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PREFACE.

A WIDE difference of opinion is known to exist among teachers

in regard to the vaiue of a Key to any mathematical work, and

it is perhaps yet undecided whether a Key is a help or a

hindrance.

If a Key is designed to supersede the necessity of investiga-

tion and labor on the part of the teacher; to present to his

mind every combination of thought which ought to be suggested

by a problem, and to permit him to float sluggishly along the

current of ideas developed by the author, it would certainly do

great harm, and should be excluded from every school.

If, on the contrary, a Key is so constructed as to suggest

ideas, both in regard to particular questions and general science,

which the Text-book might not impart ;
if it develops methods

of solution too particular or too elaborate to find a place in the

te.tt
;

if it is mainly designed to lessen the mechanical labor of

teachings rather than the labor of study and investigation ;
it

may, in the hands of a good teacher, prove a valuable auxiliary.

The Key to Bourdon is intended to answer, precisely, this

544 407



IV PBEFAOE.

end. The principles developed in the text are explained and

illustrated by means of numerous examples, and these are all

wrought in the Key by methods which accord with and make

evident the principles themselves. The Key, therefore, not only

explains the various questions, but is a commentary on the text

itself.

Nothing is more gratifying to an ambitious teacher than to

push forward the investigations of his pupils beyond the limits

of the text book. To aid him in an undertaking so useful to

himself and to them, an Appendix has been added, containing a

copious collection of Practical Examples. Many of the solutions

are quite curious and instructive
;

and taken in connection with

those embraced in the Text, form a full and complete system of

Algebraic Analysis.

The many letters which I have received from Teachers and

Pupils, in regard to the best solutions of new questions, have

suggested the desirableness of furnishing, in the present work,

those which have been most approved. They are a collection

of problems that have special values, and their solutions maybe
studied with great profit by every one seeking mathematical

knowledge.

FisHKiLL Landing, I

July, ms. f



INTRODUCTION

ALGEBRA.

1. On an analysis of the subject of Algebra, we

think it will appear that the subject itself presents no

serious difficulties, and that most of the embarrassment

which is experienced by the pupil in gaining a knowl-

edge of its principles, as well as in their applications,

arises from not attending sufficiently to the language

or signs of the thoughts which are combined in the

reasonings. At the hazard, therefore, of being a little

diffuse, I shall begin with the very elements of the

algebraic language, and explain, with much minute-

ness, the exact signification of the characters that stand

for the quantities which are the subjects of the analy-

sis ; and also of those signs which indicate the several

operations to be performed on the quantities.

Algebra.

DifficuItiM

How over-

come.

Language.

Characiera

which repre-

sent quantity

Signs.

2. The quantities which are the subjects of the H^a-ntitie*.

algebraic analysis may be divided into two classes: How divided

those which are known or given, and those which are

unknown or sought. The known are uniformily repre-

sented by the first letters of the alphabet, a, 6, c, d^

&c.; and the unknown by the final letters, Xj y, 2,

V, w, &C.

How repr^
sented.
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May be in-

creased or

diminished.

Five opera-

tions.

Quantity is susceptible of being increased, di-

minished, and measured
;
and there are six operations

which can be performed upon a quantity that will

give results differing from the quantity itself, viz.:

1st. To add it to itself or to some other quantity ;

2d. To subtract some other quantity from it;

3d. To multiply it by a number;

4th. To divide it;

5th. To raise it to any power;

6th. To extract a root of it.

The cases in which the multiplier or divisor is 1,

are of course excepted; as also the case where a

root is to be extracted of 1.

Signs. 4. The six signs which denote these operations
Elements ^^^ ^^^ ^^yi knowH to be repeated here. These, with

Algebraic ^g signs of equality and inequality, the letters of the
language.

alphabet and the figures which are employed, make up
Its words and ^^q elements of the algebraic language. The words

phrases :

and phrases of the algebraic, like those of every

How inter- other language, are to be taken in connection with
preted.

each other, and are not to be interpreted as separate

and isolated symbols.

First

Second

Third.

Fourth.

Fifth.

Exoeption.

07mbols of

qnantity.
5. The symbols of quantity are designed to repre-

sent quantity in general, whether abstract or concrete,

whether known or unknown ; and the signs which in-

dicate the operations to be performed on the quanti-

ties are to be interpreted in a sense equally general.

When the sign plus is written, it indicates that the

'^''minul.'^"'^ quantity before which it is placed is to be added to

some other quantity : and the sign minus implies the

General.

E'kamples.
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existence of a minuend, from which the subtrahend is

to be taken. One thing should be observed in regard signs have n«

effect on the

to the signs which indicate the operations that are to nature of

be performed on quantities, viz.: they do not at all
^'^'^^'^^^^

affect or change the nature of the qxiantitij before or

after which they are written, but merely indicate what

is to be done with t//e quantity. In Algebra, for ex- Exampiei:
In Algebra.

ample, the minus sign merely indicates that the quan-

tity before which it is written is to be subtracted from

some other quantity ; and in Anal}'tical Geometry, that in Analytical

the line before which it falls is estimated in a contrary

direction from that in which it would have been reck-

oned, had it had the sign plus ; but in neither case is

the nature of the quantity itself different from what

it would have been had the sign been plus.

The interpretation of the language of Algebra is interpretation

of the

the first thing to which the attention of a pupil should language:

be directed ; and he should be drilled on the meaning

and import of the symbols, until their significations

and uses are as familiar as the sounds and combina- ^ts necessity.

tions of the letters of the alphabet.

6. Beginning with the elements of the language,
Eiemenu

. . explained
let any number or quantity be designated by the letter

o, and let it be required to add this letter to itself

and find the result or sum. The addition will be

expressed by
a + a = the sum.

But how is the sum to be expressed? By simply signification

regarding a as one a, or la, and then observing that

one a and one a, make two a's or 2a : hence,
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a 4" a = 2a ;

and thus we place a figure before a letter to indicate

how many times it is taken. Such figure is called a

Co-efEoient Co-efficicnt,

Pieduct: 7. The product of several numbers is indicated

by the sign of multiplication, or by simply writing the

letters which represent the numbers by the side of

each other. Thus,

4ow indicated axbxcxdxf, or abcdf,

indicates the continued product of «, />, c, d, and /,

Factor. and each letter is called a factor of the product :

hence, a factor of a product is one of the multipliers

which produce it. Any figure, as 5, written before a

product, as

bahcdf,

Co-efficient of is the co-cfficicnt of the product, and shows that the
a product. J i.

• X 1 r X-

product IS taken 5 times.

Bjtial factors :

g^ jf ^\^q numbers represented by a, b, r, d, and

what the
y, were equal to each other, they would each be

product

becomes. represented by a single letter a^ and the product

would then become

How
dzpreaaec axaxaxaxa = a^\

that is, we indicate the product of several equal fac-

tors by simply writing the letter once and placing a

figure above and a I'ftle at the right )f it, to indicate
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how many times it is taken as a factor. The figure Exponent:

BO written is called an exponetit. Hence, an exponent where -written.

is a simple form of language to point out how many

equal factors are employed.

9. The division of one quantity by another is indi- Diruion:

cated by simply writing the divisor below the dividend, how

t%. ^ /,».,-,.. expressed
after the manner ot a traction ; by placmg it on the

right of the dividend with a horizontal line and two

dots between them ; or by placing it on the right with

a vertical line between them : thus either form of

expression :

J^ h-^a, or b\a, Three form-.

indicates the division of 5 by a.

10. The extraction of a root is indicated by the Rocta:

sign ^/. This sign, when used by itself indicates the how indicated

lowest root, viz., the square root. If any other root

is to be extracted, as the third, fourth, fifth, &c, the index;

figure marking the degree of the root is written above where written

and at the left of the sign ; as,

^ cube root, ^/ fourth root, &c.

The figure so written, is called the Index of the root. Language foi

"We have thus given the very simple and general operltilni

language by which we indicate each of the five

operations that may be performed on an algebraic

quantity, and every process in Algebra involves one or

other of these operations.
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MINUS SIGN.

laifeuage;
^^' ^^® algebraic symbols are divided into two

classes entirely distinct from each other—viz, the

kowdiTided. letters that are used to designate the quantities which

are the subjects of the science, and the signs which

are employed to indicate certain operations to be per-

Aigebraic formed CD thosB quantities. We have seen that all
prooosses :

the algebraic processes are comprised under addition,

ihei: number. Subtraction, multiplication, division, and the extraction

Do not change of roots ; and it is plain, that the nature of a quan-

t\e uantitiee ^^^^^
^^ ^^^ ^^ ^^^ changed by prefixing to it the sign

which indicates either of these operations. The quan-

tity denoted by the letter o, for examph.', is the same,

in every respect, whatever sign may be prefixed to it ;

that is, whether it be added to another quantity, sub-

tracted from it, whether multiplied or divided by any

number, or whether we extract the square or cube or

Algebraic ^"7 Other root of it. The algebraic signs, therefore,

"*^"* • must be regarded merely as indicating operations to

be performed on quantity, and not as affecting the

nature of the quantities to which they may be prefixed.

Plus and y^Q gay, indeed, that quantities are plus and minus,
MiBUI.

but this is an abbreviated language to express that

they are to be added or subtracted.

Principles of
jg. In Algebra, as in Arithmetic and Geometry

the icienoe- ° •'

From what all the principles of the science are deduced from th<

definitions and axioms ; and the rules for performing

the operations are but directions framed in conformitj

Example, to such principles. Having, for example, fixed bj

definition, the power of the minus sign, viz., that ani
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quantity before which it is written, shall be regarded

as to be subtracted from another quantity, we wish to "^^^* ^'^ "'^

to discover

discover the process of performing that subtraction, so

as to deduce therefrom a general formula, from which

we can frame a rule applicable to all sipailar cases.

h

a — c

SUBTRACTION.

13. Let it be required, for example, to subtract Subtractioa

from h the difference between a and c.

Now, having written the letters, with

their proper signs, the language of Al-

gebra expresses that it is the difference only between

a and c, which is to be taken from h
; and if this dif-

ference were known, we could make the subtraction at

once. But the nature and generality of the algebraic

symbols, enable us to indicate operations, merely, and

we cannot in general make reductions until we come

to the final result. In what general way, therefore,

can we indicate the true difference ?

Process.

Difference.

Operations

indicated.

h-
b — a -\- c

Final formula,

If we indicate the subtraction of a

from by we have b ~ a-, but then we

Lave taken away too much from b by

the number of units in c;for it was not a, but the dif-

ference between a and c that was to be subtracted

from b. Having taken away too much, the remainder

1? too small by c : hence, if c be added, the true re-

mainder will be expressed by b — a -\- c.

Now, by analyzing this result, we see that the sign Analysis of

of every term of the subtrahend has been changed ;

and what has been si own with respect to these quan-
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Generaliza-

tion.

Knk.

titles is equally true of all others Btanding in the ?ame

relation : hence, we have the following general rule

for the subtraction of algebraic quantities :

Change the sign of every term of the subtrahend, or

conceive it to be changed, and then unite the quantities

as in addition.

Maltiplioa-

tion.

Biffrification

of the

language.

Froeets.

Iti nature.

Principle for

the signs.

a-b

be

MULTIPLICATION.

14. Let us now consider the case of multiplication,

and let it be required to multiply a — b by c. Th«»

algebraic language expresses that the

difference between a and b is to be

taken as many times as there are

units in c. If we knew this differ-

ence, we could at once perform the multiplication.

But by what general process is it to be performed

without finding that difference ? If we take a, c times,

the product will be ac; but as it was only the differ*

ence between a and 6, that was to be multiplied by c,

this product ac will be too great by b taken c times ;

that is, the true product will be expressed by ac — be:

hence, we see, that,

If a quantity having a plus sign be multiplied by

another quantity having also a phis sign, the sign of

the product will be plus ; and if a qtiantiiy having a

minus sign be multiplied by a quantity having a plus

sign, the sign of the product will be minus.

etaeraioase: 16. Let US now take the most general case, viz.,

that in which it is required to multipy a — b by c - d.
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a-b
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How can the product of two negative quantities standi

mg alone be plus ?

Minus Bign. In the first place, the minus sign being prefixed to

•> and d, shows that in an algebraic sense they do not

Hs interpre-
"»tand by themsclves, but are connected with other quan-

***^°°"
titles

; and if they are not so connected, the minus

sign makes no difference ; for, it in no case affects the

quantity, but merely points out a connection with other

quantities. Besides, the product determined above,

being independent of any particular value attributed

to the letters a, b, c, and d, must be of such a form as

to be true for all values ; and hence for the case in

Making this

Foim ti the

product :

must be true

for quantiiie* which a and c are each equal to zero,
of any value

~

supposition, the product reduces to the form of 4- bd.

Signs in

division.

The rules for the signs in division are readily deduced

from the definition of division, and the principles al-

ready laid down.

Zero and

Infinity.

Ideas not

abetruse.

ZERO AND INFINITY.

17. The terms zero and infinity have given rise to

much discussion, and been regarded as presenting diffi-

culties not easily removed. It may not be easy to

frame a form of language that shall convey to a mind,

but little versed in mathematical science, the precise

ideas which these terms are designed to express ; but

we are unwilling to suppose that the ideas themselvea

are beyond the grasp of an ordinary intellect. The

terms are used to designate the two limits of Space

and Number.

18. Assuming any two points in space, and joining
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them by a straight line, the distance between the points

will be truly indicated by the length of this line, and

this length may be expressed numerically by the num-

ber of times which the line contains a known unit. If

now, the points are made to approach each othei', the iiiustTation,

,/%,,. .-,,,..., . showing th«

length of the Ime will dimmish as the points come meaning of

nearer and nearer together, until at length, when the
*^® ^^"^"^ ^"°'

two points become one, the length of the line will

disappear, having attained its limit, which is called

Lero. If, on the contrary, the points recede from each

other, the length of the line joining them will con-

tinually increase ; but so long as the length of the illustration,

line can be expressed in terms of a known unit of
meaning of

measure, it is not infinite. But, if we suppose the
the term

points removed, so that any known unit of measure

would occupy no appreciable portion of the line, then

the length of the line is said to be Infinite.

19. Assuming one as the unit of number, and ad-

mitting the self-evident truth that it may be increased

or diminished, we shall have no difficulty in under-

standing the import of the terms zero and infinity.
The terms

, ,
Zero and In-

as applied to number. For, if we suppose the unit fin ity applied

one to be continually diminished, by division or other-
*° "^"^ *"'

wise, the fractional units thus arising will be less and iiiustratioa.

less, and in proportion as we continue the divisions,

they will continue to diminish. Now, the limit or

boundary to which these very small fractions approach,

is called Zero, or nothing. So long as the fractional Zeio:

number forms an appreciable part of one, it is not

zero, but a finite fraction ; and the term zero is only
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applicable to that which forms no appreciable part of

the standard.

lUmtration. If, on the Other hand, we suppose a number to be

continually increased, the relation of this number to the

unit will be constantly changing. So long as the num-

ber can be expressed in terms of the unit one, it is

Infinity ; finite, and not infinite ; but when the unit one forms

no appreciable part of the number, the term infinite

is used to express that state of value, or rather, that

limit of value.

The terms,

how

employed.

Are limits.

20. The terms zero and infinity are therefore em-

ployed to designate the limits to which decreasing and

increasing quantities may be made to approach nearer

than any assignable quantity; but these limits cannot

be compared, in respect to magnitude, with any known

standard, so as to give a finite ratio.

Why limits! 21. It may, perhaps, appear somewhat paradoxical,

that zero and infinity should be defined as " the limits

of number and space" when they are in themselves

not measurable. But a limit is that " which sets bounds

Definition of to, or circumscribcs ;" and as all finite space and finite

number (and such only are implied by the terms Space

^'Number^"^
and Number), are contained between zero and infinity,

we employ these terms to designate the limits of Num-

ber and Space.

OP THE EQUATION.

Subject of 22. The subject of equations is divided into two

•quatious :

^^.^g r^^iQ first, cousists in finding the equation ; that
how divided. ^ o »

First part: is, in the proccss of expressing the relations existing
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Discussion of

an equation

Statement :

what it i».

between the quantities considered, by means of the

algebraic symbols and formula. This is called the

Statement of the proposition. The second is purely statement.
* ^

Second part.

deductive, and consists, in Algebra, in what is called

the solution of the equation, or finding the value of Solution.

the unknown quantity; and in the other branches of

analysis, it consists in the discussion of the equation ;

that is, in the drawing out from the equation every

proposition which it is capable of expressing.

23. Making the statement, or finding the equation,

is merely analyzing the problem, and expressing its

elements and their relations in the language of analy-

sis. It is, in truth, collating the facts, noting their

bearing and connection, and inferring some general

law or principle which leads to the formation of an

equation.

The condition of equality between two quantities

is expressed by the sign of equality, which is placed

between them. The quantity on the left of the sign

of equality is called the first member, and that on

the right, the second member of the equation. Hence,

an equation is merely a proposition expressed alge-

braically, in which equahty is predicated of one quan-

tity as compared with another. It is the great formula

of Algebra.

Equality of

two quanti-

ties :

How ex

pressed.

1st member.

2d member.

Proposition.

24. Every quantity is either abstract or concrete : Abstract

hence, an equation, which is a general formula for

expressing equality, must be either abstract or con-

crete.

2
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Abstract

»qn&tion.

Concrete

equation.

An abstract equation expresses merely the relation

of equality between two abstract quantities : thus,

a -\- b z= Xf

is an abstract equation, if no unit of value be assigned

to either member ; for, until that be done the abstract

unit one is understood, and the formula merely ex-

presses that the sum of a and h is equal to
a*, and is

true, equally, of all quantities.

But if we assign a concrete unit of value, that is,

say that a and b shall each denote so many pounds

weight, or so many feet or yards of length, x will be

of the same denomination, and the equation will be-

come concrete or denominate.

Five opera-

tion* may be

ptrformed.

25. We have seen that there are five operations

which may be performed on an algebraic quantity

(Art. 3). We assume, as an axiom, that if the same

operation, under either of these processes, be performed

on both members of an equation, the equality of the

members will not be changed. Hence, we have the

five following

Axioms. AXIOMS.

Pifit. 1. If equal quantities be added to both memben*

of an equation, the equality of the members will not

be destroyed.

«MMid. 2. If equal quantities be subtracted from both mem-

bers of an equation, the equality will not be destroyed.

Thirf. 3. If both members of an equation be multiplied by

the same number, the equality will not be destrojed
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4. If both members of an equation be divided by Fourth,

the same number, the equahty will not be destroyed.

5. If both members of an equation be raised to Fifth,

the same power, the equality of the members will

not be destroyed.

6. If the same root of both members of an equa- sixth.

tion be extracted, the equality of the members will

not be destroyed.

Every operation performed on an equation will ^f^of

fall under one or other of these axioms, and they

afford the means of solving all equations which ad-

mit of solution.

26. Two quantities are said to be equal, when Equality de-

each contains the same unit an equal number of

times. Hence, the term equal applies to measures,

and has the same signification in Arithmetic, in Equal in aii

Algebra, and in Geometry. If, in Geometry, two

figures can be applied to each other, so as to coin-

cide or fill the same space, they are said to be

equal in all their parts.

27. We have thus pointed out some of the m^arked

characteristics of Algebra. In Algebra, the quan-
classes of

quantities in

titles, about which the science is conversant, are Algebra,

divided, as has been already remarked, into known

and unknown; and the connections between them,

expressed by the equation, afford the means of

tracing out further relations, and of finding the

values of the unknown quantities in therms of the

known.
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SUGGESTIONS FOR THOSE WHO TEACH ALGEBRA.

Lett ers are but

mere Bjmbols

Sign* indicate

operations.

Letters and

Hi^ns elements

of language.

Algebraic

formula

Its interpreta-

tion.

Ijanguage,

t'o-etiicient.

}'j:pDnont

1. Be careful to explain that the letters employed,

are the mere symbols of quantity. That of and in them-

selves, they have no meaning or signification whatever,

but are used merely as the signs or representatives

of such quantities as they may be employed to denote.

2. Be careful to explain that the signs which are

used are employed merely for the purpose of indicating

the five operations which may be performed on quan-

tity ; and that they indicate operations merely, without

at all affecting the nature of the quantities before which

they are placed.

3. Explain that the letters and signs are the ele-

ments of the algebraic language, and that the language

itself arises from the combination of these elements.

4. Explain that the finding of an algebraic formula

is but the translation of certain ideas, first expressed

in our common language, into the language of Algebra;

and that the interpretation of an algebraic formula is

merely translating its various significations into common

languaj]fe.

5. Let the language of Algebra be carefully studied,

so that its construction and significations may be clearly

apprehended.

6. Let the difference between a co-eflRcicnt and an

exponent be carefully noted, and the office of each often

explained ; and illustrate frequently the signification of

the language by attributing numerical values to letlera

in various algebraic expressions.

7. Point out often the characteristics of ?imilar and
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iissimilar quantities, and explain which may be incor- similar

quantities

porated and which cannot.

8. Explain the power of the minus sign, as shown Minus siga

in the four ground rules, but very particularly as it is

illustrated in subtraction and multiplication.

9. Point out and illustrate the correspondence be- Ariihmetic

and Algdjra
Iween the four ground rules of Arithmetic and Alge- compared.

bra ; and impress the fact, that their differences, where-

ever they appear, arise merely from differences in

notation and
*

language : the principles which govern

the operations being the same in both.

10. Explain with great minuteness and particularity, Equation.

all the characteristic properties of the equation ; the ^^^ properties.

manner of forming it ; the different kinds of quantity

which enter into its composition ; its examination or

discussion ; and the different methods of elimination.

11. In the equation of tlie second degree, be careful Equation oi

the Becond

to dwell on the four forms which embrace all the cases, degree.

and illustrate by many examples that every equation

of the second degree may be reduced to one or other

of them. Explain very particularly the meaning of its form.

the term root ; and then show, why every equation of ns roots,

the first degree has one, and every equation of the

second degree two. Dwell on the properties of these

roots in the equation of the second degree. Show why
their sum, in all the forms, is equal to the co-efficient Thtirsum.

of the second term, taken with a contrary sign ; and

why their product is equal to the absolute term with a Their prodnet

contrary sign. Explain when and why the roots are

imaginary.
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Should be

explained.

GenetAi 12. In fine, remember that every operation and rule

nnoip ea .

^ jjaged on a principle of science, and that an intelli-

gible reason may be given for it. Find that reason,

and impress it on the mind of your pupil in plain and

simple language, and by familiar and appropriate illus-

trations. You will thus impress right habits of inves-

tigation and study, and he will grow in knowledge.

The broad field of analytical investigation will be

opened to his intellectual vision, and he will have

made the first steps in that sublime science which dis-

covers the laws of nature in their most secret hiding-

i?«nerai laws,
pj^ces, and follows them, as they reach out, in omnipo-

tent power, to control the motions of matter through

the entire regions of occupied space.

(See Davies' Nature and Utility of Mathematics,

Article Algsbra).

They lead to



KEY.

EQUATIONS OF THE FIRST DEGRER

LGiTen ____i3 =-_— .

VERIFICATION.

5x11.1 4x11.1 ,o_7 13x11.1
12 3 8 6

•

Multiply by 24, least common multiple,

10 X 11.1 — 32 X 11.1 — 312 = 21-52 x 11.1; that is,

— 556.2= —556.2.

2. Given x + 18 = 3.t — 5, to Gnd x.

Transposing and reducing,

-2x= -23',

dividing both members by — 2,

a; =11}.

3. Given 6 - 2ar + 10 = 20 — 3a; — 2, to find «.

Transposing and reducing,

xz=2.

4. Given ^ + s^ + o ^ — Hjto find x.

Multiplying both members by 6, and reducing,

lla: = 66;

whence, a; = 6.
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5. Given 2z — -x -\- 1 = 5x — 2, to find x.

Multiplying both members by 2, transposing and reducing,

-7x= -6;

whence, ^ = =»
7

6. Given Sax + ^
- S = bx — a, to find z.

Multiplying by 2, transposing and reducing,

Qax — 2bx = G — Sa\

factoring the first member of the equation, we have

{Qa
-

26) a; = 6 - 3a
;

6 — 3a
whence,

6a -26

7. Given —
1- „ = 20 — —^

—
,
to find g.

4> O li

Multiplying both members by 6,

3a; - 9 4- 22: = 120 - 3 a; 4- 57 ;

transposing and reducing,

8a: = 186
;

.
*

. a: = 23J.

a: + 3
,

a: ^ a; — 5
3. Given —

;; h k = 4
^
—

,
to find x.

Multiplying both members by 12,

6a: + 18 + 4.C = 48 - 3a; -f- 15
;

transposing and reducing,

13a: = 45
;

•

. x = S^



91.] EQUATIONS OF THE FIEST DEGREE. 25

^ ^. ax — b
,

a hx bx — a
^ ^ ^

9. Given —^ "^
3

"=
"2 3~~'

^'

Multiplying both members by 12,

Sax — 36 + 4a = Gbx — 4bx + 4a
;

transposing, reducing and factoring,

Sb
{3a

— 2b)x = Sb, .
•

. a; =
3a -26

10. Given  

; 4 =/, to find x.
c a

Multiplying both members by cd,

Sadx — 2bcx — 4:cd =fcd ;

transposing, reducing and factoring,

11 /-.•
8ax — b 36 — c

i ^ /: j
11. Given ~ — = 4 — 6, to find x,

7 2

Multiplying both members by 14,

16aa; - 26 - 216 + 7c = 56 - 146
j

transposing and reducing,

16aa: = 56 + 96 - 7c
;

.
•

. a: = ^^ "^ ^* "" "^^

16a

12. Given - ——^ 4. _ = _ to find x.

Multiplying both members by 30,

Qx~- 10;r + 20+ 15 ar = 130;

.Tansposing and reducing,

110;=:= 110; .-. a; =10.
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13. Giveu H -, =/, to find x,
a b c a ''

Multiplying both members by ahcd^ and factoring,

ahcdf
(bed

— acd -f cibd — abc) x z=zabcdf .'. x
bed ^aed -f- dbd — abc

, ^ ^. Sx — 5
,
4x — 2

, , ^ ,

14. Given x
(

—— = a; -|- 1, to find x.
lo 1 1

Multiplying both members by 143,

143a; - 33a: + 55 + 52a; - 26 = 143a; + 143
;

transposmg and reducing,

19a; = 114; •. x z^ 6,

15. Given ^
- ^ -^^ = -

12J|, to find x.

Multiplying both members by 315,

45x — 280a; - 63a; -f- 189 = — 3983
;

transposing and reducing,

- 298a; =- 4172
; .-. a; = 14.

16. Given 2a; — = —-—
,
to find x.

Multiplying both members by 10,

20a; — 8a; + 4 = ]5a; — 5;

transposing and reducing,

— 3a; = - 9 ; .
•

. a; = 3.
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17. Given Sx -\
— = a; -H a, to find x,
3

Multiplying both members by 3,

9x + bx — d=zSx-{-Sa;

transposing, reducing and factoring,

3a 4-^
(6 + b)x = Sa-^ d] ,'. x =

6-\-b

,Q n- (« + b){x-b) . 4ab - b^ ^ a^ - bx
18. Given -^^ ^-^- — 8a = 2x -\ ; ;

a — a -{• b

to find X.

We see that the least common multiple of the several

fractions of the two members of this equation is,

Hence, multiplying both members of the equation by
a^b — l^, and performing all the indicated operations, we

shall have,

a%x + ^a¥x + bH — aW — ^aW — ¥ — M% + ^a¥ = ^aW
— ba¥ -{-h^^ U^^bx + Wx -\- a^ — a%x — aW + bH ;

then, by transposing,

a^bx + '^ab'^x + IH + %m)x — Wx + a^bx — bH = 4.aW — ha¥

4. J4 _|_ ^4 _ ^2^2 ^ ^2^2 ^ ^a¥ -^¥-\- da^b + ^ab^;

factoring, we have,

2b (2a2 + ab^b^)x = a'^-{- Za% + 4:a%^ — 6a¥ + 2¥;

diyiding by the coefficient of x,

^""
U{2a^ + ab-b^)
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19. Given, x = dx —
^{4z

—
x) -\- ^

.

Clearing of jfractions, and dropping parenthesis,

6x = ISic — 12 + 32; + 2.

Transposing and reducing,
— 16x=z —10;

2

^. ^. 3a; -7
,

25 - 4a; 5a; - 14
20. Given, -^- +—^- = -^-.
Clearing of fractions,

2'7x — 63 + 125 - 20x = 75a; - 210.

Transposing and reducing,

-GSx= —272;
a; = 4.

^, ^. 2a; + 5 40 — a; 10a; - 427
21. Given, -33- + -g- =

19
»

Clearing of fractions,

304a; + 760 + 9880 — 247a; = 1040a; — 44408.

Transposing and reducing,
— 983a; =--55048;

a; = 56.

22. Given,
|
_^ + 5 = ^- (g +

l).

Clearing of fractions,

llic _ 7:2; 4- 35 + 385 = 77a; - 2a; - 77.

Transposing and reducing,
— nx= —497;

a; = 7.

t,o n- a; — la; — 2 a;-h3,a; + 4,^
23. Given,

—^ + —3--
= —^ + —q- + 1.

Clearing of fractions,

6a; — 6 + 4a; — 8 = 3a; -h 9 + 2.?; + 8 4- 12.
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Transposing and reducing,

5rc = 43
;

x—1 x—2 x—6 x—6
24. Given, ^ ^ _ „ „.x—2 x—d x—6 x—7

Performing the indicated subtraction in both members,
— 1 _ —1

(x -2)(x — 3)~ {x
—

6) (x
—

'7)'

Clearing of fractions, and performing indicated operations,

^2 _ isx -I- 42 = ic2 — 5a; + 6.

Transposing and reducing,
— Sx=—d6',

x = 4:i.

25. Given, (x + l){x-^ -
(x + 6) (x-S) +^ = 0.

Performing indicated operations,

xi + x — ^-a^-2x + 16 + ^ = 0.
4 4

Transposing and reducing,
— ic=— 12; .-. a; = 12.

^^ r^' 6x + l! 2^ — 2 2:r + 1
26. Given, -^^ -

^--^
=-^ .

Clearing of fractions,

42:z^ + Ux — 42 - BOx + 30 = 42a;2 — 15:c - 18.

Transposing and reducing,
— 2x= —6;

x = S.

27. Given, j z= -.
x — 2 X — 4: x — 6 x — 8

Performing the indicated subtractions,

— 2 —2
(x
— 2)(x-4,)

~
{x
—

6)(x
—

S)
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Dividing by — 2, and clearing of fractions,

ic2 _ 14^ + 48 = a;2 — 62; + 8.

Transposing and reducing,

-82; = -40;
X=:6.

28. Given, (x + iy = {6 +x)x-^ 2.

Performing indicated operations,

a;2 -f. 2a; + 1 = 5ic + a^ — 2.

Transposing and reducing,

— 3x= —3;
x = l.

29. Given, —^ + -^ = ^-^.2a; — 5a; — 3 3a; — 1

Clearing of fractions,

6a^ — 20x -{- 6 + 6xi — llx -\- 6 z=z 12a? — 66x + 90.

Transposing and reducing,

29a; = 79;

79
^ =

29

30. Given, - +
^

Factoring,

Reducing,

a b — a b -\- a'

P
I

1 <= «
.

(a ^— a) h \- a*

i—^—\--j—
\a{b-a)/~ (b + a)'

a^{b-a)

bib + a)

81. Given, |(.-«) _!(._ |)
+ _;(._«)

.0.
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Performing indicated operations,

Clearing of fractions, and reducing,

_Sa
^-25'

32. Given, 1 .2a; - 'l^^jp^^ = Ax + S.9.
.0

Clearing of fractions,

.6x — .18ic 4- .05 = ,2x + 4.45.

transposing, and reducing,

.22a; = 4.40;

X = 20.

33. Given, 4.8a; - ''^^^ 7 '^^ = 1.6a; + 8.9,
.0

Clearing of fractions,

2.4a; - .72a; + .05 = 0.8a; + 4.45.

Transposing and reducing,

.88a; = 4.40;

a; = 5.

STATEMENT AND SOLUTION OF PROBLEMS.

8. Divide $1000 between A, B, and C, so that A shall have

^72 more than B, and C $100 more than A.

Let X denote the number of dollars in B's share.

Then will a; + 72 "



32 KEY TO DAvies' bouedon. [97.

r-f a: + 72 + a;+ 172 = 1000; or, 3a; = 750, .'. a: ^ 252,

or, A's share is $324, B's share $252 and C's share $424.

9. A and B play together at cards. A sits down with $84 and B

with $48. Each loses and wins in turn, when it appears that A has

five times as much as B. How much did A win?

Let X denote the number of dollars that A wins.

Then will 84 + a; denote what A has at last,

and 48 — a? what B has at last
;

from the conditions of the problem,

84 4- a; = 5 (48
-

a;) ; or, 84 + a- = 240 - 5a:
;

whence, .r = 26
; or, A wins $20.

10. A person dying, leaves half of his property to his wife, one

sixth to each of two daughters, one twelfth to a servant, and the

remaining $000 to the poor : what was the amount of his property 7

Let X denote the whole number of dollars in the property.

" in the wife's shareu

" each daughter's
*'

" the servant'?!
"

Then will
1
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1 1 . A father leaves his property, amounting to $2520, to four

sons, A, B, C and D. C is to have $360, B as much as C and D

together, and A twice as much as B less $1000: how much do A,

B and D receive ?

Let X denote the number of dollars that D receives *

Then will x -f 360
" " « " B "

and 2a; -(' 720 - 1000 " " « A «

from the conditions of the problem,

360 + a; -f a; + 360 + 2a; -f 720 - 1000 = 2520;

transposing and reducing,

4a; = 2080
;

.
•

. a; =: 520

or, D's share is $520 ;
B's share $880, and A's share $760.

12. An estate of $7500 is to be divided between a widow, two

sons, and three daughters, so that each son shall receive twice as

much as each daughter, and the widow herself $500 more than all

the children : what was her share, and what the share of each child \

Let X denote the number of dollars in each daughter's share
;

*'

Then will 2a;
" '* " « son's "

and 4a; + 3a; + 500" " " the widow's «.

from the conditions of the problem,

4a; + 3a; + 4a; + 3a; -f 500 = 7500;

transposing and reducing,

14aJ = 7000
;

•

. a; = 500.

Daughters' share $500 ;
son's share $1000 ;

widow's share $4000.

13. A company of 180 persons consists of men, women and
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children. The men are 8 more in number '.han the women, and the

children 20 more than the men and women together : how many of

each sort in the company 1

Let X denote the number of women;

Then will a; + 8 " " men
;

and a; + re + 8 4- 20 "
children.

From the conditions of the problem,

a:H-a: + 8 + rc + a: + 8 + 20 = 180;

transposing and reducing,

4a; =144; .-. x =SG.

36 women, 44 men and 100 children.

14. A father divides $2000 among five suns, so that each elder

should receive $40 more than his next younger brother : what is

the share of the youngest?

Let X denote the number of dollars in the youngest's share.

Then will a: 4- 40" " " " second's "

a; 4- 80 " " " "
third's "

a: + 120 " " "
fourth's «'

a: + 100 " " "
fifth's

*

From the conditions of the problem,

Sa-^ 400 = 2000;

transposing and reducing,

5a; =1600; .-. 2: = 320.

15. A purse of $*2850 is to be divided among three per&ons, A,

W and C
;
A's share is to be

y®y
of B's share, and C is to have $300

more than A nnd B together : what s eack one's ^harel



X denote the number of dollars in B's share.
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17. Two carpenters, 24 journeymen, and 8 apprenticeo, receiveO

at the end of a certain time $144. The carpenters received $1 per

day, each journeyman half a dollar, and each apprentice 25 cents :

how many days were they employed ?

Let X denote the number of days.

Then will x " "
dollars due each carpenter.

X
jr

** ** " "
journeyman,

and - " " " *

apprentices;

. from the conditions of the problem,

reducing,

16a; 1=144; .-. nt = 9.

18. A capitalist receives a yearly income of $2940 ;
four fiths of

his money bears an interest of 4 per cent., and the remainder of 5

per cent. : how much has he at interest %

Let X denote the number of dollars at interest.

Then will — x y^ denote the interest of 1st parcel.

X 5
and - ^ " " 2d "

5
^

100
^

From the conditions of the problem,

4^ 4 iB 'S

clearing of fractions, and reducing,

21.T = 1470000
;

.
•

. « = 70000.



98.] EQUATIONS OF THE FIRST DEGREE. 37

10. A cistern containing 60 gallons of water has three unequal

cocks for discharging it
;
the largest will empty it in one hour, the

second in two hours, and the third in three : in what time will the

cistern be emptied if they all run together 1

Let X denote the required number of minutes.

Then since the first emits 1 gallon per minute, the second -J
of a

gallon per minute, and the third j of a gallon,

X will denote the number of gallons emitted by the 1st.

"
2d.

"
3d.

2

3

From the conditions of the problem,

X X
. +

^
+ 3=60;

clearing of fractions and reducing,

11a; = 360 .-. a; =
32y8yf».

20. In a certain orchard
-Ij-

are apple-trees, -J- peach-trees, \ pluna-

trees, 120 cherry-trees, and 80 pear-trees : how many trees in the

orchard 1

Let X denote the whole number of trees.

Then will
|
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clearing of fractions, transposing and reducing,

—x=- 2400 .
•

. x = 2400.

21. A farmer being asked how many sheep he had, answered that

he had them in five fields; in the 1st he had
-J,

in the 2d J, in the

;>d J, in the 4th ^, and in the 5th 450 : how many had he ?

Let X denote the whole number of sheep :

« " " " in 1st field.

(( (( u a 2d ^'

(( (( (( a
^£[

a

a {( (( «
4^li

u

From the conditions of the problem,

multiplying both members by 24, transposing and reducing,

- 9a; = - 10800 .
•

. x =z 1200.

22. My horse and saddle together are worth $132, and the hor^e

is worth ten times as much as the saddle: what is the value of th<»

horse "^

r^et X denote the number of dollars that the saddle is wor^Ju

Then will 10a;
" " *' " horse "

From the conditions of the problem,

Then will
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a; + 10a;=: 132;

reducing, 11a; = 132 .
*

. a; = 12; whence, 10a; = 120.

23. The rent of an estate is this year 8 per cent, greater than it

was last. This year it is $1890 : what was it last year 1

Let X denote the number of dollars in last year's rent.

Then will ^ +^ " " "
this

" "

From the conditions of the problem,

. + ^,= 1890;

clearing of fractions and reducing,

108a; = 189000
;

.
•

. x= 1750.

24. What number is that from which, if 5 be subtracted, J of the

remainder will be 40 ?

Let X denote the number required ;

From the conditions of the problem,

|(a;-5) = 40;

clearing of fractions, performing operations indicated, transposing

and reducing,

2a; =130; .-. x=z G5.

25. A post is J in the mud, ^ in the water, and ten feet above the

water : what is the whole length of the post ?

Let X denote the number of feet in length.

Then will ^
'• " « « the mud ;4 '

X
^nd - " « «* " the water :
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From the conditions of the problem ;

5+3+10 = .;

clearing of fractions, transposing and reducing,

- 52; = - 120
;

.

•

. a; = 24.

26. After paying i and ^ of my money, 1 had 66 guineas left in

my purse : how many guineas were in it at first ]

Let X denote the number at first
;

from the conditions of the problem,

^-4-5=66;

clearing effractions, transposing and reducing,

11a; = 1320; .-. a; = 120.

27. A person was desirous of giving 3 pence apiece to some

beggars, but found he had not money enough in his pocket by 8

pence ;
he therefore gave them each two pence and had 3 pence

remaining : required the number of beggars.

Let X denote the number of beggars ;

then, by the first condition,

3a; — 8 denotes the number of pence ;

by the second condition,

2a: + 3 denotes the number of pence ;

hence, 3ar — 8 = 2a; 4- 3
;

transposing and reducing

a; =11.
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28. A person in play lost
-J-

of his money, and then won 3

shillings ;
after which he lost i of what he then had

;
and this done,

found that he had but 12 shillings remaining : what had he at first?

Let X denote the number of shillings at first
;

Then will re - ? + 3 " " " after first sitting ;

4

ana
(^_f+3)-i(a;-|

+
3)

will denote what he finally had
;

hence, from the conditions of the problem,

clearing of fractions, performing indicated operations, ti-anspi^ing

and reducing,

6a; = 120
;

.

•

. x = 20.

29. Two persons, A and B, lay out equal sums of money in trade
;

A gains $126, and B loses $87, and A's money is now double B's :

what did each lay out ?

Let X denote the number of dollars laid out by each ;

Then will x + 126 " " " A had
;

and a; — 87 " " " B "

From the conditions of the problem,

a; -f 126 = 2 («
-

87) ;

performing indicated operations, transposing and reducing,

- a; = — 300
;

'

.
•

. x =z 300.

30. A person goes to a tavern with a certain sum of money in his
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pocket, where he spends 2 shillings; he then borrows as much

money as he had left, and going to another tavern, he there

spends 2 shillings also
;
then borrowing again as much money as

was left, he went to a third tavern, where, likewise, he spent 2

shillings and borrowed as much as he had left
;
and again spend-

ing 2 shillings at a fourth tavern, he then had nothing remaining.

What had he at first ?

Let X denote the number of shillings at first.

Then, from the first condition,

ar — 2 will denote what he has after 1st visit.

2(a;- 2) -2 or2;c- 6 "

2(2a:- 6)
- 2 or 4a; - 14 " "

2 {\x - 14)
— 2 or 8a: - 30 " "

From the conditions of the problem,

8ar — 30 = or 8a; = 30
;

or the amount at first was 35. Oc/.

31. A farmer bought a basket of eggs, and offered them at 7 CBnts

a dozen. But before he had sold any, 5 dozen were broken by a

careless boy, for which he was paid. He then sold the remainder at

8 cents a dozen, and received as much as he would have got for the

whole at the first price. Kow many eggs had he in his basket ?

Let X denote the number of dozens at first
;
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32. A cask, A, contains a mixture of 12 gallons of wine

and 18 gallons of water
;
another cask, B, contains a mixture

of 9 gallons of wine and 3 gallons of water : how many gal-

lons must be drawn from each to produce a mixture of 7

gallons of wine and 7 gallons of water ?

Let X denote the number of gallons drawn from the cask

A, and 14 — cc the number of gallons drawn from the cask B.

Of the X gallons drawn from A, ^ths is wine and ^ths is

water; in like manner, of the mixture drawn from B, ^^^ths

is wine, and ^ths is water. Hence, all the wine drawn

12 9
from both is equal to — a; + — (14

—
a;) gallons; but this is

equal to 7 gallons. Hence,

-^ + -(14 -a;) = 7,

or, -a; + j(14
—

.t)
= 7;

a; = 10 and 14 — a; = 4.

33. At what time between 1 and 2 o'clock is the minute

hand of a clock just 1 minute space ahead of the hour hand?

Let X denote the number of minute spaces passed over by

the hour hand from 12 o'clock till the hands have the re-

quired position. Then 61 + :c will denote the number of

minute spaces passed over by the minute hand in the same

time; but the minute hand travels 12 times as fast as the

hour hand. Hence,

12a; = 61 -f a;,

or, l\x = 61
;

x=6^ and 61 + ^^c = 663^.

"

That is, the hands will have the required position at

Ih. 63J^min.
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34. A person having a hours at his disposal, how far can

he ride in a coach that travels t miles per hour, and return

on foot at the rate of c miles per hour?

Let X denote the number of miles.

The time required to ride x miles in the coach will be de-

X
noted by t? and the time required to walk back will be de-

X
noted by -. From the conditions of the problem, we have,

T 4-
- = «• Hence,
c

[{b
+ c)x=zabc; .-. x =^^^

35. A can do a piece of work in one-half the time that B
can ;

and B can do it in two-thirds the time * that can ;

all together can do it in 6 days. How many days would it

take each to do it singly?

Let X denote the number that it will take A to do it.

Then will 2x denote the number of days that it will take B

to do it; and dx will denote the number of days it will take

C to do it. Consequently, A can do a part denoted by
-

in one day, B can do a part denoted by ^, C can do a

part denoted by
— in the same time, and all together can

do a part denoted by
- in one day. Hence, from the con-

ditions of the problem,

5 + 2^+35=6- ^"^^"^^^

l{'-^-l-^l)
=

l'
-' 1(6 + 3 + 2)=!;

.-. - = ~, or, a; = 11, 2a; = 22, and 3a; = 33.
a; 11'
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SIMULTAl^OUS EQUATIONS OF THE FIEST DEGREE.

1. Given (2ar + 3y = 16)

Zx — 2y

Multiply both members of the first by 2, and of the second by 3 ;

4x

9x

whence, by addition, member to member, we have,

13a: = 65
;

.
•

. x = 5, also, y = 2.

+ 6y = 32 )

- 6y = 33
)

2. Given

f2^ 3y_ 9_1
5

"*
4
~

20

3^ 2y_ 63

I 4 "^y- 120J

to find X and y.

Clearing of fractions, and then multiplying both members of the first

by 16, and of the second by 5,

128a;

450a;

+ 240y = 144)

-f 240y = 305 )

whence, by subtracting, member from member,

322a; = 161
;

a; = -, also, by substitution, y = -•
Z 3

3. Given

-f 7y = 99

I 4- 7a; = 51

to find X and y.

Multiplying the first by 343 and the second by 7
;

49.r h 24012/ = 33957 )

y f 49a; = 357 )
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by subtraction,

2400y = 33600
;

.
•

. y = 14
; also, by substitution, a; = 7.

4. Given •<

1-12
= 1+8

to find X and y.

Clearing of fractions and transposing,

2a: — y = 80

47a;- 18y = 2100;

multiplying both members of the first by 18, and subtracting the

result from the second, member from member,

11 a;
— 660

;
.

•

. ar = 60
; by substitution, y = 40.

5. Given -

{x-\- y+ ^ = 29

« + 2y + 30 = 62

2^ 3^ 4

(1)

(2)

(3)

• to find
ar, y and t.

Combining (1) and (2),

y + 22' = 33 . . . .

(4);

combining (1) and (3)

2yH- 3^ = 54 • • • •

(5);

combining (4) and (5)

z = 12; by successive substitutions, a: = 8, y = 9.

r2ar + 4y - 32 = 22

6. Given
^

4ar - 2y + 5;? = 18

[6a: 4- "^y
- ^ = 63

Combining (1) and (2),

(!)

(2) \\
to find I I and z,

(3).
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lOy- 110 = 26 ... (4);

combining (1) and (3),

52/
- 80 = 3 . . . (5) ;

combining (4) and (5),

5« = 20

By successive substitutions,

7. Given

Clearing of fractions,

. +
1
+

1
= 3.

I+M=^^

J+l + l=-

2 = 4.

y=7.

to find a:, y and 9^

Qx^- 3y + 2s = 192 .
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Combining (2) and (4),

4i/^4z + Su= IS . . . (6);

combining (1) and (3),

35y - 62 - 5t^ = 107 . . . (7) ;

combining (5) and (6),

12y + 41w = 171 ... (8);

combining (5) and (7),

35y + ll« = 17« . . . (9);
•

combining (8) and (9),

13032/ = 3909; .'. m = 3
;

by successive substitutions, a; = 2, , y = 4, = 3, ^ = 1.

^3x -{-2y
— 4:Z = 16

9. Given, } 5x — 3y + 2z = 2S

3y^4ji^ a;=24

Combining (1) and (3),

ll^ + 8;2=:87 . .

Combining (2) and (3),

12y + 22;? = 148 .

Combining (4) and (5),

73^ = 365; .-. y = 6.

Substituting and reducing,

x = 7, and 2 = 4.

(1)

(2)

(3)

(4)

(5)

10. Given,

X y

X z

(1)

(8)

(3)
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Adding (1), (2), and (3), member to member, and divid-

ing by 2, 1119
(4)

1 1 1_9
X y z

~
4:

Subtracting (1), (2), and (3), successively, from (4),

1_5.
Z~ 4:'

1_1
2^-4'
13 4

4

y

11. Given,

x-4:'
•• ^-3

2 1_3
X y~ z

z y

Ix^ 2 3

Making - = «',
^
=

2/'?
^"^^ - =

^'5

2a;' 4- y' = 3;^'

dz' - 2^' = 2

Combining (4) and (5),

4x' + Zz' = 62;' + 2,

or, 4a;' — 32!' = 2 . .

Combining (6) and (7),

7a;'

Substituting and reducing,

,
6 7

X =-, or, a; = -.

and.

,
10 21

. =-, or, . =
^,

y = -^, or, 2/
= -

(1)

(•^)

(3)

(4)

(5)

(6)

(7)
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12. Given,

r 3y-l
4

 

5^ 4-;Z

4 "^y
3a; + 1 ;2

6z a; 9

1 2z y
14
+

6
-

21
"^

3

13. Given,

I + f-ia

X z- + - = 1
a c

« c

Adding (1), (3), and (3), and dividing by 2,

- + '- + '

[108.

• (1)

• (2)

, (3)

Clearing of fractions and transposing,

Iby + 10a; — 24^; = 41
(4)

—
12y + 15a; + I62 = 10

(5)

—
14?/ + 18a; - 7;^ = - 13 (6)

Combining (4) and (5),

115a; — 1G;2 = 214
(7)

Combining (4) and (6),

410a; -. 441z = 379 (8)
'

Combining (7) and (8),

88312 = 8831
;

.-. z = \.

Substituting and reducing,

X = 2, and
j/
= d.

(1)

(3)
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Subtracting {!)', (2), and (3), successively, from (4),

z__l

h~2
1X _

«~2

c

h

14, Given,

a

^x-Zy = \

llz -1u=l

4:Z —7y = l

19a; — du = l

Combining (1) and (4),

21u — 61ly
= 12 . . .

Combining (2) and (3),

28^ — 77?/ = 7 . . .

Combining (5) and (6),

37/ZZZ27; .-. y = d.

Substituting and reducing,

a; = 4, z = 16f and u = 25.

'

3x— 5y

15. Given,

2
+ 3 2x-\-y

5

8 x-2y _x y
4 ~2'^3

Clearing of fractions and transposing,

llo; - 27j^
= ~ 30

9a;— 2^ = 96 .

.•• y = 6, and a; = 12.

(1)

(2)

(3)

(4)

(5)

(6)

(1)

(2)

(3)

(4)
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a: + y = 75

3a; - 7y = 15
;

by combination, lOy = 210
;

.. y = 21
; also, x = 54.

7. In a mixture of wine and cider, -J
of the whole plus 25 gallons

was wine, and J part minus 5 gallons, was cider : how many gallons

were there of each ?

Let X denote the number of gallons of wine
;

and y
"
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x-i- y = 100

27ar + 2ly = 2400
;

by combination, 6y = 300
;

.

*

. y = 50
; also, x = 60.

9. Two travellers set out at the same time from London and

York, whose distance apart is 150 mile*
; they travel toward each

other; one of them goes 8 miles a day, and the other 7; in what

time will they meet?

Let x denote the number of miles travelled by the first
;

y
" " " " "

second;

' «
first;

' " second
;

X
then will ^o
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11. A^s age is double B's, and B's is triple C's, and the sum of

all their ages is 140 : what is the age of each 1

[jet X denote the age of A

2/

" " B;

z
" " C

from the conditions of the problem,

^= 2y . . . .
(1)

j^= 3^ . . . .
(2)

x-i.2/+z = U0 . . . .

(3)

from (1) and (2), x = 62
',

substituting, y = 32, and x = Qz, in (3), and reducing,

IO2 = 140
;

.

•

. zz=zU, X = 84, y = 42.

12. A person bought a chaise, horse and harness, for £60; the

norse came to twice the price of the harness, and the chaise to twice

the price of the horse and harness : what did he give for each?

Let X denote the number of pounds paid for the harness
;

y
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,
13. A person has two horses, and a saddle worth £50

; now, if

the saddle be put on the back of the first horse, it will make his

value double that of the second
; but if it be put on the back of the

second, it will make his value triple that of the first : what is the

value of each horse 1

Let X denote the number of pounds the 1st horse is worth;

from the conditions of the problem,

a; + 50 = 2y

y + 50 = 3a;;

whence, by combination,

a; = 30 y = 40.

14. Two persons, A and B, have each the same income. A saves

J of his yearly ;
but B, by spending £50 per annum more than A,

at the end of 4 years finds himself £100 in debt; what is the income

of each ?

Let X denote the number of pounds in the income of A ;

y
u u « « « g.

by the conditions of the problem, these are equal ;
one only will b^

used. Then will

4
-X denote what A spends per year ;

o

-X + 50 " " B " "

5

from the conditions of the problem,

4(^2:
+

50)
= 4x-h 100;

whence, performing indicated operations, transposing and reducing,

4x = 500 .

•

. X = 125.
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15. To divide the number 36 into three such parts, that
|
of the

first, ^ of the second, and i of the third, may be all equal to each

other.

Let
ar, y and 0, denote the parts.

From the conditions of the problem,

ic + y + SP = 36

2~3

2~4'

cleHring of fractions, and combining,

9a; = 72 .
•

. a; = 8
; whence, y = 12 and z = 16.

16. A footman agreed to serve his master for £8 a year and

livery, but was turned away at the end of 7 months, and received

only £2 135. 4o?. and his livery : what was its value 1

Let X denote the value of livery, expressed in shillings : £8 =
I6O5., and £2 13s. Ad. = bS^s. ;

Then will I
—

r^
—

1 denote the value of wages 1 month,

and 7(1^^)
" . " 7

by the conditions of the problem,

/1 60 + x\

1120 4-7a; = 640 + 12ar

— 5a;z=-480

a; = 96 .*. value, £4.16s.
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17. To divide the number 90 into four such parts, that if the first

be increased by 2, the second diminished by 2, the third multiplied

by 2, and the fourth divided by 2, the sum, difference, product

and quotient, so obtained, will be all equal to each other.

Let ar, y, 2 and n^ denote the parts ;

from the conditions of the problem,

x+2=y-2
X -^2 = 2z

u
. + 2=-;

whence we find from the last three equations,
*

X
y = X -\- 4, z —- -\- }, and w = 2ar -f 4

;

substituting these values in the first equation,

X -\- X + 4
-\-^ -\- 1 -{- 2x + 4 = 90

;
or 4^x = SI

;
.

'

. x = 18 ;

whence, by substitution, ?/
= 22, z = 10, and u = 40.

18. The hour and minute hands of a clock are exactly together at

12 o'clock : when are they next together.

Is^ Solution.

Let X denote the number of minute spaces passed by the hour

hand before they come together ;

and y the number passed by the minute hand
;

then, since the latter travels 12 times as fast as the former, and

since it has to gain 60 spaces, we have,

X — y = 60

x=12y;
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by combination,

lly = 60 .
•

. y = 5y\ ; also, x = 65^ ;

hence, they will be together, 65-^ minutes after 12 o'clock, or at 1

o'clock, -^ minutes, and at the end of every succeeding equal

portion of time.

2d Solution.

The minute hand will pass the hour hand 11 times before they

again come together at 12 o'clock, and the times between any two

consecutive coincidences will be equal. Hence each time will be

equal to 12 hours divided by 11 z=z
l-^^hr. = \hr. 5-^m.

19. A man and his wife usually drank out a cask of beer in 12

days; but when the man was from home, it lasted the woman 30

days ;
how many days would the man be in drinking it alone ?

Let X denote the number of days it takes the man to drink it
;

y
" " " " woman " "

then, if the whole quantity of beer be denoted by 1,

- will denote the quantity drank by the man in 1 day ;
and

X

y

from the conditions of the problem,

x^ y 12

1_ JL
y~30'

substituting the value of - in the first equation,

x^ 30
~

12
'

woman ;
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clearing of fractions,

QO -{-2x = 5x; .
•

. ;r = 20.

20. If A and B together can perform a piece of work in 8 days,

A and C together in 9 days, and B and C in 10 days : how many

days would it take each person to perform the same work alone ?

Let the work be denoted by 1
;

Let X denote the work done by A in one day ;

y a (( U g (( ((

then will -,
- and -

respectively denote the number of days tliat

It will take A, B, and C severally to do the work
;

from the conditions of the problem,

a: + y= i . . . .

(1)

r. + ^= 1 . . . .
(2)

y + z=,\ ....
(3);

clearing of fractions,

8a;+ 8y = l . . . .

(4)

9a; + 90 = 1 ....
(5)

10^+10^=1 . . . .

(6);

combining (4) and (5),

72y-72;s = l • • . .
(7),

combining (6) and (7),

1440y = 82 .-. y = Hn:

Bubstituting in (1) and (3),

.nee,
i = 14H; J="n; 5

= 23/.
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21. A laborer can do a certain work expressed by a, in a time

expressed by 6
;
a second laborer, the work c in a time d

;
a third,

the work e in a time/. Kequired- the time it would take the three

laborers, working together, to perform the work g %

If a laborer can do a piece of work denoted by a, in a number of

days denoted by 5, he can do in 1 day so much of the work as is

denoted by -r
;
the second in 1 day can do so much as is denoted by

-
;
and the third so much as is denoted by

-
; hence, the three

d J

working together can do

h'^~d^f~ b^

Let X denote the time required to perform the work g ; then,

the three can perform the work - in the time 1
;

from the conditions of the problem,

g adf -\- bcf-{- hde

~x~ hdf

taking the reciprocals of each member, and then clearing of fractions,

we have,

adf-\- hcf-\- hde

In this example only a single unknown quantity has been used,

and it may be remarked that many other examples, in this chapter,

may be more easily solved by a single unknown quantity ;
in such

cases more than one has been used for the purpose of illustration.

22. If 32 pounds of sea water contain 1 pound of salt, how much

fresh water must be added to these 32 pounds, in order that the
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quantity of salt contained in 32 pounds of the new mixture shall be

reduced to 2 ounces, or i of a pound 1

Let X denote the number of pounds to be added
;

then will ——— denote the number of pounds of salt in each

pound of the mixture, but this we know to be — X q, or,
—-

;

hence from the conditions of the problem,

32T7
=

256'
''^' 32 + ^ = 256, or, .-^224.

This problem is also solved by a single unknown quantity more

readily than by two.

23. A number is expressed by three figures ;
the sum of these

figures is 1 1
;

the figure in the place of units is double that in th«

place of hundreds
;
and when 297 is added to this number, the sum

obtained is expressed by the figures of this number reversed.

. What is the number ?

Let X, y and z denote the digits in their order
;

then will the number be denoted by

100a: + lOy 4-2: ;

from the conditions of the problem,

x-\- y + 2=ll (1)

z = 2x (2)

100x4- 10^ + ^4-297 = 100z + 10y + a: • • •

(3);

reducing (3), gives

992 -- S)9a: = 297 . . . • (O;

substituting ? = 2.r in (4), and reducing,

99.r = 297
;

.

•

. * = 3
;
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whence, by successive substitutions,

2/
= 2, z=z6. Ans. 326.

24. A person who possessed $100^00 dollars, placed the greate?

part of it out at 5 per cent, interest, and the other part at 4 pci

cent. The interest which he received for the whole amounted U

4640 dollars. Required the two parts.

Let X denote the greater part ;

y
" " lesser "

From the conditions of the problem,

-— = interest on x dollars at 5 per cent.
;

then.
100

^
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Let X denote the number of dollars in 1st capital ;

ind y the rate per cent.
; then,

i^ — will denote the number of dollars of 1st income ;

100

(x + 10000) (y
-^

1) « a « « od «

100'"'"

(a: f 15000) (.y-f2) , , ,. „
ioo

* "^

from th^ conditions of the problem,

(a;+10000)(y + l) ^ X y

100 =Too'"^^^^

(ar+15000)(y4-2) ^X2/
ioo"

=
Too + ^^^^

'

clearng of fractions, performing indicated operations, transposing

9rA reducing,

10000y+ x= 70000

15000y + 2a; = 120000
;

combining and reducing,

5000y = 20000 .

•
. y = 4

;
and

oy substitution, x = 30000
;

2d. $40000, rate 5 per cent.

3d. $45000, rate 6 " "

26. A cistern may be filled by three pipes. A, B, C. By the two

first it can be filled in 70 minutes
; by the first and third it can be

filled in 84 minutes
;
and by the second and third in 140 minutes.

What time will each pipe take to do it in? What time will be

required, if the three pipes run together %

Call the contents of the cistern 1.
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Let X denote the quantity discharged in 1 minute by the first
;

y
" * " " " "

second;

z " " « " " '-'

third;

then will -,
- and - denote the number of minutes requiredX y z

for the pipes, separately, to fill the cistern
; and,

1

x-{-y-\-z'

will denote the number of minutes required for all three %c fill it,

running together ;

from the conditions of the problem,

1

^ + 3'
=

70
•



QQ
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combining (3) and (4),

33a! = 3960; .'. a: = 120;

by substitution, y = 380
;

z = 500.

28. A banker has two kinds of money ;
it takes a pieces of the

first to make a crown, and h of the second to make the same sum.

Some one offers him a crown for c pieces. How many of each

kind must the banker give him %

Since it takes a pieces of the first to make 1 crown,
- — the part

of a crown in each piece ;
and -, the part of a crown in each

piece of the second :

let X denote the number of pieces taken of the first kind,

y
" " " " second "

from the conditions of the problem,

x-\- y — c

X y—h 7- = 1, or bx -\- ay =z ab
i

CL

by combination,

by — ay = be — ab\ or y [b
—

a) —b{c — a) ;

(a — c)b . a(c ^h)
.'. y = - r--j whence, x =z —^ t^.^ a — b a —b

29. Find what each of three persons, A, B, C, is worth, knowing,

1st, that what A is worth added to I times what B and C are worth

is equal to p ; 2d, that what B is worth added to m times what A

and C are worth, is equal to q ; 3d, that what C is worth added to

n times what A and B are worth, is equal to r.
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Let X denote what A is worth,

y
*: « B

z
" " C "

then, from the expressed conditions.

x-\-l {y + z)=:p . . . .
(1)

y -^m^x + z)z=zq - • . .

(2)

z -\- n {x + y) = r - • • •

(3) ;

w/iich, by adding and subtracting Ix^ my and nz^ may be written

under the forms

{\- l)x+l{x-\-y^-z)=p . . . .

(4)

{\—m)y-{-m{x + y-{-z)=q - . . .

(5)

{l-n)z-^ n(x-{-y-^z)^r - • • •

(G) ;

dividing both members of each equation by the co-efficient of ita

first term,

.+ _J_
(. + , + .)= _A. ....

(7)

y+ 1^(^+2' + ^) = 1-4^
....

(8)

^ + r^(-+j'+^) = r^ • • • • Wi

adding these, member to member, and deducing from the resulting

equation the value of ar -f- y + 2^,

1 - l^ l-m^ 1 -n
x-\-y -\-z=z -,

• •

(10).

1 + ^ ; + ! +
1 — / 1— m 1 — n

Denote the second membei of equation (10) by the single letter $,
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a known quantity. Then by substituting this for the factor

^ "f- y + 2> in each of the equations (7), (8) and (9), and deduc-

>
.g

the values of
a*, y and 2, we have,

V Is p — Is

1 - I

9

1 - I

ms

1 m 1 m

1 1 -n

~
1
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x=zmy
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mx denote the value of A's "

a-mx " " B's "

p(a-mx)
" " Fs "

c -pia-mx)''
" E's "

and from the remaining condition of the problem,

b — X =z n{c
~ p (a

—
mx)] ;

whence, by the rule for solving equations of the first degree,

•
b -f «wj»

— ^c
X —

mnp + 1

Having found the value of C's estate, the remaining quantities

may be found by substituting it in the expressions of the data, and

reducing. The operations are obvious.

INEQUALITIES.
-

1. Given, 5a; — 6 > 19, to find the smallest limit of x.

If we add 6 to both numbers of the inequality, we have

5a; > 19 4- 6, or, 5a;>25;

dividing both numbers by 5, we have

X >5.

14
2. Given, 3a; -f

— a: — 30 > 10, to find the least limit of a:.

Reducing, 3a;+7x- 30 > 10, or, 10a; — 30 > 10
;

adding 30 to both members of the inequality, and dividing by 10,

we have,

ar>4.

a: a; a; 13 17
3. Given, «"-q+o ^IT^IT' *^ ^"^ ^^^® ^^^^* *"^it of x.
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Multiplying both members by 6, vre have,

a;— 2a; + 3a; + 39 > 51
;

reducing, subtracting 39 from both members, and dividing by 2,

we have,

a;>6.

4. Given,
— + 6a; — a6 > —- to find the least limit of x,
o o

Multiplying both members by 5, we have

ax + 56a; — 5a6 > a^
;

adding + 5a6.to both members, and dividing by the co- efficients oi

J, we have,

(a 4- 56) a; > a (a + 56) ; or, a; > a.

6. Given, -y
— «^ H- «2> <— ,

to find the largest limit of %,

Multiplying both members by 7, adding
—

7a6, and dividing by

the co-efficients of
a;,

we have,

(6 -7a)a; < 6 (6
-

7a) or, a; < 6.

REDUCTION OF RADICALS.

1. -=. Multiply both terms by 3 -f V5.
3 — V 5

2. -— —
. Multiply Doth terms by 'v/lT— a/3.

3 4- 2a/7
3.

'

JI ^ V ' Multiply both terms by 5\/l2 + 6\/5.
5\/l2-6\/5

-^
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^ (3 + V3)(3 4-V^)(V5^2)^ ^^Iti 1 ^^,^ ,3^3 ,

(5
_ V5) (1 + V3)

-^ -^

5 + V5 and 1 - ^35 *^is gives,

(3 + VS) (1
-

a/3) (3 + a/5) (5 + V5) (V5 -2) .

(5
_ V5) (5 + a/5) (1 + a/3) (1

-
a/3)

which, after performing the operations indicated, and reducing,

becomes,

-40a/15-80a/3 + 80'v/3 + 32a/15 1 /r^
20^-2

=
5^^-

5. ——= . Multiplying both terms by Va+ x
ya •\- X — ya — x

+ a/» — Xj we have,

2q^ + 2 a/q^^ _ ^2 _ fl^ ! A^gi _ ^2
^

2a;
~"

a;

6.

(^-^^^
+
^^^ . Multiplying both terms by

2 a/3 + a/7, the denominator becomes 5. For the numerator,

performing the multiplications and reductions, we have,

7^2 a/5> 3 + a/45

2a/34-a/7

14V3_4v^4.4v^4.2a/135

+ 7V7_2a/35 + 2a/7 4- A/3i5.

But, 2A/i35 = 6A/l5; and V315 = 3a/35;

hence, the product reduces to

18a/3 + 2a/15 + a/35 + 9 a/7.
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But,

18^3 = 9 X 2a/3; and 2^15 = 2^/3x^/5;
also,

V3E = V7 X Vs;

hence, the sum reduces to

9x2\/3 + 2'v/3x\/5-}:'V/7X'V/5 + 9\/7

= 9 (2 a/3 + V7) 4- VS (2 V3 + Vt)

= (9 + V5)(2'v/3 + \/7).

EQUATIONS OF THE SECOND DEGREE.

7. Given -7; jx = I x —
, to find the values of x.So as

Clearing of fractions, transposing and reducing,

whence, hy the rule

v^-
a2 _ i2 / a* - 2a262 4- 6* a2 ~ Z,2 a^ + 6«

2a6 V ^
4a262 2<i6 2a6

'

, . , . 2a^ a
taking the upper sign, x = —— = -,

'* lower " X — — TT—z = •

2ao a

„ ^. dx Sx^
, ^

1 + c x^
,
X

8 Given - + -7- + 1 = --^- "r + :?c 4 c 4 a

to find the values of x.

Clearing of fractions, transposing and reducing,
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whence, by the rule,

(^2 — c /I # - 2c(^2 _^ c2 cP^ c d^-^c

v/-
+ T-^ir" = -

-irrr- ±
2c(; V c

^
4c26^2

-
2cd 2cd

'

2c 1

taking the upper sign, x- — z=-,

" lower " X = — z-—. =
2cd c

9. Given — + —- = 8 — -, to find the values of t,
4 o o 4 o

Clearing of fractions, transposing and reducing,

2
^ ^

X^ X =. —1
3 4'

whence, by the rule,

1 /5~rT 1 7

hence, ^ = ^ and x = — ->

90 90 27
10. Given —-r = ——7:1 to find the "alues of x.

X x-\- 1 X +2

Dividing both members by 9,

10 10 3

X X + i X + 2'

clearing of fractions, transposing and reducing,

2
'^ 20

X^ X =: 1

3 3'

whence, by the rule,
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_7 /20
,

49 _ 7 17

henco, a; = 4, and x = —— = ~ - .

D 3

11. Given — 2 = —
,
to find the valueT of «,

8 — a: X — 2

Clearing of fractions, &c.,

, 39 28

whence by the rule,

39 ^ / 28 1521 _39 31

hence, x = 7, and a; = —r = -.
10 5

x2 b — I h
12. Given ax r- + ^ =—r— ^^ + -x, to find the values of«.

a

Clearing of fractions, (^c.

a;2 X z=0

whence, by the rule,

2a V "^
4a2

~
2a

"*"

2a '

hence, a; = a, a; = .

iQ /-•
a-6 3a;2 a^ b + a

^

x' b^
13. Given _-. +--- = __.+ -__

to find the values of x.
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Clearing effractions, &c.,

2
26 _ a2 — 6\X X — —

y
c c^

whence, by the rule,

b /a?- -IP-
.

h^ b ^a

b -\- a T
b — a

hence, x = ,
and x = •

'

c c

14. Given mx^ + mn = 2m'\/n
• x -\- tuc^, to find the values of or.

Transposing and reducing,

2mx/n' mn
m — n m — n

whence, by the rule,

m\/n I WW
\

m^n m\/n n-um
X =—^— db \/ h 7 r-2

= — -— ±
;m — n V m — n {m — ny m — n m — n .

since, m — n = (-y/m + -/w) (y^ — y/riY. (Art. 47.)

also,

— ^ (yw + -yA) (ym — -v/w) yw + -y/n

a; = —
m

2c? Solution,

mx^ + w^7^ = 2m -y/n
' x 4* ^a;^

;

transposing the first term of the second meraber. we have,
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mx^ — 2m yn > x -^ mn = nx^
;

observing that the first member is the square of a binomial whose

terms are -y/m
• x — -y/m -y/w7 we have,

'yfm
' X — -y/m -yA = ± V^ * ^>

'^m ' X qp yn' x = ym yn

(y^=F V^) ^ — V^'v/'i • hence,

y/mn _ '\/mn
X = —TIT and, X = —==. —*

-y/m
—

\/n ym -f yn

^. ^ ^ 6a^
^
hH ah - 2^2 Sa^

] 5, Uiven abx^ •\ = 5 *>
c^ c c^ c

to find the values of x.

Clearing of fractions, &c.,

whence, by the rule,

IP' + 3a2 / a6 - 262 _^ 6a2 6* ^- 6a262 + 9a*
xz=z ?r-i— ± \/ T-. h

2abc V ahe ^aWc^

- _ ^^ + 3a2 3a2 + \ah - b^
^"

2abc
"^

~2abc *

, 4ab — 262 2a - 6 Qo? + 4a6 3a + 26
hence, x =——- = , a; = —-. = r

2a6c ac 2abc be

.^ ^. 4a;2
,

2a;
, ,. ,^ 3j;2 58a;

16. Given _ +_ 4. 10 = 19 -— 4-
nj-»

V) find the values of a;.
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Clearing of fractions, &c.,

a;2 — 8a? = 9
;

whence, by the rule,

a; = 4±-v/9+l« = 4±5,

hence, a; = 9, x = •— I.

17. Given i = , to find the values of x,
X — a a -\- X

Clearing of fractions, &c.,

- b-2 '

whence, by extracting the square root of both members,

x = + a y y32'
^""^ x=-a^ M-_2_

6-2

18. Given 2a; -f 2 = 24 — 5a; — 2a;2, to find the \alues of x.

Transposing and reducing,

«» +
^a!
= ll;

whence, by the rule,

7 /,, ,
49 7 15

whence, a; = 2, and a; = —jr-

19. Given a;^ ~ a; — 40 = 170, to find the values of x.

Transposing,

rr2 - a; = 210
;
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whence, by the rule,

hence, x z= 15, and x = — 14.

20. Given Sx^ + 2x — 9 = 76, to find the values of 9,

Transposing and reducing,

X^ H X =  — 

1^3 3 '

whence, by the rule.

__1 /J5.1__l^l?.""
3 V3'*"9 3~3'

17 2
hence, a; = 5, and x = ——= — 5 -•

o o

21. Given a^ + 6^ — 2bx + x^ = —r-, to find the values ol *

Clearing of fractions, &c.,

x^ +
26n2 n^a^ _f- ,1252

m^ — n^ m^ — n^
*

whence, by the rule,

* ~ ""
m^ -v}

'^ V ~m2~'^ "^
wi* — 2m2n2 -f n<

whence, x =
j^g-—^ |

in ± y/a^m^ + b^m^ - aH^ i
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22. Given
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and by the rule, ,c='4±i/^i='^ ;

.-. a;' = 10 and x" = —-.

27. Given -^.^Zli?^?;x — 12 x — 6 6
'

whence, Q{a^—12x-{-36)—e{x^—24^-{-lU)=5(x^—lSX'\-72)

Reducing, ..^1??.= _1^;

and T-g^ + jA^^^ 5040 _ 81 ±39
6=*^^ 25 25- 5

x' = 24 and x" =
5̂

28. Given -^ + ?Jll==^;

whence, Qx^ + 6 {x^ -{- 2x -^ 1) = 13 {x^ + x) ;

hence, a?= -| ± V6| =
""^^^^

^
;

.-. x'=2 and a;"=— 3.

29. Given -i- -^ = 1;
ic — 2 ic + 2 5'

whence, 6 {x + 2)
— 10{x — 2) =3 (a^

—
4);

hence. .= -
^
±/^ = -^^^

.*. a; = 3 and a; =——,
o

OA n- 4 6 12
30. Given

a: + l^a: + 2 a; + 3'

whence, 4(a:»4-5a;+6) + 5(a^»+4a;+ 3)=12(ic3+3a;H-2);

. 2
.
w^i 45 2±7

hence, :, = _ ± 4/
._ + _=. -^;

,•. a:'= 3 and x"=—-.
o
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TROBLEMS GIVING RISE TO EQUATIONS OF THE SECOND DEGRER

4. A grazier bought as many sheep as cost him £60, and after

reserving ] 5 out of the number, he sold the remainder for £54, and

gained 2.9. a head on those he sold : how many did he buy 1

Let X denote the number purchased :

and a: — 15, the number sold
;

then will denote the number of shillings paid for 1 sheep,X

and — the number of shillings received for each.

From the conditions of the problem,

1200 1080

X X — 16

clearing of fractions, &c.,

x^ + 45a; = 9000

whence, by the rule.

-2;

^.V9000 + Hfi
=
-f:.l|i

hence. x = 75, and a; = —
120,

the positive value only, corresponds to the required solution.

5. A merchant bought cloth for which he paid £33 15*., which he

sold again at £2 8s. per piece, and gained by the bargain as much

as one piece cost him : how many pieces did he buy ?

Let X denote the number of pieces purchased :

675
then will,

—> denote he number of shillings paid for each,X
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and 48.1: the number of shillings for which he sold the whole.

From the conditions of the protlem,

48:r-675 =—
;X

then, by clearing of fractions, &c.,
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10y-20 + 2/=3y2_6y;

whence, by transposing, &c.,

y^-yy^
=

--3-; and,

by the rule,

,
17 / 20

,

289
.
17 7

taking the positive sign, y = 4
;

whence, a, = 2, and the number is 24.

7. Find a number such that if you subtract it from 10, and mul

tiply the remainder by the number itself, the product will be 21.

Let X denote the number :

from the conditions of the problem,

(10 -x) x = 2l; or, x^ - 10a; = - 21
;

by the rule,

a; = 5±y-21+25 = 5=fc2;

whence, a; = 7, and x = S.

8. Two persons, A and B, departed from different places at the

same time, and travelled towards each other. On meeting, it ap-

peared that A had travelled 18 miles more than B; and that A
could have performed B's journey in ISf days, but B would have

been 28 days in performing A's journey. How far did each travell

Let X denote the number of miles B travelled
;

' « + 18 " " " A "

jIi
" " " A «

in one day;
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I

1 Q

—J-— denote the number of miles B travelled in one day ,

* "* ^^ " "
days A

(xc)

W)
B

from the conditions of the problem,

SQx + 324

15f
'

a; 4- 18

X
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175
Then — will denote the number of shillings each should pay ;

X

" "
paid;x-2

from the conditions of the problem,

175 175
10;X — 2 X

clearing of fractions,

175a; - 175a; + 350 = 10a;2 - 20a;;

whence, a;^ — 2a; = 35.

By the rule,

x= 1 ±^36= 1 ±6;

using the upper sign, a; = 7.

10. What two numbers are those whose difference is 15, and Oi

which the cube of the lesser is equal to half their product*?

Let X denote the smaller number
;

then will a; -f 15 "
greater

*'

from the conditions of the problem,

a;3 = l(a;2 + 15a;), or, x^ = ~{x + 15);

whence, x^ — -x =-;n'

By the rule,

1 715
,

1 1 11

using the upper sign, a; = 3
; hence, x -{- 15 = 18.

11, Two partners, A and B, gained $140 in traje: A's money
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was 3 months in trade, and his gain was $60 less than his stock : B's

money was $50 more than A 's, and was in trade 5 months : what

was A 's stock 1

Let X denote the number of dollars in A's stock
;

a: + 50 * « " B's "

a; — 60 " A's total gain ;

" A's gain per month
;

a; -60
3

a:- 60—^^r—
" A's " " " on 1 dollar ;

(-^)(^ + 50) B's " " «

From the conditions of the problem,

a;— 60 +^^-?^ (a; + 50) 5 = 140;

clearing of fractions, and reducing,

a

By the rule,

**'^5 trt^*.—-X = 1875.
4

whence, a: = 100.

325^ /, ,Q-rx ,

105625 325^475

12. Two persons, A and B, start from two different points, and

travel toward each other. When they meet, it appears that A has

travelled 30 miles more than B. It also appears that it will take A

4 days to travel the road that B had come, and B 9 days to travel
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the road which A had come. What was their distance apart when

they set out?

Let X denote the number of miles B travelled
;

then will a: + 30 " " " A

A travels per day;

^ + 30
., ,, „ g

9

a:+_30 ,,

14J

(Hi")
From the conditions,

days A

« B

X ar + 30 x^ x"^ -^ QOx + 900

whence, by reduction

or, 47= 9 ,

and by the rule,

a; = 24 ± y^ -f 576 = 24 ± 36
;

taking the upper sign, x =z 60, and a; + 30 = 90 ;

hence, the distance is 150 miles.

EXAMPLES INVOLVING RADICALS OF THE SECOND DEGREE.

fit / CL^ — X^ X
3. Given - 4- \ / -;.

— = t» to find the values of x,
X \ x^
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Multiplying botn members by 6ar, and transposing,

b
-y/tt^

— x^ =z x^ — ab
;

squaring both members,

^2^2 _ 52a;2
~

j;4 . . ^abx"^ + aW
;

cancelling b'^a?^ dividing both menr.bers by x^ and transposing,

X^ z=2ab-b'^ . •. x= do -y/^ab
- 62.

4. Given . A±_^
_^ 2J——= b^ a/-^, to find ;r

Multiplying both members by \/ ,

a: V a:

multiplying both members by a:,
and transposing,

2-\/ax =z b'^x — X — a =i
{b"^
—

\)x
— a

\

squaring both members,

Aax = (6*
- 262 + 1) a:2 ~ 2a (62

_
1) ar + a2

;

transposing and reducing.

2a(62 4- 1) a2_
b* -2b'' i-f~ 6* -262+ 1'

whence,

* ""
6* - 262 + 1

"^^ V 6* - 262 + 1
"^

(64
_ 262 4- 1)3

'

_ 'q(62 -f- 1) 2a6
^^^' * ~

6* - 262 H- 1
=*=

6* - 262 + r*

now, 6* - 262 .|. 1 ^ (6
_

i)2(/, ^ 1)2^
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Hence, taking the upper sign and reducing,

_ ^±-11! _ «(^ + 1)^ a
'

"^ ""

(62
-

1)2

~
(b- 1)2(6 + 1)2

~
(b- 1)2

'

and taking the lower sign and reducing,

_ <^ - l)'^ _ «(6
- 1 )2 a

^ -
(62
-

1)2

~
(6
-

1)2(6 + 1)2

-
(6 + 1)2'

or, uniting the two values in a single expression,

(b^:ly

ft  I *«/ n/^ — ca^

5. Given,
—

.
~ 6, to find x.

a-\- -^ a2 — a:2

Clearing of fractions, transposing, &;c.,

a{\ -b) = (6 + 1) 'v/a2-a:2;

squaring both members,

a2 (1
-

6)2 = (6 + 1)2 (a2
-

a:2) ;

transposing and reducing,

4a26 2a -/6'
/>•* — .

• ff —— -f-
^

,'^ -
(b+\f

  * - *
6 + 1

6. Given, ^+ V^^ ^^, to find ^.

-y/a:
—

-y/a;
— a x — a

Multiplying both terms of the first member by -y/^
—

v/cc
~

a,

and then dividing both members by a,

2a; — a — 2-^/^2^17^ a: — a

clearing of fractions, &;c..
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(1
—

2n^)x
—

(1
—

n2)a = - 2^2 ^x^ — ax
;

squaring both members, transposing and reducing,

2 (1
—

3^2) a 1 _ 2n2 -f n*
^

1 _ 4/^2
^ -

1 _ 4n2
"*

'

v^hence by the rule,

_ 1 - 3n» / (l-2n2 +n*)a2 (1
- 6^2 + 9n*)aa^ -

1 _ 4^2
^ V 1 - 4il2

+
(1
_

4^2)2

(1
-

3n2) 2n^a (1
- 3/^2 ± 2n3) a

1 _ 4^2 =^.1 _ 4w2 1 - 4?l2

Taking the upper sign, and dividing both terms of the fraction by

1 +2n,

__ (1
- 2n + n2)a __ (1

- nfa* ~
1 - 2« 1 - 2»~*

Taking the lower sign, and dividing both terms by 1 — 2n,

- « (1 + 2^ + >>^) __ (1 + nfa* "
1+27*

""
1 + 2;i

'

1 . 1. 1 . .1 a (1 ± n)2
takmg the two values together, x =

-rp ^—
^ • •

7. Given '^—= + —
; =\/ t^,

to find x,

^x ^ V h

Multiplying both members by y^
X

aquarmg ooth members,

2a + 2ya2-a;2
= y; or, 2v^tt2

- a:2 = y -2a;
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squaring both members,

cancelling 4a^ in the two members, and dividing both by a;*,

_ ar2 4a

clearing of fractions, &c.,

a;2 = 4a6 - 462 ... x=z ±2 ^ah
— b\

8. Given — ^^—^ = 6
;
to find x.

a -\- X

Clearing of fractions, transposing and factoring.

^^202; 4- a;2 = (6
—

1) (a + ic).

Squaring both members,

2ax 4- a:2 = (62 -26 + 1) (a" + 2aar + x') ; or,

%ix + x^= (62
-

26) (a2 + 2aa; -f- x^) + a^ + 2ax + x^i

whence, by reduction,

whence, by the rule.

/ , /I
- 26 + 62\ 1«=— a±\/-a2 (— -J— ] + a^=—a±a -,

a (I -V26"-62)
taking the upper sign, x =

;

— —zz=
;

,. ^ 1 . «(1 4-V^6'^^
takmg the lower sign, a; = ^ =̂r ;

^M-b-'

whence, a; = ± —^— ^ —
^/^T^ b''
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2d Solution.

Make x-{-a = y; whence, 2ax -\- x^ = y^
— a*

substituting in the equation, and clearing of fractions,

2/ -f v'y'
- «' = *y ;

Iransposing, &c.,

squaring both members, and cancelling,

- a2 = (62
-

26) y2 ;

whence, solving with respect to y,

a
y= ±

^26
- 62

substituting for y its value, &c..

a

y^STTi*'

whence, as before, r :z. ^:—^====:
^26

- 62

TRINOMIAL EQUATIONS

6. Given a:* - (26c + 4a^) a'2 = — 62c2
;

to ht,<f x.

By the rule.

« = ±
y6c + 2a2 ±:

^/4aHc + 4a*'= ±-v/6c -f 2u2 ± 2ay^ T -^'^

7. Given 2z - 7 y^ = 99
; or, 2x - 99 = 7^/i

Squaring both members

4a?a - 396a? + 9801 = 49*
;
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transposing and reducing,

2__445 _ 9801
^

4
^-

4

A'hence, by the rule,

445 / 9801 198025

8 ~V 4
^

64 *

445 203
x =— ^—:

648
taking the upper sign, x = — = 81

242 121" lower sign, x = -^ = -j—

8 Given, - — Jar* -f - .r^ = 0, to find x
;

transposing and reducing.

c a
-B* a.2 _ _ .

bd b"^'

whence, a: = ± \/^ ±
y/-^ +

reducing, x =. ± ^J~lK^^±

462(^2
»

EXAMPLES OF REDUCTION OF EXPRESSIONS OF THE FORM OP

V* ± VK

\, Reduce to its simplest form, \/28 + 10
y^3.

a = 28, ft = 300, c = 22.
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4.pplying the formula and considering only the upper sign,

v/28+ 10 V3'=5+-v/3]"

5, Beduce to its simplest form, </l + 4-y/— 3.

a = 1, ft = —
48, c = 7

;

applying the formula, &c..

6. Reduce to its simplest form,

Ubc + 2b -^bc
— 62 - K/bc - 2by/bc-b^,

a = bc, b = 462 (5c
-

62), c = 6 (c
-

26) ;

applying the formula to the 1 st radical,

yjbc
+ 2b ^bc - 62 = ± {^bc

- b^ + 6) ;

applying the formula to the 2d radical,
'

yjbc'-2b^bc-b^=z db(V'6c-62-6);

subtracting the second result from the first.

y^6c-f
26 ^/bc

- 62 -^bc ~ 26 V^c - 62 = =b 24.

7 Reduce to its simplest form.

a = ab-\-4c^ — (P, 6 = Uabc^ - 4a6rf2, c = ab — 4c* ^ rf«.^
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Applying the formula,

SIMULTANEOUS EQUATIONS.

{x^2y = 7 (1)

ix^-\-dxy+y^ = dl {2)

From (1),
xz=7 — 2y.

Substituting in (2),

49 - 2Sy + 4^/2 + 3i/(7
-

2y) -{-y^ = 31'y

hence,

7 ^ .749
,

18 7 _^
11

y=-2^^T + T=-2'^Y^
.•. ^=2 and y"=--'9;

and
a;'= 3 and x"= 25.

j2a; + 2^
= 27 (1)

(3icy = 210 (2)

From (1),

2/
= 27 - 2x,

Substituting in (2),

3a; (27 -2a;) =210;
hence,

2*^ ^ a/T^^Y o^ 27 ± 13

,\ a;'=10 and x"=3i.
From (1)

y'=z 7 and y'= 20.

4 (2a;-3y-l=:0 (1)

i2x^-\-xy'--5y^z=20 (2)

From (1),

^-
2 '
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from (2),

hence,

y-^_y^4/^9—312_ ~7±19 .

^ 4^ ^ 16
^

16
~"

4 '

.-. y'=3 and y'=_6i;
and from (5),

x'=5 and 0;"= — Of

5.
, -3( 10a; H-y .

y — xz=z2 . . .

From (2),

?/ = 2 + a;.

Clearing and substituting in (1),

10x-\-2-i-x = dx{2-\-x);
hence,

6
=^ '^ 36

^
36 6

'

.-. x'=z2 and ^"= -l-
From (2),

y'= 4 and y"= -

7. \3^-xy=
6

(1)

(x^+xy= 66
(2)

Adding (1) and (2) and dividing by 2,

re2=36; .-. x'=Q and a;"=-6;
hence,

y'= 5 and y"= — 5.

8. (x2-:r2/ = 48
(1)

{xy-y^=n . (2)
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Making y =zpXy

u?-px^ = iS; .: «? =^- . . . (3)

12
^a^-^V=12; .-.

^'=^—i'
 • . (4)

Equating (3) and (4) and dividing by 12,

4 1=
^; .-. 4^ — 4^2

—
i_2?;

hence,

, 5 1 5
, ./'25 16

f-lP = -l^ •*• ^ = 8±^64-64'
or, ^ = 2 and P = j'

Using, P = j} we have from (3),

x'=+S and a;"=— 8; whence, 2/'= + 2 and y= —-2.

Q
(0^2 + 4:^2^ + 4^2^256 (1)

(3«/2-a;2 = 39 (2)

Making
y=px,

a;2 4. 4^a;2 + 4j92:r2
=: 256 (3)

3i?2a:2_a;2 = 39 . (4)

From (3) and (4),

^2^__j£L__ (5)•^ —
1 4. 4p + 4^

V^^

^=3^ <«)

Equating,
256 _ 39

1 + 4j9 + 4^2— 3^2__i5
hence,

768i>2
~ 256 = 39 + 156^ + 156;?2,

, 13 295
and y__^=:__;
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hence,
78 ±432 5 , 59

^ = -6l2-' ^' ^ =
6

^^^
^=~102'

Using the first yalue, we have from (6),

je8 = 36; •. x = e and a;"=-6;

and by substitution,

y'= 5 and y"=: — 5.

Using the second value, we find,

a;'=102 and a;"=— 102;

and by substitution,

y'= — 59 and y"= 59.

10 i6(^A-f) = ldxy (1)

\^^y2 = 20 (2)

Making
y=:px,

e(l-{-p^)x^=:13px^ (3)

(l_^2)a;2 = 20 (4)

From (3), we have,
6 + 6^2

_
13^.

Reducing,
o 13

,

_ 13 ./169 144 _ 13 ± 5

or

p = li and P =
^-

From (4) we have,

20^
1—

^^'^

^ =r^ (5)
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Using the second value of ^, we have from (5),

OA
ic2 = --^ = 36, or x'z=G and a;"=— 6;

and by substitution, y'=-^ and y"= — 4.

EQUATIONS OF A HIGHER DEGREE THAN THE FIRST, INVOLVING

MORE THAN ONE UNKNOWN QUANTITY.

(a;2y 4-a:v2 = 6 . . . (1))
15. Given, ] . o

, \ . .^ /ox C
^^ ^"^ ^ *^^ y*

Kx^y^ + x^y^ = 12 ... (2) )

Dividing (2) by (1), member by member,

xy = 2, or x =i —
y

Substituting this value of ar in (1) and reducing,

i + 2. = 6;

clearing of fractions and reducing,

whence, y = l ±y^- 2 +
|-
=

|-
± 1;

or, y = 2, and y = 1
;

whence a; = 1, and x =2.

( a;2 -f a: + y = 18 — v^ . . . (1) )

16. Given,
J

^ ^ ^ ^
^
M to find a; and y.

(ary =6 (2))
^

Multiplying both members of (2) by 2 and adding the resulting

equation to (1), member to member,

a;2 4. 2^y + y2 4- ^ 4- y = 30,

or, (X 4- y)2 + ^ 4. y = 30 ;
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whence, by the rule,

2'+'=-i*NA^=-^"
whence, x -{• y = 5^ and x -{- y = — 6,

Taking the first value of x + y and substituting in it, for y ita

value — derived from (2),
X \ /' ,
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Assuming the equations,

M + z = 2s . . . .

(1)

a; -f y = 2s' • . • »

(2)

t*2 + a;2 + y2 _|. g2 _ 4c2 . . . .

(3)

uz z=i xy • * • •

(4)

Multiplying both members of (4) by 2, and subtracting from (3),

member from member,

u^ - 2uz + 2;2 _(_ a;2 -j- 2xy + y^ = 4c2;

or, (u
— zf + (a; 4- yf

—
4c2.

Substituting for a? + y its value 2s' and transposing,

(w
- zf = 4c2 - 4s'2,

or, u— z= -/4c2
— 4s'2.

Combining with (1),

. V4c2-^4?2« = « +
2

= S + y/c^
-

S'2,

r/4c2 — 4S'2 •

and, z —i — "^

^
_ 5 _ ^c2 — «'2

J

reversing the order of the members of (4), and proceeding as before,

we find in like manner.

a; = s' 4-yc

and, y =1 s' — -/c^
—

6-2.

4. The sum of the squares of two numbers is expressed by a,

and the diiference of their squares by b : what are the numbers 1

Let X and y denote the numbers.

From the conditions of the problem,
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a:2 + y2^a . . . .

(1)

x'' -y^ = b . . . .

(2).

By adding, member to member,

2.» = « + 6 ... .^ty'^
by subtracting,

5. What three numbers are they, which, multiplied two and twa

and each product divided by the third number, give the quotients

a, 6, c ]

Let X, y and s, denote the numbers

From the conditions of the problem,

xy— = a or, xy
— az • '
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x^ = ac .
•

. X z=
^ac.

Substituting the value of xz and dividing both members by c,

y'^
= ab .'. y z=^^ab.

6. The sum of two numbers is 8, and the sum of their cubes is

152
;
what are the numbers %

Let X and y denote the numbers.

From the conditions,

x + y=z ^ (1)

a;3 + y3 = 152 (2);

cubing both members of (1),

ar3 + ^x^y -f ^xy"^ + y^ = 512 • • • •
(3) ;

subtracting (2) from (3), member from member, and dividing both

members by 3,

x^y + a:y2
= 120 • • • •

(4) ;

substituting the value of a; taken from (1),

(64
- 16y +. y2) y + (8

_
y) 2^2

,, 120,

or, reducing, y^
— Sy = — 15

;

whence, y = 4 ± ^— 15 + 16 = 4d:l .-. y = 5, y = 3;

whence, from (1) a; = 3, a? = 5.

7. Find two numbers, whose difference added to the difference of

their squares is 150, and whose sum added to the sum of theii

squares, is 330.

Let X and y denote the numbers.

From the conditions of the problem,
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x^ — y^ + x-y =150 • • • •

(1),

x^-\-y''-^x-{-y = SSO • • • •

(2);

adding member to member, and reducing,

a:2 + a; = 240
;

whence, ar = — - ± -/240 + 4
= —

2
"^^

"2*
'

or, considering only the positive solution,

a; = 15;

whence, from (1), by substitution,

 

' '

y = 9.

8. There are two numbers whose difference is 15, and half their

product is equal to the cube of the lesser number : what are the

numbers 1

Let X and y denote the numbers.

From the conditions of the problem,

a;-y = 15 . . .

(1),

|^
= y3, or x = 2y^ • . •

(2);

substituting in (1) and dividing both members by 2,

whence,

^ 2 "2''

_1 /15,J___1 li
~4'^V2'^16""4'*'4

considering only the positive solution,

y = 3
; whence, from (1), or = 18.
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9. What two numbers are those whose sum multiplied by the

greater, is equal to 77
;
and whose difference, multiplied by the

lesser, is equal to 12?

Let X and y denote the numbers.

From the conditions,

(a; -f- y) a: = 77, or x^ -V xy^ll . . .
(1);

(a:-y)y=12, or o-y
-

y^ ^ 12 • • •
(2);

make x =z^y \ whence,

(;>»+;>)y» = 77, or, y^ =^f^
• • •

(3),

12
(p -i)y^ = i2, or, y^ =

^-:rT
 • • W"-

equating the second members and reducing,

2
^5 ^^

^ -12^=-12

65 I 77
,

4225 65 23
whence, ;,

= _ ^^ - _
-f- -^ = - d= -;

taking the upper sign,

_88_ 11

^""24"" 3 ^

/36 3 r-
substituting ir (4), y=\/— = — y2;

whence, x =. -^ ^2;

42 21
taking the lower sign, p — — = —

;
•w4 i<«
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whence, x^ + 46a; = 840
;

by the rule,

ar = — 23 ± ^840 + 529 = — 23 ± 37 ;

euce, taking the upper sign, a; = 14
;

Dy substitution, in (1), y -= 10.

12. What two numbers are those, whose product is 255, and the

sum of whose square is 514?

Let X and y denote the numbers.

From the conditions, xy — 255 • • . (1)

a;2 + 2^2
_ 514 . , (2),

multiplying both members of (1) by 2, adding and subtracting the

resulting equation to and from (2), member by member,

a;2 + 2a:y + 2/2
.:r 1024 , . (3)

a;2 _ 2xy + y2 = 4 . . . (4) ;

extracting the square root of both members,

a; + y = 32,

« - y = 2,

whence, a; = 17
; y = 15.

13. There is a number expressed by tw^o digits, which, when

divided by the sum of the digits, gives a quotient greater by 2 than

the first digit ;
but if the digits be inverted, and the resulting num-

ber be divided by a number greater by 1 than the sum of the

digits, the quotient will exceed the former quotient by 2 : what is

the number 1



110 KEY TO DAVIES' BOURDON. [192.

Let X and y denote the digits ;
then will

10a; -f- y ienote the number.

From the conditions,
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companies were in the regiment, and what number of men did each

of the remaining companies send ?

Let X denote the number of companies, and

y
" " *' each should send

; then,

2/4-12 will denote the number sent by each.

From the conditions of the problem,

^y = 216 . . •

(1),

(x-3) (y + 12)=216 • • •

(2);

Performing operations, subtracting and reducing,

4a? — y = 12. .
•

. y = 4a; — 12
;

substituting in (1), ^x^ — 12x = 216, or a;« — 3a; = 54
;

whence, x = — ±^54 + _ = _± —
;

taking the upper sign,

a; = 9
; hence, y = 24, and y -f 12 = 36.

15. Find three numbers such, that their sum shall be 14, the

sum of their squares equal to 84, and the product of the first and

third equal to the square of the second.

Let a;, y and z denote the numbers.

From the conditions of the problem,

X -i-y +z z=U . . .
(1),

«2 + y2 + 2^ = 84 . . .

(2),

a;2=:2/2
. . .

(3).

Multiplying both members of (3), by 2, adding to (2) and ^educiw^,
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x^-^2x2 + z^ = S4:'\-y^', .-. x + z= -v/84-hy'^
• • (4)

from (1 ), a: -f ^ = 14 — y • • • •

(5) ;

equating the second members of (4) and (5) and squaring,

84 + y2 = 196 -28y + y2; .*. y
- 4.

Substituting in (1) and (3),

x + z = 10 . . . . (6)

i« 16
xz = IQ . •. X = —.

z

Substituting in (6) and reducing,

£2-102 = -16

2 = 5 ± yiT^ 5 ± 3,

= 8; s = 2,

and by substitution, x = 2; x = S.

16. It is required to find a number, expressed by three digits,

such, that the sum of the squares of the digits shall be 104
;
the

square of the middle digit to exceed twice the product of the other

two by 4
;
and if 594 be subtracted from the number, the remainder

will be expressed by the same figures, but with the extreme digits

reversed.

Let a:, y and z denote the digits ;

then, lOOsc -f lOy + « will denote the number.

From the conditions of the problem,

a:2-|- 2/2^^2^ 104 . . . (1)

2/2
— 2a?2 = 4 . . . (2)

lOOa? 4- lOy -f 2 - 594 =iOOz -f lOy 4- ar (3) ;
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subtracting (2) from (1), member from member,

a;2 -f 2a:« + 22 _ 100 ^
.

, ar + = 10 ;

reducing (3) x — z = Q;

hence, a; = 8, and z =z2.

By substitution, 2/
= 6, and the number is 862.

17. A person has three kinds of goods which together cost

$230 /i".
A pound of each article costs as many Jy dollars as there

are pounds in that article : he has one-third more of the second than

of the first, and 3^ times as much of the third as of the second .

How many pounds has he of each article ?

Let X, y and z denote the number of pounds of each article.

From the conditions of the problem.

aj2 7/^ 22
5525^

24
"^

24
"^

24
~

24
'

^""^
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received 12J dollars for yours." How many yards did each of

them sell 1

Let X and y denote the number of yards sold by each.

24
Then will — denote the price the first received per yard,

25
and — will denote the price the second received per yard.

From the conditions of the problem,

« + 3 = y,

— +^ = 35, or, 48;i:2 + 25y2 = 70^y :

substituting in the second equation the value of y taken from the

first,

48a;2 + 25 (a;2 -\- Qx -\- 9) = lOx^ -f 210x
;

reducing, x^ — 20.r = — 75
;

whence, x = \0 ± v^ = 10 ± 5,

or, ar = 15
;

x = 5
]

substituting, y = 18
; y = 8.

19. A widow possessed 13000 dollars, which she divided into

two parts, and placed them at interest, in such a manner, that the

incomes from them were equal. If she had put out the first portion

at the same rale as the second, she would have drawn for this part

3G0 dollars interest
;
and if she had placed the second out at the

same rate as the first, she Mould have drawn for it 490 dt liars

interest. What were the two rates of interest?

Let X and y denote the rates per cent.

Let z denote the 1st portion ;
then will 13000 — z denote the 2d.
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r rom the conditions of the problem,

xz (13000—0)2/ lonnn (^\

^-^
= 360, or, .y = 36000 • . •

(2),

^^^^7oo"
^^ "" ^ ^^^' ^''' ^^^^^"^ - 2 :« = 49000 . .

(3).

Substituting in (1) the values of zy and zx taken from (2) and (3)

and reducing, we find, x =z y \- 1.

Substituting this value of x and the value of z taken from (2) in

(1), and reducing, we find

^ 13^ 13'

36 /36 1296 36 ± 42
whence, y = _ ±y/- + -^ =.——; .-. y = 6;

by substitution,

x=,l, and = 6000, 13000 -
2? = 7000.

ADDITION AND SUBTRACTION OF RADICALS.

1. V'48a62=4^»V3a, and 5\/75a=5JV3«; .*. J[w5. OSv^

2. 3Vi^ = 3V^; 2V2a, .-. Ans. hVYa,

3. 2 Vis = 6 a/5; 3\/5, .-. Ans, 9^57

4. 3aV^-2cA/&, .-. Ans, {3a
— 2c)V^.

5. 3 Vi^2 - 2 V^;

3Vi^ = 3V2a; .-. Ans, V^-

6. ^243 = 9^/3; a/27 = 3\/3; a/48 = 4'v/3. ^ws. 16 a/3.
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7. 2 VSa^ = 4:aV2a; — 7a VTSa = — 21a V2a;

5 V72a3 = 30a\/2a; — V^Oab^ = — 56\/2a;

.*. Ans, (13a
— 6e)V2a.

8. 12Vi = 6V2; 3VS = fV2;

9. ySa^ + 16^4 = 2a Vb + 2a, and

. V6* + 2aZ>3 = h Vb 4- 2a, .-. Jw5. (2a — J) V^ + 2a,

10. 3V4^ = 3V2a; 2V2a; .-. ^;is. V2a.

MULTIPLICATION OF RADICALS.

5. y^X y^= 1^/64
X 1^ =

12^5184

Vl"

3 /Y" 12
yY"

12 /l 12
/"~1

^^Va- V8^ V8T= Vois' •••^-•^^

6. 2-/l5r:r 2
6^3375;

3 yTO z= 3
^/TOO ;

.-. ^w5. 6 ^337500
* /2 10/4" /3" 10 /243 10 /27~

8. V^= 12^64; 3^3-,^ .2^81; \/'o-^^^^m;
.'. Ans.

iyt>48000.

42 /—i7/4 42 /4096 / 3
/i

^' V3^ V-729"' V2=-" ; 1!^='»2^/^Tg

. iln*.

*2 /2

1 0. The product by the rule for multiplication is

2^
. o /7 . . A ,

10 43
. ,^ /T" 43 13 ^--
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11 ^xr^^= dm

a^+b^ ^/a^-^W' dm 3m

12. The product equals

{Vxy — (Vyf = x^y. Ans.

DIVISION OF RADICALS.

2. 2 V^ X V4 = 2 ^\/nd X '^/25Q = 2 '\/ll29 x 256,

iV^X VS^i'-v^S X '^81 = J-'^8'x~81

2 ^^729 X 256 -- i ^^S"^^^ = 4 V^^^=4^^288. Ans.
o X oi

4. —^ =r : multiplying both terms by i/a — *
/i, we hav«

again multiplying both terms by -/a + -y/^, we finally obtain

J Ans,
a — b

multiplying both terms by Va + */^ we have

-y/a 4- 2
*yo6 + -/^^ and -/a

—
-y/fi";

multiplying both by -y/a + -y^ and we have

a-\- h + 2 v^+2V^4-2t/^ ,"~
;

—• ^int*
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6. ^ + ^ -V^ = i(86 + 13 \/42) ;

3 '^ 2 6 2a/2I+6\/2

Multiplying both terms of (1) by 2 'V^ — 6 \/2,

172 V2I + 26 a/21 X 42 - 516 ^2 - 78 \/84

84 — 72

26 V2I X 42 = 546 a/2; - 78 a/84 = — 156 a/21;

. (2)

12
'^ '

12

FRACTIONAL EXPONENTS.

1. aiiric^ multiplied by a^b^cs

^4-2-11-
l + ^^-l-i. 14-^- 2.

hence, a*J~ic~^ x a^^W = a^bic^.

2. 3flr2J^ multiplied by 2ar%i(^.

4 14 2 1 7

-2-g = -y; 3
+ 2=6' ^ + ^ = 2;

hence, 3a-2jt x 2«~*^>ic2 = 6a~^bi(^.

3. 6a~iz>^c~™ multiplied by baib'^c^,

1.1 1 . r 1— - + -=—-; 4 — 5=— 1; —m + n=n — m

hence, 6a"ii^c-'" x bah-^C^ = 3a"ij-ic»-™.

4.
(o«^) multiplied by ^a"*.

2 2__4 1 2.
3
^
3""9^ 3

^
3'

hence, (^^ ) =0^ *
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1 1 l_J^. i.i.l-?.
3
^

3
^ 3~27' 2"^ 2"^ 2"'2'

hence,
(3^7

~
27^**

6. aa divided by oT^.

2_ / 3\_2 3_17.
3 \ 4/ ""3 "^4" 12^

hence, a^ -^ai = a^.

7. a*^ divided by « ».

3 4_ 1
,

4 5~ 120'

hence, ai-r-a^ = oT"^,

8. a^ X ji divided by a~H^

2_/l\_21_^. 3_7___1.
5 \2/~5^~10' 4 8"" 8'

hence, a^b^ -^ a~ iz»l = a^h~^.

9. d2ai¥ci divided by Sah^c'i

32^8 = 4; 1-1 =
^;

6-5 = 1; |-(|)
= 4;

hence, d2ah^ci -^ 8«i^»5^~t = 4:ah(^.

10. 64a#c"~t divided by S2a-^~ic~i.

64-32 = 2; 9-(-9)=18; |-(-|)
= 5; -^-(-|)=0;

hence, e4:a^h~i -r- 32a-9rtc-t = 4:aW,

11. Vj^ X Vjt X v^.

hence, Vd x V^ x V^ = «*^M

12. Reduce , ^,i
^

to its simplest terms.
iV2
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Cancelling the ^/^^ and writing the quotient of 2 -f-
J,

we have

4
3^3?

Am,

\ 4(2)^V3 )

*

13. Reduce J. =— ^i—
J-

to its simplest terms.

[2y3"(3)*j

Raising both terms to the 4th power, we have

(2)* 2
(3)'-*

~
(2)3 (3)2 (2)' X 3

~
384

"' ^'

14. Reduce / \
^^

^^-—f V to its simplest terms.

Since the square root of the square root is equal to the 4th rootg

'we need only operate on the terms of the fraction :

2V^x(3)i 2V2XJV3 V^

Multiplying both terms of the fraction by the y^ we have

1 iWl±^m-ASW§_±^:^
, hence,

15. Multiply J+ a'4* + a*ft^ + ai + aV + 6*

rt3 — J2^ vlwJf.
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16. Divide J^ -^ a^~^ - ah + b^ |L*~J~*

a^'
a^-d

17. a;* -fa*

— ah + h^

— ah + b\

x^ - \a^

20.

x^ 4- \a^x
i + ^x * + &c.

ia'

iax
-i

i-iax
^ —

|a^

&c., &c.

-iri18. iB-i+ic ^2/

yx-^ + x ^2/^ + 1

a; i^^i -f- 1 4- x^y
^

^

+ 1 + x^y~^ + ^r^

— x~^y~^ — x-^y-^
— x'^y"^

+ x-^y-^ j^x^y ^ + y-^
x-^ + x-^y-^ + r'-
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21. (x
^ — y *)3 = ic-i — 'Zx^y^ + y-\

22. x^ _ 4a;i -j- 2

X -^x^

pi — 4,x^ + 2a;

+ 4a; — a?J 2a;^

x^ — 4a;^ -j- 6a; — a;3 — 2a;i.

23. |a;A-A^T^+i^^-i^*-A«*+ i^* a;*— fa;^

^a;g— ^:gi.|.}a;i

.1^5

-4^*-A^*+i^*
-\xA

24. ar^+ a;?/ + y^

X + a;%"g + y

+ a?y-\- xy^

-Aa;*+Ja;*

+ x^y^ H- a;^^^ + x^y^
-¥f

25. »* 4- 2a;i 4- 3a;i + 2a;i' + 1

xi — 2a;* + 1

X
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26. x^ + x^-^x-^x^ + i {x + jxi^i
^

2x + jx^ I

x^

x^ -^ jx

2x + x^-'^\-^x-ix^ + i

-ijx^^x^ + i.

ARITHMETICAL PROGRESSION.

2. a = 2, dz=:7, 71 = 100; .- , I = a + {n
- i)d =Q96,

3. a-1, dz=:2, ?ir^lOO; .' . I = a -\- {n
- l)d = 199.

Eence, S = ^n {a -}- I)
= 10000.

4. I = 70, d = S, n = 2l,

a = Z - (n
-

1) c? = 10
;

S = }jn[2l -{n- l)d] =: 840.

5. a = 10, c?=-i, n = 2l .' . I = a t{- {n -l)d = i^-,

whence, S = ^n [21
-

(n
-

l)d] = 140.

6. c? = 6, Z = 185, >S = 2945

_ 2l-\-d±. 'y/{2l H- d)-' -MS _ 376 ±4
""-

2d
-

\2~

taking the lower sign, 71 = 31, a — I — (ri
—

\)d =z ^.

7. a = 2, / = 5, n = ll; .
•

. df = ^^ =
:5^
= 0. 3.n— 1 10

8. a=l, tf=l, n = w / = w;

9. o=l, 6^ = 2, w = 7i; .', 8=z\n\2a-\-{n'-X)d'\^w

10. a = 4, 6^ = 4, n = 100
;

. . ,S^ = ^w [2a + (w
-

1)(/] = 20200

20200y(^-. = llwi. 840yc&.
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GEOMETRICAL PROGRESSION

3. = 2, r = 3, / = 39366,

g^ Ir — a
S = = 59048.

r ~ 1

4. a = 1, r = 2, n = 12

.-. S
ar" — a

^ _ y
= 4095

;
I
- ar—i = 2048.

5. a = I, r = 2, w = 12
;

(XT*'* — CI

• •• S =
—^rrj

= ^^^^
5
4 )95.9.= £204 15*.

6. «=1, r=:3, w = 10;

^ ar* -. a 59048
.-.

^=-V--i = -^= 295.24.

/ = ar^-^ = 196.83.

INSERTING GEOMETRICAL MEANS.

2. arc 2, i = 486, wi = 4
; .-. r = 5/243 = 3.

hence, the progression, 2 : 6 : 18 : 54 : 162 : 486.

SUMMATION OF SERIES.

4.
l>
= 4, 2'

= 4, n =
l, 5, 9, 13, (fee.

1st auxiliary series, i+5 + ^
+ ^ + ^4-'--

^
5
+

9
^

13
+

17
^ • • • -^

i;r33

=
1(^-4^)^'^ '^=^' '^ =1-



287-311.] EXPONENTI.VL EQTJATrONB. ,
125

PILING BALI^.

\, „=15; ...5=!ii^i)-%±^> = 680.

rt'=:=5, ,S' = 55; . •. 5- /S' = 960.

3.^ = 30, » = 30; ...^=!L(^.(l^^^±l!L).23405.

4. w = 26, w = 20
;

. •. S = 8330
;
m = 26, ri' = 8

;

/S^' = 1140; .-. >S- 6^^1=7190.

5. w = 20; .-.^=1540; n' = 9', .-. >S^ = 65;

... ^-^' = 1475.

6. » = 15; .•./Sf=1240; n' = 5
;

.-. iS' = 55;

.. S- >Sf' = 1185.

7. m= 52, n = 40
;

.
•

. ^ = C4780
;

wi = 52, n' = 18
;

.-. >S' = 11001; .-. ^- .S' = 53679.

EXPONENTIAL EQUATIONS.

These equations may be solved as the preceding ones have been,

but it will be better to make use of the table of logarithms (P. 291),

8* = 32 ;
hence we haye,

log 32 5
a; log a; = log 32; or, « =

-]^
=

3

2. 3' = 15
;

taking the logarithms of both members,

1 o 1 i;. ^ogl'^ 1.176091 ^ ^^
..log3 = logl5; ....=:^

= ^_^_ = 2.46.
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3. 10' = 3;

taking the logarithms of both members,

X log 10 = log 3, or a; = log 3 = . 477121.

4. 5' = };

taking the logarithms of both members,

X log 5 = log f = log 2 — log 3
;

log2-log3 -.176091

log 5
~

.698970
= - 0.25.

THEORY OF EQUATIONS.

2. Two roots of the equation,

a:* - 12a:3 + 48a;2 _ 68a: + 15 = 0,

are 3 and 5 : what does the equation become when freed of them t

«* - 12a;3 + 48a;2 - 68a; + 15
|

x - 3

a;2 _ ^x'z + 21ar - 5

a;2 _ 9^2 ^- 21a- — 5
|

a; - 5

ai2 — 4a: + 1 = 0. Ans.

3. A root of the equation,

a;3 - 6a:2 -f. 1 la: - 6 = 0,

is 1 : what is the reduced equation ?

x^ - 6a:« + 11a: - 6 \x
- 1

a:2 _ 5a: + 6 =0. Arn

4. Two roots of the equation,

4x* - 14a:3 _ 5^2 -f 31a; + 6 = 0,

are 2 and 3 : find the reduced equation.
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'4a;3 - Qx^ - \lx - 3,

4ic3 - 6a;2 — 17a; - 3
|
a; - 3

4a;2 + 6a; 4- 1 = 0. Am

FORMATION OF EQUATIONS.

2. What is the equation whose roots are 1, 2, and — 3 1

(a;
-

1) (a;
-

2) (a; + 3) = a;3 — 7a; 4- 6 = 0. Ans.

3. What is the equation whose roots are 3,
—

4, 2 4- v^ ^^^

2- -v/sl

(a;
-

3) (a; 4- 4) (a;
- 2 - y^) (a;

- 2 4- V^)

= x^ - 3a;3 — 15a;2 4- 49a; — 12 = 0. Am.

4. What is the equation whose roots are 3 4- \/5i 3 — y^
and — 6 ?

{x
— Z —-y/^) (a;

— 3 4- V^) (a; 4- 6)
= a;3 — 32a; 4- 24 = 0. Arts.

5. What is the equation whose roots are 1,
—

2, 3,
—

4, 5,

and -6?

(x
-

1) (a; 4- 2) {x
-

3) (a; 4- 4) (a;
-

5) (a; 4- 6)

= a;« 4- 3a;5 — 41a;* — %lx^ 4- 400a;2 4- 444a; — 720 ~ 0. Ans.

6. What is the equation whose roots are .... 2 4- v^
—

1,

2— y_ 1, and -3?

(^
_ 2 - V^^T) (a;

- 2 4-V- 1) (^ 4- 3)

= a;3 — a;2 — 7a; 4- 15 = 0. Ans.

TRANSFORMATION OF EQUATIONS.

2. Transform the equation,

a;2 ^ iia; 4- 28 = 0,

into one whose roots are three times as great.
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Make x=z^; then we have,
o

^ +
^1^ + 28 = 0; or, ^24.332^ + 262 = 0.

3. Transform the equation,

a;5 -f 3^4 _ 4a;8 _|. ^2 _ ^ + 4 — 0,

into one whose roots are equal to those of the given equa-

tion with their signs changed.

Making x= —y, and dividing by —
1,

t/^
-

3^^
- 4/ - ^2

_ y _ 4 ^ 0.

1. Transform the equation,

into one whose roots shall be the reciprocals of those of the

given equation.

Making ic = -
, substituting, and reducing,

1/3 + 3i/2 + 9?/ + 3 = 0.

2. Transform the equation,

ic4 + a:3_|_3^ + 2 = 0,

into one whose roots shall be the reciprocals of those of the

given equation.

Making x = -, substituting, and reducing,

3. Transform the equation,

into one whose roots shall be the reciprocals of those of the

given equation.

Making a; = -, substituting, and reducing,
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TRANSFORMATION OF EQUATIONS BY SYNTHETICAL
DIVISION.

4. Find tlie equation whose roots shall be less by 3 than

the roots of the equation

a^^Sx^ — 150^3 ^ 49^ — 12 = 0.

1 _ 3 -< 15 + 49 - 12
[|3

+ 3+ 0-
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6. Find the equation whose roots shall be less by 2 than

the roots of the equation

a^ ^2a^ — 6x^-- 10a; = 0.

1+0+ 3- 6-10 + 0112^

+ 2+ 4 + 12 + 12 + 4

+ 2+ 6+ 6+ 2,+ 4

+ 2+8 + 28 + 68

+ 4 + 14 + 34,+ 70

+ 2 + 12 + 52

+ 6 + 26,+ 86

+ 2 + 16

+ 8,+ 42

+ 2

1,+ 10; .-.
2/5+ lOyi+ 42«/3 -f. 86^2 _|_ 701/+4=0.

DISAPPEARANCE OF SECOND TERM.

2. Transform the equation

into an equation in which the second term shall be wanting.

Here we make the roots of the resulting equation greater

p
than those of the given equation by — -, or —2 (Bour-

don, Art. 266) ;
that is, we make them less than those of the

given equation by + 2. Hence,

OPERATION.

1_-10+ 7+ 0+ 4- 9L2^

4. 2-16 — 18 — 38 — 64
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1st quotient,



132 KEY TO DAVIES' BOURDON. [349.

Hence, the transformed equation is

4. Transform the equation,

iC3_|.9a;2__a;_|.4=:0

into one whose second term shall he wanting.

Here we 'make the roots of the resulting equation greater

p
than those of the given equation by -j-

—= 3 ; that is, we

make them greater than those of the given equation by 3.

Therefore, the synthetical divisor is — 3.

OPERATION.

1 + 9— 1+ 4|_-3
- vr X

-_ 3 - 18 -f 57

1st quotient, 1 -j- 6 — 19,+ 61 1st renL

1 — 3- 9

2d quotient, 1 + 3,-28 2d rem.

-3
3d quotient,

"

v 1,+ 3d rem.

Hence, the transformed equation is

2/3
_ 2Sy + 61 = 0.

5. Transform the equation

into one whose second term shall be wanting.

Here we make the roots of the resulting equation greater
p

than those of the given equation by
— —= — 2 ; that is,

wo make them less than those of the given equation by + 2 ;

hence, the synthetical divisor is + 2.
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OPERATION.

1st quotient,

2d quotient,

3d quotient,

4:tli quotient.

1-8+ 7+ 3+ 4L2
-1-2 — 12 — 10 — 14

1 — 6

+ 3

5— 7,-10 1st rem.

8-26
1 — 4 — 13,— 33 2d rem.

+ 2- 4

1-2,-17 3d rem.

+ 2

l,+ 4th rem.

... y4
__

17^2
_

33^ __ 10 = 0.

EQUAL ROOTa

4. What are the equal factors of the equation

xJ _ 7a;6 -j- i0a;5 -f %2x* — 43a;3 - S5x^ + 48a; + 36 = 0?

The first derived polynomial is

7a;« -r- A2x^ + 50^* + 88.^3 - 129ir2 - 70a: + 48,

and the common divisor between it and the first member of th©

given equation, is

ic* — 3^3 — 8a;2 -}- 7a; -f 6.

The equation
X* — 3a;3 + 3a;2 -|- 7a; + 6 = 0,

cannot be solved directly, but by applying to it the method of equal

roots
;
that is, by seeking for a common divisor between its first

member and its derived polynomial,

• 4a;3 — 9a;2 - ^^x + 7,

we find such divisor to be x -\- \
\ hence, a; -f- 1 is twice a factor of

the first derived polynomial, and three times a factor of the fir^t

member of the given equation (Art. 271).
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Dividing,

ar* _ 3a:3 - 3a;2 4- 7a; -f 6 = o, by (x + 1)^ = «« + 2aj + 1,

we have, a;^ — 5a; + 6,

which being placed equal to 0, gives the two roots

X = 2 and a; = 3,

and the two factors, a; — 2 and a; — 3.

Therefore, (a?
—

2) and {x
—

3), each enters twice as a factor of the

given equation ; hence, the factors are

{x
-

2)2 {x
-

3)2 (x + 1)=^. Ans.

5. What are the equal factors of the equation

x^ - 3a;6 -f 9x^ - 19a;* + 27a;3 _ 33^2 + 27a; - 9 = 0?

The first derived polynomial is

7a;6 - 18a-5 + 453:* - IQx^ + 81^2 - 66a; + 27,

and the common divisor between it and the first member of the

given equation, is

x^ — 2a;3 + 4a;2 _ 6a; + 3.

The equation
X* — 2a;3 + 42;2 _ 6a; + 3,

cannot be solved directly, but by applying to it the method of equal

roots, as in the last example, we find the derived polynomial to be

4a;3 _ 6a;2 -f 8a; - 6

and the common divisor to be a; — 1
; hence, (a;

—
1) enters twice

as a factor into the derived polynomial, and three times as a factor

into the first member of the given equation.

Dividing

a;4 _ 2a; f 4z^ - 6.r + 3 by (a;
-

1)2 = a;^ - 2a; + 1,
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we have for a quotient x^ -{-S;

hence, (x^ -\- d) enters twice as a factor into the first mem-

ber of the given equation ;
hence the factors are

(x
- If {X + 3)2.

SUPERIOR LIMIT IN ENTIRE ROOTS.

2 What is the superior limit of the positive roots in the equation

x5 _ Sx* - Sx^ - 26x^ 4- 4^ - 39 = •?

Recollecting that if we use x for x' (Art. 285), we have

Xz= x^-Sx^ —Sx^ - 25a:2 -f 4a; - 39

Y=:5x^ — 12a;3 - 'Mx^ - 50a; + 4,

Z = 20a;3_ 36a;2 - 48a; - 50,

.F=60a;2-72a;-48,

W= 120a; - 72.

r=i20

The least whole number that will render all these derived polyno-

mials positive is 6
; hence, 6 is the superior limit.

3. What is the superior limit of the positive roots in the equation
x^ - 5a;* - 13a:3 ~ ITa:^ - 69 = 0.

The process of solution is the same as in the last example, and the

limit is found to be 7.

COMMENSURABLE ROOTS.

2. What are the entire roots of the equation

x* - 5a;3 + 25a; - 21 = ?

The divisors of the last term are + 1,
—

1, +3, —
3, -f 7,

— T
-f 21, and - 21 : X = 22; - Z"= - 4.
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+ 21, +7, +3, +1, -1, -3, -
~

1,
-

3,
-

7,
-

21, + 21, + 7, +
+ 24, + 22, + 18, + 4, + 46, + 32, +

+ 3, + G, + 4, -46,

+ 2, + 4, + 46,

-3,-1, + 41,

-
1,
-

1; -41,

therefore, + 3 and + 1 are the two entire roots. Dividing the

first member of the equation by the product of the factors

(x
-

3) (x-l) :=: x^ -4x -\- 3,

we have x^ — x — y = 0.

Note.—In the 4th line we add the co-efficient of a;', which is 0, and then

divide by the divisors, and thus obtain the 6th line.

3. What are the entire roots of the equation
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4. What are the entire roots of the equation

9a;6 + 30a^ + 22x^ + lOa^ + '^W — 20a; + 4 = ?

This is worked Hke the preceding example, giving the en-

tire root,
— 2. Then dividing the equation by x -{-2, we

find a new one, which has a root,
— 2.

NUMBER OF REAL ROOTS.

3. What is the number of real roots of the equation

By finding the expressions which indicate, by their change of

sign, the existence of real roots (Art. 293 and Example 1), we

have
Xz=z a^— 5ic2-f-8a;

— 1

X,= 3a;2-10a; + 8

X,= 2x — 31

X3= — 2295

a: = — 00 gives 1
2 variations,

a; = H- 00 gives + + H 1 variation ;

hence, there is one real and two imaginary roots (Art. 293).

For X z=0, we have
1

2 variations,

for a; = 1,
" + H 1 variation ;

hence, the real root lies between and + 1.

4. Find the number, places, and limits of the real roots of

a4_ 8a:3 _|. i4a;2 ^ i^ _ g = 0.

For solution, see Example 3, page 141 of Key.

5. Find the number, places, and Hmits of the real roots of

the equation
a^-2dx — 24: = 0.



A38 KEY TO DAVIES' BOUKDON. [393-396.

X = ir8 _ 23a; — 24

X,= 3ic2 — 23

X,= 23a; + 36

X,= 8279.

For x= — 00, we have, 1 \., 3 variations.

For a;= + CO, we have, + + + +, no variations.

Hence, there are 3 real roots, which are easily placed.

6. In the sixth example, we have,

X,= 3a;2 + 3a; — 2

X,- Ux + 28
'^^

X3= — 1186.

Hence, there is but one real root, and that lies between

the limits 1 and 2.

CUBIC EQUATIONa

1. What are the roots of the equation

a;3 _ 6a;2 4- 3ar = 18 • • •

(1)1

Transforming so as to make the second term disappear,

x'^ -9x^28 = . . .
(2)

j3=--9 q = —28',

substituting in Cardan's formula, and reducing,

a? = 4.

But the roots of the given equation are greater than those of equa-

tion (2) by 2
j
hence a; = 6*
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Transposing 18 in equation (1), and dividing both numbers by

x — 6, we find

hence the three roots are 6, -y/
—

3,
— ^ — 3.

2. What are the roots of the equation

a;3 _ 9^2 ^ 28a; = 30 ....
(1)1

Transforming, we find

x^-^x = 0(2) .'. x = and rr = zh y^— 1.

But the roots of (1) are greater than those of (2) by 3;

hence the roots of (1) are, 3, 3 -{- -y/
— 1 and 3 — y'

— 1,

3. ic3-7a;H-14 = 20 (1)

Transforming (Bourdon, Art. 266), we have,

3^""T~^^^' hence, p=z^-, qz=—~-,

8
Substituting in Cardan's formula, we have -

,
the real root.

o

7
But the roots of (1) are greater by ^ than those of (2) ; hence,

o
in (1) x = 6.

Transposing and dividing by x — 6, we have,

hence, the required roots are, 5, 1 + V— 3, and 1 — V— 3.

HORNER'S METHOD OF SOLVING NUMERICAL EQUATIONS.

1. a^-^x^ + x ^100 = 0.

By Sturm's Rule, we find
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X r= a:34-a;2 -\- x -
100,

Xj = 3a:2 -f 2a; 4- 1

X, = - 4a; + 899

Xg = - 2409336.

Tor a: =-00, - + + -, 2

for a:=4-a>, +H ,
1

hence, there is "but one real root.

For a: = 4, h + -
,

2

for ic = 5, + 4- 4- _ ,
1

hence, the real root lies between 4 and 5.

2. a:* - 12a:2 + 12a; - 3 = 0.

By Sturm's Rule,

X =x^ - 12a;2+ 12a: - 3,

Xi = 4a;3 - 24a; + 12, or a;3 - 6a; 4- 3,

Xj = 2a:2 _ 3a; 4- ),

X, = 13a;- 9,

variations,

variation
;

variations,

variation
;
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hence, one of the roots lies between — 4 and —
3, two between

and 1, and the remaining root lies between 2 and 3.

3. a;* - 8a;3 + Ux^ 4. 4a; _ 8 = 0.

By Sturm's Rule,

X =x^ -Sx^ 4- 14a;2 4. 4^. _ g^

Xi = 4x^ - 2ix^ + 28a; + 4, or x^ - 6z^ + ^a; + 1,

X2 = 5a;2 - 17a; -f 6,

X3 = 76ar - 103,

X^ = 45475.

For a;=— CO, + [- ( 4 variations,

for a;=-}-QO, + + + + + variation
j

hence, the equation has 4 real roots.

-f- h h 4 variations.

h 4- — + 3 variations,

+ + h 2 variations,

H 1

—h 2 variations,

— — ± + 4- 1 variation,

h + + 1 variation,

+ + 4—I

—h variation
;

hence, one root is between — 1 and 0, one between and 1, one

between 2 and 3, and one between 5 and 6.

4. x^ — 10a:3 4- 6a; -f 1 = 0.

By Sturm's Rule,

X =x^ -
10a;34- 6x + 1,

JTi z:z 5a;* - 30a;24- 6,

X2 = 20a;3 - 24a; - 5,

X3 = 96a;2 - 5a; -
24,

X^ = 43651a; 4- 10920,

X, =: 32335636224.

For
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For a;=— 00
1 1 1- 5 variations,

for a;=-f-ao +4- + + + + variation
;

hence, the equation has 5 real roots.

1 1 h 5 variations,

_j
—

I j_ ^ 4 variations,

4- h — -f 4 variations,

4- H f- + 2 variations,

1

—
I

—
|-

1 variation,

h 4- + + 1 variation
;

-\
—

f- 4 H—h 4" variation ;

hence, one root lies between — 4 and —
3,

two roots lie between — 1 and 0,

one roDt lies between and 4- 1»

one ro)t lies between 3 and 4.

For
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GENERAL SOLUTl^^K OF TWO SIMULTANEOUS EQUATIONS OF THE
FIRST DEGREE.

1. Take the equations,

ax -^ by = c . , . (1),

a'x -\- b'y = c'
,
... (2);

multiply both members of (1) by b' and of (2) by 5, then sub-

tracting and factoring, we find

(ay
-

a'b) x=:b'c-^ be'
;

b'c - be'

ab' - a'b (3).

In like manner, y = ,_ ,
• • •

(4).

By means of formulas (3) and (4) any two simultaneous equations

of the forms (1) and (2) may be solved.

Thus, 4a; + 3y = 31,

3ar + 2y = 22 :

by comparison with (1) and (2),

a = 4, 6 = 3, c = 31, a' = 3, 6' = 2, <j'=:22;

by substitution in (3) and (4),

62-66 ^ 88-93 '
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EXAMPLES.

( ?4.y =2 ]

1. Given J 3 4 V. to find x and y.

{sx + 4y = 2b )

By comparison with (1) and (2),

a =i, 6=1, c = 2,

by substitution in (3) and (4),

^ ( 11a;— 5y = — 1)
2. Given •< J- to find x and y :

I- 5a; + 16y = 124)
^

by comparison,

a = 11, 5 = —
5, c = —•

1,

a' 1= - 5, 6' = 16, c' = 124
;

oy substitution,

-16 4-620_ _ 1364 - 5 _
176-25 ' ^ 176-25

GENERAL SOLUTION OF THREE SIMULTANEOUS EQUATIONS OP

THE FIRST DEGREK

2, Take the equations,

ox -\- by + cz = d » • •
(1),

. <
_

a'x -\- b'y +c'z =^d' * . .
(2),

a"x 4- b"y + c"z = d" - . •

(3).

From (1) and (2) we obtain, by eliminating e,

Wa - ca') X + {c'b
-

cb') y = c'd - cd' • • .
(4).
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(n like manner, from (1) and (3),

{c"a-ca")x-\-{c"b-cb")y = c"d-^cd" . • •
(5; ;

combining (4) and (5) and eliminating ?/, we find

__ {c"b
-

ch") {c'd
-

cd')
-

{c'b
-

ch') {c"d - cd")
^ -

(c'a
- ca'

) (c"b -cb")
- {c"a- ca") {(/b

-
cb')

* *

^ ^•

In like manner,

_ (g/g
_

eg/) {c"d
-

cd")
- {c"a- ca") {c'd

-
cd')

y -
(c'a

-
cJ) (c"b

-
cb")

- {c"a- ca") {c'b
-

cb')

* *

^ ^'

(8)
_ (a^^&

-
ab") (a'd

-
ad')

- (a'b - ab') {a"d - ad")
" -

\c'a
-

ca') {b"a -ba'')
- {c"a- a"c) {b'a

~ ba' )

Formulas (6), (7) and (8) enable us to solve all groups of simul-

taneous equations of the form of (1), (2) and (3). Thus,

2a; + 3y + 42 = 29,

3a; + 2y + 5^ = 32,

4a; + 3y + 22 = 25 :

\y comparison with (1), (2) and (3),

a = 2, 6=3, c = 4, c? = 29,

a' = 3, b' =2, c' = 5, d' = 32,

a" = 4, 6" =3, c" = 2, rf" = 25 :

by substitution in (6), (7) and (8),

_ (6-12) (145
-

128)
-

(15
-

8) (58
-

100)^ "
(10

-
12) (

6 - 12
)
-

'^
4 - 16) (15

-
8)

- - ^Q^ + 294 _ 192 _"
32 + 84

~
96

~
'
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by comparison,
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substituting this in (4) and reducing, we find

h'

b b'c — be ._.
' =——— = ^m3^ • ' •

^^>-

-ja + a'

If it be required to eliminate x^ place

na -\- a z= \j\ .*. n = ;

a

substituting in (4) and reducing, we find

a'--C + C
, ,a ac — ac

y= —<r-— =
al,'-a'b

 • •

(^)-

b -f- b
a

These values of x and y correspond to those already deduced by

previous methods.

As an example, let it be required to find the values of x and y

from the equations

Sx^ y = b ...
(1),

7a; + 3t/ = 33 . . .

(2) ;

multiplying both members of (1) by n,

Snx — 7?y = 5/i • • •

(3) ;

adding (2) and (3), m.ember to member,

(3w -1- 7) a: + (3
-

w) y = 5w + 33 • • •

(4) :

1st. Assume 3 — 7i = 0; .*. n = 3;

i»\jbstituting in (4), and reducing,

15 + 33

7
*2d. Assume 3n + 7 =

;
.

•
. n = — -

;
o
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substituting in (4), and reducing,

1. Given

y 7

EXAMPLES.

2 6^

> to find ic and y.

I

J

Multiplying both members of the first equation by n and adding to the

second, member by member,

making n = —- and reducing,

y = 12;

making n = - and reducing,

a; = 8.

2. Given
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making

making

a Given

(7n
-

1) ar - (w - 12) y = 33rt 4- 19 :

n = -, we find y = 2
;

n =2 12, we find a? = 5.

a; 7

14
=: 10

X 7

Multiplying by n, adding and factoring,

to find X and y.

(9w -f 14)
1 + (6w

-
6)

i = 36n + 10
;

making

making w = l,

-TT-, we have - =; 3
;

9' y

we have - = 2 ;

X

^=w

X =

MISCELLANEOUS GROUPS OF SIMULTANEOUS EQUATIONS OF IHE
FIRST DEGREE.

1. Given

_1_ _1__2^
3a; 5y

~
9

bx 3y 4 ^

to find X and y.

Combining and eliminating

whence.

\25 9/y

1 _35
7/

~
64 '

45 12'

.-. y = if|-
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Comoining and eliminating ->

V9 25/ x~^l 12
'

whence,
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combining (6) and (3), eliminating sr,

41y = 41; .-. y = l:

by successive substitutions, 2 = 5, a; = 3, t^ = 9.

8. Given

a; y
~"

1*2 2r

3 5_ 19 4

V. y s 8 a? >

>- to find X, y and &

Transposing, reduoing, (fee.

X y s 24

X y z 24:

24

(1).

(2),

(3):

combining (1) and (3), also (2) and (3), eliminating -,
z

  

(4),-10l + 43l = gX y 24

a: y 24:

combining and eliminating -,

234- =1 468

(5);

7 = ^' o^ y=12;j__ 2

2/ ""24y 24 '

substituting in (5), a; = 6
; whence, z = S,

10+ 6y— 4x 4

6a?— 9y-h 3
~ T

126+ 8ar-17y _ 35

100-12"^ 7y~ 13 .

9. Given to find X and y.
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Clearing of fractions and reducing,

- 2a; + 3y = - 1 . . .
(1),

262x-233y= 931 .. •
(2).

Combining and eliminating x^

160y = 800; .-. y = 5;

by substitution in (1), x — 8.

iax

-{ hy := c^ \

a(a + x)__ > to find x and y.

Clearing of fractions and reducing,

ax -{• by = c'^ • •

ax — by =:V^ — a?-

^y addition,

2aa; = 52 4- c2 — a2
;

.
•

. x z=

by subtraction,

26y = c2 + a^-i^ .-. y=
2^

MISCELLANEOUS EXAMPLES OF EQUATIONS OF THE FIRST, SECOND

AND HIGHER DEGREES, CONTAINING BUT ONE UNKNOWN
QUANTITY.

1. Given Sx^ — 4 = 2S + x"^, to find x :

transposing and reducing,

a;2-16; .'. a; = db 4

2. Given ?^^ - ^^^ = 117 -
5x^, to find x;o o

•
(1),
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Clearing of fractions, transposing and reducing,

a;2=:25; .-. a: = ± 5.

3. Given x^ -]- ab = 5x^, to find x
;

transposing and reducing,

Clearing of fractions,

X* -f 14a;3 _ 24a;2 _ 1022a; ~ 3577 - a:^ + 14a:3 + 24a:2 — 1022*

+ 3577 = 7a:3 - 343a;
;

transposing and reducing.

21a;3 ^ i7oia;^ or a;2 = 81
; . •. a; = ± 9.

5-^^^^^^ vfrl+vl?!^ ^^^"^^5

multiplying both members by -y/a; + 2,

y ar — 2

multiplying both members by -y/a;
— 2.

a;-24-a;4-2 = 4 ^^2 _ 4^ qj. 3.
_. 2 /a;2

- 4
;

squaring both members,

ar2 = 4a:2-16, or a;^ = ^ = ^ x 3
; .-. a; = ±

| y^

6. Given x + -/5ar -f 10 = 8, .0 find x
;
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Transposing and squaring both members,

5a: + 10 = 64- I6x + a:^;

wlience.
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3 I TT^ 3 ± -/S 1 .„ ,-Tz

10. Given h ^^ ~~
o ^ = o' ^^ ^^<^ *•

/5 O O

Dividing both members by -, or multiplying by 2,

2
^ 5 U^ —
o ^ = 7 j whence,

1 ^ ATI 17

5

11. Given -^ -^- = 2, to find a?.

8 — a: a: — 2

Clearing of fractions,

2a:2 _ 14a; + 20 - (5a; + 24 -
a:2)

= 20a: - 32 - 2«»;

39 28
reducing, x^—-— x = —

; whence,
5 o

^""lO'^V 5
"^

100
~

10 '

.
•

. a; = 7, a: = -.
5

12. Given _1-__1^ =
^,

to find,.

Clearing of fractions,

35
(ar 4- 3 - a; + 1) = 2;2 -f 2a; - 3

;

reducing, a;^ -f 2a; = 143
; whence,

a? = - 1 ± -v^l^ = - 1 rb 12
;
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.-. a;r= 11, x= -13.

24
13. Given x -\

= 3r — 4, to find «.
X — 1

159

Clearing of fract ons,

a; + 24 = 3a;2 — 3a; — 4a: + 4;

reducing, x"^ — Zx =:\0', whence,

3 d=7

2 '=l-V-^h
.-. a; = 5, a; =-2.

a;
,

a;4- 1 13
,

. ,

14. Given ——^ H -— =
-^,

to find x,
X -\- \ X b

Clearing of fractions,

6a;2 4- 6a;2 + 12a; + 6 = 13a;2 + 13a?
;

reducing, a;^ + a; = 6
; whence,

1-^ /Til -l±5^

.
•

. a; = 2, a; = — 3.

15. Given -^—p = a; — 8, to find x
2 + V^

Since a; - 4 = (y^- 2) (V^+ 2),

we have, by performing indicated operations,

•y/^— 2 = 2; — 8, or -y/^= ar -— 6
;

squaring both men: bers,

a; = a;2 - 12a; 4- 36
;

or, a;2 — 1 3a; = — 36
; whence,

13
a.

^_36 +— = -±-;
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.
•

. X = 9, a: =: 4.

16. Given
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by Rule, Art. 124,

/57~ / ^^^ ,

3249 /^7 7

hence, x = ±5, and ar = ± 4-^/2.

in r.-
2a; + 9 4:r- 3 _ 3a; - 16

^ . ,
19. Given -^ +__ = 3 +-^^, to find ^.

Clearing of fractions,

16a;2 + 84a; + 54 + 72a; - 54 = 216a; f 162 + 12a;2 - 55a; - 48;

reducing, x^ — -x = ——
; whence,

5^ /1 14
,

25= 8^V~T +
C4

5±J3
8 '

6, and x ~ — 4 f•

20. Given a;^ + « + 2 '/a;2 + a; + 4 = 20, to find ir.

Making
»

a;^ -f a; = y, and reducing,

2Vy + 4=:20-y;

squaring both members,

4y + 16 = 400 — 40y + y2 ;

reducing. y^ — 44y = — 384
; whence.

y = 22 ± -V/-384 -j- 484 = 22 ± 10
;

.-. y = 32, and y = 12 :

taking the first value ;^ y and substituting in the equation,

a;2 4- a; ^ y,

a;^ 4- a; = 32
; whence.
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taking the second value of y,

x^ -\- X = 12: whence,

1 A^ .

1 - 1 ±7

21. Giveh \/a; ^v/^ =^^' *^ ^°^ *•

transposing,

squaring both members.

-x^-2 V52^ ar + 1
;

"whence, by reduction.

x^-x + l=2 y/x^— X.

Placing x"^ — X = y • • • •

(1),

squaring both members,

y^ + 2y + 1 = 4y ; whence,

y»
- 2y = - 1

;
.

•

. y = 1 i V-T+T, or y = 1
;

substituting in (1), a;^ _ ^ _ j
.

1 r~~\ 1 db -v/5"

22. Given a;^ — 6rc = 62 -f 28, to find a; :

transposing, a;^ — I2x = 28; whence,

a: = 6 db v^28 + 36 = C ± 8
;

.'. a: = 14, x=—2.
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23. Given x** — 2a;3'» -f a;» — 6 = 0, to find <b :

making, «« = y ; whence,

y4
_

22/3 + y
_ 6 =

;

causing the second term to disappear (Arts. 263 and 313),

3 _91
2

^ ~
16*

By the rule for solving trinomial equations (Art. 124).

/3 791
,

9 /3± 10 1 /s—"-777--

.-. 2=±ivT3; and e=
±^-/-7;

biJt, y = --fz; .-. y= ^^^-,
and y = 1

:

/
— "

/i in/rr "/lib"
also, a; = Vy; •*• *=V o^

—
'

^ =\/

3.4 4. 0-J.3 4_ Q
24. Given ,7 Z = x^ + x + S, to find ar.

Clearing of fractions,

«* 4- 2a:3 4- 8 = a;* + 22;3 4. 3^.2 ^- 2a; — 48
;

reducing, a;^ + - ar = —
; whence,o o

1 /56 ,
1 - 1 ± IS

'=-3*VT +
9
=—3— '

.
•

. a: = 4, and a; = —-

4^.

2
25. Given a;^ — 1 = 2 + -, to find a?.

X

Reducing, a;^ - 3a; - 2 = • • •

(1) ;
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comparing with z^ -\- px -{- q z= 0,

p=-S, q=-2',

by Cardan's formula,

dividing both members of (1) by x — 2,

ic2 -f 2a; 4- 1 =
; whence,

and the two roots are each equal to — 1
; hence, the three rooti

are, -|- 2,
—

1, and — 1.

26. Given 2x^ + 34 = 20a; + 2, to find x.

Transposing and reducing,

a;2- 10a:= - 16; .-. ar = 8, ar = 2.

I -i 4
27. Given x' = 56a;

^ + a;^ to find x.

multiplying both members by x
,
and reducing,

x^-x^ = 56 :

comparing with trinomial equations (Art. 124), we find

hence, by rule,

3 ^12
*^ =

2'
^^^ n^3'

-v^^=a-¥)^
I

taking the upper sign, x := S =4,

« lower « a;=: (-7)^ = ^/^.

•28. Given x^ — 12a:2 -f- 4x -f- 207 = 0, to find x.
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A superior limit of the positive roots is 13 (Art. 279) ;
a supe-

rior limit of the negative roots (numerically), is — 7 (Art. 281).

By the method of Art 285, rejecting + 1 and — 1, which are

not roots, we find

Divisors,
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80. Given x^ + 9x — 1430 = 0, to find z.

By the same rule as before, we find 14 for a superior limit of the

real positive roots, and from Art. 283 we see that the equation has

no real negative roots. By the rule (Art. 285), we have

13, 11, 10, 5, 2, 1,

- 110,
-

130,
-

143,
-

286,
-

715,
-

1430,

-101, —121, -134, -277, -706, -1421,

-
8,

- 11, ..., ..., -353, -1421,

...,
-

1, ..., ..., ..., -1421,

0, ..., ..., ..., -1420,

hence, 1 1 is the only commensurable root.

Dividing both members by a: — 11, we have

x^+ nx= -
1.30;

... ar=-^±y/-i30 +^ =121 - 1 ± V-399
4 2

28
31. Given v^+ ^x-^T = , to find x.

Vx + 7

Clearmg of fractions and transposing.

^x^ + 7a; = 21 -x;

squaring both members and reducing,

49a: = 441
;

.
•

. a; = 9.

32. Given -y/a -f a; — -yja—x = y^o?, to find x,

Squaring both members and reducing,

2a — oa: = 2 -/a»
— a;»

;

squaring both members,

4a«— \aH + aH"^ = 4a« — 4x»
;



ADDITIONAL EXAMPLES. 167

reducing and dividing both members by a;,

33. Given y^^oT^ = 2 y^b -\- x — -y/x^ to find r.

Squaring both members and reducing,

(a
—

6)
— a; = —

y^6.r + x^
\

squaring both members,

(a
- by - 2(a — b)x-\~x^-=^bx-^ x^-,

hence, (2a
-

5) a; = (a
-

6)2 ;
. •. r - ^"^

~
'

2a

34. Given -/4a -f x + -/a + a; .— 2
-v/a;

—
2a, to find or.

Squaring both members and reducing.

2 -/4a2 4- 6aa; + x^ = 2a: - 13a
;

squaring both members,

16a2 4- 20aa; + 4a;2 = 4a:2 - 52aa; + I69a^
;

17a
reducing, 72aa; = 153a'

;
.

*
. x =

-^«

1 _|_ a;3 1 — a;^

35. Given 71——rz + 7^ r^
= a, to find x.

(1 + ar)2 (1
- xf

Dividing both terms of the first fraction by (I + x), and of the

second by 1 — a;,
we have

1 - a; 4- «^
,

1 + a; + a;2
-4- z:z CL 1

1 4-a; 1 -a; '

clearing of fractions,

1 — 2a: 4- 2a:2 - a;3 + 1 + 2a; 4- 2a:2 4- a;3 = a — aa;2
;

/a — 2
reducing, (4 4-«)^^ = fl-"2; .-. x = ±k/  
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MISCELLANEOUS EXAMPLES OF SIMULTANEOUS EQUATIONS OP

THE SECOND AND HIGHER DEGREES.

I x^ -{- y^ = \Sxy . . . (1) )

1. Given < y to find a; and y.
(x +y =12 . . . (2)

)

Make x = v -{- w, and y z=z v — w.

From (2), we have {v -\- w) -\- {v
—

iv)
= \2

\

 
.

•

. v = 6.

From (1), we have, {v + wY + {y
— wy = 18

(i;^
—

w^) ;

or, reducing, v^ + Zvw^ = 9
(t;^
—

w"^) ;

substituting the value of v, wj have

216 + 18^2 = 9(36-^2), or 27m»2 _ iqs
;

.-. w=db2,

hence,

a; = v-|-w» = 6±2 = 8 a«l 4;y = v — w=6:f2=4 and 8.

(a:2 + y-T=53 . . . (1))
2. Given •{ } to find x and y.

(
-w = 14 ... (2))

Multiplying both meipViCs of (2) by 2, and adding and subtracting,

we have

a;2 + 2a;y
' «^ = 81

;
.

•

. x -\- y = ± 9,

a:2 — 9x/V r y^ = 25
;

.
•

. a; — y = ± 5
;

hence, a; =: > 7, and — 7 y = + 2, and — 7.

(x* + y* = 82 . . . (1))
3. Given \ }•

to find x and y.
1.-. +y = 4 . . . (2) J

^

Raising both r.i^mbers of (2) to the 4th power, adding to (1), mem
ber to member, and dividing by 2,

3^ -f 2a:3y _|_ 3^2y2 4. 2.ry3 _j. ^4
_. 159 .
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extracting the square root of both members,

x^ + a:y + y^=lS . . . (3);

squaring both members of (1),

a-a + 2ary + y2 ^ 16 . . . (4) ;

subtracting (3) from (4), member from member,

xy z= 3, or Sxy = 9 . . (5) ;

subtracting from (3), member from member,

x^ — 2x7/ + y^ = 4',

whence, x — y = ±2 . . , (6).

Combining (2) and (6),

a; = 3, and 1
; y = 1, and 3.

( 5a; + 3y = 19 . . (1) )
4. Given

•{
> to find x and y

i7x^-2y^=l0 . . (2))

From (1), we find

19-"=
5
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Cz +4l/ = U . . (1))

(y2 + 4r = 2y4-ll (2))

From (1), . c = 14 - 4y, or 4a: = 56 - 16y ;

subtracting aricc reducing,

y2
- 18y = - 45

;

whence, y = 9 ± V- 45 + 81 = 9 ± 6 = 15 and 3;

hence, a: = 2 and — 46.

( a:2 + 4y2 = 256 - 4ary . . (1))
6. Given i f to find x and y.

( Sy^-x^ = S9 , , . (2))

Transposing in (1), and extracting the square root of both membera,

a;H-2y=itl6; .*. ic=±16 — 2y;

or, «» = 256 =F 64y + 4y^ ;

substituting in (2), and reducing,

y2 zpQ4y = — 295
;

whence, y = ± 32 ± -/
- 295 -f 1024 = ± 32 ib 27 ;

.
•

. y = ± 59 and rb 5
;

substituting, a; = ± 102 and ± 6.

(a:2- y2 = 24 . . (1))
7. Given i r to find x and y.

(x^ + xi/ =84 . . (2))

Subtracting (1) from (2), member from member,

y2 4-ary = 60 . . . (3);

adding (3) to (2), member to member,

a:2-f 2a;y-f y^ = 144; .'. a; + y = =t 12 . . . (4).



ix^y= 4 .
. . (1))

8. Given < , . f to

( a:y = 45 . . . (2))

find X
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Dividing (1) by (4), member by member,

x-y= ±2;

hence, a; = ± 7, y = ± 5.

(1)

(2)

From (1), a; = y 4- 4, which, in (2), gives

y2 4-4^ = 45; .'. y = - 2 ± -/45 + 4 = — 2 ± 7
;

.
•

. y = 4- 5, and — 9
;

and by substitution, a; = 4- 9, and — 4.

ia:y

4- a;y2 = 12 . . . (1))
Y to find X and y.

a:4-a:y3 = 18 . . . (2))

Dividing (2) by (1), member by member, and reducing,

1 4- y^ _ 3 l-y4-y^ _3^
y(i+y)~2' y ~2'

5

by reduction, V^
— n^ — ~^'

5 / , .
25 5 3

whence, y=-±>^-14-Yg = ^±^;

.-. y = 2, and y = -;

by substitution, a; = 2, and a; = 16.

r 1 1

10. Given

(1)

(2)

to find X and y.
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From (1), we find,

1 1 1
2 2a^l

y X y^ XX*
substituting in (2), and reducing,

2 '

by substitution,

'b-a^

2
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12. Given J y2
^

a;2
^

y
^

a;

~
4 ^ ^ I to find a; and y.

( a: -
2/
= 2 (2) j

Make --\-~ = s (3) ; whence, by squaring, &;c.,
y ^

^ + ^ = ^^-2;

hence, from (1), by substitution and reduction,

_ 35
.

1 /357T -Id: 6
^ +^ =

-4'
•• ^=-2=*=VT + 4

=—2— '

or, 2 = - and --;

substituting the positive value of z in (3), and clearing of fractions,

5
«^ + y^ = 2^y

' * • W'

From (2), ar = y + 2; .'. a;2 = y2 + 4y + 4,

and ary = y2 -f- 2y ;

substituting in (4) and reducing.

2/24.2y = 8; .'. y = - 1 ± v^TT= - 1 ± 3
;

hence, y = 2 and y = — 4
;

by substitution, a; = 4 and y = — 2.

r a:2 + y2 + 22 _, 84 • • .

(1) >.

13. Given J a; + y + ^ = 14 • • •

(2) l to find x, y,

I xzz=y'^ ...
(3) J ^^^ ^•

Substituting in (1) and (2) the value of y from (3), and reducing

x^ + 2xz -h z^ = M -j- tz or x + z = yS4 -^ xz - -

(4).

From (2) and (3), ar + ^ = 14 - y^I • •

(5)
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Equating the second members,

14 — '^/xz — 'y/84 + xz
;

squaring both membeis,

196 - 28 ^/7^ + a;^ = 84 + «« ;

/educing, y/xz zrz 4, or xz = 16 • • •

(6) ;

hence, from (5), a: + ^ = 10 • • •

(7) ;

K^bstituting in (7) for z its value — , and reducing,

x^ - 10a; = - 16
;

«»htnc^, a: = 5 d= -/- 16 -f 25 = 5 ± 3
;

or, a; = 8, a; = 2 :

by substitution, 2 = 2, 2 = 8, and y = ± 4.

14. Given
] 2 . 2 ^i /ox f

to find « and y,
( a;2 4- y2

_ 41 . .

(2) )

From (1), by transposition.

V^+y= 12 -
(ar + y) ;

squaring both members,

a; + y = 144 - 24
(a: + y) + (a; + pY;

reducing, (x + y)^
— 25

(a; -f y) = — 144
;

.
25 / ,,, .

625
,
25 ± 7

... ^ + y=:-fy±\/-144 +
— =+-2-;

whence, ar -f y = 16, or a: + y = 9.

Tlie first value does not satisfy (1), unless the radical have the

negative sign ; adopting, therefore, the second value, from which

a: = 9 - y, or a:^ = 81 - 18y -f y^,
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which in (2) gives, after reduction,

y2
__ 9y = —. 20

; whence.

by substitution

15. Given

81 9 ±2
2 '

. y = 5 and y = 4 ;

to find X and y.

X = 4 and X =z 5.

a;3-y3 = 117 . . .

(1)

\x -7/ = 3 ...
(2)

Cubing both members of (2), subtracting from (1), member from

member, and dividing both members by 3, we have

.2^
x^y
— xy^ = 30, or {x

—
y) xy — 30

dividing (3) by (2), member by member,

a;^ = 10
;

substituting in (2), and reducing,

ic2 — 3ic = 10
;

(3);

10

whence, x =
^±^J\Q -^r\

=
\±^-',

.
•

. ar = 5, a: = — 2
;

by substitution, y = 2, and y = — 5.

x^-\-x\f^- 208 . .

(1) I

•

(2)1

16. Given

'y2 + yya;V = l053

These equations may be written.

i.l
a? + X y^ =z 208, or x^ {x^ + y^) = 208

y* 4- y^x^ = 1053, y^{y^ h x^) = 1053

to find X and y,

• • •
(3),

...
(4)
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Let X denote the amount paid for 1st house : then will

^ " 2d «

" 3d "

« 4th «

X = 1000

'+i
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Since A and B togethe: can do
-J-
of the -w ork in 1 day, A can do

yJjj-
of it. and B,

- of it in 1 day ; hence, from the relations existing,

5. A person has $650 ir.vested in two parts : the first part draws

interest at 3 per cent, and the second at 3J per cent, and his total

income is $20 per annum : how much has he invested at each rate ?

Let X denote the numter of dollars at 3 per cent : then will

650 — X denote the number at 3J.

From the conditions,

whence, Sx + 2275 — S^x = 2000
;

. •. 5 = 275, or « = 550
;

.
•

. 650 - a; = 100.

6. A boatman rows with the tide, in the channel, 18 miles in 1 J

hours
;
he rows near the shore against the tide, which is then only

three-fifths as strong as in the channel, 18 miles in 2J- hours : what

is the velocity of the tide per hour in the channel ?

Let X denote the velocity of the tide in the channel :

then,
-— " " " " " near shore;
5

and
j
18—^ I

"•" H '^^'^ denote the rate of rowing, neglecting tide

also,
(l8

+ ^)-^2J
" « " • « «

or, i2~ar =
8-|-5^,

.-. ar = 2i.
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7. A garrison had provisions for 30 months, but at the end of 4

months the number of troops was doubled, and 3 months afterwards

it was reinforced by 400 troops more, and the provisions were ex-

hausted in 15 months : how many troops were there in the garrison

at first 1

Let X denote the number of men at first
;
then will oOx denote

the number of months that one person could subsist on the provi-

sions, or the number of month'y rations in the garrison.

4:X denotes the number of monthly rations used in 4 months,

Qx " " " " " the next 3 "

(2.t:+ 400)8
" " " « " " 8 "

hence, 26x + 3200 = SOx, or 4x - 3200
,

.'. x = 800.

8. What is the number whose square exceeds the number itself

by 6 ?

Let X denote the number.

From the conditions,

1 ±5x^-x = Q', .'. x = ^dzV^ + i= ^ ,

.
•

. X = S and — 2.

9. Find two numbers such that their sum shall be 15, and the sum

of their squares 1 1 7.

Let X and y denote the numbers.

From the conditions of the problem,

a; 4-y = 15 . . .

(1),

x^ + y^z= 117 . . .

(2).

From (1) X =zlb — y, or x^ = 225 — 30y -f y^ ;
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substituting in (2) and reducing,

2/^
— 15y = — 54,

15 / ,, .

225 15^3 n J
fj =—-±^^

— 54:-{-— = —±1-, or y = 9 and a; == 6,

or X =z 9 and y = 6.

10. A cask whose contents is 20 gallons, is filled with brandy ;
a

certain quantity is drawn off into another cask of the same size,

after which the latter is filled with water : the first cask is then filled

with this mixture
;

it then appears that if 6f gallons of this mixture

be drawn from the first into the second cask, there will be equal

quantities of brandy in each. How much brandy was first drawn

off?

Let X denote the number of gallons first drawn off. Then will

20 — X denote the quantity remaining as well as the quantity of

X
water added to the second cask

;
—- will denote the quantity of

brandy in each gallon of the roixture, and

will denote the quantity of brandy returned to the first cask, which

will, therefore, contain

gallons of brandy. Each gallon of this new mixture will contain

^ of the brandy in the cask, or

400 >- 20a; + a;»
,

400 '

nence. 6j gallons will contain

400 -20x + a*

60
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gallons ;
and after this is drawn off, 10 gallons must remain

; heivye,

400 — 20a; -h x^ 400 — 20x -{- x^ _ ^^
20 60

~
'

whence, 800 — 40a; + 2x^ = 600,

or, x^ — 20a; = 100
;

.-. a; = 10 ± -v/- 100 + 100, or a; = 10.

11. What number added to its square will produce 42?

Let X denote the number.

From the conditions of the problem,

a;2 + a; = 42
;

1 ± 13
•. a; = - -1+ '/42 + i = ^ '

• *• ^ = 6 and a;~ -7

12. The difference of two numbers is 9, and their sum multiplied

by the greater gives 266 : what are the two numbers ?

Let X and y denote the numbers.

Prom the conditions of the problem,

x-y = 9 . . .

(1),

a;(a;4-y) = 266 .

(2).

From (1), y = X — 9; substituting in (2);

X {2x
-

9) = 266, or a;^ - ? .r = 133
;

, 9 ^ A.,^ ,

81 9 ± 47
whence, a; = - ±^ 133 + - z. —

^_;
.-. a; = 14, a;= - 9^;

whence, 2/
= 5, y = —

18^.

13. A person travelled 105 miles : if he had travelled 2 miles

11
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per hour slower, he would have been 6 hours longer in completing

the journey : how many miles did he travel per hour 1

Let X denote the number of miles travelled per hour. Then will

denote the number of hours.
X

From the conditions,

105 105= + 6, or 105a; = 105a; - 210 + Qx^ - \2x
;a;-2

reducing, x"^ — 2x = 35
;

.-. a; = 1 ± -v/35 + 1 = 1 ± 6
;

.-. x = l.

14. The continued product of four consecutive numbers is 3024 :

what are the numbers %

Let X denote the least number.

±Vom the conditions of the problem.

x(x +1) (« + 2) (a; 4- 3) = 3024,

or X* 4- ^^^ + lla;^ -\- Qx - 3024 = 0.

A superior limit of the real positive roots is 9 (Art. 279). Ne-

glecting the divisor 1, and all negative divisors, we may proceed by

the rule (Art. 285), as follows :

.9,
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15. Two couriers start at the same instant fgr a point 39 miles

distant
;
the second travels a quarter of a mile per hour faster than

the first, and reaches the point one hour ahead of him : at what

rates do they travel 1

Let X denote the number of miles per hour of first courier.

39
Then will — denote the number of hours he travels.

X

From the conditions,

?^-l=-^. or 39. + f-.»-l. = 39.;X a; + 1 4 4 '

reducmg, x^ + -x =
-^ ;

8 V 4
^

64
,

. - 1 db 25 _

8-V 4+64 = 8—' "^ ' = ^'

16. The fore-wheels of a wagon are 5^^ feet, and the hind-wbseki

7^ feet in circumference
;

after a certain journey, it is found that the

fore-wheels have made 2000 revolutions more than the hind-wheels :

how far did the wagon travel ?

Let X denote the number of feet.

From the conditions of the problem,

4-^ = 2000;

multiplying both members by -^^,

1^-
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17. A wine merchant has 2 kinds of wine
;

the one costs 9 shil-

lings per gallon, and the other 5. He wishes to nnix them together

in such quantities that he may have 50 gallons of the mixture, and

so that each gallon of the mixture shall cost 8 shillings.

Let X and y denote the number of gallons of each, respectively.

From the conditions,

a;+ y = 50 . . . . (1),

9a;4-5y = 8(a;4-y) • • (2) ;

substituting for x -\- y its value in (2),

9a; + 5y = 400 . . . . (3) ;

combining (1) and (3),

4y = 50; .-. y = \1\, and a: = 37f

18. A owes $1200 and B, $2500, but neither has enough to pay

his debts. Says A to B, "Lend me the eighth part of your fortune,

and I can pay my debts." Says B to A,
" Lend me the ninth part

of your fortune, and I can pay mine :" what fortune had each %

Let X and y denote the number of dollars in the fortunes of A

and B.

From the conditions of the problem,

a; 4- 1 = 1200, or 8j: + y = 9600,
o

y -f ^ = 2500, or ar -h 9y = 22500
;

combining and eliminating ar,

71y = 170400
;

r , y =. 2400, x = 900.

19. A person has two kinds of goods, 8 pounds of the first, and

9 of the second, cost together $18,40; 20 pounds of the first, and

16 of the second, cost together $36,40: how much docs each cost

per pound ?



ADDITIONAL EXAMPLES. 185

Let a; and y denote the cost of a pound of each in cents.

From the conditions of the problem,

Sx+ 9y = 1846,

20a; + 16y = 3640
;

combining and eliminating x,

13y = 1950 : . '. y = 150, and x = Q2.
•

20. What fraction is that to the numerator of which if 1 be

added the result will be J, but if 1 be added to the denominator the

result will be
J-

?

Let X denote the numerator, and y the denominator.

From the conditions of the problem,

x+ 1 1

y ~3
X 1

, or 3a; -f 3 =r y,

or 4x = 1 + y,
i-hy 4

hence, by combination, x — 4 and y =: 15. Ans.
y^j.

21. A shepherd was plundered by three parties of soldiers. The

first party took i of his flock and
-^

of a sheep ;
the second took j

of what remained and
3-
of a sheep ;

the third took
-J
of what then

remained and
-J
of a sheep, which left him but 25 sheep : how many

had he at first ?

Let X denote the number of sheep. Then, after being plundered

by the 1st party, he would have

3a;- 1

-ii-'d sheep ;4

after being plundered by the 2d party, he would have

3a; — 1 /3a; — 1
.

1\ a; — 1

\ n ^
z)
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after being plundered by the 3d party, he would have

X — I Ix — \ 1\ ar — 31 (x-\ \\

from the conditions of the problem,

^-^ = 25, or a;- 3 = 100; .-. a: = 103.

22. What two* numbers are those whose product is 63, and the

square of whose sum is equal to 64 times the square of their dif

ference %

Let X and y denote the two numbers.

From the conditions of the problem,

«^y = 63 (1),

(x + y)2 = 64(ar-y)2 . . (2);

extractmg the square root of both members of (2),

x-^y = ^{x-y), or lx = 9y',. .'. x = ^y ;

substituting in (1), ^y^ = 63
;

.
•

. j^2
_ 49 and y =7, also x = 9.

23. The sum of two numbers multiplied by the greater gives

209
;

their sum multiplied by their difference gives 57 : what are

the two numbers'?

Let X and y denote the numbers.

From the conditions of the problem,

{x-{-y) x = 209, or x^-\- xy=209 . . (1 ),

(x + y){x-y)== 57, or x^ - y^ = 61 . . (2);

subtracting (2) from (1), member from member,

xy + y^= 152 . . (3);

adding (3) and (1), member to member,

a:2 + 2j:y 4- y2 = 301
;

.'. x -{- y = ]9
;
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209
hence, from (1), x =. —- = 11 ; also, y = 8.

ly

24. Three numbers are in arithmetical progression ;
their sura is

15, and the sum of their cubes is 495 : what are the numbers ]

Let x^ y and z denote the numbers,

From the conditions of the problem,

y —X =z — y . . (1)

x +2/ +^ = 15 . . (2)

a;3 _f_ y3 _|_ 2^3 ^ 495 . . (3) ;

from (1), 2y = z -\- x^ which in (2), gives y z^b\

substituting in (2) and (3),

+ ar= 10 . .
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Let X denote one part ;
then will 16 — ar denote the other.

From the conditions,

25j;2 = 9 (256 - ?ax + x'')
= 2304 - 288a; + Ox^;

reducing, x^ -f 18a? = 144
;

.-. a; = — 9 ± -v/144 + 81 = - 9 ± 15, or ar = 6,

since the negative value does not satisfy the problem understood in

the numerical sense.

26. There are two numbers such that the greater multiplied by

the square root of the less is 18, and the less multiplied by the

square root of the greater is 12 : what are the numbers ?

Let X and y denote the numbers.

From the conditions of the problem,

2/V^-18 . . (1)

a:V7'=12 . . (2);

multiplying (1) by (2), member by member,

(3)}^{xyf = 2lQ; .'. xy = SQ
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27. What two numbers are those the square of the greater of

which being multiplied by the lesser gives 147, and the square

of the lesser being multiplied by the greater gives 63 ?

Let X and y denote the numbers.

From the conditions of the problem,

x'y = 147 . . (1)

xy^= 63 . . (2);

multiplying (1) and (2), member by member,

x'^y^ = 9261 . . (3),

or iry = 21 . . (4) ;

dividing (2) by (4), member by member,

y = S] in like manner, x = 7.

This method of solution might be applied to the equations of the

preceding example.

28. There are two numbers whose difference is 2, and the product

of their cubes is 42875 : what are the numbers 1

Let X and y denote the numbers.

From the conditions of the problem,

x-y=.2 . . (1)

arV = 42875 . . (2);

extracting the cube root of both members of (2),

xy = S5', .-. y = — ;

substituting and reducing,

x^ — 2x = 35,

X —I dt -/35 + 1 = 1 =b 6
;

ic = 7, and —
5, y = 5, and — 7.
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29.. A sets out from C towards D, and travels 8 miles each day ;

after he had gone 27 miles, B sets out from D towards C, and goes

each day -^ of the whole distance from D to C; after he had

travelled as many days as he goes miles in each day, he met A •

what is the distance from D to C?

Let X de lote the number of miles from D to C.

Then,
— will denote the number of miles B travels per day,

also the number of days that he travels
;

x^
hence, -^ denotes the number of miles travelled by B,

27 4- ^x " " " « " A.

From the conditions of the problem,

400
+ 2^ +

20
= ^5

clearing of fractions and reducing,

a;2 ~ 240.r = - 10800 ;

. •. ar =z 120 ± V- 10800 + 14400 = 120 ± 60
;

whence, a; = GO, x = 180.

30. There are three numbers
;
the difference of the differences of

the 1st and 2d, and 2d and 3d, is 4
;

their sum is 40, and their con

tinned product is 1764 : what are the numbers ?

Let a;, y and z denote the numbers.

From the conditions of the problem,

(x^y)-(y^z)= 4 . . (1)

x-{-7j + sz= 40 . . (2)

a:y« = 1764 . . (8) ;
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combining (1) and (2), eliminating x and z,

3y = 36; .', y^\2',

substituting in (2) and (3),

a: + = 28 . . (4)

xz = 147 . . (5) ;

combining (4) and (5),

ar = 7, or 21
; y = 21, or 7.

31. There are three numbers in arithmetical progression : the

sum of their squares is 93, and if the first be multiplied by 3, the

second by 4, and the third by 5, the sum of the products will be 66 :

what are the numbers ?

Let X denote the first number, and y their common difference.

From the conditions of the problem,

:r2 + (^ + 2/)^ + (a: + 2y)2 = 93 . . (1)

Zx-^4.[x-\-y)-{-b{x-\-2y) = m . . (2);

performing indicated operations and reducing,

3a;2 4. 5^2 -f 6a;y = 93 . . (3)
'

12a: + \Ay = QQ, or 6a: + 7y = 33 . . (4).

33 ~ 6a:
From (4), 7

1089 — 396a: + 36a;2 , 33ar — Oa;*
... y2^ _

, and xy^ ~
;

substituting in (3) and reducing,

^2 _ 198 _ _ 296

25
"^ "~

25 '
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, 99^ / 296
,

whence, . =_±>/-_ +
296
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squaring both members of (4),

:r2-f 2x2 + 2^ = 86 . . (9);

from (8) and (9) we find

X2 = S . . (10) ;

from (4) and ^10) we get

X = 2^ or 4
;

z = 4, or 2 :

hence, the numbers are 2, 3 and 4,

33. Plow many terms of the arithmetical progression 1, 3, 5, 7,

&c., must be added together to produce the 6th power of 12 ?

The Cth power of 12 is 2985984.

From Art. 175 we have the formula,

- <^ - 2<z ± x/{d- 2aY 4- SdSn_ ^
\v. the present case, a = 1, d = 2, and S = 2985984

;

t. . . v^lO X 2985984 ,^^^
substituting, H = — = 1/28.

34. The sum of 6 numbers in arithmetical progression is 48
;
the

product of the common difference by the least term is equal to the

number of terms : what are the terms of the progression 1.

Let X denote the 1st term, and y the common difference.

From the conditions of the problem,

. 6
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hence, the series is 3.5.7.9.11.13,

or 5.6i.7J.8f .9|.ll.

35. What is the sum of 10 square numbers whose square roots

are in arithmetical progression the least term of which is 3, and the

common difference 2 1

Let X denote the sum.

The progression of roots is

3.5.7.9.11.13.15.17.19.21,

and the series of squares,

9 . 25 . 49 . 81 . 121 . 169 . 225 . 289 . 361 . 441.

1st order of diffs, 16, 24, 32, 40, &c.,

2d order of diffs, 8, 8, 8, &c.,

3d order of diffs, 0, 0, &c.

From Art. 210, making

S! — X, a = 9, n = 10, d^ = 16, d^ = 8, d^ = 0, &c.

ar = 90 4- 45 X 16 -h 120 X 8 --= 1770.

36. Three numbers are in geometrical progression whose sum it

95, and the sum of their squares is 3325 : what are the numbers ?

Let ar, y and z denote the numbers.

From the conditions of the problem,
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combining (1) and (3),

X 4- y^ -f- 2- = 95 . . (5) ;

from (4) and (5),

X + z =z y'3325 -f xz

X -\- z = 95 — \/xz\

hence, y'3325 + xz = 95 — '\fxz\

squaring both members,

3325 + xz = 9025 — 190 -/xz -f- xz
;

.-. v/^=30, or 0-2 = 900 . . (6) ;

substituting in (5), a; -|- 2 = 65 . . (7)
•

from (6) and (7), a; = 20 and 45,

y = 45 and 20.

37. Three numbers are in geometrical progression : the difference

of the first and second is 6
;
that of the second and third is 15 :

what are the numbers %

Let
ar, y and z denote the numbers.

From the conditions of the problem,

y^ z=xz . . (I)

« — y=— 6; .-. ar = y— 6

y — 2=— 15; .*. 0=y+15,

and arg = y2 _j_ 9y _ qq.

substituting in (1) we find y = 10
;

,

•

. a; = 4, and z = 25.

38. There are three numbers in geometrical progression ;
the sum
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->f the first and second is 14, and the difference of the second and

third is 15 : what are the numbers 1

Let X, y and z denote the numbers.

From the conditions of the problem,

3/2
—

a-2 . .
(

1
)

X -\- y z=i\\'^ ,' , X = 14 — y

z —y —lb; .-. z =zl5 -^ y,

nnd xz — 210 — y—y^;

substitu-ting in (1), y^
-{-^

= 105 ;
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clearing (1) and (3) of fractions,

30a; -f 12y + 92 = 4650 • •

(4)

4 x + Uy + Sz =2450 • •
(5).

From (2) and (4),

Sx — 97/=— 225, or a; — 3y = — 75 • •

(6) ;

from (2) and (5),

QOx 4- 23y = 5650 • •

(7) ;

from (6) and (7), y = 50;

by substitution, a: = 75, z= 200.

40. Divide 100 into 2 such parts that the sum of their square

roots shall be 14.

Let X denote the first part.

From the conditions of the problem,

y/x-i- ^lOO~x = U\

squaring both members and reducing,

v/100.r-ar2 = 48;

squaring both members and reducing,

«2_ 100^= -2304;

.-. x=:50± y- 2304 -f 2500 = 50 ± 14,

X = 64, and 36.

41. In a certain company there were three times as many gentle-

men as ladies
;
but afterwards 8 gentlemen with their wives went

away, and there then remained five times as many gentlemen ^s

ladies : how many gentlemen, and how many ladies were there

originally 1

12
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^

Let Sx denote the number of gentlemen ;
then will x denote the

number of ladies. . .

From the conditions of the problem,

Sx — S = 5{x-S)',

•

^
.-. a; = 16, and 3ar = 48.

42. Find two quantities such that their sum, product, and the

difference of their squares, shall all be equal to each other.

Let X and y denote the quantities.

From the conditions of the problem,

X + y = xy ' '

{I)

x^ — y^ = xy . .

(2) ;

by division of (2) by (1), we have

X — y=ljOrx = y-i-l;

substituting in (1),

2y -{- I = y^ + y, o_r y^
— y z=z I

;

whence, y = -±\/l+T' ^^
1/
=1 1 rfc v^

hence.
3 rh y/S

2

43. A bought 120 pounds of pepper, and as many pounds of

ginger, and had one pound of ginger more for a dollar than of

pepper ;
the whole price of the pepper exceeded that of the gingei

by 6 dollars : how many pounds of pepper, and how many of

ginger had he for a dollar]

Let X denote the number of pounds of pepper for a dollar.
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From the conditions of the problem

120 120

X X -\- \
6, or a:2 + a? = 20

;

-.^±^20 +^--^; hence, a: = 4.

The negative value does not conform to the conditions of the

special problem.

44. Divide the number 36 into 3 such parts that the second shall

exceed the first by 4, and that the sum of their squares shall be

equal to 464.

Let x^ y and z denote the parts.

From the conditions of the problem,

a: + y-f^ = 36 . .

(1)

y-x = 4. . .

(2)

«^ + 2/2 + ^2 = 464 . .
(3) ;

from (1), a;2 + ^xy + y'^
= 1296 -72^+^2 . .

(4)
.

from (2), 0:2 — 2^:3/ + 7/2
- 16 (5j

.

adding (4) and (5), member to member,

2d;2 + 2y2 = 1312 — 72^ + ^2 . .
(g^

.

from (3), 2a;2 4. 2y2 = 928 - 2^2 ... .
(7)

.

equating the second members and reducing,

^2 - 24^: = - 128
;

.-. 0= 12± y'~128+ 144 = 12 ±4;

hence, 2 = 16, ^ =r 8
;

substituting the first value in (1),

a: + y = 20 . .

(8);
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from (2) and (8), y = 12 and x = S.

45. A gentleman divided a sum of money among 4 persons, so

that what the first received was ^ that received by the other three
,

what the second received was J that received by the other three;

what the third received was
-J-

that received by the other three, and

it was found that the share of the first exceeded that of the last by

$14 : w'hat did each receive, and what was the whole sum divided ?

Let X, y, z and w denote the number of dollars that each received.

From the conditions of the problem,

2x = y-{-z + w . .

(1)

Sy = x -\- z -{-w . .

(2)

4z = X -{- y -\- w ' '

(S)

X — w = 14: • •

(4) ;

from (2) and (3),

X -\- w = Sy — z

X -\- w =z 4z — y \ whence, 3y — z =: 4^ — y,

01 4y =r 5^, z-^y-' (5) ;

from (4), w =r ar — 14 • .
(6) ;

substituting the values of w and z in (1) and (2),

2a: = y + 3-y + ^ — 14

3y
—

a: -f- f y + .^ — 14
; whence, by reduction,

hx - 9y =r — 70

10.r-lly= 70;

, •. ar = 40, y = 30
;

and by substitution, z = 24, w = 26.

46. A woman bought a certain number of eggs at 2 for a penny,

and as inany more at 3 for a pinny, but on selling them at the rate



ADDITIONAL EXAMPLES. 201

of 5 for 2 pence, she lost 4 pence by the bargain ;
how many did

she buy ?

Let X denote the number at each price. Then will ^ + o

2{x -\- x)
denote the number of pence paid, and —^—--—- will denote Iho

o
number of pence received.

From the conditions of the problem,

l
+

l
= ^^^Y^ + ^; reducing, it = 120.

47. Two travellers set out together and travel in the same direc-

tion
;
the first goes 28 miles the first day, 26 the second day, 24 the

third day, and so on, travelling 2 miles less each day ;
the second

travels uniformly at the rate of 20 miles a day : -in how many days

will they be together again ?

Let X denote the required number of days. The distance

travelled by the first in x days is

[(Art. 176), since a = 28, c? = —
2, and n = x], denoted by

^a; [56
-

{x
-

1)2], or 29a; - x^;

and the distance travelled by the second is denoted by 20a::

hence, we have

29a; — x'^ = 20a;, or a; = 9.

48. A farmer sold to one man 30 bushels of wheat and 40 of

barley, for which he received 270 shillings. To a second man he

sold 50 bushels of wheat and 30 of barley, at the same prices, and

received for them 340 shillings : what was the price of each ?

Let x' denote the number of shillings for 1 bushel of wheat,

and y
" " " " " "

barley.



202 APPENDIX.

From the conditions of the problem,

30a; 4- 40y = 270 • •

(1)

50a; -f my = 340 • •

(2) ;

whence, llOy = 330, or y = 3; hence, a* = 5.

49. There are two numbers whose difference is 15, and half their

product is equal to the cube of the lesser number : what are the

numbers 1

Let X and y denote the numbers
;

from the conditions of the problem,

a; — y = 15

xy = 2y^
'

or, x = 2y^ ;

substituting and reducing,

2_1 _15.
.

^ 2^
'"

2 '

1 /I5 ,

1

2'^4^\/-2+Tg
= 1 db 11

4

5 25
hence, ^ = 3, and — -

; also, a; = 18, and —-

50. A merchant has two barrels and a certain number of gallons

of wine in each. In order to have an equal quantity in each, he

drew as much out of the first cask into the second as it already

contained
;
then again he drew as much out of the second into the

first as it then contained : and lastly, he drew again as much from

the first into the second as it then contained, when he found that

there was 16 gallons in each cask : how many gallons did each

originally contain ?
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Let X denote the n imber of gallons in the first cask, and y the

number in the second
;

X — y will denote the quantity in the first cask after the first drawing,

and 2y the quantity in the second cask
;

after the second drawing,

2y — (ar
—

y) or 3y — aj will denote the quantity in the second,

and 2x — 2y the quantity in the first cask
;

after the third drawing,

2x — 2y — {Sy
—

x) or 3a; — 5y will denote the quantity in the

first cask, and 6y — 2x the quantity in the second.

From the conditions of the problem,

Sx — by = 16

6y ~ 2a; = 16.

By combination,

xz=22; y=10.
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