blurring effect produced by it would not take effect on the plate, and would not be observable in the developed picture. But, the real difficulty lies in the fact that the red image is so disturbing when mixed with the blue-violet, that it seems impossible to focus with the refinement required in photographing minute objects commensurate in size with even perhaps portions of a single wavelength. If this be true with photography, it is even more so when using the screen for visual work.

Fluid screens have likewise been tried, but it is found, when they are sufficiently dense to be truly monochromatic, the light is so feeble that the object-anyhow when the mixed jet is the illumi-nant-is too faint to be well and properly focussed on the focussing screen, especially if the magnification be two or more thousand diameters.

The employment of prisms of great dispersion has also been well tried-in hands, too, far more able than my own-but they have failed for two reasons. One is, that the light produced is so faint and usually so restricted in area, that the coloured beam is only a narrow strip down the field, even when a $\mathrm{T}_{1}^{1} \mathrm{Z}$ homogeneous objective is used; and the other trouble arises from the fact that necessity demands the apparatus to be arranged in a semicircular fashion, and is not capable of being placed in one direct line on an optical
bench, which (without the loss of much time, expense, and trouble) is imperative in photomicrography, and even to a certain extent in visual work.

The position, then, has for some time been one of compelled rest. About four years ago, however, the author, at the Soirée of the Royal Society, first saw the replicas of gratings made by the ingenuity of Mr. Thorp. It may be mentioned that a grating is the name employed for a piece of metal which is ruled with lines so close that they number thousands to the inch. The resulting spectrum is very fine, and although the violet end is characteristically more cramped than is the case with the spectrum formed by a dense glass prism, still it is of sufficient size, if properly manipulated, to fill the substage condenser, even with the use of a $\frac{1}{3}$-in. objective. It is, perhaps, needless to state that the spectrum from the grating requires practically the same semicircular arrangement of the apparatus as demanded in the employment of a prism of the same dispersion, and hence its use for the purpose in question is prohibited. Mr. Thorp, however, has discovered a means of coating a metal grating (the one selected for my purpose being $1 \frac{1}{2}$ in. square, with lines about 15,000 to the inch) with a solution he has perfected, and which dries as a solid film. When dry, he is able to strip this film off the metal and mount it on a glass support. These replicas are very perfect, and reflect the prismatic colours with unsurpassable perfection ; but in this state, so far as we have as yet described the process, still require the apparatus to be arranged in the semicircular manner previonsly mentioned in connection with the use of a prism or a metal grating. But they have this difference: being transparent, they trunsmit a spectrum with as much perfection as a metal one reffects it.

It is just this difference which constitutes their applicability for the purpose in question. As they can be easily mounted on any glass support, Mr. Thorp now mounts them on corrective prisms of glass of suitable angle, so that he has, after some little trouble, been able to make me one that transmits the violet, blueviolet, and apple-green colours almost in a straight line with the incident light. This enables one to use them with the ordinary optical bench, and so they can be employed both for visual and photographic purposes without arranging any special form of semicircular apparatus, which is a point of very great importance. They are now commercial, and not at all expensive, some being less in shillings, I think, than the metal gratings cost in pounds.

As to the little arrangement I have completed, the apparatus (fig. 1) consists of a specially short and compact mixed jet made by Mr. Beard to the pattern desired, with an addition to enable the microscopist to "turn the lime" by means of a handle shown in the diagram from the eye end of the Microscope as it stands on the base-board, which is a great convenience for two reasons: first, it
saves the operator frequently jumping up and down from his seat; and secondly, it prevents his eye being thrust often and suddenly into the bright light of the incandescent lime, which is quite sufficient to dull its perceptive faculties for some little time. A black glass window, however, is let into the case covering the jet, through which, if necessary, the lime can be viewed without inconvenience. The light from the lime is caught by a 6 -in. compound condenser, which, after passing through one of Zeiss' thick water-baths, is focussed on a slit, the size of which is not of much importance, the one in ase being about 17 mm . long and 4 wide. Focussed upon the other side of the slit is a lantern-lens of 5 -in. focus, thus forming a collimator from which issue parallel rays upon the film mounted on its corrective prism. This prism is mounted on a table which rerolves on its vertical axis, graduations of a coarse description being added for convenience. All these details are mounted on Zeiss' saddles to slide on the optical bench, and when the suitable position is found for each of them they can be locked at will. From the prism the rays fall upon the substage condenser of the Microscope, the instrument being bent at right angles so as to stand on the little table fixed to the baseboard upon which everything rests. Everything save the Microscope is covered in by a suitable casing, which can be easily opened if required, dia-

phragms, \&e. being added to complete the efficiency of the apparatus as a whole.

It must be here remarked that for the full efficiency of this arangement to be secured it is absolutely necessary to obtain critical light most carefully. For this reason it may be well to mention how this may be most easily accomplished.

Having removed the film-prism and its saddle from the optical lench, the collimating lens is covered with a slip of black glass, shown in the diagram, so that the eye may not be blinded. This -hould not be forgotten, for the direct light is most intense. Owing 10 most condensers being made to work with more or less diverging heams, such as those derived from a lamp, and not with parallel rays such as in this case issue from the collimator, it is in most "ases necessary to roise the condenser nearer the specimen than would be the case if a lamp at a few inches were used. In conse${ }_{1}$, uence, especially if the slip be a thick one, it may in some instances be impossible to raise the condenser high enough to see thr markings on the lime-in other words, to obtain critical light. To du this properly, then, a 7 to 10 -in. common negative spectacle lens must. be placed immediately beneath the condenser, which rectifies the tronble and enables the mieroscopist to obtain the critical images without further difficulty. In my case, Mr. Conrady computed and made me a special front to his condenser, which does away with the necessity. With respect to the selection of an immersion condenser, it is most important to obtain one with as large an aplanatic rone as possible, because, failing this, less oblique light can be jrofitably used, and the final resolution is affected most seriously. It should be recollected, too, that as the spectra from the horizontal as woll as the transverse lines must both at one and the. same time be seen in the back lens of the objective (the eye-pieed leing removed), it is obviously most important to use one with as high a N.A. as possible, for a great difference is noticeable in th. resolving power even if a $1 \cdot 30$ apochromatic be used instear of a $1 \cdot 40$.

Seeing that one of the great difficulties hitherto experienced in using monochromatic light with a mixed jet is to get enough of it. so it is only fair to point out that the best limes procurable should he used, but perhaps it is more important still to obtain the purest oxygen. Some oxygen on the market contains a large amount of impurities, chlorine, air, and so on, probably through carelessness in its manufacture; hence, while admitting that others may make as good, the author has no hesitation in recommending the gas produced by Brin's Oxygen Co., for the simple reason that, owing to the company frequently testing it during manufacture in every process, and finally before filling the cylinders, it is sent out practically pure.

NOTE.

A Two-speed Fine Adjustment.

By Edward M. Nelson.

"To make use of a common but apt expression, we may say that the two-speed fine adjustment has "come to stay." I have not been able to hunt up back volumes to discover the first inventor of a two-speed fine adjustment, but if we go back only as far as 1899, and turn up page 139 of the Journal for that year, we shall find a new Microscope figured and described by Mr. Keith Lucas, its designer. The principal novelty in this Microscope lies in the peculiar form of its coarse and fine adjustments. Probably it would be more accurate to describe this instrument as a Microscope possessing a two-speed fine adjustment and no coarse adjustment, and this is the exact point where this ingeniously designed Microscope fails-it lacks a coarse adjustment, its so-called coarse adjustment being in reality a quick fine adjustment.

In 1901 we had three forms of two-speed fine adjustments brought by Mr. Ashe to the notice of the Quekett Microscopical Club. Two of these were of the differential screw type, and all of them were very skilfully designed. Since then we have had a new two-speed fine adjustment brought before us in the Males-Watson Microscope, exhibited here at the June Meeting, 1902. This is the only two-speed fine adjustment I have had the opportunity of practically testing ; its performance was not only perfectly stearly, but it was prompt in its action as well.

It would seem that the best kind of two-speed fine adjustment will eventually settle down to some sort of combination of levers, for an arrangement of screws working within screws will require fine finish and careful adjustment if the movement is to be steady and prompt. Now, to my somewhat fastidious eye, the MalesWatson device is susceptible of improvement in two minor points.

First, the slower movement is actuated by a micrometer-screw placed in the middle of the horizontal arm, and the quicker or rougher adjustinent has its screw placed at the posterior end of the arm immediately over the limb, i.e. the position of greatest steadiness.

Now it seems reasonable that if the positions of these were reversed, and the coarser movement were placed at the weaker point, and the more delicate movement at the steadiest point of the arm, an undoubted improvement would be effected.

Again, the difference between the speeds in the two-speed gear fitted to the Microscope exhibited before this Society was not suffi-
ciently great to warrant the trouble and expense of this extrat fitting. If, for instance, we could get speeds of, say, $\frac{1}{500}$ and ${ }_{3}^{3}$. for a revolution of each of the respective micrometer-screws, then the full benefit of a two-speed fine adjustment would be at once apparent. Now, as the speed of an ordinary coarse adjustment may be taken as - 65 in . for each revolution of the coarse adjustment pinion, a $\frac{1}{30}$ will be $19 \frac{1}{2}$ times slower than the coarse adjustment, and $16 \frac{1}{2}$ times faster than the finest. (If the intermediate motion had a movement of $\cdot 036 \mathrm{in}$. for each revolution it would be 18 times slower than the coarse, and 18 times faster than the finest adjustment.)

But in the Microscope exhibited here the intermediate adjustment had a speed of $\frac{1}{150} \mathrm{in}$. for each revolution, which is three times slower than the fine adjustment of the ordinary Continental Microscope.

Fig. 2 illustrates the proposed alteration, which, like the Males-Watson, consists of a lever of the second order engaging

Fig. !.
with one of the first; the springs at E and F to keep the levers A and B in close contact with the micrometer-screws C and D are not shown.

If, for example, the lever A had a ratio of $2: 1$, and B $4: 1$, and the micrometer-screw C had 15 threads, and that at D 65 threads to the inch, very suitable speeds would be obtained. Both micro-meter-screws should be left-handed.

summary of current researches

乙 OOLOGY AND BOTANY

(PRINCIPALLY INVERTEBRATA AND CRYPTOGAMIA), MICROSCOPY, Eтс.*

ZOOLOGY.

VERTEBRATA.

a. Embryology. \dagger

Carbonic Acid as a Provocative of Artificial Parthenogenesis. \ddagger Yves Delage finds that the ora of starfish just beginning to show signs of maturation may he induced to develop parthenogenetically by being placed for an hour in sea-water charged with carbon dioxide. It is a simple method to make seltzer water with sea-water, and to put the egrgs in it, but the results are astounding. Every precaution to ensure the absence of spermatozoa was taken, and more ova began to develop, than if spermatozoa had been supplied. The developing ova formed very vigorous blastulæ and gastrulæ and characteristic Auricularia-larvæ, quite normal and agile.

Agency of Carbon Dioxide in inducing Artificial Partheno-genesis.§-Yres Delage has shown that the presence of this gas in seawater may induce parthenogenetic development in starfish (Asterics) eggs. This gas is acid, anæsthetic, and inhibitory to respiration ; and it increases the osmotic pressure of the water. Experiments go to show that it is not in virtue of any of these properties that it induces parthenogenesis. To say that it acts as a specific stimulant or as an acceleratory catalytic is merely to use words. A hint is found in the fact that the experiment with CO_{2} only succeeds when the ova are sul)jected to the unusual environment just as they are about to exhibit maturation-division or just before the reduced nucleus has passed int" a state of rest. The poisonous action of the CO_{2} inhibits further procedure, but when the eggs are replaced in ordinary sea-water they recorer and go on with their division, it may be on somerhat different lines.

[^2]Delage's gencral view is that the agents which induce artificial parthemgenesis act as temporary poisons.

Artificial Parthenogenesis.*-C. Vignier notes that the development or commencement of development of eggs which would not spontaneously develop, is now known to be induced by (1) changes in surrounding temperature; (2) mechanical excitation, notably shaking; (:i) exposure to various solutions, which may have a directly chemieal, or osmotic, or catalytic action ; and (4) to the introduction of spermatozoa of a different species from the ovium.

Viguier has experimented with Spherechinus, Toropmeustes, and Arbacia, and emphasises the absence or rarity of artificial parthenogenesis under the above modes of treatment. Only the third mole give any positive results.

Reappearance in Offspring of Lesions Artificially induced in the Mother. \dagger-A. Charrin, G. Delamare, and Moussin find that the progeny of pregnant rabbits and guinea-pigs, subjected to laparotomy, sometimes show congenital hepatic or renal lesions (congestion, hentorrhage, (legeneration, \&c.). The state of the diseased organ in the offspring is precisely analogous to that of the artificially deteriorated organ in the mother.

The authors conclude that " characters acquired by the mother may be transmitted to the offspring. This transmission, this selective action at a distance, this vital induction, this influence of a parent's organ on the corresponding organ of the offspring, is due to the action of soluble substances." Thus they explain the reappearance in successive generations of congenital distrophy of liver, kidneys, \&c. That the phenomena are in the strict sense faets of inheritance is another guestion.

Note on Oogenesis in Mammals. \ddagger - Hans von Winiwarter discusses the so-called "Balbiani's body" (Nebenkern) in the oncetes of man and rabbit. The Nebenkern in the human oram is an idiozome and equivalent to a similar body in the oocyte of the rabbit : but the Balbiani's body of the rabbit's ovim is not an idiozome : it is a quite distinct and accessory chromatoid structure.

Retrogressive Changes in Ovarian Follicle of Amphibians.s-

1. Bühler finds that these begin with two almost contemporaneous processes :-a chromatolytic dissolution of the germinal vesicle, and the penetration of follicular epithelium and some leucocytes into the ormm. The epithelial cells have most to do with absorhing component parts of" the orum, especially yolk and pigment, the dissolved results of which are removed via the blood-vessels. While the whole is being rednced in this war, there is an intrusion into the follicle of connective tissue from the theca, and this, as shrivelling proceeds, replaces the degereratiug follicular epithelium, which finally disappears into the stroma ovarii.

Germ-Cells and Germinal Continuity.-John Beard read a paper on this subject to the Royal Physical Society, Edinburgh, on November 24. The following abstract is published in the billet. The germ-cells of"

[^3]licin batis are prodncts of the egg-cleavage. Their mumber is a Iefinite one, 256 in the male, 512 in the female. As they arise before an embryo, on the mfolling of this latter they have to immigrate into. it. Only a percentage of them find the way to the normal position, the arminal nidns. The rest, from 10 p.e. to 28 p.e., oceupy various abnormal positions, and many of them fegenerate in these. Hardly an oram in the vertobrate horly is free from possible "infection" by such alorrant germ-cells. In this way one comes to recognise in them the hypothetical "lost germs" of pathologists, hut these are entities quite different from anything ever imagined liy any pathologist, and, moreover, structures endowed with far more potent attrilutes for mischicf than any " lost germs" ever conceivel of by pathologists.
such aberrant germ-eells are mdoubtelly the seed of those timours. intentified by Wilms as rudimentary embryos or "embryomas." But in mammals the development of such an aberrant gern-cell, or of its products, at a later period of life gives rise to something lying in a different portion of the life-cyele, to a pathological asexual generation, or chorion. This is a structure with indefinite umrestricted process of growth, and the tumours generally classed as carcinomatous are of this nature. The problem of cancer is thins a very simple one of embryologr.

Spermatogenesis in Sparrow.*-(f . Loisel sums up his researehe on this sulject. He follows the history of the germinal cells throush their successive stages,-spermatogonia, spermatocytes, spermatids, and spermatozoa. The cells of Sertoli are hypertrophied germinal cells, in which the function of internal secretion is dominant. They show thret snecessive phases analogons to the phases in spermatogenesis. Luisel lays particular emphasis on the cytogenic function of the testis (awkwardly callerd "morphological secretion", and the glandular function (chemical secretion) which produces, especially in spring, a fluid comtaining iron, an excitant to the seminal epithelimm.

Dimorphism of Spermatozoa. \dagger - Fr. Meves has continued his inrestigation of this interesting subject. He gives an account of the spermatogenesis in Paludimu, which has normal "hair-like" and peculiar. "worm-like" spermatozoa. The former may be called "elpyrene" [ϵ i aml $\pi v p \eta^{\prime} v=$ nuclens $]$, and the latter "oligopyrene," for they have litthe muclear material. In the case of the Lepidopteron Pyguera, the term "apyrene" is more appropriate for the peeuliar type of spermatozon, rorresponding to the oligopyrene type in Paludina. Meves gives an acount of the spermatogenesis in both cases.

We have brought this paper-which deals with a Gasteropod and an insect-under the general heading "Embryoloyy," and we restrict ourselves to noting that the author diseusses the dimorphic spermatogenesis, the problem of "reduction," the nomenclature of cell-centres, and the very difficult question as to the possible function of oligopyrene and aprrene spermatozoa. As to the last point, Neves is very cantions, hat he is evidently disinclinel to regard the forms with little or no modear material as functionless.

[^4]Spermatogenesis in Phalangista vulpina.* - K. von Korff gives a full account of the spermatogenesis in this Marsupial. Most remarkable is the threefold movement of the muelens before it assumes its definite position. On the whole, the other parts of the spermatozoon are formed as in other Mammals. The anthor also describes the remarkable spermatozoa of Didelphys which have been inaccurately pictured clsewhere.

Prepotency in Polydactylous Cats. \dagger - H. B. Torrey deseribes a family history of cats from which it appears that the total number of digits, as well as the number on each manns and pes went on increasing from generation to generation (three generations), although one parent (the male) was always normal. All the forms were descended from a stray female cat of unknown pedigree, which had six toes on each manns and five toes on each pes.

Biometric Evidence bearing on Theory of Limb-Origin. \ddagger-Bashford Dean has made growth measurements of young stages of the Cestraciont shark Heterodontus japonicus, and finds confirmation of the fin-fold theory of the origin of Vertehrate limhs. The pectoral fin is subject to changes with respect to the gravity centre, i.e. physical thanges which canse it to become more highly specialised than the ventral fin. The latter is conservative, like the unpaired fins. There is no evidence that the rentral fin is a structure which has shifted its position from in front hindward. In varions other ways the anthor finds confirmation of the Balfour-Thacher theory.

Notes on Development and Structure of Bradypus. - L. Simon describes the respiratory system and vascular system of Bradymus tridertylus marmoratus. He gives partieular details of the arterial lranchial plexus, which is almost completely developed in the embryos, and discusses its physiological significance. Two rudimentary teeth-true in-cisors-were found in the lower jaw, and reasons are given for changing the adult formula from $\frac{005}{004}$ to $\frac{014}{004}$. A slightly developed "enamelorgan "oceurs, but no Schmelz-Beluy; and no evidence of diphyodont dentition was found. Sebaceons glands, whose presence has been denied, are well developed. In regard to the placenta, the author entirely confirms the results of Klinkowström.

Development of External Body-Form. $\|$-Carl Rabl has given us the first part of an atlas displaying leautifully the stages in the development of the form of Vertebrates-Mammals in the first instance. He calls most of the previons delineations "caricatures," or useless, and the models scheusslich. In dealing with embryos he has used platinum-chloride-snblimate or picric-acid-sullimate, and be has stained them with borax-earmin. The results in lithograph are very fine.

[^5]Skeletal Changes in Flat-Fishes in the Course of Development.*O. Thilo discusses these partly from the standpoint of one accustomed to deal with mechanical problems, and partly from the standpoint of an oplithalmologist. The result is a very interesting essay, to which we cannot do justice in this brief summary. Why do flat-fishes swim on one side? This is the natural result of a change in body-form, and has associated with it a number of remarkable changes-extension of median fins to the head, forward displacement of anus, degeneracy of paired fins, deformation of the urohyal, degeneration of swim-bladder, and migration of one eye.

What forees influence the migration of one eye? There are tractionforces due to the eye-muscles, and Stuitzleriefte due to ossifications in the vicinity of the ere, and to the influence of the migrating eye on its still cartilaginons skeletal surroundings.

Development of Vertebrate Lung. \dagger-Fanny Moser has studied this in Amphibians, Reptiles, Birds, and Mammals. In every case the principle is the same :-(a) there is a general increase in size by proliferation in the tissues : and (b) there is a special increase of the endodermic epithelinm which, as the intrapulmonary bronchns. grows into the solid connective tissue around it.

If the connective tissue is loose and sparse, the increase of the internal epithelium is associated with a direct and diffuse general ontpushing of the wall, and with an enlargement of the intrapulmonary hronchns (as in Amphibia). If the comnective tissue is thick and resistant, the epithelial proliferation is localised at particular areas, and results in bud-like outgrowths insimated into the connective tissne.

Certain parts of the wall that are very resistant to expansion project inwards as if they were septa. The number of buds of the second order decreases as we ascend the Vertebrate series, and the mass of comective tissue increases. Thus the resnlt tends to be a system of long, narrow canals penetrating a thick connective-tissue-sac (Birds and Mammals).

The hranching system of the canals within the lung is alwars monopodial. In every lung there is demonstrable-on to the distal enda principal canal, the intrapulmonary bronchus (mesobronchus, Stammlronchns, lironche souche, \&c.), the direct continuation of the extrapulmonary bronchus.

Solution of the Eel Question. \ddagger - Carl H. Eigenmann has come to the following conclusions :-(1) Both male and female eels migrate to the ocean during October to January. (\because) The female migrants of this period probably deposit the eggs that are found on the surface during the following August to January: (3) Female eels never mature in shallow water ; according to Grassi, maturity occurs at a depth of 500 metres. (4) The eggs float,-according to Raffaele and Eigenmam at the surface, according to Grassi at a great depth. (5) The larva differs markedly from the Leptocephalus-stage, and the latter from the adult. (6) The young eel found entering the stream is the result of a meta-

[^6]morphosis through a Hemichthys-stage. (7) The young cels enter the streams during spring, about two years after their parents entered the sta.

Against these conclusions must be placed what we do not yet know. We do not know the history between the larva of 15 days and the Leptocephalus stage; we are untertain in regard to the egrg and the carly development; we do not know whether the eggs are normally or ${ }^{-}$ only occasionally pelagic ; we are unaware of the normal habits of the Leptocephalus ; we have not ret seeured a female with eggs larger than $0 \cdot 27 \mathrm{~mm}$. in diameter--far from maturity ; the question whether the eed ever hreeds in fresh water must be still considered undecided.

b. Histology.

Text-Book of Comparative Histology.*-K. C. Schneider has done a good piece of work in writing his text-book, which, apart from Oppel's large treatise (confined to the alimentary tract), is the first comprehensive treatise on comparative histology since Leydig's classic work published about fifty years ago. The first part of the book is general cytology and histology; the second part-called Arehitektonic-is really general morphology; the third and largest part gives an accomnt of the minute structure of the tissues from Sponges to Vertebrates.

Molecular Structure and Histology. \dagger - M. Heidenhain seeks, in a somewhat diffienlt essay, to show that the minute structure of muscle-filorils-both in transverse and longitndinal section-admits of being interpreted in terms of molecular arehitecture.

Theory of Cell-Division. $\ddagger-$ A. Giardina expounds what may he ralled a ehemico-physical theory of cell-division. He supposes eurrents of diffusion from the centrosome,-currents of specific substances which have a chemotropic, chemotactic, action on the hyaloplasm. The karyokinetic figure is not a figure of lines of force, but a figure of lines of diffusion in two distinct fluids, in which spindle and aster represent two distinct dynamic srstems. The function of the muelens is not active, hot passively regulative. Most important is the centrosome, which act: as a centre of diffusion.

Trophospongium of Nerve-Cells and Pancreatic Cells.§- E. Holmgren has previously deseribed intratellular canaliculi (Saftkanälchen) in various kinds of cells. In close association therewith are the intracellnlar nets, which he calls trophospongia, well seen, for instance. in the spinal nerve-cells of the rabbit. From the multipolar "intra"apsular" cells, whose protoplasmic processes surronnd the nerve-cell proper like a basket, there arise fine branches which penetrate the nervorell and form an intracellular network or trophospongim. Similarly in the glandular cells of the salamander's pancreas, there is an intracellnlar net, restricted to the region between the nuclens and the gland-lumen.

[^7]They are not endogenous, but exogenous in origin, representing the terminal branches of processes from the adjacent Korbzellen and centroacinous cells.

Criticism of Theories of Nuclear Structure.*-K. Tellyesniczky points out that the visible structural complexities which have been described in the nucleus do not in all probability correspond to the living reality. There is no structural theory that helps much in the interpretation of muclear division and other activities. He discusses particular structures-lanthanin, linin, and so on-in relation to the effect of different reagents.

Structure of Cartilage-Cells. \dagger-A. Pensa has demonstrated on the cartilage-cells (i.e. of guinea-pig), a body like a centrosphere (with one centrosome or more), and a reticular apparatus which is in apparently direct relation therewith.

Nuclear Changes in Striped Muscle-Cell of Necturus $\ddagger-1$. . . Eycleshymer gives a preliminary account of remarkable changes in quantity, quality, and distribution of chromatin during the various phases of cytoplasmic differentiation. He emphasises the apparent correlation of the nuclear changes with phases of cytoplasmic activity. He asks if the nucleus of the muscle-cell, like that of the gland-cell, builds up and gives off chromatin material which plays an important rôle in cytoplasmic metabolism, and suggests that the dark band of the muscle-fibril may be derived from nuclear chromatin.

Endings of Nerves in Salivary Glands.§-A. Pensa finds that the nerves going to the salivary glands in cat, rabbit, \&c. end in an endocellular retientum.

Muscular Terminations of Nerve-Fibres.|| - A. Perroncito makes another contribution to this much discussed subject. He describes, especially in reference to human muscle, the ultimate terminations of the motor fibrils in relation to the muscular tissue.

Formation of Zymogen in Gastric Glands of Adder. \mathbb{T}-L. Lamoy finds that the formation of zymogen in the granular gastric cells is quite independent of reflex or mechanical stimulus, and may even occur when the digestive canal has been for a long time in a resting state during fasting. The claboration of the zymogen-gramles is endonucleolar. The transformation of the zrmogen into ferment is accomplished in the crtoplasm, and this part of the procedure is reflex-depending on the mechanical, physical, or chemical stimuli which aet upon the cells.

Femoral Glands of Lizards.**-Fr. Schaefer gives a detailed aceount of the occurrence and structure of the femoral glands in Lacertilia. The secretion which protrudes from the glands consists of cornified or partly rornified stuff in Lacerta and Actunthodactylus; in Sceleporus arenthimus.

[^8]it is more like sebaceous matter without trace of horn. In some cases, e.g. Lacerta agilis, there is an actual separation of material from the mouth of the gland, quite apart from moulting. At the breeding season there is in the males a specially active cellular modification in the glandular body.

The femoral glands arise from an insinking in the rete Malpighii into the connective tissue, and a proliferation of the cells of the insmuk tissue. They may be called cytogenons glands-glandule cellulipare and may be placed nearest sebaceous glands.

c. General.

Vital Rhythm.* - Messrs. Vaschide and Cl. Vurpas deduce frou studies on the vaso-motor system, and from studies of abnormal cerebral conditions (insanity, general paralysis, mania, anencephaly, \&c.) that life is characteristically rhythmic. There is a periodic alternation of forceful action ("dynamogeny") and repose. The higher nerve-centres have the rôle of a psycho-dynamic co-ordinator, regulating the living machine to a relatively stable equilibrium, in virtne of their superior and quite specific property of inhibition.

Comparative Anatomy of Vertebrates. \dagger-R. Wiedersheim hais brought out a thoroughly revised (5th) edition of his well-known Grundriss, with more figures, more bibliography, more summaries, and necessarily more pages. In short, it is no longer a Grundriss, but much more, and the Grundriss will be replaced by a smaller work, an ' Introduction to the Comparative Anatomy of Vertebrates.'

Colours of Fishes. $\ddagger-$ D. S. Jordan contributes an interesting essaly on this subject. The colours of fishes are in general produced by oilsacs or pigment-cells beneath the epidermis or in some cases beneath the scales. Certain metallic shades, silvery blue or iridescent, are due to the deflection of light from the polished skin or the striated surface of the scales. Certain fine striations give iridescence through interference.

The ground colour is more subject to individual or local variation, usually within narrow limits; the markings are more subject to change with age or sex, but are more distinctive of the species.

The ground coloration most usual among fishes has protective value. Protective markings are also common. In many cases the sexes are differently coloured. Nuptial colours do not appear among marine fishes, but are well known in minnows, dace, and some other fresh-water fishes.

Recognition marks, or what may be plansibly interpreted as such, are frequent, and appear as ocelli, spots, cross-bars, and so on.

In general, coloration is most intense and varied in certain families of the tropical shores, and especiolly about coral reefs; but the hrilliancy of individual markings of some darters (Etheostominæ) and sun-fishes (Centrarchidæ) of the streams of eastern N. America is noteworthy. The coral fishes seem to scorn the need of protective coloration, saviu!

* Comptes Rendus, exxxv. (1902) pp. 752-4.
+ 'Vergleichende Auatomie der Wirbelthiere'. Jena, 1902, 8vo, xix. and 686 pp . and 379 figs. \ddagger Amer. Nat., xsxvi. (1902) pp. 803-8.
themselves by alertness (Chetodon, Pomacentrus) or by burying themselves in the sand (e.g. Jules gaimardi), a habit more frequent than has heen suspected. The author also alludes to variability in coloration.

Arsenic in Animals.*-G. Bertrand has found minute traces of arsenic in a large number of animals-sponge, sea-anemone, starfish, seaurchin, holothurian, barnacle, sepia, fish, turtle, stormy petrel, and Orie gludiator. In most cases it was diffusely distributed.

In an appended note Gantier remarks that in his researches on terrestrial mammals and on hirds, the arsenic was mainly restricted to the ectodermic structures. He found it also in marine and fresh-water green alga, and he is convinced that the sea-water is itself arsenical.

Rabbit Pest in Australia. \dagger - ${ }^{W}$. Rodier has reprinted a useful pamphlet, which was noted in Nature, March 21, 1889, explaining a simple method of dealing with the rabbit pest. His plan is based on the fact that while polygamy favours increase, polyandry does not. Rabbits usually live in a polygamous state. Rodier proposes to convert this intu polyandry by catching the rabbits alive and killing all the females, while all the males are turned out again. The males become much mone numerous, they harass the females by their constant attentions, they injure their powers of breeding. The plan has worked well at Tambia station, Cobar, N.S.W., and surely deserves a trial, since all other methods have been more or less failures.

Origin of Paired Limbs of Vertebrates. $\ddagger-$ Bashford Dean considers the historical or palæontological evidence. As regards Palæozoic sharks. it is most distinctly in favour of the Thacher-Balfonr theory of derivation from lateral folds. The oldest forms, acanthodians and cladoselachids, present lateral-fold fins. As the series advances from the lower Devonian, the structures of the biserial archipterygiom are gradnally acquired. The Carboniferous Cladodus neilsoni of Traquair shows foi the first time a definite segmentation of the supporting elements of the hase of the pectoral fin. Then in the Permian Symmorium of Cope, the fin-bases are not only formed, but show apparent fusion in the metapterygial terminal, a condition which would be best correlated with a change of function in the fin. And finally, in the Xenacanthids, the pectoral fin acquires a biscrial archipteryginm.

The anthor considers the objections to this conclusion, and points. ont the difficulties of Gegenbanrs theory.

Interscapular Gland in Human Embryos. -Shinkishi Hatai has found in five human embryos a long, narrow, paired organ, lying partly along the neck and partly occupying the scapular region. It has no anatomical connection with the thymus. No trace of it was found in the adult. From its position, as well as from its fatty structure, it seems comparable to the so-called hibernating gland or fat-organ of lower mammals, but on the other hand, the lymphoid structure which seems

[^9]more important than the fatty part, favours its interpretation as a cervical hæmolymph gland. Further investigations are demanded.

Snake Venoms.*- IV. Hanna gives a general account of snake venoms, and draws particular attention to the differences as to poison-apparatus and venom between the two great divisions-poisonous colnhrine snakes. e.g. cobra, and viperine snakes, e.g. Russell's viper or daboia. He discusses the varions physiological actions of the poisons, the antitoxic use of serum, and the question of self-immmisation.

Permeability of Frog's Skin. \dagger - Angelo Andres and L. Pesci have made a number of experiments relating to the permeability, or, as they sar, semi-permeability, of the frog's skin. The permeability or semipermeability is entirely an epidermic function, and persists for some time after death. In frogs with absent or disorganised epidermis the loss of weight increases in proportion to the density of the suromuling medimm. In intact frogs the variations in weight are approximately equal in fluids of equal osmotic pressure.

Toxotes jaculator in Captivity. \ddagger - N . Zolotnitsky has some interesting notes on the habits of this fish... He remarks on their inability to survive high temperature, on their sensitiveness to changes of temperature, on the mobility of their eyes, on the accuracy of their aim with their water-jets, and on their 'puickness to learn how to deal with new kinds of food. Thas a blood-worm which clung to the sides of the aquarium and conld not be caught, was blown off into the open water and then captured. Zolotnitsky regards Toxotes as the most intelligent fish lee has as yet had to do with.

Eating Habits of Galeopithecus volans.s-Nelson Ammandale has some interesting notes on a captive female specimen with a newly horn yomig one. From the way in which it drew the pulp of a banana into its almost closed mouth with its tongue, so that the food mostly passed throngh the openings in the incisors of the lower jaw, the anthor was len to conclude that the pectinate teeth act as a strainer by means of which fibres and seeds are prevented from entering the food-canal.

Adrenaline. $\|$ -])r. Batelli describes his method of extracting the active substance of the suprarenal capsules which Takamine has called "alrenuline." Experiments show that the toxic effects and pressureeffects produced by extracts of the suprarenal bodies are due to this snbstance, adrenaline, to a large extent at least. But he has not been able to show conclusively that adrenaline passes from the organs which produce it into the blood.

Hæmatolytic Function of Spleen.『-L. Lapicque transfused bloor into dogs, and, as is well known, the supernumerary corpuseles were destroyed in a few days. He tried to discover if this was motified by aplenectomy. His result was that the smppression of the spleen made

[^10]only inconsiderable differences in the hæmolytic function. He inclines to say that the spleen is a relatively unimportant part of a vast hæmatolytie system.

Fibrinogenic Substance in Albumen of Bird's Egg.* - Armand Gantier finds in white of egg evidence of the existence ($1 \cdot 5$ p.c.) of a solnble substance, analogons to the fibrinogen of the blood-plasm and to the myosinogen of the muscle-fibre. Like these, under infnences favonring the activity of a specifie ferment, it can be transformed into an insoluble stuff (ovofibrin) which slight agitation (not necessary to its formation) separates off in a membranous form. No doult the same phenomenon occurs elsewhere; it only remains for the organising forces of the cell to dispose this fibrillar material in accordance with the laws which regulate the histological forms of the cell or the tissuc.

Autolytic Processes in Pickled Herring. \dagger-S. Schmidt-Nielsen ha* studied the fermentative processes which occur in the curing of herring. He does not deny that the bacteria implicated may be of some practical importance, but he thinks that he has definitely proved that the peculiar "ripening" of the piekled herring is due to antolytic processes. bronght about by enzrmes previonsly present in the living musele.

INVERTEBRATA.

Adipogenic Function of Liver in Invertebrates. $\ddagger-$ Mlle. ('. Deflandre has studied the so-called "liver" of varions Invertebrates the snail, the mussel, the eraytish, the starfish, \&c.-and finds that this diverse organ has a marked adipogenic function. It is a depot for mutritive reserves, chiefly fats, just as the liver in higher animals is : storehouse for glycogen. The fats are accumnlated in days of plenty. and the stores are of use not only to the individual, but to the progeny. for the genital clements get their share.

Agglutinating and Cilio-phagocytic Organs.§-L. Cuénot seeks 10 bring a mmber of puzzling organs into line. The "urns" of Sipunculus differ bat little from the "urus" of Signamta, and these lead on t" the cilio-phagocytic organs of Nereis, Glycera, Nephthys, and Hirmdinia. which again are very like the nephridial filters of Rhynchelmis, Henlen. and Branchiobulla. All have the same function of removing from the colom grannles of debris and degencrated cells; and in all cases there is a vibratile apparatus which takes an active part in collecting the gramules and suspended del)ris. He suggests that the cilio-phagoeytiwrgans of Polychæts and Hirndinea are derived from pre-existent nephridial fumnels, and that the filters of Oligochæts represent a differrutiation of nephridial epithelium with phagocytic capabilities.

Mollusca.
 a. Cephalopoda.

Vascular System of Squid.\|-L. W. Williams describes the vascular -ystem of Loligo pealii,- the general arrangement of the vessels: the

[^11]structure of the arteries, veins, heart, and branchial hearts; and the capillary system in particular. The wide distribution of the capillary vessels, the presence of an endothelium around every blood-containing cavity, except possibly the hearts, and the absence of demonstrable lacune, all lead to the conclusion that the arterial and venous ressels of the squid are connected by capillaries, so that the vascular system is closed.

y. Gasteropoda.

Notes on Species of Fulgur.*-B. Smith communicates some preliminary results of a phylogenetic study of the species of Fuldur. The changes in ornamentation agree in general with those noted by the ('ountess von Linden in regard to other Gasteropods. A plansiblu pedigree is sketched.

The author describes an abnormal specimen of F. comiculatum, apparently due to accident when the shell was young; and he records a scries of F. carica, in which there was some degree of sexnal dimorphism, since the adult males were all smaller than the adult females.

Recent Researches on Gasteropods. $\dagger-\mathrm{H}$. Simroth gives a valnable accoment of recent researches on the structure, relationships, and weology of (iasteropods. He discusses Kowalersky's studies on two mimute species of Chatoderma from the Sea of Marmora ; Thiele's conchusion that Molluses have only a hæmocol ; the interesting work of Stempell and of Biedermann on the nature and origin of the shell ; Thiele's theory of Gasteropod torsion ; Guiart's system of Gasteropods; the work of Woodward and others on Plewrotomaria; Bonnevie's account of the parasitic Enteroxenos g. n.; Jordan's accomnt of the locomotion of Aplysia ; Guiart's study of Opisthobranchs ; Kowalersky's description of the striking form Pseudovermis puradowus : Pelsencer's studies on Pulmonates; and many other researches, abont fifty in all.

Sex Determination of Gametes in Hermaphrodite Gonads. \ddagger l'. Ancel maintains, with particular reference to Helix pomutiu, that the sex-cells are at first indifferent, that those which appear befire the mutritive clements become male cells (giving origin to spermatozoa), and that those which appear after the mutritive elements become ova. He thinks this conchsion may be extended to similar cases; the "cytosexual" character of the gametes is determined hy the time of their appearance in relation to the appearance of the nutritive cells.

Opisthobranchs from Gulf of Siam.§-R. Bergh reports on a collection made by Th. Mortensen on the Danish expedition to Siam (1900). It includes three new Tectibranchs :-Aplysia immmuln, Aplysiella incerta, and Aclesia ocelligert ; and five new Nudibranchs: Idalia plebeia, Doriopsilla pallida, Marionia chloanthes, Melibe buepphala, and Nossis indica.

[^12]
б. Lamellibranchiata.

Monstrosities in Bivalves.*-F. C. Baker notes that in fresh-water forms these are often due to external accidents, e.g. trampling by cattle. They are commonest abont fords and shallows. He describes and figures cases in Lampsilis alata, L. ligamentina, and Unio gibbosus.

Innervation of Mantle of Pecten. \dagger-L. Bontan describes an independent " circum-pallial" nerve-centre which has to do with the sensory structures so greatly developed on the periphery of the mantle of Pecten. It is connected with the cerebral and pallio-visceral ganglia, but if the connecting branches be cut, it retains its functional integrity. It is ten times larger than all the three other ganglia combined. The palliovisceral ganglia also innervate the mantle, excepting the portion known as the "capuchon céphalique."

Arthropoda.

a. Insecta.

Morphological Significance of Chitinous Cuticle. \ddagger-Nils Holmgren seeks to show that all vertically striated chitinous structures-of one layer or of several layers-in insects, at least, are morphologically and phylogenetically to be interpreted as chitinised and coalescent ciliary hairs. The chief support of his contention is that all the chitin-matrix cells which he has studied have apically a row of blepharoblasts with which the pillars forming the cuticle are in connection. The same disposition of blepharoblasts in relation to a ciliary fringe is well known. The "Stäbchensaum," or "Härchensaum," or " plateau strice," e.g. of the gut of Chironomus, is homologons with a ciliary fringe. Thus some light is supposed to be thrown on the absence of cilia in Arthropods.

Insects of the Drift Line.\$-Lretitia M. Snow has studied the insects along and around the line of drift thrown up by the waters of Lake Michigan in the spring of 1902 . The collections included 114 species, of which 51 were identified.
"We have here a little community of food-providers and foodobtainers, whose population varies with the season, the wind (probably), the beach conditions, and the relative abundance of the various forms. For example, we found (1) the occurrence was in succession ; (2) the popnlation increased apparently at times when an off-shore wind was followed by a lake breeze ; (3) it also increased with the temperature; (4) the greatest numbers occurred on beaches of low gradient and of smooth fine sand ; (5) the abmance of scavenger forms depended upon the abundance of dead herbivorons and predaceous forms and other refuse; (6) the abundance of predaceous forms depended upon the presence of active scavenger and herbivorous and smaller predaceous forms."

Calorimetric Measurements in Reference to Pupæ of Lepidoptera. $\|$ P. Bachmetjew has made a large number of experiments on the specific

[^13]Feb. 18th, 1903
heat of dried pupæ, living pupæ, pupal fluid, and on the behaviour of pupal fluids under heat and cold. His experiments relate especially toDeilephila euphorbice and Saturnia spini.

Innervation of Metacephalic Segment.*-K. W. Verhoeff describes in detail the nerves of this segment, which corresponds to the maxillipedesegment of Chilopoda, and is otherwise known as the microthorax or " Nacken-segment" in insects. As the result of his researches, he proposes the new order Oothecaria: (including Blattodea and Mantodea), which, along with the Phasmodea and the Saltatoria make up the old order Orthoptera.

Excretory Processes in Insects. \dagger-Nils Holmgren finds in Apion flavipes, one of the Curculionidæ, four long Malpighian vessels and two short acinous glands, which are modified Malpighian vessels. In Dacytus niger, one of the Cantharidæ, there are six normal Malpighian tubes, but the female has also 6 club-shaped accessory structures, which may be modified Malpighian tubes.

In both cases the excretory products arise in the nuclei of the excretory cells, pass into the cytoplasm, and are eliminated into the lumen of the organ. The same process was observed after injection with pigments such as methylen-blue.

Mouth-parts of Insects. $\ddagger-\mathrm{V} . \mathrm{L}$. Kellogg notes that the determination of the homologies of the mouth-parts is as yet far from satisfactory, especially as regards Diptera. There is need for the solid grounding of interpretation on a more complete knowledge of the development. His paper is a contribution towards this end.

Stridulation of Death's Head Moth.§-Ruggero Cobelli has made some experiments with Acherontia atropos, and finds secure evidence that the stridulation is exclusively due to the rhythmic friction of the two portions of the proboscis, one upon the other. It seems necessary to reject the interpretation of the so-called "voice," which has been given by various entomologists from Dugés onwards. Of "voice," in the strict sense, there is no evidence ; according to Cobelli the sound produced is wholly due to stridulation.

Butterflies of Borderland between North and South America. $\|$ F. D. Godman and the late Osbert Salvin have enriched zoology by the two volumes here referred to on the Lepidoptera Rhopalocera of Central America. Part of the interest of the work is in its analysis of the results of the meeting of the two contrasted faunas of the Holarctic and Neotropical regions. Prof. Poulton writes: "The whole of the vast mass of material in these and the great series of companion memoirs is a remarkable testimony to the insight of P.L. Sclater, in drawing the

[^14]outlines of his regions, of Darwin in laying down the principles of geographical distribution in the Origin, and of Wallace in his masterly development of the subject in his great works on the geographical distribution of animals. These principles have been tested by an appeal to the facts collected with consummate skill and care, from the most critical area in the world, and assuredly they have not been found wanting."

Seasonal Dimorphism in Butterflies.*-F. A. Dixey gives an account of observations by himself and by G. A. K. Marshall. Thus Catopsilia pomona Fabr. (including C. catilla Cram.) and C. crocale Cram. are phases of one species, which in one part of their range appear to be in relation with the seasons. Similarly C. pyranthe L., is conspecific with C. gnoma Fabr., in more marked, but apparently not universal correlation with the seasons. Some cases of simultaneous occurrence of dimorphic forms are explained as due to an overlapping at the change of seasons, or lack of differentiation in the climatic conditions.

Marshall has proved by actual breeding the specific identity of six pairs of forms. The final stage can, in many cases, be influenced by the artificial application of heat or moisture during the pupal condition.

Colour of Silk. \dagger-ID. Levrat and.A. Conte have made experiments on Bombyx mori and Attacus orizaba, and find that an ingested substance, e.g. pigment, can pass from the gut to the silk-glands by the blood. Greenish silk is due to chlorophyll, the spectrum of which was demonstrated in the blood of Anthercea yama mai. As Dubois and Blanc have shown, the yellow colour of some silk is directly due to the diet of mulberry leaves.

Study of an Ant. \ddagger-Adele M. Field has studied Stenamma fulvum piceum for three years. From among her interesting observations, we select the following. There is no regeneration of the antennæ. A single worker may live apparently well in isolation for six months. Familiarity with the nest-aura does not reconcile aliens. The kings have the distinctive odour of their blood-relations. Virgin queens show marked preference or dislike toward certain kings; queens having once mated permit no close approach of an alien king, and do not respond to the attentions of kings of their own lineage ; they may drop their wings without assistance from workers; light and warmth appear to be required for the stimulation of the king and queen to mating. Some experiments suggest definite intellectnal memory.

The ants in question are very discriminating in regard to the odour of all ants introduced into their dwelling, whether of their own or some other lineage. The hereditary odour descends through the mother, and is unaffected by the father whether of the same lineage or of an alien colony. A cause for the hostility of one colony to another of the same species and variety is a difference of odour, coincident with difference of age in the individuals composing the colony. Many experiments in regard to sensitiveness to light were made.

[^15]Gynandromorphism in Hilara wheeleri sp. n.* - A. L. Melander describes in this new species a rather rare anomaly, viz. antero-posterior or "tandem " hermaphroditism. The front part of the body resembled the normal male, while the abdomen was exactly like that of the female.

Spermatogenesis in Cybister rœselii. $\dagger-\mathrm{D}$. N. Voïnov describes two different modes of spermatogenesis in this insect. They give rise to two kinds of spermatozoa, different in structure, and perhaps different otherwise. The two processes oceur at different times of year, but among the elements of one kind there are abortive representatives of the other. Dimorphism of spermatozoa has been noted in some other insects, in Pygcera tricephala by Meves, and in Staphylinus by Holmgren ; it also occurs in Paludina and elsewhere.

Malayan Phasmidæ and a Flower-like Beetle Larva. \ddagger - Nelson Annandale describes the appearance and habits of Lonchodes sp., a Malayan Phasmid, which he invariably found standing upon the upper surface of broad leaves, especially on those of the wild Banana (Musa), exposed to the full blaze of the mid-day sun. "The insects did not lie along the midrib of the leaf in the characteristic Phasmid attitude of rest, but stood upright, the body being supported on the bent limbs at the height of about an inch above the surface of their resting-place. In this position the red coloration of the insect made it very conspicuous from above, against the pale green of its support; while even from below, its shadow was perfectly visible through the translucent tissues of the leaf."

The anthor also describes the peculiar larva of a beetle, apparently one of the Endomychidæ, which is covered with white filaments, apparently of a waxy nature, rising from minnte papillæ on the dorsal surface of the flat and broad body. "Seen in profile, the larva bore a ludicrons resemblance to a miniature hedgehog, an animal which was also snggested by its gait." It also resembled the head of a species of groundsel, but it was never fornd associated with this plant.

Berlese's Bursa in Acanthia lectularia L.§-D. Carazzi gives a description of the "bursa" which Berlese found in the bed-bug, and interpreted as a spermatophagons organ for destroying surplus spermatozoa. Carazzi has not confirmed the interpretation, but he has added to our knowledge of this puzzling structure.

Larva of Giant Crane Fly.\|-V. L. Kellogg publishes as one of a series of "studies for students" notes on the structure of the larva of the largest known Dipteron-Holorusia rubiginosa, whose life-history has not been previonsly described. It does not occur except on the Pacific Coast, but the account will be found to answer as a guide to the dissection of any other Tipulid larva.

Cricket of Aquatic Habits. T- L. C. Miall and G. Gilson describe Hydropedeticus titiensis g. et sp. n., a cricket found by Gilson in a clear

* Psyche, ix. (1901) pp. 213-5 (2 figs.).
\dagger Comptes Rendus, cxxxv. (1902) pp. 201-3.
\ddagger Proc. R. Phys. Soc. Edinburgh, xiv. Session 1900-1901 (1902) pp. 439-44.
\AA Internat. Monatschr. Anat. Physiol., xix. (1902) pp. 337-48 (1 pl. and l fig.).
$\|$ Psyche, ix. (1901) pp. 207-13 (2 figs.).
-Trans. Entom. Soc., part iii. (1902) pp. 281-5 (2 pls.).
and rapid river in Fiji. "Myriads of black specks were seen dancing on the surface of the water. When alarmed, they hid behind stones. They skated on the water, or jumped to a height of about six inches, usually several times in close succession, and were sometimes seen to leap upon very disturbed water. Now and then three or four of the crickets seemed to be playing at leap-frog, and jumping over one another, as if in sport. They were very hard to catch, though several men were employed in capturing them, and very few specimens were secured."

The largest male was 11 mm . long, not including the antenıæ, cerci, or wing-tips. The female insect differs most conspicuously from the male in the presence of a rather long, curved oripositor, and in the quite different pattern of the wing-cover. It seems necessary to recognise the genus as distinct, and as belonging to the tribe Trigonididæ, among which it is distinguished by the male elytron being partly membranous and altogether unlike that of the female, but without functional stridulating organ, while the hind tibia bears tioo series of articulated spines.

Spermatogenesis of Locustidæ.* - C. E. McClung describes in detail the spermatocyte divisions in Xiphitium, Orchesticus, Anabrus, and other Locustidæ. We quote the tenth and last paragraph of his summary. "From each first spermatocyte there are formed, by two divisions, four spermatids, of which two are distinguished from the remaining pair by the possession of an extra chromosome in addition to the number-sixteen-common to them all. Both classes undergo a like series of transformations by which they become mature spermatozoa. These are necessarily of two kinds; and it is belicved that those containing the accessory chromosome, in the act of fertilising the egg, determine that the germ-cells of the embryo shall be sexually male, or like themselves, while those from which it is absent are unable to impress their sex upon the egg and assist in producing female embryos." We have here another contribution to the interesting subject of spermatozoic dimorphism.

Development of Nervous System in Muscidæ. \dagger - K. Escherich gives a full account of the development of the nervous system in Lucilia, with especial reference to the so-called " median strand" (Mittelstrang). He finds in the ventral cord two genetically distinct systems :--the paired lateral nerves and unpaired median nerve. They arise independently and are only secondarily associated. As Heymons has discovered a dorsal nerve in Scolopendroids, the author suggests that the Urform of the nervous system in Arthropods may have consisted of four longitudinal strands.

Species of Mosquitos concerned in Diffusion of Malaria. $\ddagger-A$. Bordi concludes from his own studies and those of others, that in the greater part of Europe malaria is diffused by Anopheles claviger F . (or O. maculipennis Mei.), and to a small extent by A. bifurcatus L.; that

[^16]in Southern Europe some slight assistance is given by A. pseudopictus Gr. and A. superpictus Gr. ; and that in tropical countries far and wide the diffusion is essentially due to the two species last named.

Studies on Zoocecidia.* - J. da Silva Tavares continues his systematic account of Portnguese Zoocecidia, extending his list from 235 to 329 species. He also \dagger gives an account of 63 forms collected around Vienna.

Mallophaga from Galapagos Birds. $\ddagger-\mathrm{V}$. L. Kellogg and Shinkai I. Kuwana give a systematic account of these. They deal with 43 species, of which 25 are new. One of the interesting general facts is the unusual eccentricity of the occurrence of the parasites on the various hosts ; thus one normal to a land bird occurs on a tern, and so on. We have to do with an abnormal phase of normal straggling. On the rocks of the islands maritime and land birds sit closely huddled, actual contact of the bodies often occurring. Migration is easily effected, and thus a parasite (Colpocephalum unciferum Keel) normally peculiar to pelicans, finds its way to a warbler or honeycreeper, Certhidea. On Geospiza fuliginosa, 20 species of Mallophaga occur,-the largest recorded list from any bird species. Four or more species are recorded from each of the 18 out of the 34 birds examined,-a condition unique in the records of collections of Mallophaga. This condition, of abundant parasitism, is, of course, due to the unusual facility of migration (or normal straggling) afforded by the forced gregarious habits of the Galapagos birds.

ס. Arachnida.

Monograph on German Spiders.§-W. Bösenberg continues his valuable monograph, dealing in the fourth part with the Dysderoidæ, Misumenoidæ, and Laycosoidæ.

є. Crustacea.

Fibrillar Continuity of Epithelial Cells and Muscles in Nebalia.\| A. Labbé finds that in Nebalia there is an actual continuity of substance between the epithelial "tonofibril" and the myofibril. The terminal delicate discs of the myofibril form a membrane in uninterrupted continuity with the basal membrane of the epithelium. Thus it comes about that the whole external epithelium has a tendinous function, the muscles being apparently inserted directly on the chitinous cuticle. According to Claus, the muscle-fibrils pass between the epithelial cells, but this is not quite accurate.

Excretory Organs in Malacostraca. 9 -L. Bruntz has used Kowalevsky's injection-method in studying the excretion of higher Crustaceans. Cnénot found (1895) that in Decapods, in addition to the antennary kilney, an excretory function was discharged by nephrocytes in the branchial canals and by vacuolar cells in the "liver." Bruntz has extended this conclusion to other Malacostraca, and has also found two

[^17]new organs-the cephalic kidneys of Edriophthalmata and a pericardial organ in Amphipods.

The list is as follows :-(1) the antennary kidney and the maxillary kidney, both present in the larve, both persisting in Nebalia, the first persisting in most cases, the second in Isopods; (2) the branchial kidneys (in Nebalia, Amphipods, Isopods, and Mysis) ; (3) cephalic kidneys in Amphipods and Isopods ; (4) the "cardiac cells," surrounding the heart in Amphipods; and (5) the "liver" in all cases.

Maturation-Phenomena in Oogenesis and Spermatogenesis of Cyclops strenuus.*-P. Lerat describes the first matmation-division. It falls into Flemming's category of heterotypical division, showing a longitudinal division of the daughter-battonnets of the first figure in the metaphasis of the same. If there is a "reduction" in Weismann's sense, it occurs in the first kinesis after the manner described by Montgomery.

Absorption and Secretion in Terrestial Isopods. \dagger-J. R. Murlin has made a careful study of absorption and secretion in Porcellio scaber, Oniscus asellus, and other terrestrial Isopods. The part of the intestine concerned in absorption is a single-layered epithelium of very large cells, multiplying by amitosis especially at the time of moulting. There is a mid-dorsal typhlosole. The intestinal epithelium is syncytial, the cytoplasm being continuous from one cell to another. The author describes minutely the alveolar structure of the cytoplasm, the intracellular fibres, the spherical nucleus with numerous large granules of chromatin, and the changes of the luminal side of the cells at moulting.

The changes after three weeks' starving are described, and the subsequent results of feeding with various food-stuffs. An intracellular ferment is probably concerned in the change of food from an albumose stage to a later stage of the hydrolysis (peptone), or to a stage in the inverse process toward albumen.

The cells of the typhlosole absorb soluble foods, but the primary use of the structure is to provide channels through which the secretion of the hepatopancreas may flow, nobstructed by solid food, to the median portion of the intestine.

In the hepatopancreas there is but one kind of secreting cell, rich in zymogen granules, and forming a secretion which acts on proteids, carbohydrates, and fats. The ferment is set free by fragmentation, dissolution, or evacuation. The history of fat-foods has been very successfully followed. We have not been able to give more than a hint of the numerous detailed results of this research.

Genus Amphion. ${ }^{+-}$-E. Koeppel gives a full account of Amphion armata sp.n., a pelagic form captured by Chun near the Canary Islands. He brings forward evidence, e.g. the successive changes from the zoæa onwards and the occurrence of ovaries, to show that Amphion is a sexually mature animal and not a mere larva, like Phyllosoma, as has been maintained. Specifically, the form described is marked by a spine

[^18]on the ficntal margin of the dorsal shield, by another in the gastrical region, and by a third on the third joint of the antenna. It is probably one of the Sergestidæ, and an interesting annectant form.

Annulata.

Cocoons of Earthworm.*-K. Foot and E. C. Strubell find that Allolobophora factida forms cocoons apart from any copulatory process. Ten were formed by one isolated worm. Earlier observations by the authors related to cocoons formed during copulation. It is plain that there are two methods. The paper includes some notes on the spermathecæ and the spermatophores.

Nematohelminthes.

Intermediate Host of Filaria immitis. \dagger-T. L. Baneroft makes a preliminary commmication on this large threadworm of the dog, where the adult usually inhabits the right ventricle of the heart and the pulmonary artery, while the young forms swim abont in the blood in large numbers. Cobbold tanght that an intermediary host is necessary to transmit the parasite from dog to dog, but efforts to find the intermediate host have not been rewarded with definite results.

Bancroft finds that the host is the "house mosquito" (Culex skusii Giles), which is also the host of Filaria nocturna, and probably also of the malarial parasite.

The sexnally mature worms (F. nocturna in man, F. immitis in dog) produce embryos which swim in the blood ; the mosquito is infected with these; the embryos develop first in the Malpighian tubules and then in the gnt of the insect; in about three weeks they are capable of entering their final hosts if they get a chance ; if the infected mosquito bite man or dog, the filarie pass in by the puncture and grow to sexual maturity, which probably takes about a year.

Vinegar Eel in Human Bladder. $\ddagger-\mathrm{C}$. W. Stiles and W. A. Frankland record an extraordinary case in which Anguillula aceti was found in the bladder of a young woman suffering from Bright's disease. The occurrence of the parasites was abundant for $3 \pm$ days, and the worms throve in the urine for a conple of months. It seems likely that infection occurred through the urethra as the result of vaginal donches with vinegar.

Platyhelminthes.

Parasitic Worms as Aids in Zoogeographical Investigation.§H. von Thering seeks to show that some very useful hints as to the zoogeographical distribution of mammals and birds may be obtained from a study of their helminth parasites.

Mammals and birds, during their wanderings, are not freed from their "worms," whose intermediate hosts are very widely distributed. They gain new parasites as they wander, but they retain their older guests. 'Thus, in South America, holarctic helminths are not found in

[^19]the autochthonous forms, but only in the heterochthonous later immigrants. Thus helminthology becomes of use in distinguishing old inhabitants from later immigrants, and on the other hand there is a possibility of distinguishing old-established parasites from more recent forms.

New Turbellarian.*-O. Zacharias describes Stenostoma turgidum sp.n., which lives along with St. leucops and St. lemuce in the bog-moss of the moor near Plön. It is milk-white in colour, $450-500 \mu$ in length, 75μ in maximum breadth, very like St. lemme, but without its otolithvesicles. The specific name refers to the characteristic swellings on the body.

Notes on Gyrator hermaphroditus Ehrbg. \dagger - L. von Graff finds that this Rhabdocoelid resembles Monoophorum durum, in having two female genital apertures: one, the opening of the bursa, serves for copulation; the other, hitherto unknown, serves for oviposition. The latter, which corresponds to the female genital aperture of other digonoporons Turbellarians, is a fine pore on the ventral surface, about twice as far from the mouth as from the posterior end of the body.

Studies on Bipalium Species. \ddagger-Jos. Müller has studied some new species of this genus-Bipalium megalocephatum, B. virile, B. graff, B. bohmingi, and B. penzigi, with especial reference to the copulatory apparatus.

He gives diagnoses of the new forms, and describes the reprodnctive organs in detail. The outstanding result is that the copulatory apparatus shows remarkable diversity of structure. It may be that this hinders inter-breeding of species.

The anthor also describes the pharyngeal apparatus in several species, and notes the occurrence of a Monocystid Gregarine in the gut of Bipulium virile.

Trematodes from Marine Turtles.s-A. Looss has produced an elaborate memoir of nearly 500 pages on this subject. Among the many Trematode parasites of turtles, there is one belonging to the Aspidocotyleæ, viz. Lophotaspis alherens Lss., one belonging to the Amphistomidæ, viz. Amphistomum vallei, twelve belonging to the Fasciolida, and fifteen belonging to the Monostomidæ, family Prononcephalidæ, and seven to the Monostomidæ, family Angiodictyidæ. In addition to the systematic descriptions, the memoir discusses questions of species and genus and type,-and other rexed questions among helminthologists.

North American Trematodes.\|-H. S. Pratt has published part ii. of his synopsis of North American Trematodes,-a very useful piece of work. The digenetic forms-Aspidocotylea and Malacotylea-are dealt with.

American Representatives of Distomum variegatum. \mathbb{I}-J. Stafford notes that, as our knowledge of faunistic helminthology widens, it

[^20]becomes increasingly apparent that, in many cases, the conception of a species held by the older investigators must be broadened to include a group of closely related forms. One has but to think of such species as Distomum appendiculatum of fishes, and D. cygnoides of amphibians, to understand what confusion is likely to arise from a too rigid antipathy to an increase of specific terms. Thus, Distomum variegatum Rud., from the lungs of anurous amphibians, turns out to be another so-called "species" that has to be resolved into a gronp of " modern species."

Stafford has studied this form in many hundreds of cases ; he describes their general structure, and he gives good reasons for establishing five new species under the genus Hamatolocthus proposed by Looss.

Production of Hydatid Cysts from Scolices.*-Prof. Perroncito has observed that scolices of Tenia echinococcus may form hyatid cysts. The scolex secretes a cuticular membrane and breaks up completely, as the scattered hooklets show. His observation throws light on the serious consequences which are known to follow the opening of a cyst in the peritoneal cavity; the liberated heads settle down and form fresh hydatids.

Life-History of Bothriotænia proboscidea. \dagger - G. Schneider has found the young forms of this tapeworm-a common parasite of Baltic salmon-in the stomach and intestine of the herring. But there must be some previous host through which the herring is infected, and there must be some non-marine host by which the perch, trout, and pike of the (Genfer-See (quite isolated from the sea) are infected with the said tapeworm, for, as Zschokke has shown, it often occurs in them.

Incertæ Sedis.

Budding of Rhabdopleura normanni. $\ddagger-\mathrm{C}$. Vaney and A. Conte describe the regeneration of individuals and the lateral budding of the stalk in this interesting animal. In no case did their specimens show blastogenic individuals incompletely developed and giving rise to a series of buds on the stalk, as in those studied by Ray Lankester. The authors emphasise the close affinities between $R 2 h a b d o p l e u r a$ and endoproctons Bryozoa.

Heart of Enteropneusta.§-W. E. Ritter has independently reached conclusions similar to those of C. Dawydoff \| in regard to the structure and significance of the heart in Enteropneusta. Dawydoff has stated (1) that the so-called "Herzblase " (Spengel) or "Pericardiablase" arises as a blind vesicle by abstriction from the colom in the dorsal portion of the proboscis; (2) that the side of the vesicle-wall turned towards the chorda invaginates into the cavity of the vesicle to form ultimately a blood-sinus, which is the real heart, the outer primary vesicle being the

[^21]pericardium ; (3) that the relations of heart and pericardium are thus similar to those in Tunicates, especially Appendicularia.

Ritter has shown that the heart of Balanoglossus occidentalis is the ventral wall of the pericardium pocketed with the pericardial cavity, the mouth of the pocket remaining open backward and laterally, though narrowly, to form the main blood-vessels. In a word, the heart is constructed on the principle of the Tunicate heart. This type of heart is so unique, that "it is difficult enough to comprehend how it could have arisen once, to say nothing of its having arisen anew twice." There is evidence here of real affinity between Tunicata and Enteropneusta.

Movements of Enteropneusta.* - W. E. Ritter has made some interesting observations on the movements of Balanoglossus occidentalis and Dolichoglossus pusillus, from Puget Sound and the Californian coast.

Movements of both boring and locomotion are effected by a combination of ciliary and muscular action. The former is most in evidence when the animal creeps about on the surface of objects ; when boring, or moving up and down its canal, muscular action is most used.

When burrowing, the worm shows on its proboscis contraction-waves that move along from tip to base, but often remaining stationary in the form of great blebs. When in its burrow these blebs act chiefly as holdfasts, by which, through the contraction of the longitudinal muscles of the proboscis and collar, the whole body is drawn forward. The muscles most concerned in this are, first, those of the proboscis ; second, the radio-longitudinal muscles of the collar ; and, third, the longitudinal muscles of the "thorax-abdomen."

We have, in Enteropneusts, a system of locomotor muscles acting on an axial skeleton, derived in large part from the digestive tract. Nowhere else in Invertebrates do we find locomotion accomplished by muscles attached either to the intestinal tract or to derivatives of it. This gives an increased importance to the significance of the peculiar muscular relations of the collar region. Ecology is here, perhaps, of service to morphology.

Echinoderma.

New Crinoid. \dagger-R. Koehler and F. A. Bather describe Gephyrocrinus grimaldiii g. et sp. n., a new Crinoid dredged by the Prince of Monaco, at a depth of 1786 metres, near Hierre, in the Canaries. It is referred to the Hyocrinidæ, a family represented until recently by a single species, Hyocrinus bethellianus, dredged by the 'Challenger.'. The specimen differs from Hyocrinus, and from all known Crinoids, in the fact that the food-grooves are carried across from the fourth brachials to the orals on a thin unplated membrane stretching like the web of a duck's foot between each arm and the tegmen. Minor points of distinction from Hyocrinus, such as the fusion of the basals, the greater thickness of the cup-plates, the almost complete atrophy of the ambulacrids, and the form of the pinnules, have led the authors to give a fresh diagnosis of the Hyocrinidæ.

[^22]
Cœlentera.

Division of Protohydra leuckarti.*-W. M. Aders describes, what Greeff and Chun have reported, the transverse division of this very simple hydroid polyp. Besides the longitudinal muscular elements described by Greeff and Chun, there are fine annular muscular elements.

Transverse division in $H y d r a$ seems to be very rare. No budding is known in Protohydra. Budding is usual in Microhydra, but no division has been seen.

Observations and Experiments on Clava squamata. \dagger-A. Billard describes the degeneration and loss of tentacles in this hydroid when sexual maturity is reached. But a similar degeneration was also seen in young immature forms. Agassiz has noted a similar degeneration in sexually mature specimens of Syncoryne.

Billard has made a number of successful grafting experiments with Clava, and describes the somewhat slight regenerative capacity which this hydroid exhibits.

Minute Structure of Syncoryne sarsii. $\ddagger-\mathrm{E}$. Citron has made a histological study of this Tubularian, and describes minutely the covering, interstitial, stinging, ganglion, and sensory cells of the ectoderm; the nutritive, tentacular, glandular, and stinging-cells of the endoderm; the supporting lamella, and so on.

Hydroids of Pacific Coast of North America.s - H. B. Torrey makes a systematic report on these. Some of his general notes are of much interest, e.g. on the frequency of skeletal modifications due to environmental influences; and there is much pertinent œecological material throughont the paper. In connection with Corymorpha palma, the author describes phenomena of orientation, regeneration, \&c.; in some other cases he has brief notes on the development. The keynote of the paper is that even good systematic work requires prolonged study of the living animals.

Adult Pelagic Cerianthid. $\|$ - Ch. Gravier communicates an interesting note on some adult pelagic Cerianthids captured by L. Diguet in the Gulf of California. They were swimming near the surface in considerable numbers, and the reproductive elements were very nearly ripe. Young pelagic stages (Arachnactis, \&c.) of Cerianthids are familiar, but this is the first observation of an adult pelagic form. The mesenteries were rather " biseptal "than " quatroseptal," thus differing from known Cerianthids. The larva described by E. van Beneden as Dactylactis seems nearest the new form.

Actiniaria of the Olga Expedition. \uparrow - O. Carlgren reports on an Arctic collection of eight species previously described. With one ex-

[^23]ception, all are large forms, notably the gigantic Bolocera multicornis with several thousand tentacles. Three different species were found in the stomach of a cod, which shows that this fish does not disdain seaanemones. Carlgren has used the excellently preserved specimens to good purpose in the way of histological study.

Significance of Budding and Fission in Madreporaria.* - J. E. Duerden notes that the bud-polyps of gemmiferous corals arise as new individuals, which, in the course of their development, pass through the same stages as larval polyps, and ultimately possess all the distinctive characteristics-cyclical, hexameral plan, and directive mesenteries-of sexually produced polyps.

Larval polyps of fissiparous corals at first present a regular, cyclical, hexameral arrangement of the mesenteries, tentacles, and septa.
"Morphologically, a fissiparous coral, whatever its size, is to be regarded as only a single complex polyp, as contrasted with a gemmiferous colony, which is made up of numerous distinct individual polyps."

Notes on Anemones and Variation in Metridium. $\dagger-\mathrm{H}$. B. Torrey gives a systematic account of the anemones collected by the Harriman Alaska Expedition (six genera and six species). One genus, Charisea, and two species, Charisea saxicola and Epiactis ritteri, are described as new. The memoir also includes a description of a new Halcampid, Harenactis attenuata, from California, a few facts concerning Epiactis prolifera Verrill, and a discussion of the variations in Metridium dianthus.

In reference to the last topic, it may be noted that the anthor seeks to show :- (a) that regular hexamerous diglyphic polyps arise nonsexually as well as sexually; (b) that monoglyphic forms arise sexually as well as non-sexually; (c) that irregularities in the number and arrangement of mesenteries may be accounted for largely, perhaps exclusively, by non-sexual reproduction (mainly basal fragmentation); and (d) that variation of structural types is not correlated with mode of reproduction, but that the cause of such variation must be sought among the causes of variation in the number of siphonoglyphs, of the correlation of siphonoglyphs and directives, and the like. What these causes are is at present unknown.

Protozoa.

Reproduction of Acanthometridæ. \ddagger-A. Porta describes two modes of multiplication :-(a) by spores ; and, rarely (b) by budding. Corresponding thereto are two kinds of juvenile forms:-(a) uninuclear individuals of considerable size, with well-developed skeleton; and (b) multinuclear individuals of small size, in which the skeleton is absent, or very slightly developed.

In Acanthometra cuspidata Hkl. the author found a peculiar para-site-Amœbophrya acanthometre-as yet incerte sedis.

New Tripylea.§-A. Borgert describes, from the material of the German Plankton Expedition, some interesting new Radiolarians, be-

* Ann. Nat. Hist., lix. (1902) pp. 382-93 (4 figs.).
+ Proc. Washington Acad. Sci., iv. (1902) pp. 373-410 (2 pls. and 17 figs.).
\ddagger Rend. R. Ist. Lombardo. xxxiv. (1901) pp. $811-22$ (2 pls.).
§ Zool. Jahrb., xv. (1902) pp. 563-77 (11 figs.).
longing to the families Medusettidæ (e.g. Medusetta inflata, Euphysetta rara) ; Circoporidæ (e.g. Circoporus oxyacanthus, Circogonia (?) longispina); and Tuscaroridæ (e.g. Tuscarusa globosa).

Lamblia intestinalis Fatal to Rabbits.*-Prof. Perroncito finds that this Flagellate (with many synonyms,-Cercomonas intestinalis, Megastoma intestinale, \&c.), common in man and in the rat, as a parasite on the epithelial cells of the duodenum and elsewhere, causing obstinate constipation followed by profuse diarrhœa, is a frequently fatal parasite of rabbits, resulting in a mortality whose cause was previously unknown.

New Species of Chilodon. \dagger-Th. Moroff describes Chilodon cyprini sp. n., which lives on the skin and gills of diseased carp, though it is not itself the cause of the disease. It seems nearly allied to Ch. megalotrochce Stokes, parasitic on certain Rotifers.

Parasites of an Asiatic Tortoise. \ddagger - A. Laveran and F. Mesnil found in Damonia reevesii, two Hæmogregarines (Hcemogregarina stephanowiana sp. n. and H. rara sp. n.), Trypanosoma damonice sp. n. in the blood, Coccidium mitrarium sp. n . in the gut-a form remarkable in having an extra-cellular life, and the Myxosporidian Myxidium danilewskyi in the kidneys, where it also occurs in Emys lutaria.

Trypanosomas from Transvaal Cattle.§-A. Laveran gives a fuller account of Trypanosoma theileri, a parasite discovered by Theiler, a veterinarian at Pretoria, as has been previously noticed. The parasite is widespread in South Africa, causing Galziekté or bile-disease in cattle. Theiler has also sent to Laveran preparations of ox-blood, which reveal another species, T'r. transvaaliense sp. n. It seems quite distinct, e.g. in the close proximity of the centrosome to the nucleus. It remains to be seen whether it is restricted to Bovidæ as the other species is.

Hæmatozoa in Marine Fishes.\|-A. Laveran and F. Mesnil have shown that some marine fishes are often infected with Hæmatozoa. They note the occurrence of Trypanosoma raje sp. n. in three species of skate; of Tr. scylliumi sp. n. in Scyllium stellare ; of Homogregarina delagei sp. n. in two species of skate. A large number of bony fishes were examined, but Hæmogregarines were found only in the sole and in blennies, and Trypanosoma only in the sole, and that very rarely.

[^24]
BOTANY.

GENERAL,
 Including the Anatomy and Physiology of Seed Plants.

Cytology, including Cell-Contents.

Nuclei of Unicellular Animals contrasted with those of Plant Cells.*-L. Feinberg shows that the nuclei of organisms such as Amaba, Plasmodiophora, the malarial parasite, \&c. exhibit a structure quite different from that of the nuclei of ordinary animal and plant cells. While the latter nearly always show a chromatin network, which with the Romanowski stain becomes coloured red, and nucleoli which, likethe protoplasm, becomes coloured blue with the same stain; the former show merely a number of nucleoli, which, by the Romanowski method, stain red, not blue, and are surrounded, not by a chromatin network, but by a clear area which remains unstained and seems to represent cell and sap. Feinberg concludes that, from their staining reaction, the nucleoli of these animal-like unicellular organisms are comparable to the staining network of ordinary animal and plant cells.

Continuity of Protoplasm. $\dagger-\mathrm{H}$. Kraemer suggests that the appearances described by Gardiner and others as indicating a continuity of protoplasm through the cell-wall, are due to a peculiarity in the structure of the cell-wall, which is made manifest by the reagents employed, and which bears an analogy to the structure of the starch-grain. He cites observations which lead to the following interpretations. The starch-grain and the cell-wall are made up of alternating lamellæ of colloidal and crystalloidal substances. Physically the structure of the starch-grain and cell-wall are quite similar, although chemically different, the preponderating substance in the grain being granulose, while in the cell-wall the fundamental substance is cellulose. The crystalloidal layer in the starch-grain, consisting chiefly of granulose, is coloured blue with iodine or chlor-zinc iodide, whereas in the cell-wall this layer, consisting chiefly of cellulose, is coloured blue only with chlor-zinc iodide. The colloidal layers in both grain and cell-wall take up various anilin dyes. In starch-grains, as in cell-walls, there are radial clefts or colloidal areas, which, under certain conditions, also take up various anilin stains. The peculiar biconvex arrangement of the groups of striæ between contiguous cells in Nux vomica and Phytelephas is suggestive of fundamental lines of development corresponding to chromatin threads, although they may be modifications of the wall and represent tracts or channels through which liquids are distributed from cell to cell. All authors since the appearance of Gardiner's work have fallen into the error of supposing that a certain anilin dye could be regarded as a differential stain for protoplasm, whereas many colloidal

[^25]carbohydrates, as mucilage and pectin, and oils and other substances, take up these stains. Finally, if the substance in the cell-wall which takes up the stain is protoplasm, what is it in the starch-grain?

Nuclear Reduction and Fertilisation in Paris and Trillium.*A. Ernst has investigated the chromosome reduction, embryo sac development, and fertilisation in Paris quadrifolia and Trillium grandiHorum. In Paris the reduction in the number of chromosomes is from 24 to 12 , and this takes place at the first division of the embryo-sac mother-cell. This division is of the characteristic heterotype, and results in the production of two cells, the lower of which becomes directly the embryo-sac, while the mpper, after a second division of its nucleus, degenerates. In Trillium the reduction is from 12 to 6 chromosomes (the smallest number known in the vegetable kingdom, and found also in Naias), and of the two cells formed the upper usually degenerates without division, while the lower becomes directly the embryo-sac. The heterotypic division was studied, and the synapsis stage, which the author believes to be a natural condition, was observed. The chromosomes of this division in both plants often show, in the equatorial flake stage, indications of a second longitudinal division. In the diaster stage, by separation of the two halves of the daughterchromosomes, produced by this second division, V-, U-, and O-shaped figures are often produced. When the danghter-nuclei are reconstituted, this second division becomes lost, hat a fresh longitudinal splitting of the chromosomes is to be observed when the nuclei divide again. All the divisions in the embryo-sac were found to be exactly similar, so that, in contrast to Litium, Fritillaria, and Tulipa, the normal reduced number of chromosomes is found even in antipodal nuclei. Double fertilisation was observed in both cases, but actual fusion of the three nuclei appears to take place only on the spindle, for in all three the beginning of a definite chromatin thread was ohserved while they were in contact but yet unfused. The facts that in the vegetative cells of Trillium 8 chromosomes, instead of the normal 12 , were sometimes to be observed, and that the number of chromosomes in Paris is exactly double that of Trillium, when compared with the variations in number among the genera of the Liliaceæ, suggest that the chromatin thread of the nucleus undergoes a successive, and not a simultaneous division.

Nucleus of Spirogyra. \dagger-C. van Wesselingh has added yet a fourth to his papers on the nuclens of this alga. In this contribution he pays special attention to the question of the nuclear wall and spindle, and the hehaviour of the vacuole-wall during karyokinesis. By slowly killing dividing cells, and by the use of 20 p.c. chromic acid solution, combined with staining, he was able to prove that the spindle consists of a number of similar threads, which surround the nucleus and are combined together to form numerous bundles. The spindle-threads do not grow through the nuclear wall, but the latter disappears at an early stage, and the spindle is at first multipolar, but later becomes bipolar. The observations were made on Spirogyra informis.

[^26]Observations on the Nucleolus.*-F. Carara has made observations on the nucleolus of the embryo-sac of Lilium candidum which lead him to believe that during division the nucleolus extrudes a small corpuscle by a process of gemmation. This corpuscle, he believes, is derived from the central and more slightly staining part, and is probably used for the formation of the spindle. The much more deeply staining peripheral portion of the nucleolus. he suggests, is placed at the disposal of the chromosomes.

Glycogen from Yeast. \dagger-A. Harden and W. J. Young have stndied the glycogen prepared by extracting yeast. They find its chemical composition to be represented by the formula $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}$, thus showing its identity in composition with glycogen prepared from animal sources. The optical activity is also the same, and from a consideration of the various properties of glycogen from yeast, and from animal sources, it appears that no well-marked difference exists between the two.

New Proteid from Maize. \ddagger-E. Donard and H. Labbé describe a new proteid, maïsine, which they have extracted from seeds of maize. Its analysis corresponds to a chemical composition $\mathrm{C}_{184} \mathrm{H}_{300} \mathrm{~N}_{46} \mathrm{O}_{51} \mathrm{~S}$. It is insoluble in cold or hot water, and in the various salt solutions, soluble in methyl and ethyl alcohol, insoluble in aqueous acetic acid, but soluble in aqueous solutions of soda or potash, even when rery dilute.

Reserve Carbohydrates of the Albumen of Palms.§ - E. Lienard has studied chemically the carbohydrates contained in the seeds of Areca Catechu, Chamerops excelsa, Astrocaryum vulugare, Enocarpus Bacaba, Erythea edulis, and Sagus Rumphii. He finds in each case a small amount of saccharose, and also, as a result of fractional hydrolysis, mannose and, in less quantity, galactose.

Detection of Phosphorus in Plants.\|-A. Arcangeli discusses the value of the microchemical reagents that have been proposed for the detection of phosphorus in plant tissues, for example the employment of ammonium molybdate and nitric acid, and, in order to render the result more evident, the subsequent addition of either pyrogallic acid or stannous chloride, which yield respectively a brown and a blue coloration. He has made numerous experiments, and has come to the conclusion that as yet no satisfactory microchemical method has been established for the purpose, for the phosphomolybdate reaction does not always take place; the tissues respond to the reagent with different degrees of density (independently of the quantity of phosphorus they contain) ; the molybdic reagent is capable of giving the blue coloration with stannous chloride independently of the presence of phosphorus, and is liable to be influenced by the presence of other substances.

Caoutchouc-yielding Landolphias of the French Congo. 9 - Ang. Chevalier gives short botanical descriptions of three species of herbit

[^27]Feb. 18th, 1903
ceous lianes belonging to the tribe Landolphieæ. The most wide-spread-Carpodinus lanceolatus-does not yield caoutchouc. The species which yields most of the product is Landolphia Tholloni; the aërial shoots contain no caoutchouc in their latex, but the cortex of the long rhizomes is rich in an excellent product. A third species, hitherto undescribed, is L. humilis, in which the caontchouc is confined to the subterranean rhizomes; it contains less of the product than does L. Tholloni.

Leaf-Venation and Chemical Constituents of Eucalypts.*--R. T. Baker and H. G. Smith find that there is a marked agreement between the chemical constituents in the oils and the venation of the mature lanceolate leaves of the several species of New South Wales Encalypts, thus forming the genus into fairly well-marked groups. There is reason to suppose that a gradual deviation from a type has taken place, and that the formation of characteristic constituents in these oils has been contemporaneous with the characteristic alteration or deviation of the venation of their leaves.

Gums, Resins, and other Vegetable Exudations of Australia. \dagger J. H. Maiden gives a list of the genera and species yielding gums, \&c., arranged in families, with notes on the plants and their exudations. It is followed by "a tentative bibliography of Australian vegetable exudations."

Structure and Development.

Vegetative.

Conifer Wood from the Turf-Pits. $\ddagger-\mathrm{L}$. Geneau de Lamarliere has investigated the structure of semi-fossilised woods from turf-pits in the marshes of Saint Gond, now for the most part dry. He concludes, from examination of their remains, that during the tertiary period, conifers which reached a great height existed in Champagne, thus confirming the statements of previous writers. The wood shows a recognisable microscopic structure, though profoundly modified structurally, physically, and chemically. From the morphological point of view, he describes a network of intercellular lamellæ, modified only by the amount of compression to which the trunk has been subjected, cells which apparently have undergone no change (refringent cells), and others where the internal thickening layers have disappeared or been transformed into an amorphous annular or continuous mass. From the chemical point of view, the changes are very marked. The intercellular network still gives the reactions of pectic compounds, but it is probable that pectic acid occurs in the free state and not in combination with lime as appears to be the case in plants in the normal condition. In addition, lignin occurs and perhaps also phosphates.

The refringent cells seem to be elements which have not been attacked by destructive agents. Their walls still contain cellulose, pectic compounds, lignin, and phosphates. The amorphous substance

[^28]shows sometimes traces of cellulose and pectic compounds. The greater part consists of the substance described by Fremy as vasculose.

Comparative Anatomy of the Stem in Magnoliaces.*-G. D'Ippolito describes the structure of the transverse section of the stem in the chief genera of the order, especially with relation to that of the secondary wood.

Parasitism of Buckleya Quadriala. \dagger - S. Kusano has made an elaborate study of the parasitism of this member of the family Santalereee. The fact of its parasitic habit was discovered by Shirai, and announced in his work on plant diseases (published in Japanese in 1894). Knsano finds that a number of species may serve as hosts, including the conifers Cryptomeria, Abies firma, Chamocyparis, and species of Quercus, Carpinus, Fagus, Alnus, Rhododendron, and others. A full description is given of the form and anatomy of the haustoria and of the secondary growth in thickness. The haustorium has a cambium ring between its cortical and axial parts, whereby a continued growth in thickness is effected. The cambium of the haustorium joins that of both the host and the mother root. Demarcations between the zones produced in tach growth-period are visible, though faintly.

Anatomy of Anonaceæ. $\ddagger-\mathrm{H}$. Beyer gives a general account of the anatomy of the vegetative and floral organs, especially of African species of this family; also a short anatomical description of the leaves of all the African species studied.

Protection of Young Foliage Leaves and Seed Leaves.s-A. Hansgirg has studied the means of protection against injury, excessive loss of water, \&c. in the young leaves and cotyledons of a large number of plants, including ferns and seed plants. In this connection he arranges under twelve biological types, the young foliage leaves developing from subterranean and aërial buds.

Localised Stages of Growth. $\|-$ J. |A. Cushman has studied the early spring growth in some common New England plants with a view to the appearance of stages of development, similar to stages found in the young individual and also in the adult of ancestral forms. He notes a well marked relation between the occurrence of the earliest stages and the age of the plant. The plant coming up in its second year tends to be more primitive in its first characters than older and stronger plants, and therefore repeats more stages in arriving at the typical form than do older individuals. Weak individuals are more apt to show earlier stages than are more vigorous plants; this is true whether the whole i:: weak or whether the growth arises from adventitious or weaker buds.

Thorns of Gleditschia triacanthos. T-J. A. Harris figures and describes some variations from the usnal structure noted during one season in the thorns of this species.

[^29]Distribution of Hairs on the Surface of the Stem.*-A. Daguillon concludes as the result of an examination of the distribution of hairs on the stems of various herbaceous plants, including species of Veronica, Stellusiu, and other members of the order Caryophyllaceæ, that in some herlaceons plants there exists a relation between the distribution of hairs on a stem and its branching, the hairs being usually restricted to, or more abundant at the portion above the axillary buds.

Manual of Indian Timbers. \dagger-J. S. Gamble has prepared a new and revised edition of this work, which contains a short diagnosis of the wood and bark characters of all the woody plants of British India, with notes on the distribution of the species, their cultivation, and economic use. The arrangement is a systematic one and follows that of Hooker's Flort of British India. The plates represent cross sections of nearly one hundred species.

Reproductive.

Lagochilus. $\ddagger-$ R. Wagner discusses the morphological details of the inflorescence in species of this eastern genus of labiata.

Cause of Floral Zygomorphism. §-L. Barsanti reviers the opinions of Sprengel, De Candolle, Monquin-Tandon, Roeper, Dutrochet, Vöchting, Delpino, and others, on the canse of asymmetry in flowers, and expresses his own conchusions, which are that flowers were actinomorphic at first; that hy evolution some have become zygomorphic; that such zygomorphism was cansed by mechanical causes such as pressure, or by conditions of light or gravity, or by a biological cause such as the visits of fertilising insects : that it gradually acquired stability and hecame transmitted by heredity.

Theory of the Petiole in the Flower. \|-D. Clos raturns to the discussion of the morphology of the stamen, a subject which he has treated in previons memoirs. He holds the view that in most cases the filament of the stamen represents, in dichlamydeons flowers, the median nerve of the sessile petal or the claw of the clawed petal; and that the anther is a distinct structure of special nature. He criticises adversely the view adopted by many botanists that the filament is homologous with the stalk, and the anther with the blade of a leaf. He points out that there is no relation between the existence of filaments in the andrecium and of petioles in the leaves of the same species. Thus sessile leaves and long filaments oceur in numerous Caryophyllaceæ, Crucifere, (rassulacea, and other families, while Aristolochiu, Arum, and Dracunfoulus supply examples of sessile anthers and long-petioled leaves.

On the other hand, there is a striking resemblance between the petals and the filaments in many species of different families looth

[^30]monocotyledons and dicotyledons, while in Nympheacea and others there is a gradual transition from petals to filaments by narrowing of the former. Again, the petal and the filament have essentially the same anatomical organisation, while that of the petiole is quite different. The connective is merely the contimnation of the filament, and it is the connective, and not the anther-cells, which frequently become petaloid. The anther-cell, like the ovule, is a structure sui generis. In very rare instances sepals, petals, or carpels are supported on a true petiole quite distinct from the blade in the first two cases.

Development of Pollen in Asclepiads.*-Paul Dop has studied the development of pollen in species of Asclepias, Vincetoricum, Gomphocarpus, Marsdenia, and other genera, and finds thronghout results comparable to those obtained by Chauveaud in Vincetoricmm officinale. The pollen-mother-cells arise by division of subepidermal cells, and give rise to the pollen-grains directly by division into four. The mutritive layer formed of one or several layers of cells, secretes the waxy envelope around the pollinium, while the caudicles and retinacula are secreted by the epidermal cells of the stigma. After the dehiscence of the pollen-sac, the pollinium escapes from the sac and attaches itself to the candicles.

Germination of Pollen-Grains. $\dagger-\mathrm{P}$. P. Richer finds that the pollen of certain species which will not germinate in pure water, will germinate if a stigma of the same species or an allied species be placed in the water. On the other hand, it germinates less successfully, or may even fail to germinate, in the presence of a stigma of a very different plant. He concludes that there exist in the stigma special substances which encourage the germination of the pollen of the same plant, while inhibiting the germination of the pollen of a strange plant.

Double Fertilisation in Crucifers. \ddagger-L. Guignard has been able to follow all stages of this phenomenon in Capsella Bursa-pastoris and Lepidium sativum. The sexual apparatus has the normal structure and arrangement ; the two polar unclei fuse only a short time before fertilisation, and the large secondary nucleus lies close to the oosphere. The double fertilisation follows the usual course. The male molei reach almost simultaneously the nucleus of the oosphere, and the secondary nuclens of the embryo-sac, but the process of fusion is completed earlier in the case of the latter, and the division of the resulting tell precedes that of the egg. In the course of development of the embryo the albumen gradually disappears, with the exception of the peripheral layer. This, which the author has previously styled the proteid layer. persists in the ripe grain in all Crucifers, as it does also in almost all families the seed of which is described as exalbuminons.

Recent Investigations in the Embryo-sac of Angiosperms.

I). H. Campbell gives a résumé of recent work on the course of events in the embryo-sac of Angiosperms. He regards Peperomit as the most primitive form yet described, basing his conclusions on the absence of a

[^31]definite egg-apparatus and antipodals, and especially the increase in the number of nuclei. There is a striking similarity between the structure of the embryo-sac in Peperonia and in Gnetum among Gymnosperms. The typical embryo-sac may have been derived from one like Peperomith by the suppression of a nuclear division. The marked polarity, and the specialisation of the egg-apparatus and antipodal cells, are probably secondary characters, and the fusion of the polar nuclei finds its prototype in the multiple fusion of the melei in Peperomia to form the endosperm-mucleus. The egg-cell probably represents an archegonium reduced to a single cell, and the synergide may also represent potential archegonia, although they may with equal probability have been derived from vegetative prothallial cells. The remaining structures-the polar muclei (and the result of their fusion, the endosperm-nucleus) and the antipodal cells represent vegetative prothallial tissue. The fusion of the polar muclei is in no way to be regarded as a sexual process; the regular occurrence of a multiple fusion in Peperomia is a strong argument against such an assmmption. It is probably to be interpreted as a stimulus to further growth. The fusion of the second pollen-nucleus with the endosperm-nnclens must bo considered as more or less accidental.

Physiology.

Nutrition and Growth.

Physical Conditions of Tuberisation in Plants.*-Noel Bernard discusses the bearing of results recently obtained by M. Laurent on his own theory that the development of buls into tubercles is a symptom of a general modification of the internal constitntion of a plant ly the action of endophytic fungi which inhabit its organs of absorption. M. Bernard repeats the experiments of M. Laurent, and confirms the results arrived at by that author. Shoots of potatoes cut off and plunged into a solution of saccharose, glycose, glycerm, and other solutions of sufficient concentration, develop tubercles from the buds on their aerial stems. He concludes that the result is due, not to the specific properties of the dissolved sulstance, bat to the degree of concentration of the solution. In every case there is a critical concentration of the solntion below which the huds develop into leafy branches, while if it be exceeled tubercles are formed. It wonld appear that the tuberisation of the louds depends directly on the realisation of a certain degree of concentration of the sap which nourishes them in dissolved substances. The presence in the tissues of the plant of parasites capable of effecting by their diastatic secretions an increase in the complexity of the molecular compounds is one of the conditions which may lead to this state. Other factors, especially those which govern transpiration, may have the same effect. Hence M. Laurent's results are not inimical to the author's parasite theory of tuberisation.

Photosynthesis. \dagger-E. Griffin has investigated the relative amount of photosynthetic action in green leaves when the upper and mider surfaces respectively are illmminated. He wished to test the hypothesis

[^32]of Stahl and Haberlandt, who have explained differentiation of the mesophyll of an ordinary dorsiventral leaf into an upper palisade and a lower spongy layer as an adaptation to favour photosynthesis, and at the same time to ensnre the protection of the chlorophyll-corpuscles. The author finds that with dorsiventral leaves photosynthesis is reduced if the lower surface is ilhminated by direct sumlight instead of the upper. The greatest difference is found in thick leaves; e.g. in cherry laurel the proportion was as 100 to 48 . In leaves where the mesophyll is more or less homogeneous, as in the bamboo, the difference was small, the proportion being 100 to 92 .
R. O. Herzog * finds that extracts prepared from crushed green leaves by the method used by Buchner to extract the ferment from yeast have no power to absorb carbon dioxide and give ont oxygen. This confirms the view that the photosynthetic power of the chlorophyll corpusele is dependent on the life of the protoplasm.

Assimilation of Yeasts. \dagger - Th. Bokorny, of Munich, has studicd the effect of the enviromment on the life of the yeast plant. He made a scries of experiments on the influence of temperature, and he fomm that while $85^{\circ} \mathrm{C}$. was too warm, $5^{\circ} \mathrm{C}$. was too cold for healthy development. At the lower temperature the weight of the plant decreaserl. This result coincides in some measure with that determined by Krensler for green plants; 20° was fonnd to he more favourable than 35°. Cold did not, however, affect so seriously the green plant experimented with. The writer tested also the cffect of varions concentrations of fluid, to some of which poisons or otherwise harmfnl substances were added. In most of the experiments a 20 p.c. solution of cane-sugar was used, hut the highest degree of activity was reached with 5 p.e. The greatest retardation resulted from the introduction of minute quantities of caffein. Flnoric acid was found to be almost equally hurtful. Free phosphoric acid was also found to act as a check.

Irritability.

Influence of Light on Sced-Germination. $\ddagger-$ E. Heinricher has studied the relation of light to the germination of seeds in a number of genera and species. In the case of many plants which inhabit strongly insolated localities light seems to exereise a very important influence on germination ; but the rule is not general, as certain light-loving plants, such as species of Mesembryanthemum and others, germinate as rapid! and as well in the dark as in the light, and in some cases, as in the Bromeliad Acanthostachys strobilacea, darkness favours germination. Seeds of Pitcairnia mä̈difolia and Drosera capensis, on the other hand, refused to germinate in complete absence of light; such a stronglymarked influence of light has been known previonsly only in the case of the mistletoe. The author suggests that the same relation holds in the case of other plants, especially light-loving epiphytes of the savamas: most of the Tillandsieæ probably resemble Pitcairnia maidifolit in this

[^33]respect. Seeds of the latter plant were found to require a longer light exposure if the other conditions of germination (dampness and warmth) had been previously present. In the case of Drosera capensis, if illumination was too long delayed in presence of otherwise favourable conditions, power of germination was lost. In other cases presence of light exercised only an accelerating effect. Remarkable differences were noted in plants of the same family or even genus.

Relations of Plant-Growth to Ionisation.* - A. B. Plowman is conducting a series of experiments at the Harvard Botanic Garden on the relation of plants to electricity. He finds that seeds placed near the anode are always killed by a current amounting to $0 \cdot 003$ ampere or more if continued as long as twenty hours, while seeds placed near the cathode are generally but little affected, though sometimes they are apparently stimulated by the current. He suggests that these effects are produced by the electrical charges of the ions rather than by any mere chemical activity of the dissociated atoms, and concludes that negative charges stimnlate, and positive charges paralyse, the embryonic protoplasm of the plants. In support of the latter statement he adduces the fact that when a flower-pot containing lupins of about four weeks' growth is charged to relatively high potential with positive electricity, the plants stop growing, gradually lose turgidity, and finally die. On the other hand, when a negative charge is used, these effects are not produced, but the plants are actually stimulated.

Chemical Changes.

Enzyme in Ripening Plantains. \dagger-C. R. Newton discusses the relation between enzyme action and disappearance of tannin in ripening plantains. The umripe fruit contains large quantities of tannin, while in the dead-ripe fruit scarcely any trace is left. Tincture of guaiacum turns blue the cut surface of the umripe fruit, and the action is most intense in the neighbourhood of the cells which give the strongest tannin reaction with solution of iron salts, namely, those between the skin and the pulp and those near the seeds. Judged by the colonr test plantains contain a variable quantity of enzyme. Those grown in the plains had the most, those in the hills, which require to be hung for a long time, often months, to ripen, have a much less quantity, and the wild ones, that never lose their very astringent taste, the least of all. 'Lhis suggests that the action of an enzyme on the tamin is one of the principal factors in the ripening of the fruit.

Yeast Ferment. $\ddagger-T h$. Bokorny, of Munich, gives us the results of his research on the proteolytic enzymes of yeast. He discusses the quantities produced, and then compares the results with those produced 15 pepsin and trypsin. The anthor attacks several other problems: the distinguishing of the different proteolytic effects produced in the yeast; the most favourable conditions of acidity ; and the influence of nutrition on the production of enzymes.

[^34]
General.

Notes on Styraceæ.*-JJanet Perkins gives descriptions of some new species of Styrax from tropical America, and a list of all known tropical Asiatic species of the genus arranged in clavis form. A few new species are described from China and Sumatra.

Revision of the Species of Lisianthus. \dagger-The same anthor contributes a srstematic revision of the fifteen species of this West Indian and Central American genus of Gentianacea.

Monograph of the Myricaceæ. \ddagger-Ang. Chevalier gives an exhaustive monograph of this family, inchding a brief historical introduction, a general detailed account of the anatomy, histology, and organography of its members, and a systematic revision of the species, including full descriptions and notes on geographical distribution. He restores to generic rank Gale, which includes the common species Myrica Gale L., and Comptonia, which comprises the Canadian Myrica asplenifolia L.

Floral Distribution in the Alpine Zone.§ - P. Jaccarl discusses the factors which determine the plant distribntion in alpine zones, and formulates a number of laws by which it is governed.

Plant-Formations and Flora of South Bulgaria. $\|$-.J. Podpera describes the topographic and climatic condition of the country and the various plant-formations. He then begins an enumeration of the plants, among which are included several new species, varieties, and forms.

Chinese Flora. ${ }^{I}$ - The continuation of Forbes' and Hemsley's Enumeration of Plants from China and adjoining Islands, part xiii., contains the Gymnosperms. Dr. Masters has elaborated the Conifers and Sir W. T. Thiselton-Dyer the Cycads. This portion completes a volume (Stylidieæ to Cycadaceæ) and is an index number.

Flora of Uruguay.**-J. Arechavaleta supplies notes on various species of seed-plants and descriptions of new species of Ionidium, Monnina, Cordia, Hypericum, and Eriocaulon.

Monograph of North and Central American Species of Senecio. $\dagger \dagger$ -J. M. Greenman gives the first part of his monograph. It comprises a general account of the morphology of the genns, a review of the systematic grouping of the species in sections and subgenera, a nominal enumeration of the species in therr respective sections, and an account of their geographical distribution. The second part, which is to follow, will contain the special systematic portion.

Notes on Australian Botany. - R. H. Cambage $\ddagger \ddagger$ continues his notes on the botany of a portion of the interior of New South Wales, the present iustalment forming part vi.

[^35]E. Cheel * insists on the specific identity of Juncus holoschconus and I. prismatocarpus, which were described by Robert Brown in his Prodromns, but subsequently united by Bentham under the name J. prismutocarpus.
J. H. Maiden \dagger supplies notes on critical species of Eucalyptus, and R. T. Baker \ddagger embodies the results of his researches on Eucalyptus melannphloia in an amended description.
W. V. Fitzgerald § describes several new species of seed-plants from Western Australia.

Plant Teratology. $\|$ - O. Penzig describes an abnormal flower of Gludiolus segetum in which the members of the inner perianth-whorl had become doubled, and which was tetrandrons from the development of an anterior median stamen ; the ovary was also six-chambered. He also figures an ascidial formation at the apex of leaves of Smilax aspera, and some remarkable accessory leaf-blade formations in Carica Papaya.

Plant Microscopy. Φ - C. Zimmermann describes the nse of the Microscope and its appurtenances for the benefit of students of botany. Also forms of microtome and methods of fixing and preparing material for examination.

CRYPTOGAMS.

Pteridophyta.

Fern Study in North America.-The Ferm Bulletin** celebrates the completion of the tenth rear of its existence and contains papers by G. E. Davepport, W. N. Clute, and L. M. Underwood upon the past, present, and future of fern study in North America. Other papers are contribnted on British Fern Culture, by C. T. Drury; New Zealand Ferns and Fern Study, by G. E. Smith ; Notes on Japanese Ferns, by Kiichi Miyake ; A New Equisetum, by A. A. Eaton ; and a Historical Sketch of the Linnean Fern Chapter (the Cluh who started the periodical), hy B. D. Gilbert.

Cuban Ferns. $\dagger \dagger$-L. M. Underwood and W. R. Maxon describe four new species of ferns recently gathered in Eastern Cuba by L. Pollard and W. and E. Palmer. The collection contains 425 plants, of which 144 were ferns. Notes are published on thirteen other species, new, rare, or confused.

Bryophyta.

Rhizoid-Initials of Marchantia. \dagger_{+}^{+}-F. Quelle discusses the so-called rhizoid-initials in the ventral scales of the Marchantiacere, and shows that in many cases they have been confused with the oil-body cells though easily distinguishable from them. He quarrels with the expression initial-cells, on the ground that the rinizoid may arise from any

[^36]cell of the ventral scale except the oil-body cells. He provides a key by which the five commonest Marchantiaceons hepatics can be distinguished from one another by characters of the ventral scales, namely, by the appendages and the oil-bodies.

Riella.*—L. Corbière discusses the hepatics Riella gallica Trab. and R. Battandieri Trab., and shows that the former is not dioicous as has always been supposed, but is monoicous like the Algerian species R. Battandieri, and is but the French form of that species and must therefore be reduced. The mistake arose owing to the fugacious character of the antheridia which disappear after diseharging their contents.

British Hepatics. $\dagger-H$. W. Lett has published a list, with descriptive notes. of all the species of hepaties hitherto found in the British islands. It is written in simplified English. Each species receives ten to twenty lines of description with notes appended in small type. A key to the genera is given at the beginning of the book, and kers to the species are placed under the genera. The scheme of classification of both the genera and the species is peculiar to the book. A bibliography and index are supplied.

Hepatics of Baden. $\ddagger-K$. Müller publishes a list of his gatherings of hepaties in Baden in 1901, mostly from the Feldberg neighbourhood. He adds eight species and three varieties to the flora of Baden. Full descriptions and critical notes are added where necessary.

North American Hepatics.-A. W. Evans § describes and figures a new species of hepatic, Diplophylleia apiculata, which is not uncommon in the Eastern United States, and has long been known, but has been confused with other species. The author shows that it differs from D. obtusifolia and D. taxifolia in its inflorescence and its apiculate leaves.
W. C. Barbour \| continues his monograph of the species of Radula. found in the United States, and gives an annotated list of nine species and a key.
A. W. Evans 9 publishes notes on fourteen hepatics which are additions to the flora of New England, and indeed several of them new to the Eastern States. All but two of them occur in Europe. Incidentally several confusions of synonymy are cleared up.

- New Zealand Hepatics.** - E. S. Salmon describes and figures a new species of hepatic-Isotachis Stephaniï, discovered in New Zealand. It is a robust species of a genus which is remarkable for the close resemblance of its amphigastria and leaves. The original description $\dagger \dagger$ is reproduced with additional notes by R . Brown, the collector of the plant.

Interconversion of Sexual Organs in a Moss. $\ddagger \ddagger$-E. de Bercevin describes an anomaly that occurs in the inflorescence of a form of the

[^37]moss Plagiothecium sylvaticum that grows near Lisieux. The foung archegonia tend to become converted into antheridia of peculiar shape, hut whether they are of functional value is not known. The reason for the transformation has not yet been discovered.

Peristome.*-A. J. Grout publishes the fourth part of his notes on the peristome of mosses, and discusses the mechanism by which the spores of Polytrichum and Buxbaumia are shaken or puffed out of the eapsule in nature. In the succeeding article he brings to a conclusion his remarks upon the nomenclature of mosses, and the confusion and anomalies resulting from the well meant efforts of incompetent reformers.

Suppression of Redundant Moss-Species. \dagger - A. Geheeb publishes a series of notes upon specific names which have acquired an unjustitiable position in bryological literature. By reducing them to mere synonyms and putting them in their proper place he clears up many doubtful points. He also summarises similar work done by E. S. Salmon.

Genus Thamnium. $\ddagger--$ N. C. Kindberg finishes his revision of the genus Thammiam, and treats of 76 species which he redescribes, adding the synonyms and geographical distribution of eaeh species. The anthor maintains 96 species in all,-a considerable reduction of the pre-existing total. In the concluding pages he distinguishes the individual variations of two of the species examined, one of which is T^{\prime}. alopecurum, a common British moss; he then summarises the geographical distribution of the species, and adds notes on the species which he excludes and those which he has not been able to obtain for examination. The value of the paper is much increased by the index supplied.

Notes on Osculatia and Schwetschkea.§-E. S. Salmon contimes his series of bryological notes and shows that the rare and puzzling moss-genus Osculutia De Not., which had been misplaced in Meeseacere, is identical with another moss from the Andes, Bryum globosum Mitt. He redescribes and figures the plant. He passes on to the genus Schucetschkea, and claims that in at least some of the species the inner peristome has a basal membrane.

British Moss Flora. -J. A. Wheldon || and A. Wilson publish an additional list of West Lancushire mosses and hepatics, adding upwards of 40 species and varieties to their previous records for the district, which turns out to be unusually rich in Sphagna.
H. N. Dixon 9 describes four very perplexing varieties of British mosses from various mountain localities in our islands. In each case they differ remarkably from the typical form of the species to which they are referred.
J. H. Davies ** records the first discovery of Weisia rostellata Lindb. in Ireland. It was found near Lisborn, Co. Antrim, on a bank of earth dug out of a ditch. This little moss occurs in England, but is rare.

* Bryologist, v. (1902) pp. 94-7.
+ Beih. z. Bot. Centralbl., xiii. (1902) pp. 105-11.
\ddagger Hedwigia, xli. (1902) pp. 225-68.
§ Journ. Bot., xl. pp. 369-7t (1 pl.). UTom. rit., pp. 412-6.
I Tom. cit., pp. $37 t-80 . \quad * *$ Irish Naturalist, xi. (1902) p. $2 s 9$
W. Ingham* supplements his previons list of Sphagna of Yorkshire and Durham by an account of the additional species and varieties found ber himself in the former countr.
W. $\dot{\mathrm{P}}$. Hamilton \dagger publishes a localised list of the Sphagna of Shropshire, renamed in accordance with Warnstorf's revision of the genus.

French Moss Flora.- F. Camus \ddagger records the occurrence of the Mediterranean moss Ceratodon chloropus Brid., on the island of Noirmoutier, on the Atlantic coast of France, and snggests that it should be looked for in other spots along that coast.
C. Meylan § reports the results of his gatherings of Muscinca in the Jura during the past three years. He adds eleven mosses and twelve hepatics to the flora of the chain of the Jura.

Ravaud \| contimes his guide to the collector of mosses and lichens in the neighbourhood of Grenoble, that is to say, he records the various plants that may be gathered on the various rocks and soils passed by the wayfarer as he takes a definite walk described by the author, e.g. from La Grave to Villard-d'Arène.

Moss Flora of French Caverns. \mathbb{T} - L. Géneau de Lamarlière and J. Maheu publish a third contribution to our knowledge of the mosses which occur in underground caverns. These latter are very numerous iu the Jurassic strata of the department of the Yonne in central France. Very few species of mosses occur on the surface owing to the dryness of the limestone. Some of these species occur in the caves, and with them are others which are not known to grow on the surface in the neighbourhood of the cares. The caves are dry, and the mosses growing in them are usually xerophilous and calcicolons in character, and owing to the comparative darkness are considerably modified in habit. Abont a score of species are recorded, and six of these are so modified that they are described as definite varieties.

German Mosses.**-V.v. Cypers continues his list of the cryptogams of the Riesengebirge district by giving an enumeration of the plenrocarpous mosses with annotations. He distinguishes a new variety of Brachythecium rivulare.

Japanese Mosses. $\dagger \dagger$ - E. G. Paris publishes a list of the mosses gathered by Faurie in 1900 in the southern part of Japan, from South Nippon to the Lin-Kin Islands. He records several new species and describes twenty-two of them with the collaboration of V. F. Brotherus. Two genera, Leucoloma and Trichosteleum, were previonsly unknown in Japan. At the close of the paper is a list of the Japanese mosses grathered by Ferrié, and among them are several new species by C. Mueller and by Brothcrus, but at present they are undescribed.

Muscineæ of South-East Asia. $\ddagger \ddagger-E$. G. Paris gives an account of twenty-four mosses and eleven hepatics gathered in the French posses-

[^38]sions in Eastern Asia by various collectors. Six new species of mosses are deseribed.

Muscineæ of the Galapagos Islands.*-A. W. Evans and W. (i. Farlow publish lists of the hepatics and mosses respectively of the Galapagos Islands, basing their reports primarily on the collections made by Snodgrass and Heller in 1898 and 1899, but including also all the previous records for these islands, e.g. by Darwin, Andersson, Baur, Eighteen hepaties and nine mosses are catalogued ; two of the former were indeterminable speeifically. At least five hepaties and three mosses are endemic.

Muscineæ of the Atlantic Islands. $\dagger-V$. Schiffner has worked up the bryophytes of the collections made by J. Bornmüller in Madeira and the Canaries in 1900 and 1901, and has found among them some novelties, several additions to the flora of the Atlantic Islands, and a number of rare species very sparingly gathered previously. He begins a list of his determinations, supplying descriptions and critical notes where necessary, and recording the geographical distribution.

Thallophyta.
 Algæ.

The Pyrocysteæ. \ddagger - V. H. Blackman here embodies the result of observations made on living material, chiefly during a voyage to the West Indies some years ago. Pyrocystis pseudonoctiluca Wyv. Thoms. is treated in detail under the headings of structure, reproduction, distribution, and luminosity. The author succeeded in stimulating speeimens of this organism by means of alcohol sufficiently to enable him to study it by its own light under a low power of the Mieroscope in the dark. From this examination he is led to believe that the radiation of light arises "from the mass of protoplasm surrounding the nucleus." P. fusiformis Wyv. Thoms., P. Lumula Schütt, and P. Hamulus Cleve are shortly treated, and remarks are then made on amylum-bodies which occur in all four species in the form of clear, refractive bodies, either spherical, oval, or rod-shaped. The author likens them to the so-called amylum-bodies of certain Peridiner, though he considers that their exact nature is at present uncertain. The systematic position of the Pyrocysteæ is discussed, but, owing to want of knowledge of the life-history of any of the species, the author considers their position doubtful. A synopsis of species includes the somewhat doubtful speeies P. lanceolatus Schröder. A list of references closes this paper. The plate contains figures of the four established species.

Minute Structure in Iriceratium.§-A. A. Merlin finds T. parallelum and one of its varieties, T. glandiferum, possess a "delicate lacework structure apparently covering the whole of the silex composing the

[^39]upper surface of the valve, and extending to, and closely surrounding the primaries." The structure is exceedingly faint and minute, but the author feels convinced that it really exists.

Phytoplankton of the Thames.*-F. E. Fritsch gives a preliminary note on the result of his investigations made during six separate days in July and August of last year. The portion of the river examined extends from Kew to Cookham, and the samples were collected from a rowing-boat by means of an ordinary funnel-shaped net of fine gauze, having the lower narrow end attached to a glass tube. The quantity of plankton organisms decreases steadily down the river, and at Kew, where the tidal influence is felt, the desmids and pediastrums are either dead or dying, while many of the diatoms consist of mere empty frnstules. The author attributes this to the influence of the brackish water, which enables purely marine species (Coscinodiscus radiatus, Surirella ovata, and Rhaphoneis Rhombus) to exist at Kew. Diatoms play an important part in the upper reaches examined, the proportion at Windsor and Maidenhead being about 20 to 1 . The commonest forms are Fragilaria virescens, Melosira varians, M. moniliformis, Pleurosigma attenuatum in the surface layers, species of Surirella, and in parts. Campylodiscus noricus. Among green algæ the most common forms were Pediastrum Boryanum and P. pertusum, Closterium moniliferum. Cosmarium margaritiferum, and Scenedesmus quadricauda. Speeies of Oyanophyceæ occur more frequently in the lower parts of the river, the commonest forms being Microcystis protogenita and M. marginata. No Peridiniaceæ were observed.

A table is given in which are enumerated fifty-four species and fire varieties, together with their distribution and the relative number of individuals found.

Variations-Statistics as applied to Plankton-Diatoms. \dagger-P. Vogler writes a preliminary note on the importance of applying this method of investigation to plankton. He expresses his results in curves, and is of opinion that by this method only can a true conception be formed of the dimensions of a given species. He maintains that average measurements are of no value. He has devoted five years to this research.

Diatomaceæ of the Hull District. $\ddagger-$ F. W. Mills and R. H. Philip publish an illustrated list of the diatoms occurring in the neighbourhood of Hull-to the number of about 600 species and varieties, which is a considerable advance upon the lists published by G. Norman in 1859 and 1865 , which contained about 400 and 480 species respectively. The present list in fact represents nearly half the species that are found in the British Isles. In what is here called the Hull district are included places within reach of a half-day excursion from Hull. Each species and variety is figured. Most of the figures have been taken from Schmidt's Atlas, Van Heurck's Synopsis, and other standard and minor works; but some have been drawn specially. The nomenclature and classification are mainly those which have been adopted by

[^40]Van Henrck. Synonymy is excluded sare in so far as it is necessary for keeping in touch with Norman's lists. Attention is called, in the introduction, to the fixity of certain species in certain localities, and, on the other hand, to the appearance or disappearance of other species in other places, for reasons at present unknown. Norman's slides have heen submitted to re-examination.

Licmosphenia, a New Genus of Diatoms.*-C. Mereschkowsky founds his new genus Licmosphenia on diatoms collected at Villefranche, and places in it five species - L. Grunowii, L. Clevei, L. Peragalli, L. Schmidtii, and L. Van Heurckii. He gives a full description and figures of each species. The gemus is intermediate between Licmophorr and Climacosphenia, from which it differs in the disposition and perforations of the septa. In Licmophora the septa are perforated by a single large orifice; in Climacosphenic there are several such orifices, and in Licmosphenia there are two only. The paper ends with a key to the species.

Reproduction of Valonia. \dagger-P. Kucknck gives a short preliminary account of the mode of reprodnction in Valonia ovalis. Several days before the spores are ripe and ready to escape, certain delicate markings become visible on the wall of the mother-cell, and dark-green agglomerations of protoplasm are fonnd in the shape of rings or lranched bands. The cell-membrane covering this portion of the mother-cell then develops thin spots, around which the masses of protoplasm gradually split up (zerkluften), the membrane breaks, and the zoospores escape. The posterior end of the zoospore is deeply coloured and full of starch, the anterior portion leing colourless and having two cilia. No eye-spot was to be seen, and the zoospores did not mite in pairs. After a time the mother-cell resumes its normal colour, the openings close up, and eventually the process of reproduction is repeated. It is remarkable that the zoospore is not divided off from the surrounding protoplasm by any cell-rall ; and since the contents of the mother-cell are at the time of the escape of the zoospores in direct contact with the outer world, considerable firmness of the membrane is necessary to prevent collapse of the entire cell.

New Genus of Siphoneæ. $\ddagger-\mathrm{A}$. Ernst fomnds a new genus, Dichotomosiphon, for the reception of the alga which till now has been known as Vaucheria tuberosa A. Brann. His paper on the snbject is divided into (i.) Vegetative Organs; (ii.) Reprodnction ; (iii.) Systematic Position of Dichotomosiphon. Under the first heading the branching is described as beginning in a dichotomous manner, and ending as tri- or sometimes penta-chotomous. The cell-membrane and cell-contents, including chlorophyll- and starch-grains, are treated in detail, and the similarity is pointed ont which exists between this genus and Codiaceæ. Under Reproduction are described the oogonia and antheridia, which arise terminally on short special branches. The development of each has been traced, and is here described, together with an

* La Nuova Notarisia, 1902, pp. 177-83 (5 figs. in text).
\dagger Ber. Deutsch. Bot. Gesell., vii. (1902) pp. 355-7.
\ddagger Beih. Bot. Centralbl., xiii. (1902) pp. 115-48 (5 pls.).
account of the fertilisation' and of the resulting oospore. Attempts to follow the germination of the latter have so far been unsuccessful. Besides the sexnal method of reproduction, there exists in Dichotomesiphon an asesual form of reproduction which is mnlike anything known till now among the Siphonee. Unbranched, rhizoid-like filaments arise on the plant, and these bear tulercles, which become thick in protoplasm, and germinate after being cut off by a transverse wall from the rhizoid-like filament.

As regards the systematic position, the anihor places this genus nearest to Vaucheria, from which, however, it has many points of difference. A striking resemblance exists in certain points to Halimeda and Codium, but especially to a still undescribed, young condition of Udotea. A full diagnosis, followed by references to literature, closes this paper. The various conditions described are figured in colonred plates.

Cell-Membrane of Desmidiaceæ.* - J. Lütkemüller has made all exhaustive study of this subject, and now publishes the result of his nine years' work. Several hundred species were examined, and the author is enabled to divide the family into five groups of genera, which are sharply distinguished from one another by constant anatomieal and physiological characteristics. The types of the five groups are Cosmarium, Closterium, Penium, Gonatosyyon, and Spirotenia. The cell-membrane, pore-apparatus, and cell-division of the various types are dealt with, and remarks are made on the position of the genns Peniam, relationship, of the types, function of the pore-ipparatus, and systematic treatment. Finally a srnopsis of genera in Desmidiacee is given, drawn up on the lines of classification propounded by the author.

Ulotrichaceæ and Chsetophoraceæ of the United States. \dagger-T. E. Hazen publishes the result of five rears' stady on these groups of alga. After giving short accounts of his method of study and methods of preservation, he gives some remanks on their distribntion, which, he says, is still somerbat donbtful from the unreliability of so many records. Then follows the srstematic treatment of the two groups, in which the author gives diagnoses of the families and genera, with keys to genera and species. After the name of each species are given synopses and references to literature. a diagnosis, references to Exsiccata, habitats and distribution, and finally critical notes. Ten new snecies are described, and three new forms or varieties. The anthor has endeavoured to emphasise cytological, and especially chromatophore characters as much as possible, but in many cases he has been reluctantly compelled to fall back on the character of cell-measurements "to separate species which, after careful ohservation, he is convinced are distinct." A list of bibliography and an index complete this paper.

Edogonium. \ddagger-F. E. Fritsch has made a detailed study of the young root-ends of five species of this semins, and comes to the conclusion that certain trpes are characteristic of certain speries. It is generally found that the form of the root-end varies, according to whether

[^41]Feb. 18th, 1903
the young plant is free or attached. Air-bubbles are often found in connection with the floating individuals, probably formed from the plant itself. The author shows that though the first cap of the young plant may be, and often is, thrown off, this is by no means the rule. In certain plants there is an abnormal zoospore formation, in which the zoospores are either not liberated at all, or they only exhibit a very sluggish movement. In the latter case, the germinating zoospore produces very strange forms of young plant.

Vegetative Reproduction of Dasya elegans.*-F. Tobler describes the result of experiments made by himself on the growth of Dasya elegans under various conditions of light. Certain plants of this species were cultivated in a vessel close to a window, with the result that after two days the thallus had shed all the penicilli, as well as the smaller branches, which were lying at the bottom of the glass vessel. These fallen branches were seen to sprout, and the author describes and figures the various stages of the process. He was able to compare with this form of reproduction the normal growth of a plant from tetraspores, since the cultures were carried on simultaneously. The power of reproduction from vegetative cells is not confined to the monosiphonous portions of the thallus, but was also observed among cells which formed the cortex of the polysiphonous axis. Various stages of growth are figured.

New Genus of Delesseriaceæ. \dagger-F. Heydrich creates a new genus Implicaria for the reception of a species I. reticulata from Loochoo, Japan. The specimen described exists in the Berlin Herbarium, and in certain points resembles Vanvorstia and Claudea, with which the anthor compares it. He also gives the points of resemblance and difference between his plant and Holmesia capensis.

Spiral Arrangement in Florideæ. \ddagger-S. Schwendener criticises adversely the views held by Falkenberg and Rosenvinge on this subject. The anthor states that his own experience leads him to disbelieve in the continuous spiral with constant divergence in Polysiphonia, and states the reasons for his scepticism.

Caloglossa Leprieurii.s-Marshall A. Howe publishes some remarks on this species, which occurs in North and South America, as well as in other parts of the world. He gives the views of authors on the question of the migration into fresh water of several species of Caloglossa.

Catalogue of British Marine Algæ.\| - E. A. L. Batters publishes a complete list of all the British marine algæ, together with the localities where each species and variety occurs in the British Isles. The number of genera is 259 , including five of doubtful affinity. The nomenclature followed is that adopted by all algologists on the Continent and in America. This catalogue is as complete as it is possible to make it,

[^42]since the anthor has not only published the records of his own extensive collection, but he has included those of the public Herbaria and many private collections.

Marine Algæ of the Faeroes.*-F. Börgesen publishes a complete list of the marine alge of these islands founded on his own and other collections. He has himself examined the marine flora of the Faeroes at various seasons of the year, and his own observations, taken together with his examination of various collections, enable him to form a definite idea of the development of the alge from April to December. To the record of each alga there are appended critical notes with figures in the text, and in many cases details are very fully discussed and interesting observations recorded.

Two new species of Myrionema are described and one each for the genera Pheostromu, Laminaria, Dermocarpa, and Hyella. An index, which includes the more important synonyms, especially those of Lyngbye, and a coloured map of the Faeroes taken from the Danish Government Survey, complete this volume.

Marine Algæ from Dago. \dagger - Nils Svedelius enumerates eleven species of marine algre and five species of Chara, collected by O. A. F. Lönnbohm, from this island in the Baltic. A few critical remarks follow on the forms of Fucus vesiculosus which occur there. The author is of opinion that the angustifolia and subecostata series is distributed to the eastward, and the filiformis series to the westward of the Baltic shores.

Australasian Sphacelarieæ. \ddagger - Camille Sanvagean publishes short notes on the morphology and distribution of species of Sphacelaria from Australasian seas. Many of the specimens examined by him belong to the Harvey Herbarium in Trinity College, Dublin. The same author has dealt fully with this group in the Journal de Botanique, where the new species are described. Of the thirty-six species there cited, thirteen are peculiar to Australasia, and five are common to this and other regions. The author finds that an examination of specimens of Australasian Fucacere is productive of good material of Sphacelaria, and he believes that a careful search for these plants round the shores of Australia, New Zealand, \&c. would have rich results; since many of the specimens known hitherto bave only been collected by chance, as growing on other and larger algæ.

Algæ of the Galapagos Islands.s-W. G. Farlow publishes a list of 45 species of algæ from these islands, 43 being marine. One new species of Glossophora and one of Dasya are described, and a new genus is founded provisionally, Herpophyllon, for the reception of an alga, H. coalescens, which has cruciately divided tetraspores in wart-like sori ; the cytocarps are still unknown. The thallus is prostrate and membranaceous, suggesting Peyssonelia rugosa at first sight.

[^43]New Zealand Marine Algæ.* - R. M. Laing concludes his list of New Zealand algæ begun two years ago, and enumerates 291 species of Florider. Three species of Chlorophyceæ are given in an addendum, bringing the list up to 389 in all, including the contents of this and the previous paper. In this part a new species of doubtful position is described, Nitophyllum microphyllum Crosby Smith, and a new variety, tumescens of Champia Nove-zelandice Hook. et Harv.

Fungi.

Fertilisation in the Phycomycetes. \dagger - W. Ruhland publishes a preliminary note on this subject which he has studied in Albugo Lepigoni and in several species of Peronospora. A more detailed paper will appear later.

Amylomyces Rouxii. $\ddagger-J$. Turquet has conducted a series of culture experiments on this Chinese "yeast" used in the fabrication of wines and spirits from rice. He has succeeded in growing the aërial form, a branched Mucor with brownish sporangia and minute oval spores. Chlamydospores are also formed in the hyphæ. The author names it M. Rourii.

Sprouting of Yeast-Cells.s - Albert Hirschbruch concludes his paper on the development of yeast-cells. He follows out the division of the nuclei, and the accumulation of protoplasm in the daughter-cell which remains attached to the mother-cell until it is of sufficient size to be independent. In the species studied by him, Saccharomyces ellipsoideus Hansen, division of the nucleus is by mitosis. The plate in illustration of the paper is to be published in the following number of the journal.

Spore-formation in Yeast.|| —M. A. Guillermond has stndied this subject in Saccharomyces Luduigii. It had been noted by Hansen that in this species the yeast-cell produced a germinating tube which he called a promycclium, and from which were formed the new cells. Guillermond finds that there is frequent conjugation betweeen two cells and fusion of nuclei previous to new cell-formation.

Origin of Yeast. © - G. Odin contributes a note on this question. He has been experimenting with forms of Penicillium, and he finds that by cultivation from the spores he obtains in a few generations a yeast form that is perfectly stable, and will continue to form yeastspores even on solid substances. The writer has not yet determined if these yeasts so obtained will remain indefinitely stable.

Cell-Nucleus of Saccharomycetes and Bacteria.** - Marpmann discusses the present state of our knowledge as regards the presence of nuclei in yeast and bacteria. In the former the nucleus had

[^44]been observed by many workers. Wager demonstrated that the reputed nucleus was the nucleolus only, and that in the vacuole of the yeast-cell he had observed nuclear threads. Marpmann gives an account of the methods whereby he has clearly proved the existence of nuclei both in yeast and bacteria. He immerses the preparations of bacteria in pure carbolic acid after fixation, thus rendering the nuclei more susceptible to staining. The author has also experimented with several species of Schizosaccharomyces. He classifies the yeasts primarily by their colours, as white, grey, yellow-brown, yellow-red, and black yeasts.

New Sphæropsideæ.*-F. Tassi describes three new genera belonging to this group:--Trigonosporium, distinguished by its trigonous hyaline spores, found on dead branches from Sydney ; Santiella, with fusiform, 2-celled, brown spores, probably the pyenidial form of Caryospora ; and Hyalothyridium which resembles Camarosporium, but with brown spores. The species of the two latter genera were found in the Botanical Garden at Siena.

Development of Dipodascus albidus. \dagger-This minute fungus was first discovered by Lagerheim in Ecuador, and by him described and classified as one of the Hemiasci, specially notable as possessing distinctly sexual fructification. H. O. Juel has recently found the same fungus in Sweden on a fallen birch stem, and he has worked out the different stages in the development of the sexual organs and of the spores. The former arise as projections on one of the hyphr, from which they are cut off after fusion. Each cell contains also several small vegetative nuclei. After copulation a larger nucleus appears. evidently the result of fusion. The ascus grows out from the conjoint cell, and the nuclei increase by free cell-formation from the large nucleus. These cells become clothed with a cell-wall and form the spores. The author discusses the systematic position of this fungus. He considers that it forms a link between the Phycomycetes and the Ascomycetes.

Nectria moschata. $\ddagger-\mathrm{H}$. Gluck gives an account of the occurrence and life-history of this fungus which forms gelatinous masses in waterpipes and on damp wood. The formation of perithecia and the development of the spores is described.

Cordiceps Robertsii.§-H. Hill publishes a historical and descriptive account of this fungus which has been called the "vegetable caterpillar." It is found all over the North Island of New Zealand. The anthor has not been able to determine the species of caterpillar attacked by the fungus, and his attempts to germinate the spores on other caterpillars have been as yet unsuccessful.

Gooseberry Mildew. $\|-\mathrm{P}$. Magnus is of opinion that Spherothec'/ mors-uvce is not indigenous in Europe, but that it has been imported from America. He also demurs to the opinion that it is identical with

[^45]S. tomentosa found on Euphorbia, as the latter occurs very frequently in regions where the other is as yet unknown.

Diseases of the Vanilla.*-G. Delacroix reviews Massee's work on the parasitic fungus Calospora Vanillce. He finds that the measurements and descriptions given by Massee do not tally with those of the fungus cansing the Vanilla disease. He determines the fungus to be a Vermicularia with its conidial form Colletotrichum Vamille. He gives an account of the disease as it affects the trees, with descriptions of the various fungi associated with the attack, and suggests the best means of cure.

Disease of Bananas. \dagger - G. Delacroix calls attention to the black discoloration so often seen on Banana fruits. It is caused by the growth of a fungus Gleosporium Musarum Cooke and Mass., which form little red conceptacles on the black spots. The tissue of the fruit underneath is yellow and full of the mycelium of the fungus. It is a wound parasite only.

Laboulbeniaceæ. \ddagger-Roland Thaxter publishes a considerable addition to these species of fly-inhabiting fungi. The new genera are Herpomyces, Acallomyces, Ecteinomyces, and Coreomyces. He adds 40 new species to the genus Laboulbenia.

New French Lichen Flora.§-A. Boistel has just issued the second part of his Flore des Lichens. It follows the lines of classification laid down in the volume published by him in 1896, taking the vegetative development rather than the reproductive organs as the more important feature. The book is arranged in the form of a key to the Lichens. There are many forms not included in the previous more elementary publication, but there are no illustrations of species. Boistel gives, as a rule, the habitat of the plant, but not the locality.

Lichen Flora of the Tyrol.\| - The fourth volume of a general Flora of Tyrol, Voralberg, and Lichtenstein has just appeared. It represents the Lichens and is based on the work of many previous botanists. A history of the work already done on this subject is given in the preface, with special mention of the journeyings and collections of Ferdinand Arnold to whom the volume is dedicated. A full index is given, with a list of the places mentioned and their altitude. A map of the district is also provided.

Rare Lichen from Liguria. $\uparrow-E$. Morteo describes a specimen of Cladonia turgida, a somewhat rare lichen. It was collected for the first time in Italy by Ab. Martin in 1867.

[^46]Lichen Flora of Algiers.*-J. Steiner publishes a second list of lichens from Algiers, from material collected by Fr. v. Kerner. He determines a number of new species and one new genus Gonohymenia. The collection is preserved in the Botanical Museum of the University at Vienna.

Umbilicaria in N. America. \dagger-C. W. Harris continues her study of the lichens of the United States, and monographs briefly the genus Umbilicaria, in which she merges Gyrophora. She describes all the twelve species in simple terms. Four of the species are photographically figured in the plate.

Californian Lichens. \ddagger-A. Zahlbruckner describes a number of new species sent to him by H. E. Hasse from Los Angeles. He finds one new genus among the number, Hassea, founded on Verrucaria bacillosa, and placed by him in a group Pyrenidiaceæ. These are all characterised by the Nostoc or Scytonema character of the gonidia and by the simple. straight apothecia.

Perforation of Vine-Leaves.§-V. Brizi finds that this is due to the action of a fungus, Gloosporium ampelophagum, which attacks the young leaves, causing a yellowing of the tissue. Later, the pustules of the fungus appear on the spots, and in time the diseased part of the leaf drops out.

New Parasitic Botrytis. $\|$ - A disease of the fruits of Diospyros Kaki has been foumd by V. Brizi to be due to a species of Botrytis, which he has called B. Diospyri. It attacks the calyx, and the fruits drop off before they are ripe.

Black Spot of the Apple. Φ--The mould Fusicladium which produces black spots on apples and pears has been causing great loss to fruitgrowers in Australia and Tasmania. D. McAlpine has given a description of the fungus, with an account of its life-history. The winter stage, Venturia incequalis and V.pyrinum, have been found by him recently, but he considers that the mould is usually propagated from year to year by the conidia which become entangled in the hairs and bud-scales, and that the appearance of the Venturia stage is unnecessary to the continued life of the parasite. He gives a detailed account of spraying experiments and instructions as to the best sprays to use and the method of preparing the mixtures.

Diseased Pelargoniums.**-G. Massee has found that the South African rust Puccinia granularis, which grows on native Geraniacee, had transferred itself to the leaves of pelargoniums imported from England and France. The diseased leaves were sent from the Transvaal.

[^47]Monograph of the Uredine:.*-The second fascicle of P. and H. Sydow's great work has now appeared. It includes species of Puccinit oil plants of the natural orders Goodeniaceæ to Umbellifera. The plates illustrate the different forms of the teleutospores; they contain 155 figures.

Specialisation of Rusts \dagger - Jakob Eriksson continues his researches on the forms of Puccinia graminis. He has earried out infection experiments in Sweden on a large number of grasses, and he sives detailed talmated results with extensive notes on the phenomena ohserved. He also contrasts his results with thoze arrived at in America by similar experimenters. He finds that the prevailing forms in the two countries do not agree, even on the same host-plants. Specialisation has proceeded on different lines.

Rust on Vanilla. \ddagger - G . Delacroix found on some fruits of vanilla from Tahiti, not only the form of disease due to Gleosporium Vanillee, but the uredospores and telentospores of a species of Uromyces. Careful examination proved it to be a new species, U. Joffrini.

Experiments on the Brown Rust of Bromes.§-E. M. Freeman has continued a part of the work hegun by Marshall Ward, the speeial object in the investigation being to test the infeetion capabilities of numerous species of Bromus and so determine more accurately the systematic position of the grasses. Urelospores of Puccinia dispersa were used from sori on B. mollis and B. sterilis. A series of 22 species is given that could not be successfully infected with either set of spores; 12 speeies were susceptible to the spores from B. mollis, but not to those of B. sterilis ; 5 species are given in whieh infection from both was suceessful, but in very varying degree. The writer gathers evidence from these experiments as to the connection of these Bromes with the mollis or sterilis group.

Researches on Rusts. $\|$-E. Fischer has published an account of his infection experiments with various Uredinee. He deals with the Puccinie of Polygomum Bistortu, and also with species of Cronurtium, Melampsorella, and Thecopsora. The growth of the latter, Thecopsora Puti, was induced on Prumus virginiunce by infection of the spores of Etitium strotitinum, and the uredospores appeared a second year on the Prunus.

Genus Amanita. T-M. E. Bondier gives a review of the prineipal species of this gemus with exhaustive notes. He includes 3 species of Amanitopsis, which he considers a sub-genus.

North American Polyporeæ.**-W. A. Murill has studied the genus Gianoderma. There are 7 representatives of the gemus in N. America, several of which are described for the first time. Polyporus lucidus, the

[^48]type of the genus, is referred back to Jacquin's name. He figured and described it as Agaricus pseudoboletus. It has been finally named Ganoderma pseudoboletus.

Eentinus lepidius.*-P. H. Dudley gives an account of this fungus and of the damage it does to timber and to yellow-pine cross-ties on railway tracks.

New Member of the Phalioidea. \dagger - P . Hennings has described a fungus sent to him by A. Klitzing from Mecklenburg, which he has identified as a variety of Anthurus borealis Burt, recorded from N. America, and the only species that has been found in temperate lands. Hemings decides from evidence supplied to him by Klitzing that the plant is indigenous to N. Germany. He discusses Anthurus and neighbouring genera, and considers that the species of Anthurus should he classified with those of the genus Lysurus. He therefore renames the species under discussion as Lysurus borealis var. Klitzingii P. Henn.

Genera of Gastromycetes. \ddagger-C. G. Lloyd gives an account of the general structure of the group, makes a few critical remarks on previous attempts at the classification of its members, and suggests a system of arrangement in tribes of the genera of Lycoperdaceæ. Four tribes are recognised: Tylostomeæ, Podaxineæ, Sclerodermeæ, and Lycoperdeæ, hased on characters of stalk and capillitium. The genera are illustrated ley photographic reproductions. Further notes on Lycoperdeæ will be found in the Mycological Notes, No. 9, by the same author.

Fungi of the Setubal Region. §-C. Torrend communicates the first part of a fungal flora of this Portuguese district. It includes the Hymenomycetes and the beginning of the Gasteromycetes. It contains descriptions of several new genera and species by Bresadola.

Fungus Flora of Sonntagberg.\|-P. P. Strasser publishes a second contribution of 118 species of the fungi of this region of North Austria. There are several new species determined by Bresadola, a new genus of Spheropsideæ, Strasseria Bres. and Sacc., and a genus of Phæostilbeæ, Hölneliclla Bres. and Sacc., each with one species. The list now extends to 856 species.

Fungi of Piedmont. Φ-T. Ferraris is examining the Cesati cryptosamic herbarium, and publishes a first list of the micro-fungi he has letermined. It includes the Ustilagineæ, Uredineæ, Phycomycetes, and Perisporeæ. The author gives notes and observations on many of the species.

Japanese Fungi.-P. Henmings ** gives a systematic list of fungi comprised in various collections made in Japan. Several new species are described.

[^49]P. Dietel* gives a further instalment of his notes on Japanese Uredineæ.
P. Dietel \dagger also describes four new species belonging to this group sent to him from Tokio.

Notes on American Fungi. \ddagger-C. G. Lloyd criticises the genus Stella of Massee, and suggests its identity with a Scleroderma. He also notes that the American Lycoperdon separans is the same as the European L. cruciatum, and describes a new species from Washington D.C., L. psendoradicans. G. Bresadola describes a new species which has the habit of a Cordyceps and the fructification of a Hypocrea as Hypocrea Lloydii; it was found in West Virginia. Figures of other fungi are also given.

Fungus Diseases in Australia.§-Dr. McAlpine has just issued an exhaustive account of the fungi that have been found on stone-fruit trees, almond, apricot, cherry, peach, and plum. He describes the attacks and the best way to remedy them, and then gives a technical description of the fungi, 117 in all, as they occur on stem, root, leaves or fruit. Many of the species are new to science, but not all are originators of disease, 38 only are parasitic, the others are saprophytes and harmless. There are abundant illustrations which should help the growers to identify the fungi and determine their nature. Of the plates 10 are coloured and represent the diseases most commonly met with in the colony.

Fossil Fungi.\|-L. Pampaloni has strudied the minute flora and fauna of the miocene deposits of Dysodile, which is an inflammable shale found at Melilli in Sicily, and he has referred a considerable number of microfungi to various existing allied genera. He describes specimens of Pythites, Peronosporites, Uncinulites, Erisiphites, Perisporites, Chetomites, Melanosporites, Microthyrites, and Monilites. In the latter he gives sporemeasurements.

Fungus Flora of Humus. $T-$ C. A.J. A. Oudemans and C. J. Koning are studying woodland soil, and by examination and culture determining the different fungi that grow there, chiefly the microscopic varieties. Their method is to take a small bit of decayed vegetation with spores or mycelium adhering to it. This is triturated in sterilised water, then diluted. A small quantity of the fluid is added to prepared gelatin and comparatively pure cultures are oltained of the different organisms. Oudemans is responsible for the determination of the species. He has already found 45, mostly Mucoraceæ and Mucedineæ, with : Sphæropsideæ. There are four new species of Mortierella and 2 new species of Mucor. In all he finds 3:3 species are new to science of those that he has named. A number of bacteria have also been isolated, but they are not dealt with in detail. The paper is beantifully illustrated.

* Op. cit., xxxii. (1902) pp. 47-55.
\dagger Hedw. Beibl., xli. (1902) pp. 177-8.
\ddagger Mycological Notes, by C. G. Lloyd, No. 9 Lloyd Library (Cincinuati, April 190\%).
§ D. McAlpine, Fungus Diseases of Stone Fruit Trees in Australia and their Treatment, Melbourne, $1902,165 \mathrm{pp}$ and 54 pls .
$\|$ Atti d. Reale Accad dei Lincei, xi. (1902) pp. 248-53.
8 Aich. Neer. Sci. Exact. et Nat., vii. (1902) pp. 266-98 (30 pls.).

Pests of the Flower Garden.*-Under this title, M. C. Cooke publishes the first instalment of a survey of plant diseases. The introduction deals with the habits of growth and general appearance of parasitic fungi. He describes the parasites themselves under the natural orders of plants on which they have been found, and the present paper takes us as far as the Rosacer.

Seed-Fungus of Lolium temulentum. \dagger - E. M. Freeman is of opinion that the poisonous properties of this grass are probably due to the fungus that is found in the seed. It has not been possible to cultivate the hyphæ of the fungus apart from the seed, and as the grass does not suffer from the presence of the parasite, there is probably a symbiotic relationship between the two organisms. The fungus has not been identified with any known form ; it persists in an infection layer of hyphe close to the embryo. From this layer infection of the growing point takes place, and the fungus grows with the host-plant.

Leptothrix racemosa. \ddagger - Josef Arkövy discusses the systematic position and life-phases of this fungus. He finds that it is the parent organism of very different forms.

Fungous Diseases of White Cedar.§-John W. Harshberger gives an account of two fungi, Gymnosporangium biseptatum Ellis and G. Ellisii Farlow, both of which attack the young stems and branches of white cedar. The author gives a historical account of the different species of Gymmosporangium. He then describes the appearance of the fungi and the damage they do to the tree. He gives a careful study of the life-habit of the cedar, Cupressus thyoides, and the formation of the tissues, showing the bearing of these conditions on the attack of the fungus. He describes the pathological changes induced by the penetration of the mycelium into the tissues; comparing the attack with those of the larch and fir diseases due to Dasyscypha Wilkommii and D. resinaria. The specimens of the fungus were collected in the bogswamps of New Jersey where the white cedar grows. G. biseptatum canses elongate swellings which may surround the whole stem. G. Ellisit leaves the branch uninjured below the point of attack. Above the injury, the branches are stunted and form a fan-shaped witch's broom.

Oidium Production and the Culture of the Higher Fungi.\| Richard Falck gives some results of his work on spore cultivation. He began with the spores of Collybia velutipes which germinate aasily and produce a mycelium which breaks up into oidia. He transferred the oidia to bread and in time reproduced the Collybia form. He followed the same process with equal success with the spores of Phlebia merismoides, the oidia in this case being transferred to branches of a cherrytree. Various other Basidiomycetes were experimented with and cultivated through the Oidium stage. He notes that in a pure culture of

[^50]Hypholoma fascicmlaris the mycelium had the familiar odour of woods. The author gives a particular account of the development of Collybit tuberosa. The Oitium formed a colony of oidia and from the colony was developed the selerotium which produced the higher fruit form. From all his experiments he gathers that the Oifium form is a definite stage in the life-cycle of many of the higher fungi, and that under proper conditions these will again be reprodnced. In the case of Oidium lactis this property is lost and no higher form is ever developed, thourch from cultivation and comparison with other forms the writer thinks that this Oidium should be placed near the ascomycetous fungus Endomyces.

Critical Notes.*-C. A. J. A. Ondemans passes in review a large number of species of Fungi, reetifying mistakes that he has discovered in description, quotation, or nomenclature. He has found something to correct in 37 species of published fungi.

Sap of Fungi as an Antidote to the Venom of Serpents. \dagger X. Gillot publishes an account of work carried on in this connection by C. Phisalix and others. They used sap extracted directly from the fungi or a decoction obtained by $2 t$ hours' maceration in water. They employed several species of fungi, Amumita muscurius, A. mappa, Lactarius torminosus, L. theiogulus, all poisonous species; but even with Agaricus campestris, an chlible fungus, the animals expermented on died when a large dose was usct. With smaller doses all these fungi made the animals immune to the venom of serpents. The period of immonity lasted from 15 days to a month.

Photography of Fungi. $\ddagger-L e=0 n$ Roland gives his methods of decolorising fungi hefore photograpling them, by which means he secures good and true representations of the plants. He also records successful results from the employment of a decoction of Amanta mappa and other fungi as an accelerating solution.

Schizophyta.
 Schizophyceæ.

Chemical Composition of Oscillaria prolifica.§ - Isabel Hyams and Ellen Richards give an analysis of dried Oscillaria at various stages of its growth, and also analyses of the water in which it occurred. The proportion of silica in the plant is remarkable, and with some other characteristics indicates an approach to the condition found in diatoms. This large amount of silica accounts for the remarkable stability of the framework or tissue of the plant which persists all the year round.

New Species of Fischerella.\|-Manrice Gomont describes and figures a plant growing in the greenhonses of the Budapesth Museum. and names it Fischerella major. The principal interest of this plant lies in the fact that it possesses spores, which are formed under conditions which are mfavourable to the normal growth of the alga. Their

[^51]germination and the development of the young filament resemble similar occurrences in Stigeonema, to which genus Fischerella is closely related. Comparisons are drawn between F. major as compared with Stigeonema hormoides, Hapalosiphon intricatus, and H. arboreus.

Schizomycetes.

New Gum Bacterium.*-R. Greig Smith describes a new species, Bacterium eucalypti, found in a sweet exudate of Eucalyptus Stuartiana. It forms a gum, levan, identical with those previously obtained by the author by cultivating B. levaniformis in saccharose media. The new species from the latter, occurs in cane-juice and raw and refined sugars; and it is interesting that the same gum should be formed by two widely differing species.

Acid-Rennet-forming Bacteria in Milk. - C. Gorini publishes a preliminary note on his latest researches on the normal bacterial flora of milk. The bacteria of milk are usually divided into two classes-the lactic ferments which by the production of acid coagulate the milk, but are unable to redissolve the coagulum ; and the peptonising bacteria (e.g. tyrothrix), which coagulate the milk with a neutral or alkaline reaction and then redissolve the coagulum. But the author has discovered the existence of a third class of bacteria which acidulate and coagulate the milk and then redissolve the coagulum. Having first satisfied himself by laboratory experiments that this third class of bacteria is distinct from the first (which acidify, but do not produce remet), he proceeded to examine the milk taken aseptically from a number of cows of different dairies, and found that in every case the acid-rennet-forming bacteria (the third class) were present normally and abundantly, and have the power of liquefying the coagulum in the presence of acid. He points out the importance of these bacteria in the process of cheese-making.

Microbe of the "Loque" Disease of Bees. $\ddagger-\mathrm{V}$. Lambotte finds that the Bacillus alvei, deseribed by Watson-Chegne and Cheshire as the cause of the "loque" disease of bees, is merely a variety of the widespread Bacillus mesentericus.: The bacillus occurs in healthy hives, being found in the comb and in the intestinal contents of the bees. The characteristic appearance of the disease is brought about by the budding of the bacillus in the tissues of the larva.

As the result of actual experiment, it is found that healthy hives may be infected by visitors from unhealthy hives, but the most prolific causes of the disease are insufficient nutrition, and want of cleanliness and proper ventilation. Since the spores of the bacillus easily withstand the action of ordinary disinfectànts, the only way of stamping out the disease is to burn all infected stock.

Compound Cilia.s-E. Malvoz, in a short paper illustrated with two excellent photographs, gives a historical account of compound cilia in bacteria, adding the results of his own observations upon the compound

[^52]cilia of a bacterium obtained from a typhoid patient. These compound cilia take the form of relatively immense fusiform spirals surrounding a central substance, the nature of which was not determined. Malvoz supports the view of Migula that these cilia are really compound, and not merely a single cilium of colossal proportions. The mode of formation of the spirals is uncertain, but, in all probability, two bacteria become attached by their cilia, one of the latter becoming separated from its bacterium. The frequent repetition of this process finally results in the formation of the complex spirals, which, breaking away from the bacterium, ultimately lie free in the surrounding liquid.

Use of Neutral Red in the Study of Phagocytosis, \&c.* - The value of neutral red as a reagent depends upon its property of staining living cells. J. Himmel finds that the stain is taken up by all substances engulfed in the living leucocyte, and also by the granules resulting from the metabolism of the cell. The staining action depends upon the oxidising properties of the cell, and it is also shown that all factors affecting the vitality of the cell have a corresponding action upon the efficiency of the stain.

Identification of some Anaerobic Bacteria. \dagger - P. Achalme concludes that form and relative mobility are useless as criteria for the identification of species. Staining, however, especially by the Clandius method, is of considerable value in the discrimination of different groups of species, but is of little value for the distinction of the species themselves. Again, the appearances presented by cultures upon solid media are of no value, as the appearances depend upon the nature, and especially the consistency of, the medium. The mode of spore-formation is more satisfactory, but is by no means sufficient. Achalme expected to obtain the most reliable results from observations upon the differences, if any, existing between the assimilatory functions of the forms studied, and his expectations were fully realised. He experimented upon nitrogenous and carbohydrate media, the points considered being (1) the means employed by the microbe for the utilisation of the food-substance, (2) the chemical nature of this substance, (3) the nature of the chemical changes brought about in the medium by the organism. Studying more especially (1) the action of the bacteria upon albumen in the presence of different carbohydrates, and (2) the influence of the latter upon the relative abondance of the cultures, Achalme was enabled to construct a dichotomous key for the identification of the species considered, the criteria being as indicated.

Agglutination. \ddagger - Nicolle and Trenel find that the agglutinative and agglutinogenous functions are subject to the greatest variations, and conclude that the functions can be referred to the enveloping membrane of the microbe. This is supported by the fact that the phenomena are much more obvious in those bacteria with the membrane well developed than in those in which the membrane is not so obvious. The authors come to the same conclusion in regard to the free cells of the organism.

[^53]Structure of Bacteria.*-F. Schandinn describes his observations on the structure of a new bacillus, the B. Butschli, which he isolated from the midgut of the large kitchen beetle (Periplaneta orientalis). His observations were chiefly directed to the structure of the organism, its method of spore-formation, and of spore-germination. The bacillus occurs as a long eylindrical rod with rounded ends, about 50 to 60μ in length (maximum noted 80μ). The cell is enclosed in a somewhat dense membrane, which does not give a cellnlose reaction. The finely granular cell protoplasm contains numerous coarser granules in its substance which form the nodal points of a distinct network, the whole giving an appearance of an alveolar system. Morphological differentiation of a nucleus was not observed, but the author considers that the nodal points of the network, scattered throughout the cell-protoplasm, correspond to the aggregation which in the higher organisms receives the name of nucleus. The vegetative reproduction of the organism is preceded by the collection of several of these coarse granules to the opposite poles of a bacillus; these shortly become more bighly refractile and stain intensely. This stage is followed by the appearance of a septum at right angles to the long axis of the bacillus, which, commencing in the centre, soon spreads to the enclosing membrane and separates into two lamellæ; finally division takes place at the site of this septum. Spore-formation is characteristic, in that two spores are formed in each bacillus; the preliminary stages of aggregation of granules to the poles and the appearance of a central septum occur as a regetative reproduction. At this point, however, the septum becomes resolved and finally disappears, learing no trace of its presence behind. The protoplasm round the polar granules becomes condensed and forms the sporecapsule, and the perfect spores are now oval or ellipsoid in shape. The author is of opinion that the appearance and subsequent disappearance of the septum is an indication of a process analogous to the conjugation of the reproductive cells of higher organisms. Spore-formation only takes place in beetles which are overfed, but may be prodnced artificially by inoculating in a mixture of intestinal secretion and saliva. In the actual process of germination, the young bacillus grows out through one of the poles of the ellipsoid, elongates, and takes on the characteristic form of the bacillus, almost immediately showing the distinctive alveolar arrangement of the protoplasm.

Psychrophilic Bacteria. \dagger-S. Schmidt-Nielsen has studied numerous bacteria with respect to their capacity for growth at $0^{\circ} \mathrm{C}$. He finds that the B. aquatilis fluorescens non-liquefaciens grows well in 10 days; the B. granulosum in 40 days; B. paracoli gaso-formans feelly in 10 days; B. radiatum feebly in 10 days, but more vigorously in 40 days; and the B. tardi fluorescens feebly in 40 days. From earth and from vegetables the author isolated 15 other varieties (which on account of an accident he was unable to identify) which possess a similar capacity. So also two unnamed saccharomyces, and a pink torula isolated from the shell of a deep-water shrimp, are capable of multiplying at $0^{\circ} \mathrm{C}$. Three

[^54]varieties of actinomyces, viz. ochraceus, ochroleucus, and carmeus, show evidence of multiplication at $0^{\circ} \mathrm{C}$. after 80 days. The anthor found that numerous bacteria (including the B. coli communis and the B. enteritidis of Gärtner), although unable to grow at the temperature, were not killed by a 60 days' exposure to it, as when transferred to the incubator at $24^{\circ} \mathrm{C}$. growth took place.

Action of Alcoholic Fermentation on the Bacillus typhosus.*E. Bodin and F. Pailheret, having in a previous communication proved that it could multiply in acid cider, made a series of experiments to determine whether the B. typhi abdominalis, if previously existing in must, could withstand the action of alcoholic fermentation. They therefore prepared artificial must, consisting of neutral solntions containing 0.5 to 1.5 p.c. peptone, and 3 to $5 \cdot 5$ p.c. pure glucose, ordinary sugar or candied sugar, and planted the B. typhi therein. The bacillus growing well, the solution was then inoculated with (? pressed) yeast, and kept at $22^{\circ} \mathrm{C}$. Vigorous alcoholic fermentation then ensued, and the anthors found that the B. typhi and also the B. coli commmis remained living throughont and after the process. Further, in saccharose media the authors found that the B. typhi would only remain alive if carbonate of lime had first been added to the medium (to neutralise, as soon as found, the acid products of the growth of the bacillus), whilst the B. coli persisted under all conditions.

Identity of Rhinoscleroma Bacillus with Friedländer's Bacillus. \dagger

-Felix Klemperer and Max Scheier contend that the bacillus of ozena and of rhinoseleroma are identical with Friedländer's bacillus, basing their contention on the morphological resemblances and the similarity of the cultural reactions. They further state, as the result of their own experiments, that specific antitoxin and agglutinin are formed in animals, immmised against these hacilli ; and that serum obtained from animals immmised against each of these organisms will cause "clumping" of all three species, but is so far specific in its action that it fails to clumpr cultirations of other bacteria. They therefore conclude that the use of the titles bacillus of ozrena and bacillus of rhinoscleroma shonld le discontinued, and the organisms in question referred to as Friedländer's. hacillus in ozena or in rhinoscleroma respectively.

Differentiation of Bacilius typhi abdominalis and Bacillus coli communis. $\ddagger-F$. Krause describes a method of differentiating the $B . t y p h i$ from the B. coli by means of the study of the deep colonies grown in a urine medium containing 1 p.c. agar and 15 p.c. gelatin for from 14 to 15 hours at $37^{\circ} \mathrm{C}$. (at which temperature the medium remains solid and is only very slomly liquefied by peptonising bacteria). The author states that the reaction of the medium is extremely important and should correspond to $0 . \%$ p.c. lactic acid. Under these conditions the typhoid colonies are rounded or sometimes irregular in shape, varying in size, and finely gramular and greyish in colour, becoming slightly brownish as the colony enlarges. From these colonies

[^55]radiate numerous very slender, straight or curved, sometimes long spiral offshoots.

Coli colonies, on the other hand, are dark sellow-brown in colour. very variable in size, round or irregular, and coarsely gramular ; around each colony may be seen one or more concentric zones, as if of ground glass, in which situation danghter colonies frequently develop.
B. dysenterice and a slowly liquefying bacillns (unnamed) give rise to colonies indistinguishable from those of the B. typhosus, but none other of the organisms studied by Krause could possible give rise to confusion.

Bacterium Fragi.*-W. Eichholz describes a new bacillus which he isolated from a sample of milk, to which it had given a distinct strawberry smell.

The organism in question was a long motile bacillus, $1 \cdot 75$ to $2 \cdot 10 \mu$ long by 1.05μ broad, possessing a tuft of flagella at one pole. Upon lactose-gelatin plates the organism forms characteristic small, whitish, rosette-sbaped colonies, with a coarsely granular mass of concentric circles, the periphery around this central mass being thin, flat, spreading, and marked with radiating lines, the colony thus resembling the flower of the daisy. The organism does not form spores, and its optimum temperature lies between 26° and $29^{\circ} \mathrm{C}$., its range being from $1.5^{\circ} \mathrm{C}$. to $37^{\circ} \mathrm{C}$., and its thermal death-point is about $75^{\circ} \mathrm{C}$. When grown in milk there is neither gas-formation nor clotting, but after three days at the room temperature the milk possesses a rotten smell; by about the eighth day this has given place to a distinct odour of strawberries, which lasts for a considerable period, the milk undergoing no further change.

Bacillus aerogenes aerophilus agilis. \dagger - A. Uffenheimer describes a new gas-forming bacillus to which he has given the name B. aerogenes aerophilus agilis sp.n., isolated from the liver, spleen, and blood, as well as from the placental site, in a case of general infection and death following abortion.

The bacillus occurs as thick rods, about the same size as the anthrax bacillus, with romded ends; it stains easily and is not decolorised when treated by Grim's method. The colonies on agar plates were not characteristic ; they were whitish-grey in colour and generally round. In agar-stab cultivations growth occurs, and along the line of puncture mumerous gas bubbles are formed. In gelatin plates the colonics were quite small and translucent, and later became turbid greyish-white in colour. In sugar media copions gas formation occurs, and in broth general turbidity. Milk is coagulated at $37^{\circ} \mathrm{C}$. Anaerobic cultures by Buchner's method yielded only a very scanty growth.

The vitality of the bacillus is short: Inoculation experiments were made upon white mice, guinea-pigs, and rabbits, subcutaneously and intraperitoneally, and in the case of one rabbit, intravenously. Several of the animals showed no reaction whatever; one of the guinea-pigs, which was bled copiously a week after the injection, died four days later. After death the body was placed in the incubator, and after 24 hours

[^56]became enormonsly distended with gas, and the bacillus in question was recovered from the blood and all the organs in pure cultivation.

Bacillus aerogenes capsulatus in Circulating Blood.*-R. Cole obtained the B. aerogenes capsulutus Welch from the blood of the general circulation of the living patient, hoth of whose lower limbs had been amputated after a severe crush. The method employed was to withdraw $8 \mathrm{c} . \mathrm{cm}$. of blood from a superficial vein at the bend of the left ellow by means of a sterile syringe, and distributing $7 \mathrm{c} . \mathrm{cm}$. among 12 tubes of litmus milk and incubating anaerobically in a Novy's jar. The remaining cubic centimetre was injected intravenously into a rabbit, which was killed after a few minutes and placed in the incubator at $3: 7^{\circ}$ (. for 24 hours. At the end of this time the animal was distended with gas and subcutaneous emphysema was present. From the heartblood of the rabbit and from the liver and spleen the B. aerogenes rapsulutus was isolated in pure cultivation ; the litmus tubes also gave a pure cultivation. Some 25 e.em. of hood were conducted from the arm of the patient (bicfore death) by means of a rubber tube into a basin of water, and the anthor was able to show that no free gas was present in the circulating hood.

Bacillus vascularum and gummosis. $\dagger-\mathrm{R}$. Greig-Smith describes a new hatillus isolated from the gummy exudation of the vascular bundles of sngar-tanes affected with gimmosis. The organism is an obligate aterobe growing best at $30^{\circ} \mathrm{C}$., and not at all at $37^{\circ} \mathrm{C}$., averaging 0.4 to 1μ in length, actively motile, and possessing a single terminal flagellnm. On ghncose-grelatin plates the colonies develop slowly as small, raised, viscid, gramular drops, which in abont 20 days reach a diameter of 4 to 8 mm ., and resemble drops of yellow beeswax; the medium is slowly liquefied. Gelatin-stal) shows a filiform growth in the upper lart of the puncture, with a hemispherical, yellow, glistening nail-head; no gas-formation occurs. Glycerin-agar gives a thin, broad, transhncent, white, moist, glistening growth, which later deepens to a primrose-yellow, with tmrlid condensation-water. Nilk is unaltered in appearance. Nutrient broth shows a scanty growth, nniformly turbid, and gives a faint indol reaction. The hest medium consists of peptone 0.5 p.c., saccharose or levulose 5 p.c., potassium phosphate 0.5 p.c., agar : p.e., in tap-water, with its reaction adjusted to correspond to 10 c.cm. $=0.14$ e.cm. N $/ 10$ acid. The organism upon this medium grew well, and produced a slimy material identical in appearance, and by chemical tests, with the grm obtained from the diseased plants, thus confirming the assumption of Cobb, and at the same time completely disproving the statement of Mangin that the grm was produced by the sugar-cane, and that the bacteria lived upon it.

New Ascobacterium from the Sugar-Cane. $\ddagger-$ R. Greig-Smith gives an account of a new organism, Bacterium sacchari, which he found existing as a normal saprophyte of the sugar-cane, and which formed well-defined masses of capsulated hacteria, moder certain conditions, when grown upon solid media in the presence of a sugar. The solid

[^57]medinm most favourable to the production of this phenomenon was prepared by dissolving 10 p.e. of gelatin in eane-juice, and rendering the medium neutral to phenolphthalein by the addition of dilute potassiun hydrate.

The organism is a short motile rod, 1 to $\rightleftharpoons \mu$ long, with a variable number of flagella, from a single terminal one to nine arranged around the bacillus. It is an obligate aerobe, and does not form spores; it stains feebly with methylen-blue, but well with fuchsin and violet, and is decolorised by Gram's method. Its optimum temperature is $28^{\circ} \mathrm{C}$. On gelatin it forms raised, rounded, glistening, white colonies, with a dark, granular, areolate centre and crenate margin. In broth the medium becomes turbid, and pelliele-formation oceurs; traces of indol are sometimes found. Milk is coagulated in about 10 days, with faintly acid reaction. On potato the growth is thin, flat, and dry, glistening, and of a deep yellow colour.

Bacteria of the Milk-ducts of the Cow.*-C. Crorini examined milk collected (with all possible attention to asepsis) from 14 cows belonging to the Berne Institute, 6 from an outside dairy, and 2 from a third source. He found that no one udder was completely sterile, the number of bacteria observed per cubic centimetre from each teat varying from a minimum of 20 to a maximum of 300,000 . The bacterial flora of the teats consisted chiefly, and sometimes exclusively, of cocci. which were similar in morphology. By their action upon gelatin and milk, however, the anthor is able to distinguish five types, three of which liquefy gelatin and coagulate milk, though at different rates of time; the remaining two trpes coagulate milk, but do not liquefy gelatin. He therefore concludes that these cocei represent the normal bacterial flora of the galaetiferous duets of the cow, and that the B. acidi lactici does not not exist as a normal saprophyte in this situation. n milk from 6 eows from an outside dairy streptococei were found.

Bacteriology of Natural Mineral Waters. \dagger-G. v. Rigler, as the result of numerous chemical and bacteriological examinations of German and Austro-Hungarian natural mineral waters, states that they are but very rarely germ-free, and that further contamination takes place in the process of bottling. The chief varieties of bacteria he has isolated from these waters, arranged in order of frequency, are B. Hurrescens liquefuciens, B. fluorescens non-liquefariens, B. aquatilis odorans, B. chrysogloa, B. aquatilis commonis, B. arboresiens non-liquefariens, B. yasnformes non-liquefaciens, Micrococcus cundicuns, M. sulphureus, M. roseus, and Actinomyces alba.

Bacillus of Soft Sore. $\ddagger-$ F. Besançon, V. Griffon, and Le Sourd. using a gelatin medium containing rablits' blood, were able to obtain a baeillus from primary soft sores, and also from the pus of buboes. The bacillus oceurs microscopically as slender rods, singly, in groups of parallel individuals, or in chains placed end to end. It exhibits polar staining, and retains the stain when treated hy Gram's method. When

[^58]grown 48 hours at $: 37^{\circ} \mathrm{C}$. the bacillus forms small, round, raised, isolated colonies of about 1 mm . diameter, opague, and greyish in colour, with a glazed, shiny surface. In subeultures the organism grows more luxuriantly. It retains its ritality and virulence a considerable time, but in the condensation-water, where it forms long ehains, it does not remain living very long. The only other medium in which it will grow is fluid serum from rablits' blood, in whieh it forms turbid flocenli. The authors suceeeded in three eases in prodncing typieal soft sores by inoculating the surface of the peritoneum with isolated colonies of the bacillus.

Gonococcus in the General Circulation.*-IT. B. Johnson records a ease of endocarditis and general septicæmia due to the presence of the gonococcus, in which he was able to demonstrate the presence of the specific organism in the circulating blood.

Cultivations were made from the circulating blood on five separate days; at the fifth attempt, $\because 4$ hours before death, pure growths of the gonococeus were obtained, and the author points out that it is neither necessary to use a large amount of blood to obtain cultivations from these cases, nor to greatly dilute the blood with the medium used, nor to employ any specially prepared medium, for the bactericidal power of the blood appears to have but very slight effect in retarding the growth of the gonococcus. Moreover, he found that it was more advantageons to mix the blood with melted agar and at once pour plates, than to use fluid media, where the oxygen supply is more restricted.

Agriculture and Bacteria. + - H. W. Wiley states that the nitrogen necessary for the nutrition of plants and erops is derived from organic compounds previonsly broken up by the bacteria present in the soil. In this process three stages are distinguishable, tach being identified with a specific species of organism. First, the organie matter is broken up intoammonia or its compounds by the activity of the B. mycoides; next, the ammonia is converted into nitrous acid or its compounds by the nitrous bacteria, of whieh, so far, only one speeies has been isolated, the nitroso-monas ; and finally, the nitrous aeid is converted into nitric acid or its compounds by the nitro-bacteria ; both these last baeteria were originally isolated by Winogradsky. A second trpe of nitrification, in which the atmospheric nitrogen is utilised, is effeeted by parasitic organisms existing in the tubercle on the roots of certain Leguminosa. Cultures of these organisms are prepared commereially and sold under the name nitragin. Another speeies (the Alinite bacteria), stated to possess similar properties, is likewise prepared eommercially.

Mycetozoa.

Culture of Myxomycetes. \ddagger - Pinor gives the results of his attempts to make pure cultures of Chomdrioderma difforme and Didymium effusum. He finds that they can be grown, if a bacterimm be cultivated along with them. This Bacillus he determines to be identieal with B. luters of Flügrge.

[^59]
MICROSCOPY.

A. Instruments, Accessories. \&c.*

(1) Stands.

New Binocular Microscope. $\dagger-$ F. E. Ives, after an enumeration of the inconveniences which render the ordinary binocular musnited for high-power work, describes one of his own invention, which has the following advantages :--(1) It is a short-tule Microscope; (2) The parts which make it a binotular may be attached to an ordinary Microscope without alteration : (:) It is not an expensive attathment; (4) It does not interfere with the use of the Microscope as a monoenlar with rariable tubelength ; (5) It may be nsed either as a binocular non-stereoseopic Microscope, or as a binocnlar stereoscopic Microseope: (i) As a nonstereoscopie binocular, it sends to both eyes images practically identical with the single image of a monocular, no diffraction pencils being eat off from either imase, and it is as satisfaetory with the highest as with the lowest powers, dividing the work evenly between the two eyes even when doing the most eritical work : (7) As a stereoscopic hinoeular, it yields to both eyes images distinetly more perfect than either image in a Wenham hinocular, and, while giving true stereoscopie relief with medium and low powers, never exagrerates this effect, as the Wenham binocular sometimes does. As against these advantages may be placed the face that it reçuires a little more skill to adjust it than the Wenhaun binocular ; but it should not be at all troublesome to the

Fig. 3.

* This subdivision contains (1) Stands; (2) Eye-pieces and Objectives ; (3) Illiminating and other Apparatus; (4) Photomicrography; (5) Microscopical Optics aul Manipulation: (6) Miscellaneous.
\dagger Journ. Franklin Inst., cliv. (1902) pp. 441-5 (1 fig.).
expert microseopist. In fig. :3 are shown the two attachments whick effect this change in an ordinary Microscope:-(1) a small prismbox with society screw to fit the lower end of the Microscope-tube; and (\because) an attachment to the upper end of the tube to carry the second eyc-piece, with means for adjustment to suit different pupillary distances. The prism-box C contains one compound cemented prism, with transparent silvering on one of the inner faces $a b$, and a single prism c. The dotted lines show the path of the axial ray, one half of which is transmitted throngh the compond prism, and the other half reflected into the prism c, and thence to the anxiliary eye-piece. The hody of the prism c is extended in the direction of the eye-piece for the purpose of making the optical length of both axial rays alike, so that matched eye-pieces may be used. There are three wass of changing from binocular non-stereoscopic to stereoscopie vision. The first consists in covering a portion of the top of the compound prism by a little metal slide. The other two methods depend upon the fact that decentring the eye-points is equivalent to corering opposite sides of the back of the oljective. Hence, if the eye-points are bronght abont oneeighth of an inch closer together than the observer's pupillary distance, stereoscopic vision is secured; if they are separated by such an amonnt, then psendoscopic vision results. With lew-power oljectives and twoinch eje-pieces one may arrange the distance so that, ly slightly varying the plane of the eye-points, one may have stereoscopic, non-stereoseopic, or pasendoscopic vision at pleasure, and withont moring the eyes far enongh to lose any of the field of view. With high-power oljectives, the entire ficld is seen perfectly only when the instrument is adjusted for non-stereoscopie vision with the ejes in the plane of the eye-points.

Watson and Sons' Metallurgical Microscope.*-This Microscope (fig. 4) has been constructed exchasively for the examination of metals and minerals, and is of the lest quality throughout. The coarse and fine adjustments do not present any novelty. The body is of large diameter, and the draw-tube can be arranged to carry either the Continental or large-sized ($1 \cdots 27$-in.) ere-pieces, as may be preferred. When the draw-tnbe is closed the body-length is 152 mm.: when extended, 250 mm . The stage has mechanical screws, and in this respect resembles the "H "Edinburgh Students' Microscope, made by the same firm. In the centre of the stage is a eylindrical fitting, into which super-stage plates may be fitted and interchanged. The illustration shows a super-stage plate, with levelling-screws for the purpose of adjusting the planes of specimens muder examination, so as to get them perpendienlar to the optical axis. The upper surface of this super-stage is higher than the milled heads controlling the mechanical movements, so that large blocks of metal can be freely moved on the stage. The top-plate measures $; \frac{1}{2}$ by $2 \frac{1}{2} \mathrm{in}$., and can be readily removed and replaced ly a metal-holder, in which blocks of metal can be held at any angle, or rotated. A rackwork of strong, thongh very smooth and 1recise construction, is fitted to the stage, and permits it to be moved up, and down for focussing after the lighting adjustment has been made. A vertical illmminator, with dise of cover-glass, is provided with the

[^60]

Fig. 3.
instrument, and may be fitted either at the top of the body-tube, or at the lower end, as figured.

Watson and Sons' Museum Microscope.*_-This instrument (fig. 5) has been designed especially for the use of stndents who may be pursuing some particular branch of study, or for visitors to monsemms. It

I良。
consists of a dust-proof mahogany-framed glass case, in which the Microscope is fitted. The objects, 12 in munber, are mounted upon a disc, which can be rotated from ontside the case. The eye-picce of the Microscope also projects outside the case, and focussing is effected by means of a milled head, actuating a rackwork-andpinion on the right-hand side of the case.

Method of Fitting the Stage and Limb of Watson's Van Heurck Microscope. \dagger - In this instrument the contrivance (fig. 6) for comecting the limb, stage, and substage is especially calculated to ensure rigidity of the whole Microscope. The limb A is fitted into the sub-stage bracketplate D, which is held firmly by screws ; the joint-bolt B goes through the whole - limb and
 stage - bracket - rendering the limb, stage, and substage as firm as if they were one piece. This stageloracket C C, instead of being screwed to the front of the limb, as is usually done, is made in a solid casting ; it takes the substage beneath on the plate D, and goes right into the joint at the top of the pillar. The

[^61]makers consider that the strength and freedom from spring obtained by these arrangements are unique in Microscope constroction, and that the method is altogether superior to that of comecting the parts solely by screws.

Watson and Sons' Attachable Mechanical Stage.*-The special feature of this stage (fig. 7) is that it can be immediately fixed to a Microscope withont any special fitting. It is placed upon the stage, and grips mpon the edges like an ordinary sliding-bar; it is then clamped in position by means of a thumb-screw. It has a long range of movement in both horizontal and vertical directions.

Portable Class-Microscope. \dagger This Microscope (fig. 8) is intended for the use of classes

Fig. 7. studying botany, zoology, \&c. It is of German make, and thongh not of recent date, has points of interest. The body slides in an onter tube, which has an expanded foot containing a Lieberkuhn $2 \frac{1}{2} \mathrm{in}$. diameter, and an arrangement for holding a slide in front of it. The object is viewed by holding the instrment towards the light. The objective is separable into three parts, forming powers with magnifications of 44,96 , and $1: 30$ dianeters. In order to focus an object, the serew-collar on the onter tube is

Fig. 8.
slackened, and when the focns is obtained, the collar in tightened. A cap with a small hole in the centre is provided for the protection of the Lieberkuhn, and when more than one lens is used the cap is employed, and acts as a diaphragm when transparent objects are examined.

[^62]Barbour's Pocket Microscope.*-This is also primarily intended for field geologists, and is small enough to be carried in the vest pocket, the entire size being seareely larger than an objective-ease. A, fig. 9, shows. the instrument open ; B , shat. C is a lens-ease for comparison as tosize. The following magnifieations are obtained, viz. $100,60,40,80,20$. and 15 diameters, which are amply sufficient for field work.

Fig. !
Régadd, Cle, et Nachet, A. One nouvelle monture de microscope munie d'une platine mobile repérable à mouvements très étendus.

Arch. d'Anat. Microsc., V., fasc. 1 (1902) p. 17.
Régadd, Cl.-Nouveau microscope pour l'étude des coupes en séries.
Comptes Rend. Assoc. des Anatomistes, 3, Lyon, 1901, p. 262.

* Journ. App. Micr., v. (1902) pp. 1963-5 (1 fig.).

Scheffer, W.-Das Mikroskop, seine Optik, Geschichte und Anwendung. Leipzig ('Teubner), 8vo, 114 pp. and 66 figs.
Thon.-Ein neues Trichinenmikroskop.
Deutsche Thierürztl. Wochenschr., 1902, No. 8, p. 74.
Wolffeügel, K.-Ein neues Trichinenmikroskop.
Zeit.f. Fleisch- u. Milchhyg., 1901-2, H. 3, p. 78.

> (2) Eye-pieces and Objectives.

Barbour's Pocket Magnifier.*-This little instrument (I), fig. 9) is primarily intended for the field geologist, and is made by Messrs. Bausch and Lomb. The inventor's idea was to design a pocket magnifier which should fit in the rest pocket like a small flat watch, free from angles and corners. It contains Hastings, triplets of 5,10 , and 20 dianeters, together with a compass. If desired, the compass could be omitted, and the size thereby reduced.

Bourguet's New Index Ocular. \dagger-This ocular (fig. 10) contains a pointer, adjustable from ontside, by means of whose point every

Fig. 10. spot of the field of view can be indicated. It is especially adapted for giving students of histological and bacteriological classes definite information about any part of the microscopie field. \ddagger

Französische Mikroskope.

[An account of progress recently made by French opticians in the mannfacture of objectives.]

Central. Ztg.f. Opt. u. Mech., XXIII. (May 1902) p. 98.
Hartwicif, C.—Ueber ein paar Mikroskopoculare mit Messvorrichtung.
Centrulztg. f. Opt. u. Mech., XXIII. (1902) p. 11.
Malassez, L.-Sur les oculaires à glace micrométrique et à usages multiples.
Arch. d'Anct. Mierosc., IV:, fasc. „, 3 (1901) p. 219.
McGregor-Robertson, J.-Ehrlich's Eye-piece for the Differential Count of
Red and White Corpuscles in Stained Filnis.
Glasgow Med. Journ., LV. (1901), No. 5, p. 339.
Sohaffner, J. H.-Oculars for General Laboratory Work.
Journ. App. Mier., V. (1902) p. 1646.

(3) Illuminating and other Apparatus.

Watson and Sons' Macro-Illuminator.s-This is a single achromatic combination of $1 \frac{1}{4} \mathrm{in}$. clear aperture and 2 im . focus. It excels in producing a brilhant and uniform illumination of large objects under low powers. The lens is mounted to fit into the substage, close to the object, so as to focus the image of the source of light on the objective. Objects up to fully 1 in. in diameter may be thus illuminated with absolute miformity. It is extremely rahable for photography with the holostigmat and planar types of lenses.

[^63]Watson and Sons' Incandescent Gas Lamp.*-This lamp is shown in fig. 11. It has an ineandescent burner, with by-pass, mica chimney, and metal hood. An inis diaphragm may be fitted in the hood, so that the diaphragm aperture may be used as the light-source, and the mantle strncture eliminated.

Fig. 1 I.
Dr. G. Johnstone Stoney's Improved Heliostat. \dagger-Messrs. Watson have constructed this instrument (fig. 12) under the designer's super-

Fig. 12
vision, and the !improvements effected in it render it more than ever suited to the recpuirements of the physicist and photomicrographer. It

* W. Watson \& Sons' Catalogue, 1902-3, p. $116 . \quad \dagger$ Tom. cit., p. 106.
is mounted on a stout mahogany base, provided with levelling-screws and spirit-levels. The lever elockwork movement is of first-rate quality, and a fine adjustment for precisely setting the position of the instrument is afforded by a rackwork-and-pinion and tangent-serew. The mirror is parallel-worked, of fine quality.

Method of Using Abbe's Apertometer.* - F. J. Cheshire points out that the method of using Abbe's apertometer with a lamp-edge, as given by Dallinger, \dagger is open to an error if the lamp is put too near, and if it be assumed that the centre o^{\prime} (fig. 13) of the focnssing disc is also

Fig. 13.
the centre of the circular edge of the apertometer ; in reality this latter point is o, the middle of the chord. Let this distance $\sigma \dot{o}^{\prime}$ be d, and the distance from θ^{\prime} to the lamp L be I . Describe a circle with θ^{\prime} as centre, and $o^{\prime} \mathrm{L}$ as radins. Suppose the adjustments made so that a^{\prime} is the semi-angle as usually taken, a the true semi-angle, so that $\alpha=a^{\prime}+$ a small angle β. Then it can be shown that the numerical aperture (as found $)=$ true numerical aperture $+\frac{\mu d \cos a \sin \alpha}{1)}$. This last term $=$ $\frac{\mu d \sin 2 \alpha}{2 \mathrm{D}}$, and will have a maximum when $\alpha=45^{\circ}$, i.e. for. N.A.'s

* Journ. Quekett Micr. Club, Nov. 1902, pp. 349-52 (1 fig.).
\dagger Dallinger-Carpenter, 8th ed., pp. 394-5.
just over mnity. If the lamp is set near the instrmment, so that D is small, the error may become 10 p.c. The lamp should be at least a foot away when the error sinks to 1 or 2 p.e.

Simple Method of Focometry and Apertometry.*-F. J. Cheshire first shows how Abbe's method \dagger of determining the focal length of an optical system can be conveniently applied to a Microseope objective. The magnifying power of the objective is first determined with the draw-tnbe pushed in. This may be done by placing a sheet of gronnd glass on the top of the draw-tube, from which the eye-piece has been removed, and then focussing and measming the image of a stagemicrometer upon it. The magnification M having been determined by this or any other method, the draw-tube is then pulled out to its full extent, and the magnification M again fom . Let δ equal the amount of draw-tube extension, then the focal length f of the objective δ
system $=\mathrm{M}^{\prime-}-\mathrm{M}^{\text {. }}$
The author also gives allied ways of determining the foeal and

principal points of objectives, eve-pieces, \&e., and optical tube-lengths. His methods of apertometry depend mpon the following theory:-In tne case of an aplanatic Microscope objective (fig. 14), let a equal the semi-angle of the maximm cone of light which it can take up from an object in a medium of refractive index μ, and let ρ equal the radius of the dise of light in the upper foeal plane. By a well-known equation, if f ecpual the hack or upper focal length, the N.A. $=\mu \sin \alpha=\frac{\rho}{f}$. Now consider the two lens-systems A and B (fig. 15) with a common focal plane and parallel incident light. Further, suppose that each system is spherically corrected for light converging to the common focal points. The system B is shown transmitting a cone of light of greater N.A. than the system A can take up. The effective and equivalent semiapertures are R and r respectively, and for these the N.A.'s must obvionsly be equal. Thas $\frac{r}{f}=\frac{\mathrm{R}}{\mathrm{F}}$ or $\frac{\mathrm{R}}{r}=\frac{\mathrm{F}}{f}=$ a constant. The author describes how, by ase of an Abbe's two-lens chromatic condenser and a dise of fine wire-ganze, he takes the necessary measurements. He also gives a comparative table of N.A.'s of a series of lenses obtained by Abbe's apertometer and by the above method. The two sets of results closely agree.

[^64]Watson's New Standard Electric Lamp.*-This lamp (fig. 16), which is intended for Microscope work, has a 16 candle-power incandescent burner, with frosted glass bull). It is carried on a lacquered brass standard, and, by means of a movable double arm, is adjustable in all directions. The bulb is inclosed in a mickelled reflector of parabolic shape, which has the simultaneons advantage of shielding the eyes and concentrating the light on the Microscope mirror. It can also be supplied with a special hood and iris diaphragm.

Fig. 16.

Small Electric Light for Photomicrography. \dagger - W. Scheffer's first experiments were with a cravat-pin, which held a small electric lamp, lighted by a dry cell of Američan make. He then constructed a small lamp (fig. 17), in which the carbon filament lay as near as possible to the glass, so that the whole lamp might be brought into close proximity to the under side of the object-slide. The filament, magnified ten diameters, is shown more completely in fig. 18. The length of the filament (a, fig. 17) is 1 mm ., the thickness $0 \cdot 1 \mathrm{~mm}$., and

[^65]the distance from the object 02.5 mm . The cone of rays, seen broadside, is shown in I. (fig. 18), and end-on in II., B being the base (i.e. a in fig. 18). In III. is represented a cone of rass proceeding from a base 2.5 mm . under similar conditions ; the vertical angle of the cone

Fig. 17. :

Fig. 18.
is obviously much more obtuse. This latter form is to be recommended for objectives of high aperture, and for objects visible by absorption (e.g. coloured preparations), the narrow filament being better for objects affected merely by refraction (e.g. diatoms, meoloured preparations, \&c.). When the lamp is brought right under the object, a drop of cedaroil will bring lamp and objectholder into close connection, and thereby much increase the effeet of the light.

The lamp is supported on a stand (fig. 19) by means of an arm F, clamped loy a screw E. The heavy foot-plate is also a resistance-block, and has a con-tact-key K, thms allowing any desired brightness of light to be obtained. The arm F has a lateral motion by means of the spring C, whereby the position of most advantageous oblique illumination may he found. In G the lamp may be rotated and clamped for application with the vertical illmminator. The holder B is so fitted with contact-springs that the lamps have merely to be inserted. The resistance-block is provided with a divided circle, so that the degree of illumination can be always regulated. An accumulator is recommended as a light-source. Among other advantages possessed by the apparatus, such as cheapuess, simplicity, and constancy,
is the shortness of time-exposure, so that 110 condenser system is required.*

Illumination, and the Use of the Condenser in Histological Micrography. $\dagger-A$. B. lee sums up his paper on this sulbject with the following advice:--"If you desire to work with daylight, which I do not advise, put an object on the slide, turn the mirror so as to illuminate it, focus, centre the condenser. if it is not already centred for the objective to be used, set the diaphragm, and focus the condenser on a bar of the wimlow. Afterwards never tonch the diaphragm, nor the eondenser rackwork.
"If you desire to use a lamp without hull's-eye, put it exactly in its marked position on the table, turn the edge of the flame towards the Microscope, put a coloured screen in front. turn the plane mirror so as to illuminate the condenser, centre the condenser, orientate the mirror so as to centre the flame-image, set the diaphragm, and foens the condenser. Afterwards never tonch the diaphragm or the condenser, but regulate the light, if necessary, ly your coloured screens.
"If you desire to use the bull's-eye, which I regard as the normal arrangement for a cytologist, proceed at first exactly as above. then place the bull's-eye before the flame. Its focal distance from the flame and its azimuthal position having been once for all fixed loy stop-screws, it will be in adjustment as soon as it fully illuminates the mirror, and it will be only necessary to slightly correct the orientation of the latter for getting the exact centring of the flame-imase, and to re-foens the condenser for its new light-source. As leefore, never afterwards tonch the diaphram nor the condenser rackwork, but regnlate the light, if necessary, hy colonred sereems."

Illuminating Apparatus for Metallography. $\ddagger-1$. Electric Incundescent Lemp.-

Fra. 20. This is shown in fig. 20, and is of 150 cande-power, with Edison hase, socket, binding-posts, stant, and elevating-screws. It is used with a large hiconvex condensing lens.
‥ 90° Automatic Focussiny Electric Arr Lamp.s-This (fis. 21) is used for projection or for photomicrograpliy. It yields from 2000 to

[^66]Feb. 18th, 1903

4000 candle-power, and is adapted to both direct and alternating enrrents. It is enclosed in a nickel-plated light-tight hood.

Fig. 21.
3. 90° Haml-fod Electric Are Lamp.*-This (fig. 22) is for exactly. the same purpose as the last.

Fig. 29.
4. Acetylene Gias Apmerotur. \dagger - This illmminant is considered inferior to electricity. The arragement of hamers is shown in fig. $2: \%$, and the generator in fig. $\because 4$. They are compled be india-rubler tubing.

Fig. 23.
Origin of the Davis Shutter.- It will be found, on referring to the Sournal for $1882, \mathrm{p} .262$, that an iris diaphragm placed at the back of an object-glass (now known as a Davis shatter) was first suggested by Dr. Royston Pigott in 1869, for reducing the aperture of objectives. At that date Dr. R. Pigott maintained that wide-aperture objectives produced confused images.

Simple Form of Reflecting Pola-

 riser.*- F. J. Cheshire momnts, in the axis of the Microscope, a slip of ground glass G (fig. 25), abont $1 \frac{1}{4}$ by $2 \frac{1}{2} \mathrm{in}$., at an inclination of $: 3: \frac{1}{2}^{\circ}$, on a short spindle A, capable of rotation by a milled head B . The glass slip is blackened with Aspinall's enamel on its, back and ground side. This polariser is mounted on the tail-piece of the Mieroscope in the same way as the usual mirror. Therefore when the spindle A has been rotated so as to bring the lamp-flame into view, the light is reflected at the proper angle

FIG. 24.

[^67]for polarisation. The analyser is screwed into the bottom of the drawtrhe, in which position it does not limit the ficld of view as when mounterl in the eye-piece, and must be capable of independent rotation.
Leiss, C.-Ueber eine Verbesserung an der Polarisationseinrichtung von Mikroskopen.
[The essential part of the arrangement consists in the facility for moving aside the polariser, which is fitted in a sleeve on a hinged arm, the illuminating and condenser lenses being unaffected. The low-power condenser lens is independent of the polariser, and the latter is prot, cted ly a cover-glass.]
Tschermalk's Mineril. u. Petrog. Mitth., XXI. (1902) p. 454.

Lerss. C. - Krystallpolymeter nach C. Klein.
['The anthor gives a full description of the instrument.]

Fig. 25.

Zeit. f. Instrumentenk., XXII. (1902) p. 201.
Wendt, G. von.-Eine ausgezeichnete Beleuchtungsquelle für mikroskopische Zweeke.
[Strongly recommends the use of the Nernst lamp for microscopy. The light is constant, and when usel with strong magnifications (2000 or more) the whole of the field is extraordinarily lright. The author eonsiders it superior to any artificial or even natural light-source.]

Zeit. f. wiss. Mikr., XVIII. (May 1902) pp. 417-8.

(4) Photomicrography.

Stereoscopic Photography of Microscopic Objects.*-W. Scheffer, after explaining the optical principles moderlying the subject, proceeds to their application. When the object to be photographed has been hronght into the field of view, the ocular is then removed, and one notes the position of the light-sonrec (i.e. the carbon filaments of the lamp described in a previons section, fig. 1s sum \quad (1). As the direction of the lateral displacement marks the horizontal, it is best to arrange that this displacement should be parallel to the edge of a plane. This is most conveniently attained by setting the lamp, with its stand, in such a position that the direction of the arm shonld be perpendicular to the longer edge of the plane, and this can be jurdged very aceurately by the are. Br means of the serew a lateral morement in one direction is now given to the lamp antil the carbon filament lies close to the periphery of the ficld; then it is similarly moved to the opposite side. When the observer has convinced himself of the acmaey of these positions, the ocular is re-inserted, the object laid on the stage, and the first photographic plate taken. The carhon filament is then moved to the opposite position and the second phate taken. Stereograms so obtained were compared with the olject, amd were fomed to give an excellent physical presentation, exactly corresponding to reality. The camera used was

[^68]that described in the next section, and it was fom that a period of three minutes was quite sufficient to take a stereogram, inchuding the necessary adjustment of light, slides, \& 6 . If the stereogram is reguired to produce the impression of vision from abme the horizontal must le so arranged that the true place of the lamp is the apparent position of the observer. A lamp should be chosen the length of whose filament is a third of the diameter of the aperture of the objective : the filament shond be inelined lengthwise, at an angle of 4.0° to the horizontal.

Improvements in the Vertical Microphotographic Camera.*-W. Seheffor describes (fig. 26) an arrangement hy wheln a Microscope can be used in the ordinary way, and yet almost instantaneously aldapted for use with a vertical cemera. The spacious foot-plate has two adjustable bars, which are secured by bind-ing-screws, and serve for putting the Microscope into the exact position for acomate centring with the camera. A strong pillar is at the further end of the foot-plate. In the upper and perforated end of this pillar is a steel rod carrying the camera, and rotatory about its axis; it is notched for the adjustment over the Microscope, and is firmly clamped in this position ly a screw. This arrangement seeures the accurate adjustment of camera and Microscope. The rod not only bears sleeves with suitable arms for the camera, but is graduated so that the position of the ground-glass screen may he accurately controlled. The flame is so arranged that the double dark slide, \&c. are not pushed, but dropped in ; in this way all trouble from jamming is avoided. The dark slide is of tin, and is pressed

Fig. 2t. down by springs.

Bagshaw's 'Elementary Photomicrography.' \dagger - This little book seems to correspond admirably with its title, and is written, as the author says in the preface, for the purpose of encouraging amateurs to commence the subject. It therefore aims at a clear exposition of principles and arrangements ; and endearours to show how many results can be obtained with simple apparatns that almost any one might he supposed to possess. There are ten chapters and an appendix, photomierography with low powers leing, naturally, more fully disensed than high power work, where, however, some very uscful hints are given.

Richards, M. A.-Photomicroscopy of Metals as practised by Steel Companies.

[A useful practical paper.]

> Journ. App. Micr., V. (1902) pp 1920-6 (8 figs.).

[^69](5) Microscopical Optics and Manipulation.

Common Basis of the Theories of Microscopic Vision, treated without the Aid of Mathematical Formulæ.*-J. Rheinberg explains in four chapters the principles underlying the formation of a microscopic image. These chapters were intended to form the commencement of a little book dealing fully with each of the various theories of microscopic vision, which have been, at any time, propounded, and the author considers that their publication at the present time may be opportme, in consideration of the interest recently aroused in the subject by Mr. J. W. Gordon's paper. \dagger The great feature in Mr. Rhemberg's paper is a method of showing and explaining the action of a diffraction grating by successive stages, begiming with two slots only. There are mumerons elearly drawn diagrams. The chapters are headed: (1) Elementary ('onsiderations ; (\because) The Image of a Lens; (:3) Diffraction and Diffraction Gratings ; (4) On Ohliquity of Incidence and Cones of Light.

Steinheil and Voit's 'Handbuch der Angewandten Optik.' \ddagger-This important handbook on applied optics is less known in England than it deserves to be. The first volume, which is the only portion as yet published, contains some : 14 octavo pages, 7 lithographie plates as well as mmerons ilhustrations. It is intended as an exposition of the methods of calenlating optical systems, and for their application to simple and achromatic lenses. It consists of 5 chapters and 4 appendices. The contents of the elapters are: (1) Reflection and Refraction of Light, pp. 1-:i2 ; (\because) Fundamental Peculiarities of a Dioptric System, pp. 3:354 ; (:3) Conditions for an actual Lens-System and Enmmeration of Mistakes to be avoided, plp. 5i-66; (4) Computation of a Lens and Discussion of its Image Errors, pp. 67-14: ; (5) Achromatic Objectives of Two Lenses, pp. $14+\sim 206$. The four appendices, which are partly due to Dr. Seidel, deal with the mathematics of geometrical optics, and inelude rarions tables of reference.
IIAuswaldt, H. - Interferenzerscheinungen an doppeltbrechenden Krystallplatten im convergenten polarisirten Licht photographisch aufgenommen. Mit einem Vorwort von Th. Liebisch.

Magdeburg, 1902.
Strehl, K.-Strenge Theorie der Lupe.
['I'le author gives some notes and explanations on M. G. Quesneville's Nouvelle 'Théorie de la Loupe (Paris, A. Hermann, 1902). They concern the magnifying power of loups, Microscopes, and telescopes.]

Zeit. f. wiss, Mikr., XIX. (1902) pp. 32-4 (1 fig.).

Tnompson, S. P.-Some Experiments on the Zonal Aberration of Lenses.

Arch. Néerland. [2] VI. (1901) p. 747.

(6) Miscellaneous.

Cantor Lectures, 1902: Glass for Optical Purposes.§-The lecturer, 1 rr. (ilazebrook, devoted the first of the series of four lectures to an explanation of the defects of a lens (spherical aberration, astigmatism, coma, distortion, ehromatic aberration), and of the chemical composition of optical glass. The second leeture showed how the defects were rectified in a modern microscopic objective. The third lecture dealt similarly with a photographic lens; and the fourth with telescopic olijectives and combinations of telescopic and photographic lenses. The

[^70]fourth lecture also explained the methods of lens-testing adopted at Kew Olservatory and the official certificate issued. The lecturer referred to the following anthorities as nseful sources of information : Winkelmamn's Henulbuch der Plyysik; Müller Ponillet's Leftrbuch tor Physik; M. von Rohr's Theorie des Photographischen Objectie's; Hovestadt's Jenuer Crlas; Silvams Thompson's translation of Lummer's Photographic Opties; and Dallmeyer's Telephotograplyy.

Molisch's New Freezing Apparatus.*-This (fis. 27) is intended for exhibiting objects under the Microscope in lathoratories. It is said

Fig. $\because \overline{7}$.
to be adapted for a constant temperature of $-11^{\circ} \mathrm{C}^{\prime}$. A window admits light on to the mirror, and the varions adjustments are effected by rods actnated from the cxterior.
Dongier, R.-Apparat zur Messung der Krümmung und anderer Constanten eines Optischen Systems.

Zeit. f. Instrumenth., XXI. (1901) p. 362.
KoHN, R.-Ueber mikroskopischen Electricitätnachweis.
[The author reviews the limits of delicacy of the methols of electrical reactions observable by microscopic methods. He esperially emphasises the electrolytic ractions when coloured or crystalline products are formed.]

Zeit. f. wiss. Mikr., XVIII. pp. 427-30.
Sthehl, K.-Plaudereien über Optische Abbildung-Mikroskopie; Spektroskopie.
[Conclusion of a serics of articles.]
Central-Zeit. f. Opt. u. Mech., XXIII. (1902) pp. 193-4.
Walléraxt, F.-Sur un nouveau modèle de réfractomètre.
Eull. de la Soc. Franç. de Minéralog., XXV. (1902) p. 54.

* Zeitschr. angew. Mikr., viii. (1902) pp. 3:-4 (1 fig.).

B. Technique.*

(1) Collecting Objects, including Culture Processes.

Apparatus for Collecting Samples of Earth for Bacteriological

 Examination. \dagger-H. W. Wiley deseribes an apparatus for the collection of samples of earth for examination. It consists of tubes of hrass, similar in construction to a cork-borer, one end bevelled, so as to easily enter the soil. Both ends are closed by mbber balls of slightly grater diameter, and the balls are held in prosition by small rubber caps. The aparatus is sterilised for one hour on two or three successive days. The method of collecting is quite simple. A ditch is dug. some thrce or four feet deep, and wide enough to hold the operator, and one side is made smooth. Samples are taken by means of scparate tubes, usually begimning three inches helow the surface, and contimuing at stated intervals to the bottom of the ditch. A platimm spatula, sterilised in the flame of an aleohol lamp, is nsed to remore the surface of earth at the point where the sample is to be taken : hoth rublere caps are removed from the tube, and the entting edge is forced into the soil with is turning movement, so as to fill the interior with a core of earth. The tulx is withdrawn, the rubber caps are replaced, and the whole apparatus enclosed in a covering of sacking for transmission to the laboratory.Anaerobic Cultivation. $\ddagger-1)$. Riras claims that the following procedure for cultivating anaerobic organisms is new. simple, and effeetive. He uses a test-tube with a coustriction in the middle (fig. 28). This is filled up to "with the medium. which is eovered with a layer of oil reaching as high as c. The medium used is a mixture of bouillon, agar or gelatin, ammonium sulphide, and sulphindigotate of soda. To make 500 e.cin. of the medim in the least umpleasant way the following brocedure is adrised :--(1) Bouillon with 1 p.e. grape-sugar and 1.5 p.e. pepton,

Fig. 28. 174 c.cm. (2) Sulphindigotate of seda 10 p.e. solution in distilled water, heated for 1 hour at $100^{\circ}, 1$ c.em. (:) Sodium sulphide 1 p.e. solution in distilled water, heated for 1 hour

[^71]at 100°, 25 c.cm. The medimm is then porred into the constricted tubes, covered with oil, and then the tabes are inenbated for to hours.

In order to study isolated colonies, the author uses a flat tube with a long drawn out extremity (fig. 2!), and holding abont $8 \mathrm{c} . \mathrm{cm}$. The agar or gelatin to be used is liquefied in test-tubes, inoculated, and diluted. The point of the long arm is then broken off at h, and then inserted into the tube containing the medinm. By sncking at a the flat tube is filled as far as the neck. The neck and print are then melted off at b and f, and the elosed phate phaced in the inenbator. As the tube is flat the colonies can be examined under the Mieroseope, and also easily photographed. By means of the media and this apparatus, the author has rery successfilly cultivated mumerous anacrohie bacteria..

Cultivating the Influenza Bacillus.*-E. Czaplewski makes a bloodagar culture medinm with pigeon's blood. Some feathers are remored with scissors from the bird's breast, and the surface thoroughly cleansed with cotton-wool soaked with alcohol. A slight incision is then made with a lancet, and the blood withdrawn by means of a pipette. The blood is then srpuirted into a flask, on the bottom of which is a laser of liquid agar (abont 10 e.cm.). The ingredients are then mixed ly carefnl shaking. The flask should be kept in a water-bath to prevent the agar setting. More agar is poured in until the correct tone of colonr is obtained. The mixture is then passed into test-tubes or Petri dishes, and slants or plates made. With the nsual precautions, sneh as are now employed in bacteriological laboratories, contaminations of the bloodagar are quite rare.
Meyer, H .-Einige neue Apparate zum Schöpfen von Wasser zu bacteriologischen.
Zwecken. (New :upparatus for obtaining water for bacteriological purposes.)
Centralll. Balit., $1^{\text {to }}$ Abt. Orig., XXXII. (1902) pp. 845-8 (4 figs.).
(3) Cutting, including Imbedding and Microtomes.

Simple Method of Making Thin Paraffin Sections. \dagger - II. Kolmer and H. Wolff describe a new procedure for making paratfin sections witbout the employment of fixatives. The chief agent is embonie acid. To the crlinder containing the liquid gas is attached a trabe 20 cm . long. Over the tulue is placed a hag made of two layers of velvet. The bag is about the size of a child's head, and is fastened to the tube with strings and a clamp. The tap is opened for a moment. The bag hecomes filled with solid CO_{2}, which is transferred to a pan and stamped down with a pestle. After repeating the process several times, a cake of solid carbonic acid is obtained which will retain a temperature of about $-80^{\circ} \mathrm{C}$. for $10-12$ hours.

The cake is then put in an exsiecator, on the bottom of which is placed a small copper tube containing paraftin (meltingr-point $\because 2^{\circ}$). On the layer of paraffin is placed the piece of fresh tissne (50 e.cm. in bolk). The piece freezes instantly. A dish of pentoxide of phosphorus is also placed in the exsiccator. The air is then removed by means of a water or mercury pump. In about 100 hours the pieee of tissue is freed from its water. The exsiccator is then put in at thermostat to thaw the piece

[^72]of tissue, and in this way saturation of the piece with paraffin is accomplished in rarno. The blocks are easily cut on a freezing mierotome, rielding sections 5μ thick.

The most important features of this method are that vital staining is retained in the sections, and Nissl's hodies are clearly evident.

Preparing Serial Sections of Insects.*-J. B. Scriven, while following generally the technique of Lowne, has introdnced several time-saving modifieations. After the object has been fixed, it is dehydrated in hot alsolnte alcohol and then placed straight away in the following imbedding medimm. Paraffin ($45^{\circ} \mathrm{C}$.) so grs. white wax 10 grs., anhydrous (rensote $\check{2}$ minims, solution of cantchone in pure benzol (1 gr . to 5 fl . (1r.), z minims. This medimm ents well at the temperature of the laloratory $\left(16^{\circ} \mathrm{C}\right.$. circto). The sections are stretched on and fixed to the slide with warm water. After allowing the ribands of sections to dry by evaporation, the imbedding medimm is removed by a rapid flooding with benzoline, whith in its turn is removed with absolute alcohol. The other steps do not differ materially from those nsually adopted.

Examining Oligochætæ. \dagger-For his experiments on the regeneration processes in limicolous Oligochete, M. Abel nsed T'ubifex rivulorum and Nais proboscidea. The reqenerative parts, as well as a number of normal segments, were immersed for 1 to $1 \frac{1}{2}$ hours in Hermann's fluid (platinum chloride-osmie-acetic acid). This solution was found to act hetter than hot sublimate. After the preparations had been washed and hardened they were imbedded in paraffin, and then transverse and lomgitudinal sections 5μ thick were made. The sections were stained with hematoxylin or with Haidenhain's iron-hematoxylin solution.

(4) Staining and Injecting.

Fixing Neutral Red. \ddagger-E. Golovine describes a method of fixing neutral red in the tissues after intret rittam staining. The animals nsed were Nematoda, Turbellaria, \&c. The treatment of the oljeect after intra vitem staining is divided into five sections: (1) preeipitation of the nentral red; (2) fixation of the material : (3) washing and dehydration: (t) imbedding in paraffin ; (5) after-staining of the sections. Neutral red may be precipitated and the object fixed at the same time by means of saturated solution of sublimate either alone or in combination with other fixatives such as picric acid, acetic acid, osmic acid, and platino-osmicacetic acid mixture. Other fixatives mentioned are chromic acid and its salts, iodide of potassim, picric acid, lichloride of platimm, and chloride of gold. Washing is effected hy means of satmrated arpeons solutions of ranadic, picric, or molybdenic acids, in pierate of ammonia, and moder certain circumstances in molyldate of ammonia. For dehydrating, mixtures in various proportions (seven formula are given) of water, saturated solution of molybdate of ammonia and 90° alcohol are used. The material is cleared up with tolnol, xylol, and oil of cloves, after which it is imbedded in paraffin. The sections must lie stuck on with

[^73]celloidin as albumen dissolves nentralised. For histological staining of the sections, the following solution is used : water 100 c.cm., hæmatoxylin 1 grm., chloral hydrate $7-9$ grm., 50 I.c. acid molybdate of ammonia $20-30$ drops. The mixture is exposed to the light for $8-10$ days. The sections stain in a few seconds.

Staining Axis-Cylinders with Carmin.* - E. Chilesotti describes the following method for staining axis-cylinders. (1) Fixation, Müller's fluid for 4 months or more, or formol-inüller (1-10), or formol (about 1 p.c.) for 4 days at least. (2) Impregnation (only for pieces fixed in formol or in formol-Müller) in Weigert's solution for staining medullary sheaths. (:) Imbedding in celloidin. (4) Sectioning. (5) Staining. The staining solution is made by hoiling for half-an-hour 1 grm . of carmin nacarat (Merck) finely powdered, in about $250 \mathrm{c} . \mathrm{cm}$. of tapwater. After standing for 24 hours, the clear floid is decanted off and then is added one drop of an alcoholic solution $\left(70^{\circ}\right)$ of hydrochloric acid (1 p.c.) to each c.cm. of aqueons carmin (3 c.em. to $100 \mathrm{c} . \mathrm{cm}$.). The mixture is then briskly shaken twice at intervals of 5 mimutes. After standing for $\because t$ hours the elear fluid is decanted off. Thymol $1-1000$ is added to prevent mould. The sections remain at least 20 hours in the staining solution, and on removal are washed in distilled water. (6) Differentiation. The sections are immersed for 30 seconds in an aqueons solution of permanganate of potash $1-2500$ (i.e. : parts of water and 1 part of $\frac{1}{4}$ p.c. of Pal's solution). They are then transferred for $10-60$ seconds to a satmated aqueons sohtion of sulphurons acid (SO_{2}. F^{\prime} p.c.). Wash in water and repeat the procedure, diminishing the stay in permanganate, mutil the section is of a rose colour traversed by reddish lines. Finally, a; p.c. alcohol, carbol-xylol, Canada balsam.

The axis-cylinders and the ganglion-cells are stained red while the neuroglia and the mednllary sheaths are quite decolorised. The red corpuscles, the nuclei of the neuroglia, are partially stained.

The anthor calls the attention of microscopists to this selective staining by means of carmin, a pigment which has been much neglected in recent times.

Staining and Preservation of Series of Sections on Paper Slips. \dagger

A. Schoenemam, after mentioning the material worked with (nasal cavity of infants, petrous bone of adults), describes the method of decalcifying. It first 7 p.c. sulpharic acid was used, but afterwards sulphmons acid. The material was immersed in a satmated solution, and as long as it remained therein, remained hard, bot on being transferred to water the bone salts dissolved ont. After dehydration in absolnte alcohol, the objects were transferred to a mixture of ether and oil of eloves $(\cong-1)$, and then to Stepanow's celloidin, which consists of celloidin chips 1.5 grm., oil of cloves 5 grm., ether 20 grm., absolnte alcohol 1 grm .

After a time, varying according to the size of the object, they were covered with chloroform, and when sufficiently hard the paper casing was stripped off and the mass placed in chloroform. When the hardening is complete the blocks are transferred to cedar-wood oil if they are to

[^74]be dry ent. If wet entting be preferred, the chloroform bath is not used tint the blocks are hardened in so p.c.atcohol. The anthor prefers the dry entting method, and sticks the block on with a thick solution of collodion or with paraffin. As the sections are cut they are placed on strips of specially prepared colour-proof paxer, one end of the strip beiug reserved for notes on identification, \&e. When a suffieient number of sections have been placed in position they are flattened down with blotting-paper. The paper strips are then immersed in so p.e. aleohol, in which they are freed from the cedar-wood oil. When the seetions are to be stained, the strips are placed in a water-hath to extract the alcohol, after which they are treated with hematoxylin, such as hæmalum, Grenacher's, Delafield's, in dilute solutions. The strips are placed in tap-water to lring ont the colour well and then in 95 p.e. alcohol to which eosin has been added. In this way ther are contraststained and partially dehydrated. The next step is to treat the sections with carbolxylol (1-:) and then with xylol. What the next procedure is depends on whether it he decided to preserve the strips or examine them in the dry or moist condition. If the latter, the strips are soaked in cedar-wood oil, and then placed on a slide and eovered with a strip of glass or mica.

If they are to be preserved in the dry state, they are coated with elastinlack ((iriblor). This rarnish dries in from 12 to 24 hours. The strips must be kept in a cool place.

Staining the Plague Bacillus.*-..E. Horniker obtains excellent polar staining of B. pestis by treating the air-dried and flame-fixed films with saturated aleoholic solutions of methylen-blne and gentian-violet. After allowing the stan to act for $1 \frac{1}{2}$ to \cong minntes, the preparation is washed with water.

Staining Malaria Parasites with A-Methylen-Blue-Eosin. \dagger - K. Renter practises the following procedure. The air-dried film is fixed in formol-alcohol (formol 10, absolute alcohol 90), and then carefully dried with blotting-paper. The preparations are then immersed in the stain (aq. destill. 20 e.em., A-methylen-blne-cosin (Grübler) :30 drops). By tilting the capsule containing the staining solution after the manner of developing a photographie plate the staining process is materially accelerated ; it shonld be completed in $15-20$ minutes. The film is then washed with distilled water, and after haviug heen mopped up and dried in the air, is mounted in balsam.

Staining the Parasites of Malaria perniciosa \ddagger - G. Mamrer recommends the following procedure for staining the parasites of pernicions malaria. The chicf reguisites are a good film, carefnl drying and hardening, and at very ripe alkaline methylen-hlue solution. The slides must be perfeetly clean, and the film made after the method of Jancso aud Rosenberger. The film is first dried in the air, and then fixed by immersing it for 10 to 15 minntes in alcohol-ether. On remoral it is dried in the air or in the flame. It is then ready for

[^75]staining. In a $60 \mathrm{c.cm}$. flask 10 drops of methylen-blne solution are mixed with 2.5 e.cm. of tap-water, and in another flask 15 drops of eosin solution with 25 c.em. of tap-water. The latter is then poured into the former, after which the blood preparation is immersed in the mixture and kept moving about briskly for abont five minutes. On removing the preparation water is poured over it to get rid of the superfluons stain. The preparation is now probably too blne, and the excess is removed by immersing in distilled water. If this be not snfficient, the preparation must be dried and again treated with distilled water.

The ordinary methylen-blue solntion may he used (1 p.c. aqueons methylen-b)he med. Höelst with $\frac{1}{2}$ p.e. soda), but $1-\frac{1}{-2}$ p.c. ammonia or $\frac{1}{10}$ p.c. caustic potash are better than the soda. This solntion takes 4 to 6 weeks to ripen. The cosin solution is a 1 p.c. solntion in distilled water. Though the proportion of 10 methylen-hhe to 1.5 cosin was fonnd to be best for most cases, yet when the methylen-blue is weak or umripe, it may be increased to $15-25$, and conversely, when too ripe and strong may be reduced to $7-15$.

Demonstration of Flagella in Coccaceæ.* - D. Ellis has demonstrated the presence of flagella in a large number of Coccacea by the following method. The samples, which were obtained from Krad's laboratory, were sown first on dextrose-agar and Spirillmm-agar. As soon as any growth was pereeived, a trace thereof was inocnlated on fresh agar, and this procedure was repeated motil movements in individual coeci became evident, after which they were re-inoculated and cultivated until a culture was fom suitable for flagella preparations. In general A. Meyer's method of fixing and staining (see this Jomrntl, 1900 , p. 37:) was adopted, though modifications in the fixation, length of mordanting, and staining were had reeomse to. As a rule, the preparations were fixed for mimutes at $40^{\circ} \mathrm{C}$., and then mordanted for 4- 6 minutes at room temperature. For staining, acid-violet was user ; this was heated mutil it vaporised, after which the preparation was allowed to stand for \cong minutes at room temperature.

As the result of the foregoing procednre, the anthor infers that all speeies of Coccucere are flagellated.

Stain for Elastic Fibres $\dagger-J$. H. Stebbins, jun., recommends the following method by which elastic fibres are stained dark-blue to bluehlack. Dissolve \cong grm. fnchsin and 4 grm. resorein in 200 e.cm. of hoiling water. While boiling add 25 c.cm. of liquor ferri sespuichlorid. and hoil for 5 minntes longer ; then cool and filter. Dissolve the precipitate collected on the filter in 200 c.em. of 94 p.c. alcohol by boiling, and when all is dissolved bring the volmme of the flid 11 to $200 \mathrm{c} . \mathrm{em}$. with 94 p.e. alcohol. Finally add 4 e.em. of HCl , mix well ly shaking, and the stain will be ready for use.

The material may be fixed in Zenker's fluid, or in formaldehyde. The seetions are stamed for 20 to 60 minntes, washed in absolnte alcohol, cleared in xylol, and then monnted. If desired, they may be previously contrast-stained with carmin.

[^76](5) Mounting, including Slides, Preservative Fluids, \&c.

Making Preparations of Crystals for the Micropolariscope.*S. E. Dowdy says that the first essential of success is to get the slides perfectly free from grease. Rubbing them with a paste made by working up a little prepared chalk with equal parts of reetified spirit and liquid ammonia, drying, and finally polishing on chamois leather, answers well. Make a saturated solution of the chemical in cold distilled water in a test-tube. Warm the supernatant fluid so that it may take up a little more of the salt in solution. Deposit a drop or two of the warm solution in the centre of a slide and allow it to spread. If it do not form a film but remain as a globole it is a sign that the slide is still greasy. If a film forms, it should be covered with a watch-glass and the slide put aside to cool. The results are better from slow cooling, but the process may be hastened by heating the liquid on the slide until a thin film of salt appears at the edge and then putting aside to cool. When formed, the crystals should be momnted at once in xylol-balsam of thick viscid consistence.

(6) Miscellaneous.

Interesting Extract from Hooke. \dagger-" Nature is not to be limited by our narrow apprehensions; future improvements of glasses may yet further enlighten our understanding and ocular inspection may demonstrate that which as yet we may think too extravagant either to suppose or feign."

This quotation occurs in connection with a letter received from "the ingenious and inquisitise Mr. Leeuwenhoeek, of Delft," sent October 5, 1677. In this letter, Leenwenhoeck speaks of the rast mumber of animalcules to be seen in an infusion of pepper, and Hooke calculates that over $8,000,000$ of these minute animals exist in a single drop.

The work from which the extract is taken is entitled 'Lectures and Collections made by Robert Hooke, Secretary of the Royal Society,' 1678, p. 118. The latter part of this collection has a second title, 'Microscopinu or some new Discoveries made with and concerning Microscopes.'

Handbook of Instructions for Collectors. \ddagger-The authorities of the British Museum (Natural History) have issued in look form the series of pamphlets, treating of the collecting and preservation of specimens, which were chiefly drawn up for the better information of voluntary collectors resident abroad. The varions chapters have heen written by different members of the staff of the Natural History Museum. Much valuable information is contained in the booklet, thongh a few more diagrams would have been useful adjuncts to the verbal descriptions. On the other land, illustrations such as that of a cyanide bottle seem somewhat superfluous, and the morality of the adrice (p.129) to bribe customs officers is more than doubtful.

Physiological Histology.s-G. Mann's Methods and Theory of Physiological Histology is bound to command widespread interest anong

[^77]physiologists and pathologists, as it is the first work in the English tongue which has treated the practice and theory of fixation and staining in a thorough and scientific manner. Its contents will well repay a careful examination, and the volume will, no doult, soon be fonnd in every well appointed laboratory. The first nine chapters deal with the various aspects of fixation. These are followed by others describing the methods of bleaching, decalcifying, injecting, and of oltaining sections. In chapters fourteen to twenty, dyes and staining are treated of. To these succeed impregnation methods, the chemistry of some tissne-constituents, and microchemical reactions. In chapter xxis. the theory of staining is discussed at considerable length and with much erudition and knowledge.

In the last chapter are described the methods for rendering preparat tions permanent. The book concludes with an appendix in which the chemistry of dyes is dealt with in mach detail, and with a note on microanatomical reaction.

In conclusion, we may say that the author has succeeded in producing a work of considerable merit, which is marked throughout hy aceurate knowledge of the theory of the subject and by practical experience of the methods discussed. It is the work of one in anthority, and quite unlike many compilations which profess so much.

- Modern Microscopy.' *-This useful handbook, which this year has reached its third edition, is the outcome of the knowledge and experience of M. I. Cross and M. J. Cole, by whom the text has been entirely revised and considerably enlarged. The information regarding the Microscope and microscopical technique has been brought up to date and much extended in scope. A new feature of the present edition is a chapter on the choice and use of microtomes. The general get-up of the volume, which is freely illustrated, is very good.

Microscopic Examination of Paper Fibres. \dagger - W. R. Whitney and A. G. Woodman, in a very useful commmication, give an account of the procedure they adopt for examining paper fibres microscopically. As a rule, a magnification of 60 diameters only is required, but higher powers are at times useful. The Microscope must be fitted with apparatus for viewing objects with polarised light. The paper to be examined is torn into small bits, and these are boiled for a few minutes in a 1 p.c. solution of canstic soda; then the pulpy mass is poured on a fine sieve (about 100 meshes to the linear inch) and washed with water until practically free from alkali. The pulp is transferred to a bottle half filled with water, and shaken vigoronsly to break up any lumps. It is not advisable to use glass beads or garnets to assist in the dissociation, but it may be necessary, in order to separate the fibres, to fray them gently in a mortar. The fibres may be inspected in water or glycerin and water, and permanent mounts made in agar, slycerin-jelly, or C'anata balsam. Several shonld always be preparel, in order to be sure that examples of the varions cell-forms may be obtainerl. The slides are to he examined by direct, and by polarised light, and their

[^78]varions characteristies noted down. In this way their identity may lee narrowed down to three or four fibres, and their exact identification established by reference to detailed deseriptions given by the authors in their valuable paper.

Method of Making Collodion Tubes.*-K. Kellerman pours :; p.c. collodion into test-tubes of suitable size. The tubes are then rapidly revolved, so as to coat the interior The superflnons collodion solution is poured off, and the tube is then placed in the inverted position to allow it to drain easily, and to dry and harden the film. The tube is allowed to stand for three minntes to one hour, and then filled with water. This loosens the collodion, so that the tube is easily drawn ont.

Ink for Writing on Glass. \dagger - P. (i. Unna uses an ink for provisionally marking slides composed of zine oxide $5 \cdot 5$, gelanth $7 \cdot 5$, distilled water 15.

New Micrometer. $\ddagger-$ This instrmment (fig. :30), devised by Sir J. Hooker, obviates the inconvenicnee of the double measurement involved

Vig. :30.
in the use of compasses and a rule. It reeords the length of an object up to a fraction of an inch or millimetre, one side of the scale being: yraduated to inches and the other to millimetres. It is specially useful for work with the disseeting Microscope, as the olject may be measured without removing the eye from the ocular. The instrment is 4 in . in length, and as it is graduated for the ordinary and metrie systems, it furmishes a ready means of converting the reading of one seale inte terms of the other. It is made by A. H. Baird of Edinhurgh.

[^79]New Colony-Counter.*--L. S. Ross describes a new bacteria colonycounter (figs. :31-:3:3), of which a great feature is that the glass bearing the ruled lines can be bronght quite close to the growth, by which a great source of error is eliminated. A glass disk ruled to square centimetres is mounted on the end of a short harrel that moves freely by

Fig. 31.
screw-thread within a collar. A hlock similar to that used in the Barnes dissecting Microscope has a metal circle on the top over the mirror, of a size to hold the 100 mm . Petri dish; a rim is on the circle to hold the dish in position. Underneath the circle a mirror. or a black surface if

Fig. 32.
desired, is placed at an angle of 45 degrees. A sliding-post bearing : jointed arm is set into the block, to hold the lens in counting. The dish to be counted is set upon the circle, the cover is removed, and the barrel is placed disk down inside the dish, the collar holding the barrel resting upon the edge of the dish. The barrel is lowered through the

> * Journ App. Mier., v. (1902) pp. 1970-1 (3 firs,)

Feb. 18th, 190. ;
collar by means of the serew-thread until the ruled glass is close to the selatin. The barrel is of such a length that the ruled glass may be brought close to the gelatin in dishes of varions depths. By means of the jointed arm the lens is swang into place and may be carried over the entire surface of the dish. The apparatus is made by Bausch and homb.

Fig. 35.

Abba, F-Manaale tecnico di microscopia e batteriologia applicate all' igiene.
Torino (Claussen) 1902, 太vo, 671 pp., about 351 figs.
Cajal, S. Ramon y.-Elementos de histologia normal y de técnica micrográfica. :3rd ed., Madrid, 1901, Svo.
Ehrlich, P., Kratse, Le, Mosse, M, Rosin, H., und Welgert, C. Encyklopädie der mikroskopischen Technik mit besonderer Berücksichtigung der Färbelehre. Abt. E, '2.

Wien (Wrban u. Schwarzenberg), 1903, 8vo, 800 pp . and numerous figs.
(forham, F. P.-a Laboratory Course in Bacteriology.
Linudon (Saunders), 1901. Svo.
Strageurger, E.-Das botanische Prakticum. Anleitung zum Selbstudium der mikroskopischen Botanik für Anfänger und Geübtere, zugleich Handbuch der mikroskopischen Technik.

4th ed., Jeva (Fischer), 1902, 8vo. 771 pp . and 230 figs.
Wright, A. W.-New Procedures for the Examination of the Blood and of Bacterial Cultures.
[(1) On the possibility of dispensing with the standard pipettes and micrometrical rulings of the hemocytometer. (2) On a method of determining under the Microscope the number of micro-organisms contained in bacterial cultures. (3) On a simple procedure for coagulation tubes of standard calibre; also a note on the practical importance of the information obtained from the coagulometer.]

Lancet, 1902. II. pp. 11-7.

Metallography.

Metallography : an Introduction to the Study of the Structure of Metals chiefly by the Aid of the Microscope.*-This is the title of a useful work by A. H. Hiorns. The author lelieves it to be the first on the subject in the English languge, and as the principles of metallography are yet in their infancy, he has not attempted any strietly logical basis of treatment. The hook is divided into thirteen chapters, the first three of which are devoted to methods of preparation; the others treat of the various metals and their alloys. The book is also subdivided into sections, and the nmerons photomicrographs amply

[^80]illustrate our present knowledge of the smbect. A slossarr of technical terms is appended.

Fracture of Metals under repeated Alternations of Stress.*_. I. A. Ewing and J. C. W. Humphres have investigated he means of the Dieroscope the process by which iron hecomes "fatigied" and hreaks down, when subjected to repeated reversals of stres. It is shown that. although the greatest stress may be much within the linits of elasticitr, it prodnces rupture after many reversals. The first visille effect is the production of slip-bands here and there on individual errstals. These gradually become more numerons. Ther ako become acrentatem and broadened, and their edges turn roush and hurved. apparently as a result of grinding of one surface on the other over the phane in which the slip has oceurred. At a later stage eertain of the slip-bambs develof into cracks, the cracks spread from crestal to erretal, and fracture enisnes.

Volatilisation and Recrystallisation of the Platinum Metals. \dagger For the measurement of high temperatures by means of thermo-clements. it is usual to emplor a combination of a patimm wire with one of platin-rbodium (Le Chatelier), or with one of platin-inidimm (barus). L. Holborn and F. Henning have undertaken experiments to test the suitability of these materials, and expecially to diseover whether the crstalline structure suffered ans degeneration in consequence of prolonged heating. It was found that allors of phatinum and iridimm at a temperature of $1500^{\circ} \mathrm{C}$. lose weight considerable aml metallographic examination shored extensive disinterration of structure. The other metals and alloys were practically mehanged.

Campbele, W.-Upon the Stracture of Metals and Binary Alloys.
[Discusses methouls, crystin] ine structure, etfects of strain. effects of heat treatment, and repestntative of the various groups of binary alloys.]

Metallogruphist, V. (1902) Pp. 286-334 (38 tigs.).
Hocghton, S. A. - The Internal Structure of Iron and Steel with special reference to defective Material.
[A very clearly written paper. coniously illustraten with excellent phothmicros.]

Metallographist, V. (1902) pp. 257-85 (34 tigs.).

* Proc. Roy. Soc., Ixxi. (1902) p. 7 ?
\dagger S.B. d. k. Preuss. Akad. d. Wiss. zu Berlin. sxxix. (1902) pp. (3:-43 (11 plintomicros).

PROCEEDINGS OF THE SOCIETY.

MEETING

Helid on the 17 Th of Decenber, 1902, at 20 Hanover Square, 11. Dr. Henry Woodward, F.R.S., President, in the Cilim.

The Minutes of the Meeting of the 19th of November, 1902, werc reald and confirmed, and were signed by the President.

The List of Donations to the Society (exclusive of exchanges and reprints) received since the last Meeting was read, and the thanks of the Society were roted to the donors.

Mr. J. J. Vezey explained that Dr. Hebb had been mexpecterlly detained as an examiner at Cambridge, and regretted therefore he could not he present; he (Mr. Vezey) had undertaken to fulfil his duties. He then read the following list of nominations for Officers and Comeil to be submitted for election at the Ammal Meeting of the Societry in .Jannary next:-

I'resident-Dr. Henry Woodward.
Vice-Presidents-Messrs. Wm. Carruthers, (i. ('. Karop, A. I). Michael, and E. M. Nelson.

Treasurer-Mr. Vezey.
Nocretaries-Rev. Dr. Dallinger and Dr. Hebb.
Council-Messrs. J. MI. Allen, Wymne E. Baxter, Conrar Beck, Dr. Braithwaite, Rev. E. Carr, Messrs. A. N. Disney, J. W. Gifford, Rt. Hon Sir Ford North, Messrs. H. G. Plimmer, 'T. H. Powell, P. E. Radley, and C. F. Ronsselet.

Librarian-Mr. Radley.
('urator-Mr. Rousselet.
Auditor on behalf of the Council-Mr. J. M. Allen.
The Fellows having heen rerpested to elect one of their number as Anditor to act with Mr. Allen, Mr. C. L. Curties was thereupon proposed, seconded and duly elected as Auditor on behalf of the Fellows of the Society.

Mr. C. F. Rousselet exhibited an apparatus for drawing objects natural size, which was figured in the Society's Journal for 1900 (p. 734), but had not been previously exhibited. The instrument had now heen
sent to them by Messrs. Bausch and Lomb. It consisted of an upright pillar mounted on a firm base, and carrying an eye-piece which consisted of two right-angled prisms cemented together and silvered on their fating surfaces with the exeeption of a small hole, and having a third prism cemented to these. The pillar also supported a rigid arm, which carried a mirror at each extremity fixed at an angle of 45° to the horizontal. The object to be drawn was placed under one of the mirrors, and the paper on which the drawing was to be made was similarly placed below the other, the image being seen through the ere-piece projected upon the paper, on which it could easily be traced with a pencil.

The thanks of the Meeting were voted to Messrs. Bausch and Lomb, for sending this apparatus for exhibition, and to Mr. Ronsselet for explaining it.

Mr. E. M. Nelson's note on a Two-speed Fine Adjustment was read by Mr. Vezey, and illustrated by a diagram drawn upon the hoard.

The thanks of the Society were voted to Mr. Nelson for his communication.

The Rev. R. Freeman read a paper, by Mr. F. R. Dixon-Nuttall and himself, 'On the genus Diaschiza,' which was ilhustrated hy a number of drawings shown upon the screen by means of the Epidiascope.

The President, in moving a vote of thanks to Mr. Freeman, said it was obviously impossible to judge fully of the merits of an exhanstive paper of this kind from simply hearing it read, but they would look forward to reading it for themselves in the Journal, with the beantiful illustrations they had seen exhibited before them in the plates accompanying the text of the paper.

Mr. C. F. Rousselet said : The paper on the genus Diaschiza to which we have been listening will be welcomed by all students of the Rotifera. It is one of those which has required a very great deal of work-work of some years indeed, and much more than appears on the surface of it. For I know by experience how difficult it is, and how long a time it takes to check all the reported facts and find out the mistakes or inaccuracies of previous students of such an obscure and difficult group of Rotifers as the genus Diaschiza.

The mistakes were due mostly to the imperfection of the tools with which these predecessors had to work, but they were none the less mistakes, likely to lead astray, and involving considerable work to find out and correct. I think the authors are to be congratulated on the success with which they have revised this genus, and also on their good fortume in having found all the well authenticated species in their neighbourhood. The fine figures which we have seen on the sereen, drawn by Mr. Dixon-Nuttall, are so good and full of detail, that the identification of the species will no longer offer the difficulties which it formerly did.

It will have been noticed that several well-known names will have to disappear as synonymous, such, for instance, as Ditschiza semiaperta. which is obviously identical with Furcularia gibba of Ehrenberg, and will now be known as D. gibba.

In the case of D. ceeca, no less than four of Mr. Gosse's species are melted lown as varieties of only one. Mr. Gosse was a very keen observer, and no one conld draw better than he did such details as he could see. But obvionsly, he could not draw what his Microscope could not reveal, and when we know from his son's biography, that Mr. Gosse bonght a Microscope in 1850, which, regardless of modern improvements, he contimued to use throughont his life, we can understand how it is that some of the more minute features in the anatomy of Rotifers escaped his keen scrutiny.

By the courtesy of Dr. H. M. D. Phillpotts, of Babbacombe, Torquay, its present possessor, and the kindness of Dr. Cressey, who has brought it from Torquay, this Microscope is here to-night for your inspection. Yon will observe it is an old but first class Mieroscope, made by Hugh Powell about 1840. It is identical with the old Microscope presented to the Society by Messrs. W. Watson and Sons, in November last year, a description of which, by Mr. Nelson, will be found in the Journal for 1901, p. 728. The three object-rlasses-1-in., $\frac{1}{2}$-in., and $\frac{1}{2}$ in., all provided with a Lieberkuhn-are exceedingly good even now, and according to modern standards the two higher powers only lack aperture; but this want of aperture, or N.A., is precisely what prevented Mr. Gosse from seeing the very minute details, such as the dorsal and lateral antenne in many Rotifers, the fine setre above the toes of the Diaschiza. \&c., which are missing in his drawings. A binocular body is also present, and must have been added later in the sisties ; but Dr. Hudson has told me that Mr. Gosse conld not use a binocular owing to the shortness of focus of one of his eyes.

This, then, is the very interesting Microseope with which Mr. Gosse did all his work on the Rotifera, and it certainly is a very efficient instrument, and one of the very best types available at the time when he acquired it, and our very best thanks are due to Dr. Phillpotts for kindly sending this instrument for exhibition, and to Dr. Cressey for bringing it up from Torquay.

The thanks of the Meeting were voted to Mr. Dixon-Nuttall and Rev. R. Freeman for their paper, to Mr. Rousselet for his remarks, and to Dr. Phillpotts for the loan of this very interesting old Microscope. and to Dr. Cressey for bringing it from Torquay for this Meeting.

Mr. E. R. Turner made a communication 'On a new Arrangement for taking Photomicrographs in Colours,' and illustrated the subject ly. the exhibition of a number of examples shown on the screen.

The problem of photography in natural colours, said Mr. Turner. has been approached from many different standpoints. Very few prorcesses, however, have been found to be of value. The most successfnl at present known was suggested by James Clerk Maxwell in a lecture at the Royal Institution in 1861, and althongh he had not the material to cmable him to put his theory into practice, it has been proved since that what he advanced was of real practical value.

He sngested that the theory of colour-vision might be employed as at means of olotaining a reproduction of the natural colour, and that if the three colonrs to which the eve was found to be sensitive were repre-
sented by three photographs, then by projecting these three photographs each through a colour-screen similar to that used in obtaining the photographs, and superposing the images, an exact reproduction of the various colours of the original wonld be obtained.

Instead of projecting the images by means of a lantern, photographs in the form of prints or tramsparencies may be obtained by a modification of the same idea. Ducos du Harmon was the first to obtain a picture in pigments by this method, but his effects were not satisfactory. In 1890, Mr. F. E. Ives produced some good results in Philadelphia, and in 1894 exhibited them in London; but in his lecture before the Society of Arts, April 22, 1896, he described the process as almost impracticable. The two specimens shown, which were made by Mr. Ives about this date, are, however, very good.

Briefly, the details of this process are as follows:-Three negatives are taken of any given subject by means of an ordinary camera, three colour-screens, as suggested by Maxwell, being employed in order to produce the requisite colour records, these colour-screens being respectively red, green, and blue, and the plates employed being sensitive to these colours. Then three pieces of mica, split to the thickness of thin cover-glass, which have been coated on one side with bichromated gelatin, are exposed, one under each negative, to daylight. The particular coloured light, which was absorbed by the colour-screen when taking the negative, will be represented by clear glass, and the light will render this exposed portion insoluble, so that, upon washing away that portion of the gelatin which remains soluble by means of warm water, an image in clear insoluble gelatin is obtained, which in its varying thickness is an exact record of the coloured light absorbed by the colour-screen; thus the red screen absorbed the green and blue light, and the resulting gelatin print is stained in a greenish-blue dye : the green screen absorbs red and blue light, and the gelatin print from this negative is stained with a dye which transmits red and blue; the print from the negative taken through the blue screen is stained yellow.

When making the exposure of the bichromated gelatin under the negative, the mica is placed next the negative, so that the insoluble image which results from the exposure to daylight may have the mica on which to adhere; if printed on the gelatin side, a layer of soluble gelatin will remain between the insoluble image and the support. The necessity of printing through the support at once demonstrates the superiority of mica over celluloid, the former being so thin that the finest details will print sharp. A sheet of celluloid, on the other hand, is of quite an appreciable thickness, and microscopic detail cannot bu secured.

The special advantages of using Lumière's process for scientific: work are, that, in the first place, by the employment of mica in the place of celluloid, very fine detail can be secured. As the mica has no tendency to become distorted, there is no difficulty in obtaining accurate registration of the three monochromes. Thirdly, as there is no necessity to balsam the three images together, the resulting picture will not bc affected by prolonged exposure to the heat of the projection lantern. By the employment of exactly the same process to obtain all three monochromes the scale of gradation is preserved, and the most delicat. tints may be accurately reproduced.

Mr. R. L. Gleason also exhibited several interesting slides in illustration of the same process, and gave details as to exposure, \&c.

The President expressed the thanks of the Society to Mr. Turner and Mr. Gleason for their demonstration of a process which he was sure had a very great future before it. He thought that practical demonstrations such as this were of great value, not merely as showing what could be done by colour processes, but as a great incentive to others to experiment for themselves.

Mr. Vezey thought it scarcely necessary to say how glad the Fellows of the Society were to see Dr. Dallinger amongst them again, and to know that his health had been sufficiently recovered to enable him to be present.

Dr. Dallinger said he was greatly obliged to Mr. Vezey and to the Fellows of the Society for the welcome they had given him. It had been a source of great pain to him to be absent from their Meetings, but the dnctors had told him that the only way to recover was to keep from exposure at night and from any mental strain or excitement, and this he had done with so far beneficial results, and he hoped to be in his place in future as usual.

Notice was given that the Society's rooms would be closed from December 24 to January 3 inclusive.

The following Objects, Instruments, \&c., were exhibited:-
Rev. R. Freeman :-Drawings, shown on the screen by means of the Epidiascope, in illustration of the paper by Mr. F. R. Dixon-Nuttall and himself on the Genus Diaschiza.

Mr. E. R. Turner :-Slides shown on the screen in illustration of his communication on taking Photomicrographs in Colour.

Mr. R. L. Gleason :-Slides shown on the screen in illustration of (olour Photomicrography.

Mr. K. I. Marks :-Melicerta tubicolaria.
Mr. C. F. Rousselet :-H. Bausch's Apparatus for Drawing Objects Natural Size.

New Fellows:-The following were elected Ordinary Fellows:H. Th. Güssow, Rev. Thomas Nevill, Lient.-Col. George Lyon Tupman.

ANNIVERSARY MEETING.

Held on the 21st of January, 1903 , at 20 Hanover Square, W. Dr. Henry Woodward, F.R.S., President, in the Chair.

The Minutes of the Meeting of the 17 th of December, 190°, were read and confirmed, and were signed by the President.

At the request of the Secretary, Messrs. Freshwater and Rheinberg undertook the duties of Scrutinecrs, and proceeded with the ballot for Officers and Council of the Society for the ensuing year.

The List of Donations to the Society (exclusive of exchanges and reprints) received since the last Meeting, was read, and the thanks of the Society were voted to the donors.

	From
('ross and Cole, Modern Microscopy. 3rd edition. (London, Svo, 1903)	The Publishers.
Hovestadt, Dr. H., Jena Glass, and its Scientific and Industrial Applications. Translated and edited by J. D. Everett and Alice Everett. (London, 8vo, 1902)	The Publishers.
Pantocsek, Dr. Jösef, A Balaton Kovanoszatai vagy Bacillariái. \} (Budapesth, 8vo, 1902)	The Author.
$\left.\begin{array}{ccccccc}\text { Atti dell' Instituto Botamico dell' Università di Pavia. Vol. vii. } \\ \text { pt. 1. (Milano, 8vo, 1902) } & \text {.. } \\ \text {.. }\end{array}\right\}$	Prof. G. Briosi.
	The Board of Agriculture.

The President called attention to three frames of photographs taken for the lantern by the Sanger-Shepherd three-colour process, exhibited in the room by Mr. Norman, who was invited to offer some remarks in explanation.

Mr. Norman said that the slides were examples of the Sangershepherd process of colour photography, as applied to medical photomierography. A blow-throngh jet and zireonium lime were used for the illumination of the specimens from which the negatives were made. This form of jet he preferred, in a private house, for its safety, as well as its simplicity and efficiency. Zeiss's or Swift's objectives were employed, with Zeiss's No. 4 compensating or projection oculars for the higher powers. There was no special difficulty in this colour process, but if ordinary photomicrography required care and patience, then this work required more care, patience and perseverance.

The Cadet Rapid Spectrum plates, which were used for the negatives, althongh so fast and so sensitive to practically all the colours of the
spectrum, were most easily worked if a suitable developer was used : and they allowed ample illmmination in the dark room without showing for.

In staining up the films he had fonnd the best results were obtained by first staining them fully in the normal solution, then to wash out the excess of colouring matter under a good rose tap, and finally to stain up again in a very weak solution of the dye, by which means the very fine details were secured witlout overstaining other parts where the impressions were strongest.

He thought it would be admitted that the slides exhibited showed the possibilities of this process, and its undoubted value in teaching histology, pathology, and bacteriology, and many other subjects that required the aid of illustration by the lantern.

On the motion of the President, the thanks of the Society were voted to Mr. Norman for his commmication.

The President announced that the Scrutineers had handed in the result of the ballot, and declared that the whole of those Fellows whose names had been printed in the lists had been duly elected, as follows

President-Henry Woodward, Esq., LL.D. F.R.S. F.G.S. F.Z.S.
Vice-Presidents-William Carruthers, Esq., F.R.S. F.L.S. F.G.S. : (ieorge C. Karop, Esq., M.R.C.S.; * A. D. Michael, Esq. F.L.S. ; * E. M. Nelson, Esq.

Treasurer-J. J. Vezey, Esq.
Secretaries-Rev. W.H. Dallinger, LI.D. D.Sc. D.C.L. F.R.S. F.L.N. F.Z.S. ; R. G. Hebb, Esq., M.A. M.I. F.R.C.P.

Other Members of Council-Jas. Mason Allen, Esq.; * Wynne E. Baxter, Esq., J.P. F.G.S. F.R.G.S.; Conrad Beck, Esq.; * Robert Braithwaite, Esq., M.D. M.R.C.S. F.L.S.; Rev. Edmund Carr, M.A. F.R.Met.S.; A. N. Disney, Esq., M.A. B.Sc.; *Jas. William Gifford, Esq.; * The Rt. Hon. Sir Ford North, P.C. F.R.S. ; Henry George Plimmer, Esq., F.L.S.; Thomas H. Powell, Esq.: Percy E. Radley, Esq.; Charles F. Ronsselet, Esq.

Librarian-Percy E. Radley, Esq.
Curator-Charles F. Rousselet, Esq.
The President said that on his own behalf he thanked the Fellown of the Society for the honour they had done him in again electing him as their President.

Dr. Hebb then read the Report of the Council for the year 1902, as follows.

REPORT OF THE COUNCIL FOR 1902.

FELLOWS.
Ordinary.-During the year 1902, 18 new Fellows have been elected. whilst 9 have resigned and 10 have died. Amongst the latter the Council makes special mention of the following :-Mr. A. W. Bennett, Mr. T. Comber, Prof. J. W. Groves, Dr. W. M. Ord, Mr. C. M. Vorce, Rev. Prof. Wiltshire.
: Those with an astcrisk (*) had not held during the preceding year the office for which they are elected.

Honorary.--Two Honorary Fellows, H. De Lacaze Duthiers and Ir. R. L. Maddox, have died, and the Right Hon. Lord Rayleigh has been elected an Honorary Fellow. The number of Honorary Fellows is now 46 .

The list of Fellows now contains the names of 4322 Ordinary, 1 Corresponding, 46 Honorary. and 8:3 Ex-Officio Fellows, being a total of 56%.

FINANCES.

The amount reecived for subscriptions during the past year is about i0). less than that in 1901. This is chiefly accounted for by the slackness of some Fellows in the parment of their Annual Subscriptions, there heing about 707. in arrears. The Conncil hopes that by calling attention to this fact, Fellows will assist the Treasurer by being more prompt in their payments in future. Every Fellow who has not paid in the early months of the year when the snbscription is due has received three separate applications for parment, besides a slip of reminder attached to two issues of the Journal. This entails much extra and unnecessary work on the clerical staff. besides putting the Society to increased expense for postage.

The admission and compounding fees received during the pear have heen invested in India B^{3} per cents., raising the amount of stock held in that security to 4747.19 s .5 d .

The Coincil has fomd it possible to make a large saving in the cost of the Journal, reducing the outlay on that item by abont $50 l$. in the year. It is hoped that a further reduction will be made in the current year. This is most important considering the large outlay under this head, and it is gratifying to note that the economy has been effected without impairing the value of the Journal.

JOURNAL.

I uring the past year, several changes have been made in the clitorial staff. The post of General Editor, rendered vacant by the death of Mr. A. W. Bennett, was assigned to Mr. R. G. Hebb, M.D.. while the care of the Botanical Department was accepted by Mr. A. B. Rendle, D.Sc., Assistant in Botany at the British Museum, an appointment on which the Society is much to be congratulated. Another valuable accession has been that of Mr. J. W. H. Eyre, M.D. F.R.S.E., Bacteriologist to Guy's Hospital.

The original papers which have appeared during the year have been quite up to the usual level in value and number, while the abstracts in Zoology, Botany, and Microscopy have fully maintained their previons high standard.

INSTRUMENTS ANI APPARATUS.

The Instruments and Apparatus in the Society's Collection continuc to be in good condition.

During the past rear, the following additions have been made :-
May 21. 1902.-Two pieces of Apparatns, Forceps, \&c., designed by the late Mr. R. Macer for exhibiting flies feeding. Presented hy Mrs Macer.

May 21.-A Cornelius Varley Patent Graphic Telescope. Presented he Mr. E. M. Nelson.

Oct. 15.-An old Microscope, by Cary, with Varley Stage. Presented by Mr. A. W. Waters and Miss Celia Waters.

Oct. 15.-An old Microscope made by George Jackson, a former President of this Society. Presented by Mr. John Jackson.

THE LIBRARY.
The Library is in good condition. Several valuable donations, notably those included in the bequest of the late Mr. Bennett, have been received during the present year.

The Author and Subject (card) Catalogues have been completed by the Librarian.

New Rules for the regulation of the Library have been revised by Sir Ford North, and adopted by the Council.

excursions.

At the suggestion of the President and through his kindness in making the necessary arrangements, a new feature was introduced in the summer in the form of two Excursions. The first, on 21st June, when by the kind invitation of the Hon. Walter Rothschild, about forty Fellows visited his Museum and the Park at Tring. Mr. Rothschild provided conveyances to take the party from Tring station to the Musem where he personally welcomed the visitors, and with his curator, Dr. Hartert, showed them his collection of zoological speeimens and gave them much valuable information. The outing was not only instructive but throughout most enjoyable.

The second Excursion took place on 5th July, when by the kindness of the Council of the Zoological Socicty, a party of Fellows visited the Gardens and were shown round by Mr. F. Beddard, F.R.S., the Prosector.

The Council desires to record its indebtedness to the Hon. Walter Rothschild and the Council of the Zoological Society for these invitations, and to all those who assisted to make the occasions so pleasant and profitable. The President kindly accompanied the Fellows on both nceasions.

Visits to the Natural History Museum in the new year are being provisionally arranged, and the Council hopes that this new departure may result in benefit to the Fellows and help to promote social intercomrse among them.

The Treasurer then read his Anmual Statement of Account, with the Andited Balance Sheet (see p. 125).

He said there was nothing to add to this by way of remarks, as the only matter upon which he should have said anything-namely as to the desirability of greater promptness in paying subscriptions-had been fully dealt with in the Report of the Council.

The President said that having now heard the Report and Balance Wheet read, he would ask some Fellow present to more their adoption.

Mr. Marshall said he had great pleasure in moving that the Report and Balance Sheet now presented be received and adopted, and that they be printed in the usual way. He thought the Report was one upon which the Society was to be congratulated, and he was pleased to note that the balance in hand was about double the amount of that which was reported at the previous Annual Meeting.

The motion having been seconded by Mr. Gardner, was put to the Meeting, and carried unanimously.

The President said he had great pleasure in announcing that it had been proposed that the Society should pay two visits to the Natural History Museum at South Kensington. The first of these would take place on Saturday, February 14th, when those who wished to join the party wonld assemble in the Central Hall, near the Owen statue, at \because p.m., and he hoped himself to conduct them to some points of interest in the Geological Department. The second visit was arranged for Saturday, March 14th, at the same time (\% p.m.), when Mr. Carruthers wonld act as conductor. Mr. Carruthers proposed to show them some of the treasures of the Botanical Department, including Smith's original collection of Diatoms, and also a remarkable series of original botanical drawings of great interest. No further notice would be given.

The President also called attention to some models made by Mr. Kirk, exhibited in the room, and to the restored section-model of a remarkable specimen of an abnormal form of Cephalopod shell, Ascoceros, from the Upper Silnrian of the Island of Gothland, made and coloured by Mr. G. C. Crick, F.G.S., of the Geological Department. British Musemm of Natural History.

The President then delivered his Annual Address, taking as his subject the development of life as shown by the fossil organisms found in the geological strata. In illustration of this some diagrams were exhibited, one of which showed the ancestral forms of modern Crustacea, or the origin and evolution of the class in geological time, by means of a chart prepared by J. W. Salter and H. Woodward in 1865°; also two diagrams, one of which gave the order in which the series of sedimentary strata were deposited, and the other an approximate representation of their relative thicknesses ; and he explained that the newer Secondary and Tertiary strata had been successively built up from the destruction of those more massive older formations. Attention was directed to the greater thickness of the Palæozoic rocks, as compared with that of the Mesozoic and Cainozoic, and that it was only in the very latest of these deposits that remains of man occurred. The President then proceeded to give a résume of his address, and by means of numerous illustrations thrown upon the screen by the Epidiascope, traced the development of the various classes of organic forms, from the earliest and simplest met with, such as the Radiolaria, the Foraminifera, the Sponges, Cœlenterata, Annelids, Starfish, Eehinoderms. Mollusca, \&ec.,
(1) the Nautilus and Octopus, examples of which were still living. He also traced the Crustacea, Arachnida, and Insecta, from the Palæozoic rocks to the present day.

Mr. A. D. Michael said they had listened that evening to a most fascinating address upon a smbject which had engrossed attention as perhaps no other could be said to have done; for of all the questions which had occupied the thoughts of men of seience, there was surely none more attractive than that of the origin and development of life. As to the origin, he thought he might safely say that to-day they knew no more than when the inquiry commenced, which was equivalent to saying that at present they knew nothing ; but they had just enjoyed a most graphic delineation of its development so far as it is known to biologists, and the series of pictures which had been put before them did enable the mind to grasp what was the extent of our present knowledge of the subject, and to trace the connection between the earliest forms of life which geologists are acquainted with and those existing at the present time. In this most interesting study they had the adrantage of being instructed by one who was such a thorongh master of the subject as their President. He was sure they all felt deeply indebted to the President for his address, and he had great pleasure in moving that the best thanks of the Society be given to him for it, and that he be asked to allow it to be printed in the Journal.

Dr. Braithwaite having seconded the motion, it was put to the Meeting by Mr. Michael, and carried with acclamation.

The President said that he felt he should consult the feelings of those present at that late hour of the evening by simply returning his best thanks for the indulgence shown to him by the Fellows present who had listened so patiently to what he feared must have secmed a somewhat disjointed communication. He had prepared probably threc times as much matter for his discourse as he ought to inflict upon them. hut though he had been so imprudent as to bring it with him, he had refrained from reading it. He hoped, however, when they saw it in print it might prove more acceptable to read than in the brief resumi he had attempted to lay before them.

The Rev. A. G. Warner said they were very conscious of how much they were indebted to their Honorary Officers for the labour they had bestowed upon the Society in organising and preparing the business and in enabling it to be carried out satisfactorily. Much of their work was hardly seen by anyone, but it had been done well, and the only return they could make was to express their gratitude on an occasion like the one then present. He therefore had great pleasure in moving that a most hearty vote of thanks be given to the Honorary Officers of the Society for their services during the year.

The motion having been duly seconded, was put to the Mceting by the mover, and carried unanimously.

Mr. J. J. Vezey said that Dr. Hebb had asked him to respond to this rote of thanks on behalf of himself and his colleagues. They had heen very pleased indecd to do the work, and being hmman, it was a great pleasure to them to know that it had given satisfaction and to
hear this expression of the Fellows' appreciation. He hoped they would continue to deserve the kind things which had been said about themthey would at least endeavour to do so-and he trusted the Society was entering on another prosperous year.

Mr. D. J. Scourfield then moved "That the thanks of the Society be given to the Auditors and Scrutineers."

Mr. K. J. Marks having seconded the motion, it was put to the Meeting by the President and manimonsly carried.

The President again mentioned the proposed visit to the Natural History Museum on 14th February, and whilst giving a cordial invitation to all, reminded them that only those near the centre of a large crowd of persons might be able to hear all that was said in explanation of what was to be seen.

The following Objects were exhibited :-
The President, in illustration of his Address :-Diagrams showing the Order in which the Series of Sedimentary Strata were deposited and their approximate relative thicknesses: Chart showing the Ancestral Forms of modern Crustacea ; Drawings of various classes of Organic Forms shown on the screen by means of the Epidiascope; Model of Ascoceros; Recent Scorpio afer.

Mr. Albert Norman :-Photomicrographs in Colour by the SangerShepherd Process. (1) Anthracosis, Lung, $\times 16$. (2) Taste-Buds in Tongue, $\times 65$. (3) Injecter Small Intestine, \times 16. (4) Scalp of Negro, Long. Section, $\times 15$. (5) Transverse Section of Scalp, \times 50. (6) Epithelioma of Skin, \times 65. (7) Stalk of Polypus, $\times 1$ 1:. (8) Angioma of Liver, $\times 18$. (9) Human Kidney, Injected Vessels, $\times 18$. (10) Hæmorrhagic Smallpox Skin, $\times 50$. (11) Actinomycosis, Human Liver, $\times 400$. (12) Actinomycosis, Tongue of Cow, $\times 500$. (13) Bloord Film, Eosin Meth.-Blne, $\times 500$. (14) Bac. Anthracit. Gel. Impression. Edge of Colony, $\times 500$. (15) Bac. Leprex, Skin, $\times 1000$. (16) Tubercle Bacilli, with Pnenmococei Encapsuled, Sputum, $\times 1000$. (17) Malaria Crescent, $\times 1000$. (18) Tetanus Bacilli, showing Flagella, $\times 1000$. (19) Eosinophile Cells, in Plagne Specimen, $\times 1000$. (20) Bipolar Plague Bacilli, Spleen, $\times 1000$. (21) T'ubercle Bacilli, Sputum, $\times 1000$. (22) Typhoid Bacilli, showing Flagella, $\times 1000$. ($2: 3$) Tsetse Fly Parasites in Guinca-pig's Blood. $\times 1000 .(24)$ Bac. sulutilis, Spores. $\times 1000$.

New Fellows.-The following were elected Ordinary Fellows :Messrs. Louis Rutledge Gleason. Albert William Henly, and Dr. Edmund Johnson Spitta.

Nest, Newnan int

JoURNAL

OF THE

ROYAL MICROSCOPICAL SOCIETY.

APRIL 1903.

TRANSACTIONS OF THE SOCIETY.

I. (continued).-The Rotatorian Genus Diaschiza: A Monographic Study, with Description of a New Species.

> By F. R. Dixon-Nuttall, F.R.M.S., and The Rev. R. Freeman, M.a.
(Read December 17th, 1902.)

Diaschiza Hoodii Gosse.

$$
\text { Pl. II. figs. } 5,5 a \text {, and } 5 b \text {. }
$$

Synonymy.
Plagiognatha gracilis Tessin-Bützow.
Diaschiza valga Bilfinger.

$$
\begin{aligned}
& \text { Weber. } \\
& \text { ", Wmpligera Gosse. }
\end{aligned}
$$

BIBLIOGRAPHY.

Gosse, P. H.-Twenty-four new Species of Rotifera. Journ. Roy. Micr. Soc., 1887, pl. i.
Hudson \& Gosse.-The Rotifera. London, 1889, vol. ii. p. 79, pl. 22, fig. 15. Hudson \& Gosse.-The Rotifera. London, 1889, Suppl. p. 38, pl. 31, fig. 32
Tessin-Bützow.-Rotatorien der Umgegend von Rostock. Arch. 43, d. Fr d. Naturg. i. Mecklenb., p. 148, pl. i. fig. 10.

EXPLANATION OF PLATE III.

All figs, except fig. $8 b, \times 476$.
Fig. 8-Diaschiza eva Gosse. Lateral view.
, $8 a$ " ", Dorsal view.

,, 9-Diaschiza globata Gosse. Lateral view.
" $9 a$ " , " Dorsal view.
$" 10$ ". exigua Gosse. Lateral view.
" $10 a$ "
, Dorsal view.
April 15th, 1908

Bilfinger, L.-Zur Rotatorienfauna Württembergs. Zweiter Beitr. Jahresh. d. Ver. f. vaterl. Nat. i. Württ., 50. Jahrg., 1894, p. 53.

Weber, E. F.-Faune Rotatorienne du Bassin du Léman. Genève, 1898, p. 549, pl. 20, figs. 26-8.

Spec. Char.--Body elliptical, gibbous dorsally, flat ventrally, showing slight dorso-ventral compression; head sub-conical ; neck a marked constriction; face sub-prone, protruding in a very marked beak-shaped projection of buccal orifice; lorica somewhat flexible; dorsal cleft well marked; lateral cleft well marked; eye cervical, single ; foot short, stout, tapering, terminal, not ventral ; toes more than $\frac{1}{4}$ length of rest of body, furcate, style-shaped, well decurved; incus very long.

Gosse's description is very weak, and the figure errs in accentuating the angles of the lorica; and it was with some difficulty that we satisfied ourselves about the identification of this species. But from his drawing of Hoodii and his description of what he calls the bird's beak in ramphigera, and his reference to the length of the incus, especially of the fulcrum in both, we are satisfied that his two species are one, and that we have it here, and that the name Hoodii must take precedence of ramphigera.

Tessin-Bützow described this species as Plagiognatha gracilis, a name which is unavailable owing to Furcularia gracilis Ehr., which is certainly to be included with this species in the genus Diaschiza. His (T.-B.'s) description is also lacking in detail, and he makes the same mistake about the beak-like process.

This beak-like process is one of the most marked features of this species. It is strange that Gosse, Tessin-Bützow, and Weber (sub D. valga) should fall into the error of taking it for a projection of the trophi, whereas it is absolutely distinct from the jaws, and consists of the extended lips of the buccal orifice. Bilfinger and Weber (loc. cit.) also make the mistake of naming this species D. valga, while their figure and descriptions are certainly those of D. Hoodii. Of this we shall have more to say under D. valga at the end of this monograph.

This is one of the placid species of the genus, like D. ventripes, and prefers creeping about the flocculent matter found on waterweeds to swimming.

It never, so far as our observations go, throws its toes over its back, and, in fact, does not contort itself so much as the other species do, owing to the slightly stiffer texture of its lorica.

The dorsal cleft, which is well marked, gapes posteriorly.
The cervical eye lies at the extremity of the large brain-sac, and is a single red pigment-spot without a lens.

The foot is terminal, not ventral, and carries the usual sete situated on a small papilla, and generally four in number. It tapers rapidly to the last pseudo-joint, which is of fair length, and only slightly wider than the combined bases of the toes.

The toes are stiff and decurved, ending in a sharp point, and are nearly always carried wide apart, when the points are seen from a dorsal, view to curve in slightly towards one another.

The gastric glands are somewhat large, but never tinted.
The jaws are very striking owing to the exceptionally large and long incus which ends in a decided fulcrum. They never protrude through the buccal orifice.

It feeds on flocculent matter, not on diatoms, and often fills its stomach with a brown mass of food studded with fat-globules.

Size.--Total length $\frac{1}{130}$ in. (194μ); toes alone $-\frac{1}{545}$ in. (47μ); breadth $\frac{1}{3} \frac{1}{80}$ in. (67μ); height $\frac{1}{4} \frac{1}{5}$ in. (53μ).

Common.
The Male, Pl. II. fig. 5b.-This sex occurred in water from Knowsley Park on November 15, 1901, in several examples. It has the four plates, the usual clefts between them, and the cervical eye exactly as in the female.

Like the males of many rotifers (but unlike that of D. gibba) its length is very small compared with that of the female, being little more than half, whereas the male of D. gibba is $\frac{3}{4}$ of the female in length.

The toes are fairly long in proportion to the trunk, thin and decurved.

It is without manducatory organs, the sperm-sac filling the greater part of the trunk.

In habits, it is very restless, contorting itself into all sorts of shapes and sizes. The figure represents the most normal shape and attitude.

Sizc.-Total length $\frac{1}{2 \frac{1}{24}}$ in. (113μ); toes alone ${ }_{940}^{1} \sigma$ in. (27μ); breadth $\frac{1}{850}$ in. (30μ); height $\frac{1}{940}$ in. (27μ).

Rare.

Diaschiza Derbyi sp. n.

$$
\text { Pl. IV. figs. } 13,13 a \text {, and } 13 b .
$$

Spec. Char.-Body ovate cylindrical, laterally compressed; head sub-conical ; neck a slightly marked constriction; face subprone; corona extending well down ventral surface; lorica not unusually flexible; dorsal cleft well marked ; lateral cleft wide, well marked; eye cervical, on dorsal extremity of brain lobe, with one, sometimes two, clear spheres in front; foot short, flexible, terminal; toes about $\frac{1}{3}$ length of rest of body, nearly straight, slightly upcurved, often thrown up over back.

This species appeared in small numbers in the lake and in a pond in Knowsley Park, Lancashire, at various times throughout the winter of 1900-1901, until May of the latter year, when it
seemed to disappear ; and we did not find it again until March 1902.

Viewed laterally, the ventral surface appears almost flat; the dorsal surface arched, more especially in the lumbar region, whence it tapers somewhat rapidly to the foot, projecting a short flap or tail over the cloaca.

Viewed dorsally, it shows a slight lateral compression.
The sub-prone face has the lips of the buccal orifice projecting almost as much as in D. Hoodii.

The lorica is of the type normal to the genus, with the dorsal and lateral clefts well marked.

The eye is situated on the dorsal side of the posterior extremity of the large brain-lobe. It consists of a saucer-shaped conglomeration of red pigment, in front of which appears usually one (sometimes a pair) of clear spheres such as are seen in Proales spp. (Petromyzon).

The foot is small and flexible, and carries the usual bunch of stiff setæ, which are, however, somewhat short.

The tail-like projection over the cloaca, so exaggerated in D. sterea, is present in this species to such a very small degree that it does not interfere with these setr.

The toes, which are nearly straight blades (slightly upcurved), tapering to a sharp point, are very often carried over the back, one on each side of the dorsal cleft, as in the case of D. eva, cf. fig. 13a.

The food consists of flocculent matter.
The jaws have the incus short and stout, and clubbed at the fulcrum. The manubria are thin and tapering, and not crutched.

In habits this rotifer is a free and steady swimmer.
Size.-Total length $\frac{1}{18 T}$ in. to $\frac{1}{2} \frac{1}{3}$ in. ($140-110 \mu$); toes alone $7 \frac{1}{40}$ in. (34μ); breadth $\frac{1}{6} \overline{50}$ in. (39μ); height $\frac{1}{5} \overline{8}$ in. (43μ).

Habitat.-Knowsley Park, Lancashire.
Uncommon, only found in small numbers.
The cervical eye places this species nearest to D. Hoodii and D. ventripes, from which, however, it may readily be distinguished by the following points:-

1. Its one or sometimes two lenses, if they are lenses.
2. Its almost straight, slightly upcurved toes.
3. Its slight lateral compression.

From D. Hoodii it is further distinguished by its thick, short incus; and from D. ventripes by its unbent shape of body, and terminal foot.

We have named this pretty and interesting species "Derbyi," in honour of the Right Hon. the Earl of Derby, K.G., as a slight recognition of his courtesy and kindness in permitting us to enter Knowsley Park, and to visit his ponds which we have found so prolific in rotifera.

Thus we have been enabled to collect very large numbers of
exceedingly rare and uncommon rotifers: e.g. we were the first to record Ploesoma Hudsoni, south of Scotland ; and have added a new species rostrata (nobis) to the genus Diglena.

Hence also we have gained an intimate knowledge of this genus, having obtained there every species of Diaschiza mentioned in this monograph (except D. tenuiseta) and having added two new species to the genus, viz. "ventripes" and "Derbyi."

Diaschiza exigua Gosse.

$$
\text { Pl. III. figs. } 10 \text { and } 10 a .
$$

BIBLIOGRAPHY.
Hudson \& Gosse.-The Rotifera. London, 1889, vol. ii. p. 78, pl. 22, fig. 13.
Spec. Char.-Body very small, wedge-shaped; head rather narrow from a dorsal view; neck well marked, specially deeply constricted on dorsum; face sub-prone; lorica flexible; dorsal cleft large, deep, more decided than usual; lateral cleft wide, deep, more decided than usual; eye cervical, large, double; foot small; toes about $\frac{1}{3}$ length of rest of body, furcate, blade-shaped, slightly decurved.

In April 1901, we found great quantities of this minute Diaschiza in the large lake in Knowsley Park, Lancashire, and were able to make very careful observations.

Gosse's description is good; but the dorsal cleft is well marked and deep.

Viewed dorsally, the body tapers rapidly from the broad middle to almost a point above the very small foot. This gives it a wedge-shaped appearance, which may be taken as the most distinctive feature of the species.

There is a trace of a fleshy projection over the foot, as in D. sterea, but less conspicuous.

The eye, which is cervical, consists of two large hemispherical spots welded together inside the lower end of the brain-sac.

The setæ on the foot are well marked.
The toes taper evenly throughout, and are slightly decurved.
The jarss have the incus of moderate length, thick, and terminating in a small recurved bulb or fulcrum. The manubria are plain thin rods, not crutched.

Its food is flocculent matter.
Size.-Total length $\frac{1}{260}$ in. (98μ); toes alone $\frac{1}{1090}$ in. (23μ); breadth $\frac{1}{\overline{8} 0 \overline{0}}$ in. (32μ); height $\frac{1}{800}$ in. (32μ).

Common, but local.

Diaschiza cæca Gosse.

$$
\text { Pl. IV. figs. } 11 \text { and } 11 a .
$$

Synonymy.

1. Furcularia ceca Gosse.
2. Furcularia ensifcra Gosse.
3. Diaschiza poeta Gosse.
4. Diaschiza acronota Gosse.

bibliography.

Gosse, P. H.-Catalogue of Rotifera found in Britain. Ann. Nat. Hist., vol. viii. 1851, p. 197.
Hudson \& Gosse.-The Rotifera. London, 1889, vol. ii. p. 42, pl. 20, fig. 4; p. 43 , pl. 20, fig. 3 ; p. 79 , pl. 22, fig. 11 ; Suppl. p. 37 , pl. 31, fig. 29.

Spec. Char.-Body long, more or less cylindrical, laterally compressed; head sub-conical; neck well marked; face sub-prone; corona extending right down to neck; lorica flexible; dorsal cleft well marked, deep; lateral cleft well marked, wide; eye wanting; foot short, thick; toes about $\frac{2}{5}$ rest of body, furcate, style-shaped, acute, re-curved, wide apart at base; gastric glands in adult tinted red.

This Diaschiza is the first of the group which possesses no red eye, and is of the long, laterally compressed type. The lorica is very flexible, especially on the ventral surface, which is consequently sometimes flat, sometimes slightly concave.

The dorsal and lateral clefts are, in spite of this flexibility of the lorica, deep and well marked.

The foot projects considerably from under the lorica, and carries two toes wide apart at their base when viewed dorsally.

These toes are long, blade-shaped rods, with a fairly bold curve upward and outward.

The setæ on the foot, usually four, are very long in this species, often half as long as the toes.

The jaws have the incus long, the fulcrum large, and the manubria ending in a somewhat crutch-shaped club.

The adults have the gastric glands filled with red pigmented granules, which were mistaken by Gosse for a very large globose eye, hence he re-described this species as D. pata.

They lie one on each side of an untinted, long brain-sac, which shows distinct cellular construction, but no vestige of an eyespot.

In many young examples, which vary tremendously in size, all trace of the tint in the gastric glands is absent, and, in our opinion, it was from one of these immature examples that Gosse first described this species.

His description of F. ceeca is correct as far as it goes.

We might add here that we are convinced that his single dead specimen (!) which he named D. acronota, was a dead D. coeca.

Again, in his description of what he calls F. ensifera he has evidently taken a larger specimen of cocca, in which the body has developed a greater gibbosity owing to its being an adult, and in which the foot, as is the case in mature specimens, has become less distinguishable from the trunk. But even in this case his specimens are not so large as some of ours.

It is only when he finds a really fully grown, fully developed specimen that he observed the dorsal cleft and red glands; he then re-described it as D. pocta. But even in this description he falls into the grievous error of calling the pair of tinted gastric glands "a large cervical eye!"

We think it necessary to emphasise the extent of the variation in size of this species, as it might be easy to mistake some of these variations for new species. But it can always be identified by:-

1. The upcurved, outcurved, blade-shaped toes, wide apart at base.
2. The long brain-sac.
3. The formation of the jaws.
4. The absence of eye-spot.

This is one of the restless species, and is fond of swimming freely, as well as grovelling in the flocculent matter on which it feeds.

Size of Adult. $-1 \frac{1}{15}$ in. (220μ); toes alone $4^{\frac{1}{80}}$ in. (53μ); greatest breadth $\frac{1}{550}$ in. (46μ); height $\frac{1}{4} 0$ in. (53μ). Common everywhere.

Diaschiza tenuior Gosse.

$$
\text { Pl. IV. fig. } 12 .
$$

BIBLIOGRAPHY.

Hudson \& Gosse.-The Rotifera. London, 1889, vol. ii. p. 81, pl. 22, fig. 14.
Spec. Char.- Body almost cylindrical, hyaline; head same breadth as body; neck very lightly marked; face only slightly oblique ; corona extending a very little way down ventral surface; lorica very flexible, and transparent ; dorsal cleft well marked, deep; lateral cleft very wide indeed; no red eye, a transparent lens on the underpart of a large and long brain-sac; foot large, thick; toes about $\frac{1}{4}$ length of rest of body, furcate, style-shaped, sharply pointed, straight; gastric glands sometimes tinted brown.

This interesting rotifer we consider to be one of the rarest of the Diaschizæ. We have very often found it, but only in single examples on each occasion. In this respect, with D. globata, it
differs remarkably in habit from the other species of the genus, which we have found almost in any quantity at each gathering.

Gosse's weak description of this rotifer makes it difficult to identify, but as he likens it to D. gracilis, we feel sure we have the species he described.

The jaws are certainly very like those of gracilis, except that the incus has a blunt broadish end, whereas in gracilis it ends in a point.

The hyaline appearance of the body, the width of the lateral cleft, the straight toes, and the want of pigmented eye, are sufficient to distinguish this easily from other Diaschize.

The body is almost cylindrical, very slightly gibbous, and showing just the least trace of lateral compression.

The venter is narrower than the dorsum.
The head, which is of the same width as the body, carries a ring or collar surrounding the corona, especially noticeable on the dorsal side, the extreme dorsal point projecting abruptly forward.

The face is sub-prone. The buccal orifice slightly protrudes. Above this is situated a bunch of stiff setæ.

Every example of this species which we have found has so far had a transparent lens on the lower part of a large brain-sac ; but we do not consider this to be an essential mark of the species, as we have known it to vary exceedingly in size.

The stiffened integument ends abruptly a considerable distance in front of the base of the toes, which makes it difficult to determine foot from trunk. This, as already mentioned, is to some extent common to the whole genus, but is abnormally marked in this species.

The setre on the foot are very long.
The toes are thin rods, and almost straight, the dorsal edge quite straight, the ventral tapering very slightly in an upward curve, and so producing, with the dorsal edge, a very sharp point. They are not wide apart at the base, nor so blade-shaped as in D. coca. They are often thrown up over the back.

The stomach is sometimes tinted with food, but the whole animal has a remarkably hyaline appearance, which is one of the first features to strike one's notice.

EXPLANATION OF PLATE IV.

 All figs. $\times 476$.Fig. 11-Diaschixa cxca Gosse. Lateral view.

,

The jaws are elementary; the manubria straight, thin, and rod-shaped, with a slight thickening at the end, but not a crutch. The incus is straight, also ending in a slight club.

It feeds on flocculent matter, and is fond of swimming freely.
Size.-Total length $\frac{1}{13} \mathrm{~T}$ in. (194μ); toes alone $\frac{1}{7} \frac{1}{0}$ in. (36μ); width $\frac{1}{700}$ in. (36μ); height $\frac{1}{600}$ in. (42μ).

Rare. Examples from Dundee, and Knowsley, Lancashire.

Diaschiza eva Gosse.

$$
\text { Pl. III. figs. } 8,8 a, 8 b, 8 c, 8 d \text {, } 8 e \text {. }
$$

Synonymy.

Furcularia eva Gosse. semisetifera Glascott.

BIBLIOGRAPHY.

Gosse, P. H.-Twenty-four more new Species of Rotif. Journ. Roy. Micr. Soc., 1887, p. 861.
Hudson it Gosse.-The Rotifera. London, 1889, Suppl., p. 26, pl. 31, fig. 17. Glascott, Miss L. S.-A list of some of the Rotif. of Ireland. Sci. Proc. Roy. Dublin Soc., viii. 1893 (n.s.) p. 55, pl. 4, figs. 2 and 2a.
Spec. Char.-Body long, laterally compressed; head slightly rounded in front; face sub-prone; corona extending slightly down the ventral side; neck strongly marked ; lorica Hexible; dorsal cleft narrow, well marked ; lateral cleft narrow, well marked; eye absent; foot thick; toes about $\frac{1}{2}$ length of rest of body, furcate, very wide apart at base, very broad, tapering suddenly to a long, fine, curved, threadlike point.

We have been exceedingly fortunate in finding large quantities of this most interesting and beautiful species, and have no doubt whatever that Gosse's description was made from a dying example, when the soft lorica often distorts into a prominent elevation on the shoulder, as described and drawn by him.

Owing to the well-marked dorsal and lateral clefts, and the setæ on the foot, we have no hesitation in transferring this species to the genus Diaschiza.

This rotifer is beautifully hyaline and glossy. It varies much in size and shape, the flexibility of the lorica enabling it to throw itself into all sorts of contortions.

When swimming freely many specimens, viewed dorsally, look exceedingly narrow. The greatest care has been taken in making the drawings to represent as nearly as possible the normal shape and attitude.

The toes are the most distinguishing feature of this species.
In spite of great variation in shape, length, and style, they are always strikingly distinct from those of any other species, in every
case consisting of a broad base rapidly tapering to a flexible threadlike tip.

Fig. 8 represents the commonest form of the toes, in which the blade widens before it begins to taper rapidly to the flexible thread.

Fig. $8 a$ gives a dorsal view of the same form.
Fig. $8 b$ represents a rare form, in which the broad base tapers gradually to the fine flexible thread. (This figure is greatly enlarged.)

Fig. $8 e$ is a larger type of toe with remarkably long thread-tips.
Figs. $8 d$ and $8 e$ give the other extreme.
All these figures (except fig. $8 b$) are drawn to exactly the same scale, and from specimens as nearly of the same size as it is possible to select, so as to give a good idea of the amount of variation.

Gosse has graphieally and accurately described one of the many attitudes which this rotifer strikes, viz. that of the letter T reversed, with the tnes extended in a horizontal line. But it is impossible to describe all the different ways in which it fixes and curves its toes. At times it throws them right up on its back; at times it holds them at right angles to its body; and then again it presses them elose together and straight behind it, for swimming.

Viewed dorsally, these toes are remarkably wide apart at the base.
The foot-glands are large, and, when under the compressor, are seen to exude a sticky substance which reminds one of that exuded by the Rattulidæ, though not so viscid in this ease. This substance seems to make its exit from the toe at the point where it tapers rapidly to the flexible tip.

The usual setæ on the foot are exceedingly fine and difficult to determine, though after careful search we have found them in every case.

The eye is absent.
The food consists mainly of diatoms, numbers of which are often to be seen congesting the stomach.

The jaws are after the type of D. gibba.
Size.-Total length $\frac{1}{90}$ in. (282 μ); toes alone $\frac{1}{380}$ in. to $\frac{1}{300}$ in. $(67-85 \mu)$; width $\frac{1}{635}$ in. (40μ); height $\frac{1}{4} \frac{1}{24}$ in. (60μ).

Rare and local, but has occurred in vast quantities in the large lake, Knowsley, Lancashire.

Diaschiza tenuiseta Burn.

$$
\text { Pl. I. fig. } 2 .
$$

bIBLIOGRAPHY.

Burn, Dr. W. B.-New and little known Rotif. Science Gossip, 1890, pp. 34, 35, fig. 22.
Spec. Char--Body slightly gibbous, very glassy; face prone; neck a marked constriction ; lorica very flexible; dorsal cleft well marked ; lateral cleft well marked; eye wanting; foot rather long
for the genus, tapering ; toes about $\frac{7}{8}$ length of rest of body, very thin except just at base, very slightly recurved; œsophagus very long.

This uncommon species was observed by F.R.D.N. (one example only) on October 10, 1891 ; and a drawing was then made by him, of which fig. 2 is a copy.

The original description is given by Dr. Barnett Burn in the February number of Science Gossip, 1890.

From this description very little can be gathered: but from the drawing which accompanied it, the toes, the long œsophagus, and the trace of dorsal cleft there portrayed give just sufficient detail for identification.

The remarks upon its resemblance to F. eva and F. coeca, serve to make the identification more a matter of certainty.

We have every confidence, therefore, in classing this as a Diaschiza, from the general shape of body, foot and toes, and especially from the dorsal and lateral clefts well figured in F.R.D.N.'s original drawing.

The specific marks of this species are:-(1) the pair of very long thin toes, slightly clubbed at the base, but tapering at once, not at mid-length as in the case of D. cva, although they resemble those of era in having flexible extremities; and (2) the extraordinarily long œesophagus.

This rotifer has the habit of throwing its toes over its back, and into some of the other postures characteristic of D. cva.

The setre on the foot were not looked for.
The jaws, food, and size were not recorded.
Rare, not seen since 1891 ; from Mr. Bolton, Birmingham.

Diaschiza megalocephala Glascott.

$$
\text { Pl. IV. figs. } 14 \text { and } 14 a \text {. }
$$

Synonymy.
Furcularia lactistcs? Gosse. ," megalocephala Glascott.

BIBLIOGRAPHY.

Glascott, Miss L. S.-A list of some of the Rotifera of Ireland. Sci. Proc. Roy. Dublin Soc., 1893, viii. (n.s.) p. 56, pl. 4, fig. 3.
Hood, J.-Rotif. of the Co. Mayo. Proc. Roy. Irish Acad. Dublin, 1895, p. 702.

Rousselet, C. F.-On Diplois trigona and other Rotifers. Journ. Quek. Micr. Cluh, Nov. 1895, p. 123, pl. 7, fig. 5.
Gosse, P. H.?-Twenty-four more new Species of Rotif. Journ. Roy. Micr. Soc., 1887, p. 861, pl. XIV. fig. 5.
Hudson \& Gosse?-The Rotifera. London, 1889, Suppl., p. 25, pl. 31, fig. 13.
We are strongly of opinion that this is not a Diaschiza at all; but out of respect to Mr. C. F. Rousselet we include it in our list.
(1) We have carefully studied countless examples of this rotifer, and have never been able to discern the dorsal cleft which he states (loc. cit.) that he observed.
(2) Nor have we ever been able to discover the slightest trace of the bunch of stiff setæ on the foot over the base of the toes, which is invariably present in other Diaschize.
(3) Furthermore, there is a marked division in the foot, forming two distinct joints, which is contrary to the rule in this genus. There certainly is a lateral cleft, but this is the only point of agreement between this species and our genus.
(4) In its habits it is continually swimming freely, and not, like the Diaschizæ, given to grovelling amongst the weeds.
(5) Its toes are flexible throughout, and it has a queer habit of snapping them as it swims.
(6) The head is enormously large, the longer axis of the face being even greater than the greatest depth of the rest of the body.
(7) The jaws are extraordinary in form and structure, and not of the type of this gemus; (8) and again, the lorica as a whole is much more flexible than that of the most flexible Diaschiza.

These eight points of difference are sufficient to account for our hesitation in including this species in this monograph.

We agree with Mr. J. Hood (loc. cit.) that this species is most probably the Furcularia lactistes of Gosse, a great many examples showing a distinct milky appearance, from which we expect he so named it, and the jaws agree with his description.

We give a figure of the animal, which will convey a sufficient idea of it without further description.

Sizc.-Total length $T_{\frac{1}{2}}^{7}$ in. (200μ); toes alone ${ }_{7}^{\frac{1}{65}}$ in. (33μ); breadth $\frac{1}{3} \frac{1}{50}$ in. (67μ); height at highest point of trunk $\frac{1}{470}$ in. (54μ); head $\frac{1}{400}$ in. (63μ).

Common in certain localities.
The following is a list of species described by other authors which are omitted from this monograph or proved to be synonymous with others herein :-
D. valga Gosse.-The description, drawing, and measurements of this species, with its very long toes, two-thirds the length of the rest of the body, seem so definitely distinct from any of those here included, that it may be a good species; but we have omitted it, as we have been unable to secure a specimen.
D. valga Bilfinger
D. valga Weber $\}=$ D. Hoodii Gosse.
D. Ramphigera Gosse
D. cupha Gosse.-That author's description, from one dead specimen, is so vague, and the size $\frac{1}{24}$ in., and shape of toes, seem to cut it out of this genus altogether. Not seen.
D. fretalis Gosse.-Another very vague description. This species, being marine, may be a marine form of D. Hoodii.
D. acronota Gosse All these are certainly imma-
D. peta Gosse $\}$ ture or dead specimens of D.

Furcularia ensifera Gosse $c o c a$ Gosse.
D. semiaperta Gosse $=D$. gibba (nobis) $=F$. gibba Ehrenberg.
F. spherica Gosse $=$ D. globata Gosse.
F. lophyra Gosse.-This may be a fair species, and if so, it is a Diaschiza; its frontal eye will distinguish it from D. eva, but the description is very vague.
F. gammari Plate F. melandocus Gosse The description of all these species is
F. molaris Gosse \int far too vague for identification.
F. Lactistes Gosse.-This description is, again, a difficult one from which to identify. It has a certain agreement with D. megalocephala Glascott, which we have inserted in the monograph under protest.

It is very likely that a new genus may one day be established in which it is probable that lactistes will take precedence over Miss Glascott's Furcularia megaloccphala.

III.-The President's Address: Some Ideas on Life.

By Henry Woodward, LL.D. F.R.S.
(Delivered January 21st, 1903.)

Those who have in infancy been properly nurtured on a wholesome diet of fairy tales and folk-lore, will carry with them through life, even to old-age, many very pleasant memories of those delightful friends of one's childhood, ' Beanty and the Beast,' 'Cinderella,' 'Little Red Riding-hood,' 'Jack the Giant-killer,' 'Sleeping Beauty,' 'Blue Beard,' and many others; or if they belong to a later generation than myself, they will in early life have been on intimate terms with 'Tom the Water-Baby,' in Kingsley's wonderful book ; or will feel, as most of us do, grateful to "Lewis Carroll" (L. Dodgson) for having written 'Alice in Wonderland' and "Through the Looking-glass," for our delectation. Pleasant indeed are such memories,-like the scent of heather from the hills,-or " the odour of brine from the ocean."

On Christmas holidays, in passing along the High Street of the Royal Borough of Kensington, I was startled by a shrill familiar voice from out the distant past, and suddenly, for a few moments, I had sixty years lifted off my shoulders and became once more a child at a school-room window in Norwich, looking on with large eyes at the ineffable effrontery of Mr. Punch encountering the constable, and filled with admiration at the courage and fidelity of his dog Toby.

Perhaps the oldest themes, which are to be found broidered into the later history, legends, and traditions of all races of mankind, are those which relate to the creation of the world and its inhabitants, and their destruction by the flood.

Apart from the sacred writings of the Hebrews, we have Assyrian tablets and Egyptian hieroglyphs, while the Greeks have given us in charming fables, and in many versions, the account of Prometheus forming men of clay and stealing fire from the chariot of the sun to endow them with life; of Deucalion and Pyrrha rescued from the flood, and afterwards renewing the human race by throwing stones behind them which became men; of Epimetheus and his wife Pandora, and the story of the sealed box, which she was forbidden to open, and how the curiosity of Pandora caused her to raise the lid, when all the evils incident to humanity poured out, and the only good remaining was Hope, which has been the solace of mankind ever since.

But leaving the regions of classical and mediæval myths, and even passing over unnoticed the earlier writers and philosopherswhose observations, although often very good, ended frequently in the fabulous and mysterious, or were intermingled with gross errors resulting from ignorance of astronomical laws and cosmical and chemical effects-we come, in 1669, to the observations of Steno, a professor of the Padua University, who compared fossil shells with recent, and showed that the two were often specifically the samethat sharks' teeth from the hills of Rome were like those of a shark now living in the Mediterrancan.

The eighteenth century gave birth to many able philosophers and also to many writers having a distorted vision resulting from a firm behef in the literal acceptance of the Mosaic cosmogony, into which they constrained their facts and observations to fit.

Gesner, a Swiss observer, in 1759, demonstrated, by comparing past physical changes with those now in progress, that elevation of mountains and the wearing away of ravines and valleys must have occupied tens of thousands of years to accomplish.
[1665-1729.] Dr. John Wondward insisted on the theory that all deposits resulted from the Noachian deluge, and that their materials and fossil-contents were arranged by gracitation, the heaviest at the bottom. He did one excellent thing, he founded in Cambridge the Woodwardian chair of geology, which has now become a great centre for the teaching of modern geology, but was originally designed to ensure the delivery of a sermon annually, to confound the doctrines of Dr. Camerarius of Tubingen and all his works, because he differed from the views of Dr. Woodward.

Some of the writings of the Italian naturalists at this time were most brilliant and advanced, but the lack of frequent intercommunication between men of science 150 years ago prevented the wide spread of intellectual ideas.

Amongst the most able writers in this country (1726-1797) was James Hutton of Edinburgh, whose Theory of the Earth \&c. was the foundation of Lyell's Principles of Geology and many other later writings. His views, based on observations, were clear and convincing to all studious minds :-
"The ruins of an older world are visible in the present structure of our planet; and the strata which now compose our continents have been once beneath the sea, and were formed out of the waste of pre-existing continents. The same forces are still destroying, by chemical decomposition or mechanical violence, even the hardest rocks, and transporting the materials to the sea, where they are spread out and form new strata analogous to those of more ancient date. Although loosely deposited along the bottom of the ocean, they become afterwards altered and consolidated by volcanic heat, and then heaved up fractured and contorted."

In William Smith (1769-1839) we have a man of humble origin, born at Churchill in Oxfordshire, who, by force of will and industry, trained himself and became a mineral surveyor and geologist of no mean order. He not only mapped out the geology of England and Wales in a most admirable manner, but discovered a great and original principle, which has stood the test of over 100 years of subsequent geological field-work, namely, that the relative age of sedimentary deposits can be determined with certainty by their organised fossil-contents. This principle, which he was able to prove to demonstration over wide areas and in hundreds of instances, together with the excellent map which he produced, obtained for him from Sedgwick the title of "Father of English Geology." Had William Smith been as able a writer as he was a brilliant observer in the field and mapper, his fame would have been more widely known than it is. One of his geological contemporaries was Samuel Woodward * of Norwich (1790-1837). Suffice it to say that with a succession of men like Sedgwick, Conybeare, Buckland, Phillips, Murchison, Lyell, Scrope, Fitton, de la Beche, Griffiths, Portlock, Prestwich, Ramsay, Geikie, geology has progressed enormously in the past 100 years, and is now one of the most popular sciences of the day.

From the birth of orderly stratigraphical geology has arisen the cognate science of Palcoontology which treats of all fossil remains, and takes note of their succession in the rocks as well as their zoological position among living organisms.

But since the publication of Darwin's Origin of Species, now forty years ago, a new and ardent school of zoologists and botanists have entered the field of palæontology, who,-whilst they ignore entirely the advantage which the stratigraphical geologist derives from fossils, looked at from the chronological aspect,-are nevertheless eager to possess themselves of the palcoozoological evidence they furnish, which is in fact the key to open the lock of the casket that holds the secret of the origin of species, and even, they believe, of the beginning of life on the earth-a secret they are as eager to learn, as that for which our first mother Eve bartered Paradise, or that which excited the curiosity of the Greek Pandora, or the unhappy wives of Bluebeard.

Although I may not deceive you with promises to disclose the very beginning of life, I may at least be able so far to lift the lid of the casket as to give you a glance at some of the earliest appearances of groups of living organisms, and point out a few which have persisted over vast periods of time, and others which, though of great importance at one time (like some of our celebrated human families), have now entirely disappeared.

[^81]While upon the subject of the evolution and extinction of lifeforms I may be permitted to refer you to a very able paper which has lately appeared,* by Mr. C. B. Crampton, on this subject.

To-night I will only venture to glance at some of the Inverte. brata; leaving the Vertebrata to be discussed upon another occasion.
" In the first place (Mr. Crampton writes) the lowly-organised groups have persisted in spite of the gradual evolution of more and more highly-organised forms, and this must be due in large measure to their rapid growth and reproductive powers.
(2) That groups appear to lave a shorter range in time as they acquire a higher degree of organisation.
(3) That living forms of groups that are dominant at the present time rarely show ancestors of such great specialisation as themselves.
(4) That forms that are now isolated in their zoological affinities, and bordering on extinction, are generally highly specialised in some direction, but often show signs of degeneration, and usually have ancestors of greater specialisation during some former period of dominance. A few, at any rate, seem to show a smaller degree of fertility than might be expected.
(5) Other forms which have come down to us from a distant period with small amount of change, or with very graduallyacquired specialisation, often show a great power of resistance to death. They are also generally extremely fertile.
(6) That extinct groups seem almost invariably to have acquired a great degree of specialisation during their period of dominance.
(7) That the more specialised genera and species of groups tend to have a shorter range in time than the less specialised, although they frequently appear to have temporarily acquired a greater dominance.
(8) When a group shows very quickly-acquired variation and specialisation its range is usually very restricted.
(9) That the later forms in extinct groups frequently show signs of degeneration, and sometimes a more primitive organisation than the most specialised forms, possibly owing their persistence to their slower specialisation.
(10) That long retention of primitive characteristics, or a great degree of stability and want of variation, has been usually associated with a long range in time.
(11) That higher groups do not spring from the most specialised forms of the parent groups before them in time, but from some generalised form in those groups which had retained a more primitive organisation."

[^82]
TABLE OF STRATIFIED ROCKS.

Showing the range in time of the great groups of Animails, and the period during which each type was dominant.

	SYSTEMS.	FORMATIONS.	LIFE-PEP	
	RECENT PLEISTOCENE (250 ft .)	Terrestrial, Alluvial, Estuarine, and Marine Beds of Historic, Iron, Bronze, and Neolithic Ages Peat, Alluvium, Luess Valley Gravels, Brickearths Cave-deposits Raised Beaches Palaolithic Age Boulder Clay and Gravels		咅
	PLIOCENE (100 ft.) MIOCENE $(125 \mathrm{ft})$ EOCENE $(2600 \mathrm{ft})$	Norfolk Forest-bed Series Norwich and Red Crags Coralline Crag (Diestian) (Eningen Beds Freshwater, \&c. Fluvio-marine Series (Oligocene) $\left.\begin{array}{l}\text { Bugshot Beds } \\ \text { London Tertiaries }\end{array}\right\}$ (Nummulitic Beds)		
	CRETACEOUS - (7000 ft .) NEOCOMIAN	Maestricht Leds Chalk Upper Greensand Gault Lower Greensand Wealden		
	$\underset{(3000 \mathrm{ft} .)}{\operatorname{JURASSIC}}$	Purbeck Beds Portland Beds Kimmeridge Chay (Sulenhofen Beds) Corallian Beds Oxford Clay Great Oolite Serjes Infrior Oolite Series Lias		
	$\underset{(3000 \mathrm{ft} .)}{\text { TRIASSIC }}$	Rbatic Beds Keuper Muschelkalk Bunter		
	PERIMIAN or DYAS (500 to 3000 ft)	Red Sandstone, Marl Magresian Limuestone. \&c. Red Sandstone and Conglomerate Rothliegende		
	CARBONIFEROUS (12,000 ft.)	Coal Measures and Millotore Grit Carboniferous Limestone Series		
	$\begin{aligned} & \text { DEVONIAN \& OLD } \\ & \text { RED SANDSTONE } \\ & (5000 \text { to } 10,000 \mathrm{ft} .) \end{aligned}$	Upper Old Red Sandstone Devonian Lower Old Red Sandstone Ludlow Series		
	SILURIAN (3000 to 5000 ft .)	Wenlock Series Llandovery Series May Hill Series		
	ORDOVICIAN (5000 to 8000 ft) CAMLBRIAN $(20,000$ to $30,000 \mathrm{ft}$.	Bala and Caradoc Series Llandeilo Series Llanvirn Sories Arenig and Skiddaw Series Tremadoc Slates Lingula Flags. Menevian Series Harlech and Longmynd Series		
	$\begin{gathered} \text { EOZOIC- } \\ \text { ARCHAAAN } \\ (30,000 \mathrm{ft} .) \end{gathered}$	Pebldian, Arvonlan, and Dimetian Huronian and Laurentian		

And I would add lastly :-
That those forms which have persisted through long past periods of geological time, have also an extremely wide geographical distribution at the present day. I illustrate this by a_diagram (fig. 34).

Fig. 34.
As might naturally be expected, it is the louly-mounised forms which show the longest geological history.

I. PROTOZOA.

Radiolaria are found throughout the whole geological series and are world-wide in their distribution.

Of the Foraminifera, about two-thirds out of 2000 species occur fossil. The longevity of some genera is truly remarkable, e.g. Lagena, Nodoseria, Textularic. The first two range from Silurian, and the last from Carboniferous times to the present day. Fusulina and Seluwagerina are world-wide in their distribution in Carboniferous time, forming entire beds of limestone. (They are, however, confined to the Carboniferous.)

Several giant species of Nummulina occur in early Tertiary times.

II. Porifera (The Sponges).

The Lithistid and Hexactincllid Sponges have existed since Cambrian times. The Calcispongice appear in late Palæozoic times and only become important in the Mesozoic period.

III. Celenterata:-I. Hydrozoa.

The Graptolites are world-wide in their distribution in early Palæozoic time; they are enormously abundant and varied, and
disappear at the end of the Silurian period. Dictyonema, a doubtfit Graptolite, extends from the Cambrian to the Devonian.

ifi. Celenterata:-II. Anthozoa.

Of the Corals, the Rugose and Tabulate corals are confined to he Palæozoic rocks.

The Hescacoralla are first seen in the Trias and continue to the present day. Zaphrentis, Petruic, Clisiophyllum and Strephodes, all simple types of Rugose corals, range from the Silurion to the Carboniferous age.

The same range is found for C'yothophyllem and Diplyphyllum, both of which are compound forms.

Of the Hexacoralla, four genera range from Jurassic to Recent.
Of the Tabulate corals (among the Ricoss), Firtosites and Syringopora range from Silurian to Carboniferous times.

The existing corals belong to the Madreforaiia, the Fuxgida, and Perforata, and have no paleozoic representatives, but the Secondary and Tertiary deposits have yielded a large number of these forms. The composite Nudreporic include a rast number of forms and range from the Eocene to the present day.

IV. ECHINODERMA.

Of the Echinoderma, the extinct groups the Cystoins and Blastoids only lived in the Paleozoic period.

Of Cystoids, 50 genera and 250 species are known, and
Of Blastoids, 19 genera and 120 species are recorded.
The Crisoins appear to have declined ever since their maximun development in Palæozoic times.

Ichthyocrinus ranges from the Ordorician to the Carboniferous.
Taxocrinus has the same range.
Of later forms, Pentacrinus, Estracrinus, and Antedon have persisted from the beginning of the Mesozuic period with very little change.

Stapfishes range from the Cambrian to the present day.
Echinords : regular forms like Cideris have existed since the Trias.

Echinocorys and some other irregular forms appear in the Cretaceous, but many of the genera quickly became extinet. But both regular and irregular forms have contimued on to the present time.
V. POLYZOA ("Sea-Mats").

The Polyzoa date back to the Ordovician.
Of Cyclostomata, Stromatopora and Berenicea range through the whole time to Ordovician.

Many living genera range back into Mesozoic times.
The Monticuliporoids, a peenliar group, perhaps related to the PolyzoA, were dominant in Ordovicias and Silurian times, but doubtfully survived the Palæozoic period.

Of the Cryptostomata, such genera as F'cnestella, Polypora, Phabdomeson, and their allies are Palæozoie.

The Chilostomata, forming the bulk of living Polyzoa, date baek to the Jurassic period.

VI. BRACHIOPODA.

The Brachiopoda have their maximum development in Paleozoic times. Productus, Spirifer, Pentamerus, Cyrtia, Merista,Uncites, and Stringocephulus show not only great abundance and extraordinary specialisation of forms, but also remarkable variety of shape, size, and condition of their brachial supports. They have a comparatively short range in time, both in genera and species.

The long-winged Spirifers, dominant in the Devonian, were rapidly extinguished, but the simple Spirifer glabra ranges from the Devonian into the Carboniferous. Any striking peculiarity of growth or size seems to be followed by rapid extinction.

In the Mesozoic period both genera and species are much. reduced in numbers, the forms chiefly belonging to the persistent Terebratula and Rhynchonella types, with slight variations in their shell markings.

With these are some exceptional forms, such as Lyra, Magas, Kingena, Trigonosemus-strietly Cretaceous, while a few others as Pyyope, Dietyothyris (specialised Terebratal(c), have a limited range in the Jurassic period.

From the Lower Palæozoic period genera like Lingula, Crania, and Discina have continued on, and are living now. Such forms naly be truly termed persistent types.

In this division hermaphroditism (so rare in this class) occurs.
Lingula shows great resistance to death, surviving after being out of water and in a dry condition for some time.

VII. VERMES (Worms).

Worms being all soft-bodiced animals are seldom found in a fossil state. Their former existence is, however, proved by their tracks, burrows, and castings which they have left in the sedimentary roeks from the Cambrian to the present day. Their chitinous teeth and jaws have been exhibited by Dr. Hinde, F.R.S., before this Society and described and figured in the Quart. Journ. Geol. Soc., London, 1879, 1880, and in the Transactions of the Royal Swedish Academy.

Many species construct tubes. These variously formed cases (called Serpulce) are common in many formations, but do not disclose much information about the structure of the animal itself.

They admirably illustrate the persistence in time of very simple and lowly organised forms, having bodies composed of a large number of similar segments (often capable of subdivision), and possessing moreover great powers of reparation and reproduction and resistance to deatl.

VIII. MOLLUSCA.

In the Mollusca, amongst the Lamelimbanchiata, there are many persistent types showing very small amount of variation.
E.g. Solenomya has persisted since Carboniferous times, and Nucula from the Silurian onwards. Both belong to the "Protobranchiata" forms, with simple gills and a sole on the foot for creeping upon-not a mere digging foot.

In contrast to these are the Rudistes, such as Diceras, Upper Jurassic; Requicnia, Monopleura, Caprina, Sphcerulites, and Hippurites, \&c., from the Cretaceous. These peculiar Molluses had a world-wide distribution, and occur in such numbers that beds of limestone are often built up of their shells. Chama, which represents them, has continned to the present day, but is less specialised.

Trigonia is not only a persistent genus, but exhibits great resistance to extreme variation, save in minor matters of shellornament. It ranges from the Trias to recent, and has a worldwide distribution. There are three species living in Australia and at least 100 species extinct.

In the Scaphopod the curious tubular genus Dontalium ranges from the Ordovician to the present day. There are many species, but little variation from the type.

The multivalve Chitons extend also from Orlovician times to the present, but are never common in a fossil state. Only 70 species have been described from all known horizons. They are more abundant in modern seas, more than 200 species being now living.

The Pteropons (proper) only date back to the Cretaceous.
The earlier forms known as T'entaculites, Hyolithes, Conularia, are very doubtfully related to the Pteropoda. We have Tentaculites in Silurian and Devonian rocks; Hyolithes, Cambrian to Permian; and Conularia, from Ordovician to Lias; both the latter are very persistent types.

In the Moldusca-Gasterofoda-Patella-like forms have existed from early Palæozoic times. Walcott has figured 6 species of Scenellu, 8 species or varieties of Stenotheca, and 1 of Platyceras

Trom the Lower Cambrian of North America. Capulus has persisted from Cambrian times to the present day.

The remarkable genus Pleurotomarite also ranges from Cambrian to recent, living in Japan and in the West Indies, and is represented by 4 or 5 species recent; 11 Tertiary ; 575 Secondary ; and 570 Palæozoic forms.

The Nerineide are very specialised shells in the structure of the columella; their range is also very brief. There are 150 species recorded from Mesozoic strata.

The Pulaonifert, Land-Snails range from the Coal Measures to recent.

Among the Cephaloroda, the Nautiloid type is remarkable for its persistence since Cambrian times. Many specialised forms, showing extreme variety of growth and shell-structure, have branched out from this stock during its dominance in Palicozoic times, but these have in turn all died out.

Of these, the simple gemus Orthoceras, with its long straight shell, had the greatest range, viz. from the Cambrian to the Trias; the other modifications have also fairly long ranges and show remarkable varieties of shell-structure.

The Ammonitcs, which range from the Trias to the Chalk, show almost endless variety in shell-ornament within certain limits, and have a world-wide range in Jurassic times branching out into more than 600 species.

In the Cretaceous period (before their disappearance) they put on most singular and remarkable developments of shell-variation, Cinoeras, Scaphites, Ancyloceras, Helicoceras, Toxoceras, Baculites, Ptyehoceras, Hamitcs, Turrilites, then they disappear entirely. We do not know the animal in Ammonites.

The Belemnitide range from the Trias to ths Cretaceous.
The guard in most genera is large and dense, whilst the chambered portion or "phragmocone," is small and rudimentary. But Aulucoceras of the Trias has a large phragmocone and the guard quite small.

The Belemnites appear to have been gregarious (like their modern congeners the "Squids"), entire beds in the Lias being composed of their guards at Whitby, Yorkshire, Lyme, in Dorsetshire, and other localities in the central counties. More than 100 species have been described.

Possibly Spirulirostra, of the Tertiaries, and the recent Spirula, may be survivors which have gradually dispensed with the guard to the shell, so characteristic of the Belemnites proper.*

The following table shows the range of the Arthropoda in time.

[^83]
IX. ARTHROPODA.

A. Crustacea.

1. entomostraca. 1. Branchopoda.

Order 1. Phyllopoda.
Apus (ambrian to recent.
2. Piyllocarida.

Hymenoсагія,
Ceratiocaris (Neluther) . . Ditto.
Estheria Devonian to recent.
Cheirocephalus 'Iertiary to reeent
(Fresh-water).
Artemia
Ditto (saline).
3. Cladocera.

Daphnia and its allies
Probably all recent.
(The Ephippia winter exprs of Dephua have been tound fossil in the Forest Bed sarice of Nortolk.)
4. Obtracoda.

Cypris, Comdona, Cythere, \&c. . P'alieozoie to reeent.
5. Corepoda.

Cyclops, \&e. Not frumal forsil.
Miny uther families are nut represented in a fossil state.

1I. MAIACOSTRACA.

1. Podophthalaa.

Brachyura
Jurassic to recent.
Macrura
Carboniterous to recent.
Schizopoda Ditto (Pulioocuris).
Stomapoda Devonian or Silurian to
2. Edriophtialia.

Cumacea Carboniferous to recent.
Isopoda Magn. L. to recent.
Præarcturus Ievonian?
Amphipoted Carboniferous?

Scorpionide. B. Arachnída.
(Scorpious) Silurian to recent; world-wide destribution.
Palxophonu;
Eophrynus
U. Sil., Scotland, Gutland. and lllimols, E .s.
Carboniferous only.
Coil-measures to recent.
Euphoteria a:d allics. .
D. Insecta.

Palzodictyoptera.
Dlutta (Silurian?) to reecut.
Eugereon, etc. Pcrmian to recent.
Orthoptera Coal-measures torecent.
Neurgtera Coal-measurcotozecelt.

* Recent aralogue. Probable progesitor of Decal oda.

The diagram (fig. 35) on the preceding page (p. 153) is intended to convey an idea of the probable evolution of the Arthropoda in geological time.

Summary.

And now, "let us hear the conclusion of the whole matter."
The whole history, since the beginning of life on the earth, shows a steady upward tendency (in fict Evolution) in life as displayed in the Geological Record.

> Ertinct Groups.

Some forms appear, attain a more or less important position on Life's Stage, and then die out completely.

Of such are the once abundant Graptolites, which had their beginning in the Cambrian, their maximum in the Ordovician and Silurian, and then disappeared.

The Trilobites, which began in the Cambrian, attained their maximum in the Sihurian, lived on into Carboniferous times, and then disappeared.

The Merostomata (Ptery, otus, Eurypterus, Stylonurus, \&c.) began in the Silurian, attained their maximum, lived on into the Deronian and Carboniferous periods, and then became extinct.

Porsistent Gioups.

Again we have persistent forms of which we seem to see neither the beginning nor the ending.

Of these we may mame the Protozoa, embracing the Radiolaria and the Foraminifera, both persistent in rocks of all ages and well represented at the present day.

The Porifera (Sponges) which, though materially differentiated in the course of geological ages, have lived on till to-day.

The Crinomba (Sea-lilies), represented from Silurian times to the present day, but not nearly so abundant as in Palæozoic times.

The Starfishes (Asteroidea and Ophiuroidea), both persistent types from silurian (or earlier) times to the present.

The Annelida again are met with in all strata and also living.
The Brachiopoda, beginning in the Cambrian, enormously developed in Silurian, Devonian, Carboniferous, and Secondary deposits, and still surviving in diminished numbers in modern seas.

The Crustacea, represented in past time ly persistent forms such as the ExtomostracaOstracoda Cambrian to recent. Phyllocarira (Xiphosuri) Limulus Silurian to recent.
The Arachnida. Scorpionide (Scorpio) Silurian to present day.
The Myriopoda Coal-measures to recent.
The Insecta.
Neuroptera Cinal-measures to recent.
Orthoptera
Thysanma
Homeptera
Of Semer Groups.
The following groups which have appeared in newer geological time mas le cited-

And the great mass of liring Insects, from the Secondary to recent.
The Range in time of the principal groups of the Invertebrata is given in a diagram form on p .156 , showing the Persistent groups (P.), the Extinct groups (E.), and the comparatively Modern groups (M.).

If we except such groups as the Crinoids, the Brachiopods, the Nautilide, the Xiphosura-which evidently attained their greatest maximum in the past, and although still surviving are now but a feeble folk-we shall notice that the modern Echinoids, Bryozoa, Mollusca, Gasteropoda (Siphonostomata and Pulmonifera) ; the higher Crustacea (Decapoda, Brachyura, and Macrura) the Isopoda, Stomapoda, \&c.; and our modern Insects, are far in advance of their "forbears" as regards development, and this is especially true of all the higher forms of life.

Just as in the Vegetable world our modern Flora (with its wealth of Flowering plants) is far more highly organised, varied and beautiful than in the past ages of the world, so is the associated Fauna of to-day when contrasted with that of the past.

But, it may be asked, what prospect is there of arriving at the earliest known ancestor from which all these varied forms have been derived? What help does the geological record afford us? My duty, as your guide, is to inform you that our increased knowledge of the older rocks has not shown that we are nearer the fulfilment of the young biologist's dream, and the secret of Pandora's Box remains still undiscorered. We have not as yet reached the beginning of life.
गฺ̣zoæ!セd $\because \stackrel{5}{5}$

 Actinozoa. P Pelmatozoa. P Echinozoa.l' Annelida. P Cirripedia P Entomostraca.P Trilobeta.E Xiphosura. P' Eurypterida E Malacostraca M
Arachnida. $>$
Myrıopoda P Insecta. P.
Bryozoa. M Brachiopoda.P Lamellibranchiata P Gasteronoda P
Pulmonifera. M
Pteronoda?
Chitonida. .
Scaphopoda.P
Dilranchıata M
Tetralranchiatar

In the oldest Cambrian of North America, Prof. C. D. Walcott has shown the presence of some 61 so-called genera and 142 reputed species, embracing Sponges, Corals, Anmelids, Graptolites, Echinoderma, Brachiopoda, Mollusea, lowly Crustacea, and Trilobites. But, after all our labours, and stricings to reach the beginning of all things, let us take comfort in this, that, like Pantora of old, we still have Hope left us in the Box (or shall we say in the Rockis?).

Those Eozoic liocks (see p. 146) which underlie our present oldest fossiliferous strata, may yet yield to the geologist and biologist in the future, an earlier and more primitive fauna and flora, just as the Lower Cambrian rocks have doue for us in the past.

Note.-Prof. C. D. Walentt, in his monograph on the Lower Cambrian or "Olenellus Zone" of North America, gives the following list of fossils:-

Nine groups are represented, comprising 61 gen. et 142 sp .

OBITUARY.

James Glaisher, F.R.S. F.R.A.S. F.R. Met. S. F.R.M.S.
1809-1903.

James Glaisher was born on April 9, 1809. W'hen only 20 years of age he was engaged on the Ordnance Survey of Ireland. In 1833 he obtained an appointment as assistant at the Cambridge Observatory, but two years later followed Prof. Airy to Greenwich. In 1841 he was placed at the head of the newly founded Magnetic and Meteorological Department, a post which he retained till 1874, and during his term of office inangurated the quarterly reports issued by the Registrar-General. Mr. Glaisher was an enthusiastic: aeronaut, not so much for the love of the ascents as in the hope that important discoveries relating to the constitution of the atmosphere might be nade from these excursions. In one of these ascents, made in company with Mr. Coxwell, on September 5, 1862, a height of nearly 7 miles was attained. On this occasion Mr. Glaisher became unconscious and Mr. Coxwell had to use his teeth, his hands being quite benumbed, to pull the valverope in order to effect a descent.

Mr. Glaisher was President of the Royal Microscopical Society from 1865-1868. He was also a member of the Royal, the Royal Photographic, the Royal Aeronautical, and the Royal Meteorological Societies. Of this last, he was the founder, its Secretary for twenty years, and its President in 1867-8.

Besides many articles in the Philosophical Transactions and other scientific journals, he was the anthor of IHygrometric Tables, Travcls in the Air, and the translator of Guillemin's Les Comètes.

Mr. Glaisher died on February 7, 1903, and was buried at Shirley, near Croydon.

Rey. Thomas Whtshire, M.A. D.Sc. F.L.S. F.G.S. F.R.A.S. F.F.M.S.

1826-1902.

Thomas Wilisume was born in the City of London on April 21, 1826. At the age of 19 he entered Trinity College, Cambridge, and while at the University developed a taste for geology, which continued to be the dominating pursuit of his after life. He took his B.A. degree in 1850, and in June of the same year was ordained. In 1859 he was elected l'resident of the Geologists' Association, and in 1863 became Secretary of the Palæontographical Society, which office he held until 1899. From 1874 to 1878 he was one of the Honorary Secretaries of the Geological Society; in 1890 he was appointed Professor of Geology and Mineralogy at King's College; in 1888 he became Master of the Clothworkers' Company ; and in 1899 received the honorary degree of Doctor in Science from the University of Cambridge.

Besides being much occupied in scientific pusuits and geological investigations, the Rev. Dr. Wiltshire was devoted to clerical work and lecturing, and it was shortly after delivering a Sunday evening discourse at St. Clement's, Eastcheap, that he passed quietly away after a busy life of 76 years.

His best known communications are papers ' On the Red Chalk of England,' and ' On the Ancient Flint Implements of Yorkshire and the modern fabrication of similar specimens.'

Z OOLOGY AND BOTANY

(principally invertebrata and cryptogamia), MICROSCOPY, Eтс.*

ZOOLOGY.

VERTEBRATA.

a. Embryology. \dagger

Treatise on Comparative and Experimental Embryology of Vertebrates. $\ddagger-0$. Hertwig is making progress with the great co-operative treatise which he is editing. The last-published parts (Lieferungen 6-8) deal with the month, the buccal cavity (apart from teeth), the swim-bladder, the lungs, and the larynx (E. Göppert); with the intestinal system (F. Maurer) ; with the skin (W. Krause) ; and with the integumentary ossifications and the teeth (R. Burckhardt).

Fertilisation in Salmon. $\$-\mathrm{N}$. Czermak finds that there is a female centrosome in the salmon, and that in the approximation of the two pronuclei the female sphere is apposed to only one pole of the male pronucleus-spindle, so that only this pole-therefore only one of the first two blastomeres-exhibits a perfeet fertilisation. The author gives a summary of the whole fertilisation-process as he observed it.

Vestigial Function. $\|$-W. Wedekind points out that just as the comparative anatomist speaks of a rudimentary or vestigial organ, so the physiologist may speak of a rudimentary or vestigial function. Such a vestigial function is manifested by those ova of sea-urchins and some other animals, which under physical and chemical stimulus may be induced to develop parthenogenetically. The physico-chemical stimuli are not replacing the spermatozoic stimulus, they are simply liberating a restigial function-to go on dividing.

Organic Sexual Dimorphism in Fowls. T-F. Houssay notes that while cocks are larger, more muscular, with bigger comb, \&c., the hens

[^84]have larger internal organs except in the ease of heart and lungs, which are usually more strongly developed in coeks. He applies the phrase organic sexual dimorphism to the relation of female mean weight of internal organs to the male mean weight of the same. The ratios vary with the different organs (kidney, spleen, liver, panereas, gizzard, eæea, \&e.), and the dimorphism is not in any simple way connected with egglaying or increase in gross weight. Houssay shows the emrious changes bronght about by carnivorous diet, but as jet the results are too complex to yield a satisfactory conelusion.

Regeneration in Newts.* - Angust Weismann reports the results of experiments made under his direetion by Egon Breinig. In four eases the oviduct was removed, and no regeneration followed. Experiments with the vas deferens gave the same negative result. In the case of lmigs, from which the end was cut off, there was a slight terminal expansion of the organ, but this may be regarded as the meehanical result of continued fumetion. Weismann contrasts these results with the well-known regeneration of the eye-an organ whieh in natural conditions is liable to be injured by water-beetles, dragon-fly larre, and other enemies of the newts.

Torsion of Bird-Embryo. \dagger - A. Weber has inrestigated the early stages of torsion on the longitudinal axis as observed in normal embryos of birds, but he has got much help by a study of two cases where the amnion was wholly absent,-a very rare anomaly.

Gastrulation of Double-Development in Trout. $\ddagger-$ F. Sehmitt has made a eareful study of this process. It occurs in blastoderms which are not larger than the normal nor rieher in germinal material. The oceurrence of double-embryos cannot he interpreted on the concreseencetheory without ansiliary hypotheses. A short summary is given by the anthor, but we must be content at present with a mere reference.

Curvature of the Spine in Fishes.§-J. Pellegrin brings together a number of eases of abnormal eurvature and similar abnormalities in the vertebral column of Teleosts. He alludes to the sole (Howes), the perch (Howes), Cobitis fossilis (Giard), the mackerel (Petit), Mullus surmuletus, Mugil capito, Trigla lyra (Morean), and so on. To what are these malformations due? Aceording to Pellegrin, they are referable to muscular variations which influence the skeletal development.

b. Histology.

Cell-Division.||-A. Bethe contrasts the meehanieal filament-theories (Fadentheorien) with the dynamieal centrosome-theories to the adrantage of the latter. He brings forward a number of faets deseribed by various investigators which cannot le interpreted on the mechanieal theory. The field is really left to the dynamical theories, that is to those interpretations which do not credit the achromatin threads with

[^85]an active (muscle-like) function, but refer the process of division to the chemico-physical properties of cytoplasm and nucleoplasm. It seems to him hardly possible to get beyond this rague generalisation until the chemical physiology of the cell is more adranced.

Spindle-Residues in Cell-Division.*- P. Bouin distinguishes the spindle-residue formed between two daughter-cells at the expense of the central-spindle-fibres and amalgamating into the intermediate corpuscle, from other spindle-residues built up after the telophase and after the disappearance of the restiges of the karyokinetic spindle.

In the divisions of the spermatocytes of the first order in Lithobius forficatus there are three successive spindle-formations: (1) a primary protoplasmic spindle, extending during the prophase between the central corpuscles, but disappearing before the end of the prophase; (2) a secondary spindle, the true karyokinetic spindle, formed at the expense of the linin-framework of the nuclens; and (3) a tertiary spindle or spindle of separation, formed after the disappearance of (2), from fibrils differentiated de nov'o along the whole equatorial region, and giving rise, as the cell-membrane grows in, to a spindle-residue. This formation is not referable to the karyokinetic spindle ; it is a new differentiation characteristic of the telophase.

Trophospongia. -E. Holmgren describes canal-like " trophospongia" in the cells of the epididymis of the white mouse and in the cells of the bile-duct epithelium of the snail. They occur exclusively within the gramular or racuolar triangular space to the external side of the nuclens, and do not show any direct connection with the fibrillar or threadwork apparatus of the cell. The same disposition was found in the epithelial cells of the mammalian uterus and thyroid gland.
"Intracellular Threads" in Ganglion-Cells of Electric Organ of Torpedo. $\ddagger-$ B. Solger returns to a study of these structures to which he gives an interpretation somewhat different from that in his paper of 1897.§ He thinks there is a coherent system of canaliculi and spaces penetrating the cell-substance, here and there opening externally into the pericellular space, and often including thread-like structures which stain deeply with iron-hæmatoxylin, and sometimes fill up the lumen. His point is, that the granular threads are in connection with the intracellular canaliculi and spaces, are, in fact, concretions or precipitates within some of them.

Intranuclear Space in Liver-Cells.\| - Gustav Schlater finds that the nucleus of the hepatic cell is very elaborate. It includes a space ellipsoidal like itself, and with the same centre. Between the surface of this space and the surface of the muclens is the body proper of the nucleus. This includes six nucleolar apparatuses (Kernkörperchenapparate), quite definitely disposed, so that the lines joining them form a regular octahedron. More superficially is the so-called chromatin net-

[^86]work bearing chromatin-granula or eytoblasts (ehiefly basichromatin). Finer than this is the "linin-framework" which traverses the whole body of the nucleus and unites the nucleolar apparatus and the microsomes (chiefly oxychromatin). In the meshes of the chromatin and linin-framework there are the cyanophil gramules (Altmann's granula).

Structure and Development of Cartilage.* - O. V. Srdinko has studied this in man and mammals, in adult and embryonic stages. In the embryonic condition the hyaline eartilage has cells with numerous long ramifying protoplasmic processes. These cells have no capsule, and divide so that rows of daughter-cells arise. Many are in very young stages united by plasmic anastomoses. The fundamental substance is homogeneous or fibrillated ; the fibrillation follows in consequence of the impenetration of nutritive juices. This embryonic cartilage leads directly to hyaline cartilage, the cells losing the strong processes and becoming surrounded by a capsule. Part of the fundamental substance undoubtedly arises by direct modification of the cells.

In mature hyaline cartilage, there is no persistence of the embryonic processes. Bundles of fine fibres are seen in the fundamental substance running from cell to cell. The mutrition of the eartilage is probably effected by impenetration of fluids along the fine bundles of fibres, which in this way come to stand out elearly amid the matrical substance.

Development and Structure of Vitreous Humour. \dagger - P. Bertacchini has studied this in various mammals. He comes to the following conclusions among others. The vitreous humour is not a connective tissue in which the cells have disappeared by atrophy, nor a simple vascular transudation, nor a secretion of retinal cells; and it has no developmental connection with the small quantity of mesoblast which remains included in the optic eup or enters by the choroid fissure. It is a tissue of secondary origin, exclusively due to the blood-vessels through the Imediation of leucocytes. The original vitreous cells are leucocytes which have passed from the blood by diapedesis. The humour never loses its cells, though these are superfieially disposed.

The intercellular substance of the vitreous humour is secreted by the vitreous cells in all the stages of development. In early fotal life, the cells secrete an unstainable gelatinous substance, which appcars as gelatinous spheres in the eytoplasm, and passes out by dehiscence. Subsequently the mode of secretion changes a little; it is associated with the formation of stainable granules and the detachment by clasmatosis of plasmic prolongations. After birth this is the only method. It is probable that the gelatinous drops give rise to the aqueous part of the corpus vitreum, and that the detached plasmic fragments with their stainable granulations form the denser part, and the mucin in particular.

Structure of Digestive Canal in Reptiles. $\ddagger-\mathrm{F}$. Béguin gives an account of the minute structure of the digestive canal in common

* Anat. Anzeig., xxii. (1903) pp. 437-46.
+ Internat. Monatschr. Anat. Physiol., xix. (1902) pp. 77-118 (2 pls.).
\ddagger Rev. Suisse Zool., x. (1902) pp. 251-397 (6 pls.).

Chelonians, Lacertilians, and Ophidians. He gives a useful summary of fifteen chief conclusions, but our space will not admit of more than a reference to a few. The development of the alimentary muscular layers is at its minimum in snakes, which may be associated with the strong museularity of the body-wall. In most eases there is no basal membrane beneath the epithelium ; there are no cell-walls, but there is often intercellular substance, and there may be intereellular bridges. The cesophageal mueosa shows interesting stages of differentiation from ciliary to stratified epithelium. Esophageal glands oeeur in some Chelonians. The gastrie glands are very deep in Chelonians, deep in lacertiform lizards, much less deep in serpentiform lizards and in snakes. In the mid-intestine there is a lining of eylindrical cells with plasmic prolongations differentiated into rods and with a small quantity of intercalary substance. These rods exhibit pseudopodial movements, and ingest like Amœbæ. Cylindrical and callyciform cells in the intestine are usually the same elements at two stages. Béguin pays particular attention to the glandular cells of the stomach.

Structure of Intestinal Villi.*-F. Vosseler has studied the villi of the small intestine in many animals, and he calls attention to numerons peculiarities of strueture. Thus he has found that, quite apart from results of injury or degeneration, the villus may show an opening at or somewhat lateral to its apex. Sometimes two are present. They are elongated elefts, bordered by cylindrieal epithelium, and with the margins all but. touching. Not iufrequently the stroma of the apical region of the villus is cleanly retracted from the enveloping epithelium, so that between the two tissues there is a cap-shaped or eylindrical cavity containing some granular debris and leucocytes, but without any formed fibrous components. Vosseler considers the possible physiological import of the structural facts described.

So-called "Telescopic" Eye of Some Abyssal Fishes.t-A. Braner describes a kind of eye that frequently oceurs in deep-sea fishes and in some pelagic forms as well. He refers to some interesting cases in which incipient stages towards the so-called teleseopic eye oceur.

The ehief charaeteristics of the peculiar type of eye alluded to may be summed up as follons. The form is more or less like a tube, its. opening - the prpil-is always very wide, the iris is almost degenerate. The pupil is usually quite filled by a large lens, which is over-arehed by a very convex cornea. Eyen more peenliar is the fact that the retina is divisible into two parts which are dissimilar in their differentiation. The large part-the main retina-lines the whole lack of the eye, is usually homogencous, and is always highly developed. It is marked by the great length and large number of the rods, many of which are unusually far from the lens beeanse of the elongation of the region between the cornea and the back of the eye. The smaller part of the retina (N ebenretina) usnally oceurs on the median wall of the eye, and is in various degrees reduced when compared with the main-retina. The layers are thimer; the percipient elements, when present, are less mmerous, shorter, and

[^87]thicker. Their best development is dorsally, close to the lens. Only in Gigantura is there on the ventral wall, about the middle, a small representation of the accessory retina. The'eyes are directed not laterally but dorsally, or rostrally ; and the interorbital space is reduced to such a thin septum that the eyes almost tonch, like the eyes of one looking through a field-glass. While many of the eye-muscles are divergent or reduced, when compared with the norm, the accommodation-apparatus is well developed. The author gives many detailed illustrations and a general interpretation of these peculiar ejes as adaptive to special conditions.

c. General.

Biological Observations on Reptiles and Amphibians.*-F. Werner gives in the first place an account of his experiments as to the " tropisms" of reptiles and amphibians. (a) Most reptiles are more or less markedly heliotropic, and many seek the light apart from warmth. In amphibians, heliotropism is much less marked. (b) The persistent npward climbing of species of Hyla, Dryophis, Anolis, and Chamceleon is interpreted as negative geotropism. (c and d) Positive geotropism is always associated with stereotropism, as seen in Amphisbænidæ, Typhlopider, Scincoidæ, and limbless amphibians. (e) Hydrotropism, as a particular kind of chemotropism, is strikingly illustrated by Triton, Bombinator, Ungalia semicincta, Gerrhonotus caruleus, \&c., which persistently make for water, even from considerable distances.

Secondly, Werner discusses the sensory perceptions of reptiles and amphibians (186 different forms). (1) Vision is particularly acute as regards food and enemies. Crocodiles, which see best sideways, do not seem to perceive a fish at a distance greater than half their own length, but they see a man at ten times their own length or even more. Tortoises far excel crocodiles in acuteness of vision as regards food, but they seem less sensitive to the approach of man. Some lizards can see food at a distance of 1-3 yards; others are very short-sighted. Snakes are mostly dull of sight. The Urodela are far inferior to the Anura in range of vision. A large number of precise measurements in terms of bodylength are given. (2) As regards hearing, all reptiles are deaf or at any rate dull ; the crocodiles react to a few noises, and the geekos come next. The Urodela have little power of hearing, but frogs have considerable :sensitiveness. (3) All the forms tried reacted to strong odours, such as those of alcohol and formol. (4-6) Interesting facts are given in regard to the gustatory, tactile, and pressure-senses.

In his third chapter Werner discusses maximum and minimum size. He notes that the attainment of maximum length does not coincide with sexual maturity. Half-grown chamæleons, snakes, \&c., may be sexually mature. In many cases there is no definite limit of growth; many grow as long as they live and never show any senile weakness, their death being violent not " natural." Even in abnormally large individuals there is no trace of senile degeneration. An interesting set of figures show for Boa, \&c., a ratio between the adult size and that of the newly-born young. Length of life is also discussed, and it is noteworthy that within

* Biol. Centra!bl., xxii. (1902) pp. 737-58.
one genus, e.g. Lacerta, there are species which live for a year or for two years and others which survive several decemia.

The different sizes attained by different varicties or species seem to be related in the first instance to the diet.-that of carnivorous forms depending on the size of the available victims. Those which eat small creatures become sexually mature and reach their limit of growth sooner than those which eat larger animals. There is a wealth of very interesting information in this paper which we have only hinted at.

Phylogenetic Speculations.*-H. Simroth disensses the origin of vertebrates, sponges, and sexual reproduction, but his paper is very elliptical, leaping over obvious difficulties and what seem to us necessary steps in the argument. As might have been expected from the anthor of The Origin of Land Animals, he re-emphasises the evolutionary advantages of terra firma. It was on land that vertebrates were vertebrated, the "Urstamm" being the "Tetrapoda," the place of origin being probably the "East Pole." Eren the head, he seeks to interpret as "a product of terrestrial life." He refers the sponges to an origin from terrestrial Acola (Turbellarians), he derives the Acola from Infusorians, and the Infusorians from "Probacteria" arising in the organic matter which preceded life. Sexual reproduction is also a product of the "Landleben," which appears to have given initiative to all the more important steps in evolution. The regret our inability to follow Prof. Simroth's argument.

Text-book of Zoology. \dagger - A. Goette has written a text-book of Zoology for serious university students,--a terse and accurate description of animal forms from the comparative anatomist's point of view. According to the preface, it is intended to be distinctively evolutionist, showing the progress of organisms from one grade of structure to another. But we do not find any particular evidence of this in the text, and many of the elassifications are extremely conservative and dogmatic. There is too little embryology, too little palæontology, and too little œecology to. justify the title 'Lehrbuch der Zoologie.' But it is the work of an expert, who has done much for Zoology in the widest sense, and its workmanship is good, though, as it seems to us, one-sided.

Anomalies on Head-Shields of Snakes. \ddagger - L. H. Gough makes a contribution to the study of variation by giving a list of the anomalies in the head-shields of the snakes in the collections of the University of Strassburg. The anomalies consist chiefly in a difference in the numbers or arrangement of the shields (especially the temporals) on the two sides of the bead.

Abnormal Coloration in Pleuronectids.s-IV. C. M‘Intosh describes a number of adoleseent turbot showing a deep notch above the head, the dorsal fin terminating in a prominent hook, and coloration on both sides. He describes other cases of coloration on the under side on sole, flounder, dab, and plaice. Such cases raise doubts as to whether illnmination is responsible for the development or non-development of

[^88]pigment in Pleuronectids. Moreover, in metamorphosing yomng examples the side which is to be pale becomes considerably less pigmented before the fishes swim obliquely or leave their pelagic life. Apart from the influences of light, other faetors are operative,- varions constitutional peculiarities and the influence of the sympathetic system of nerves.

Geographical Distribution.*-J. Palacky seeks to show in a learned essay that the territorial mapping of zoo-geographital regions-which will apply to the varions phyla - is a hopeless task. Whether the regions be those of Wallace and Selater, or those suggested by others, they do not fit the facts. The useful task is to take class by class and to correlate their present distribution with what geology has to tell us.

Phylogeny of Erinaceidæ. \dagger - W. Leche continues his splendid work on the evolution of mammalian dentition, with special reference to the Erinaceidæ. His results are based on a study of 263 skulls and jaws, and on an associated inrestigation of the other parts of the skeleton and of the soft parts. The uuteome is a very important contribution to odontology in general and to the history of the Erinaceide in particular. There is an excellent review of the work by M. Fürbringer. \ddagger

Throwing-Net and Mud-Sucker.s- O. Zacharias describes what experience has proved to be a really effective throwing-net for use in plankton work on water-basins that have to be worked from the shore, and also an improved mud-sueker for eapturing Rhizopods, Infusorians, and the like.

Fauna of Alpine Lakes. $\|$ - P. Buffa gives a physical and liological account of some alpine lakes of the Trentine mountains. His lists include 12 Protozoa, 23 Rotifers, 7 Crustaceans, and 3 larral Diptera.

Tunicata.

Development of Appendicularia. T- R. Goldschmidt notes that there are only two records of observations on this subject, namely, by Kowalersky and Fol, both to the effeet that the development of Appendicularia does not differ essentially from that of Ascidians. Goldsehmidt studied what were probably the young stages of Oikopleura dioica Fol. The minuteness, the extremely refractive character of the living embryo, and the marked porerty of ehromatin in the embryonic muelei made the investigation very difficult. But he confirms circumstantially what Kowalevsky and Fol said, that the development is in 110 essential features different from that of Ascidians.

INVERTEBRATA.

Mollusea.
a. Cephalopoda.

Nature and Development of Chromatophores. ${ }^{* *}$ - Carl Chun has studied the chromatophores in a species of Bulitiena (Eledonella), and

[^89]his account of them differs in some noterrorthy respects from that given by previous investigators. He has traced their development from a cell with a single nuclens, through stages with two, four, eight, sixteen, and thirty-two nuclei. The chromatophore is not formed by a secondary combination of originally separate elements, it is a single, complex, multinucleate cell. One large and peculiar nuclens remains in the centre ; the others are disposed peripherally at the bases of the radiating contractile processes. The resemblance to a multinucleate Protozoon is striking.

The radiating contractile fibres are not secondarily connected with the central pigmented portion, but arise from it primarily, just like psendopodia. Kölliker's old conclusion that the radial fibres are contractile and act in the expansion of the chromatophore is quite correct, but the fibres are parts of the chromatophore. The contraction of the chromatophore is due to contractile arcs at the margin of the cell, stretching like bows between the basal portions of adjacent radial fibres. Some of Chun's figures are very striking.

New Cuttle-fishes.*-L. Jourdain makes a brief communication in regard to the Cephalopools collected in 1901-2 by the Prince of Monaco, chiefly in the vicinity of the Azores. There is a large species of Cirroteuthis (C. grimuldii sp. n.), notable for its massive ovoid form and gelatinous consistence. The arms are enveloped in a thick membrane which almost masks them, only the tips being free; there is no separation between arms and head, or between heat and borly, the whole heing enclosed in a cutaneous chvelope. Very different is the small C. richardi sp.n. The anthor makes short notes on Eledonella diaphana Hoyle, the third specimen known, remarkable for its soft and transparent tissues; on Leachia rychora Lesneur which has luminous organs; and on a new species of liossia (R. caroli) with enormons eyes which make the head bigger than the rest of the body.

Chorion and Micropyle in Cephalopods. \dagger - A. Schweikart has followed up Bergmann's research on oogenesis in Cephalopods, and has utilised some of his slides. The chorion begins to be formed by the separation of drops or granules from the follicular epithelium ; these coalesce into a coutinuous homogeneons membrane. The stages in the formation are describel with particular reference to Sepiola, where the truly chorionic nature of the envelope is very clear. The formation of the micropyle as a canal traversing the chorion at its thin region over the animal pole is described with special reference to Rossia mucrosoma.

\%. Gastropoda.

Retina of Gastropod Eye. \ddagger-R. Hesse notes that previous investigators are at one in describing two kinds of cells in the retina of the Gastropod eye-pigmented and unpigmented-but that there is no unanimity as to which kind of cell is sensory. Some say the pigmented cells are optic, others say the mpigmented, others say both. The

[^90]problem is to discover which cells are in connection with the fibres of the optic nerve, or which exhibit a "rod" structure. Hesse finds rodlike structures in all the Gastropol eyes which he has studied, and he gives a brief account of their strueture, which exhilits considerable diversity, in Helix, Limar, Patellu, Tiurbo, Mure., and other forms. In Helir, and Patella he demonstrated the expected connection between the rod-bearing cells and nerve-fibres. Between these truly optic cells there are always indifferent cells withont rods.

As regards the distribution of pigment in the retinal cells, "all possible combinations are realised." Red-cells and indifferent cells may be pigmented, as in Pleurobranchus and Mure, ; the rod-cells may be pigmented and the indifferent cells not, as in Putellin; the converse is true of Helix and Turbo; or both rod-cells and indifferent cells may be free from pigment, as in Limax. The absence of pigment in Limare shors that the pigment has no essential rôle in vision; it simply serves to isolate the optic elements, and may le dispensed with altorcther. In Limar. there is an accessory retina, or Nebenretina, comparable to that which Brauer has described in deep-sea fishes.

Structure of Lucapina crenulata.* - J. F. Illingworth gives an account of this molluse, and notes the following results as most important. The epipodimm is rudimentary and the nerve going to it is very weak. The pharynx is enlarged into a crop-like ponch with many folded digestive glands. Three large distinct hejatic ducts enter the stomath.

The nephridia are very unsrmmetrical. Both have external openings, and the right has an indirect reno-pericardial duet. The oviluct opens just within the external papilla of the right kidnery and the reno-pericardial thet is a short tube leading from the right side of the perieardial cavitr, and opening into the ariduct. The epithelial cells lining the duct arc very large, with exceedingly long cilia.

The shell muscles are distributed along the margin of the shell and very weak.

The rascular ssstem is closed ; there are two auricles with a yentricle between them; joining the ventricle is a large, rectangular aortic chamber, from which three aorte arise -an anterior or lncecil, a gastric, and a posterior or genital aorta. The mantle circulation is well developed; the blood is distributed by a pallial artery that surrounds the borly and returns in the pallial simns, which lies parallel and close to the artery. The hlood does not pass through the gills before returning to the heart. The pedal collectors form a close meshwork of veins over the inner surface of the foot. The ctenidia are symmetrical.

The cerebral ganglia are joined to the pleuro-pedal ganglia ly two pairs of connectives. The pleural and pedal ganglia are in the form of short cords closely fused along their whole length. A ganglionie nerve lies just within each osphradium. The ciremm-pallial cord, a chain of small ganglia, encircling the viseeral cavity, is joined to the pleural cords ly a great number of connectives, each of which sends a small nerve to the epipodium.

[^91]Purple of Dog-Whelk.*-R. Dubois has previonsly shown that the purple of Murex brandaris is the result of the transformation of a substance which he ealled purpurine by a ferment which he called purpurase. These substances oceur in the purple gland, and, by their interaction, give rise to mastable bodies whose change in various physical conditions results in the purple fluid. As Letellier has stated that this does not hold true of Purpura lapillus, Dubois has repeated for this animal the olservations which he made on Murex, and finds that the same is true in both cases.

Relations of Kidneys and Gonads in Haliotis. \dagger - R. J. Totzauer finds that the two kidneys are quite separate, opening apart into the branchial cuvity; that the rudimentary left kidney opens on a papilla, without a proper efferent canal such as the right kidney has; that the left kidney is conneeted with the pericardinm by a reno-pericardial duct; that the relations between pericardium, right kidney, and gonads correspond precisely to what Pelseneer has described for Fissurellide and Trochidex, except that in front of the communication between genital duet and reno-perieardial duct, there is a second communication between senital duct and right kidney, similar to that deseribed in Parmophorus intermedius by Tobler.

万. Lamellibranchiata.

Formation of Pearls. \ddagger - H. Lyster Jameson has studied this in Mytilus edulis and some other bivalves. The formation of a true pearl is like that of the shell, except that a pearl is laid down in a closed sac of the shell-secreting epithelimm, imbedded in the subepidermal tissne of the mantle and completely cut off from the outer epithelimm itself. Inside this spherical epithelial sae, the shell substance is laid down in the characteristic concentric layers. Sac and pearl may be compared to a liuman atheroma cyst.

A sharp distinction must be drawn between true pearls and blisters. or pearly exerescences of the shell lining, which are secreted by the outer mantle epithelium to eover over foreign intrusions, \&c. "Concretions," again, are calcosphæritic bodies which have not a cuticular origin, butn seem to arise by free erystallisation in the mantle or other tissues. The term "attached pearl" should be applied only to pearls whieh have become secondarily fused to the shell by absorption of the intervening tissues.

Pearls naturally vary according to the animal and according to the part of the mantle implieated. Thus, pearls formed at the margin are composed mainly of periostracum, e.g. leathery pearls of Modiola modiolus, while those whieh occur in the part of the mantle coneerned in depositing the prismatie substance are made up of concentric layers of rod-like prisms, as in the brown pearls of Margaritana margaritifera. By far the greater part of the mantle epithelium deposits nacre, and typical pearls are of course nacreous. The material of the ligament is represented in the black leathery pearls sometimes found in the dorsal wall of the Anstralian Margaritifera maxima Jameson.

[^92]The epithelial sac is first formed by a live Trematode, which may or may not persist there. The observations of Filipni, Möbins, and others are here confirmed. Sporozoa may also canse sacs.

The parasite of the mussel occurs in sporocyst stage in Tapes decussatus and Cardium edule; from these bivalves the cercariae migrate to the mussel, as has been proved experimentally. It is almost certain that the adult stage of the parasite is Distomum (Leucithodendrium) somaterice Lev., found in the intestine of cider-duck and scoter.

The author suggests that artificial infection of pearl-oysters or pearlmussels might turn out very profitable, and points out the futility of transferring young pearl-oysters to more convenient ground near shore unless it is certain that they are infected or will be infected. Perhaps the popular estimation of pearls will not be enhaneed by these discoveries which proclaim them to be the cenotaphs of flukes.

Muscular Apparatus of Anomia.*-Jobert deseriles the structure of the adductor and ossicular muscle in Anomic ephipnium, which opens and shuts its shell at almost regular intervals. The adductor inchules striped and smooth muscle-fibres and a white band of fibrillar elastic tissue. The ossicular muscle of the adults is digastric, and the same three kinds of tissue are seen to be arranged in a very characteristic fashion. The brusque closure is due to the striped fibres; the elastic tissue and the smooth fibres effect slow closing 'and permanent elosure. Jobert notes the close resemblance between the museulature of Anomict and that of Pecten.

Synopsis of Carditacea. $\dagger-$ IV. H. Dall adds to his previous synopses. one dealing with the Carditacea, a group intimately related to the Crassatellitidæ, Astartidæ, and Chamidæ. He directs attention, inter alia, to the absence of siphons, to the coarsely reticular gills, to the incubation within the atrimm of the orary or a specially developed fold of the ventral part of the mantle lobes which secretes and lines a shelly marsupium, to the sedentary life and usual occurrence of byssus in youth at least, to the mintable features of the hinge, and so on. The Carditacea. are divided into the Carditidre with the ligament and resilium external and mited, and Condylocardiida, with the resilium immersed and the hinge in a more or less permanently and imperfect state. Dall's synopsis. includes seren new species.

Arthropoda.

a. Insecta.

Sensitiveness of Ants to Ultra-Violet and Röntgen Rays. $\ddagger-$ A. Forel and H. Dufour describe experiments which seem to remove all doubt from the conclusion that ants (Formica fusea) react to ultraviolet rays. The results of the experiments agree with those previously reached by Lubbock, Graber, and Forcl. Under the inflnence of X-rays the ants remained motionless and were apparently quite unaffected.

[^93]Physiological Study of Metamorphosis. *-J. Sosnowski has studied the guantity of carbon dioxide eliminated by the larve of Musct romitorit and Lucilia ccesar in the later stages of their development. The quantity eliminated deereases as the larva approuehes the pupa stage. Illumination increases notably the frantity of carbonic acid eliminated, especially towards the transformation into pupæ. The quantity of ammonia liberated diminishes regularly from the time the larra cease to eat until they become pupa, and the quantity is increased hy illumination. As for the liberation of carbonie acid from the pupæ, it decreases rapidly during the first day, remains almost constant for several days, and increases again to the old amount as the fly prepares to emerge from the cocoon.

Pseudogyny in Formica, and its Cause. \dagger - E. Wasmann returns with fresh light to a disenssion of "pseudogymy" in Formict senguinea, \&c. A psendogynons form exhibits a somewhat deformed combination of the thorax-structure of a female with the abdominal development and body-size of a worker. It seems to be due to a post-embryonic inhibition of the typical female constitntion, probably occurring in larve which were originally destined to be females, but were subsequently reared as workers. What Wammann has now shown is, that the occurrence of pseudogyny is in eansal connection with the rearing of larve of the myrmecophilous beetle Lomerhuse strimosa. It is never seen except in species and in colonies of Formica which rear these beetle-larve or similar larva, e.g. of Atemeles or Xenodusa. The care of these gnest-larve seems sometimes to bring about an aberration or mistake in the rearing of the ant-larve.

Stingless Bees (Melipona) of Pará. $\ddagger-1$. Ducke gives an aecount of the representatives of the gemus Melipona found in the state of Pará. No fewer than 42 species are described, and Trigom is reeognised as a necessary sub-genus.

New Termites, Termitophils, and Myrmecophils.s-E. Wasmann reports on a collection chiefly made ly Dr. W. Horn in Ceylon. He describes Arrhinotermes heimi g. et sp. n., Microtermes globicola g. et sp. n., Speculitermes cyclops g. et sp. n., and mumerons new speeies. He Gives an account of some new termitophilous Coleoptera, Diptera, Hymenoptera, and Psendoneuroptera, and of three new myrmeeophils. This is the author's 129 th contribution to this general subject.

Guests of the Dorylinæ.\|-E. Wasmann has continued his interesting investigations on the Coleopterons (Staphylinid) guests of the predaceons driver-ants (Doryline), snch as Eciton in South Ameriea and Anomma in Africa. The guests may lie divided into four groups aceording to the nature of their adaptation to their hosts. (1) There are guests of the "Mimiery-Type," e.g. Mimeciton, which in superficial sculpture, form, antenne, and coloration resemble their hosts; they

[^94]never have compound eyes and are often hind. (2) There are guests of the "Trutztypus," in which the form of the loody is not readily gripped, e.g. Cephaloplectini (Xenocephalini) and Pygostenini. Their frequent colour-resemblance to their hosts is probably adaptive to external enemies. (3) There are guests of the "Symphilentyp"s" which give off a secretion pleasant to their hosts who lick them. (4) There are guests of the "indifferent type", e.g. Myrmentonit, which retain more or less of the form of their non-dorylophilons relatives, and are comnected by incipient and half-way transformations with one or other of the three preceding types.

In the second part of his commumication Wasmann illnstrates in a very interesting way the convergence between neotropieal and ethiopian guests of each of the first three types ahore-mentioned. There is a rery striking parallelism, e.g. between Mimeciton and Dorylomimus, between Sympolemon and Ecitogaster.

The third part of the paper contimes the comparison of American and African forms. Wasmam gives the "palm of mimicry" without hesitation to Mimeciton pulex whose reflection of Ecitom-characters is extraordinary. Some of the African forms are more accurately mimetic as regards thorax-form, e.g. Dorylosthetus, but the ideal of mimicry is to be seen in Mimeciton. Sometimes the mimetic resemblance is "excessive and exaggerated," thus Mimecitom has actually lost facetted eyes. The author has many more notes of great valne to the student of adaptations.

Exuvial Glands in Insects.* - W. L. Tower has carefully stndied the structure of the exnvial glands and the formation of the exmial fluid in the larve of the Chrysomelid beetle, Leptinotarsa decemlineata Say. He maintains that the exnvial glands are not true glands, lot the setigerous cells which, in early life, are chiefly concerned with the formation of the hairs npon the body. Upon the loss of these, the cell takes on the function of secreting the exuvial fluid, which is most copions at pupation. These cells degenerate in the pupa, and take no part in the formation of the imaginal ornamentation.

Hepatic Function in Insects. \dagger - A. Porta has demonstrated a biliary secretion in Coccimella and he states briefly his conclusion that this oceurs (1) in the cæca, (\because) in the villosities of the stomach wall, and (8) in glands which lie in the wall of the mesenteron between the muscle-strands.

Excretion in Gnat Larvæ. $\ddagger-S$. Metaluikoff has continned Kowalevsky's work on the excretory function of the pericardial cells. Carmine introduced into the gut is absorbed by the large epithelial cells of the mid-gut and passed on into the general carity of the boty. In other words, it passes into the blood. The lencoeytes have no part so far. The pericardial cells soon show a rosy colour. They lie on each side of the heart, two pairs on each semment except the first, which has only one. After they have taken in the carmine they legin to break up and

[^95]disappear, probably with the aid of the leucocytes which subsequently often show carmine corpuscles. The author describes the heart in detail.

Food-Canal of Larvæ of Cuckoo-Spit.*-G. Gadd has studied the structure of the gut in the larve of Aphrophora spumaria. Besides the Malpighian vessels (two pairs) which open into the intestine, there are two long cæcal appendages of the stomach. The first, which opens into the anterior part of the stomach, has in its posterior half large cells with spherules which give evidence of substances belonging to the guanin group. The second appendage, which opens into the posterior region of the stomach, has quite different cells with long processes. The tro are united terminally by connective tissue. The first is excretory, the second glandular. Gadd points out that in Arachnoids and Amphipods the mid-gut appendages have an excretory function.

Normal Asymmetry of the Wings in Naucoris cimicoides. \dagger Günther Enderlein makes an interesting note on the fact that the anterior right wing of this aquatic insect is different from the left. The stigmata lie on the dorsal surface of the flat body and are covered by the wings which leave a space between them and the back. This space is an air-reservoir, and it requires to be tightly shut. In adaptation to this end the right wing is strengthened and modified for effective closure, and it is always on the top. In related forms, e.g. in the exotic Macrocoris favicollis from Zanzibar, the right wing is always uppermost. This is a fine example of adaptation to a peculiar mode of life.

Injurious Influence of Thrips on Man. $\ddagger-\mathrm{S}$. Artault de Vevey describes an interesting case of a feverish tuberculous patient who suffered from extreme itching on the uncovered parts of his body. These were attributed by him and his nurses to small black insects which came in crowds through the open window. The author identified them as Melanothrips obesa Fr., which were attracted to the patient at his crises of high temperature, and left him in the intervals. It is suggested that the irritation was due to the minute insects introducing their probosces into the sudoriferous pores.

Statistical Study of Scale Insects on Fruit.s-I. Reh has made a detailed study of the occurrence of various species found on fruit brought to Hamburg,-species of Aspidiotus, Mytilaspis, and Chionaspis. He gives statistics as to the occurrence of males, as to age, as to the number of dead forms, as to distribution on the fruit, and as to the spots caused by the parasites.

His investigations lead him to the general conclusion that all morphological characteristics (individual, specific, and generic) are associated with corresponding cecological or physiological peculiarities.

Chemical Defence and Other Adaptations in North African Orthoptera.\|-J. Vosseler discusses the defensive adaptations of Orthoptera from the desert regions of North Africa,-where there is a high

[^96]degree of isolation, great drought, great heat, and sparse vegetation. Colour-resemblance between the exposed parts and the immediate environment is abundantly illustrated. But some forms (CElaleus nigrofasciatus De Geer and E. senegalensis Krss.) seem to be protected by a strongly-swelling secretion from a glandular vesicle beneath the pro-notum,-a clear drop is exuded and can be re-absorbed. In others, e.g. Eugaster guyoni Serv., there is a blood-spraying apparatus at the junction membrane between coxa and trochanter on all the legs.

In another communication* on the Orthoptera of Algiers and Tunis, Prof. Vosseler discusses (1) the relations of these to the Mediterranean-palæarctic-Orthoptera; (2) the markings and other adaptations of the Acridiidæ ; (3) the moulting of Eugaster and other forms, with especial reference to coloration ; (4) the spermatophores of Eugaster and Platystolus; (5) the blood-spraying of various Locustidæ; and (6) the malodorous glands of Cddaleus. The particularly successful illustrations of this paper are being sold separately,-a useful new departure.

Sensory Hairs on Pupa of Papilio podalirius. \dagger - M. Gräfin von Linden finds projecting from various parts of the chitinous pupal sheath minute hairs ; the base is comected by a fint nerve running through the chitin to a peripheral nerve-strand which lies between the pupal sheath and the epithelium covering the body. Internal to the epithelium there are more nerve-strands. The peripheral nerve-terminations outside the body are brought into connection with the outer world by the fine fibres running through the chitin to the projecting hairs. Perhaps the function is concerned with temperature. Perhaps the structures are genetically connected with sensory structures in the caterpillar stage.

Appendicular Nature of Abdominal Styles. $\ddagger-B$. Wandolleek refers to the embryological evidence of Heymons that strles and cerci have an appendicular nature, and that the gonapophyses have not, and to Verhoeff's objection that the styles are almays unjointed. In fact, Verhoeff was inclined to attribute a homology with limbs to the gonapophyses, but not to the styles.

Wandolleck describes and figures the styles of a female specimen of Lagria hirta, which have two joints. The same is true in Omophlus lepturoides. Thus Verhoeff's objection is answered.

Trochanter and Præfemur.§-K. W. Verhoeff maintains that the trochanter of Chilopoda is not homologous with what is so called in insects, that it is the equiralent of an orerlooked joint in insects, distinct in some lower forms, more and more degenerate in higher forms,a joint which should be called the prefemur. A true trochanter has two characteristics: (1) that it lies between two joints which are always larger than itself, and has always the coma to its basal side ; and (2) that it is without intrinsic musculature.

Studies on the History of the Germ-Cells in Iepidoptera.\|K. Grünberg first discusses the apical cell or Terson's cell which oceurs at

[^97]the tip of testicular and ovarian tubes. It arises from an original germcell, and is distinct from a very early date (eren in the embryo in Bomby. mori). In the testes it contributes to the nutrition of the germ-cells, acquiring the necessary material partly by dissolution of spermatogonia, partly by assimilating material from the comective-tissue sheath of the testis, and partly by independent secretory prodnction of nutritive substance. After it has done its work, it gradually degenerates. In the ovary the apical cell is practically functionless; in later stages it degenerates.

Grünberg also disensses the post-embryonic development of the ovaries in Bombyx mori and Pieris brassicie. He finds that the differentiation of the germinal elements of the ovary begins daring the larval period. The origimal oogonia give rise only to ova and motritive cells. The follieular cells are due to a limited momber of epithelial cells of the stalk of the ovarioles, distinctly separated from the germcells during the embryonic period.

Notes on Liparids.*-J. J. Lister refers to the restigial character of the maxillæ in Porthesia aurittua and Psilura monarcha; they are not aceurately opposable to form a proboscis and are shorter than the labial palps.

Sexual dimorphism is well marked in P. auriflua, secondary sexual characters being found in the "expansion" of the wings, colour, and the larger size of antennæ and eyes in the male sex. A paired longitudinal groove on the sides of the fourth abdominal segment of the male is probably homologous with the much longer groove found in the males of many Noctuce, notably in Xylophasia polyodon, extending from the second to the fourth abdominal segment and lodging a remarkable protrusible tuft of hairs. The males of P. auriflua have very keen powers (olfactory?) of detecting the presence of the female. Death rapidly follows fertilisation.

The conspienous satiny-white colouring of the three species Porthesia chrysorheea, P. aurithu, and Liparis salicis is contrasted with the quiet boffs, browns, and blacks of the other members of the family, conforming closely with their enviromment. There is considerable evidence that the conspienons species are noxious, both in the larval and adult state, by reason of the urticating properties of the hairs.

Beetles of Ireland. \dagger-W. F. Johnson and J. N. Halbert have produced the first published list of the Irish Coleoptera, including about 1630 species, none peculiar to the country. The authors distinguish three groups:-(a) species which range over central Europe and the Mediterranean region, but are rare or wanting in Scandinavia and northern Lurope; (b) species of northern orisin, a good many of which inhabit mountain districts; (c) species which are found almost exelusively in sonth-western Europe and the Mediterranean region, the exceptions being littoral species which range as far north as Scandinaria. Bost of the Irish representatives of this third group are insects of the sea-shore. The authors think that about forty species in their list have

[^98]been introduced by human agency. They hope that their work-which is as welcome as it is useful-will stimulate fresh inquiries.

Grapevine Root Worm.*-E. P. Felt gives in a well-illustrated bulletin an account of the life-history and habits of the Chrysomelid beetle Fidia viticida Walsh, which has proved itself a destructive enemy of the vineyards in the Chautauqua grape belt. The natural enemies and the various remedial measures are duly discussed.

B. Myriopoda.

Structure of Myriopods. \dagger - G. Rossi has made a detailed study of Julus and Scolopendra, with notes on other forms. The first part of the memoir discusses the skeleton and musculature, the second is devoted to the body-wall, the third to the respiratory system, and the fourth to the vascular system and the cavity of the body. The development of the zonites and skin is also dealt with, the problem of the metamerism is discussed, and careful attention is given to the mechanism of respiration.

Labial Excretory Organs and a Phagocytic Organ in Diplopoda. $\ddagger-\mathrm{L}$. Bruntz has used the injection-method to discover the excretory organs of Glomeris and other millipedes. He finds four kinds of excretory organs :-(1) Uric cells in the adipose tissue; (2) nephrocytes around the perineural sinus; (3) the Malpighian tubules; and (4) labial organs. The last consist of a saccule which eliminates injected carmine and a labyrinth leading to the exterior on the gnathochilarium. He compares them with the antennary and maxillary excretory organs in some Crustaceans. A pbagocytic organ which Cuénot demonstrated on each side of the perineural sinus has been found by Bruntz in various Julidæ.

ס. Arachnida.

Gamasus auris.§-E. Trouessart gives an account of this interesting mite which lives as a commensal in the external auditory tube of cattle, feeding on the abundant cerumen. It is parthenogenetic, but two males were found in five hundred specimens. It seems to be sometimes oviparous, sometimes ovoviviparous. A careful study of the animal described in 1872 by Leidy as Gamasus auris has led Trouessart to establish for it a new genus Raillietia. In a note (in discussion) Racovitza calls attention to the mites (undetermined) found abundantly in the mucus of the nostrils in the Antarctic seal (Lobodon carcinophaga).

Thick-skinned Acarina.||-Sig. Thor shows that the thick skin is not a dead layer, but composed of manyliving elements diversely disposed. He describes in particular Trombidium holosericeum, Arrenurus pustulator, and Lebertia obscura, and gives a detailed account of the skin layers-epiostracum, ectostracum, hypostracum, and hypodermis.

[^99]
є. Crustacea.

Nucleolar Changes in Secretion of Hepato-Pancreatic Cells of Hermit-Crab.* - L. Launoy describes in the mid-gut gland of Eupagurus bernhardus the division of the nucleolus without subsequent nuclear division ; the pulverisation of one or more of the nucleoli; the passage into the karyoplasm of inter-nucleolar granulations or the dissolution of these in the fundamental acidophilous substance of the nucleolus-a process which he sums up in the term pyrenolysis.

The phenomena of pyrenolysis, which are easy to follow in the hermit-crab because of the size of the cells, precede or accompany the appearance of the ergastoplasmic filaments. They therefore indicate that the nucleolus plays a very active part in the elaboration of the secretory granules.

Function of Mid-Gut Gland of Crayfish. \dagger - H. Jordan sums up the results of experiments made by himself and others on the function of the so-called "liver" of Astacus fluviatilis. It forms digestive juice and absorbs food; it does not differ very greatly from the short midgut ; it is, in fact, a mid-gut greatly increased by evagination and protected from hard bodies.

Two New Types of Epicaridæ. $\ddagger-J$. Bonnier describes the external characters of a single specimen of a new form, Cumoniscus kruppi g.et sp.n., found by Lo Bianco in one of the Cumacea (apparently a new genus of Leuconidæ). A second new type, also represented by one specimen, was found in a Schizopod described by G. O. Sars under the name Gastrosaccus normani. From its resemblance to Dajus, Bonnier calls this second novelty Prodajus lobiancoi.

Marine Species of Hyalella. §-Ed. Chevreux describes a new amphipod Hyalella richardi sp. n., a marine species of a genus hitherto known only as represented by fresh-water forms from America. The new form was obtained by MM. Richard and Neuville on a cruise of the Prince of Monaco's ' Princess Alice' on the shore of the island of Alboran (between Spain and the Mediterranean coast of Morocco). The genus may be represented in the fresh waters of Morocco, but there seems no doubt that the new species is marine. Chevreux gives a description of both male and female forms.

Crustacea and Pantopoda.\|-J. Meisenheimer gives a short account of the development of Pantopoda or Pycnogonids (especially Ammothea echinata) and discusses their systematic position.

The cleavage and the differentiation of an inner and outer cellcomplex, the former including the elements of the mid-gut and of the muscular-connective system, the latter forming ectodermic structures, may be harmonised with similar phenomena in Branchipus, Moina, Cetochilus, and Chondracanthus. There is in all these a regular total

[^100]cleavage, and the establishment of an inner layer, which in some cases, as in Ammothea, forms a recognisable gastrula. The absence of a typical gastrula in Ammothea leads us again to think of the lower Crustacea. But even closer are the resemblances between the Protonymphon-larva and the nauplius, which are discussed in detail.

Allowing that the nauplius has many cœnogenetic characters, Meisenheimer cannot agree with Dohrn that the only relationship between Crustaceans and Pantopods is in their common resemblance to an " Ur-Form," far below the roots of both classes. "The larval development of Pantopods points with great distinctness to a close relationship with Crustaceans."

Annulata.

Regeneration in Limicolm.*-Max Abel has reached the following conclusions as to regenerative capacity in limicolous Chætopods. The regeneration of the anterior end of Trubifex usually occurs only after the loss of fewer than $10-12$ segments. The regenerated portion is divided only into three segments. After amputation of numerous segments there is in some rare cases development of regeneration-buds, but these do not usually come to anything.

In Nais, the regeneration of the anterior end is more frequent and more rapid than in Tubifex, and occurs after the removal of many segments as well as after the removal of a few. Six to eight segments were often observed in the new growth. In both genera, the head-ends do not regenerate a new tail-end unless they have at least 10-12 segments. In both cases the regenerative capacity is markedly less towards the posterior end.

Portions of Tubifex from the anterior (genital) region frequently form both anterior and posterior re-growths, while portions from the other regions, usually re-grow only the posterior end, or less frequently a normal anterior end. Portions of Nais from all regions of the body except the hindmost region regenerate anterior and posterior ends equally often. On the whole, the regeneration in Tubifex resembles that in Lumbricidæ, while Nais is more like Lumbriculus. The two last-named forms have a greater regenerative power, and this may be associated with their natural habit of asexual fission.

The author then discusses the regeneration of the alimentary system in particular. The lining of the new buccal cavity is ectodermic, but the pharynx is endodermic, thus differing from what occurs in ontogeny. The hind-gut is also regenerated from the ectoderm, bat there are frequent deviations from the ontogenetic form.

Abel proceeds to describe the regeneration of the nervous system. The cut-end of the old ventral cord does not show any multiplication of nerve-cells, and the frequent slight divarication of nerve-fibrils to the body-epithelium is of subordinate importance in connection with the regeneration. In the regeneration the nervous elements arise exclusively from the ectoderm, which by proliferation forms an indifferent, somewhat embryonic formative material, subsequently differentiated into various structures, nervous and otherwise. In the regeneration, the

[^101]several parts of the system (brain, œesophageal ring and commissures) arenot re-made separately, but from unified paired ectodermic primordia. The regenerative processes agree with the embryonic development in having this paired origin. The author has many general remarks of much interest, e.g. that the regeneration-process does not show any distinct mesoderm-differentiation.

New Species of Alma.*-O. Duboscq describes Alma zebanguii sp. n. from a tributary of the Oubangui, Africa. He directs special attention to the large solid paired penis with glands and suckers, to the diverticula of the cesophagus, to the typhlosole, to the clitellum, and to the setr. He distinguishes three stages:-an immature form without penis, an adolescent form with penis but without clitellum, and a mature form with clitellım. The genus Alma includes five species, of which Alma nilotica alone has branchiæ and is palæarctic ; the non-branchiate species are Ethiopian. Perhaps the genus should be split into two. Affinities with Glossoscolecidæ seem certain, but perhaps it will be found necessary to make a new sub-family Alminæ for the African species.

Hemiclepsis and allied Genera. $\dagger-\mathrm{N}$. Livanow finds that the representatives of the genus of leeches known as Hemiclepsis, fall into two groups, one set grouped round H. tessellata and approaching the Glossosiphoniæ ; the other set grouped round H. marginata, and in some respects approaching the Ichthyobdellids. For the former he proposes the new genus Protoclepsis, and describes four new species. The new genus is to some extent a connecting link between Hemiclepsis on the one hand and Glossosiphonia (along with Placobdella and Hamenteria) on the other.

Nematohelminthes.

Species of Rhabditis. \ddagger-A. Michel has tried to distinguish in his cultures some of the species in this difficult genus. He finds a hermaphrodite form, described by Vernet under Dujardin's title Rh. terricola, a name afterwards replaced (by Maupas) by the title Rh. verneti, since Dujardin's type was diocious. He finds also a diœcious form, which is in many ways like $R h$. terricola, but also like $R h$. dolichura which is, however, smaller and oviparous. A third form seems to be Rh. elegans Maupas, and a fourth the parthenogenetic Rh. schneideri.

Hind-End of Ascaris. - E. Voltzenlogel has studied the posterior region of A. megalocephala and A. lumbricoides. There is a glandular ring round the beginning of the hind-gut, consisting of six cells in the male, of three in the female. The dilators of the chyle-intestine and the compressor of the ductus ejaculatorins are formed by the same musele-cells, two in number.

The spicula are more than setæ. With their sheaths ther represent a continuation of the body-wall, including both cuticula and sub-cuticula. The latter is the more important in the formation of the spicule.

[^102]Each spicule has its musculus exsertor, which is not a single muscle, but is composed of two components,-a plicator and a fixator of the sheath.

The lateral nerves and the dorsal nerve end in common in a candal ganglion, which lies about the middle of the tail. From this in each lateral line a fine nerve-strand runs for a short distance backwards, innervating a somewhat lateral simple papilla. On the dorsal wall of the hind-gut, behind the anal ring, a nerve-strand runs backwards from the ring to the caudal ganglion.

Platyhelminthes.

Echinococcus alveolaris.*-O. v. Linstow has reinvestigated this form from a pig's liver, which used to be regarded as a tumour (an alveolar colloid neoplasm). Many regard it as a distinct species of Echinococcus, but von Linstow gives good reasons for interpreting it as an abnormal modification of Echinococcus polymorphus. It arises from a form which has been smothered in hepatic tissue and half-starved. The scolex-formation is sparse or absent, and the number of hooks, which should be about thirty-six, may sink to ten. Von Linstow also describes Plerocercus lachesis sp. n., a Cestode from Lachesis mutus.

Triplotænia mirabilis. $\dagger-J$. E. V. Boas describes a remarkable new tapeworm from the intestine of a " rock-kangaroo" (probably Petrogate penicillata). It consists of a scolex (with four suckers and no hooks), bearing two long puckered bands or strobilæ, in which the proglottides are not demarcated and the gonads occur in closely crowded succession. The presence of three shell-envelopes and of a pear-shaped process from the innermost envelope suggested relationship with the Anoplocephalinæ. The unarmed head is another resemblance, and the unilateral position of all the genital apertures brings this new form near the genus Anoplocephala. All the tapeworms hitherto described from Marsupials have been Anoplocephalinæ.

As four similar specimens were obtained, there can be no question of abnormality. It is true that abnormal Cestodes with lateral chains springing from the main chain have been described, but here the main chain is undeveloped and the accessory chains spring from the scolex. Another peculiarity is the absence of distinct proglottides, which sometimes occurs as an anomaly elsewhere. A third peculiarity is the difference between the two sides of the chain; one side is smooth and swollen, the other is thin and puckered,-a condition somewhat like that of Tenia villosa from Otis tarda.

Cysticercus fasciolaris. \ddagger - E. Bartels gives in the first place an account of the structure of this bladderworm of the mouse, which hardly differs from the structure of the tapeworm of the cat (Tcenic crassicollis) except in the absence of a terminal excretory bladder and of any hint of gonads. Even the jointing or segmentation is quite pronounced in the Cysticercus-stage. He describes successive stages in

[^103]the development of this bladderworm of the mouse, and corroborates Küchenmeister's account of its transformation into the tapeworm of the cat, which was more accurate than Leuckart's. Almost the entire length of the bladderworm, except the bladder and the part immediately adjacent, passes over into the tapeworm stage.

Minute Structure of Cysticerci.*-P. Rössler gives a histological account of the cuticle and the subjacent epithelium that forms it, the parenchyma, and the musculature in Cysticercus tenuicollis and C. fasciolaris.

Distomum clavatum. $\dagger-\mathrm{H}$. von Buttel-Reepen points out that this name covers a group of species parasitic in fishes (Scombridæ). He takes a survey of the group and gives a detailed account of two new species,-D. ampullaceum probably from Corypheena (though reported ho the collector as from a Cetacean), and D. siemersi from the stomach of Sphyrcena barracuda, the first Trematode reported from this fish.

American Representatives of Distomum cygnoides. \ddagger-J. Stafford shows that there occur in American frogs and toads no fewer than five distinct species of what should (after Looss) be called the genus Gorgodera. He gives diagnoses and figures of these.

Contributions to Study of Bipaliidæ.§-J. Müller has investigated the copulatory apparatus of Bipalium virile, B. graff, B. böhmigi, B. penzigi,-four new species. He has also studied B. megacephalum sp. n. and B. robiginosum v. Graff. The most striking general result is the great diversity in the copulatory apparatus as compared with other systems, but this is characteristic of terrestrial Triclads and of many other groups of animals. It is noteworthy that species inhabiting the same area are often very different in their copulatory organs, while those inhabiting separate areas are often somewhat similar. There may be here some relation to reproductive isolation, i.e. to the prevention of intercrossing.

Fresh-water Polyclad. $\|$ - R. Ritter von Stummer-Traunfels describes as Shelfordia borneensis $\underline{\Omega}$. et sp . n. a new form of Leptoplanid, interesting in its marked structural divergence from all other known genera in this family, but even more interesting as the only Polyclad known to occur in fresh water. It was found by R. Shelford in stagnant pools in Borneo.

Callinera bürgeri. $\pi-$ D. Bergendal completes his account of this divergent Palæonemertine. As regards the epithelium, the integumentary muscular layer, the disposition of the blood-vessels, the position of the mouth, the structure of the brain and lateral cords, the nature of the gut and gonads, Callinera agrees generally with the Palæonemertines. As regards the position of the brain and nerve-cords, it agrees especially with the Protonemertines.

The most important peculiarities are the following :-(1) The pointed

[^104]head, not marked off from the body, with subterminal proboscis-opening, and with the mouth opening just behind the brain ; (2) the absence of special cerebral organs and the presence of contractile lateral organs ; (3) the strong development of the brain, and especially of the dorsal ganglia, whose fibrillar nuclei are for a considerable extent directly apposed to the matrical layer, and the shortness of the ventral cerebral commissures ; (4) the development on the head ouly of a strong nervous layer ; (5) the unpaired œsophageal nerve ; (6) the thinness of the matrical layer and its very constant and regular lenticular swellings outside the nerve-cords; (7) the four bundles of longitudinal muscles and the annular muscles in the fore-gut division of the proboscis; (8) the enormous strength and peculiar form of the posterior end of the proboscis-sheath ; and (9) the disposition of the blood-vessels above the gut in the fore-gut region.

The classification proposed is :-
Fam. Carinellidæ M‘Intosh.
Sub-family 1. Carinelleæ Bergendal, incl. Carinina Hubrecht and Carinella Johnston.
Sub-family 2. Callinereæ Bergendal, incl. Callinera Bergendal.

Incertæ Sedis.

Ptychodera erythræa from the Red Sea.*-C. B. Klunzinger extends Spengel's account of this species. Some of its chief characters may be summed up-considerable size, conical proboscis, a grape-like appendage on the ventral surface of the proboscis stalk, cylindrical collar and trunk, very large genital ridges sinuous marginally, long branchial region.

Rotifera.

New Male Rotifers. \dagger - W. Wesche describes and figures the males of Triarthra longiseta, Notommata naias, and Notops hyptopus, not before recorded, and in addition a male. Rotifer having jaws which the author has not been able to identify.

Echinoderma.

Rearing Later Stages of Echinoid Larvæ. $\ddagger-$ L. Doncaster used four-litre jars secured from dust, supplied with fresh sea-water (brought from some distance from land) about five times a week, with or without plunger, and kept cool in the hot weather by a slow stream of running water. The results obtained differed very greatly according to the species ; Sphorechinus granularis and hybrids with this species never developed further than the stage reached about the eighth day, although they sometimes lived for three weeks; Strongylocentrotus lividus and Echinus microtuberculatus and hybrids between them were reared to the young urchin stage. The hybrid urchins, which for some reason do not occur in nature, lived for a few days.

[^105]
Cœlentera.

Structure and Development of Flabellum.*-J. Stanley Gardiner discusses the genus Flabellum and the species F. pavoninum and F. rubrum. He gives an account of the general and minute structure of F. rubrum, and some notes on its post-larval development. In F. rubrum there appear to be three distinct specific or discontinuous variations.

Noteworthy in the larval development is the occurrence of a mouth almost as large as that of the calicle, and without tentacles or stomodæum. The stomodæum of the adult is probably formed by the external body-wall growing inwards, catching up the edges of the mesenteries in its progress, until it finally reaches the mesenterial filaments, which fuse together and help to make the stomodæal wall. The larval conditions-probably brought about by an enormous enlargement of the gastropore in the first place-is perhaps related to the need for rapid growth and abundant nutrition, which might be assisted by a widely open mouth. It is a larval character, not a palingenetic recapitulation.

Notes on Variation, Protandry, and Senescence in Flabellum. \dagger J. Stanley Gardiner finds that F. stokesi and F. nutrix are varieties of F. rubrum, the three forms illustrating discontinuous variability in the same area. When the polyps are $15-17 \mathrm{~mm}$. in length, all the mesenteries have testes, and those on the larger mesenteries are functional. With increase of size beyond 25 mm . in length, the ova ripen, and the ovaries replace the testes.

The author discusses signs of senescence (!) in Flabellum and Madrepora, and suggests that the operative cause is probably the same as that which ultimately produces the death of our forest trees. He thinks that senescence is a general phenomenon in animal life, though definite evidence of this is scarce. He also inquires whether the dying away observed in particular species of coral over large areas may be comparable to the death of the bamboo after flowering. But no conclusion can be come to without more facts.

New Pennatulacea and Gorgonacea. \ddagger - Th. Moroff has worked over the Pennatulacea in the museum at Munich, and describes several new species, two of Pteroides, one of Pennatula, one of Ptilosarcus, one of Virgularia, two of Pavonaria, one of Acanthoptilum, and one of Cavernularia. He also describes from Japan Pleurocorallium confusum sp. n., Pleurocoralloides g. n., Paramuricea procera sp. n., and Plexauroides asper sp. n .

Studies on Graptolites.§-Sv. L. Törnquist describes forms of Didymograptus, Isograptus, and Mceandrograptus from the lower zones of the Scanian and Vestrogothian Phyllo-Tetragraptus beds. In Didymograptus (sensu strictiori), the cavity of the ramifying portion of the

[^106]first theca passes gradually into the common canal of the primordial stipe as well as into the apertural part of the theca. In Isograptus, the cavity of the ramifying portion of the first theca passes gradually into its apertural part, but into the common canal of the primordial stipe by means of a very constricted foramen placed near the prolific side of the sicula. In Mceandrograptus, the cavity of the ramifying portion of the first theca is in direct communication with two or three thece of the primordial stipe. Of the two last-named genera, established by Moberg (1892), only one species is known. They are very distinct from Didymograptus, but perhaps they should be ranked as sub-genera. Törnquist describes eight new species of Didymograptus.

Protozoa.

Cymbalopora bulloides.*-A. Earland has paid particular attention to the final inflated portion of the shell of this Foraminifer, the socalled "balloon" chamber, and finds that it incloses another very delicate chamber, the "float" chamber. This inner chamber has a very delicate imperforate calcite wall, it is not attached to the inner surface of the balloon chamber. It is attached to the lower surface of the upper or spiral shell, but has no direct connection with these upper chambers, the only opening into its interior consisting of the small tube in the centre of its base, as discovered by Möbius.

New Coccidian. $\dagger-M$. Siedlecki has found in the mature males of the Polychæt Polymnia nebulosa a large Coccidian which he calls Caryotropha mesnilii g. et sp. n. Like other Coccidia, it is an intracellular parasite, and occurs in the packets of spermatogonia, never more than one in each. The "indifferent adult" form may multiply by division into merozoites (mononts, schizonts), or it may reproduce sexually. In the first case the Coccidian does not leave its hypertrophied cell-host, it gives rise to m "Monontocytes" which produce $m n$ Mononts, whence adults develop. The sexual reproduction may be summed up as follows :-

[^107]
BOTANY.

GENERAL,

Including the Anatomy and Physiology of Seed Plants.

Cytology,

including Cell-Contents.
Specific Gravity of Cell-sap.*-Gustav v. Walk has studied the specific gravity of the cell-sap in different parts of the plant; his observations have extended over a large number of species. The limits of concentration were represented by a specific gravity of 1.099 and $1 \cdot 007$. In 34 determinations of the specific gravity of growing shoots (from which leaves and apical bud had been removed) of seven plants, including three species of Rumex, Polygonum cuspidatam, and Sambucus nigra, the numbers varied from $1 \cdot 012$ to $1 \cdot 024$. The difference between the specific gravity of sap from succulent leaves, and that from ordinary mesophyte foliage was not great. In the former (eight plants, chiefly Crassulaceæ) it ranged from 1.013 to 1.028 , in the latter from 1.015 to $1 \cdot 044$. This is associated with the fact that succulent leaves store not only water but also matter in solution. In special reserve stores (sixteen specimens) a variation occurred from $1 \cdot 014$ in tubers of Mirabilis to 1.08 in the rhizome of Cochlearia Armoracia. In fruits (seventeen examples) the lowest concentration was in Cucurbita melanosperma, $1 \cdot 018$, the experiment being made with the parenchymatous tissue of a fruit which had been kept through the winter ; the highest result was obtained with berries of Berberis vulgaris, namely 1.073 . Kraus had previously recorded a specific gravity of 1.08 in Lonicera tartarica.

A comparative examination was also made at different times of the day, with transpiring plants. Thus in Pheum officinale at 6 a.m., 3 p.m., and $6 \mathrm{p} . \mathrm{m}$. the numbers were respectively $1 \cdot 015,1 \cdot 018$, and $1 \cdot 015$, and with Heracleum pubescens $1 \cdot 019,1 \cdot 034,1 \cdot 028$. The concentration in the leaves in summer was less than that in autumn : thus in Sambucus nigra the results were, in June $1 \cdot 020$, in October $1 \cdot 056$.

Arsenic in Plants and Animals. \dagger - Armand Gantier finds arsenic in a number of algæ, especially seaweeds (species of Fucus). He remarks that the association of arsenic and iodine in seaweeds is paralleled by a similar association in animal organs (hair, skin, thyroid, \&c.). He also finds arsenic in the boghead of Autun and Australia, which M. Renault has shown to contain spores of fresh-water algæ. The bacteria of sulphur springs were also found to contain both arsenic and iodine, and arsenic was isolated from the plankton of sea-water. The source of the arsenic which is thus shown to be assimilated by plant and animal organisms is presumably the sediment derived from the primitive rocks. The author found that arsenic always accompanies iodine, nitrogen, and phosphorus in these rocks, and thus appears to play a universal part like nitrogen and phosphorus.

[^108]Localisation of Daphnine in Daphne Laureola.*-W. Russell finds that the glucoside daphnine is localised, in the stem and leaf of the plant, in the epidermis, in the parenchyma and in the fibres of the primary bast; in the secondary bast it occurs in these elements and also in the medullary rays; in the wood it occurs in the medullary rays. The root, which is rich in starch, contains but little of the glucoside; the anthor detected it in the periphery of the cortex, and in the bast of young roots, but was not able to certainly recognise it in old roots. All the members of the flower contain it, its distribution resembles that in the foliage leaves, but it predominates in the epidermis. It also occurs in the integuments: of the ovule and in the macellus in the neighbourhood of the chalaza. The glucoside can easily be made to crystallise in situ, by placing leaf or stem in alcohol and tartaric acid for 24 hours with subsequent evaporation. The crystals are grouped in roundish masses and show the radiating arrangement which is olserved in spherocrystals of inulin. Daphnine is always accompanied by oily matters.

Structure and Development. ${ }^{\prime \prime}$

Vegetative.

Evolution of Vascular Tissue. \dagger - W. C. Worsdell gives a short general survey of the various types of arrangement of the vascular tissue in plants and suggests a course of evolution of the types characteristic of the higher plants from those found in the lower. The prototype is sought in the solid stele (protostele) consisting of a central mass of xylem surrounded by a ring of phloem. This structure always appears as the first stage in the individual development in the fern group, and also in the mature vascular structure of several of the most primitive ferns such as Hymenophyllaceæ and, among the fossils, Eotryopteris. In the next stage a pith arises in the centre of the solid stele; examples occur in Platyzoma (Gleicheniacea), Schizcca, and others. The protoxylem is situated at, or a short distance within, the periphery of the metaxylem, the development of which is chieffy centripetal. In the third stage, the solenostele, an internal zone of phloem is added, as in various Schizæaceæ, and Medullosa stellata among the Cycadofilices. The next condition, the dialystelic, results from the splitting of the solenostele into a number of solid steles or concentric strands, the protoxylem being still at or near the external limits of the xylem. This structure is due to the crowded arrangement of the leaves in the stem, necessitating frequent gaps in the original solenostele, to allow of the passing out of the leaf-trace bundles. Both conditions belong essentially to the siphonostelic or tubular type of stele. Dialystely is very common in ferns, occurring in almost all the Polypodiacea which represent the most adranced type of the series. It also occurs in several of the Cycadofilices, such as the Medullosæ and Cladoxylon. The gymnospermous type arose by the gradual reduction of the concentric to the collateral type by reduction of the tissue on its inner side, whereby the phloem and the whole of the secondary wood on that side vanished, leaving the

[^109]mesarch bundle consisting of a protoxylem with a group of primary metaxylem on its inner and outer side. This type occurs in the peduncle of the cone in Stangeria and Bowenia, in the leaves of Cordaites and modern cycads, and in the cotyledons of Gingko and Cephalotaxus. But in the stems of modern cycads, and the still more recent Coniferæ, it has given place to the endarch type in which the inner centripetal group of xylem has disappeared, so that the protoxylem now forms the most internal portion of the bundle nearest the pith. But stems of certain fossils-Pitys, Calamopitys, and Dadoxylon-still retain the older mesarch type. In the foliage leaves of conifers the centripetal primary xylem is modified to form the transfusion tissue. In the highest group, the angiosperms, all trace of the old mesarch structure has vanished both in stem and leaf, and the purely endarch structure prevails everywhere.

Histology of the Wood in Species of Pines.* - K. E. Golden has examined thirteen species of pinc, to determine, if possible, what peculiarity of structure produces the variations in quality of the wood. The results of the measurements of length, breadth, and thickness of wall of the tracheides, the characters of the wood, including its distribution between spring and summer formation, the distribution of resincanals, the nature of the medullary rays, and the weight, strength, density, grain, and quality of the wood are given in a series of tables. Examination of the figures shows that there are six species in which the spring wood tracheides are longer than those of the summer, while seven species have the summer tracheides the longer. The species in each group show variations in hardness and strength, so that taking the length of the tracheides as a factor by itself nothing can be deduced in regard to the quality of the wood, but taking the length and comparing it with the width of the cells, and again comparing the width and the thickness of walls together, and the amount of the spring and summer wood, the strength can be determined within limits in each species.

Pilostyles Ingæ. \dagger - W. Endriss describes the morphology and development of this parasitic seed-plant. The vegetative " thallus" grows in the intercellular spaces of the host-plant or penetrates its cells. The flowers arise exogenously. The male contains two ring-like structures with 18 to 20 pollen-sacs in each, standing above a rudimentary ovary. The ovary in the female flowers contains usually five placentas bearing anatropous ovules. Normal fertilisation was not observed.

Reproductive.

Development of the Embryo of some Dicotyledons. \ddagger - B. Schmid finds that in detached seeds of Eranthis hiemalis, Corydalis cava, and Ranunculus Ficaria the embryo continues its development throughout the whole summer and autumn. Development depends only on favourable physical conditions, and not on any special quality of the soil. Gormination goes on in the open, influenced by the weather, from December to March; the seedlings are always free from mycorhiza.

[^110]The development of the cotyledon in Corydalis and Ficaria is on the same lines in the two genera; there is scarcely a trace of a second cotyledon. In Corydalis cava, C. nobilis, and C. lutea a considerable increase in the endosperm takes place before germination. Idioblasts occur in very young embryos.

Morphological Study iof Thuja.* - W. G. Land has studied the gametophyte stage, fertilisation, and embryology in Thuja occidentalis in the vicinity of Chicago. No prothallial cells could be demonstrated in the pollen-grain, the next step after the separation of the tetrads being the organisation of a tube nucleus and a generative cell. Bcfore the appearance of the archegonium initials the penetration of the pollen-tube is relatively slow, but now becomes rapid, the tube piercing the remaining rows of nucellar cells and spreading over the archegonia absorbs the remnants of the neck-cells and lays bare the upper ends of the eggs. The body-cell divides into two equal and functional male cells.

There are generally six archegonium initials; the neck consists of two to six cells formed by anticlinal divisions only, they are soon almost entirely absorbed by the central cells. Protoplasmic connections between the jacket cells and central cells were not seen. A ventral mucleus is cut off and lies free in the cytoplasm in the upper part of the egg. When an archegonium has not been fertilised there are indications that the ventral nucleus divides. There are frequent instances of a further (mitotic) division after fertilisation, and there is evidence that both the ventral nucleus and the egg in an archegonium may be fertilised.

In most cases the tube and stalk nuclei from the pollen-tube do not enter the egg but disorganise in the space above the archegonia. The fusion nucleus is in general below the centre of the egg where it remains until the first division is completed. The two nuclei then sink to the bottom of the egg and divide simultaneously, while the ventral has enlarged considerably and is quite conspicuous. Eight free nuclei are formed in the proembryo which become separated by a transverse wall into two groups, each of four nuclei ; the nuclei of the lower group are completely walled in and from these the single embryo develops. The upper nuclei are exposed to the cytoplasm above. The latter divide to form two tiers, the lower of which elongates to form the four suspensors by which the embryo is thrust down into the endosperm.

Fruit of Jacquinia ruscifolia and Trichomes in Myrsinaceæ. \dagger L. A. Mennechet describes the anatomy of the fruit and the histology of the pericarp and seed of Jacquinia ruscifolia, and also the structure and development of the hairs, glandular and non-glandular, in this and other genera and species of the order Myrsinaceæ.

Physiology.

Nutrition and Growth.

Influence of Carbonic Acid Gas on Growth. \ddagger - P. Chapin finds that the optimum amount of CO_{2} in the air for growth in the higher

[^111]plants is about 1 to 2 p.c. Growth of the root began to be checked with 5 p.c. CO_{2}, and was stopped with 25 to 30 p.c., in the case of the stem the percentages were 15 and 20 to 25 respectively. In the case of seedlings of barley, an exposure for 24 to 48 hours to 25 to 40 p.c. of the gas exercised no recognisable injurious effect on the root, while the stem was able similarly to resist an exposure for the same period to a 20 p.c. atmosphere.

Spore-germination was inhibited by 60 p.c. CO_{2} in the case of M ucor, 100 p.c. in the case of Aspergillus and of Penicillium, while growth of Mucor was checked in an atmosphere containing 30-40, and the other two moulds in one containing 80 p.c. of the gas. Ripe spores were formed as long as the amount of CO_{2} did not exceed 10 p.c. in the case of Mucor, 50 p.c. in the case of Penicillium, and 40 p.c. with Aspergillus.

Nitrogen Assimilation in Moulds.* - F. Czapek has studied the utilisation of amines, amides, and ammonium salts in the production of proteids in Aspergillus niger. Suitable sources of nitrogen were found among primary, secondary, and tertiary amines, whilst quaternary ammonium compounds are very injurious. The suitability of alkylamines as a source of nitrogen increases with the amount of carbon and the molecular weight. Isomeric compounds show marked differences; the presence of hydroxyl groups is favourable. Acetamide and propionamide are good sources of nitrogen, whilst the other amides of the series are unsuitable. Amides of dibasic acids gave good results. Nitrites are on the whole unsuitable. Amidines are good sources. Urea and its derivatives are inferior to amino-acids and alkylamines. Ammonium salts of the acetic acid series are not on the whole suitable as sources of nitrogen, whilst the salts of the oxalic acid series proved to be very suitable. Good results ensued with ammonium oxalate when carbon was supplied in the form of sugar.

Effect of Composition of Soil on Plants. $\dagger-\mathrm{H}$. B. Dorner studied the effect of difference of soil, namely loam, clay, and sand on a few common plants,-carnation, chrysanthemum, geranium, bean, corn, and onion. The differences are more marked in the gross than in the minute structure, being general in the former for all-the plants studied, while changes in minute structure are more specific in nature. The effect of a heavy clay upon a plant is almost the same as that of sand. This may be partly explained by the fact that although a clay soil is very rich in plant foods, the roots find such difficulty in penetrating it that the greater part is unavailable. A change in soil from loam to sand was found to produce a clecrease in general size, and also in leaf-surface, length of petioles, diameter of stem, and length of internodes, also a decrease in the mass of roots, except in the onion; if, however, the size of the plants be considered, the mass of roots of plants in the sand was always relatively the greatest. Thus the plants in the sand have a stunted growth above soil and an increased growth in the soil. This is also true of the clay, but to a less extent than of the sand. The clay

[^112]soil gave a very dark-green leaf, while that in the sand was of a sickly yellowish-green.

The changes in histological structure may be summed up as follows. A decrease in the transpiring surface and in the relative size of the woody tissue of the root in a change from the loam to the sand. A larger number of crystals for the clay soil than for the other two. A greater wood-development in the loam. Variations in the number of stomata were specific and not general. In some cases the loam had the highest average, in others the clay, but in most cases the sand. In five cases out of the six, the loam gave the thickest leaves; in the case of carnation the clay gave the greatest average. This increase in thickness was caused by a general increase in thickness of all the tissues. Plants growing in the loam had the smallest number of trichomes.

Variation in Carbohydrate Reserves in Stem and Root of Woody Plants.* - Leclerc du Sablon has investigated the variation in the amount of sugars and starch in the course of the year in certain trees. He finds that the amounts reach the minimum in the spring, when reserve material is being used up by rapid regetation, and attain a maximum in autumn at the end of the vegetative period. It is interesting to note that during winter when growth is apparently at a standstill, the reserves diminish slightly. This may be due in part to their change into substances which are not transformable into glucose under the conditions of the experiment. Generally speaking, the root contains more reserve-stuff than the stem. The experiments were made with the chestnut, the pear, the peach, and the willow.

Irritability.

Functional Inertia of Plant-Protoplasm. \dagger-R. A. Robertson reviews a number of phenomena which illustrate the fact that plant-protoplasm, like animal protoplasm, possesses functional inertia. The latent period and period of after-effect, which respectively precede the response to a stimulus and persist after its withdrawal, are examples. As a wheel in virtue of its inertia of motion continnes to rotate for a time after the driving gear is slipped, so isolated organs or their parts may for a time manifest functional activity. Thus isolated chloroplasts continue to assimilate, and the nuclei of staminal hairs of Tradescantia carry on karyokinetic division after death of the protoplasm. In the acquirement of new characters by living matter it is suggested that functional inertia is a factor of importance.

Movement of Perianth Leaves of Tulip and Crocus. $\ddagger-\mathrm{A}$. Burgerstein finds when flowers of crocus and tulip are exposed to a relatively high and constant temperature, that the opening movement of the perianth leaves proceeds for a short time with increased and then with diminished speed, thereby confirming previous observations by Jost. In opposition to Pfeffer, who explained such movements by unequal

[^113]growth on the two surfaces of the leaf, the author finds that the flowers of tulip and species of crocus show opening movements above the maximum temperature for growth, and closing movements at temperatures below the growth-minimum; also that the movements occur in rarefied air (20 mm . barometric pressure) and in pure oxygen, hydrogen, and carbonic acid gas, and even in watery solutions of different salts which may even be injurious to the plant, provided that the concentration is not sufficient to cause plasmolysis. The author concludes that alterations of turgidity in the tissue of the perianth leaves are the cause of the movements.

Thigmotropic Root-Curvatures.* - F. C. Newcombe has repeated Sachs' experiments on the curvature of roots caused apparently by pressure, and finds that the result varies according to the material of which the small rods applied to the root-tip is made. Pins made of oak or of the wood of yellow pine caused a strong bending towards the side in contact in roots of maize, lentil, bean, and others, but no result followed when wood of the white pine or of the tulip-tree, or glass, was used. The author concludes that it is not the pressure of the 'attached object which causes the bending of the root, but probably substances injurious to the root which are imparted by the attached object. That is to say, the supposed thigmotropic curvatures are traumatic.

Influence of Loading on the Formation of Wood and Bast Elements in Weeping Trees. $\dagger-W$. Wiedersheim, experimenting with normal individuals and weeping varieties of ash, beech, mountain ash, hazel, and wych elm, finds a shortening of the wood-cells in the loaded branches. No other effect was produced on the wood. In the hazel alone, the bast-ring was more strongly developed, and there was also an increase in the number of stereides.

Chemical Changes.

Sugar in Ripe Fruits. \ddagger - A. de Muynck has analysed varieties of ripe pears during the winter months, and finds that levulose is always greatly in excess of glucose. The former varies from 70 to 93 p.c. of total sngar, the latter from 7 to 30 p.c. He suggests the possibility of a fermentation process by which the glucose is attacked, in order to explain this great difference between the percentages in the two cases.

Formation of Asparagine in Metabolism.s-U. Suzuki finds, as a result of experiments with barley and beans, that there was an increase of asparagine in the shoots only when oxygen was present, whereas decomposition of proteid goes on in absence as well as in presence of oxygen.

Lime in Phanerogamic Parasites.\| - K. Aso finds evidence to support the view that the presence of chlorophyll influences the relative

[^114]amount of lime in the ash of plants. While the ash of Cuscuta europrea contains only about 2 p.c. of lime, that of the clover, its host, contains more than 30 p.c. This taken in conjonction with Palladin's observation that etiolated leaves of Vicia Fuba contain less lime than green leaves, and the fact that scedlings generally require less lime before than after they have chlorophyll, suggests that not only the nuclei but also the chlorophyll-bodies require lime. The author also investigated the colourless saprophytic orchid Gastrodia elato in this connection, and finds that the ratio of lime to magnesia in the above-ground parts is $1: 1$, as compared with flowering cereals 2:1 and lucerne 8:1.

Composition of Seeds of Gingko biloba.*- U. Suzuki finds that the dry matter of the seeds freed from the testa have the following percentage composition :-'Total nitrogen $1 \cdot 8$, proteid nitrogen $1 \cdot t$, crude fat $2 \cdot 6$, lecithin $\cdot 17$, crude fibre $1 \cdot 2$, starch $62 \cdot 4$, sucrose $5 \cdot 2$, redueing sugar $1 \cdot \frac{1}{}$, ash 3 .

General.

Chinese Flora. \dagger-The continnation of Forbes and Hemsley's enumeration of Chinese plants includes the small orders, Hydrocharidea and Burmanniacex (by C. H. Wright) and the Orchidacer, which have been elahorated by R. A. Rolfe. A number of new orchids are described, including a new gemus, Hancockia, the majority of which were contained in Augustin Henry's recent collections.

Strand Flora of New Jersey. \ddagger-J. W. Harshberger makes some notes supplementary to his ‘Ecological Study of the New Jersey Strand Flora,' published in the Proceedings of the Academy for 1900.

CRYPTOGAMS.

Pteridophyta.

Primary Structure of certain Palæozoic Stems. §-D. H. Scott concludes, from an examination of certain stems from the Lower and Upper Carboniferous strata, that distinct, usually mesarch strands of primary xylem forming the downward continuations of the leaf-traces, were present around the pith in a number of paleozoic stems with secondary wood of Dadoxylon structure. Thus the anatomical structure, of which we may take Lyginodendron Oldhamium as the type, proves to have lreen widely distribated among palrozoic plants, and to have extended to stems which, on the basis of other characters, would have been referred with some probability to the Cordaitea. The stems examined represent three groups:-
(1) The Calamopitys group, characterised by the relatively large size and distinct mesarch structure of those primary xylem-strands which are about to pass out from the pith, while the same strands, lower in their course, are reduced in size and may assume endarch structure by failure of the centripetal wood. A single strand passed out from the pith to

[^115]form the leaf-trace. The pith is solid, with no trace of discoid strncture, and very variable in size. The seeondary wood has the typical Dadosylon structure ; the medullary rays are one or two cells in thickness.
(2) The Pitys group with numerous small xylem-strands around a large pith, in which they are more or less deeply imbedded ; their strueture is generally mesarch. The leaf-trace passes ont as a single strand. The pith is large and may show some approach to diseoid structure. The secondary wood has the typical characters of the Pissadendron subgenns of Dadorylon with rather wide elements ; the larger medullary rays are always pluriseriate.
(3) The type of Dadoxylon Spenceri with a few small primary xylemstrands seattered at the pith margin and closely applied to the secondary wood, of mesarch structure, and passing out in pairs, each pair constituting a single leaf-trace. The pith is of moderate size and probably not discoid. The secondary wood is of the usual Dadoxylon type but very dense, consisting of small tracheides, with medullary rays generally of one cell in thickness.

As regards their affinities, the stems referred to Calamopitys are very suggestive of Cycadofilices, owing to the great development of the primary xylem-strands, and the marked similarity to the strueture of Lyginodendron. They differ from the latter in the structure of the petiole which approaches that of a Myelorylon. The tendency towards an endarch structure in the lower part of their course suggests that this group had advanced further towards the usual stem structure of Gymnosperms than had Lyginonendron or even Pororylon. Of interest also is the narrow-rayed secondary wood, quite Cordaitean or Araucarian in structure.

Pitys were tall branching trees, a habit which is incompatible with Cycads or Cyeadofilices, and the only known family to which they could be referred is the Cordaitex, leaves of which have been found at a similar horizon. They differ in having broad medullary rays and a non-discoid pith and in the presence of the primary xylem-strands, and are probably to be regarded as a primitive member of this family, affording a new link betireen Lyginodendree (which they rescmble in having mesarch xylem-strands) and the true Cordaitea.

Dadorylon S'penceri with its dense wood and double leaf-traces appears to stand near the typical Cordaiter, and also as Williamson pointed out, suggests the recent Gingko, which may itself have Cordaitean affinities. The primary xylem-strands, though mneh reduced, have essentially the same structure as in Lyginodendron. This fossil indicates that in the period of the Upper Carboniferous, stems which had in other respects attained a typically Gymnospermous character, had not quite lost the primitive form of wood, which we can trace back, through the Cycadofilices, to the Ferns.

Permeability of Cell-walls to Air. *-C. Steinbrinck describes some experiments on the cell-walls of the sporangia of ferns and Selaginella, and of the leaves of mosses with reference to their permeability to the passage of air. A historical introdnetion is followed by a descrip-

[^116]tion of the different methods of investigation-by means of the air-pump, dc. The results of the experiments are then detailed ; the permeability of dry and damp cell-walls under reduced and increased atmospheric pressure. The cell-wall is even more pervions in the damp than in the dry state. The dry moss-cell contains very little air owing to the strong contraction of the walls when dry. It is difficult to explain the rapid extrusion of air and infiltration of water into the active sporangial cells of ferns and Seluginella. In the leares of Mmium only a portion of the membrane of each cell is permeable-probably the upper and lower tans.ential walls; the other parts resist a pressure of several atmospheres.

Ferns and Fern Allies of North America.* - W. R. Maxon has compiled a list of the vascular cryptogams of North America north of Mexico, with their principal synonyms and geographical distribution. The list comprises 280 species, 26 rarieties, and a hybrid, and is based on an examination of the national herbaria and the principal private collections of the comntry. An account is given of the only two standard treatises, by D. C. Eaton and L. M. Underwood respectively, which cover the whole of the vast territory under notice; and this is followed by a chronological bibliography of the principal papers and lists that bear upon the subject.
L. M. Underwood \dagger publishes a severe criticism of Hooker's Symopsis Filicum with special reference to the genns Gymnogramme, which he shows to comprise fragments of several generic groups in no way related to one another save in the absence of an involucre. Some are related to the Polypodiex, some to the Aspidiee, one possibly to the Vittarieæ, and others to the Aspleniex. It is as great an error to transfer them bodily to the Pteridea as is done in Die nutïrlichen Pflanzenfumilien. The name Gymnogramma may have to give way to the earlier name Gymmopteris. Only two of the species occur in the United States, and they belong to two distinct genera Ceropteris and Bommeria, and to the former of these is now added another species from California.

The same author \ddagger supplies a preliminary review of the genus Dancea, with a synopsis of twelve North American species, among which are five new.

Equisetum hyemale.s-A. Bennett records and discussesj the distribution of Equisetum hyemale in Scotland, Scandinavia, and North America.

Mosses.

European Harpidia.|| C. Warnstorf publishes a detailed study of the difficult section of the genus Hypmum, usually known as the Harpidium group. Aquatic in habit, the species are extremely variable and well-nigh impossible to define. After summarising the various schemes of classifying the group which have been put forward by Sanio, Renauld, Klinggraeff, and Limpricht, the author gives a list of the collections which he has examined and proceeds to unfold his own views,

[^117]beginning with a general discussion of the anatomy of the plants and passing on to the systematic treatment of the group. He discards the name Harpidium as being already in use for a genus of Lichens, and accepts Drepanoclutus C.M. as a better generic name. He then offers a scheme of classification containing several sections and, in all, twenty European species with their synonymies; and, after describing in full some of the less known species with their varieties and forms, he conclndes with some critical remarks.

Streptopogon.*-E. S. Salmon monographs the genus Streptopogon. Twenty-six species had been ascribed to it. Nine of these must be excluded, as the author shows, and the residual seventeen may be referred to five species and one variety. These five species, maintained by the author, are all South American, but two of them are found also in Madagascar. The genus and species are defined at great length and supplied with full synonymy and distribntion, and abundant historical and critical observations. A bibliography and three plates with ninetyseren figures are included.

Calyptopogon. $\dagger-$ E. S. Salmon discusses the history and synonymy of the Chilian moss, Calyptopoyon mioioides Broth., which was originally figured and described by Schwacgrichen as Barbuld mmioiles. It was then confused with B. prostrata Mont. by C. Müller, and later on was redescribed as a new moss as B. crispata by Hampe, and as B. crispatula and B. Wilhelmii by C. Müller, also as Streptopogon Hookeri by R. Brown. Its distribution is now extended to Patagonia and Ecuador, and also to Australia, Tasmania, and New Zealand. The anthor discusses the value of Calyptopogon as a genus, and shows that its systematic position is between Streptopogon and Barbula (Syntrichia); points out that the limb of the leaf is unistratose, despite what Carl Müller has said about it; gives the full synonymy for the species, a lengthy description and the geographical distribution, and describes a new variety from New Zealand.

Sematophyllum in North America. \ddagger - E. G. Britton gives a detailed figure of Sematophyllum recurvens and discusses its history, affinities, and synonymy. Anthors are much at variance as to the latter and as to some allied species owing to the loss of Michanx's types. The degree of variability of the species is not yet settled. The plant occurs in Canada and the castern and central United States. It is contrasted with S. delicatulum.

Orthotrichum in the United States.§-A. J. Grout publishes a monograph of the genus Orthotrichum and describes ten species that are found in the United States, giving detailed figures of eight of them. He simplifies the differences as much as possible, to enable the student to discriminate the species with a pocket-lens. He calls attention to the continued shrinkage that occurs in herbarium specimens, and insists

[^118]upon a prolonged and thorough soaking as necessary to restore the primitive dimensions of the plant.

Microthamnion.*-P. Hennings elaims that the generie name Micro2hamnium Mitt. should be suppressed on the pla that Microthammion Naeg. was established in 184!, that is 20 years carlier, for a genus of Algae. Instead, he proposes Mittenothumium. Also he claims that Asterella is not available for a genus of hepatics as it was applied to a genus of Fungi by Saccardo 10 years ago.

Leaf-cells of Sphagnum. \dagger - W. Loreh describes the comparative derelopment of the stem-leares and branch-leares of Sphagnum, and the differentiation of the hyaline cells and the ehlorophyll-cells. He then passes on to the consideration of the perforations in the stemleaves of certain Sphagna. He divides the pores in the hyaline cells into two groups according to whether they do or do not retain the original shape in which they were developed. In the branch-leaves the pores entirely retain the original shape ; but in the stem-leaves they do not; they assume all shapes, and there is often a complete or partial resorption of the outer wall. Pores are produced during the bud-stage on the under or convex side of the leaf; but they do not appear on the upper or eoncave side till later-and in some eases not at all. It is essential to employ stains to render the pores visible. Methyl-blue and methyl-violet act well. They stain the under but not the upper membranes. This may be explained in two ways. Either the upper walls are thinner than the lower, and contain less colourable material; or the material of the upper membrane is different from that of the lower, and probably this is the true explanation, because in the young leaf the development of pores takes place on the under side only.

European Muscineæ. $\ddagger-V$. Sehiffner gives an annotated list of nine rare hepaties and one moss gathered in new localities in Austria by J. Baumgartner ; and a second list of ten rare mosses and two hepatics mostly gathered by the same collector and all from new Austrian localities.
A. Casares Gil§ publishes a list of 25 hepatics and 45 mosses gathered by himself in the neighhourhood of Bareelona, and mentions five other mosses which he has failed to find but had previously been recorded for the district. He adds some remarks upon the dryness of the climate and its effect upon the moss-flora.

Muscineæ of the Atlantic Islands.\| - V. Schiffner concludes his contributions to our knowledge of the Museineæ of the Atlantie Islands. He cnumerates in all some $t 0$ species of hepaties and 80 species of mosses with numerous varieties. The novelties are three species and one variety among the hepatics, and one species and three varieties among the mosses. Several eritical notes are introduced, and the dis-

[^119]tribution of the plants in the islands concerned is rendered much more complete than it has ever been before.

British Hepaticæ.*-S. M. Macricar records the discovery of the rare hepatic, Geocalyr fraveolens Nees, for the first time in the British Isles, near the sea in West Ross-shire. It grows associated with other Muscinere on moist rocks, and on it were found the curions pouched perigynia which characterise the genus. A new description of the plant is supplied.
A. Wilson and J. A. Wheldon \dagger have discovered on Cockerham Moss in West Lancashire a hepatic which proves to be Kantic submersa Arnell, and was not previously known to ocenr in the British Isles. It grows on wet sphagnum bogs. The description of it is republished and some critical notes are appended.
S. M. Maevicar \ddagger spent five weeks during June 1900 and 1901 in the neighbourhood of Ben Lawers and explored the mountains to determine their hepatic flora. He records his results, a total of some 114 species, and of these no less than seven are additions to the British Flora. The species are mostly of the eastern type, lnt abont a quarter are of the western or Atlantic type. He adds several critical and some general remarks on distribution.
C. Crossland § completes his account of the hepaties found in the neighbourhood of Halifax, and records 69 species, one of which, Jubula Hutchinsice, is an addition to the comty of Yorkshire. He also considers the lichens of the district.

Suropean Hepaticæ.||-K. Müller publishes a further list of 4π inepatics gathered in Alsace, four of which are new to the district, and the rest noted as from new localities; also 34 species from new localities in the Alps, two being new to Switzerland. A few more species collected by Röll in the Rhöngebirge, the flora of which needs further attention, and others from Tyrol, \&c. are added.
A. Holler 9 publishes a list of 111 hepatics collected in the district of Schwaben and Neuburg in Bavaria, with notes as to distribution, geological strata, \&c. The classification adopted is that of the Synopsis Hepaticarum, with an indication of the modern genus to which each plant is referred.

European Mosses.**-W. Limpricht carries on the work of his father ${ }^{*}$ K. G. Limpricht, who died last autumn, and publishes another part of the supplement to his moss-flora, treating of the acrocarpons mosses from Tortula to Bryum.
J. Röll $\dagger \dagger$ publishes a list of 57 species of mosses gathered in the vicinity of Herknlesbad in South Hungary, and describes one news species-Philonotis Schliephackei-and eight new varieties.

[^120]F. Matouschek* describes a new form of the well-known mossLeucodon sciuroides-which is remarkable for the crisped leaves on some of its secondary branches, apparently not due to injury by insects. The species is not a variable one. This new form-crispifolius-grows near Machendorf in the Jeschkengebirge.

Mosses of Central Switzerland. \dagger-R. Keller publishes a localised list of 125 mosses gathered hy him in October 1891, near Langern in Canton Unterwalden and identified by P. Culmann. The distribution of the mosses of Central Switzerland is only partly known.

Swiss Cryptogams. $\ddagger-E$. Fischer publishes a series of notices of all the literature that appeared in 1891 and had any bearing on the cryptogamic flora of Switzerland. He gromps them under the three heads, Fungi, Algre, and Mosses, classing the bacteria and lichens under Fungi, and the hepatics under the Mosses. Twenty-one references are cited under Fungi, eleven under Algæ, and ten under Mosses. Lists of new localities compiled from the literature under notice are given under the heads, Fungi and Mosses.

Algæ.

Plankton of the Alt-Ausseer Lake.§-Carl von Keissler gives a short note on his gatherings in this small Strrian lake. He records nine species, of which three belong to Peridiniaceæ. Samples were taken from the surface and from other depths down to 10 metres, and short analytical tables are given.

Diatoms of the Black Sea.\| - C. Mereschkowsky publishes some notes on certain diatoms from the Black Sea, and describes three new species and two new varieties. The author regards a knowledge of the endochrome and the elroplasts of N^{+}curicula scabriuscula (Cl. et Grove) Mer. as essential, in order to form a correct estimate as to its systematic position. He gives measurements of the frustules and a figure of the endochrome.

A list is given of 436 speeies and varieties recorded from the Black Sea, and this is said to be not exhaustive. An interesting fact in comection with this list is noted by the author, namely, that about forty of the Black Sea species are common in the North Sea and the Atlantic and Aretic Oceans, but have never been found in the Mediterranean. He explains this by the theory that in the glacial epoch a rast sea comected the Black Sea, the Caspian, and the Aral with the North Sea and the Aretic Ocean ; whereas it was not till comparatively recently that commmication was established hetween the Black Sea and the Mediterranean, by way of the Bosphorns. A plate containing thirtytwo figures and four figures in the text serve to illustrate the author's observations.

* Tom. cit., pp. 218-9.
\dagger Ber. d. Schweiz. Bot. Gesell., Heft xii. (1902) pp. 76-83.
\ddagger Tom. cit., pp, 59-75.
§ Verh. d. k. k. Zool.-bot. Gesell. Wien, lii. (1902) pp. 706-8.
if Journ. de Bot., xvi. (1902) pp. 319-2t, 358-60, 416-30 (2 pls. and 4 figs. in text).

Hungarian Diatoms: Lake Balaton.*-..J. Pantoesek publishes a monograph comprising 288 species of diatoms from Lake Balaton in Homgary, including one new gemus, some it new species, and some 60 new varieties. References to literature are given for each species, as well as a diagnosis in Hungarian and in Latin. The paper is illusstrated by 17 plates and one text figure. In the introdnction is an account of the methods adopted in gathering and examining the diatoms ; and a bibliography is provided.

Pyrenoids and Elæoplasts in Diatoms. \dagger - C. Mcreschkowsky has succeeded in finding pyrenoids in diatoms which partially or entirely emerge from the endochrome, and mar eren be scen as free colourless bodies on the imer surface of the chromatophores. He also finds elæoplasts which arise inside the endochrome mass, from which they gradnally protrude, still surromded hy the endochrome and of a yellow colomr. The anthor believes that it will be possible after further investigations to prove a genetic comection hetween pyrenoids and elaoplasts. The coloured elæoplasts are divided by the anthor into (1) sparsioplasts which are rariable in mmber and prosition, and (2) stabiloplasts which are not variable. Stabiloplasts are again divided into placoplasts which are in contact with the chromatophores, and libroplasts which lie free along the middle line of the cell. Instances and figures are given.

Fossil Diatoms in Rome. \ddagger - Matteo Lanzi has examined diatomaceons earth taken from the Janiculum and finds it contains 68 species of fresh-water diatoms and several varicties. The species are those generally recorded from shallow water.

The same anthor also enmmerates $63 ;$ species of fossil diatoms, found in soil which was excavated from below the Via Nazionale, when the foundations of the Banea d'latia were being constructed. The genus most abundantly represented was Epithemia, and after that the com-
 Synedra longissimu, and Pleurositmu uttemutum. The species are such as live in fresh or brackish water.

[n. Diatoms of Lake Cotronia. §-Matteo Lanzi records 36 species of

 diatoms from this small lake. The most predominant genus was Cyclotella, and all the species fomd were fresh-water forms and principally floating.Centronella and Phæodactylon. $\|$-Kmut Bohlin calls attention to Centronella Reichelti Yoigt and points out that this organism is a near ally of his Phcodactylon tricormutum. He therefore proposes that the new genus Centronella be suppressed and the Bohlin species be known as Pheodactylon Reichelti. He regards the plant as related to the Diatomacere. Small figures are given of both species.

[^121]Debarya immersa West.* - W. West finds that his recently deseribed species Mongeotia immersa must be transferred to the genus Debarya.

Conjugate. \dagger-Charles E. Bessey gives a short account of the structure and classification of this gronp, with a revision of the families and a rearrangement of the North American genera. He divides them into three families, Zygnematacee, Desmidiacea, and Bacillariaceex, and gives a key to these, and another to the genera of the Zygnematacea. The author regards the Conjugate as a degeneration from filamentons alge of a higher type. Diagnoses are given of the genera in Zygnematacer.

Fresh-water Algæ of the Royal Gardens, Kew. \ddagger - F. E. Fritsch publishes a note on the periodical development of the algae in the artificial waters at Kew, and gives two tables illustrating the development which takes place in a tank near the Jodrell Laboratory and in the lake. He also remarks on the occurrence of certain species in the hot-houses, where desmids and other Conjugate are rare before April. The hot-house flora is, however, more or less uniform throughout the year, while the outside flora differs largely in summer and winter, attaining its highest development in August and September. Desmids are entirely absent in winter and are not very common in summer.

Young Plants of Stigeoclonium. $\$$-- The same author has made a minute study of the roung plant of species of Stigeoclonium. After giving an acconnt of the results and riews of other authors on this subject, he proceeds to describe his own olservations, worked out chiefly on three species which are as distinct from each other as possible. These are S. variubile Näg., S: namum Kütz., and a new variety, simplex. of S. farctum Berthold. Uuder the heading of "The ordinary trpe of young plant," the author describes the development of a plant from the moment of the zoospore coming to rest. Species which have welldeveloped hairs in maturity begin to form them very early in their life-history, and the same may be said of the branching. Thi development of the base varies according to the species, and plants oceur in which the young plant is attached by means of a specially modified basal cell aided by rhizoids. These rhizoids may arise from the basal cell or from the cells above it, and may beeome multicellular and very long. A description is then given of S. farctum Berth. var. nov. simplex, and comparisons are drawn hetween it and other epiphytic species of the genus. The author believes that species of Herposteiron, which possess distinctly septate hairs, are merely stages in the lifehistory of species of Stigeoclonium. Finally, certain other forms belonging to Endolerma are discussed, which are possibly connected with Stigeoclonium.

New Genus of Valoniacex. $\|$ - F. Herdrich describes and figures a new marine alga from Kerama, Loochoo İslands, Japan, and he creates

[^122]for it the new genus Rudicularia. It consists of a slightly encrusted unicellular thallus, having a main axis and whorls of branches, both of which are constricted at intervals. Branched rhizoids are given off either in place of or immediately below a whorl. The main axis is about $: 3-5 \mathrm{~cm}$. high and about $\frac{3}{4} \mathrm{~mm}$. thick. Vegetative reproduction takes place by the formation of a transverse wall across a constrietion near the base of a branch. Rhizoids are then given off from the next joint above and an independent plant starts its existence. The author thinks he has also found sporangia containing a single aplanospore. The paper ends with a comparison between Rudiculurit and neighbouring genera.

Melobesiæ.*-F. Heydrich describes three new species and a new form of a previonsly known species of Lithophyllmm, and a new species of Melobesia. The species had already been quoted in a list by M. Hariot. They are preserved in the Paris Musemm d'Histoire Naturelle.

Characeæ of Mark Brandenburg. $\dagger-$ - L. Holtz publishes a separate monograph of the Characea as a contribntion to the larger work on the Cryptogamic flora of the province of Mark Brandenburg. To this end he has, inter alia, worked throngh the herbarium of A. Braun which is preserved in the Berlin Musemm, and gathered copions materials for his purpose. He divides his subject into two parts; and devotes the first to a general consideration of the group, the development and structure of the plant, the history, classification, and geographical distribution of the group, and so on. This occupies 42 pages. The rest of the book is concerned with the special study of the Characee of the province, the characteristics of the district, the sources of information employed, the systematic treatment of the species and forms, a table of the ponds and lakes explored, and the methods of colleeting and preserving the specimens. Five genera and twenty-seven species are recognised. Frull descriptions, and geographical and critical notes are supplied.

Fresh-water Algæ of the North of Ireland. $\ddagger-W$. and G. S. West publish a list of 614 species and 107 varicties and forms, representing 189 genera, collected in Longh Neagh ant in Honegal, Co. Down, and Co. Louth; a few species are also recorded from Co. Wicklow for the sake of convenience or as a confirmation of previous records for that county. About 12 new species are described and about 24 records are new for the British Isles, while many others, though known from other parts of the British Jsles, are new records for Ireland. The authors note a remarkable searcity of the genus Ituucheria and of the desmid Euastrum insigne Haas. They also remark on the interesting distribution of the three desmids, Micrusterias furcata Ag., Staurastrum Arctiscon Lund., and Staurustrum lonyispinum Arch., which appear to be confined to the western shores of the British Isles, i.e. Connemara

[^123]and Donegal, the lakes of the Snowdon range, and the extreme northwest of Scotland.

A special section of the paper is devoted to the plankton-alge of Lough Neagh. The anthors describe the method of collecting and remark on the presence or absence of certain forms. Many plants which have been exclusively found in the fresh-water plankton-flora of the Continent are here recorded from Lough Neagh. A tabulated list is given of the planktou species found in Longh Neagh in May 1900 and July 1901, together with records from the uper River Bann and from Lough Beg. Three plates containing 98 figures complete this paper.

Scottish Algæ.*-- E. A. L. Batters' recently published C'utalogue of the British Marine Alye is the source from which, in an unsigned note, a list has been drawn up of all those alge that are recorded as occurring on the coast of Scotland.

Javan Algæ. \dagger - R. Gutwiński gives an account of the alga collected by Raciborski in 1899 in Java. The Desmidere gathered in Sitoe Tjibenong pr. Bogor are particularly rich in species and forms. In all, 170 species of alge are enumerated, raising the algal flora of .Jara to 918 species, and that of the Dutch Indies to 1774 species. To the Javan flora the actual additions are 7 genera, 108 species, 14 varieties, and 2 forms. Five plates with $7!$ figures are supplied; and 15 new species, 21 new varieties, and several new forms are described.

Fossil Algæ. \ddagger - D. White describes two fossil specimens from the Eurypterid beds at Kokomo, Indiana, and makes of them two new species of the genns Buthotrephis. Thes are of marine origin ; and from their form they might be sponges or alge; but are referred to the latter group as they contain no sponge-spicules. It is certain that they closely resemble Codium tomentosum in outward appearance.

Action of Salt Water on certain Fresh-water Algæ.s-J. Comere has experimented on certain species of Ciloyonium, Spirogyre, Faucheriu, and Cladophore, with a view to determining what strength of saline solution can be successfully withstood by them under cultivation. The plants are grown in distilled water, to which is added a certain proportion of a matritive solution. Artificial sea-water is then prepared and added by drops to the above culture-medium. Fertile specimens quickly succumb to these experiments, and it is necessary to work with young sterile and vigorous plants. Certain species of Ćdogomium and Cladophore are able to bear as much as 35 grm . of marine salts to the litre of water, while Tcucheria sessilis was seen to grow in water containing 20 grm . of marine salts to the litre. The results varied with the different species of Sjurogyra. S. catenaformis and S. varians flonrished in a solution containing $18-20 \mathrm{gmm}$. to the litre, while S^{\prime}.jugulis and S. orblicularis cannot bear more than 15 grm . to the litre. The figures vary according to circumstances, however, and mast not be regarded as

[^124]absolute. As a general rule it may be stated that the more robust the structure and the less delicate the chromatophores of a plant, the more successfully does it withstand the intrusion of salt water. The order of resisting power among the genera experimented upon stands thus:Cladophora, Edogonium, Vaucheria, and species of Spirogyra with large chromatophores, and lastly, species of Spirogyra with numerous and slender spirals.

Reverse experiments of cultivating marine species in fresh water were successfully carried out, and the author comes to the conclusion that many algæ can, under favourable conditions, develop equally well in fresh or in salt water.

Fungi.

Sclerospora.* - G. B. Traverso has made a critical study of the species constituting the above genus, S. Kriegeriana, S'. macrospora, and S graminicola, all of them parasitic on grasses. He comes to the conclusion that S. Kriegeriana is not distinct from S. marrospora, the older speeies, and that there are but the two forms that attack the Graminea S. mucrospora and S. graminicola.

Urophlyctis bohemica. \dagger - P. Magnus gives a historical and critical account of this fungus. It was found by Passerini on Trifolium pratense and named by him Synchytrium Trifolii. At a later date Bubak found it on T'. montamun and named it Urophlyctis bohemica. Magnus confirms its classification under Crophlyctis, but gives it the first specific name Trifolii. It is found all over Europe.

Research on Amylomyces $\beta . \ddagger$-This fungus, a species of Mucor, has been much used in distilleries on account of the large amount of diastase it contains. W. Henneberg has instituted a series of cultures to test its capacity of growth in various media. A long account is given of the different experiments. The ehief results arrived at are, that maize mash is a specially favourable matrix for the growth of the fungus; that in potato mash, under a pressure of : $;-4 \mathrm{~atm}$., produets of an acid nature are developed which interfere with its growth, though the same substance, less highly heated, might be used with adrantage; and finally, that the fungus is very susceptihle to many bacteria, and therefore bacterial infection is to be guarded against.

Biology of Piptocephalis.s - L. Matruchot has attempted to grow the parasite Piptocephatis on other fungi than Mueoraeeæ. He experimented with a vers large and varied number of fungi, and found that Piptocephalis could not he cultivated except on some member of the family of Mucoracea. He applied this liological test to a doubtful mould, Cuminghamella africana, of which the vegetative characters resembled those of Mucoracea, but which instead of sporangia produced only conidia. The Piptocephutis grew readily and convinced the writer that Cumninghamella was a true Mucor.

* Malpighia, xvi. (1902) pp. 2s0-90.
+ Centralbl. Bakt., ix (1902) pp. 895-7.
\ddagger Zeitschr. f. Spiritusindustrie, 1902, pp. 10-29 (1 pl.). See also Centralbl. Bakt., ix. (1902) pp. 333-S.
§ Comptes Rendus, cxxxv. (1902) pp. 988-91

Cytology of Yeast.* - A. Guillermond has publisbed an important work on this subject. He gives a historical account of previous research, and details the methods employed, then follows the account of work done on special forms of the genera Succharomyces, Schizosaccharomyces, and Dematium. In all yeast-cells he finds a nucleus that divides by direet division. In discussing the genus Seluizasacharomyces, he describes the process of copulation of the yeast-eells and their nuclei which precedes spore-formation. After fusion, the nucleus divides and the daughternucleus goes back to the cell from which the fusing nucleus had passed over ; both nuclei divide equally to form spores. In other yeast-forms copulation has not been found.

Study of Nuclei in Yeast and Animal Cells. \dagger - Feinberg has devoted his attention to the form of the nucleus in one-celled organisms with special reference to yeast, the amœbæ of Myxomycetes, fresh-water rhizopods, and sporozoa. With the exception of yeast he finds that there is no nueleolus in any of the nuclei examined, and no nuelear fibrils corresponding to that of plants and animals. As an equivalent they possess a chromatin body which he terms a nuclear point (Kernpunkt) and which is surrounded by nuclear sap.

Yeast. \ddagger-Albert Hirschbruch discusses the condition of the yeastcells in old cultures. He finds in many of them that the nucleus has broken down and he describes three stages in this process of degeneration ending in the total disappearance of the nucleus. He has not determined yet at what stage of degeneration the cell loses the power of multiplication, nor to what extent these degenerated cells can be revivified.

Fritz Thibaut § contributes a paper on the influence of the alcoholic fermentation products on the yeast-plant and on the process of fermentation.

Life-history of Yeasts. $\|$ - Emil Chr. Hansen studied this subject first with Saccharomyces apiculatus. He found that this yeast was present on fruits all through the ripening season, transported from one to the other by the agency of insects and especially wasps. It was washed off by rain or was conveyed to the ground with falling fruit and wintered in the soil. The wind was a sufficient agent in again transporting it to ripening fruit the following summer. The connection between the soil and the fruit was so close that this particular yeast was never found in soil far removed from fruit-bearing plants. Hansen found for other species of Saccharomyces that their life-history was very similar ; only, though they were most abundant in gardens, they were also to be found in soils everywhere. The reason of this, Hansen found, was that those other yeasts increase more abundantly in the moisture of the soil and sustain life longer in water. They ean thus be more readily transported in a living condition in water than can S. apiculatus.

[^125]Notes on Erysiphaceæ.*-E. S. Salmon contributes supplementary information on some species of Uncinult from Japan. They present some interesting variations of form and habit. He also comments on the spread of the gooseberry mildew, Spherothecu mors-uve.

Morphology and Development of the Ascocarp in Monascus. \dagger B. T. P. Barker has followed in minute detail the growth of this fungus. He describes the formation of the ascogonimm from one of the cells of the hyphe and its fertilisation by the antheridium. The ascogonium develops as a large central cell and produces a nest of ascogenous hyphæ, the large cell growing romed these and affording protection as well as mutrition. Investing hypha which eventually form the peridium are produced from the base of the cell. Meanwhile the ascogenons hyphae increase and push out the large central cell, and in time produce 8 -spored asci. The walls of the asci break down and leave a mass of spores loose in the sporangium-like fruit.

From the development, Barker considers Monascus as a comparatively simple type of Ascomycetes and not far removed from a common ancestral type. He compares Monascus with other Ascomycetes and with the Oomycetes, and is inclined to consider that a close relationship exists between the latter and the simpler forms of Ascomycetes.

Chætomium Bostrychoides. \ddagger-G. Massee describes the corkscrewlike appendages of the perithecimm, which are hygroscopic and aid in the dispersal of the spores by uncoiling or expanding. The species is new to Britain.

New Parasitic Fungi. - L. Montemartini and R. Farneti have examined a disease of the rine from the Cancasns, which was supposed to be identical with black-rot. The fungns found growing on the grapes could not be identified with that eausing black-rot. The authors find that it is a new species and name it Physalospora Woroninii. The perithecia develop in the autumn, and are black, somewhat pyriform, about $\frac{1}{2} \mathrm{~mm}$. in height, and almost superficial ; the asci are accompanied by paraphyses. The pycnidial form is smaller but has much the same appearance.
G. Pallacei || examined some plants of Meclicayo sativa, the leaves of which were covered with pale spots. He found that this was caused by the perithecia of a pyrenomycete Pleospluerulina Briosiana sp. n. The perithecia are immersed, then erumpent, globose-oblong ; the asci are clavate without paraphyses; the spores colourless and muriform.
G. Briosi and R. Farneti 9 publish a preliminary note on a disease of the mulberry caused by Fusarium lateritium, hitherto recognised only as a saprophyte. The fungus attacks the young buds and does very great damage to the trees. The authors describe three new fungi found also growing on the branches attacked by Fusarium: namely Phoma pyriformis, Ph. cicatriculce, and Coniothyrium mororum. Their connection with the disease was not determined.

[^126]Distribution of Plant Diseases.*-P. Hennings learns from various correspondents that the fungus sipherotheca mors-uve is very prevalent in the Government of Moskan, and that in Riga the whole crop has been ruined by it. He warns cultivators against the appearance of the fungus and advises instant buming of any bushes attacked.
G. Linhart \dagger contribntes a note on the occurrence of Gleosporium cautivorum, which is to be found on red clover in many districts in Germany. He considers that the spores are distribnted with the clover seed, and he recommends washing clover seed with copper sulphate. Lncerne is not snbject to attack by this fungus.

Allescherina and Cryptovalsa. + -Miehele Abbado has published a monograph of these two genera, both of the Valsa type and both with polysporons asci. Under Allescherina, a genus recently created by Berlese, he places those species that have scattered perithecia, while he includes in Cryptoralsu those forms that have the perithecia closely gromped and where the ostioles emerge together from the matrix. This revision has necessitated a considerable rearranging of species. The spores of both genera are coloured and rather large.

Claviceps purpurea.s-C. Engelke has made a series of observations on the development of this fungus. He obtained pure cultures from the ejected spores of the perithecia, and he found in the perithecia clubshaped paraphyses. Infection of the rye floret takes place only before fertilisation. The spores alight on the stigma and germinate there, and the mycelim then bores its way down to the ovary. The formation of the sclerotium thas begins at the base. The irritation caused by the presence of the fungus induces the production of honey-dew by the stigma. The fungus itself does not form the honey-dew as has been supposed. The author still continues his cultures and researches on this fungus.

New Hypomyces. $\|$-P. Baccarini describes the fungi he found growing on a dead plant of Arece madayascariensis in the botanical gardens at Florence. He made careful enltures of the spores and succeeded in tracing the entire life-history of the fungus in question. The ascophorous stage was a golden-yellow Hypomyces which he named H. aureus; the conidial stage was a Verticillium with simple, elliptical conidia. A resting-stage of the fungus was also formed, a small fellow selerotimm.

Another species of the same fungus was also cultivated, H. comvive sp. n., but only the conidial stages were present ; these were a form of Coremizm and of Mycogone.

Study of Related Forms. T-H. Klebahn finds that the perfect form of Phleospora U7mi is a species of Mycosphecrella which he describes as M. Ulmi. A similar research as to Glocosporium nervisequum which grows on the leaves of Platanus orientalis enabled him to connect that fungus with the pyrenomycete Lestatia Veneta. In the latter case he

[^127]was not able to infect leaves directly with the ascospore, but only with the conidial form produced by their artificial eulture. He then got a growth of the Glocosporium which placed the connection beyond doubt.

Glœosporium phomoides.* - F. Gueguen finds that this fungus, which grows on the fruits of the tomato, is a wound-parasite and has been found only on ripe tomatoos. The mycelium produces suekers which penetrate the cells of the host and destroy the nucleus. The cell is then invaded by the hyphe of the fungus and the whole tissue is gradually destrofed.

Monilia fructigena. \dagger - This fungus has been long known in its conidial and sclerotium forms, and recognised as a "brown-rot" disease of fruits. J. B. S. Norton has recently proved its connection with the Peziza stage. The apothecia were attached to sclerotia on the buried peaches that were diseased with the fungus, but only from sclerotia that were over one year old. They developed during April, just about the time of the flowering of the peaches and other fruit-trees. The writer cultivated the conidial stage from the ascospores and infected twigs of peach and plum. He also produced the "brown-rot" by inoculating healthy fruits with conidia that he had developed from the ascospores of the Peziza, or more directly with the ascospores themselves.

Sclerotinia Fuckeliana. \ddagger - A. Lorrain Smith has investigated a disease of gooseberries that affected the stem, destroying the bark and so killing the bush. She found that it was dne to the presence of Botrytis and selerotia, and by culture obtained the Peziza form froms the selerotium which proved to be identical with Sclerotinia Fuckeliana. A comparison with other forms of Botrytis was made, and the development of the mycelium contrasted with that of Monitia, also a selerotiumforming fungus.

Research on Lichens.s-M. Fünfstück reviews the work that has been done towards completing our knowledge of Lichens. He cites the papers by Banr and others on the sexmality of the fruit, and concludes that though sexuality in a number of forms is almost established, it has not yet been proved. He touches on the influence exerted by the sub-stratum on the development of the lichen, and draws attention to the growth of the algal cells which remain green muder a thick, more or less opaque sheath of hyphes. All these points rerfuire further cheidating, and much research work on Lichens, Fünfstuck considers, remains to be done.

Chinese Lichens.\|-A. Jatta gives a list of 200 species and subspecies of Lichens collected by Father Giraldi in the north of China in the province of Shen-si. About fifty of the species are extraEuropean and nineteen are new to science. Locality and habitat are carefully recorded for each plant and diagnoses given of the new forms.

[^128]Lichen-Flora.* - Carlo Zanfrognini conchudes his list of Lichens from the district of Emilia. The present contribution includes the families Lecideates, Verrncareacea, Calicia, (iraphidacee, Collemaceæ, and Micaræe.

Lichens from Galapagos. \dagger--The enmmeration of the Liehens from Galapagos by W. (i. Farlow is based on the collections of Snodgrass and Heller, and of various previous collectors. The specimens belong chiefly to the larger and more striking forms, which are in most cases identical with species found on the Pacific Coast of America from California to ('hite.

Kryptogamen-Flora: Fungi imperfecti. $\ddagger-$ In part 86 of this Flora Andreas Allescher conchudes the "Fungi imperfecti." He deals with the senera Hyaloreres, Toxosporiam, and with the senera belonging to the groups of Dictyospora and Scolecospore. He also gives a first instalment of additions to the genns Plegllosticte. Fignres illustrating the genera are given in the text. In part 87 Phyllosticte is conchaded and the species recently added to the genus Phoma are described.

Black-rot of Grapes. §- (G. Delacroix confirms by expermental eultures the existence of a conidial stage in the fungus Giuignardia Bieluelli, which forms selerotia and later pyenidia on grapes. The conidial form resembles a Scolecotrichum; single conidia are borne at the apex of upright hyphe.

Polymorphism of Microfungi.\| - R. Farneta found an Oielium parasitic on Sulviru Horminum which he describes as Oidium Hormini. He made a series of cultures, and from the Oiditm he developed several forms of Pintrytis, a sclerotium, and microconidial forms of. Marrosporiam and Itternaria.

Sceptromyces 0pizi. 9 --This plant has also been named in its immature form liotrytis sceptrum. C. Engelke found it growing on chestmot husks, and on coltivating it under certain conditions it developed Aspergillus niger. He verified the result by repeated culture experiments. A rise of temperature invariably secured a growth of Asperyillus. The Septromyees form was produced with a lower temperature, a deficient supply of nitrogen, and increased humidity.

Botrytis parasitica.**-This frogns is the canse of a serions disease of tulips and some other bulbons plants, and Ritzema Bos gives an account of his experience of the disease. It attacks the leares, cansing brown spots; it also attacks the young buds, entirely destroying them. In these cases the Botrytis form of the disease is specially prominent. When the bulb is attacked sclerotia are developed. The author has not sncceeded in obtaining any Peziza fruits, thongh he has induced the

[^129]growth of the Betrytis from these sclerotia. He diseusses the probable causes of infection and dissemination of the disease.

Ustilago Panici miliacei. *- Y. Takahashi describes this fungus which appears on the inflorescence which is changed into a smut pustule. The author concludes from his observations that the fungus is a true Sorosporium and should be named S. Panici miliarei.

Uredo bistortarum D.C. \dagger - P. Magmus discusses the synonymy of this fungus. He finds that it has no comnection with Puccinia bistorte. It is identical with Lstilago listortarum Körn. and with Tilletia bullata described by Fuckel in the Symbole mycoloyicue.

Hyalospora Aspidiotus. $\ddagger-$ For this fungus, placed first in the form genus Ureto, then in Melampsorella, P. Magnus creates the new genus Hyalosport, on account of the different form of the Uredo sorus. The specifie name is that originally given by Mongeot and Nestler, viz. Polypodii dryopteridis.

Effect of Mineral Starvation on the Parasitism of Puccinia.SMarshall Ward finds that lack of minerals in no way secures immunity from infection, though seedlings deficient in phosphorus or in nitrogen tend to show retardation of infection. He also finds that the uredospores grown on the starved plants of Bromus are entirely normal, though smaller in quantity, and can reinfect other plants. High cultivation does not increase resistance or confer immmity, as the most vigorous spores were produced on plants reared in a decoction of horse-dung ; the highly fed plant yields more food-material for the fungus, but as long as the host is living the fungus finds material for growth development. The paper is well illustrated ly figures in the text and by tables of results.

Cultures of Uredineæ. $\|$ - Mr. Bubak gives the results of his infection experiments on a mumber of Uredinea. Puccinia Balsamitce, he finds, belongs to the Brachypuccineæ ; Acidium Thymi is a stage of Puccinia Stiper ; Endophyllum Sedi is an SEcitium and is to be included under Puccinit longissima; Etiltium lactucinum forms its telentospores on Carex muricata. To Uromyces Scirpi belong AEcillia found on Glaux maritima, Hibmuris v'ulgaris, Sium latifolium, Pastinaca sativa, Berula angustifolia, and Duucus rarota. Infection experiments with Uromyces Poo were tried on Ranumbulus repens and R. bulbosus, and spermogonia were developed freely. Similar infections of R. nemorosus and R. Ficaria gave no results.

Germination of Teleutospores. T - V. H. Blackman pnblishes a note on the conditions of teleutospore germination and of sporidia formation in the Uredince. Different anthors have figured and described the promycelium in some cases as extremely short, while in others it appears to be several times the length of the telentospore before the sporidia are given off. Blackman finds that the conditions of germination are alone responsible for this variation. If the spores germinate in moist air the

[^130]germ-tube is short ; if they are placed in water, the promycelium continues to grow until it emerges from the drop of water. Sporidia are never produced except in the air ; as they are wind-borne this condition is essential.

Research on Basidiomycetes.* - René Maire follows Brefeld in his classification, including the Uredinea muder the Protobasidiomycetes. He gives a historical account of work done on the cytology of the gromp, and carefully details his methods of fixing, staining, \&c. Maire has examined a few Uredinea and a very large mumber of Basidiomycetes, and from his extensive study he arrives at a momber of general conclusions, taxonomic as well as cytological. The number of chromosomes in the nucleus is invariably two, though in the basidium the first phases of division show a number of protochromosomes which later resolve themselves also into two chromosomes; the basidium in any species can give rise to two gencrations of spores on the same sterigma. The cytological results have enabled Maire to group a number of families under the Cantharellinee : these are the Cantharellacea, Clavariacer, Hydnacea, Phylacteriacea, Peniophoracea, and Exobasidiacee. They have a varying number of sterigmata and in other respects show a lower type of development than other Antobasidiomyeetes. Maire also founds a new family Vuilleminiacere with one genus and one species, Vuilleminua comedens, distinguished by an irregular hymenium. He does not find that sexuality is proved in the Basidiomyeetes: his theory is that the fusion of the two nuclei which takes place in the basidimm is not a ease of fecundation but of "mixie," a term which he uses to distinguish this phenomenon.

Dry-rot and other Wood-destroying Fungi. \dagger - In this treatise Robert Hartig gives an account of dry-rot, Merulius lacrymans; the extent and nature of the injury caused by it ; the development of the fungus in the woodwork of luildings; with advice as to the best means of preventing or getting rid of the pest. Polyporus velporarius is also shortly described. The anthor considers it much less harmful than Merulins lacrymans.

Spore-formation in Gastromycetes. $\ddagger-\mathrm{L}$. Petri publishes an aecount of his research on the development of the basidia and spores of Hychungium carnerm. He finds that while the cells of the vegetatise hyphe may have either one or two nuclei, the hyphas which are more directly connected with the formation of the spores are binncleate. These two nuclei fuse, giving off at the same time gramules which move to the tip, of the hasidium, and which aid in the formation of the sterigmata or of the spore involucre ; the frised nueleus then divides simmtaneonsly into four danghter-nuclei which are comnected by fibrils, probably of nuclear origin, with the gramules. By means of the fibriks part of the chromatic substance of the nuclei of the basidim passes into

[^131]the spore. Petri considers that the definitive nuclei of the mature sporeare derived from the division of a psendonncleus formed from the chromatic granules. The spore figured by the author has three nuclei.

Adventitious Growths in Fungi.* - F. Guéguen has studied thevarions eases among the higher fnngi where an additional hymenium has been formed. He concludes that the malformation is cansed by some external interference; it may be some foreign body in contact with the pileus during growth that prevents the growth of the external layer, and so induces the formation of a hymenium.

Italian Agaricaceæ. \dagger - Matteo Lanzi has published from time to time descriptions of the larger fungi from the neighbourhood of Rome. A number of the parts have come recently to hand, published at intervals from 1888 to 1894 . They deal with white, pink, brown, and purplespored forms. The species are rery fully described and a momber of coloured plates accompany the text.

Boletus Briosianum sp. n. \ddagger - Rodolfo Farneti gives a carefnl macroscopical and microseopical description of this new hymenomycete fond near Padua. He directs special attention to the chlamydospores which resemble telentospores in form. The anatomy of the fungus is worked out in detail and a water-conducting tissue is deseribed-a phenomenon not hitherto noted. 'This species of Boletns comes underthe section subtomentosi.

Study of Fungi.s-M. Barbier publishes some notes on the methods he has found useful in determining fungi. He makes a tracing of the section of any large fungus and colours the different parts. In examining the spores microscopically he advises the student to make them move, as only by so doing can he determine their exact form.

Value of Spore Characters. ||-Matteo Lanzi conelndes from his observation and experience that the colour and form of fungus spores are of great value in the determination of species. Size is of less importance as there may be considerable variation in dimension.

Poisoning by Fungi. 9 -I. I. Rolland inquired into a serions case of illness and death caused by eating fungi. A number of species had been cooked and eaten by the victims, and Rolland was able to identify several species of Amanita as the origin of the mischief and especially A. mappa. Another case of poisoning he also examined had probably been due to a species of Lactarius, but the plants conld not be accurately determined from the descriptions given.
L. Lutz ** gives an account of an exhibition of edible and poisonous speeies at Aix-en-Uthe, and J. Offner $\dagger \dagger$ explains the system of inspection that prevails at Grenoble, where a large number of fungi are exposed for sale in the market.

[^132]Cytology and Physiology of Endophytic Mycorhiza.* - Shibata has made additions to our knowledge of Mycorhiza in species of Podocarpus, in Psilotum triquetrum, and in Almus and Myrica. The most interesting observations were those on Podocarpus, in which, according to Noble and Hiltner, infected plants are able to assimilate free nitrogen. The cells of the root-tubercles soon lecome filled with masses of mycelinm. The cells of the host then begin to react to the presence of the fungus, the cytoplasm increases and the mucleus grows in size and has more stainable contents. It soon begins to divide by a process of simple direct division till as many as eight nuclei may be found in a single cell. While these changes are taking place the fungus mycelinm shows sigus of disorganisation, and not only do the contents of the hyphe become lost, but the chitinons walls themselves become almost completely dissolved. This behaviour suggests the secretion of a ferment or ferments by the host-cell, and Shibata has actually demonstrated the presence of a proteolytic ferment in the infected tubereles. Similar cytological observations were made on Psilotum, though here the chitinous walls remain behind as an undigested mass.

In $A l u n s$ also a proteolytic ferment was demonstrated, though the symbiont in this case seems to be a bacterium-like organism. In Myrica the fungus of the tuberele is confined to a definite ring consisting of one to three layers of parenchyma. The radiating arrangement of the byphat branches of the fungus and the club-shaped swellings at their ends point to a relationship to the semus Actinomyces. This wonld appear to be an actual case of vegetable "actinomycosis," a condition hitherto known only in animals.

Potato Diseases. \dagger-Gidomyees leproides, a disease of beetroots, has been found on potatoes cansing nodulose, black, scab-like crusts. These nodules are described as containing irregularly shaped cavities which are filled with the dark-coloured resting-spores of the fungus, one of the Ustilagineat. Figures of this fungus as it occurs on the potato are given. A second disease, bacteriosis, due to Bacillus solanacearum, is also described and figured. The leaves and stalks are attacked first; the bacteria gradually descend the stem and pass into the tubers which they destroy.

Sclerotinia sclerotiorum attacks the potato stems, forming selerotia in the tissues and causing the death of the plant. It occurs on many other herbaceous plants.

Clirysophlyctis mdobiotica, \ddagger a disease new to this comntry, is deseribed by M. C. Potter. The outward appearance of the tubers attacked is similar to that described under (Edomyces leproides; but this fungus belongs to the Chytridinere. The resting-spores are to be found in the periphery of the nodnles imbedded in the plant-tissue. Potter traced it throngh an early plasmodime stage to the fimal development of the thick-walled spores.

Fungus Diseases in Italy. - Giovami Briosi pmblishes an accomnt of the work done in the Laboratory of Cryptogamic Botany in Padua

[^133]on plant diseases in 1900 and 1901. He tabulates the diseases examined under the groups of plants attacked, begimning with the vine, then the cereals, fruit-bearing trees, \&e. He also gives separate lists of those observed in the earlier part of the year, and those that were found in the later months. He recapitnlates the work that has been done in the laboratory since its fomdation in 1871, and gives a list of the papers that have been published by himself or his assistants-a very large proportion of them dealing with fungal diseases of plants. The insect pests are also noted, and suggestions for the cure of many of the maladies are given.

Fungi of Mount Ventoux.* - J. Lagarde pulbishes a first list of fungi from this mountain which forms a contimation of the Southern Alps on the western side. The list is a long one and includes members of all the different groups. In each case the habitat of the fungus is given and the name of the month in which it was gathered.

Fungi of Lomellina. \dagger - Angelo Magnaghi publishes a first list of fungi from this district of Lombardy. He records 140 species belonging to the various natural orders. There is one new species, Phoma Capsici, parasitic on the fruits of Capsierm anmumm.

Fungus Flora. \ddagger - The same anthor pullishes an aceoment of the fungi collected in Egypt by (i. Schweinfurth. The larger forms are fairly well represented, and he descrihes one new genus, Battareopsis, something like Battarea, but differing in the form of the gleba. Hennings places it near Secotium. The new plant is illustrated by figures in the text. He records sereral new species of Uredinere and a new Hypomyces.

African Fungi. $\$$ - P. Hemnings finds among these a considerable number of new species, all of them microscopic. There are a number of Uredineæ and other leaf-inhabiting forms. He records two new genera, Baumiella a pyrenomycete, and Hyphastis a hyphomycete, both with one species.

Fungus Flora of Sao Paulo.\| - P. Hemnings gives a second contribution from the collection of Pultemans. With the exception of three species belonging to Polyporus, Lepista, and Stleroderma, they are all mieroscopic. There are a few forms of Ustilaginee and Uredinea, but by far the largest number, including many new species, belong to the Ascomycetes and the "Fungi imperfecti." He records two new genera, Capnodiopsis, closely allied to Camollum, but with a very sparse mycelium, and Pseudobeltrania, a member of the Dematia group. The latter genus has upright, branched, brown conidiophores hearing acrogenous, septate, brown spores. Both fungi were found on leares.

Fungi from Galapagos. $\mathbb{T}-\mathbb{W}$. G. Farlow in his flora of these islands includes three species of fungi, F'urolus ciliaris, Fomes lucidus, and Schizophyllum alneum. There were a few others that were not in a condition to be determined.

[^134]Extra-European Fungi.* - N. Patouillard describes twelve new species of fungi belonging to Basidiomycetes and Pyrenomyectes, and collected both in the Eastern and Western hemispheres.

Il Trattato dei Funghi. \dagger - This treatise on Fnngi was published anonymonsly in Rome in 179:2, and the anthorship has always remained a mystery. Matteo Lanzi has recently taken the matter up and has proved indubitably that it was written by the Baron Girolamo Gavotti.

Schizophyta.

Schizomycetes.

Genus Crenothrix. $\ddagger-$ D.]. Jackson gives a general accome of this genus which is of importance in connection with water supplies. Hitherto only one species of the gemms has been described, U '. kïhmiana, the well-known species which precipitates hydroxide of iron and occurs in reddish-hrown flocks or strings. A second speeies, hitherto known as Leptothrix ochracen, must be included in this genns; its precipitate is yellowish in colour and consists chiefly of ahmina. A third species, which has never been named, is rarer than the second; it precipitates manganese, and as large quantities of manganese are rarely found in water supplies it has had less opportunity than the other species of developing in noticcable amounts; the colour of the precipitate is from brown to almost black. The anthor calls it C. manyanifera.

All three species occur chiefly in ground waters, and only grow with rapidity when the dissolved oxygen is lacking, or nearly so, and when the special salts are present which they precipitate. Presence of much organie matter seems to favom growth. The anthor gives a brief deseription of the gemus and a talmar comparison of the three species, and of the analyses of their precipitates, and of the water in which they grow.

Streptothrix.S—A. G. R. Fonlerton and C. P. Jones have examined twenty-five species of this fungus, adopting the term stroptuthrix in preference to the older Actinomyces. The mature fingus presents a tangled myeclinm, and if growing on the snrfate of the medinm, lateral branches become ereet and modergo a protess of chain sporulation. Certain lengths of the mycelimm then degenerate. and comendent with this change, sporulation in the terminal parts of the myeelinn and branches oceurs. The free spores have been described as coceal forms of a pleomorphic sehizomycete, but the botanieal position of Streptotherix has been the snbject of eonsiderable dispate. Harz regarded it as a hyphomycete, others as a highly pleomorphie schizomreete; but Foulerton and Jones have conelusicely shown that the different "forms" of Streptothrix are merely different stages in its life-history, and that the fungus is modonbtedly a hyphomycete.

The thermal death-point was ascertained for all the species examined except one, the temperatmes varying from tis C^{\prime}. to $71^{\circ} \mathrm{C}^{\circ}$. A eonsiderable portion of the researeh was concerned with the pathogenie action of the fungus.

[^135]E. Levy * publishes an account of the growth and resting condition of the Streptotrichacere. He reviews the work that has been done on these organisms, and compares them with the allied groups of bacteria such as tubercle, diphtheria, \&e., which form spores similar to Streptothrix.

Micro-organisms of Barley and Malt. \dagger-These were investigated by Chrzaszez in relation to the question of the effect of infection on the germinating power of the grain and on the coloration of both the grain and the malt. Baeteria, yeasts, monlds, and infusoria were all to be olserved under the scales of the grain in very varying numbers, sometimes as many as 19 different species being found in one grain. As was to be expected, the strongest germinating power was to be found in grains which were least infected, though in some cases grains which showed only very slight infection refused to germinate. The dark colour of the grains was in some cases found to be due to colouring matters laid down in the wall; while in other cases the darkly coloured grains showed a strong infection with moulds and other organisms. In opposition to former workers who connect the dark coloration of the grains chiefly with Sphuerelle T'ulasnei, the anthor finds that in the dark grains infected with monlds, Septosporium and Alternerie were most commonly present.

Coccus lactis viscosi and the Causes of Sliminess and Threads in Milk. \ddagger - Th. Gruber deseribes fully with two mierophotographs a new micro-organism which canses milk to becone slimy and so that it is capable of being drawn out into threads. To it he gives the name of Coceus lertis riscosi. Its chief characters are that it very quickly produces in milk the condition described above, the milk becoming at first alkaline and later acid in reaction. It very (puickly produces a liquefaction of 15 p.c. gelatin, and gelatin plate colonies have a characteristie appearance; its growth is better when air is exelnded, and the cocens on division has a distinet tendency to divide in two directions at right angles to one another.

Penetration of Plants by Bacteria.§-Gustav Ellrodt has reinvestigated the question as to whether bacteria are able to penetrate the tissnes of mwomded plants. Varions plants were grown in soil which was watered with a decoction of Bat. pyoryanoum, or else the plants were grown in a nutritive solution to which the same bacteriun was added. After varions intervals portions of the leaves and stems were removed and examined hacteriologically. Only in those cases in which the plant was wonded were the bacteria found to have penetrated the tissues. The partienlar bacterium mentioned was selected owing to the fact that it is easily recognisable by its colouring matter.

Destruction of Non-nitrogenous Organic Substances by Bacteria. \| -O. Emmerling has compiled a summary, which is not exhaustive, of recent work on fermentations. These are arranged moder six headings :-

[^136](1) fermentations accompanied by oxidation ; (2) lactic acid fermentations; (3) fermentations yielding mucilage ; (4) butyric acid fermentations; (5) fermentation of cellulose ; (6) partly unexplained fermentations. The fermented snbstances considered are carbohydrates. Each section comprises an enumeration of the more important organisms, with a short account of their characteristics, and the subsidiary products of the fermentations. The economic aspect of lactic fermentations is considered in brief. While mainly intended for chemists, the book is also adapted for those interested in the subject from a physiolorical standpoint.

Root-tubercles of Medicago denticulata and other Leguminous

 Plants.*-G. J. Peirce has examined the origin, morphology, and structure of root-tubercles, especially on the Bur Clover (Medicago denticulatet). He finds that the tubercle bacteria enter a root-lair by softening or dissolving a small portion of the wall. There is no evidence that they usually enter throngh broken root-hairs. The proportion of root-hairs infected to the number formed is small; in one case computed to be 1 in 1000. The infection thread grows fairly straight throngh the cortical parenchyma to the layer of cells next ontside the central cylinder of the root. The tubercles arise endogenonsly from the same layer as the lateral roots. We may therefore conclade that they are morphologically lateral roots; they are formed only as the result of stimulation by bacteria. The author asks whether lateral roots arise as the result of internal causes or external stimnli. The growth of the tubercle is apical, the danghter-cells of a bowl-shaped terminal meristem constituting the growing part of the tuberele. There is little or no secondary growth in thickness. Tubercles are largest and most mumerons near the surface of the soil. It is possible that peremial Leguminose form few if any tubercles after their roots have grown deep into the soil.The presence of bacteria in the cells of a tubercle prevents the infected cells from forming starch. Uninfected cells do not attain the size usually reached by infected cells: the larger size of infected cells is due to increased pressure, probably also to greater irritation. The bacteria canse the degeneration and almost complete destruction of the nuclei of the cells in which they occur. The infection strands grow definitely, chemotropically, toward the danghter-cells formed by the tubercle meristem, and seem also to grow definitely toward the melei of the cells into which they penetrate. Infected cells soon lose power of division, though not of growth. The relation of the bacteria to their host-cells is parasitism, and it is difficult to moderstand how the leguminous plant as a whole can profit by an association which is injurious and finally destrnctive to the cells in which the bacteria occur. Intercellular spaces ocemr in the tissnes of root-tubercles: and even if they did not it wonld not be necessary to assmme that the bacteria live anacrobically therein, since the tubercle-cells do not live anaerobically.

Intracellular Toxin of the Typhoid Bacillus. \dagger. . Macfadyen and S. Rowland conclude that the typhoid bacilns contains within itself an

[^137]intracellnlar toxin. Organisms grown on ordinary beef-broth agar were, after washing, disintegrated in a mechanical contrivance at $-180^{\circ} \mathrm{C}$. When the disintegrated mass is freed from whole bacilli (if present) and from other suspended insoluble particles by centrifugalisation, an "palescent flnid remains which on inoenlation into animals in small doses invariably proves toxic or fatal. The anthors had previonsly shown that the filtrates from cultures of bacillns on the actual intracellular juices of organs and tissues obtained in a fresh condition from the ox or calf, did not exhibit toxic power. Hence they conclude that the poison is intracellular and not extracellnlar.

Antibodies of Spores of Bacteria.* - W. Defalle finds that the injection of the spores of bacteria into the animal body results in the formation of an antibody in the serum of the animal. It was shown that the formation of this antibody was entirely due to the absorption of the spores as such, and not as the result of their germination.

Leprosy Bacillus. \dagger - The research of W. W. I wanhow, who experimented chiefly mpon dors and gninea-pigs, shows that, in spite of the rapid phagocytosis of leprosy bacilli injected into the peritoneal cavity, the bacilli are vers mumerous, and for the most part quite unaltered eight months after injection. At the end of one month, the bacilli are also fomed to oecur with more or less regularity in the interual organs, e. g. liver, spleen, kidneys, \&e.

Putrefaction of Meat. $\ddagger-$-After a brief historical survey of the 'phestion, Tissier and Martelly give an accomnt, in considerable detail, of the methods employed by them in their research.

Thirteen species of bacteria were isolated, and a description of each, with an acconnt of its action upon the constitnents of meat, is given. Of the thirtecn speeies isolated, five are new. The organisms gromp themselves naturally into two classes, viz. those attacking both the carbohydrates and proteids of the meat, and those attacking the proteids alone. Organisms of the former class bring about the first stage in the putrefactive processes, the sugar, as such, being destroyed, and the attack upon the proteids begun. This stage is followed by that in which the action upon the albumin and its derivatives is completed by the purely proteolytic lacteria of the latter class. The anthors find that the species most potent in bringing about the putrefactive changes are Bacillus putrificus coli, Micrococtus flavos liquefaciens, and Bacillus bifermentans sporogenes, the latter being one of the new species.

Bacteriology.s-The section Bacteriology (R) of the International Catalogue of Scientific Literature appeared early in the year. Dr.J. W.H. Eyre is the referee for the volnme, which contains sit pages. The first part consists of an anthors catalogue, the second of a suloject catalogue. The subject-matter is snbdivided as follows:-(1) Cieneral, including Philosophy, History, Periodicals, Reports, Bibliography, Text-books,

* Ann. Inst. Pasteur, xvi. (1902) pp. 756-74.
\dagger Tom. cit. pp. 705-33 (2 pls.). \ddagger Tom. cit., pp. 865-903.
\$ § International Catalogue of Scientific Literature. First Annual Issue. R. Bacteriology. Royal Society of London, Deeember 190‥

Nomenclature, \&c. (?) Methods and Apparatns. (:i) (ieneral Bacteriology with the subdivisions Morphology, Classification, and Physiology. (4) Special Bacteriology with subxlivisions Bacteria, \&e. in relation to non-living surroundings, and Bacteria in relation to higher organisms. The latter are considered as (a) Bacteria not known to be pathogenic, (b) Pathogenic Bacteria; the second heading comprises the sections Immunity; Infections diseases : General ; Infections diseases : Local ; Diseases in different classes of animals ; Diseases in phants due to microorgamisms.

At the end of the volume is a key to the ablreviated titles of the journals, and at the begiming the schedules and indexes are given in English, French, German, and Italian.

Bacteria in Daily Life.* - Mrs. Perey Frankland's hook puts in a handy and readable form an account of the part phayed by bacteria in the economy of daily life. The treatment is popular but seientific, technical terms are avoided, and it is a book whith shonld help much towards the removal of that indifference to and ignorance of the importance of "germs" which is so characteristic of the ordinary person. 'The first chapter, 'Bacteriology in the Victorian Era,' gives an excellent résume of the birth and subsequent progress of this branch of hiology. Starting with the amouncement by Caignard Latour in 18:37, that the spherules of beer-yeast were a living, not a dead chemical substance, the anthor indicates the chief directions in which advance has sinte been made, and mentions a few of the many names-Pastemr, Robert Koch, Lister, and others, who have been associated with the progress of the science. 'What we breathe,' the title of the second chapter, emphasises the importance of fresh air and ventilation, and describes how germs of tuberculosis and other diseases are distributed with the dust. The next, 'Sunshine and Life,' is an interesting resmmé of a great deal of work which goes to show the efficacy of bright smoshine as a germ-destroyer, and also as a modifying agent of the activity of the organism. The text for 'Bacteriology and Water' is found in the outbreak of cholera at Hamburg and Altona in $18: 2$, and shows very clearly the relation which obtains between a pure water-supply and a low death-rate, and at the same time, the ralue of the sand filter-bed. 'Milk Dangers and Remedies' gives a vivid account of the backwardness of our own folks as compared with Americans and Continental nations. "So strons is the prejudice amongst our neighbours across the Chamel against using moboiled milk, that in Leipzig and other cities in (iermany endeavoms have been made by charitable and other societies to encourage the use of sterile milk amongst the poorer classes, while it has heen stated that the introduction of Pasteurised milk anong the poor of New York city has done much to reduce the high rate of mortality amongst infants during the hot summer months." The relation of Jateria to extreme cold and the remarkable powers of resistance possessed ly some of them is described in the chapter, 'Bacteria and Iee.' 'The last chapter, 'Poisons and their prevention,' deals with the interesting and important subject of toxins and antitoxins.

[^138]
MIICROSCOPY.

A. Instruments, Accessories, \&c.*

(1) Stands.

New "Arrangement for avoiding Injury to Preparations when Focussing with High Powers. \dagger - A. Bourgnet's contrivance for this

Fic. 37.

Fig. : 8.
purpose consists of a special tube-funnel and a stop for limiting the descent of the Microscope-tube. The funnel (entonnoir) is that upper part of the objective-mount which does not contain a lens, and is here

[^139]made of a special shape, being composed of two separate pieces, dand b. (fig. :37), one within the other, instead of one single piece. The upper piece A bears above, as nsual, the umiversal serew-thread for securing the objective to the revolver or Mieroscope-tnlue ; below it tapers, conewise, for receiving or retaining in its lower part the other piece B. The latter is formed of two cylindrieal parts of unermal diameter fitting exactly into the conical part of A ; it bears on its lower part a serewthread, on to which the objective system L is to be screved. A very weak spiral spring R operates between the lower face of the diaphragm I) and the upper part of the shonlder of B. The pressure of the spring keeps B and A in close contact by their conical shonlders. IB projects 5 mm . (exclusive of the threaded part) below A. In order to facilitate the serewing-on of L_{1} and prevent useless rotation of B, a vertical groove is eut in either A or B , in which a pin secured to the other engages. If, in the action of focussing, the tube is lowered too far the preparation will bear only the weight of the objective and will, by the operation of the spring, be relieved from further pressure. The stop system, which is shown in fig. :38, secures that the tube shall not be lowered beyond a certain safe limit, which should he selected with regard to the highest power of the operator's series. 'This stop is merely a serew V applied to the side of the rackwork, and its head comes into contact with the upper part of the limb when the tube is at the assigned depth. To exactly determine the position of V the micrometer-screw is fully racked down. Then the strongest objective, previonsly provided with a sliding fumnel of 5 mm . range, is serewed on and the trbe is then racked up matil the lower extremity F of the objective is exactly on a level with the upper surface of the stage $\mathrm{P}^{\prime} \mathrm{P}^{\prime}$. The point where the rackwork emerges from the limb is V.

Modern Fine Adjustments.* - W. Forgan lays down the varions (pmalities essential to a good fine adjustment and disensses some thirtyfour different types. Some of these types are of historical interest only ; others exemplify the different constrnctions adopted by the best-known modern makers of all comntries. He conelndes by summarising the types before the public as three:-(1) The Powell and Lealand; (\because) the Zeiss ; and (: $\left.{ }^{(}\right)$the Watson Edinburgh Student's Mieroseope.

(2) Eye-pieces and Objectives.

Eye-piece Lens Interval as arranged for Achromatism. \dagger-.J. Hunter illustrates his remarks on this subject by reference to fig. :3!, which is the double-lens achromatic eye-piece of a telescope. The lenses are plano-convex. The points A B are the optic centres ; CD the planes of the flat sides; $0 \times$ the posterior focal centre (cardinal points) of the field and eye-lens respectively; the anterior focal centres coincide, in this kind of combination, with the optic centres. The author points out that various writers of high mathematical repute have varionsly estimated the separation interval as DC, AC, or AB; XO does not appear to have been selected by any writer. He himself prefers 10 .

[^140]He found that when a pair of lenses of the same glass were placed experimentally at such a distance apart as to give the best achromatic

Fig. 39.
image, that the valne of $\mathrm{A} O$, so oltamed, agreed with the valne of d calculated from Airy's more complete formula for achromatism, viz. :-

$$
l=\left(f_{1}+f_{2}\right)\left(\because-\frac{f_{1}}{u}\right)^{-1} ;
$$

where $d=$ distance between the lenses : $f_{1} f_{2}$, the focal distances of field and eye-lenses respectively ; u, the distance between the field-lens and the centre of the objective.
(4) Photomicrography.

New Device for Stereoscopic Photomicrography.*--F. E. Ives has recently made a one-plate-one-exposure stereoseopie photomicrographie

Fig. 40.
camera which is interchangeable with his single eamera on the arjustable base. \dagger It consists of a light telescopic box camera for plates :bl by 6 in., provided at the front with a small prism-box containing three equilateral prisms so disposed as to divide the light at the eye-point above the eyepiece of the Microscope, and project the divided rays upwards to form the two stereoscopic images. Fig. 40 shows the parts drawn to scale.

[^141]A is the camera, B B B^{\prime} are the prisms, C is the Mieroscope-tube with objective and low-power ere-piece, D is the object-slide, and the dotted ines show the path of the axial rays from the back of the objective. The author considers that it is much better to divide the light, in this manner, at the eye-point than to divide it, as is gencrally done, at the back of the objective. If a lens of the focal length of the camera be added as a cap for the eye-piece, the camera can be used without even refocussing, in the fashion of the author's previous instrument. The prism-hor hats a lateral fine adjustment by screw on the camera front,

Fig. 41.
in order to readily set it, so that the apex of the small prism shond exactly bisect the circle of light at the eye-picee. The negatives prodnced in this camera are ready for printing from, no transposition of images being necessary. Fig. 41 shows the stereoscopic camera used on the adjustable base, as recently improved. The combination can be adapted to the Microscope at any inclination and brought into aetion in a few seconds ; and, after exposing, it is removed as a rigid whole by a single rectilinear morement of one hand.

New Upright Photomicrographic Apparatus.*-In designing his apparatus J. A. Terras has studied the convenience of the operator. As

[^142]will be seen from fig. 42 , the arrangement practically comprises a Van Heurck camera, in which the solid body has been replaced by a conical bellows, and the limbs elongated sufficiently to make the instrument completely independent of other supports; while the Microscope-table has become an integral past of tho camera, and is lowered to such an

Fig. 42.
extent as to allow the operator to stand comfortably on the floor. This camera-stand is placed on the floor, close to the laboratory table. An approximately parallel beam of light is thrown across the lower shelf of the instrument from an ordinary optical lantern ocenpying a low independent stand, and from which the projection front has been removed. The most satisfactory light-source was found to be the oxy-hydrogen jet, but an incandescent gas-bumer is good for at least the lower powers. The total height to the focussing screen is 46 in . but could be varied to suit different observers. From the eye-piece to the sensitive plate is 24 in . The top is a square of 12 in . side with a centre fitting for a April 15th, 1903
half-plate dark slide A. B is a pair of light brass chains which engage with hooks on the opposite side of the frame, and by which the camerabellows may be supported when not in use. C is the brass union between the eye-piece and the bellows ; D, two guides into which the base of the Microscope fits.

Herschel, Sir W. J.-Colour Photography.
[Gives a sketch of Ives' and Sanger Shepherd's methods.]
Brit. Journ. of Plotog., July 12, 1901, pp. 439-41 (3 coloured pls.); Ann. Rep. Smithsonian Institute, 1901, pp. 313-6.

(5) Microscopical Optics and Manipulation.

Leiss' New Crystal Refractometer for the Determination of the Refractive Index of Large and Microscopically Small Objects.*-This instrument, designed by C. Leiss, is intended to apply to small crystals, as well as to mincral plates enclosed in thin sections. It may be considered as an improvement of the refractometer of C. Klein.t Two essentials of construction are :-(1) The association of the instrument

Fig. 43.
with a Microscone ; (2) the stopping-out of all distmrbing light. The Microscope (or telescope) is shown in fig. 43; for convenience of observation it is made with an elbow. $\mathrm{O} b$ is the objective whose focal plane is marked X ; Oc is the single-lens ocular ; P , the totally reflecting prism : N, a nicol which can be inserted at pleasure and can be rotated by a small knob; J is the iris diaphragm placed at the Ramsden circle of the ocular ; L is an observation lens, as recommended by Czapski and Pulfrich, formed of two lenses, adjustable in a sleeve and, by means of a hinged arm, quickly applied to the iris or removed. The lens c in front of objective $\mathrm{O} b$ is the well-known correction lens, which parallelises the beams emergent from the hemisphere, The application of the loup I makes the telescope into a Microscope of small magnification, and with it the preparation can be viewed not only from above (through the air) hat also from below (through the hemisphere). A proper selection of lenses enables this to be done without special correction or change in the adjustment of the Microscope. When the loup L is removed, the telescope gives a magnification of $1 \frac{1}{4}$; when the loup is applied the

[^143]Microscope magnifics 10 diameters. The Microscope having been arranged, the preparation is moistened with some strongly refracting liquid and hand-centred ; the iris rotated to cut off all superfluous light so that only the preparation to be measured is visible through the Microscope. Whether the olject is viewed from alove or below it is well to illuminate it with the ustal mirror. When the loup is remored the limiting angle is viewed with the telescope.

Fig. 44.
The general appearance of the instrument is shown in lig. 44. In the stage-plate, carried on a pillar set on the horseshoe foot, is a rotatory horizontal circle gradnated in degrees. Above, it bears a perforated prolongation on which the hemisphere H is situated. The screws z and j respectively centre and adjust the hemisphere. $S p$ is the mirror for the under illumination. In the tube P , just above the mirror, is the nicol polariser adjustable, by means of its sleeve, in the three positions of $0^{\circ}, 45^{\circ}, 90^{\circ}$. The vertical circle V, on which the telescope (or Microscope) is affixed, is graduated into half degrees, and by means of
a vernier lens can be read to minutes. The graduation of the circle is from 0° to 100°; but there is a mark on the circle which must coincide with the vernier-zero when the Microscope is to be vertical. The micro-meter-serew MI has a pitch of $0 \cdot 5 \mathrm{~mm}$. ; and its drum is, for dispersion measurements, divided into 150°.

Michelson Echelon Diffraction Grating.*-This apparatus consists of a series of clear glass plates, each 10 mm . thitk, overlapping in such a way as to form a series of "steps" eath 1 mm . wide. The plates are all optically worked and should be in perfect optical contact; there may be fourteen or more monted in a frame. A heam of parallel rays transmitted through the series of plates is, therefore, retarded by $n t \mathrm{~mm}$., where n is the number of plates and t their thickness. On emergence the rays are in a condition to interfere. Though the echelon can be used with almost any form of spectroscope, a special form known as the "Constant Deviation Spectroseope" is the most convenient; the chief advantage of which is that neither collimator nor telescope is ever moved, the echelon being rotated as required. Spectra of various orders can be obtained in this way and are remarkable for their brilliancy. Nmmerous pratical details and other information are furnished.

Visibility of Ultra-Microscopic Particles. \dagger-In the conrse of an optical investigation of various shades of ruby glass, H. Siedentopf and R. Zsigmondy devised a method of observing small particles of gold which closely approach molecular dimensions, and thus extending our range of molecular vision very considerably. The ruby glasses, examined by the best ordinary Mieroseopes, appeared perfectly homogeneous. But the anthors reasoned that if the gold particles imbedded in the glass were at such distances apart that a Microscope conld resolve them, they conld he made visible even thongh their size shonld be a small fraction of the wave-length of visible light. The only condition was that the product of the specific intensity into the surface of the lominous particles and the sfuare of the sine of the effective angle of illumination should be greater than the inferior limit of the sensitiveness of the human eye. The problem is thus reduced to that of the visibility of a fixed star. What is seen is, of course, a diffraction dise, and that is all we can hope to see, lot the authors indicate a means of determining the true size and weight of the particles seen.

It is essential that all disturbing side-lights should be avoided. The authors threw a beam of smolight through a condenser on a slit 0.05 to 0.5 mm . Wide, and an image of the slit was produced in the field of vision by a telescope lens and a collimator with a reduction of 36 diameters. The diffraction dises seen in the ruby glass had an average apparent diameter of 1 mm ., while their real diameter, calculated from the quantity of gold present and the number of particles counted in unit volume, was $0 \cdot 02 \mu$ on the average. This gives a magnification of 50,000 diameters. The utmost limit to which the magnification can be pushed by this method is about 150,000 diameters, or $6 \mu \mu$. The average diameter of a molecule being $0 \cdot 6 \mu \mu$, it cannot

[^144]be seen, even as a diffraction disc, unless its specific luminosity were ten times that of the solar molecnles, or the sensitiveness of the eye were greatly increased. The cummlative effects used in photography may be resorted to, but the authors do not mention that possibility.

B. Technique.*

(1) Collecting Objects, including Culture Processes.

Method of Detecting the Presence of Bacillus coli communis in Shellfish. \dagger - In an article on the bacterioscopic diagnosis of sewage pollution of shellish, E. Klein describes the method he adopted for detecting the presence of B. coli commumis in cockles and oysters. Of each batch of cockles, $1 \geq$ to 24 individuals were examined, and of each batch or sample of oysters, 10,12 , and sometimes 16 or 18 individuals. In all cases the shell of the fresh and living molnuse was thoronghly brushed with a clean brnsh under the rmming tap; then it was dried with clean cloth, opened with sterile instrment, and with the juice and liquor within the shell, enltures were establisherl. Of each of six or cight oysters, about $\frac{1}{5}$ cem. of this liquor was added to one MacConkey tube and the same amome to one lactose tube; of further two, sometimes four, oysters, $\frac{1}{5}$ e.cm. of this liquor was added to each of two, or in some cases fom, phenol-broth tubes, or in lien (in the earlier analyses) abont three big drops of the juice of each of two animals to establish two litmus-glucose-agar surface plates. Next day, that is, after twenty-four hours' inculation at $: 37^{\circ}$ ('., the necessary subeultures were made from the original tuhes and plates in order to demonstrate the presonce of B. coli commumis ; streak and shake gelatin cultures, MacConkey and lactose-pepton tuhes, litmus-milk, ordinary broth (with and withont nentral-red), litmus, lactose-phenol-agar plates, \&c. From the turbid phenol broth also microscopic specimens stained by Gram's method were made in order to detect the streptococei. Cultures on solid media may also be employed for their detection.

Bosse, B.-Der Deyckesche Pepsin-Trypsin-Agar ein Nährboden für Diphtheriebacillen.
 Centralbl. Bult., I ${ }^{\text {te }}$ Abt. Orig., XXXIII. (1903) pp. 471-9.
 Brongersma, S. H., \& Th. H. Van de Velde-Cultivation of Gonococcus on
 "Thalmann-Agar."
 [Observations confirming Tlialmann's results.]
 Sec this Journal, 1900, p. 613.

(2) Preparing Objects.

Fixation of Blood-Films and the Triacid Stain.t-E. S. Nutting has used for some time past Merck's methyl-alcohol for fixing bloodfilms. The preparations are treated with the reagent for three minutes, and then with the triacid stain for five minutes. Thengh the results

[^145]are not so brilliant as when the films are fixed at a temperature of $150^{\circ} \mathrm{C}$., they are generally extremely satisfactory.

Simple Device for Carrying Minute Objects through the Grades of Cedar Oil and Paraffin.*-C. S. Gage transfers from one grade of cedar oil and paraffin to another by inclosing the object (pollinia of Asclepias) in little bags, made by bringing together the four comers of a square (1.5 in . by 1.5 in .) of cheese-cloth and fastening them by one or two turns of small copper wire. One end of the wire is left about one inch long and hooked at the free end. The hags ean be suspended by the hooks in the bottles of oil and paraftin and thence transferred from one to another. When the imbeding stage is reached, the bags are cut from the wires, opened in the melted baraffin, and the pollinia distributed as desired. By this device excessive handling is avoided.
(3) Cutting, including Imbedding and Mierotomes.

Jung's New Student's Microtome. \dagger - The frame g of R. Jung's new pattern student's microtome (firs. 45 and 46) is fixed to the table ly means of a serew-clamp K n. To the upright piece a which moves on tro screw-points $s s$, are attached the handle H and the knife-

Fig. 4.
carrier t with its clamping jars a and b. 'To the base of g are fitted the micrometer-serew m and the tube C, which serves as sleeve for the objeet-holder and the freezing apparatus. The instrument can be used

[^146]for cutting sections of fresh tissue without imbedding, of tissue frozen by means of ethyl chloride, and of material imbedded in paraffin and celloidin.

In fig. 45 the instrument is shown with ratchet and pawl adjustment, with clamp for paratfin block, and apparatus for freezing with

Fig. 46.
ethyl chloride. In fig. 46 the instrument is shown with obliquely placed knife, the position adapted for cutting celloidin sections and fresh hard objects. The apparatus is well supplied with the accessories necessary for fixing and holding the objects to be cut, and knives suitable for sectioning according to the method of imbedding. Full directions are given for manipulating the machine, how to set and strop the knives, and the best way to fix the knife for cutting.

Sectioning Fresh Plant-Tissues.*-N. B. Pierce presses a small piece of leaf or other like tissue between two flat cakes of paraffin, each being 20 mm . long, 14 mm . wide, and :; mm. thick, taking care that the margins of the blocks coincide. A heated scalpel is then run round the edges of the blocks so as to melt them together where touched. The block is then cooled in water until it is sufficiently firm to be fixed to the microtome block and trimmed in the usual manner. In this way excellent sections, 5μ thick, can be obtained of perfectly fresh tissue.

Improvement in Reichert's Sliding Microtome. \dagger - J. Starlinger flescribes this new arrangement, which is clearly recognisable from fig. 47. It concerns the mechanism of the knife-slide and is intended to make it independent of the direction of gear rotation. Hitherto, the windlass H and chain have been in intimate connection, and every

[^147]rotation of the former produced a corresponding movement in the latter. Now, between these t'sere are placed a larger (b) and two smaller toothed wheels (h, i), as well as another toothed segment-piece l ex-

centrically connected with b by means of the lever e. The wheel \bar{b} engages with H, and i engages with the chain-wheel a. The successive transmission of movement is through the toothed wheel b, the lever-
arm e, and the toothed segment d. By means of the excentrically applied lever the cirenlar movement of the segment d is converted into an up-and-down movement, which afterwards canses the formard and hackward rotation of the wheel i, and finally the forward and backward gliding of the knife. The connection of d and e is adjustable and can be regulated in such a way that the knife movement may extend over the whole, or part, of the slide-range. The author considers that the operator will find it an adrantage to be able to rotate the wheel H as he pleases, and that the application of motor-gear to the microtome will be facilitated.

New Method of Imbedding Small Objects.* - (x. Lefevre has devised a glass dish in which small oljjects, e.g. Echinoderm eggs, \&c. may be imbedded with great ease, and which prevents them from

Fig. 48.
scattering. The dish is a flat solid watch-glass with a shallow concavity, in the bottom of which is monlded a narrow slot-like groove or trough (fig. 48). The dish is 40 mm . sfinare and 9 mm . high ; the

Fir. 4!

Fig. 50.

Fic. 51.
diametcr of the coneavity is 34 mm . and its greatest depth $4 \frac{1}{2} \mathrm{~mm}$. The groove, which is slightly bevelled at the ends, is 11 mm . long at, the bottom, : 2 mm . wide, and 2 mm . deep. Fig. 49 shows a section

[^148]of the glass through the long axis of the groove, and fig. 50 a section across the groove.

When the objects are ready for imbedding, they are transferred to the dish filled with melted paraffin and kept warm on the bath, by carefully dropping them from a pipette into the groove. The bottom of the dish is then rapidly cooled. When thoroughly hardened the paraffin may be removed without difficulty, and it then has the form seen in fig. 51.

New Razor-holder and Adjustable Clamp for the Minot Micro-tome.*-S. H. Gage advises the use of a razor with a straight edge and back. This is fitted in a support which will allow nearly the whole length of the cutting edge to be used, and which consists of a piece of brass resting on the knife-support of the microtome. At right angles to the base-piece on which rests the back of the razor, is a vertical back-piece against which the side of the razor rests. This is slightly narrower than the width of the razor-blade, and a noteh is cut out of the middle where the sections are made. A front-piece is made like the back-piece, except that it is not fastened to the base-piece. This is put against the front side of the razor and the clamping screws of the regular knife-holder press against it.

As the Minot holders for the paraffin blocks have but very slight adjustment and are, moreover, somewhat expensive, short stove blocks were recommended to meet the requirements of a large class. But as these did not fit very often, an adjustable clamp was devised which will receive bolts differing 1 or 2 mm . in diameter. The stem which connects the clamp of the microtome has a long thread, and a solid piece is serewed mpon it. A loose piece like the first is then slipped over the screw, and finally a thomb-nut is put upon the end to press the loose piece against the fixed piece. Holes are bored in the clamp, half the cylinder heing in each. Either of these holes serves for the paraffin block holder. Snch a clamp surmonnts the difficulties of variations in the size of the stem of the paraffin holder.
Dixon, H. H.-Sectioning without Imbedding.
Bot. School T. C. Dublin, Aug. 1902.

(4) Staining and Injecting.

Staining Directions for Photomicrography. \dagger-F. Crosbic remarks that the stains selected in micrography often throw great difficulties in the way of the photographer, rendering it impossible to obtain really good negatives and necessitating the use of light-filters of great depth of colour, with a corresponding dimimution of actinic light-value and an increase in the length of exposure. When it is known that a specimen is to be photographed the stain should be specially selected with a view to this if possible. Hramatoxylin is suitable for sections. Gentian-violet gives the best results with bacteria. Fuchsin shonld be avoided. In fact, it can be ronghly stated that all stains on the blue or violet side of the spectrum answer best, and stains belonging to the red

[^149]end of the spectrum give the worst results. Golgi preparations give most satisfactory negatives. Sections stained with hæmatoxylin or other blue dyes are very actinic, and it is necessary to exaggerate the shadow thrown by them. This is done by colouring the light before it enters the condenser of the Microscope. with a light filter or colour screen of a tint complementary to the stain. In most cases the sereen sold by photographic dealers for landscape photography will be found sufficient: this is a light brown-yellow glass screen. Should the section be thin and the staining slight or faded, greater depth of colonr will be necessary in the light-filter. This can be obtained by staining a film of gelatin on a glass plate with picric acid, or, better still, by using a glass trough or hottle filled with a solution of lichromate of potassinm. The light-filter, however constructed, must he placed between the light and the Microscope. If a coloured glass screen, it is fitted into a frame which is hinged to the platform on which the Microscope stands, so that it ean be raised or lowered at discretion. To this trame is also hinged a sheet of volcanite, in order to cut off all light from the Mieroseope when manipulating the dark slide before and after making an exposure.

If possible, all preparations of a series to be photographed should be stained with the same dre, as this will simplify the calculations necessary to find the time of exposure, will suit one quality of plate and one light-filter, and will render possible an exact comparison of the various results and a correct relation of their several details.

Method of Demonstrating the Secretory Canaliculi in Suprarenal Capsules.* - C. Ciaccio fixed the fresh tissue for 15 to 20 days in Müller's fluid and then transferred the picces to a 1 p.c. solution of nitrate of silver for 24 hours. Better results were obtained by fixing in the following mixture :-Formalin $15 \mathrm{c.cm}$. ; bichromate of potassium 5 grm. ; distilled water 100 c.cm. Good preparations may he obtained by cutting sections with a razor from the pieces directly removed from the silver nitrate, but paraffin sections were necessary for demonstrating the more delicate details. The sections were stained with acid fuchsin, by Zimmermann's silver chloride method, and in other wars. The animals used were guinea-pigs, rabhits, and cats. By this procedure pericellular canals having intracellular ramifications were demonstrated.

Staining Diphtheria Bacilli and Cholera Vibrios \dagger - W. G. Sehanffler, in a preliminary communication, states that by means of Loeffler's methylen-blue, pyronin, and hydrochloric acid-alcohol, diphtheria bacilli from fresh membrane, or from cultures, stain easily and without the aid of heat. The poles appear red, while the rest of the cell-body is stained blue. Pure cultures of different races of choleria vibrios show on staining with methrlen-blne, decolorising with hydrochloric acid-alcohol and contrast-staining with dilute 1 yronin, dark granules in the bluish-red bodies.

New Method of Staining Flagella. \ddagger - E. Gemelli describes the following method for staining flagella. The cover-glasses are boiled in

* Anat. Anzeig., xxii. (1903) pp. 493-7 (3 figs.).
+ Allg. Med. Central-Ztg., 1902, p. 827. See Centralbl. Bakt., $1^{\text {to }}$ Abt. Ref., xxxii. (1903)p. (;87. \ddagger Centralbl. Bakt., $I^{\text {to }}$ A bt. Orig., xxxiii. (1903) pp. 316-9.
a solution consisting of 3 p.c. potassimm bichromate and sulphuric acid ($100: 5$), and after having been washed in water are kept in alcohol. When required for use they are picked up with horn-tipped forceps and flamed. The material used should be oltained from fresh cultures. The best are those which are solid, contain little salt, and are prepared with glycerin. A loopful of culture is placed on a watch-glass containing $5 \mathrm{c} . \mathrm{cm}$. of distilled water, and a drop of the suspension spread over the cleaned cover-glass. The corer-glass is then placed under a bell-jar and allowed to dry slowly with the aid of calcium chloride. For staining, two solutions are required : (a) potassium permanganate 25 cg ., distilled water 10 grm . (b) To a caleium chloride solution ($0 \cdot 75 \mathrm{grm}$. in distilled water 100 grm .) in the proportion of 20 to 1 is added a 1 p.c. solution of neutral red. The cover-glass is then laid in the potassium permanganate solution for 10 to 20 minutes, and after having been washed in distilled water is transferred to the neutral red solution for 15,20 , or 30 minutes, according to the kind of baterium dealt with. The cover-glasses are then washed, dried with blotting-paper, and mounted in balsam.

Staining the Reticular supporting Network of Malignant Neoplasms by Mallory's Method.*-P. G. Woolley recommended that sections should be ent from tissue hardened in Zenker's fluid and imbedded in paratfin. These are fixed to the slide in the usual way, and then the paraffin is dissolved off and the slide immersed in alsolute alcohol, 95 p.e. alcohol, 70 p.c. alcohol, then in water. Next, the sections are stained in a $1^{\frac{1}{0}}$ p.c. aqueous acid fuchsin solution for $2-.3$ mimutes and then washed in water. After this, the sections are treated for $5-7$ minutes with a few drops of 1 p.e. solution of phospho-molybdic acid. After again washing in water the sections are stained with a solution composed of anilin-blue 0.5 grm ., orange G 0.2 grm., oxalic acid 2 grm ., water $100 \mathrm{c} . \mathrm{cm}$. This is allowed to act for about 20 minutes, after which the slides are rinsed in water and then turriedly dehydrated with 95 p.c. alcohol. Finally, the sections are treated with a drop or two of anilin oil which is allowed to remain on until the sections are clear. It is then removed with blotting-paper, and the sections having been treated with xylol are mounted in balsam. By this method the finest reticular processes can be seen clearly and distinctly.

Staining Reactions of Proteid Crystals. \dagger-J. A. Milroy finds that albumin crystals, prepared ly the method of Hopkins and Pinkus, after treatment with trichloracetic acid have a selective affinity for acid as distinguished from basic anilin dyes. If, howerer, they are further treated with alcohol they become capable of taking up either acid or basic dyes. In the latter case the staining is to be regarded as a physical phenomenon, while in the former it is largely chemical.

Improved Method for the Microscopical Diagnosis of Intermittent Fever. \ddagger - Ronald Ross recommends the following method by which a thick film of blood is treated in a manner which does away with

[^150]the obscuring effect of the massed corpuscles. The method depends on the fact that the parasites adhere to the stromata of the containing capsules, after the hemoglobin has been washed out of the films. A thickish film of blood is spread on a slide over an area which can be covered by the ordinary slip. It is then dried in the air or over the flame. The dried film is then tovered with arpueons solution of eosin which is allowed to act for abont a purter of an hour. The film is then gently washed to remove the superfluous eosin and at the same time the hemoglobin. The film is then treated with a weak solution of methylenblue for a fer seconds. After washing the film it is dried and monnted in balsam. Prepared in this way the films show about twenty times the number of parasites as are found in preparations of the same blood made in the ordinary way.

Method for Demonstrating Nematocyst Cells in Hydra.*-E. O. Little puts living hydras in a Stender dish with a small amount of water. A boiling-hot mixture of saturated solution of sublimate in 70 p.c. alcohol is then poured into the dish. This kills the hydras in full extension. After washing several times in 70 p.c. alcohol, the animals are passed through 50 p.c. alcohol, 85 p.c. alcohol, and water successively, after which they are stained for 5 minntes in the following solution :-Methylen-blue 1 grm., Castile soap 0.5 grm., water $300 \mathrm{c} . \mathrm{cm}$. The animals are then passed hurriedly through the alcohols of the following strengths : $30,50,70,85,90,100$ p.c., then cleared in cedar or bergamot oil and mounted in balsam. The nematocyst cells are stained deep blue, all other cells are unstained ; exploded nematocyst cells do not stain.

New Method of Staining Bacterial Granules. \dagger - M. Ficker recommends a staining solution consisting of methylen-blue Höchst $1-10,000$, lactic acid 2 p.c. The solution is made by dissolving 1 grm. of methylen-blue in $100 \mathrm{c} . \mathrm{cm}$. of distilled water and mixing 1 c.cm. thereof with $100 \mathrm{c} . \mathrm{cm}$. of distilled water. To $100 \mathrm{c} . \mathrm{cm}$. of the last solution $2 \mathrm{c} . \mathrm{cm}$. of lactic acid are added. With this staining solution a fresh unfixed bacterial suspension, placed on a slide and covered with a slip, is treated by sucking the stain through with the aid of blottingpaper and repeating the process several times if necessary. By this procedure two or three dark blue granules appear, the rest of the bacterial cell remaining unstained.

Easy Method of Staining the Flagella of Bacteria. ${ }_{+}^{+}$-G. L. Valenti says that just as good results can be obtained from gelatin, potato and bouillon cultures, as from young agar cultures. The films are prepared from emulsions in the usual way, and when carefully dried may be kept for months before being used. The mordant used is a 20 p.c. solution of tamic acid in distilled water, and the staining solution Ziehl's fuchsin. The point of the method is to mix the mordant and staining solution. The film is just covered with the mordant, then three drops of the Ziehl's fuchsin solution are added. The cover-glass or slide is then heated, and after having cooled is washed with water, dried, and mounted in balsam.

[^151]Apparatus for Facilitating the Manipulation of Celloidin Sections. R. Hamlyn-Harris writes that anyone who has had experience in preparing, staining, and mounting a series of celloidin sections will have appreciated the difficulties of manipulation and of keeping each section in its proper order and of staining eath miformly. It was while considering this subject, and having to deal with an object, the individual sections of which had to be carefully momnted in suceessive order, that the apparatus (fig. 52) suggested itself to the writer's mind.

It will not be difficult to gather from the illustration that the apparatus consists of separate compartments, each of which represents a cell capable of holding one or more sections. These are handled either by a small brush moistened in 80 p.c. alcohol, or by an ordinary section-

Fig. 52.
lifter, and placed into each cell successively. The whole apparatus and contents can then be submerged in 80 p.c. alcohol until wanted.

By means of the handle the whole appliance can be taken out of one kind of fluid and placed in another without moving the sections from their respective cells. Care is needful that they do not get washed out of the partitions in the transfer from one fluid to another. This may be prevented by the use of a small brush, and should any section rise to the surface, it can be easily replaced in position. The body of the appliance is formed of onc piece of a non-corroding metal, while the bottom is made of brass. The diameter of the apparatus is $3 \frac{1}{2}$ in. ; the plate is $\frac{3}{16}$-in. thick and the partitions $\frac{1}{8}$-in. thick. Measured from the outside the height of the sides is $\frac{1}{8} \mathrm{in}$. and that of the handle $\frac{5}{8} \mathrm{in}$. The handle can be unscrewed and removed. In each compartment there is a perforation to allow the fluid to escape when the transfer is made from one fluid to another.

No further description is necessary as every microscopist will see at once the advantages claimed for the invention. It has been exceedingly useful to the writer and he hopes it may be of service to others. If the apparatus were made in a square form and if suitable glass vessels could be got to fit it, a greater advantage would result, as space for several
more compartments would thereby be gained. The appliance described possesses twenty compartments, but from experience I have found that this number is sufficient. Could some transparent snbstance, such as glass or mica, be used in its constrnction, so as to enable differentiation to be carried out under the Microscope, it would le a great boon, lout all attempts to get this accomplished have so far failed.

Dieterichs, K.-Mikroskopische Technik des Zentralnervensystems.
[A review of general methods, of speeial methods of staining nerve-cells, medullary sheaths, axis-eylinders, neuroglia, and nuclei.]

Żeitschr. angew. Mikr., VIII. (1902) pp. 225-36.
Ehrlich, P., R. Krause, M. Mosse, H. Rozin, \& C. Weigert-Encyclopädie der mikroskopischen Technik mit besonderer Berücksichtigung der Färbelehre. Parts i. and ii., with numerous illustrations.

Berlin and Vienna, 1903.
Grimme, A.-Die wichtigsten Methoden der Bakterienfärbung in ihrer Wirkung auf die Membran, den Protoplasten und die Einschlüsse der Bakterienzelle. Centralbl. Bakt., $1^{\text {to }}$ Abt. Orig., XXXII. (1902) pp. 1-16, $81-90$, 161-80, 241-55, 321-7 (2 pls.).

(5) Mounting, including Slides, Preservative Fluids, \&c.

Slide for Pond Life.*-S. E. Dowdy describes a convenient slide for studying the life-histories of aquatic microscopic organisms and pond life in general, similar in principle to Botterill's. It may be constructed as follows. Select a vulcanite cell-ring of small diameter and medium thickness, and cut it in half. Cement the two portions with gold size or coaguline in the centre of a 3 by 1 in . slide, so that a narrow channel is left on each side of the circle (fig. 5:). Pick out

Fig. 53.
a cell-ring of sufficient diameter to just encircle the other and rather thicker than the first one. Cement this down round the other and notch out the portions resting against the channels in the inner ring. A thin circular cover-glass which will just fit into the larger cell-ring completes the arrangement.

Fresh water can be put in on one side with a pipette and any excess drawn up at the opposite channel with a roll of blotting-paper. The cover-glass can be lifted easily by inserting a needle under it through one of the small openings. A slide of this description can be utilised also in bacteriological work for studying hanging-drop cultivations, excess of air, if necessary, being prevented by painting round the edges of the cover-glass with vaseline.

[^152]
(6) Miscellaneous.

Biological Laboratory Methods.*-P' M. Mell's text-book, though specially intended for the use of students in hiological laboratories, will be found extremely serviceable by workers with the Microscope in other hranthes of science. Its scope is highly pattical and the information is convered in clear and simple langune. The first three chapters deal with the Microscope, eve-pieces, objectives, and accessory apparatus. Then follow four chapters on the methods necessary for transforming a piece of soft tissue into its permanent condition of a stained and mounted section.

Much space is devoted to photomicrography, the apparatus and proeesses being deseribed in considerable detail.

The last chapters deal with the apparatus and methods requisite for bacteriology, bleaching, decalcifieation, injection and maceration, the polarisation of light and its application to biologieal investigations ; the work concluding with a copious supply of useful formula and tables, and an appendix on the arrangement of the laboratory and its furniture.

The volume is well got up, is of eonvenient size, and the illustrations are clear and frequent.

Counting the Red Corpuscles of the Blood. \dagger - C. A. MacMumn showed at the meeting of the Physiological Society on January 17, lantern slides illustrating how the counting of the red corpuscles can be done by photorraphing fresh films. The blood is diluted to half or to 1 p.c. in the Thoma-Zeiss lamocrtometer. Not only are the red corpuscles seen on the plate but also the rulings of the cell-slide. The most suitable power was found to be a $\frac{3}{4}$ in. objective and a Zeiss eyepiece No. t, with a 6 -in. tube-length. This method enables a permanent record of hlood-counts to be kept, and also to make the enumeration at any time. Of course, the Microscope and eamera are used in the vertical position.
V Fusible Metal Stopper for Test-tubes. + - F. Glage recommends "fusible metal" for sealing up test-tubes as they are cleaner than resin or paraffin. The alloy melts on boiling water and when heated orer the flame drops off like sealing-wax. If dropped on to a glass plate thin disks, about the size of a shilling, are formed. These disks are easily manipulated, and by the aid of a little heat made to fit over the mouth of test-tubes with great aceuraer.

Grevillies, A. Y.-Kcimapparat zur Erbaltung konstanter Fenchtigkeit im Keimbette während einer beliebig langen Zeit.
 Beil. Bot. Centralbl., Orig.-Arb., XII, (1902) pp. 283-92 (1 fig.).

Kacscil, O.-Neuerungen anf dem Gebiete der Desinfektion and Sterilisation.
Centralbl. Baht., $1^{\text {to }}$ Abt. Ref., XXXII. (1903) Nos. 24 and 25.

[^153]
PROCEEDINGS OF THE SOCIETY.

meeting

Held on the 18 th of February, 1903, at 20 Hanover Square, W. Dr. Henry Woodifard, F.R.S., President, in the Chair.

The Minutes of the Amiversary Meeting of the 21st of Jumary, 1903 , were read and confirmed, and were signed by the President.

The President said that before proceeding with the ordinary business of the Meeting he had to amnounce the death of a very old Fellow and past President of the Society, Mr. James Glaisher, at the advanced age of 93 . He then gave a sympathetic résumé of Mr. Glaisher's scientific career and of his comnection with the Royal Microscopical Society.

The List of Donations to the Society, exclusive of exchanges and reprints, received since the last Meeting, was real, and the thanks of the Society were rotel to the donors.

Lambert, F. C'., Bromide Printing. (8vo, London, 1902) ..
Mell, P. H., Biological Laboratory Methods. (8vo, London,
1902) $\}$

Smith, C. R., Enlargements, their Production and Finish. $\}$ (Svo, London)
Frankland, Mrs. Percy, Bacteria in Daily Life. (Svo, London, 190:3).
Geological Magazine, Nos. 413-464. (Svo, London, is98-190:)
Subject List of Works on General Science, Physics, Sumd,
Music, Light. Microscopy, and Philosophical Instruments in the Library of the Patent Office. (8vo, London, 190:
'Thirtietl Annual lieport of the Local Government Board,
1900-01. Supplement in continuation of heport of the $\}$
Medical Officer for 1900-01. (8vo, London, 190:3)

From The Publishers.
The Publishers.
The Publishers.
The Puhlishers.
Mr. F. Justen. The
Comptroller-General of Putents.
The Lieal
Government Board.

Mr. F. Orfeur exhihited an interesting old Microseope with apparatus complete, which appeared to be very similar to that known as Jones's Microscope of 1795 , and figured in "Carpenter." As the Society dil not possess an example of this instrument, Mr. Orfeur said he had much pleasure in presenting this one to add to their collection.

On the motion of the President the thanks of the Society were voted to Mr. Orfeur for exhibiting, describing, and presenting this Microscope to the Society.

The Secretary said they had received some material from Mr. Hilton, which had been collected at the North Cape by the light of the midApril 15th, 1903
night sun. This was offered for distribution amongst the Fellows of the Society, and portions could be obtained on application to Mr. Parsone.

The thanks of the Society were roted to Mr. Hilton.

The President said he had great pleasure in introducing Dr. A. W. Rowe, F.G.S., who had kindly consented to give them a demonstration "On the Photomierography of opaque objects, as applied to the delineation of the minnte structure of chalk fossils." Dr. Rowe had published some very important memoirs on 'The Zones of the Chalk,' and had examined it very carefully all round the coast from Beer Head, Devonshire, to Flamborongh Head, in fact wherever it was exposed, and he very strongly reeommended his published memoirs to the attention of the Fellows who take an interest in geology.

Dr. Rowe said he had been invited to come before the Society on that oceasion to demonstrate upon the sereen some of the possibilities of photomicrography, and as a means of exhibiting the structure of opaque objects of small size but possessing considerable details of a very instructive although very minnte character. As regarded photomicrography of transparent oljeets itself. most people now know something abont this, and if they did not practise it themselves they were quite conversant with the results of the process. Great attention had been given to it of late years, so that it might now he said to have become a finished art; optieians vied with one another in prodneing lenses and apparatus of the highest excellence, and the process had become not only greatly simplified, but capable of producing extremely beantiful effects. The photomicrography of opaque objects was, however, quite a different matter from that of transparent oljects, for thongh its broad prineiples seemed to be simplicity itself, as soon as they began to try it they would find that it was beset with difficulties quite unknown to those who had only practised transparent photomicrography. In the production of the photographs exhibited that evening, he had used ohjectives of varions powers from $1 \frac{1}{2} \mathrm{in}$. to 6 in . according to the size of the object or the details he wished to show, and in photographing some of these he used a long camera with a Zeiss' planar lens. As regarded light, there was considerable ehoice, lime-light, electric, acetylene gas, and others, bat he had ultimately fallen haek upon incandescent gas-light as being, upon the whole, the best for the propose. In practice, it was soon found that the anestion of success entirely hinged upon getting a good contrast of light and shade, the whole thing being in fact a matter of tricks of illumination. As regarded time of exposure, with a : $: 10 \mathrm{~mm}$. diaphragm, he found that a good picture conld moder favourable conditions be obtained in 20 seconds, but that this might extend to as much as $: 3$ or 4 minutes at the outside, for specimens which were not very white. He found that the light from the mantle of an ordinary incandescent gas-burner gave a good margin to work with, which was very useful in cases where the plate was under-exposed : mere speed was no object. In addition to the diffienlty in getting exactly the right position for the best effects of light and shade to be produced, a great olstacle arose from the fact that the objects to be dealt with were not flat, cansing considerable tronble both in the matter of focussing and of the incidence
of the light. As to the advantage of photomicrography over eye observations, every observer was aware that after a time the eye and the brain lecame fatigned, and the power of minnte observation was for the time being exhausted, whereas, with the photographic prints before them, there was no fatigue felt and the details conld be stndied with comfort. Then again, it helped the dranghtsman to understand what he was asked to represent, in a way quite impossible otherwise when he had to rely upon description alone; and further than this, the cheapness of this method of illustration was to most persons a very obvious adrantage. The preparation of the specimens of comrse required some amount of care, although chalk was perhaps not a very difficult suhstance to deal with. In treating comparatively minute objects he usually cut away as much as possible with a knife, and if he wished to get a fossil out whole, he underent it from both sides, mintil it was detached without fear of breakage, and then he got his dental engine to work, and in this manner cleaned away all that was not wanted.

A large number of photographs of varions fossils, prepared in the manner stated, were then shown npon the sereen with great brilliancy hy means of the Epidiascope, brief descriptive remarks being made and the chief points of interest indicated as the exhibition proceeded.

The President said he felt sure it was hardly necessary to ask them to pass a very hearty vote of thanks to Dr. Rowe for his most interesting and instructive commmication, and for the exhibition of the very beantifnl series of lantern slides shown on the screen, and photographs exhibited on the table. Dr. Rowe was what might be called an "allround " man : he goes ont to the different localities and finds the fossils, brings them home, works them out with his dental engine, then works at them further with the Microscope and the camera, publishes papers upon them, and also produces the results of his researches in the manner which they had seen that erening. The Society owed him a great debt for the very valuable communication which he had made.

A hearty vote of thanks to Dr. Rowe was then put and carried by acelamation.

Dr. Rowe said he thanked the President for his kind remarks, and the Fellows of the Society for the patient attention and the vote of thanks they had passed. It had been a great delight to him to attend the meeting, and to show them the results of the time whith he had spent upon this sulbject, much of which he feared had been taken from that when he ought to have been in bed.

The President said that the Meeting which was annonnced last month, was held at the Natural History Nuseum on Saturday the 14 th inst., when not a very large number of Fellows attended. 'This, however, he had been reminded might to some extent have been due to his snggestion, that if a large mmber came they might not all be able to hear. He hoped those who were present felt repaid for their trouble.

Mr. Vezey said that as one of those who attended on the occasion he should like to say that those who were present had a very delightful time. Dr. Woodward gave a most interesting description of the objects exhibited; he dealt chiefly with invertebrata, but he gave a sort of general
promise, that on some future occasion the visit might be repeated when be would give a similar deseription of the vertebrata. Mr. Vezey hoped that if such an occasion presented itself, a large number of the Fellows would find it possible to be present, and he assured them they would have a great treat. The Societr was greatly indebted to the President for his kindness in taking the tronble to attend at the Mnseum.

Mr. Wesché, as one of those also on whom Dr. Woodward's benediction had fallen, could heartily endorse Mr. Vezey's remarks.

The President reminded the Fellows that another visit to South Kensington was arranged for March 14, to meet at 2 p.m. at the Owen statue, when Mr. Carruthers would conduct them through the Botanical Department, calling special attention to the collection of Diatomaceæ, and to a wonderful series of unpublished drawings of Botanical Studies of great beauty and interest.

The following Instruments, Objects, \&c., were exhibited:-
Dr. Arthur W. Rowe :-A large number of Lantern Slides shown on the screen, and photographs exhibited on the table in illustration of his Lecture.

Mr. Frank Orfeur :-An old Microscope.
New Fellows:-The following were elected Ordinary Fellows:Messrs. Maurice Blood, Frederick Charles Luck, and David Powell.

MEETING

Held on the 18th of Margh, 1903, at 20 Hanover Square, W. Dr. Henry Woodward, F.R.S., President, in the Chatr.

The Minutes of the Meeting of the 18th of Felmary, 1903, were read and confirmed, and were signed by the President.

The List of Donations to the Society, exclusive of exehanges and reprints, received since the last Meeting, was read, and the thanks of the Society were roted to the donors.

From
$\left.\begin{array}{c}\text { Portrait of the President, from the original by Mr. Borought } \\ \text { Johnson }\end{array}\right\}$ The President.
Schulze, F. E.. An Account of the Indian Triaxonia. 'Translated from the German by R. von Lendenfeld. (Calcutta, 4to, 1:02)
Brearley and Ibbotson, The Analysis of Steel-Works Materials.)
(London, Svo, 1902)
The Author.

Encyklopädie der Mikroskopisehen Technik. こ vols. (Berlin\} and Wien, Svo, 190:3)
Braithwaite, Dr. R., The British Moss Flora. ['ait xxii. The Author.

Mr. C. F. Rousselet exhibited, for Messrs. Staley \& Co., a new pattern Microscope, manufactured by the Bausch and Loml Optical Co. specially for laboratory purposes. Mr. Rousselet remarked that

Messrs. Bauseh and Lomb had sent this new model of their Continental Microscope for exhibition. It seemed to be a very sulstantial, well made stand, with japranned horse-shoe base, and intended for use in the laboratories. It had coarse rack adjustment and a fine adjustment of the triangular bar form, with graduated head-screw. The stage was square and plain and had a vulcanite top and the usual clips which might with advantage be replaced ly a simple sliding bar.

The substage condenser was carried by a screw arm attached to the side of the stage, by means of which the whole can be swung out. The condenser was of the Abbe non-achromatic type, and had an iris diaphragm below the back lens, and also one above the front lens. The latter can only be useful when the condenser is removed and the mirror used without a condenser, and then it should be raeked down some little distance below the stage to be effective.

Below the condenser there was also a ring carrying a stop for darkground illumination, and a blue glass disk.

Mr. Pillischer exhibited a very old Microscope which had recently been sent to him for repair. It had a very peculiar form of stage consisting of three oval plates, having rectangular apertures moving exeentrically on the fixed stage, and he thought the Fellows of the Society might be interested in seeing it. He had not met with one like it for thirty years.

This stage was known as the "Tomes" stage. Mr. Charles Tomes (afterwards Sir Charles Tomes, F.R.S., \&c., Surgeon Dentist to the Middlesex Hospital) was the inventor and for some years it was very popnlar with medical men as an inexpensive and handy form of apparatns, especially for dissecting purposes. As far as can be traced it was first made about 1847, and remained popular for about ten years. This Microscope belonged to the late Sir William White-Cooper, Ophthalmic Surgeon to Her late Majesty the Queen, and has now been put in working order for the use of his grandson.

The President said they were to have that evening a very interesting. communication from Mr. J. W. Gordon on the Helmholtz theory of the Microscope. He thought it was possible that, although many people had some idea of who Helmholtz was, they might not know very much as to what his life's work had been, and he had therefore prepared a short account of this distinguished German philosopher, which he read as follows :-

Hermann Ludwig Ferdinand von Helmholtz (1821-1894).*

Originally a mathematician (by choice) he, by necessity, became a surgeon in the Prussian army, and contributed important papers to science from 1842 to 1894, the year of his death. Was Professor of Physiology at Königsberg from 1849 till 1855 , when he removed to the

[^154]University of Bonn; was Professor at Heidelberg from 1858 till 1871, when he was appointed to the Chair of Physics at Berlin. This, as well as that at Charlottenburg from 1887, he held till his death in 1894.

His inrestigations occupied the whole field of science. In 1851, he discovered and invented the "ophthalmoscope" which has been of inestimable service in medicine. It arose through his attempt to demonstrate to his class the nature of the glow of reflected light sometimes seen in the eyes of animals such as the cat. When the great ophthalmologist von Graefe first saw the fundus of the living human eye, with its optic disk and blood-vessels, he exclaimed, " Helmholtz has unfolded to us a new world!"

Helmholtz' contributions to physiological optics are of great importance. He investigated the optical constants of the eye, measured by his invention, " the ophthatmometer," the radii of eurvature of the crystalline lens for near and far vision, explained the mechanism of accommodation by which the eye can focns, within certain limits, discussed the phenomena of colour vision, and gare a hminons account of the movements of the eyeballs so as to secure simgle vision with two eyes.

In particular he revived and gave new force to the theory of colourvision associated with the name of Thomas Young, showing the three primary coloms to he red, green, and violet, and he applied the theory to the explanation of colour-blinduess.

His great work on Physioloyical Optics (1856-66) is by far the most important book that has appeared on the physiology and physies of rision.

Mr. J. W. Gordon said that from its length and character it would be impossible for him to read the paper in extenso, lont he thought that as proof copies of it were in the hands of many persons present at the Meeting they would be sufficiently acquainted with its contents to make it easy to follow the argument. He therefore proposed merely to give a summary of its contents. In the first place, it gave a very rough sketch of the theory of diffraction, and proceeded to consider this from a somewhat new point of view, expanding the Helmholtz theory from this position. The paper then went on to deal with the Helmholtz theory, starting with the proof of the "sine law "given in Helmholtz' own paper, in pure mathematical form. This, Mr. Gordon had endeavomred to set forth under the guise of an experiment. Having proved the sine law, Helmholtz next proceeded to make dednctions from it, and in particular to draw the inference that the resolving power of even the most perfect optical srstem must necessarily stop short at an object which was less than half a ware-length of the light br which it was perceived. Mr. Gordon then in the course of a speech of one hour and twenty minutes set ont the points of his own paper, illustrating his remarks by diagrams shown upon the screen and by drawings on the board. Several Microscopes upon the table, to which a mechanical arrangement of moving screens had been adapted, were employed in further illustration of a portion of the subject.

The President said that the way in which the Fellows of the Society had received this communication made it quite unnecessary to ask them for any expression as to their appreciation of it. Those who had seen
the paper would be still better aware of what an elaborate work Mr. Gordon had undertaken, and the great pains he had been at to bring this subject completely hefore them.

Prof. Wright, being ealled upon by the President to make some remarks upon the subject before them, said he feared he had nothing of any importance to add as he himself had sat at Mr. Gordon's feet as a learner for a long time past ; but there were certain points alluded to in this paper which struck him as being of direct praetical interest to all professional workers with the Microseope. The dimensions of the beam which entered the eve appeared to be of great importance in connection with ocular fatigue. Where the beam was large enough to oceupy to a large extent the opening of the iris-and this was the case when a wide-angled objective and a low eye-piece were used-a person could work all day long with the Mieroscope without fatigue. There was no more ocular fatigue under these conditions than in looking at objects in the ordinary way with the maided vision. Where, on the contrary, a narrow-angled oljjective and a high ocular were employed, giving a very narrow beam, fatigue was very soon felt. Snperadded to ocular fatigue associated with the employment of a narrow beam, there was of course the inconvenience resulting from obtruding spots in the eye-piece and muser volitantes in the eye. The next point which he felt it important for them to realise was the fact that the beam which comes out of the ere-piece to enter the ere is inversely proportional to the magnifying power emploved. The initial size of the transmitted beam depended of course on the aperture of the leam which was received into the objective. The wide-angled oljeetive derived much of its importance from the fact that it furnishes the large initial beam which was essential where high magnification was desired. The progressive diminution of the beam as greater and greater magnifieation was achieved hat seemed to be of the nature of an insuperable diffieulty. [This was illustrated by a diagram on the board, showing that the opening out and closing down of the terminal heam was by an action similar to that of the lazy tongs, rigidly governed by the opening out and closing down of the initial beam.] Mr. Gordon by his device of the interposed screen had, so to speak, unhinged the lazy tongs, at the joint where the links became unduly narrow, or if we choose to put it so, bent out the limbs of the joint. "He had in this way secured to us a wider emergent beam. The last point to which he desired to refer related to the importance of the step that was taken by Mr. Gordon when he cut himself loose from the ordinary optical diagram representing only the axial beam, and took into consideration the case of beams traversing the objective obliquely, and Mr. Gordon had satisfactorily shown by the demonstrations now on the talle before them that the elimination of these oblique rays in the case where they were cut down by the edge of the postobjective diaphragm, was a matter of enormous importance to the achievement of critical definition. In ordinary bacteriological workcarried on as it usually was with a wide-angled oil-immersion objective, and a condenser of a somewhat similar aperture, used without the immersion fluid-the conditions were in point of fact conditions that allowed the oblique beams from the periphery of the field to pass
through the objective unmutilated. For the beam which emerged from the radiant point in the object was, under the specified conditions, always narrower than the aperture of the objective. Being such, it passed through unmutilated, even when it was disposed obliquely to the asis of collimation. As very clearly pointed out by Mr. Gordon, the marginal zone of unoccupied objective, which Mr. Nelson has shown to be essential to critical definition, allows room for the unmutilated passage of oblique beams.

Mr. Gifford said he should like to have some further information as to the oscillating screens mentioned by Mr. Gordon and exhibited in the room. Mr. Gordon spoke of three oscillations per second, and he should like to understand what these were and what was the amount of the displacement. So far as he conld judge, the effect seemed to be due not only to the number of vibrations per second, but also to the distance travelled by any given point on the screen at each excursion to and fro.

Mr. C. Beck said he had the advantage of seeing this apparatus working quietly a few days before, and in case there might be any difficulty in using it to advantage in a crowded room, he should like to mention that he examined a slide of angulatum with the screen in action and with the screen removed, and found that the definition with the screen was enormously better with a high-power eye-piece than it was without the screen. It was quite possible with the oscillating screen to see the hexagons clearly. He thought extreme credit was due to Mr. Gordon for thinking ont such a plan, which was not obviously a result of Prof. Helmholtz's paper, but was a matter upon which an enormous amount of thought had heen expended. He must, however, protest against Mr. Gordon's elaboration of the sine condition. It might be a prejudice of his, hut he had always thought it ouly applied to images on the axis of the system, and that it was an impossibility to produce an extended collinear image with wide-angled pencils as a tangent condition was essential to this result. It had also been suggested to him that it was Prof. Abhe who was responsible for the sine-law before it was emmeiated by Prof. Helmholtz, and if this was so it did not seem quite fair to Abbe to give the whole credit to Helmholtz.

Mr. Conrady thought this was evident from the postscript of Helmholtz' paper, of which he gave the following translation :-
"The above paper was completely finished and ready for despatching, when, at the last moment, I came across Prof. E. Abbe's 'Contributions to the Theory of the Microscope and of Microscopical Vision 'as published in the April number of 1874 of the 'Archiv für mikroskopische A natomie.' This paper contains a preliminary collection of the results of extensive investigations-partly theoretical and partly experimentalwhich to a great extent coincide with what I have given here. The theorems on the divergence of rays, on the magnitude of diffraction in Microscopes, and on the brightness of their images, which form the foundation of my conclusions. have been found by Prof. Abbe, but are published for the present without proof. But in addition his paper contains a short account of important investigations of diffraction in the microscopical objects themselves with narrow illuminating pencils. The special festive occasion on which this volume of the 'Annalen' is pub-
lished prevents me from retaining my paper or from entirely withdrawing it. As it contains the proofs of the theorems used by both of us, not yet supplied by H. Abbe, and also a few simple experiments as illustrations of the theoretical investigations, its publication may appear excusable even from a scientific standpoint."

Mr. Conrady also tried to show that Mr. Gordon had not given Helmholtz' proof of the sine-law at all, but only a theorem first found by Lagrange, and applying to centred optical systems generally and limited to negligibly small divergence-angles, and that Helmholtz deduced the sine-law for finite divergence angles from the first theorem by integration, which latter Mr. Gordon had not giveu in his paper. He further insisted that the sine-law was strictly applicable only to a surface element in the optical axis and was only an approximation when applied to objects of considerable size. In his opinion Abbe's rendering of the sine-law was the one which should appeal most to practical microscopists ; for as Abbe had shown that a lens offending against the sine-law had different magnifying powers for different zones of its aperture, it must be quite clear that there must be intolerable confusion in the image produced by such a lens, especially as he could assure those present that the difference of magnifying power might amount to 10 or even 20 p.c. difference between the central and marginal zones if the sine-law was not taken into consideration.

Mr. Conrady thought that the old term "spurious disk" was a far better and more expressive one than the one "antipoint" which Mr. Gordon wished to have substituted, seeing that the image of a luminous point was not a point at all but just the spurious disk which it had hitherto been called.

Finally Mr. Conrady expressed his most emphatic doubts that the mutilation of oblique beams by successive diaphragms should or could under any conceivable circumstances produce the distorted spurious disks near the centre of the field which Mr. Gordon had tried to demonstrate, seeing that adjoining elements of structure, such as pleurosigma dots, sulitended angles of only a few seconds of are.

Dr. Lindsay Johnson, in reply to the President, said he had no intention of speaking, but perhaps he might just say a word or two in connection with the subject which came more within his own province, for the admirable exposition of the sine theorem, the oscillating screens, and diffraction points had been so ably put by Mr. Gordon that it would be absurd for him to attempt to criticise. Some time ago he was trying to focus upon the screen of a camera some words on a poster which were too far off for him to read the letters in question, but he found that by rapidly oscillating the screen it became quite easy to read the letters. He sometimes had patients brought to him who were suffering from what was known as Miner's nystagmus, a disease, the chief symptom of which being a peculiar trembling of the eyes, induced by constantly directing the eyes obliquely in a confined situation and a dim light. This was nature's way of doing what Mr. Gordon had done by means of his oscillating screens. Having to work with only such faint light as was given by a Davy lamp, the tendency for these afflicted people was to get better vision by this tremulous movement of their eyes, which by
constant habit became automatic and involuntary in the same way as Mr. Gordon had independently obtained it by meehanical means. Nature has contrived this oseillation of the eye in order that a second cone may receive the same image before the same impression has died out from the first cone, and again a fresh impression on the first cone before the impression produced by the second one had died array, so that in this way the combined stimulus of several cones may suffice to convey the impression to the brain which the feebler action upon one cone would be insufficient to effeet.

Mr. Rheinherg said they had been hearing a great deal about the formation of images so far as the optical system was concerned, but nothing about the part played in this respeet by the objeet itself, which after all was important. Supposing they had isolatecl objeets of no appreciable depth, such as hacteria, then there might under suitable illumination be a considerable analogy between them and luminous, points or lines. If, however, they had objects having a certain depth and consisting of separated elements, then they had entirely different conditions whereby the image of certain of the elements might be modified by adjacent ones.

Referring to the limit of separating power, was it not a difficult matter to make out the ease for anrthing less than half a wave-length? In speculations of this nature they required to take physiological conditions into consideration. It was partly a question of the sensitiveness of the eve to different degrees of luminosity, and this was also affected by the size of the surfaces compared with the very small distance separating them. If the surfaces were bright and relatively large, the eye would not distinguish the interval hetween them in the same way as if isolated points were in question. He had noticed in the diagrammatic illustrations of overlapping antipoints on the sereen, that these had heen represented as of the same luminosity throughout, whereas of course in reality they fell off very greatly in brightness towards their edges, which mould materially modify the illustration.

As regarded moving screens in the focal plane of the eye-piece, he inquired of Mr. Gordon, whether and what means were taken to ensure the varions parts of the screen moving at an equal rate, because if revolving simply, the edge parts of the sereen would he moving so much faster than the central parts. Whilst he much admired the ingenuity of the idea of the moving sereen, he could not follow the utility of the plan, hecause they could not thereby get any greater resolving power than they had in the objective to start with. It appeared to him that what was proposed, could be managed much more easily : for to obtain the same sized image, and aroid any disadrantages comected with the smallness of the Ramsden eircle, they had only to use a lower eye-piece and move the photographic sereen further away. He should be very pleased to hear Mr. Gordon's opinion on these matters.

Mr. Gordon said he desired to thank the Fellows of the Society for the kind reception ther had given to his paper and to acknowledge the indehtedness he felt to them for their patience in listening to his somewhat lengthy remarks. In particular he wished to acknowledge his great
obligation to Mr. Beek for the loan of apparatns for the purpose of the demonstration, and to Mr. E. Russell Clarke - a stranger to the Societywho had kindly lent him the Microseope which ther saw upon the table, fitted with an electrically driven screen. Mr. Clanke unfortmately was not able to attend that evening, and he (Mr. Gordon) had not snceeeded in getting the Mieroscope to work properly. He hoped, however, on some future oceasion Mr. Clarke would lee able to attend to give the Fellows a demonstration of the working of his very beantiful instrment. With reference to Mr. Gifford's inquiry as to the displacement of the sereens, in the case of Mr. Russell Clarke's arrangement, the oseillation was perfectly regular, deseribing a long ellipse, the magnitude of the longer axis being abont three times that of the shorter, the long axis measuring about $\frac{1}{y_{0} 0}$ in. In the case of the other screens exhibited on the table, Fellows would be able to see the motion for themselves as one of them was working opened up. Care had been taken to proride against any chance of a repeated pattern. The sereen was moved in a circle by a ring embracing it, but was so mueh smaller than the ring, that it rolled within the ring, the result heing a sort of epieyclic motion. He thought Mr. Rheinberg would find there was no difficulty in getting rid of all trace of the screen, in photography ; and in answer to Mr. Beck, he said that he had fully committed himself to the exposition of the sine-law --if that were in any respect erroneons it could be eriticised. He should be very sorry to do any injustice to Prof. Ablse, but had not attempted to trace the original statement of the sine-law. The only thing with which he was concerned in that paper was the proof of the law, and the proof of it was admittedly due to Helmholtz, exeept for Hockin's defective proof which was disenssed in the appendix to the paper. Mr. Conrady had taken exception to the term "antipoint." That was a matter which he would not discuss as Mr. Conrady was elearlr entitled to his opinion on such a point. With reference to the opinion which Mr. Conrady had expressed that the sine-law only applied to a small element of surface lying on the optical axis, he suggested that if that were his view Mr. Conrady would do well to read. Helmholtz' paper. It was no donbt possible to have an optical system in which the tangent law took the place of the sine-law. That was, however, all dealt with in the appendix to the paper, and as it was written out there it would not be necessary to refer to it further. Mr. Rheinherg complained that nothing was said about the optical properties of the objeet : that was because Helmholtz said nothing about them. Mneh might no donbt be said about the object, but Helmholtz in his paper treated not of the object but of the instrument interposed between the ohjeet and the eve. It was not to be supposed that an oscillating screen conld inerease the resolving power of an objective. What he did was to preserve the integrity of the image formed by the oljective when greatly superamplified by eye-piece magnification. So with regard to the use of an oscillating screen in photomicrography. The finely resolved image on a large scale could be obtained by means of a projection ocular and an optical bench. The object of using the sereen was to get rid of these cumbersome accessories, and obtain the high magnification at a short distance from the stage by means of a compounding draw-tube.

The President said that he could only repeat that they were very much indebted to their Fellow, Mr. Gordon, for this very excellent cominunication. Those who had been privileged to listen to the Author's able résumé of his paper might have oltained some idea of Helmholtz' theory of the Microscope, but they would he glad to know that they would have the opportunity of reading the paper in extenso for themselves when printed in the Journal.

The President announced that Mr. Fletcher, of the Mineral Department of the Natural History Museum, would be delighted to rive a demonstration of Mineralogy to those Fellows of the Society who wished to visit the Natural History Museum on April 18, mecting, as before, at the Owen statue at 2 o'clock. He was quite sure that those who accepted the invitation would find that Mr. Fletcher was able to make the subject a most interesting and attractive one, as he had a happy way of describing what was to be seen, so that those who listened to his remarks on the wonderful collection of minerals under his charge would be sure to derive both pleasure and profit.

The following Instruments, Objects, \&c., were exhibited:-
Mr. J. Pillischer :-A Microscope made by M. Pillischer about 1847, fitted with Sir Charles Tomes' stage.

Mr. J. W. Gordon :--Experiments with seven Microscopes (lent by Messrs. Beck) in illustration of his paper, and a Microscope (lent by Mr. Russell Clarke) fitted with electric illuminating apparatus and an electrically driven screen.

Mr. Rousselet :-A Bausch and Lomb "B B Continental Microscope" sent for exhibition by Messrs. A. E. Staley \& Co.

New Fellows :-The following were elected Ordinary Fellows of the Society :-Rev. James Feather, Messrs. Frederick E. Ives, J. Inderwick Pigg, and Joseph Henry Scott.

Foraminifera of Nalay Archir Elaz

R0YAL MICROSCOPICAL SOCIETY.

JUNE 1903.

TRANSACTIONS OF THE SOCIETY.

IV.-Report on the Recent Foraminifcra of the Malay Archipelego collected by Mr. A. Durrand, F.R.M.S.-Part XIV.

By Fortescue William Millett, F.R.M.S.
(Read April 17th, 1903.)
Plate V.
Cristellaria Lamarck.
Cristellaria Schloenbachi Reuss.
Cristellaria Schloenbachi Reuss, 1862, Sitzungsber. k. Akad. Wiss. Wien, vol. xlvi. p. 65, pl. vi. figs. 14, 15. C. Schloenbachi (Reuss) Flint, 1899, Rep. U.S. Nat. Mus. for 1897 (1899), p. 315, pl. 1xiii. fig. 4. C. Schloenbachi (Reuss) Egger, 1899, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xxi. p. 110, pl. xii. figs. 38-40; pl. xxiv. figs. 30, 31.

EXPLANATION OF Plate V.

Fig. 1.-Cristellaria variabilis Reuss. $\times 100$.
.. 2.-Amphicoryne glabra sp. n. $\times 70$.
", 3. " Bradyi A. Silvestri sp. $\times 90$.
\geqslant 4. ", falx Parker and Jones sp. $\times 70$.
,. 5.-Polymorphina lactea var. oblonga Williamson. $\times 60$.
" fi.-Dimorphina lingulinoides sp. n. $\times 90$.
", 7.-Uvigerina canariensix d'Orbigny var. $\times 90$.
", 8,9. \quad Auberiana d'Orbigny, var. glabra var. n. $\times 90$.
," $10 .-$ Sagrina columellaris Brady. $\times 75$. Microspheric form.
" 11. " " $\times 75$. Megalospheric form.
$"$ 12-15. ", nodo"a Parker and Jones. $\times 90$.
.. 16. " tessellata Brady. $\times 75$.
$"$ 17. " limbata Brady. $\times 70$. From a drawing by C. Elrnck.
"18,19. " " " $\times 75$. Specimens from Raine Islam.
June 17th, 1903

In the Pacific Ocean the genus Cristellaria is very sparingly distributed, and there are few records of its occurrence in the equatorial region or in the North Pacific.

In Mr. Durrand's collection, although the genus is represented by several species, the individuals are few and ill-developed.
C. Schloenbachi possessing characters common to both Vaginulina and Cristellaria comes naturally as a connecting link hetween the two genera.

It occurs sparingly at Stations in both Areas, and is not uncommon at Station 30.
'Challenger' Stations are off Bermuda, 435 fathoms; off Culebra Island, 390 fathoms; and off Raine Island, 155 fathoms. Flint records it from two Stations in the Gulf of Mexico, at depths of 169 and 210 fathoms.

Cristellaria erepidula Fichtel and Moll sp.

Nautilus crepidule Fichtel and Moll, 1803, Test. Micr., p. 107, pl. xix. figs. $g-i$. Cristcllaria crepritule d'Orligny, 1839, Foram. Cuba, p. 64, pl. viii. figs. 17, 18. C. crepidula (F. and M.) Jones, 1884, Quart. Journ. Geol. Soc., vol. xl. p. 770, pl. xxxiv. fig. 8. C. crepidula (F. and M.) Balkwill and Millett, 1884, Journ. Micr., vol. iii. p. 84, pl. iv. fig. 8. C. crepictule (F. and M.) Sherborn and Chapman, 1886, Journ. I. Micr. Soc., ser. ii. vol. vi. p. 753, pl. xv. fig. 21. C. creqidula (E. and M.) Halkyard, 1889, Trans. and Ann. Rept. Nanchester Micr. Soc., p. 67, pl. ii. fig. 5. C. dilatata Wisniowsky, 1890, Pamietnik Wydz. iii. Akad. UmiejKrakowie, vol. xvii. p. 31, pl. ix. fig. 10 ; and C. dorsoctcuate p. 31, pl. ix. fig. 11. C. crepidulu (F. and M.) Haeusler, 1890, Abhandl. schweiz. pal. Gesell., vol. xvii. p. 111, pl. xiv. fis. 59 ; pl. xv. figs. 1, 18. C. crepidulu (F. and M.) Fornasini, 1890, Mem. R. Accad. Sci. Ist. Bologna, ser. 4, vol. x. p. 471, pl. figs. 31-33, 56-60. C. crepidula (F. and M.) Egger, 1893, Abhandl. k. hayer. Akad. Wiss., Cl. II. vol. xviii. p. 350, pl. xi. figs. 51, 52 ; pl. xii. figs. $34,35$. C. crepidula (F. and M.) Fornasini, 189t, Mem. R. Accad. Sci. Ist. Bologna, ser. 5, vol. iv. p. 220, pl. iii. fig. 10. C. crepidula (F. and M.) Goës, 1894, K. Svenska Vet.-Akad. Handl., vol. xxv. p. 62. pl. xi. figs. 599, 600. C. crepidula var. intermedia Burrows and Holland, 1897, Proc. Geol. Assoc., vol. xv. p. 40, pl. i. fig. 11 ; var. cymboides, pl.i. figs. 1-3; var. subarcuatula, pl. i. fig. 17 ; var: harpa, pl. i. figs. 12, 18-21. C. crepidula (F. and M.) Flint, 1899, Rep. U.S. Nat. Mus. for 1897 (1899), p. 316, pl. lxiii. fig. 2. C. erepidula (F. and M.) Egger, 1899, Abhandl. k. bayer, Akad. Wiss., Cl. II. vol. xxi. p. 110, pl. xxiii. figs. 21, 22 ; pl. xxv. figs. 27, 28.

Very few specimens of this form have been observed, and these are of the subarcuatula type.

It occurs in both Areas.

Cristellaria acutauricularis Fichtel and Moll sp.

Neutilus acutauricularis Fichtel and Moll, 1803, Test. Micr., p. 102, pl. xviii. figs. $g-i$. Cristellaria acutuuricularis (F. and M.) Parker and Jones, 1S60, Ann. and Mag. Nat. Hist., ser. 3, vol. v. p. 114, No. 20. C. acutcuricularis (F. and M.) Sherborn and Chapman, 1886, Joum. R. Micr. Soc., ser. 2, vol. vi. p. 753, pl. xv. fig. 22. (C. acutauricularis (F. and M.) Haeusler, 1890, Abhandl. schweiz. pal. Gesell., vol. xvii. p. 113, pl. xv. fig. 17. C. acutauricularis (F. and M.) Crick and Sherborn, 1891, Journ. Northamptonshire Nat. Hist. Soc., vol. vi. p. 212, pl. fig. 25 ; and 1892, vol. vii. pl. ii. figs. 17. 18. C. acutauriculuris (F. and M.) Egger, 1893, Abhandl. k. baver. Akad. Wiss., (1. II. vol. xviii. p. 353, pl. xii. figs. 19, 20. C. acutauricularis (F. and M.) Flint, 1899, Rep. U.S. Nat. Mus. for 1897 (1899), p. 316, pl. lxiii. fig. 5. C. acutuuricularis (F. and M.) Chapman, 1900, Quart. Journ. Geol. Soc., vol. Ivi. p. 259 , pl. xv. fig. 9.

The examples of this species are small and pass imperceptibly into O. gibba.

It occurs at several Stations in both Areas, but always in small numbers.

In the recent condition this is by no means a common form, although it has a very wide range. Besides the localities mentioned by Brady it has been recorded by Egger from Mauritius, and by Flint from two Stations off the Atlantic coast of the United States.

Cristellaria gibba d'Orbigny.

C'ristellaria gibba d'Orbigny, 1826, Ann. Sci. Nat., vol. vii. p. 292, No. 17. C. gibba d'Orbigny, 1839, Foram. Cuba, p. 40, pl. vii. figs. 20, 21. C'. gibba (d'Orb.) Burrows, Sherborn, and Bailey, 1890, Journ. R. Micr. Soc., p. 259, pl. x. figs. 19, 21. C. gibba (d'Orb.) Crick and Sherborn, 1891, Journ, Northamptonshire Nat. Hist. Soc., vol. vi. p. 212, pl. fig. 29. C. gibba (d'Orb.) Egger, 1893, Ablandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 352, pl. xii. figs. 21, 27. C. gibba (d'Orb.) Silvestri, 1893, Mem. Pontif. Accad. Nuovi Lincei, vol. ix. p. 207, pl. vi. fig. 4. C. gibba (d'Orb.) Goës, 1894, K. Svenska Vet.-Akad. Handl., vol. xxv. p. 61, pl. x. figs. 287, 288. C. gibba (d'Orb.) Fornasini, 1894, Mem. R. Accad. Sci. Ist. Bologna, ser. 5, vol. iv. p. 221, pl. iii. fig. 20. C. gibba (d'Orb.) Jones, 1895, Palæont. Soc., p. 247, pl. vii. fig. 19. C. gibba (d’Orb.) Chapman, 1896, Journ. R. Mier. Soc., p. 4, pl. i. fig. 7. C. gibbe (d’Orb.) Burrows and Holland, 1897, Proc. Geol. Assoc., vol. xv. pp. 44, 45, pl. ii. figs. 5, 6. C. gibba (d’Orb.) Flint, 1899, Rep. U.S. Nat. Mus. for 1897 (1899), p. 317. pl. lxiv. fig. 1. C. gibba (d'Orb.) Chapman, 1900, Journ. Linn. Soc. (Zool.) vol. xxviii. p. 31,
pl. v. fig. 13 ; and Proc. California Acad. of Sci., ser. 3, Geol., vol. i. p. 251, pl. xxx. fig. 3.

This species is rather more plentiful than C. acutauriculuris, and its distribution is much the same.

Brady records notes of its occurrence in the North Atlantic and the South Pacific. Silvestri has found it in the Mediterranean, and Egger at Mauritius, West Australia, and New Guinea; whilst Flint adds the Gulf of Mexico to the list of localities.

Cristellaria italica Defrance sp.

Saraccnaria italica Defrance, 1824, Dict. Sci. Nat., vol. xxxii. p. 177 ; 1827, vol. xlvii. p. 344 ; Atlas Conch., pl. xiii. fig. 6. Cristcllaria (Saracenaria) italica (Defr.) d'Orbigny, 1826, Ann. Sci. Nat., vol. vii. p. 293, No. 26 ; and Modèles, Nos. 19 and 85. ('. italica (Defr.) Sherborn and Chapman, 1886, Journ. R. Micr. Soc., ser. 2, vol. vi. p. 754 , pl. xv. fig. 23 ; pl. xvi. fig. 4. C. itclica (Defr.) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 350, pl. xii. figs. 22, 23, $26,40-42$. C. italica (I)efr.) Chapman, 1894, Journ. R. Micr. Soc., p. 653, pl. x. fig. 10. C. italica (Defr.) Formasini, 1894, Mem. R. Accad. Sci. Ist. Bologna, ser. 5 , vol. iv. p. 219, pl. iii. fig. 8 ; and 1895, vol. v. p. 12, pl. iv.. fig. 28. Idem, 1895, Palæont. Italica, vol. i. p. 145, pl. vii. fig. 10. C'. italica (Defr.) Flint, 1899, Rep. U.S. Nat. Mus. for 1897 (1899), p. 316, pl. lxiii. fig. 6.

In the Malay Archipelago this is a very rare form and has been observed only at Station 12 in Area 1.

To the numerous list of localities mentioned by Brady, Egger adds West Australia; and Flint records it from the coast of Georgia and the Gulf of Mexico.

Cristcllaria variatilis Reuss, plate V. fig. 1.

Cristellaria variatilis Reuss, 1849, Denkschr. k. Akad. Wiss. Wien, vol. i. p. 369, pl. xlvi. figs. 15,16 . C'. variabilis (Reuss) Brady, Parker, and Jones, 1888, Trans. Zool. Soc., vol. xii. p. 224, pl. xliv. fig. 12. C. vuriabilis (Reuss) Burrows, Sherborn, and Bailey, 1890, Journ. R. Micr. Soc., p. 560, pl. x. fig. 22. C. Bradyana 1'rocházka, 1893, Vestnik král. české spol. náuk. Třída Math., p. 44, pl. xi. fig. 5. C. variatilis (Reuss) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 353, pl. xii. figs. 16-18. C. variabilis (lieuss) Goës, 1894, K. Svenska Vet.-Akad. Handl., vol. xxv. p. 62, pl. x. figs. 593-595. C. variabilis (Reuss) Flint, 1899, Rep. U.S. Nat. Mus. for 1897 (1899), p. 316, pl. lxiii. fig. 1.

There are several examples of this form from Station 25 in Area 2, and it also occurs at Station 13 in Area 1. The specimens
are small and ill-developed, none of them attaining the carinate stage.

Brady states that it is by no means uncommon from 100 to 600 fathoms; Egger records it from fom Stations at depths of from 37 to 650 fathoms; Goës from 126 fathoms; and Flint from six Stations, 68 to 196 fathoms.

Cristelleria rotulete Lamarck sp.

Lenticulites rotelete Lamarck, 1804, Ann. Mus., vol. v. p. 188, No. 3 ; and 1806, vol. viii. pl. lxii. fig. 11. Cristcllaria rotulute d’Orbigny, 1840, Mém. Soc. Géol. Fr., sér. i. vol. iv. p. 26, pl. ii. fios. 16-18. C. rotulata (Lam.) Brady, Parker, and Jones, 1888, Trans. Zool. Soc., vol. xii. p. 224, pl. lxiv. fig. 15. C. rotulata (Lam.) Burrows, Sherborn, and Bailey, 1890, Journ. R. Micr. Soc., p. 559, pl. x. fig. 17. C. rotuluta (Lam.) Haeusler, 1890, Abhandl. schweiz. pal. Gesell., vol. xvii. p. 114, pl. xv. figs. 7, 8, 10, 12, 13. C. rotuluta (Lam.) Terrigi, 1891, Mem. R. Com. Geol. Italia, vol. iv. p. 95 , pl. iii. fig. 8. C. rotulute (Lam.) Beissel (Holzapfel), 1891, Abhandl. k. Preuss. geol. Landesanst., N.F., Heft 3, p. 55, pl. i. figs. 2, 3; pl. x. figs. 20-43. C. rotuluta (Lam.) Perner, 1892, Ceská Akad. Císaře Františka Josefa (Palæont. Bohemice No. 1) p. 62, pl. iv. figs. 1-11. C. rotulate (Lam.) Crick and Sherborn, 1892, Journ. Northamp. Nat. Hist. Soc., vol. vii. p. 70, pl. ii. fig. 14. C. rotulata (Lam.) A. Silvestri, 1893, Atti e liendic. Accad. Sci. Lett. e Arti dei Zelanti e P.P. dello Studio di Acireale, vol. v. p. 14. pl. iii. figs. 22, 23 . C. rotulata (d'Orb.) Egger, 1893, Abhandl. k: bayer. Akad. Wiss., Cl. II. vol. xviii. p. 351, pl. xii. figs. 1, 2, 32, 33. C. rotulata (Lam.) Fornasini, 1893, Mem. R. Accad. Sci. Ist. Bologna, ser. 5, vol. iii. p. 435 , pl. ii. fig. 11 ; and 1894 , vol. iv. pp. 221, 222, pl. iii. figs. 24, 25. C. rotulata (Lam.) Goës, 1894, K. Svenska Vet.-Akad. Handl., vol. xxv. p. 60, pl. x. figs. 559-578. C. (Lentieulites) rotulata (Lam.) Egger, 1895, Naturhist. Ver. Passau, Jahresber., xvi. p. 26, pl. iii. figs. 4-7. C. rotulata (Lam.) Fornasini, 1895, Palæont. Italica, vol. i. p. 146, pl. vii. fig. 12. C. rotulata (Lam.) Chapman, 1896, Journ. R. Micr. Soc., p. 5, pl. i. fig. 8. C. rotulata (Lam.) Flint, 1899, Rep. U.S. Nat. Mus. for 1897 (1899), p. 314, pl. lxiv. fig. 4. C. rotulata (Lam.) Egger, 1899, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xxi. p. 122, pl. xi. figs. 3, 4. C. rotulata (Lam.) Chapman, 1900, Journ. Linn. Soc. (Zool.), vol. xxviii. p. 32, pl. v. fig. 14; and Proc. California Acad. of Sci., ser. 3, Geol. vol. i. p. 251, pl. xxx. fig. 4.

Brady speaks of this as one of the most widely diffused of all the foraminifera. In the Malay Archipelago it is one of the rarest and has been observed only at Station 25 in Area 1.

Cristellaria ctlctir Linné sp.

Nautilus calcar Linné, 1767, Syst. Nat., 12th ed., p. 1162, No 272. N. calear (Linné) Fichtel and Moll, 1803, Test. Micr., p. 69, pl. xi. figs. a, b, c; pl. xii. figs. $i, k ;$ pl. xiii. figs. c, d, h, i. Cristellaria calcar (Linné) Parker and Jones, 1857, Ann. and Mag. Nat. Hist., ser. 2, vol. xix. p. 289, pl. x. figs. 10-12. C. calcar (Linné) Brady, Parker, and Jones, 1888, Trans. Zool. Soc., vol. xii. p. 224, pl. xliv. fig. 14. C. calcur (Linné) Terrigi, 1891, Mem. R. Conn. ('eol. Italia, vol. iv. p. 96, pl. iii. fig. 16. C. culcur (Limé) Egger, 1895, Naturhist. Ver. Passau, Jahresher., xri. p. 27, pl. iii. figs. 1, 巳2. C. calcar (Limné) Dervieux, 1896, Mem. Pontif. Accad. Nuovi Lincei, vol. xi. pl. xiv. fig. 5. C. calcur (Linné) llint, 1899, Rep. U.S. Nat. Mus. for 1897 (1899), p. 318, pl. lxvi. fig. 1. U. calcur (Linné) Egger, 1899, Abhantl. k. bayer. Akad. Wiss., Cll. II. vol. xxi. p. 123, pl. xi. tigs. 17, 18. C. culcar (Limé) Fornasini, 1902, Mem. Il. Accad. Sci. Ist. Bologna, ser. 5", vol. x. p. 46 , fig. 45.

Found only at Station 2 in Area 1. The examples, althought few and small, are characteristic; the varieties a and k of Fichtel and Moll both being represented.

Cristelluria costuta Fichtel and Moll sp.

Nautilus costutus Fichtel and Moll, 1803, Test. Micr., 1. 47, 1l. iv. figs. y, h, i. Cristcllaria costuta (F. and M.) Parker and Jones, 1860 , Amm. and Mag. Nat. Hist., ser. 3, vol. v. p. 113, No. 19. C. costata (d'Orb.) Crick and Sherborn, 1891, Journ. Nurthamp. Nat. Hist. Soe., vol. vi. p. 213, pl. fig. 20. C. ariminensis (d'Orb.) Fornasini, 1894, Mem. R. Accad. Sci. Ist. Bologna, ser. 5, vol. iv. p. 223, pl. iii. figs. 36-38. C. costeta (F. and M.) Fornasini, 1895, i'alicont. Italica, vol. i. p. 146, pl. vii. fis. 13. C. costute (F. and II.) Silvestri, 1899, Mem. Pontif. Accal. Nuovi Lincei, vol. xv. p. 218, 11. i. fig. 13. C. costata var. spinata Schubert, 1899, Sitzungsber. Deutsch. naturw.-med. Yer. fïr Bohmen, "Lotos" No. 6, p. 16, pl. v. fig. 7.

Simply because they are ribbed, two very different forms have been associated under this name. The Nautilus costatus of Fichtel and Moll is lenticular and may be described as being a variety of Cristellaria culcar bearing concentric costre. Closely allied, if not identical with this, is the Robulina arminensis of d'Urbigny.

The Cristellaria costata of d'Orligny represented by Modèle No. 84, is a more elongated form, and as interpreted by subsequent anthors is nothing mure nor less than a costate Maryinulinu or L'aginutina. Of this variety good examples from the lias are sigured by Brady, 1867, and by Crick and Sherborn, 1891.

In the Malay Archipelago it has been observed only at Station 13 in Area 1, and the few examples are small and of arrested growth.

There are three 'Challenger' Stations for this form given by Brady: off Gomera, Canaries, 620 fathoms; off Kandavu, Fiji, 210 fathoms; and off Raine Island, Torres Strait, 155 fathoms. He also states that it has been reported from the shores of the Adriatic, at Rimini and Lido.

Amphicoryne Schlumberger.
Of all the compound forms this is perhaps the most difficult to deal with in a satisfactory manner, for not only is it in many instances hard to determine the genera of the component parts, but there are numerous monstrosities which so nearly resemble the types that it is difficult to distinguish between them.

Although this genus was instituted to inchude the forms compounded of Cristellaria and Nodosaric, the Cristellarian portion, so far as has been observed, is always of the crepidula type and consequently passes by imperceptible degrees into the genus Vaginalina. It is doubtful if any gool purpose would be servel by the adoption of the genus Notosariopsis, and althongh Prof. Silvestri is quite in order in giving a generic name to the combination of Vaginulina and Nocosuria, in practice there wonld be a great difficulty in keeping the two genera distinct; besides this, there would be the inconvenience of removing the species falx from the genus Amphicoryne, of which it has hitherto been considered the type. In this state of uncertainty it will perhaps be convenient to assign to Amphicoryne all the forms having the initial portion Cristellarian or Vaginuline.

$$
\text { Amphicoryne glabra sp. n., plate V. fig. } 2 .
$$

Cristcllaria subarcuatula (Walker) Williamson, 1858, Rec. Foram. Gt. Britain, p. 30, pl. ii. fig. 57. Marginulina obstipa var. a Terquem, 1868, Bull. Soc. Hist. Nat. Moselle, vol. xi. p. 129, pl. viii. fig. 26. ?" Dimorphous specimen, the earlier chambers arranged as in Cristellaria, the later ones as in Polymorplina," Brady, 1884, Chall. Rept., pl. lxxi. fig. 10.

Surface of test smooth; earlier portion, a compact variety of Cristellaria crepidula; later portion resembling Dentalina communis. Length 0.90 mm .

This smooth form is very rare in the Malay Archipelago, and has been found only at Station 30 in Area 2.

It is quite possible that the three figured examples referred to in the above list of synonyms may be monstrosities, rather than members of the genus Amphicoryne. Williamson writes of his example, "Fig. 57 represents a curious monstrosity, in which the
development by gemmation has proceeded in the ordinary way through a succession of segments, but in the last two the direction has been reversed, their septal orifices being situated on the opposite margin to that which they occupy in all the preceding ones, the curvature of the shell and direction of the septal lines being likewise reversed." But the figure shows that in addition to the change of direction there is a change of character, the compact initial portion of the test being succeeded by two inflated chambers which may be assigned either to Dentalina or Marginulina. The Marginulina obstipa of Terquem differs from the other figured examples in having the aperture situated in a phialine neck. The form figured by Brady is still more doubtful, but there seems to be no particular reason why the terminal chamber should be assigned to Polymorphina rather than to Dentalina.

Amphicoryne Bradyi A. Silvestri sp., plate V. fig. 3.

"Intermediate specimen with Vaginuline commencement and final Nodosarian chamber," Brady, 1884, Chall. Rept., explanation of plate, pl. lxvi. fig. 20. Nodosariopsis bradii A. Silvestri, 1902, Atti Accad. Pontif. Nuovi Lincei, anno lv. p. 53.

The strong resemblance between the example here figured and the 'Challenger' specimen, renders it highly improballe that both should be monstrosities. Brady's figure just indicates the spines which are so conspicuous a feature in the specimen from the Malay Archipelago.

It is exceedingly rare and has been found only at Station 25 in Area 2.

Amphicoryne falx Parker and Jones sp., plate V. fig. 4.

Marginulina falx Parker and Jones, 1860, Quart. Journ. Geol. Soc., vol. xvi. p. 302, No. 28. Amphicoryne falx (P. and J.) Brady, 1884, Chall. Rept., p. 556, pl. lxv. fig. 7-9; ? pl. cxiii. fig. 13. Nodosaria scalaris var. caudata A. Silvestri, 1893, Mem. Pontif. Accad. Nuovi Lincei, vol. ix. p. 204, pl. iv. fig. 2. Amphicoryne falx (P. and J.) A. Silvestri, 1899, Mem. I'ontif. Accad. Nuovi Lincei, vol. xv. 1. 221, pl. iii. fig. 4. Nodosariopsis fulx (J. and P.) A. Silvestri, 1902, Atti Accad. Pontif. Nuovi Lincei, anno lv. p. 49, figs. 1-3, 9.

This form is a little less rare than the others, but it occurs only at Station 30 in Area 2. The Malay Archipelago examples are delicately striated, whilst those from other localities have the Nodosarian portion strongly costate. In some of the Mediterranean examples and in the specimen from the Italian pliocene figured by Silvestri the Cristellarian portion is smooth, whilst the succeeding chambers are costate. Of this character also is the example
figured in the 'Challenger' Report, pl. cxiii. fig. 13, which appears to correspond with the definition of the genus more closely than any of the other figured specimens, yet at p. 556 Brady , for some reason or other, says that it is obviously nothing more than at monstrosity.

According to Brady it is not uncommon in the Mediterranean at depths of less than 400 fathoms; and occurs also off the Cape of Good Hope, 150 fathoms; on the western shores of New Zealand, 275 fathoms; and off Raine Island, Torres Strait, 155 fathoms.

Silvestri records it from off the east coast of Sicily, 164 to 602 fathoms; and fossil from the pliocene of Sienna.

Sub-family Polymorphininæ.

Polymorphina d'Orbigny.

Polymorphina lactea Walker and Jacob sp.

"Serpula tenuis ovalis lævis" Walker and Jacob, 1784, Test. Min.. p. 2, pl. i. fig. 5. Serpula lactea Walker and Jacoh (fide Kammacher), 1798, Adams's Essays, 2nd ed. p. 634, pl. xiv. fig. 4. Polymorphina lactca (W. and J.) Williamson, 1858, Liec. Foram. Gt. Britain, p. 70, pl. vi. fig. 147. P. lactca (W. and J.) Burrows, Sherlorn, and Bailey, 1890, Journ. R. Micr. Soc., p. 561, pl. xi. fig. 9. P. lactca (W. and J.) Crick and Sherborn, 1892, Journ. Northamp. Nat. Hist. Soc., vol. vii. p. 71, fig. 25. I'. lactea (Walker and Jones) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 308, pl. ix. figs. 8, 14, 15 ; and P. flegantissima (P. and J.) p. 308, pl. ix. fig. 16. P. lactca (W. and J.) Chapman, 1896, Journ. R. Micr. Soc., p. 9, pl. ii. fig. 3. P. lactce (W. and J.) Morton, 1897, Proc. Portland Soc. Nat. Hist., vol. ii. p. 119, pl. i. fig. 7.

This cosmopolitan form occurs at several Stations in both Areas, but the examples are always small and wanting in character.

Polymorphina amygdaloides Reuss sp.

Globulina amygdaloides Reuss, 1851, Zeitschr. deutsch geok. Gesell., vol. iii. p. 82, pl. vi. fig. 47. Polymorphina amygdaloides Reuss, 1855, Sitzungsber. k. Akad. Wiss. Wien, vol. xviii. p. 250, pl. viii. fig. 84. P. amygdaloides (Reuss) Burrows and Holland, 1897, Proc. Geol. Assoc., vol. xv. p. 46, pl. ii. fig. 18. P. amygdaloitles var. lepida Fornasini, 1901, Mem. Accad. Sci. Ist. Bologna, ser. 5 , vol. ix. p. 72, fig. 24 ; and var. terquemiana, p. 72, fig. 25.

This compressed variety of Polymorphina lactea is much more abundant than the type and occurs at a greater number of Stations.

Usually the sutures are more depressed than in the figures given by leuss, consequently the chambers are more inflated.

Jolymorphina luctea var. oblonga Williamson, plate V. fig. 5.
I'ol,morphinu luctec (W. and J.) var: oblonye Williamson, 18.58, liec. Firam. Gt. Britain, 1. 71, ph. vi. fig. 14! . P'. oblony" (Will.) Mrady, l'arker, and Jones, 1870, Trans. Limn. Soc., vol. xavii. p. 22, phaxax. fig. 7. P'. obloniga (Will.) Terquem, 1875, Ess. Anim. 'lage ! hukerque, part i. 1. 37, pl. v. fig. 11. P. formose Egger, 189:', Ahsundl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 440 , pl. ix. figs. $1 \bar{i}-19$.

This is an intermediate variety connecting P. lactea with I^{\prime} compressa, and must not he confounded with the l '. nblonge of d'Orbigny, which resembles an elongated I '. problem". The example figured well represents the normal form, with the exception that it possesses a supplementary chamber of a Nodosarian character. This is evilently a monstrosity, otlerwise the specimen would have to be assigned to the genus Dimorphinc. This chamber appears to have nothing in common with the fistulose extraneous growths so frequently found in the Polymorphince generally, but rare or unknown in the examples from the Mialay Archipelago.
l. lactca var. oblonga occurs in more or less abundance at several Stations in both Areas.

Of its distribution generally Brady, Parker, and Jones write, "The geographical range of l '. oblonge seems to be limited; it is: most abuudant on the Devonshire and Cornwall coast, and may be found sparingly tistributed at intervals all round the British Islands. We are not aware of its occurrence in the seas of warmer latitudes or in a fossil condition."
P. formosa is recorded by Egger from Capie Verde Islands, 38 fathoms; and from West Anstralia, 196 fathoms.

As a fossil it is not uncommon in the tertiary leets of St. Erth.

Polymorphina compressa d'Orbigny.

"Polymorpha subovalia" Soldani, 1791, Testaceographia, vol. i. part 2, p. 114, pl. cxiv. fig. F ; pl. cxr. fig. n ; pl. cxvi. fig. x. Polymorphina compressa d'Orbigny, 1846, For. Foss. Vienne, p. 233, pl. xii. figs. 32-34. P. aft. amygdale Deecke, 1886, Mém. Soc. émul. Montbéliard, sér. 3, vol. xvi. p. 37, pl. i. fig. 20. P. polygona Terquem, 1886, Mém. Soc. Géol. France, sér. 3, vol. iv. p. 63, pl. xiii. fig. 18. P. lactea (W. and J.) Lawson, 1886, Handbook Zoology, p. 44, fig. 34. P. compressa (d'Orb.) Mariani, 1888, Boll. Soc. Geol. Italia, vol. vii. p. 288, pl. x. fig. 13. P. compressa (d'Orb.) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 309, pl. ix. figs. 11-13. P. compressa (d'Orb.) Goës, 1894, K. Svenska

Vet.-Akad. Handl., vol. xxv. p. 58, pl. x. figs. 539-553. I'. compressa (d'Orb.) Jones, 1895, Palæont. Soc., p. 258, pl. v. figs. 26, 28. P. compressa var. marginalis Jones and Chapman, 1896, Journ. Linn. Soc. (Zool.), vol. xxv. p. 507, fig. 37. P'. compresset (d'Orb.) Flint, 1899, Rep. U.S. Nat. Mus. for 1897 (1899) p. 319 pl. lxvii. fis. 3. I'. proteus (Beissel) Egger, 1899, Abhandl. k. bayer. Akal. Wiss., Cl. II. vol. xxi. p. 131, pl. xxv. figs. 16, 17.

Found sparingly at several Stations in both Areas. The examples are with difficulty separable from I^{\prime}. amyylulvides.

Polymorphince elcyantissimce Parker and Jones.

Polymorphince clegontissima Parker and Jones, 1864, Phil. Trans., vol. clv. table x. p. 438. I'. elcyuntissimu (I. and J.) Brady, Parker, and Jones, 1870, Trans. Linn. Soe., vol. xxvii. 1. 231, pl. xl. tig. 15. P'. eleguntissimu (1'. and J.) Flint, 1899, Rep. U.S. Nat. Mus. for $189{ }^{\circ}$ (1899), p. 319, pl. lxvii. fig. 4.

This form is tolerably abundant at Station 13 in Area 1, and occurs sparingly at Station 22 and a few others in Area 2. The examples are invariably small, and rarely consist of more than three chambers. Their affinity is with I ' problcma.

According to Brady, * the species appears to be confined to the shores of the lacific, and is best known from Australian specimens. Flint does not mention the locality of the 'Albatross' examples nor the depth from which they were obtained.

Polymorphina communis d'Orligny.

Polymorphina (Guttulinat) communis d'Orbigny, 1826, Ann. Sci. Nat., vol. vii. p. 266, pl. xii. fies. 1-4; Modèle, No. 62. I'. (Guttulina) problema var. deltoidea Andreae, 1884, Abhandl. reol. Special-Karte Elsass-Loth., vol. ii. p. 210, pl. ix. fig. 21. P. glommcrata (Röm.) Deissel (Holzapfel) 1891, Abhandl. k. Preuss. geol. Landesanst., N.f. Heft 3, p. 62, pl. xii. figs. 17-29. Bulimimu. pyrula (d'Orb.) Silvestri, 189:3, Atti e Rendic. Accad. Sci. Lett. e Arti dei Zelanti e P.P. dello Studio di Acireale, vol. v. P. 12, pl. v. figs. 73, 74. Polymorphina gibbu near communis (d'Orb.) Coës, 1894, K. Svenska Vet.-Akad. Handl., vol. xxv. p. 55, pl. ix. figs. $523,524 . \quad$ P. communis (d'Orb.) Jones, 1895, Palæont. Soc., p. 265, pl.v. fig. $2 t$; pl. vi. fig. 16. P. communis (l'Orb.) var. ctuplucente Jones and Chapman, 1896, Journ. Linn. Soe. (Zool.) vol. xxt. p. 502, fig. 9. P. communis (d'Orb.) Burrows and Holland, 1897, Proc. Geol. Assoc., vol. xv. p. 46, pl. ii. fig. 14. P. communis (d'Orb.) Bagg, 1898, Bull. U.S. Geol. Survey, No. 88, p. 60, pl. vi. fig. Э.

[^155]I. communis var. acuplacenta (J. and C.) Silvestri, 1899, Mem. Pontif. Accad. Nuovi Lincei, vol. xv. p. 233, pl. iv. fig. 2. P. communis (d'Orb.) Flint, 1899, Rep. U.S. Nat. Mus. for 1897 (1899), p. 319, pl. lxvii. fig. 6. P. communis (d'Orb.) Egger, 1899, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xxi. p. 128, pl. xvii. figs. 36, 37. P. communis (d'Orb.) Fornasini, 1900, Mem. R. Accad. Sci. Ist. Bologna, ser. 5, vol. viii. p. 387, fig. 37.

Is not common nor widely distributed, but the examples are more robust than those of the other species of the genus found in the Malay Archipelago.

Polymorphina problema d'Orbigny.

Polymorphina (Guttulina) problema d'Orbigny, 1826, Ann. Sci. Nat., vol. vii. p. 266, No. 14 ; Modèle, No. 61 . Bulimina pyrula (d'Orb.) Silvestri, 1893, Atti e Rendic. Accad. Sci. Lett. e Arti dei Zelanti e P.P. dello Studio di Acireale, vol. v. p. 12, pl. v. figs. 79, S0. Polymorphina problcma (d'Orb.). Jones, 1895, Palæont. Soc. ј. 267, pl. v. fig. 23 ; pl. vi. fig. 12 . P. problema (d'Orl.) Burrows and Holland, 1897, Proc. Geol. Assoc., vol. xv. p. 46, pl. ii. fig. 17. I'. problema (d'Orb.) Egger, 1899, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xxi. p. 129, pl. xvii. figs. 33-35.

The specimens which can be distinguished from P. communis are few and insignificant, and seem to be confined to a few Stations in Area 1.

Polymorphina oblonga d'Orbigny.

Polymorphina oblonga d'Orbigny, 1846, For. Foss. Vienne,〕. '232, pl. xii. figs. 29-31. P. oblonga (d'Orb.) Terquem, 1882, Mém. Soc. Géol. Fr., sér. 3, vol. ii. p. 145, pl. xxiii. fig. 9. P. ollonga (d'Orb.) Chaster, 1892, First Rept. of the Southport Soc. of Nat. Sci., 1890-1891 (1892), p. 64, pl. i. fig. 13. P. oblonga (d'Orb.) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 309, pl. xi. figs. 9, 10, 24 . P. oblonga (d'Orb.) Flint, 1899, Rep. U.S. Nat. Mus. for 1897 (1899) p. 319, pl. lxvii. fig. 5.

This form is very rare in the Malay Archipelago and has been observed only at Station 22 in Area 2.

Of its occurrence in the recent condition, Brady states that its distribution is similar to that of the allied forms P. problema and P. compressa. Chaster records it from the neighbourhood of Southport. Egger's 'Gazelle' Stations are Table Bay, 50 fathoms; Mauritius, 225 fathoms ; and West Australia, 196 fathoms. Flint records it from off the coast of Georgia and North Carolina, 276 and 168 fathoms.

Polymorphina sororia Reuss.

Polymorphina (Guttulina) sororia Reuss, 1863, Bull. Acad. Roy. Belg., sér. ii. vol. xv. p. 151, pl. ii. figs. 25-29. P. sororia (Reuss), Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 308, pl. ix. fig. 20. P. sororia (Reuss) Jones, 1896, Palæont. Soc., p. 257, pl. vi. fig. 13. P. sororia (Reuss) Chapman, 1896, Journ. li. Mier. Soc., p. 12, pl. ii. figs. 11, 12. I. sororia (Reuss) var. fistulosa Flint, 1899, Rep. U.S. Nat. Mus. for 1897 (1899), p. 319, pl. lxvii. fig. 2. P. sororia (heuss) Egger, 1899, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xxi. p. 126, pl. xvii. figs. 6, 7.

Although moderately plentiful and widely distributed in the Malay Archipelago, the examples are small and composed of hut few chambers.

Brady says of this form that it is less common than the type (P. lactea), but it has a similar wide area of distribution. Egger records it from West Africa, 371 fathoms; and Flint has the fistulose variety from the North Atlantic, from off the coast of Brazil, and from the Gulf of Mexico, 671 to 1781 fathoms.

Polymorphina sororia var. euspidata Brady.

Polymorphina sororia var. cuspidata Brady, 1884, Chall. Rept., p. 563, pl. lxxi. figs. 17-19, pl. lxxii. fig. 4. P. sororia var. cuspidata (Brady) Chapman, 1896, Journ. R. Micr. Soc., p. 13, pl. ii. fig. 13. P. sororic var. cuspiduta (Brady) Egger, 1899, Abhandl. k. bayer. Akad. Wiss., Cl. 1I. vol. xxi. p. 127, pl. xvii. figs. 10, 11.

This variety is better represented than the type, it is rather more abundant, and widely distributed, and the examples are less feeble.

Brady says, "This form has been met with at two points in the North Atlantic, west of Ireland, depth $80 S$ fathoms and 1443 . fathoms respectively; and at Station 146, about midway between. the Cape of Good Hope and Kerguelen Island, 1375 fathoms."

Polymorphina regina Brady, Parker, and Jones.
Polymorphina rcgina Brady, Parker, and Jones, 1870, Trans. Linn. Soc., vol. xxvii. p. 241, pl. xli. fig. 32 ; and P. Orbignii (Zborzewski sp.) p. 244, pl. xlii. fig. 38m. P. scmicostata Marsson, 1878, Mitth. Nat. Ver. Neu-Vorpommern u. Rugen, Jahrg. x. p. 150, pl. ii. fig. 19. P. regina (B., P., and J.) var. Wright, 1886, Proc. Belfast Nat. Field Club, 1884-1885, App. ix. p. 331, pl. xxvii. figs. 13, 14. P. regina (P. and J.) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 310 , pl. ix. figs. $45,50,51$. P. regina var. damocornis (Reuss) Jones and Chapman, 1896, Journ.

Limn. Soc. (Zool.), vol. xxv.]. 501, fig. 3 ; and var. marginalis, P. 507 , fig. 36.

This form is represented by a few examples from Station 22 in Area 2. The shell is very thin and there are rarely more than two chambers.

OP its distribution in the recent condition Brady writes,* "The distribution of Polymorphine reyince seems limited to comparatively shallow water in the neighbourhood of the islands of the Pacific."

Egger records it from Kerguelen Island, 57 fathoms.
Dimorphina d'Orbigny.
Dimorphina lingulinoides sp. n., plate V. fig. 6.
Test elongate, straight, compressel ; extremities rounded or obtuse ; earlier portion biserial, with triangular chambers; sutures simous, not depresserl; final portion Linguline; aperture a long slit, with protruding lips. Length 0.33 mm .

This form closely resembles the J. compacta of the Coralline Crag of Sutton, but is casily distinguished from it by the slit-like aperture.

In the tertiary beds of St. Erth Dimorphince are not uncommon, but all the forms are compounded of the genera T'olymorphina and Lingulina, thus differing from all the described species with the exception of Polymorphina rogularis var. parallcla \dagger of the St. Erth clay, which evidently belongs to this group. In Dimorphina Capcllini. \ddagger from the lower pliocene of Bonfornello in Sicily, the aperture is a lipued slit, but it is slightly curved, and the chamber to which it pertains is circular in transverse section.

In the Malay Archipelago D. lingulinoides is very rare and has been noticed only at Station 25 in Area 2.

Uvigorina d’Orbigny.
Uvigerina cunarionsis l’Orbigny, plate V. fig. 7.
Urigerina canaricnsis d’Orbigny, 1839, Foram. Canaries, p. 1:38, pl. i. figs. 25-27. U. cunarirnsis (d'Orb.) Fornasini, 1891, Foraniminiferi Pliocenici del Ponticello di Savena, pl. ii. fig. 26. U. canuricnsis (d'Orb.), Woodward and Thomas, 1893, Geol. and Nat. Hist. Survey of Minnesota, vol.iii. p. 39, pl. d, fig. 9. I. cunarionsis (d’Orb.) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 311, pl. ix. fig. 43. U. canariensis (d'Orb.) Goës, 1894,

* Chall. Pept., 1884, p. 571.
\dagger Millett, Trans. R. Geol. Soc. of Cornwall, vol. xi. 1895, p. 658, pl. figs. 5, 6.
\ddagger De Amicis. Naturalista Siciliano, anno xiv. 1895 , p. 45 , pl. i. fig. 18.
K. Svenska Vet.-Akad. Handl., vol. xxv. p. 52, pl. xi. figs. 489-492. U. canariensis (d'Orb.) forma distoma De Amicis, 1894, Atti Soc. Tosc. Sci. Nat., Mem., vol. xiv. p. 29, pl. ii. fig. 5. U.cinericnsis (('Orb.) var. furinosa (Hantken) Jones, 1896, Pakeont. Soc., p. ${ }^{2} 78$, pl. vii. fig. 27.

This form is very abundant and occurs at nearly all the Stations in both Areas. The surface of the test, normally smooth, is often more or less rough, and without a break passes into that of U. aculcata.

The typical form is common, but the specimen chosen for illustration represents an interesting variety which occurs only at Station 22 in Area 2.

Uvigerina asperula Czjzek.

Uvigerina asperula Czjzek, 1848, Haidinger's Naturwiss. A1)handl., vol. ii. p. 146, pl. xiii. figs. 14, 15. U. asperule ("xizek) Sherborn and Chapman, 1886, Journ. R. Micr. Soc., ser. ㄹ, vol. vi. pi755, pl. xvi. fig. 7. U. asperula (Czjzek) Toutkowsky, 1887, Zap. Kievsk. Obsch. Estest., vol. ix. p. 41, pl.ii. fig. 3. U. "sporul" (CZjzek). Brady, Parker, and Jones, 1S8S, Trans. Zool. Soc., vol. xii. 1. 225, pl. xlv. figs. 4,5 . U. asporulu (Czzzek) Terrigi, 1891, Mem. II. Com. Geol. Italia, vol. iv. p. 100, pl. iii. fig. 25. U. usperul! (Czjzek) Egger, 1893, Ahhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 312, pl. ix. fig. 41 . U. aspernlu (Czjzek) Flint, 1899, Rep. U.S. Nat. Mus. for 1897 (1899), p. 320, pl. lxviii. fis. 4.

This is just as plentiful as the smooth form, U. cunariensis, and the distribution is identical. It may be noted that at the individual Stations the relative abundance of the two forms is invariably the same.

The disposition to become uniserial is shown in many examples, and in this respect they resemble the var. ampullucca of Brady, which is described as a dimorphous U. asperula, connecting the Usigerince with the Sagrince.

Uvigerina asporula Czjzek var. ampullaeea Brady.

Uvigerina asperula (Czjzek) var. ampullacea Brady, 18St, Chall. Rept., p. 579, pl. lxxv. figs. 10, 11. U. ampullacea (Brady) Egrger, 1893, Abhandl. k. bayer. Akad. Wiss., C1. II. vol. xviii. p. 313, pl. ix. fig. 37. U. asperula var. ampullacea (Brady) Flint, 1899, Rep. U.S. Nat. Mus. for 1897 (1899), p. 320, pl. lxviii. fig. 5.

In the Malay Archipelago this variety of U. asperula is very rare, and is confined to Area 1.

Brady names nine localities where it has been found, the depths ranging from 350 fathoms to 725 fathoms; Egger records it from

Mauritius, 225 fathoms, and from West Australia, 560 fathoms; whilst the only 'Albatross' Station is off the Brazil coast, 1019 fathoms.

Uvigerina interrupta Brady.

Uvigerina intervupta, Brady, 1879, Quart. Journ. Micr. Sci., n.s. vol. xix. p. 274, pl. viii. figs. 17, 18. U. interrupta Brady, 1884, Chall. Rept., p. 580, pl. lxxv. figs. 12-14. U. interrupta (Brady) Figger. 1893 , Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. $313, \mathrm{pl}$. ix. fig. 58.

This appears to be nothing more than an attenuated form of ${ }^{\text {C. cmpullacea, and }}$ and gradation from one to the other is well shown by the Malay specimens.

It is plentiful at Station 25 in Area 2, and occurs, but very sparingly, at a few Stations in Area 1.

Brady says it has only been observed in the South Pacific, and mames six localities, the depths varying from 37 to 1375 fathoms.

Egger gives two 'Gazelle' Stations, both off the coast of West Australia, at depths of 196 and 650 fathoms.

> Yvigerina auberiana d’Orbigny var. glabra var. n., pl. V. figs. $\mathrm{S}, 9$.

Uvigcrina auberiana d'Orbigny,1839, Foram. Cuba, p. 106, pl. ii. figs. 23,24 U. auberiana (d'Orb.) Goës, 1882, K. Svenska Vet.Akall. Handl., vol. xix. p. 60, pl. iv. figs. 71-75.

The Malay examples of this form are more compressed and neater than those from the West Indies described by d'Orbigny; they also differ in having the surface of the test quite smooth, but they agree in the more important character of being biserial. The clongated form (fig. 9) differs from Bolivina only in the form of the aperture. It closely resembles the figures of U. Parkeri given hy Karrer,* but he does not state that his species is biserial. lirady in his 'Challenger' Report makes U. auberiana a variety of U. asperula; if this diagnosis were accepted the Malay form would have to be treated as a compressed biserial variety of U. canariensis, but taking surface ornamentation as being of less value than the mode of aggregation of the chambers, it seems more natural to group together the biserial varieties.

Goës, writing of U. aubcriana from the Caribbean Sea, says, "Our form is often more smooth and more slender than d'Orbigny's -also from the West Indies." These, it will be observed, are pre-

* Abhandl. k. k. geol. Reichs., vol. ix. 1877, p. 385.
cisely the differences between d'Orhigny's and the Malay examples.

The smooth form is very abundant in the Malay Archipelago and occurs at most of the Stations in both Areas.

Urigerina Pygmece d'Orbigny.
Uriyorina pygmae d’Orbigny, 1826, Ann. Sci. Nat., vol. vii. p. 269 , pl. xii. figs. 8, 9 ; and Modèle, No. 67. U. pygmaca (d’Orb.), Brady, Parker, and Jones, 1888, Trans. Zool. Soc., vol. xii. p. 224, pl. xlv. figs. 1, :2. U.pygmece (d’Orb.) Terrigi, 1891, Mem. I. Com. Geol. Italia, vol. iv. p. 100, pl. iii. fig. 24. U. plgmed (d'Orb.) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p.314, pl. ix. fig. 42. Polymorphina regina (B., P., and J.) Silvestri, 1593, Atti e Rendic. Accad. Sci. Lett. e Arti dei Zelanti e P.J. dello Studio di Acireale, vol. v. p. 14, pl. v. figs. 70-72. U. pygmса (d'Orb.) Silvestri, 1893 , Mem. Pontif. Accad. Nuovi Lincei, vol. ix. p. 207, pl. v. fig. 5. U. pygmert (d'Orb.) Goës, 1894, K. Svenskia Tet.-Akad. Handl., vol. xxv. p. 51, pl. ix. figs. 496-501. U. pygmece (d'Orb.) Flint, 1899, Rep. U.S. Nat. Mus. for 1897 (1899), p. 320, pl. Ixviii. fig. 2. U. pygmса (d'Orb.) Silvestri, 1899, Mem. Pontif. Accad. Nuovi Lincei, vol. xv. p. 239, pl. iv. fig. 5 ; and U. pygmace var. asperula Idem, 1900 , Ibid. vol. xvii. p. 277 , pl. vi. fig. 95.

This form is represented by a few feeble examples from Station 2, in Area 1.

Uiegerince porrecte Brady.

Urigcrina porrecta Brady, 1879, Quart. Journ. Micr. Sci., n.s. vol. xix. p. $274, \mathrm{pl}$. viii. figs. 15,16 ; Idem, 1884 , Chall. Rept., p. 577, pl. lxxiv. figs. 21-23. U. porrccta (Brady) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 315, pl. ix. figs. 51, 63.

This form also is very rare in the Malay Archipelago, although it oceurs at Stations in both Areas.

With regard to its distribution generally, Brady writes, "This is a coral-reef species, and with one exception all the localities lie within the tropics." He names several Stations where it has occurred at depths ranging from 12 fathoms to 1850 fathoms. The solitary 'Gazelle' Station is West Australia, 196 fathoms.

Uvigerina angulosa Williamson.

Uvigerina angulosa Williamson, 185s, Rec. Foram. Gt. Britain p. 67, pl. v. fig. 140. U. angulosa (Will.) Egger, 1893, Abhandl k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 314, pl. ix. figs. $10,46,47$.
U. angulosa (Will.) Goës, 1894, K. Svenska Vet.-Akad. Handl., vol. xxr. p. 51, pl. ix. figs. 502-509. U. ungelosa (Will.) Jones, 1595, Palreont. Soc., p. 277, pl. vii. fig. 26. U. angulosa (Will.) Flint, 1899, Rep. U.S. Nat. Mus. for 1897 (1899), p. 320, pl. lxviii. fig. 3. U. angulosa (Will.) Liebus, 1901, Nenes Jahrb. für Min., vol. i. p. 120 , pl. v. fig. 3 .

This species is likewise rare in the Malay Arehipelago, but it is found in both Areas, and the examples are well developed.

> Sagrina d’Orligny, emended ly Parker and Jones.
> Sagrina columellaris Braly, plate V. figs. $10,11$.

Sagrinct columellaris Brady, 1881, Quart. Jomn. Micr. Sei., n.s. rol. xxi. p. 64. Siphogencrini glabra Schlumberger, 1883, Feuille Jeunes Nat., p. 118, pl. iii. fig. 1. Siphogenerina (Sagrinc) columelluris (Brady) Egger, 1893, Abhandl. k. bayer. Akal. Wiss., Cl. II. vol. xviii. p. 316, pl. ix. figs. 28, 31, 33. Siphogenerina columellaris (Brady) Idem, 1899, Ibid., vol. xxi. p. 134, pl. xri. figs. 20, 21. Saypinu columellaris (Brady) Fornasini, 1900, Mem. I. Acead. Sci. Ist. Bologna, ser. 5, vol. viii. p. 391, tig. 41. Siphogenerina columetlaris (Brady) Silvestri, 1902, Atti , Pontif. Acead. Romana dei Nuovi Lincei, anno lv. p. 1, figs. 1, 2.

In treating of Bigenerinc (Siphoycnerince) Schlumberycrii mention was made of the difficulty of assigning to the various forms of Siphogencrine their correct position in the classification of the foraminifera; whether columelluris would be more at home amongst the Sagrina or the Bigcnerince, is still a matter of opinion.

The recent discovery by Prof. Silvestri* of characteristic specimens of Pleurostomella brecis having the contorted internal tube, is of great interest in its bearing on this question.

In the Malay Archipelago the number of examples is small and the species seems to be confined to Area 1. There are, however, specimens of both the microspheric and megalospheric forms, which are well differentiated in this species, as shown by the figures given by Schlumberger in 1883, and by Silvestri in 1902.

With regard to its general distribution in the living condition, Brady in his 'Challenger' Report gives thirteen localities, at depths varying from the shore to 1125 fathoms; Egger quotes three 'Gazelle' Stations, at depths from 75 fathoms to 225 fathoms; whilst Fornasini and Silvestri record it from the Adriatic and Mare Jonio.

Sagrina bifrons Brady.
Sagrina bifrons Brady, 1881, Quart. Journ. Micr. Sei., n.s. vol. xxi. p. 64 ; and 1884, Chall. Rept., p. 582, pl. lxxv. figs. 18-20.

* Atti R. Accad. Sci. Torinn, vol. xxxviii. 190 , p. 5, fig. 1a-c.

Siphoyenerina (Sagrina) bifrons (Brady) Eqger, 1893, Abhandl. k. hayer. Akad. Wiss., Cl. II. vol. xviii. p. 317, pl. ix. figs. 25, 26, 29. Setfrine bifrons (Brady) Idem, 1899, Ibid., vol. xxi. p. 134, pl. xv. tigs. 25, 26.

Of this rare form a few poor examples occur at several Stations in both Arcas; they differ from columellaris in little more than the compression of the test.

Brady states that it has only been observed in one locality, the Hyaloneme-ground, south of Japan, depth 345 fathoms. Egger's very doubtful 'Gazelle' examples are from West Australia, 560 fithoms.

Sagrina virgula Brady.

Setfrince virgule Brady, 1879, Quart. Journ. Micr. Sci., n.s. vol. xix. p. 275, pl. viii. figs. 19-21; and 1884, Chall. Rept., p. 58:3, pl. laxvi. figs. 4-10. Siphogenerine (Setgrina) virgule (Braty) Esger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xriii. 1. 318 , pl. ix. fig. 27.

In the Malay Archipelago this is the predominant species of the genus, being found in abundance at most of the Stations all over the Region. The examples are large, well developed, and possess all the characters of the species.

With regard to its distribution elsewhere, Brady writes, "Sagrina ripfule has been obtained in the South Atlantic off Pernambuco, 675 fathoms ; with that exception the distribution, which extends altogether to ten localities, is confined to the South Pacific, the bathymetrical range being from 12 fathoms to 2075 fathoms." Egger reports it from the western coast of South Africa, 1914 fathoms ; and two Stations off West Australia, 196 fathoms and .60 fathoms.

Sutrina nodose Parker and Jones, plate V. figs. 12-15.
Utigerina (Sagrina) nodosa Parker and Jones, 1865, Phil. 'Trans., vol. clv. p. 363, pl. xviii. fig. 15. Sagrina nodosa (P. and J.) Brady, 1884, Chall. Rept., p. 583, pl. cxiv. fig. 18. S. cylindriec. (d'Orl. sp.) Fornasini, 1897, Rivista Ital. di Paleont., fase. v. vi. p. 13, fig.

As indicated by the figures, the Malay Archipelago representatives of this species vary considerably from the type. The uniscrial chambers are often irregularly lobed at their base; whilst in some examples the Uvigerine portion is obscure, and the test appears to be uniserial throughout. In the surface ornamentation the usual costæ are replaced by regular rows of closely placed dots; a few of the examples, however, have the surface quite smooth. In my cabinet are examples dredged from 50 fathoms off the coast of

Portugal which resemble the Malay forms in every respect. It may be noted that in some of Terquem's figures of Uvigerina muralis from the Paris eocene,* there is an evident tendency to the lolpulation of the base of the chambers.
S. nodose is not uncommon in the Malay Archipelago and occurs at several Stations in both Areas.

Brady in his 'Challenger' report writes "Sugrina nodosa is by no means a common form: so far as the 'Challenger' collections are concerned, it only appears at one locality,-off the Cape of Good Hope, depth 150 fathoms. Otherwise it has been reported from the Mediterranean and from the Italian tertiaries."

Sagrina striate Schwager sp.

Dimorphina striata Schwager, 1866, Novara-Exped., Geol. Theil, vol. ii. p. 251, pl. vii. fig. 99, and fig. 2 in text. Sayrince striatu Schwager, 1877, Boll. I. Com. (ieol. Italia, p. 25, pl. fig. 35. S. striata (Schwager) Brady, 1884, Chall. liept., p. 524, pl. lxxr. figs. 25, 26. Siphogencrina (Sayrina) striato (Brady) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 316, pl. ix. figs. 32, $34,35,64,65$.

Usually this is not a common form, but in the Malay Archipelago it is well represented, being found in considerable numbers at several Stations in both Areas. The examples are fine and exhibit greater affinity with S. raphumus than with S. nodosa.

Brady specifies the following localities :-" Off the coast of South America, south of Pernambuco, 350 fathoms; shore-sand, east coast of Madagascar ; off Kandavn, Fiji Islands, 210 fathoms; off New Hebrides, 125 fathoms; Torres Strait, 3 to 11 fathoms; off Ki Islands, 129 fathoms ; and off the Philippines, 95 fathoms." The 'Gazelle' Stations are Mauritius, 225 fathoms, and West Australia, 196 fathoms.

Sagrina raphunus Parker and Jones.

Urigorina (Sagrina) raphanus Parker and Jones, 1865, Phil. Trans., vol. clv. p. 363, pl. xviii. figs. 16, 17. Siphoyencrina costata Schlumberger, 1883 , Feuille .Jennes Nat., p. 118, fig. B. Sayrina raphumus (P. and .J.) Brady, 188t, Chall. Rept., p. 585, pl. lxxv. figs. 21-25. Siphogencrina (Sitgrinu) raphanus (P. and J.) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 317, pl. ix. fig. 36.

Although not quite so abundant in the Malay Archipelago as S. striatu, nor so widely distributed, the examples are fine and characteristic, and both the microspheric and megalospheric forms are represented.

[^156]Brady writes, "Sagrina raphamus is essentially a coral-reef Foraminifer," and then specifies a number of Stations, the depths ranging from 2 to 260 fathoms. The solitary 'Gazelle' example is from Mauritius, 225 fathoms.

Sagrina tessellata Brady, plate V. fig. 16.
Segrina (?) tessellata Brady, 1884, Chall. Re1, t., p. 585, pl. lxxvi. tigs. 17-19.

Of this very rare and doubtful form several examples have been found in the material from Station 2, in Area 1. Externally they agree in all respects with the figures of the 'Challenger' specimens; but internally the chambers are subdivided into chamberlets ly transverse septa, usually from eight to ten in each chamber.

According to Brady his knowledge of the species was derired from two or three specimens from Nares Harbour, Admiralty Islands, 17 fathoms, and Raine Island, Torres Strait, 155 fathoms.

Sagrina limbata Brady, plate V. figs. 17-19.
Sagrina limbate Brady, 188t, Chall. Rept., p. 586, pl. exiii. tig. 14. S. limbete (Brady) Howchin, 1889, Trans. R. Soc. S. Australia, vol. xii. p. 11, pl. i. fig. . .

Of this very rare and little understood form a solitary example has been found in the material from Station 2, in Area 1. Unfortunately the specimen has been mislaid, but the fincler, Charles Elcock of Belfast, had previously made a chawing of it, and a copy of this appears on the plate (fig. 17).

Brady's diagnosis of the species was made from ill-grown examples, and is necessarily imperfect. Having myself been especially fortunate in finding examples in the material from liaine Island, kindly sent me by Sir John Muray of the 'Challenger' office, I am in a position to add to Brady's description. Essentially the test is composed of a series of elongate-oval chambers, usually fom in number, as shown by fig. 18; these chambers, as in S. tessellota, are subdivided into chamberlets by transverse septa which are well shown in the abraded specimen, fig. 19. Brady was unaware of these characters until he had examined my specimens shortly after the publication of the 'Challenger' Report on the Foraminifera, and his figure does not represent them. Howchin's drawing represents a much more characteristic example and indicates the division of the test into chambers. In several specimens the initial chamber is broad at the base, and obliquely truncated as shown in fig. 18.

The division of the chambers by transverse septa is not a character of the genus Sagrina, and further researches will prob-
ably render it necessary to constitute a new genus embracing the species tessellata, limbeta, and probably annuluta.

With regard to its hitherto recorded distribution, Brady writes, "Segrinu limbutu has only been encountered at a single locality,off Raine Island, Torres Strait, depth 155 fathoms."

Howchin writes, " A single specimen of this very rare form was obtained from the Lower-Bed. The test is longer and more slender than Mr. Brady's figure and is also more curved in outline, but in all essential features agrees with the type." The "Lower-Bed," mentioned above, is a portion of the Older Tertiary of Muddy Creek, Victoria, Australia.

Sub-family Ramulininæ.

Ramulina Rupert Jones.
Ramulina lavis Jones.
Ramulina laris (Jones) Wright, 1875, Proc. Belfast Nat. Field Club, 1873-1874, App. iii. 1. 88, pl. iii. fig. 19; and R. brachiate (Jones), p. 88, pl. iii. łig. 20. Ramulina sp., Balkwill and Millett, 1884, Journ. Micr., vol. iii. p. 83, pl. iv. fig. 7. R. Bradyi Rzehak, 1895, Ann. k. k. Naturh. Hofmuseums, vol. x. p. 223, pl. vi. fig. 5 ; and R. cerigue, p. 223, pl. vi. fig. 4. R. lavis (Jones) Chapman, 1896, Journ. T. Mier. Soc., p. 582, pl. xii. fig. 2 ; and 1898, p. 2 , pl. ii. fig. 15. R. lavis (Jones) Jones and Chapman, 1897, Journ. Linn. Soc. (Zool.), vol. xxvi. p. 339, figs. 1-4. R. protciformis Flint, 1899, Rep. U.S. Nat. Mus. for 1897 (1899), p. 321, pl. lxviii. fig. 7. R. lavis (Jones) Schubert, 1901, Zeitschr. deutsch. geol. Gesell., Jahrg. 1901, p. 19, tig. 1.

This smooth variety of Ramulina is represented by a few fragments from Station 13, in Area 1.

It is much more abundant as a fossil than as a recent form.

Ramulina ylobulifera Brady.

Ramulina ylobulifere Brady, 1879, Quart. Journ. Micr. Sci., n.*. vol. xix. p. 272 , pl. viii. figs. 32,33 ; and 1884, Chall. Tept., p. 58 pl. lxxvi. figs. 22-28. Tinoporus beculatus Sherborn and Chapman, 1886, Journ. R. Micr. Soc., ser. ii. vol. vi. p. 758, pl. xvi. fig. 24. Lagena lavis (Montagn) Terrigi, 1899, Mem. R. Accad. Lincei, ser. + , vol. vi. p. 112, pl. vi. figs. 2,3. Lagene motica Chaster, 1892, First Rept. of the Sonthport Soc. of Nat. Sci., 1890-1891 (1892), p. 62, pl. i. fig. 14. Ramulina globulifera (Brady) Egger, 1893, Abhandi. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 310, pl. ix. fig. 62. Ii. globulifera (Brady) De Amicis, 1895, Naturalista Siciliano, anno xiv. p. 112, pl. i. fig. 14. R.globulifcra (Brady) Chapman, 1896, Journ.
R. Micr. Soc., p. 582, pl. xii. figs. 3-6. R. globulifera (Brady) Jones and Chapman, 1897, Journ. Linn. Soc. (Zool.), vol. xxvi. p. 340, tigs. 5-22. R. globulifere (Brady) Esaer, 1899, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xxi. 1. 135, pl. ii. fig. 2 ; and pl. xxii. fig. 33. R. globutifera (Brady) Flint, 1899, Rep. U.S. Nat. Mus. for 1897 (1899), p. 321, pl. lxviii. tig. 6 .

This fragile form is well represented in the Malay Archipelago, and oceurs in more or less abundance at many Stations in both Areas.

Brady and other authorities record the species from numerous localities widely apart, but it appears to be most at home in the South Pacific.
V.-A New Method of Using the Electric Are in Photomicrography.

By E. B. Stringer, B.A. F.I.M.S.

(Read April 17th, 1903.)
Tue method I have adopted consists, briefly, in employing the radiation from the electric arc itself, altogether separated from that of the incandescent carbons. This, modified by certain lightfilters, yields a powerful violet monochromatic light, on the extreme limit of visibility.

If an image of the arc formed by condensers of good white glass be thrown upon an opening in a blackened screen, the opening being of such a size as to allow only the radiation from the are to pass, the separation is easily effected. The light thus obtained is of a warm violet colour, and very rich in ultra-violet rays, as is shown by its great power of exciting fluorescence in such bodies as solutions of quinine and resculin and in the platinocyanides. Its spectrum, examined with an instrument of fairly high dispersive power, is a fluted one, especially remarkable for a bright group of lines in the blue, and a band, still brighter, in the extreme violet, which is separated from the rest of the spectrum by a dark interval of some length. If now a solution of ammonia-sulphate of copper be interposed of such a strength as only to transmit the violet band, and if the ultra-violet rays be cut off by another trough containing a solution of sulphate of quinine, we obtain the light I have described.

The six lines of which the violet band is made up are close, together and differ only very slightly in wave-length, so that the light may be considered strictly monochromatic ; and though visually of little intensity its actinic power is great, and at 2000 diameters the necessary exposure is only 15 seconds. There is, moreover, light enough to focus by with ease at this magnification.

The apparatus which I described in the Society's Journal of April 1898 proves to be well adapted for the work. The condensers are aplanatic, and of the purest white Jena glass, and throw a sharp magnified image of the are upon the substage diaPhragm: and as this image is formed by a pencil of slightly divergent rays, the working of the substage condenser is in 110 way interfered with.

A shutter having pneumatic release is attached to the camera front. Then, with one hand on the feeding adjustment of the are lamp and the other holding the pneumatic ball, the image of the are is easily watched upon the substage diaphragm, and the exposure made at the right moment.

In order that the arc may be perfectly steady the carbons should be small ; solid ones of 6 mm . dianneter are the best to use, and the purer the better: the purest I have ret tried are those known as Noris carbons. The arc must, of course, be a comparatively long one, about $\frac{1}{4}$ in., to which end the voltage should be high, not less than 100 ; and a hand-feed lamp such as Davenport's will be found much the best. It is also absolutely necessary to protect the arc from air currents by enclosing it in a lantern body, and the current used shonld not be less than 6 amperes.

It may be added that the method has also the adrantage of completely doing away with the excessive light and heat which proceed from the positive carbon. The light is very apt to cause flare in spite of every precaution, and the heat is liahle to damage balsam and styrax mounts even throngh the 6 in. of water which the trough contains. With the arc alone there is danser of neither of these things.

The two lantern slides are of Plenoosigme anduletum. dry, and Coscimmiscus ustcromphalus in styrax, taken by the above method with Zeiss' 3 mm . oil apochromatic objective N.A. $1 \cdot 4$ and 8 . compensating eye-piece, the full aplanatic cone from Powell's dry apochromatic condenser, and a camera length of $32 \mathrm{in} . ;$ giving a magnification of 2200 diameters. The exposures were 15 and $\because 0$ seconds respectively, the current used by the lamp being 6 amperes.

The are light is, of course, known to be very rich in ultrariolet rays. But, if an image of the are, formed by condensers of pure white glass, be received upon a fluorescent screen (one of those used in Röntgen ray work, of barium platinocyanide, is the most courenient) it will be seen that the ultra-violet rays proceed to a very large extent, if not entirely, from the arc itself. The are is seen to consist of a central core, surrounded by a kind of lambent flame ; and it is from this central core that the ultraviolet rays proceed, as is evident from the powerful excitation of the fluorescent substance. The central core evidently consists uf incandescent carbon vapour, whilst the surrounding flame is due to the combustion of the carbons in the air.

If the spectrum of the arc be projected by means of a prism of good white glass upon the fluorescent screen, it will be seen to he very much prolonged into the ultra-violet region, principally in two broad bands which appear a bright green. Even on a sereen of ordinary eard these bands may be seen in a carefully darkened room, as the pale lavender grey described by Herschel ; and when a trough containing a solution of quinine is held in front of the slit, they are completely cut off.

But it appears quite possible that these ultra-violet rays, which we are at present obliged to cut off because our lenses are not corrected for them, may one day be brought into use, and may
enable photography to do for the Microscope what it has already done for the telescope, and reveal detail beyond the range of vision ; and this is the more feasible since in the are we possess, as I have shown, a powerful and easily controlled source of them.

It is stated by Stokes that the ultra-violet spectrum of the are light is with quartz lenses and prisms six times as long as the visible spectrum ; and all of this can be photographed. With glass prisms it is not of course so long, nor so intense ; and for microscopical purposes it is chiefly glass which we must consider. But, according to Abney, much more may be done with glass than in senerally supposed, and "with pure white flint-glass prisms the furthest lines in the solar spectrum can be photographed." This was done by Cornu, usiug crown and flint-glass prisms, as far as the Fraunhofer line U. The wave-length of this line in ten-millionths of a millimetre by Cornu's map is 2948 , that of I_{1}, the line of maximum visibility, being 5889. The wave-length of U is, therefore, almost exactly one-half that of D, and should give twice the resolution. But Cornn, as stated above, used prisms and lenses of crown and flint. The are light moreover extends a great deal further into the ultra-violet than does sunlight, so that by the proper choice of glasses (oí which so many are now available) and of other media, much more miglit be done. Fhorite is fortunately very transparent to these rays, as much so, according to Miller's tables, as quartz. If opticians could thus provide us with lenses transmitting yays far into the ultra-violet, and at the same timse filly corrected for them, we might hope to achieve a considerable advance.

I find that a lens of the kind suggested was actually made lis Putherfurd for the telescope which he used in stellar photography. " Mr. Rutherfurd," says Lockyer, "simply discards the visual rays, and brings together the violet ones; the result of his work being a telescope through which it is impossible to see anything, but through which the minutest star down to the tenth magnitude can be photographed with the most perfect sharpness. This is the instrument of the future, so far as stellar photography is concerned."

The two kinds of work are not of course quite analogous. The additional detail is brought ont in telescopic work mainly by prolonged exposure, and Putherfurd did not apparently take the ultra-violet into consideration; yet one may venture to predict that the photographic oljective of the future will be something of the same kind.

The difficulty of constructing such an objective would no doubt be great, and its use when constructed would be far from easy, especially in focussing ; lut this might not be so difficult if it were corrected so as to bring the visible violet to the same focal point as the ultra-violet, since the focussing on the courser detail might
then be effected visually by means of the former, leaving the finer detail to be resolved photographically by the shorter waves. Much assistance might also be got by the use of a fluorescent screen, though I have hitherto tried this method without much success. A transparent fluorescent screen such as is used in spectroscopic work must be inclined to the optic axis, and a focussing screen, by the nature of the case, cannot be so inclined. I have also tried an opaque fluorescent screen, the platinocyanide one, olsserving the image upon its surface through the door in the side of the camera; but it is exceedingly difficult to see fine detail in this way, though the screen becomes strongly fluorescent, and the deciderl grain of the screen is also a hindrance.

Such experiments can, however, be only very imperfectly made with the lenses which are at present available; though the fact that the screen does become fluorescent, proves that they transmit the invisible rays to a considerable degree. This is also evident from the fact that they give a badly defined photographic image without the quinine solution ; and that if the ammonia-copper solution (which is partly opaque to the most refrangible rays transmitted by glass) be also removed, the definition is still more imperfect.

This is shown in the three photographs of Tavicula Bombus.
(A) is with the light from the are, the ammonia-copper and quinine solutions being both used.
(B) is the same without the quinine solution.
(C) is the same without either the copper or quinine.

The images in all of them were focused visually with equal sharpness.

I find that Stokes used in his investigations a flnorescent screen of uranium phosphate, which might prove to be better than barium platinocyanide for the present purpose. By means of it he discovered that solutions of the vegetable alkaloids exercise a powerful selective absorption in the ultra-violet; so that by a suitable choice of these it might be possible to make the ultra-violet rays also "monochromatic"; especially as the banded character of the are spectrum is no doubt continued throughout that region. All this might some day be done. But the difficulties to be overcome are so many that I confess I submit these considerations to the Society with a good deal of diftidence, having much doulst as to whether they will ever prove to be of any practical value.

I have since found that the Microscope (and the same lenses with which the photographs were done) transmits both ultraviolet bands, having succeeded in projecting them upon the fluorescent screen by means of a slit, lens, and prism, placed beyond the eye-piece. The second or more refrangible one, however, appears
rather diminished in intensity. I also find that styrax, in which the Nirrioule was mounted, is completely opaque to the second band, whilst balsam transmits it quite undimmed. The defective lefinition would, therefore, be much greater with a balsam monnt. Monolromire of naphthalin is perfectly transparent to both bands, so is cedar oil ; but realgar is unfortunately opaque to both, and to the visible violet as well. The silica of diatoms is, of course, very transparent to all the ultra-violet rays.
A solution of methylen-blue is much more transparent to the second hand than the ammonia-copper, but has the disadrantage of also transmitting the red.

Suminary of current resealiches RELATLNG TO
 Z O OLOGY AND BOTANY

(PRINCIPALLY INVERTEBRATA AND CRYPTOGAMH.1),

 MICROSCOPY, Etc.*
ZOOLOGY.

VERTEBRATA.

a. Embryology. \dagger

Parental and Grand-parental Components of the Nucleus. \ddagger V. Hieker makes another important contribstion to our knowledge of the morphologieal aspect of inheritance. His chief results, apart from theoretical dednctions, may be summed up in four statements.
(1) The "yonomeric" constitution of the nuelens, i.e. its composition out of antonomons paternal and maternal contributions, may be followe in the derelopmental history of Copepods from the fertilised ormu to the primordial sex-cells of the offspring.
(2) During the maturation of Cyclops there is a re-arrangement of the chromatin-elements in sueh a way that the ovim acenuires granilpaternal and grand-maternal elements in equal misture. With this re-arrangement there is associated a pairing of each grand-patermal chromosome with a grand-maternal chromosome.
(:i) It is highly probable that the "yonomeric" constitution of the mucleus is of wide, if not general, occurrence in sexnally reproflucent organisms, cspecially in genital and in epithelial cells.
(\pm) There is a close comection between the idiomeric: and the gonomeric constitution of the nuclens, in this sense, that the latter mas he regarded as a limit-case of the former (der letzere gewissermassen alis ein Grenzfall des crsteren erscheint).

But this brief report gives lat a general hint of the drift of a memoir which is as intricate as it is important.

Maturation in Newts' Ova and in General.s-W. Tulosch has especially investigated the beharour of the mucleolar sulstance durines

[^157]maturation. There are two essential processes involved. The first is the metamorphosis of the primitive nuclear framework, which passes from a concentrated state to one of fine distribntion ; and the second is a reverse process of aggregation. No observation compels one to believe that the nuclear framework is ever wholly lost. The nucleoli are not in any way mere ballast, or like the fifth wheel on a waggon, as Born's results would suggest. On the contrary they are hodies into which, at definite epochs in the maturation, part of the chromatin passes, to modergo definite transformations, and to be restored again in filamentar form to the muclear structure.

Luboseh regards the maturation-phenomena of the germinal vesiele as adaptations of the muclens to altered vital conditions, enabling it to preserve its hereditary equipment. The arrangements involved in this adaptation may secondarily acquire a functional importance which was not primarily implied in their origination.

Hermaphroditism in Fishes.*-L. Ronle refers to a recent memoir by Stephan, and notes that there are records of hermaphrodite and potandrous fishes. He has himself studied the question in reference to ('yminide, and cites the cases of a lot of 170 sexually mature red-eyes (Startimins erythrophthatmus) taken from an emptied pond. The lot Was composed as follows :- 91 specimens, from 2 cm . to 7 em . in length from the posterior margin of the eye to the base of the tail, were all males; of 25 specimens, 8 cm . to $!\mathrm{cm}$. in length, $1: 3$ were males and $1 \because$ females ; of $5 t$ specimens, 10 cm . to 19 cm . in length, all were females. Thas, in a chance lot, the number of males was in excess of that of females, and male sexual maturity oceured in forms smaller than those in which female sexual matmity was seen.

What is the interpretation? Is there strict unisexuality, with relatively dwarfed males? Or is there protandrous hermaphroditism? As far as the author has been able to judge, histological examination farours the second interpretation.

Carnivorous Fowls of the Second Generation. \dagger-F. Houssay notes that the structural changes in fowls induced by carnivorous diet are much more marked in passing from the first (graminivorous) set of the birds to their carnirorous progens, than in passing from the latter to the second exclusively carnisorous generation. In this communication he deals with the second carnivorons generation.
(1) Some structural features show no change, e.g. quantity of blood. weight of heart, weight of liver.
(2) Some structural features are on the decrease, e.g. the capacity of the crop, the length of the intestine, the length of the caci, the size of the whole stomach, of the gizzard, and of the pancreas.
(.2) Some structural features are on the increase, e.g. the weight of • kidners, lungs, and spleen.

Early Stages in Development of Ornithorhynchus. $\ddagger-$.J. T. Wilson and J. P. Hill describe an early stage in an egg of Ornithorhynchus,

[^158]measuring 10 by $9 \cdot 5 \mathrm{~mm}$. The partientar interest of the stage is that the primitive streak area co-exists with. thongh indepentent of, a primitive knot whose interior is penctrated by the archenteric or gastrulacavity. The mere fact of the co-existence of the streak with the knot at this stage necessitates some reconsideration of the morphological relationship of the mammalian primitive streak to the process of gastrulation.

Development of Vertebral Column of Penguin.*-II. Mainnich gives a careful account of the development of the backbone in Eulyptes: rhry.sorme, and the most interesting general result is a demonstration of the large number of primitise reptile-like skeletal peenliarities, which are much more marked in this isolated and ancient stock than in most "ther lireds.

Development of Beak of Penguin.t-M. Lewin describes the development of the anterior part of the skull in Eintyptes clurysocome. He notes inter alim that derivation from flying birds is surgested be the air-spaces which extend from the nasal chamber into the beak on to the middle of embryonic life, thereafter dwinding and eventmally disarnearing. But the divergence from the main Carinate stock must have been carly, as is suggested by the persistence of various samian featmes, e.n. the long-tontinued separateness of the bones of the skull, and the nature of the lachrymal canal.

Development of Corpus Vitreum. $\ddagger-\mathrm{M}$. von Lenhossék hals stment this in rabbit, cat, ox, and man. The vitreons body as a whole in a product of the lens, and therefore of ectodermic origin. Its cells are compared to the ependym-cells of the central nervons system. The fibrillar ritreous sulstance forms a unified coalescent framework; the relations of its filmils to the retina are guite secondary. The membrana hyaloidea is derived from the retina, and has nothing genetically to do with the vitreons body. The capsule of the lens is a cuticular' format tion from the cells of the lens-resiele.

b. Histology.

Nature of the Centrosome. $\$-\mathrm{D}$. N. Voinor has studied the centrosome, particularly in the V-form which it exhibits in the spermatoeytes of various insects. He concludes that the centrosome is a real structure. a true cellular organ, possessing some degree of antonomy, and some persistene of form apart from structural changes in the cells. It growand develops by its own activity. It is transmitted by division from one cell-generation to another, and may exhibit a precocity of develop-ment-the V-form-in certain cases of rapid cellular transformation.

Laws of Division. $\|-$ P. A. Dangeard recalls the law of Hertwis. that the two poles of the nuclear spindle lie in the direction of the largest masses of protoplasm, and the law of Pfüger, that the nuclear spindle is orientated in the line of least resistance.

* Jenaische Zeitschr. f. Naturwiss., xxxvii. (1902) pp. 1-40 (1 pl.).
\dagger 'Tom. cit., pp. 41-82 (2 pls. and 5 figs.).
\ddagger 'Die Entwickelung des Glaskörpers,' Leipzig, 4to, 106 pp., 2 pls., and 19 fiss.
$\$$ Arch. Zool. Expér., i. 4th series (1903) Notes et Revuc, No. ㄹ, pp. xrii.-xxiv.
Comptes Rendus, cxxxvi. (1903) pp. 163-5.

Dangeard's study of Flagellates shows (1) that these laws have only a secondary importance, and (\because) that they express the result of modifications introduced into the cellnlar orranism in the course of evolution. The division in Flagellates is often ruite contrary to the laws of Hertwig ant Pfiuger.

Dangeard re-states the laws of division :-
(1) The nuclear axis is disposed at right angles to the cellular axis or to the cellular plame if there is one.
(\because) The plane of division passes throngh the axis or the cellular plane, and these are determined by the general morphology of the cell and the position of its permanent elements.

Taking the cases of Euglenopsis vortur and Irachelomonas voleocina, Dangeard shows that the primary laws are modified by the appearance of a membrane or non-extensible membrane. The laws of Hertwig and Pfüger relate to this secondarily induced modification.

Size of Nerve-Fibres in Fishes.*-C. J. Herrick directs attention to Miss Dum's ohservations upon the relation between diameter and distribution of nerve-fibres in the frog. They recall some facts which he noted in regard to tishes. He concludes that eath functional system of peripheral nerves has tolerally definite fibre-characteristics, the basis for which is as yet monown ; that these characteristics are by no means invariable, but that the tibres of a given system may show considerable differences in calibre and medullation in a single animal ; and that some of these differenees, at least, may he correlated with the degree of functional development of the peripheral end-organ. In general, highly developed muscle-filres, sense organs, \&t. receive larger nerve-filres, than similar organs in a state of structmal and functional degradation.

Nerve-Endings in White Muscle. \dagger - A. Motta Coco and S. Distefano have studied the nerve-terminations in the white muscle of the rablit, and have shown that these are distinctly different in structure from those on the red museles.

Integumentary Organs of Cervidæ. $\ddagger-\mathrm{E}$. H. Zietzsehmann has stndied the minnte structure of varions organs beneath the skin of Cervide. He begins with the lair-tufts on the tarsal or metatarsal regions, or on both. These tufts differ in colour from the aljacent paits, the hairs are nsually longer and courscr, and more tosely packed (except in the roedeer). In many cases there are associated hairless patches. The skin of the hair-tufts is specially thick and shows a crowding together of tubmlar and acinons glands.

Secondly, the author disensses the "Dirunftiatten" in Cervus eltaphus. -a folding of the skin in the prsition of the antlers in females and fomg males. All three layers of the skin are folded; there is no increase in the tubular (sweat) glands, and there is no very marked increase in the acinous glands; in young males, indeed, the latter are absent. Similar structures in other forms are described.

The head-folds of Cervulus muntjac are then dealt with; they show

[^159]marked increase in the volume of the corinm, involving the connective tissue and both kinds of glands. Fourthly, the author describes a peculiar, coffee-brown structure between skin and fascia in the region of the last eight lumbar vetebre in Cervus elaphus, C. canaulensis, C. axis, and Cariucus campestris. It consists of a connective-tissue reticulum with many blood-vessels, isolated nerves, and large round cells in the meshes. It recalls the glandula coccygea or the glandula carotica.

Optic Chiasma of Reptiles.*-J. Gross has studied the chiasma nervorum opticorum in various reptiles, as a contribution to the discussion of a problem which has been the sulject of controversy since the time of Galen. In the slow-worm, the gecko, Lacertu, and two snakes, it seems clear that the crossing is total; in Chelonians and the chamelcon the case is not so clear, but it seems most probable that in these as in other cases the crossing is total not partial. The histological details are described in the different cases, which show remarkable diversity. A very simple mode of crossing was probably primitive in Reptilia, and Anguis fragilis is nearest the original simplicity. It is iuteresting to notice how this rescarch corroborates from the study of the details of the chiasma conclusions which have been otherwise reached in regard to the phylogenetic relationships of reptiles.

General.

Biogen-Hypothesis. \dagger-Max Verworn states as a working hypothesis a new version of an old idea. Metabolism depends on the continual breaking-down and continual building-up of a very labile chemical combination-the biogen-substance. This has its seat in the cytoplasm of the cell, rather than in the nucleus, which docs not in itself show respiratory changes.

Note on Physiological Injections. \ddagger-Yves Delage points out that the method of injecting carminate of ammonia, indigo-carmine, and the like, and observing where these substances are localised, is good so far as it goes, but that it is apt to lead to fallacious conclusions. The substances in question are not products of normal excretion, and it does not follow that the organs which excrete them after injection are excretory in the normal metabolism, or that the organs which do not excrete them may not be truly excretory. And to say that organs which fix and accumulate the artificially introduced substances are excretory at all, is like saying that the nervous system is excretory because it fixes methylen-blue.

Experiments with Adrenalin. §-Ch. Bouchard and H. Claude remark on the remarkable properties of adrenalin as an agent inducing vaso-constriction. They have made experiments (on rabbits) as to its toxicity. The fatal dose of a solution injected into the veins is between $\cdot 1$ and $\cdot 2 \mathrm{mgrm}$. per kilogramme. In the intoxication there are

[^160]nervous and cardio-pulmonary disturbances. A certain diminntion of susceptibility can be induced by repeated doses. Subeutaneous or peritoneal injection is not followed by nervous or respiratory disturbances, but induced by glycosuria.

Modifications observed in Carnivorous Fowls.*-F. Houssay eompares, as to moulting, exeretion, and weight of kidneys, three sets of fowls, (a) graminivorous, (b) earnivorous for one generation, and (c) carnivorous for two generations. He shows a marked and progressive increase in the weight of feathers lost in moulting, a marked increase in the weight of the kidneys and in the amount of uric excretion.

Classification of Birds. \dagger - R. W. Shufeldt discusses in a learned paper the classification of certain groups of lirds. We cannot do more than indieate his mode of arrangement.

I. Order Saururæ.

Supersuborder. Suborder. Superfumily. | Family. |
| :---: |
| Arehoruithiformes. |
| Archornithes. |
| Including Archcopteryx, and, provisionally, Laoptery.r. |

Supersuborder.

II. Order Ornithuræ.

Supersuborder. $\quad\left\{\begin{array}{lcc}\text { Suborder. } & \text { Superfamily. } & \begin{array}{c}\text { Fumilies. } \\ \text { Struthiornithes. }\end{array} \\ \text { Rheornithes. } & \ldots & \text { Struthionidæ. } \\ \text { Rheidæ. } \\ \text { Casuariornithes. } & \ldots & \begin{array}{l}\text { Rromaiidæ. } \\ \text { Casuaridæ. } \\ \text { Dromornithidæ. }\end{array} \\ \begin{array}{l}\text { Dinornithes. } \\ \text { Æpyornithes. }\end{array} & \ldots & \text { Dinornithidæ. }\end{array}\right.$

Supersuborder III. Odontoholcæ.
Suborder. Superfamily. Families.
Pygopoformes. Hesperornithoidea. Hesperornithidæ. Enaliornithidæ.
Of all these, careful diagnoses are given by this well-known ornithological expert.

Birds of North and Middle America. \ddagger-Robert Ridgway has published the second part of his deseriptive catalogue, which deals with the Tanagers (Tanagridæ), Troupials (Icteridæ), Honey Creepers (Cœrebidæ), and Wood-Warblers (Mniotiltidæ).

Course of the Taste-Fibres.§-H. Cushing draws some interesting deductions from thirteen cases of Gasserian ganglion extirpation. (1) The perception of taste is unaffeeted on the posterior portion of the tongre, and never permanently or completely lost on its anterior twothirds after removal of the Gasserian ganglion. (2) A temporary

[^161]abolition or lessening of the acuteness of taste may be found to exist over the anterior and anæsthetic portion of the tongue for some days after the operation. (3) This temporary loss of function may possibly be oceasioned by some interference with chorda transmission brought about by a mechanical or toxic disturbance due to degeneration of the N. lingualis. (土) A lesion of the trigeminal nerve may be associated with disturbance of taste over the chorda territory without the necessary inference that this nerve is a path for gustatory impulses. (5) The trigeminal in all probability does not convey taste-fibres to the brain either. from the anterior or posterior portion of the tongue.

Note on the Great Sea Serpent.*-E. G. Racovitza discusses seriously what Ondemanns and others have recorded concerning Megophias, the Great Sea Serpent, and publishes a report of the observations of M. Lagrésille on a huge animal seen in 1898 in the waters off Tonkin. That something remarkable was seen seems beyond doubt, and Racovitza gives detailed directions as to future observation. The Zoological Society of France has decided to send fifty copies of the paper to observers in the region which Megophits is believed to favonr.

Largest known Dinosaur. \dagger-Elmer S. Riggs describes the remains of Brachiosaurus altithorax g. et sp. n., a herbivorous Dinosaur of huge proportions from the Jurassic of western Colorado. The specimen consists of the hmmerns, coracoid, femur, and ilium, all from the right side ; the sacrum, seven thoracic and two caudal vertebre, together with a number of ribs and other bones. The hmmerus measured $2 \cdot 04$ metres in length, the femur $2 \cdot 0 ; 3$ metres, and the animal was not only the largest and longest-limbed of all known land animals, but is also the only known Dinosaur in which the humerus surpasses the femur in length. "Assuming that the lower fore-leg bones were proportionately long, we have to do with a creature whose shoulders were carried far above his hips, and whose fore-legs played a more important part than the hind ones. Such proportions at once suggest arboreal food-halits. Instead of rearing upon the hind-legs and supporting itself by means of a ponderous tail, as were the evident habits of Brontosturus and Diplotocus, this animal may from sheer length of limb have been able to browse at will upon the foliage of tree and shrub." It was the giraffe among Dinosaurs, just as Claosaurus was the kangaroo.

Optic Chiasma in Teleosts. \dagger - G. H. Parker has examined ten common symmetrical Teleosts (Fundulus, Menidia, Gadus morriua, \&c.), and finds that the optic chiasmata are dimorphic, in that in some instances the right optic nerve is dorsal, in others the left. In a thonsand eases the right nerve was dorsal 514 times, the left 486 times. The two types of chiasmata are not correlated with sex.

In the Soleidæ the chiasmata are also dimorphic. In Plemonectidæ they are monomorphic for each species; in dextral species the left nerve is dorsal, in sinistral species the right.

All species of Pleuronectids that turn in only one direction have

[^162]their dorsal nerves connected with their migrating eyes. In all species that have both dextral and sinistral individuals, the dorsal nerve is connected with that eye which in the greatest number or in the nearest of kin migrates.

The ummetamorphosed young of the Pleuronectidæ are not symmetrical in the same sense that symmetrical Tcleosts are, for they have monomorphic chiasmata. The Soleida are not degraded Pleuronectidæ, but degencrate descendants of primitive flat-fishes, from which the Pleuronectidæ have probably been derived. The monomorphic eondition of the optic chiasma of the Pleuronectidæ can be explained only on the assumption of natural selection. The flat-fishes afford striking examples of diseontinnous variation.

Lateral Canals and Cranial Bones of Polyodon folium.*-E. Ph. Allis, jr., disensses these, and proposes certain homologies which show, if correct, that while Polyoton more closely approaches Selachians in the arrangement of its lateral canals than any known Teleost or other Ganoid, the bones enclosing these canals more closely approach the arrangement found in Amphibians than those of any other known living fish, excepting Clarias, which, aceording to Huxley, closely approaches Cocrosteus in its dermal armature.

The conditions found in Polyodon, moreover, definitely establish the faet that there is a defimite lateral canal component in certain of the so-called dermal bones of the skull of fishes, and that this component. may be found wholly separate and distinct from another, so-called membranous component that may form part of the same bones. Is then this lateral component retained after the sensory organ or organs in relation to which it has developed have disappeared? That it may be retained without a related enclosed organ is certainly shown by the presence, in Conger, of a postauditory squamosal canal ossicle without such a related organ.

Flight of Flying Fish. \dagger-G. E. H. Barrett-Hamilton reports his observations on this mneh discussed subject. While some naturalists, such as Whitman, maintain stoutly that the fins of Exoccetus are flapped, others, such as Möbius, deny that genuine muscular movements ever oceur. The anthor corroborates Moseley's observation that in Exoccetus at all events the wings are never moved as organs of true flight. They may vibrate or quiver under the action of air currents or the shifting a little of their inelination by the fish, but the whole motive power is supplied by the powerful tail. The wings are a parachute to augment the action of this propeller, but their motions are in no way comparable to those of the wings of a bird. It is suggested that some of the discrepancies in the descriptions of well qualified observers may be explained by supposing that different fishes were studied. There is really almost complete aceord on the one important point, namely, that the so-called " fluttering" or " flapping," if it does oceur, is almost invariably discontinued after the flight has really commenced. It is in nearly every case merely an accompaniment of the initial spring into the air.

* Zool. Jahrb., xvii. (1903) pp. 659-78 (1 pl. and 2 figs.).
\dagger Ann. Nat. Hist., xi. (1903) pp. 389-93.

Brain of Isistius brasiliensis.*-R. Burkhardt has a note on the brain of this rare abyssal Selachian, remarkable in having its olfactory bulbs without peduncles, and situated at a great distance from the olfactory mucous membrane. In its general form the brain recalls that of Teleosts. The peculiarity is associated with the size and position of the eyes. In Teleosts likewise, the size and position of the eyes of the embryo are important in determining the configuration of the brain.

Fresh-water Fishes of Borneo. \dagger-L. Vaillant makes a preliminary note on a rich collection acquired by the musem at Leyden. It includes 21 new species, including four new genera:-Psendolais tetranema and Sosin chameleon belonging to the Siluridx, and Gyrinucheilus mastulosus and Parhomuloptera obsoura, belonging to the Cyprinidae. Another noteworthy form is a new species of the little known genus Aperioptus.

The fresh-water fama of Borneo, as regards fishes, is very homogeneous, and it presents close resemblances to the Indo-Chinese fanna.

INVERTEBRATA.

Relict Fauna of Lake Furesö. $\ddagger-$ C. Wesenberg-Lund discusses the animal population of this lake in Zeeland, which is very interesting in connection with the question of relict famas. Furesó inchudes some remains of a marine fimma, the most ancient representatives of which (Valvata, Bithyniu, \&e.) belong to a very old-established and ahmost cosmopolitan fresh-water fauna alapted to laenstrine life at a period much anterior to the Ice age, and of quite unknown origin.

During the post-glacial epoel, which probably coincides with the submersion of the isthmus which mited Scania with the Danish islands, towards the end of the period of Ancylus, there was a fresh immigration emriching the Furesë fauna by two new forms at least, viz. Mysis oculate var. relicta, and P'ontoporeia affinis. These two Crustaceans, which still persist, are representatives of arctic forms whose immigration into the inner Baltic must lave occurred while that was in communieation with the Boreal sea. Their adaptation to fresh water must be referred to the time when the inner Baltic betane "le lac a Ancylus," and it oceurred in that lake. The other marine forms in Furesö probably immigrated in much more recent times. Such geological knowledge as is arailable forbids the inlea that Furesio was an arm of the sea transformed into a lake by an elevation of land or otherwise. Except Caligus lurustris (brought by fishes?), and perhaps Neritina fluviatilis (hrought lyy birds, \&c. ?), the marine forms now actually isolated in Furesö have probably arrived there in course of their own migrations. The presence in a lake of a marine fauna is no proof that the lake was once an arm of the sea.

[^163]
Mollusea.

γ. Gastropoda.
Studies of Gastropod Shells.*-Amadens W. Graban regards the present geological period as that of the acme of Gastropods. What Jurassic and carly Cretaceous ages were to the Cephalopods, the Tertiary and present periods are to the Gastropods. This is indicated not only by the great number of species, but also by the fact that so many series have branched out into bizarre types, in which excessive development of spines and tubercles suggests that the limit of variation is approached. Phylogerontic types are furthermore to be found in the majority of series, while some groups, such as Strombus, Cypreat, \&c. are represented only by phylogerontic forms in the modern seas.

The author contributes very interesting short studies on the protoconch of Gastropods, the ornamentation of the protoconch, septa in the apex of Gastropods, the characteristics of the conch, the rarices, other ornamental features, individual old age and phylogerontic characters in Gastropods, illustrations of the law of tachygenesis and of parallelism among Gastropods. He sums up the result of his stadies in the words of Hyatt's law of morphogenesis: "A natural classification may be made by means of a system of analysis in which the individual is the unit of comparison, becamse its life in all its phases, morphological and physiologieal, healthy or pathological, embryo, larva, adolescent, adult, and old (ontogeny), correlates with the morphologieal and physiological history of the group to which it belongs (phylogeny)."

Kidney of Helix pomatia. \dagger-G. Stiasny gives a detailed acconnt of this organ, in regard to which many, if not most, text-books have made erroneous statements. He distinguishes the kidney proper, the primary ureter, which extends from an opening at the apex of the kidney to the posterior corner, and the secondary ureter which runs from the posterior corner of the kidney to the external aperture.

Sense of Smell in Snails. $\ddagger-E m i l e$ Yung has made experiments with snails and slugs as to their sense of smell. He notes that the seat of the sense has been sought on the long-horns (near the eye), on the short horns, about the lips, at the pulmonary opening, in the vicinity of the pedal gland, and so on. The fact is that the general surface of the skin is sensitive to strong odours, and both pairs of horns especially. A snail deprived of its horms still finds its food and behaves as usual. The sensitiveness in all cases has a very short radius.

Purple of Purpura lapillus.§-A. Letellier gives a short account of the rescarches which have been made on the "purple " of the dog-whelk, and re-expounds his own results. He has found in the secretion three distinct bodies-a yellow substance which does not change on exposure to light, and two kinds of green substance, one changing quickly to blue in sunlight, the other becoming carmine red. The combination of these three substances gives a coloration first jellow, then green to blue,

[^164]and finally sombre red. Extracts of the gland in alcohol, ether, or chloroform give the purple colour on exposure to light, a phenomenon probably associated with the oxidation of the photochemical substances. He finds no contradiction in the results reached by Dubois, whose work deals with antecedent stages, or in his theory that the secretion which lecomes purple on exposure to light is the outcome of an interaction between a ferment (purpurase) and another substance (purpurin). Letellier did not go so far back, his, olservations dealt with the already formed sceretion.

Nematocysts of Nudibrancls.*-O. C. Claser diseusses the interesting question whether the enidoblasts observed in Eolidida are really parts " of the organie make-np " of these molluses, or have been incorporated from the hydroids among which the mudilnamehs live. Mi., results are inconelusive, i.e. his facts can be explained on the assumption that the nematocysts do not really belong to the mollnses. "If this hypothesis is true, we are dealing with a most remarkable adaptation, in which weapons are taken from one animal and actnally used by another." At all events, "there are good reasons why the origin of the nematocysts of the Eolididæ should be carefully studied." "Such study may show that they are not part of the organic make-up of the animals possessing them."

Tracheopulmonate Gastropods. \dagger - G. Glamann has studied some of the remarkable Australasian Janellidx, in which there are only two tentacles, and in which there is " a tufted lung" (Büschellunge), with diverticula and respiratory tubules surrounding the pulmonary cavity and allowing of gaseous exchange hetween the tubules and the hæmolymph in the large dorsal sinus embracing the ling.

The anthor gives a detailed accomnt of Ancitea gräffei, and Aneitella virgatu; a diagnosis of the Jancllida, a key to the species of Aneitea, and a re-statement of the characters of the four genera-Janella, Triboniophorus, Aneitea, and Aneitella.

б. Lamellibranchiata.

Origin of Pearls in Mytilus gallo-provincialis. \ddagger-R. Dubois notes that his observation that the pearls of Mytilus edulis are due to a parasitic fluke was independent of the work of Garduer (1871) and of Lyster Jameson. He has also found in M. gallo-provincialis, which differs in habitat and environmental conditions, another speeies of fluke also causing pearls. In pearls from Anodonte cygncea, he found no trace of parasites, and thinks that the theory of the parasitic origin of pearls must not be hastily generalised.

Arthropoda.

a. Insecta.

Evolution of Colour-Patterus in Lepidoptera.§-A. G. Mayer has inquired into the effects of natural selection and race-tendency upon the

* Johns Hopkins Univ. (irc., xxii. (1903) pr. 22-4.
\dagger Zool. Jahrb., xvii. (1903) pp. 679-762 (6 pls. and 9 figs.).
\ddagger Comptes Rendus, exxxvi. (1903) p. 178-9.
\ddagger Pullications of Museum of Brooklyn Inst. Sci. Bulletin, i. No. 2 (1902) pp. 31-86 (2 pls.).
colour-patterns in 1173 species- 453 of Papilin, 30 of Ornithoptera, 64: Hesperidæ, and 47 of Castnia. There are three sorts of markings upons the wings of Lepidoptera :-spots, bands, and "combination-markings," linear combinations of spots and bands. Some general "laws of variation" are stated, e.g. that departures from the normal are much more apt to affect the ends than the middle of a marking; like kinds of markings are more apt to fuse than unlike, and so on.

Mayer finds that Papilios belonging to different subgenera, and living in widely separated parts of the world display a number of similan peculiarities of colour-pattern. Some of these peculiarities are constant among groups of Papilios which differ greatly in general appearance, live in dissimilar enviromments, and are snbject to the attacks of dissimilar enemies. As some of these peculiarities are too insignificant to affect the general appearance of the insects, and remain the same under widely different conditions of selection and environment, they appear to be due neither to natural selection nor to environmental influences. They may, however, be due to a conservatism in heredity, or lacetendency, which has remained constant in the majority of the species despite the changes which time, selection, and all other causes have produced.

The characteristic differences between the species of a gemms, or the genera of a family, group themselves abont certain dominant couditions, most of these differences being only slight departures from the dominant form. Each genus or family displays its own peculiar conditions, and follows its own peculiar law of differentiation. On the whole this researeh farours the theory that new species have often arisen by mutation independent of enviromment and in many cases not interfered with by adverse selection. This conclusion accords very well with what De Vries has recently observed in the mutations of such plants as Enothera.

Net-winged Midges.*-V. L. Kellogg notes that the net-winged midges or Blepharoceride have long been of peculiar interest to entomologists becanse of the small number of known species and their supposed rarity, becanse of the wide and diseontimons distribution, because of the remarkable aquatic life of larve and pupæ, and the strange modification of the body in both these stages in conformity with the curious habits, and because of the unique psendo-net-veining of the wings of the imagines, produced by a series of folds in the wing membranes. Kellogg has called attention to other interesting features, especially the eomposition of the componnd eyes of the imagines of two sizes of ommatidia, with differences in disposition of the retinal pigment, \&e., resulting in a certain accommodation to different intensities of light. In the present paper the author describes four new North American species and their immature stages (which live submerged in swift clear streams). He gives an account of some of the structural peculiarities of both larvæ and adults, e.g. the larval suckers and the imaginal eyes; and discusses the habits and life-history so far as these are known. A

[^165]statement has been added of the more serious deficiencies in our knowledge of this interesting family.

History of Polar Bodies in Drone-Ova..*-A. Petrunkewitsch has shown that while the polar bodies of the fertilised ova of the bee come to mothing, the state of affairs in the unfertilised ova (drone-ova) is very different. The second polar body coalestes with the internal half of the first, and thus gives rise to the so-called "directive-copulationnueleus " with the normal number (16) of chromosomes. The nuelens soon forms the "directive-copulation-spindle," and divides into $2,4,8$ cells with double muelei. What becomes of these direct derivatives of the polar bodies? After prolonged investigation Petrunkewitsch has satisfied himself that they give rise to the primitive sex-eells of the male. The difference letween the origin of the primitive genital cells in the two sexes is striking.

Development of Wings in Beetles. \dagger - W. L. Tower has studied this in a variety of forms. He finds that the wings and the spiracles arise in homologons positions upon the sides of the segments as determined by the attachment of homodynamons muscles. He believes that the hind wings are derived from the degenerate spiracle dise of the metathoras. In the elytra the case is different. Whether in the migration of the mesothoracic stigma to its larval position only the orening migrates and the dise remains behind, or whether both the spiracular dise and opening are moved forward, remains undecided. The author's evidence points strongly to the view that it is the spiracular opening alone which migrates, and that the spiracular dise remains behind to form the primordiun of the elytron. At present the evidence seems strongly in favour of Verson's (1890) view that the wings of Coleoptera and Lepidoptera are derived from the rudiments of the mesothoracic and metathoracie spiracles. The evidence is positively opposed to the theory that the wings originate as dorsal backward prolongations of the tergum, and the theory that wings are derived from structures like tracheal gills lacks substantial support.

Screw-Worms in St. Lucia. \ddagger-St. George Gray discusses the occurrence of this parasite in man, where, as in cattle, \&c. it is sometimes fatal. The screw-worm is the larra of a small fly-Chrysomyia (Compsomyia) macellaria Fabr. The eggs are laid in wounds and in openings of the body, e.g. montly and nostrils; they hatch in 1-9 hours. The larve are rather slender, whitish, attive maggots, with twelve segments, each bearing a ring of minute spines or bristles, suggesting the appearance of a screw; they burrow into the tissues, devouring even bones, and may penetrate into the cranial cavity; they mature in a week or less, and a pupa stage of $9-12$ days is passed in the ground, in crevices, in bedding, \&c. The author recommends the destruction of filth, carcasses, \&c., the careful covering of wounds, the use of mosquito netting or wire gauze in sleeping rooms, and the protection of the nostrils in places where the flies are common.

[^166]Parasite of the Wallaby.*-W. Wesche describes under the provisional title Hippobosca tasmanica sp. n., one of the Hippoboscidæ, parasitic on the Wallaby (Macropus ruficollis). It is remarkable for two curions spined tubercles-one might almost call them epaulets-on the shonlders, a median suture on the thorax, and a peculiar venation of the wings. Sick wallabies are said to swarm with them.

Parasitic Bacteria in Intestine of Chironomus Larvæ. \dagger-Louis Léger notes that apart from frequent inclusions, three kinds of Bacteria are true parasites of the intestine of the larve of Chironomus plumosus. The three forms which he describes belong to the genera Streptothrix Cohn, Bacillus Cohn, and Spirochucte Ehrenb. Léger suggests that the presence of the Spirillum-forms may be the explanation of Vignon's observation-which is somewhat difficult to credit-that the intestine of the Chironomus-larve bears vibratile cilia in certain regions. The undulating bacteria were seen in these very regions of the intestine.

Antennary Sense-Organs in Lepidoptera and Hymenoptera. $\ddagger-$ O. Schenk has especially studied Fidonia piniaria, Orgyia antiqua, Psyche unicolor, Ino prumi, Vespu crabro, and Apis mellifica. He finds that the degree of development of the antenne is associated with the development and distribution of various kinds of sense-organs thereupon.

In Lepidoptera he distinguishes ((t) sensilla coloconica (olfactory), sensilla styloconica (olfactory), sensilla trichodea (associated with perception of movements in the air or of the insect itself), sensilla chætica, and sensilla basiconica (both sensitive to mechanical stimnli).

In Hymenoptera he distinguishes sensilla placodea (responsive to mechanical stimmli?) sensilla coloconica and styloconica (olfactory), sensilla ampullacea (auditory ?), and sensilla trichodea (responsive to mechanical stimuli).

Insect against Insect.s-Costantino Ribaga gives an interesting account of the invasion of Iecrio purchasi Mask. into Italy, of the sulsequent importation of Novius cardinatis Muls., and of the relative sucess of the ensuing struggle for existence.

Changes in Imagines induced by Change of Diet in Caterpillars.\| -Arnold Pictet finds that if caterpillars of Bombyx quercus, Ocneria ulispur, Psilura monucha, \&e. are fed on plants which do not form their natiral food, noteworthy changes in the coloration of the adults result. In the case of Ocneria dispar notable dwarfing and blanching were effected.

Dorsal Glands of Larvæ of Hemiptera-Heteroptera. 9 -J. Gulde has dealt very thoronghly with these glands, which secrete a substance with an unpleasant smell, and are donbtless protective. They occur on the abdomen and replace in the larve the thoracic glands of the imagrines. They are possessed by all Geocorise except the Hydro-

[^167]metridæ, and they are absent in Hydrocorisæ. In form like small sats, with baekward directed pores, they arise as integmentary invagimations. Their minute structure, their openins and closing, their oily acid secretion (eimicin acid, $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{2}$, according to Carins), and other important details are described.

These dorsal glands show in their minute strneture and in their position a close resemblance to the integumentary glands of Orthoptera cursoria (Blattida and Forficulida), and to the protective glands of Chilognatha. With both of these they are doubtless homologous.

A Most Primitive Insect.* - F. Silvestri describes Anctitpy.x tesi-

 relostus g. et sp. n., a new Thysanuran from Italy, which is in many ways the most primitive insect known, even more primitive than Projapyc. It perhaps represents an carly offshoot from the progenitors of the Progoneata (Symphila and Diplopola). The new genns combines in a remarkable manner characters of the Symplila and Diplopoda (posterior glands and ventral vesicles), characters of the Campodeider (styliform appendages of the first sternite and the form of these stiles, which in Campodeidæ are restricted to segments $2-7$); characters of the Janygidæ (presence of stiles even on the first segment of the abdomen and the nature of the tracheal system), and characters of the Lepismatidx, perhaps only secondary, (great development of the anterior part of the intestine).Studies on Thysanura. $\dagger-\mathrm{K}$. Escherich discusses in the first place the relations of the suggested gems Lepismina to Lepisma and Grassiellu, between which it must be dissolved. An accoment is then given of the species of Grassiella, including three new forms from South Africa. The anthor then describes an interesting new myrmecophilons species, Lepisma emilice from Algiers, one of the peculiarities of which is that the head bears in front a number of thick tufts of radiating scale-hairs, each finely pimnate and curved in at the tip. In its form and in its black colour it is also notable. Three other new myrmecophilous species are described.

Development of Spermatid of Notonecta glauca. $\ddagger-$.J. Pantel and R. de Sinety descrile the final stages in the spermatogenesis, from the spermatocyte of the second order to the mature spermatozoon, paring particular attention to the development of the idiozomic corpuseles, the Nebenkern, the blepharoplast, and the mutation of the spermatid.

Acrosome of Spermatid of Notonecta.§-J. Pantel and R. de Sincty have satisfied themselves that in this case the acrosome has an idiozomic origin and is not connected, as some have supposed, with the Nebenkern. The idiozome is gradually formed, at two periods, from two kinds of corpuscles, as a gradual differentiation of the cytoplasm as in higher Vertebrates. There is never any real fusion of acrosome and nucleus; the nuclear membrane seems to be persistent.

[^168]"Neienkern" and Nuclein Movements in Spermatid of Notonecta glauca.*-J. Pantel and R. de Sinéty state the three theories as to the origin of the Nebenkern and find support for the view of Meves. The formative material of the Nebenkern is the product of a very precocious differentiation, which may lee seen even in the spermatoevte of the first order. It is due to mitochondrial bodies appearing in the cytoplasm.

The authors discuss the exchange of muclein or nuclein-elements between the nucleus and the body of the cell, and the exchanges between muclens and acrosome.

The muclein movements which ocenr in the male cell in the eourse of its metamorphoses recall those in the oocyte. They are indices of the intricate process of sexual differentiation.

Stridulating Organs in Saltatorial Orthoptera.†-J. Regen gives a detailed account of the different forms of stridulating organs in Acridiida, Gryllidx, and Locustidx. While the essential mechanism is the rubbing of a toothed bar against a ridge, there are many interesting differences in detail. The elytra may be rubbed against one another as in Gryllide and Locustida, or the elytra by the hind-legs as in Acrididex, or the abdomen by the hind-legs as in P'noumora. There is a long series from the simple apparatus of some female Gryllide to the complex differentiation in many Locustide.

Structure of Gizzard of Carabidæ. \ddagger-L. Bordas describes the gizzards of Carabus (: species), Culosomu sycophunta, an:d Procrustes coriaceus, and has been able to study the movements of the parts in the process of trituration.

Palæozcic and Recent Cockroaches.s-E. H. Sellards describes some new structural charaters of Palæozoic cockroaches. They were very aboudant in the carboniferous ages, and numerous specimens have afforded additional information as to head, antemm, eyes, legs, hind wings, abdomen, oripositors, cerci, and even young stages. "Evolution within the group, although not rapid considering the lapse of time since the Palæozoic, has been progressive and directly in the line of increased specialisation and differentiation of the organs affected." This is particularly well marked in the wings, which have become more specialised. But important changes are noticeable elsewhere. Thus in the abdomen, the terga and sterna have become modified, tending towards a reduction of the number of abdominal segments. The genital pouch has been perfected, and the ovipositors have become reduced and adapted to perform a specialised function. The long ovipositor of Palæozoic cockroaches apparently indicates that this was a primitive character of the Orthoptera. "In view of the fundamental and close relations, it seems evident that the Palæozoic and recent cockroaches constitute two nearly related and intergrading groups of a single order Orthoptera, or, more accurately, two stages in the evolution of a single phylum."

[^169]
B. Myriopoda.

Odoriferous Glands of Julus communis.*-G. Rossi describes the minnte strncture of the flask-shaped glands which occur, one on each side, in the pleural region of each segment-except the first four and those which form the apodal terminal region. He describes the spherical secretory cavity, the long neck-like excretory duct, the openings or "foramina repngnatoria," the closing apparatus, and so on. A little is said abont the physical, chemical, and toxic properties of the secretion, but it is difficult to get a satisfactory quantity. It is poisonous in subcutaneous injection, but not when swallowed.

New Myriopods. \dagger-Carl Graf Attems gives in the first place an account of a collection made in Java by Dr. Hjalmar Möller. It includes ten new species and a new gemns-Haplosomides, which agrees with Haplosoma except in having twenty trunk-segments instead of nineteen. Then follows a report on the collections made by Michaclsen in Chili, by Plate and Bürger in South America, and ly Schaninsland in varions oceanic islands. A new gemus-Dimeroyonus-of Cambalide has a pair of flagella on the anterior copulatory appendages. and is represented by two species; three other new species are described. The anthor then gives a systematic symopsis of the genera Otostigma and Cryptops, the former with three, the latter with four new species. The concluding part of the memoir deals with twenty-two new and some insufficiently described Palæarctic species.

\%. Prototracheata.

Modes of Development in Onychophora. \ddagger-E. L. Bouvier discusses the diversity of embryonic development exhilited by various forms of Onychophora, and seeks in particnlar to show that the development of South African species of Peripatopsis is linked by gradations to that of Paraperipatus Nove Britannice.

In Paraperipatus Novce Britannice and in Peripatopsis sedwicki the segmentation results in a large ectodermic vesicle in which the embryonic area, always markedly transversal, only occupies a small extent; this vesicie elongates considerably, is pedunculated anteriorly, and is gradually reduced as the embryo develops.

In Peripatopsis moseleyi there is again a large vesicle and a small transversal embryonic area, but the vesicle does not elongate much, it is never pedunculated, and by the absorption of its contents it simply forms the walls of the median region of the body.

In Peripatopsis capensis the segmentation resnlts in a small ovoid vesicle whose larger diameter does not exceed $\cdot 7 \mathrm{~mm}$.; the embryonic area, much longer than broad, occupies the whole ventral surface of the vesicle; and the dorsal surface of the latter forms the back of the embryo without ever showing the voluminous protuberance seen in P. moseleyi. It is probable that other species will show states in which the primary vesicle is more reduced than that of P. moseleyi and larger than that of P. capensis.

* Zeitschr. wiss. Zool., Ixriv. (1903) pp. 64-80 (1 pl.).
+ Zool. Jahrb., x viii. (1903) pp. 63-154 (7 pls.).
\ddagger Comptes Rendus, cxxxv. (1902) pp. 1033-6.

8. Arachnida.

Segments of Pseudoscorpionidæ.* - J. P. Stschelkanovtzeff has studied the metameric architecture of three species of Chernes. The cephalothorax (cephalon, prosoma) consists of nine segments ; the segment with chelicere is the third metamere, and corresponds to the intercalary segments in insects, and to that of the second antenne in Crustaceans; the mouth-opening lies in front of this metamere; remains of the sternum are seen in all the appendage-bearing segments of the cephalothorax except the first two.

The abdomen consists of eleven segments ; the sternites of the first two segments share in forming the genital operculum; the genital aperture lies between the second and third abdominal segments. The stigmata lie between the first and second, and between the third and fourth. It is not justifiable to give segmental value to the conical protuberance on which the anus is situated; it has no trace of musculature indicative of independence. The total number of segments is twenty.

Development of Dolomedes fimbriatus. \dagger - P. Pappenheim has studied the derelopment of this large spider with special reference to the brain and eyes. The head-lobes of the embryo show no bint of antennæ ; there is no external sermentation of the head, but the headlobes inchde a pair of pro-cheliceral colomic cavities, suggestive of a pro-cheliceral segment independent of the acron. The primordinm of the principal eyes is independent of the formation of the brain. The brain begins with the invagination of lateral vesieles, resulting in two semicircular pits. Two independent rostral folds form the principal eyes, which lie further back in the adult. The accessory eyes which appear in the region of the two lateral vesicles do not change their place much.

Pappenheim finds in the embryonic cephalothorax eight ganglionic primordia:-apical groove primordia, lateral vesicle primordia, cheliceral ganglia, pedipalp ganglia, and four other pairs corresponding to the legs. The embryonic abdomen shows a composition ont of eight segments and a telson, but the nature of the abdominal nerve-cord indicates a larger number (perhaps ten) abdominal metameres.

New Hydrachnida and Ixodidæ from South America. \ddagger-C. Ribaga describes the genus Arrenurella, various species of Arrenurus, Eylais, Hydrachna, and other new forms collected by F. Silvestri in South America.

Sheep Scab.§-This is the subject of a recent leaflet from the Board of Agriculture. The well-known disease is due to a mite, Dermatodectes ovis or Psoroptes communis, resembling the mange-mite of dogs and other animals. After a sheep-scab mite has been transferred directly or indirectly from a diseased to a healthy sheep, the female lays its eggs and dies. Under favourable cireumstances the eggs are hatched in about seven days, and the young female parasites, after undergoing the

[^170]varions stages of their development, arrive at maturity in about two weeks, and proceed to lay more egrgs. The male is somewhat smaller than the female, which measures $\frac{1}{40}$ to $\frac{1}{510}$ in., and each foot of the first three pairs of legs of the male is furnished with a sucker-dise, which in the case of the female is replaced on the third pair of feet by long hairs. The nsually effective cure is to make the sheep swim in a bath of "dip," i.e. some preparation of white arsenic, carbolic acid, tobacco-juice, sulphur, \&c.; but prevention is better than cure.

ϵ Crustacea.

Integumentary Sense-Organs of Deep-Sea Decapods.* - E. Kotte has made a detailed study of the appendages of Plesionika cottei, and of its tactile and gustatory organs. He also diseusses in particular the sensory tufts on the thoracic appendages of Nematncarcimus umbulatipes. His general conclusions are the following :-(1) All the integumentary organs are sensitive; (\boldsymbol{z}) they include a terminal strand, the distal process of a suljacent gronp of sensory cells, which is proximally connected with a nerve; (:3) while in the lower Crustaceans only a few sensory cells are concerned with the innervation of a seta, there is a large number for each seta in the Decapods, especially in the abyssal forms; (4) in the course of the nerve-fibres which innervate the structures regarded as gustatory or olfactory, two cells are interpolated,-a peripheral ganglion-cell and a sensory cell.

Excretion in Cirripedia. \dagger - L. Bruntz has used the injection method in studying the excretory organs in Lepas anatifera, Pollicipes cormucopice, Balanus tintimubulum, and Suculina carcimi. In the three first he distinguishes three excretory organs :-(1) the maxillary kidney which eliminates injected carmin ; (2) a closed cephalic organ, a lenticular body situated where the mantle is attached to the body; and (3) the hepatic gland. In Sacculina the only excretion detected was by osmosis over the whole surface of the absorptive roots.

Ventral Nerve-Cord of Crayfish. $\ddagger-$ B. Halpern describes the minute structure of the enveloping and supporting tissue of the ventral nerve-cord of Astacus fluviatilis. There are two sheaths,-the "perineurium" and the "endoneurium." The perineurium consists of con-nective-tissue strands and owes its firmness to a layer of elastic fibres. It forms the originally double septum between the connectives.

The endoneurium differs from the perineurium in strncture and origin. It functions as the immediate sheath and support of the nervous substance. Each axis-cylinder is surrounded by two sheaths.-the internal one being a delicate membrane in which longitudinal fibrils are imbedded. The ganglia show (1) small cells with a double-contoured membane, (2) "colossal" cells withont a homogeneous membrane, but with a plexus of fibrils at the periphery, and (3) transition types between these.

[^171]Gall-forming Copepod in an Anemone.*-M. Caullery and F. Mesnil give an account of Staurosoma purasiticum Will, which forms galls in the mesenteries of Anemonia sulcata Penn. It does not seem to have been studied since it was detected and described by Will in 1844. The female, with the male fixed to it, is quite enclosed in the gall which contains a nutritive fluid. The eggs develop within the gall on to the nauplius stage. It seems that the parasitism begins during or soon after that stage. The systematic position of Staurosoma among Copepods must be a very isolated one.

Australian Phyllopods. \dagger-O. A. Sayce has aimed at presenting a complete catalogue of the Australian Phyllopods. He has re-described and figured more amply those which seemed to need it, and has given sufficient descriptive detail for a fairly accurate identification of the various forms. Six new species are deseribed, and it has been found necessary to institute two new genera,-Purartemitu, which differs from Artemia in the shape of the prehensile antennæ of the male, and of the ovisac of the female, and in some other features; and Branchinella, which is closely allied to Branchipus.

Annulata.

Typical Chloragogen of Oligochæta. $\ddagger-\mathrm{D}$. Rosa has made an elaborate study of the typical chloragogen in Tubifex, Fredericia, Lumbricus, Allolobophora, \&c. It is a modified peritoneum ; its elements are never derived from lymphocytes and never give origin to lymphocytes; the bases of the chloragocytes always adhere to the walls of vessels, strictly to the matrix of their internal cuticle.

In lower Oligochæets the chloragocytes have contiguous basal plates forming a contimous investment. The subjacent muscle-fibres are variously altered in relation to the development of the chloragogen. The transformation of peritoneum into chloragogen may occur on the intestine, on the vessels entering the dorsal vessel, on the dorsal vessel, on the initial tract of the vessels leaving the dorsal vessel.

The function of chloragogen is essentially excretory, but it may also accumulate reserves, especially fat-globules. The excretory substances are represented by yellow chloragosomes, semi-liquid globules, formed in the cells out of materials received from the intestinal bloodvessels. The excretory materials accumulate slowly in the chloragocytes, and their rupture into the colom is more or less accidental, not essential.

Atlantic Palolo.§-A. G. Mayer gives an account of the Atlantic Palolo (Eunice fucata Ehlers). It is found at the Dry Tortugas, Florida, and lives within disintegrating coral rock or coquina from below lowtide level to a depth of at least six fathoms. Its breeding habits are closely similar to those of the well-known Pacific Palolo-worm, Eunice viridis.

[^172]The Atlantic Palolo swarms at the surface before sunrise within three days of the day of the last quarter of the moon between June 29 and July 28 . The posterior, sexually mature end of the worm breaks away from the anterior end, and swims lackwards with great rapidity until about the time of sunrise, when it contracts, casting the genital products into the water. The anterior part remains in the coral rock.

The worm requires at least two years to attain sexual maturity. There are 57 p.e. of males and $4:$ p.c. of females. Only sexually mature forms cast off their posterior ends at the time of the swarm. Immature forms are about twelve times as numerous.

Cracking the coral rock induces premature expulsion of the genital elements. Eggs obtained in this way are immature and cannot be fertilised, even twelve hours before the time of the normal swarm. All the eggs mature simultaneously at that time.

The normally liberated eggs float in the water, and begin to segment soon after extrusion. The segmentation is total and unerual, the gastrula is formed by epibole, and the larva is telotrochal. The young larve swim near the surface, but sink to the bottom upon attaining four pairs of setigerons lobes. The posterior segment of the larva bears a pair of dorsal as well as a pair of ventral cirri. Only the ventral pair of cirri persist in the fully developed worm.

Fresh-water Polychæts.*-Ch. Gravier notes that four families of Polychæts have representatives in fresh water. Among the Nereida there is Lycastis ouanaryonsis Gravier from French Gniana. Mature female specimens were found in fresh water, but without the normal epigamous transformation. The Eunicidæ are represented by Lumbriconereis, found by Kemnel; the Capitellidæ by Eisigella ouanaryensis Gravier ; and the Serpolidæ by Manaynnkia speciosa Leidy, Caobangia billeti Giard, Dybouscella godlerrskii and D. baicalensis Nusbaum.

Otocysts of Polychæta. ${ }^{1}$-P. Fauvel has studied the otocysts which are especially characteristic of the Sabellidæ. They oceur also in some Tercbellidæ, in Arenicolidæ, in two or three Ariciidæ, and in some Alciopidæ.

In Polychæts, as in Crustaceans and Molluses, there are two kinds of otocysts :-(1) those remaining in commmication with the exterior by a ciliated canal, and enclosing otoliths composed of foreign bodies (small grains of quartz) ; (2) those which are completely closed, and enclose spherical otoliths, with concentric layers, of an organic nature, and secreted by the organ. In these closed otocysts there may be one otolith or several.

The otoliths are moved by the play of vibratile eilia, except in Arenicola grubii and A. ecaudata where cilia are entirely absent. In the last case there is indeed always movement, but it is a brownian movement. In Amphitrite edwardsi there are no otocysts, but small eneysted Trematodes have been deseribed as such.

Notes on Polygordius. $\ddagger-\mathrm{R}$. P. Cowles notes that larva of Polygordius appendiculatus are abmondant at Woods Hole, Newport, Beaufort,

[^173]and along the coast of Virginia, but the adult has not been taken. He reared the larve very successfully by the "diatom-method." Sand was obtained by means of a dredge and put into aquarium jars with fresh sea water. The jars were then kept near a window until the sand had settled and a rich culture of diatoms had appeared as a brown layer on the top of the sand. This was drawn off with a pipette and given to the young worms. Under these conditions the young worms grew rapidly and throve well. By means of the glandular papilla on the anal segment they attached themselves to the bottom of the dish, but the rest of the body was kept in almost contimual motion, waving backwards and forwards and often making knots.

Alimentary Tract of the Leech.*-Camille Spiess has studied the gut of Hirulo medicinalis, and finds that the pouched stomach or crop is esprecially adapted for absorption. Its wall consists of two very delicate membranes,--an external connective layer, without glands but with transparent musele-fibres, and an internal epithelium, in single layer, with numerous longitudinal plaits. This epithelium consists of prismatic cells with markedly reticular cytoplasm, without any membrane at the free surfaces, but distinetly seeretory.

Nematohelminthes.

Filaria perstans. \dagger-G.C. Low discusses the distribution, life-history, and importance of this Nematode, larval forms of which were discovered by Manson in the blood of a West African negro suffering from sleeping sickness. It oceurs in British Guiana and West Africa, in or near the equatorial leelt. The young forms live in the blood ; the adults imhahit the comective tissues at the base of the mesentery. Its intermediate lost is quite uncertain, though it is probably some insect. Like Filaria demarquaii it gives rise to no pathological symptoms. It is not really connected with sleeping sickness.

Platyhelminthes.

Asiatic Human Parasites. $\ddagger-$ C. W. Stiles and L. Taylor report or three Asiatic parasites " which may possibly oceur in returning Ameriean troops,"-an adult cestode (Diployonoporus yrandis), a larval cestode (Sparganum mansoni), and an Egyptian and Japanese Strongyle (Strongylus subtilis). This illustrates a somewhat umusual prevision.

New Gyrocotyle.§-W. A. Haswell describes from a new species of Callorhynchus, deseribed by Waite under the name C. oyilbyi, a new species of Gyrocotyle, for which the name G. nigrosetosa is proposed. The members of the genus Gyrocotyle (Amphiptyches) are monozoiemusegmented Cestodes (with hexacanth larve) found exelusively in Holocephali. It is not surprising, therefore, that a new species of ('allorhynchus has yielded a new species of Gyrocotyle. Haswell com-

[^174]pares the new form with G. urna and G. rugosa, and has some remarks on the Gyrocotyle in general. Thus he shows reason for regarding the sucker end as anterior.

North American Trematodes.*-H. S. Pratt has published another of the useful synopses of North American Invertebrates. It deals with the digenetic forms,-Aspidocotylea and Malacotylea, and gives the nsual diagnostic keys.

Sub-Esophageal Ganglion of Liver-Fluke. \dagger-E. Mareinowski findw that there are small ganglion-cells around the whole of the pharynx and cesophagus. There is too little concentration or definite localisation to justify such a term as peri-pharyngeal or peri-œsophageal ganglion. A comparison with the sub-œsophageal ganglia of Annelids cannot be more than approximate.

Peculiar Fluke. \ddagger - H. L. Osborn deseribes, as Cryptogonimus shili g. et sp. n., a peculiar fluke found in the stomach and intestine of the hack bass (Micropterus dolomieu) and other fresh-water fishes. The worms appear to the naked eye as extremely mimte black spots in the yellowish chyle of the host. The black colour is due to numerous orat in the coils of the uterus at the extreme posterior end. The oral sneker is relatively large, and there are two ventral suckers, one directly behind the other, and a little dorsal to it, both in the middle line. The only other Distomid known having two ventral suckers is Podocotyle fractum hud. The genital opening lies between the two suckers, which are contained within a sheath formed as a depression of the ventral surface, and having a lip furnished with a circular sphineter musele.

Incertæ Sedis.

Re-discovery of Cephalodiscus M‘Intosh.§ - K. A. Anderson on the Sredish Antaretic Expedition has been fortmate enough to fint in four different localities specimens of this rare animal. It was previously: obtained by the 'Challenger' (1876) in the Magellan Straits, amil Anderson has the honour of finding it for the second time. It was got off Cape Seymour at 150 metres, south of the Falklands at $1: 10$ metres, at the Burdwoodbank at 150 metres, and in the Beagle Chamnel at $80-25$ metres. In each of these four dredgings several colonicio were got. It seems to be rather local than very rare. Some small larve were seen, in a planula-like stage. The animal seems to have itw reproductive period in spring.

Echinoderma.

Antarctic Echinoderms.\|-F. Jeffrey Bell reports on a collection made during the voyage of the 'Southern Cross.' He establishes two new genera of Ophinroids,-Ophiosteita, with five large keel-like plates on the torsal surface of the dise, each interposed between two radial

[^175]shields, and Ophionotus, differing from Ophioglypha in the larger number of arm-plates, and in the absence of incisions and spine-combs over the bases of the arms. An interesting series of variations in Cytherea simplex is noted.

Cœlentera.

Spermatogenesis in Hydra and Aurelia.*-W. M. Aders describes the development of the testes in Hydra viridis from accumulations of sul-epithelial "indifferent" cells, which are not at first distinguishable from indifferent elements which oceur elsewhere. There is no histological evidence of a distinction between somatic and primitive germcells. The cells forming the primordium of the simple testis multiply and grow, and may soon be called spermatogonia. Their nuclei seem distinctly larger than those of the other sub-epithelial cells, and their plasma stains more darkly and intensely. As multiplication proceeds two generations of spermatoeytes may be distinguished; they differ in size, but the anthor was not able to connt the chromosomes. He follows the spermatocytes onwards to spermatids and spermatozoa.

In the male gonads of Aurelia aurita, Aders found certain large cells in the ripe follicles among the sperm-forming cells. It seems that these are separated off from the endoderm, that they migrate into the testes, and that they scrve as nutritive cells for the seminal elements.

Cœlentera from Intermediate Waters of North Atlantic. \dagger R. T. Günther reports on a collection obtained by Mr. George Murray during the cruise of the 'Oceana' in 1898. Especially noteworthy is a Leptomedusoid Laodice chapmani sp. n., differing from other species in the character and distribution of the gonads, and an Anthomedusoid Bythotiara murrayi g. et sp. n.-a Tiarid with four radial canals, which bifurcate and open into the cireular canal by eight adradial terminal branches, and with four gonads arranged interradially along the manubrimm.

Porifera.

Ingestion of Food-Particles in Sycandra raphanus. \ddagger - J. Cotte fed this sponge with earmin and carbon particles, rice-stareh, and bacteria. The collar-cells or choanocytes were seen to form pseudo-podium-like processes on their apieal surface, and with these they engulfed the particles which the flagellum swept towards them. In short, an amœboid mode of ingestion is confirmed.

Metabolism in Sponges.§-J. Cotte finds that the nitrogenous dis-assimilation-products of Suberites domuncula are wholly or partially amides.

The juice of the same sponge turns brown on exposure to air. This is due to tyrosinase, a tyrosin-forming ferment. Tyrosin is not formed in the living sponge, but is produced by the digestive ferments

[^176]from albuminoid components of the sponge or of its juice. A tyrosin ferment also occurs in Donatia (Tethyut) lyncurium and Geodia cydoniume (Cydonium gigas).

Cotte also notes the presence of small quantities of manganese in Reniera and Suberites, and of iron in Donatia (Tethya) and Suberites. The occurrence of iron in Spongilla is denied.

Indian Triaxonia.*-F. E. Schulze gives in his usual fine style an account of the Indian Triaxonia collected by the 'Investigator.' The memoir has been expertly translated by R. von lendenfeld, and the plates are of great excellence.

Protozoa.

Nuclear Emissions in Protozoa. \dagger-A. Conte and C. Vaney hare studied Opalina intestinalis Ehrbg., from the intestine of Triton tenintus, which exhibits in its cytoplasm numerous granules like the multiple nuclei described in Opalina ranarum Ehrbg.

The nuclens is primitively single and very large, oval in form, and bounded by a very distinct muclear membrane. In some it doubles, but in most the nuclear membrane disappears over a certain area, and through this opening numerous chromatin gramulations escape into the cytoplasm. The history of these emissions is deseribed; it corresponds generally to that of zymogen gramules in the glandular intestinal cells of the newt.

Probably the vitelline nuclei in the ova of insects, myriopods, vertebrates, \&c. are of a similar nature,-pseudo-nuclei, simply nuclear emissions. 'The authors' researches lead them to conclude that the muclens participates directly in forming gramules of zymogen and ergastoplasmic products. It has therefore an important rôle in digestion, whether intra-cellular or extra-cellular.

New Rhizopod. $\ddagger-$ E. Penard gives a preliminary description of Clathrella forelig. et sp. n., a new Rhizopod from the Lake of Geneva. It has some resemblances to Thecamober and others to Heliozoa. The cell is surrounded by delicate flexible siliceous cupules, compressed by mutual pressure. Where the picces join, there radiate out long, filiform, often bifurcate or ramified psendopodia, like those of Euglyphina. The food consists chiefly of diatoms, ingested by the temporary separation of pieces of the envelope. The nucleus is exceptionally large, the plasma includes several large contractile vacuoles. Young forms were seen, with six cupules forming a regular cubical capsule.

Nuclear Division of Amœba.s - P. A. Dangeard notes that there is considerable diversity in the mode of melear division in species of Amacba; thus among those which exhibit "teleomitosis" some are characterised by the disappearance of the nucleolns at the prophase, while in others the nucleolus separates into two halves, one persisting. at each pole of the spindle until the anaphase. In Amreba gleichenii the telomitosis does not differ appreciably from what is seen in the cells

[^177]of higher organisms. It is in this respect a prototype of what occurs in Metazoa.

Foraminifera of Raised Reefs of Fiji.*-R. L. Sherlock has stndied the composition of the raised limestone terraces, and finds that they consist chiefly of Algæ and Foraminifera. Although a few of the rock-sections are composed of coral, and corals are present in some others, yet in the majority they are absent. The organisms found comprise fifteen certain and seven donbtful genera of Foraminifera (inclnding the genus Orbitoides, which indicates Tertiary age), besides alga, corals, echinoderms, molluses, Tunicata, Polyzoa, and an occasional annelid.

Adaptability of Marine Infusorians to Fresh Water. $\dagger--$ P. Emricfues reports on a number of experiments which show great diversity in this adaptability. Thus Euplotes charon and C'hilodon cucullulus, which occur in both salt and fresh water, survive the change from the former to the latter, but Euplotes harpa, which is wholly marine, does not. As the two species of Eluplotes do not differ in osmotic properties or in permeability, the reason of the difference in their surviving power when changed from salt to fresh water must depend on peculiarities of chemical metabolism.

Fossil Infusorians. $\ddagger-$ B. Renault describes from the Eocene lignites of l'Herault what seem to be fossil Infusorians. They occur in the pollen-chambers of Stephanospermum, and belong to the family Keronine, forms without cuirass. The absence of styles and cornienles points to affinity with the genus Cinetoconia Ren. Some evidence is given sursusting that they attacked and fed upon the pollen-grains.

Flagellate Parasites in Siphonophora.§-Fr. Poche descrihes from the internal cavities of Cucubalus kochii, Halistemma tergestinum, Monophyes gracilis, \&c. two Flagellate parasites:-Trypanosoma grobbemi sp. n. and Oxyrrlis parasitica sp. n. A detailed account is given of both.

Structure of Trepomonas agilis Dujardin. \|-P. A. Dangeard finds that this much-studied Flagellate Infnsorian has a twin structure. It is a double-cell, a peculiarity seen also in the allied genera of the family Distomatineæ. He compares the organism to the Siamese-twins, but the duplication is normal and hereditary. He proposes the general term "Diplozoild," and the systematic name Diplomonadinea, to cover this and similar cases.

In Trepomonas the duplication may be primitive, or it may be due to an incomplete fusion of two individuals. In any case the duplication is transmitted to the progeny. A comparison with Amaba binucteatn. is suggested. In other Diplozoïds the duplication may be effected afresh in each generation.
[If the duplication be strictly heritable, it surely camot be due to

[^178]an incomplete fusion of two individuals. Here the author's argument seems to us somewhat unsatisfactory.]

Trypanosomiasis.* - Patrick Manson suggests that the infeeting agent in this disease may he the poisonons tick-Ornithodorus (Argas) moubatu of the Zambesi valley. A. Maxwell-Adams, jumr., \dagger suggests that the rat is the intermediate host, and that the original seat of the parasite is some insect (Pulex ?) peculiar to, and living only on the juices of the rat. He believes in inoculation from rat-bite. If the infection were due to tieks or mosquitos one would expect greater frequency.

Nature of Cytoryctes vaccinæ. \ddagger-Anna Foà disensses the nature of the vaccine and variola corpuseles whieh have heen regarded by some ats Sporozoa, ly others as Stiephylococci, by others as modified lencocytes, fragments of cells, \&e. The conclusion come to is that the corpuscles in question are not living parasites ; they are without nuelens, ehromatin, amœeboid movement, or power of multiplication.

In a subsequent paper § further observations on the so-called Cytoryctes vacrince are described, the possibility of the corpuseles being Protozoa or parasites of any kind is definitely exeluded, thongh the possibility of parasites being present is not of course denied.

Coelomic Gregarine in a Beetle.||- L. F. Blanchard describes Monocystis leyeri sp. n., which ocenrs in eneysted and vegetative stages in the general cavity of the body of Carabus auratus. The only other cases of "celomic" Gregarines in beetles are those reported by Léyer in larve of Oryctes nasicornis and Geotrupes stercorarius where the eysts of an intestinal Gregarine protrude on the external surface of the intestine into the cavity of the body. In Blanchard's case there is also an intestinal Gregarine-Ancyrophora yracilis Léger.

Hæmogregarines of Ophidia. T-A. Laveran deseribes new species of Hemogregarina from the blood of Naja tripudians, Zamenis hippocrepis, Crotalus confluentus, and Ancistrolon piscivorus, raising the number of Ophidian bosts of Hæmogregarines to thirty-two. No forms in process of multiplication were seen in the blood, as is also true of Chelonians. In the latter the multiplieation oceurs in the liver, \&e., and Laveran found stages in the lung of Eunectes murinus. He thinks it likely that infection is due to ectoparasites, e.g. Irodes.

[^179]BOTANY.
GENERAI,

Including the Anatomy and Physiology of Seed Plants.

Cytology, including Cell-Contents.

Protoplasmic Streaming.* - Dr. Ewart's work on protoplasmicstreaming embodies the results of a series of observations carried on driring eight years.

The author concludes that the energy of movement is generated in the moving layers themselves, which are retarded by friction against the non-moving ectoplasm, and also, but to a much less extent, by friction against the cell-sap. The velocity of streaming is largely dependent upon the viscosity of the protoplasin, and therefore also upon the percentage of water in the latter, but osmotic pressure has little or 10 direct inflnence upon the process. Gravity does not affect the streaning in small cells and only to a very slight extent in the case of large cells ; but may affect the velocity of floating particles of greater or less density than the plasma. A calculation of the amomnt of work done indicates that the energy expended in streaming is only a very small fraction of that produced by respiration. The force required increases enormously as the diameter of the chamel decreases, so that transference in mass of the highly viscous eetoplasm through interprotoplasmic connections becomes practically impossible. The relations hetween streaming, growth, and assimilation are indireet ; and similarly the influence of the molens is an indirect one. The minimal, optimal, and maximal temperatures for the process vary with the plant or cell examined, and also depend upon (1) the age or condition of the subject of experiment, (2) the external medium, (3) the duration of the exposure, (4) the supply of oxygen, and (5) the rapidity with which the temperature is raised or lowered. Strong light retards streaming, while weak light may indirectly accelerate the proeess in chlorophyll-containing cells. Acids, alkalies, and metallic poisons all retard the process and may canse a temporary shock-stoppage when suddenly applied. Dihte alcohols and anæsthetics and weak electrical currents mar aceelerate the process; more concentrated solutions and strong currents retard it. The chloroplasts liave no active power of movement, but are carried passively in the stream.

As regards the source of energy, surface-tension seems the only kind of energy capable of prodncing the streaming movements under the existing conditions in plant-cells ; this is probably brought into play by the action of electric currents traversing the moving layers, and maintained loy chemical action in the substance of the protoplasm. These electric currents may be supposed to aet uron regularly arranged bipolar

[^180]partieles of protoplasm in such a way as to lower the surface-tension on the anterior faces and raise it on the posterior ones.

There is an appendix on the electrical conductivity of egr-allumin.
Distribution of Spherulin among Plant Families.* - I. Petit finds that the refringent globules which he diseovered in the chlorophyll parenchyma of the leaves of many members of the gamopetalons and epigynous polypetalous families of dicotyledons are very rare in what he terms the lower families, namely, apetalous dicotrledons and monocotyledons. He indicates a reaction by means of whith spherulin may lie recognised. If sections be treated successively with ein de Javelle, iodine tincture, and finally glycerin, the globules become coloured ehestnutbrown.

Structure and Development.

Vegetative.

Stelar System in Flowering Plants. \dagger-J. C. Schoute has studied the morphology of the stelar system in the seed-plants. In the first lart of his work the author describes his investigations on the structure of the stem-and root-apex in a number of angiosperms and conchules that Hanstein's meristematie layers-dermatogen, periblem, and plerome - do not correspond to the division of the adult tissues into epidermis, cortex, and central cylinder as proposed by Van Tieghem and others. Moreover, he finds that there is too much inconstancy in the cell-wall reticulam of the growing apex, especially of the stem, for it to he regarded as of much value as a clue to the morphology of the tissues.

In the second part of his work the author gives the results of his examination of the stems of a large number of angiosperms for the presence of an endodermis or phlooterma. He finds, in opposition to Fischer, that an endodermis is a very constant feature of the stem in monocotyledons, oecurring in eighteen ont of nineteen families invertigated. In the dicotyledons it was present only in 99 out of 169 familics. The author concludes that the endodermis is a layer of great morphological importance. On consideration of the recent work on the ontogeny of the central cylinder he agrees with Boodle, that the central eylinder of all vasenlar plants is morphologically the same, that is, monostelic.

Intermediate Wood. $\ddagger-\mathrm{P}$. Vuillemin suggests this term for the wood formations which either by their origin, or their position, or the order of suceession depart from the classic idea of primary and secondary. The term comprehends Van Tieghem's metaxylem, or ressels developed in the conjunctive tissue of the root between the wood-rays and the phloem area, belonging to the primary wood but agreeing with the secondary wood in position and orientation. It includes also the case now deseribed by the anthor in the root of Gentiana ciliata where the cells of the pericycle near the protoxylem form wood-elements at the same time that the secondary wood-formation begins in the conjunctive tissue on the inner side of the phloem.

[^181]Anatomy and Movements of Porliera hygrometrica.*-A. Rodrigue wives the results of his study of this member of the order Zygophyllaceæ. The young laaves and those on the principal stem show incomplete movements ; the other leaves show an oblique movement of the rachis followed by an oblique but slower movement of the leaflets. The movements vary from day to day with the intensity of direct sunlight; the movements cannot be induced. Porliera sleeps from 6 p.m. to 8 a.m. and often also in the middle of the day. The existence of a palisade layer on both faces of the leaf allows assimilation to take place during the midday sleep.

A considerable development of collenchyma was fond in all the motile parts. The movement eurves are explained (a) by furrows and ridges in the cortex of the leaf-base; these are especially developed on one side; (b) by the very ellipsoidal form of the bundles, espeeially at the articulation of the leaflets where the cortex is divided into two parts which have no direct communication. The course of the bundles is almost identical in the leaves of the motile Leguminosw, Oxalidex, and Porliera. No motor swellings oceur, there is no local concentration of the bundles or exaggeration of the cortex. Chemical tests do not show the presence of tannin ; its absence suggests that it may perhaps not play the important part which has been assigned to it in the Leeruminosae. Nor were plasmic threads found between the cells; their absence is not surprising as transmission of stimuli does not occur.

Reproductive.

Embryogeny of Zamia. \dagger-J. M. Conlter and C. J. Chamberlain describe the results of their study on the embryogeny of Zamia floridana. They note that the ovulate cones continue their development for some time after removal from the plant. The nucleus of the ventral canalcell is formed, but no definite cell is cut off ; the protuberance in which the nuclens lies rapidly disorganises. Their preparations of the fertilisation stages confirm Webber's account. A period of free nuclear division follows fertilisation ; the mitotic figures of the eighth division, which trives rise to the 256 -mueleate stage, were comnted. The nuclei are scattered through the egg; there is no tendeney to form the large central vacuole and consequent parietal plaeing of the nuelei as in Cycus; the nuclei are more numerous in the lower part of the proembryo, but the upper portion is never free from nuclei in the later stages, and it would seem probable that many of the muclei in the upper part of the proembryo which is not to form any part of the embryo proper, are due to irregular division. Thas Zamia differs from CIgrts in the absence of the central vacuole and the parietal arrangement of the nuclei. It also differs in the formation of cell-walls, which are restrieted to rather a limited area at the base of the egr. The elongating cells of the suspensor can be distinguished at quite an early stage from those of the embryo proper. The rapid elongation of the suspensor forces the embryo down into the endosperm. Owing to the great resistance the base of the embryo is forced upward into the

[^182]archegonial chamber and is stopped only by the hard seed-cont: thr. snspensor when straightened out may be 5 cm . long.

In the mature embryo the two cotyledons are free at apex and base. but more or less completely fused in the middle region ; the long cotyledons constitute the greater part of the embryo. Zamia therefore differs from Ceratozamia whieh, aecording to W:arming, has only one cotyledon formed from part of the meristematic apex of the axis, the rest forming the stem-tip.

The authors suggest a series of gymnosperms from an embryonic: point of view. In the first series a gradual reduction in the momher of free nuelei is shown. In Ginkyo, Cycas (?), and Zamia eight surcessive simultmeous muelear divisions precede wall-formation, resultin! in 256 free muclei. In passing to Coniferales there is a sudden drop in the number of free muclei and a gradual further dimimution. T'ur, s. has :32, Cephalotavus, Podocurpus, and Tasodium 16, Thuju s. :mul l'inus 4 , the higher numbers however not being entirely constant. Further reduction oecurs among the Gnetales, Ephellor sometimes showing only a single free muclear division resulting in two free muclei. while in Gnetum and Welwitschia no free melear division vecmrs at all. "These last-named forms have reached the condition of the embrogeny of angiosperms, in which the first division of the egg-maclens is arompamied loy wall-formation.

A second series is based on the manner of wall-formation. It whe extremity stands Ginkgo with its numerons free muclei equally distributed, and its wall-formation resulting in a proembryo which completely fills the egg. In Cycas there is a massing of muclei towards the base of the egg, and most of the remaining maclei pass to the periphory to form the parietal layer. In Zamia wall-formation appears only in comnection with the basal nuclei, and tissue-formation is restricterl t. the basal region as in Coniferales. In the latter group there is : gradual reduction in the number of melei, and a more definite settine apart of the function of eaeh particular mocleus. Thus in Zamin the suspensor cells are not recognisable until they begin to elongate: in Tarus, Cephalotarus, Podocarpus, and Taxoltum there is no setting ipart of a distinet suspensor-forming layer; while in Thuja with its cioht nuelei, there is a distinct suspensor-forming layer, as also in the 4-mucleate forms. Thus the embryogeny of Ginkyo would lee the most primitive among gymnosperms, and that of Cycas more primitive than that of Zamia which approaches more nearly the Conifers; while such forms as Taxus, Cephalotaxus, and Thuia show progressive stages from Zamia towards Pinus. Ephedra shows the most primitive embryogeny of the Gnetales, while Gnetum and Welwitschia most resemble the angiosperins.

Life-History of Ruppia.* - Sv. Murbeck records the following: results of his study of Ruppia rostellata. He suggests that pollination may occur under water as well as on the surface, thongh definite proof was not obtained. During the development of the microspores the

[^183]tapetal cells break down and their nuclei float free in the liquid which fills the carity of the mierosporangiam. Two definite male cells are formed within the irregularly elongated pollen-grain. In the macrosporangium the archesporial cell forms a tapetal cell and a macrospore mother-eell ; the latter gives rise to four megaspores, the two upper of which lie side by side, while the two lower stand in rertical series. In the mitosis by which the archesporial cell forms the tapetal cell and the megaspore-mother-eell the number of chromosomes was sixteen, and the same momiter was found in other sporophytie cells. In the first division of the meraspore-mother-cell and in the mierospore-mother-cell the momber is eight.

The polar muclei fuse completely before fertilisation. The pollentubes were traced to the embryo-sac, but the process of fertilisation was not observerd. At the first division of the endosperm-nnclens a wall is formed dividing the sac into an upper and a lower chamber: in the lower (antipodal) chamber, which is the smaller, the nuclens does notdivide, but in the other chamber a large number of free nuclei are formed. The author confirms Wille's statement that a primary root is formed at the base of the embryo, but soon disorganises, and a lateral root which is formed very early is the first functional one. This differs from the account given hy Ascherson in the Pflanzenfamilien, according to which this lateral root is the primary root, its umisual position being due to displacement.

Development of Macrosporangium of Yucca.* H. S. Reed gives the results of his study of this phase in the life-history of Y. filamentosa. An apical hypordermal cell divides perielinally to form a primary tapetal cell and a sporogenons cell ; the former divides by two anticlinal walls at right angles to each other forming four tapetal cells, closely resembling the reproductive cells in size, contents, and staining qualities. The sporogenous cell forms an axial row of four potential megaspores, frequently the walls between the mpeer two are parallel with the lone axis of the ovule, so that there are two megaspores side by sille immediately beneath the tapetal cells. Three of the cells of the megaspore-row disintegrate, the one which becomes permanent was in every case apparently the lowest lut-one. As it enlarges, the walls of the sistercells break down and their contents are absorbed, leaving the macrospore in a long pointed cavity in the middle of the nucellus. The germination of the macrospore follows the usual course; by the time the sexual nuelei are formed the tapetal-cells and part of the nucellns have disintegrated, leaving the apical end of the embryo-sac in contact with the epidermis of the macrosporangium. At the basal end a narrow haustorium is formed, extending through the nucellus nearly to the vascular bmadle, the division of the nuclei in the germination of the spore takes place in this tube ; after completion, the egg-cell and synergids move to the apical end of the sac, and the definitive nuclens also moves out, but the antipodal nuclei usually remain in the tube. A mucilaginous secretion is emitted by the columnar epidermal cells of the placenta and the basal part of the funicle a short time before fertilisation. This.

* Bot. Gaz., xxxv. (1903) pp. 209-14 (5 tigs. in text).
recalls Guignard's observation on the tulip, and Campbell's reference to secreting eells in the funicle of Najus. This secretion probably serves as a medium through which the substance capable of attracting pollentubes diffuses outward from the mieropyle. The egg-cell is fertiliset shortly after the formation of the secretion, after which there is now further secretion.

Embryogeny of Ficus hirta.*-MI. Treul, deseribes the pollination of the female flowers of Ficus hirta by the gall-inseet. The wiugel females carry pollen into the female receptacle after foreing the narrow entrance and often losing wings or antenne in the passage. In their efforts to pieree the summit of the female flower in order to deposit their eggs therein, they earry pollen to the stigma. Treul) carefully studied the development of the ovale and finds two integnments and a normal embryo-sae ; but an examination of more than two thousand seetions failed to show more than the begiming of germination of the pollen : the tube was never found in the deeper part of the stigmas, and there was no indication of fertilisation of the egg. As a normal emhryo develops from the egg, the author concludes that it is protuceil parthenogenetically. The orule shows two anatomical peculiaritice. which, while inereasing the difficulty of fertilisation, render parthenogenesis very probable. The micropyle is obliterated by fusion of the edges of the internal integument, and the epidermis of the nucellus becomes strongly thickened, forming a compact calp above the embryosac. The secondary nucleus of the embryo-sac on division shows only a distant resemblance to karyokinetic stages, dividing with great rapidity by reduced or alridged mitosis. This is explained by the absence of the stimulus of the fusion of the male nucleus. This anomaly affords an indireet proof of the parthenogenetic origin of the embryo. We must regard the puncture by the insect as a special stimnlus to parthenogenesis.

Chalazogamy in Carya olivæformis. \dagger-F. H. Billings finds the course of the pollen-tube in this species to resemble that deseribed by Nawasehin in the walnut. The general morphological eharaeter of the ovary-wall and ovule resembles that described for Jugluns by the Russian observer. The placenta nearly fills the lower part of the ovary-cavity, forming the tissue through which the pollen-tube travels to the base of the orule. The pollen-tube passes down the conducting tissue of the style, till near the ovary-cavity, where it turns and passes down the ovary-wall elose to the margin of the cavity. The tissue throngh which it travels consists of isodiametric cells, and does not in any way suggest a conducting tissue. At a point a little below the funicle the tule eurves, passes throngh a region of deeply staining eells (as thongh mucilaginons), and turns upwards towards the embryo-sac. The tube seems to brameli as was described in Juglans. A micropylar canal is present, but no pollen-tubes were found entering it.

Biology of Fruit in Malvaceæ. $\ddagger-$ B. P. G. Hoelreutiner describes the extreme variability of the fruit in Malvaeex, and of the mechanism

[^184]for sced-dispersion. The calyx may open and elose hygroscopically like certain capsules; the calyx or the carpels may be bladdery, or the involucre, calyx, or carpels may be accrescent to facilitate flight. Wings may be developed on the calyx or on the carpels. Berries ocemr, and in ouc case a flesliy calyx. Jerking and clinging mechanisms also occur in the order.

The anthor believes that the primitive form of fruit in the Malracea much resembled that of Abutilon. In the course of evolution there occurred on the one hand a tendency towards reduction and fixation of the nmmber of carpels, which remained dehiseent, and on the other a tendency towarls reduction of the number of seeds in each carpel, producing eventually an achene.

Floral Structure of Juglandeæ.*-Th. Nicoloff considers that the male flower of Juylans regui is formed on a tetramerons plan, having a perianth of four parts and a pair of bracteoles. A study of the pollensice development in Carya amara shows that the sporogenous cell only lecomes differentiated (by size and richness of contents) after several tangential divisions of the hypodermal cell, so that it is separated from the epidermis by four cell-layers. This is not in accordance with the course of development indicated ly Warming, in which the sporogenons tissuc becomes differentiated after the first tangential division of the subpidermal cell.

The female flower of Jugloms regia is formed on the same plan as the male. M. Nicoloff, from a study of the course of the vaseular hundles, comes to a result different from that arrived at by Van Tieghem who assmmed that each ovary contained theoretically four ovnles.

In the mucellus of Juglans, two more or less distinet regions were found. One, in the micropylar region, consists of cells which are fairly large and slightly elongated. They are arranged in radiating lines diverging from the base of the embryo-sac. The lower part of the mucellus consists of a central axis of cells which are much longer than broad, and with a somewhat denser protoplasmic cell-content than that of the peripheral layers.

It is not possible to make out an archesporim, owing to the complete transition between the parenchyma of different parts of the nucellus. The embryo-sac has two synergids towards the micropylar region. Tery rarely two embryo-sacs occur in the same macellus.

The development of the cotyledons and the seed-coat (on which stomata oecur) is briefly described.

Physiology.

Nutrition and Growth.

Photosynthesis outside the Plant. \dagger-L. Macehiati descriles further researches which confirm his previous statement that chlorophyll-assimilation in plants is the result of the action of an enzyme. A glycerinextract was prepared from leaves washed in distilled water. The ferment was dissolved in benzine and precipitated by evaporation of the benzine

[^185]as a white floceulent amorphons powder. Other leaves of the same plant were dried at $100^{\circ} \mathrm{C}$., and from the fine green powder prepared from them the enzyme was also extracted by glycerin in the samemanner as with the fresh leaf. If the powler le placed in distilled water, erolution of oxycen accompanied by formation of formic aldehyde was observed. The green powder freed from the ferment was malie to effeet photosynthesis, but this action was manifested immediately on addition of a small quantity of the ferment. The amount of gas erolved was proportional to the intensity of the light-rays to which the solution was exposed. The author contends that his researches preve undoubtedly that the principal agent of chlorophyll-assimilation in the green plant, and of photesynthesis ontside the organism, is a solulle enzyme, and that the chlorophyll pigment apparently functions as at chemical sensitiser.

Ripening of Seeds and Power of Germination.*-P. Mazé finds. that muripe seeds which will mot germinate properly when taken from the plant, will acepuire the power to germinate if they are more or less. rapidly dried. Seeds of peat and maize, eollected when still soft and milky, were placed in tubes containing distilled water. When placed on a stove at :3 $10^{\circ} \mathrm{C}$., the maize developed seedlings which grew vigoronsly, but a large number of the peas refused to germinate, while in the majority of those that did germinate, the radicle was mable to pieree the secil-coit. If, however, the seeds were previonsly dried at $30^{\circ} \mathrm{C}$. in contact with air orer concentrated sulphuric acid for 24 to 48 hours, the maize germinated in the same way as would perfeetly ripe seeds, while the peats also yielded normal plants.

Effects of Water and Aqueous Solutions on Foliage Leaves. \dagger -

 J. B. Dandeno after giving a historical résume of work by previous olservers on the vexed question of water-absorption by leaves, describes a large series of experiments made by himself on this and kindred suljects. His results and conchsions are as follows:-Wilted leaves, whether detached from the plant or not, will absorb water if immersed, or if water be applied to the surface in the form of spray. Special parts of leaves of certain plants seem to be adapted to the purpose of ahsorption, as shown by the surface of the epidermal cells over the veins (as in Aimpelopsis), at the base of the hairs (as in Primult) and elsewhere. Hairs in some cases are very susceptible to the action of water and of solutions. Striations and hairs aid in spreading lifuids over the regions which seem to be adapted for absorption, and triehomes also prevent a rapid evaporation of the liquid thus spread. Absorption of water may also take place through the surface of the petiole. Guttation drons anit dewdrops' contain dissolved substances which are generally absorbed ly the plant. Carbonates as incrustations may serve to store up carbon dioxide, in the presence of moisture at night, whieh may le utilised as the biearlonate is reduced to carbonate in the day-time. Incrustations may le, therefore, not only an adaptation to retain water, but also to utilise to the full the loss of CO_{2} by respiration.* ('ompte; liendus, cxxxv. (1902) pp. 1130-2.
\dagger 'Trans. Canadian Inst., vii. pt. 2 (1902) pp. $237-350$ (2 pls. and 15 figs. in text).

Distilled water generally becomes alkaline if allowed to remain upon leaves. Certain plants adapted to a moist climate may be made to take in all the food necessary for growth through the leares. Distilled water used as a spray acts for a time as a stimulus to growth; it may be that it acts as a means of drawing from the plant surplus alkaline salts which might become harmful if formed in too large quantity in the cells. Rain-water may ate as a stimulus in this way.

Solutions, if applied to the surfaces of detached leaves, or to leaves upon the plant, are generally absorbed, as shown by the increased content of the ash. Solutions thus applied often stimmlate part of the tissue to an abnormal development. Solutions applied to the cut ends of leafstalks are generally carried to the mimute endings of the tracheides where they kill the tissue either by drawing water from the cells into the intercellular spaces, producing a translucent appearance of the tissue, or by chemical action upon the walls of the cells, the protoplasmic membrane or the protoplasm as a whole. The first determinable reaction after death is alkaline even though the tissue be killed by an acid.

The lithium test gives rise to error because the water ascends faster than the lithium, and beause the rate of ascent in the same leaf varies as the length of the vein.

A detached leaf is a living thing which may continue its functions, to some extent, for several months after being detached from the plant.

The food reguired by woody branches of Salix in the early growth of spring is water, at this stage a mutrient solution was harmful. Water and mutrient solutions are apparently absorbed throngh the buds.

Since sea-water affects the atmosphere in such a way as to produce an accumulation of rust upon iron greater than that produced in an atmosphere under the influence of pure water, it is reasonable to conchude that the atmosphere in the neighbourhood of the sea may affect plants.

Formic Aldehyde as a Food-stuff for Fresh-water Algæ.*-R. Bonilhac finds that formic aldehyde can be used by Nostoc and Anabene which are cultivated in a nutritive solution and exposed to an intensity of light insufficient to allow of their decomposing carbon dioxide; the plants are thas obliged to obtain their carbohydrate food-stuff from an organie source.

A certain intensity of light is necessary to allow the Nostoc and Anabcena to polymerise the formic aldehyde, and the minimum intensity is very near that which is required for the assimilation of the carbon dioxide of the atmosphere.

Irritability.

Influence of Light and Darkness on Plant-life. \dagger-D. T. Macdougal gives the results of experimental work extending over seven years and including observations on a large variety of plants. These were coltivated in contimuous darkness, control plants having been grown under conditions otherwise the same, but in ordinary alternation of light and darkness. The sulojects of experiment include aquaties, creepers, climbers,

[^186]\dagger Mem. New York Bot. Garden, ii. (1903) xiii. and 319 pp., 176 figs.
succulent plants, mycorhizal forms, geophilons and aerial shoots, mesophytes and spiny xerophytes; and the plants were grown from tubers, corms, rhizomes, cuttings of leares and stems, seeds, and spores.

The author gives a useful historical account which inchendes notices of nearly all of the more important researches hearing upon the subject, from Ray and Hales onward to the begimning of the present century. Then follows a detailed account of his own experiments on nearly one hondred different species. The arrangement is an alphabetical one, under the name of the plant which formed the subject of experiment.

The chapter on "General Considerations" supplies a nseful correlation of the results of these experiments, and includes also critical remarks on work of other observers. The remaining pages of the memoir are ocenpied with several short chapters. "Theories as to the namre of etiolation," is a brief résume of explanations advanced by previous workers. In " Morphogenic inflnence of light and darkness," the anthor points out that examination of the facts obtained by absolute etiolations shows that no one of the theories recorded in the preceding section is capable of general application to the behaviour of all plants in darkuess. "The phenomena of etiolation rest upon, and consist in the behavion" of the plant consequent upon the absence of the morphogenetic influence of light. Some species show an adaptation to this absence of light, or to the positive influence of darkness, by which the shoots or petioles are elongated in such manner as to constitnte an effort to escape from darkness, or to attain illumination." There are also chapters on the "Influence of etiolation upon chemical composition," and "The rate and mode of growth as affected by light and darkness."

! Chemical Changes.

Decomposition and Regeneration of Albuminoids in Plants.* Gabrielle Balicka-Iwanowska finds as a result of a series of experiments with the yellow hupin that the asparagine which is formed during decomposition of albuminoid bodies is a secondary product, acid amides and hexonic bases being the primary products. Also that mineral salts exercise a certain influence on the regeneration of albumin at the expense of the products of its decomposition. Defect of calcium is the most important cause of diminution in the product of albumin. As regards the effect of light on accumulation of asparagine, and its subsequent use for the regeneration of proteids, the author finds that while photosynthesis has an effect on the regeneration of proteids, light itself seems to exercise a direct effect.

Function of Peroxides in the Living Cell. \dagger - R. Chodat and A. Bach have studied the toxic action of hydrogen peroxide. Different species of fungi were grown in a nutritive solution, to which variable amounts of hydrogen peroxide were added. The results show that this peroxide is not very toxic, since some species (e.g. Sterigmatocystis nigra) will fructify in a 2 p.c. solution. Peroxides occur in plants; they are the so-called oxydases of Bertrand and others. The authors, by passing

[^187]a current of air throngh the juice of plants of Lathrcea Squamaria, were able to precipitate by baryta solutions an oxydase which has also the properties of the peroxides, notally that of freeing iodine from potassic iodide. M. Chodat has also isolated from Russula foetens a ferment which behaves at once like an oxydase and a peroxide. The reactions of the peroxides can be obtained with the fresh plants; the authors experimented with a large number, the most active were Monstera deliciosa and Silphium perforatum. The characteristic reaction was also obtained in the living cells of the potato, without injury to the cell; the iodine which is set free combines at once with the starch and is thus put ont of the sphere of action.

The authors also isolated perneryflases which stimnlate the action of the oxydases. Catalases are produced by plants to decompose the peroxides. which when present in sufficient quantity are injurious.

General.

Plants of Catalonia.*-A list of the flowering plants of Catalonia with notes on distribution, critical remarks, and descriptions of new species and varieties, from material left by the late Sr. Vayreda. The death of the author interrupted the production of a more detailed flora.

African Flora XXIV. \dagger--Includes the following papers :-African grasses III. by R. Pilger, containing a discnssion of the relation between the section Ptychophyllum of the genas Panicum and its relation to the gemss Setaria. The author regards Setaria as forming with Ptychophyllum a section of Panicum. He also deseribes new species of Panicum and allied genera. African orchids VII. by F. Kränzlin ; descriptions of a number of new speeies in various genera. African Dichapetalacea II. by A. Engler and W. Ruhland; descriptions of a number of new species of Dichapetalum. African Lentibulariaceæ by F. Kamienski, notes on distribution and deseription of new species. Afriean Moracea II. by A. Engler, description of new species. African Urticacea, by A. Engler, description of new species in varions genera. African Violacee by A. Engler, including notes on the systematic subdivision of Rinosea and description of new species. African Passifloracea by H. Harms ; description of a new gems Schlechterina and new species of Trypihostemma and Adenia. African Leguminose by H. Harms, description of new species. African Acanthacee VI. by G. Lindau, description of new species. African Dilleniacee by E. Gilg, a revision of the African species of Tetracera.

CRYPTOGAMS.

Pteridophyta.

Morphology of Spore-producing Members: General Comparisons and Conclusion. $\ddagger-\mathrm{F}$. O. Bower in a concluding memoir (No. V.) gives a general discussion of the results aequired in the four previous parts,

[^188]and of their bearing on a theory of sterilisation in the sporophyte. The anthor concludes that all that remains as the fundamental conception of the sporangium in vascular plants is the spore-mother-cell or cells and the tissue which covers them in. The definition of the sporangium may be given thus: " Wherever we find in vascular plants a single spore-mothercell, or connected group of them, or their products, this with its protective tissues constitutes the essential of an individual sporangium." From the point of view of a theory of sterilisation such sporangia may be regarded as islands of fertile tissue which have retained their sporeproducing character, while the surrounding tissues have been diverted to other uses.

The methods of variation in the number of sporangia are tabulated under the heads of progressive increase and decrease ; the condition of any polysporangiate sporophyte is the resultant of such modifications operating during its descent. In homosporous types, which are the more primitive, the larger the number of spores the better the chance of survival, and hence, other things being equal, inereasing numbers of spores and sporangia may be anticipated; but in heterosporous types reduction in number both of spores and sporangia is frequent. Homosporous forms are therefore regarded as in the upgrade of their evolution as regards their spore-producing organs, unless there is clear evidence to the contrary. The evidence of variation in numbers of sporangia in the great groups of Pteridophytes leads to the result that all of them are referable to modifications of a radial strobiloid type. A comparison is drawn between thie fertile zone in certain Bryophytes and the fertile region of Lycopods. In the Bryophytes the fertile region is regarded as a residunm from progressive sterilisation, and it is suggested that similar causes would lead to decentralisation of the fertile tissue in the primitive Pteridophytes and result in the formation of a central sterile tract with an archesporium at its periphery. Snch an archesporium became discrete in the Lycopods; the fertile cell-groups formed the centres of projecting sporangia and were associated regularly with outgrowths which are the sporophylls. Whether or not this hypothesis of the origin of a Lycopod strobilus approaches the truth, comparison points out the genus Lycopodium as a primitive one, characterised by more definite numerical and topographical relation of the sporangia to the sporophylls than in any other type of pteridophyte.

The sporangiophore, including the sori of ferns, are placental growths and not the result of metamorphosis of any parts or appendages of prior existence ; it is probable that a plurality of sporangia existed on primitive sporangiophores. The Lrcopods, Psilotaceæ, Sphenophylleæ, and Ophioglossacee may be arranged as illustrating the increased complexity of the spore-producing parts and of the subtending sporophylls; the factors of the advance from the simple sporangium to the more complex sporangiophore are, septation, upgrowth of the placenta with vasenlar supply into it, and branching, with apical growth also in the Ophioglossaceæ. In Equisetum the sporangia are regarded as directly seated on the axis and therefore non-foliar ; this brings the genus into accord with the fossil Calamarieæ. The ferns are strobiloid forms with greatly enlarged leaves. The Lyeopods, Psilotaceæ, Sphenophylleæ, Ophioglossaceæ, and Filices
illustrate lines of elaboration of a radial strobiloid type with increasing size of leaf.

The author holds Celakovsky's opinion that the Lycopods are promahly the nearest living prototypes of the Ophioglossacee. The latter in conjunction with their more pronomnced megaphyllous form still retaining the lycopodinous type of the sporophyte, show more pronounced filicinean characters of the gametophyte and of the sexual organs. The meaning of this parallelism between leaf-size and characters of the sexual organs is not obvious; in the Equiseta it does not hold ; these filicinean characters of the gametophyte accompany entirely non-filicinean characters of the sporophyte, the latter showing nearer analogy to the Lycopods. Such cross characters are difficult to harmonise with any phylogenetic theory; hence the Equisetinee are placed in an isolated position.

The ffollowing grouping is suggested :-

Pteridophyta.

I. Liycopodiales.
(a) Eligulate-Lycopodiaceæ.
(b) Ligulate-Selaginellaceæ, Lepidodendraceæ, Sigillariaсеæ, Isoetaceæ.
II. Sphenophylhales.

Psilotaceæ, Sphenophyllaceæ.
III. Ophioglossales.

Ophioglossaceæ.
IV. Filicales.
(a) Simplices-Marattiaceæ, Osmundaceæ, Schizæaceæ, Gleicheniaceæ, Matonineæ.
(b) Gradute-Loxsomaceæ, Hymenophyllaceæ, Cyatheaceæ, Dicksonicæ, Dennstædtiinæ, Hydropterideæ (?)
(c) Mixtc-Davallieæ, Lindsayeæ, Pteridcæ, and other Polypodiacce.

V. Equisetales.

Equisctaceæ, Calamarieæ.
The actual comection of these serics by descent must remain an open question ; it is possible that some or all of them may have originated along distinct lines from a general primitive group, which may be provisionally designated the Protopteridophyta. These were probably small-leaved strobiloid forms, with radial type of construction, and with the sporangia disposed on some simple plan.

Botrychium.*-L. M. Underwood publishes an annotated index of the known species of Botrychium containing 35 valid species and a variety; and of these there are 6 that are described as new species, and a seventh that is raised from varietal to specific rank. The synonymy and distribution of each species are given.

Spore-cavity Nucleus in Prothallia of Marsilia. \dagger-W. C. Coker has studied the behaviour in M. Drummondii of the nucleus left with

[^189]the food-material in the carity of the megraspore on the formation of the prothallium. It enlarges greatly as development proceeds, retaining its position beneath the prothallinm, and at time of fertilisation is much larger than the nuclei of the remaining tissue, and the shape, which varies tonsiderably, is peculiar. It shows long arms and fine extensions radiating towards the prothallimm. As development proteeds it fragments amitotically; the reticnlum is thronghont very dense, and a nucleolus is present. If the radiating processes are normal, as seems probable, they recall the filaments extending from the nuclens into the food-mass in the eqrecells of Dytiscus (see Wilson, Ther ('ell, p. 115). In the case of Marsilia, however, the processes extend tuwards the tissue to be nourished instead of towards the food-material. The nuelens is doubtless concerned with the elaboration or transference of foodmaterial.

Opening Mechanism of the Macrosporangia of Selaginella.*S. Schwendener maintains that the dehiscence of the sporangia is due. at any rate in part, to the hygroseopic action of a row of thin-walled cells on the keels of the sporangia. In his opinion Steinbrinck \dagger errs in regarding a "cohesion mechanism" as the only possible canse; whether it plays any part in the process most he at present left undecided.

Bryophyta.

Formation of Antherozoids in Marchantia. $\ddagger-S$. Ikeno gives a summary describing the behaviour of the centrosomes during the celldivision that oceurs in the formation of the antherozoids in Marchuntia polymorpher, and the relation of the centrosomes to the cilia of the antherozoids. The blepharoplasts of the Vascular Cryptogams and Gymnosperms are, he thinks, to be regarded as centrosomes.

Culture of Hepatics.s - W. Benecke has experimented with the development of the gemma of Lumularia crutiata when sown on nutrient solutions of various constitutions, and has noted the effeet of the presence or absence of various salts, such as nitrates and phosphates, mpon the young plants. When cultivated in pure distilled water, the plants barely produce any rhizoids ; they require the presence of chemieal stimulants, whether mutrient or otherwise, for normal germination. The effect of the presence or absence of light upon the eultures is described. The behaviour of these gemma is compared with that of germinating plants of Riccia fluituns and of the higher plants. The formmla of the solutions employed, the modifications introdnced, and the consequent results, are detailed.

Scapania. $\|$-C. Massalongo has made a study of the Italian species of the genns Scapania, paying special attention to the many intermediate and transitional forms which render so difficult any attempt to make a satisfactory delimitation of the species. He recognises twenty

[^190]species and eight varieties as valid and, having arranged them in groups, describes them in detail, giving the full distribution in Italy and adding critical notes on the allied species that occur in the rest of Europe. An analytical key and an index are supplied.

Papillate Hepatics.*-I. Douin remarks upon the rarity of papillæ in hepatics, and distinguishes the different forms of papillæ met with in the group. He discusses the specific value of three species of cephaloziat with papillate leaves, and proposes a scheme of classification for them, and adds critical notes upon some other species of Cephalozia and Lepilozia, and upon Jungermannia exsecteformis as compared with J. exsecta.

The same anthor \dagger gives a list of six mosses and nine hepatics lastily gathered between the gushes of the intermittent spring of Fontestorbes near Bélesta (Ariège) on the north side of the Pyrenees.

Fossombronia. $\ddagger-\mathrm{L}$. Corbière describes a new species, Fossombronia Crozalsii, gathered by A. Crozals in the south of France, and distinguishes it from F. angulosa and F. Dumortieri to which it is allied in the markings of its spores. And he adds some notes upon the distribution of the genus in France.

German Hepatics and Sphagna.§ - C. Warnstorf completes his account of the hepatics and Sphagnacea of Mark Brandenburg, the whole cryptogamic flora of which is in course of publication by several specialists. He describes the species carefully and amply, distinguishes the varieties, and adds critical notes. To the tribes and genera he appends analytical keys. The numerous figures are a valuable feature of the work.

Italian Hepatics.\|-E. Barsali publishes a list of the hepatics that are found on Monte Pisano and in the neighbourhood of Pisa, giving localities and the principal synonyms. There are 67 species in all, eleven of which are new to the district. The introduction contains an account of the geographical distribution in the district and of the various substrata selected by several groups of species.
C. Massalongo © transcribes the descriptions of two European species of Sctopania which, as he has recently ascertained, occur also in Italy. They had previously been found only in Scandinavia and the eastern Alps.

American Hepatics.** - C. C. Haynes records the discovery near Prospect Harbour, Maine, of C'ephalozic Francisci Dum., for the first time in America. Originally described from Norfolk ly Hooker, the species is rare in Enrope. At the same locality in Maine were found a few other rare hepatics.

Lejeunea in North America. $\dagger \dagger$-W. C. Barbour describes the ten species of this genus that occur in the North-eastern United States,

[^191]adding a simplified key to them, and figuring six of the species. The chief synonyms, the habitats, and distribution are given.

Hepaticæ of Puerto Rico.* - A. W. Evans describes in full and figmes ten species of Drepunolejounert gathered by himself and others in Pnerto Rico. Fonr of the species are new. Historical, distributional, and structural notes on the genus are added.

Two Egg-Cells in Mnium. \dagger - W. C. Coker finds in an undetermined species of M Mimm an archegonium which contained two welldeveloped egg-cells of normal appearance. The extra one lay directly over the other. In each case a rentral canal-cell had been cut off. The writer suggests that the upper egg had been derived from the lower neck camal-cell.

British Mosses. $\ddagger-\mathrm{R}$. Braithwaite publishes the penultimate part of his British Moss-Flora, and describes 23 species and figures 26 . Three of these form the completion of the genus Stereoton; and the residue are divided $u p$ among nine genera. Fom of these genera are Hypnaceous; three are Pterygophyllaccons ; and the remaining two belong to the Neckeracee.

Yorkshire Muscineæ.s-IV. Ingham has compiled a complete list of all the mosses and hepaties that have been gathered hitherto in the East Riding of Yorkshire, together with their habitats and the collectors' names. He records 228 mosses and thepatics with mumerous varieties and forms.

Ricciocarpus natans. $\|-$ J. E. Bagnall records the occurrence of this rare hepatic at Berkswell in Warwickshire, where it was found in abundance by S. P. Bolton. It appears to have been gathered at only seven other localities in Great Britain, but is less rare in Ireland.

French Volcanic Muscineæ.T-A. Crozals has investigated the peculiar moss-flora of Roquehante (Héranlt), a small voleanic district on the shores of the Mediterranean, and publishes a list of 74 mosses and $\because 6$ hepatics. Among the latter are $1: 3$ species of Riccia, also Riella Battandieri and the rare Dichiton perpusillum, previonsly known only from Algeria. The two latter species have probably heen imported by migratory birds. Half the mosses noted are of the Pottiaceous type, and no strietly calcicolous species are found.

European Mosses.**--Th. Herzog publishes lists of the mosses gathered by him in the course of $1901-2$ in the Black Forest and the Alps of Switzerland, Tyrol, and Bavaria, mostly at new localities. There are three lists containing a total of 101 species.

German Mosses. $\dagger \dagger$-J. Roll publishes a list of 19 species of Sphagmum, subdivided into so varietics and very mumerons forms, gathered

[^192]by him on one day at two loealities in the neighbourhood of the Milseburg in the Rhöngebirge. This list is of the nature of an appendix to the $2 \mathscr{2}$ mosses recorded by A. Geheeb in his paper ' Die Milseburg im Rhöngebirge und ihre Moosflora' (Festschrift des Rhünclubs, 1901).
L. Loeske * pulbishes a handbook to the mosses and hepaties of the Harz Mountains, adding many species to the list contained in E. Hampe's Flora Hercynica (187:). The book consists of an introduction, keys to the genera and species, critical and distributional remarks on the species, and a bibliography.
W. Mönkemeyer \dagger calls attention to the rich moss-flora of the Fichtelgebirge, which though studied a century ago by H. C. Funek and later by Laurer and by Molendo was far from exhanstively examined, especially as regards the hepatics; and he publishes a preliminary list of $\because 4$ hepaties and 62 mosses, of which 7 and 14 respectively are new to the distriet.

The same author \ddagger gives a list of $1 \because 7$ mosses and 13 hepaties and numerous varicties gathered in the Wesergelirge.
F. Matousehek § deseribes a new variety of the widely distrilmted Pylaisia polyantho with crispate laves, analogous to the crisper form of Leucodon sciuroides described by him last year.

Austrian Muscineæ.||-F. Matouschek has examined the collections of Breidler and others, and drawn up a localised list of 161 mosses and $6 \geq$ hepaties gathered in Moravia and Austrian Silesia. There are no new species.

Italian Mosses. 9 - A. Bottini publishes a list of the acrocarpous mosses gathered in the Tusean Archipelago by Béguinot, Sommier, and Mareueci at various times in the past thirty years, and recently worked up by himself. Some six varieties are new to science; one species is new to Italy and 40 are new to the Archipelago, while the mosses of Pianosa and Montecristo are recorded for the first time. The promontory of Monte Argentario is regarded as belonging to the archipelago rather than to the mainland.

North American Mosses.**-N. C. Kindherg insists upon the importance of a close comparison of the moss-floras of Europe and North America. Several examples are cited of species which, thongh regarded as exelnsively American, have turned ont to be identical with European speecies ; and again of species which are sterile or rare in Europe and in America are found to be fertile or common respectively. And amid some further critical remarks he introduces descriptions of three new species of Bryum and one of Orthotrichum-all from North America.

Mosses of Alaska. $\dagger \dagger$-J. Cardot and I. Theriot give the bryological results of the Harriman Alaska Experlition-a list of 280 species, in-

[^193]cluding 124 new to Alaska and 46 new to science, viz. 2!) new species and 17 new rarieties. In this list are included the results of previons collertors.
J. MI. Holzinger* in smmmarising the ahove annonnees that the nmmber of species now known from Alaska and the Bering Sea Islands reaches :3:0), without reckoning a momber of dondtful species.

Inconspicuous Mosses. \dagger-J. M. Holzinger deseriles the hames of some of the minute mosses (Arehidimm, Plusrom, \&e.) that ocenr in the upper Mississippi valley, which he has had muder olservation for several years. They wither away soon after the snow has melted.

Psilopilum. $\ddagger-$ R. S. Williams publishes a eritical note on the difference hetween P^{P}. tserhutschirmm and P^{\prime}. arctirnm as illustrated l_{s} specimens gathered in the Yukon and Klondike reqion by himself and ly Macom, and concludes that the two species are sufficiently distinct.

Mosses of East Greenland. §-P. Dusen has worked up the mosses collected by the Swedish Expelition moler A. (r. Nathorst to East Greenland and Jan Mayen Island in 1899. The gatherings were far from exhanstive; hence the momber of species enmmerated does not exceed $1: 30$. Hurry Inlet was the richest locality visited, but the expedition made only a very short stay there. Five new species of Brymm are described. The climate is a dry one ; and the conditions of clatadge, of irrigation ly melting snow, of soil, \&e. which affert the moss regetation, are disenssed. The special gatherings from the fourten chief localities visited are noted separately, and are followed by a general systematic enmmeration of the whole collection. An index is smpplied and a map of the voyage.

The Moss Exchange Club\| issues its report for 190:. The principal featme is a list of the mosses and hepatics contributed by the members for exchange. Critical remarks ly the referees upon several of the specimens are added.
K. G. Limpricht. T-V. Schiffner supplies a liography of the lite K. G. Limpricht, the distinguished German bryologist, who died at Breslan last Oetober in his sixty-ninth year, and who for many years was lecturer in Natural Science at an Erangelical College in Breslan. His high qualities as a systematist and biologist in the sturly of the Enropean Museineæ are pointed ont; and a chronological list of his publications-66 in nmmber-is appended. The greatest of these-- Die Lathmonse Deutschlands, Oesterreichs und der Srluceiz-a well-known standard work on mosses in three volnmes, is still incomplete. It was begun in 1ss. ; and the lapse of time since the first part appeared has necessitated the preparation of a supplement which is being issued by the anthor's son.
J. M. Holzinger ** gives a short account of the life of Limpricht

[^194]based upon data obtained from German friends of the deceased bryologist ; and adds a list of his three principal works and thirty-eight shorter papers on Muscineæ.

Thallophyta.

Algæ.

British Fresh-water Algæ.*-Messrs. W. and G. S. West publish a list of 94 fresh-water algre from various parts of England, including thirty from the Scilly Islands, the first records from that part. Three new genera are described, Pheosphuere, Pseulnchete, and Polychetophora, containing one new species each, and, excluding these, the authors describe also other ten new species. Of these the most interesting is Delurya desmidioiles, which forms another link in the descent of the Desmidiacee from the Conjugate. It is an extremely fragile plant, the filaments of which break up most readily into individual cells, and conjugation only takes place between two of these isolated cells. The anthors consider that the origin of the genera Mesotenium and Cylindrocysitis from ancestral filamentous Conjurate is clearly indieated by this new species. Amended and enlarged descriptions are given of the genera Chlorobotrys and Tneffitiatu.

Fresh-water Algæ.†-A. Hansgirg publishes some additional notes on fresh-water algre whith he has collected in Bohemia, giving the localities in which he found them. Some of these records are here brought together and republished from other papers. Then follows a list of species collected by the author in the East Indies, specimens of which will be distributed in Beck's Kryptogamee exsiccate and in Riehter's Phycotheca universalis. The locality where each species was found is given, and in many cases notes regrading size, \&e. are added.

Finally, remarks are made on the fresh-water alge of Greece and Egrpht, founded on collections made by the author in those countries.

Literature on the Algal Flora of Russia. $\ddagger-$ An alphabetical list of authors on this subject, with a short résume of the work of each, is pulbished by N. Gaidukow, and a short ehronological treatment of the literature is added.

Fresh-water Algæ of the Azores.s-K. Bohlin has made a study of the fresh-water algæ of these islands and has himself found 158 species, which together with other records makes a total of 171 species known from the Azores. His collections were however limited for the most part to one island, they took place during only one season, and that inchded the driest months of the sear, June to August. Consequently this list is not considered by the author as being in any way exhanstive, though he believes that even further investigation will show that the fresh-water flora of the Azores is a poor one. The physical geography of the islands is briefly deseribed, and general remarks are made on the various habitats of fresh-water alge, lacustrine, thermal,

[^195]and others, and summaries are given of any previous algal literature on the district. The general character and occurrence of the algological vegetation is dealt with at some length, and among other interesting facts it may be noted that certain common genera of Desmids are conspicnously absent, notably those containing species of a large size. Various suggestions are offered to explain the geographical distribution of the flora, which is quite European. As regards the systematic part of this paper, certain novelties are published, and critical notes are appended to many of the species-names.

Plankton of Lake Nyasa.* - W. Schmidle describes the plankton (Chlorophycee and Cyanophyceæ) of this tropical African lake.

Fresh-water Algæ from Zambesi. \dagger - N. Wille has examined a collection of fresh-water Algre from this part and publishes a list of :3 species, of which eight are diatoms and one is a species of Nitella. The novelties are Placoma africanum, a new form, africana, of Anabana voriabilis Kütz., and Eupodiscus lacustris. Both new species are figured.

Desmids from Bridgewater (Mass.) \ddagger - J. A. Cushman records fic species of Desmids from Carver's Pond, Bridgewater, Massachusetts. The pond covers 4% aeres. After each name is a statement as to the frepuency or rarity of the species.

North American Marine Algæ.S-F. S. Collins publishes a muchneeled account of the Ulraceæ of North America, in which the four (renera Ulva, Monostroma, Enteromorpha, and Ilea are described, including together $3: 3$ species and 26 varieties. Keys to the genera and species are given, and critical notes are appended to the diagnoses. As rewards references to previons literature, these are mostly confined to the works of American authors; and specimens in the principal American exsiccate are referred to by number. Three plates, contiming forty-six figures, show the microseopic structure of many of the species.

The same author describes an algological holiday in Eastern Maine. giving the habitats of certain speeies and recording the oceurrence of Pectonema Battersii and Porphyra amplissima, both new to New England. Interesting details of several species are given.

Fresh-water Algæ from South Patagonia.\|-O. Borge enmmeraten about 150 species of fresh-water algre from this region, which is by no means rich in species. This is probably oring to the salt nature of the soil in many parts, the many salt lagoons, and the salt water of many of the streans. Several of the common genera of Desmids are here not represented at all, while Euastrum and Pleurotonium have respectively only three and one species each. A short list is given of the plankton of a lake and a lagoon. The main part of the paper consists of the list of fresh-water alge found, with the number or numbers

[^196]appended to each name, muder which the speeimens may be found in the Natural History Mnseum at Stockholm. Several novelties are lescribed.

Cultivation of Chlorella vulgaris.*-.J. (irintzesco has snceeeted in isolating this algatand growing it in rarions media, and he deseribes here his experiments and the results. After a short introduction, he gives a réstmé of the previons work on Chlorella and a list of the papers which he has consulted. Then he deals with the habitat of the species and the lest means of isolating it for purposes of enltivation. The development of the alga is deseribed muder the headings of "General apparance," "Membrane, chromatophore, prenoid, muclens," and . Division." The second part of the paper details the experiments made in varions metlia, with the formula of each, and the following are the results :-(1) Agar- or gelatin-media, preparef with inorganic substances, form good cultivating media for Chlorellu culyaris. ($-\underset{2}{ }$) Glueose always stimmates the development of this alga and its action is not harmful, even if the cultures are prolonget for some time. (:) In media which contain no ghcose, (t. mbaris shows a tendeney to develop at the surface of the sulbstratum; in media containing sheose development takes place equally thronghont all parts of the substratum. (4) Peptone is not a better source of nitrogen than are nitrates. (i) C. melyaris does not liquefy gelatinons media.

Grown on prons plates the alga develops more slowly than in agar cultures ; in ordinary sterilised water the development is fairly rapid, and if mutritive salts are added growth inereases proportionately within a certain limit.

As regards light, it was fomed that the direct rays of the sum are unfavomrable, bit in electrie light the alga grows well and rapidly. In total darkness development takes place more ruiekly than in full daylight.

The maximm and minimum of temperature which allow of growth in ℓ^{\prime}. venlyaris are respectively $: 30^{\circ} \mathrm{C}$. and $1 \cdot r^{\circ} \mathrm{C}$. In vacumm-tubes development is retarded, the colonies being invisible until the twentieth day.

A eomparative table of the physiology of Scenctesmus acutus and Chborella culyaris, followed bremarks on the polymorphism of these algæ, complete this paper, whith is illnstrated by six text figures.

Cell-membrane of Desmidiaceæ. \dagger - J. Lï̈tkemüller has made a detailed study of the genera of Desmidiacer with the exception of four genera, and on the strength of his results he divides the family into five groups. These are called the (1) Cosmarium type, ($\because 2$) Closterimm type, (:3) Peninm type, (4) Gonatozygon type, (5) Spirotænia type. These groups are fomided entirely on characters comnected with the cell-membrane, which in certain types consists of two layers and has an apparatus of pores. The variation in form and position of these pores, when present, constitutes characters in the new systematic treat-

[^197]ment laid down by the anthor, as also do the mamer of cell-division and the periodicity in the complete development of a species. Comparisons are drawn between the varions types, and a sketel of the new system founded on these characters is given. The method of examination consisted in emptying the cell of a fresh lesmid of its contents by means of pressure, then of staining the different elements of the membrane with water-solutions of fuchsin, methyl-violet, and Bismarekbrown, and finally clearing the preparation with acetic acid.

Dichotomosiphon tuberosus.*-Under this name A. Ernst describes a new fresh-water alga allied to Vaurheria, which possesses, like that genus, oogonia and antheridia. It also shows a form of non-sexnal reproduction hitherto unknown among siphonea. Towards the end of the vegetative period elongated swollen bodies are formed at the ends of the rhizoids. These bodies are filled with a dense protoplasm and contain chlorophyll and starch. They become divided off from the plant by a transverse wall, and in ahout two months new filaments arise from any part of their surface. The author refers to Vuucherin tubrosin Kützing as being identieal with his plant, but he maintains that it is more nearly allied to Codium, Halimeda, and Udoten than to Vancheriu. on account of the dichotomons branching and the internal thickening of the membrane in places.

Bryopsis plumosa. \dagger-E. Perceval Wright has cultivated this species and found that in certain cases the lowermost pinne gave rise to rhizoids and then dropped off, growing as independent plants. Some dropped off having no rhizoids, and formed long, irregular, siphonaceons growths resembling Vaucheria. Sometimes the protoplasm took the appearance of oogonia, but no sort of reproduction was seen. The plants then died from attacks of minute parasitic algæ.

Mastogloia fimbriata and M. binotata. \ddagger - E. Perceval Wright publishes notes by Dr. Dixon on the periglœa and the tentaculoids of these tro species. A comparison between them shows certain differences in the minute structure. A short account is given of previous work on the subject, as well as the geographical distribution of four species of Mastogloia (Orthoneis).

Macrocystis pyrifera.§-C. Skottsberg gives some notes on this alga concerning its manner of growth, habitat, length, and the depth at which it grows. He criticises statements made by J. D. Hooker in the Flora Antarctica as to the length of a single plant, considering that the alga is not so long, nor does it grow from such great depth as is there described.

Eisenia and Ecklonia. $\|$-K. Yendo has made a study of Eiseriu arborea Aresch. and of Ecklonia bicyclis Kjellm. He considers that E. bicyclis is merely a form of Eisenia arborea, and names it E. arborea forma bicyclis Yendo.

* Arch. Sci. Phys. Nat. Geneva, xiv. (1902) pp. 506-10.
\dagger Notes Bot. School Trin. Coll Dublin, 1902, pp. 174-5 (pl. ix. fige. E, F).
\ddagger 'Tom. rit., pp. 161-5 (pl. ix. fige. A-D).
§ Bot. Notis., 1903, pp. 40-4.
\|I Bot. Mag. 'Tokyo, xvi. (1902) pp. 203-6 (figs. A, B).

Vegetative Reproduction in Chondria crassicaulis.*-K. Okamura has found and examined knob-like ramelli which are prodnced on the apices of ramuli in this alga. They are elongato-obovate or ellipsoidal in shape and grow $5-7$ or more on the same apex. Their general structure is the same as that of the main thallus, except that the cells are more compact, roundish, and rich in contents. The layer of cells which divides the epidermis from the central axis is very rich in globular starch. The neek, which connects the knob with the thallus, is composed of very loose tissue, and the knob is thas easily detached. The author has found slight prominences on the surface of the knobs, which, as seen in longitudinal section, are composed of elongated cells filled with protoplasm. These prominences he regards as the beginning of root-hairs. The paper ends with remarks on the systematic position of Chondria crassicaulis Harv., which should be ranked, in the anthor's opinion, among the tribe Chondriæ Macrocarpe.

Fresh-water Diatoms. \dagger - A. Forti publishes a tabulated list of 178 diatoms collected in Frinli and the Eastern Alps. These collections were made in 2:3 different localities, either on the banks of lakes or at varying depths in them. Notes are given respecting the geography or geology of some of these lakes, as well as remarks on the occurrence of certain species in the various samples.

The same author gives a list of 41 species found in the lakes of Lagorai and Stellune in Trentino. Of these, the most uncommon are Suriraya Capronii Bréb., Meridion constrictum Ralfs, Eunotiu tetraodon. Ehr., Pimmaria Leynmen Ehr., Suriraya calcarata Nitz., and C'eratoneis Arcus Ehr.

Diatoms of Koh Chang. \ddagger-A list is published of the marine plankton diatoms of this district by C. H. Ostenfeld, and one of the fresh-water diatoms by E. Oestrup. New species are described in both papers. The marine collection was obtained from the surface of the sea in the inner part of the Gulf of Siam. The fresh-water forms were found in pools, river-beds, rice-fields, and inland waterfalls. It is interesting to find certain marine forms recorded from both the rice-fields and the inland waterfalls. Their presence in the rice-fields is accounted for by the proximity of these shallow fields to the sea-coast, but it is more difficult to explain the appearance of Achnanthes baccata in inland waterfalls.

Blue Diatom.§-H. Molisch records the occurrence of the blue diatom, Navicula ostrearia, on the shells of Pinna nobilis L., at the zoological station in Triest. It had been previonsly recorded by E. Ray Lankester from Marennes on the Normandy coast, growing on Ostrea elulis, and the blue-green colour of the oysters and of the diatom has been made a subject of speculation by zoologists. Carazzi is of opinion that both organisms absorb certain material from the surrounding water and thus form the colour for themselves. The blue colour is confined to the two ends of the diatom, and is said by Professor Lankester to

[^198]occur in the protoplasm, not in the vacuoles. Further investigation on this point is much needed, as the author, through lack of material, was nuable to complete his investigations.

Classification of Diatoms.* - C. Mereschkowsky criticises the old method of classification and maintains that the Diatomacee should he divided into two gromps, Mobiles and Immoliles. The most important character as a basis for classification is the presence or absence of an opening in the walls of the frustule. Only those diatoms which possess this opening are endowed with a power of movement, and these are placed by the author in the group Mobiles. This group is divided primarily into Raphidiea and Carinate, both of which are again subdivided. Immobiles is divided into Batilloidea and Anaraphidea. Details are given as to the genera included in the divisions.

Polynesian Diatoms. \dagger - The same author gives a list of species of diatoms from Samoa, Tahiti, and the Hawaian Islands, including some new species and rarieties. The contents of a slide made from specimens obtained in a deep somoling in the Pacific are also enmmerated. Thongh the exact locality of this somnding is doubtful, the author considers it tohave been probably off the Californian coast north of San Francisco. Critical notes are appended to many of the records, and the paper is illustrated by :" plates.

Germination of certain Florideæ. $\ddagger-\mathrm{F}$. Tobler gives the result of his olservations on the germination from the spore, of marine alge belonging to the genera ('eramium, Callithamnion, Dasya, and Dudresnuyu. His object was to discover whether in any of these genera there was any trace of protonema or prothallus stage, which wonld explain their apparent disappearance during certain seasons of the year at Naples. He finds however nothing which can be regarded as a prothallus, and the plant arising directly from the germinating spore bears a great resemblance to the thallus of the mature plant. The difficulties attending a study of this kind are naturally great, both as regards isolating the spores for cultivation and in keeping the culture pure.

A summary is given of previous literature on the subject.

Fungi.

Taphridium, a New Genus of Protomycetes. §-H. O. Juel has constituted this new genus for the reception of two parasitic fungi, one of which had been originally described as T'aphrina Umbelliferarmm, one of the Exoascer. He and Lagerheim simultaneonsly examined these fungi and decided that they were akin to the Protomycetes rather than the Ascomycetes. The so-called asci or sporangia are intercalary on the hyphr, and from the first are multinucleate. He describes in great detail the different stages in the formation of the sporangia, and the germination process which resembles that of Protomyces. Taphridium differs from Protomyces in the formation of both vegetative and repro-

[^199]ductive hyphe, the latter being localised moder the epidermis. The writer diseusses fully the question of relationship between the Protomycetes and the Ascomycetes. They are both derived from the same ancestral form which probahly possessed sexnal organs and also nonsexual or conidial forms, and it is from the conidial forms that the Protomyeetes have originated.

Protascus, a New Genus.*-P.A. Dangearl gives a note on this fungus which is a parasite on Eel-worms and has hitherto been overlooked owing to its resemblance to Myzacytium. When fully developed it has the form of a flask inserted in the body of the worm, the projecting neck hends over and pierces the skin of the worm. Special attention is drawn to the method of sporulation: the sporangimm produces non-motile spores corresponding to the number of melei formed, 8,16 , or 32 . They are club-shaped and are ejected with considerable force. The writer follows the opinion of Brefeld that the ascus is derived from the non-sexnal sporangimm, and he considers that the lifehistory of this fungus supports that view. It forms a transition between the Phycomycetes and the Ascomycetes.

Endogone. $\dagger-\mathrm{P}$. Baccarini discusses in a lengthy note some of the characters of this gemus. He reviews the opinions of previous workers as to its systematic position, and describes particularly these species E. macrocarpa, E. Pampaloniana sp.n., and E. lactiflua. He pays speeial attention to the formation of the so-called asci which arise at the end of the hyphal branches. The anthor makes a note on a fossil form of fungus that he found in the "Disodile" and which he described as Pythites Disodilis Pamp. He is now of opinion that it was Endogone macrocarpa, thas proving the antiquity of the genus. He thinks also that probably the Endogoneæ are an offshoot of a group of Oophyeomycetes not unlike the existing Pythium.

Sclerospora. $\ddagger-\mathrm{G} . \mathrm{B}$. Traverso puhlishes a note on a new variety, Sternspmra graminicola var. Setarice-Italice which he found attacking Setariu italica; the development of the grass was arrested and the leaves were brown or withered. Microscopic examination showed a large number of oospores with a reddish-brown epispore. Conidiophores have not been found either by Traverso or by MacBride and Hitchcock, who record a Sclerospora on species of Setaria in America. The writer gives a diagnosis of the new variety.

Some additional notes § on Sclerospora graminicola are furnished by F. L. Stevens. He notes new hosts and new localities for the parasite.

Sclerospora macrospora $\|$ has hitherto been found only on Alopecurus. G. Cugini and G. B. Traverso record its appearance as a parasite on Zea Mays. Its presence in the hosts is shown by the appearance of small transparent spots on the leaves. The disease is as yet mmimportant, only few plants having been attacked.

[^200]New Chytridiaceæ.*-Serbinow describes Sporophlyctis rostrata, a new genus and species which grows on the alge Draparnaldia and Chatophora. There is a bladder-like cell provided with a small beak and with a root-like filament, which is often branched. A sporangiam is formed later, inside which the spores germinate and pierce the sporangium-wall. Sexmal reproduction takes place by the fusion of two individuals, the oospore is surrounded by a spinons membrane.

Rhabutium acutum, \dagger also a new member of the Chytridiacea, was found by P. A. Dangeard parasitic on filaments of Spirogyra and Ellogonium. It consists of a short slender tube which projects from the surface of the alga. A dise at or near the base acts as a sucker. The whole plant transforms itself into a zoosporangium, the zoospores numbering about 16. They escape slowly from the extremity of the tube, remain active for a time, then settle down on the host and put out a filament which penetrates the cell-wall, the external part elongates into the tube which in time becomes the sporangium. The writer gave the name Rhabrlium on account of the rod-like appearance of the matare fungus.

Disease of Chestnut Trees. $\ddagger-L$. Mangin contribntes a note as to the cause of a disease that has worked great havoe in the forests of southern France. It is caused by a fungus with extremely fine mycelinm that lives as a parasite on the mycorhiza of the tree and gradually destroys the roots up to the base of the trunk. Usually the hyphie of the parasite are confined to the mycorhiza or to the tissue of the root, it is rarely found free in the soil, but occasionally it attacks rhizomorphal strands not comected with the chestnut, and it is only on these rhizomorphs that the fructification has been found. The mature form of fructification resembles the oospores of a Peronospora, and for this reason the fungus has been classified along with the Oosporea as Mycelophatus C'astanece. A further and more detailed commmication in regard to the disease is promised.

Mucorini.§-L. Matruchot gives a much longer and more detailed account of Cumminghamelle africtona, than has hitherto been poblished. It has morphologieally the form of an Edocephatum, but Matruchot places it among the Mucorini becanse it serves as host to Piptoceplutis, a parasite only on Mucor or Pilobolus.
C. Wehmer $\|$ describes a new species Mucor himatis, the sporangiophores are usually unbranched, the sporangia small and dark ; zygospores were not seen. It grows on hemp.

Study of Absidia. T-Paul Vnillemin passes in review the various known forms of Absidia. The genns is characterised by the regular growth of the stolous which form arches at the summits of which the sporangiophore rises. Absitiut repens deviates from the type in the

* Reprint from the K. St. Petersburg. Naturforscherges., sxx. See also Centralbl. Bakt., x. (1903) pp. 102-3.
\dagger Comptes Rendus, cxxxvi. (1903) pp. 473-4. See also Ann. Myc., i. (1903) pp. 61-4 (1 pl.). \ddagger Comptes Rendus, cxxxvi. (1903) pp, 470-3.
§ Amn. Мус., i. (1903) pp. 45-60 (1 pl .).
|| Tom. cit., pp. 37-41 (7 figs.)
If Comptes Rendus, cxxxvi. (1903) pp. 514-6.
June 17th, 1900°
irregular form of the stolons, and has been therefore placed in a separate genus Tieghemella. Vaillemin supports this view, as he has found another species on the roots of an Orchis still more erratic, which he designates as T'. Orchilis. He proposes a new genns Proctusilitu for Mucor Saccardoi, which has neither stolons nor rhizoids, but which is otherwise closely allied to Absidiu. Mucor corymbifer he places in the same group as type of a new genus Lichtheimiu. Mycoclathe verticillatus also becomes a member of the series, which he resumes thas:-(1) Proabsidia (P. Saccardoi) ; (2) Lichtheimia (L. corymbifera) ; (:3) Mycoclatus (M. verticillatus) ; (t) Tieghemellt (T'. tubia, Orchtidis, repens); (5) Absidia (A. septata, capillata, rettexti).

New Discomycetes.*-P. Hennings describes sereral new Pezizæ found recently in Germany by himself and others. The diagnoses are aceompanied by critical notes.

Disease of Fir Trees. \dagger-H. Mayr has made a thorongh investigation of a disease of fir trees termed Schütte. He proved by infection experiments that it was due to the attack of the parasitic fungrus Lophodermium Pinastri. It is especially harmful to seedling plants. The needles become infected from May to July. A period of inaction sets in, and it does not spread until May of the following year, when spores from the perithecia of the fungus are set free and renew their growth on other hosts, the wind probably aeting as carrier.

Ruhlandiella berolinensis, g. et sp. n. $\ddagger-\mathrm{P}$. Hennings has so named a member of the Rhizinacee, a small globular body surrounded by a palisade-like envelope of asci and paraphyses. The fungus is closely akin to Spherosoma, the spores are very similar. It grew on turf-soil in a conservatory at Berlin.

Disease of the Vine.§-Herm. Müller-Thurgan gives a detailed account of the fungus causing the disease known as red-brand. The mycelium attacks the leaves of the vine, causing burnt-looking patches. So long as the mycelium is purely parasitic on the living leaf, it inhabits the vessels. It invades the neighbouring cells on the death of the tissue, and externally conidiophores of branched hyphe with terminal coridia are formed. The fungus was grown in artificial cultures and sclerotia were produced after considerable time, but no further stage was noted.

The writer then examined the leaves killed by the disease, and found, growing on them, a species of Pseulopezizu. He cultivated the ascospores and produced a similar mycelium to that grown from the mycelium taken from the leaf; finally he produced conidiophores and conidia in the cultures, which corresponded with those that grew on the diseased leaves. The infection of a healthy vine with the ascospores. has not yet been attempted.

The name Pseudopeziza tracheiphila was given to the fungus as in the early stages it is confined to the vessels of the host-plant.

[^201]Müller-Thurgau observed that the disease was most prevalent in light soils where the vines were apt to suffer from want of water. They were consequently feeble and liable to be attacked by the red-brand. He advocates the careful removal or burying of all leaves before the spores of the apothecia are developed. He recommends also an early spraying with Bordeaux mixture.

Disease of Sorbus Aucuparia.*-A. von Jaczerski found a species of Leptospheria causing greyish round spots with a brown margin on the leaves of the mountain ash. He thinks it is probably the ascus form of Septoria Sorbi already described. As the ascus form is new he calls it Leptospluceria Sorbi.

Gooseberry Mildew in Europe. \dagger-E. S. Salmon detected this American pest in Ireland in 1900, the first recorded appearance in Europe. Since then the disease has appeared in numerous fresh localities in Ireland and in two widely-separated districts in Russia. More recently it has been found that the fungus also attacks red currants. It grows on several species of Ribes in the United States. It is a plague much to be dreaded by fruit-growers.

Notes on Erysiphaceæ. \ddagger-J. G. Sanders publishes a note on the variation in the form of the appendages of Podosphera oxyacanther. On an average, about half the number of perithecia he examined were compound appendages, in varying degrees of development.

Xylariæ of South America.s-Karl Starbäck describes the members of this family collected on the first Regnell expedition. He has added a considerable number of new species to the various genera, and has described one new genus Solenoplea with one species microspora. The stroma is marginate, and is closely packed with cylindrical perithecia. The genus is allied to Nummularia.

Study of Heredity. \|-W. W. Lepeschkin has taken up the study of one-celled organisms such as yeasts, to throw light, if possible, on the question as to whether species arise by gradual selection, or by sudden variation. He selected Schizosaccharomyces for experiment, and obtained a seemingly new form of fungus which, had it been formed in nature, would have been placed in Endomyces rather than in Saccharomyces. He discusses at length the growth of the fungus and the theories as to the transmission of characters in its development.

Cytology of Yeast. $1-\mathrm{A}$. Guilliermond reviews previous work on this subject, specially, noting Wager's conclusions that the vacuole in the cell was the nuclens and that the body always associated with it was the nucleolus. The writer finds, as did Wager, the grannlar bodies in the vacuole, but he finds them also in the cytoplasm of the cell. He demonstrates them first of all in a yeast of a Dematium sp., where they are quite separate from the nucleus. Also in Oidium lactis, he finds

[^202]these same bodies which he has termed metachromatic corpuscles. The yeast of Oidium was multi-mucleate. In the true yeasts he describes the stume structures; the small mucleus (Wager's nucleolus), consists of colourless nucleoplasm, a mucleolus, and a surrounding membrane. It is connected with the vacuole, he considers, only because the cell is small and the contents necessarily lie close together. When budding takes place, the racuole passes partly into the new cell and divides, but quite independently of nuclear division. The later takes place as typical amitosis. In some cases the nucleus clongates, penetrates the new cell, and then divides; in other cases it divides withont any perceptible stretching, and one of the two resulting muclei travels into the danghtercell.

In addition to the vacuole with metachromatic corpuscles, he found in the yeast-cells vacnoles filled with glycogen. These were most prominent during active fermentation, almost filling the whole cell. As fermentation declines, the rlycogen tends to disappear, and the corpuscular vacuole takes its place. Wager had already noted this pecnliarity and distinguished them as muclear and glycogen vacuoles. Guilliemond considers that the gramlations are of the same nature as the metachromatic corpuseles of bacteria. A careful account of the methods of preparation, staining, \&c. is given.

In a further commmication, he describes the phenomena accompanying fusion and spore-formation in three species of jeast. He finds in them a true isogamous conjugation which precedes the formation of the ascus and concludes therefore that the ascus is a zygote.

In another paper,* the same writer gives in detail the process of spore-production in Succharomyces Luducigii. Hansen had already noted the peculiar germination of this species by means of a promycelium after fusion of two spores. Guilliermond rerified Hansen's results, and gives an accomst of the formation of the germinating tube or promycelim, and of the previous spore-fusion. In some cases, when growing on carrot, the fused body formed an ascus immediately, containing 4 spores. Usmally the ascus was formed from part of the promycelium. He also was able to observe the fusion of the melei of the two conjugating spores. The writer discusses the systematic position of this yeast and considers that it ought to be separated from Succharomyces and placed under another gemus or sub-gems. The paper is well illustrated by a plate and by mumerous figures in the text.

Formation of Yeast-Spores. \dagger-Chr. Emil Hansen has succeeded in inducing the formation of spores in the yeast-cell without any intervening regetative development or any previons fusion of cells. He grew the yeast Johamisberg II. in a film of water, then in a film of wort. They were again transferred to a solution of calcium sulphate which stopped the process of budding, but not that of spore-formation. After : 3-6 days it was found that the spores had become spore-mothercells, and that spores were formed inside them. 'Two illustrations accompany the paper.

[^203]In a further paper * in the same journal, Hansen disensses the conditions necessary or favourable to the vegetative and spore-development of yeasts and of the monds that take part in alcoholic fermentation. He finds that oxygen is necessary for spore-formation in yeast, though the ordinary yeast-growth can go on in an atmosphere of nitrogen, free from oxygen. Nourishment is not so important as a determining factor : spore-formation as well as budding takes place in rich cultures. Experiments were also carried out on several species of Muror, and the conditions given by which zygospores or sporangia can be produced. There are four illustrations.

Development of Yeast in Sugar Solution without Fermentation. \dagger Iwanowski publishes a reply to A. Richter, and repeats his work on yeast. He finds that the two most important factors in inducing fermentation are the concentration and the composition of the culture solution. The higher the ratio of nitrogenous snbstance the weaker the fermentation, which again becomes stronger with a larger amount of sugar. He gives detailed tables of his experiments and the results obtained. In two succeeding numbers of the journal he continnes the discussion, repeating his experiments. He gives careful tables of the composition, duration, and temperature of his cultures, and affirms again that yeasts can live on sugar almost without alcoholic fermentation in suitable conditions. That is, in a solution of weak concentration. He also proves that the presence of oxygen exerts considerable inflnence on the results obtained.

Industrial Ferments of Eastern Asia. $\ddagger-H$. Neuville has published an accomnt of the varions organisms employed by the Chinese and others in making spirits from rice, \&c. A number of forms of Nucor used in fermentation are described, as also species of Asperyillus, Monilia, and Saccharomyces. The last chapter of the book deals with the substances employed in fermentation.

Asterconium Saccardoi.§-H. and P. Sydow found this new member of the Melanconiæ on leaves of Litsect glancescens from Mexico. Both sides of the leaf bore the cushion-like outgrowths that contained the spores, which are colourless, one-celled, and with conical protuberances that give them a star-like form.

Septoria. $\|-$ MI. C. Potter describes the disease of carnations dne to Septoria Dianthi. The affected parts are of a light straw colour, the tissues shrink, and the leaf often curls longitudinally. On the diseased areas there are small black pyenidia filled with the long colourless spores of the Septoria. The disease was first noticed by the writer in Warwickshire.

An account \mathbb{T} of a severe epidemic caused by the same parasite in Liguria and Provence is given by P. Voglino. He finds that the fungus

[^204]can live saprophytically on the dead leaves and can resist a long period of drying. He recommends pulling and destroying the diseased leaves.
R. Saritz* notes the occurrence of Septoria Spergularice sp. n. on Spergularia rubra in the neighbourhood of Dessau.

Sterigmatocystis pseudonigra. \dagger-Constantin and Lucet have endeavoured by culture and examination to determine the antonomy of this species. They find that the microscopic characters exactly resemble those of S. nigra; but there are slight differences in culture appearance which are constant for the two fungi. The writers are inclined to thiuk that the distinctions merit specific rank.

Nutrition of Sterigmatocystis niger. \ddagger-Henri Coupin has tested the growth of this fungus in Ranlin's solution, eliminating one and another of the elements composing it. Raulin had found that sulphate of zine was advantageous to fungus growth. H. Coupin, with improved methods, concludes that the favourable result was due to the antiseptic nature of zinc, and that in properly sterilised solutions zinc is rather hurtful than otherwise. Iron and silicon are also of no use to the fungus. In a solution deprived of tartaric acid, Ranlin failed to get any growth as the culture was so quickly invaded by bacteria; with proper sterilisation, growth of Steriymatocystis can be obtained in a solntion at first slightly alkaline. It is slow at first, but the mycelium gradually provides its own acidity, and development then proceeds rapidly.

St. John's Disease of Peas.s-This disease is so named because it makes its appearance about the period of St. John's day, towards the end of June. C. van Hall finds that it is a root trouble and caused by the fungus Fusarium rasinfectum, of which this is a new variety. The plants turn yellow and die off, the roots having been invaded by the mycelium of the fungus, the develoment of which is similar to that causing the disease of cotton, watermelon, and cowpea in America. Cnlture and infection experiments leave no doult as to the accuracy of the author's diagnosis. In some districts in Holland the eulture of peas has had to be given up, owing to this disease.

Some plants of Sesamum orientale $\|$ from Turkestan were found by A. von Jaczewski to be attacked by a F'usarium, the development of which was identical with that of F. vasinfectum, and which has occurred on a great variety of plants. Its absolute identity with the disease of cotton cannot be assured until the perithecial stage Neocosmospora has been found. The writer gives figures of mycelium and spores.

Polydesmus exitiosus and Alternaria Brassice. 9 --Pictro Toglino has compared these two fungi by examining both and cultivating both on the same host, namely cauliflower. The only difference noted between

[^205]them is the length of hypha that intervenes between the catenulate spores, and the muriform charater of the spores in Alternaria as compared with the transverse divisions in the spores of Polydesmus. Voglino proves that the distinction breaks down and that the two forms are really one and the same, and ought to be united under the earlier name Alternaria Brassich. He demonstrated also the parasitic nature of the fungus. It causes a troublesome disease on several forms of Brassica.

Schizophyta.

Schizophyceæ.

Floating Properties of certain Phycochromaceæ.*-H. Molisch has examined certain species of this group of alga, notably Aphanizomenon flos-aquec, and comes to the conclusion that the view held by authors as to the nature of the red bodies in many of the cells is not correct. It has been considered by Strodtmann, Klebahn, and others that these bodies are gas-vacuoles, since when they are present the algre float on the surface of the water, and when they are artificially removed the same alge sink to the bottom. The present author gives reasons, founded on his own investigations, to show that these floats (Schucebekörper) are not gas-vacuoles, but seem rather to consist of a more or less viseous substance inclosed in a delicate membrane. If this view be correct, it is easy to explain the result of certain experiments detailed here. The anthor is inelined to believe that the so-called sulphur-grains or gas-vacnoles of Thiothrix tenuis are bodies of the same more or less viscous substance.

Schizomycetes.

Physiology of Spore-formation in Bacteria. \dagger - Matzuschita has made observations on the effect of external conditions upon endogenous spore-formation, especially in anaerobes. The general result obtained Was that to all changes of extemal conditions, such as concentration of medium, temperature and pressure, addition of noxious substanees, spore-formation was more sensitive than growth.

Bacterial Origin of Vegetable Gums. \ddagger-R. Grieg Smith, of Sydney, has been led by his previous work on the gums and slimes produced by bacteria, to investigate other gums which are supposed to be the secretions of higher plants. Gum acacia was investigated. From Acacia binerv'ata a bacterium was separated which in artificial media produced a slime which yielded a gum giving all the reactions of gum acacia. There can thus be no doubt that this gum is of bacterial origin. The bacterium, to which the name B. Acacice was given, is rod-shaped, measures $0 \cdot 5-0 \cdot 6$ by $0 \cdot 5-2 \mu$, is not stained by Grau's method, and has one to many peritrichous flagella. It is aerobie and produces no spores ; it grows at $37^{\circ} \mathrm{C}$., but most slime is produced at $15^{\circ}-22^{\circ} \mathrm{C}$. From Acacia penminervis there were isolated two bacteria, one, B. Acacice,

[^206]the other, a stouter similarly flagellated form to which is given the B. metarabinum. This bacterimm is the producer of the insoluble (metarabin) gums as the other is of the soluble (arabin) gums.

Colourless Bacterium obtaining Carbon from the Air.*-Beijerinck and van Delden, in a very important paper, describe a new bacillus B. cligocarbophitus, which is able to grow in solutions containing only mineral salts. The carbon necessary for its growth is obtained from the air, not from the carbon dioxide, but from a complicated carbon-compound (or compounds) present in the air in small (quantities, the exact nature of which is not clearly miderstood. The existence of a complex carbon-compound in the air was first surgested by Karsten in 1862; of late years this body has been investigated by Henriet, who believes that it also contains nitrogen. The bacillus is widely distributed in the soil, and can easily be obtained by infecting with garden-earth ordinary nutritive salt-solutions (such as are used by botanists for water-cultures), but made alkaline with $\mathrm{K}_{2} \mathrm{HPO}_{4}$ instead of acid with $\mathrm{KH}_{2} \mathrm{PO}_{4}$. The bacteria soon form a thin, snow-white, dry layer upon the surface of the fluid. The nitrogen can be supplied either in the form of potassium nitrite, or an inorganic ammonimm salt. No use can be made either of the free carbon dioxide of the air or of that contained in carbonates in solution. The presence of organic carbon-compounds is inimical to its growth, but, like the nitrifying bacteria it can be grown under suitable conditions on agar and silicic acid (water-glass).

Bacterial Flora of the Nose. \dagger-Hasslaner has investigated the bacterial flora of the mucons membrane of the nose of man in health and disease. Eighty-four persons of varions occupations was examined, and in nearly all cases a large mmber of bacteria was met with both in the healthy and diseased cases, but in no case was the tuberele bacillus found.

Cultivation of Anaerobic Bacteria. \ddagger - A. Weichselbaum gives a short introduction on the gaps in our knowledge of anaerobes, and his assistants, Dr. Anton Gohn and Dr. Milan Sachs give a detailed aceount of the technique employed in studying these forms.

Biology of Anaerobic Bacteria.§-Karl Koninski has made a series of observations on the cultural characters in parallel series of gangrene and œedema bacillus. In some of the experiments these two anaerobes after being infected on the surface of gelatin, where they naturally remained sterile, were made to grow by a later infection with the aerobic Micrococcus camficans.

Effect of Oil on Bacteria.\|-Dr. Kurpjuweit has investigated the capacity of bacteria to live in oil, especially in relation to the use of oil for lubricating eatheters. Ordinary olive oil was investigated and found to contain bacteria but not pathogenic forms. The effect of olive oil upon various pathogenic bacteria was also investigated and it was found that they remained living for some time, up to 10 days, in the oil;

* Centralbl. Bakt., x. (1903) pp. 33-47.
+ Op. cit., xxxiii. (1903) pp. 47-51.
\ddagger Op. cit, xxxii. (1902) pp. 401-13.
§ Tom. cit., pp. 569-73.
\| Op. cit. xxxiii. pp. 157-60.
typhus bacilli and Bacterium coli remaincl living for the longest time. The conclusion is that the oil should be sterilisel and that the catheter should never be placed in oil but some of the latter removed for the purpose ; the catheter should then be sterilised from time to time in the water-bath.

Bacteria in Pus from a Gas-containing Abscess.*-Rodella has investigated the pus from such an abseess and finds besiles a Streptococcus and an organism belonging to the coli group, two anaerobic rod-like forms which are further described, one having the power of gasformation.

Pigment Bacteria of Water. $\dagger-\mathrm{D}$. Fernandez has investigated the bacteria of the water-supply of the town of Buenos Ayres especially in relation to the pigment-bacteria. The water is derived from the Rio de la Plata and is a dark yellow colour owing to the almixture of loamconstituents. The bacterial contents of the water varies between 1050,000 per c.em. before filtration through sand, which reduces the number to $200-2000$ per e.cm. The eharacters of nearly 100 different forms are described, most of them being pigment-bacteria, but names are given to only very few.

Bacterium Pathogenic for House-Rats. \ddagger-Toyama has described a pathogenic bacterium fatal to the ordinary house-rat in Tokio. The organism was isolated, and studied both in artificial cultures and by inoculation. For mice and house-rats it was strongly virulent, but was without effect on guinea-pigs and ordinary rats. It showed a number of resemblances to Loefller's B. typhi murium but did not agree in all particulars; the question as to its leing a distinct species was left undecided.

Passage of Bacteria through Filters.s-Erwin von Esmarch has made some important investigations on the question of the passage of bacteria throngh filters. It has been known for some time that the orgamisms which produce some diseases are so small as to be scarecly visible if at all by the best Microscopes. The virus of poripneumonia of eattle was found ly Nocard and Roux to appear under the highest powers merely as tiny refractive gramules which passed easily through the Berkefeld and Chamberland filters. The foot-and-mouth disease of Loeffler and Frosch, and the disease of tobaceo-leaves described by Beijerinck, and several other animal affections seem to le of this class. Prof. Esmarch has set himself to discover whether similarly minute forms are to be found amongst the saprophytic bacteria. Various pondand diteh-waters, and a large number of infusions of decaying matter were investigated by filtration through the Berkefeld filter. To the filtrate were then added very various nutritive solutions to encourage the growth of any bacteria that might be present. The results were, in all cases but one, negative. They might, however, le explained not by the absence of the minute organisms which were sought for but by the want of suitable conditions of growth.

[^207]In the one case mentioned a tiny comma-like spirillum was found which easily passed the filter even when only $300-400 \mathrm{c} . \mathrm{cm}$. had been drawn through. This minute organism is about the size of the influenzabacilhus, but considerably smaller than the bacillus of monse-septiexmia. In Canada balsam it measured 1-: μ long and $0 \cdot 1-0 \cdot: 3 \mu$ broad; it was a mobile form with a flagellum at one end. To it the name of Spirillum parvum was given.

Experiments were also made on the method by which the bacteria got through the substance of the filter, and miero-photographs are given of thin slices of the filter-substance showing the bacteria in situ.

New Red Pigment-forming Bacillus.*-Petrow describes a bacillus, found by spontaneous infection of gelatin from the air, which has many analogies with Buct. kiliensis, and is accordingly named Bac. subliliensis. The rods are $1-1 \cdot 2 \mu$ long and $0 \cdot s \mu$ thick and have $5-9$ flagella distributed generally over the body. Spore-formation was not observed. The red pigment, which is early produced, is insoluble in water, but soluble in alcohol, ether, chloroform, \&e.

Question of Species in the Bacteria of Leguminous Tubercles. \dagger H. Buhlert has continued his observations on the question of species in this difficult group of bacteria. The later ohservations agree with the former in supporting the view of the existence of species among these forms.

Epidemic of Guinea-pigs caused by a Variety of Bacterium coli. \ddagger Karl Kovárzik deseribes a new epidemic disease of guinea-pigs olserved in Budapest, cansed by a bacillus of the coli-group, but not, however, identical with any of the deseribed rarieties of Buct. coli commune.

Influenza-like Bacillus from a Rat.s-Alfred Trolff, also describes a baeillus, resembling very much the influenza-lacillus, which was isolated from a purulent slimy seeretion observed in the bronchi of a wild rat which had died from the effeets of injection of eholera-toxin.

Influenza-like Bacillus from a Dog.\|-E. Friedherger deseribes an influenza-like and hemoglobinophilous bacterium olitained from the diseased preputial secretion of a dog. The name Bacillus hemoglobinophilus canis is given to it.

Micro-organism infecting small Animals in the Laboratory.TDr. Schwer deseribes a baeterium (Buct. carrisepticum) which for the last three years has caused an epidemic amongst gninea-pigs, rabbits, and white rats kept for laboratory purposes. In strueture and staining reaction the organism resembles bacillus cholerc--yallinarum, but the difference in growth is so great that there is no donbt that it is a distinct form.

Leprous Affection of the Skin and Lymph-glands of Sewer Rats.**-Stefansky has observed in Odessa a new disease of the sewer-

[^208]rats (Mus decumans), producing changes in the skin and lymph-glands like those of leprosy, and having in its histological characters many resemblances to that disease.

New Pathogenic Microbe of the Diphtheria Bacillus Group.*E. Klein describes a new pathogenic bacterium, Batt. muris, which he isolated from the hepaticised lung of the white rat. It is pathogenic for rats and guinea-pigs and in its staining capacity, morphology, and cultural reactions is very nearly related to the Klebs-Loeffler bacillus.

Differentiation of the Diphtheria and Pseudo-Diphtheria Bacillus. \dagger -J. Bronstein and G. W. Grünblatt show how Mankowski's reagent, which was invented for distingnishing the typhus bacillus from the coli bacillus, can also be used for differentiating the diphtheria and pseudodiphtheria bacilli. A few drops of this reagent are added to bonillon cultures of these two forms, when that of Bac. Loefferi becomes red (rubinrot) and that of the psendo-diphtheria bacilli, green.

Rapid Diagnosis of Typhus Bacilli. $\ddagger-G e o r g ~ J o c h m a n n ~ h a s ~ m a d e ~$ experiments with the medimm recommended by Weil for the rapid diagnosis of typhus bacilli and confirms Weil's statement that these bacilli when grown on his medium at $36^{\circ}-37.5^{\circ} \mathrm{C}$. show colonies of characteristic form after only 12 hours. Jochmann finds that thongh such colonies are usually of typhus bacilli, yet sometimes bacilli of the coli-class form similarly shaped colonies. Reliance must therefore not be placed on the appearance alone of the colonies, but the differential diagnostic method must be used for confirmation.

Characters of Meningococcus intracellularis.s - H. Jacger, in a somewhat polemical article, reiterates his views on the cause of epidemic cerebro-spinal meningitis, and casts doubt on the views put forward by Albrecht and Ghon in relation to Diplococcus Weichselbaum.

Pneumococcus which liquefies Gelatin.-A. Kindborg \| describes from a case of croupous pneumonia a pneumococcus, which has the distinguishing peculiarity of liquefying gelatin. It grows easily on all the usual media, and is pathogenic for white mice but not for rabbits. Only two of the numerous forms described under pnenmococcus appear to have this power of liquefying gelatin, namely that described by Kruse and Pansini, and that described by Eyre and Washbourn.

New Bacterium in freshly-drawn Milk. T-F. C. Harrison and M. Cumming describe a new species, Bact. halofaciens, which is of frequent occurrence in fore and after milk. It occurs singly, is motile, and forms no spores; has an optimum temperature 37°; is aerobic and facultative anaerobic; is slow to liquefy gelatin; and white, dirty brown, and finally yellow in colour. It stains evenly with anilin dyes.

It approaches Bact. annulatum Wright, but differs in several details. Its name recalls the characteristic halo found in gelatin cultures. The flavour of butter made from cream ripened with a culture of the new bacterium was not strong but quite disagrecable.

* Centralbl. Bakt., xxxiii. (1903) pp. 488-9.

Paratyphoid Fever.*-Aceording to De Feyfer and Kayser, Sehottmüller obtained eultivations of typical typhoid bacilli in 80 per cent. of cases (numbering 118) diagnosed as typhoid fever ; in seven cases an organism of aberrant type was present. Kurth found a similar organism, which is now known as the paratyphoid bacillus, of which there are two types, A and B. In eultural characteristics both are intermediate between the typhoid bacillus and the Bacillus coli communis. They ferment sugar but do not coagulate milk, and unlike the typhoid bacillus cause fluorescence in neutral-red agar. They do not prodnce indol in broth. A grows less luxuriantly and more slowly on all media than B. Colonies of A are thin, glistening, and almost transparent ; those of B are thicker and whitish. On potato the growth of A is invisible, while B forms a thick grey-brown pellicle, like the colon bacillus. A does not change milk, \bar{B} in the course of weeks renders it limpid. Finally the agglutination reaction is specific for both A and B . The two types therefore differ from each other as much as they do from the typhoid and colon bacillus.

Etiology of Sleeping Sickness. \dagger - Aldo Castellani, a member of the Commission sent to Uganda to investigate this disease, was unable to find any of the germs described by previous workers, but found a new variety of Streptococcus which he considers to be the canse of sleeping sickness. He has grown the miero-organism in nine out of eleven neeropsies. The microscopic appearance is very variable, depending upon the media of cultivation, on the times of growth, \&c., all transitions from long chains to typical diplococei being seen. The form and size of individuals are also variable. Well-defined mueoid capsules are frequently seen about the chains and diplococei-forms, and in hangdrop preparations the short chains and diploeocei-forms show a wellmarked Brownian movement; involution forms oceur in old cultures. It is easily stained with ordinary anilin-dye solutions. Details of cultivation in varions media are given. Experiments on agglntination are not complete, lant results are so far satisfactory. The new variety is distinguished from Streptococcus lanceolatus by the cultivation in gelatin as S. lanceolatus does not grow, or grows only very badly on that medium. From S. pyogenes it is differentiated ly its much more vigorons growth on all media and especially on agar, by the tendency of its colonies to coalesee, and by the non-coagulation of milk. The author thinks it a distinct variety between S. pyogenes and S. lanceolatus.

Mycetozoa.

Lepidoderma. \ddagger - A. F. Morqan describes a species he has found which corresponds with Didymium Geaster. He describes it and classifies it under Lepilloderma.

* Münch. Med. Woch., 1902, pp. 1692 and 1752. See also Med. Rev., 1903 pp. 17-20. \dagger Brit. Med. Journ., 1903, i. pp. 617-8.
\ddagger Journ. Myc., lxp. (1903) pp. 3-4.

MICROSCOPY.

A. Instruments, Accessories, \&c.*
(1) Stands.

Beck's Portable "Star" Microscope. \dagger-This instrument, called Stand No. 43 by the makers, is shown in fig. 54.

Fig. 54.

* This subdivision contains (1) Stands; (2) Eye-pieces and Objectives; (3) Illuminating and other Apparatus; (4) Photomicrography; (5) Microscopical Optics and Manipulation; (6) Miscellaneous.
\dagger Messrs. R. and J. Beck's Catalogue, London, p. 18.

It has rack-and-pinion coarse adjustment, and the fine adjustment is by micrometer-serew. The base is a folding tripod with joint for inelination. It is furnished with draw-tube, donble mirror, and iris diaphragm. The leather or walnot case, in which it is packed, measures only ahont $6 \frac{1}{2}$ by $4 \frac{1}{4}$ by $8 \frac{1}{2}$ in.

Beck's Process Microscope.*-The Microscope illustrated in fig. 55 is specially designed for the examination of "surfaces" in any branch of photo-mechanical work. It is very useful in examining the form of the dots in half-tone work and for watching the process of etching. It may also be used for ascertaining the grain of a collotype or for examining the three-colour work as it comes off the machine. The instrment has a rack-and-pinion movement for foenssing with draw-tube. The illmmination is provided by a jointed condenser, which can be made to

Fig. 55.
move in any direction. The Mieroscope, with its long arm and heary hase, can be used where desired; or it may be serewed to the bench and the plates passed under it.

Beck's Pathological Microscope. \dagger-This is called Stand No. 17 by the makers, and is shown in fig. 56 . The huild is that of the tripod base and pillar model, and is as rigid and well balanced in the horizontal as in the vertical position. The coarse adjustment is by rack-and-pinion. The patent fine adjustment is ly means of a lever actuated by double thread sererrs, which give the two speeds of $\frac{1}{10} \mathrm{in}$. and $\frac{1}{300}$ in. for one complete revolution of the milled head. The fine adjustment is so placed that it can be used withont raising the wrist from the table. The mechanical stage has a 2 -in. motion in the lateral direction and a l-in. in the rertical. It is divided and engraved in $3_{30}^{1} \mathrm{in}$. for purposes of "finding." There is a spiral rack-and-pinion focussing and screw centring substage and a double mirror.

[^209]

Fig. 56.

Beck's Metallurgical Microscopes.*-The great desideratum in a metallurgical Microscope is a sufficient distance of stage from body to

Fig. 57.

* Messrs. R. and J. Beck's Catalogue, London, p. 46.
permit the use of the observing prism and rertical illuminator at the same time. This is especially provided for in Stand No. 1154 (fig. 57), which has coarse and fine adjustments, inclination joint, and stage with mechanical motion in botl directions. Rack-and-pinion adjnstments are provided for raising and lowering the stage. The substage has rack-and-pinion focussing and centring adjustments. The same firm adapt their "Imperial" Microscopes for metallurgy by providing an adjustment for racking down the whole stage a distance of 2 in. 」

Fig. 58.
Bausch and Lomb's Continental Microscope, BB Model.-This instrument, which was exhibited and described by Mr. Ronsselet at the March meeting (see p. 244), is shown in fig. 58.

(3) Illuminating and other Apparatus.

Koristka's Large Reflecting Mirror. *-This adjunct, which is shown in fig. 59, is intended to be used as a heliostat. It is then fixed outside the shutter of a dark room and the plane of the mirror so turned as to reflect the light through the tubular mount into the room. The screw-heads allow the slope of the plane to be corrected, from time to

[^210]time, as required; they are operated from within the room. The size of the mirror is $11 \mathrm{by} 3: 8 \mathrm{~cm}$.

Fig. 59.
New Electrical Microscope Lamp.*-H. Poll’s apparatus (fig. 60) consists of a small electrie incandescent lamp set in the interior of a parabolic hollow mirror. It is of 3 to 7 volts and 4 to 5 candle-power, and is of abont the same size as the lamps used for cystoseopic purposes.

Fig. 60.
It works on the upper end of a pillar s, connected with the foot-plate \mathbf{F} ly means of a hinge. The foot-plate has two binding screws for bring-

[^211]ing the instrmment into cirenit with an electric current obtained from a dry cell or other convenient source. The hollow mirror can be pushed up and down the pillar and clamped by a serew St. When the lampfilament is brought into the focus of the mirror an intensely bright stream of parallel rays is directed ontwards. The lamp can he set immediately under the condenser ; or the Microscope mirror, if irremovable, can be set at a proper angle for receiving the light horizontally and reflecting it vertically uprards. A coloured dise can be set in the condenser if desired. Simple means are provided for regulating to a nicety the lightintensity. A bibliography on electric lamps is appended to the original article.*

Fig. 61.

Engelmann's Microspectral Objective with Detachable Thorp's Grating and Detachable Polariser. \dagger-The invention of the Thorp transparent grating has put a new ageney at the disposal of spectroscope makers. The rulings are abont 14,560 ta an inch, and the intervals are $1 \cdot 7 \mu$. In conseguence of this the perpendienlarly incident principal rays in the first diffraction spectrum are deviated abont 20° for central yellow. The application of such a transparent plane grating in the microspectral objective would have required a corresponding inclination

[^212]of the collimator tube to the projection tube. This inconvenience is aroided by affixing the collodion grating to one of the faces of a glass prism. The glass used is boro-silicate-crown, O 144 of Schott's catalogne, with a refractive angle of $38^{\circ} 56^{\prime}$. The rays proceeding from the collimator tube fall perpendicularly on the hase A B of the rightangled prism A B C, fig. 61, and when refracted through the hypotenuse AC are simultancously dispersed by the grating which is affixed to A C. [The angle BAC is $35^{\circ} 56^{\prime}$.] The red end of the first diffraction

Fig. 62.
spectrum is towards the angle A, and the riolet end towards C. A ray of medium wave-length (of perhaps 0.56μ) passes through underiated. Fig. (i- gives in approximately natural size a sectional view of the apparatus. $S p$ is the entrance slit whose width is regulated by a spindle provided with a left and a right-handed screw, and the graduations on the drum J give the width of the slit in hundredths of a millimeter. C is an achromatic collimator objective of $3: 2 \mathrm{~mm}$. focus and 6 mm . free aperture. Above this is a polariser N of Ahrens' construction, detachable by a lever K , thus allowing the use of the instrument as a spectro-
polariser. R is the prism with its film grating, and G a plane-parallel glass plate for protecting the prism chamber. By means of a lever the

Fig. 63.
prism grating may be moved aside and a film-grating substituted for it. The whole is applied under the stage like a substage condenser.

Fig. 64.
Fig. 63 shows the arrangement of levers for detaching the nicol N , the film-grating S , and the prism-grating R .

Fig. 64 shows the actual instrument full size ; fig. 65, fitted to Zeiss' stand 1^{c}.

F1g. 15.
(4) Photomicrography.

Koristka's Simplified Vertical Camera.*-This design (fig. 66) is due to Professor Rnffini of Siena, and its nature will bee easily muderstood from the figure. A handle at the top, comected with an endless screw, raises the frame with the focussing sereen to a suitable distance. The other end of the bellows is drawn over the ocular and clamped by a screw. The framework can also le nsed for horizontal photomicrography.

Fig. ife.
Apparatus for Photographing with Light incident from above and below. \dagger - F. W. Müller has contrived some changes in the wellknown Zeiss apparatns, in order to le able to photograph the riper and under sides of a solid or transparent object. The general arrangements are shown in figs. 69 and 70 , the former being for upper side and the latter for under side photography. On the rectangmerr tahle which

[^213]carries the optical bench is placed the stand, with the object-stage accurately adjusted in a horizontal position. The olject can now be

Fig. 67.
illuminated from all sides. A right-angled prism, whose reflecting planes are at exactly 45°, is placed, as required, over or under the object.

The bellows and their stand, which are independent of the preceding, are pushed up to the prism, thus giving a coarse adjustment. On this movable bellows the anthor has set the ob-jective-tube ; this is regulated by rack-andpinion and thus a fine adjustment obtained.

The stand (fig. 67) possesses a heary tripor base, the rear foot C of which is rigid, the two front ones S being levelling screws. The pillar is a triangular gnide-bar $S t$ bearing an obliquely-toothed rack on its rear side and centimetre graduations on one of the front sides. At the upper end the bar is simply truncated. The object-stage and prism-holder are easily lifted off the bar over its upper end, both being secured to sleeves worked up and down by pinions engaging with the rackwork. The stage is rotary and can be clamped by screws; it is made of blackened brass and must be pierced by a large aperture to allow of the maximum amount of light being con-

Fiti. 6s.

Fia. 0)
centrated from below. A stage of mirror glass with a lnoad rim cemented on shell-wise can be advantageously used. The ilhminating mirror sp can be nsed on the stage or below it. The prism-carrier $\mathrm{P} t$ can be clamped on the guide-bar and must be set in the optie axis : it terminates in a fork, at whose ends are the bearings for the rotation axis of the prism. The size of the prism depends on that of the front lens of the largest objective used. The hypotenuse plane is silvered to improve the refleetion. The prism is set in a metal momnting, ant its rotation abont its horizontal axis is controlled by the milled head K (fig. 68)

Fig. 70.
and limited by the two stop-serews Arr. When the prism has been accurately set, as in fig. 69, with the reflecting phane at 45° to the horizon, by aid of one of the stop-screws, rotation to the other stop turns it throngh 90° and puts it in the position of fig. 70. The tripod stand is so placed that its feet rest in three prepared spots and is aljusted by means of the two levelling screws. The magnification is estimated in the usual way by means of a magnified glass seale. When the upper surface has been photographed, the stage-holder and prismholder are melamped, lifted off, and replaced in reversed order: the prism is rotated throngh 90° and the under side photographed. For the
luminant, the anthor uses a niekelled iron reffector with incandescent burner and condenser lenses, whose light he uses direet for downward photography, but employs a hollow mirror for upward work. In order to avoid the inconvenience which may arise from halation, the author puts his plates into the dark slide with their glass side towards the objective.

> (5).,Microscopical Optics and Manipulation.

Engelmann's Microspectralphotometer with Grating Spectrum.*H. Siedentopf describes how the Thorp collodion grating has been adapted by Messrs. Zeiss to Engelmann's instrument.

Fig. 71 shows the photometer two-thirts of its natural size. On the frame containing the slit the mper part is secured by the clamp-

[^214]screw H. This upper part consists of a flat semicylindrical box B, and is accurately adjusted to the observation telescope C and scale-tube I. The box contains the Thorp transparent grating. The telescope can by

Fig. 72.
rotation of the screw E be brought orer the spectrum. The four slides G on the telescope ocular serve for the delimitation of a small rectangular field for photometric comparison. The scale-tube can be accurately applied to the spectrum by means of the screw F .

FI. 7\%.

Fig. 72 gives a section through the apparatus. Over the-grating J an obliquely-set small glass plate with parallel plane sides is placed, serving both for protection of the grating as well as for the reflection of the scale image. The screw E operates against the spring L , and F against the spring N. M is the rotatory wave-length scale, which dithe sleeve P pushes into the front focal plane of the projection ocular. The lens Q acts as the collective glass of a Huyghens ocular. The achromatic collimator objective O has a free diameter of 11 mm . and a focal

Fig. 74.
length of 50 mm . The telescope objective S is similar. The telescope ocular T magnifies abont 15 times the real diffraction spectrum transmitted through the telescope objective S.

Fig. 73 shows the entire apparatus ready for use as applied to Zeiss' No. $1^{\text {c }}$ stand.

Koenigsberger's Microphotometer for the Measurement of Light-Absorption.*-In the construction of this instrument J. Koenigsberger

[^215]has arranged a diaphragm with two rectangular openings, of 3 hy 5 mm . cross section, at a distance apart of 1 mm . Above this diaphragm is a calcspar rhomb $2 t \mathrm{~mm}$. high, whose plane-parallel faces make an angle of 55° with the optic axis. The transmitted rass of light undergo double refraction, and therefore form forr images in the Microscope. Since the two slits are near torether, both the central imases partly orerlap. In the real image, made by the telescope oljective this position is stopped out, so that the rest of the light is sereened off. In this position also the image of the one slit due to the ordinary ray coincides with the image of the other slit due to the extraorlinary ray; and the illumination then consists of equal parts of polarised light, if the two openings have received equal illumination. If an absorbing substance be placed before the one opening, then the intensity of the light falling

Fig. 75.
on it naturally becomes weaker than that incident on the other ; and in consequence the portion of light polarised in the one direction exceeds that polarised in the other. This effect is recognisable by the occurrence of certain interference effects which are wanting in unpolarised light. The light from the other slit is now weakened in the usual manner, either by the insertion of a smoked glass wedge or by the rotation of a nicol, applied under the opening, on a divided circle whose vernier reads to minutes. This weakening is contimed until both portions of polarised light again become equal and the interference effects disappear. It is, therefore, clearly on these interference effects that the adaptability of the instrument depends. In homogeneous light this interference brings out with great distinctness the bright and dark bands of a Savart's plate, and for this purpose a small telescope F (fig. 74), adjusted for infinite distance, of sevenfold magnifying power, is used. Between this telescope and the vart's plate S a nicol N_{1} is
inserted in the Microscope-tube. This nicol need not be rotatory as it keeps its place mochanged, and needs be once for all orientated within 1° to 3°, until the bands attain their maximum sharpness. The Savart's plate is inserted over the Microscope objective O, either in the objective itself or in a specially rotary ring, and most le set with hard was in such an orientation that the bands appear in the middle of the field. An achromatic lens of $6-9 \mathrm{~cm}$. focus is used as the Microscope objective. The calcspar parallelopiped K of $3 \cdot 0 \mathrm{em}$. long and $1 \cdot 3$ by $1 \cdot 3 \mathrm{~cm}$. cross section, with plane-parallel faces, is fastened in a tube which is seiewed on to a round brass plate of 6 mm . in thickness. At the lower end of the tube the diaphragm with the two slits is applied. In the brass plate there is a rather long incision E for the insertion and withdrawal of the smoked-glass wedge. The brass plate is fastened on to a larger plate by means of two clamps; and when these are tightened up the calespar and slits can be pushed ahont until they are in the centre of the field. Under the larger plate two grooved lors P (fig. 75) are attached for receiving a frame with the substance to be examined and brought before one of the openings. On the brass foot MI there is a holder T for bearing the divided cirele, reading to 5^{\prime} and carrying a Thompson or a Leppich nicol. The axis of the Microscope can be made perpendicular, within $\frac{1}{6}^{\circ}$, to the calespar crystal planes, either by sloping the Microscope-tube or by adjusting the erystal itself. Ohservations with the wedge are recommended as the most rapid. The wedge is $7 \cdot 1 \mathrm{~cm}$. long and has a thickness tapering from $0 \cdot 35$ to $0 \cdot 1 \mathrm{~cm}$., and on the side of its metal mount is a millimetre scale. Full instrnctions are given for ganging the wedge for making observations. The light-source was usually homogeneons; but sometimes, as in case of crystals, it is required to take measurements along the whole spectrom ; and then a spectral apparatus similar to Wülfing's was employed, and a good Welslach or acetylene light used.

The author, ${ }^{*}$ however, found that a considerable loss of light resulted from the use of the spectrum apparatus, and he has therefore replaced it by an arrangement which resembles an ocular spectroseope without a second slit. Between the analyser and telescope-tule he places a tube with a small upright prism, whose end-planes are inclined at about 45° to the microscopic axis. A second tube is set perpendicularly to the side of the first and contains a lens (focal length $: 3 \mathrm{~cm}$.) and a glass scale, the scale being at the focus, so that scale and spectrum are seen together. He found that the lorightness was then so great that, even with a small incandescent light, he conld measure from $\lambda=0 \cdot 690$ to $\lambda=0 \cdot 4: 0$.

(6) Miscellaneous.

Comparison of British and Metrical Measures at the same Temperature. Computed from the coefficient given in the Report of the Standards Commission, 1871-2, ly E. M. Nelson.

* Op. cit., xxii. (1902) pp. 88-9.

	in.	mm .	in.		ia.	in.	mm .	in.	mm.
1	- 000039	1	-039382	56	$2 \cdot 205394$	1	25.392292	$2{ }^{10}$	1.269615
2	-000079	2	-078764	57	$2 \cdot 244776$	2	$50 \cdot 784584$	21	1-209157
3	-000118	3	-118146	58	$2 \cdot 284158$	3	$76 \cdot 176876$	2 I	$1 \cdot 154195$
4	-000158	4	-157528	59	$2 \cdot 323540$	4	101-569168	2^{1}	1-154145
5	-000197	5	-196910	60	$2 \cdot 362922$	5	$126 \cdot 961460$	$2^{1} 3$	1-104013
6	-000236	6	-236292			6	$152 \cdot 353752$	$\frac{1}{15}$	I•058012
7	-000276	7	$\cdot 275674$	61	$2 \cdot 402304$	8	$177 \cdot 746444$	- 18	$1 \cdot 015692$
8	-000315	8	$\cdot 315056$	62	$2 \cdot 441686$	8	$203 \cdot 188336$	3	-846410
9	-000354	$\begin{array}{r}9 \\ \hline\end{array}$	$\cdot 354438$	63	$2 \cdot 481068$	9	$228 \cdot 530628$	$3{ }^{3}$	-876410
10	-000394	10	-393820	64	$2 \cdot 520450$	10	$253 \cdot 922920$	${ }_{35}^{1}$	-725494
11	-000433			65	$2 \cdot 559832$	11	$279 \cdot 315212$	4^{4}	-634807
12	-000473	11	-433202	66	$2 \cdot 599214$			\pm	564273
13	-000512	12	-472584	67	$2 \cdot 638596$	1 ft .	$304 \cdot 707504$ $914 \cdot 124512$	50	-507846
14	-00055I	13	$\cdot 511966$	68	$2 \cdot 677978$			5	- 461678
15	.000591	14 15	-551348	79	$2 \cdot 717360$ $2 \cdot 756742$	in.	mm .	50 10 60	-423205
16	-0006330	15	- 590730	70	$2 \cdot 756742$	in.	12.696146	60 10 65	- 390651
18	-000709	17	-660495	71	$2 \cdot 796124$	$\frac{1}{3}$	8.464697	7	-362747
19	$\cdot 000748$	18	-708877	72	$2 \cdot 935506$	8 $\frac{3}{3}$	16.928194	7	-335564
20	-000788	19	$\cdot 748259$	73	$2 \cdot 874888$	1	$6 \cdot 348073$	$\frac{1}{80}$	317404
21	-000827	20	787611	74	$2 \cdot 914270$	\%	$19 \cdot 044219$	80	-298733
22	-000866			75	$2 \cdot 953652$	$\frac{4}{4}$	19.044219	15	. 282137
23	-000906	21	- 827023	76	$2 \cdot 993034$	5	$5 \cdot 078458$	${ }^{2}$	282137
24	-000945	22	-866405	77	$3 \cdot 032416$	$\frac{2}{5}$	$10 \cdot 156917$	$\frac{1}{55}$	267287
25	-000985	23	-905787	78	$3 \cdot 071798$	$\frac{8}{5}$	15•235375	${ }^{\frac{1}{0}} \mathbf{0}$	-253923
26	-001024	24	$\cdot 945169$	79	$3 \cdot 111180$	4	$20 \cdot 313834$	¢ ${ }^{1}$	-169282
27	-001063	25	-98455	80	$3 \cdot 150562$	$\frac{4}{5}$	20.313834	190	
28	-001103	26	$1 \cdot 023933$			$\frac{1}{6}$	$4 \cdot 232049$	บง ${ }^{\frac{1}{0}}$	-126961
29	-001142	27	1-063315	81	3.189944	$\frac{5}{6}$	21.160243	250	-101569
30	-001181	28	$1 \cdot 102697$ 1.142079	82	$3 \cdot 299326$	7	$3 \cdot 627470$	310	-084641
31	-001221	29	$1 \cdot 142079$	83	$3 \cdot 268708$	$\frac{1}{8}$	3.174036	$4{ }^{\frac{1}{5} 0}$	-072549
32	-001260	30	$1 \cdot 181461$	84	$3 \cdot 308091$	${ }_{8}$	9•522109	$4{ }^{\frac{1}{0} 0}$	-063481
33	-001300			85	$3 \cdot 347473$			45	-056427
34	-001339	31	1.220843	86	$3 \cdot 386855$	8	22.218055	550	
35	-001378	32	1-260225	87	$3 \cdot 426237$	${ }_{8}$	$22 \cdot 218255$	500	. 046168
36	-001418	33	$1 \cdot 299607$	88	$3 \cdot 465619$	$\frac{1}{8}$	$2 \cdot 821366$	$5 \frac{1}{50}$	-046168
37	-001457	34	$1 \cdot 338989$	89	$3 \cdot 50500 \mathrm{I}$	$\frac{1}{10}$	$2 \cdot 539229$	${ }_{6} \frac{1}{06}$	-042320
38	-001497	35	$1 \cdot 378371$	90	3.544383	10 10 10			-039065
39	-001536	36	$1 \cdot 417753$			10	7.617688	650	
40	$\cdot 001575$	37	$1 \cdot 457135$	91	$3 \cdot 583765$	${ }^{7} 0$	$17 \cdot 774604$	T0]	-036275
41	-001615	38	$1 \cdot 496517$	92	$3 \cdot 623 \mathrm{I} 47$	10	$22 \cdot 853063$	$7 \frac{1}{50}$	033856
42	-001654	39	$1 \cdot 535899$	93	$3 \cdot 662529$	1	$2 \cdot 308390$	g ${ }^{\frac{1}{0} \overline{0}}$	031740
43	-001693	40	$1 \cdot 575281$	94	3.701911	${ }^{12}$	$2 \cdot 116024$	$8 \frac{1}{50}$	-029873
44	-001733			95	3•741293	${ }^{5}$	10.580122	$9 \frac{1}{60}$	-028214
45	.001772	41	$1 \cdot 614663$	96	$3 \cdot 780675$ $3 \cdot 820057$	12	$14 \cdot 812170$	950	. 0266729
46	-001812	42	1-654045	97	$3 \cdot 820057$	12			
47	$\cdot 001851$	43	1-693427	98	$3 \cdot 859439$	$\frac{1}{2} \frac{1}{2}$	$23 \cdot 276267$		
48	-001890	44	$1 \cdot 732809$	99	$3 \cdot 898821$	${ }_{1}^{13}$	$1 \cdot 953253$	in.	μ
49	-001930	45	$1 \cdot 772191$			$1{ }^{1}$	$1 \cdot 813735$	Tovo	$25 \cdot 392292$
50	-001969	46	$1 \cdot 811573$			1			12.696146
60	-002363	47	$1 \cdot 850955$	dm.	in.	15	1-692519	2000	12.690146
70	-002757	48	1.890337	1	3.938203	${ }_{15}^{15}$	1-587018	उठ̃0	$8 \cdot 464097$
80	-003151	49	1.929719	2	$7 \cdot 876406$	15	4•761055		$6 \cdot 348073$
90	-003544	50	$1 \cdot 969101$	3	$11 \cdot 814609$	${ }_{16}{ }^{5}$	7-935091	$5 \frac{1}{5000}$	$5 \cdot 078458$
100	-003938			4	$15 \cdot 752812$	16	$11 \cdot 109127$	600	$\pm \cdot 232049$
200	$\cdot 007876$	51	$2 \cdot 008484$	5	$19 \cdot 691015$	$\underline{16}$	14.283164		$3 \cdot 627470$
300	-011815	52	$2 \cdot 047866$		$23 \cdot 629218$	16	$17 \cdot 457200$		$3 \cdot 174036$
400	$\cdot 015753$	53	$2 \cdot 087248$	7	$27 \cdot 567421$	5	$17 \cdot 457200$	इण00	3.174006 2.821966
600	-019691	54	$2 \cdot 126630$	8	31-505624	$1{ }^{18}$	$20 \cdot 631237$	9000	$2 \cdot 821366$
700	-023629	55	$2 \cdot 166012$		$35 \cdot 443827$	15	$23 \cdot 805274$	10100	2-539229
800	-031506		1 metre	3820		${ }_{17}^{17}$	$1 \cdot 493664$	150 ${ }^{\frac{1}{0} \pi \sigma}$	1-692819
900	-035444		1 metre	$\cdot 281$	6 ft .	18	$1 \cdot 410683$	इणरणनठ	$1 \cdot 269615$
1000	-039382			-0939	45 jd .	$1{ }^{1}$	$1 \cdot 336436$	उठ $\frac{1}{0} 00$	1.015692

B. Technique.*

(1) Collecting Objects, including Culture Processes.

Anaerobic Plate Cultures. \dagger-H. S. Fremlin describes a simple. apparatus for anaerobic plate cultures. It consists of a circular glass chamber 5 in . in diameter and 1 in . in depth-sufficiently large to takethe ordinary 11 cm . Petri dish-prorided with a wide carefully ground rim. The lid of the chamber is flat and gronnd at the periphery where it comes into contact with the rim of the chamber. The ground surfaces which come into contact are well smeared with vaseline to secure perfect sealing of the chamber. The inoculated plate resting in the lid of the second Petri dish is placed in the chamber, and pyrogallic acid and causticsoda solutions are then introduced, as is done in preparing a Buchner's tube anaerobic culture, and the lid secured in position. Chemical and bacteriological tests prove the efficiency of the apparatus.

Ring Test for Indol. $\ddagger-\mathrm{S} . \mathrm{B}$. Grubbs and E. Francis, in utilising the acid nitroso-indol reaction, suggest the employment of the test under certain standard conditions, viz. applying the test to cultivations in fluid media containing 1 p.c. peptone, and grown for 24 hours at $: 37^{\circ} \mathrm{C}$., in the: following manner. About 8 to 10 drops of pure concentrated sulphuric acid are added to $7 \mathrm{c} . \mathrm{cm}$. of the cultivation in a test-tube and the mixture well shaken. Three or four cubic centimetres of a 1 in 1000 sodium nitrite solution are carefully run down the side of the tube so as to form a layer on the surface of the mixture of culture and acid. In the presence of indol a pink ring at the junction of the two fluids should show up sharply and distinctly within a period of one hour-the time limit allowed for contact.

Differentiation of True and False Diphtheria Bacilli.§-J. Bronstein and E. N. Grünblatt, relying on the fact that the Klebs-Loeffler bacillus produces acid quite early in the course of its growth whilst the pseudo-diphtheria bacillus produces alkali, propose to differentiate these two organisms by testing cultivations with Mankowski's reagent. This reagent is prepared by adding a mixture of 2 parts of a 2 p.c. watery solution of indigo-carmin and 1 part of a 10 p.c. solution of acid fuchsin in 1 per cent. caustic soda solution to 22 parts of distilled water. The reagent gives a ruby red colour in the presence of acid, and green in that of alkali. Cultures are made in pepton-broth with half per cent. glucose (titrated at incubation temperature with Mankowski's reagent as the indicator and rendered exactly neutral), and are incubated at the body temperature for twentr-fonr hours, together with uninoculated control tubes. At the end of this time about s drops of Mankowski's reagent are added to each tube with the result that the

[^216]sterile broth is blue, the broth in the tube containing the Klebs-Loeffler baeillus at once assumes a ruby red colour, and that in the tube containing the pseudo-diphtheria bacillus after a few minutes becomes green. After twelve hours' further incubation, however, this last will also give a red colour.

Differentiation of B. coli and B. typhosus.*-R. Zielleczkey, iu differentiating B. coli from B. typhosus, employs the following medium in place of Petruschky's "Lakmusmolke ": ordinary nutrient broth, in which has been dissolved 1 p.c. agar with the addition of 0.1 to 0.5 of a solution of phenolphthalein to every 5 cm . of medium. The phenolphthalein solution is prepared by dissolving 0.5 gram phenolphthalein in a mixture of $50 \mathrm{c} . \mathrm{cm}$. absolute alcohol and $50 \mathrm{c} . \mathrm{cm}$. distilled water, and then diluting the fresh solution to twenty times its volume with distilled water. In this medium the B. coli produces a colour change in from 5 to 8 or 9 hours, whilst the B. typhosus does not produce any change until after about 15 hours.

Anaerobic Cultivations. $\dagger-\mathrm{D}$. Rivas claims to have simplified anaerobic methods of cultivation by the use of media containing sulphindigotate of soda and freshly prepared solution of ammonium sulphide. The author makes his fresh ammonium sulphide solution in a similar manner to that suggested by Hammerl, \ddagger and adds it in the proportion of 5 p.c. to feebly alkaline broth, gelatin, or agar containing 1.5 p.c. pepton and 1 p.c. glucose. Two cubic centimetres of a 10 p.c. solution of sulphindigotate of soda in sterile distilled water are then added to the mediunn per litre. Another medium employed in his experiments was prepared in a similar manner to the above, but $50 \mathrm{c} . \mathrm{em}$. of a 1 p.c. solution of sodium sulphide was substituted for the ammonium sulphide. This, however, did not give quite as good results.

Glass test-tubes, each provided with a constriction at the junction of its middle and lower thirds, somewhat similar to Roux's potato culture tubes, were employed in Rivas' experiments. After filling the medium into the tubes almost to the level of the constrictions and sterilising, the medium was inocnlated and the upper surface of the inoculated medium covered with a layer of sterile oil to prevent access of oxygen to the culture. The author by these means was able to obtain good cultivations of the bacilli of tetanus and of malignant œdema and other obligate anaerobes.

Differentiation of B. typhosus and B. coli.s-Mabel P. Fitzgerald and G. Dreyer contribute a paper of extreme importance in which they describe the results of their experiments to elucidate the character of the so-called coli-reaction observed when the B. coli is grown in media coloured with neutral-red. They find the reaction is a quantitative and not a qualitative one, which can be obtained with Grubler's nentral-red and to a less extent or not at all with other commercial brands. Glucosefree bouillon tinted with neutral-red is a preferable medinm to agar; whilst media having an acid reaction corresponding to more than 0.5 p.c.

[^217]$\mathrm{H}_{2} \mathrm{SO}_{4}$ (phenolphthalein being used as the indicator) retard or even prevent the colour change ; further, that under certain cultural conditions B. typhosus can produce colour reactions similar to those regarded as peculiar to the B. coli. The anthors finally propose as a means of differentiating the B. typhosus from the B. coli, the use of a bouillon containing 3 or 4 p.c. lactose and coloured by the addition of 0.5 p.c. of a 1 p.c. watery solution of neutral red (Grubler). The reaction of this medium does not require to be accurately standardised, although a reaction corresponding to 1 p.c. $\mathrm{H}_{2} \mathrm{SO}_{4}$ appears to give the best results. In such a medium the B. typhosus produces a yellow colour within 4 to 6 days, whilst the B. coli produces a red coloration, and no further change takes place even after the lapse of considerable periods.

Enrichment Method for Typhoid Bacilli.*-The method described by E. Altschüler depends on the specific agglutination reaction. The first step is to incubate the suspected water at 37° for 24 hours in a medium containing 1 p.c. peptone and 0.5 p.c. common salt. Then $10 \mathrm{c} . \mathrm{cm}$. are pipetted into a burette, the lower end of which is fitted with a piece of rubber tubing and a clip. To the 10 c.cm is then added immunised serum, and after about 7 hours the precipitate is passed into another tube which contains pepton-salt solution and a few sand-grains. This second tube, half the size of the former, is fitted at both ends with a piece of rubber tubing and a clamp. After an incubation of 24 hours it will be found that the typhoid germs have much increased in number.

(2) Preparing Objects.

Ether as a Narcotising Medium for Aquatic Animals. $\dagger-\mathrm{Hjahmar}$ Östergren advocates the rirtnes of ether-water for narcotising marine or fresh-water animals. By means of vigorous shaking in a tightly corked bottle, 2 parts of ether to 25 of water (sea or fresh) an almost saturated solution of ether ($7-8$ p.c.) is obtained. This solution can of course be rliluted to any desired extent, and as each kind of animal differs as to its susceptibility for ether it is advisable to begin with low strengths and work up to higher grades. Certain animals should be previously treated with magnesium sulphate or chloride by Tullberg's method. \ddagger Others which are not influenced ly the magnesium salts may be treated with good result by the following device. The animals are placed in a tall vessel containing their natural water. The strong ether mixture is then poured carefully over the surface and the two layers are gradually mixed by stirring the fluids together at longer or shorter intervals. If necessary more strong ether solution may be added or even 95 p.c. alcohol.

Of course the narcotising operations should be carried ont in closed vessels.

Demonstrating the Structure of Gastropods.§-G. Mazzarelli places the living larvex in a test-tube containing some sea water and then

[^218]idds a few drops of 2 p.c. cocain solution. In an hour or so the animals are sufficiently anesthetised to be studied under the Microscope. It is necessary to put a thin piece of glass or metal between the cover-slip and slide to prevent the animals from being crushed.

If it be desired to fix the larvae the best results will be obtained from the use of Rabl's, Eisig's or Mingazzini's fluids. The formula for the last is 2 parts of saturated aqueous solution of sublimate and 1 part of absolute alcohol with the addition of 5 p.c. of glacial acetic acid. Acetic-sublimate (5 p.c. aqueous sublimate with 5 p.c. acetic acid) acts equally well. In these fluids the larva may be left several, even 2.4 hours.

If the preparations turn brown by the action of osmic acid they need not be stained but may at once be dehydrated and then passed through cedar oil (24 hours) to xylol and afterwards mounted in Grubler's neutral balsam.

For staining the preparations both in toto or in sections hæmalum, carmalum, hæmacaleium, Ehrlich's hæmatoxylin, and safranin were used. If they were to be stained on the slide the sections $5-10 \mu$ thick were stuck on with water, but if already stained they were stuck with steam or by Schällibaum's method.

(3) Cutting, including Imbedding and Microtomes.

Fixing and Imbedding Dense Connective Tissue.*-E. Retterer thus formulates the results of his experience:-Avoid too long immersion in alcohol, and too much heat when pieces are impregnated with paraffin. The procedure which he has found invariably to be successful is as follows. The skin is fixed in Flemming's, Zenker's or Branca's fluid, washed in water and then dehydrated in alcohol (90° for 1 hour and absolute for $\frac{1}{2}$ hour). It is then transferred to xylol (20 minutes), and next to a mixture of xylol and paraffin at 36° (30 minutes at 20°). The object is then placed in a test-tube containing paraffin (melting-point 36°) at 40° and submitted to the action of a water pump so as to remove the air. After a quarter of an hour in vacuo the tissue is imbedded in paraffin at 54°. Too great heat is avoided by impregnating with liquid paraffin melted off a solid block placed in a test-tube. This step takes about 10 minutes.

New Methods of Paraffin Imbedding \dagger - V. Pranter finds that ligroin and carbon tetrachloride are very suitable solvent agents for paraffin. Ligroin, which is obtained by fractional distillation of American raw petroleum, dissolves more paraffin (melting-point 54°) at room temperature than chloroform. Carbon tetrachloride dissolves more paraffin than ligroin or chloroform, but less than carbon sulphide ; it is, however, not poisonous or inflammable like the latter. The objects, which have been fixed in alcohol, are placed in thin cedar oil for 12 hours, after which they are transferred to fresh oil for another 12 hours, by which time they are quite transparent.

The pieces are next placed in ligroin or carbon tetrachloride for at

[^219]least 12 hours, then for another 12 hours in a saturated solution of paraffin in ligroin or tetrachloride. These preceding stages are carried out at room temperature. The pieces are now placed in a thermostat at 58° for about half an hour, and then transferred to liquid paraffin (melting-point $54^{\circ}-56^{\circ}$). The last step is repeated, and then after about $: 3$ to not more than 6 hours the preparations are imbedded in paraffin (melting-point $54^{\circ}-56^{\circ}$). The blocks obtained by this method allow very satisfactory seetions to be cut from them, and crumpling is slighter and less frequent than by the ordinary imbedding methods.

Carbon tetrachloride as a Clearing Fluid.*-J. Plečnik points to the inflammability of carbon bisulphide as a great objection to its nse as the clearing medium for tissues that are to be imbedded in paraffin, and also mentions the fact that it causes disintegration of nuclei stained with osmium.

The anthor tried petroleum-ether for the purpose, but found that though better in some respects, it was equally inflammable and did not yield such easily cutting tissues as carbon bisulphide. He therefore advocates the employment of carbon tetrachloride as the clearing medium in such cases, as it is not open to either of the objections urged against carbon bisulphide, nor does it interfere with the easy cutting of thin sections from the imbedded tissues, though the results are not quite so satisfactory as with carbon hisnlphide.

(4) Staining and Injecting.

Differential Stain of B. Diphtheriæ. \dagger - J. W. Peck suggests the substitution of Loeffler's (alkaline) methylen-blue for the acetic acid methylen-blue usually employed in Neisser's differential method. The author states that it is more reliable in swabbings and in cultures, shows the differential staining equally well in recent and in old cultivations, and, moreover, has the adrantage of never staining either the bacillus of Hoffmann or the B. coryzce segmentosus.

Flagella Staining. \ddagger - (\mathbf{t}. de Rossi cleans the cover-glasses with alcohol, then puts them for 10 to 15 mimates in boiling sulphurie acid, washes repeatedly in water, immerses in a mixture of equal parts of alcohol and henzin, wipes them with a elean eloth, and finally flames them 40 to 50 times orer a Bunsen burner. The films should be made from agar cultures 8 to 12 hours old at $: 37^{\circ}$, or 18 hours old at 15° to $\because 0^{\circ}$. Before using a enlture it should be examined in a hanging-drop in order to ascertain if the bacteria are sufficiently motile. If so, then a particle from the enlture is removed by means of a platinum loop, and mixed with a droplet of water on a slide. From the emulsion a loopful is removed to a watch-glass, in which has been placed some 10 to 15 drops of distilled water. After stirring the emulsion and the water up together a little drop is removed on a loop and placed on the centre of a cover-glass. It is not spread out, but is allowed to dry in the air or in an exsiccator. The films are not fixed. For the staining three solutions are required :-(A) consists of 50 grm . pure carbolic

[^220]:acid, 40 grm . of tannic acid, and 1000 grm. of water ; (B) of $2 \cdot 5 \mathrm{grm}$. basic fuehsin, and absolute alcohol $100 \mathrm{c} . \mathrm{cm}$. ; (C) of potassium hydrate 1 grm ., and distilled water 100 grm . Solutions A and B are mixed together and kept in a tightly corked bottle. When reguired for staining, solution C is added drop by drop to the AB mixture until a dusty looking precipitate can be seen at the margin. The fluid is then filtered and 4 or 5 drops of the clear filtrate poured over the prepared film. The staining fluid becomes, after a variable time, iridescent, then turbid, and finally deposits a precipitate. When this last stage occurs the flagella are stained. The preparation is then washed with distilled water and dried with blotting-paper.

Demonstrating Trypanosomata.*-M. Elmassian and E. Migone, when studying the "Mal de Caderas," a disease of South American Equide, used the following solutions :-(A) Hæmatein $0^{\circ} 5$ gr., ammonia alum $\overline{6}$ grm., water $100 \mathrm{c.cm}$. (B) Magenta red 1 grm., absolnte alcohol 10 e.cm., water $100 \mathrm{c.cm}$. The Trypanosoma blood was spread on slides and fixed first in absolute alcohol for 12 hours, and then in ${ }^{5}$ p.c. bichromate of potash for 1 to 8 hours. The films having been - carefully washed in tap water, were stained for a quarter of an hour or more in a mixture of the two solutions ($5 \mathrm{c} . \mathrm{cm}$. of the first and a drop of the second). Sometimes it was found better to use the staining separately and successively instead of simultaneonsly. In this way a better hæmatein effect is attained without overstaining with magenta. The addition of 20 to 30 grm . p.c. to the hæmatein solutions was often an improvement. Stained in this way- the nucleus of Trypano soma is violet, the flagellum dark red, the protoplasm dull red, and the membrane bright red. This method also demonstrates the presence towards the blunt end of a spherical body (micronucleas, centrosome) which is of variable size and is invariably connected with the flagellum or filament.

New Glass Staining-Trough. \dagger-J. Sehaffer describes a glass trough which he has found useful for staining series of sections on slides of the English or Vienna shape. The measurements are 9 by 8 ly 5 cm . The trough is provided with a lid and will accommodate 10 (or 20 placed back to back) slides in the long direction and 12 (or 24) in the short. Except in shape and adaptability to two kinds of slides this apparatus does not differ materially from many other staining troughs.

Method for Staining Bacterial Granules. $\ddagger-M I$. Ficker advises the use of a solution composed of methylen-blue (med. pur. Höchst) and lactic acid 2 p.c., for staining bacterial gramules. A suspension of bacteria in tap-water is placed on a slide and a drop of the solution is run under the cover-glass in the usual way. This may be repeated several times, with an interval of some minutes between the turns.

Staining and Preservation of Serial Sections on Paper Strips.s A. Schoenemamn describes the following procedure which he adopts for

[^221]staining and mounting serial sections. The sections are stnck on strips of non-colourable paper, the ordinary celloidin sections being taken out of 90 p.c. alcohol, while the paraffin and dry celloidin sections are treated as they are. After the strips have been allowed to dry in the air for a quarter of an hour, they are placed in xylol or in a mixture of equal parts of chloroform and 90 p.c. alcohol. After haring been mopped up with filter-paper the strips are immersed in 90 p.c. alcohol. After being pressed again between folds of filter-paper the strips are put in distilled water, and from this to dilute hæmatoxylin solution (hæmalum, Delafield's, \&c.). After a thorough washing the strips aretransferred to eosin-alcohol (90 to 95 p.c. alcohol) from which they are passed through carbolsylol to xylol. The strips may be kept in xylol, paraffin oil, or in cedar oil.

Method for Demonstrating Cartilaginous Micro-Skeletons.*-

 J. W. van Wijhe makes permanent preparations for demonstrating thecartilaginons skeleton of embryos by the following method. The embryo is fixed in 5 p.c. sublimate solution, or 10 p.c. formol, or in Zenker's fluid, and is preserved in alcohol. Before staining, the object. is immersed for a day or two previously in acid-alcohol ($\frac{1}{4}$ p.c. HCl) and this must be renewed if it has turned yellow next day. After the acidalcohol bath, the object is placed for a day, or better for a week, in an alcoholic solution of methylen-blue to which 1 p.c. hydrochloric acid has been added. The blne-stained object is then immersed in acidalcohol, renewed sereral times on the first day and once daily afterwards.. The renewal is continued until the alcohol shows no blue tinge the next day.In about a week the stain has been remored from all the tissnes, except from the fundamental substance of the cartilage. The object is. then dehydrated in absolute alcohol and clarified in xylol. This last procedure is done gradually in order to prevent wrinkling: the first stage. being 2 parts alcohol to 1 of xylol ; the second, 1 part alcohol to 2 of xylol ; and the third, pure sylol. After this the objects are put first in a thin, afterwards in a thick solution of balsam in xylol, and finally in a. solution which at ordinary temperature is solid, but liquid at 60°. In this solution they are kept in a thermostat at 60° for a couple of hours, and are then enclosed in glass cells under a cover-glass. The ordinary glass cells are usually too low, but higher ones are easily made by fixing strips of window-glass on a slide with balsam.

Method for Staining Sputum for Bacteriological Examination. \dagger W. H. Smith describes the following method. Solutions nceded :-anilin-oil-gentian riolet, Gram's iodine, saturated aqueous solution of eosin, Loeffler's alkaline methylen-blue, mixture of 95 p.c. alcohol 4 parts. and ether 6 parts, 95 p.c. alcohol, absolute alcohol, xylol.

The films should be made from fresh sputum to which neither carbolic acid nor corrosive sublimate has been added. The film is fixed in the flame in the usual way. Then drop on some gentian-violet and heat till it raporises ; wash off I.K.I. ; put on more I.K.I. and heat;

[^222]decolorise with 95 p.c. alcohol ; wash in the alcohol-ether mixture, wash with water, stain for a few minutes with cosin, wash off excess with Loeffler's solution. Drop on more methylen-blue solution and heat; decolorise with 95 p.c. alcohol, wash in absolute alcohol, treat with xylol, and mount in balsam.
(5) Mounting, including Slides, Preservative Fluids, \&c.

Strasser. H.-Die Nachbehandlung der Serienschnitte auf Papier-nnterlagen.
(The after-treatment of serial sections on paper-underlays.)
Zeitschr. voiss. Mikr., XIX. (1903) pp. 337-45.

(6) Miscellaneous.

Encyclopædia of Microscopical Technique.*-The recent issue of the Eneyclopedia of Microscopictl, Technique is an event of great importance in the world of microseopical literature. The work appears in two volumes comprising together some 1400 octavo pages, and whilst appealing primarily to the medical microscopist contains much that is interesting and valuable as well as instructive to the technical student and also to the annateur. The Encyclopredia is devoted solely and entirely to descriptions of apparatus and methods, and the articles, numbering several thousands, vary considerably in length-many extending to thirty, fifty, or even more pages-and form masterly treatises in their respective subjects. Many articles are signed, and wherever the importance of the subject demands such additions, a fairly complete bibliography is appended. The printing and paper are good ; the subject headings being printed in larger and blacker type render it an easy matter to find any desired article.

Illustrations are seattered through the pages to the number of about 130 in the two volumes. These form perhaps the only disappointing feature of the Encyclopredia, consisting for the most part of woodeuts of apparatus and diagrams culled from the catalogues of various microscopical instrument makers. Within the pages of this Encyclopædia are to be found minate details of all the various methods of microseopical research, in all its various branches, histology, pathology, zoology, botany, bacteriology, \&c., some of the most important being those on fixation by von Tellyesniczky, injection by Prof. Hoyer, paraffin and paraffin imbedding by Neumayer, serial sections (celloidin) by Helbing, photomicrography by Zoth. The various stains and chemical reagents employed in microscopical work, such as corrosive sublimate, osmic acid, iodine, chromic acid and its salts, are also carefully described and their special applications fully discussed.

Embryology is well catered for, two papers in particular, Embryological Technique and Methods of Experimental Embryology, by Prof. Ballowitz and Dr. Wetzel respectively, being worthy of careful perusal.

Special methods of staining too are very fully and carefully treated,

[^223]notably, silver methods by 1)r. Mosse, gold methods by Prof. Szymonowiez, Golgi's method and its modifications by Prof. Killius.

The methods applicable to various special tissues such as the sense--organs, and especially the nervous system, are very fully described. From even the few articles we have indicated it will be seen that the work under notice is a veritable storchouse of exact information, and forms an invaluable adjunct to the laboratory equipment of the working microscopist; and we feel certain that as such it will be warmly weleomed and heartily appreciated.

Eyre's Bacteriological Technique.*-It is difficult to praise too highly J. W. H. Eyre's Elements of Bacterinlogical Technique. Though it claims only to be a laboratory gride for the medical, dental, and technical student, it is much more than this, and no donbt its practical usefulness will be appreciated by many superintendents of hacteriological and clinical laboratories. The anthor deseribes with unusual - clearness the apparatus, methods, media, \&o. required for the detection and demonstration of microbes in the living and the dead, and in earth, air, and water. These descriptions are aided by numerons illustrations, nearly all of which have been prepared specially for this volume, and about which the author cogently remarks that a good picture possesses a higher educational value and convers a more aecurate impression than a page of print. Besides technique there are chapters dealing with the morphology of the Hyphomycetes and Blastomycetes, and with the anatomr, physiolory, and biochemistry of the Schizomreetes ; while another section gives the outlines for the study of pathogenic bacteria. There is no donht that this work will appeal strongly to medical and dental students, lint it onght also to technical students gencrally, for it contains all the laboratory information and instructions requisite for brewing, dairying, and agriculture. Though the limits of our space prevent us from doing justice to this eminently practical guide, we may express the conviction that it will be highly appreciated and extremely successful.
Krades, R.-Ueber eine neue regulierbare Vorrichtang für den heizbaren Objekt-
tisch. (An appasitus for keeping the water on the not stage at a constant tem-
perature.) Centralbl. Balit., $1^{\text {to }}$ Abt. Orig.. XXXII. (1402) pp. 467-y (1 fig.).
.. .. Ueber einen Apparat zur bakteriologischen Wasserentnahme. (An
apparatus for obtaining water for bacteriological examination.)
Tom. cit., pp . 469-71 (2 figs.).

Metallography, \&c.

Microscopic Appearances of Volcanic Dust. \dagger - T. Andrews, in a lecture given at the University of Cambridge, demonstrated the magnetic properties of voleanic dust and the effect of polarised light thereon. The anthor also described the appearance of the volcanic dust ejected from Mont Soufrière, St. Vincent Island. This dust consisted of mimute particles of varying size, the majority being more or less transparent. "The largest grains seemed mostly to consist of voleanic glass, in which gas was frequently oceluded in internal cavities. The medium-sized

[^224]particles appeared also to consist of rolcanic glass together with felspar crystals, while the small-sized dust was mostly mineral crystals or their disintegrated fragments. Some of the larger particles appeared to be of the nature of a greenish volcanic glass ; there were also crystals or fractured portions of crystals apparently of felspar and quartz. A noticeable feature was the presence of some partially transparent particles of greenish-brown tint which seemed to indicate the presence of olivine, and sometimes brown coloured semitransparent glassy particles were noticed. Many of the transparent crystals manifested a sharpness on their edges, but others were more or less rounded. When viewed with polarised light, the effect on some of the crystalline particles was very fine. In some of the glassy crystals were noticed numerous internal cavities seemingly enclosing volcanic gases. Some of these particles which did not transmit light appeared to be of the nature of the magnetie oxide of iron. The paper is illustrated by eighteen photomicrographs, thirteen of which give the appearances in the dust from Mont Soufriere, four of the dust from Cotopaxi, and one, that of volcanic iron crystals.

Analysis of Steel-Works Materials.*-H. Briarley and F. Ibbotson have produced a valuable work on this subject, and have striven to include only those methods of analysis which have been verificd and tested by the authors themselves or have been done under their supervision. Parts i. -x . (282 pp.) deal with the chemical aspects of analysis, and part xi. with the Micrographic analysis of steel. This latter section, which will naturally be the most interesting part of the book to microscopists, deals with the following details:-Preliminary preparations, Methods of polishing, Etching the specimens, Heat-tinting, Rapid method of preparation, Mounting, Microscopic accessories, Photography. The final division, treating of the Microstructure of steel, is subdivided into pure iron-carbon steels, manganiferous steels, and steel castings. There are about fifty photomicrographs embracing a great variety of types of steels, and a copious bibliography. Part xii. deals with pyrometry, part xiii. with miscellanca. An appendix with a bibliography of steel-works analysis concludes the work.

Certain Properties of the Alloys of the Gold-Silver Series. \dagger W. C. Roberts-Austen and T. K. Rose have found that it is preferable to use only silver as the alloying metal with gold in the manufacture of trial plates. Such an alloy has accordingly been used at the Royal Mint since the beginning of the present year, instead of fine gold, for checks in the assay of standard bars and coins. In view of the minute accuracy with which the operations of coinage have to be conducted, this is a matter of much importance. By this method any errors are avoided which might be caused by accidental variations in weights occurring after the trial plates have been made.

[^225]
PROCEEDINGS OF THE SOCIETY.

meeting

Held on the 15 th of April, 1903 , at 20 Hanover Square, W. Dr. Henry Woodward, F.R.S., President, in the Chair.

The Minutes of the Meeting of the 18 th of Mareh, 1903, were read and confirmed, and were signed by the President.

The List of Donations to the Societr, exclusive of exehanges and reprints, received since the last Meeting, was read, and the thanks of the Society were roted to the donors.

	From
Beck and Andrews, Photographic Lenses, 3rd edition. (32mo, Londos, 1903)	The Authors.
Lafar, Franz, Technical Mycology. Translated by Chas. T. C. Salter. Vol. ii. part i. (8vo, Iondon, 1903)	The Publishers.
Salter. Vol. ii. part i. (8vo, London, 1903) \#\% .̈.)	The Publishers.
Quarterly Journal of the Gerlogical Society, Nos. 1, 4, 6, 8, 10, 13-55. (8vo, London, 1845-1858)	The Society.
An old Microscope by Dollond	Wynne E. Baxter.

Mr. C. F. Rousselet exhibited a series of 22 slides of mounted Rotifers of the genus Brachionus, comprising 16 different species, of which one is as yet undescribed, and four rarieties. He said that 69 species of Brachiomus in all had been described, bot he thought it was probable that about half of these were synonyms or varieties. He then gave some particulars as to the characters and halitats of the specimens. exhibited, and where they came from: England, Germany, Bohemia, Hungary, Syria, Hong Kong, and Aneriea. Incidentally, he also mentioned that the Brachionus rubens exhibited, which is mostly found semi-parasitic on Daphnia pulex, was the true species of Ehrenberg, and different from the species figured under that name in Hudson and Gosse's. monograph.

The President said they were greatly indebted to Mr. Rousselet for arranging this very interesting exhibition, and thought he had done well to confine it to specimens of one genus for the sake of comparison between the different species. They were also further indebted to Messrs. Watson for the loan of the Microscopes for the purposes of this. exhibition. Votes of thanks to Mr. Rousselet and to Messrs. Watson were put from the chair and carried unamimously.

A paper by Mr. F. W. Millett-being the fourteenth of his series "On the Foraminifera of the Malay Arehipelago "-was by consent of the Meeting taken as read, and the thanks of the Society were voted to the Author.

Mr. E. B. Stringer's paper "On a new Method of using the Electric Arc in Photomicrography " was read by Dr. Hebb, and lantern-slides in illustration of the subject were subsequently shown upon the screen.

Votes of thanks to the Author and to the reader of the paper were, upon the motion of the President, unanimously carried.

A communication by Mr. Hamlyn-Harris "On an Apparatus for facilitating the manipulation of Celloidin Sections" was read by Dr. Hebb.

The thanks of the Society were voted to the Author of this communication.

The President reminded the Fellows that in accordance with the notice given at the last Meeting of the Societs, Mr. Fletcher would be very pleased to receive any of the Fellows of the Society on Saturday, April 18, at the Natural History Museum, and to conduct them round the Mineral Department to explain the chief features of the collection under his charge. He was quite sure that those who attended would find that Mr. Fletcher had some very interesting information to give them, and that he had a very pleasant way of imparting it. The party would meet, as on former occasions, at the O wen statue at 2 o'clock p.m.

The following Instruments, Objects, \&c., were exhibited:-

The Society :-An old Microscope by Dollond.
Mr. C. F. Rousselet :-Twenty-two slides of mounted Rotifers of the genus Brachionus :-B. aculeatus sp. n., from Hertford Heath ; B. anqularis ; B. bakeri ; ditto, var. some with very short spines and some without spines, from Hanwell; ditto, var. with very long spines, from Illinois river, America ; B. budupestinensis (Daday) $=B$. punctutus Hempel, from America ; B. cauclutus, from America; B. dorcas, from Kew Gardens; B. falcatus, from Bohemia; L. forficula, from Asia Minor ; B. militaris, from Hong.Kong; B. mollis, from America; B. mielleri, from Great Yarmouth ; B. pula, o and \div; ditto, var. with very long posterior spines ; ditto, very large variety from Norfolk Broads: B. quadratus ; B. rubens, ó and $\%$; ditto, commensal on Daphuit pule.x; B.urceolaris, ठ and \ddagger; B. variabilis, from America ; Schizocerct (Brachionus) diversicornis, from Germany.

MEETING

Held on the 20th of May, 1903, at 20 Hanover Square, W. Dr. Henry Woodward, F.R.S., President, in the Chair.

The Minutes of the Meeting of the 15th of April, 1903, were read and confirmed, and were signed by the President.

Mr J. J. Vezey said that reference had been made to the kindness of Mr. Fletcher in conducting a party of the Fellows of the Society through the Mineral Department of the Natural History Museum, on April 18th, and as one of those who attended on that occasion, he should like to publicly express his indebtedness and that of the Society for the attention shown to them during the two hours which were occupied in taking them round the gallery and pointing ont and explaining thespecimens exhibited. He therefore moved: "That the warmest thanksof the Society be given to Mr. Fletcher for his kindness and courtesy tothe Fellows of the Royal Microscopical Society on the occasion of their visit to the Mineral Department of the Natural History Museum."
\because The motion having been seconded ly Mr. K. J. Marks, was put to the Meeting by the President and carried unanimously.

The List of Donations to the Society, exclusive of exchanges and reprints, received since the last Mecting, was read, and the thanks of the Society given to the donors.

			From
Eyre, J. W. H., The Elements of Bacteriological Technique. $\}$			The Author.
An Early Compound Microscope)	Mr. E. Mr. Nelson.
An Old Microscope by Carey	-	

Special attention was called to the work on Bacteriological Technique by Dr. Eyre, one of the assistant editors of the Society's Journal ; also to the two old Microscopes, one of which was an instrument by Carey, and the other an extremely old specimen of a compound Microscope with the mirror attached to the limb, of which a description by Mr. E. M. Nelson was read to the Meeting.

Mr. C. L. Curties exhibited and described a new Monochromatic Light Apparatus, which was a modification of that suggested by Dr. Spitta and exhibited by him at the Meeting of the Society in November 1902.

It consisted of an optical bench upon which were mounted an electric lamp of the Nernst pattern, an aplanatic bull's eye condenser with centring adjustments, an adjustable slit, an achromatic collimating lens, a prism upon which was monuted one of Thorp's replica gratings, and
an achromatie projection lens; the whole being fitted upon a mahogany base capable of being tilted.

The usual heating coil of the Nernst lamp had been remored and the filament was heated by the temporary application of the flame of a spirit-lamp, the carrier of the electric lamp being so arranged that the spirit-lamp could be applied when required, and the opening closed when necessary. The lamp was also fitted with centring screws to enable the filament to be brought into the optic axis. The whole of the optical bench could be readily mored by means of a tangent screw, enabling any part of the spectrum to be brought into the field of the Microscope.

In setting up the apparatus it had been found most convenient to bring the adjustable slit and the electric light into the optic asis of the Microscope by viewing the images of these through the substage condenser, the prism, \&c. could then be put into position, and by focussing the light by means of the aplanatic bull's ere a brilliant beam could be directed upon the slit. It had also been of adrantage to have a small slit a few inches from the substage, as a sharp image of the spectrmm could then be projected on to this. The diatoms shown by this method' of illumination under a high-power apochromatic objective exhibited the markings with exceptional sharpness of definition, which elicited high commendation from those who examined them.

The thanks of the Society were roted to Mr. Curties for his exhibit and explanation.

Messrs. W. Watson \& Sons exhibited a new form of Museum Microscope fitted inside a locked glass ease through which the eye-piece tube projects. The circular stage contains 12 objects and can be rotated from the outside of case.

A projecting milled lead provides the 'means of focussing, the arrangement of the latter leing such that all danger to object or objective hy an unskilled observer is aroided.

The instrument is intended for use with low powers-and a polariscope attachment can also be fitted.

Messrs. Watson also exhibited a simple form of Stand Condenser of long focus, furnished with an iris diaphragm, also adjustments to the horizontal and vertical morements.

The President thought that the small Microscope for museum use, exhibited by Messrs. Watson \& Sons, was an extremely useful arrangement for the purpose, resembling a similar form of instrument which had been adopted at the Smithsonian Museum at Washington. The olject of this contricance was to enable even children to see microscopic objects without handling them, and he thought if it was introdnced to the notice of the directors of museums here it would be sure to "take on." There was at the Natural History Musemm an arrangement by which certain Foraminifera could be seen magnified by a lens, but this was so placed as to be in a rather uncomfortable position to look through, and certainly in no way comparable for convenience with the one now before them, by which a dozen objects could be viewed in succession. Of course there was a great difference betreen the conditions at the Washington Musenm, where perhaps only a few dozen people passed through in the
course of a day, and those at Sonth Kensington, where sometimes several hundreds of Board School children passed through the galleries on a Bank holiday, bringing their luncheons with them and smearing the glass cases with sticky fingers. The desirability of some kind of protection for a Microscope under those circumstances would be obvious.

The thanks of the Society were given to Messrs. Watson \& Sons for sending these instruments for exhibition.

The President called attention to the very fine exhibition of living objects shown under Microscopes in the room by Members of the Quekett Club and Fellows of the Society, to whom their best thanks were due.

The following Objects, Instruments, \&c., were exhibited :-

The Society :-An early Compound Microscope, with mirror attached to the limb; and an old Microscope, supposed to be by Carey, presented by Mr. Nelson.

Mr. C. Baker :-New Monochromatic Light Apparatus, and Naviculu rhomboides under monochromatic light.

Messrs. Watson \& Sons :-Two Museum Microscopes; Bull's-eye n denser, with iris diaphragm and centring adjustments.
Mr. J. W. Chapman :-Triphylus lacustris.
Mr. Alfred W. Dennis :-Conochitus volvox.
Mr. G. P. Dineen :-Daphnia.
Mr. T. D. Ersser :-Hylla vulgaris.
Mr. A. J. French :-Eurycercus lumellatus.
Mr. Alfred E. Hilton :- Stentor miger.
Mr. E. Hinton:-Cristatella mucelo.
Mr. J. T. Holder :-Gammarus puler.
Mr. K. J. Marks :-Brachionus pulu, Dinocharis porcellum, Proales parasita, Bhinops vitrea, Symucheta pectinatu, S. tremulu.

Mr. W. J. Marshall :-Corethra plumicomis, larva.
Mr. Max Poser :-Melicerta rinyens.
Mr. T. H. Powell :-l'oleox globator.
Mr. J. Rheinberg :-Stephanoceros eichhorni.
Mr. G. H. J. Rogers :-Lophopus crystallinu.
Mr. C. F. Rousselet :-Cristatéllu mucelo, roung ; Conochilus rolvor, Hydatina senta, Notops brachionus, Rhianps ritrea.

Mr. D. J. Scourfield :-Eurytemora lucinulutu of is, a rare fresh-water copepod.

Mr. C. J. H. Sidwell :-Eurytemoru lacinuluta, male right antenna, showing roughened processes on the thickened joints, used as sexual clasping organ; and showing also sense-hairs.

Mr. C. D. Soar :-Sperchon glamdulosus, new to Britain.
Mr. J. H. A. Verinder :-Stephanoceros eichhorni.
Messrs. W. Watson \& Sons :-Lucimularia socialis.
Mr. Chas. West :-istephanoceros eichhormi.

ROYAL MICROSCOPICAL SOCIETY.

$$
\text { AUGUST } 190: .
$$

> VI.-The Helmholtz Theory of the Microseope.

Abstract

See Pogg. Ann., 1874, Jubelband, p. 569. Helmholtz' Wissenschaftliche Abhanitlungen, vol. ii. p. 185. Proceedings of the Bristol Naturalists' Society, N.S. vol. i. part 3. Monthly Microscopical Journal, N.S. vol. xvi. p. 15. See als; Appendix, Note iv.

By J. W. Gordon.
(Read March 18th, 1903.)
Plate Vi.
Helmholtz' paper bears the title, 'The Theoretical Limits of Resolving Power in the Microscope,' and is directed to the formal conclusion that a certain defined magnitude forms the necessary and impassable limit of resolving power in the Microscope or in any other optical instrument. But it will, I think, be found that the merit of the paper lies not in this formal result, which is, in fact, not successfully established, but in the line of investigation which Helmholtz here strikes out, and without following it to its practical issues, pursues far enough to present his readers with a surfeit of interesting and valuable suggestions. These suggestions are, many of them, so obscure and conveyed by such subtle hints that they may well escape attention, and apparently they have escaped attention to the present time. It will be my endeavour this evening to bring the Helmholtz method of investigation to your notice, and to divest it of its somewhat repulsive mathematical garb in order that it may be rendered by translation into physical terms more presentable in general society. I shall also ask leave to apply the results of this investigation to certain practical matters connected with the construction and use of the Microscope,
thus evolving what may fairly be called the Helmholtz theory of the instrument.

Stated very roughly, the Helmholtz method of investigation may be described as the use of wave-fronts as instruments of research. It rests on this assumption, almost a self-evident proposition, that any instrument which is capable of giving a regular image of any surface whatever must be capable of giving a similar image of any wave-front which can be made to coincide with that surface, and pass through the instrument. The ordinary geometrical method of investigation deals with separate rays and radiant points only. It results, as we all know to our cost, in the most intricate mathematics before we have proceeded far along any line of research. Helmholtz substitutes for these elements the elementary notion of radiant surfaces which move backwards and forwards through the instrument, and by noting what happens at various points to these travelling surfaces, he investigates the relations of various parts of the instrument to one another. The conception of the travelling radiant surface may perhaps seem a little unfamiliar, but it is fully warranted by the mdulatory theory of light, and, in fact, produces the most enormous simplification in the discussion of many problems of optics.

The radiant surfaces with which we are here concerned, are not only wave-fronts. A wave-front is defined to be a surface disturbed by wave-motion in such wise that all parts of the surface move in unison, that is to say, that all parts of the surface exhibit the same phase of the unduation at any one and the same instant of time. It may be described briefly as an uniphasal surface. This is, in fact, strikingly unlike the front of an advancing wave, as we see ic in the ocean, for example. Such a front-of-r-wave is a surface in which a complete half-series of undulation-phases is to be discovered. At its foot in the trough of the wave the water is m a state of momentary rest in its lowest position; as we climb the front we find the water getting gradually into a swinging motion, swinging upward, and at a point half-way up the front of the wave this upward motion of the water is at its fastest. From that point to the crest, the rising motion grows less and less rapid, and when the crest is reached the upward movement is exhausted and the water comes momentarily to rest in its topmost position. Now, this is not a "wave-front" in the technical sense of the term, for it is a polyphasal surface, whereas a wave-front is by definition uniphasal. But with such polyphasal surfaces, the theory of resolution in the Microscope is much concerned, for whereas uniphasal surfaces, or wave-fronts, give rise to the direct, or, as they are termed, the dioptric beams in an optical instrument, the diffracted beams arise from polyphasal surfaces and therefore the law of their refraction is of equal importance with the law of the refraction of uniphasal surfaces. The diagram fig. 76 will
illustrate this point. Here, we have the path of a train of plane wave-fronts indicated by thirteen sections denoting successive phases of three complete undulations. The phases of rest are denoted by the section lines t (trough) and c (crest) respectively.

Fig. 76.
The intermediate positions of most rapid motion upward and downward are denoted by section lines shown with arrow-heads, and a wavy curve at the top of the diagram indicates for a particular instant of time the simultaneous displacement of a series of particles forced by the wave motion away from their normal position on the zero-line $o \ldots o$.

Now, suppose that by some refracting contrivance we force the plane wave-fronts when they reach a certain plane A to assume a spherical form with a radius of curvature equal to the distance A F. Then F will become the focus of the beam of light, and if we assume a single particle of tangible matter to be set in motion at that point by the luminiferous oscillations, it is obvious that the index particle will be kept in a state of rhythmic movement as long as the beam of light continues to flow, that is to say, as long as the light shines through the aperture A A. And the movement will not only be rhythmic, it will be violent in proportion to the area of the wave-fronts that pass the aperture, for since these wave-fronts condense upon the particle and impart the whole of the energy which they individually carry in a single blow, the amount of the energy so imparted must be exactly proportional to the area of the wave-front which carries it. When the wavefront and the aperture coincide, the disturbance of the particles will be proportional to the area of the aperture itself.

Now consider the case of the polyphasal surface drawn upon the diagram from the top of section 9 to the foot of section 13. A train of such polyphasal surfaces may be drawn, as is indicated in the diagram, but the successive members of the series cannot of course be dis-tinguished-like the wave-fronts-at any moment by their relative phase values, for all phases may be found at every instant in every one, excepting only the mutilated members of the series. It is clear that these polyphasal surfaces or fronts will be propagated forward in precisely the same way as if they were wave-fronts. For every point in any one of these slanting surfaces is also a point
upon one of the plane wave-fronts. Now, it is a fundamental assumption upon which the undulatory theory of light rests, that every point upon a wave-front radiates light in all directions, as if it were itself a primary source of light. Therefore, the fact that any such point radiates light along the zero axis is proof that it must also radiate light along the inclined axis now in question. If then we have light coming off from every point of this polyphase surface parallel to an axis, at right angles to the surface itself, we may infer that that light will be propagated undiminished in that direction, for between rays of light that move in parallel paths shere can be no interference. We shall therefore have plane polyphase fronts passing the aperture A A', just as plane wave-fronts pass the aperture A A, refracted by similar appliances to the focal point F^{\prime}, and producing there upon another index particle a disturbance proportioned to-proportioned to what? Not now proportioned to the area of the polyphasal front that passes the aperture, for the various phases of any given front, when they are made by focussing coincident in space and time, will not reinforce one another. On the contrary, the impulse which started from the point of intersection shown in the diagram with the plane wavefront 12 will be exactly equal and opposite to the impulse which started from the point which the same polyphase front had in common with the wave-front 10. Therefore, these two impulses will cancel one another. It is thus evident that there are ineffective elements in these polyphase fronts, and that their light-yielding power can only be estimated by making the necessary deduction on this account. In the case of the particular series of fronts now in question, it will be at once apparent that the necessary deduction leaves nothing over. For just as the two points 10 and 12 paired off and cancelled one another, every other point will have its pair also. Take for example any point adjacent to 10 and call it 10a. There must be another point similarly situated with regard to 12 , which we may call $12 a$, that will become in the focus the pair and equivalent of $10 a$, cancelling its effect. Thus the algebraical sum of all the impulses received from any one of these series of polyphase fronts will be $\Sigma=0$, a fact which is indicated on the diagram by showing the convergent beam and focus in full black.

It will be useful to pursue this line of investigation a step farther, but more convenient to use another diagram than to accumulate more details upon fig. 76 . Fig. 77 reproduces the essential parts for this purpose of fig. 76 and will be understood without further description.

Here we have to consider first, the polyphasal surface ϕ_{3} which contains not only one complete set of phases as does ϕ_{2}, but also one half-set over, that is to say, it contains three half-sets of undulation phases. It is clear, therefore, that as in the case last discussed,
one of these half-sets will cancel the second, and the three halfsets taken together will have no more effective radiating surface than one of them would if it stood alone. Now, any one of them occupies only one-third of the aperture, so that the light which gets through and survives can only be compared with the light given off

Fig. 77.
from one-third part of the aperture if occupied by an uniphasal front or plane wave-front. This may be expressed by saying that the aperture valuc of the polyphase front ϕ_{3} is only one-third full aperture value. But to say so would be to exaggerate, for it will be observed that the effective area is not uniphasal. On the contrary, it contains one complete lalf-set of phases, which are of course to some extent discordant, although not entirely destructive of one another's impulses like the paired points of the two cancelled thirds. The numerical evaluation of the deduction from focal brightness which ought to be made on this account, will not concern us in the present paper. The conclusion necessary for present purposes is sufficiently indicated in the diagram where two-thirds of the convergent beam are shown in full black and the remaining third in subdued white. It is evident that the lightcarrying power of this series of polyphase fronts is greatly diminished.

A word will suffice to dispose of ϕ_{4}. This surface carries four half-sets of undulation phases, and from what has been already said it is plain that they will mutually cancel one another. It therefore focusses in full shadow as shown, a fact which we may express by saying that its aperture value $=0$.

In the foregoing diagrams a method of representing the effects of diffraction has been worked out, which will make the following diagram (fig. 78) intelligible without verbal description. Assuming the wave-length indicated in the diagram to represent $\frac{\overline{50} 0 \overline{0} 0}{}$ in., the aperture shown would have a diameter of $\frac{101}{30000}$ in., and the various polyphase fronts ϕ_{1}, ϕ_{2}, \&c. would lie at the angles shown. It will be noticed that even with an aperture so small as this the aperture value of the diffracted beams, even of the successive maximum beams, becomes inconsiderably small before the diffraction angle has reached any great magnitude. Thus the maximum
polyphase front ϕ_{3} which stands at an angle a little less than 45° to the plane wave-fronts, has according to the diagram an aperture value not exceeding $\frac{1}{80000}$ in., and this value, if allowance be made for the want of unison in its phases, would have to be reduced to little more than one-half this figure.* Thus the light diffracted along this axis from this aper-

Fig. 78.: ture does not exceed in intensity what would be carried by an undiffracted beam through an aperture having a diameter of $\frac{125000}{2} \mathrm{in}$.

It is worth while to make a small digression at this point in order to observe that we could not increase the intensity of the light diffracted along this axis by lengthening the vertical diameter of the aperture. We should thereby increase the number of phases on the polyphase front and the area of the front itself in the same proportion; but as we should reduce its aperture value at least in the same ratio there could be no resulting increase in the intensity of the radiation along this particular axis. In like manner, if we reduced the diameter of the aperture we should not necessarily thereby diminish the amount of the light diffracted along the axis in question. We should diminish the number of phases, but as these cancel one another in pairs the removal of every successive complete set of phases from the radiant surface will cause no change in the illumi-

Fig. 79. nation at the focal point. This illumination can only be affected to the extent to which it may be increased or diminished by the removal of a half-set, quarter-set, threequarter set or other incomplete set of phases, and the change will be greatest when exactly one half-set of phases is removed. Then the light will fall from maximum to zero, or rise from zero to maximum, or pass from an intermediate degree of intensity to its complementary degree of intensity, as the case may be. But however the aperture value of the aperture may vary it can only vary between the limits of equivalence to one halfset of phases and zero. This fact affords us a simple rule for determining the maximum amount of light that can be radiated by diffraction along any particular axis. Suppose that we cut down the aperture as shown in fig. 79, until the polyphase front ϕ_{n} crossing the plane wave-front at an angle θ_{n} extends, as shown, exactly from wave-front 10 to wave-front 12 . Then the polyphase front will contain one half-set of phases and therefore have a

* The fraction is exactly $\frac{\ddot{2}}{\pi}$.
maximum value. However much the surface be extended it cannot radiate along the axis $a \ldots a$ any greater quantity of light than passes through the small aperture A. . A.

It is evident that this maximum aperture-or rather maximum aperture value-stands in some definite relation to the length of a wave of light, and without elaborating the mathematics of it in this place it will be interesting to note down one or two instances of the maximum amount of visible radiation which can be diffracted off at one or two selected angles from a beam of parallel light. We will assume green light from the most luminous part of the spectrum having the wave-length $\lambda=\frac{0^{2}}{10000} \mathrm{in}$. Then the utmost amount of light that can be so diffracted off from such a beam-whatever its aperture-at 45° would pass through a chink rather less than $\frac{1}{100000}$ in. in diameter and in length equal to the breadth of the aperture, and even the light so passing would not be uniphasal. The quantity of light which an aperture of this breadth, and of any ordinary dimensions as to length, can transmit, must be quite inconsiderable, and for ordinary purposes not distinguishable from zero or absolute darkness.

Of course an angle of 45° is a large angle: suppose we take a small one, say an angle of 1° equal to (say) a rise of a foot in 20 yards. The maximum aperture value of light diffracted along this axis calculated in the same way will be a little less than $\frac{{ }^{4}-0^{-}}{}$in. Again, for ordinary purposes we may treat the light that can pass through a chink less than $\frac{1}{2000}$ in. in breadth as being the equivalent of darkness or full shadow, and we thus see incidentally how it is that the undulatory theory of light explains the propagation of shadows along what are visibly straight lines. But we also see what is even more important for our present purpose, namely, how the amount of light diffracted along any given axis can be increased and rendered visible. To this point we may now proceed.

Suppose that our aperture is a square aperture having a diameter of $\frac{1}{4} \mathrm{in}$., and that it transmits a beam of parallel light. We know now that the aperture value of that beam of light along an axis inclined only 1° to its own axis will be less than half of ${ }^{1}{ }^{1} 00 \mathrm{O}$ in. Therefore, leaving out of account a small correction and treating the aperture as equal to its own projection on the polyphase front which is inclined to it at this small angle of 1°, we may say that this $\frac{1}{4}-\mathrm{in}$. aperture contains upwards of 500 zones each of which is capable of radiating as much light as the full aperture itself in this direction. Suppose then that we divide up its face into 500 facets each $\frac{1}{2000}$ in. in breadth. Suppose furthermore that we block up alternate facets, say the facets which contain what at a given instant might be identified as the negative half series of phases. Then the facets that are left will shine without hindrance along our 1° axis, and if we bring their
light to a focus we shall at the focal point have an image of the source of light 250 times as bright as the image which could be obtained in that position from the full aperture. It is not only at this point that the grating brightens up the diffraction pattern of the full aperture. Take, for example, the axis along which each of the open facets would transmit three half-sets of phases, two positive half-sets, say, and one negative. Then the blockedout facets will suppress the alternate triplets containing each two negative half-sets and one positive. Thus, along this axis the positive half sets will be in the proportion of $2: 1$ as compared with the negative half-sets, and there being 250 of them added together at the new focal point they will make up a conspicuons image in the shadow of the full aperture.

It is, however, to be noted that the increase of light within the geometrical shadow of the aperture is paid for by a diminution of light within its optical projection. For the blocking-out of half the facets formed upon the face of the aperture will have pro tanto diminished the directly transmitted light and so reduced the brightness at the geometrical focus by one-half. In like manner the diffracted beams, which being diffracted at very small angles come to focus very near to the geometrical focus, will suffer each in its own proportion; in fact every beam which has a maximums aperture value greater than the dianeter of the full aperture will be reduced in brightness by the placing of a diffraction grating across it. The other beams, having a less aperture value than this, will be brightened or darkened or left unaffected as the case may be, according to the numerical relation between their aperture values and the aperture values of the transparent zones in the grating.

This, in outline, is the theory of diffraction and the diffraction grating. I have troubled you with it thus at length because it is of essential importance that it should be in your minds when you proceed to the discussion of the Helmholtz theory. But it will, of course, be understood that Helmholtz himself does not develop the theory of diffraction in his paper. On the contrary, he takes it all for granted, and writes as abstrusely about it as the most hardened mathematician. He does not even pause to prove that polyphase fronts, as we have seen, are propagated, refracted, focussed, and reflected precisely like wave-fronts. These things are clear enough to the mathematician who is certain that a particular formula accurately expresses a particular phenomenon. But to readers with more turn for the physics than for the mathematics of the explanation, the proof is grateful or even necessary.

So far we have considered only the law of diffraction from plane wave-fronts, but in the Microscope and all other imageproducing instruments we have to deal with spherical wave-fronts, and the law of diffraction as applied to them becomes of paramount
importance. This problem Helmholtz attacks, and his solution of it constitutes, as I venture to think, the real merit and the very great merit of his paper. Yet the law disclosed by him appears to be still unknown to those whose business it is to explain these things, and you will look in vain in the text-books for any exposition of the fundamentally important propositions in which he embodies it. Of the practical importance of the conclusions which Helmholtz reached you will this evening have the opportunity of judging for yourselves.

In order to lay the foumdation for his theory, Helmholz commences by giving two proofs of what is now known in optics as "the sine condition." He first formulates it thus, subsequently modifying the formula by substituting the sine of the divergence angle for the divergence angle itself. As it stands here the proposition is due to Lagrange; as modified by substituting the sine for the angle it is due to Helmholtz.*
"The product of the divergence angle of a given ray, the

Fig. So.
refractive index of the medium in which it lies and the magnitude of the image formed in that medium in which it comes to focus remains constant in a centred system of spherical refracting or reflecting surfaces after any number of refractions or reflections, provided that the conditions of correct image-formation are satisfied."
"It follows that this function has the same value when the ray has left the system as before its entry into the system."

This is rather a formidable enunciation of a law which may be very simply expressed in symbols and easily understood by the aid of the diagram fig. 80 .

Here we have four successive images formed one from another

[^226]the first, second and fourth in air, the third in glass. If we write $\beta_{1} \beta_{2} \beta_{3}$ and β_{4} for the diameters of the several images, $u_{1} u_{2} u_{3}$, and u_{4} for the divergence angles of the image-forming beams, and n_{1} $n_{2} n_{3}$ and n_{4} for the refractive indices of the media in which they are severally formed, we may write Helmholtz' proposition symbolically thus:
\[

$$
\begin{gathered}
n_{1} \sin u_{1} \beta_{1}=n_{2} \sin u_{2} \beta_{2}=n_{3} \sin u_{3} \beta_{3} \\
=n_{4} \text { siu } u_{4} \beta_{4}=\text { \&c. ad infinitum. }
\end{gathered}
$$
\]

It will of course be understood that the divergence angle u is the angle formed with the optical axis by the ray which touches the edge of the aperture.

Of this proposition Helmholtz gives, as I have said, two proofs. The first is borrowed from and credited to Lagrange. Helmholtz accompanies his reproduction of it with a criticism pointing out that

Fig. 81.
it is imperfect, inasmuch as it applies only to divergence angles* of infinitesimally small magnitudes.

Helmholtz therefore, with handsome acknowledgments to Lagrange, propounds a new and very elegant proof of his own.

Divested of its mathematical expression and thrown into the form of an imaginary experiment, Helmholtz' proof may be explained as follows.

Let ϵ in the diagram (fig. 81) be a board on which are mounted a number-any number-of electric lamps arranged in squares, quincunx, or otherwise, so as to secure their even distribution over the surface of the board. At A let there be a circular aperture filled by a lens, and let η be another board fitted with a number of

[^227]mirrors so disposed that a mirror receives and throws back through the aperture the light transmitted by the aperture from every one of the lamps. Then the mirror-board will be the perfect and radiant image of the lamp-board.

It is plain that the amount of light received by each mirror will be conditioned by two things: (1) the brightness of its lamp; and (2) the size of the aperture.

Assume that all the lamps burn with the same brightness, and let this factor be denoted by J. Then $\mathrm{J} \times$ area of the aperture will give us the measure that we want of the light radiated in unit time by any one lamp to its mirror, and back by the mirror to its lamp.

If now the refractive system yields a perfectly correct image in the mirror board η of the lamp-board ϵ, every lamp must send this same quantity of light * to its mirror, and every mirror must stand at a distance on the mirror-board from the central mirror, proportionate to the distance of its conjugate lamp from the central lamp. Thus, the lamps being by hypothesis equidistant from one another, the mirrors must be equidistant also, and the common distance of the mirrors from one another will have the same proportion to the common distance of the lamps apart that the diameter of the mirror-board has to the diameter of the lamp-board. It will simplify description if we assume that the lamp-board is entirely filled with lamps that fit close to one another like cells in a honeycomb, and that the mirror-board is similarly filled with mirrors receiving and reflecting each the light of a single lamp. Then we shall know the relative dimensions of the object ϵ and of its image η if we can ascertain the relative sizes of one of the lamps and one of the mirrors.

The determination of this proportion will become very simple if we replace the mirror by a lamp which shall be exactly equivalent to it in the power of radiating light through the aperture, for then we shall have a source of light that can be directly compared with the original source of light on the lampboard. Let it be assumed, then, that the central mirror on the mirror-board is replaced by a lamp so selected, that, seen from the aperture, the lamp shall be indistinguishable from the mirror. It must then burn at the same temperature as the other lamps reflected in the neighbouring mirrors, or it would be distinguishable from them by superior-or as the case might be by inferiorbrightness. It must be of the same size as the apparent size of the reflected lamps or it would not fit into its own place. But

[^228]these requirements satisfied, it is obvious that the new lamp will fulfil the condition of radiating through the given aperture the required quantity of light in unit time.

But, unlike the mirror, the lamp will radiate light not only through the aperture but also in every other direction, and the radiation which passes the aperture will be only a fraction of its whole output. If we calculate its whole output of light and compare it with the whole output of its object lamp, we shall have the means of determining their relative radiating surfaces, for we know that both are burning at the same temperature, and therefore giving off the same amount of light in unit time from unit

Fig. 82.
surface. This comparison will be facilitated by the diagram fig. 82 in which the two lamps are represented by two very small radiant globes lying on the optical axis, and the aperture is represented by the circle in which two spheres intersect that are described round the two lamps respectively.

Now, it is clear that the new lamp η, if it is to send through the aperture AA as much light as the old lamp ϵ sends, must produce more total light, for it wastes a larger proportion of what it produces, and this waste is represented by the whole remaining area of the sphere having a radius r_{η} after allowing for the aperture, whereas the lamp ϵ only wastes the smaller quantity represented by the surplus of the smaller sphere upon the radius
r_{ϵ}. The total light produced by η in unit time must therefore stand to the total light similarly produced by ϵ in the ratio $\frac{r_{\eta}^{2}}{r_{\epsilon}^{2}}$ From this we infer at once that the radiating surfaces of the two lamps must bear the same proportion to one another, and if the lamps be, as here shown, radiant spheres, their diameters will be as $r_{\epsilon}: r_{\eta}$ simply. We may therefore write

$$
\begin{equation*}
\frac{r_{n}}{r_{\epsilon}}=\mathrm{M}, \tag{1}
\end{equation*}
$$

the magnifying power of this system, since we have already seen that the proportion is the same in fig. 81 between the lamp-board and its image as between these conjugate lamps.

We have tacitly assumed in this demonstration that both lamps are burning in the same luminiferous medium. This is of course no longer necessarily the case when we substitute focussed images for lamps, since a focussed image may be formed in any transparent medium. We must then consider what difference it would make to the foregoing proof if we were to assume a more sluggish medium behind the aperture than in front of it, say glass with a refractive index of 1.5 behind and air in front.

The problem so presented is not a difficult problem except in the sense that it is usually discussed with the most unpleasant array of mathematical symbols. Helmholtz does not himself discuss it, but assumes the result reached by Kirchhoff, and more commonly connected with the name of Clausius.* It is very easily investigated by the help of analogies, of which many familiar examples present themselves to the mind. Perhaps nothing can be more familiar than the common eight-day clock-not a superior article provided with dead-beat escapement, but one in which there is a strong reaction between the scape wheel and the pallets. There we have an example of energy consumed in producing oscillatory movements, and it is familiar knowledge that the capacity of the weight to impart energy to the pendulum, depends in part upon the mass of the weight, and in part also on the mobility of the pendulum. Increase the weight and you will quicken the beat of the clock, although the clock-maker has done his ineffectual best to make the period of the pendulum independent of the driving power. Shorten the pendulum, so rendering it more mobile, and you may, if you shorten it enough, enable the driving power to discharge its eight days' supply of energy through that very active pendulum in eight minutes.

[^229]The same thing holds in all cases of the development of energy in the form of oscillation. A mobile medium will take more energy from a given source of power in a given time than a sluggish medium and more energy can be imparted to a sluggish medium from a ligh potential source of power than from one of low potential. Hence we should expect that if a focus of lightdischarging energy is found to maintain a certain rate of output in a sluggish medium, it will necessarily discharge from a higher potential, than if it were discharging at the same rate in a more mobile medium.

Bearing this principle in mind, we may take up again the problem of the focus formed in glass. It will be simplest to imagine this as a minute sphere radiating light in every direction. Suppose that it radiates for some small unit of time-a 650 th part of a millionth of a second for example-during which time it will have filled a sphere 2 feet in diameter; and imagine further, that at that radius the glass medium is

Fig. 83. bounded and that the expanding wave-fronts pass without refraction into a vacuum. When the foremost wave-front reaches this boundary surface, let the glow be extinguished. Then $\frac{1}{650 \times 10^{6}}$ of a second later all the light will have escaped from the glass globe and will be occupying a spherical shell around it, as is indicated in fig. 83.

Furthermore let it be assumed that at the surface which the foremost wave-front has now reached, there is a spherical mirror with internal reflecting surface on which the centrifugal light impinges and by which it is reflected back. Lastly, assume that somewhere in the shell of the mirror there is a hole through which we can look in and examine its interior.

If now there were no dissipation of light in other forms of energy the wave-fronts set up in this enclosed space by that momentary glow would go on rebounding from the surface and crossing the centre indefinitely and finally we should have two sets of standing wave-fronts established as in a Lippmann film. The one set would cling to the surface of the mirror, and the other set would cluster about the centre. These being stationary and permanent could be seen, and it would soon occur to an observer that every one of these standing wave-fronts was an image of the illuminated part of the mirror. Opposite the hole in the mirror would be a dark image of the hole on the opposite side of the mirror, and there would be two corresponding dark spots in all
the standing wave-fronts, correctly imaging in shape and dimensions those two gaps in the surface of the mirror. The images which would be found clinging round the inner surface of the mirror need not detain our attention, but it concerns us to note that the glass globe is exactly half filled with the central images, of which the largest therefore is 6 in . in diameter, and the rest are gradually smaller in size, having intervals of half a wavelength between them. Fig. 83 illustrates this state of things.

Next suppose the glass globe to be taken out, but the apparatus to be used otherwise in the same way as before. We shall now have the same number of images as in the first case, and they will be arranged on the same plan, that is to say, with one set clinging to the surface of the mirror, and the other set clustered at the centre. The set clinging to the mirror is exactly the same as before, but the

Fig. 84. set clustered at the centre is now a set of larger images than the first. For every one encloses the next inner one at a distance of half a wave-length in vacuo and, therefore, the largest is now not 6 in . in diameter, but $6 \times 1^{\cdot} 5$ $=9$ in. Similarly with all the rest. Every image of the series is larger than the corresponding member of the series formed in glass in the ratio $n=1.5$ in this case.

These images have been formed in a very special way, and it is perhaps not obvious that the same law of relative magnitudes would apply to images not of an aperture, but formed by an aperture of an object lying outside it. It should then be observed that these standing wave-fronts, although manifestly images of the mirror, are images of the focus also, and really formed by the ordinary and only method of image-formation, that is to say, by the interference of crossing and coincident wave-fronts. The distances at which repetitions of these interference. phenomena can occur depend manifestly on the wave-length in the medium in which they occur, and if the distance apart of successive images is proportional to the wave-length, the magnitude of the smallest and of every image in the series must be proportional to the same magnitude, for the radius of the smallest and of every other image, is only its distance from the zero point of the scale. It follows that the law which determines the relative magnitudes of these images must equally apply to all images which are formed by the interference of wave-fronts by regular projection through an optical
centre. The law therefore derived from this example is perfectly general, and if β_{v} be the diameter of an image formed in a vacuum and β_{g} be the diameter of the corresponding image formed in glass, we shall have the numerical relation between them expressed by the equation

$$
\begin{equation*}
\frac{\beta_{v}}{\beta_{g}}=n_{g} . \tag{2}
\end{equation*}
$$

Recurring now to equation (1) above (p. 393) we may give to it a more general form. As it stands it applies only to the case in which both the conjugate images are formed in the same medium. If we now consider the general case in which in front of the aperture we have a medium in which the wave-length is λ_{ϵ} and behind it one in which it is λ_{η} we shall have for the magnifying power.

$$
\begin{equation*}
\mathrm{M}=\frac{\lambda_{\eta} r_{\eta}}{\lambda_{\epsilon} r_{\epsilon}} \cdot * \tag{3}
\end{equation*}
$$

This is Helmholtz' first result, but he expresses it somewhat differently. For the purpose that he has in view it is convenient to express the magnitude r in terms of the divergence angle u. A glance at fig. 82 (p. 392) will show that $r=\frac{\mathrm{A} \ldots \mathrm{A}}{2} \times \frac{1}{\sin u}$. Therefore equation 3 may be written

$$
\begin{align*}
& \mathrm{M}=\frac{\beta_{\eta}}{\beta_{\epsilon}}=\frac{\lambda_{\eta} \sin u_{\epsilon}}{\lambda_{\epsilon} \sin u_{\eta}}=\frac{n_{\epsilon} \sin u_{\epsilon}}{n_{\eta} \sin u} . \\
\therefore & n_{\epsilon} \sin u_{\epsilon} \beta_{\epsilon}=n_{\eta} \sin u_{\eta} \beta_{\eta} . \tag{4}
\end{align*}
$$

which is the form that the equation takes in Helmholtz' paper. In this expression $n_{\epsilon} \sin u_{\epsilon}$ is what is now known as the numerical aperture of the objective, and $n_{\eta} \sin u_{\eta}$ the numerical aperture of the image formed in the instrument, or as the case may be, in the observer's eye.

It would probably simplify the understanding of the significance of numerical aperture by microscopists who do not happen to be also mathematicians if they were told that the sine relation or numerical aperture law amounts only to the very familiar proposition that the magnifying power of a lens varies inversely as its

[^230]$$
\mathrm{M}=\frac{n_{\epsilon} r_{\eta}}{n_{\eta} \tau_{\epsilon}} .
$$
focal length—subject to two provisos: (1) That focal lengths shall be measured in time, that is to say, taken to be proportional to the optical path; and (2) That if the image be formed in a medium where the wave-length is short its diameter is to be shortened in the same proportion as the wave-length.

Having obtained this equation (4), Helmholtz proceeds to apply it in various ways to the examination of the Microscope. And first he proposes by its aid a system of rating objectives by what he calls Normal Magnifying Power. Normal magnifying power, for which Helmholtz proposes the symbol N_{0}-may I presume 10 suggest $\mathrm{M}_{0}-$-may be explained thus:-

Fig. 85.
Let u_{ϵ} be the divergence angle of the wave-front which enters the objective from the stage of the Microscope, and u_{η} be the divergence angle of that which focusses in the observer's eye. Then $\frac{\beta_{\eta}}{\beta_{\epsilon}}=\frac{n_{\epsilon} \sin u_{\epsilon}}{n_{\eta} \sin u_{\eta}}=M$, the magnifying power of the instrument. In place of the actual eye Helmholtz proposes a conventional eye, to be taken as a standard of comparison. This conventional eye would have a pupil 3 mm . in diameter and a focal length, in ar , and measured of course from the edge of the pupil, of 250 mm ; therefore its N.A. is $\frac{1 \cdot 5}{250}=0 \cdot 006$. It will of course be recognisell that this is not even an approximation to the numerical aperture of ${ }^{{ }^{\circ}}$ the actual human eye, which has a focal length of less than one inch, and focusses in a medium having about the refractive index of water. But any standard, if adopted, would serve almost as well as any other for the making of comparisons between different objectives, and on Helmholtz' plan an objective of N.A. $=0.006$ would have a normal magnifying power $\mathrm{M}_{0}=1$. Accordingly a lens with N.A. $=1$ will have a N.M.P. $=\frac{1}{0 \cdot 006}=166^{\circ} 7$, and so on.

In a simple Microscope, say, for example, a pair of spectacles, the N.A. of the lens must le obtained by dividing 1.5 mm ., the semidiameter of the pupil of the eye, by the fucal length of the lens,

Aug. 19th, 1903
for between the diameter of the lens and its N.A. in use there is, generally speaking, no relation whatever. Fig. 86 illustrates this point.

Fig. 86.
Here the limiting aperture of the system is the diameter of the iris, and it is the function of the glass to deliver a beam of plane wave-fronts, i.e. a parallel beam of light, to the eye. Absolutely parallel it need not be, for the eye has a certain power of accommodation enabling it to supplement the work of the Microscopeor other lens-to a small extent. But it is just because the incident beam is divergent beyond the power of easy accommodation that recourse is had to the use of spectacles.

Let it be next supposed that in place of a pair of spectacles used to look directly at the ultimate object we have the eye-lens. of a Microscope, and view through it the image formed by an objective in the image plane of the instrument. Then we have a compound Microscope, and the magnifying power no longer depends. upon the focal length of the eye-lens or upon its N.A. as determined by the aperture of the pupil, but upon this multiplied by the magnifying power of the objective which produces the enlarged image in the image-plane of the instrument. It may seem at first sight as if this were in no way limited by the diameter of the pupil, but the following diagram makes it plain that the limitation still holds.

Fig. 87.
It will appear from this without discussion that the optical projection of the iris upon the principal plane of the objective is the effective working aperture of the instrument, whatever may be the aperture with which it is credited in the maker's catalogue,
and that all that marginal angle which sheds light outside the aperture of the eye is at best only so much lost opportunity in the use of the instrument.

Brightness of the Image.

It is in this connection that Helmholtz makes his first point of practical importance. He points out that all this lost light contributes nothing to the brightness of the image seen in the instrument. It is therefore possible to use an eye-piece of higher power without diminishing the apparent brightness of the image until a magnifying power is reached equal to the N.M.P. of the instrument. Fig. 88 illustrates this point. Here we have a given objective backed by three different eye-pieces, called No. 1, No. 2, and No. 3 respectively. No. 1 has a low magnifying power, proportional to the focal length r_{1}, and gives an emergent beam larger than the

Fig. 88.
pupil of the eye. The excess is simply thrown away, and in the eye we have an image conditioned, as to scale, by the low angle subtended by the semi-diameter of the pupil and, as to brightness, by the area of that part of the beam which passes into the eye. Eye-piece No. 2 yields a better result. Its magnifying power is greater in the proportion $\frac{r_{1}}{r_{2}}$, and the eye gets the benefit of its full N.A. But its image, although larger than that produced by No. 1, is just as bright, for it sends a beam of superior brightness into the eye, since its beam conveys all the light coming through the optical centre into the eye, and the light thrown away by objective No. 1, but utilised by No. 2, is manifestly exactly proportioned to the increased scale of the image. Thus the larger image is equally bright-a clear gain.

The eye-piece No. 3 has still higher magnifying power in the proportion $\frac{r_{2}}{r_{3}}$, but its use cuts down the aperture of the eye itself
as is obvious from the diagram. It throws into the eye the same quantity of light only as eye-piece No. 2, and as it produces a larger image, the brightness of that image must suffer in proportion.

We now see that N.M.P. represents a definite limit in the capabilities of an objective. For magnifications less than M_{0} the lens gives images of full brightness. But beyond this point the brightness of the magnified image begins to fall off. The total light is still the same in amount, but the light collected on a given point of the super-amplified image is only a fraction of that which comes from its object-point. And the fraction rapidly comes to be a very small one. The diagram shows that it is proportioned as area of pupil to area of emergent beam, that is to say, as $\left(\frac{M_{8}}{\bar{M}_{0}}\right)^{2}$ if M_{8} be written for the degree of magnification of the super-amplified image. In this sense, therefore, N.M.P. is the point at which the image begins to deteriorate.

Entoptic and Oenler Shadows.

The next point is again a matter of practical importance connected with this diminution in diameter of the beam received by the eye which accompanies high magnifying power. Helmholtz points out that when these beams become very narrow, we have precisely the conditions which cause shadows of objects within the eye to be thrown with sharp definition upon the retina and so to blend with and impair the visible image. This is explained by Helmholtz in a passage which I will take the liberty of quoting textually. After describing the Ramsden circle of the Microscope, (see fig. 89 below), he says :-
"Here, however, we meet with other difficulties arising from the very small divergence angle of the emergent beam, as is shown in the case of great amplification by equation (12).*
"First there are the shadows in the eye, of entoptic objects which crowd more and more into the field of view in proportion as the above-mentioned ocular image of the objective becomes smaller. This image is the source of illumination to the retina; all the light which enters the eye comes from it. It is at the same time the base of the complete beam containing all the pencils of light which connect the several points of the object with their retinal images, and its diameter diminishes as is above shown, for high magnifications, in proportion as the magnification increases. But the known condition which must be fulfilled in order to produce strong sharp shadows of entoptic objects is precisely this, that the intromitted light should reach the eye from a very small surface. Anyone

[^231]who has ever attempted to brighten up the field of a Microscope under excessive magnifications by recourse to sunlight will know the peculiarly spotty appearance of the field which is so produced. Some of the spots remain fast in the field of the instrument, others move about with the eye. The first-mentioned take their rise in spots and imperfections of polish upon the ocular, the last in the cornea, lens and vitreous humour of the eye. This treatment has long been known as a method of seeing entoptic objects and is in fact very useful. But upon the whole, as the entoptic objects become more visible, the delicate microscopic details become more indistinct."

Diffraction Phenomena.

A third point of practical consequence is that these very narrow parallel beams give rise to strong diffraction phenomena, thereby causing the light of one point to spread over the image of another, impairing its definition. This is, in Helmholtz' view,

Fig. 89.
the most important cause of faulty resolution in the Microscope. His language is, "There is, in fact, a cause operative in the compound Microscope which, under the given conditions, occasions much more pronounced aberrations of the rays from their foci than chromatic and spherical aberration cause and which is most influential when the beam is narrow angled. That cause is the diffraction of light." Accordingly, his paper, although it treats incidentally of these other matters, is directed, as to its main object, to an inquiry into the effects which are traceable to this cause. Helmholtz prefaces his formal statement of the law by a description of what is known as the Ramsden circle, and as this is now a familiar object to microscopists, it may be sufficient here to refer to this part of his paper in a very few words.

The preceding figure (89) shows diagrammatically the course of two beams-one axial and the other oblique-through a compound Microscope. Both, after focussing in the image plane, spread out in divergent beams and fall upon the eye-lens by which they are brought into the condition of parallel beams of light fit to convey to the eye a picture of the object on the stage. In the plane behind the eye-lens which coincides with its principal focal plane, these beams of parallel light from the instrumental image blend with one another, and all such beams from all points of the image plane here pass through the optical projection of the axial beam. They thus form a very brightly illuminated field which is, in fact, a focussed image of the principal plane of the objective, and can be seen as an external object by drawing the head back to a suitable distance behind the instrument and looking along its optical axis. In like manner it can be seen by a magnifying lens and measured by a micrometer, or a dynamometer, as the astronomers call a micrometer adapted to this purpose.*

Now, Helmholtz' solution of the problem of diffraction in the Microscope is this. Treat the Ramsden circle as if it were a hole in a card or diaphragm and the inage in the focal plane of the instrument as if it were an object of the same size as the image situated in the focal plane of the instrument. Then the loss of resolution due to diffraction will be exactly the same as if that supposed object were actually viewed through that supposed aperture. You will, I imagine, agree that this is a most charmingly simple solution of a most formidable problem and that the proof of it must be worth following up even at some cost of mental labour. But in truth the mental labour involved is not serious, so elegant is the proof, and when I took the liberty in the opening part of this paper of summarising the theory of diffraction, I dealt with what is by far the most difficult part of the whole inquiry.

The Proof of Helmholtz' Proposition.

Coming now to the proof of this proposition. It is at once obvious that diffraction to this extent at least must be a disturbing influence in the final image which is pictured upon the retina. For these beams of light must give off diffracted beams and the diffracted light so given off must enter the eye and be focussed by it in the same way as the principal beams themselves. To this extent, therefore, the proposition must be true and the object seen must be at least as badly resolved as if it were viewed through a narrow aperture having the diameter of the Ramsden circle. The

[^232]question really is, Will it not be more impaired by diffraction? What about diffraction that starts in the objective? What about diffraction that starts from the stage itself? What about diffraction that starts from various points along the beam in its course from the source of light to the observer's retina?

It will strike you probably that to a certain extent these questions answer one another and themselves. Take the last for example and in a simplified form put it with reference to a converging beam of light which focusses to a point as shown in fig. 90 . Observation shows that we obtain visibly the same dif-

Fig. 90.
fraction pattern whether we limit the beam by the large aperture A_{1}, or by the smaller aperture A_{2}, or by the still lesser A_{3}, provided the one is the optical projection of the others along the course of the heam. The distance from η to η_{1} is the same however far away the diaphragm may be, provided it always subtends the same angle at the focal point η.

The geometry of this relation is somewhat intricate and involves too much elaboration to be developed here. Helmholtz turns the difficulty very neatly by tracing the course of a diffracted beam through an optical instrument. The following diagram (fig. 91) will illustrate his argument.

Assume an object point at ϵ radiating light through the aperture A... A, which light is focussed by the refracting system B at η. No assumption need be made about this refracting system except that it is aplanatic and produces in the image plane $\eta \ldots \eta_{1}$ a correct image of the object in the object plane $\epsilon \ldots \epsilon_{1}$. Then, in the aperture a diffracted beam will take its rise, which, being refracted as an oblique pencil, will be brought to focus at, let us
say, the point η_{1}. That being the position of affairs, assume now that the glow at ϵ is extinguished and that the point η begins to glow in its turn, under the following conditions. It is to give out light exactly like that which it received, that is to say, identical in colour, attuned in phase and proportioned in intensity, so that the emitted light would upon the surface of the point η, and, therefore, at every surface along the optical system, balance and neutralise the light received from ϵ. I will, with your permission, call this supposed beam of light which thus reacts to and cancels the original-I will call it the reverted beam. It is not a reflected beam because the individual rays are supposed to travel back along the same paths by which they came, not along paths inclined to the optical axis at equal and opposite angles, and the several wavefronts do not carry on the original order of phases, they reverse it,

Fig. 91.
and therefore they cancel the arriving wave-fronts at all points of the path and not only at periodic distances of half a wavelength.

Consider now what will happen when the reverted beam reenters the aperture. There being no radiation from the whilom object-point ϵ to quench the reverted beam, it will fill the aperture and the region round about it with wave-fronts exactly like the original wave-fronts in intensity, phase, frequency and form, but travelling in the opposite direction. These wave-fronts will, of course, give rise to diffracted wave-fronts at the aperture; and although the diffracted beams of light will now be propagated towards the object plane instead of being propagated away from it, we can estimate their direction and magnitude by the aid of the original observation. For the diffraction in this case must be equal and opposite to the original diffraction.

The Melmholtz Theory of the Microscope. By.J. W. Gordon. 405
Let us then take the point η_{1} as an example and assume the diffracted beam which focusses there to be reverted through the instrument. Upon its arrival at the aperture A. . . A it will reinforce and exactly double the liffracted beam, which starts at that aperture from the principal reverted beam, and, therefore, we can ascertain the position of the diffracted image ϵ_{1} by working back to the point in the object-plane which is conjugate to the point η_{1} in the image-plane.

So far we have assumed an arbitrary position for the point η_{1} in the image-plane, but with the help of this result we can proceed to determine it by calculation. For, if it is the image of the point ϵ_{1}, its position is determined thereby. Now, the position of ϵ_{1} is

Fig. 92.
evidently determinable without any reference to the refracting system B, for all the conditions upon which it depends are ascertainable the instant that the aperture is passed by the outgoing beam of light from ϵ. Suppose then that instead of the refracting system B and the image-plane $\eta \ldots \eta_{1}$ we make use behind the aperture of a spherical mirror b, as shown in fig. 92, having its centre of curvature at ϵ. Such a mirror will reflect the principal beam to ϵ, and the diffracted beam not quite accurately to ϵ_{1}. If we assume that for the first purpose it is to take the form of b symmetrical with reference to the optical axis of the principal beam, and for the second purpose the form of c symmetrical to the axis of the diffracted beam, we shall have the position of ϵ_{1} perfectly defined. Then the point η_{1} must be conjugate to this point in the optical system represented in fig. 91.

The Law of Diffraction for Focussed Light.

We thus see that the course of diffracted light through an optical instrument can be traced and the focal points of diffracted beams can be found without any detailed consideration of the refractive systems employed and so we can arrive at the important generalisation that the diffraction pattern produced by any given aperture in the focal plane of a lens or system of lenses is simply the focussed image of the diffraction pattern which without that lens the same aperture would throw upon the same plane. We thus arrive at the enormous simplification of being able to make all our calculations relating to diffraction in the open air.

It will be evident that the foregoing proof does not depend

Fig. 93.
upon the assumption of any particular magnitude for the divergence angle at the point ϵ. If instead of the diverging beam which passes the aperture A...A (fig. 91) we had assumed a beam of parallel light coming from infinite distance, and the focal plane $\eta . \ldots \eta_{1}$ to be the principal focal plane of the system, the proof would have been just the same. Take then the following case, illustrated by fig. 93 . Here ϵ lies in the principal focal plane of a lens filling the aperture A_{1} and η lies in the principal focal plane of another lens filling the aperture A_{2}. They are therefore conjugate points and images one of the other, and the bean which passes between them passes from A_{1} to A_{2} in the form of plane wave-fronts or parallel rays. In this region between the two
apertures, therefore, its diffraction can be calculated by the known rule for the diffraction of light from plane wave-fronts, and if the entire beam is transmitted both backward and forward the diffraction pattern in each of the focal planes will be that produced by focussing these beams of unfocussed light. At last, therefore, the whole problem has been reduced to the problem already solved of the diffraction caused by cutting down a beam of parallel light.

We can, moreover, by the same considerations determine the question of the dimensions of the diffraction pattern produced by the diffraction of light from spherical wave-fronts. For it can be shown-see fig. 94 -that the axis of a diffracted beam containing only parallel rays would cut a plane perpendicular to the optical axis of the instrument at a distance from the axis proportional to the distance of that plane from the aperture and determined by the equation $\eta=\tan \theta r_{\eta} ; \epsilon=\tan \theta r_{\epsilon}$. If now these oblique rays are brought to focus by a refracting system capable of yielding flat fields in the conjugate planes $\epsilon \ldots \epsilon_{1}$ and $\eta \ldots \eta_{1}$ respectively, these oblique parallel rays must be brought to focus at distances such that $\eta=\sin \theta r_{\eta}$ and $\epsilon=\sin \theta r_{\epsilon}$, for this is the condition of correct image formation in these focal planes.*

This again is a result of capital importance, which, however, is not very clearly brought out by Prof. Helmholtz. Throughout the paper he speaks of diffraction fringes, a term appropriate enough to describe the coloured margins formed by diffracted light about the edges of shadows and beams of unfocussed light, but little enough suggestive of the "false disc" formed by a perfectly corrected lens as the image of a luminous point. When in June of 1901 I had the honour of laying before this Society some criticisms of the Abbe theory, I ventured to define an antipoint as the correctly focussed image of a luminous point, and that definition has been, as I gather, very generally accepted. May I now presume to define it a little more closely, and to point out to you that the correctly focussed image of a luminous point is an image of a certain diffraction fringe, which may easily be defined, but cannot usually be seen. Let the following diagran (fig. 94) serve to illustrate this connection.

A beam of parallel light passes the aperture, say, from right to left, is received on a screen placed at $\epsilon \ldots \epsilon_{1}$, and thereon projects a shadow image of the aperture, the central ray passing through the point ϵ. A diffracted beam is thrown off at an angle θ, the central ray of which intersects the screen at ϵ_{1}, so that the axial distance of $\epsilon_{1}=\tan \theta r$. The beam is now reverted through the aperture, supposed now to be filled by a lens having a flat focal field in the plane $\eta \ldots \eta_{1}$, and its principal focus at η in this plane distant by r from c the centre of the aperture. Then at η_{I} will be formed an

[^233]image of ε_{1} as of a conjugate point at infinite distance from which a bean of light along the axis $\epsilon_{1} \ldots$ e fell upon the aperture. The axial distance of η_{1} will he $\eta_{1}=\sin \theta$; by equation (10) App. I., 1.429 . This then will be a point within the antipoint formed by the aperture when fitted with a lens focussing at the distance r from the optical centre c. Similarly ϵ_{1} will be the corresponding point in the plane of the screen in the diffraction finge formed by the unfocussed beam. The point ϵ_{1} cannot, howerer, as a rule be directly observel becanse, lying within the projection of the beam itself, it is drowned in the superior effulgence of the direct light. If then we wish to speak of the antipoint as the image of a diffraction fringe, it must be of the diffraction tringe formed at infinite distance. For the purpose of determining its magnitude, however, we may

Fig. 94.
compare it with the point to which the central ray of the equiphasal beam would be deflected on a screen at a distance from the aperture equal to the distance of the principal focal plane, and then we shall have the following numerical relation :-

$$
\frac{\text { Semi-diameter of the antipoint }}{\text { diameter of the tringe }}=\frac{\sin \theta}{\tan \theta}=\cos \theta \text {. }
$$

From this equation a very important interence may be drawn. For the diameter (axial distance) of any particular phase zone F in the fringe is, as we have seen,

$$
\mathrm{F}=\left(\epsilon \ldots \epsilon_{1}\right)=r \tan \theta=\frac{\sin \theta}{\cos \theta} r .
$$

But $\sin \theta=\begin{aligned} & \phi \lambda \\ & 2\end{aligned}$ if we write R for the semi-diameter of the

The Helmholt: Theory of the Microserige. B!y J. W. Gordon. 409
aperture, and ϕ for the phase expressec in wave-lengths-the phuse value, as we may tern it. Therefore

$$
\mathbf{F}=\begin{align*}
& \phi \lambda \tag{5}\\
& 2 R \cdot \cos \theta
\end{align*}
$$

Now we have seen that the radius of the corresponding ring in the antipoint $=\mathrm{F} \cos \theta$. Therefore writing ρ for this radius, we have

$$
\rho==\frac{\phi \lambda r}{2 \mathrm{R}^{\prime}}=\frac{\phi \lambda}{2 \sin u^{-}}, \quad . \quad . \quad(\tilde{\omega}(u)
$$

since $\frac{R}{r}$ is the sine of the divergence angle u.

Main Results of the Melmholt: Theory.

From this expression for the radius of the antipoint several inferences may at once be drawn.
(1) In the first place, we infer that the successive phase-rings of the antipoint must be distant from the centre in the exact proportion of their phase-values. For, λ and u remaining constant, the value of ρ is simply proportional to ϕ. That is to say, a focussed beam of given angular aperture in a given transparent medium has all its bright rings equidistant from one another, and so with all its dark rings, and has all its rings formed with radii having lengths proportionate to the phase-values of the several rings.*
(2) In the next place we may note that the equation (5a) $\rho=\frac{\phi \lambda}{2} \frac{\sin u}{}$ is wholly independent of \because. We conclude, therefure, that the dimensions of the antipoint formed by a focussed beam depend upon the wave-length and the divergence angle only, and are entirely independent of the focal length. This agrees with the result of observation mentioned above (p. 403), and may be expressed by saying that the diameter of the antipoint is inversely proportional to the numerical aperture of the bean by which it is given off.
(3) In the next place, it can be shown by the same expression that the antipoint which a given aperture produces is, other things being equal, directly proportional to the radius of curvature of the wave-fronts which pass the aperture.

For equation (5a) can be stated alternatively thus:

$$
\rho=\frac{\phi \lambda}{2 \sin u}=\frac{\phi \lambda_{i}}{21_{i}} .
$$

[^234]Now adopting the second of these expressions and assuming everything but r to be constant, we may write ($5 a)$ thus:

$$
\begin{equation*}
\rho=\mathrm{C} r \tag{6}
\end{equation*}
$$

It follows from this that no diffraction can arise in a focal plane where the radius of curvature of the wave-fronts $=0$. It follows again that any disturbance caused by diffraction arising on the stage of the Microscope, can always be avoided by focussing the source of light upon the stage. Hence the value, for exact work, of what is known as critical illumination, and of condensers capable of accurate focussing.*
(4) Finally, the phase remaining constant, if we change the wave-length and the divergence angle, we obtain an antipoint according to the law

$$
\begin{align*}
& \rho_{\epsilon}=\frac{\lambda_{\epsilon}}{2 \sin u_{\epsilon}} \phi=\frac{a \text { constant }}{u_{\epsilon} \sin u_{\epsilon}} \\
& \rho_{\epsilon}=\frac{n_{\eta} \sin u_{\eta}}{u_{\epsilon} \sin u_{\epsilon}}, \text { and } \\
& \rho_{\eta} \tag{7}\\
& u_{\epsilon} \sin u_{\epsilon} \rho_{\epsilon}=n_{\eta} \sin z_{\eta} \rho_{\eta} .
\end{align*}
$$

Comparing this equation with equation (4) (see above, p. 396), we see that antipoints are conjugate images of each other, and are formed and proportioned according to the sine law of image formation. This may fairly be described as the great result of Helmholtz' investigation.

Diffraction in the Microscope.

We are now in a position to renew the consideration of Helmholtz' proposition (p.402), that the loss of resolution due to diffraction in the instrument is the same that would arise from viewing the image formed in the instrument through an aperture equal to that of the Ramsden circle. The question which we left over at p. 403 was whether diffraction arising in any other part of the instrument would make matters worse than this.

A reference to fig. 89 above, p. 401, in which the course of an axial and of an oblique beam are traced through an ordinary compound Microscope, will assist the enquiry. If we now consider first the axial beam it will appear that there is no mischievous diffraction beyond what is traceable to the Ramsden circle. For the beam which comes from the objective has the same numerical aperture as that which enters the eye-lens and, therefore, by equation (7) (see above), the antipoint produced by the objective

[^235]in the object plane is the optical projection of that produced by the Ramsden circle. If, then, the Ramsden circle be not larger than the pupil of the observer's eye, the instrumental image of the central point will be seen exactly as it really is.

This implies, of course, that the entire beam which fills the aperture of the objective is focussed in the image. The case, then, of the oblique beam is somewhat different from that of the beam transmitted along the optical axis. For, if the other apertures are only just large enough to transmit the axial beam unmutilated, they will necessarily cut down the oblique beams to less numerical apertures than that of the axial beam and so impair the antipoint in the marginal parts of the field of the instrument. Take, for example, the oblique pencil from ϵ_{1}. It falls excentrically upon the back lens of the objective, and consequently, if this back lens has no greater aperture than the optical projection of the front lens along the path of the axial beam, its edge will cut down the aperture of this oblique beam all through the instrument. In that case, the antipoint formed at η_{1} will be greater than the antipoint at η, and will be unsymmetrical. For the effect of the cutting down of the oblique beam by the two circular apertures in succession will be to give to the beam a sectional form as shown in fig. 95. Its antipoint will have approximately the same shape, with the long axis turned towards the centre of

Fig. 95. the field. For this reason it is scarcely possible to obtain, even with the most perfect optical arrangements, a really good resolution in the peripheral parts of the field of the Microscope. The aperture of the oblique beams which focus in those regions has usually been cut down by diaphragms placed either in front of or behind the principal diaphragm of the objective to something less and often greatly less than the aperture of the central beam.

It is not only in the marginal regions of the instrumental field that the deterioration due to this mutilation of the oblique beams manifests itself. The distorted antipoints produced by this means have a pernicious property of turning their long axes towards the centre of the field, and consequently they tend to produce their maximum disturbance there, where the resolution ought to be finest.

Fig. 96 illustrates this point by a diagram, in which five antipoints are shown in their mutual relations. The four external ones stand so far apart from the central one, that if they had the regular size and form, similar to the size and form of the central antipoint, they would not trench upon it at all. This is indicated by the four circular outlines touching the middle circle. But assume
that these peripheral antipoints become distorted into a prolate form with their long axes slightly more than twice the length of their shorter axes. Then the points of these distorted antipoints will overlap in the middle of the field, producing there an intercostal spot as shown.

Now, this diagram shows very imperfectly what happens in the Microscope when oblique beams, much mutilated by successive diaphragms, are admitted to the field of

Fig. 96. the instrument. The assumption that the long axes are double as long as the short axes is by no means an extravagant assumption since it implies only that one-half of an oblique beam transmitted by the first aperture has been intercepted by the second. And here we have only four peripheral antipoints shown out of the infinite number, which would in fact find place upon the ring in which these four are situated. It will become evident upon consideration, that whenever the back lens of an objective is completely filled by the wave-front transmitted by the front lens from the central point of the field, that is to say, if it presents no appearance of unoccupied aperture as seen from along the axis of the instrument, it must cut down all the oblique beams transmitted by the front lens, and cut them down in much more than the simple proportion of their obliquity, if by this proportion we understand the proportion between the angular aperture of the lens itself, and the inclination of the

Fig. 97. axis of the oblique beam to the axis of the instrument. In that case, therefore, we shall have the various antipoints in successive rings of the field of the instrument ; measuring outward from the centre; arranged somewhat as in the diagram (fig. 97).

Here three excentric antipoints are shown, and for greater clearness they are arranged in different azimuths. It will of course be understood that each represents a complete ring of similar antipoints arranged about the centre of the field at a central distance indicated by the letter a from c the middle $\%$ oint of the field. The bounding circle indicates the diaphragm of the eye-piece, and it is assumed for the purpose of the diagram, that the most excentric beam brought to a delineated focus has had four-fifths of its full diameter cut off by the hinder diaphragn of the objective. It will surprise nobody who considers the state of the illumination produced in that way, that it should render all clear definition of detail impossible. It may be that even the largest antipoints here shown would give a well resolved
picture if all the antipoints in the picture were of the same size and shape. But with graduated antipoints arranged in a geometrical pattern, the background pattern of the mere blank field becomes so complicated and obtrusive that resolution of anything but strongly contrasted features is rendered thereby impossible.

This difficulty is not unknown to microscopists. The necessary limitation of the working aperture has been observed, notably by Mr. E. M. Nelson, who has recently made a communication to your Society upon the subject (R.M.S. Journal, vol. for 1901, p. 242). But it has not as yet, I think, received its explanation. For the benefit of Fellows and visitors this evening who may desire to test the explanation here proposed by an actual observation, there is arranged among the exhibits a piece of apparatus upon the plan of arranging a shutter within the tube of the Microscope just behind the objective, so that it can be very gradually introduced into the path of the beam and caused to cut down first the excentric and ultimately the central pencils unsymmetrically. As it is introduced a vague shadow, which denotes the advance of the invading distorted antipoints from the shatter side of the field, will be seen travelling across the object, and in this pernicious shadow, so tender as itself to be barely visible, all the delicate details of the picture will be seen to dissolve away.

It thus appears, that for fine resolution two conditions are essential, a wide angle to secure a small type of antipoint, and a clear course to secure the uniformity of the antipoint of that type throughout the field of the instrument.

The first of these conditions is secured by a wide angle for the beam which forms the image, an object which can be attained in various ways. But as a wide angle behind the objective involves loss of magnifying power, this condition is only consistent with high magnification on the further condition that the front of the objective has an angle commensurably wide. That is to say, it is. attained by high numerical aperture, the virtue of which has been fully recognised, perhaps even somewhat over-estimated, for many years.

But the second of these conditions, that is to say, the clear course and consequently uniform antipoint, is very little understood and at the present moment only dimly recognised at all as a condition of the best performance. It must even be aumitted that Helmholtz himself does not draw attention to it, and apparently did not consider the point. He assumed that all the antipoints with which he was concerned were of one size and form and worked out his conclusions accordingly. The practical importance of this point is, however, at the present day too great to be now passed over in silence. In order, however, to resume the thread of Helmholtz' paper, I will defer to a later paragraph the further discussion of this theme.

The Mecesurement of N.M.P.

Helmholtz then, having shown that resolving power depends upon the numerical aperture or, as he terms it, the normal magnifying power, of the beam transmitter by the oljective, proceeds to suggest a mode of measuring this N.M.P. His plan is to use the Ramsden circle as a gauge. We have already seen (p. 410) that the antipoint of the reverted beam throngh the Ramsclen circle projected on the image plane is of necessity the same as the antipoint of the beam received from the olgective, whether with or without an eye-piece field-lens, for both the beam received and the beam emitted by the image have necessarily the same divergence angle. We set up the instrument then upon an object, and loing it into perfect adjustment. We next observe the magnification of the image and the diameter of the Pamsden circle. Taking this observed diameter (expressed in mm .) for our numerater, and for denominator the arbitrary constant 3 , we obtain a fraction $\frac{m}{3}$, where m stands for the diameter as above defined of the Ramsden circle, and by it we multiply the observed magnification. The result is the normal magnifying power of the oljective, which we may thus express:

$$
\begin{equation*}
\mathrm{M}_{0}=\frac{m}{3} \mathrm{M} . \tag{8}
\end{equation*}
$$

This is Helminoltz' proposed scheme of rating objectives.
Digressing for a moment from the Helmholtz paper to say a word upon the merit of this method as compared with the method now in rogne of rating oljectives ly the numerical aperture as read by an apertometer, I desire to draw your attention to the allimportant consideration that N.M.P. can be estimated and is estimated, if properly ascertained, under working conditions; whereas for the purpose of an apertometer measurement the instrument is pulled to pieces and set to work under conditions which wholly destroy its power of fine performance. When an apertometer is used the index flame may show a falling off in brightness, betraying the gradual cutting down of the oblique pencils long before the edge of the aperture is reached, but there is nothing in the apertometer to show when this mutilation of the oblique beams will begin seriously to impair the performance of the instrument. Of the two conditions of fine resolution, the apertometer therefore measures only one and that the less important of the two; for Mr. Nelson's experiments already referred to show that when resolving power has been destroyed by cutting down the oblique pencils by a diaphragm placed behind the objective, it may be restored by cutting down all the beams, i.e. the central and oblique together, by means of a diaphragm in front of the condenser, thus
diminishing the numerical aperture and increasing the diameter of the antipoint in the centre of the field in reciprocal proportion, hut restoring the uniformity of illumination which the first operation had disturbed.

Between these two methods of measuring resolving power there cannot therefore be, even for a moment, any question as to which is the more scientific. The apertometer is wholly misleading and incurably bad, for it cannot be applied under working conditions. Helmholtz' method, if properly applied with due precantions, tells us precisely what we want to linow, namely what is the comparative capacity of a given objective for producing a finely resolved image under the conditions of actual use.

The Ultimate Limit of Resolving Pover.

Coming back now to Helmholtz' paper, our author, having thrown out this practical suggestion as to the rating of objectives, proceeds to discuss the theoretical question, "What is the ultimate limit of resolving power?" Speaking off-hand one might be disposed to say that since the picture formed by a lens is built up of antipoints, no object smaller than an antipoint could be delineated within it. And if an antipoint were a material object like the grain of a photograph, so that one antipoint could not penetrate another, this would be a perfectly sound conclusion. But an antipoint is a kind of diffusion disc, and there is no reason in the world why any number of antipoints should not occupy the same space interpenetrating one another like-what in truth they arebeams from contiguous lamps.

But although Helmholtz was quite well aware that you could picture, by means of antipoints, objects smaller than the antipoints themselves, he thought that objects would cease to be separately discernible in the picture if they were smaller than one-half the diameter of the false disc of the antipoint.

The diagram (fig. 98, plate VI.) will illustrate his view. Here four pairs of antipoints are shown in varying degrees of propin. quity, the false dises only being taken into account. Case a exhibits separate discs and presents no difficulty. Obviously these represent distinct objects in the piature. Case bhows the two antipoints overlapping to the extent of one-fourth of the diameter of each. Here experiment shows that the eye distinguishes. In c and d this overlapping of adjacent antipoints is carried farther, and we may assume that in d it las been carried so far that the points in the object from which they start are no longer distinguishable by the eye. They are like irresoluble double stars in the heavens, At c we assume that they are in the critical position and may be described as just distinguishable or just indis-
tinguishable, as you like. Helmholtz thought that this point would be reached when the two antipoints overlap to the extent of one semi-diameter, i.e. when the edge of the one lies exactly on the centre of the other.

For this conclusion Helmholtz gives no physical reason, and no physical reason can be found. On the contrary, it can be shownand I have developed the argument in the appendix (Note II.) to this paper-that there is strong ground in physics for concluding that antipoints may overlap to a much greater extent than that of the semi-diameter, and still yield fully resolved pictures. But Helmholtz seems to have relied upon experiments, and I shall best do justice to his paper if I quote it textually in this connection.*
"We are here mainly concerned with the diffraction images which arise from an aperture of circular form. A bright point of light (the reflection of the sun from a thermometer bulb) seen through such an opening (a needle-prick in a card) appears, as is known, like a bright circular dise surrounded by rings alternately dark and bright. The apparent breadth of these rings reckoned from minimum to minimum, corresponds very closely to a visual angle of which the sine is $\frac{\lambda}{d}$, where λ is the wave-length of the incident light, and l the diameter of the opening. The outermost rings have almost exactly this breadth, the innermost are slightly broader; the radius of the central light disc is $1.220 \frac{\lambda}{d}$. Assuming that the smallest visual angle under which we can distinguish two fine bright lines from one another may be set down as one minute of angle, then fringes of the brightest greenish-yellow light, having a wave-length of 0.00055 mm ., are visible when the diameter d of the opening is 1.89 mm . The spreading out of a bright point into a disc or a bright line into a stripe must evidently become noticeable with somewhat wider openings.
"If objects having distributed bright patches of surface are viewed through such openings, the diffraction figures of the several points of light upon such a surface will tend to overlap one another partially, so that the circular fringes of every several point cannot be separately recognised. Now it is clear that this result of diffraction which changes every point of light into a minute circular disc, must impair the definition of the object as definition is impaired in the eye by the minute diffusion circles which result from imperfect accommodation. Very small objects which are only discernible in the most sharply defined retinal images will then become unrecognisable.
"That this is so can be proved by a simple experiment. The most critical objects are gratings having alternate bright and dark stripes.
formed of parallel threads, arranged side by side or drawn in black and white lines upon paper. Standing at such a distance from the grating that with full accommodation of the eye, he can with suitable spectacles just distinguish the lines of the grating from one another, the observer places in front of his eye a card in which several small holes of varions diameters have been pierced and judges whether he can through these holes still see the lines of the grating and see them as well as without the card. The illumination of the grating must be very bright; one printed on paper, for example, may be illuminated by direct sunlight in order to secure the necessary lorightness of the object as seen through the opening.
"By means of such an experiment I find that in fact a noticeable deterioration of the image is produced by an opening of 1.72 mm . diameter. This is much more pronounced if still narrower openings are employed.
"The grating can be replaced by a printed page, under suitable conditions of use, that is to say, if it be placed at such a distance from the observer that he can just read it perfectly. Then, if he views it through an opening of about 1 mm . diameter, he will find that it is difficult or even impossible to read it. But I find this experiment less delicate than that with the grating.
"Of course, in the making of these experments care must be taken to secure the best accommodation of the eye; if that be imperfect it may happen that the interposition of the card will diminish the size of the diffusion circles on the retina, and so improve the image."

There are two criticisms which must here be interposed in reference to this experiment. First, that it is an experiment upon the power of the eye to discriminate small parts of an image, and not upon the state of resolution of the image formed in the eye, If I shut my eyes and put my hands upon a number of coins lying side by side on a table I can count them with ease if they are halfcrowns, because the individual coin is much larger than my finger tips. But if they are threepenny-bits, that is to say, just about the same size as my finger-tips, I have the greatest difficulty in counting them, and I suppose that if they were the size of Maundy pemnies I could not count them at all. I should not know whether one, two, or three were under one finger at one time.

The same kind of difficulty arises when we try to estimate by sense impressions produced upon an organ like the retina-where nerve-ends are distributed, as in the finger-tips, at finite distances apart-the absolute state of resolution in an image formed upon the retina. It is nothing to the point that the power of discrimination in the retina is many hundred times greater-in the sense of being more subtle-than in the finger-tips. Notwithstanding its great refinement, the retina has a limited power of discrimination, and it may well be that an image, which to the eye appears
unresolved, may want nothing but enlargement of scale, to be seers fully resolved.

The second criticism is, that the experiment itself indicates that the limit which Helmholtz thus discovered was a physiological rather than a physical limit of resolving power. For it is to be observed that he reduced the aperture of his eye by nearly onehalf, from 3 mm . to 1.72 mm ., in order to produce " a noticeable deterioration of the image." Praceeding pari passu with the reduction of aperture there must have been a corresponding increase in the diameter of the antipoint, and no marked physical change would supervene when it reached the dimensions which sensibly modified his retinal picture. It as true, as he says, that if the limit of the discriminating power of the optic nerve be taken at one minute of angle, the smallest separately visible objects would be flanked by separately visible images at just about that distance, which he noted by observation. Thus a noticeable change would occur at this stage in the development of the antipoint; but it is a change related to the structure of the optic nerve, not of the image, and has therefore no direct bearing on the limit of resolving power in an optical instrument, of which the retina is no component part. The fact that Helmholtz could reduce the diameter of his pupil from 3 mm . to 2 mm . without detecting any deterioration of the image argues that the normal antipoint of the eye is much too small to affect the apparent resolution of the picture produced on the retina.

It is not very clear-at least it is not very clear to me, in reading Helmholtz' paper-what is the inference which he himself proposes to draw from these experiments upon the diminished pupil. But I rather gather that his idea was to find a more accurate measure than the mere average diameter of the pupil (3 mm .) for the aperture of the conventional eye upon which to calculate normal magnifying power. He actually says:
"Calculated by means of equation (12) the diameter of 1.89 mm . of the beam received into the eye corresponds for an angle of 180° aperture in the incident beam in air to a magnification of $264 \cdot 5$ times. For Microscopes with narrower angular aperture the corresponding magnification would be less. In accordance with this conclusion we find in Hugo v. Mohl's Microgrephy that amplifications between 300 and 400 times yield the best detail; while Harting in his newest Microscopes with very nearly 180° of angular aperture found magnifications of 430 to 450 times the best for the purposes of measurement."

Yet even so the argument seems very loose. The conformity is not at all strikingly close of Mohl's result, that amplifications of between 300 and 400 times yield the best detail, and of Harting's that 430 to 450 times are the best magnifications for the purposes of measurement, with Helmholtz' conclusions that deterioration of the image sets in when a normal magnifying power is exceeded which
he estimates at 266 times at most for dry lenses, such as Mohl and Harting appear to have been using. Altogether, this part of the paper, in which our author is seeking for a basis on which to ground his argument concerning the ultimate limit of resolving power, will probably strike the reader as being the least satisfactory part, and the least satisfactory by very much, of the whole paper.

Ultimately, after discussing various inconclusive experiments and observations, he fixes upon the image of a ruled surface seen through a rectangular opening as being the most available test of the physical limit of resolving power in optical instruments, and then he says:-
"It can be shown in the case of diffraction from a rectangular opening that the grating will appear as an uniformly illuminated bright surface when the diffraction fringe is equal in breadth to the interval between adjacent rulings. For circular openings the integration involved in the calculation of the light distribution is extremely laborious. If the diameter of a circular opening is equal to the side of a square, the outermost fringes in the spectrum of a bright point formed by the circular opening are of equal breadth with, the inner are of greater breadth than the fringes formed by the square opening. If, then, the square opening suffices to obliterate the structure of a grating when the distance from centre to centre of its lines equals the breadth of the diffraction fringes, this must equally befall in the case of the circular opening with its somewhat broader fringes. In what follows, I have therefore adopted as being within the limit of the indistinguishable distance in the object, the centre to centre distance of the outer fringes which a circular opening produces. It is not impossible that, by reason of a favourable disposition of the fringes, somewhat smaller objects may occasionally be half seen, half imagined. But certain and unambignous discernment of the object san hardly be brought about in that way."

Helmholtz here says, "It can be shown," \&c., but he nowhere unfolds the argument by which the conclusion so amounced can be establishel. I have already mentioned the Appendis to this paper in which I have ventured to develop the argument leading to a contrary conclusion.*

[^236]The remaining conclusion of Helmholtz' paper depends entirely upon this assumption concerning the limit of resolving power, and must stand or fall with it. Helmholtz points out, as has been already shown, that even with a divergence angle of 90° the antipoint is not infinitesimal but has a false disc, the semidiameter of which by equation $(5 a)\left(\rho=\frac{\lambda}{2 \sin 90^{\circ}}\right)$ is equal to $\left(\frac{\lambda}{2}\right)$ half a wave-length of light. Now, if such an image were magnified the false disc would be magnified in the same proportion, and in that case the smallest possible antipoint in a magnified image would be proportionately larger than this smallest possible antipoint in the object-plane. But he rightly says it does not make matters any better to replace this minute image by a minute object, for although the object may be more finely resolved in fact than the image for which it has been substituted we cannot look at! the object itself. We can only look at its magnified image, and, as we have seen, its magnified image must be formed by beams of light having a divergence angle so reduced that they yield antipoints upon the same scale as the magnified image of the objective antipoint first supposed. Now, it makes no difference in the result whether the antipoint is formed on the stage and magnified in the same proportion as the image, or formed in the image itself on the same scale of magnification. Therefore it comes to this in the end. We can determine the ultimate limit of resolving power in terms of the object by ascertaining the dimensions of the smallest detail that can be discerned in the image, and measuring its conjugate image projected on the stage. By the above computation this conjugate image is directly calculated, and thus Hehnholtz came to the conclusion that the smallest object which can be resolved even by a perfectly corrected and ideally perfect lens, must be not less in diameter than half a wave-length of the light by which it is seen.

Passing now from Helmholtz' paper, I desire in conclusion to draw your attention to one or two practical deductions from the Helmholtz theory.

Oscillating Screcns.

(1) First let me refer to the inconveniences which result from the progressive reduction of the divergence angle as the magnification of the image increases. Helmholtz has pointed out that this canses all obstructions in the eye or in the upper part of the iustrmment, to throw very black and conspicnous shadows, so that even the smallest speck of dust upon the eye-lens for example will be projected so as to become a prominent blemish in the image. The reason of this is that when the wave-front is much reduced in
diameter, say to the $\frac{1}{100} \overline{0}^{\text {th }}$ th part of an inch, a very small obstacle will wholly obliterate the light from a point on the object. Now, the obvious remedy for this defect is to spread out the contracted wave-front. And this is quite feasible. A reflecting or refracting screen interposed in the focal plane will scatter the light over as wide an angle as you please, and clear the image entirely of these intrusive shadows. You will this evening have an opportunity of judging for yourselves how great an improvement may thus be effected in the appearance of a highly magnified image, for in one of the Microscopes upon the table you will find a Plcurosigma angulatum magnified about 8000 diameters and thrown upon a ground-glass screen. Another Microscope standing beside it and fitted up as a twin instrument exhibits for comparison another specimen of the same diatom under the same magnifying power, but without the screen. It will of course occur to you that the grain of the screen must be exhibited as well as the detail of the picture, since both are focussed in the same plane, and this would inevitably be the case if the screen were at rest. To obviate this inconvenience it is kept in rapid oscillation in a more or less elliptical orbit. The movement, which is actually about three* oscillations a second, is too rapid to be followed by the eye, which thus receives the impression of a delicately shaded picture thrown upon a structureless sereen. In this way the picture can be magnified to any extent without impairment from the shadows of extraneous bodies.

Such an oscillating screen is capable of being made equally useful in photomicrography if the appliances are employed to which I propose presently to refer. But for that purpose the screen may oscillate mueh more slowly since the sensitive plate accumulates impressions during a comparatively long exposure. There is on the table a Microscope fitted with what I may perhaps call a compounding draw-tube for producing photographs and there you will see that the screen makes only about ten excursions in a minute. There is an advantage in this slow oscillation as it minimises the danger of shaking the instrument by the motion of the screen.

The Compounding Draw-tube.

(2) This leads me to speak in the second place of the appliances at present in use for photomicrography. Everybody must have been struck by the contrast, which the compact form of a modern high power Microscope presents to the clumsy appliances, considered

[^237]necessary for the production of a photograph by the Microscope. The reason of the cumbersome form of the photographic apparatus is, of course, to be found in the use of the projection ocular with its great focal length. If, instead of a projection ocular, you employ a second objective, forming the image of the first objective in the ordinary way and then viewing that image as an object through a second Nicroscope, the whole of the necessary apparatus may be contained in a single draw-tule. On the table this evening there is a Microscope of this sort fitted with a compounding draw-tube which adds only 5 in . to the length of the instrument. It contains a $\frac{1}{2}$-in. for its second objective. In its present condition, with a $\frac{1}{1 f}$ oil-immersion for its principal oljective it produces at a distance of 10 in . from the stage negatives with a magnification of 400 diameters. The same magnification by means of a projection ocular would necessitate a back focal length of at least 28 in ., and 28 in . of back focus implies mechanical contrivances for operating the fine adjustment, and therefore, the horizontal position and all the business of a photomicrographic outfit. Here you have nothing more cumbersome than the ordinary Microscope.

What then, it may be asked, is the advantage which makes the projection ocular in use so far preferable to the doubled objective as to warant the expense and trouble involved in the use of the projection ocular? Theoretically the one appliance cannot give hetter resolution than the other, for we know by the Helmholtz cheory that repeated magnification does not impair the resolution of the image, for image and antipoint are magnified together, provided that no supernmerary diaphragn cuts down the bean which carries the image from one focal plane to the next. But precisely in this matter of diaphragms the projection ocular has a great advantage over the donbled objective. For the projection ocular is placed well forward in the beam, where the wave-fronts are crowded together, and requires no lenses behind it. The course of the beam is, therefore, perfectly clear and under these conditions the highest magnifications can be obtained without sacrifice of resolution. The use of a compounding draw-tube, on the other hand, presents many difficulties. The first image fills the aperture of the second objective with very narrow and very widely separated beams of light, and it is not altogether easy to avoid mutilating the more excentric of these narrow beans by the edge of the aperture of the second objective. The mischief of this mutilation of the marginal pencils of light has been already explained and for this reason an image highly magnified in this way, if no precaution is taken to prevent mutilation, is little fitted for close examination although pictures at comparatively low magnification may be made so with com1hete success.

Illumination of the Stage.
It is, however, quite possible to guard against loss of resolution in this way by taking care to limit the luminous field of the instrument to so much only as is to be photographed. If all the transmitted light fall thus within the angle of the upper objective you will obtain very respectable pictures in that way. There is exhibited to-might a photograph of Pleurosigma angnletrm magnified 2500 diameters which was made in this little Microscope with its home-made compounding draw-tube and without any screen. It is, as you will observe, much spotted with the shadows of specks of dust upon the lenses, but apart from that it is a passable photograph.

But, although much may thus be done with only the simplest appliances, the oscillating screen does so much to improve the pictures that I cannot imagine that when once its capabilities are known anybody who intends to do much in the way of photomicrography will work without it. It adds very little to the apparatus and it places this simple contrivance of the compounding draw-tube theoretically on a level with the projection ocular and its optical bench. In fact it is better, because stiffer than the optical bench. There is no risk whatever of displacement due to vibration with this appliance and you could work as easily on board ship as on shore.

By means of the screen we scatter the light of the image formed by the first objective, and so enlarge the angle of the beams which enter the second objective, thus filling its aperture and enabling it to yield a perfect reproduction of the inage formed in the first focal plane.

The photographs which you see here this evening have all been produced by the simple apparatus that you see upon the table. My practice is to use, as the case may be, a $\frac{1}{6}$ or $\frac{1}{1+}$ as the principal objective, and by doubling this with a $\frac{1}{2}-1 n$. to produce a negative with a magnification of about 200 or 400 diameters. Such negatives will easily stand camera enlargement up to four or five times, and I therefore print in the same Microscope, using the simple draw-tube and a 2 -in. objective as the photographic lens, the negative being, of course, mounted on the stage. In that way anything up to 2000 diameters magnification can be obtained. Of the merit of the process you will judge for yourselves. My results do not compare with fine photomicrographs, for this is in many respects a makeshift piece of apparatus. In fact, I am not sufficiently well satisfied with any part of it to include a detailed description in the present paper, but such a description is at the service of anyone who is sufficiently interested to inquire for it. Perhaps I may be allowed to say here that my
screens are made by grinding cover-glasses to a fine grain and then bringing them to the exact condition required by rubbing a little white wax over the surface.* In this way the scattering power of the surface can be regulated with some micety; since it is easy to put more wax on or rub it off, until the exact condition is reached which gives the desired angle to the emitted light. But it will not lie supposed that I can presume to recommend this as being the best plan of preparing these screens. I can only say that it answers. Probably other forms can be devised that will answer better. This is the best that I have thought of.
(3) The subject last discussed leads very naturally on to the discussion of the illumination of the microscopic field. It has been pointed out above (p.412) that unequal and most mischievous illmmination results from the overlapping of antipoints intruding from the margin into the centre of the field when the marginal beams have suffered mutilation. But as the subject is foreign to Helmholtz' paper-although very germane to his theory-it could not there be pursued. I propose to return to it now in order to point out the expedients by which this inconvenience may be avoided.

Working Aperture.

Foremost among these stands the expedient to which Mr. E. M. Nelson has drawn attention, of leaving a ring of "unoccupied aperture" in the back lens of the objective. This, of course, can only be effected by cutting down the numerical aperture of the admitted beam, but when it is once realised that $\frac{\lambda}{2 \sin u}$ is not anywhere near the resolving power of a thoroughly corrected lens this will cease to be regarded as a formidable proposal. Moreover as, whether he likes to do so or not, the microscopist is obliged to shut his condenser down below the apertometer measurement of his objective if he wishes to obtain the best result from his instrument, the rule thus laid down must, with whatever protests, be recognised in practice.

Dark-ficld Illumination.

But another expedient which does not involve any loss of angle in the objective, and by which very fine resolution may be obtained, is that of dark field illumination. Here the marginal parts of the field emit no light and consequently there are no

[^238]invading antipoints to disturb the image formed in the middle of the field. It is well known that under these conditions lowangled objectives will give surprisingly fine resolution, the explanation being that all the antipoints, although large, are very approximately uniform in shape and size, and consequently no false lights obscure the shadows forming the image.

Limitation of the Mlluminated Area.

By analogy to this known contrivance it seems to follow that resolution in the central region of the field may be promoted by any artifice which diminishes the brightness of the peripheral parts. In that case the shape of the source of light will appear to be a matter of importance, and a small disc of light which can be focussed upon the exact part of the object which we desire to examine, leaving the rest of the field in darkuess, will be the best. From this point of view the edge of a lamp flame will be better than its broad side, but a spot of light-as on a lime cylinder, better still. Experiments fully substantiate this inference, and on the table to-night you will find a lamp so arranged as to illustrate the point. Two shutters are disposed in such a way that the one or the other can at will be interposed between the flame and the Microscope. The one shutter exposes so large an illuminating surface as to flood the whole field of the instrument with light; the other is pierced by a minute aperture which shows as a mere spot of light in the field, and must be moved to the part of the object which it is desired to examine. You will observe that the introduction of marginal light sensibly impairs the resolution at the centre of the field. Now this contrivance can be employed with wide-angled objectives, whereas the method of dark field illumination breaks down with them. This then is a peculiarly useful expedient since it enables the microscopist to use to the best advantage his objectives of highest power. Moreover, it would seem that, excellent as is the flame of the Microscope lamp it is not ideally perfect as a source of light, and that some convenient form of light-source which will emit a sufficient. amount of light from a smaller and more symmetrical radiating surface is still to be desired.

The Rating of Objectives.

Finally, there is the very important question of the rating of objectives. A sketch has been given above of the method proposed -or to speak perliaps more accurately, suggested-by Helmholtz. The suggestion is scarcely in a shape sufficiently elaborated to be-
called a proposal. Helmholtz appears to have been himself dissatisfied with the constants of his own standard eye, and probably would have recommended revision if the standard were to be adopted for general use. But the scheme is there, and it has already appeared loy comparison how entirely unscientific is the method of apertometer measurement. We do not want to know what is the extreme angle of incilent wave-front that we can squeeze into our objective if we release it from duty and flood it with light. We want, on the contrary, to know what is the widest angle that can be dealt with under the conditions of actual use, that is to say, with a certain breadth of field under full illumination, and the instrument rielding its best performance-or to adopt Mr. Nelson's nomen-clature-we want to know its working aperture. This can be ascertained by measuring its normal magnifying power under properly determined conditions of use, but it cannot be ascertained, eren approximately, by mounting an apertometer upon the stage and reading off the angle at which an ill-definel image of a flame is extinguished ly the limit of aperture. It may be that the time has not yet come for elaborating Helmholtz suggestion into a definite scheme, and no doult it would he premature to ask at the present time for any authoritative adoption of even the best scheme that could be elaborated. Put it is surely time to bring this loug neglected proposal under consideration, and to endeavour by experiment and discussion to form the views, at present embryonic, of the world of microsconists concerning the theory and pratice of objective rating.

APPENDIN.

Note I.-The Sine Law afd Sne-Taveext Relatiox.

The sine law and what I may perhaps be allowed to call the sine tangent law are of so great importance in the theor of optical instruments, that I will take the liberty of adding in this phace a few observations which conld not be introduced without too great a digression in what purported to be a resseme of Helmholtz' paper.

The proof of the sine law which is commonly put forwarl and known as Hockin's proof is fanlts, for the reason that it applies only to an imaginary image of infinitesimal dimensions sitnated on the axis of the srstem.

Helmholrz' proof is much more adequate. It appties equallr to all parts of the field of the instrument-not simply on the axis-and it shows
that the comditions which prohnce aphanatism in a centred system will of necessity also prorhee an molistonted inare aceording to the sine law. But even Helmholtz' proof does not explicitly bring ont the sine-tamgent law, and as this is moch less well momerstonel than the sine law at the present time, it is, perhaps, not an impertinence to offer a futher proof which will embrace both propesitions in one demonstration.

Postulate. Let it be granted that any imate-foming optical system which is capalde of prexheing a regular imate of any surfae must be
 that surface and moves through the system.

This proposition is amost axionatie, and is here put forward as sufficiently evident without formal proof.

We start, then, with a plane wave-front $\epsilon \ldots \mathrm{c}_{\text {, }}$ in fig. ! ! ; we assum,

Fif. !9.
it to be propacated molhanged as fier as A_{2}, and there converted into a spherical wavefront having its focns at (\%. It is puite immaterial by what apperatus this change of form is brombat about provilen that it is cffected correctly. If comectly marle the change most have produced io spherical image of the plane ware-front in which the distances of its parts measured upon the spherical surface are so rearanofl that the original axial distances are preserved. That is to say, the law of formation is that all the rays travel in madial paths with erpal velocities, and the eriterion of resemblance is that every ray preserves, muler all changes in the form of a wave-front, its angular position in the beam, so that at every point its axial distance ϵ is

$$
\begin{equation*}
\epsilon_{1}=\sin \theta_{1} r, \tag{9}
\end{equation*}
$$

θ being the angle which it makes with the axis, and r the radius of curvature of the wave-front at the print under olservation.

The spherical wave-front haring heen formed, converses in con-
formity with the law of its propagation upon its centre C. Here the radius r becomes evanescent, and we have for the axial distance

$$
\epsilon_{0}=\sin \theta r_{0}=0
$$

But the angular magnitndes remain unehanged, and when the spherical wave-front is re-formed after passing the centre, its finite magnitudes are still determined by the formula

$$
\eta_{1}=\sin \theta_{1}(-r)
$$

Therefore the new spherieal wave-front is an inverted image of the original wave-front.

We have next to suppose that in passing the aperture A_{2}, this expanding spherical wave-front is flattened by any process which preserves the resemblance. Then it will follow that the axial distances of the resulting plane wave-front must be given by the formula

$$
\eta_{1}=\sin \theta_{1}\left(-r_{\eta}\right)
$$

Fig. 100.

Now it is to be observed here that there is no question of focal planes. The image at every point in the system is perfeetly correct and perfectly defined. The correctness depends upon the preservation of the sine relation which makes the axial distance equal to $\sin \theta r$ and the definition results from the circumstance that the divergence angles u_{ϵ} and z_{η} are each $=0$. Hence the diameter of the diffusion disc at any point $=2 \sin u r=0$; that is to say, we have perfect definition as well as true resemblance at every surface throughout the system.

It is also worthy of remark that nothing turns in this demonstration upon the particular magnitudes-linear or angular-employed. Thus, figs. 100 and 101 give two modifications of fig. 99, in which the diagram is varied in!an extreme degree, and every magnitude is changed except the apertures and fields. But the relative proportion of the focal lengths r_{ϵ}
and r_{η} being preserved, the argument applies equally well to these so greatly altered figures. This will be evident without discussion.

In all cases the axial distance of the ray $\epsilon_{1} \ldots \eta_{1}$, whether on one side or other of the optical centre, is $\sin \theta_{1} r$. If, therefore, we write ϵ for the diameter of the object and η for the diameter of its image, we shall have

$$
\begin{gather*}
\epsilon=\sin \theta r_{\epsilon} \quad \eta=\sin \theta r_{\eta} \tag{10}\\
\therefore \quad \frac{\epsilon}{r_{\epsilon}}=\frac{\eta}{r_{\eta}} . \tag{10a}
\end{gather*}
$$

This construction therefore can be employed to determine the magnifying power of any optical system, if we know the positions of the focal planes and optical centre, for we can always in theory place upon that optical centre a system such as that shown in fig. 101, and then, as we have seen, we shall get the dimensions of conjugate images in the two focal planes by the equation (10).

Fig. 101.
Now the optical centre can be at once determined from observations made upon the divergence angles u_{ϵ} and u_{η}. Fig. 102 will make this clear.

Let it be supposed that we have two images formed at ϵ and η respectively, and that the beam which focusses in them has the divergence angle u_{ϵ} in the one plane and u_{η} in the other. The positions of these focal planes may then be taken to be given by direct observation.

Next let the rays from ϵ and η be prolonged until they intersect one another in the point A. Then it is clear that the rays $\epsilon \ldots$ A and A . . η must be proportional in length to the distances of the points ϵ and η respectively from the optical centre, for both these are edge rays of their respective divergence angles, both therefore must by definition touch the edge of the aperture, and there is no other position for a common aperture which will satisfy this condition. If, then, we draw $a_{\epsilon} \ldots a_{\eta}$ parallel to the optical axis, and at such a height that the circular arcs $a_{\epsilon}^{-} \ldots \mathrm{C}, u_{\eta} \ldots \mathrm{C}$, drawn about the centres ϵ and η Aug. 19th, 1903
respectively, meet the axis in the common point C , we shall have found at C the optical centre ; for $\epsilon \ldots$ C and $\mathrm{C} . . . \eta$ will be proportional to $\epsilon \ldots$ A and A... η respectively.

Fig. 10\%.
If, now, we apply to this system the rule already established in connection with fig. 101, we shall find that the equation (10) implies the sine law in its ordinary form as applied to the divergence angles u_{ϵ} and $\|_{\eta}$.

Fig. 103.
For consider fig. 103. Here we have figs. 101 and 102 combined, and we know therefore from (10) that

$$
\begin{equation*}
\frac{\epsilon}{r_{\epsilon}}=\frac{\eta}{r_{\eta}} \tag{10}
\end{equation*}
$$

Also, we see from the diagram that

$$
\sin \theta r_{\epsilon}=\sin u_{\epsilon}\left(\epsilon \ldots a_{\epsilon}\right)
$$

also that

$$
\epsilon \ldots a_{\epsilon}=r_{\epsilon} . \quad \therefore \quad u_{\epsilon}=\theta
$$

and

$$
\begin{equation*}
\sin u_{\eta}\left(u_{\eta} \ldots \eta\right)=\sin u_{\eta} r_{\eta}=\sin u_{\epsilon} r_{\epsilon} . \tag{11}
\end{equation*}
$$

\therefore Multiplying (10) by (11)

$$
\begin{equation*}
\epsilon \sin u_{\epsilon}=\eta \sin u_{\eta} \tag{12}
\end{equation*}
$$

In this proof it has been tacitly assumed that we have the same refractive index behind as before the aperture. It is obvious that if the refractive index underwent a change between the two images there would be a corresponding change in (12), and from what has been already said (see above, p. 396) we know that the general expression is

$$
\begin{equation*}
n_{\epsilon} \sin u_{\epsilon} \epsilon=n_{\eta} \sin u_{\eta} \eta \tag{13}
\end{equation*}
$$

which is Helmholtz' law.
The foregoing proof has proceeded upon the assumption that the image-forming aperture is capable of transmitting a plane wave-front. This is not necessarily the case. The image may be formed by a pinhole, in which case only a minute axial pencil of the plane wave-front could pass it and no such image as is shown in fig. 99 of an extended plane wave-front could be formed. Yet a plane image can in that way be formed of a plane object which gives off beams of light with a finite divergence angle. The law of image scale in such a system remains therefore to be investigated.

Fig. 104 will serve for this purpose.

Fig. 104.

It is obvious at a glance that in this unfocussed system the law is now not the sine law, for writing, as before, r_{ϵ} for the distance є . . . C and r_{η} for $\mathrm{C} \ldots \eta$, we have for the positions of ε_{1} and η_{1} respectively,

$$
\epsilon_{1} \ldots \epsilon=\tan \theta r_{\epsilon} ; \quad \eta \cdots \eta_{1}=\tan \theta r_{\eta}
$$

The images are still proportional to r_{ϵ} and r_{η}, for $\tan \theta$. like $\sin \theta$, is
constant throughout the system for a given ray. But the absolute axial distances are different, and different in the proportion $\frac{\tan \theta}{\sin \theta}$. It is evident that when θ is large this discrepancy becomes enormons.

But the tangent law does not apply only to unfocnssed beams. If we were to place a narrow-angled lens at C and canse it to rotate through the angle θ, adjusting its focal length to the $\sec \theta$ as it rotated, we should have focussed beams falling in the tangent positions. And it is equally plain that we should in that way obtain a flat field by an optical applian ce which could not yield an image of a plane wave-front. Such systems are in use. For the photographic camera they are indispensable. In panoramic cameras the lens actually rotates. But the rotation is not necessary to the embodiment of the principle. All that is indispensable is that the focal length should rary with the position angle θ, and in the ratio of $\sec \theta$. A fixed lens that satisfies this condition yields images on tangent scale.

The great advantage of a lens of that description lies in its breadth of field. The centred system, to use Helmholtz' term for the system first discussed, cannot cover a field any larger than its aperture. But this uncentred system, in which the optical axis wanders to all parts of the field, is limited only by the extravagant dimensions to which the tangent attains at very wide angles. Indeed, a panoramic camera, with a circular field, will take in an angle of 360°, and more too if you will let it. But then, of comrse, it substitutes the angle θ for its tangent as the modulus of the image scale. This case, therefore, does not fall within our present scope, since we are only concerned with the formation of images in flat fields.

It may be useful, however, to point out that there are three and only three practicable image scales for aplanatic systems and that these three scales are related to one another as the sine, arc and tangent. The sine scale applies to centred systems with flat fields, the arc scale to systems centred or uncentred with spherical fields and the tangent scale to uncentred systems with flat fields. It is not possible to deal with the one system fully apart from the others for we may have a spherical image of a flat object or vice versî and again we may have a centred system with its fixed optical axis on one side of the aperture, and an uncentred system with its wandering optical axis on the other side of the aperture. We are at present, however, only concerned with the sine and tangent scales ;-but even so it is simplest to begin by considering. all three scales together.

Fig. 105 exhibits these relations at a glance. Here we have three fields which have a common point upon the common axis and a common position angle θ at the common optical centre C. The scales are obviously proportional to the lengths which subtend this common angle, that is to say, they are proportional to $\eta \ldots \eta_{u}, \eta \ldots \eta_{s}$, and $\eta \ldots \eta_{t}$ respectively. If we take the length of the are as the standard magnitude and denote it by A we shall hare for the sine scale $S=\frac{\sin \theta}{\theta} A$,
subject to the proviso that θ is not to be greater than $\frac{\pi}{2}$. For the tangent scale we have in like manner

$$
\begin{equation*}
\mathrm{T}=\frac{\tan \theta}{\theta} \mathrm{A} \tag{14}
\end{equation*}
$$

subject to the same proviso.
So, again, connecting the sine and tangent scales directly, we have the equation

$$
\begin{equation*}
\mathrm{T}=\frac{\mathrm{S}}{\cos \theta} \tag{15}
\end{equation*}
$$

These magnitudes are measured upon the surfaces in which the images are formed. It is obvious that the sine and tangent seales are fully comparable to one another, for they are represented by straight lines.

Fig. 105.

If in the arc scale we inquire for axial distances we find, of course, that they coincide with the seale measurement of the sine scale so that the sine law applies to axial distances in spherical fields.

But we have still to investigate these relations, substituting the divergence angle u for the position angle θ, and in proceeding to do so it is useful to remember that as betreen conjugate images we may determine the scale of magnification by observations made in any part of the field. It is quite true, and will presently appear, that in the tangent field the magnifying power varies from zone to zone, whereas in the sine field it is uniform all over the area of the field and hence an unsymmetrical system giving a sine image in one field and a tangent image in the other, although it might be aplanatic, could not yield an undistorted image. But an image in one tangent field of an object in another tangent field is not impaired by the variation of magnifying power, for, as the position angle θ is of necessity the same for both conjugate points, the change in apparent magnitude of the object is proportional to what the image gains by the alteration of focal length, and so the correctness of the projection is maintained. We must, therefore, postulate symmetry in this sense and may then assume uniform magnifying power in any kind of field.

That being granted, it is easy to see that we are at liberty to choose
for comparison any conjugate areas in the object and image fields and we shall find it convenient to choose for a criterion a radial line equal to half the diameter of the aperture and having one end on the axis. With this datmm we construet the following diagram (fig. 106).

Here C is the optieal centre ; C $\ldots \eta$ the optical axis; A $\ldots \eta_{\eta}$ is a line drawn parallel to the axis from the edge of the aperture. It denotes, therefore, the projection of the aperture upon all the fields and wave-fronts throngh which it passes. We will select for comparison two fields distant r_{1} and r_{η} respectively from the aperture. If now we describe the spherical fields sitnate at these distances and draw the position angles θ_{1} and θ_{η} to the points where these tro fields are cut by the edge line $\mathrm{A} \ldots \eta_{\eta}$, we shall evidently have tro position angles equal

F1G. 106.
to the two divergence angles u_{1} and u_{η} each to each. We already know in general how these different image scales are related to their position angles, and as we have now obtained an equation between position angles and divergence angles we can extend the law to divergence angles.

Assume, then, two points η_{1} and η_{η} positioned by the angles θ_{1} and θ_{η} respectively in the r_{1} and r_{η} images. The images will be proportional to r_{1} and r_{n}, and therefore the magnitude A . . C or its equivalent (which we will call β_{1}) in the two image planes respectively will have scale values respectively proportional to $\frac{1}{r_{i}}$ and $\frac{1}{r_{\eta}}$.

Now

$$
\begin{align*}
\beta_{1} & =\sin \theta_{1} r_{1} \\
& =\sin \theta_{\eta} r_{\eta} . \tag{16}\\
& =\& e .
\end{align*}
$$

Or substituting for these position angles the divergence angles equal to them we have for (16)

$$
\beta_{1}=\sin u_{\eta} r_{\eta} .
$$

Furthermore, if we write β_{s} for the image in the sine field produced in the r_{η} plane, we shall have

$$
\begin{gathered}
\beta_{1} \\
r_{1}
\end{gathered}=\frac{\beta_{s}}{r_{\eta}},
$$

and multiplying both sides of the last equation by this constant, we obtain

$$
\frac{\beta_{1}^{2}}{r_{1}}=\sin u_{\eta} \beta_{s}
$$

Here the first member of the equation is a constant, and as the equation holds for all valnes of $2 r_{\eta}$ the second member must be a constant also. Therefore

$$
\begin{equation*}
\sin u_{\eta} \beta_{s}=\text { a constant } \tag{17}
\end{equation*}
$$

which again is Helmholtz' law in a slightly altered form.
From this result it is a simple matter to infer the corresponding rule concerning images mpon the tangent scale. For we know that β_{t} the image on the tangent scale, formed in the same plane of the same object, is related to the sine image β_{s} in the same way as the tangent and sine scales. Therefore by (15)

$$
\beta_{s}=\cos u_{\eta} \beta_{t} .
$$

Substituting this expression in (17), we obtain

$$
\sin u_{\eta} \cos u_{\eta} \beta_{t}=a \text { constant }
$$

$$
=\frac{1}{2} \sin 2 u_{\eta} \beta_{t .} \quad . \cdot \sin 2 u_{\eta} \beta_{t}=\text { constant. }
$$

The angle $\sum u(=$ the angular aperture $)$ therefore takes the place of the divergence angle when we pass from the centred to the uncentred system, and it is of interest to note that upon the analogy of Helmholtz' law for the centred system we have now obtained for the uncentred system the rule

$$
\begin{equation*}
u_{\epsilon} \sin 2 u_{\epsilon} \beta_{\epsilon}=n_{\eta} \sin 2 u_{\eta} \beta_{\eta} . \tag{18}
\end{equation*}
$$

It forms no part of my present purpose to pursue the discussion of these matters beyond the point now reached, but I have in conclusion to consider, and in the light of these results to offer a few observations upon, Hockin's proof of the sine law.

Hockin's proof may be shortly stated thus (fig. 107) : *
The line $\epsilon \ldots \eta$ is the optical axis; $\mathrm{A}_{1} \ldots \mathrm{~A}_{2}$ is an image-forming aperture $; c_{1} \ldots c_{2}$ is the principal focal plane; $\epsilon \ldots \epsilon_{1}$ and $\epsilon \ldots \epsilon_{2}$

[^239]are two plane wave-fronts at an angle to one another as shown; c_{1} and c_{2} are the two points in the principal focal plane in which they respectively come to focus; $\eta \ldots \eta_{1}$ is the spherical image of $\epsilon \ldots \epsilon_{1}$, and $\eta \ldots \eta_{2}$ is the spherical image of $\epsilon \ldots \epsilon_{2}$. In this figure four optical paths are traced, and our author first shows that they are all equal. This is easily done, for they are paths connecting conjugate points on two wave-fronts and their images. They must therefore at least form pairs of equal paths, for the two rays from the wave-front $\epsilon \ldots \epsilon_{1}$ to its focus c_{1} must be optically equal to one another, as also the two rays from its image $\eta \ldots \eta_{1}$ to the same focus. Therefore the total path $\epsilon \cdots \eta=\epsilon_{1} \cdots \eta_{1}$.

Fig. 107.
In like mamer, it can be shown that

$$
\epsilon_{2} \cdots \eta_{2}=\epsilon \cdots \eta .
$$

But since $\epsilon_{1} \ldots \eta_{1}$ and $\epsilon_{2} \ldots \eta_{2}$ are both equal to $\epsilon \ldots \eta$, they must be equal to one another. Now, tracing these two paths on the diagram, we observe that the part from ϵ_{1} to η_{2} is common to them, and deducting this common part we are left with $\epsilon_{2} \ldots \epsilon_{1}$ at one end, and $\eta_{2} \ldots \eta_{1}$ at the other end, which therefore must also be equal to one another.

We have therefore the two triangles $\epsilon \epsilon_{1} \epsilon_{2}$ and $\eta \eta_{1} \eta_{2}$, so proportioned that the perpendicular $\epsilon_{1} \ldots \epsilon_{2}$ of the one is equal to the perpendicular $\eta_{1} \ldots \eta_{2}$ of the other. As shown in the diagram, $\eta \eta_{1} \eta_{2}$ is a curvilinear triangle, but if we assume that the wave-fronts are made extremely narrow, it will approximate in the end indefinitely to a rectilinear triangle, its perpendicular $\eta_{1} \ldots \eta_{2}$ always remaining equal to $\epsilon_{1} \ldots \epsilon_{2}$ and its angle at the point η being equal to the divergence angle u_{η}. In like manner, the angle at ϵ of the triangle $\epsilon_{1} \epsilon_{2}$ is equal to the divergence angle u_{ϵ}. So much being premised, we now observe that

$$
\sin u_{\eta}\left(\eta \ldots \eta_{1}\right)=\sin u_{\epsilon}\left(\epsilon \ldots \epsilon_{1}\right),
$$

but subject to the proviso that the magnitude $\eta \ldots \eta_{1}$ is so small that although it actually has the form of an are, that arc may be identified with its own tangent.

The Helmholtz Theory of the Microscope. By J. W. Gordon. 437

Now this, it will be seen, falls very far short of being a proof of the sine law, as established by Helmholtz. And the reason is quite clear. Hockin has endeavoured to establish the relation between a plane object and its spherical image, and between them the relation actually does not hold. It is trie, as we now know, for the axial distance of η_{1}, but for the distance $\eta \cdots \eta_{1}$ measured on the sphere, if that distance has any finite magnitude, it is not true.

But Hockin, althongh he failed of proving the sine law, did not fail by much, and a very slight modification of his proof makes it perfectly valid. In fig. 108 the essential parts of Hockin's diagram are reproduced with the addition of a second aperture and lens to give a flat form to the image $\eta \ldots \eta_{1}$, and then it will be seen that it can be used for the proof of the sine law.

Fite. 108.

Here the proof concerning the equality of all the optical paths remains unaltered, for the second lens has only altered the form of the transmitted wave-fronts, they still remain the identical wave-fronts and therefore equidistant at every point from their foci c_{1} and c_{2}. It follows, therefore, that $\eta_{1} \ldots \eta_{2}$ is in this arrangement, as in the original, equal to $\epsilon_{1} \ldots \epsilon_{2}$, and the two wave-fronts $\eta \ldots \eta_{1}$ and $\eta \ldots \eta_{2}$ are, by hypothesis, perpendicular to the rays along which they travel. Here, then, we have a rectilinear, right-angled triangle, having its perpendicular $\eta_{1} \ldots \eta_{2}$ equal to $\epsilon_{1} \ldots \epsilon_{2}$, and its angle $\eta_{1} \eta \eta_{2}$ equal to the divergence angle u_{η}. Therefore

$$
\sin u_{\eta}\left(\eta \cdots \eta_{1}\right)=\sin u_{\epsilon}\left(\epsilon \ldots \epsilon_{1}\right) ;
$$

and the proof under these conditions applies to conjugate images $\epsilon \ldots \epsilon_{1}$ and $\eta \ldots \eta_{1}$ of any magnitude. But the conditions are that there shall be an optical centre C_{1}, at which the positioning angle θ can be measured, and on either side of this centre a refracting surface distant from it by its principal focal length to render the direct and the reverted wave-fronts flat before they reach the image-plane. Hockin's construction does not satisfy this latter condition, and hence the failure of his proof.

Additional Note.

Since the reading of this paper Dr. G. Lindsay Johnson has very obligingly drawn my attention to a paper by Prof. J. D. Everett, which appears in the 18th volume of the Procceelinys of the Physical Society, p. 166. In that paper Prof. Everett animadverts upon the form of Hockin's proof here discussed, and reproduces the original form from the Journal of this Society, 1881, ser. 2, iv. p. $: 3: 7$.

Of that original proof it would not be correct to say that Hockin's construction does not satisfy the condition of yielding a plane image of a plane object. On the contrary, his construction is sufficiently general to include both figs. 107 and 108 of the foregoing diagrams, and the mathematics of Hockin's own proof camot be called in question. But the failure to isolate the case of the plane image of a plane object (fig. 108) is itself a vice. The proof, even in its authentic form, is too general, and by reason of this generality is umecessarily limited to the case of infinitesimally small images.

Note II.-The Uliniate Limit of Resolving Power.

Helmholtz, as is stated above (p. 416), lays down, and withont proof, the proposition that adjacent lines in a ruled surface will be indistinguishable if their diffraction fringes overlap completely, so that the free edge of the one lies upon the engaged edge of the other. This is the same thing as saying that they will be indistinguishable if their adjacent edges lie nearer together than the length of one-half of the diameter of the false disc of the antipoint, for, as we have seen, the autipoint is the image of the diffraction fringe strromding a luminous point. The difficulty of dealing with this proposition arises from the fact that Helmholtz does not, in fact, adduce any proof of it, so that there is nothing bot his ipse dixit to be met. But perhaps it is not illegitimate to supply this defect from another source, and as Lord Rayleigh has laid down and discnssed what appears to be in snlstance the same proposition in an article on "Resolving or Separating Power of Optical Instruments," * I borrow the following demonstration from that source. To prevent any misconception it should be added that Lord Rayleigh's paper is written with special reference to the spectroscope and that its author is not, so far as I am aware, directly responsible for the proposition that half a wave-length of light is the physical limit of resolving power in the Microscope. But the passage which I propose to quote appears to be equally applicable to both instruments, and in any case furnishes material by the aid of which the case of the Nicroscope may be very usefnlly investigated.
"The curve A B C D represents the values of $u^{-2} \sin u^{2}$ from $u=0$ to $u=3 \pi$. The part corresponding to negative values of u is similar, 0 A being a line of symmetry.

[^240]"Let us now consider the distribution of brightness in the image of a double line whose components are of equal strength and at such an angular interval that the central line in the image of one coineides with the first zero of lorightness in the image of the other. In fig. 1* the curve of brightness for one component is ABCD and for the other $O \mathrm{~A}^{\prime} \mathrm{C}^{\prime}$; and the curve representing half the combined brightnesses is $\mathrm{E}^{\prime} \mathrm{BEF}$. The brightness (eorresponding to B) midway between the two central points $\mathrm{A}, \mathrm{A}^{\prime}$ is $: 8106$ of the brightness at the central points themselves. We may consider this to be about the limit of eloseness at which there could be any decided appearance of resolution. The obliquity corresponding to $u=\pi$ is such that the phases of the

Fitg. 109. secondary waves range over a complete period, i.e. such that the projection of the horizontal aperture upon this direction is one wave-length. We conclude that a double line camnot be fairly resolved unless its components subtend an angle exceeding that subtended by the wave-length of light at a distance equal to the horizontal "perture."

Now, it is to be observed, coneerning this proof, that the lightintensity curve here shown is not the light-intensity curve of a very narrow rectilinear surface-such as would be commonly called a linebut on the contrary, it is the light-intensity curve, calculated for a mathematic point, such leing assumed to be the source of light. Such an imaginary source differs, therefore, from any possible sonice of light in the important particnlar that it has no radiating surface and its lightintensity curve does not, in fact, exhibit the properties of a light-intensity curve derived from even the smallest imaginable surface. It represents only the infinitesimal element of such a curve from which the curve itself must be derived by integration. Treating it as such, it is easy to show that as a matter of theory, the semidiameter of the antipoint is not the limit of resolving power in a perfeet instrument.

This may be shown without any recourse to abstruse mathematics by a very slight modification of Lord Rayleigh's diagram. Let it be assumed that four "lines" delineated by means of antipoints such as Lord Rayleigh has figured lie side by side, distant $\frac{1}{1^{\frac{1}{6}} \text { of a wave-length }}$ from one another. We may treat such a group as constituting a cquasisurface. It will be a narrow surface, for its lreadth is but $\frac{1}{4} \lambda$, and it will be visibly an unhroken surface if we assume that two lines lying within $\frac{1}{15} \lambda$ of one another will be indistinguishably fused together in the optical image. Let us next assume that in place of the mathematical lines of fig. 109 we have two such narrow surfaces lying side ly side with an interval of $\frac{1}{2} \lambda$ between them. We shall then obtain a result indicated by fig. 110. Here, in addition to the antipoint curves, we have five total illumination curves laid down. The two antipoints marked $1 \ldots 1$ will yield the total light curve I in fig. 109. The pair marked $2 \ldots 2$ will in like manner yield the total light curve II, and so of the re-

[^241]maining pairs $: . . .3$ and 4...4. If now we add these four resultant curves together in order to obtain a grand total light curve, we produce a curve which being reduced to a convenient scale, takes the form shown in fig. 110, V. Now here it is to be observed that leetween the maximum and minimum points the difference is not 19 p.e., as in curve No. 109, but 50 p.c. Lord Rayleigh

FIG. 110. supposes that a difference of 19 p.c. in brightness in the interval between two bright lines is just sufficient for resolntion. If so, then it is clear that with two groups of lines such as we have here the resolution wonld be complete.

It is to be further remarked that the figure which yields this result does not really represent even a colloquial line, but rather a small aperture, of which the $\frac{1}{4} \lambda$ with which we have credited it is the larger dimension. For it is clear that if there were other antipoints seated along these lines before and behind the plane of the paper, they would push their toes-so to speak -under the summits of the antipoints bisected by the plane of the paper on their own side of the division and so produce a further increase in the maximum brightness. It is of conrse true that they would raise the brightness of the minimum to some extent in the same way, but not to the same extent, for not even the front row of antipoints could add quite one-half as much to the brightness of the minimum as to the brightness of the maximum, and the hinder rows would add much less than half. Hence, although the antipoints from both sides combine to raise the brightness of the minimum, whereas those only from one side contribute added brightness to the maximum, the effect so produced when there is an interval of $\frac{1}{2} \lambda$ between the nearest lines of the two systems must be to heighten the resolution of the bright lines. It appears certain, therefore, that these two bright "lines"lying at an interral of $\frac{1}{2} \lambda$ from one another would be fully and even brilliantly resolved in the image formed of them by a perfectly corrected lens.

The matter thins set at large de-

Fig. 111. mands fresh and attentive consideration, and perhaps I may be permitted, without attempting an exhanstive treatment of it, to contribute the following observations to its discussion.

Assmme for the sake of simplieity that the light-intensity curve of the antipoint has the simple form shown in fig. 111. (This form does actually correspond to the light-curve for the antipoint of a square aperture along a section parallel to one of the sides of the square.) Further, for the sake of simplicity again, let us ignore the bright rings denoted by dotted lines, and assume that the section represents a solid of rotation, so that the antipoint curve will present the same contouras in the case of the antipoint formed by a circular aperture-on all
aspects. We thus arrive at an upright cone, of which the base measures λ and the height is proportional to the amplitude of the undulation. The cone, therefore, may be formed with any angle, and in fig. 111 it is shown with an inclination equal to the mean slope of the curve in fig. 109, the corresponding points being denoted by the same letters in both diagrams.

Such being the light-intensity of the antipoint, suppose that it is moved along the path denoted in fig. 112, thas producing an optical line. It is plain that the line will be fringed by a pair of diffraction

Fig. 112.
bands each $\frac{1}{2} \lambda$ in breadth, and in which the light-intensity at any point will be proportioned to the area of those sections of the cone which have passed over the point. We thms obtain a new light-intensity curve as shown in fig. 11:, of which the ordinates are proportional to the hyperbolas that can be cut from the antipoint cone by planes parallel to the axis. Here then we have a new form of light-intensity curve, and leaving out of account the terminals of the line, we observe that the

Fig. 113.

Fig. 114.
form shown is not now a solid of revohution but a moulded volume bilaterally symmetrical about the vertical plane in which the line lies.

Having thus obtained our image-line, we may proceed to develop an image-surface from it by cansing it to move parallel to itself over the area to be depicted. The result is, of course, an accumulation of light on every point in the surface proportional to the area of the section of the fringe-curve which has passed over that point, and we thus obtain a final curve as shown in fig. 114, where the ordinates of the new curve are proportional to the areas of the curve in fig. 11\%. To save space this curve is drawn to a reduced scale-one-half the scale of fig. 113.

Comparing this with the preceding curres, there are several points. which deserve notice. In the first place, the hase of the curvilinear area las, as before, a diameter $=\lambda$. But now the symmetry is not bilateral. On the contrary, the ordinate of the curve at a distance $\because \pi(=\lambda)$ from its origin is donble the height of the ordinate at the middle point of the base A^{\prime}. Furthermore, the two halves, upper and lower, of the curve are now equal and similar.

Let us now make once more, with this new curve, the experiment illustrated in fig. 109. This is shown in fig. 115. In this diagram the total light-curve, shown by the dotted line, has been remored from the middle of the figure to its natural place on the scale, and it will be observed that owing to the similarity of the lower and upper halves of the curves the total light is now uniform all over. It is to be observed also that the illuminated surfaces (represented by their sections beneath the light-curves in the diagram) are now in contact with one another, for the point A^{\prime} stands vertically over the edge of the illuminated area. This case, therefore, in which the light-intensity curves of the adjacent. edges of two infinite surfaces bisect and exactly supplement one another,

Fig. 115.

Fig. 116.
corresponds to a state of things in which the surfaces are in physical contact, and not to a state of things, as supposed by Helmholtz, in which they are separated by an interval of $\frac{1}{2} \lambda$.

But suppose, further, that the surfaces do not extend for indefinite distances away from the line of contact but are very narrow, that is to say, less in diameter than $\frac{1}{2} \lambda$, the distance for which the fully developed light-intensity curve extends back over the illuminated surface. In that case the area of the fringe-curve which passes over any point in the formation of the surface will be proportionably reduced, with the general result that the final curve will become unsymmetrical, the lower half growing hollower and the upper half being cut short. Fig. 116 shows the light-intensities across a narrorw baud assumed to be $\frac{\lambda}{8}$ in breadth. The intersection of two such light-intensity eurves is shown, together with the total light curve ; from this it appears that even with such narrow surfaces as these, there is a falling off of illumination in the middle of the half wave-length gap between them which amounts to 25 per cent. Thus, in this extreme case where our finest existing instruments would certainly fail to produce a resolved image, we find
the conditions satisfied which Lord Rayleigh lays down as neeessary for just perceptible resolution. Incidentally it thins appears that Dr. Dallinger's famous measurement of the flagellum of Buterium termo, with a breadth of about one-quarter of a wave-length, would be well within the capabilities of a perfectly correeted lens. Ultmately, if the breadth of the luminous surfices were indefinitely cut down we should, of course, return to the fringe-curre of fig. 11: from which we started.

Finally, it appears that the magnitude $\frac{\lambda}{2}$ to which so much importance has for a long period of time been attribnted, even by physieists of the highest standing, as setting the ultimate limit of resolving power, is in truth quite imnocent of any such propensity, and that its bad reputation is owing simply to an orersight in the condnet of a calculation. The oversight would have been unimportant if it had led only to a miseonception as to the form of the light-intensity curve at the boundary of a bright surface, for the contours of one-half of the autipoint-curye and of the total light curve are in fact very nearly similar. But the importance of the oversight lies in this, that it leads to misconception as to the position of the light-intensity curve in relation to the object. The radiant point lies in the case of the antipoint-curve under the highest. point of the curve, and in the other case the outmost radiant point of the surface lies some distance beyond the highest point of the curve. Hence the edge of the luminous surface has been displaced by what amounts in the case of a large surface to $\frac{1}{2} \lambda$, and this has led to the inference that the appearance of a contimnons surface would be seen when there was in fact a gap of $\frac{1}{2} \lambda$ bridged over by diffracted light.

Note III.-Note to Page 410.

It mar le well to add an explanation of the rule deduced on p .410 concerning the absence of diffraction from a focal plane. This does not, of course, imply that an aperture ceases to produce diffrraction if light he focussed in its plane, although this seems to have been supposed. Helmholtz himself describes the failure of an experiment, planned apparently on the supposition that the focussing of the sonree of light within an aperture, would eutirely suppress all diffraction whatsoever * from that aperture. But any such impression must be due to a mere oversight. For there passes with the focal light, light that is derived from wave-fronts not yet lrought to focus in front of the aperture, and if we make our arrungements so that the eye focusses upon one of these ware-fronts it becomes the effective source of light, and the focal plane in the aperture only a region in which the light from that comparatively feeble source has to make its way throngh much extraneons light from other sources. Hence, it is always possible to demonstrate the diffraction from any aperture however illuminated. What the rule dedueed on p. 410 tells us is that diffraction from the aperture in question will be entirely suppressed in all focal planes conjugate to the plaue of the aperture.

[^242]Now if that plane be occupied by focal light compared to which all neighbouring light must be feeble, we may be sure that the image produced by the focal light will not be greatly disturbed by the diffraction from unfocussed wave-fronts.

Note IV.-Dr. Fripp's Traxslation of Helaholyz' Paper.

Readers of Dr. Fripp's translation of Helmholtz' paper, referred to in the headnote under the titles of the Montluy Microscopical Journal and the Proceedings of the Bristol Naturalists' Society, should be warned that the diagram which appears as the second diagram in that paperto illnstrate equation (6)-is not in the original paper and is entirely incorrect. Helmholtz postulates a small plane area for his object $d \mathrm{~S}$ and its plane image $d s$. Dr. Fripp has fallen into the error of translating the word Flächenelement used by Hehmholtz ly the word "point," with the result that the entire passage relating to equation (6) is unintelligible in his translation. But as I am compelled to publish this criticism of Dr. Fripp's work I trast that I may be allowed to add that this one is, so far as I know, the only serions lilot on a piece of translation which is otherwise admirable, both for accuracy of rendering and for telicity of style.

Note V.-Note to Page 419.

A diffraction grating produces not one only but three diffraction fringes on three different scales of magnitude. The hroadest, which may be called No. 1, is due to the single bright line of the ruling, and its breadth is inversely proportional to the breadth of that line--the luminous component of the grating. But this diffraction fringe is so masked by the other two as to be scarcely discernible. Fringe No. 2 is the most conspicuous of the three. It is proportional inversely to the breadth of the grating element consisting of one bright and one dark component, and it passes from maximum to minimum brightness in an angular breadth comprising one half set of phase ralues. In the common case, therefore, of a grating with bright and dark lines of equal breadth, the breadth of fringe No. 2 is one-fourth part of the breadth of fringe No. 1. It is a comparatively brilliant object, and is commonly spoken of as the fringe formed by its grating. Fringe No. 3 is formed by the entire surface occupied by the grating operating as a single aperture. It is inversely proportional to the whole diameter of the grating, therefore, and its breadth has no definite relation to the dimensions of the other two fringes. But, as a rule, it is microscopically small, and for that reason it is usually ignored altogether. But when the question is one of testing by experiment the resolving power of a given antipoint the presence of this minute diffraction fringe camot be ignored, if it be present, for it will itself be the principal factor in determining the state of resolution of the resulting image.

Expernents shown at the Meetinc.

.- 1. Showing the dependence of the diffraction pattern upon the radius of curvature of the wave-front which passes the aperture.- In this experiment a diffraction grating is monnted on the stage. The object is the image formed by the condenser of the slide monnted in front of the lamp. By moving the condenser up and down its focal plane can be made to coincide with the diffraction grating on the stage or to lie bencath it; the distance between the focal plane and the diffraction grating being, of course, the radius of curvature of the wave-front. It will be seen that as the focal plane approaches the grating the displacement due to diffraction diminishes, and when the two coincide it disappears. The two diffraction gratings which lie side by side on the stage are ruled, one with spaces double the breadth of the spaces of the other. See above, p. 410.

2 . Invading antipoints.-In this experiment a shutter is arransed behind the objective, which, by turning the handle on the base-board, can be gradually introduced into the tube of the instrument. It is to be noted that the advancing shatter destroys the resolution of the image by eutting down the eccentric beams, so that its effect is produced upon the centre of the field before the edge of the shutter itself appears in the instrument. See above, pp. 411 to 413 .
:3. Oscillating screen ; electrically actuated. Designed and exhibited by Mr. E. Russell Clarke.--In this experiment the oscillating screen is driven electrically at a very high speed ranging, according to the number of oscillations in the electrical supply, at somewhere about 80 excursions a second. Note in this case the entire absence of any visible trace of the screen duc to the high speed of vibration. Note further that the high speed makes for the steadiness of the instrument as the oscillation is too rapid to be sensibly communicated to the tube. In order to secure this freedom from vibration the mounting in which the screen oscillates is made heavy so as to take up its vibrations, and is supported by means of rubber washers upon the Microscope frame. See above, p. 420.
:3A. Oscillating lamp filament.-The Microscope in Experiment No. 3 is illuminated by an electric lamp whose filament is fixed on the screen. The filament is caused to vibrate at a high periodicity, thereby producing a brilliant surface of focal light, instead of a straight line.
4. Oscillating sereen driven by a spring motor for visual demon-stration.-In this experiment the speed of the oscillating screen is comparatively low-about three excursions a second. The object exhibited is P. ang. magnified about 8000 diameters. Side by side with this Microscope there is arranged a twin instrument having exactly the same optical arrangements, except that it is not provided with a screen, giving the same magnifying power therefore, and exhibiting the sume diatom. Note the imperfect definition of the aerial image and the number of intrusive spots, and compare with it the clean appearance and sharp definition of the screen image.
5. Oscillating sereen for photographic use.-In this experiment the compounding draw-tube takes the place of the optical bench, and a magnification of about 400 diameters is obtained direct, and the negative so formed will usually bear enlargement four or five times in printing.

Aug. 19th, 1903

The specimens exhibitel this evening have been produced in this instrument. Note the slow speed of oseillation-not more than about seven excursions a minute.
6. Illumination of the stage.-In this experiment a shatter is mounted with two apertures, one of which allows the whole stage to be flooded with light ; the other euts off the light exeept from the centre of the stage which is aetually under observation. Note the strengthening of the image which results from snbstituting the small aperture for he large one. See above, p. 425.

EXPLANATION OF PLATE Mf.

Fig. !s (see text, p. 415).

Figs. I., IL., and III. The Bacillts of Anthrax, magnified $400 \times 2 \frac{1}{2}=1000$ times.
Fig. I. The specimen photographed through an oscillating screen.
Fig. II. The image seen upon the screen at rest (showing grain of the screen).
Fig. III. The same object seen in the same instrument without the screen.
The apparatus used in the production of these photographs was a compounding draw-tube as described (p. 421), fitted with $\frac{1}{17}$ oil-immersion by Beck as the principal objective, with a $\frac{1}{2}$-in. by the same makers as the second objective. These objectives were not selceted on any principle of special adaptation to co-operative working, and in fact it will be seen how little adapted they are to work together from the flare spot in Fig. III.

Fig. III. shows the "peculiarly spotty appearance of the field under excessive magnitication," to which Helmholtz refers (see p. 401). With an oscillating sereen this apparatus gives a very pléasing image to the eye with amplifications amounting to as much as 8000 diameters.

JOURN. R. MICR. SOC. 1903. PI. VI.

Fig. 98

II

VII.-On the Theory of Optical. Images, with Special Referener to the Microscope.

By Lord Rayleigh.*

(Reprinted by permission from the Philosophical Magazine, August 1896.)
Tue special subject of this paper has been treated from two distinct points of view. In the work of Helmholtz \dagger the method followed is analogous to that which had long been used in the theory of the telescope. It consists in tracing the image representative of a mathematical point in the object, the point being regarded as selfluminous. The limit to definition depends upon the fact that owing to diffiraction the image thrown even by a perfect lens is not confined to a point, but distends itself over a patch or disk of light of finite diameter. Two points in the object can appear fully separated only when the representative disks are nearly clear of one another. The application to the microscope was traced by means of a somewhat extended form of Lagrange's general optical theorem, and the conclusion was reached that the smallest resolvable distance ϵ is given by

$$
\begin{equation*}
\epsilon=\frac{1}{2} \lambda / \sin a, \tag{1}
\end{equation*}
$$

λ being the wave-length in the medium where the object is situated, and a the divergence-angle of the extreme ray (the semi-angular aperture) in the same medium. If λ_{0} be the wave-length in vacuum,

$$
\begin{equation*}
\lambda=\lambda_{0} / \mu, \tag{2}
\end{equation*}
$$

μ being the refractive index of the medium ; and thus

$$
\begin{equation*}
\epsilon=\frac{1}{2} \lambda_{0} / \mu \sin a . \tag{3}
\end{equation*}
$$

The denominator $\mu \sin a$ is the quantity now well known (after Abbe) as the "numerical aperture."

The extreme value possible for \dot{a} is a right angle, so that for the microscopic limit we have

$$
\begin{equation*}
\epsilon=\frac{1}{2} \lambda_{0} / \mu . \tag{4}
\end{equation*}
$$

[^243]The limit can be depressed only by a diminution in λ_{0}, such as photography makes possible, or by an increase in μ, the refractive index of the medimm in which the object is situated.

This method, in which the object is considered point by point, seems the most straight-forward, and to a great extent it solves the problem without more ado. When the representative disks are thoronghly clear of one another, the two points in which they originate are resolved, and on the other hand, when the disks overlap the points are not distinctly separated. Open questions can relate only to intermediate cases of partial overlapping and various degrees of resolution. In these cases (as has been insisted upon by Dr. Stoney) we have to consider the relative phases of the overlapping lights before we can arrive at a complete conclusion.

If the various points of the object are self-luminous, there is no permanent phase-relation between the lights of the overlapping disks, and the resultant illumination is arrived at by simple addition of separate intensities. This is the situation of affairs in the ordinary use of a telescope, whether the object be a double star, the disk of the sun, the disk of the moon, or a terrestrial body. The distribution of light in the image of a double point, or of a double line, was especially considered in a former paper,* and we shall turn to the subject later.

When, as sometimes happens in the use of the telescope, and more frequently in the use of the microscope, the overlapping lights have permanent phase-relations, these intermediate cases require a further treatment; and this is a matter of some importance as involving the behaviour of the instrument in respect to the finest detail which it is capable of rendering. We shall see that the image of a double point under various conditions can be delineated without difficulty.

In the earliest paper by Prof. Albe \dagger which somewhat preceded that of Helmholtz, similar conclusions were reached; but the demonstrations were deferred, and, indeed, they do not appear ever to have been set forth in a systematic manner. Although some of the positions then taken up, as for example that the larger features and the finer structure of a microscopic object are delineated by different processes, have since had to be abandoned, \ddagger the publication of this paper marks a great advance, and has contributed powerfully to the modern development of the microscope.§

[^244]In Prof. Abbe's method of treating the matter the typical object is not a luminous point, but a grating illuminated by plane waves. Thence arise the well-known diffraction spectra, which are focussed near the back of the object-glass in its principal focal plane. If the light be homogeneous, the spectra are reduced to points, and the final inage may be regarded as due to the simultaneous action of these points acting as secondary centres of light. It is argued that the complete representation of the object requires the cooperation of all the spectra. When only a few are present, the representation is imperfect; and when there is only one-for this purpose the central inage counts as a spectrum-the representation wholly fails.

That this point of view offers great advantages, at least when the object under consideration is really a grating, is at once evident. More especially is this the case in respect of the question of the limit of resolation. It is certain that if one spectrum only be

Fig. 117.
operative, the image must consist of a uniform field of light, and that no sign can appear of the real periodic structure of the object. From this consideration the resolving-power is readily deduced, and it may be convenient to recapitulate the argument for the case of perpendicular incidence. In fig. 117 AB represents the axis, A being in the plane of the object (grating) and B in the plane of the image. The various diffraction spectra are focussed by the lens $L L^{\prime}$ in the principal focal plane, S_{0} representing the central image due to rays which issue normally from the grating. After passing S_{0} the rays diverge in a cone corresponding to the aperture of the lens and illuminate a circle CD in the plane of the image, whose centre is B . The first lateral spectrum S_{1} is formed by rays diffracted from the grating at a certain angle; and in the critical case the region of the image illuminated by the rays diverging from S_{1} just includes B. The extreme ray $S_{1} B$ evideutly proceeds from A, which is the image of B. The condlition for
the co-operation at \mathbf{B} of the first lateral spectrum is thus that the angle of diffraction do not exceed the semi-angular aperture a. By elementary theory we know that the sine of the angle of diffraction is λ / ϵ, so that the action of the lateral spectrum requires that $\epsilon \operatorname{exceed} \lambda / \sin a$. If we allow the incidence upon the grating to be oblique, the limit becomes $\frac{1}{2} \lambda / \sin a$, as in (1).

We have seen that if one spectrum only illuminate B, the field shows no structure. If two spectra illuminate it with equal intensities, the field is occupied by ordinary interference bands, exactly as in the well known experiments of Fresnel. And it is important to remark that the character of these bands is always the same, both as respects the graduation of light and shade, and in the fact that they have no focus. When more than two spectra co-operate, the resulting interference phenomena are more complicated, and there is opportunity for a completer representation of the special features of the original grating.*

While it is certain that the image ultimately formed may be considered to be due to the spectra focussed at $\mathrm{S}_{0}, \mathrm{~S}_{1} \ldots$. ., the degree of conformity of the image to the original object is another question. From some of the expositions that have been given it might be inferred that if all the spectra emitted from the grating were utilised, the image would be a complete representation of the original. By considering the case of a very fine grating, which might afford no lateral spectra at all, it is easy to see that this conclusion is incorrect, but the matter stands in need of further elucidation. Again, it is not quite clear at what point the utilisation of a spectrum really begins. All the spectra which the grating is competent to furnish are focussed in the plane $S_{0} S_{1}$; and some of them might be supposed to operate partially even although the part of the image under examination is outside the geometrical cone defined by the aperture of the object-glass. For these and other reasons it will be seen that the spectrum theory, \dagger

[^245]valuable as it is, needs a good deal of supplementing, even when the representation of a grating under parallel light is in question.

When the object under examination is not a grating or a structure in which the pattern is repeated an indefinite number of times, but for example a double point, and when the incident light is not parallel, the spectrum theory, as hitherto developed, is inapplicable. As an extreme example of the latter case we may imagine the grating to be self-illuminous. It is obvious that the problem thus presented must be within the scope of any complete theory, and equally so that here there are no spectra formed, as these require the radiations from the different elements of the grating to possess permanent phase-relations. It appears, therefore, to be a desideratum that the matter should be reconsidered from the older point of view, according to which the typical object is a point and not a grating. Such a treatment illustrates the important principle that the theory of resolving-power is essentially the same for all instruments. The peculiarities of the microscope arise from the fact that the divergence-angles are not limited to be small, and from the different character of the illumination usually employed; but, theoretically considered, these are differences of detail. The investigation can, without much difficulty, be extended to gratings, and the results so obtained confirm for the most part the conclusions of the spectrum theory.

It will be convenient to commence our discussion by a simple investigation of the resolving-power of an optical instrument for a self-luminous double point, such as will be applicable equally to the telescope and to the microscope. In fig. 118 AB represents the axis, A being a point of the object and B a point of the image. By the operation of the object-glass $L L L^{\prime}$ all the rays issuing from A arrive in the same phase at \mathbf{B}. Thus if A be self-luminous, the illumination is a maximum at B, where all the secondary waves agree in phase. B is in fact the centre of the diffraction disk which constitutes the image of A. At neighbouring points the illumination is less, in consequence of the discrepancies of phase which there enter. In like manner, if we take a neighbouring point P in the plane of the object, the waves which issue from it will arrive at B with phases no longer absolutely accordant, and the discrepancy of phase will increase as the interval AP increases. When the interval is very small, the discrepancy of phase, though mathematically existent, produces no practical effect, and the illumination at B due to P is as important as that due to A, the

[^246]intensities of the two luminous centres being supposed equal. Under these conditions it is clear that A and P are not separated in the image. The question is, to what amount must the distance AI' be increased in order that the difference of situation may make itself felt in the image. This is necessarily a question of degree; but it does not require detailed calculations in order to show that the discrepancy first becomes conspicuous when the phases corresponding to the various secondary waves which travel from P to B . range over about a complete period. The illumination at B due to P then becomes comparatively small, indeed for some forms of aperture evanescent. The extreme discrepancy is that between the

Fig. 118.
waves which travel through the outermost parts of the object-glass at L and L^{\prime}; so that, if we adopt the above standard of resolution, the question is, where must P ' be situated in order that the relative retardation of the rays PL and PL' may on their arrival at B . amount to a wave-length (λ). In virtue of the general law that the reduced optical path is stationary in value, this retardation may be calculated without allowance for the different paths pursued on the further side of $\mathrm{L}, \mathrm{L}^{\prime}$, so that its value is simply $\mathrm{PL}-\mathrm{PL} \mathrm{L}^{\prime}$. Now since AP is very small, AL' - PL' is equal to AP. sin $a_{\text {, }}$. where a is the semi-angular aperture L'AB. In like manner PLAL has the same value, so that

$$
\mathrm{PL}-\mathrm{PL}^{\prime}=\geq \mathrm{AP} \cdot \sin a .
$$

According to the standard adopted, the condition of resolution is. therefore that AP, or ϵ, should exceed $\frac{1}{2} \lambda / \sin a$, as in (1). If ϵ be less than this, the images overlap too much; while if ϵ greatly exceed the above value the images become unnecessarily separated.

In the above argument the whole space between the object and the lens is supposed to be occupied by matter of one refractive index, and λ represents the wave-length in this medium of the kind of light employed. If the restriction as to uniformity be violated, what we have ultimately to do with is the wave-length in the medium immediately surrounding the object.

The statement of the law of resolving-power has been made in a form appropriate to the microscope, but it admits also of immediate application to the telescope. If 2 l be the diameter of
the object-glass, and D the distance of the object, the angle subtended by AP is ϵ / D, and the angular resolving-power is given by

$$
\begin{equation*}
\frac{\lambda}{2 \mathrm{D} \sin a}=\frac{\lambda}{2 \mathrm{I}^{\prime}} \tag{5}
\end{equation*}
$$

the well-known formula.
This method of derivation makes it obvious that there is no essential difference of principle between the two cases, although the results are conveniently stated in different forms. In the case of the telescope we have to do with a linear measure of aperture and an angular limit of resolution, whereas in the case of the microscope the limit of resolution is linear and is expressed in terms of angular aperture.

In the above discussion it has been supposed for the sake of simplicity that the points to be discriminated are self-luminons, or at least behave as if they were such. It is of interest to inquire how far this condition can be satisfied when the object is seen by borrowed light. We may imagine that the object takes the form of an opaque screen, perforated at two points, and illuminated by distant sources situated behind.

If the source of light be reduced to a point, so that a single train of plane waves falls upon the screen, there is a permanent phase-relation between the waves incident at the two points, and therefore also between the waves scattered from them. In this case the two points are as far as possible from behaving as if they were self-luminous. If the incidence be perpendicular, the secondary waves issue in the same phase; but in the case of obliquity there is a permanent phase-difference. This difference, measured in wave-lengths, increases up to ϵ, the distance between the points, the limit being attained as the incidence becomes grazing.

When the light originates in distant independent sources, not limited to a point, there is no longer an absolutely definite phaserelationship between the secondary radiations from the two apertures ; but this;condition of things may be practically maintained, if the angular magnitude of the source be not too large. For example, if the source be limited to an angle θ round the normal to the screen, the maximum phase-difference measured in wave-lengths is $\epsilon \sin \theta$, so that if $\sin \theta$ be a small fraction of λ / ϵ, the finiteness of θ has but little effect. When, however, $\sin \theta$ is so great that $\epsilon \sin \theta$ becomes a considerable multiple of λ, the secondary radiations become approximately independent, and the apertures behave like self-luminous points. It is evident that even with a complete hemispherical illumination this condition can scarcely be attained when ϵ is less than λ.

The use of a condenser allows the widely-extendel source to be
dispensed with. By this means an image of a distant source composed of independently radiating parts, such as a lamp-flame, may be thrown upon the object, and it might at first sight be supposed that the problem under consideration was thus completely solved in all cases, inasmuch as the two apertures correspond to different parts of the flame. But we have to remember here and everywhere that optical images are not perfect, aud that to a point of the flame corresponds in the image, not a point, but a disk of finite magnitude. When this consideration is taken into account, the same limitation as before is encountered.

For what is the smallest disk into which the condenser is capable of concentrating the light received from a distant point? Fig. 118 and the former argument apply almost without modification, and they show that the radius AP of the disk has the value $\frac{1}{2} \lambda / \sin a$, where a is the semi-angular aperture of the condenser. Accordingly the diameter of the disk cannot be reduced below λ; and if ϵ be less than λ the radiations from the two apertures are only partially independent of one another.

It seems fair to conclude that the function of the condenser in microscopic practice is to cause the object to behave, at any rate in some degree, as if it were self-luminous, and thus to obviate the sharply-marked interference-bands which arise when permanent and definite phase-reiations are permitted to exist between the radiations which issue from various points of the object.

As we shall have occasion later to employ Lagrange's theorem, it may be well to point out how an instantaneous proof of it may he given upon the principles [especially that the optical distance measured along a ray is a minimum] already applied. As before, A.B (fig. 119) represents the axis of the instrument, A and B being

conjugate points. P is a point near A in the plane through A perpendicular to the axis, and Q is its image * in the perpendicular plane through B. Since A and B are conjugate, the optical distance between them is the same for all [ray-]paths, c.g. for A R S B and A LMB. [For the same reason the optical distance from P to Q is the same along the various rays, one of which lies infinitely

[^247]near to P R S Q and another to P LM Q.] And, since A T, B Q are perpendicular to the axis, the optical distance from P to Q is the same (to the first order of small quantities) as from A to B . Consequently the optical distance P IiS Q is the same as AIS B. Thus, if μ, μ^{\prime} be the refractive indices in the neighbourhood of A and B respectively, a and β the divergence-angles $\mathrm{R} \Lambda L, \mathrm{~S} B \mathrm{M}$ for a given ray, we have
\[

$$
\begin{equation*}
\mu \cdot \mathrm{AP} \cdot \sin a=\mu^{\prime} \cdot \mathrm{BQ} \cdot \sin \beta \tag{6}
\end{equation*}
$$

\]

where AP, BQ denote the corresponding linear magnitudes of the two images. This is the theorem of Lagrange, extended by Helmıholtz so as to apply to finite divergence-angles.*

We now pass on to the actual calculation of the images to be expected upon Fresnel's principles in the various cases that may arise. The origin of co-ordinates $(\xi=0, \eta=0)$ in the focal plane is the geometrical image of the radiant point. If the vibration incident upon the lens be represented by $\cos (2 \pi V t / \lambda)$, where V is the velocity of light, the vibration at any point ξ, η in the focal plane is \ddagger

$$
\begin{equation*}
\left.-\frac{1}{\lambda f^{\prime}} \iint \sin \frac{\because \pi}{\lambda} \int_{!} \mathrm{V} t-f+\frac{r \xi+!\eta \eta}{f}\right\}^{d, \cdot} l_{!}, \tag{7}
\end{equation*}
$$

in which f denotes the focal length, and the integration with respect to x and y is to be extended over the aperture of the lens. If for brevity we write

$$
\begin{equation*}
2 \pi \xi / \lambda f=p, \quad \because \pi \eta / \lambda f=\varphi, \tag{8}
\end{equation*}
$$

(7) may be put into the form

$$
\begin{equation*}
-\frac{\mathrm{C}}{\lambda f^{\prime}} \sin \frac{2 \pi}{\lambda}\left(\mathrm{~V} t-f^{\prime}\right)-\frac{\mathrm{S}}{\lambda f^{\prime}} \cos \frac{2}{\lambda} \pi\left(\mathrm{~V} t-f^{\prime}\right) \tag{9}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathrm{S}=\iint \sin (p x+q y) d x d y \tag{10}\\
& \mathrm{C}=\iint \cos (p x+q y) d x d y \tag{11}
\end{align*}
$$

It will suffice for our present purpose to limit ourselves to the case where the aperture is symmetrical with respect to $: r$ and y. We have then $\mathrm{S}=0$, and

$$
\begin{equation*}
\mathrm{C}=\iint \cos p x \cos q y d t^{t} d y \tag{12}
\end{equation*}
$$

the phase of the vibration being the same at all points of the diffraction pattern.

[^248]When the aperture is rectangular, of width a parallel to a, and of width b parallel to y, the limits of integration are from $-\frac{1}{2} a$ to $+\frac{1}{2}$ c for $: r$, and from $-\frac{1}{2} b$ to $+\frac{1}{2} b$ for $\%$. Thus

$$
\begin{equation*}
\mathrm{C}=a b \frac{\sin (\pi \xi a / \lambda f)}{\pi \xi a / \lambda f} \frac{\sin (\pi \eta b / \lambda f)}{\pi \eta b / \lambda f}, \tag{13}
\end{equation*}
$$

and by (9) the amplitude of vibration (irrespective of sign) is $\mathrm{C} / \lambda f$. This expression gives the diffraction pattern due to a single point of the object whose geometrical image is at $\xi=0, \eta=0$. Sometimes, as in the application to a grating, we wish to consider the image due to a uniformily luminous line, parallel to η, and this can always be derived from integration from the expression applicable to a point. But there is a distinction to be observed according as the radiations from the various parts of the line are independent or are subject to a fixed phase-relation. In the former case we have to deal only with the intensity, represented by I^{2} or $\mathrm{C}^{2} / \lambda^{2} f^{2}$; and we get

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \mathrm{I}^{2} d \eta=\frac{a^{2} b}{\lambda f} \frac{\sin ^{2}(\pi \xi(\lambda / \lambda f)}{(\pi \xi a / \lambda f)^{2}} \tag{14}
\end{equation*}
$$

by means of the known integral

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \sin ^{2}, x^{\prime} d x=\int_{-\infty}^{+\infty} \sin x d x=\pi \tag{15}
\end{equation*}
$$

This gives, as a function of ξ, the intensity due to a self-luminous line whose geometrical image coincides with $\xi=0$.

Under the second head of a fixed phase-relation we need only consider the case where the radiations from the various parts of the line start in the same phase. We get, almost as before,

$$
\begin{equation*}
\frac{1}{\lambda f} \int_{-\infty}^{+\infty} \mathrm{C} d \eta={ }^{\prime} \frac{\sin \left(\pi \xi^{(\prime / \lambda f}\right)}{\pi \xi_{"} / \lambda t} \tag{16}
\end{equation*}
$$

for the expression of the resultant amplitude corresponding to ξ.
In order to make use of these reults we require a table of the values of $\sin u / u$, and of $\sin ^{2} u / u^{2}$. The following (Table I.) will suffice for our purposes.

When we have to deal with a single point or single line only, this table gives directly the distribution of light in the inage, u being equated to $\pi \xi a / \lambda f$. The illumination tirst vanishes when $u=\pi$, or $\xi / f=\lambda / a$.

On a former occasion* it has been shown that a self-luminons point or line at $u=-\pi$ is barely separated from one at $u=0$. It will be of interest to consider this case under three different conditions as to phase-relationship; (i) when the phases are the

[^249]Table I.

$\frac{4 u}{\pi}$		$\frac{\sin u}{u}$	$\frac{\sin ^{2} u}{u^{2}}$	$\frac{4 u}{\pi}$	$\frac{\sin u}{u}$	$\frac{\sin ^{2} u}{u^{2}}$
0		$1 \cdot 0000$	$1 \cdot 0000$	9	$+1000$	$\cdot 0100$
1		- 900 ;	- 8105	10	-1273	. 0160
\because		-6363;	$\cdot 4053$	11	-1818	-006i7
3		$\cdot 3001$	-0901	12	- 0000	-0000
4		-0100	- 0000	13	- -0692	-0048
5	-	- 1801	-0324	14	- -0\%09	-008:
1	-	$\cdot 2122$	-0450	15	-. 0600	-00:3;
7	-	-128i	-0105	$11 ;$	-0000	-0000
8		-0000	-0000			

same, as will happen when the illumination is by plane waves incident perpendicularly ; (ii.) when the phases are opposite; and (iii.) when the phase-difference is a quarter period, which gives the same result for the intensity as if the apertures were selfluminous. The amexed table gives the numerical values required.

Table II,

$\frac{4}{\pi}$	$\begin{gathered} \frac{\sin u}{u} \\ +\frac{\sin (u+\pi)}{u+\pi} \end{gathered}$	$\begin{gathered} \sin u \\ u \\ -\frac{\sin (u+\pi)}{u+\pi} \end{gathered}$	$\begin{gathered} \sqrt{ }\left\{\frac{\sin ^{3} u}{u^{2}}\right. \\ + \\ \left.\frac{\sin ^{2}(u+\pi)}{(u+\pi)^{2}}\right\} \end{gathered}$
-4	$+1.0000$	$-1 \cdot 0000$	$+1.000$
- :	+ 1.200t	- $\cdot 6002$	+ -94!
- :	+ 1.27: 2	- 00000	+ $\cdot 600$
-1	$+1 \cdot 204$	+ 6.6002	+ 9.49
$1)$	$+1 \cdot 0000$	$+1 \cdot 0000$	$+1.000$
1	$+\quad 720 \div$	$+1.0804$	+ .918
2	+ 9.424	+ .8188	+ 67%
:	$+\cdot 1715$	+ 4287	+ $\because \because \% 1$
4	- 0000	-0000	- 100
5	- .0800	- -2801	- -2015
$1 ;$	- .0849	- -3395	- $\quad \cdots 27$
7	- $\cdot 0468$	- - 2105	- -1.2
S	-0000	- 0000	- 0100
9	+ .0308	+ 16\%:	+ 122
10	$+\quad .03484$	+ - - 18:	$+.156$
11	+ $\cdot 0218$	+ $\cdot 141!$	+ $\cdot 101$
12	-0000	-0000	-000

In cases (i.) and (iii.) the resultant amplitude is symmetrical with respect to the point $u=-\frac{1}{2} \pi$ midway between the two geometrical images; in case (ii.) the sign is reversed, but this of course has no effect upon the intensity. Graphs of the three functions are given in fig. 120, the geometrical inages being at the points marked $-\pi$ and 0 . It will be seen that while in case iii., relating to self-luminous points or lines, there is an approach to separation, nothing but an accurate comparison with the curve due to a single source would reveal the duplicity in case i. On the

Fig. 1:0.
other hand, in case ii., where there is a phase-difference of half a period between the radiations, the separation may be regarded as complete.

In a certain sense the last conclusion remains undisturbed even when the double point is still closer, and also when the aperture is of any other symmetrical form, e.g. circular. For at the point of symmetry in the image, midway between the two geometrical images of the radiant points, the component amplitudes are necessarily equal in numerical value and opposite in sign, so that the resultant amplitude or illumination vanishes. For example, sup-
pose that the aperture is rectangular and that the points or lines: are twice as close as before, the geometrical images being situated at $u=-\frac{1}{2} \pi, u=0$. The resultant amplitude is represented by $f(u)$, where

$$
\begin{equation*}
f(u)=\frac{\sin u}{u}-\frac{\sin \left(u+\frac{1}{2} \pi\right)}{u+\frac{1}{2} \pi} . \tag{17}
\end{equation*}
$$

The values of $f(u)$ are given in Table III. They show that the resultant vanishes at the place of symmetry $u=-\frac{1}{4} \pi$, and rises to a maximum at a point near $u=\frac{1}{2} \pi$, considerably beyond the geometrical image at $u=0$. Moreover, the value of the maximum itself is much less than before, a feature which would become-

Table III.

$1 u$	$f(u)$	$4 u$	$f(u)$
π	$+\cdot 00$	5	-0.7
-1	$+\cdots ;$	6	$-\cdot 21$
0	$+\cdot 60$	7	$-\cdots: 3$
1	$+\cdot 61$	8	$-\cdot 13$
2	$+\cdot 18$	9	$+\cdot 02$
$: 3$	$+\cdots 1$		
4			

more and more pronounced as the points were taken closer. At this stage the image becomes only a very incomplete representation of the object; but if the formation of a black line in the centre of the pattern be supposed to constitute resolution, then resolution occurs at all degrees of closeness.* . We shall see later,

[^250]from calculations conducted by the same method, that a grating of an equal degree of closeness would show no structure at all but would present a uniformly illuminated field.

But before proceeding to such calculations we may deduce by Lagrange's theorem the interval ϵ in the original object corresponding to that between $w=0$ and $x=\pi$ in the image, and thence effect a comparison with a grating by means of Abbe's theory. The linear dimensions (ξ) of the image corresponding to $u=\pi$ is given by $\xi=\lambda f / /$; and from Lagrange's theorem

$$
\begin{equation*}
\epsilon / \xi=\sin \beta / \sin a \tag{17a}
\end{equation*}
$$

in which "is the "semi-angular aperture," and $\beta=a / 2 f$. Thus corresponding to $"=\pi$,

$$
\epsilon=\frac{1}{2} \lambda / \sin a
$$

The case of a double point or line represented in fig. 4 lies therefore at the extreme limit of resolution for a grating in which the period is the interval between the double points. And if the incidence of the light uon the grating were limited to be perpendicular, the period would have to be doubled before the grating could show any structure.

When the aperture is circular, of radius R, the diffraction pattern is symmetrical about the geometrical image ($p=0, q=0$), and it suffices to consider points situated upon the axis of ξ for which η (and q) vanish. Thus from (12)

$$
\begin{equation*}
\mathrm{C}=\iint \cos p u d y=2 \int_{-\mathrm{I}}^{+\mathrm{R}} \cos p \cdot w \sqrt{ }\left(\mathrm{R}^{2}-w^{2}\right) d u \tag{18}
\end{equation*}
$$

This integral is the Bessel function of order mity, definable by

$$
\begin{equation*}
J_{1}(:)=\frac{\vdots}{\pi} \int_{0}^{\pi} \cos (\because \cos \phi) \sin ^{2} \phi d \phi \tag{19}
\end{equation*}
$$

Thus, if,$r=$ li cos ϕ,

$$
\begin{equation*}
\mathrm{C}=\pi \mathrm{R}^{2} \frac{\mathrm{~J}_{1}(p \mathrm{R})}{p \mathrm{R}} \tag{20}
\end{equation*}
$$

or, if we write $u=\pi \xi \cdot 2 \mathrm{H} / \lambda f$,

$$
\begin{equation*}
\mathrm{C}=\pi \mathrm{R}^{2} \frac{2 \mathrm{~J}_{1}(u)}{u} \tag{21}
\end{equation*}
$$

This notation agrees with that employed for the rectangular aperture if we consider that 2 R corresponds with a.

[^251]The illumination at various parts of the image of a double point may be investigated as before, especially if we limit ourselves to points which lie upon the line joining the two geometrical images. The only difference in the calculations is that represented by the substitution of $2 \mathrm{~J}_{1}$ for sine. We shall not, however, occupy space by tables and drawings such as have been given: for a rectangular aperture. It may suffice to consider the three principal points in the image due to a double source whose geometrical images are situated at $u=0$ and $u=-\pi$, these being the points just mentioned and that midway between them at $u=-\frac{1}{2} \pi$. The values of the functions required are

$$
\begin{aligned}
& 2 \mathrm{~J}_{1}(0) / 0=1 \cdot 0000=\sqrt{ }\{1 \cdot 0000\} . \\
& 2 \mathrm{~J}_{1}(\pi) / \pi=\cdot 1812=\sqrt{ }\{\cdot 03283\} . \\
& 2 \mathrm{~J}_{1}\left(\frac{1}{2} \pi\right) / \frac{1}{2} \pi=\cdot 7217=\sqrt{ }\{\cdot 5209\} .
\end{aligned}
$$

In the case (corresponding to i. fig 4) where there is similarity of phase, we have at the geometrical images amplitudes $1 \cdot 1812$ as against 1.4434 at the point midway between. When there is opposition of phase the first becomes $\pm \cdot 8188$, and the last zero.* When the phases differ by a quarter period, or when the sources are self-luminous (iii. fig. 4), the amplitudes at the geometrical images are $\sqrt{ }\{1 \cdot 0328\}$ or $1 \cdot 0163$, and at the middle point $\sqrt{ }\{1 \cdot 0418\}$ or $1 \cdot 0207$. The partial separation, indicated by the central depression in curve iii. fig. 4 , is thus lost when the rectangular aperture is exchanged for a circular one of equal width. It should be borne in mind that these results do not apply to a double line, which in the case of a circular aperture behaves differently from a double point.

There is one respect in which the theory is deficient, and the deficiency is the more important the larger the angular aperture. The formula (7) from which we start assumes that a radiant point radiates equally in all directions, or at least that the radiation from it after leaving the object-glass is equally dense over the whole area of the section. In the case of telescopes, and microscopes of moderate angular aperture, this assumption can lead to no appreciable error; but it may be otherwise when the angular aperture is very large. The radiation from an ideal centre of transverse vibrations is certainly not uniform in various directions, and indeed vanishes in that of primary vibration. If we suppose such an ideal source to be situated upon the axis of a wide-angled object-glass, we might expect the diffraction pattern to be less closely limited in that axial plane which includes the direction of primary vibration than in that which is perpendicular to it. The result for a double point illuminated by borrowed light would be a better degree of separation when the primary vibrations are

[^252]perpendicular to the line of junction than when they are parallel to it.

Although it is true that complications and uncertainties under this head are not without influence upon the theory of the microscopic limit, it is not to be supposed that any considerable variation from that laid down by Abbe and Helmholtz is admissible. Indeed, in the case of a grating the theory of Abbe is still adequate, so far as the limit of resolution is concerned ; for, as Dr. Stoney has remarked, the irregularity of radiation in different directions tells only upon the relative brightness and not upon the angular position of the spectra. And it will remain true that there can be no resolution without the co-operation of two spectra at least.

In Table II. and fig. 120 we have considered the image of a double point or line as formed by a lens of rectangular aperture. It is now proposed to extend the calculation to the case where the series of points or lines is infinite, coustituting a row of points or a grating. The intervals are supposed to be strictly equal, and also the luminous intensities. When the aperture is rectangular, the calculation is the same whether we are dealing with a row of points or with a grating, but we have to distinguish according as various centres radiate independently, viz. as if they were selfluminous, or are connected by phase-relations. We will commence with the former case.

If the geometrical images of the various luminous points are situated at $u=0, u= \pm v, u= \pm 2 v$, \&c., the expressions for the intensity at any point u of the field may be written as an infinite series,

$$
\begin{align*}
\mathrm{I}(u)= & \frac{\sin ^{2} u}{u^{2}}+\frac{\sin ^{2}(u+v)}{(u+v)^{2}}+\frac{\sin ^{2}(u-v)}{(u-v)^{2}} \\
& +\frac{\sin ^{2}(u+2 v)}{(u+2 v)^{2}}+\frac{\sin ^{2}(u-2 v)}{(u-2 v)^{2}}+\ldots \tag{22}
\end{align*}
$$

Being an even function of u and periodic in period v, (22) may be expanded by Fourier's theorem in a series of cosines. Thus
$\mathrm{I}(u)=\mathrm{I}_{0}+\mathrm{I}_{1} \cos \frac{2 \pi u}{v}+\ldots+\mathrm{I}_{r} \cos \frac{2 \pi r u}{v}+\ldots$. ;
and the character of the field of light will be determined when the values of the constants I_{0}, I_{1}, \&c., are known. For these we have as usual

$$
\begin{equation*}
\mathrm{I}_{0}=\frac{1}{v} \int_{0}^{v} \mathrm{I}(u) d u, \quad \mathrm{I}_{r}=\frac{2}{v} \int_{0}^{v_{v}} \mathrm{I}(u) \cos \frac{2 \pi r u}{v} d u ; \tag{24}
\end{equation*}
$$

and it only remains to effect the integrations. To this end we may observe that each term in the series (22) must in reality make
an equal contribution to I^{r}. It will come to the same thing whether, as indicated in (24), we integrate the sum of the series from 0 to v, or integrate a single term of it, e.g. the first, from $-\infty$ to $+\infty$. We may therefore take

$$
\begin{align*}
& \mathrm{I}_{0}=\frac{1}{v} \int_{-\infty}^{+\infty} \frac{\sin ^{2} u}{u^{2}} d u=\frac{\pi}{v} ; \quad . \quad . \tag{25}\\
& \mathrm{I}_{r}=\frac{2}{v} \int_{-\infty}^{+\infty} \frac{\sin ^{2} u}{u^{2}} \cos \frac{2 \pi v u}{v} d u . \tag{26}
\end{align*}
$$

To evaluate (26) we have

$$
\int_{-\infty}^{+\infty} \frac{\sin ^{2} u \cos s u}{u^{2}} d u=\int_{-\infty}^{+\infty} 1 \frac{d}{d u}\left(\sin ^{2} u \cos s u\right) d u
$$

and

$$
\begin{gathered}
\frac{d}{d u}\left(\sin ^{2} u \cos s u\right)=-\frac{s}{2} \sin s u \\
+\frac{2+s}{4} \sin (2+s) u+\frac{2-s}{4} \sin (2-s) u ;
\end{gathered}
$$

so that by (15) (s being positive)

$$
\int_{-\infty}^{+\infty} \frac{\sin ^{2} u \cos s u}{u^{2}} d u=\pi\left\{-\frac{s}{2}+\frac{2+s}{4} \pm \frac{2-s}{4}\right\}
$$

the minus sign being taken when $2-s$ is negative.
Hence

$$
\begin{equation*}
\mathrm{I}_{r}=\frac{2 \pi}{v}\left(1-\frac{\pi r}{v}\right), \quad \text { or } 0, . \tag{27}
\end{equation*}
$$

according as r exceeds or falls short of $r \pi$.
We may now trace the effect of altering the value of v. When v is large, a considerable number of terms in the Fourier expansion (23) are of importance, and the discontinuous character of the luminous grating or row of points is fairly well represented in the image. As v diminishes, the higher terms drop out in succession, until when v falls below 2π only I_{0} and I_{1} remain. From this point onwards I_{1} continues to diminish until it also finally disappears when v drops below π. The field is then uniformly illuminated, showing no trace of the original structure. The case $v=\pi$ is that of fig. 120 , and curve iii. shows that at a stage when an infinite series shows no structure, a pair of luminous points or lines of the same closeness are still in some degree separated. It will be remembered that $v=\pi$ corresponds to $\epsilon=\frac{1}{2} \lambda / \sin a$,
ϵ being the linear period of the original object and a the semiangular aperture.

We will now pass on to consider the case of a grating or row of points perforated in an opaque screen and illuminated by plane waves of light. If the incidence be oblique, the phase of the radiation emitted varies by equal steps as we pass from one element to the next. But for the sake of simplicity we will commence with the case of perpendicular incidence, where the radiations from the various elements all start in the same phase. We have now to superpose amplitudes, and not as before intensities. If A be the resultant amplitude, we may write

$$
\begin{align*}
A(u) & =\frac{\sin u}{u}+\frac{\sin (u+v)}{u+v}+\frac{\sin (u-v)}{u-v}+\ldots \\
& =\mathrm{A}_{0}+\mathrm{A}_{1} \cos \frac{2 \pi u}{v}+\ldots+\mathrm{A}_{r} \cos \frac{2 \pi r u}{v}+\ldots \tag{28}
\end{align*}
$$

When v is very small, the infinite series identifies itself more and more nearly with the integral

$$
\frac{1}{v} \int_{-\infty}^{+\infty} \sin u d u, \operatorname{viz} \cdot \frac{\pi}{v}
$$

In general we have, as in the last problem,

$$
\begin{equation*}
A_{0}=\frac{1}{v} \int_{-\infty}^{+\infty} \sin u \quad d u ; A_{r}=\frac{2}{v} \int_{-\infty}^{\infty} \frac{\sin u}{u} \cos \frac{2 \pi r u}{v} d u ; \tag{29}
\end{equation*}
$$

so that $\mathrm{A}_{0}=\pi / v$. As regards A_{r}, writing s for ${ }^{2} \pi r / v$, we have

$$
A_{r}=\frac{1}{v} \int_{-\infty}^{+\infty} \frac{\sin (1+s) u+\sin (1-s) u}{u} d u=\frac{\pi}{v}(1 \pm 1)
$$

the lower sign applying when $(1-s)$ is negative. Accordingly,

$$
\begin{equation*}
\mathrm{A}(u)=\frac{\pi}{v}\left\{1+2 \cos \frac{2 \pi u}{v}+2 \cos \frac{4 \pi u}{v}+\ldots\right\} \tag{30}
\end{equation*}
$$

the series being continued so long as $2 \pi r<v$.
If the series (30) were continued ad infinitum, it would represent a discontinuous distribution, limited to the points (or lines) $u=0, u= \pm v, u= \pm 2 v$, \&c., so that the image formed would accurately correspond to the original object. This condition of things is most nearly realised when v is very great, for then (30) includes a large number of terms. As v diminishes the higher terms drop out in succession, retaining however (in contrast with (27)) their full value up to the moment of disappearance. When v is less than 2π, the series is reduced to its constant term, so
that the field becomes uniform. Under this kind of illumination, the resolving-power is only half as great as when the object is self-luminous.

These conclusions are in entire accordance with Abbe's theory. The first term of (30) represents the central image, the second term the two spectra of the first order, the third term the two spectra of the second order, and so on. Resolution fails at the moment when the spectra of the first order cease to co-operate, and we have already seen that this happens for the case of perpendicular incidence when $v=2 \pi$. The two spectra of any given order fail at the same moment.

If the series stops after the lateral spectra of the first order,

$$
\begin{equation*}
A(u)=\frac{\pi}{v}\left\{1+2 \cos \frac{2 \pi u}{v}\right\} \tag{31}
\end{equation*}
$$

showing a maximum intensity when $u=0$, or $\frac{1}{2} v$, and zero intensity when $u=\frac{1}{3} v$, or $\frac{2}{3} v$. These bands are not the simplest kind of interference bands. The latter require the operation of two spectra only; whereas in the present case there are three-the central image and the two spectra of the first order.

We may now proceed to consider the case when the incident plane waves are inclined to the grating. The only difference is that we require now to introduce a change of phase between the image due to each element and its neighbour. The series representing the resultant amplitude at any point u may still be written

$$
\begin{gather*}
\frac{\sin u}{u}+\frac{\sin (u+v)}{u+v} e^{-i m v}+\frac{\sin (u-v)}{u-v} e^{+i m v} \\
+\frac{\sin (u+2 v)}{u+2 v} e^{-2 i m v}+\ldots \tag{32}
\end{gather*}
$$

For perpendicular incidence $m=0$. If γ be the obliquity, ϵ the grating-interval, λ the wave-length, $[i=\sqrt{ }(-1)]$,

$$
\begin{equation*}
m v / 2 \pi=\epsilon \sin \gamma / \lambda \tag{33}
\end{equation*}
$$

The series (32), as it stands, is not periodic with respect to u in period v, but evidently it can differ from such a periodic series only by the factor $e^{i m u}$.

The series

$$
\begin{align*}
& \frac{e^{-i m u} \sin u}{u}+\frac{e^{-i m(u+v)} \sin (u+v)}{u+v} \\
& +\frac{e^{-i m(u-v)} \sin (u-v)}{u-v}+\frac{e^{-i n(u+2 v)} \sin (u+2 v)}{u+2 v}+\cdots \tag{34}
\end{align*}
$$

is truly periodic, and may therefore be expanded by Fourier's theorem in periodic terms:

$$
\begin{gather*}
(34)=\mathrm{A}_{0}+i \mathrm{~B}_{0}+\left(\mathrm{A}_{1}+i \mathrm{~B}_{1}\right) \cos (2 \pi u / v) \\
+\left(\mathrm{C}_{1}+i \mathrm{D}_{1}\right) \sin (2 \pi u / v)+\ldots \ldots \\
+\left(\mathrm{A}_{r}+i \mathrm{~B}_{r}\right) \cos (2 r \pi u / v)+\left(\mathrm{C}_{r}+i \mathrm{D}\right) \sin (2 r \pi u / v)+\ldots \tag{35}
\end{gather*}
$$

As before, if $s=2 r \pi / v$,

$$
\frac{1}{2} v\left(\mathrm{~A}_{r}+i \mathrm{~B}_{r}\right)=\int_{-\infty}^{+\infty} \frac{e^{-i m u} \sin u \cos s u}{u} d u ;
$$

so that $\mathrm{B}_{\boldsymbol{r}}=0$, while

$$
\begin{equation*}
\frac{1}{2} v \cdot A_{r}=\int_{-\infty}^{+\infty} \frac{\cos m u \sin u \cos s u}{u} d u \tag{36}
\end{equation*}
$$

In like manner $\mathrm{C}_{r}=0$, while

$$
\begin{equation*}
-\frac{1}{2} v \cdot \mathrm{D}_{r}=\int_{-\infty}^{+\infty} \frac{\sin \pi u u \sin u \sin s u}{u} d u . \tag{37}
\end{equation*}
$$

In the case of the zero suffix

$$
\begin{equation*}
\mathrm{B}_{0}=0, \quad v \mathrm{~A}_{0}=\int_{-\infty}^{+\infty} \frac{\cos m u \sin \psi}{u} d u . \tag{38}
\end{equation*}
$$

When the products of sines and cosines which occur in (36) \&c., are transformed in a well known manner, the integration may be effected by (15). Thus

$$
\begin{aligned}
\cos m u \sin u \cos s u & =\frac{1}{4}\{\sin (1+m+s) u+\sin (1-m-s) u \\
& +\sin (1+m-s) u+\sin (1-m+s) u\} ;
\end{aligned}
$$

so that

$$
\begin{array}{r}
\frac{1}{2} v \cdot A_{r}=\frac{1}{4} \pi\{[1+m+s]+[1-m-s]+[1+m-s] \\
+[1-m+s]\} . \tag{39}
\end{array}
$$

where each symbol such as $[1 ;+m+s]$ is to be replaced by ± 1, 。 the sign being that of $(1+m+s)$. In like manner

$$
\begin{align*}
-\frac{1}{2} v \cdot \mathrm{D}_{r}=\frac{1}{4} \pi\{[1+m-s]+ & {[1-m+s]-[1+m+s] } \\
& -[1-m-s]\} \quad . \quad(4 \tag{40}
\end{align*}
$$

The r th terms of (35) are accordingly

$$
\begin{aligned}
\frac{\pi}{2 v}\left\{e^{i s u}([1+m .+s]+\right. & {[1-m-s]) } \\
& \left.+e^{-i s u}([1+m-s]+[1-m+s])\right\}
\end{aligned}
$$

or for the original series (32),

$$
\begin{align*}
& { }_{2}^{\pi}\left\{e^{i(m+s) u}([1+m+s]+[1-m-s])\right. \\
& \left.+e^{i(m-s) u}([1+m-s]+[1-m+s])\right\} \tag{41}
\end{align*}
$$

For the term of zero order,

$$
\begin{equation*}
\mathrm{A}_{0} e^{i m u}=\frac{\pi}{2} v e^{i m u}([1+m]+[1-m]) . \tag{42}
\end{equation*}
$$

From (41) we see that the term in $c^{i(m+s) u}$ vanishes unless $(m+s)$ lies between ± 1, and that then it is equal to $\pi / v . e^{i(m+s) u}$; also that the term in $e^{i(m-s) u}$ vanishes unless ($m-s$) lies between ± 1, and that it is then equal to $\pi / v . e^{i(m-s) u}$. In like manner the term in $e^{i m u}$ vanishes unless m lies between ± 1, and when it does not vanish it is equal to $\pi / v . e^{i m u}$. This particular case is included in the general statement by putting $s=0$.

The image of the grating, or row of points, expressed by (32), is thus capable of representation by the sum of terms

$$
\begin{equation*}
\pi / v \cdot\left\{e^{i m u}+e^{i\left(m+s_{1}\right) u}+e^{i\left(m-s_{1}\right) u}+e^{i\left(m+s_{2}\right) u}+\ldots \ldots\right\} \tag{43}
\end{equation*}
$$

where $s_{1}=2 \pi / v, s_{2}=4 \pi / v$, \&c., every term being included for which the coefficient of u lies between ± 1. Each of these terms corresponds to a spectrum of Abbe's theory, and represents plane progressive waves inclined at a certain angle to the plane of the image. Each spectrum when it occurs at all contributes equally, and it goes out of operation suddenly. If but one spectrum operates, the field is of uniform brightness. If two spectra operate, we have the ordinary interference bands due to two sets of plane waves crossing one another at a small angle of obliquity.*

Any consecutive pair of spectra give the same interference bands, so far as illumination is concerned. For
$\frac{\pi}{v}\left\{e^{i u\left[n+2 r^{2} / v\right]}+e^{i u[m+2(r+1) \pi / v]}\right\}=\frac{2 \pi}{v} \cos \frac{\pi u}{v} e^{i u[n+2(r+t) \pi / v]}$, of which the exponential factor influences only the phase.

In (43) the critical value of v for which the r th spectrum disappears is given by, when we introduce the value of m from (33),

$$
\begin{equation*}
\frac{2 \pi}{v}\left(\frac{\epsilon \sin \gamma}{\lambda} \pm r\right)= \pm 1 \tag{44}
\end{equation*}
$$

or, since (as we have seen) $\frac{v}{2 \pi}=\frac{\epsilon \sin a}{\lambda}$,

$$
\begin{equation*}
\epsilon(\sin \gamma \mp \sin a)=\mp r \lambda . \tag{45}
\end{equation*}
$$

[^253]This is the condition, according to elementary theory, in order that the rays forming the spectrum of the r th order should be inclined at the angle a, and so (fig. 118) be adjusted to travel from A to B , through the edge of the lens L .

The discussion of the theory of a rectangular aperture may here close. This case has the advantage that the calculation is the same whether the object be a row of points or a grating. A parallel treatment of other forms of aperture, e.g. the circular form, is not only limited to the first alternative, but applies there only to those points of the field which lie upon the line joining the geometrical images of the luminous points. Although the advantage lies with a more general method of investigation to be given presently, it may be well to consider the theory of a circular aperture as specially deduced from the formula (21) which gives the image of a single luminous centre.

If we limit ourselves to the case of parallel waves and perpendicular incidence, the infinite series to be discussed is

$$
\begin{equation*}
A(u)=\frac{J_{1}(u)}{u}+\frac{J_{1}(u+v)}{u+v}+\frac{J_{1}(u-v)}{u-v}+\frac{J_{1}(u+2 v)}{u+2 v}+ \tag{46}
\end{equation*}
$$

where

$$
\begin{equation*}
u=\pi \xi \cdot 2 \mathrm{R} / \lambda f . \tag{47}
\end{equation*}
$$

Since A is necessarily periodic in period r, we may assume

$$
\begin{equation*}
\mathrm{A}(u)=\mathrm{A}_{0}+\mathrm{A}_{1} \cos (2 \pi u / v)+\ldots+\mathrm{A}_{r} \cos (2 r \pi u / v)+\ldots ; \tag{48}
\end{equation*}
$$

and, as in the case of the rectangular aperture,

$$
\begin{equation*}
A_{0}=\frac{1}{v} \int_{-\infty}^{+\infty} \frac{\mathrm{J}_{1}(u)}{u} d u, \mathrm{~A}_{r}=\frac{2}{v} \int_{-\infty}^{+\infty} \frac{J_{1}(u)}{u} \cos \frac{2 v \pi u}{v} d u . \tag{49}
\end{equation*}
$$

These integrals may be evaluated. If a and b be real, and a be positive,*

$$
\begin{equation*}
\int_{0}^{\infty} e^{-a x} J_{0}(b x) d x=\frac{1}{\sqrt{\left(a^{2}+b^{2}\right)}} \tag{50}
\end{equation*}
$$

Multiplying by $b d b$ and integrating from 0 to b, we find

$$
\begin{equation*}
\int_{0}^{\infty} \frac{J_{1}(b x) e^{-a x}}{x} d x=\frac{\sqrt{ }\left(a^{2}+b^{2}\right)-a}{b} . \tag{51}
\end{equation*}
$$

In this we write $b=1, a=i s$, where s is real. Thus

$$
\int_{0}^{\infty} \frac{J_{1}(x)\{\cos s x-i \sin s x\}}{x} d x=\sqrt{ }\left(1-s^{2}\right)-i s .
$$

[^254]If $s^{2}>1$, we must write $i \sqrt{ }\left(s^{2}-1\right)$ for $\sqrt{ }\left(1-s^{2}\right)$. Hence if $s<1$,

$$
\begin{align*}
& \int_{0}^{\infty} \frac{\mathrm{J}_{1}(x) \cos s x}{x} d x=\sqrt{ }\left(1-s^{2}\right), \quad . \quad . \tag{52}\\
& \int_{0}^{\infty} \mathrm{J}_{1}(x) \frac{\sin s x}{d} d x=s ; \quad . \quad . \quad . \quad \tag{53}
\end{align*}
$$

while, if $s>1$,

$$
\begin{align*}
& \int_{0}^{\infty} \frac{J_{1}(x) \cos s x}{x} d x=0, \quad . \quad . \tag{54}\\
& \int_{0}^{\infty} \frac{J_{1}(x) \sin s x}{x} d x=-\sqrt{ }\left(s^{2}-1\right)+s \tag{55}
\end{align*}
$$

We are here concerned only with (52), (54), and we conclude that $A_{0}=2 / v$, and that

$$
\begin{equation*}
A_{r}=\frac{4}{} \frac{\sqrt{ }\left(1-s^{2}\right)}{v}, \quad \text { or } 0 \tag{56}
\end{equation*}
$$

according as s is less or greater than 1, viz. according as $2 r \pi$ is less or greater than v.

If we compare this result with the corresponding one (30) for a rectangular aperture of equal width $(2 \mathrm{R}=a)$, we see that the various terms representing the several spectra enter or disappear at the same time; but there is one important difference to be noted. In the case of the rectangular aperture the spectra enter suddenly and with their full effect, whereas in the present case there is no such discontinuity, the effect of a spectrum which has just entered being infinitely small. As will appear more clearly by another method of investigation, the discontinuity has its origin in the sudden rise of the ordinate of the rectangular aperture from zero to its full value.

In the method referred to the form of the aperture is supposed to remain symmetrical with respect to both axes, but otherwise is kept open, the integration with respect to x being postponed. Starting from (12) and considering only those points of the image for which η and q in equation (S) vanish, we have as applicable to the image of a single luminous source

$$
\begin{equation*}
\mathrm{C}=\iint \cos p x d x d y=2 \int \grave{y} \cos p x d x \tag{57}
\end{equation*}
$$

in which $2 y$ denotes the whole height of the aperture at the point x. This gives the amplitude as a function of p. If there be a row of luminous points, from which start radiations in the same phase, we have an infinite series of terms, similar to (57) and derived from it by the addition to p of positive and negative integral multiples of a constant $\left(p_{1}\right)$ representing the period.

The sum of the series $\mathbf{A}(p)$ is necessarily periodic, so that we may write

$$
\begin{equation*}
\mathrm{A}(p)=\mathrm{A}_{0}+\ldots+\mathrm{A}_{r} \cos \left(2 r \pi p / p_{1}\right)+\ldots ; \tag{58}
\end{equation*}
$$

and, as in previous investigations, we may take

$$
\begin{equation*}
A_{r}=\int_{-\infty}^{+\infty} C \cos s p d p \tag{59}
\end{equation*}
$$

ss (not quite the same as before) standing for $2 r \pi / p_{1}$, and a constant factor being omitted. To ensure convergency we will treat this as the limit of

$$
\begin{equation*}
\int_{-\infty}^{+\infty} e^{ \pm h p} \mathrm{C} \cos s p d p \tag{60}
\end{equation*}
$$

the sign of the exponent being taken negative, and h being ultimately made to vanish. Taking first the integration with respect to p, we have

$$
\int_{-\infty}^{+\infty} e^{ \pm h p} \cos x p \cos s p d p=\frac{h}{h^{2}+(x+s)^{2}}+\frac{h}{h^{2}+(w-s)^{2}}
$$

and thus

$$
\mathrm{A}_{r}=\int \frac{h y d x}{h^{2}+(x+s)^{2}}+\int \frac{h y d x}{h^{2}+(x-s)^{2}},
$$

in which h is to be made to vanish. In the limit the integrals receive sensible contributions only from the neighbourhoods of $x= \pm s$; and since

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \frac{d u}{1+u^{2}}=\pi \tag{61}
\end{equation*}
$$

we get

$$
\begin{equation*}
\mathrm{A}_{r}=\pi\left(y_{x=-s}+y_{x=+s}\right)=2 \pi y_{x=s} . \tag{62}
\end{equation*}
$$

From (62) we see that the occurrence of the term in A_{r}, i.e. the appearance of the spectrum of the r th order, is associated with the value of a particular ordinate of the object-glass. If the ordinate be zero, i.e. if the abscissa exceed numerically the halfwidth of the object-glass, the term in question vanishes. The first appearance of it corresponds to

$$
\frac{1}{2} a=2 r \pi / p_{1}=r \cdot \lambda f / \xi_{1},
$$

in which a is the entire width of the object-glass and ξ_{1} the linear period in the image. By (17a),

$$
\frac{\lambda f}{\xi_{1}}=\frac{\lambda f \sin \beta}{\epsilon \sin \boldsymbol{a}}=\frac{\frac{1}{2} u \lambda}{\epsilon \sin a} ;
$$

so that the condition is, as before,

$$
\epsilon \sin a=r \lambda .
$$

When A_{r} has appeared, its value is proportional to the ordinate at $x=s$. Thus in the case of a circular aperture $(a=2 \mathrm{R})$ we have

$$
\begin{equation*}
y_{x=s}=\mathrm{R} \sqrt{ }\left\{1-r^{2} \lambda^{2} / \epsilon^{2} \sin ^{2} a\right\} . \tag{63}
\end{equation*}
$$

The above investigation relates to a row of luminous points emitting light of the same intensity and phase, and it is limited to those points of the image for which η (and q) vanish. If the object be a grating radiating under similar conditions, we have to retain $\cos q y$ in (12) and to make an integration with respect to q. Taking this first, and introducing a factor $e^{ \pm k q}$, we have

$$
\begin{equation*}
\int_{-\infty}^{+\infty} e^{ \pm k q} \cos q y d q=\frac{2 k}{k^{2}+y^{2}} . \tag{64}
\end{equation*}
$$

This is now to be integrated with respect to y between the limits $-y$ and $+y$. If this range be finite, we have

$$
\begin{equation*}
\operatorname{Limit}_{k=0} \int_{-y}^{+y} \frac{2 k d y}{k^{2}+y^{2}}=2 \pi, . \tag{65}
\end{equation*}
$$

independent of the length of the particular ordinate. Thus

$$
\begin{equation*}
\mathrm{C}_{1}=\int_{-\infty}^{+\infty} \cdot \mathrm{C} d q=2 \pi \int \cos p \cdot d d, \quad . \tag{66}
\end{equation*}
$$

the integration with respect to x extending over the range for which y is finite, that is, over the width of the object-glass. If this be 2 R , we have

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \mathrm{C} d q=4 \pi / p \cdot \sin p \mathrm{R} \tag{67}
\end{equation*}
$$

From (67) we see that the image of a luminous line, all parts of which radiate in the same phase, is independent of the form of the aperture of the object-glass, being, for example, the same for a circular aperture as for a rectangular aperture of equal width. This case differs from that of a self-luminous line, the images of which thrown by circular and rectangular apertures are of different types.*

The comparison of (67) with (20), applicable to a circular aperture, leads to a theorem in Bessel's functions. For, when q is finite,

$$
\begin{equation*}
\mathrm{C}=\pi \mathrm{R}^{2} \frac{2 \mathrm{~J}_{1}}{\left\{\sqrt{ }\left(p^{2}+q^{2}\right) \mathrm{I}\right\}} \underset{\sqrt{ }\left(p^{2}+q^{2}\right)}{ } ; \tag{68}
\end{equation*}
$$

so that, setting $R=1$, we get

$$
\begin{equation*}
\int_{0}^{\infty} \frac{J_{1}\left\{\sqrt{ }\left(p^{2}+q^{2}\right)\right\}}{\sqrt{ }\left(p^{2}+q^{2}\right)} d q=\sin _{p}^{p} \tag{69}
\end{equation*}
$$

[^255]The application to a grating, of which all parts radiate in the same phase, proceeds as before. If, as in (58), we suppose

$$
\mathrm{A}(p)=\mathrm{A}_{0}+\ldots+\mathrm{A}_{r} \cos s p+\ldots ; \quad \cdot \quad(70)
$$

we have

$$
\begin{equation*}
A=\int_{-\infty}^{+\infty} \mathrm{C}_{1} \cos s p d p \tag{71}
\end{equation*}
$$

from which we find that A_{r} is $\pm \pi^{2}$ or 0 , according as the ordinate is finite or not finite at $x=s$. The various spectra enter and disappear under the same conditions as prevailed when the object was a low of points; but now they enter discontinuously and retain constant values, instead of varying with the particular ordinate of the object-glass which corresponds to $x=s$.

We will now consider the corresponding problems when the illumination is such that each point of the row of points or of the grating radiates independently. The integration then relates to the intensity of the field as due to a single source.

By (9), (10), (11), the intensity I^{2} at the point (p, q) of the field, due to a single source whose geometrical image is situated at $(0,0)$ is given by

$$
\begin{align*}
\lambda^{2} f^{2} \mathrm{I}^{2} & =\left\{\iint \cos (p x+q y) d x^{2} d y\right\}^{2}+\left\{\iint \sin (p x+q y) d x d y\right\}^{2} \\
& =\iint \cos \left(p x^{\prime}+q y^{\prime}\right) d x^{\prime} d y^{\prime} \times \iint \cos (p x+q y) d x d y \\
& +\iint \sin \left(p x^{\prime}+q y^{\prime}\right) d x^{\prime} d y^{\prime} \times \iint \sin (p x+q y) d x d y \\
& =\iiint \int \cos \left\{p\left(x^{\prime}-x\right)+q\left(y^{\prime}-y\right)\right\} d x d y d x^{\prime} d y^{\prime} \tag{72}
\end{align*}
$$

the integrations with respect to x^{\prime}, y^{\prime}, as well as those with respect. to x, y, being over the area of the aperture.

In the present application to sources which are periodically repeated, the term in $\cos s p$ of the Fourier expansion representing the intensity at various points of the image has a coefficient found by multiplying (72) by $\cos s p$ and integrating with respect to p. from $p=-\infty$ to $p=+\infty$. If the object be a row of points, we may take $q=0$; if it be a grating, we have to integrate with respect also to q from $q=-\infty$ to $q=+\infty$.

Considering the latter case, and taking first the integrations with respect to p, q, we introduce the factors $e \mp h p \mp k q$, the plus or minus being so chosen as to make the elements of the integral vanish at infinity. After the operations have been performed, h and k are to be supposed to vanish.* The integrations are performed as for (60), (64), and we get the sum of the two terms denoted by

$$
\frac{2 h h^{2}}{\left\{h^{2}+\left(x^{\prime}-x \pm s\right)^{2}\right\}\left\{h^{2}+\left(y^{\prime}-y\right)^{2}\right\}}
$$

[^256]We have still to integrate with respect to $d x d y d x^{\prime} d y^{\prime}$. As in (65), since the range for y^{\prime} always includes y,

$$
\text { Limit }_{k=0} \int \frac{27 \cdot l y^{\prime}}{l_{i}^{2}+\left(y^{\prime}-y\right)^{2}}=2 \pi ;
$$

and we are left with

$$
\begin{equation*}
\iiint \frac{2 \pi h d s^{\prime} d y d v^{\prime}}{h^{2}+\left(i^{\prime}-r \pm s\right)^{2}} \tag{74}
\end{equation*}
$$

If s were zero, the integration with respect to x^{\prime} would be precisely similar; but with s finite it will be only for certain values of x that $\left(x^{\prime}-x \pm s\right)$ vanishes within the range of integration. Until this evanescence takes place, the limit when h vanishes becomes zero. The effect of the integration with respect to x^{\prime} is thus to limit the range of the subsequent integration with respect to x. The result may be written

$$
\begin{equation*}
-\pi^{2} \iint d \cdot c d y \tag{75}
\end{equation*}
$$

upon the understanding that, while the integration for y ranges over the whole vertical aperture, that for x is limited to such values of x as bring x 干 s (as well as x itself) within the range of the horizontal aperture. The coefficient of the Fourier component of the intensity involving $\cos s p$, or $\cos \left(2 r \pi p / p_{1}\right)$, is thus proportional to a certain part of the area of the aperture. Other parts of the area are inefficient, and might be stopped off without influencing the result.

The limit to resolution, corresponding to $r=1$, depends only on the width of the aperture, and is therefore for all forms of aperture the same as for the case of the rectangular aperture already fully investigated.

If the object be a row of points instead of a row of lines, $q=0$, and there is no integration with respect to it. The process is nearly the same as above, and the result for the coefficient of the r th term in the Fourier expansion is proportional to $\int y^{2} d x$, instead of $\int y d x$, the integration with respect to x being over the same parts of the aperture as when the object was a grating. The application to a circular aperture would lead to an evaluation of

$$
\int_{-\infty}^{+\infty} \frac{J_{1}^{2}(u) \cos s u}{u^{2}} d u
$$

VIII.-On the Thcory of Optical Images, with special reference to the Microscope.

(Supplementary Paper.)

By Lord Rayleigh.

(lead June 17th, 1903.)
In the memoir, above reprinted from the Philosophical Magazine, I discussed the theories of Abbe and Helmholtz, and endeavoured to show their correlation. It appeared that the method of the former, while ingenious and capable of giving interesting results in certain directions, was inapplicable to many of the problems which it is necessary to attack. As an example of this, it may suffice to mention the case of a self-luminous object.

The work of Helmholtz, to which attention has recently been recalled by Mr. J. W. Gordon in a lively criticism (p. 381), was founded upon the processes already developed by Airy, Verdet, and others for the performance of the telescope. The theories both of Abbe and Helmholtz pointed to a tolerably definite limit to the powers of the Microscope, dependent, however, upon the wave-length of the light employed and upon the medium in which the object is imbedded. It appeared that two neighbours, whether constituting a single pair of points or forming part of an extended series of equidistant points, could not be properly distinguished if the distance were less than half the wave-length of the light employed. The importance of this conclusion, as imposing a limit upon our powers of direct observation, can hardly be overestimated; but there has been in some quarters a tendency to ascribe to it a more precise character than it can bear, or even to mistake its meaning altogether. A few words upon this subject may not be out of place.

The first point to be emphasised is that nothing whatever is said as to the smallness of a single object that may be made visible. The eye, whether unaided or armed with a telescope, is able to see as points of light stars subtending no sensible angle. The visibility of the star is a question of brightness simply, and has nothing to do with resolving power. The latter element enters only when it is a question of recognising the duplicity of a double star, or of distinguishing detail upon the surface of a planet. So in the Microscope there is nothing except lack of light to hinder the visibility of an object however small. But if its dimensions be much less than the half wave-length, it can only be seen as a whole, and its parts cannot be distinctly separated, although in cases near the border line some inference may be possible founded upon experience of what appearances are presented in various
cases. Thus a practised astronomer may conclude with certainty that a star is double, although its components cannot be properly seen. He knows that a single star would present a round (though false) disc, and any departure from this condition of things he attributes to a complication. A slightly oval dise may suffice not only to prove that the star is double but even to fix the line upon which the components lie, and their probable distance apart.

What has been said about a luminous point applies equally to a luminous line. If bright enough, it will be visible, however narrow; but if the real width be much less than the half wavelength the apparent width will be illusory. The luminous line may be regarded as dividing the otherwise dark field into two portions; and we see that this separation does not require a luminous interval of finite width, but may occur, however narrow the interval, provided that its intrinsic brightness be proportionally increased.

The consideration of a luminous line upon a dark ground is introduced here for comparison with the case, suggested by Mi. Gordon, of a dark line upon a (uniformly) bright ground. Calculations to be given later confirm Mr. Gordon's conclusion that the line may be visible (but not in its true width), although the actual width fall considerably short of the half wave-length. Although in both these cases there is something that may be described as resolution, what is seen as distinct from the ground is really but a single object. So far as I see, there is no escape from the general conclusion, as to the microscopic limit, glimpsed originally by Fraunhofer and afterwards formulated by Abbe and Helmholtz; but it must be remembered that near the limit the question is one of degree, and that the degree may vary with the character of the detail whose visibility is under consideration.

Mr. Gordon comments upon the fact that Helmholtz gave no direct proof of his pronouncement that a grating composed of parallel, equidistant, infinitely narrow, luminous lines shows no structure at a certain degree of closeness, and he appears to regard the question as still open. This matter was, however, fully discussed in my paper of 1896 (see above), where it is proved that as the grating interval diminishes, structure finally disappears when the distance between the geometrical images of neighbouring lines falls to equality with half the width of the diffraction pattern due to a single line, reckoned from the first blackness on one sile to the first blackness on the other. It is easy to see that the same limit obtains when the lines have a finite width, provided, of course, that the widths and intrinsic luminosities of the lines are équal. If the grating-intercal, that is the distance between centres or corresponding edges of neighbouring lines, be less than the amount above mentioned, no structure can be seen. The
microscopic limit occurs when the grating-interval is equal to half the wave-length of the light in operation.

The method employed in 1896 depends upon the use of Fourier's theorem. The critical case, where the structure has just disappeared, may be treated in a somewhat more elementary manner as follows. It is required to prove that

$$
\begin{align*}
& \frac{\sin ^{2} u}{u^{2}}+\frac{\sin ^{2}(u+\pi)}{(u+\pi)^{2}}+\frac{\sin ^{2}(u-\pi)}{(u-\pi)^{2}} \\
& \quad+\frac{\sin ^{2}(u+2 \pi)}{(u+2 \pi)^{2}}+\frac{\sin ^{2}(u-2 \pi)}{(u-2 \pi)^{2}}+\ldots \tag{76}
\end{align*}
$$

obtained by writing π for v in (22) above, is the same for all values of u. In (76) the (sine) ${ }^{2}$ have all the same value, so that what has to be proved may be written

$$
\begin{equation*}
\frac{1}{\sin ^{2} u}=\frac{1}{u^{2}}+\frac{1}{(u+\pi)^{2}}+\frac{1}{(u-\pi)^{2}}+\frac{1}{(u+2 \pi)^{2}}+\ldots \tag{77}
\end{equation*}
$$

This follows readily from the expression for the sine in factors. If we write

$$
\sin u=\mathrm{C} u(u+\pi)(u-\pi)(u+2 \pi) \ldots
$$

or

$$
\log \sin u=\log \mathrm{C}+\log u+\log (u+\pi)+\ldots
$$

we get on differentiation

$$
\frac{d \log \sin u}{d u}=\frac{1}{u}+\frac{1}{u+\pi}+\frac{1}{u-\pi}+\ldots
$$

and again

$$
-\frac{d^{2} \log \sin u}{d u^{2}}=\frac{1}{u^{2}}+\frac{1}{(u+\pi)^{2}}+\frac{1}{(u-\pi)^{2}}+\ldots
$$

In these equations

$$
\frac{d \log \sin u}{d u}=\cot u, \quad-\frac{d^{2} \log \sin u}{d u^{2}}=\frac{1}{\sin ^{2} u}
$$

from which (77) follows.
We infer that a grating of the degree of closeness in question presents to the eye a uniform field of light and no structure, but it is not proved by this method that structure might not reappear at a greater degree of closeness. If however we take $v=\frac{1}{2} \pi$, that is, suppose the lines to be exactly twice as close as above, a similar method applies. The illumination at the point is now expressed by

$$
\frac{\sin ^{2} u}{u^{2}}+\frac{\sin ^{2}\left(u+\frac{1}{2} \pi\right)}{\left(u+\frac{1}{2} \pi\right)^{2}}+\frac{\sin ^{2}\left(u-\frac{1}{2} \pi\right)}{\left(u-\frac{1}{2} \pi\right)^{2}}+\ldots
$$

or by

$$
\begin{aligned}
& \sin ^{2} u\left\{\frac{1}{u^{2}}+\frac{1}{(u+\pi)^{2}}+\frac{1}{(u-\pi)^{2}}+\frac{1}{\left(u+\frac{1}{2} \pi\right)^{2}}+\ldots\right\} \\
& +\cos ^{2} u\left\{\frac{1}{\left(u+\frac{1}{2} \pi\right)^{2}}+\frac{1}{\left(u-\frac{1}{2} \pi\right)^{2}}+\frac{1}{\left(u+\frac{3}{2} \pi\right)^{2}}+\ldots\right\}
\end{aligned}
$$

The value of the first series has above been shown to be unity, and by a like method the same may be proved of the second. The illumination for all values of u is thus equal to 2. That it should be twice as great as before might have been expected.

But my principal object at present is to consider the problem, suggested by Mr. Gordon, of a clark line of finite width upon a uniformly bright ground. The problem assumes two forms according as the various parts of the ground are supposed to be selfluminous or to give rise to waves which are all in one phase. The latter is the case of an opaque wire or other linear obstacle upon which impinge plane waves of light in a direction parallel to the axis of the instrument (telescope or Microscope), and as it is somewhat the simpler we may consider it first.*

In (28) we have the expression for the resultant amplitude at any point u due to a series of points or lines, whose geometrical images are situated at $u=0, u= \pm v, u= \pm 2 v$, $\mathcal{\text { cos. If }}$. Ill values of u are equally geometrical images of a uniformly bright ground of light, we have to consider

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \frac{\sin u}{u} d u=\pi \tag{78}
\end{equation*}
$$

At present we suppose that the bright ground is interrupted at points corresponding to $u=a, u=-a$, so that $2 a$ represents the width of the geometrical image of the dark obstacle. The amplitude at u is the same for a given numerical value of u, whether u be positive or negative. It will suffice therefore to suppose " positive. If $u<a$, we have

$$
\begin{align*}
& A(u)=\int_{-\infty}^{+\infty} \frac{\sin u}{u} d u-\int_{0}^{a-u} \frac{\sin u}{u} d u \\
&-\int_{0}^{a+u} \frac{\sin u}{u} d u . . . \tag{79}
\end{align*}
$$

[^257]which gives the resultant amplitude at any point u as a function of u and a. If $u>a$, we have
\[

$$
\begin{gather*}
A(u)=\int_{-\infty}^{+\infty} \frac{\sin u}{u} d u+\int_{0}^{u-\alpha} \frac{\sin u}{u} d u \\
-\int_{0}^{u+\alpha} \frac{\sin u}{u} d u \ldots . \quad . \tag{80}
\end{gather*}
$$
\]

By (78) the first term is equal to π.
The integral in (79), (80) is known as the sine-integral. In the usual notation

$$
\begin{equation*}
\int_{0}^{x} \frac{\sin x}{u} d x=\operatorname{si}(x) \cdot \quad \cdot \quad . \tag{81}
\end{equation*}
$$

so that (79) may be written

$$
\begin{equation*}
\mathrm{A}(u)=\pi-\operatorname{si}(a-u)-\operatorname{si}(a+u) . \tag{82}
\end{equation*}
$$

and (80) may be written

$$
\begin{equation*}
\mathrm{A}(u)=\pi+\operatorname{si}(u-a)-\operatorname{si}(u+a) . \tag{83}
\end{equation*}
$$

The function si has been tabulated by Dr. Glaisher.*
At the centre of the geometrical image of the bar, $u=0$, and (82) becomes

$$
\begin{equation*}
\mathrm{A}(0)=\pi-2 \operatorname{si}(a) \tag{84}
\end{equation*}
$$

If y is small, (81) gives

$$
\begin{equation*}
\operatorname{si}(x)=-\frac{x^{3}}{3 \cdot 1 \cdot 2 \cdot 3}+\frac{x^{5}}{5 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}-\ldots ; \tag{85}
\end{equation*}
$$

so that in (82) if a be small,

$$
\begin{equation*}
A(u)=\pi-2 a+\frac{2 a\left(a^{2}+3 u u^{2}\right)}{3.1 \cdot 2.3}-\ldots \tag{86}
\end{equation*}
$$

From this we see that over the whole geometrical image of the bar the amplitude of vibration is nearly the same. If we write I for the intensity, where $\mathrm{I}(u)=\{\mathrm{A}(u)\}^{2}$, and denote by I_{0} the value of I corresponding to a uniform ground ($a=0$), then

$$
\begin{equation*}
\frac{I_{0}-I}{I_{0}}=\frac{4 a}{\pi} . \tag{87}
\end{equation*}
$$

This gives the proportional loss of illumination over the image of the bar, and it suffices for the information required near the limit of visibility. For example, if the loss of light over the

[^258]image be one-eighth of the maximum, $2 a=\frac{1}{16} \pi$; so that a single bar upon a bright ground might well remain apparent when its width is reduced to $\frac{1}{32}$ of the minimum grating-interval (2π) necessary for visibility.

The above gives the loss of brightness over the region occupied by the geometrical image. Outsicle this region we have from (80), when $2 a$ is small,

$$
\begin{equation*}
\mathrm{A}(u)=\pi-\int_{u-\alpha}^{u+\alpha} \frac{\sin u}{u} d u=\pi-2 a \frac{\sin u}{u}, \tag{88}
\end{equation*}
$$

whence

$$
\begin{equation*}
\frac{\mathrm{I}_{0}-\mathrm{I}}{\mathrm{I}_{0}}(u)=\frac{4 a}{\pi} \frac{\sin u}{u} \tag{89}
\end{equation*}
$$

Here (89) identifies itself with (87) when u is small, and it does not alter greatly until $u=\frac{1}{2} \pi$. The slightly darkened image of the bar has thus a width corresponding to the interval $u= \pm \frac{1}{2} \pi$, exceeding to a great extent the width of the geometrical image when the latter is very small. The conclusion is that, although a very narrow dark bar on a bright ground may make itself visible, the apparent width is quite illusory.

A (u).

$\pm u$	$a=1$	$a=2$	$\alpha=3$
0	$+1.520$	- .068	- 5556
1	$1 \cdot 807$	+ 347	- -221
2	$\because \cdot 509$	1-384	$\pm .646$
3	$3 \cdot 259$	$2 \cdot 538$	$1 \cdot 717$
\pm	$3 \cdot 711$	$3 \cdot 322$	2.633
5	$3 \cdot 745$	$3 \cdot 536$	$3 \cdot 173$
6	$3 \cdot 507$	$3 \cdot 326$	$3 \cdot 326$
7	3-26:3	$8 \cdot 027$:3•242
s	$2 \cdot 932$	$2 \cdot 909$	$3 \cdot 114$

The annexed table gives the values of $\mathrm{A}(v)$ for $a=1,2,3$ for $u=0,1 \ldots 8$. Corresponding to any value of a,

$$
u(\infty)=\pi=3 \cdot 142
$$

It will be remembered that $2 a$ is the width of the geometrical image of the bar, so that when $a=3$ the width is about the same as the minimum resolvable grating interval (2π).

We now pass to the case of a self-luminous ground interrupted by a dark bar. As in (22), we have for the illumination at any point u within the geometrical image

$$
\begin{gather*}
\mathrm{I}(u)=\int_{-\infty}^{+\infty} \frac{\sin ^{2} u}{u^{2}} d u \\
-\int_{0}^{\alpha-u} \frac{\sin ^{2} u}{u^{2}} d u-\int_{0}^{\alpha+u} \frac{\sin ^{2} u}{u^{2}} d u \tag{90}
\end{gather*}
$$

and for any point ou the positive side beyond the geometrical inage

$$
\begin{gather*}
\mathrm{I}(u)=\int_{-\infty}^{+\infty} \frac{\sin ^{2} u}{u^{2}} d u \\
+\int_{0}^{0} u-\frac{\alpha \sin ^{2} u}{u^{2}} d u-\int_{0}^{u+\alpha} \frac{\sin ^{2} u}{u^{2}} d u, \quad . \tag{91.}
\end{gather*}
$$

$2 a$ denoting as before the width of the geometrical image of the bar, while u is reckoned from the centre of symmetry. If $a=0$,

$$
\begin{equation*}
\mathrm{I}(u)=\int_{-\infty}^{+\infty} \frac{\sin ^{2} u}{u^{2}} d u=\pi . \tag{92}
\end{equation*}
$$

The integrals in (90), (91) may be reduced to dependence upon the sine-integral. It may be proved * that

$$
\begin{align*}
\int_{0}^{x} \frac{\sin ^{2} u}{u^{2}} d u & =\int_{0}^{2 x} \frac{\sin u}{u} d u-\frac{\sin ^{2} x}{x} \\
& =\operatorname{si}(2 x)-\frac{\sin ^{2} x}{u} \cdot . \tag{93}
\end{align*}
$$

Thus, inside the geometrical image,

$$
\begin{align*}
\mathrm{I}(u)=\pi & -\operatorname{si}(2 a-2 u)+\frac{\sin ^{2}(a-u)}{a-u} \\
& -\operatorname{si}(2 a+2 u)+\frac{\sin ^{2}(a+u)}{a+u} ; . \tag{94}
\end{align*}
$$

and beyond it,

$$
\begin{align*}
\mathrm{I}(u)=\pi & +\operatorname{si}(2 u-2 u)-\frac{\sin ^{2}(u-a)}{u-a} \\
& -\operatorname{si}(2 u+2 a)+\frac{\sin ^{2}(u+a)}{u+a} . \tag{95}
\end{align*}
$$

[^259]At the centre $(u=0)$

$$
\begin{equation*}
\mathrm{I}(0)=\pi-2 \operatorname{si}(2 a)+\frac{2 \sin ^{2} a}{a} \tag{96}
\end{equation*}
$$

As in the former case an approximate expression (85) for si (x) gives the desired information near the limit of visibility. If a be small, we have for the illumination within the geometrical image from (90)

$$
\begin{equation*}
\mathrm{I}(u)=\pi-2 a \tag{97}
\end{equation*}
$$

so that

$$
\begin{equation*}
\frac{\mathrm{I}_{0}-\mathrm{I}}{\mathrm{I}_{0}}=\frac{2 a}{\pi} . \tag{98}
\end{equation*}
$$

The visibility of a bar of width $2 a$ is thus only half as great as before.

Outside the geometrical image we have approximately, when u considerably exceeds a,

$$
\begin{align*}
\mathrm{I}(u) & =\pi-\int_{u-a}^{u+a} \frac{\sin ^{2} u}{u^{2}} d u \\
& =\pi-2 a \frac{\sin ^{2} u}{u^{2}}, \tag{99}
\end{align*}
$$

whence

$$
\begin{equation*}
\frac{\mathrm{I}_{0}-\mathrm{I}(u)}{\mathrm{I}_{0}}=\frac{2 a}{\pi} \frac{\sin ^{2} u}{u^{2}} . \tag{100}
\end{equation*}
$$

The following table gives some values of I (u) calculated from (94), (95).

$$
\mathrm{I}(u) .
$$

$\pm{ }^{*}$	$\alpha=\frac{1}{2}$	$\alpha=1$	$a=2$
0	$2 \cdot 170$	$1 \cdot 349$	$\cdot 453$
1	$2 \cdot 442$	$1 \cdot 747$	$\cdot 827$
2	$2 \cdot 921$	$2 \cdot 621$	$1 \cdot 711$
3	\cdots	$3 \cdot 054$	$2 \cdot 565$

The complete value of I (u), when u is great, is π. The width of the geometrical image of the bar is $2 a$, and the smallest resolvable grating interval is π. The dark bar should be easily recognisable in the first case when its width is but one-third of the minimum grating interval.

In conclusion I may mention the results of a simple experiment conducted almost entirely without apparatus. In front of the naked eye was held a piece of copper foil perforated by a fine needle-hole. Observed through this the structure of some gauze
just disappeared at a distance from the eye equal to 17 in . (inch $=2.54 \mathrm{~cm}$.), the gauze containing 46 meshes to the inch. On the other hand, a single wire 034 in . in diameter remained fairly visible up to a distance of 20 ft . or 240 in . The ratio between the angles subtended by the periodic structure of the gauze and the diameter of the wire was thus

$$
\frac{.022}{.034} \times \frac{240}{17}=9 \cdot 1 .
$$

Using this in (98), we find for the proportional loss of illumination at the centre of the wire

$$
\frac{\mathrm{I}-\mathrm{I}_{0}}{\mathrm{I}_{0}}=\cdot 11
$$

about what might have been expectel.

ZOOLOGY AND BOTANY

(PRINCIPALLY invertebrata and cryptogamia), MICROSCOPY, Eтс.*

ZOOLOGY.

VERTEBRATA.

a. Embryology. \dagger

Treatise on Comparative and Experimental Embryology. \ddagger O. Hertwig's great treatise continues to appear in instalments which follow in rapid succession. Waldeyer deals in an almost monographic manner with the sex-cells; R. Hertwig treats of matmation, fertilisation, and cleavage ; the editor disensses the theory of the germinal layers.

Laboratory Text-Book of Embryology. §-Charles Sedgwick Minot has adapted part of his great book on 'Human Embryology' for use in laboratory work. The aim of the new text-book is to utilise sections of embryos as a basis for the morphological interpretation of adult strueture and in illustration of biological principles and pathological processes. After a general chapter, the author discusses the early stages in mammals, the human embryo till the fourth month, embryos of the pig, embryos of the fowl, germinal layers and cleavage, the nterus and the fotal appendages, and finally methods.

Influence of Radium Rays on Tadpoles. $\|$ - G. Bohn finds that these mysterious rays have a distinet but variable effect on the growth of the tadpoles of frogs and toads, sometimes making it slower, sometimes quickening it, sometimes destroying tissue, and sometimes inducing monstrosity. He indicates that an effect produced during the tadpole stage may remain as it were latent until the metamorphosis, when a monstrosity suddenly results.

Influence of Radium Rays on Ova.T-G. Bohn has made over forty experiments with the ova of Strongylocentrotus livilus, which were placed

[^260]near a tube of radium. It seems as if the rays acted on the chromatin of the nucleus, increasing its activity or after a while destroying it. They destroy spermatozoa (practically naked chromatin), but excite the protected chromatin of the orum and determine parthenogenesis. They induce on the chromatin of the fertilised ovm certain durable effects which are as it were retained mexpressed until growth or renovation sets in. There seems to be no effect on tissues except when they are in process of growth or differentiation.

Influence of Alcokol on Development.*-H. E. Ziegler has experimented with the ora of the sea-urchins Echinus mirrotuberculutus and Stromgylorentrotus livitus to test the influence of alcohol on development. The presence of $0 \cdot \pi-1$ p.c. does not result in serious injury, normal Plutei may result, but there seem to be marked individual differences in susceptibility. The presence of \because p.c. seriously disturls development, and seems to act as a poison, as Ranber also found. \dagger The cleavage is slow and often abnormal, only a few blastule are formed, the blastocoel tends to be too small, there are too many mesenchyme cells. Gastrulation is shuggish, the mesenchyme cells have not their normal arrangement, if a skeleton is formed at all it is abnomal, Plutei with well-dereloped arms do not occur. With :3 p.c. of alcohol in the seawater, few blastula are formed, and there is no gastrulation. With 4 p.c. no blastula are developed.

The general result is a disturlance of the cell-division ; it tends to be . inhibited. Thus there may be nuclear division withont cell-division. Another noteworthy effect is an inhibition of cell-movements, e.g. in gastrulation. Of especial interest is the formation of larve withont any skeleton,-as it were a return to a more primitive larval type.

Estrous Cycle and Corpus Luteum in Sheep. ${ }_{+}^{+}$-F. H. A. Marshall finds that in Scottish black-faced sheep the length of the sexual season varies with the locality, both in regard to the number of diosstrous cycles in a season and to the duration of each cycle. There is a perfect gradation between the moncstrous condition of some wild sheep and the extreme polyostrum of certain merinos.

The procestrum is marked by a mucous or sangnineo-mucous flow. It is very rapidly succeeded by cestrus (the period of desire), the two periods frequently seeming to occur simultaneously because of the abbreviation of the process.

The changes through which the sheep's uterus passes during a single dioestrous cycle can be divided into four periods:-(1) period of rest; (2) period of growth and increase of vessels ; (3) period of breaking down of vessels and extravasation of blood ; and (4) period of recuperation and pigment formation. The homology between the dioestrous cycle in the sheep and the menstrual cycle of the Primates is rendered very probable.

Ovulation can occur spontaneously at any œestrons (or pro-œstrous) period with Scottish black-faced sheep, excepting at certain cestri outside

[^261]the regular sexual season, when the additional stimulation supplied by coition may be neeessary. In the ferret, ownation does not ocemr in the absence of coition, without which the fullicles undergo atresia.

In the sheep, atresia is commonest in follicles of about $\frac{1}{8}-\frac{1}{2}$ the dimensions of the mature follicles. When it occurs with any considerable frecuener, it must affeet the barrenness percentage in subsequent breeding seasons. The atretic follicle differs from the developing corpus latenm in the absence of any diseharge to the exterior; the membrana grannlosa degenerates and disappears prior to any considerable ingrowth from the comective-tissne wall.

As to the formation of the corpus luterm, the latein cells are derived from the membrana gramulosa, while the comective-tissue element is supplied by the proliferation and ingrowth of the theca interna and externa. Leneocytes are abundant, especially at the sixteenth-hon stare of development, lout these disappear in later stages withont giving rise to commective tissne as described by Sobotta. The carity of the discharged follicle is filled in by the further ingrowth of connective tissne.

Perhaps the most important result is the additional evidence as to the identity of the two processes of pro-wstrum and menstruation.

Yolk-Nucleus or Corpus Balbiani in Vertebrates.* - K. v. Skrobansky has studied this much discnssed body in the ova of the grninea-pig. The question is, whether it represents morphologically and genetically a "sphere-apparatus" (idiozome, tentrotheca, or centriole), or whether it is a quite distinct structure. Aecording to the anthor's observations, the formation of the body is not associated with the division of the oogonia, and the corpusele camot therefore be identified as a sphereapparatus. Herein he agrees especially with Gurwitsch.

Determination of Sex. $\dagger-\mathrm{B}$. S. Schultze indicates that as long ago as 1505 he maintained that sex was determined even before fertilisation. It may be that the older the father is in relation to the mother, the more male offspring there will be (Hofacker and Sadler). It may be that a sire which functions frequently will have relatively more male offspring than one which serves less frequently (the conchsion of many breeders). But these conchsions are not antagonistic to the theory of "progamic" determination.

The "masenline ora" leaving the ovary of the young female may have more attraction for the spermatozoa of the older male parent than the "feminine ora" have. The " masculine ova" may attract spermatozoa fresh from the testes more than the "feminine ora," which may be relatively more accessible to spermatozoa which have been longer in the testes. It is evident that there are many "may-be's" to be considered before this difficult problem can be regarded as scientifically settled.

Development of Spleen in Tropidonotus natrix. $\ddagger-\mathrm{TV}$. Tonkoff has shown previously that in varions Ammiota the primordium of the

[^262]spleen always arises as a dense aggregate of mesenchyme cells with simultaneous co-operation on the part of the proliferating ceelomic epithelinm. He maintains that the spleen is parely mesodermic, without direct developmental association with the dorsal pancreas or with any endoderm. E. Glas has maintained that in the grass-snake, the origin of the spleen is distinctly endodermic, and bound up with the origin of the dorsal panereas.

Examination of embryos of this suake leads Tonkoff to reaffirm his conclusion. In this case also the spleen arises from a mesenchyme aggregate, quite independently of the dorsal pancreas, with which it is secondarily connected.

Development of Teeth in Selachians.* - P. Laaser finds that a dental ridge appears very early in embryos ($8-4 \mathrm{~cm}$. in length) of Spinax, Acanthius, and Mustelets, as a slight thickening of the epithelium with a subjacent mesenchyme thickening. In embryos of Spinax and Acanthius it appears earlier in the lower jaw ; in embryos of Mustelus it appears earlier in the upper jaw.

Not only do the teeth arise on the dental ridge, but the onter dental epithelimm shares directly in their formation exactly after the fashion of placoid scales. At the margin of the outer dental epithelium there is a groove (the external marginal-groove) which must not be confused with the lip-groove.

The first teeth-rudiments appear on the transition area from external dental epithelium to dental ridge. They are developed earlier than those on the external dental epithelium or those on the dental ridge. The first hard substance to be formed is dentine ; the enamel covering is not to be seen in the early stages. Very early there appears to the inside of the dental ridge, above and below, an inturned fold of the bnceal mucous membrane,-the internal month-fold. This afterwards forms the internal margin of the buccal eavity.

Preputial Glands of Rabbit. $\dagger-\mathrm{Dr}$. Conrant has made a study of the glandule preputiales and the changes which they exhibit. There is a "white gland" which is merely an argregated sebaceons gland, and a "brown gland" which is peculiar, and morphologically nearer the sudorific type. The brown preputial gland exhibits periodic changes, which are described. The changes are in all probability associated with the period of rut, but the evidence is not quite conclusive. Courant regards their function as conducive to sexual attraction by the secretion of a strongly smelling substance.

Non-Existence of "Neutrophil" Granulations in Leucocytes of Man and Monkey. \ddagger - F. Marino finds that Ehrlich's classification of the lencocyte-granulations in the blood of man and monkeys is not altogether verifiable. Ehrlich distinguished (a) eosinophil or oxyphil granulations staining with acid stains, (b) hasophil or metachromic granulations which take on basic stains, and (c) neutrophil granulations which will stain only in neutral mixtures. But Marino finds that the

[^263]third class is really non-existent; the alleged neutrophil granulations stain either with acid or basic stains, and retain them.

b. Histology.

Intercellular Connections.*-A. Schuberg has shown in great detail that intercellular connections between the epidermic epithelium and the connective-tissue cells of the corimm are in the case of the axolotl beyond all doubt real.

Minute Structure of Amphioxus. \dagger - J. Boeke describes (a) the structure of the light-perceptive cells segmentally arranged on the spinal cord, (b) the nemrofibrils in the ganglion-cells, and (c) the innervation of the striped muscular tissue.

Efferent Neurons in Electric Lobes of Torpedo. \ddagger - Shinkishi Hatai finds that the efferent nemrons of the electric lobes of Torpedo occidentalis present a fibrillar appearance of the ground substance. But this is due to an alteration in the shape of the meshes of the reticulum, and cannot be compared with the fibrils described by Bethe, Apáthy, and others. The meshes of the reticulum, which the anthor regards as primitive, are altered by the growth of the cell-body where the processes, both axone and dendrite, arise and become extremely elongated in these branches. Gradations from the primitive shape of the meshes to the altered form which appears fibrillar, are clearly visible in the spinal ganglion-cells of the white rat.

Blood-Vessels of the Spinal Cord of Birds.s - G. Sterzi has studied in detail the arteries and veins associated with the spinal cord of duck, fowl, pigeon, owl, and parrot. He gives a minute description, but we cannot do more than note that the disposition of the vessels in the varions species studied displays adherence to a constant type or mode of distribution.

Historical Aspects of Zoology. \| - R. Burckhardt emphasises the need for some vigorous work in regard to the history of zoology as a science. He discusses the biological expansion of zoology, the classification of the varions departments, the historical development of these, and especially the relation between "plyssiological systematik" and "comparative anatomical systematik."
c. General.

Parasitism among Animals. T-F. von Wagner has in a bookleta marvel of cheapness-discussed, (1) parasitism in general, its modes, its results on parasite and on host, and so forth, and (2) the most important parasites on man and his domestic animals.

Morphology of the Myxinoids.**-Howard Ayers and C. M. Jackson have discovered a series of rudimentary gill-bars in Belellostoma, and

[^264]seek to establish a series of homologies between the circumoral and " lingual" regions in Bdellostoma and Petromyzon. They also maintain that the so-called "tongue" of the Marsipobranchs is in reality the detached lower jaw. Therefore the Marsipobranchs are true Gnathostomes, forming a primitive group which probably sprang from the common ancestry before the acquisition of paired appendages by the vertebrate stock.

Note on Phrynosoma.*-C. L. Edwards points out that Gadow is mistaken in stating in 'The Cambridge Natural History' that all the species of Phrynosoma are viviparous. The fact is that the genus contains viviparons species, e.g. Pl. douyldasii, but also oviparous species, e.g. Ph. cormutum of Texas, whose nest-building and ovulation Edwards has described.

Functional Inequality of the Kidneys. \dagger - J. Albarran refers to the general belief, which has some definite basis, that the kidneys function equally. His experiments on dogs and man do not confirm this. He found that in the same time the two kidneys excreted different quantities of urine and of dissimilar composition. The details of the inequality are given, but it does not seem to us that the number of cases and experiments was sufficient to warrant generalisation, though the facts stated are undonbtedly interesting.

Normal Presence of Arsenic in Animals. $\ddagger-\mathrm{G}$. Bertrand has applied his delicate methods for the detcetion of arsenic to a great variety of animals from sponge to man. The metalloid seems to be present in every case and in all sorts of tissues, and the author thinks that it should be ranked like earbon, nitrogen, sulphur, or phosphorus as an essential component of living matter.

Arsenic in Eggs of Fowl.s-Cr. Bertrand supports his view that arsenic is a constant-perhaps physiologically necessary-component of all cells by demonstrating that it occurs in appreciable quantity in all parts of the hen's egg. The yolk has most, the white least, but even the keratinoid shell-membrane wives the reaction.

Formation of Black Pigment in Tumours of Horse. $\|$-C. Gessard refers to the recognised phrsieal and chemical similarity of the melanin of the ere, skin, \&c. of mammals to the melanin of euttlefish ink. He has studied the melanic tumours of white horses, and finds that the melanin is formed by the same biochemical process as that involved in the production of cuttlefish ink. There are two agents involved, an oxidising ferment and a chromogen.

He fiuds that tyrosin is the chromogen whose oxidation by tyrosinase determines the formation of black pigment in many normal and abnormal products in the animal series. One may say indeed that the colour of the negro is due to the same reaction as that which occurs in making the ink of the enttlefish or the black of certain fungi.

[^265]Growth in Weight of White Mice.*-M. Stefanowska has plotted out curves for both sexes, and finds four main periods. There is first a period of slow increase until the 1Gth day. Then follows a long period of maximum rate of increase from the 16 th to the 45 th day. The third period, from the 45 th to the 67 th day, corresponding to the advent of puberty, is especially marked by its irregnlar course, a descent, a rise, and an arrest. In the fourth period, from the 67 th day until mature size (91st day) the growth proceeds again slowly. There is a close parallelism in the corves for the two sexes.

Vascular System of Amphioxus. \dagger-R. Legros has filled some of the many gaps in our knowledge of the vascular system in this type. He gives a detailed accomnt of the vessels, and does not find amy evidence to support the view that the vascular system commmicates with any truly coelomic space. The vessels are definitely closed by a continuons endothelial lining.

Legros directs particular attention, in addition to his discovery of a trapeze muscle on the right side, to the parietal colomic canals which connect the sub-chordal coelom of the branchial region with the perigonadial coelomic cavities, and to the ascending visceral branch of certain dorsal nerves (27 th-:31st).

Tunicata.

Function of Ganglion in Ciona intestinalis.t-R. Magmus has experimented on this favomable subject for testing the function of the Tunicate's central nervous system. The system is reduced, as is well known, to a single ganglion from which the musculature of the bodywall is innervated. There is but one characteristic reflex, namely, a closing of the apertures and a retraction of the whole animal if one of the syphons is tonched. Loeb has maintained that this reflex persists after the ganglion has been extirpated, and supposes a propagation of the stimulus from muscle-cell to muscle-cell.

Magnus finds, however, that extirpation of the ganglion puts an end (for the time being) to the reflex, and leaves only local reactions possible. After extirpation there is no transmission of stimulus from one side of the body to another, or from one syphon to another. Only local reactions occur.

After two or three weeks, however, the original reflex may suddenly reappear, and then it is found that the ganglion has been regenerated. There is no warrant for supposing that there is a transmission of stimulus from muscle-fibre to muscle-fibre. The ganglion is a true and indispensable reffex-centre.

Digestive Glands of Monascidiæ.§-A. Isert describes in detail the structure of the main digestive gland in a number of solitary ascidians. The organ is most developed in Microcosmida, Cynthiæ, and Molgulidæ, where it is a distinctly visible organ in direct connection with the stomach. In other forms there is rather a glandular region

[^266]than a distinct organ ; and the region may extend from around the stomach to the intestine, or may be altogether confined to the latter. He devotes especially attention to the gland embracing the intestine of Microcosmus vulgaris Heller, an interesting organ which seems in many respects comparable to the pancreas of higher vertebrates.

New Type of Salpa-Chain.*-J. Bonnier and Ch. Pérez describe a new form Stephanosalpa polyzona g. et. sp. n. from the Persian Gulf, which has a wreathed chain (chaine en guirlandes) quite different in its architectural arrangement from either the Cyclosalpa or the Salpa type.

INVERTEBRATA.

Mollusca.

a. Cephalopoda.

Structure of Ovary in Cephalopods. \dagger-W. Bergmann describes the oraries of Sepia, Sepiola, Loligo, and $1 l l e x$ among Decapods, and of Eledone and Octopus among Octopods. The octopod ovary differs essentially from that of decapods since the secondary body-cavity in the former is so degenerate that it merely forms a capsule for the gonad. Moreover, the octopods have paired oviduets, while the decapods have only one. The author notes, inter alic, that the differentiation of ova or of sex in the gonads of Sepia does not occur early, and that he has observed in Loligo vulgaris a case of binuclear ovum.

Oxidising Ferments in Ink of Cuttlefishes. \ddagger - C. Gessard finds that cuttlefishes make their ink by a biochemical process similar to that by which the fungus Russula nigricans Bull makes its black. In both there is a ferment-tyrosinase-which acts on tyrosin and produces a black substance. As Bertrand has maintained that tyrosinase in Fungi is always accompanied by laccase, Gessard has sought for the latter in cuttlefishes. He extends Bertrand's conclusion and finds evidence of yet a third oxidising ferment in connection with the ink-making.

Nervous System of Nautilus. fill some of the gaps in our knowledge of the nervous system of the Pearly Nautilus. He has found, for instance, an anal commissure (suspected by Graham Kerr), and he compares it with that in Chitonidæ. A very good figure is given.

\%. Gastropoda.

Locomotion of Slugs.||-K. Künkel corroborates some of Simroth's observations, e.g. that species of Arion are sluggish and slow in comparison with species of Limax. He has also made a number of interesting experiments, which lead him to the following conclusions. (1) The wave-play lasts for some time in the foot of decapitated slugs, and may be seen even on excised pieces. As Simroth pointed out, this is due to the fact that "the ganglia in the meshwork of the pedal musculature are sympathetic and the wave-play is antomatic." (2) When the wave-play has stopped in individual pieces it may be set agoing

[^267]again by mechanical and light-stimuli. There must be connections between the integumentary nerve-cells and the ganglia in the pedal nerve-network. (:) In pieces of Arion mechanical stimuli induced energetic contraction, while luminous stimuli induced the wave-play. (t) Pieces of Limax showed stronger "Waves" than pieces of Arion; as Simroth showed, the pedal nerve-network in the former has many transverse commissures which do not occur in the latter. (5) Median pieces have less power of movement than the head- and tail-pieces. (6) Fragments of head- and tail-pieces can move eren more quiekly than intact animals. (7) Young specimens of Limax move more quickly than the adults.

Entosiphon Deimatis Parasitic in an Abyssal Holothuroid.*-

 R. Koehler and C. Vaney found this new parasite in Deima blakei Théel. They describe the structure which resembles in many ways that of Entocolax, two important differences being the retention in Entosiphon of a spirally twisted visceral mass and of a relatively complex nervous system. Moreover, while Entocolax is known only as female, Entosiphon is hermaphrodite like Entoconcha. And Entosiphon has more intimate parasitic relations with its host than Entocolax has.The new form should be placed along with Mucronatia and Stylifer, and probably Entocolax, in the family Eulimidæ. Here also the author would place Entoconcha. Some attention is paid to the "pseudopallium," which seems to be a eephalic expansion on the upper region of the proboscis.

Structure of Pontiothauma. \dagger-S. Pace gives a partial description of P. mirabile E. A. Smith and P. abyssicola E. A. Smith, of which only the type-specimens are known. It seems that the affinities of Pontiothauma are with the Mangiliinæ, and that its nearest allies are Pleurotomella Verrill and Spergo Dall.

Memoir on the Limpet. $\ddagger-J$. R. Ainsworth Davis and H. J. Fleure have written the tenth memoir of the Liverpool Marine Biology Committee's useful series. The subject is the common limpet (Patella vulgata) and the chief objects of the memoir are to provide a reliable account of the structure of this Gastropod, and to show the place which it occupies in the class to whieh it belongs.

The matter which the authors believe to be new includes the following chief points :-(1) a lateral glandular streak has been found along each side of the foot of young specimens, resembling that found in Nacella and its allies; (2) a muscular zone, named "the internal pallial muscle," has been found extending in, the mantle between the tips of the shell-muscle; (3) the structmre of the crop and inferences drawn therefrom as to the special torsion of the riscera of Docoglossia during consolidation of the visceral hump ; (4) the respiratory function of the nuchal cavity as regards damp air ; (5) discussion of the evolution of the present topographical relations of rectum, kidneys, pericardinm, and

[^268]heart ; and (6) details of mantle innervation and pallial tentacles. We have used the memoir in an adranced class and have found it most serviceable.

Function of Subradular Organ in Chiton.*-H. Heath has made observations on the protrusion and use of the subradular organ in Cryptochiton stelleri. The organ in question is situated at the bottom of the subradular sheath formed by the backward prolongation of the hinder wall of the month-cavity. It is a bilobed structure that has heen aptly compared to two heans with their coneare surfaces in contact. Its onter layer, lounding the month-cavity, consists of the buccal epithelium modified at this point into high and ciliated columnar cells, usually pigmented and differentiated into sensory and supporting cells. The remaining portions of the organ consist of numerous muscle and connective-tissue fibres, that in addition to their other functions afford lodgment for the relatively well-develeped subratular ganglia.

From the observations, it appears that the food and probably the nature of the olject on which the animal rests is determined by tactile, and perhaps olfactory organs sitnated on the proboscis; while the subradular organ is a structure used exclusively for testing the character of the food, in all likelihood Instutury in function.

Follicular Cells in Gonads of Gastropods. \dagger-C. de Bruyne shows that in Prosobranchs the structure of the gonads in the two sexes is absolutely parallel. In both, there are follieular cells, of homologous structure, which fill a nutritive role and serve also for protection or fixation. These follicular cells, like the spermatogonia and oogonia, arise from an "indifferent" germinative tissue. The nutritive or follieular cells, in Poturtinta for instance, have the same origin as the distinctive sex-cells. The same is true of the hermaphrodite Pulmonates. "The follicular cells are neither ahortive sex-cells, nor ancestors of the ova and spermatozoa, nor residnal elements; they are constituent elements of the gonads which have a regetative,-and perhaps mechanical rôle."

Aëriferous Canal in Shell of certain Pulmonata. $\ddagger-A$. Bavay directs attention to the presence in small Crclophoride (allied to Opisthoporus, Suiruculum, and Alyectus) of an aëriferous canal within the shell, opening intermally, lint not externally.

Synopsis of Palæarctic Forms of Clausilia.S-C. A. Westerlund has studied the numerous forms of this type of suail. His general heading runs :-Cl. I. Malacozor Cephalephora. Order I. Inopereulata. Section 1, Monotrema. Sulisection シ̈, Gnathophora. Family Helicidæ. Subfamily \because, Pupina. The type Clausilia includes Balea Prid., Clausilia I)rap., Laminifera Bttg., and Serruline Mss. The strict gemus Clausilia includes :3: snbgenera!

* Anat. Anzeig., xxiii. (1903) pp. 92-г̃ (4 figs.).
\dagger Bull. Classe d. Sciences Acad. Delg., 190;, pp. 115-35.
\ddagger Bull. Soc. Zool. France, axviii. (1903) pp. 140-3.
§ Mém. Acad. Imp. Sci. St. Pétersbourg, xi. No. 11 (1901, received 1903) pp. xxxvii and 1-203.

ס. Lamellibranchiata.

Frequency of Occurrence of Pearls.* - W. C. M'Intosh directs attention to the irregularity in frequency of occurrence of pearls in mussels, \&c. In one lot one in a hundred may contain a marketable pearl, in another lot 50 p.c. may have pearls of a kind, and so on. In 700 specimens of Mytilus edullis from the estuary of the Eden, examined by Mr. A. J. R. Russell, pearls were found in 280 of the 620 large specimens, and 20 in the 80 small specimens. Thus $4 \approx 8$ p.e. had pearls.

In connection with Dr. Lyster Jameson's view that eider duck and scoter may be the final hosts of the parasites which form the nuclei of the pearls, it is noted that both these birds oceur in considerable numbers in the estuary of the Eden and feed on the mussels. It is suggested that some other lirds frequenting the mussel-heds, such as the oyster-catcher, may be found to harbour the same parasite.

Brackish Water Cockles. \dagger - N. Andrusoff finds that the number of distinct genera is greater than has hitherto been recognised. He gives diagnoses and descriptions of Aclena (4 species), Didena (3 groups), Arcicardium (4 species), Plagiodent g. n. (5 species), Phyllicartium, Monotlena (14 species), Limnocardizm, Myocarlia, Uniocardium, Prosollena (17 species), Stylollena, Horiodlena, and Bulmania.

Arthropoda.

a. Insecta.

Phylogeny of Carabus. \ddagger-G. de Lapouge has made a detailed study of this, dealing espeeially with Carabus violaceus, the typical form of which is the extreme result of convergent evolution from at least three sources, Iberian, Italian, and Balkan.

Post-embryonic Development of Intestine.§-P. Deegener has studied this in Cybister roeselii Curtis from the time when the larva leaves the water and begins to pupate in the earth. It is necessary to distinguish (1) the mid-gut epithelimm which functions during the last larval stage (apparently without a " Stäbchensaum") ; (ㅆ) the "Kryptenhals" cells which are not functional, but form the transition to (3) the crypt-cells or proper regeneration-cells in the fundus of the crypts, structurally and functionally indifferent elements which form the epithelimm of the pupal intestine, and along with their descendants the imaginal epithelium also.

The larval epithelinm is separated off and disintegrated; the Kryptenhals-epithelimm is provisional and soon perishes ; it is snceceded by the regeneration-cells which form a pupal epithelium (uith "Staibchenbesatz"); this again is moulted off and succeeded by a ruite new imaginal epithelium.

Variations of Pieris napi. $\|$ - Fr. Wagner discusses the validity of the sulphuret, sulphureotinctu and fluvescens varieties of this common

[^269]butterfly, and his study of this case of specific variation is illustrated by an excellent plate.

New Case of Protective Mimicry in a Caterpillar.*-R. Shelford describes a remarkable case. On a Spircea-like plant, collected at Sarawak, which bore numerous pale green cymose inflorescences still in bud, what looked like one of the branchlets was seen to be moving. This was a small Geometer caterpillar, only 9 mm . in length, covered with buds from the inflorescence on which it was feeding. Strings of buds, connected by silk, were fastened to spine-like processes on the body, and when the green buds faded or were removed, they were immediately replaced by fresh ones. The mode of fixation is described. The larva fed on the buds, scooping out the interior, and, when not hurried, used empty shells in preference to whole buds for its covering. When irritated, the caterpillar curled up and remained stationary for 15-20 minutes so that its burden of buds seemed, as the sketch shows, to form part of the entourage of living buds. At other times it would sway about, looking like a branchlet blown by the breeze. As is frequently the case with specially protected insects, the species seems to be rare, and the perfect insect is not yet known.

Notes on Seasonal Dimorphism. \dagger-F. A. Dixey, in an account of Lepidoptera from the White Nile, shows that in cases where the existence of seasonal modification has been reasonably presumed, or even actually demonstrated, the seasonal relation is far from being rigidly fixed. Thus he notes (a) the persistence of dry-season coloration in the females of seasonally dimorphie species; and (b) the simultaneous occurrence of diverse seasonal forms.

Artificial Parthenogenesis in Silk Moth. $\ddagger-A$. Tichomiroff refers to his experiments made in 1855 which showed that very varied stimuli -sulphuric acid, friction, warm water-might induce artificial parthenogenesis in the eggs of the silk-moth. He has made further experiments, and finds that the parthenogenetic development always shows more or less abnormality. The cells of the serosa are sometimes gigantic and they sometimes lie in an irregular chain in the middle of the yolk, the ectoderm sometimes grows much more rapidly than the other layers, and sometimes it lags behind. In short the development is not normal.

Development of Stylopidæ.s-C. T. Brues has studied three North American species of Tenos, which live as internal parasites of wasps, notably of Polistes. The behaviour of stylopised wasps towards their parasites is usually friendly, although it is probable that the males are attacked by the wasps whenever they attempt to copulate with the females. Their distribution and occurrence are erratic ; due apparently to the fact that as "triungulins" they do not readily become transferred from one wasp to another and consequently to other nests. Large numbers of larve are often found in one Polistes larva, without greatly

* Nature, Ixviii. (1903) pp. 187-8 (1 fig.). See Zoologist, May 1903.
\dagger Trans. Entomol. Soc. London, 1903, pp. 141-63 (1 pl.).
\ddagger MT. Com. f. Seidenzucht k. Moskauer Landwirt. Ges., Bd. i. Hft. 10 (1903) pp. 3-10 (1 pl.) (Russian). See Zool. Centralbl., x. (1903) pp. 344-5.
§ Zool. Jahrb., xviii. (1903) pp. 241-70 (2 pls. and 3 figs.).
disturbing the health of the host. The wasps die soon after the emergence of the male Xenos, seeming to become dried up. Infected wasps are usually lighter in colour and more feeble in flight.

Oogenesis is very peculiar. Very small larva show strings of spherical primitive ova on eaeh side of the gat. These grow and later break up, giving rise to eggs, each of which consists of a mass of nursecells bearing a polar cap of cells derived from a primitive eqg attached to it. Yolk is formed from the contents of each egg, and when ripe the eggs are seattered about all throngh the eavity of the body, and lie imbedded in the fatty body. Maturation seems to oecur through the fusion of the second polar body with the pronnclens of the egg (!)

The eleavage cells form a blastoderm which does not cover the whole egg, and draws up to one pole to form the rudiment of the germ band by a rearrangement and multiplication of its cells. Older embryos are of the usual generalised type, but on account of their length are curled up in the egg in a peeuliar manner.

The first larval stage, or "triungulin," gives rise through the loss of its legs and degeneration of its internal organs, to the second or legless larva, which is provided with median metameric protnberances in the place of legs. The sexes begin to differ in external form after another moult when peculiar asymmetrical muscles develop in the thoracic segments. After another eedysis the adult form appears. The female protrudes the anterior extremity of her body, and lies with her ventral side turned towards the dorsal surface of the wasp's body. The embryological data do not indicate any affinities between the Stylopidæ and the Coleoptera, so the family may best be considered for the present as belonging to the Strepsiptera.

The attacks of the parasites are not confined to the female sex ; and the sex of the host is at most only to a slight degree influenced by the presence of Xenos larva in the body. On the other hand, there is a well-marked tendeney for all the parasites in one wasp to develop the same sex.

Lepidoptera of North America.*-Harrison G. Dyar has accomplished the gigantic task of producing a new list of North American Lepidoptera, with a key to the literature of this order of insects. He has been espeeially assisted by C. H. Fernald, the late Rev. G. 1). Hulst, and A. Busek. The work is intended to take the place of Smith's List (1891), and to furnish a condensed catalogue comparable to Standinger and Rebel's catalogue of the Lepidoptera of Europe. The author places the butterflies first, since they seem on the whole "higher" than the moths. He follows with the Sphingida and Saturnians for the same reason, although, in venation, they are more generalised than some of the Noctuid groups. The list, as a whole, proceeds from higher to lower forms, as in Standinger and Rebel's catalogue.

Mandibular Glands of Larval Lepidoptera. \dagger-L. Bordas describes these in Acherontic atropos, Pieris brassicce, and Stauropus fagi,-a pair of tubular glands in the anterior thoracie region, on each side of the

[^270]oesophagus, opening on the internal surface of the base of the mardibles. The secretion has a strong odour, and is probably of protective value.

Oogenesis in Lepidoptera.*-K. Grünberg finds that in Bombyr mori and Pieris brassice the differentiation of the cellular elements of the ovary occurs during the larval period. The oogonia, which are derived from the primitive germ-cells, produce only oocytes and nutritive cells. The epithelium of the stalk of the ovarioles is fomed from small nuclei which are seen in early stages behind the primitive ovarian tubules. After the differentiation of germ-cells has set in, the epithelium of the stalk of the ovarioles forms folliele-cells. Thus germ-cells and follicle-cells have a separate origin, and the latter are genetically equivalent to the cells of the efferent canal.

B. Myriopoda.

New Clasping-Organ in a Centipede. \dagger-R. I. Pocock has deseribed in certain species of the neotropical genus Paratostigmus a pair of movable-apparently sexual-processes arising one on each side from the inner surface of the femur of the legs of the posterior pair. In an Ecuador species there are very distinct claspers. These take the form of a stout slightly incurved process jutting backwards from the inferior angle of the coxa of each of the legs of the trentieth pair, and reaching to about the middle of the sternal plate of the twenty-first leg-bearing somite.

Four distinet kinds of secondary sexual characters are now known in the males of Parotostigmus : the femoral process of the anal legs, the coxal claspers above referred to, the morlification of the last tergal plate in P.ccuulatus, and the modification of the tibial segment of the anal leg in P. tibialis Bröl. It is significint that the claspers may be correlated with the femoral processes, but the two other male features exist independently of the femoral processes, and functionally replace them. The only other genus of Scolopendrida in which similar femoral processes liave been described is the remarkable African form Alines (Eucorybas), and there are probably atfinities between the two genera, -a view quite in kecping with the fammistic similarities that obtain in other respects between tropieal Africa and Sonth America.

ס. Arachnida.

Irish Fresh-water Mites. \ddagger-J. N. Halbert notes that most of these agree in their characteristics with common and widely distributed species. Yet interesting forms oceur which are little known, while a few are new to science. He proceeds to describe certain of these uncommon species : Hylrachna incisa sp. n., H. dissimilis sp. n., H. biscutata Thor., Arrhenurus fremumi sp. n., A. ornatus George, A. dilatutus sp. n., A. affinis Kocnike, and A. sculptus sp. n.

Species of Ixodidm.s-L. G. Nemmam, speaking ex cathedre as a specialist on mites, points some nseful morals to species-mongers. He

* Zeitschr. f. wiss. Zool., Ixxiv. (1903) pp. 327-95 (3 pls.).
\dagger Ann. Nat. Hist., xi. (1903) pl. 621-4 (1 fig.).
\ddagger Zool. Anzeig., xxvi. (1903) pp. 265-7ン (14 figs.).
§ Mem. Acad. Sci. Toulouse, ser. x. vol. ii. (1902) pp. 329-38.
instances Hyalomma regyptium L. to which enthnsiastie discoverers of species have given 28 other names! He falls foul of Prof. A. Macalister for an oliter dictum of 1871, and shows up F. Supino for cyen greater transgressions in 1897.

Spiders of Germany.*-W. Büsenberg was able to complete his fine monograph on the spiders of (iermany before his death. The fifth and sixth parts are now published, but the author died soon after the appearance of the first.

ϵ Crustacea.

New Species of Sergestes. \dagger - H. J. Hansen descriles Sergestes inermis sp. n., obtained by Mr. George Murray during the cruise of the 'Oceana' in 1898. It is rather closely allied to S. robustus Smith, but seems quite distinct.

New Genus of Copepod. $\ddagger-$ W. G. Ridewood describes as Obesiella lyonsiellce g . et. sp . n., a new Copepod from the suprabranchial cavities of the deep-sea Lamellibranch Lyonsiella. They were so closely packed that the passage of water through the suprabranchial cavities nust lave been a matter of considerable difficulty. All were femates. Their most remarkable feature is the great inflation and loss of external segmentaltion in the thoracic region, and the reduction in size of the thoracic appendages. The head has the appearance of being provided with a hood, owiug to the presence of a dependent flap on each side. There are no eyes. Six pairs of cephalic appendages are present, and four thoracic. The abdomen is indistinctly divided into four segments, the last bearing a pair of candal rami, short and papilliform, with four or five short setie. The mouth is extremely small, and set upon the pointed snmmit of an oral cone, into the conformation of the sides of which the third pair of appendages enter. The genus falls naturally within the family Ascomyzontidæ.

Note on Phototropism of Daphnia.§-(G. W. Kirkaldy calls attention to H. Schouteden's observations \| which show that Daphnia magma exposed to the action of light and able to choose between different intensities, is at first positively phototropic-- going towards the zone of greater light, and then-as regards the adults-it gains the zone of less illumination. As to the young individuals, they appear to have tendencies less precise; nevertheless, the positive reaction is maintained in a very great number of cases. Kirkaldy points out that the Belgian zoologist has apparentiy overlooked the researches of Lubbock \mathbb{I} upon which considerable light is now thrown.

Synopsis of British Fresh-water Cladocera.**-D. J. Scourfield has made a useful list of these, with reference to Lilljeborg's monograph of

[^271]Swedish forms. Of the 96 species recorded from Sweden we have 75 in Britain, or known to occur in Britain, and there are six British species which are not given by Lilljehorg as Swedish. Scourfield gives a clear table showing the general distribution of the British species of Cladocera.

Annulata.

Revision of Annelids of the Cette Region.*-A. Soulier has begun an ardnous task, and gives revised descriptions with synonymy, \&e., of Amphiglene mediterranea, Oriu armandi, Spirographis spallanzanii, Potamilla reniformis, Mysicola infundibulum and M. cesthetica, Pomutoceros triqueter, Serpula crater, Hydroides uncinata, and Protulu meilhati. The precise and terse diagnoses may be of service to those working at this class of Annelids.

Artificial Parthenogenesis in Egg of Podarke obscura. \dagger-A. R. Treadwell subjected unfertilised ova of this cheetopod to sea-water plus potassimm chloride, and then returned them to normal sea-water. The results were varions. Some exhibited " p sendo-cleavage," in which the cytoplasm divided thongh the nucleus did not. In some cases the chromatin was irregularly diffused, and often a large number of astrospheres were seen in the cell. Other ova exhibited both nuclear and cytoplasmic cleavage. But neither the psendo-cleavages nor the true cleavages followed the typical schema of the normal segmentation. Nopolar bodies were formed.

Ciliated "embryos" arose after or withont true cleavage, and in both cases a prototroch was formed. Conlescence of ora and embryos was observed, but not so markedly as in Chetopterus.

Phenomena of Fertilisation in Hæmenteria costata. $\ddagger-\mathrm{A}$. Kowalersky has added details to his previons account of the remarkable processes of fertilisation in this leech. The male genital aperture does not lead directly to the gomads but into an intermediate cavity into which the spermatophore-sac opens and in which the anterior end of the spermatophore is received. When the spermatophore is introdnced into the male aperture, its anterior end perforates the posterior wall of the aborementioned cavity, and the spermatozoa liberated into the calvity of the body accumulate in the space between the spermatophore-sac, the ovaries, and the "matrix."

When the whole contents of the spermatophore have been liberated, the empty sac is detached from the body and falls off. The spermatozon are in many cases destroyed by the cells of the nephridial capsules or other phagocytic elements, but a certain mumber penetrate through the matrix and get into the ovaries.

Oogenesis and Spermatogenesis in Sagitta bipunctata. $\mathrm{S}_{\text {-N. M. }}$ M. Sterens finds that the points of special interest in the oogenesis of Saritta are: (1) the unbroken continuity of the reduced number of

[^272]chromosomes during the whole growth-period of the oocytes; (2) the increase in length and the branching of the chromosomes as the oocytes increase in size, and the very great reduction in the size of the chromosomes as the oocytes ripen; (3) the casting ont from the mucleus of a large number of what appear to he chromatin-gramules, at about the time when the spermatozoon enters the accessory cells; and (t) the connection of each oocyte with two accessory cells, within which is developed a definite path for the spermatozoon from the sperm-dnct to the ovum. The spermatogenesis is partially described, and the differences between the author's observations and those of Lee are indicated. The most striking elements among the sperm-cells of Sajitto are the cells of the growth-period preceding the two maturation divisions, where the chromosomes appear as nine large, very regular crenate loops.

Nematohelminthes.

Sense-Organs of Ascaris.*-R. Goldschmidt has made an claborate study of the sensory strnctures in Ascaris lumbricoides and A. megalocephalc. . These fall into three groups,-the lip-organs, the neek-papillæ, and the anal papillæ. He shows that there is much that is peenliar in the relations between the sensory nerves, the supporting cells, and the conducting cells. As to the functions of the organs we are left almost, to supposition. In cases where the organs end beneath the thick cuticle it is very difficult to suggest a function.

Platyhelminthes.

Marine Parasites in Fresh-water Fishes. \dagger-F. Zschokke has an interesting essay on the ocenrrence of marine parasites on fresh-water fishes. Thus forms like Ascaris clavata, Echinorhynchus acus, Distomum varicum and D. appendiculutum, which are to be regarded as distinctly marine, occur occasionally in fresh-water fishes. A good case is the occurrence of Scolex polymorphus in Cottus gobio. The author discusses the 31 parasites of Lota vellyaris and the 15 of Siliurus glanis, and shows how they occur in other hosts-fresh-water, marine, and migratory fishes.

New Case of Dipylidium caninum in Man. $\ddagger-\mathrm{F}$. Zschokke reports another case of the oceurrence of this tapeworm of cat and $\log \left(=I^{\prime}\right.$ cenic cucumerina, T'. elliptica, \&c.) in man. Abont three dozen cases have been recorded, usually in children, except in Switzerland where four of the six cases were adults. The larval stage occurs in the Trichodectes canis (Melnikoff), Pulex serratus, and P. irritans (Grassi and Rovelli), whence it passes to dog, cat, or man. Prof. M. Bram adds a note of another case from a child in the London Hospital Medital College.

Drepanidotænia tenuirostris.§-T. B. Posseter deseribes this tapeworm, in regard to which there has been a good deal of vagneness. He obtained it by infecting domestic ducks with cysticercoids, the origin of

[^273]which is not stated. The general structure is deseribed with especial attention to the gronalds.

Skin of Trematodes.*-N. Matharen has made a fresh stndy of a subject that has bern a good deal disenssed. His view of what oecurs is as follows. 'The elamhalar colls of the origimal epidermis simk thromgh the basal membrame ame beneath the masenar laver. 'Iheit secretion, ahong with a shedding of the ecto-parenchoma, leads to a sloughing and loss of the original epidemis. The somenty proces may result in kayers, and the immenose laye may form the andal skin of the adult, while the other hayers, along with the remains of the orteinal epidermis, form a protective emolone as long as the Trematode lies in the eyst, and are left behind when it leaves the evst. Most or all of the ghandmar eells lose their efteremt duets after the defintive shath is formed.

Notes on Trematodes. \dagger L. C'olm deseribes Hophterma mesocalime
 merorelimm. but the wombls extend further forwards. He has also foumd Amphistomum dolichorotyle sp. n. in the rectum of Merpetodryes finsells. It is related to Diphodiscus subchatatus of the frow.
'The anthor has stmbed the lamer-canal and times that it sometimes sorves, as in Liolope copulums. for copmbarion.

New Distomum from Sawtish Shark. \ddagger-S. J. Johnston dereribes Distomam mistionhori ap. In. from the body-abity of Pristiophorus cirrates. It has am chonsand body. an mon. he 6 man. in breadth, and a very extemsible neek. Finteming itself by the vematal smeker, it stretehes ont its neek for more than an inch, longer than the body itself. The most ehameteristic featmes of this new thate are its size, the chamater and position of the suckers, the folded hat mbanded intestine, the oroid shape of the owary and testis and their sitmation, the great lengeth of the uterns, the erape-like ritelline ghands, and the well-dereloped exeretore sistem. The simple nature of the intestine, the absence of hooks or lobes from the suckers, the ahmost total obliteration of the esophagus, and the absence of a retractile wescopie tail-part indicate a position in Dujardin's sul, gems Brulahlamus, not far from D. velipurium.

Incerta Sedis.

Correct Name of Genus Phoronis.s-Fr. Poche points out that while Strethill Wright used the term Phoronis in 1 Nitb, Johames Müller had described Actimetroth branthette in 1st6. Althongh Miäler only deseribed the larval form, his mame detimotroche shomid prevail, and the family should be called Aermotochide. What difference it makes we fail to see.

New Species of Aleyonidium. 1. Calset describes Alcyondiam bruet sp. In., collected by Mr. N゙. S. Broce from $7-$ fathoms off the lstand of Kolguer to the north of Russit. The colony is like a little

[^274]eup and the zoœcia are all situated on the convex surface. In this as well as in detailed structure the new speeies is very distinct.

Echinoderma.

Experimental Studies on Eggs of Echinus microtuberculatus.*-

N. M. Stevens divided the ova in an anaphase of the first cleavage into portions containing fewer than the normal mumber (18) of ehromosomes. A portion with a centrosome and $4-12$ chromosomes may divide five or six times without a restoration of the normal number. This is against the conclusion reached by Delage.

Chromosomes may divide repeatedly without spindle formation or the like. Centrosomes may appear de novo in a blastomere. Pieces of ovum without indication of the first cleavage plane do not exhibit celldivision unless chromosomes and centrosomes are present.

Experiments on Ova of Starfish. \dagger-Jacques Loeb has made some interesting observations on the ova of Asterias forbesii. Mature, unfertilised ova soon die a natural death in sterilised sea-water, but immature ova, or those whose maturation has been artificially delayed, or fertilised ova live on for a longer or shorter time. Oxygen and free hydroxyl ions hasten maturation, while scareity of oxygen inhibits it. In naturally parthenogenetic ova there may be a katalytic substance formed inside the cell, while in eggs which require fertilisation it may have to come from without. The treatment with acids that induces artificial parthenogenesis usually inhibits maturation. Loeb supposes katalytic substances which promote synthetic processes in development, and disruptive autolytic processes in maturation.

Cœlentera.

Development of Gonionemal murbachii. $\ddagger-\mathrm{H}$. F. Perkins has studied the development of this species which made a sudden appearance in 1894 in the "eel-pond" at Woods Hole, Mass. His observations show that Haeckel's sharp distinction between. Trachomeduse and Leptomeduse is not justified.

Dehiscence of sex-cells oceurs in Gonionema with precise periodicity, and is definitely affected by changes in light. Segmentation is total and equal ; the endoderm is formed by delamination of the blastomeres ; a solid morula results. A plamula stage is followed by a hydrula stage, and during the latter four tentacles are developed.

Youngest medusæ and oldest polyps show marked homologies ; and direct metamorphosis is suggested. Peculiar pathologieal phenomena oceur, the larva living for weeks in the form of a plasmodium, with amœbiform activities.

Alternation of generations occurs. A non-sexual form of multiplication takes place during larval life. Buds are prodnced which are detached as planula and go through the same changes as the parent.

The order and arrangement of tentacles in a gonosome follows a

[^275]definite plan of cyclic sequence, producing a figure which is cyclically, not bilaterally, symmetrical. Tentacles and sense-organs appear at determinate points on the bell-margin. Histogenesis of tentacles and sense-organs shows their homology. The origin of nematocysts from the base of the ectodermal pad at the base of the tentacle is described. Gonads arise as enlargements by proliferation of the ectodermal subumbrellar epithelimm of the radial canals.

Hydroids of Pacific Coast of North America.* - H. B. Torrey gives a table of distribution, a diagnostic key, and a systematic discussion of the hydroids of the Pacific coast of North America. He also discusses in connection with a number of species the relation of form and habit to surroundings, the development and regeneration of tentacles, the problem of orientation, response to tactual stimulation, the origin of branches and gonothece within hydrothece, and the occurrence of a Haleciid (Campalecium mellusiferum) with free meduse.

Peculiar Structure in Certain Hexacorallia. \dagger - A. Krempf finds in 25-35 p.c. of individuals of Seriatopora, Stylophora, and Pacilopora, a peculiar structure-a solid strand, rumning along the ventral directive mesenteries into the cavity of the body. Morphologically it is an invaginated tentacle, about sixteen times larger than an ordinary tentacle, and also modified in structure. But what its meaning is remains obscure.

Porifera.

Studies on Hexactinellids. $\ddagger-$ Isao Ijima in his third contribution on this subject describes a new stalked Euplectellid of an interesting structure, which he calls Placosoma paradictyum. Its most remarkable feature is the massive development of the body and the differentiation of a part of the external surface into an area, the frontal lattice, more especially adapted to the reception and passing in of the water than other parts of the same.

In observations on the Euplectellidæ generally, Ijima has tried to improve the diagnosis. He makes it read :-" Lyssacine Hexasterophora of tubular, cup-like or massive body; sometimes stalked; either rooted by a tuft of basal spicules or firmly attached by compact base ; generally possessing numerous separate oscula. Dermal skeleton composed of hexactinic dermalia, the proximal ray of which is as a rule much longer than any other in the same spicule; no hypodermal pentactins ; hexasters varions."

The present contribution also contains descriptions of Leucopsacus orthodocus Ij., L. scoliodocus Ij., Chaunoplectella cavernosa Ij., C. spinifera sp. n., Caulophacus rotifolium sp. n., and Sympagella anomala sp. n. These are referred to two families-Lencopsacidæ and Caulophacidæ -newly conceived and proposed for introduction into the system.

Note on Spongilla fragilis.s - R. von Lendenfeld took specimens of this fresh-water sponge from the Moldan at Prag and placed them

[^276](October 9,1902) in an aquarinm. Three days later the sponges were dead, but gemmules had attached themselves to the glass walls and were beginning to form new sponges. In twelve days the young sponge grew to a size of 3 cm ., and when eighteen days old it had a new generation of gemmules. Microscopical examination showed that these aquarium specimens differed a little from those in the river in respect to the spinose rhabda around the gemmules.

Siliceous Spicules.* - G. C. J. Vosmaer endeavours to introduce some improvements in the classification of siliceous sponge spicules. Thus in the group of monaxons, two fundamental divisions may be distinguished, according to the fact whether the ideal axis lies in a plane or not. In the former case the line may be straight, curved, bent, \&c.; in the latter case the line is a screw helix (approximately, as all vital structures are). The spicules of the first set are called "pelinaxons," those of the second "spiruxous." And among the spiraxons we can distinguish two sets:-(a) the serew line is formed on the surface of a circular cylinder (α-spiraxons), or (b) on that of an elliptical cylinder (β-spiraxons), of large and small "pitch" respectively. The α-spiraxons include sigmaspira, spirula, spinispira, microspira, and sterrospira-types; the β-spiraxons include sigma, chela, and diancistra-types.

Protozoa.

Conjugation of Amœbæ. \dagger-Margherita T. Mengarini has described what seem to be incontestable cases of the conjugation of two (or even three) small forms (microgametes) of Ameba undulans to form a large unit or macrogamete.

Observations on Acanthometrea. $\ddagger-W$. Scherriakoff finds that the acanthin skeleton consists of calcium-aluminium silicate (with traces of iron), and is probably, in life, a hydrate of calcium-ahminium-silicate. This chemical composition makes it clear why there are no fossil remains of Acanthometrea; their fallen skeletons are dissolved in the seawater.

Schewiakoff goes on to discuss the arrangement and fine structure of the contractile elements or myonemes, \&c., the changes associated with their contraction and elongation, and the influence of various stimuli-electrical and mechanical-on their excitability.

Senescence and Conjugation in Infusorians. -G. Loisel maintains that senescence in an Infusorian implies that in its vital reactions with its environment, an increasing number of protoplasmic molecules are put out of action ("se tronve immobilisé") either temporarily or permanently. Assimilation becomes increasingly difficult and there is a progressive diminution in the power of natural immmination. Injurions substances, injurious in the widest sense, accumulate and are incompletely neutralised.

On the other hand, conjugation is interpreted as implying a kind of

[^277]protoplasmic purification and a renewal of the power of immmnisation. It is antagonistic to senescence, and this idea is extended to the Metazoa as well.

New Vorticellid.*-W. Ayrton describes Zoothamnium geniculatum sp. 11., which he fonnd attached to weeds in the river Waveney, Suffolk. It is an exceedingly beantiful arborescent colony with dimorphic zooids, very like Z. arbuscula, but with distinetive features of its own.

New Species of Trachelomonas. \dagger - T. Chalkley Palmer describes five new species of this genns, which though apparently not infrequent or wanting in variety, has not heen studied with any great degree of enthusiasm. The new forms were obtained from Ancora, New Jersey, in a diatomaceous film. The five species are established solely on the strength of the characters of the lorica, which was in all cases siliceous.

Trypanosoma found in Sleeping Sickness. \ddagger - A. Castellani fomnd in the blood and in cerebro-spinal fluid of patients suffering from sleeping sickness, a species of Trypanosoma differing from Tr. gambiense Dutton in the position of the micronuclens, the vacuole, and the flagelhum. Thongh the strnctural differences are far from being constant, the anthor is inclined to thimk that the form described is a new species. Just as the horse is liable to be infected with I'r. brucei (" nagana "), Tr. evansi (" surra"), and T'r. equiperdum ("dourine"), so man may be attacked by different species giving rise to different diseares.

* Journ. Quekett Micr. Club, 1903, pp. 407-10 (1 pl.).
\dagger Proc. Acad. Nat. Sci. Philadelphia, 1902, pp. $791-5$ (1 pl.).
\ddagger Brit. Med. Journ., No. 2216, June 20, 1903, pp. 1431-2 (1 fig.).

BOTANY.

GENERAL,

Including the Anatomy and Physiology of Seed Plants.

Cytology, including Cell-Contents.

Behaviour of the Chromosomes in the Spore-Mother-Cells of Higher Plants.*-D.M. Mottier has studied nuclear division in the pollen-mother-cells of Lilium Martagon, L. candilhom, Pollophyllum peltatum, and Tradescantio virginica, and those of the corresponding divisions in the embryo-sac mother-cell of Lilium Martayon. The details of the successive phases are described in detail. "The first mitosis in both the micro- and macrospore mother-cells of the higher plants is heterotypic, and the second homotypic. These nuclear divisions are not, properly speaking, reducing or reduction divisions. They are not the agents of the reduction, but rather the result of the numerical reduction of the chromosomes." Cytological evidence favours the view that the microand macrospore mother-cells are homologous. That type of the embryosac in which four potential macrospores are produced as the result of the heterotypic and homotypic mitoses, occurring in Gymnosperms as well as in the majority of Angiosperms, is regarded as the more primitive, while that typified by Lilium, where the macrospore mother-cell functions at once as the spore, is to be regarded as a derived condition.

Reconstitution and Formation of Chromosomes in Somatic Nuclei. \dagger-Gregoire and Wygaerts publish a preliminary account of their observations on the minute details of muclens reconstitution, and the formation of the chromosomes in somatic cells, chiefly meristematic. The authors believe that the resting muclens is derived from the chromosomes, not by their fusion end to end, but by a gradual process of alveolisation ; but in the objects studied the chromosomes retain their individuality even in repose. The chromosomes are formed again by a process exactly opposite to that by which the resting nuclens was formed; they contain no dises or gramulations so that when the chromosome splits it simply separates directly into halves.

Behaviour of the Chromosomes of Hybrids. \ddagger-O. Rosenberg has investigated the behaviour of the hybrid Drosera longifolite \times rotundifolia which is fonnd in nature near Tromsö. The number of chromosomes in D. rotundifolia is 20 (not 16 as stated carlier by him) in the sporophyte and 10 in the oophyte, while in V. lompifolice the nmber is 40 and 20 respectively, just twice as many. In all the vegetative cells of the hybrid 30 chromosomes were found (except in the tapetal cells where a few nuclei with about 40 chromosomes were obscrved). The spindle figure was somewhat broader than that of D. rotundifolia, but

[^278]narrower than that of D. longifolic. In the division of the pollen-mother-cells the mmber of chromosomes was found to vary, for beside the expected number of 15 , the mumbers 10 and 20 , corresponding to those of the parents, were also found, and in fact all three numbers in the same anther. The pollen-grains themselves were also either of hybrid type or else exactly like those of one or other parent. The descendants of these hybrids were not investigated, so that the exact meaning of these important results most at present remain obscure.

Behaviour of Nuclei in Plant Hybrids.*-W. A. Cotton has studied the behaviour of the muclei in the pollen-development of an artificially produced hybrid cotton, Gossypium barbadense and G. herbaceum. The very early stages were not investigated, but the pollen-mother-cells were scen in the synapsis stage, and the chromatin segments when first observed were in long delicate loops much twisted and bent. The loops thicken to form rings, and then by further condensation lose their ring character, but in the metaphase of the first division this character reappears. In any one muclens the loops and rings are of uniform size, and the two sizes of rings found in the hybrid pigeon and in some pure forms were not observed. The first division was normally heterotypic, but it could not be determined whether the split at the metaphase separated chromosomes which correspond to the halves of the heterotype ring or whether the split followed the second cleavage. The second division was normally homotypic but could not be studied in detail. Besides the normal divisions, a certain number of abnormal ones were obscrved, of which details are given. The anthor believes, however, that the purity of the sex-cells, which is apparently one of the corollaries of Mendel's law, is bronght about by the normal tetrad divisions. This point, together with the question of the probable result of hybridity of Cryptogams, is treated of in the carlier part of the paper.

Non-Sexual Nuclear Fusions. \dagger-Nermec discusses the question of these fusions in relation to the work of his pupil, Blazěk, who foumd that when the roots of seedlings of Pisum sativum and Vicia Faba were exposed to vapour of benzene or to a 1 per cent. solution of copper sulphate, multinucleate cells were produced which afterwards became unimucleate by nuclear fusion. These fusions are, of course, not connected with sex (neither are the fusions found in the endosperm of Corydatis and T'ulizu) and Němec believes that they are brought about by an anto-regulating mechanism of the cell which reduces typical cells to the uminucleate state when by any means they have become multimucleate. The anthor suggests that the morphological characteristic of sex lies rather in cell fusion than in moclear fusion since the latter power is possessed also by vegetative cells.

Relationship of the Nuclear Membrane to the Protoplast. \ddagger A. A. Lawson has studied the formation of the nuclear membrane especially in the spore-mother-cells of Passiffora corulea and the archesporial cells of Equisetum limosum. His results, which were confirmed

[^279]by olservations on other plants such as Lilium, C'oben, Ciludiolus, Pinus, P'teris, \&c., are as follows. The typical nuclens of the higher plants is a water-cewity structurally similar to that of the cell-vacnole. The chromatin is the only permanent constitnent of the nuclens; the karyolymph, linin, nucleoli, and membrane are renewed with cach suceceding mitosis. The nuclear membrane originates like the tonoplast. It is formed by the cytoplasm coming in contact with the karyolymph just as the tonoplast is fomed by the cytoplasm coming in contact with the cellsap. The karyolymph is no more permanent tham the cell-sap, and the nuelear membrane is no more permanent than the tonoplast. As the nuclear membrane is of cytoplasmic origin, it is regarded as the inner limiting membrane of cytoplasm rather than as a constitnent of the muclens. Although the chromatin grames fomm in the cells of the Cyanophycese and becteria are surounded ly meither karyolymph nor menbrane, these granules nevertheless represent the nuclens, since every highly organised muclens passes through a stage in its development when it consists of nothing but chromatin. It is further sugesested that the primitive muclens probally did not secrete a karyolymph, and therefore no nuelear membrane was formed.

Effect of Temperature on Growing Cells.*-F. R. Schrammen, following Hobles who investigated the effect of temperature on the cells of the root-apex of Vicia F'aba, has made paratlel observations on the stem-ipex of that plant. His experiments confirm the physiological and morphological distinction of the cytoplasm into tropoplasm and kinoplasm, for these two cell-constitnents have a different maximum and minimun for their action and probably a different optimum. His observations point to the spindle-fibres leeing, not mere lines of force or paths of movement for the chromosomes, but definite threals of considerable rigidity which are able to actively move the chromosomes. The behaviour of the moleolus points to its being a borly of reserve material, chicfly kinoplasmatic. Divisions of an apparent amitotic nature were often observed, these were really the effeet of musnitable temperatures on actual karyokinesis. Another almormal result of high and low temperatures was to cause the maclei of some cells to become pressed through the fine pores in the wall.

Structure of the Starch-Grain. \dagger - H. Kracmer conclndes that the starch-grain consists of colloidal and crystalloidal sulstances arranged for the most part in distinct lanella. At the point of origin of growth, and in the alternate lamellae, the colloidal predominates associated with the crystalloid cellnlose, whereas in the other layers the erystalloidal substance, consisting for the most part of gramose, preponderates. The peculiar behavionr of the colloidal layers towads anilin-stains is analogous to the behaviour of a section containing mucilage-cells towards these dyes, the latter being taken mp by the moncilare-cells alone. Again, as the characteristics of mucilage-cells are most prononnced in anhydrous media, such as concentrated glycerin, so a similar effect is seen in the starch-grain. The reason that the erystalloidal character of

[^280]some of the lamellæ is not apparent under natural conditions is probably because the refractive properties of the crystalloid substance so nearly resembles that of the associated colloid. The use of certain reagents causes an imbibition of water by colloidal portions with consequent swelling of the grain, and hence a contrast in refractive power with the more insoluble crystalloid substances.

Action of Freezing on Plant-Cells.* - D. Matruchot and M. Molliard, as the result of a long series of experiments, come to the following conclusions. Freezing of plant-cells or tissues causes an attraction of water to the outside of the cell, produced in aquatic plants by freezing of the surrounding liquid, in aërial plants by freezing of the thin layer of water which covers the external surface of the cell-membranes. There results a rapid general exosmosis of water, and not only from the cell-sap but also from the cytoplasm and the nucleus, in the latter cases by a vacuolation of the living matter. In the case of the cytoplasm there is no evident morphological modification, but with the nucleus there results not only a diminution of volume but also profound modifications in textmre. The one or more directions in which the water-attracting force acts is indicated by a mi- to multi-polar orientation in the nucleoplasm ; the poles are the points at which the water finds easiest outward passage, they are always more watcry and therefore less chromatic than the rest of the nucleus. The position of the poles is always in relation to the proximity of a large cytoplasmic vacuole. Plasmolysis effects the same cytoplasmic and nuclear modifications as freezing.

Molisch's theory of death by freezing finds a direct cytological confirmation in the results of these experiments : death by freezing is really death by desiccation.

Starch-Grains in the Root-Cap of the Onion. \dagger-G. Husek gives an account of the occurrence, production, and reactions of starch in the root-cap of Allium Cepa. He discusses the influence of temperature and light on its formation and also describes the regeneration of the rootcap after cutting off and the development of the lencoplasts.

Acocantherin: an African Arrow-Poison. $\ddagger-E . S$. Faust has isolated a new poisonous alkaloid, acocuntherin, from the "Shushi" arrowpoison which is prepared from Acocanthera abyssinica. It has the formula $\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{O}_{12}$ and is precipitated in yellow flakes on addition of ether to its alcoholic solution. It is a homologue of ouabain and strophanthin and is possibly dimethyl-ouabain. Its physiological action resembles that of the Digitalis alkaloids.

Structure and Development.

Vegetative.

Foliar Origin of the Stem.§-Léon Flot concludes that the general plan of organisation at the stem-apex which is found in plants showing

[^281]very different types of structure, supports the theory, which he has previously put before the Academy, as to the foliar nature of the stem. Each leaf-primordium consists of three meristems, an epidermal, a cortical which follows the epidermal, and a vascular. At the leaf-base the three meristems are continuous with those of leaf-primordia above and below and also laterally with those belonging to the same eycle. The stemsegments corresponding to their respective leaf arise by cell-division in the respeetive vascular meristems.

Bundle Arrangement in the Petiole and Leaf-Veins in Dicoty-ledons.*-M. Col seeks to explain the bundle arrangement in the leafstalk and veins. In all leaves of dicotyledons the nerves and stalk show in transverse section an are of phloem and xylem, either continuous or divided into buudles; in many cases there are also one or several bundles placed above this arc. The upper system may unite by its edges with the sides of the lower are ; the two together constitute a stele. The author suggests that only the bundles of the are are in a normal position, and they alone correspond to the vascular circle of the stem. The region in which the upper (anterior) bundles are more or less tardily developed, is homologous to the pith of the stem-it is the upper peridesm of Vau Tieghem in a slightly extended sense. For convenience of description, we can differentiate the bundles placed above the normal lower are into anterior (or upper) bundles and medullary bundles proper. The author admits, however, that it is impossible to conceive any nomenclature for the foliar bundles which shall embrace and satisfy all the intermediate arrangements.

Existence of a Pith in the Leaf-Stalk of Phanerogams. \dagger M. Bonygues points out that in addition to the three fundamental regions, epidermal meristem, cortical meristem, and vasenlar meristem, which the researehes of Bonnier and Flot have demonstrated in the young leaf, there is also a definite pith. In a young petiole the whole of the vascular meristem is not used up to form the procimbinm strands. At the base of the petiole there is a clearly defined remainder in the upper surface of the organ above the procambium strunds which corresponds by its situation and perhaps also by its origin with the pith of the stem.

In some cases this meristem is separated from the epidermis by a sub-epidermal layer, which does not remain simple. The form of its elements and its radial division suggest its equivalence to the cortical meristem; but this layer early becomes the seat of rapid tangential divisions and gives rise to the supplementary vasenlar meristem. The question then arises whether this layer is cortieal or a part of the normal vaseular meristem. The anthor has in a previous memoir described it as cortical. M. Col \ddagger however, on purely anatomical grounds, regards all the sub-epidermal tissnes on the upper face, with or withont bundles, as equivalent to the pith of the stem, an interpretation which does not agree with the results of M. Bouygues' researehes.

Unipolar Stele in Rootlets of Trapa.s-C. Queva deseribes the anatomy of the roots of Trapa natans. The stele in the main root is

[^282]tetrapolar, and the rootlets arise normally and are arranged in four rows. Their growth is limited, and they do not branch ; they are very slender, measuring scarcely $\cdot 3 \mathrm{~mm}$. in diameter. While these rootlets show a normal cortical structure, they are remarkable in having an extremely simple stele. It is limited by an evident bundle-sheath and has a regular pericambium, but the wood consists only of a single tracheid in contact with the rhizogenous layer ; the rest of the bundle consists of 3 to 10 uniform phloem elements with thin walls. The bundle is thus unipolar, and the rootlet has a bilateral symmetry, the plane of which passes through the axis of the main root.

This is the only known example of a root of a seed-plant with a unipolar bundle. This reopens the question of the morphology of the abnormal roots of Isoetes and certain Lycopods, which have been regarded as half-roots or as roots with a bent bipolar bundle. Similarly the rhizophores of Selaginella and the appendices of Stigmaria may be analogous cases of reduction of the phloem and xylem of a root.

Anatomy of certain Groups of Caryophyllaceæ.*-F. Joesting has studied the anatomical structure of the vegetative organs of a number of genera of the following sections of this order:-Sperguleæ, Polycarpeæ, Dysphanieæ, Sclerantheæ, and Pterantheæ. He draws attention to the extraordinarily primitive leaf-structure of the majority of the plants of these groups ; a differentiation into palisade- and spongy-parenchyma is shown only in the arrangement, rarely also in the form of the cells. Another very general character is the segmentation of the wood-cylinder by wedges and parenchymatous tissue, especially in the root, but also the stems which show a well-marked growth in thickness. He also notes the segmentation of the whole root by obliteration of the central tissue ; this leads in an extreme case (Telephium Imperati) to a complete breaking up' of the root into five "branches," each of which shows a centric structure and a cork-envelope. The roots of species of Spergularia, Spergula, Telepluium, Polycarpcea, and others show a remarkable secondary formation by means of extrafascicular secondary cambiums.

Petiolar Glands of Viburnum Opulus. \dagger-M. Thouvenin describes the histology and the relation to the vascular bundle system of the petiole of the small gland-like stipules and the petiolar glands of this species. He discusses the morphology of these structures and suggests that they may represent reduced lateral leaflets of a compound leaf; these leaflets, the anatomy indicates, were sessile and inserted on the rhachis by a broad base.

Modification of Habit by Grafting. $\ddagger-\mathrm{L}$. Daniel, continning his investigations on this subject, records the following conclusions. In the case of Composites the grafting of annual parts of herbaceous plants on appropriate herbaceous stocks may modify the period of duration and prolong the flowering season of the graft. The grafting of an herbaceous plant on an annual plant may prolong the life of the latter. Thus Solanum pubigerum was grafted on the giant tobacco, an annual in the

[^283]French climate. The plants showed vigorous growth after producing flowers and fruit during a considerable portion of the winter. The grafting operation often effects a considerable change in the characters of the graft or the stock, thus enabling the grower to produce flowers or fruits out of the usual season, as well as demonstrating the plasticity of the species under the influence of sudden variations in its environment.

Experiments on Grafted Plants.*-'L. Daniel also contributes several papers in which he deseribes the results of his experiments on grafted shoots and plants ; his results are important from an economic point of view.

Abnormal Growths in Woody Plants. \dagger-J. Esteva gives photographic representations of abnormal development and growth in the trunk of sweet chestunt and poplar, and of a case of fasciation in Spartium juncerm.

Reproductive.

Development in Piperaceæ. $\ddagger-\mathrm{D}$. S. Johnson finds no suggestion of the remarkable embryogeny described for Peperomit in other genera of the order (Piper and Heckeria). The development of ovary, ovule, and embryo-sae differ widely in several respects from that found in the related genus Peperomic. The ovary is syncarpous and the ovule has two integuments ; the archesporial cell gives rise to a tapetal cell and a single megaspore, and from the latter a seven-nucleate embryo-sae arises in the usual way. The antipodals and synergids are long persistent. The embryo in the ripe seed is very small, it is globular and undifferentiated exeept for a very short suspensor. The endosperm nucleus of Piper forms twenty or more free melei, and then cell-walls are formed simultaneously about all of them. In Heckeria the endosperm-nuclei are separated from the first by cell-walls. In both, as in Peperomia, the endosperm is comparatively small in the ripe seed and contains no starch, abundance of which is found in the surrounding perisperm.

The anthor also studied the germination of the seeds of Peperomia and Heckeria. The seed-coat is burst by the swelling of the endosperm and embryo; the endosperm protrudes as a sac whieh continues to surround the embryo until after root and the two cotyledons are differentiated. The root finally pushes out through the endosperm, but the latter remains about the tips of the cotyledons and imbedded in the seed till all the stareh of the perisperm is absorbed.

The striking differences in the mode of formation of the endosperm in the three genera show that characters of this kind are often of no value as indications of affinity. The writer still maintains the position that the peculiarities in Peperomia are secondary. The ease of Gumnera, where Schnegg has shown that the embryo-sae contains sixteen or more nuelei, and that the endosperm nucleus is formed by the fusion of eight or ten of these, is probably an independent secondary development.

The writer sees no reason to doubt that Peperomia finds its true affinity among the Piperaceæ.

[^284]Perisperm is at present known in the seeds of Piperales, Aristolochiales, Polygonales, Centrospermæ, and Ranales among the Dicotyledons. All of these orders are, as pointed out by Schimper and Lesqnereux, old geologically, and may represent branches of a single stock or phylum of the Dicotyledons. The Piperales are probably m_{m} meh more closely related to Polygonales than would appear from the position assigned to them by Engler.

A study of the germination in Peperomia and Heckeria indicates that the aleurone-containing endosperm of these forms acts as a digesting and absorbing apparatus for transferring the starch stored in the perisperm to the embryo. In several genera of the Cannaceæ, Polygonaceæ, Phytolaccacer, Caryophyllacer, and others, a thin layer of endosperm separates perisperm and embryo and seems to serve the same function as in Peperomia and Heckeria. The embryo sporophyte is perhaps everywhere nourished throngh the gametophyte and not direetly by the parent sporophyte.

Morphological Study of Asclepiadaceæ.*-T. C. Frye has studied the floral development and embryogeny in several species of Asclepias. He finds that the umbels are terminal and that the parts of the flower appear in centripetal succession, the members of each set arising simultaneously, and there is no confluence of primordia. The stamens and petals arise early from a common ring slightly elevated above the insertion of the other sets; the tube of the corolla seems to be of toral origin. The stamens are remarkable in the development of intereellular spaces; the horn and head are lateral outgrowths from the filament and composed largely of extremely loose tissue; the horn contains no vascular tissue. The top of the "head " formed by fusion of the tips of the carpels, and not the functional stigma, is believed to be homologous with the stigma of normal angiosperms. In general, Corry's account of the formation of the caudieles and corpuscula is corroborated.

The generative cell divides in the normal way near the tube-nueleus; the division occurs before the formation of pollen-tubes. The pollentubes from the same pollinium all enter the same ovary ; the tube-nucleus gets no further than the upper part of the ovary.

The ovnle has one integment, and the nucellus is a single row of cells enclosing the sporogenous row. A single hypodermal arehesporial cell forms a row of four megaspores withont the formation of a parietal eell. Oceasionally there is more than one archesporial cell; in the formation of the megaspores the danghter-eells do not divide simultaneously. The female gametophyte develops normally. Double fertilisation was observed in Asclepias Cornuti, one of the male cells fusing with the antipodal polar nuclens; fertilisation may oceur before or after the fusion of the polars. A few tracheids were found in the ovules near the antipodal cells.

The oospore rests until the endosperm has become 16 -celled or more. The pappus is composed of single-celled uninueleate trichomes; the double wall of the pod originates in the rupture of the parenchymatous tissue within the wall of the carpel.

[^285]Vegetative Activity in the Carboniferous Epoch.*-B. Renault cites various cases in proof of the statement that there was formerly a much greater activity in formation of cellular tissue than at present. One instance is found in the organisation of the pollen-grains; those of Stephanospermum, Cordaites, and other Gymnosperms contain a prothallium of from 8 to 12 cells, while in present day Gymnosperms no more than 3 or 4 are found. This activity was favoured by a remarkable development of the nourishing vascular strands. For instance, the author has shown that the embryo-sac of Stephanospermum was surrounded by bundles of tracheids, while the filament of the stamens in Cordaites was traversed by an important vascular bundle which formed a branch for each anther.

Notes on Compositæ. \dagger-R. Wagner has studied the morphology of the inflorescence in a number of genera of Composita.

Seeds of Inga. $\ddagger-A$. Borzi describes the biology of the seed distribution and germination in Inye Ferillei and other species of this genus of Leguminosa.

Laticiferous Tissue in Flowers of Convolvulaceæ.§-P . Grélot finds three types of this tissue:-(1) Strings of cells placed end to end with suberised membrane and absorbed transverse walls; branchings occur. These are very regularly distributed, accompanying the nerves in calys, corolla, and stamen, and localised at the periphery in the ovary and style. (2) Isolated cells, with subcrised membrane coexisting with (1) (Convolvulus Cneorum), or occurring alone with no precise localisation. (3) Cells fusing to form branched or simple cell-groups; membrane of cellulose. These are the rarest and occur in F'alkia and Dichondra. They are generally subepidermal and have a scattered distribution in the calyx, but are localised at the base of the corolla and pistil. The author finds that the laticiferons tissue does not afford constant characters for distinguishing species of a genus.

Physiology.

Nutrition and Growth.

Synthesis of Proteids by Plants.\|-Em. Laurent and Em. Marchal divide their paper into two parts. In the first, which is historical, the sources of plant nitrogen, thecir assimilation by the plant, and the products of assimilation are considered from the point of view of previous work. In the second part the experiments made by the authors are described. Seedlings of mustard and cress, shoots of onion, asparagus, white mustard, leaves of Nicotiana and Syringa were among the subjects of investigation. The following conclusions are tabulated. Free nitrogen is assimilated by lower organisms :-Clostridium Pasteurianum, different species of Bacteria and Nostoc (?), and Rhizobizm when culti-

[^286]vated with sugar or in symbiosis with vascular plants. Ammoniacal nitrogen is assimilated by non-green lower plants (bacteria, moulds) without the aid of light rays. In green plants the process can take place in light or darkness, in green tissues and in those which have no chlorophyll, but it is more active in the light. Nitric nitrogen can also be assimilated in darkness by lower non-green organisms. In green plants, with some exceptions (germinating seeds provided with reserve material), the assimilation of nitrates is mnch more intense in green leaves exposed to the light, especially to the more refrangible rays. When free nitrogen, or the nitrogen of ammonia or of nitric acid is assimilated in darkness, there is consumption of hydrocarbonaceons material which supplies the necessary energy for the work of reduction of nitrates and of synthesis. The lower non-green plants can synthesise proteids in the dark; the necessary energy is supplied by organic compounds. In green plants, espeeially the higher plants, this synthesis takes place only in the light. Nevertheless, amides in limited quantity may be produced in organs without chlorophyll (germinating seeds) in the dark; while a supply of certain amides (asparagin, glutamin) and sugars may be followed by production of proteids in the dark. But in the present state of our knowledge, it seems that the transformation of nitric acid or of ammonia into proteids in an adult higher plant requires the intervention of light.

Assimilation in Green Plants.*-G. Pollaeci describes the experiments he has made to prove the existence of formic aldehyde in green plants. He finds that this substance is formed in the green parts of plants exposed to sunlight in the presence of carbon dioxide, and that it can be distilled from the macerated leaves. It is not formed in plants which have no chlorophyll (e.g. fungi), nor in green plants kept in darkness, nor in the absence of earbon dioxide. He deseribes the apparatus and reagents used and cites the writings of other workers at this subjeet.

The same author \dagger replies to Czapek's criticism (in Bot. Zeit., 1900, p. 153) of his work and claims priority for employing Schiff's reagent (aqueous solution of fuchsin decolorised with sulphurous aeid) for experimenting on uninjured living green plants in light and darkness and in the presence and absence of carbonic acid, and on plants which contain no chlorophyll, and for demonstrating what was only surmised previously-that formic aldehyde is a normal product of assimilation in green plants.

Use of Collodion for Detecting Transpiration. $\ddagger-$ L. Busealioni and G. Pollacei have discovered a new method of investigating the transpiration of plants, by applying a solution of collodion to the surface. The film sets hard and remains transparent on a dry surface, but on a moist surface becomes opalescent, thus revealing with great aceuracy the points of escape of aqueous vapour from the transpiring tissne. It is a great improvement on the older methods of applying paper impregnated with chloride of palladium and iron or with cobalt chloride, for the paper does not come into absolute contact with the

[^287]plant. Further, the collodion film can usually be stripped off with ease and examined under the Microscope, and inter alice it affords a transparent and perfect cast of the epidermal cells, stomata, \&c. And as solutions, such as cobalt chloride, can be added to the collodion solution, the moisture of transpiration can also be made to yield colour-reactions. The authors publish the results they have obtained in connection with cuticular and stomatic transpiration, the influence of light and of mechanical strain on the stomatic cells, the influence of drought and of chemical vapours (ether, \&e.) on transpiration, the structure of organs of movement and of parts in course of growth, the behaviour of lenticels and hydatodes. A long bibliography is appended.

Function of Calcium Oxalate in Plant Nutrition.*-M. Amar, working with various genera of Caryophyllacea, finds that the deposits of calcinm oxalate crystals become less in quantity as the distance from the blade of the leaf increases, in following the course of the elaborated sap. This suggests that the crystals are formed at the expense of this sap, and are deposited chiefly immediately after its claboration, in the cells near the assimilating and conducting tissues. The author also shows that when once laid down the crystals remain and are not used up when the plants are removed from the soil and grown in a culture solution which contains no calcium compound; that is to say, the calcium oxalate is merely a product of excretion. By germinating seeds in a similar culture solution seedlings with four or five pairs of leaves were obtained which contained no calcium oxalase.

Periodicity of Morphological Phenomena in Plants. \dagger-Under this title Tine Tammes describes a number of observations on the influence exerted by the presence or absence of leaves on the period of growth in length of the internodes, and the presence or absence of leaflets in the growth in length of the intervening portions of the leaf-rhachis. He has also studied the relation of variation or periodieity in certain characters of the leaf and leaflet to the same phenomenon.

Irritability.

Stomata of Cotyledons. $\ddagger-G$. B. Traverso has tabulated the results of his observations on the influence of light upon the development of stomata in cotyledons, and deduces the conclusions that the number of both stomata and ordinary cells formed per unit of surface in cotyledons grown in darkness is greater than in those grown in light. But the proportion of stomata to ordinary cells in cotyledons grown in darkness is less than in those grown in light, because in darkness the ordinary cells are multiplied at a greater rate than the stomata. In other words, the percentage of stomata is greater in light than in darkness, though the actual number is less per unit of surface.

Statolith Theory of Geotropism.§-F. Darwin deseribes experiments made by himself which are confirmatory of this theory, which

[^288]explains the stimulus to geotropic movement as caused by the falling of the starch-grains on the cell-walls when an organ is moved from its normal position in relation to gravity. The author, wishing to supplement the evidence supplied by Haberlandt and Nëmee, devised an ingenious but simple method of experiment. If gravitational sensitiveness is a form of contact-irritability (which must be the case if the pressure of the statoliths on the plasmic membrane is the critical event) then it might be possible to intensify the stimulus by vibration. By applying vibration in a vertical plane to a horizontal scedling, the repeated blows of the starch-grains on the protoplasm should produce a more active geotropic response. This was realised by a tuning-fork; seedlings which had been kept horizontal for from 8 to 10 minutes on a tuning-fork vibrating in a vertical plane showed about 44 per cent. more curvature than the control specimen. The experiment was repeated with vertical specimens exposed to lateral illumination to make sure that the enhanced response was not due to an increase in the general irritability of the seedlings. In this case the curvature of the vibrated plants was only 5 per cent. more than that of control specimens. We may therefore conclude that vibration increases the geotropic reaction but does not materially affect heliotropism; which is what we should expect on the assmmption of the truth of the statolith theory.

Chemical Changes.

Hydrogen and Carburetted Hydrogen formed by Plants.*-G. Pollacei in a preliminary note describes briefly the experiments he has made, and the apparatus he employed to demonstrate the emission of free hydrogen and earburetted hydrogen by green plants during assimilation in sunlight, The evolution of nascent hydrogen he believes to be a potent factor in the formation of formic alhedyde in the assimilating tissues.

Experiments with Potatoes. \dagger-E. Bréal finds that when potatoes are kept through the winter CO_{2} and NH_{3} are liberated. Chloroform vapour checks the liberation of CO_{2}, and when the action is prolonged the tuber dies and a nitrogenous liquid is produced. Exposure to cold retards the respiration of the tubers and causes the accumulation of a reducing sugar. The organic nitrogen of potatoes is present partly in an insoluble form and partly as albumin, which coagulates at 70°, and partly as solanine. The tubers contain both nitric acid and ammonia; the former disappears when an ammonimm salt is introdnced. The tubers produce shoots spontaneously in the spring, but require water to form roots. The separated shoots can be made to grow when supplied with suitable mineral food and potassium humate. Roots living in water absorb ammonium salts, but only in absence of nitrates.

Prussic Acid in opening Buds of Prunus. $\ddagger-\mathrm{E}$. Verschaffelt finds in Prunus Putus and P. Laurocerasus a steadily increasing alsolute quantity of HCN -compounds in the shoots growing from the opening

* Atti d. Istit. Bot. Univ. Pavia, vii. (1902) pp. 97-100.
+ Ann. Agron., xxviii. (1902) pp. 545-76. Sce also Journ. Chem. Soc., lsxxiv. (1903) ii. p. 175. \ddagger Proc. k. Akad. Wetensch. Amsterdam, v. (1902) pp. 31-41.
buds. These compounds appear, at any rate in great part, independently of light. The HCN is not drawn directly from the internodes associated with the bods; it remains to be shown whether it is supplied by more distant organs or is formed in the growing twigs out of other substances. It is also doubtful in what form the prussic acid is contained in the growing parts. The fact that it is necessary to macerate the killed organs before the total amount of HCN can be distilled off, suggests the presence of a compound that can be split up by an enzyme. Moreover, as the liquid distilled from etiolated as well as from green shoots has a strong smell of benzaldehyde, it is very probable that these organs also contain glucosides of the amygdalin type.

Hydrocyanic Acid in Sorghum.*-H. B. Slade finds that stalks of this grass contained $\cdot 018-014$ per cent. of hydrocyanic acid. The poison is apparently prodnced by the action of an enzyme on a glueoside, but the author failed to isolate a glucoside.

Effects of Chemical Agents on the Starch-converting Power of Taka Diastase. \dagger-K. F. Kellerman has studied and tabulated the effects of a large number of chemical agents on the action of the diastase prepared from Eurotium Oryze-the Japanese sake ferment. In a preliminary series of experiments it was fonnd that the amounts of stareh and diastase being constant, the converting power of the enzyme became more and more rapid with the concentration of the solution of starch, or stareh-paste ; the solutions varied from 3 p.e., which is rather viscous, to $\cdot 5$ p.c., which is very watery.

Hydrolysis of Polysaccharides. \ddagger-Em. Bourquelot classifies the hydrolysable derivatives of dextrose under the following headings : ether oxides, ethers, hexotrioses, and polysaccharides, and points out that for each member of these classes there must be a corresponding enzyme to effect hydrolysis. Hence he concludes that the number of soluble ferments or enzymes must be much greater than is generally supposed. Moreover, the action of the enzyme takes place according to relatively simple laws which by further research may be more definitely tabulated.

Nomenclature of Enzymes.§-E. O. von Lippmann suggests that each enzyme shonld be denoted by a name compounded from the name of the substance which is changed and the name of the substance which is formed. Thus the enzyme which converts starch into maltose should be called " amylo-maltase," and that which converts maltose into dextrose (glucose) " malto-glucase." If a shorter name be preferred, the syllable, "ase" could be affixed to the prodnct of enzyme-action; thus " maltase" would denote an enzyme by the action of which maltose is produced.

Changes in Salicin in Plant Nutrition.\|-Th. Weevers finds that the amount of salicin in young buds of Salix purpurea at first rapidly

[^289]decreases, but rapidly increases when assimilation begins. When branches were kept in the dark the new shoots were found to contain more than 7 p.c. of the glueoside, but the amount diminished as the shoots grew. Salicin is found in young leaves developing normally ; it disappears for a short time and then reappears. Separated leaves lost 30 p.c. of saliein during the night, but recovered the amount in the daytime. In the case of attached leaves it was found that with the loss of salicin in the leaves during the night there was a gain in amount contained in the bark. These changes in the amount of salicin are accompanied by inverse changes in the amount of the catechol. The author coneludes that the decomposition of saliein oceurs in every cell, the destrose migrating towards the green parts, whilst eatechol remains in the cell and combines with dextrose coming from cells situated nearer to the bark, to re-form salicin. The amount of catechol corresponds with the deerease in the absolute quantity of saliein.

Production of Alcohol in Seeds.*--T. Takahasi finds that sterilised peas (33 grm . weight) kept in water for 38 days, produced much earbon dioxide and nearly 1 grm . of ethyl-alcohol. Many of the peas retained the power of germinating. The production of alcohol was due to the protoplasm as control experiments showed that zymase was absent.

Action of Uranium on Plants. $\dagger-\mathrm{O}$. Loew finds that dilute solutions ($\cdot 01$ p.e.) of uranium nitrate increase the yields of peas and oats, stimulating the production both of straw and seed. Solutions containing $\cdot 2$ p.c. of the salt proved fatal to young pea-plants in three days.

Action of Sodium Fluoride and Potassium Iodide and Potassium Ferrocyanide on Plants. - K. Aso \ddagger finds that solutions containing - 05 p.c. of sodium fluoride have a more or less injurious effect on the germinating power of seeds. Growth of shoots of barley and rice was stimulated by solutions containing -001 p.c. of the salt, but wheat shoots were injured. Peas grown in soil were stimulated by small amounts of the same salt ($\cdot 001 \mathrm{grm}$.).
S. Suzuki \S finds that dilute solutions of potassium iodide ($\cdot 006$ grm. in 2-3 kilos of soil) inereased the growth of peas, both as regard straw and seed. Potassium ferroeyanide in solutions containing only -0001 p.c. gradually destroyed barley plants.

General.

Poppies and Insect Visitors.\|-F. Platean has made further experiments on the visits of insects to flowers of Papaver. orientale from which the petals have been removed. He finds that in such flowers fewer seeds are produced than in normal flowers. This, however, is not due to a diminution in the number of inseet visitors in the ease of the

[^290]apetalous flowers, but to the way in which the bee enters the flower. In absence of the petals the insect enters the flower in such a way that it does not carry pollen to the stigmas. The difference in seed product is therefore due to the difference in the effieiency of cross- (in the petalous) and self-pollination (in the apetalous flowers). The author found that the fewer seeds produced in the flowers from which the petals had been removed, had the same germinating power as the seeds of normal flowers.

Determination of Dominance in the Colour Characters of Hy -brids.*-Correns points out that in determining the dominance, absolute and relative, of colour charaeters of hybrids the psychological characters have been neglected. According to the well-known law of Fechner, apparent intensity of colour to the eye varies only as the logarithm of the actual intensity (concentration) of colour. It is elear that this would lead to serions error when comparing the relative effect of parents in relation to the colour of a hybrid. In order to reduce such an error as much as possible Correns used various thieknesses of coloured solution with which the colours of the parents and hylorid were compared, so as to obtain a numerical expression of the depth of tint. By this method the question of colour dominance was aecurately investigated in Argemone mexicana \times A. ochroleuca, in Mirabilis Jalapa \times M. Jalapa var. aurea, and in Melundrium album $\times M$. rubrum.

Aristolochiaceæ. \dagger-L. Montemartini alludes to the different views held by several botanists as to the systematic position of the Aristolochiacere ; and in order to furnish future students of the group with materials for determining its position with greater certainty he puts on record his researehes into the anatomical structure of Aristolochia and Asarum curoperom. His observations of the vegetative organs confirm those of Solereder and of Schellenberg. The reproduetive organs he describes in greater detail.

German Flora. $\ddagger-$-The report of the Commission embodying new observations and records for the Flora of Germany, 1899-1901, oceupies a recent number of the Berichte of the German Botanical Society. Th. Schnte and K. W. yon Dalla Torre are responsible for the portion dealing with seed-plants. The bibliography includes 630 papers arranged alphabetically monder the name of the author, and there is also a list of new local records arranged systematically under the plant-name.

Flora of China.s-C. H. Wright eontributes an elaboration of the orders Hæmodoraceæ, Irideæ, Amaryllideæ, Dioseoreaceæ, and Liliaeeæ, to Messrs. Forbes and Hemsley's enumeration of Chinese plants.

Plants of Lord Howe Island. $\|$ - J. H. Maiden supplies notes on a few plants from this island, including a new species of Cryptocarya.

[^291]Forest Destruction in the United States.*-G. Pinchot supplies notes on forest-destruction, its effects, and the methods of regeneration. The notes are illustrated by an excellent series of photographic reproductions.

Poisonous Action and Histology of Stem of Derris uliginosa. \dagger F. B. Power has made a detailed analysis of the stem of this fish-poison. No alkaloid was found in the bark, but a considerable amount of tannin and red colouring matter. A resin was extracted with petroleum, and the toxic effect was found to be due to some constitnent of that portion of the resin which is soluble in chloroform and not to the tannin. The portion of the resin insoluble in the chloroform had no toxic effect.
P.E. F. Perrédès ${ }_{+}$gives a detailed description of the minute anatomy of the stem of the plant.

Mercerisation of Cotton Fabrics. \S - L. Buscalioni describes the various improvements made upon the process discovered by Mercer in 1845, by which cotton cloth treated with caustic soda becomes semitransparent and stronger, and alsorbs dyes more readily. He then enters into a minute description of the microseopical structure of varions cotton fibres, their optical and chemical characters, the effect of mercerisation. The opacity of raw cotton is partly due to the air-carity in the fibre, and the transparency of mercerised cotton is due to the partial expulsion of the air under the stretching and compression employed in the modern improved processes. A long list of papers bearing on the subject is appended.

CRYPTOGAMS.

Pteridophyta.

Root-Development in Azolla.||-R. G. Leavitt notes some points of difference between results obtained by himself in the development of the root-sheath and cap in Azolla filiculoides and A. caroliniana, and the description given by Strasburger of the process in the former species. He also describes in detail the development of the root-hairs, the initial cells of which arise within a belt of actively dividing cells, immediately beneath the inner root-cap, not far from the apex. The cell does not elongate much in a direction parallel with the length of the root. As the hairs lengthen they lie at first appressed to the root distending the inner cap. The whole root-cap is finally thrown off through the growth of the lower hairs. Owing to the elongation and transverse division of the cells produced simultaneously with the hair initial, the hairs in each longitudinal row become separated by $2-8$ cells.

The superficial layer of the root-trunk in these two species of Azolla comprised, apart from the apical cell, four regions, viz. (1) a region of embryonic tissue in which the divisions are equating divisions; (2) a

[^292]short zone where the divisions are differentiating divisions, giving rise ultimately to two sorts of members, trichomes and flat or prismatic cells; (3) a more cxtended belt in which the cells of the second class again andergo equating divisions and elongate ; (4) a region of matured and fixed tissue, covering the greater part of the root. An epiblema with such a complex history is characteristic also of wide ranges of fernallies and monocotyledons and of Nymphæaceæ in dicotyledons.

Stigmaria.* - H. S. Poole describes a specimen from the coal measures at Stellaston, with an exceptionally well preserved internal strueture showing a large number of wedges of vascular tissue. Photographs and a deseription are given of the transverse scetion, which is about 21 mm . thick.

German Pteridophyta. \dagger-C. Luerssen reports to the Commission on the German Flora upon the literature published in 1890-1901 upon Pteridophyta-43 papers ; and gives a classified list of the new varicties, forms, \&c., and the new geographical records embodied in this literature.

North American Pteridophyta.-W. N. Clute and R. S. Cocks \ddagger have drawn up an annotated list of 27 ferns and 8 fern-allies, gathered in Louisiana, together with a short account of the collections which have been made in the State, and of its climate and physical geography.
A. A. Eaton § publishes his twelfth paper on the Equisetaceæ of North America, treating of the sub-genns Hippochætæ. A new species, E. Funstoni, is described.
E. C. Anthony || publishes some notes on the ferms of the east coast of Florida, consisting chiefly of observations on the habitats, distribution, and modes of growth of the species.

Bryophyta.

Ejection of Antherozoids. T-F. Cavers describes the explosive discharge of antherozoids to a height of two inches by Fegatella conict in bright sunshine, in case of naturally growing plants as well as of laboratory cultures. He sketches the structure of the male receptacle, its air-chambers, antheridial pits and cell-structure, and suggests an explanation of the phenomenon.
C. A. King ** observed the same process in case of laboratory specimens in March 1901, and found that moisture alone (spraying the plants) was sufficient inciting cause. He quotes G. J. Peirce's observation of the same phenomenon in Asterella californica in 1902, the antherozoids being projected to a height of 6 or 8 in . by the pressure set up by increased turgidity of certain cells of the antheridium and its support.
T. Hasnot $\dagger \dagger$ points out that this phenomenon in Fegatella was described long ago by Thuret $\ddagger \ddagger$ and recalled by Le Jolis in 1894.

[^293]Fertilisation and Spore-Ripening in Mosses.*-A. Grimme has carefully studied the time when fertilisation occurs in a large number of mosses growing in Thuringia and Lower Hesse, and the subsequent period that elapses until the spores are ripe. All previous records, save those of Arnell for Scandinavian species, he finds to be untrustworthy. The maturity of the antheridia and archegonia is attended by certain characteristic appearances which are pointed out. The archegonia persist for a much shorter period than the antheridia; hence a monoicous inflorescence may appear to be unisexual. Self-fertilisation may be prevented by dichogamy; but the author does not believe that crossfertilisation is of any real advantage to mosses. Sterility is mainly due to the coincidence of dry weather and a dioicous inflorescence. The distribution of antherozoids is bronght about by the movements of creeping insects, \&c., or by the splash of rain-drops. As to sporeripeness, the ordinary records are useless and misleading; it varies with the climate. The characters that betoken spore-maturity are pointed out. The detaching of the operculum in herbarium specimens is no satisfactory guide as to the natural time of ripeness. The author supplies a table indicating in parallel columns the exact seasons of fertilisation and of spore-ripening, and the duration of sporogonial development, of 207 Thuringian species; and for comparison he adds the corresponding results obtained by Arnell in Scandinavia, as well as the times of spore-ripeness recorded by Limpricht. The period of inflorescence is short and definite for each given species, usually one to two weeks. 177 of the species were examined by both the anthor and Arnell: in 109 of these it is found that the period of sporogonial development is longer in Germany than in Scandinavia. The longest time observed in Germany is 24 months (Grimmia ovata), and the shortest is 4 months (Catharinea tenella). In the majority of German mosses it approaches two years. Self-fertilisation is the rule in hermaphrodite species; the antheridia and archegonia are mature at the same time and thus tend to make cross-fertilisation impossible.

Riella. \dagger-M. A. Howe and L. M. Underwood give a short account of the morphology of the curious aquatic genus Riella, which was supposed to be confined to the Mediterranean region until last year when a species from Turkestan was described. Two more new speeies are described, from Texas and the Canary Islands, raising the total to nine species. Gemmæ were found on the American specimens, and were cultivated to enable their development to be described. An account is also given of the spore-germination of both species.

Sphærocarpus terrestris. $\ddagger-\mathrm{I}$. Douin, having noticed several erroneous statements about Spherocarpus terrestris in various descriptive floras, has drawn up a careful and detailed account of the structure and development of the plant, illustrated with a number of figures. He compares it with Riccia sorocarpa and other hepatics. He has never found it to be otherwise than dioicons. He describes the nervation, branching, and growth of the thallus, the position of the involucres,

[^294]archegonia, and antheridia, and the distribution of the plant in France. He has never found it to be gemmiparons.

Irish Hepatics.*—D. McArdle gives a list of 32 hepatics gathered near Enniscorthy, Co. Wexford.
H. W. Lett \dagger corrects the statement that Riccia glaucescens was found for the first time in Ireland in 190%. He possesses specimens collected in Co. Antrim in 1895, in which year their discovery was announced in two periodicals.

Sphagna of Upper Teesdale. $\ddagger-E$. C. Horrell gives a list of 28 species and 81 varieties of Sphagnacee collected by him and D. A. Jones, within a radins of three miles, during a month's residence in Upper Teesdale. Notes upon the ten localities searched and the noteworthy species found in them are given. These localities lie in Durham, northwest Yorkshire, and Westmoreland. Forms of the acutifolium group and of S. medium were abundant, but species of the subsecundum and cuspidatum groups were scarce.

Homalia lusitanica.§-A. Casares-Gil gives a detailed description of the monoicous inflorescence and fructification of this species fonnd by him in February on plants growing near Barcelona.

Catharinea. $\|$ - Krieger describes Catharinea longemitrata, a wellmarked new species, characterised by its long tubular calyptra, short seta, small capsule, \&c., growing near Königstein. Notes on other species and two new varieties are added.

Dichodontium. T-H. N. Dixon, having carefully examined a number of specimens, is led to the conclusion that he has an almost unbroken series of ten intergrading forms connecting the two species Dichodontium vellucidum and D. flavescens, however distinct the two extremes may appear to be.

Anomodon Toccoæ.**-N. C. Kindberg, referring to the group of sterile species reduced to Anomodon Toccore by E. S. Salmon, $\dagger \dagger$ describes for the first time a fertile sample of the species gathered at Kamoon in the Himalayas.

British Mosses. $\ddagger \ddagger$ - J. Stirton pnblishes descriptions of six new species gathered in Scotland, and adds critical notes on other species and varieties.
W. Ingham §§ gives an account of the mosses and hepatics of Baugh Fell, collected during a tour of two days, and classified according to their rocky habitats.
C. H. Binstead |||| describes how and where he found several rare species in Yorkshire, Scotland, and Irehand. Some critical remarks are interspersed.

[^295]German Muscineæ.* - K. Osterwald reports to the commission on the German Flora upon the literature published in 1899-1901 upon mosses and hepatics- 135 papers; and gives alphabetical lists of the new species, varieties, \&c., and the new geographical records embodied in the literature quoted.
O. Jaap \dagger in ennmerating the cellular cryptogams of Röm Island, North Friesland, quotes 113 mosses and 35 hepatics, with one new species Bryum romöense.

Italian Mosses. \ddagger-A. Bottini publishes a list of the pleurocarpous mosses of the Tusean Arehipelago. These are 88 in number ; 8 of the varieties are new to Italy and 4 are described for the first time.

North American Mosses. §-A. J. Gront describes Polytrichum S'mithice, a new American species resembling P. gracile and P. Ohioense; also a new form of P. commune.
E. G. Britton || clears up the synonymy of Hypnum (Stereodon) revolutum, a subarctic and alpine moss of the old and new world.
J. W. Bailey ${ }^{\top}$ gives an interesting list of mosses which are commonly found on Acer macrophylla, a large tree plentiful in the Western States. Each of the 17 species mentioned always selects some particular part of the tree, e.g. root, stem or branch, which suits it best.
J. M. Holzinger ** shows that certain mosses gathered in Sonthern France and named Seligeria tristicht are referable to S. tristichoides Kindb., a plant hitherto known only from Norway and North America. Its European distribution is likely to be extended further.
R. S. Williams $\dagger \dagger$ has made the interesting discovery that Edipodium Griffithianm, a British moss which is known also from Scandinavia and Greenland, ocenrs in the Alaskan colleetions of the Harriman Expedition.
J. Cardot and I. Theriot $\ddagger \ddagger$ deseribed 45 new species and varieties as collected by the Harriman Expedition in Alaska; 18 of the descriptions, with critical notes, are reprodnced in the Bryologist.

Moss Flora of Australia.§§-W. W. Watts and T. Whitelegge, having compiled a catalogne of the mosses of Australia and Tasmania, publish the first part of it-584 speeies of Sphaguacee and Haplolepideous Acrocarpi. All available sources, such as pnblished lists and herbarium records, have been emploged; but great difficulty was experienced in dealing with the diverse principles of determination adopted by such anthorities as Wilson and Mitten on the one hand and C. Mueller and Brotherns on the other. The question of synonymy was found in several cases to be a matter of great meertainty.

Algæ.

German Algæ and Peridiniæ.|||-Lists are published in a Report of the Commission on German Flora, of the Marine Algæ by P.

[^296]Kuckuck, the Fresh-water Algæ by E. Lemmermann, the Bacillariales by B. Schröder, and the Peridiniales by E. Lemmermann. The names of the species are given in alphabetical order and are divided into two groups: those new to the district and those worthy of note. The locality of each species is given, and each list is preceded by an emmeration of literature bearing on the subject.

Morphology and Physiology of Scenedesmus acutus.*-J. Grintzesco has made a series of experiments on this alga and comes to the following conclusions. The two principal conditions in which it may exist are the Cœnobium and Dactylococens state, in the latter of which the cells are either free or joined together in chains. The alga flourishes equally well on agar-agar as on gelatin, which latter medium it liquefies. Glucose teuds to hasten development for a time only. The alga shows marked polymorphism, especially under certain conditions, and protococcoid forms are often seen in cultures on dishes of porous porcelain. The alga may develop in the dark, but not so speedily as in light. It can also grow in a vacum, and its limits of temperature may vary from $2^{\circ}-30^{\circ}$, the optimum lying between 18° and 20°.

Structure and Life-History of Diatoms. $\dagger-\mathrm{F} . \mathrm{R}$. Rowley gives a full abstract of work published by Lanterborn in 1896, on the protoplasm, nuclens, centrosome, and phenomena attending nuclear and cell division in diatoms. Species of Surirella, Nitzschu, Pleurosigma, I'imularia, Navicula, \&c. were studied. Pfitzer's results concerning the arrangement of the protoplasm were in the main confirmed, and many bodies, previously regarded as oil-drops, were found to be the "reil granules" of Bütschli. The protoplasm was shown under high magnification to be distinctly reticulated, not granular. Short, paired, rodlike bodies ("Doppelstäbchen") were seen in certain Pimularice to be connected with a plexus of anastomosing fibrils situated between the chromatophore and the cell-membranes, and at the begimning of muclear division these rods and fibrils exhibit a radial arrangement with respect to the nucleus. In Surirella an irregular anastomosing system of fibrils has been observed, but the paired rods of Pinmularia have not been seen in Surirella except in the initial stage of nuclear division. Some of the fibrils possess the power of independent movement. Similar structures have been observed also in Bryopsis and Spiroyyra.

Chromatophores and pyrenoids are dealt with, and methods are given for showing the difference between oil-drops and "red gramules." The paper closes with an accomnt of the varions stages of mitosis in Surirelict calcarata, which Lauterborn regards as a model for other species in the matter of cell-division. Lauterborn holds that diatoms multiply by division rather than by spore-formation, since among the thonsands of examples he has examined no trace of spore-formation was observed, while he saw and studied hundreds of dividing cells. This paper is illustrated by 13 figures, 5 of which are in the text.

Fossil Diatoms of Auvergne. $\ddagger-\mathrm{F}$. Hériband gives a list of 160 species of fossil diatoms collected from deposits in various parts of

[^297]Auvergne. With the exception of a certain number from the Puy de Mur all the species recorded belong to fresh-water. Out of a total of 180, 67 are new to Ausergne and, among those, 39 species and varieties are new to science.

Lincolnshire Diatoms.*-A. Smith gives a list of 46 forms representing the diatom flora of Clee near Grimsby.

Atlantic Plankton. \dagger-R. N. Rudmose Brown, reporting on the plankton and botany of the 'Scotia's' voyage ont to the Falkland Islands, says that Diatomacea were usually scarce in the gatherings, but Peridiniex, especially the genera Ceratium and Histioneis, were plentiful. Pyrocystis noctiluca abounded off the coast of Brazil. Some marine algre were gathered at the islands visied. At St. Paul's Rocks two species of Catlerpa were obtained. There were but few opportunities for collecting land-plants.

Plankton of Lake Nyassa and other Mid-African Lakes. \ddagger W. Schmidle publishes the results of Dr. Fuilleborn's collection of floating Chlorophycea and Cyanophyceæ in several lakes in Central Africa. In the first part of his paper he deals with the topographical conditions of Lake Nyassa, together with a description of the collector's methods of capture. Then he details the specimens found, arranged according to locality, speaks of the composition of the limnoplankton, the influence of the shore-flora on the plankton, that of the Nyassa on the potamoplankton of the Shire, the flora of the bottom of the lake, the vertical and horizontal distribution, the influence of weather and time of day, the quautity of the hauls, and the seasomal distribution. In the second part of the paper the plankton of the following lakes is given for comparison : Victoria Nyanza, Rukuga, Malomba, Ikapo, Chungruru, and the crater lakes Wentzel (Nyozi) and Itende.

Studies on the Comparative Development of Laminariacex.§J. Reinke divides his observations iuto two groups: deseriptive and theoretical. In the former, which he prefaces by remarks on the systematic position of the genera Chorde and Alenocystis with regard to Laminariacex, he deals with the development of the genera Laminaria, Saccorhiza, Agarum, Lessonia, Lessoniopsis-under which new name the author describes Lessonia litoralis Farlow-Nereocystis, Matarocystis, Alaria, and Eyregia. Under Aleria are mentioned the allied genera Ecklonia, Ulopteryx, Eisenia, and Pterygophora. The author deplores our lack of knowledge as to the germination of spores in this order, and hopes that work may be done on this point, at least for the European species. Another important point in the comparative morphology of Laminariacea is the question as to whether the splitting of the thallus takes place in the same manner throughout the order or not. The author is of opinion that the method is the same.

The theoretical part of the paper is divided into "The Laminariacee and the phylogenetic problem" and "The Laminariacea and Haeckel's 'biogenetic lav.'"

[^298]Laminariaceæ and Laminaria Industries of Hokkaido, Japan.* Kingo Miyabe publishes part iii. of the "Report on the Investigations on the Marine Resources of Hokkaido" under the above title. The first part contains an account of the Laminariaces of Hokkaido, dealing with their outer and inner morphology, propagation, distribution, economic uses, injuries caused by other seawreeds and marine animals, and classification. Then follows the systematic part in which 14 plates of species of Laminaria are given, of which 8 represent new species. A new genus is described, Kjellmanniella, founded on Laminaria gyrata Kjellmann, and with this species is associated a new one, K. crussifolic. Species are figured of Arthrothamnus, Costaria, Alaria, including several novelties, Undaria, Agarum, and Thalassiophyllum.

The second part of this paper deals with the Laminarian industries of Hokkaido, under the heading of "Laminaria-Beds," collecting, produce, curing, each part being divided in several subdivisions.

A chemical analysis of Laminaria, by Kintaro Oshima, and a bibliography complete this work, the text of which is in Japanese.

Cystoclonium purpurascens and Chordaria flagelliformis. \dagger A. Henckel continues his observations on the anatomy and biology of these two algre, begun in 1901. In this part of his paper he treats of the morphology and anatomy of C. Alagelliformis, describes its habit and general characteristics, the mode of growth, and the various tissues, assimilative, conducting, mechanical, \&c. The structure is then compared with that of Cystoclonium murpurascens, and general deductions are made.

Schimmelmannia ornata. $\ddagger-\mathrm{A}$. Mazza diseusses the geographical distribution of this species and the possible causes for such distribution. He remarks on its confinement within very narrow areas of coast-line and the distance between these areas. The records of it being so few and its abundance within these limits being so marked, the author suggests that the plant requires certain mutriment only to be obtained in few localities. On the Sicilian coast near Acireale, where it flourishes, there is an abundant flow of fresh water rich in carbonates, especially magnesia ; and this is suggested as a possible aid to the development of the plant. It is supposed, from its isolation in this spot, to have been drifted over from the shores of Moroceo. Until further data are gathered as to the general requirements and conditions of growth of this alga in its various localities, no definite conclusions can be drawn. The form is described and figured and the reasons given for regarding S. ornata as a perennial plant.

Algæ of North-Western America.s - W. A. Setchell and N. E. Gardner publish a critical list of the alga of north-west America, for the most part consisting of marine, but including also a certain number of fresh-water species. The Desmidiaceæ and Diatomaceæ are omitted,

[^299]but with these two exceptions the object has been so far as possible to include every alga known to occur on the coast or in the coast country from the latitnde of Cape Flattery northward to the Aretic Ocean. The authors include also the Alentian Islands, the Pribilof Islands, and St. Lawrence Island. A list is given of the existing collections from this region, and another of the collections on which this list has been largely founded-material brought together from all parts of the district in question. The north-west coast is divided by the anthors into four well-marked regions:-the Boreal, the North Temperate, the North Sultropical, and the Tropical ; and an interesting section, Geography, deals with the reasons for thus dividing the district. In the systematic part of this work, certain new species are described and one new genus of Chætangiacea, Whidbeyella. An explanatory list of geographical names is given, and the paper is ilhustrated by eleven plates.

Marine Algæ of Iceland.*-H. Jonsson continnes his critical list of these algre with a paper on the Phrophycee of the island. One new species is described, Ascocyclus istandicus. The full notes which follow the record of each species give much valuable information, which is supplemented by 25 figures in the text. The first part of this work, dealing with the Rhodophycea, was published in 1901, in the same journal.

Fungi.

Proteid Formation in Moulds. \dagger - F. Czapek \ddagger continues his researches on nitrogen assimilation in plants. The present paper deals with the utilisation of nitrates, organic nitro-derivatives, hydrazines, oximes, cyanides and thiocyanates.

Asperyillus niger assimilates the nitrogen of inorganic nitrates. Nitro-methane was used, hut there was not much growth; methylhydrazine gave good results, while phenyl-hydrazine was useless. Acetaldoxime and acetoxime were not ntilised. Sodium thiocyanate gave fair results ; potassimm ferrocyanide gave no growth at all, and potassium ferricyanide and sodium nitroferricyanide very little. As regards sources of carbon, the hexoses are the best.

Rennet-like Enzyme from Yeast.s-R. Rapp has shown that from yeast can be extracted a ferment which curdles milk. As long ago as 1852 Heubner observed that milk could curdle without either the addition of rennet or of an acid. This was shown later to le due to the action of a bacterial enzyme, and now it has been shown that a similar ferment can be obtained from yeast. The behaviour of the enzyme under various conditions was investigated, and especially its resistance to heat; a temperature of $55-57^{\circ} \mathrm{C}$. for 25 hours having 110 effect upon its action.

Helminthosporium macrocarpum.||-F. Guégnen foum this fmgus on a branch of maple. He made snccessful cultures and followed its

[^300]growth throughout. The conidiophores are usually unbranched and rise from a psendoparenchymatons mass of hyphæ. The conidia are somewhat pyriform, and germinate readily from each cell. Small masses of mycelium form sclerotium-like bodies which resemble the first stage of the perithecia of Letendrea eurotioules of which H. macrocarpum is probably the conidial stage.

Disease of Apples.*-A disease of the fruits which begins in the core and spreads outwards has been traced by F. Reinitzer to the growth of a fungus Cephalothecium roseum. The parts affected become brown and are very bitter. This fungus is only known hitherto as a saprophyte on dead wood, \&c.

Monilia Disease. \dagger-KKarl Schilberszky does not accept the opinion that M. fructigenc and M. cinerea are two distinct species. The morphological and other differences noted are rather those of accommodation by the fungus to the different hosts. The S'clerotinia form had not been found when this research was made.

A careful account \ddagger of the same fungus as found on apples, and advice as to the best methods of combating it are given by the Board of Agriculture. Monitia attacks the leaves first where it forms green velvet patches. The spores are washed by rain on to the young fruit where they develop and ruin the fruit.

Botrytis parasitica.§-J. Ritzema Bos gives the couclusion of his work on the tulip disease in Holland. He discusses the spread of the disease, recommends the cultivator how to deal with infected soil and gives the results of his experiments with various fungicides.

Botrytis vulgaris on Figs.\| - This fungus attacks unripe figs; these become mummified and hang on the tree. A. Prunet describes the development of the Botrytis and of the sclerotia on the figs. He also found that the branches above and below the diseased frnits were invaded and destroyed by the fungus. Sclerotia were formed on the branches as well as the conidia of the Botrytis. The writer recommends plucking the mummified figs to prevent the infection of the branches. The disease has done considerable harm in the sonth of France.

New Hyphomycetes. Φ-Morgan found a new member of the Tuberculariacee, Sporocystis condita, growing on old leaves in woods. It is characterised by a large, fleshy, white, snbglobose stroma with a dense superficial layer of subglobose, colourless spores.

Roland Tharter ** deseribes two coprophilous moulds of great interest. Heterocephalum aurantiacum gen. et sp. nov. has the appearance of a large Aspergillus. The sporophores rise from a swollen head and from their branched ends minnte oval spores are abjointed, the whole head is surrounded by a cortex of hyphæ. Cephaliophora gen. nov. is of

* Oest. Bot. Zeitschr., lii. (1902) p. 290.
\dagger Magyar bot. lapok, i. (1902) pp. 157-8. Seo also Centralbl. Bakt., x. (1903) pp. 224-5. \ddagger Journ. Board Agric., ix. (1903) pp. 526-7 (1 pl.).
§ Centralbl. Bakt., x. (1903) pp. 89-94.
II Comptes Rendus, cxxxvi. (1903) pp. 395-7.
I Journ. Mycol., viii. (1903) p. 169.
** Bot. Gazette, xxxv. (1903) pp. 153-9 (2 pls.).
a less complicated structure, the fertile hyphre arise directly from the vegetative mycelinm, and form a swollen head on which are seated the septate brownish spores. Thaster found two species of this genus. These fungi are from tropical regions.

Ravenelias of the United States and Mexico.*-William H. Long, junr., groups the species in three genera. Ravenelia: All the teleutospores in a head one-celled ; xeidia when present have a well-developed psendoperidium. Pleoravenelitt: Inner telentospores in a head twocelled ; recidia as in Ravenelia. Neoraveneliat: Telentospores one-celled; recidia without a psendoperidium. The two latter genera have been established by the writer, and have caused a rearranging of the species already known. There are also a number of species new to science. The genns is tropical or sub-tropical, and with two exceptions the speeies grow on Leguminose. They are distinguished by the glandular appearance of the sori. Long describes the best method of examining and preserving mieroseopie specimens.

Notes on Uredineæ. \dagger-The first of these, by E. W. D. Holway, comprises critical notes on Pucimia columbiensis, some confusion having arisen in the determination of the host-plant, and on P. suff usct, the name now proposed for P. Pulsutille Rostr. The writer gives a detailed account of P. fuscu, the Scillum fuscum of Persoon.

A new species, Melampsorella Feurichii, \ddagger has been determined by P. Magnus and named after G. Feurich, who collected it on a plant of Asplenium septentrionale. The uredo- and teleutospore-forms have both been observed. The writer gives a eareful description of the fungus and adds notes on other fern rusts, which also probably belong to the genus Melampsorella.

Fr. Bubák § suppliestritical notes on Puccimia fusca and P. Pulsatillce There is also information given about P. compucta and P. Typhece.
H. and P. Sydow || publish descriptions and notes of a considerable number of species colleeted from many localities. Some of the American species have been determined in conjunetion with Holway. Two new species of Ustilago are also described.

The same writers give an account of the rusts found on Anemone narcissiflora, three different species or possibly forms of the same species, but distinguished by the size, form, and outer membrane of the spores.

Cultures of Uredineæ.**-J. C. Arthrar publishes a third report of suecessful work on the culture of plant-rnsts. He bases his work chiefly on field observation, and notes that in no case was success obtained where definite clues derived from field observations as to the hosts were lacking. He has suceeeded in connecting the Pucinit and Acidium forms of seven species, of which the telentospores grew on grasses or sedges. The writer gives a detailed account of the different experiments.

[^301]W. A. Kellerman* supplies the record of sixty-seven experiments with rusts. He has been successful in many cases in tracing the life-history of various Uredineæ from host to host.

Rusts of Leguminosæ. \dagger - In Europe there is but one rust belonging to the gemms Uromyces that inhabits members of the natural order Leguminosæ. In other countries a considerable number of genera have been described. P. Dietel gives an account of these genera and discnsses the relationships between them and between other closely allied genera found on other hosts. He holds that the primitive Puccinio had a one-celled spore, similar to Uromyces.

New or Critical Species of Uromyces. $\ddagger-$ Fr. Bobaik has examined a number of species from Bohemia. Many of the species are new, and to all he has affixed copious critical notes. The paper is illustrated by figures of Uromyces spores.
"Phthiriose," a Disease of the Vine. -L . Mangin and P. Viala have studied this disease, which has done much damage to the vineyards of Palestine. In that country the roots of the vine are attacked. In Europe and Africa the writers fom the fungus only on the aërial organs of the plant. The disease is due primarily to the presence of a cochineal insect, Dactylopus vitis, which injures the root cansing a flow of sap. In something like symbiotic relation with the insect, they found a fungus which lived on the sap and produced a copions myeelinm round the root. The fungus does not penetrate the root, though it prevents its growth; there is a hollow space between the mycelium and the root, forming a tunnel in which insects can shelter and move about. The fungus is, they consider, one of the Uredinere, and has been uamed by the writers Bornetina coriam. From the habit and organisation of Bornetina they consider it to be a new type of fungus.

Problems in the Study of Plant Rusts. $\|$-In an address delivered to the Botanical Society at Washington, J. C. Arthor reviews the whole position of the study of Uredinea. He gives a historical accomet of the experiments modertaken to verify the doctrine of heterocism, and the connection between the different forms. Culture-experiments have grouped in one life-cycle forms that were previonsly widely separated; but they have also demonstrated the limitations of certain species in regard to the hosts attacked; what was regarded as one fungus being really several distinct species.

Arthur accepts the theory that there is direct kinship between the Uredinea and the Basidiomycetes. He discusses the nature of the spermogonium and aceidium, the first forms to be developed in the life-history of the Rusts. He considers that the teleutosjore closes the eycle; it is the one structure alsolutely essential to the species, and persists when the other forms have disappeared.

[^302]In another paper* the author takes up the question of the æcidium with its accompanying spermogonium : his view is that they represent the original sexual stage and still retain much of its invigorating power.

Merulius lacrymans. \dagger-Alfred Möller succeeded in making artificial cultures of the spores of dry rot and in growing the fungus to its characteristic fruiting form. He gives a full account of the methods he employed.

Agaricus (Collybia) Henriettæ sp.n. \ddagger-Worthington G. Smith publishes the diagnosis of this newly discovered fungus with notes. It is intermediate between A. radicatus and A. longipes. It was found in September, on and about stumps, trees, \&e.

Critical Agarics.§-Jnlien Godfrin takes three nearly related Agariсасеæ, Pancolus campamulatus, P. retirugis, and P. sphinctrinus, and endeavours to supplement the unsatisfactory macroscopic characters by exact histological details. He finds that P. campanulatus and P. sphinetrinus are closely related, the main distinction being the thickness of the external layer of the pilens. P. retirugis shows a somewhat different structure in the pileus, and should therefore not be closely associated with the other two. A fourth form, P. fimicola, he finds so totally different in structure that he considers it ought to be classed in another gemus. Anatomical study has not been carried far enongh, however, to attempt a classification on such lines. The paper is illustrated by several figures in the text.

Species of Discisceda.\| - This genus of Gasteromycetes is synonymons with Catastoma, but as it has priority in its favour, L. Hollös revives the name and takes oceasion to review all the species that rightly belong to the genus. Nearly all of these had been previously classified under Bovista.

Cauloglossum transversarium. 9 - John R. Johnston has taken advantage of fresh material of this plant to make a thorongh investigation of it. It was found in the Sonthern States of America, and the mature specimens are club-shaped, stipitate, and olive-brown, from 3 to 7 cm . in height. Johnston describes the structure and development of the fungus, which was first deseribed in 1811 as a Lycoperdon. More recently it was transferred to the genus Cauloglossum, but as this latter is a synonym of Pollaxon, the writer thinks it more in order to give a new name, and so he designates the plant as Rhopalogaster transversarium. Its affinities are with the Hysterangiaceæ. It has the same type of columella and glebal structures, with a somewhat evanescent peridinm that leaves the hymenial region exposed ; the basidia and spores differ from those of the group.

[^303]British Mycology.*-The annual meeting and foray of fungologists took place last autumn at Hereford, and a list is given of the specimens collected, with special notes on new or rare species.
M. C. Cooke supplies a descriptive list of recent British Fungi. R. H. Biffen gives an account of the life-history of Acrospeira mirabilis, a mould that grows on sweet chestnuts. By means of artificial cultures the writer was able to trace the fungus through various stages up to the final fruiting form, a species of Spheria.
C. B. Plowright arranges the British Puccinie found on Umbellifere according to Lindroth's recent classification. A. Lorrain Smith and Carleton Rea give an account of all the fungi new to Britain found within the past year-a long and varied list. M. C. Cooke writes on agaric transformations, and A. Lorrain Smith contributes a note on Stilbum tomentosum.

Presence of a Kinase in Basidiomycetes. \dagger - C. Delezenne and H. Mouton, in confirmation of results of previons workers, find that extracts obtained by varions means from Basidiomycetons fungi are always inactive towards fibrin and coagulated egr-albumin. They find, however, that several of these extracts when added to pancreatic juices which are quite inactive towards albumin, will give a very evident digestive power. This action is due to a soluble ferment analogous to enterokinase, but which it is of greater interest to comnect with the kinases discovered by Delezenne in different bacteria and in serpent venom. A very active kinase has been found in the two slightly poisonous Agarics, Amanita muscaria and A. citrina. Only a feeble extract was obtained from the common mushroom and from Boletus etlulis. The results suggest a relation between toxic action and the presence of a kinase.

Mycorhiza. $\ddagger-\mathrm{P}$. E. Muller records the observation that Epicea does not flourish unless it is grown side by side with Pinus montana. On the roots of the latter he finds, in addition to the usnal form of ectotropic mycorhiza, a dichotomons branching and outgrowth of the lateral rootlets forming excrescences on the roots. He considers these growths comparable in function with the nodules of the Leguminose, and he is of opinion that they supply nitrogen to the plant and emrich the soil. There are five figures in the text illustrating the different forms of Mycorhiza.
F. Cavers \& has reviewed the literature dealing with mycorhiza in Hepatice. He records many additional observations made ly himself on plants he has examined. He concludes that in some of the cases where hyphre are found the fungus may be a parasite on the host-plant. In other cases there is undoubtedly symbiotic relationslip between the two organisms.

Biological Method for Resolving Inactive Acids into their Optically Active Components.\|-A. McKenzie and A. Harden have

[^304]stndied the action of Penicillium glaucum, Sterigmatocystis migra, and Aspergillus griseus on various organic acids. Their experiments tend to show that the mode of action of the moulds is such, that the one active isomeride is attacked more readily than the other, and that the extent of the resolntion depends solely on the difference of this rate of attack. The view generally held, that the one isomeride is attacked whilst the other remains untonched, does not appear to be correct.

Fossil Fungi.*-F. W. Oliver describes and fignres two fossils from Palæozoic rocks. Small round pockets that occur on the pinnules of Alethopteris aquilina are filled with spore-like bodies which snggest some minute Pyrenomycete. The other case resembles a Chytridineous sporangium and bears a close resemblance to Grilletic Splicerospermi. It was found on the seed Polylophospermum.

Ernest S. Salmon \dagger criticises some of the fossil Erysiphea described by Pampaloni from the "disodile" beds. He does not agree with the conclusions of that writer. He finds on the slides submitted to him a well preserved Hyphomycete which he describes as Cercosporites sp.

Jahresbericht der Pflanzenkrankheiten. \ddagger-The volume for 1901 has just been issued by M. Hollmong. The editor gives a sketch of each subject with a list of the papers published in connection with it. He includes harmful animals as well as harmful fungi in his discussion of diseases. There is a copious index to the volume.

Decomposition of Lactic Acid by Fungi. δ-On solutions containing free lactic acid such as sour milk, deeoction of cucumber, and sanerkrant, there appears often a surface mould composed of Oidium lactis or one of two species of yeast. C. Wehmer has studied the effect of the fungi on the solutions and finds that they destroy the acid and in time render the solutions alkaline.

Proteid-Formation in Moulds. $\|$-Czapek studied this question in the higher plants. In monlds he finds that nitrogen is suitable in proteid formation only when it is available in the formation of aminoacids, and carbon when formed into hexose. These compounds are therefore the preliminary stage of the formation of proteids.

Fungi in Dairy Products. T-Kurt Teichert found in salted butter Oitlium lactis, Penicillium glaurum, and Mucor Mucedo. He tested their comparative growth, and found that though sugar of milk afforded small sustenance to Oidium and Mucor, it proved very motritions for Penicillium. The latter monld made nse of other sugars in a higher degree than the other two experimented with.

Fat-destroying Fungi of Seeds, \&c.** - Wilhelm Bremer has examined the fungi that aid in the destruction and disintegration of

[^305]various food-stuffs. He finds that the oceurrence of moulds varies according to the (frantity of the moisture present. Eurotium repens appears first, then Eurotium rubrum n.sp. With a hisher degree of humidity Oidium forms appear, and with a still higher Peuirillium glaucum. The anthor notes the chemical reactions that take place, due to the growth of monlds and bacteria.

Fungus-Flora of Piedmont.*-Teolero Ferraris publishes a first list of the fungi from this district, in all $162 \boldsymbol{z}$ species, many of them new to the Italian Flora, and 19 species new to science. These latter are all microscopic fungi, Pyrenomycetes or Deuteromyectes.

Kryptogamen-Flora. \dagger - A. Allescher continnes and conchules the addenda to the group of Frmgi imperferti that he has been issuing. The last two parts issued deal with the remaining species recently discovered and described, belonging to the different gromps Sphaeropsidea, Nectrioidex, Leptostromacex, Excipulacee, and Melanconiea. The number of species recorded reaches the total of $5: 3 \times 7$.

Fungi Polonici. \ddagger-J. Bresadola publishes a list of the fungi collected by B. Eichler. This first contribution includes the hymenomycetes, beginning with the Agaricacea, down to Corticium. Several new species are included in the list.

Fungi from New Caledonia.§-P'. Hariot and N. Patonillard pulblish a list of fungi chiefly from the neighbourhood of Nommea and the Island of Pines. They have determined sit species all belonging to the Basidiomycetes and Ascomycetes. Among the former they have determined eight species new to science, in the latter sroup five species are new. The authors give the habitat and locality of each plant.

Micromycetes rariores selecti.\| - Tycho Vestergren publisines a catalogne with diagnoses and eritical remarks on 160 species ineiuded in fasc. 11-17 of his Exsiecati. He deseribes a number of new species belonging to the Hyphomycetes, Spheropsidea, and Uredines, from Russia, Sweden, Germany, and Austria.

Rare Sicilian Fungi. 9 -F. Cavara describes two new fungi, one of which he foumd on Etna last Angust. Reiccoa SEtnensis gen. et sp. nov.** formed a stalked capitate stroma, the dise learing minnte simple sporophores with elliptical, hyaline, one-celled spores. He thinks that it may be the type of a new family intermerliate between the stilbacea and the Hymenomyectes. The other new species, Ceriomyers siculus, he collected in the botanical garden at Catania. It was characterised by a zonate disposition of the sporogenons layer, and he is inclined on that account to place the fungus rather among the Thberculariacce than to consider it a form of Polyporus, the place usually assigned to other species of Ceriomyces. The writer also describes a varicty of

[^306]Pleurotus ostreatus with a black stalk, found on a dead trunk of Ricinus communis.

Cryptogamic Flora of Presburg.*-This district of Hungary has been well worked by J. A. Bäumler as regards fungi. A feature of the present contribution is the local geographical distribution of certain parasites. 479 genera and 1641 species are recorded, a few of which are new.

Polyporacez of North America. \dagger - W. A. Murril creates a new genus Pyropolyporus to replace the genus Phellinus established by Quélet, and including Polyporus igniarius, P. fulvus, P. conchatus, and P. salicinus. Murril follows on Quélet's lines and gives a list of eighteen Pyropolyporei, a number of which are new. He gives detailed descriptions and critical notes on the various plants, specimens of which he has examined from different national herbaria. He finds that P. salicinus is but a different form of P. conchatus. Both are found growing together on the same hosts.

American Mycology. $\ddagger-$ Francis Bubak describes Stamnaria herjedalensis, hitherto considered a variety of S. Equiseti, and Cercospora Kellermani, both from Ohio.

A new species, § Cephatosporium tendroides E. and K., also from Ohio, is described by Kellerman, with figmres of the fungns.

The sixth fascicle $\|$ of Ohio fungi has been issued, and critical notes and descriptions of many of the species included are given by Kellerman.

Geo. F. Atkinson has been examining species of Calostoma. He gives a series of notes on the plants and records one new to science, C' microsporum, from Tennessee.

Frederic E. Clements ** describes a considerable number of new genera and species of Pyrenomycetes and Discomycetes from various localities in the United States. The new genera are Psilothecium, akin to Patinella, but varying in the form of the paraphyses and the bright coloration; Ophiogloct, also one of the Patellariacee, with filiform septate spores; Seytopezis, similar to Urmula, but without a stalk ; and Heteroplegma with a sessile fleslyy apothecium, differing from allied genera in the form of the hypothecium.

Charles II. Peck $\dagger \dagger$ deseribes eighteen new speeies, Basidiomycetes and Ascomycetes. He describes one new genus Mitruliopsis related to Mitrula, but with filiform spores.
A. P. Morgan $\ddagger \ddagger$ gives a list of 128 species of Discomycetes from the Miami Valley, Ohio. There are a number of new forms, some of which have been determined by the author, some by Massee, and others by Massee and Morgan. These are fully described. When the plant is already known the names and synonyms alone are given.

[^307]J. B. Ellis and E. Bartholomew * publish a short list of new microscopic forms: there is one new genus Stachybotryella which differs from Stachybotrys in its paler colour and in the absence of any perceptible basidia, the conidia arising directly from the apex of the fertile hyphæ. The specimens were collected in various localities of the United States.

Notæ mycologicæ. $\dagger-\mathrm{P} . \mathrm{A}$. Saccardo contributes critical notes and diagnoses of new species. They are all microfungi and most of them collected from different districts in Italy.

East African Fungi. $\ddagger-P$. Hennings gives a second instalment of systematic work on tropical East African fungi, with description of new forms.

Products of Metabolism in Lichens. § - Wilhelm Zopf has made an exhaustive study of one gems Evernia in regard to the formation in the plants of various vegetable acids and other compounds. His aim was to acquire a knowledge of these substances, to stridy the effeet of locality and season on their production, and to bring the knowledge gained to bear on the determination of species by new chemieal tests or otherwise. He gives an account of the methods he employed. Ether, benzole, and chloroform were the best solvents. His examination included nine species, two of which he has established as new. The products he has determined are Atranoracil, one of the most widespread lichen compounds; Physodacid less frequently found ; Usninacid also very wide-spread, but present in only three of the speeies examined ; Divaricetacid only in two species; Isillacid a new product, Evernacill, Vulpinacild, and Olivetoracid ; the latter four products found each in one species only of Evernia. In some of the species he detected the carbohydrate Everniin. While the presence or absence of these varions snbstances enabled him to decide sharply between different species, he found that the morphological characters in every case corresponded with his determination. Under each species he gives a detailed account of the method employed and the results obtained. In five species he found a dark-blue colonring substance on the muderside of the thallus. The paper is illustrated by one fignre in the text, and by photographs of the various forms assumed by E. furfuracea, E. isidiophora sp. n., and E. olivetorina sp. n.

Two Marine Lichens. $\|$ - MI. Reed describes an "Ulva-composite" and a "Prasiola-composite" formed by the symbiotie union leetreen an ascomycete of the genns Guignardia and Ulvea californica, and Prasiola borealis sp. n. respectively. The former, Guignardia Uluce, grows at upper tide-mark on the shady side of sandstone boulders at the entrance to the Bay of San Franeiseo. The algal cells are distributed singly or in groups contained in capsules formed by a network of hyphse and in a gelatinons matrix; there is a thick central zone of myeelium. The peritheeia, which are found at all seasons of the year, are blackish swellings on the surface of the thallus. The ascospores are discharged in

[^308]great numbers from the well-developed ostiole, and probably enter the joung Uli'a at very carly stages of its development.

The Prasiola-composite came from Alaska; the fungal element Guignardia alaskana sp. n. changes the character of the alga, giving it a darker colour and in old plants a curled, crinkled, and leathery texture. The algal cells are seattered very irregularly in the mycelium. Another Prasiola-composite is the antaretic Mastodia tessellata.
B. M. Davis remarks in the Botanical Gazette,* "It sams plain that these composite organs are lichens, certainly as much so as is Ephebe."

Notes on Cladonias. \dagger--Bruce Fink and Mabel A. Husband have written careful and critical descriptions and notes on some of the wellknown species of this genus in America, thus enabling beginners to gain a good understanding of their systematic position. They rely on outward form and appearance for determination. Mieroseopic structure, algal cells and spores are of little specific diagnostic value. The writers compare one species with another and give careful accounts of habitat, \&c. The plants are illustrated by photographs.

Bruce Fink \ddagger has also published an aceount of "Some Talus Cladonia Formations," in reference to ecologic and other conditions. He discusses the probable age of the lichen communities found growing on the tali, and also the age of the tali themselves. He records a large number of other lichens found in the same localities, and the factors that have influenced their presence. The paper is illustrated by fullpage photographs of the growing plants.

Eumycetic Fermentation. $\$-T h i s$ is the title of the second volume of Dr. Franz Lafar's work on Technical Mycology. The present instalment constitutes Part I. of the volume, the concluding portion of which will be translated and issued as soon as the German proofs come to hand. Part I. comprises Sections X. to XII. and Chapters XXXIX. to XLVIII. of the whole work. Section X. deals with the general morphology and physiology of the Eumycetes in four chapters. Chapter XXXIX. gives a good general account of the morphology of the group, while in Chapter $X L$. the composition of the cell-membrane is diseussed. The next chapter deals with the mineral mutrient materials; and the occurrence and power of replacement of various elements in different fungi. In Chapter XLII. the influence of light on the development of the Eumyeetes is discussed, also chemotropism and the secretion of proteolytic enzymes by members of the group.

Section XI.-fermentation by Zygomycetes-contains three chapters dealing with the morphology and systematic division of the mucors, their fermentation processes, and their use in the spirit industry. Section XII, entitled, Form, structure, and chemical composition of

[^309]the yeast-cell, also comprises three chapters in which the morphology and life-history of the yeasts and the anatomy and the chemistry of the yeast-cell are dealt with in turn.

The general student will find much that is useful in the book, which is well illustrated with figures from works of Brefeld, Zopf, Hansen, and other myeologists.

Schizomycetes.

Thermophilous Bacteria.* - Mrlle. Tsiklinsky has investigated a number of bacteria which have an optimum temperature about $55^{\circ} \mathrm{C}$. and a maximum between 60° and $70^{\circ} \mathrm{C}$. These baeteria, as earlier observations have well shown, are very widely distributed in mature, e.g. in the soil, both at the surface and at a considerable depth, in rivers, in dust, in milk, in the exerement of animals, in the mouth and thronghout the digestive canal of man, and even in freshly fallen snow. The author has investigated five thermophilous bacteria from the hot water of the thermal springs of the island of Isehia, but most of her observations were made on the thermophilous bacteria found in meconium, in the feces of infants only a few days old, and in the feees of adults. From these three sources about twenty bacteria are deseribed, to most of which no names are given. A form called Thermostreptothrix vulgaris was isolated from soil, and from the same souree a thermophilous conidia-bearing fungus was isolated, to which the name of Thermomyces lanuginosus was given. This curious fungus grows best between 42° and $60^{\circ} \mathrm{C}$., and is capable of only slight development at $37^{\circ} \mathrm{C}$., and of still less at the ordinary temperature. The paper ends with a discussion of the value or otherwise of the bacteria found in the alimentary canal of man and animals.

Accumulation Experiments with Denitrifying Bacteria. \dagger-G. ran Iterson, jr., deseribes the results of a series of experiments in which access of air was partly or completely prevented. He has succeeded, by cultivating in solutions of organic salts and nitrate, in bringing many denitrifying bacteria to a more or less perfectly pure culture. Of these experiments three always gave constant results, producing respectively Bacterium Stutzeri Neum. and Lehm., B. denitroftuorescens sp. n., and B. vulpinus sp.n. The first named deserves attention on account of the unique structure of its colonies (as figured). The second speeies is the first example of a denitrifying non-liquefying fluoreseent bacterium. B. vulpinus is a brown-red pigment-bearing species; the pigment forms only in the light. B. Stutzeri and B. vulpinus behave towards free oxygen like aerobie spirilla, the third species like an ordinary aerobic bacterium.

The author finds that denitrifying bacteria are generally distributed in canal and sewage water. They can, even with the slightest quantity of various organic substances, cause the disappearance of determined quantities of nitrate with development of free nitrogen. In one and the same culture medium where nitrification is produced during aëration,

[^310]denitrification may be cansed by exclusion of air, and the same holds good in regard to the soil.

Nitrogen-fixing Bacteria.*-Gerlach and Vogel have made fresh observations on the relation between a supply of organic material (grape-sugar, calcium propionate, \&c.) and the fixing of free nitrogen by soil bacteria. The bacterium used was Azotobacter chroococcum, and it was found that an increase of grape-sugar up to 12 grm . per 1000 led to an increase of nitrogen fixation, but above that amount an increase in sugar led to a decrease in the activity of fixation. Their further work is a consideration of the results obtained by Beijerinck and van Delden in their work on nitrogen-fixing lacteria.

Culture of the Nitroso-Bacterium. $\dagger-\mathrm{H}$. S. Fremlin finds that a practically pure culture of the nitroso-bacterium can be obtained after sub-cnlturing for seven months in Winogradsky's ammonia solution, which consists of water containing 1 per 1000 ammonium sulphate, 1 per 1000 potassium phosphate, and 1 per 100 magnesium carbonate. The bacterinm will grow in this solution in the presence of organic matters such as are contained in peptone beef broth, Witte's powdered peptone, and urea. The author also shows that the bacterium will grow not only on silica jelly but also in any ordinary organic medium.

Motility of Rhizobium. \ddagger-Albert Sclneider continuing his investigations of the leguminous tubercle baeteria, states that he has now discovered that when the Rhizobia of sweet clover are transferred to acid media they become much smaller and more uniform in size, and move with a rapid, jerky, to and fro, and rotary morement. To the bacterimm from this clover he gives the name of R. mutabile, a species which he believes will prove to be the chief or dominant type as it oceurs in the tubercles of the greater number of leguminous plants. In neutral media the organism remains non-motile.

Observations on Sarcina, Streptococcus, and Spirillum.s - David Ellis has made a long and इery complete series of comparative morphological and physiological olservations on Sarcina urece Beijerinck, Streptococcus tyrogenus Henrici, and Syirillum giganteum Migula.

New Group of Sulphur-Bacteria.\|-A. Nathansohn deseribes a new group of sulphur-hacteria observed by him in sea-water to which potassium snlphide had been added, and which had been infected with Beggiatoa-like organisms. They were afterwards cultivated and studied in sea-water with the addition of $0 \cdot 1-1$ p.c. sodium thiosulphate or some similar medium; no organie food was necessary. A large number of forms of this group were isolated by means of plate cultures, but in this paper their metabolism only is described. The organisms were unable to develop in the absence of CO_{2}, but they were unable to oxidise such substances as glucose, though these organic substances had no ill-effect on their growth. It would seem that in these curious

[^311]bacteria a thiosulphate takes the place of the carbon compound usually concerned in the respiration of other plants.

Staining of Streptotrichaceæ.*-E. Fuchs states as the result of his investigations, that staining by methods hitherto supposed to be specific for tubercle-bacillus and allied species, is a general character of the Streptotrichaceæ. These results confirm Zupnik's view as to the close relationship between these two groups of bacteria.

Resisting Powers of Staphylococcus pyogenes aureus. \dagger - F. W. Andrewes describes observations illustrating the remarkable resisting powers of this organism to mercuric salts. A strain of this coccus in broth cultures resisted 1 in 500 perchloride of mercury for 45 minutes, and in pure water for $12 \frac{1}{2}$ minutes. By repeated passages through the perchloride a strain was produced with increased powers of resistance, withstanding 1 in 500 of the perchloride in pure water for 20 minutes. The resistance to biniodide of mercury was as great, but it did not extend to antiseptics of other groups.

Immunising Effects of Contents of Typhoid Bacillus. \ddagger - Allan Macfadyen finds from experiments on the monkey that by the injection of the intracellular juices of the typhoid organism it is possible to obtain a serum with both antibacterial and antitoxic properties ; and that such a serum possesses curative and preventive properties as regards the typhoid bacillus, and an intracellular toxin present in the same organism. The author believes that the results of this research afford for the first time proof that, in the case of one species of pathogenic bacterium, the intracellular juices of the organism, when injected into a suitable animal, give rise to the production of a serum which is both bactericidal to the organism itself, and antitoxic as regards a toxin contained in its substance. How far such properties of the cell-juice are shared by other pathogenic microbes must be the subject of further inquiry.

[^312]
MICROSCOPY.

A. Instruments, Accessories, \&c.*

Fig. 121.
Old Microscope by M. Pillischer.-Figs. 121 and 122 represent the Microscope made by Michael Pillischer about 1847 for Sir William

* This subdivision contains (1) Stands; (2) Eye-pieces and Objectives; (3) Illuminating and other Apparatus; (4) Photomicrography; (5) Microscopical Optics and Manipulation; (6) Miscellaueous.

White-Cooper. This instrument was exhilited by Mr. Jacob Pillischer at the March meeting (see p. 245). Fig. 121 gives a general view of the instrument, and fig. $1 \approx 2$ shows the Tomes stage opened out and the method of piroting the three oral plates. When used as a dissecting Microscope, these plates form convenient tables on which to place specimens and small instruments.

Fig. 122.

New Portable Microscope. - This Microscope, figs. 123 and 124 , exhibited at the June Meeting by Dr. C. Charlton Briseoe, was made from the design of Prof. Herbert Jackson by Messrs. Swift and Son, who suggested several of the details in its construction. It is specially designed for use at the bedside, and, considering the work it is capable of doing, is of musually small dimensions.

The body, which can be extended by a draw-tube to 160 mm ., slides in a cloth-lined fitting ; it has an eye-piece of R.M.S. standard gauge, and the nose-piece takes objectives with the standard screw-thread. The fine adjustment is steadr with the highest powers.

The stage, which is one of the chief novelties in this instrument, has $\frac{8}{4}$-in. motion vertically and transverselp, the latter motion being in arc.* The substage condenser is achromatic and has an aplanatic aperture of $0 \cdot 92$; the top lens can be removed when using low porrers. It is fitted with iris diaphragm and throw-out cell and screws for centring.

[^313]The case, made to hold the instrument with bottles of solntions, blood-connting slide, pipettes, and other items, measures 8 in . by 4 in . by $1 \frac{3}{4} \mathrm{in}$., and weighs under 2 lb ., but the Microscope can be fitted by itself in a case measuring $6 \frac{1}{2} \mathrm{in}$. by $3 \frac{1}{2} \mathrm{in}$. by $1 \frac{3}{10} \mathrm{in}$., and the weight with two objectives wonld then be under $1 \frac{1}{2} \mathrm{lb}$.

Fig. 123.

Beck's Portable Continental Model.*-This Microscope, known as Stand No. 1123, is shown in figs. 125 and 126 . It has a sliding coarse adjustment, and a delicate micrometer-screw fine adjustment. The stage,

[^314]with its revolving diaphragm, swings round for facility in packing, and the base is made folding for the same purpose. It is packed in a morocco-covered case, measuring 8 by $\because \frac{3}{4}$ by $2 \frac{1}{2} \mathrm{in}$.

New Double-hinged Limb-holder.* - Messrs. Leitz have made for M. P. Porsild a double-hinged limb, so that their preparation Microscope may be used for several other purposes. The upper part of the limb (fig. 127) is of the usual character, but is raised and lowered by rack-and-pinion operated by the milled heads shown below the stage. Near

[^315]

Fig. 125.

Fig. 126.
the lower end of the limb is a hinge, which permits it to be vertically rotated through 90°, so that the tube-axis can be brought parallel to the stage. In this position the instrument can be used as a cathetometer, or Microscope for reading vertical distances, especially for such subjects as plant-growths which could be estimated by the eye-piece micrometer

Fig. 127.

Fig. 128.
measurements. A millimeter scale could be engraved on the triangular bar. Below the stage the pillar has a rotation hinge which enables the optical part to be used with greater freedom (fig. 128).

The instrument can also be conveniently used as an aquarium Mieroseope, but it would be an improvement to lengthen the lower end of the tube.

Even when the instrument is used as a preparation Mieroscope the double hinging is useful, as it facilitates search over the field.

Koristka's Mechanical Stage.*-This accessory is shown in fig. 129. The movements in the two directions are 80 mm . and 40 mm . respectively, and the two divided seales are provided with verniers, which

* F. Koristia's Catalogue, Milan, p. 54.
serve to fix the position of any point of interest. Both screw-heads are placed on the left so as to leave the operator's right entirely free.

Fig. 129.

Koristka's Hand Magnifiers.*-The loup shown in fig. 130 has two pairs of tro achromatic cemented lenses. The mount of the upper works in a thread so that its distance from the lower pair can be altered. In this way the magnifying power can be varied from 5 to 10 diameters. The field in each case is flat and large.

Fig. 130.

[^316](3) Illuminating and other Apparatus.

New Projection Apparatus for Scientific Work.*-L. B. Elliott, in designing this instrument, has adopted the fundamental principle of a fixed optical centre for all parts of the apparatus, the only adjustment required being that to bring the source of light into the op,tical axis and to separate it the proper distance from the first element, namely, the rear lens of the condensing system. To this end all the optical parts and their comnections are mounted upon rertical piliars attachel to heary steel bloeks, which, in turn, are monnted upon a steel har, rectangular in section, having tro inclined surfaces, accurately planed. on

Fig. 131.
its upper side, the whole contrivance resembling a fine lathe-bed in rigidity and accuracy of centring. A T-slot is milled in the upper portion of the rod from one end to the other, and in this a T-piece attached to a rertical axis passing through the block and earrying the optical parts is placed. The T-piece may be rotated through 90° by means of the lever A, fig. 1:1, placing its long axis parallel with the asis of the T-slot, when the whole block may be lifted off from the bar, or if removed may be replaced upon the bar and held in position by releasing the lever A, which is aetnated by a spring, cansing the long axis of the T-piece to assume a position at right angles to the axis of the T -slot. This lever, being actuated by a spriug, antomatically locks

* Journ. App. Micr., vi. (1903) pp. 2136-47 (8 figs.).
the block on the rod, preventing accidental overturning during adjustment. The block with whatever optical apparatus it may carry, now rests upon the two inclined surfaces of the bar, and may be slid along its length, permitting whatever adjustment is required, and when in proper position the lever B is depressed, locking the whole rigidly upon the bar by means of a cam which draws the T-piece firmly against the top of the T-slot. It will thus be seen that any part of the optical equipment can be removed from the apparatus, or replaced, by releasing the T-piece through the operation of the lever B, and rotating the lever A through 90°, and that each element will always return exactly in the optical axis, since its support rests only on the two inclined surfaces of the rod R, and must in every case find the true centre through the clamping action of the cam lever B. The rigidity of the steel bar R and the heavy construction of the base-blocks and vertical supports of the optical part

Fig. 132.
retain the alignment and centring. Fig. 181 shows the details of construction of the base-blocks for apparatus smpports with the two inclined planes on which the blocks rest. S is the piece in T -slot which, when rotated 90° by the lever A, permits the removal of the base-block from the rod; B is the clamping lever, which clamps the base-block rigidly on the rod R. Fig. 132 is a section of the condenser and water-cell. The condenser is a triple system between the two anterior elements of which the water-cell is placed, securing the maximum absorption of heat rays with the minimum loss of light. The hand-fed electric are lamp is shown in Fig. 133 and is formed of a vertical and a horizontal carbon, which are therefore at right angles to one another. They can be actuated simultaneously or separately. The placing of the carbons at an angle of 90° to one another with the horizontal carbon in the optical axis not only throws a greater volume of light from the crater of the positive carbon through the condensing lenses, but retains the glowing crater always exactly in the optical axis, no matter how irregularly the two carbons may burn. Fig. 134 shows the whole apparatus complete.

Fig. 1:3.

Fig. 134.

Koristka's Apparatus for the Microscopic Projection of Liquid Preparations.*-This arrangement is shown in fig. 135. The electric

rays, after proceeding through the usual diaphragms and condensers, impinge upon the mirror of the Nicroscope. They are:then reflected up

* F. Koristka's Catalogue, Milan, fig. 70, p. 81.
through the tube and are again reflected at the hypotenuse of an isosceles right-angled prism. The emergent rays can then be received on any convenient screen.

Koristka's Abbe Camera Lucida with Lens-Holder.*-This instrument, shown in fig. 136, while principally designed for low powers, is also adapted for drawing objects their natural size without the aid of a lens. The camera lucida with its large mirror, 90 by 150 mm ., and with

Fig. 136.
gilded double prism, takes a very large field. It is fitted with two series of smoked glasses, one for interposing between the prism and the mirror and the other for insertion between the prism and the magnifying lens.
(6) Miscellaneous.

Jena Glass. \dagger-The nature of the contents of this book place it out of the reach of ordinary criticism. It can scarcely be compared, it

[^317]stands almost alone. It is a scientific discourse upon an entirely new series of optical metals. It would be well if we had accessible anywhere an equally accurate and efficient account of optical glasses in use before this remarkable and most valuable series of Jena glasses were devised and made accessible.

As a treatise it is a monument to the scientific knowledge, skill, ingenuity, and indomitable resolution of German men of science. The labour must have been great ; the book is practically a record of various experiments which have been made to discover the composition needful to obtain a series of optical fluxes which should possess the properties optical and mechanical for securing results that had been before optically impossible. Sir I. Newton had satisfied himself that the hindrance to the production of a perfect optical instrument, such as a telescope, was not the production of perfect figures in the glasses, but the different refrangibility of the rays of light. In the glasses used in the construction of optical instruments prior to the production of the optical fluxes of Jena, two kinds of glass having proportional dispersion powers could not be found ; as is well known, "irrationality of spectrum" resulted and absolute chromatic correction could not be accomplished. The want of proportion in the dispersion of the various colours of the spectrum in two kinds of glass, such as were obtainable before the Jena glasses were produced, left a colour or colours outstanding in "corrected " or achromatic combinations of, for example, microscopic object-glasses, known as the secondary spectrum.

It is by the production of the most ingenious vitreons compounds of which this book gives careful history and elaborate scientific details, combined with fluor-spar, that this secondary spectrum was removed and a new era for microscopic objectives and work inaugurated ; and in every field in which optical instruments are used an immensely important series of improvements have resulted.

Amici showed that the introduction of a drop of water between the first surface of the object-glass and the covering glass of the object would diminish the loss of light which arose from the passage of the rays from the object into air before reaching the objective. Sir David Brewster had seen and suggested this as far back as 181%, and its adoption was known as the "water-immersion." Clearly, however, when the rays enter the object-glass from water instead of air, both its refractive and dispersive action will be altered; and important constructive modification would be needed to suit the new conditions. Hartnack was the first to successfully bring this about, and the immersion system was introduced. This system was still more powerfully to influence the future of the Microscope, under the now famous homogeneous system of immersion. This system was first suggestively employed by Tolles; but Prof. Abbe had at the same time a more or less clear perception of its potential value. "The matter assumed, however, subsequently, a different shape in consequence of a suggestion made by Mr. John Ware Stephenson . . . of London, who independently discovered the principle of homogeneous immersion." *

[^318]The new method consisted in the replacement of the water in the immersion system by cedar oil which is placed between the front surface of the object-glass and the upper surface of the cover-glass of the mounted object. The oil has the same refractive and dispersive power as crown glass, and therefore the correction collar, thongh a refinement having value still, was no longer inevitable.

The construction of a combination of lenses which wonld satisfy these conditions was earnestly desired and ultimately urged by Mr. Stephenson upon Prof. Abbe; and eventnally the long series of researches and experiments so efficiently detailed in the book we are considering led to the formation of new vitreous compounds making possible the large numerical apertures and almost perfect corrections of an entirely new series of lens-combinations now known as "apochromatic "-opening a new era in Microscopy.

This glass is now so gencrally used in all high class optical work throughout the world, that a book like this giving authoritatively much that it is of the greatest value to know concerning its construction and its optical and mechanical properties, is a boon to all working opticians, and a service rendered to mathematicians and physicists.

Many pages are given to the consideration of the optical properties of the glasses, and to the manner in which the perfection of optical systems is secured by the utilisation of the special properties of the glasses. Almost equally interesting is the discussion of the mechanical properties of these vitreous combinations, which are carefully recorded and explained.

Much space is devoted to quite another feature which these glasses in a marked degree are distinguished by, which is their endurance and behaviour under varying thermal conditions. One important matter especially to the employment of these compounds for optical lenses and especially for the lenses of Microscopes, is the manner in which lenticular surfaces made of the compounds are susceptible to tarnish and inimical changes when exposed to varying conditions of atmosphere.

From this book it is manifest what great advances can be made by steady purpose in investigation and enterprising experiment. The advancement of practical optics by the devising of these vitreous compounds has been very great, and as a side-issue it is not unimportant that the discovery of the combinations has shifted the centre of the world's optical work from England to Germany. The annual inflow into England alone of optical instruments from Germany represents, relatively, a new item and one of immense financial importance. But it is not to be supposed that all that can be done has been done. May we not hope that the enterprise of English opticians will lead them to make effort, so that what is still attainable in the yet further advancement of the "metals" out of which lenses may be rendered still more efficient, shall if possible be secured?

B. Technique.*

(1) Collecting Objects, including Culture Processes.

Apparatus for Decanting off Culture Fluids. \dagger - W. Behrens describes an apparatus constructed by V. Basila which is intended for removing from a stock vessel definite quantities of culture media without fear of contamination.

The apparatus, made entirely of glass, consists of an Erlenmeyer's flask A in connection with which is a spherical vessel D, the latter having a suction-tube C and a discharge pipe B . By means of the taps E and F, D can be shut off above and below. By means of the tap E the communication between D and A and B can not only be cut off but can be made with one or both simultaneously. The tap F is so bored that it allows air to pass either way.

Fig. 137.
When the apparatus is to be used, cotton-wool is stuffed into the bulb H , the flask is filled with culture fluid, and the whole having been steam sterilised the caoutchouc plug is inserted. The tap E is turned

[^319]so as to close A and B. The $\operatorname{tap} \mathrm{F}$ is now opened so that the interior of D is in communication with the external air, and then by means of a suction pump a vacuum is made in D. By closing F and opening E , some of the culture fluid ascends into D, and then by another turn given to E , any desired quantity can be run off through the tube B .

(2) Preparing Objects.

Decalcification Method.* - As the outcome of an elaborate scries of experiments with various reagents under different conditions, J. Schaffer thus formulates his method of decalcification. The piece of tissue must be well fixed and then carefully imbedded in celloidin. Harden the celloidin block in 85 p.c. alcohol, after which remore the alcohol by immersion in water. Then place the block for 12 to 24 hours, or still longer if the piece be large, in 3 to 5 p.c. nitric acid, using a Thoma's water-wheel. From the acid the block is transferred to a 5 p.c. solution of lithium and sodium sulphate. In this it should remain from 12 to 24 hours, the solution being changed at least once. Then wash in running water for 48 hours, after which dehydrate in graded alcohols up to 85 p.c.

Reagent Bottle.†-S. E. Dowdy describes a drop-bottle for containing and applying stains and reagents used in histological work. The apparatus consists of a wide-mouthed bottle, a tight-fitting cork, a couple of pieces of glass tubing, a rubber teat, and a piece of rubber tubing to connect up the outlet tube. Its advantages consist in keeping the reagent free from dust, in allowing its removal without taking out a stopper, and in the control over the amount deposited on the slide. Empty bottles may be used for removing excess of liquid from slides and also as a gathering pipette and collecting bottle for pond life.

(3) Cutting, including Imbedding and Microtomes.

New Imbedding Medium. $\ddagger-\mathrm{G}$. Marpmann recommends celluloid dissolved in aceton as an effective substitute for celloidin. Celluloid chips, which are very cheap, are placed in a wide necked bottle and covered with about ten times their bulk of aceton. The bottle, which should be tightly corked, must be frequently shaken at intervals and then allowed to stand until the celluloid is quite dissolved. The clear supernatant fluid is then poured off. Two solutions are required, one thin, the other of a thick syrupy consistence. The material, which must be perfectly dehydrated, is placed in the thin solution for some days and then some of the thick solution is poured in. The medium is inspissated by allowing slow evaporation under a bell-jar.

The blocks, which should be free from cracks or holes, may be kept in 80 p.c. alcohol. The sections may be mounted as they are, or the celluloid may be dissolved out by means of aceton.

New Freezing Plate for Hand Microtome. $\S-B$. Solger describes a microtome with a new freezing plate which is to all intents and pur-

[^320]poses a modification of the Roy model. It consists of a foot-plate about 3 cm . long, attached to a screw clamp which serves to fix the instrument to the bench and supporting a slot for the reception of the nozzle of the ordinary spray apparatus attached to its upper surface. The foot-plate supports the freezing-plate (5 cm . by 2 to 2.5 cm .) by means of a short upright (about 2 cm .) The under surface of the

Fig. 138.
freezing-plate is traversed by several metallic ridges. The microtome, which is made by Leitz, is constructed entirely of steel and iron, and is nickeled.

(4) Staining and Injecting.

Staining Nervous Tissue with Gallein.*-H. Schrötter finds that gallein, a pigment belonging to the eosin group, stains the medullary sheath of nerves very well. The dye is dissolved in boiling water.

Sections of spinal cord are immersed in the solution for 15 to 20 minutes, and then differentiated in a 5 p.c. solution of soda. After washing in water and dehydrating in absolnte alcohol they are treated with carbol-xylol. The medullary sheaths and medullated fibres are

[^321]stained violet. By washing in dilute permanganate of potash after the soda bath a still sharper picture is obtained.

The best fixative appears to be Müller's fluid.
H. Aronson * remarks that he published the foregoing method in 1890 , but his communication attracted little attention, though it contained the important observation that basic pigments attach themselves very firmly to fibres which have been stained red with gallein.

Modification of the Method for Staining with the Ehrlich Triacid Solution. \dagger-Morel and Doléris mix equal volumes of the triacid solution and 8 p.c. formalin and then add 1 per thousand acetic acid. The effect. of this solution is to fix the methyl-green in the nuclei. The material is best hardened in Zenker's fluid.

The sections should be immersed in the stain for 10-20 minutes.
Heidenhain, M.-Ueber chemische Anfärbungen mikroskopischer Schnitte und fester Eiweisskörper. (On the chemical stainings of microscopic sections and of solid albuminous bodies.) Zeitschr. viss. Mikr., XIX. (1903) pp. 431-41.

Ueber chemische Umsetzungen zwischen Eiweisskörpern und Anilinfarben. (On chemical changes between albuminous bodies and anilin dyes.)

Arch. ges. Physiol., XC. (1902) p. 115.
(5) Mounting, including Slides, Preservative Fluids, \&c.

Staining and Mounting Urinary Sediment. $\ddagger-B$. Kozlowski states that he has got mounts of urinary sediment (cells, casts) which have kept unchanged for quite five years. About 1 c.cm. of a weak solution of some aniline dye is added to the mrine. A 1 p.c. solution of eosin acts very well. The urine is then centrifuged and the process repeated with the sediment. The last drop of urine is removed. A drop of the thick sediment is then deposited in a drop of Farrant's medium previously placed on a slide. The two are mixed together and then a cover-glass put on. The preparation should be ringed round with a liquid cement made by dissolving caontchonc in bisnlphide of carbon or benzin.

New Medium for Mounting Microscopical Preparations. §According to G. Marpmann, acetyl-cellnlose is an ideal medium. It is prepared by treating hydrocellulose with 3 p.e. sulphuric acid at $70^{\circ} \mathrm{C}$. and afterwards with acetic acid. On the addition of water acetylcellulose separates out and when dried forms a sandy powder which is easily soluble in chloroform, nitro-henzol, \&c. As excellent samples are now on the market it is better to purchase.

A good cellulose solution keeps for quite a long time and can always be freshened up by the addition of some more chloroform.

The preparations are removed from alcohol, xylol, or one of the oils (cedar, clove, origanum) to a drop of the solution which has been placed on a slide. Another drop is put on top, and after having been arranged by means of a glass rod a cover-glass is deposited on the surface. The cover-glass may be dispensed with, and this constitutes one of the chief adrantages of this medium.

For the cover-glass, cover-slips made of the following solution may

[^322]be substituted : 10 parts acetyl-cellulose, 1 part aluminium palmitate, 15-20 parts chloroform, 1 part nitro-benzol. The solution is smeared on a piece of plate glass until it forms a layer about 0.15 mm . thick. When dry it can be peeled off in strips and cut up into slips of suitable size.

Method of Mounting Bacteria from Fluid Media.-In a communication made at the June meeting, J. A. Hill describes a method of mounting bacteria which is based on the principle of gradually changing the microphytes from aqueous to resinous media.

One volume of the fluid containing bacteria is mixed with two volumes of a solution containing equal parts of glycerin and absolute alcohol and well shaken. The sediment from this is treated with absolute alcohol several times to ensure the removal of all the glycerin and water. The fresh sediment is treated in a similar way with oil of cloves to remove the alcohol. After this the bacteria are stained by replacing this reagent by a saturated solution of fuchsin in oil of cloves. After about a week an equal bulk of balsam dissolved in benzol (undried balsam 1 part, benzol 1 part) is added, and this mixture is treated several times with the balsam and benzol solution to remove the excess of fuchsin. To the final sediment is added about three times its bulk of balsam or styrax mounting medium, and from this last mixture microscopic preparations are made in the usual way.

After each step the fluid is allowed to stand until the bacteria are deposited as a visible sediment ; the supernatant fluid is then poured off and the sediment used for the next stage, but the process might be hastened by the use of the centrifuge.

(6) Miscellaneous.

Microscopical Examination of Foods and Drugs.*-An up-to-date treatise in the English tongue on the microscopical examination of foods and drugs has long been a desideratum. For about fifty years the student of this important branch of science has had to rely mainly on Hassall or on foreign publications. This reproach has now been removed and a long felt want supplied by H. G. Greenish, whose work is specially devoted to instruction in the methods of examining vegetable foods, drugs, and their powders by the aid of the Microscope.

The author has fully succeeded in his task and is to be congratulated on demonstrating that the Microscope is capable of furnishing with the expenditure of a minimum of material, and also often of a minimum of time, information concerning the substances aualysed that cannot be obtained by any other means.

The contents are divided into twelve sections arranged so that the student may begin with the simplest and proceed gradually to the complex ; e.g. starting with starch, the subject matter deals successively with textile fibres, spores and glands, ergot, woods, stems, leaves, barks, seeds, fruits, rhizomes, and roots. There are two appendices which contain very useful information. The first of these is a list of reagents, with their composition and remarks on their use ; the second is a list of the chief varieties of cell-wall and cell-contents, and the means adopted for their identification. The volume is well got up and freely illustrated.

[^323]
PROCEEDINGS OF THE SOCIETY.

meering

Held on the 17 th of June, 1903, at 20 Hanover Square, W. Williay Carruthers, Esq., F.R.S., Vice-President, in the Chair.

The Minutes of the Mecting of the 20th of May, 1903, were read and confirmed, and were signed by the Chairman.

The List of Donations, exclusive of exchanges and reprints, received since the last Meeting, was read, and the thanks of the Society were voted to the Donors.

Livingston, B. E., The Rôle of Diffusion and Osmotic Pres- sure in Plants. (Svo, Chicago, 1903) ..	The University of Chicauo Press.
Non-achromatic Simple Microsc	Mr. E. M. Nelson.
Micrometers, one with lines $\frac{1}{105}$ in. apart, and the other $\}$	" "

Mr. E. M. Nelson, in reply to the Chairman, said that the old Microscope which he had the pleasure of presenting to the Society was interesting because it had a prism focussing bar with a screw at the bottom, and was evidently a very early example of this construction. Although the lens was a non-achromatic one it was remarkably good, and showed the proboscis of the blowfly extremely well; he had been much astonished at the sharpness of the image.

Dr. G. Charlton Briscoe exhibited and described a new portable Microscope of diminutive proportions (see ante, p. 543), designed for making microscopical examinations by the bedside.

The Chairman said he had a portable Microscope made for his own use about 25 years ago, by Swift, which packed up into a small leather box that could be carried in the breast pocket of the coat. He carried it about for examining fungal injuries to plants. It was not so elaborate, nor did it contain so many appliances, but it' answered admirably the purposes for which it was made. A useable portable Microscope added greatly to the pleasure of a country or seaside holiday.

Mr. F. W. Watson Baker exhibited for Messrs. Watson \& Sons a new pattern portable Microscope and also a new mechanical stage. The Microscope was one of their "H" Edinburgh Students' Instruments, fitted with a folding foot. It was somewhat larger and heavier than the one exhibited by Dr. Briscoe, but it had not been designed so much
for use at the bedside, as for the use of persons who preferred to carry a medium size instrument with them when travelling.

The new mechanical stage was of somewhat novel construction, it having three special features, viz. a large horizontal travel amounting to : $3 \frac{1}{2}$ inches, a surface perfectly unobstrneted, and further the two milled heads, which were mounted on one spindle on the Turrell system, were placed at an angle to the movements of the stage which was not usual.

The stage was specially designed for the use of batteriologists and those who examine living objects.

The working arrangement was effected bs rackwork and pinion of peculiar construction ; a sliding bar could be used on the stage if occasion required.

Mr. Beck said he had brought with him to the Mecting a Spinthariscope, the arrangement by which Sir William Crookes demonstrated the Röntgen rays emitted by radium. This was also made in the form of a microscopic object, but it reguired to be shown in a darkened room. In a room such as that in which they were meeting, where there were a number of electric lights, it would be very difficult to show, but it was quite easy to see at any time in a room not too brightly lighted.

The Chairman moved a vote of thanks to the three gentlemen to whom the Society was indebted for their interesting exhibitions, all of which presented distinct improvements in the directions which the makers had in view.

The thanks of the Meeting were then unanimonsly voted.

The Chairman said the first paper on the Agenda was by Lord Rayleigh, "On the Theory of Optical Images, with special reference to the Microscope." Lord Rayleigh had written to excuse himself from being present, and mentioned that this paper was to be regarded as supplementary to a paper of his which appeared in 1890 in the Philosopfical Magazine, and at his special request the Council had agreed that the original paper should appear in the Journal along with the supplement, so that the Fellows may have the whole argument before them.

Dr. Hebb then read a portion of this communication, the rest being taken as read.

Mr. Vezey said the paper contributed by Lord Rayleigh was a most valuable one, and he felt sure the Fellows would agree that his Lordship had paid a compliment to the Society by making it the medium of his communication. Lord Rayleigh had also kindly permitted the republication of an earlier paper of his on the Microscope, and this would appear in the same number of the Society's Journal as his paper just read by the Secretary, and the value of the latter would be greatly increased therebs. The Society was greatly indebted to Lord Rayleigh.

The thanks of the Society were then, on the motion of the President, cordially voted to Lord Rayleigh for his paper.

Dr. H. Siedentopf read his paper, "On the Rendering Visille of Ultra-Microscopic Particles, and of Ultra-Microscopic Bacteria," the
subject being illustrated by the exhibition of the objects and apparatus described, specially brought over to England for the purpose, and illuminated by three are lights arranged upon tables in the room. Further illustration was also given as the paper proceeded, by means of drawings on the blackboard as occasion required.

The Chairman was sure that the Fellows of the Society had listened with the deepest interest to Dr. Siedentopf's exposition of the method by which he had succeeded in making minute objects visible which the highest powers of the Microscope were incapable of disclosing. It was quite impossible for the mind to realise the dimensions of bodies whose size was expressed in such extraordinary figures. He looked forward to important results being obtained from the investigations by Dr. Siedentopf's methods of the structure of the cell-walls of animals as well as plants. He regarded this as the most important paper he had at any time listened to in that room.

Dr. Hebb then read the following communication from Dr. G. Johnstone Stoney, F.R.S.
"If it had been in my power to attend the Meeting, and if I had been asked to speak, I should have wished to say that no particles disseminated through glass can be too small to be seen in the Microscope, provided that, however small, they fulfil the two following conditions :-
(1) That the light each particle emits is of sufficient intensity to make it visible.
(2) That the particles are distant from one another by intervals that are not ultra-microscopic.

With an immersion objective of N.A. 1-35 and an immersion condenser of $1 \cdot 30$, both carefully adjusted, and with useless light excluded by a suitable stop, I have found that the practical limit of proximity at which particles in a rou" may be, consistently with our seeing them as separate objects, with indigo-coloured light of about 0.45μ wavelength, is somewhere about 0.20 or 0.19μ-say about the $\frac{1}{130000}$ of an inch. This would correspond to seeing a single pair of such objects as separate if the interval from centre to centre is about five-sixths of the above-say about 0.17μ.

Although a pair of objects can be seen as two, when somewhat closer to one another than the intervals at which a row of such objects must be spaced in order to make it possible to resolve them, it is a curious circumstance, and one which perhaps has not hitherto been taken notice of, that the above pair of objects will, in the Microscope, appear to be somewhat farther asunder than they really are.

This, which the present writer ascertained several years ago theoretically, can now be beautifully exhibited by the exquisite rulings which Mr. Grayson has succeeded in producing."

Prof. J. D. Everett desired to call attention to the close connection between Lord Rayleigh's paper and Mr. Siedentopf's experiment. Lord Rayleigh pointed out that no limit could be laid down to the smallness of objects which could be rendered visible, although two objects could not be seen as separate if the distance between them was much less than half a wave-length. Mr. Siedentopf's experiment showed that an object with a diameter only a small fraction of half a wave-length
could give a visible image, but it did not exhibit the separation of two objects less than half a wave-length apart. This paper of Lord Rayleigh's was supplementary to a much longer one, published in 1896, containing an exbaustive discussion of the conditions on which resolution by an optical instrument depends. Abbe, in his great paper of 1873 on Microscopic Perception, had laid down, with the promise of a future proof, the law that a grating of fine lines could not be resolved by a Microscope, unless at least two of the spectra given by the grating co-operated in the formation of the image; and that the amount of detail which could be shown in microscopic objects depended essentially on the number of these spectra that co-operated. Lord Rayleigh's paper of 1896 contained the first proof of these assertions; the proof being based on an application of Fourier's theorem. The paper contained a large amount of matter, and some parts of it were very tough reading ; but its value as a contribution to microscopic science could hardly be overestimated. The supplementary paper dealt with a kindred subject, and its contention was admirably illustrated by Mr. Siedentopf's brilliant experiment.

Dr. Czapski was also of opinion that the discussion of these three papers might be taken together ; he said he would be glad if he could do something to remove some misapprehensions which appeared to exist about the Abbe theory. Lord Rayleigb had shown that the fundament of the Abbe theory of microscopic vision was correct, but there seemed to be an idea that the Abbe theory dealt with nothing else than with the question of resolution. This would always be a matter of great interest to the optician, but what in the majority of cases is of principal interest for the practical microscopist is to know whether, and to what extent, what they are seeing is a true representation of the real object; and from what conditions as regards construction and use of the Microscope the truthfulness of its working was depending upon. It was quite true that Prof. Abbe had not published his theory in a somewhat detailed form in writing, but he had given it in his University lectures since 1897-8, and he hoped Prof. Abbe would be able to publish these lectures in good time. He felt quite sure that the new paper by Lord Rayleigh would give the greatest pleasure to all who were able to follow his mathematical demonstrations; his developments were so clear that they imbued one with that sense of beauty which only work of the very highest class does.

It was likewise with a sense of pleasure that he had followed Dr. Johnstone Stoney's work in this connection, which he considered one of the most valuable contributions to the subject.

Mr. J. W. Gordon, being called upon by the Chairman, said he had not intended to take any part in the discussion of this subject, as he was unable to be present sufficient early to hear Lord Rayleigh's paper read. He should, however, like to say by way of personal explanation, that if Lord Rayleigh's paper of 1896 had been in his hands at the time when he was preparing his paper on the Helmholtz theory, he should certainly have made use of it. He explained that the fourth volume of Lord Rayleigh's collected works, containing the reprint of this paper, had only appeared in the present year, and for that reason the
paper itself had been overlooked in his preparation. Adverting to the diseussion which had already taken place, he suggested that the remarks of Dr. Czapski and some others who had taken part in it would bear a little further elaboration. They had been diseussing the subject of resolution generally, and Prof. Abbe's relation to the diffraction theory had been brought up. It might be of interest, therefore, if he shortly reviewed the labours of the prineipal workers in that field. The question of diffraction and its effect upon the definition of an image, was first considered by Sir George Airy, who in 1834 attacked this problem :given a flat wave-front passing through a lens, what effeet would diffraction have upon the foeussing of that wave-front by the lens? Sir George Airy went no farther. He considers only the case of a simple series of repeated wave-fronts and calculated the light intensity in various parts of the diffraction disc-or antipoint-produced by the aperture of the object-glass. The diffraction of which he took account was diffraction arising from the aperture of the instrument, and the case which he dealt with was the case of light issuing from a single point in the object. So the matter stood until the seventies when the question of diffraction was again treated by Prof. Helmholtz. He dealt with it in a more comprehensive way, for treating not of the telescope but of the Mieroseope, he had to deal with two diffraction dises, one in the objectthat is to say on the stage of the instrument-and the other in the imageplane of the instrument, or, as the case might be, in the observer's eye. But, like Sir George Airy, he discussed the diffraction eaused by the aperture of the objective.

Prof. Abbe, on the other hand, spoke of diffraction produced by the structure of the objeet, an entirely different problem having nothing to do with the diseussion initiated by Airy and carried on by Helmholtz.

Then in 1896 came Lord Rayleigh's paper in whieh, following and carrying on the work of Airy and Helmholtz, he elaborated the mathematical theory of the diffraction which arises from the aperture of the objective, and instead of the diffraction produced by one series of wavefronts only considered the reeiprocal interference of two antipoints or diffraction dises.

Three such cases were separately considered in Lord Rayleigh's paper. In two of them the light was assumed to be polarised in the same plane. In the first case there was supposed to be no difference of phase between two radiant points, and it was shown that if they were no more than half a wave-length apart they would appear to coalesce in the image. In the second case the two radiant points were assumed to be synchronised in opposite phases, and in that ease it was shown that there would at the half wave-length interval be complete resolution. A third case was that in which the two undulations were polarised at right angles to one another and there was no direet interference, but the two antipoints overlapped to a certain extent so giving rise to confusion and imperfect resolution in the image. Lord Rayleigh discussed these three conditions, assuming mathematical points for his theoretical resources of light, but he did not enter upon the practical question of the form of the light-intensity curve of the antipoint-when small surfaces were substituted for the mathematieal points of his hypothesis. He (the
speaker) supposed that in the supplementary paper read that evening Lord Rayleigh had earried the investigation somernat further, and had dealt with the light from small radiant surfaces. In the 1896 paper they had a demonstration of what an antipoint was, but not of what an image built up of antipoints wonld be like.

Except for Helmholtz' paper, so far as he knew, the formation of the images by means of antipoints had not been investigated. Working side by side with Lord Rayleigh there had been Dr. Johnstone Stoney, who had laboured to produce a comprehensive theory in which the diffraction arising from the aperture of the instrument and that arising from the structure of the object on the stage should both be taken into account. Such a scheme presented great difficulties, for the amount of the diffraction arising on the stage depended upon the curvature of the wave-fronts at that point.

If they used plane wave-fronts to illmminate the object they got maximum diffraction, but if they used eurved fronts they got more or less diffraction according to the radius of curvature of the incident wavefronts, and it would follow that they could get rid of this diffraction altogether by foussing the source of light upon the object. Dr. Johnstone Stoney met this objection by contending that they could always resolve, the incident light, whatever its origin, into plane wave-fronts, and his very elaborate theory rests upon that postulate.

It was therefore quite true to say that all these investigators deal with the phenomena of diffraction, but it must be remembered when that was said that there are two entirely distinet and independent sourees of diffracted light in the Mieroscope,- the structure of the objeet, and the aperture of the objective-and that the investigation of the phenomena arising from the one source throws no light upon the phenomena arising from the other source. It is therefore of eapital importance to keep the two classes of phenomena distinct in our minds and in our disenssions.

Mr. Rheinberg said he had listened to Mr. Gordon's remarks with great interest ; he had given them a record of what different writers had done, but he appeared to think that each had done eertain things which did not altogether accord with the results obtained by the others. If, however, they were looked at in a certain way he thought there would be no difficulty in seeing that they came into agreement. They all started with the diffraction by the instrument itself, and this would necessarily be the very smallest amount it was possible to olotain. Diffractive effects in the image, which might oecur when an ordinary object was viewed, might exceed but could not be less in amount than that produced by the instrument pure and simple. What that minimum was, was excellently shown in the case of the ultra-microscopic particles as exhibited in Dr. Siedentopf's demonstration. Mr. Gordon had, he thought, mentioned that Prof. Abbe had neglected the diffraction by the instrument altogether, but this was certainly not the ease, for it was dealt with first of all in the book on the Microseope published by Dr. A. Zimmermann, to which reference had formerly been made. It had been most interesting to hear the various papers that evening, and to find that though all had been worked out on different lines, yet they all worked to the same conclusion, and that in this there appeared to be
absolute unanimity. He bad been remarkably struck by the manner in which Dr. Siedentopf had excluded all the light except what was diffracted by the actual particles in view themselves, by the device of illuminating only a thin layer of the ruby glass. The study of the effects produced by particles viewed in this manner should add very much to their knowledge of microscopic vision.

Dr. C. V. Drysdale said that he had come there that evening in the attitude of a searcher after truth, as he had previously seen a short notice of Dr. Siedentopf's experiments indicating it should be possible to see the actual molecules. As this appeared to him absolutely impossible he was relieved to find this confirmed by Dr. Siedentopf's statement that it was only clusters of a considerable number of molecules that were rendered visible. He would remind the Members of the Society that there was another limit to the vision of extremely small particles besides any that might be dietated from optical considerations, viz. the intensely rapid motion of the molecules themselves. Should optical means be found of extending the limit of vision down to molecular particles it would be necessary to reduce the temperature of the object under examination to the absolute zero of temperature, and on hearing of Dr. Siedentopf's work he was at first led to wonder whether he had attempted something in that direction. They had been hearing a great deak lately about diffraction theories, and he thought that one very important point had been brought out in the paper under discussion that evening, viz. that althongh diffraction phenomena prevented the resolution of detail in objects less in size than a half wave-length of light, it did not in any way prevent the detection of an isolated particle, however minute, provided its intensity of radiation was sufficient to affect the retina. He thouglit that Dr. Siedentopf's demonstration of a new optical limit of visibility was an exceedingly interesting and valuable one.

The simplest way of illustrating the visibility of small objects was to consider an object like a small post fixed near the sea shore. If this object was small in comparison with the size of the waves it was clear that they would unite after passing it, and very little trace would be left on the wave-front of the object having been encountered. It was therefore obviously useless to attempt to seize such small objects by transmitted light, but the waves on striking the obstacle would give rise to ripples radiating from the obstacle in all directions, and it should therefore be possible to see the object in any other direction almost as if it had been self-luminous. Dr. Siedentopf had found it impossible to get results by direct reflected light owing to the reflection from the surfaces, and the great advance which he had made, and which had enabled him to extend visibility so much beyond what others had done, was in his beantiful method of side illumination and especially in concentrating the light into a very narrow beam of depth comparable with the focal depth of the objective. He should like to ask whether Dr. Siedentopf had noticed any difference between the use of violet light as compared with white light in his method.

Finally he would remark that if Dr. Siedentopf's discovery would enable us to see some of those scourges of humanity which had hitherto
escaped detection it would be of the greatest benefit to the race as well as of its present high scientific interest.

Mr. Beilby thought a slight correction was necessary, as it appeared to be thought by some speakers that this was an absolutely new method of observing the particles in ruby glass and in ruby-gold solutions. Faraday satisfied himself forty years ago that the colour was due to the presence of minute separate particles, and one of his methods of verifying this was by concentrating a beam of sunlight through the ruby material, and in this way it was made evident that there were minute particles of gold distributed throughout the glass or solution.

Mr. Beck said it was so seldom that they were favoured with the presence of Dr. Czapski that he thought it would be greatly appreciated if he would inform the Meeting what was, in his and his colleagues' opinion, the effect of Mr. Gordon's work upon the Albe theory of microscopic vision. In his opinion it was impossible to reconcile the two theories, and Mr. Gordon's work was a direct attack upon the correctness of some of Prof. Abbe's theory.

Dr. Czapski said he was not at all prepared to go fully into the subject of Prof. Abbe's theory, which would take a great deal of time, but Mr. Beck was quite right in saying that Mr. Gordon's first paper had created the impression upon readers not fully informed that Prof. Abbe's theory was wrong, and so it would be useful to go once into the details of that paper. At Jena they had received copies of the paper in June 1901 and had occupied themselves in examining it, but they found nothing in this very able paper which uas in contradiction to the Albe theory. The unfortunate thing was that Abbe had never published the full development of his theory, nor had others done so. Prof. Zimmermann's book, alluded to by Mr. Rheinberg, was only a very rough popular sketch of the real theory. This, as he had just said, was given more completely in Prof. Abbe's lectures since winter, 1887-8. If one desires to give an approximate idea of his meanings intelligible even to the non-skilled mathematician or to examine a general theory by experiments, he must use only the most simple conditions, as in this case take for the objects, lines or points (single or double), edges of screens, or periodical structures, for instance gratings. But it would be a thorough misunderstanding of Prof. Abbe's work to think that he has given only a "resolution-theory" or a "grating-theory" of the Microscope. He has treated the problem in its most general form : given certain luminous points arranged on a surface, given another surface (a layer of infinitely small thickness) in which absorption and refractive index vary after any law whateverhow can the movement of the ether behind that surface be determined as to phase and amplitude, more especially, how can it be reduced to some most general laws? Further on-and this leads to the special case of microscopical vision : if behind the before-named infinite thin layer (the object) a system of lenses be arranged, of which this layer forms one of its aplanatic foci-what general indications can be given for the distribution of the light in the other aplanatic plane (the image plane)? These investigations, as repeatedly said, were most general with the only restriction that the object is of a (comparatively) very
small thickness. But they led to some very distinct indications about the question which he (Dr. Czapski) believed to be the most interesting : the correctness of microscopical vision under the various circumstances and the factors upon which this correctness depended. He (Dr. Czapski) could not go further into the matter then, and regretted that his command of the English language was not sufficient to enable him to express himself as clearly as could be wished, but he should like to have an opportunity at some future time of returning to the subject and of bringing some objects in illustration.

Mr. E. M. Nelson gave a brief alostract of his paper on "Micrometry," showing that the size of the antipoint had to be allowed for, especially in the measurement of minute objects, otherwise an error might be introduced that sometimes amounted to over 100 p.c.

The following papers were, owing to the lateness of the hour, taken as read:-"On the 'Lag' in Microscopic Vision" (continued); "An Improved Horse-shoe Stage"; "A Micrometric Correction for Minute Objects" ; and "An old Non-achromatic Simple Microscope," by Mr. E. M. Nelson. "A Method of Mounting Bacteria from Flnid Media," by Mr. J. A. Hill.

The Chairman said they were greatly indebted to Lord Rayleigh, Dr. Siedentopf, and Mr. Nelson for the very interesting papers read, and to the visitors and Members for the learned remarks made in the discussion on the subject. He also emphasised their indebtedness to the firm of Messrs. Carl Zeiss for sending to England for their inspection the raluable apparatus by which the results of Dr. Siedentopf's investigations and discoveries had been demonstrated to the Fellows.

The thanks of the Meeting were then very heartily voted to the gentlemen referred to.

The Meeting was then adjourned to October 21st, and it was announced that the Society's Rooms wonld be closed from August 14th to September 14th.

New Fellows.--The following were elected Ordinary Fellows :Messrs. Alfred Chaston Chapman, Raymond B. Fitz-Randolph, and Jas. Wm. Johnson.

The following Objects, Instruments, \&c., were exhibited:-
The Society :-An old Non-achromatic Simple Microscope, presented by Mr. E. M. Nelson. Two Micrometers, one ruled with lines ${ }^{\frac{1}{0} \sigma}$ in. apart, and the other ruled with lines $\Psi_{2}^{\frac{1}{0}}$ in. apart, presented by Mr. E. MI. Nelson.

Mr. F. W. Watson Baker for Messrs. Win. Watson \& Sons:-A new Portable Microscope; and a new Mechanical Stage.

Mr. Courad Beck :--Sir Wm. Crookes' Spinthariscope.
Dr. J. Charlton Briscoe :-A new Portable Microscope.

Mr. J. A. Hill :-Slides of Bacteria, in illustration of his communication.

Dr. H. Siedentopf :-Three Microscopes, fitted with special illuminating apparatus, showing methods of rendering visible ultra-microscopic particles in gold ruby glasses, and in colloidal solutions, also a method suggested for rendering visible ultra-microscopic bacteria.

The following, with other specimens of ruby glass, lent by Dr. Zsigmondy, of Jena :-Copper ruby glass, containing 2 p.c. of copper, originally transparent, 150 times heated and cooled; this process causing the glass to become perfectly opaque. A gold ruby glass that had been subjected to a high temperature, which had caused small particles of gold to unite and form larger particles, ultra-microscopical objects being thus cemented into microscopical objects. The following gold solutions prepared and lent by Dr. Zsigmondy (all the solutions contained 0.005 p.c. of gold) :-
 $1 \cdot 5 \mathrm{~mm} .$, N.A. 0.75.

In connection with Lord Rayleigh's paper, Mr. Gordon writes as follows under date June 18.
"May I ask leave to point out to the readers of the Journal the great practical consequence of the result which Lord Rayleigh has now established.

- In a sense, which I propose to illustrate by a familiar iustance, the visibility of a dark bar of finite dimensions on a bright uniformly illuminated field is the ultimate condition of resolving power in the Microscope, and a much more proper test than the diffraction grating limit. This will appear from the following example. Under an objective of moderate power the diatom known as Triceratium Favus appears as a nearly uniform bright field divided up into hexagons by very fine boundary lines-"dark bars" in the sense of Lord Rayleigh's paper. What the dimensions of these bright areas and limiting lines precisely are I do not know, but I suppose that if I took the bright hexagonal
areas to have a common diameter of $\frac{1}{4000}$ in., and the dark dividing lines a diameter of one-tenth of that magnitude I should not be far from the mark. Now suppose an object identical in form with Triceratium Favus but reduced in scale to onc-tenth of the above specified dimensions. We should then have a number of luminous areas separated by distances not exceeding say one-eighth of a wave-length of light. Would such a structure be resolved in the image formed by a perfectly corrected objective? That is a question of vital importance to the future of Microscope manufacture, for if the physical nature of light makes it impossible for those dividing lines to be rendered visible in a magnified image we are already very near the final limit of perfection in the objective. But if that delicate tracery is theoretically visible there is still a large area to be conquered by the makers of optical instruments.

Now on this point Lord Rayleigh's results, if I understand them aright, are conclusive. If these boundary lines are to be considered as dark bars on a bright field, they may by suitable illumination be rendered visible and would still be visible, in theory, if their diameters were further reduced to less than one-millionth of an inch.

But this depends upon the area of the bright discs. Are they or are they not large enough to constitute a bright ground, or must they be treated as component parts of a compound structure?

On this point it is not easy to deduce an answer from the paper now under consideration, for although its main results are made perfectly clear the mathematical argument is not fully intelligible without Lord Rayleigh's earlier paper, which is to be reprinted in the number of the Journal in which the present paper will appear, but to which I have not present access.

But if I mistake not it will be found that the grating limit applies only when the dark and bright areas have approximately equal diameters, and that any great discrepancy such as is here postulated of 10 to 1and in fact a discrepancy very much less than that-will bring the case to be considered under the single bar limit and not under the grating limit. It thus appears that the instance which I have put, although it goes much beyond the limit of resolving power, as this is commonly stated by microscopists, is very far from the theoretical limit established by Lord Rayleigh's recent investigation of the subject."

Jo URNAL

ROYAL MICROSCOPICAL SOCLETY.

OCTOBER 1903.

TRANSACTIONS OF THE SOCIETY.

IX.-On the Rendering Visible of Ultra-Microscopic Particles and of Ultra-Microscopic Bacteria.

By H. Siedentopf, Ph.D.

(Read June 17th, 1903.)
The theoretical discussions concerning the capabilities of the Microscope have, following the lines of Abbe and Helmholtz, in the main related to the resolving power of objectives, having established as a limit that structural elements up to a fineness of a quarter μ ($\mu=$ a thousandth of a millimetre) can be resolved. This question of the resolution of structure is for most microscopic research of material importance. It is the aim in microscopy, not only to determine that there is a structure in an object under investigation, but above all it is desirable to know what that structure is like. Resolution of structures more minute than those indicated above has not been possible because the light is diffracted by the elements of which the structure is composed.

But the question of the resolvability of a structure is not the only one that can be applied to microscopic observations. There may be cases in which we may have to be satisfied with the simple evidence of the existence of a structure, just as in astronomical research we do not confine ourselves to the observation of the details of the planets, but also seek to render clearly visible very faint, or ordinarily invisible, fixed stars.

Now gold ruby glasses may be said to represent for microscopic research that which the heavens with the fixed stars do for astronomical investigations. These glasses appear perfectly clear and homogeneous to the naked eye, and when tested by the usual microscopic methods show no trace of turbidity. Gold ruby glass is not the only object suitable for these investigations, but all Oct. 218t, 1903
turbid or colloidal solutions, fixed or fluid, are similarly suitable, provided that the average distance of the single particles is no smaller than half a wave-length.

Let us suppose that the dimension in every direction of these small particles is less than half a wave-length. In that case it is clear that their microscopical images will only be diffraction discs. Now such, for simplicity's sake, will be called "ultramicroscopic" particles; for the expression will at the same time indicate that the resolution of detail in the structure of these particles lies beyond the resolving power of the Microscope.

It might be suggested that mere evidence afforded by such diffraction discs does not sufficiently differentiate the respective particles, and therefore such investigations as the present ones might be treated as superfluous. But I believe that the experiments with gold ruby glasses which I was able to make, at the instigation of, and together with Dr. Zsigmondy, have afforded an optical proof that distribution of gold in these glasses is discontinuous, and have also demonstrated that there are a number of phenomena characteristic of diffraction dises such as colour, order of position, condition of polarisation and brightness, and in fluids also kinds of movement. So many properties seem to warrant a careful diagnosis.

Now, microscopic investigations relating to ultra-microscopic particles cannot be effected by the usual methods. The coloured ruby glasses, in which the distribution of the various particles was demonstrated, showed no sign of their existence when examined in the ordinary way, or even when examined by dark-ground illumination of the usual kind. Under such conditions the glasses appeared perfectly homogeneous. One might almost have expected that these gold ruby glasses in thin slices would have given some indication of heterogeneity, because they might be supposed to be somewhat analogous to stained bacterial preparations.

It was therefore necessary to devise a new method which would permit these small particles to become visible by direct observation as far as possible. The main feature of this method depends upon the regulation and arrangement of the illumination, which, as will be observed, differs materially from that hitherto employed. As in general particles to be optically imaged are not selfluminous in themselves (or where they might be slightly selfluminous the light would be so weak as not to be of any service), we are from the outset compelled to rely upon an artificial lightsource of great specific intensity, such as the electric are or brilliant sunlight.

When this is made to impinge upon the particles they become visible by the cone of rays which they diffract. But the intensity of the illuminating rays is naturally very much higher than that of the rays diffracted by the particles. In order to make smaller
particles visible, therefore, by this diffracted light the illumination must be arranged in such a way that none of the illuminating rays are permitted directly to enter the eye - in other words, all light, except that which is diffracted by the little particles, must be scrupulously excluded. Ordinary dark-ground illumination would seem to be suitable for this purpose; but it is important to note that with the usual dark-ground arrangements, when used with arc or sunlight, innumerable reflections occur at the several lens surfaces of the condensers, and there are besides many inconvenient reflections in the preparation itself (as will be explained more fuily further on), so that this kind of illumination will not be suitable for the purpose in question.

If, however, matters are arranged in such a way that the axis of the illuminating cone is at right angles to the axis of the cone diffracted upwards into the Microscope, and if the cones are of such a dimension that no part of the one overlies any part of the other, then all reflections in the condenser are made harmless, and no stray light can now enter the objective. This method is therefore a further evolution of the so-called dark-ground illumination, and permits us to use the brightest sources of light.

Another illustration may be mentioned to make this clear. It is well known that small particles of dust floating in the air become visible as soon as a beam of sunlight is allowed to enter through a hole in a dark room, provided the observer's eye be approximately at right angles to the beam.

If now the illumination over a small area is increased by focussing a sunbeam by means of a condenser, and if the particles in this area are observed by a Microscope, then we have the principle of this simple method.

Optical images of ultra-microscopic particles are polarised diffraction dises, in other respects they are subject to the same condition as images of stars in telescopes.

It is not difficult to explain why this device enables particles in gold ruby glasses to become visible, while ordinary methods do not. Let me remind you that a high power objective only reproduces a sharp image of an exceedingly thin layer of an object. Now, with ordinary methods of illumination a great number of layers above and below a focussed layer receive light, and numberless particles lying in all these layers diffract light up into the objective. As these particles are out of focus they appear in the image-plane as dises of diffused light. As these diffusion dises overlap one another in the image plane they form a veil of light sufficiently powerful to completely eclipse the small diffraction dises representing the particles in the layers actually in focus.

It is therefore of vital importance to illuminate only those particles which are to be made visible, and the method of doing this is by focussing the are light upon a small spectroscopic slit, the
light from this slit being focussed by a condenser upon those particles which are to be made visible. The size of the slit can be precisely controlled, and, with a knowledge of its width and of the: condensing system employed, the exact thickness of the layer of illuminated particles can be regulated to a nicety. It will be found convenient to adjust the thickness of this illuminated layer to about 1 or 3μ, so that it may correspond with the depth of focus of the objective.

We will now examine the limit of the smallest size of particles which it is possible to render visible by this method. The following considerations will help us to solve this question, at least approximately. It is known that radiation from a surface depends on three main factors-first, on the specific intensity of radiation; secondly, on the area of the radiating surface; thirdly, on the solid angle at which the radiation is emitted from the surface. This amount of energy can be expressed in terms of candlepower, and the limit of sensitiveness of the human eye for light is also known. From these two quantities, namely, the limit of least sensitiveness of the eye, and the limit of the greatest radiation which can be obtained by diffraction from the particles, we are in a position to determine the limit for the smallest dimensions which can be made directly visible. Within the scope of practical experiments this limit approximately works out at forty square millionths of a millimetre, which therefore corresponds to a circle of a radius of about $\frac{\bar{T} \bar{\sigma} 0 \overline{0} \bar{\sigma} \overline{0} \overline{0}}{} \mathrm{~mm}$.* It is of particular interest to note that the result of these practical observations appears to approach very nearly to the theoretical limit of visibility of the minutest particles.

Now, it may be taken for granted that with no artificial illumination, however intense, will it be possible to discern with the human eye dimensions so small as those attributed to medium sized molecules (about $0 \cdot 6 \mu \mu$). Even if we were to succeed in making the molecules self-luminous by any conceivable process, the specific intensity of the luminosity would have to considerably exceed the power of the sun's rays, a feat decidedly improbable.

Permit me here to mention that I particularly wish to guard against any over-estimation of the capabilities of the methods exhibited to-night. In particular I would wish to repeat that the procedure in question does not give any optical solution of the true shape and size of the small particles. Whatever their form may be you will always obtain a small diffraction dise as the image. Only when an ultra-microscopic particle is so much enlarged that one of its dimensions exceeds half a wave-length (in other words when it in part passes out of what may be called

[^324]the ultra-microscopic condition) can we differentiate it under the Microscope as a rod, a thread, or an elliptical disc.

Diffraction discs of various particles show according to their size and formation great differences in brightness and colour.

I may further mention that we were able to demonstrate small particles in gold, silver and copper because the refractive indices of these metals were essentially different from the medium in which they were imbedded. As regards the oxides of organic bodies, such as are contained in colloidal solutions of silicic acid (SiO_{2}), oxide of alumina $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$, and albumen, our method is not as yet applicable, doubtless because the refractive indices of these bodies do not differ sufficiently from those of the medium in which they are contained.

No doubt the question will present itself to your minds, whether this method of illumination can be applied with advantage to the investigation of cellular tissues, \&c. Up to the present, so far as time has permitted for experiment in this direction, I must own that the result is a negative one; this, however, by no means precludes the possibility of something being done in the future. But experiments with ultra-microscopic bacteria have been more promising, and although at present I cannot say for certain that such ultra-microscopic bacteric have actually been viewed, I think I may say that my experiments point to the perfcet feasibility of making them visible, so that bacteriologists may actually discover germs which have becn suspcetcd to cxist.

I will therefore give you a short description of the special device which I have designed for this purpose, and which, whilst differing in application from the method previously described, carries out the principle of dark-ground illumination in another manner.

Bacteria are made visible solely by the light they diffract: and they appear as luminous dises on a dark ground because the direct illuminating rays are stopped out.

In the arrangement for this purpose the axis of the illuminating cone of light, and that of the rays diffracted by the object, are in a straight line, and not at right angles to each other, as in the -other methods. Preparations of bacteria can therefore be mounted in the usual way. The direct illuminating rays are stopped out by a method, suggested by Abbe, viz. by grinding flat and blackening a small central portion of the curved surface of the front lens of the objective. The portion ground away is exactly calculated to suit the aperture of the illuminating objective. The technical execution of this method requires very great precision, but special advantages are secured thereby. In the first place, reflections can no longer occur between the lenses; secondly, the tedious centring for dark-ground illumination is obviated; thirdly, a stop made like
this cannot be decentred ; and lastly, the objective remains available also for observation in the ordinary way without dark-ground illumination ; one may even say that it must give better images. than it did before the central portion had been stopped out, because according to the laws of the diffraction theory, a diffraction dise produced by an annular opening of suitcoble dimensions is even somewhat smaller than that formed by the full aperture under similar conditions.

An alteration has been made in the mount of the condenser which enables a convenient and rapid change to be effected from an optical system of 1.4 N.A., as used for the usual illumination of bacteria (after Dr. Koch), to another optical system consisting of an objective specially corrected and stopped down to a small aperture by which a dark-ground ilhumination is obtained, and which allows sunlight or are light to be directly employed.

On the table here I have a preparation of ordinary cholera bacillus shown by this methocl. It will be noticed how thick and pronounced the appearance of the exceedingly fine flagella has become. But it is not this to which I would draw your attention so much as to a number of bright discs representing something which lies in the same thin layer on which the objective is focussed, but which cannot or can scarcely be seen by ordinary methods of observation. Ultra-microscopic bacteria might be expected to look something like this, though of course, I do not intend to suggest that there are any in the preparation on view.

In conclusion I must point out that these investigations have been materially assisted by the liberal manner in which all thenecessary means were placed at our disposal by the firm Card Zeiss of Jena.

X.-A Micrometric Corvection for Minute Objects.

By Edward M. Nelson.

(Read June 17th, 1903.)
Most microscopists are aware that the magnified image of an object is made up of diffraction dises, to which Mr. Cordon has given the appropriate name of "antipoints"; they will agree therefore that some notice must be taken of the size of these dises when the micrometry of minute objects is performed.

A reference to fig. 139 will make this clear. A and B are the webs of a micrometer. The large circle represents the true magnified image of the object: this is never seen; the small circles

Fig. 139.

Fig. 140.
are the antipoints. It is obvious that if the true size CD of the magnified image is required it will be necessary to subtract the diameter of one antipoint from the measure given by AB. In this case the object is illuminated on a dark ground.

Fig. 140 shows the same magnified image of the object illuminated on a bright ground; here the antipoint eats into the edge of the image and the measurement $A B$ must be augmented by the diameter of one antipoint before the true size of the image can lee known.

The only datum required is the size of the antipoint. A glance at figs. 139 and 140 shows that it is half the difference of the two readings of the wels A B.

The effect of the antipoint on the magnified image can be very easily demonstrated; take, for example, the proboscis of the blowfly, and examine with a $\frac{1}{2}$-in. objective the very minute hairs on, or protruding beyoud the edge of the delicate membrane; illuminate them first on a bright field by a $\frac{3}{4}$ cone; now notice the almost
unreal sharpness and tenuity of the hairs; next place a stop at the back of the condenser and view the same hairs on a dark ground, when they will be found to present a swollen or thick appearance. The true shape of the hairs lies of course between these two microscopical pictures.

The size of the antipoint is governed by the wave-length and by the size of the utilised or working aperture of the objective, in other words by λ, and W. A.*

Fig. 141.
Fig. 142.
The following table gives the amount to be added to the size of the image on a bright field, or subtracted from the size of the image on a dark field when accurate determinations of the magnitude of minute microscopical objects is required.

The first column is for white light, the value of λ being the latest measurement by Mr. J. W. Gifford of the point of maximum intensity in the spectrum. The second column is to be used when a Gifford or similar screen is employed, λ being taken for a point between the lines E and F . The third column is for photographic work. To illustrate the method of applying this correction, let us take the measurements of the Bacterium termo and its flagellum by Dr. Dallinger. \dagger The mean of 200 measurements gave $\cdot 000004885(\overline{2047 \overline{0} \overline{0}})$ in. for the thickness of the flagellum, and $\cdot 00004885\left(\frac{1}{2047 \overline{0}}\right)$ for the diameter of the termo. Now,

[^325]assuming that the W.A. was $\cdot 8$, we have from column 1 the correction - 00000505 to be added to each of those measurements; this gives $\cdot 00000993\left(\frac{1007 \overline{0} 0}{1}\right)$ for the size of the flagellum, and -0000539 $\left(\frac{1}{18550}\right)$ for the diameter of the termo. Fig. 141 is a diagrammatic representation of Dr. Dallinger's measurenents enlarged 20,000 times. Fig. 142 is the same atter the correction has been applied; it will be noticed that the body of the termo is increased

Table showing the Amocnt of Correction to be applied to the Apparent Measurement of Minute Objects.
The correction for objects measured on a bright ground is +

w.A.	White Light, 45,300. \dagger		Screen, $50,000 . \dagger$		Photography, 63,500. \dagger	
	inches.	μ	inches.	μ	inches.	μ
$\cdot 1$	-0000404	1.025	-0000366	0.929	-0000288	0.731
$\cdot 2$, 202	$0 \cdot 512$, 183	$\cdot 464$., 144	-366
$\cdot 3$, 135	-342	, 122	-310	-00000960	-244
$\cdot 4$	" 101	-256	-00000914	$\cdot 232$, 720	-183
$\cdot 5$	-00000807	-205	, 731	- 186	, 576	$\cdot 146$
$\cdot 6$, 673	- 171	, 610	- 155	, 480	- 122
$\cdot 7$, 577	-146	" 522	$\cdot 133$, 411	-104
$\cdot 8$	" 505	- 128	, 457	$\cdot 116$, 360	-0914
$\cdot 9$, 449	- 114	,. 406	-103	.. 320	-0813
$1 \cdot 0$, 404	- 102	, 366	-0929	, 288	-0731
$1 \cdot 1$,, 367	-0932	, 332	-0844	,. 262	-0665
$1 \cdot 2$, 336	-0854	", 305	-0774	" 240	-0609
$1 \cdot 3$, 311	-0788	, 281	-0714	, 222	-0562
$1 \cdot 4$, 288	-0732	,. 261	-0663	, 206	-0522
$1 \cdot 5$, 269	-0683	, 244	-0619	, 192	-0488

\dagger Number of waves to the inch.
by 10 p.c., and that of the flagellum by 100 p.c. From this it will be understood how erroneous the micrometric measurement of very minute objects must be, unles̀s some allowance has been made for the influence of the antipoints by which the magnified image is formed.

The figures in the above table give the size of the antipoint and indicate the minimum visible for objects on a bright ground.

[^326]The above table was computed by the formula $\frac{1}{5 \cdot 4686 \lambda \mathrm{~W} . \mathrm{A}}$. The numerical coefficient was determined from the data found by the extinction of the image of a minute point by reducing the W.A. to $\cdot 165$. The size of the point was measured by a wideangled oil-immersion, and a W.A. of $\cdot 9$, and was found to be apparently $\overline{50} 0 \overline{0} \overline{0}$ inch.

From this we have $6 \cdot 6961 \lambda \cdot 165=50050$. And $\frac{1}{6 \cdot 6961 \lambda_{\cdot} \cdot 9}=$ -000003663. Employing this as a provisional correction, we find the size of the point to be $\frac{1}{9} \frac{1}{96}$ in. Again, using this measurement, we obtain a new numerical coefficient, viz. $5 \cdot 6587$, and finally find the size of the point $\Psi_{0}{ }_{8}^{1} 75 \mathrm{in}$., and the coefficient $5 \cdot 4686$ as stated above. In this calculation λ is the reciprocal of the wavelength, or the number of waves per inch, given at the head of each column in the table.

XI.-On the "Lag" in Mieroscomic Vision-(continued).

By Edward M. Nelson.
(Read June 17th, 1903.)
This continuation of my former paper,* is mainly of antiquarian interest, as it deals with early non-achromatic and achromatic objectives. For the benefit of those who have not that paper before them, it may be as well to recapitulate, very briefly, the meaning and the method of estimating both the "Lag" and the "Order of Merit" in an object-glass.

First, it was explained, that as the measure of the limit of ordinary unaided vision was the tangent of the visual angle for a minimum visible, so the measure of the limit of either microscopic or telescopic vision was the tangent of the similar microscopic or telescopic angle. For example: if an interval of 1 in . can just be seen by unaided vision at a distance of 10 yards, then with a perfect telescope, having a power of 10 , the same interval onght to be seen at a distance of 100 yards, in which case there would obviously be no " lag"; because the optical instrument was doing precisely what it ought to do, and what might reasonably be expected of it. Therefore if $\tan v$ represents the tangent of the visual angle, and $\tan m$ that of the telescopic angle, then, in the example above, the "lag" or

$$
\tan m-\tan v=0
$$

thus indicating that the optical instrumeut, when its amplifying power is taken into account, in no way lags behind unaided vision.

But it was pointed out, that with telescopes, and those not particularly good ones, it had been observed that sometimes they performed better than might be expected of them, and in the example just given, the distance at which the 1 in. interval might be separated with a power of 10 was found, for some unexplained reason, to be increased to 110 or 120 yards, in which cases the " lag" became a negative quantity,
or

$$
\tan m-\tan v=-a
$$

But when the power was increased, owing no doubt to the superamplification of optical imperfections, the "lag " sometimes became a positive quantity, thus, if a power of 100 were employed, the

[^327]1-inch interval would not be perceived at 1000 yards, but at, say, 900 yards, in which case

$$
\tan m-\tan v=+b
$$

We now come to the "order of merit"; this is merely the tangent of the visual angle divided by the tangent of the similar instrumental angle, thus, in those instances where there is no " lag," when $\tan m=\tan v, \frac{\tan v}{\tan m}=1$; but, when the instrument was performing relatively better than unaided vision, $\frac{\tan v}{\tan m}$ would be greater than 1 ; and when worse less than 1.

Lastly, to clear the table of decimals and initial decimal points, the quantities m and v were multiplied by one million; also the formula for the "order of merit" was written $\frac{10 \tan v}{\tan m}$.

Further, it was pointed out that this last formula might with advantage be altered empirically to

$$
\frac{10 \tan v}{\tan m-\text { O.I. }-t} .
$$

Where O.I. stands for the optical index, and t for the number of thousands of lines to the inch resolved. Finally, the optical index is the ratio of the numerical aperture to the initial magnifying power, thus

$$
\text { O.I. }=\frac{1000 \text { N.A. }}{\text { initial power }} .
$$

For the benefit of non-mathematical readers, the value of $\tan v$ is found by dividing the least interval separated by unaided vision by the distance at which it is separated. (Notc.-This should be determined in very bright daylight.)

Example : $\frac{1}{50}$ inch can be separated at $45 \frac{3}{4}$ inches, then $\tan v=$ $\frac{\cdot 02}{45 \cdot 75}=0.000437$, this multiplied by one million $=437$, the value assigned to v in the following tables.

To find $\tan m$, multiply the magnifying power P (total combined magnifying power when an eye-piece is used) by 100 , and divide by the number of thousands of lines resolved.

Example: with 36 power, 8000 lines to the inch could be resolved, then, $\frac{3600}{8}=450$.

The "lag" therefore is $450-437=+13$.

On the "Lag" in Microscopic Vision. By E. M. Nelson. 585
In this case, the O.I. was found to be 19 , therefore

$$
m-t-\mathrm{O} . \mathrm{I}=450-S-19=423
$$

and the " order of merit" is

$$
\frac{4370}{423}=10 \cdot 3
$$

If any one desires to avoid the empiricism in the last formula, and prefers the simple theoretical value, then the formula $\frac{10 \tan v}{\tan m}$ should be used. This in the above example is $\frac{4370}{450}=9 \cdot 7$.

In these experiments the illumination for the non-achromatic objectives in the first group was a full axial solid cone, and for the Tulley achromatics in the second group a $\frac{5}{6}$ cone was employed.

The plate was ruled by Mr. H. J. Grayson, of Melbourne, and was mounted in realgar of $2 \cdot 5$ refractive index.

Objective.	Nominal Focus.	0.I.	Eyepiece.	P.	t.	m.	$m-t-0.1$.	"Lag."	$\begin{gathered} \text { Order } \\ \text { of } \\ \text { Merit. } \end{gathered}$
Ross single bi-convex	1	$12 \cdot 7$	none	10	2	500	485	$+6: 3$	$9 \cdot 0$
"	$\frac{1}{2}$	$5 \cdot 6$	"	20	5	400	390	-37	$11 \cdot 2$
"	$\frac{1}{4}$	$3 \cdot 2$	"	40	8	500	489	+63	S.9
Pritchard doublet	$\frac{1}{2}$	$4 \cdot 9$	"	20	5	400	390	-37	$11 \cdot 2$
, "	$\frac{1}{6}$	$2 \cdot 6$	"	60	10	600	587	+163	$7 \cdot 4$
Chevalier doublet	$\frac{1}{4}$	$3 \cdot 9$	"	36	8	450	438	+13	$10^{\circ} 0$
"	$\frac{1}{10}$	$2 \cdot 5$	-	100	15	667	650	$+230$	$6 \cdot 7$
" "	$\frac{1}{16}$	$3 \cdot 1$	-	160	$\because 5$	640	612	+203	$7 \cdot 1$
Wollaston doublet	$\frac{1}{17}$	$1 \cdot 6$	"	17:	20	860	839	$+423$	$\pi \cdot 9$
Tulley triple .	112	$14 \cdot 9$	A	32	7	457	435	$+20$	$10^{\circ} 0$
" "	$1 \frac{1}{2}$	$14 \cdot 9$	B	45	8	563	540	$+126$	$8 \cdot 1$
"	9	18.9	A	36	8	450	423	$+13$	$10 \cdot \%$
" ., .	$\frac{9}{10}$	$18 \cdot 9$	B	50	10	500	471	$+63$	$9 \cdot 3$
Combination .	1	14.8	A	50	10	500	475	+63	$9 \cdot 2$
Two triples	$\frac{1}{2}$	$12 \cdot 2$	A	127	20	635	603	+198	$7 \cdot 2$
Combination	$\frac{2}{3}$	$9 \cdot 2$	A	87	10	870	851	+4:3	$5 \cdot 1$
Two triples . . .	$\frac{1}{4}$	$9 \cdot 2$	A	182	15	1212	1188	+775	$3 \cdot 7$
Combination . .	1	$17 \cdot 4$	A	47	10	470	443	+33	$9 \cdot 8$
Achromatic	12	$23 \cdot 0$	A	37	10	370	337	-67	$13 \cdot 0$
Semi-apochromatic	4	$19 \cdot 0$	A	150	40	375	316	-62	$13 \cdot 8$
" "	${ }^{\frac{1}{4}}$	$19 \cdot 0$	B	200	50	400	331	- 37	$13 \cdot 2$

An examination of the first group of lenses in the above table shows the fairly high position taken by non-achromatic lenses; this may be accounted for by the absence of all superamplification, for if they had been used with an eye-piece a very different result would have been obtained.

It will be noticed that the $\frac{1}{2}$ inch, both single and double, wins the greatest number of marks, and it is here where the high watermark was reached in pre-achromatic days. In the higher powers the doublets surpass the singles, and the Chevalier doublet is the best, for the Chevalier doublet $\frac{1}{4}$ is one above the single, and the $\frac{1}{16}$ is two above the Wollaston doublet of nearly the same power, and the $\frac{1}{10}$ is not one behind the Pritchard $\frac{1}{6}$, although it is a much higher power.

Passing on to the second group of lenses, viz. early Tulley achromatics,* we see that the lower powers have a fairly large O.I., and come out better than one would have expected. With the B eye-piece, however, the $1 \frac{1}{2}$ inch loses 2 , but the $\frac{9}{10}$, the best of the series, only 1.

The combinations lose 2 when the front is put on. The back of the last combination is fairly good with 9.8 marks, but the $\frac{2}{3}$ and $\frac{1}{4}$ combination is especially bad, the last only obtaining 3.7 marks.

Three examples extracted from the table in my previous paper are inserted at the end for purposes of comparison. The achromatic $1 \frac{1}{2}$ (1860) corresponds very nearly in power with the Tulley, but its O.I. is 8 more, and it scores 3 more marks. The semiapochromatic $\frac{1}{4}$ has 10 more O.I., and wins besides 10 more marks than the Tulley, and only loses $0 \cdot 6$ with the B eye-piece.

This table therefore shows at a glance the advance made in the construction of Microscope lenses since 1830.

These Tulley combinations are interesting as they are very early, if not the earliest examples of separating achromatic lenses, the construction of which passed on from Tulley to Smith. It will be remembered that it was Smith who, in 1841, made the separating lenses for the Microscope purchased by the Society, which are still in our Cabinet. Another interesting feature is that the gange of Tulley's screw is very nearly the same as that of the Society's screw, so that Tulley's objectives will enter and screw into our nose-piece, but Tulley's nose-piece is a trifle too small for the Society's plug to enter.

[^328]
NOTES.

An Old Non-Achromatic Simple Microscope.

By Edward M. Nelson.

This simple Microscope, fig. 143, consists of a triangular prismatic limb, attached to a turned ornamental pillar loy a compass joint; concentric with this compass joint is a slotted semicircular brass plate with a clamping screw, to clamp the limb at any required

Fig. 143.
inclination. The pillar is fixed to a circular brass base resting on three feet.

The stage has a rectangular clip with two pins fastened below it which pass through two holes in the stace. This form of stage clip. 'first appeared in Jones' Most Improved Compound Microscope *

* George Adams, 'Essays on the Microscope'; the date on Plate 4 is 1797.
and lasted many years, for it is found in the Lister-Tulley,* the first achromatic Microscope, and again in the Ross-Valentine, \dagger and we still find it in the Ross dissecting Microscope \ddagger of 1855 .

We now pass on to the triangular rismatic limb. The first Microscope to have a triangular liin, was the large Benjamin Martin Microscope, in our Cabinet, the date of which may be placed at 1770. This limb was fixed, and the stage, for the instrument was a stage focusser, racked up and down uponit. The next time we hear of a triangular limb is in Varley's description § of a "Microscope for live Objects," this instrument was made by Powell. Although, for reasons stated, Varley did not apply the triangular limb to his Microscope, he says, "my late uncle about thirty years ago introduced the triangular bar and triangular tube.

In Valentine's Microscope, made by Ross (1831), the triangular limb, however, is reintroduced. Again we have it in Pritchard's Microscope, figured in his Microscopic Cabinet 1832 ; this Microscope was made by Powell, and was a modification of Varley's. So we see that Varley suggested the reintroduction of the triangular limb, loss first adopted it in Valentine's Microscope, and Powell, following Ross' lead, used it in the Microscopes he made for Pritchard.

There is no coarse adjustment, but a fine adjustment screw, placed at the bottom of the limb, acts directly on the triangular focussing bar. This part is copied from Varley's Microscope, but, as his sprung nut $\|$ is omitted, the loss of time is very great.

Beneath the stage is a sub-stage condenser in a sliding tube fitting ; its optical part consists of a sliding convex lens.

The objective is a single bi-convex lens of 1 in . focus; it is mounted precisely like the Wollaston doublets of that period. The gauge of the mount is 0.618 in ., and some similar, but signed, examples of Andrew Pritchard were found to vary between $0 \cdot 614$ and $0 \cdot 619$. The foot is circular; we find that Microscopes on circular feet are figured in the second edition of Pritchard's Microscopic Illustrations, 1838, pp. 82 and 88, figs. 11 and 12.

I have examined the tongue of a blow-fly with this instrument, and was quite surprised at the high quality of the image.

This Microscope was probably made by Powell for Andrew Pritchard, circa 1835-40.

This instrument possesses two points of interest.

1. It is an undoubted early example of the reintroduction of the triangular focussing bar.
2. It is also an early example of a circular foot.
[^329]I have much pleasure in offering this instrument to the Society for its Cabinet.

As the evolution of the prism bar has been alluded to above, it might not be out of place t^{\prime} m...rpend a diagram of the section of the various bars.

Fig. 144.

Fig. 145.

Fig. 146.

Fig. 147.

Fig. 148.

1. Benjamin Martin, with internal rack, 1770 , fig. 144 .
2. Ross-Talentine, angles slightly truncated, 1831, fis. 14.5.
3. Powell's, a cylindrical bar with three faces planed off, 1833, fig. 146.
4. Powell's next form was merely an enlargement of fig. 145, 1843.
5. Ross abandons the triangular for a rectangular patallelopiped, 1851, fig. 147.
6. Powell's trumeated prism, now in use, 1861. fig. 148.

In the above figures, the shaded portion in each case represents the rack.

An Early Compound Microscope with a Mirior attached to its Limb.

By Edward M. Nelson.

This old Microscope will on examination be found to possess some points of interest. A very cursory glance at fig. 149 shows that it is home-made by some ingenious amateur. The body is composed of three brass tules sliding into each other. These obviously were not intended for draw-tubes, but merely for the convenience of fixing the lenses in their proper positions. The lenses are held in their place by split wire rings; the diaphragms are made of cardboard. The lenses are four in number, two of which form a Huyghenian eye-piece, the third being the lack lens of the oljective, after the plan introdnced by Benj. Martin.

The limb is merely an iron rod, attached to a heavy circular foot. The stage is elementary in the extreme: it has a socket to hold the stage forceps, but a slip can be laid across the bars when they are bent round. The objective merely pushes on to the nosepiece without any screw.

The ball and socket for the mirror is of a very simple and ingenious construction, and it will be noted that the mirror is attached to the limb. This is an important point, for it took some years to arrive at the obvious improvement of attaching the mirror to the limb.
The mirror was first applied to the Microscope by Hertel in 1715, but then, as also in the Culpeper and Scarlet (1738), and John Cuff (1744), the mirror was attached to the box-foot. We first meet with a mirror attached to the limb in a simple Microscope, viz. that of Lindsay* (Invented 1728, Patented 1743); a signed, dated (1742), and numbered (No. 22) example being in our cabinet. The next instance where we find it is in Ellis's Aquatic Microscope, $\dagger 1755$; but the example before you is probably the

[^330]earliest Compound Microscope that has its mirror attached to the limb.

In fixing the date of this Nicroscope we can assume that it is an instrument made by an amateur on the lines of some model before him. Now the Microscope he has evidently copied is that of Benjamin Martin (1760-1770)*; a signed and numbered (No.1) example of which is in my possession.

It probably is not older than 1715, the date of the introduction of the mirror, neither earlier than 1760-1770, because its objectglass has a back lens; but, evidently, it is an old instrument made in the latter half of the eighteenth century. I have much pleasure in offering this instrument to the Society for its acceptance.

An Improced Horseshoe Staye.

By Edward MI. Nelson.

While working with a ligh power on a Microscope with a plain stage, having only a circular hole in it, great inconvenience was experienced in tilting the slide on its edge, for the purpose of feeling the working distance, when bringing the lens into focus; it therefore occurred to me that it would be a good plan to cut away all the brass in front of the circular hole and make what is now known as a "horseshoe stage." So in 1880, I asked Powell to cut out the stage of his iron Microscope \dagger for me. The advantage was at once so apparent that I had three other instruments treated in the same manner. \ddagger

This form of stage is now largely used. Although the advantage of this form of stage when ordinary slides are being examined is obvious, yet some objection may be raised when dishes and watch-glasses with convex bottoms are placed upon it, because of their liability to slide forward in the horseshoe opening. I have therefore designed this simple modification which will render this form of stage suitable for all purposes.

A flat plate of brass with a circular hole in it, having tongues at the elges to slide in grooves cut to receive them, is pushed into the horseshoe opening, when dishes, etc. are requirel to be placel upon the stage. When ordinary slides are to be examined the brass plate is withdrawn, and the horseshoe stage is left in its original condition.

[^331]Notes.
Fig. 150 (scale $\frac{1}{2}$) shows the horseshoe stage with the brass plate in situ, and fig. 151 shows the brass plate when withdrawn. In fig. 150 the X shows the optic axis, and it will be noticed that from the X to the top of the sliding bar is $1 \frac{1}{2} \mathrm{in}$. (38 mm .), which is equal to the distance from the X to the top of the stage; therefore a slide $1 \frac{1}{2} \mathrm{in}$. (38 mm .) wide can be examined from its.

Fig. 150.

Fig. 151.
top to its bottom edge; also $\frac{3}{4}$ of an inch (19 mm .) of sideway movement can be given to a slip 3 in . (76 mm .) long, on each side, without cansing the end to project beyond the stage. This means that a $1 \frac{1}{2} \mathrm{in}$. (38 mm .) square on a slide measuring 3 by $1 \frac{1}{2}$ (76 by 38 mm .) can le searched over without any portion of the slip projecting beyond the edge of the stage. The two lines at the bottom of fig. 150 indicate the sliding bar, but the lugs are not shown.

ZOOLOGY AND BOTANY

(PRINCIPALLY INVERTEBRATA AND CRYPTOGAMIA),

 MICROSCOPY, Етс.*
ZOOLOGY.

VERTEBRATA.

a. Embryology. \dagger

Influence of Salt Solution on Early Development of Newt's Egg. $\ddagger-W$. Tonkoff finds that very weak solutions ($\cdot 5$ p.c.) inhibit the development, withont cansing special abnormality in the cleavage. Stronger solutions ($\cdot 6-\cdot 7$ p.c.) not only inhibit, but modify the development. The difference in size between the cells of the two hemispheres is accentuated; the surface of the upper hemisphere is very uneven; the gastrulation is irregular. In $\cdot 8-\cdot 9$ p.c. solutions, there is no gastrulation, clearage is almost restricted to the upper hemisphere, there is almost no blastula-cavity, the nuclei show signs of degeneration, and so on. In 1 p.c. solution only a few cleavages occur.

Artificial Fertilisation of the 0va of Cristiceps argentatus.§-

 Fr. Kopsch describes the comparatively easy way in which the ova of this small Bleniid can be artificially fertilised by spermatozoa. This is of some scientific interest since the eggs of this fish are relatively large and very transparent,--therefore admirably suited for morphological and physiological study.Spermatozoa of Acanthias vulgaris.||-G. Retzins describes a spiral band wound around the head of the spermatozoon and apparently running into the apes. It is very resistant and was disclosed by maceration. "Sometimes there were two parallel spirals. Retzius also finds inside the "comnecting-portion" of the spermatozoon a spirally coiled thread, which is apposed to the distal centrosome-ring and is interpreted as a proximal centrosome.

[^332]Structure and Development of Female Gonads of Lancelet.*The late Ludwig Neidert made a careful study of this, and the work has: been completed by Adolf Leiber. An account is given of the early period of gonad-formation and of the period of ripening. The gonocol or cavity enclosed by the gonadial wall, the "Nabel" from which the ovarian vessels arise, the "Narben" or cushions which surround the openings of the gonocol, and so on are described in mimute detail. The process of oogenesis is described. Particular attention has been paid to the bloord-supply of the oraries.

Follicular Epithelium in Birds. $\dagger-$ Marie Lorez finds that in somebirds all the cells of the follicular epithelium exhibit, ontside the muclens, an almost spherical body of considerable size, composed apparently of coiled filaments. It stains strongly with iron-hamatoxylin, and is analogons to the ergastoplasm of Garnier, the mitochondria of Benda, and the psendochromes of Heilenhaiu. The differentiation is well seen in Coocothraustes chloris, Emberizu citrinella, Fringilla calebs, and Parus caruleus, while in other cases, e.g. fowl and pigeon, it was not detected.

Ovarian Ova and Follicles in Fishes. \ddagger - W. Wallace has studied the ovaries of varions speeies of Teleostean and Elasmobranch fishes, with particular reference to (1) the post-embryonic origin of ora and follicular epithelium, (\because) yolk-nnclei and their signifieance, (:3) eggmembranes and follicular epithelim, (4) the histology of egg-absorption, and (5) structural changes in ruptured follicles. The paper also includes a general description of the peenliar ovary of Zources, and some data bearing on the rate of growth and comparative fecundity of this fish.

Influence of Central Nervous System on Development of Limbs in Amphibians.§-P. Wintrebert has made some interesting experiments on Axolotl larvae (Siredon pisciformis) and on the tadpoles of Rant temporaria. While R. Rubin has maintained that the influence of the nervous system is essential in the regeneration of parts of limhs in Urodela, A. Schaper found that the remoral of the tadpole's brain did not hinder its general growth, and Wintrebert's results go towards confirming this. He cut the nerves to the hind limb of Axolotl larre just at the time when the toes were being formed, but after $6-12$ days one or two toes appeared normally. More extensive experiments on the tadpoles of the frog gare the same result, and the anthor concludes that in these cases the nervons system is not necessary for the growth or differentiation of a limb.

Development of Pineal Body in Amphibia. $\|$-... . Cameron finds that in Ranu, Bufo, and Triton the epiphysis arises in the form of tro primary outgrowths from the roof of the fore-brain, one on each side of the mesial plane; the right ontgrowth disappears at an early stage

[^333]by blending with the stronger left. The oceurrence of right and left primary epiphysial ontgrowths has heen noted by Beraneck in Lacertilia, by Dendy in Hatteria, by Hill and by Locy in Fishes, by Gaskell in Ammocoetes. Thus in the three lower Vertebrate classes the epiphrsis arises as a bilateral structure, and not as a mesial structure. Therefore Cameron agrees with Dendy that "the ancestors of Vertebrates must have possessed a pair of parietal eyes which may have been serially homologous with the ordinary Yertebrate eyes."

Development of Musculature and Skeleton in Spelerpes longicaudus.* - H. S. Honghton gives an account of the origination and development of the adult muscles in this common Sulamander, of the number and function of the transitory larval muscles, and of the relation between the two. He also discrsses some of the developmental processes in the larval skull. The paper is mainly descriptive of the skeletal and muscular elements of a larva of 12 mm ., with a few comparisons with Rana and Cryptobranchus.

Circulation in Embryonic Stomach. \dagger-Ivar Broman has observed in human embryos of $5-16 \mathrm{~mm}$. in length the occurtence of one, two, or several branches of the ductus venosus Arrantii penctrating the primordinm of the omentum minns and forming a dense plexns in the mesodermic wall of the stomach. He has found similar veins in embryos of pig, cat, fowl, Chelonian, and Necturus. It seems probable that they oceur in the embryos of all Vertebrates with a well-dereloped stomach. In adult Reptiles similar veins ("afferent portals") ocerr, and it is likely that the transient embryonie veins, which the author has diseovered, correspond to these.

b. Histology.

Amitotic Division in Vertebrata. \ddagger-A. Nemiloff has made a fresh studry of this much discussed process. He found the most suitable cases for study to be amitotic division in the giant cells of the epithelime of the urinary hadder (of the monse in particular), and in the lymphoid layer of the liver of Amphibians.

Myoblasts.s-A. Prenant disensses in the first p $^{\text {dace }}$ myohlasts in general, comparing their fibrillar differentiation with the kinoplastic filaments in other cells and in cell-division. He goes on to disenss the numerical increase of the fibrils loy longitudinal splitting, and distinguishes complete and incomplete myoblasts according to the extent. to which the fibrillar differentiation invades the cell. It is still a question whether the firrils are formed independently in each myoblast, or whether they arise simultaneonsly in a series of cells forming a sort of syncytium. The distinction which the brothers Hertwig defined between epithehial and mesenehymatons myoblasts still holds good.

Prenant discusses in the second part of his communitation the

* Ohio Naturalist. iii. (1903) pp. 379-93 (t pls.).
+ Anat. Anzeig. xxiii. (190:3) pp. :300-1.
\ddagger Tom. cit., M. 353-6is (11 figs.).
§ Areh. Zool. Exper, th ser., i. (190:?) Notes et Reve. No. 1, 11. lii.-lxiv. (12 figs.).
epithelio-muscular cells of Colentera, the epithelial myoblasts of higher Metazoa, and the epithelio-muscular cells of higher Metazoa.

Structure of Nucleus in Smooth Muscle.*-K. Münch had his attention arrested by an apparent transverse or oblique striation in the nucleus of smooth muscle-cells of cat, rabbit, guinea-pig, and other mammals. Careful investigation showed that the appearance was due to a spiral of chromatin making from $3 \frac{1}{2}-15$ coils within the achromatin matrix. Münch regards this as the normal condition of the resting muscle-muclens, but there is need for further observations on other objects.

Cross-Striped Muscle. \dagger-K. Münch maintains that the so-called cross-striping of muscle is the optical expression of the spiral arrangement of the anisotropic substance. To this theory of muscle-structure he appends a re-interpretation of the phenomena of contraction.

Intracellular Threads in Nerve-Cells. $\ddagger-E$. Holmgren re-describes the so-called "intracellular threads" in the nerve-cells of Lophius piscatorius. His observations differ so much from those made by Solger on Torpedo that we are bound to suppose that the two sets of threads are quite different structures. The "threads" in Lophius are probably special differentiations of nerve-cells that form capsular processes. They are perhaps comparable to the filamentous differentiations of glia-cells. 'They do not represent, as in Torpelo, the hyaline crystalloid contents of the trophospongium-canaliculi ; they are not hyaline but composed of fine filaments; they have not a granular composition; they never lie in preformed canaliculi, but are always accompanied by capsular processes.

Trophospongia in Glandular Cells.§-E. Holmgren recalls his discovery of canalicular structure in liver-cells of the guinea-pig, which he regards as trophospongial canaliculi,--dense or loose networks of very fine tubules with parallel walls. He has found the same kind of trophospongial eanals in the cells of Langerhans's islands in the pancreas of the white monse. He vindicates his particular interpretation of the canaliculi against those suggested by others.

Structure of Red Blood-Corpuscles. \|- Vladislav Roižička has studied the erythrocytes of frog, guinea-pig, and man. He points out that there are many gaps in our knowledge of the exact structure of the erythrocyte, of the membrane thereof, of the relation of the hæmoglobin to the cytoplasm, and as to the unclens in mammalian erythrocytes. He has tried to fill m_{p}, some of these gras.

We can only notice his general conception that the red bloodcorpuscle includes a vegetative part, - a reticular structure imbedded in a colourless matrix,-and a functional part, probably associated with a peripheral hemoglobin envelope bound to a portion of the matrix.

Axial Filament in the Adult Connective Tissue Fibril. Φ-P. A. Zachariades finds that the comective fibril, say in a tendon, is much

[^334]more than a cylindrical filament without particular structure. It is a cellular prolongation with an external membrane, a peripheral collagen substance, and an axial filament.

Origin of Giant Cells.*--V. Babes calls attention to the frequent occurrence of budding in the proliferation of tissues, e.g. in the development and neoplastic changes of vessels. He finds that many giant cells are simply modifications or arrestments of vascular buds. This is well seen in tuberculous giant cells and in those of myxo-sareomata.

Transformation of Epithelium into Connective Tissue. \dagger-E. Retterer has made the experiment of separating the skin from the subjacent tissuel(in the metatarsal region of the guinea-pig). The resnlting irritation evokes hypertrophy and proliferation in the epidermic cells, which give rise to generations of cells that form reticulated and vascular connective tissue, becoming finally part of the papillary layer of the dermis.

Intestinal Epithelium in Amphiuma. $\ddagger-\mathrm{C}$. Saint-Hilaire deseribes the unusually large elements of cylindrical epithelium lining the gut of this Amphibian. Most noteworthy is his deseription of coiled filaments which oceur in varied form in the plasma and appear to enter into close muion with the mucleus. In each case there seems to be a single thread which starts near the periphery and coils inwards.

Intracellular Canaliculi in Supra-renal Capsules.§-C. Ciaccio has used Golgi's method with success in demonstrating endocellular canals in the suprarenal capsules. They are probably of service in condueting the products of secretion to the capillaries, as is probably the case in other glands of internal secretion.

Cellular Nature of Zoochlorellæ.|| - J. Villard finds that the zoochlorellæ of Hydra viridis, Paramecium bursaria, and Stentor polymorphus have a cellular structure with a well-defined muclens. Apart from the nucleus, the cellular nature of the zoochlorelle is demonstrated by the presence of "Metachromic corpuscles," as in small unicellular algæ.

c. General.

Deep-Sea Life in Indian Seas. \boldsymbol{T}-A. Alcock gives an exceedingly interesting account of the royages and exploration-methods of the Royal Indian Marine Survey ship "Investigator," and of the deep-sea fauma of the Indian region. "A walk acioss the bed of the ocean from Madras to the Andamans is idealised in a manner calculated to fascinate the reader and arouse the interest in marine researeh." The author has much to say in regard to adaptation to abyssal haunts, colour resemblance, habits of hermit-crals, luminous fishes, commensalism, e.g. between the Scorpænoid fish Minous inermis and a compound Hydroid Styluctis minoi,

* Comptes Rendus, cxxxvi. (1903) pp. 314-6. † Tom. cit., 11p. 511-4.
\ddagger Anat. Auzeig., xxii. (1903) pp. 489-93 (6 figs.).
§ 'Tom. cit., 11]. 493-7 (3 tigs.).
II Comptes hendus, cxxxvi. (1903) pp. 1283-4.
I 'A Naturalist in the Indian Seas,' Svo, London, pp. 24 and 318 (98 figs., tables, and a map). See Nature, Ixvii. (1903) 1p. 320-1 (2 figs.).
bird life, and so on. Among the more important discoveries emphasised in the hook are those of a "solitary" coral (Caryophyllia ambrosia) the giant Buthynomus, and the blind lobster Phoberus ceecus.

Arsenic in Animals.*-Armand Gantier discnsses the danger of inferring the presence of arsenic in amimal tissues when the quantity is very minnte, umless due allowance be made for the introduction of arsenic in the mitric acid or other reagents used in testing. He is satisfied that arsenic is normally present in mammals in the skin and its organs, in the brain, thyroid, thymms, \&e., but not in the blood for instance. In the muscles of mammals there is but a slight trace. Gantier points ont that the ocemrence of arsemic in the skin of an ox is physiologically more interesting than its occurrence in a sponge or a holothmian or a fish, or in any ammal living in sea water (which is distinctly arsenical), or feeding on algex which are rich in arsenic.

Index Animalium. \dagger - C. Davies Sherborn began in 1890 the gigantic task of making a complete list of all the generic and specific names that have been applied to animals since Limmens inangurated the binomial system (1758), of giving, as far as possible, an exact date for every quotation of a name, and of giving a reference to every name. In short, he set ahont making the zoological homologue of Jackson's 'Index Kewensis.' Mr. Sherborn is to be gratefnlly congratulated on the completion of the first part of this great dictionary, which contains. the names given from the begimning of 1758 to the end of 1800 .

History of the Fauna of the Indo-Australian Archipelago. \ddagger Max Welner sketches the following possible history. In pre-Tertiary times a connected land-mass, peopled by Eurasian amimals, united Asia and Anstralia. In the Eocene Age this was broken up, forming in the sonth-east a mified reerion (Anstralia and New (ininea of to-day) and in the north a shallow coral sea with a complex of scattered islands. In the former there arose Monotremes, Marsupials, and Cassowaries, in the latter there arose a few primitive Rodents, Insectivores, and related types. In Miocene times the deep "Einsturzbecken" were formed, Celebes was mpraised (" emportanchte"), and in the west a land-bridge above water-level was established with the Astatie continent, so that a fresh entrance of Emasian forms was opened to the east. Changes during the lleistocene finally led to the present state of the Arehipelago, which is zoo-geographically divisible into an Astatie famal region in the west, an Anstralian region in the east, and a transition area between.

Chemical Physiology of Invertebrates. $\$$ - Otto von Fürth hass. made a welcome contribution to comparative physiology in this volume. After some general chapters on orramic compounds and their relation to metaholism, he discusses the blood and analogons fluids; the chemistry of digestion, respiration, and exeretion ; the animal poisons ; the speeial

[^335]secretions, such as mucin, silk, wax, \&c.; the pigments; the skeletal tissues; the genital secretions, and so on. The author, who has himself made important contributions to comparative phesiology, is to be congratulated on having done with scholarliness and judgment a piece of work which will be of great utility to stndents and investigators.

Electrical Criterion of Vitality.* - Angustus 1). Waller reports the results of experiments conducted los aid of an eleetrical eriterion" hlaze-reaction"-distinguishing between the living and not-living state. He refers first to the case of the hon's egg, which is partienlarly interesting, "for while we camot tell "priori with any assurance whether or no a dormant egg will give the reaction characteristic of living matter, we may-after having lemmed by experience that it does mot do soexpect to find the reaction make its appearance with the progress of development by inculation. And as a matter of fact, we find that this is what happens." The presence of a blaze-current is a certain sign that development has progressed within the erg.

Waller also finds that a crystalline lens is a good ohjeet mpon which to study the nature of blaze-currents, Here again a blaze-emrent is a physical sign of the "living" state.

In another paper, A. Durig \dagger describes ohservations which make it impossible, he says, to regard the appearance of haze-currents as a specific property of living tissue. It is much more probable that they are to le considered as special manifestations of certain eppithelial tissues. Nor can the presence of exelusively polarisation effects be taken as the sigu of death in a tissue, since these may oceur alone and typically in living organs.

Relation between Weight of Liver and Total Surface. \ddagger - E. Maurel finds that in gumea-pig, rab)hit, dor, fowl, \&e., the weight of the liver hears (except in early stages) a constant ratio to the total snrface of the body. The ratio is constant for the species, or for the variety of a heterogeneous species like the dog. The volume of the liver is affected by various factors, e.g. its antiseptic rôle, but especially by the mature of the food.

Coloration of Myxinoids.s-Bashford Dean notes that Myxinoils run the gamnt of coloration common to deep-sea forms. Thus in a range of species they pass from back (Myrine cirrifroms) into dark purples, thence to riolets and lavenders, then into "meaningless" greys, sometimes uniformly coloured, sometimes shaded (lighter ventrally, darker dorsally). In some cases lack of pigmentation in definite regions becomes a ather conspicuons feature, thus the tips of the barbels are generally white and the merlian lines may be unpigmenten.

The author reports the ocenrrence of complete allinism (1 in 800) in Homen Uurgeri, of partial allinism in H. stouti, and of brilliant motley colouring in H. polytrema.

Studies on Cyclostomes. $\|$ - L. Plate contributes a first part of a series of studies of Crclostomes, in which he describes twenty species of

[^336]Geotria and Morlacia from Anstralia and Chili. To these two genera, and to Exomegus, which the author has not been able to investigate, all the Petromyzonts of the Sonthern Hemisphere are referable. He deseribes four stages in the life-history of Geotria chilensis Gray, which correspond generally to those of the European lamprey. There is (1) a larval or ammoceete stage, with two oral lobes, eyes lardly visible, and light colour ; (2) a first stage of metamorphosis, with round suctorial mouth, without teeth, without tentaeles, with eyes more distinct, and with light colour ; (3) a second stage of metamorphosis, with round mouth, without teeth, with two tentaeles, with eirri, with very large distinct eyes, with a reddish-brown dorsal streak and silver-white colonr on the sides and below ; (t) a juvenile stage (=Macrophthalmus chilensis Plate), with romid mouth with teeth and two tentacles, with very large distinct eyes, with blackish-blue colow above and silver-white beneath.
"Larynx" of Ganoids and Dipnoi.*-R. Wiedersheim has investigated Protopterus, Polypterus, Lepilosteus, \&e., in seareh of the foundations of the laryngeal skeleton and mnseulature. In Protopterus and Polypterus there is in the region of the glottis a museular apparatns which widens and narrows the opening. He distinguishes in both a m . laryngens dorsalis and a m . largngens ventralis, innervated by the vagus. In Protopterus, there is a considerable development of supporting cartilage. From his study he finds himseli warranted in distinguishing a larynx dorsalis distinet from the larynx ventralis. Thus, if the syrinx of birds be inclnded, there are in Vertebrates three distinet larynxes.

Specific Differences in the Kidneys of Lepadogaster. $\dagger-\mathrm{F}$. Guitel has studied five species of this little sucker-fish. In one species, L. wildenou"ï, there are mesonephrie canalienli composed of several distinet seetions and provided with glomeruli. In L.goiiamii and L.bimaculatus there are mesonephric canaliculi ("pelotonnés") without glomeruli. In two other species, namely, L. canlollii and L. microcephalus, there are neither canalieuli nor clomernli. Thas there is notable speeific distinetion even in the recesses of the kidncy. This result is complieated by the faet that there are sexual differences, for the mesonephrie "pelotons" are different in the sexes of L. yoïaniï and of L. bimaculatus. Furthermore, in one species at least, L. bimarulatus, there are seasonal differences associated with the periodic development of the gonads.

Study of the Respiratory Exchanges in Water. $\ddagger-J$. P. Bownhiol and A. Foix point out some defects in prevalent modes of studying the respiratory exelanges in water. The essential thing, if normal conditions are to be sustained, is some way of restoring the oxygen to the water as it is used up and of removing the carbonic acid as it is producel. The anthors describe a method wherely a known cuantity of air cireulates with automatic restitution of oxygen and renoval of earbonic acid.

Temperature of the Tunny.s-P. Portier notes that the general belief that fishes have exactly the temperature of the medium in which

[^337]they live, is not quite warranted. P. Regnard made in 1891 precise-thermo-electric experiments which showed that fresh-water fishes haveto a fiftieth of a degree the same temperature as the water in which they live. But J. Davey found that some marine fishes are warmer than the sturrounding water,-in Pelamides by $7 \cdot 2 \cdot{ }^{\circ}$, and in the Bonito by 10°.

Portier took the temperatures of numerous timnies (IVynnus alutonya) just as they came ont of the sea, and found that these powerful swimmers, which can keep up for hours with a vessel going at twelve knots, show (on deck) rectal temperatures of $21 \cdot 5^{\circ}$, temperatures at the level of the liver of $19 \cdot 6^{\circ}-24^{\circ}$, and temperatures in the middle of the dorsal museular mass of $25 \cdot 50-26 \cdot 7^{\circ}$. The last was $9 \cdot 2^{\circ}$ higher than that of the surrounding water.

Unilateral Coloration with Bilateral Effect.*-C. H. Eigenmann and Clarence Kennedy describe two specimens of a Leptocephalid, probably of the same species (Leptoceplualus tliptychus). Each has eight large black spots, one over the intestine somewhat in front of the anus, the others on the two sides of the body. Each spot was a single giant chromatophore, extending longitudinally over three or four somites. The peculiar fact was that the spots are unsymmetrical, those of one side alternating with those of the other, so that in the almost transparent animal there seemed to be seven spots at approximately erfual distances. The anthors regard this as a case of "mutual adaptation."

Variations of Garter Snakes. \dagger-E. E. Brown has studied the variations of Eutenia in the Pacific sub-region, from about latitude 50° in British Columbia to the neighbourhood of $3: 3^{\circ}$ in sonthern California. There is a great variety of soil and climate, especially as regards humidity : thus the rainfall'at Puget Sound has reached $1: 30$ inches, while at Yuma, in sonth-eastern California, the average is little more than three. Under these circumstances, and having in mind the ease with which colour in reptiles is acted upon by external conditions, of which there is reason to believe that moisture is one of the most active, it is not surprising that colour variation should reach a maximum in a group of snakes which, throngh diversity of habit, oceupy practically every station open to their kind. The author reduces $2: 3$ alleged species to three, two of which have three suly-species. He suggests (1) that humidity influences the metabolic processes which lead to pigmentation ; (2) that the large amount of uric acid prodnced by reptiles should be considered in comection with coloration ; and (3) that the liberty to indulge in striking colours may be associated with the protection afforderd by the lnxuriant vegetation and with the alsence of the three snakeeating genera, Spelotes, Ophibolus, and Elaps.

American Pelycosauria. $\ddagger-$ E. C. Case has re-examined the American types and has been led to conclusions very different from those of Cope. All known reptiles from the American Permian, other than the Cotylosauria, possessed two temporal arches ; there is no approach to a single temporal arch as described by Cope in some of them. The Pelyeosanria followed a line of development that led to extinction, while the persist-

[^338]ent line of development was followed in other regions, perhaps in Africa. The progress of development in the skulls is traced, and five main changes are analysed. It is possible to recognise two phyla amoner the Permian Pelycosamia ; one characterised ly the persistence of the two Rhynchocephalian arches and the development of a weak articular region, culminating in the high-spined Pelycosauria, and the other characterised by the mion of the arehes and the development of a mammalian temporal region culminating in Gomphognathus and Tritylodon, perhaps in the Promammalia. The last lranch practically includes all of the Theriodontia $=$ Theriosuchia.

How Birds make themselves understood by Man.* - H. Gadean de Kerville reports eases in regard to parrots, cockatoo (Cucutuc leatlbeateri), Serinus hortulanus, raven, Buten apivorus, condor, dorking cock, Euplocumus nycthemerus, gulls and Auhinga, which illustrate varions ways in which birds make or try to make themselves understood loy man. The three modes employed are:-(1) by their natural language which includes various distinet words or cries; (\because) by aequired language, mimetie of man's; and (:3) by gestures of beak and wings, and so on.

Bird and Man. \dagger - W. Sehuster has an interesting article on the inter-relations between birds and men. He shows how eultivation, deforesting, planting, hunting, preservation, and so on have affected the avi-fanna. The timidity of some lirds and the fearlessness of others in relation to man is diseussed; and the generalisation is suggested that the rarer a species beeomes the shyness of its members inereases, since the feeling of safety associated with gregarions life is lost.

Tunicata.

Arctic Variety of Ciona intestinalis. $\ddagger-R$. Hartmeyer notes that Arctic forms of this common Ascidian are marked by a superficial peenliarity : - the long eylindrical body narrows below the intestinal loop to form in stalk which extends for one-third to one-half of the length of the body and is terminally expanded into an attaching disc. All the specimens from high latitudes show this feature, which oceurs as an occasional variation to a slight extent even in Mediterranean specimens. As there is no internal structural variation, Hartmeyer is content to regard the Aretic forms as local varieties:-C. intestinalis L . var lonyissima Hartmr.

New Molgulid.§-G. C. Bourne describes a single specimen of Oligotremel paramites g. et sp. n1., a saek-shaper Molgulid, eovered with grains of sand like a Zoanthid, dredged loy Willey from a depth of fifty fathoms off Lifu, New Britain. Although undonbtedly one of the Molgulida, it has many peculiar features. These are :- the wide separation of the branchial and atrial orifices; the great reduction in size of the atrial siphon and the concomitant suppression of the atrial lobes; the highly

[^339]differentiated pimate musenlar arms ; the great reduction in the size and extent of the branchial sate; the suppression of the dorsal lamina and the feeble devclopment of the endostyle and peribranchial grooves; the relatively great length and diameter of the osophagns, and the presence of a large oesophageal groove extending nearly to the anterior end of the dorsal side of the branchial sate.

Dr. Bourne sngrgests that Oligotreme psommites is an Aseidian which captures and feeds on active Crnstacea of large size relatively to itself, such as the Amphipod (Plutyseplus?) fond in the stomach. The name Oligotrema refers to the fact that the manchial sae is much rednced and confined to the anterior third of the borly. The paper includes a nseful discussion of the morphological valne of the different layers of the Tunieate hody, and a suggestion of the term "plerome" for the mesodermic tissne filling up the space between the gnt and the external epithelimm.

INVERTEBRATA.

Moliusca.

γ. Gastropoda.

New Pteropod.*-J. Meisenheimer describes Schizobranchium polycotylam g. et sp. n., a new gymmosomatons Pteropod from the Indian Ocean. In fiom it recalls Clione, hint is at once distinguishable in having a well-developed dorsal glandular groove. The hody is clongated, dilated in the middle, pointed at the hind end ; the foot has a posterior median and two anterior lateral lobes ; gills are represented solely ly a small longitudinal skin-fold on the rentral surface of the hind end; the cesophagus has much hranched "suctorial arms," radula-sac, and jaw-plate. The new form seems to be a highly specialised representative of the Pneumonodermatida.

Breeding Experiments with Sinistral Snails. \dagger - K. Künkel has got specimens of Helix pomuticu with left-handed shells to breed, but none of the (45) offspring were sinistral. When the development is made to oceur under pressure, flat forms result, which aequire the normal shape when the pressmre is removed.

The author has some interesting notes on the breeding habits and life-history. After awaking from the winter sleep snails take in much water, inereasing their weight by $40-18$ p.c. Copulation ocemrs in favourable conditions in April, especially during or after warm rain ; the spicnhm amoris is not essential to eopulation ; in spite of copulation some snails do not lay that summer, others may lay twice in the same summer. The egr-laying oceus from the middle of Jme to the middle of Angust, nsnally after a warm shower; with moderate warmth and moisture most of the exys develop; the young are hatched on the 25 th or $\because 6$ th day after oviposition ; they remain 8-10 days in the earth lont leave it when the rain soaks in. Snails may remain lively till the end of November, if the conditions of warmth, moistnre, and food are all favourable.

[^340]
Arthropoda.

a. Insecta.

Joints of the Walking Legs in Insects and Myriopods.* - CarI Börner discusses the difficult question of the homologies of the various joints of the walking appendages in Myriopods and Insects,-the coxa, the trochantero-femur, the tibio-tarsus, and the pretarsus - working from the simplest cases in larve of Thysanoptera on to the more specialised forms.

Metamorphosis of Nervous System in Insects. \dagger-- V. Bauer has studied representatives of seven orders, and finds that the central nervous system has by no means attained its definitive structure when the larva or young form is hatched. There is a new formation of ganglia (both sensory and motor centres) and of their protective tissue and tracher.

Until the beginning of the metamorphosis the ganglia show aggregates of neuroblasts which produce by unequal division a series of mother-ganglion-cells. These divide equally to form ganglion-cells. Finally the proliferating power of the neuroblasts ceases and they degenerate. The same process occurs in ametabolic insects, but more continuously.

The enveloping tissne of the imaginal ganglia is due to the immigration of connective-tissue cells from the cavity of the body. Tracher enter from particular points in the peritoneum where there is active proliferation. The connective tissue and trachex of the larval ganglia are absorbed by phagocytes, but these do not seem operative in the dissolution of the ganglion-eells.

Insects and Petal-less Flowers. $\ddagger-\mathrm{C} . \mathrm{W}$. Bulman directs attention to Platean's experiments § on poppies (Popaver orientale) which were artificially deprived of their petals, the number of insects visiting the remaining parts being carefully noted and compared with the number of those visiting neighbouring intact flowers. Platean contends that the insect-visitors are not attracted by the brilliant colours of the blossoms, but rather by the pereeption in some other way-probably by scent-that there is honey or pollen to be had. Great care was taken in the experiments to avoid touching any of the remaining parts of the flower with the fingers, for Platean believes that insects have a keen sense of smell and dislike the seent of human fingers. On taking an average, it was found that each of 30 petal-less flowers received $\pm \cdot 5$ risits, while each of 70 intact flowers received $2 \cdot 4$ visits. Bulman has seen bees visiting flowers of Germium pheum, rockrose, bramble, and sage which had lost their petals.

Insects and Flowers.\|-E. Ernest Lowe in referring to Platean's experiments on poppies, \&c., artificially deprived of their petals, argues

[^341]that the removal of the colonred parts does not prove that colour has no inflnence in attracting insect visitors. "We are fond of attributing great intelligence and power of perception to the bee, and get in this case the insect is not even given credit for being able to recognise what are known to it, from possibly lung experience, as the essential parts of the flower! Becanse we bny well advertised goods, and still continne to buy them when their proved virtue renders advertisement a thing of the past, is it proof that the advertisement phayed no part in determining onr choice?" After citing some of Lord Avelnry's experiments, Mr. Lowe suggests that the correct method of settling the question would be to cut away, not the petals, but the stamens, \&e. "Then if insects contimed to visit flowers so motilated we should lave ground for thinking that petals exercise some attraction, or tice cersu."

Dimorphic Spermatozoa in Butterflies.*-D. N. Voinov finds that in Colias, Pupilio, Mutcroglossu, and Vanessa a twofold spermatogenesis is normal. From similar spermatogonia, there arise two sizes of spermatocytes, as in Paludint and Py!fert (Meves) and in Siolopentra (Bonin). The large spermatocytes show regular mitoses, the small spermatocytes divide somewhat irregularly. The result is bundles of large and of small spermatozoa, differing only in size.

What is the interpretation? Are the small spermatozoa non-reproductive, failures in short? Are the tro kinds physiologically equivalent? Or does the dimorphism play a part in the determination of sex ?

Precocious Development of Pupal and Imaginal Organs in Caterpillars. $\dagger-H$. Kolbe deseribes a very interesting case of an ab,normal caterpillar of Dentrolimus pini ($=$ Lasiocampe or Geastropuchet pini. The caterpillar had passed its third monlt and had already attained to an approximation to the imaginal conditions as regards antemne, maxillæ, and limbs. The formative dises of the subsequent wings were seen under the skin. The abnormal form represents at stage in the series of metamorphoses which no longer exists normally. Some more or less similar cases of precocity in development, in Melanippe motanutu (E. H. Jones), in Serictrite mori (C. Majoli) and in Tenebrio molitor (Heymons) are referred to.

Male Genital Appendages in Lepidoptera. $\ddagger-\mathrm{E}$. Zander has made an elaborate study of these. He finds, from his investigations on Paruponys stretioturit, \&c., that the male genital appendages in Lepidoptera arise from primordia morphologically the same as those in Hymenoptera and Triehoptera. The homology is manifested in fonr ways:in the formation of a post-segmental insinking of the rentral region of the twelfth segment, forming the genital ponch ; in the apparance of a pair of simple primitive papilla at the base of this pouch; in the secondary splitting of each papilla into a hateral piece (ralsa) and a median piece (penis) ; and in the origin of the penis from originally paired components.

But the subsequent history of the genital ponch and the pair of

[^342]papillæ is quite different in Lepidoptera and Trichoptera from that observed in Hymenoptera. In the latter, the two pairs of papilla remain in elose approximation at the hase of the genital ponch which becomes deeper and deeper: in the former they obliterate the pouch so that the valve are displaced on to the surface of the body, while the penis becomes hidden in a new insinking, the penial ponch. In the Hymenoptera the conditions are much more primitive than in Lepidoptera and Triehoptera.

Teeth of Diptera.*-W. H. Harris describes typical examples of the " teeth" borne on the flexible lobes of the proboscis of many Diptera. "The dental organs of Diptera may be divided into two groups, the compound and the simple. The former contain from two to four rows of teeth, developed on different lines: the simple contain organs more highly differentiated, and approaching in form the lower orders of vertebrate types. With the development of teeth there has thronghout been a gradnal diminution of psendo-trachea, both in size and number, until they disappear entirely." So far as the author's researches have been earried, the dental organs of flies appear to supply a fairly constant additional set of specific characters.

Diptera from Amber. $\dagger-$ F. Meunier adds to a previous study of amber insects an account of Silvius laticornis (Tabanidae), Lophyrophorus thubellatus g. et spl. n. (Nylophagidae), Puicohilarimorphe bifincutu sp. n. (Leptidæ) Hoclocera eocenict sp. n. (Empida), and Sphyratephata breviutt sp. n. (Diopsinæ).

Mosquitos in Winter. $\ddagger-$ Prof. Brmo Calli-Talero and Madame G. Rochaz give the results of their observations on the occurrence of the larve of Aunpheles and Culex during winter in marshes in the Canton Waadt. The hibernating larvae are found especially among the sedges and similar plants along the margin, but are rare in the open water. The ova are very resistant to co'd and drought, and may survive the winter even if the marsly ground becomes dry.

Anopheles in the Iberian Peninsula.s-G. Pittaluga discusses the distribution of four species of Aumheles (A. pseudopictus, A. superpietus, A. rluriger, and A. bifurcutus) in the Iberian peninsula, and their relation to the occurrence of malaria. The Iberian speeies are the same as those in Italy as reported by Ficalbi and Grassi, but the gemus Aëdes, which is not known in Italy, also occurs.

Dipterous Parasite of the Vine-pest Haltica. $\|$-C. Vaney and A. Conte deseribe Degeeria funebris Mg., whose larva is parasitie in Huttict ampelophaga Guer., which is such a formidable enemy of the vines in sonthern districts. The importance of Degferita funelris as a comnteractive of Haltica is great, for it castrates and kills its host, and occurs in 35 per cent. of cases. Its development should be encouraged.

[^343]Male Organs of Scatophaga.* - W. Wesche describes the male genitalia of Scatophayf lutariat and S. stercoruria, two common flies, related to our smaller house-fly, Homalomyia canicularis, but predaceons, with longer and more setose legs, stronger wings, and more highly developed teeth. The males are variable in size, some smaller, and others, contrary, to the general rule, larger than the females. In mating, the female is seized with a sudden spring (e.g. when killing prey or feeding), and forcibly held, though sometimes struggling fiereely. The male genital armature is suited for holding the female, and consists of no less than ten separate pieces with distinct functions. But, as Berlese has noted in regard to Musco domestica, the male, after seizing the female, is passive. It is the ovipositor that is foreed into the cavity of the hypopygimm, and its soft parts fit into and romed the complicated armature of the male. The author describes the genital armature ; notes that S. merlaria is, as Terrall stated, a mere varicty of S. stercorario; and points out that motnal sterility letween nearly allied species is largely due to mechanical obstacles, as in the case of S. luteria and S. stercoraria.

Alimentary Tract of Silphidæ. \dagger - L . Bordas finds that this is remarkalle in its length, its mmerons internal plaits, the rudimentary mature of the gizzard, the minute structure of the hind-gut, the presence of a terminal ampulla somewhat amalogous to the rectal vesicle of Dysticida, and the occurrence at the end of the git of what seem to correspond with the rectal glands of Lepidoptera.

Tracheal Gills on Legs of Larval Perlid. $\ddagger-\mathrm{L}$. Lauterborn describes the structure and behaviour of the larva of Ternioptery.c nebulost, which bears tracheal gills on a sitnation not before observed, namely on the coxa of the legs. Palmen has distinguished (1) prosternal and stemal tracheal gills on the first ventral thoracic sternite ; (\because) anal tracheal wills; (3) plemral tracheal gills on the sides of the thorax : and (t) lateral abdominal tracheal gills. A fifth set-coxal tracheal gills-must now be recognised.

Formation of Chorion in Pyrrhocoris apterus.§-A. Kühler confirms Korschelt's account of the formation of the chorion as a secertory process, not as one of cell-modification. Beaker-like openings were rightly interpreted by Lenckart as micropyles. The vitelline membrane is not present when the secretion of the first chorionic layer (endochorion) becins, it appears contemporaneonsly with the legiming of the internal lamellar layer of the exochorion.

Systematic Position of Hemimerus. $\|$-K. W. Verhoeff disensses the opinion of some authorities that Hemimerus (living on rodents) is a sort of intermediate form between Blattodea and Dermaptera, but nearer the latter. He gives his reasons for conthding that Hemimerus is in no sense a transition-type, that it undoubtedly belongs to the Dermaptera,

[^344]but that it represents a very characteristic sub-order "Dermodermaptera" Verhoeff.

Compound Eyes of Machilis.*-Frances Seaton has investigated the compound eyes of Machilis variabitis, which is found in great numbers on the under surface of stones which lie near the water's edge at the bottom of Fall Creek gorge, Ithaca, N.Y. A description is given of the corneal cuticle, the corneal hypodermis (two to each ommatidinm), the four long cone-cells of each ommatidium, the distal pigment, the rhabdoms, which are quite distinct and separate from the cones, the retinulæ, and the nerves. Since there is in Mathitis no shifting of the iris pigment and since the rhabdoms are of miform width, the insect has, according to Exner, day eyes with apposed images.

ß. Myriopoda.

Variation in Lithobius forficatus. \dagger-S. R. Williams has studied at Cold Spring Harbor, Long Island, the variations of this cosmopolitan centipede. He took accomnt of the number of prosternal teeth, the number of joints in the antenna, the number of coxal glands, pits or pores which are found on the coxæ of the last four pairs of legs (twelfth to fifteenth). He found that length of loody has essentially nothing to do with the number of antemal joints in specimens 15 mm . long or more ; that length has very little to do with the number of prosternal teeth; that length has some bearing on the number of coxal pores in the adnlt; the correlation being closer on the thirteenth and fourteenth legs than on the twelfth or fifteenth legs ; that the coxal pores show a greater segmental or serial correlation in the case of the thirteenth and fourteenth legs than bilateral symmetry; and that variations in this species point toward the normal condition in other species.

γ. Prototracheata.

New Species of Peripatus. \ddagger-Richard Evans describes Peripatus guianensis sp.n. Out of mine specimens eight were females; six of these were larger than the male. The male had twenty-fonr pairs of appendages, one female twenty-seven, the others twenty-eirht. The renal apertures of the fourth and fifth pair of legs are placed on top of a papilla sitnated between the third and fourth spinons pads. The papillæ sitnated near the mid-dorsal line are large, and stand on a base line which is almost rectangular. Principal papille alternate ahost regularly with accessory papilla. On the flanks the latter become broken up into several small ones, which occupy the spaces between the primary papille.

The female is possessed of receptacula seminis and ororum. The ova are smatl, deroid of yolk, and cudogenons. The embryos in the uteri are in sucessive stages of development. The male has an elongated common duct and on the twenty-second pair of legs has two pairs of sexual papillæ.

[^345]The outer blade of the jaw has one accessory tooth; the imner blade has also one, followed by a diastema and a row of 10 or 11 denticles.

б. Arachnida.

Copulation in Spiders.*-Mr. Dahl fom that out of sixty female spiders belonging to the genus Lutrodectus eight bore broken-off male copulatory organs. The long ribbon-like "embolus" of the male Latrodectus 13-guttatus is inserted at the vulva, not directly into the receptaculum seminis, but into one of two spirally coiled tubes which lie beside it. Throngh these there is a curionsly circuitons way to the receptacula, perhaps adapted to prevent hybrid-fertilisation. A brokenoff embohs was fomed in at least three species of Latrodectus. A revision of the species is appended.

Living Hydrachnid Larvæ in Trout's Stomach. \dagger-C. D. Soar calls attention to an interesting case. In the course of the investigations carried out by the "Lake Survey" under Sir John Murray, a trout was taken from Loch Ramoch, in the stomach of which Dr. T. N. Johnston found living larva of Hydrachnids. No similar case has been recorded. The larve seem to be very close to the larval forms of Neumumia, a sub)-gemus of Atax.

New Species of Kœnenia. \ddagger-Angusta Rucker describes Konenia (Prokenenie) wheeleri from Texas. She places it beside Hansen's Keneniu (Prokeneniu) chilensis, aceepting Börner's suggestion that the sub-gemus Prokeneniu should include those species possessing lung-saes, and that the sub-qenus Eukeneniu should inchde those species not possessing lung-sacs. A useful table is given of the habitats and diagnostic characters of the known species of this interesting genus.

є. Crustacea.

Colour-Physiology of Higher Crustacea.§-F. Keeble and F. W. Gamble have investigated the structure and function of the chromatophores of certain Schizopod and Decapod crustaceans with especial reference to the effect of light on these organs and on these animals.

Under the infmence of light the secretory activity of certain organs is modified; an acid sulstance appears periodically in "liver" and muscle ; the appearance and disappearance of this acid substance coin cides broadly with nocturnal and diurnal colour-change. In the progressive movements and orientation of the whole animat called forth by light, backgromen is the most important factor, more important than and sometimes reversing the influence of change in light-intensity.

The response of the chromatophore pigments to light is twofold : direct and indirect, the latter through the mediation of the eye. The indirect response alone leads to an conduring redistribution of pigment.

The ultimate effect of monochromatic light on pigment-movements is the same as that of white light, but in both cases the background

[^346]determines the nature and extent of the pigment movements. "Reaction to background" is traceable to the eye, and is probably a consequence of an asymmetrieal distribution of retinal pigment bronglit about not by changes in the amount of light falling on the eye, so much as by changes in the way in which light falls on the eye.

The phenomena presented by the pigments are not exhanstively interpreted by any "protective" hypothesis. The chromatophores are centres of metabolic activity, and from them a noeturnal transloeation of a blue substance takes place. There is evidence that this hlue substance is produced from, and at the expense of the diurnal chromato-phore-pigments. The blue substance passes from the chromatophorecentres, persists for a time in the bodp, and nltimately disappears.

The chromatophore-system of Mysidean Sehizopods is built on a common plan-a primary system-to which colour-pattern is due. But Deeapod Crustacea possess a primary and a seeondary system of chromatophores. The primary system appears in the embryo, is completed in the Mysis stage, and persists thronghont life, but takes no part in colour-pattern. The secondary system arises in an early stage in development, increases in extent thronghout life, and produces the colour-patterns of the adoleseent and adult. The chromatophores of the primary system are profusely branched, few in number, segmentally arranged and centralised; those of the seeondary system are sparsely branehed, numerons, irregularly arranged and deeentralised.

The chromatophores of Mysidx are multicellular organs. Those of the neural group are developel from the epidermis, but losing this comnection aequire a elose relation with the eentral nervous system. The distribution of the primary chromatophore-system follows that of the ganglionie parts of the nervons system. The chromatophores of Decapods are plurimelear connected structures, and their distribution is not eonfined to the gamglionic parts of the nervons system.

The primary systems afford assistanee in the determination of genera and species. They have taxonomic valne both in early and late stages.

As to inheritance, the several adnlt colour-patterns of Palcemon and Crangon are constant and develop direetly. The evidence tends to prove that both secondary and primary chromatophore-systems are inherited. The adult colour-pattern of Hipholyte crumchii is constant, but develops indireetly. The adoleseent possesses a special colourpattern, developed in large measure in relation with the primary system of the zoæa. Both persist thongh concealed by the independently developed adnlt pattern. In Hippolyte varians, several adult colourpatterns occur. They develop indirectly. The primary system is the same in all. The primary system is inherited; the adoleseent colonrpatterns are possilly inherited ; lout the inheritance is immaterial sinee the fimal goal is reaehed by any adoleseent road; that is, the adult colour-pattern of Hippolyte vurians is the result of enviromment.

Statocysts in an Isopod.*-A. Thienemann describes the first case of statocysts in an Isopod. He found two of these organs on the telson of Anthura gracilis which creeps abont between the shells of Baltums improvisus. The organs are more primitive than those of Mysis; thus

[^347]there is a narrow canal opening to the exterior, three long hairs reach the otolith but do not enter it (many penetrating it in Mysis), no nerveendings have as yet been discovered. Extirpation of the organ did not result in any marked change in the movements of Anthurt, which is, however, very sensitive and lies inert when tonched.

Rare Thalassinid and its Larva.*-Millet T. Thompson deseribes the external strncture of the rare Nanshonin crunfonoilps, of which only two specimens have been collected, and the zowa and mysis-stages of the preadolescent development, which find their nearest comnterpart in those of another aberrant Thalassinid Celliaxis altriaticu. The author regards Culliaxis and Noushonia as aberrant forms, probably from pre-Axiid stock, which have retained characters that ally them on the one hand to the more primitive Axiida and on the other hand suggest relationship with genera of the Nephropsidea. Their evolntion has been along lines apart from that of most Thalassinids, especially in the development of the very umsual larval forms.

Antarctic Amphipods. \dagger-Alfred O. Walker reports on the Amphipoda collected during the expedition of the 'Southern Cross' (1589190(1) to the Antaretic Sas. It is, he says, impossible not to be struck with the general resemblance of the collection, both as regrards the number and size of individuals, and the great preponderance of Lyssianassidæ, to such a collection as might be found in the Arctic Seas; and with the equally great difference in these respects from any collection that might be made under similar conditions of depth, \&e. on our own or on tropical coasts. The collection included $2:$ species (15 new) in 17 genera, of which Orcularef is new.

Intermediate Form between Mysis oculata and Mysis relicta. \ddagger Eimar Lünberg deseribes from brackish water in the sonthern part of the Bothnian basin specimens of a Mysis which appear to be in size and in details of antemm, telson, and mopods intermediate between the marine M. oculate and the fresh-water M. relieta.

Abyssal Lysiannassids.s-E. Cherreux deserihes a mumber of new Amphipods of the family Lysimmasside collected by the "Prineess Alice from the deep waters of the Atlantic and the Mediterranem. Six new species are described, one of which, Paracallisoma alberti, is very remarkable. Some of the captures were very interesting, e.g. of a $\dot{C} y r l o-$ caris hitherto known only from Tahiti, lint now found off the Cape Verde Islands, and of a species of Hoplony.r from the Mediterranean.

Anuropus and Bathynomus. $\|-$ H. J. Hansen has made a reexamination of the very remarkable abyssal Isopod Anuropus branchiatus, known only by the single specimen dredged of New (minea by the 'Challenger.' He proposes to establish Aumropus Beddard as the type of a new subfamily, Amuropine, hecanse the differences between its mouth-parts and those of the Cirolmine are so pronounced, that it

[^348]may be considered a practical arrangement to remove Anuropus from the last-named snlufamily, which will now be a much more nuiform and more sharply defined group, mencss indeed some form he discovered which will prove to be a tramsition between Euryblire and Aanropus. After such a discovery the sulfamily Anmropine should be withdrawn. The anthor also contributes some additional and critical remarks to Bouvier's beantiful and exhanstive treatment of Bathynomus gigionteus.

Copepoda from F'aroe Channel.* - Thomas Scott disensses seven species of Copepods, each representing a separate genms, all betonging to the Harpacticida, which were obtained from a single piece of wood dredged from abont 87 fathoms in the Faroe Chamel. Three of the species, Pspulotachidius similis, Lamphante farörnsis, and Cletodes armata, are new ; the others are all more or less widely distributed. The commonication emphasises the desirability of carefnlly examining pieces of water-logged and partly decayed wood which may be hronght up in the dredge or trawl-net. These pieces of wood not infrepuently harbour rare, or evell new, Entomostraca.

Annulata.

Minute Structure of the Alimentary Canal of the Leech. \dagger C. Spiess distinguishes three regions in the alimentary tract of Hirulo meticinalis,-(1) an interior region inelnding huecal cavity and pharynx, (i) a median or stomach region with the eleven paired ponches, and (:8) a posterior or intestinal reqion. The walls are simple and but feebly differentiated. The stomach walls are reduced to two membranes comparable to the gastric mucous membrane in Vertebrates. The stomach-epithelium is glandular, with uniformly distributed secretory cells, like monciparons elements ; but in no region are there differentiated grlands in the strict sense.

The peripharyngeal glandular cells secrete, slowly lat continuously, a product formed of refringent gramulations, and with fermenting power (dissolving fibrin).

The pigmentary layer around the git is formed of a large mumber of simous canaliculi, linet internally with large eells which are also seen in the hood-vessels. They are not hepatic, but they contain exeretory gramles analogons to those in the chforagogen cells of Oligochats, and they eliminate indigo-carmine like the excretory cells on the caeca of Aplerodite.

Distribution and Affinities of Sipunculids. \ddagger-Marcel A. Hérnbel hegins loy giving an accomnt of the hathymetrical and horizontal distribution of Sipuncelus, Phescolosomer. and Phymosoma on the Brittany coasts. He then disensses the distribution of Sipmenlids thronghout the world. The most differentiated species ocemr in warm regions, e.g. Aspidosiphon gitus, Erhinosqhon asperyillam, and Phaseotion manreps. The cosmopolitanism of Sipuneulids is only apparent. They were probably northern in origin and have immigrated towards the equator.

[^349]A seheme of the presmed affinities of the genera and species is sultmitted.

Notes on Sipunculids.* - Mareel A. Hernhel contributes the first part of a series of notes on the eomparative morphology, comparative physiology, and "lhostaties" of Sipmentids. The Priapmlids are considered as the primitive types of Gephyreans from which the Echimids and the Sipunenlids have arisen, the former diversing towards the Annelida and the latter towards the Bryozoa. The structure of Sipmculids is discussed in relation to the mode of life, diet, habitat, \&e., and an interesting contrast is drawn between Sipunculus mulns and Phetenlosoma d'ulgare. This leads on to a somewhat diffienlt " linstatical" disenssion, in which the muscular differentiation in partienlar is mathematically expressed.

Endothelial Derivatives and Pigment-Bodies in Gephyreans. \dagger Marcel A. Hérubel discnsses the peculiar sphernles seen inside living blood-eorpuscles of Phascolosoma milgare. Ther inerease in size, they move, they fuse, they pass into the coclomic flnid. They seem to lee peculiar kinds of pigment-granules, which become inert as they become large, and are finally eliminated.

The blood-corpaseles multiply by direct nuclear division (C'nenot), or by proliferation of certain regions of the endothelim. Herubel disensses the amobocytes and their role in accmmatang pigment-masses in the comnective tissue of the alimentary tract, whence elimination into the lumen of the gut is effected. The fixed ciliated "urus" of I'haseolosomet and the free ciliated "urns" of sipunculids are most important agents in digesting or agglatinating useless or foreign bodies in suspension in the coclomic fluid.

Gonads of Hesione sicula. $\ddagger-W$. Bergmam has heen able to trace part of the history of the hermaphrodite reproductive organs in this Polychret. They are not noticeable except at the climax of the sexnal period. There seems to be protandry, the spermatozoa being formed first. After these disappear the eqgs are liberated into the colom, lont none were found fertilised. The gonads then degenerate and disappear.

Development of Metameres in Salmacina dysteri.§-A. Malarquin has studied the development of the sexually prodnced larva (" oozoite") of this Serpolid, and compares it with what he has previonsly olserved in the asexually produced form ("schizozoite"). When the larva escapes from the maternal tube, where it passes throngh its trochosphere stage, it shows the ontlines of the three regions of the adult worm:-(a) the cephalic region with a pair of eyes and strong cilia ; (b) the thoracic reqion with three seqments; and (r) a wreatly reduced atulominal reqion. In front of the latter, which is practically only a pyoidimm, there is an undifferentiated zone, where future segments arise. The subsergent thoracic segments, fth to meth, result from a transformation and incor-

[^350]poration of segments arising in this pre-abdominal region. The metameres retain a certain plasticity and antonomy which admits of their heing modified and adapted to new physiological or mechanical conditions in the course of development.

Nematohelminthes.

Life-Span of Filaria medinensis.*--Sir Patrick Mamson notes that opportmities for ascertaining with approximate accuracy the duration of the life-span of the guinea-worm are rare, and he therefore gives two cases which substantiate the general view that about a year must clapse between the infection from (yclops and the emergence of the worm on the surface of the skin. The season of infection is correlated with the ammal recurrence of certain conditions of moisture and temperature favourable to the Cyclops and to the development of its parasite.

Unfertilised Ova of Ascaris in Human Fæces. \dagger-K. Miura and Y. Nishiucki describe the appearance of unfertilised ora of Ascuris lumbricoiles in human faces. When they occurred alone, apart from fertilised ova, only females were obtaned from the patient. In the uterus of these females there were no spermatozoa, and the melei of the ova were in a resting stage. Attempts to hatch the unfertilised ova were futile; there was no segmentation. The appearance of the mfertilised ova is cuite different from that of the familiar fertilised ova.

Platyhelminthes.

Life-History and Reproduction of Planaria maculata. \ddagger - Winterton C. Curtis finds that apparently similar specimens of this Planarian collected from different localities show considerable differences in their life-histories. Some seem to have reproducerl exclusively ly fission, others only liy the sexual mode, others by both at different scasons. It may be that the asexual mode replaces the sexual mode for a term of years.

The normal fission in Plumerin maculutu oceurs withont the previous appearance of any furrow at the place of division and withont any previous development of the new organs necessury for tro complete new individuals. It is as if a specimen were cut in two at a definite point behind the phargnx.

In the reqencration after normal fission there is no evidence that the new parts develop hy the transformation of highly organised cells to a simpler type which prodnces the new organs. It seems rather as if the parenchyma included certain cells, distingishable from the parenchyma proper, which are responsible for the new parts in regeneration and also for the sex-cells of the gomads.

The mature gonads are described for the first time, and their development is also traced. A note on the derelopment of the animal makes

[^351]it plain that the adult pharynx does not originate at the place where the embryonic pharyux degenerates.

New Monostome from Snapping Turtle.*-IW. G. MacCallum describes a peculiar Trematode from the lungs and larger bronchial tracts of the river snapping turtle (Chelydrio serpentinct). It seems necessary to establish a new genus in the family Monostomide for this new form, for which the name Heronimus chelydre is proposed. It stands far apart from the other genera in several respects, but especially in the position and nature of the genital opening, in the complicated structure and course of the aterine tract, in the musinal formation of the yolk-glands, in the presence of but one testicle, and in the position of the excretory pore.

Behaviour of Chromatin in Segmentation of Ovum of Gyrodactylus. $\dagger-$ C. v. Janicki finds that in the resting ovim the chromatin is distributed in fine granules in the nuclear area. As division begins the gramules are somehow aggregated into about eight chromosomes which are enclosed in "karyomerites" or mucleoli, as (ioldselmidt described in Polystomum. Subsequently the chromatin passes ont from its provisional hearers leaving them empty plasmic nucleoli.

Peculiar Cestode from Acanthias. \ddagger-Max Lühe describes the proglottis of Uroyonoporus armutus g. et sp. n., from the spiral intestine of dog-fish. The anterior portion of the proglottis is modified into heartshaped attaching lobes, forming a very mobile organ beset on each side with strong spines. The genitalia lie at the pointed posterior end. It seems that this new form represents a special family in the vicinity of the Tetraphyllide, but neither scolex nor chain was seen.

The sroup Cestodaria requires to be broken op, for Curyophyllous and Arehigetes are, as Mrizek has shown, in close relationship, with the Bothriocephalide, while Amphilinn and Gyrorotyle remain, forming a characteristic group, or class, equivalent to 'Trematoda and Cestoda.

Bothriocephalus in the Baltic Herring.s-Guido Sehneider found in the stomach and intestine of Clupect harengus membrus numerons. specimens, the young stage of Bothriotemia proboscidea Batsch ($=$ Bothriocophatlus infundibuliformis Rud.). The well-developed scolex showed the closest resemblance to the charaeteristic head of the adult taperorm, which is so common in Paltic salmon. As salmon devour herring the probability of their being thus infected with Bothriotemia is strong.

Incertæ Sedis.

Evolution of Platystrophia.||-E. R. Cumings has made a study of the morphorenesis of this Palieozoic Prachiopod, griving an outline of the probable history of the genus. Its highest degree of variability is

[^352]exhibited near the begiming (epacme) of its history, and there is a progressive restriction of variability to chamacters of lower and lower taxonomic valne, till finally only characters of no physiologieal importance are affected. A corollary of this law of progressive restriction of variability is the rapid prodaction of new types near the beginning (during the epacme) of a phylum. The notion that speeies are formed by the very gradual inerement of selected variations certainly does not snit the case of Platystrophiu. Given a new and vigorons stock in a favourable enviromment, the initiation of new speeics may take place with great rapidity. The history of the genns affords fine examples of morphologieal erfuivalenee and homoomorphy. The greater part of the history of Plutystrophict is progressive, hat a few genminely retrogressive forms oeem, which are interpretable as due to the acceleration of gerontic changes. The general law is well illustrated, that the older a character, the more persistent it is.

Echinoderma.

Regeneration of the Body of a Starfish.*-Sarah P. AIonks cut arms of Pluturia (Linckite) fascialis at different distances from the dise, and a mumber of single rays prodnced new bodies. The free ray made a new body and the rest of the starfish produced a new ray, and there was very little difference in the rate of growth of each, and no definite place for breaking. The manner of growth is as follows:-The cut codges heal and draw down towards the oral side, then small knobs appar at the end which grow into rays in which the ambulacral furrow soon appears, with the small month in the centre of the rays.

Cœlentera.

Excretory Cells in Hydroids. \dagger - A. Billard deseribes granular amœhoid cetodermic cells in varions calyptoblastic hydroids (Cumpanularia, Obelu, Plamularia, de.), which do not form perisare (as Jickeli supposed) and do not contain reserves, lint are apparently reeeptacles for waste-products. The "excretory cells" are especially abondant at the extremities where growth is rapid, and in old colonies or parts. The gramles are not eliminated.

Some New and Rare Corals from Funafuti. $\ddagger-\mathrm{G} . \mathrm{C}$. Bourne gives a figure of Lophohelin tenuis Moscley, once previously recorded from a 'Challenger' dredge in the Philipines. He deseribes and figures Trochocyuthus reasiformis sp.n. and T '. hastutus sp. n., and indicates how they differ from members of Moseley's gemus Odontocyathus.
 of Corullium are more mmerons, than has hitherto been supposed. He deseribes five new species,-C. juponiom, C. boshuensis, C . sulcutum, C'. konojoi, and C'. inutile.

[^353]North American Scyphomedusæ.* - C. W. Hargitt contributes a useful synopsis of the Stamromednsæ (:3 genera), Peromedusæ (1 gemus), Cnbomedusa (1 gems), and Diseomednse (1:genera) of North American waters.

Prophysema hæckelii. \dagger-N. Leon describes this Gastread, which resembles Haliphysemut tumunowiczii described by Bowerbank as a sponge, and referred by Haeckel to the Gastreade under the title Propilysema. Leon's form, obtained from the island of Radoe, north of Bergen, is in chb-shaped body, 2 mm . in length by $\frac{1}{2} \mathrm{~mm}$. in thickness; the oral surface is free with a circular opening ; the aboral end is fixed by a short, solid stalk, whose base is a plano-convex dise; the wall of the body is thick and withont pores; the ectoderm is a syncytimm with varions kinds of sponge-spicules and sand-grains fixed on to it; the endoderm shows flagellate cells. The anthor sconts the idea that Haeckel conld have called a Foraminifer a Gastread, as Delare and others have suggested. That Prophysema hueckelii sp. n. is not a Foraminifer is certaill.

Porifera.

Carterius Stepanowi Dyb. $\ddagger-$ O. Zacharias notes that this freshwater sponge of Bohemia, Galicia, Hungary, and Russia, has been reported from Mehlingen in the Rheimpfalz by R. Lanterborn, and that it seems also to oceur in the Schöhsee at Plön. Not that Zacharias found the sponge, but he got in the bottom mud numerous flesh-spicnles exactly corresponding to those figured by Lauterborn. Zacharias also calls attention to the fact that while all other fresh-water sponges have species of Zoochlorella as symbions, Carterius stepanouri Dylo. is said by Lauterborn to contain Sienedesmus quadricauda, one of the Palmellacea.

Protozoa.

Influence of Light on Amœbæ and their Cysts.§—Georges Dreyer has experimented with light passing through rock-crystal, throngh mucoloured glass, and throngh hine glass. The results show that the cysts are much more resistant to the destruetive influence of the rars of light than the unencysted amohe are, :30-:3) times more in the case of the rock-crystal, $5 \cdot 5-6$ times more in the case of meoloured glass, five times more in the case of blue glass. Cysts are destroyed in abont 25 mimutes by light passing throngh rock-erystal, in 60-70 mimutes when the same ghantity passes through uncolonred glass, and in $70-80$ minutes in the case of bhe glass. Light passing throngh rock-erystal (nltria-violet rays) kills the amobe $1: 3-14$ times 'plicker than when it passes through meoloured glass, and 18-20 times quicker than when it passes throngh bhe glass ; but in the case of the ejsts the fatal effect is reached $2 \cdot 5-3$ times more quickly with rock-crystal than with uncolonred glass, and three times more quickly than with blne glass.

[^354]Myonemes of Protozoa.*-A. Prenant in attempting a phylorenetic survey of the evolution of muscular elements has begun maturally with the so-called myonemes of Protozoa. He lrings together in an interesting way the longitndinal fibrils or striations of Stentor, Burseria, Prorodon, \&c.; the usually transverse myonemes of Gregarines, longitudinal in Clepsidrina blattarum, Selenilum, and Platyrystis: the comhimation of longitudinal and circular fibils in varions Flagellates, and so on.

Multicilia lacustris Lauterborn. \dagger - E. Penard has made some observations on this interesting form-a spherical or sub-spherical, Helio-zoon-like, multimeleate Flagellate. The $-2-7$ nuclei lie close together in a clear central endoplasm ; the general plasma contains numerons gametes of Pandorina mornm which are captured in a very characteristic way.

Penard finds a delicate periphoral layer or "periplast" (Wassiliewsky and Semn) composed of specially differentiated plasma. He discusses in detail the little romnd grain or "blepharoplast" at the hase of each flagellum. Is it a kinetic centre, a centrosome, or a joint of insertion? The anthor camot at present accept or reject any of the three possible interpretations.

Observations on Monas vulgaris.t-P. A. Dangeard finds that in this species, readily obtained from infusions of hay, the fission is longitudinal and accompanied by a rapid growth in the anterior region, and that the moleus divides indirectly by a teleomitosis comprable to that in Chlamydomonads. The blepharoplast and the "rhizoplast" are very clear in this species, and the former may be compared to a centrosome since it remains included in the ectoplasm during the teleomitosis.

Parasite of Texas Fever. § - . V. Babes has been forced to recall attention to the fact that in 18ss he discovered and described the peculiar parasite-midway hetween Bacteria and Protozoa-which causes the hemoglobimmia of cattle known as Texas Fever, Tristeza, de., and the "Carceag" of sheep.

Myxosporidian Parasite of Geophilus.|| - Howard Crawley describes Nosemu, yeopliti from the intestine of (icophilus. The irregular form and multimucleate condition of this new Sporozoon indicate a position among the Myxosporidia. Its occurrence as a free form in an Arthropod seems to warrant placing it, at least provisionally, in the gemus Nosemu. The ohservation is interesting in view of the fact that this is the first recorded case of a myxosporidian heing fomd in a myriapod. While Geopmolus is parasitised ly a Gregarine (Rhopatonia geophili), by a Coccidian (unidentified), and by this new myxosporidian, infection is only occasional. The comparative immonity is donbtless due to the solitary halit of this centipede.

[^355]Plasmodium præcox.*-P. Argutinsky has been able to stndy in particular the pitting (Tïpfelnmy) of the margin of the erythrocytes bearing the "half-moon" stages of the Tropiea and Tertiana parasites.

Parasite of a Central South American Horse Disease. \dagger - 0 . Voges has found that a distinct form of Trypunosome (T. equinu sp. n.) is the canse of Mal de Caderas, a serions fever-disease associated with hemoglobinuria, hematmria, rapid and great oseillations of temperatme, and so on. It only ocenrs in swampy regions and may be kept from spreading by shifting to a dry quarter. It may be spread by inoculation. but is not contagrious. The agent in its dissemination is some suetorial insect, but whether the agent is T'abanus or Musca brare or a mosquito is uncertain.

Trypanosomiasis of Horses in the Philippines. $\ddagger-\mathrm{IV}^{\circ}$. E. Musqrave and N. E. Williamson sulmit a preliminary report on this disease. They discuss (1) the history of the epidemic in the Philippine Islands, involving a direct loss of not less than two million dollars in 1901 and 1902; (2) the mode of transmission and infection,-trypanosomiasis is a wound-disease, the infections organism being hronght into contact with a wonnded surface by insects, with this further complication that "Manila rats" are also infected with the Trypanosoma of the horse disease ; (3) the symptoms and diagnosis ; and (t) the preventive measures throngh proper quarantining and by enforcement of efficient sanitary regulations.

Development of Gregarines.s-L. Leger and O. Dubosq contribute some notes on the life-history of Stylorhynchidæ and Stenophorida, as represented by Stylorhynchus longicollis F. St., and Stenozhora brölemanni.

[^356]
BOTANY.

GENERAI,
Including the Anatomy and Physiology of Seed Plants.
Cytology, including Cell-Contents.
Mitosis in Synchytrium.*-- F. L. and A. C. Stevens have studied the behaviom, during division, of the primary nuelens of S. decipiens which invades single cells of the hog peannt. The unclens attains to a very large size, having a diameter of :0\% μ with a mucleolus over 11μ aeross. The muelear wall is very distinct and the chromatin is collected on the wall and around the nocleolus. The first sign of division is the vacuolisation of the nucleolus, then the membrant loses its sharpness, becomes gelatinous and finally disappears, though the outline of the nuclens is not lost. A spirem condition of the chromatin is meanwhile prodnced by the globules of the coarse and lumpy chromatin becoming elongated and forming threads which are crossed and tangled in inextricable confusion. During these stages the nucleolus disappears and the nuclens becomes much shrmken, leing often reduced to half its diameter. The threads of the spirem group then gradually form a small spindle which lies in the middle of the nuclear area but does not extend to its periphery; the spindle shows no centrosomes or radiations. On the spindle only a few short chromosomes are found so that a great condensation or an actual reduction of the chromatin must take place. The chromosomes are apparently four in number and after their polar migration the spindle lengthens, as in Albugo Bliti, and the telophase is similar to that described for that form.

Mitosis in Pellia. \dagger-C. J. Chamberlain in his investigation deals with the first two muclear divisions in the germinating spore. For comparison, however, mitosis was studied in other phases of the life-history. The principal conclusions are as follows. The stimulus to muclear division comes from within the nuclens. The asters are of eytoplasmie origin. The eaps come from the onter portion of nucleur membrane or from a Houtschicht surronding the nuclens. The appearance and disappearance of the astral rars suggest that they are concerned in the morement of unclear matter. The centrosphere is formed by the astral rays, not the rays by the eentrosphere. The centrosphere of Pellith represents a condition intermediate between the well-defined centrosphere of some of the thallophytes and the centrosomeless condition of the higher plants. The spindle-fibres, except the mantle-fibres, grow from one pole to the other. In early stages two half-spindles are ofteu distinguishable.

[^357]
Structure and Development.

Vegetative.

Seedling of Torreya Myristica.*-Edith Chick describes the morphology and internal structure of the members in seedlings of from 16-19 months, of this gymnospermous plant. The author lays stress on the retention of certain primitive characters. The lohing and adhesion of the hypogeal cotyledons recalls the state of affairs in the two primitive genera Zamia and Ginkgo, and the presence of centripetal wood in the cotyledon is of interest from this point of view ; the transfusion tissue has the appearance of being formed from the barenchyma outside the bundle rather than as originating as a direct extension of the centripetal xylem. The method of transition from root-structure to that of the hypocotyl and the petioles of the cotyledons is somewhat exceptional.

Pathological Plant-Anatomy. \dagger-E. Kiister deseribes in considerahle detail the anatomy of diseased or abmormally developed parts of plants. The subject matter is considered under the following headings. I. Restitution, where changes in growth, indneed by sections and wounds. lead to the new formation of the cut-off parts, or to proliferations of varions kinds. II. Hypoplasie, or arrested development due to various inhibiting canses. III. Metaplasie, or progressive changes dne to overstimulations which lead to structural changes in excess of the normal. IV. Hypertrophie, where the cells attain inordinate dimensions due to excessive growth while young and turgid, e.g. most galls. Y. Hyperplasie, inchuding those abnormalities which arise from an inordinate inerease in the average number of eells. In a concluding chapter the anthor gives a general account of the pathological processes themselves.

New Secretory Apparatus in Conifers. \ddagger - G. Chanveand has discovered in members of the Conifere true laticiferous elements of two kinds : the one formed of a series of more or less clongated elements arranged end to end, the other of single elements of indefimite length but umbranched. Both linds may oceur in the same species, e.g. in the cedar. They show considerable differences in different plants, so that it is necessary to deseribe them specially in each species. Speaking generally, the wall is thin and not distinguished by any character from the wall of neighbonring parenchymatous cells. The contents are withont colour or slightly colonred, gramlar, with suspended drops, forming an emulsion. They are fonnd in different parts of the plants but especially in the pith of the root, while in the stem and leaf they are most abundant under the epidermis. They appear rery early, being well developed in the embryo; they are especially noticeable in young plants. Their mumber, which is generally very large, is variable, but their distribution in different parts of the plant body is constant for a

[^358]given species, and affords distinctive specific characters. The laticiferous elements oceur in the different tribes of the family.
\mathbb{K} Üster, E. - Beobachtungen über Regenerationscrscheinungen an Pflanzen. (Observations on regeneration in plants.)

Beil. =. Bot. Centralbl. Orig. Arbeit, XIV. (1903) pp. 316-26 (6 figs. in text).

Reproductive.

Lagenostoma Lomaxi, the Seed of Lyginodendron.*-F. W. Oliver and D. H. Scott give an account of the struetmre of this seed which oceurs in calcareons nodules of the lower Coal-measures. It approaches the Gymmosperm type in that the intermment and meelhs are distinct in the apical region only, the body of the sead whith contains the large single macrospore with traces of prothallial tissue, showing complete fusion of integumental and nucellar tissues. The seed is remarkable in having a large nucellar pollen-chamber, aromel which the free part of the integument forms a complicated envelope composed of radiating chambers, usually nine in number. A single vasenlar londle enters at the chalaza, and branches below the macrospore into nine radially ruming hondles, each of which passes to the apex of the seed. When joung, and sometimes also at maturity, the seed is enclosed in a cupnle, extending in young specimens, ahove the micropyle. The pedicel and cupule bear numerous capitate glands which closely agree with the glands on the regetative organs of Liginodendron. Oldhamium. The strncture of the rasenlar bundle in the pedicel strengthens the conclusion that the seed belongs to Lyymodendrom. The evidence thas indicates that in a transitional type, such as L. Oldhaminm, with leaves wholly fern-like in strncture amd form, but with decided Cycadean as well as Filicinean charaters in the anatomy of stem and root, the seed habit had been as fully attained as in any known palæozoic Gymnosperm. Probably many other of the plants grouped under Cycadofilices also possessed seeds.

Development and Structure of the Seed-Coat in Gentianaceæ. \dagger J. Guerin gives the results of his investigation of 30 genera, including 204 species of this order. With the exception of the saprophytic Voyrion and of Obolurim viryinich, the ovnles of which are naked, the ovule of Gentianacee has always a single integroment. The number of layers which this comprises is very rariable ; in the Menyanthoidere it reaches 16 to 20 , while in the Gentianoidea there are fewer, $10,8,6$, or in some species of Gentiona only 2 or:3. In the Gentianoidea the imermost layer shows no peculiarity, in the other tribe it is early characterised by the radial division and elongation of its cells. In the Gentianoidea there is no vascular bundle in the integument, in the Menyanthoideæ the vasenlar bundle is well developed. The embryo-sae which by absorption of the nucellus is in contact with the integument, is generally very small, but in some (ientians it hecomes very large, and the antipoolal cells are well developed and often numerons.

The course of development of the seed-eoat is different in the tro tribes.

[^359]In the Gentianoider the orular integument hecomes gradually absorbed from within, the extemal layer alone persisting to form the testa ; in some lientians the antipodal cells have a digestive function. In the Menyanthoidea absorption takes place at first outwards from the most internal layer (tapis) which seems to exercise a digestive part on its neighbours, itself remaining intact till an adranced stage of development is reached. The absorption of the integument is less complete than in the other tribe; in Menyunthes foliolute the testa comprises fifteen layers of hard pitted cells. The single later which forms the seed-coat in the Gentianoidere shows mumerons structural modifications.

The anthor's researches confirm the previons opinion, based on morphological and biological characters, and on the anatomy of the vegetative organs, that the Gentianacea fall into two well-marked subfamilies Gentianoider and Menyanthoider.

Abnormal Flowers of Helenium autumnale.* - W. C. Worsdell gives the results of his examination of a number of abonormal heads of this autumn-flowering composite, and diseusses the morphological bearing of the fatets elicited. The abnormalities were due to a leaf-like development (virescence) of the various floral members associated with a proliferation of the axes. Pappus, corolla. stamens, and carpels were all replaced in various degrees by green leafy structures. The cause of the abnormal growth was presumably due to the stimulation of a tiny Phytoptus which was found in the aberrant flower-heads. The author insists on the importance of such sports as aids in the solution of prohlems in morphology.

Fa utir, A.-Beiträge z. Anatomie u. Biologie der Früchte u. Samen einiger einheimischer Wasser- und Sumpfpflanzen. (Anatomy and biology of fruits and seeds of some endemic water and uarsh plants.)

Beih. z. Bot. Centralll. Orig. Arbeit, XIV. (1903) pp. 327-73 (3 pls.).

Physiology.

Nutrition and Growth.

Nitrogenous Metabolism in Minute Algæ. \dagger - Harriette Chick describes a new species of Chlorella, a unicellular green alga, C. pyrenoidosa, which differs from C. vulyaris in having a conspicuous pyrenoid. It occurs in sewage, and was also found to have grown in dilnte ammoniacal solntions. The author has studied its nitrogenons metabolism in a series of cultures and finds that it prefers to have its nitrogen presented to it in the form of ammonia or ammoniacal compounds ; among the latter, wrea, uric acid, \&e., rank high in nutritive value. It appears also that the ammonia after leing absorbed is elaborated into albminoid ammonia. The presence of glucose in a culture liquid causes a definite change in the chlorophyll-body and a general stimulation of growth. A similar effect has been noted by other observers in three other simple green algw, inchading a species of Chlorella.
P. G. Charpentier \ddagger has studied the method of assimilation of

[^360]nitrogen in Cystococcus humicola, and conclndes that the alga does not use the nitrogen of the atmosphere. It readily assimilates nitrates both in light and darkness, and probably acts by reducing them in part to an ammoniacal condition. It makes use with equal facility of ammoniacal nitrogen probably by means of a partial oxidation ; light is not an indispensable condition. It can nse the nitrogen present in organic compounds, such, for instance, as asparagin and peptone.

Nutrition of Plants deprived of their Cotyledons.*-G. André obtains the following results by depriving seedlings (of Haricot d'Espagne) of their cotyledons at a very early stage. The removal is followed by a complete check to vegetation; no increase in dry weight was observed in the two days following the operation. In the fortnight following the removal the dry weight of 100 plants increased by 51.5 g . of which $8 \cdot 6 \mathrm{~g}$. represented mineral matter. In the same period control plants with cotyledons showed increases of 129 g . and 19 g . respectively.

The author finds a remarkable parallelism between the relative absorption of nitrogen and of phosphoric acid in the two sets of seedlings.

In a later commmication \dagger the anthor describes the variation in the amount of potash and organic matters in a similar series of experiments.
Klebs, G.-Willkürliche Entwickelungsänderungen bei Pflanzen. Ein Beitrag zur Physiologie der Entwickelung. (Arbitrary changes in plant development. A contribution to the physiology of development.)

Svo, iv. and 166 lי $1 .$, Jena (Fischer) 1903.

Irritability.

Resistance of Seeds to High Temperatures. $\ddagger-\mathrm{H} . \mathrm{H}$. Dixon describes the results of experiments on the maximum temperatures seeds can withstand without losing their germinative power. The seeds were dried and then exposed for at least one honr to the higher temperature. Afterwards they were sown on moist sand. The highest temperatures recorded, after exposure to which germination was possible, were $1 \cong 1^{\circ} \mathrm{C}$. with Medicago sativa, 120° with Convolvulus tricolor, 118° with Avena sativa and Hordeum distichum. The time needed for germination is increased by exposure to temperatures near the maximm. Long exposure to a comparatively low temperature may prove more fatal than a short exposure to a highi temperature.

Filifpi, Domenico.-L'azione degli anestetici sulla transpirazione dei vegetali. (Action of anæsthetics on transpiration.)

Atti d. Soc. Tosc. Sci. Nut. (Pisa) Memor., XIX. (1903) pp. 91-105 (2 pls.).

Chemical Changes.
Nature of Protoplasm and Enzymes.§-Th. Bokorny records the results of his research on the attion of various reagents on living cells. He noted the action of alcohol of different percentages on yeasts and

[^361]also on other plants. He formd that invertin had a great power of resisting the effect of alcohol. Another series of experiments was made to test the effect of aeids.

Assimilation and other functions of the protoplasm were not hindered by the presence of 1 p.c. of acid, but most enzymes were weakened if not destroyed.

Proteolytic Ferments.*-M. Javillier continues his researches on the ferments present in the higher plants. He finds in the cell-sap of the ivy and many other plants a casease which carries the digestion of casein beyond the peptone to the acid-amide stage, quite comparable with that which M. Dnclaux has discovered in culture liqnids of Tyrothrix. The sap of the ivy also contains a gelatinase, that is to say, the enzyme liquefying gelatin, which is so wide spread among microbes, yeasts, moulds, and phanerogams, but which fails to digest coagnlated egyalbumin or fibrin, either in an alkaline, neutral, or acid medium. The author's experiments, besides extending to the higher plants the existence of the easease which has hitherto been known for microbes and fungi, denote for it an individuality comparable with that of trypsin, reserving this name for the ferment which digests fibrin and eggalbumin in a nentral or alkaline medium. They show further that casease and gelatinase are two allied enzymes with parallel properties, or are perhaps identical.

The anthor finds also in the ivy the ferment discovered by Colnnheim in the intestinal secretion of mammals, namely, erepsin, which while mable to attack albomen or fibrin, trimsforms peptones and albumoses into crystallisable prodnets.

General.

Origin of Angiosperms. \dagger--J. M. Conlter discusses the common or independent origin of Monocotyledons and Dicotyledons, the conchision being reached that they are independent lines. In case the two gromps prove to have a common origin, evidence is advanced to show that the Monocotyledons represent a specialised offshot from the Dicotyledons, contrary to the recent general impression that the Monocotyledons are the more primitive. The origin of Angiosperms from Gymmosperms is shown to be untenable; and even such heterosporous Pteridophytes as Isoetes and Selaginella are very improbable ancestral forms. The general conclusion is reached that the Angiosperms have been directly derived from the eusporangiate Ferns, the transition forms to the Monocotyledons being unknown ; but the transition forms to Dicotyledons being represented by the abundant and problematical "Proangiosperms" of the early Cretaceous.

Myrmecophily in Macaranga triloba. \ddagger - Winifred Smith suggests the oceurence of myrmecophily, as a result of examination of limited material brought from Singapore. The internodes of the young stem are hollow, and in them were found adult ants with pupe and larve.

[^362]Cup-shaped extra-muptial nectaries oceur at the serrated tips of the leaves, and food-bodies, which may contain proteid material, are found on the imner protected surface of the stipules. There is, however, no evidence that the presence of the ants is in any way an advantage to the plant.

Monograph of the Genus Cardamine.* - O. E. Schnlz gives a general account of the morphology of the gemus, followed by a discussion of its affinities, georraphical distribution, and the hypothetical origin of its subdivisions. The larger part of the paper is occupied by a systematic account of the genus and its species, with full descriptions and notes on distribution.

African Flora. \dagger-The contimuation of this work muder the editorship of Dr. Engler comprises mainly a description of new genera and species in the following orders of seed-plants:-Capparidaceæ and Ochnaceæ (hy E. Gilg), Emphorbiacee (hy F. Pax), Verbenaceæ and Malvaceæ (by M. Gürke), Tiliaceæ, Sterculiaceæ, A pocynaceæ, Asclepiadaceæ, Bignoniaceæ, Rnbiacer, and Commelinacere (by K. Schmmann), and Myristicacee (by O. Warburg).

Flora of Ferro. \ddagger - I. Bornmüller describes a new' species of Senecio (S. Mfurrayi) from the island and gives a brief general account of the flora of this small member of the Canary group, and "the most western point of the old world."

Bermuda Islands.§-A. E. Verrill gives an accomnt of the character and origin of the original flora of the islands, as far as is possible from available information, and discusses the destructive effect upon it of the wild hogs (before $161 \ddot{\text {) }}$) and of the plague of wood-rats (1614-18). Drouths and the extensive deforesting of the islands loy the earlier scttlers also had a prejudicial cffect on the native vegetation. The anthor gives an interesting historical account of the principal trees-the Bermuda palmetto, cedar and yellow-wood, and a list of the more important introduced plants including weeds.

Mexican Leguminosæ.||-M. Micheli has given a systematic aceount of the members of this family collected by Eugene Langlassé in the States of Michoacan and Guerrero. A new genus, Goldmamin (Mimnsece) and a large number of new speeies are described, and illustrated in excellent quarto plates.

Amazon Flora. T-T. Huber gives a botanical account of the rubberyielding plants of this resion, and describes two new species, Herect viridis and Sapium Marmieri.

The same author** supplies a systematic list, with deseriptions of new species, of the ferms and flowering plants collected or observed in

[^363]\dagger Op. cit., xxxiii. (1903) pp. 209-384. \ddagger Tom. cit., Beibl. 72, pp. 1-14.
§ 'The Bermuda Islands.' Trans. Connect. Acad. Arts. and Sci., xi. (1902) pp. 413-956 (40 pls . and figs. in text). 'Changes in the Flora due to Man,' pp. 571658.
${ }^{\|}$Mém. Soc. Physiq. et Hist. Nat. Genève, xxxiv. (1903) pp. 243-94 (28 pls.).
IT Bolet. Mus. Para.. iii. (1902) pp. 345-69.
** Op. cit., pp. 490-8 (map and 4 pls.).
the region of the "Furos de Breses," and also contributes a general aeconnt of the physical geography and veretation of the area, illustrated by a map, sections, and photographic reproductions.

Arcangeli, Alceste.-Il mimetismo nel regno vegetale. (Mimicry in the plant world.) Atti d. Soc. Tosc. Sci. Nat. (' 'isil) Memor., XIX. (1903) pp. 268-329 (1 pl.).
Sestini, Fausto.-Studi sulla composizione chimica delle Foglie del gelso. (Study of the chemical composition of the mulberry-leaf.)

Atti d. Soc. Torc. Sci. Nat. (Pisa) Memor., XIX. (1903) pp. 330-9.
Vogler, P.-Variationskurven bei Pflanzen mit tetrameren Blüten. (Variationcurves in plants with tetramerous flowers.)

Vierteljohrsschr. Naturforsch. Ges. Zürich, XLVII. (1903) pp. 429-36 (4 figs.)
Wolf, E.-Neue asiatische Weiden. (New Asiatic willows.)
Engler, Bot. Juthrl.. XXXII. (1903) pp. 275-9.

CRYPTOGAIMS.

Bryophyta.

Morphology of Muscineæ.*-F. Vanpel endeavours to clear up some morphological questions. As to the inflorescence of Mnimm, he finds it to be of compound origin, the first antheridium arising from the apieal cell, the latest segments of which are used up in forming other antheridia. It is also of compound origin in Polytrichum; lut here the apical cell gives rise to the last antheridia. Certain cells of the paraphyses of Mrium and Polytrichom, and of the antheridia of the latter, form a brown substance, the function of which is to collect water for the benefit of the antheridia. As to the mechanism by which the antherozoids of hepaties are expelled, it is ly the swelling of mucous matter in the antheridial-wall cells. The author also describes the structure of the rhizoid-bmodles of the Polytrichacea and shows that their function is to conduct water as well as to attach the plant, and that they produce buds.

Rhizoids of Mosses. \dagger - H. Paul joins issue with the views of Haberlandt, and partly with those of Gocbel, as to the function of the rhizoids, and atcepts those of Detmer. For he finds that the main function of rhizoids is purely meehanical, mamely to fasten the protonema or the plant or parts of the plant to the substratum; and that such other functions as absorption of water, \&c., are subsidiary. As a proof of this he notes that the rhizoids are most strongly developed where they are most needed as organs of attachment. for instance in epiphytic mosses. The existence of saprophytism in mosses he thinks to be doubtful for certain reasons which he gives. As to saxicolous species, it camot be shown that their rhizoids attack the stone ; it is rather the water which is held in the tuft that dissolves the substratum. The rhizoids of submersed species are thicker and stronger in proportion to the strength of the current. Floating mosses have no rhizoids at all ; and it is a strong argument that throughout the moss kingdom rhizoids are not produced where organs of attachment are not needed.

[^364]Chromosomes of Funaria hygrometrica.* - R. Beer deseribes a simple method by which the distribution and momber of the chromosomes in the dividing cells of mosses can be easily studied, despite the smallness of the nuclei. A preparation of living spore mother-eells, having been teased out in a physiological salt solntion, was irrigated with a little 1 per cent. potash solution containing a trace of Congo-red. The chromosomes were immediately revealed distinctly, and were seen to number four in the dividing cell and to be of a long rod-shape. By division eight danghter-chromosomes are produced, four of which travel to each pole.

European Mosses. \dagger - G . Roth is issuing a general illnstrated flora of the mosses of Emrope, which will oceupy two rolumes to be published in ten or twelve parts of 128 pages and 10 plates each. The total cost will he nearly :37. The first part contains the general introdnction and some of the cleistocarpons mosses. The anthor deseribes the main anatomical features of the mosses, their modes of reproduction, their distribution according to zones, soil, \&c., and the part they play in the economy of nature. He disensses the collecting and naming of specimens, and the principal schemes of classification, and adds an extensive bibliography: In the special systematic part of the work he provides deseriptions of the tribes, families, genera, species, \&c., with notes on the distribution, and figures each species.

American Mosses. $\ddagger-A$. J. Cront is issuing a non-technical handbook of the more common mosses of the north-eastern United States, which will be completed in four or five parts, each costing a dollar. The purpose is to enable students to identify with facility some 200 species, and to supply them with a knowledge of the structure and natural history of the plant. The work is freely illnstrated with figures from standard works, and where necessary contains keys to the families, genera, and species. The introdnction treats of classification, collection and preservation of specimens, methods of microscopical examination, life-history and structure of the plants. An illustrated glossary is provided. The descriptions are written in simple language, and are not eneumbered with unnecessary detals.

Asexual Reproduction.s-F. Cavers gives a résume of the prineipal results which have been published hitherto upon asexnal reproduction in hepaties, together with some new ohservations of his own. He passes in review the tribes and families of the order, calling attention to the various modes of this form of proparation that have been observed in numerons species. Broadly speaking, it is accomplished in three wayseither by the death of the old parts and the setting free of the younger parts or branches as independent plants; or ly the production of specialised gemme ; or by the detaching of caducons adrentive shoots. In some species of Anthoceros asexnal propagation takes place by means of tubers. As long ago as 1754 Necker describes the process of regenera-

[^365]tion of the gametophyte from small fragments of the plant; and later writers have shown that practically every cell possesses a latent capacity for regenerating the whole plant. Apospory has been observed by W. H. Lang in Anthoceros lovis, fragments of the sporogonial wall having been cultivated into young gametophyte thalli.

Biology of Hepaticæ.*-F. Cavers publishes notes on some points in the biology of hepatics, limiting his remarks to the vegetative organs and the varions ways in which these are adapted to the needs of the plants. Treating principally of British genera and in particnlar of the thalloid forms, and illustrating his points with figured seetions of the plants, he brings out the main differences of structure, air-cavities, stomata, assimilative tissues, mucilage cells, ventral scales, \&c., and shows what part they play in the life of the plant and how they may be modified to suit a change of environment.

Thallophyta.

Algæ.

Fresh-water Algæ. $\dagger-W$. Schmidle publishes some critical notes on several genera. He finds that the difference between Hecmatococcus and Chlamydomonas is quite marked. He has studied H. Bütschlii and H. pluviulis and finds that a mueleus is always present in the centre of the cell and is always surrounded by a red oil-drop, which renders the nucleus indistinct. The size of the red spot varies greatly and from it the protoplasm extends on all sides, passing over into the chromatophore, and apparently penetrating into the psendopodia. The chromatophore is deseribed, as well as all other details of the cell-strneture, and the author is of opinion that Hematococcus and Chlamydomones cannot even be regarded as belonging to the same family.

On the other hand, Stephanosphuera plavialis Cohn is regarded by the anthor as being closely connected with Hermatococcus Buitschlii, and he suggests the name of Sphærellacea for a sub-family of Chlamydomonadinere, to include these two genera.

Then follow remarks on C'hlamyilomonas and Chlorogonium. The former genus has an extremely variable ehromatophore, but as the forms it assmes fall more or less into two types, the author divides the genus into two sections, Euchlamylomonas and Chlorogoniella. The speeies belonging to each section are emmerated. An amended description is given of Chlamydomonas mueicola Schmidle, and points of relationship are shown between Chlamydomonas and Chloroyonium.

Charterit forms the suljeet of the next note, and a new speeies, C. alpina, is described. The genus is divided by the author into two groups : one having the pyrenoid in front of the nnelens = Corbiert, and the other having the pyrenoid behind the nueleus $=$ Eucharteria. A key is given to the speeies in each group.

The species of Chloromonas Gobi are next dealt with, a new species is deseribed, C. alatima, and a key to the speeies of the genns is given.

[^366]Finally two new genera are described, each containing one species, Planctonemu Lauterloorni and Dictyosplueriopsis palatinu.

Nuclear Stains for Fresh-water Algæ.*-Catherine Hillesheim has tried varions fixing and staining agents for species of Spirogyra, Zygnemu, Microspora, and Hormiscit zonata; also for specics of Cladomhore and for Hydrodictyon reticulutum. The best fixing agent was chromic aeid. and the most successful stain was a mixture of borax and ammonia carmine, in equal quantities.

Dictyosphæria favulosa. \dagger - Caroline M. Crosly has heen able to add to our previons knowledge of this species in certain details. She regards Dictyospheritt as a low type of Valoniacea hecanse of (1) the primitive, closely appressed branched system, and (\because) the well-dereloped rhizoids.

Under histology she deals with the structure of the "cell-walls" ; the "inner cell-strengthening," which she describes in detail ; and the "external cell-strengthening" by means of haptera. The origin and development of the haptera are then deseribed, as well as the rizoids. Under cell-contents, the author treats of the endochrome, prenoid, starch-grains, oil-drops, and cell-sap.

Stapfia cylindrica. \ddagger - C. J. Brand finds this alga on the north shore of Lake Superior and compares it with the plants of Nordstedt, Wittrock, and Lagerleim No. 136*), distributed under the name of T'etraspora cylindrict Ag. f. enteromorphoides Lagerbeim. He also compares it with the specimens distributed ly Rabenhorst as No. 2:44, Tetraspora cylindrica, and draws up a diagnosis of the Lake Superior plant.
1 Algological Notes.s-Under this beading N. Wille continues the record of his studies on the lower alge. Note is. contains an account of a new Carteria, (. sultcordiformis, found in fresh-water poddles in places where fish are dried near Aalesund in Nomwar. Other specics belonging to Chlamydomonas and Brachiomonts were found with it.

The genus Spleterelle is the subject of note x. This is synonymous with Hematococus Ag . and the author points ont the great difficnlty of distinguishing the genera Hermutococius As. (= Spherella Somm., Chlamylcioccus A. Mr., \&e.) and Chlamylomonas Ehr. He is inclined to regard as an important character the presence or absence of pseudopodia, and to reject any distinction fomded on hæmatochrome. He separates Spherella nivalis Somm. from Hemutococcus and places it in Chlamydomonas. For the former genus he draws up a generie diagnosis and places in it the two species, H. plavialis Flotow and H. Bütschlii Blochmann. For both species he qives full synonymy and description. A list follows of six species which the anthor excludes from Hematococcus, with references and remarks.

Note xi. contains a morphological and systematic account of the genus Chlamydomonas. The varions polymorphic stages of the species

* Minnesota Bot. Studics, iii. (1903) pp. 57-9 (1 pl.).
\dagger Tom. cit., pp. 61-70 (1 pl.). \ddagger Tom. cit., pp. 71-4 (1 pl.).
§ Nyt Mag. Naturvidenskab., xli. (1903) pp. 89-185 (2 pls.).
are described, and the likeness between this gems and Chloromonas Gobi is disenssed. A genealogieal tree of these and allied genera shows the author's views as to the relationship existing between them, starting from Polyblepharidea. Certain new species are described very fully and a key is given of the species of Chlemydomonas and Chloromonas, followed by descriptions of the less known species. Finally $2: 3$ donlotful species are enumerated which are either incapable of identification or cannot be included in either of the above genera. References and notes accompany each name.

Note xii. shows that Splecrocystis Schrocteri Chod. is identical with Glaococtus mucosus A. Br., and the author agrees with A. Brann that its systematic position is with the Chlamydomonacee, rather than with the Palmellaceæ, where Chodat placed his speeies. The author considers that the genus Gloococcus together with Chlorogomium and Physocytiam form a connecting link between Chlamydomonas and Tetrasporacea.

Note xiii. deals with Pteromonas miratis Chodat, which according to the author is already known as Astasia mivalis Shuttleworth. The material at his disposal does not allow him to pronounce definitely on the true position of the species, but he is inclined to regard it as representing a new gemus. He gives details as to the structure and cellcontents.

In note xiv. the author shows that Cerasterias niralis Bohlin must not only be excluded from that gemus but must be reckoned as a fungus. The name Chiondster is proposed for it and a description of the genus is drawn up. It is suggested that it may helong to the Chytridinear or it may represent a special family; and that it has branched off from the algal genus Teträ̈lron, having adopted a saprophytic mode of life and so lost its chlorophyll.

Spores of Vaucheria.*-H. C. Bastian describes stages in the resting and germinating spores of V.racemosa. He finds in each resting spore one or more heaps of pigment-granules, the refuse products of molecular transformation. They are masuromnded ly any bounding membrane. In the germinating spore these pigment-heaps are said by the anthor to apnear as perfeet spheres with sharply defined outlines and gradually to exhihit independent morement. He considers that these bodies pass throngh certain definite developmental phases and eventually become independent amoboid animal organisms, which hare taken origin from the substance of the Taucheria plant.

Nitella batrachosperma. \dagger - G. Lilley redescribes and figures this plant. It grows somewhat scantily in very shallow water in Pike Lake near Duluth, and has a ride distribution in Emrope and has been reported from Anstralia.

Chlorochytrium. $\ddagger-\mathrm{H}$. Charlton Bastian has examined specimens of Lemna minor, L. gibba, and L. trisulder, and has studied the various stages of Chlorochytrium Kinyanum growing within the intercellular spaces

[^367]of their leaves. He describes and figures various stages in the lifehistory of the Chlorochytrium and states that the fission-products of the alga are often associated with diatoms. These diatoms appear to be almost always immature, and the anthor can only account for their presence inside the Lemua by one of two hypotheses. Either (a) the diatoms have, like the algæ, entered through the stomata; or (b) they have been produced it situ by a transformation of the fission-products of the alga. A certain number of reasons are adduced to show that the latter of the two hypotheses is in the author's opinion the correct one.

Structure and Division of Diatoms.*-C. Mereschkowsky publishes a preliminary report of his latest researches on this subject. He gives details of the structure and mamer of division of Pimutaria, Navicula, Gyrosigma, Statroneis, Neitlium, Achnanthidium, Cymbella, a new genus Placoneis, Sellaphora, Microneis, Eımotite, Nitzschia, Hantzschiut, C'amplodiscus, Suritellu, Stenopterobia (of which the author describes a new species), Amphiqrora, Statronella, Tabellaria, and Fragilaria. Figures are given showing the division in most of these genera. The author concludes his paper by a note on the "law of altermation of the plane of division," He finds that along the line of evolution the plane of division changes regularly and alternately from longitndinal to transverse, from gronp to gromp. Thus, if one follows the line of evolution of the Raphideæ, the genus Libellus, which may be considered the general ancestor of the Polyplacate, divides longitudinally. The next group, Diplacate, represented by Nuticult, \&c., divides transversely. Tetraplacate, the following group, divides longitudinally, and so on. The author does not attempt to explain this interesting fact, hut he suggests that there may be something in common between the alternation in the division of the growing points of such algae as Splucelarie, Chretopteris, Clatostephuts, \&c., and the alternation of division in the successive gromps of diatoms. In the one case the time occupied to produce the alternation is limited to the formation of successive cells in one and the same plant; in the other case a change of the plane of division demands an immense length of time, sufficient for the evolntion of a new group.

Auxospores of Diatoms \dagger - C. Mereschkowsky gives a full and lucid account of the varions types of auxospore and their mode of formation. In doing so he disagrees on certain points with G. Karsten, principally concerning the evolution of the types and their respective order of development. As presenter by Mcreschkowsky, the auxospores may be divided into two classes : (1) Asexual auxospores, formed withont copulation and from a single individual ; and (2) sexual auxospores, formed by the copulation of two cells. These classes are found to coincide with the division of diatoms into immobile and mobile, the asexual auxospores being characteristic of immobile, the sexnal anxospores of mobile species. The fact that these two forms of classification on different lines coincide, strengthens the present anthor in his views as to the evolution of the various types.

[^368]The first class is divided into two types. I. An anxospore formed of a single mother-cell (in this division there is one sulb-type). II. Two auxospores formed from a single mother-cell (here there are two subtypes).

The second class contains three types: III. Two mother-cells divide into two sister-cells, each half copulating with the half of the other individual and forming an ansospore.
IV. Two cells form an auxospore (there is a sub-type here to contain Cocconeis). V. Two cells come into contact but do not copulate, producing two anxospores,-reduced sexuality.

Details are given concerning the behaviour of the nuclens and nucleolus in these rarions types, as well as explanatory figures and diagrams. Finally, genealogical trees showing the views of the anthor and those of Karsten concerning the evolution of diatoms, place the divergence of views clearly before the reader, and the respective arguments are set forth in the text.

Endochrome of Diatoms.* - C. Mereschkowsky publishes the first part of his studies on this sulject and treats therein more especially of facts concerning the Raphidieæ and the Nitzschieæ. A more or less detailed account is given of the interior structure of 12.5 species and varieties of 19 genera belonging to these groups. As regards the endochrome of the family Pleurosigmea, the author finds that Cleve's distinction between Pleurosigma and Gyrosigma is quite correct, Pleurnsifma possessing forr tortnous bands, and Gyrosigma two (in the case of G. rectum four') plates. The division of diatoms into Coccochromea and Placochromee should, according to the anthor, be definitely abandoned, as being without sound foundation. The study of the endochrome as a generic character has little ralne, but as a specific character it is of the deepest importance. The "primary" elæoplasts, as distinguished from the "secondary" or "supplementary" ones, are also shown to be constant in form, and therefore of ralue in systematic determination. The paper is well illustrated.

Melosira. $\dagger-0$. Müller discusses the occurrence of a possible variation withont intermediate stages, in certain species of Melosira. He has found threads which are composed of individual diatoms having pores of large size and others with pores of small size, and some threads composed of both kinds. All three kinds of threads are perfectly distinct in appearance. The specimens examined and compared cone from the Lake of Nyassa and the Mügrel-See, near Berlin. He regards the coarse-pored Müggel-See plant as Melosirı gramulata Ralfs. and makes two sub-species: M. mutabilis with joints showing both sizes of pore, and M.pmetata, with fine round pores. ' The coarse-pored species from Lake Nyassa he calls M. N'yassensis, and this is also divided into two sub-species: M. de Vriesii with mixed pores, and M. buctlosa with fine rod-like pores. The diagnoses are promised in a later paper in Engler's Juhrbuch. The anthor refuses to recognise M. crenulutu var. ambiyuu

[^369]Grin. as a variety of M. cremuluta and snggests it be called M. ambituct (Grmu.). The sulb-species with mixed pores he wonld call M. variuta, and that with fine pores M. puncticulosu.

Cyclotella bodanica var. lemanica.*--H. Bachmann has made a speeial study of this diatom from specimens colleeted hy him in the Lake of Lacerne, where it may be fond all the year round. He describes the methods of collecting the material. which he studied in the fresh condition, though he was umable to cultivate it himself. A deseription of the genns. Cyclotelle is given, describing minutely the rarions external and internal charateristics. The species studied was never fonnd in colonies. Tahles then follow which show the seasonal occurrence at different heights in different parts of the lake, illustrated by a small map and by two diagrams (eharts?). The rest of the paper is devoted to the suljject of the reprodnetion of Cyclotellu, (1) by cell-division; and (2) by the formation of anxospores. Celldivision is always preceded by the division of the muclens. As regards the type of auxospore formation, the author finds that it comes muder the fourth of Karsten's classes, like most plankton-diatoms, of which the characteristic is that "An anospore arises from one mother-cell by suppressed division." The anthor has often followed the formation of the anxospore in its carly condition and describes the process in detail. He finds that anxospores ocenr most freruently in C'yclotelle lemanica in November and December, lasting on into May and being entirely wanting in the summer ; and since this form of reprodnction is largely dependent on ontward influences, he presmmes that in the case of this diatom their appearance is connected with change of temperature. The impulse towards the formation of auxospores is given ly the protoplasm, not hy the melens.

Diatoms of Auvergne. \dagger-J. Héribaud collects together all the records he has made since $189: 3$ up to the present time of the diatoms of Anvergne, and arranges them according to the classification of the raphe, following in the main the lines of Van Heurck, lont slightly modified by the work of Cleve and Peragallo. He enmmerates 90 s forms, of which 564 are species and : 844 varieties: 281 are new. In the tertiary deposits of the upper Loire and of Ardeche the author finds 87 forms, mostly new to science.

Diatoms of the Atlantic. \ddagger - (G . Mmray publishes some notes on Diatomaeea collected by the pumping method, principally by himself and V. H. Blackman, during a voyage to the West Indies in 1897, and in subsequent voyages by other collectors in the same year. It was found that a small number of species occur constantly, but sparsely, in the open ocean, varying with the temperature. As land was approached the diatom-flora inereased in quantity and rariety, showing its eoastal character. A series of colleetions made in the warm waters near Colon from July to December is noteworthy for the richness and constancy of its diatom-flora. The samples were submitted to T. Comber for deter-

[^370]mination, and his description of a new speeies, Nitzschith moducta, is included.

Fossil Diatoms.*--H. Reichelt describes the result of his researches into the diatomaceons deposits of Bachseldorf, Zantig and Sulloditz. The first of these is characterised by the presence of Melosirn distans Ehr., together with M. mululate, M. Irmmata, (iomphopleura nobilis, \&c. The second contains mostly Melosirt distuns, often in the anxospore condition. The thind abounds in specimens of Melosira crenulutt, M. mblulata, and Tetratyclus ellipticus. Among the 16 species recorded, :; are new: Melosira Hibschui, N゙arienta Hermanni, and Gomphopleura nobilis.
J. Pantoesek \dagger deseribes and fignres certain fossil diatoms from the andesite tufa near Szliacs. The formation is tharacterised by a new gems Szechmiu, different species of Eunotiu, X'uviculn arutu dirun., N^{T}. Hutueri Grun., Corconeis, Boryanu Pint., and Melosir"t umeuluta Kütz. The last species has also been found in other Hungarian leposits as well as living in fresh water in the island of Jara: thus demonstrating the similarity which exists hetween the flora of that period and that of the islands of Sunda at this day. Thirty-eight species and varieties are figured, including Semseyg hungarica Pant., and Disiphomia hunyarica Pant.
H. Heiden \ddagger has examined diatoms from deposits of Wiarnemünde harbour, and from the Convent Lake. In the former are to le found many marine species allied to those at present flourishing in southern seas. Three fresh-water species are also recorded. An examination of the Convent Lake deposits shows an entirely different flora from that of Warnemünde Harbour. In all :30s forms are recorded in this paper. the most interesting of which are followed by notes on their geographical distribution. The respective occurrences of forms in the different samples is also siven. One new species is described: Naviculu Rostockiensis.

Diatom Records.s-R. H. Philip records the existence of Surirelli: mendulica Per. in fresh water at Hotham Carrs near Hull. It is a brackish-water diatom previonsly recorded from Medoe in the sontl: of France. It may be a survival from some remote marine flood more than a century ago.
G. B. De Toni and A. Forti\| enumerate 24 speeies from Lakc Ngebel, in Java, of which eight are new records for the island.

Egregia Menziesii. T-F. Ramaley has made a study of this algia and publishes the results under the following headings:-Distribution: External Morphology, in which the various parts of the plant are treated separately and in cletail; Comparison with other Laminariaceæ : Anatomy, also treatel in detail. The author considers that the morphology of Egregia is lest understood if considered as an Alaria with

[^371]certain modifications. It agrees fairly closels with other Laminariaceæ in its anatomy. Mucilage canals however do not oceur, and no eryptostomata were seen.

Pelvetia fastigiata.*-F. L. Holtz publishes observations on this species, treating the varions parts of the plant in detail. Both external appearance and internal structure are fully described, and the development of the conceptacle is treated at length. He disagrees with F. O. Bower in certain points comneeted with the early stages of the development of the conceptacle, being of opinion that it originates from several contiguous epidermal cells, and not from one central basal cell. The stages of growth seen by the anthor are figmred. The antheridia arise sometimes on branched hairs, sometimes on simple pedicel-cells from the wall of the conceptacle. The plant is hermaphrodite. Methods of staining and sectioning are described.

New Alaria. \dagger-H. F. Schrader describes and figures a new species of Alaria, A. manu, found by him at the Mimmesota Seaside Station, growing in very exposed situations and always beaten abont he the surf. The plant is small, :30-50 cm . long, the holdfast does not show any growth-rings, and the growth of the stipe in thickness is radial. There are neither mucilage-ducts nor cryptostomata. The sori are borne on gonidiophylls which are produced laterally on the stipe. The paraphyses have large, thick, mucilaginous caps as in Lessonit and Pterygophora.

Polymorphism of Marine Algæ. $\ddagger-\mathrm{F}$. Tobler has experimented on six species of Floridere with regard to polymorphism, and publishes a list of the varions forms each species may assume under different conditions. His experiments iuchude growth in darkness and in light and at different times of year. He was able to compare the results of his artificial growth with the growth of algm thrown up on the shore after storms, since certain of such plants continned to grow, but in abnormal manner. One result of his olservations, which he considers among the most important, is the dissolving of the comnection betreen the different cells of an alga, not as a forerumer of decay, but as an introduction to active independent life on the part of the individual cells. He discusses the question of polarity in connection with the growth of these isolated cells, and tonches on the subject of seasonal forms of one and the same species. Further information on various points connected with this subject is promised later.

New Rhododermis.s - F. Heydrich describes and figures a new species of Rhododermis, R. Trun Helrckii, which grows on young Zostera leaves off the coast of Jersey. In its jomg stages the thallus shows the characteristics of the genus, but in later stages the new species varies in certain points. In some cases as soon as the first tetrasporangia have heen emptied from that part of the plant which grows over the sharp edge of the Zosterc leaf, the thallus swells up and forms irregular kidney-shaped outgrowths, which hang somewhat over the edge of the host-plant. In other specimens the internal cells may vary in

[^372]other ways than swelling. R. Van Heurckii differs from R. parasitica in having a simple basal disc of attachment, with no penetrating rhizoids. Hairs sometimes occur on the thallus of mature plants, arising from the lowest portion of a superficial cell. The chromatophores resemble those of R. parasitict. The tetrasporangia are distributed in irregular sori over the entire surface of the plant, and are accompanied by enrved paraphyses.

Reparation of Injury in Ceramiaceæ.* - F. Tobler describes and figures the manner in which the large cells of Bornetict secundiftora and Griffithsia Schousboei behave after having suffered some injury. He finds that the protoplasm withdraws to the wall furthest removed from the scene of the injury and clothes itself with another membrane, often throwing out at the same time adventitious growths. The new cell thus formed may be more or less curved and U-shaped, and it lies within the torn and dead walls of the injured cell. Sometimes the protoplasm divides into two portions and two distinct filaments start from the same base. If a cell of Bornetiot were isolated, the neighbouring cells on either side having been injured, the protoplasm was seen to divide and congregrate at both ends. It might then continue a filamentous growth after a partition-wall had been formed between the two masses of prototoplasm ; or the protoplasm might once more become diffused throughout the cell, then collect in one end and, after the formation of a partition-wall, grow out into a new filament.

Trichoglœa lubrica. $\dagger-\mathrm{F} . \mathrm{K}$. Butters makes some olservations on this plant concerning the anatomy, the minnte structure of the vegetative tract, the eytology of the vegetative tract, and the reproductive organs. The anthor finds that while T'. lubrica agrees very closely with Liagora as regards the structure of the vegetative tract; in the reproductive tract, especially in the structure of the cystocarps, it most nearly resembles Nemalion.

New Nitophyllum. \ddagger - A. Mazza gives a description of a species of Nitophyllum, N. tristromaticum Rodrig., found by himself at the port of Messina, and previonsly by Rodriguez at the port of Mahon in Minorca. A section of the thallus shows distinet layers of cells: the cortical, composed of a single series of small, subquadratic cells : and the central layer, composed also of a single series of cells which are either of the same form as the cortical ones or ellipsoidal, but twice the size. The plant, $: 3 \mathrm{~cm}$. high, arises from a very short stalk, is fan-shaped, and has the upper half much divided. The margins of these divisions bear many proliferations and rootlets, and the author suggests that by means of these rootlets the plant can propagate itself after laceration of the thallus has taken place. The rootlets are of the same colour, rose-purple, as the thallus. The plant has been found no nearer the surface of the sea than 60 metres. Only immature tetraspores have been seen.

Galaxaura adriatica Zan.§-T. Bentivoglio records this alga from Taranto and states that it is not so rare a plant as has been commonly

[^373]Oct. 21st, 1909
supposed. It possesses a very robust radical disc and is so firmly attached to rocks that a storm or heary seas are required to break it off. Hence it is rarely found washed up.

Floridex.*-J. B. De Toni publishes the third section of the fourth volume of his Sylloge Algarum, which consists of Families V. and VI., Rhodomelacese and Cerumiacer.

Marine Algæ of Sicily. \dagger-V. Spinelli publishes a first contribntion to the marine flora of Sicily, in which he cmumerates 164 species, $: 37$ of these being new to the island. A list of synonymy and references to literature are given under each species, together with its geographical distribution in the Mediterranean and the localities where it has been found in Sicily. In the introduction the author mentions the genera which he has found characteristic of the three zones, into which he has divided the region of vegetable life, according to the lines of Ardissone. The first zone reaches from the high water-mark to a depth of three fathoms, the second from : $8-20$ fathoms, and the third from twenty to the lowest limit of marine vegetation. Certain species new to science have been discovered, but the description of these is promised in a later mmber. The microplankton of the Sicilian coast has not been included, and the region explored has been confined to the eastern shores between Syracuse and Messina.

Fresh-water Algæ of certain Lakes. $\ddagger-\mathrm{O}$. Amberg notes the occurrence in the Lago di Muzzano of 7 Myxophycer, 8 diatoms, 14 species of Chlorophycex, and 8 Peridinice. The commonest form appears to be Clathrocystis ceruginosa Henfr., which is mixed with Anaberna Catenula B. and F., A. circinalis Hansg., Botryococcus Braumii Kütz., and Colosphcerium Kuetzingianum Naeg.
O. Zacharias \S writes on the biological characteristics of the Klinkerteich at Plön, and remarks on the poverty of alge. He records 34 species, among them a new variety, Zachuriasii Brun., of Stephanodiscus Hantzscliannes Gron. This variety is distinguished by the presence of long siliceous setre ($50-\overline{7} 0 \mu$) which are very fragile and become detached in drying. They are inserted on small spines disposel radially on the valve.
H. Reichelt || records 8:3 species and varieties of diatoms from the Schöhsee near Plön, among which are the new species Navicula Zachuriasi and Stauroneis tylophora. These are also figured. The author seeks to explain the presence of certain species on geological grounds.
R. Monti T publishes lists of diatons and other alge recorded from five small lakes in the region of the hal Formazza, called collectively the Laghi Ossolani.
E. Lemmermann ** has made a special study of four of the Plön

[^374]lakes, which he treats in detail. He has worked out the periodicity of the diatoms and Myxophyceæ, and gives the characteristic species for the various months of the year as they occur in the Great Plön Lake. He finds that the colder seasons of the year are better suited to the prevalence of diatoms, and the warmer seasons for the Myxophyceæ. After a general comparison of the algal flora of the four lakes, the author gives observations on a certain number of species of Lynyluya, Anabcena, Gloiotrichia, \&c.
O. Zacharias* gives a list of the alge which he finds respectively in six stagnant ponds in the neighbourhood of Plön. Many novelties are described and interesting species are recorded,-such as Closterium linea Perty, C. Ceratium Perty, Vaucherí rhomboides Bréb., in large quantity, Navicula subtilissima (determined by Reichelt), Atractinium Schmidlei Zach. nov. gen. et sp. near Scenedesmus, and Selenococcus farcinalis Schmidle et Zach., \&c.

Tide-Pool Vegetation.t-S. A. Skinner has made a careful study of eight pools at Port Renfrew and publishes the result of his investigations, made both at high and low tide. He gives "the Location," "Exposure to Tide," "Shape and Dimensions," and "Flora: Kind and Distribution" of each pool, and concludes his paper by a short summary of generalisations as to the effect on the algæ of wave-action, slope of the walls, and condition of the bottom. He also indicates other factors which would affect algal growth and commends these subjects of investigation to other botanists.

Algæ of the Gulf of Naples. \ddagger - Angelo Mazza records in a list, which was berun last June, 189 species of marine alge from the Gulf of Naples. He includes the records of Falkenberg and Berthold as well as his own collections. Critical notes are appended to many of the species-names.

Algæ from Central Asia and China.§-R. Gutwinski gives a list, mainly consisting of diatoms, of 17% species collected in various localities of Central Asia and China by Dr. J. Holderer. A list of twenty-two algæ collected by him has been already published in Hedwigia, xxxix. pp. 141-3, and the diatoms and other alge here enumerated belong to the same collection, and include specimens from eighteen different localities. A plate shows several of the more interesting species, inclnding three new varieties.

Fossil Algæ of North America.-D. White $\|$ describes and figures two species of Conostichus Lesquereux (? Acetabulariæ), namely C. Broadheadi Lesq. and C. prolifer Lesq. from the Lower Coal Measures of Missouri.

The same anthor describes a new genus of fossil algæ, Thamnocladus, placing in it one species T: Clarkei, from the palæozoic strata of East Windsor. It differs from Psilophyton and recalls in appearance

[^375]the existing species Haliseris delicatula and Stenogramma interrupta. The paper includes also remarks on the fossil genus Haliserites, with special reference to H. Dechenianus Göpp.

From the Upper Silurian of Indiana the same author * deseribes and figures two new species of Buthotrephis, B. divaricata ($=$ B. speciosa) and B. Neovini. The name speciosa is suggested later as a substitute for divaricata, the latter having been already used for another alga, B. divaricata Kidston. Notes on the genus Buthotrephis are given, and a likeness is pointed out between this genus and Liayora.

Origin of the Sporophyte. $\dagger-$ B. M. Davis discusses this question from the point of view of the structural changes that occur in the cellprotoplasm at the time of fertilisation, sueh change being made visible at least in the alteration of the number of chromosomes in the nuclei. A gametophyte contains in each of its nuclei a fixed number of chromosomes proper to the plant; its fertilised egg has twice that number of chromosomes as the result of the fusion of two nuelei ; the resulting sporophyte is also characterised by this double number of chromosomes until it produces asexual spores-in which the chromosomes revert to the original ancestral number as found in the gametophyte. In the higher animals the life-history is strikingly different; for here the gametes have half the normal number of chromosomes. Among plants the explanation must be sought amongst the lowest orders-the Thallophytes. But unfortunately we know almost nothing of what oecurs in the Algæ and Fungi ; and what we do know is confusing. Until their lifehistories are properly understood we can only proceed by specnlation. The author diseusses the peculiar limited conditions that oceur in Fucus and Chura; and then passes on to the cases of the Rhodophycea and Ascomycetes, which afford pronomeed evidence of a Sporophyte generation. Similar tendencies are afforded also by Eitoyonium, Splueroplea, Ulothrix, and the Conjugales; these also he disensses. The points emphasised are that the sporophyte is a phase intercalated after the fusion of the gametes-the protoplasm resulting from this fusion being structurally different from that of the gametophyte. It is wound up, as it were, to a higher pitch of vitality ; and it tends to express itself in morphological developments, dependent on the enviromment. Finally, it reverts to the ancestral type of protoplasmic structure by producing asexual spores which lead back to the gametophyte phase.

Fungi.

Notes on Monoblepharis. $\ddagger-$ Roland Thaxter summarises the species of this genns, five in number. He dissents from Lagerheim's view that the genus should be split, two species being placed in Diblepharis, and considers that they form a well-defined and coherent group. Thaxter promises a thorough examination of the New England forms.

Leptomitus lacteus.s-R. Kolkwitz publishes preliminary notes on his researeh of this fungus. He found that it grew well on slices

[^376]of meal-worms, but the fungus had to be closely pressed on to the sul)stratum. From material thus grown he infected gelatin plates and pepton-flesh extract bouillon. Any addition of sola had to be avoided; ordinary cooking salt, though not necessary, was harmless, hence the fungus ean live in the sea. The anthor found no oospores, a resting stage is secured by persisting parts of the mycelimm and by gemmæ. They are very resistant to the action of sulphuric and carbonic acids, ammonia and absence of oxygen. The cellulin grains stained with Congo red, thas attesting to the connection with cellulose. Membrane formations were occasionally found at the strictures of the hyphre, something like the rings of Edoyonium.

For nourishment the fungus demands chiefly nitrogenons compounds in solntion. Carbohydrates are of slight importance. Leptomitus is usually found growing in rmoning water at some little distance from an entering drain. The strongly alkaline or aeid nature of the contents of the drain are thus somewhat diluted before coming in contact with the fungus, and the absence of bacteria is secured. It is usually found in winter, but this depends not so much on temperature as on the conditions of public works of which the drains snpply the nutriment required loy the fungus.

Phycomycetes.*--Fr. Bubak describes a new species Entomophthora Lauxanice which he found on mummified flies on the under side of leaves of Spirca. There were no conidia, but the resting spores that filled the body of the fly were specifically different from those of other species.

He finds that Peronospora Bulbocapni is distinct from P. Coryglat is with which it has been frequently classified, and he finds also that the species of Peronospora on Saxifraya aramulata differs from the form found on Chrysosplenium and merits specific rank. He names it P. Saxifrage. The conidia are larger and somewhat different in form from those of P. Chrysosplenii.

Spore-Development in Aphanomyces. \dagger-W. Rothert finds that the formation of zoospores legins with a layer of protoplasm deposited on the wall of the zoosporangium something like a thickened ring. Vacioles are subsequently formed in these plasma masses, at a still later' stage the individual spores are separated off. He describes in detail all the different stages in the maturing and escape of the zoospores.

Cœnomyces consuens g. et sp. n. \ddagger - Const. von Deckenbach describes this fungus as having zoosporangia which would indicate its comnection with the Phycomycetes, but it has also septate mycelium which places it nearer the higher forms. He therefore proposes a new class of fungi the Coenomycetes, to contain such forms. He takes occasion to examine the relationships of the different groups. Comomyces is parasitic on Calothric confervicolu.

New England Choanephora.§-This genus was fomed in India and described by Cunningham. It forms zygospores and sporangia which

[^377]place it close to the Mucors, and it also bears heads of conidia something similar to those of Rhopalomyces or CEdocephalum. The writer found his species growing on decaying squashes, and subsequently he cultivated it from a dying flower of Hibiscus in Florida. It does considerable injury to squashes, spreading from the dying flower to the growing fruit. The same fungus was recorded in 1875 by Berkeley and Ravenel from Lower Carolina, as Rhopalomyces Cucurbitarum. It is now proved to be identical with Choanephora americana found recently by Alfred Moeller in Brazil. Thaxter does not hold that this genus forms, as Cunningham supposed, a stepping-stone between the Zygomycetes and the Oomycetes. There is no indication of heterogamy in the sexual spores. Zygospores have only been seen in the species from India.

Fertilisation in Sclerospora.*-F. L. Stevens finds 40 to 50 nuclei in each oogonium ; they are relatively large and fewer in comparison with the size of the oogonimm ($45-50 \mu$ in diameter) than usual in Peronosporales. As in Albugo the nuclei in the young oogonium rapidly enlarge and pass into the spirem condition ; when metaphase is reached they are arranged in an approximate circle round the region that is to become the oosphere, recalling the arrangement of Albugo candida. As in that species one nuclens remains behind with the cœnocentrum. During the completion of the mitosis the ooplasm and periplasm become clearly differentiated, and there is a withdrawal of cytoplasm from the periphery of the oogonium as in A. candida and Peronospora. There is throughout an unthickened region in the oogonial wall contiguous to the antheridium. In history and structure the conocentrum agrees well with that of Albugo Bliti, with the exception that the central globule has not been demonstrated.

The antheridium is usually very small and is closely appressed to the oogonium ; the antheridial nuclei eularge simultaneously with those of the oogonium and undergo mitosis. No receptive papilla was seen. Communication occurs by the bulging and eventual rupturing of the oogonial wall at this point of contact. The antheridial tube penetrates the oosphere, discharging its contents before it reaches the centre. The male pronuclens is slightly smaller than the female, with which it was seen to fuse.

The general bearing of the cytological evidence emphasises the affinity of Sclerosport to the Peronosporaceæ rather than to the Albuginacee, and indicates a specialised rather than a primitive character.

Oogenesis in Saprolegnia. \dagger-B. M. Davis has studied the formation of eggs and asexual spores in Suprolegnia mixta, an apogamous species. The resting nucleus has a loose linin network and a nuelcolus, and shows essentially the structure of the nucleus of the higher plants. There is one mitosis in the oogonium, the spindle being intranuclear. The daughter nuclei are much smaller than their parents and some show signs of degeneration, the membranes becoming indistinct and the

[^378]contents finally lie as granules in clear vacuole-like areas. The eggs are formed during this process of degeneration. The protoplasm is arranged around a large central vacuole; the ooplasm collects round several centres each of which will become an egg-origin. The differentiation of the egg-origins takes place around a deeply stained protoplasmic body, the cœnocentrum which is formed de novo, one for each egg-origin. The conocentrum becomes less distinct during the ripening of the egg and finally disappears; it is probably the morphological expression of dynamic activities in the oogonium when the egg-origins are differentiated, and is a sort of focal point of the metabolic processes peculiar to oogenesis. Ther exert a chemotactic influence on any nuclei in its immediate vicinity. Generally one nucleus comes to lie very close to the conocentrim; this favoured nucleus increases in size when all other muclei in the egg-origins and young eggs are degenerating. Sometimes two or even three nuclei may lie sufficiently near the cenocentrum to be saved from degeneration, and such eggs become bi- or trinucleate. As the eggs mature the favoured mucleus increases, becoming many times larger than at the period following the mitosis. The other nuclei have generally become quite disorganised, but sometimes traces remain as granules scattered in the cytoplasm. The author's resnlts show that binucleate eggs in the Saprolegniæ need have no relation to the problem of sexuality. His work on the sporogenesis gives a general confirmation of the accounts of Rothert, Hartog, and Humphrey. The uninucleate spore-origins are differentiated by clefts that push them away from the central vacuole of the sporangium to the periphery. When the clefts reach the cell-wall the turgor of the sporangium is relieved by the escape of water, and spore-origins run together, but soon draw apart again and become rounded off as zoospores. There seem to be no cytoplasmic centres in the sporangium comparable to the comocentra.

Cultivation of Truffles.* - Louis Matruchot has succeeded in germinating the spores of Tuber melanosporum and of T. uncinatum. He sowed them on sterilised slices of potato to which was added a motritive medium, and obtained in both instances a copious white mycelium, which in a short time became brown, similar to the mycelium that is to be fomed in truffle beds, and otherwise identical with it in appearance. The author considers that the possibility of easily producing this mycelium may have an important bearing on the culture of truffles. The mycelium formed sclerotium-like bodies in the culture-tubes which were probably undeveloped truffles.

Raphael Dubois \dagger reports that in order to induce the germination of truffle-spores, he infected the living rhizome. A plentiful mycelium was produced which he has kept growing and finally buried at the foot of some oaks. Final results are not yet attained.

Louis Matruchot \ddagger furnishes a description of the different mycelia obtained by him from the culture of truffle spores. He has not obtained any conidial forms.

Emile Bonlanger \ddagger records some curions observations on the germination of truffle-spores. He worked with Tuber melanosporum.

[^379]Peziza vesiculosa.* - L_ Petri describes an abnormal form of this fungus. A crowded mass grew on the plaster of an old wall so packed together that the separate individuals could hardly be distinguished, and the hymenium of each specimen was contorted into a series of convolutions something like a Gyromitra, thus adding largely to the hymenial surface.

Potato Disease. \dagger-V. Peglion examined some tubers that had been dried up and killed. The lower part of the stalk and the underground rhizome were invested with white mycelinm, which later formed sclerotia, determined by the author to be identical with those of Sclerotimia Libertiana. The disease, which occurred in North Italy, has not done extensive damage as yet.

Destruction of Seeds by Fungi. \ddagger - Tittorio Peglion noticed that some seeds of trefoil and lucerne were dark in colour and became covered with fungal growth when kept in moist conditions. Alternuria tenuis developed first on the secds, and later Pleospora Alternarice. He examined the seeds in their resting condition and found that the tissues were already invaded by fungi and therefore valueless for agricultural purposes.

Disease of the Alder.§-Paul Nypels describes a wound parasite, Valsa oxystoma, which attacks and destroys the branches of the tree. The first indication of the presence of the fungus is a yellowing of the epidermis. The bark then qradually turns brown and dies, and the fruits of the fungus burst through as little black specks. From the bark the parasite penetrates to the wood and spreads to other parts of the branch.

Epiplasm of Ascomycetes. $\|-\mathrm{A}$. Guilliermond has studied sporeformation in a number of forms of Ascomycetes and Hyphomycetes, and more especially Ascobolus marginatus, his aim being to gain further knowledge as to the presence and function of the metachromatic corpuscles. In A. marginatus he found in the mother-cell of the ascus a dense cytoplasm occupying the centre in which lies the nucleus. The two poles are occupied by vacnoles which contain the corpuscles forming the epiplasm of the cell. He describes in detail the formation of the spores, during which the metachromatic corpuscles increase at the expense of the cytoplasm which surrounds the racnoles, and take various forms. As the spores mature they gradually absorb the epiplasm. Different results were found in other forms examined ; more or fewer of the corpuscles being present in the epiplasm, in some cases none were found. The author considers them to be reserve-bodies.

Sexuality of the Ascomycetes.T-P. A. Dangeard publishes a note on the formation of the ascus in Monascus. He finds that there is no nuclear fusion except that which takes place on the origin of the ascus.

[^380]The nuclei both of the antheridium and trichogyne, after anastomosis of these two cells, degenerate without fusion. The antheridium occasionally gives rise to a chlamydospore or to a perithecium.

In a further account* of Pyronemu confluens the writer affirms the same conclusion, that though antheridium and trichogyne are present and anastomose they are functionless, and that the ascogenous cell is cut off from the trichogyne and produces the ascus-bearing branches without any nuclear fusion.

Infection-Powers of Ascospores in Erysiphaceæ. \dagger-E. S. Salmon describes his experiments to test Neger's theory that thongh the conidial stage of Erysiphe Graminis represented a biologic form confined to one host, the ascospores would prove to lee the connecting link between different lost-plant species. He used in each case the perithecia of the fungus from harles. The leaves covered by the fungus had been kept dry during the winter. On being placed in suitable conditions the ascospores developed, the perithecia burst open and they were ejected on to the glass cover of the Petri dish forming the moist chamber. From this material Salmon infected seedling plants of barley, oats, wheat, and rye. Repeated experiments resulted in the production of a plentiful growth of the Oiclimm on the barley plants. In no case, we gather, did any of the other plants take the infection.

In a further communication \ddagger he records the results of a number of experiments on plants of several species of Horleum, and proves conclusively that in the case of this fungus "biologic forms" are present in the ascigerous stage as well as in the conidial forms. Many interesting observations on the germination of spores are made and on infection methods.

The same author § finally sums up the results of his study of the specialisation of parasitism in the Erysiphacea, and the extent to which the spores of the fungus will infect different hosts. He proves satisfactorily the existence of biologic forms in the species; and gives tables of the time, temperature, \&c., of the different infections.

Em. MarchaI\| has conducted experiments on similar lines and arrives at very similar conclusions. He infected the same host-plants with the conidia and with the ascospores, and the results corresponded in each case, proving the fixed character of the biologic forms.

Influence of Substratum on Germination of Spores of Penicillium. T - P . Lesage experimenting with cultures of Pemicillium glaucum on drops of gelatin or nutritive jelly, concludes that the germination of the spores is influenced by the substratum ; that the substratum formed ly the jelly of old cultures is unfavourable to the germination of new spores; and that exposure to dry air for some time modifies such sulstratum so that it is no longer unfavourable to the germination. The nature of the modification is subject for future investigation.

[^381]Observations on Gymnoasceæ.*-E. Dale has grown and watched the development of three species of Gymnoascus. She gives a historical account of this and neighbouring genera, and records the results of the various cultures made. She finds that in G. Reesii the fructifications arise on aërial tufts of hyphæ. The origin and growth of the sexual cells is followed throughout. They are at first uni-nucleated, but at the time of fusion they contain large numbers of nuclei. These pass over into the ascogenous cell, and from it arise the fertile branches, the tips of which swell out to form the asci. No conidia were formed in this species. In G. setosus the ascospore on germination puts out one or two germ-tubes which branch and immediately form conidia by budding. No other form of fructification was observed in the artificial cultures. G. candidus also germinated readily and fruits were produced as well as oidia. The writer discusses the connection between Gymnoascus'and allied genera.

Cytology of Yeast. \dagger-A. Guilliermond winds up his account of the nuclei of yeasts by a more definite account of the metachromatic corpuscles. He mentions the different workers who have published any account of them with special reference to Marx and Worthe's theories as to their significance in bacteria. He details their reaction to stains and to various chemical reagents. In discussing their function, he rather inclines to consider them reserve-bodies. A full bibliography of the series of papers is appended, and a description of the plates that appeared with the previous chapters.

Observations on the Vitality of Yeast. \ddagger - H. Will furnisbes further data as to the prescrvation of yeast in the charcoal and asbestos used ini connection with brewing. They were again tested after a lapse of 16 years and :s months. The charcoal had been invaded by moisture and was spoilt for experiment. From the asbestos only wild yeasts were developed. The writer discusses the influence of moisture and temperature on the preservation of the yeast plant.

Yeast Forms, \&c.s - W. Henneberg writes on the two yeasts, Race II. and XII. that are much used in distilleries. He notes the distinguishing features of the two on the culture plates : the first growing in smooth slightly convex gromps ; the other in coral formation, hollow at the centre. The distinctions between the two appear in solutions, and they are also easily recognised under the Microscope.
M. Hartman || found Torula colliculosa sp. 11. among dried yeast from Java. It formed in cultures small elevations composed of larger cells than the rest of the growth. These large cells had the power of causing fermentation of maltose. Young cultures that had not yet produced these large cells could not induce such fermentation. The

* Ann. Bot., xvii. (1903) pp. 570-96 (2 pls .).
\dagger Rev. Gén. Bot., xv. (1903) pp. 166-85.
\ddagger Zeitschr. Gesell. Brauerw., xxvi. (1903) pp. $57-8$. See also Centralbl. Bakt., x. (1903) p. 251.
§ Zeitschr. Spiritusiudust., No. 9 (1903) pl. i. See also Centralbl. Balt., x. (1903) pp. 353-4.
$\|$ Wocheuschr. Brauer., xx. No. 11, pp. 113-14. Sce also Centralbl. Bakt., x. (1903) pp. 453-4.
author records the results of the various experiments with the Torula fungus.

Eduard Buchner * and others have conducted a research on zymase fermentations and pay special attention to the biological side of the fermentation problem in connection with the cell-contents of yeast.
P. Maze \dagger has devoted special attention to the forms of yeast that are capable of acting on lactose and which are quite different from the ordinary species of Saccharomyces. He finds them most easily in soft cheese, and he adds a list of the different kinds of cheese from which he has isolated these special yeasts. He gives a detailed account of the growing conditions of the cells and of the effects produced in different culture media. The yeasts of lactose he finds have but little activity as alcoholic ferments and are slow in action.

Research on Klein's Yeast. $\ddagger-\mathrm{E}$. Cohn gives us the results of further work on this yeast that has proved fatal to small animals, and has caused tumours, \&c. on the larger animals. He describes the different reactions of the cell and the nuclens to stains. He notes specially the presence of the capsule as a ring round the yeast cell, a peculiarity of pathogenic yeasts. The changes induced in the tissues of the animal by the presence of the yeast and the development of the imjury caused by it are described. Experiments were also made on immunising the animals, and the results are recorded, but further research is required on this question.

Action of Yeast on Albumen.s - Th. Bokorny describes in detail the different processes and cultures followed by him in his study of the proteolysis of albuminous substances by yeast; noting specially the odour and taste of the substances produced, with the commercial bearing of the results oltained.

Structure of Botrytis cinerea.||- In addition to the ascospore stage J. Beauverie and A. Guilliermond distinguish three distinct conditions of this fungus which they have studied by means of cultures on various substances. The first form described is the conidial stage, which occurs so frequently in nature on all kinds of decaying vegetation. The writers describe the development of the mycelium and note the presence of metachromatic corpuseles, especially in the spore-producing filaments. The spores contain one nucleus and a large vacuole. The occurrence of oil-globules and glycogen as affected by the different culture media, is also described.

A second intermediate form is distinguished by the proliferation of the spores on the sporophores. It is oceasionally met with in nature and occurs frequently in temperate conservatories. The same phenomena of mycelial development were observed às in the typical B. cinerea.

Still another condition is characterised as the web form (toile). It is entirely sterile and spreads over the surface of the soil in forcing-

[^382]houses, destroying the young plants. The form is fixed and under no condition reverts to the fertile stage. Glycogen was found in great abundance in the filaments composing the web. Metachromatic corpuscles were absent, though they were developed by placing the hyphe in distilled water. The presence of these bodies in bacteria has been associated with the pathogenic character of the organisms, but this view does not correspond with the author's observations on the "web" fungus. Only when it is non-pathogenic, as in distilled water, are the corpuscles developed. Protoplasmic commmication between the cells, and the anastomosing of the filaments are also described. The papers are illustrated by many figures in the text.

Botrytis citricola sp.n.* - Ugo Brizi publishes a preliminary paper on a disease of oranges and lemons. Reddish spots make their appearance on immature fruits, small at first and then gradually increasing till the whole fruit is attacked, its sap destroyed, and a darkened mummified mass is left. Brizi found the mycelium of a fungus, and by careful culture methods induced the growth of the conidiophores of a Botrytis which he found was a new species and named it B. citricola. He got no other form of the fungus and he concluded that the mycelium hibernated in the mummified fruits. The fruits attacked had all a characteristic odour.

Development of Ramularia æquivoca. \dagger - Pictro Voglino has followed the growth of this fungus which appeared on the under side of the leaves of Ranunculus acris along with Erysiphe communis. He kept the leaves for some time and there grew on the infected ones, perithecia of Stigmatea Ramunculi Fries. By repeated, persistent cultures he developed the same perithecia from the spores of Rumularia cequivoca, thus proving the latter to be the conidial form of the higher fungus. Voglino demonstrates the similarity between R. cequivoca (Ces.) Sace. and R. gibba Fuck. The latter must be considered a synonym of the older species.

Rusts of Cereals. $\ddagger-\mathrm{Em}$. Marchal writes a lengthy report on Puccinia Graminis, P. triticina, P. dispersa, P. glumarum, P. simplex, and P. coronifera, the members of the rust family that attack one or other of the cereal crops. Inquiries have been made thronghout the provinces as to the occurrence of these fungi, and the information elicited is tabulated and printed. Marchal discusses also the various factors that influence the spread of the rusts, such as weather, soil, manure, \&c., and advises as to the best means of combating the disease.

Experiments with Pucciniæ. §-Ernst Jacky has taken advantage of a supply of the chrysanthemum Uredine to make infection experiments on C. ekinense and C. indicum. A Pucinit on former plants had been named by P. Hemnings P. Chrysonthemi chimensis, but Jacky finds that it is identical morphologically and biologically with an earlier species P. Chrysanthemi Roze. It occurs in Japan, Europe, and North America.

[^383]The uredospores of this speeies vary to a great extent, and are constantly two-celled. Transition forms between the one-celled and twocelled spores are also frequently found. The teleutospores have been found as yet only on plants from Japan. The anthor rewrites the diagnosis of the species.
W. Bandi * completes his accounts of experiments with Phragmidium subcorticium and Puccinia Caricis-Montance. In the first he has determined two biologieal forms, on different species of Posa. In the sedge Puccinia he finds there are also two forms that produce their telentospores on Carex montana ; but while one forms its aeidia on Centaurea montana, the alternate host of the other is Cent. Scabiosa.

Puccinia dispersa and its adaptive Parasitism. \dagger - H. Marshall Ward discusses the persistence of the Uredospores. He found that some spores germinated after sixty-one days. He records many interesting observations as to the influence of temperature, light, \&e., in aiding or retarding germination. He has found in the course of the experiments that though the uredospores from one species of Bromus will infeet only the closely allied species, there are yet what he terms "bridging species" or intermediary speeies between the different groups that carry over the fungns from one section of the genns to another. Tables are furnished of the different experiments.

In another communication the author \ddagger gives a detailed study of the germination, infection, and growth of the mycelium of the Uredo in the tissue of grasses. He deals with the behaviom of the melei, vaenoles, septa, branches, haustoria, and other details of the hyphæ up to the commencement of spore-formation. Special attention was paid throughont to Eriksson's mycoplasma hypothesis. Marshall Ward refntes this theory; he finds that Eriksson's corpuscles speciaux are the cut-off hanstoria of the fungus, and are not the outgrowths of latent germs in the cell.

Rusts of Special Natural Orders. §-J. Ivar Lindroth has published new diagnoses and a general revision of the Uredinea that are parasitic on Umbelliferæ. He divides the Puccinice into the following groups :-

1. Reticnlatæ. The epispore of the telentospores has a netlike structure.
2. Psorodermæ. The teleutospores are covered more or less thickly with warts.
3. Bullate. The telentospores are smooth, the membrane of the uredospores is thickened at the apex.
4. This group ineludes a number of interesting forms, the telentospore sori of which are a long time ceovered by the epidermis of the host, the spores have a thickened apex and a colonred persistent stalk. Only a few of the Umbellifere rusts show these peenliarities.
5. In the last group there are only 3 species; the spores themselves resemble those of group 5. They are all Lepto-Puccinie.
[^384]Lindroth describes also the Uromyces of the same natural order and the isolated spore forms that hare been found. Only one Cceoma is recorded and that from S. America. He discusses at some length his reasons for the above grouping and the biological questions raised in connection with the work. He gives a full bibliography with an index of host plants and parasites.

In another communication Lindroth* describes some Uredineæ that are found on specics of Composita. He gives an account of several Puccinice, Uromyces Mulgellii and Ecilliom Lactucinum. He also writes at length on Puccinia Kamtschutlee Anders. The fungus was first detected on roses at Simla by Barclay, and named by him P. Rosce, but as that name was already appropriated for another species the latter name must be adopted.
P. and H. Sydow \dagger have issued a third part of their monograph of Uredineæ. They are still engaged on the genus Puccinia, and they deal with a considerable number of natural orders of host plants including the remaining forms on Umbelliferæ and the species occurring on Rosaceæ, Malvaceæ, Violaceæ, Cruciferæ, Polygonaceæ, \&c. Some of the species are published for the first time.

Bornetina Corium. $\ddagger-\mathrm{L}$. Mangin and P. Viala give further details on the structure and growth of this fungus which causes the root disease of the vine known as phthiriose of the vine. They conclude that its affinities place it between the Ustilaginer and the Basidiomycetes, and that it represents a new type, that of the Bornetineæ.

The authors § have grown the fungus in a variety of culture media and find that it varies very considerably : not only the mycelium, but the spores are affected by the smbstances on which they have grown.

Uromyces of Lupins. $\|$-P. Dietel has examined the different forms of Uromyres found on species of Lmpin, and has classified them in systematic order. He has renamed a species from America, designated as identical with Lromyces Genistre-tinctorice. He considers it to be distinct and calls it U. orcidentalis. Another American species U. tomentellus he places under U. Lupimus Berk. and Curt.

Nomenclature of Uredineæ.T-P. Magnus discusses the names given in Yon Martens' Prodronnus Flore Mosquensis to various rusts found on species of Composita.

Tilletia abscondita Syd. sp. n.**-_This fungus, described by H. and P. Sydow, occurs in the fruit capsules of Authoceros. Similar spores had been noted in the sporogonia of Sphaynzm, and had been discovered after considerable research to be fungus spores. The species found in Anthoceros is very similar to that of the Sphagnum, but the spores are much larger and have a thick epispore. No one has succeeded as yet in germinating the fungus spores found in mosses.

* Tom. cit., xx. No. 9 (1901) 29 pp. (1 pl.).
\dagger Monographia Uredinearum, i. Fasc. iii. pp. 885-592 (10 pls.).
\ddagger Comptes Rendus, cxxxvi. (1903) pp. 1699-701.
§ Tom. cit., exxxvii. (1903) pp. 139-41.
Hedwigia, xlii. (1903) Beibl., pp. 75-99.
IT Oest. bot. Zeitschr., lii. (1902) pp. 428-32, and 490-2. See also Ceutralbl. Bakt., x. (1903) pp. 265-6. ** Ann. Mycol., i. (1903) pp. 174-6.

Fungi hypogæi.*-F. Bucholtz gives a morphological and systematic account of these fungi, 45 species of which have been recorded in Russia, one genus and five species being new to science. The writer takes up both the Ascomycetous and Basidiomycetous groups and gives the development of certain forms in each. A list of the Russian species is given and a bibliography.

Persistence of Fungal Parasites in altered Conditions of the Host Plants. \dagger-P. Hennings has made notes on a series of plants affected by Ustilagineæ and Uredineæ. They were transplanted and kept under observation and it was found in several instances that the disease disappeared in a few years. The writer makes further observations on the conditions of growth of the host as affecting the recurrence of the parasite.

Chemical Action of Growing Fungi. $\ddagger-0$. Emmerling and E. Abderhalden criticise Löw's results as to the production of protocatechuic acid by the growth of fungi on quinic acid. They conclude that some Schizomycetes must also have taken part in the varions reactions. They isolated one of these which they named Micrococcu: chinicus. They found this organism also in potassium citrate that had been inoculated with foul meat solution. The anthors are still engaged on the research.
O. Enmerling § also gives the results obtained by growing Aspergillus niger on various substances. Oxalic aeid was formed most freqnently as ammonium oxalate. The writer gives a table of percentages of the oxalate produced in the different nutritive media, and also a list of substances in which no oxalic acid was formed by the growth of the fungus.

Culture of Sterigmatocystis nigra.||-M. Molliard and H. Coupin have grown this fungus in Raulin's solution but withont potassium. They find that in these conditions the spores are produced with difficulty, the conidial heads proliferate; forms corresponding to Aspergillus and Penicillium are also produced, the conidia are smaller and they germinate on the heads and form chlamydospores.

Notes on Various Fungi. T- (r. Areangeli calls attention to the alteration caused by the presence of AEcithum Rumicis on two species of Rumex. The parts of the leaf affected were coloured red with a yellowish margin. An examination of the tissnes showed that the red colouring matter was confined to special cells. He notes other fungi that produce the same effect such as Exoascus deformans, Ocularia obliqua, \&c., and discusses the probable reason for the presence of the pigment. Some other fungi are commented on, and the dimensions are given of a very large specimen of Boletus ectulis. It reached a height of :3 cm.

Notes on Nomenclature.**-H. and P. Sydow record the curions instance of a new genus of fungi Didymostille being published by two

* Ann. Mycol., i. (1903) pp. 152-74 (2 pls.).
\dagger Zeitsch. Pllaozenkr., xiii. (1903) pp. 41-5.
\ddagger Centralbl. Bakt., x. (1903) pp. 337-9.
§ Tom. oit., pp. 273-5.
$\|$ Comptes Rendus, cxxxvi. (1903) pp. 1695-6.
I Bull. Soc. Ital., 1903, pp. 57-61. ** Ann. Mycol., i. (1903) pp. 176-8.
authors within a few days of each other. The genera are identical. Another case is the publication of Microdiploclia in 1901 in Rabenhorst's Krypt. Flora, Fung. Imperfect. The same genus, under the same name, was published by F. Tassi in 190\%. The authors give also a list of recently described new fungi which are identical with already wellestablished species.

Canker of Fruit Trees.*-Joseph Brzezinski has devoted much time and attention to the disease known as canker, and almost universally considered to be due to the ravages of a fungns Nectria ditissima. His first experiments were conducted with a view to studying the effects of the fungus, and, to induce canker, he infected young apple trees with the spores of Nectrit, with continned negative results. A closer examination of the diseased parts of the trees revealed the constant presence of Bacteria in the tissnes. Cultures were made of these and healthy trees inoculated, with the result that canker was easily produced by the introduction of the microbes. The anthor gives a detailed account of the organism, which he designates Bacterium Mali, and describes its action on the tissues of the host plant. The wood parenchyma succumbs easily to the action of the bacterimm while the cells of the medullary rays are more resistant. This is explained by the greater vitality of these cells.

General bacteriosis of the tree is a malady to which he also calls attention, and which results in the death of the tree. Bacteria were found in profusion in branches suffering from the malady.

Nodosities on the roots, also a scrious danger to the trees, were examined and experimented on, and were found to be due to Bacterium mali. Chlorosis of plants he also traces to bacterial action.

On the pear he found cankers similarly produced. The Bucterium was indistinguishable from that in the apple, but in artificial cultures it formed yellow coloured colonies while those of the apple Bacterium were always greyish-white. It was considered therefore to be another species, and named B. Pyri. Still another, B. Coryli, was found to canse canker in nut-trees. The anthor concludes that bacterial disease of trees is as common as it is deadly. Gummosis, also due to bacteria, is accompanied by a discharge of gum. There are thus two very different series of vegetable pathogenic bacteria at work, those that form gum, and those, as in the case of canker and chlorosis, that do not canse any exudation.

Fungicides. $\dagger-$ R. J. Moss has tested the effect of varions copper solutions on potato-disease. He recommends for spraying the affected plants, Burgundy mixture, a solution of copper sulphate with ordinary crystallised sodium carbonate in the proportion of three parts of soda to two of copper sulphate. The deposit produced on the leaves by this mixture is very adhesive and resists the action of rain, and is thus more effective as a remedy for potato-blight.
T. Johnson \ddagger gives the results of experiments on smutted grain. The object in this case is to destroy any fungus spore adhering to the

[^385]seed corn. He rather deprecates the hot-water method. It is cheap and effective, but mistakes are easily made by allowing the temperature of the water to be just too high or too low, or by leaving the grains too long in the hot water. For simplicity he recommends a solution of sodium sulphide called "sar," in which the corn should be immersed 24 hours. The results obtained from this method of killing the spores were most satisfactory.

Fungus Diseases.*-J. Ferraris gives an account of a disease of rice caused by Piricularia Oryze. The plant is attacked at the upper node of the stalk and a brown patch is caused by the fungus invading and destroying the cells. It penetrates the vessels and from them it invades the tissues above and below the node.

A description \dagger is published by the Board of Agrieulture of Botrytis cinered as it affects various conifers. The results of infection experiments are given and advice as to the lest method of dealing with the disease.
J. Ritzema Bos \ddagger describes the diseased condition of Narcissus leaves that were attacked by Helminthosporiam gracile. The disease is known in Holland as " Brand " or " burning " of the leaves.

Dr. Ewerts gives an account of the occurrence of C'ronartium. ribicolum on various species of Ribes.
J. Ritzema Bos $\|$ publishes a review of the work done during the year in the phytopathological laboratory at Amsterdam. A large number of harmful parasites are dealt with. A myxomycete Physurum bivalue is recorded as cansing the suffocation of plants of Phaseolus in a green-honse. A bacterial disease of turnips eansed by Pseudomonas campestris was found in North Holland, lut was less virnlent than in 1900. Work on plant diseases was also done by G. Staes, C. J. J. van Hall, and A. Ide.

Phytopathology. Ti-In connection with the Belgian Agricultural Institute, Em. Marchal publishes a series of observations on the plant diseases that have cansed trouble during the comrse of the year on cultivated plants. He signalises as new to the country Rhizoctonia on Asparagus ; a black rot of beans due to Fusarium, and a Coryneum on the leaves of the peach.
G. Delacroix ** describes the conidial form of black rot of the vine (Guignardia Bidwelliu), a canker of apples cansed by Spheropsis malorum, a monstrous formation of Claviceps purpurea, spots on guavas cansed by Glcosporium Psitlii sp. n., and adds a note on the occurrence of Puccinia malvacearum in France.

Wild Plants as Nurseries of Plant-Disease. $\dagger \dagger$-A. D. Cotton draws attention to the danger of allowing weeds to grow in gardens, as many

* Malpighia, xvii. (1903) pp. 129-59 (2 pls.).
\dagger Journ. Board. Agric., x. (1903) pp. 17-21 (1 pl.).
\ddagger Zeitschr. Pflanzenkr.. xiii. (1903) pp. 87-92. § Tom. cit., pp. 92-8.
\| Tijdschr. over Plantenziekten, viii., 202 pp . and 5 pls. See also Centralbl. Balkt., x. (1903) pp. 390-7.

If Bull. Servi. Phytopath. Inst. Agr. de l'État, No. 8 (1903) 14 pp.
${ }^{* *}$ Bull. Soc. Mycol. France, xix. (1903) pp. 128-45 (6 figs.).
$\dagger \dagger$ Journ. Roy. Hort. Soc., xxvii. (1903) pp. 935-42.
Oct. の1st, 1903
2 U
of them afford a home for diseases caused by parasitic fungi. A number of the common weeds are mentioned arranged in their natural orders and descriptions, or references to descriptions of the diseases to which they are subject are given.

Fungi Polonici.*--J. Bresadola publishes a contimuation of the list of fungi from Poland. He states the time of year when the specimens were gathered, but he does not give particular localities. Under the gemus Kneiffia he places the species that have been classified as Peniophorce. He considers that Kneiffia as based on the type K. setigera is indistinguishable from the genus Peniophort, and that the character of one-spored basidia breaks down cenen in the type species, where the basidia are frequently four-spored. He adds a number of new forms to the genus. Many new species belonging to other genera are also described, and a plate is published with figures of three new species, Eichleriella incarnata, E. lencophea, and Platyylaca Mielzyrzecensis. A few Mycetozoa are recorded and one new Schizomycete, Spirillum roseum sp. n .

American Fungi. \dagger - W. A. Murrill continues his study of the Polyporacea and deals in the present paper with the genus Fomes as understood by Gillet. He gives a synopsis and description of eleven American species; two of these are new to seience and other two are exelusively American. To a note on Fomes Laricis, he records its appearance on pine and spruce. In Europe its growth is confined to the lareh.

In another paper \ddagger he publishes a historical review of all the genera of this group.

The same author § proposes a new family of Basidiomyeetes, Aylophagacex, to include all gelatinous forms with a porose hymenium. These are subdivided into three families, Favolaschiee (Fuvoluschia), Xylophagea (Xylophayus), and Glocoporea ((íteoporus).
F. S. Earle I| publishes a key to the North American species of Strophuria. There are eleven species of the gemus dealt with.

The same author \mathbb{T} furnishes a new key to the gemus Lentimus. He recognises the following sections:-Criniti, including Pulverulenti; Lepidei, Cochleati, Cornucopioides, Pleuroti, and Resupinati. The species included in the two latter sections, he thinks belong more properly to the genera Pleurotus and Pamus.
C. G. Lloyd ${ }^{* *}$ continues his issue of mycological notes. He describes the genera and species of the Bovista, Tylostomeæ, and some of the Podaxinea with notes on other fungi.
W. C. Blasdale $\dagger \dagger$ writes on a rust of snapdragon.
A. P. Morgan $\ddagger \ddagger$ descrihes a new species of Sirothecium. Elias J. Durand gives the American species of Sarcosoma. J. B. Ellis and W. A. Kellerman §§ deseribe two new species of Cercospora. W. A.

[^386]Kellerman * publishes notes on some Uredinere with results of infection experiments made by him.

Australian Fungi. \dagger - P. Hennings describes specimens collected in Queensland, West Australia, and New Zealand by E. Pritzel and L. Diels. A number of new species are recorded and two new genera, Dielsiella, one of the Hysteriaceæ, which grows on hoth sides of fallen leaves. Pritzeliella, the other new genms, is a member of the Hyalostilbacea, and near akin to Coremium. With few exceptions the plants described all belong to the micro-fungi.
D. M'Alpine \ddagger publishes two decades of micro-fnngi. All of them are additions to the Australian fungus-flora. Eleven new species and twelve lifferent genera are represented. With the exception of one species from New Sonth Wales, they were all collected in Victoria. Full deseriptions are given of the new plants.

New Records of Fungi.s-T. Vestergren has examined the fungi collected by himself on the island of Oesel in the summer of 1899. He records 290 different species belonging to the Ascomycetes, Sphæropsidea and Hyphomycetes. Many of the species found are new. He gives a detailed account of the Uredineæ.

Otto Japp \| contributes a list of fungi to the Cryptogamic flora of the island Röm, two species are new.
E. Barsali 9 records 154 Hymenomycetes from the neighbourhood of Pisa. For cach species he gives the habitat and the name of the collector.
II. Diedecke ** publishes a descriptive list of Sphærioideæ from Thmingia. Several species are new to science.
H. and P. Sydow have $\dagger \dagger$ determined a number of fungi, mostly "Fungi imperfecti" from South America, and publish diagnoses of the new species they have found in the various collections. They add a short list of species determined by Sactardo, also from South America.

Eight new species of Uredinere from Japan are published by P. Henmings. $\ddagger \ddagger$ One of the species Ureto Sofice was found to have Darluca filum growing on it.

The same writer $\$ \S$ gives a long list of fungi from the Govermment of Moscow. He adds a new species of Lachnea and a new Leptothyrium to the flora.
H. Rehm |||| gives a first series of Ascomyceten-Studien, a descriptive list of 16 species of micro-fungi, nearly all of them new to science.

Ed. Fischer 1 II gives a contribution to the knowledge of Swiss

[^387]Uredineæ. He describes the different species of Uromyces fonnd on Alpine Primulce. He finds a new species on Vicia onobrychioides which he calls U. valesiacus. He also gives descriptions of several species of Ecilium.
P. Hennings * finds two new Uredineæ on fruits from South America, a Uredo and an AEcidium. The latter, he considers, belongs to Gymnosporangium.
P. Dietel \dagger gives a list of Uredineæ and Ustilagineæ that are new to the German flora. The work is connected with the report on the flora of Germany.

The same writer \ddagger has published notes on some North American Uredinea, with special reference to a speeies of Stichospora.
P. Hennings § pnblishes a new species Boudiera C'latssenii found growing on dung, and adds notes on several other species from the same substratum.

Fr. Bubak $\|$ finds and describes two new Uredinea on Mercurialis unnua in Montenegro, and G. B. Traverso 9 records 402 species of Micromycetes from the Province of Modena. The new forms, twelve in number, are illustrated by figures in the text.

José Verissimo d'Almeida and M. de Souza da Camara ** contribute a number of micro-fungi found on leaves, fruits, \&c. to the flora of Portugal. A number of species are new to science, and one genus, Sporoctomorpha a Pyrenomycete found on leaves of Magnolia.

Systematic Notes on Fungi. $\dagger \dagger$ - N. Patouillard gives detailed accounts of three species of fungi previonsly recorded from the West Indies. R. Maire and P. A. Saccardo $\ddagger \ddagger$ supply biological information on several parasitic mierofungi. P. A. Saccardo $\S \S$ describes a disease of Mandarins cansed by Alternaria tenuis forma chalaroites Sacc. J. B. Traverso |i|l publishes diagnoses of twelve new species of Italian Micromycetes. H. and P. Sydow $\mathbb{T} T$ give an extensive list, a contribution to the fungus flora of the shore-region and of Istria; a few of the species are new. Fr. Bubak*** redescribes two fungi parasitic on Monocotyledons, Entyloma Dietelianum and Physoderma Debeauriii; and P. Dietel $\dagger \dagger \dagger$ writes on Zaghouania from material collected by Sydow in Istria. He describes the form and development of the teleutospores.

Franz v. Hohmel $\ddagger \ddagger \ddagger$ corrects some misstatements as to the occurrence of Ramularice on plants of Umbellifcre. He describes two new species of the genus.

In another contribution, $s s 8$ he points ont the sources of error in determining genera and species of fungi ; different stages of growth or

[^388]different forms of the same species being mistaken for other plants. He describes two new species of Churonectria and one of Diplodinat.

Lichens.

Lichens.*-A. Jatta publishes a first series of the Lichens of the Levier herbarium. They were collected in Southern Asia and in Oceania, many of them are from India. The list includes 86 species, \because new to science, Ramalina laciniata, Strigula insigmis, and Leptogium uzmrellum.

Some notes on the systematic arrangement of Pyrenocarpous Lichens are published by A. Zahilbrückner. \dagger He holds that the natural arrangement of lichens must follow that of the fungi, giving the great groups of Asco-, Hymeno-, and Gasterolichens. The Ascolichens are subdivided into Pyrenocarpous and Gymnocarpons forms. The writer traces the connection between the Verrucariacece and other higher families of the group.
M. A. Libert \ddagger publishes the lichens of the Ardennes from the Cryptoyame Arduennce.

Clém. Aigret § has completed a monograph of the Cludonice found in Belgium. He gives a historical account of the genus, methods of examination, and analytical tables of the species, which are fully described.
A. Zahlbruckner\| furnished a list of lichens in comnection with the report on the German Flora ; some of the species are new, but in this list only the names and habitat are recorded.
M. Britzelmayr 9 publishes an account of the lichens collected by him in the Algäuer Alps. Many of them are new to the locality.

Mycorhiza.**-M. Marcuse has examined a number of plant roots that are inhabited by the endotropic form of Mycorhiza. The presence of the fungus is affected, he finds, by the period of regetation, and by the age of the roots. The writer touches on various other points of interest. He studied more especially the holosaprophytic Orchidaceæ and such hemisaprophytic plants as Limem catharticum, Polygala amora, Pinus sylvestris, \&c.

Schizophyta.

Schizophyceæ.

Mastigocladus laminosus. $\dagger \dagger$ - A. Löwenstein gives the result of his experiments on this alga in various temperatures. He finds that it flourishes in the Carlsbad spring and can bear a heat of $5 z^{\circ} \mathrm{C}$. The plant was made to grow in a mixture of spring water, Molisch's nutritive solution, and Moldan water at the same high temperature. But it can

[^389]also live at a temperature of $-19 \cdot 8^{\circ}$. It is shown that this alga, when removed from this normal habitat and cultivated at an ordinary dwellingroom temperature, gradually loses its power of resisting heat; and this becomes the more marked in proportion to the length of time it is cultivated in cool water.

Osmotic Properties of Cells of Cyanophyceæ.*-F. Brand details the results of certain experiments in this direction and sets them under three headings. (1) Reaction to plasmolysing solutions; (2) reaction to pure glycerin, glycerin saturation ; (3) "plasmoptyse," the effect of sudden irrigation with water on a cell which has just been deprived of its watery sap by glycerin.

Petalonema alatum. \dagger-Daisy S. Hone has examined material of this alga collected from the gravel bed of a quiet stream in Minneapolis, where it formed a dark chestunt-brown stratum. The colomr is due to the gelatinous sheaths in which the trichomes are imbedded. The psendocysts are very variable in size and shape. The heterocysts are solitary and interstitial, somewhat globose or oblong, slightly larger than a normal psendoeyst.

Water-Bloom. $\ddagger-N$. P. B. Nelson has studied the subject of this occurrence in Mimesota and neighbouring States, and finds that it may be formed by seven different species of Cyamophycere, namely, Glaotrichia hisum Thur., Cocosphaeriam kuetzingianum Naeg., Aphanizomenon Hos-aque Ralfs, Clathrocystis aëruginosa Henfr., Anabena circmalis Rabenh., A. flos-aque Brèb., and A. mendote (?) He finds that the presence of one or more of these species in water drunk by cattle often causes fatal results.

Perforating Algæ. §-G. Nadson passes in review the principal types of this group of alge, and expresses the opinion that they play an important part in hature, by facilitating the disintegration of rocks and stones. He believes that Conchocelis rosea Batt. is a variety of Ostreobium Queketti.

Anabæna.\|-E. Lemmermam describes a new variety, marchica, of Anabena cylindrica Lemm., from Langer See in Brandenburg. It is distinguished from the type of the species by its larger size and the alsence of the colomrless empty cell-wall surounding the heterocysts. The differences are shown in the form of a table and a key is given which includes four other species having cylindrical cells, as well as A. cylindrica and its new variety.

Calcareous Pebbles. \uparrow-C. Powell describes some calcareous pebbles found in Clearwater Lake, Wright comnty, Minnesota. They were found lying on sand-bars in water from 4 to 10 feet deep, and they range in size from that of a small hickory nut to $\frac{1}{2}$ in. in diameter. All

[^390]of them were more or less hollow and were found to consist of a densely interwoven mass of filaments, principally Schizntherix fasciculutu Gomont. Others from the banks of the Mississippi contained a species of Scytonema.

Schizomycetes.

Bacillus of Epidemic Dysentery.*-L. Vaillard and Clı. Dopter had the opportunity of observing this disease during the Vincennes epidemic of last year. They were able to isolate by means of agar plate cultures, from the stools of all trpical and recent cases, the bacillus first deseribed br Chantemesse and Widal and afterwards by Shiga and others. This bacillus is a short rod $1-: ; \mu$ in length, non-motile, without cilia and not forming spores. It stains with the ordinary anilin dyes but not with Gram. It grows on ordinary media and does not liquefy gelatin. It is distinguishable from B. coli by not forming indol, by not acting on sugars with gas formation, and by not coagulating milk, and from B. typhosus by the absence of cilia and movement. Cultures of it were agglutinated by the sera, in dilutions of $\frac{1}{20}-\frac{1}{30}$, of patients suffering, or having recently suffered, from the discase. This agglutinating power appeared about the end of the first week of the disease. Such sera did not agglatinate B. typhosus, but occasionally did B. coli. There was no agglutination with the sera of healthy persons or of those affected with tropical (amobic) dysentery. The authors were able, by subcutaneous injection, to prodnce experimentally the disease in animals, notably in the cat and dog, and the lesions found appeared identical with those of epidemic dysentery in man. The bacilli were found in great numbers in the lesions of the intestinal tract. The bacillus did not appear to secrete a soluble toxin, and injections of filtered cultures did not produce appreciable effects. If, however, an aqueons maceration of dead cultures was made and allowed to sediment, injections of the supernatant bacilli-free fluid produced effects apparently identieal with those produced by injections of living cultures. The authors maintain that the immunisation of animals is possible and practicable from the point of view of serum-therapy.

Nitrogen-assimilating Bacteria. \dagger - Ed. v. Frendenreich worked with the aerobic Azotolacter chroococcum (Beijerinck) and the anaerobic Clostrilium pastoriumm (Winogradsky), but chiefly with the former. This he describes as cocci with a diameter of $-\mathbf{-} \boldsymbol{5} \mu$, elliptical forms however being not uncommon, measuring $2-:, \mu$ by $: 3-6 \mu$. Three or more refractile grannles are to be seen in the cell protoplasm in unstained preparations. At times it seems to be motile. It can be obtained by inoculating with earth as solution containing, in water, - 05 p.e. potassium biphosphate and 2 p.e. mannite. In this it grows rapidly and from the pellicle formed on the surface it can be isolated by making a series of surface cultures on agar having a similar composition. It does not grow on potatoes, and bouillon inoculated with it remains sterile, so that this medium may be used as a test of the purity of the

* Ann. Inst. Pasteur, xvii. No. 7 (1903) pp. 463-91.
\dagger Centralbl. Bakt., $2^{\text {te }}$ Abt., x. (1903) pp. 514-22.
cnlture. Good results were obtained by growing it on gypsum plates, either in Petri's dishes, or in test-tubes along with the above mannite solution. It grows best at about $30^{\circ} \mathrm{C}$. The author has found it in garden and field earths from various parts and also in street dust. It was constant in earth at a depth of 50 cm . At depths of $100-190 \mathrm{~cm}$. it did not seem to be present, although Clostridium pastorianum was. Its most interesting characteristic is that it absorbs atmospheric N , even in pure cultures. In a series of experiments, after nine weeks growing in the mannite solntion, the N -gain was found to be $12-24 \mathrm{mg}$. per litre. In mixed cultures the growth is much more luxuriant and the N -gain greater, up to 80 mg . per litre, after one week. The greatest N-gain seemed to be in the gypsum cultures, they being under very aerobic conditions. They furnished, in periods varying from one to three weeks, about 4 mg . N each, and as the quantity of the mutrient solution, used in each, was about $20 \mathrm{c} . \mathrm{cm}$. the amount of N per litre would be about 160 mg .

Attempts to sow earth with cultures of these organisms for the purpose of increasing its nitrogenous value have not hitherto been satisfactory.

Disease of the Rat caused by an Acid-fast Bacillus.*-G. Dean records a case of a disease of the rat (Mus decumanus) affecting skin, musculature and glands, a disease already described by Stephansky and by Rabinowitsch. Among other lesions, the skin of thorax and abdomen was demuded of hair, and on the bare area were several nodules the size of peas. The axillary glands were enlarged, and the abdominal wall was thickened and caseous. Practically the whole area involved was packed with acid-fast bacilli. They were present not only in necrotic areas, but in the cells themselves. The bacilli are about 5μ in length, and frequently present the gramular appearance of the bacillus of leprosy. They stain with Gram and are both acid- and alcohol-fast. Attempts to cultivate the bacillus on ordinary media failed, as also did attempts to infect white rats.

Acid-fast Bacilli in Python reticularis. \dagger-V. Hausemann found, in the neighbourhood of the pancreas in a Python reticularis, a grape-like mass having some resemblance to Perlsucht. Microscopically, however, the masses were seen to consist of granulation tissue, with densely packed round cells, but with no caseation, giant cells, nor calcification. Foci of suppuration were seen, in the neighbourhood of which were large cells with characteristic granular protoplasm. With the usual staining method no bacteria were seen. With the use of Ziehl's solution and after treatment with Gabbet's solution, numerous red-stained rods appeared, resembling the tubercle bacillus in form and size, and sometimes having the irregular staining so frequent in that organism. By this staining method the grannlar appearance of the large cells was seen to be due to an accmmulation of acid-fast bacilli in them. These large cells with their contained bacteria appeared morphologically equivalent to "lepra-cells." As all the material had been hardened before the

[^391]bacilli were noticed, no inoculation experiments could be carried out. It remains therefore maknown whether these bacilli were identical with the tuberele bacillus, or whether they were acid-fast bacilli different from it.

Retting of Flax and Hemp.*-J. Behrens, in order to determine the canse of this process, experimented with B. Huorescens liquefuciens, B. subtilis, B. megatherium, B. mesentericus v'ulyutus, B. mesentericus fuscus, B. mycoides, B. coli communis, B. usterosporus, and Mucor stolonifer. His method was as follows :-A number of hemp, or flax, stems were cut up and placed in wide-monthed vessels with just enough water to cover them. On three consecutive days the flasks were subjected for 2 hours to steam sterilisation. A flask was then inoculated with one of the above-named organisms and incubated at $\because 5^{\circ} \mathrm{C}$. for periods up to 21 days, several uninoenlated ones being treated similarly as controls. At the end of the period the extent of the retting was determined. The experiments showed that two only of the organisms Were capable of causing the process, viz. B. asterosporus and Mucor stolonifer, the former leing the more active. In the case of flas, B. mesentericus fuscus prolnced a donbtful retting.

Presence of strictly Anaerobic Butyric Acid Bacilli and of other Anaerobic Species in hard Cheese. \dagger-A. Rodella worked with 20 samples of Parmesan and 10 samples of Emmenthal cheese. He used two methods: (1) That of Botkin in which abont 1 grm . of cheese is added to sterile air-free milk, while yet hot, in a small flask. In the 30 experiments all gave positive results, butyric acid fermentation being set up by a non-motile bacillus within 24 hours. (2) $\cdot 2-\cdot 5 \mathrm{grm}$. cheese placed in air-free bouillon, both with and without added sugar, was left at $: 37^{\circ} \mathrm{C}$. for, $3-4$ days. The tubes were then heated to $80^{\circ} 1^{\circ} \mathrm{C}$. and a few drops of the colture introduced into the deep layer of agar and gelatin. Of 14 experiments with Parmesan cheese 9 gave positive results. Five times was found what was probably the non-motile butyric acid bacillus of Schattenfroh and Grassberger. Three times the Bacillus putrificus of Bienstock was certainly identified. Twice a nonliquefying anaerobe was found which the author regards as a new species. Five experiments with Emmenthal cheese gave 4 positive results, the isolated anaerobes belonging to the group of butyric acid bacilli of Schattenfroh and Grassberger.

Researches on Tetanus. $\ddagger-H$. Meyer and F. Ransom, in a researeh undertaken to throw light on the etiology of tetams, first worked at local tetanus. They claim to have given a satisfactory interpretation of the period of incubation, to have discovered a form of tetanns confined to the sensory system, Tetamus dolorosis, to have established a theory of action of the tetanus toxin, and to have defined the sphere within which the serum treatment is effectual.
(1) Local tetamis.-Experiments in this eomnection show that the transport of tetanus toxin to the central nervons system takes place only by way of the motor nerves.

[^392](2) The period of incubation.-Experimentally it is shown that the greater part of this period is the expression of the time occupied in the conveyance of the toxin from the periphery along the motor nerves to the susceptible centres.
(:3) T'etenus dolorosus.-In all experiments with injection of tetanus toxin into the substance of the spinal cord, there was observed as a first symptom of intoxication a sensory disturbance, consisting in extreme liyperesthesia, strictly localised, even when the muscular rigidity and the exaggeration of the reflexes were hecoming gencral. Experiments made in this connection show that the tetanus toxin never reached the spinal centres by way of the sensory nerves; that the pain apparatus in the spinal cord is so insulated from the motor that an intoxication of the one group never goes over to the other ; and that the actual movement of the toxin in the nervous system takes place, not in the lymphatics but in the protoplasm of the nerves.
(4) Theory of action of tetumts toxin. -The toxin is taken up from the point of injection by the motor nerves, along which it passes to the motor centres in the cord and excites there an over-irritability, resulting in tetanic rigidity in the affected limb. The excess toxin then passes in the fibres of the cord to the motor apparatus of the corresponding limb of the opposite side. After a time the nearest connected sensory apparatus of the reflex are in the spimal cord is attacked. If the intoxication proceeds further, the motor tomus and the increased reflex irritability become general. The tetams of warm-blooded animals consists of two processes. One is primary, a motor intoxication : local muscular rigidity ; the other, secondary, is a local sensory intoxication : a diffused reflex tetanus, starting from the intoxicated nemron.
(5) The behaviour of the tetanns anti-toxin in the organism.-It was found that when tetanns toxin was introduced direct into a motor nerve, anti-toxin was practically inert. It is concluded therefore that anti-toxin does not reach the substance of the nerve-fibrils and centres, and will therefore render harmless only the toxin in the blood and lymphs, leaving that already in the nerve-substance untonched.

Experiments with Bacterial Light.*-M. B. Issatchenko has studied the light produced by the Photobacteriam phosphorescens, and has made experiments to determine the extent of its power in causing the transformation in plants of protochlorophyll into chlorophyll. All experiments were made in a perfectly dark room. The light was strong enough for small objects to be distinguished, and for the study of its spectrum which was from $\lambda=0 \cdot 46$ to $\lambda=0 \cdot 5 \cdot$, the clearest part being from $\lambda=0.48$ to $\lambda=0.51$. In colour the light was greenish. The light from gelatin cultures attained its maximum in from 2-3 days. The experiments were made by exposing to the light for periods varying from 10 to 48 hours germinating seeds of clover, rye, and oats, and afterwards treating the shoots with 95 p.c. alcohol and examining the extract spectroscopically. An aleoholic extract was in all cases made also before the experiment and examined in the same way. In none of the latter was there evidence of chlorophyll, the band of protochloro-

[^393]phyll only being present. In three out of four experiments the extract made from the shoots after exposure to the light showed in addition to the protochlorophyll band a distinct band of chlorophyll. The absence of chlorophyll occurred in the short 10 -hour experiment.

The author claims that this formation of chlorophyll depends exclusively on the tension of the light, the quality of the rays not playing any rôle in the process if the rars of intensity are sufficiently great.

Observations on the Flagella of the Tetanus Bacillus.*-Silvio de Grandi, in an important paper, gives the results of his work on the flagella of the tetanus bacillus. He worked with two distinct races of the bacillus; he made his cultures in bonillon and on agar, and used both Buchner's tubes and an atmosphere of hydrogen. Preparations were made at different periods of growth, from 20 hours to 14 days. The staining methods of Löffler, Morax and Nicolle, Gino de Rossi, Trenkmann, and van Ermengem were employed, and the author suggests modifications of some of them. From the flagella standpoint he divides the bacilli into three groups.
(1) The most complete form. The bacillus is surrounded by numerous- $50-70-$ very fine flagella $1-1 \frac{1}{2}$ times its own length.
(2) Many of the flagella of (1) have disappeared and the remainder, about $20-30$, have lengthened out to 2 or $;$ times the length of the bacillus and have become markedly simuons.
(:3) This form is characterised by the presence of a few, never more than four, much thicker flagella, "secondary flagella" (Kanthack and Connell), "Wimperhaar" (Lïffler). There is in this form also a great diminution in number of the ordinary flagella. There may be seen only one "Wimperhar" and no other flagella at all. When all flagella have disappeared sporification seems about to take place. The author regards these changes as involutive.

No. (1) is found most abundantly in early preparations after 2 days in bouillon or :3 days on agar. No. (\because) predominates after :3 days in bouillon or 4 days on agar. After 4 days in bouillon or $5-6$ days on agar No. (:3) is almost exclusively found. Later than this flagella seem to deerease progressively so that after 10 days it is rare to find any at all.

As regards movement, the author has found most bacilli absolutely non-motile. In some of the smaller forms however he has noticed a slow and indistinct movement. He considers that to a great extent the flagella of the tetanus bacillus have lost their function.

Flagellated Micrococcus found in a Septicæmia of Rabbits. \dagger G. Catterina described a micrococeus obtained from the hood and spleen of rabbits suffering from a form of sèpticæmia. It stained well with ordinary stains, but not with Gram. Its diameter was $1 \cdot 5 \mu$; it was usually single but sometimes diplococcal forms mere observed. It was very motile, and two flagella were demonstrated at opposite poles of the organisms. In gelatin stab cultures after :3 days appeared delicate oblique filaments growing out laterally from the needle track, while on

[^394]the top surface of the medium was an irregular colony, whitish and warty in appearance. The gelatin was not liquefied. On agar and solidified blood-serum whitish irregular and raised colonies were developed. Broth became flocculent without surface pellicle. On potatoes the colonies were raised at the edges. The indol reaction was negative. Anaerobic growth was slow.

A loopful of the culture caused death of a rabbit in about 48 hours, and the micro-organism was found in the spleen and blood. Guineapigs and mice died in 40-60 hours. Fowls were unaffected.

The author was able to produce a certain degree of immunity in rabbits by injecting them with increasing quautities, $2-20 \mathrm{~cm}$., of the filtered broth culture.

He considers the micrococcus a hitherto undescribed species and names it Micrococcus agilis albus.

MICROSCOPY.

A. Instruments, Accessories, \&c.*

(1) Stands.

Leitz' New Stand and Fine Adjustment. \dagger-In this new model (fig. 152) Leitz has adopted the English method of applying the micrometer screw to the tube, and has, at the same time, abandoned the

Fig. 152.
Continental type of stand. The build of the Continental stand is a necessary consequence of the straight tube and straight pillar of the upper part: hence, in the present stand greater freedom has been

* This subdivision contains (1) Siands; (2) Eye-pieces and Objectives; (3) Illu. minating and other Apparatus; (4) Phetomicrography; (5) Microscopical Optics and Manipulation; (6) Miscellaneous.
\dagger Zeitschr. f. Instr., xxiii. (1903) pp. 79-S1 (3 figs.).
attained in the disposition of the pillar and foot. The curving of the upper pillar affords a good grip for the Microscope and provides ample room for a large object-stage. In place of the usual mechanism of screws, levers, or inclined planes, a principle, apparently novel as regards the Microscope, has been adopted for the attaimment of a fine adjustment : a dise (f, fig. 153) rotates about a strong axis and is bounded by a curved surface excentrically placed with regard to the axis: this disc raises the tube the desired distance. Fig. 153 is a vertical section through the mechanism of the micrometer adjustment. The periphery of the disc is made of two equal spirals which are placed together in a

Fig. 153.
heart-shaped manner, thus forming a kind of cam. The spiral starts from the indent of the cam (i.e. the point nearest the rotation-centre) up to its apex: the range is abont:, mm., and the dise simultaneonsly travels an equal amount. A support k is placed on this spiral by means of the roller g; it shares in the movement and communicates it to the tube. The heart-shaped piece is rigidly connected with a toothed wheel d, which engages on two sides in the thread of an endless screw a. This double engagement of the teeth and axle is clearly seen in fig. 15. This endless screw is operated by a pair of milled heads placed under the milled heads of the coarse adjustment. The position b of the
endless screw a brings the latter by means of the milateral pressure of a spring into elose contact with the toothed wheel. By means of this pressure-position and the double gripping of the wheel and axle all backlash of both is avoided. The toothed wheel has 60 teeth and requires a balf rotation to move the spiral from the indent of the cam to its apex and to perform the 3 mm . of motion. In one rotation, therefore, one tooth corresponds to a movement of 0.1 mm . ; and a complete rotation of the axis a secures a complete rotation of the toothed

Fig. 154.
wheel. The drum r of the axis is divided into 100 parts : the rotation of one graduation of the drum-head eorresponds, therefore, to a micrometric movement of 0.001 mm . The connecting piece between tule and pillar carries the rack-and-pinion coarse adjnstment and bears on its hinder side a swallow-tailed piece fitting aceurately into a corresponding groove of the pillar, and firmly screwed on to the bearer k. This bearer by means of the roller y sits on the surface of the spiral and shares both its rising and its falling movement. A spring inserted in a cylinder on the pillar of the stand over the support k, presses a pin
against the support and holds the roller in sure contact with the spiral. The pin is so situated on the support k behind the contact-point of roller and spiral (see fig. 154) that the spring-pressure and the strain arising from the weight of the tube and connecting piece equalise themselves, so that within the groove of the swallow-tail there is no side pressure on the sliding parts to affect the fine adjustment, and thos an mequal wear and tear of the guide smrfaces is avoided. One effect resulting from the comnection of the two spirals to the cam is that, owing to the endless action, there can be no over-winding and therefore no straining of the fine adjustment. Another advantage is that destruction, in the event of contact, of the cover-glass cannot occur, even if rotation of the serew is continned, for in this case the connection hetween roller and spiral is interrupted : the spiral then runs free, the tube gently sets itself on the cover-glass which, in the designer's experience, is capable of sustaining the weight of the light aluminimm tube and the pressure exerted by the spring on the tube-holder and tube.

In connection with the foregoing stand and with special reference to the fine adjustment Mr. Nelson writes as follows :-
"The circular issued by Messrs. Leitz of Wetzlar throws an interesting side light on the ideas prevalent in Germany with regard to Microscope construction.

One of the causes assigned by Messrs. Leitz for the difference in construction of the Continental and English models is very curious-it is as follows: "The shape of the Continental stand is largely determined by the straight tube and the straight pillar, which are indispensable, owing to the long prismatic guides in the pillar.' Many English Microscopes, however, have straight tubes and longer prismatic gruides than exist in any Continental model, so that these points can hardly be said to determine the form of the model.

The truth is, that the non-inclining Continental model, with its small stage, was a cheap form, which did well enough to hold the magnifyiug glasses for which it was originally designed, but the moment it was used for purposes of delicate researeh it utterly broke down, for it was fonnd wanting in every important point.

Messrs. Leitz admit that it fails when the stage is enlarged, and the distance of the body from the limb is increased, and anyone can understand how the weight of the body, acting at the end of the arm (virtually a lever), must jam the slides. This surely is an important point, for if the fine adjnstment breaks down what is the use of the instrument?

The method which Messrs. Leitz have adopted in their landable attempt to improve the radically bad Continental model is both complex and quite inefficient. The body is raised and lowered by a cam, which is rotated by an endless screw; the speed attained is $\frac{1}{254} \mathrm{in}$. for each revolution of the pinion.

Passing over, without criticism, the complexity of this mechanism, it can be seen at once where the appliance fails, for it is impossible to determine the direction of the focussing movement, whether it is upwards or downwards. This, however, is a point of primary importance
in a Microseope, because there is no stereoscopic projection, and the shape of bodies can only be known by differences of focal adjustment.

The instrument, like all of Messrs. Leitz' work, is most beautifully made, and it is a thonsand pities that Germans throw away such excellent work on such impossible models.

The cam was first applied to the fine adjustment of a Microscope by Wenham in 1886, but it was used for stage movements by Swift in 1884."

New Regulating Arrangement for a Hot Stage. \dagger-The advantage of this apparatus, designed by R. Krans, is "that a constantly warmed water-supply can be applied to an object-stage and keep it at a constant temperature the whole day long." The apparatus consists of a glass hollow stage communicating by means of indiarubber tubes with the two chambers of a heated reservoir. The whole arrangement involves the prineiple of cireulation, and the effect is to produce a steady flow of water at a constant temperature through the stage. The water on leaving the stage goes to the lower chamber, which is a sort of furnace, whence it rises to the reservoir proper ; thence it gravitates to the stage, and so on. The heating of the furnace is effected by a suitable gas flame, and a thermostat in the reservoir controls the temperature of the flow. The temperature of the stage is about $8^{\circ} \mathrm{C}$. less than that of the reservoir and the object-holder wonld be about $4^{\circ} \mathrm{C}$. still lower.

Watson's New Scōp Mechanical Stage. - The prineipal advantages offered by this new stage exhibited at the Jone Meeting (fig. 155)

Fig. 155.
are great range of movement, as much as 3 in . being given in the horizontal direction, and a clear surface for working pmrposes. The

[^395]two movements are effected by rack-and-pinion, by which an equal rate of progression is secured : they are actuated by two milled heads mounted on a common spindle on the Turrell system, and though the position of the heads is unusual it is found in practice to be extremely convenient. In size the stage is the same as that of the " H " Edinburgh Student's Microscope, but if desired it may be sremoved and replaced by a plain plate fitting in the same dovetails.

Fig. 156.
Watson's New Pattern Portable Microscope.-Figs. 156 and 157 show the new pattern portable Microscope which was exhibited and described by Mr. F. W. Watson Baker at the Mecting on June 20th : see ante, pp. 562-3.

New Microscopical Stand with a Movable Stage capable of Large Movements.*-Cl. Regaud and Nachet describe a stand which has a special form of movable object-stage and is geared so that the stage can be moved up and down. The stage is adapted for large objectslides 85 by 50 mm ., and by means of a mark the object-holder can always be accurately brought back into the same position. Every part of the upper surface of the object-holder can be brought into view and

[^396]the whole surface can quickly or slowly he systematically explored. The movements are controlled by the left hand of the operator, his

Fig. 157.
right being then free for the micrometer screw. The apparatus is thus especially suitable for the examination of a series of sections.

(3) Illuminating and other Apparatus.

Colour Illumination of Microscopic Objects.*-S. E. Dowdy describes a simple procedure for making colonred gelatin discs for illuminating objects by Rheinberg's method. \dagger First of all, obtain an onnce of good quality clear gelatin. Shred this up into small pieces and cover them with 4 oz. of water, and allow it to stand till quite soft; then add another 2 oz. of water, and warm gently on a waterbath (a saucepan containing a little water will do) until the gelatin dissolves. This will constitute our stock solution, which may be coloured as follows:-Procure half a dozen of the penny packets of anilin dyes, selecting brilliant contrast colours. Add abont four grains

[^397]of the dye to a teaspoonful of water ; warm nutil dissolved; filter if solution contains any foreign matter, and add it to about an ounce and a half of the stock solution of gelatin whilst still warm, and therefore in a liquid condition. Now clean some $\frac{3}{4}$ in. circular cover-glasses and place them on a sheet of white paper. With a glass rod deposit a little of the warm gelatin solution on the centre of one of them, and quickly lower upon it another cover-glass, pressing it down to remove superfluous liquid. The gelatin will set almost immediately, with the result that a thin film of it, protected on both sides from injury, will be olvained. Such films can be cleaned like an ordinary cover-glass with no fear of their coming apart. Some background stops will now be required, and these can be prepared as follows. With a fine camel-hair pencil paint a circular disc of the coloured gelatin solution in the centre of a cover-glass, and allow it to dry. Care should be taken to put it on thinly and evenly, and a neater job will be made of it if a fine ring of varuish be first put on the cover with a turntable, afterwards painting in the central area. Two or three dozeu films shonld be prepared whilst the materials and solutions are about, as they are always handy.

Early Glass Micrometers. - Mr. E. M. Nelson presented at the June Meeting two micrometers for the cabinet of the Society, and has supplied the following description. These two micrometers are interesting as being early specimens of a glass micrometer. They are ruled on the slides (2 by $\frac{3}{4} \mathrm{in}$.), and no cover-glass is used. They are both ruled in squares, one in $\frac{1}{100}$, and the other in $\frac{1}{200}$ of an inch. I have compared the $\frac{1}{200}$ with an accurate micrometer with some care, and find that the average of the $\frac{1}{200}$ is slightly in excess, viz. $\frac{1}{1985}$. The greatest interval is $\frac{1}{190}$, and the least $\frac{1}{206}$; probably an error of two units in the fourth decimal place was not thought much of in those early days of micrometry; one of the interspaces however is only $T_{T \frac{1}{40} \overline{0} \overline{0}}$ in. in excess. The $\frac{1}{100}$ was only cursorily examined, but the ruling seemed more even ; but the error, like the other, was in excess of the truth.

Probably these micrometers were ruled by Powell, as they belonged to a Microscope made by him in 1838.

Method of Demonstrating Newton's Colours by Transmitted Light.*-It is well known that, if white light be passed through a thin film, part of it will be reflected twice within the film and will cause interference and colour phenomena. These are usually very faint because the amount of light which is thus reflected is so small as compared with what passes directly through, as to have but a slight effect. If, however, the same rave-front be passed through a uniform series of films, successive portions of certain colours should be blotted out in each film, while other colours which get through the first film without interference, shonld emerge from each of the other (similar films) without interference, and the colour effect should be cumulative. At the snggestion of Prof. Barns, these surmises have been empirically verified and excellent results obtained. If a number of wire rings of the same

[^398]size be mounted in parallel planes, and dipped together into a soap solntion, their planes being kept perpendicular to its surface, a suitable series of films results, through which light can be passed and caught on a sheet of paper, showing the desired phenomena very beautifully. Since each film, under the action of gravity, is a very thin wedge, the colours are in horizontal bands, appearing first at the top, (where the wedge is thimest) and moving slowly down across the fieh as the films evaporate, to be succeeded by other bands of lower orders. Indeed, good films will often hold until two-thirds of the field is coloured with the yellowish-brown of the first order. If the paper be replaced by a good lens and the colours projected on a large scale upon a suitable screen they can be strikingly demonstrated to a class. In practice the important thing seems to be uniformity in size and aligmment in the set of rings. The author makes them of $5 \cdot 5 \mathrm{~cm}$. in diameter, of galvanised iron wire ($l=1 \cdot 25 \mathrm{~mm}$.), the ends being twisted together into a sort of handle. Such rings can be temporarily strung on three rods notched at appropriate intervals to insure parallelism in the planes of the rings, while the handles are being clamped between two pieces of soft wood. The rings should be at least a centimetre apart to avoid cylindrical and irregular films, and from fifteen to thirty are sufficient. Before the films have become thin enough to show colours, certain other interesting phenomena of a circulatory nature are noticeable and can be studied.

Wide Illuminating Cones.*-"Villagio " expresses his gratification as to the improved results he has obtained by the use of wide-angled condensers and apertures. He was particularly pleased with the appearance of A. pellucida mounted in realgar, the objective oil-immersion being $1 \cdot 35$ N.A., and the condenser worked up to rather over $1 \cdot 0$ N.A. immersed. The lines were exquisitely sharp with widest axial cone, and on removing the eye-piece the two spectral beams were seen partially eclipsed by the edge of the back lens. On closing the diaphragm it was instructive to note that these beams diverged until they disippeared, this happening at about $\cdot 8$ to $\cdot 9$ N.A. On using the eye-piece with this cone it was, of course, found that the lines were invisible. The writer has also found the same arrangement of lenses and illumination excellent on sections of well-stained material, beantifully clear images being obtained. Similarly satisfactory results were obtained with living bacteria.
J.Rheinberg, \dagger however, in discussing Villagio's commnnication, points out that arguments in the controversy of wide-angled cersus narrowangled cones are apt to overlook the nature of the object to which such cones may be applied, and that great cantion should therefore be employed before any hard-and-fast rules be adopted. After discussing the effects produced by various kinds of illumination he concludes by pointing out that "whilst wide axial cones of illumination may cast a haze over, or completely obliterate the appearance of structure, they cannot, save in very exceptional circumstances, create an appearance of false structure, whereas as soon as we proceed to narrow cones, or use oblique,

* English Mechanic, lxxvi. (1903) p. $463 . \quad \dagger$ Tom. cit., pp. 524-5.
or annular illumination, such appearances are frequently created. Necessary as the latter modes of illmmination may at times be, they require far more care in interpretation than anything that can be seen with a wide cone of light."

Fig. 158.

Monochromatic Light Apparatus.--Fig. 15is illustrates the apparatus exhibited and described by Mr. C. L. Curties at the Meeting held on May 20 th : see ante, pp. :378-9.
Macé de Lépinay, J.-Projections Stéréoscopiques. Journ. de Phys., 1902, p. 311.

(4) Photomicrography.

Stereoscopic Photomicrograply with Weak Magnification.* W. Scheffer's explanation of the theoretical principles underlying the preparation of stereoscopic photographs of microscopic objects are set forth in figs. 159 and 160. The magnification is smpposed to be weak, and for such films photographic objectives of short foens without oculars suffice. X, Y are the points intended to be stereoscopically presented in magnification. The objective 0 , with the camera and ground glass screen, is first of all set perpendicularly to the object plane (C D, E F, are the planes; A B, the optic axis). M is the point at which the optical axis of the two positions of the objectives intersect with the axis of the camera. This point must come exactly in the centre of the object; it is then only necessary to provide for the movement of the objective and of the focussing screens. The camera is first moved to the right and then equally to the left (into the positions M H, M G) ; the result being that projections are received on the sereens $\mathrm{P}^{\prime} \mathrm{P}^{\prime}$ and

[^399]PP, which give the single images of a stereogram and represent the relative positions in space of the points X, Y.

Fig. 160 shows the final arrangement of the single pictures i. and ii. for the stereogram. The combination-points (x and x_{1}) corresponding to X lie closer together in the stereogram than those for Y (y and y^{\prime}); X is therefore presented to the observer nearer than Y. Two conditions

Fig. 159.

Fig. 160.
are necessary for success: first, that the points X and Y must lie within the penetrating power of the objective; secondly, the object must not project so far from the object-plane that the side views exceed those same limits of penetration. The "angle of inclination" is the inclination of the optic axis of the camera to the rertical, and it is found that an inclination angle of 3° gives the best results.

The arrangement of the apparatus is shown in fig. 161. A strong pillar BB rises perpendicularly from the base and bears a pivot D , round which is a movable arm C, whose (partial) rotations give the lateral inclinations of the camera. The angle of inclination can be accurately read off to $\frac{1}{4}^{\circ}$ on the scale at F . The screw B serves as a clamp. The coarse adjustment of the objective is effected by a pushmotion of the lower part of the camera on the pillar T ; the fine adjustment is by rack-and-pinion. When a stereoscopic plate is to be taken a pin is thrust through the hole visible in D, and its point accurately marks the inclination axis. The camera is, however, first brought into

Fig. 161.
the proper position for the negative and is clamped by the screw f, as the pin must also pass through a hole in the pivot of F . The point of the pin, as well as the objective, is now finely adjusted, and, by means of slight lateral movements of the objective board combined with slight push movements of the pin, is brought into the centre of the focussing screen. The frame is so arranged that the perpendicular to the centre of the screen intersects the rotation axis. When the image of the pin-point has been thus sharply defined in the centre of the screen, the objective is orientated and the pin drawn out. The stage with the object is then so orientated on the foot-plate that the
image of the object-centre comes in the centre of the sereen. The fine adjustment of the screen image is effected by the raising and lowering of the object. In this way the object is brought into the intersection of the optic axis of the camera and of the inclination axis. The illumination, especially with reflected light, is of the highest importance and should, as far as possible, fall perpendienlarly on the inelination plane; otherwise, the two stereograms would be unequally illuminated.

The apparatus is made by R. Fuess \& Co.
New Method of Focussing in Photomicrography.*-Katharine Foot and Ella C. Strobell add some notes on their method of focussing. \dagger This method offers special advantages for the rertical camera and daylight illumination, as it does away with the use of the gronnd olass, a minus spherical lens being substituted for the purpose of focussing. These lenses can be obtained from any optician, and a series (omitting the half numbers) ranging from -1 D to -12 D , will furnish the equipment necessary for photographing at 1200 diameters or less, with most combinations of objective, eye-piece, and bellows drawn. The lens for a definite magnification depends upon the eresight of the operator. The selection of this lens is a simple matter and can be determined by taking one photograph. The method, in brief, is as follows:-" "Instead of attempting to focus on the ground glass fine details impossible to see with daylight illumination, the change of focus necessary to throw the exact image (selected for the photograph) on the gromd glass, is accomplished by focussing through a minus spherical lens placed on top of the projection ocular. This lens is removed before the plate is exposed. The photoyraph is not taken through the lens. The use of these lenses is simply a device for compelling the eye to see the plane of the preparation that is projected on the ground glass." Before exposing the plate a delay of a few minutes is necessary to see that the focus does not slip. It is also necessary to see that such a length of draw-tube is used as will give agreement in results as tested by the Zeiss stage micrometer and by the Zeiss micrometer eye-piece. A few photographs of the stage micrometer, taken with different combinations of lenses and bellows draw, provide an accurate register of magnifications, in convenient form for reference in selecting the lenses and draws needed for a given magnification. In asing this method of focussing, it is a great aid to determine the limits within which a sharp foons can be expected, for it is easy to strain the eye and see details beyond these limits; the negative in this case giving disappointing results.

Photographic Lenses. \ddagger - Under this titie, C. Beek and H. Andrews have compiled a book intended for the use of the non-mathematical photographer. But so much of the work is occupied with an explanation of the properties of lenses that it cannot fail to be of interest to microscopists. The diagrams and illustrations are very numerous, and the plates devoted to such subjects as curvature and distortion are remarkably effective.

* Journ. App. Mier., v. (1902) pp. 2082-4 (1 fig.).
\dagger Zeitschr. wiss. Mikr., xviii. (1902) pp. 421-6 (1 pl.) ; and this Journal, 1902, pp. $490-1$.
\ddagger Published by R. \& J. Beck and Percy Lund, Humphries \& Co. (second edition) London.
(5) Microscopical Optics and Manipulation.

Everett, J. D.—On the Resolving Power in the Microscope and Telescope
Rep. British Assoc. Glasgow, 1901, p. 569.
Strehl, K.-Ueber Luftschlieren und Zonenfehler.
Zeit.f. Instrumentenk., X XII. (1902) p. 213.
Volkamne, W. - Ein neues Geradsichtprisma und ein neues Flüssigkeitsprisma.
Ann. d. Phys. [4] VIII. (1902) p. 455.

(6) Miscellaneous.

The Microscope.*-Under this title, A. S. Percival contributes to the Enylish Mechanic a brief but clear and interesting explanation of the peculiarities of leus structure concerning the Microscope. He deals, inter ctict, with magnification, spherical aberration, chromatic aberration, apochromatic objectives, size, brightness and flatness of image, and Huyghenian eye-pieces.

Wave-length Tables of the Spectra of the Elements and Compounds.
 Rep. Com. Brit. Assoc., 72 nd Meeting, Belfast, 1902. London (J. Murray) 1903, pp. 137-74.

B. Technique. \dagger

(1) Collecting Objects, including Culture Processes.

New Economical Thermostat of Simple and Light Construction. \ddagger

C. Tonzir describes a thermostat which caln be easily and cheaply made by an ordinary joiner and tinsmith, and which is well adapted for a temperature of 20° or $22^{\circ} \mathrm{C}$. It measures $40 \times 60 \times 75 \mathrm{~cm}$., and is made of wood, 2 cm . thick. Throurh the middle of the chamber a cylindrical tube of zine passes vertically. This cylinder extends 5 cm . above the roof of the chamber, and below the floor it expands in the form of a cone, which is closed at the bottom loy a plate of copper, this part being exposed to the flame when the thermostat is in use, and the cylinder full of water. The upper end of the cylinder has in it two openings, one for the thermo-regulator and another for a thermometer, to gange the temperature of the contained water. In the roof of the chamber near one of the sides is another opening for a thermometer, to gange the incubator temperature. The diameter of the cylinder is 7.5 cm ., that of the base of the cone 18 cm ., its capacity, therefore, is about 4900 ccm . The author uses a Soxhlet's thermo-regulator, but when gas is not available, a constant temperature can be maintained by the use of one or more night-lights in oil. The air of the chamber is warmed by convection of heat given out from the cylinder. The temperature was found by experiment to be uniform in all parts of the upper part of the thermostat. In the lower part the temperature was a

[^400]little lower ($\cdot 5^{\circ}-1 \cdot 5^{\circ} \mathrm{C}$.). With regard to constancy of temperature, it was found that with a fluctuation of $8^{\circ} \mathrm{C}$. in the room temperature, the change in that of the thermostat did not amount to $2^{\circ} \mathrm{C}$. With slight flnctuations in the room temperature, that of the thermostat may be regarded as constant. The approximate cost of the apparatus, with thermo-regulator, thermometers, rubber tubing, and lamp, is from 25 to 30 fr .

Milk-Agar as a Medium for the Demonstration of the Production of the Proteolytic Enzyme.*-Referring to papers by E. v. Frendenreich and J. Thöni, and by E. G. Hastings, \dagger C. Eijkman claims priority in suggesting the use of milk-agar for the above purpose, and in showing that the elearing of this turbid medium depends on the peptonising of the casein and that the casein-splitting enzyme is identieal with the gelatin-liquefying one. He argues that while both milk-agar and gelatin are useful in distinguishing between peptonising and nonpeptonising colonies, the former had the advantages of not liquefying and of a higher melting-point. The author also advocates the use of the "Diffusionsmethode" for the demonstration of the production of the fat-splitting enzyme.

(2) Preparing Objects.

Decantation Method for Cleaning Diatoms. $\ddagger-\mathrm{S}$. Broughton remarks that diatoms should be treated with acid to clear from all soluble matter and afterwards poured into a tall glass jar. Then have ready a siphon, and when the coarser particles have settled down siphon off to within an inch of the bottom ; then empty the sand into another vessel and pour the portion first siphoned off into the glass jar and siphon off again to within an inch of the bottom. Empty the portion left into another vessel and repeat as often as thought desirable, keeping each separate, and at the last let it stand some time, allowing the diatoms to settle down, and then siphon off the clear water. They should then be fairly free from foreign matter. Each lot may then be tested to see if any diatoms are left in, and if so the process should be repeated.

(4) Staining and Injecting.

Apparatus for the quick and uniform Staining of Serial Sections and for the Treatment of them in Number with Reagents.s-This apparatus, made by R. Jung, of Heidelberg, consists of a glass vessel, $70 \times 40 \times 90 \mathrm{~mm}$., into which fits a carrier for 10 slides made of nickel wire with sloping cross-bars of tin for the slides to rest on. These crossbars are turned up at the edge so that the slides camot fall off. A ring of wire allows the carrier to be lifted out without the fingers coming in contact with the reagent. The glass vessels are very cheap and it is convenient when working to have a number of them, each containing a separate reagent or stain, the carrier holding the slides being lifted from one to the other.

* Centralbl. Bakt., $2^{\text {to }}$ Abt., x. (1903) p. 531.
\dagger Op. cit., $1^{\text {to }}$ Abt., xxix. (1901) No. 22.
\ddagger Euglish Mechanic, lxxvii. (1903) p. 444.
§ Zeitschr. angew. Mikr., ix. (1903) pp. 57-8.

Modification of the Romanowsky Stain.* - H. F. Harris while studying the malaria parasite, found the Romanowsky staining method and its many modifications uncertain. He recommends that, in place of the methylen-bine solution being mixed with the eosin, they should be used separately. His method is as follows :-Place the blood-film in a 1-1000 solution of Grucbler's water-soluble eosin for 30 sec . to 2 min .; well wash and place in a solution containing $\because \cdot 5-5$ parts Unna's alkaline methylen-blue, with distilled water to make 100 parts, for $5-10$ minutes if the preparation is recent, longer if it is old. (To this solution 2.5 parts of a 1 p.c. solution of methylen-blue may be adder with advantage.) Wash again, and if the film be too blue pour on it a solution of Unna's glycerinether mixture made by adding one drop of this compound to $10 \mathrm{c} . \mathrm{cm}$. of water, then after a few seconds wash, and dry without heat. The author claims that by his method very old preparations may be stained. For fixing the films he advocates a few seconds in Reuter's 10 p.c. formalin and alcohol mixture.
(6) Miscellaneous.

New Sterilisable Hypodermic Syringe for Aseptic and Bacteriological Injection Experiments. \dagger-Made by Christian Kob and Co., Stützerbach. The syringe described (fig. 162) is not really new, having been made by the same firm for several years. It consists of an inner glass tube A almost closed at one end, a small hole $\cdot 5-1 \mathrm{~mm}$. wide being left. At the other end there is first a constriction K , then a bulging W , and lastly a cone C ground to fit the hollow needle. The lower two-thirds of this tube are graduated up to $10 \mathrm{c} . \mathrm{cm}$. ontside, and two-thirds the length of A is another glass tube B wholly closed at the end. It is conneeted with A by means of a rubber ring G which while taking a firm grip of B is able to slip up and down A easily but hermetically. When B is drawn out the liquid to be injected is drawn up into A, and when the -5 movement is reversed it is expelled. Simplicity, cheapness, and easy sterilisability are claimed for the syringe; also that it can be nsed with one hand, and can be laid down when full or even inverted.

New Method of Counting the Corpuscles of the Fig. 162. Blood. $\ddagger-W$. M. Strong and C. G. Seligmann. A measured quantity of the blood is mixed with a measured quantity of a fixing solution with which is combined a suitable stain. A measured drop of the mixture is allowed to evaporate to dryness on a slide and then is mounted in balsam. The number of corpuscles, red

[^401]or white, in the whole drop is then counted. In making the solutions the authors advocate the use of talloids, as follows :-

Sol. A (for white count).		Sol. B (for red count).		
	(Sodium chloride . $\cdot 25$ grm.		SSolium chioride	- 25 grm .
blold	Methyl-violet . 004 grm.	I	\{ Eosin	- 0025 grm
	Formalin (neutral) $\cdot 5 \mathrm{ccm}$.		Furmalin (neutral)	$\cdot 5 \mathrm{c.cm}$.
	Distilled water . $30 \mathrm{c.cm}$.		Distilled water	$30 \mathrm{c.cm}$

White cell count: 5 c.mm. of blood are mixed with $495 \mathrm{c} . \mathrm{mm}$. of solution A and well stirred. This is allowed to stand for about 5 minutes. $\quad 5 \mathrm{c} . \mathrm{mm}$. of this is taken and blown out on a slide so as to form a drop 'about 10 mm . in diam. This is allowed to dry and is mounted.

The white cells are stained and easily seen. The actual count is made with $\frac{1}{6}$ objective, and the whole drop is gone over in parallel and contiguous lines from field to field. The use of an oblong diaphragm introduced into the eye-piece is recommended for convenience in counting. The count takes from $20-30$ minutes. The 1-100 dilution must of course be allowed for in making the final calculation.

Red cell count: $5 \mathrm{c} . \mathrm{mm}$. of the first (methyl-violet) dilution are mixed with $995 \mathrm{c} . \mathrm{mm}$. of solution B; 5 c.mm. of this are taken and treated as before. This time however the dilution will be $1-20,000$.

The dilutions may be modified to suit very high or very low blood counts.

The authors claim for their method permanency of the preparations, and elimination of possible error due to differences in depth of the cells in ruled counting chambers.

Friedberger, E.-Die allgemeinen Methoden in der Bacteriologie.

Jena (Fischer) 1902, 3 Lief., 397-525 pp., 85 figs.
Kamen, L.-Anleitung zur Durchführung bacteriologischer Untersuchungen für klinisch-diagnostische und hygienische Zwecke.

Wien (Safar) 1903, 8vo, $311 \mathrm{pp} ., 118$ figs., and 12 ple.
Mez, C.-Mikroskopische Untersuchungen, vorgeschrieben vom Deutschen Arzneibuch. Leitfaden für das mikroskopisch - pharmakognostische Praktikum an Hochschulen and für den Selbstunterricht.

Berlin (Springer) 1902. 8vo, 153 pp., 153 figs.

Metallography, \&c.

Chemical Composition of Limestones. Microscopical Methods.*--
E. A. Skeats in investigating the mineral character and the changes in the matrix of organisms in limestones, taken from certain upraised coral islands, often found it difficult to distinguish between araronite and calcite, and oceasionally between calcite` and dolomite. For the former purpose he used Meigen's test which depends on the fact that when aragonite is boiled with a solution of cobalt nitrate it is colonred red, whereas calcite is unaffected. The author used the test in the following way: a polished slice of limestone, consisting of coral fragments, gastropols, echinid spines, Halimeda, \&c., cemented with a large quantity

[^402]of fibrous calcium carbonate, was boiled for half an hour with cobalt nitrate solution. Afterwards the slice was mounted, polished side down, and ground down till transparent. It was found that the (aragonite) corals, gasteropods and Halimeda were stained red, while the (calcite) echinid spines were unaltered, as was also the cementing fibrous calcium carbonate.

There was seldom difficulty with calcite and dolomite, but in cases of doubt Lemberg's test was applied. This consists in treating the exposed surface of a thin section for $5-15$ minutes with a solution containing a mixture of aluminium chloride and hrematoxylin. Dolomite is unchanged, but a deposit of aluminium hydrate forms on calcite and stains reddish-pupple. The stainiug solution is prepared by dissolving four parts of dry almminium chloride in 60 parts of water and adding six parts of logwood. The whole is boiled and stirred for 25 minutes, and made up to original bulk. The author did not get good results if the stain remained on the rock for more than 15 minutes.

Red Rain.*-F. Chapman and H. J. Grarson discuss the phenomenon of red rain with special reference to its ocenrrence in Victoria, and append a note on Melbourne dust. In two samples which fell at different times, they identified fragments of numcrous minerals, diatoms, vegetable tissue and spores, sponge spicules, lorica of a rotifer, and various bacteria.

The Melbourne dust contained besides fragments of numerous minerals, cosmic dust, greenish-brown glassy spheres, and bits of rotifers and diatoms.

New Etching Reagent for Polished Steel Sections. \dagger-F. N. Speller suggests the following method of developing the structure of iron and steel specimens. From 2 to 4 c.cm. concentrated nitric acid are slowly run into 100 c.cm. C. P. glycerin and the solution well mixed. After polishing and drying the specimen the surface is treated with a drop of C. P. glycerin, which is gently rubbed on the steel with the tip of the finger. A drop of the etching solution is now applied and friction with the finger contimed until the surface is etched to the degree required. By fastening the specimen in a suitable holder the progress of the action of the acid may be followed through the Microscope and the development of the structure checked at the proper time by wiping the glycerin off with a soft cloth, and applying a drop of canstic soda-glycerin for a minute. The author states that the process works very well with lowcarbon steels, the pearlite and granular structure being sharply defined, while the ferrite remains unstained even after 24 hours' continuous application of the etching solution. The chemical composition of this solution is not positively known, but it probably contains glyceric acid. It is found desirable to prepare a fresh solution every week and to keep in stock solutions of various strengths. The nitric acid used should not be fuming, otherwise nitroglycerin would be formed-a very dangerous substance.

The Microscope in Crucible Steel Manufacture. $\ddagger-J . J$. Mahon points out that the Microscope, in order to be of any practical assistance

[^403]to the manufacture of fine steel, should be used on the ingot immediately after it is cast. It must be borne in mind that while good steel can be spoiled by bad treatment, bad steel camot be converted into good steel by any kind of treatment except by remelting it. Hence the necessity for inmediate examination.

Simultaneous Presence of Ferrite and Cementite in Steel.*-

 E. F. Lange has arrived at the conclasion "that there ean be no possible doubt, as Mr. Stead says, that structurally free cementite and ferrite may be obtained in the same steel. The conditions favourable to the formation of this structure are an extremely slow cooling between 700° and 600°." In a postscript, A. Sauveur admits the soundness of the conclusion.Effect of Superheated Steam upon the Tensile Strength of Alloys. $\dagger-\mathrm{J} . \mathrm{L}$. Hall has studied this subject with especial regard to alloys of copper, as experience has quite generally indicated that that metal and some of its alloys have proved mureliable when suljeeted to the action of highly superheated steam. His experiments point to the conclusion that the tensile strength of bronze is lessened after a first heating and cooling from $320^{\circ} \mathrm{C}$., lont that subsequent treatment of this nature had little effect upon the ultimate strength.

Improved Method of Identifying Crystals in Rock Sections by use of Birefringence, and Improved Polarising Vertical Illuminator. \ddagger J. Joly describes a method of observing on an ordinary rock-section the interference tints proper to double the thickness of the section, and of thereby producing discriminative effects not possible to obtain in the ordinary mode of observation. The method consists in placing a plane reflecting surface (polished speculm metal, preferahly) beneath the rock-section as it rests on the stage of the Microscope, and transmitting, by means of any vertical illuminator (as used for the examination of metals, \&c.), a plane polarised ray vertically downwards through the rock-section. The ray refleeted from the speculum metal is again retumed through the object-glass, and, after passing throngh the analyser, shows to the eye the retardation proper to double the thickness of section. In this manner the range of colour-variation from one species to another is greatly increased ; in fact, what differences exist for the single thickness are now doubled in amount.

In this method a certain objection applied, in some degrec, in all cases-a want of verticality in the downward directed ray, which involved necessarily that the section and its images in the reflector did not accurately overlie one another. In rocks of fairly coarse grain this did not signify ; but in those of finer grain, an unpleasant overlapping of the colours of adjacent crystals occurred in the plane of incidence and reflection. In all the forms of the apparatus there was also required a separate polariser to polarise the beam entering the illuminator. The author has found that the simple vertieal illmminator described in Messrs. Watson's catalogue gives rery satisfactory results. The illu-

[^404]minator, consisting of a cover-glass contained within a collar, is inserted just above the object-glass, and is inclined so that rays entering on aperture in the front of the collar are, in part, reflected by the coverglass (which can be rotated on a horizontal axis into the suitable inclination), and thence pass downward throngh the object-glass and illnminate the opaque object under examination. The rays finally reaching the eye (returning throngh the object-glass much the way they came) are for the most part transmitted throngh the transparent reflector. It was fomnd that the quantity of light transmitted was sufficient, even withont the use of a lens, to strengthen the beam ; there was no appreciable parallax, and even small microlithic felspars in basalt could be seen, each glowing with its own colow and with sharp margins. A notable advantage is that, with this mode of illumination, the use of a polariser is mmecessary. When the somree of light is elevated above the horizontal level of the aperture in the illuminator, se that the ray mearly reaches the glass at the polarising angle, the polarisation is very complete.

Barlow, A. E.-Microscopic Examination of Sections of Rocks associated with the Iron-Ore Deposits of the Kingston and Pembroke Railway District. Geological Survey of Canadu, Ann. Rep.. XII. (Ottawa, 1902) Svo. Report I. Appendix A, pp. 81-91.
Campbell, E. D., \& M. B. Kennedy-Probable Existence of a new Carbide of Iron.
[The authors give their reasons for the existence of $\mathrm{Fe}_{2} \mathrm{C}$, in addition to the well-known $\mathrm{Fe}_{3} \mathrm{C}$.] Metallographist, VI. (1903) pp. 139-47. 4 figs.
Chatelier, Le H., \& M. Ziegler-Sulphide of Iron: its Properties and its 54 Conditions in Iron. Metallographist. VI. (1903) pp. 19-38, 28 figs. Dudley, P. H.-Rolling and Structure of Steel Rails.

Metallogriphist, VI. (1903) pp. 111-29, 14 figs.
Ewing, J. A., \& J. C. W. Hemprey-Fracture of Metals under repeated Alternations of Stress.

Phil. Trans., Nov. 20, 1902 ; and Metallographist, VI. (1903)
pp. $96-110,15$ figs.
Guillet. L.-Sur la Micrographie des Aciers au Nickel.
[The author's experiments confirm the results obtained by L. Dumas in Annales des Mines, A pril 1902.]

Comptes Rendus, CXXXVI. (190:3) pp. 227-8.
Howes, H. M.-Iron, Steel, and other Alloys.
Metallographist, VI. (1903) pr. 179-95, 6 figs.
Mielrs, H. A.-Mineralogy, an Introduction to the Scientific Study of Minerals.
[Described in the Geological Magazine for April 1903, p. 165, "as a really readable work, setting forth the principles of scientific mineralogy, and not unduly burdened with facts and technical details.']
London (Macmillian \& Co.) 1902, xviii. and $584 \mathrm{pp} ., 2$ cold. pls. and 716 illus.
Nickel Steel. Metallographist, VI. (190:3) pp. 64-70, 6 figs.; and Railroad Gazette,
Aug. 8, 1902.
Richards, M. A.-Photomicroscopy of Metals as practised by Steel Companies.
[Gives a useful account of methods in use.]
Metallographist, VI. (1903) pp. 71-80, 8 6gs.
Sadefur, A.-On the Industrial Importance of Metallography.
Journ. Franklin Inst., CLV. (1903) pp. 273-81.
Sauveur, A.. \& H. C. Boynton-Note on the Influence of the Rate of Cooling on the Structure of Steel.

Metallographist, VI. (1903) pp. 148-55, 4 figs.

[^405]
ROYAL MICROSCOPICAL SOCIETY.

DECEMBER 1903.

TRANSACTIONS OF THE SOCIETY.

XII.-Report on the Recent Foraminiferce of the Malay Archipeleyg collected by Mr. A. Durrand, F.M.M.S.-Piert XV.

By Fortescue William Millett, F.R.M.s.
(Read October 2nd, 1903.)
Plate Vif.
Family GLOBIGERINIDAE.
Globiycrina d'Orbigny.
Globigerina bulloides d'Orbigny.
Globigerina bulloides d’Orbigny, 1826, Ann. Sci. Nat., vol. vii. p. 277, No. 1 ; and Modèles Nos. 17 and 76. G ${ }^{\prime}$. bulloides (d’Orls.) Sherborn and Chapman, 1886, Journ. R. Micr. Soc., ser. 2, vol. vi. p. 756, pl. xvi. fig. 8. G. bulloides (d’Orb.) Brady, Parker, and Jones, 1888, Trans. Zool. Soc., vol. xii. p. 225, pl. xlv. fig. 15. G. bulloides (d'Orb.) Burrows, Sherborn, and Bailey, 1890, Journ. R. Micr. Soc., p. 561, pl. xi. fig. 17. G. bulloides (d'Orb.) Haeusler,

EXPLANATION OF PLATE VII.

Fig. 1.-Globigerina helicina d'Orbisuy. $\times 65$.
", 2.-Candeina nitida d’Orbigny. $\times 45$.
" 3.-Spirillina margaritifera Williamoon var. semiornata var. 1 . $\times 4 \overline{5}$.
", 4.-Cymbalopora bulloides d'Orbigny sp. $\times 90$.
, 5.-Discorbina corrugata sp. n. $\times \mathfrak{9}$.
$"$ 6. " imperatoria d'Orbigny sp. $\times 135$.
" $7 . \quad$, rimosa Parker and Jones. $\times 90$.
$" \quad$ " $"$ s. semi-marginata d'Orbigny sp. (fide Terquem) $\times 90$.
Note.-In all the figures the letter a denotes the superior aspect; b, the inferior aspect; and c, the peripleral aspect.

Dec. 16th, 1903

1890, Abhandl. schweiz. pal. Gesell., vol. xvii. p. 118, pl. xv. fig. 46. G. bulloides (d'Orb.) Terrigi, 1891, Mem. R. Com. Geol. Italia, vol. iv. p. 101, pl. iii. fig. 26 ; and var. triloba (Reuss) p. 101, pl. iii. fig. 27. G. bulloides (d’Orb.) Silvestri, 1893, Atti e Rendic. Accad. Sci. Lett. e Arti dei Zelanti e P.P. dello Studio di Acireale, vol. v. p. 15, pl. v. figs. 59, 61, 64. G. bulloides (d'Orb.) Woodward and Thomas, 1893, Geol. and Nat. Hist. Survey of Minnesota, vol. iii. p. 40, pl. D, figs. 14-17. G. bulloides (d'Orb.) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 362, pl. xiii. figs. 1-3. G. bulloides (d'Orb.) Goës, 1894, K. Svenska Vet.-Akad. Handl., vol. xxv. p. 83, pl. xiv. figs. 754-760. G. bulloides (d'Orb.) Egger, 1895, Naturhist. Ver. Passau, Jahresber. xvi. p. 36, pl. iv. fig. 13. G. bulloides (d’Orb.) Jones, 1896, Palæont. Soc., p. 280. G. bulloides (d'Orb.) Burrows and Holland, 1897, Proc. Geol. Assoc., vol. xv. p. 46, pl. ii. fig. 19. G. butloides (d’Orb.) Silvestri, 1899, Mem. Pontif. Accad. Nuovi Lincei, vol. xv. p. 245, pl. iv. figs. 7-9. G. bulloides (d'Orb.) Fornasini, 1899, Mem. R. Accad. Sci. Ist. Bologna, ser. 5, vol. vii. p. 579 , pl. i. fig. 4, pl. ii. figs. 1, 3, 5-8, pl. iv. fig. 2. G. bulloides (d'Orb.) Egger, 1899, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xxi. p. 170, pl. xxi. figs. 5-7. G. bulloides (d’Orb.) Flint, 1899, Rep. U.S. Nat. Mus. for 1897 (1899), p. 321, pl. lxix. fig. 2. G. bulloides (d'Orb.) Phumbler, 1900, in Dr. Karl Brandt's Nordisches Plankton, Heft 14, p. 21, figs. 24-26. G̛. bulloides (d’Orb.) Chapman, 1900, Geol. Mag., n. s., dec. 4, vol. vii. pl. xiv. fig. 5. G. bulloides (d'Orb.) Jones and Chapman, 1900, in A Monograph of Christmas Island, p. 258, pl. xxi. fig. 17. G. bulloides (d’Orb.) Wright, 1900, Geol. Mag., n.s., dec. 4, vol. vii. p. 100 , pl. v. fig. 18.

This cosmopolitan species occurs in considerable abundance all over the region. The examples show the usual variations of size, form, and texture, and have no special characters to distinguish them from those of other localities.

Globigerina dubia Egger.

Globigerina dubia Egger, 1857, Neues Jahrlu. für Min., p. 281, pl. ix. figs. 7-9. Idem, 1893, Abhandl. k. bayer. Akad. Wiss., C. II. vol. xviii. p. 366, pl. xiii. figs. 36-38, 77. Idem, 1895, Naturhist. Ver. Passau, Jalrresber. xvi. p. 37, pl.iv. fig. 17. G. dubia (Egger) Flint, 1899, Rep. U.S. Nat. Mus. for 1897 (1899), p. 322, pl. lxix. fig. 4. G. Eggeri Rhmmbler, 1900, in Dr. Karl Brandt's Nordisches Plankton, Heft 14, p. 19, fig. 20.

As shown by Rhumbler, there is a distinct difference between the recent specimens illustrated by Brady and Flint and the fossil example from Ortenburg figured by Egger. In these recent forms, the apertures of the chambers open directly into the umbilical
vestibule, as in G.bulloidcs. In the fossil example, the aperture is a narrow slit at the end of the last chamber, towards the central depression of the under side of the test. Following Brady's "Scheme of the gemus Globigerina," the recent form must be placed in group A with G. bulloides, \&c.; whilst Egger's fossil G. dubio must find a place with G. Dutertrei in group B.

In the Malay Archipelago, Brady's form is but little removed from G. bulloidcs, and hardly deserves separate mention. Egger's G. dubic scarcely differs from G. Dutertrci; the plan of growth is similar, and in the young specimens the aperture is large, becoming more and more constricted in the adult stage until in the thickshelled mature examples it is reduced to a mere slit.

It will be sufficient here to record that the four varieties are represented in the Malay Archipelago, leaving the identity of bulloides and Eygeri, and of dubice and Dutcrtrei, an open question.

Globigerina inflata d'Orbigny.

Globigerina inflata d'Orbigny, 1839, Foram. Cuba, p. 134, pl. ii. figs. 7-9. G. influta (d'Orb.) Balkwill and Millett, 1884, Journ. Micr., vol. iii. p. 84, pl. iv. fig. 11. G. inflata (d’Orb.) Terrigi, 1891, Mem. R. Com. Geol. Italia, vol. iv. p. 102, pl. iv. fig. 2. G. inflatu (d’Orb.) Esger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 369, pl. xiii. figs. 45-47. G. inflata (d'Orb.) Goës, 1894, K. Svenska Vet.-Akad. Handl., vol. xxv. p. 85, pl. xiv. figs. 763-765. G. inflete (d’Orb.) Flint, 1899, Rep. U.S. Nat. Mus. for 1897 (1899), p. 322, pl. lxix. fig. 3. G. inflata (d'Orb.) Fornasini, 1899, Mem. Ri. Accad. Sci. Ist. Bologna, ser. 5, vol. vii. p. 577 , pl. i. fig. 3. G. inflata (d'Orb.) Phumbler, 1900, in Dr. Karl Brandt's Nordisches Plankton, Heft 14, p. 19, fig. 19.

This variety is not very abundant in the Malay Archipelago, but occurs at several Stations in both Areas.

Globigerina rubra d'Orbigny.

Globigerina rulura d'Orbigny, 1839, Foram. Cuba, p. 82, pl. iv. figs. 12-14. (r. mulrce (d’Orb.) Brady, Parker, and Jones, 1888, Trans. Zool. Soc., vol. xii. p. 225, pl. xlv. fig. 12. (G. mubra (d'Orb.) Egger, 1893, Abhandl. k. bayer. Akad. Wiss.. Cl. II. vol. xviii. 1. 360, pl. xiii. figs. 42-44. G. rubra (d’Orb.) Silvestri, 1893, Atti e Rendic. Accad. Sci. Lett. e Arti dei Zelanti e P.P. dello Studio di Acireale, vol. v. p. 16, pl. v. figs. 62, 63, 65 . G. rubra (d'Orb.) (ioës, 1894, K. Svenska Vet.-Akad. Handl., vol. xxv. p. 85, pl. xiv. fig. 766. (t. rulra (d'Orb.) Rhumbler, 1897, Verhandl. Deutsch. Zonl. Gesellsch., p. 172, fig. 16. G. mbral (d'Orb.) Silvestri, 1899, Mem. Pontif. Accad. Nuovi Lincei, vol. xv. p. 262, pl. v. fig. 4. G. rubru (d'Orb.) Flint, 1899, Lep. U.S. Nat. Mus. for 1897 (1899),
p. 322, pl. lxix. fig. 5. G. rubra (d'Orb.) Fornasini, 1899, Mem. R. Accad. Sci. Ist. Bologna, ser. 5, vol. vii. p. 580, pl. ii. fig. 11.

There are numerous examples from most of the Stations, but the individuals are insignificant, and have little to distinguish them beyond the colour.

Globigcrina conglobata Brady.

Globigerinet conylobata Brady, 1879, Quart. Journ. Micr. Sci., n.s., vol. xix. p. 72 ; and Chall. Rept., i884, p. 603, pl. lxxx. figs. $1-5$, pl. lxxxii. fig. 5. (${ }^{\prime}$. conglobata (Brady) Brady, Parker, and Jones, 1888, Trans. Zool. Soc., vol. xii. 1. 225, pl. xlv. fig. 13. G. comglobata (Brady) Terrigi, 1889, Mem. R. Accad. Lincei, ser. 4, vol. vi. p. 114, pl. vi. fig. 14. Idem, 1891, Mem. R. Com. Ceol. Italia, vol. is. p. 102, pl. iv. fig. 3 ; and Cr. bulloites var. tillobu (Reuss), p. 101, pl. iv. fig. 1. G. conglobat (Brady) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 368, pl. xiii. figs. 55, 56. Gr. conglobata (Brady) (ioës. 1894, K. Svenska Vet.Akad. Handl., p. 86, pl. xiv. figs. 768, 769. (7. conglobeta (Brady) Flint, 1899, Rep. U.S. Nat. Mus. for 1897 (1899), p. 322, pl. Ixix. fig. 6. G. conglobuta (Brady) Formasini, 1899, Mem. R. Accark. Sci. Ist. Bologna, ser. $\overline{\text { I }}$, vol. vii. p. 582, pl. ii. figs. 12-15, pl. iii. figs. 1-5. G. conylobrte (Brady) Chapman, 1900, Geol. Mag., dec. 4, vol. vii. pl. xir. fig. 6. Cr. conglobuta (Brady) Jones and Chapman, 1900, in A Monograph of Christmas Island, p. 234, pl. xx. fig. :3.

This form is well represented, and occurs in more or less abundance at nearly all of the Stations.

Globigcrina sacculifero Brady.

Globigerinc sacculiferu Brady. 1877, (ieol. Mag., ser. 2, vol. iv. p. 535 ; and Chall. Rept., 1884, p. 604, pl. lxxx. figs. 11-17, pl. lxxxii. fig. 4. ? G. helicina (d’Orb.) Terrigi, 1s!1, Mem. I. Com. Ceol. Italia, vol. iv. 1. 103, pl. iv. Hig. 4. (f. succuliferu (Prady) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 369, pl. xiii. figs. 50-51. (r. succulifera (Brady) Silvestri, 1899, Mem. Pontif. Accad. Nuovi Lincei, vol. xv. p. $263, \mathrm{pI}$. v. fig. 5. (i. saculifere (Brady) Flint, 1899, Rep. U.S. Nat. Mus. for 1897 (1899), p. :322, pl. lxx. fig. 1.

Is very rare, and has been noted only at Station 2 in Area 1.

Clobigerina helicina d'Orbigny, plate VII. fig. 1.

Gllobigerina helicine l'Orbigny, 1826, Ann. Sci. Nat., vol. vii. p. 277, No. 5. Gr. helicina (d’Orb.) Parker, Jones, and Brady, 1871, Ann. and Mag. Nat. Hist., ser. 4, vol. viii. p. 175, pl. xi. fig. 113.
(t. helicina (d'Orb.) Terrigi, 1889, Mem. R. Accad. Lincei, ser. 4, vol. vi. p. 114, pl. vi. fig. 15. G. helicina (d'Orb.) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 370, pl. xiii. fig. 52. G. hclicina (d'Orb.) Silvestri, 1899, Mem. Pontif. Accad. Nuovi Lincei, vol. xv. p. 264, pl. v. fig. 6. G. helicinu (d'Orb.) Fornasini, 1899, Mem. R. Accad. Sci. Ist. Bologna, ser. 5, vol. vii. p. 583, pl. iii. figs. 11, 12.

This appears to be the most unsatisfactory of all the forms assigned to the genus Globigerina; and, as shown by the "Planches inédites," d'Orbigny himself was not quite clear as to its characters. Brady's description of it as a "Globigerine shell of the 'rubra' type, with the addition of an inflated chamber at two opposite points of its periphery," is perhaps the best definition of the normal form; but, judging from the published figures, and the examination of actual specimens, it is frequently nothing more than an irregular aggregation of globose chambers, two or more of which exhibit an exterior arched aperture.

In the Malay Archipelago, the form in very rare; but it occurs in both areas.

Brady writes, "Globigerina helicina is a comparatively rare form. Occasional specimens have been met, with at nine or ten 'Challenger' Stations, scattered over the North and South Atlantic and in the South Pacific ; to which may be added, on the authority of Soldani, certain points in the Mediterranean and the Adriatic." Egger reports it from nine 'Gazelle' Stations, extending from the west coast of Africa to the Fiji Islands.

Globigerina cequilatcralis Brady.

Globiyerina cequilateralis Brady, 1879, Quart. Journ. Micr. Sci., n.s., vol. xix. p. 71; and 1884, Chall. Rept., p. 605, pl. lxxx. figs. 18-21. G. cequilateralis (Brady) Wright, 1886, Proc. Belfast Nat. Field Club, 1884-85, App. ix., 1886, p. 332, pl. xxvii. fig. 9. G. cequilatcralis (Brady) Chapman, 1892, Quart. Journ. Geol. Soc., vol. xlviii. p. 517, pl. xv. fig. 14. G. cequilatcralis (Brady) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 364, pl. xiii. figs. 5-8. G. cequilutcralis (Brady) Goës, 1894, K. Svenska Vet.-Akad. Handl., vol. xxv. p. 86, pl. xiv. fig. 767. (f. aquilateralis (Brady) Madsen, 1895, Medd. Dansk Geol. Forening, No. 2, p. 210, pl. fig. 5. G. cequilatcralis (Brady) Chapman, 1896, Journ. R. Micr. Soc., p. 589, pl. xiii. fig. 7. G. equulateralis (Brady) Silvestri, 1899, Mem. Pontif. Accad. Nuovi Lincei, vol. xv. p. 265, pl. v. fig. 8. G. cequilatcralis (Brady) Fornasini, 1899, Mem. R. Accad. Sci. Ist. Bologna, ser. 5, vol. vii. p. 580, pl. iv. figs. 3, 4. G. equilateralis (Brady) Flint, 1899, Rep. U.S. Nat. Mus. for 1897 (1899), p. 323, pl. lxx. fig. 3. G. cequilateralis (Brady) Rhumbler,

1900, in Dr. Karl Brandt's Nordisches Plankton, Heft 14, p. 20, figs. 21-23.

In the Malay Archipelago this planospiral form occurs at several Stations, and is moderately abundant. The examples exhibit considerable diversity of form and texture, and often closely resemble Hastigerina pelagica.

Orbulina d'Orbigny.

Orbulina unicersa d'Orbigny.

Orbulina universa d'Orbigny, 1839, Foram. Cuba, p. 3, pl. i. fig. 1. O. universa (d'Orb.) Woodward and Thomas, 1885, 13th Ann. Rept. Geol. and Nat. Hist. Survey of Minnesota for 1884, p. 174, pl. iii. figs. 25-31. O. universe (d'Orb.) Malagoli, 1887, Boll. Soc. Geol. Italia, vol. vi. p. 522, pl. xiii. fig. 9. Globigerinu (Orbulina) universa (d’Orb.) Idem, 1888, Atti Sci. Nat. Modena, ser. 3, vol. vii. p. 113 , pl. iii. fig. 8. O. umiversa (d’Orb.) Brady, Parker, and Jones, 1888, Trans. Zool. Soc., vol. xii. p. 225, pl. xlv. figs. 7, 8, 14. Globigerina (Orbulina) unireise (d’Orb.) Terrigi, 1889, Mem. R. Accad. Lincei, ser. 4, vol. vi. p. 114, pl. vi. figs. 16, 17. O. universa (d’Orb.) Mariani, 1891, Boll. Soc. Geol. Italia, vol. x. p. 729 , pl. xxi. figs. 23, 24. O. univcrsa (d'Orb.) Woodward and Thomas, 1893, Geol. and Nat. Hist. Survey of Minnesota, vol. iii. p. 43, pl. D, figs. 23-27. O. universe (d’Orb.) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 374, pl. xiv. figs. 7-9, 11, 12, 39, 40. O. unicerse (d'Orb.) Fornasini, 1893, Mem. R. Accad. Sci. Ist. Bologna, ser. 5, vol. iii. p. 430, pl. ii. fig. 12. O. universa (d'Orb.) Silvestri, 1893, Atti e Rendic. Accad. Sci. Lett. e Arti dei Zelanti di Acireale, vol. v. p. 16. pl. ii. figs. 1-3. O. universu (d'Orb.) Lister, 1895, Phil. Trans., vol. clxxxvi. p. 408, figs. a-e. O. universa (d'Orb.) Egger, 1895, Naturhist. Ver. Passau, Jahresber. xvi. p. 38, pl. iv. figs. 18, 19. O. universa (d'Orb.) Rhumbler, 1897, Abhandl. Deuts. Zool. Gesell., p. 174, fig. 21. O. universa (d’Orb.) Silvestri, 1899, Mem. Pontif. Accad. Nuovi Lincei, vol. xv.]. 266, pl. v. figs. 11-16, 19-22. O. universa (d'Orb.) Flint, 1899, Rep. U.S. Nat. Mus. for 1897 (1899), p. 322, pl. lxix. fig. 1. O. universa (d'Orb.) Egger, 1899, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xxi. p. 173, pl. xxi. figs. 46, 47. O. unversa (d'Orb.) Rhumbler, 1900, in Dr. Karl Brandt's Nordisches Plankton, Heft 14, p. 27, figs. 27-30.

This form is but poorly represented in the Malay Archipelago; the examples are few and insignificant. It occurs at a small number of Stations in both Areas.

Hastigerina Wyville Thomson.

Hastigerina pelagica d'Orbigny sp.

Nonionina pelagiea d'Orbigny, 1843, Foram. Amér. Mérid., p. 27, pl. iii. figs. 13, 14. Hastigerina Murrayi (Wy. Thomson) Murray, 1876, Proc. Roy. Soc., vol. xxiv. p. 534, pls. xxii. xxiii. H. pelagiea (d’Orb.) Brady, 1879, Quart. Journ. Micr. Sci., n.s., vol. xix. p. 77. H. pelagica (d'Orb.) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 372, pl. xiii. figs. 53, 54. H. pelagica (d'Orb.) Flint, 1899, Rep. U.S. Nat. Mus. for 1897 (1899), p. 324, pl. lxx. fig. 4. H. pelagica (d’Orb.) Silvestri, 1899, Mem. Pontif. Accad. Nuovi Lincei, vol. xv. p. 273, pl. v. fig. 9. H. pelagica (d'Orb.) Rhumbler, 1900, in Dr. Karl Brandt's Nordisches Plankton, p. 29, fig. 31.

Of this essentially surface species, examples occur at numerous Stations in both Areas. Many of the individuals bear short spines, similar to those figured by d'Orbigny in the South American example.

Pullenia Parker and Jones.

Pullenia sphceroides d'Orbigny sp.

Nonionina sphceroides d'Orbigny, 1826, Ann. Sci. Nat., vol. vii. p. 293, No. 1; Modèle No. 43. Pullenia spherroides (d'Orb. sp.) Parker and Jones, 1865, Phil. Trans., vol. clv. p. 368, pl. xiv. fig. 43. P. bulloides (d'Orb.) Andreae, 1884, Abhandl. geol. Special Karte Elsass-Loth., vol. ii. p. 206, pl. ix. fig. 23. P. spheeroides (d'Orb.) Balkwill and Wright, 1885, Trans. 1R. Irish Acad., vol. xxviii. (Sci.) p. 348, pl. xii. fig. 28. P. sphecroides (d'Orb.) Sherborn and Chapman, 1886, Journ. R. Micr. Soc., ser. 2, vol. vi. p. 756, pl. xvi. fig. 10. P. sphceroides (d'Orb.) Brady, Parker, and Jones, 1888, Trans. Zool. Soc., vol. xii. p. 226, pl. xliii. figs. 21, 24 P. sphceroides (d'Orb.) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 372, pl. xix. figs. 30, 31. P. sphecroiles (d'Orb.) Goës, 1894, K. Svenska Vet.-Akad. Handl., vol. xxv. p. 87, pl. xiv. figs. 771, 772. P. sphceroides (d'Orb.) Egger, 1895, Naturhist. Ver. Passau, Jahresber. xvi. p. 39, pl. iv. fig. 21. P. sphceroides (d’Orb.) Burrows and Holland, 1897, Proc. Geol. Assoc., vol. xv. p. 47, pl. ii. fig. 20. P. sphecroides (d’Orb.) Egger, 1899, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xxi. p. 174, pl. xxi. figs. 27, 28. P. sphceroides (d'Orb.) Chapman, 1900, Proc. California Acad. of Sci., ser. 3, Geol., vol. i. p. 252, pl. xxx. fig. 6.

This species is represented in the Malay Archipelago by a few nsignificant specimens from Area 1.

Pullenia obliquiloculata Parker and Jones.

Pullenia obliquiloeulata Parker and Jones, 1865, Phil. Trans., vol. clv. p. 368, pl. xix. fig. 4. P. obliquiloculata (P. and J.) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 372, pl. xiii. figs. 62-64. P. obliquiloculata (P. and J.) Flint, 1899, Rep. U.S. Nat. Mus. for 1897 (1899), p. 324, pl. lxx. fig. 6.

This form is not uncommon at a few Stations in each of the Areas, and the examples are of the normal size.

Spharoidina d'Orbigny.

Spluceroidina bulloides d'Orbigny.
Sphceroidina bulloides d'Orbigny, 1826, Ann. Sci. Nat., vol. vii. p. 267, No. 1; Modèle No. 65. S.bulloides (d'Orb.) Brady, Parker, and Jones, 1888, Trans. Zool. Soc., vol. xii. p. 226, pl. xlv. figs. 9-11. S. bulloides (d'Orb.) Burrows, Sherborn, and Bailey, 1890, Journ. R. Micr. Soc., p. 562 , pl. xi. figs. 20, 21. S. bulloides (d'Orb.) Terrigi, 1891, Mem. R. Com. Geol. Italia, vol. iv. p. 104, pl. iv. fig. 6. S. bulloides (d'Orb.) Fornasini, 1893, Mem. R. Accad. Sci. Ist. Bologna, ser. 5, vol. iii. p. 430, pl. ii. fig. 14. S. चulloides (d'Orb.) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 375 , pl. xiii. figs. 48,49 . S. bulloides (d'Orb.) Goës, 1894, K. Svenska Vet.-Akad. Handl., vol. xxv. p. 87, pl. xiv. fig. 770. S. austriaea (d'Orb.) Egger, 1895, Naturlist. Ver. Passau, Jahresber. xvi. p. 40, pl. iv. fig. 22. S. bulloides (d'Orb.) Chapman, 1896, .Journ. R. Micr. Soc., p. 589, pl. xiii. fig. 8. S. bulloides (d'Orb.) Jgger, 1899, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xxi. p. 173, pl. xxi. figs. 29, 30. S. bulloides (d'Orb.) Flint, 1899, Rep. U.S. Nat. Mus. for 1897 (1899), p. 325, pl. lxxi. fig. 1.
S. bulloides is not uncommon in the Malay Archipelago, and has been observed at most of the Stations. There is considerable variety in the aggregation of the chambers, as well as in the number of them visible externally. Whilst the majority of the examples have the usual smooth shining surface, a few show a tendency to the roughness characteristic of S. dehiscens, although not to such an extent as to warrant their being assigned to that species.

Candeina d'Orbigny.

Candeina uitida d'Orbigny, plate VII. fig. 2.
C'undeina nitida d’Orbigny, 1839, Foram. Cuba, p. 108, pl. ii. figs. 27, 28. C. nitida (d'Orb) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 373, pl. xiii. fig. 57. C. nitida
(d’Orb.) Flint, 1899, Rep. U.S. Nat. Mus. for 1897 (1899), p. 3:55, pl. lxxi. fig. 3. C. nitide (d'Orb.) Rhumbler, 1900, in Dr. Karl Brandt's Nordisches Plankton, Heft 14, p. 31, fig. 33.

This species is very rare in the Malay Archipelago, and has been found only in Area 2.

The example figured differs materially from the published illustrations of the species, the test being compressed rather than conical.
C. nitida is not so widely distributed as the other members of the Globigerinidx to which reference las been made in this Report. Besides the localities mentioned by Brady in the 'Challenger' Report, Egger names five Stations, at all of which it is said to be rare. Flint's only Station is "near the Windward Islands."

Family ROTALIDÆ.

Sub-Family Spirillininæ.

Spirillina Ehrenberg.
Spirillina vivipara Ehrenberg.
Spirilliut vivipara Ehrenberg, 1841, Abhandl. k. Akad. Wiss. Berlin, p. 422, pl. iii. VII. fig. 41. S. vivipara (Ehren.) Bütschli, 1886, Morph. Jahrb., vol. xi. p. 84, pl. vi. fig. 12. S'. vivipare (Ehren.) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 394, pl. xviii. figs. $56-58$; and Ibid., 1899, vol. xxi. p. 18, pl. i. figs. 50, 51. S. viripara (Ehren.) Flint, 1899, Rep. U.S. Nat. Mus. for 1897 (1899), p. 326, pl. lxxi. fig. 4.

This cosmopolitan species is abundant in the Malay Archipelago, and occurs at several Stations in both Areas. The individuals are normal in character, and vary but little in size.

Spirillina incequalis Brady.

Spirillina incequalis Brady, 1879, Quart. Journ. Micr. Sci., n.s., vol. xix. p. 278, pl. viii. fig. 25. S. incequalis (Brady) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p, 394, pl. xviii. figs. 40-42.

This variety is very rare in the Malay Archipelago, and has been observed only at Station 2, in Area 1.

Brady states that it has been found in shallow-water dredgings from several of the island groups of the Pacific; the depths ranging from 12 to 155 fathoms. Egger reports it from two 'Gazelle' Stations: Mauritius, 225 fathoms, and West Australia, 196 fathoms.

Spirillina limbata Brady.

Spirillina limbata Brady, 1879, Quart. Journ. Mier. Sci., n.s., vol. xix. p. 278, pl. viii. fig. 26. S.limbata (Brady) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 395, pl. xviii. figs. 43, 44. S. limbata (Brady) Flint, 1899, Rep. U.S. Nat. Mus. for 1897 (1899), p. 326, pl. lxxi. fig. 5.
S. limbata-as represented by the form having a square periphery, and the faces plane, with limbate sutures, but without tubercles-is rare and poor in the Malay Archipelago, and has been noted only at Stations No. 2 and No. 22.

Brady names thirteen localities for the species, widely apart; Egger records it from four 'Gazelle' Stations; and Siddall has found it in the Estuary of the Dee. The 'Albatross' Station from which Flint procured it has not been recorded.

Spirillina limbata var. denticulata Brady.

Spirillina limbata var. denticulata Brady, 1884, Chall. Rept., p. 632, pl. lxxxv. fig. 17. S. limbata denticulata (Brady) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 396, pl. xviii. fig. 66.

This variety also is very rare, and has been found only in the material from Station 17.

The Stations recorded by Brady are: East Moncour Island, Bass Strait, 38 fathoms; Raine Island, Torres Strait, 155 fathoms; and Nares Harbour, Admiralty Islauds, 17 fathoms. The solitary 'Gazelle' Station is at Kerguelen, 57 fathoms.

In the Tertiary beds of St. Erth, Cornwall, a modification of this variety occurs; in which, whilst one face is in all respects similar to those of denticulata, the other is covered with tubercules, and the suture is not apparent.

Spivillina margaritifcra Williamson var. semiornata var. n., plate VII. fig. 3.

Test, inequilateral ; convolutions, numerous; peripheral edge, square. One of the lateral faces flat and smooth, with the spiral scture excavated ; the opposite face concave, and ornamented with a single row of tubercles arranged closely together in a spiral line Diameter 0.60 mm .

Williamson's knowledge of Spirillina margaritifera was derived from a single specimen from an unknown locality, and, as he justly states, "any species founded on a single specimen can
only be accepted as a provisional one awaiting further elucidation." *

It cannot be said that subsequent researches have altogether settled the characters of the species. The S. tubcrculata of Brady \dagger is very doubtfully distinct ; on this point Wright observes, \ddagger "The specimens recorded as Spirillina tuberculata, both by Siddall, in 'Memoir on the Foraminifera of the Estuary of the Dee,' and by Balkwill and myself, in 'Foraminifera of Dublin Bay and Irish Sea,' should I feel satisfied be referred to S. margaritifera; and S. tuberculata should be no longer inchuded among the British species." And Brady himself writes,§ "I am by no means confident that this form, or at any rate the British specimens that have been assigned to it, can be separated from Sp. margaritifcra." Concerning these inequilateral forms of Spirillina, Chapman observes,\| "The inequilateral modifications of Spirillince are not unfrequent at Funafuti, and are of much interest since they point to the rotaline affinities which the genus has towards shells of the trochoid type."

Of published figures resembling or identical with S. margaritifera, may be mentioned:-S. margaritifera Terquem (not Williamson) If this has a square periphery, and concave faces with two rows of tubercles. S. modosa Terquem,** in which there is a single row of nodosities; he remarks that this species is sometimes inequilateral, and shows one of the faces nearly plane with the nodosities less pronounced. S. nodifera Terquem, $\dagger \dagger$ which is slightly concave in the centre, angular at the periphery, and ornamented with one series of granulations. S. tuberculata-limbata Chapman, $\ddagger \ddagger$ has the larger and Hat surface limbate, and the peripheral edge of the coil sharp on that side; the smaller face is slightly rounded and strongly tuberculate.

The variety semionnata is very rare in the Malay Archipelago, and has been noted only at Station 22 in Area 2.

Spivillina decorata Brady.

Spirillina decorate Brady, 1884, Chall. Rept., p. 633, pl. lxxxv. figs. 22-25. S. decorata (Brady) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 394, pl. xviii. figs. 64, 65.

This also is very rare in the Malay Archipelago, and has been found only at Station 2 in Area 1.

[^406]Brady names three points at which it has been obtained in the North Atlantic, one point in the South Atlantic, and three points in the South Pacific ; the depths varying from 6 to 1125 fathoms. There are three 'Gazelle' Stations, West Africa, Mauritius and West Australia, at depths from 196 to 371 fathoms.

Sub-Family Rotalinæ.

Patellina Williamson.

Putcllina corvuyata Williamson.

Patellinu corrugate Williamson, 1858, Rec. Foram. Gt. Britain, p. 46, pl. iii. figs. 86-89. P. corvuguta (Will.) Terquem, 1875, Anim. Plage de Dunkerque, pt. 1, p. 31, pl.iv. fig. 3; and P.punctata Ibid., 1881, pt. 3, p. 128, pl. xvi. fig. 9. P. corrugata (Will:) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 393 , pl. xv. figs. 70-72. P. corrugutu (Will.) Schaudinn, 1895, Sitzungsber. Gesell. Naturforsch. Freunde zu Berlin, No. 10, p. 181, fig. $\quad P$. corrugata (Will.) Schlumberger, 1896, Feuille Jeunes Nat., sér. 3, Ann. xxvi. p. 129, fig. I. corruguta (Will.) Wright, 1900, Geol. Mag., n.s., dec. 4, vol. vii. p. 100, pl. v. fig. 20.
P. corrugata in the Malay Archipelago is rather scarce, but there are examples from Stations in each Area.

In the living condition its distribution is world-wide, but as a fossil it is rare; and it may be worthy of mention that it is abundant in the Tertiary beds of St. Erth, Cornwall.

Cymbalopore Hagenow. C'ymbalopora Pocyi d’Orbigny sp.

Rotalia squamosa d'Orbigny, 1826, Ann. Sci. Nat., vol. vii. p. 272, No. 8. Rosalina Poeyi d'Orbigny, 1839, Foram. Cuba, p. 92, pl. iii. figs. 18-20. Cymbalopora (Rosalina) Pocyi (d'Orb.) Carpenter, 1862, Introd. Foram., p. 215, pl. xiii. figs. 10-12. C. Pocyi (d'Orb.) Brady, Parker, and Jones, 1888, Trans. Zool. Soc., vol. xii. p. 226, pl. xlvi. fig. 12. C. Poeyi (d'Ork.) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 381, pl. xviii. figs. 51, 52 ; and Ibid., 1899, p. 167, pl. xix. nigs. 28-30. C. Poeyi (d'Orb.) Silvestri, 1899, Mem. L'ontif. Accad. Nuovi Lincei, vol. xv. p. 280, pl. vi. fig. 3. C. Pocyi (d’Orb.) Flint, 1899, Rep. U.S. Nat. Mus. for 1897 (1899), p. 326 , pl. lxxii. fig. 1.

This species occurs in great abundance all over the region, and the examples exhibit great variety of form, but the trivial characters are retained throughout, and they show no tendency to coalesce with any allied forms.

Cymbalopora tabelloeformis Brady.

Cymbalopora tabelloformis Brady, 1884, Chall. Rept., p. 637, pl. cii. figs. 15-18. C. tabelleformis (Brady) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 382, pl. xviii. figs. 54, 55.

Although this is a very distinct form, and easily recognised, it seems to have escaped the notice of authors generally, and has been figured only by Brady and Egger.

In the Malay Archipelago it is rare, but it has been noted at two Stations in each Area.

Brady says that it is a coral-reef species, and all the Stations at which it occurs, recorded by him, are in the Pacific and Indian Oceans. The solitary 'Gazelle' Station is Mamritius.

Cymbolopora bulloides d’Orbigny sp., plate VII. fig. 4.
Rosalina bulloides d'Orbigny, 1839, Foram. Cuba, p. 104, pl. iii. figs. 2-5. C'ymbalopora bulloides (d'Orb.) Carpenter, 1862. Introd. Foram., p. 216. Discorbinu bulloides (d'Orb.) Goës, 1882, K. Svenska Vet.-Akad. Handl., vol. xix. p. 106, pl. viii. figs. 2652, 263. ('. bulloides (d’Orb.) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 381, pl. xviii. fig. 53. C. bulloirles (d'Orb.) Earland, 1902, Journ. Quekett Micro. Club, ser. 2, vol. viii. p. 309, pl. xvi. figs. 6-9.

The structure of the balloon-chamber, characteristic of this species, with its internal float, has been recently so thoroughly worked out by Earland, that it will suffice here to call attention to his paper on the subject in the Journal of the Quekett Club referred to above.

The species is well represented in the Malay Archipelago and occurs at many Stations, but is most abundant in Area 1. The examples vary considerably in form, some being as flat as a watchcase whilst others equal in height any of those figured by Möbins or Goís.

Still more numerous is an interesting variety in which the balloon-chamber is always much wrinkled, and is apparently devoid of pores or internal tube. This variety is never depressed, and seldom raries from the contour shown in the figure. Like the normal form it is most abundant at the Stations in Area 1.

> Disenbina Parker and .Tones.
> Discorbine turbo d'Orbigny sp.

Rotalia (Tiroctulina) twho d'Opbigny, 1826, Ann. Sci. Nat., vol. vii. p. 274 , No. 39 : Modèle No. 7 :3. Discorbina turbo (d'Orb.)

Carpenter, 1862, Introd. Foram., p. 200. D. turbo (d'Orb.) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 389, pl. xv. figs. 42-44. D. turbo (d'Orb.) Jones, 1895, Palæont. Soc., p. 291, pl. vii. fig. 29. D. turbo (d'Orb.) Chapman, 1896, Journ. R. Micr. Soc., p. 591, pl. xiii. fig. 13.

Typical examples of this species are very rare in the Malay Archipelago, but a passage-form approaching D. rosucea is very common in Area 2.

Discorbina globularis d'Orbigny sp.

Rosalina globularis d'Orbigny, 1826, Anu. Sci. Nat., vol. vii. p. 271, pl. xiii. figs. 1-4; Modèle No. 69. Discorbina turbo var. ylobuletris Carpenter, 1862, Introd. Foram., p. 204, pl. iii. fig. 1. D. globularis (d'Orb.) Brady, Parker, and Jones, 1888, Trans. Zool. Soc., vol. xii. p. 226, pl. xlvi. fig. 6. D. globularis Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. pl. xv. figs. 7-9; and Globigcrina (Rosalina) globularis (d'Orb.), p. 365, pl. xiii. figs. 65-68. D. globularis (d'Orb.) Goës, 1894, K. Svenska Vet.-Akad. Handl., vol. xxv. p. 94, pl. xv. fig. 793. D. globularis (d'Orb.) Jones, 1895, Palæont. Soc., p. 292, pl. vii. fig. 28. D. globularis (d'Orb.) Chapman, 1896, Journ. R. Micr. Soc., p. 590, pl. xiii. fig. 11. D. globularis (d'Orb.) Morton, 1897, Proc. Portland Soc. Nat. Hist., vol. ii. p. 120, pl. i. fig. 22. D. globularis (d'Orb.) Flint, 1899, Tiep. U.S. Nat. Mrus. for 1897 (1899), p. 327, pl. lxxii. fig. 2. D. globuluris (d'Orb.) Wright, 1900, Geol. Mag., dec. 4, vol. vii. p. 100, pl. v. fig. 21. D. globularis (d'Orl).) Chapman, 1900, Geol. Mag., dec. 4, vol. vii. pl. xiv. fig. 8 .

Occurs in abundance at nearly all the Stations in both Areas. The examples, although small, have all the characters of the species.

Discorbina rosacea d'Orbigny sp.

Rotalia rosacca d'Orbigny, 1826, Ann. Sci. Nat., vol. vii. p. 273, No. 15 ; Molèle No. 39. Discorbina rosceen (d'Orb.) Brady, 1864, Trans. Linn. Soc., vol. xxiv. p. 473, No. 69. D. rosacea (d'Orb.) Sherborn and Chapman, 1886, Journ. R. Micr. Soc., ser. 2, vol. vi. p. 756, pl. xvi. fig. 11. D. rosucca (d'Orb.) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., (1. II. vol. xviii. p. 385, pl. xv. figs. 39-41. D. rosacea (d’Orb.) Goës, 1894, K. Svenska Vet.-Akad. Handl., vol. xxv. p. 94, pl. xv. fig. 792. D. rostceal (d'Orb.) Flint, 1899, Rep. U.S. Nat. Mus. for 1897 (1899), p. 327, pl. lxxii. fig. 3.

This species also is abundant and widely distributed in the Malay Archipelago. The examples are small, and exhibit little variety of form and texture.

Discorbina Vilardeboana d'Orbigny sp.

Rosalina Vilardeboana d'Orbigny, 1843, Foram. Amér. Mérid., p. 44, pl. vi. figs. 13-15. Discorbinu Vilardeboana (d'Orb.) Parker and Jones, 1872, Quart. Journ. Geol. Soc., vol. xxviii. p. 115. D. Vilardeboana (d'Orb.) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 387, pl. xv. tigs. 13-15. D. Vilardeboana (d'Orb.) Goës, 1894, K. Svenska Vet.-Akad. Handl., vol. xxv. 1. 95, pl. xvi. fig. 796. D. Vilardcboance (d'Orb.) Chapman, 1898, Journ. R. Micr. Soc., p. 15, pl. ii. fig. 16.

This variety is still more abu ndant, but it is doubtful if any of the examples are sufficiently distinct from D. rosacca to warrant their separation from that form.

Discorbina concinna Brady.

Discorbina concinna Brady, 1884, Chall. Rept., p. 646, pl. xc. figs. 7, 8. D. concinna (Brady) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 388, pl. xv. figs. 29-24.

This form, rare elsewhere, is very common in the Malay Archipelago, and occurs all over the region. Amongst a multitude of individuals there must of necessity be much variation, and this is here in the direction of D. orbicularis.

Brady enumerates seven 'Challenger' Stations where it has been found, at depths varying from 16 to 620 fathoms ; to these I can add Station 185, from which there are examples in my collection.

There are three 'Gazelle' Stations at depths of from 33 to 196 fathoms. These appear to be the only records of its occurrence.

Discorbina orbicularis Terquem sp.

Rosalina orbicularis Terquem, 1876, Anim. Plage de Dunkerque, p. 75, pl. ix. fig. 4. Discorbina orbicularis (Terq.) Balkwill and Millett, 1884, Journ. Micr., vol. iii. p. 23, pl. iv. fig. 13. D. orbicularis (Terq.) Balkwill and Wright, 1885, Trans. R. Irish Acad., vol. xxviii. (Sci.) p. 349, pl. xiii. figs. 31-33. D. orbicularis (Terq.) Brady, Parker, and Jones, 1888, Trans. Zool. Soc., vol. xii. p. 227, pl. xlvi. fig. 1. D. orbicularis (Terq.) Terrigi, 1889, Mem. R. Accad. Lincei, ser. 4, vol. vi. p. 115, pl. xvii. figs. 2, 3. D. orbicularis (Terq.) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. 1I. vol. xviii. p. 389 , pl. xv. figs. 16-18, 76-78. D. orbicularis (d'Orb.) Jones, 1895, Palæont. Soc., p. 295, pl. vii. fig. 31. D. subrotunda (d'Orb.sp.) Fornasini, 1898, Rendic. Accad. Sci. Ist. Bologna, n.s., vol. ii. (figures in the text, after d'Orbigny).

This form is plentiful at Stations 2 and 22 ; and occurs also at Station 14, but in very small numbers.

Discorbina patelliformis Brady.

Discorbina patelliformis Brady, 1884, Chall. Rept., p. 647, pls. lxxxviii. fig. 3, lxxxix. fig. 1. D. patelliformis (Brady) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 390, pl. xv. figs. 48-50.

Is not uncommon at Station 2, and occurs at Station 6, both in Area 1, but has not been observed at any other Station.

Brady states, "Is not uncommon amongst the islands of the Pacific, at depths of 6 to 150 fathoms. It has been observed also in shallow-water dredgings from the shores of Ceylon, Madagascar, the Mauritius and Malta."

The 'Gazelle' localities are Cape Verde, Mauritius, and Western Australia.

Discorbina tabernucularis Brady.

Diseortina tabernacularis Brady, 1881, Quart. Journ. Micr. Sci., n.s., vol. xxi. p. 65 ; and Chall. Rept., 1884, p. 648, pl. lxxxix. figs. 5-7. D. tabernacularis (Brady) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 390, pl. xv. figs. 58-60, 79.

In the Malay Archipelago this is a very rare form, and the examples are small and thin-shelled. It occurs at Stations 2, 6 and 14, in Area 1; and at Station 17 in Area 2.

Brady says that it is a minute coral-reef species, and names several localities where it has occurred at depths of from 2 to 255 fathoms.

Egger reports it from Mauritius, 75 and 225 fathoms; and from Western Australia, 44 fathoms.

Discorbina corrugata sp. n., plate VII. fig. 5.
Test, conical ; base, flat or concave ; peripheral margin acute. A series of sharp ridges extends from the apex to the base of the test, the spaces between the ridges being excavated. The umbilical region either hollow, or filled up with granular matter beyond which are minute radiating striæ which extend to the peripheral margin. Shell-substance dense, obscuring the sutures on the superior face of the test. Diameter, 0.28 mm .

The above is an incomplete description of an interesting form, of which there are only two (more or less damaged) specimens available for examination. The polygonal shape of the superior face is, however, sufficient to distinguish it from any other species of Discorbina. The number of convolutions, and the form of the chambers, cannot be determined; but there are indications that the ridges mark the centre of the chambers, and that the junction of
the sutures is in the hollow between the ridges. The species partakes of the characters of both D. patclliformis and D. tabernacularis, but is distinct from either.

The examples are from Station 31, in Area 2.

Discorbina opercularis d'Orbigny sp.

Rosalina opercularis d'Orbigny, 1839, Foram. Cuba, p. 93, pl. iii. figs. 24,25 , pl. iv. fig. 1. Discorbina opercularis (d'Orb.) Parker and Jones, 1872, Quart. Journ. Geol. Soc., vol. xxviii. p 114. D. opercularis (d'Orb.) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 389, pl. xv. figs. 73-75.

This form is badly represented in the Malay Archipelago, the examples being few and insignificant. It has been noticed only at Stations 2 and 6, both in Area 1.

It is recorded by d'Orbigny from the Islands of Cuba and Martinique ; by Brady from four points on the coast of Australia, at depths of from 2 fathoms to 155 fathoms; and by Egger from West Africa, Mauritius and Western Australia from 37 to 225 fathoms.

Discorlina pulvinata Brady.

Discorbina pulvinata Brady, 1884, Chail. Rept., p. 650, pl. lxxxviii. fig. 10. D. pulvinatc (Brady) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 391, pl. xv. figs. 33-35.

Of this rare form there are some rather feeble specimens from a few Stations in both Areas.

The 'Challenger' localities given by Brady are: Nares Harbour, Admiralty Islands, 17 fathoms; and off Booby Island, south of Papua, 6 to 8 fathoms. To which I can add Raine Island, 155 fathoms, from specimens in my own collection.

The sole 'Gazelle' Station is Kerguelen, 57 fathoms.

Discorbina imperatoria d'Orbigny sp., var. globosa var. n., plate VII. fig. 6 .

Rosalina imperatoria d'Orbigny, 1846, For. Foss. Vienne, p. 176, pl. x. figs. 16-18.

This variety differs from the type in several respects: the superior face is flatter, and the inferior more convex; the chambers are more inflated, and the peripheral edge less acute; the aperture is indistinct, and the radiating lines on the umbilical region are not apparent.

This is one of the characteristic forms of the Malay Archipelago,
Dec. 16th, 1903
and occurs in vast abundance at almost every Station in both Areas.

D'Orbigny's specimens were from the Tertiary of Tarnapol, in Galicia.

Diseorbina Bertheloti d'Orbigny sp.

Rosalina Bertheloti d'Orbigny, 1839, Foram. Canaries, p. 135, pl. i. figs. 28-30. Diseorbina Bertheloti (d’Orb.) Brady, 1864, Trans. Linn. Soc., vol. xxiv. p. 469, pl. xlviii. fig. 10. D. Bertheloti (d'Orb.) Brady, Parker, and Jones, 1888, Trans. Zool. Soc., vol. xii. p. 227, pl. xlvi. figs. 7, 8. D. Bertheloti (d'Orb.) Egger, 1893, Ablandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 387, pl. xv. figs. 10-12. D. Berthelotiana (d'Orb.) Goës, 1894, K. Svenska Vet.-Akad. Handl., vol. xxv. p. 93, pl. xv. fig. 790. D. Bertheloti (d'Orb.) Flint, 1899, Rep. U.S. Nat. Mus. for 1897 (1899), p. 327, pl. lxxii. fig. 4.

This widely-distributed form is very abundant in the Malay Archipelago, and occurs in profusion all over the region.

Diseorbina vesienleris Lamarck s.p.
Diseorbites vesieuluris Lamarck, 1804, Ann. du Muséum, vol. v. p. 183 ; vol. viii. 1806, pl. lxii. fig. 7. Diseorbina vesicularis (Lam.) Carpenter, 1862, Introd. Foram., p. 204, pl. xiii. figs. 2, 3. D. vesicularis (Lam.) Halkyard, 1889, Trans. and Ann. Rept. Manchester Micr. Soc., p. 69, pl. ii. fig. 8 .

Is common in Area 1, and occurs at one or two Stations in Area 2.

Diseorbina rimosa Parker and Jones, plate VII. fig. 7.
Diseorbina rimosa (Parker and Jones) Carpenter, 1862, Introd. Foram., p. 205, D. rimosa Parker and Jones, 1865, Phil. Trans., vol. clv. pp. 385, 421 , pl. xix. fig. 6.

The examples of this species are few, and rather small. It occurs at Stations 2 and 14, in Area 1; and at Station 31, in Area 2.

Parker and Jones report it as occurring from India to Australia, including Fiji, in the recent condition; and, as fossil, from the Tertiary of Grignon, \&c.

Discorbina semi-marginata d'Orligny sp. (fide Terquem), plate, VII. fig. 8 .
Rotalia (Turbinulina) semi-marginatu d’Orbigny, 1826, Ann. Sci. Nat., vol. vii. p. 276, No. 53. (Figures without name or
description). Deshayes, 1824-1837, Description des Coquilles fossiles des environs de Paris, pl. cvi. figs. 16-19. Rotclina semimarginutc (d’Orb.) Terquem, 1882, Mém. Soc. Geól. Fr., sér. 3, vol. ii. p. 56, pl. xi. figs. 12-14.

As represented in the Malay Archipelaro, this is a Rotaline form, with a thin smooth hyaline test, and provided with a welldeveloped series of Asterigerine umbilical chambers. It bears a strong resemblance to the D. rimose of Parker and Jones, but is devoid of the chinks between the chambers characteristic of that species. It may be noted that both forms are found in the same localities, whether recent or fossil.

The only description of D. semi-marginate published by d'Orbigny is in the Prodrome de Paléontologie, vol. ii. 1850, p. 407, No. 1317, "Espèce rugueuse, ovale, bordée intérieurement," which is insufficient to identify it; whilst the figure in the "Planches inédites," referred to by Terquem, has never been published. Deshayes neither names nor describes the form figured by him, consequently the first author to give a sufficient description of the species was Terquem.

In the Malay Archipelago the form occurs in great profusion at Station 12, and in smaller quantities at Station 11; both Stations being in Area 1.

Discorbinu rugosa d'Orbigny sp.

Rosalina ruefose d’Orbigny, 184:3, Foram. Amér. Mérid., p. 42, pl. ii. figs. 12-14. Discorbinu reeyose (d'Orls.) Brady, 1884, Chall. Rept., p. 652, pl. lxxxvii. figs. 3, 4. D. rugosa (d'Orb.) Sherborn and Chapman, 1889, Journ. R. Micr. Scc., p. 487, pl. xi. fig. 33. D. rugose (d'Orb.) Egger, 1893, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xviii. p. 383 , pl. xv. figs. 1-3. D. rugose (d’Orb.) Chapman, 1896, Journ. R. Micr. Soc., p. 590, pl. xiii. fig. 10 ; and 1900, Geol. Mag., dec. 4, vol. vii. pl. xiv. fig. 9.

Examples of the form are numerous, and occur all over the region; but they are small, and the shells thin and more or less hyaline.

D'Orbigny obtained it from Patagonia. There are but two 'Challenger' Stations, both on the southern shores of Papua, 15. and 580 fathoms respectively. Egger gives numerous ' (azelle' Stations, extending from West Africa to Fiji, at depths of from 37 to 3020 fathoms.

Discortina allomorphinoilis Reuss sp.

Valvulina allomorplinoides Reuss, 1s60, Sitzungsber. k. Akad. Wiss. Wien, vol. xl. p. 22:; pl. xi. fig. 6. Discorbina allomoi-
phinoidcs (Reuss) Brady, 1884, Chall. Rept., p. 654, pl. xci. figs. 5, S. Valvulina allomorphinoilles (heuss) Egger, 1899, Abhandl. k. bayer. Akad. Wiss., Cl. II. vol. xxi. p. 43, pl. ii. figs. 4, 5. Pulvinulina allomorphinoides (Reuss) Fornasini, 1900, Mem. R. Accall. Sci. Ist. Bologna, ser. 5, vol. viii. p. 394, fig. 44. D. allomorphinoides (Reuss) Chapman, 1900, Proc. California Acad. of Sci., ser. :3, Geol., vol. i. p. 25., pl. xxx. fig. 8.

This species is confined to Area 1; and the examples, althongh not numerous, are sufficiently characteristic.

Elsewhere it is rare in the living condition. Under the name of Rotalina utriculata, Terquem reported it from Dunkerque, very rare. The 'Challenger' Stations are: off the Philippine Islands, 95 fathoms; off Raine Island, 155 fathoms; and Port Jackson, 2-10 fathoms. Fornasini records a solitary specimen from the Adriatic. In my cabinet are some examples from Korea, $20-30$ fathoms.

Z O OLOGY AND BOTANY

(PRLNCIPALLY INVERTEBRATA AND CRYPTOGAMIA),

MICROSCOPY, Етс.*

ZOOLOGY.

vertebrata.

a. Embryology. \dagger

Determination of Sex. $\ddagger-0$. Schultze discusses this old problem in at rigidly scientific manner ; and, after a survey of the data in regard to plants (from Cryptogams upwards), and in regard to amimals (from Hyldra to mann), comes to the conclusion that the question of sex is settled dmring the formative period of the ova. "The ova from which we arise are formed at a time when our mother was still in the womb of our grandmother, and are therefore without exception formed rather at the cost of our grandmother than of onr mother." His experiments on influencing the sex of the second generation through the nutrition of the grandmother (in mice) yielded no definite results. There seems no reason to believe that the sex of the offspring can be affected after the ovum is ripe.

Embryology of Tumours.s-.John Beard, in an exceedingly interesting paper, exponuds the following theory of tumours. A tumour is a more or less reduced, more or less incompletely differentiated, sterile Metazoan (animal) organism. It starts by the abnormal development of an aberrant or vagrant primary germ-cell, and growing under conditions unfavomrable for the complete and normal differentiation of all its parts, it unfolds and develops those things for whose growth the nidus is snitable, the rest degenerating, or remaining latent. In this way it is seen that the physiological nidns accounts for the frequent " mimicry" by tumours of their surromdings. As derived from primary germ-cells, tumours are never parts of the organism in which they occur (eontra

[^407]Wilms), but they are its reduced sisters or brothers, identical with it in ultimate characters. They never arise from cells which at any time may be regarded as cells of the individual. Exactly as identical twins are the produets of two sister or brother germ-cells, identical in ancestry from the same primitive germ-cell, and alike in all ultimate characters, so also any animal and a tumour within it--say, a sarcoma or tumour of embryonic tissuc-stand in the same relations of ancestry from one primitive germ-cell, and have the same ultimate characters at the startingpoint of their development. But, unlike fully developed identical twins, the individual and its tumour develop in different directions : the one upwards along the track of higher and higher organisation, the other downwards along the roadway of almormality, of degeneration, of arrest, at times even of riot, destruction and disaster.

Cause of Inverse Symmetry.*--Edwin C. Conklin brings forward some indirect evidence in support of the thesis that inverse symmetryin man, in snail, in threadworm, \&e.--is due to a reversal of the polarity of the liberated ovum. Such a reversal entirely and satisfactorily explains all the phenomena of inverse symmetry in embryonic and adult stages, whereas no other explanation does this even approximately. But if the reversal of polarity at the time of maturation can bring about a total inversion of all parts of the embryo and adult, then there must be a definite localisation of germinal primordia or "Anlagen" in the egg before maturation, e.g. the sulstance out of which the kidney of the snail will ultimately form must be definitely localised on one side of the chief axis, and so for every other part. If the inversion of the eger at the time of maturation inverts the position of every part which develops from it, no more convineing evidence conld be femnd that "organbildende Keimbezirke " are present and definitely localised in the immature egg.

Mendelian Heredity. \dagger - W. Bateson calls attention to various possibilities attainable by a modification of the Mendelian method. His facts relate to the crossing of rose-comb and pea-comb poultry with single combs. His theme, in general terms, is the Mendelian heredity of three characters allelomorphic to each other.

Embryonic Development of Mammalian Ovary and Testis. $\ddagger-$ Bemnet M. Allan gives a preliminary account of researches on the development of the ovary and testis of the rablit and pig. The constituent elements of these structures in origin and development are compared; seminiferous tubules, medullary cords, and rete cords are found to be homologons. No evilence has been found farouring the theory of the early segregation of sex-cells, yet the author is not prepared to say that his work in any way tends to disprove such a theory. There are some interesting facts bearing upon questions concerning the action of trophic stimuli in embryonic derelopment. The most striking example of this is the formation of follicles in the portion of rete tissue within the orare, while the extra ovarian part is not so affected.

[^408]Results of Castration in Man.* - E. Pittard has studied thirty men belonging to the Russian religious seet of Skoptzy, founded towards the middle of the eighteenth century, in which partial or complete castration is practised.

It seems from the data (1) that the operation diminishes, or retards the growth-both absolute and relative-of the bust, the head, and the cranium in its three principal dimensions; and (2) that the operation increases or accelerates the growth-both absolnte and relative-of stature, of the lower limb, of the upper limb, and probably of the ear.

Heterotypic Maturation-Mitosis in Amphibia. \dagger-Thomas H. Montgomery, jun., has studied the spermatogenesis of Plethodon cinereus and Desmognathus fuscus, and eomes to the conclusion that the heterotypic division really represents a reduction-division. The normal nmmber of chromosomes is twenty-four ; in the nuclei of the spermatocytes of the first order there are only twelve, which are interpreted as bivalent, arising by the end-to-end coalescence of two univalent chromosomes in a U shaped loop. The longitudinal splitting, which occurs in these loops, corresponds to an equation-division in the second maturation-mitosis. In the first spermatocyte-division these bivalent chromosomes are divided into two univalent chromosomes, which represents a true reduction.

Acceleration and Retardation of Metamorphosis in Amblystoma tigrinum. $\ddagger-J$. H. Powers has made many observations and experiments on the causes affecting metamorphoses in the tiger salamander, which is famous for its extreme variability. His facts lead him to conclude that the acceleration or retardation of metamorphosis is little, if at all, a question of enforced air-breathing, of gill development, of oxygenated or moxygenated water, of temperature or of light. He does not deny that these important factors have their influence, but his experiments show that nutrition is the fundamental factor. Extreme acceleration results from starving, a sudden check to a rich food-supply is the common canse of early metamorphosis, a moderate but constant food-supply postpones the change. In general terms, the chief factors influencing metamorphosis are always sudden shifts in metabolism, usually, or at least most readily, induced by changes in the foodsupply.

Hybrid Nature of Triton blasii.§ - W. Wolterstoff has made a number of breeding experiments, which appear to prove that Triton blasii must be regarded us a collective title for the varions hybrid-forms of Triton cristatus and Triton marmoratus. A detailed study of the progeny of "Tritor blasii" is promised in a forthcoming volume of " Zoologica."

Development of Lungs in Discoglossus pictus.\|-E. Goggio has studied the early stages in the development of the lungs in this Amphibian. He has been led to conclude that the primordium is primarily endodermic, that it is only due in part to a diverticulum of the enteric

[^409]wall, that it is paired and solid to start with, that the mesodermic envelope takes an active share in the growth, but that this growth is largely due to the division of the primitive cells forming the primordium.

Comparative Embryolog'y of the Swim-Bladder.* - Fanny Moser points out (1) that in some fishes, e.g. Rhodeus and carp, the swimbladder is constricted like an hour-glass, lies in the middle line dorsal to the gut, with a narrow pneumatic duct, which opens into the candal region of the bladder ; (2) that in another set, e.g. trout and salmon, the swim-bladder is a long narrow sack, somewhat to the left of the gut, with a wide opening entering the latter slightly to the left; and (3) that in others, such as stickleback, the swim-bladder is a wide sack, dorsal to the gut, and without pneumatic duct.

In groups (1) and (3), as von Baer and others have pointed out, the swim-bladder arises somewhat to the right of the gut ; in group (2) the origin is quite dorsal, but not quite median, being again to the right. The author briefly discusses the various re-arrangements in the course of growth. His point is, that there is some measure of plasticity in the mutual relations of gut and swim-bladder, and that this takes the edge off the contrast often drawn between the dorsal origin of the swimbladder and the ventral origin of the lungs. It will be recalled that the dorsal lung of Ceratodus arises from a ventral primordium.

Early Development of Lepidosteus. \dagger-A. C. Eycleshymer describes the cleavage of the ovum of Lepidosteus, which some have described as meroblastic, others as holoblastic. It may possibly be of a heterogeneous character, but the author regards the occurrence of complete holoblastic cleavage as very improbable. A comparative study of the cleavage among the Ganoids reveals in this small group of fishes a most interesting series of transitional forms. Begimning with the holoblastic egg of Acipenser, which closely resembles the Amphibian egg, we pass to the modified holoblastic as exhibited by the egg of Amia, thence to the egg of Lepidosteus with its meroblastic tendencies, and from this the typical meroblastic condition of the Teleost is readily derived.

Evolution of Vertebrate Limbs. \ddagger - P. le Damany discusses the familiar fact that while homologous limbs are often different in position in relation to the body, they are isotropic throughout. A young crocodile in the egg has its limbs oricntated almost in the same way as in Mammals, but after the animal has begun to crawl about the original orientation disappears. The author's point is, that the embryonic orientation is adaptive to the conditions of growth within the narrow compass of the egg. In another paper § the author maintains that the torsion of bones, familiar in the ribs, is due to muscular action in the course of development.

b. Histology.

Canaliculi in Ganglion Ceils. $\|$-Rachel Pewsner Neufeld discusses the "Saftkanälchen" in the ganglion cells of the spinal cord of the

* Anat. Anzeig., xxiii. (1903) pp. 609-11.
\dagger Decennial I'ublications, Univ. Chicago. x. (1903) p. 17 (2 pls.).
\ddagger 'Trav. Sci. Univ. Rennes, i. Fasc. iii. (1902) pp. 333-8.
§ Tom. cit., pl. 871-4.
if Anat. Anzeig., xxiii. (1903) pp. 424-46 (2 pls. and I fig.).
white rat, etc., and their relation to the pericellnlar " Saftlüekensystem." She finds that the intracellular canalienli open into rmonel-like lymph spaces, which lie on the surface of the eell and form depressions upon it; that the intracellular canaliculi are withont walls and belong strueturally to the cytoplasm of the ganglion cell ; that there is no special trophospongium in the ganglion cells of the spinal cord; that the grey matter immediately surrounding the ganglion-cell is distingnishable as a clear pericellular area from more distal areas ; and that the spaces and rumnels on the cell-surface probably represent, along with the sapcanaliculi of the cell, the beginnings or roots of the lymph-system of the spinal cord.

Secretory Processes in Suprarenal Capsules.*- C. Ciaccio has studied these, in many representative types of vertebrates. The cortieal and medullary areas are structurally and functionally distinct. The cortical secretion consists (a) of fatty and oxyphile substances, and (b) of a specific liquid secretion (in the median zone), and a specific granular secretion, preceded by a pre-granular stage, in the intermal zone.

The medullary region has also a twofold secretion : (a) of basophil granules, which in part pass into the veins, and (b) of fuchsinophil granules. The cortex is devoted to the transformation of toxic products, while the medulla produces a substance necessary for normal metabolism.

Formative Elastic Structures in Cells. \dagger-N. K. Koltzoff describes, especially in spermatozoa of Deeapod Crustaceans, various elastic structures which he calls formative because they appear to determine the external form of the cell. He analyses the various factors which determine form : the internal turgor (osmotic pressure, or it may be "Quellungsdruck"), the osmotic pressure of the external medium, and surface tension. But in cases like the sperms of Decapod Crustaceans, the state of affairs is complicated by the existence of elastic fibres, and to a consideration of these the paper is especially devoted.

Brunner's Glands. $\ddagger-$ R. R. Bensley disagrees almost wholly with the conclusions of Bogomoletz in regard to the glands of Brunner. The most inexplicable of these conelusions is that which ascribes to the zymogenic gland-cell the power to take on secondarily the function of mucin-secretion.

In the rabbit, the glands of Brumer are mixed glands (well compared by Castellant to the mixed glands of the trachea) composed of mucous portions, the cells of which stain strongly in stronger muehrmatein, mueicarmine, etc. ; and serous portions, the cells of which do not stain in these solutions, but, on the contrary, possess a radially striated, basal zone, containing a great deal of the nucleo proteid prozymogen, as may be demonstrated by the microchemical reaetion for iron and phosphorus, and an apieal zone filled with minute grannles of zymogen.

[^410]In all other Mammals examined up to the present, the glands of Brumer are pure mucous glands. They may secrete small quantities of enzyme, but these are not present in sufficient quantities to be demonstrable. The rabbit is unique among Mammals in possessing serous components in the glands of Brumner.

Structure of the Outer Segments of the Rods in the Retina of Vertebrates.*-Arthur D. Howard finds that the outer segments of the rods in the retina of the frog contain each an axial core that differs from the peripheral substance, but the exact nature of this core has not yet been made out. The outer segments, as demonstrated by the use of polarised light, are positively anisotropic, and agree in this respect with the axis cylinders of nerves. These onter segments therefore give evidence of containing longitudinal fibrilla, and in some respects are not unlike a cross-striped muscle fibre.

A very successful method for obtaining unwrinkled retine is described.

c. General.

Marsupial Region of Marsupialia. \dagger-Albertina Carlsson has made an anatomical study of this region in a representative series of Marsupials. Among the conclusions arrived at we may note: (1) that the pouch of Echidna is homologous with the Metatherian marsupium ; (2) that there is no direct relation between the development of the pouch and that of the marsupial bones; and (3) that the absence of a musculus sphincter marsupii, when a pouch is present, is a degenerative condition.

Meckel's Diverticulum and Concomitant Absence of Cæcal Appendix. \ddagger-Dr. Rame describes the case of a woman whose post-mortem examination revealed the presence of a true ileal diverticulum (Meckel's diverticulum) and the absence of an appendix vermiformis. The point is that the absence of the latter, and the presence of the former, may be correlated variations.

Phylogeny of Vomerine Bones.s-R. Broom shows that the Mammalian vomer has its homologue in the "parasphenoid " of the Reptiles and Amphibians, and that the so-called "vomers" of these lower forms are really homologous to the dumb-bell bone ("prevomer") of Ormithorhynchus. He discusses the steps by which the vomerine bones of the higher forms have been derived from those of their Labyrinthodont ancestors, and gives a nseful table showing the principal modifications of the vomer and prevomer in the primitive Labyrinthodonts and Cotylosanria, in the Rhynchocephalian phylum, in the Chelonia, and in the Theriodont phylum.

Homology of the Lagena throughout Vertebrates.||-H. Spencer Harrison corroborates, against Alexander and ron Ebner, the orthodox.

[^411]view that the portion of the membranons auditory labyrinth which is described as the "lagena" or "lagena cochlea," is the same structure throughout the vertebrate series. He points out what he regards as Alexander's mistakes, and supports from his own studies the result of Hasse, Retzius, and Kuhn that the lagena, which first appears in Fishes, and persists in Amphibiams, Reptiles, Birds, and Mammals (without a sensory area in the last group) is the same structure throughout.

Circulation in Labyrinth of Ear of Pig.*-G. E. Shambaugh has worked out the circulation in the labyrinth by using Eiehler's method of making celloidin casts of the labyrinth. A large series of embryos was injected, and the simpler scheme for the distribution of the vessels found in the younger embryos is utilised in interpreting the complicated system of vessels found in the labyrinth at full term. There are ten beautiful coloured plates.

Genital Apparatus of Bats. $\dagger-\mathrm{M}$. Ranther finds that the epididymis of Chiroptera functions as a sperm-reservoir. Seminal vesicles occur only in the Frngivora; in the Microchiroptera their place is taken by specialised glandula ampullorm of the vas deferens. Besides prostate and Cowper's glands, there are special urethral glands; and new complications in the penis and around the anus are described.

Origin of the Thoroughbred Horse. \ddagger-Prof. Ridgeway suggests that the Barbary horse, from which all the fine horses of the world have sprung, was derived either from the zebra of North-East Africa, or, as is more likely, from some very closely allied species now extinct, which like Prezevalsky's horse may have had castors on its hind legs like Equms caballus.

Ancestral Canidæ.§-J. B. Hatcher deseribes a number of interesting Oligocene Canidæ recently discovered in Nebraska, and now preserved in the Carnegie Musemon. Afull account is given of an almost complete skeleton of Daphernus felinus Scott, and two new genera, Proamphicyon and Protemnocyon, are described. It is held that Dupherems has no known descendant, that Proomphicyon is ancestral to Amplicyon; and that Protemmocyon is ancestral to Temnoryon. This last animal is of particular interest as ancestral to C'mis, and the discovery of Protemnocyon carries the known ancestry of the dog one stage further back.

Perforation of a Vein by an Artery in the Cat.\|-Arthur IV. Weysse describes an interesting case in which the right common iliac vein shows a slit through which the superior gluteal artery passes. Various similar abormalities are on record, and can only be explained by reference to the development. It seems probable that the internal iliac artery grows ont from the dorsal aorta before the common iliac vein develops from the inferior vena cava. If this should prove to be so, we can readily see that the primordinm of the vein on coming in contact with the artery, or in this case with its superior gluteal branch, might

[^412]occasionally grow entirely around it instead of passing to one side. The fact that in the case recorded and figured, the right superior gluteal artery arises from the internal iliac much farther forward than is usual, and so comes to be directly in the course of the right common iliac vein, wonld seem to bear out this suggestion.

Albinism in Birds and Mammals.*-T. Bézier discusses cases of albino rooks, magpies, swallows, thrushes, shrews, \&e.; he finds that ont of 18 cases of birds, nine were complete alhinos and nine iucomplete, while out of 7 cases of Mammals, six were complete albinos and one incomplete.

Adaptations to Molluscivorous Diet in Varanus niloticus. \dagger Einar Lömberg finds that this lizard in Kameroon feeds to a great extent on land-molluscs, dropping or shaking off the fragments of shell before it swallows the animal. The development of the powerful jaws and large molars of this species is interpreted as a special adaptation to the habit of devouring large and hard-shelled snails. This is illustrated in detail by comparing the skulls of V. nilotirus with V. saluator. Some adaptations in the alimentary tract are also recorded. Whether the Lamarckian or the selectionist interpretation be accepted, the indisputable fact remains that we have in this snail-eating lizard a remarkable adaptation to a peculiar diet.

Structure of Gecko's Toes. \ddagger - Julius Tandler notes that the numerous investigations on this subject have been confined to the structure of the cutis and epidermis, without attention to the skeletal parts, the musculature, and the vascular arrangements. He has filled this gap by his studies on Ptyodactylus lobatus and Platylactylus annularis, and shows in particular that the remarkable powers of adhesion which the Geckos display become more intelligible when the muscular and vascular details are carefully considered. Apart from the adhesion of the fine lamellæ, there is a vacum-action due to the remarkable muscular and vascular arrangements. But it is not easy to state very briefly how these arrangements work.

Muscles of Mastication in Lacertilia.§-O. Charmock Bradley has given his attention to a subject in regard to which but little has hitherto been known, the muscles of mastication and the movement of the skull associated with the act of mastication in lizards. His studies were chiefly based on Varamus bivittatus, but the musculature in other forms is also referred to. Some of the comparisons bring ont facts of special interest, e.g. the absence of the deep-seated museles of mastication in the Chamæleon.

Phylogeny of Chelonians.||-Lonis Dollo describes a new Eocene tortoise-Eochelone brabantica n. g. et sp.-a type of much systematic interest. The position and structure of its choare explain the origin of

[^413]the peculiar choame of Dermorkelys roritrent, and throw light on the evolution of the Athece from the marine Thecophora.

In a subsequent essay * Dollo discusses the origin of Dermochelys, and seeks to interpret the osteology of Chelonians in terms of the myology and ethology. He tries to realise the ethology of the extinet types, and disensses the geographical and stratigraphical distribution, and the classification of Chelonia. He uses his results as a basis for some general ætiological snggestions.

Classification of Trionychidæ. \dagger-Fr. Siebemrock takes a surver of this family of Chelonians, and uses the structure of the varions parts of the plastron as a basis for a revised classification. He also deseribes \ddagger Cyclanorlis oligotylus sp. n. In another paper he revises the classification of the species of Podocnemis.

Origin of Poison Glands in the Land Salamander.s-M. Phisalix finds that the first appearance of the cutaneous slands is not due to a proliferation of the cells of the deep layer of the epidermis; it is in the dermis, under the basal layer of the epidermis, that the first rudiments of the poison glands appear. They are thas mesodermie in origin, and connections with the ectoderm and the formation of their ducts constitute secondary phenomena.

Sense of Hearing in Fishes.||-G. H. Parker shows that the common killifish, Fundulus heteroclitus, does actually hear sounds made by tmingforks, and that it becomes deaf if the auditory nerve be cut.

The lateral line is closely associated with the ear, and may also assist in hearing. In the skin, the lateral line, and the ear, we are dealing with what may be called three generations of sense-organs: the skin representing the first generation, and giving rise to the lateral line organs, the second, which in turn produce the ears.

Change of Colour in Trout. 9 -Allbert Schöndorff has made many experiments, and comes to the following conclusions. The colour-change is wholly due to the persistent migration of the chromatophores and to their expansion or contraction. The chief factor is the influence of illumination ; a direct nervous rôle was not proved.

In the tront there are only two kinds of pigment, namely, melanins and lipochromes. The former ocenr in rods, and are intracellular: the latter are amorphons and extracellular. In the chromatophores the pigment-cells aud their processes form a structural and functional unity, that is to sar, the melanin-rays are processes of the pigment-cells, and disappear when the latter contract.

The anthor contradicts the conclusion that no pigment-cells ocemr in the epidermis. His figures show that apart from processes the bodies of the pigment-cells oceur in the epidermis. The origin of the epidermie

* Tom. cit., pp, 801-50.
+ SB. k. Akad. Wi.s. Wien, cxi. (1!902) pp. 807-46 (18 figs.).
* Tom. cit., pl. 157-70 (1 pl.).
§ Arch. Zonl. Expér., series 4, i. (1903). Notes et Revue, No. S, pp. exxvi-cxl.
$\|$ Bull. U.S. Fish Commission for 1902, pp. 45-64 (1 pl.). See Amer. Naturalist, xxxvii. (190:3) fp. 499-500.
- Arch. Naturges., Ixix. (1903) pp. $899-426$ (1 pl.).
pigment seems to he exogenous not "antochthonons," for the young trout show clearly an invasion of the epidermis from the cutis. As to the chemical nature of the pigments, Krukenberg's results are corroborated.

Resistance of Gasterosteus aculeatus to the Osmotic Pressure of different Media.*—M. Siedlecki has subjected specimens of Cr.aculeatus to solutions in various degrees of concentration of sugar, glycerine, potassimm chloride, sodium chloride, sodium sulphate, \&c., and finds that they show resistance to a high degree of osmotic pressure. He considers that the epithelium of the body and gills acts as a semipermeable membrane to certain substances; when the epithelial layer is partly disintegrated the resistance is so diminished that the animals suceumb rapidly even in weak solutions.

Gill-Filters of Freshwater Fishes. \dagger - Enoch Zander gives a carefnl accomnt of the "sieve-processes" which occur on the edges, or only on the anterior edge of the branchial arches. They differ greatly in form, number and disposition, and Zander conneets the manifold arrangements with the nature of the food. In predatory fishes, like pike and burbot, the sieve-processes are absent or very primitive, while the cavity of the month and pharyns bears pointed teeth for gripping the prey; but fishes which feed on small organisms, which grab in the mud, and so on, have a fine filter between the crill-elefts. In general, Zinder's results agree with what Arnold has noted in regard to the same subject, but the detailed illustrations are of much interest.

Palæospondylus. $\ddagger-W$. J. Sollas and Igerna B. J. Sollas have investigrated this fossil by means of serial sections, showing that the snbstance of which the fossil consists is a true coal. "The organism was evidently a primitive fish, with some features which are sugrestive of Marsipobranchs, some of Elasmobranchs, and some of young Dipnoi or larval Amphibians; after branching off from the Piscine stem, at a point below the origin of the Elasmobranchs, it pursmed an independent course of development."

Appendages of Tremataspis. $\$-W$. Patten concludes a detailed argument with the statement that we are justified in erediting I'remataspis with a pair of oar-like swimming appendages-probably attached to the largest pair of incisions on the anterior ventral margin of the headsimilar to those of Bothrinlepis and Pterichthys. Similar appendages were probably present in Ptertuspis, Cyathaspis and Tolypaspis.

That by far the greater share of the work of locomotion in the Ostracoderms must have been performed ly the oar-like cephalie appendages, is indieated by their anterior position and great size in liothriolepis and Plerichthys, and by the relatively small size of dorsal and caudal fins in the latter gemus. Such a condition is in marker contrast to that in many of the most primitive of the true fishes, where

[^414]the pectorals are mnch smaller relatively, serving rather as batancers, the principal work of locomotion being performed by the tail and caudal fin.

Among true Vertebrates, the only structures suggestive of the cephalic appendages of the Ostracoderms are the external gills during their early embryonic stages, inclnding among these strnetmres the "balancers" of Amphibian larva. The large size and anterior position of the latter appendages make them especially suggestive of the oar-like appendages of Tremutaspis.

Peculiar Modification in Permian Dipnoans.*- C. R. Eastman describes a species of Sagenodus (S. pertenuis sp. 11.), whieh ocenpies a unique position amongst fossil Dipnoans in having a dentition adapted for cutting instead of ernshing, thms paralleling the conditions found in certain Palæozoic sharks and in recent Gymnodonta. It may be plansibly associated with the change from marine to brackish-water conditions that took place during the Permian. A sharp cutting edge is developed, and the anthor is struck by the fact that in the aberrant series of Edestus-like sharks, that flomrished contemporaneonsly, a similar departure occurs. In two of the most conservative and persistent gromps of fishes, namely the Ceratodonts and Cestracionts-both of which have had a continnous existence ever since the Permian-the extreme of variation was attained toward the close of the Palæozoic. Another interesting feature to be brought forward in connection with Sugenotus pertemuis is its apparently wide distribution (e.g. in Russia as well as Texas). Bearing in mind the world-wide seattering of the Eclestus series that took place dmring the late Palæozoic, Eastman notes that the stimmlus which quickened variation and distribution was responded to simultancously by the two groups of fishes exceeding all others in longevity, after which they relapsed into shoggishness.

Lost Atlantis. $\dagger-$ R. F. Scharff has studied the land and freshwater fammas of the Canary Islands, Madeira and the Azores, and comes to conclnsions very different from those of Wallace. There may have been colonisation of these islands by animals transported by winds and currents, but a large percentage of the famna indicate conneetion with present continents.

He maintains that " Madeira and the Azores, np to Miocene times, were comected with Portngal ; and that from Moroceo to the Canary Islands, and from them to South America, stretchel a vast land which extended sonthward certainly as far as St. Helena. This great continent may have existed already in Secondary times, as Dr. Shering suggested ; and it probably began to subside in early Tertiary times." Scharff believes that the northern portions of this Lost Atlantis persisted until the Miocene, and that subsequently, `in early Pleistoeene, there was again a comection of the Atlantie islands with the Mediterranean countries (Africa and Europe). These ideas agree with those of A. E. Ortmam, at least as far as they admit the connection of West Africa with Sonth America.

[^415]Bermuda Islands.*-Addison E. Verrill gives an account of these islands-dealing with physiography, meteorology, products, fauna and flora. He disensses many subjects of great interest in comnection with the changes of the fauna and flora for which man is responsible : e.g. the effects of hogs and wood-rats, of de-foresting, of introductions and eliminations. He deals with the extermination or partial extermination of native birds, the partial extermination of the whales, the extermination of breeding sea-turtles, the decrease of certain fishes and molluses, the introduction of all sorts of animals from rats to earthworms. The whole story is one of great retiologital as well as practical interest.

INVERTEBRATA.

Microscopic Freshwater Animals of Balaton. \dagger--E. von Daday gives a list of 209 microscopic freshrater animals obtained in the survey of the freshwater basins around Balaton. They range from Protozoa to Arachnoidea, and include several new species, and notably the new Cladoceran genus Wlassicsia.

Mollusca.
 a. Cephalopoda.

Remarkable Young Form of Cephalopod. \ddagger - C. Chun describes some small Decapods, from $1 \mathrm{~mm} .-10 \mathrm{~mm}$. (including extended tentacles) in length, in which two of the tentacles have fused thronghout their entire length to form a proboscis-like process. No hint of this has been seen in any Deeapod; it mast be a jurenile character-probably, however, of a hitherto unknown genus. The name Rhynchotenthis is proposed.

Statocysts of Cephalopods.s-R. Hamlyn-Harris gives a detailed description of the large and highly erolved statocysts of Cephalopods. Besides the well-known principal macula statien-the relatively large sensory terminal plate on which the statolith rests-the author has found two other macule, which he calls macula neglectal, anterior and posterior. After describing the general structure in representative types of Octopods and Decapods, the anthor gives an account of the minute strueture, and contributes a few embryological notes.

Loligo media. $\|$ - L. Joulin figures a series of this small pelagic squid, which has received many specific names. He seeks to show that the numerous synomyms refer to different growth-stages of the same animal. The growth changes differ according to the sex, and the sexual differences 'penetrate eren into the 'pen,' which is relatively shorter in the females.

Hetroteuthis weberi. 9 -L. Jonbin describes this new species from the Dutch "Siboga" expedition. It differs from H. lisput, the only other known speeies of the genus, in being relativelyshorter and broader, in having shorter arms with the suckers tonching, in having a larger fin

[^416]attached higher up, \&c. Remarkable is the difference in locality, for while H. dispar is Mediterranem, the new species came from the Dutch Indies.

Spermatogenesis in Cephalopods.* - Curt Thesing describes the differentiation of the spermatid into the spermatozoon in Octopus, paying particular attention to the history of the eentral corpuscles, two of which are always present. In various Cephalopods-Rossia macrosoma, Sepien afficinalis, and Loligo mulgaris--the anthor has stndied the oceurrence of nutritive cells. He did not find what Pictet called a cytophore, but nutritive cells play an important rôle. Some spermatogonia, spermatocytes, and even spermatids and spermatozoa, seem to degenerate; the cell boundaries become indistinct and the nuclei are dissolved ; a syncytium is formed. Into such syucytia the normal spermatozoa force their heads, and apparently utilise the material. In follicles which contain relatively few sperm-cells, the syncytia tend to be rounded off, producing the appearance which Pictet described as a cytophore.

r. Gastropoda.

New Solenogastres. \dagger - H. F. Nierstrasz describes Chetoderma challengeri sp. n., which, in its distichal radula and its ruite ineipient mid-gut gland, \&c., appears to be primitive, and in some respects a transition-form between Neomenidæ and Chætodermatidæ. Except that it was got on the "Challenger" expedition, the origin of the specimen is unknown. Another form, Chetoderma normanni n. sp., given by Canon Norman to the Utrecht Zoological Laboratory, but also of unknown locality, lies near Ch. loveni; and a third new species Ch. canudense is nearly related to Ch. nitidulum.

The anthor establishes a new genus, Uncimenia (U. neapolitana), for a form from Naples which is in some ways near Paramenia. It is distinguished from other Neomenidæ by the absence of radula and radulasac, by the presence of an organ of unknown function around the foregut, of two ventral short salivary glands, by the terminal cloacal opening, by a pair of seminal vesicles, and by the large respiratory eloacal folds.

Storing-Kidney in Carinaria mediterranea. $\ddagger-J$. Fahringer found that the kidneys of Heteropods did not seem to contain any uric acid. In Carinaria his attention was drawn to two gland-like white strands, which shine through at the root of the fin. These organs have been described by Gegenbaur and others ; they have been called "concretionglands," \&c., and they certainly contain uric acid. Their structure shows a number of cell-complexes, with more or less round cells containing uric concretions, little plasma, and large muclei. The posterior portion of the caudal artery passes through the middle. That they have excretory significance seems certain; they are complementary to the true kidney.

Variation in the Genus Ashmunella.§-T. I). A. Cockerell supplies statistical data for the plotting of eurves of shell diameter of sub-species

[^417]of A. thomsoniana, from whieh it appears that the mode for sub-species rooperce falls exactly between A. thomsonianu proper and sub-species portere.

Gastropod Studies.*-Amadeus Graban gives an account of the shell development in the genera Fulgur and Lycotypus, and diseusses its bearing on the question of the suecession of species in time. A table of genetic relationships of speeies is given.

Sexual Differentiation in the Hermaphrodite Gland of Limax maximus. \dagger - P. Ancel comes to an exactly opposite conclusion from MI. Babor, regarding the order of appearance of the sexual elements in L. maximus. The sex-cells up to a certain time are indifferent and capable of developing as male or female. The determining factor is the proximity of mutritive eells which arise from the same primitive elements as the sex-cells. These tend to produce ora. Their absence is the indirect cause of particular cells developing as male elements. The order of appearance of these three types of eell is such that protogyny is not possible.

б. Lamellibranchiata.

Utilisation of Carbonate of Lime by Anodonta. $\ddagger-$ Domet de Vorges commmicates the results of an experiment with a young specimen of the freshwater mussel, Anodonte cyynea, whieh, though by no means eonclusive, tend to show that this bivalve can utilise the earbonate of ealeinm in the water. It is noteworthy that in this experiment the magnesium salts remained quite constant.

Rib Variation in Cardium.s - F. C. Baker has stndied this in Cterdium robustum ($=$ C. magntm), C. isocurtia, and C. moricatum, using several hundred specimens of each speeies from the same general loeality. The fact presents itself, that in each species there is a mode or constant which remains maried, and from which certain individuals vary sporadically. It also appears that the mumber of rilhs is not a safe character upon which to fond a speeies.

Arthropoda.

a. Insecta.

Insects and Floral Colours.\|-Iohn H. Lovell sums up a paper, rich in observational material, in the tonclusion, as far as insects are concerned, that their preferences depend, not on æesthetic colour-sense, but on association of particular coloms with food material. Conspicuousness, or contrast of the infloreseence with the foliage, may be referred to selection. It is of advantage to the insects, since it enables them to find nectariferous flowers more quickly, and to the plants beause it aids in securing cross-fertilisation. Many colours are better than one, since the eolours are rendered more conspienons by contrasts with each other as well as with the foliage, and insects are less liable to visit them indiscriminately. This paper is also referred to under "Botany."

[^418]Position of Repose in Lepidoptera.*-_J. Th. Ondemans has made an elaborate study of the resting pose in Lepidoptera, and has illustrated his memoir with mmerous beautiful plates. He discusses the folding of the wings so that only the under surfaces are seen, and the spreading of the wings so that the upper surface is alone prominent. Many detailed peculiarities are described and figured, and the adaptiveness of the results is expounded. He believes strongly in the direet influence of light on the exposed parts, without denying that internal influences are also at work.

Protective Resemblance in Butterflies. $\dagger-\mathrm{W}$. S. Rogers calls attention to an un-named lmaterfly which he foumd in the granite quarries in the district of Santos, Brazil. The general colouring of the butterfly is a cool-blue grey, exactly the shade of the freshly quarried stone, on which it invariably settled. The weathered surfaces of the granite were greenish-grey. The markings of the butterfly also corresponded to the texture of the rock.
"The facts seem to point to a very rapid evolution of the butterfly's present colouring, since the quarries in question have probably only existed for some 200 years, and before that time the butterflies conld not have found access to a freshly cleft granite-surface." In an appended note Mr. G. H. Carpenter says that the observation is of much interest, and that there can be little doulst that the colour of the species has changed during the period mentioned moder the influence of natural selection.

Spermatogenesis in Drones. $\ddagger-F$. Meves makes a brief note on the remarkable spermatocyte-divisions in the testes of the drone-bee. The division results in a large and a very mime cell, like a polar body ; both begin to be transformed into sperms, but the small cells probalbly degenerate.

Wax-making Organ of Bee.§-L. Dreyling has made a careful study of this structure, showing inter alio that the "wax-membrane" is a modified glandular area of the hypodermis, and that the secretion comes out by extremely fine canalienli traversing the chitin. Of much interest is the author's description of the state of the glandular area at different ages; it functions at the aeme of the short life, and thereafter degenerates.

Hibernation of Ants.\|-Raggero Cobelli has shown that the duration of the hibernating period of ants is a specific character. This is clearly indicated by a contrast between Lasius fuliginosus and Cumponotus pubescons. Of course the position of the nest and other factors influence the duration of the winter-resting period ; but, other things being equal, the duration is a function of the constitution of the species. As regards sensitiveness to cold, and length of hibernating period, similar series may be demonstrated : thus, C'omponotus pubescens, C'remu-

[^419]togaster scutellaris, Lasius emarginatus, and L. fuliginosus, form a series in both these respects.

Connection between Mid-Gut and Hind-Gut in Larval Hymen-optera.*-C. Rengel has investigated this point in the larva of Vespa germanica, Apis mellifica, and Lasius niger. He finds that at the boundary of the two regions the embryonic condition persists throughont the whole of the larval period unchanged (Apis, Lasius), or almost unchanged (Vespa). The mid-gut is, from the start, in organic connection with the hind-gut. The muscularis layer, the membrana propria, and the epithelium, pass from the one region to the other withont interruption. The expulsion of the stored contents of the mid-gut is not occasioned by any new formation, but is wholly due to the expansion of the narrow region.

Interesting Case of Parasitism. \dagger-K. Grünberg recalls the remarkable parasitism of the ant-decapitating fly, described some years ago by Theodor Pergande. \ddagger An ant, Camponotus pennsylvanicus Geer, which lives in hollow trees and stumps, is attacked by a fly, Apocephalus pergandei Coqu., which lays its eggs on its victim's body. The larvæ hatch and penetrate to the head, killing the ant after decapitating it.

Beetle Embedded in Wall of Human Intestine.s - D. Sharp records a case observed by W. H. Ligertwood. The lower part of the ileum of an old man of 73 showed two small oval, blackish lumps; the upper one, about eighteen inches above the ileo-cæcal valve, contained a living weevil (Otiorhynchus tenebriosus) about half-an-inch long. It lay between the mucous membrane and the other coats of the intestine; there were no signs of a cyst-wall, nor of any opening. Dr. Sharp corroborates the identification of the beetle, and calls attention to recent experiments by Thébault, which show that the larva of Piophila casei-the common cheese-maggot-can traverse the whole length of the human alimentary canal without being killed. It appears, therefore, that accounts of the finding of living insects in the human alimentary canal must not be rejected on account of the inherent improbability of life being maintained in such a situation.

Coloration of Coleoptera.\| - W. L. Tower shows that the most important of insect colours are those of the cuticle. They are not due to drying, oxidation, secretion, or like processes, but are produced by katalytic agents working in the cuticle. The colours develop as the cuticula hardens, and appears first, as a rule, upon sclerites to which muscles are attached. The pigment develops from before backward, and, approximately, by segments, excepting that it may appear upon the head and most posterior segments simultaneously.

A study of the cuticle revealed the existence of enzymes of a new class, called chitases. They operate in the hardening and pigmenting of the cuticle. An outer or primary cuticula of chitin is distinguished from an inner layer, composed of a carbohydrate allied to tunicin. The

[^420]colours develop in the primary cnticula, which is derived from prochitin, an albumino-gelatinate, through the action of chitases producing chitin and pigments of the azo-, di-azo-, and amido-azo series.

Colour patterns of various genera have many developmental stages in common, and a fundamental plan of colour development was found in all the genera studied.

Vasiform Orifice of the Aleurodidæ.*--H. W. Peal describes a small;oval organ always present on the posterior surface of the dorsum of both the larval and adult insects. There is (1) a vasiform orifice, a more or less oval pit or depression ; (2) a flat, shield-like hinged operculum, which more or less covers the orifice ; and (:3) a usually twojointed protrusible lingula, shot out some four or five times a second, and continned as a transparent tube into the eavity of the body. There is no doubt that the function of this remarkable organ is the secretion of honey-dew. The operculum may be regarded as a protective covering. The actual emergence of a globule of honey-dew from the lingula was observed.

Pine-Beetle. $\dagger--$ The Board of Agriculture devotes the 91st of their useful leaflets-which may be obtained free of charge-to the pinebectle, Hylesinus piniperda L . This destructive forest insect is deseribed, its life-bistory is sketehed, and the readily available, and usually effective, preventive measures are diseussed.

Economic Entomology. \ddagger - E. P. Stebbing has published a useful paper on the aims and methods of economic entomology-"The study of the life-histories of injurious insects, with a view to instituting remedial measures against them; this latter question involving an acquaintance with the habits of insects, predaceous and parasitic, upon the noxious pests, and with the capabilities of various insecticides and other remedial measures." "We cannot rely that life-histories and remedies worked out, and applicable in Europe or America, will be of use to us or equally justified in India." "Remedial measures divide themselves into two heads: (1) those applicable throngh the agency of man; and (\because) natural checks brought into play by Nature herself." "The most satisfactory of all remedial measures would be effected by the study of the varicties of plants which best resisted attacks."

Copeognathæ from Kameroon.s-Günther Enderlein describes three new Copeognathæ from Kameroon, of considerable zoo-geographical interest, indeed the only forms of Copeognathæ as yet known from West Africa. The new genus Axinopsocus is fomnded, a representative of the little-known family Psoquillidæ, with the speeies A. microps; the two others are Perientomum lösemami sp. n., named after the collector Dr. Hösemann, and Myopsocus camerunus sp. n.

Tasmanian Phasmid.\| - Arthur M. Lea describes a new walkingstick insect, Acrophylla tasmaniensis sp. n.; and we refer to his paper

[^421]because it is the first record of the occurrence of a Phasmid in Tasmania.

Aquatic Insects of New York State.*-As the result of studies conducted at the entomological field-station, Ithaca, New York, under the direction of Ephraim Porter Felt, we have a valuable volume of reports which adds much to the knowledge of aquatic insects, and will facilitate subsequent investigations.
J. G. Needham describes the life-history of Zygopterous Odonatathe "damsel flies," and some new life-histories of Diptera; A. D. MacGillivray deals with aquatic Chrysomelidæ, and gives a table of the families of Coleopterous larvæ ; O. A. Johannsen discusses aquatic Nematocerous Diptera; and K. C. Davis contributes a monograph on Sialididæ of both North and South America.

Of much interest is J. G. Needham's account of the food (chicfly Chironomidæ) of the brook trout, and his description of the larva of Epiphragma fascipennis, a Dipterous burrower in fallen willow and buttonbush stems lying on the banks of temporary pools. Its residence is sometimes submerged, sometimes exposed, and it has a mode of respiration suited to either condition. MacGillivray's careful study of the respiratory apparatus of the Donacia larva solves the old problem as to how the animal, a dweller on the submerged roots of water plants, gets its air-by tapping the store held in the intercellular air-spaces of the plants. The volume has many beautiful plates, some coloured.

North American Trichodectidæ. \dagger-Max Morse gives a synopsis of the North American species of Trichodectes (biting-lice), which feed on the scales and epidermic excretions of Mammals. Much attention is paid to the so-called "abdominal appendage " of Piaget-a growth of the posterior ventral edge of the antepenultimate segment of the abdomen in the female. Its function is partly in clinging to the hairs of the host, but more especially in the adjustment of the eggs to the hairs. It furnishes excellent specific criteria. Eighteen species are described; their division into ruminant, carnivore, and rodent types strikes one as umnecessarily quaint.

B. Myriopoda.

Marine Myriopods. \ddagger - Curt Hemings discusses the distribution of Scolioplanes maritimus Bergsöc and Meinert (? = Geophitus marinus Leach), and Schendyla submarina Grube, which are both truly littoral. He has made a particular study of the habits of the first-named species, which is well adapted to live in a fluid mediam. It can survive 30 hours' submersion in sea-water, and 70-80 hours' in fresh-water. Many Myriopods have this adaptability in greater or less degree.

Intercalary Segments.s-K. W. Verhoeff discusses the intercalary segments of Chilopoda, with reference to the intermediate segments ("Zuvischensegmente") of insects. The trumk region of Chilopods was,

[^422]he maintains, originally composed of donble-segments, each limb-bearing segment being connected with a preceding segment without limbs more closely than with the succeeding limbless segment. The intermediate segments of insects are degenerate main segments, inherited from Chilopod ancestors, and united with the suceeeding main segments into secondary double-segments. But we must refer those interested in this intricate question to Verhoeff himself.

8. Arachnida.

Development of Telyphonus caudatus.* - W. Schimkewitsch describes the appearance of the embryo of T'. rumulutus in a series of stages from blastula onwards. On the whole the development exhibits a combination of the features claracteristic of spiders, particularly Pholcus, and scorpions. There are no important points pecinliar to T'elyphomus.

ϵ. Crustacea.

Death-Feigning in Terrestrial Amphipods. \dagger - F. J. Holmes has studied this phenomenon in Telorchestic Iongicornis, Orchestia uyilis, \&c., in which contaet with rigid bodies evokes "a sort of hypnotic effect apparently." The author regards this as the expression of an "instinct" evolved in the course of matural selection; but no facts are adduced which contradict the view that the phenomenon is a "Reflex-tomns," such as Verworn has described in cases where the possibility of an instinct is out of the question.

Emergence of Lobster Larvæ. \ddagger - Fabre-Domergue and E. Biétrix have carefully studied the process of hatching in the common lolster (Homarus). It occurs between 8 p.m. and 9 p.m., and the mother plays a part, moving about as if on tiptoe, and suddenly working the swimmerets so as to jerk ont the larre as soon as they complete the first monlt after hatching.

Habits of Cambarus.\& - J. Arthur Harris discusses some of the chief facts known in regard to the habits and distribntion of North American crayfishes. Different species occur in different parts of the same stream. The burrowing and the "chimncy-building" of varions species is discussed at some length. The primary use of the burrow seems to be to collect the water in a sort of cistern, so that the crayfish call keep its gills moist when water in the pools is scarce. Winterhabits, breeding-habits, coloration and the like, are briefly allnded to.

North American Amphipods. $\|$-S. J. Holmes contributes a useful synopsis of the Amphipods of the Atlantic coast of North America. The Amphipod fauna of the Pacific coast is still very imperfectly known. The species from the Arctic regions of the Americin continent are also omitted, except when they range into the region covered. The majority of the known species of eastern North America are, however, repre-

[^423]sentatives of the general circumpolar fauna, and are found also on the northern coast of Europe and Asia. The Amphipod fauna of Labrador is very similar to that of Norway, the differences naturally becoming greater as we pass southward along the shores of the two continents. Nevertheless there are not a few species common to the Mediterranean and the southern coast of New England. The tendency of some investigator's to describe a species as new when met with for the first time in North America, has, therefore, resnlted in the production of many synonyms. Like others of the series, the diagnostic key snbmitted is of great value.

Annulata.

Sperm Centrosome and Aster of Allolobophora fœtida.*-Katharine Foot and E. C. Strobell point out that during the past few years evidence has accumulated which assigns to the egg attraction-sphere a position where it threatens to usurp all the functions hitherto claimed for the male attraction-sphere. This promotion of the egg-centrosome and aster, with its satellites the cytasters, seems to have been at the expense of the male centrosome, until even Boveri suggests the hypothesis that instead of the spermatozoon bringing a centrosome into the ovum, it may be that it simply induces the formation of a centrosome, from whose division all that follow are derived.

The egg of Allolophora furnishes evidence that the centrosome of its male attraction-sphere is part of the spermatozoon itself, but Allolobophore fails to offer any evidence that this centrosome gives rise to one or both of the cleavage centrosomes. On the contrary, the evidence points to the de novo origin of the cleavage centrosomes.

Rôle of Amœbocytes in Polymnia nebulosa. \dagger-M. Siedlecki has an interesting study of the varied rôle of the cœlomic amœbocytes in this Annelid. He describes their phases, e.g. the tendency to agglutinate in plasmodia-a tendency which he attribntes largely to the viscosity of the surfaces of the amœbocytes. The engulfing of foreign bodies was watched, and is described. Reasons are given for believing that they are important in dealing with the sporozoon parasites, such as the free cysts of Caryotropha. Of particular interest is the description of the way in which the amœbocytes utilise the cytophores formed in the spermatogenesis. The expense of reproduction is thas lessened.

Observations on the Japanese Palolo (Ceratocephale osawai sp. n.) \ddagger Akira Izuka gives the characters of this new species, and discusses at some length its swarming habits, which he studied on the Sumida river, Tokyo. The sexually mature worms swim out four times a year in the months of October and November. The swarming period extends from one to four consecutive days, immediately following the days of the new and the full moon. There is a parallelism between the ocenrrence of the densest swarm and the highest spring tide during the months concerned. The genital products are discharged while the worms are actively swimming.

[^424]Studies on Gephyrea.*-H.Augener describes first of all a collection of Sipunculids made by Dr. Brock in Java and Amboina, inchuding 19 species of Phascolosoma, Dendrostoma, Phymosoma, Sipanculus, Asmilusiphon, and Clcosiphon. Then follows an account of the other Sipunculids and Echiurids in the Göttingen Museum. A description is given of the diverticula of the hind-gut in various Sipunenlids and of Keferstein's vesicles in Sipunculus camanensis Kef. Augener then turns to the foreign bodies and parasites found in Gephyrea, notably a new Nematode-Gephyronema leve, g. et sp. n.-and an endoparasitic Crnstacean (Copepod?) Siphonobius gephyreicola g. et sp.n.

Distribution of Mid-water Chætognatha in North Atlantic. ${ }_{-}^{+}$R. T. Günther finds that the dark intermediate waters of the ocean into which the solar rays do not penetrate, are inhabited by a population of Chætognatha which, during the month of November at all events, is much denser than the population of the upper strata, into which sunlight penetrates. A chart, which shows depth in fathoms, areas dredged, size and numbers canght, illustrates the paper.

Nematohelminthes.

Structure of Paragordius varius Leidy. $\ddagger-$ Thos. H. Montgomery, jun., has made a big contribution to our knowledge of the Gordiacea by this important memoir. Vejdowsky's conclusions as to Gordiacean structure (which have not been generally accepted by later workers) are in most particulars corroborated. In regard to certain points, additions have been made to Vejdowsky's observations, notably in regard to the structure of the nervous system; and in the interpretation of the affinities of the group, Montgomery has reached somewhat different results.

While the bulk of the memoir is a thorough account of the structure of Paragordius, we can only refer to the general conclusions as to the position of the Gordiacea. With the Nematoda the Gordiacea have in common only one important structure, the tubular genitalia and their opening into the cloaca. With the Annelids they agree in the structure and innervation of the musculature, and in having dorso-ventral mesenteries which cross the body cavity. They differ from Annelids in absence of true metamerism, cerebral ganglia, vascular system, setal sacks, de. They cannot be regarded as highly degenerate Annelids, as Vejdorsky suggested, nor yet as modified Nematodes, as most authorities suggest. They must be considered as a group of isolated position, as Grenacher, von Siebold and Villot have regarded them. The group contains three well-defined genera, Gordius, Paragordius, and Chordodes.

Platyhelminthes.

Bionomics of Convoluta Roscoffensis. § - Dr. F. W. Gamble and F. Keeble have made a number of extremely interesting observations on the bionomics of Convoluta roscoffensis with special reference to its green

[^425]cells. Amongst the conclusions arrived at are, that Convoluta has not lost its power of independent nutrition. It feeds voraciously, and obtains little if any nourishment from the reserves of its green cells; these are not symbiotie, they derive food from the animal and appear to le facultative parasites ; the green cells are the result of infection by colourless cells, which are taken up in company with other organisms and are carried ly wandering cells to the periphery, where the majority become green. It is suggested that the colourless cell is a saprophytic stage in the life-history of the green cell.

Comrolute lives in a film of water, and is neither a sub-aerial nor a marine animal. The stations oceupied are remarkably constant, and show diurnal and fortnightly variations in the size of the colonies, the former being tidal, and the latter due to periodicity of reproductive phenomena. Interesting tropisms are also described.

Two Remarkable Sporocysts from Mytilus latus.*-W. A. Haswell describes (a) the sporocysts of an Echinostomum very abundant in about 10 p.c. of the mussels examined. They multiply not only by budding, or rather binary fission, but also, though comparatively rarely, by a process corresponding to that by which in many, if not most sporocysts redice are formed. One of the remarkable features is the oceurrence of pigment in the germinal epithclimm ; another, thongh it may have been overlooked in other cases, is the giving off of colomrless nutritive globules by the germinal epithelium. The structure and development of the cercarie is described. (b) Haswell also found the sporoeysts and eercarise of a species of Gusterostomum-the cereariae having the remarkable form known as Bureplutus v. Baer.

Nemerteans of Norway. \dagger-R. C. Punnett raises the list from 15 to :34 species. Between 40 and 50 Nemerteans are known from British coasts, and of these only 17 have hitherto been found in the Norwegian fjords. Indeed the fjord fanma is very distinct from that of the British area, almost as distinct perhaps as the latter is from the Mediterranean fanna.

The distribntion of one of the new species, Cerebratulus longifissus, is very peenliar. So far as is known it oceurs only in Norway and in the South Atlantic off Marion Island. At present it remains a puzzle.

In Lineus cinerens, it was foumd that the oesophageal nerves meet below the oesophagus, which is eonsequently surrounded by a complete nerve ring. This condition has been found by Punnett in other Heteronemerteans, but in none of the more primitive members of the phylmm.

Incertæ Sedis.

Embryonic Fission in the Genus Crisia. \ddagger-Alice Robertson has stndied the budding of the embryo in the genus C'risia. In male colonies of ($\%$ elournete a few of the primitive germ-cells which are developed earlier than the polypide luds attach themselves to each of

[^426]these latter as it arises. They form the beginning of a testis, which in the majority of cases degenerates before the spermatozoa become mature. Certain ova similarly unite with huds, and may develop into an embryo while the bud as such becomes aborted ; or the bud may develop and the orum degenerate. It is not certain whether fertilisation occurs, and the possibility of parthenogenesis is suggested. After the primitive embryo has reached a certain size it divides to form secondary embryos. In C. occidentalis the secondary embryos divide to form tertiary ones, which develop into ciliated larva. At the elose of its proliferation the primary embryo itself becomes a larva.

Studies in Pacific Coast Entoprocta.*-Alice Robertson describes two new forms of Entoprocta-Myosoma g. n., whose distinguishing generic character is the possession of a museular calyx, and Gonypoderia ramosa, sp. n., a branching form with four or more muscular expansions on the stalk. She notes also the oceurrence on the Pacific Coast of species previously described.

Ascorhiza and Related Alcyonidia. \dagger-Alice Robertson, in a study of fresh material of Ascorhiza occidentalis, gives a detailed description of this form. She describes also a stalked example of AlcyonidiumA. pedwoulatum, sp. n., from the Pribilof Islands-whose characters require the expansion of the Family definition as given by Hincks, by the phrase " or zoarium, in whole or in part elevated upon a stalk, or a short peduncle."

Rotatoria.

Morphology of the Rotatorian Family Flosculariadæ. \ddagger - Thos. H. Montgomery gives a fairly complete description, with figures, of the anatomy of Floscularia campamulata, Apsilus vorax and Stephamoceros, withoutadding anything of importance that is not already known. One statement however is new, if it proves to be correct, namely that in Stephemoceros and Floscules the mastax is fully developed, and consists of well formed unci and manubria, fulcrum and rami. A protest should be raised against the author's changing the well-known name of Stephanoceros eichhornii into that of St.fimbriatus, on the ground that Goldfuss in 1820, in a general Manual of Zoology, called this animal Coronella fimbriata. Prof. Ehrenberg, who himself indicates this fact in his Synonymy of the species, has been the founder of this branch of Zoology, and it is quite unnecessary to go beyond him in naming species of Rotifers. If the author's practice were to be followed, many names would have to be changed, with the result of causing endless confusion.

Echinoderma.

Phagocytic Absorption of Sex-Cells in Echinocardium corda-tum.s-Maurice Caullery and Michel Siedlecki have followed a hint given by Giard in a paper in 187..| They find that in the two sexes.

[^427]there is a precisely parallel total absorption of the differentiated sexelements which remain unused after the breeding season. In many animals a similar phagocytic absorption has been observed, but it has a remarkable intensity in Echinocardium corlatum, which is also a very convenient subject for studying the process.

Development of the Biserial Arm in Certain Crinoids.*-A. W. Grabau finds that new arm-plates introduced at the tip of the growing arm are uniserial. The apical plates, at least in the less specialised biserial species, are rectangular, and change with further growth to wedge-shaped and later to biseriality. This is not primarily an old age character, since this condition is found in the apical arm-plates of young crinoids.

List of Irish Echinoderms. \dagger-A. R. Nichols gives a list of Irish Eehinoderms with their localities, together with their general distribution. He notes as peculiar to Irish shallow waters two doubtful species of Cucumaria, C'. andrewsi and C'. saxicola, and five deep-water forms, Holothuria aspersa, Astropecten sphenoplax, Pentagonaster greeni, Hymenaster giganteus and Cidaris gracilis.

Echinoderms of East Finmark. \ddagger - Canon A. M. Norman gives a list of these, briefly indicating their localities and authorities. No new species are recorded.

Cœlentera.

Commensalism between Sea-Anemone and Crab.§-Otto Bürger notes that the common Pacific sea-anemone-Antholoba reticulata-has a distribution area which overlaps that of the crab, Hepatus chilensis, in the Bay of Coquimbo. In this area the sea-anemone is usually found seated on the cephalothorax of the crab; in other regions it does not seem to have discovered any suitable bearer. Out of sixty crabs captured in Coquimbo, only four were without the anemone, and some had two or more. Bürger was twice successful in observing a sea-anemone clambering on to the crab by slow stages, after it had been separated from it for four days. The association is not fortuitous, and the anemone takes the initiative in establishing it. Probably the benefit is on its side only.

Revision of the Nephthyidæ.\| - W. Kükenthal has published a welcome revision of one of the most difficult Alcyonarian families, the Nephthyidæ, which includes eight genera-Lithophytum, Eunephthyu, Capnella, Lemnalia, Scleronephthya, Nephthya, Spongodes, and a new genus Neospongodes. A number of new species, especially of Nephthya, are described.

Occurrence of Monograptus in New South Wales. $\$$ - T. S. Hall corroborates J. Mitchell's record of the occurrence of Graptolites in the

[^428]Silurian of Bowning and Yass. The specimens are undoulted examples of a Monograptus, apparently belonging to the group typified by M. culubius, which ranges through almost the whole of the Lower Ludlow and Wenlock in Britain.

Development of Graptolites.*-E. Kerforne has found among the Graptolites of the Armorican "massif" of Brittany a number of developmental stages of Monograptus convolutus His, showing the "float" attached to the rhabdosome, numerous siculæ with the first hydrotheca, and so on.

The Genus Romingeria. \dagger-Charles E. Beecher gives an account of the structure and habits of four characteristic species of the genus Romingeria, in which some details not hitherto observed are noted. He reviews the history and synonymy of the type species, R. umbellifera, and bricfly refers to possible affinities with other genera of paleozoic tabulate corals, e.g. Pleurodictyum and Favosites.

Porifera.

Asterosteptidæ. $\ddagger-E$. Topsent discusses this new family of Choristid sponges, which ranks along with Gray's Geodida and Sollas's Stellettide in the tribe Astrophora. The proposed new family includes the Theneine and Pachastrellidæ as sub-families.

Insufficiently Described Monaxonia. §-Joh. Thiele has revised twenty-seven species of Monaxonial sponges which Schmidt did not adequately describe. He has made use of the original types, or of sections which Prof. Weltner had previously made of many. And after filling up some of the many gaps in the descriptions, he shows what changes in nomenclature are necessary.

Calcareous Sponges from the Pacific. $\|$ - Josef Preswisch describes two new species of Leucetta, two of Sycandra, and one of Ebnerella, collected by Schauinsland from Chatham Islands, Laysan, dc. The collection also included the two cosmopolitan species, Ascetto primordialis and Sycandra coronatte.

Pacific Horny Sponges. 9 -R. Baar describes a collection of thirtysix specimens collected by Schaninsland from the Pacific. The collection included five genera and thirteen species, and Stelospongia flava is established as a new species.

Protozoa.

Sexual Reproduction of Pterocephalus.**-L. Léger and 0. Duboscq have studied the highly specialised anisogamous conjugation of very minute rod-like spernatozoa with large ovoid ova, well-equipped with

[^429]reserve-material, in Pterocephalus nobilis, parasitic in Scolopendra cingulata Latr. The process of amphimixis is elosely similar to that in Metazoa, the division of the zygote is comparable to segmentation in some Metazoa, and the distinction between the male and female parents is well-marked.

New Parasite of Hermit-Crabs.*-L. Léger and O. Duboseq describe Aggregata vagans sp. n., a polyeystidean, gymnosporous Gregarine, parasitic in or on the alimentary tract, or in the parivisceral cavity of Eupagurus prideauri. It is closely allied to Aggregata coclomica Léger from Pinnotheres pisum.

Phototaxis in Volvox. \dagger-S. J. Holmes maintains that the larger size of the red pigment-spots at the anterior pole of the Volvox colony is of importance in relation to phototactic movements. But it does not appear that he has snfficiently separated in his experiments the direction of the illumination from the intensity thereof.

Progress in Study of Coccidia. $\ddagger-\mathrm{M}$. Liilhe has done a useful and laborions piece of work in summing up with bibliographical details what has been done in regard to Coceidia in the last four years. After discussing the classification and the new forms, he devotes the bulk of his account to the studies on the life-history of Eimeria, Isospora, Cyclospora caryolytira Schand., Adelea, Klossia, Legerella, Eucoccidium, Caryotropha mesnili Siedl., Klossiella muris Smith and Johnson. The last section of the paper deals with the pathology of Coceidial infection.

[^430]
BOTANY.

GENERAL,
 Including the Anatomy and Physiology of Seed Plants. Cytology, including Cell Contents.

Studies in Spindle Formation.*-A. A. Lawson gives the resmlt of his studies in this snbject. Previons olservations showed that there is considerable variety in the methol of spindle-formation, and it wonld seem that there are several distinct types; but the differences between them are too great, and the nomber of forms worked ont in detail are too few, to allow of any gencralisations. For his present paper the anthor has studied the pollen mother-cells of Iris florentime, of Dispornm Hookeri, of Hosperaloe Davyi, and of Heteru Helix. In Irix, formation of the spindle is initiater by the tramsformation of the cytoplasmic reticulum close to the melear membrane into a weft of kinophasmic filmils, which forms a complete zone about the melens. After increasing to a certain thickness, the zone projects ontwards at irregular intervals, forming a series of sharply pointed cones, which apparently develop at the expense of the cytoplasmic reticnlum into which they project, and as they grow the fibrils composing them lengthen and converge at the apex. The nuclear wall persists mutil the completion of the cones, which fuse on the breaking down of the membrame natil there are two groups of them pointing in opposite dirctions. The points at which the cones forming these groups meet at their apices become the poles of the bipolar spindle.

In Disporum the first indication of the spindle is the formation of a weft of kinoplasmic fibrils partially surromding the meleus, and formed from the eytoplasmic membrane, but, unlike Iris, the meshes of the weft do not run parallel to the nuelear membrame. The weft increasus irregularly, forming several projections which become the primary cones of the spindle. As they grow outward the cones become sharp-pointed, and their fibrils are sharply defined. The nuelear wall then hreaks down, and the cones mite in two groups to form the bipolar spindle.

As in Tris and Disporm, the spindle in Hesperaloe origimates from a weft of kinoplasm, which completely surromens the nucleus and is of cytoplasmic origin; the fibrils of the weft run parallel to the nuclear membrame. The weft develops a series of sharp-pointed projections which become the primary cones of the spindle. As the nuclear wall disappears the cones collect in two mroms, and fusion at their apices effects the bipolar condition. In Hederie the cytoplasm close to the molens becomes changed into a weft of kinophasmic fibrils, suromoding the melear membrane ; the zone forms a mmber of sharp projections which become the primary cones of the spindle. As these cones grow

[^431]outward the fibrils composing them become more sharply defined, elongate, and converge at their apices. The events that follow are essentially the same as those in Tris, Dispormand Hesperaloo.

The author suggests the following elassification :-
Type 1, represented by Gladiolus, Iris, Disporum, Hesperaloe, Hedera, Osmunida.

Type 2, by Cobea, Passiflora, Lavatera.
Type 3, by Equisetum.
Ţpe 4, by Agave.
Reduction of Chromosomes.*-J. B. Farmer and J. E. S. Moore have re-investigated the disputed question of the method of chromosome reduction in a number of plants and animals. They agree with neither of the two usual interpretations, but believe that after splitting longi-tudinally the spireme thread as a whole becomes bent into distinct loops and U -shaped figures. The original split in the arms of the loops usually distupears, and the two arms become approximated and form the ellromosomes, which may afterwards take on the form of rings or rods. The number of elromatic loops corresponds with the reduced number of chromosomes, so that it seems evident that the chromosomes are really bivalent. The chromosome breaks apart during the heterotype division at the bend of the loop, bringing about a reduction which is qualitative as well as quantitative. The actual separation of the longitudinal halves observed in the early spireme is deferred until the second division.

Crystal-cells and the Leaf of Citrus. $\dagger-\mathrm{H} . \mathrm{v}$. Guttenberg has studied the idioblasts containing calcium oxalate in leaves of Citrus melica and C.vulgaris. He finds them to be of subepidermal origin, arising in the uppermost layer of the palisade tissue and the lowest layer of the spongy parenchyma. The crystals are surrounded in an early stage by a cellulose membrane, which later becomes blended with the thickening cell-membrane. The crystal-cells penetrate by sliding growth into the cpidermis, thereby splitting the wall of the overlying epidermal cells. In many cases they reach the outer wall and displace the layer of cellulose, replacing it by their own. Finally they exert an influence on the formation of the cuticular layer, in that, instead of a series of larger peg-like outgrowths, an irregular quantity of smaller ones is formed.

Alkaloids of Dicentra formosa. \ddagger-G. Heyl, by digesting roots of this plant with alcohol containing some acetic acid, obtained among other bodies two alkaloids in small quantities which have some resemblance to homochelidonine and chelidonine respectively, but appear to be different from these. Along with the first a small quantity of a greenish-yellow substance crystallises, which gives a blue fluorescence in alcoholic solution and is perlaps identical with the colouring matter isolated by Schlotterbeck and Watkins from Stylophorum diphyllum.

[^432]
Structure and Development.

Vegetative.

Meriphyte of the Cycads.*-H. Matte has studied the vaseular system of the leaf (the meriphyte of Lignier) in the Cycads. He finds that, except in Cycas, the foliolar traces in the rhachis consist of several bundles. The typical horse-shoe form is seen only in Cyctes, Dioon, and Ceratozamia, the majority of the species of Zamia, and some species of Macrozamia. In Encephalartos, and species of Zamia and Marrozamia the foliar are shows in the base of the petiole a complication which may be considerable, and which is due to tensions and bundle-displacements which are eaused by foldings of the foliar arc. The are in Stangeria and Bowenia differs from that in the other genera previonsly mentioned; that of Bowenia has the same form as that of Angionteris. The form of the foliar are in young leaves is generally simpler than in mature ones, on the study of which the results given were based.

Sap-excreting Elements in Tropæolum majus. \dagger - (. Irgang shows that the drop of clear sap which appears on the wound when the stem, leaf-stalk or blade of Tropeolum majus is cut, comes from the young vascular bundle-elements which remain for a remarkably long time unlignified, thim-walled and very rich in sap. Towards the top of the stem almost all the vaseular elements are unlignified; as we descend the stem the proportion diminishes, hence in the older parts of the stem the exudation of sap is less in quantity. In the epidermis of the upper and under leaf-surface occur mueilage-cells characterised by their size, contour, and cell-contents.

Regeneration of the Assimilating Mechanism in Streptocarpus and Monophyllæa. \ddagger-F. Pischinger gives the following results of his experimental study. In Streptocarmus and Monophyllea the cotyledons are of mequal size when in the seed. In S. Wendlandi there is at the hase of the larger cotyledon a small-celled meristem, which during germination enlarges, and later forms the secondary leaf-like growth of the single leaf of the plant. The axis of the inflorescence subsequently develops from a definite portion of the same meristem ; since this meristem is derived directly from the meristematic tissue of the embryo, the inflorescence cannot be regarded as an adventitions structure. Similarly, the apparent leaf-stalk of the larger cotyledon must be regarded as an axial organ united with the stalk, and this holds also for the species which form leaf-rosettes.

In the one-leaved S. Wendlandi not only does regeneration of the larger cotyledon occur if its basal meristem remains either entirely or in part, but the whole cotyledon will re-form if cut away; and frequently the smaller cotyledon becomes stimulated to stronger growth by destruction of the larger and forms a secondary leaf-like growth, or the plant may be induced to form new true foliage-leaves. On the other hand in S. Gardeni, which forms leaf-rosettes, no regeneration of the

[^433]Der. 10th, 1903
: 13
destroyed larger cotyledon occurs, but the smaller seed-leaf is stimulated to a stronger development and the formation of secondary growth ; new foliage-leaves are also formed.

In Monophylliea a regeneration of the larger cotyledons occurs only when its basal meristem is intact. If this is also removed the plant perishes, the smaller seed-leaf being mable to take on the function of the larger.
Rudolpa, Karl-Beitrag zur Kenntnis der Stachelbildung bei Cactaceen. (Or formation of spines in Cactaceæ.)
[The spines in Opuntia missouriensis are epidermal outgrowths, and not homologous with leaves or branches.]
(lesterr. Bot. Zeitsclir., liii. (1903) pp. 105-9 (1 pl.).
©hfflot, J.-Sur la symmétrie bilatérale des radicelles de Pontederia crassipes Mart. (On the bilateral symmetry of the rootlets of Pontederia crassipes Mart.) Comptes Rendus, exxxvi. (1903) 1p. 1701-3

Reproductive.

Gametophytes and Embryo of Taxodium.* - W. C. Coker finds that the staminate cones begin to develop in September or October, and by winter the pollen-mother-cells are formed. Development is resumed in spring. The reducing divisions in the pollen-mother-cells resemble those in Larix, and the reduced number of chromosomes is probably twelve. There is a resting stage after the first division in the mothercells. About ten days after the reducing division a generative cell beeomes separated from the tube-cell; no sterile prothallial cells are formed. The generative cell divides into central cell and stalk-cell from two to three weeks after pollination, when the tube has grown some distance. The tube reaches the prothallimm earlier than in any case previously described, sometimes even before the formation of a cellular tissue in the latter. The arrangement of the nuclei in the pollen-tube is the same as in other Conifers. The central cell, which has a distinct membrane, divides, simmltaneonsly with the division in the central cell of the archegonium, to form the two sperm-cells.

The ovulate cones also begin their development in antumn and coutime growth through the winter. At the time of pollination the single megaspore mother-cell may be distinguished; it is filled with starch, as are also the surrounding tapetal cells. Two reducing divisions occur, but only three cells are formed-the upper of the two first produced not dividing again. The lower of the two potential megaspores, resulting from the second division in the lower cell, develops into the female gametophyte, the two upper cells disorganising. The archegonia are arranged as in the Cupressea; the number of the neck-cells varies from two to sixteen or more. The central cell is very long and contains two conspicuons kinoplasmic areas, one at the upper end near the nucleus and the other in the lower end beneath the large central vacuolc. When the ventral canal nuclens is cut off the upper of these masses takes part in the division, while the fragmented lower one fills the base of the archegonimm with peculiar figures. A. rentral canal nucleus is cut off just before fertilisation, but is not separated from the cytoplasm of the egg, and after fertilisation moves back towards the centre and divides amitotically ; this probably assists in nourishing the embryo.

[^434]The spindle of the ventral canal cell-disision is almost entirely of unclear origin, and the chromosomes are derived largely from the nucleolus. The egg muclens contains a large amount of gramular material, but a chromatin reticulum is alwars present. This gramular material is largely used in the formation of the spindle of the fusion mucleus.

Fertilisation oceurs about the middle of Jme, and two or more sperm-eells may enter an archegonimm, lat only one fuses with the erg. The sperm-cell passes throngh the cytoplasm of the tip of the eqg, and reaches and eufolds the female nuelens. The larger part of the cytoplasm of the egg takes no direct part in the formation of the embryo, lont is digested and used by the latter in its growth. The first division occurs after the fusion mucleus has reached the base of the archequnium. Eight free nuclei are formed and arrange themselves in two tiers, the upper of which generally contains six, the lower two; cell walls are formed, but the upper side of the upper tier is left open. This open tier divides, by walls at right angles to the long axis of the archegonium into the rosette of free muclei above and the suspensors helow. The two cells of the lower tier divide at the same time by walls parallel to the long axis of the archegonium, forming four cells in one plane. The suspensors may or may not separate on elongation, forming several or only one embryo from one archegonium.

The author considers that Taxorlam should be removed from the Tasodieæ to the Cupresseæ, leaving Sequoia, and perhaps other genera of the same tribe, to be included in a tribe of their own under another name.

Morphology of Angiosperms.* - The present volume forms the second part of the work on Seed Plants, the first part of which, by the same authors, appeared in 1901. Part I. dealt with the Gymmosperms ; in Part II. the Angiosperms are treated on somewhat similar lines. In the interval between the times of publication of the two parts, views on the relationship between the two great gromps of seed-plants have become somewhat modified. The tendency of the results of recent work is to emphasise the distinctness of the two groups, and, especially by virtue of the light thrown on the Cycadofilices, to bring out more strongly the affinity of Gymnosperms with the Pteridophyta. The origin of the Angiosperms still remains obsenre, and the light thrown on the phylogeny of the other group seems but to emphasise the isolation of the larger division of seed-plants. Messrs. Conlter and Chamlerlain express their conviction that such an association of the two gronps as was contemplated would help to emphasise a relation which does not exist, and that Gymnosperms and Angiosperms should be treated as independent groups co-ordinate with Pteridophyta. The two parts of their work are therefore to be regarded as independent volumes.

Another point of interest which is raised is the relation between the subdivisions of the Angiosperms-the monocotyledons and dicotyledons respectively. In their Introduction, and again in chapter xv. (Phylogeny of Angiosperms) the authors discuss the relationship between

* 'Morphology of Angiosperms.' By J. M. ('oulter and C. J. Chamberlain. Svo, x. and 348 pl., 113 figs. Appleton, New York, 190:3.
the two divisions, and have been at some pains to bring together the various views on this subject. At present, however, it does not seem possible to come to any definite conclusion. But whether the group he mono- or di-phyletic, and if monophyletie whether dicotyledons or monocotyledons be the older, there can be no question that the two divisions are naturally and intimately associated. "The characters that separate them are cumulative rather than specific," and in a morphological account, such as the present, their separation would involve useless repetition. Hence the subject-matter is not arranged, as in the case of the Gymnosperm volume, aecording to families, but the subdivision is a morphological one.

The chapters treat in succession of the flower, the micro- and megasporangiam, the female and male gametophyte, fertilisation, the endosperm, and the embryo. Then follow chapters on the classification of the monocotyledons and of the two great groups of dicotyledons (Archichlamydeæ and Sympetalæ), the geographic distribution of Angiosperms, fossil Angiosperms, and the phylogeny of Angiosperms. Finally, Prof. E. C. Jeffrey contributes two chapters on the comparative anatomy of the Gymnosperms and their allies and on the comparative anatomy of Angiosperms.

The book supplies an excellent and mueh-needed presentation of the subjeets treated, and the full references to literature which are given at the end of each chapter show the student where to go for further information.

The figures, many of which are original, are both plentiful and good.
Development of the Ovule in Casuarina.*--H. O. Juel has amplified and amended in a few details Trenb's account of the ovule in this genus. The most important point of his work is the observation of a tetrad division of the embryo-sae mother-cells, the first nuelear division being of a heterotype nature and showing a reduction of chromosomes.

Formation of the Egg and Division of an Antipodal Cell in the Juncaceæ. \dagger M. Laurent finds that the embryo-sac of the Juncacee shows the normal arrangement of eight nuclei. The two synergids disappear before fertilisation ; the two polar nuclei were not observed to fuse. At the approach of fertilisation the median antipodal cell becomes very conspicuous, advances towards the exterior of the sac, and oecupies a corresponding position to the egg-cell at the micropylar end; it stains more strongly than the two lateral antipodal cells which remain small. The author was unable to indnce the germination of the pollen tetrads in a damp chamber, either in pure water or in different sugar solutions, but they germinated readily in water in the presence of the stigma. Pollination is direct in several species of Juncus, especially in J. Bufonius where the flowers are always cleistogamic. In Luzula protandry in universal.

After fertilisation the two lateral antipodals soon disappear, but the median grows considerably: its nuclens divides into several unequal danghter nuclei ; these again divide and form a nucleated area of highly

[^435]chromatic protoplasm which is in contact with the earlier formed nuclei of the endosperm, and gradually disappears as the latter develops. Its place, however, remains empty, and cun be found in the ripe seed sepurating the cmbryo and endosperm from the persistent nucellhs alhove the chalaza. Thins, after having played the part of an absorptive structure the antipodal mass has a protective rôle preventing the digestion of the nucellus by the endosperm.

Physiology.

Nutrition and Growth.

Alkaloids as a Source of Nitrogen.*-L. Lutz, as a result of expreriments with varions fungi, concludes that alkaloids may serve as plastic material if sufficient nitrates are present; in the same way that an excess of carbohydrate enables a plant to make use of asparagin. The author points out that plants which are rieh in alkaloids when grown in poor soil, become poor in alkaloids when grown in gardens or in a soil which is rich in nitrates.

Nutrition of Chrysanthemums. \dagger-A. Hébert and G. Truffint find. from manurial experiments with these plants, that phosphoric acid is of especial importance. The application of manures is only withont effect when the soil contains at least 25 per cent. of total nitrogen, $\cdot 15$ per cent. of phosphoric acid and $\cdot 125$ per cent. of potash. On comparison of the produce obtained from unmanured soil with that from fully mamured soil, the authors found that, whilst the total yield in the latter case was considerably inereased, the percentage amounts of nitrogen and of the ash contitnents were not materially altered.

Germination of Orchids : a Symbiotic Relationship. $\ddagger-\mathrm{N}$. Bernard has studied the germination of seeds of Cattleyra, Lelia, and their hybrids. At the end of a fortnight, when sown on damp sawdust, the embryos form minute green spherules, in which condition they remain for some time. In some cases development does not advance further, and the plantlet is sooner or later destroyed by mond. In other cases, after a variable time which may reach one or two months, growth is resumed, lout proceeds very slowly and irregularly ; often after four or five months the plants do not exceed 5 mm . in length. They are topshaped; at the larger end the terminal lad is formed, while at the narrower they are always found to be infested with a filamentous endophytic fungus. M. Bernard's experiments show that the presence of this fungus is a necessary condition of the development of the plantlet beyond the green spherule stage. He has not yet succeeded in determining the nature of this hyphomycetous fungus.

[^436]
Irritability.

Morphological Variation in Leaves of the Vine as a consequence of Grafting.*-A. Jurie has contimed his study of the effeet of grafting on the vine, and finds that well-marked modifieations in the angle of the veins, in the general form of the leaf, and in the presence or absence of a tomentum, follow the grafting of certain vines on different Ameriean stocks. This, after ten years' growth on a glabrons-leaved Americun stock, the leaves of a Hangarian vine, which are naturally tomentose, are almost glabrons.

The instances cited illustrate a great variability in eertain morphologieal characters of the vine leaf under the influence of the grafting operation. They show elearly that this inflnence is speeific, and suggest a sort of asexual hybridisation between the two plants thus associated. They afford a further justification of M. Lucien Daniel's theory on variation in grafts.

General.

American Species of Thinnfeldia. $\dagger-\mathrm{E}$. W. Berry gives a detailed deseription of the American species which have been referred to this genus. The gemus was established by Ettingshausen to inelude certain fern-like fossils from the European Jurassic, which from their resemblanee to the recent Phyllocludus he referred to the Conifere. Much diversity of opinion has existed as to their true affinity. The American forms embrace two distinet types of plants. Those from the older Cretaceons beds, and from the Triassic, apparently represent true ferns comparalle with the Enropean type. But the middle and upper Cretaceons species are much larger-leaved plants, and some of them have a wide distribution, in contrast to the restrieted distribution of members of the first type. These, the author is convinced, should be included in the coniferons family Taxacea. They may perhaps form a link between the Podocarpee and the Taxex, and while they are unmistakably related to Phyllocladus, their large size and other differences sngest their reference to a new genus--Protophyllocladus-muder whieh the anthor places three species previonsly deseribed under Thinnfoldia. To the latter gemus are restricted those species, of whieh the author recognises six in America, which are prestumably of fern affinity.

Revision of the Family Fouquieracex. $\ddagger-$ (G. V. Nash pullishes a systematic revision of this small family of Dicotyledons, and disensses its affinities. As revised, it contains two genera : Fouquieria, with six species, and Ilria, whieh is monotypie, and is confined to Mexieo, the Sonthern United States, and Lower California. The order, whieh was considered by Bentham and Hooker in the Genera Planturun as a tribe of Tamaricacee, was separated by Engler on aceount of its oily endosperm and gamopetalons corolla. This separation is upheld on geosraphical gronnds, the new order heing confined to North America, while Tamaricacee withont it is strictly Old World. The author of the present revision surgests that its relationship is rather with Polemoniaceax among the Sympetale.

[^437]On the Characters of Hybrids. ${ }^{*}$ - C. Correns continues in a number of ${ }^{*}$ papers his investigations on the relation of the characters of hybrids to: those of their parents. He points out that althongh many cases of supposed dominant characters on renewed examination have been shown to be unsatisfactory, yet a number of cases of absolnte dominance still remain. A very good example is that of the hybrid between Hyoscyamus anmus \times niger, where the biennial character of the latter jarent is completely dominant over the amnual character of the first. Also in the hybrid Bryonia alba \times dioict the dioecions character of the one parent is completely dominant over the monocious character of the other. The second case is of great interest as showing that the sex of the plant is not necessarily determined in the egg-cell before fertilisation, otherwise the pollen of B. dioica, which was used, wonld have had no effect. It shows also that the germ-cells of the diœcions plant possess some male characters, others female, as the diœcious hybrids produced were of both sexes. Correns, in a further paper, points ont that the statement of De Vries, that Mendel's law holds for the characters of varieties, while the eharacters of species on crossing become blended, does not hold generally. In a third paper the same worker reviews the various observations on hybrids which have appeared during the year ending in the antumn 1902 .

Colours of Northern Gamopetalous Flowers. \dagger-J. H. Lovell concludes his observations on this subject, and arrives at the following conclusions. The colours of flowers have been determined by their atility rather than by an æsthetic colour-sense in insects, which distinguish between different colours but do not receive greater pleasiure from one hone than from another. Any preference they may manifest has arisen from the association of the colours with the presence of food-substances. Conspicnousness, or contrast of the inflorescence with the foliage, has been induced by insects, to which it is of advantage, as it enables them to find nectar-bearing flowers quickly, while it aids the plants in securing cross-pollination. Many colours are better than one, since the flowers are rendered more conspicnons by contrasts with each other as well as with the foliage, and insects are less liable to visit them indiscriminately. The sequence of colours, green, yellow, white, red, purple, and blne, depends upon physiological causes. Plants vary greatly in their capahility of forming the different pigments, and the floral colours are correlated with the variability of this function. The primitive colours, green, yellow, and white, have been determined by the nature of the chloroplast and its pigment content; while red, purple, and blne have arisen as the result of various chemical and physical conditions.

Botany of the Ceylon Patanas. $\ddagger-J$. Parkin and H. H.W. Pearson give an account of the anatomical characters of the plants collected by Mr. Pearson on the montane grass-lands of Ceylon, and diseuss the relation of these characters to the conditions under which the plants grow. They find that the anatomical characters bear out the result of field observations, in indicating a xerophytic habit. It is of interest to note that these characters are equally well shown in plants from both the

[^438]wet and dry patanas, and it is suggested that some factor in the climate of the wet patanas, tending to the evolution of xerophytic characters, may have been overlooked, or its influence undervalued. Sueh a factor may be presented by the prevalent wind, which by constantly ehanging the air prevents its approaching but rarely a state of saturation. Again, sufficient importance may not have been ascribed to the lowering of the functional activity of the roots of the wet patana plants by the humic aeid in the soil.

> Burimel, I. H.-On the Variation of the Flower of Ranunculus arvensis. Journ Asiat. Soc. Bengal, lxxi. (1902) pp. $93-120$ (with diagram and 29 tables) Parsons, H. Franklin-On the Flora of Hayes Common. [Including list of plants.] Proc. and Trans. Croydon Nat. Hist. and Sci. Soc., 1902-:; (1903) 1p. $52-60$.

CRYPTOGAMS.

Pteridophyta.

Cytology of Apogamy.*-J. B. Farmer, J. E.S. Moore, and L. Digloy describe certain phenomena in apogamous prothallia of Nephrodium, which afford an explanation of apogamy. In young prothallia, before the appearance of any apogamons outgrowths, cells not infrequently occur in which two nuclei are present. This is found to be due to the passage of a nucleus from a neighbouring cell ; the migrating nucleus may fuse with the original nucleus, or the two nuclei may remain more or less separated for an appreciable time. This migration goes on discontinnously in a growing apogamous prothallium, producing a cellular aggregate that may possess no very homogeneous character, nor can one cell or even isolated cell-groups be defined as the sole parent tissue from whence the apogamous outgrowth may have sprung. This is in harmony with the irregular growth of the new tissue and with the sporadic appearance of sporopliytic members on the prothallium. When the nuclei of the cells in the apogamous regions are examined in course of karyokinesis they are seen to possess a much larger number of chromosomes than those of the ordinary tissue-cells of the prothallium; there appear to be forty and cighty in the respective classes of nuclei. The authors regard the process as one of irregular fertilisation. The doubling of the chromosomes receives an explanation strictly analogous to that afforded by the normal fusion of oosphere and spermatozoid. But instead of one cell only (the oospore) serving as the starting point for the new generation, a number of such units loosely co-operate to produce it. In this connection it is perhaps signifieant that the young plantlet is commonly borne on, and produced from, a speeial sporophytie outgrowth, of which the constituent cells may have become homologonsly differentiated into a sort of pro-embryo.

East Asiatic Pteridophyta. \dagger-Y. Yabe gives a list of 53 vascular eryptogams collected in Korea by T. Uchiyama. H. Christ \ddagger publishes a list of 33 species collected by E. H. Wilson mostly in Hupeh, with descriptions of four novelties.

[^439]North American Pteridophyta.*-W. R. Maxon publishes notes on a form of Wooducardict spimmosa, Adiantam modestum, and a new sub-species of Polystichum munitum from Guadelupe Island, Mexico. A. A. Eaton \dagger gives an account of Equisetum levigathm and its varieties. A. V. Osmun \ddagger describes some characteristies of Equisetum seirpoides and its habitats, and regards it as less rare than has been supposed. W. N. Clute \S gives a list of 222 ferns collected in Jamaiea. J. Reverchon $\|$ records 51 ferns and 15 fern-allies as ocenrring in Texas. B. F. Bush 9 has compiled a list of 59 ferns from the same State with habitats. A. A. Eaton** publishes a eritical and historical note on Isoetes riparia var. canadensis and I. Dodyei, which he finds to be identical, and which he unites under A. Bramn's Ms. name I. cenculensis. H. L. Lyon $\dagger \dagger$ gives a list of 60 pteridophytes of Minnesota, five of which are new records for the State.

Bryophyta.

Development of Spermatozoids in Marchantia. $\ddagger \ddagger$-Ikeno has investigated the development of the antherozoids in INarchantio polymorphe with especial relation to the occurence of centrosomes and their relation to cilia formation. Centrosomes were observed clearly in the inner cells of the antheridium. The centrosome appears first as a body inside the nucleus; it wanders out of the muclens and divides into two bodies which take up opposite positions on the ronnded mucleus. The nucleus becomes elongated in relation to the centrosomes, and between the latter spindle-fibres begin to appear, which on the disappearance of the nuclear wall make their way into the muclear eavity and form a complete spindle. The centrosomes disappear at the end of the division ; whether they are dissolved in the cytoplasm or taken up by the nucleus is doubtfnl. After the division which separates the sperm-mother-cells the centrosomes, however, do not disappear hot take on the function of blepharoplasts, that is, the centrosome moves to the periphery of the cell, becomes elongated, and develops the two cilia. The author finally discusses the question of the nature of the centrosome and blepharoplast.

European Mosses.ss-W. Limpricht contimes the supplement to Die Laubmoose of his late father, K. G. Limpricht, adrancing the work from Bryom to Hypnum, gathering up the varions additions that have been published since the main text was printed. A. Mansion and J. Ch. Sladden |||| publish descriptive and critical notes on Rhacomitrium sudpticum and Grimmia atrata, additions to the Belgian flora. A. Hansen $\mathbb{T} 9$

[^440]sives a list of 235 mosses gathered in the north-east of the island of Fyen. Seven of the species are new to Demmark. L. Corbiere * gives a list of mosses and hepaties gathered in Hante-Savoie by Gasilien. A. Casares Gil \dagger describes and figmres the frnetification of Homatia lusitunica found by him near Barcelona.

Weisia sterilis sp. n. $\ddagger-W$. E. Nicholson deseribes this new British moss. It occurs on the chalk downs of the south-eastern counties, and helongs to the subgenus S'ystegium.

Thamnium. $\S-N$. C. Kindberg diseusses the history of this gemus, and shows that as a generic name Thamnium has precedence of Porotrichum.

American Mosses. $\|$--E. G. Britton gives some notes on West Indian mosses which have been fomd in Florida. R. S. Williams aj describes a new Brachythecium from the upper Yukon river and gives a list of 15 others not previonsly recorded from that district. A. J. Gront ** describes the development of the peristome of Muium horum, and employs the new generic name Burnettia for Homalothecium subectvillatum. J. M. Holzinger, $\dagger \dagger$ reporting on the moss-flora of the Minnesota River, gives a list of 96 species, of which 44 are new to the State and (6 are new to science. J. Cardot $\ddagger \ddagger$ describes two new speeies of Foutinetis, gathered in Minnesota.

West African Mosses. §§-E. Paris deseribes 8 new speeies of mosses from French Guinea in West Africa.

British Hepaticæ.\|\| - G. Stabler has drawn up a localised list of 99 hepatics gathered near Balmoral in Aberdeenshire during the snmmers of 1884 and 1894 . S. M. Macvicar \mathbb{T} gives a localised list of 10:2 hepatics gathered in Jume 1902 in the Lochcarron District of West Ross-shire. Geocalys graveolens, a marsupioid species, is an addition to the British Flora. H. W. Lett *** found Scapania intermediu, a new record for lreland, at an altitude of 1800 ft . on Galtee More Mountain, \therefore. Tipperary, in July 1902, and subsequently diseovered it in a collection made in Co. Antrim fifteen years previously.

European Hepaticæ. $\dagger \dagger \dagger$-I. Donin has diseovered Jungermamuit Kiunzeanu in Anvergne, an addition to the French flora. A. Crozals $\ddagger \ddagger \ddagger$ describes Riccia subbifurca Warnst., a new speeies found at Fontainehean and in Vienne. He also makes some remarks on Lejeument

[^441]Rossettiania, the antheridia of which he has discovered. The plant is antoicons. A. Martin * gives a list of hepatics gathered in the department Hantes-Pyrénées. A. J. M. Garjeanne \dagger has studied the hepatics of the Netherlands for five years and gives a list of 78 species, indicating the provinces in whieh they oceur. C. Massalongo \ddagger gives a critical revision of the hepatics published in the Erbario Crittogamico Italiano hy De Notaris, twenty-five years ago. S. S. Radian § describes Ruregia romunte, a new thalloid gemus gathered in the Carpathians. V. Schiffuer |, srives a critical and historical account of Dichiton calyculutum, a rare African hepatic which, discovered 60 years ago in Algeria only once, has reeently been found in the sonth of France, and is thus an addition to the European flora.

Gymnomitrium and Marsupella. \mathbb{T}-V. Schiffner publishes some sturlies on critical species of these two genera. He finds Marsmpella Sirucei to lie distinct from M. ustulata ; refers M. oliewrea to Giymnomitrium alustum; describes as a new species M. (Hyalacme) apiculata, which Lindberg and others wrongly referred to G. condensate Angstr.this latter being also a Marsupella and synonymous with Sarcosryphus tomulus Limpr. ; and shows that S. alpimus Gott. is a trie Crymnomitrium.

North American Hepaticæ.**-A. W. Evans in enmmerating the hepatics of the Yukon district, 38 in number, raises to generie rank Mrsoptyrlha, Lindberg's section of Jungermannia. The same anthor $\dagger \dagger$ gives a list of 32 hepatics of Minnesota, 16 of which are new to that state, and :3 have not been recorded previously sonth of the Canadian frontiel. The same anthor $\ddagger \ddagger$ also publishes lists of the hepaties that occur in eath of the six States of New England.
Yoshinaga, T.-Japanese Hepaticæ.
[A list of 16 hepatics from Tosa and Nikko, 7 of which are new.]
Tokyo Bot. Mag., X VII. (1903) pp. 37-89.
(Temeeb, A.—Was ist Bryum Geheebii C. Müll.? Und wo findet es im Systeme seine natürliche Stellngg? Eine bryologische Studie. (What is Bryum Geheebii C. Müll., and where should it be placed in a natural system? A bryological study.)
[Distinct from B. Funclii and B. Gerwigii, perhaps allied to B. gemmiparum, but fruit unknown.]

Beil. Bot. Centrulbl., XV. (1903) pp. 8;7-94.

Algæ.

Marine Algæ of the Shetlands.ss-F. Börgesen publishes a list of 7.) species from these islands, including all previons records as well as the results of his own gatherings. Comparisons are drawn between this flora and that of the Faeröes, together with notes on the local distribution of certain species.

[^442]Phytoplankton of Lakes in the Faeröes.*-F. Börgesen and C. H. Ostenfeld have investigated certain lakes in these islands and give a list of the phytoplankton found in them. The species are enmerated in two tables, one containing the species reeorded from Sörvaagsvatn at different times, and the other containing all the species recorded from eight different lakes. The authors regard the result of their investigations as very poor. Certain species of desmids and other Chlorophyeer, as well as the diatom Cyclotella were often found to be surrounded by a mucilaginous envelope. Special notes and remarks are made on certain species, including one new to science, Staurustrum Magdalence.

Japanese Marine Algæ. $\dagger-\mathrm{K}$. Okamura has issued a second fasciculns of the alge of Japan, and he publishes a list of them in which he describes the new species and rarieties. The new species are Cylindrocarpus rugosa and Cluetomorpha spiralis. Some alterations are made in the nomenelature of other species, the reasons for which are stated.

New Genera of Diatoms. \ddagger - C. Merescllkowsky deseribes two new genera, Placoneis and Stanrophora. The former is composed of species which have till now been included in the genera Pinnularia, Navicula, and Statroneis. The internal structure of these species differs however from that of the genera in which they had been placed, and they are accordingly placed in the two new genera. Their ןrincipal characteristic lies in the combination of a symmetrical structure and form of the frustules with a single asymmetrical endochrome body. Each species of the new genera is treated separately, and synonomy, description, and geographical distribution are given, often followed by eritical notes. In remarks on the relationships of the tro new genera, a list is given of the species of Navicula which lave to be removed to Placoneis and Staurophora, as well as a talle of deseent connecting species of Cymbella with Placoneis dicephala. The author regards Placoueis as the missing link between symmetrical and asymmetrical Pyrenophorex, the latter being descended from the former. Finally a key is given to the genera of the Pyrenophorea, and a list of the groups and speeies of Navicult which must be exeluded from that genus, together with their new and correct designations.

Diatoms from Morocco.§-E. Belloc gives a list of 97 species and 17 varieties gathered principally at Mogador and Tangier. The genera represented are 32 . Navicula contains the greatest nomber of species, 38; followed by Amphora with 19. There are no novelties.

Chapman, \mathbf{F}., \& H. J. Grayson-On "Red Rain," with special reference to its occurrence in Victoria.
 [Includes a list of Diatomacer in the sediment collected at St. Kilda on March 28th, 1903.] Victorian Naturalist, xx. (1903) pp. 17-32 (2 pls.).

* Botany of the Faeröes, ii. (1993) pp. 613-24 (4 figs.).
\dagger Bot. Mag. Tokyo, xvii. (I903) pp. 129-32.
\ddagger Beil. Bot. Centralbl., xv. (I903) pp. 1-30 (1 pl . and 14 figs. in text).
§ (omp,t. Rend. Cong. Soc. Savantes, 1903, pp. 143-50. See also Bot. Centralbl., xciii. (1903) p. 301.

Fungi.

Fertilisation in Plasmopara.*-O. Rosenberg finds a great similarity in the formation of the fruit between this fungus and the other members of the Peronosporea that have been examined. The oogoninm at an early stage is seen to be filled with protoplasm, interspersed with many small vacnoles, and contains abont 45 nuclei each with a definite mucleolus and chromatin. The antheridinm contains about 5 muclei and is pressed against the oogonimm. A slight bulging of the oogonium into the antheridim, forming a receptive papilla, takes place, and later the nuelei in both organs modergo mitotic division. Those of the oogonimm wander towards the periphery, one only, as a rule, remaining in the denser protoplasm of the centre. The coenocentrum makes its appearance simultaneously with the muclear division. The central nucleus also divides, the danghter-nucleus passing outwards. The melei all divide a second time, and the sister nucleus in the centre gradually disintegrates. Owing probably to changes in turgidity the receptive papilla is withdrawn and a protrusion arises from the antheridinm which penetrates the oosphere. One mucleus alone passes into the oogonium. The writer adds details of the mitotic process. The resting structure resembles the spirem stage of the higher plants. Before division the nucleolus takes a lenticular shape, the Sichelstudium, and the chromatin comes to lie in a ball at the side of the nucleus representing the synapsis stage. The nuclear spindle is formed from the network of the nuclens, and the division of the chromosomes takes place at the equator. The resulting melei are smaller and lose their nuclear membrane at an early stage of their subdivision. Rosenberg thinks that the Sichel and syntipsis stages indicate a reduetion of chromosomes, and that the double division is akin to the tetrad division of the higher plants.

Action of Fermentation on the Cell. \dagger-I. Matruchot and M. Molliard conclude their study of the changes induced in the cell by the fermentation process. They repeat in beetroot and onion the olservations already made on those of the pumpkin. They also stndied the changes in the cells of Mucor racemosus, a fungus which itself produces fermentation. The nuclei increased to twice their original size, as in the cells of the higher plants, and decreased in number with cell-division, so that each cell of the filament contained finally one or at most two nuclei. Some cells were even non-nucleate.

Spore-Formation in Mucorini. $\ddagger-$ Deane B. Swingle gives the result of his study of two members of the gromp Rhizopus nigricans and Phycomyces nitens. He notes first the formation of denser contents, cytoplasm and muclei, towards the spporangium wall, followed by the appearance of large vacuoles in the denser protoplasm parallel to its inner surface. After the formation of the columella, furrows are formed inward from the surface and outward from the columella, both systems

[^443]repeatedly branching to form multinucleate hits of protoplasm surrounded by plasma membranes and separated by spaces filled with cellsap only. Later follows the formation of walls abont the spores and columella. There are slight differences in the process between the two fungi examined.

Zygospores of Mucorini.*-Panl Vuillemin insists on the taxonomic importance of these spores in reference to the formation of their appendages. He describes the varions members of the family, and draws up a table based on his theories. He has made two new gencra, Proubsidia and Zygorhyncus, the latter distinguished by the peculiar form of the zygospores.

In another paper the same author \dagger disensses Tieghemella and the series of Absidiæ, all of which are distingnished by the formation of stolons. He ineludes the genera Proabsidia, Lichetheimia, Mycoclaths, Tieghemella, and Absidit. Lechtheimia is a new genus with 3 species, formerly classified under Mucor, M. corymbifera, M. Regnieri, and M. remose.

Systematic Position of Monascus purpureus. $\ddagger-S$. Ikeno reviews the work done on Monascus by Went, and more recently by Barker. The latter received it as the "Samsu" fungus from the Malay Peninsula, described its development, and as a result of his observations placed it among the Ascomycetes, therein disagreeing with Went, who had classified it among the Hemiasei.

Ikeno has studied Monascus anew. He did not find any asci, but followed the development of the spores by free cell-formation within a sporangium. Barker's "Samsu" fungus does not agree with this description and, according to Ikeno, should be removed from the genns Monascus.

Boletus subtomentosus. §-Ch. Ed. Martin writes a complete monograph of this variable species as found in the neighbourhood of Genera. He describes 11 sub-species and includes among them B. chrysenteron. He finds that the fungus varies according to habitat and that there is no type form common to all regions.

Infection Experiments with Claviceps. $\|$-Rob. Stäger experimented with two species of this fungus: the well-known ergot of rye, C. purpurea, which grows on a large number of grasses, and C.micror ${ }^{\text {m }}$ halu Which is parasitic on Phragmites commumis, Molinia corulea, and Armedo Calamagrostis. The latter differs anatomically from C'. purmerea, and the distinction was borne out by the infection experiments. As regards Claviceps purpurea, it was found that Anthoxanthum olloratum was easily infected and made to produce the Sphucelia stage, the conidia of which were used for infecting other grasses. Sclerotia were however rarely developed. A large number of grasses were snccessfully infected by the parasite from the rye, but Poa fertilis and P. ammua were immme, as also Lolinun perenne, L. italicum, Glyceria fluitans, G. distans and Bromus erertus. It was found that Bromus sterilis grew the fungus

[^444]readily from the spores. Staiger considers that he is here dealing with a biological race or races, as the ergots on these grasses are morphologically identical. He records a further series of experiments with an ergot found on Glyceria fluitans. A large number of grasses were again infeeted with the spores, but only negative results were obtained with these, while the plants of Glyceriot fluitans infected at the same time produced the sphacelia stage and later the selerotia of the fumgus. Staiger thinks that this ergot is probably identical with Clariepps Wilsoni Cooke, recorded in England on the same grass, though hitherto the form fonnd in Germany has been considered to be $C . p u r p u r e a$. Experiments with ergot taken from Lolium resulted in the infection of speeies of Lolium and Bromus erectus alone. The Clariceps of Poa ammu could not be transferred to any other host. Brachyportiom silvoticum has also an ergot that is confined to that one host so far as resnlts have shown from the experiments undertaken. The anthor gives a list of insects that aid in the dissemination of the spores; they are attracted in large mumbers by the honey-dew of the sphacelia stage.

Observations on the Ergot of Claviceps purpurea.*-C. Engelke obtained pure cultures from the ascospores of the fungns. The developing mycelium broke up into conidia and with these he carried ont further infection experiments. These were only successful when made before pollination of the stigma. The hyphæ of the fungus penetrated from the stigma to the developing ovule at the base of the ovary, and there the formation of the selerotium began. No infection took place throngh the stomata. The honey-dew of the sphacelia stage is but an increased production of fluid by the stigma, owing to the irritation of the tissue by the fungus. It is not a prodnct of the fnugus, and is never produced in artificial coltures. The writer proposes to study the substances formed by the fungus in the cultures with a view to the artificial production of those used in medicine.

Relationship between Pleospora and Helminthosporium. $\dagger-\mathrm{H}$. Diedicke has followed up a previons research on this subject by further observations and cultures. He had established the connection between the two fungus forms and had identified Pleospore trichostomer as the higher form of Helminthosporizm gramineum. He finds now that the determination was too general, that on the different grasses there are a number of Pleosporce as Pl. teres, Pl. Avence. Pl. Bromi, Pl. artominea, Pl. Tritici-repentis, each with its own form of Helminthosporium. Erom enltures and infections of Pl. trichostoma on rye he obtained Alternaria as the conidial form.

Studies of Erysipheæ. $\ddagger-$ F. W. Neger has devoted special attention to the function and behaviour of the perithecial appendages of several forms of Erysipheæ. He finds that they are hygroscopic and by torsion movements have an important influence in releasing the ripened finitbodies.

Yeast-forms of Fungi.§-H. Will has stndied the different forms of bodding fungus cells that occur in connection with brewing. He has

[^445]isolated 17 different froms which he has found in or on the vats, in the building, or even in the air. He deseribes the appearance of these, in none of which has he detected any approach to spore-formation, thms separating them conclusively from Saccharomyces. He gives the results of his experiments to test the influence of these foreign organisms on the process of brewing. At low temperatures their growth is much retarded. A cuite considerable effect on the taste and odour of the wort was produced by the presence of one or another of the organisms ; a slight decoloration was also noticeable. No influence on the acidity of the wort was detected. Other tests were tried, and the final conclusion come to was that no injury to brewing need be feared from the accidental presence of these fungi, as with the increase of the true yeast their growth and development are retarded or altogrether stopped.

Cucumber Leaf Disease.*-A new disease of the cucumber plant has made its appearance quite recently. It is due to a mould Dendryphium comosm, hitherto known only as a saprophyte. The fungns mycelimm penetrates the tissue of the leaves and destroys it, in smaller or larger areas. In bad cases the young shoots and fruits are utterly ruined by the fungus. Advice is given as to prevention and cure.

New Disease of Asclepias curassavica. \dagger - G. Scalia describes a new parasitic genus Oidiopsis which does serious damage to the plants of Asclepias. The fungus lives in the tissne of the plant. The sparsely branched conidiophores pass ont throngh the stomata and bear chains of colonrless conidia. It resembles Oidium, but differs from that fungus in its endophytic character.

Rhizoctonia violacea, $\ddagger-T h i s$ fungus, a sterile myceliom, canses a root-disease of various plants. Jakob Eriksson records its appearance at the Swedish Experimental Station, where it attacked a field of carrots. A large number of experiments was made with a view to testing the capability of the fungus to transfer itself from one host to another. On diseased soil were planted several varieties of carrots and beets, clover, lucerne and potatoes, of which some were attacked while others eseaped the disease. A tub of strongly infected soil was left standing and there grew in it a series of weeds, Sonchus, Myosotis, Urtica, Stellaria, \&c. On the roots of all of them the fungus was found to be growing more or less vigorously. The writer is of the opinion that the fungus does exercise some choice as to its host and that it will take several generations to accustom it to a new plant. He tested and proved this theory on sugar-leets. The attack of the fungus infected from carrot was already much stronger in the second generation. Experiments were made with the view to killing the fungus. Lime was added and carbolic acid ; the results are unsatisfactory so far.

A severe attack of the same fungus on sugar-beets is recorded by Fr. Bulak.§ He blames the heary and wet condition of the soil for

* Journ. Board of Agric., x. (1903) pp. 166-70 (1 pl.).
\dagger Agricolt. Calabro-Siculo, xxvii. (1903) No. 24. See also ('entralbl. Eakt., x. (190:) ヶр. 71-2. \ddagger Centralbl. Bakt., x. (1903) pp. 721-38 (3 figs.).
§ Zeitschr. Zurkerind. in Böhmen, xxvii. (1903) p. 471. See also Centralll. Bakt., x. (1903) p. 747.
the extension of the disease. There was also a large quantity of manure laid down, forming a rich nutriment for the fungres. The roots attacked were completely invested by the mycelium ; scarcely a sound spot was left. The writer tried treatment with lime to exterminate the disease, without much effect. He recommends better draining of the soil, destruction of all diseased plants, and a change of crop for a number of years.

Aspergilleæ Parasitic on Human Beings.*-Bojana Mirsky developed in artificial cultures Sterigmatorystis versicolor isolated from the sputum of a tuberculous patient. It grew only at low temperatmres and formed rose-coloured patches as well as the usual greencoloured tufts.

Notes on Uredineæ. \dagger-Fr. Bubak has proved by experiments that the Adora reidium is not a form of Puceimia Adoxce but of P. argenteter, the uredo form of which grows on Imputiens noli-tangere.
P. Magnus \ddagger contributes notes of his observations on the occurrence of the chrysanthemum rust in Europe. It is due, he thinks, to uredospores rather than to teleutospores. He cites cases where uredospores have been the agents of propagation.
F. Bubak § publishes a preliminary note on C'relo Symplyti, the aecidium form of which he produced on Abies alba.
E. W. Holway \| advises as to the best methods for collecting and preserving specimens of Uredinea, placing them in herbaria, mounting slides, \&c.
H. Diedicke \mathbb{T} has made culture experiments with Puccinio Stipur. It forms æcidia on species of Thymus and also on Salvia silvestris.

Mycoplasma Hypothesis.**-J. Eriksson publishes a reply to Marshall Ward's criticism of his work on Uredinere. He had found evidence for the growth of rust pustules without external infection in plants that had been carefully kept from risk of spore contamination ; and in the tissues of these plants he found what he considers to be the hyphe developing from the mycoplasma of the plant. Marshall Ward had prononnced these to be the cut-off ends of haustoria, and Eriksson answers him and points out that Ward was in each case dealing with directly infected material, whereas the bodies he described conld ouly occur in connection with pustules that had developed from the myeoplasma in the plant itself.

Changes produced in the Peridial Cell-Walls of the Uredineæ. $\dagger \dagger$ Oscar Magnus concludes his observations and experiments on this suljjeet. He finds that within a given species great variations may occur. In a sumy locality the cell-wall is strongly developed; in the shade the lumen of the cell is comparatively much larger. He finds that this development goes on parallel lines with the formation of the leaf-tissuc. with one exception, that of Acidium Acomiti-Napelli. He did not find

[^446]that the cells varied with the host, when the Puccinia occurred on several different species.

Clamp-Connections and Fusion in the Uredineæ.*-W. Voss has undertaken to supply the gap in our knowledge as to the occurrence of cell-fusions in the Uredineæ, many examples having been already noted in the Ascomycetes and Basidiomycetes. He treated the sections of the leaf and parasite with a solution of 1 p.c. osmic acid for about 10 minutes, which hardened and slightly darkened the fungal hyphæ ; afterwards he examined them in chloral hydrate. He found numerous examples of cell-fusion, and also clamp-connections in all the species of Uredinea that were examined. The unfinished clamp-wall always terminated in a slight swelling, and he found further that the completed wall showerl pits allowing the continuation of the protoplasm. Clamp-connections have only been detected in the Basidiomycetes and the most highly developed Ascomycetes; that is, in forms that express a high stage of development. They must therefore be a property of forms with a longs evolutionary history, and Voss concludes from this that the Uredinea branched off from the main fungus stem at an early stage and have reached their present form after a long course of development.

Taxonomic and Cytological Notes on Botryosporium pulchellum. \dagger This fungus has heen described under a variety of names. René Maire discusses these and finally leaves it as B. longibrachiatum (Oud.) R. Maire. He takes occasion to give the results of his examination of the plant when first observed by him, especially with reference to the formation and function of the metachromatic corpuseles. The plant consists of an axis rising from the creeping filaments and furnished with lateral branchlets which bear heads of spores. The cells of the develoling axis and branchlets are filled with a dense cytoplasm with numerons nuclei difficult to stain. No metachromatic corpuseles were present. At a later stage the muclei are more easily coloured, and division by mitosis was noted in the heads of the branches that bear the conidia. They were too minute to allow details to be followed. At the stage of conidia formation, metachromatic gramlations were present, and erystals which later also became metachromatic granulations. As the conidia form, the cytoplasma, the metachromatic granulations and finally a nucleus pass in. The conidium then drops off and the branchlets are seen to contain only cytoplasm and a few muclei which degenerate. There are no metachromatic corpuscles. They are, however, very numerous in the cells of the main axis at the base of the branchlets. These observations made by Maire incline him to adopt Guilliermond's theory that these bodies are secretions of reserve material having the same physiologieal significance as starch-grains, crystals, \&c.

Nuclear Behaviour and Spore-Formation in Hydnangeum carneum. $\ddagger-$ Van Bambeke gives a preliminary account of his observations on the cytology of this form, and criticises the work of Istranffi, Petri, and Ruhland. The subhymenial cells show constantly two nuclei

[^447](synkarion) which divide at the same time (conjugate division). The young basidia are always binucleate and at their moment of fusion are in the spirem stage. The fused nuclens soon divides and shows a wellmarked spindle with centrosomes; at first a number of chromatin granules are present (protochromosomes of Maire), bot these soon unite into two definite chromosomes. By a later division four maclei are formed, but typically only one or two sterigmata are produced, into cach of which a single mucleus travels. The muclens of the basidiospore very soon divides, so that the mature spore may contain as many as eight nuclei.

Diseases of Grasses.*-L. H. Pammel, J. B. Weems, and F. LamsonScribner have included in their accomnt of the grasses of Iowa an enmmeration of the most important of their fungus diseases found in the territory. The seedlings were liable to injury by such moulds as Penicillium glaucum, \&c.; the older plants were attacked by bunts, smuts, rusts, and various other more or less well known fungi, all of which are recorded. Several cases of loss were due to the action of bacteria.

Mycological Notes. $\dagger-\mathrm{C}$. Massalongo finds that the leaves of Quercus pubescens are destroyed by Glcosporium nervicolum; that anthracnosis of the leaves of Populus tremula was caused by the attack of a fungus corresponding to F'usicladium Tremulle Frank., but more correetly named Vapicladium Asteroma. According to Vnillemin it is the conidial stage of Didymospheria populina. The writer also describes a new Hyphomycete Fusarium lichenicolum, which he found parasitic on the thallus of the lichen, Candelaria vulgaris.

Metachromatic Corpuscles in the Ascomycetes. ${ }_{\ddagger}^{+}$-M. A. Cinilliermond proves anew by his researches on Ascobolus marginatus that these corpuscles are reserve-materials. The spores at their first formation in the ascus are small bodies with a fine membrane; gradually, as the spore matures, it absorbs the surrounding eytoplasm, the glycogen, and the metachromatic corpuscles, which are present in great abundance.

British Microfungi.§ - A. Lorrain Smith publishes a deseriptive list of species new to science or of rare occurrence. There is one new gemus Ampullaria, a member of the Nectrioidaceæ, distinguished by the dark brown spores. The writer resuscitates the genus Brachycladium of Corda to inchude species with non-catenulate spores that have been placed in Dendryplium. The latter gemus contains forms with spores borne in chains at the tips of the fertile hyphre.

Mycorhiza.||- P. E. Muller notes two forms on the roots of Mountain Pine. Besides the usual racemosely branching roots, he found some that branched dichotomonsly with little tubercles. These are peculiarly abundant in sandy soil and are doubtless agents for absorbing nitrogen.

[^448]Production of Glycogen in Fungi.*-In fungi as in rascular plants the production of reserve carbohydrates is connected with the supply of sugar or analogous substances. Emile Laurent has proved an abundant formation of glycogen in Mucor racemosus, S'lerotinia Libertiana, Botrytis cinerea, and Saccharomyces Cerevisice, grown in a very dihuted organic solution to which was added 1 part in 1000 of oxalic acid and 1 part in 2000 of hydrochloric acid. The author suggests the interpretation that the plant absorbs the carbohydrate nutriment more quickly than it assimilates it, hence the presence of the reserve. In a different medium, where growth of the filament was more rapid, the production of glycogen was greatly diminished.

Production of Acids by Fungi. \dagger-Berthold Heinze reviews the work that has been done in reference to acid formation during the process of fermentation, and gives results of cultures carried on by himself with a view to testing the results that have been arrived at by whers. He grew Phoma Bete, Aspergillus niyer, Penicilliam glaucum, and Mucor stolonifer in a culture solation with ammonium sulphate added to supply nitrogen. Acids were produced in every case; acetic acid and oxalic acid more particularly by Aspergillus niger. The writer dratws various deductions from the facts observed by him. He proposes to carry the research further.

Bacteriophagous Acrasieæ. \ddagger - Paul Vuillemin coltivated Dictyostelium mucoroides in tubes, and found constantly present a fluorescent bacterium which he succeeded in isolating. A pure culture of Dictyostelium spores did not grow until the bacterium was re-introduced. Mieroscopic examination showed the bacillus engulfed and absorbed by the amœebe. The pyocyanic bacterium was introduced into one of the cultures with negative results. This bacterium has alkaline properties, so it would seem that it is not alkalinity of mutriment that is secured for the Acrasice by the bacterimm, but that it is a necessary food.

Acrasieæ.§-Edgar W. Olive has issued his monograph of the members of the group. He gives an introductory historical account of them and deseribes fully their life-history, comparing them with allied organisms. The amolbe divide after issuing from the spore by indirect disision, though details of this have not all been worked ont. After some time a secondary division takes place, and it does not seem to be arcompanied by nuclear changes. Special study was made of their nutrition, and though they undoubtedly inclose and absorb bacteria, yet the "riter concludes that nourishment is mainly absorbed in liquid form and that the ingestion and digestion of solid food-particles is exceptional. The aggregation of the mysamœbe and the formation of the fructifying stage are described, and the results of experiments on the irritability of the psendoplasmodium are given. Finally the author gives a review of their systematic relations, and a classification of the genera and species.

[^449]Rinodina.*--In examining the lichens of the Regnell expedition Gust. O. A. N. Malme reviews the history of the genus Rinodina, and notes the species already recorded from Brazil. He considers that the genns is well founded and approaches nearer to Physcia from the nature of the spores than to Lecanora, in which genus the species have becu included by various systematists. He divides the genus into a number of sections and subsections. He deseribes in detail 16 species and gives a list of those he has determined.

Brazilian Lichens. \dagger-A. Zahlbrückner describes the lichens collected in Rio de Janeiro and the neighbourhood by various collectors. He gives full diagnoses and notes of species that have been imperfectly deseribed, and of the species determined as new, of which there are a large number. He employs chemical reagents, and under each species gives the characteristic reactions.

Morphology of Lichens. \ddagger--Birger Nilson is inelined to regard the fungus of lichens as parasitic on the alga. In certain conditions of humidity the alga increases more rapidly than the fungus, and henee the development on the surface of the thallus of soredia and isidia. The form of the thallus is also largely influenced by the condition of the alin, which again depends on climatic conditions, thas accounting for the variations in form of the lichen plants. He discusses also the systematic arrangement of the gronp.

Lichen Flora.s - After a panse of five years, the second part of the Lichens in the Pfanzenfamilien has just been issued under the editorship of A. Zahlbrückner. He divides Lichens into three elasses : Ascolichenes, Hymenolichenes, and Gasterolichenes. The Ascolichenes are again divided into two groups, Pyrenocarpea and Gymnocarpea. The anthor in this part passes under review all the families and genera of the first group. The families are distinguished by the nature of the symbiotic algæ, one series possessing Pleurococcus or Palmella gonidia, a second being associated with Cluroolepus. The generu are elassified according to the form of the frnit, paraphyses, spores, $\mathcal{E c}$.

Of the Gymnocarpea he makes three divisions: Comiocarpinca, Graphidinex, and Cyclocarpinex, distinguished entirely by the form of the fruit. He finishes the disenssion of the Coniocarpinea and advances a good way with the Graphidinee.

Massee, G.-Distribution of Calostoma.

[A North American specimen is recorded from Jalan, with a note on its distribution.]

Nature, LX VIII. (1903) p. 296.
Navas, R. P. Longinos-Lecanora subfusca in Spain.
[With in account of the varieties of this lichen.]
Bolet. Soc. Espan. Hist. Nat., III. (1903) pp. 285-90 (fig. in text).
N oelli, A.-Revision of Steganosporium.
[The genus includes six species and one variety.]
Malpigkia, IX. (190:) 1p. 412-18 (6 figs.).

[^450]Pavileard, J., \& J. Lagarde-Myxomycetes from the neighbourhood of Montpelier.
[A descriptive list of the species collected, with some notes on nomenclature.] Bull. Soc. Mycol. France, X1X. (1903) pp. 81-105 (1 pl.).
Smitu. Worthington (f.-Hygrophorus Clarkii B. and Br.
[Notes on the history of this species, which is probably identical with a more recently recorded species of II. laititabundus Britz.]

Journ. Bot., XLI. (1903) pp. 313-t.

Lentinus Lepideus Fr.

"[A general account of the abnormal forms of this fungus. A clataria-like torm was found recently in Scotland.]

Journ. Bot., XLI. (1903) pp. 821-3 (figs.).
Agaricus versicolor Wittr.
"[The writer clears up the confusion that has arisen in describing and redescribing this plant. It is really a small form of A. melleus.]

Journ. Bot., XLI. (1903) pp. :341-:3.
Speggazini, C. - Argentine Fungi.
Anal. Mus. Nacion. Buenos Aires, VIII. (1902) pp. 49-89. Sce also Centralll. Bałt., X. (190:) ј. 71.
Strawson, G. F.-Fungicides.
[A manual of description and instruction as to the preparation and application of various sprays.]

Standard Fungicides and Insecticides in Agriculture. By G. F. Strawson. Part 1, 76 pl .

Zahlerückner, A.-New Lichens.
[A series of new European forms. There is one new genus, l'seudoheppia.] Ann. IIycol., I. (190\%) P1. 35t-il.

Schizophyta.

Schizophyceæ.

Cyanophyceæ.*-F.Brand gives some of the results of his investications on the morphology and physiology of this group. He deals with his subject under several headings. The first is "Resting-cells (spores)" in which he compares his own results with those of other authors and sives a list of the orders in which these bodies oceur. "Heterocysts" are then dealt with moder development of the heterocysts, pores and polar thickening of membrane, contents of heterocysts, and physiological and biological meaning of heterocysts. "Gonidia and microgonidia" is followed by a section headed "Spaltkörper." This term is used to denote the ring-like bodies which arc scen separating two previously contiguous cells, as in Calothrix confervicola. "Active movement of the hormogonia," is the title of the last section, which gives in detail the results of various observations made by the author, together with remarks on the work of other witers. A bibliography follows.

:Schizomycetes.

Thiophysa volutans. $\dot{\dagger}-\mathrm{G}$. Hinze has given this name to a colourless sulphur bacterium which was found among the sand near to sulphur wells in the neighbourhood of Naples. The organism is globular,

[^451]7-Is μ in circumference, and contains sulphur globules. It is withont cilia, but possesses the power of movement. Hinze could not discover any molei, but he found small bodies in the eell which he considers to be clromatin-grains. Division takes place by clongation of the globnlar cell with a subsequent median constrietion and the rounding off of each half into daughter-cells, which immediately repeat the process.

Achromatium oxaligerum.*-Otto Zacharias found this organism in great abundance in damp moor soil. The original diseoverer, schewiakoff, was unable to detect any motile organ. Zacharias has found a single cilium at one end equal in length to the bacterium-like body. The oider individuals lose the power of motion.

Salmon Disease. \dagger-J. Hume Patterson claims to have demonstrated that salmon disease is not eaused by the fungres Saprolegnia fertar, but by a bacillus, the B. salmonis pestis. Working with pure cultures, he found that fish kept in direct contaet with Saprolegnia remained unaffected. On the other hand, fish inoeulated with the bacillus all died, as they did also when Saprolegnia was combined with the baeillus in the inoentation. In the latter case, howerer, there was growth of the fungus as well. Fish inoculated with Saprolegnia and other microorganisms remained healthy.

Some of the chief eharacteristies of the bacillus are these :-A short thick baeillus with rounded ends and actively motile. Non-sporehearing. Grows profusely at room temperature and at $0^{\circ} \mathrm{C}$., but not at $37^{\circ} \mathrm{C}$. Liquefies gelatin, coagulates milk, and grows well in sea-water. Strict aerobe. Does not stain by Gram's method. Pathogenic to fish. Non-pathogenic to frogs, mice and guinea-pigs.

Chemical Products of Diarrhœa-producing Bacteria. \ddagger-Sydney Martin has studied the action of the products of B. dysenterice (Krüse), representing the bacteria of infective diarrhoeas; and also that of the products of Proteus vulgaris, representing the bacteria of putrefactive diarrhœas.
B. dysenterice. From experiments with filtered cultures he finds that a soluble poisonous body is formed by the bacillus, the effect of which is, in the rabbit, to produce lowering of temperature, loss of weight and diarrhœa. The alcoholic extract of the filtrate being practically inactive, the author assumes that the poisonous effect of a filtered culture is not due to a non-proteid body. Injections of the dried and powdered borlies of dead bacilli caused marked symptoms in the rabhit, followed by rapid death. The most potent poison of the bacillus is therefore probably contained in them.

Proteus v'ulgaris. Filtered cultures caused transient disturbance of temperature and diarrhœea.

The experiments were, at the time of the publication of the paper, being continned.

[^452]Luminous Bacteria. *- J. E. Bamard and Allan Macfadyen have studied these organisms, chiefly marine. They advocate the addition of 3 p.c. NaCl to the culture media. This favours luminosity, which appears to be essentially a vital phenomenon. Dead cells are non-luminous. A supply of free oxygen is necessary, for the luminosity, though not for the life of the cell. Exposure to low temperature-that of liquid air did not destroy the luminosity of the organism.

The Bactericidal Action of some Ultra-Violet Radiations as produced by the Continuous-Current Arc. \dagger-J. E. Barnard and H. de R. Morgan experimented to determine the effect on the vitality of certain bacteria of exposure to the are spectra of carbon and of yarions metals. The spectrum was projected on to an agar film, contained in an ordinary Petri dish, over the surface of which had been sprad with a sterilised brush an active culture of the organism. The plates were exposed to the light directly after moculation, and were then inenbated for 24 hours at $37^{\circ} \mathrm{C}$. It was found that the bactericidal action was entirely confined to the ultra-violet region. The active radiations lie in that portion of the spectrum between the wave-lengths :3287 and 2265 . Neither the extreme ultra-violet rays nor those nearest to the visible violet appeared to be active.

Experiments were also made with hanging-drop preparations, when with the distance of the are from the drop at 10 cm ., and the current nsed 11 ampères, the organisms were killed in from 15-:30 minutes. atcording to the metal employed.

Agglutination by Blood of Emulsions of Microbes, with special reference to Specificity. $\ddagger-$ E. Klein found that the blood of different typhoid eases varied in arghatinating power. He failed to whtain agrglutination by typhoid blood of any of the varicties of B. coli isolated ly him from typhoid stools, or of B. coli communis obtained from varions other sources. He found that typhoid blood had an agghtinating reaction on the Gärtner bacillus and on the Danysz rat bacillus. though this was less than the reaction of the same blood on B. typhosus. Experimenting with the blood of "Danysz-immunised" guinea-pigs, the author found that it had the power of agglutinating B. typhosus, as well as Gärtner and Danysz. A like result was obtained with the hood of "Gärtner-immunised " guinea-pigs.

La Garotilha.-E. Marchoux and A. Salimbeni,§-following ChajotPrevost, and Gomez and Terni-have demonstrated that the discase of cattle known in Brazil as la Gerotilhe is anthrax, and they belicre that the vultures so mumerous in that comutry are responsible for its spread. They fed one of these birds on an infected grinea-pig, and readily isolated the D. anthracis from the excreta.

Researches on the Fermentation of Milk.-H. Tissier and E. Gasching \| kept samples of milk under ubservation for 8 to 10 months.

[^453]They regard as constant organisms: Enterococtes (Escherich), B. roli. 13. acidi paraluctici, B. subtilis, B. mesphtericts, B. feralis alcaligenes, B. lartopropylbutyricus, and Oudium luctis.

Lactic acid fermentation was found to be caused by Linterofortus, P. coli and B. acilli paralactici; Enterococtus produced also valerianic and acetie acids. Butyric acid fermentation was found to be cansed by B. lactopropylbutyricus alone, which produced also projuionic acid.

MICROSCOPY.

A. Instruments, Accessories, \&c.*

(1) Stands.

Leitz' Mineralogical Stand, No. I. \dagger-This stand is mumlered sit in the makers' series, and is shown in fig. 16\%. In its general dimensions it corresponds to the Leitz stand known as No. 1Λ. The coarse adjustment is by rack-and-pinion, and the fine by a micrometer serew graduated into fifty divisions, a graduation signifying a movement of 0.01 mm . The condenser, iris diaphragm and polariser are raised and lowered by rack-and-pinion. Observation of the axial images is conveniently performed by means of a three-limbed condenser, which can, by means of lateral push-movement of the stop-carrier under the stage, be drawn out and replaced. The objective is centred on the rotationcentre of the rotatory object-stage, by means of a centring nose-piece. The stage itself is graduated into 860° with a vernier ; it also bears graduations for orientating. The Nicol acting as a polariser can, after removal of the iris diaphragm from monderneath, be itself drawn out. The $0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}$ of this Nicol are marked. The analyser is set in a metal holder in a fixed position over the ocular, and the rim of the indicator is graduated into $: 360^{\circ}$. On the front of the tube is a flap which can be opened and closed, and through which the inner tube is accessible; in the imner tube there is a slit for the reception of a Bertrand lens. The function of this lens is to assist the ocular in magnifying the interference figures formed in the converging polarised light; lens and ocular are raised and lowered together, as desired, by means of rack-and-pinion. In the analyser there is a slit (45° to the zero) for films of selenite and Iceland spar. In many investigations it is recommended that, instead of the above, an analyser should be used inserted laterally into the tube. There is a revolver for three objectives.

Leitz' Mineralogical Stand, No. II. \ddagger-- The series-number of this instrument is 39 (fig. 164). The tube is carried bis a brass foot and pillar, highly lacquered, and the adjustment is by rack-and-pinion. The rotatory stage is graduated on its circumference to 360°, and the reading is by a pointer. The polariser is set in a spring collar, whose zero and quadrant points are marked. The collar with the polariser is inserted in a holder which, by means of a lateral screw, can be raised and lowered or drawn aside. An illmminating lens is placed over the polariser in the stage, and by means of a lever can be turned ont of the path of the

[^454]

Fig. $16:$
heam of rays when paraflel polarised light is substituted for converging. The analyser is inserted in the optical axis in a broad slit in the tube wer the objective, and is pushed in and out by a knoh. Under the

Fig. 1lije
analyser is a slit for the sclenite and quartz plates. The objective is, centred on the rotation eentre of the rotatory object-stage, by means of two centring screws acting on a centring nose-picce.

Leitz' Handloups.*-The catalogue numbers of these are 69 and 70. The loups (figs. 165, 166) consist of two achromatic donble lenses, produeing a field very large, flat and free from tint. The magnifying powers are five and cight-fold, the corresponding diameters of the lenses being :un and $\because: 3 \mathrm{~mm}$. while the field of view measures $: 3.5$ and 20 mm . respectively.

Fig. $16{ }^{\circ}$.

Fit. I6fi.

Very Powerful Micrometric Microscope. \dagger-P. Boley finds that the "double Mieroseope," which he designed \ddagger for observing the slightest displacement of the mercurial menisens of the capillary electrometer, cant be also used for ordinary purposes as a micrometric Microscope. In principle the Mieroscope is one in which the ordinary ocular is replaced by a trine compound Microscope of large objective. It is formed of : tube double the usual length, with the principal objective at the anterior enl, the objective of the ocular Microscope in the centre, and the actual ocular at the posterior end. The ocular-holder is tube-shaped and slides inside the main tube. The whole is fitted on a stand having three rectangular movements for controlling the field. The image oftainel is erect, and the original magnification is increased from four to sixfort.

Watson’s "Argus" Attachable Mechanical Stage.-This is : simplified form of mechanical stare, which can be readily attachecl by a single thumb-screw (fig. 167). The moving plates are not fitted in dovetailed grooves in the ordinary manner, but slide on guides, and are helk in position and actuated by a frictional wheel made of brass and corcred with indiarubber. This wheel is revolved by means of a milled head. which can be set in any position from the horizontal to the rertica!, the movement taking place at right angles to its own direction.

The horizontal and vertical positions are indicated by spring catches. but between the two points a range of diaronal traverse is given when

[^455]the milled head is operated. Being independent of racks and serews, $n 10$ back-lash can occur. The range of motion is about $1 \frac{1}{2} \mathrm{in}$.

Fig. 167.
A Lens Pseudoscope.*-.'The Wheatstone pendoscope is compused of two totally reflecting prisms arranged with their edges perpendicular to the plane of vision. H. Bowden has arranged a psendoscope in which he employs two pairs of identical convex lenses. He contrives a harfrane like a capital H, the four lenses being set in sliding mounts on the onter lines. A handle in the middle of the cross-bar and perpendicular to the frume makes a good holder. One of the observer's eyes looks at an object throngh one pair of the lenses, and his other eye views it through the other pair. The planes of the lenses are so disposed that their foci coincide, and thus superimposed images are presented to the observer. It was found that the illusions produced were very complete, and had a superiority over the Wheatstone psendoscope; but the images presented by it are inverted as well as transposed from right to left.

(2) Eye-pieces and Objectives.

Graphic Representation of the Correction Distance of an Objective. $\dagger-11$. Schmidt shows how, in the absence of the appropriate instrument, an idea of the astigmatism of a lens may be obtained. It is necessary to calculate, from the formmla, the horizontal and vertical foci of oblique rays, and then to plot them to scale on paper. A curve should then le drawn free-hand throngh each set of foci. If these curves coincide the astigmatism will be nil ; it will also vamish at points where they intersect : the amount of divergence on any ray will indicate the astigmatic difference for that ray. It may sometimes be desirable to plot on a magrified scale when the curves show close approximation.

The Injurious Effect of Cement upon Objectives. \ddagger-G. Eberhard found that the zonal errors of certain telescope objectives markedly

[^456]varied with the temperature. Ine attributes this to changes in the Canada balsam cement, which seems to possess a hitherto unsuspectel variability dependent perhaps on age as well as on temperature. Among other experiments he tested a certain camera objective before and after ten hours' heating at $60^{\circ} \mathrm{C}$. ; all the zonal errors were altered, one, e.s. rising from -0.05 to +0.56 . In very important work, he concludes it would be best to use objectives free from coment.

> Everett, J. D.-On Skew Refraction through a Lens; and on the Hollow Pencil given by an Annulus of a very obliquely placed Lens.

> Proc. Roy. Soc., LXXI. (1903) 1p. 509-522 (2 plates).
> Scinfader, II.-Ueber die Geschichte der Technik der Mikroskope.
> [Mainly an historical account of the evolution of moleru lenses, interspersed with interesting anecdotes.]

> Central. Zeit. f. Opt. u. Mech., XXII. (1901) Nus. 19, 20, 21, 2.2.

(3) Illuminating and other Apparatus.

Tubeuf's Drawing Apparatus.* - This apparatus (fig. 168) is intended for drawing objects from nature. By means of a prism an object is so reflected into the eye that its vertical projection on the drawine plane appears erect, a very desirable condition in mature-drawing. (On the prism plane turned towards the object, smoked glasses of varions

Fig. 16s.
thicknesses ean be applied for reducing the brirhtuess of the object. On the prism plane towards the eye there is a small revolving dise, with small apertures for regulating the pupil opening. The prism cam be set on a stand at various heights and widths.

Fuess' Hemispherical Gypsum and Metal Reflectors. \dagger - These reflectors, numbered 8 in the maker's catalogue, are intended to be placed on the Microscope stage over an opaque object of very small dimensions. The arrangement is shown in fig. 169. The light comings from the mirror reaches the white spherical interior of the gypsum, and is thus completely reflected in all directions: the object being thereby completely and miformly illuminated withont shadows. An orening

[^457]in the top facilitates adjustment and transmission of the imare. The reflector is made in two sizes, whose diameters are 30 mm . and 50 mm .

Exactly similar reflectors are also made out of metal.

The same firm also supply round object-slides of white mirror-crlass. with a metal plate ecmented on to the centre ; the effect is to gire a completely black underground.
(4) Photomicrography.

Photography by Natural Lenses.* - W. F. Watson has used the crystalline lens from a bullock's eje for photography. A lens-holder was constructed out of a small cardboard pill-box, with a perforated ledge inside for the reception of the eye. The lid and floor of the box are pierced with circular holes smaller than the lens, and it was found necessary to keep its surface moistened with a brush. The lens must be so placed that the flatter surface is underneath and the rounder one uppermost ; and, when once arranged, it must, if possible, not be touched, owing to its delicate nature. The object to be photographed was illuminated with natural light in the ordinary way. It was found an improvement to enclose the crystalline lens, fresh from the animal's cye, between two large watch-glasses of suitable curvature and truc shape, their inner surfaces being moistened. These lenses were then completely covered with blackened gummed paper, with the exception of the small circular openings in the middle of the convex surfaces. The lens so prepared could then be applied to the camera.

The author has also used the eye-lens of a fly for photographic purposes, and has reproduced the well-known multiple images. He give. specimens of his success.

[^458][^459]
(5) Microscopical Optics and Manipulation.

Drude's Theory of Optics.*-This important work has been translated from the German into English by C. R. Mann and R. A. Millikan. The preface to the English translation has been written by Prof. Michelson, who states that there is no other book in English which embodies the important advances in looth theory and experiment made during the last decade. It excels in presenting a complete development of the electromagnctic theory of light in all its bearings, and a comprehensive discussion of the relations between the laws of radiation and the principles of thermodynamics.

The book consists of three parts, respectively devoted to: (i) Geometrical Optics, (ii) Physical Optics, and (iii) Radiation.

Part i. is on the usual lines, and follows closely Czapski's treatment in Winkelmann's Hambuch der Pluysik.

Part ii. is subdivided into two parts: general properties of light, and optical properties of bodies. This part inelodes, as an important advance unon most previons textbooks, sommerfeld's rigorons solution of the simplest case of diffraction, Comn's seometric representation of Fresnel's integrals, and, on the experimental side, Michelson's echelon spectroscope. It also extends the hypothesis as to the nature of light. The mechanical theories are merely mentioned, but the clectromagnetic theory, which the anthor considers to present the simplest and most consistent treatment of optical relations, he has discussed at length.
lart iii. is concerned with the relation of optics to themodynamies, and (in the third chapter) to the kinetic theory of gases.

Numerical Aperture and Rapidity. \dagger-W. A. E. Comrady in a paper on this subject remarks, that whereas Microscope lenses are classified by their N.A., photographic lenses are by their f-valnes, i.e. $f / 8, f / 16$, \&e. Formulæ are given : first, to express the N.A. of a Microscope-lens in terms of photographic f-vahe ; secondly, for converting photographic f-values into N.A.
I.

$$
f \text {-value }=\frac{m}{\approx \text { N.A. }}
$$

II.

$$
\text { N.A. }=\frac{m}{\approx(m+1) \times f \text {-value }}
$$

N.A. is numerical aperture, and magnifying power.

Specific Double Refraction of Plant Tissues. $\ddagger-13$. Remec, after many experiments, concludes: (1) That lignin has no influence on the specific double refraction of plant tissue ; (2) that even in cell-walls of similar thickness and similar chemical composition, the derree of double refraction may vary according to peculiarity of organisation ; (3) that if pores exist in the cell-wall, the greatest optical axis of elasticity of Fresnel's ellipsoid lies in the direction of the pores ; (4) the membranes of superposed tissues generally prodnce elliptic polarisation, the main axis being sometimes parallel, sometimes perpendienlar to the anatomical

> * Longmans, (treen \& Co., London, $190 \div 546 \mathrm{pp}$. (110 figs.).
> \dagger Knowledge, xxvi. No. $216(1905)$). 236.
> \ddagger S.B. Ikad. Wiss. Wien., pu. 364-87 (; figs.).

Wec. 16th, 1903
cell-axis; (5) that it is possible in many cases of equal chemical composition and equal morphological formation to distinguish histological elements from one another in polarised light.

Visual Purple.*-J. Von Kries considers that visual purple is a substance which supplies the retinal basis for vision at low luminosities, and the accumulation of this substance is accountable for the great increase in sensitiveness of the dark-adapted eye-a thousand-fold increase according to some computations.

Some Experiments with Actinic Light. $\dagger-$ J. W. Kime, with the object of furthering the application of coloured light in therapic treatment, has conducted some experiments for the parpose of localising those bands in the solar spectrum which are rich or poor in actinic rays. Strips of glass, corresponding in colour to the varions tints of the solar spectrum, were placed in a frame, bound to a sensitised plate, and exposed almost instantaneously to very weak diffused daylight, which entered the dark room without passing through glass. The result is shown in fig. 1, plate VIII., which is a newative plate. The open space and the plain glass strip, which were also provided, when compared with the blue grlass present very little difference, the plain glass being a shade darker, showing that less actinic light passed through it than through the other two. It was found that no light whatever reached the plate through the red, and no trace is apparent in the orange; the yellow transmits an appreciable amount ; and the green just enough to be seen. From this point we jump from almost zero in the green to 100 p.c. in the blue. Hence wave-length has nothing to do with determining the chemical activity of the light. In the indigo there is a slight diminution from the blue, but there is still fully as much as traversed the plain glass. In the violet we drop back to about the same percentage as in the yellow. It is apparent from the photographs that colour, independently of wave-length, influences the chemical action of light. Fig. : , plate VIII., which is a positive, is in every sense confirmatory of the conclusions drawn from fig. 1, but was produced in a directly opposite manner. The same strips of glass as before were again used, but were placed over ordinary photographic printing paper, Aristo, and were exposed to the sun until the open space was fully printed. No other glass intervened between the sensitised paper and the sum except the strips referred to. Experiments were also made to test the penetrability of actinic light through the tissues of the human body.
K вü 8 s , II. A.-Die Durchlässigkeit einer Anzahl Jenaer optischer Gläser für ultraviolette Strahlen.

Zeit.f. Instrumentenkunde, XXIII. (190:3) pp. 197-207,
4 figs (July); and pp. 229-239, 3 figs. (August).

[^460]

Flu. 1.

Fig. こ!

B. Technique.*

(1) Collecting Objects, including Culture Processes.

Method of Preparing Sugar-free Bouillon. \dagger F. E. MFontgomery has found that if meat infusion be sterilised previons to the inoculation with the colon bacillus, an odorless sugar-free broth is obtained. The method is as follows : To a portion of the fat-free beef, gromen fine, add double its weight of cold water, and bring slowly to a temperature of 50° over water bath. Keep at this temperature for three hours, then strain through muslin. Steam sterilise the infusion for three-rfarters of an hour. Allow to stand overnight in an ice-box, and then inoculate with B. coli communis. Incubate at :37 55° for 18 to $2 t$ hours, then boil and filter. Next add $\frac{1}{2}$ p.e. NaCl and $\frac{1}{4}$ p.e. peptone, and boil for threequarters of an hom. Nentralise with NaHO, filter and sterilise.

Cultivation Medium for Algæ. $\ddagger-\mathrm{G}$. T'. Moore finds that for general purposes a modification of Beijerinck's medimm is very satisfactory. This consists of ammonium nitrate, $0 \cdot 5$ grm.: potassium phosphate, $0^{\cdot} \cdot 2$ grm. ; magnesium sulphate, $0 \cdot 2$ grm. ; calcium chloride, $0 \cdot 1 \mathrm{grm}$.; distilled water, $1000 \mathrm{c} . \mathrm{cm}$. ; iron sulphate, a trace.

For blue-green Alga, the amount of ammonium nitrate should be donbled, and the addition of from 1--2 p.e. gluense is often of benefit. This solntion may be used with silica jelly, thongh $\frac{1}{2}-1$ p.e. of agar hardens it sufficiently for general purposes.

Demonstration of Tubercle Bacilli in Sputum. S-A. Nebel advises that the sputum be well shaken up with $8-10$ times its volume of lime water. This renders it apparently homogeneons, and it is then centrifuged for \because minntes. The supernatant fluid is passed through a Berksfeld filter ; and the deposit remaining on the filter removed, mixed with a drop of water, and examined in the usual way.

The author found that after centrifuging, the sediment did not contain more bacilli than fell to its lot on accomt of its weight and volume.

New Method of Isolating B. icteroides.|-.J. Bandi makes use of the agglutinating power of anti-amaryllic sermm as a means of separating. B. icteroides (Sanarelli) from other organisms. He first determines accurately the specific agglutinating doses of the sermm, both for the bacillus in fuestion and for the organisms found most frequently in symbiosis with it. Serum is then added, in the former proportion, to a (7 p.c.) gelatin mutrient mediom contained in tubes drawn ont to a elosed fumel-shaped point at the lower end. The tubes are then superfieially inoculated with the material to be examined and incubated

[^461]at $87^{\circ} \mathrm{C}$. After $10-12$ hours the B. icteroides will be seen to have settled in the lower part of the tube, in floceulent agglntinated masses. The culture is then cooled down and the gelatin allowed to set. The pointed end of the tule is then broken off, and some of the flocculi removed with a platimm needle, isolation being effected by this means. If the cultire is mixed with organisms which naturally fall in masses to the bottom of the culture medium, e.g. streptococci and the proteus varieties, then, the pointed end of the tube haviug been broken off, its contents are poured in a very thin layer into a Petri dish, and the masses picked out by means of their characteristic appearance under the microscope.

Tubes for the Preparation of Aërobic and Anaërobic Cultures under the Influence of Coloured Rays.*-E. Bartarelli. The apparatus (fig. 170) is made of two large test-tubes. One, measmring 25 cm . in length and $3 \cdot 5 \mathrm{~cm}$. in diameter, has a small cylindrical tube blown in its lower end. The other, about 1 cm . shorter than the first and 2.8 cm . in diameter, has near its lower end three indentations. The lesser is placed inside the larger and their edges fused together. The space between the two tubes is now filled with a coloured solution through the hole in the outer, which is then corked. A monochromatic chamber is then produced in the inner tube. In this chamber the culture tube is placed. If anaërobic conditions are required the inner tube may be used à la Buchner.

Rapid Method of Hardening and Imbedding Tissues. \dagger

 B. M. Bolton and D. L. Harris found that tissnes can he readily hardened and imbedded for cutting into sections in a hot solution of agar and formalin. Nine parts of a 5 p.c. aqueous solution of agar are mised with 1 part of formalin. The agar is boiled, for several hours, and after the addition of the formalin allowed to clear by sedimentation. The bits of tissue are placed in a wide test tube containing some previously melted mixture. This is kept at $60^{\circ}-70^{\circ} \mathrm{C}$. for an hour or longer, and the tissue then blocked, after which it is immersed in strong or absolute alcohol for an hour or so, when it is ready to be cut. The whole process does not exceed 3 to 4 hours, when the pieces are not more than 1 cm . in diameter.Preparation of Diatoms. $\ddagger-F$. J. Keeley calls attention to the following method for studying the structure of diatoms. This consists in depositing on the diatoms a thin film of silver, nsing the solution ordinarily employed for silvering mirrors, which, dropped on the cover glass containing the diatoms, will silver the latter to a considerable extent before any appreciable quantity of the metal is deposited on the

[^462]glass. The preparations are monnted in balsam and inspected by transmitted light. This process differs from that by which A. Y. Moore plated diatoms, his being covered with a heary layer of silver or gold and examined as opaque objects. It is rather a staining process, rendering the silici opaque or nearly so, and thus differs from other methods which fill the cavities in the ralves with oprane matter. The results so far have been principally corroborative of previons observations, but many features are rendered not only more obrions but new characteristics brought to light, among which may be mentioned a ring of processes near the margin of the valve of Coscinoliscus subtilis which extends towards the interior of the frnstule. In Niuricula and its allies the raphe is well displayed, and in N. rhomboiles the raphe is shown to be single.

Fixation of the Mammalian Egg in the Uterine Cavity.*H. Schoenfeld excised the gravid uterns of rablits at intervals of 6 to 10 days after impregnation. The organ was placed for $\frac{1}{4}-\frac{1}{2}$ an hour in $\frac{1}{2}$ p.c. chromic acid, in order to coagulate the blood in the vessels, and then cut up into small pieces. These were placed in some fixative solntion, the best resnlts being obtained from Hermam's fluid. Flemming's flnid was next best, while sublimate and Zenker's medium were much less efficacions. The sections fixed in fluids containing osmic acid were stained with safranin and pierie acid, safranin and light green, or with Heidenhain's iron hæmatoxylin. The sublimate or Zenker sections were stained with Delafield's hematoxylin followed ly cosin, or by ran Gieson's method of iron hæmatoxylin.

Improvements of Aubertin's Method for Sticking on Celloidin Sections. $\dagger-\mathrm{F}$. Müller describes the following modification of Anbertin's method for making celloidin sections adhere to the slide, whith procedure consisted in rumning a misture of ether and alcohol over the section. The author first puts a thin film of glycerin-allomen on the slide, and warms it over the flame as long as it raporises. The section is then floated in 95 p.e. alcohol on to the film, and as much of the aleohol as possible removed with blotting-paper. Henceforward the slide mnst he kept in the horizontal position. When the seetion begins to look opaque, a few drops of a mixture of equal parts of aleohol and ether are pipetted over. The slide is then left for $5-10$ mimites, in which time the ether-alcohol will have evaporated. The slide is then treated for a short while with 70 p.e. alcohol, and afterwards for a longer time with water. The section is then cleared up with carlol-xylol, and may then be stained, or if so desired may be kept for a while. In the latter case it is advisible to immerse the slides for $5-10$ mimutes in 95 p.c. alcohol, in order to soften the celloidin a little.

Preparing Sections of Cancellous Bone. $\ddagger-$ E. O. Little sticks the rough section of bone or tooth on the slide with xylol-balsam. The halsam is then ignited and allowed to lurn as long as possible, care

[^463]being taken not to injure the section. The flame is then extinguisherl. and the section pressed firmly to the slide until the halsam hardens. The free side may then be gromed down on a whetstone to any desired thickness.

Contributions to the Theory of Fixation, with Particular Regard to the Cell-Nucleus and its Albuminous Bodies.*-- W. Berg in an important paper gives the results of his experiments on the individual effects of 24 fixing agents on mucleins and nucleic acids from rarious sonrees, and on other bodies, such as clupeïn-a representation of the protamines-both by itself, as a sulphate, and in combination with mueleic acid. Although sometimes larger quantities were used, a drop of a filtered solntion was usually taken-generally in : p.c. KOH of the proteid substance, and mixed with one or more drops of the fixing agent on an ordinary microscopic slide. The effect was then observed as regards (1) the presence or absence of precipitate, (2) its watersolubility, and (:) the forms taken by it. The last the author groups into (1) coagula and gramlar films, (b) granules, and (c) hollow bodies. He does not claim that the results of his experiments constitute a reliable index to the effects of fixing agents on tissues or on cells, the proteids existing in them not being identieal with those of the solntions experimented on. Moreover, the behaviour of the representative of a group of bodies snch as the mucleic acids is not constant, but varies with the origin of the substance. For example, acetic acid causes no precipitate with nucleic acid from soft roe of the herring, but with that derived from yeast there is a marked precipitate. Neither are the results with clupeïn constant with protamines in gencral. Space will not permit even a resume of the experimental results. The apparent lack of effect of formalin is lowever striking. The 3.3 p.c. alcoholic solution of sublimate is morh superior to the $7 \cdot 5$ p.e. aqueons solution. Osmic acid precipitates neither nucleïns nor nucleic acids, while alcohol, acetic acid amd, above all, chloroform-alcohol-acetic acid have the strongest reffect on them.

(3) Cutting, including Imbedding and Microtomes.

Manipulation of Sections of Leaf Cuticle. \dagger-S. M. Bain takes a very narrow strip, of the leaf and embeds it in paraffin. The paraftin is trimmed away under a lens until the surface to be cut is reduced to a minimum. The sections, cut off in scrolls, are placed on a small drop of distilled water on the centre of a slide. Here they usually unroll of their own accord; if not, slightly warming may flatten them out. The water on the slide is allowed to evaporate spontancously, and when dry the slide is warmed mutil the paraffin just begins to melt. The rest of the procedure is similar to that usually followed.

Imbedding in Celloidin.*-_C. H. Miller recommends the following method. Into the wide monthed cork-stoppered bottles are placed solutions of celloidin of graduated strength, each 100 c.cm. containing

[^464]$2,4,6, \& c .$, up to 20 grms. by weight of celloidin. The dehydrated tissue is placed successively in the ten bottles for $\pm t$ hours. If it is to be cut immediately, the tissuc is mounted on a block and hardened in chloroform for 15 to 20 minutes, or in 80 p.c. alcohol for several hours. If it is to be kept for some time, the piece is removed from the 20 p.c. solution with a thick layer of celloidin surrounding it and dropped into chloroform to harden it, after which it is kept in a solution composed of equal parts of 95 p.c. of alcohol and slycerin. When wanted for cutting, the tissue is wiped dry with a clean cloth, a thin layer of celloidin is shaved off, and the picce immersed in 6 p.c. celloidin for several minutes ; then mounted on a block and hardened in chloroform. The only inconvenience attached to this method is that it takes 12 days at least, hut its many advantages amply compensate for the extra time and trouble.

Use of Paraffin Imbedding for Medullary Sheath Staining.* G. I. Streeter bases the method he advocates on the supposition that the failure of Weigert's incthod with paraffin sections is due to the solvent action of xylol on the myelin during the process of imbedding. He stains the tissue in bulk with Weigert's hæmatoxylin, after it has been passed through Müller, or some other chromic solution, and 80 p.c. alcohol. He then brings it into paraffin, melting at $50^{\circ} \mathrm{C}$., through 70 p.c. alcohol, absolute alcohol and xylol. Sections are cut and fixed on the slide in the usual way, and brought into water through xyol and alcohol. They are then ready for differentiation, which can be accomplished either by Weigert's solution of potassium ferricyanide and borax. which the author uses diluted ten times, or by the modification of Pal.

New Method for the Preparation of Horizontal Sections of Thin Laminated Vegetable Flat Tissues.-P. F. Reinsch \dagger recommends the following method. The substance is first macerated either in water or in some caustic solution, c.g. KOH or $\mathrm{H}_{2} \mathrm{SO}_{4}$. After this it is washed. and lifted ont on a glass plate. If a canstic solution has been used this is first neutralised with NH_{3} or HCl . During the maceration a grood deal of gum is probably developed, and by this the substance, as it dries, sticks of itself to the glass plate. If not, then gum or a transparent alcoholic solution of resin must be used, care being taken to avoid flatness and the inclusion of air bnbbles. The next step is the separation of horizontal layers as desired, and this is accomplished by carefully damping the flat surface of the object firmly adhering to the glass plate, not its edges, and separating the topmost layer by means of a special microscopic sealpel, which the anthor makes himself in three shapes out of ordinary medim-sized needles, grinding the half towards the eye end to form a cutting edge, and moming on holders. He uses this method for such delicate objects as flower petals.

Minot, C. S.-History of the Microtome. Parts I. and II.
Journ. App. Micr., VI. (1903) p1. 2157-60, 3 figs., pp. 2226-8, 1 fig.

[^465]
(4) Staining and Injecting.

Method of Staining Sputum for Bacteriological Examination.W. H. Smith * recommends the following method. Make and fix films in the usual way; stain with anilin-gentian-violet, and warm until steam rises ; wash with potassium iodide solution (Gram's), and again warm ; decolorise with 95 p.c. alcohol ; treat for a few seconds with alcohol and ether ($4: 6$), and warm with water ; stain for one sccond with saturated watered solution of eosin; wash surplus away with Löffler's blue, and again warm ; decolorise with 95 p.c. alcohol, and thus bring into Canada balsam through absolnte alcohol and xylol. Leucocytes, lymphocytes, as well as red hlood corpuscles, stain with eosin ; whilst the cell nuclei take Löffler's blue. Bacteria positive to Gram stain deep violet or black; whilst those negative to Gram are blue. Bacteria with capsules have the latter tintel with cosin.

Two Botanical Staining Methods. \dagger-A. V. Tompa recommends the

 following :1. The Saffiron, Prussian-blue and Alcama Methotl.-This depends on the fact that if sections of vegetable tissue are treated with perchloride of iron and ferrocyanide of potassium, in succession, : precipitation of Prussian-blue takes place in the cell-walls. This precipitation occurs only in unthickened cell-walls, and not in vascular bundles, sclerenchyma, cuticular or cork tissue. It is therefore differential as regards the former. If the sections are first treated with tincture of saffron, the woody- and bast-fibres take on a bright yellow colour, and the after nse of tincture of alcanna produces a red staining of the cuticular and cork tissue. An important preliminary condition is that the material should have heen for some time previously in alcohol, for the removal of the tannic acid, thus avoiding the inky combination of the substance with the perchloride. The author suggests. that sections from fresh material should he kept for two days in 96 p.e. alcohol. The steps of the method are these : the sections are placed in tincture of saffron for 48 hours and are then washed in distilled water ; they are then placed in a 25 p.c. solution of perchloride of iron for 15-30 seconds, washed for a short time in distilled water, and treated with a 5 p.c. watery solution of ferrocranide of potassium for $10-20$ seconds. The sections are then again washed in water acidified with HCl and in water alone : and lastly are immersed for one second in a hot, watery solution of alcanna. They are then, after a final washing, mounted in glycerin jelly or taken through aleohol and chloroform into Canada balsam.
2. The Gold Method.-This depends on the formation of "purple of Cassius," when gold chloride is added to a solntion of stannous chloride. Sections from alcohol material are placed in a weak solntion of stannous chloride for 24 hours; they are washed in distilled water acidified with HCl , and then immersed for $10-30$ seconds in a $\cdot 1$ p.c. watery solution of gold chloride, also acidified with HCl , which it is of adran-

[^466]tage to warm to $29^{\circ} \mathrm{C}$. The sections are washed in acidified water, and then kept for at least 24 hours in a 50 p.c. watery solation of glyeerin. They are then bronght into Canada balsam through aleohol and chloroform. This method differentiates non-woody cells, as those of the bastparenehyma and medullary tissut.

Vital Staining of Micro-organisms.- B. Romanoff * has studied granules in bacteria, monlds and yeasts, by means of vital staining with methylenc-blue and nentral red. The property of the latter to lose its colour in the presence of alkalies, and to regain it with acids, makes this stain a delicate indicator of the reaction of the eytoplasm in different parts of the same cell. He finds that in yeast there are grannles other than fat and glycogen staining with nentral red. To demonstrate this he grew it in a medium poor in mutrient elements, containing mag. sulph. ; pot. phosph.; sod.chlorid. ; asparagin; peptone. Yeast so cultivated contained no glycogen and a minimm of fat.

Vital Staining of Blood-Plates in Man with "Brillantkresylblau."—G. Puchberger \dagger stains blood-plates with this dye in less than a minute, and, after the lapse of abont a quarter of a homr, a hyaline substance separates itself in spherical form (Hyalomer), but continues connected by a constriction with the remaining, also circular, stained part of the eell (Chromomer). The muclei of the lymphocytes and the granmles of the lencocytes stain in a similar manner, but not so the nuclei of the polynnclear or the large monomuclear cells. In lenkæmia are found large blood-plates the size of lymphocytes. These behave in the above described manner. Similar changes ocem in lymphocytes, the nuclei of which separate from the protoplasm. The statement that the chromomer of blood-plates eorresponds to the maclens requires proof.

Iron Carmalum. \ddagger-J. G. de Groot suggests the following as a useful modification of Mayer's Carmalum. (1) Carminic acid (F. A. Kahlbaum, Berlin So.), 1 grm.; (2) ammonio-sulphate of iron, $\cdot 1 \mathrm{grm}$; (?) alum, 5 grm. ; and (4) distilled water, 200 e.cm. To prepare the stain, dissolve No. 1 with warmth in 20 c.em. water; add No. 2 and dissolve ; add $180 \mathrm{e} . \mathrm{cm}$. water and warm ; stir in No. :' ; cool and filter ; add two drops hydrochloric acid, and a crystal of thymol.

It can be used both for bulk staining and for seetions.
Modification of the Uranium Carmine Staining of Schmaus.E. Chilesotti § has devised the following method for staining axis cylinder with carmine. 1 grm. soda carmine (Grübler) is rubbed up with $\cdot 5 \mathrm{grm}$. uranium nitrate. The mixture is boiled for half an hour with $100 \mathrm{c} . \mathrm{cm}$. water, then filtered, and before use, a little 1 p.c. hydrochloric acid alcohol is added to the solution ($\cdot 0-1$ c.cm.). Sections hardened in Müller stain in this in $5-10$ minntes, those hardened in formalin in $15-00$ minutes, in Weigert's neuroglia mordant in :30-60 mimntes, and

[^467]Marchi sections in 2-4 hours. Sections are then washed in water, alcohol and carbol-xylol. If overstaining has taken place, or if the celloidin is also stained, the sections should be immersed in $\cdot{ }_{5}^{5}-1$ p.c. hydrochloric acid alcohol. This method can be employed with frozen, paraffin or celloidin sections.

Thermophore for use in Staining.-A. Hinterberger* deseribes at thermophore suitable for methods in which it is desirable to use the staining solutions for periods of time. It consists of a box like a Petri dish, 9 cm . in diameter and 4 cm . high. The lid has on its upper surface a cup-shaped depression for holding the stain. The heat is ohtained by first filling the box with sodium acetate or barium hydrate, and then adding cold distilled water. The uncovered dish will maintain for an hour a temperature of from $44^{\circ} \mathrm{C}$. to $41^{\circ} \mathrm{C}$., or from $54^{\circ} \mathrm{C}$. to $51^{\circ} \mathrm{C}$. respectively. In the covered dish the cold water poured in soon hecomes warm, and the temperature then sinks in about an hour and a half from about $49^{\circ} \mathrm{C}$. to $4: 3^{\circ} \mathrm{C}$., or from $60^{\circ} \mathrm{C}$. to $42^{\circ} \mathrm{C}$. respectively. The thermophore, filled with sodimm acetate, ought to lie before use for seven minutes in boiling water. If barium hydrate is nsed the longer it is kept in boiling water the longer it will keep warm.

(5) Mounting, including Slides, Preservative Fluids, \&c.

Soluble Glass as Mounting Niedium for Examination of Paper. \dagger C. E. M. Fischer recommends soluble glass for mounting specimens of paper fibres. The paper is first softened in warm distilled water and then reduced to pulp. A piece is then teased ont on a slide, and, after the surplus water has been removed, the slide is then held over the flame until just sufficient moisture remains to wet the preparation evenly. A drop of thick soluble glass is placed on the fibres, and then a cover-glass over all. The only inconvenience of this method is frequency of air bubbles. but in other respects it is extremely advantageous.

(6) Miscellaneous.

Microscopical Examination of Paper. $\ddagger-$.J. Hübner states that it is often of importance to ascertain microscopically the kind or kinds of fibres from which a paper has been made. Picces of the paper to be examined, taken from various parts of the shect, are boiled for $10-15$ mimutes in a weak solution of canstic soda (1 p.c.). The boiled paper is now placed on a fine sieve, washed free from soda. It is then transferred to a bottle containing garnets, and after a short shaking with water, the pulp is drained and is then ready for examination. The principal reagents required are iodopotassic iodide solution and iodozinc chloride solution. The former turns linen, cotton and hemp, light to dark brown ; straw and jute cellulose, grey; wood cellulose and esparto, partly grey, partly brown ; manila hemp, partly grey, partly brown, partly yellowish brown ; wood pnlp and raw jute, partly yellow, partly yellowish brown.

[^468]\%inc chloride solution gives the following reactions: Cotton, linen and hemp, claret-red; wood, straw, esparto and jute cellulose, partly blue, partly reddish and blucish violet ; manila hemp, blue, blueish violet. dull yellow and greenish yellow: wood pulp and raw jute, lemon to dark yellow. Before applying zine chloride solution, the pulp must be freed from water by squeezing it on a porous plate. The fibres are then teased out with platinum needles and covered with a thin - cover-glass.

The structmal characters of the different fibres when inspected under the Microscope are as follows. Cotton fibres appear as flat ribands, usually twisted on themselves. The flax fibre is round and fairly regular, and shows a narrow central canal with numerous dark crosslines, and the tharacteristic linen bulbs. Hemp fibres cannot be distinguished from flax fibres. Mechanical wood has a ragged or torn appearance, and its structure is not fibrous. It also shows pitted vessels or pores and cross-markings on many of the cells. The bast fibres of jute are distinguished by a canal, the width of which varies considerably. Wood cellulose fibres are usually flat, often twisted, and not unlike cotton; not infrequently pitted pores are visible. Straw fibres are round and smooth, and accompanied by numerous cuticular cells, some of which are very wide and flat, whilst others are peculiarly marked and serrated. The spiral-shaped cells carry a ring at cach end. Esparto fibres and cells are very similar in appearance to straw fibres and cells. The characteristic pear-shaped hairs or cells are, however, always present. and aftord a ready means of distinguishing esparto from grass.

Detection of Trypanosomes.* - As Trypanosomes are not present in large numbers it is necessary, says A. Castellani, to draw off at least 15 c.em. of cerebrospinal fluid. It is better to reject the first few enhic ceutimetres as they are apt to contain blood. When the fluid comes away clear, $10 \mathrm{c} . \mathrm{cm}$. are collected and centrifuged for 15 mimutes. The deposit is slight. The sediment, which is whitish, is examined under a morlcrately low power, and as the trypanosomes are at first fairly active the: are easily detected.
D. Brnce and D. Nabarro adopt the same method as the foreome for camining the eerebrospinal fluid obtained by lumbar puncture. In the case of blood, they found that the presence of the corpuscles was a barrier to detecting the parasites, and it is a curious fact that both filarie and trypanosomes resist the centrifugal action, and are mosi reatily found after being centrifuged three or even four times. Ther procechure adopted was to collect 10 c.cm. of hlood from a vein, in a test-tube containing a little citrate of potash sohtion to prevent cougulation. After centrifuging for 10 minates the clar layer was poured off and again centrifuged, and this procedure was repeated four tinues, the sediment from each centrifuging being examined microscopically.

Method for the Investigation of Fossils by Serial Sections. \dagger

 IV. .J. Sollas points out that the mechanical difficulties which prechude[^469]the stndy of fossils by serial thin seetions, may be obriated by means of serial polished surfaces obtained at any desired degree of proximity, and these when the fossil and its matrix offer sufficient optical contrast, serve most of the purposes of thin slices. They may be photographed muder the Microseope so as to furnish a trustworthy and permanent record. The sections, whieh are obtained at intervals of about $0 \cdot 0 \geq 2$ mm., may be also used for reeonstructing the fossil in wax.

Application of the Cinematograph Principle to the Study of Serial Sections.-B. E. Kelly.* The tissue is fixed, stained in bulk and imbedded in paraffin. The most convenient width of the paraftin block was found to be three-eighths of an inch. A ribbon is cut, floated on to warm water, and then stuck on to a celluloid film by means of an albuminate fixative. When dry, the paraffin is dissolved in sylol, aur the sections are fixed to the film br means of a varnish. A French oilvarmish has been hitherto used. When thoroughly dry, the film is rolled II and placed in a cinematograph apparatus, and the sections are projeeted on a screen by means of a camera ; or the working portion of the cinematograph camera is placed on the stage of a mieroscopic projection apparatus, or even on the stage of an ordinary Microscope. The advantages elaimed by this method are:

1. The ease with which a series of sections can be demonstrated to an andience.

2 . The unique impression of continuity.

Simple Method of Making Collodion Sacs for Bacteriological

 Work. $\dagger-\mathrm{W}$. D. Frost uses small test-tnbes for this purpose. Thick collodion is poured into the tube to a depth equal to the desired length of the sac. It is then poured out along one side of the tube intoanother, and then again into another in the same way. The coated tubes are then placed month downwards in a rack to drain off excess and to dry. When dry, the sae nsually shrinks and may be easily pulled out. The saes may be kept a long time in water. To sterilise the sac it is three parts filled with bouillon or other medium, and immersed in : tule of the medium. The sac is held in position in the tube by means of the tongue formed by the collodion flowing out of the tube. Before the sae is put in the tube, a piece of cotton or silk is placed round its upper part and loosely knotted, the ends being taken outside the tule. sterilisation is then effected in the usual way. The medium in the sate is then inoculated with a platinum needle, and the tube incubated for $\because t$ hours. If at the end of this time the medium outside the sac be clear, the integrity of the latter may be aceepted. The sac is then pulled out and the cotton or silk drawn tight and tied, and the ends cut off along with the ends of the sae. The mouth is finally sealecl with rollodion. The sac is then ready for introduction into the body cavity of an animal.The advantages claimed are: (1) Simplicity : (\because) No danger from air lombles: (:3) May be made of amy size or shape ; (4) No glass to break or irritate the amimal; (5) Maximmom amome of dialysing surface.

[^470]Bottle for Immersion Oil.*-A. Schuberg describes a bottle for immersion oil made by W. and H. Seibert of Wetzlar. The neck of the bottle is prolonged upwards into a fumel-shaped expansion, the diameter of which equals that of the lrottle itself. The outer edge of this expansion is ground for the reception of a bell-shaped glass capsule. The glass stopper is prolonged downwards into a thin rod, noarly reaching the bottom of the bottle, and ending in a small pear-shaped head. The stopper possesses three deep rertical grooves which permit any excess of oil to run back into the bottle. The advantages claimed are: the oil can be removed without the bottle becoming smeared, and soiling of the grip of the glass rod, etc. is avoided; the quantity used can be easily regulated; all parts can be easily cleaned ; and the bottle can be carried about full.

A Modification of the Pantograph for the Drawing of Micro-

 scopical Preparations. \dagger-F. V. Friedlander has designed a modification of this instrument, in which the angle of the parallelogram, carrying the guiding-pin, is not, as in the stork's-bill, a solid vertical axis, but is a ring-joint of the two limbs of the parallelogram which here meet. This ring is 44 mm . in diameter, and its centre corresponds to what would have been the crossing of the two limbs. It is thins possible to view from above the preparation to he drawn. The guiding pin which follows the contomr of the preparation, passes obliquely downwards from one of the limbs of the parallelogram to its position moder the ring. Its position can be altered and fixed with a screw, to suit objects of different thickness ; the point, however, is always directly under the centre of the ring. The ring is adapted for the reception of a drawing Microscope. The whole apparatus is fixed with a serew to a drawing board, which, for the use of transmitted light with the Microscope, has a piece cut out and covered with glass. The apparatus gives an enlargement of $2-10$ diam. The right hand guides the drawing point, while the eye, from above, controls the movement of the guiding point on the preparation.
Metallography, \&c.

Micrographic Study of Cast Iron. \ddagger-The distribution of the impurities in cast iron offers many features of interest to the enginecr. P. Longmuir has briefly examined some typical cast iron, and reprodnces their characteristic structures. He gives a few notes on heat treatment for the production of "black heart" and malleable cast iron.

Note on the Amphibole Hudsonite previously called a Pyroxene.s S. Weidman having made thin sections of hadsonite and placel them nuder the Microscope, it was seen by the prismatic cleavage of 56 and 124° and by the optical properties of low birefringence, stroug pleochroism and absorption, that this mineral is an amphibole, and not

[^471]a variety of pyroxene, as it had always been supposed. Cleavage frasments of the mineral measured by a hand goniometer also readily showed the prismatic cleavage to be that of amphibole.
fay, M., Miggins, A. W., and Coburn, F. W.-Study of the Relations between the Microstructure, the Heat Treatment, and the Physical Properties of Axle Steel. Technology Quaterly, XVI. (March 190:3) pp. 4-17, 15 fig3.
Becker, A -Krystalloptik. Eine ansführliche elementare Darstellung aller wesentlichen Erscheinangen, welche die Krystalle in der Optik darbiet9n, nebst einer historischen Entwicklung der Theorien des Lichtes.

Stultgart, 190:3. 362 pp , and 104; figs

PROCEEDINGS OF THE SOC'TETY.

meeting

Hhhd on the 21st of October, 190:\% at 20 Hanover square, W. Dr. Henry Woodward, F.R.S., Preshdent, in the Chalr.

The Minutes of the Meeting of the 17th of Jone, 190:; were read and confirmed, and were signed by the President.

The List of Donations to the Society, exclnsive of exchanges and reprints, received since the last Meeting, was read, and the thanks of the society were voted to the Donors.

	From
$\left.\begin{array}{c}\text { Couiter \& Chamberlain, Morphology of Angiosperms. (8ro, } \\ \text { New York, 1903) } \\ \text {.. } \\ \text {.. }\end{array}\right\}$	The Pullishers
Toni, J. B., Sylloge Algarum. Vol. iv. Sect. iii. Florideæ. (8vo, Patavii, 1903)	The

Drude, P., The Theory of Optics. Translated from the German by C. Riborg Manu aud Rott. A. Millikan. (Svo, London, $\}$ 1902)
 Drugs. (8vo, London, 1903)..
$\left.\begin{array}{c}\text { Report of the British Assoc ation for the Advancement of } \\ \text { Science, 1902. (8vo, London, 1903) }\end{array}\right\}$ Frank Crisp, Esq.
The Publishers. rty-First Aunual Report of the Lucal Goverument Board, 1901-2. Containing the Report of the Medical Oficer for 1901-2. (8vo, London, 1903).

The Local Government Board.
Catalogue of the Madreporarian Corals in the British Muscum) The Trustees of the (Natural History). Vol. iv. (Ito, London, 190:) British Museum.
Aquatic Insects in New York State Bring Bulletin 68, Ento-, The Directors of the mology 18, of the New York State Museum. (Svo, Albany, $\}$ New Yorlistate 190:3).

(8vo, London)
Мизеи.

Ir. Glaisher.
 (8vo, London).
A Microscope, by Negretti and Zambra, and ace rsories, and a number of Slides bel nging to the late James Glaisher. F.R.S. a furmer President of the Society

Mr. F. W. Watson Baker exhibited and described Messrs. Watson and Sons' new attachable mechanical stage, which was a simplified form capable of being fixed to almost any ordinary stage by means of a thumbscrew. The plates were made to run between gnides instead of in dovetailed grooves, and the motion was given by a brass roller covered with india-rubber, mounted at the end of the stem carrying the controlling milled head. It would be fcund quite large enough for all ordinary purposes, having a movement of about $1 \frac{1}{2} \mathrm{in}$.

The thanks of the Society were unamimously voted to Messrs. Watson for their exhibit.

Mr. J. W. Gordon exhibited some remarkably fine photo-micrographs of Pleurosigmu Angulutum, taken with a compounding draw tube fitted with a vibrating screen, such as he had recently exhibited at a Meeting of the Society, and described at p. 420 of his paper published in the Angust Jomnal. The instrument employed in producing them was fitted with a $x_{-1}^{1}-i n$. oil immersion as the principal objective, above which a $\frac{1}{2}$-in. objective was mounted to act as a magnifier: and the photograph then obtained was further enlarged by the usual camera process. The whole magnification obtained was $396 \times 24=8500: 1$. The somee of illumination in this instance was a pin-hole lighted by a Welsbach burner. He thonght it wonld be better to use a limelight for the purpose, becunse with a Welsbach mantle the stitches of the fabric were discernible in the field of the instrmment; and, althongh they were sufficiently large and ont of focus not to destroy the details, the somewhat striped effect altered the appearance of the picture as a photograph. (Unfortmately, throngh some temporary disarrangement of the Epidiascope, an attempt to show the photographs upon the sereen was not sufficiently successful to afford any idea of the sharpness of detail so remarkable in the prints, which were therefore handed round for inspection.)

Mr. C. Beck regretted that the phowograph did not show to full advantage on the screen, but the original would be found much better ; it was of special interest on account of the means by which it had been prodnced. When it was considered that it had been taken throngh a ground-glass screen, rapidly oscillated, it , was astonishing that the hexagonal markings were clearly shown. Another remarkable thing abont it was, that the original image formed by the Microscope had been magnified by mother Microseope to the extent of $\times 150$, whereas the microscopic image viewed with an A eye-piece is only magnified \times ?. The result certainly left no doubt that Mr. Gordon had demonstrated the perfect suceess of his method, which some persons must have looked upon with horror at the time when it was first mentioned.

Mr. J. IV. Gordon said that Mr. Beck had referred to a groundglass screen. He had mentioned this in his former commmonication, and most of his work had been done with such a sereen, hut he ought to hare said that the particnlar specimens before the Meeting were taken with a screen formed of a thin film of wax between two cover classes, which, although not quite so diaphanous as gromed grlass, had some advantages. He had used this becanse he had it by him at the time; althongh it was not better for photography than a gromul glass it was certainly better for the eye, as a scintillating effect was prodnced by ground glass however finely it had been rubbed down. In the wax film, on the contrary, the grain was so inconspicuous that when the screen was set in vibration it wholly disappeared, and with this therefore they got rid of the scintillation altogether.

The thanks of the Society were cordially voted to Mr. Gordon for his commmication.

Mr. F. W. Millett's paper "On the Recent Foraminifera of the Malay Archipelago"-being purt xv. of the series-which he had contributed to the proceedings of the Society, was taken as read.

Mr. C. D. Soar then exhibited upon the screen a large number of drawings of freshwater mites, and gave a lrief explanation of the special characters of each as they were shown. Many of the original speeimens from which the drawings were made were exhibited monder Microseopes in the room.

The President, in moving a vote of thanks to Mr. Soar, expressed the pleasure which the exhibition had afforded him from the admirable way in which the drawings had been shown and for the care and skill which was displayed in their production. It was a matter for hearty congratulation, which he was sure would be cordially offered by members to the anthor. The Society was greatly indebted to Mr. Soar, not only for showing them the drawings and explaining them, but also for the exhibition of so many beantifnl specimens of Hydrachnea under the Microscopes upon the table.

The thanks of the Meeting were then manimonsly voted to Mr. Soar for his demonstration.

Mr. Wesché said he had been much struck dming the exhibition of Mr. Soar's drawings by the large number of secondary sexual peenliarities which seemed to exist. He had been under the impression that in most cases these were confined to the neighbourhood of the rostrmm, as in the Ticks, but should be glad to hear from Mr. Soar what was the meaning given to the term "genital area," which hatd been frecpuently used, and what was the relationship between the "genital area" of the male and that of the female.

Mr. Soar said he did not know that the rostrum was concerned in the act of fertilisation, but he had observed that the third pair of feet had been locked in the genital opening of the male, from which they had dragged out a ball and forced this into the orifice of the female. He perhaps ought to have said the "so-ealled "genital areas, because he believed that there was no aetual contact between these at the time of fertilisation.

The Secretary read a letter from the Croydon Mieroscopical Society intimating that their Ammal Son'e wonld take plate on November 1sth, and asking the help of any Fellows of the Royal Mieroseopical Society who would assist them by exhibiting with their Microscopes on that occasion.

The following Instruments, Objects, \&c., were exhibited:-
The Society:-A Microscope, by Negretti and Zambra, formerly belonging to the late Mr. James Glaisher.

Mr. J. W. Gordon :-Photomicrographs of Plenrosigma angulutum.
Mr. J. D. Soar :-Abont fifty drawings of British Hydruehnea, projected on the screen by the Epidiascope.

Mr. Hy. Taverner :-The following slides of British Hydrachmea: Arrlenurus ornatus of Atax intermedius o\%: A. Tuterneri o ; A. ypsilophorus $甲$; Diplodontus despiciens ; Hydryphentes dispur ; Limnesia

Mr. F. W. Watson Baker :-A New Attachable Mechamital Stage, made by Messrs. Watson \& Sons.

Dec. 16th, 1903

MEETING

Held on the 18 th of Novenber, 190:3, at $\because 0$ Hanover Squabe, W. Dr. Henry Woodward, F.R.S., President, in the C'hair.

The Minutes of the Meeting of the 21 st of October last were read and confirmed, and were signed by the President.

The List of Donations, exclusive of exchanges and reprints, received since the last Mecting, was read, and the thanks of the Society were voted to the donors.

From

Brearley, H., The Analytical Chemistry of Uranium. (Svo,
London, 1903)

Dr. Edward Horder exhibited and described a convenient metal Clinical Case, : $: \frac{3}{4} \mathrm{in} . \times$ 泣 in. $\times 1 \frac{1}{2}$ in., which had heen made under his instructions hy Messrs. Charles Baker, of $2.4+$ High Holborn, W.C., and would, he thonght, be found extremely useful where weight and space were any consideration, as was always the tase when travelling abroad. Instead of using the ordinary ? in. $\times 1$ in. glass slips, which were not only heavy, lut deteriorated rapidly and soon beeame useless in hot climates, he mounted his specimens of hlood, sputnm, \&e. between two sizes of cover glasses, and had devised a metal frame (which he showed to the meeting) to hold these when it was desired to examine them under the Microscope.

A small metal case was also exhibited by Dr. Horder holding fifty specimens so momnted, which could easily lee carried in the waistcoat pocket.

The Clinical Case contains besides the metal frame a space for slips of glass, a bottle into which two sizes of cover-glasses can be placed in spirit, four bottles for different fixing and staining fluids, spirit lamp, pipette, pestle and mortar, filter fumnel, slips of tissue and dreing paper, platimm needle, piece of linen, vaseline, xylol balsam, surgical needles, wateh-glasses, \&c., \&c. : also a number of stains in "Soloid" form.

The box and its contents will donbtless be fonnd extremely useful in the tropics, and also to practitioners at home.

Dr. Horder also showed a small rack on which stamed specimens can be placed to dry.

Another small box ($1 \frac{3}{4} \mathrm{in} . \times 1 \mathrm{in} . \times \frac{3}{8}$ in.) was shown by him which facilitates the collection of blood films in daily practice. It has two compartments, and contains cover-glasses, paper for making smears, needles and platinum wire.

The glass smeared with blood, pus or sputum loy the paper, when dry is placed between a slip of tissue paper, which can receive the name of the disease.

The thanks of the Meeting were voted to Dr. Horder for his exhibit and explanation.

Mr. Taverner exhibited upon the screen two photographs of the legr of a water mite which he had taken throngh the separate tubes of a binocular mieroseope. He said this experiment proved the images seen by each eye were really dissimilar and capable of producing a true stereoscopic effect; if they had been alike the apparent solidity of the object as seen through the binocular would be only a mental effect. H_{e} found in this way that there was a sufficient difference between the pictures to produce a proper stereoseopie projection.

The thanks of the Society were roted to Mr. Taverner for his exhibit.

Prof. J. D. Everett, F.R.S., read a "Note" on Lord Rayleigh': paper of $18 \% 6$, reprinted in the Society's Journal for August, Il . $447-47 \%$.

There was one part of the paper in question that he had always found specially difficult, namely that in which the transition is mate from direct to oblique illumination of a grating under the Mieroscope. He had recently suceeeded in finding a more direct mode of deducing the results there established ; and that mode was set forth in the present communication. Lord Rayleigh, to whom he sulmitted the "Note" several weeks since, had been too much occupied with some special investigations to look thoroughly into the matter, lout suid that on cursory examination the new method of deduction seemed to be correct. It is intended to supersede the tro pages of the original paper which begin with Equation :3 (where imaginary multipliers make their first apqearance) and end with Equation 45.

He proceeded to explain his proof by diagrams and formmla on the blackboard.

Dr. Johnstone Stoney prefaced his remarks by observing that he had for several years been engaged in studying optieal prohlems by a new method, and especially microscopical problems of the kind dealt with in Dr. Everett's paper.

Students of nature did not always sufficiently keep in view the distinction between a hypothesis and a theory I theory is the best supposition we can form as to what that machinery is which is actually operating in nature ; and accordingly theories are correct or incorrect. Their merit is to be true, irrespective of whether we can make much or little use of them. On the other hand a hypothesis involves the supposition that certain artificial machinery is lrought into operation, the study of which we have reason to expect will help us forward in our investigiltion. The hypothetical machinery mar he, either that which we suppose to be operating in nature-in which case the hypothesis is also a theory -or, as more frequently happens, it is simplee machincry which we substitute for some more complex operation soing on in nature. It is yuite sufficient justification for a hypothesis, that we can make grood use of it : whereas a theory must aim at heing true.

Thus, if our investigation requires us to describe the light which traverses the space between the cover-glass over a microscopic object and the front lens of the objective, which space is filled with some uniform medium, usually air or oil, then the correct theory appears to be, that this light is a mass of undulations, the waves of which consist of alternating electro-magnetic stresses ; whereas, it is the usual practice to substitute for this the vastly simpler hypothesis that the light consists of rays. Nobody supposes, or at least ought to suppose, that these hypothetical rays are what really exist ; but the substitution of their easily studied machinery for the much less manageable machinery of nature is legitimate, inasmuch as it can be shown that it leads to correct results in a great number of the problems most commonly met with. This hypothesis, upon which the whole of the science of Geometrical Optics is louilt, is one of the most usefnl hypotheses of the physicist.

Nevertheless it is desirable that the study of this branch of nature shall also be carried on by making use of the theory of light, and this the speaker had found to be practicable by availing ourselves of a new method of resolution. It is possible to prove that however complex may be the mass of luminous undulations which traverse a space filled with a uniform medium, the whole of this light can be resolved into simple umbulations of flat wavelets, one altaneing across the space in every divertion in which light traterses it, and each travelling across it without luving undergone change while doing so.

The theorems required for mathematically handling this method of resolving light have been worked out, and it has been found that not only can it deal with problems of optics which lie beyond the grasp of seometrical opties, but that it enables us to treat many problems that have leen investigated by the older methods in such a manner as to present to the scientific imagination a singularly distinct picture of what really oceurs.

There is no class of problems in whith the advantages of the new method are more conspicuous than when we are dealing with the resolving power of Microscopes. It at once shows (1) that the limit of resolving power for each wave-frequency of the incident light depends, so far as the instrument is concerned, not on the objective but on the combination consisting of the objective and condenser ; (\because) that the resolving power has different limits according to the kind of object presented for resolution ; (?) that amonest these the only object in respect of which the resolving power is aceurately definite is a ruling of equidistant parallel lines or a straight row of equidistant dots ; and (4) that the limit of resolution of each other kind of object bears an ascertainalle relation to this resolution of equidistant lines or dots, which may be called the standard resolution. It also shows the conditions under which the detail upon an object ceases to present the appearance of 'spherules,' and exchanges this appearance for one in which the shape and size of the specks is presented. The limit of the conditions noder which this latter appearance is presented is the limit of fully satisfactory microscopical vision. It also shows that a single pair of close objects can be seen as two under conditions which are insufficient to resolve a ruling of which the spacing is the same as that of the two
objects ; and that, when this is the case, the two objects will spom in the Mieroscope (or telescope) to he farther asunder than they really are.

These results of the new method are here selected from amongst its many achierements, becanse ther are all suseeptible of striking verifieation' by experiments, conducted upon the exquisite rulings upon the under-side of a cover-glass, which have been produced by Mr. (irayson, of Melbourne.

The way in which these experiments were carried out, and the apparatus employed, were then described by the speaker: and he called special attention to the importance of aceurately adjustine the distance between the source of light and the condenser ; but the time at his disposal dit not admit of his describing how to make this important adjustment.

In the course of his remarks, he mentioned that he had found details, which he had not seen described, upon the diatom known as Pinmmlaria nobitis. Each of the tongue-like costa upon this diatom has upon it from six to eight rows of somewhat more closely packed dots, each row extending the whole length of its costa, and the whole presenting an appearance not unlike that upon the tongue-like costa of the more easily resolved diatom sold under the name of Eupleuria pulchella, which seems to lee of the same genus as that which Yan Heurek calls Entopyla, and figures upon page : 40 of his Treatise.

Finally, Ir. Stoney expressed his readiness to make arrangements, so far as he could, to show the forecoing experiments to any Fellow of the Fociety who is specially interested in this branch of microseopical study.

Prof. Ererett said that Lord Rayleigh had made referenee in his paper (see p. 448) to assistance which had been furnished to him by Dr. Stoney.

On the motion of the President, the thanks of the Society were unanimously voted to Prof. Everett for his paper.

Mr. W. Wesché gare" a brief resmé of his paper "On the month parts of the Nemocert, and their relation to the other families of Diptera," which was illustrated by a momber of excellent drawings shown upon the screen by the Epidiascope, the last of the series being coloured to show the homologous parts of the month organs in different families, as compared with those of the Cockroach, which was taken as a type. By the kindness of Messrs. Baker, of High Holborn, who lent a number of their mieroscopes, Mr. Wesché was able to show a number of mouth parts of blood-sucking and disease-carrying Diptera : amonest them were Glossina morsituns (nagana disease), (t. pulpulis (sleeping sickness), Stegomyia fasicuta (yellow fever), and Anophples cinerpus: (malaria).

The thanks of the Society were cordially roted to Mr. Wesche for his commmication, and the explanation given of the plates which har been exhibitet. Also for the excellent series of preparations illustrative of the subject exhibited under Mieroscopes kindly lent for the occasion by Messrs. Baker.

The President said he had arranged for two more visits of the Society to the Natural History Musemm the first on Saturday, November Exth, and the second on Saturday, December ith, when he shonk be pleased to welcome as many Fellows of the Society as came, and to give them an hour's demonstration on each afternoon, which he hoped wonld ie of interest, the subjects chosen being Fossil and recent Mammals and Reptiles. The party on each occasion would meet at Owen Statue in the Central Hall at e..30 p.at. This was somewhat earlier tham on former occasions, lont it had been found neeessary to fix this hom as the Museum was closed at this period of the year punctually at 4 o'clock.

New Fellows.-The following were elected Ordinary Fellows:Mlessrs. George s. Barton, Norbert Vam Laer, Arthur Skimer, and Robert Spry.

The Following Objects, Instruments, \&c. were exhibited :-
Dr. Edward Horder:-Clinical Case fitted with stains, \&c., for blood work, and specimeu slides, shown under Microscopes, of leprosy bacilli and Filarin stmqumis hominis.

Mr. Taverner: - Lantern slide of the sterenscopic images obtained by photography from the binocular microscope. Enlarged prints of the same exhibited by means of the stereoscope.

Mr. W. Wesche :-Drawings shown on the screen hy the epidiascope of the mouth-parts of rarious blood-sncking flies, and the following slides exhibited monder Microscopes, in illnstration of his paper :-

Anopheles cinereus of, host of the malaria parasite; Cerutopogon mulictris, biting midge ; (Inrysopscecutions; Culer pipuens o : Dinoreritps. cturer of-the larve of this mosquito are parasitic on crabs (Barbandos); fanssina morsituns, host of the trybuosoma, germ of the magana disease of horses: Gilussime putpulis- the lite of this insect canses the "sleeping sickness " in Usanda: Hemnotolim irritans, relative of the Tsetse flies ; Leptis scolopureel ; Melophrefus orimus, so-called "sheep tiek"; Simulium reptuns, sand fly; Stegomyiu fusciute \& , host of the germ of yellow fever; Tabemus sudelicus.

CORRIGENDUM.

Pate $46:$, line 14 from foot, shonld read, "according as v exceeds or"

I N D E N.

A.

Abbado, M., Allescherina and Cryptovalsa, 207
Abderlalden, E., Chemical Aetion of Growing Fungi, 651
Ablominal Styles, Appendieular Nature, 175
Abel, M., Examining Oligochrete, 106

- Regeneration in Limicolæ, 179

Absidia, Study, 33:)
Absorption and Secretion in Terrestrial Isopois, 39
Acanthia lectularia, Berlese's Bursa in, 36
A canthias, Peculiar Cestode from, 615
Acanthias vulgaris, Spermatozoa, 593
Acanthometrea, Observations, 503
Acanthometridre, Reproduction, 45
Aearina, Thick-skinued, 177
Acetylene Gis Apparatus, 98
Achaline, P., Identifieation of some Anarobie Bacteria, 78
Achromatism, Eye-pieee Lens Interval, $2: 1$
Acleromatium oxaligerum, 755
Acids, luactive, Biological Method for Resolving into their Optieally Active Components, 533

- Produetion by Fungi, 752

Acocantherin: an African Arrow-Poison, 508
Aerasieæ, 752

- Bacteriophagous, 752

Acrosome of Spermatid of Notoneeta, 295
Actiniaria of the Olga Expedition, $4 t$
Actinic Light, Some Experiments, 766
Adder, Formation of Zymogen in Gastric Glands, 27
Aders, W. M.. Division of Protolydra leuckarti, 44

- Spermatogenesis in Hydra and Aurelia, 304
Adiporenic Function of Liver in Invertebrates, 31
Adjustable Clamp and Razor-holder, New, for the Minot Nierotome, 234
Adrenalin, Experiments, 28.5
Adrenaline, 30
Aëriferous Canal in shell of Certain Pulmonata, 492

African Flora, xxiv., 31 S Agaricaceæ, Italian, 212
A garics, Critieal, 532
Agaricus Hemriettr, 532
Agrolutinating and Cilio-phagocytic Orqans, 31
Agerlutination, 78

- by llood of Emulsions of Mierobes, 75i; Agrieulture and Bacteria, 84
Air, Permeability of Cell-walls, 194
Alaria, New, 636
Albarran, J., Functional Inequality of the Kidneys, 488
Albinism in Birds and Mammals, 712
Albumen, Aetion of Yeast on, 617
Albuminoids in Plants, Decomposition and Regeneration, 317
Alcock, J., Deep-Sea Life in Indian Seas, 597
Alcohol, Influenee on Development, 481
- Production in Seeds, 518

Alcyonidia, and Related Ascorhiza, 727
Aleyonirlium, New Species, 500
Alder, Disease, 644
Aleurodidie, Vasiform Orifice, 721
Alge and Peridiniz, German, 524

- I'nltivation Medium, 767
- Fossil, 203
— - from North America, 639
- Fresh-water, 326, 629
———Action of Salt Water on, 203
— — — British, 326
- — Formic Aldehyde as a Food-stuft', 316
— - - from South Patagonia, 327
— — — Zambesi, 327
——— Nuclear Stains, 630
——— of eertain Lakes, 638
————of the Azores, 326
— — - of the North of Ireland, 202
— - - of the Royal Gardens, Kew, 201
- from Central Asia and China, 639
- Javan, 20:;
- Marine, Catalogue of Dritish, 66
—— from Dago, 67
- - Japanese, 744
- - New Zealaud, 68
- - North American, 827
—— of Iceland, 52 S
——of Siciiy, 688

Algæ, Marine, of the Faeröes, 67
——of the Shetlands. 743

- Polymorphism, 636
- Miuute, Nitrogenous Metabolism, 623
— of Galapagos Islauds, 67
— of North-Western Americ $1, .527$
— of the Gulf of Naples, 639
- Scottish, 203

Algal Flura of Russia, Literature, 326
Algological Notes, 630
Alimentary Canal of Leech, Minute Structure, 612

- Tract of Leeeh. :302
— - of Silphidre, 607
Alkaloids as a Source of Nitrogen, 737
— of Ilicentra formosa, 732
Allen, B. M., Embryonic Development of Mammalian Ovary and Testis, 706
Allescher, A., Kryptogamen-Flora: Fungi imperfecti, 209, 535
Allescherina and Cryptovalsa, 207
Allis, E. P., jun., Lateral Canals and Cranial Boues of Polyoton folium, 288
Allolobophora fueticta, Sperm Centrosome and Aster, 724
Alloys, Certain Properties of the GoldSilver Series, :375
- Effect of Superheated Steam upon Tensile Strength, 683
Alma, New Species, 180
Alternaria Brassicie and Polydesmus cxitiosus. 338
Altschuler, E., Enrichment Method for Typhoid Bacilli, 368
Amanita, Genus, 72
Amar, M., Function of Calcium Oxalate iu Plant Nutrition, 51.5
Amber, Diptera, 606
Amberg, O., and Others, Fresh-water Alge of certain Lakes, 638
Amblystoma tigrinum, Acceleration and Retardation of Metamorphosis, 707
Amitotic Division in Vertehrata, 50 a
Amoeba, Nuclear Division, 305
Amœobe and their Cysts, Influence of Light on, 617
- Conjugation. 503

Amœbocytes, Rôle in Polymnia nebulosa, 724
Amphibia, Development of Pineal Body, 594

- Heterotypic Maturation-Mitosis, 707

Amphibians and Reptiles, Biological Observations, 165

- Influence of Central Nervous System on Development of Limbs, 59.
- Retrogressive Changes in Ovarian Follicle, 2:
Amphion, Genus, 3!
Amphioxns, Miuute Structure, 487
- Vascular System, 489

Amphipods, Antaretic, 611

- North Americau, 72

Amphipods, Terrestrial, Death-Feigning, 723
Amphiuma, Intestinal Epithelinm, 597
Amylomyces β, Research, $20 t$
Amylomyces Rouxii, 68
Auabena, 6.5
Anaerobic Cultivation, 104
Ancel, P.. Sex Determination of Gametes in Hermaphrodite Gobals, 3:

- Sexual Differentiation in Hermaphrodite Gland of Limux maximas, 718
Anderson, K. A., Re-diseovery of Cephalodiscus. 303
André, G., Nutrition of Plants deprived of their Cotyledons, 62t
Andres, A., Permeability of Frog's Skin, 30
Andrewes, F. W., Resisting Powers of Staphylococcus pyogenes aureus, it1
Andrews, T., Microscopic Appearauces of Voleanio Dust, 374
Andrusoff, N., Brackish Water Cockles, 493
Anemones and Variation in Metridium, Notes, 4.5
Augewandten Optik, Handbuch der, 102
Angiosperms, Morphology, 735
- Origin, 62:
- Recent Investigations in the Embryosac, 53
Animal Cells and Yeast, Study of Nuclei, 20.)

Animals and Plauts, Arseuic in, 186

- Normal Presence of Arsenic in, 488

Annandale. N., Eating Habits of Galeopithecu: volans, 30

- Malayan Phasmide and a Flower-like Beetle Larva, 36
Anuelids of the Cette Region, Revision, 498
Anodonta, Utilisation of Carbonate of Lime, 715
Anonia, Muscular Apparatus, 171
Anomodon Toccoz, 523
Anonacer, Anatomy, 51
Anopheles in the Iberian Peninsula, 606
Ant, Study, 3.5
Autherozoids, Ejection, 521
- in Marchantia, Formation, 31

Antibodies of Spores of Bacteria, 218
Antipodal Cell, Division, and Formation of Egg in Juncaces, 736
Ants, Hibernation, 719
-Sensitiveness to Ultra-Violet and Röntgeu Rays, 171
Anuropus and Bathynomus, 611
Apertometer, Abbe's, Method of Using, 93 Apertometry and Focometry, Simple Method, 94
Aperture, Numerical, and Rapidity, 765
Aphanomyces, Spore-Development, 641
Apogamy, Cy tology, 740
Appendicular Nature of Abdominal Styles, 175

Appendicularia, Development. 167
Apple, Black spot. 71
A P, les, Disease, 529
Arcangeli, A., Detection of Phowphorus in Plants, 49
Arcangeli, G.. Notes on Various Fungi, 6.31

Arechavaleta. J., Flora of Urnguay. 57
Argutinsky, P., Mlasmodiem praceox, 619
Aristolochiacee, 51:
Arkövy, J., Leptotlurix racemoan. 75
Aronson, H., Staining Nervous Tissue with Gallein, 560
Arsenic in Animals, 29, 598

- in Eggs of Fowl, 488
- in Plants and Animals, 186
- Normal Presence in Animals, 488

Artery, Perforation of Vein l,y, in Cat, 711
Arthur, J. C., Problems in the Study of Plant Rusts, 531

- and A nother, Cultures of Uredinex, 530 Ascatis, Hind-End, 180
- Sense-Organs, 499
- Unfertilised Ova in Human Fæces, 614

Asclepiadacer, Morphological Study, 512
Asclepiads, Development of Pollen, 53
Asclepias curassavica, New Disease, 748
Ascobacterium, New, from Sugar Cane, 82
Ascocarp in Monascus, Morphology and
Devclopment. $\because 00$
Ascomycetes, Epiplasm, 644

- Metachromatic Corpuscles, 751
- Sexuality, 644

Ascorhiza and Related Alcyonidia, 727
Ascospores in Erysiphaceer, InfectionPowers, 645
Asexual Reproduction, 628
Asimunella, Variation in Genus, 717
Aso, Ki., Action of Sodium Fiuoride and Potassium Iodile :and Potassinm Ferro-c yanide on Plants, 518

- Lime in Phanerogamic Yarasites, 192

Asparagine, Formation in Metabolism. 192
Aspergiller Parasitic on Human Beiugs, 749
Assimilation in Green Plants, 514
Aster and Centrosome, -perm, of Allolobophora fetida, 724
Asterconium Succarloi, 337
Asterosteptidæ, $7 \times!$
Asymmetry, Normal, of Wings of Naucoris cimicoides, 174
Atlantis. Lost, 715
Attachable Mechauical Stage, Watson's "Argus." 761
Attems, C. Graf, New Myriopods, 297
Augener, H., Studies on Gephyrea, 725
Aurelia and Hydra, Spermatogenesis, 304
Autolytic Processes in Pickled Herring, 31
Auxospores of Diatoms, 632
Axial Filament in the Adult Connective Tissue Fibril, 596

Axis-Cylinders, Staining with Carmin, 107
Ayers, H., Morphology among Animals, 487
Ayrton, W., New Vorticellid, 504
Azolla, Root Development, 520

B.

Baar, R., Pacific Horuy Sponges, 729
Babes, V., Origin of Giant Cells, 597

- Parasite of Texas Fever, 618

Baccarini, P., Endognue, 332

- New Hypomyces, 207

Bach, A., Fnnction of Perosides in the Living Cell. 317
Bachmann, H., Cyclotella bodmion var. lemanica, 634
Bachmetjew, I'., Calorimetric Measmrements in Reference to Pupe of Lepidoptera, 33
Bacilli, Acid-fast, in Python reticularis, 660

- Differentiation of True and False Diphtheria, 366
- Presence of strictly Anaerobic Butyric Acid, and of other Anaerobic Species in Hard Cheese, 661
- Typhoid, Enrichment Method, 365
- Typhus, Rapid Diagnosis, $3+3$

Bacillus, Acid-tast, Disease of Rat caused by, 660
Bacillus aerogenes aerophilus agilis, 81
——capsulatus in Cireulating Bloor, 82

- coli and Bacillus typhosus, Differentiation, 367
- - communis and Bacillus typhi abdominalis, Differentiation, 80
———Method of Detecting the Presence in Shelltish, 2:2!
Bacillns, Cultivating the Influenza, 105
- Diphtheria and Pseulo-Diphtheria, Differentiation, 343
- -- Group, New Pathogenic Microbe, 343
Bacillus Diphtherix, Differential Stain, 370
- icteroides, New Methorl of Isolating, 767

Bacillus, Influenza-like, from Dng, $3+2$
——— from Rat, 342

- New Red Pigment-forming, 342
— of Epidemic Dysentery, $6 \overline{\mathrm{y}}$)
— of Leprosy, 218
- of Soft Sore, 83

Bacillus typhi abrlominalis and Bacillus coli commanis, Differentiation, s0
Bacillus, Typhoid, Immunising Effects of Contents, $5+1$
—— Intracellular Toxin, 217
Bacillus typhosus, Action of Alcoholic Fermentation, 80
—— and Bacillus coli, Differentiation, 367

- vescularum and Gummusis, $8:$.

Bacteria, Acil-Rennet-forming, in Milk, 77

- Anaerobic, Biology, 340
- - Cnltivation, 3 ± 0
- - 1dentification, 78
- and Agriculture, 84
- and Particles, Ultra-Mieroscopic, On the Rendering Visible, 573
- and Saccharomycetes, Cell-Nucleus, 68
- Antibollies of Spores, 218
- Denitrifying, Accumulation Experiments, 535
- Destruction of Non-nitrogenous Organic Substances. 216
- Diarrhœea-producing, Chemical Products, 7.5
- Easy Method of Staining Flagella, 237
- Effect of Oil, 340
- in Daily Life, 219
- in Pus from a Gas-containing Abscess, 341
- Luminons, 756
- Method of Mounting from Fluid Media, 561
- Nitrogeu-assimilating, 659
- Nitrogen-fixing, 540
- of Leguminous Tubercles, Question of Species, 342
- of Milk-ducts of Cow, 83
- l'arasitic in Intestine of Chironomus Larve, 294
- Passage through Filters, : $:+1$
- Penetration of Plants, 216
- Physiology of Spore-formation, 339
- Pigment, of Water, 341
- Psychrophilic, 7!
- Stracture, 79
- Thermophilons, 539

Bacterial Granules, Method for Staining, 2:37, 371

- Light, Experiments, fig2
- Origin of Veqetable Gums, 339
bactericidal Action of Ultri-Violet Radiations, 7.6
Bacteriological Examination, Apparatus for Collecting Samples of Earth, 104
- Technique, Eyre's, 374

Bacteriology, 218

- of Natural Mineral Watcrs. 83

Bacteriophagons Acrasiee, 7.22
Bucterium coli, Epidemic of Guinea-pigs caused by a Yariety, 342
Bacterium, Colourless, obtaining Carbon from the Air, 340
Bucterium Fragi, 81
Barterium, New Gum, 77

- - in freshly-drawn Milk, 343
- Patlogenic for Honse-Rats, 341

Bagnall, J. E.. Ricciocarpus natans, 323
Bagshaw's 'Elementary Photomicrography,' 101
Lain, S. M., Manipulation of Sections of Leaf-C'uticle, 770

Baker, F. C., Monstrosities in Bivalves, 33

- Tib Variation in Cardium, 718

Baker, F. W. W., Messrs. Watson and Sons' new Attachable Mechanical Stage, 779

- New Pattern Portable Microscope, 562

Baker, R. T., Leaf-Venation and Chemical Constituents of Encalypts, 50
Balaton, Microscopic Fresh-water Animals, 716
Balicka-Iwanowska, G., Decompostion and Regeneration of Albuminoids in Plants, :17
Bambeke, Y., Nuclear Belasiour and Spore-Formation in Iydnangeum rarneum, 750
Bananas, Disease, 70
Bancroft. T. L., Intermediate Host of Filaria immitis, 40
Bandi, J., New Method of Isolating Bacillus icteroides, 767
Bandi, W., Experiments with Pucciniæ, $64!$
Barbier, M., Study of Fungi, 212
Barbour, W. C., Lejennea in North America, 322

- North American Hepatics, 59

Barbour's Pocket Magnifier, 91

- - Micrascope, 90

Barker, B. T. P., Morphology and Development of the Ascucarp in XLonascus, 206
Barley and Malt, Micro-organisms, $214 ;$
Barnard, J. E., Luminons Bacteria, 756

- The Bactericidal Action of some CltraViolet Tiadiations as produced by the C'ontinuous-c'urrent Arc, 756
Barrett-Itamilton, G. E. H., Flight of Flying Fish, 288
Barsali, E., Italian Hepatics, 322
Barsanti, L., Cause of Floral Zygomorphism, 52
Bartarelli, E., Tubes for the Preparation of Serobic and Anaerolic (ultures under the Influence of Coloured Liays, 768
Bartels, E., Cysticercus fasciolaris, 1 \&1
Larus, -., Method of Demonstrating Newtou's Colours by 'Transmitted Light, 672
Basidiomycetes, Presence of a Kinase, 533
- Rescarch, 211

Bustian, H. C., Chlorochytrium, 6:31

- Spores of Vancheria, 631

Batelli, -., Adrenaline, 30
Bateson. W., Mendelian Heredity, $70 \in$
Bather, F. A., New Crinoid, 43
Bathyummus and Anuropus, 611
Bats, Cenital Apparatus, 711
Batters, E. A. L., Catalogue of British Marine Alga, 66

- Sontish Agee, 203

Baner, V., Metamorphosis of Nervous System in Insects, 604

Baumler, J. A.. Cryptogamic Flora of Presburg. 536
Bausch and Lomb, New Pattem Microseope, 244, 349
Bavay, A., Aëriferous Caual in Shell of certain Pulmonata, $4!2$
Beard, J., Embryology of Tumours, 705

- Germ-Cells and Germinal Continuity, 22
Beanverie, J., Structure of Botrytis cinerea, 647
Beek, C., 248, 569,780
- Spinthariseope 56:
- and Andrews, H., Photographic Lenses, 677
Beck's Metallurgical Microscopes, 348
- Pathological Microseope, 346
- Portable Continental Model, 544
- - "Star" Microseope, 345
- Process Micruscope, 346

Betr, R., Chromosoncs of Funaria liggrometrica, 628
Bee, Wax-making Orqan, 719
Beecher, C. E., The fenus Romingeria. 729
Bers, Microhe of "Loque" Disease, it
Beetle, Crelomic Grequrine, 307

- Tmbedded in Wall of Human Intestine, 720
- Larva, Flower-like, and Malayan Phasmidæ, 35
Beetles, Development of Wings. 293
- of Ireland, 176

Béguin, F., Structure of Digestive Canal in Reptiles, 163
Behrens, J., Retting of Flas and Hemp, 661
Behrens, W., Apparatus for Decanting off Culture Fluids. 557
Beijerinck. - ., Culourless Bacterium obtainiug Carbon from the Air, 310
Beilby. -., 569
Bell, F. J., Antaretie Eelinoderms, 303
Belloc, E., Diatoms from Moroceo, 744
Benecke, W., Culture of Hepatics. 321
Beniett, A., Equisetum liyemale. 19.:
liensley, R. Re, Brumer's Glands, 709
Benti voglio, T., Galareura cedriatict, 637
Berg, W., Contributions to the Theory of Fixation, with Particular Regard to the (ell-Nucleus and its Albuminous Bodies, 770
Bervendal, D.. Callinera liurgeri, 182
Bergevin, E. de, luterennversion of Sexual Orgaus in a Moss, 59
Bergh, R., Olisthobranchs from Gulf of Siam, 32
Bergmann, W., Gonads of IIesione siculu, 613

- Structure of Ovary in Cephalopods, 490
Bermuda Islands, 626, 716
Bernard, N., Germination of Orchids : a Symbintic Relationship. 787

Bernarl, N., Physical Conditions of Tuberisation in Plants, 54
Lerry, E. W., American species of Thimnfeldia. 738
Bertachini, P., Develrpment and Structure of Vitrenus Humour, 163
Bertranl, G., Arsenic in Animals, 29

- - in Egers of Fowl, tss
- Normal Presence of Arsenic in Auimals, 488
Besançon, F., Bacillus of Soft Sure, 83
Bessey, C. E., Conjuyate, 201
Bethe, A., Cell-Division, 161
Beyer. H., Anatomy of Anonacere, 51
Bezier. T', Albinisur in birts and Mammals, 712
Dibliography, $90,91,1010.162,103,105$, $114,115,224,22!, 234,23!2,240,: 373$, $374,560,6: 62,6203,624,4 i 27,474,678$, 681, 684, 734, 737, 740, 743, 744, 7.33, 7.4. 763, 764, $766, ~$ т 9

Bictrix, E., Emergence of Lobster Larve, 723
Billard, A., Excretory Cells in Mydroids, GIG

- Observations and Experiments on Clava squamuta, 44
Billings, F. H., Chellazogamy in Carya olitaformis, 313
Binocular Microseope, New, 85
Biogen-Hypothesis, 285
Biological Laboratory Methods, 240
- Method for Resolving hactive Acids into their Optieally Letive Components, $5: 3$
Bipaliide, Contributions to Study, 182
Bipalium Species, Studies, 41
Bird and Man, cioz
Birl-Embryo, 'Torsion of, 161
Birds and Mammals, Albinism, 712
- Blood-Vesscle of Spinal Cord, 457
- Clasification, 286
- Follicular Epithelium, 594
- How they make themselves understood by Man, 602
- of North and Middle Ameria, 28f;

Birefringence. Inproved Methon of Identifying Crystats in Rock Sections ly use of, and Improved Polarising Vertical Illmminator, $6: 8: 3$
Diverial Arm, Developmont in (ertain (rimoids, 728
Bivalves, Monstrosities, :3;
Blackuan, V. It., Germination of Tcleutospines, 210

- The Pyrocystex, 62

Bhack-Rot of Grapes, 2019
Black-Spot of the Aplle, 7 I
Blancharl, L. F'., Collmic Gregarine in a leetle, :307
Blood-Corpuseles, New Method of Counting. 681
-- - led, Structure, 596;

Blood-Films and the Triacid Stain, Fixation, 229
Blood-Plates in Mam, Vital Staining with " Brillantkresylblau," 7i:3
Blood-Vessels of the Spinal Cord of Birds, 487
Boas, J. E. V., Triplotænia miralilis, 181
Bodin, E., Action of Alcoholic Fermentation on the Bacillus typhosus, 80
Budy-Furn, Development of Extercal, 24
Boeke, J., Minute Structure of Amphioxus, 487
Bohlin. K., Centronella and Phrodactylon, 200

- Fresh-water Algre of the Azores, 326

Bohn, G., Influence of Radium Rays on Ora, 4-3
— — — - - on Tadpoles, $48: 3$
Boistel, A., New French Lichen Flora, 70
Bokorny, T., Action of Yeast on Albumen, $6 \dot{4} 7$

- Assimilation of Yeasts, 55
- Nature of Protoplasm and Enzymes. 624
- Yeast Ferment, 56

Boletus Briosiannm, 212

- sultomentosus, 746

Boley, P., Very Powerful Mierometric Microscope. 761
Bolton, I. M.. Rapid Method of Hardening and Imbedding Tissues, 768
Lone, Cancellous, Preparing 'ections, 769
Bones, Vomerine, Phylogeny, 710
Bonnier, J., New Type of Salpa-Cham, 490

- Two New Types of Epicarila, 178

Bordas, L., Alimentary Tract of Silphidse, 607

- Mandibular Glands of Larval Lepidoptera, 495
- Structure of Gizzard of Carabide, 296

Bordi, A., Speeies of Mosquitos concerned in Diftusion of Malaria, 37
Borge, O., Fresh-water Alge from South Patagonia, 327
Borgert. A.. New Tripylea, 45
Borgesen, F., Marine Alyou of the Faeröes, 67

- Marine Algæ of the 'hetlands. $74: 3$
- Pbvtoplankton of Lakes in the Faeröes, 744
Bürner, C., Toints of the Walking Legs in Insects and Myriopods, 604
Bornetina Corinin, 6.50
Bornmiiller, I., Finra of Ferro, 624;
Borzi. A., Seenls of Inga, 5 I3
Bos, J. R., Botrytis pavasitica, 209, 529
Büsembere, W... Monograph on German Spliders, 38
- Spiders of Germany, 497

Boston Testing Laboratories, Illmminating Apparatus for Metallography, $!7$
Botany, Australian Notes, 57

Jotany of the Ceylon Pantanas, 789
Bothriocephalns in Baltic Herring, 615
Bothriotenia proboscidea, Life-History, 42
Botrychium, $\because \because 0$
Botryosporium pulchellum, Taxunomic and Cytological Notes, 750
Botrytis cinerea, Structure, 647

- citricola, 64s

Botrytis, New Parasitic, 71
Botrytis parasitica, 209, 5:9

- vulgaris on Figs. 52!)

Bottini, A., Italian Mosses, 324. 524
Bouchard, C., Experiments with Adrenalin, 285
Boudier, M. E., Genus Amanita, 72
Bouilhac, R., Formic Aldehyde as a Foolstuff for Fresh-water Algæ, 316
Bouillon, sugar-free, Method of Preparing, 767
Bouin, P., Spindle-Residues in Cr.llDivision, 162
Bounhiol, J. P., Study of the Respiratory Exchanges in Water, 600
Buorguet, A., New Arrangement for avoiding Injury to Preparations when Focussing with Powers, 220
Bourguet's New Index Oeular, 91
Bourquelot, E., Hydrolysis of Polysiccharides, 517
Bourne, C. C.. New Molgulid, 602

- Some New and Rare Corals from Funafuti, 616
Boutan, L., Innervation of Mantle uf: Pecten, $3: 3$
Bouvier, E. L., Modes of Development in Onschophora, 297
Bonygues, M., Existence of a Pith in the Leaf-Stalk of Phanerogams, 504
Bowden, H., A Lens Pseudoscope, 762
liradley, O. $1 .$, , Muscles of Mastication in Lacertilia, 712
Bower, F. O., Morphology of Spore-producing Members; General Comparisons and Conclusion, 318
Bradypus, Notes on Development and Structure, 24
Brain of Isistius brasiliensis, 2 s :
Braithwaite, R., British Moss Flora, 323
Brand, C. J., Stapfia cylinhlrica, 630
l'rand, F', C yanophyctes, 754
- Osmotic Properties of C'ells of Cyanophyceæ, 658
Brauer, A., So-ealled "Telescopic" Eye of Eome Abyssal Fishes, 164
Breal, E., Fxperiments with Putatoes, 516
Bremer, Wr., Fat-destroying Fungi of Seeds. 534
Bresadola, J., Fungi Polonici, 535, 654
Briarley, H., Analysis of Steel-Works. Materials, 375
Priosi, G, Fungus Diseases in Italy, 213
- New Parasitic Fungi, 206

Briscoe, Dr. J. C., New Portable Microscope, 543, 562
Britton, E. G., Sematophyllum in North America, 196

- and Others, Anerican Mosses, 742

Brizi, U., Botrytis citricola, 648
Brizi, V., New Parasitic Botrytis, 71

- Perforation of Vine-Leaves, 71

Broman, I., Circulation in Embryonic Stomath, $5!5$
Bromes, Experiments on the Brown Rust, 72
Broustein, J., Differentiation of the Dipththeria and pseudo-Diphtheria Bacillus, 343

- of True and False Diphtheria Pacilli, 366
Broom, R., Phylogeny of Vomerine Bones, 710
Broughton, S., Decantation Method for Cleaning Diatoms, 679
Brown, E. E., Variations of Garter Snakes, 601
Brown, R. N. R., Atlantic Plankton, 526
Bruce, D., Detection of Trypanosomes, 77.5

Erues, C. T., Development of Stylopidæ, $4!4$
Brunner's Glands, 709
Bruntz, L., Excretion in Cirripedia, 299

- Excretory Organs in Malacostraca, 38
- Labial Excretory Organs and a Phagocytic Organ in Diplopoda, 177
Brnyne, C. de, Follicular Cells in Gonads of Gastropods, 492
Rryopsis plumose, :329
Brzezinski, J., Canker of Fruit Trees, 652
Dubak, F., Cultures of Uredineæ, 210
- New or Critical Species of Uromyces, 531
- Pliycomycetes, 641
- Rlizortonia violacea, 748
- and Others, American Mycology, 536
- - Notes on Uredineæ, 749

Bucholtz, F., Fungi hypogai, 651
Buckleya quadriala, Parasitism, 51
Budding and Fission in Madreporaria, Sigsificance, 45
Buffa, P., Fauna of Alpine Lakes, 167
Bühler, A., Retrogressive Changes in Ovarium Follicle of Amphibians, 22
Buhlert, H., Question of Species in Bacteria of Leguminous Tubercles, 342
Buhman, G. W., Insects and Petal-less Flowers, 604
Bundle Arrangement in Pefiole and LeafVeins in Dicotyledons, 509
Burckhardt, R., Historical Aspects of Zoology, 487
Bürger, O., Commensalism between SeaAnemone and Crab, 728
Burgerstein, A, Movement of Perianth Leaves of Tulip and Crocus, 191

Burkhardt, R., Brain of Isistius brasiliensis, 289
Bursa. Berlese's, in Acanthia lectularia, 36
Buscalioni, L., Mercerisation of Cotton Fabrics, 520

- Use of Collodion for Detecting Transpiration, 514
Buttel-Keepen, Il. v., Distomum clavatum, 182
Butterflies, Dimorphic Spermatozoa, 605
- ot Borderland between North and South America, 34
- Protective Resemblance, 719
- Seasonal Dimorphism, 35

Butters, F. K., Trichogloea lubrica, 637

C.

Cecal Appendix, ('oncomitant Absence, and Meckel's Diverticulum, 710
Calcareous Pebbles, 6.5
Calcium Oxalate, Fnnction in Plant Nutrition, 515
Callinera burgeri, 182
Caloglossa Leprienrii, 66
Calorimetric Measurements in Reference to Pupre of Lepidoptera, 33
Calvet, L., New Species of Alcyonidium, 500
Calyptopogon, 196
Cambage, R. H., Notes on Australian Botany, 57
Cambarus, Habits, 72:;
Camera, Koristka's Simplified Vertical, 355

- Lucida, Koristka's Abbe, with LensHokler, 554
- Vertical Microphotographic, Improvements, 101
Cameron, J., Development of Pineal Body in Amphibia, 594
Campbell, D. H., Recent Investigations in the Embryo-sac of Alıgiosperms, 53
Camus, F., French Moss Flora, 61
Canaliculi in Ganglion (ells, 708
- Intracellular, in Suprarenal Capsules, 597
Canals. Lateral, and Crauial Bones of Polyodon folium, 288
Cancellous I'one, Preparing Nections, 769
Canker of Fruit Trees, 652
Canidæ, Aucestral, 711
Carabidre, Structure of Gizzard, $\because 96$
Carabus, Phylogeny, 493
Carazzi, D., Berlese's Bursa in Acanthia lectularia, 36
Carbohydrate Reserves, Variation in Stem and Root of Woody Plants, 191
Carbon tetrachloride as a Clearing Fluid, 370
C'arbonic Acid Gas, Influence on Growth, 189

Carboniferous Epoch. Vegetative Activity, 513
Cardamine, Monograph of the Genus, 626
Cardium, Rib Variation, 718
Carditacea, Synopsis, 171
Cardot, J., Mosses of Alaska, 324
Carinaria mediterranea, Storing-Kidney, 717
Carlgren, O., Actiniaria of the Olga Expedition, 44
Carlsson, A., Marsupial Regrion of Marsupialia, 710
Carmin, Staining Axis-Cylinders, 107
Carruthers, W., 562, 543, 570
Carterius Stepanowi, 617
Cartilage-Cells, Structure, 27
C'artilage, Structure and Development, I63
Carya olivaformis, Chalazogamy, 313
Caryophyllacere, Anatomy of Certain Groups, 510
Casares-Cil, A., Homalia lusitanica, 523
Case, E. U., American Pelycosauria, 601
('ast Iron, Micrographic Study, 777
C'astcllani, A., Detection of Trypanosomes, 775

- Etiology of Sleeping Sickness, 344
- Trypanosoma found in Sleeping Sickness, 504
('astration in Man, Results, 707
('asuarina, Development of Ovule, 736
Caterpillar, New Case of Protective Mimicry, 494
- Changes in Imagines induced by Change of Diet, 294
- Precocious Development of Pupal and Imaginal Organs, 605
Catherinea, 523
C'ats. Polydactylous, Prepotency, 24
Catterina, G... Flagellated Mierococcus found in a Septicæmia of Rabbits, 663
C'aullery, M., Gall-forming Copepod in an Anemone, 300
- Phagocytic Absorption of Sex-Cells in Echinocardium cordatum, 727
Cauloglossum transversarium, 532
Caoutchnoe-y ielding Landolphias of the French Congo, 49
('avara, F., Observatious on the Nucleolus, 49
- Rare Nicilian Fumgi, 535

Cavers, F., Asexial Feprorluction, 628

- Biology of Hepatice, 629
- and Others, Ejection of Antherozoids, 521
Cedar Oil and Paraftin, Simple Device for Carrying Minute Objects through the (irades, 230
- White, F'ungous Disenses, 75
('ell, Action of F'ermentation on, 745
- Living, Funetion of Peroxides, 317

Coll-Division, 161
— - Spindle Residues, 162
——Theory, :3

Cell-Membrane of Desmidiacere, (65, 32s
Cell-Nucleus and its Albminous biodies, Contributions to the Theory of Fixation, 720
——of Saccharomycetes and Bacteriar 68
Celloidin, Imbedding, 770

- Sections, Apparatus for Facilitating the Manipulation, 238,377
- - Improvements of Aubertin's Mr-thod for sticking, 769
Cell-sap, Specific Gravity, 186
Cells, Formative Elastic Structures, 709
- Ganglion, C'maliculi, 708
- Growing, Effect of Temperature, 507
- of Plant. Nuclei contrasted witlı ihose of Unicellular Animals, 47
- of Uredineer, Changes produced in, 749

Cell-walls, Permeability to Air, 194
Cement, Injurious Effect upon Objectives, 762
Cementite and Ferrite, Simultancous Presence in Steel, 68:
Centipede, New Clasping-Organ. 496
Centronelia and Phæodactylon, 200
C'entrosome and Aster, Sperm, of Allolobophora foetich, 7et

- Nature of, 283

Cephalodiscus, Re-discovery, 303
C'ephalopod, Liemarkable Young Form, 716
Cephalopods, Chorion and Mycropyle, 168

- Spermatogenesis, 717
- Ntatocysts, 716
- Structure of Ovary, 490

Ceramiaceæ, Reparation of Injuy, 637
Cereals, Rusts, 648
Cerianthid, Adult Pelagie, $4 t$
Cervidax, Integumentary Organs, 2S4
Cestode, Peculiar, from Acanthias, $1 ; 15$
Chetognatha, Mid-water, Distribution in North Atlantic, 725
Chatomium Bostrychoiles, 206
Cheetophoracere and Ulotrichacee of United States, 65
Chalazogamy in Carya olivaformis, 313
Chamberlain, C. J., Embryogeny of Zamia, 330

- Mitosis in Pellia, 620
- Morphology of Angiosperms, 78.5

Chapin, ${ }^{3}$.. Influence of Carbonic Acid Gas on Growth, 189
Chapman, If., Red Rain, tise
Characere of Mark Brantenburg, 20:
Charrin, A., Reappearance in Offepring of Lesions artificlally imbuced in the Mother, 22
Chaucanl, G., New Secretory Apparatus in Conifers, 621
Cheel, E., Notes of Australian Botany, 58
Cheese, Hard, Presence of strictly Anierohic Butyric Acid Bacilli and of other Anaerobir Speries, 661

Chelonians, Phylogeny, 712
Chemical Defence and Other Adaptations in North African Orthoptera, 174
Cheshire, F. J., Method of Using Abbe's Apertometer, 93

- Simple Form of Reflecting Polariser, 49
- - Method of Focometry and Apertometry, 94
Chestnut Trees, Disease, 333
Chevalier, A., Carutchouc-yielding Landolphias of the French Congo, 49
- Monograph of the Myricacea, 57

Chevreux, E., Abyssal Lysiannassids, 611

- Marine Species of Hyalella, 17 S

Chiasma, Optic, in Teleosts, 287

- - of Reptiles, 28.5

Chick, E., Seedling of Torreya Myristica, 621
Chick, H., Nitrogenous Metabolism in Minute Algre, 623
Chilesotti, E., Motification of the Uranium Carmine staining of Achmans, 773

- Staining Axis-Cylinders with Carmin, 107
Chilodon, New Species, 46
Chironomus Larve, Parasitic Bacteria in Intestine, 294
Chitinous Cuticle, Morphological Significance, 33
Chiton, Function of Subradular Organ, 492
Chloragogen, Typical, of Oligochætæ, 300
Chorella vulgaris, Cultivation, 328
Chlorochytrium, 631
Choanephora, New England, 641
Chodat, M., Function of Peroxides in the Living Cell, :317
Cholera Vibrios and Diphtheria Bacilli, Staining, 235
Chondria crassicaulis, Vegetative Reproduction, 330
Chordaria flagelliformi: and Cystoclonium purpurascens, 527
Chorion and Micropyle in Cephalopods, 168
- Formation in Pyrrhocoris apterus, 607

Chromatin, Behaviour in Segmentation of Ovum of Gyrodactylus. 615
Chromatophores, Nature and Development, 167
Chromosomes, Behaviour in Spore-MotherCells of Higher Plants, 505

- of Fumaria hygrometrica, 62s
- of Hybrids, Behaviour, 505
- Reconstruction and Formation in Somatic Nuclei, 505
- Reduction, $7: 32$

Chrysanthemums, Nutrition, 737
Chrzaszez, -., Micro-organisms of Barley and Malt, 216
Chun, C., Nature and Development of Chromatophores, 167

Chun, C., liemarkable Young Form of Cephalopod, 7 If
Chytricliacere, New, 333
Ciaceio, (1 .. Intracellular Canaliculi in Supri-renal Capsules, 597

- Method of Demonstrating the Secretory Canaliculi in Suprarenal Capsules, 235
- Secretory Processes in Snprarenal Capsules, 709
Cilia, Compound, 77
Cilio-Plagocytic and Agglutinating Organs, 31
Cinematograph, Application of the Principle to the study of serial sections, 7 It
Ciona intestinalis, Arctic Variety, 102
- - Function of Ganglion, 489

Circulation in Embryonic Stomach, 505
Cirlipedia, Excretion, 299
Citron, E., Minute Structure of Simncoryne sarsii, 44
Citrus, Leaf, and ('rystal-Cells, 732
Cladocera, Synopsis of British Fresh-water. 497
Cladonias, Notes, 538
Clamp-Connections and Fusion in Uredinere, 750
Clasping-Organ, New, in Centipede, $49 ;$
Claude, H., Experiments with Adrenalin, 285
Clausilia. Synopsis of Palæaretic Forms, 492
Cluva squamata, Ohservations and Experiments, 44
Claviceps, Infection Experiments, 746
Claviceps purpurea, 207

- Observations on the Ergot of, 747

Clinical ('ase, Metal. 782
Clos, D., Theory of the Petiole in the Flower, . 22
Clute, W. N., and Others, North Americare Pteridophyta, 521
Cobelli, Li., Hibernation of Ants, 719

- Stridulation of Death's-Head Moth, $3 \pm$

Coceacea, Demoustration of Flagella, 10\%
Coccidia, Progress in Ntudy, 730
Coccidian, New, 18 a
Coccus lactis viscosi and the Causes of Sliminess and 'Threads in Milk, "16;
Cockerell, T. D. A., Variation in the Genus Ashmonella, 717
Cockles, Brackish Water, 49:?
Cockroaches, Paleozoic and Recent, 206
Coco, A. M.. Nerve-Endings in White Muscle, 284
Cocoons of Earthworm. 40
Coolentera from Intermediate Waters of Nortlı Atlantic, 30t
Conomyces consuens, 641
Cohn, E., Research of Klein's Yeast, 617
Colm, L, Notes on 'r'ematodes, 500
C'oker, W. U., Gametophytes and Lumbry? of Taxodium, 734

Coker, W. C., Spore-C'avity Nucleus in
Prothallia of Marsilia, 320

- Two Egg-Cells in Mnium, 323

Col, M., Bundle Arrangement in the Petiole and Leaf-Veins in Dicotyledons, 509
©ole, R., Bacillus ärogenes capsulutus in Circulating Blood, 82
('oleoptera, 'oloration, 720
Collectors, Handbook of Instructions for, 110
Collins, F. S., North American Marine Algæ, ; 327
('ollodien Nacs for Bacteriological Work, Simple Method of Mlaking. 776

- Tubes, Method of Making, 112
- Use of, for Detecting Transpiration, 514

Colony-Counter, New, 113
Coloration, Abnormal, in Pleuronectids, 166
— of Colenptera, 720
— of Myxinoids, 599

- Unilateral, with Bilateral Effect, 601
© olour, Change in Trout, 713
- Characters, Determination of Dominance in Hybrids, 619
- Illumination of Microscopic Objects, ${ }_{6} 71$
— of Silk, 35
Coloured Rays, Tulies for Preparation of Aerobic and Anaerobic Cultures under Influenee of, 768
Colour-I'atterns in Lepidoptera, Evolntion, 291
Colour Photography, Sanger-Shepherd Piocess, 121
Colour-Physiology of Higher C'rustacea, 609
Colours, Floral, and Insects, 718
— of Fishes, 28
- of Northern Gamopetalous Flowers, 739

Comère, J., Action of Salt Water on certain Fresh-water Algæ, 203
Commensalism betwcen Sea-Anemone and Crab, 728
Composite, Notes, 513
Condenser, Stand, 379

- Use of, and Illumination in Histological Micrography, 97
Conifer Wood from the Turf-Pits, 50
Conifers, New Secretory Apparatus, 621
Conjugate, 201
Conjugation and Senescence in Infusorians, 503
— of Amcebæ, 503
Conklin. E. C., Cause of Iuverse Symmetry, 706
Connective Tissue, Transformation of Epithelium into, 597
Conrady, A. E., 248
Conrady, W. A. E., Numerical Aperture and Rapidity, 765
Constantin, -., Sterigmatocystis pseudonigra, 338

Conte, A., Budding of Rhabdopleura normanni, 42

- Colour of Silk, 35
- Dipterous Parasite of the Vine-Pest Haltici, 606
- Nuclear Emissions in Protozoa, 305

Continental Model, Beek's Portable, 544
Continuity of Protoplasm. 47
Convoluta Roscofiensis, Bionomics, 725
Convolvulacer, Laticiferous Tissue in Flowers, 113
Cooke, M. ('.. British Mycology, 533

- Pests of the Flower-Garden, 75

Copeognathre from Kameroon, 721
Copepod, Gall-forming, in an Anemoue, 300

- New Genus, 497

Copepoda from Faroe Chaunel, 612
Copulation in Spiders, 609
Corallium, Species, 616
Corals, Some New and Rare, from Funafuti, 61 ;
Corbière, L., Fossombronia, 322

- Riella, 59

Cordicep: Robertsii, 69
Corpus Vitreum, Development, 283
Correction Distance of an Objective, Giraphic Representation, 762
Correns, -., Determination of Dominance in the Colour Characters of Hybrids, 519
Correns, C., On the Characters of Hybrids, 739
Cotte, J., Ingestion of Fond-Particles in Syeandra raphanus, 30t

- Metabolism in Sponges. 304

Cotton, A. D., Wild Plants as Nurseries of Plant Disease, 653
Cotton Fabrics, Mercerisation, 520
Cotton, W. A., Behaviour of Nuclei in Plant Hybrids, 506
Cotyledons. Nutrition of Plants deprived of their, 624

- Stomata, 515

Coulter, J. M.. Embryogeny of Zamia, 310

- Morphology of Angiosperms, 735
- Origin of Angiosperms, 625

Council, New, 122

- Report for 1902, 122

Counting Corpuscles of Blood, New Method, 680

- Red Corpuscles of Blood, 240

Coupin, H., Culture of Sterigmatocystis nigra, 651

- Nutrition of Sterigmatocystis nigra, 338

Courant, -., Preputial Glands of Rabbit, 486
Cowles, R. P., Notes on Polygordius, 301
C'rab and Sea-Anemone, Commensalism, 728
Crane Fly, Giant, Larva, 36
Cranial Bones of Polyodon folium, Lateral Canals, 288

Crawley, H., Myxosporidian Parasite of Geophilus, 615
Crayfish, Function of Mid-Gut Gland, 178

- Ventral Nerve-Cord, 299

Crenothrix, Genus, 215
Cricket of Aquatic Habits, 36
Crinoill, New, 43
Crinoids, Development of Biserial Arm, 728
Crisia, Embryonic Fission. 726
Cristiceps argentatus, Artificial Fertilisation of Ova, 593
Crocus and Tulip, Movement of Perianth Leaves, 191
Crosbie, F., Staining Directions for Photomicrograply, 234
Crosby, C. M., Dictyospheria favulosa, 630
Cross M. I., and Cole, M. J., 'Modern Microscoly,' 111
Crossland, C., British Hepaticæ, 198
Crozals, A., French Volcanic Muscineæ, 323
Crucifers, Double Fertilisation, 53
Crustacea and Pantopoda, 178

- Higher, Colour-Physiology, 609

Cryptogams, Swiss, 199
Cryptovalsa and Allescherina, 207
Crystal-cells and Ieaf of Citrus, 732
Crystals in Rock Sections, Improved Method of Identifying by use of Birefringence, and Improved Polarising Vertical Illuminator, 683

- Makiug Preparations of, for Micropolariscope, 110
Cucmmber-Leaf Disease. 748
Cuckoo-Spit, Food-Canal of Larva, 174
Cuénot, L., Agglutinating and Ciliophagocytic Organs, 31
Cugini, G.. Sclerospora, 332
Cultivating Influenza Bacillus, 105
Cultivation, A naerobic, 104
- Medinm for Algæ, 767
— of Truffles, 643
Cultivations, Anaerobic, 387
Culture Fluids, Apparatus for Decanting off, 557
Cultures, Anaerobic Plate, 366
- Aerobic and Anaerobic, Tubes for Preparation under Influence of Coloured Rays, 768
Cumings, E. R., Evolution of Platystrophia. 615
Cumming, M., New Bacterium in FreshlyDrawn Milk, 343
Curtis, C. L., New Monochromatic Light Apparatus, 378, 674
Curtis, W. C., Life-History and Reproduetion of Planaria maculata, 614
Curvature of the Spiue in Fishes, 161
Curvatures of Roots, Thignotropic, 192
Cushing, H., Course of the Taste-Fibres, 286

Cushman, J. A., Desmids from Bridgewater (Mass.), 327

- Lncalised Stages of Growth, 51

Cuttle-fishes. New, 168
——Oxidising Ferments in Ink, 490
(yanophycew, 754
-Osmotic Properties of Cells, 658
Cybister rosselii, Spermatogenesis, 36
Cycads, Meriphyte, 733
Cyclops strenuиs, Maturatiou-Phenomena
in Oogenesis and Spermatngenesis, 39
Cyclostomes, Studies, 599
Cyclotella bodanica vir. lemanica, 634
Cymbalopora bulloides, 185
Cypers, V. v., German Mosses, 61
Cysticerci, Minute Structure, 182
Cysticercus fasciolaris, 181
Cystoclonium purpurascens, and Chordaria flagelliformis, 527
Cytology and Physiology of Endophytic
Mycorliza, 213
— of Apogamy, 740

- of Yeast, 205. 335, 646

Cytoryctes vaccinx, Nature, 307
Czapek, -., Proteid-Formation in Moulds. $5: 34$
Czapek, F., Nitrogen Assimilation in Moulds, 190

- Proteid-Formation in Moulds, 528

Czaplewski, E., Cultivating the Influenza Bacillus, 105
Czapski, S., 565, 569
Czermak, N., Fertilisation in Salmon, 16॥

D.

Daday, E. v., Microscopic Freshwater Animals of Balaton, 716
Daguillon, A., Distribution of Hairs on the Surface of the Stem, 52
Dahl, F., Copulation in Spiders, 609
Dairy Products, Fungi. 534
Dale, E., Observations on Gyinnoascex, 646
Dall, W. H., Synopsis of Carditacea, 171
Damany, P. le, Evolution of Vertebrate Limbs, 708
Daudeno, J. B., Effects of Water and Aqueous Solntions on Foliage Leaves, 315
Dangearl, P. A., Laws of Division, 283

- New Chytridiacer, 333
- Nuclear Division of Amœeba, 305
- Olservations on Monas vulgaris, ©18
- Protascus, A New Cienus, $3: 32$
- Sexuality of the Asconycetes, 614
- Structure of Trepomonas ayitis, 306

Daniel, L., Experiments on Grafted Plants, 511

- Modification of Mabit by Grafting, 510

Daplene Laureola, Localisation of Daphnine, 187

Daphnia, Note on Phototropism, 497
Daphnine, Localisation in Daphne Laureola, 187
Darkness and Light, Influence on Plantlife, 316
Darwin, F., Statolith Theory of Geotropism, 515
Dasya elegans, Vegetative Reproduction, 64
Davis, B. M., Oogenesis in Saprolegnia, 642

- Origin of the Sporophyte, 640

Davis, J. H., British Moss Flora, 60.
Davis, J. R. A., Memoir on the Limpet, 491
Davis Shutter, Origin, 99
Dean. B., Biometric Evidence bearing on Theory of Limb-Origin, 24

- Coloration of Myxinoids, 599
- Origin of Paired Limbs of Vertebrates, 29
Dean, G., Disease of the Rat caused by an Acid-fast Bacillus, 660
Death-Feigning in Terrestrial Amphipods, 723
Debarya immersa, 201
Decalcification Method, 558
Decantation Method for Cleaning Diatoms, 679
Decanting off Culture Fluids, Apparatus, 557
Decapods, Deep-Sea, Integumentary SenseOrgans, 299
Deckenbach, C. v., Conomyces consuens, 641
Deegener, P., Post-embryonic Development of Intestine, 493
Deep-Sea Life in Indian Seas, 597
Defalle, W., Antiborlies of Spores of Bacteria, 218
Deflandre, C., Adipogenic Function of Liver in Invertebrates, 31
Delacroix, G., Black-rot of Grapes, 209
- Diseases of Bananas, 70
- - of Vanilla, 70
- Phytopathology, 653
- Rust on Vanilla, 72

Delage, Y., Agency of Carbou Dioxide in induciug Artificial Parthenogenesis, 21

- Carbonic Acid as a Provocative of Artificial Parthenogenesis, 21
- Notes on Physiological Injections, 285

Delamare, G., Reappearance in Offspring of Lesions artificially indnced in the Mother, 22
Delden, - v., Colourless Bacterium obtaining Carbon from the Air, 340
Delesseriacere, New Genus, 66
Delezenne, C., and Another, Presence of a Kinase in Basidiomycetes, 533
Della Torre, R. W. v., Lichen Flora of the 'Tyrol, 70

Denitrifying Bacteria, Accumulation Experiments. 539
Derris uliginosa, Poisonous Action and Histology of Stem, 520
Desmidiaceæ, Cell-Membrane, 65, 32S
Desmids from Bridgewater (Mass.), 327
De Toui, G. B., Diatom Records, 635
De 'Toni, J. B., Florideæ, 638
Development, Influence of Alcohol, 484
Device for Carrying Minute Objects through the Grades of Cedar Oil and Paraffin, 230
Diarrhoea-producing Bacteria, Chemical Products, 755
Diaschiza, On the Genus, 117

- The Rotatorian Genus, 1, 129

Diatom, Blue, 330

- Records, 635

Diatomaceæ of the Hull District, 63
Diatoms, Auxospores, 632

- Classification, 331
- Decantation Method for Cleaning, 679
- Endochrome, 633
- Fossil, 635
- - in Rome, 200
- - of Auvergne, 525
- Fresh-water, 330
- from Moroceo, 744
- Hungarian: Lake Balaton, 200
- Lincolnshire, 526
- New Genera, 744
- New Genus, Licmosphenia, 64
- of Auvergne, 634
- of Koh Chang, 330
- of Lake Cotronia, 200
- of the A tlantic, 634
- of the Black Sea, 199
- Polynesian, 331
- Preparation, 768
- Pyrenoids and Eleoplasts, 200
- Structure and Division, 632
- - and Life-History, 525

Dicentra formosa, Alkaloids, 732
Dichodontium, 523
Dichotomosiphon tuberosus, 329
Dicotyledons, Bundle Arrangement in Petiole and Leaf-Veins, 509

- Development of Embryo of Some, 188

Dictyospharia favulosa, 630
Dierlicke, H., Relationship between I'leospora and Helminthosporium, 747
Dietel, P., Japanese Fungi, 74

- Rusts of Leguminose, 531
- Uromyces of I Iupins, 650

Diffraction Grating, Michelson Echelon, 228
Digby, L., Cytolugy of Apogamy, 740
Digestive Caual in Reptiles, Structure, 163
Dimorphisin of Spermatozoa, 23

- Organic Sexual, in Fowls, 160
- Seasonal, in Butterflies, 35
- Notes, 494

Dinosaur, Largest known, 287
Diphtheria Bacilli and Cholera Vibrios, Staining, 235
Diplopoda, Labial Excretory Organs and a Phagocytic Organ, 177
Dipnoans, Permian, Peculiar Modification, 715
Dipnoi and Ganoids, "Larynx," 600
Dipoduscus albidus, Development, 69
D'Ippolito, G., Comparative Anatomy of the Stem in Magnoliacex, 51
Diptera from Amber, 606

- Teeth, 606

Dipterous Parasite of the Vine-pest Haltica, 606
Dipylidium caninum in Man, New Case, 499
Discisceda, Species, 532
Discoglossus pictus, Development of Lungs, 707
Discomycetes, New, 334
Disease, Cucumber-Leaf, 748

- Monilia, 529
- New, of Asclepias curassavica, 748
- of Applea, 529
— of Grasses, 751
— of the Alder, 644
- Salmon, 755

Distefano, S., Nerve-Endings in White Muscle, 284
Distomum clavatum, 182

- cygnoides, American Representatives, 182
Distomum, New, from Sawfish Shark, 500
Distomum variegatum, American Representatives, 41
Division, Laws, 283
Dixey, F. A., Nutes on Seasonal Dimorphism, 494
- Seasonal Dimorphism of Butterflies, 35

Dixon, H. H., Resistance of Seeds to High Temperatures, $62 t$
Dixon, H. N., Britisi Moss Flora, 60

- Dichodontium, 523

Dixon-Nuttall, F. R., The Rotatorian Genus Diaschiza, 1, 129
Dollo, L., Phylogeny of Chelonians, 712
Dolomedes fimbriatus, Development, 298
Donard, E., New Proteid from Maize, 49
Doncaster, L., Kearing Later Stages of Echinoid Larve, 183
Dop, P., Development of Pollen in Asclepiads, 53
Dopter, C., Bacillus of Epidemic Dysentery, 659
Dorner, H. B., Effect of Composition of Soil on Plants, 190
Dorylinæ, (iutsts, 172
Donin, I., Papillate Hepatics, 322

- Splerocarpus terrestris, 522
- and Others, European Hepatice, 742

Dowdy, S. E., Colour Illumination of Microscopic Objects, 671

Dowdy, S. E., Making Preparations of Crystals for the Micropolariscope, 110

- Reagent Bottle, 558
- Slide for Pond Life, 239

Drawing Apparatus, Tubeuf's, $76: 3$
Drepanidotronia temuirostris, 499
Dreyer, G., Differentiation of Bacillus typhosus and Bacillus coli, 367

- Influence of Light on Amoebe and their Cysts, 617
Dreyling, L., Wax-making Organ of Bee, 719
Drone-Ova, History of Polar Bodies, 293
Drones, Spermatogenesis, 71 :
Drude's 'Theory of Optics, 765
Drugs and Foods, Mieroscopical Examinatiou, 561
Dry-rot and other Wood-destroying Fungi, 211
Drysdale, C. V., 568
Dubois, R., Origin of Pearls in Mytilus gallo-provincialis, 291
- Purple of Dog-Whelk, 170

Duboscq, O., Development of Gregarines, 619

- New Parasite of Hermit-Cralbs, 730
- New Species of Alma, 180
- Sexual Reproduction of l'terocephalus, 729
Ducke, A., Stingless Bees (Melipona) of Para, 172
Dudley, P. H., Lentinus lepidius, 73
Duerden, J. E., Significance of Budding and Fission in Madreporaria, 45
Dufour, H., Sensitiveness of Ants to UltraViolet and Röntgen Rays, 171
Durig, A., Electrical Criterion of Vitality, 599
Durrancl, A., Report on the Recent Foraminifera of the Malay Archipelago collected by, 253
Dusén, P., Mosses of East Greenland, 325
Dyar, H. G., Lepidoptera of North America, 495
Dysentery, Epidemic, Bacillus, 659

E.

Earland, A., Cymbalopora bulloitles, 185
Earth, Apparatus for Collecting Samples for Bacteriolngical Examination, 104
Earthworm, Cocoons, 40
Eastman, C. R., Peculiar Modification in Permian Dipnoans, 715
Eberhard, G., The Injurious Effect of Cement upon Oljectives, 762
Echinocardium cordatum. Phagocytic Absorption of Sex-Cells, 7:7
Echinococcus alveolaris, 181
Echinoderms, Antarctic, 303
— List of Irish, 728

Echinoderms of East Fimmark, 728
Echinoid Larva, Rearing Later Stages, 18:3
Echimus microtuberculatus, Experimental Studies on Eggs, 501
EckImia and Eisenia, 329
Edw rds, C. L., Nute on Phrynosoma, 488
Eel Question, Solution, 25
Egg, Bird's, Fibrinogenic Substance in Alhumen, 31
Eger-Cells, Two, in Mnium, 323
Lgg, Formation, and Division of Antipodal Cell in Juncacere, 736

- Mammalian, Fixation in Uterine Cavity. $76:$
- Newt's, Influence of Salt Solution on Early Development. 593
Eggs of Echinus microtuberculatus, Experimental Studies, 501
—of Fowl, Arsenic in, 488
Egregia Menziesii, 635
Elirlich 'Triacid Solution, Modification of the Method of Staining, 560
Eichholz, W., Btcterium Fragi, S 1
Eigenmann. C. H., Solution of the Eel Question, 2.
- Unilateral Coloration with Bilateral Effect, 601
Eijknan, C., Milk-Agar as a Medium for the Demonstration of the Proluction of the Proteolytic Enzyme, 679
Eisenia and Ecklomia, 329
Elmoplasts and Pyrenoids in Diatoms, 200
Elastic Fibres, Stain for, 109
Electric Arc, New Method of Using in Photomiengrapliy, 276, 377
Electrical Criterion of Vitality, 599
- Mieroscope Lamp, New, 350

Elliott, L. B., New Projection Apparatus for Scientific Work, 549
Ellis, D., Demonstration of Flagella in ('иссасеæ, 109

- Observations on Sarcina, Streptococcus and Spirillum, 540
Ellrodt, G., Penetration of Plant by Bact ria, 216
Elmassian, M., Demonstrating Trypanosomata, 371
Embryo and Gametophytes of Taxodium, 734
- of some Dicotyledons, Developmen 188'
Ambryogeny of Ficus hirta, 318
- of Zamia, 310

Embryology, Comparative and Experi mental, Treatise, 483

- Comparative of the Swim-Bladder, 708
- Laboratory Text-Book, 483
- of 'Tumours, 705
- of Vertebrates, Treatise on Comparative and Experimental, 160
Embryonic Fission in Genus Crisia, 721

Embryos, Human, Interscapular Gland, 29
Embryo-Sac of Angiosperms, Recent Investigations, 53
Emmerling, O., Chemical Action of Growiny Fungi, 651

- Destruction of Non-nitrogenous Organic Subslances by Bacteria. 216
Encyclopedia of Microscopical Technique, $37:$
Enderlein, Gi., Copeognatire from Kameroon, $7 \because 1$
- Normal Asymmetry of the Wings in Naucoris cimicoiles, 174
Endochrone of Diatoms, 633
Andogone, $3: 32$
Endothelial Derivatives and PigmentBodies in Gephyreans, 613
Endris, W., Pilostyles Ingr, 188
Engelke, C., Claviceps purpurea, 207
- Ohservations on the Ergot of Claviceps purpureя, 747
- Sceptromyces Opizi, 209

Engelmann's Microspectral Objective with Detachable Thorp's Grating and Detachable Polariser, 351

- Microspectralphotometer with Grating Spectrum, :859
Engler, -., A trican Flora, 626
Enrichment Method tor Typhoid Bacilli, 368
Enriques, P., Adaptability of Marine Infusorians to Fresh Water, 306
Enter pneusta, Heart, 42
- Movements, 43

Entomology, Economic, 721
Lintoprocta, Pacific Coast, Studies, 727
Eutosiphon Deimatis Parasitic in an Abyssal Holothuroid, 491
Enzyme in Ripening Plantains, 56

- Rennet-like, from Yeast, 528

Enzymes aud i'rotoplasm, Nature, $62 \pm$

- Numenclature. 517

Epidaride, Two New Types, 178
Epiplasm of Ascomyceter, 644
Epithelium, Follicular in Birds, 591

- Intestinal in Amphiuma, 597
- Translimmation into Connective Tissue, 597
Equisetum hyemale, 195
Ergat of Claviceps purpurea, Observations, 747
Eriksson, J., Myenplasma Hypothesis, 749
- Mhizoctonia violacea, 748
- Specialisation of Rusts, 72

Erinaceide, Phylogeny, 167
Ernst, A., Dichotomosij,hon tuberosus. 329

- Nuclear Reduction and Fertilisation in Paris and Trillium, 48
Ernst, E., New Gemns of Siphoneæ, 64
Erysiphacee, Intection-Powers of Ascospores, 645
- Notes, 206335

Erysipher, Studies, 747
Escherich, K., Development of Nervous System in Muscidæ, 37

- Studics on Thysanura, 295

Esmarch, E. v., Passage of Bactoria through Filters, $3 \not 11$
Esteva, J., Abuormal Growths in Woody Plants, 511
Etching Reagent, new, for Polished Steel Sections, 68:2
Ether as a Narcotising Medium for Aquatic Animals, 368
Eucalypts, Leaf-Veuation and Chemical Constituents, 50
Evans, A. W., Hepatice of Puerto Rico, 323

- Muscinere of the Galapagos Islamis, 62
- North American Hepaties, 5!, $74 ;$;

Evans, R., New species of I'ripatus, b0s
Everett, J. D., jif, 785

- 'Note' on Lord I Layleigh's Paper of 1896,783
Ewart, A. J., On the Physics and Physiology of Protoplasmic Streaming in Plants. 308
Ewing, J. A., Fracture of Metals under repeater] Alterations of Stress, 115
Excretion in Guat Larvze, 173
Excretory Cells in Hydroids, 616
- Organs ju Malacostraca, 38
- Processes in Insects. 34

Exhibition of Drawings and Slickes of l)ritish Hydrachnea. 781

Exuvial Glands in Insects, 17:
Eycleshymer, A. C., Early Development of Lepidosteus, 708

- Nuclear Changes in Striped Muscle(ell of Necturus, 27
Eye-piece, Lens Iuterval as arranged for Achronatism, 221
Eyes, Componod, of Machilis, 608
Eyre, J. W. II., Bacteriology 218
Eyre's Bacteriological Tecdinique, 37t

F .

Fabre-Domergue, -., Emergence of Lobster Larve, 72:3
Fabringer, J, , storing-Kilney in Carinaria mediterranea, 717
Falck, R., Oidinm Production and the Culture of the Figher Fungi, 75
Farlow, W. G., Alge of the Galapagos Islands, 67

- Fungi from Galapagos, 214
- Lichens from Galapagos, 209
- Muscinee of the Galaphacos Islands, 62

Farmer, J. B., Cytolngy of Aן ngamy, Tto

- Reduction of Chromosomes. $7: 2$

Farneta, R., Pulymorphism of Mierofungi, 209
Farneti, [i., Bolctus Briosiumum. 212

Farneti, R., New Parasitic Fungi, 206
Fauna of Alpine Lakes, 167

- of Indo-A ustralian Archipelago, History, 598
- Relict, of Lake Furesö, 289

Fanst, E. S., Acocantheriu: an African Arow-Puison, 508
Fanvel, P., Otocysts of Pulychecta, 301
Feimberg, L.. Nuelei of Unicellular Animals contrasted with those of Plant Cells, 47
Feinberg, -.. Study of Nuclei in Yeast ant Animal Cells, 205
Felt, E. P., Aquatic Insects of New York State, 7×2

- Grape-vine Root-Worm, 177

Femoral Glands of Lizards, 27
Fermentation, Action on the Cell, 745
— of Milk, Researches, 756
Ferments, Industrial, of Eastern Asia, 337

- Oxidising, in Ink of Cuttle-fishes, 4.9
- I'roteolytic, 625

Fern Study in North America, $5 s$
Fermandez, D., Pigment Bacteria of Water, $: 41$
Ferns, Cuban, 58

- and Fern Allies of North America, 195

Ferraris, J., and Others, Fungus Diseases, 653
Ferraris, T., Fungus Flora of Piedmont 535

- Fungi of Piedmont, 78

Ferrite and C'ementite, Simultaneous Presence in Steel, 183
Fertilisation aud spore-Ripening in Mosses, 522
— in Plasmopara, 745

- in Salmon, 160
- in Solerospora, 642
- I'henomena in Mrementeria costuta, 498

Feyfer, - de, Paratyphoid Fever, 344
Fibrillar Continuity of Epithelial Cells and Muscles in Nebalia, 38
Fibrinugenic Substance iu Albumen of Bird's Egg, 31
Ficker, M., Method for Staining Sacterial Granules, 371

- New Methol of ${ }^{\text {Staining Bacterial }}$ Granules, 237
Ficus lirta, Embryogeny, 313
Fidia viticidu, Grape-vine Ront-Worm. 177
Field, A. M., Study of an Ant, Si,
Figs, Botrytis vulgaris, 529
Filuria immitis, Intermediate Ifost, 40
- merlinensis, Life-Span, (i14
- perstans,302

Fine Adjustment, Leitz' New, and Staml. 1365

- Two-speet, 19, 117
- Arlinstments, Modern, 2o1

Fink, B., Notes on Cladonias, 588
Fir Trees, Disease, 334

Fischer, C. E. M., Soluble Glass as a Mounting Medium for the Examination of Paper, 774
Fischer, E., Researches on Rusts, 72

- Swiss Cryptogams, 199

Fischerella, New Species, 76
Fish, Flying, Flight, 288
Fishes, Abyssal, So-called "Telescopic" Eye, 164

- Colours, 28
- Curvature of Spine, 161
- Fresh-water, Gill-Filters, 714
- - Marine Parasites in, 499
——of Borneo, 289
- Hermaphroditism, 282
- Marine, Hematozoa in, 46
- Ovarian Ova and Follicles, 594
-Sense of Hearing, 713
- Size of Nerve-Fibres, 284

Fission and Budding in Madreporaria, Significance, 45
Fitzgerald, M. P., Differentiation of $B a-$ cillus typhosus and Bacillus coli, 367
Fitzgerald, W. V., Notes on Austrulian Botany, 58
Fixation, Contributions to the Theory, with Particular liegard to the Cell-Nucleus and its Albuminous Bodies, 770
Fixing and Imbedding Dense Connective Tissue, 369
Flabellum, Notes on Variation, Protandry, and Senescence, 184

- Structure and Development, 181

Flagella in Cuccacere, Demonstration, 109

- New Method of Stainiug, 235
- of Bacteria, Easy Method of Staining, 237
— of Tetanus Bacillus, Observations, 663
- Staining, 370

Flagellate Parasites in Siphonophora, 306
Flat-Fishes, Skeletal Changes in the Course of Development, 25
Flax and Hemp, Retting, 661
Fleure, H. J., Memoir on the Limpet, 491
Floating Properties of certain Phycochromaceæ, 339
Flora, African, 626

- Amazon, 626
- and Plant Formations of South Bulgaria, 57
- Chiuese, 57, 193, 519
- Cryptogamic, of Presbirg, 536
- German, 519
- of Ferro, 626
- of New Jersey, Strand, 193
- of Uruguay, 57

Floral Distribution in the Alpine Zone, 57

- Structure of Juglandeæ, 314

Floridere, 638

- Germination, 331
- Spiral Arrangement, ff

Flosculariarse, Morphology, 227
Flot, L., Foliar (Mrigin of the Stem, 508

Flower Garden Pests, 75

Flowers, Abnormal, of Helenium autumrsale, 623

- and Insects, 604
- Gamopetalous, Colours of Northern, 739
- Petal-less, and Insects, 604

Fluke, Peculiar, 303
Foà, A., Nature of Cytorycetes vaccinx, 307
Focometry and Apertometry, Simple ${ }_{2}$ Method, 94
Focussing in Photomicrography, New Method, 677

- with High Powers, New Arrangement for avoiding Injury to Preparations, 220
Foix, A., Study of the Respiratory Exchanges in Wrater, 600
Foliage Leaves, Young, and Seed Leaves, Protection, 51
Foorl-Canal of Larve of Cuckno-Spit, 174
Foorls and Drugs, Microscopical Examination, 561
Foot, K., Cocoons of Earthworm, 40
- New Method of Focussing in Photomicrography, 677
- Sperm Centrosome and Aster of Allolobophora foticla, 724
Foraminifera of Raised Reefs of Fiji, 306
- of the Malay Archipelago collected by Mr. A. Durrand, Report on, 253, 377 . (885, 780
Forbes, -., Chinese Flora, 193
Forbes and Hemsley, Chinese Flora, 57
Forel. A., Sensitiveness of Ants to UltratViolet and löntgen Rays, 171
Forest Destruction in the United States, .520
Forgan, W., Modern Five Adjustments, $\because 21$
Formic Aldehyde as a Food-Stuff for Fresh-water Algæ, 316
Formica, I'seudogyny aul its Causc, 172
Forti, A., Diatom Recorls, 135
- Fresh-water Diatoms. 330

Fossils. Method for Investigation by Selial Nections, 775
Fossombronii, 322
Foulerton, A. G. R., Streptothrix, 215
Fouquieracea, Revision of the lamily, 7:3
Fowls, Carnivorous. Mndifications observed, 286
— - of the Second Generation, 282

- Orymic Sexual Dimorphism, 160

Fracture of Metals under repeated Altermations of Stress, 115
Francis, E., Rius Test for Indol, 360
Frankland, P., Bacteria in Daily Life, 219
Frankland, W. A., Vinegar Eel in Human 1harlder, 40
Freeman, E. M., Experiments on the Brown Rust of Bromes, 72

- Secd-Fungus of Lolium temulentum, 75

Freeman, R., The Rotatorian Genus Diaschiza, 1, 117, 129
Freezing, Action on Plant-Cells, 508

- Apparatus, Molisch's New, 103
- Plate for Hand Microtome, New, 558

Fremlin, H. S., Anaerobic Plate Cultures, 366

- Culture of the Nitroso-Bacterium, 540

Freudenreich, E. v., Nitrogen-assimilating Bacteria, 659
Friedberger, E., Influenza-like Bacillus from a $\operatorname{Dog}, 342$
Friedländer, F. V., A Modification of the Pantograph for the Drawing of Microscopical Preparations, 777
Fritsch, F. E., Fresh-water Algæ of the Royal Garden*, Kew, 201

- Edogonium, 65
- Phytoplankton of the Thames, 63
- Young Plants of Stigeoclonium, 201

Frost, W. D., Simple Method of Making Collodion Naes for Bacteriological Work, 776
Fruit in Malvaceæ, Biology, 313

- of Jucquinia ruscifolia and Trichomes in Myrsinaceæ, 189
- Trees, Canker, 652

Fruits, Ripe, Sugar in, 192
Frye, T. C., Morphologieal Study of Asclepiadaceæ, 512
Fuchs, E., Staining of Streptotrichaceæ, 541
Fuess' Hemispherical Gypsum and Metal Reflectors, 763
Fulgur, Notes on Species, 32
Funaria hygrometrica, Chromosomes, 628
Füufstück, M., Research on Lichens, 208
Fungal Parasites, Persistence in altered Conditions of the Host Plants, 651
Funghi, 11 Trattato dei, 215
Fungi, Adventitious Growths, 212

- Atrican. 214
- American, 654
- - Notes, 74
- Austrialian, 655
- Critical Notes, 76
- Decomposition of Lactic Acid, 534
- Destruction of seeds, 644
- East African, 537
- Extra-European, 215
- Fat-Destroying, of Seeds, 534
- Fossil. 74, 534
- from Galapagos, 214
- Growing, Chemical Action. 651
- hypogri, 651
- imperfecti : Kryptogamen-Flora, 209
- in Dairy Products, 534
- Japanese, 73
- New Parasitic, 206
- New Records. 65.5
- Notes on Various, 6 an
— of Lomellina, ©l4
- of Mount Ventoux, 214

Fungi of New Caledonia, 535
— of Piedmont, 73

- of the Setubal Region, 73
- Oidium Production and the Culture of the Higher, 75
- Photography, 76
- Poisoning, 212
- Polonici, 535, $65 t$
- Production of Acids, 752
- - of Glycogen. 752
- Rare Sicilian, 535
- Sap of, as Autirlote to Venom of Serpents, 76
- Study, 212
- Systematic Notes, 656
- Wood-destroying, 211
- Yeast-forms, 747

Fungicides, 652
Fungous Diseases of White Cedar, 75
Fungus Diseases, 653
—— in Australia. 74

- - in Italy, 213
- Flora, 214
- - of Humus, 74
—— of Piedmont, 535
——of Sao Pitulo, 214
- - of Sonntagberg, 73

Fürth, O. v., Chemical Physiology of Invertebrates, 598

G.

Gadd, G., Food-Canal of Larve of CuckooSpit, 174
Gadean, H., How Birds make themselves understood by Man, 602
Gage, C. S., Simple Device for Carrying Minute Objects through the Grades Cedar Oil and Paraffin, 2:0
Gage, S. H., New Razor-holder and Ad justable Clamp for the Minot Microtome, 234
Gaidukow, N., Literature on the Algal Flora of Iius.ia, 324
Galapagos Birds, Mallophaga, 38
Galaxurra adriutica, in7
Galeopithecus volaus, Eating Habits, 30
Gallein, Staining Nervous 'Tissue, 559
Gall-forming Copeporl in an Anemone, 300
Galli-Valero, B., Mosquitos in Winter, 606
Gamasus auris, 177
Gamble, F. W., Bionomics of Convoluta Roscoffensix, 725

- Colour-Physiology of Higher Crustacea, 609
Gamble, J. S., Manual of Indian 'Timbers, 52
Gametes, Sex Determination in Hermaphrodite Gonads, 32
Gametophytes and Embryo of Taxodium 734

Gamopetalous Flowers, Colours of Northern, 739
Gangliou in Ciona intestinalis, Function, 489

- Sub-CEsophageal, of Liver-Fluke, 303

Ganoids and Dipmoi, "Larynx," 600
Gardiner, J. S., Notes on Variation, Protandry, and Senescence in Flabellum, 184

- Structure and Development of Flabellum, 18 t
(iardner, N. L., Algæ N.-Western America, 527
Garotilha, La, 75G
Garter Snakes, Variations, 601
(tasching, E., Researches on the Fermentation of Milk, 756
Gasterosteus aculeatus, Resistance to Osmotic Pressure of Different Media, 714
(iastromycetes, Genera, 73
- Spore-formation, 211
(Gastropod Eye, Retina, 168
- Shells, Studies, 290
- Studies, 718

Gastropods, Demonstrating the Structure 868

- Follicular Cells in Gonads, 492
- Recent Researches, 32
- Tracheopulmonate, 291

Gastrulation of Double-Development in Trout, 161
Gantier, A., Arsenic in Animals, 598
— - in Plants and Auimals, 186

- Fibrinngenic Substance in Albumen of Bird's Egg, 31
Gavotti, G., 11 Trattato dei Funghi, 215
Gecko's Toes, Structure, 712
Geheeb, A., Suppression of Redundant Moss-Species, 60
(temelli, E., New Method of Staining Flagella, 235
Géneau de Lamarlière, L., Conifer Wood from the Turf-Pits, 50
Henera, New, Auajapyx, 295
- - Arrhinotermes, 172
- - Atractinium, 639
- Axinopsocus, 721
- - Brachiosaurus, 287
- — Bucegia. 74:
- - Burnettia, 742
- Bythotiara, 304
- Caryotrophil, 185
- Cephaliophora, 529
- Chinnaster, 631
- Clatlirella, 305
- - Crnomyces consuens, 641
- Cryptogonimus, 303
- - Cumoniscus, 178
- - Dichotomosiphon, 64
- - Dictyosphæriopsis, 630
- Dimerorouns, 297
——Enteruxenos, 32
— - Eochelone, 712

Genera, New, Gastrosaccus (Sars) $=$ Prodajus (Bounier), 178

- Gephyrocrinus, 43
- - Gephyronema, 725
- - Goldmannia, 626
- - Haplosomides, 297
- - Herpophyllon, 67
- - Heterocephalum, 529
- - Heteroplegma, 536
- -- Höhntliella, 73
- - Hoploderma, 500
- - Hyalothyridium, 69
- - Hydropedeticus, 36
— - Implicaria, 66
- K Kjellmanniella, 527
- LLichtheimia, 334, 746
- Licmosphenia, 64
- L Lophyrophorus, 606
- - Microtermes, 172
- - Mitruliopsis, 536
- - Myosoma, 727
- Obesiella, 497
- Oligutrema, 602
- Ophiogloea, 536
- Ophionotus, 304
——Ophiosteira, :303
- - Placoneis, 744
- - Planctonema, 630
- - Pleurocoralloides, 184
- - Proabsidia, 334, 746
- - Prodajus (Bonnier) $=$ Gistrosaccus (Sars), 178
- - Protascus, 332
- - Protnclepsis, 180
- - Psilothecium, 536
- - Pyropolyporus, 536
- - Riccoa, 535
- R Rudicularia, 202
——Ruhlandiella, 334
- Santiella, 69
- - Schizobranchium, 603
———sytopezis, 536
- - Melfordia, 182
- - Siphonobius, 725
- - Nolenoplea, 335
- - Speculitermes, 172
- - Sporoctomorpha, 656
- - Sporophlyctis, 333
- Stachybotryella, 537
——Staurophora, 744
- -- Stephanosalpa, 490
- - Ntrasseria, 73
- C 'Taphridium, 331
- - Thamnocladus, 639
- Trigonosporium, 69
- - Uncimenia, 717
- - Urogonoporus, 615
- Wlassicsia, 716
- - Zy gorhyncus, 746

Genital Apparatus of Bats, $^{2} 11$

- Male, Appendages in Lepidoptera, 605

Gentianacere, Development and Structure of Seed-Coat, 622

Geographical Distribution, 167
Geophilus, Myxosporidian Parasite, 618
Geotropism, Statolith Theory, 515
Gephyrea, Studies, 725
Gephyreans, Endothelial Derivatives and Piginent-Bodies, 613
Gerlach, -., Nitrogen-Fixing Baeteria, 540
Germ-Cells and Germinal Continuity, $\because 2$

- - in Lepidoptera, Studies on the History, 175
Germination and Ripening of Sceds, 315
— of eertain Florideæ, 331
- of Orchids, a Symbiotic Relationship, 787
- of Spores of Penicillium, Influence of Substratum, 645
— of 'Telentospores, 210
Gessard, C., Formation of Blaek Pigment in Tumours of Horse, 488
- Oxidising Ferments in Ink of Cuttlefishes, 490
Giant Cells, Origin, 597
Giardina, A., Theory of Cell-Division, 26
Gifford, J. W., 248
Gil, A. C., European Muscinere, 197
Gill-Filters of Freshwater Fishes, 714
Gillot, X., Sap of Fungi as an Antidote to the Venom of Serpents, 76
Gilson, G., Cricket of Aquatic Habits, 36
Ginkgo biloba, Composition of Seeds, 193
Gizzard of Carabidæ, Strncture, 296
Glage, F., Fusible Metal Stopper for Testtubes, 240
Glaisher, James, 158
Glamann, G., 'Tracheopulmonate Gastropods, 291
Gland, Hermaphrodite, of Limax maximus, Sexual Differentiation, 718
Glands, Brumner's, 709
- Digestive, of Monaseidiæ, 489
- Dorsial, of Larvæ of Hemiptera Heteroptera, 294
- Odoriferous, of Julu: communis, 297
- Poison, Origin in Land Salamander, 713
Glandular Cells, Trophospongia, 596
Glaser, O. C., Nematocysts of Nudibranchs, 291
Glass for Optical Purposes, 102
- Ink for Writiug on, 112
- Jena, 554

Glazebrook, Dr., Glass for Optical Purposes, 102
Gleason, R. L., 120
Gleditschiu triacauthos, Thorns, 51
Gloosporium phomoides, 208
Gluck, H., Nectria moschatu, 69
Glycogen from Yeast, 49

- Production in Fungi, 752

Gnat Larve, Exeretion, 173
Godfrin, J., Critieal Agarics, 532

Godman, F. D., Buttertlies of Borlerland betwoen North aud South Amerira, :3t
Goette, A., Tuxt-Biok of Zoology, 166
Goggio, E., Development of Lungs in Discoglossus pictus, 707
Goldeu, K. E., Histolngy of the Wood in Species of Pines, 188
Goldschmidt, K., Development of Amendicularia. 167

- Senve-Organs of A scaris, 4:99

Gold-Silver Series of Alloys, Properties, 375
Golovine, E., Fixing Nentral Rud, 10 ;
Gomont, M., New Species of Fiecherella, 76
Gonads and Kidneys, Relations in Haliotis. 170

- Female, of Lancelet, Structure and Development, 594
— of Gastropods, Folicular Cells, $4!+2$
- of Hesione «icula, 613

Gonionema murbuchii, Development, 501
Gonococeus in the General Circulation, 84
Gooseberry Mildew, 69

- - in Europe, 335

Gordon, J. W., 565,571

- Photomicrographs of Plearosigma angulutam, 780
- The Helmholtz Theory of the Microseope, $246,250,381$
Gorgonacea and Pennatulacea, New, 184
Gorini, C., Acid-Rennet-homing Bacteria in Milk, 77
-Bacteria of the Milk-tlucts of the Cow, 83
Gosse, -., Microscope used by, 118
Gough, L. H., Anomalies on Head-Shields of Snakes, 166
Griban, A., Gastropod Studies, 718
Grabau, A. W., Studies of (iastropod Shells, 290
- Development of the Liserial Arm in C'ertain Crinoids, 728
Graff, L. v., Notes on Gyrutor hermuphroditus, 41
Gratted Plants, Experiments, 511
Gratting, Modification of Habit, 610
Grandi, S. de, Observations on the Flagella of the Tetanus Bacillus, 663
Grapes, Black-lot, 209
Graptulites, Development, 729
- Studies, 184

Grusses, Diseases, 751
Gravier, C., Adult Pelagic Cerianthid, 44

- Fresh-water Polychiets, 301
- Nervous System of Nautilus, 490

Gray, St. G., Screw-Worms iu St. Lucia, 243
Grayson, H. J., Red Rain, (:8:
(ireemish, H. (i., Mir.roseopical Examination of Foods and Druss, 5 ofi
Greenman, J. M., Munograph of North and Central Americansuecies of Senecio, 57

Cregarinc, C'olomic, in a Beetle, 307
Gegarines, Development, 619
Grégoire, -., Reconstitution and Formation of Chromosomes in Somatic Nuclei, 505
Greig-Smith, R., Bacillus vascularum and gummosis, 82

- Bacterial Origin of Vegetable Gums, 339
- New Ascobacterium from the SugarCane, 82
Grélot, P.. Laticiferous Tissue in Flowers of Convolvulaceæ, 513
Griffin, E., Photosynthesis, 54
Griffon, V., Barillus of Solt Sore, 83
Grimme, A., Fertilisation and SporeRipening in Mosses, 522
Grintzesco, J., Caltivation of Chlorella vulyaris, 328
- Morphology and Plysiology of Scenedesmus acutus, 525
Groot, J. G. de, Iron Carmalum, 773
Gross, J., Optic Chiasma of Reptiles, 285
Grout, A. J., American Mosses, 628
- Orthotrichum in the United States, 19!
- Peristome, 60
- and Others, N. American Mosses, 524

Growth, Influence of Carbonic Acid Gas, 189

- Lncalised Stages, 5 I
(Grubbs, N. B., ling Test for Indol, 366
Gruber, T., Coccus lactis viscosi and the Causes of Sliminess and Threads in Milk, 216
Griinberg, K., Interesting Case of Parasitism, 720
- Oorenesis in Lepirloptera, 496
- Strulies on the History of the GermCells in Lepidoptera, 175
Grünblatt, E. N., Differentiation of Trne and False Diphtheria Bacilli, 366
Grüblatt, G. W., Differentiation of the Diphtheria and Pseudo-Diphtheria Bacillus, 343
Guéguen, F., Adventitious Growths in Fungi, 212
- Gloosporium phomoides, 208
- Hetminthosporiam mucrocarpum, 528

Guerin, J., Development and Structure of the Serd-Coat in Gentianacere, 622
Guignard, L., Double Fertilisation in (rucifers, 53
Gruillermond, A., Cytology of Yeast, 205
Guillermond, M. A., Spore-formation in Yeast, 68
Cuillirmond, A., Cytology of Yeast, 335, 6.6

- Epiplasm of Ascomycetes, 644
- Structure of Botrytis cinerea, 647

Guilliermond, M. A., Metachromatic Corpuscles in the Ascomycetes, 751
Guitel, F., Specific Differences in the Kidneys of Lepadogaster, 600

Gulde, J., Dorsal Glands of Larvæ o Hemiptera-Heteroptera, 294
Gum Bactcrium, New, 77
Cummosis and Bacillus vascularum, 82
Gums, Resins, and other Vegetable Exudations of Australia, 50

- Vegetable, Bacterial Origin, 339

Günther, R. 'T., Colentera from Intermediate Waters of North Atlantic, 304

- Distribution of Mid-water Chætognatha in N. Atlantic, 725
Guttenberg, H. v., Crystal-cells and the Leaf of Citrus, 732
Gutwinski, R., Algæ from Central Asia and China, 639
- Javan Algæ, 203

Gymnoasceæ, Observations, 646
Gymnomitrium and Marsupella, 743
Gynandromorphism in Hilara wheeleri, 36
Gyrator hermaphroditus, Notes, 41
Gyrocotyle, New, 302
Gyrodactylus, Behaviour of ('hromatin in
Segmentation of Ovum, 615

H.

Hrematolytic Functiou of Spleen, 30
Hæmatozoa in Marine Fishes, 46
Hzmenteria costata, Phenomena of Fertilisation, 498
Hæmogregarines of Ophidia, 307
Häcker, V., Parental and Grand-parental Components of the Nucleus, 281
Hairs, Distribution on the surface of the Stem, 52
Halbert, J. N., Beetles of Ireland, 176

- Irish Fresh-water Mites, 496

Halintis, Relations of Kidneys and Gonads, 170
Hall, C. v., St. John's Disease of Peas, 338
Hall, J. L., Effect of Superheated Steam upon the Tensile Strength of Alloys 683
Hall, T. S., Occurrence of Monograptus in New South Wales, 728
Halperu, B., Ventral Nerve-Cord of Crayfish, 299
Haltica, the Vine-pest, Dipterous Parasite of, 606
Hamilton, W. P., British Moss Flora, 6I
Hamlyn-Harris, R., Apparatus for Facilitating the Manipulation of Celloidin Sections, 238, 377

- Statocysts of Cephalopods, 716

Handloups, Leitz', 761
Manna, W., Snake Venoms, 30
Hansgirg, A., Fresh-water Algie, 326

- Protection of Young Foliage Leaves and Seed-Leaves, 51
Hansen. E. C., Formation of Yeast Spores, 336
- Life-History of Yeasts, 20.7

Hansen, H. J., Auuropus and Bathynomus, 61$]$

- New Species of Sergestes, 497

Harden, A., Biological Method for Resolving Inactive Acids into their Optically Active Components, 583

- Glycogen from Yeast, 49

Hargitt, C. W., North Ameriean Scyphomedusæ, 617
Hariot, P., Fungi from New Caledonia, 535
Harpidia, European, 195
Harris, C. W., Umbilicaria in North America, 71
Harris, D. L., Rapid Method of Hardening and Imbedding Tissues, 768
IIarris, H. F., Modification of the Romanowsky Stain, 6s0
Harris, J. A., Habits of Cambarus, 72:;

- Thorns of Gleditschia triacanthos, 51

Harris, W. H., Teeth of Diptera, 606
Harrison, F. C., New Bacterium in Freshlydrawn Milk, 343
Ifarrison, H. S., Homology of the Lagena throughout Vertebrates, 710
Harshberger, J. W., Fungous Diseases of White Cedar, 75

- Strand Flora of New Jersey, 193

Hartig, R., Dry-rot and other Wooddestroying Fungi, 211
Hartmeyer, R., Arctic Variety of Ciona intestinalis, 602
Hasslauer, -., Bacterial Flora of the Nose, $: 30$
Haswell, W. A., New Gyrocotyle, 302

- Two Remarkable 'iporocysts from Mytilus lutus. 726
Hatai, S., Interscapular Gland in Human Embryo, 2!
Hatcher, J. B., Ancestral Canidæ, 711
Itamsemamn, V., Acid-fast Bacilli in Python reticularis, 660
Haynes, U. C., American Hepatics, 322
Hazen, 'T'. E., Ulotrichaceæ and Chætophoracea of the United States, 65
Hear-Shields of Snakes, Anomalies, 166
Hearing, Sense of, in Fishes, $71: 3$
Heart of Enteropmensta, +2
Heath, H., Function of Subradular Organ in Chiton, 402
Helib, Dr. F. (i., 122
Helvert, A., Nutrition of Chrysanthemums, 737
Heiden, H., Fossil Diatoms, C35
Heidenhain, M., Molecular Structure and Histology, 26
Meinricher, E., Influence of Light on Seed-Germination, 55
Heinze, B., Production of Acids by Fungi, 752
Helenium autumnale, Abnormal Flowers, 623
Heliostat, Dr. G. Johmstone Stoney's Improved, 92

Helix pomatia, Kidney, 290
Helmholtz, Hermann Ludwig Ferdinand von, 245

- Theory of the Microscope, 381

Helminthosporium and Pleospora, Nelationship, 747
Helminthosporium macrocarpumb, 528
Hemiclepsis and Allied Genera, 1811
Hemimerus, Systematic Position, 607
Hemiptera-Hymenop,tera, Dorsal Glands of Larvæ. 294
Hemp and Flax, Retting, 661
Hemsley, -.. Chinese l'lori, 193
Henckel, A., Cystocloniam purpuraseens and Chordaria fleyelliformis, 527
Henneberg, W., liesearch on Amylomyces $\beta, 204$

- and (1thers, Yeast Forms, \&c., 646

Henning, F., Volatilisation and Recrystallisation of the Platinum Metals, 115 ,
Hennings, C., Marine Myriopods, 722
Hennings, P., African Fungi, 214, 537

- Australian Fungi, 655
- Distribution of Plant Diseases, 207
- Fungus Flora of suo Paulo, 214
- Japanese Fungi. 73
- Microthamnion, 197
- Nuw Diseomycetes, 334
- New Member of the Phallnidea, 79
- Persist nce of Fungal Parasites in altered Conditions of the Host Plants. 651
- Ruhlandiella berolinensis, $33+$

Hepatic Function in Insects, 173
Hepaticæ, Biology, 629

- British, 198, 742
- European, 198, 742
- of Puerto Rico, : :2:;

Hejatics, American, :32:

- and Sphagna, German, 322
- British, 5!
- Culture, :321
- Irish, 523
- Italian, 322
- Nerv Kealand, 5!
- North American, 59, 743
— of Baden, 59
- Papillate, 322

Heredity, Mendelian, 706

- Study, 33.

Héribaud, F', Fnssil Diatoms of Auvergne, $5 \div 5$
Héribaud, J., Diatoms of Auvergne, 634
Heronaphrodite Gland of Limax muximus, Sexual Differentiation, 718
Hermaphroditism in Fishes, 2×2
Hermit-Crab, Nucleolar Changes in secretion of Hepato-Pancreatic (ells, 178
Hermit-Crabs, New Parasite, 7:0
Merrick, (\%.J., Size of Nerve-Fibres in Fishes, 284
Herring. Pickled, Autolytic Processes, 31

Hertwig, O., Treatise on Comparative and Ixperimental Embryology, 483

- - of Vertebrates, 160

Hérubel, M. A., Distribution and Affinities of Sipunculids, 612

- Endothelial Derivatives and PigmentBodies in Gephyreans, 61:
- Notes on Sipmeulids, 613

Herzor, R. O., Pholosynthesis, 55
Herzos, 'T.. European Mosses, $32: 3$
Hesione sicula, Gonads, 613
Hesse, R., Retina of Gastropod Eye, 168
Metroteuthis weberi. 716
Hexacorallia, Peculiar Structure, 502
Hexactinellids. Studies, 502
Heydrich, F., Melnbesiæ, 202

- New Genus of Delesseriace:e, 60
- - of Valoniacee, 201
- - Rbododermis. 636

Heyl, G., Alkaloids of Dicentra formosa, 732
Hibernation of Ants, 719
High Powers, New Arrangement for avoiding Injury when Focnssing, 220
Hilura wheeleri, Gynandromorphism, 36
Hill, H., Cordiceps Rob rtsii, 69
Hill, J. A., Metlind of Mounting Bacteria from fluid Media, 561
Hill, J. I', Early Stages in Development of Ornithorhynchus, 282
Hilleshel, C., Nuclear Stains for Freshwater Alge, 630
Himmel, J., Use of Neutral Red in the Study of Phyagocy tosis, \&c., 78
Hind-End of Ascaris, 180
Hind-Gut and Mid-Gut, Conneetion between, in Larval Hymenoptera, 720
Hinterberger, A., Themophore for use in Staining, 774
Hinze, J., Thiophyse volutans, 754
Hiorus, A. H., Metallograhy: An Introduction to the Smaly of the strncture of the Mctals chiefly by the Aid of the Microseope, 114
Hippobosea tasmanict, 294
Hirschbruch, A., sprouting of Yeast Cells, (;8

- Yeast, 205

Histolngy, Comparative, Text-Book, 26
Hophreutiner, B. P. G., Biology of Fruit in Malvaceie, 310
Holborn, L., Volatilisation and Recrystallisation of the Platimm Metals, 15
Holler, A., European Hepaticre, 198
Hollios, L., Species of Discisceda, 532
Holbrung, M., Jahresbericht der Pflanzenkrankheiten, 584
Hrdmes, F. J., Deaih-Feiguing in Terrestrial Aıphipods, 7e?
Hohucs, S.J., North American Amphipods, 723

- Plototaxis in Yolyox, 730

Holmgren, E., Intraceltular Threads in Nerve-Cells, 506

- Trophospongia, 162
- - in Clandular Cells, 596
- Trophospongiam of Nerve-Cells and Pancreatic Cells, 26
Holmgren, N., Excretory Processes in Insects, 34
- Morphological Significance of Chitinous Cuticle, 33 ,
Holothuroid, Abyssal, Entosiphon Deimatis Parasitic in, 491
Holtz, F. L., Pelvetia fastigiata, 636
Holtz, L., Chanaceæ of Mark Brandenburg, 202
Holway, I. W. D., and Others, Notes on Uredince, 530
Holzinger. J. M., Biology of K. G. Lim.. pricht, 325
- Inconspicuous Mosses, 325
- Musses of Alaska, 325

Homuliu lusitanica, 523
Hone, D. S., Petralonema alatum, 658
Hooke, Interesting Extract from, 11"
Honker, Sir J., New Micrometer, 112
Horder, E., Metal Clinical Case, 782
Horniker, E., Staining the Plague Bacillus, 108
Horrell, E. C., Sphagna of Upper Teesdale, 523
Horse Disease, Central Fouth Americau, Parasite of, 61!

- Formation of Black Pigment in Tumours, 488
- Origin of 'Thoroughbred, 711

Horsus in Plilippines, Trypanosomiasis, 619
Horseshoe Stage, An Improved, 591
Host, Intermediate, of Filaria immitis, 40
Hot stage, New Regulating Arrangement, 669
Houghton, H. S., Development of Musculature and skeleton in Spelerpes longicandus, 595
Houestadi, H., Jena Glass and its Scientific and Industrial Apphiances, 554
Houssay, F., Carnivorous Fowls of the Second Generation, 282

- Mudifications Ubserved in Carmivorous Fowls, 286
-- Organic Sexual Dimorphism in Fowls, 160
Howard, A. D., Structure of the Outer Segments of the Rods in the Retina of Vertebrates, 710
Howe, M. A., Caloglossa Leprieurii, 66
- Riella, 522

Iluber, 'T., Amazon Flora, 626
Hübner, J., Microscopical Examination of Paper, 774
Iludsonite, Amphibole, previously called a Pyrosene, Note, 717

Humphrey, J. C. W., Fracture of Metals under repeated Alternations of Stress, 115
Humus Fungus Flora, $7 t$
Hunter, J., Eye-piece Lens Interval as arranged for Achromatism. 221
Husband, M. A. Notes on Cladouias, 538
Husek, G. Starch-Grains in the Root-Cap of the Onion, 508
Hyalella, Marine 'pecies, 178
Hyalospora Aspidiotus, 210
Hyams, J., Chemical ('omposition of Oscillaria prolifice, 76
Hybrid Nature of Triton blasii, 707
Hybrids, Determination of Dominance in the Colour Characters, 519

- On the Characters, 739
- Plant, Behaviour of Nuclei, 50G

Hydated Cysts, Production from Noolices, 42
Hydnangeum carneum, Nuclear behaviour and Spore-Formation, 750
Hydra anil Aurelia, Spermatogenesis, 304

- Method for Demonstrating Nematocyst Cells, 237
Hydrachnid Larve Living in 'Trouts Stomach, 609
Hydrachnidæ and Ixodidæ from south America, 298
Hydrocyanic Acid in Sorghum, 517
Hydrogen and Cirburetted Hydrogen formed by Plants, 516
Hydroids, Excretory ('ells, 616;
- of Pacific Coast of North America, 44, 502
Hydrolysis of Polysaccharides, 517
Hymenoptera and Lepidoptera Antennary Sense-Organs, 29 t
- Larval, Comection between Mid-Gut and Hind-Gut, 720
Hyphomycetes, New, 529
Hypomyces, New, 207

I.

Ibluotson, F., Analysis of Steel-Works Materials, 375
Ihering, H. v., Parasitic Worms as Aids in Zoogeographical Investigation, 40
Ijima, I., Studies on Hexastinellids, 502
Ikeno, S., Formation of Antherozoids in Marchantia. 3:1

- Systematic Position of Monascus purpureus, 746
Ikeno, -., Development of Spermatozoids in Marchantia. 741
Illingworth, J. F., Structure of Lucapina cremulata, 169
Illuminating Apparatus for Metallograply, 97
Illuminating Cones, Wide, 673

Illumination and the Use of Condenser in Histologic.l Micrography, 97
Illuminator, Watson and sons' Macro-, 91
Imaginal and Pupal Organs, Precocious Development in Caterpillars, 605
Imagines, Changes in, indluced by Change of Diet iu Caterpilhars, $29 \frac{1}{2}$
Imbeddiug and Fixiug Deuse Connective Tissur, 369

- and Hardeuing Tissues, Rapid Method, 768
— in Celloidin. 770
- in Paraffin, New Methods, 369
- Medum, New, 558
- Small Objerts, New Method, 233

Immersinn Oil B ittle, 777
Index Anim limm, 548

- Ocular, Burguet's New, 91

Indol, Ring Test, 366
Inertia, Functional, of Plant Protoplasfa, 191
Infection Experiments with Claviceps, 746
Infusorians, Fossil, $30 G$

- Marine Adaptability to Fresh Water, 306
- Senescence and Coujngation, 503

Ingi, Seets, 513
Ingham, W., British Moss Floria, 61
-Yorkshire Muscineæ, 323
Injections, Physiolnical, Notes, 285
Ink for Writing on Giliss, 112
Innervation of Mantle of Pecten, 33

- of Metaceplialic Negment, $3 \pm$

Insect, A Most Primitive, 295

- against Insect, 294
- Visitors and loppies, $n 18$
- and Flowers. 60t
- and Myriopods, Joints of the Walking. Legs, 604
- and Petal-less Flowers, 604
- Excretory Pruces es, 31
- Exuvial Glan is, 173
- Hepatic Function, 173
- Metamorphosis of Nervons System, 604
- Mouth-parts, 34
- of the Drift Line, 33
- Preparing Serial Sections, 106

Insects and Floral Colours. 718

- Aquatic, of New York State, 722

Integumentary (organs of Cervidæ, 284
Intercellular Conuectious, 487
Interscapular Gland in Human Embryos, - 29

Intestinal Villi, Structure, $16 \pm$
Intestine. Human, Beetle Embedded in Wall, 720

- Post-embryonic Development, 493
"Intracellular Threads" in GanglionCetls of Electric Organ of Torperlo, 162
Intranuclear Space in Liver Cells, 162
Invertebrates, Chemicat Physiology, 598
Ionisation, Relations to Plant-Growth, 56

Irgang, G., Sap-excreting Elements in Tropxolum majus, 733
Iron Carmalum, 773
Isert, A., Dlgestive Glands of Monascille, 489
Isistius brasiliensis, Brain, 289
Isolating Bacillus icteroides, New Method, 767
Isopod, Statocysts in, 610
Isopods, Terrestrial, Absorption and Secretion. 39
Issat.chenko, M. B., Experiments with Bacterial Light, 662
Iterson, G. v. jr., Accumulation Experiments with Denitrifying Bacteria, 539
Ives, F. E., New Binocular Microscope, 85

- Stereoscopic Photomicrography, 223

Iwanhow, W. W., Leprosy Bacillus, 218
Iwanowski, -., Development of Yeast in Sugar Sulution without Fermentation, 337
Jxodidæ and Hydrachnida, New, from S. America, 298

- Species, 496

Izuka, A., Observations on the Jananese Patolo (Ceratocephale osavai sp. n.), 724

J.

Jaccard, P., Floral Distribution in the Alpine Zone, 57
Jackson, C. M., Morphology of the Myxinoids, 4×7
Jackson, D D., Genus Crenothrix, 215
Jacky, E., Experiments with Pucciniæ, 648
Jacquinia ruscifolia, Fruit, and Trichomes in Myrsinacee, 189
Jaczewski, A. v., Disease of Sorbus Aucupariu, :335

- St. John's Disease of Peas, 338

Jaeger, H., Charact rs of Meningococcus intracellularis, 343
Jameson, H. L., Formation of Pearls, 170
Janicki, (1. v., Behaviour of Chromatin in Segmentation of Ovum of Gyrodactylus, 615
Jatta, A., Chinese Lichens, 208

- and Others. Lichens, 657

Javillier, M., Proteolytic Ferments, 625
Jena Glass, 554
Jobert, -., Muscular Apparatus of Anomia. 171
Jochmann, G., Rapid Diagnosis of Typhus Bacilli, : 43
Joesting, F.. Anatomy of Certain Groups of Caryophyllacer, 510
Johnson, D. S., Development in Piperacer, 511
Johnson, L., 249
Johnsun, T., Fungicides, 652

Johnson, W. B., Gonococcus in the General Circulation, 81
Johnson, W. F., Beetles of Ireland, 176
Johuston, I. R., Cauloglossum transversarium, 532
Johnston, S. J., New Distomum from Sawfish Shark, 500
Joints of the Walking Legs in Insects and Myriopods, 684
Joly, J., Improved Method of Identifying Crystals in Rock Sections by use of Birefringence, and Improved Polarising Vertical Illuminator, 683
Jones, (.. P., Streptothrix, 215
Jonsson, H., Marine Alge of Iceland, 528
Jordan, D. S., Colours of Fishes, 28
Jordan, H., Function of Mid-Gut Gland of Crayfish, 178
Joubin, L., Hetroteuthis weberi, 716

- Loligo media, 716

Jourdain, L., New Cuttle-fishes, 168
Juel, H. O., Development of Dipodascus albidus, 69

- Development of the Ovule in Casuarina, 736
Juglandeæ, Floral Structure, :34
Julus communis, Odoriferons Glants, 297
Juucaceæ, Formation of Egg and Division of Antipodal Cell, 736
Jung, -., New Student's Microtome, 230
Jung, R.. Apparatus tor the Quick and Uniform Staining of Serial Sections and for the Treatment of them in Number with Reagents, 679
Jurie, A., Morphological variation in Leaves of the Vine as a consequence of Grafting, 738

K.

Kayser, -., Paratyphoid Fever, 344
Keeble, F., Bionomics of Convoluta Roscoffensis, 725

- Colour-Physiology of Higher Crustacea, 609
Keeley, F. J., Preparation of Diatoms, 768
Keissler, C. v., Plankton of the AltAusseer Lake, 199
Keller, R., Mosses of Central Switzerland, 199
Kellerman, K., Method of Making Collodion Tubes, 112
Kellerman, K. F., Effects of Chemical Agents on the Starch-converting Power of Taka Diastase, 517
Kellog, V. L., Larva of Giant Crane Fly, 36
- Millophaga from Galapagos Birds, 38
- Mouth-parts of Insects, 34
- Net-winged Midges. 242

Kelly, B. E., Application of the Cinematograph Principle to the Study of serial Sections, 776

Kiennedy, C., Unilateral Coloration with Bilateral Effect, 601
Kerforne, E., Development of Graptolites, 729
Kidney of Helix pomatia, 290
Kidneys and Gonads, Relations in Haliotis, 170

- Functional Inequality, 488
- of Lepadogaster, Specific Differences of, 600
Kime, J. W., Nome Experiments with Actinic Light, 766
Kiuase, Presence in Basidiomycetes, 533
Kindberg, N. C., Anomodon Toccox, 623
- Genus Thamnium, 60
- N. American Mosses, 324
- Thamnium, 742

Kindborg, A., Pneumococcus which liquefies Gelatin, 343
Kirkaldy, G. W., Note on Phototropism of Daphnia, 497
Kishinouye, K., Species of Corallinm, 616
Klebahn, H., Study of Related Forms, 207
Klein, E., Agglutination by Blood of Emulsions of Mierobes, 756

- Method of Detecting the Presence of Baeillus coli communis in Shellfish, 229
- New Pathogenie Mierobe of Diphtheria Baeillus Group, 348
Klein's Yeast, Rescareh, 647
Klemperer, F., Identity of Rhinoscleroma Bacillus with Friedländer's Bacillus, 80
Klunzinger, C. B., Ptychodera erythræ, from the Red Sea, 183
Koehler, R., Entosiphon Deimatis Parasitic in an Abyssal Holothuroid, 491
- New Crinoid, 43

Komenia, New Species, 609
Koenigsberger's Microphotometer for the Measurement of Light Absorption, 362
Koeppel, E., Genus Amphion, 39
Köhler, A., Formation of Chorion in Pyrrhocoris apterus, 607
Kolbe, H., Precocious Dcvelopment of Pupal and Imaginal Orgaus in Caterpillars, 605
Kolkwitz, R., Leptomitus lacteus, 640
Kolmer, W., Simple Method of Making Thin Paraffin Sections, 105
Koltzoff, N. K., Formative Elastic Structures in Cells, 709
Koning, C. J., Fungus Flora of Humus, 74
Koninski, K., Biology of Anaerobic Baeteria, 340
Kopsch, \mathbf{F}., Artificial Fertilisation of the Ova of Cristiceps argentatus, 593
Korff, K. V., Spermatogenesis in phalangista vulpina, 24
Koristka's Abbe Camera Lueida with Lens-Holder, 554

- Apparatus for the Microscopic Projection of Liquid Preparations, 553

Koristka's Hand Magnifiers, 548

- Large Reflecting Mirror, 349
- Mechanical Stage, 547
- Simplified Vertical Camera, 355

Kotte, E., Integumentary Sense-Organs of Deep-Sea Decapods, 299
Kovarzik, K., Epidemic of Guinea-pigs caused by a Variety of Bacterium coli, 342
Kowalevsky, A., Phenomena of Fertilisation in Hæmenteria costata, 498
Kozlowski, B., Staining and Mounting Urinary Sediment, 560
Kraemer, H. Continuity of Protoplasm, 47

- Structure of Starch-Grain, 507

Kraus, R., New Regulating Arrangement for a Hot Stage, 66:
Krause, F., Differentiation of Bacillus typhiabdominalis and Bacillus eoli communis, 80
Krempf, A., Peculiar Structure in Certain Hexacorallia, 502
Krieger, -., Catharinea, 523
Kries, J. V., Visual Purple, 766
Kryptogamen-Flora: Fungi imperfecti, 209, 535
Kuckuck, P., Reproduction of Valonia, 64
Kukenthal, W., Revision of the Nephthyidæ, 728
Künkel, K., Breeding Experiments with Sinistral Snails, 603

- Locomotion of Slugs, 490

Kurpjuweit, -., Effect of Oil on Bacteria, 340
Kusano, S., Parasitism of Buckleya Quadriala, 51
Küster, E., Pathological Plant-Anatomy, 621
Kuwana, S. I., Mallophaga from Gal!apagos Birds, 38

L.

Laaser, P., Development of Teeth in Selachians, 486
Labbé, A., Fibrillar Continuity of Epithelial Cells and Muscles in Nebalia, ?8
Labbé, H., New Proteid from Maize, 49
Laboratory Methods, Biologieal, "40
Laboulbeniaceæ, 70
Labyrinth of Ear of Pig, Circulation, 711
Lacertilia, Mastication Muscles, 712
Lactic Acid, Decomposition by Fnngi, 534
Lafar, Dr. F., Technical Mycology, 538
"Lag" in Mieroscopic Vision, 583
Lagarde, J., Fungi of Monnt Ventoux, 214
Lagena, Homology throughout Vertebrates, 710
Lagenostoma Lomaxi, the Seed of Lyginodeudron, 622
Lagoehilus, 52

Laing, R. M., New Zenland Marine Algre, 68
Lamarlière, Géneau de L., Moss Flora of French Caverus, 61
Lamllia intestinalis Fatal to Rabbits, 46
Lambotte. V., Microbe of the "Loque" Disease of Bees, 77
Laminariaceæ and Laminaria Industries of Hokkaillo, Japan, 527

- Studies on the Comparative Development. 526
Lamp, Electric Incandescent, 97
- New Electrical Microscope. 35̄0
- 90° Automatic Focussing Electric Arc, 97
— - Hand-fed Electric Arc, 98
- Wation and Sons' Incandescent Gas, 92
- Watson's New Standard Electric, 95

Lamson-Ncribner, F., Diseases of Grasses, 751
Lancelet, Structure and Development of Fernale Gonads, 594
Land, W. G., Morphological Study of Thuja, 189
Landolphias, Caontchouc-yielding, of the French Congo, 49
Lange, E. F., Simnltaneous Presence of Ferrite and Cementite in Steel, 6,3
Lanzi, M., Diatoms of Lake Cotronia, 200

- Fossil Diatoms in Rome, 200
- Il Trattato dei Funghi, 215
- Italian Agaricacex, 212
- Valne of Spore Characters, 212

Lapicque, L., Hzematolytic Fuuction of Spleen, 30
Laponge, G. de, Phylogeny of Carabus, 493
"Larvnx" of Ganoids and Dipnoi, 600
Laticiferous Tissue in Flowers of Convolvulaceæ, 513
Launoy, L., Formation of Zymogen in Gastric Glands of Adder, 27

- Nincleolar Changes in Secretion of Hepato-Pancreatic Cells of HermitCrab, 178
Laurent, E., Production of Glycogen in Fungi, 75:
- Synthesis of Proteids by Plants, 513

Laurent, M., Formation of the Egg and Division of an Antipodal Cell in the Juncaceæ, 731;
Lauterborn, L., Tracheal Gills on Legs of Larval Perlid, 607
Larva of Giant Crane Fly, 36
La veran, A., Hæmatozoa in Marine Fishes, 46

- Hæmogregarines of Ophidia, 307
- Parasites of an Asiatic Tortoise, 46
- Trypanosomas trom Transvaal Cattle, 46
Lawson, A. A., Relationship of the Nuclear Membrane to the Protoplast, 506
- Studies in Spindle Formation, 731

Lea, A. M., Tasmanian Phasmid, 721
Leaf-cclls of Sphagnum, 197
Leaf-Cuticle, Manipulation of Sections, 770
Leaf-Venation and Chemical Constituents of Eucalypis, 50
Leaves, Effects of Water and Aqueous Solutions on, 315

- of the Vine, Morphological Variation as a consequence of Grafting. 738
Leavitt, R. G., Root-Development in Azolla, 520
Leche, W., Phylogeny of Erinaceidx, 167
Lee, A. B.. Illumination and the Use of the Condenser in Histological Micrography, 97
Leerlh, Alimentary Tract, 302
- Minnte Structure of Alimentary Canal, 612
Leferre, G.. New Method of Imbedding Small Objects, 233
Leger, L.., Development of Gregariues, 619
Léger, L., New Parasite of Hermit-Crabs, 730
- Parasitic Bacteria in Intestine of Chironomus Larvie, 994
- Sexital lieproduction of Pterocephalus, $72:$
Legros, R., Vascular System of Amphioxus, 489
Legnminose, Mexican, 626
-Runts, 531
Leguminous Plants, Root Tubercles, 217
Leiss, C., New Crystal Refractometer for the Determination of the Refractive Index of Large and Microscopically Small Objects, 226
Leitz' Kandloups, 761
- Mineralogical Stand, No. I., 738
———Nn. II., 758
- New Stand and Fine Adjnstment, 665

Lejeunea in North America, 322
Lemmermann, E., Anabæna, 658
Lendenfeld, R. v., Note on 'spongilla fragilis, 502
Lenhossék, M. v., Development of Corpus Vitreum, 283
Lens, Pseudoscope, 762
Lenses, Natural, Photography by, 764

- Photographic, 677

Lentinus lepidius, 73
Leon, N., Prophysema hæckelii, 617
Lepadogaster, Specitic Differences in Kidneys, 600
Lepeschkin, W. W., Study of Heredity, 335
Lepidoderma, 344
Lepidoptera and Hymenoptera, Antennary Sense-Organs, 294

- Calorimetric Measurements in Reference to Pupæ, 33
- Evolution of Colour-Patterns, 291
- Larval, Mandibular Glands, 495
- Male Genital Appendages, 605

Lepidoptera of Nortl America, 495

- Oogenesis, 496
- Position of Repose. 719
- Studies on the History of the GermCells, 175
Lepidosteus, Early Development, 718
Leprosy Bacillus, 218
Leprous Affection of Slin and LymphGlituds of Sewer Rats, 312
Leptomitus lactens, 610
Leptothrix racemosa, 75
Lerat. P., Maturation-Phenomena in Oogenesis and Spermatogenesis of Cyclop: strenum: 3 !
Lesage, P., Influence of Substratum on Germination of Spores of Penicillium, 645
Lesions Artificially induced in the Mother, Reappearance in Offspring, 22
Le komrt, - ., Bacillus of Soft Sore, 83
Letellier, A., P'urple of Purpura lapillus, $2!0$
J.ett, H. W.. British Hepaties, 59

Lenencytes of Man and Monkey, NonExistence of "Neutrophil" Grimules, 46 S
Levrat, D. ('olonr of Silk, 35
Levy, E., Ntreptotrichaces, 216
Lewin, M., Devclopment of Beak of Pen. guiu, 283
Lichen Flora, 249, 7.53

- - New French. 70
——of Algiers, 71
——of the Tyrol, 70
- Tiare, firm Liguria, 70

Lichens, 6 º̄

- Brazilian, 733
- C'aliformian. 71
- Chinese. 20 s
- from ralapagos, 209
- Murphology, 75:
- Prolucts of Metabolism, 597
- liestarch. 20 s
- Two Marine, 597

Licmosphemia : a New Gemus of Diatoms, 64
Lienard, E., Reserve Carbohydrates of the Albumen of Palms, 49
Light, Actinic, Eisperiments with, 766

- imd I'arkness, Influence on Plant-life, $: 316$
- Influence on Amcebe and their Cysts, 617
- - on Sed-Germination, 55
-Small Electric for Photomicrography, !,
Lilley, G., Nitella batrachospermu, 631
Limax maximus, Sexual Differentiation in Hermaphr dite Gland, 718
Limb-holder, New Double-hinged. 545
Limb-Origin. lsiometric Evidence bearing on Thenry oft, "4
Limbs in Amphbians, Influence of Central Nervuns sys mon Development, 594
- Tertubrate. Eirulution, 70 S
lime, Carbonate, Utilisation by Anodonta, 718
- in Phanerngamic Parasites, 192

Limestones, Chemical C'mmosition, Mi(roscopical MLethods, 681
Limicole, Negeneration, 179
Limpet, Memoir, 491
Limpmann, E. O. v., Nomenclature of Euzymes, 517
Limpricht, K. G., 325
Limpricht, W., European Mosses, 198, 741
Lindon, M. G. v., Sensory Hairs on Pupa of Papilio podalirius, 175
Lindroth, J. I., and others, Rusts of Special Natural Orders, 649
Linnart, G., Distribution of Plant Discases, 207
Linstow, O. v., Echinococcus clecolaris, 181
Lipurins, Notes, 176
Lisituthus, Revision of the Species, 57
Lister, J. J., Notes on Liparids, I7t
Lithelius forficatus, Variation, 608
Little. E. O., Method fr ilemonstrating Nematocyst Cells in Hyma, 237

- Preparing , ections of Catucellous Bone, 769
Livanow, N., Hemiclepsis and allied Genera, 180)
Liver-Cells, Intranuclear Space, 162
liver-Fluke, Sub-teonhageal Ganglion, 3%
Liver in Invertebrates, Adipogenic Function, 31
- Relation between Weight and Total surface, 599
Lizards, Femoral Glands, 27
Lloys, C. G., Genera of Gastromycetes. 73
- Notes on Americau Fungi, it

Lombur, Intlnence on the Formation of Wrod and Batst Elmments in Weepine Trees, 1:12
Lobster Larve, Emergence, 7 -2;
Locmotion of Slugs, 490
Lucustidas, Spermatorenesis, 37
Loeb, J., Experiments on Ora of Startish, 501
Loeske, L., German Mosses, $32 \pm$
Loew, O., Letion of Uranimm on Plant, ilis
Loisel, (x., Senescence and Conjugation in Infusorians, 5u:

- Espermatogenesis in Sparrow, 23

Loligo media, 716
Lolium temulentum, Sced-Fungus, 7.5
Lonse, W. H., jun., liavenchas of the United States and Mexico, $0: 30$
Longmuir, P., Micrographic Study of Cast Tron, 77
Limuberg, E., Adaptations to Molluscivorons Diet in l'aramus niloticus, 712

- Intermediate Form between . Ihy iv ormlutre and $M y$ is reliete, GII

Louss, A., Trematodes from Marine Turtles, 41
"Loque" Discase of Bees, Microbe, 77
Lorch. W., Leat-cells of Sphagnum, 197
Lorrain-smith, A., British Microfungi, 751
Lovell, J. H., Conlours of Northern Gamopetalous Ftowers, $7: 39$

- Insects and Filoral C'olours, 718

Low, G. C., Filuria perstans, 302
Lowe, E. E., Insects and Flowers, 604
Löwenstein, A., Mastigoclatu: laminosue, 657
Loyez, M., Follicular Epithelium in Birds, 594
1.ubosch, W., Maturation in Newt's Ova and in General, 281
Lecupima cremulata, Structure, 160
Lucet, -., Sterigmatocystis pseulonigra, 33 s
Luerssen, C., German Pteridophyta, 521
Lïhe, M., Peculiar Cestode from Acauthias, 615

- Progress in Study of C'occidiat, 730

Lumiere's Arrangenent for talking Photomicrographs in Colours, 118, 119
Luminous Bacteria, 756
Lung, Vertebrate, Development, 2.;
Langs, Development in Discoglossus pictus. 707
lupins, Uromyces, 650
lïtkemüller, 'J.. Cell-Membrane of Desmidiacee, 65, 328
Lutz. L., Alkaluids as a fource of Nitrogen, 7:37

- Poisoning by Fungi, 212

Lyginodendron, Lagenostomu Lomaxi, the Seed of, 622
Lysiamassids, Abyseal, 611

M.

MeAlpine, Dr., Fungus Discases in Australla, 74
McAlpine, D., Australian Fungi, (65.)

- Black Spot of the Apple, 71

Macarangu triloba, Aymmecophily, 625
McArdle, D., and Auother, Irish Hepaties, $5 \because 3$
Macehiati, L., Plotosynthesis Outside the Plant, 314
McClung, C. E., Spermatogenesis of Locustidre, 37
MacCullum, W. G., New Monostome from Snaptines'Turtle, 61.5
Macdongal, D. T.. Intlnence of Light and Darkness on Plant-life, 316
Macfalyen, A., Immunising Effects of Contents of Typhoid Bacillas, T+1

- Intracethalar Toxin of the Typhoid 13acillus, 217
- Luminous bacteria, 756

Machilis. Compound Eyer, 608

M'Intosh, W. C., Alnommal Coloration in I'leuronectids, 166

- Frequency of Oecurrence of Pearls, 40;

McKenzie, A., Biological Method for Resolving Inactive Acids into their Optically Active Components, 5i:3
Macharen, N., Kin of Trematodes, 500
MacMinn, (.A., Comnting the Ied Corpuscles of the Blood, e40
Mucrocystix prrifera, $32 y$
Macrosporangia of Nelaginella, Opening Mechanism, :3:1
Macrosporanimm of Yucca Development, 312
Macvicar, S. M., Dritish Hepatice, 198
Madreporaria, , ignificance of Budling and Fissin, 4;
Maglaghi, A., Fungi of Lomellina, 214

- Fungras Flora, 214

Magnifier, Barhour's Pocket, 91
Maguifiers, Koristkt's Hand, ots
Magnoliacee, Comparavive Anatomy of Stem, 51
Magnus, O., C'langes Produced in the Peridial Cell-Walls of the Uredince, 749
Magnas, P', Function of Ganglion in Cionce intertinalis, 48!
— (ionseberry Mildew, 69

- Hyslospura Aspidiotus, 210
- Nomenclature of Uredinea, 650
- Uredo bistortaram. 210
- Urophlyctis bohemica, 20t

Mahen, J., Moss Flora of French Caverns, (i)

Mahon, J. J., The Mierocepe in Crucible Steel Manufacture, 682
Maiden, J. IL.. Gums, Rusins, and other Yegetable Exudations of Anstralia, 50

- Notes un Australian Botany, is
- Plants of Lord Howe I lanil, 519

Maire, R., Mesearch on Basidionywetes, 211

- 'Iasonomic and Cytologial Nutes on Botryosporium pulchellum, 7io
Maize, New I'roteid, 49
Malacostraca, Excretory Organs, 33
Malaquin, A., Develotment of Metamers in Salmacina dysteri, 1613
Malaria Parasites, Staining with A-Mcthyleu-Bhue-Eosin, 108
Mularia promiciosu, Staming the Parasites, 108
Malaria, Species of Mosquito concened in Diffusion, 37
Male Organs of Scatophaga, 607
Mallophaga from (talapages lirds, 38
Malme, (i. O. A. N., Lituodina, $75 ;$
Malt and Barley, Micro-organimms, 216
Malvacea, Biology of Fruit, 313
Malvoz, E., Compound Cilia, 77
Manmalian Egg, Fixation in Uterine (asity. 7t:

Mammals and Birds, Albinism, 712
Man, Results of Castration, 707
Mandibular Glands of Larval I.epidoptera. 493
Mangin, L., Bornetina Corium, 650
— Disease of Chestnut Trees. :3:3
— "Phthiriose," a Disease of the Vine, 31
Manipulation of Celloidin Sertions, Apparatus, 238
Mann, G., Methors and Theory of Physiological Histolngy, 110
Mänuich, H.. Development of Vertebral Column of Penguin, 2x:3
Manson, Sir P., Lite-Span of Filaria merlinensix, 614

- Trypanosomiasis, 307

Marchal, E., Phytopathology, 653

- Rusts of Cereals, tits
- Synthesis of Proteids by Plants, 513

Marchantia, Development of spermatozoirls, 741

- Formation of Antlierozoids, 321
- Rhizoid-Initials, 58

Marchoux, E., La Garotilh:, 756
Marcinowski, E.. Sub-cesophageal Ganglion of Liver-Fluke, 308
Marcuse, M., Mycorhiza, i;57
Marino, F., Non-Existence of " Neutrophil" Gramulations in Lencocytes of Man and Monkey, 4 si
Marpmann, -.. Ceil-Nucleus of Saccharomyceies and Bacteria, 68
Marpmann, G., New Imbedding Melinm, 558

- New Medium for Momnting Microscopical Preparations, 260
Marshall, F. H. A., Estrous Cycle and Carpus Luteum in Shecp, 44
Marshall, G. A. K., Seasonal Dimorphism in Butterflies, 35
Marsilia, Spore-cavity Nuclens in Prothallia, 320
Marsupella and Gymmomitrium, 713
Marsupiahia, Marsupial Legion, 710
Martelly, -., Putrefaction of Meat, 218
Martin, C. E., Bolotus sultomentosus, 746
Martin, S.. Chemical Products of Diarrhoaproducing Bacteria, 7.55
Massalongo, C., Italian Hepatics, 322
- Mycologrical Notes, Til
- Scapania. 321

Massee, G., Chatomúum Bostrychoilles, 206

- Diseased Pelargoniums, 71

Mastication Muscles in Lacertilia, 712
Mastigocladus lrmino:us. 657
Mastogloia fimbriuta and M. binotatr, 399
Matouschek, F., Mustrian Muscinee, 324

- Europeau Hepatica, 199
- (ierman Mnsses, ::2 4

Matruchot, D., Action of Freezing on Plant-Cells, 50 s
Matruchot, I., Action of Fermentation on the Cell, 745

Matruchot, L., Biology of Piptocephalis: 204

- Cultivation of Truffles, 643
- Mucorini, 333

Matte, H., Meriphyte of the C'ycads, 783
Maturation-Mitosis, Heterotypic, in Amphibia, 707
Matzuschita, -., Physiology of Sporeformation in Barteria, $33:$?
Maurel, E. Relation hetween Weight of Liver and Total Surface, 59,
Minurer, Ci., Ntaining the l'arasites of Muluria perniciosa, 108
Maxon, W. R., Cuban Ferns, is

- Ferns and Fern Allies of N. Americi. 195
- North American Pteridophyta, 741

Mayer, A. G., Atlantic Palolo, 300

- Wvolution of Colour-Pattern in Lepidoptera, 291
Nayr, H., Disease of Fir Trees, 334
Mazé, P., lipening of Setds and Power of Germination, 315
Mazza, A., Algae of the Gulf of Naples, 6:39 - New Nitophyllum, $6: 3$
- Schimmelmannia ornatu, 5:27

Mazzarelli, G., Demonstrating the Structure of Gastropods. 3 tis
Measures, British and Metrical Comparison, at the same temperature, 364
Meat, Putrefaction, 21s
Meckel's Diverticulum and Concomitant Absence of Cecal Appendix, 710
Medicago denticulate and other Leguminons Plants, Root-tubercles, 217
Medullary Sheath Staining, Use of Paraftin Inberding, 771
Meisenheimer, J., Crustacea and Pantopola, 178

- New Pteropod, 603

Melander, A. L., Gynandromorphism in Milura whecleri, :3
Melipona, Stingless Bees of Pará, 172
Mell, P. H., Biological Laboratory Methorls, 240
Melobesire, 202
Melosiria, 633
Mengarini, M. T., Conjugation of Amœbe. 503
Meningocorcus intracellularis, Characters, 343
Mennerhet, L. A.. Fruit of Jucquinia ruscifuhand Trichomes in Myrsinacee, 1s!
Macerisation of C'ntion Fabrics, 520
Mereschknwsky, C., Auxospores of Diattoms, 6:32

- Classification of Diatoms, 3:21
- Diatoms of the Dhack Sea, 169
- Endoclirome ot Diatoms, 633
- Liemosphenia, a New Genus of Dia. $t \mathrm{mms}, 6 t$
- New Genera of Diatoms, 7tt

Mereschkowsky, C., Polynesian Diatoms, 331

- Pyrenoids and Elxoplasts in Diatoms, 200
- Structure and Division of Diatoms, 632

Meriplyte of the Cycals, 733
M1elin, A. A. Minute Structure of Triceratium, 62
Merulius lacrymans, 732
Mesuil, F., (iall-forming Copepod in an Anemone, 300

- Hrematozor in Marine Fishes, 46
- Parasites of a Asiatic Tortoise, 46

Metabolism in Lichens, Products, 537
Metacephalic Negment. Innervation, 34
Metachromatic Corpuscles in Ascomycetes, 751
Metallography: An Introduction to the Study of the Structure of Metals chiefly by the Aid of the Microscope, 114

- Illuminatiner Apparatus, 97

Metalnikoff, S.. Excretion in Guat Larva, $17:$
Metals, Fracture under Repeated Alternations of Stress, 11 S
Metameres, Development in Stlmacina tysteri, 61:
Metanorphosis in Amblystome tirrimm, Acecleration and Retardation, 717

- Physiological Study, 172

Metrifium, Variations in, and Anemones, Notes, 4.5
Memier, F.. Diptera from Amber, 606
Meves. F., Dinophism of Spermatozoa. 23

- Spermatogenesis in Drones, 719

Meyer, H., Researches on Tetanus, tifl
Meylan, C. Freach Moss Flora, 61
Miahl, L. C., Cricket of Aquatic Habits, 36
Mice, White. (amoth in Weisht, 4s!
Michael, A. D., 127
Michel, A. Spmeies of Rhabritis, 180
Micheli, M.. Mexican Leguminose, 626
Michelson Echelon Diftiaction Grating, $2 \because 8$
Nierobes, Agglatination by Blond of Emulnons, 754
Micrococens, Flagellaterl, found in Septicemaia of Lahbits, 66.3
Nicrotungi. British, 751

- Polymorphism, 209

Dicrographice tudy of Cast Iron, 777
Nicrometer, New, 112
Wierometers, Early (1 1/iss. (17
Ticrometric Correclion lor Minnte Obje cts. 57.3

- Microscope, Very Powerful, 761

Mieromycetes raviores velecti, 5\%
Micro-trganism infecting small Animals in the Laloratory, 3 2e
Micoo-organisms of Barley and Mrat, 216

- Vital staining, 773

Microphotometer for the Measurement of Light Absorption, Koenigsleerger's, 362
Micropolariscope, Making, Preparations of Crystals for, 110
Micropyle and Chorion in Cephalopexts, 168
Microscope, Barbour's Pocket, 90

- Bausch and Lomb's New Pattern, 241, 349
- Beek's Metallurgical, 348
- - Pathologiral, 34i
- - Poriable Continental Model. $54 t$
— - - "Star," 345
- - Process, $34 ;$
- Early Compound, with Mirror attached to its Limb, 590
- for Museum use, 379
- Helmholtz Theory of the, 381
- in Crucible Steel Mantacture, 682
- Lamp, New Electrical, 350
- Leitz' Mineralogiefl tand, No. I., 758
—————No. II., 75 s
- Leitz' New Stand and Fine Adjustment, 665
- New Pinocular, 85
— - Pontable, i43
—Oll, 241
- - by M. Pilliseher, 542
- - Non-Achromatic Simple, 587
- On the Theory of Optical Images, with Special Reference to the, 417
— - Supplementary Paper, $4 \boldsymbol{7}$
- Portathle ('lass, S:
- - Watan's New laittern. 670
- The. 678
- Used by Gosse, 118
- Vary Powerful Micrometric, 761
- Watsom and tons' Metaliurgical, 86
- - Museum, sis
- Watson's Van Meurck, Method of fitting stage and Limb, ss
- with a Tomes'stare, by Pillischer, 245

Micreseopic Examination of T'aper Fibres, 111

- Oljects. C'olour Illmmination, (i71
- Vision, Common liasis of the Theories treated withont the Aid of Mathematical Formule, 102
.-. On the " Lag" in, 583
Mierosoppical Diagnosie of Intermittent Fever, Improved Method, 236
- Examination of Fuods and Drugs, 5itl
——of Paper, 77t
- Preparation. A Ilodification of the Pantngraph for Drawing. 777
- - Naw Medium for Mounting, 560
- Stancl, New, with Muvable Stage, capable of Large Novements, 67)
- Technique. Encyelrpedia, :373

Mierosenly, Morkeru, 111

- Plant, 5 s

Micro-skeleton:. ('artilaginons, Method for Demonstrating, 372

Micmspectral Objective, Eugelmann's, with Detachable Thorpe's (irating amd Detachable Polariser, 351
Microspectralphotometw with Grating Spectrum, Engelmam's, :35:
Microthamnion, 197
Microtome, Hand, New Freezing Plate, 558

- Jung's Now student, 230
- Reichert's Sliding, Improvement, 231
- the Minot, New Razor-hohder and adjustable Clamp, 2:4
Midges, Net-wingial, 2!2
Mid-Gut and IIind-(int, Connection between in Larval Hymenoptera, 7:0
- Gland of Craytish, Fuaction, I78

Migone, E., Demoustrating Trypanosomata, 371
Millew of Gonseberry in Europe, 83.7
Milk, Coceus lacti: Ciscosi and the Causes of S'liminess and Threads, 216

- New Bacterium in Freshly-drawn, 343
- Researches on Fermentation, 756

Milk-Agar as a Medinm for the Demonstration of the Production of the Proteolytic Enzyme, 679
Milk-Ducts of Cow, Bacteria, 83
Miller, C. H., Imbedding in Celloidin, 770
Millett, F. W., Report on the Recent Foraminifera of the Malay Archipelago, collected by Mr. A. Durrand, 253, 377, 685, 780
Mills, F. W., Diatomacere of the Hull District, 63
Milroy, J. A., Staining Reactions of Proteid Crystals, 236
Mimicry, Protective, in a Caferpillar, New Case, 494
Mineral Waters, Natmral, Bacterinlogy, 83
Minot, C. S., Laboratory Text-Book of Embryology, 483
Minot Microtome, New Razor-holder and Adjustable Clamp, 234
Mirror, Koristka's Large Reflecting, 349
Mirsky, B., Aspergillece Parasitic on Human Beings, 749
Mites, Fresh-water and Irish, 496
Mitosis in Pellia, $6=0$

- in Synchytrim, $1: 20$

Mima, Ki., Unfertilised Oya of Ascaris in Human Freces, 6 It
Mixed Jet, Arrangement for Oltaining Monochromatic Light with, I5
Miyabé, K., Laninariacee and Laminaria Industries of Hokliailo, Japan, 52
Muium, 'Two Egg-Cells, 323
Molgalid, New, 602
Molisch, II., Bhe Diatom, 330

- Floating Properties of Certain I'hycuchromacere, $8: 39$
Molisch's Freezing Apparatus, In

Molliard, M., Action of Fementation on the Cell, 745

- Action of Frcezing on Plant-ct-Hs, 50 s
- (ulture of Sterigmatocystis nigra, 651

Molluseivorous Diet, Adaptations to, in Vercours niloticus, 712
Ilonaveidiae, Digestive (lands, 489
Monascus, Morpholory and Development of the Ascocarp, 200
Monascus purpureus, iystematic Pusition, 746
Monaxonia, Insufticiently Deseribed, 729
Monilia Discase, 52 ?
Monilia fructijena, 20 s
Mönkmeytr, II., (ierman Mosses, 324
Monks, S. P., Regeneration of the Budy of a Starfish, 616
Monoblepharis, Notes, 640
Monochromatic Light Apparatus, Now, 378, 674

- Arrangement for Obtaining with the Mixed Jet, 15
Monograptus, Oceurrence in New South Wale, 728
Monophyllea and sifreptocarpus, Regeneration of Assimitating Mechanism, 733
Monostome, New, from Snapping Turtle, 615
Monstrosities in Bivalves, 33
Montemartini, L., Aristoluchiacere, 519
- New Parasitic Fungi, zug

Montgomery, F. E., Muthod of Preparing sugar-free Bouilion, 767
Montgomery, 'T'. H1., Morphology of the Rotatoriau Fanily Flosemlariade, 727
Montgomery, 'I'. H. jr., Heterotypic Matu-ration-Mitosis in Amphibia, 707

- Structure of : Puragorlius varius, 72.

Monus rulyuris, Observations, 618
Moore, G. 'T., Cultivation Iledium for Alga, 767
Moore, J. E. S., Cytology of Apogamy, 74"

- Reduction of Chromosimes, 732

Morel and Doleris, Molitication of the Method tor Staning with Ehrlich 'Triacid Solution, 550
Morgan, -., New Hyphomycetes. 52:
Morgan. A. F., Lepidulernia, 344
Morqran, H. de Li., The Bactericidal Detion of Some Ultra-Violet Fadiations as Prudaced by the Continuons-Corrent Arc. 756
Morott, 'l', New Pennatulacea and Gorgonacen, 184

- New species of Chilodon, 46

Morphology of Lichens, Ta;;
Morse, M., North Imericau Trichodectidæ, 722
Morten, E., Iare Lichen from Liguria, 70
Moser, F., 'ommantive Eubryolugy of the

Mosquitos in Winter, boc

Mosquitos, Species concerned in Diffusion of Malaria, 37
Moss Exchange Clah, 325

- Flora, British, 60
- - French, 61
- - of Australia, 524
- - of French Caverns, 61
- Interenversion of Sexual Organs, 59

Moss, R. J., Fungiciles, 652
Mosses, American, 6:8, 742

- British, :223, 523
- European, 198, :203, 628, 741
- Fertilisation and spore-Ripening, 522
- German, 61, 323
- Ineonspicuous, 325
- Italian, 324, 524
- Japanese, 61
- N. Mmerican, 3:4 524
- of Alaska, 824
- of Central Switzerland, 109
- of East Greenland, 325
- Phizoids, 127
- West Atrican, 742

Moss-rpecies, Suppression of Redundant, 60
Moth, Death's-Heat, Stridulation, 34
Mottier, D. M., Behaviour of the Cliro. mosomes in the Spore-Mother-Cells of Higher Plants, ,005
DIoulds, Nitrogen Assimilation, 190

- Proted Formation, 528, 534

Mounting Bacteria from Fluid Media, Method. 561

- Mirruserpical Preparations, New Medium, 560
Monssu, -., Rearpearance in Offspring of Lesions Artifirially induced in the Inther, :-2
Mouth-parts of Insects, 31
Mucorini, 333
- Spore-Formation, 745
- Kygnspores. 746

Mud-Sucker and 'Throwing-Net, 167
Miuller, F.. Improvements of Aubertin's Metlond for Sticking on Celloidin Sections, 769
Miuller, F. W., Apparatus for Photographius with light incident from above and below, 355
Müller, J., Cuntributions to Study of Bipaliidr, 182

- Studies on Bipalium Species, 41

Müller, K., Eurojean H patice, 198

- Hepaties of Baden, 5y

Mniller, (1., Melosira, 6:3
Wuller, I'. E., Myeorhiza, 751

- and Another, 11 ycorhiza, $53:$

Miiller-Thurgau, H., Discase of the Vine, 331
Multirilin lacustris, 615
Müuch, K., C'mos-Striped Musele, 596

- Structure of Nuclens in smooth Muscle, 596

Murbeck, S., Life-History of Ruppia, 311
Murlin, J. R., Absorption and Secretion in 'Terrestrial Isonods, 39
Murray, © t ., Diatoms of the Atlantic. 634
Murril, IV. A., N. American Polyporeæ, 72

- Polyporacere of N. America, 536
- and Others, American Fungi, fint

Mascide, Development of Nervous System, 37
Muscinear, Austrian, $32 t$

- European, 197
- Frcu li Volcanic, 323
- Gernaan, 524
- Morpliolngy, 627
- of Atlantic Islands, 62, 197
- of Galapagos Islanis, tio
- of South-East A:ia, 61
- Jorkshire, : 323

Muscle, Crows-Striped. 596

- Smooth, structure of Nucleus, 596
- White, Nerve-Endiugs, 284

Muscle-fitmils, Molecular Structure and

Muscular ipparatus of Anomia, 171

- 'Jerminations of Nerve-Fibres, 27

Muscnlature and skeletou in spelerpex
Tongicamlus. Development, 59.7
Musgrare. II. R.. Trypanosomiasis of Horses in the Philippines, 619
Muynek, A. de, Sugar in Ripe Fruits, 192
Myeologice, Notre, 537
Míyenlogical Notes. 751
Mycology, American, 536

- Mitish, 533
- Teminical, 538

Myoplasma Hypothesis, 749
Myrorhiza, 5:3 , ti.7. 7.51

- Emdnphytic, Oytology and Physiology, $21: 3$
Myoblasis, 595
Myonemes of Protozoa, 618
Myricaciz, Monograph, 57
Myriopoxls and Insects, Joints in the Walking Legs, 604
- 11arine, 722
- New, 297
- Structure, 177

Myrmecrphils, Termites and Termitophils New, 17w
Myrms cophily in Muctranga triloba, 625
Myrsinaceze, Trichomes, and Fruit of Jacquinia ruscifoli, 189
Mysi: ornlutu and Mysis relicta, Intermediate Fom between, 611
Mytilus gullo-provincialis, Origin of Pearls in, 291

- latue. Two Remarkable Sporocysts, 726

Myxinoils. Coloration, 599

- Murpholngy, 487

Myxmyycetes, Culture, S4
Myxoskurilian Parasite of Geophilus, 618

N.

Nabarro, D., Detection of Trypanosomes, 775
Nachet. --., New Mieroscopienl stand with Movable Stige capable of Large Movements, 670
Nidson, G., Perforating Alyre, 658
Nareotising Itedium for Aquatic Animals, Ether as, :368
Nash, G. Y., Revision of the Family Fournicrace: 788
Nathomsohn, A., New Group of CulphurBacteria, itu
Nencoris cimirnides. Normal Asymmetry of Wings, 171
Nautilus, Nervous System, 490
Nebadia, Fibrillar Continuity of Eyithelial Cells and Museles, 35
Nebel, A., Demonstration of Tuberele Bacilli in Sputum, 767
Nectria moschate, (i:)
Neeturus, Nuclear Changes in Striped Musele-Cell, 27
Neger, F. W., studies of Erysphes, 74
Newert, L, Structure and Development of Female Gonals of Laneelet, 594
Nclson, E. M., Comparison of British and Metrical Measures at the Same Temperature :ift

- Early Compound Mieroscope with a Mirrur atiaclued to its limb, 590
- Early Glass Micrometers, ©た
- Improved Horseshoc Stage, 591
- Leitz' New Stand and Fine Mljustment, 668
- Mierometric Correction for Minute Objects, 579
- Mierometry, 570
- Old Non-achromatie Simple Mi•roscope, 562,587
- On the "Lag" in Mieroseopic Vision, 583
- Two-speed Fine Adjustment, 19, 117

Nelson, N. P. B., Water-Bloom, 658
Nematocyst Cells in Hydra, Method for Demonstrating, 237
Nematoeysts of Nudibranchs, 291
Němec, -.. Non-Sexual Nuclear Fusions, 506
Nemerteans of Norway, 720
Nemiloti, A., Amitotic Division in Vertebrata, 5%
Nephthyide, Revision, 728
Nerve-cells, Intracellular 'ïhreals, .906
Nerve-Corl, Ventral, of Crayfish, 29!
Nerve-Endings on White Muscle, 2st
Nerve-Fibres in Fishes, Size, 2st

- Musenlar Terminations, 27

Nerves, Endings in Salivary Glames, 27
Nervousiystem in Insects, Iletamorphosis, 604

Nerrous Srstem in Muscide, Development, :37
——of Nautilus, 490
Neufhl, Ii. P., Canalienli in Ganglion Cells, 708
Nemmann, L. G., Species of Ixodidæ, 496
Neurons, Efferent, in Electrie Lobes of 'Iorpedo, 487
Neutral lied, Fixing, I/G

- - Us: in the Study of Phagocytosis, de., 78
" Neatrojhil" Granulations, Non-Existthee in Leucocytes of Man and Monkey, 486
Nenville, H., Incustrial Ferments of Eastem Asia, 3:37
Newembe, F. C., Thigmotropie Ront('myatures, 1!:2
Newton, 1. R., Lnzyme in Lipening Plantains, 56
Newton's Colours, Alethod of Demonstratins by Transmited Lipht, 6\%
Newt's Ora, Maturation, $\because 81$
- Remeration, lid

Nichols, A. Li., I.ist of Irish Echiunderms. 728
Nieholson, W. 3., Mrisia sterilis, 742
Nicolle, -.. Agylntination, 78
Nienlofr, T., Floral itructure of Juglandere, $: 314$
Nicretranz. H. F., New Solemomastres, 717
Niloon, l弓, Alurpholugy of Lichens, 783
Nishincli, V., Uniertilised Ova of Asearis in Human Fieces, 614
Nitellu batrachosperma. 631
Nitophyllum, New, 6:37
Nitrogen, Alkaloids as a source. 737
Nitrogen-Assimilatiug Bacteria, 6.99
Nitrogen Assimilation in Moulds, $1: 90$
Nitrogen-Fixiug Bacteria, 540
Nitrogenous Metabolism in Minute Alge, 623
Nitroso-Bacterium, Culture, 540
Nomenclature, Notes, 6.1

- of Uredineæ, 6.0

Non-Achomatic Simple Microseope, An Old, is
Norman, A., Sanger-Shepherd Process of Colour Photomphy, $1 \because 1$
Norman, 1. M., Echinnlerms of East Finmark, 728
Norton, J. B. S., Momilia frutigemu, 208
Subnecta, Lernamo of Summatid, 295
Notonecta glunca, Development of Spermatid, 295
_ _ "Nehonkern" and Naelein Movements in permaticl, 296
Suclear Behaviour aml spore-Formation

- Divisiou of Amceba, :005
- Emissions in Protozoa, 305
- Fusions, Non-Sexual, 504

Nuclear Membrane, Relatiouship, to the Protoplast, 506

- Reduction and Feltilisation in Paris and Trillium, $4 s$
- Structure, Criticism of Theories, 27

Nuclei, Behaviour in Plant Hybrids, 506

- in Yeast and Animal Cells, Study, 205
- of Unicellular Animals contrasted with those of Plant Cells, 47
Nucleolar Clianges in Recretion of Irepato-
Panereatic Cells of Hermit-C'ral, 175
Nucleolus, Observations, 49
Nucleus in Smooth Muscle. Structure, 596
— of Spirogyra, 48
- of Spore-cavity in Pruthallia of Marsilia, 820
- Parental and Grand-parental Componemts, 281
Nudibranehs, Nematueysts, 291
Numerieal Aperture and Rapillity, 765
Nutting, E. S., Fixing of Blood-Films and the Triacid Stain, 229
Nypels, P., Disease of the Alder, $64 t$

O.

Objective, Correction Distanee, Graphie Mepresentation, 762
Objectives, Injurious Effeet of Cement upon, 762
Objects, Small, New Method of Imbedding, 233
Ooular, Bourguet's New Index, 9I
Odin, G., Origin of Yeast, 6 S
(Edogonimin, 65
Cistrous Cyele and Corpus luteum in Sheep, tit
Ocstrup, E., Diatoms of Koh Change, 880
Oidimin roduction and the Culture of the Higher Fungi, 75
Okimura, K., Japanese Marine Algæ, 714

- Vegetative Reproduetion in Chondirt crassictulis, : $:=0$
Olipochetie, Examining, 106
- Typical Chloragogen, :300

Olive, E. W., Aerasiere, 752
Oliver, F. W., Fossil F'ungi, 534

- Lagrnostoma Lomaxi, the Sead of Lysinodendron, 62:2
Oniou, Starch-Grains in Rout-Cap, 508
Onychophora, Morles of Development. 297
Oozenesis and Spermatogenesis in sayitta bipmetate, tits
——of c'!fly ps tremuns, Maturation Plemonema, 34
- in Lapideptera, 4!6
- in Mammal- Note. 22
- in sumplernia, 64シ

Ophinlia, lyatmogrt garines, 307
Ulisthohane s from (iulf of rim, in

Optical Images, On the Theory of, with Sucial Reference to the Microscope, 447

- - Supplementary Paper, 474

Opties, Drude's Theory, 765
Orehids, Germination: a Fymbictic Ielationship, 737
Orfeur, F., 241
Ornithorhynces, Early Stages in Development, 282
Orthoptera, N. Afriean, Chemical Defence and Other Adaptations, 174

- Saltatorial, Stridulating Organs, $2!6$

Orthotrichum in the Unitel States, 196
Osborn, II. L., Peeuliar Fluke, :30:
Oncillaria prolifica, Chemical Composition, 76
Osculatia and Sehwetsehkea, Notes, 60
Osmotic Pressure of difierent Media, Resistanee of Gasterosteus: aculeatus, 714

- Properties of Cells of Cymophycea, 65s

Ostenteld, C. H., Diatoms of Kioh Chang, 3:30

- Phytoplankton of Lakes in the Factües, 744
Östergren, H., Ether as a Narcotising Me dium for Aquatic Animals, 368
Osterwild, K., and Inother, German Muscinete, $5: 4$
Otneysts of Colyelıæta, 301
Oudenans, C: A. J. A., Critical Notes on Fungi, 76
- Fungus Flora of Humus, it

Oudemans, J. 'T., Position of Repose in Lepideptera, 719
Ova, Intluence of Radium Rays on, 483

- of Asearis, Unfertilised, in Human Faces. 6I4
- of Cristiccps argentutus, Artiticial Fertilisation, 593
— of Startish, Experiments. 501
- Ovarian, amd Follieles in Fiblecs, 5! 4

Orarian Fullicle of Ampilians, lietrogressive ('hanges, 2:
Orary and 'Testis, Manmalian, Embyonie Development, 706

- in (ephalopods, Structure, 490

Ovule, Development in C asuarina, 136

P.

Pace, S., , 'tructure of Pontiothamma, 491
P'ailheret, F'. Action of Alcolholic Fermentation on the Bacillus typhosus, so
laired Limbs of Vertebrates, Origin, 29
Palacky, J., Geographical Distribution, 164
Palæarctic Fums of Clausilia, Symopis, $4: 2$
Palaosjemdyhus, 7ll
Palaozum items, lamary structure $10:$
Pallaci, (i., New Dmantic Fungi, 20

Palmer，F．C．，New speries of Trable－ lomonas， 004
I＇alms，Resurve（＇arbolydrates of the Albumen， $4!$
P＇illolo，Atlantic， $30 n$
－Japanese（Ceratoce，hale osctrai，sp．n．）． Observations，721
Irmmel．I，H．，Diseases of Crasses， 751
P：mpaloni，L．，Posil Fomeri，Tt
Pantel，J．，Acrusome of Spermatid of Notonecta，量踪
－Development of sipermatid of Notonecte gluncer，295
－＂Nebenkem＂and Nuclein Movenents in Spermatid of Notonecte glunech， 296
Pantocsek，J．，Fossil Diatoms， 63.5
－Hungarian INatoms：Lake Balaton． $\because 00$
Pantograph for Drawing Microscopical Preparations，Modification， 777
P＇antopoda and Crustacera， 178
l＇arer Fibres，Microscopic Examination， 111
－Microsempical Examination， 754
－soluble filass as a Homuting Modima for Examination of， 7.4
P＇apitio pordatiriue，Sensory Itairs on Pupa， 175
Pappenheim，P．，Development of Dolo－ merles timbriutus，2！1s
I＇amaflu Imhedding，New Methor，：ato
－Use for Medullary theath taining， 771
－Sections，Thin，Simple Methoi of Making． 105
F＇rrafordius vurius，structure，Fivs
I＇arasite of a Central \＆American IIorse Disease，619
— of Hermit－（ rabs，New，Ti．
－of＇Texas Fever，618
l＇ar：sites，Asiatic lluman，：3＂
－Marine，in Fresh－water Fisher，tha
－Uf an Asiatic＇lortnise．Hi
－Ihanerogamic，Lime 3n，19．2
P＇alasitism，adaptive，of P＇uerime disurse， 649
－among Animals，ts 7
－Interesting（＇asc，7en）
－of linclileza（humbrindu，il
－of Puccinea，Effect of Mineral Starna－ tim，$\because 10$
1＇aratyphoid Fever，： 44
Paris and Trillium，Nuclear Reduetion and Fertilisation，is
P．uris，E．，Wist African Numer，TV2
P＇aris，E．G．，Japanese Mussors 1 II
－Jharince of Somblonat dara fit
 $\because 57$

l＇alkin，J．，lintany of th．e L＇ylm k．tate， 7：3）

I＇arthomogesis，Artificial，ㄹ2
－－Avency of Carbon Dioxirle in in－ ducing，2l
－－Carlmic Acid as a Provoratim，ロロ1
———in Ege ul＇Purarle dscura， 4 Sis
———in Silk Moth，49．1
I＇articles and Bacteria，Ultra－Microsen，ic． on the Feuderiue Visible，57．：
I＇atomillard，N．，Extra－European Fmui， $\because 1.5$
－Fungi from New Caledonia，53：
－and 1）thers，systematic Nutes on Fungi， 6．t
Latten，Wr，Apmendares of＇Tremataspis， 714
Fatterson，J．H．，Aalmon Disuase， 75.
1＇anl，II．，Rhizmes of Musser，（6：3
Peal，H．Wi．．Viasitorm Orifice of the A Icurodidae， $7 \because 1$
Pearls，Formation， 170
－Frequency of Oemmence， 193
－Origin in Mythus fullo－pronincialis，291
Pearson，Il．II．II．．Botany of the（＇eylon Patanas，73：1
Peas，St，John＇s Disease， 338
Peek，J．IV．，Differential itain of Ducillus Diptheriae， 370
Pecten，Iuncrsation of Tlantle， 83
Pegrion，V．，1erstruction of seds by Fungi，644
－Potato Discasc． 644
Peirce，G．J．，livot－tulbereles of Merlicugo denticulutu and other Leguminous Plants， 217
I＇elarsoniums，Discaserl， 71
Pellegrin，J．，Comvatme of the Spine in Fishes，I61
Pelli：i，Mitusis．（：2）
Pelvegiu fustigiutu，6：3；
Pelycosiuria，American，b0l
l＇cuard，E．，Multicilin lucustris，in1s
－New Rhizopod，：： 0 ．
Penguin，Development of Beak，疋：

Penicillimm，Lullarace of substratum on （iemmation of spores，lits
Penuatulaceat amb Gorgonatea，New， 181
Jens：i．A．linting：of Nurus in salimary

—Strus ture of（artilago（＇olls． 27
Penzig．U．，Plant Terathomey，oin

Percz，C．．New Trpe of sulph－（Chain，190
Perforating Alate（ij）s
Periantle Leaves of＇lulip and（romas． Mowement．1：11

 in l＇Tats， 51.

［raistome aj
［＇erkine，11．F．，Therdoznumton（ionionume merloctai， 5 日

Perkins，T．，Notes on styraceze，it
－Revision of the Sueci－of Lisianthne， 57
Perlid．Larval．Tracheal trills on Legeo （1）
Peroxides，Function in the Livine Cell， 317
Pemeites．P．E．F．．Po：sonms detion and Histolngy of Stem of Iterris utininosu． $\therefore 0$
Perroncito，－．．Lamilia intetimalis．Fatal to Rabbits．$\frac{10}{2}$
－Producticn of Hydatid Crats from Scolices． 4.2
l＇rmoncte．A．AEusenlar Termimations of Serve－Filras． 27
Pesci，L．．Permeability of Frozs Stin， 3 o
Petaloneruta ulatum．$\because \therefore$
Petiolar Clands of l＇inurumen＇1／n＇us． 510
Petiole in the Fhomer．＇In ary．．in
Petit．L．Distribution opliculin amons Plant Families，：：

－spore－fornation in（iastrinymetre．211
Petrow．－．，Xew licul I＇ianet－f miner Bacilus．： 41
Petrunkwitech． 1 ，Iliotosy of Polar

Phagecytic Alsurt in of Fox－cells in Eclinocurioum Morlutn．．．．-27
Phagerytosis．de．Cow of Nicutral Red in the stully is
Phalangistit mulni，a．Apormategencesis，－24
Phallodeex．New Mentber． 78
Phanerogamic Parantas，lime in，1， 2
Phaverogams，Existuce of Pitu in the Leat－stalk（t， 50 ，
Pha－mid．Ta－manian，7こ1
Phamilae，Malay，ne and a Flowir－like Beetle Larra，品i
Philip，R．H ，Datom If ands． 630

Phisalix，ML，（ Mrigin of tomeon（iands in the Land Gabamander，ils
Phor nis，Curent フame of tremos． 200
Phusphoms in Plonts，1）etection， 49

Mhotographiner with Lieft ineident from abore am belon．Appamens，ins
Phetographs of Image＇s seun in Bonnenlar Micrnserves．
Photouraf lay by Notural Tenets．Tet

 richt．$-\cdots 4$
Phetmic：owruhts in Colurs．New Ar－ rancoment tor takingr．11く
Photomieregrulhy，Elmentary，Bag－ slaw＇s． 101
－New Dlethod of Finensing，bit
———ot Vainv the Electric Arc，ご心

Photomicrograph s of Opaque Objects as applied to the Delineation of the mi－ mute－tructure of Chalk Fossils，2tㅡㅡㄹ
－．Small Electric Light fur， 95
—Staining Directions．2et
－Stereoscopic．New Device，22s
－with weak Ilaguification，67t
Photosrnthesis．it
－outside the Plant． 314
lhototaris in Volvex． 730
Photetronism of Daphnia，Note， 499^{-}
Whryosoma．Note． 488
＂Phtifiriose．＂a Disease of the Tine， 0 ． 1
Phrcochrmacer，Floating Properties，3：9
Phyeomyectes，bit
－Fertilisation，bs
Phyllopeds．Anstralian， 000
Thylogent tic specrlations． 166
haylogeny of chelonians．71：
－if Erinaccide． 167
－of Vomerime Branes． 70
Physis lo＿ical Histriogry， 110
Physioloy．（lemical，of Interel iratos． 02
Pintomation lo－y．05
hhimpdamkton of Lakes in the Farues． 7 ± 4
—ot the Tiames．$\%$
liett． 1 ，Changts in Imacriv．s inlmeed iy Chanace of Dict in Catepillars．2！ 4
lieler．N．1．，Sceti ming Fresh Plaut Tiseucs． 231
I＇itris mi，Variations．tis
liv．Circulation in 1．alyriuth of Ear．Ill
limment．Black．Fornation in Tumoms of Horse，ts
Tient nt－budies and Endothelial Deriva－ tives in Geplyye．．ns．6il：
limment－fuming lacilns，New Red，：：
Phliseiter，J．，An Gid Micrezeope with ： ＇Tomes＇－tage－2t5
Pillischer，MI．，（11］Microscope．5t？
T＇lustules Inyax． 188
I＇uchot．（ \ddagger ．．Forest Destruction in i ．e Laited States，-20
Pincal Body．Levelopment in Ampinib． 24 4
Pine－Beetle．T：
I＇mes．Mistoloer of the Wood in Jrecin． 188
I＇inos：－．Culture of Myxonycetes．Nt
1＇puraces．Dowhopment，itl
Pipteceplalis，Biology：20t
Pisthinet．F．．Regeneration of the ls－ similating Mechaniem in－treptecarpus and Domphyyllwa． 733
Pitio Fxistence in Enat－Stakh of Phanern－ gems，हो！
Pittaluga，（i．，Ancpieles in the Iberian l＇eminsenta，biob
Pittard．E．，licsults of Cistration in Man． 707
Plague Bacillus，Staining， 10 s

Planaria maculuta, life-Histery and Reproduction. 614
Plankton, Atlantie, 526
Plankton-Diatoms, Variations-Statistics. 63
Plankton of Alt-Ausseer Lake, 199

- of Lake Srassa, $3 \div 7$
— - and Other Mid-African Lakes, 226
Plant-Anatomy, Pathological. 621
- Ceils, Action of Freezing, 508
- Disease, Wild Plants as Nurseries. 653
- Diseases, Distribution, 207
- Growth, Relations to Ionisation, 56
- Life, Influence of Liglht and Darliness, $311 ;$
- Microscopy, 58
- Nutritien, Changes in Salicin, 517
- Function of Calcium Oxalate. 515
- Protoplasm, Functional Inertia. 1:11
- Rusts, Problems in the Study, 531
— Teratulogy, 5 s
- Tissues, Fresh. Sectioning, 231
- - Specific Domble Refraction, 765

Ilantains, Enzrme in Ripening, 56
Plants, Action of Sodium Fhoride and Potassium Iodide and Potassium Ferrocyanide, 515
— — of Laminm, 51 s

- and Animals, Arsenic in, 186
- Carburetted Hydrogen and Hydrogen formed by. 516
- Decomposition and Regeneration of Albmminoides, 317
- Deprived of their Cotyledons, Nutrition, 624
- Detection of Phosphorus in, 49
- Etiect of Composition of Soil, 190
- Green, Assimilation, 514
— of Catalonia, 315
- of Lerd Howe Island, ir9
- Penetration by Bacteria, 216
- Periodicity of Morphologieal Phenomena, 515
- Physleal Conditions of Tuberisation, $5 t$
- Synthesis of Proteids, 513
- Wild, as Nurseries of Plant-Disease, 653
- Woody, Variation in Carbohylrate Reserves in Stem and Root, 191
Plasmodium Pracox, 619
Plasmopara, Fertilisation, 745
Plate, L.. Stndies in Cyclostomes, 599
Plateau, F.. Poppies and Insect Visitors, 518
Flatinum Metals, Volatilisation and Reerystallisation, 115
Platy-trophia, Evolution, 615
Plecuik, J., Carbon tetrachoride as a Cleariner Fluid, 370
Pleospora and llehminthosporium. Relationship, 747

Plewronectids. Alnormal Colnration. $16 ;$
Plorman, A. B. Relations of I'lant frowth to Ionisation. 5 ;
Plowright, C. B., British Myenlogy. 233
Pnenmoenceus which liquefies Gelatin, ith
Poche, F., Correct Name of (ienns Phoronia. 5 m
Poche. R.. Flagellate Parasites in whomophora, :306
Pocock. R. I., New Clasping-Organ in a Centipede. 196
Podarle misera. Artificial l'arthemon genesis in Ega, 4 Oン
Pudpera, J.. Phant-Fomations and Flora of אouth Bulcaria, at
Polar Bulies in drone-Ora. Hintnry, eb:
Polariser, Reflecting, , imple Fom, 19
Polarising Vertical Illuminator, Improved. and use of Biretringenee. Improsed Alctliod of Identifying (rystals in Fork Sections. 68:3
Poll. H., New Electrical Miomsenpe Lamp, 3.50

Pollacci, (r., Assimilation in fireen Plants. 514

- Hydrogen ant (arbmetted Hydment formed by Plants, 316
Pollen-Grains, Germination, is
Pollen in Asclepiads. Derelopment. is
Polychreta, Otocr=ts. B 0 I
Polychæts, Fresh-water, :01
Polyclan, Fresh-water, 1E2
Polydesmus exitinsu: and Altomurit Imossice, 338
Polygordits, Notes, 301
Polymnia nebu'ort, Role of Amceborytes. 7-4
Polymorphism of Marine Alya, $6: 6$
- of Mierofungi, :09

Polyodon folium, Lateral (amals and (ranial Bones, 285
Polyporere. N. America. 7?
l'olypracere of N. Am rica, rist;
Polysaccharides, Hydrolysis. il7
Pond Life, Exhibition, asu

- - Slide, 239

Pontiotbauma Structure, 491
Poole, II. S., Stigmavia, inl
Poppies and Insect Visitors, sis
Porlirul hymrometricu, Anatomy aml Mnsements. 810
Porsild, M. I'., New Donble-hinged Limbholder, its
Porta. A. II patic Function in Insects, $17: 3$

- Reprotuction of Acanthme tride. 45

Portable Nierosen Ne. New, ita
Portier. P., Temperature of the Tunny, tim Putatu Diseanc. 644

- Disares. 21:3

Potatres. Expurments. Ill;
Potter, MI. ('.. Potato Dieensers. ̈l!

- Septoria. 3:3

Powell, C., Calcare us Pehbles, 6as

Power, F. B., Poisonous Actinn and Histology of Stem of Derris uliginose, 520
Powers, J. H., Acceleration and Retardation of Metanorphosis in Amblystoma tigrinum, 707
Pratemnr and Trochanter, 175
Pranter, V., New Methods of Paraffin lmbed ling, 3e:
I'ratt, H. S., N. American Trematodes, 41, $30: 3$
Prenant, A., Myoblasts, 595

- Myonemes of l'rotozoa, 618

Prepotency in Polydactylous Cats, 24
Preputial Glands of Rabbit, 486
Preservation and Staining of Serial Sections and Paper Strips, 371
President, 'The, $121,122,126,127,128,241$, $242,243,244,245,252,376,377,379$, 380, 786
President's Address, 'Some Ideas of Life,' 126,142
Preswisch, J., Calcareous Sponges from the Pacific, 729
Projection Apparatus for Seientific Work, New, 549

- Mieroscopic, Koristka's Apparatus for Liquid Preparations, 553
Prophysema hæckelii, 617
Protective Resemblance in Butterflies, 719
Proteid Cryst:ls, Staining Reactions, 236
- Formation in Moulds, 528, 534
- New, from Maize, 49

Proteids, Synthesis by Plants, 513
Proteolytic Ferments, 625
Protohydra leucliharti, Division, 44
Protomycetes, Taphridium, A New Genus, 331
Protoplasm and Enzymes, Nature, $62 t$

- (ontimuity, 47

Protoplasmic Streaming, 30 S
Protoplast, Relationship to Nuclear Membrane, 506
Protozoa. Myonemes, 618

- Nuclear Emissions, 305

Prunet, A., Botrytis vulgaris on Fiss, 5:9
lrums, Prussic Acid in Opening Buds, 516
Prussic Acid in Opening Buls of Prmus, 51;
Psentogyny in Formica, and its Cause, 172
Preudoscope Lens, 762
Pseudoscorpionidæ, Segments, 998
Psilopilum, 025
Pteridophyta, East Asiatic, 740

- (terman, 521
— N. American, 521, 7 t 1
Pterocephalus, Kiexnal Puproduction, 729
Pteropod, New. 60:;
Ptychodera erythra a from thr. Ret ca. 183
Puminam, Experimonts, 6ts
Pureimin disperse and its : maptive Parnsitisun, 64!!

Puccinia, Effect of Mineral Staryation on the Pirrasitism, 210
Puchberger, G., Vital Ataining of BloodPlates in Man with "Brillantkresylblan," $77:$
Pulmonata, Aëriferous Camal in thell, 492
Punnett, R. C., Nemerteans of Norway, 726
Pupal and Imaginal Organs, Precocious Development in Caterpiliars, 605
Purple of Dog-Whelk, 170

- of Purpura lapillus, 290

Purpura lapillus, Purple of, 290
Putrefaction of Meat, 218
Pyrenoids and Elæoplasts in Diatoms, 200
Pyrocyster. 6:
Pyroxene, Note on the Amphibole Hudsonite previously called a, 777
Pyrrhocoris apterus, formation of Chorion. 607
Python reticuluris, Acid-fist Bacillus in, 660

Q.

Quelle, F., Rhizoid-Initials of Marchantia, 58
Queva, C., Unipolar Stele in Rootlets of Trapa, 509

R.

Rabbit Pest in Australia, 90

- Preputial Glands, 486

Rabbits, Lamblic iutestinctis, Fatal to, to
Rabl, C., Development of External BodyForm, 24
Rabenhorst's Kryptogamen-Flora: Fungi imperfecti, 209, 535
Racovitza, E. G., Note on the Great Sea Serpent, 287
Radium Rias, Influence on Ova, 483
——— on Tadpoles, 483
Ramaley, F., Egregiu Menziesii, 6;5
Ramè, -., Meckel's Diverticulum and Conenmitant Abscnee of Cecal $A_{1}{ }^{-}$ pendix, 711
Ramularia aquivoca, Derelopment, 618
Ramsom, F., Rescarches on Tetanus, 661
Rapidity and Numerical Aperture, 765
Rapp, R.. Rennet-like Enzyme from Yeast, 52 S
Rat, Disease caused by Acil-fast Bacillus, 560
Rats, Leprous Affection of skin and Lympli-glands, Stz
Rauther, M., Genital Apparatus of Bats, 711
Ravaud, -., French Moss Flora, (il
Ravenelias oi the United states and Mexico, s30
Rayleiph, Lord, On the Therey of Optical Images, with Smes linterence to thu Merosmer, +17

Rayleigh, Lorl, supplementary Paper, 471
Razor-Holder and Adjustable Clamp, New, for the Minot Microtome, 231
Reagent Bottle, 558
Red Corpuseles of Blood, Counting, 240

- Rain, 682

Reed, H. S.. Development of Maerosporangimm of Yucca, 312
Reed, M., Two Marine Lichens, 537
Reflect r rs, Fuess' Hemispherical (yypsum and Metal, 763
Refraction, Specific Donble, of Plant Tissues, 765
Refractometer, Leiss' New Crystal, for the Determination of the Refractive Imlex of Large and Microseopically Small Objects, 226
Regand, C., New Mieroseopical Stand with Movable Stage capable of Large Movements. 679
Regen, J., Stridulating Organs in Saltatorial Orthoptera, 296
Regeneration in Limicole, 17:

- in Newts, 101
- of Assimilating Mechanism in Streptocarpus and Monophyllæa, 783
- of the Body of a Star-fish, 616

Regulating Arrangement, New, for Hot Stage, 669
Reh, L., Statistical Stndy of Scale Inseets on Fruit, 174
Reichelt, II. Fossil Diatoms. (935
Reichert's Sliding Nicrotome, Improvement, 281
Reinitzer, F., Disease of Apples, 529
Reinke, J., Studies on the Comprarative Development of Laminariace:e,, 26
Reinsch, P. F., New Method for the Preparation of Horizontal rections of Thin Laminated Vegetable Flat Tissues, 771
Related Forms, Stmly, 207
Remec, B., Specific Doulle Refraction of I'lant Tissues, 765
Renanlt, B., Fossil Infusorians, :30G

- Vegetative Aetivity in the Carboniferous Epoch, 513
Rengel, C., Conneetion luetween Mid-Gut and Mind-Gut in Larval Hymenoptera, 720
Reparation of Injury in Ceramiacees, $6: 37$
Theport of the Conneil for $19(2,222$
Reproduction, Asexual, 628
- Vegetative, in Chomiria crassicaulis, 330
Reptiles and Amphibians. Biological Observations, 105
- Optic Cliasma, 28.)
- Strueture of Digestive Canal, $16: 3$

Fieserve Carbohydrates of the Allmmon of Palms, 49
Resins, (xums, and other Vegetabl. Exnulations of Anstralia, 50

Respiratory Exehanges in Water, Study ot, 600
Reticular supporting Network of Malignant Neoplasm, Staining by Mallory's Method, 236
Retina of Gastropod Eye, 168

- of Vertebrates, Structire of the Outer Segments of Rods, 710
Retterer, E. Fixing and Imbedling Dense Commective Tissue, 369
- Transformation of Epithelium into Connective tissue, 597
Retting of Flax and Hemp, 661
hetzins, G., Spermatozoa of Acanthia: vulgaris, 593
Reuter, K.. Staining Malaria Parasites with A-Methylen-Blne-Eosin, 10 s
Rhabrlitis, Species, 180
Rhablopleurt normanmi, Buddin's, t2
Rheinberg, J., 250. 567
- Common Basis of the Theories of Microscopie Vision without the Aid of Mathematical Formulæ, 102
- Wide Illuminating Cones, 67 : $:$

Rhinoseleroma Bacillus, Identity with Friedlander's Bacillus, 80
Rhizobium, Motility, $5 \neq 0$
Fhizoctonia violace, 745
Rhizoid-Initials of Marchamtia, 5 s
Rhizoids of Mosses. 627
Rlizopod, New, 30 .i
1hlomodermis. New, $1: 30$
Eib Variation in Cardium, 718
Iilbaga, C., Insect against Insect, 2!!

- New Hydrichnida and Ixodida from South Amorica, 2!8
Ticciocarpus natans, :3:3
lioharels, E., (Chemical Composition of Oscillaria prolitica, 76
liohter, I'. P., Germination of Pollen (ryans. $8:$
Itinlewonl, W. (A., New Genus "f Copepml. 197
Ringeway, -.. Origin of the 'Thoroughhred Horse, 711
Ridgway, R., Birds of North and Middle America, 286
Ticha, 59, 52丷
Riugs. E. S., Larmest known Dinnsaur, 287
Rigler, (G. v., Pacteriology of Natmal Mineral Waters, 8:3
Rimodina, 753
Fitter, W. K., IIeart of Enteropnensia, 42 - Movements of Enternpuensta. 43

IVivas, D., Anacrobic ('nltivation, 104, 307
Ioherts-Austen, W. C., Certain Properties of the Alloys of the Gold-Silser Eerics. :375
Robertsum, A., Ascorliza and Tielated Alcyouilia: 727

- Embryomic Fission in the Cfunus Crisia 726
— Stulies in IParifie Coast Entoproeta, 727

Rubertson, R. A., Functional Inertia of Plant-Protoplasm, 191
Roclinz, G., Mosquitos in Winter, G0G
Rodella, -., Bacteria in Pus from a Gascontaining Abscess, :341
Rodella, A., Presence of strictly Anaerobic Bntyric Acid Bacilli and of other Anaerobic Species in Hard Checse, 661
Roulicr, W., Rabhit-pest in Australia, 29
Rodrigue, A. . Inatomy and Movements of Porlieva lygrometrica, 310
Luncus, W. S., Protective Resemblance in Butterties, 719
Li,land, L.. Plootography of Fungi, 76
Iiiill, J., European Mosses, 19S

- German Mosses, 323

Rolland, L., Poisming by Fungi, 212
Romanoff, I., Vital staining of Microorganisms, 773
Romanowski Stain, Modification, 680
Romingeria, Genns, 729
Rüntren and Ultra-Vinlet Rays, Sensitiveness of Ants to, 171
Ront-Developureut in Azolla, 520
Root-Tubercles of Medicago denticulata and other Legrminous Plants, 217
Rosa, D., Typical Chloragogen of Oligochæete, 300
Rose, T. K., Certain Properties of the Alloys of the Gold-Silver Series, 375
Rosenlierer, O., Fertilisation in Plasmopara, 745

- Behaviour of the Chromosomes of Hy hrids, 505
Tuss, L. F., New Colony Counter, 113
Russ, R., Improved Method for the Mierosenpical Diagnosis of Intermiitent Fever, 236
Rosseter, T. B. Drepanidotania temuiros. tris, 4!9
Rossi, G., Oloriferons Glands of Julus соmmumis. $2: 7$
-- Structure of Myriopods, 177
Russi, G. de, Flagella Staining, 370
Rössler, P., Minnte Structure of Cysticerci. $18:$
Rotatorian Gemus Diaseliza, 1, 129
Ruth, Cx., European Mosses, 628
Rothert, W., Spore-Development in Aplanomyces, 641
Tutifers, New Male, 183
Roule, L., Hermaphroditism in Fishes, 282
Rousmelet, C. F., 117
- Apparatus for Drawing Objects natural Size, 116
- Exhibition of Mounted Rotifers, 376
- Microscope userl by Gosse, 118
- New Pattem Microscope by Bansch and Lomb. $21+\frac{1}{4}$
Rowe. A. W., On the Photomicromaphy of Opaque Objects as applied to the D lineation of the Minute Structure of Clalk Fossils, 24.2

Rowland. S., Intracellular 'Toxin of the Typhoid Pacillus, 217
Rowly, F. R., Structure and Life-History of Diatoms, 5i25
Rucker, A.. New Species of Koenenia, 609
Ruhland, W., Fertilisation in the Phycomyentes, 68
Tupia. Life-History, 311
Russeli. W., Lncalisation of Daphnine in Daphum Laureola, 187
Rust, Brown, of Bromes, Experiments, 72

- on Vimilli, 72

Rusts of Cereals, 648

- of Lequminose, 531
— of l'lants. Problems in the study, 5:1]
— of Kpecial Natural Orders, $6+5$
- Ieverches, 72
- Suecialisation, 72

Rư̆ickit, V., Structure of Red BloodCorpuscles, 596

S.

Sablon, Leelere dn, Yariation in Carbohydrate lieserves in stem and lioot of Woorly Plants, 191
Faceardo. P. A., Note Mycologice. 537
Saccharmycetes and Bacteria, CellNuclens, 68
Sars, Collodion, for Bacteriological Work, Simble Method of Making, 776
Sagitta bipunctata, Oogenesis and Nermatogne lesis, 49 s
Naint-Tfiliare, C., Intestinal Epithelium in Amphiuma, 597
Falamander, Land, Origin of Poison Glamls, 713
Salicin, Changes in Plant Nutrition, 517
Salimheni, A., La Garotilha, 756
Salivary Glands, Emlings of Nerves. 27
Salmaciur dysteri, Development of Metameves, 615
Salmon, F. S., Calytopogon, 1!16

- Fossil Fungi. 534
- Conseberry Mildew in Emrope, 103.
- Infectiou-Powers of Ascospores in Lirysiphacere, 645
- New Zealand Hepatics, 59
- Nutes on Erysiphaceæ, 206
- Nutes on Osculatia and chwetschkea, 61
- Streptopogon, 196

Salmon Disease, 755

- Fertilisation, 160

Salpa-Chain, New Type, 190
Salt Shlution, Inthence on Early Development of Newt's Equ, 593

- Water, Action on certain Fresh-water Alye, : $20: 3$
Salvin, O., Butterfies of Borderland between North and south America, 34
sanders, J. (r. Notes on Eivsiphaces, 33 I

Sanger-Khepherd Process of Colour Photography, $1: 21$
Sap-excreting Elements in Tropxolum mujus, 733
raprolegnia, Oogenesis, 64"
Sarcina, streptococens and Nipillum, Olservations, 541
Saritz, R., Neptorit, 338
Saruthein, L. Graf, v., Lichen Flora of the Pyrol, 70
Savaceau, C., Australasian Shactarice, 19
Sayce, O. A., Ausiralian Phyllopods, :00
F'cab, in sheep, ens
Nicale Insects on Frnit, Statistical Ctuly , 171
Nealia, G., New Discase of Asclemits curas. suvica, 748
Scapania, 321
Scatophaga, Male Organs, 607
Scenclesmus acutus, Morphology and Physiology, 525
Sceptromyces Opizi, 209
Schaefer, F., Femoral Glauds of Lizerds, $\because 7$
Nehafier, J., Decaleification Method, Fis
— New Glass, taining Trongh, :371
Ncharfí, Ii, F., Lost Atlantis, 715
Schandinn, F., Structure of Bacteria. 79
Fchanffler, W. G., Staining Diphtheria Bacilli and Cholera Vibrios, $23{ }^{\circ}$
Schefier, W., Improvements in the Vertical Microphotographic Camera, 101

- Amall Electric Light for Photomicrography, 95
——tereoscopic Photography of Nicroseopic Objects. 100
- - Photomicregraphy with Weak Magnification, 674
Schier, M., Identity of Rhinoseleroma Jacillus with Fricdlinder's Bacillus, si
Schenk, D., Antemnary Sense-Organs in Lepicloptera and Hymenoptera, 294
Schewiakoff, W., Oliservations on Acanthometrea, 50:;
Schitfiner, V., Biogranhy of K. G. Limpricht, :295
- European Muscinere, 197
- Gymnomitrium and Marsupella, 74:3
- Musciner of the Λ tlantic Islands, 62, 197
Schilbersky, K., Moniliar Discase, 5?
Schimkewitsch. W., Development of Telgphonus caulatus, 723
Sclummelmanmia ornata, 527
Schlater, ix. Intrannclear Space in LiverCells, 162
Schmil. B.. Development of the Embryo of some Dicotyledons, 1ss
Schmidle, W.. Fresh-water Alge, 6:2
- I'lankton of Lake Nyassa, $: 27$
—— and other Mirl-African Lakes, izi

Schmilt, HI., (ramhic lepresentation of the Correctiva Dishance of an Oljective, 762
Sheluidt-Nielsen, -... Autolytic l'rucesses in Pirkled Herrur, : 1

- Povehorphilic Bucteria, 79
sclmitt, F., Gastrulation of DoubleDevelopuent in Trout, 161
Schmeider, A., Mutility of Rhizolium, it 1
Fchnemer: Cr., Lothriocephalus in the: Bultie Herring, 115
- Life llistory of bothriutenin prohascirlou, 12
Neloneder, K. C.. Text Bouk of Comparative Histohery, 20
Schoenfeld, 1l., Fisition of Mammalian Erer in (terinc Cavity, 7 a,
schoenemanm, A. Stammer and Preservation of Serial rections on Paper strips, 1177.:371

Schëntorti', A., Change of Colour in 'Yront, 713
Schonte, J. C., Sisstem in Flowering Plants, 30!
Cchraler, H. F., New Alaria, G:3;
Fehrammen, F. Fi, Effect of 'Temperature on Growing Cells. 54
Nechrottor, HI, rtaining Nervous Tissue with Gallein, 55 !
Schuberg, A., Bottle for Hmersion Oil, 777

- Intercellular Connections, 4s-7

Sclultze, L3. S., Detcrmination of Sex, 485
Schultze, O., Determination of Gex, 70.)
Schulz. O. E., Nonograph of the Genus Cardanine, 6:9
Achnlze, F. E. Indian Trinxonia, $3 \| 5$
Schuster, W., Birl and Man, (i+12
schute, 'T., (ierman I'lora, 51 :
Schweikart, A.. Chorion and Microphyle in Cephalopods, 168
Schwendener, t., Opening Mechanism of
Macrosporangia of Celarinella, $: 2 \because 1$

- Spiral Arrangunent in Floridee, 6 6

Schwer, -., Micro-organism infecting small Aninats in the Laboratory, :1:
Schwetschken and Osculatia, Nutes. GO $^{\prime}$
sclerospora. $20+2: 32$

- Fertilisation, bitㄹ

Sclorotinia Furlieliana, 20 s
rcolices. Production of IIydatid Cysts trom, 4:
Ścutt, D. Il., Lagenostoma Lamaxi, the Seed of hyinotendron, fore

- Primary tructure of cortain P'alaozoic stems, 1\%:
Scott, 'Y. C'op"poda from Paroc Chauncl, (i12
scourfichl. Э. .T.. Synopsis of Hritish Fresh-water Cladoc ris, 1:17
ferew-Worms in st. Lucia, 29%
scriven, J. B., Preparing Serial Sections of Insects, t106
Scyphomeduse, N. American, 617
Sea-Anemone and Crab, Commensalism, 728
Sea Serpent, the Great. Notes on, 287
Seaton, F., Compound Eyes of Machilis, 608
Geretion and Absorption in Terrestrial 1sopods, 39
Secretory Apparatus, New, in Conifers, 621
Fecretory Canaliculi in Suprarenal Capsules, Method of Demonstrating, 235
Sectioning Fresh Plant-Tissues, 231
Sections, Celloidin, Improvements of Aubertin's Method for Nticking, 769
- Horizontal, of Thin Laminated Vegetable Flat Tisumes, New Method for Preparation, 771
- of Leaf Cuticle, Manipulation, 770
- Paraffin, Simple Method of Making Thin, 105
- Serial, Method for the Investigation of Forsils, 775
——of Insects, Preparing. 106
- Series of. Staiuing and Preservation on Paper Slips, 107
Seed Leaves and Young Foliage Leaves, Protection, 5I
Seed-Coat in Gentianaceæ, Development and Structure. 622
Seed-Germination, Influence of Light, 55
Seedling of Torreya Myristica, 621
Seeds, Destruction by Fungi, 644
- Fat-destroring Fungi, 534
- of Ginligo biloba, Composition, 193
- of Inga, 513
- Prorlnction of Alcolnol, 518
- Resistance to High Temperatures, 624
- Ripening, and Power of Germination, 315
Sicments, Intercalary, 722
Kelachians, Development of Teeth, 486
Selaginella, Opening Mechanism of the Macrosporangia, 321
Selimmann, C. Gr., New MTethod of Counting the ('orpuscles of the Blood, 680
Sellards, E. H., Patæozoic and Recent Cockroaches, 296
Sematophyllum in N. America, 196
Senecio Jionomraph of North and Central American Species, 97
Senescence and Conjugation in Infusorians, 503
Sense-Organs, Antemnary, in Lepidoptera and Hymenoptera, 204
- Integumentary of Ieep-sea Decapods, 299
— of Ascaris, 199
Seasory Hairs on Pupa of Papitio podatirius, 175
Septicomia of Rabbits. Flagellated Mieroerccus found in, 643
seltoria. 337

Serbinow, -., New Chytridiaceæ, 383
Sergestes, New Species, 497
Serial Sections. Apparatus for Quick and Uniform Staiuing and for Treatment of them in number with Reagents, 679

- - Application of the Cinematograph Principle to the Study, 776
Setchell, W. A., Algee of North-wextern America, 527
Sex, Determination, 485, 705
- - of (iametes in Hermaphrolite Gonads. 32
Sex-Cells in Echinocardium cordatum, Phagocytic Alsorption, 727
Sexual Oryans, Interconversion in a Moss. 59
- Reproduction of Pterocephalus, 729

Sexuality of Ascomycetes, 644
Shambaigh, G. E., Circulation in Labyriuth of Ear of Pig. 711
Shark Sawfish, New Distomum, 500
Sharp, D., Beetle Embedded in Wall of Human Intestine, 720
Shee 1 , Estrons Cycle and Corpus luteum, 484

- Sab, 298

Shelford, R., New Case of Protective Mimicry in a Caterpillar, 494
Shellfish, Method of Detecting the Presence of Bacillus coli communis, 229
Shells, Gastropod. Studies, 290
Sherlorn, C. D., Index Animalium, 598
Sherlock, It. L., Foraminifera of Raised lieefs of Fiji, 306
Shibata, -. Cytology and Pbysiology of Endophytic Mycorhiza, 213
Shinkishi, -., Efferent Neurons in Electrie Lobes of 'Torpedo, 487
Shuteldt, R. W., Classification of Birds,呺 6
Shutter, Origin of the Davis, 99
Siebenrock, F., C'lassification of Trionychide, 713
Sicdentopf. H., Engelmann's Microspectral Photometer with Grating Spectrum, 3. 9

- on Rendering Visible of Ultra-Microseopic particles, and of Ultra-Nieronoopic Bacteria. 563
- Visibility of Ultra-Microscopic Particles, 首S
Siedlceki, Mi., New Coccidian, 185
- Phagocytic Absorption of Sex-Cells in Ehinocardium cordatum, 727
- Lesistance of tiasterosteus aculectus to the Osmotic Pressure of Difierent Media, $71 \pm$
- Rôle of Amobocytes in Polymia ne'ulosa, 7\%t
Silicionts Slicules, 00 :
silk. Colour of, : $: 5$
- Moti, Artificial Parthenogenesis, 101

Siluhike, Alimentary Sract, 607

Silvestri, F., A Most Primitive Insect, 295
Simon, L., Notes on Development and Structure of Bradypus, 24
Simroth, H., Phylogenetic Speculations, 166

- Recent Researches on (xastropods, : 32

Sincty, R. de, Arrosome of Spermatid of Notunecta, 295

- Devclopment ot Spermatid of Nutonecte glauca, 295
- "Nebenkern" and Nuclein Movements in Spermatid of Notonecte gleuce, 296
Sinistral Snails, Breeding Experiments, 603
Siphoner, New (remus of, 64
Siphonophora, Flagellate Parasites, 306
Sipunculids, Distribution and Aftinities, 612
- Notes, 613

Skeats, A., ('hemical Composition of Limestones, Microscopical Methods, 681
Skin, Frog's, Permeability, 30
— of Trematodes, 500
Skiuner. S. A., Tide-Pool Vegetation, 639
Skottsberg, C., Mycrorystis pyrifer, 32,
Skrobansky, K. v.. Yolk-Nuclens or Corpus Balbiani in Vertebrates, 485
Slade, H.B., Hydrocyanic Acidin Sorghum, 517
Sleeping Sickness, Etiolngy, 344

- - Trypanosoma found in, 504

Slide for Pond Life, 2:3
Slugs, Locomotion, $4 \% 0$
Smell, sonse of in Sinails, 290
Smith, A., Lincolnshire Diatoms, $5 \because 6$
smith, A. L., Sclerotinia Fucheliam, 208
smith, B., Notes on Species of Fulgur, :3:
Smith, H. (:., Leaf-Yeuation and Chemical Constituents of Encalypts, 50
smitli, Ii. (i., New (xum Bacterium, 77
Smith, W., Myrmecophily in Macaranga triloba 625
Smith, W. (i., Agaricus Mewrietta, 532
Smith, W. H., Method for Staining Eputum for Lacteriological Examination, 372,772
Snails, Sense of Smell, 290
Snake Venoms, 30
Snakes, Anomalies in Head-Shields, 166
Snow, L. M., Insects of the Drift Line, $3:$,
Soar, C. D., Exhibition of Drawings of British Freshwater Mites, 781

- Living Hydrachnid Larve in 'Tront's Stomach, 609
Soil, Effect of Composition on Plants, 1:90
Solenogastres, New, 717
Solger, B., "Intracellular Threads" in Ganglion-Cells of Electric Organ of Torpedo, 162
- New Freezing Plate for Hand Microtome, 555

Sollas, W. J., Method for the Investiga$\frac{76}{75}$ of Fossils by Surial Sections,
-and I. B. .J., l'alaospondylus, 714
sohble (ilass as Mounting Medium fin Examination of 1'nper, 774
Sorbus Aucup pria, Disease, $1: 35$
Sorshmin. Hy, rocyalia Acil, 517
kosnowskı, J., 户hysiological Study of Metamorphois, 1 "̈
Soulier, A., Revision of Annelids of the (Cette Hegion, $4!s$
sparrow, Sjermatogencsis, 23
Specific Gravity of (cll-S:ap, 186
Spelerpes longicumdu-, levelopment of Nusculature and skeleton, 59\%
seller, F. N., New Ntching Reagent for Polished Nite lel Nections. 682
Spermatid of Notonecta, Acrosome. 295

- of Notonecta glaura, Development, 295
- - - "Nebenkem" and Nuclein Movements, 296
Spermatorenesis :and Oogenesis in Sagitta bipunctata. $4!s$
——of Cyclops strmme, Maturation Phenomena, :3)
- in Cephalopois. 717
- in Cybistor roeselii,: :6
- in 1 rones, $71!$)
- in Hydra and Aurelia, 30 t
- in Pherlangiste omlpina, 24
- in Sparrow, 23
— of Locuslidæ, 37
Spermatozon, Dimorphic, in Buttertlies. 60.)
- Dimorphism, 2:3
- of Acrutlices rulgaris, 59:

Spermatozoids, Development in Marchantia, 741
Sphacelariee, Australasian, $1 ; 7$
Sphacorarpus tervestris, $52: 3$
Ephæropsidea, Now, 6:
Hhagna and Hepatics, German, 322
— of Upper Teesdale, $22: 3$
Sphagnum, Leaf-cells, 197
Spherulin, Distribution among Plant Families, 309
Spiders, Copulation, 1:09

- German, Monograph, :38
- of Germany, 497

Spiess, ('., Alimentary Tract of the Leech, 302

- Minnte Structure of the Alimentary Canal of the Leech. 61:
Spindle Formation, Studies, $7: 3$
- Residues in Cell-Division, 162

Spine, Curvature in Fislies, 161
Spinclli, V., Marine Alge of Sicily, 638
Spinthariscope, 563
Spiral Arrangement in Floridea, 66
Spirillan, Fareina, and Streptococens.
Observations. 510

Spirogyra, Nuclens, 48
Spitta, E. J., Arrangement for Obtaming Monochromatic Light with the Mixed Jet, Is
Spleen, Hrematolytic Function, 30

- in Tropilonotus natrix, Development, 48.)

Sponges, ('aleareons, from Pacific, 7:3)

- Metalolism, :0t
- Sacific Horny, 729
s'pongilla fragilis, Note, 5u2
Spore Characters, 21"
Spore-Development in Aphanomyces, $6+1$
spore-formation and Nuclear Behaviour in IIydnunferm cornoum, 751
- in Bacteria, Plhysiology, : $83!$
- in Gastromycetes, 211
- in Xncorini, its
- in Yeant, is

Spore-producing Members, Morphology ; General Comparisons and Comelusions, 318
Fpore-lipening and Fertilisation in Mosses, 5: 2
Spores of Bacteria. Antibodis, 2 IS

- of Vancheria. G3I

Sporoeysts, Two Itemarkable, from Mytilu: latus, 726
Sporophyte, Origin, 640
Sprouting of Yeast-Cells, 68
Sputum, Demonstration of Tubercle Bacilli, 767

- Methor for Staining for bacteriological Examination, 372, 772
Squid, Vaseular System, 31
Srdinko, O. V., Structure and Development of Cartilage, 163
Stabler, G., British Hepatice. 742
Stafford, J., American Representatives of Distomum cygroides, 182
- Imerican Repressntatives of Distomum Verieqatum, 41
Stage, An Improved Horseshoe, 591
- amd Limb of Watson's Van Heurek Mieroscope, Method of Fitting, S8
- Koristka's Mechanical. 547
- Mechanical, capable of Large Movemens, and New Microscopical Stiand, 670
— - Wat-ou's New Attachable, 779
—— Watson's New kiōp, 66\%
- Tomes', 24.5
- Witson aud Sons' Attachable Mechanical, 8!
- Watson's " Argus" Attachable Mechamical, 761
Stäger, Ii., Infection Experiments with Clavicens, 746
Stain, Differential, of Bucillus Diphtherix, 370
Staining and Mounting Urinary '̌ediment, 560
- and Preservation of Ferial Acctions on Paper (trips, 371

Ntaining Breterial Gianules, Method, 371
— - - New Method, 237

- Diphtheria Bacilli and ('holera Vibrios, 295
- Directions for Photomicrography, $\imath 34$
- Flage Ila, 370
—— New Method, 235
- of Bacteria, Easy Method, 237
- Medullary Sheath, Use of Paraffin Imbedding, 771
- Methols, 'I'wo Botanical, 772
- Morlification of the Uranium Carmine of Schmans, 773
- Nervous 'Cissue with Gallein, 559
- Reactions of Proteid Crystals, 236
- Reticular supporting Network of Malignant Neoplasms by Mallory's M-thol, 236
-Serial Kections, Quick and Uniform, Apparatus for, and for 'Treatment of them in Number with Reagents, 679
- Sputum for Bacteriological Eximination, Methor, 372, 772
- Streptotrichaceæ. 541
- Thermophore, 774
- Vital, Miero-organisms, 773
- - of Blond-plates in Man with "Brile lantkresylblau," 77:;
- with Ehrlich Triacill Solution, Modification of the Method, 560
Staining-Trongh, New Glass, :371
Stand, Leitz' New, and Fine Aljustment, 6,65
Stupfa cylindrica, 630
Staphylucocus pyogenes aurens, Resisting I'owers, 54I
Slarbäck, K., Xylariæe of South America, 335
Stareh-Grain, Structure, 507
Starch-Grains in Ruot-Cap of Onion, 508
Starfish Ova, Expreriments, 50 I
- Regencration of the Body, til6

Starlinger, J., Improvement in Reichert's Slidiuge Microtome, 231
Statucysts in an Isoporl, 610

- of Cephalopods, 710

Statolith Theory of Gentropism, 515
Steam, Superheated, Effect upon Tensile Strength of Alloys, 683
Stebling, E. P., Economie Entomology, 721
Steblins, J. H., jun., Stain for Elastic Fibres, 109
Stecl, Crucible, The Microscope in the Mamufacture. 682

- Sections, Polished, New Etching Reagent, 682
- Simultaneous Presenco of Ferrite and ('emontite, 683
Steel-Works Materials, Analysis, :375
Stefinowna, M., Growth in Weight of White Mice, 489
Stefansky, -., Leprons Affection of the Skin and Lymph-Glands of Sewer Rats, 342

Steinbrinck, C., Permeability of Cell-walls to Air. 194
Steiner, J., Lichen Florat of Algiers, 71
Steinheil and Voit's • Handbuch der Ange wanden Optik,' 102
Stelar System in Flowering l'ants, 309
Stele, Unipolar, in Rootlets of 'Trapa, 50!
Stem, Distribution of Hairs on Surface, is

- Foliar Origin, 50:
- in Magnoliacex, Comparative Anatomy, 51
- of Jerris uliginow, Poismous Aetion and Histology, 520
Stereoscopic Photography of Microzeopic: Objects, 100
- Photomicrography, New Device, 223
- with Weak Magnification, 674

Sterigmatocystis niger, Culture, 651

- - Nutrition, 338
- prendonigra, 338

Sterilisable Hypodermic Syringe, New, for Aseptic and Bacteriological Injection Experiments, 680
Sterzi, (i., Blood-Vessels of the Spinal Cord of Birds, 487
Stevens, F. L., Fertilisation in Selerospora, 64:

- Selerospora, 332
- and A. (., Mitosis in Synchytrinm, 620
Stevens, N. M., Experimental Studies on Eges of Echinus microtuberculatus, 501
- Oogenesis and Spermatogenesis in sagitta lipunctata, 498
Stiasny, 1 ., Kidney of Helix pometia, 290
Stigeoclonium, Young Plants, 201
Stigmaria, 521
Stiles, C. W., Asiatic Human Parasites, 302
- Vinegar Eel in Humen Bladiler, 40

Stirton, J., and nthers, British Mosses, 523
Stomach, Embryonie Circulation, 545
Stomata of Cotyledons, 515
Stoney, G. J., 564

- Improved Heliostat, 92
- 'Note' on Lord Raylcigh's paper of 1896, 783
Stopper of Fusible Metal for Test-Tubes, 240
Storing-Kidney in Carinaria meditenarea. 717
Strasser, P. P., Fungus Flora ol Sonntagberg, 73
Streeter, G. L., Use of Paraffin Imbedding ${ }^{\text {a }}$ for Medullary Sheath Staining. 771
Streptoearpus and Monophyllaa, Remenration of Assimilating Mechanism, 783
Streptococeus, Sarcina, and Spirillum. Observations, 540
Streptopogon, 196
Streptothrix, 215
Streptotrichacere, Staining, 541
Stridulating Organs in Saltatorial Orthoptera, 296

Striduation of V eath's-Head Motha, $3 t$
Stringer. E. B.. On a New Method of Using the Ehetric Ar" in Photomierography, 276. 377
Atriped Musele-Cell of Necturus, Nuclear Changes, 27
Strobell. E. U., Cormons of Earthworm, 40

- New Mrthed of Finellssing in Photomierogralhy, 677
- iperm (entrisme and Aster of Allolobophorn fotide, 7-34
Strong, W. M., New liethod of Counting the Corpusples of the Plund, dise
Stschelkinootzeff', J. P., segments of Pseuduscorpionide, 2:8
Stummer-Traunfels. It. litter v., Freshwater Polyclarl, 182
Stylupida, Development, 4.4
Styaneer, Notes, 57
Subradula Orgam in Chiton, Function, $4 \not 22$ Sugrrin Ripe Fruits, 1:2
Nugar-free Bonillon, Methot of Ereparing, 767
Sulphur-Bateria, New Group, 540
Supraremal Copsules, Intracellnar Cianaliculi, 597
- Method of Demonstrating the Secretory Canalienli, 235
- - Sceretory Processes, 700

Guzuki, Ľ., Action of Potassium Iodide and Potassium Ferrocyanide, 518
Suzuki, U.. Composition of Seeds of Giuligo bitoba, 19:3

- Formation of Asparagine in Metalholism, 192
Svedelins, N., Marine Algae from Dago, 67
Swim-Bladder, Comparative Limbryology, 708
Swingle, I). B., Spore-Formation in Mucorini, 745
Sycandra raplamus, Ingestion of Food Partieles, :30t
Sydow, H. and P., Asterconium Succertui, 337
- Mongriaph of the Uredinca, 7 -
- Notes on Nomenclature, 651
- Filletiar abscoudita, 6.50

Symmetry, Inverse, Comse. $701 ;$
Syachytrian, Mitosis, 120
Syncoryne sursii, Minnte Strncture, 41
syringe. New Sterilisable Hypodermic, for Asepticand Dacteriological Injection Experiments, 680

'T.

Tadpoles, Inlnence of Radium Ray, on, $48: 3$
Taka Diastase, Effects of Chemical Agents on Starch-couverting Power, 517
Takalasi, 'T., Production of Alcohol in Scels, 51 ל
Takahashi, Y., Ostilago Panici miliucei, $\because 10$

Tammes, T., Periolicity of Morphological Phemomena in Plants, 515
Tandler. J., Structure of (iecko's Toes, 712
Tassi, F., New spharopsider, 69
Taste-Fibres, Conrse, 2s6
Tavares, J. da S., Stu lies on Zoncecidia, 38
Taverner, H., Photngraphs of Images seen in Binocular Mierosenpe, 783
Taxoulinm, Gametophytes:and Embryo, 734
Taylar, L., Asiatic llman Parasites, 302
Teeth in Selachians, Development, 486

- of Diptera, 606

Teiehert, K., Fungi in Dairy Products, 334
Teleosts, Optic Chiasma in, $\because 87$
"Telescopie" Eye, so-called, of some Abyssal Fishes, 161
Teleutospores, Crermination, 210
Tellyesniczky, K., Criticism of Theories of Nurlear Structure ${ }^{2} 7$
Telyplonus cumbutus, lleve lopment, 723
Temperature, Effect on Growing Cells, 507

- of the Tumby, 6i(4)

Temperaturs, High, Resistance of Sceds, 624
'Teratology, Plant, is
Termitus. Termit,phils and Mymeophils, New, 172
Termitophils, Termites and Myrmeeophils, New, 172
Terras, J. A.. New Umight Photomicrographic Appmatns, 221
Testis and Oram, Mammalian, Embronic Developument, 70 ;
Test-tubes, Fusible Metal Stopper, 210
Tetams bacillus, oluservations oa the Flaqella, itio3

- Restarches, 66I

Texas Fever, Pamaite, B18
Thalassomid, Rare, and its Larva, 1011
Thammium, 742

- Genns, 60

Thaxter, -., New Enalind Choanephora, 1542
Thaster, R., Labonlleniarese, 70

- New Hyphmycetes. 529
- Nutes on Monoblepharis, 640

Theriot, I., Musses of Miakka, 324
Thermophore for use in Staining, 774
Thermostat, New Economical, of Simple and Light Construction, 678
Thesing, (., Spermatogenesis in Cephalo1mls, 717
Thibaut, F., 205
Thiele, J., Insufficiently Described Monaxonia, $72!$
Thienemann, A., Statocysts in an Isopod, 610
Thigmotropic Ront-1 mrvatures, 192
Thilo, O., sketetal Changes in Flat-Fishes in the Course of Development, 25
Thimnfeldia, Americm precies, $7: 88$
Thiopleyse volutens, 751
Thompon, M. 'l', liare Thalasintid aml its Larva, 611

Thor, S.. Thick-skinned Aearina, 177
Thoms of Gleditschia triacmuthos, 5 H
Thouvenin, M., Petiolar Glamls of Viburnem opulus. 510
Thearls, Intracellular, in Nerve-Cells, 596
Thrips, Iujurious Influeuce on Man, 17t
Throwing-Net and Mud-Nucker, 167
Thuia, Morphological Study, 189
Thysanura, ㅅtu lies, 295
'Tichomiroff. A., Artificial Parthenngenesis in silk Moth, 494
Tirle-Pool Vegetation, 639
Tilletia cthscondita, 650
Timbers, In lian, Mannal, 52
Tissiur, -. Putrefaction of Meat, 218
'Iissier, H.. liesearches on the Fermentation of Milk, 75%
Tobler', F', (xermination of certain Florideæ, 331

- Polymorphism of Marine $\mathrm{Al}_{\mathrm{s} x}, 636$
- Reparation of Injury iu Ceramiaceæ, (i37
- Veg tative Reproduction of Dasyu eleguens, 66
Tomes' Stave, 245
Tompa, A. V., Two Botanical staining Methods. 772
Tonkofi, W., Development of spleen in Tropidonotus natrix, 485
- Influence of Salt Solution on Early Development of Newt's Hoge, 593
Tonzig, ('., New Eronomical Thermostat of simple and Light Construction, 678
Top-ent, E., Asterostepticie, 729
Törquist, S. L., Studies on Graptolites, 184
Torperlo, Efferent Neurons in Electric Lrobes, 487
-"Intrice llular Threads" in E : $1 \mathrm{nglion-}$ Cella of Electric Orman, 16%
Torre. K. W. v. D., ${ }^{\text {derman Flora, }} \mathbf{5 1 9}$
Torrend, C., Fingi of the Setabal Region, 7:
Tomer, II. B., Hydroids of Pacific Cuat of North America, 44, 50
- Notes on Anemones and Variation in M, tridinm, 45
- Prepotency in Polydactylous Cats, $2 t$

Torrya Myristica, Seedlinu, 6:I
Torsion of Bird-Embryo, 161
Tortoise. Asiatic, Parasites, 46
Totzaner, R. J., Relations of Kidueys and Gumads in Maliotis, 170
Tower. W. L., Coloration of Coleoptera, 720

- Development of Wings in Beetles, 293
-. Exuvial Glands in Insects, 173
Toxin, Intracellular, of Typhoid Bacilhs, 217
Toxotes jaculator in Caprivity, 30
Toyama, -.. Bacterima Pathogenic for Honse-Rats, $3+1$
Tracheal Gills ou Legs of Larval Perlid, 607

Trachelomonas, New Species, $50+$
Trachenpulmonate Gastroporls, 291
Transpiration, Use of Collorlion for Detecting, 514
Triph, Unipolar Stele in Rootlets, 509
Traverso, G. B., Scleruspora, 204, 3:32

- Stomata of Cotyledons, 515

Treadwell, A. R.. Artificial Parthemogenesis in Egg of Porlarke obscurce, 4!8
Treasurer's Account, 1902, 125
Tremataspis, Appendages, 714
Trematodes from Marine Turtles, 41

- North American, 41, 303
- Nutes, 500
- Skin, 500

Trenel, -., Agghatination, 76
Trepomonas agilis, Structure, 306
Treub, M. Embryogeny of Ficus hirtu, 818
Triacid Stain, Fixation of Bloorl-kilms, 299
Triaxomia, Indian, 305
Triceratium, Minute Structure, 62
Tricholectidæ, North American, 722
Trichogleat lubrica, 637
Trichomes in Myrsinacese and Fruit of Jocquinit ruscifolia, lsy
Trillinm and Paris. Nuclear Reduction and Fertilisation, 48
Trionychide, Classification, 713
Triplitania miralilis, 181
Tripylea, New, 45
Triton blesii, Hybrid Nature. 707
Trochanter and Prefemmr, 175
Tropeolum majus, , ap-exereting Elements, 733
Trophospougia, 162

- in Glamlular Cells. 596

Trophospongium of Nerve- Clls and Pincreatic Cells, 2 ;
Tropidonotus untric, Development of Shleen, 48.5
Tronessart, E., Gemusus auris, 177
Trout, Change of Colour, $71: ;$

- Giastrulation of Double-Development, 161
Trout's Stomach, Living Hydrachmid Larve, 609
Truffant, G., Nutrition of Clirysanthemums, 737
Truffles, Cultivation, 64\%
Trypamsoma found in Sleeping Sickness, 504
Trypanosomas from Transvaal Cattle, t1;
Trypanosomata, Demonstrating, 371
Trypanosomes, Detection, 775
Trypanosomiasis, 307
- of Horses in the Philippines, 61:1

Tsiklinsky, -., Thermophilons Bacteria, 539
Tubercle Bacilli in Sputum, Denomstration, 767
Tuberisation in Plants, Physical Conditions, 54
Tubeuf's Drawing Apparatus, 763

Tulip and Crocus, Movement of Perianth Leaves, 191
Tumours, Embryologr, 705
Tunny, Temperature, ${ }^{600}$
Turbellarian, New, 41
T'urf-Pits, Conifer Wood from the, in
Turner, E. R.. 'On it new Arrangement for taking Photomicregraphs in Colours,' 118
Turquet, J., Amylomyces Romizi, 68
Turtle, Snapping, New Monostome from, 1;15
Turtles, Marine, Trematoles from, 11
'Two-speed Fine Alljustment., 19, 117
Typhuid Bacillus, Immunising Effects of Contents, 541

U.

Uffonheimer, A., Bacilhus aerogenes aerophilus agilus. 81
Ulotrichacere and Chetophoracese of United State: (i.)
Ultra-3li•roscopic Partioles and IltraDlicrusenpic Bacteria. On the Rendurine Visible of, 5:
—— - Visibilaty, 228
Ultra-Violet and Röntern Rays, cmsitiveness of Ants to. 171

- Ladiations, Bacterididal Actiom 7.56

Tmbilicaria in North Amurica. 71
Unulerwood. L, M.. Betrychimm. B2"

- Ouban Ferns. 58
- Fems and Fern Allies uf N. America, 195
- Mi M Int, 522

Thna, P. (x.. Ink for Writing on Glas:, 1]:
Uramam, Action on Plants. 518

- Carmine 'taining of Schmaus, Molification, $77: 3$
Ure"inere, $5: 3$
- Changes promuced in Peridial Cell. Walls, $74!$
- Clamp-Comnections and Fusion, 7.i0
- Cultures. 210, 5:30
— Mongraph. 72
- Nomenclature, 650
- Notes. 749

Tredo bistortaram, 210
Urmary Seliment, Staining and Momang. 560
Ur,myces, New or Critical Species. .isl

- of h .upins, 650

Urophlyctis bohemica, 204
Istilago Pamici miliacei, 2lo
Literine C'avity, Fixation of Mammalisu Lige, 76!

V

Vaillant, L.. Fresh-water Fishes of Borneo, 289
Vaillard, L., Bacillus of Epidemic Dysentery, 6.59

Yalenti, (t. L., Easy Method of Staining the Flagella of Bacteria, 287
Valonia, lieprodnetion, 64
Valoniaeer, New Genns, 201
Vaney, C., Budding of Rhabdoplewra normami, t2

- Dipterous Parasite of the Vine-pest Haltica, 60;
- Entosiphom Jeimatis Parasitie in an Abyssal Holothuroid. 4!1
- Nurlear Emissious in Protozoa, 30.7

Vanilla, Diseases, 70

- Rust, 72

Veramus viloticus, Adaptations to Molluseivorons liet, 712
Vischicle, -., Vital Rhythm, 28
Vasenlar System of Amphioxus, 489

- - of Squil. :31
- Tissue. Evolution, 187

Yasiform Orifice of Alcurodide, 721
Vaneheria, Spores, 631
Vaupel, F., Morphology of Muscine, 627
Vayreda, - , Plants of Catalonia, :318
Vesetable, Thin Laminated Flat Tissues,
New Method for Preparation of Horizontal Sections, 771
Vegetative Activity in the Carboniferous Epoch, 513
Yein, Perforation by Artery in ('at, 711
Venom of Serpents, Lap of Fungi as an Antidote, 76
Verhoeff, K. W., Innervation of Metacephalie Segment, :34

- Intercalary Regments, 72:
- Systematie Position of Hemimerus, 607
- Trochanter and Præfemur, 175

Verrill, A. E., Bermuda Islands, 626, 71 ;
Verschaffelt, E., Prussic Acid in opening Buds of Prunus, 516
Vertebral Column of Penguin, Development, $\because 83$
Vetebrata, Amitotie Division, 595
Vertebrates, Comparative Anatomy, 28

- Homology of Lagena, 710
- Structure of Outer Segments of Rods in Retina, 719
- Treatise on Comparative and Experimental Embryology, 160
- Yolk-Nucleus or Corpus Balbiani, 485

Verworn, MF. Biogen-Hypothesis, 285
Vestergren, T., Micromycetes rariores selecti, 535

- and others, New Reeords of Fungi, 655

Vestigial Function, 160
Vevey, S., Artault de, Injurious Influence of Thrips on Man, 17t
Vezey, J. J., 116. 117, 120, 127, 243, 378
Viala, P., Bornetina Corium, 650

- "Phthiriose," a Discase of the Vine, 531
Viburnum Opulus, Petiolar Glands, 510
Viguier, C.. Artificial Parthenogenesis, 22
Villagio, -., Wide Illuminating Cones, 673

Villard, J., Cellular Nature of Zooehlorelle, 597
Vine Disease, 334
——" Phthiriose," 531
Vine, Leaves, Morphological Variation as a eonsequence of Grafting, 738

- Perforation, 71

Vinegar Lel in Human Bladder, $4 \prime$
Visual Purple, 760
Vital Rhythim, 28

- Staining of Micro-organisms, 773

Vitality, Electrical Criterion, 599

- of Yeast, Observations, 646

Vitreous Humour, Development and Strueture, 163
Vogel, -., Nitrogen-fixing Bacteria, 540
Voges, O., Parasite of a Central Sonth American Horse Disease, 619
Vogler, P., Valiations-Statistics as applied to Plankton-Diatoms, 6:;
Voglino, 1'., Development of Ramularia arquivoca, 648

- Polydesmus exitiosun and Alternaria Bressicx, 338
- Septoria, 337

Voinor, D. N., Dimorphic Spermatozoa in Butterflies, 605

- Nature of the Ceutrosome, 283
- Epermatngenesis in Cybister roselii,:36

Voleanic Dust, Microscopic Appearanees, 374
Voltzenlogel, E, Hind-End of Asearis, 180
Volvox, Phototaxis, 730
Vorges, D. de., Utilisation of Carbonate of Lime by Anodonta, 715
Vorticellid, New, 504
Vosmaer, G. C. J., Silicious Spicules, 50:3
Voss, W.. (lamp-Connectious aud Fusion in the Uredince, 7 , 0
Vosseler. F., Structure of Intestinal Villi, 164
Vosseler, J., Chemieal Defence and Other Adaptations in North African Orthoptera, 174
Vurllemin, P., Bacteriophagons Acrasiea, 752
— Intermediate Wood, 309

- Study of Absidia, 333
-- Zygospores of Mucorini, 746
Vurpas, C., Vital Rhythm, 28

W.

Wagner, F., Variations of Pieris napi, 498 Waguer, F. v., Parasitism among Animals, 487
Wagner, R., Lagochilus, 52

- Notes on Compositæ, . 13

Walk, G. v., Specific Gravity of Cell-sap, 186
Walker, A. O., Antarctic Anphipods, 611
Wallaby, Parasite, 294

Wallace, W., Ovarian Ova and Follicles in Fishes, 594
Waller, A. D., Electrical Criterion of Vitality, 599
Wandolleck, B., Appendicular Nature of Abdominal Styles, 175
Ward, H. M., Puccinia dispersa and its adaptive Parasitism, 649
Ward, M., Effect of Mineral Starvation on the Parasitism of Puccinia, 210
Warnstorf, C., European Marpidia, 195

- German Hepatics and Sphagua, 322

Wasmann, E., Guests of the Dorylinæ, 172

- New Termites, Termitophils, and Myrmecophils, 172
- Pseudogyny in Formica, and its Canse, 17.

Water and Aqueons Solutions, Effects on Foliage Leaves, 315
Water-Bloom, 658
Watson and Sons' Attachable Mechanical Stage, 89

- Incandescent Gas Lamp, 92
- Macro-Hiluminator, 91
- Metallurgical Microscope, 86
- Museum Microscope, is, 379
— Stand Condenser, 979
Watson, W. F., Plotography by Natural lenses, 764
Watson's " Argus" Attachable Mechanical Stage, 761
- New Pattern Portable Mieroscope, 670
— - Skopp Mechanical Stage, 669
——Standard Electric Lamp, 95
- Van Heurck Microscope, Method of Fitting Stage and Limb, SS
Watts, W. W., Moss Flora of Australia, 524
Wax-making Organ of Bee, 719
Weber, A., Torsion of Bird-Embryo, 161
Weber, M., History of the Fauna of the Indo-Australian Archipelago, 598
Wedekind, W., Yestigial Function, 160
Weems, J. B., Diseases of Grasses, 751
Weeping Trees, Influence of Loaling on the Formation of Wood and Bast Elements. 192
Weevers, T., Changes in Silicin in Plant Nutrition, 517
Wehmer, C., Decomposition of Lactic Acil by Fungi, 534
- Mucorini, : $: 33$

Weichselbanm, A., Cultivation of Anaerobic Bacteria, 340
Weight, Growth in, of White Mice, 489
Weisia sterilis, 7+2
Weismann, A., Regeneration in Newts, 161
Werner, Ir., Biolugical Observations on Reptiles and Amphibians, 165
Wesché, W., 24t, 781

- Male Organs of Scatophaga, 607
- New Male Rotiters, $18: 3$

Wesché, W'.. On the Mouth-parts of the Nemocera and their relation to the other families in Diptera, 78.5

- Parasite of the Wallaby, 244

Wesenberg-hund, C., Relict Fanna of Lake Furesö, $\because 89$
Wesselingh, C. v., Nucleus of Sipiroryra, 48
West, W., Debarya immersa, 201

- and G. S., British Fresh-water Algr, 326
— - Fresh-water Algre of the North of Ireland, 202
Westerlund, C. A., Synopsis of Palæarctic Forms of Clansilia, 492
Weysse, A. W., Perforation of a Vein by an Artery in the ('at, 711
Wheldom, J. A , British Hepatice, 198
- - Moss Flora, 60

White, D., Fossil Algre, -0;3

- - - from North Ameriea, 689

Whitelegge, T., Moss Flora of Australia, 524
Whitney, W. R., Microscopic Examination of Paper Fibres. 111
Wiedersheim, R., Comparative Anatony of Vetebrates, $\because 8$

- "Larynx" of Ganoids and Dipnoi, ;ou

Wiedersheim, W., Inthence of Loaling on the Formation of Wood and Bast Elements in Weeping 'irees, $1: 12$
Wiedman, S.. Note on the Amphibole Hudsonite previously called a Prroxete, 777
Wijhe, J. W. v, Method for Demonstrating Cartilaginous Micro-Skeletons, 372
Wiley, H. W., Agriculture and Bacteria, st

- Apparatus for Collecting Samples of Earth for Bacteriological Examination, 104
Will, H., Observations on the Vitality of Yeast, $641 ;$
- Yeast-forms of Fungi, 74

Wille, N., Agrolowical Notes, 630

- Fresh-water Algeo trom Zambesi, 327

Williams, L. W., Vascular Fystem of squid, : 1
Williams, E. S., Psilopilum, :325
Willians, - R., Variation in Lithobius jurficatu:, 6(1)S
Williamson, N. E., Trypanosomiasis of Horses in the Philippines, (it!
Wilm, A., British Mepaticie, 198

- - Moss Flora, 60

Wilson, J. T., Early stages in Development of Ornithorhynchus, $28 \because$
Wiltshire, Rev. Thomas, 159
Wiugs in Bectles, Development, 293

- of Nutcoris cimicoides, Normal Asymmetry, $17 t$
Winiwarter, H. v., Note on Oogenesis in Mammals, 2:-
Wintrebert, P., Influence of Central Nervous System on Development of Linibs in Amphibian*, 5! 4

Wolff, A.. Influenza-like Bacillus from a Rat. :34
Wolff, H., Simple Method of Making Thin Paraftu Sections, 10.5
Wolterstoff, W., Hybrid Nature of Triton hasiz. 707
Wond, Histology in ruecies of Pine, 188

- Intermedate, 30:

Woodman, A. G., Microscopic Examination of Paper Fibres, 111
Woodward, H., President's Address: 'Some Ideas on Life,' 11:
Wooly Plants, Abnormal Growths, 511
Woolley, P. G., Staining the leticular supporting Network of Malignant Neoplasms by Mallory's Method, 236
Worms. Parasitic as Aids in Zoogeographical Investigation, 40
Worsdell, W. C., Abnumal Flowers of
Heleninm autumnale, 623

- Evolntion of Vascular Tissue. 187

Wright, -.. 247
Wright, C. H., Flor:z of Chima, 519
Wright, L. P., Eryopsi* plumosa, 329

- Mrstogloie finimiuta and M. binotata, :29
Wygaerts, -.. lieconstitution and Formation of Chromosonses in Comatic Nuclei, 505

X.

Sylarize of South America, 335

Y.

Yabe, Y., East Asiatic Pteridophyta, 740 Yeast,205

- Action on Albumen, 647
- and Animal Cells, Study of Nuclei, 205
- ('ytology, 205, 335, 646
- Development in Sugar Solution without Fermentation, 337
- Ferment, 56
- Forms, de., 646
- Forms of Fungi, 747
- Glycogen from, 49
- Oliservations on Vitality, 646
- Origin. 68
- Rennct-like Enzyme, 52 s
- Spore-formation, 18

Feast-Cells, spronting, is
Yeast-Niores, Fornation, 336

Yeasts, Assimilation, 5 5

- Life-History, 205

Yendo, K., Eisenia and Ecklonia, 329
Yolk-Nuclens or Corpus Balbiani in Vertebrates, 485
Young, W. J., Glycogen from Yeast, 49
Yucca, Development of Maerosporangrium, 312
Yung, E., Sense of Smell in Snails, 290

Z.

Zachariades, l'. A.. Axial Filament in the Adult Connective-Tissue Fibril, 596
Zacharias, (1, Achromatiam oxaligerum. 755

- Carterius stepanowi, 617
- New Turbellarian, 41
- Throwing-Net and Mud-Sucker, 167

Zahbruckner, A., Brazilian Lichens, 75 :

- Califorman Lichens, 71
- Lichen Flora, 7 is

Zamia, Embryogeny, 310
Zitnder, L., Gill-Hilters of Fresh-water Fishes, 714

- Male Genital Appendages in Lepidoptera, 60.5
Zanfrognini, ('., Lichen-Flora, 209
Ziegler, H. E., Intluence of Alcohol on Developinent, 484
Zielleczkey, Li., Differentiation of Bacillu: coli and Bucillus typhosu\%, 307
Zietzschmanı, L. H., Integumentary Organs of Cervide, 281
Zimmermann, C., Plant Microscopy, is
Zolonitsky, N.. Toxotes jaculator in Captivity, 30
\%oocecidia, Studies, 3 s
Zoochlorellæ, Cellalar Nature, 597
Zoology, Historical Aspects, 487
- Text-books, I6is

Zopf, W., Products of Metabolism in Lichens, 5:37
Zschokke, F.. Marine Parasites in Freshwater Fishes, 499

- New Case of Dipylidium caninum in Man, 499
Zsigmondy, IL., Visibility of Ultra-Microscopic Particles, 2:
Zygomorphism, Floral. Canse, 52
Zygospores of Mucorini, 74;
Zymogen, Formation in Gastric Glands of Adder, 27

MBL WHOI LIBRARY

```
WH l. BW9 D
```

$$
\infty<
$$

[^0]: ＊Mublers of the Publication Committee．

[^1]: * Cf. note on our system of recording maximum size, p. 4.

[^2]: * The Society are not intended to be denoted by the editorial "we," and they do not hold themselves responsible for the views of the authors of the papers noted. nor for any claim to novelty or otherwise made by them. The object of this part of the Journal is to present a summary of the papers as actually published, and to describe and illustrate Instruments, Apparatus, \&c., which are either new or have not been previously described in this country.
 \dagger This section includes not only papers relating to Embryology properly so called, but also those dealing with Evolution, Development, Reproduction, and allied subjects.
 \ddagger Comptes Rendus, cxxxv. (1902) pp. 570-3. § Tom. cit., pp. 605.9.

[^3]: * Comptes Rındus, cxxxv. (1902) pp. 197-9. + Tom. cit., pp. 189-91.
 \pm Anat. Anzeig., xxi. (1902) pp. 401-7 (3 figs.).
 § Morph. Jahrb., xxxi. (1902) pp. 85-103 (2 pls.).

[^4]: * Journ. Anat. Physiol., xxxvii. (1902) pp. 112-77 (4 pls. anl 11 figs.).
 \dagger Arch. Mikr. Anat., lxi. (1302) pp. 1-84 (8 pls. and 30 tigs).

[^5]: * Areh. Mikr. Anat., lx. (1902) pp. 232-60 (2 pls. and 4 figs.).
 + Science. svi. (1902) pp. 554-5.
 \ddagger Amer. Nat., $x \times x$ vi. (1902) pp. 837-47 (1 fig.).
 \$ Areh. Naturges. Ixviii. (1902) pp. 239-61 (2 pls.).
 i| 'Die Entwickelung des Gfesichtes. Tafeln zur Entwiokelmangeschichte der äuseren Körperform der Wirbeltiere,' Leipzig, 1902, vi. and 21 If. and 8 folio pls.

[^6]: * Zool. Anzeig., xxv. (1902) pp. 305-20 (19 figs.).
 \dagger Arch. Mikr. Auat., Ix. (1902) pp. 587-6688 (4 1 ls and 3 figs.).
 \ddagger Trans. Amer. Micr. Soc., xxiii. (1902) pp. 1-18 (4 pls.).

[^7]: * 'Lehrbuch der vergleichenden Histologie der Tiere,' Jena, 1902, 8ro, xir. and Is 8 pp . and many illustrations
 \dagger Anat. Anzeig., xxi. (1902) pp, 391-8 (1 fig.).
 \ddagger Tom. cit., p!. 561-81 (4 tigs.).
 § Arch. Mikr. Auat., 1x. (1902) pp. 669-80 (1 pl. and 3 figs.).

[^8]: * Arch. Mikr. Anat, lx. (1902) pp. 681-706.
 \dagger Rend. R. Ist. Lombardo, xxxiv. (1901) pp. 443-7.
 \ddagger Anat. Anzeig., xxi. (1902) pp. 379-85 (3 figs.).
 § Rend. R. Ist. Lombardo, xxxiv. (1901) pp. 362-8 (1 pl.).
 \# Tom. cit., pp. 164-70 (4 figs.).
 © Comptes Rendus, exxxv. (1902) pp. 195-7.
 ** Arch. Naturges., Ix viii. (1902) pp. 27-64 (2 pls.).

[^9]: * Comptes Rendus, cxxxv. (1902) pp. 809-12.
 + 'The Rabbit Pest in Australia, its Cause and Cure,' Sydney, 8vo, 16 pp . See Nature, $1 \times$ vii. pp. 43-4.
 \ddagger Amer. Nat., xxxvi. (1902) pp. 767-76 (1 fig.).
 § Anat. Anzeig., xxi. (1902) pp. 369-73 (3 figs.).

[^10]: * 'Irans. Liverpool. Biol. Soc., xvi. (1902) pp. 471-84.
 + Rend. R. Ist. Lombardo, xxxiv. (1901) pp. 976-87.
 \ddagger Arch. Zool. Expér., x. (1902) Notes et Revue, pp. Ixxxi.-iv.
 § Yroc. R. Plys. Soc. Edinburgh, xiv. (1902) pp. 444-5.
 H Arch. Sci. Phys. Nat., xiv. (1902) pp. 423-5.
 - Comptes Rendus, exxxv. (1902) pp. 203-5.

[^11]: * Comptes Rendus, cxxxv. (1902) pp. 133-9.
 + Biol. Centralbl., xxii. (1902) pp. 408-12.
 \ddagger Comptes Rendus, cxxxv. (1902) pp. 807-9.
 § Arch. Zool. Expér., x. (1902) pp. 79-97 (5 figs.).
 if Amer. Nat., xxxvi. (1902) pp. 787-9t (5 figs.).

[^12]: * Proc. Acad. Nat. Sci. Philadelphia, 1902, pp. 505-7.
 + Zool. Centralbl., ix. (1902) pp. 265-305 (4 figs.).
 \ddagger Arch. Zool. Expér., x. (1902) Notes et Revue, pp. lxxxiv.-xciv.
 § Mem. Acad. Danemark, Copenhagen, xii. (1902) pp. 155-218 (3 pls. and 1 map).

[^13]: * Trans. Acad. Sci. St. Louis, xi. (1901) pp. 143-6 (1 pl.).
 + Comptes Rendus, cxxxv. (1902) pp. 587-9.
 \ddagger Anat. Anzeig., xxi. (1902) pp. 373-8 (5 figs.).
 § Amer. Nat., $x \times x$ vi. (1902) pp. 855-64.
 || Zeitschr. f. wiss. Zool., lxxi. (1902) pp. 550-624 (9 figs.).

[^14]: * Zool. Anzeig., xxxvi. (1902) pp. 20-31 (9 figs.).
 \dagger Anat. Anzeig., xxii. (1902) pp. 225-39 (12 figs.).
 \ddagger Amer. Nat., xxxvi. (1902) pp. 683-706 (26 figs.).
 § Verh. Zool.-bot. Ges. Wien, lii. (1902) pp. 572-4.
 || 'Biolngia Centrali-Americana. Insecta, Lepidoptera Rhopalocera, vols. i. and ii. (1879-1901) xlvi., 487, and 782 pp . and 112 pls . See Nature, lxvii. (1902), pp. 25-7.

[^15]: * Trans. Entomol. Soc. London, 1902, pp. 189-218 (1 pl.).
 + Comptes Rendus, cxxxv. (1902) pp. 700-2.
 \ddagger Proc. Acad. Nat. Sci. Philadelphia, 1902, pp. 599-625 (2 figs.).

[^16]: * Kansas Univ. Sci. Bull., i. No. 8 (1902) pp. 185-231 (4 pls.).
 \dagger Zeitschr. f. wiss. Zool., Ixsi. (1902) pp. 525-49 (1 pl.).
 \ddagger Rend. R. Accad. Lincei Roma, xi. (1902) pp. 318-2t.

[^17]: * Broteria, i. (1902) pp. 1-48. † Tom. cit., pp. 77-93.
 \ddagger Proc. Washington Acad. Sci., iv. (1902) pp. 457-99 (4 pls.).
 \S Zoologica, xiv. Heft $35^{i v}$. (1902) pp. 289-384 (9 pls.).
 if Comptes Rendus, cxxxv. (1902) pp. 750-2. ब Tom. cit., pp. 589-91.

[^18]: * Anat. Anzeig., xxi. (1902) pp. 407-11 (4 figs.).
 \dagger Proc. Acad. Nat. Sci. Philadelphia, 1902, pp. 284-359 (1 pl.).
 \ddagger Arch. Naturges., lxviii. (1902) pp. 262-99 (2 pls.).

[^19]: * Biol. Bull., iii. (1902) pp. 206-13 (3 figs.).
 \dagger Journ. R. Soc. N. S. Wales, xxxv ((1901, published 1902) pp. 41-6.
 \pm Bull. U.S. Department Agriculture, No. 35, 1902, pp. 35-40 (1 pl.).
 § Zool. Anzeig., xxvi. (1902) pp. 42-51.

[^20]: * Zool. Anzeig., xxvi. (1902) pp. 41-2. †Tom. cit., pp. 39-41.
 \ddagger Zeitschr. f. wiss. Zool., lxxiii. (1902) pp. $75-114$ (3 pls , and 3 figs.).
 § Zool. Jahrb., xvi. (1902) pp. 411-894 (12 pls. and 2 figs.).
 || Amer. Nat., xxxvi. (1902) pp. 887-910.
 II Zool. Jahrb., xvi. (1902) pp. 895-912 (1 pl.).

[^21]: * Bull. Soc. Zool. France, xxvii. (1902) pp. 150-1 (1 fig.).
 \dagger SB. Ges. Naturfreunde Berlin, 1902. pp. 28-30. See Zool. Centralbl., ix. 902) pp. 198-9.
 \ddagger Comptes Rendus, cxxxv. (1902) pp. 748-50.
 § Zonl. Anzeig., xxvi. (1902) pp. 1-5 (3 figs.).
 \|I Op. cit., Xxv. (1902) p. 551 .

[^22]: * Biol. Bull., iii. (1902) pp. 255-61.
 \dagger Mém. Soc. Zool. France, xv. (1902) pp. 68-79 (4 fige.).

[^23]: * Zool. Anzeig., xxvi. (1902) pp. 33-9 (11 figs.).
 \dagger Bull. Mus. Hist. Nat. Paris, 1902, pp. 345-9.
 \ddagger Arch. Naturges., $1 x$ viii. (1902) pp 1-26 (2 pls.).
 § Publications Univ. California (Zoology), i. (1902) pp. I-104 (11 pls.).
 \| Comptes Rendus, exxxy. (1902) pp. 591-3.
 II Zool. Ergebn. eiuer Untersuchuugsfahit des Deutsch. Seefischerei Vereins nach der Bäreninsel u. Westspitzbergen, ii. Teil. (1902) pp. 31-56 (1 pl. and 10 figs.).

[^24]: * Bull. Soo. Zool. France, xxvii. (1902) pp. 151-5 (1 fig.).
 \dagger Zool. Anzeig., xxxvi. (1902) pp. 5-8 (3 figs.).
 \ddagger Comptes Rendus, cxxxv. (1902) pp. 609-14 (13 figs.).
 § Tom. cit., pp. 717-21 (5 figs.). || Tom, cit., pp. 567-70.

[^25]: * Ber. Deutsch. Bot. Ges., xx. (1902) pp. 281-3.1
 \dagger Proc. Amer. Philosoph. Soc., xli. (1902) pp. 174-80 (2 pls.).

[^26]: * Flora, Ergānzungsband, 1902, 46 pp. (6 pls.).
 \dagger Bot. Zeit., lx. (1902) pp. 115-3s (1 pl.).

[^27]: * Bull. Soc. Bot. Ital. (1902) pp. 108-12 (5 figs.).
 \dagger Journ. Chem. Soc., 1xxxi. (1902) pp. 1224-33.
 \ddagger Comptes Rendus, cxxxv. (1902) pp. 744-6. § Tom. cit., pp. 593-5.
 II Atti Soc. Toscana Sci. Nat., x viii. (1902) pp. 214-32.
 T Comptes Rendus, cxxxv. (1902) pp. 512-5.

[^28]: * Journ. and Proc. Roy. Soc. New South Wales, $x \times x$. (1902) pp. 116-23 (1 pl.).
 \dagger 'Tom. cit., pp. 161-212.
 \ddagger Rev. Gén. Bot., xiv. (1902) pp. 241-53, 300-15 (15 figs. in text).

[^29]: * Malpighia, xv. (1902) pp. 438-60.
 \dagger Journ. Coll. Sci. Imp. Univ. Tokyo, Japan, xvii. (1902) Art. 10, 42 pp. (1 pi.).
 \ddagger Engl. Bot. Jahrb., x $\pm x i$. (1902) pp. $516-55$ (figs. in text).
 § Beih. Bot. Centralbl., xiii. (1902) pp. 173-93.
 || Amer. Natural,, xxxvi. (1902) pp. 865-85 (5 pls.).
 ब Trans. Acad. Sci. St. Louis, xi. (1901) pp. 215-22 (5 pls.).

[^30]: * Rev. Gén. de Bot., xiv. (1902) pp 289-99 (5 figs. in text).
 + J. S. Gamble, 'A Manual of Indian Timbers: an account of the growth, distribution, and uses of the trees and shrubs of India and Ceylon, with descriptions of their wood structure.' New and revised edition, London, Sampson Low \& Co., xxvi. and $856 \mu \mathrm{p}$. and 20 pls .
 \ddagger Yerhandl. k. k. Znol.-hot. Gesell. Wien, lii. (1902) pp. 540-62 (11 figs. in text).
 § Atti d. Soc. Toscana di Sci. Nat., xviii. (1902) pp. 126-4l.
 \|f Mém. Acad. Sci. 'Toulouse, ser. 10, i. (1901) pp. 105-18.

[^31]: * Comptes Rendus, exxxv. (1902) pp. 710-2.
 \dagger Tom. cit., pp. 63t-6. \ddagger Tom. cit., pp. 497-9.
 § Amer. Natural., xxxvi. (1902) pp. 777-86 (5 figs. in text).

[^32]: * Comptes liendus, cxxxv. (1902) pp. 706-8. + Tom. cit., pp. 303-5.

[^33]: * Zeit. Physiol. Chem., xxxv. (1902) pp. 459-64. See also Journ. Cbem. Soc. lxxxii. (1902) ii. p. 578. ... † Centralbl. Bakt., ix. (1902) pp. 55-62.
 \ddagger Beih. Bot. Centralbl., xiii. (1902) pp. 164-72.

[^34]: * Amer. Journ. Sci., ser. 4, xiv. (1902) pp. 129-32.
 \dagger Indian Garden and Planter, April 24, 1902.
 \ddagger Beih. z. Bot. Centralbl., xiii. (1902) pp. 235-6t.

[^35]: * Engl. Bot. Jahrb., xxxi. (1902) pp. 478-88. † Tom. cit., pp. 489-94.
 \ddagger Mém. Soc. Natur. des Sci. Nat. et Math. Cherbourg, xxxii. (1902) pp. 85-340 (8 pls. and 1 map).
 § Bull. Soc. Vaudoise Sci. Nat., ser. 4, xxxviii. (1902) pp. 69-130 (5 pls. .
 II Verhandl. k. k. Zool.-bot. (ies. Wien, lii. (1902) pp. 608-64.
 IJourn. Linn. Soc., xxvi. (1902) pp. 537-92.
 ** Anal. Musen Nacion. Montevideu, iv. (1902) pp. 1-2t (5 pls. and 3 figs. in texi).
 $\dagger \dagger$ Engl. Bot. Jahıb., xxxii. (1902) pp. 1-33.
 $\ddagger \ddagger$ Proc. Linu. Soc. New South Wales, xxvii. (1902) pp. 186-204 (3 pls.).

[^36]: * Tom. cit., pp. 210-3. \dagger Tom. cit., pp. 214-24.
 \ddagger Tom. cit., pp. 225-9 (1 pl.). § Tom. cit.; pp. 241-5.
 $\|$ Malpighia, xvi. (1902) pp. 164-78 (3 pls.).
 If Broteria, i. (1902) pp. 49-75 (8 figs.).
 ** Binghamton, N.Y., 1902, vol. x. No. 4, pp. 97-12S (1 pl.).
 $\dagger+$ Bull. Torrey Bot Club. xxix. (1902) pp. 577-84 (1 pl.).
 $\ddagger \ddagger$ Hedwigia, xli. (1902) Repertorium, pp. 174-7.

[^37]: * Rerue Bryolngique, xxix. (1902) pp. 109-14 (fig. in text).
 \dagger Aghaderg. Co. Down, 1902, 8vo, viii. and 199 pp .
 \ddagger Beih. z. Bot. Centralbl., xiii. (1902) pp. 91-104.
 § Bot. Gazette, xxxiv. (1902) pp. 372 -5 (1 pl).
 * Bryologist, v. (1902) pp. $92-4$. IT Rhodora, iv. (1902) pp. 207-13.
 ** Trans. Proc. N. Zeal. Inst., xxxiv. (1902) pp. 325-7 (I pl).
 it Rev. Hryolog., xxviii. (1901) pp. 75-6.
 $\ddagger \ddagger \mathrm{Op}$. cit., sxix. (1902) pp. 115-9 (fig. in text).

[^38]: * The Naturalist, 1902, pp. 381-3. + Journ. Bot., xl. (1902) pp. 416-9.
 \ddagger Revue Bryologique, xxix. (1902) pp. 119-20.
 § Tom. cit., pp. 120-7. || Tom. cit., pp. 98-103.
 If Journ. de Bot., x vi. (1902) pp. 266-79.
 ** Verh. k. k. zool.-bot. Gesell., lii. (1902) pp. 530-9.
 $\dagger \dagger$ Bull. Herb. Boiss., sér. 2, ii. (1902) pp. 918-33, 988-93.
 $\ddagger \ddagger$ Revue Bryologique, xxix. (1902) pp. 93-7.

[^39]: * Proc. Amer. Acad., xxxviii. (1902) pp. 100-4.
 \dagger Hedwigia, xli. (1902) pp. 269-72.
 \ddagger New Phytologist, i. (1902) pp. 178-88 (1 pl.).
 § Journ. Quek. Micr. Club, ser. 2, viii. (1902) p. 267.

[^40]: * Ann. Bot., xvi. (1902) pp. 576-84. \dagger Flora, xci. (1902) pp. 380-3.
 \ddagger 'Trans. Hull. Sci, and Field Nit. Club, i. (1901) p. 157 (17 pls.).

[^41]: * Beitr. z. Biol. d. Pfl nzen, viii. (1902) pp. 347-414 (3 pls.).
 \dagger Mem. Torr. Bot. Club, xi (1302) pp. 135-250 (23 pls.).
 \ddagger Aun. Bot., xvi. (I902) !1. 467-85 (3 figs. in text).

[^42]: * Ber. Deutsch. Bot. Gesell., xx. (1902) pp. 357-65 (1 pl.).
 + Tom. cit., pp. 479-83 (1 pl.).
 \ddagger Tom. cit., pp. 471-5. § Torreya, ii. (1902) pp. 149-52.
 || Journ. Bot., xl. (1902) Supplement, pp. 1-107.

[^43]: * ' Botany of the Fraeroes,' part ii., Copenhagen, 1902, pp. 339-532 (fige. 51-110 and map). $\quad \dagger$ Bot. Notiser, v. (1902) pp. 225-8.
 \ddagger Notes from Bot. School. Trin. Coll. Dublin, v. (1902) pp. 196-200.
 § Proc. Amer. Acad., xxxviii. (1902) pp. 89-99.

[^44]: * Trans. and Proc. New Zeal. Inst., xxxiv. (1901) pp. 327-59.
 it Hedw. Beibl., xli. (1902) pp. 178-80.
 \ddagger Comptes Rendus, exxxv. (1902) pp. 912-5.
 § Centralbl. Bakt., ix. (1902) pp. 513-20.
 $\|$ Comptes Rendus, cxxxv. (1902) pp. 708-10.
 - Tom. cit., exxxv. (1902) pp. 479-81.
 ** Centralbl. Bakt., ix. (1902) pp. 357-61.

[^45]: * Bull. Laborat. et Orto Bot., iii. pp. S9-92 (2 pls.). Cf. Centralbl. Bakt., ix. (1902) p. 506.
 \dagger Flora, xci. (1902) pp. 47-55 (2 pls.).
 \pm Engl. Bot. Jahrb., xxxi. (1902) pp. 495-515 (2 pls.).
 § Trans. and Proc. New Zeal. Inst., xxxiv. (1902) pp. 396-401 (1 pl.).
 || Gartenfl., Jahrg. li. (1902) p. 3.

[^46]: * Bull. Soc. Myc., xviii. (1902) pp. 274-83 (1 pl.).
 \dagger 'Tom. cit., pp. 285-7 (4 figs.).
 \ddagger Proc. Amer. Acad. Arts and Sci., xxxviii. (1902) pp. 9-57.
 § Nouvelle Flore des Lichens, 2^{\bullet} partie, by A. Boistel, Paris, 1902, pp. xxxiii. and 332 (1 pl.).
 || Die Flechten (Lichenes) von Tirol, Vorarlberg und Lichtenstein, by Prof. Dr. K. W. v. Della Torre und Ludwig, Graf von Sarnthein, Innsbiuck, 1902, pp. xlvi. and 936.

 I Atti Soc. Lig. d. Sci. Nat. e Geog., siii. (1902) pp. 113-4.

[^47]: *Verl. d. k. k. Zool. Bot. Ges. in Wien, lii. (1902) pp. 469-87.

 + Bryologist, v. (1902) pp. 89-92.
 : Beih. z. Bot. Centralbl., xiii. (1902) pp. 149-63.
 § Le Staz. Sperim. Agrarie Ital., xxxiv. (1901) pp. 774-8s. Cf. Centralbl. Bakt., ix. (1902) p. 613.
 || Le Staz. Sperim. Agrarie Ital., tom. cit., pp. 767-77. Cf. Centralbl. Bak'.. loc. cit.

 I Bull. No. 3 Dept. of Agric. Victoria, 1902, 29 pp. (4 pls. and 2 tigs.).
 ** Journ, Roy. Hurt. Soc., xxvii. (1902) pp. 172-3 (5 figs.).

[^48]: * P. and H. Sydow, Monographia Uredincarum, vol. i. fase. ii. Leipzig, 1902, 192 pp. and 12 pls.
 \dagger Centralbl. Bukt., ix. (1902) pp. 590-607.
 \ddagger Bull. Soc. Myc., xviii. (1902) p. 284 (4 figs.).
 \S Ann. Bot., xvi. (1902) pp. 487-94.
 If Per. (l. Schweiz. bot. Ges., xii. (1902) p. 9. Cf. Bot. Zeit., lx. (1902) p. 2.46.
 - Buil. Soc. Mye., xviii. (1902) pp. $251-73$ (1 pl.).
 ** Bull. Torrey Bot. Club, xxix. (1902) pp. 599-608.

[^49]: * Journ. New York Micr. Soc., xvi. (1901) pp. 5-12 (figs. in text).
 \dagger Herlw. Beibl., xli. (1902) pp. 169-7t (8 figs. in text).
 \ddagger Bull. Lloyd Library, Mycolog. Series No. 1 (1902) 24 pp. (11 pls.).
 § Broteria, i. (1902) pp. 94-150 (1 pl.).
 4 Verh. d. k. k Zool.-bnt. Ges. Wien, lii. (1902) pp. 429-37.
 II Ann. d. R. Ist. Bot. di Roma, ix. (1902) pp. 187-220.
 ** Eugl. Bot. Jahrb., xxxi. (1902) po. 728-42; and xxxii. (1902) pp. 3t-f.

[^50]: * Journ. Roy. Hort. Soc, xxvii. (1902) pp. 1-45 (3 coloured pls. and 2 figs.).
 \dagger Yroc. Roy. Soc. Ixxi ((1902) pp. 27-30.
 I Est.-ung. Vierteljahrsschr. f. Zahnheilk., xviii. (1902) pp. 8-32 (1 pl.). ('f. Centralbl. Bakt., xvxi. (1902) p. 78.
 § Proc. Acad. Nat. Sci. Phil. (1902) pp. 461-502 (with pls.).
 || Beitr. z. Biol. d. Ptlanz., viii. (1902) pp. 307-46 (6 pls.).

[^51]: * Rev. Myc., xxiv. (1902) pp. 98-115. + Op. cit., pp. 125-7.
 \ddagger Op. cit.. pp. 85-8. § Terhnol. Quarterly (Boston), xv. pp. 30я-1.
 || Journ. de Bot., ix. (1902) pp. 291-300 (1 pl.).

[^52]: * Proc. Linn. Soc. New South Wales, xxvii. (1902) pp 230-6 (1 pl.).
 \dagger R. Ist. Lombardo Rendiconti, xxxiv. (1901) pp. 1:79-83.
 \ddagger Ann. Inst. Pasteur, xvi. (1902) pp. 694-704. § Op. cit., 1p. 686-9.

[^53]: * Ann. Inst. Pasteur, xvi. (1902) pp. 663-85.
 \dagger Op. cit., pp. 641-61.
 \ddagger Op. cit., pp. 562-86.

[^54]: * Centralbl. Bakt., $1^{\text {te }}$ Abt. (Ref.), xxxii. (1902) pp. 139-40. See also Archiv. f. Protistenkunde, l. (1902) pp. 306-43.
 + Centralbl. Bakt., $2^{\text {to }}$ Abt., ix. (1902) pp. 145-7.

[^55]: * Comptes Rendus, cxxxv. (1902) pp. 299-301.
 \dagger Centralbl. Bakt., $I^{\text {to }}$ Abt. (Ref.), xxxii. (1902) pp. 70-1. See also Zeitschr. f. Klin. Med., slv. (1902) pp. 132-51.
 \ddagger Centralbl. Bakt., $1^{\text {to }}$ Abt. (Ref.), xxxii. (1902) pp. 337-8. See also Archiv. f. Hyg, xliv. H. 1.

[^56]: * Centralbl. Bakt., $2^{\text {te }}$ Abt. (1902) pp. 425-8.
 \dagger Op. cit,. $1^{\text {to }}$ Abt. (Ref.), xxxi. (1902) pp. 533-5. See also Beitr. z. Path. Anat. u. Allgem. Pathol., xxxi. (1902).

 Feb. 18th, 1903

[^57]: * Bull, Johus Hopkins Hosp., xiii. (1902) pp. 234-5.
 \dagger Proc. Limn. Ser. New South Wales, xxvii. (1902) pp. 30-47.
 \ddagger Tom. cit, pp. 137-44.

[^58]: * Atti Reale Arcad. d. Lincei, xi. (1902) pp. 159-65.
 \dagger Centralbl. Bakt. (Ref.), $1^{\text {to }}$ Abt., xxxi. (1902) pp. 681-9. Sez alsu Hyg. Rundschau, xii. (1902) p. 473.
 \ddagger Centralbl. Bakt. (Ref.), $1^{\text {to }}$ Abt., xxxi. (1902) p. 122. See also Gaz. des Hôpitaux, 1900, No. 141.

[^59]: * Bull. Johus Hopkius Hosp., xiii. (1902) pp. 236-41.
 + Journ. Franklin Inst., cliv. (1902) pp. 8I-91 and 161-9 (1 pl.).
 \ddagger Bull.. Soc. Myc., xviii. (1902) pp. 288-90.

[^60]: * W. Watson \& Sons' Catalogue, 1902-3, p. 78.

[^61]: * II. Watson \& Sons' Catalogue, 1902-3, p. $77 . \quad+$ Tom. cit., ${ }^{\text {ºp }}$. 61.

[^62]: * W. Watson \& Sons' Catalogue, 1902-3, p. 81.
 \dagger Exhibited at the October Meeting, 1902. See this Journal, 190', p. 62:.

[^63]: * Loc. cit.
 \dagger Zeitschr. angew. Mikr., viii. (1902) p. 33 (1 fig.).
 \ddagger 'This ocular is a reinvention of Quekett's indicator eye-piece (1848).
 § W. Watson \& Sons' Catalogue. 1902-3, p. 99.

[^64]: * Journ. Quekett Micr. Club, Nov. 1902, pp. 331-42 (6 figs.).
 \dagger This Journal, 1892, p. 427.

[^65]: * W. Watson \& Sons' Catalogue, 1902-3, p. 116.
 \dagger Zeitschr. wiss. Mikr., xviii. (1902) pp. 405-8 (3 figs.).

[^66]: * This methor of illumination for visual purposes was exhibited before the Society, January 18s:3; it proved a complete lailure, the definition being such as would satisfy no one but the merest begimer, Journ. R.M.S., 1883, p. 29. fig.s. 1-6. It was reinvented in 1885 and 1886, v. Journal for those years, p. 305, figs. 48-54, and p. 1053, fig. 222.
 \dagger La Cellole, xix. 2nd fasc. (1902) pp. 405-31 (1 pl.); also as a pamphlet.
 \pm Catalogue of the Boston Testing Laboratories, p. 16, fig. 14.
 § loc. cit., pp. 16-8, fig. 16.

[^67]: * Journ. Quek. Micr. Club, Nov. 1902, pp, 353-1 (1 fig.).

[^68]: * Zeit.chr. f. wiss. Milkr., xviii. (1902) pr. fos-1" (2 figs.).

[^69]: * Zeitschr. f. wiss. Mikr., xviii. (1902) pp. 401-4 (l fig.).
 \dagger Iliffe \& Kons, London, 1902, 68 pp .

[^70]: * Zeitschr. f. wiss. Mikr., xix. (1902) pp. 1-32 (35 figs.).
 \ddagger This Journal, 1901, pp. 353, $475 . \quad \ddagger$ Leipzig, B. G. Teubner, 1891.
 § Journ. Soc. of Arts, Nos. 2601-7, Oct. and Nov. 1902 (59 figs.).

[^71]: * This subdivision contains (1) ('ollecting Objects, including Culture Processes; (2) Preparing Objects: (3) (utting, including Imbedding and Microtomes; (4) Staining and Iujecting ; (5) Mouuting, iueluding slides, preservative fluids, \&c.; (か) Misrethnenns. \dagger Journ. Franklin Inst., cliv. (1902) pp. 81-91, 161-9 (1 pl.).
 \ddagger Centralbl. Bakt., $1^{\text {te }}$ Abt. Orig., xxxii. (1902) pp. 8u1- 41 (4 figs.).

[^72]: * C'entralbl. Bakt., $\mathbf{1}^{\text {to }}$ Albt. Orig., xxxii. (1902) pp. 667-70.
 \dagger Zeitschr. f. wiss. Mikr., xix. (1902) pp. 148-50.

[^73]: * Journ. Quekett Micr. Club, viii. (1902) pp. 343-8.
 + Zeitschr. f. wiss. Zool., lxxiii. (1902) pp. 3-4 (3 pls.).
 \ddagger Zeitschr. f. wiss. Mikr., xix. (1902) pp. 17tis5.

[^74]: * Zeitschr. f. wiss. Mikr., xix. (1902) pp. 161-76. † Tom. cit., pp. 150-61.

[^75]: * Centralbl. Bakt., $1^{\text {te }}$ Abt. Orig., xxxii. (1902) pp. 926.8.
 \dagger 'Tom. cit., pp. 842-5. \ddagger Tom. cit., pp. 695-717 (3 pls.).

[^76]: * Centralbl. Bakt., $2^{\text {te }}$ Abt., ix. (1902) pp. $546-60$ (\because pls.).
 \dagger Journ. N.Y. Micr. Soc., xvi. (1901) pp. $1-5$.

[^77]: * Engl. Mech., lxxvi. (1902) pp. 319-20. † Brit, Mus. Cat., 233 h. 5.
 \ddagger Printed by order of the Trustees of the British Museum, London, 1902, 137 pp , with illustrations.
 § Oxford, Clarendon l'ress, 1902, vii. and 488 pp .

[^78]: * Baillière, Tindal \& Cox, London, 1903, xvi. and 292 pp. and 77 fig..
 \dagger Technology Quart., xv. (1902) pp. 272-307 (94 figs.).

[^79]: * Journ. App. Micr.. v. (1902) p. 2038.
 \dagger Monatsch. Prakt. Dermatol., xxxii. (1901) p. 343.
 \ddagger A. H. Baird, Edinburgh: Catalogue, 1902 (1 fig.).

[^80]: * Macmillan \& Co., 1902, 158 pp . and 9f photomicros.

[^81]: * Author of a work entitled 'Outline of the Geology of Norfolk,' 1833, and 'A Synoptical Table of British Organic Remains,' 1830, and about thirty other memoirs and works.

[^82]: - Proc. Roy. Phys. Soc. Edin., xiv. p. 461 ; read March 20th, 1901. April 15th, 1903

[^83]: * I am desirous to mention here that for the above summary, from the Protozoa to the Mollcsca, I liave largely made use of Mr. C. B. Crampton's statistics with some modifications from my own notes and other sources of information.- H. W.

[^84]: * The Society are not intended to be denoted by the editorial "we," and they do not hold themselves responsible for the views of the authors of the papers noted, nor for any claim to novelty or otherwise made by them. The object of this part of the Journal is to present a summary of the papers as actually published, and to describe and illustrate Instruments, Apfaratus, \&o., which are either new or have not been previously described in this country.
 \dagger This section includes not only papers relating to Embryology properly so called, but also those dealing with Evolution, Development, Reproduction, and allied subjects.
 \ddagger 'Handbuch d. vergl. und exper. Entwickelungslehre d. Wirbeltiere,' Lief. 6-8, Jena, 8vo, 462 pp. and 263 figs.
 § Anat. Anzeig., xxii. (1903) pp. 393-400 (5 fig8.).
 || Zool. Anzeig., xxvi. (1903) pp. 203-4.
 I Comptes Rendus, cxxxyi. (1903) pp. 112-4.

[^85]: * Anat. Anzeig., xxii. (1903) pp. 42.j-31 (3 figs.).
 + Journ. Anat. Physiol., x.xix. (1903) pp. 75-92 (1 pl. and 16 figs.).
 \ddagger Verh. Deutsch. Zool. (ies., xii. Vers. (1902) pp. 6t-83 (7 figs.).
 § Bull. Soc. Zool. France, xx vii. (1902) pp. 215-9 (3 figs.).
 II Internat. Monatschr. Anat. Pliysiol., xix. (1902) pp. 118-28.
 April 15th, 1903

[^86]: * Arch. Zool. Expér., x. (1902) Notes et Revue, No. 7, pp. cvi.-cix.
 \dagger Anat. Anzeig., x xii. (1902) pp. 83-6 (2 figs.).
 \ddagger Morph. Jahrb., xxxi. (1902) pp. 104-15 (1 pl.).
 § SB. Med. Ver. Greifswald, May 1897; Tagbl. Naturforsch. Vers. Braunschweig, Sept. 1897.
 || Anat. Anzeig., xxii. (1902) pp. 249-59 (1 fig.).

[^87]: * Verh. Deutech. Zool. (ies., xii. Vers. (19)?) pr. 203-13 (4 fige.).
 \dagger Tom. cit., pp. 42-57 (7 ig..).

[^88]: * Verh. Deutsch. Zool. Ges., xii. Vers. (1902) pp. 152-62.
 \dagger 'Lehrbuch der Zoologie,' Leipzir (Engelmann), 8vo, xii. and $50 \neq \mathrm{pp}$. and 512 figs.
 \ddagger Zool. Jahrb., xvii. (1902) pp. 457-6S.
 § Ann. Nat. Hist., ix. (1902) pp. 291-308.

[^89]: * Verh. Deuisch. Zool. Ges., xii. Vers. (1902) pp. 137-52.
 + Zoologica, Heft 37 (1902) 104 pp. (4 pls. and 59 figs.).
 \ddagger Morph. Jahrb., xxxi. (1902) pp. 116-21.
 § Zool. Anzeig., xxvi. (1903) pp. 201-3.
 II Atti Soc. Veneto-Trentina Sci. Nat.. iv. (1902) pp. 5-32.
 I Biol. Centralbl., xxiii. (1903) pp. 72-6 (3 figs.).
 ** Verh. Deutsch. Kool. Ges., xii. Vers. (1902) pp. 162-82 (11 figs.).

[^90]: * Comptes Rendus, cxxxvi. (1903) pp. 100-2.
 \dagger Zool. Anzeig., xxvi. (1903) pp. $214-21$ (2 tigs.).
 \ddagger Ve:h. Deutsch. Zool. Ges., xii. Vers. (1902) pp. 121-5 (2 figs.).

[^91]: * Zool. Jahrb., xvi. (1902) pp. 449-80 (5 pls. and 15 figs.).

[^92]: * Comptes Rendus, exxxi. (1903) pp. 117-8.
 \dagger Zool. Anzeig., xxv. (1902) pp. 487-8.
 \ddagger Proc. Zool. Soc. London, 1902, pp. 140-66 (4 pls.).

[^93]: * Comptes Rendus, cxixp. (1902) pp. 906-7.
 + Proc. Acad. Nat. Sci. Philadelphia, 1902, pp. 696-716.
 \ddagger Zool. Jahrb., xvii. (1902) pp. 335-8.

[^94]: * Bull. Arad. Internat. Sci. Cracovie, 1902, No. 8, pp. 568-73 (S curves).
 \dagger Verh. Deutsch. Zool. Ges., xii. Vers. (1902) pp. 98-108 (1 pl.).
 \ddagger Zoul. Jahrb., xvii. (1902) pp. 285-328 (1 pl).
 \$'Iom. cit., pp. 99-164 (2 pls.).
 \|Verl. Deutsch. Zool. Ges., sii. Vers. (1902) pp. 86-98 (1 pl.).

[^95]: * Zool. Anzeig., xxv. (1002) pp. 466-72 (S 6gs.).
 † Anat. Anzeig., xxii (1903) pp. 447-8.
 \ddagger Bul!. Acad. Imp. Fit. Pétersbourg, xvii. (1,02) pp. 49-58 (2 p’s.).

[^96]: * Trav. Soc. Imp. Nat. St. Pétersbourg, xxxii. (1902) pp. 65-95 (1 pl.).
 \dagger Zool. Jabrb., xv. (1902) pp. 561-2 (3 figs.).
 \ddagger Bull. Soc. Zool. Franee, xxvii. (1902) pp. 207-9.
 § Zool. Jahrb., xvii. (1903) pp. 237-8t.
 || Verb. Deutsch. Zool. Ges. xii. Vers. (1902) pp. 108-21 (t figs.).

[^97]: * Zool. Jahrb., xvii. (1902) pp. 1-98 (3 pls. and 5 fics.).
 \dagger Verh. Deutsch. Zool. Ges., xii. Vers. (1902) pp. 126-33 (7 figs.).
 \ddagger Tom. cit., pp. 193-5 (2 figs.).
 § Zool. Anzeig, xxvi. (1902) pp. 205-14 (10 figs.).
 औ Tom. cit., pp. 131-42 (4 figs.).

[^98]: * Proc. Cambridge Phil. Soc., xii. (1903) p 16.
 \dagger Proc. R. Irish Acad., vi. (1902) pp. 535-827.

[^99]: * Bull. New York State Mus., No. 59 (1902) pp. 49-84 (6 rls.).
 \dagger Ricerche Lab. Anat. Univ. Roma, ix. (1902) pp. 5-88 (1 pl. and 10 figs.).
 \ddagger Comptes Rendus, cxxxvi. (1903) pp. 57-9.
 § Bull. Soc. Zool. France, xxvii. (1902) pp. 231-3.
 || Arbeit. Zool. Inst. Wien, xiv. (1902) pp. 291-306 (1 pl.).
 April 15th, 1903

[^100]: * Comptes Rendus, cxxxvi. (1903) pp. 109-12.
 + Verh. Deutsch. Zool. Ges., xii. Vers. (1902) pp. 183-6.
 \ddagger Comptes Rendus, cxxxil. (1903) pp. 102-3.
 § Bull. Soc. Zool. France, xxvii. (1902) pp. 223-7 (2 figs.).
 \|| Verh. Deutsch. Zool. Ges., xii. Vers. (1902) pp. 57-64.

[^101]: * Zeitechr. wiss. Zool., lxxiii. (1902) pp. 1-74 (3 pls, and 2 figs.).

[^102]: * Arch. Zonl. Expér., x. (1902) Notes et Revue, No. 7, pp. xcvii.-cvi. (3 figs.).
 + 7ool. Jahrb. xvii. (1902) pp. 339-62 (1 pl.).
 \ddagger Comptes Rendus, cxxxv. (1902) pp. 907-10.
 § Zool. Jabrb., xvi. (1902) pp. 481-510 (3 pls.).

[^103]: * Zool. Anzeig., xxvi. (1902) pp. 162-7 (14 figs.).
 + Zool. Jahrb., xvi. (1902) pp. 329-34 (1 pl.).
 \ddagger Tom. cit., pp. 511-70 (3 pls. and 2 figs.).

[^104]: * Zool. Jahrb., xvi. (1902) pp. 423-48 (2 pls. and 4 figs.).
 + Op. cit., xvii. (1902) pp. 165-236 (5 pls. and 8 figs.).
 \ddagger Tom. cit., pp. 411-24 (1 pl.).
 \& Zeitschr. wise. Zool., Ixxiii. (1902) pn. 75-114 (3 pls. and 3 figs.).
 $\|$ Zool. Anzeig., xxvi. (1902) pp. 159-61.
 - Acta Univ. Lund, xxxvii. No. 2 (1901) pp. 49-118 (2 ple. and 25 figs.).

[^105]: * Verh. Deutsch. Zool. Ges., xii. Vers. (1902) pp. 195-202 (4 figs.).
 + Journ. Quekett Micr. Club, viii. (1902) pp. 323-30 (2 pls.).
 \ddagger Proc. Cambridge Phil. Soc., xii. (1903) pp. 47-9.

[^106]: * Marine Investigation in South Africa, ii. pp. 117-54 (4 pls.).
 \dagger Proc. Cambridge Phil. Soc., xi. (1902) pp. 463-71.
 \ddagger Zool. Jahrb., xvii. (1902) pp. 363-410.
 § Acta Univ. Lund, xxxvii. No. 5 (1901) pp. 1-32 (3 pls.).

[^107]: * Journ. Quekett Micr. Club, viii. (1902) pp. 309-22 (1 pl. and 3 figs.).
 \dagger Bull Internat. Acad. Sci. Cracovie, No. 8 (1902) pp. 561-8 (5 figs.).

[^108]: * Zeitschr. f. angew. Mikr., viii. (1902) pp. 141-64.
 \dagger Comptes Rendus, cxxxv. (1902) pp. 833-8.

[^109]: * Rev. Gén. de Bot., xxxiv. (1902) pp. 420-6.
 \dagger Bot. Gazette, xxxiv. (1902) pp. 216-23 (7 figs. in text).

[^110]: * Proc. Indiana Acad. Sci., 1901 (1902) pp. 292-7.
 \dagger_{-}^{*} Flora, xci. (1902) pp. 209-36 (1 pl.).
 \ddagger Bot. Zeit., lx. (1902) pp. 207-30 (3 pls.).

[^111]: * Bot. Gazette, xxxiv. (1902) pp. 249-58 (3 pls.).
 \dagger Journ. de Bot., xvi. (1902) pp. 349-57 (3 figs. in text).
 \ddagger Flora, xci. (1902) pp. 348-79 (1 pl.).

[^112]: * Beitr. Chem. Physiol. Path., 1902, ii. pp. 557-90. See also Journ. Chem. Soc., Ixxxiv. (1903) ii. p. 35.
 \uparrow Proc. Indiana Acad. Sci., 1901 (1902) pp. 28t-90 (2 pls.).

[^113]: * Comptes Rendus, exxxv. (1902) pp. 866-8.
 \dagger Proc. Roy. Soc. Edinb., xxiv. (1902) pp. 200-4.
 \ddagger Jahresb. d. k. k. Erzherz. Rainer-Gymnasiums, Wien, 1902. See also But. Centralbl., xc. (1902) p. 665.

[^114]: * Beih. z. Bot. Centralbl., xii. (1902) pp. 243-7.
 + Pringsh. Jahrb., xxxviii. (1902) pp. 41-69.
 \ddagger La Cellule, xviii. fasc. 2, pp. 441-5.
 § Bull. Coll. Agric. Tokyo Imp. Univ., iv. (1902) pp. 351-6. See also Journ. Chem. Soc., Ixxxii. ii. (1902) p. 684.
 || Bull. Coll. Agric. Tokyo Imp. Univ., tom. cit., pp. 287-9.]. See also Journ. Chem. Soc., l.c.

[^115]: * Op. cit., pp. 357-8. Sce also Journ. Chem. Soc., l.c.
 \dagger Journ. Linn. Soc., xxxvi. (1903) py. 1-72.
 \ddagger Proc. Acad. Nat. Sci. Philad., 1902, pp. 642-9 (figs. in text).
 § Trans. Roy. Soc. Edinb., xl. (1902) pp. 331-65 (5 pls, and figs, in text).
 April 15th, 1903

[^116]: * Flora, xcii. (1903) pp. 102-31 (1 pl.).

[^117]: * Proc. U.S. Nat. Museum, xxiii. (1901) pp. 619-51.
 \dagger Bull. Torrey Bot. Club, xxix. (1902) pp. 617-34.
 \ddagger Tom. cit., pp. 669-79. § Ann. of Scottish Nat. Hist., 1903, pp. 47-8.
 \| Beil. z. Bot. Centralbl., xiii. (1903) pp. 288- 130 (2 pls.).

[^118]: * Ann. of Bot., xviii. (1903) pp. 107-50 (3 pls.).
 \dagger Journ. of Bot., xli. (1903) pp. 1-8, 46-51 (I table).
 \pm Bryologist, vi. (1903) pp. 1-3 (1 pl.).
 § Tom. cit., pp. 4-13 (5 pls. and 3 figs. in text).

[^119]: * Hedwigia, xli. (1902) Beill., p. 225.
 \dagger Flora, xcii. (1903) pp. St-97 (10 tigs. in text).
 \pm Verh. d. k. k. Zool.-bot. Ges., lii. (19)2) pp. 70R-11.
 § Bol. Soc. Española Hist. Nat., ii. (1902) pp. 327-33.
 \|f Hedwigia, sli. (1902) pp. 273-94.

[^120]: * Journ. of Bot., xli. (1903) pp. 18-9. + Tom. cit., pp. 17-S.
 \ddagger 'Trans. Proc. Bot. Soc. Eainburgb, 1902, pp. 220-32.
 § Halifax Naturalist, vii. (1903) Supplement, pp. 209-16.
 $\|$ Beihefte z. Bot. Centralbl., xiii. (1902) pp. 265̄-71.
 I Ber. Naturw. Vereins f. Schwaben und Neuburg, 1902, pp. 65-90.
 ** Rabenhorst's Kryptog.-Flora, IV. iii. Die Laubmoose, Lief. 38, Nachträge, 1903, pp. 705-68.
 $\dagger \dagger$ Hedwigia, xli. (1902) Beiblatt, pp. 215-8.

[^121]: * Balaton Tudományos Tamlmányozisának Erelménỵci, ii. 2 (1902) 144 pp. (17 pla., 378 figs., and 1 fig. in text).
 \dagger Florn, xcii. (1903) pr. 77-S3 (4 figs. in text).
 \ddagger Alti Acead. Pont. Nuovi Lincei, xlii. (1889); xlvii. (1594).
 § Op. cit.. Iv. (June 1902). Hedwigia, Beibl., xli. (1902) pp. 209-10.

[^122]: * Journ. of Bot., xli. (1903) p. 58; and xl. (1902) p. 144.
 \dagger Trans. Amer. Micr. Soc., xxiii. (1902) pp 145-50.
 \ddagger Ann. of Bot., xvii. (1903) pr. $274-8$.
 § Beih. z. Bot. Centralh)., xiii. (1903) pp. $368-87$ (2 pls.).
 il Flora, xcii. (1903) pp. 97-101 (4 figs.).

[^123]: * Bell. Mus. d'Hist. Nat. Paris, viii. (1902) pp. 473-6.
 \dagger 'Kryptogamenflora der Mark Brandenburg. IV. 1. Characeen.' Leipzig 1903 , vi. and 136 pp . and 14 pls .
 \ddagger Trans. Roy. Irish Acad., xxxi!. (1902) pp. 1-100 (3 pls.).

[^124]: * Ann. Scottish Nat. Hist., 1903, pp. 55-8.
 \dagger Bull. Internat. Acad. Sci. Cracovie, 1902, pp. 575-617 (5 double pls.).
 \ddagger Proc. U.S. Nat. Mus., xxiv. (1902) pp. 265-70 (3 pls.).
 § Nuova Notarisia, xiv. (1903) pp. 18-21.

[^125]: * 'Recherches cytologiques sur les levures et quelques moisissures à formes lerures,' Lyon, $1902,289 \mathrm{pp}$. and 12 pls. See also Hedwigia, Beibl., xli. (1902) p. $233 . \quad \dagger$ Ber. Deutsch. Bot. Ges., xx. (1902) pp. 567-77 (1 pl.). \ddagger Centralbl. Bakt., ix. (1902) pp. 737-43 (1 pl.).
 § Tom. cit., pp. 743-6. || Op. cit., x. (1903) pp. 1-S.

[^126]: * Bull. Torrey Bot. Club, xxix. (1902) pp. 647-9.
 \dagger Ann. Bot., xvii. (1903) pp. $167-233$ (2 pls.).
 \ddagger Journ. Quekett Micr. Club, 1902, pp. 355-6.
 § Atti Ist. Bot. Univ. Pavia, vii. (1902) pp. 33-47 (1 pl.).
 $\|$ Tom. cit., pp. 49-53 (1 pl). \quad T Tom. cit., p. 123.

[^127]: * Zeitschr. f. Pflanzenkr., xii. (1802) pp. 278-9.
 \dagger Tom. cit., pp. 281-2.
 \ddagger Malpighia, xvi. (1902) pp. 291-330.
 § Hedwigia, Beibl., xli. (1902) pp. 221-2.
 \| App. al Nuovo Giorn. Bot. Ital., ix. (1902) pp. 483-93.
 ब Zeitschr. f. Pflanzeukr., xii. (1902) pp. 257-8.

[^128]: * Bull. Soc. Myc. de France, xviii. (1902) pp. 312-27 (2 pls.).
 \dagger 'Trans. Acad. Sci. St. Louis, xii. (1902) pp. 91-7 (4 pls.).
 \ddagger Journal of Botany, xli. (1903) pp. 19-23.
 § Ber. Deutsch. Bot. Ges., xx. (1903) pp. 62-77.
 it Nuov. Giorn. Bot. Ital., ix. (1902) pp. 460-81.

[^129]: * Nuov. Giorn. Bot. Ital., ix. (1902) pp. 434-50.
 \dagger Proc. Amer. Acad. Arts and Sci., xxxviii. (1902) pp. 83-9.
 \ddagger liabenhorst's Kryptogamen-Flora,Bd. i. Abth. vii. Lief. 86 (1902) and 87 (1903).
 § ('omptes Rendus, cxxxv. (1902) pp. 1372-4.
 ${ }_{i l}$ Estratto Atti R. 1st. Bot. Univ. Pavia, vii. (1902) 42 pp., tav. 17-20. Sce also Hedwigia, Beibl. xli. (1902) p. 232.

 ब Hedwigia, Beibl. xli. (1902) pp. 219-21.
 ** Centralbl. Bakt., x. (1903) pp. 18-26.
 April 15th, 190:;

[^130]: * Bot. Mag. Tokyo, xvi. (1902) pp. 183-4 (1 pl.).
 \dagger Ht dwigia, Beibl. xli. (1902) pp. 223-4. \ddagger Tom. cit., pp. 224-5.
 § Proc. Roy. Soc., lxxi. (1902) pp. 138-51 (figs. in text).
 II Centralbl. Bakt., ix. (1902) pp. :113-28 (figs. in text).
 - New Phyt., ii. (1908) pp. 10-4 (6 figs.).

[^131]: * Bull. Soc. Myc. de France, xviii. (1902) 211 pp. (8 pls.).
 \dagger 'Der echte Ilausschwamm und andere das Banholzzerstörende Pilze,' 2. Aufl. buarb. und herausg. von Dr. C. Freiherr von Tubeuf, Berlin (1902). 165 pp. and 33 figs. See also Hedwigia, Reibl. xli. (1902) pp. 233-7.
 \ddagger App. al Nuovo (iorn. Bot. Ital., ix. (1902) pp. 499-514 (1 pI.).

[^132]: * Bull. Soc. Mye. de France, xviii. (1902) pp. 305-11 (1 pl.).
 \dagger Atti Acc. Pontif. Nuov. Lincei, 1888-1894, pp. 87-196 (6 pls.).
 \ddagger Atti Ist. But. Univ. Pavia, vii. (1902) pp. 65-82 (3 pls.).
 § Bull. Soc. Myc. de France, xvii1. (1902) pp. 413-6.
 \# Atti Acc. Pontif. Nuov. Lincei, li. (1898) pp. 4.
 g Bull. Soc. Myc. de France, xviii. (1902) py. 417-22.
 ** Tom. cit., pp. 423-4. $\dagger \dagger$ Tom. cit., pp. 425-6.

[^133]: * Pringsh. Jahrb, xxxvii. (1902) pp. 643-St (2 pls.).
 \dagger Journ. Board of Agric., pp. :307-11 (3 pls.).
 \ddagger 'Tom. cit., pp. 320-3 (1 pl.).
 § Atti Ist. Bot. Univ. Pavia, vii. (1102) pp. $295-35 \%$.

[^134]: * Bull. Soc. Myc. de France, xviii. (1902) pp. :32S-80.
 + Atti Ist. Bot. Univ. Pavia, vii. (1902) pp. 105-22.
 \ddagger Hedwigia, Beibl. xli. (1902) pp. 210-5 (2 figs. in text).
 § Fungi: Kunone-Sambesi Expedition, Berlin, 1902, pp. 155-69. See also Hedwigia, Beibl. xli. (1902) pp. 297-8. || Hedwigia, xli. (1902) pp. 295-311.
 - Proc. Amer. Acad. Arts and Sci., xxxviii. (1902) pp. 82-3.

[^135]: * Bull. Soc. Myc. de France, xyiii. (1902) pp. 299-:30;
 + Atti Acc. Pontif. Nuov, Lincei, li. (1898) p). 2.
 \ddagger Trans. Amer. Micr. Soc, xxiii. (190:) pp. 31-s (1 1 !.).
 § Trans. Path. Soe. Lond., liii. (1902) pp. $56-127$.

[^136]: * ('entralbl. Bakt., xxxiii. (1902) pp. 18-2:'.
 (1:912) Pp. 768-71.
 \ddagger Centralbl. Lakt, $2^{\text {e }}$ Abt., ix. (1902 $)$ pp. 784-92 (1 pl.).
 s Tom. cit., ix. (1902) pp. 6:39-42.
 Dr. (I. Emmerling, •Die Kersetzung stickstoffireier organischen Substanzen durch Bakterien,' Bramschweig (Friedrich Veweg u. Sohn), 1902, 151 pp. and ${ }^{7}$ photo. phi. Sce also Nature, x vii. (190:3) p. 316.

[^137]: * Proc. Calif. Acad. Sci., ser. 3 (Botany) ii. (1902) pp. 295-328 (1 pl.).
 \dagger Pıoc. Riny. Noc., Ixxi. (1902) pp. 77- $\dot{8}$.

[^138]: * 'Bacteria in Daily Life,' Jongmans. 1903, 8vo, 216 pp .

[^139]: * This subdivision contains (1) Stands; (2) Eye-pieces and Objectives; (3) Illuminatiug and nther Apparatus; (4) Photomicrography; (5) Microscopical Optics and Manipulation; (6) Miscellaneous.
 \dagger Zeitschr. f. wiss. Mikr., xix. (1902) pp. 35-40 (2 figs.).

[^140]: * Proc. Scottish Micr. Soc., iii. (1902) pp. 137-57.
 \dagger Tom. cit., pp. 294-3 (1 fig.).

[^141]: * Journ. Franklin Institute, cliv. (1902) pp. 391-3 (2 figs.).
 † Op. cit., cliii. (1902) p. 375 ; and this Journal, 190^{2}, p. 491.

[^142]: * Proc. Scottish Mier. Soc., iii. (1902) pp. $210-2$.

[^143]: * Zeitschr. f. Instrumentenk., xxii. (1902) pp. 331-4 (3 figs.).
 + S.B. Berl. Akad., 1902, pp. 113 and 653.

[^144]: * Pamphlet by Adam Hilger, 75a Camden Road, N.W., July 1901.
 \dagger Nature, Ixvii. (1903) p. 380 . See Ann. d. Physik, No. 1 (1903) pp. 1-33.

[^145]: * This subdivision contains (1) Collecting Oljects, including Culture Processes; (2) Preparing Objects: (3) Cutting, including Imbedding and Microtomes; (4) Staining and Injecting; (5) Mounting, including slides, preservative fluids, \&c.;

 \dagger Brit. Med. Journ., 1933, i. 417-20. \ddagger Tom. c t., p. 196.

[^146]: * Journ. App. Mier., vi. (1903) p. 2115.
 \dagger R. Jung's Catalogue, 1902 (2 figs.); also Zeitschr. angew. Mikr., viii. (1902) pp. 236-43 (2 figs.).

[^147]: * Journ. App. Mier., v. (1902) pp. 2074-5.
 \dagger Zeitschr. f. wiss. Mikr., xix. (1902) !p. 145-7 (1 fig.).

[^148]: * Journ. App. Micr., v. (1902) pp. 2080-1 (5 fige.).

[^149]: * Trans. Amer. Micr. Soc., xxiii. (1902) pp. 259-61 (1 pl. and 7 figs.).
 t Lancet, 1903, i. pp. 233-6 (5 figs.).

[^150]: * Johns Hopkins Hosp. Bull., xiv. (1903) pp. 21-4 (3 figs.).
 \dagger Proc. Scot. Mier. Soc., iii. (1901-1902) pp. 252-7.
 \ddagger Lancet, 1993, i. p. 86 .

[^151]: * Journ. App. Micr., vi. (1903) p. 2116.
 + Hygien. Rundschan, 1902, p. 1131. See Centralbl. Bakt, $1^{\text {te }}$ Abt. Ref., xxxii. (1903) p. $723 . \quad \pm$ Centralbl. Bakt., $1^{\text {te }}$ Abt. Ref., xxxii. (1903) pp. $7 t t \cdot 6$.

[^152]: * Engl. Mech., Ixxvii. (1903) p. 13 (1 fig.).

[^153]: * Macmillan \& Co., Lnndon and New York, 1902 , xii. and 321 pp. and 128 fige.
 + Nature, lxvii. (1903) p. 327.
 \ddagger Centralbl. Bakt.: 1^{10} Abt. Orig., xaxiii. (1903) p. 479.

[^154]: * New vols. Encyc. Britannica, xxix. (1902) pp. 247-8.

[^155]: * Chall. Rept., 1884, r. 5if.

[^156]: * Mém. Soc. Géol. Fr., sér. 3, vol. ii. 1882, p. 119, ןl. xx. figs. 26-29.

[^157]: * The Society are not intended to be denoted by the editorial "we," and they do not hold themselves responsible for the views of the authors of the papers noted. nor for any claim to novelty or otherwise made by them. The object of this part of the Journal is to present a summary of the papers as actually publisked, and to describe and illustrate Instruments, Apparatus, de., which are either new or have not been previously described in this country.
 $\dot{\dagger}$ This section includes not only papers relating to Embryology properly so called. but also those dealing with Evolution, Development, Reproduction, and allied subjects.
 \ddagger Jenaische Zeitschr. f. Naturwiss., xxxvii. (I!102) pp. 296-400 (t pls and 16 figs.).
 § 'Iom. cit., pp. 217-96 (5 pls.).

[^158]: * Comptes Rendus, cxxxr. (1902) pp. 1355-7.
 \dagger Tom. cit., pp. 1357-9 (1 fig.).
 \ddagger Proc. Roy. Soc. London, lxxi. (1903) pp. 31t-22 (2 figs.).

[^159]: * Journ. Comp. Neurol., xii. (1902) pp. 329-34.
 + Anat. Anzeig., xxii. (1903) pp. 457-66 (3 figs.).
 \ddagger Zeitschr. wiss. Zool., lxsiv. (1903) pp. 1-63 (3 pls.).

[^160]: * Zool. Jahrb., x vii. (1903) pp. 762-88 (2 pls.).
 + 'Dio Biogenhypothese. Eine kritische-experimentelle Studie uber die Vorgänge iu der lebendigen Substanz,' Jena, 1903, 8vo, 114 pp.
 \ddagger Comptes Rendus, cxxxv. (1902) pp. 936-7. § Tom. cit., pp. 928-31.
 Jume 17th, 1903

[^161]: - Comptes Rendus, cxxxv. (1902) pp. 1061-3.
 † Amer. Natural., xxxviii. (1903) pp. 33-64 (1 fig.).
 \ddagger Bull. U.S. Nat. Museum No. 50 (1902) xvii. and 834 pp. (22 pls.).
 § Bull. Johns Hopkins Hospital, xiv. (1903) pp. 71-8 (2 figs.).

[^162]: * Bull. Soc. Zuol. France, $x \times$ viii. (1903) pp. 11-29 (3 figs.).
 \dagger Amer. Journ. Science, xv. (1903) pp. 294-306 7 figs.).
 \ddagger Bull. Mus. Zool. Harvard, xl. (1903) pp. 221-42 (1 pl.).

[^163]: * Arch. Sci. Phys. Nat., xiv, (1902) pp. 534-5.
 + Comptes Rendus, cxxxv. (1902) pp. 977-80.
 \ddagger Oversigt K. Danske Videnst. Selskab. Forhandl., 1902, No. 6 (published 1903) pp. 257-303 (1 map).

[^164]: * Amer. Natural, xxxvi. (1902) pp. 917 45 (18 figs.).
 + Zuol. Anzeig., xxvi. (1008) pp. 33t-4t (5 tigs.).
 \pm Arch. Sci. Phys. Nat., xiv. (1902) jr. 5:36-7.
 § Arch. Zool. Expér., i. 4thneries (190; Notes et Revue, No. 2, pp. xxp.-ix.

[^165]: * Contributions from Hopkins Lab. Leland Stanford Jr. Univ., No. xxx. Reprint. from P'roc. California Acad., ärd ser. (Zoology) iii. pp. 187-232 (5 pls.).

[^166]: * Zool. Jalirb., xvii. (1903) pp. $481-516$ (3 pls.).
 + Tom. cit., pp. 517-72 (7 pls. and 8 figs.).
 \ddagger Brit. Mid. Journ., No. 2204, Murch 28, 1903, pp. 724-5.

[^167]: * Ann. Nat. Hist., xi. (1903) pp. 384-5 (4 figs.).
 + Comptes Rendus, exxxiv. (1!02) pp. 1317-9.
 $\ddagger \%$ ool. Jahrb., x xii. (1903) pp. $573-618$ (2 pls. and 2 tigs.).
 \& Rev. Patul. Vegetale, x. (1903) pp. 299-323.
 II Arch. Sici. Phys. Nat., xiv. (1902) pp. 537-40.
 TI Ber. Sonckenherg. Nat. Ges., 1902 , pp. 85-152 (2 pls.).

[^168]: * Ex. Ann. R. Scuola Agric. Portici, v. (1903) pp. 1-8 (1 fig.).
 + Zool. Anz ig., xxvi. (1903) pp. 845-6f (12 figs).
 \ddagger Comptes Rendus, exxxv. (1902) pp. 997-1000 (12 figs).
 s 'Tom. cit., pp. 1124-6.

[^169]: * Comptes Rendus, cxxxv. (1902) pp. 1359-62.
 + Arbeit. Zool. Inst. Unvs. Wien, xiv. (1903) pp. 359-422 (2 pls.)
 \ddagger Comptes Rendus, cxxxv. (1902) pp. $98:-4$.
 § Aner, Journ. Science, xv. (1903) pp. 307-15 (2 pls.).

[^170]: * Zool. Anzeig., xxvi. (1903) pp. 318-34 (8 figs.).
 + Zeitschr. f. wiss. Zool., lxxiv. (1903) pp. 109-54 (2 pls.).
 \ddagger Ann. Scuola Sup. Agric. Portici, v. (1903) pp. 1-28 (2 pls.).
 § Leaflet No. 61 Board of Agriculture, 1903, pp. 6 (3 fige.).

[^171]: * Zool. Jahrb., xvii. (1903) pp. 619-58 (5 pls.).
 \dagger Comptes Rendus, cxxxp. (1902) pp. 987-8.
 \ddagger Arbeit. Zool. Inst. Univ. Wien, xiv. (1903) pp. 423-42 (12 figs.).

[^172]: * Comptes Rendus, cxxxiv. (1902) pp. 1314-7.
 + Proc. R. Soc. Victoria, xv. (1903) pp. 224-61 (10 pls.).
 \ddagger Mem. R. Accad. Sci. Torino, lii. (1903) pp. 119-44 (1 pl.).
 § Science Bull. Brooklyn Museum, i. (1902) No. 3, pp. 93-103 (1 pl. and 2 figs.).

[^173]: * Comptes Rendus, exxxv. (1902) pp. 784-6. + 'Tom. cit., pp. 1362-5.
 \ddagger Johns Hopkins Univ. Circ., xxii. (1903) pp. 21-2 (1 pl.).
 June 17th, 1903

[^174]: * Arch. Sci. Phys. Nat., xiv. (1902) pp. 548-52.
 + Brit. Med. Journ., No. 2204, March 28, 1903, pp. 722-4 (2 figs.).
 : Bull. U.S. Dep. Agriculture, No. 35, Washington, 1902, pp. 43-7 (7 figs.), 47-訑 (8 tigs.). 41-2 (1 pl.).
 § Proc. Linu. Soc. N.S.W., xxvii. (1902) pp. 48-54 (1 pl.).

[^175]: * Atuer. Natural., xxxvi. (1902) pp. 953-71 (130 figs.).
 \dagger Jeaaische Zeitschr. f. Naturwiss., xxxvii. (1903) 1p. 54-50 (1 pl.).
 \ddagger Zool. Anzeig., xxri. (1903) pp. 315-8 (2 firs.). § ''om. cit., pp. 3is-9.
 if Rep. Collections in Antarctic Regions during Voyage of 'Southern Crese,' Loadon, 1902, pp. 214-20 (3 pls.). See Zool. Centralbl., x. (1903) p. 73.

[^176]: * Zeitschr. f. wiss. Zool., 1xxiv. (1903) pp. 81-108 (2 pls. and 8 figs.).
 \dagger Ann. Nat. Hist., xi. (190:3) pp. 420-30 (2 pls.).
 \ddagger C.R. Soc. Biol. Paris, liv. (1902) pp. 1315-7. See Zool. Centralli., x. (1903) p. 177.
 § C.R. Soc. Binl. Paris, liv. (1902) pp. 1317-8; lv. (1903) pp. 137-9, 139-41. See Zool. Centralbl., x. (1903) pp. 177-8.

[^177]: * Publications of the Indian Museum, Calcutta, 4to, 113 pp. and 23 pls.
 \div Comptes Rendus, exxxv. (1902) pp. 1365-6.
 \ddagger Arch. Sci. Phys. Nat., xiv. (1902) p. 554.
 § Comptes Rendus, cxxxv. (1902) pp. 1126-8.

[^178]: * Bull. Mus. Zool Harvard, xxxviii (19(13) pp. 349-65 (13 figs.)
 \dagger Atti R. Accid. Lincei (Rend.), xii. (1903) pp. 82-8.
 \ddagger (omptes Reudus, cxxxv. (1902) pp. 1064-6 (3 tigs.).
 § Arbeit. Zool. Inst. Univ. Wien, xiv. (1903) pp. 307-58 (1 pl).
 || Comptes Rendus, cxxxv. (1902) pp. 1366-7.

[^179]: * Brit. Med. Journ., No. 2204, March 28, 1903, pp. 720-1.
 \dagger 'Tom. cit., pp. 721-2.
 \ddagger Atti R. Accad. Lincei (Rend.), xii. (1903) pp. 64-71.
 § 'Tom. cit., pp. 88-93.
 II Comptes Rendus, cxxxv. (1902) pp. 112:-4.
 - T Tom. cit., pp. 1036-40 (13 figs.).

[^180]: * Alfred J. Ewart, ' On the Physics and Physiology of Protoplasmic Streamin* in Plants,' Oxford, 1903 , viii, and 181 pp . and $1 \dot{7}$ figs.

[^181]: * Comptes Rendus, exxxv. (1902) pp. 991-2. Sce this Journal for 1902, p. 1:14.
 \dagger J. U. Schoute, 'Die Stelar-Theorie,' Proefzehritt, Groningen, December 190\%. See E. C. Jeffrey in 13ot. Gaz., xxxv. (1903) pp 144-5.
 \ddagger Comptes Rendns, cxxxv. (1902) pp. 1367-!

[^182]: * Biblioth. Univers. Arrh. Sci. Phys. et Nist. (Geneva), sér. 4, xiv. (1902) p. 513-5.
 \dagger Bot. Gaz., xxxv. (1903) pp. 184-93 (4 pls.).

[^183]: * K. Svensk. Vetensk. Akad. Handl., xxxvi. (1902) pp. 1-21 (3 pla.). See alsn But. Gaz., xxxv. (1903) pp. 228-9.

[^184]: * Biblioth. Univers. Arch. Sci. Phys. et Nat. (Geneva), sér. 4, xiv. (190") pp. 496-8. \quad Bot. Ga , xxxy. (1903) pp. 13t-5 (fig. in text).
 \ddagger Biblioth. Univers. Arch. Sc.. 1'ings. ct Nat., tom. cit., pp. 516-7.

[^185]: * Op. cit., pp. 520-4.
 \dagger Comptes Lendus, cxxxv. (1902) pp. 1128-9. See this Journal for 1902, p. 72.

[^186]: * Comptes Rendus, exxxv. (1902) pp. 1369-71.

[^187]: * Bull. Int. Acad. Sci. Cracow, Cl. Sci. Math. et Nat., 1903, pp. 9-32.
 \dagger Biblioth. Univers. Arch. Sci. Phys. et Nat., sér. 4, xiv. (1902) pp. 510-2.
 June 1\%th, 1903

[^188]: * Anales Soc. Españ. Hist. Nat., ser. ii. x. (Dec. 31, 1902) pp. 491-582 (3 pls.).
 + Engl. Bot. Jahrb., xxxiii. (1902) pp. 1-208.
 \ddagger Proc. Roy. Soc., Ixxi. (1903) pp. 25̃-64.

[^189]: * Bull. Torrer Bot. Club, xxx. (1903) pp. 42-55 (1 pl.).
 \dagger Bot. Gaz., $\mathbf{x x x v}$ (1903) pp. 137-8 (figs. in text).

[^190]: * S.B. K. Preuss Akad. Wiss. Berlin, xlvii. (1902) po. 10.5f-9 (2 figs. in text).
 + See this Journal, 1902, p. 459.
 \ddagger Comptes Rendus. cxxxvi. (1903) pp. 628-9.
 § Bot. Zeitschr., 1903. pp. 19-46 (6 figs. in text).
 i| Minpighia, xvi. (1902) pp. 393-4:38.

[^191]: * Rev. Bryol., xxx. (1903) pp. 2-12 (figs. in text).
 \dagger 'Tom. cit., pp. 12-13.
 \ddagger Tom. cit., pp. 13-5 (figs. in text).
 § 'Leber- und Torfmoose,' Leipzig, 1903, xv. and $\ddagger 81$ pp. and 231 figs.
 if Nuov. Giorn. Bot. Ital., x. (1903) pp. 55-78.
 If Bull. Soc. Bot. Ital.. 1902, pp. 138-40. ** Torreya, iii. (1903) pp. 40-41.
 $\dagger \dagger$ Bryologist, vi. (1903) pp. 27-32 (figs. in text).

[^192]: * Bull. Torrey Bot. Club, xxx. (1903) pp. $19-41$ (6 pls.).
 + Bot. Gaz., xxxv. (1903) pp. 136-7 (fig. in text).
 \ddagger 'British Moss Flora,' part xxii. 1903, pp. 169-200 (6 pls .).
 \S Journ. Bot., xli. (1903) pp. 115-126. || Tom. cit., p. 139.
 I Kev. Bryol., xxx. (1903) pp. 17-3:.
 ** Bull. Herb. Boissier, iii. (1903) pp. 149-54
 $\dagger \dagger$ Hedwigia, xlii. (1903) Beiblatt, pp. 24--S.

[^193]: * 'Monsflora des Harzes,' Lı ipzig, 1903, xx. and 3ñ pp.
 \dagger Helwigta, xlii. (1908) pp. 67-72.
 \ddagger Tom. cit., pp. 89-95. § Tom. cit., n. 99.
 $\|$ Verlı. naturf. Verein in Briinn, xl. (1902) иp 65-83.
 IT Bull. Noc. Bot. Ital., 1902, pp. 175-86.
 ** Hedwigia, xlii. (1903) Beiblatt, pp. 14-17. 1
 t† Prec. Washington Acad. Sci., iv. (1902) pp. 29t-374 (11 pls. .

[^194]: * Bryologist, vi. (1903) pp. 35-6. \quad 'Tom. cit. pp. 3i-S.
 + Tom. cit . p. 38.
 § Bilıing K. Svensk. Vet-Akad. Hand!., xxvii. iii, No. 1, pp. 71 (4 nls. ard 7 figs. in text). \|V Moss Exchange Clih, Leport for year 1903, pp. 127-50.

 I ILedwigia, xlii. (1900) Beiblatt, p1, 1-1; (with portrait).
 ** Eryologist, vi. (1903) pp. 33-5.

[^195]: * Journ. of Bot., xli. (1903) pp. 33-41, 74-82 (3 pls.).
 + S.B. k. höhm. Gesell. Wissensch., xxviii. (1902) 17 pp .
 \ddagger Seript Bot., xvii. (1901) pp. 1-125.
 \S Bihang k. Svensk. Vet.-Akad. Handl., xxvii. (1902) No. 4, 85 pp. (1 pl.).

[^196]: * Engl. Bot. Jahrb., xxxiii. (1902) p. 1.
 + Oester. Bot. Zeitschr., liii. (1903) pp. S9-95 (5 figs. in text).
 \ddagger Rhodora, v. (1903) pp. 79-81.
 § Tom. cit., pp. 1-31; op. cit., iv. (1902) pp. 174-9.
 if Bihang k. Svensk. Vet.-Akad. Handl., xxvii. (1902) No. 10, 40 pp. (2 pls.$)$.

[^197]: * Rev. Gén. Bot., xv. (1903) pp. 5-19, 67-82.
 + Beitr. z. Biolog. d. Pflanz., viii. (1902) pp. 347-414 (3 pls.). See also Bot. Centralbl., xcii. (1903) pp. 256-60.

[^198]: * Bot. Mag. Tokyo, xvii. (1903) pp. 1-5.
 + Att. R. Ist. Ven., 1xii. (1902-3) pt. 2. pp. 285-321.
 \ddagger Bot. Tidssk., xxy. (1902) pp. 1-41 (23 fige. in text).
 § Ber. Deutsch. Bot. Gesell., xxi. (1903) pp. 23-6 (1 pl.).

[^199]: * Script. Bot., x viii. (1900-2) pp. 87-98. + Tom. cit., pp. 99-164 (3 pls.).
 \$ Beih. z. Bot. Centralbl., xiv. (1903) pp. 1-12 (1 pl.).
 \$ Bihang K. Svensk. Vet.-Akad. Handl., xxvii. pt. 3, No. 16, 29 pp. (1 pl. and figs. in text).

[^200]: * Comptes Rendus, exxsil. (1903) pp. 627-8.
 \dagger Nuovo Giorn. Bot. Iral., x. (1903) pp. 79-92.
 \ddagger Sull. Soc. Bot. Ital., ix. (1902) pp. 168-75.
 § Journ. of Myc., lxp. (1903) p. 13.
 If Stazioni Agrarie Nperimentali, xxxp. (1902) pp. 46-9.

[^201]: * Hedw. Beiblatt, xlii. (1903) pp. 17-20.
 \dagger Forstwiss. Centralbl., xxiv. (1902) pp. 473-9. See also Centralbl. Bakt., x. (1903) pp. 200-1.
 \ddagger Hedw. Beiblatt, xlii. (1903) pp. 22-4 (5 figs.).
 § Centralbl. Bakt., x. (1903) pp. 81-8 and 113-21 (5 pls.).

[^202]: * Ann. Myc., i. (1903) pp. 29-30.
 \dagger Journ. Roy. Hort. Soc., xxvii. (1902) pp. 596-6)1 (with fig.).
 \ddagger Journ. of Myc., viii. (1902) p. 170.
 § Bihang K. Svensk. Vet.-Akad. Handl., xxvii. pt. 3, No. 9, 26 pp. (1 pl.).
 || Centralbl. Bakt., x. (1903) pp. $145-51$ (2 pls .).
 I Rev. Gén. de Bot., 5 r. (1903) pp. 49-66 (9 pls.) and 10t-24 (30 figs.).

[^203]: * Bull. Soc. Myc. de France, xix. (1903) pp. 19-33 (1 pl.).
 \dagger Compte-rendu des travaux du laboratoire de Carlsberg, v. (1902) livr. 2. See also Centralbl. Bakt., x. (1903) p. 125.

[^204]: * Tom. cit. See also Centralbl. Bakt., tom. cit., pp. 125-30.
 + Centralbl. Bakt., x. (1903) pp. 151-4, 180-3, and 209-14.
 \ddagger 'Encyclopédie scientifique des aide-mémoires,' Paris, 1902, 192 pp . See also Centralbl. Bakt., x. (1903) pp. 130-1.
 § Ann. Myc., i. (1903) pp. 35-6.
 || Journ. Roy. Hort. Soc., xxvii. (1903) pp. 428-30 (3 figs. in text).
 I Stazioni Sperimentali Agrarie, $x \times x$. (1902) p. 17 (3 figa.). See also C'entralbl. Bakt., x. (1903) pp. 108-9.

[^205]: * Hedw. Beibl., xlii. (1903) p. 32.
 \dagger Bull. Soc. Myc., xix. (1903) pp. 33-44.
 \ddagger Comptes Rendus, cxxxvi. (1903) pp. 392-4.
 § Ber. Deutsch. Bot. Ges., xxi. (1903) pp. 2-5 (1 pl.).
 III Ann. Мус., i. (1903) pp. 31-2.
 - Malpighia, xvi. (1902) pp. 333-40 (1 pl.).

[^206]: * Bot. Zeit., 1903, pp. 47-5S (4 figs. in text).
 \dagger Arch. f. Hygiene, xliii. p. 267. See also Centralbl. Bakt., x. (1903) pp. 123-5.
 \ddagger Proc. Linn. Soc. N.S. Wales, 1902, pt. 3. See also Centralbl. Bakt., x. (1903) pp. 61-3.

[^207]: * Centralbl. Bakt., xxxiii. (1903) pp. 135-42 (1 pl.).
 \dagger Op. cit., $x \times x i i$. (1902-3) pp. 34-40, 97-135.
 \ddagger Op. cit., xxxiii. (1903) pp. 273-81.
 § Op. cit., xxxii. (1902) pp, 561-9 (1 pl.).

[^208]: * Arb. aus d. Bakt. Inst. der Techn. Hochsch. Karlsruhe, ii. (1902) p. 273 (1 pl.). See also Centralbl. Bakt., ix. (1902) pp. 931-2.
 \dagger Centralbl. Bakt., ix. (1902) pp. S92-5.
 \ddagger Op. cit., xxxiii. (1903) pp. 143-9.
 § Tom. cit., pp. 407-11 (1 pl.).
 * Tom. cit., pp. 401-6 (1 pl.). Tom. cit., pp. 41-7.
 ** 'Tom. cit., pp. 481-7 (1 pl.).

[^209]: * Messrs. R. and J. Beck's Catalogue, London, p. 48.
 \dagger Tom. cit., p. 3 .

[^210]: * F. Koristka's Catalogue, Milan, fig. 65, p. 77. This mirror was originally invented by John Cuff, of Fleet Street, in 1743.

 June 17th, 1903

[^211]: * Zeitschr. f. wiss. Mikr., xviii. (1902) pp. 413-7 (1 fig.).

[^212]: * As the rays from the electric lamp are divergent, and those from the parabolic mirror parallel, they cannot both be brought to a fucus on the object, at the same time, by the substage condenser.-[ED.]
 \dagger S.B. k. preuss. Akad. Wiss. zu Berlin, xxxi. (1902) pp. 711-9 (7 figs.).

[^213]: * F. Koristka's Catalogue, Milan, fig. 64, p. 76.

[^214]: * S.B. k. preuss. Akad. Wiss. zu Berlin, ssxi. ii. iii. (1902) pp. 706-10 (3 figs.).

[^215]: * Zeitscbr. f. Instrumentenk., xxi. (1901) pp. 129-33 (2 figs.).

[^216]: * This subdivision contains (1) Collecting Objects, including Culture Processes; (2) Preparing Objects; (3) Cutting, including Imbedding and Microtomes; (4) Staining and Injecting; (5) Mounting, including slides, preservative fluids, \&c. : (b) Miscellaneons.
 \dagger Lancet, 1903, i. p. 518.
 \ddagger Bull. 7, Hygienic Lab. U.S. Marine Hospital Service, 1902.

[^217]: * Centralbl. Bakt., $1^{\text {to }}$ Abt. Orig., xxxi. (1902) pp. 752-68.
 + Op. eit., xxxii. (1902) pp. 831-42. \ddagger See this Journal, 1902, p. 370.
 § Festskrift Statens Serum Inst. Copenhagen, 1902.

[^218]: * Centralbl. Bakt., $1^{\text {te }}$ Abt. Orig. xxsiii. (1903) pp. 741-3 (1 fig.).
 + Zeitschr. wiss. Mikr., xix. (1903) pp. 300-8.
 \ddagger See this Journal, 1892, p. 435.
 § kend. R. Istit. Lombardo, xxxp. (1902) pp. 719-20.

[^219]: * Journ. Anat. et Phys., xxxix. (1903) p. 196.
 \dagger Zeitsclır. wiss. Mikr., xix. (1Y03) pp. 329-32.

[^220]: * Zeitschr. wiss. Mikr., xix. (1903) pp. 328-9. \dagger Lancet, 1903, i. p. 92.
 \ddagger Centralbl. Bakt., $1^{\text {to }}$ Abt. Orig., $x \times x i i i$. (1903) pp. 572-6.

[^221]: * Ann. Inst. Pasteur, xvii. (1903) pp. 243-4 (1 pl.).
 \dagger Zeitschr. wiss. Mikr., xix. (1903) pp. 297-300 (l fig.).
 \ddagger Hyg. Rundschan, xii. (1902) p. 1131.
 § Zeitschr. wiss. Mikr., xix. (1903) pp. 336-6.

[^222]: * K. Akad. Wetensch. Amsterdarm, Proc. Sect. Sci, v.(1902) pp. 47-51.
 \dagger Boston Med. Surg. Journ., exlvii. (1902) pp. 659-62.

[^223]: * 'Encyklopädie der Mikroskopischen Technik mit besonderer Berücksichtigung. der Färbelehre, herausgegeben von P. Ehrlich, M. Mosse, R. Krause, H. Rosin und C. Weigert,' Berlin aud Vienna, 1903, 2 vols., $1400 \mu p$., with illustrations.

[^224]: * W. B. Saunders \& Co., Philadelphia and London, 1902, 371 pp., 170 figs.
 \dagger Engineering, $1 \times x \nabla$. (1903) pp. 195-9.

[^225]: * Longmans, Green \& Co., London, 1902, 501 pp.
 \dagger Proc. Roy. Soc., lxıi. (1903) pp. 161-3 (3 figs.).

[^226]: * It is said that Prof. Abbe announced the sine law-withholding the proof of it-some few weeks before the appearance of Helmholtz' paper. I have no personal knowledge of this, having sought in vain for the announcement, and mention the claim only lest it should be thought-as has indeed been suggested by some of Prof. Abbe's friends-that I am doing an injustice to the Professor by not importing the discussion of tois matter into the present paper.

[^227]: * In the unrevised proof which was circulated before the meeting on the 18th March I inadvertently wrote "images" for "divergence angles" in this place.

[^228]: * Strictly speaking this is, of course, an impossible condition because the angular value of the aperture falls off as the radiant point departs from the axis. All actual apertures are, therefore, to some extent astigmatic, but in small fieldssuch as those of the Microscope-this is of no practical importance, and we may fairly assume the theoretical condition to be satisfied.

[^229]: * Helmholtz quotes Kirchhoff probably from memory, certainly without giving any reference to his paper. But it may almost certainly be identitied with the paper on the relation between the power of bodies to emit and to absorb heat and light, which appears in Pogg. Ann., cix. (1860) p. 275. For Clausius' exposition of the law, see his Mechanische Wärmtheorie, 8th Memoir, or in English, Hirst's transtion of Clausius on Heat, p. 290.

[^230]: * This expression is a little more symmetrical than the equiralent expression

[^231]: * Equation (4) alove.

[^232]: * On this point see Mr. Nelzon's paper in the Journal Royal Microscopical society vol. for 1901, p. 242.

[^233]: * See Appendix, Note I.

[^234]: * It is not of any importance in the present comection to take notice of Sir George Airy's conection-of which Helmholtz is quite aware—of this result as applid to the innermost rings of the antipoint prodnced by a circular aperture. Seet Cianb. Philosophical T'ransactions, vol. v. (1835) p. 283.

[^235]: * See Appendix, Note III.

[^236]: * Fellows of the Society may remember that I exhibited some photographstaken with a lens the aperture of which had been covered by a diffraction grating. by way by enforcing the argument here referred to. But in the course of preparing this paper for publication I have seen reason to be dissatisfied with that experiment and therefore have omitted all reference to it in the revised proof. The matter is dealt with in the Appendix, Note V. As showing what can be done in the way of fine resolution, even with existing appliances, the following instances may be noted. Dr. Dallinger's measurement of the flagellum of Bacterium termo $=$ इठtrov in., J.R.M.S., 1878 , vol. i. p. 169. Mr. Nelson's photographs of diatoms which hang in the Society's rooms, and in which among other exquisitely fine details there may be discerned the angles of the bexagons in a Pleurosigmu angulatum where the
 Dallinger's result must now be taken subject to Mr. Nelsou's criticism in a paper presented to the Society on the 17 th of June, 1903.

[^237]: * Subsequent experimont has showa that higher frequencies of, say, six to ten oscillations a seeond, give visibly better results than three oseillations if the illumination be brilliant.

[^238]: * Further experiment shows that lanoline or such-like grease is better than white was for this purpose. White wax absorbs no little light. Glass ground to the exact erain required is better still.

[^239]: * I borrow this statement of Hockin's proof with slight modification from Prof. Sylvanus Thompson's translation of Lummer's work on 'Photographic Optics.' but since this paper was written have become aware that it does not quite accurately represent the original. This is fully explained in the additional note at the end of this Note I.

[^240]: * Scientific Papers, Lord Rayleigh, vol. i. 1869-1881, p. 420.

[^241]: * Fig. 109 in this paper.

[^242]: * Pogg. Ann., 1874, Jubelband, pp. 577, 578.

[^243]: * The discussion of some further questions, now communicated to the Society. depends upon principles laid down in this paper, which, though published several years ago, does not seem to have attracted the attention of microscopists. It is thought that its republication in connection with the new iuvestigations will be convenient to the reader.
 \dagger Pogg. Ann., Jubelband, 1874.

[^244]: * 'Investigations in Optics, with special reference to the Spectroscope,' Phil. Mag., vol. viii. p. 266 (1879). † Arch. f. Mikr. Anat., vol. ix. p. 413 (1873).
 \pm Dallinger's edition of Carpenter's 'Microscope,' p. 64, 1891.
 \S It would seem that the present subject, like many others, has suffered from over specialisation, much that is familiar to the microscopist being almost unknown to physicists, and vice versa. For myself I must confess that it is only recently, in consequence of a discussion between Mr. L. Wright and Dr. G. J. Stoney in the 'English Mechanic' (Sept., Oct., Nov., 1894; Nov. 8, Dec. 13, 1895 ; Jan. 17, 1896), that I have become acquainted with the distinguishing features of Prof. Abbe's work, and have learned that it was conducted upon different lines to that of Helmholtz. I am also indebted to Dr. Stoney for a demonstration of some of Abbe's experiments.

[^245]: * These effects were strikingly illnstrated in some observations upon gratings with 6000 lines to the inch, set up vertically in a dark room and illuminated by sunlight from a distinct vertical slit. The object-glass of the Microscope was a quarter inch. When the original grating, divided upon glass (by Nobert), was examined in this way, the lines were well seen if the instrmment was in focus, but. as usual, a comparatively slight disturbance of focus caused all structure to disappear. When, bowever, a photographic copy of the same glass original, made with bitumen, was substituted fir it, very different effects ensued. The structure could be seen even although the object-glass were drawn back through $1 \frac{1}{2}$ in. from its focussed position; and the visible lines were twice as close, as if at the rate of 12,000 to the inch. The difterence between the two cases is easily explained upon Abbe's theory. A soda flame viewed through the original showed a strong central image (spectrum of zero order) and comparatively faint spectra of the first and higher orders. A similar examination of the copy revealed very brilliant spectra of the first order on both sides, and a relatively feeble central image. The case is thus approximately the same as when in Abbe's experiment all spectra except the first (on the two sides) are blocked out.
 \dagger The special theory iuitiated by Prof. Abbe is usually called the "diffraction theory," a nomenclature against which it is necessary to protest. Whatever may be

[^246]: the view taken, any theory of resolving power of optical instruments must be a diftraction theory in a certain sense, so that the name is not distinctive. Diffraction is more naturally regarded as the obstacle to fine definition, and not, as with some exponents of Prof. Abbe's theory, the machinery by which good definition is brought about.

[^247]: * [1902. In the original diagram Q was shown upon the wrong side of B. I owe the correction to a correspondence with Prof. Everett.]

[^248]: * I learn from Czapski's excellent •Theorie der Optischen Instrumente' that a similar derivation of Lagrange's theorem from the principle of minimum path had already been given many years ago by Hockin (Micros. Soc. Journ., vol. iv. p. 337, 1884).
 \ddagger See, for example, Enc. Brit., 'Wave 'Theory,’ 1. 430 (1878).

[^249]: * Phil. Mag., vol. viii. p. $266,187!$

[^250]: * These results are easily illustrated experimentally. I have used two parallel slits, formed in films of tin-foil or of chemically deposited silver, of which one is conveniently made longer than the other. These slits are held vertically and are viewed through a small telescope, provided with a high-power eye-piece, whose horizontal aperture is restricted to a small width. The distance may first be so chosen that when backed by a neighbouring flame the double part of the slit just manifests its character by a faint shadow along the centre. If the flame is replaced by sunlight shining through a distant vertical slit, the effect depends upon the precise adjustment. When everything is in line the image is at its brightest, but there is now no sign of resolution of the double part of the slit. A very slight sideways displacement, in my case effected most conveniently by moving the telescope, brings in the half-peried retardation, showing itself by a black bar down the centre. An increased displacement, leading to a relative retardation of three halves of a period, gives much the same result, complicated, however, by chromatic effects.

 In conformity with theory, the black bar down the image of the double slit may still be observed when the distance is increased much beyond that at which duplicity disappears under flame illumination.

 For these experiments I chose the telescope, not only on account of the greater facility of manipulation which it allows, but also in order to make it clear that the theory is general, and that such effects are not limited, as is sometimes supposed, to the case of the microscope.

[^251]: * Enc. Brit., 'Wave Theory, p. 482.

[^252]: * The zero illumination extends to all points upon the line of symmetry.

[^253]: * Enc. Brit., 'Wave Theory,' p. 425.

[^254]: * Gray and Mathews' 'Bessel's Functicns,' 1895, p. 72.

[^255]: * Enc. Brit. 'Ware Theory,' p. 434.
 + This may be verified by means of Neumann's formula (Gray and Mathews. Bessel's Functions' (70) p. 27).

[^256]: * The process is that employed by Stokes in his evaluation of the integral intensity, Edin. Trans., xx. p. 317 (1853). Sce also Enc. Brit., 'Wave Theory,' p. 431.

[^257]: * It should be remarked that in point of fact the field is limited throngh the operation of a cause not taken into account in the formation of (28). It is there assumed that equality of phase in the light emitted from the various points of the object carries with it a like equality of phase at the geometrical images of these points. This will hold good only near the centre of the field. At a moderate distance out the illumination is destroyed by the phase-differences liere neglected.

[^258]: * Phil. Trans., 1870.

[^259]: * E.g. by writing $r u$ for u in the integral to be examined and differentiating with respect to r. Or (93) may be verified by differentiating with respect to x.

[^260]: * The Society are not intended to be denoted hy the editorial "we," and they do not hold themselves responsible for the views of the authors of the papers noted, nor for any claim to novelty or otherwise made by them. The object of this part of the Journal is to present a summary of the papers as actually published, aud to describe and illustrate Instruments, Apparatus, \&c., which are either new or have not been previously described in this country.
 \dagger This sention includes not only papers relating to Embryology properly so called, but also those dealing with Evolution, Development, Reproduction, and allied subjects.
 \ddagger 'Handbuch der vergleichenden und experimentellen Entwickelungslehre der Wirbeltiere,' Bd. i. Lief 9-13, 8vo, Jena, 1902-3.
 § 'A Laboratory Text-Book of Embryology,' 8vo, Philadelphia, xvii. and 380 pp., 218 figs.
 || Comptes Rendus, exxxvi. (1903) pp. 1012-3. I Tom. cit., pp. 1085-6.

[^261]: * Biol. Centralbl., xxiii. (1903) pp. 448-55 (5 figs.).
 \dagger 'Wirkungen des Alcohols auf Tiere und Pflanzen,' Leipzig, 1902.
 \ddagger Proc. R. Noc. London, 1xxi. (1903) pp. 354-5.

[^262]: * Arch. Mikr. Anat., lxii. (1903) pp. 194-206 (1 pl.).
 \dagger Centralbl. f. Gynäkol., 1903, pp. 1-4. See Zool. Centralbl., x. (1903) p. 37.
 \ddagger Anat. Anzeig., xxiii. (1903) pp. 21t-6.

[^263]: * Jenaische Zeitschr. f. Naturwiss., xxxvii. (1903) pp.551-78 (1 pl. and 13 figs.).
 \dagger Arch. Mikr. Anat., lxii. (1903) pp. 175-93 (2 pls.).
 \ddagger Ann. Inst. Pasteur, xvii. (1903) pp. 357-64 (1 pl.).

[^264]: * Zeitschr. f. wiss. Zool., lxxiv. (1903) pp. 155-325 (7 pls.).
 + Proc. Section of Sciences k. Akad. Amsterdam, v. (1902) pp. 350-8 (6 figs.).
 \ddagger Bull. Univ. Cincinnati, ser. 2, vol. i. (1901, received 1903) pp. 1-12 (1 pl.).
 § Arch. Anat. Embriol., ii. (1903) pp. 216-36 (1 pl.).
 if Verh. Nat. Ges. Basel, xvi. (1903) pp. 388-440.
 It 'Schmarotzer und Schmarotzertum in der Tierwelt', 8ro, Leipzig, 1902. See Biol. Centralbl., xxiii. (1903) p. 387.
 ** Bull. Univ. Cincinnati, ser. 2, vol. i. (1900, received 1903) pp. 5-15 (2 pls.).

[^265]: * Science. xvii. (1903) pp. 826-7.
 \dagger Comptes Rendus, cxxxvi. (1903) pp. 1207-10.
 \ddagger Ann. Inst. Pasteur, xvii. (1903) pp. 1-10.
 § Comptes Rendus, exxxvi. (1903) pp. 1083-5. ; Tom. cit., pp. 1086-8.

[^266]: * Comptes Rendus, cxxxvi. (1903) pp. 1090-3.
 \dagger M.T. Zool. Stat. Neapel, xv. (1902) pp. 487-554 (4 pls.).
 \ddagger Tom. cit., pp. 483-6 (1 fig.).
 § Arch. f. Naturges., lxix. (1903) pp. 237-96 (4 pls.).

[^267]: * Comptes Rendus, cxxxvi. (1903) pp. 621-2.
 \dagger Arch. f. Naturges., lxix. (1903) pp. 227-36 (1 pl. and 1 fg.).
 \ddagger Comptes Rendus, cxxxvi. (1903) pp. 631-2.
 § Tom. cit., pp. 618-21 (1 fig.). || Zool. Anzeig., xxvi. (1903) pp. 560-6.

[^268]: * Rev. Suisse Zool., xi. (1903) pp. 23-41 (1 pl.).
 \dagger Journ. Linn. Soc. (Zool.). xxviii. (1903) pp. 455-62 (1 pl.).
 \ddagger L. M. B. C. Memoirs, x. (1903) 76 pp . (4 pls.).

[^269]: * Ann. Nat. Hist., xi. (1903) pp. 549-51.
 \dagger Mem. Acad. Imp. Sci. St. Pétersbourg, xiii. No. 3 (1903) pp. 1-82 (7 pls. and 5 figs.). \ddagger Travaux Scientifiques Univ. Renues, i. (1902) pp. 79-98.
 § Zool. Anzeig., xxvi. (1903) pp. 547-50.
 || Verh. Zool.-bot. Ges. Wien, liii. (1903) pp. 174-8 (1 pl.).
 Aug. 19th, 1903

[^270]: * Bull. U.S. Nat. Mus., No. 52, 1902, pp. xix. and 723.
 \dagger Comptes Rendus, caxxvi. (1903) pp. 1273-5.

[^271]: * Zoologica, Heft 35 (1903) pp. 385-465 (7 pls.).
 \dagger Ann. Nat. Hist., xi. (1903) pp. 479-81 (7 figs.).
 \ddagger Journ. Linn. Soc., xxviii. (1903) pp. 463-5 (2 figs.).
 § Journ. Quekett Micr. Club, 1903, pp. 465-6.
 il Ann. Soc. Entom. Belg., xlvi. (1902) pp. 352-62.
 II Internat. Sci. Series, 1xv., 3rd. ed., 1891, pp. 211-31.
 ** Journ. Quekett Micr. Club, 1903, pp. 431-54 (1 pl.).

[^272]: * Mém. Acad. Sci. Montpellier, iii. (1902) pp. 109-63 (10 figs.).
 + Biol. Bull. Mar. Biol. Lab. Woods Holl, iii. (1902) pp. 235-40 (12 figs.). See Zool. Centralbl., x. (1903) p. 116.
 \ddagger Mém. Acad. Imp. Sci. St. Pétersbourg, xi. No. 10 (1901, received 1903) pp. 19 (1 pl).
 § Zool. Jahrb., xviii. (1903) pp. 227-40 (2 pls.).

[^273]: * Zool. Jahrb., xviii. (1903) pp. 1-57 (5 pls.).
 \dagger Verh. Nat. Ges. Basel, xvi. (190:) pp. 118-57 (1 pl.).
 \ddagger Centralbl. Bakt. Parasitenkunde, $1^{\text {to }}$ Abt., xxxiv. (1903) pp. 42-3.
 § Journ. Quekett Micr. Club, 1903, pl. 399-406 (1 pl.).

[^274]:

 + Centrahh. Bakt. Parasitenkmule, $1^{\text {to }}$ Aht., sxxiv. ($190: 3$) pp. $38-42$ (4 figs.).
 \ddagger Proc. Limn Soc. N.S.W., xxvii. (1902) pr. :
 § Zool. Anzeig., xxri. (190:i) pp. tio- -
 $\|$ Bull. Soc. Zool. France, xxviii. (1903) Pre 3i-6 (4 fise.).

[^275]: * Arch. Entwickmech., xv. (1902) pp. 42l-8 (l pl.). See Zool. Centralbl., x. (1903) pp. 416-7.
 \dagger Pflüger's Arch. Ges. Physiol., xciii. (1902) pp. 59-76. See Zool. Centralbl., x. (1903) pp. 379-80.
 \ddagger Proc. Acad. Nat. Sci. Philadelphia, liv. (1903) pp. $750-90$ (4 pls . and 21 figs.)

[^276]: * Publications Univ. California (Zool.), i. (1902) pp. 1-104 (11 pls.).
 \dagger Comptes Rendus, cxxxvi. (1903) pp. 1210-2.
 \ddagger Journ. Coll. Sci. Imp. Univ. Tokyo, xviii. (1903) pp. 1-124 (S pls.).
 § Arch.f. Naturges., 69th year, vol. i. (1903) pp. 181-2 (1 pl.).

[^277]: * Proc. Section of Sci. k. Akad. Wetenschappen, Amsterdam, v. (1902) pp. 104-14.
 \dagger Atti R. Accad. Lincei (Rend.), xii. (1903) pp. 274-82 (4 figs.).
 \ddagger Mém. Acad. Imp. Sci. St. Pétersbourg, xii. No. 10 (1902) pp. 1-40 (\ddagger pls.).
 § Zool. Anzeiy., xavi. (1903) pp. 484-95.

[^278]: * Bot. Gazette, xxxy. (1903) pp. 250-82 (4 pls.).
 \dagger Beih. z. Bot. Centralbl., xiv. (1903) pp. 13-19.
 \ddagger Ber. Deutsch. Bot. Ges., xxi. (1903) pp, 110-8 (1 pl.).

[^279]: * Bull. Torrey Bot. Club, xxx. (1903) pp. 133-72 (2 pls.).
 + S.B. k. Böhm. Ges. Wissensch., 1902 (1903) pp. 59 (6 pls.).
 \ddagger Bot. Gazette, xxxv. (1903) pp, 305-19 (I pl.).

[^280]: * Verhandl. naturhist. Vereins, lix. (1902) pp. 49-95 (1 pl.).
 + Bot. Gazatte, xxxiv. (1902) pp. 341-54 (1 pl. and figs. in text).

[^281]: * 'Modifications produites par le gel dans la structure des cellules végétales.' Paris, 1902, 55 pp. (3 pls.). Extracted from Rev. Gén. Bot., xiv. (1902).
 + S.B. k. Böhm. Ges. Wissensch., xli. (1902) p. 10.
 \ddagger Arch. exp. Path. Pharm., xlviii. pp. 272-81. See also Journ. Chem. Soc., lxxxiv. (1903) i. p. 191.
 § Comptes Rendus, xxxvi. (1903) pp. 77t-6.

[^282]: * Comptes Rendus, cxxxvi. (1903) pp. 516-8. † Tom. cit., pp. 771-1.
 \ddagger Seo above.
 § Comptes Rendus, cxxxvi. (1903) pp. 826-7.
 Aug. 19th, 1303

[^283]: * Beih. Bot. Centralbl. (Original-Arbeit) xii. (1902) pp. 139-80 (2 pls.).
 \dagger Rev. Geu. Bot., xv. (1903) pp. 97-103 (6 tigs. in text).
 \ddagger Comptes Rendus, cxxxvi. (1903) pp. 1157-9.

[^284]: * Trav. Sci. de l'Univ. de Rennes, i. pp. 57-63, 69-77, 99-102, 343-59, 365-9.
 \dagger Bol. Soc. Españ. Hist. Nat., iii. (1903) pp. 150-2 (4 figs.).
 \ddagger Bot. Gazette, xxxiv. (1902) pp. 322-40 (2 ple.).

[^285]: * Bot. Gazette, xxxiv. (1902) pp. 389-413 (3 pls.).

[^286]: * Comptes Rendus, cxxxvi. (1903) pp. 401-3 (8 figs.).
 + Verlhandl. k. k. Zool. Bot. Gesell. Wien, liii. (1903) pp. 21-65 (6 figs. in text).
 \ddagger Atti Reale Accad. d. Lincei, Rendi. Cl. Sci. fis., \&c., xii. (1303) pp. 131-40.
 § 'Recherches sur les laticiferes de la fleur des Convolvulaccées,' Nancy, 1902, 23 pp. (17 figa.). See also Bot. Centralbl., xcii. (1903) p. 83.
 || Bull. Cl. Sci. Acad. Roy. Belg., 1903, pp. 55-114.

[^287]: * Atti d. Istit. Bot. Univ. Pavia, vii. (1902) pp. 1-21 (figs. in tert).
 \dagger Tom. cit., pp. 101-3.
 \ddagger Tom. cit., pp. 83-95, 127-70 (3 pls.).

[^288]: * Comptes Rendus, cxxxvi. (1903) pp. 901-2.
 \dagger Verhandl. Kon. Akad. Wetensch. Amsterdam, Sect. 2, Deel ix. No. 5 (1903) pp. iv., 148 (1 pl .).
 \ddagger Atti d. Istil. Bot. Univ. Pavia, vii. (1902) pp. 55-6t.
 § Proc. Roy. Soc. Ixxi. (1903) pp. 362-73. See also Nature, lxvii. (1903) pp. 571-2.

[^289]: * Journ. Amer. Chem. Soc., xxy. (1903) pp. 55-9. See also Journ. Chem. Soc., lxxxiv. (1903) ii. p. $233 . \quad \dagger$ Bull. Torrey Bot. Club, xxx. (1903) pp. 56-70.
 \pm Comptes Rendus, cxxxvi. (1903) pp. 762-4.
 § Ber. Deutsch. Chem. Ges., xxxvi. (1903) pp. 331-2. Ste also Journ. Chem. Soc., Ixyxiv. (1903) i. p. 304.
 il Proc. k. Akad. Wetensch. Amsterdam, v. (1902) pp. 295-303. See also Jouru. Chem. Soc., Jxxxiv. (1903) ii. p. 232-3.

[^290]: * Bull. Coll. Agric. Tokio Imp. Univ., v. (1902) pp. 243-6. See also Journ. Chem. Soc., tom. cit., p. 170.
 \dagger Tom. cit., pp. 173-5. See also Journ. Chem. Soc., tom. cit., p. 173.
 \ddagger Tom. cit., pp. 187-95. Sce Journ. Chem. Soc., loc. cit.
 § Tom. cit., pp. 199-201 and 203-5. See Journ. Chen. Soc., loc. cit., p. 174.
 || Bull. Cl. Sci. Acad. Roy. Belg., 1902, pp. 657-8t (4 figs. in text).

[^291]: * Ber. Deutsch. Bot. Ges., xxi. (1903) pp. 133-47.
 + Atti d. Istit. Bot. Univ. Pivia, vii. (1902) pp. 229-50 (12 pls.).
 \pm Ber. Deut.ch. Bot. Ges., xx. Generalvers-heft, il. (1903) pp. 103-72.
 § Journ. Linn. S'oc.. xxxvi. (1903) pp. 73-136.
 if Proc. Linn. Soc. New South Wales, xxvii. (1902) pp. 347-51 (1 pl.).

[^292]: * Rep. Smithsunian Inst. for 1901 (1902) pp. 401-4 (4 pls.).
 \dagger Wellcome Chem. Research Laboratories, No. 34 (1903) pp. 1-25.
 \ddagger Op. cit., No. 35, 1903, pp. 1-10 (9 pls.).
 § Atti d. Istit. Bot. Univ. Pavia, vii. (1902) pp. 195-227 (2 pls.).
 H Bot. Gazette, xxxiv. (1902) pp. 414-9 (1 pl.).

[^293]: * Trans. Nova Scotian Inst. Sci., x. (1902) pp. 345-7 (2 pls.).
 + Ber. Dentsch. Bot. Ges., xx. (1903) Suppl., pp. 173-182.
 \ddagger Fern Bulletin, xi. (1903) pp. 1-5. § Tom. cit., rp. 7-12.
 || 'Tom. cit., pp. 21-23.
 G Ann. Bot., xvii. (1903) pp. 270-74 (figs. in text).
 ** Torreya; iii. (1903) pp. 60-1.
 $\dagger \dagger$ Rev. Bryol., xxx (1903) p. 57.
 $\ddagger \ddagger$ Mem. Soc. Sei. Cherbourg, iv. (1856) pp. 216-S.

[^294]: * Hedwigia, xlii. (1903) pp. 1-75 (1 pl.).
 \dagger Bull. Torrey Bot. Club, xxx. (1903) pp. 216-24 (2 pls.).
 \ddagger Rev. Bryol., xxx. (1903) pp. 44-57 (fige, in text).

[^295]: * Irish Naturalist, xii. (1903) pp. 132-4. † Tom. cit., p. 107.
 \ddagger Journ. Bot., xli. (1903) pp. 180-5.
 § Rev. Bryol., xxx. (1903) pp. 37-39 (figs. in text).
 $\|$ Hedwigia, xlii. (1903) Beibl., pp. 118-20 (1 pl.).
 T Rev. Bryol., xxx. (1903) pp. 39-43. ** Tom. cit., pp. 43, 44.
 $\dagger \dagger$ Journ. Bot., xxxix. (1901) p. 360.
 $\ddagger \ddagger$ Ann. Scot. Nat. Hist., 1903, pp. 109-116.
 §§ Naturalist, 1903, pp. 79-82.

[^296]: * Ber. Deutseh. Bot. Ges., xx. (1903) Suppl., pp. 183-911.
 \dagger Schrift. Naturw. Ver. Schles.-Holst., xii. pp. 1-32; Hedwigia, xlii. (1903) Beibl., p. 121. \ddagger Bull. Soc. Bot. Ital., 1903, pp. 6-10.
 § Bryologist, vi. (1903) p. 41 (1 pl.). II Tom. cit., pp. 42, 43.
 -Tom. cit., pp. 44-45. ** Tom. cit., p. 47.
 $\dagger \dagger$ Tom. cit., P. 47 . $\ddagger \pm$ Tom. cit., pp. $48-54$.
 $\S \S$ Proc. Linn. Soc. New South Wales, xxviii. (1902) Suppl., pp. 1-90.
 ili Ber. Deutsch. Bot. Ges., xx. (1903) Suppl., pp. 212-63.

[^297]: * Bull. Herb. Boiss., sér. 2, ii. (1902) pp. 217-G4, $406-29$ (5 pls. and 6 figs.) Hedwigia, xlii. (1903) Beibl., p. 124.
 \dagger Journ. Quek. Micr. Club, viii. (1902) pp. 417-80 (pl. 23 and 5 figs. in text).
 \ddagger 'Les Diatomées fossiles d'Auvergne,' Paris, 1902 , pp. 79 (${ }^{2} \mathrm{pls}$.).
 Aug. 19th, 1903
 2 m

[^298]: * Naturalist, 1903, p. 122.
 + Scot. Geogr. Mag., xix. (1903) pp. 175-6.
 \ddagger Engl. Bot. Jahrb., xxxiii. (1902) pp. 1-33; Hedwigia, xlii. (1903) Beibl., p. 125.
 § Stul. vergl. Entwickl.-Gesch. Laminariaceen, Kiel, 1903, pp. 1-67 (15 figs.).

[^299]: * Publications Fishery Bureau, Hokkaido Govt., Japan, 1902, 212 pp. and 37 pls.
 \dagger Script. Bot. Hort. Univ. Petropol., xix. (1902) 38 pp. (6 pls.); Hedwigia, xlii. (1903) Beibl., p. 124.
 \ddagger Nuov. Notar., xiv. (1903) pp. 45-61 (1 pl.). See also Rend. Mem. R. Acc. Sci., \&c., Acireale, ser, 3, i. No. 6, pp. 6.
 § Univers, Calif. Publ. Bot., i. (1903) pp. 165-418 (pls. 17-27).

[^300]: * Bot. Tidssk., xxv. (1903) pp. 141-195.
 \dagger Beitr. Chem. Physiol. Path., iii. (1902) pp. 47--36. Sce Journ. Chem. Soe., 1xxxiv. (1903) ii. p. 168.
 \ddagger See this Journal, 1902, p. 457, and 1903, p. 190.
 § Centralbl. Bakt., ix. (1902) pp. 625-30.
 II Bull. Soc. Mycol. France, xix. (1903) pp. 56-65 (2 pls.).

[^301]: * Bot. Gazette, xxxv. (1903) pp. 111-33 (2 pls.).
 \dagger Journ. Mycol., viii. (1902) pp. 171-2.
 \ddagger Ber. Deutsch. Bot. Ges., x. (1903) pp. 609-12 (1 pl.).
 § Hedwigia Beibl., xlii. (1903) pp. 28-32 (14 figs.).
 $\|$ Ann. Mycol., i. (1903) pp. 15-23.
 - Tom. cit., pp. 33-5. ** Eot. Gazette, xxxv. (1903) pp. 10-23.

[^302]: * Journ. Mycol., lxv. (1903) pp. 6-13.
 + Ann. Mycol., i. (190:3) pp. 3-14.
 \ddagger 太.B. k. Böhm. Ges. Wiss., 1902 (1903) No. 46, 23 pp.
 \S Comptes Rendus, cxxxvi. (1903) pp. 397-9.
 if Bull. 'Torrey Bot. Club, sxx. (1903) pp. 1-18.

[^303]: * Proc. Soc. Prom. Agr. Sci. (U.S.A.), (1902) pp. 65-9. See also Bot. Centralbl., xxiv. (1903) pp. 205-6.
 \dagger Hedwigia Beibl., xlii. (1903) pp. 6-14 (1 pl.).
 \ddagger Journ. Bot., xli. (1903) p. 139.
 § Bull. Soc. Mycol. France, xix. (1903) pp. 44-5.
 Hedwigia Beibl., xlii. (1903) pp. 20-1.
 T Proc. Amer. Acad. Arts and Sci., xxxviii. (1902) pp. 61-74 (1 pl.).

[^304]: * 'Trans. Brit. Mycol. Soc., 1902, 40 pp. (2 pls., 1 coloured).
 \dagger Comptes Rendus, cxxxvi. (1903) pp. 167-9.
 I Overs. K. Dansk. Videns. Selsk., 1902, No. 6, pp. 249-56.
 § New Phytol., ii. (1903) pp. 30-5.
 \| Proc. Chem. Soc., xix. (1903) pp. 4S-9.

[^305]: * New Phytol., ii. (1903) pp. 49-53 (1 pl.).
 \dagger Journ. Bot., xli. (1903) pp. 127-30 (figs. in text).
 \ddagger J.B. Pflanzenkrankh. (Hollrung) iv. 1901 (1903) pp. viii. and 305.
 § Ber. Deutsch. Bot. Ges., xxi. (1903) pp. 67-71.
 $\|$ Beitr. Chem. Physiol. Path., iii. (1902) pp. 47-66. See also Centraibl. Bakt., x. (1903) pp. 216-7.
 - Milch-Zeitung, 1902, No. 51. See also Centralbl. Bakt., x. (1903) pp. 219-20.
 ** Inaug.-Diss. Münster, Würzburg, 1902, $8 v 0,75 \mathrm{pp}$. See also Centralbl. Bakt., x. (1903) pp. 156-7.

[^306]: * Malpighia, xvi. (1302) pp. 441-81 (2 pls.).
 † Rabenhorst's Krypt.-Flora, 1. Abt., vii. (Leipzig, 1903) pp. S33-90 and 8.97-95.
 \ddagger Ann. Mycol., i. (190\%) pp. 65-96.
 § Journ. de Bot., xvii. (1903) pp. 6-15.
 || Bot. Notis., 1902, pp. 113-2S and 161-79. See also C'entralbl. Bakt., x. (1903) p. 215 . II Bnll. Soc. Bot. Ital., ix. (1902) pp. 186-90.
 ** See also Acn. Mycol., i. (190\%) pp. 41-ī.

[^307]: * Beitr. Kryptogamenflora Presburg. Kom. iv. Pilze. Presburg, 1902. See also Centralll. Bakt., x. (1903) pp. 220-1.
 + Bull. Torrey Bot. Club, xxx. (1903) pp. 109-20.
 \ddagger Journ. Mycol., 1xv. (1903) pp. 1-3. § Tom. cit., p. 5.
 \| 'Tom. cit., pp. 17-24.
 ** Bull. Torrey Bot. Club, xxx. (1903) pp. 83-94.
 $\dagger \dagger$ Tom. cit., pp. 95-101. $\ddagger \ddagger$ Journ. Mycol., viii. (1902) pp. 179-92.

[^308]: * Tom. cit., pp. 173-8.
 \dagger Ann. Mycol., i. (1903) pp. 24-9.
 \ddagger Engler, Bot. Jahrb., xxxiii. (1902) pp. 34-40.
 § Beih. Bot. Centralbl., xiv. (1903) pp. 95-126 (3 pls.).
 $\|$ Univ. Calif. Pub. Bot., i. (1902) pp. 141-64 (2 pls.).

[^309]: * Bot. Gazette, xxxv. (1903) pp. 220-30.
 \dagger Bryologist, vi. (1903) pp. 21-7.
 \ddagger Bot. Gazette, xxxv. (1903) pp. 195-208 (5 figs.).
 § -Technical Myeology: the Utilisation of Micro-organisms in the Arts and Manufactures. A Practical Handbook on Fermentation and Fermentative Processes for the use of those interested in the Industries dependent on Fermentation.' By Franz Lafar, translated by Charles Salter. Griffin, London, 1903, viii. and 189 pp ., with 68 figs. in text.

[^310]: * Bull. Soc. Imp. Nat. Moscou, 1902, pp. 380-167 (10 tables and 2 pls.).
 + Proc. K. Akad. Wetensch. Amsterdam, v. (1902) pp. 148-62 (1 pl.).

[^311]: * Centralbl. Bakt., ix. (1902) pp. 817-21 and 881-92.
 \dagger Proc. Roy. Soc., lxxi. (1903) pp. 35(i-61.
 \ddagger Bot. Gazette, xxxv. (1903) pp. 56-8.
 § Centralbl. Bakt., xxxiii. (1903) pp. 1-23, 81-96, 161-66 (2 pls.).
 || Mittheil. Zool. Stat. Neapel, xv. (1902) pp. 655-80.

[^312]: * Centralbl. Bakt., xxxiii. (1903) pp. 649-53.
 \dagger Brit. Med. Journ., 1902, i. p. 198.
 \ddagger Proc. Roy. Soc., lxxi. (1903) pp. 351-2.

[^313]: * The transwerse movement of the stage in are is not new. A figure of a Microscope, made about 1855-60, having a stage with this movement, is given in the Journ. R.M.S. for 1898, p. 668.

[^314]: * Messrs. R. and J. Beck's Catalogue, London, p. 18.

[^315]: * Zeitschr. f. wiss. Mikr., six. (1902) pp. 41-4 (2 figs.).

[^316]: * F. Koristka's Catalogue, Milan, fig. 50, p. 64.

[^317]: * F. Koristka's Catalogue No. 11, Milan, 1903, fg. 45, p. 63.
 + 'Jena Glass and its Scientific and Industrial Applications,' by Dr. H. Hovestadt. Translated and edited by J. D. Everett, M.A., F.R.S., and Alice Everett, M.A. Macmillan \& Co., London, 1903, Svo, xiv. and 419 pp., 29 firs.

[^318]: * Abbe, this Journal, ii. (1879) p. 257.

[^319]: * This subdivision contains (1) Collecting Objects, including Culture Processes; (2) Preparing Objects; (3) Cutting, including Imbedding and Microtomes; (4) Staining and Iujecting; (5) Mounting, including slides, preservative fluids, \&c.; (5) Misceilaneous. \dagger Zeitschr. wiss. Mikr., xix. (1903) pp. 429-31 (1 fig.).

 Aug. 19th, 1903

[^320]: * Zeitschr. wiss. Mikr., xix. (1903) pp. 308-28, 441-63.
 \dagger Eng. Mech., lxxvii. (1903) p. 169.
 \ddagger Zeitschr. angew. Mikr., ix. (1903) pp. 14-6.
 § Zeitschr. wiss. Mikr., xix. (1903) pp. 294-6.

[^321]: * Centralbl. allgem. Pathol. u. pathol. Anat., siii. (1902) pp. 299-300.

 202

[^322]: * Tom. cit., pp. 51S-20.
 + C.R. Soc. Biol. de Paris, liv. (1902) pp. 1255-6.
 \ddagger Virchow's Archiv, clxix. (1902) pp. 161-2.
 § Zeitschr. angew. Mikr., ix. (1903) pp. 1-3.

[^323]: * J. \& A. Churchill, London, 1903, pp. 24 and 321 (168 figs.).

[^324]: * H. Siedentopf und R. Zsigmondy, 'Über Sichtbarmachung und Grössenbestimmung ultramikroskopischer Teilchen mit besonderer Anwendung auf Goldrubingläser.' Ann. d. Physik, x. (1903) pp. 1-39. Diam. $=\cdot 008 \mu$.

[^325]: * For the method of determining the W.A., see J.R.M.S., 1901, p. 244.
 \dagger J.R.M.S., 1878, p. 175, pl. 8, fig. 1, pl. 9, figs. 10, 11, 12.

[^326]: * On account of the super-amplification of those layers of an object which are not strictly in focus, and also on account of irradiation, the apparent measurement of objects on a dark ground is not to be relied upon, so this correction, which for objects on a dark ground is only a rough approximation, will not he needed.

[^327]: * Journ. R.M.S., 1900, p. 413.

[^328]: * For an account of these lenses see Journ. I.M.S., 1902, p. 16. The $1 \frac{1}{2}, \frac{9}{10}$, and the back lenses of the combinations are similar to the Goring-Tulley triple of 1824. The fronts of the combinations are higher powers of the same form. The front lens of the last combination was out of adjustment, therefore could not be examined.

[^329]: * Journ. R.M.S., 1900, p. 551, fig. $146 . \quad \ddagger$ Op. cit., p. 425, fig. 104.
 \ddagger Idem, p. 428, fig. 109, and Quart. Journ. Mic. Sci., vol. 3, p. 220, fig. 15.
 § Trans. Soc. of Arts, vol. 48, p. 12 (1832), and Journ. K.M.S., 1900, p. 283, fige. 70, 71.
 || Journ. R.M.S., 1900, p. 284, fig. 72.

[^330]: * Journ. R.M.S., 1895, pl. 4, p. 257.
 + Figured in many books besides Mr. Ellis's work on History of Corallines; prolably the most accessible is Adams on the Nicroscope, 1798, pl. 7 B.

[^331]: * Journ. R.M.S., 1898, p. 474, fig. 81.
 \dagger Idem, 18:9, pp. 209, 210. figs. 44 and 45, and 1900, pp. 289-291.
 \ddagger Iden, 1883, p. 5.4 , fig. 94 ; and $1887, \mathrm{p} .293$, fig. 41 , tud p. 1013, figs. 238 and 239.

[^332]: * The Society are not intended to be denoted by the editorial "we," and they do not hold themselves responsible for the views of the authors of the papers noted, nor tor any claim to novelty or otherwise made by them. The object of this part of the Journal is to present a summary of the papers as actually published, and to describe and illustrate Instruments, Apparatus, \&c., which are either new or have not been previously described in this country.
 \dagger This section includes not only papers relating to Embryology properly so called, but also those dealing with Evolution, Development, Reproduction, and allied subjects.
 \ddagger Archiv. Mikr. Auat., lxii. (1903) pp. 129-37 (1 pl.).
 § SB. Ges. Naturfreunde Berlin, 1902, pp. 33-6.
 $\|$ Biol. Untersuchungen, $x .(1902) 1^{\prime \prime} .61-1\left(1 \mathrm{I}^{\mathrm{l}}\right)$. See Zool. Zentralbl., x. (1903) 1. 504.

[^333]: * ZooI. Jahrb., xviii. (1903) pp. 187-240 (5 pls. and 3 figs.).
 + Comptes Rendus, exxxvi. (1003) pp. 312-4.
 \ddagger Quart. Journ. Micr. Nei., xlvii. (190:3) pp. 161-213 (3 pls.).
 § Comptes Rendus, cxxxvii. (1903) pp. 131-丷..
 || Anat. Anzeig., xxiii. (1903) pp. 394-5.

[^334]: * Arch. Mikr. Anat., lxii. (190:3) plp. 41-54 (1 11.).
 + 'Tom. cit., lיp. 55-107 (22 figs.).
 \ddagger Aınt. Auzeig., xxiii. (1903) 1口. :37-49 (7 figs.).
 § 'Tom. cit., pl' 289-47 (8 figs.). || Tom. cit., 11. 298-314 (18 figs.).
 - Comptes Rendus, cxxxvi. (1903) IP. 973-5.

[^335]: * Comptes Rendus, cxxxvii. (1903) pp. 295-301.
 \dagger 'Index Animalium sive Index nominum que ab A.D. mpcclvin generibus et speciebus animalium imposita sunt. Sectio prima.' Cambridge (1902) 59 and $11!5 \mathrm{p}$ 1.
 $\ddagger \cdot$ Der Indo-australisehe Archipel und die Creschichte seiner Tierwelt,' Svo, Jena, 46 pp., I map. See Zool. Zentralbl., x. (190:i) pp. $2.24-7$.
 s 'Vergleichende Chemische Physiologie der niederen Tiere,' Svo, Jena, 190:2, 14 and 670 pp .

[^336]: * Proc. Roy. Soc. London, Ixxi. (190:3) pr. 18t-93. 19t-211.
 + Tom. cit, pp. 212-9. \ddagger Comptes Rendus. exxxvi. (1903) pp. 316-9.
 § Ampr. Naturalist, xxxvi. (1008) !p. e90-8 (3 flgs.).
 |f Zonl. Jahrb.. ii. (1902) suphl. vol. v. Ill. (ion-it (1 11.).

[^337]: * Anat. Anzeig., xxii. (1903) pp. 522-35 (9 figs.).
 \dagger Arch. Zool. Exper., ser. 4, vol. i. (190:3). Notes et Revue, No. 6, pp. xev.-c.
 \ddagger Comptes Rendus, cxaxvi. (1903) pp. 1270-3 (1 fig.).
 § Bull. Soc. Zool. Frauce, xxviii. (1903) 11p. $79-81$.

[^338]: * Science, xiii. pp. 828-30. See Zool. Zentralbl., x. (190:3) pp. 504-5.
 + Proc. Acad. Sci. Philadelphia, 1508,1 P. 286-97.

[^339]: * Bull. Soc. Zool. France, xxviii. (1903) 1p. 47-57.
 \dagger Journ. f. Ornithol., 1903, 1'p. 1-40.
 \ddagger SB. Ges. Naturf. Berlin, 1902 , 11 . $203-5$.
 § Quart. Journ. Micr. Sci., xlvii. (1903) pl' 230-72 (5 pls.$)$.

[^340]: * Zool. Anzeig., xxvi. (1903) Mp. 410-2 (1 fig.). † Tom. cit., pp. 65G-64.

[^341]: * SB. Ges. Naturfr. Berlin, 1902. 11p. 205-29 (2 pls).
 \dagger Zool. Anzeig., xxvi. (1903) Pp. 655-6 (2 fig.).
 \ddagger Nature, lxvii. (1903) 1, 319.
 § Bull. Acad. Roy. Belgique, Norember 1902.
 $\|$ Nature, Ixvii. (1903) IT. 368-9.

[^342]: * Arch. Zool. Exper., th ser., i. (1903); Notes et Cevue, 111. xlix.-lii.
 \dagger Sis. Ges. Naturt. Jimin, 1902, pf, 15s-6is
 \ddagger Zeitschr. wiss. Zonl. lxxiv. (1903) 111. $557-615$ (1 11. and 15 figs.).
 Oct. 21st, 1!וの: \quad - 1i

[^343]: * Journ. Quekett Micr. Club, 1903, 19. 389-98 (6 figs. and 1 pl.).
 \dagger Ann. Sci. Nat. Zool., xvi. (1902) pli. 395-40t (1 pil.).
 \ddagger Centralbl. Bakt. Parasitenkunte, 1^{10} Abt., xxxii. (1902) pp. 601-8.
 § Atti R. Accall. Lincei Roma (Rend.), xii. (1903) pp. 529-38.
 || Comptes Rendus, cxxxvi. (1903) pp. 1275-6.

[^344]: * Journ. Quekett Micr. Club, 1903, pp. 411-6 (1 pl.).
 \dagger Comptes Rendus, cxxxvii. (1903) pp. 34t-6.
 \ddagger Zool. Anzeig., xxvi. (1903) pp. 637-42 (2 figs.).
 § Tom. cit., pp. 633-6 (4 figs.).
 || SB. Ges. Naturf. Berlin, 1902, pp. 87-9.

[^345]: * Amer. Nat., xxxvii. (1903) pp. 319-29 (9 figs.).
 \dagger 'Tom. cit., pl' 29:)-812 (10 figs. and 9 tables).
 \ddagger Quart Journ. Micr. Sci., xlvii. (190:3) pp. $145-60$ (2 pls.).

[^346]: * SB. Ges. Naturf. Berlin, 1902, pp. 36-45 (3 figs.).
 + Journ. Quekett Micr. Club, 1903, pp. 463-4 (4 figs.).
 \ddagger Quart. Journ. Micr. Sci., xlvii. (1903) pp. 215-31 (1 pl.).
 § Proc. Roy. soc. London, lxxi. (1902) pp. 69-71.

[^347]: * Zool. Anzeig., xxvi. (1903) pp. 406-10 (2 figs.).

[^348]: * Proc. Boston Soc. Nit. Hist., sxxi. (1903) pp. 1-21 (3 plis.).
 \dagger Journ. Linn. Soc. (Zool.), xxix. (1903) pp. :38-64 (5 pls.).
 \ddagger Zool. Anzeig., xxvi. (1:03) एp. 5:7-81.
 \$ Bull. Soc. Zool. Frumce, axviii. (190;i) pp. $81-97$ (7 figs.).
 14 Turn. Linm. Soc. (\%ol.), xxis. (1903) 19. 12-25 (1 11.).

[^349]: * Journ. Linn. Soc. (Zool.), xxix. (1903) pp. 1-11 (3 pls.).
 + Revue Suisse Zool., xi. (1903) 11r. 151-239 (3 pls.).
 \ddagger Bull. Soc. Zool. France, xxviii. (1903) jp. 99-111 (2 figs.).

[^350]: * Bull. Soc. Zool. France, xxviii. (1903) pp. 111-25 (2 figs.).
 \dagger Comptes Rendus, cxxxvi. (1903) pl. 971-8.
 \ddagger Zool. Anzeig., xxvi. (1!003) P!. 415-7.
 § Comptes Rendus, cxxxvi. (1903) I川. 389-91.

[^351]: * Brit. Med. Journ., No. 2218, July 4. 190:3, p. 10.
 + Centralbl. Bukt. Parasitenkunde, I ${ }^{\text {te }}$ Aht., xxxii. (1902) pp, 637-4l (2 figs.).
 \ddagger Proc. Boston Soc. Nat. Hist., xxx. (1902) PI. 515-59 (11 pls.).

[^352]: * Centralbl. Bakt. Parasitenkunde, $1^{\text {te }}$ Abt., xxxii. (1902) pl. 6:32-6 (2 figs.).
 \dagger Zool. Anzeig., xxvi. (190:) 11י. 241-5 (4 figs.).
 \ddagger Arch. Parasitol., v. (1902) 1,p. 209-50 (1 pl.); Centralbl. Bakt. Parasitenkunde, $1^{\text {to }}$ Abt., xxxi. (1902) Ppl. 690-1.
 § Sl:. Ges. Naturf. Berlin, 1902, pp. 2s-30.
 II Amer. Journ. Sci., xv. (1903) pp. 1-48. 121-36 (26 figs. and 1 pl.).

[^353]: * Proc. Acad. Sci. Philadelphia, 1903, p. 351 (1 fig.).
 \dagger Comptes Rendus, exxxvii. (1903) pp. 340-2.
 \ddagger Journ. Linn. Soc. (Zool.), xxix. (1903) p1]. 26-37 (2 pls.).
 § Zool. Anzeig., xxvi. (1903) pp. 623-6.

[^354]: * Amer. Nat., xxxvii. (1903) pp. 331-45 (6 figs.).
 \dagger Zool. Anzeig., xxvi. (1903) pp. 418-9.
 \ddagger Biol. Centralbl., xxiii. (1903) 1p. 483-4.
 § Oversigt k. Danske Videnskab. Selskabs Forhandl., 1903, No. 3, pu. 399-421 (2 pls .).

[^355]: * Arch. Zool. Exper., 4th ser., i. (1903) Notes et Revue, No. 6, 1p. c.-civ. (2 figs.).
 \dagger Revue Suisse Zool., xi. (190:3) pp. 123-49 (1 pl.).
 \ddagger Comptes Rendus, cxxxvi. (1903) pp. 319-21.
 § Centralbl. Bakt. Parasitenkunde, $1^{\text {to }}$ Abt., xxxiii. (19n2) pp. 449-58 (4 figs.).
 || Proc. Acad. Sci. Philadelphia, 1903, pp. 337-S (4 figs.).

[^356]: * Centralbl. Bakt. Parasitenkunde, $1^{\text {te }}$ Abt., xxxiv. (190:3) 11p. 144-9 (1 11.).।
 \dagger Zeitschr. Hyg. und Infektionskrankheiten, xxxix. 1. 323. See Centralbl. Bakt. Parasitenkunde, ite Abt., xxxi. (1902) pp. 755-S.
 \ddagger Publications of Department of the Interior Burean of Govermment Laboratories, Manila, 1903, No. 3, 24 111. (2 1ls.).
 § Arch. Kool. Exper., fth ser. vol. i. Notes et Revue, No. 6, 1p. lxxxix.-xcv. (2 figs.).

[^357]: * Iot. Gazette, xxxv. (1903) pp. 405-1t (2 pls.).
 \dagger Reprint from the University of Chicago Decenmial Publications, series 1 , x. (1903) 18 pp ., tho. The University of Chicago Press, Chicago, Illinois. Also Bot. Gazette, xxxvi. (1903) pp. $28-51$ (3 pls.).

[^358]: * New Phytologist, ii. (1903) pp. S3-91 (2 pls.).
 \dagger 'Pathologische Pflanzenanatomie,' by Dr. Ernst Küster, 300 pp. of text, 121 fige., Jena (Fischer), 1903. See also Nature, lxviii. (1908) pp. 244-5.
 \ddagger Comptes Rendus, cxxxvi. (1903) pp. 1098-4.

[^359]: * Proc. Roy. Soc., Ixxi. (1903) pp. 477-81.
 \dagger Comptes Rendus, cxxxvi. (190:3) pp. 1094-7.

[^360]: * Journ. Roy. Horl. Soc., xxvii. (1903) pr. 943-55, 10 figs. in text.
 \dagger Proc. Roy. Soc., lxxi. (1903) pp. $45 \mathrm{~s}-76$ (1 pl.).
 \ddagger Ann. Inst. Pasteur, xvii. (1903) pp 321-31.

[^361]: * Comptes Rendus, cxxxvi. (1903) pp. 1401-4.
 \dagger Tom. cit., pp. 1571-3.
 \ddagger Rep. Brit. Assoc., 1902, p. 805.
 § Pflüg. Arch., xc. Heft. 11 and 12. See also Centralbl. Bakt., x. (1903) pp 252-61.

[^362]: * Comptes Rendus, exxxvi. (1903) pp. 1013-5.
 \dagger 'Phylogeny of Angiosperms.' Reprint from the University of Chicago Decennial Publications, ser. 1, x. (1903) 6 pp. 4 to.
 \ddagger New Phytologist, ii. (1903) pp. 79-5 (2 pls.).

[^363]: * Engler, Bot. Jahrb., xxxii. (1903) pp. 280-416.

[^364]: * Flora, xcii. (1903) pp. 346-70.
 + Engler, Bot. Jahrb., xxxii. (1903) pp. 231-74.

[^365]: * New Phytologist, ii. (1903) p. 166.
 † 'Die Europäischen Laubmoose,' Leipzig, 1903, 128 pp.
 \ddagger 'Mosses with Mand-Lens and Microscope', New York, 1903, part i., 86 pp., 10 plates, and 81 figs. in text.
 § New Phytologist, ii. (1903) pp. 121-33, 155-65 (8 figs. in text).

[^366]: * Naturalist, 1903, pp. 169-76; 208-15 (12 figs. in text).
 + Ber. Deutsch. Bot. Gesell., xxi. (1903) pp. 346-55 (1 pl.).

[^367]: * Ann. Mag. Nat. Hist., xii. (1903) pp. 166-74 (1 pl.).
 + Minnesota Bot. Studies, iii. (1903) pp. 79-82 (1 pl.).
 \ddagger Ann. Mag. Nat. Hist., xii. (1903) pp. 175-86 (1 pl.).

[^368]: * Bull. Soc. Imp. Nat. Moscou, No. 1 (1903) pp. 149-72.
 \dagger Alli. Sci. Nat., xvii. (1903) pp. 225-62 (20 figs. in text).

[^369]: * Mem. Acad. Imp. Sci. St. Pétersbourg, ser. 8, xi. No. 6 (1901) 140 pp., 7 pls. (figr. in text).
 \dagger Ber. Deutsch. Bot. Ges., xxi. (1903) pp. 326-33 (1 pl.).

[^370]: * Jahrb. wiss. Bot., xxxix. (1903) pp. 106-31.
 + Disposition méth. d. Diatomees d'Auvergne, Klinksieck, 1903. See also Nuov. Notar., xiv. (1903) p. 122.
 \ddagger Journ. Bot., sli. (1903) pp. 275-77.

[^371]: * Ber. Naturforsch. Ges. Leipzig, 1897-1900. See also Nucv. Notar., xiv. (1903) p. 121. \dagger Nuov. Notar., l.c. p. 127.
 \ddagger Mitth. v. d. Gr. Mecklemb. Geolog. Landesanstalt, 1902. See also Nuov. Notar 1.c. pp. 123, 124. § Naturalist, 1903, p. 256 (figs. in text).

 II Bull. Soc. Bot. Ital., 1003, pp. 133-41.

 - Minnesota Bot. Studies, iii. (1903) pp. 1-9 (4 pls.).

[^372]: * Irinneso ta Bot. Studies, iii. (1903), pp. 23-45 (6 pls.). ${ }^{1}$
 + 'Tom. cit. pp. 157-65 (4 pls.).
 \ddagger S.B. K. Preuss. Akad. Wissonsch., xviii. (1903) pp. 272-84.
 § Leih. Bot. Centralbl., xiv. (1903) pp. 243-6 (1 pl.).

[^373]: * Ber. Deutsch. Bot. Gesell., xxi. (1903) pp. 291-300 (1 pl.).
 + Mimesota Bot. Studies, iii. (1903) pp. 11-21 (2 pls.).
 \ddagger Nuov. Notar., xiv. (1903) pp. 106-8. § Tom. cit., pp. 109-12.

[^374]: * Sylloge Algarum, iv. sect. iii. (1903) pp. 775-1525.
 \dagger Rendic. e Mem. R. Acc. Sci. etc. d. Zelanti Acireale, ser. 3, i. (1903) No. vii. 66 pp .
 \ddagger Plöner Berichte, 1903. See also Nuov. Notar., xiv. (1903) pp. 117-19.
 § Loc. cit. $\|$ Loc. cit.
 IT 'Le condiz. fisic.-biol. d. laghi Ossolani. . . in rapp. alla Piscicultura,' Milano e Pavia, 1903.
 ** Forsch.-ber. d. Biolng. Stat. z. Plön ; Nuov. Notar., xiv. (1903) pp. 128-31.

[^375]: * Plöner Berichte, 1903. See also Nuov. Notar., xiv. (1903) pp. 124-6.
 + Minnesota Bot. Studies, iii. (1903) pp. 145-55.
 \ddagger Nuov. Notar., xiii. (1902) pp. 125-52; xiv. (1903) pp. 1-17, 97-105.
 § Bnll. Intern. Acad. Sci. Cracovie, No. 4 (1903) pp. 201-26 (1 double plate).
 U 'Fossil Flora of the Lower Coal Measures of Missouri,' Washington, 1902.
 I N. York State Paleontologist, 1901 ; Albany, 1902 (2 pls.).

[^376]: * Proc. U.S. Nat. Mus., xxix. pp. 261-70 (.3 pls.) ; and Proc. Biol. Soc. Washington, xv. (1902) p. 86. See also Nuov. Notar., xiv. (1903) pp. 132, 144, 145.
 + Amer. Natural., xxxvii. (1903) pp. 411-29.
 \ddagger Rhodora, v. (1903) pp. 103-8 (6 tigs.).
 \S Ber. Bot. Ges., xxi. (1903) pp. 147-50.

[^377]: * Hedwigia, xlii. (1903) Beibl. pp. 100-4.
 \dagger Flora, xcii. (1903) pp. 293-301 (7 figs.).
 \ddagger Tom. cit., pp. 25;-83 (2 pls.). § Rhodora, v. (1903) pp. 97-102 (2 figs.).

[^378]: * Bot. Gazette, xxxiv. (1902) pp. 420-5 (1 pl.).
 \dagger Op. cit., xxxv (1903) pp. 233-49, 320-59 (2fpls.).

[^379]: * Comptes Rendus, cxxxvi. (1903) pp. 1099-1101.
 \dagger Tom. cit., p. 1291. \ddagger 'Tom. cit.. pp. 1337-38.
 § 'Germination de l'ascospore de la Truffe.' Paris, 1903, 20 pp . (2 pls.).

[^380]: * Nuov. Giorn. Bot. Ital., x. (1903) pp. 271-2.
 \dagger Italia Agricola, xxxiv. (1902) pp. 396-98 (1 pl.). See also Centralbl. Bakt., x. (1903) pp. 290-91.
 \ddagger Atti Reale Accad. Lincei, xii. (1903) pp. 270-4.
 \ddagger Soc. Helge Microse., xxv. pp. 95-105. See also Centralbl. Bakt., x. pp. 266-67.
 $\|$ Ann. Mycol., i. (1903) pp. 201-15 (2 pls.).
 IT Comptes Rendus, exxxvi. (1903) pp. 1281-3.

[^381]: * Tom. cit., pp. 1335-36.
 \dagger Journ. Bot., xli. (1903) pp. 159-65.
 \ddagger Tom. cit., pp. 204-212.
 $\stackrel{+}{\S}$ Beih. Bot. Centralbl., xiv. (1903) pp. 261-315 (1 pl. and 6 figs.).
 || Comptes Rendus, cxxxvi. (1903) pp. 1280-81.
 - Trav. Scient. Univ. Rennes, i. (1902) po. 171-4.

[^382]: * Centralbl. Bakt., x. (1903) pp. 464-8.
 \dagger Ann. Inst. Pasteur, xvii. pp. 11-30.
 \ddagger Centralbl. Bakt., $1^{\text {te }}$ Abt., $x \times x i i i$. (1903) pp. 688-96 (2 pls.).
 \S Chem. Zeit., 1903, No. 1. See also Centralbl. Bakt., x. (1903) pp. 285-8.
 || Centralbl. Bakt., X. (1903) pp. 275-81 (14 figs.), and pp. 311-20 (14 figs.).

[^383]: * Atti R. Accad. Lincei, xii. (1903) pp. 318-24.
 \dagger Malpighia, xvii. (1903) pp. 16-22 (4 figs.).
 \ddagger 'Recherches sur la Rouille des Céréales,' Bruxelles, 1903, 40 pp .
 § Centralbl. Bakt., x. (1903) pp. 369-81 (8 figs.).

[^384]: * Hedwigia, xlii. (1903) pp. 119-52. † Ann. Mycol., i. (1903) pp. 132-51.
 \ddagger Proc. Roy. Soc., lxxi. (1903) pp. 353-4. See also Proc. Cambr. Phil. Soc., xii. (1303) p. 84.
 § Act. Soc. Faun. et Fl. Fenn., xxii. No. 1 (1902) 223 pp. (1 pl.). Meddel. Stockh. Högsk. Pint. Inst., v. (1902).

[^385]: * Bull. intern. Acad. Sci. Cracov., 1903, pp. 95-142 (7 pls.).
 + Econ. Proc. Roy. Dubl. Soc., l. (1902) pp. 109-18.
 \ddagger 'Tom. cit., pp. 119-31.

[^386]: * Ann. Mycol., i. (1908) pp. 97-131 (1 pl.).
 \dagger Bull. Torrey Bot. Club, xxx. (1903) pp. 225-32.
 \ddagger Journ. Mycol., ix. (1903) pp. 87-102. § 'Torreya, iii. (1903) p. 7.
 $\|$ Tom. cit., pp. 24-5. T Tom. cit., pp. 35, 38, and 58-60.
 ** My ycol. Notes, Cincinn., No. 12 (1902) pp. 113-48 (16 pls.).
 $\dagger \dagger$ Journ. Mycol., ix. (1903) pp. $81-2$.
 $\ddagger \ddagger$ 'Tom. cit, ${ }^{\text {l'p. }} 82-3,102-4 . \quad$ §§ Tom. cit., p. 105 (2 figs.).

[^387]: * Tom. cit., pp. 107-10 (1 pl.).
 \dagger Hedwigia, xlii. (1903) Beibl., pp. 73-88 (7 figs.).
 \ddagger Proc. Linn. Soc. New South Wales, xxvii. (1902) pp. 373-9.
 § Hedwigia, xlii. (190:') pp. 76-117 (1 pl.).
 \| Schrift. Naturwiss. Ver. Schleswig-Holstein, xii. (1903) Heft 2, 32 pp. See also
 Ann. Mycol., i. (1903) p. $188 . \quad$ IT Bull. Soc. Bot. Ital., 1903, pp. 11-22.
 ** Hedwigia, xlii. (1903) Beibl., pp. 165-7. $\dagger \dagger$ Tom. cit., pp. 105-6.
 $\ddagger \ddagger$ Tom. cit., pp. 107-S. §§ Tom. cit., pp. 108-18.
 \|\| Tom. cit. . pp. 172-6.
 II Bull. Herb. Boiss., ii. (1902) pp. 950-9. See also Centralbl. Bakt., x. (I903) pp. 289-90.

[^388]: * Hedwigia, xlii. (1903) Beibl., pp. 188-9.
 + Ber. Deutsch. Bot. Ges., xx. (1903) pp. 267-80.
 \ddagger Hedwigia, xlii. (1903) Beibl., pp. 179-81 (2 fige.).
 \S Tom. cit., pp. 181-5 (7 figs.).
 $\|$ Ber. Deutsch. Bot. Ges., xxi. (1903) pp. 270-5.
 - Malpighia, xvii. (1903) pp. I63-228.
 ** Revista Agron., i. (1903) pp. 20-6 (4 pls.), 55-9, and 89-92 (4 pls.). See also Ann Mycol., i. (1903) pp. 185-6. †t Ann. Mycol., i. (1903) pp. 216-7.
 $\ddagger \ddagger$ Tom. cit., pp. 220-4 (2 figs.).
 \#ifi Tom. cit., pp. 228-31.
 *** Tom. cit., pp. 255-6.
 TT Jom cit., pp. 232-54.
 $\ddagger \ddagger$ Hedwigia, xlii. (1903) Beibl., pp. 176-8.
 §§§ Tom. cit., pp. 185-8.

[^389]: * Malpighia, xvii. (1903) pp. 3-15.
 + Verh. K. K. Zool.-bot. Ges. Wien, liii. (1903) pp. 81-2.
 \ddagger Malpighia, xvii. (1903) pp. 229-38.
 § Bull. Soc. Roy. Bot. Belg., xl. (1901) pp. 43-213.
 || Ber. Deutsch. Bot. Ges., xx. (1903) pp. 264-76.
 TI Ber. Naturw. Ver. Schwaben u. Neuburg, xxxv. (1902) pp. 91-105. See also Bot. Centralbl., xxiv. (1903) p. 99.
 ** Inaug. Diss. Univ. Jena, 1902, 30 pp., 1 double plate. See also Hedwigia, slii. (1903) Beibl. p. 129.
 $\dagger \dagger$ Ber. Deutscl. Bot. Ges., xxi. (1903) pp. 317-23.

[^390]: * Ber. Dentsch. Bot. Ges., xxi. (1903) pp. 302-9.
 \dagger Minnesota Bot. Studies, iii. (1903) pp. 47-50 (1 pl.).
 \ddagger Tom. cit., 11 51-6 (1 pl.).
 § Script. Bot. Hort. Univ. Petrop., xviii. See also Nuov. Notar., xiv. (1903) p. 141.
 || Hedivigia, xlii. (1903) Beibl., pl. 16s, 9.
 T Minnesota Bot. Studies, iii. (1903) pp. 75-7 (2 pls.).

[^391]: * Centralbl. Bakt., $1^{\text {to }}$ Abt., xxxiv. (1903) pp. 222-4.
 \dagger Tom. cit., pp. 212-3.

[^392]: * Centralbl. Bakt., $2^{\text {te }}$ Abt., x. (190;) pp. 524-30. + Tom. cit., pp. 499-500.
 \ddagger Proc. Roy. Soc., lxxii. (1903) pp. 26-30.

[^393]: * Centralbl. Bakt., ${ }^{\text {to }}$ Abt., x. (1903) pp. 497-9.

[^394]: * Centralbl. Bakt., $1^{\text {to }}$ Abt. Orig., xxxiv. (1903) pp. 97-108.
 + Tom. cit., pp. 108-112 (4 figs.).

[^395]: * This Journal, 1886, p. 1052 (figs. 220 and 221).
 \dagger Centralbl. f. Bacteriol., xxxii. (1902) p. 467; and Zeit. f. Wiss. Mikr., xix. 1903) p. $3+7$ (1 fig.).

 Oct. 21st, 1903

[^396]: * Arch. d'Anat. Micr., v. (1902) pp. 17-21 (2 figs.).

[^397]: * English Mechanic. Ixxvii. (1903) p. 324.
 \dagger See this Journal, 1893, p. 373; 1899, p. 142.

[^398]: * * Amer. Journ. Sci., xv. (1903) pp. 224-5.

[^399]: * Zeitechr. wiss. Mikr, six. (190:) pp. 289-96.

[^400]: * English Mechanic, lxxvi. (1903) pp. 4:30-3 (15 figs.).
 \dagger This subdivision contains (1) Collecting Objects, including Culture Processes; (2) Preparing Objects; (3) Cutting, including Imbedding and Microtomes; (4) Staining and Iujecting; (5) Mounting, including slides, preservative fluids, \&c. ;
 (b) Mistellaneons
 \ddagger Centralbl. Bakt., $2^{\text {te }}$ Abt., x. (1903) pp. 531-4 (1 fig.).

[^401]: * Centralbl. Bakt., $1^{\text {to }}$ Abt. Orig., xxxiv. (1903) pp. 188-91.
 \dagger Zeitschr. angew. Mikr., ix. (1903) pp. 58-61 (1 fig.).
 \ddagger Brit. Med. Journ., July 11, 1903, pp. 74-7.

[^402]: * Bull. Mue. (omp. Zool. Harrate Coll., xlii. (1003) pp. 65-9.

[^403]: * Victorian Naturalist, xx. (1903) pp. 17-32 (2 pls.).
 \dagger Metallographist, vi. (1903) pp. 264-5. \ddagger Tom. cit., pp. 195-6.

[^404]: * Metallographist, vi. (1903) pp. 9-13 (1 fig.).
 \dagger Tom. cit., pp. 3-8 (5 figs.).
 \ddagger Sci. Proc. Royal Dublin Soc., ix. (1901) pp. 485-9t (2 figs.) ; x. (1903) pp. 1-5 (1 fig .).

[^405]: F'WMillett del ad nat

[^406]: * Rec. Foram. Git. Britain, 1858, p. 93.
 \dagger Quart. Journ. Micr. Sici., n.s., vol. xix. 1879, p. 279, pl. viii. fig. 28.
 \ddagger Proc. Belfast Nat. Field Club, App. 1885., 1884, p. 321.
 § Journ. R. Micr. Soc., 1887, p. 918.
 II Journ. Linn. Soc., vol. xxviii. 1901, p. 411.
 - Anim. Plage de Dunkerque, part 3, 1881, p. 110, pl. xiii. fig. 2.
 ** Op. cit., fig. 1 .
 $\dagger \dagger$ Mém. Soc. géol. Fr., sér. 3, vol. ii. 1882, p. 34, pl. ix. fig. 32.
 $\ddagger \ddagger$ Journ. Lim. Soc., vol. xxviii. 1900, p. 11, pl. i. fig. 8.

[^407]: * 'The Society are not intended to be denoted hy the editorial " we," and they do not hold themselves responsible for the views of the authors of the papers noted, nor for any claim to novelty or otherwise made by them. 'The objeet of this part of the Journal is to present a summary of the papers as actually published, and to deseribe and illustrate Instruments, Apparatus, de., whieh are either new or have not been previously described in this country.
 \dagger This sentiou inchudes not only papers relating to Embryology properly so called, butalso those dealing with Evolution, Development, Reproduction, and allied subjects.
 \ddagger SB. Phys.-Med. Ges. Würaburg, No. 5 (1302).pp. $70-8$.
 § Auat. Anzeig. xxiii. (1903) pp. 48i;-94.

[^408]: * Anat. Anzeig., xxiii. (1903) pp. 577-88 (8 figs.).
 \pm Proc. Cambridge Phil. Suc., xii. (1903) pp. 15:3-4.
 \ddagger Biol. Bulletin, v. No. 1, pp. $\overline{\mathrm{j}}-6 \mathrm{z}$.

[^409]: * Comptes Rendus, cxxxvi. (1903) pp. 1411-3.
 \dagger Biol. Bull. iv. (1903) pp. $250-69$ (8 figs.) See Zool. Centralbl. x. (1903) p. 616 .
 \ddagger Amer. Naturalist, xxxvii. (1903) lp. :385-410.
 § Biol. Ceutralbl., xxiii. (1903) pp. 726-8.
 || Atti. Soc. 'Tose. Sci. Nat., xix. (1903) pp. 239-6T (2 pls.).

[^410]: * Anat. Anzeig., xxiii. (1903) 1p. 401-24 (15 figs.).
 + Biol. Centralbl., xxiii. (1903) 1'p. 680-96 (12 tigs.).
 \ddagger Anat. Anzeig., xxiii. (1903) pp. 497-507 (3 figs.).

[^411]: * Amer. Naturalist, $x \times x$ vii., No. 440, pp. 541-50.
 \dagger Zool Jahrb, xviii. (1903) pp. 488-506 (2 pls.).
 \ddagger Trav. Sci. Univ. Rennes, i. (1902) pp. 175-S6 (3 figs.)
 § Proc. Linn. Soc. N.S.W., xxvii. (1902, published 1903) pp. 544-60 (3 pls.).
 II Anat. Anzeig. xxiii. (1903) pp. 627-3t (3 figs.).

[^412]: * Decennial Publicatious, Univ. Chicago, x. series 1, p. 20 (10 pls.).
 \dagger Anat. Anzeig., xxiii. (1903) pp. 508-24 (5 figs.).
 \ddagger Proc. Cambridge Phil. Soc., xii. (1903) pp. 141-3.
 § Mem. Carnegie Museum, i. pl. 65-108 (7 pls.). See Amer. Naturalist, xxxvii. (1903) pp. 49צ-9. |f Amer. Naturalist, xuxvii. (1903) pp. 489-92 (l fig.).

[^413]: : Trav. Sci. Univ. Rennes, i. (1902) pp. 191-4.

 + Arkiv. Zcol. Srensk. Vetenskapsacad., i. (1903) pp. 65-8:\% (5 figs.).
 \ddagger Zeitechr. Wiss. Zool., lxxv. (I903, Mp. $308-26$ (2 pls.).
 § Zool. Jahrb., xviii. (1903) pp. 475-8 (1 pl.).
 || Bull. Sci. Acad. Roy. Belgique, No. 8 (1ЧUЗ) 1p. i92-801.

[^414]: * Comptes Rendus, cxxxvii. pp. 46:-71.
 \dagger Zeitechr. Wiss. Zool., lxxv. (1903) pp. 233-57 (17 fige.).
 \ddagger I'roc. Roy. Soc, London, lxxii. (1903) pp. 98-9.
 § Amer. Naturalist, xxxvii. (1903) pp. 22:;-42 (9 figs.).

[^415]: * Amer. Naturalist, xxxii. (I908) pp, 490-5 (2 figs.).
 \dagger Proc. R. Irish Arall, xxiv. (1903) pp. 268-302.

[^416]: * Trans. Connecticut Acad., xi. (Centenuial vol.) Part II. (1901-2) Ip. x. and 413-956, 1]s. lxv-civ.
 \dagger Zool. Jahrb., xix. Heft i. (1903) pp. 37-98 (2 pls. and 3 figs.).
 \ddagger Zool. Anzeig., xxvi. (1903) pp. 716-17 (3 figs.).
 § Zool. Jahrb., x viii (1903) 1pp. 327-58 (5 pls. and 10 figs.).
 $\|$ Trav. Sci. Univ. Rennes, i. (1902) pp. 165-9 (1 photograjh).
 TI Trav. Sci. Univ. Rennes, i. Fasc. iii. (1902) pl. 361-4 (4 figs.).

[^417]: * Zool. Anzeig., xxvii. (1903) pp. 1-7 (7 figs.)
 \dagger Zool. Jahrb. xviii. (1903) pp. 359-86 (2 pls.).
 \ddagger Zool. Anzeig. xxvii. (1903) pp. 7-12 (3 figs.).
 § Proc. Acad. Nat. Sc. of Philadelphia, Aug. 1903, 1p. 615-6.

[^418]: * Amer. Naturalist, xxxvii. No. 440, pp. 515-39.
 \dagger Arch. Zool. Expér., series 4, i. (1903), Notes et Revue No. 7, pp. cv-cxv.
 \ddagger Bull. Soc. Zool. France, xxviii. (1903) pp. 149-50.
 § Amer. Naturalist, xxxvii. (1903) pp. 481-8 (7 figs.).
 :Tom. cit., pp. 443-79.

[^419]: * Verh. k. Akar. Wetenshappen Amsterdam, x. (190:3) 1p. 1-90 (11 pls.).
 \dagger Knowlerlge, xxvi. (1903) p. 20 f.
 \ddagger MT. Ver. Kchleswig-Holstein, xi. (1903) 2 pp. See Zool. Centralbl., x. (190:) p. 5i7. § Zool. Anzeig., xxvi. (1903) pp. 710-5 (2 figs.).
 $\|$ Verh. Zool. Bit. (ies. Wien, Kiii. (1903) pp. $\mathbf{~ S 6 9 - 8 0 .}$

[^420]: * Zeitschr. Wiss. Zool., lxxv. (1903) pp. 221-32 (2 pls.).
 + Biol. Centralbl. xxiii. (1903) pp. 679-80.
 \ddagger Proc. Entom. Soc. Washington, iv. No. 4, p. 497, 1901.
 § Proc. Cambridge Phil. Soc., xii. (I903) pp. 199-200.
 II Decennial Publications, Univ. Chicago, x. p. 40 (3 pls.).

[^421]: * Journ. Asiatic Soc. Bengal, lxxii. (1903) pp. 6-7.
 \dagger Publications of the Board of Agriculture, leaflet No. 91, p 6. (3 figs.).
 \ddagger Proc. Asiatic Soc. Bengal, No. iv. (1903) pp. 76-89.
 § Zool. Jahrb., xix. Heft i. pp. 1-8 (1 pl.).
 \# Papers and Proc. R. Soc. Tasmania, 1902, published 1903, pp. S1-2 (1 pl.).

[^422]: * Bull. New York State Museum, No. 68 (1903) pp. 199-517 (52 pls.).
 \dagger Amer. Naturalist, xxxvii. (1903) pp. 608-24 (18 figs.).
 \ddagger Biol. Centralbl., xxiii. (1903) pp. 720-5.
 § Archiv. Naturges, lxix. (190:3) pp. 427-41 (1 pl.).

[^423]: * Zool. Anzeig., xxvi. No. 717, lp. 665-85.
 + Biol. Bull., iv. (190:3) pp. 192-6. See Zool. Centralbl., x. (190:3) pp. 605-6.
 \ddagger Comptes Rendus, exxxvi. (190:) pp. 1418-9.
 §.Amer. Naturalist, xxxvii. (1903) pp. 601-8. || Tom. cit., pp. 267-92.

[^424]: * Amer. Journ. Anat., ii. (1903) pp. 365-9 (1 pl.).
 \dagger Ann. Inst. Pasteur, x vii. (1903) pp. 449-62 (2 pls.).
 \ddagger Jour. Coll. of Science, Imp. Univ. of Tokyo, x vii. art. 11, pp. 1-37 (2 pl.).

[^425]: * Arch. Naturges., 1xix. (1903) pp. 297-371.
 \dagger Annals. and Mag. Nat. Hist., series 7, xii. No. 69, pp. 334-337 (1 pl.)
 \ddagger Zool. Jahrb., xviii. (1903) pp. 387-474 (7 pls.).
 § Proc. Roy. Soc., lxxii. No. 478, pp. 93-98.

[^426]: * Proc. Linn. Soc. N.S.W., xxvii. (1902, pullished 1903) pp. 497-515 (2 pls.).

 \ddagger Univ. of California Publications, Zoology, i. No. :', pp. 115-jb, pls. 12-15.

[^427]: * Proc. Calif. Acad. of Sciences, series 3, Zoolcgy, ii. No. 4, pp.323-48 (1 pl.)
 \dagger Op. cit. supra, iii. No. 3, pp 49-108 (1 11.).
 \ddagger Proc. Acad. Nat. Sci. of Philadelphia, 1908, pp. 363-95 (4 pls.).
 § Comptes Rendus, cxxxvii. (1903) pp. 496-8. 0_{1}. eit., Ixxxv., 5 th Nov. 1877.

[^428]: * Amer. Journ. Sci.. xvi. (1903) pp. 289-300 (11 figs.).
 \dagger Proc. Royal Irish Acad., xxiv. sec. B, part 3, 111. 231-67.
 \pm Op. cit., xii. series 7, No. 70, pp. 406-17.
 § Biol. C'entralbl., xxiii. (1903) pp. 678-9.
 if Zool. Jahrb., xix. Heft. i. (190:3) pp. 99-172 (3 pls.).
 - Proc. Linn. Soc. N.s.W., xxvii. (1902, published 1903) pp. 654-5 (1 fig.).

[^429]: * Trav. Sci. Univ. Rennes, i. (1902) pp. 187-90 (9 figs.).
 \dagger Amer. Journ. of Sci., xvi. No. 91 (July I90:3) pp. 1-11, ple. 1-5.
 \ddagger Trav. Sci. Univ. Rennes, i. (1902) pp. 317-:31.
 § Archiv. Naturges., Ixix. (1903) pp. 375-9S (1 pl.).
 || Zool. Jahrb. xix. Heft. i. (1903) pp. $9-26$ (3 pls.).
 ब Tom. cit., pp. 27-36 (3 figs.).
 ** Arch. Zool. Expér., I. series 4 (190:3). Notes et Revue, No. 9, pl. cxli.-vii. (11 figs.).

[^430]: * Arch. Zool. Expér. I. series 4 (1903). Notes et Levue, No. 9, pl. exlvii.-li. (6 figs.).
 finl. Bull., iv. (1908) pp.:319-20. See Zool. Centralbl. x. (1903) 592-3.
 \ddagger Zorl. Centralbl. х. (1903) pp. 617-61.

[^431]: * Bot. Gazette, xxxvi. (190:i) Pp. S1-100 (2 double pls.)

[^432]: * Proc. Roy. Soc., Ixxii. (1903) p. 104 (6 figs.).
 + S.B. k. Akad. Wiss. Wien, cxi. (1902) pp. 855-72 (1 pl.).
 \ddagger Arch. Pharm., cexli. (1903) pp. 313-20. See also Journ. Chem. Noc. 1xxxiv. i. (190:i) p. 716.

[^433]: * C'omptes Rendus, cxxxvii. (190:3) pp. 80-2.
 + S.B. k. Akad. Wiss. Wien, cxi. (1902) pr $723-1$ (1 pl.).
 \ddagger Tom. cit., pp. 278-300 (2 pls.).

[^434]: * Bot. Gazette, xxxvi. (190:) P1. 114-33 (11 pls.).

[^435]: * Flora, xcii. (1903) pp. 284-9: (1 pl.).
 \dagger Comptes Rendus, cxxxvii. (1903) pl. 499-500.

[^436]: * Bull. Soc. Bot. Fr., l. (1903) pp. 118-28.
 \uparrow Bull. Soc. Chim., ser. 3, xxix. (1903) pp. 619-23. See also Journ. Chem. Soc. lexxiv. (1903) ii. p. 608.
 \ddagger Comptes Rendus, cxxxvii. (1903) pp. 48:3-5.

[^437]: * Comptes Rendus, exxxvii. (1903) p $500-2$. + Bull. Torr. Bot. Cl., xxx. (1903) M1.4'8-45. \ddagger Tom. cit., pp $419 \ldots 9$

[^438]: * Ber. Deutsch. Bot. Ges., x xi. (1903) pp. 195-210; Bot. Zeit., lxi. (1903) pp. 116-126. + Amer. Naturalist, xxxvii. (1903) pr. 443-79.
 \ddagger Journ. Linn. Soc., xxxvi. (1903) ju, 4:30-6:3 (2 pls.).

[^439]: * Proc. Roy. Soc., lxxi. (1903) pp. 433-7 (4 figs. in text).
 + Tokyo Bot. Mag., xvii. (1903) pp. 63-9.
 \ddagger Bull. Herb. Boiss., ser. 2, iii. (1903) 1pp. 508-14.

[^440]: * Fern Bulletin, xi. (1903) pp. 38-40. + Tom. cit., pp. 40-44.
 \ddagger Tom. cit., Pp. 44-6. § Tom. cit., pp. 54-9.
 || 'Tom. cit., 111. 33-8.
 - Bull. Torrey Bot Club, xxx. (190:3) 111. 343-58.
 *: Tom. cit., 1 1). 359-62.
 $\dagger \dagger$ Minnesota B t. Studies, ser. iii. (1903) ppr. 245-55.
 $\ddagger \ddagger$ Beih. Bct. Centralbl., xv. (190;) pp. 65-8s (3 pls., 1 fig. in text).
 §\$ Rabenhorst's Kryptogamen-Flora, iv. :3, Lief. :39 (190:3) pp. 769-S:3.
 i\| Bull. Soc. R. Bot. Belg., xli. 2(2 (1903) pp. 4S-55.
 -IG Bot. Tidsskr., xxv. (1903) pl' 24:3-51.

[^441]: * Mem. Pont. Ac. Rom. Nuov. Lincei, xxi. (1903) 14 pp. See also Rev. Bryol., 1903, p. 7 S .
 \dagger Bull. Soc. Españ. Hist. Nat., iii. (1903) pp, 242-44 (figs. in text).
 \ddagger Journ. Bot., xli. (1903) pp. 247-8.
 § Hedwigia, xlii. (1903) Beibl., 111. 169-71.
 Ii Bryologist, vi. (1903) pp. 58-61. T Tom. cit., pp. 61-2.
 ** Tom. cit., 1 p . 63-5.
 $\dagger \dagger$ Minnesota Bot. Studies, ser. iii. (1903) pp. 109-27 (with plates).
 $\ddagger \ddagger$ Tom. cit., pp. 129-31 (with plates).
 §§ Rev. Bryol., xxx. (190:) 1p. 66-9.
 IIII Trans. and Proc. Bot. Soc. Edinburgh, xxii. (1902) pp. 249-54.
 If Ann. Scott. Nat. Hist., 1903, pp. 175-80.
 *** Journ. Bot., xli. (1903) p. $286 . \quad \dagger \dagger \dagger$ Rev. Bryol., xxx. (190:i) y. 61.
 $+\ddagger$ 'Tom. cit., pp. 6:-s.

[^442]: * Rev. Bryol. xxx. (1903) pp. 73-6. † Tom. cit., pp. 70-3.
 \ddagger Acc. Sci. Fersara, 1903, 20 pp., 10 figs. See also Rev. Bryol., xxx, (1903) p. 80.
 § Bull. Herb. Inst. Bot. Bucarest, 1903. See also Rev. Bryol., xxx. (190;i) p. 77.
 II Oesterr. Bot. Zeitschr., liii. (1903) pp, 1:37-40.
 of Tom. cit., pp. 95-9, 166-72, 185-94, 246-52, 280-4 (3 pls.)
 ** Ottawa Naturalist, 1903, pp. 13-24 (2 pls.).
 $+\dagger$ Minuesuta Bot. Studies, ser. iii. (1903) pp. 141-4.
 $\ddagger \ddagger$ lhodora, v. (1903) pp. 170-3. §§ Journ. Pint., xli. (1903) pp. :300-6.

[^443]: * Bihang K. Vet. Akad. Handl., iii. (1903) No. 10, 20 pp . (2 pls.).
 + Rev. Gén. Bot., xv. (1903) pp. 310-27.
 \ddagger U.S. Dept. of Agric. ; Bureau of Plant Indastry ; Bull. No. 37 (1903) pp. 1-40 (6 pls.). Siee also Bot. Centralbl., xciii. (1903) f. 259.

[^444]: * Bull. Soc. Mycol. France, xix. (1903) pp. 106-26.
 \dagger 'Tom. cit., pp. 119-27 (1 11.).
 \ddagger Ber. Dentsch. Bot. Ges., xxi. (1903) pp. 259-69 (1 pl).
 S.Matériaux pour la Flore Cryptogamique Suisse, II. fase. 1 (1903) 39 1p. (18 coloured ils.).
 \| B Bot. Zett., Ixi. (1903) pp. 111-5s.

[^445]: * Zeitschr. angew. Mikr., ix. (190:3) pp. 63-5.
 \dagger ('entralbl. Bakt, x. (1903) py. 52-9. \ddagger Tom. cit., pp. 570-;.
 § Tom. cit., pp. 689-700.

[^446]: * Thèse de l'Univ. de Naney, $1903,76 \mathrm{pp}$. See also Bot. Centralbl., xciii. p. ${ }^{2} 71$.
 \dagger Centralbl. Bakt., x. (1903) p. 574.
 \ddagger Tom. cit., pp. 575-7.
 § Ber. Dentseh. Bot. Ges., xxi. (1903) p. :356.
 II Journ. Appl. Micr., v. (1902) pp. 2075-ti.
 - Inn. Mycol., i. (1903) pp. 341-3.
 ** Arkiv. Bot. K, Svensk. Vetenskapakad., i. (1903) pp. L39-16.
 $\dagger \dagger$ Contralbl. Bakt., x. (1903) pp. $700-21$ (27 tiors.).
 Dec. 16th, 100 .;

[^447]: * Ber. Deutsch. Bot. Ges., xxi. (1903) pp. 366-7I (1 pl.).
 + Anu. Mycol., i. (1903) pp. 335-40.
 \ddagger Bull. Cl. Sci. Acad. Fuy' Lelg., 1903, 1p. 515-20.

[^448]: * Iowa Geological Survey. Des Moines (1901). 525 pp., 220 figs., 3 col. ple. See also Centralbl. Bakt., x. (1903) p. 7!.
 + Malpighia, Ix. (190;) pp. 419-23.
 \ddagger Comptes Rendus, cxxxvi. (1903) pp. 258-55.
 § Journ. 13ot., xli. (1903) pp. 257-60 (1 pl.).
 If Overs. K. Danske Videnskab. Selskabs. Forh.. 1902, No. 6, pp. 24.5-56. Se also Bot. Centralbl., xciii. (1903) p. 258.

[^449]: * Comptes Rendus, cxaxvii. (190:i) pp. 451-;)
 † Ann. Mycol., i. (1903) pp. 344-53.
 \ddagger Comptes Rendus, cxxxvii. (1903) pp. :877-89.
 \S Proc. Bost. Soc. Niat. Hist., xxx. (190*) pp. $451-513$ (1 pls.).

[^450]: * Bihang. k. Vet.-Akad.-Handl., iii. (1903) No. 1, 53 pp. (" figs.).
 \dagger S.B. k. Akad. Wiss., exi. (1902) pp. 357-432 (2 pls.).
 \ddagger Botaniske Notiser, 1903, Heft 1, 33 pp . Sce also Centralbl. Bakt., x. (1903) pl. 602-3.
 § Die Natürlichen Pflanzenfamilien, Engler und Prantl, Lief. 217 (1903) pp. 40-96 (figs.).

[^451]: * Beih. Bot. Centralbl., xv. (1908) pp. 31-64 (1 pl.).
 + Ber. Deutsch. Bot. Ges., $\mathbf{x x i}$. (1903) pp. 309-16 (1 pl.).

[^452]: - Biol. Centraibl., xxiii. (190:3) pp. 512-:.
 \dagger Rep. Brit. Assoc., 1902, pp. 647-!.
 \ddagger Rep. Med. Oft. local Gov. Poad, 1001-2, py $20 \mathrm{E}-40$.

[^453]: * Rep. Brit. Assoc., 1902, p. S01.
 + Proc. Roy. Soc., Ixxii. (1903) pp. 126-8.
 \pm Rep. Med. Off. Local Gov. Board, 1901-2, pp. 440-54.
 § Ann. Inst. Pasteur, xvii. (1903) Iए. 564-8.
 Trm. cit., Pp. 540-63.

[^454]: * This subdivision contains (1) Siands; (2) Eye-pieces and Objectives; (3) Illuminating and other Apparatus; (4) Phetomicrography; (5) Dicroscopical Optices and Manipulation ; (6) Miscellaneous.
 \dagger C'atalogue, No. 40, Nov. 1902, pp. 55-7. \ddagger Tom. cit., pp. 58-9.

[^455]: * Catalogue, No. 40, Nov. 1902, p. 64
 \dagger Trav. Sci. Unir. Remes, i (1902) pe. 310-2. \ddagger Tom. cit., p. 277.

[^456]: * Trar. Sci. Univ. Rennes, i. (1902) pp. 157-163 (2 figs.).
 + Central-Zeit. f. Opt. und Mech., Xxiv. (1903) pp. 7 T-5 (3 figs.).
 \ddagger Zeit. f. Instr., xxiii. (1903) pp. 274-7 (2 figs.).

[^457]: :* Leitz' Catalogue, No. 40, Nov. 1902, p. 74; Centralb. f. Balst., 1899, pl. Ttioti.
 \dagger Fuess, Special-Liste, No. 74, pp. 4 and 5.

[^458]: Marktanner-Turneretscher, G.-Wichtigere Forschritte auf dem Gebiete der Mikrophotographie und des projektionswesens.
 [Gives a comprehensive résumé of international progress in these departmonts of science.] S.A. Jahrb. f. Phofographie und Reprodulitionstechnili f., Halle, 190\%, 10 pp .

[^459]: * Scientific American, quoted in Central-Zeit. f. Opit. und Mech., sxiv. (190;) 111. 144-6 (7 figs.).

[^460]: Siedentopf, H., \& R. Zsigmondr-Über Sichtbarmachung und Grösser-bestimmuing ultramikroskopischer Teilchen, mit besorderer Anwendung auf Goldrubingläser.
 [The sulstance of this pamphlet was given to the Society at the Meeting on June 17, 1903. and is reported in the Proceedings for that date.]
 S.A. Physilk. Vierte Folye. X. (1903) 39 pp.

 A copions French abstract of the preceding appears in the Bibiotheque Ciniverselle (Arch. Sci. Phys. et Nut.), XVI., Geneva, 190:3, pp. 130-8.

 * Alhandl. z. Physiol. d. Gesichtsempfindungen, 1897, pp. vi. and 198; 1902 p. 197. Leripzig.
 \dagger Sicientiac American, quoted in English Mechanio, Ixsviii. (1903) pp. 478-9 (3 figs.).

[^461]: * This suldivision contains (1) Collecting Objects, including Culture Proresses; (2) Preparing Oljects; (3) Curting, including Imberding and Mirrotomes: (4) Staining and Injecting ; (5) Mounting, inchuding slides, preservative fluids, de.; (6) Miscellaneous.
 \dagger Jounn. App. Mier., vi. (1903) p. $2409 . \quad \ddagger$ Tom. cit., pp. 2309-14.
 § Arch. f. Myg., xlvii. (1903) p. 57. See Centralbl Biat. hef., xxxiii. (I90:3) pp. 665-(i.
 || Centralbl. Bakt. Orig., $1^{\text {to }}$ Abt., xxaiv. (1903) [1. $463-79$.

[^462]: * Centralbl. Dakt., $2^{\text {te }}$ Abt., x. No. 22-3 (1903) 1 p. 730-40.
 \dagger Journ. App. Micr.. vi. (1903) p. 2414.
 \ddagger Proc. Anser. Nat. Sci. Philadel ${ }^{\text {hhia, }}$ Iv. (1903) pp. 2-3.

[^463]: * Archiv. Biol., six. (1908) 1p. 701-828 (41 ls.).
 \dagger Centralbl. Allgm. Pathol. u. pathol. Anat., xiv. (1903) 1ry 6al-2.
 \ddagger Journ. Apl. Micr., vi. (1903) 1. 22,it (I fig.).

[^464]: * Arch. Mikr. Anat., lxii. (1903) pp 367-430.
 + Journ. App. Mikr., vi. (1903) pp. 2160-1. \quad Tom. cit. pp. 2253-4.

[^465]: * Arch. Mikr. Anat., Ixii. (190:') pp. 734-9.
 + Zeitschr. Wiss. Mikr., xx. (1903) rp. 28-:\%

[^466]: * Hoston Med. and Surg. Journ., 190\%, pp. 659-69. See also Zeit. Wiss. Mikr., xx. (1903) $\boldsymbol{\mu}^{\prime \prime}$. 8S-9.
 \dagger Zeit. Wiss. Mikr., xx. i. (1903) 11p. - ${ }^{2}-8$.

[^467]: * Bull. Soc. Imp. Natur. Moseow, 1903. pp. 581-2.
 \dagger Virchow's Archiv., 1903, Heft 2. See C'entralbl. Bakt. Ref., xxxiii. (1903) p. 545.
 \ddagger Zeit. Wiss. Mikr., xx. (1903) pp. $21-3$.
 § Centralbl. Allg. Path., 1902, p. 193. See also Zeit. Wiss. Mikr., xx. (1903) pp. 87-88.

[^468]: * Zeit. Wiss. Mikr., xx. (1903) pp. 14-16.
 \dagger Journ. App. Micr., vi. (1903) p. 2413.
 *.Journ. Soc. Arts, li. (1903) pp. 872-3.

[^469]: ${ }^{*}$ Roy. Soc. Rep. Sleeping Sickness Com., No. 1 (1903) 88 pp. (10 pls).

 + Proc. Roy. Soe., lxxii. (1903) p. 98.

[^470]: * Brit. Med. Journ., ii. (1903) pp. 313-4.
 + Centralhl. Bakt. $1^{\text {to }}$ Abt. Orig., xxiv. (1908) pp. 7:38-5.

[^471]: * Zeit. Wiss. Mikr., xx. (1908) pr. 17-20 (1 fig.).
 \dagger Tom. cit., pp. 12-4 (l fig.).
 \ddagger Page's Mag., iii. (1903) 11. $99-104$ (8 figs.).
 § Amer. Journ. 'ci., xv. (1903) 1p. $227-32$ (2 figs.).

