$$
\begin{gathered}
W_{\text {Qunuantil }}^{1866} \\
\frac{18}{18}
\end{gathered}
$$

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

K EY

THE NATIONAL ARITHMETIC;

costarisa

dinll Solutions to mearly all the fotoblems.

desigasd for the

USE OF TEACHERS AND PRIVATE STUDENTS.

\qquad
by john herbert sangiter, m.a., $/ 80$
MATHEMATICAL MASTER AND LECTURER IX CHEMISTRT AND TATURAL PHILOSOPHY IS THE SORMAL SCHOOL FOR UPPER CANADA.

筑lontreal:
PRINTED AND PUBLISHED BY JOHN LOVELL, aND SOLD BY R. \& A. MILLER;

Coronto:
R. \& A. MILLER, 62 KING STREET EAST. 1861.

PREFACE.

It was the original intention of the anthor to give, in the Key, merely a series of brief hints upon the solutions of the more difficult problems. He was led to modify this plan and to issue the work in its present form, chiefly from the consideration that as there are in the country many young persons who, from various causes, are unable to avail themselves of the advice and assistance of a teacher, it would be a great boon to these to have access to a book to which they might refer with the certainty of having every doubt removed as to the correctness of their work and methods of solution. He offers the work to his fellowteachers with the hope that they will accord it the same favourble reception that they have so kindly given to the National Arithmetic.

Toronto, May, 1861.

CONTENTS.

Page.
Reduction Descending 5
Reduction Ascending 6
Reduction of Canadian Currency to Dollars and Cents 8
Multiplication 9
Division 14
Miscellaneous Exercises, Arith. page 118 20
Resolution of Numbers into their prime factors. 27
Divisors of numbers 27
Number of divisors 28
Common measure of two or more numbers 29
Greatest Common Measure 30
Least Common Multiple 32
Reduction of Scales of Notation 34
Fundamental Ru!es in different scales 39
Duodecimal Multiplicatión 40
Miscellaneous Exercises, Arith. page 149 41
Reduction of Fractions 49
Addition of Fractions 58
Subtraction of Fractions 63
Multiplication of Fractions 65
Division of Fractions 69
Miscellaneous Exercises in Vulgar Fractions 74
Rednction of Decimals 77
Addition of Decimals 83
Subtraction of Decimals 85
Multiplication and Division of Decimals 86
Miscellaneous Exercises in Decimals 87
Miscellaneous Exercises, Arith. page 198 91
Simple Proportion 102
Compound Proportion 109
Page.
Conjoined Proportion 112
Miscellaneous Exercises, Arith. page 222 114
Practice. 121
Bills of Parcels 127
Miscellaneous Excrcises, Arith. page 231 129
Percentage 135
Commission 136
Brokerage 137
Insurance 139
Custom House Business 140
Assessment of Taxes 141
Simple Interest 142
Compound Interest 154
Discount 158
Bank Discount. 161
Equation of Payments. 162
Partnership. 163
Profit and Loss 169
Barter 173
Alligation 175
Reduction of Currencies 180
Exchange 182
Arbitration of Exchange 183
Involution 184
Square Root 185
Cube Root 190
Extraction of other Roots 199
Logarithms 200
Logarithmic Arithmetic. 208
Arithmetical Progression 215
Geometrical Progression 220
Single Position 226
Double Position 229
Compound Interest 233
Annuities at Simple Interest. 235
Annuities at Compound Interest. 236
Examination Papers 239
Arithmetical Recreations 284

KEY TO NATIONAL ARITHMETIC.

		Page	50.	
(1)	(2)	(3)	(4)	(5)
d.	£	£ s.	£ s.	£ s.
23328	348	3810	5813	5813
4	20	20	20	20
93312 f .	6960 s.	$\begin{gathered} 770 \mathrm{~s} . \\ 12 \end{gathered}$	$1173 \mathrm{~s} .$ 12	$\begin{gathered} 1173 \mathrm{~s} . \\ 12 \end{gathered}$
		9240 d .	14076 d.	$\begin{gathered} 14076 \mathrm{~d} . \\ 4 \end{gathered}$
				56304 f.
(6)	(7)		(8)	(9)
£ s .	d. $£$	s. d.	cwt. qrs. Ibs.	cwt. qrs. lbs.
5913	6763		$16 \quad 2 \quad 16$	$\begin{array}{llll}14 & 3 & 16\end{array}$
20	20		4	4
1193 s.	1260 s.12		66 qrs.	59 qrs.
12			25	
$\overline{14322}$ d.	15129d	346		311
4		132		118
57291 f.	-	1666 lbs.		1491 lbs .
		A		

Page 51.

(1)	(2)	(3)
f.	grs.	yds.
4)32756	24)23547	512)397024
		$2 \quad 2$
12)8189 d.	20) 981 dwt .3 grs .	11) 794048

(4)
sec.
60) 28635
$60) 477 \mathrm{~m} .15 \mathrm{sec}$.
(5)
lbs.
25)1666
4) 66 qrs. 16 lbs .
(6)
lbs.
25)1491
4)59 qrs. 16 lbs.

7 hrs .57 m .15 sec .16 cwt .2 q. 16 lbs .14 cwt .3 q. 16 lbs.

(11)

ft .
3) 183810
$5 \longdiv { \frac { 1 } { 2 }) 6 1 2 7 0 } \mathrm { yds }$.
2) 2
11)122540
cub. in.
1728)138297
(13)
cub. ft. 128)6:893

530 cord 53c.ft.
27) 80 ft .57 in. $2 \mathrm{c} .5 \mathrm{ds} .26 \mathrm{c} . \mathrm{ft} .57 \mathrm{c} . \mathrm{in}$.
40)11140 per.
8) 278 fur. 20 per.
3) 34 m .6 fur. 20 per.

11 lea. 1 m .6 fur. 20 per.
(14)
sec.
60)3561829

60)59363 m. 49 sec.

(15)
qts.
4) 1597
2) 399 gals. 1 qt.
c. ft.
8) 1000

125 cords
$24) 989$ h. 23 m. 49 s. 4) $\overline{199}$ pks. 1 gal. 1 qt.
7) 41 d .5 h .23 m .49 s .49 busb. 3 pecks 1 gal. 1 qt. 6 wks .6 days 5 hrs .23 min .49 sec.
seconds. . 60) 10000
60) $166^{\prime} 40^{\prime \prime}$
$2^{\circ} 46^{\prime} 40^{\prime \prime}$
sq. links.
10000)70000
grs.
20)11521
$7 \mathrm{sq} . \mathrm{ch}$.
3) 576 scr .1 gr .
8) 192 dr .1 gr .
-
$12) 24 \mathrm{oz} .1 \mathrm{gr}$.
2 lbs .1 gr.
sq ft .
9)26025
$\left.30 \frac{1}{4}\right) 2891 \mathrm{yds} .6 \mathrm{ft}$.
4) 4
121)11564 quarter yards.

95 per. 69 quar. yds. $6 \mathrm{ft} .=$ 40) 95 per. 17 yds .8 ft .36 in .

2 r. 15 sq.p. 17 sq. $y .8$ sq.ft. 36 sq. in.

Page 53.
(1)
(2)
$£ 3 \times 400=1200$ cents. $\quad £ 29 \times 400=\$ 116 \cdot 00$

$$
7 \mathrm{~s} . \times 20=140 \quad " \quad 18 \mathrm{~s} . \times 20=3.60
$$

$$
14 \mathrm{~d} .=5 \text { far. } \times 5 \div 12=\begin{array}{r}
2 \frac{1}{2}
\end{array} \text { " } 3 \frac{1}{2} \mathrm{~d} .=14 \text { far. } \times 5 \div 12=\begin{array}{r}
05_{0}^{5} \\
\hline
\end{array}
$$

$£ 37 \mathrm{~s} .1 \frac{1}{4} \mathrm{~d} .=1342_{12}^{2} \mathrm{cts} . \quad £ 2918 \mathrm{~s} .3 \frac{1}{2} \mathrm{~d} .=\$ 119 \cdot 65_{6}$
(3)
$11 \frac{1}{4} \mathrm{~d} .=45$ far. $\times 5 \div 12=18 \frac{3}{4} \mathrm{cts}$.
(4)

$£ 69 \times 400=\$ 276.00$	18s. $\times 20=\$ 3 \cdot 60$
$15 \mathrm{~s} . \times 20=3.00$	$8 \frac{1}{2} \mathrm{~d} .=34$ far. $\times 5 \div 12=\cdot 14 \frac{1}{6}$
$6 \mathrm{~d} .=24$ far. $\times 5 \div 12=10$	
£69 15s. 6d. $=\$ 279 \cdot 10$	18s. $8 \frac{1}{2} \mathrm{~d} .=\$ 3.74 \frac{1}{6}$

(6)
(7)
$£ 17 \times 400=\$ 68.00$
$16 \mathrm{~s} . \times 20=3.20$
$5 \frac{7}{2} \mathrm{~d} .=23$ far. $\times 5 \div 12=\quad .09 \frac{7}{12}$
(8)
$£ 87 \times 400=\$ 348 \cdot 00$
$15 \mathrm{~s} . \times 20=\$ 3.00$

15s. $11 \frac{3}{7} \mathrm{~d} .=\$ 3 \cdot 19_{17}^{7}$
(9)

£ $16 \times 400=\$ 64.00$		$£ 2 \times 400=\$ 8.00$	
$6 \mathrm{~s} \times 20=$	$1 \cdot 20$	$9 \mathrm{~s} . \times 20$	1.80
$2 \mathrm{~d} .=8 \mathrm{far} . \times 5 \div 12=$	-031	11d. $=44$ far. $\times 5 \div 12=$	-1813
£16 6s. 2d. $=$.23 ${ }^{\frac{1}{3}}$	£29s. 11d. $=$	-983

Page 90.
(25)
(26)
(27)
(28)
$36=12 \times 3 \quad 121=11 \times 11 \quad 144=12 \times 12 \quad 648=12 \times 9 \times 6$

\$169•78	$796342 \cdot 3$	\$33460	735
12	11	12	12
2037.36	$8759765 \cdot 3$	401520	8820
3	11	12	9
\$6112.08	$96357418 \cdot 3$	\$4818240	79380
			476280
(29)	(30)	(31)	(32)

(33) (34)
$49=7 \times 7 \quad 63=9 \times 7 \quad 288=12 \times 12 \times 2$ bush. pks. gal. qt. pt. yds. qrs. na. in. dys. hrs. min. sec. $\begin{array}{lllllllllllll}26 & 3 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 5 & 17 & 33 & 11\end{array}$ 212
$\left.\begin{array}{lllllllll}\hline 188 & 1 & 1 & 2 & 1 & & 24 & 0 & 2\end{array}\right)$

68	18	38	12

$\begin{array}{lllllllll}1319 & 0 & 1 & 1 & 1 & 168 & 3 & 2 & 0\end{array}$
$\begin{array}{llll}825 & 7 & 38 & 24\end{array}$
2

1650	15	16	48

(40)
(41)
(44)

$$
247=7+10 \times 4+10 \times 10 \times 2
$$

$$
\text { m. fur. rds. yds. } \quad \text { m. fur. rds. yds. }
$$

$\begin{array}{llllllllllll}23 & 6 & 33 & 4 \times 7=166 & 7 & 36\end{array}$ 10
$\begin{array}{llllllll}238 & 4 & 17 & 1 \frac{1}{2} \times 4= & 954 & 1 & 29 & 0 \frac{1}{2}\end{array}$
10
$2385412 \quad 4 \times 2=\frac{4771}{5892} \quad 2 \quad 10 \quad 3 \frac{1}{2}$
(45)
$721=1+10 \times 2+10 \times 10 \times 7$
S. deg. min. sec. S. deg. min. sec. $\begin{array}{lllllll}3 & 16 & 30 & 45 \times 1= & 3 & 16 & 30\end{array} \mathbf{4 5}$ 10
$\begin{array}{llllllll}35 & 15 & 7 & 30 \times 2= & 71 & 0 & 15 & 0\end{array}$ 10

| 355 | 1 | 15 | 0×7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$=$| 2485 | 8 | 45 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 2559 | 25 | 30 | 45 |

(52)	(53)	(54)	(55)
7071	15607	39948123	2778588
556	3094	6007	9867
42426	$\boxed{62428}$	279636861	19450116
35355	140463	23968873800	16671528
35355	468210	239968374861	25007292
3931476	48288058		27416327796

(61)	(62)	(63)	(64)	(65)
$3 \cdot 2517$	64.001	482000	$3782 \cdot 4$	87-96
-023	340	$\cdot 37$	-00917	220
97551	2560040	3374000	264768	175920
65034	192003	1446000	37824	17592
			340416	
. 0747891	$21760 \cdot 340$	178340.00		19351•20
			$34 \cdot 684608$	

(66)
$216=6 \times 6 \times 6$
$\$ 83469$
6
500814
6
3004884
6
(68)

(67)	(68)	(69)
$\$ 61135 \cdot 37$	255226	$176=11 \times 8 \times 2$
$\frac{229}{55021833}$	$\frac{143}{765678}$	203736
12227074	1020904	11
12227074	255226	2241096
$\$ 13999999 \cdot 73$	36497318	$\frac{8}{17928768}$
		$\frac{2}{35857536}$

(70)	(71)	(72)	(73)
116700	3721	$297=11 \times 9 \times 3$	$35=7 \times 5$
235	73	32000	9344000
583500	11163	11	7
350100	26047	352000	65408000
233400	271633	9	5
27424500		3168000	327040000
		3	
		9504000	

(74)
$749=9+10 \times 4+10 \times 10 \times 7 \quad 999998=1000000-2$ lbs. oz. drs.scr.gr. lbs. oz. drs. scrs.grs. $\begin{array}{lllllllll}123 & 4 & 7 & 2 & 17 \times 9=1110 & 8 & 7 & 1 & 13\end{array} 1698732$ $10 \quad 1000000$
\(\left.\begin{array}{lllllllll}\hline 1234 \& 1 \& 7 \& 1 \& 10

10\end{array}\right]=\)\begin{tabular}{lllllll}

4936 \& 7 \& 6 \& 0 \& 0 \& | 1698732000000 |
| ---: |
| 3397464 |

\hline 12341 \& 7 \& 3 \& 0 \& 0×7
\end{tabular}

(76)

$$
\epsilon 40=10 \times 8 \times 8
$$

bush. pk. gal. qt. pt.

123	1	1	1	1

10

1234	0	1	3	0
				8

9873	3	0	0	0
				8

78990 0 0000
(78)
(77)

89
$\frac{\cdot 73}{267}$
623
$\$ 64 \cdot 97$
$1143=3+10 \times 4+10 \times 10 \times 1+10 \times 10 \times 10 \times 1$ yds. qrs. na. in. yds. qrs. na.in.
$\begin{array}{lll}7 & 3 & 2\end{array} \times 3=\begin{array}{ll}23 & 2\end{array}$ 10

$$
\begin{array}{cccc}
79 & 0 & 0 & 1 \\
& & 10
\end{array} \times 4=316 \quad 0 \quad 1 \quad 1 \frac{3}{4}
$$

$$
790 \quad 1 \quad 0 \quad 1 \times 1=\begin{array}{llll}
790 & 1 & 0 & 1
\end{array}
$$

$$
10
$$

$$
7902 \quad 3 \quad 0 \quad 1 \times 1=\begin{array}{llll}
7902 & 3 & 0 & 1 \\
\hline 9032 & 3 & 2 & 0 \tag{80}
\end{array}
$$

	$\begin{gathered} \$ 3292 \cdot 866 \\ 3 \cdot 7 \end{gathered}$
	23050062
	9878598
	\$12183.6042
\$12183.6042	
3292.866	
$968 \cdot 49$	
\$16444.9602	

Page 110.
(18)
6423) $798965\left(124 \frac{25}{6} \frac{13}{23}\right.$

6423
15666
12846
28205
25692
2513
(19)
£ s. d.
12)176 $14 \quad 6$
$1414 \quad 6 \frac{1}{2}$
(21)
 63152

75258
71046
4212 (23)
$\boldsymbol{£}$ s. d. $\boldsymbol{£}$ s. d.
317) $4728 \quad 16 \quad 2\left(\begin{array}{llll}14 & 18 & 4347 \\ 3\end{array}\right.$

317
1558
$\frac{1268}{290}$
20
5816
317
2646
2536
110
12
1322
1268
54

(24)
6) 970763
$\overline{161793.8333+}$

858
$\begin{array}{cc}\text { 1209 } & \begin{array}{c}\text { (26) } \\ 858 \\ 8500) 977076(2025976 \\ 3516\end{array}\end{array}$
lbs. oz. drs. scr. grs. lbs. oz. drs. scr.grs. 498) $7289 \quad 6 \quad 4 \quad 213(14 \quad 7 \quad 5 \quad 0 \quad 12437$

498		9807
2309	(28)	9712
1992	-954	

317
12
$\overline{3810}$

3486
$\overline{324}$

8

2596
2490
106
3
320
$\frac{20}{6413}$

5976
437
£ s. d.s. d.
487) $157 \quad 16 \quad 7\left(6 \quad 53\right.$ 구… $\frac{59}{187}$

20
3156
2922
$\overline{234}$

$$
\overline{15}
$$

12
2815
2435
380
4
1520
1461
59
m. fur. rds. m. fur. rds. $37) 422 \quad 3 \quad 38(11 \quad 3 \quad 14$ 407

8
123
111
-12
40
518
37
148
148

Page 112.
(32)
$25=5 \times 5$
5)3766
5)753... 1
150... 3
$3 \times 5+1=16$
$150 \frac{1}{5}$
(33)
$42=7 \times 6$
7)26406
6)3772... 2
$628 . .{ }^{4}$
$4 \times 7+2=30$
628 38
(34)
$96=12 \times 8$
12)25431

$$
\text { 8)2119... } 3
$$

$$
264 \ldots 7
$$

$$
7 \times 12+3=87
$$

$$
26487
$$

(35)
$24=12 \times 2$
$£$
s.
d.
12)24 $17 \quad 6$
2)2 $\quad 1 \quad 5 \frac{1}{2}$

1083
[Nat. Aritif.

KEY.
(37)

$$
\begin{align*}
& 56=8 \times 7 \tag{38}\\
& \text { £ s. d. } \\
& \text { 8)547 } 12 \quad 4 \\
& \text { 7) } 68 \quad 9 \quad 0 \frac{1}{2} \\
& 9156 \frac{3}{4} \ldots \frac{4}{5} \text { 웋 }
\end{align*}
$$

(36)

$35=7 \times 5$
7) 6789436
5)969919... 3
193983...4 $4 \times 7+3=31$ $193983 \frac{31}{3}$.
$81=9 \times 9$
lbs. oz. dwt. grs. 9)1798 $6 \quad 11 \quad 9$
$1 \times 7 \times 7+2 \times 7+2=65$
7)107613... 2
3) $\frac{15373 \ldots 2}{5124 \ldots 1}$ $51244^{\frac{65}{4}} 7$
7)753293

£	s.	d. \quad ¢	s. d.	m . fur. rds. m, fur.rds.			
491	12	019) 8968	$13 \quad 7 \frac{1}{2}$	17	5	27) 1027	16
20		20		8		8	
9832		179373		141		8217	
12		12		40		40	
117984		2152483		5667)	328686	(58
4		4				28335	
471937)	8609934				45336	
		471937				45336	
		3890564					
		3775496					
		115068					

(45)

(47)
(56)
(46)

$756.98 \div 76 \cdot 73612=$
7673612) $75698000(9.864+$ 69062508
$\overline{6635492} \cdot 0$
$6138889 \cdot 6$

$\overline{496602 \cdot 40}$
$460416 \cdot 72$
$36185 \cdot 680$
$30694 \cdot 448$
$5491 \cdot 232$

$47 \cdot 655 \div 4 \cdot 5=$
45) $476 \cdot 55(10 \cdot 59$ 45
$26 \cdot 5$ $22 \cdot 5$
4.05 ? 4.05
(58)
$47 \cdot 5782975 \div 26 \cdot 175=$ 26175)47578.2975(1•8177 26175
21403.2
$20940 \cdot 0$
463.29
$261 \cdot 75$
201.547
$183 \cdot 225$
$18 \cdot 3225$
$18 \cdot 3225$
(59)
$1 \div 7 \cdot 6345=$
(60)
$75.347 \div 0.3829=$
76345) $10000 \cdot 0(0 \cdot 1309+$ $7634 \cdot 5$
$2365 \cdot 50$
$2290 \cdot 35$
$75 \cdot 1500$
$68 \cdot 7105$
$\frac{3829}{37057}$

Page 116.

$$
\begin{equation*}
\frac{34461}{25960} \quad \cdot 0002 \div 000000008= \tag{61}
\end{equation*}
$$

8) 200000

25000
(61)
126) $\$ 3860000(\$ 30634 \cdot 9206$
95) $\$ 3300000(\$ 34736 \cdot 8421$

285		378
$\underline{285}$	$28800) 95270400(3308$	378
450	86400	800
380		756
-	88704	
700	86400	440
665		378
	230400	-
350	230400	620
285		504
-	days.	-
650	3654) 3308	$116 \cdot 0$
570	$4{ }^{4}$	$113 \cdot 4$
	-__ yrs. days.	-
$80 \cdot 0$	1461)13232(9 20%	$2 \cdot 60$
$76 \cdot 0$	13149	$2 \cdot 52$
$4 \cdot 00$	4)83	-800
$3 \cdot 80$	-	-756
	$20 \frac{3}{4}$	
-200		-044
-190		(64)
	35781628	8)\$1145012096(\$32
-100		107344884
-095		71563256
$\cdot .005$		71563256

(65)

(75)

$$
\text { Page } 118 .
$$

(3)

DCCIX, M $\bar{V} C C C L X X V I, ~ M \bar{X} C M X C I X, \overline{L X X X V} M I V$, MMMOMXLVMMDXCVI.

(4)	
$72=8 \times 9$	
lbs.	
749	
	8
5997	0
	9
73	

(5)
$17=7+10 \times 1$

$$
\text { s. d. } \quad \boldsymbol{f} \text { s. d. }
$$

$$
4 \quad 73 \times 7=1 \quad 12 \quad 6 \frac{1}{4}
$$

$$
10
$$

$£ 2 \quad 6 \quad 5 \frac{1}{2} \times 1=2 \quad 6 \quad 5 \frac{1}{2}$
$31811 \frac{3}{4}$
(6)

3Q)2850000000

dys. hrs.
24) $95000000(39583338$

72

230	$\begin{gathered} 3654) 3958333(10837 \\ 4 \end{gathered}$	
216		
140	1461)1	15833332
120		1461

10837 yrs. 119 days, 2 hrs.

(10)
in.
12) 7964327

$$
\begin{equation*}
429=9+10 \times 2+10 \times 10 \times 4 \tag{12}
\end{equation*}
$$

wks. dys. hrs. min. wks. dys. hrs. min.

$$
6 \quad 4 \quad 3 \quad 17 \times 9=59 \quad 2 \quad 5 \quad 33
$$

10

65	6	8	$\begin{aligned} & 50 \times 2=131 \\ & 10 \end{aligned}$	5	17	40
659	0	16	$20 \times 4=2636$	2	17	20
			2827	3	16	33

wks.
52) 2827 (54 yrs. 19 wks. 3 dys. 16 hrs .33 min .

260
227
208
19 wks.

(23)

(26)

17211 drs.
3
51634 scr.
20
1032694 grs.
(29)

cwt. qr. lbs.			
6	2	11	
5	3	16	
8	0	7	
3	1	17	
24	0	$1=2401$	

2

$\overline{2800}$ sq. ft. in roof.	$\overline{12005}$
$\frac{6}{16800}$	
$\$ 360 \cdot 15$	

$\$ 247.95$
(31)
(32)

cwt. qr.lbs.			
2	0	17	
3	2	15	
2	1	20	(36)
5	3	17	$43 \cdot 2 \div 76 \cdot 8437=$
		- lbs.	768437)432000.0(0.562
$14 \quad 0 \quad 19=1419$			$384218 \cdot 5$
$\cdot 37 \frac{1}{2}$			
			$47781 \cdot 50$
		9933	46106.22
4257 -			
$709 \frac{1}{2}$			$1675 \cdot 280$
			1536.874
\$532-12 $\frac{1}{2}$			㖪
			$138 \cdot 406$

(37)

(38)

$\$ 63.29$	$\$ 2789 \cdot 27$
17	$1075 \cdot 93$
44303	$\$ 1713.34$
$\frac{6329}{}$	
$\$ 1075.93$	

Page 127.

(3)	(4)	(5)	(6)
2)11368	2) 2934	3) 1011	2)1000
2) 5684	3)1467	337	2)500
2)2842	3)489	3×337	2)250
$7) 1421$	163		5)125
7)203	$2 \times 3^{2} \times 163$		5)25
$2^{3} \times 7^{2} \times 29$			$\begin{gathered} 5 \\ 2^{3} \times 5^{3} \end{gathered}$
(7)	(8)	(9)	(10)
2)1024	2)32320	7)707	2)1118
2)512	2)16160	101	13)559
2)256	2)8080	7×101	43
2)128	2)4040		$2 \times 13 \times 43$
2)64	2)2020		
2)32	2)1010		
2)16	5)505		
2)8	101		
2)4	$2^{6} \times 5 \times 101$		
2			
2^{10}			

Page 128.
(3)
$100=2^{2} \times 5^{2}$
1..2.. 4
1..5.. 25
1..2..4..5..10..20..25..50.. 100

$$
810=3^{4} \times 2 \times 5
$$

1..3..9..27.. 81
1.. 2
1..3..9..27..81..2..6:.18..54.. 162
$1 . .5$
1..3..9..27..81..2..6..18..54..162..5..15..45..135..405.. 10..30..90..270.. $810=$
1..2..3..5..6..9..10..15..18..27..30..45..54. .81..90..135.. 162..270.. 405 .. 810 .

$$
\begin{equation*}
920=2^{3} \times 5 \times 23 \tag{5}
\end{equation*}
$$

1..2..4.. 8
$\frac{1 . .5}{1 . .2 . .4 . .8 \text {..5..10..20.. } 40}$
1.. 23
1..2..4..8..5..10..20..40..23..46..92..184..115..230..460.. $920=$ 1..2..4..5..8..10..20..23..40..46..92..115..184..230..460..920.

$$
\begin{equation*}
25000=5^{5} \times 2^{3} \tag{6}
\end{equation*}
$$

1..5..25..125..625.. 3125
1..2..4.. 8
1..5..25..125.. $625 . .3125 . .2 . .10 . .50 . .250 . .1250 . .6250 . .4 . .20 . .100$.. 500..2500..12500..8..40..200..1000..5000.. $25000=$ 1..2..4..5..8..10.. 20..25..40..50..100..125..200..250..500..625.. 1000..1250..2500..3125..5000..6250.. 12500.. 25000 .

Page 128.
(2)

$$
\begin{gathered}
88200=2^{3} \times 3^{2} \times 5^{2} \times 7^{2} \\
3+1=4 \\
2+1=3 \\
2+1=3 \\
2+1=3 \\
4 \times 3 \times 2 \times 3=108
\end{gathered}
$$

$$
\begin{gather*}
3500=2^{2} \times 5^{3} \times 7 \tag{3}\\
2+1=3 \\
3+1=4 \\
1+1=2 \\
3 \times 4 \times 2=24
\end{gather*}
$$

(4)

$6336=2^{6} \times 3^{2} \times 11$
$6+1=7$
$2+1=3$
$1+1=2$
$7 \times 3 \times 2=42$
(6)
$49000=2^{3} \times 5^{3} \times 7^{2}$
$3+1=4$
$3+1=4$
$2+1=3$
$4 \times 4 \times 3=48$
(8)

$75600=2^{4} \times 3^{3} \times 5^{2} \times 7$	$256000=2^{10} \times 5^{2}$
$4+1=5$	$10+1=11$
$3+1=4$	$2+1=3$
$2+1=3$	$11 \times 3=33$
$1+1=2$	
$5 \times 4 \times 3 \times 2=120$	

Page 129.

$21=$	7×3	$21=3 \times$	7	$26=2 \times$
$18=2 \times 3 \times 3$	$77=11 \times$	7	$52=2 \times 2 \times 13$	
$27=3 \times 3 \times 3$	$42=2 \times 3 \times 7$	$91=7 \times$	13	
$36=4 \times 3 \times 3$	$35=5 \times$	7	$143=11 \times$	13

(3)
(4)

3 is common to all. 7 is common to all. 13 is common to all.
(5)

$$
\begin{array}{r}
82=41 \times 2 \\
118=59 \times 2 \\
146=73 \times 2
\end{array}
$$

2 is common to all.

Page 130.
(2)
(3)

308(506(1
308
198)308(1

198
110)198(1

110
88)110(1

88
22)88(4 G. C. M. $=2$. 88
(4)
74)84(1

74
10) 74 (7 70
4) $10(2$ 8 2) 4
$\overline{2}$
G. C. M. $=37$.
(5)
1825)2555(1

1825

1460
365) 730 (2

730
G. C. M. $=365$.
(6)
556)672(1

556
116)556(4

464
92)116(1 92
24)92(3 72
20) 24(1 20
4) 20

5
G. C. M. $=4$.

Page 131.

(9)	(10)
110)140(1	1326)3094(2
110	2652
30)110(3	442)1326(3
90	1326
20)30(1	Also 4420 is divisible by 442 ;
20	therefore it is their G. C. M.
10)680 10)20	
68	

Therefore 10 is their G. C. M.
(11)
468)922(1

468
454)468(1
$\frac{454}{} \quad$ 14)454(32

42

204) ${ }_{1020}^{1190(5}$	34) ${ }^{1345} \times$
170)204(1	85
170	68
-	-
34)170(5	$517) 34(2$
170	34

17)2006(118 17

30
6) 14 (2

17
2)6

136
$-$
3
375 is not divisible by 2 , and therefore their G. C. M. is 1.

Page 132.
(15)
$56=2^{3} \times 7$
$84=2^{2} \times 3 \times 7$
$140=2^{2} \times 5 \times 7$
$168=2^{3} \times 3 \times 7$
The greatest factors which are common are 2^{2} and 7; therefore the G. C. M. $=2^{2} \times 7=28$.

> (16)

$$
\begin{aligned}
241920 & =2^{8} \times 3^{3} \times 5 \times 7 \\
380160 & =2^{8} \times 3^{3} \times 5 \times 11 \\
69120 & =2^{9} \times 3^{3} \times 5 \\
103680 & =2^{8} \times 3^{4} \times 5
\end{aligned}
$$

The greatest factors which are common are $2^{8}, 3^{3}$ and 5 ; therefore the G. C. M. $=2^{8} \times 3^{3} \times 5=34560$.
(17)

$$
\begin{gathered}
10800=2^{4} \times 3^{3} \times 5^{2} \\
28040=2^{3} \times 5 \times 701 \\
2160=2^{4} \times 3^{3} \times 5
\end{gathered}
$$

The greatest factors which are common are 2^{3} and 5 ; therefore the G. C. M. $=2^{3} \times 5=40$.

$$
\text { Page } 133 .
$$

(2)
(3)
(4)

6	$=2 \times 3$	1	$=1$
7	$=7$	2	$=2$
42	$=2 \times 3 \times 7$	3	$=3$
9	$=3^{2}$	4	$=2^{2}$
10	$=2 \times 5$	5	$=5$
630	$=2 \times 3^{2} \times 5 \times 7$	6	$=2 \times 3$
	7	$=7$	
$2 \times 3^{2} \times 5 \times 7=630$.	8	$=2^{3}$	
9	$=3^{2}$		
		$3^{2} \times 2^{3} \times 5 \times 7=2520$.	

(5)

$$
\begin{aligned}
670 & =2 \times 5 \times 67 \\
100 & =2^{2} \times 5^{2} \\
335 & =5 \times 67 \\
25 & =5^{2}
\end{aligned}
$$

$$
2^{2} \times 5^{2} \times 67=6700
$$

(6)

$$
\begin{aligned}
& 8=2^{3} \\
& 10=2 \times 5 \\
& 18=2 \times 3^{2} \\
& 27=3^{3} \\
& 36=2^{2} \times 3^{2} \\
& 44=2^{2} \times 11 \\
& 396=2^{2} \times 3^{2} \times 11 \\
& 2^{3} \times 3^{3} \times 5 \times 11=11880 .
\end{aligned}
$$

(9)
(10)

(14)
2) $60 \ldots 50 \ldots 144 \cdots 35 \ldots 18$
2)27..54..81..14..63
2) $30 . .25$.. 72..35.. 9
3)15..25.. 36..35.. 9
3) $5 . .25 . .12 \ldots 35 . .3$
5) 5..25.. 4..35.. 1
1.. 5.. 4.. $7 . .1$
$2 \times 2 \times 3 \times 3 \times 5 \times 5 \times 4 \times 7=25200 . \quad 2 \times 3 \times 3 \times 3 \times 7 \times 3=1134$.
(20)

$300 \times 10=3000$.
3)27..27..81.. 7..63
3) $9 . .9 . .27 . .7 . .21$
3) $3 . .3 . .9 . .7 .7$
7) 1.. 1.. 3.. 7.. 7
1.. 1.. 3.. 1.. 1

165	$20 . .60 . .15 . .165 . .210 . .63 . .27$	
21	$4 . .4$	4
12	$4 .$.	4
	2	$21 . .9$

(21)

Page 138.

Pages 136-140.]	KEY.		35
(14)	(15)		(16)
1 x	V	v	IV
8)37704	7) 444	7)4321 9	9)1212201
8)4311..5	7)32..5	7)313..5	9)23121..0
$8) 480 . .1$	$2 . .3$	7)21..6	$9) 1101 . .0$
8)54..4	235.	$-1 . .4$	9)21..0
-		1465.	-
$6 . .1$			$1 . .0$
61415.			10000.
(19)	(20)	(21)	(22)
17	III	Ix	vI
20212331	101202220	1522365	$5 \quad 33233344$
4	3	9	6
$\overline{8}$	$\overline{3}$	14	21
4	3	9	6
-	10	128	128
4	3	9	6
137	$\overline{32}$	$\overline{154}$	771
4	3	9	6
550	96	10389	4629
4	3	9	6
2203	290	93507	27777
4	3	9	6
8815	872	841568	166666
4	3		6
35261	2618		1000000
	3		
	7854		

IX
IX
12)132713
12)10207.. 9
12)682. t
12)51. . 8
3..t
8)21..5
-
3) $408 . .1$
3)132. . 2
3) 40.12
3) $13 . .0$
3) $4 . .0$
$1 . .1$

IX	III		XII	VIII
132713	11002210110	$=$	$3 t 8 t 9$	$=$
9	3		12	8
$\overline{12}$	-	335601		

XII	XII	XII	XH
9) $t 2 t 290$	6) $t 2 t 290$	4) $t 2 t 290$	2) $t 2 t 290$
9)117978.. 0	6)185856. . 0	4)268683. 0	2)515146..0
9)1624t. 2	6)34e4e.. 0	4)78180..3	2)268683. 0
9)2032 . 4	6) $69 t 9 . .5$	4)1e050.. 0	2)134341..1
9)284.. 2	6) $1179 . .3$	4)5913..0	2) $78180 \ldots 1$
9)37.. 1	6)233.. 3	4)1533..3	2) $3 t 0 t 0.0$
4. . 7	6)46..3	4)439..3	2) $1 e 050.0$
	6)9.. 0	4)10e..]	2) $e 626.0$
	1. . 3	4)32.. 3	2)5913..0
		4)9.. 2	2)2667.. 1
		2.11	2)1533. 1
			2)877..1
			2) $439 . .1$
			2) $21 t \ldots 1$
			2) $10 \mathrm{c} . .0$
			2)65. 1
${ }^{-}$			2)32..1
			2)17.0
			$\text { 2) } 9 \ldots 1$
			2)4.. 1
			2)2..0
	(Continued on next page.)		1.0
	C		

(25 continued.)

Pages 141-143.] K			
Page 142.			
(31)	(32)	(33)	(34)
vi	XII	III	vili
252	$62 t e) 32 e 75721$ (62te	201210	57264
252	31556	102221	675
544	161e7	21212	354604
2224	1059 t		513354
544	58192		434070
122024	52512	.	51117344
	58801		
	58801		
(35)	(36)	(37)	(38)
II	vir	vir	XII
101	2143) $142613(50.5254$	65432	$7 t 348$
1001	14111	43210	5 e6t4
1111	1503.0	1444	
1011		65001	1 t864
1000	$1411 \cdot 1$	54321	
1111	$61 \cdot 60$		
10101	$43 \cdot 16$	326041	
1010100	$15 \cdot 410$		
	$14 \cdot 111$		
]-2660		
	1.1635		
	$\cdot 1022$		
	(39)	(40)	
	xII	II	
	$34 t 7$ 100101	1010100001	$10010 \frac{111}{10010 T}$
	6666	100101	
	18536	101000	
	18536	-100101	
	18536		
	18536	111	
	1 t36e296		

Page 146.

(45)

(47)
(46)

$19 \mathrm{ft}$			10^{\prime}	$3^{\prime \prime}$	
11	2	7			
	11	6	$11^{\prime \prime \prime}$	$9^{\prime \prime \prime \prime}$	
3	3	8	6		
218	4	9			
222	8	0	5	9	

(48)
$9 \frac{3}{4} \mathrm{in} .=9^{\prime} 9^{\prime \prime}$
$\overline{8^{\prime \prime \prime \prime \prime \prime}} 9^{\prime \prime \prime \prime \prime \prime \prime} \overline{8^{\prime \prime \prime \prime \prime \prime \prime \prime \prime} 8^{\prime \prime \prime \prime \prime \prime \prime \prime \prime \prime}}$

	$8^{\prime \prime \prime \prime \prime \prime \prime}$				
	2	4	$9^{\prime \prime \prime \prime \prime \prime \prime}$	$8^{\prime \prime \prime \prime \prime \prime \prime \prime \prime}$	$8^{\prime \prime \prime \prime \prime \prime \prime \prime \prime \prime \prime}$
5	7	3	4	0	
5	10	4	11	8	8

(49)

(51)

15 ft		(52)
1	2^{\prime}	XII
		$45 \cdot 6$
2	6	$t \cdot 3$
15		
		1146
17	6	3870
	8	
		398.46
11	$80^{\prime \prime}=$	2

10 ft .

111_{3}^{2} cub.ft. $=11$ cub.ft. 1152 cub.in. - cub.ft.
$774=1096$ com. scale.

（54）		（56）
4 ft ．	（55） 25 f	$\begin{aligned} & 25 \mathrm{ft}=300 \mathrm{in} . \\ & 20 "=240 " \end{aligned}$
51	xil 20 ＇	
－	$4 \cdot 78$ 2 ft． 6 i	$2 \mathrm{ft} .6 \mathrm{in}=30^{-1 /}$
20	$9 \cdot 6$	
1	－ 8	
－	23 t0	4
21 sq．ft．	3590	
70	32	300
	$38.0 t \quad 2$	240
128）1470（1134 cords	$2 \cdot e$	－－
128	$64=8 \times 8$	72000
10	34492	30
190	7418	
128	－cub．ft．	8）2160000
0	$t 8 \cdot 652=1286^{\prime} 5^{\prime \prime} 2^{\prime \prime \prime}$	
${ }^{62}=32$	$t 8$ duoden．$=128 \mathrm{den}$ ．	8）270000
		33750

Page 149.
（1）

¢ 93×400	＝\＄372．00	$£ 276 \times 400=\$$	$=\$ 1104 \cdot 00$
$14 \mathrm{~s} \times \times 20$	$=2 \cdot 80$	$19 \mathrm{~s} \times 20$＝	$=\quad 3.80$
$7 \frac{1}{\text { d }}$ ．$=30 \mathrm{f} \times 5 \div$.	$=12 \frac{1}{1}$	$10 \frac{1}{2} \mathrm{~d} .=42 \mathrm{f} . \times 5 \div 12=$	$=\quad \cdot 17 \frac{1}{2}$
$£ 93$ 14s． $7 \frac{1}{2} \mathrm{~d} . \quad=\$ 374.92 \frac{1}{2}$ £276 19s． $10 \frac{1}{2} \mathrm{~d} . \quad=\$ 1107.97 \frac{1}{2}$			
£275×400	二\＄110000	\＄729．18	
$43 . \times 20$	$=\quad \cdot 80$	$710 \cdot 50$	
$11 \frac{13}{\text { d }}$ ．$=47$ f．$\times 5 \div 1$	$=\quad \cdot 19 \frac{7}{12}$	$166 \cdot 78$	
£275 4s． 11 年d．	$=\$ 1100 \cdot 99_{18}^{7}$	$374 \cdot 92 \frac{1}{2}$	
		$497 \cdot 81$	
		\＄4688．16年	

$$
576=6+10 \times 7+10 \times 10 \times 5
$$

m．fur．per．yds．ft．in．
m．fur．per． rd d．ft．in．
$\begin{array}{llllllllll}47 & 6 & 17 & 4 & 2 & 7 \times 6= & 286 & 6 & 27 & 1\end{array} 2$ 10

| 478 | 0 | 18 | 4 | 110 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $7=\begin{array}{llllll}3346 & 3 & 11 & 4 & 2 & 4\end{array}$ 10

$\begin{array}{lllllllll}47804 & 28 & 2 & 0 & 4\end{array} \times 5=$| 23902 | 7 | 21 | 4 | 3 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 27536 | 1 | 21 | 0 | 1 | 6 |

(3)

$$
\begin{gathered}
243000=2^{3} \times 3^{5} \times 5^{3} \\
3+1=4 \\
5+1=6 \\
3+1=4 \\
4 \times 6 \times 4=96
\end{gathered}
$$

(4)

V	VIII	$79 \cdot 342 \div \cdot 00006378=$
8) 4234434	5) 713427	6378) $7934200000(1243994 \cdot 98275$
		6378
8)241110..4	5)133721..2	
		15562
8)13423..1	5)22303.. 2	12756
8) $1024 . .1$	5)3532..1	28060
		25512
8)32.. 3	5)570..2	
	-	25480
$2 . .1$	5)113..1	19134
	5)17..0	63460
	5)	57402
	$3 . .0$	--
	\bigcirc	60580
VIII	v	57402
713427	30012122	31780
213114	4234434	25512
500313	20222133	6268.0
500313		$5740 \cdot 2$
		527.80
		$510 \cdot 24$
		$17 \cdot 560$
		$12 \cdot 756$
		$4 \cdot 8040$
		$4 \cdot 4646$
		-33940
		-31890
		- 02050

21	8.9.11. 8. 2	\$1.11. \$. 8. 8.88. 7.9	\$1.11. 9. \&. 5.
33	\$ 11 \%	11.11 3	11. 8. 2. 5.
10			\%. 2.
	,	$40 \times 21 \times 33 \times 10=277200$.	

$9999993000=10000000000-7000$. $64276.3427 \times 10000000000=642763427000000$
$64276.3427 \times 7000=\frac{449934398 \cdot 9}{642762977065601 \cdot 1}$

1X
5) 78263
5) $15230 . .3$
5) $2760 . .0$
5) $511 . .4$
5) $102 . .0$
5) $17 . .3$
$3 . .1$

IX V XI

7) 78263 =	7) 3130403	7) 36063
7)11160..3	7)214200 . 3	7) $5640 \ldots 3$
7) $1407 . .5$	7)13220.. 5	7) $884 . .5$
7)177..3	7) $1101 . .3$	7) $128 . .3$
7) $23 . .4$	7) $41 . .4$	7) $1 t \ldots 4$
$3 . .0$	-3.0	3.0

KEY.
[Nat. Arith.

£672×400 $=\$ 2688.00$	891)243000(272
$7 \mathrm{~s} . \times 20=1.40$	1782
$7 \mathrm{~d} .=28 \mathrm{f} . \times 5 \div 12=\quad \cdot 11 \frac{1}{3}$	6480
£672 7s. 7d. $=\$ 2689.51{ }_{3}^{2}$	6237
(13 continued.)	2430
	1782
81)37800(466	
324	648)891(1
	648
540	-
486	243)648(2
-	486
54) 81 (1	--
54	27)35100 162)243(1
-	- 162
$\begin{gathered} 27) 54(2 \\ 54 \end{gathered}$	$1300 \quad$ 81)162(2
Therefore G. C. M. $=27$.	162

(13)
891)243000(272

1782
6480
6237
2430
1782
648) 891 (1

648
243) 648(2

486
162)243(1

162
81)162(2

162
(17)
(18)

	(20)	(21)	(22)
	XII	ir	viII
713t96)	7te9.047(-011436	3333333	10000
	$713 t \cdot 96$	4	8
		-	-
	$97 t \cdot 2 t 7$	15	8
	713-t96	4	8
	$266 \cdot 4110$	63	64
	245.3720	4	8
	21.05300	255	512
	$19 \cdot 3 e 846$	4	8
	3.862760	1023	4096
	3.67e490	4	
	$\cdot 1 t 3290$	4095	
		4	
		16383	
		(23)	

$74002702 \div 144=513907 \mathrm{ft} .94 \mathrm{in}$. $512907 \mathrm{ft} . \div 9=57100$ yards 7 ft .
57100 yds. $\div 304=1887$ per. 184 yds.
1887 per. 18 yds. 2 ft .36 in .
Add 7 ft .94 in.
40) 1887 per. 19 yds .0 ft .130 in.
4) 47 r. 7 per. 19 yds. 0 ft. 130 in .

11 a. 3 r. 7 per. 19 sds. 0 ft .130 in.
(24)

$$
\begin{aligned}
& 1728 \mid 84 Q . .58 Q .12682 . .5738 \\
& 65 \\
& 3 \\
& 1728 \times 65 \times 3=336960 .
\end{aligned}
$$

(25)

6 children will have 6 children's shares
4 women will have $4 \times 2=8$ " "
3 men will have $3 \times 5 \times 2=30$ " "
3 men 4 w'n \& 6 chi'n will have 44 children's sha.
44) $\$ 7894 \cdot 16$
11) $\$ 1973.54$
$\$ 179 \cdot 41_{1}{ }^{3}=$ child's share.
$\$ 179 \cdot 41_{11}^{3} \times 2=\$ 358.82 \frac{6}{11}=$ woman's share. $\$ 358 \cdot 82_{\frac{6}{11}} \times 5=\$ 1794 \cdot 12 \frac{8}{11}=$ man's share.
(26)

II	II	yds. qrs. na	in. yds. qrs. na.in.
1111111111	1000000000	711	1) $729 \quad 3 \quad 3 \quad 1$
2	2	4	4
-	-	-	
3	2	29	2919
2	2	4	4
-	-		
7	4	117	11679
2	2	$2 \frac{1}{4}$	24
	-		
15	8	235	23359
2	2	291 ${ }^{\frac{1}{4}}$	2919 ${ }^{\text {3 }}$
-	-	-	---
31	16	$264 \frac{1}{4}$	26278 ?
2	2	4	4
-	-		
63	32	1057)	
2	2		9513
127	- 6		
2	2		9513
255	128		472
2	2		
			-
511	256		-
2	2		
023	512		

(28)

$63 \cdot 423$

22874934 15249956 '30499912 22874934 45749868

48359•8979694
$\quad(31)$
$1 . .2 \ldots 4 . .8$
$\frac{1 . .7}{1 . .2 . .4 . .86 . .7 . .14 . .28 . .56}=2^{3} \times 7 \times 19$.
$1 . .19$
$1 . .2 . .4 . .8 . .7 . .14 . .28 . .56 . .19 . .38 . .76 . .152 . .133 . .266 . .532 . .1064=$
$1 . .2 . .4 . .7 . .8 . .14 . .19 . .28 . .38 . .56 . .76 . .133 . .152 . .266 . .532 . .1064$
$1064=2^{3} \times 7 \times 19$.
$30 \mathrm{ft} .6 \mathrm{in} .=366 \mathrm{in}$. (32)

$$
20 \mathrm{ft} .11 \mathrm{in} .=251 \mathrm{in} .
$$

$$
2 \mathrm{ft} .7 \mathrm{in} .=31 \mathrm{in}
$$

(29)

723426
938-9126141
722487.0873859
(30)
lbs. oz. drs.scr.

129	0	0	0
63	4	7	2
65	7	0	1

366
251
$\overline{366}$

1830
732

- in.

31) $91866\left(2963 \frac{13}{3}\right.$

62
298
279
$-196 \quad 2963_{3}^{13} \div 36=82 \frac{59}{186} \mathrm{Jds}^{19}$ 186

106
93
13

Page 158.
(30)

$\frac{8}{11}, \frac{1}{1} \frac{2}{3}, \frac{5}{14}=\frac{8 \times 13 \times 14}{11 \times 13 \times 14}, \frac{12 \times 11 \times 14}{11 \times 13 \times 14}, \frac{5 \times 11 \times 13}{11 \times 13 \times 14}=\frac{1456}{2002}, \frac{1848}{2002}, \frac{115}{2002}$

$$
\begin{equation*}
\frac{6}{7}, \frac{4}{11}, \frac{5}{13}, \frac{4}{7}, \frac{1}{2}=\frac{6 \times 11 \times 13 \times 7 \times 2}{7 \times 11 \times 13 \times 7 \times 2}, \frac{4 \times 7 \times 13 \times 7 \times 2}{7 \times 11 \times 13 \times 7 \times 2}, \tag{32}
\end{equation*}
$$ $5 \times 7 \times 11 \times 7 \times 2 \quad 4 \times 7 \times 11 \times 13 \times 2 \quad 1 \times 7 \times 11 \times 13 \times 7$

$\overline{7 \times 11 \times 13 \times 7 \times 2}, \overline{7 \times 11 \times 13 \times 7 \times 2}, \overline{7 \times 11 \times 13 \times 7 \times 2}=$
$\frac{12012}{14014}, \frac{5096}{14014}, \frac{5390}{14014}, \frac{8008}{14014}, \frac{7007}{14014}$.
(33)
$\frac{6}{17}, \frac{4}{7}, \frac{8}{13}=\frac{6 \times 7 \times 13}{11 \times 7 \times 13}, \frac{4 \times 11 \times 13}{11 \times 7 \times 13}, \frac{8 \times 11 \times 7}{11 \times 7 \times 13}=\frac{546}{1001}, \frac{572}{1001}, \frac{616}{1001}$
$\frac{5}{6}, \frac{4}{7}, \frac{4}{5}, \frac{2}{11},=\frac{5 \times 7 \times 5 \times 11}{6 \times 7 \times 5 \times 11}, \frac{4 \times 6 \times 5 \times 11}{6 \times 7 \times 5 \times 11}, \frac{4 \times 6 \times 7 \times 11}{6 \times 7 \times 5 \times 11}$,
$\frac{2 \times 6 \times 7 \times 5}{6 \times 7 \times 5 \times 11}=\frac{1925}{2310}, \frac{1320}{2310}, \frac{1848}{2310}, \frac{420}{2310}$.
(35)
$\frac{1}{2}, \quad \frac{2}{3}, \quad \frac{3}{5}, \quad \frac{2}{7}=\frac{1 \times 3 \times 5 \times 7}{2 \times 3 \times 5 \times 7}, \frac{2 \times 2 \times 5 \times 7}{2 \times 3 \times 5 \times 7}, \frac{3 \times 3 \times 3 \times 7}{2 \times 3 \times 5 \times 7}$,
$\frac{2 \times 2 \times 3 \times 5}{2 \times 3 \times 5 \times 7}=\frac{105}{210}, \frac{140}{210}, \frac{126}{210}, \frac{60}{210}$.

Page 159.

$$
\begin{equation*}
\frac{4}{5}, \frac{3}{8}, \frac{1}{6}, \frac{3}{3}, 7^{7} 5 . \tag{38}
\end{equation*}
$$

The least common multiple of $5,8,6,4,15$ is 120 .
The maltiplier for both terms of the first fraction is $\frac{100}{50}=24$; for the second $\frac{1 \pi}{2}{ }^{2}=15$; for the third ${ }^{120}=20$; for the fourtn $1 \frac{22}{4}=30$; for the fifth $\frac{12 n}{15}=8$.

Multiplying by these numbers, we obtain $-\frac{96}{126}$, $\frac{45}{320}, \frac{80}{120}, \frac{90}{120}$, and $\frac{56}{1 \geq 0}$.

$$
\begin{equation*}
7^{7} 5, \frac{5}{3}, \frac{4}{3}, \frac{18}{7}, \frac{1}{3} \frac{1}{3} \text {. } \tag{39}
\end{equation*}
$$

The least common multiple of $11,3,7,77$ and 33 is 231.
The multiplier for both terms of the first fraction is $\frac{231}{1} 1=21$; for the second, ${ }^{231}=77$; for the third, ${ }^{23} \frac{31}{7}=33$; for the fourth, ${ }_{2}^{231}=3$; and for the fifth, ${ }_{33}^{2 l}=7$.

Multiplying by these numbers, we obtain $\frac{12}{2} \frac{5}{3}, \frac{15}{2} \frac{5}{3} 4, \frac{132}{2} \frac{1}{3}, \frac{5}{23} \frac{1}{2}$, and $\frac{133}{231}$.

$$
\begin{equation*}
\frac{1}{2}, \frac{2}{3}, \frac{3}{5}, \frac{5}{6}, \frac{7}{8}, \frac{2}{10}, \frac{13}{13}, \frac{7}{16}, \frac{37}{8} . \tag{40}
\end{equation*}
$$

The least common multiple of $2,3,5,6,8,10,15,16$ and 80 is 240 .

The multiplier for both terms of the first fraction is $2 \frac{40}{2}=$ 120 ; for the second, $\frac{240}{3}=80$; for the third, $\frac{240}{6}=48$; for the fourth, ${ }^{210}=40$; for the fifth, ${ }^{240}=30$; for the sixth, $\frac{740}{10}=$ 24 ; for the serenth, ${ }_{15}^{245}=16$; for the eigth, ${ }_{15}^{249}=15$; and for the ninth, ${ }_{2}^{210} 0=3$.

Multiplying by these numbers, we obtain $\frac{1}{2} \frac{20}{4}, \frac{150}{240}, \frac{144}{24}, \frac{200}{240}$,

$$
\begin{equation*}
\frac{3}{5}, \frac{7}{10}, \frac{6}{25}, \frac{11}{30}, \frac{13}{45}, \frac{23}{60} . \tag{41}
\end{equation*}
$$

The least common multiple of $5,10,25,30,45$, and 60 is 900 .
The multiplier for both terms of the first fraction is $\frac{900}{5}=180$; for the second, $\frac{900}{10}=90$; for the third, $\frac{900}{25}=36$; for the fourth, $\frac{900}{30}=30$; for the fifth, $\frac{900}{45}=20$; and for the sixth, $\frac{900}{60}=15$.

Multiplying by these numbers, we obtain $\frac{540}{900}, \frac{630}{90}, \frac{210}{50}, \frac{330}{900}$, $\frac{260}{9} 00$, and $\frac{345}{900}$.

$$
\begin{equation*}
\frac{19}{20},-\frac{7}{30}, \frac{11}{40}, \frac{1}{50} . \tag{42}
\end{equation*}
$$

The least common multiple of $20,30,40$, and 50 is 600 .
The multiplier for both terms of the first fraction is $\frac{600}{20}=30$; for the second, $\frac{600}{30}=20$; for the third, $\frac{600}{40}=15$; and for the fourth, $\frac{600}{50}=12$.

Multiplying by these numbers, we obtain $\frac{570}{609}, \frac{140}{6} 0, \frac{165}{600}$ and $\frac{12}{600}$.

$$
\begin{equation*}
\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{5}{6}, \frac{7}{8}, \frac{11}{12}, \frac{15}{16}, \frac{23}{4} . \tag{43}
\end{equation*}
$$

The least common multiple of $2,3,4,6,8,12,16$, and 24 is 48.

The multiplier for both terms of the first fraction is $\frac{48}{2}=24$; for the second, $\frac{48}{3}=16$; for the third, $\frac{48}{4}=12$; for the fourth, $\frac{48}{6}=8$; for the fifth, $\frac{48}{8}=6$; for the sixth, $\frac{48}{2}=4$; for the seventh, $\frac{4}{18}=3$; and for the eighth, $\frac{4}{2} \frac{8}{4}=2$.

Multiplying by these numbers, we obtain $\frac{24}{48}, \frac{3}{8}, \frac{3}{8}, \frac{40}{4}, \frac{42}{8}$, $\frac{4}{4} 8 \frac{45}{48}$, and $\frac{40}{4}$.

$$
\begin{equation*}
\frac{5}{7}, \frac{1}{1}, 7^{2} 5, \frac{8}{27}, \frac{9}{35}, \frac{17}{40} . \tag{44}
\end{equation*}
$$

The least common multiple of $7,12,15,27,35$ and 40 is 7560 .
The multiplier for both terms of the first fraction is $\frac{25,60}{7}=$ 108 ; for the second, ${ }^{75650}=630$; for the third, ${ }^{7 \frac{7660}{15}}=504$; for the fourth, ${ }^{75} \frac{50}{2}=280$; for the fifth, ${ }^{7560}=210$; for the sixth, ${ }_{2560}=189$.

$$
\begin{equation*}
\cdot \frac{14}{5}, \frac{7}{8}, \frac{4}{3}, \frac{1}{12}, \frac{6}{11}, \frac{1}{2} 8, \frac{6}{\frac{1}{2}}, \frac{29}{3} . \tag{45}
\end{equation*}
$$

The least common multiple of $15,8,3,12,11,20,7$, and 35 is 9240 .

The maltiplier for both terms of the first fraction is ${ }^{9240}=$ 616 ; for the second, $2240=1155$; for the third, ${ }^{2240} 30=3080$; for the fourth, $271^{2}=770$; for the fifth, $\frac{0.110}{11}=840$; for the $\operatorname{sirth}, \frac{225}{20} 0^{0}=462$; for the seventh, $288^{40}=1320$; for the eighth, $9 \frac{20}{3} 5^{0}=264$.

$$
\text { Page } 160 .
$$

$$
\begin{align*}
& \frac{4}{7} \text { of } \frac{3}{3} \text { of } \frac{6}{11} \text { of } \frac{35}{3}=\frac{4 \times 3 \times 6 \times 35}{7 \times 5 \times 11 \times 72}=\frac{2520}{27720}=\frac{1}{11} . \tag{47}\\
& \frac{2}{3} \text { of } \frac{5}{9} \text { of } \frac{8}{8} \text { of } \frac{81}{100} \text { of } \frac{25}{21}=\frac{2 \times 4 \times 6 \times 81 \times 25}{3 \times 9 \times 7 \times 100 \times 24}=\frac{97200}{453600}=1_{1}^{3} . \tag{48}\\
& \frac{2}{3} \frac{1}{3} \text { of } \hat{15} \text { of } \frac{77}{36}=\frac{21 \times 6 \times 77}{35 \times 11 \times 36}=\frac{\%}{10} . \tag{49}\\
& \frac{2}{5} \text { of } \frac{5}{5} \frac{3}{11} \text { of } \frac{13}{17}=\frac{2 \times 4 \times 3 \times 13}{5 \times 7 \times 11 \times 17}=\frac{312}{6545} \text {. } \tag{50}
\end{align*}
$$

Page 161.
$\frac{5}{7}$ of $\frac{6}{7}$ of $\frac{2}{3}$ of ${ }_{16}^{3}=\frac{5 \times 6 \times 2 \times 3}{3 \times 7 \times 3 \times 16}=\frac{5 \times 8 \times 8 \times 8}{\substack{2 \times 7 \times 8 \times 14 \\ 3}}=\frac{5}{3 \times 7 \times 4}={ }_{8}^{85}$.
$\frac{2}{3}$ of $\frac{5}{9}$ of 7_{132}^{18} of $\frac{4}{31}$ of $\frac{11}{3}$ of $\frac{13}{7}=\frac{2 \times 5 \times 18 \times 6 \times 11 \times 13}{3 \times 9 \times 132 \times 11 \times 13 \times 17}=$ $\frac{2 \times 5 \times 18 \times{ }_{8}^{8} \times 11 \times 18}{8 \times \$ \times 182 \times 10 \times 18 \times 17}=\frac{2 \times 5}{33 \times 17}=\frac{10}{861}$.

$$
\begin{equation*}
\frac{2}{7} \text { of } 7_{15}^{4} \text { of } 5 \frac{1}{2}=\frac{2 \times 4 \times 11}{7 \times 11 \times 2}=\frac{8 \times 4 \times 11}{7 \times 11 \times 2}=4 . \tag{55}
\end{equation*}
$$

${ }^{3}$ of $\frac{4}{7}$ of ${ }_{19}^{9}$ of ${ }_{4}^{\frac{33}{4}}$ of $\frac{38}{5} \frac{8}{2}$ of $\frac{477}{7}=\frac{3 \times 4 \times 9 \times 33 \times 38 \times 47}{11 \times 7 \times 19 \times 47 \times 72 \times 7}=$ $\frac{3 \times 4 \times 9 \times 89 \times 88 \times 47}{11 \times 7 \times 19 \times 48 \times 82 \times 7}=\frac{3 \times 3}{7 \times 7}=\frac{9}{49}$. 18
2
2

$$
\begin{equation*}
\frac{4}{5} \text { of } \frac{3}{17} \text { of } \frac{154}{1}=\frac{4 \times 3 \times 154}{7 \times 11 \times 1}=\frac{4 \times 3 \times 154}{8 \times 11 \times 1}=\frac{2 \times 4 \times 3}{1}=24 . \tag{58}
\end{equation*}
$$

Page 162.

$$
\begin{equation*}
\frac{\frac{1}{45}}{1 \frac{17}{25}}=\frac{\frac{14}{45}}{\frac{42}{25}}=\frac{14 \times 25}{45 \times 42}=\frac{14 \times 45}{\substack{45 \times 42 \\ 9 \\ 3}}=\frac{5}{9 \times 3}=\frac{5}{5} \tag{61}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\frac{1}{12}}{7 \frac{17}{2}}=\frac{\frac{11}{12}}{\frac{143}{18}}=\frac{11 \times 18}{12 \times 143}=\frac{11 \times 18}{\substack{18 \times 148 \\ 2}}=\frac{3}{2 \times 13}=\frac{3}{26} \tag{62}
\end{equation*}
$$

$$
\begin{equation*}
\frac{15 \frac{3}{5}}{7 \frac{4}{5}}=\frac{18}{\frac{18}{3}}=\frac{78 \times 5}{5 \times 39}=\frac{\stackrel{2}{58 \times 5}}{5 \times 89}=2 \tag{63}
\end{equation*}
$$

$\frac{11 \frac{2}{3}}{12 \frac{3}{5}}, \frac{3 \frac{1}{4}}{9}, \frac{2}{7}=\frac{35}{3}, \frac{13}{4}, \frac{\frac{7}{3}}{9}, \frac{35 \times 5}{3}=\frac{13 \times 1}{3 \times 68}, \frac{2 \times 5}{9 \times 4} \frac{1}{7 \times 3}=\frac{175}{27}, \frac{13}{3}, \frac{10}{2}$.
(65)
 $\frac{1}{3 \times 9}, \frac{47 \times 2}{3}, \frac{7}{5 \times 2},=\frac{1}{27}, 31 \frac{1}{3}, 7^{7} 0$.

3

Page 163.
(6S)

$$
\begin{align*}
& \frac{4}{5} \text { of } \frac{1}{14}=\frac{1}{20} \text { of a } \mathrm{lb} \text {. } \\
& \text { (70) } \\
& \frac{2}{3} \text { of } \frac{8}{7} \text { of } \frac{1}{\frac{12}{6}} \text { of } \frac{1}{20}=\frac{1}{7 \times 6 \times 20}=\sum_{74 \pi} \text {. } \\
& \frac{8}{9} \text { of } \frac{5}{\frac{5}{4}} \text { of } \frac{1}{8}=\frac{5}{9 \times 2}=\frac{5}{18} \mathrm{wk} \text {. } \tag{71}
\end{align*}
$$

$\frac{5}{11}$ of $\frac{81}{5}$ of $\frac{4}{4}$ of $\frac{1}{5}=\frac{81}{11 \times 4 \times 5}={ }_{21}^{815}$ Eng. Ell.
(73)

$$
\frac{3}{7} \text { of } \frac{4}{11} \text { of } \frac{1}{5 \frac{1}{2}}=\frac{3}{7} \text { of } \frac{4}{11} \text { of } \frac{2}{11}=8_{84}^{2} \frac{4}{7} \text { per. }
$$

$\frac{2}{3}$ of $\frac{4}{7}$ of $21 \frac{1}{14}$ of $\frac{1}{8}=\frac{9 \times 3 \times 295 \times 1}{3 \times 7 \times 14 \times 8}=\frac{295}{294}=1_{\frac{1}{2} \frac{1}{94}} \mathrm{c}$.
(75)
$\frac{3}{19}$ of $\frac{4}{17}$ of $\frac{1}{2}$ of $\frac{1}{40}$ of $\frac{1}{4}=\frac{3 \times \frac{4}{4} \times 19 \times 1 \times 1}{19 \times 17 \times 2 \times 40 \times 4}=\frac{3}{17 \times 2 \times 40}=\frac{{ }_{13}^{3} 60}{}$ a.

Page 164.

$$
\begin{equation*}
\frac{14}{79} \text { of } \frac{4}{1} \text { of } \frac{2}{1} \text { of } \frac{4}{1}={ }_{\frac{4}{198}} q t . \tag{78}
\end{equation*}
$$

$$
\begin{equation*}
\frac{2}{9} \text { of } \frac{4}{1} \times \frac{9}{1} \times \frac{4}{1} \times \frac{5}{1} \times \frac{9}{2}=\frac{2 \times 4 \times 4 \times 5}{3}=1 \frac{10 n}{3} . \tag{79}
\end{equation*}
$$

$$
\begin{equation*}
\frac{7}{9} \times \frac{2}{1} \times \frac{2}{1} \times \frac{4}{1} \times \frac{2}{1} \times \frac{2}{1} \times \frac{3}{2}=\frac{7 \times 2 \times 2 \times 4 \times 2}{3}=\frac{23_{3}^{4}}{3} \tag{80}
\end{equation*}
$$

$$
\begin{equation*}
11 \tag{82}
\end{equation*}
$$

$$
\frac{1}{\substack{5 Q Q Q \\ 625}} \times \frac{2}{8} \times \frac{8}{4} \times \frac{6}{11} \times \frac{{ }^{2}}{7} \times \frac{{ }_{2}^{2}}{1} \times \frac{{ }^{\frac{4}{16}}}{1}=\frac{2 \times 6 \times 2 \times 2 \times 4}{625 \times 7}=\frac{192}{1375} \mathrm{dr}
$$

bush. pk. gal. qt. pt.

$11) 3$	0	0	0	0
	1	0	0	$1 \frac{5}{11}$

lbs. oz. dr.
7) $6 \quad 0 \quad 0$
$13 \quad 113$

(85)

(87)

fur. per. rds. ft.				
$9) 8$	0	0	0	0
35	3	0	2	

$$
\begin{array}{rrr}
£ & \text { s. } & \text { d. } \\
774 & 0 & 0 \\
\hline 11 & 57
\end{array}
$$

lbs. oz. dwt. gre.
9)8 $\begin{array}{r}8 \\ \hline 10\end{array} \quad 13 \quad 8 \quad 0$
sq.m. a.r.pr.yds.ft. in.
113) $\begin{array}{lllllll}11 & (621 & 8 & 4 & 2 & 79_{13}\end{array}$

640
7040 a.
678

$\overline{260}$
226
34
4

484 yds .
452

- 32

9
288 ft. 226

62
144
248
248
62
8928 in.
791
1018
$\overline{484} \mathrm{yds} . \quad \frac{1017}{1}$

Page 165.
(90)

6 bus. 1 pk .1 gal. $1 \mathrm{qt} 1 \mathrm{pt}=$.411 pts.
50 bush. $=3200 \mathrm{ptz}$.
And the required fraction is $\frac{415}{3295}$.
(91)

35 per. $9 \mathrm{ft} .2 \mathrm{in} .=7040 \mathrm{in}$.
1 fur. $=7920 \mathrm{in}$.
The required fraction is $\frac{798}{7 \frac{4}{2} \frac{0}{0}}=\frac{88}{49}=\frac{8}{9}$.
(92)
$7 \mathrm{hrs} .12 \mathrm{~min} .=432 \mathrm{~min}$.
1 day $=1440 \mathrm{~min}$.
Therefore the fraction is $\mathrm{i}_{1+\frac{132}{}+0}=\frac{3}{10}$.
(93)

3 sq. yds. $2 \mathrm{ft} .120 \mathrm{in} .=3000 \mathrm{in}$.
3 sq. per. $13 \frac{1}{\ddagger} \mathrm{yds} .1 \mathrm{ft} .72 \mathrm{in} .=135000 \mathrm{in}$.
And the fraction is $\frac{33020}{135000}=\frac{1}{45}$.
(94)

7 oz. 7 drs. 2 scr. $14 \mathrm{grs}=3834 \mathrm{grs}$.
$21 \mathrm{lbs} .=120960 \mathrm{grs}$.

(95)
$9 \mathrm{~min} .48 \mathrm{sec} .=588 \mathrm{sec}$.

$$
1 \text { day }=86400 \mathrm{sec} .
$$

The required fraction is $\frac{5888}{86+0} 0$
(96)
, 16 bush. $1 \mathrm{pk} .1 \mathrm{pt} .=1041 \mathrm{pts}$.
69 bush. $=4416 \mathrm{pts}$.
Therefore the fraction is $\frac{10}{4} \frac{11}{16}=\frac{347}{1472}$.
（97）
3 qrs． $3 \frac{1}{9}$ na．$=15 \frac{1}{9}=136$ na．
1 Eng．ell $=20$ na．
And the fraction is $\frac{136}{2 \Omega}=\frac{136}{180}=\frac{34}{45}$ ．
（98）

$$
\begin{aligned}
& 13 \mathrm{dwt} .7 \mathrm{grs} .
\end{aligned}=319 \mathrm{grs} . ⿱ ⿱ 一 \mathrm{~d} . \text { Troy }=5760 \mathrm{grs} .
$$

The required fraction is $\frac{319}{6760}$ ．

4800 cub．ft．
54 cords $=6912$ cub． ft.
Therefore the fraction is $\frac{88070}{6912}=\frac{480}{6} \frac{5}{6}=\frac{80}{72}=\frac{35}{36}$ ．

Page 167.
（6）

$$
\frac{12}{3}+\frac{10}{13}+\frac{9}{13}=\frac{30}{13}=2 \frac{4}{13} .
$$

（7）
$\frac{1}{12}+\frac{6}{12}+\frac{7}{12}+\frac{9}{12}+\frac{1}{12}+\frac{5}{12}=\frac{39}{12}=3 \frac{3}{12}=34$.
（8）
$4 \frac{3}{7}+114+16 \frac{2}{7}+21 \frac{3}{7}+19 \frac{6}{7}=4+11+16+21+19+$ $\left(\frac{3}{7}+\frac{7}{7}+\frac{2}{7}+\frac{3}{7}+8\right)=71+\frac{18}{7}=73 \frac{4}{7}$.
（9）
$16 \frac{1}{2}+11 \frac{17}{2}+18 \frac{4}{23}+17 \frac{19}{3}+112 \frac{27}{3}=16+11+18+17+112+$ $\left(\frac{21}{23}+\frac{17}{23}+\frac{4}{23}+\frac{19}{23}+\frac{22}{23}\right)=174+8 \frac{83}{23}=174+3 \frac{1}{3}=177 \frac{1}{23}$.
$4 \frac{1}{4}+1 \frac{1}{5}+7_{1}^{7}=4+1+\left(\frac{1}{4}+\frac{1}{3}+\frac{7}{11}\right)=5+\left(3 \frac{3}{3}+\frac{44}{23}+\right.$ $\left.\frac{84}{132}\right)=5+\frac{16}{132}=6{ }_{1}^{2} \frac{9}{2}$ ．
（11）

$$
\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{4}{8}+\frac{5}{6}+\frac{6}{7}+\frac{7}{6}+\frac{8}{9} .
$$

These fractions reduced to their least common denominator

$\frac{3}{4}+\frac{5}{6}+\frac{4}{5}$ when reduced to their least common denominator become $\frac{45}{6}+\frac{58}{60}+{ }_{60}^{48}={ }_{60}^{143}=223$.
(13)

$$
\frac{4}{5}+\frac{5}{6}+\frac{6}{7}+\frac{3}{8}+\frac{8}{11} .
$$

These fractions when reduced to their least common denomi-
 $3 \frac{545}{924} 9$.

$$
\begin{equation*}
\frac{1}{2}+\frac{1}{5}+\frac{1}{4}+\frac{1}{3}+\frac{1}{6}+\frac{1}{7} . \tag{14}
\end{equation*}
$$

These fractions when reduced to their least common denominator become $\frac{210}{420}+\frac{140}{420}+\frac{105}{420}+\frac{81}{420}+\frac{\pi n}{420}+\frac{60}{420}=\frac{659}{420}=$ ${ }_{102}^{20}=1 \frac{83}{140}$.
 $\left.\frac{8}{9}+\frac{17}{3} \frac{7}{8}+1_{8}^{7}+\frac{1}{2}\right)$.

$$
16+47+21+19=103
$$

$103+188{ }_{9}^{8}=104 \frac{8}{9} 9$.
$17 \frac{1}{2}+43 \frac{3}{2}+1689+207 \frac{8}{2!}+506 \frac{12}{2} \frac{5}{5}=17+43+168+$ $207+506+\left(\frac{1}{2}+\frac{3}{7}+\frac{6}{9}+\frac{8}{25}+\frac{125}{25}\right)$.
$17+43+168+207+506=941$.
 ${ }^{3} \frac{14}{2} 6=\frac{173}{63}=2 \frac{17}{3}$.
$941+2{ }_{6}^{47}=943 \frac{47}{3}$.
$6 \frac{3}{4}+11 \frac{1}{7}+\frac{9}{56}+16 \frac{7}{16}+\frac{1}{2}+\frac{5}{21}+17 \frac{1}{2}=6+11+16+$ $17+\left(\frac{3}{4}+\frac{4}{7}+\frac{9}{36}+\frac{7}{10}+\frac{1}{2}+\frac{5}{21}+\frac{11}{2}\right)$.
$6+11+16+17=50$.
 $\frac{5}{5} \frac{58}{30}+\frac{80}{335}+\frac{308}{336}=\frac{1292}{336}=3 \frac{19}{3} \frac{1}{3}$.
$50+3 \frac{19}{3} \frac{9}{6}=53 \frac{193}{36}$.
$\frac{1}{3}+\frac{3}{3}+\frac{7}{9}+68 \frac{1}{4}=68+\left(\frac{1}{6}+\frac{1}{3}+\frac{7}{4}+\frac{1}{4}\right)$.
$\frac{5}{5}+\frac{2}{3}+\frac{7}{9}+\frac{1}{4}=\frac{36}{180}+\frac{12}{80}+\frac{140}{80}+\frac{48}{180}=\frac{34}{180}=12 \frac{6}{80}$. $68+{ }_{1}^{1881} 9=69168$.
$173_{12}^{3}+8 \frac{5}{7}+91{ }_{11}^{13}=173+8+91+\left(\frac{1}{4}+\frac{5}{8}+\frac{11}{13}\right)$.
$173+8+91=272$.
$\frac{1}{4}+\frac{5}{7}+\frac{11}{13}=\frac{92}{364}+\frac{260}{364}+\frac{308}{364}=\frac{659}{364}=1295$.
$272+129 \frac{5}{29}=273_{3}^{2955}$.
$1 \frac{5}{6}+2 \frac{23}{23}+3 \frac{24}{2}+4 \frac{29}{30}=1+2+3+4+\left(\frac{15}{16}+23+\right.$ $\frac{24}{2}+\frac{29}{3}$).
$1+2+3+4=10$.
$\frac{15}{16}+\frac{23}{24}+\frac{24}{25}+\frac{29}{30}=\frac{6750}{72} \frac{50}{10}+\frac{6900}{7200}+\frac{6912}{8200}+\frac{6960}{7200}={ }_{7}^{2752020}=$ $\frac{1529}{400}=3 \frac{389}{30}$.
$10+3_{4}^{329} 0=1329$.
 $\frac{10}{48}+\frac{21}{48}+\frac{39}{48}+\frac{24}{48}+\frac{40}{48}=\frac{149}{48}=3 \frac{5}{48}$.
$7+11 \frac{1}{2}+18+26 \frac{3}{7}+79_{11}^{4}=7+11+18+26+79+$ $\left(\frac{1}{2}+\frac{3}{7}+\frac{4}{11}\right)$.
$7+11+18+26+79=141$.

$141+1_{754}^{45}=1422_{754}^{45}$.
$\frac{4}{4}$ of $\frac{3}{7}$ of ${ }_{2}^{21}={ }_{5}^{8}=3 \frac{3}{3} . \quad \frac{2}{3}+7_{7}^{2} \mathrm{r}+3 \frac{3}{5}=10+\left(\frac{7}{3}+7_{1}^{2}+\frac{3}{5}\right)$,
 $10+1 \frac{74}{165}=11{ }_{165}^{74}$.
$\frac{4 \frac{1}{3}}{7^{7} 8}=\frac{\frac{13}{3}}{\frac{3}{7}^{7} 8}=\frac{13 \times 18}{3 \times 7}={ }_{7}^{78}=11 \frac{1}{\frac{1}{5}}$.
$1 \times 36 \times 4 \times 11$
$\frac{1}{2}$ of $\frac{35}{15}$ of 1^{4} of ${ }_{4}^{11}=\frac{1 \times 36 \times 4 \times 11}{2 \times 11 \times 15 \times 4}={ }^{18}=1_{15}^{3}$.
$\frac{20 \frac{3}{7}}{7_{15}^{6}}=\frac{\frac{83}{4}}{\frac{83}{17}}=\frac{83 \times 11}{4 \times 83}=1_{4}=2 \frac{3}{4}$.
$11 \frac{1}{7}+1_{15}^{3}+2 \frac{3}{4}=11+1+2+\left(\frac{1}{6}+1_{15}^{3}+\frac{3}{4}\right)=14+\left(\frac{1}{7}+\right.$ $\left.3^{3} 5+\frac{3}{4}\right)$.

$14+11_{140}^{13}=15_{14}^{13}$.
$3 \frac{5}{8}+11 \frac{1}{6}+14 \frac{3}{4}=3+11+14+\left(\frac{3}{8}+\frac{1}{6}+\frac{33}{4}\right)=28+$ $\left(\frac{5}{8}+\frac{1}{6}+{ }_{4}^{3} 8\right)$.
$\frac{5}{8}+\frac{1}{6}+\frac{33}{48}=\frac{30}{48}+\frac{8}{45}+\frac{33}{58}=\frac{71}{8}=1 \frac{23}{48} . \quad 28+1 \frac{23}{48}=29 \frac{23}{48}$.
$\frac{1}{2}$ of $\frac{3}{4}=\frac{3}{8}, \frac{3}{3}$ of $\frac{6}{5}=\frac{4}{6}, \frac{3}{5}$ of $\frac{7}{9}=\frac{7}{15}, \frac{9}{9}$ of $\frac{2}{2}={ }_{10}^{3}$, $\frac{9}{2}$ of $\frac{1}{2}$ of $\frac{1}{2}$ of $\frac{1}{2}$ of $\frac{1}{5}$ of $\frac{1}{3}={ }_{8}^{3} \frac{3}{6}$.
$\frac{3}{8}+\frac{4}{8}+\frac{7}{15}+\frac{3}{10}+{ }_{80}^{-3}=\frac{630}{1080}+\frac{969}{1680}+\frac{784}{1680}+\frac{598}{1680}+$

$41 \frac{1}{2}+105 \frac{2}{9}+300 \frac{3}{4}+241 \frac{3}{5}+472 \frac{1}{4}=41+105+300+241+$ $472+\left(\frac{1}{2}+\frac{2}{9}+\frac{3}{4}+\frac{3}{5}+\frac{1}{4}\right)$.
$41+105+300+241+472=1159$.
$\frac{1}{2}+\frac{2}{9}+\frac{3}{4}+\frac{3}{5}+\frac{1}{4}=\frac{90}{180}+{ }_{180}^{40}+\frac{185}{180}+\frac{108}{180}+{ }_{180}^{450}=\frac{418}{180}=$ ${ }_{99}^{299}=2{ }^{29} 9$.
$1159+2 \frac{79}{9}=1161_{90}^{29}$.
$92_{14}^{5}+37_{19}^{8}+7_{0}^{4}=92+37+7+\left(\frac{5}{14}+\frac{8}{19}+\frac{4}{0}\right)=136+$ $\left(\frac{5}{14}+\frac{8}{19}+\frac{2}{3}\right)$.

$136+1 \frac{355}{798}=137 \frac{355}{39}$.
$\frac{10 \frac{3}{5}}{2 \frac{2}{5}}=\frac{5_{5}^{3}}{1_{5}^{2}}=\frac{53 \times 5}{5 \times 12}=\frac{53}{12}=4 \frac{5}{12} . \quad \frac{2}{3}$ of $\frac{7}{3}=7_{12}^{7}$.
$21 \frac{1}{2}+35 \frac{1}{6}+4 \frac{5}{12}+\frac{7}{12}=21+35+5+\left(\frac{1}{2}+\frac{1}{8}\right)=61 \frac{5}{8}$.

$$
\begin{align*}
& \frac{11}{4} \text { of } \frac{11}{3}=\frac{121}{12}=10 \frac{1}{12} . \quad 1_{5}^{4} \text { of } \frac{33}{8} \text { of } \frac{1}{8} \mathrm{~L}=\frac{2541}{160}=15 \frac{141}{160} \text {. } \tag{30}\\
& { }_{11}^{11}=6 \frac{15}{15} . \quad \frac{14}{3} \text { of } \frac{2}{15} \text { of } \frac{17}{8} \text { of } \frac{10}{7}=\frac{119}{63}=1 \frac{56}{63} \text {. } \\
& 10 \frac{1}{12}+6 \frac{15}{16}+15 \frac{141}{60}+1 \frac{56}{63}=10+6+15+1+\left(\frac{1}{12}+\right. \\
& \left.\frac{15}{16}+\frac{142}{100}+\frac{56}{63}\right)=32+\left({ }^{1} 2+\frac{15}{10}+\frac{141}{160}+\frac{56}{63}\right) . \\
& \frac{1}{12}+\frac{15}{16}+\frac{141}{160}+\frac{56}{63}=\frac{849}{10080}+\frac{9450}{10080}+\frac{8883}{10080}+{ }_{10}^{8960}{ }^{8000}= \\
& { }_{10}^{28133}=\frac{4019}{1040}=21139 . \\
& 32+21 \frac{139}{}=341 \frac{1}{439} 0 .
\end{align*}
$$

Page 169.

in.		fur. per. yds. ft. in.		
$\frac{1}{7}$ of a yd. $=5 \frac{1}{7}$	7_{1}^{7} of a mile $=$			16
$\frac{1}{7}$ of a ft . $=1 \frac{5}{7}$	${ }^{4} 8$ of a fur. $=$	12	1	-129
$\frac{1}{7}$ of an in. $=\frac{1}{7}$	$\frac{9}{22}$ of a yd. $=$			${ }_{2}^{\text {\% }}$
7		$5 \quad 16$	0	$3{ }_{2}{ }^{93}$
(38)		(39)		

Page 171.
(7)

$$
\frac{3}{4}-\frac{7}{80}=\frac{15}{80}-\frac{7}{80}=\frac{8}{80}=\frac{5}{5} .
$$

(8)

$$
\frac{8 \frac{3}{4}}{6 \frac{34}{4}}=\frac{\frac{35}{4}}{\frac{30}{11}}=\frac{35 \times 11}{4 \times 70}=\frac{11}{4 \times 2}=1_{8}^{8}=1 \frac{3}{8} .
$$

$$
\begin{equation*}
1 \frac{3}{8}-1 \frac{3}{8}=0 . \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
100 \frac{1}{2}-9 \frac{5}{8}=100 \frac{4}{8}-9 \frac{5}{8}=99+1 \frac{4}{8}-9 \frac{5}{3}=99 \frac{17}{8}-9 \frac{5}{8}=90 \frac{7}{5} . \tag{11}
\end{equation*}
$$

(12)
$\frac{1}{2}$ of $\frac{32}{4}=\frac{37}{8}=4 \frac{5}{8} . \quad 6 \frac{1}{4}-4 \frac{5}{8}=6 \frac{2}{8}-4 \frac{5}{8}=5+1 \frac{7}{8}-4 \frac{5}{8}=$ $5^{20}-4 \frac{5}{8}=1 \frac{5}{8}$.
$\left.611 \frac{43}{191}-610\right\} \frac{98}{9} 9=611 \frac{8257}{88009}-610 \frac{3781}{3806} 9=610+1 \frac{8.537}{36009}-$

$\frac{5}{9}$ of $\frac{2}{1}=\frac{10}{9} . \quad \frac{1}{5}+\frac{1}{9}=\frac{9}{45}+\frac{5}{45}=\frac{14}{45}$. $\frac{5}{7}$ of $\frac{14}{45}=\frac{4}{15}$. $\frac{10}{9}-{ }_{1}^{4} 5=\frac{50}{4} \frac{1}{5}-\frac{12}{45}=\frac{38}{45}$.
oz. dr. $\quad 24_{\frac{1}{24}}^{1}-21_{21}^{1}=24_{168}^{7}-21_{T 6}^{\frac{8}{68}}=$
$\frac{7}{3}$ of a lb. $=1010 \frac{7}{3} \quad 23+1_{\mathrm{T}_{6} 7}^{7}-21_{\mathrm{T}}^{\mathrm{8}} \mathrm{B}_{8}=2311_{68}^{75}-$
$\frac{8}{9}$ of $\mathrm{a} \mathrm{dr} .=\frac{\frac{8}{9}}{10 \quad 9}$

$$
21_{1} \frac{8}{68}=2 \frac{167}{68} .
$$

(17)
fur. per. yds. ft. in.
$\frac{2}{9}$ of a mile $=\begin{array}{llllll}1 & 31 & 0 & 1 & 10\end{array}$

i_{F} of a fur. $=$| $\frac{25}{}$ | 2 | 1 | 6 | |
| :--- | :--- | :--- | :--- | :--- |
| | 5 | 3 | 1 | 10 |

(18)

$$
\begin{align*}
& \frac{2}{9} \text { of } \frac{135}{4}=\frac{15}{2}=7 \frac{1}{2} . \quad 1_{6}^{1} \text { of } \frac{57}{2}=\frac{57}{32}={ }^{9} \frac{125}{3} \text {. } \\
& 7 \frac{1}{2}-1_{3}^{25}=7 \frac{16}{2}-1_{32}^{25}=6+1_{3}^{26}-1_{32}^{2 \frac{5}{2}}=6 \frac{48}{2}-1_{3}^{25}=5_{3}^{2 \frac{3}{2}} . \tag{19}
\end{align*}
$$

$\frac{1}{2}$ of $\frac{3}{7}$ of $\frac{2}{9}$ of $\frac{33}{4}$ of $\frac{\frac{52}{6}}{\frac{3}{5} 3}=\frac{1 \times 3 \times 2 \times 33 \times 62 \times 5}{2 \times 7 \times 9 \times 4 \times 33 \times 6}=\frac{155}{25}$.
$122_{1764}^{319}+\frac{155}{25}=122_{7}^{3194}+\frac{1085}{176}=12{ }_{1}^{14904}=12 \frac{35}{4} \frac{1}{4}=12399$.
$\frac{17 \frac{9}{11}}{1 \frac{23}{3}}=\frac{\frac{196}{11}}{\frac{56}{3}}=\frac{196 \times 33}{11 \times 56}={ }_{2}^{2}=10 \frac{1}{2}$.
$12 \frac{39}{99}-10 \frac{1}{2}=12788-10_{9}^{49}=2 \frac{29}{98}$.
$3 \frac{1}{12}+8 \frac{1}{9}+5 \frac{1}{5}+6 \frac{1}{2}=3+8+5+6+\left(1_{2}^{1}+\frac{1}{9}+\frac{1}{6}+\frac{1}{2}\right)=$ $22+\left(\frac{1}{12}+\frac{1}{9}+\frac{1}{5}+\frac{1}{2}\right)$.
$\frac{1}{12}+\frac{1}{9}+\frac{1}{5}+\frac{1}{2}={ }_{180}^{150}+\frac{20}{180}+\frac{36}{180}+\frac{99}{180}=\frac{161}{180}$.
$22+\frac{161}{180}=22160$.
$3_{10}^{3}+2{ }_{6}^{5}+16 \frac{1}{4}=3+2+16+\left(7^{3}+\frac{5}{6}+1\right)=21+$ $\left(3^{3}+\frac{5}{6}+4\right)$.
 22161
r. per. $s \mathrm{ds}$. ft. in.

$16 \frac{1}{7}-9 \frac{14}{19}=16 \frac{19}{133}-9 \frac{98}{133}=15+1 \frac{19}{133}-9-9892151590$ $9_{138}^{98}=6 \frac{5}{13} \frac{4}{3}$.
 $83 \frac{850}{1300}=168 \frac{1521}{1300}-83 \frac{850}{1300}=85_{13}^{6} \frac{61}{1300}$.

Page 173.
(6)
(7)
(8)
$\frac{7}{71}$ of $\frac{5}{6}=\frac{7 \times}{12 \times}$
(9)
$\frac{5}{8} \times \frac{4}{5}=\frac{1}{2}$.
$\frac{4}{15} \times \frac{5}{3 x}=1^{\frac{1}{8}}$.
(10)

(11)
$\frac{\sum_{10}^{3}}{2} \times \frac{7}{4} \times \frac{9}{11} \times \frac{11}{\frac{12}{12}}=\frac{3 \times 7 \times 9}{2 \times 4 \times 4}=\frac{189}{32}=5_{3}^{29}$.
(12)

$$
\frac{4}{5} \times \frac{6}{11} \times \frac{4}{17} \times \frac{182}{\substack{2 Q Q \\ 5 Q \\ 25}} \times \frac{5}{2}=\frac{3 \times 182}{11 \times 17 \times 25}=-\frac{348}{4675}
$$

$\frac{3}{8} \times \frac{11}{8} \times \frac{3}{8} \times \frac{3}{8} \times \frac{3}{1} \times \frac{8}{2} \times \frac{5}{1}=\frac{3 \times 3 \times 3}{2}=\frac{27}{2}=13 \frac{1}{2}$.

$$
\frac{2}{\frac{2}{Q}} \times \frac{8}{5} \times \frac{6}{11} \times \frac{4}{19} \times \frac{\begin{array}{c}
11 \tag{14}\\
1
\end{array}}{19}=\frac{2 \times 6 \times 4}{5}=\frac{18}{5}=9 \frac{3}{5} .
$$

$\frac{18}{2} \times \frac{8 Q}{8} \times \frac{88}{11} \times \frac{2}{18} \times \frac{8}{8 Q} \times \frac{1}{2 Q}=\frac{2}{15}$.
$\frac{4}{8} \times \frac{3}{11} \times \frac{9}{16} \times \frac{8}{8} \times \frac{8}{8} \times \frac{8}{18} \times \frac{13}{1} \times \frac{167}{\frac{84}{2}} \times \frac{3 \times 9 \times 167}{4}=\frac{4509}{4}=1127 \frac{1}{4}$. (17)
$\frac{\frac{1}{7}}{\frac{8}{1}} \times \frac{\frac{8}{7}}{\frac{19}{2}} \times \frac{\frac{64}{9}}{\frac{8}{9}} \times \frac{\frac{19}{4}}{\frac{101}{14}} \times \frac{2_{2}^{3} 7}{\frac{9}{8}} \times$ $\frac{1}{8 \times 8} \times \frac{8 \times 8}{7 \times 19} \times \frac{88 \times 2}{2 \times 8} \times \frac{89 \times 14}{101 \times 4} \times \frac{1}{9} \times \frac{8}{8}=\frac{1}{7 \times 101}=7 \frac{1}{2} \%$.

$$
\begin{equation*}
\frac{1}{4} \times \frac{2}{8} \times \frac{2}{7} \times \frac{19}{1}=\frac{2 \times 2 \times 19}{7}=\frac{76}{7}=10 \frac{5}{7} . \tag{18}
\end{equation*}
$$

32

$$
\begin{equation*}
\frac{27}{4} \times \frac{5}{5} \times \frac{5}{5} \times \frac{3}{5}=\frac{27}{5}=2_{10}^{2} . \tag{20}
\end{equation*}
$$

$$
\begin{equation*}
\frac{11}{8} \times \frac{{ }^{\beta 9}}{8} \times \frac{15}{1}=\frac{11 \times 13 \times 15}{8}=2 \frac{1+5}{8}=268 \frac{1}{8} \tag{21}
\end{equation*}
$$

$$
\frac{1}{8} \times \frac{85}{\frac{7}{2}} \times \frac{3}{19} \times \frac{19}{2} \times \frac{97}{11} \times \frac{3^{2}}{17} \times \frac{49}{8} \times \frac{4}{5} \times \frac{27}{31} \times \frac{31}{2} \times \frac{191}{188}=
$$

$$
\frac{7 \times 49 \times 27 \times 191}{2 \times 11 \times 17}=\frac{17 \frac{68}{3} 8,751}{4}=4729_{3}^{325} 4 .
$$

$$
\begin{equation*}
\frac{27}{37 \frac{1}{5}} \times \frac{87 \frac{3}{9}}{98 \frac{1}{6}} \times \frac{\frac{5}{3}}{2 \frac{1}{3}} \times \frac{81_{\frac{5}{15}}^{2}}{128}=\frac{\frac{27}{\frac{1}{3}}}{\frac{18}{5} 9} \times \frac{\frac{285}{9}}{3 \frac{85}{8}} \times \frac{\frac{7}{3}}{\frac{7}{3}} \times \frac{\frac{896}{11}}{1 \frac{18}{3}}= \tag{23}
\end{equation*}
$$

$$
98
$$

$$
\begin{equation*}
\$ \frac{95}{\frac{5}{11}} \times \frac{1}{7} \times \frac{3}{5} \times \frac{17}{19}=\frac{3 \times 17}{11 \times 7}=\$ \frac{1}{5} . \tag{24}
\end{equation*}
$$

$$
\begin{gather*}
\frac{75 \frac{3}{8}}{6 \frac{1}{15}} \times \frac{\frac{3}{7} \text { of } 8 \frac{1}{4} \times \frac{1}{15} \text { of } 28}{\frac{2}{15} \text { of } 6 \frac{3}{8} \times \frac{1}{17} \text { of } 24} \times \frac{7 \frac{1}{5}}{15} \times \frac{\frac{3}{4}}{\frac{5}{7}} \times 14 \frac{4}{6} \times \frac{100}{121} \times \tag{25}\\
\frac{4}{5 \frac{1}{3}} \times \frac{5}{9}= \\
\frac{608}{\frac{60}{8}} \times \frac{\frac{3}{7} \times \frac{33}{4} \times \frac{1}{15} \times \frac{28}{1}}{1_{15}^{2} \times \frac{51}{8} \times \frac{1}{17} \times \frac{34}{1}} \times \frac{\frac{36}{5}}{\frac{1}{15}} \times \frac{\frac{3}{4}}{\frac{5}{7}} \times \frac{101}{7} \times \frac{100}{121} \times \frac{\frac{5}{7}}{\frac{1}{3}}=
\end{gather*}
$$

$$
\frac{11 \times 9 \times 101}{5 \times 7 \times 16}=\frac{4999}{560}=17 \frac{479}{560} .
$$

Page 174.
${ }_{36}^{46}$ of 4 days, 5 hours, $=\frac{180 \mathrm{~d} .23 \mathrm{~h} .}{36}=5 \mathrm{~d} .0 \mathrm{~h} .38 \mathrm{~min} .20$ sec.

$$
\begin{equation*}
\frac{13}{4} \text { of } £ 29=\frac{£ 29 \times 13}{42} \times \frac{£ 377}{42}=£ 819 \mathrm{~s} .67{ }^{2} \mathrm{~d} . \tag{29}
\end{equation*}
$$

(30)

$$
\frac{7}{9} \text { of } 186 \mathrm{a} .3 \mathrm{r} .=\frac{186 \mathrm{a} .3 \mathrm{r} \cdot \times 7}{9}=\frac{1307 \mathrm{a} .1 \mathrm{r} .}{9}=145 \mathrm{a} .1 \mathrm{r} .
$$

$\frac{1}{4} \frac{4}{7}$ of $\frac{7}{7}$ of $\frac{1}{30}$ of $\frac{47}{2}$ of $24 \mathrm{~h} .30 \mathrm{~m} .=\frac{1}{15}$ of $24 \mathrm{~h} .30 \mathrm{~m} .=1 \mathrm{~h} .38 \mathrm{~m}$. (32)
$\frac{5}{7}$ of $\frac{4}{g}$ of $\frac{21}{40}$ of $\frac{7}{9}$ of $33 \mathrm{bu} .2 \mathrm{p} .1 \mathrm{ga} .={ }_{90}^{7}$ of $33 \mathrm{bn} .2 \mathrm{p} .1 \mathrm{ga} .=$ 33 bu. 2 p. 1 ga. $\times 7 \quad 235$ b. 1 p. 1 g.
$\frac{90}{90}=\frac{2 \mathrm{~b} .2 \mathrm{p} .0 \mathrm{~g} .3 \mathrm{q} .1 \frac{17}{4} \mathrm{p} .}{}$

Page 175.
(5)

$$
\frac{1}{2} \text { of } \frac{3}{5} \div \frac{3}{4} \text { of } \frac{35}{4}=\frac{1}{2} \times \frac{8}{5} \times \frac{2}{\frac{4}{2}} \times \frac{4}{35}=\frac{2 \times 4}{5 \times 35}=\frac{8}{175} .
$$

$$
\frac{15}{2 \frac{5}{2}} \div \frac{9}{5} \div \frac{5}{11}=\frac{5}{\frac{15}{22}} \times \frac{5}{2} \times \frac{11}{\frac{3}{2}}=\frac{5}{2 \times 3}=\frac{5}{8}
$$

(7)

$$
\begin{gathered}
82 \frac{1}{17} \div 26 \frac{5}{41}=\frac{\begin{array}{c}
155 \\
1895 \\
17
\end{array} \frac{41}{1081}}{119}=\frac{155 \times 41}{17 \times 119}=\frac{6355}{2023}=3_{22863} . \\
(8)
\end{gathered}
$$

$$
2 \frac{1}{1} \div \frac{3}{4}+\frac{5}{8}=\frac{5}{8} \div \frac{11}{8}=\frac{5}{8} \times \frac{8}{11}=\frac{5 \times 4}{11}=\frac{20}{11}=1 \frac{9}{11}
$$

$$
\begin{equation*}
1 \frac{3}{4} \div \frac{1}{7} \text { of } 2 \frac{3}{4} \text { of } 16 \text { of } \frac{35}{4} \text { of } \frac{1}{70}=\frac{7}{\frac{4}{2}} \times \frac{7}{1} \times \frac{4}{11} \times \frac{1}{16} \times \frac{4}{85} \times \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\frac{2 Q}{1}=\frac{7 \times 7}{2 \times 11}=\frac{49}{22}=2 \frac{5}{22} \tag{10}
\end{equation*}
$$

$2 \frac{1}{8} \div\left(\frac{5}{9} \div \frac{6}{2^{6} \Sigma}\right.$ of 9$)=\frac{7}{3} \div\left(\frac{5}{9}\right.$ of $\frac{39}{6}$ of $\left.\frac{1}{9}\right)=\frac{7}{8} \times \frac{9}{5} \times \frac{3}{\frac{3}{4}} \times$ $\frac{3}{2}=\frac{7 \times 9 \times 3 \times 3}{5 \times 16}=\frac{567}{80}=7.7$.
$48 \frac{1}{2} \div \frac{2}{9}+\frac{7}{8}$ of $6=\frac{97}{2} \div \frac{2}{9}+\frac{9}{4}=\frac{97}{2} \div \frac{89}{36}=\frac{97}{2} \times \frac{18}{89}=$ $\frac{97 \times 18}{89}=\frac{1746}{89}=19 \frac{55}{89}$.
$6 \frac{1}{2} \div \frac{3}{6}$ of ${ }^{9} 9+\frac{8}{17}=\frac{13}{2} \div \frac{77}{8}+\frac{8}{17}=1_{2} 3 \div \frac{859}{88}=\frac{13}{4} \times$
425
$\frac{85 Q}{859}=\frac{13 \times 425}{859}=\frac{5525}{859}=638 \frac{1}{35}$.
(13)
$9 \times{ }_{3}^{10} \div \frac{9}{4} \times \frac{23}{4}=\frac{2}{2} \times \frac{5}{3} \times \frac{4}{2} \times \frac{4}{25}=\frac{4 \times 4}{3 \times 5}=\frac{16}{15}=11_{2}^{16}$.

$$
\begin{align*}
\frac{\frac{57}{9}}{\frac{35}{3}} \div \frac{\frac{3}{7}}{38}= & \frac{67 \times 3}{9 \times 35} \div \frac{3 \times 8}{7 \times 33}=\frac{67 \times 8}{9 \times 85} \times \frac{5 \times 88}{8 \times 8}= \tag{14}\\
& \frac{67 \times 11}{3 \times 5 \times 8}=\frac{737}{120}=6_{12}^{175} .
\end{align*}
$$

$$
\begin{equation*}
10 \tag{15}
\end{equation*}
$$

$\frac{5}{5}$ of $\frac{80}{11} \div 1^{4}$ of $\frac{182}{72}=\frac{5}{9} \times \frac{8 Q}{11} \times \frac{11}{4} \times \frac{7}{\frac{7}{182}}=\frac{5 \times 10 \times 7}{9 \times 61}=\frac{350}{64}$.
$\frac{15}{28}$ of $\frac{19}{3}$ of $\frac{3}{4}$ of $\frac{7}{8} \div \frac{5}{6}$ of $\frac{3}{8} 5$ of $\frac{3}{4}$ of $\frac{5}{3}=\frac{48}{\frac{48}{2}} \times \frac{2}{13} \times \frac{8}{4} \times \frac{7}{5} \times \frac{6}{5} \times$ $\frac{25}{\beta} \times \frac{4}{3} \times \frac{1}{5}=\frac{3 \times 2 \times 7 \times 6}{13 \times 5}=\frac{252}{65}=3{ }_{5}^{55} 5$.
(17)
$\frac{\frac{7}{4}}{\frac{9}{2}} \div \frac{7}{\frac{9}{4}}=\frac{7 \times 2}{4 \times 9} \div \frac{7 \times 4}{3 \times 9}=\frac{5 \times 9}{4 \times 9} \times \frac{3 \times 9}{8 \times 4}=\frac{3}{2 \times 4}=\frac{3}{8}$.
(18)
$\frac{-3}{25} \div \frac{2_{6}}{\frac{35}{2}}=\frac{3}{25} \div \frac{21 \times 3}{5 \times 35}=\frac{3}{25} \times \frac{5 \times 85}{\frac{5}{3}} \frac{5 \times 2}{21 \times 2}=\frac{1}{2}$.
$\frac{113}{8} \times \frac{1}{9} \div \frac{3}{7} \times \frac{107}{13} \times \frac{\frac{13}{\frac{3}{2}}}{136}=\frac{113}{8} \times \frac{1}{9} \times \frac{\Sigma}{3} \times \frac{13}{107} \times$ 17
$\frac{2 \times 18 \xi}{8 \times 1 p}=\frac{113 \times 2 \times 17}{9 \times 3 \times 107}=\frac{3842}{2889}=1 \frac{{ }^{953}}{2885}$.

$$
\frac{31}{2} \times \frac{\frac{2}{7}}{7} \times \frac{\frac{7}{9}}{\frac{1}{3}} \times \frac{\frac{7}{70}}{\frac{3}{1}} \div \frac{\frac{41}{9}}{\frac{7}{1}} \times \frac{\frac{3}{1}}{\frac{19}{4}} \times \frac{\frac{7}{8}}{\frac{7}{8}} \times \frac{\frac{41}{4}}{4}=
$$
 $$
3_{2} \times \frac{2 \times 9}{7 \times 7} \times \frac{7 \times 3}{2} \times \frac{7}{10 \times 3} \div \frac{41}{9 \times 7} \times \frac{3 \times 4}{19} \times \frac{7 \times 2}{8 \times 7} \times \frac{11 \times 7}{4 \times 4}=
$$
 $$
\frac{31}{2} \times \frac{8 \times 8}{8 \times 8} \times \frac{8 \times 8}{8} \times \frac{8}{18 \times 8} \times \frac{9 \times 8}{51} \times \frac{19}{8 \times 4} \times \frac{4}{8 \times 8} \times \frac{8 \times 8}{8} \times \frac{8}{8}=
$$
 $$
\frac{31 \times 3 \times 9 \times 19 \times 4}{5 \times 41 \times 11}=\frac{63612}{2255}=28 \frac{472}{2265}
$$

Page 176.
$\frac{\frac{19}{11}}{\frac{5}{3}}=\frac{19 \times 3}{11 \times 5}=\frac{57}{55} . \quad £ 814 \mathrm{s} .6 \frac{3}{4} \mathrm{~d} . \div \frac{57}{55}=£ 814 \mathrm{~s} .6 \frac{3}{4} \mathrm{~d} . \times \frac{55}{7}=$ $\frac{£ 814 \mathrm{~s} .6 \frac{7 \pi}{4} \mathrm{~d} . \times 55}{57}=£ 88 \mathrm{~s} .5 \frac{1}{4} \mathrm{~d}$.
${ }_{8}^{23} \times \frac{20}{1} \frac{115}{1}={ }_{22} . \quad 1 \mathrm{~m} .5$ fur. $91 \mathrm{yds} .2 \mathrm{ft} . \div \frac{115}{2 \%}=1 \mathrm{~m}$. 5 fur. 91 yds. $2 \mathrm{ft} . \times{ }_{1}^{22} 15=$
1 m .5 fur. $91 \mathrm{yds} .2 \mathrm{ft} . \times 22$
$\xrightarrow[115]{ }=2$ fur. 124 yds .2 ft.

3 a. 3 r. 3 per. $\div \frac{3}{5}=3$ a. 3 r. 3 p. $\times \frac{5}{3}=\frac{3 \text { a. } 3 \mathrm{r} .3 \mathrm{p} . \times 5}{3}=$ 6 a. 1 r. 5 per.
£'7 16s. $2 \mathrm{~d} . \div \frac{4}{9}=£ 7$ 16s. $2 \mathrm{~d} . \times \frac{9}{4}=\frac{£ 716 \mathrm{~s} .2 \mathrm{~d} . \times 9}{4}=$ £17 11s. $4 \frac{1}{2} \mathrm{~d}$.

Page 178.
(28)

(29)
$\frac{\frac{12 \frac{1}{2}}{5 \frac{1}{4}}}{\frac{3 \frac{3}{2}}{5 \frac{1}{2}}}=\frac{\frac{2_{2}^{2}}{2 \frac{21}{4}}}{\frac{\frac{15}{4}}{\mu_{2}^{L}}}=\frac{\frac{50}{21}}{\frac{15}{25}}={ }_{2}^{293}$.

$$
\frac{220}{63} \div \frac{8}{9}=\frac{220}{63} \times \frac{9}{8}=\frac{55}{14}=31 \frac{3}{4}
$$

Page 180.
(1)

$$
\begin{gathered}
\frac{800}{2000}={ }_{5}^{2} \cdot \frac{420}{2000}={ }_{1}^{201} \cdot \frac{100}{2000}=\frac{1}{20} \cdot \frac{160}{2000}={ }_{25}^{2} . \\
\frac{35}{2000}={ }_{400}^{7} .
\end{gathered}
$$

(2)
$\frac{2}{5}$ of $\frac{5}{4}$ of $\frac{8}{5}$ of $\frac{1}{4}$ of $\frac{5}{2}$ of $\frac{2}{45}=\frac{2}{5} \times \frac{5}{4} \times \frac{8}{5} \times \frac{1}{4} \times \frac{5}{8} \times \frac{4}{45}=\frac{4}{4}$,
(3)
$6 \frac{7}{8} \times 65 \frac{3}{4} \mathrm{cts} .=\frac{55}{8} \times{ }^{263} \mathrm{cts} .=\frac{14462}{3} \mathrm{cts} .=\$ 4.52 \frac{1}{32}$.
(4)

$$
\frac{3}{8}+1_{17}^{4}={ }_{1}^{51} 16+1^{32} 36=\frac{83}{136}
$$

(5)

$$
\begin{gathered}
\frac{1}{3}+\frac{1}{10}+\frac{2}{8}+\frac{1}{6}=\frac{10}{120}+\frac{12}{120}+\frac{15}{120}+\frac{20}{220}=\frac{87}{120}=\frac{90}{40} . \\
\\
\end{gathered}
$$

(6)

(7)
$1670 \frac{7}{13} \times 12 \frac{3}{2} \mathrm{cts} .=\frac{21717}{13} \times \frac{51}{4} \mathrm{cts} .=110736 \mathrm{cts} \mathrm{cts}=\$ 212.995_{5}^{\circ}$.
jof the longer $=\frac{3}{4}$ of the shorter; therefore $\frac{1}{2}$ of the longer $=\frac{1}{2}$ of $\frac{3}{\frac{3}{3}}$ of the shorter.

Hence the longer $=\frac{3}{8} \times 3=\frac{9}{8}$ of the shorter.
The whole tree $=$ longer + shorter $=\frac{9}{8}+\frac{8}{8}$ of shorter $=\frac{17}{8}$ of the shorter.

If $136 \mathrm{ft} .=\frac{17}{8}$ of the shorter, $\frac{1}{17}$ of $136=8=\frac{1}{8}$ of the shorter.
Hence shorter $=8 \times 8=64 \mathrm{ft}$. ; and longer $=136-64=72 \mathrm{ft}$.
 $333_{120}^{40}=1057 \frac{163}{20}=1058 \frac{33}{130}$.
$\$ 1000+\$ 1375 \frac{1}{2}+\$ 6831+\$ 4013_{13} \frac{3}{8}=\$ 1000+\$ 1375_{16}^{\frac{8}{6}}+$ $\$ 6831+\$ 4013 \frac{3}{\frac{3}{6}}=\$ 132194 \frac{1}{6}=\$ 13219 \cdot 68$.
$12 \frac{5}{6}+\frac{8}{15}=13 \frac{11}{30} . \quad 8 \frac{3}{4}+1 \frac{1}{10}=9 \frac{17}{20} . \quad 13 \frac{11}{30}-9 \frac{1}{2} 7=3 \frac{31}{60}=\frac{211}{60}$. $7 \frac{5}{12}-6 \frac{1}{2}=\frac{11}{12} . \quad \frac{211}{60} \times \frac{9}{2} \times \frac{11}{12}=\frac{2321}{160}=14 \frac{81}{160}$. $\frac{2}{3} \div \frac{12}{7}=\frac{2}{3} \times{ }_{12}^{7}=\frac{7}{78} . \quad \frac{5}{8} \div \frac{35}{12}=\frac{5}{8} \times \frac{11}{3} \frac{1}{5}=\frac{1}{65} . \quad \frac{7}{18}-\frac{12}{6}=\frac{97}{304}$.
$19 \frac{7}{6} \times \$ 6 \frac{3}{4}=\frac{159}{8} \times \$ \frac{27}{4}=\$ 4 \frac{293}{32}=\$ 134 \cdot 15 \frac{5}{8}$.
$376 \frac{1}{18} \times \$ 75 \frac{3}{8}=\frac{6779}{18} \times \$ \frac{603}{8}=\frac{40877.3 \mathrm{I}}{144}=\$ 28387.06 \frac{1}{4}$.
$147 \frac{2}{3}+320 \frac{1}{5}=147 \frac{10}{15}+320 \frac{3}{15}=467_{1 \frac{13}{5}} . \quad 4671 \frac{3}{15}-156 \frac{1}{4}=$ $4675 \frac{5}{6}-156 \frac{15}{0}=31137$.

(15)

$$
17 \frac{4}{7} \div 7 \frac{14}{}=18_{7}^{3} \div 5^{3}=123 \times{ }_{7}^{7}={ }_{63}^{23}=2 \frac{173}{7}
$$

$3 \frac{2}{3}+4 \frac{3}{4}+4 \frac{4}{5}=3 \frac{10}{6}+4 \frac{45}{6}+4 \frac{48}{6}=13 \frac{13}{6}=3 \frac{39}{60}$.

(17)
$2 \frac{9}{f}+\frac{4}{5}+4=2 \frac{10}{15}+\frac{12}{15}+4=7_{15}^{2}=\frac{112}{15}$.
$2 \div \frac{112}{13}=2 \times \frac{15}{112}=\frac{15}{56} . \quad 1 \frac{13}{5}-\frac{7}{9}=\frac{15}{9}-\frac{7}{9}=\frac{8}{9}$.

$$
\frac{583}{\frac{584}{72}}=\frac{8}{10}=\frac{583}{783} .
$$

(18)
$\frac{1}{2}+\frac{1}{5}=\frac{5}{8} . \quad 1 \frac{1}{3}+2 \frac{3}{4}=4 \frac{1}{12}=\frac{49}{12} . \quad 2 \frac{1}{14}-1 \frac{1}{2}=\frac{8}{16}=9$.

 $\gamma_{10}^{70}+1 \frac{10}{2}=22_{6}^{3}$.
(19)
$1-\left(\frac{1}{3}+\frac{1}{2}\right)=\frac{1}{6} . \quad \frac{3}{3}$ of $\frac{1}{3}=\frac{1}{8} . \quad \frac{1}{5}-\frac{1}{5}=2^{2} 5 . \quad \frac{1}{6}+\frac{2^{2}}{2}=\frac{0}{30}$. $\frac{1}{\frac{1}{3}}-\frac{0}{3}=\frac{1}{30}$. $\frac{1}{30}$ of $\$ 40000=\$ 1333 \cdot 33 \frac{1}{3}$.

Page 183.
(13)
$\stackrel{1=2) 1}{\cdot 5} \frac{1=8) 3}{\cdot 375}$
(14)

$$
\frac{\left.{ }_{2}^{9} 5=25\right) 9}{\cdot 36=\frac{35}{108}} \quad \frac{1=5) 1}{\cdot 25=1980}
$$

(15)
75)73 (.9733+ 123)574(4.666+ 34$) 15 \quad(\cdot 44117+$
$\frac{67 \cdot 5}{5 \cdot 50}$
$\frac{5 \cdot 25}{.250}$
$\frac{.225}{250}$
$\frac{225}{25}$

492	$13 \cdot 6$
$82 \cdot 0$	$1 \cdot 40$
$73 \cdot 8$	$1 \cdot 36$
$8 \cdot 20$	40
7.38	34
- 820	60
-738	34
82	260
	238
	22

(16)

7)6	12)5	9)4	
-857142	-4166+		- $44444+$
	(17)	-	
112)17 (-15178571428+		1296)718	(-554012+
$11 \cdot 2$		$648 \cdot 0$	
$5 \cdot 80$	800	70	
$5 \cdot 60$	784	64	
-200	160		00
-112	112		84
880	480	.	1600
784	448		1296
960	320		3040
896	224		2592
640	960		448
560	896		
800	64		

Page 184.
(21)

12) 1.0 in .	12) $17 \cdot 0 \mathrm{grs}$.	20)7*0 grs.
$3) 2 \cdot 083333 \mathrm{ft}$.	2) $1 \cdot 41666666$	3) $2 \cdot 35 \mathrm{scr}$.
$\left.5 \frac{1}{2}\right) 3 \cdot 694444 \mathrm{yd}$.	20)3.70833333 dwt.	8) $\cdot 7833333 \mathrm{dr}$
$2 \quad 2$		
11) $7 \cdot 388888$	12) 18541666 oz .	12) $\cdot 0979166 \mathrm{oz}$.
11) $7 \cdot 388888$	-01545138+	
40) 671717 per.	-01545138+ ib .	ib.

$\frac{3}{3}$ of $\frac{1}{\frac{1}{2}}$ of $6 \frac{3}{4} \mathrm{~d}$. $=\frac{27}{8} \mathrm{~d}$. and $£_{\frac{1}{3}}=80 \mathrm{~d} . \quad \frac{2}{5}$ of $\frac{1}{2}$ of $1 \mathrm{mil} .=12672 \mathrm{in}$. $\frac{87}{88} \mathrm{~d}$. $=\frac{1}{80}$ of $\frac{27}{28}$ of $£ \frac{1}{3}=\frac{{ }_{2} \frac{17}{24} 0}{}$ of $\left.£\right\}$. $27 \div 2240=0 \cdot 012053$.

3六)12672
$2 \quad 2$
$\overline{7}) \overline{25344}$
$3620 \cdot 571428+$

Page 186.

> (33)
(34)
-309153
8
$\overline{3 \cdot 1720}$ fur.
$\overline{4 \cdot 8800}$ per.
$\frac{5 \frac{1}{2}}{44000}$
$\frac{4400}{4 \cdot 8400} \mathrm{yds}$.

3

$$
\begin{aligned}
& 2 \cdot 5200 \mathrm{ft} \\
& \begin{array}{l}
-12 \\
6 \cdot 2400 \\
\mathrm{in}
\end{array}
\end{aligned}
$$

(36)
(37)
$22 \cdot 75=22 \frac{75}{100}=22 \frac{3}{4} . \quad$ 个 b. 1 p. $1 \mathrm{~g} .1 \mathrm{qts} .=237 \mathrm{qts}$. $£ 22 \mathrm{~s} .6 \mathrm{~d} . \times 22 \frac{3}{2}=£ 486 \mathrm{~s} .10 \frac{1}{2} \mathrm{~d} . \quad 11 \cdot 17825 \times 237=2649 \cdot 24525 \mathrm{qt} .=$ 82 b. 3 p. 0 g. 1 q. 0.4905 pts.
(39)
(40)

$$
\cdot 625
$$

$$
3
$$

1.875 mil.

13 per. 2 yds. 1 ft .4 in.
8
7-000 fur.
$\overline{9 \cdot 3680} \mathrm{dwt}$.

24

14720
7360
$8 \cdot 8320 \mathrm{grs}$.

(41)
(42)

$$
\cdot 9378
$$ 4

.015625	$\cdot 9378$
	4 .062500 pk.
$3 \cdot 7512 \mathrm{r}$.	

$1 \mathrm{sq} . \mathrm{yd} .3 \mathrm{ft} .72 \mathrm{in} .=1800 \mathrm{in}$. $\cdot 2775 \times 1800=499 \cdot 5 \mathrm{in} .=$ $3 \mathrm{ft} .67 \frac{1}{2} \mathrm{in}$.
$\cdot 125000$ gal. $30 \cdot 0480$ per.

$\frac{4}{\cdot 500000} \mathrm{qt}$.	$\frac{30 \frac{1}{4}}{14400}$
$\frac{2}{1 \cdot 000000} \mathrm{pt}$.	$\frac{120}{1 \cdot 4520} \mathrm{yd}$.
	$\frac{9}{4 \cdot 0680} \mathrm{ft}$.
	$\frac{144}{2720}$
	$\frac{2720}{9 \cdot 7920} \mathrm{in} .=9 \frac{99}{125} \mathrm{in}$.

Page 191.

$$
\begin{align*}
& \text { (54) } \tag{55}\\
& \dot{8}=\frac{8}{9} . \quad \cdot \ddot{9}=\frac{19}{9} . \\
& . \ddot{0}=\frac{5}{99} . \quad . \dot{1067}=\frac{1067}{9999}=\frac{97}{9709} . \\
& \cdot \dot{34 \dot{2}}=\frac{342}{949}=\frac{38}{1 / 1} \cdot \cdot \dot{11115}=\frac{11455}{99999}=\frac{1235}{1111 \mathrm{~T}} .
\end{align*}
$$

$$
\begin{aligned}
& \cdot \cdot 002003=\frac{9293}{99995} .
\end{aligned}
$$

$$
\begin{align*}
& \cdot 102=\frac{102}{994}={ }_{3}^{-34} \cdot 0 . \tag{56}\\
& .0013=\frac{13}{9999} . \\
& \cdot 00007103=\text { Қ99999999. } \\
& \cdot \dot{01020304}=\frac{1020304}{99999999} . \\
& \cdot \dot{98765432 \dot{1}}=\frac{987654321}{999999999}=\frac{109739369}{11111119} .
\end{align*}
$$

Page 192.

(58)

.	- -	
-8325	-147658	-4320075
83	147	432
	$\frac{1487511}{99950}$	$\frac{4319643}{4999000}$

(59)

$$
\overline{75}=\frac{1}{12}
$$

$$
\begin{array}{r}
123456 \\
123
\end{array}
$$

$$
\begin{equation*}
\frac{123333}{999000}=\frac{41111}{333000} \tag{61}
\end{equation*}
$$

-Page 194.

Dissimilar. Similar. Similar and Coterminous.

$\dot{9}$	$=$	-99999	$=$	$\text { - } 99999999999$
6.327	$=$	$6 \cdot 3272 \ddot{72}$	$=$	6-3272727272
$19 \cdot 43$	=	19.43000	$=$	$19 \cdot 4300000000$
$27 \cdot 0278$	$=$	27.0278 7̈8	$=$	27.0278787878
$.0347 \dot{123}$	$=$	-0347123	$=$	$.0347 i 23123$

$$
\text { Sum, }=53.8198638274
$$

${ }_{6}^{48, \frac{48}{34}}=\frac{1}{1+}$.

$$
\begin{aligned}
& { }_{6}^{-481} \cdot \frac{81}{24}=\frac{i}{14} .
\end{aligned}
$$

Dissimilar. Similar.

Dissimilar. Similar. Similar and Coterminous.

$4 \cdot 95$	$=$	$4 \cdot 959595$	$=$	$4 \cdot 9595 \dot{9} 9959 \dot{5}$
$7 \cdot 164$	$=$	7-1641641	$=$	$7 \cdot 1641641641$
$4 \cdot 7 \dot{123}$	$=$	$4 \cdot 7123128$	$=$	$4 \cdot 7123 \dot{123123}$
-97317	$=$	-97317	$=$	$\cdot 9731777777_{2}^{\circ}$
		Sum,	$=$	$7 \cdot 8092 \dot{502138}$

Dissimilar.

1.5	$=$	1.5000	$=$	$1 \cdot 500000000$
$99 \cdot 083$	$=$	99.0830	$=$	99.083000000°
-		.		- .
- 162	$=$	-162162	=	-162162162
-•		-		-
-814	$=$	-814814	$=$	-814814814
$2 \cdot \ddot{93}$	$=$	$2 \cdot 93939$	$=$	$2 \cdot 939893939$
		- .		2 -
3-769230	$=$	3-769230769	$=$	3-769230769
97.26	$=$	97-2666	$=$	$97 \cdot 26666666^{\text {G }}$
		.		. -
$134 \cdot 09$	$=$	$134 \cdot 09090$	$=$	134.090909000

$$
\text { Sum }=\overline{339 \cdot 626177443}
$$

Page 195.

Dissimilar. Similar. Similar and Coterminous,

$$
\begin{aligned}
& 1.4 \dot{3} 729 \dot{1}=1.4372913 \dot{7}=1.437 \dot{2} 91372913 \dot{7}^{\circ} \\
& .0071 \ddot{3}={ }^{0} 007 \ddot{13}={ }^{0} 007131313131 \dot{3} \\
& 1.430160059782 \dot{4}
\end{aligned}
$$

Dissimilar. Similar. Similar and Coterminous.

Page 196.
(74)

$$
\begin{equation*}
2 \cdot \dot{9}=29.9=3 . \quad 7 \cdot 25 \times 3=21 \cdot 75 \tag{75}
\end{equation*}
$$

$$
\cdot \dot{29 \dot{7}}=\frac{29}{99}=\frac{11}{37} \text { and } 7 \cdot 72=7 \frac{72}{100}=7 \frac{18}{5}=\frac{193}{25} .
$$

$$
\begin{equation*}
\frac{11}{37} \times \frac{193}{25}=\frac{2123}{926}=2 \cdot 29 \dot{5} 1 \dot{3} \tag{76}
\end{equation*}
$$

$$
\begin{equation*}
\cdot 8 \ddot{18}=\frac{810}{990}=\frac{9}{11} \text { and } \cdot 77=\frac{77}{100} . \quad \text { 9. } \times \frac{17}{100}=\frac{63}{100}=\cdot 63 . \tag{7}
\end{equation*}
$$

$\cdot \dot{08 \dot{2}}=\frac{82}{999}$ and $\cdot \dot{12 \dot{3}}=\frac{1}{953}=\frac{41}{333}$.

$$
\begin{equation*}
\frac{88}{999} \div \frac{41}{333}=\frac{8}{999} \times \frac{333}{41}=\frac{2}{5}=\cdot \dot{6} . \tag{81}
\end{equation*}
$$

$389 \cdot 18 \dot{5}=389 \frac{185}{959}={ }^{3887996}$ and $15 \cdot \dot{7}=159_{9}^{3}=\frac{142}{9}$. ${ }_{398996}^{9896} \div \frac{142}{9}=\frac{388796}{999} \times{ }_{19}^{9} \frac{272}{7138}=24 \cdot 6$.
(82)
 $1 \cdot 735$.

$$
\begin{aligned}
& \cdot 81654168350=\frac{81654886596}{9995900000}=18296798937 .
\end{aligned}
$$

$$
\begin{align*}
& \frac{859}{455} \times \frac{3529}{5500}=\frac{303441}{37126}=-81654168350 . \tag{78}\\
& 4 \cdot 72 \dot{2}=4 \frac{650}{900}=4 \frac{13}{18}=\frac{85}{18} \text { and } \cdot 19 \dot{8}=\frac{1988}{999}=\frac{22}{111} \\
& \frac{85}{18} \times \frac{22}{115}=\frac{935}{999}=\cdot \dot{935} . \\
& \text { (80) }
\end{align*}
$$

$$
\begin{aligned}
& \frac{5}{17} \div \frac{17}{1+3}=\frac{5}{11} \times \frac{143}{17}=\frac{65}{17}=3 \cdot 8235294117647058_{8} \text {, }
\end{aligned}
$$

MISCELLANEOCS EXERCISES.

$$
\begin{equation*}
\frac{1}{2} \text { of } \frac{3}{7} \text { of } \frac{4}{15} \text { of } 14=\frac{1}{2} \times \frac{3}{7} \times{ }_{15}^{4} \times \frac{14}{1}=\frac{4}{5}=8 \text {. } \tag{84}
\end{equation*}
$$

$$
\begin{aligned}
& \cdot 6 \dot{7}=\frac{61}{90} \text { and } 2 \cdot \ddot{13}=2 \frac{13}{99}=\frac{31}{99} \\
& 81 \times \frac{211}{99}=18873=1 \cdot 4445566778+ \\
& \text { (86) }
\end{aligned}
$$

wk.

- $678125=4$ days 17 hours 55 minutes 30 seconds. 7
$4 \cdot 746875$ days.
24
2987500
1493750
$17 \cdot 925000$ hours. 60
$55 \cdot 500000$ minutes. 60
$30 \cdot 000000$ seconds.

Dissimilar. $67 \cdot 23 \dot{4}$	$\begin{gathered} \begin{array}{c} \text { Similar. } \\ = \\ 67 \cdot 2343434 \end{array} \end{gathered}$	$\begin{aligned} & \text { Similar aṇd Coterminous. } \\ & =\quad 67 \cdot 2343434343 \dot{4} \end{aligned}$
$98 \cdot 713$	$=98.7137137 \mathrm{i}$	$=98 \cdot 71371371371$
$91.0347123 \dot{4}$	$=91.0347123 \dot{4}$	$=91 \cdot 03471234234$
	Sum,	$=256 \cdot 98276949039$

$17 \cdot \dot{4} 2857 \dot{1}$ sq. $\mathrm{ft} .=17988581 \mathrm{gq}$ sq. $\mathrm{ft} .=173 \mathrm{sq} . \mathrm{ft} .=17 \mathrm{sq} . \mathrm{ft} .615 \mathrm{in}$.

$$
100 \cdot \dot{8} \text { sq. in. }=\quad 100 \frac{8}{9}
$$

$$
\text { Difference, }=16 \text { sq. ft. } 104 \frac{5}{63} \mathrm{in} .
$$

(91)
 1 a. 3 r. 13 per. 22 sds.

$$
\begin{array}{r}
11 \cdot 2 \ddot{8} 7 \tag{92}\\
2
\end{array}
$$

$$
\begin{equation*}
47 \cdot 345=\frac{4.375}{1000} \text { and } 1 \cdot \ddot{7} 6=1 \frac{76}{94}=\frac{1-3}{94} . \tag{93}
\end{equation*}
$$

$$
\begin{equation*}
\frac{47345}{1000} \div \frac{175}{99}=\frac{47345}{1000} \times \frac{29}{105}=\frac{237431}{35000}=26.7837428571 \tag{94}
\end{equation*}
$$

Dissimilar. Similar. Similar and Coterminous.

$85 \cdot 62$	$=$	$85 \cdot 6 \underline{26}$	$=$	$85 \cdot 6262{ }^{\text {¢ }}$
.		- .		
13.76432	$=$	13•6432	$=$	13•76432
		Difference,	$=$	71.86193
(95)				

$\cdot 734$ of a lb. $=11 \cdot 744 \mathrm{oz} . \quad 2 \mathrm{ft} .5 \frac{1}{2} \mathrm{in} .=29 \frac{1}{3} \mathrm{in} .=\frac{88}{3} \mathrm{in}$. - 198 of an oz. $=\cdot 198 \mathrm{oz}$.

Difference, $=11.546 \mathrm{oz}$.

$$
27 \cdot 3 \mathrm{ft} .=27 \frac{\mathrm{ft}}{\mathrm{ft}}=328 \mathrm{in} .
$$

$$
20 \cdot 16 \mathrm{ft} .=20 \frac{1}{5} \mathrm{ft} .=242 \mathrm{in}
$$ $328 \times 242 \div \frac{85}{3}=\frac{3: 8}{1} \times \frac{242}{1} \times \frac{3}{88}=2706 \mathrm{in} .=75 \frac{1}{6} \mathrm{yds}$.

$$
\begin{equation*}
3 \cdot 1 \ddot{45}=3 \frac{144}{990}=3 \frac{8}{55}=\frac{123}{55} \text { and } 4 \cdot \dot{29} \dot{7}=4 \frac{19}{999}=4 \frac{11}{3}=\frac{159}{35} . \tag{97}
\end{equation*}
$$

$$
\frac{123}{65} \times \frac{159}{37}=\frac{2-507}{8035}=13.5169533
$$

${ }^{3}{ }^{3}$. Here $40=2^{3} \times 5$. Therefore the equivalent decimal will contain 3 places.

$$
\begin{aligned}
& \frac{119}{3584 .} \quad " 3584=2^{9} \times 7 \text {. }
\end{aligned}
$$

" "
" "
" ${ }^{4}$

3	"
1	$"$
4	$"$
1	$"$

(99)

$$
\begin{aligned}
& 81 \frac{2}{3}=81 \cdot \dot{6} \text { and } 3283_{9}^{23}=328 \cdot \ddot{23} \text {. } \\
& \text { Dissimilar. Similar. Similar and Coterminous. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (100) } \\
& \left(\frac{4 \cdot \dot{4}-2 \cdot 8 \dot{3}}{1 \cdot \dot{6}+2 \cdot \dot{6} \dot{2} \dot{9}} \times \frac{6 \cdot 8 \times 3}{2 \cdot 25}\right)+\frac{2 \cdot 8 \times 2 \cdot \dot{2} \dot{7}}{1 \cdot 1 \dot{3} \dot{6}} \\
& =\left(\frac{1 \cdot 61}{4 \cdot \dot{2} 9 \dot{6}} \times \frac{20 \cdot 4}{2 \cdot 25}\right)+\frac{2 \frac{4}{5} \times 2 \frac{27}{95}}{1 \frac{335}{950}} \\
& =\left(\frac{1 \frac{55}{95}}{4 \frac{2966}{9}} \times \frac{20 \frac{2}{5}}{2 \frac{1}{4}}\right)+\frac{2 \frac{4}{5} \times 2 \frac{3}{17}}{1_{2^{3} \Sigma}^{3}} \\
& =\left(\frac{1 \frac{1}{18}}{1 \frac{296}{996}} \times \frac{1.6^{2}}{\frac{9}{4}}\right)+\frac{\frac{14}{5} \times \frac{25}{11}}{\frac{25}{28}} \\
& =\left(\frac{29}{\frac{78}{4899^{2}}} \times \frac{3_{6}^{4}}{\frac{3}{4}}\right)+\frac{4^{4} \times 5^{5} r}{\frac{25}{25}} \\
& =\left(\frac{\frac{1}{2}}{\frac{148}{141}} \times \frac{\frac{35}{5}}{\frac{3}{4}}\right)+\frac{\frac{70}{10}}{\frac{25}{25}}=\left(\frac{151}{2 y 6} \times \frac{136}{16}\right)+\frac{28}{6}
\end{aligned}
$$

Page 198.

(1)

(3)

$976 \cdot 432 \div \cdot 00000096=97643200000 \div 96$ and $96=12 \times 8$. 12)97643200000

$$
\text { 8) } 8136933333 \cdot 3
$$

$1017116666 \cdot \dot{6}$
(4)

$$
\left(2 \frac{7}{8}+\frac{9}{16}-1 \frac{1}{2}+\frac{1}{16}\right) \times \frac{8}{15} \quad 2 \times \frac{2}{15}
$$

$\left(179 \times \frac{4}{9} \times \frac{296}{12} \times \frac{1}{181} \times \frac{8}{11}\right) \div \frac{9472}{9999} \quad \frac{19}{11} \times \frac{4}{9} \times 296{ }^{29} \times \frac{1}{101} \times \frac{8}{11} \times \frac{999}{9472}$

(6)

$$
\begin{gathered}
15 \mathrm{yds}=540 \mathrm{in.} \text { and } 7 \mathrm{ft} .=84 \mathrm{in} . \\
6 \mathrm{ft} .
\end{gathered}=72 \mathrm{in.} \text { and } 4 \mathrm{ft} .=48 \mathrm{in} . ~=544752 .
$$

$9 \mathrm{ft}$									6^{\prime}	$4^{\prime \prime}$	$7^{\prime \prime \prime}$		
11	7	9	11										
		8	8	$10^{\prime \prime \prime \prime \prime}$	$2^{\prime \prime \prime \prime \prime \prime}$	$5^{\prime \prime \prime \prime \prime \prime \prime}$							
	7	1	9	5	3								
5	6	8	8	1									
104	10	2	5										
111	0	9	7	4	5	5							

pts.	4	57..42..27..21..33..14..5..41..63.. 30		
2) 782436		6..25.. 3.. §.. 2		Q.. 30
4) 391218.0 pt .				
-	10	2	3	10

$$
\text { 4) } 48902 . .0 \text { gal. } \quad 77 \times 27 \times 10=20790=1 . \text { c. } \mathrm{m} \text {. }
$$

12225.. 2 pks.

12225 bush. 2 pks. 0 gal. 2 qts.
(11)

XII		x
28e4)36t87942(13	$375 t \cdot 12$	
28e4	9	(12)
	-	
$9 \mathrm{e4}{ }^{\prime}$	34	$150528=2^{10} \times 3 \times 7^{2}$.
82 t0	9	
		$10+1=11$
18679	1312	$1+1=2$
17274	9	$2+1=3$
14054	2810	$11 \times 3 \times 2=66$.
11888	9	
23882	25298	
23554	9	
$32 t \cdot 0$	227683	
$28 e \cdot 4$	9	
$5 t \cdot 80$	- 2049151	
$55 \cdot t 8$		
$4 \cdot 94$		
(13)		(14)

$2 \mathrm{wks} .2 \mathrm{dys} .=16 \mathrm{dys}$.

- 1234625

16
7407750
1234625
$1 \cdot 9754000$ dys.
24
39016000
19508000
$\overline{23 \cdot 4096000}$ hrs.
$\xrightarrow[24 \cdot 5760000]{ } \frac{60}{} \mathrm{~min}$. 60
$\overline{34 \cdot 5600000}=34 \frac{1}{25} \mathrm{sec}$.
$728 \frac{1}{2}=8 \frac{1}{2}+2 \times 10+7 \times 10 \times 10$. lbs. oz. dr. lbs.oz. dr. $2743 \times 8 \frac{1}{2}=2311193$ 10

$$
272914 \times 2=545312
$$

$$
10
$$

$£ 163 \mathrm{~s} .8 \frac{\mathrm{z}}{4} \mathrm{~d} .=\$ 64 \cdot 74 \frac{7}{12}$ and $£ 6717 \mathrm{~s} .7 \frac{1}{2} \mathrm{~d} .=\$ 271 \cdot 52 \frac{1}{12}$. $\$ 98 \cdot 17+\$ 42 \cdot 29+\$ 64 \cdot 74 \frac{7}{12}+\$ 97 \cdot 19+\$ 127 \cdot 87 \frac{1}{2}=\$ 430 \cdot 27 \frac{1}{12}$. $\$ 430 \cdot 27 \frac{1}{12}-\$ 271.52 \frac{1}{12}=\$ 158.75$.

$$
\begin{aligned}
& {\left[\left\{\left(2 \frac{1}{3} \times \cdot 5 \text { of } 1 \frac{5}{\frac{5}{7}}\right)+9 \frac{17}{21}+\cdot 09+\frac{23}{231}\right\}-11 \frac{6}{17}\right] \div\left(\frac{1}{8}+\text { of } \cdot 16\right)} \\
& {\left[(\cdot 763 \dot{2} 763 \times 11) \times \frac{1}{3} \text { of } \frac{182}{80}\right] \times\left(\frac{1}{2} \text { of } \cdot 2 \text { of } \cdot \dot{3} \text { of } \cdot 25 \text { of } 96\right) \div \cdot \dot{2}} \\
& \frac{1}{4} \text { of }-6732467 \div \frac{1}{9} \\
& \left.\frac{\left[\left\{\left(\frac{7}{3} \times \frac{1}{2} \times \frac{19}{7}\right)+9 \frac{17}{1}+\frac{1}{11}+\frac{7}{23}\right\}-11 \frac{6}{18}\right] \div\left(\frac{1}{31} \text { of } \frac{1}{6}\right)}{\left(\frac{763}{9} 92 \times \frac{11}{1} \times \frac{1}{8} \times \frac{101}{106} \times \frac{1}{2} \times \frac{1}{8} \times \frac{1}{3} \times \frac{1}{4} \times \frac{96}{1}\right) \div \frac{2}{9}}\right)= \\
& \left(2+9 \frac{1}{2}+\frac{1}{11}+\frac{23}{23}\right)-11 \frac{6}{17} \div \frac{13}{31} \times \frac{1}{6} \\
& \overline{2632} \times \frac{13}{1} \times \frac{1}{8} \times \frac{101}{100} \times \frac{1}{2} \times \frac{1}{6} \times \frac{1}{3} \times \frac{1}{4} \times \frac{96}{1} \times \frac{9}{8}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\frac{\left(12-11 \frac{6}{17}\right) \div \frac{1}{3} 1}{\frac{18}{5}}}{\frac{16831}{11111}}=\frac{\frac{1 \frac{1}{2} \times \frac{51}{1} \times \frac{6}{1}}{\frac{18}{8}}}{\frac{16831}{1117}}=\frac{\frac{18}{1}}{\frac{18}{5}} 1 \frac{1831}{1111}=\frac{\frac{5}{1}}{\frac{16831}{1111}}= \\
& { }^{555555}=3 \frac{5062}{1085} \cdot
\end{aligned}
$$

8 children will have 8 children's shares.
One woman will have 3 children's shares.$\cdot 6$ women will have $6 \times 3=18$ children's shares.
One man will have 6 children's shares . .4 men will have $4 \times 6=24$ children's shares.
4 men, 6 women, and 8 child. will therefore have 50 child. shares.
$£ 5503 \mathrm{~s} .1 \frac{1}{2} \mathrm{~d} . \div 50=£ 110 \mathrm{~s} .0 \frac{3}{4} \mathrm{~d} .=$ child's share.
£ 110 s. $0 \frac{3}{4} \mathrm{~d} . \times 3=£ 330 \mathrm{~s} .2 \frac{1}{4} \mathrm{~d}$. $=$ woman's share.
$£ 330 \mathrm{~s} .2 \frac{1}{2} \mathrm{~d} . \times 2=\mathfrak{£} 66$ 0s. $4 \frac{1}{2} \mathrm{~d} .=$ man's share.

$$
\begin{gather*}
16 \frac{7}{11}+19 \frac{4}{5}+23 \frac{7}{8}+129 \frac{6}{7}=16+19+23+129+ \tag{20}\\
\left(\frac{7}{11}+\frac{8}{8}+\frac{7}{6}+\frac{6}{7}\right)=187+3_{3}^{519}+190 \frac{519}{3080} .
\end{gather*}
$$

$$
\begin{equation*}
8100=2^{2} \times 3^{4} \times 5^{2} \tag{21}
\end{equation*}
$$

1..3..9..27.. 81
1..2.. 4
1..3..9..27..81..2..6..18..54..162..4..12..36..108.. 324
1..5.. 25
1..3..9..27..81..2..6..18..54..162..4..12..36..108..324.. 5..15..45..135..405..10..30..90..270..810..20..60..180.. 540..1620..25..75..225..675..2025..50..150 .. 450 .. 1350.. 4050..100.. 30..900..2700..8100.

Therefore the divisors of 8100 are $1,2,3,4,5,6,9,10,12$, $15,18,20,25,27,30,36,45,50,54,60,75,81,90,100,108,135$, $150,162,180,225,270,300,324,405,450,540,675,810,900$, $1350,1620,2025,2700,4050,8100$.
(22)
2691)11817(4 10764
1053)2691(2

2106
585) 1053(1

585
(23).
sec.
60)2551443
60)42524.. 3
24)708.. 44 29.. 12 29 d., $12 \mathrm{~h} ., 44 \mathrm{~m} ., 3 \mathrm{sec}$. sec.
60)31556928
60)525948.. 48
365.. 5
(24)

$$
\begin{array}{ll}
14 \mathrm{ft.} 11 \mathrm{in} . & =179 \mathrm{in} . \\
38 \text { miles } & =2407680 \mathrm{in} . \\
2407680 \div 179 & =13450 \frac{1}{1} \frac{3}{3} 9 .
\end{array}
$$

(25)
$11 \mathrm{ft} . \times 13 \mathrm{ft} . \times 15 \mathrm{ft} .=2145 \mathrm{cub} . \mathrm{ft}$.
One cubic foot reighs $62 \frac{1}{2} \mathrm{lbs}$. $2145 \times 62 \frac{1}{2}=134062 \frac{1}{2}=$ weight of 2145 cub. ft.
One gallon weighs 10 lbs . $134062 \frac{1}{2} \div 10=13406 \frac{1}{\frac{1}{2}}=$ gals. in $134062 \frac{1}{2} \mathrm{lbs}$.
(26)
$£ 73 \times 400=\$ 292 \cdot 00$
17s. $\times 20=3.40$
$11 \frac{3}{4} \mathrm{~d} .=47$ far. $\times 5 \div 12=\quad \cdot 19 \frac{7}{12}$

(27)

$$
\begin{aligned}
& 93 \frac{4}{11}-76 \frac{17}{23}=92 \frac{15}{15}-76 \frac{17}{27}=16 \frac{158}{5 \frac{8}{3}}=\frac{47016}{253}
\end{aligned}
$$

(28)

(29)

XI
XI
XI
5) 91342
5) $\overline{19074 . .4}$
5) $\overline{4015} .1$
5) $891 . .0$
5) $\overline{184 \ldots 3}$
5) $39 \ldots 3$
5) 8.2

1. .3
$\begin{array}{ll}\text { 12) } 91342 & \text { 2)91342 } \\ \text { 12) } 83 t 4 . .9 & \text { 2) } 46176 . .1\end{array}$
12)773.. 1
2) 23093.0
3) $115 \mathrm{t} 1 . .1$
4) $70 . .3$
5) $62 t 6.0$
6) $\overline{3153.0}$
7) $\overline{1627} .0$
8) $869 . .0$
9) $434 . .1$
2)217..1
——
10) 109.0
11) $5 t .0$
$\overline{2 t} \ldots 1$
12) $\overline{15} .0$
$2 \longdiv { 8 } . 0$
13) $\overline{4} .0$
14) $\overrightarrow{2} .0$
1.. 0
(29 continued.)

(30)
15) $7680=2^{9} \times 3 \times 5$
(31)

> m. f. p. y. ft. in.

7237217
8
$\$ \cdot 47 \times 97=\$ 45 \cdot 59$.
2) 3840
2) 1920
2) $\overline{960}$
2) 480
-
2) 240
2) 120

2 60
2) $\overline{30}$
$\overline{579}$ fur.

40
23167 per. $5 \frac{1}{2} \quad \$ 3.62 \frac{1}{2} \times 25_{3}^{3} \frac{3}{2}=\$ 90.96 \frac{31}{6}$.
$(73 \times 4 \times 11) \div 128=25 \frac{3}{3}$.

$$
3
$$

3) $\overline{15}$

5

$$
115837
$$

$$
11583 \frac{1}{2}
$$

$$
127420 \frac{1}{2} \mathrm{yds} .
$$

$$
382262 \frac{1}{2} \mathrm{ft} \text {. }
$$

12

4587157 in.

12

$$
\begin{equation*}
55045884 \text { lines } \tag{34}
\end{equation*}
$$

$93 \cdot 7 \ddot{3}=93 \frac{116}{9}={ }^{9} 97885$ and $29 \cdot 417 \dot{3}=294169=293879$.

$$
\begin{aligned}
&{ }_{92786} \div{ }_{9} 93879=\frac{92786}{929} \times \frac{111}{11} \\
& 293879
\end{aligned}=\frac{92786 \times 111}{11 \times 293879}=
$$

One bushel of oats weighs $34 \mathrm{lbs} . . \therefore$ in 73429 lbs . there are $73429 \div 34=2159{ }_{3}^{23}$ bushels.
(36)

In 719630 lbs . of wheat there are $719630 \div 60=119933_{6}$ bus $\$ 1.80 \times 11993$ 茖 $=\$ 21588 \cdot 90$. Or $\$ 1 \cdot 80$ per bushel $=3$ cents per 1 lb . $719630 \times 3=2158890$ cents. $=\$ 21588^{\circ} 90$.
(38)

21389)180781(8	
(37)	$\frac{171112}{9669) 21389(2 ~}$

$\$ 72 \cdot 14+\$ 93 \cdot 76=\$ 165 \cdot 90 \quad \frac{19338}{2051) 9669(4}$
$\$ 165 \cdot 90 \times 9.47=\$ 1571 \cdot 0730$
$\$ 1571.0730 \div 11=\$ 142.8248+$

8204
1465)2051(1 1465
586) $1465(2$

1172
293) $586(2$

Last divisor $293=$ G. C. M.

$$
\begin{equation*}
\frac{7}{15}, \frac{4}{6}, \frac{9}{5}, \frac{8}{33}, \frac{1}{4}, 7^{2}, \frac{1}{2} . \tag{39}
\end{equation*}
$$

The least common multiple of $11,5,7,33,14,10$ and 2 is 2310.
The maltiplier for both terms of the first fraction is ${ }_{2} 310=$ 210 ; for the second, $2310=462$; for the third, $23,70=330$; for the fourth, $2 \frac{2310}{3}=70$; for the fifth, $2 \frac{310}{14}=165$; for the sixth, $\frac{2310}{10}=231$; for the seventh, ${ }_{2} \frac{2310}{2}=1155$.

Multiplying by these numbers, we obtain $\frac{1}{2} \frac{1}{3} 70, \frac{18}{2} \frac{8}{2} \frac{8}{\sigma}, \frac{2978}{2315,}$ $\frac{560}{2310}, \frac{18}{2} \frac{8}{3} 15, \frac{1}{2} \frac{6}{2} 15$, and $\frac{1}{2} \frac{515}{3}$ for the required fraction.
$\$ \cdot 11 \times 17=\$ 1 \cdot 87 . \quad \$ \cdot 37 \frac{1}{2} \times 19=\$ 7 \cdot 12 \frac{1}{2} . \quad \$ 2 \cdot 17 \times 14 \frac{1}{2}=$
$\$ 31 \cdot 46 \frac{1}{2} . \quad \$ \cdot 27 \times 67=\$ 18 \cdot 09 . \quad \$ 1 \cdot 37 \frac{1}{2} \times 15=\$ 20 \cdot 62 \frac{1}{2}$. $\$ 1 \cdot 87+\$ 7 \cdot 12 \frac{1}{2}+\$ 31 \cdot 46 \frac{1}{2}+\$ 4 \cdot 75+\$ 11 \cdot 50+\$ 18 \cdot 09+$ $\$ 20 \cdot 62 \frac{2}{2}+\$ 7 \cdot 93=\$ 103 \cdot 35 \frac{1}{2}$.

Page 210.
(17)

Baskets.$11: 87:: \$ 13 \cdot 42$	$1 \cdot 22$
	\$18.42x ${ }^{1}$

19
Cords.
$28: 25:: \$ 266: \frac{\$ 268 \times 25}{28}=\$ 237 \cdot 50$ Ans.
2
(19)

4
days $18 \times 83 \cdot 60$
$\$ 29 \cdot 20: \$ 83 \cdot 60:: 16: \frac{}{\frac{29 \cdot 2 Q}{7 \cdot 3}}=45.59$ days. Ans. $7 \cdot 3$
(20)
$\cdot 8$
Bags.
$\frac{\$ 12 \cdot 8 Q \times 156}{1 \&}=\$ 124 \cdot 80 \mathrm{Ans}$
(21)

(22)

9
Cows. days. 49×27
$55: 27:: 99: \frac{}{55}=48 \frac{3}{3}$ days. Ans.
55
(23)

Acres. bus. 9×48
$5: 48:: 9: \frac{-}{5}=8 G_{5}^{2}$ bush. Ans.

(24)

11
Perches. days. $2 \times 8 Q 9$ $73: 803:: 2: \frac{\pi}{\pi 3}=22$ days. Ans.
(25)

141
Pails. lbs. 100×1129
$176: 1128:: 100: \frac{1}{176}=640 \frac{10}{1} \mathrm{f}$ lbs. Ans.
22
(26)

$$
\begin{aligned}
& 58 \quad 155 \\
& 108: 465:: \$ 20 \cdot 88: \frac{\$ 20 \cdot 88 \times \$ \$ 5}{108}=\$ 89 \cdot 90 \text { Ans. } \\
& \text { 3G } \\
& \text { (27) } \\
& 9 \quad 639 \\
& \text { \$ \$ brls. } \mathrm{x} 2 \times 12 \pi 8 \\
& 16: 1278:: 72: \frac{-}{18}=5751 \text { barrels. Ans. } \\
& 2 \\
& \text { (28) } \\
& 15 \\
& \text { Men. Acres } 185 \times 3 \\
& 11: 3:: 165:-11=45 \text { acres. Ans. } \\
& \text { (29) } \\
& 125 \\
& \text { Barrels. loares } 959 \times 67 \\
& \text { 4: 67:: } 250:-\frac{4}{4} \\
& \text { (30) }
\end{aligned}
$$

Bushels. brls. 16×88

$$
190: 38:: 16: \frac{19}{\substack{19 Q \\ 5}}=3 \frac{1}{5} \text { barrels. Ans. }
$$

6
Days. men $Q Q \times 12$
$15: 12:: 90: \frac{15}{15}=72 \mathrm{men}$. Ans.
(32)

D'. work. brls. 2×279
$17: 279:: 2:-\frac{}{17}=32 \frac{4}{7}$ barrels. Ans.
(33)

Hours. miles.
$1: 24:: 27: 27 \times 24=648$ miles. Ans.
(34)

Cows. lbs. 30×23 $7: 23:: 30: \frac{-}{7}=98 \frac{4}{7}$ lbs. Ans.
(37)
${ }_{16}^{3}: \frac{21}{26}:: \$ 9750: \frac{375}{2} \times \frac{{ }^{7}}{24} \times \frac{16}{2}=\$ 43000$ Ans.
(38)

(39)

Tons. $\frac{7}{9}: 8 \frac{1}{3}:: \$ 7 \cdot 49: \frac{\$ 7 \cdot 49 \times 8 \frac{1}{3}}{\frac{7}{9}}=\frac{\left.\begin{array}{c}\frac{1}{8} \cdot 49 \\ 1\end{array}\right)}{8} \times \frac{25}{8}=\$ 80.25$ Ans.
(40)

- 14

$$
4 \cdot 06
$$

（41）

（42）

（43）

（44）

$$
\begin{aligned}
& \text { Tons. cords. } 22 \frac{1}{9} \times 11 \frac{9}{\frac{10}{6}} \quad \text { 2QT } 295 \quad 13
\end{aligned}
$$ （45）

$$
15
$$

$$
\begin{equation*}
\frac{3}{11} \times \frac{165}{\substack{896 \\ 224}}=\$_{255}^{15} \text { Ans. } \tag{47}
\end{equation*}
$$

$37 \mathrm{sq} . \mathrm{yds} .4 \mathrm{ft} .120 \mathrm{in} .=48648 \mathrm{in}$. ，and $9 \mathrm{sq} .5 \mathrm{ds} .2 \mathrm{ft} .=11952 \mathrm{in}$.
2027
QQ81
Inches． $3.50 \times$ 等发发

$$
12 \mathrm{lbs} .10 \mathrm{oz} .=154 \mathrm{oz}
$$

Ounces.
$1: 154:: \$ 1 \cdot 25: 1 \cdot 25 \times 154=\$ 192 \cdot 50$ Ans.
$10 \mathrm{yds} .=40 \mathrm{qrs} .$, and 3 yds .2 qrs. $=14 \mathrm{qrs}$.

15 lbs. 12 dwt. $16 \mathrm{grs} .=7504 \mathrm{grs} .$, and $13 \mathrm{oz} .14 \mathrm{grs} .=6254 \mathrm{grs}$.

$3 \mathrm{lbs} .1 \mathrm{oz} .11 \mathrm{dwt}=751 \mathrm{dwt}$. and $12 \mathrm{lbs} .6 \mathrm{oz} .4 \mathrm{dwt} .=3004 \mathrm{dwt}$.

Barrels. h. m. s. $\quad 2 \mathrm{~h} .46 \mathrm{~m} .30 \mathrm{~s} . \times{ }^{4} 4$
$54: 24:: 24630:-\frac{\text { दौ }}{}=1 \mathrm{hr} .14 \mathrm{~min}$. Ans.

73 yds .3 qrs. $2 \mathrm{na} .1 \mathrm{in}=2660 \frac{1}{\mathrm{in}} .3 \mathrm{Fl}$. e. 2 qrs. 1 na. $=1014 \mathrm{in}$. And $£ 417 \mathrm{~s}$. $8 \frac{1}{4} \mathrm{~d} .=1172 \frac{1}{4} \mathrm{~d}$. 521

$$
\begin{array}{lc}
& 52 \tag{55}\\
\text { Pages. } & 15 \$ \times 400
\end{array}
$$

$\begin{aligned} 327: 400:: 156: \frac{}{\substack{377 \\ 109}}= & 190 \\ & \end{aligned}$
46 a., 3 r., 14 p. $=7294$ p., and 35 a., 2 r., 10 p. $=5690$ p. 50
Perches. $\quad \boldsymbol{\varepsilon} \quad 1 Q Q \times 5690$
 $3747^{\text {. }}$

17
Days. miles. 19×65
$48: 68:: 12: \frac{18}{18}=16$ miles per day. Ans.

> Shillings. lbs.
> $21 \frac{1}{3}: 32 \%:: 16 \frac{1}{4}: \frac{113}{7} \times \frac{113}{7} \times \frac{3}{\frac{64}{34}}=\frac{38307}{3668}=24 \frac{678}{1668}$ lbs. Ans.
$17493 \times 1000 \times 5$ cub. ft. $=87465000$ cub. ft. $192724 \times 1000 \times 4$ cub. $\mathrm{ft} .=770896000$ cub. ft . $87465000+770896000=858361000$ cub. ft.
Cubic feet. ton. 858361 QQQ
$9000: 858361000:: 1: \frac{-}{9 Q Q Q}=953734$ tons. Ans.
$50000 \times 9000=450000000=$ cub. ft . of gas in 50000 tons of coal. Cubic feet. hour.
$4: 450000000:: 1:{ }^{450000000}=112500000 \mathrm{~h} .=12842 \mathrm{y} .170 \mathrm{~d}$.
lbs. lbs. lbs. lb. lb. $4+3+2+1+\frac{1}{2}=10 \frac{1}{2} \mathrm{lbs}$.
lbs. 11270
$10 \frac{1}{2}: 11270:: 1: \frac{}{10 \frac{1}{2}}=1073$, and $3 \frac{1}{2}$ lbs. remaining. Ans.

$$
\begin{equation*}
180 \text { miles }=180 \times 1760=316800 \text { yards. } \tag{62}
\end{equation*}
$$

Yards. day.
$3168 Q Q \times 1$
$100: 316800:: 1:-=3168$ dys. or about 8 yrs. Ans. 1QQ

Page 216.
(4)

$$
\left.\begin{array}{c}
120: 90 \text { bush. } \tag{5}\\
6: 14 \text { horses. }
\end{array}\right\}:: 56 \text { days }: \frac{\frac{7}{5} \$ \times 2 Q \times 14}{\frac{15}{8} \times 8}=7 \times 14=98 \text { days. }
$$

(6)
$\left.\begin{array}{c}3: 45 \text { length. } \\ 1 \frac{1}{4}: 1 \text { width. }\end{array}\right\}:: 1 \mathrm{lb} .: \frac{45}{3 \times 1 \frac{1}{2}}=\frac{45}{\frac{15}{4}}=\frac{3}{\frac{45}{5} \times 4} \frac{15}{4}=3 \times 4=12 \mathrm{lbs}$.
(7)
$\left.\begin{array}{l}10: 100 \text { length. } \\ 1 \frac{1}{2}: 1 \frac{4}{4} \text { width. }\end{array}\right\}:: 3 \mathrm{lbs} .: \frac{3 \times 1 \frac{1}{4} \times 100}{1 \frac{1}{2} \times 10}=2 \times 1 \frac{1}{4} \times 10=25 \mathrm{lbs}$.
(8)
$\left.\begin{array}{l}44: 132 \text { tons. } \\ 18: 5 \text { days. }\end{array}\right\}:: 12$ horses $: \frac{\frac{2}{12} \times 5 \times 189^{8}}{\frac{4}{4} \times 18}=2 \times 5=10$ horses.
$\left.\begin{array}{l}4: 14 \text { men. } . \\ 7: 10 \text { days }\end{array}\right\}:: 27 \mathrm{~s} .: \frac{27 \times 1 \frac{5}{2} \times 10^{\frac{5}{2}}}{\frac{4}{4}}=27 \times 5=135 \mathrm{~s} .=£ 615 \mathrm{~s}$.

	8
3:5 masters.	疑 ${ }^{\text {q }}$
8:10 apprentices.	14* $\times 5 \frac{1}{2} \times 8 \times 10 \times 5$
5:8 weeks.	$3 \times$
6:512 days per wk.	

	9
6: 18 s.mak.	$86 \times 18 \times 5$
4:5 weeks.	Q× ${ }^{4}$

135 pairs men's and the women's $=\frac{24}{36}=\frac{2}{3}$ of $135=90$ pairs.
$\left.\begin{array}{l}9: 18 \text { feet high. } \\ 4: 6 \text { days. }\end{array}\right\}:: 12 \mathrm{men}:-\frac{19 \times 18 \times 6}{9 \times 4}=3 \times 2 \times 6=36$ men.
$\left.\begin{array}{rl}130 & : 390 \text { miles. }) \\ 7: 14 \text { hours. }\end{array}\right\}:: 3$ days $: \frac{3 \times 14 \times 89 Q}{18 Q \times 8}=3 \times 2 \times 3=18$ days.

$$
2 \times 16=32 \text { days }
$$

$$
\begin{align*}
& \left.\begin{array}{l}
17: 40 \text { head of cattle } \\
30: 51 \text { days. }
\end{array}\right\}:: 5 \mathrm{a} .2 \mathrm{r} .10 \mathrm{p} .: \frac{5 \mathrm{a} .2 \mathrm{r} .10 \mathrm{p} \cdot \times 40 \times 51^{4}}{18 \times 8 Q}= \tag{22}\\
& \text { QQ } \\
& 5 \text { a. } 2 \text { r. } 10 \text { p. } \times 4=22 \text { a. } 1 \text { r. } \tag{23}
\end{align*}
$$

Page 219.
(4)
$\left.\begin{array}{ll}17 \text { cords } & =116 \text { lbs. } \\ 87 \text { lbs. } & =23 \text { barrels } \\ 19 \text { barrels } & =34 \text { days' work } \\ 92 \text { days' work } & =57 \text { baskets peaches } \\ 31 \text { baskets peaches } & =24 \text { dollars } \\ 12 \text { dollars } & =2 \text { tons } \\ 35 \text { tons } & =x \text { cords }\end{array}\right\}=$

$\left.\begin{array}{rl}\quad 6 \mathrm{lbs} . \text { tea } & =29 \text { lbs. sugar } \\ 17 \text { lbs. sugar } & =1 \text { bushel } \\ 27 \text { bushels } & =4 \text { tons } \\ 34 \text { tons } & =15 \text { cows } \\ 29 \text { cows } \\ 20 \text { dollars } & =x \text { lbs. tea. }\end{array}\right\}=$

(6)

(7)

(8)

Page 222.

(2)

$£_{119} \times 400$	$=\$ 476.00$
$16 \mathrm{~s} . \times 20$	3.20
$6 \frac{1}{2} \mathrm{~d} .=26$ far. $\times 5 \div 12$	$=$
$\mathbf{x} 119$ 16s. $6 \frac{1}{2} \mathrm{~d}$.	$=\$ 479 \cdot 30 \frac{5}{6}$

Hence $21: 27$ is the greatest, and $9: 13$ the least.
(5)

$71324 t$ nndenary $=1146287$ denary, 23421 quinary $=1736$ denary, and $t 4 e 7$ duodenary $=17995$ denary.
$1146287 \times 1736=1989954332 \div 17995=110583 \frac{13147}{75} 45$.
 quinary, and $760 t 0 \frac{99}{125 \%} 5$ n

$$
\begin{gather*}
\left.5 \cdot 63: 7.9 \text { cubic inches. }\}:: \begin{array}{c}
\text { oz. } \\
1: 1.220 \text { spec. grav. }
\end{array}\right\}: \frac{3.254 \times 7 \cdot 9 \times 1 \cdot 220}{5 \cdot 63}= \tag{7}\\
\frac{31 \cdot 362052}{5 \cdot 63}=5.57052 \mathrm{oz.} \text { Ans. }
\end{gather*}
$$

[^0](8)
yds. qrs. na. in. yds. qrs. na. in.
\[

$$
\begin{align*}
& \text { 17) } 63 \quad 3 \quad 2 \quad 1 \quad\left(\begin{array}{llll}
3 & 3 & 0 & 0 \frac{11}{34}
\end{array}\right. \tag{9}\\
& \text { - } \\
& \cdot 916325 \text { of an acre }=\cdot 916325 \times 4840= \\
& 4421 \cdot 945 \mathrm{sq} \text {. } \mathrm{yds} \text {. } \\
& 4421 \cdot 945 \times \$ \cdot 67=\$ 2962 \cdot 70+ \\
& \frac{3}{2} \text { of } \frac{3}{5} \text { of } \frac{7}{8} \text { of } 20 \text { bush. } \times \cdot 5 \times \cdot 6 \times \frac{7}{8}= \tag{10}\\
& \frac{1}{2} \times \frac{3}{5} \times \frac{7}{8} \times \frac{20}{1} \times \frac{1}{2} \times \frac{2}{3} \times \frac{7}{8}= \\
& { }_{3}^{49} \text { bush. }=1 \text { bush. } 2 \text { pks. } 0 \text { gal. } 1 \text { qt. } \\
& 2 \frac{1}{4} \\
& 5 \frac{1}{2}=\frac{11}{2} \div 17=\frac{11}{34} .
\end{align*}
$$
\]

(12)

Whole amount of increase $=2571437-1842265=729172$.

$$
1842265: 100:: 729172: \frac{729172 \times 100}{1842265}=39 \text { per cent. }
$$

(13)
$\frac{1}{2}$ of $\frac{2}{3}$ of $\frac{18}{2} \frac{8}{9}-\frac{1}{6}$ of $\frac{2}{3}$ of $\frac{5}{7}=\frac{46}{29}-\frac{5}{84}=\frac{359}{2466}$.

$$
\begin{equation*}
100: 7:: \frac{\text { ft. }}{11}: \frac{11 \times 7}{100}=\frac{77}{306} . \quad 11-\frac{77}{100}=10 \frac{23}{100} . \tag{14}
\end{equation*}
$$

(15)
$79 \times 16 \times £ \cdot 00163=£ 2 \cdot 06032=£ 21 \mathrm{~s} .2$ 중 $2 \mathrm{\delta} \mathrm{~d}$.
$\left.\begin{array}{c}4: 3 \text { men } \\ 10: 12 \text { hours } \\ 20: 35 \text { acres }\end{array}\right\}:: 2 \frac{1}{2}$ days $: \frac{2 \frac{1}{2} \times 3 \times 12 \times 85}{\frac{4}{4} \times 10 \times 2 Q} \begin{gathered}4 \\ 4\end{gathered}=318$ days.

$$
\begin{align*}
& \left(\frac{4}{5} \text { of } \frac{9}{11} \times \cdot 02 \times \cdot 456\right) \div\left(\frac{18}{18} \text { of } \frac{3}{3} \text { of } \frac{1}{8} \text { of } 51\right)= \tag{17}\\
& 38 \\
& 37
\end{align*}
$$

$$
\begin{equation*}
\frac{2}{1} \times \frac{4}{5} \times \frac{13}{5} \times \frac{5}{2} \times \frac{5}{1}=4 \times 13=52 . \tag{18}
\end{equation*}
$$

50 barrels$=125$ yards
80 yards
13 bales
$=6$ bales
x hogsheads

53125		
$135 \times 6 \times 3 \frac{1}{2} \times 10 Q Q$	$125 \times 3 \times 3 \frac{1}{2}$	
$50 \times 80 \times 13$	2×13	
316		

$$
\begin{align*}
& 73 \cdot 47 \times \cdot 0063 \div 17 \cdot 2345=\frac{7345}{100} \times \frac{63}{10000} \div \frac{5.392}{3330}= \tag{20}\\
& \frac{7347}{100} \times \frac{63}{1000 Q} \times \frac{333 Q}{57391}={ }_{3}^{-15513938713}=\cdot 026856599989+ \tag{21}
\end{align*}
$$

2 roods 7 per. 4 jds. $3 \mathrm{ft} .117 \mathrm{in} .=3416481 \mathrm{in}$. and 7 acres $=$ 43908480 inches.

$$
3416481 \div 43908480=\cdot 0778+
$$

H
$\frac{2}{7}$ of $\frac{4}{5}$ of $\frac{1}{3}$ of 70 miles $=\frac{16}{3}$ miles $=5 \cdot 33333+$ miles.
$\cdot 73$ of 11 fur. $=8.03$ fur. $=1 \cdot 00375$ mile. $5 \cdot 33333-1 \cdot 00375=4 \cdot 32958$ miles.

274312 nonary $=167195$ denary, $1101011010=858$ denary, and - 5555 septenary $=2000$ denary.

$$
167195-858=166337 \times 2000=332674000
$$

332674000 dehary $=764876837$ nonary,
$=10011110101000011001111010000$ binary,
$=11146453021$ septenary.

$275 \times 38 \times 18=188100=1$ c. m .
(25)

$172000=2^{5} \times 3^{3} \times 43$. Increasing each exponent by 1 and multiplying them together we obtain $6 \times 4 \times 2=48$.

$$
\begin{aligned}
& 42 \cdot \dot{7}=427=385 \text { and } 9 \cdot 7 \dot{123}=9 \frac{7496}{9990}=916850=\frac{16171}{1665} . \\
& \frac{385}{9} \times \frac{16172}{1665}=\frac{695885}{17985}=415 \cdot 471137804 .
\end{aligned}
$$

$$
\begin{align*}
& 100: 27: \$ 73.42: \frac{73 \cdot 42 \times 27}{100}=\$ 19.8234 . \tag{28}\\
& \$ 73.42-\$ 19.8234=\$ 53.5966 .
\end{align*}
$$

$$
\begin{equation*}
6300=2^{2} \times 3^{2} \times 5^{2} \times 7 \tag{29}
\end{equation*}
$$

1..5.. 25
1..2.. 4
1..5..25..2..10..50..4..20.. 100
1..3.. 9
1..5..25..2..10..50..4..20..100..3..15..75..6..30..150..
12..60..300..9..45..225..18..90..450..36..180.. 900
$1 . .7$
1..5..25..2..10..50..4..20..100..3..15..75..6..30..150.. 12..60..300..9..45..225..18..90..450..36..180.. 900 ..7.. 35..175..14..70..350..28..140..700..21.. 105 .. 525 .. 42.. 210..1050..84..420..2100..63..315..1575..126..630.. 3150 ..252..1260..6300.
Therefore the divisors of 6300 are $1,2,3,4,5,6,7,9,10,12$, $14,15,18,20,21,25,28,30,35,36,42,45,50,60,63,70,75,84$, $90,100,105,126,140,150,175,180,210,225,252,300,315,350$, $420,450,525,630,700,900,1050,1260,1575,2100,3150,6300$.

交 of $\frac{3}{8}$ of $3 \frac{1}{2} \mathrm{lbs}$. = $\frac{3}{8} \mathrm{lbs} ., \quad \frac{9}{7}$ of $\frac{3}{5}$ of $\frac{\frac{3}{2}}{\frac{1}{7}}$ of $\frac{1}{2}$ of $\$ 1=\$_{\bar{i}}^{2}$, and ${ }_{8}^{3}$ of $\frac{7}{9}$ of ${ }^{\frac{6}{0}}$ of $\frac{21}{5}$ of $90 \mathrm{lbs} .=\frac{1383}{200} \mathrm{lbs}$.

63
431

7 men will have 7 men's shares.
One woman has 7^{3} r of a man's share; $\therefore 2$ women will have 2 $\times 1^{3} \mathrm{r}=\frac{6}{15}$ of a man's share.
One child has $\frac{2}{7}$ of ${ }_{1}^{3} \frac{T_{1}}{\frac{6}{7}}$ of a man's share; $\therefore 11$ children will have $11 \times \frac{6}{77}=\frac{6}{7}$ of a man's share.
7 men, 2 women and 11 children will have $7+\frac{6}{17}+\frac{6}{7}=8 \frac{1}{7}$ men's shares.
$\$ 2739 \cdot 18 \div 8 \frac{81}{77}=\$ 325 \cdot 99133=$ a man's share. 7^{3} of $\$ 325 \cdot 99 \frac{133}{6}=\$ 88 \cdot 90 \frac{448}{647}=$ a woman's share. \% of $\$ 88 \cdot 90 \frac{148}{6 \cdot 7}=\$ 25 \cdot 40 \frac{128}{6 \times 7}=$ a child's share.

(35)

23 bush. 2 pks. 1 gal. 1 qt. 1 pt. $=1515$ pts.
$1515 \times 9000 \times \frac{1}{3}=4545000 \mathrm{in} .=71$ miles 5 fur. 34 per. 3 yds.

> (36)

$$
\begin{equation*}
\frac{4158}{10395}=\frac{462}{1155}=\frac{66}{165}=\frac{22}{55}=\frac{2}{5} \tag{37}
\end{equation*}
$$

vili.
$\frac{1}{2}, \frac{2}{3}, \frac{4}{5}, \frac{2}{7}$. Here the common denominator is $2 \times 3 \times 5 \times 7$ $=322$. The numerators of the fractions are, for the first, $1 \times$ $3 \times 5 \times 7=151$; for the second, $2 \times 2 \times 5 \times 7=214$; for the third, $4 \times 2 \times 3 \times 7=250$; for the fourth, $2 \times 2 \times 3 \times$ $5=74$; and the equivalent fractions are, $\frac{15}{32}, \frac{214}{32}, \frac{250}{252}$ and $\frac{74}{322}$, which when added together $=\frac{731}{322}=2 \frac{65}{3} \frac{5}{2}$, the numbers all through being in the octenary scale.

Page 226.
(8)
£ s. d.

4d.	$\frac{1}{3}$	$4746 \quad 17$	$0=$ cost of 94937	pails at 1 s.

Id.

£6724 $14 \quad \mathrm{l}=$ cost of 94937 pails at 1 s .5 d .
(9)
(10)
$\$ \cdot 07 \frac{1}{2} \times 95974=\$ 7197 \cdot 90 \cdot \$ 28 \cdot 80 \times 62=\$ 1785 \cdot 60$.
(11)
$\$ \cdot 32 \frac{1}{2} \times 2310=\$ 750 \cdot 75 . \quad \$ \cdot 37 \frac{1}{2} \times 2117=\$ 793 \cdot 87 \frac{1}{2}$.

(14
(15)
$\$ \cdot 17 \frac{1}{2} \times 1217=\$ 212 \cdot 97 \frac{1}{2} . \quad \$ 3.07 \frac{1}{2} \times 2103=\$ 6466.72 \frac{1}{2}$. (16)

$$
£ 185 \frac{1}{2}=\text { cost of } 3 \mathrm{qrs.} 1 \mathrm{na} .
$$

Then $£ 171100=$ cost of 98 yards at $£ 115 \mathrm{~s}$.
$1854=$ cost of 3 qrs. 1 na. at $£ 1$ 15s. per yard.
$£ 17218 \quad 54=$ cost of 98 yds .3 qrs .1 na , at $£ 115 \mathrm{~s}$ per yd .

$$
\begin{aligned}
& \text { £3 } \quad 8 \quad 431=\quad " \quad 3 \text { roods } 15 \text { perches. }
\end{aligned}
$$

£1394 $128=$ rent of 344 acres at $£ 4 \mathrm{ls}$. 1 d .

$$
384_{3 \frac{1}{2}}=" \quad 3 \text { roods } 15 \text { per. at } £ 4 \text { ls. ld. per ac. }
$$

£1398 $10_{3}^{2 \frac{1}{2}}=" \quad 344$ a. 3 r. 15 per. at $£ 4 \mathrm{ls} .1 \mathrm{~d}$.
5s. 10d. per oz.

$$
\begin{aligned}
& \text { £5 } 48 \text { 8 }=\text { price of } 4 \text { yds. } 2 \text { qrs. } 3 \text { na." " }
\end{aligned}
$$

$£ 58 \quad 4 \quad 1 \frac{4}{5}=$ price of 32 acres 1 rood 14 per.

$$
\begin{aligned}
& \text { £1 } 7 \quad 2 \frac{1}{4}=\text { price of } 3 \text { gals. } 5 \text { pts. }
\end{aligned}
$$

$$
\begin{equation*}
\$ 1 \cdot 67 \frac{1}{2} \times 724=\$ 1212 \cdot 70 \tag{24}
\end{equation*}
$$

$$
\begin{equation*}
\$ 1 \cdot 93 \frac{3}{4} \times 721=\$ 1396 \cdot 93 \tag{25}
\end{equation*}
$$

(26)

$4 s$.	$\frac{1}{5}$	$£ 17$	0	$0=$
cost of 17	cwt . at $£ 1$			

$£ 210 \quad=$ cost of 17 cwt . at $\quad £ 14 \mathrm{~s} .9 \mathrm{~d}$. per cwt.
$911_{112}^{33}=" 1 \mathrm{qr} .17 \mathrm{lbs} . \quad$ "
£21 $10 \quad 8_{1} \frac{37}{17}=$ " $17 \mathrm{cwt} .1 \mathrm{qr} .17 \mathrm{lbs} . \quad$ "

£10 10
20
£210 $0=$ price of 20 tons at $£ 1010 \mathrm{~s}$.
19 cwt .3 qrs. $27 \frac{1}{2} \mathrm{lbs} .=1$ ton $-\frac{1}{2} \mathrm{lb}$. The price of 1 ton is £10 10s., and the price of $\frac{1}{2} \mathrm{lb}$. $=\frac{1}{4480}$ of $£ 10 \mathrm{los} .=\frac{63}{13} \mathrm{~d}$. \therefore the price of 19 cwt .3 qrs. $27 \frac{1}{2}$ lbs. $=\mathrm{f} 10 \mathrm{los} .-\frac{63}{112} \mathrm{~d}$. $=£ 109 \mathrm{~s} .11_{1}^{49}{ }^{4} \mathrm{~d}$.
£210 $000=$ price of 20 tons at $£ 10$ 10s.
$1091 l_{112}^{49}=" \quad 19 \mathrm{cwt} .3$ qrs. $27 \frac{1}{2} \mathrm{lbs}$.
£220 $911 \frac{19}{192}=$ price of 20 tons 19 cwt. 3 qrs. $27 \frac{1}{2}$ lbs. at £10 10s. per ton.
(31)

Page 228.
Bills of Parcels. (No. 2.)

(No. 4.)
198 Sangster's National Arithmetic, at......... $\$ 0 \cdot 60 \$ 118 \cdot 80$
197 Robertson's Philosophy of Grammar, at $\ldots \quad 0.50 \quad 98 \cdot 50$
83 Hodgins' Geography, at $1 \cdot 00$ 83.00
57 Sangster's Algebraic Formula, at $0 \cdot 12 \frac{1}{2} \quad 7 \cdot 12 \frac{1}{2}$
217 Strachan's Canadian Penmanship, at...... $0 \cdot 37 \frac{1}{2} \quad 81 \cdot 37 \frac{1}{2}$
143 Hodgins' Geography of British Provinces, at $0.45 \quad 64 \cdot 35$
227 Sangster's First Arithmetic, at. $0 \cdot 30 \quad 68 \cdot 10$
Ans. $\$ 521 \cdot 25$
(No. 5.)

s. d.					
$9 \frac{1}{2}$ yards of silk, at 12	9 per yard		6	1	$1 \frac{1}{2}$
13 yards of flowered ditto, at... 15	6	،	10	1	6
$11 \frac{3}{4}$ yards of lustring, at....... 6	10	"	4	0	31
14 yards of brocade, at.........ll	3	"	7	17	6
121 yards of satin, at 10	8	"	6	10	8
$11 \frac{3}{8}$ yards of velvet, at 18	0	"	10	4	9
				15	

(No. 6.)

23 " laudanum, at...................... 0.89 20.47
17 " emetic tartar, at.................... $1 \cdot 25 \quad 21 \cdot 25$
25 " cantharides, at.................... 2•17 $54 \cdot 25$
27 " gum mastic, at $0 \cdot 61$ 16.47
56 " gum camphor, at.................. 0.27 15.12
Ans. \$136.94
(No. 7.)
$15 \frac{1}{2}$ lbs. of currants, at $0 \quad 4$ per lb. . 52
$17 \frac{1}{4}$ lbs. of Malaga raisins, at. $0 \quad 5 \quad 5 \frac{1}{2}$ " $710 \frac{7}{8}$
$19 \frac{3}{4}$ lbs. of sun raisins, at $0 \quad 6$ " $910 \frac{1}{2}$
17 lbs. of rice, at 0 31 ${ }^{3}$ " $41 \frac{1}{2}$
$8 \frac{1}{2}$ lbs. of pepper, at................... $1 \quad 6 \quad$ " $12 \quad 9$
3 loaves of sugar, weight $32 \frac{1}{2} \mathrm{lbs}$. at. $\begin{aligned} & 0 \\ & 8 \frac{1}{2}\end{aligned}$ " $\quad 1 \quad 3 \quad 0 \frac{1}{4}$
13 oz . of cloves, at..................... $0 \quad 9$ per oz. 99

Page 231.

- Miscellaneous Exercises.
$427 \cdot 1 \div \cdot 0000637=4271000000 \div 637=6704866 \cdot 561+$.
(3)

19 cwt .3 qrs. $2 \frac{1}{2} \mathrm{lbs} .=1$ ton $-\frac{1}{2} \mathrm{lb}$. The price of 1 ton is £19 193. 11 $\frac{3}{4}$ d., and the cost of $\frac{1}{2} \mathrm{lb} .=\frac{1}{4 \frac{1}{480}}$ of $£ 1919 \mathrm{~s} .11 \frac{3}{4} \mathrm{~d}$. $=1 \frac{1829}{17920} \mathrm{~d} . ; \therefore$ the cost of 19 cmt .3 qrs. $27 \frac{1}{2} \mathrm{lbs} .=£ 1919 \mathrm{~s}$.

£379 19 7 $=$ cost of 19 tons.
$191910 \frac{15161}{19520}=6 \quad 19$ cwt. 3 qrs. $27 \frac{1}{2}$ lbs.
£399 $195_{17920}=" 19$ tons 19 cwt 3 qrs. $2 \frac{1}{2}$ lbs.
(4)

1 acre $=160$ rods, and 25 acres 2 roods 35 rods $=4115$ rods.
$\$ 3 \cdot 683 \times 7439=\$ 27431 \cdot 314$.
$\frac{1}{2} \frac{3}{2} \frac{7}{2} \frac{7}{2} 95$. The G. C. M. of 135795 and 222210 is 12345 ; when both terms of the fraction are divided by 12345, it becomes $\frac{1}{2} \frac{1}{8}$.
$\frac{714235}{995959 .}$. Here 714235 and 999999 have no G. C. M.; \therefore the fraction cannot be reduced.
$\frac{898375}{} 50$. The G. C. M. of 109375 and 100000 is 3125 ; When both terms of the fraction are divided by 3125, it becomes reduced to $\frac{35}{3}$.
$\frac{90}{3} \frac{3}{3} \frac{3}{3} 3$. The G. C. M. of 20301 and 33633 is 303 ; when both terms of the fraction are divided by 303 , it is reduced to ite lowest terms, viz., $\frac{67}{111}$.
$\left.\begin{array}{rl}34 \frac{1}{2} \text { bushels turnips } & =17 \text { bushels potatoes } \\ 9 \quad \text { " potatoes } & =59 \frac{1}{2} \text { lbs. tea } \\ 6 \text { lbs. tea } & =11 \frac{1}{2} \text { stone flour } \\ 13 \text { stone flour } & =360 \text { cents } \\ 38 \text { cents } & =12 \text { loaves } \\ 119 \text { loaves } & =x \text { bushels turnips }\end{array}\right\}=$

54: 27 men
11: 8 honrs
42: 77 floors
$20: 24$ feet long
16:22 feet wide
$3: 5$ coats paint

$$
=\frac{7 \times 11}{2 \times 3}=125 \text { days. }
$$

IX.

12) 72342

12) $\overline{5403 . .2}$
13) $\overline{407} .0$ 12) $30 . .7$
-2.. 3
ix.
14) 72342
15) $11806 . .2$
6)1731..0
16) $264 . .4$
17) $40 . .4$
6)6. 0
-1..0

1x.
3) 72342
3)23713..2
3) $7234 . .0$
3)2371.. 1
3)723..1
3) $237 . .0$
3) $72 . .1$
3) $23 . .2$
3) 7.0
-

1 x	xif.	vi.	III.	
72342	$=23702$	$=1004402$	$=21$	101102
9	12	6	3	
-	-	-	-	
65	27	6	7	
9	12	6	3	
		-	-	
588	331	36	21	
9	12	6	3	
5296	$\overline{3972}$	220	65	1765
9	12	6	3	3
47666	47666	1324	196	5296
		6	3	3
		7944	588	15888
		6	3	3
		47666	1765	47666

(14)

II.	II.	IF.	IT.
111111	100000	333333	100000
2	2	4	4
-	-	-	-
3	2	15	4
2	2	4	4
-	-	-	-
7	4	63	16
2	2	4	4
-	-		-
15	8	255	64
2	2	4	4
31	16	1023	
2	2	4	- 4
-	-		
63 Greatest.	32 Least.	4095.Greate	1024 Least.

nI.	vi.	vili.	TIII.
555555	100000	77777	100000
6	6	8	8
-	-	-	-
35	6	63	8
6	6	8	8
	-	-	-
215	36	511	64
6	6	8	8
1295	216	4095	512
6	6	8	8
7775	1296	32767	4096
6	6	8	8
46655 Greates	7776 Least.	262143 Greatest.	32768 Least.

(Continued on next page.)
(14 continued.)

XII ${ }^{-}$	XII
ceeee	100000
12	12
143	12
12	12
1727	144
12	12
20735	1728
12	12
248831	20736
12	12
2985983 Greatest.	248832 Least.

$$
\begin{equation*}
1728=2^{6} \times 3^{3} \tag{15}
\end{equation*}
$$

1..2..4..8..16..32.. 64
1..3..9.. 27
1..2..4.. 8..16..32..64..3..6..12..24..48..96..192.. 9 .. 18..36..72..144..288..576..27..54..108..216..432.. 864 .. 1728.

Therefere the divisors of 1728 are $1,2,3,4,6,8,9,12,16$, $18,24,27,32,36,48,54,64,72,96,108,144,192,216,288,432$, 576, 864, 1728.

$30 \times 14 \times 12 \times 143=720720=1 . \mathrm{m} . \mathrm{c}$.
(17)

20 ft . T^{\prime}
$19 \mathrm{ft} .5 \mathrm{r}^{\prime \prime}$

| 1 0 0 $1^{\prime \prime \prime}$
 8 6 11 | |
| ---: | :--- | :--- | :--- |
| 391 | 1 |

916 acres 3 roods 17 per 7 yds. $=44375914$ sq. 5 ds., and 43 acres 1 rood 2 per $175 \mathrm{ds} .=209407 \frac{1}{2} \mathrm{sq}$. yds.
$4437591 \frac{1}{4} \div 209407 \frac{1}{2}=4437591 \cdot 25 \div 207407 \cdot 5=21 \cdot 19117+$.

Page 233.
$\$ 742 \cdot 10 \times \cdot 05=\$ 37 \cdot 10 \frac{1}{2} . \quad \$ 1000 \times \cdot 11=\$ 110$.
(16)
$\$ 734 \cdot 19 \times \cdot 10=\$ 73 \cdot 419$.
(17)

$$
\$ 1624 \cdot 50 \times \cdot 875=\$ 1421 \cdot 4375
$$

$\$ 994 \cdot 70 \times \cdot 125=\$ 124 \cdot 3375$.
$\$ 777 \cdot 50 \times \cdot 0875=\$ 68 \cdot 03125$, or $\$ 68 \cdot 03 \frac{1}{8}$.
(20)
$\$ 7135 \cdot 80 \times \cdot 0225=\$ 160 \cdot 5555$.
$2740 \times \cdot 20=548$.
$\$ 740 \times \cdot 045=\$ 33 \cdot 30$
$\$ 1680 \times .025=\$ 42 \cdot 00$
$\$ 42 \cdot 00-\$ 33 \cdot 30=\$ 8 \cdot 70$
$\$ 7490 \times .27=\$ 2022 \cdot 30$
$\$ 7490 \times .46=\$ 4445 \cdot 40$
$729 \times \cdot 11=80 \cdot 19 \quad \$ 763.22 \times 25=\$ 190 \cdot 8050$
$729-80 \cdot 19=648 \cdot 81=648_{1} \frac{81}{00} \cdot \$ 847 \cdot 16 \times 16=135 \cdot 5456$
$\$ 1234 \cdot 17 \times \cdot 0625=77 \cdot 135625$
Sum $=\$ 403 \cdot 486225$
$\$ 17429 \cdot 40 \times \cdot 43=\$ 7494 \cdot 64 \frac{1}{\delta} \quad 68978 \times \cdot 36=24832 \cdot 08$.
$\$ 17429 \cdot 40 \times \cdot 37=\frac{6448 \cdot 874}{\$ 13943 \cdot 52}$
$29800 \times \cdot 17=5060$
$\$ 17429 \cdot 40-\$ 13943 \cdot 52=\$ 3485 \cdot 88 . \quad 29800-5066=2473^{4}$

Page 235.
(3)
(4)
$\$ 1000 \times \cdot 045=\$ 45 . \quad \$ 1678 \cdot 30 \times \cdot 0225=\$ 37 \cdot 76175$.
(5)
(6)
$\$ 7531 \cdot 19 \times \cdot 0375=\$ 282 \cdot 419625 . \quad \$ 508 \cdot 60 \times \cdot 0125=\$ 6 \cdot 3575$
(7)
$\$ 7863 \cdot 50 \times \cdot 0175=\$ 137 \cdot 61125 . \$ 878 \cdot 30 \times \cdot 025=\$ 21 \cdot 9575$

> (9)
$\$ 7193 \cdot 16 \times \cdot 03125=\$ 224 \cdot 78625 . \$ 6734 \cdot 10 \times 17=\$ 1144 \cdot 797$. (11)
$\$ 7 \cdot 13 \times 718 \div \cdot 0425=\$ 217 \cdot 57195$.
(12)
$\$ 1 \cdot 85 \times 8243 \times \cdot 05625=\$ 857 \cdot 7871875$.

Page 236.
$\$ 7893.87 \times \cdot 02=\$ 157.8774 . \quad \$ 8000 \times \cdot 00875=\$ 70$.
(15.)
$\$ 8643 \cdot 22 \times \cdot 0125=\$ 108 \cdot 04025$.
(16.)
$\$ 78963 \cdot 80 \times \cdot 00875=\$ 690 \cdot 93325$.
(17)
$\$ 1987.27 \times \cdot 0375=\$ 74 ; 52625$.

Page 237.
(19)
$\$ 4000 \div 1 \cdot 0125=\$ 3950 \cdot 61728+=$ sum to be invested. $\$ 4000-3950 \cdot 61728=\$ 49 \cdot 38271=$ commission.
$\$ 7500 \div 1 \cdot 045=\$ 7177 \cdot 03349=$ sum to be expended in laces. $\$ 7500-\$ 322 \cdot 96651=\$ 322 \cdot 96651=$ commission.
$\$ 8470 \div 1 \cdot 05=\$ 8066 \cdot 66_{3}^{2}=$ sum to be invested. $\$ 8066 \cdot 66 \frac{2}{3} \div \$ 6 \cdot 40=1260 \frac{5}{12}$. Ans.
$\$ 11000 \div 1 \cdot 00875=\$ 10904 \cdot 584882=$ sum to be invested.
$\$ 13000 \div 1 \cdot 045=\$ 12440 \cdot 1913+=$ sum to be invested. $\$ 13000-\$ 12440 \cdot 1913=\$ 559 \cdot 8086+=$ commission. $\$ 12440 \cdot 1913+\div \$ 3 \cdot 63=3427 \cdot 0499$ yds. Ans.

Page 238.
(4)
(5)
$\$ 9000 \div 0.83=\$ 10843 \cdot 373 . \quad \$ 8500 \div 1 \cdot 11=\$ 7657 \cdot 6576$.
$\$ 17500 \div 1 \cdot 0125=\$ 17283 \cdot 951=$ amount to be invested. $\$ 17283 \cdot 951 \div 1 \cdot 07=\$ 16153 \cdot 22=$ stock,
(7)
$\$ 20000 \div 1 \cdot 0175=\$ 19656 \cdot 01965=$ amount to be invested. $\$ 19656 \cdot 01985 \div 0.97=\$ 20263 \cdot 937=$ stock remitted.
$\$ 200 \times 100=\$ 20000=$ par ralue of 200 shares.
$\$ 1$ stock costs $\$ 1 \cdot 055$. $\$ 1 \cdot 055 \times 20000=\$ 21100=\operatorname{cost}$ of stock.
$\$ 21100 \times \cdot 00875=\$ 184 \cdot 625=$ brokerage.
$\$ 21100+\$ 184 \cdot 625=\$ 21284 \cdot 625=$ whole cost.

Page 240.
(2)
$\$ 7500 \times \cdot 0175=\$ 131 \cdot 25$.
(4)
$\$ 6000 \times \cdot 01875=\$ 112.50$.
(6)
$\$ 6400 \times \cdot 0090=\$ 57 \cdot 60$.
(8)

$$
\$ 8375 \times \cdot 0075=\$ 62 \cdot 8125
$$

(5)
$\$ 5000 \times \cdot 0117=\$ 58 \cdot 50$.
(7)
$\$ 4500 \times \cdot 0035=\$ 15 \cdot 75$.
$\$ 36000 \times \cdot 03=\$ 1080 . \quad \$ 27000 \times 4.82 \times 4=\$ 5205 \cdot 60$.
(10)
$\$ 39000 \times \cdot 022=\$ 858 . \quad \$ 17800 \times \cdot 005=\$ 89$.
(12)
$\$ 12350 \times \cdot 01 \xi \times 7=\$ 1235$.

Page 241.
$\$ 17000 \div \cdot 965=\$ 17616 \cdot 58 . \quad \$ 22750 \div \cdot 94=\$ 24202 \cdot 127$.
$\$ 15000 \div \cdot 9775=\$ 15345 \cdot 2685 . \quad \$ 33000 \div \cdot 9425=\$ 35013 \cdot 2625$.

Page 243.
(3)
$1347 \times \quad 5=6735 \quad$ lbs. $=$ gross weight. $6735 \times \cdot 06=404 \cdot 1$ lbs. tare.
$6330 \cdot 9 \mathrm{lbs} .=$ net at $3 \frac{1}{2}$ cents per lb. $=6330.9$ $\times 3 \frac{1}{2}=\$ 221 \cdot 58$.
(4)
$127 \times 11=1397 \quad$ Ibs. $=$ gross weight. $1397 \times \cdot 03=41 \cdot 91$ les. $=$ tare.
$1355 \cdot 09 \mathrm{lbs} .=$ net at $\$ \cdot 012$ per $\mathrm{lb} .=1355 \cdot 09$ $x \cdot 012=\$ 16 \cdot 26$.
(5)

$$
129 \times \cdot 13=\$ 16 \cdot 77
$$

(6)
$31^{\prime} \times 207=6417$ lbs. $=$ gross weight. $207 \times 2 \frac{1}{4}=465$ 年 lbs. $=$ tare.
$5951 \frac{1}{4} \mathrm{lbs} .=$ net at $5 \frac{3}{4}$ cents per lb. $=59514 \times$ $5 \frac{3}{4}=\$ 342 \cdot 1968$,

$$
214 \times \cdot 47=\$ 100 \cdot 58
$$

$\$ 17429 \cdot 80 \times \cdot 21=\$ 3660 \cdot 2580 . \quad \$ 2920 \cdot 16 \times \cdot 075=\$ 219 \cdot 012$.
$\$ 71342 \cdot 90 \times \cdot 25=\$ 17835 \cdot 725 . \quad \$ 913 \cdot 73 \times \cdot 2=\$ 182 \cdot 746$.
$\$ 14713 \cdot 19 \times \cdot 33=\$ 4855 \cdot 3527$.

Page 244.

(2)
$\$ 23900 \div 7142300=\$ 0.0033462=$ rate per dollar. $\$ \cdot 0033462 \times 14729 \cdot 50=\$ 49 \cdot 2878+$ Ans.
(3)
$\$ 100000 \div 5793000=\$ \cdot 017262=$ rate per dollar. $\$ \cdot 017262 \times 18600=\$ 321 \cdot 0732$. Ans.
(4)
$\$ 100000 \div 5793000=\$ \cdot 017262=$ rate per dollar. $\$ \cdot 017262 \times 7500=\$ 129 \cdot 465$. Ans.

(5)

$\$ 100000 \div 5793000=\$ \cdot 017262=$ rate per dollar. $\$ \cdot 017262 \times 11400=\$ 196 \cdot 7868$. Ans.

Page 252.

Here $P=\$ 723 \cdot 19, r=\cdot 067$, and $t=7 \cdot 32$. Then $I=P r t=.723 \cdot 19 \times \cdot 067 \times 7 \cdot 32=\$ 354 \cdot 6813036$.

Here $P=\$ 857 \cdot 19, r=\cdot 065$, and $t=6 \frac{1}{2}$ or $6 \cdot 5$.
Then $A=P(1+r t)=\$ 857 \cdot 19 \times 1 \cdot 4225=\$ 1219 \cdot 352775$.
(15)

Here $t=11$, and $r=\cdot 725$.
Then $n=t r+1=11 \times \cdot 725+1=8.975$.

Here $P=\$ 654 \cdot 32, I=\$ 234 \cdot 56$, and $r=\cdot 07$.

$$
I \quad 234.56
$$

Then $t=\frac{I}{P r}=\frac{}{654 \cdot 32 \times \cdot 07}=5 \cdot 12112$ or 5 years 1 m .13 d .

Here $A=\$ 1200, P=\$ 700$, and $t=5$.
Then $r=\frac{A-P}{P t}=\frac{1200-700}{700 \times 5}=\frac{1}{7}=$ rate per unit $\cdot \therefore 14 \frac{3}{\frac{1}{7}=}$ rate per cent.
(18)

Here $n=4$, and $r=\cdot 23$.
Then $t=\frac{n-1}{2}=\frac{4-1}{\cdot 23}=13$ years 15 days.
(19)

Here $P=\$ 270, I=\$ 87$, and $r=\cdot 07$.
Then $t=\frac{I}{P r}=\frac{87}{270 \times \cdot 07}=4$ years $7 \frac{s}{2}$ months.

Here $P=\$ 680, t=11 \frac{1}{2}$, and $r=\cdot 11$.
Then $A=P(1+r t)=680 \times 2 \cdot 265=\$ 1540 \cdot 20$.

Here $A=\$ 2000, t=20$, and $r=\cdot 08$.
Then $P=\frac{A}{1+r t}=\frac{2000}{2 \cdot 6}=\$ 769 \cdot 23_{1 \frac{1}{13}}$.
(22)

Here $n=21$, and $t=24$.
Then $\left.r=\frac{n-1}{t}=\frac{21-1}{24}=\cdot 83\right\}=$ rate per unit. $. \therefore 83 \frac{1}{\frac{1}{2}}=$ rate per cent.

Here $n=23$, and $r=\cdot 16$.
Then $t=\frac{n-1}{r}=\frac{25-1}{\cdot 16}=137 \frac{1}{2}$ years.

Here $P=\$ 679 \cdot 18, r=\cdot 0775$, and $t=11 \cdot 73$.
Then $I=P r t=679 \cdot 18 \times \cdot 0775 \times 11 \cdot 73=\$ 617 \cdot 4255$.

Here $\mathrm{P}=\$ 950, A=\$ 1763 \cdot 42$, and $t=.10$.
Then $r=\frac{A-P e}{P t}=\frac{1763 \cdot 42-950}{950 \times 10}=\cdot 08562=$ rate per unit $\therefore \cdot 8 \cdot 562=$ rate per cent.

Here $P=\$ 666, A=\$ 1347 \cdot 50$, and $r=\cdot 06$.
Then $t=\frac{A-P}{P r}=\frac{1347 \cdot 50-666}{\begin{array}{c}666 \times \cdot 06 \\ \text { years } 19 \text { days. }\end{array}}=17 \cdot 054+$ years, or 17

Here $P=\$ 273, I=\$ 100$, and $r=\cdot 09$.
Then $t=\frac{1}{P r}=\frac{100}{273 \times \cdot 09}=4.07$ years $=4$ years 25 days.

Here $P=\$ 476 \cdot 30, A=\$ 500$, and $t=2$.
Then $r=\frac{\mathcal{A}-P}{P t}=\frac{500-476 \cdot 30}{476 \cdot 30 \times 2}=\cdot 0248=$ rate per unit. $\therefore 2 \frac{12}{25}=$ rate per cent.

Here $P=\$ 749 \cdot 49, I=\$ 257$, and $t=7$.
Then $r=\frac{I}{P t}=\frac{257}{749.49 \times 7}=\cdot 04898=$ rate per unit.
$\therefore 4 \cdot 898=$ rate per cent.

Here $A=\$ 1111 \cdot 11, t=11$, and $r=\cdot 11$.
Then $P=\frac{A}{1+r t}=\frac{1111 \cdot 11}{2 \cdot 21}=\$ 502 \cdot 7647$.
$P=£ 167 \cdot 47, r=\cdot 11$, and $t=9$.
$I=P r t=167.47 \times \cdot 11 \times 9=£ 165 \cdot 7953=£ 16515 \mathrm{~s} .101299 \mathrm{~d}$.

Page 253.

$$
11 \div 2=5 \frac{1}{2} \text { cents. } \quad 16 \div 2=8 \text { cents }=\$ 0 \cdot 08
$$

9 jears and 8 months $=116$ months, and $116 \div 2=58$ cents $=\$ 0.58$.

16 jears and 3 months $=195$ months, and $195 \div 2=97 \frac{1}{2}$ cents $=\$ 0.97 \frac{1}{2}$.

11 years and 7 months $=139$ months, and $139 \div 2=69 \frac{1}{2}$ cents $=\$ 0 \cdot 695$.

12 years and 5 months $=149$ months, and $149 \div 2=74 \frac{1}{2}$ cents $=\$ 0 \cdot 745$.

3 jears and 2 months $=38$ months, and $38 \div 2=19$ cents $=$ interest of $\$ 1$ for given rate and time.

$$
\$ 0 \cdot 19 \times 279 \cdot 40=\$ 53 \cdot 086
$$

6 jears and 7 months $=79$ months, and $79 \div 2=39 \frac{1}{2}$ cents $=$ interest of $\$ 1$ for given rate and time.
$\$ 0 \cdot 395 \times 189 \cdot 70=\$ 74.9315$.

3 years and 11 months $=47$ months, and $47 \div 2=23 \frac{1}{2}$ cents $=$ interest of $\$ 1$ for given rate and time. $\$ 0 \cdot 235 \times 1463=\$ 343 \cdot 805$.

11 years and 1 month $=133$ months, and $133 \div 2=66 \frac{1}{2}$ cents $=$ interest of $\$ 1$ for given rate and time. $\$ 0 \cdot 665 \times 28967 \cdot 50=\$ 19263 \cdot 3875$.

Page 254.
$2 \div 6=\frac{1}{3}$ mill $=\$ \cdot 0003 . \quad 7 \div 6=1 \frac{1}{6}$ mills $=\$ 0 \cdot 001 \frac{1}{6}$.
$11 \div 6=1 \frac{5}{6}$ mills $=\$ 0.001$ 尽. $27 \div 6=4 \frac{1}{2}$ mills $=\$ 0 \cdot 004 \frac{1}{2}$.

$$
\begin{equation*}
47 \div 6=7 \frac{5}{6} \text { mills }=\$ 0 \cdot 007 \frac{5}{6} \tag{49}
\end{equation*}
$$

$$
\begin{equation*}
8 \div 2=4 \text { cents }=\$ 0 \cdot 04 \tag{50}
\end{equation*}
$$

$$
12 \div 6=2 \text { mills }=\$ 0 \cdot 002 \text { and } \$ 0 \cdot 04+\$ 0 \cdot 002=\$ 0 \cdot 042
$$

$66 \div 6=11$ mills $=\$ 0 \cdot 011$.

2 years 2 m'ths $=26$ months, and $26 \div 2=13$ cents $=\$ 0 \cdot 13$. $19 \div 6=3 \frac{1}{6}$ mills $=\$ 0 \cdot 003_{6}^{\frac{1}{6}}$ and $\$ 0 \cdot 13+\$ 0 \cdot 003_{6}^{\frac{1}{6}}=\$ 0 \cdot 133_{6}^{\frac{1}{6}}$.

7 jears 8 m 'ths $=92$ months, and $92 \div 2=46$ cents $=\$ 0 \cdot 46$. $9 \div 6=1 \frac{1}{2}$ mills $=\$ 0.001 \frac{1}{2}$ and $\$ 0 \cdot 46+\$ 0.001 \frac{1}{2}=\$ 0.461 \frac{1}{2}$.

17 years 11 months $=215$ months, and $215 \div 2=107 \frac{1}{2}$ cents $=$ $\$ 1 \cdot 075$.
$23 \div 6=3 \frac{5}{6}$ mills $=\$ 0 \cdot 0035$, and $\$ 1 \cdot 075+\$ 0 \cdot 00355$

12 years 7 months $=151$ months, and $151 \div 2=75 \frac{1}{2}$ cents $=$ $\$ 0 \cdot 755$.
$17 \div 6=2 \frac{5}{6}$ mills $=\$ 0 \cdot 0025$, and $\$ 0 \cdot 755+\$ 0 \cdot 002$ 各 $=\$ 0 \cdot 7577_{0}^{5}$.

Page 255.
(57)

$$
\begin{array}{cl}
\begin{array}{c}
\text { Interest on } \$ 1 \text { for } 7 \text { months } \\
\text { Interest on } \$ 1 \text { for } 17 \text { days }
\end{array} & =\$ 0 \cdot 035 \\
\text { Therefore interest on } \$ 1 \text { for } 7 \text { months } 17 \text { days, } & =\$ 0 \cdot 037 \frac{25}{6} \\
\text { Then } \$ 0 \cdot 037 \frac{5}{6} \times 917 \cdot 30=\$ 34 \cdot 704516 .
\end{array}
$$

$$
\begin{equation*}
\text { Interest on } \$ 1 \text { for } 3 \text { months } \quad=\$ 0.015 \tag{58}
\end{equation*}
$$

Interest on $\$ 1$ for 13 days $\quad=\quad 2 \frac{1}{6}$
Therefore interest on $\$ 1$ for 3 months 13 days $=\$ 0.017 \frac{1}{6}$ Then $\$ 0 \cdot 017 \frac{1}{6} \times 842 \cdot 50=\$ 14 \cdot 462916$.

$$
\begin{array}{ll}
\text { Interest on } \$ 1 \text { for } 2 \text { years } 11 \text { months } & =\$ 0 \cdot 175 \tag{59}\\
\text { Interest on } \$ 1 \text { for } 10 \text { days } & = \\
13
\end{array}
$$

Therefore interest on $\$ 1$ for 2 yrs .11 m 'ths 10 days $=\$ 0 \cdot 176{ }^{3}$ Then $\$ 0 \cdot 176 \frac{2}{5} \times 573.83=\$ 101 \cdot 3766$.

Interest on $\$ 1$ for 6 years 9 months $=\$ 0.405$
Interest on $\$ 1$ for 19 days $\quad=\quad 3{ }_{6}^{1}$
Therefore interest on $\$ 1$ for 6 years 9 m'ths 19 days $=\$ 0 \cdot 408 \frac{1}{6}$
Then $\$ 0 \cdot 408 \frac{1}{6} \times 642 \cdot 30=\$ 262 \cdot 16545$.

Interest on $\$ 1$ for 5 years 5 months $=\$ 0.325$
Interest on $\$ 1$ for 7 days $\quad=\quad 1 \frac{1}{6}$
Therefore interest on $\$ 1$ for 5 years 5 months 7 days $=\$ 0 \cdot 326 \frac{1}{6}$ Then $\$ 0 \cdot 326 \frac{1}{6} \times 1427 \cdot 875=\$ 465 \cdot 7252$.

$$
\begin{array}{ll}
\text { Interest on } \$ 1 \text { for } 4 \text { years } 7 \text { months } & =\$ 0 \cdot 275 \tag{62}\\
\text { Interest on } \$ 1 \text { for } 16 \text { days } & = \\
\hline
\end{array}
$$

Therefore interest on $\$ 1$ for 4 years 7 m'ths 16 days $=\$ 0.277$? Then $\$ 0 \cdot 277 \frac{1}{3} \times 709 \cdot 63=197 \cdot 040596$.

$$
\begin{array}{ll}
\text { Interest on } \$ 1 \text { for } 7 \text { years } 7 \text { months } & =\$ 0.455 \tag{63}\\
\text { Interest on } \$ 1 \text { for } 22 \text { days } & =3 \frac{2}{3}
\end{array}
$$

Therefore interest on $\$ 1$ for 7 years 7 m'ths 22 days $=\$ 0 \cdot 458 \frac{2}{5}$ Then $\$ 0 \cdot 458 \frac{2}{3} \times 2463 \cdot 20=\$ 1129 \cdot 7877+\$ 2463 \cdot 20=\$ 3592 \cdot 9877$.

$$
\begin{array}{ll}
\text { enterest on } \$ 1 \text { for } 9 \text { years } 9 \text { months } & =\$ 0.585 \tag{64}\\
\text { Interest on } \$ 1 \text { for } 9 \text { days } & =1 \frac{1}{2}
\end{array}
$$

Therefore interest on $\$ 1$ for 9 years 9 m 'ths 9 days $=\$ 0 \cdot 586 \frac{1}{2}$ Then $\$ 0 \cdot 586 \frac{1}{2} \times 999 \cdot 99=\$ 586 \cdot 494135$.
(65)

$$
\begin{array}{ll}
\text { Interest on } \$ 1 \text { for } 3 \text { years } 4 \text { months } & =\$ 0 \cdot 20 \\
\text { Interest on } \$ 1 \text { for } 27 \text { days } & =
\end{array}
$$

Therefore interest on $\$ 1$ for 3 years $4 \mathrm{~m}^{\prime}$ ths 27 dags $=\$ 0 \cdot 204 \frac{1}{2}$ Then $\$ 0 \cdot 2045 \times 68 \cdot 70=\$ 14 \cdot 04915$.

$$
\begin{array}{ll}
\text { Interest on } \$ 1 \text { for } 3 \text { years } & =\$ 0 \cdot 18 \tag{66}\\
\text { Interest on } \$ 1 \text { for } 28 \text { days } & =
\end{array}
$$

Therefore interest on $\$ 1$ for 3 years 28 days $=\$ 0 \cdot 184$? Then $\$ 0 \cdot 184 \frac{2}{3} \times 742 \cdot 63=\$ 137 \cdot 139$.

Interest on $\$ 1$ for 7 years 4 months	$=\$ 0.44$
Interest on $\$ 1$ for 11 days	$=1 \frac{18}{6}$

Therefore interest on $\$ 1$ for 7 years 4 m'ths 11 days $=\$ 0 \cdot 441 \frac{5}{6}$
Then $\$ 0 \cdot 441$ 各 $\times 200=\$ 88 \cdot 366+\$ 200=\$ 288 \cdot 366$.

Interest on $\$ 1$ for 9 years 3 months	$=\$ 0.555$
Interest on $\$ 1$ for 9 days	$=\quad 1 \frac{1}{2}$

Therefore interest on $\$ 1$ for 9 years 3 months 9 days $=\$ 0 \cdot 556 \frac{1}{2}$ Then $\$ 0 \cdot 5565 \times 743 \cdot 63=\$ 413 \cdot 830095+\$ 743 \cdot 63=\$ 1157 \cdot 460095$.
Page-256.

Interest on $\$ 1$ at 6 per cent. for given time $=\$ 0 \cdot 526 \frac{1}{5}$. Interest on $\$ 1234 \cdot 56$ at 6 per cent. for given time $=\$ 0.526 \frac{2}{5} \mathrm{X}$ $1234 \cdot 56=\$ 650 \cdot 2016$.
Hence interest on $\$ 1234: 56$ at 7 per cent for given time $=$ $\$ 650 \cdot 2016$ + one sixth of $\$ 650 \cdot 2016=\$ 758 \cdot 5685$.

Interest on $\$ 1$ at 6 per cent. for given time $=\$ 0 \cdot 1265$. Interest on $\$ 9876 \cdot 54$ at 6 per cent. for given time $=\$ 0 \cdot 1265 \times$ $9876 \cdot 54=\$ 1252 \cdot 67449$.
Hence interest on $\$ 9876 \cdot 54$ at 3 per cent. for given time $=$ $\$ 1252 \cdot 67449 \div 2=\$ 626 \cdot 337245$.

Interest on $\$ 1$ at 6 per cent. for given time $=\$ 0 \cdot 216{ }_{3}^{2}$.
Interest on $\$ 715 \cdot 30$ at 6 per cent. for given time $=\$ 0 \cdot 216 \frac{2}{2} \times$ $715 \cdot 30=\$ 154.98166$.
Hence interest on $\$ 715 \cdot 30$ at 8 per cent. for given time $=$ $\$ 154 \cdot 98166$ t one third of $\$ 154 \cdot 98166=\$ 206 \cdot 6422$.

Interest on $\$ 1$ at 6 per cent. for given time $=\$ 0 \cdot 141 \frac{1}{s}$. Interest on $\$ 555 \cdot 55$ at 6 per cent. for given time $=\$ 0 \cdot 141 \frac{1}{2} \times$ $555 \cdot 55=\$ 78 \cdot 51773$.
Hence. interest on $\$ 555 \cdot 55$ at 12 per cent. for given time $=$ $\$ 78 \cdot 51773 \times 2=\$ 157 \cdot 03546+\$ 555 \cdot 55=\$ 712 \cdot 58546$.

Interest on $\$ 1$ at 6 per cent. for given time $=\$ 0.016 \frac{3}{3}$.
Interest on $\$ 7766 \cdot 55$ at 6 per cent. for given time $=\$ 0.0163 \times$ $7766 \cdot 55=\$ 129 \cdot 4425$.
Hence interest on $\$ 7766 \cdot 55$ at 5 per cent. for given time $=$ $\$ 129 \cdot 4425$ - one sixth of $\$ 129 \cdot 4425=\$ 104 \cdot 86875$. Amount $=\$ 104 \cdot 86875+\$ 7766 \cdot 55=\$ 7874 \cdot 41875$.

Interest on $\$ 1$ at 6 per cent. for given time $=\$ 0 \cdot 521\}$.
Interest on $\$ 500$ at 6 per cent. for given time $=\$ 0.521 \ddagger \times$ $500=\$ 260 \cdot 666 \frac{2}{3}$.
Hence interest on $\$ 500$ at 16 per cent. for given time $=$ $\$ 260 \cdot 666 \frac{2}{3} \times 2$ 解 $=\$ 695 \cdot 111+\$ 500=\$ 1195 \cdot 111$ 。

Interest on $\$ 1$ at 6 per cent. for given time $=\$ 0 \cdot 206 \frac{1}{6}$. Interest on $\$ 576$ at 6 per cent. for given time $=\$ 0 \cdot 206 \frac{1}{6} \times$ $576=\$ 118 \cdot 752$.
Hence interest on $\$ 576$ at 5 per cent. for given time $=\$ 118 \cdot 752$ - one sixth of $\$ 118 \cdot 752=\$ 98 \cdot 96$.

Interest on $\$ 1$ at 6 per cent. for given time $=\$ 0 \cdot 151 \frac{5}{6}$.
Interest on $\$ 2478 \cdot 91$ at 6 per cent. for given time $=\$ 0 \cdot 151 \frac{5}{6} \times$ $2478 \cdot 91=\$ 376 \cdot 38116$.
Hence interest on $\$ 2478 \cdot 91$ at $4 \frac{1}{2}$ per cent. for given time $=$ $\$ 376 \cdot 38116$ - one fourth of $\$ 376 \cdot 38116=\$ 282 \cdot 285$.

From May 9th to December 11th $=216$ days. Interest on $\$ 1$ at 6 per cent. for 216 days $=\$ 0 \cdot 036$.
Interest on $\$ 780$ at 6 per cent. for 216 days $=\$ 0.036 \times 780=$ $\$ 28 \cdot 08$.

From August 16th 1851 to June 19th $1852=308$ days. Interest on $\$ 1$ at 6 per cent. for giren time $=\$ 0.051 \frac{1}{3}$. Interest on $\$ 1830.63$ at 6 per cent. for giren time $=\$ 0.051 \frac{1}{3} \times$ $1830 \cdot 63=\$ 93 \cdot 97234$.
Hence interest on $\$ 1830 \cdot 63$ at 7 per cent. for given time $=$ $\$ 93 \cdot 97234$ + one sixth of $\$ 93 \cdot 97234=\$ 109 \cdot 63439$.

From September 3rd 1858 to Jannary 9th $1859=128$ days.
Interest on $\$ 1$ at 6 per cent. for giren time $=\$ 0 \cdot 021$.
Interest on $\$ 6200$ at 6 per cent. for given time $=\$ 0.0213 \times$ $6200=\$ 132 \cdot 266$.

Amount $=\$ 132 \cdot 266+\$ 6200=\$ 6332 \cdot 266$.

Page 258.

From June	2nd to July				days.
" July	17th to October	6th	/	81	1
" October	6th to December	11th	"	66	
December	11th to March	29th	"	109	-
March	29th to October	7 t	"	192	

Whole sum $\$ 1217 \cdot 30$ for 45 days $=\$ 54778 \cdot 50$ for 1 day. lst endorsement $207 \cdot 80$

Balance $\quad \$ 1009 \cdot 50$ for 81 days $=\$ 81769 \cdot 50$ for 1 day. 2nd endorsement $209 \cdot 60$

Balance $\quad \$ 799 \cdot 90$ for 66 days $=\$ 52793 \cdot 40$ for 1 day. 3rd endorsement $320 \cdot 90$

Balance $\quad \$ 479 \cdot 00$ for 109 days $=\$ 52211.00$ for 1 day. 4th endorsement $421 \cdot 83$

Balance $\quad \$ 57 \cdot 17$ for 192 days $=\$ 10976 \cdot 64$ for 1 day. Whole interest $=$ that of $\$ 252529 \cdot 04$ for 1 day.

Interest on $\$ 252529 \cdot 04$ at 6 per cent. for 1 year $=\$ 15151 \cdot$ it424.
Hence interest for 1 day $=\$ 15151 \cdot 7424 \div 365=\$ 41 \cdot 5116$.

Then interest due	$=\$ 41 \cdot 5116$
Balance on Note	$=\$ 57 \cdot 17$

Principal and interest due $=\$ 98 \cdot 6816$

From	17th June	to	5th September	there	are
80	days.				
""	5th September to	7th December	"	93	"
"	7th December to 11th June	"	186	"	
"	11th June	to 7th February	"	241	"
"	7th February to 19th December	"	315	"	
"	19th December to	1st May	"	133	"

Whole sum $\$ 7348 \cdot 25$ for 80 days $=\$ 587860 \cdot 00$ for 1 day. lst endorsement $2463 \cdot 80$

Balance $\quad \$ 4884 \cdot 45$ for 93 days $=\$ 454253 \cdot 85$ for 1 day. 2nd endorsement $392 \cdot 20$

Balance $\$ 4492 \cdot 25$ for 186 days $=\$ 835558 \cdot 50$ for 1 day. 3rd endorsement $982 \cdot 20$

Balance $\quad \$ 3510 \cdot 05$ for 241 days $=\$ 845922.05$ for 1 day. 4th endorsement $2842 \cdot 90$

Balance $\quad \$ 667 \cdot 15$ for 315 days $=\$ 210152 \cdot 25$ for 1 day. 5th endorsement $317 \cdot 23$

$$
\text { Balance } \quad \overline{\$ 349 \cdot 92} \text { for } 133 \text { days }=\$ 46539 \cdot 36 \text { for I day. }
$$

- Whole interest $=$ that of $\$ 2980286.01$ for 1 day.

Interest on $\$ 2980286 \cdot 01$ at 8 per cent. for 1 jear $=\$ 238422 \cdot 8808$. Hence interest for 1 day $=\$ 238422 \cdot 8808 \div 365=\$ 653 \cdot 2133$.

Then interest due	$=\$ 653 \cdot 2133$
Balance on Note	$=\$ 349 \cdot 92$
Principal and interest due	$=\$ 1003 \cdot 1333$

Page 259.

\$1800	Principal.
108	Interest for 1st jear.
\$1908	Amount for 1 year $=$ principal for 2 nd year
$114 \cdot 48$	Interest for 2 nd year.
\$2022.48	Amount for 2 years $=$ principal for 3rd year.
$121 \cdot 3488$	Interest for 3rd year.
\$2143.8288	Amount for 3 years $=$ principal for 4 th year.
$128 \cdot 629728$	Interest for 4th year.
\$2272.458528	Amount for 4 years $=$ principal for 5 th year.
136.347511	Interest for 5 th year.
\$2408.806039	Amount for 5 years.
1800	Given Principal.
\$608.806 =	Compound interest required.
	(3)
\$700	Principal.
49	Interest for 1st half year.
\$749	Amount for 1 half y. $=$ principal for 2 nd half y .
$52 \cdot 43$	Interest for 2nd half year.
\$801.43	Amount for 1 year = principal for 3rd half y.
$56 \cdot 1001$	Interest for 3rd half year. -
\$857.5301	Amount for $1 \frac{1}{2}$ years $=$ principal for 2 nd year
60.027107	Interest for 2 nd year.
\$917.557207	Amount for 2nd year $=$ principal for 5th half y.
$64 \cdot 229004$	Interest for 5th half year.
\$981-786211	Amount for $2 \frac{1}{2}$ years $=$ principal for 3rd year.
68.725034	Interest for 3rd year.
\$1050-511245	Amount for 3 years $=$ principal for 7th half y .
$73 \cdot 535787$	Interest for 7th half year.
\$1124-047032	Amount for $3 \frac{1}{\frac{1}{2}}$ years.
700	Given Principal.
$\$ 424 \cdot 047=$	Compound interest required.

$\$ 673 \cdot 40 \quad$ Principal.
$20 \cdot 202$
$\$ 693 \cdot 602$
20-80806
$\$ 714 \cdot 41006$ $21 \cdot 4323018$
$\$ 735 \cdot 8423618$ $22 \cdot 0752708$
\$757.9176326 $22 \cdot 7375289$
$\$ 780 \cdot 6551615$ $23 \cdot 4196548$
\$804-0748163 24-1222444
$\$ 828 \cdot 1970807$ $24 \cdot 8459124$
$\$ 853.0429=$ Amount for 2 years required.
673.40 Given Principal.
$\$ 179 \cdot 6429=$ Compound Interest required.
(5)

\$860	Principa
$34 \cdot 4$	Interest for 1st half year.
$\begin{aligned} & \$ \overline{894 \cdot 4} \\ & 35 \cdot 776 \end{aligned}$	Amount for 1 half year $=$ principal for 1 st year. Interest for lst year.
$\begin{aligned} & \$ \overline{930 \cdot 176} \\ & 37 \cdot 20704 \end{aligned}$	Amount for 1 year $=$ principal for 3 rd half year. Interest for 3rd half year.
$\begin{array}{r} \$ 967 \cdot 38304 \\ 38 \cdot 69532 \end{array}$	Amount for 3 half years $=$ principal for 2 nd y. Interest for 2nd year.
$\begin{array}{r} \$ 1006 \cdot 07836 \\ 40 \cdot 24313 \end{array}$	Amount for 2 years $=$ principal for 5 th half year. Interest for 5 th half year.
$\begin{array}{r} \$ \overline{1046 \cdot 32149} \\ 41 \cdot 85285 \end{array}$	Amount for 5 half years $=$ principal for 3rd year. Interest for 3rd year.
$\begin{aligned} & \$ \overline{1088 \cdot 17434} \\ & 860 \end{aligned}$	$=$ Amount for 3 years required. Given Principal.
\$228:1743	$=$ Compound Interest required.

Page 261.
(8)

By the table the am't of $\$ 1$ at 6 per cent. for 11 years $=\$ 1 \cdot 8983$.
Then $\$ 1 \cdot 8983 \times 875=\$ 1661 \cdot 0125=$ Amount.
875 Principal.
$\$ 786 \cdot 0125=$ Interest.
(9)

By the table the am't of $\$ 1$ for the given time and rate $=\$ 2 \cdot 77247$.
Then $\$ 2 \cdot 77247 \times 643 \cdot 98=\$ 1785 \cdot 41523=$ Amount.
$643.98 \quad$ Principal.
$\$ 1141 \cdot 43523=$ Interest.

By the table the am't of $\$ 1$ at 6 per cent. for 45 years $=\$ 13 \cdot 76461$.
Then $\$ 13 \cdot 76461 \times \cdot 01=\$ \cdot 137646=$ Amount.

$$
\$ \cdot \overline{-01}=\begin{aligned}
& \text { Principat. } \\
& \$ \cdot 127646 \\
& =\text { Interest. }
\end{aligned}
$$

By the table the am't of $\$ 1$ for the given time and rate $=\$ 2 \cdot 28793$.
Then $\$ 2 \cdot 28793 \times 78 \cdot 2=\$ 178 \cdot 916=$ Amount.

$$
\frac{78 \cdot 2}{\$ 100 \cdot 716}=\text { Interest. }
$$

By the table the am't of $\$ 1$ for the given rate and time $=\$ 2 \cdot 40662$.
Then $\$ 2 \cdot 40662 \times 777 \cdot 77=\$ 1871 \cdot 7968=$ Amount. $777.77 \quad$ Principal.
$\$ 1094 \cdot 0268=$ Interest.

£44 53. 9d. $=£ 44.2875$.

By the table the am't of $£ 1$ at $\mathbf{6}$ per cent. for 11 years= $£ 1 \cdot 8983$. Then $£ 1 \cdot 8983 \times 44 \cdot 2875=£ 84 \cdot 07096=£ 84 \quad 15=$ Amount.

4459 Principal.
£39 $158=$ Interest.
(14)
£32 4s. 93군. $=£ 32 \cdot 240625$.
By the table the amount of $£ 1$ for the given time and rate $=$ $\mathfrak{£ 1 \cdot 2 6 5 3 2 \text { . Then } £ 1 \cdot 2 6 5 3 2 \times 3 2 \cdot 2 4 0 6 2 5 =}$ £ $40 \cdot 7947076=£ 4015103$ nearly $=$ Amount. 32493 Principal. £8 11 1 $=$ Interest.

Page 262.

Amount of $\$ 1$ for 7 jears at 4 per cent $=\$ 1 \cdot 31593$. $\$ 7439 \cdot 87 \div 1 \cdot 31593=\$ 5653 \cdot 697$.

Amount of $\$ 1$ at 5 per cent for 20 years $=\$ 2 \cdot 6533$.

$$
\begin{equation*}
\$ 9193 \cdot 90 \div 2 \cdot 6533=\$ 3465 \cdot 081 \tag{18}
\end{equation*}
$$

$$
£ 59510 \mathrm{~s} .2 \mathrm{z} \mathrm{~d} .=£ 595 \cdot 51 .
$$

Amount of $£ 1$ at 6 per cent for 3 years $=£ 1 \cdot 19102$. $£ 595 \cdot 51 \div 1 \cdot 19102=£ 500$.
(19)

Amount of $\$ 1$ at 6 per cent for 7 jears $=\$ 1 \cdot 50363$.
$\$ 7111 \cdot 11 \div 1 \cdot 50363=\$ 4729 \cdot 295$.

$$
\begin{align*}
& \text { £268 0s. } 4_{5}^{4} \mathrm{~d} .=£ 268 \cdot 02 . \tag{20}\\
& \text { Amount of } £ 1 \text { at } 5 \text { per cent for } 6 \text { years }=£ 1 \cdot 3401 \text {. } \\
& £ 268 \cdot 02 \div 1 \cdot 3401=£ 200 \text {. }
\end{align*}
$$

Page 263.

Here $\mathcal{A}=\$ 962, r=\cdot 04$, and $t=1$. Whence $1+r t=1 \cdot 04$. Then $=\frac{A}{1+r t}=\frac{962}{1 \cdot 04}=\$ 925$.
(4)

Here $\mathcal{A}=\$ 2202, r=\cdot 06$, and $t=5 \cdot 75$. Whence $1+r t=$ $1 \cdot 345$.
Then $P=\frac{\mathcal{A}}{1+r t}=\frac{2202}{1 \cdot 345}=\$ 1637 \cdot 174$.
(5)

Here $\mathcal{A}=\$ 1003 \cdot 50, r=\cdot 06$, and $t=\frac{?}{3}$ year. Wh nee $1+r t$ $=1 \cdot 04$.
Then $P=\frac{A}{1+r t}=\frac{1003 \cdot 50}{1 \cdot 04}=\$ 964 \cdot 9038$.
(6)

Here $A=\$ 716, r=\cdot 08$, and $t=\frac{7}{12}$ year. Whence $1+r t=$ $1 \cdot 04$?
Then $\quad P=\frac{A}{1+r t}=\frac{716}{1 \cdot 04 \xi}=\$ 684 \cdot 0764$.

Here $A=\$ 1342 \cdot 50, r=\cdot 065$, and $t=85$ year. Whence $1+$ $r t=1.022 \frac{19}{7} \frac{9}{3}$.
Then $P=\frac{\mathcal{A}}{1+r t}=\frac{1342 \cdot 50}{1 \cdot 022 \frac{19}{3}}=\$ 1313 \cdot 266$.
(8)

Here $\mathcal{A}=\$ 2400, r=\cdot 05$, and $t={ }_{3}^{2} \frac{20}{5}$ year. Whence $1+r t$ $=1.03 \frac{17}{3}$.
Then $P=\frac{A}{1+r t}=\frac{2400}{1 \cdot 03_{j_{3}^{7}}^{\prime 7}}=\$ 2324 \cdot 84$.
(9)

Here $\mathcal{A}=\$ 2202, r=\cdot 05$, and $t=\cdot 75$ year. Whence $1+r t$ $=1.0375$.
$\$ 2202 \div 1 \cdot 0375=\$ 2122 \cdot 40963+=$ Present worth. $\$ 2202$ - $\$ 2122 \cdot 40963$ + $=\$ 79 \cdot 59036=$ Disconnt.

Here $\mathcal{A}=\$ 4360, r=\cdot 06$, and $t=1_{15}$. Whence $1+r t=1 \cdot 085$. Then $P=\frac{A}{1+r t}=\frac{4360}{1 \cdot 085}=\$ 4018.43317$.

Here $A=\$ 1647, r=\cdot 06$, and $t=\frac{1}{1}$ year. Whence $1+r t=$ $1 \cdot 055$.
Then $P=\frac{A}{1+r t}=\frac{1647}{1 \cdot 055}=\$ 1561 \cdot 13744$.
(12)

Here $\mathcal{A}=\$ 2000, r=\cdot 06$, and $t=3 \frac{7}{1.5}$. Whence $1+r t=1 \cdot 215$.

$$
\text { Then } P=\frac{A}{1+r t}=\frac{2000}{1 \cdot 215}=\$ 1646: 09053
$$

Here $\mathcal{A}=\$ 2070 \cdot 90, r=\cdot 05$, and $t=1 \frac{7}{12}$. Whence $1+r t=$ $1 \cdot 07 \frac{1}{1} \frac{1}{2}$.
Then $P=\frac{\mathcal{A}}{1+r t}=\frac{2070 \cdot 90}{1 \cdot 074 \frac{1}{2}}=\$ 1918.9806$. $\$ 2070-\$ 1918 \cdot 9806=\$ 151 \cdot 919=$ Discount required.

Here $A=\$ 970 \cdot 63, r=\cdot 08$, and $t=\frac{11}{12}$ year. Whence $1+r t$ $=1.07 \frac{1}{3}$.
Then $P=\frac{A}{1+r t}=\frac{970 \cdot 63}{1 \cdot 07 \frac{1}{3}}=\$ 904 \cdot 313$.
(15)

Here in first case $A=\$ 1512, r=\cdot 07$, and $t=\cdot 5$ year. Whence $1+r t=1.035$.
Then $P=\frac{A}{1+r t}=\frac{1512}{1 \cdot 035}=\$ 1460.8695$.
Also $A=1512, r=\cdot 07$, and $t=1$. Whence $1+r t=1 \cdot 07$. Then $P=\frac{\mathcal{A}}{1+r t}=\frac{1512}{1 \cdot 07}=\$ 1413.0841$.
$\$ 1460 \cdot 8695+\$ 1413 \cdot 0841=\$ 2873 \cdot 9536=$ Present worth of whole amount.

$$
\begin{equation*}
\$ 3024-\$ 2873 \cdot 9536=\$ 150 \cdot 0464=\text { Discount required. } \tag{16}
\end{equation*}
$$

Here in first case $\mathcal{A}=\$ 440, r=\cdot 08$, and $t=1 \cdot 25$. Whence

$$
1+r t=1 \cdot 1
$$

Then $P=\frac{A}{1+r t}=\frac{440}{1 \cdot 1}=\$ 400$.
In second case $A=\$ 896, r=\cdot 08$, and $t=1 \cdot 5$. Whence $1+$

$$
\begin{gathered}
\text { Then } P=\frac{A}{r t}=1 \cdot 12 . \\
\begin{array}{l}
1+r t \\
\$ 400+\$ 800=\$ 1200
\end{array} \frac{896}{1 \cdot 12}=\$ 800 .
\end{gathered}
$$

Page 265.

Here the time the note has to run is 2 years, 3 months, 3 days. Interest of $\$ 1$ at 7 per cent for 2 yrs ., 3 m ., 3 days $=\$ 0 \cdot 1580 \frac{5}{6}$. Interest of $\$ 986$ at 7 per cent for 2 years, 3 months, 3 days $=$ $\$ 0 \cdot 1580$ 各 $\times 986=\$ 155 \cdot 8701$.

Here the time the note has toran is 103 days $=3$ months 13 days. Interest of $\$ 1$ at 8 per cent for 3 months 13 days $=\$ 0.022 \frac{\%}{9}$. Interest of $\$ 640$ at 8 per cent for 3 months, 13 days $=$

$$
\$ 0 \cdot 022 \frac{8}{9} \times 640=\$ 14 \cdot 6488
$$

Here the time the note has to ron is 94 days $=3$ months 4 days. Interest of $\$ 1$ at 6 per cent for 3 months 4 days $=\$ 0 \cdot 015 \frac{3}{3}$.
Interest of $\$ 563 \cdot 80$ at 6 per cent for 3 months 4 days $=$ $\$ 0 \cdot 015 \frac{2}{3} \times 563 \cdot 80=\$ 8 \cdot 8328$ and $\$ 563 \cdot 80-\$ 8 \cdot 8328=\$ 554 \cdot 967$.

Page 266.

Interest on $\$ 1$ for 93 days at 7 p. c. $=\$ 0 \cdot 0180$, and this taken from $\$ 1$ gives a remainder of $\$ 0 \cdot 98191=$ present worth of $\$ 1$. Then $\$ 3755 \div 0 \cdot 9819 \frac{1}{6}=\$ 3824 \cdot 15$.

Interest on $\$ 1$ for 6 months 3 days at 5 per cent $=\$ 0 \cdot 0254 \frac{1}{6}$, and this taken from $\$ 1$ gives a remainder $\$ 0.9745 \frac{5}{5}=$ present worth of \$1.

Then $\$ 1147 \cdot 80 \div 0.97455=\$ 1177 \cdot 734$.

Interest on $\$ 1$ for 48 days at $3 \frac{1}{2}$ per cent $=\$ 0.004 \frac{2}{3}$, and this taken from $\$ 1$ gives a remainder $\$ 0 \cdot 995 \frac{1}{3}=$ present worth of $\$ 1$. Then $\$ 713 \cdot 90 \div 0 \cdot 995 \frac{1}{\frac{1}{2}}=\$ 717 \cdot 2471$.

Page 268.
(4)
(5)

(7)

(8)

Six months from 15th Jannary $=15$ th July, and from 1st Jnly to 15 th July there are 14 days.
Six months from 10th February $=10$ th August, and from 1st July to 10th August there are 40 days.
Six months from 6th March $=6$ th September, and from 1st July to 6th September there are 67 days.
Six months from 8th June $=8$ th December, and from 1st July to 8 th December there are 160 days.

$\$ 3750 \times 14$	$=52500$
3000×40	$=120000$
2400×67	$=160800$
2250×160	$=360000$
$\left.\frac{11400}{11400)} \begin{array}{rl}693300\left(60 \frac{31}{8}\right. & \text { days. } \\ \frac{984000}{11400}\end{array}\right\}=\frac{31}{38}$	

Therefore the note must be made payable on the 6lst day from the 1st of July, which is the 31st of August.

Page 269.

Whole stock : A's stock :: whole profit : A's profit.

$$
1117 \times 3000
$$

That is, $\$ 4300: \$ 3000:: \$ 1117: \frac{1}{4300}=\$ 779 \cdot 302+=A ' s$ sh.
$\$ 1117-\$ 779 \cdot 302+=\$ 337 \cdot 697=$ B's share,

Whole stock $=\$ 6470+\$ 3780+\$ 9860=\$ 20110$.
Whole stock : A's stock :: whole profit : A's profit.
7890×6470
That is $, \$ 20110: \$ 6470:: \$ 7890: \frac{}{20110}=\$ 2538 \cdot 453+=A ' s ~ s h$.
Again, whole stock : B's stock :: whole profit : B's profit. 7890×3780
That is, $\$ 20110: \$ 3780:: \$ 7890: \frac{-}{20110}=\$ 1483 \cdot 053+=B ' s$ sh.
Lastly, whole stock : C's stock :: whole profit : C's profit. 7890×9860
That is, $\$ 20110: \$ 9860:: \$ 7890: \frac{}{20110}=\$ 3868 \cdot 493+=C ' s$ sh.
(4)

Whole stock : B's stock :: whole gain : B's gain.

$$
80 \times 120
$$

That is, $\$ 320: \$ 120:: \$ 80: \frac{}{320}=\$ 30=$ B's gain.
Again, whole stock : C's stock :: whole gain : C's gain. 80×200
That is, $\$ 320: \$ 200:: \$ 80: \frac{}{320}=\$ 50=$ C's share.
(5)

Whole stock : B's stock :: whole gain : B's gain.

$$
728 \times 1200
$$

That is, $\$ 2800: \$ 1200:: \$ 728: \frac{\times 120}{2800}=\$ 312=$ B's gain.
Again, whole stock : C's stock :: whole gain : O's gain. 728×1600
That is, $\$ 2800: \$ 1600:: \$ 728: \frac{x}{2800}=\$ 416=$ C's gain.

Whole stock : B's stock :: whole amount to be divided : B's share.

$$
\text { That is, } \$ 3: \$ 2:: \$ 100: \frac{100 \times 2}{3}=\$ 66 \cdot 66 \%=\text { B's share. }
$$

Again, whole st'k: C's st'k :: whole amo't to be divided: C's she. That is, $\$ 3: \$ 1:: \$ 100: \frac{100 \times 1}{3}=\$ 33 \cdot 33 \frac{1}{2}=C$ s share.

$$
\begin{gather*}
£ 1400: £ 500:: £ 1100: \frac{1100 \times 500}{1400}=£ 392 \%=\text { B's share. } \tag{i}\\
£ 1100-£ 392 \%=£ 707 \frac{1}{\%}=\text { C's share. }
\end{gather*}
$$

$$
\begin{gather*}
\text { casks. casks. } \frac{180 \times 200}{900: 200:: 180}=40 \text { casks }=\text { B's loss. } \tag{8}\\
900: 300:: 180: \frac{180 \times 300}{900}=60 \text { casks }=\text { C's loss. } \\
180-(40+60)=80 \text { casks }=D \cdot s \text { loss. }
\end{gather*}
$$

$$
\begin{gather*}
\$ 1800: \$ 800:: \$ 100: \frac{100 \times 800}{1800}=\$ 44 \cdot 44 \xi=\text { B's share. } \tag{9}\\
\$ 1800: \$ 600:: \$ 100: \frac{100 \times 600}{1800}=\$ 33 \cdot 33 \frac{1}{2}=\text { C's share. } \\
\$ 44 \cdot 44 \frac{4}{9}+\$ 33 \cdot 33 \frac{1}{3}=\$ 37 \cdot 7 \pi \frac{7}{3}, \text { and } \$ 100-\$ 77 \cdot 7 i \xi= \\
\$ 22 \cdot 22 \frac{2}{9}=\text { D's share. } \\
\text { L }
\end{gather*}
$$

KEY.
[Nat. Arith.

$$
\begin{equation*}
6: 1:: 120: \frac{120 \times 1}{6}=20 . \tag{10}
\end{equation*}
$$

$$
6: 2:: 120: \frac{120 \times 2}{6}=40
$$

$$
6: 3:: 120: \frac{120 \times 3}{6}=60 .
$$

(11)

Whole loss $=\$ 900-\$ 540=\$ 360$.
360
$8: 1:: \$ 360: \frac{}{8}=\$ 45=$ B's loss.
$8: 2:: \$ 360: \frac{360 \times 2}{8}=\$ 90=$ C's loss.
$\$ 45+90=\$ 135$, and $\$ 360-135=\$ 225=$ D's loss.
(12)

$$
\begin{aligned}
& \$ 12: \$ 6:: \$ 1320: \frac{1320 \times 6}{12}=\$ 660=\text { B's gain. } \\
& \$ 12: \$ 4:: \$ 1320: \frac{1320 \times 4}{12}=\$ 440=\text { C's gain. }
\end{aligned}
$$

$$
\$ 12: \$ 2:: \$ 1320: \frac{1320 \times 2}{6}=\$ 220=\mathrm{D} \text { 's gain. }
$$

(13)
$£ 35+£ 29=£ 64$, and $£ 110-£ 64=£ 46=$ D's profit.
D's profit : B's profit :: D's stock : B's stock.
That is, $£ 46: £ 35:: £ 1090: \frac{1090 \times 35}{46}=£ 8296 \mathrm{~s} .11 \frac{1}{2} \frac{3}{3} \mathrm{~d} .=\mathrm{B}$'s st.
Again, D's profit : C's profit :: D's stock : C's stock.
That is, $£ 46: £ 29:: £ 1090: \frac{1090 \times 29}{46}=£ 6873 \mathrm{~s} .5 \frac{17}{2} \mathrm{~d} .=$ C's st.

Page 271.

(2)
$\$ 357 \times 5=\$ 1785$ for one month
$\left.\begin{array}{l}371 \times 7=2597 \text { for one month } \\ 154 \times 11=1694 \text { for one month }\end{array}\right\}=\$ 6076$ for one month.
$\$ 6076: \$ 1785:: \$ 347 \cdot 20: \frac{347 \cdot 20 \times 1785}{6076}=\$ 102$.
$\$ 6076: \$ 2597:: \$ 347 \cdot 20: \frac{347 \cdot 20 \times 2597}{6076}=\$ 148 \cdot 40$.
$\$ 6076: \$ 1694:: \$ 347 \cdot 20: \frac{347 \cdot 20 \times 1694}{6076}=\$ 96 \cdot 80$.
(3)
$40 \times 6=240$ for one month
$\left.\begin{array}{l}30 \times 5=150 \text { for one month } \\ 50 \times 1=50 \text { for one month }\end{array}\right\}=440$ for one month.
$440: 240:: \$ 160: \frac{160 \times 240}{440}=\$ 87 \cdot 27_{1}^{3} \mathrm{r} ;$ B's share.
$440: 150:: \$ 160: \frac{160 \times 150}{440}=\$ 54 \cdot 54 \frac{6}{1 \mathrm{r}} ;$ C's share.
$440: 50:: \$ 160: \frac{160 \times 50}{440}=\$ 18 \cdot 18_{12}^{2} ;$ D's share.
(4)
$£ 150 \times 6=£ 900$ for one month $200 \times 3=600$ for one month $\}=£ 3500$ for one month: $125 \times 16=2000$ for one month
$£ 3500: £ 900:: £ 29113 \mathrm{~s} .4 \mathrm{~d}:: \frac{£ 29113 \mathrm{~s} .4 \mathrm{~d} . \times 900}{3500}=£ 75$.
$£ 3500: £ 600:: £ 29113 \mathrm{~s} .4 \mathrm{~d} .: \frac{£ 29113 \mathrm{~s} .4 \mathrm{~d} . \times 600}{3500}=£ 50$.
£291 13s. $4 \mathrm{~d} . \times 2000$
$£ 3500: £ 2000:: £ 29113 \mathrm{~s} .4 \mathrm{~d} .:-=£ 16613 \mathrm{~s} .4 \mathrm{~d}$.
(5)
$\left.\begin{array}{r}\$ 4000 \times 12=\$ 48000 \text { for one month } \\ 3000 \times 15=45000 \text { for one month } \\ 5000 \times 8=40000 \text { for one month }\end{array}\right\}=\$ 133000$ for one month.
$\$ 133000: \$ 48000:: \$ 665: \frac{665 \times 48000}{133000}=\$ 240 ;$ B's share
$\$ 133000: \$ 45000:: \$ 665: \frac{665 \times 45000}{133000}=\$ 225 ;$ C's share.
$\$ 133000: \$ 40000:: \$ 665: \frac{665 \times 40000}{133000}=\$ 200 ;$ D's share .
$56 \times 12=672$ for one day
$64 \times 15=960$ for one day $\}=3072$ for one day.
$80 \times 18=1440$ for one day
320×672
3072: $672:: \$ 320: \frac{320 \times 672}{3072}=\$ 70=$ rent to be paid by 1st troop.
3072: $960:: \$ 320: \frac{320 \times 960}{3072}=\$ 100=$ " " " 2 nd " 320×1440
$3072: 1440:: \$ 320: \frac{1}{3072}=\$ 150=$ " " 3rd "

Sum of profits $=240+800+400=\$ 1440$.
Whole profit : A's profit :: Whole stock for 1 m . : A's st. for 1 m . That is, $1440: 240:: 34560: \frac{34560 \times 240}{1440}=5760=$ A's stock for one month. Hence, since A's stock was in for 6 months, it will be $\$ 5760 \div 6=\$ 960$.
(Continued on next page.)

Whole profit : B's profit :: Whole stock for $1 \mathrm{~m} .:$ B's st. for 1 m . 34560×800 $1440: 800:: 34560: \frac{34560 \times 800}{1440}=19200=$ B's stock for one month. And, since B's stock was in for 12 months, $19200 \div$ $12=\$ 1600 \mathrm{mill}$ be his stock.
Whole profit : C's profit :: whole stock for 1 m . : C's st. for 1 m . 34560×400
$1440: 400:: 34560: \frac{1440}{}=\$ 9600=$ C's stock for one month and hence bis stock will be $\$ 9600 \div 15=\$ 640$.

A's profit was $\$ 240$ for 6 months $=\$ 40$ for 1 month.
B's profit was $\$ 800$ for 12 months $=\$ 66 \frac{2}{3}$ for 1 month.
C's profit was $\$ 400$ for 15 months $=\$ 26 \frac{2}{3}$ for 1 month.
Sum of profits for 1 month $=\$ 133\}$
Whole profit for 1 m . : A's profit for $1 \mathrm{~m} .::$ whole stock : A's st.

$$
\begin{aligned}
& 133 \frac{1}{3}: 40:: 3200: \frac{3200 \times 40}{133 \frac{1}{3}}=\$ 960=\text { A's stock. } \\
& 133 \frac{1}{3}: 66 \frac{2}{3}:: 3200: \frac{3200 \times 66 \frac{2}{3}}{133 \frac{1}{3}}=\$ 1600=\text { B's stock. } \\
& 133 \frac{1}{3}: 26 \frac{2}{3}:: 3200: \frac{3200 \times 26 \frac{2}{3}}{333 \frac{1}{3}}=\$ 640=\text { C's stock. }
\end{aligned}
$$

Page 275.
(4)
$\$ 0 \cdot 12 \frac{1}{2}=$ selling price.
$\$ 0.09=$ buying price.
$\$ 0.03 \frac{1}{2}=$ gain per lb.
$\$ 0 \cdot 03 \frac{1}{2} \times 317=\$ 11 \cdot 095$.
(5)
$\$ 1 \cdot 20=$ selling price.
$\$ 0.87 \frac{1}{2}=$ buying price.
$\$ 0 \cdot 32 \frac{1}{2}=$ gain per bushel.
$\$ 0 \cdot 32 \frac{1}{2} \times 2138=\$ 694 \cdot 85$,
$\$ 0 \cdot 15 \times 317 \times 13=\$ 618 \cdot 15=$ cost of 13 barrels at $\$ 0 \cdot 15$ per lb. $\$ 735-618 \cdot 15=\$ 116 \cdot 85$ gain.
$\$ 3 \cdot 15 \times 22 \times 17=\$ 1178 \cdot 10=$ price of 17 kegs at $\$ 3 \cdot 15$ per gal. $\$ 0 \cdot 37 \frac{1}{2} \times 1178 \cdot 1=\$ 441 \cdot 7875=$ ad valorem duty.
$\$ 1178 \cdot 10+\$ 441 \cdot 7875+\$ 26 \cdot 33=\$ 1646 \cdot 2175=$ whole cost. $\$ 1646 \cdot 2175-\$ 1625=\$ 21 \cdot 2175$ loss.

Page 276.
(10)

Here for every $\$ 1$ I expend I wish to receive $\$ 1 \cdot 30$, and hence the selling price will be $\$ 3 \cdot 25 \times 1 \cdot 30=\$ 4 \cdot 22 \frac{1}{2}$.

Here for every $\$ 1$ I expend I wish to receive $\$ 1 \cdot 05$, and hence the selling price will be $\$ 1.05 \times 13420=\$ 14091$.

Here for every $\$ 1$ I expend I desire to receive $\$ 1 \cdot 15$, and hence the selling price will be $\$ 1 \cdot 15 \times \cdot 11=\$ 0 \cdot 1265=12 \frac{13}{2}$ cents.

Here for every $\$ 1$ I expend I wish to receive $\$ 1 \cdot 23$, and hence the selling price will be $\$ 1 \cdot 23 \times 15 \cdot 25=\$ 18 \cdot 75$. .

Here for every $\$ 1$ I expend I am willing to reccive $\$ 0 \cdot 89$, and hence the selling price will be $\$ 0 \cdot 89 \times 7890=\$ 7022 \cdot 10$.

Page 277.

Here the whole gain is $\$ 0.87 \frac{1}{2}-\$ 0.60=\$ 0.27 \frac{1}{2}$.
That is, $\$ 0.60$ gain $\$ 0.27 \frac{1}{2}$, and therefore 1 cent gains $\frac{27 \frac{1}{2}}{60}=$

$$
\frac{53}{120}=\frac{14}{24} \text { of a cent. }
$$

And hence, the gain per cent $=\frac{1}{2} \frac{1}{4} \times 100=\frac{4}{2 \rho 0}=45 \frac{5}{6}$ per cent.

Here the loss on each lb. is 2 cents.
That is, every 13 cents invested gives a loss of 2 cents. Therefore every cent invested loses $\frac{1}{13}$ of $2=\gamma^{2} 3$ cents. And hence, the loss per cent $=\frac{1^{2} 3}{13} \times 100=\frac{200}{13}=15 \frac{5}{13}$ per c.
(18)

Here the gain on each barrel is $\$ 1 \cdot 60$.
That is, every $\$ 6 \cdot 20$ invested gives a gain of $\$ 1 \cdot 60$.
Therefore every $\$ 1$ invested gains $\frac{1}{6 \frac{1}{20}}$ of $160=\frac{8}{3 T}$ of a $\$$.
And hence, the gain per cent $=\frac{8}{3 r} \times \frac{10 \varrho}{1}=25 \cdot 8=25 \frac{4}{5}$ p.c.

Here the gain on each yard is 35 cents.
That is, every $\$ 2 \cdot 75$ invested gives a gain of 35 cents.
Therefore every $\$ 1$ invested gains $\frac{1}{2 \frac{1}{5} 5}$ of $35=\frac{35}{2} \frac{1}{5}=\frac{7}{55}$ of a dollar.

(20)

Here the gain on every bushel is 9 cents.
That is every 47 cents invested gives a gain of 9 cents. Therefore every cent invested gains $\frac{i}{47}$ of $9=\frac{9}{47}$ cents. And hence the gain per cent $=\frac{9}{47} \times 100=\frac{200}{47}=19 \frac{7}{4}$ p.c,

Here the loss on each lb . is $1 \frac{1}{2}$ cents.
That is every 12 cents invested gives a loss of $1 \frac{1}{2}$ cents.
Therefore every cent invested gives $\frac{1}{12}$ of $1 \frac{1}{2}=\frac{1}{8}$ of a cent.
And hence, the gain per cent $=\frac{1}{8} \times 100=\frac{100}{8}=12 \frac{1}{2}$ p. c.

Here the whole gain is $\$ 127-\$ 93=\$ 34$.
That is, $\$ 53$ gain $\$ 34$, and therefore $\$ 1$ gains $\frac{34}{93}$ of a dollar.
Hence, gain per cent $=\${ }_{9}^{34} \times 100={ }_{3}{ }_{9} 9^{0}{ }^{0}=36 \frac{52}{9}$ per cent.

Here the loss is $\$ 6742 \cdot 50-\$ 6000=\$ 742 \cdot 50$.
That is, $\$ 6742 \cdot 50$ lose $\$ 742 \cdot 50$, and therefore $\$ 1$ loses ${ }_{6747^{1} 280}$ of $742 \cdot 50={ }_{8}^{89} 99$ of a dollar.

Hence gain per cent $=\$_{899}^{999} \times 100=\frac{9900}{899}=11_{899}^{1} \frac{1}{9}$ per cent.

Here $\$ 5700+\$ 275+\$ 1987 \cdot 32=\$ 7962 \cdot 32=$ whole sum expended.

Whole gain $=\$ 8750-\$ 7962 \cdot 32=\$ 787 \cdot 68$.
That is $\$ 7962 \cdot 32$ gain $\$ 787 \cdot 68$, and therefore $\$ 1$ gains ${ }_{796238}$ of $787 \cdot 68=\frac{9846}{94529}$ of a $\$$.

Hence gain per cent $=\$ 99465 \times 100=\frac{984600}{99829}=9.89$ or nearly 10 per cent.
$\$ 4 \cdot 25 \times 723=\$ 3072 \cdot 75=$ price of $723 \mathrm{yds} . @ \$ 4 \cdot 25$.
$\$ 3072 \cdot 75 \times \cdot 07=\$ 215 \cdot 0925=$ amount for Insurance.
$\$ 3072 \cdot 75 \times \cdot 22=\$ 676 \cdot 005=$ amount for ad valorem duty.
Then whole cost $=\$ 3072 \cdot 75+\$ 215 \cdot 0925+\$ 23 \cdot 70+\$ 2 \cdot 70$ $+\$ 3 \cdot 16+\$ 676 \cdot 005=\$ 3993 \cdot 4075$.

Whole gain $=\$ 5270-\$ 3993 \cdot 4075=\$ 1276 \cdot 5925$.
 of $\$ 1276 \cdot 5925={ }^{5} 519637$ of a $\$$.
 32 per cent.

Page 278.

Loss on $\$ 1$ is 4 cents, or for every $\$ 1$ paid I receive $\$ 0 \cdot 96$. Hence cost $=\$ 24 \cdot 60 \div 0 \cdot 96=\$ 25 \cdot 625$.

Loss on $\$ 1$ is 10 cents, or for every $\$ 1$ paid he receives $\$ 0 \cdot 90$. Hence cost $=\$ 2360 \div \cdot 90=\$ 2622 \cdot 22$.

Gain on $\$ 1$ is 11 cents, or for every $\$ 1$ paid he receives $\$ 1 \cdot 11$. Hence cost $=\$ 7400 \div 1 \cdot 11=\$ 6666 \cdot 666$.

Gain on $\$ 1$ is 17 cents, or for every $\$ 1$ paid he receives $\$ 1 \cdot 17$. $3789 \cdot 40 \times 100$
$\$ 117: \$ 100:: \$ 3789 \cdot 40: \frac{-}{117}=\$ 3238 \cdot 803$ Ans.

Loss on $\$ 1$ is 13 cents, or for every $\$ 1$ paid I receive $\$ 0 \cdot 87$. 2740×100
$\$ 87: \$ 100:: \$ 2740: \frac{}{87}=\$ 3149 \cdot 425$ Ans.

Page 279.
(3)
$\$ 2$ gains 50 cents.
Hence $\$ 0 \cdot 50: \$ 0 \cdot 10:: \$ 2 \cdot 00: \frac{2 \cdot 00 \times 10}{50}=40$ cents.
(4)

$$
\$ 2 \cdot 00: \$ 2 \cdot 80:: \$ 2 \cdot 50: \frac{2 \cdot 50 \times 2 \cdot 80}{2 \cdot 00}=\$ 3 \cdot 50
$$

8 cents gain 5 cents in 9 months.
Hence 9 mo's : 6 mo's $:: 5$ cents $: \frac{5 \times 6}{9}=3 \frac{1}{3}=$ gain for 6 mos . $3 \frac{1}{3} \times 12$
8 cts. : 12 cts. : : $3 \frac{1}{3}: \frac{-}{8}=5$ cts. gain on 12 cts. for 6 mo's. Therefore $12+5=17=$ his selling price.
$\$ 1 \cdot 60: \$ 1 \cdot 85:: \$ \cdot 55: \frac{1 \cdot 85 \times \cdot 55}{1 \cdot 60}=\$ 0 \cdot 6359375=$ what L ought to get in order to sell at the same profit as K. But L only gets 60 cents, therefore K has the advantage. 70 yds . of cloth at $\$ 1 \cdot 85=\$ 1 \cdot 85 \times 70=\$ 129 \cdot 50$. $\$ 129 \cdot 50 \div \$ \cdot 60=215$.

$$
\begin{aligned}
& 5 \text { tons of butter at } \$ 102=\$ 102 \times 5=\$ 510 \\
& 10 \frac{1}{2} \text { tons of tallow at } \$ 135=\$ 135 \times 10 \frac{1}{2}=\$ 1417 \cdot 50 \\
& \text { Total value }=\overline{\$ 1927 \cdot 50} \\
& \text { Deduct ready money, } \begin{array}{l}
\$ 600 \cdot 30 \\
\$ 1327 \cdot 20
\end{array} \\
& \$ 1327 \cdot 20 \div \$ 4 \cdot 20=316 \text { barrels, }
\end{aligned}
$$

Page 281.
(3)
(4)

(5)

(6)

Page 283.

Prices. Differences. Prices.

Prices. Differences. Prices.
$125=\left\{\begin{array}{l}160-35 \\ 140-15\end{array}><\begin{array}{l}15+110 \\ 25+100\end{array}\right\}=125$.
Ans. 35 bush. @ $\$ 1 \cdot 10,15 @ \$ 1 \cdot 60,15 @ \$ 1$, and $25 @ \$ 1 \cdot 40$. 35 bush. @ $\$ 1 \cdot 00,15 @ \$ 1 \cdot 40,15 @ \$ 1 \cdot 10$, and $25 @ \$ 1 \cdot 60$.

Prices. Differences. Prices.

$$
45=\left\{\begin{array}{l}
60-\overbrace{15-3} 3 \\
50-32 \\
5-30
\end{array}\right\}=45
$$

Prices. Differences. Prices.

$$
\left\{\begin{array}{l}
60-\overbrace{15}^{15} \\
50-5 \\
5+38 \\
7+30
\end{array}\right\}=45
$$

Ans. 15 quarts @ 42 cents, 3 @ 60 cents, $5 @ 38$ cents, $5 @ 30$ cents, and $7+15+22 @ 50$ cents.'
15 quarts $@ 38$ cents, $3 @ 50$ cents, 5 @ 42 cents, $15 @ 38$ cents, and $7+15=22 @ 60$ cents.
(13)

Prices. Differences. Prices.

Ans. $\frac{1}{2} \mathrm{lb}$. $\begin{aligned} & 8 \text { cents, } \frac{1}{2} @ 17 \text { cents, } \frac{1}{2} @ 16 \text { cents, } 2 \frac{1}{2} \bowtie ~\end{aligned}$ 15 cents, $2 \frac{1}{2} @ 14$ cents, $5 \frac{1}{2}+4 \frac{1}{2}+3 \frac{1}{2}=13 \frac{1}{2} @ 12$ cents, and $2 \frac{1}{2}+1 \frac{1}{2}=4 @ 10$ cents.

Prices. Differences. Prices.

$$
10=\left\{\begin{array}{l}
13-\overbrace{3-3}+7 \\
12-2-5+5
\end{array}\right\}=10
$$

Ans. 3 lbs.@7d., 3 @ 13d., 2 @ 5d., and 5 @ 12d.

By case I we find that 17 quarts 031 cents, $6 \ldots 16$ cents, 6 @ 19 cents, and $6 @ 23$ cents will make a mixture worth 25 cents per quart.
Therefore 17 qts. : 87 qts. :: 6 qts. $: \frac{6 \times 87}{17}=30 \frac{1}{1}$ quarts $@$ 16 cents, and as there are 6 lbs . at each of the other prices, the same statement may be used, and the answer is therefore $301 \frac{1}{7}$ quarts $@$ each price.

To produce a mixture worth 75 cents per bushel, we require 45 bushels $@ 80$ cents, $5 @ 37$ cents, and $5 @ 68$ cents.
5×70
Therefore 45 bush. : 70 bush. :: 5 bush. : $-\frac{77}{45}=7$ bush. oats $\lesssim 37$ cents.

$$
5 \times 70
$$

45 bush. : 70 bush. :: 5 bush. : $\frac{-}{45}=73$ bush. barley $@ 68$ cents.

To produce a mixture worth ls. per lb ., we require $1 \frac{1}{2} \mathrm{lbs} . \infty$ 16d., $1 \frac{1}{2} @ 14 \mathrm{~d}$., and 6 @ $10 \frac{1}{2} d$.

Then $1 \frac{1}{2}$ lbs. : $50 \mathrm{lbs} .:: 1 \frac{1}{2}$ lbs. : 50 lbs. brass $@ 14 \mathrm{~d}$.
$1 \frac{1}{2}$ lbs. : 50 lbs : : 6 lbs. : 200 lbs . pewter $@ 10 \frac{1}{2} \mathrm{~d}$.

By case 1 we find that 1 oz . of 20 carats fine, 1 of 21 carats fine and 3 of 23 carats fine, will make a mixture 22 carats fine.

Then $1 \mathrm{oz} .: 30 \mathrm{oz},:: 1 \mathrm{oz} .: 30 \mathrm{oz}$. of 21 carats fine.
$1 \mathrm{oz} .: 30 \mathrm{oz} .:: 3 \mathrm{oz} .: 90 \mathrm{oz}$. of 23 carats fine.

Page 285.

To produce a misture worth $\$ 1.40$ per lb., we require 20 lbs . $@ \$ 1 \cdot 00,40 @ \$ 1 \cdot 20,40 @ \$ 1 \cdot 60$, and $20 @ \$ 1 \cdot 80$. But all of these added together, will make 120 lbs .
lbs. lbs. lbs. lbs.
Therefore $120: 20:: 168: \frac{168 \times 20}{126}=28 \mathrm{lbs}$., the required quantity $@ \$ 1 \cdot 00$.

$$
\begin{gathered}
120: 40:: 168: \frac{168 \times 40}{126}=56 \mathrm{lbs} . \text {, the required } \\
\text { quantity } \$ 1 \cdot 20 .
\end{gathered}
$$ $120: 40:: 168: \frac{168 \times 40}{120}=56 \mathrm{lbs}$. , the required quantity $@ \$ 1 \cdot 60$.

$$
120: 20:: 168: \frac{168 \times 20}{120}=28 \text { lbs., the required }
$$ quantity $@ \$ 1 \cdot 80$.

To produce a mizture worth 4 s .4 d . per 1 lb ., we require 10 lbs . @ 5s. and 8 @ 3s. 6d. But these added together make 18 lbs.
lbs. lbs. lbs. lbs.
27×10
Therefore 18:10::27: $\frac{27 \times 18}{18}=15 \mathrm{lbs}$. , the required quantity of tea@ 05.
$18: 8:: 27: \frac{27 \times 8}{18}=12 \mathrm{lbs}$. , the required quaritity of tea @ 3s.6d.

To produce a mixture worth $\$ 2 \cdot 70$ per gallon, we require 20 gallons $\propto \$ 2 \cdot 40,10 \lesssim \$ 2 \cdot 60,10 \pitchfork \$ 2 \cdot 80$, and $30 \curvearrowleft \$ 2 \cdot 90$. But all of these added together will make 70 gallons. Therefore gals. gals. gals. gals.

$$
\begin{aligned}
& 70: 20:: 63: \frac{63 \times 20}{70}=18 \text { gallons, the required quantity } \\
& 70: 10:: 63: \frac{63 \times 10}{\text { of brandy } @ \$ 2 \cdot 40 .} \begin{array}{l}
70 \text { gallons, the required quantity } \\
\text { of brandy } @ \$ 2 \cdot 60 .
\end{array} \\
& 70: 10:: 63: \frac{63 \times 10}{70}=9 \text { gallons, the required quantity } \\
& 70: 30:: 63: \frac{\begin{array}{l}
\text { of brandy } \\
73 \times 30
\end{array} \$ 2 \cdot 80 .}{70}=27 \text { gallons, the required quantity } \\
& \text { of brandy } @ \$ 2 \cdot 90 .
\end{aligned}
$$

Page 289.
(4)
$1974 \cdot 80 \times \frac{7}{8}=£ 740 \cdot 55=£^{\prime} 74011 \mathrm{~s}$.

$$
\begin{equation*}
765 \cdot 43 \times \frac{{ }_{5}^{5}}{}=£ 306 \cdot 172=£ 306 \text { 3s. } 5_{5_{\chi}^{7}}^{7} \mathrm{~d} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
8172 \cdot 19 \times \downarrow=£ 2043 \cdot 0475=£ 2043 \text { 0s. } 112 \mathrm{~d} \tag{6}
\end{equation*}
$$

$£ 743$ 18s. 11d. $=£ 743 \cdot 94583$ and $743 \cdot 94583 \div \frac{3}{10}=\$ 2479 \cdot 8194$.
$£ 1199 \mathrm{~s} .8$ d $\mathrm{d} .=£ 119 \cdot 484375$ and $119 \cdot 484375 \div \frac{z}{8}=\$ 318 \cdot 625$.
 $\$ 2030 \cdot 816964$.

Page 290.
$1006 \cdot 90 \div 4 \cdot 867=\mathfrak{£} 206 \cdot 88309=£ 20617 \mathrm{~s} .7$ 7id.
$916 \cdot 87 \div 4 \cdot 867=\boldsymbol{E} 188 \cdot 38504=£ 1887 \mathrm{~s} .8$ d d.
$2114 \cdot 81 \div 4 \cdot 867=£ 434 \cdot 52023=£ 33410$ s. 4 Id.

$$
\begin{align*}
& £ 2043 \text { 11s. 3d. }=\underset{\$ 92043 \cdot 5625}{\$} \text { and } 2043.5625 \times 4 \cdot 867= \tag{17}\\
& \$ 9966.01868 .
\end{align*}
$$

£777 7s. 7d. $=£$ £777.37916 and 777.37916 $\times 4.867=$ \$3783-50437.
$£ 557$ 19s. $5 \frac{1}{2} \mathrm{~d} .=£ 557.972916$ and $557.972916 \times 4.867=$ $\$ 2715 \cdot 65418$.

Page 294.
(4)
$\$ 16785 \cdot 25 \times 5 \cdot 04=84597$ francs 66 centimes.

(5)

Commercial value of the marc banco $=35$ cents.
Add 1 per cent •35 " $35 \cdot 35$
Then $35 \cdot 35$ cents $\times 4000=\$ 1414$.
(6)
$\$ 35678 \times 1 \cdot 0225=\$ 36480 \cdot 755$.
(7)

The par value of 1 ruble $=75 \quad$| cents. |
| :---: |
| Deduct 2 per cent |

1.5
Then $73 \cdot 5$ cents $\times 2560=\$ 1881 \cdot 60$.

Old commercial par of $£ 1$ sterling $=\$ 4.444=\$ 4 \cdot 44444$
Add 8 per cent

- 35555
$\$ 4 \cdot 79999$
Then $\$ 4 \cdot 79999 \times 800=\$ 3839 \cdot 999=\$ 3840.00$.

Page 295.
(3)
$£ 1=420 \mathrm{~d}$.
$19 \frac{1}{3} \mathrm{~d} .=1$ franc. 300 francs $=60$ ducats.

1 ducat $=360$ maravedis.
$x=£ 1000$.
84
$48 Q \times 1 \times 6 Q \times 360 \times 1000$
$x=-19 \frac{1}{3} \times 8 Q Q=1564138$ maravedis by cir. ex. 5
$42 \frac{1}{2}$ d. $: £ 1000:: 272$ mararedis $: \frac{272 \times 1000 \times 20 \times 12}{42 \frac{1}{2}}=$ 16
$852 \times 1000 \times 8 \times 12$
$=1536000$ maravedis by direct exchange.
18
Difference $=1564138-1536000=28138$ mararedis. 34) 28138
$\overline{8) 827}$ reals 20 maravedis.
$\overline{103}$ piastres 3 reals 20 mararedis.
(4)

Old commercial par of $£ 1$ sterling $=\$ 4 \cdot 444$
To which add 10 per cent. of itself $=\quad .4444$
Gives price of $£ 1$ sterling $=\$ 4 \cdot 8884$
$\$ 4888 \cdot 40 \div \$ 4.8884=£ 1000=$ amount of bill he receives if he remits direct to London.
$\left.\begin{array}{rl}\$ 1 & =515 \text { centimes. } \\ 2580 \text { cen. } & =£ 1 \text { sterling. } \\ x & =\$ 4888 \cdot 40\end{array}\right\} x=\frac{515 \times 4888 \cdot 40}{2580}=£ 975 \cdot 78526$.
$=£ 97515 \mathrm{~s} .8 \frac{1}{\mathrm{~d}} .+=$ amount of bill he receives if he remits through Paris.
35 cents $=1$ marc.
$13 \frac{3}{4}$ marcs $=£ 1$ sterling.

$$
x=\$ 4888 \cdot 40
$$

$x=\frac{4888 \cdot 40}{\cdot 35 \times 13^{\frac{3}{4}}}=\frac{391072}{385}=£ 1015 \cdot 77142=£ 101515 \mathrm{~s} .5 \mathrm{~d} .+=$ amount of bill he receives by remitting through Hamburg.
\(\left.\begin{array}{rl}18 cents. \& =1 franc.

25 francs. \& =240 \mathrm{~d} .

180 \mathrm{~d} . \& =3 milrees.

5 milrees. \& =18 marcs ban.

200 marcs ban. \& =x\end{array}\right\} x=\frac{60}{5}\)| $6 \times 25 \times 18 Q \times 12 Q Q \times 5$ |
| :---: |
| $2 \times Q \times \beta \times 18$ |

$=\$ 375=$ circuitous exchange or sum he pays for 1200 marks.
$1200 \times 35=\$ 420=$ direct exchange or sum paid for 1200 marks. $\$ 420-\$ 375=\$ 45=$ gain by circuitous exchange.

Page 298.
(3)

$$
\begin{equation*}
(3)^{8}=3 \times 3 \times 3 \times 3 \times 3=243 \tag{4}
\end{equation*}
$$

$(20)^{10}=20 \times 20 \times 20$ $=10240000000000$.
(5)

$$
(1.05)^{6}=1.05 \times 1.05 \times 1.05 \times 1.05 \times 1.05 \times 1.05=
$$ $1 \cdot 340095640625$.

$$
\begin{equation*}
\left(\frac{3}{6}\right)^{7}=\frac{3}{8} \times \frac{3}{8} \times \frac{3}{8} \times \frac{3}{8} \times \frac{3}{8} \times \frac{3}{8} \times \frac{3}{5}=\frac{2187}{78126} . \tag{6}
\end{equation*}
$$

(7)

$$
\left(\frac{8}{9}\right)^{5}=8 \times 5 \times 8 \times 5 \times 5=\frac{5}{5}=\frac{5}{59085}
$$

Page 299.

(9)

$$
4^{2} \times 4^{4} \times 4^{5} \times 4^{7}=4^{2}+4+5+7=4^{18}
$$

$$
\begin{equation*}
13^{11} \div 13^{2}=13^{11-2}=13^{9} . \quad\left(3^{3}\right)^{5}=3^{3 \times 5}=3^{15} \tag{10}
\end{equation*}
$$

$$
\begin{gather*}
\left\{\left(7^{4} \times 7^{3}\right) \div\left(7^{2} \times 7^{2}\right)\right\}^{6}=\left\{\left(7^{4+3}\right) \div\left(7^{2+2}\right)\right\}^{6}= \tag{12}\\
\left\{7^{7} \div 7^{4}\right\}{ }^{6}=\left(7^{7-4}\right)^{6}=\left(7^{3}\right)^{6}=7^{3 \times 6}=7^{18}
\end{gather*}
$$

$$
\begin{gather*}
\left\{\left(5^{3} \times 5^{4} \times 5^{11} \times 5^{9}\right) \div\left(5^{3} \times 5^{9} \times 5^{7} \times 5^{5}\right)\right\}^{3}= \tag{13}\\
\left\{\left(5^{3}+4+11+9\right) \div\left(5^{3+9+7+5}\right)\right\}^{3}=\left\{5^{27} \div 5^{17}\right\}^{3}= \\
\left(5^{27-17}\right)^{3}=\left(5^{10}\right)^{3}=5^{10} \times 3=5^{30} .
\end{gather*}
$$

Page 304.

(4)	(5)	(6)
-	- .	- . .
195364(442	-0676(-26	984064(992
16	4	81
84)353	-	-
84)353	46)276	189)1740
336	276	1701
882)1764		1982)3964
1764		3964

KEY.
[Nat. Arith.
(7)

$5 \cdot 00000000000(2 \cdot 23606$	
4	
$42)$	
	$\cdot 00$
	$\cdot 84$
$443)$	$\cdot 1600$
	$\cdot 1329$

(9)
$.0000012321(\cdot 00111$
1
$21) 23$
21
$221) 221$
221
(8)

500000000000 (•707106 49
1407)10000

9849
14141)15100

14141
9590000
8485236
1104764
(10)
$79792266297612001(282475249$
4
48) 397

384
562) 1392

1124
5644)26826 22576
56487)425062

395409
564945)2965397

2824725
5649502)14067261 11299004
56495044)276825720 225980176
564950489)5084554401 5084554401

$$
i=\frac{1}{9} \text { and } \sqrt{\frac{1}{9}}=\frac{1}{2}
$$

$5 \frac{1}{6}=5 \cdot 142857142857$ and $\sqrt{5 \cdot 142857142857}=2 \cdot 267786$.
${ }^{8} \frac{1}{3} \frac{1}{8}=\cdot 4033457230$ and $\sqrt{\cdot 4033457230}=\cdot 63509$.

$$
13 \frac{1}{3}=13 \cdot 2 \text { and } \sqrt{13 \cdot 2}=.3 \cdot 633
$$

$$
\text { Page } 305 .
$$

(20)
(21)

i1333311(2626	$\dot{3} \dot{2} 233344(4344$
4	24
- .	-
46)433	123)523
411	413
552)2233	1304)11033
1434	10024
5546)46611	13124)100544
46611	100544

(22)

(23)

$\dot{888888} \cdot 8 \dot{88} 80(888 \cdot 88$
71
-
178)1788
1601
1878)18788
16801
18878)1887.88
$1688 \cdot 01$
188878)188.8780
$168 \cdot 8801$
$18 \cdot 8878$

$50^{2}=2500$
$80^{2}=6400$
Sum $=\overline{8900}$ and $\sqrt{8900}=94.34$ nearly.
(29)
$24^{2}=576 \div 2=288$ and $\sqrt{288}=16 \cdot 97$.
(30)

$$
\begin{aligned}
36^{2} & =1296 \\
20^{2} & =\frac{400}{} \\
\text { Difference } & =896 \text { and } \sqrt{896}=29 \cdot 933
\end{aligned}
$$

$$
\begin{align*}
40^{2} & =1600 \tag{31}\\
14^{2} & =196 \\
\text { Difference } & =\overline{1404} \text { and } \sqrt{1404}=37 \cdot 469 . \\
40^{2} & =1600 \\
26^{2} & =676 \\
\text { Difference } & =\overline{924} \text { and } \sqrt{924}=30 \cdot 397 . \\
37 \cdot 469+30 \cdot 397 & =67 \cdot 866 \text { and } 67 \cdot 866 \div 3=22 \cdot 622 . \tag{32}
\end{align*}
$$

1760 sq. $\mathrm{yds} .=15840$ sq. ft. and $\sqrt{15840}=125 \cdot 857$.
(33)

$$
\sqrt{141376}=376
$$

$$
\begin{align*}
3^{2} & =9 \tag{34}\\
3^{2} & =9 \\
\text { Sum } & =\overline{18} \text { and } \sqrt{18}=4 \cdot 24264
\end{align*}
$$

(35)
$16^{2}=256$
$12^{2}=144$
Sum $=400$ and $\sqrt{400}=20$.
(36)

$$
3^{2}+3^{2}+3^{2}=27 \text { and } \sqrt{27}=5 \cdot 196
$$

(37)

$$
\left(\frac{1}{10}\right)^{2}=\frac{1}{100} \text { and }(1)^{2}=1
$$

Then $\frac{1}{100}: 1:: 450: \frac{450}{\frac{1}{100}}=45000$.
(38)

1 sq. acre $=160 \mathrm{sq}$. perches. $\quad 160 \div 3 \cdot 1416=50 \cdot 929462$ and $\sqrt{50 \cdot 929462}=7 \cdot 136$.

Page 311.
(2)

27

(3)

,	$\dot{1953 i 25(125}$
	1
$1^{2} \times 300=300$	953
$1 \times 2 \times 30=60$	
$2^{2}=4$	
364	728
$12^{2} \times 300=43200$	225125
$12 \times 5 \times 30=1800$	
$5^{2}=25$	
45025	225125

(4)

(5)

		$\begin{aligned} & -69 \dot{7864103}(\cdot 887 \\ & \\ & 512 \end{aligned}$
$8^{2} \times 300=$	19200	185864
$8 \times 8 \times 30=$	1920	
$8^{2}=$	64	
	21184	169472
$88^{2} \times 300=2$	32300	16392103
$88 \times 7 \times 30=$	18480	
$7{ }^{2}=$	49	
	41729	16392103

(6)

	$102503 \cdot 232(46 \cdot 8$
$4^{2} \times 300=4800$	38503
$4 \times 6 \times 30=720$	
$6^{2}=36$	
5556	33336
$46^{2} \times 300=634800$	5167.232
$46 \times 8 \times 30=11040$	
$8^{2}=64$	
645904	$5167 \cdot 232$

(7)

		$\begin{aligned} & 179597 \cdot 069288(56 \cdot 42 . \\ & 125 \end{aligned}$
$5^{2} \times 300=$	7500	54597
$5 \times 6 \times 30=$	900	
$6^{2}=$	36	
	8436	50616
$56^{2} \times 300=$	940800	3981 -069
$56 \times 4 \times 30=$	6720	
$4^{2}=$	16	
	947536	3790-144
$564{ }^{8} \times 300=$	5428800	$190 \cdot 925288$
$564 \times 2 \times 30=$	33840	
$2^{2}=$	4	
	5462644	$190 \cdot 925288$

(8)
$483 \cdot 73662 \dot{5}(7 \cdot 85$.
343
$7^{2} \times 300=14700 \quad 140 \cdot 736$
$7 \times 8 \times 30=1680$ $8^{2}=\quad 64$

16444
131-552
$78^{2} \times 300=1825200$
$78 \times 5 \times 30=11700$

$9 \cdot 184625$
(9)

	$\cdot 636056(\cdot 86$.
$8^{2} \times 300=19200$	512
$8 \times 6 \times 30=1440$	124056
$6^{2}=36$	

Page 312.
${ }_{19}^{2}=\cdot 105263157894+$ and $\sqrt[3]{\cdot 105263157894}=\cdot 4721$.
${ }_{17}^{3}=\cdot 176470588235+$ and $\sqrt[3]{\cdot 176470588235}=\cdot 5609$.
$\frac{1}{8}$ of $2 \frac{1}{2}=\frac{5}{6}=\cdot 833333333+$ and $\sqrt[3]{\cdot 833333333}=\cdot 941$.
$28 \frac{3}{3}=28 \cdot 75$ and $\sqrt[3]{28 \cdot 75}=3 \cdot 063$.
(16)

$$
32_{\mathrm{T}}^{\mathrm{s}}=32 \cdot \ddot{72} \text { and } \sqrt[3]{32 \cdot \ddot{72}}=3 \cdot 198
$$

Page 313.
(18)

One million $=33233344$ senary.

(20)

		$10 \dot{221012} \cdot 10 \dot{2} 000000$
		$1 \longdiv { \sqrt { 1 1 2 \cdot 0 1 2 } } = \text { root. }$
$1 \times 1000=$	1000	2221
$1 \times 1 \times 100=$	100	
$1^{2}=$	1	-
	1101	1101
$11^{2}=121 \times 1000=$	121000	1120012
$11 \times 100=1100 \times 2=$	2200	
$2^{2}=$	11	
	200211	1101122
$112^{2}=21021 \times 1000=$	21021000	11120-102
$1120^{2}=2102100 \times 1000=$	2102100000	$11120 \cdot 102000$
$1120 \times 100=112000 \times 1=$	112000	
$1^{2}=$	1	
	2102212001	2102.212001
$11201^{2}=211010101 \times 1000=2$	11010101000	2010-112222000
$11201 \times 100=1120100 \times 2=$	10010200	
$2^{2}=$	11	
	1020111211	$1122 \cdot 111000122$
		111.001221101

Page 314.

$$
\begin{equation*}
3^{3}: 6^{3}:: 4 \text { lbs. : Ans. }=32 \text { lbs. } \tag{25}
\end{equation*}
$$

$$
\begin{equation*}
1^{3}:\left(\frac{7}{2}\right)^{3}:: \$ 120: \text { Ans. }=\$ 5145 . \tag{26}
\end{equation*}
$$

```
            \((70)^{3}:\left(\frac{623}{5}\right)^{3}:: 180 \mathrm{lbs} .:\) Ans.
            \(343000: \frac{24.8804367}{125}:: 180:\) Ans. \(=\)
```


$973^{3}=921167317$
$45^{3}=91125$
$62^{3}=238328$
$30^{3}=27000$
$80^{3}=512000$
$20^{3}=8000$
$9221167317-(91125+238328+27000+512000+8000)=$ 920290864 and $\sqrt[3]{920290864}=972 \cdot 69$.

8 fect 3 inches $=99$ inches, 3 feet $=36$ inches, and 2 feet 7 inches $=31$ inches.
$99 \times 36 \times 31=110484$ and $\sqrt[3]{110484}=47 \cdot 9843$.

After the first has wound off her portion, there will remain $\frac{3}{4}$ of the thread.

Then the whole ball : part remaining :: cube of diameter of whole ball : cube of diameter of part remaining.

That is, $1: \frac{3}{4}:: 3^{3}: x^{3}$, and hence $x=3 \times \sqrt[3]{\frac{3}{4}}=3 \times \sqrt[3]{\cdot 75}$. $=\cdot 90856 \times 3=2 \cdot 72568=$ diameter of the ball after the first has wound off her portion.

Similarly after the second has wound off her portion, there will remain $\frac{1}{2}$ of the ball, and after the third has taken her portion, $\frac{1}{4}$ of the ball.

Hence $1: \frac{1}{2}:: 3^{3}: x^{3}$, whence $x=3 \times \sqrt[3]{\frac{1}{2}}=3 \times \sqrt[3]{\cdot 5}=$ $3 \times \cdot 79370=2 \cdot 38110=$ diameter after the second has taken her portion.
$1: \frac{1}{4}:: 3^{3}: x^{3}$, whence $x=3 \times \sqrt[3]{\frac{1}{4}}=3 \times \sqrt[3]{\cdot 25}=3 \times$ $\cdot 62996=1.88988=$ diameter after the third has taken her portion.

Hence 1st takes off $3-2 \cdot 72568=\cdot 27432$ inches.

Page 315.
(1)
$\sqrt{19987173376}=141376$, and $\sqrt{141376}=376$.
(2)
$\sqrt[3]{308915776}=676$, and $\sqrt{676}=26$.

$$
\begin{equation*}
\sqrt[3]{40353607}=343, \text { and } \sqrt[3]{343}=7 \tag{3}
\end{equation*}
$$

$\sqrt[3]{387420489}=729, \sqrt[3]{729}=9$, and $\sqrt{9}=3$.

$$
\sqrt[3]{134217728}=512, \sqrt[3]{512}=8, \text { and } \sqrt[3]{8}=2
$$

Page 321.
(13)

The mantissa of the logarithm of 8193 (the first four digits) $=\cdot 913443$, and the next following mantissa is $\cdot 913496$.

Then from •913496
Subtract.. •913443
Difference,
53 ; and 53×217 (remaining digits of given number) $=11501$, from which we cut off three digits, since we multiplied by a number of three digits, and since the highest digit cut off is not less than 5, we add unity to the part retained, which gives us 12.

Then mantissa of logarithm of first four digits •913443
Add,
Mantissa of logarithm of given number, 913455
To which attach the characteristic 6 and required logarithm $=$ $6 \cdot 913455$.

The mantissa of the logarithm of 7392 (the first four digits) $=\cdot 868762$, and the next following mantissa is $\cdot 868821$.

Then from $\cdot 868821$
Subtract.. -868762
Difference, $\quad 59$; and 59×45 (remaining digits of given number) $=2655$, from which we cut off two digits, since we multiplied by a number of two digits, and since the highest digit cut off is not less than 5 , we add unity to the part retained, which gives us 27.

Then mantissa of logarithm of first four digits, $\cdot 868762$
Add,

[^1]
(13 continued.)

To which attach the characteristic 1 and required logarithm $=$ $1-868789$.

The mantissa of the logarithm of 8437 (the first four digits) $=\cdot 926188$, and the next following mantissa is $\cdot 926240$.

Then from -926240
Subtract.. •926188
Difference, $\quad 52$; and 52×42 (remaining digits of given number) $=2184$, from which we cut off two digits, since we maltiplied by a number of two digits, and since the highest digit cat off is not less than 5 , we add onity to the part retained, which becomes 22 .

Then mantissa of logarithm of first four digits -926188 Add,

Mantissa of logarithm of giren number, $\quad 926210$
To which attach the characteristic $\overline{1}$ and required logarithm $=$ I-92621 .

The mantissa of the logarithm of $2345=\cdot 370143$, and the next following mantissa is -370338 .

Then from • 370328
Subtract.. • 370143
Difference, $\quad 185$; and $185 \times 64=11840$, from which we cut off two digits, since we multiplied by a number of two digits, which gives us 118.

Then mantissa of logarithm of $2345=\cdot 370143$
Add, 118
Mantissa of logarithm of given number $=\cdot 370261$
To which attach the characteristic $\overline{4}$ and required logarithm $=$ $\overline{4} \cdot 370261$.
(Continued on next page.)

The mantissa of the logarithm of $1007=\cdot 003029$, and the next following mantissa is $\cdot 003461$.

Then from -003461
Subtract .. •003029
Difference, $\quad 432$; and $432 \times 013=5616$, from which we cut off three digits, since we multiplied by a number of three digits, and since the highest digit cut off is not less than 5 , we add unity to the part retained, which gives us 6 .

$$
\begin{aligned}
& \text { Then mantissa of logarithm of } 1007= \\
& \text { Add, } \\
& \text { Mantissa of logarithm of given number } \\
& .003029 \\
& \hline
\end{aligned}
$$

To which attach the characteristic $\overline{3}$ and required logarithm $=$

$$
\overline{3} \cdot 003035 .
$$

Mantissa of logarithm of 5237 -719083
Difference from column $D=83$; and $83 \times 6=498$ from which we cut off 1 digit and add 50And also attach the characteristic 1 , and requiredlogarithm $=$$1 \cdot 719133$
Mantissa of logarithm of 1294 -111934
Difference from column $\mathrm{D}=335$; and $335 \times 76=$25460 from which we cut off two digits and add,255

And also attach the characteristic 2 and requiredlogarithm $=$$2 \cdot 112189$

$$
\begin{aligned}
& \text { Mantissa of logarithm of } \cdot 0004713=\cdot 673297 \\
& \text { P. P. corresponding to } \cdot 00000009=\text { P } 83 \\
& \text { P.P. " to } \cdot 000000008=74 \\
& \text { Sum, }=\cdot 6733874
\end{aligned}
$$

Therefore required mantissa $=\cdot 673387$ and required logarithm $=\overline{4} \cdot 673387$.

Therefore required mantissa $=\cdot 960790$ and required logarithm $=6.960790$.

Mantissa of logarithm of	$4 \cdot 23400$	$=$	$\cdot 626751$
P. P. corresponding to	20	$=$	20
P.P.	" to	9	$=$
		Sum,	$=$
		.6267802	

Therefore required logarithm is 0.626780 .

Therefore required logarithm is $2 \cdot 882598$.

Page 323.

Given logarithm, •137139
Next lower in table, $\cdot 137037=\log$. of 1371.
Difference 102, Tabular difference $=316$.
Then $1020000 \div 316$ gives 3227 for digits in 5th, 6 th, 7 th, and 8th places.

Hence the digits of the natural number are 13713227; and since the characteristic is 4 , i. e., one less than the number of digits to the left of the decimal point, the required number is $13713 \cdot 227$.

Given logarithm, •718134
Next lower in table, $\cdot 718086=\log$. of 5225.
Difference,
48, Tabular difference $=83$.
Then $48000 \div 83$ gives 578 for digits in 5th, 6 th and 7 th places.
Hence the digits of the natural number are 5225578 , and since the characteristic is 0 , i.e., one less than the number of digits to the left of the decimal point, the required number is $5 \cdot 225578$.

Given logarithm, •635421
Next lower in table, $\cdot 635383=\log$. of 4319.
Difference,
38, Tabular difference $=101$.
Then $38000 \div 101$ gives 376 for digits in 5th, 6th, and 7th places.

Hence the digits of the natural number are 4319376, and since the characteristic is $\overline{4}$, i. e., one more than the number of ciphers between the decimal point and the first figure to the right, the required number is $\cdot 0004319376$.

$$
\text { Given log. } \cdot 921686=\log . \text { of } 8350
$$

And since the cbaracteristic is 2 , i. e., one less than the number of digits to the left of the decimal point, the required number is 835 .

Given logarithm, •922165
Next lower in table, $\cdot 922154=\log$. of 8359.
Difference $=\quad 11$, Tabular difference $=52$.
Then $11000 \div 52$ gives 211 for digits in 5 th, 6 th, and 7th places.

Hence the digits of the natural number are 8359211 ; and since the characteristic is $\overline{1}$, i. e., one more than the number of ciphers between the decimal point and first figare to the right, the required number is $\mathbf{8 3 5 9 2 1 1}$.

Giren logarithm,
Next lower in table,
Difference, $=$
Highest P.P. not greater than $67=51$ corresponds to 3 160 for 5th place.
Highest P.P. not greater than $160=\quad 153$ corresponds to 9 —__ for 6th place. 70
Highest P.P. not greater than $70=68$ corresponds to ——— 4 for 7 th place. 2

Therefore digits of required number are 2558394 ; and since the characteristic is 5 , there must be six digits to the left of the decimal point.

Hence required number is $255839 \cdot 4$.
(Continued on next page.)

(22 continued.)

Given logarithm,
Next lower in table,
Difference, $=$
Highest P.P. not greater than $146=\frac{136}{100} \begin{gathered}\text { corresponds to. } 8 \\ \text { in 5th place. }\end{gathered}$
Highest P.P. not greater than $100=$ 85 corresponds to 5
$-150 \quad$ in 6th place.
Highest P.P. not greater than $150=$ 136 corresponds to 8 in 7th place. 140
Highest P.P. not greater than $140=$ 136 corresponds to 8 in 8 th place.
Therefore digits of required number are 25608588 ; and since the characteristic is 7, there must be eight digits to the left of the decimal point.
Hence required number is 25608588 .

Given logarithm,
Next lower in table,
Difference, $=$
Highest P.P. not greater than $61=$
-416369
$\cdot 416308=\log$. of 2608.61

49 corresponds to 3 12

Therefore digits of required number are 26083 ; and since the characteristic is $\overline{3}$, there must be two ciphers between the decimal point and first figure.

Hence required number is $\cdot 0026083$.

Given logarithm, $\quad 877777$
Next lower in table,
Difference $=$
There is no P.P. not greater than $3 \quad 0$ corresponds to 0 in 30
Highest P.P. not greater than $30=29$ corresponds to 5 in 10
Highest P.P. not greater than $10=\underbrace{6}_{40} \begin{gathered}\text { corresponds to } 1 \\ \text { in } 7 \text { th place. }\end{gathered}$
Highest P.P. not greater than $40=\quad \begin{aligned} & 35 \text { corresponds to } 6 \\ & \text { in 8th place. }\end{aligned}$
Highest P.P. not greater than $50=\begin{gathered}\left.46 \begin{array}{c}\text { corresponds to } \\ 8\end{array}\right)\end{gathered}$
Therefore digits of required number are 754705168 ; and since the characteristic is 4 , there must be fire digits to the left of the decimal point.

Hence required number is $75470 \cdot 5168$.

Given logarithm,
Next lower in table,

- 555555

$$
\cdot 555457=\log . \text { of } 3593
$$

98
Difference, $=$

Highest P.P. not greater than $98=98$ corresponds to 8 in 5th place.
Therefore digits of required number are 35938 ; and since the characteristic is 0 , there must be one digit to the left of the decimal point.

Hence required number is $3 \cdot 5938$.
x-
-
$\cdot \underline{.877774}=\log$. of 7547.
3 5th place. 6th place.

Page 324.
(1)
(2)
$10-5 \cdot 63164 \dot{2}=4 \cdot 368358 . \quad 10-\overline{3} \cdot 123456=12 \cdot 876544$.
$10-0 \cdot 714000=9 \cdot 286000 . \quad 10-\overline{7} \cdot 213149=16 \cdot 786851$.
(3)
$10-6 \cdot 124357=3 \cdot 875643$ and $10-2 \cdot 000837=11 \cdot 999163$.

Page 325.

(5)

Logarithm of $61=1 \cdot 785330$
" $\quad 22=1.342423$
" $\quad 65=1.812913$ Sum $=4 \cdot 940666=$ logarithm of 87230 .
(6)

Logarithm of $52=1 \cdot 716003$
" $734=2 \cdot 865696$
" $\quad 6=0 \cdot 778151$
Sum $=\overline{5 \cdot 359850}$
$5 \cdot 359835=$ logarithm of 229000
$15=$
7
Ans. 229007

Logarithm of $437 \cdot 89$	$=2 \cdot 641365$
" $62 \cdot 735$	$=1 \cdot 797510$
Difference	$=\stackrel{-843855}{ }=$ logarithm of $6 \cdot 08$

Logarithm of $93 \cdot 217=\underline{1} \cdot 969495$
" $\quad \cdot 0007132=\overline{4} \cdot 853211$
Difference $=5 \cdot 116284$
$5 \cdot 116276=$ logarithm of $130700 \cdot 0$
8 $=$ 2.4

Ans. $130702 \cdot 4$
(14)

$$
\begin{array}{rlr}
\text { Logarithm of } 23 & =1 \cdot 361728 \\
" & 189 & =2 \cdot 276462 \\
" & 2 \cdot 748 & =0 \cdot 439017 \\
\text { Sum } & =\overline{4.077207}
\end{array}
$$

Logarithm of $9835267=6 \cdot 992786$
4.077207

Difference $=2 \cdot 915579$
$2 \cdot 915558=$ logarithm of $823 \cdot 300$
$21=$
Ans. $823 \cdot 339$

Page 326.
(17)

Logarithm of $5=0.698970$.
Then $0 \cdot 698970 \times 5=3 \cdot 494850=$ logarithm of 3125 .

Logarithm of $1.073=\cdot 030600$. Then $\cdot 030600 \times 6=\cdot 183600=$ logarithm of $1 \cdot 5261$.

Logarithm of $\cdot 0279=\overline{\mathbf{2}} \cdot \mathbf{4 4 5 6 0 4}$.
Then $\overline{2} \cdot 4450604 \times 4=\overline{7} \cdot 782416=$ logarithm of $\cdot 00000060592$.

Logarithm of $1 \cdot 111=\cdot 045714$.
Then $\cdot 045714 \times 11=\cdot 502854=$ logarithm of $3 \cdot 1831$.

Page 327.

(23)

Logarithm of $913426000=8 \cdot 960673$.
$8 \cdot 960673 \div 7=1 \cdot 2800961=$ logarithm of $19 \cdot 0588$.

Logarithm of $1 \cdot 61342=\cdot 207747$. $\cdot 207747 \div 11=\cdot 01888609=$ logarithm of $1 \cdot 0444$.

Logarithm of $\cdot 000007139=\overline{6} \cdot 853637=\overline{10}+4 \cdot 853637$. $(\overline{10}+4 \cdot 853637) \div 5=\overline{2} \cdot 970727=$ logarithm of $\cdot 0934817$.
(26)

Logarithm of $\cdot 002147=\overline{3} \cdot 331832=\overline{7}+4 \cdot 331832$.
$(\overline{7}+4 \cdot 331832) \div 7=\overline{1} \cdot 6188331=$ logarithm of $\cdot 41575$.

Page 328.
$14000=7 \times 2 \times 1000 \therefore \log .14000=(\log .7)+(\log .2)+$ (log. 1000).

Log. $\quad 7=0.845098$
Log. $\quad 2=0.301030$
Log. $1000=3$
Sum, $\quad=4 \cdot 146128=\log .14000$
$4 \cdot 9=7^{2} \div 10 . \therefore \log .4 \cdot 9=(\log .7) \times 2-(\log .10)$.
Log. $7=0.845098 \times 2=1 \cdot 690196$
Log. $10=$
1
Difference $=\overline{-690196}=\log .4 \cdot 9$.
$\cdot 00196=49 \times 4 \div 100000=7^{2} \times 2^{2} \div 100000$
$\therefore \log . \cdot 00196=(\log .7) \times 2+(\log .2) \times 2-(\log .100000)$. Log. $7=0.845098 \times 2=1 \cdot 690196$
Log. $2=0.301030 \times 2=0.602060$
Sum $=2 \cdot 292256$
Log. of $100000=5$ and $2 \cdot 292256-5=\overline{3} \cdot 292256=\log$. of -00196.
Since $5=10 \div 2$, the logarithm of $5=\log .10 \cdots \log .2=1$ $-0 \cdot 301030=0.698970$.
$1750=5^{2} \times 7 \times 10 \cdots \log .1750=(\log .5) \times 2+(\log .7)$ $+(\log .10)$.

Log. $\quad 5=0 \cdot 698970 \times 2=1 \cdot 397940$
Log. $7=\quad \cdot 845098$
Log. $10=$
Sum, $=\overline{\frac{1}{3 \cdot 243038}}=\log$. of 1750 .
$1428 \cdot \dot{5} 7142 \dot{8}=\frac{1}{4} \times 10000 \cdots \log .1428 \cdot \dot{5} 7142 \dot{8}=\left(\log . \frac{1}{3}\right)+$ $\log .10000$.
(Continued on next page.)

$$
\begin{aligned}
\text { Log. } \frac{1}{\zeta}=(\log .1)-(\log .7)=0-0 \cdot 845098 & =\overline{1} \cdot 154902 \\
\log \cdot 10000 & =4 \\
\therefore \text { log. of } 1428 \cdot \dot{5} 7142 \dot{8}=\text { sum } & =\overline{3 \cdot 154902}
\end{aligned}
$$

$$
\cdot 00000112=2^{4} \times 7 \div 100000000 \therefore \text { log. } \cdot 00000112=
$$

$$
(\log .2) \times 4+(\log .7)-(\log .100000000)
$$

$$
\text { Log. } 2=0 \cdot 301030 \times 4=1 \cdot 204120
$$

$$
\text { Log. } 7
$$

$$
=0.845098
$$

$$
\text { Sum }=2 \cdot 049218=\text { and } \log \cdot 100000000=8
$$

$$
2 \cdot 049218-8=\overline{6} \cdot 049218=\text { log. } \cdot 00000112
$$

$$
3 \cdot 0625=\frac{19}{66 \cdot \log \cdot 3 \cdot 0625=(\log .49)-(\log .16)=}
$$

$$
(\log .7) \times 2-(\log .4) \times 4
$$

$$
\text { Log. } 7=0.845098 \times 2=1 \cdot 690196
$$

$$
\text { Log. } 2=0 \cdot 301030 \times 4=1 \cdot 204120
$$

$$
\text { Difference }=0.486076=\log . \text { of } 3.0625
$$

Log. $\cdot 5$ or $\frac{1}{2}=\overrightarrow{1} \cdot 698970$, and by altering the characteristic we get 0.698970 for log. of 5 .
(Continued on next page.)

$$
\begin{align*}
& 491=\frac{99}{2}=3^{2} \times 11 \times \frac{1}{2} \cdots \log .49 \frac{1}{2}=(\log .3) \times 2+(\log \tag{29}\\
& 11)+\left(\log . \frac{1}{3}\right) \text {. } \\
& \text { Log. } 3=0.477121 \times 2=0.954242 \\
& \text { Log. } 11=1.041393 \\
& \text { Log. } \frac{1}{2} \\
& =\overrightarrow{1} \cdot 698970 \\
& \text { Sum }=1.694605=\log \text {. of } 49 \frac{1}{2} . \\
& 363=11^{2} \times 3 . \cdot \log .363=(\log .11) \times 2+(\log .3) . \\
& \text { Log. } 11=1.041393 \times 2=2.082786 \\
& \text { Log. } 3=0.477121 \\
& \text { Sum }=2 \cdot 559906=\log \text {. of } 363 .
\end{align*}
$$

(29 continued.)

$$
\begin{aligned}
4 \cdot \ddot{09}= & 4 \frac{1}{11}=\frac{45}{11}=3^{2} \times 5 \div 11 \cdot \cdot \log .4 \cdot \ddot{09}=(\log .3) \times 2 \\
& +(\log .5)-(\log .11) . \\
\text { Log. } 3=\cdot 477121 \times 2 & =0 \cdot 954242 \\
\text { Log. } 5 & =\frac{.698970}{1 \cdot 653212}
\end{aligned}
$$

$\log .11=1.041393$ and $1 \cdot 653212-1 \cdot 041393=0.611819=$ log . of $4.0 \dot{0}$.
$2 \cdot \dot{4}=2_{9}^{4}=\frac{2_{9}^{2}}{g^{2}}=11 \times 2 \div 9 \cdot \therefore \log \cdot 2 \cdot \dot{4}=(\log .11)+(\log$. 2) $-(\log .3) \times 2$.
$\log .2=(\log .10)-(\log .5)=1-0 \cdot 698970=0 \cdot 301030$. Log. $11=1 \cdot 041393$ Log. $2=0 \cdot 301030$

$$
1 \cdot 342423
$$

$\log .3=0.477121 \times 2=0.954242$ and $\mathrm{I} \cdot 342423-0.954241$ $=0 \cdot 388181=\log$. of $2 \cdot \dot{4}$.
$392 \cdot \ddot{7}=392 \frac{8}{11}={ }^{4322} 1{ }_{1}^{2}=2^{4} \times 3^{3} \times 10 \div 11 . \therefore$ log. $392 \cdot \ddot{7} \ddot{2}$ $=(\log .2) \times 4+(\log .3) \times 3+(\log .10)-(\log .11)$ Log. $2=0 \cdot 301030 \times 4=1 \cdot 204120$ Log. $3=0.477121 \times 3=1.431363$ Log. 10
$=1$

$$
\text { Sum }=3 \cdot 635483
$$

$\log .11=1 \cdot 041393$ and $3 \cdot 635483-1 \cdot 041393=2 \cdot 594090=$ log. of $392 \cdot 7 \dot{2}$.
$293333 \frac{1}{3}=\frac{880000}{3}=2^{3} \times 11 \times 10000 \div 3 \therefore$ log. 293333 $\frac{1}{3}$ $=(\log .2) \times 3+(\log .11)+(\log .10000)-(\log .3)$.

Log. $2=0.301030 \times 3=0.903090$
Log. $11=1.041393$
Log. 10000

$$
=4
$$

$$
\text { Sum }=5.944483
$$

Log. $3=0.477121$ and $5 \cdot 944483-0.477121=5 \cdot 467362=$ \log. of $293333 \frac{1}{3}$.
$19 \cdot 965=11^{3} \times 5 \times 3 \div 1000 . \cdot \log .19 \cdot 965=(\log .11) \times 3$ $+(\log .5)+(\log .3)-(\log .1000)$.

Log. $11=1 \cdot 041393 \times 3=3 \cdot 124179$
Log. $5=0 \cdot 698970$

Log. 3

$$
\begin{aligned}
& =\frac{0 \cdot 477121}{4 \cdot 300270} \\
\text { Sum } & =\frac{1}{4}
\end{aligned}
$$

Log. $1000=3$ and $4 \cdot 300270-3=1 \cdot 300270=$ log. of $19 \cdot 965$.

Page 336.
(6)

Here we hare given the first term 4, the number of terms 17, and the sum of the series 884 , to find l, the Iast term.

$$
\text { Then } l=\frac{2 s}{n}-a=\frac{884 \times 2}{17}-4=104-4=100
$$

(7)

Here we bave given the first term 21, the last term 497 and the number of terms 41 , to find the common difference.

$$
\text { Then } d=\frac{l-a}{n-1}=\frac{497-21}{41-1}=\frac{176}{40}=\frac{119}{10}=11_{10}^{\frac{9}{10}} .
$$

(8)

Here we have giren a, l, and d, to find n, and since $a=12$, $l=96$, and $d=6$, we hare

$$
n=\frac{l-a}{d}+1=\frac{96-12}{6}+1=\frac{84}{6}+1=14+1=15
$$

Here we have given l, d, and s, to find n, and since $l=14$, $d=1$, and $s=105$, we have
$n=\frac{2 l+d}{2 d}+\sqrt{\left(\frac{2 l+d}{2 d}\right)^{2}-\frac{2 s}{d}}=\frac{2 \times 14+1}{2 \times 1}+$
$\sqrt{\left(\frac{2 \times 14+1}{2 \times 1}\right)^{2}-\frac{2 \times 105}{1}}=14 \frac{1}{2}+\sqrt{\left(\frac{24}{2}\right)^{2}-210}=$ $14 \frac{1}{2}+\sqrt{\frac{1}{24}-210}=14 \frac{1}{2}+\sqrt{\frac{1}{4}}=14 \frac{1}{2}+\frac{1}{2}=15$.

Here we have given a, d, and s, to find l, and since $a=\frac{2}{5}$, $d=\frac{2}{3}$, and $s=1180$, we have
$l=-\frac{1}{2} d+\sqrt{2 d s+\left(a-\frac{1}{2} d\right)^{2}}=-\frac{1}{2}$ of $\frac{2}{3}+$ $\sqrt{2 \times \frac{2}{3} \times 1180}+\left(\frac{2}{3}-\frac{1}{2} \times \frac{2}{3}\right)^{2}=-\frac{1}{3}+\sqrt{17_{3}^{20}+\overline{\left(\frac{1}{3}\right)^{2}}}=$ $-\frac{1}{3}+\sqrt{\frac{1720}{3}+\frac{1}{9}}=-\frac{1}{3}+\sqrt{\frac{14161}{9}}=-\frac{1}{3}+\frac{110}{3}=\frac{118}{3}=39 \frac{1}{3}$.

Here we have given a, l, and s, to find d, and since $a=8$, $l=170$, and $s=4895$, we have
$d=\frac{(l+a)(l-a)}{2 s-l-a}=\frac{(170+8)(170-8)}{2 \times 4895-170-8}=\frac{178 \times 162}{9790-178}=$ $\frac{28836}{9612}=3$.

Here we have given a, l, and d, to find n, and since $a=5$, $l=27 \frac{1}{2}$, and $l=2 \frac{1}{4}$, we have
$n=\frac{l-a}{d}+1=\frac{27 \frac{1}{2}-5}{2 \frac{1}{4}}+1=\frac{22 \frac{1}{2}}{2 \frac{1}{4}}+1=\frac{4 \frac{45}{\frac{2}{4}}}{\frac{9}{4}}+1=10+1=11$

Here we have given a, l, and n, to find s, and since $a=2$, $l=478$, and $n=86$, we have

$$
s=(a+l) \frac{\pi}{2}=(2+478) \frac{8}{2}=480 \times 43=20640 .
$$

Here we have given a, l, and d, to find s, and since $a=2$, $l=998$, and $d=6$, we hare

$$
s=\frac{(l+a)(l-a)}{2 d}+\frac{l+a}{2}=\frac{(998+2)(998-2)}{2 \times 6}+\frac{998+2}{2}=
$$

$$
1000 \times 996
$$

$$
\begin{equation*}
-\frac{1000}{12}+\frac{1000}{2}=83000+500=83500 . \tag{15}
\end{equation*}
$$

Here we have given a, n, and d, to find l, and since $a=5$, $n=11$, and $d=2 \frac{1}{4}$, we have

$$
\begin{gathered}
l=a+(n-1) d=5+(11-1) 2 \frac{1}{2}=5+10 \times 3 \frac{1}{4}=5+ \\
\frac{45}{2}=\frac{55}{2}=27 \frac{1}{2} .
\end{gathered}
$$

Here we have given l, d, and n, to find s, and since $l=199$, $d=11$, and $n=19$, we have

$$
\begin{gathered}
s=\{2 l-(n-1) d\} \frac{n}{2}=\{2 \times 199-(19-1) 11\} \frac{19}{2}= \\
\{398-18 \times 11\}^{19}=200 \times \frac{19}{2}=1900 .
\end{gathered}
$$

Here we have given s, a, and l, to find n, and since $s=39840^{\text {, }}$ $a=2$, and $l=478$, we have

$$
n=\frac{2 s}{l+a}=\frac{2 \times 39840}{478+2}=\frac{29680}{280}=166
$$

Here we have given s, l, and a, to find d, and since $s=83500^{\circ}$ $l=998$, and $a=2$, we have

$$
d=\frac{(l+a)(l-a)}{2 s-l-a}=\frac{(998+2)(998-2)}{2 \times 83500-998-2}=\frac{1000 \times 996}{167000-1000}=
$$

$$
\frac{996000}{160000}=6 .
$$

Here we have given s, a, and d, to find n, and since $s=260$, $a=2$, and $d=2$, we have

$$
n=\frac{d-2 a}{2 d}+\sqrt{\frac{2 s}{d}+\left(\frac{2 a-d}{2 d}\right)^{2}}=\frac{2-2 \times 2}{2 \times 2}+
$$

$$
\sqrt{\frac{2 \times 260}{2}+\left(\frac{2 \times 2-2}{2 \times 2}\right)^{2}}=-\frac{1}{2}+\sqrt{260+\left(-\frac{1}{3}\right)^{2}}=
$$

$-\frac{1}{2}+\sqrt{260 \frac{1}{4}}=-\frac{1}{2}+16 \cdot 13226=15 \cdot 63226$ days $=15$ days, 15 hours, 10 minutes, $27 \cdot 264$ seconds.

Here we have given s, a, and d, to find l, and since $s=83500$, $a=2$, and $d=6$, we have

$$
\begin{gathered}
l=-\frac{1}{2} d+\sqrt{2 d s+\left(a-\frac{1}{2} d\right)^{2}}=-\frac{1}{2} \times 6+ \\
\sqrt{2 \times 6 \times 83500+\left(2-\frac{1}{2} \times 6\right)^{2}}=-3+\sqrt{1002000+(2-3)^{2}} \\
=-3+\sqrt{1002001}=-3+1001=998
\end{gathered}
$$

Here we have given s, n, and l, to find a, and since $s=\$ 1125$, $n=18$, and $l=120$, we have

$$
a=\frac{2 s}{n}-l=\frac{2 \times 1125}{18}-120=125-120=5
$$

Here we have given a, l, and n, to find d, and since $a=5$, $l=27 \frac{1}{2}$, and $n=11$, we have

$$
d=\frac{l-a}{n-1}=\frac{27 \frac{1}{2}-5}{11-1}=\frac{22 \frac{1}{2}}{10}=2 \frac{1}{4} .
$$

Here we have a, d, and n, given to find s, and since to deposit one stone he most walk 5 yards, and the distance travelled for each succeeding stone is 5 yards, therefore $a=5, d=5$, and $n=220$.
Then $s=\{2 a+(n-1) d\} \frac{n}{2}=\{2 \times 5+(220-1) 5\} 2 \frac{20}{2}$

$$
=\{10+219 \times 5\} 110=
$$

$1105 \times 110=121550$ yards $=69 \frac{1}{10}$ miles.

Here we have s, n, and l, giren to find a, and since $s=39840$, $n=166$, and $l=478$, we hare

$$
a=\frac{2 s}{n}-l=\frac{2 \times 39840}{166}-478=480-478=2
$$

Here we have n, a, and d, given to find s, and since $n=12$, $a=4$, and $d=2$, we have
$\left.s=\{2 a+(n-1) d\}_{\overline{2}}^{n}=\{2 \times 4+(12-1) 2\}\right\}_{2}^{2}=\{8+11 \times 2\} 6=$ $30 \times 6=180$.

Here we have given a, l, and n, to find s, and $a=1, l=24$, and $n=24$.

Then $s=(a+l) \frac{8}{2}=(1+24) \frac{8}{2}=25 \times 12=300$.

Page 342.

Here $n=11, a=£ 1024$, and $r=1 \frac{1}{2}$.
Then $l=a r^{n-1}=1024 \times\left(\frac{3}{2}\right)^{10}=1024 \times \frac{59049}{1024}=£ 59049$.
$s=\frac{r l-a}{r-1}=\frac{3_{2} \times 59049-1024}{\sum^{\frac{3}{2}-1}}=\frac{17_{2} \frac{147}{2}-1024}{\frac{1}{2}}=\frac{\frac{175099}{2}}{\frac{1}{2}}=$

Here $a=7, l=1240029$ and $s=1860040$.
Then $r=\frac{s-a}{s-l}=\frac{1860040-7}{1860040-1240029}=\frac{1860033}{620011}=3$.

Here $n=12, a=£ 1$, and $l=£ 2048$.
Then $r=\binom{l}{\frac{l}{a}}^{\frac{1}{n-1}}=\left(\frac{2048}{1}\right)^{\frac{1}{2-T}}=\sqrt[11]{2048}=2$.
$s=\frac{r l-a}{r-1}=\frac{2 \times 2048-1}{2-1}=4096-1=£ 4095$.

Here $r=\frac{3}{2}, n=8$, and $l=106403$.
Then $s=\frac{l\left(r^{n}-1\right)}{(r-1) r^{n-1}}=\frac{106403 \times\left[\binom{3}{2}^{8}-1\right]}{\left(\frac{3}{2}-1\right)\binom{3}{2}^{7}}=\frac{54655 \times \frac{6305}{866}}{\frac{1}{2} \times{ }^{21887}}=$ 25×6305 $\overline{512}=30751 \frac{1}{2}$.

Here $a=1, n=7$, and $r=3$.
Then $s=\frac{a\left(r^{*}-1\right)}{r-1}=\frac{1 \times\left(3^{7}-1\right)}{3-1}=\frac{2186}{2}=1093$.

$$
\begin{aligned}
& \text { Here } a=1, l=10077696 \text {, and } n=10 \text {. } \\
& l^{\frac{n}{n-1}}-a^{\frac{n}{n-1}} \quad(10077696)^{\mathrm{T}^{2}-\mathrm{T}}-1^{1^{\frac{1}{0}-\mathrm{T}}} \\
& \text { Then } s=\frac{}{l^{\frac{1}{x-1}}-a^{\frac{1}{x-1}}}=\frac{}{(10077696)^{T_{0}^{2}-1}=1^{\frac{-1}{n-1}}}= \\
& \begin{aligned}
\frac{\sqrt[9]{(10077696)^{10}}-1}{\sqrt[9]{10077696}-1} & =\frac{\sqrt[3]{(216)^{10}}-1}{\sqrt[3]{216}-1}=\frac{6^{10}-1}{6-1}=\frac{60466176-1}{5} \\
& =\frac{60466175}{8}=12093235 .
\end{aligned}
\end{aligned}
$$

Here $a=6, l=3072$, and $s=6138$.
Then $r=\frac{s-a}{s-l}=\frac{6138-6}{6138-3072}=\frac{5}{3} 6 \frac{5}{5}=2$.

Here $r=2, n=11$, and $s=20470$.
$\begin{aligned} \text { Then } l=\frac{(r-1) s r^{n-1}}{r^{*}}-1 & =\frac{(2-1) \times 20470 \times 2^{10}}{2^{11}-1}=\frac{20470 \times 1024}{2047} \\ & =10240 .\end{aligned}$

Here $a=1$ s., $n=12$, and $r=2$.
Then $\delta=\frac{a\left(r^{n}-1\right)}{r-1}=\frac{1 \times\left(2^{12}-1\right)}{2-1}=4095=4095 \mathrm{~s}$.

$$
=£ 204 \text { 15s. }
$$

Here $a=1$ farthing, $r=2$, and $n=32$.
Then $s=\frac{a\left(r^{n}-1\right)}{r-1}=\frac{1 \times\left(2^{32}-1\right)}{2-1}=4294967295$ far. $=$ $\mathfrak{£} 4473924$ 5s. 3 3 ${ }^{3}$ d.

Here $a=4, l=78732$, and $n=10$.
Then $r=\left(\frac{l}{a}\right)^{\frac{1}{n-1}}=\left(\frac{78732}{4}\right)^{\frac{1}{10-\mathrm{T}}}=\sqrt[9]{19683}=3$.

Here $a=5, r=2$, and $n=7$.
Then $l=a r^{n-1}=5 \times 2^{7-1}=5 \times 2^{6}=5 \times 64=320$.

Here $a=5, l=327680$, and $r=4$.
Then $s=\frac{r l-a}{r-1}=\frac{(327680 \times 4)-5}{4-1}=1310715=436905$.

Here $a=1, r=2$, and $n=64$.
Then $s=\frac{a\left(r^{n}-1\right)}{r-1}=\frac{1 \times\left(2^{64}-1\right)}{2-1}=18446744073709551615 \mathrm{gr}$.
$18446744073709551615 \div(7680 \times 64)=37529996894754$ busb.

$$
\$ 1 \cdot 50 \times 37529996894754=\$ 56294995342131 .
$$

Here $r=3, n=10$, and $s=295240$.
Then $l=\frac{(r-1) s r^{*-1}}{r^{n}-1}=\frac{(3-1) \times 295240 \times 3^{9}}{3^{10}-1}=\frac{2 \times 295240 \times 19683}{59048}$
$=196830$.

Here $a=1, l=2048$, and $n=12$.
Then $s=\frac{l^{\frac{n}{n-1}}-a^{\frac{n}{n-1}}}{l^{\frac{1}{n-1}}-a^{\frac{1}{n-1}}}=\frac{2048^{1^{\frac{1}{2}-T}}-1^{T^{\frac{1}{2}-T}}}{2048^{T 2^{\frac{1}{2}}-T}-1^{T^{\frac{1}{2}-1}}}=$
$\frac{\sqrt[11]{(2048)^{12}}-1}{\sqrt[11]{2048}-1}=\frac{2^{19}-1}{2-1}=2^{12}-1=4095$.

Here $a=5, r=4$, and $n=9$.
Then $l=a r^{n-1}=5 \times 4^{9-1}=5 \times 4^{8}=5 \times 65536=327680$.

Page. 344.
(24)

Here $a=\frac{2}{3}$, and $r=\frac{3}{5}$.

$$
\text { Then } s=\frac{a}{1-r}=\frac{\frac{2}{7}}{1-\frac{3}{5}}=\frac{\frac{2}{2}}{\frac{5}{5}}=\frac{5}{5} .
$$

Here $a=4$, and $r=\frac{1}{2}$.

$$
\text { Then } s=\frac{a}{1-r}=\frac{4}{1-\frac{1}{2}}=\frac{4}{\frac{1}{2}}=8 .
$$

Here $a=\frac{\text { z3 }}{100}$, and $r=\mathrm{T} \frac{2}{100}$.

$$
\text { Then } s=\frac{a}{1-r}=\frac{\frac{79}{100}}{1-100}=\frac{\frac{79}{100}}{\frac{99}{100}}=699 .
$$

Page 345.

Since there are 9 means and 2 extremes the number of terms is 11 .

$$
\text { Then } d=\frac{l-a}{n-1}=\frac{92-2}{11-1}=\frac{20}{10}=9
$$

1st term $=2 ; 2$ nd $=2+9=11 ; 3$ rd $=11+9=20 ; 4$ th $=20+9=29 ; 5$ th $=29+9=38 ; 6$ th $=38+9=47$; and so on.

And series is 2, 11, 20, 29, 38, 47, 56, 65, 74, 83, 92.

Since there are 4 means and two extremes the namber of terms is 6 .

$$
\text { Then } d=\frac{l-a}{n-1}=\frac{50-7}{6-1}=\frac{43}{3}=8 \frac{3}{3}
$$

1st term $=7 ; 2 \mathrm{nd}=7+8=15 \frac{3}{3} ; 3 \mathrm{rd}=15 \frac{3}{3}+8 \frac{3}{5}=24 \frac{1}{5}$; 4 th $=24 \frac{3}{5}+8 \frac{3}{5}=32 \frac{1}{5} ; 5$ th $=32 \frac{4}{5}+8 \frac{3}{3}=41 \frac{2}{5} ;$ and 6 th $=$ $41 \frac{2}{5}+8_{\frac{3}{3}}^{2}=50$.

And series is $7,15 \frac{3}{5}, 24 \frac{1}{5}, 32 \frac{4}{5}, 41 \frac{1}{5}, 50$.

Since there are 8 means and two extremes the number of terms is 10 .

Then $r=\left(\frac{l}{a}\right)^{\bar{\pi}-\mathrm{T}}=\left(\frac{1}{6096}\right)^{T 0^{\frac{1}{-T}}}=\left(\frac{1}{512}\right)^{\frac{1}{9}}=\frac{1}{2}$.
1st term $=4096 ; 2$ nd $=4096 \times \frac{1}{2}=2048 ; 3$ rd $=2048 \times \frac{1}{2}$ $=1024 ; 4$ th $=1024 \times \frac{1}{2}=512 ; 5$ th $=512 \times \frac{1}{2}=256$, and so on.

And the means are $2048,1024,512,256,128,64,32$, and 16.

Since there are 7 means and two extremes the number of terms is 9 .
Then $r=\left(\frac{l}{a}\right)^{\frac{1}{n-1}}=\left(235 \frac{14621}{14}\right)^{\frac{1}{9-1}}=(1679616)^{\frac{1}{8}}=6$.
1st term $=14 ; 2$ nd $=14 \times 6=84 ; 3$ rd $=84 \times 6=504$; 4 th $=504 \times 6=3024 ; 5$ th $=3024 \times 6=18144$, and so on.

And the means are 84, 504, 3024, 18144, 108864, 653184, and 3919104.

$$
\begin{equation*}
\text { Page } 347 . \tag{3}
\end{equation*}
$$

Assume 4 to be the number of men.
Then $2 \times 4=8=$ number of women.
And $8 \times 3=24=$ number of children.
$6 \mathrm{~d} . \times 4=24 \mathrm{~d} .=$ amount received by the men.
$4 \mathrm{~d} . \times 8=32 \mathrm{~d} .=\quad$ " " women.
$2 \mathrm{~d} . \times 24=48 \mathrm{~d} .=\quad$ " $"$ children.
Sum, $=104$ d., but it should, by question, $=78 \mathrm{~d}$.
78×4
Then $104: 78:: 4: \frac{x}{104}=3=$ number of men.
$3 \times 2=6=$ number of women, and $6 \times 3=18=$ number of child [ren.
(4)

Assume $£ 8$ to be the price of the harness. Then $£ 8 \times 2=16=$ price of horse.
And $£ 8+£ 16=£ 24 \times 2=48=$ " chaise.

$$
\text { Sum },=£ \overline{f 2}, \text { but it should by question }=£ 60
$$

$$
8 \times 60
$$

Then $£ 72: £ 60:: £ 8: \frac{\times 6}{72}=£ 6134=$ price of harness.

$$
\text { f6 } 134 \times 2=13 \subset 8=" \text { borse. }
$$

(5)

Assume 20 as C's age.
Then $20 \times 3=60=$ B's age.
And $60 \times 2=120=$ A's age .
$\operatorname{Snm}=200$, but by question it shonld $=140$.

$$
20 \times 140
$$

Then $200: 140:: 20: \frac{}{200}=14=$ C's age.
$14 \times 3=42=$ B's age, and $42 \times 2=84=$ A's age.
(6)

Assume 100.
One fourth of $100=25$ and remainder $=100-25=75$.
One fifth of $75=15$ and remainder $=75-15=60$, bat it should by the question $=72$.

$$
\text { Then } 60: 72:: 100: \frac{100 \times 72}{60}=120 .
$$

(7)*

A can do the work in 7 days $\cdot \cdot$ he will do $\frac{1}{7}$ of it in 1 day.

B	"	"	5	"	\cdot	"	$\frac{1}{5}$	$"$	"
C	"	"	6	"	.\therefore	"	$\frac{1}{5}$	$"$	"

Then all working together will do $\frac{1}{4}+\frac{1}{5}+\frac{1}{6}=\frac{107}{210}$ in 1 day. 1
Therefore to do the whole work it will take them $\frac{1}{\frac{10}{210}}=\frac{910}{10 \%}=$ 178 等 days.
(8)*

A and B working together can do it in 10 days $\cdot \because$ they will do $\frac{1}{10}$ of it in 1 day.

A can do it in 15 days.\therefore he will do $\frac{1}{15}$ of it in 1 day. Therefore $\frac{1}{10}-\frac{1}{15}=\frac{1}{30}=$ amonnt done by B in 1 day. Then if he does $\frac{1}{30}$ in 1 day, it will take him 30 days to do the whole.

[^2](9)*

The first pipe empties the whole of it in 1 hour.
The second pipe empties $\frac{1}{2}$ of it in 1 hour.
The third pipe empties $\frac{1}{3}$ of it in 1 hour.
Then all these pipes running together will empty $1+\frac{1}{2}+\frac{1}{j}$ $=\frac{11}{6}$ in 1 hour.

Therefore to empty the cistern it will take $1 \div \frac{11}{6}=\frac{6}{11}$ hours.

$$
\begin{align*}
& \text { Assume } 84 \tag{10}\\
& \text { One third of } 84=28 \\
& \text { One sixth of } 84=14 \\
& \text { One seventh of } 84=12 \\
& \qquad \text { Sum }=\overline{54, \text { but by question it should }=27 .} \begin{aligned}
84 \times 27
\end{aligned}
\end{align*}
$$

$$
\begin{equation*}
\text { Then } 54: 27:: 84: \frac{1}{54}=42 \tag{11}
\end{equation*}
$$

All 5 mills working together will grind $7+5+4+3+1$ $=20$ bushels in 1 hour.

Therefore to grind 500 bushels it will take them $500 \div 20=$ 25 hours.

One pipe fills $\frac{1}{12}$ of the cistern in 1 hour, and the other empties $\frac{1}{18}$ of it in 1 hour.

Then $\frac{1}{12}-\frac{1}{18}=\frac{1}{36}=$ part of the cistern filled in 1 hour when both are left open.

And if $\frac{2}{36}$ of it is filled in 1 hour, the whole will be filled in 1 $-=36$ hours. $\frac{1}{36}$

Page 352.
(6)

Assume 60 for father's age, then $15=$ son's.

5
5$) 55$
11
10
-1

Assume 100 for father's age, then $25=$ son's.

5
5)95

5
20

19
20
$+1$
Errors. Assumed numbers.

$$
\begin{array}{rrrlr}
-1 & \times & 100 & = & 100 \\
+1 & \times & 60 & = & 60
\end{array}
$$

Sum of errors $=2$ Sum of products $=160$
Therefore result required $=160 \div 2=80=$ father's age, and $\frac{3}{4}$ of $80=20=$ son's age.

Assume 80	Assume 44
34	34
-	-
46	10
3	3
138	30
80	44
58	- 14
t of $80=20$	1 of $44=11$
+ 38	-25
(Continued on next page.)	

(7 continued.)

> | Errors. Assumed numbers. |
| :--- |
| $-25 \times 80=2000$ |
| +38 |
| $=63$ |$\times 44=\frac{1672}{3672}$

Therefore result required $=3672 \div 63=58$.
(9)

Assume 18 and 7
One half of $18=\overline{9} \quad 2 \times 7=\overline{14}$
$-\frac{14}{-5}$
Assume 22 and 3
One half of $22=\overline{11} \quad 2 \times 3=\overline{6}$

$$
+\frac{6}{5}
$$

Errors. Assumed numbers.

$$
\begin{array}{rcc}
\begin{array}{r}
5 \\
+5
\end{array} & \times & 22
\end{array} \quad=\begin{array}{r}
110 \\
\text { Sum of errors } \\
=10
\end{array} \text { Sum of products }=\frac{90}{200}
$$

Then $200 \div 10=20=$ one number, and $25-20=5$ $=$ other number.
(10)

A.	B.	A.	B.
Suppose 8	6	Suppose 6	6
$22 \frac{1}{2}$	9	$22 \frac{1}{2}$	9
	12		12
180	15	135	15
132	18	81	18
	21		21
8) 48	24	6) 54	-
	27		81
$+6$	-	$+9$	
6	132	8	
36		72	
72			
3)36			
12			
9	≈ 3	of errora.	

(12)

Assume 30.
$\frac{1}{2}$ of $30=15$; 4 of $30=7 \frac{1}{2}$;

$$
\frac{1}{5} \text { of } 30=6 \text {; and } \frac{1}{6} \text { of } 30=5 \text {; }
$$

$15 \times 7 \frac{1}{2} \times 6 \times 5=3375$; $3375-6998 \frac{2}{8}=-3623 \cdot 4=$ error.

Assume 60.
$\frac{1}{2}$ of $60=30 ; ~ \&$ of $60=15$;
$\frac{1}{5}$ of $60=12$; and $\frac{1}{5}$ of $60=10$. $30 \times 15 \times 12 \times 10=54000$. $54000-6998 \frac{2}{5}=+47001 \cdot 6=$ error.
$30^{4}=810000$, and $60^{4}=12960000$
$-3623 \cdot 4 \times 12960000=46959264000$
$+47001 \cdot 6 \times 810000=38071296000$
Sum $=50625 \quad$ Sum $=85030560000$
$85030560000 \div 50625=1679616$
4th root $=$ square root of square root.
$\sqrt{1679616}=1296$, and $\sqrt{1296}=36=$ required number.
Norb.-For reason why we multiply by the 4th powers of the assumed numbers and then take the 4th root of the quotient, see Arith. page 359, example 11.

It may, however, perhaps be clearer from the following illustration :

$$
\begin{align*}
& \text { Then } \frac{x}{2} \times \frac{x}{4} \times \frac{x}{5} \times \frac{x}{6}=\frac{x^{4}}{240}=6995_{6}^{2} \\
& \therefore x^{4}=1679616 \\
& \therefore x=\sqrt[4]{1679616}=36 \text {. } \tag{13}
\end{align*}
$$

Suppose A had 9s. at first.
Then $9+1=10 ; 10 \div 2=5 ; 5+1=6=$ what B had at first.
$6+1=7$, but should $=9-1=8$.

$$
\text { Error }=7-8=-1
$$

Suppose A had 11s. at first.
Then $11+1=12 ; 12 \div 2=6 ; 6+1=7=$ what B had at first.
$141=8$, but should $=11-1=10$.
Error $=8-10=-2$.
(Continued on next page.)
(13 contirued.)
Errors.
$-2 \times 9=18$
$-1 \times 11=11$

$$
\text { Diff. }=1 \quad \text { diff. }=7
$$

$7 \div 1=7=$ shillings A had at first.
$7+1=8 ; 8 \div 2=4 ; 4+1=5=$ shillings B had at first.

Assume 24 and 6.

$$
\frac{24}{2}+\frac{24}{3}+\frac{24}{6}=24
$$

$\frac{6}{2}+\frac{3}{4}$ of $6+\frac{5}{4}=9$.
$24-9=+15=$ error.

Assume 20 and 10.
$\frac{20}{2}+\frac{20}{3}+\frac{20}{6}=20$.
$\frac{10}{2}+\frac{3}{4}$ of $10+{ }_{4}^{12}=15$.

Errors.

$$
\begin{aligned}
& +15 \times 20=300 \\
& +5 \times 24=120
\end{aligned}
$$

$$
\text { Diff. }=10 \text { diff. }=180
$$

$$
180 \div 10=18=\text { one number }
$$

$$
30-18=12=\text { other number }
$$

(15)

Suppose 1st horse to be worth $£ 20$.
$20+50=70 ; 70 \div 2=£ 35=$ value of 2 nd horse.
$35+50=85$, but it should equal 60 , i. e. (20×3).
Then $60-85=-25=$ error.
Suppose 1st horse to be worth $£ 60$.
$£ 60+£ 50=£ 110 ; £ 110 \div 2=£ 55=$ worth of 2 nd horse.
$55+50=105$, but it should equal 180 , i. e. (60×3).
$180-105=+75=$ error .
Errors.

$$
\begin{aligned}
& 75 \times 20=1500 \\
& \text { Sum }=\overline{100} \quad \text { Sum }=\overline{3000} \\
& 3000 \div 100=£ 30=\text { value of } 1 \mathrm{st} \text { horse. } \\
& £ 30+£ 50=£ 80 ; £ 80 \div 2=£ 40=\text { value of } 2 \text { nd horse } .
\end{aligned}
$$

(16)

Suppose there were 11 beggars.
$11 \times 4=44 ; 44+6=50=$ number of pence he had.
$11 \times 6=66 ; 66-12=54=$

$$
54-50=+4=\text { error. }
$$

Sappose there were 12 beggars.
$12 \times 4=48 ; 48+6=54=$ pence he had.
$12 \times 6=72 ; 72 \div 12=60=$ pence he had.

$$
60-54=+6=\text { error. }
$$

Errors.

$$
\begin{aligned}
& +6 \times 11=66 \\
& +4 \times 12=48
\end{aligned}
$$

Diff. $=2$ diff. $=18$, and $18 \div 2=9=$ number of beggars.

Page 357.

(7)

Here $P=\$ 713 \cdot 29, r=\cdot 045$, and $t=14$.
Then $\mathcal{A}=P(1+r)^{\prime}$, or $\log . A=\log . P+\log .(1+r) \times t$ $=2 \cdot 853267+\cdot 019116 \times 14=3 \cdot 120891=\log$. of Ans. Hence amount $=\$ 1320 \cdot 96$.

Here $n=7, r=\cdot 015$.
Then $t=\frac{\log \cdot n .}{\log \cdot(1+r)}=\frac{845098}{.006466}=130.698$ payments, and $130 \cdot 698 \div 4=32 \cdot 674$ years $=32$ years 8 months 2 days.-

Here $A=\$ 1111 \cdot 11, P=111 \cdot 11$, and $r=\cdot 08$.
Then $t=\frac{\log . A-\log . P}{\log .(1+r)}=\frac{3.045757-2.045753}{.033424}=\frac{1.000004}{.033424}$
$=29 \cdot 918$ years $=29$ years 11 months.
(10)

Here $A=\$ 3333 \cdot 33, P=\$ 222 \cdot 22$, and $t=120$.
Then $r=\left.\right|^{t} \frac{A}{P}-1$; or $\log .(1+r)=\frac{\log . A-\log . P}{t}=$
$\frac{3 \cdot 522878-2 \cdot 346784}{120}=\frac{1 \cdot 176095}{120}=\cdot 0098007$. Hence $1+r$
$=1 \cdot 0228, r=\cdot 0228$, and rate per cent. $=2 \frac{7}{25}$.

Here $n=2$ and $r=\cdot 07$.
Then $t=\frac{\log . n .}{\log .(1+r)}=\frac{0.301030}{0.029384}=10.2446$ years $=10 \mathrm{yrs}$.
2 months 28 days.

Here $\mathcal{A}=\$ 100, r=\cdot 0225$, and $t=28$.

$$
A
$$

Then $P=\frac{}{(1+r)^{t}}$, or $\log P=\log . A-\log .(1+r) \times t$.
$\log . P=2-0.009664 \times 28=2-0.270592=1.729408$.
Hence $P=\$ 53 \cdot 63$.

Here $P=\$ 2468 \cdot 13, r=\cdot 0375$, and $t=26$.
Then $A=P(1+r)^{t}$, or log. $A=\log . P+\log .(1+r) \times t$.
Log. $A=3.392368+0.015988 \times 26=3.392368+0.415688$

$$
=3 \cdot 808056
$$

Hence $\mathcal{A}=\$ 6427 \cdot 705$.

Here $A=\$ 7137 \cdot 40, r=\cdot 0425$, and $t=22$.
Then $P=\frac{A}{(1+r)^{t}}$, or $\log . P=\log . A-\log .(1+r) \times t$.
Log. $P=3.853540-0.018076 \times 22=3.853540-0.397672$ $=3.455868$.
Hence $P=\$ 2856 \cdot 723$.
(15)

Here $n=19$, and $r=\cdot 0525$.
Then $t=\frac{\log . n}{\log .(1+r)}=\frac{1 \cdot 278754}{0.022222}=57.5445$ payments $=$ $28 \cdot 7225$ years $=28$ years 9 months 8 days,

Page 360.
(3)

Here $r=\cdot 03, a=500, \mathcal{A}=8365$.
Formula IV. $t=\frac{\sqrt{ }\left\{\frac{8 r \mathcal{A}}{a}+(2-r)^{2}\right\}-(2-r)}{2 r}$

$$
\begin{gathered}
=\frac{\sqrt{ }\left\{\frac{8 \times \cdot 03 \times 8365+(2-.03)^{2}}{500}\right\}-(2-.03)}{2 \times \cdot 03} \\
=\frac{\sqrt{ }\left\{\frac{2007.6}{500}+3.8809\right\}-1.97}{.06} \\
=\frac{\sqrt{(4.0152+3.8809)-1.97}}{.06}=\frac{\sqrt{7.8961}-1.97}{.06} \\
= \\
\frac{2.81-1.197}{.06}=\frac{.84}{.06}=\frac{84}{6}=14 \text { payments }=7 \text { years. }
\end{gathered}
$$

Here $a=112 \cdot 50, r=\cdot 015, t=44$.
Formula I. $A=$ at $\left(1+\frac{(t-1) r}{2}\right)$
$=112.50 \times 44\left(1+\frac{(44-1) \times \cdot 015}{2}\right)=4950 \times 1.3225$
$=\$ 6546 \cdot 375$.
(5)

Here $a=300, A=1680$, and $t=5$.
Formula III. $r=\frac{2(A-a t)}{a t(t-1)}=\frac{2(1680-300 \times 5)}{300 \times 5(5-1)}$

$$
=\frac{2(1680-1500)}{300 \times 5 \times 4}=\frac{2 \times 180}{6000}=\frac{360}{6000}=\cdot 06 .
$$

\therefore Rate per cent $=\cdot 06 \times 100=6$.

Here $A=2080, r=.04$, and $t=16$.
Formula II. $a=\frac{2 A}{t\{2+(t-1) r\}}=\frac{2 \times 2080}{16\{2+(16-1) \cdot 04\}}$

$$
=\frac{4160}{16 \times(2+15 \times \cdot 04)}=\frac{4160}{16 \times 2 \cdot 6}=\frac{4160}{41 \cdot 6}=\frac{41600}{416}
$$

$=\$ 100=1$ payment or rent for balf a year, hence yearly rent $=\$ 100 \times 2=\$ 200$.

Page 366.
(5)

Here $r=\cdot 04$, and $v=\$ 3000$.
Then $a=v r=3000 \times \cdot 04=\$ 120$.

Here $a=563$, and $v=11260$
Then $r=\frac{a}{v}=\frac{563}{11260}=\frac{1}{2}=\cdot 05$, and heace rate per cent. $=5$.
(7)

Here $a=75, r=\cdot 05$, and $s=14$.
a 75
Then $v=\overline{r(1+r)^{4}}=\overline{.05 \times(1.05)^{14}}$. $\log . v=\log .75-\log .(1 \cdot 05) \times 14$
$=1.875061-(0.021189 \times 14+\log . \cdot 05)$
$=1.875061-(0.296646+2.698970)$.
$=2.879445$.
$\therefore v=$ nat. number corresponding to the logarithm $2 \cdot 879445$, which is $\$ 757 \cdot 608$.
(8)

Here $a=\$ 90, r=\cdot 04, t=12, s=7$, and $\cdot \cdot s+t=19$.
Formula VII. $v=\frac{a}{r}\left\{\frac{1}{(1+r)^{t}}-\frac{1}{(1+r)^{t^{+t}}}\right\}$

$$
\begin{gathered}
=\frac{90}{.04}\left\{\frac{1}{(1 \cdot 04)^{12}}-\frac{1}{(1 \cdot 04)^{19}}\right\}=\frac{9000}{4}\left\{\frac{1}{1 \cdot 60101}-\frac{1}{2 \cdot 10682}\right\} \\
\quad=2250 \times(\cdot 624605-.474649)=2250 \times \cdot 149956
\end{gathered}
$$

$=\$ 337 \cdot 3988$.
(9)

Here $a=1500$, and $r=\cdot 05$.
Formula VIII. $v=\frac{a}{r}=\frac{1500}{.05}=\frac{150000}{5}=\$ 30000$
$=20 \times 1500$ or 20 years' purchase.
(10)

Here $a=22, v=308 \cdot 64366$, and $r=\cdot 04$.
Then Formula VI. $t=\frac{\log \cdot a-\log \cdot(a-v r)}{\log \cdot(1+r)}$

$$
\begin{gathered}
=\frac{\log .22-\log \cdot(22-308 \cdot 6436 \times \cdot 04)}{\log \cdot(1 \cdot 04)} \\
=\frac{1 \cdot 342423-\log \cdot(9 \cdot 65425)}{0.017033}=\frac{1 \cdot 342423-0.984707}{0.017033} \\
=\frac{0.357716}{0.017033}=\frac{357716}{1117033}=21+
\end{gathered}
$$

Here $a=154, t=19$, and $r=\cdot 05$.
Formula IV. $v=\frac{a}{r}\left\{1-\frac{1}{(1+r)_{t}}\right\}$
$=\frac{154}{.05} \times\left\{1-\frac{1}{(1.05)^{19}}\right\}=\frac{15400}{5} \times\left\{1-\frac{1}{2.5269}\right\}$
$=3080 \times(1-\cdot 39574)=3080 \times \cdot 60426=\$ 1861 \cdot 12+$.
Here $A=600, t=40$, and $r=\cdot 0375$.
Formula II. $\quad a=\frac{A r}{(1+r)^{t}-1}=\frac{600 \times \cdot 0375}{(1 \cdot 0375)^{40}-1}$

$$
\begin{gathered}
=\frac{22 \cdot 5}{4 \cdot 36034-1}=\frac{22 \cdot 5}{3 \cdot 36034}=\frac{2250000}{336034} \\
=£ 6 \cdot 6957=£ 613 \mathrm{~s} .10 \frac{3}{4} \mathrm{~d}+ \\
\text { (13) }
\end{gathered}
$$

Here $a=8, \mathrm{~A}=187 \cdot 315625$ and $r=\cdot 03$.
Formula III. $t=\frac{\log (A r+a)-\log a}{\log (1+r)}$

$$
\begin{gathered}
=\frac{\log (187 \cdot 315625 \times \cdot 03+8)-\log 8}{\log 1 \cdot 03} \\
=\frac{\log (5 \cdot 61946875+8)-\log 8}{\log 1 \cdot 03}
\end{gathered}
$$

$$
\begin{align*}
=\frac{\log .13 .61946875-\log .8}{\log 1.03} & =\frac{1 \cdot 134160-0.903090}{0.012837} \tag{14}\\
=\frac{0.231070}{0.012837} & =\frac{231070}{12837}=18 .
\end{align*}
$$

Here $A=74, r=\cdot 04$ and $t=30$
Formula I. $\mathrm{A}=\frac{\left.a\left\{(1+r)^{t}-1\right)\right\}}{r}=\frac{74 \times\left\{(1.04)^{30}-1\right\}}{.04}$

$$
=\frac{74}{.04} \times(3.24332-1)=\frac{7400}{4} \times 2 \cdot 24332=\$ 4150 \cdot 142
$$

By Table, page 362. Amount of $\$ 1$ for 30 years, at 4 per cent. $=\$ 56.08494$
Then $\$ 56.08494 \times 74=\$ 4150 \cdot 28$.

Page 367.

EXAMINATION PAPERS,

FIRST SERIES.

$\$ 7580 \times \cdot 19=\$ 1440 \cdot 20$, and $\$ 7580-\$ 1440 \cdot 20=\$ 6139 \cdot 80$.
D is to have one third as much as A, B, and C together, there-
fore he will have one-fourth of the whole. 4 of $\$ 6139 \cdot 80$
$=\$ 1534 \cdot 95=$ D's share.
$\$ 6139 \cdot 80-\$ 1534 \cdot 95=\$ 4604 \cdot 85=$ amonnt to be divided among A, B, and C.

B is to have $\$ 90 \cdot 90$ more than C .
A is to have $\$ 111 \cdot 11+\$ 90 \cdot 90=202 \cdot 01$ " " "
$\$ 292 \cdot 91$
$\$ 4604 \cdot 85-\$ 292 \cdot 91=\$ 4311 \cdot 94=$ three times C's share, $\$ 4311 \cdot 94 \div 3=\$ 1437 \cdot 31 \frac{1}{3}=$ C's share.
$\$ 1437 \cdot 31 \frac{1}{3}+\$ 90 \cdot 90=\$ 1528 \cdot 21 \frac{1}{3}=$ B's share. $\$ 1528 \cdot 21 \frac{1}{3}+\$ 111 \cdot 11=\$ 1639 \cdot 32 \frac{1}{3}=$ A's share.
(3)

A and B working together can do the work in 96 hours, therefore in one bour they will do ${ }_{0}^{1} 6$ of it.

A by himself can do the work in 192 hoars; therefore in 1 hour be can do $\frac{1}{192}$ of it. $\frac{1}{95}-\frac{1}{192}=\frac{1}{192}=$ part B can do in one hour. Therefore he will require as many hours to finish it as $\mathrm{r} d \mathrm{I}$ is contained times in the whole, i. e. $1 \div \frac{1}{19} \bar{Z}=192$ hours. Then $192 \div 14=13 \frac{5}{7}$ days.
(4)
$£_{179} 14 \mathrm{~s} .8 \frac{3}{2} \mathrm{~d} .=\$ 718 \cdot 94_{1}^{\top} \mathcal{E}=\$ 718.94583$.
$\$ 718 \cdot 9458 \dot{3} \div \cdot 00000048=\$ 71894583333 . \dot{3} \div 48=$ $\$ 1497803819 \cdot 4444$.

77	4\%.18..30.	6. 27
30	\%..18..32	8.. 28
36	2.. 3	\%.. 2

(6)

Here $n=20$, and $r=\cdot 0525$.
Then $t=\frac{n-1}{r}=\frac{20-1}{.0525}=\frac{19}{.0525}=361.9028$ years $=$ 361 years 10 months 25 days.

7342163 octenary $=7 t 0 e 57$ duodenary, and 61351 nonary $=$ 1 e454 duodenary.
$7 t 0 e 57 \div 1 e 454=40 \cdot 38$ duodenary.
(8)

$$
783 \frac{1}{2}=3 \frac{1}{2}+10 \times 8+10 \times 10 \times 7
$$

lbs. oz. dwt.grs.
lbs. oz. dwt. grs.

$$
43 \quad 3 \quad 1711 \times 3 \frac{1}{2}=151 \quad 711 \quad 2 \frac{1}{2}
$$ 10

| 433 | 2 | 14 | 14 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 10 | | | |$\times 8=3465 \quad 9 \quad 1616$

$4332 \quad 3 \quad 5 \quad 20 \times 7=$| 30325 | 11 | 0 | 20 |
| :--- | :--- | :--- | :--- |
| 33943 | 4 | 8 | $14 \frac{1}{2}$ |

(9)

Here $a=1$, and $r=\frac{1}{2}$.
Then $S=\frac{a}{1-r}=\frac{1}{1-\frac{1}{2}}=\frac{1}{\frac{1}{2}}=2$.
(10)

(11)

Logarithm of $129140163=8 \cdot 111061$. $8 \cdot 111061 \div 17=-477121=$ logarithm of 3 .

Suppose 48
18

66
84
-18

Suppose 36

54°
63
-9

Errors. Assumed numbers.
$-18 \times 36=648$
$-9 \times 48=432$
Difference of errors $=9$
9)216 $=$ sum of products.

24

SECOND SERIES.
(13)
B is to have $\$ 69 \cdot 18$ more than C.
A is to have $\$ 69 \cdot 18+\$ 93 \cdot 40=\$ 162 \cdot 58$ " " "
$\$ 231 \cdot 76$
$\$ 897 \cdot 43-\$ 231 \cdot 76=\$ 665 \cdot 67=$ Amount to be divided equally amongst A, B, and C.
$\$ 665 \cdot 67 \div 3=\$ 221 \cdot 89=$ C's share.
$\$ 221 \cdot 89+\$ 69 \cdot 18=\$ 291 \cdot 07=$ B's "
$\$ 291 \cdot 07+\$ 93 \cdot 40=\$ 384 \cdot 47=$ d's "
(14)

尔 of $4 \frac{1}{2}$ of $7 \frac{4}{5}$ of $\frac{9}{19 \frac{1}{2}}$ of $\frac{5}{9}$ of 3 oz .4 drs .2 scr. 5 grs . $=\frac{5}{3}$ of $\frac{9}{\frac{9}{2}}$ of $\frac{39}{6}$ of $\frac{18}{39}$ of $\frac{5}{9}$ of $1725 \mathrm{grs} .=10350 \mathrm{grs}$.
${ }_{11}^{6}$ of 63 of 2_{42}^{37} of $\frac{3}{13}$ of $6 \frac{1}{2}$ times $7 \mathrm{lbs} .3 \mathrm{oz} .=\frac{6}{17}$ of $\frac{7}{15}$ of $\frac{181}{42}$ of $\frac{3}{13}$ of $\frac{13}{2}$ of $41760 \mathrm{grs}=62640 \mathrm{grs}$.

$$
10350 \div 62640=\cdot 165229
$$

(16)

Dissimilar. Similar. Similar and Coterminous.
$623 \cdot 4279 \dot{3}=623 \cdot 42793 \dot{3} 9 \dot{3}=623 \cdot 42793 \dot{7} 9379 \dot{3}$
$\begin{aligned} 93 \cdot 42671 \ddot{92}=93 \cdot 42671 \ddot{9} 2 & =\frac{93 \cdot 42671929292}{\text { Difference }}=530 \cdot 00121864500\end{aligned}$
(17)
$\$ 1.00-\$ 0 \cdot 046=\$ 0 \cdot 954$, and $\$ 7493 \div 0.954=\$ 7854 \cdot 29$. (18)

36: 20 weeks 6 : 5 days	::18 men:			
			\& 11	
9: 11 hours		$18 \times 20 \times 5 \times 18 \times 24 \times 28 \times 22 \times 1$		
11: 24 cellars		$86 \times$	$8 \times 9 \times 18 \times 20 \times 16$	
20:22 feet long		${ }_{8}$		
16: 22 feet wide			2	
5 : 4 feet deep				

$$
\frac{11 \times 22}{9}=26 \mathrm{~g} .
$$

(19)
$\frac{1}{1}$ of $\frac{3}{8}$ of $\frac{4}{7}=\frac{6}{35}$; and if $\frac{6}{38}$ of a certain number $=\frac{75}{35}, \frac{1}{36}=\frac{1}{3} \frac{1}{5}$, and $\frac{35}{3}=\frac{1}{3}$ 앙 $\times 35=12$.
$\left(\left\{\left[\left(\left\{\left[\left(12 \times 12 \frac{1}{2}\right)+31\right] \times 3\right\}-33\right) \times 300\right] \div 17\right\} \times 9\right)$ $=81000$.

1176	\%89. $768 . .848$.
32	2Q.. $32 . .29$
145	\$ 29

$$
838) 171347(204
$$

$$
1676
$$

$$
3747
$$

$$
3352
$$

17598) 46090(2

35196
10894)17598(1

10894
6704)10894
$\frac{6704}{4190) 6704(1}$
4190
2514)4190(1

2514
1676)2514(1

1676
838)1676(2

1676
As no number greater than unity will divide all of them withont a remainder, they have no G. C. M.
(22)

$\$ 12000 \times 4$	$=\$ 48000$
$\$ 12000+\$ 8000=\$ 20000 \times 2=$	$\$ 40000$
$\$ 88000$	$=$ product of A's
stock and time.	

$$
\$ 120000=\text { product of } \mathrm{B} \text { 's }
$$

stock and time.
$\frac{7}{7}$ of $\$ 35000=\$ 10000 . \$ 35000-\$ 10000=\$ 25000 \times 4=\$ 100000$
$\$ 170000$
$=$ product of C's stock and time.
$\$ 88000+\$ 120000+\$ 170000=\$ 378000=$ sum of the products of stocks and times.
Then $\$ 378000: \$ 88000:: \$ 15000: \frac{15000 \times 88000}{378000}=\$ 3492.06$
$=$ A's share.
$\$ 378000: \$ 170000:: \$ 15000: \frac{15000 \times 170000}{378000}=\$ 6746.03$
$=$ C's share. (23)

A's gain in 5 months $=\$ 125 \therefore$ his gain for 9 months

$$
\begin{aligned}
& =1 \frac{4}{5} \times \$ 125 \\
& =\$ 225
\end{aligned}
$$

B's gain in 6 months $=\$ 125 \therefore$ his gain for 9 months

$$
=1 \frac{1}{2} \times \$ 125 . .: .
$$

C' gain in 9 months . $=\$ 125$
Sum $=\$ 537 \frac{1}{2}$
Then $\$ 537 \frac{1}{2}: \$ 225:: \$ 400: \frac{400 \times 225}{537 \frac{1}{2}}=\$ 167 \frac{19}{43}=$ A's stock. $\$ 537 \frac{1}{2}: \$ 187 \frac{1}{2}:: \$ 400: \frac{400 \times 187 \frac{1}{2}}{537 \frac{1}{2}}=\$ 139_{43}^{23}=$ B's stock.
$\$ 537 \frac{1}{2}: \$ 125:: \$ 400: \frac{400 \times 125}{537 \frac{1}{2}}=\$ 93_{4}^{\frac{1}{4}}=$ C's stock.
(24)
$\frac{1}{6}+\frac{1}{8}+\frac{1}{10}+\frac{1}{12}=\frac{5^{7}}{12}{ }^{7}=\frac{19}{40}=$ part of the cistern filled in one hour when the four pipes are left open.
$\frac{1}{6}+\frac{1}{5}+\frac{1}{4}+\frac{1}{3}=4 \frac{1}{20}=\frac{38}{40}=$ part of the cistern emptied in one hour when the four are left open.
$\frac{38}{48}-\frac{19}{4}=\frac{19}{40}=$ part of the cistern which remains filled after the eight pipes have been left open for one hour. And if $\frac{19}{40}$ of the cistern are emptied in one hour, it will take $1 \div$ $\frac{1}{6}=2 \frac{2}{19}$ hours to empty the whole of it.

THIRD EERISS.

(26)

As often as the first receives 4 the second receives 3 , therefore as often as the first receives 6 the second receives $4 \frac{1}{2}$. Then $6+4 \frac{1}{2}+7=17 \frac{1}{2}$.

> loaves.
$17 \frac{1}{2}: 6 \therefore 2310: \frac{2310 \times 6}{17 \frac{1}{2}}=792$ loares $=$ number the first receives. $17 \frac{1}{2}: 4 \frac{1}{2}:: 2310: \frac{2310 \times 4 \frac{1}{2}}{17 \frac{1}{2}}=594 \quad$ " $=$ second "
$17 \frac{1}{2}: 7:: 2310: \frac{2310 \times 7}{17 \frac{1}{2}}=924 \quad$ " $=$ " third "

To produce a mixture worth 8 cents a pound, we require 4 lbs. $@ 12$ cents, 4 @ cents, 1 @ cents, and 3 @ cents. or 3 lbs . @ 12 cents, 1 @ cents, 4 @ cents, and 4 @ 9 cents, lbs.lbs. lbs. lbs.lbs. lbs.

Then 4:72::4:72 lbs. @ 4 cts or $3: 72:: 1: 24 \mathrm{lbs}$. 4 cts . 4:72:: $1: 18 \mathrm{lbs}$, $5 \mathrm{cts} . \quad 3: 72:: 4: 96 \mathrm{lbs}$. 5 cts. 4:72::3:54 lbs. ஹ 9 cts. 3:72::4:96 lbs. @ 9 cts.

Here $A=\$ 4444 \cdot 44, r=\cdot 0444$, and $t=4 \cdot 3 \frac{4}{g}$.
Then $P=\frac{\mathcal{A}}{1+r t}=\frac{\$ 4444 \cdot 44}{1+0444 \times 4 \cdot 34}=\frac{\$ 4444 \cdot 44}{1 \cdot 19289 \frac{1}{3}}=\$ 3725 \cdot 764$.
(29)
$\$ 1 \cdot 00-\$ 0 \cdot 0225=\$ 0 \cdot 9775 . \quad \$ 23470 \div 0 \cdot 9775=\$ 24010 \cdot 23$.

Here $\mathcal{A}=\$ 7493 \cdot 47, r=\cdot 07$, and $t=8$.
Then $P=\frac{A}{1+r t}=\frac{7493 \cdot 47}{1+.07 \times 8}=\cdot \frac{7493 \cdot 47}{1 \cdot 56}=\$ 4803 \cdot 5064$.
$\$ 17460 \div 1 \cdot 03125=\$ 16930 \cdot 909=$ sum to be invested. $16930 \cdot 909 \div 2 \cdot 95=5739.29 \mathrm{yds}$. cloth.
$16930 \cdot 900 \times \cdot 02 \frac{1}{2}=\$ 423.27272=$ ad valorem duty. $\$ 17460+\$ 1347 \cdot 90+\$ 479 \cdot 40+\$ 169 \cdot 83+\$ 423 \cdot 27272=$ $\$ 19880 \cdot 40272=$ whole cost.
$\$ 25000-\$ 19880 \cdot 40272=\$ 5119 \cdot 59728=$ whole gain.
5119.59728×100
Then $\$ 19880 \cdot 40272: \$ 100:: \$ 5119 \cdot 59728:-\frac{1}{19880 \cdot 40272}=$ $27 \cdot 75=27 \frac{3}{4}$ per cent.
(32)

5569 den.
(33)

4 of $4 \frac{1}{1}$ of $\frac{9+}{\frac{1}{2} \frac{3}{3}}$ of $\frac{1}{16}$ of $\%$ of $£ 4318 \mathrm{~s} .11 \frac{1}{3} \mathrm{~d}$. $£ 4318 \mathrm{~s} .11 \frac{1}{2} \mathrm{~d} .=$ $\$ 175 \cdot 79 \mathrm{k}$.
(Continned on next page.)

(33 continued.)

甬 of $\frac{\circ}{2}$ of $\frac{\frac{39}{4}}{\frac{13}{23}}$ of $\frac{1}{15}$ of $\frac{7}{5}$ of $\$ 175 \cdot 79 \frac{1}{6}$, $=\frac{3}{8}$ of $\frac{2}{2}$ of $\frac{15}{1}$ of $\frac{1}{15}$ of $\frac{7}{2}$ of $\$ 175 \cdot 79 \frac{1}{6}=\frac{3}{2}$ of $\$ 175 \cdot 79 \frac{1}{6}=\$ 263 \cdot 6875$.

1
$3 \frac{5}{\text { g }}$ of $\frac{1}{17 \frac{1}{2}}$ of $\cdot 56$ of $1 \cdot 75$ of $6 \frac{1}{2}$ times $\$ 97 \cdot 18=$
$\frac{38}{9}$ of $\frac{\frac{t}{38}}{\frac{3}{2}}$ of $\frac{56}{100}$ of $\frac{175}{5}$ of $6 \frac{1}{2}$ times $\$ 97 \cdot 18 ; 6 \frac{1}{2}$ times $\$ 97 \cdot 18$ $=\$ 631 \cdot 67$.

147

$=\frac{4}{4} \frac{9}{25}$ of $\$ 631 \cdot 67$.
$\frac{19}{2}$ of $\$ 631 \cdot 67=\$ 137 \cdot 5636$.
Then $\$ 263 \cdot 6875-\$ 137 \cdot 5636=\$ 126 \cdot 1239=$ difference.
$h_{7}=1 \div 13 . \therefore \log \cdot \frac{1}{13}=\log .1-\log .13=0-1 \cdot 113943$ $=\overline{2} \cdot 886057$.
$\because \cdot 5=3 \times 13 \times 5 \div 10 . \cdot \log .19 \cdot 5=\log .3+\log .13$ $+\log .5-\log .10$.

$$
\log .3=0.477121
$$

$$
\log .13=1 \cdot 113943
$$

$\log .5=\log .10-\log .2=1-0 \cdot 301030 . \therefore \log .5=0.698970$

$$
\text { Sum }=2 \cdot 290043
$$

From which take log. $10=1$
Rem. $=1 \cdot 290034$

$$
=\log .19 \cdot 5
$$

$$
\begin{aligned}
1125= & 5^{3} \times 3^{2} \therefore \log .1125=(\log .5)+3+(\log .3) \times 2 . \\
& \log .5=0.698970 \times 3=2 \cdot 096910 \\
& \log .3=
\end{aligned}
$$

$$
\text { Sum }=3.051152=\log . \text { of } 1125
$$

(34 continued.)
$28 \cdot 1 \dot{6}=28 \frac{1}{6}={ }^{169}=13^{2} \div 6 . \cdot \log .28 \cdot 1 \dot{6}=(\log .13) \times 2$ $-(\log .2+\log .3)$.

$$
\log .13=1 \cdot 113943 \times 2=2 \cdot 227886
$$

$(\log .2+\log .3)=(0.301030+0.477121)=0.778151$
Diff. $=1 \cdot 449735$

$$
=\log .28 \cdot 1 \dot{6}
$$

$65000=13 \times 5 \times 1000 . \cdot \log .65000=\log .13+\log .5$ $+\log .1000$.

$$
\begin{aligned}
\log \cdot 13 & =1 \cdot 113943 \\
\log .5 & =0 \cdot 698970 \\
\log \cdot 1000 & =3 \\
\text { Sum } & =\overline{4 \cdot 812913}=\log . \text { of } 65000 .
\end{aligned}
$$

$\log . \cdot 0005=\log .5$ with characteristic changed to -4

$$
=\overrightarrow{4} \cdot 698970
$$

$152 \cdot 1=3^{2}+13^{2} \div 10 \therefore \log .152 \cdot 1=(\log .3) \times 2$ $+(\log .13) \times 2-\log .10$.

$$
\begin{aligned}
\log .3=0 \cdot 477121 \times 2 & =0 \cdot 954242 \\
\log .13=1 \cdot 113943 \times 2 & =2 \cdot 227886 \\
\text { Sum } & =\overline{3 \cdot 182128}
\end{aligned}
$$

From which take log. $10=1$

$$
\text { Diff. }=\overline{2 \cdot 182128}=\log .152 \cdot 1
$$

$8 \cdot 112=2^{4} \times 13^{2} \times 3 \div 1000 . \cdot \log .8 \cdot 112=(\log .2) \times 4$ $+(\log .13) \times 2+\log .3-\log .1000$.

$$
\begin{aligned}
\log .2=0 \cdot 301030 \times 4 & =1 \cdot 204120 \\
\log .13=0 \cdot 113943 \times 2 & =2 \cdot 227886 \\
\log .3= & =\overline{0 \cdot 477211} \\
\text { Sum } & =\overline{3 \cdot 909217}
\end{aligned}
$$

From which take log. $1000=3$

$$
\text { Diff. }=\overline{0.909217}=\log .8 \cdot 112
$$

(35)

$\frac{1}{6}+\frac{1}{12}+\frac{1}{7}+5$ years $=\frac{1}{2} \frac{1}{8}$ of life time +5 years=age at birth of son. $\frac{28}{28}-\left(\frac{1}{2} \frac{1}{8}+5\right)=\frac{17}{2} \frac{7}{8}$ of his life time -5 years $=$ time be lived after birth of son.
$\frac{17}{8}$ of father's life time -5 years -4 years $=$ age of son $=\frac{1}{2}$ father's age.
$\frac{17}{28}$ of father's life time -9 years $=\frac{1}{2}$ father's age.
$\therefore 9$ years is the difference between $\frac{175}{28}$ and $\frac{14}{\frac{1}{8}}$ of father's age.
$\therefore 9$ years is equal to ${ }_{2}{ }^{3} 8$ of father's age.
If 9 years is $\frac{3}{28}$ of his age, $\frac{2}{8}$ will be the $\frac{1}{3}$ of 9 which is 3 years. If $\frac{1}{2} \frac{1}{5}$ is 3 years, $\frac{2 \pi}{\frac{2}{3}}$ or the whole age will be $3 \times 28=84$ years.

> Or by Position.

Assume 42 for father's age at death, the son's age $=21$. $\frac{1}{6}+\frac{1}{12}+\frac{1}{7}+5=\frac{11}{28}+5 ; \frac{1}{28}$ of $42=16 \frac{1}{2}$ and $16 \frac{1}{2}+5=$ $21 \frac{1}{\frac{1}{2}}=$ age of father when son was born.
\therefore he lived after birth of his son $42-21 \frac{1}{2}=20 \frac{1}{2}$ years.
(Continued on next page.)

By the question he lived $21+4=25$ years.

- The error $25-20 \frac{1}{2}=-4 \frac{1}{2}$.

Assume 98 for father's age, then son's age $=\frac{1}{2}$ of $98=49$.
$\frac{1}{6}+\frac{1}{12}+\frac{1}{7}+5=\frac{1}{2} \frac{1}{8}+5 ; \frac{1}{2} \frac{1}{8}$ of $98=38 \frac{1}{2}$, and $38 \frac{1}{2}+5=43 \frac{1}{2}$ $=$ age of father at birth of son.
\therefore he lived after birth of his son $98-43 \frac{1}{2}=54 \frac{1}{2}$ years.
But by the question he lived $49+4$ years $=53$ years . Then $53-54 \frac{1}{2}=+1 \frac{1}{2}=$ error.
Errors.
$-4 \frac{1}{2} \times 98=392$
$+1 \frac{1}{2} \times 42=\frac{63}{504}$
Sum $=6$

$$
\begin{equation*}
504 \div 6=84=\text { father's age } \tag{37}
\end{equation*}
$$


```
                                    (37 continued.)
                                    60129)4016965(66.80578 times
                                    360774
                                    409225
            360774
            484510
            481032
            347800
            300645
                471550
                420303
                506470
                481032
                    (38)
6.3\div.000000274
    274)6300000000(22992700 % 72992700
                        548
                    820
                    548
                    2720
                    2466
                    2540
                    2466
\begin{tabular}{|c|c|}
\hline 740 & 2720 \\
\hline 548 & 2466 \\
\hline 1920 & 2540 \\
\hline 1918 & 2466 \\
\hline 2000 & 740 \\
\hline 1918 & 548 \\
\hline 820 & 1920 \\
\hline 548 & 1918 \\
\hline & 20 \\
\hline
\end{tabular}
```

(39)

(40)
$I=P r t=\$ 4237 \cdot 71 \times \cdot 065 \times 1 \cdot 67=\$ 460 \cdot 0034205$.
(41)
$t=\frac{A-P}{P r}=\frac{\$ 1000-\$ 674 \cdot 30}{\$ 674 \cdot 30 \times \cdot 085}=\frac{325 \cdot 70}{57 \cdot 3155}=5 \cdot 68258$ years $=$ 5 years 8 months $5 \cdot 7288$ days.
(42)

By Table, page 260 , the amount of $\$ 1$ for 14 payments at 4 per cent is $\$ 1 \cdot 73168$.
Then $\$ 1 \cdot 73168 \times 813 \cdot 71=\$ 1409 \cdot 0853328=$ Amount .
Subtract $813 \cdot 71$
Difference $=595 \cdot 3753328=$ Interest.

(43)				
\$300	x	0	$=$	0
700	\times	4	$=$	2800
750	\times	7	$=$	5250
850	\times	9	=	7650
400	\times	13	$=$	5200
1300	\times	19	$=$	24700
4300)		$\begin{aligned} & 45600 \text { (} 10 \text { months } 18_{4} \frac{6}{3} \text { days. } \\ & 4300 \end{aligned}$
				2600
				30
				$\begin{aligned} & 78000=\text { days. } \\ & 4300 \end{aligned}$
				35000
				34400
				$55^{6} 188$

23 per cent of $\$ 4200=\frac{{ }^{2} 3}{10}$ of $4200=\$ 966 \cdot 00$, and $\$ 4200$ $-\$ 966 \cdot 00=\$ 3234 \cdot 00$. E has half as much as A, B, C, and D together; therefore E has one-third of $\$ 3234 \cdot 00$, which is $\$ 1078 \cdot 00$.

Deducting E's share, $\$ 1078$, from $\$ 3234$, the whole sum to be divided, there remains $\$ 2156$ to be dirided among $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D. Now D gets a certain amount; C gets $\$ 42 \cdot 11$ more than $\mathrm{D} ; \mathrm{B}$ gets $\$ 61 \cdot 34(42 \cdot 11+19 \cdot 23)$ more than D ; and A gets $\$ 78 \cdot 44(61 \cdot 34+17 \cdot 10)$ more than D . Together they get, then, four times D's share, together with $\$ 42 \cdot 11+\$ 61 \cdot 34$ $+\$ 8 \cdot 44$, or, in other words, four times D's share, together with $\$ 181.89$.

That is, four times D 's share, together with $\$ 181 \cdot 89$ is equal to $\$ 2156$.
Hence $\$ 2156 \cdot 00-\$ 181 \cdot 89=\$ 1974 \cdot 11=$ four times D's share. Then $\$ 1974 \cdot 11 \div 4=\$ 493 \cdot 5275=$ D's share.

Add	42.11
Sam	\$535.63
Add	$19 \cdot 23$
Sum	\$554.8675
Add	17.10

Sum $\$ 571 \cdot 9675=$ A's share.
(45)
$P=\frac{\mathcal{A}}{1+r t}=\frac{\$ 3786 \cdot 80}{1+1 \cdot 76^{*}}=\frac{3786 \cdot 80}{2 \cdot 76}=\frac{378680}{276}=\$ 1372 \cdot 02898+$
(46)

(47)

312312302 quaternary $=224690$ decimal scale.
2312132 quaternary $=11678$ decimal scale.

$$
\text { Sum }=236368
$$

4234 quinary $=569$ decimal, and $569 \times 23011=13093259$. $236368 \times 13093259=3094827443312$.
$555+444+333+222+111$ senary $=2553$ senary $=645$ decimal.
$3094827443312-645=3094827442667$.
6542 septenary $=2333$ decimal.
$3094827442667 \div 2333=1326544124 \frac{12375}{23}$ den.
$x . \quad$ vili.

1326544124	$=$	11704272374
x.	viIf.	
1375	$=$	2537
x.		viI.
2333	$=$	4435
x.		viII.

$\therefore 1326544124 \frac{1375}{233}=1170427237425936$.
(48)

$$
\begin{aligned}
& \cdot 1=\frac{1}{1_{0}} \text { and }\left(\frac{1}{20}\right)^{2}=T_{0 v}^{1}=\cdot 01 \\
& \cdot i=\frac{1}{9} \text { and }\left(\frac{1}{9}\right)^{2}=\frac{1}{81}=\cdot 012345679
\end{aligned}
$$

fifte serigs.

Assume $27 \mid$ 2..9..16..27.. 48 and 81 ; strike ont 2,9 and 16, 163 since they are contained as factors in the others.

The l. c. m. $=27 \times 16 \times 3=1296$.
$t=\frac{\log . n}{\log .(1+r)}=\frac{\log .7}{\log \cdot(1 \cdot 06)}=\frac{0.845098}{0.025306}=33.395$ sears.

20 miles $=1267200$ inches $;$ and $14 \mathrm{ft} .10 \mathrm{in} .=178$ inches. $1267200 \div 178=71199^{\circ} 9$ times.
(53)
$1749600=2^{5} \times 3^{7} \times 5^{2}$; increasing each index by unity and multiplying, we have $6 \times 8 \times 3=144$.

A can do the whole work in 12 days, therefore he can do $\frac{1}{18}$ in 1 day. A and B together can do the work in 5 days, therefore they can do $\frac{1}{5}$ in 1 day. Therefore B can do $\frac{1}{3}-\frac{1}{12}=\frac{7}{60}$ in 1 day, and he will require as many times 1 day to do the whole work as $\frac{70}{7}$ is contained times in 1 , i. e. $1 \div \frac{7}{0}=\frac{60}{7}$ $=8 \frac{1}{\text { days }}$.

$$
\begin{aligned}
P= & \frac{A}{(1+r)^{t}} ; \log . P=\log . A-\log .(1+r) \times t=\log .8899 \cdot 77 \\
& -\log .(1 \cdot 06) \times 22=3 \cdot 949378-0.025306 \times 22 \\
& =3 \cdot 949378-0.556732=3 \cdot 392646, \text { and } \log .3 .392646 \\
& =\$ 2469 \cdot 71 .
\end{aligned}
$$

By Table, page 260 , amount of $\$ 1$ at 6 per cent. for 22 payments $=3 \cdot 60354$.

Then $\$ 8899 \cdot 77 \div 3 \cdot 60354=\$ 2469 \cdot 73$ nearly.

Let the 1st number be 2 . Then $2 \times 2=4$
$1 \frac{1}{3} \times 3=4$

$$
\begin{array}{r}
10-\left(2+1 \frac{1}{3}\right)=10-3 \frac{1}{3}=6 \frac{2}{3}+4=26 \frac{2}{3}, \text { but it should } \\
\text { equal } 4 .
\end{array}
$$

Therefore $26 \frac{2}{3}-4=+22 \frac{2}{3}=$ error.
Let $1 \frac{1}{2}$ be the 1 st number; then $1 \frac{1}{2} \times 2=3$

$$
1 \times 3=3
$$

$$
10-\left(1 \frac{1}{2}+1\right)=10-2 \frac{1}{2}=7 \frac{1}{2} \times 4=30, \text { but it should }=3
$$

$$
\text { Therefore } 30-3=+27=\text { error. }
$$

Errors.

$$
\begin{aligned}
& +27 \times 2=54 \\
& +22 \times 1 \frac{2}{3}=44
\end{aligned}
$$

Diff. $=4 \frac{1}{3} \quad$ diff. $=20$, and $20 \div 4 \frac{1}{3}=4 \frac{8}{13}=1$ st number. $4_{13}^{\frac{8}{13}} \times 2=9{ }^{3}{ }^{3}=1$ st product.
Second number $=9_{13}^{3} \div 3=3_{1 / 3}^{13} \times 3=9_{13}^{3}=$ nd product. $10-7_{13}^{9}=2 \frac{4}{13} \times 4=9_{13}^{3}=3$ rd product.

Suppose A has 40 ; then B has $110-40=70$, and C has $130-70=60$.
A and C together have $40+60=100$, but it should be 120 .
Therefore $100-120=-20=$ error.
Suppose A has 80 ; then B has $110-80=30$, and C has 130 $-30=100$.
A and C together have $80+100=180$, but they should have 120 . Therefore $180-120=+60=$ error.
(Continued on next page.)

Errors.

$$
\begin{array}{r}
+60 \times 40=2400 \\
-20 \times 80=1600 \\
\text { Sum }=80
\end{array} \begin{array}{r}
\text { Sum }=4000
\end{array}
$$

$4000 \div 80=50=$ number A has.
Then B has $110-50=60$, and C has $130-60=70$.
$50+60+70$
$-\frac{1}{3}=60=$ each man's share when equally divided. 3

Formula I, p. 333. $\quad l=a+(n-1) d=7+(47-1) \times 4$

$$
=7+46 \times 4=7+184=191
$$

Formula VI, p. 333. $s=\{2 a+(n-1) d\} \frac{n}{2}$

$$
\begin{align*}
= & \{2 \times 7+(93-1) \times 4\} \frac{93}{2}=\{14+(92 \times 4)\} \\
& =(14+368) \times \frac{93}{2}=\frac{382 \times 93}{2}=17763 .
\end{align*}
$$

$$
t=\frac{\log \cdot n}{\log \cdot(1+r)}=\frac{\log \cdot 21}{\log \cdot(1 \cdot 07)}=\frac{1 \cdot 322219}{0 \cdot 029384}=44 \cdot 997 \mathrm{years}
$$

SIXTH 8ERIES.

B gets $\$ 196 \cdot 87$ more than C , and A gets $\$ 387+\$ 196 \cdot 87=$ $\$ 583.87$ more than C , therefore together they get three times C's share, together with $\$ 196.87+\$ 583 \cdot 87$, i. e. three times C's share, together with $\$ 780 \cdot 74$; bnt together they get $\$ 3700$.
Therefore $\$ 3700=$ three times C's share, together with $\$ 780.74$, or $\$ 3700-\$ 780 \cdot 74=\$ 2919 \cdot 26=$ three times C's share.
Hence $\$ 2919 \cdot 26 \div 3=\$ 973 \cdot 08_{3}^{2}=$ C's share.

Add	196.87
$\begin{aligned} & \text { Sum }=\begin{array}{c} \$ 1169 \cdot 95 \frac{5}{3} \\ \text { Add } \end{array}=\text { B's share. } \end{aligned}$	
Sum	$1556 \cdot 95 \frac{1}{2}$

$$
\begin{align*}
& 5716=2^{2} \times 1429 \tag{62}\\
& 1 \text {.. } 2 \text {.. } 4 \\
& \begin{array}{lllllllllll}
1 & \ldots & 1429 & & & & & & & & \\
\hline 1 & . & 2 & . . & 4 & . . & 1429 & . . & 2858 & . . & 5716
\end{array} \\
& \frac{\left\{\left(171_{2}^{7}-10 \frac{5}{6} 9\right)-\left(.4+\frac{1}{8}+\cdot 9-\frac{1}{2}\right)\right\} \div\left(.8378 \div \frac{1}{2} \text { of } 31\right)}{\cdot 6322632 \times \frac{1}{2} \text { of } 9 \frac{1}{4} \div\left(\frac{1}{5} \text { of } 4 \frac{1}{9} \text { of } \frac{1}{12} \text { of } 85 \frac{1}{36} \div 101\right)} \tag{63}\\
& 6 \frac{3}{5}-1 \div\left(\frac{8}{9} 9798 \times{ }_{3}{ }^{2} \text { r }\right) \\
& =\overline{\frac{8322}{9992} \times \frac{1}{2} \times{ }_{4}^{37} \div\left(\frac{1}{5} \times \frac{37}{9} \times \frac{1}{17} \times \frac{3161}{37} \times \frac{1}{101}\right)} . \\
& 5 \frac{3}{5} \times \frac{89990}{8370} \times \frac{31}{2} \\
& =\overline{\frac{6322}{939} \times \frac{1}{2} \times \frac{37}{4} \times \frac{5}{1} \times \frac{9}{37} \times \frac{11}{1} \times{ }_{3} \frac{37}{6} \mathrm{r} \times{ }^{101}} \\
& 2_{6}^{8} \times \frac{37}{37} \times \frac{31}{2} \\
& =\overline{3_{101}^{101} \times{ }_{4}^{37} \times \frac{5}{1} \times{ }_{3}^{\frac{1}{1}+} \times{ }_{3}{ }^{376 T} \times 101} \\
& 14 \times 3714 \times 37 \\
& 5 \quad 5 \\
& =\frac{}{\frac{1}{4} \times \frac{5}{2} \times{ }_{1}^{3}}=\frac{}{\frac{5 \times 37}{4}}=\frac{85}{2}=2 \frac{5}{25} . \\
& \text { (64) }
\end{align*}
$$

Each child gets 1 child's share, $\cdot 17$ children get 17 shares.
Each woman gets three times a child's share, . $\cdot 4$ women get 12 shares.
Each man gets six times a child's share,.$\therefore 3$ men get 18 shares. And together they get 47 times a child's share.
Therefore $\$ 7200 \div 47=\$ 153 \cdot 19: \frac{7}{7}=$ a child's share.

$$
\begin{align*}
& \$ 153 \cdot 19 \frac{1}{47} \times 3=\$ 459 \cdot 57_{4}^{2} \frac{1}{7} . \\
& \$ 153 \cdot 199_{47}^{4} \times 6=\$ 919 \cdot 14 \frac{1}{7} . \tag{65}
\end{align*}
$$

$254000=2^{3} \times 5^{2} \times 127$. Adding unity to each index and multiplying the results, we get $4 \times 3 \times 2=24$.
$\frac{2}{3}$ of $4 \frac{1}{2}$ of $\frac{9 \frac{3}{14}}{14}$ of $\frac{1}{6}$ of $£ 316 \mathrm{~s} .1 \frac{1}{2} \mathrm{~d} .=\frac{2}{8} \times \frac{3}{2} \times \frac{68 \times 1 \frac{2}{8}}{8 \times 11} \times \frac{1}{6}$ $\times \$ 15 \cdot 39 \frac{1}{6}=6$ times $\$ 15 \cdot 39 \frac{1}{6}=\$ 92 \cdot 35$.
IT of $4 \frac{3}{8}$ of $\frac{19 \frac{1}{2}}{\frac{34}{\frac{13}{1}}}$ of $\frac{98}{2 \frac{3}{27}}$ of $\frac{1 \frac{1}{23}}{}$ of $\cdot 85$ of $\frac{1}{42 \frac{1}{2}}$ of $\$ 1783$
$=\frac{3}{11} \times \frac{23}{5} \times \frac{\frac{39}{29}}{\frac{19}{4}} \times \frac{98}{18} \times \frac{12}{23} \times \frac{88}{100} \times \frac{2}{85}$ of $\$ 1783$.
$\begin{array}{lll}2 & 12 & 17.83\end{array}$
$=\frac{8}{13} \times \frac{83}{5} \times \frac{88}{19} \times \frac{95}{112} \times \frac{11}{83} \times \frac{85}{1 Q Q} \times \frac{2}{85} \times \frac{1888}{1}$ 3श
$=\$ 17 \cdot 83 \times 4=\$ 71 \cdot 32 . \quad \$ 92 \cdot 35-\$ 71 \cdot 32=\$ 21 \cdot 03$.
\(\left.\begin{array}{r}7: 13=7 \div 13=\cdot 533

9: 16=9 \div 16=-562

8: 15=8 \div 15=-533

10: 19=10 \div 19=-526\end{array}\right\}\)| Therefore $9: 16$ is the |
| :--- |
| greatest, and $10: 19$ is |
| the least. |

Compound ratio $=\frac{7}{13} \times \frac{Q_{1}}{1 Q} \times \frac{8}{15} \times \frac{5_{10}^{19}}{19}=\frac{21}{247}=21: 247$.

$$
\begin{align*}
& 67.432=67 \frac{498}{959}=\frac{65758}{9575} \text { and } 7.9036=7 \frac{9827}{8890}=\frac{78957}{9990} \tag{68}\\
& \frac{66758}{990} \div \frac{78957}{9990}=\frac{66758}{94 Q} \times \frac{929 Q}{78957}=\frac{7410138}{868527}=8.5318452 .
\end{align*}
$$

(69)

9 per. 9 yds. $7 \mathrm{ft} .120 \mathrm{in} .=365628$ inches $\frac{1}{2}$ of $\frac{3}{8}$ of $\frac{2}{7}$ of 35 acres 2 roods $=\frac{3}{35}$ of 35 acres 2 roods $=\frac{3}{25}$ of 222678720 inches
$\frac{365628}{3^{3} 5 \text { of } 222678720}=\frac{2559396}{133607232}=0 \cdot 019156118$.
(70)

Dissimilar.	Similar.
17.0342	17.03424242
27-06357	27-06357575
98-123456	98-123456456
$829 \cdot 6423$	829-642342342
$986 \cdot 1234298$	986-1234298429
. .	
$9 \cdot 876342$	9-876342876342
$813 \cdot 986423456 \overline{7}^{\text {b }}$	$813 \cdot 986423 \dot{4} 56 \dot{7}$

Similar and Coterminous.
$17 \cdot 034242424242424242$
27.063575757575757575

98-123456456456456456
$829 \cdot 642342342342342342$
986•123429842984298429
9-876342876342876342
$813 \cdot 986423456745674567$
4 carried
$2781 \cdot 849813156689829957$
(71)

$$
\mathrm{EG}=\sqrt{86^{2}-76^{2}}=\sqrt{1620}=40 \cdot 249 \mathrm{feet}
$$

Height of Statue $C D=A G-E G=50-40 \cdot 249=9 \cdot 751 \mathrm{ft} .=B F$

$$
F I=B I-B F=64-9 \cdot 751=54 \cdot 249 \text { feet }
$$

$$
C F=\sqrt{C I^{2}-F I^{2}}=\sqrt{97^{2}-54 \cdot 249^{2}}=\sqrt{6466 \cdot 045999}=80 \cdot 411 \text { feet }
$$

$$
\boldsymbol{G H}=\boldsymbol{E F}=E \boldsymbol{E}+\boldsymbol{C F}=76+80 \cdot 411=156 \cdot 411 \text { feet and }
$$

$$
H I=64-50=14 \mathrm{feet}
$$

$$
G I=\sqrt{G H^{2}+H I^{2}}=\sqrt{156 \cdot 411^{2}+14^{2}}=\sqrt{24660 \cdot 400921}
$$

$$
=157 \cdot 036 \text { feet }
$$

The mixture $=$ spirits + water $=\frac{1}{2}$ of misture +25 gal. $+\frac{1}{3}$ of mixture -5 gal. $=\frac{1}{\frac{1}{2}}+\frac{1}{\frac{1}{2}}+20$ gal. $=\frac{5}{6}+20$ gal. Then $20 \mathrm{gal} .=\frac{1}{6}$ of the misture, and therefore the mirture contained $6 \times 20=120$ gal.

Then $\frac{1}{2}$ of $120=60+25=85$ gal. $=$ spirits

$$
3 \text { of } 120=40-5=35 \text { gal. }=\text { water }\}
$$

SEVENTH SERIES.

Suppose father's age $=60$, the son's age now $=60 \div 5=12$, and son's age four years ago $=12-4=8$. But the son's age four years ago should, by the question, have been $60 \div$ $7=8 \frac{1}{7}$.

Therefore $8-8 \frac{4}{7}=-\frac{4}{8}=$ error.
Suppose father's age $=35$; then son's age now $=35 \div 5=7$, and age four years ago $=7-4=3$.
But son's age four years ago should, by question, have been 35

$$
\div 7=5
$$

Therefore $3-5=-2=$ error.
Errors.
$-2 \times 60=120$
一专 $\times 35=20$
diff. $1 \frac{3}{7} \quad$ diff. $=100$
$100 \div \frac{10}{7}=70=$ father's and son's age $=70 \div 5=14$,
(75)

$$
\cdot 72347 \div \cdot 0032=\frac{72275}{99900} \div \frac{32}{9900}=
$$

11

$$
\begin{equation*}
\frac{72275}{\text { QQQQQ }} \times \frac{\text { QQQQ }}{32}=\frac{795025}{3552}=223.82460585 . \tag{76}
\end{equation*}
$$

111
Logarithm of $97294764 \cdot 372$ is $7 \cdot 988089$

$$
7 \cdot 988089 \div 11=0 \cdot 726189
$$

Log. $0 \cdot 726189=5 \cdot 32341=11$ th root of $97294764 \cdot 372$.

Assume 43 $\frac{1}{2}$ for the greater number

$$
\begin{aligned}
& 7 \frac{1}{4}: 3 \frac{1}{2}:: 43 \frac{1}{2}: \frac{43 \frac{1}{2} \times 3 \frac{1}{2}}{7 \frac{1}{2}}=21 \text { the less } \\
& 43 \frac{1}{2}-21=22 \frac{1}{2} \text { but it should }=30 \\
& \text { Therefore error }=22 \frac{1}{2}-30=-7 \frac{1}{2} .
\end{aligned}
$$

Assume 721 for the greater number

$$
7 \frac{1}{4}: 3 \frac{1}{2}:: 72 \frac{1}{2}: \frac{72 \frac{1}{2} \times 3 \frac{1}{2}}{7 \frac{1}{2}}=35=\text { the less }
$$

$$
72 \frac{1}{2}-35=37 \frac{1}{2} \text { but it should }=30
$$

$$
\text { Therefore error }=37 \frac{1}{2}-30=+7 \frac{1}{2}
$$

Errors.

$$
+7 \frac{1}{2} \times 43 \frac{1}{2}=326 t
$$

$$
-7 \frac{1}{2} \times 72 \frac{1}{2}=543 \frac{3}{2}
$$

$$
\text { Sum }=15 \quad \text { Sum }=870
$$

$$
870 \div 15=58 \text { greater }
$$

$$
7 \frac{1}{4}: 3 \frac{1}{2}:: 58: \frac{58 \times 3 \frac{1}{2}}{7 \frac{1}{4}}=28 \text { less. }
$$

(78)

Assume 35	35, 16,	18,	28,	62,	68,	Q
Assume 16	16	18	4	\$3	9	8
Assume 9		9		31	Y	

$$
\text { l. c. } m .=35 \times 16 \times 9 \times 31=156240 .
$$

(79)

$$
\begin{gather*}
\text { Here } a=1, \quad d=6, \quad n=101 \\
:=\{2 a+(n-1) d\}_{2}^{n}=\{2 \times 1+(101-1) \times 6\} \frac{101}{2} \\
=(2+600) \frac{101}{2}=\frac{602 \times 101}{2}=30401 \tag{80}
\end{gather*}
$$

Suppose the hour hand moves over 4 minutes, then since the minute hand moves 12 times as fast, it will have tràvelled over 48 minutes. But in order to overtake the hour hand, the minute hand must traverse the entire circle, 60 minutes, plus the 4 minutes we have supposed the hour hand to have moved forward, i.e. 64 minutes. Then 48 should equal 64 , for we should find the same number by each process ; $48-64=-16$ error.

Suppose hour hand moves over 6 minutes, the minute band moves over $6 \times 12=72$ minutes. But minute hand moves over $60+6=66$ minutes.

Then $72-66=+6$ error.
(Continued on next page.)
(83 continued.)

Errors.

$-16 \times 6=96$
$+6 \times 4=24$
Sum $\overline{22}$ Sum $\overline{120}$
$120 \div 22=5 \frac{5}{5}-\mathrm{min} .=$ minutes passed over by the hour hand, hence space passed over by the minute hand $=5_{1}^{5} \mathrm{~F} \times 12$ $=65 \frac{5}{11} \min .=1$ hour $5 \frac{5}{11}$ min. $=$ time.
$\log .5=\log .10-\log .2=1-0.301030=0.698970$ $3850000=5 \times 7 \times 11 \times 10000$.
\therefore Log. $3850000=\log .5+\log .7+\log .11+\log 10000$

$$
=0 \cdot 698970+0 \cdot 845098+1 \cdot 041393+4=6 \cdot 585461
$$

$$
3181.81=31.81 \times 100=31 \frac{{ }_{2} 9}{9} \times 100=\frac{350}{11} \times 100 .
$$

\therefore Log. $3181 \cdot 81=\log .5+\log .7+\log .1000-\log .11$

$$
=0.698970+0.845098+3-1.041393=3.502675
$$

$$
\cdot 0000154=2 \times 7 \times 11 \div 10000000
$$

\therefore Log. $\cdot 0000154=\log .2+\log .7+\log .11-\log .10000000$ $=0 \cdot 301030+0.845098+1 \cdot 041393-7=\overline{5} \cdot 187521$.
Log. $\frac{1}{77}=\log .1-(\log .7+\log .11)=0-(0.845098$

$$
+1 \cdot 041393=0-1 \cdot 886491=\overline{2} \cdot 113509
$$

$$
1 \cdot 57142 \dot{8}=1 \frac{5}{8}={ }_{7}^{11} .
$$

Log. $1.571428=\log .11-\log .7=1.041393-0.845098$ $=0 \cdot 196295$

$$
93 \cdot 17=9317 \div 100=11^{3} \times 7 \div 100
$$

\therefore Log. $9317=3$ times $\log .11+\log .7-\log .100=1 \cdot 041393$

$$
\times 3+0.845098-2=1.969277
$$

Eighta Sebies.

Simple Interest $=\operatorname{Prt}=\$ 700 \times \cdot 045 \times 3=\$ 94 \cdot 50$.
Amount Compound Interest $=P(1+r)^{4}=\$ 700 \times(1 \cdot 045)^{3}$
$=\$ 700 \times 1.14116=\$ 798.814-\$ 700=\$ 98.814=$ Comp.
Int.
$\$ 98 \cdot 814-\$ 94 \cdot 50=\$ 4 \cdot 314$.

X's gain $=\frac{1}{12}$, and Z 's $=\frac{1}{2} ; \therefore$ Y's gain $=1-\left(\frac{1}{18}+\frac{1}{2}\right)$

$$
=1-1_{12}^{72}=\frac{5}{12} .
$$

X's gain is $\frac{1}{12}$ for 3 months, therefore for 1 month it is ${ }_{3}^{18}$.

$\frac{1}{8}: \frac{1}{36}:: \$ 3024: \$ 3024 \times \frac{1}{36} \times \frac{8}{1}=\$ 672=$ X's stock.

${ }_{8}^{3} \times \sqrt{\overline{17}} \div\left(1 \frac{1}{2}\right)^{3}=\frac{3}{8} \times \sqrt{\frac{15}{9}} \div\left(8 \frac{3}{2}\right)^{3}=\frac{3}{8} \times \frac{4}{3} \times \frac{8}{2^{8} 7}={ }_{2^{4} 7}$.

(89)
$7=\{8-1<1+6\}+4$
4 lbs. at 8 d .
1 lb . at 4 d.$\}$ Make a mixture of 6 lbs . at 7 d .
1 lb . at 6 d .)

$$
6: 112:: 4: \frac{112 \times 4}{6}=74_{3}^{2} \text { at } 8 \mathrm{~d} .
$$

(89 continued.)

$$
\begin{aligned}
& 6: 112:: 1: \frac{112 \times 1}{6}=18 \frac{2}{3} \text { at } 4 \mathrm{~d} . \\
& 6: 112:: 1: \frac{112 \times 1}{6}=18 \frac{2}{3} \text { at } 6 \mathrm{~d} . \\
& (90)
\end{aligned}
$$

Assame 40 as the sum of the three numbers.
Since 1 st +2 nd +3 rd $=40$,
And 1st $+\frac{1}{2}(2 n d+3$ rd $)=34 . \because \frac{1}{2}(2 n d$

$$
+3 \mathrm{rd})=6
$$

And 2 nd $+\frac{1}{3}(1$ st +3 rd $)=34 . \cdot \frac{5}{3}(13 t$

$$
\begin{equation*}
+3 \mathrm{rd})=6 \tag{9}
\end{equation*}
$$

And 3 rd $+\frac{1}{4}($ 1st +2 nd $)=34 . \cdot \frac{3}{4}(1$ st
+2 nd $)=6 \ldots \ldots \ldots \ldots \ldots1$. 1 nt +2 nd $=8$
Adding, $2 \times(1 \mathrm{st}+2 \mathrm{nd}+3 \mathrm{rd})=29$

$$
\therefore 1 s t+2 n d+3 r d=14 \frac{1}{2} .
$$

But the sum should equal 40.
Hence $14 \frac{1}{2}-40=-25 \frac{1}{2}$.
Assume 48 as the sum of the three numbers.
Since 1 st +2 nd +3 rd $=48$.
And 'st $+\frac{1}{2}(2 n d+3$ rd $)=34 . \because \frac{1}{2}(2 n d$
+3 rd $)=14 . \ldots . . \ldots \cdot 2$ nd +3 rd $=28$
And 2 nd $+\frac{1}{3}(1$ st $+3 \mathrm{rd})=34 . \therefore \frac{2}{3}(1$ st

And 3:d $+\frac{1}{4}(1$ st +2 nd $)=34 . \therefore \frac{3}{4}$ (1st

Adding, $2 \times(1 s t+2 n d+3$ rd $)=67 \frac{2}{3}$

$$
\therefore 1 \text { st }+2 \mathrm{nd}+3 \mathrm{rd}=33 \frac{5}{6} .
$$

But the sum should equal 48.
Hence 33夂 - $48=-14!=$ error.
Errors.
$-25 \frac{1}{2} \times 48=1224$
$-14 \frac{1}{6} \times 40=566 \frac{3}{3}$
Diff. $=.1_{3}^{\frac{1}{3}} \quad$ Diff. $=657 \frac{1}{3}$
$6571 \div 11 \frac{1}{2}=58=$ the sum of the three numbers.
(Continued on next page.)

1 st $+\frac{1}{2}(2 \mathrm{nd}+3 \mathrm{rd})=34 . \cdot \frac{1}{2}(2 \mathrm{nd}+3 \mathrm{rd})=58-34=24$ $\therefore 2$ nd +3 rd $=18$.
$2 \mathrm{nd}+\frac{1}{3}(1 \mathrm{st}+3 \mathrm{rd})=34 \cdot \cdot \frac{2}{3}(1 \mathrm{st}+3 \mathrm{rd})=58-34=24$ \therefore lst +3 rd $=36$.
1 st +2 nd +3 rd $=58$, and 2 nd +3 rd $=48 . \because 1$ st $=10$.
$1 \mathrm{st}+2 \mathrm{nd}+3 \mathrm{rd}=58$, and $1 \mathrm{st}+3 \mathrm{rd}=36 . \cdot 2 \mathrm{nd}=22$.

$$
\begin{equation*}
2 \mathrm{nd}+3 \mathrm{rd}=48, \text { and } 2 \mathrm{nd}=22 \cdot \cdot 3 \mathrm{rd}=26 \tag{91}
\end{equation*}
$$

4 means +2 extremes $=6$ terms.
Formula IX, p. 333. $d=\frac{l-a}{n-1}=\frac{40-1}{6-1}=\frac{39}{5}=7 \frac{4}{5}$.
$1,8 \frac{4}{5}, 16 \frac{3}{5}, 24 \frac{2}{5}, 32 \frac{1}{5}, 40$.
$s=1860040, l=1240029$, and $r=3$.
Formula XI, p. 340. $a=r l-(r-1) s=1240029 \times 3$ $-2 \times 1860040=3720087-3720080=7$.

6 apples +7 pears cost 33 pence.$\cdot 2$ apples $+2 \frac{1}{3}$ pears cost 11 pence.
10 apples +8 pears cost 44 pence.$\therefore 2$ apples $+1 \frac{3}{5}$ pears cost $8{ }^{4}$ pence.
Subtract, and $2 \frac{1}{3}-1_{5}^{3}$ pears cost 11d. $-8 \frac{4}{5} \mathrm{~d}$.
That is, $\frac{1}{16}$ of a pear costs $2 \frac{1}{5} \mathrm{~d}$.
If $\frac{11}{15} \cos \frac{11}{6} \mathrm{~d}$., $\frac{1}{13}$ will cost $\frac{1}{15}$ of $\frac{11}{5} \mathrm{~d}$., which is $\frac{1}{5} \mathrm{~d}$.
If $\frac{1}{15} \cos t \frac{1}{5} \mathrm{~d}, \frac{15}{15}$ will $\cos t \frac{15}{5} \mathrm{~d} .=3 \mathrm{~d}$.
6 apples +7 pears cost 33 pence, and 7 pears cost $21 d . . \cdot 6$ apples cost 12 d . and 1 apple costs 2 d .
$\frac{1}{2} \times \frac{3}{8} \times \frac{5}{5} \times \frac{\frac{57}{2}}{\frac{6}{3}} \times \frac{2}{3} \times \frac{4}{5} \times \frac{1}{5}$
19
$=\frac{1}{2} \times \frac{8}{4} \times \frac{5}{2} \times \frac{58}{18} \times \frac{8}{8} \times \frac{4}{5} \times \frac{8}{4}=\frac{19}{2 \times 4 \times 3 \times 2}=\frac{19}{48}$.
$\$ 10=\frac{3}{4}$ of 2 nd rem. $-\$ 20 . \cdot \frac{3}{4}$ of 2 nd rem. $=\$ 30 . \cdot 2$ nd rem. $=\$ 40$.
$\$ 40={ }_{8}^{4}$ of 1 st rem. $-\$ 30 . \cdot{ }_{8}^{4}$ of 1st rem. $=\$ 70 . \because$ 1st rem.

$$
=\$ 87 \cdot 50
$$

$\$ 87 \cdot 50=\frac{1}{2}$ of original sum - $\$ 50 . \therefore \frac{1}{2}$ of original sum $=\$ 137 \cdot 50 . \therefore$ original sum $=\$ 137 \cdot 50 \times 2=\$ 275$.

$$
\begin{equation*}
a=60, n=17, \text { and } d=4 \tag{96}
\end{equation*}
$$

Formula VI, p. 333. $s=\{2 a+(n-1) d\} \frac{n}{2}$

$$
\begin{aligned}
= & \{2 \times 60+(17-1) \times 4\} \frac{17}{2}=(120+64) \times \frac{17}{2} \\
& =\frac{184 \times 17}{2}=\$ 1564=\text { sum receired for } 17 \text { years. }
\end{aligned}
$$

Formula I, p. 333. $l=a+(n-1) d=60+(17-1) \times 4$ $=60+64=\$ 124=$ wages for 17 th year.

Ninte Series.

$£ 749$ 16s. 5 견. $=£ 749 \cdot 823958 ; ~ £ 1$ Sterling $=\$ 4.867$
$£\rceil 49 \cdot 823958 \times 4 \cdot 867=\$ 3649 \cdot 3932$. (99)

2)177408	
$2) 88704$	
2)44352	2)1386
$2) 22176$	$3) 693$
2)11088	$3) 231$
$2) 5544$	$7) 77$
$2) 2772$	11
$2^{8} \times$	

Formula III, page 354, $r=\sqrt[t]{\sqrt{A}}-1 . \therefore r+1=\sqrt[t]{\bar{P}} \bar{P}$

$$
\log \cdot(r+1)=(\log . A-\log . P) \div t
$$

That is, $\log .(r+1)=(\log .11111 \cdot 11-\log .704) \div 11$

$$
\begin{aligned}
& =(4 \cdot 045757-2 \cdot 847573) \div 11 \\
& =1 \cdot 198184 \div 11=0 \cdot 108925
\end{aligned}
$$

Therefore $r+1=$ natural number corresponding to the logarithm 0.108925 which is $1 \cdot 285$.
Since $r+1=1 \cdot 285, r=\cdot 285=$ rate per unit and rate per cer.t. $=\cdot 285 \times 100=28 \frac{1}{2}$.

If 9 be $\frac{1}{13}, \frac{12}{13}$ or the whole will equal $9 \times 13=117$. (102)

3 gal. +4 gal. +7 gal. $=14$ gal.

$$
292 \times 3
$$

Hence 14 gal. : 292 gal. :: 3 gal. : $\quad=62 \frac{4}{7}$ of 1 st kind. 14

$$
1 \pm \text { gal. : } 292 \text { gal. }:: 4 \text { gal. }: \frac{292 \times 4}{14}=83^{3} \text { gal. of } 2 \mathrm{~d} \text { " }
$$

$$
14 \text { gal. : } 292 \text { gal. :: } 7 \text { gal. }: \frac{292 \times 7}{14}=146 \text { gal. of } 3 \mathrm{~d}
$$

$$
\begin{equation*}
f_{\frac{1}{2}}+f_{\frac{1}{3}}^{1}+f_{\frac{1}{4}}+f_{5}^{l}=£_{1 \frac{1}{6}} \tag{103}
\end{equation*}
$$

By Table, page 363, present value of annuity of $\$ 1$ at 6 per cent. for 23 payments $=\$ 12.30338$.
Hence present value of $\$ 100=\$ 12.30338 \times 100=\$ 1230 \cdot 338$.
By Formula ∇, page $361, v=\frac{a}{r}\left\{1-\frac{1}{(1+r)^{2}}\right\}$
$=\frac{100}{.06} \times\left(1-\frac{1}{(1 \cdot 06)^{23}}\right) *=\frac{10000}{6} \times(1-0.25583)$
$=\frac{10000}{6} \times 0.74417=\frac{7441 \cdot 7}{6}=\$ 1240.28$.
(105)

Since each loses 1 hour per day for 24 days, the whole hours lost $=24 \times 25$.
Also, 5 men working 1 hour per day for 12 days make up 5×12 $\times 1=60$ hours.

Hence they will each have to work as many hours per day as 60 24×25
hours is contained times in 24×25 hours i. e. $\frac{-}{60}=10$ hours. (106)

$$
a=5, s=161 \text { and } d=6
$$

Then Formula II, p. 333. $l=-\frac{1}{2} d+\sqrt{2 d 6 \div\left(a-\frac{1}{2} d\right)^{2}}=$

$$
\begin{aligned}
& -\frac{1}{2} \text { of } 6+\sqrt{2 \times 6} \times 161+\left(5-\overline{\left.\frac{1}{2} \text { of } 6\right)^{2}}=-3+\right. \\
& \sqrt{1932+4}=-3+\sqrt{1936}=-3+44=41 \text { years. }
\end{aligned}
$$

$$
\begin{equation*}
6^{3}: 10^{3}:: 1 \text { day }: \frac{10^{3} \times 1}{6^{3}}=\frac{1000}{216}=4 \cdot 629 \text { days. } \tag{107}
\end{equation*}
$$

- Log. $\frac{\mathrm{I}}{(1 \cdot 06)^{23}}=\log .1-\log .1 .06 \times 23=0-0 \cdot(125306 \times 23$

$$
=0-0 \cdot 592038=\overline{\mathrm{l}} \cdot 407932
$$

$\therefore \frac{1}{(1 \cdot 06)^{23}}=$ natural number corresponding to the logarithm $\overline{1} \cdot 407962$, which is $0.255 \$ 3$.

For 12 months he was to receive $£ 8$ and a suit of clothes ; for 7 months he received $£ 213 \mathrm{~s}$. 4 d . and the suit of clothes; \therefore for 5 months he would have received the difference between $£ 8$ and $£ 2$ 13s. 4 d., which is $£ 56 \mathrm{~s}$. 8 d .
Hence for 1 month he would have received $£ 56 \mathrm{~s} .8 \mathrm{~d} . \div 5$, which is $£ 1$ 1s. 4d, and hence his wages for the year would have been, in money alone, $\mathfrak{£}_{1} 1 \mathrm{~s} .4 \mathrm{~d} . \times 12$ i.e. $\boldsymbol{£}_{12} 16 \mathrm{~s}$.
Therefore the suit of clothes was valued at $£ 12$ 16s. $\mathbf{£} 8$ $=£ 416 \mathrm{~s}$.

Tentr Series.

$\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{13}{12}$; if $\frac{13}{12}$ of a number $=48$, $\frac{1}{12}$ will $=48 \div 13=33_{13}^{9}$ If $3_{1}^{9} \frac{9}{3}=\frac{1}{12}, \frac{12}{12}$, or the whole number $=3_{13}^{9} \times 12=44 \frac{4}{13}$.
$6^{3}: 8^{3}:: 600: \frac{600 \times 8^{3}}{6^{3}}=\frac{600 \times 512}{216}=1422 \cdot 2 \mathrm{lbs}$.
(See Art. 33, sec. X.)

(111)

Part of ball remaining after 1 st has taken off her share $=\frac{3}{4}$
Then whole ball : remainder :: cube of diameter of whole : cube of diameter of remainder
$1: \frac{3}{4}:: 5^{3}: x^{3}$ hence $x=\sqrt[3]{\frac{3}{4} \times 125}=\sqrt[3]{3_{4}^{57}}=\sqrt[3]{93 \cdot 75}=4.542$
\therefore Part taken off by $1 \mathrm{st}=5 \mathrm{in} .-4.542 \mathrm{in} .=0.458 \mathrm{in}$.
After 2 nd had taken off her portion $\frac{1}{2}$ of the ball remained.
$1: \frac{1}{2}:: 5^{3}: x^{3}$, hence $x=\sqrt[3]{\frac{1}{2} \times 125}=\sqrt[3]{\frac{12}{25}}=\sqrt[3]{62 \cdot 5}=3.968 \mathrm{in}$.
\therefore Part taken off by 2 nd $=4 \cdot 542-3.968=0.574$ in.
After 3 rd had taken off her share there remained \ddagger of the ball.
$1: 1:: 5^{3}: x^{3}$, hence $x=\sqrt[3]{4 \times 125}=\sqrt[3]{31 \cdot 25}=3 \cdot 149 \mathrm{in}$.
\therefore Part taken off by 3 rd $=3.968-3.149=0.819$ inches
Remainder $=3 \cdot 149=$ part taken off by 4th.
(112)
$71213 \cdot 43 \div 12 \cdot 342=71213430 \div 12342$
12342) $71213430(5570 \cdot 238552$

62831
$\overline{72724}$
62831
$\overline{87833}$
87525
3070.0
151) 170

2468 -4
$500 \cdot 50$
1521) $18 \cdot 23$
$371 \cdot 36$
$\overline{118 \cdot 130}$
$\frac{111 \cdot 067}{7 \cdot 0520}$
$6 \cdot 2831$
-65780
-62831

- 028480
. 024684
-003685
Nork.-Unless the quotient is carried out to six places of decimals, i. e., twice as many as are required in the root, the last figure in the root will be 7 or 6.
(113)

1st $\left\{\begin{aligned} \$ 60 \times 48 & =\$ 2880 \text { for } 1 \text { month } \\ \$ 800 \times 43 & =34400 \text { for } 1 \text { month } \\ \$ 1500 \times 4 & =6000 \text { for } 1 \text { month } \\ \text { Sum } & =\$ 43280\end{aligned}\right\}=\begin{aligned} & \$ 43280 \text { for } \\ & 1 \text { month. }\end{aligned}$
2nd $\left\{\begin{aligned} \$ 600 \times 48 & =\$ 28800 \text { for } 1 \text { month } \\ \$ 1800 \times 42 & \left.=\frac{75600 \text { for } 1 \text { month }}{}\right\}=\begin{array}{rl}\$ 104400 \text { for } \\ 1 \text { month. }\end{array} \\ \text { Sum } & =\$ 104400\end{aligned}\right.$

(113 continued.)		
3rd	(\$400 $\times 48=\$ 19200$	
	$\$ 500 \times 42=21000$	
	$\$ 500 \times 36=18000$	
	$\$ 500 \times 30=15000$	
	$\$ 500 \times 24=12000$	$=\$ 103200$ for 1 month.
	$\$ 500 \times 18=9000$	
	$\$ 500 \times 12=6000$	
	$\$ 500 \times 6=3000$	
	Sum $=\$ 103200$	
4th	$\$ 900 \times 40=\$ 36000$	$=\$ 138600$ for 1 month.
	$\$ 900 \times 34=30600$	
	$\$ 900 \times 28=25300$	
	$\$ 900 \times 22=19800$	
	$\$ 900 \times 16=14400$	
	$\$ 900 \times 10=9000$	
	$\$ 900 \times 4=3600$	
	Sum $=\$ 138600$	

$\$ 43280$
104400
4 years at $\$ 1 \cdot 25$ per day
103200

$$
=\$ 1 \cdot 25 \times 4 \times 365=\$ 1825=\text { share of } 5 \text { th. }
$$

138600
$\$ 389480$ for one month.
$\$ 20000-\$ 1825=\$ 18175=$ sum to be divided among the four.
$\$ 389480: \$ 18175:: \$ 43280: \$ 2019 \cdot 651=$ share of 1 st.
$\$ 389480: \$ 18175:: \$ 104400: \$ 4871 \cdot 803=$ " $2 n d$.
$\$ 389480: \$ 18175:: \$ 103200: \$ 1815 \cdot 805=$ " 3rd.
$\$ 389480: \$ 18175:: \$ 138600: \$ 6467 \cdot 739=\quad$ 4th.
Simple Interest, formula IX, p. 248. $t=\frac{n-1}{r}-\frac{16-1}{.05}=\frac{15}{.05}$

$$
=\frac{}{5}=300 \text { years }
$$

Compound Interest, formula V, p. 354. $t=\frac{\log . n}{\log .(1+r)}$

$$
=\frac{\log \cdot 16}{\log \cdot 1 \cdot 05}=\frac{1 \cdot 204120}{0 \cdot 021189}=\frac{1204120}{21189}=56 \cdot 827 \text { years }
$$

(115)

For every $\$ 1$ the first gave, the second gave $\$ 3$ and the third $\$ 6 . \quad \$ 1+\$ 3+\$ 6=\$ 10$.
Hence the 1st gave $\$ 1$, the second $\$ 3$, and the third $\$ 6$ as often as $\$ 10$ is contained times in $\$ 9202$, which is $920 \frac{1}{5}$ times.
$\$ 1 \times 920 \frac{1}{5}=\$ 920 \cdot 20=$ payment of 1 st person.
$\$ 3 \times 920 \frac{1}{3}=\$ 2760 \cdot 60=$ " 2nd "
$\$ 6 \times 920 \frac{1}{3}=\$ 5521 \cdot 20=$ " 3rd "

(116)

$25+22=47=$ whole number of men.
$165 \div 47=3 \frac{24}{7}=$ acres cleared by each man.
$3 \frac{24}{\frac{1}{7}} \times 22=77 \frac{1}{7}$ acres $=$ acres cleared by company of 22 men.
165 acres $-77 \frac{1}{4}$ acres $=87 \frac{36}{17}$ acres $=$ acres cleared by company of 25 men.
lst company contains 3 more men than $2 n d$ company and receives $\$ 86$ more.
Therefore $\$ 86$ pays 3 men. Hence each man gets $\$ 86 \div 3$ $=\$ 28.66^{\frac{?}{3}}$.
Each man clears $3 \frac{8}{\frac{3}{7}}$ acres, and receives $\$ 28.66 \frac{2}{3}$ for it ; therefore cost of 1 acre $=\$ 28 \cdot 66 \frac{2}{3} \div 3_{\frac{2}{7}}^{\frac{4}{7}}=\$ 8 \frac{82}{955}$.
$15^{2}=225 ; 346-225=121=$ square of the less.
Hence less $=\sqrt{121}=11$.
(118)

Formula V, page 248, $A=P(1+r t)=\$ 1200 \times 1 \cdot 95=\$ 2340 \cdot 00$.

$24:$	496
$9:$	11
$7:$	4
$465:$	$537 \frac{1}{2}$
33	
$2 \frac{3}{3}:$	$5 \frac{3}{3}$
(Continued on next page.)	

(119 continued.)

3										
9										
81			27	8						
82			183	4						
$\underline{48}$	11	4	䄽5	48	8	11	1	1		1
1	1		2	5	-	2	24	2	$\overline{7}$	465
							\%	\$		98

$$
\times \frac{\beta}{11} \times \frac{3}{\%}=11 \times 4 \times 3=132 \text { days. }
$$

(120)

$3 \mathrm{~A}+3 \mathrm{~B}+3 \mathrm{C}+3 \mathrm{D}=\frac{173}{60}$ $\therefore A+B+C+D=\frac{57}{60}$

A $+\mathrm{B}+\mathrm{C}+\mathrm{D}=58$
$A+B+C=\begin{gathered}43 \\ 60\end{gathered}$
$\therefore \mathrm{D}=\frac{10}{60}=\frac{1}{6}$
$A+B+C+D={ }^{\text {or }}$
$\mathrm{B}+\mathrm{C}+\mathrm{D}={ }^{37}{ }^{\mathbf{7}}$
$A=\frac{20}{60}$
$A+B+C+D=\frac{88}{60}$
$\mathrm{A} \quad+\mathrm{C}+\mathrm{D}=\frac{8}{60}$
$\mathrm{B}=$
$A+B+C+D=\frac{57}{60}$
$A+B \quad+D=\frac{15}{8}$
$\therefore C=\frac{12}{68}=\frac{1}{6}$

$\frac{5}{6}$: $\frac{60}{60}:: \frac{1}{6}: \frac{1}{6} \times{ }^{960} \times \frac{60}{60}=\frac{10}{57}=$ D's true share which is therefore $=\frac{10}{\delta 7}$ of $\$ 6213=\$ 1090$.
$\frac{37}{60}: \frac{60}{60}:: \frac{1}{3}: \frac{1}{3} \times \frac{60}{60} \times \frac{60}{87}=\frac{20}{6}=A^{\prime}$'s true share which is therefore $=\frac{20}{5}$ of $\$ 6213=\$ 2180$.
$\frac{47}{60}: \frac{60}{60}:: \frac{1}{4}: \frac{1}{4} \times \frac{60}{60} \times \frac{60}{87}=\frac{15}{67}=B^{\prime}$'s true share which is therefore $=\frac{15}{67}$ of $\$ 6213=\$ 1635$.
然 : $\frac{60}{60}:: \frac{1}{6}: \frac{1}{8} \times \frac{68}{68} \times \frac{60}{57}=\frac{12}{5}=$ C's true share which is therefore $=\frac{1}{5}$ of $\$ 6213=\$ 1308$.

rlevente series.

713 unden. $=816$ den. ; 291 unden. $=342$ den. ; $3 t 1$ unden. $=474 \mathrm{den}$.

291
Then 713 -unden. $=861 \frac{3 \text { 得 }^{4} \text { den } .}{}=861$ 结 den. 3t 1
12123 quat. $=411$ den $; 11223$ quat. $=363$ den. $; 100000$ quat. $=1024$ den.
Then $12123 \frac{11293}{100000}=4111_{1063}^{\frac{36}{64}}$ den.

$$
\frac{14}{12} \text { of } \frac{5}{14} \text { of } \frac{3}{8} \text { of } 3 \frac{1}{2} \mathrm{~d} .=\frac{11}{4} \times \frac{3}{16} \times \frac{3}{8} \times \frac{7}{2}=\frac{55}{128} \mathrm{~d} .
$$

$$
\text { £58 ก3. } 81^{2} 65 \mathrm{~d} .=282855 \mathrm{c} 1 \mathrm{~d} .
$$

 $=32414.56$.

| 24 | $:$ | 90 |
| ---: | ---: | ---: | :--- |
| $2 \frac{1}{3}:$ | 4_{ε} | |
| $12 \frac{1}{2}:$ | 9_{3} | |
| $4 \frac{7}{8}:$ | $4 \frac{1}{3}$ | |
| $3 \frac{1}{5}:$ | $2 \frac{1}{2}$ | |$|: 139 \frac{1}{4}: x$

(Coutinued on next page.)

$$
\begin{align*}
& 3 \frac{3}{8} \text { of } 2 \xi \text { of } 7 \frac{1}{2} \text { of } £ 1=\frac{27}{8} \text { of } \frac{11}{6} \text { of } \frac{185}{80} \text { of } £ 1 \tag{123}
\end{align*}
$$

$$
\begin{aligned}
& 8 \frac{1}{4} \text { of } 4 \frac{1}{8} \text { of } 1 \mathrm{~d} .=\frac{1,3}{} \text { of } \frac{33}{8} \text { of } 1 \mathrm{~d} .=\frac{1089}{32} \mathrm{~d} \ldots=0 \quad 210 \frac{1}{32} \\
& \text { Sum }=£ 58 \quad 0 \quad 8160
\end{aligned}
$$

(125)
$\$ 182$ is $\frac{91}{100}$ of buying price $. \cdot \$ 182 \div 91=\$ 2=\frac{1}{100}$ of buying price $\cdot \cdot$ buying price $=\$ 2 \times 100=\$ 200$.
To realize a profit of 7 per cent., he must receive $\$ 1 \cdot 07$ for every $\$ 1$ the goods cost ; but they cost him $\$ 200$, therefore he must sell for $\$ 1.07 \times 200=\$ 214$.
(126)

Simple Interest $t=\frac{n-1}{r}=\frac{11 \frac{1}{2}-1}{.06}=\frac{10 \cdot 5}{.06}=\frac{1050}{6}$ $=175$ years.
Compound Interest $t=\frac{\log \cdot n}{\log .(1+r)}=\frac{\log \cdot 11 \frac{1}{2}}{\log \cdot 1 \cdot 06}=\frac{1 \cdot 060698}{0 \cdot 025306}$

$$
\begin{equation*}
=\frac{1060698}{25306}=41.914 \text { years } \tag{127}
\end{equation*}
$$

An acre contains 4 roods $=160$ sq. perches.
$\therefore 160 \div 15 \frac{1}{2}=10 \frac{1}{3} 0$ perches $=$ length.

35 yards $=32$ metres.$\therefore 1$ yd. $=\frac{32}{3}$ of a metre.
$69 \frac{1}{24}$ miles $=69 \frac{1}{22} \times \frac{1760}{10}$ yards $=69 \frac{1}{28} \times \frac{1760}{12} \times \frac{32}{3}$ metres $\$ 17$ - $8 Q$

$$
=\frac{1519}{22} \times \frac{184 Q}{1} \times \frac{32}{\substack{85 \\ 8}}=217 \times 16 \times 32=111104 \text { metrea. }
$$

7 means +2 extremes $=9$ terms.
Formula XIII, p. 340. $r=\left(\frac{l}{a}\right)^{\frac{1}{21}}=\left(\frac{19683}{3}\right)^{\frac{1}{8}}=(6561)^{\frac{1}{8}}=3$
Hence means are 9, 27, 81, 243, 729, 2187, and 6561.

Formala XXI, p. 344. $:=\frac{a}{1-r}=\frac{7}{1-\frac{1}{2}}=\frac{7}{\frac{7}{i}}=\frac{28}{3}=9 \frac{1}{3}$.

Part remaining after 1st has received his share $=\frac{3}{6}$.
$1:{ }_{4}^{3}:: 60^{2}: x^{2}$; whence $x=\sqrt{3600 \times \frac{3}{4}}=\sqrt{900 \times 3}$ $=30 \sqrt{3}=1.732 \times 30=51.96$ inches.
Hence lst ground off $60-51 \cdot 96=8 \cdot 04$ inches.
Part remaining after 2 nd had taken off his share $=\frac{1}{1}$.
$1: \frac{1}{1}: 60^{2}: x^{2}$; whence $x=\sqrt{3600} \times \frac{1}{2}=30 \sqrt{2}$

$$
=1 \cdot 4142 \times 30=42 \cdot 426
$$

Hence 2nd ground off $51.96-42 \cdot 426=9.534$ inches.
Part remaining after the 3rd had taken off his share $=\frac{1}{5}$.
$1: \frac{1}{4}:: 6^{2}: x^{2}$; whence $x=\sqrt{3600 \times \frac{1}{2}}=\sqrt{900}=30$ inches.
Hence 3 rd ground off $42 \cdot 426$ - 30 inches $=12 \cdot 426$ inches, and the 4th ground off remaining 30 inches.

1 guinea $=21 \mathrm{~s}$.
1 half-guinea $=101 \mathrm{~s}$.
1 crown $\quad=5 \mathrm{~s} . \quad 100$ guineas $=2100$ shillings.
1 half-crown $=21 \mathrm{~s} . \quad 2100 \div 40 \frac{1}{2}=51$ times and re-
1 shilling $=1 \mathrm{~s}$.
mainder, 69 half-shillings.
Sixpence $=\frac{1}{8} \mathrm{~s} . \quad 69$ balf-shil. $=\frac{69}{7} \mathrm{~s} .=£^{\frac{68}{48}}=189$.
Sum $=40 \frac{1}{8} \mathrm{~s}$.

TWELFTH geries.

$$
\begin{gather*}
\frac{3}{11} \text { of } \frac{2}{9} \text { of } \frac{4}{17}=\frac{8}{561} ; \frac{2 \frac{1}{4!}}{44} \frac{2}{5}=\frac{10}{17} \text { of } \frac{2}{5}=\frac{4}{17} . \tag{133}\\
\frac{8}{561}: \frac{4}{17}:: \$ 12 \frac{4}{33}: \$ 12_{3}^{4} 3 \tag{134}\\
\times \frac{4}{17} \times \frac{561}{8}=\frac{\$ 200}{88} \times \frac{4}{17} \times \frac{\$ 61}{8} \\
=\$ 200 .
\end{gather*}
$$

By Formula III, page 354, $r=\frac{t / \bar{A}}{\sqrt{P}}-1 . \therefore r+1=\sqrt[t / \bar{A}]{P}$

$$
\begin{aligned}
\therefore & \text { Log. }(1+r)=(\log . A-\log . P) \div t \\
& =(\log .1679 \cdot 40-\log .700 \cdot 90) \div 5 \\
& =(3 \cdot 225154-2 \cdot 845656) \div 5 \\
& =0.379498 \div 5=0.075894
\end{aligned}
$$

$\therefore 1+r=$ nat. num. corresponding to the logarithm 0.074894 which is $1 \cdot 19, \ldots r=\cdot 19=$ rate per unit, and hence rate per cent. $=19$.

Having paid 10 per cent. he bad 90 per cent. remaining. ${ }_{100}^{90}$ or ${ }^{9} 90$ of his salary $=\$ 1250, \therefore \frac{1}{10}=1250=\$ 138 \frac{8}{9}$, If $\$ 138 \frac{8}{9}=\frac{1}{10}$, the whole $=\$ 138 \frac{8}{9} \times 10=\$ 1388.888$.

21 children receive 21 times a child's share

21 women	"	42	"
21 men	"	63	"

Together they receive 126 "
f3 $13 \mathrm{~s} .6 \mathrm{~d} . \div 126=7 \mathrm{~d} .=\mathrm{a}$ child's share.
7d. $\times 2=$ 1s. 2d. $=$ a woman's share, 7d. + 18. 2d. = 1s. 9d. = a man's share.
(137)

A gets 1 time A's share.
B " 1 " A's"
C " 2 " A's "
D " 4 " A's "
Together they get 8 times A's share.
$\$ 200 \div 8=\$ 25=$ A's share $; \$ 25=$ B's share.
$\$ 25+\$ 25=\$ 50=$ C's share $; \$ 25+\$ 25+\$ 50=\$ 100$ = D's share.
(138)

$$
\begin{align*}
\sqrt{\frac{2}{3}}=\frac{1}{3} \sqrt{18}=\frac{1}{3} \text { of } 2 \cdot 62074 & =\cdot 87358 \\
\sqrt{\frac{2}{3}}=\frac{1}{3} \sqrt{6}=\frac{1}{3} \text { of } 2 \cdot 44948 & =\cdot 81649 \\
\text { Difference } & =\overline{\cdot 05709} \tag{139}
\end{align*}
$$

 $17 \frac{5}{12}+1_{5}^{4}+144 \frac{1}{2}=161+\frac{3}{25}+\frac{4}{45}+\frac{11}{21}=161+\frac{175}{25}+\frac{118}{25}$

$$
\begin{aligned}
& 2 \frac{18}{35}-\frac{17}{25}=2 \frac{65}{175}-\frac{11}{175}=1 \frac{1849}{5}-\frac{1}{1} \frac{19}{75}=1 \frac{1}{1} \frac{1}{5} . \\
& 5 \\
& \frac{3}{4} \text { of } \frac{6}{8} \text { of } \frac{4}{15} \text { of } \frac{15}{11} \text { of } \frac{21}{23}=\frac{54}{253} . \\
& 6347 \div 2 \frac{3}{4}={ }^{63} 37 \div \frac{11}{4}=\frac{6317}{17} \times \frac{4}{15}=2308 \text {. }
\end{aligned}
$$

	$\begin{align*} & 884736 \tag{140}\\ & 729 \end{align*}$
	-
$\begin{array}{rlr}9^{2}=81 \times 300 & = & 4300 \\ 9 \times 6=54 \times 50 & 1620 \\ 6^{2}= & 36\end{array}$	
25956	155736
$95951 \frac{6}{6} \frac{6}{26}=95951 \cdot 2576$.(Continued on next page.)	

(140 continued.)

By Table on p . 362 , the amount of $\$ 1$ for 34 payments at 3 per cent. $=\$ 57 \cdot 73018$.

$$
\$ 57 \cdot 73018 \times 260=\$ 15009 \cdot 84
$$

By Formula I, page 361, $\mathcal{A}=\frac{a\{(1+r),-1\}}{2}$

$$
=\frac{a}{r}\left\{(1+r)^{c}-1\right\}=\frac{260}{.03}\left\{(1.03)^{34}-1\right\}
$$

$$
=\frac{26000}{3} \times(2 \cdot 731855-1)=\frac{26000 \times 1 \cdot 731855}{3}=\$ 15009 \cdot 41
$$

By Formula IX, p. 333, $d=\frac{l-a}{n-1}=\frac{79-2}{6-1}=\frac{77}{5}=15 \frac{2}{5}$.
Hence the series is $2,17 \frac{2}{5}, 32 \frac{4}{5}, 48 \frac{1}{5}, 633_{5}^{3}$, and 79 .
Formula I, p. 333. $l=a+(n-1) d=3+(9-1) \times 4$ $=3+8 \times 4=3+32=35$.
Formula VI, p. 333. $s=\{2 a+(n-1) d\} \frac{n}{2}$

$$
\begin{aligned}
& =\{2 \times 3+(207-1) \times 4\} \frac{207}{2}=(6+206 \times 4) \frac{207}{2} \\
& =(6+824) \times \frac{207}{2}=\frac{830 \times 207}{2}=85905 .
\end{aligned}
$$

B trarels 4 miles per day faster than A, and will therefore gain the circumference of the island in $\frac{23}{4}=18 \frac{1}{4}$ days.
C travels 10 miles per day faster than A, and will therefore gain the whole circumference of the island in $\frac{73}{1}=7_{10}^{3}$ days.
Now B cannot be with A except at the end of $18 \$$ days, or twice $18 \frac{1}{4}$ days, or three times $18 \frac{1}{4}$ days, or some other multiple of $18 \frac{1}{2}$ days.
Similarly C cannot be with A except at the end of $7_{1}{ }^{2} \%$ days, or of some other multiple of $\mathrm{T}_{10} \frac{3}{0}$ days.
Therefore C and B will both be with A for the first time after the lapse of a number of days expressed by the least common multiple of $18 \frac{1}{4}$ and $7 \frac{3}{10}$.
The greatest common factor of $18 \frac{1}{2}$ and $7_{\frac{3}{10}}$ is $3 \frac{13}{2}$.
Hence the l. c. m. of $7_{3}^{3}{ }^{3}$ and $18 \frac{1}{4}$ is $\frac{7_{10}^{3} \times 18 \frac{1}{4}}{3 \frac{1}{3}}=36 \frac{1}{2}=$ number of days when A, B, and C will first be together.

ARITHMETICAL RECREATIONS.

1. The third of $6=2$, and the fourth of $20=5$.

Then if 2 becomes 3, what should 5 become? Evidently 71. Ans.

$$
\left.\begin{array}{c}
\text { or } \\
6: 20 \\
\frac{1}{3}: \frac{1}{4}
\end{array}\right\}:: 3: x=\frac{3 \times 20 \times \frac{1}{4}}{6 \times \frac{1}{3}}=7 \frac{1}{2} .
$$

3. The balf of $5=2 \frac{1}{2}$; then if 7 becomes $2 \frac{1}{2}$, what will 11 become?
21×11
$\frac{7}{7}=\frac{55}{14}$. Lastly, what part of 9 is $\frac{35}{4} ?$

$$
\frac{\frac{55}{14}}{\frac{9}{1}}=\frac{35}{126 . A n s .}
$$

$\left.\begin{array}{l}\text { 9: } \\ 7: 11\end{array}\right\}:: \frac{1}{2}: x=\frac{\frac{1}{2} \times 5 \times 11}{9 \times 7}=\frac{\frac{55}{2}}{\frac{63}{13}}=\frac{55}{1266}$.Ans.
3. $99 \frac{9}{9}$.
4. $\frac{1}{3}$ of $2 \mathrm{~d} .=\frac{2}{3} \mathrm{~d}$. Then $\frac{2}{3} \mathrm{~d}$. is what part of 3d.? Ans. $\frac{2}{8}$.
5. $1 \frac{1}{2} d$. for a herring and a half is at the rate of ld. per herring; bence 11 herrings will cost lld.
6. 12 apples $=21$ pears $=7$ cents.

If 12 apples cost 7 cents, what will 100 apples cost?

$$
12: 100:: 7: \frac{100 \times 7}{12}=58 \frac{1}{3} \text { cents. }
$$

7. If 5 is $\frac{3}{3}$ of a certain number, $\frac{1}{3}$ will be $\frac{1}{3}$ of 5 , which is $\frac{5}{3}$ If $\frac{5}{3}$ is $\frac{1}{3}$ of a certain number, the whole number will be $\frac{5}{3} \times 7=\frac{35}{3}=1 \frac{1 f^{2}}{3} . A n s$.
8. The hurdles are arranged so as to form a rectangular enclosure having 49 hurdles on each side and one on each end. Two additional hurdles will give two hurdles to each end, and will thus double the size of the enclosure.
9. The mode of dividing the plot may be learned from the following figure:-

10. $33 \frac{3}{3}$.
11. XIII; rub out the lower half, and there remains the expression VIII $=8$.
12. 1st Step: Fill the 3-gallon cask and empty it into the 5-gallon cask.
2nd Step: Again fill the 3-gallon cask out of the 8-gallon cask.
3rd Step : Fill np the 5-gallon cask out of the 3-gallon cask. This will leave one gallon in the latter.
4th Step : Empty the 5-gallon cask into the 8-gallon cask. 5th Step: Pour the one gallon out of the 3-gallon cask into the 5 -gallon cask.
6th Step: Fill the 3-gallon cask out of the 8-gallon cask and empty it into the 5 -gallon cask.
The following diagrams show this more clearly:
1st Step.
2nd Step.

3rd Step.

5th Step.

4th Step.

6th Step.

13. The heavy line in the accompanying figure shows how the board is to be cut.

14.

8	1	6
3	5	7
4	9	2

15. Weigh out 7 lbs . as often as possible and there will remain 2 lbs ; add two four pounds and one seven pounds to this, and the sum will be 17 lbs ., the share of one.
Weigh 7 lbs . as often as possible out of the remaining 34 lbs. and there will remain 6 lbs ., to which add 7 lbs . and 4 lbs ., and the sum will be 17 lbs ., the share of the second. The remaining 17 lbs . will be the share of the third.
16. The hurdles are, in the first case, placed 12 on a side and onc on each end, and then they inclose a space represented by 12 squares whose area is, by the question, 40 square yards. If two hurdles be taken away there will remain 24, and if these be placed in the form of a square, each side containing 6 hurdles, they will enclose a space represented by 36 squares of the same size as the former. Hence they now inclose three times as much space as before, i. e. three times 40 square yards, or 120 square yards.
17. He takes the goose to the remote bank and leaves it there, returning, he next carries over the fox, which be leaves, but takes the goose back with him. He now leaves the goose on the first bank, and carries over the oats which he allows to remain on the remote bank with the fox and returns for the goose.
18. The following diagrams exhibit the solution of this problem :

I.			II.		III.			IV.			V.			VI.	
3	3	3	4	1	2	5	2	1	7	1	0	9	0	5	0
3	P	3	1	P	5	\mathbf{P}	5	7	$\overline{\mathbf{P}}$	7	9	P	9	0	P
3	3	3		1	2	5	2		7	1	0	9	0	4	0
	24			0		2			32			36			8

19. Represent the three husbands by A, B, and C, and their wives respectively by the letters a, b, and c.
I. A and a go over, a remains while A takes back the boat.
II. b and c go over and remain while a takes back the boat.
III. B and C go over, B remains while C and c take back the boat.
IV. A and C go over and remain while b takes back the boat.
V. a and b go over and remain while C takes back the boat.
VI. C. and c go orer.
20.

17	24	1	8	15
23	5	7	14	16
4	6	13	20	22
10	12	19	$\frac{21}{3}$	$\frac{3}{9}$
11	18	$\frac{25}{2}$	$\frac{9}{}$	

rele for filling magic squares of odd neyber of cells.
Begin in centre cell of top horizontal row by placing 1 in it; ascend diagonally to the right, and where this carries us beyond the square, transport the next number to the cell at the remote end of the vertical or horizontal band to which it belongs. When in ascending we come to a cell already filled we place the number in the cell next below the cell last filled. The following is a square of 7 cells in a side filled after this method :

30	39	48	1	10	19	28
38	47	7	9	18	27	29
46	6	8	17	26	35	37
5	14	16	25	34	36	45
13	15	24	33	42	44	4
21	23	32	41	43	3	12
22	31	40	49	2	11	20

21. Half-a-dozen dozen $=6 \times 12=72$.

Six dozen dozen $=6 \times 12 \times 12=864$.

$$
864-72=792 . \text { Ans. }
$$

22. The following shows the mode of performing this. It will be observed that the two side-counters are merely moved one counter higher when the other

$$
\begin{gathered}
0 \\
00 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{gathered}
$$ two are taken away.

23. This problem admits of the following two solutions: lst Solution.
Persons. Full bottles. Hf.-full bottles. Empty bottles.

lst	2	3	2
2nd	2	3	2
3rd	3	1	3
-	-7	7	-7

Each person has $3 \frac{1}{2}$ bottles of wine and 7 bottles. 2nd Solution.

1st	3	1	3
2nd	3	1	3
3rd	1	5	1
	7	7	$\frac{7}{7}$

Each person, as before, has 7 bottles and $3 \frac{1}{2}$ bottles of wine.
24. There were in all 8 bottles of wine, of which each drank $\frac{1}{\frac{1}{2}}$ which is $2 \frac{2}{5}$. The third person, therefore, drank \ddagger of a bottle belonging to him who had but 3 bottles, and $\frac{7}{3}$ of a bottle belonging to him who owned the 5 bottles. Hence the latter should hare seven times as much of the money as the former, or, in other words, the latter gets 7 shillings and the former 1 shilling.
25. This problem is merely to find some number between 5 and 100 which is exactly divisible by 2 and by 3, but which divided by 5 leaves a remainder 3.
The only numbers between 50 and 100 that are divisible by both 2 and 3 are $54,60,66,72,78,84,90$, and 96 , and by inspection the only one of these which gives a remainder 3 when dirided by 5 is 78 ; therefore the basket contained 78 eggs.
26. Ans. $1 \mathrm{lb} ., 3 \mathrm{lbs} ., 9 \mathrm{lbs} .$, and 27 lbs.

For $1 \mathrm{lb} .=1 \mathrm{lb} . ; 2 \mathrm{lbs} .=3 \mathrm{lbs} .-1 \mathrm{lb} .$, i. e. 3 lbs in one scale and 1 lb . in the other; $3 \mathrm{lbs}=3 \mathrm{lbs} ; 4 \mathrm{lbs} .=$ $3 \mathrm{lbs} .+1 \mathrm{lb} . ; 5 \mathrm{lbs} .=9 \mathrm{lbs} .-(3 \mathrm{lbs} .+1 \mathrm{lb}.) ; 6 \mathrm{lbs} .=$ $9 \mathrm{lbs} .-3 \mathrm{lbs} . ; 7 \mathrm{lbs}=9 \mathrm{lbs} .+1 \mathrm{lb} .-3 \mathrm{lbs} ; 8 \mathrm{lbs}$. $=9 \mathrm{lbs} .-1 \mathrm{lb} . ; 9 \mathrm{lbs} .=9 \mathrm{lbs} . ; 10 \mathrm{lbs} .=9+1 \mathrm{lb} . ;$ $11 \mathrm{lbs} .=9 \mathrm{lbs} .+3 \mathrm{lbs} .-1 \mathrm{lb} . ; 13 \mathrm{lbs},=9 \mathrm{lbs} .+3 \mathrm{lbs}$, $+1 \mathrm{lb} . ; 14 \mathrm{lbs} .=2 \mathrm{l}$ lbs. $-(9 \mathrm{lbs} .+3 \mathrm{lbs} .+1 \mathrm{lb}$. $15 \mathrm{lbs} .=27 \mathrm{lbs} .-(9 \mathrm{lbs} .+3 \mathrm{lbs}) ; 16 \mathrm{lbs}=27 \mathrm{lbs}$. $+1 \mathrm{lb} .-(9 \mathrm{lbs} .+3 \mathrm{lbs}) ; 17 \mathrm{lbs} .=27 \mathrm{lbs} .-(9 \mathrm{lbs}$. +1 lb.$) ; 18 \mathrm{lbs} .=27 \mathrm{lbs} .-9 \mathrm{lbs} . ; \& c ., \& c$.
27. In order to fill seven out of the eight points, it is merely requisite to remember that the second counter must be carried to the point from which the first started, the third to the point from which the second started, \&c.
Thus if the first counter is carried from 1 to 4 and there deposited, the second must be taken from 6 to 1 and there deposited ; the third from 3 to 6 ; the fourth from 8 to 3 ; the fifth from 5 to 8 ; the sixth from 2 to 5 ; and the seventh eitber from 7 to 2 or from 2 to 7 .
28. The mouth flls the reservoir in 6 hours, therefore it fills $\frac{1}{6}$ in 1 hour ; the right eye fills it in 48 hours, therefore it fills
$\frac{1}{68}$ in 1 hour ; the left eye fills it in 72 hours, therefore it fills $\frac{1}{\frac{1}{2}_{2}^{2}}$ in 1 hour; the foot fills it in 96 hours, therefore it fills $\frac{1}{9} \frac{1}{6}$ in 1 hour. Hence together they fill $\frac{1}{6}+\frac{1}{48}+\frac{1}{78}$ $+\frac{1}{96}=\frac{61}{268}$ in 1 hour, and to fill the reservoir they require $1 \div \frac{61}{888}=\frac{288}{61}=4$ hours 43 min . $16 \frac{44}{6} \mathrm{sec}$.
29. The person who thinks of the numbers must proceed as follows : He must multiply the 1st by 2 and add 5 to the product; he must next multiply this sum by 5 and add the second number to the product ; he must next multiply this result by 10 and add the third number to the product; lastly, he must subtract 250 and name the remainder.
The three digits of the remainder will be the three numbers thought of, and will be in the order in which they were thought of.
The reason is obvious : let $a=1$ st, $b=2$ nd, and $c=3$ rd number thought of.
$a \times 2+5=2 a+5$.
$(2 a+5) \times 5+b=10 a+b+25$.
$(10 a+b+25) \times 10+c=100 a+10 b+c+250$.
$(100 a+10 b+c+250)-250=100 a+10 b+c=$ a in hundreds' place, b in tens' place, and c in units' place.
30. Since each man possesses 63 square rods of land more than his son, we must form three pairs of numbers, such that the difference of their squares shall be 63 .
The difference of the squares of two numbers is equal to their sum multiplied by their difference, and hence 63 must be divided into two factors in three distinct ways, thus :
$63=63 \times 1=21 \times 3=9 \times 7$.
If sum $=63$ and difference $=1$, the numbers are 32 and 31 .
If sum $=21$ and difference $=3$, the numbers are 12 and 9 . If sum $=9$ and difference $=7$, the numbers are 8 and 1 .
Hence the squares of Jones, Brown, and Smith, are respectively 32 rods, 12 rods, and 8 rods on the side, and the son's squares are respectively 31,9 , and 1 yards ou the side.
Jones' piece was 23 rods longer on each side than Tom's, and since the difference between 32 and 9 is 23 , we may conclude that Jones' square was 32 rods to the side, and Tom's 9 rods on a side.

Brown's piece was 11 rods longer on a side than Harry's, and since if the above numbers 12 and 1 have 11 for their diference, we may conclude that Brown's piece was 12 rods on a side, and Harry's piece 1 rod.
Hence Tom was Brown's son, Harry was Smith's son, and Ned was. Jones' son.
31. The mode of arranging the crew may be remembered by attention to the vowels in the following line:

Populeam virgam mater regina ferebat.
The rowels refer to the crew as follows, $a=1, e=2, i=3$, $o=4$, and $u=5$.
We begin with 4 whites because the first rowel is o, next $u=5$ blacks, next $e=2$ whites, next $a=1$ black, next i $=3$ whites, next $a=1$ black, next $e=2$ whites, next $e=$ 2 blacks, \&c., as follows, o standing for a white and + for a blac̣k. / $0000+++++00+000+0++00+++0++00+$
32. You select the multiplier or the multiplicand, such that the sum of its digits shall be exactly divisible by nine. Hence upon the principle of the proof by casting out the nines, the product has the sum of its digits exactly divisible by nine. By subtracting the sum of the digits of the remainder from the next higher multiple of 9 you determine the digit crossed out.
Thus suppose you select 117, and he takes for mnltiplicand 21613. Then $21613 \times 117=2528 \% 21$. Now suppose he crosses out the T; upon reading you the remaining digits 252821, you find that their sum $=20$, which taken from 27 the next higher multiple of 9 leaves 7 the digit he crossed out.
If he crosses out a 0 or a 9 , you cannot determine which, but in all other cases you can tell the exact figure.
33. You write the second, fourth, sisth, \&c. lines in such a manner as to make the sum of the first pair, the sum of the second pair, \&c. an eract number of 9's. Then having settled the number of pairs, you get the answer by multiply. ing by that number a row of 9 's containing as many digits as there are to be figures in the line.

Thus suppose you agree to write 5 lines each, and that each line is to contain 5 digits, or not more than 5 digits. Then $99999 \times 5=499995$ will be the answer. This is shown as follows:

1861
SMR
*
$:$

$$
\begin{aligned}
& \text { 1) } 5 \\
& 1 \\
& \text { stifution }
\end{aligned}
$$

[^0]: * To reduce the fractional part, reduce both numerator and denominator separately.

[^1]: Mantissa of logarithm of given number,
 -868789 (Continued on next page.)

[^2]: - * The mode of working these questions by position is so simple that they cannot trouble any one; it has therefore been thought advisable to work them by simple analysis.

