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Abstract

The score function, defined as the negative logarithmic derivative of the probability

density function, plays an ubiquitous role in statistics. Since the score function of the

normal distribution is linear, testing normality amounts to checking the linearity of the

empirical score function. Using the score function, we present a graphical alternative

to the Q-Q plot for detecting departures from normality. Even though graphical ap-

proaches are informative, they lack the objectivity of formal testing procedures. We,

therefore, supplement our graphical approach with a formal large sample chi-square

test. Our graphical approach is then applied to a wide range of alternative data gener-

ating processes. The finite sample size and power performances of the chi square test

are investigated through a small scale Monte Carlo study.
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1 Introduction

Since Geary's (1947) suggestion of putting the statement "Normality is a myth. There

never was and will never be, a normal distribution" in front of all statistical texts,

the need to test for the normality assumption in many statistical models has been

widely acknowledged. As a result, a wide range of tests for normality are currently

available. Most of these tests basically fall into the foUowing categories: (1) tests

based on probability or Q-Q plots, (2) moments tests, (3) distance tests based on the

empirical distribution function, (4) goodness of fit tests, and (5) tests based on the

empirical characteristic function.

No single test statistic can reveal as much information as a graphical display. In

Section 2, we present a graphical alternative to the Q-Q plot using the score function,

defined as the negative logarithmic derivative of the probability density function. Even

though graphical approaches are informative, they lack the objectivity of formal test-

ing procedures. We therefore supplement our graphical approach with a formal large

sample x'^ test based on the score function in Section 3. The performances of our

graphical approach and score function based x^ test depend on our ability to estimate

the score function accurately. We review some score function estimators in Section 4.



In Jarque and Bera (1987), a moment test was shown to possess superior powers

compared to most other normality tests. Their moment test utilizes the normal distri-

bution's skewness measure y/b^ = and kurtosis measure 62 = 3.0. As a result, under

certain non normal distributions with skewness and kurtosis measures identical to the

normal distribution, moment tests based on y/bi and 62 will have no power. Some
of such distribution are Tukey's A distributions when A = 0.135 and 5.2 [see Joiner

and Rosenblatt (1971)]. Moment based tests also have power against only certain al-

ternatives. Our score function based x^ test, on the other hand, does not have this

disadvantage. The superior power of our score function based x^ ^^st is demonstrated

in a small scale Monte Carlo study in Section 5.

2 A Graphical Approach

The score function, defined as ip{x) = —log'J[x) — —yuji *^^^ random variable having

probability density function f{x) plays an ubiquitous role in statistics. It is related

to the constructions of L-, M- and R-estimators for location and scale model as well

as regression models in the robustness literatures. [See Joiner and Hall (1983) for

an excellent overview]. It is also used in constructing various adaptive L-, M- and

R-estimators which achieve the Cramer-Rao efficiency bounds asymptotically. [See

Koenker (1982)]. It can also be used to estimate the Fisher information. In hypothesis

testing, the score function plays a crucial role in robustifying conventional testing

procedures. [See Bickel (1978) and Bera and Ng (1992)]. Its fundamental contribution

to statistics, however, can best be seen in the realm of exploratory data analysis.

The plots of the density and score functions of some common distributions are

presented in Figure 1 and Figure 2 respectively. While it is difficult to differentiate

the tails of a Gaussian distribution from those of a Cauchy distribution through the

density functions, the tails of their score functions are very distinct. In fact, we can

easily distinguish among various distributions by investigating the score functions.

It is clear from Figure 1 and Figure 2 that the mode of a distribution is characterized

by an upward crossing of the score function at the horizontal axis while an anti-mode is

located at the point of downward crossing. An exponential distribution has a horizontal

score function. A tail thicker than the exponential has a negatively sloped score while

a tail thinner than the exponential corresponds to an upward sloping score.

A Gaussian distribution has a linear score function passing through the horizontal

axis at its location parameter with a slope equal to the reciprocal of its variance.

This suggests an alternative to the familiar and popular probability or Q-Q plot. An
estimated score function with a redescending tail towards the horizontal axis indicates

departure towards distributions with thicker tails than the normal distribution while

a diverging tail suggests departure in the direction of thinner tailed distributions.

We can even recover the estimate of the density function through exponentiating

the negative integral of the estimated score function although this may seem to be a

roundabout approach.



Figure 1: Probability Density Functions
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Figure 2: Score Functions
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3 A Formal Test

A formal "objective" test on the null hypothesis of a Gaussian distribution is equivalent

to testing the linearity of the score function. Since a straight line can be viewed as a

first order approximation to any polynomial, the normality test can easily be carried

out through the asymptotic x^ test of regressing the estimated score function V'C^^t) on

some polynomial of a:,. The null hypothesis of a Gaussian distribution wiU correspond

to the linear relationship between VK^i) ^^d a:,.

When the null hypothesis of a Gaussian distribution cannot be rejected, we can

estimate the location parameter by the point at which the ordinary least squares re-

gression line intersects the horizontal axis and the estimate of the scale parameter will

be the square root of the reciprocal of the regression slope.

4 Estimating the Score Function

Performances of the above graphical approach and formal x"^ test rely on accurate

estimates of the score functions. Numerous score function estimators are available,

most of which are constructed from some kernel density estimators. [See Stone (1975),

Manski (1984) and Cox and Martin (1988)]. Csorgo and Revesz (1983) used a nearest-

neighbor approach. Cox (1985) proposed a smoothing spline version, which is further

refined and implemented in Ng (1994).

It has often been argued that the choice of kernel is not crucial in kernel density

estimation. The correct choice of kernel, however, becomes important in the tails where

density is low and few observations will help smooth things out. This sensitivity to

kernel choice is further amplified in score function estimation where higher derivatives

of the density function are involved [see Portnoy and Koenker (1989), and Ng (1994)].

Ng (1994) found that the smoothing spline score estimator, which finds its the-

oretical justification from an explicit mean squared errors minimization criterion, is

more robust than the kernel estimators to distributional variations. We use this score

estimator in the paper.

The smoothing spline score estimator is the solution to

min /(V'^ - 2il)')dFn + A
j
{i)"{x)fdx (1)

t/'e//2[a,6]

where /r2[a,6] = {V' : V'jV'' Q-re absolutely continuous, and /^ [V^"(a:)]'^c^ar < oo}. The

objective function (1) is the (penalized) empirical analogue of minimizing the following

mean-squared error:

j{i^ - i^ofdFo = Jii^'
- 2iP')dFo -^ Ji^idFo (2)

in which i/^o is the unknown true score function and the equality is due to the fact that

under some mild regularity conditions [see Cox (1985)]

J^oHFo = - j f'Q{x)'4){x)dx = Jir'dFo.

Since the second term on the right hand side of (2) is independent of ip, minimizing the

mean-squared error may focus exclusively on the first term. Minimizing (1) yields a



Figure 3: Estimated Score Functions
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balance between "fidelity-to-data" measured by the mean-squared error term and the

smoothness represented by the second term. As in any nonparametric score function

estimator, the smoothing spline score estimator has the penalty parameter A to choose.

The penalty parameter merely controls the trade-off between "fidelity-to-data" and

smoothness of the estimated score function. We use the automated penalty parameter

choice mechanism, the adaptive information criteria, suggested and implemented in

Ng (1994) [see Ng (1991) for a FORTRAN source codes].

5 Some Examples and Simulation Results

In Figure 3, we present the smoothing spline estimated score functions for each of

the 100 random observations drawn from some of the distributions in Figure 2. The

random number generators were Marsaglla's Super- Duper random number generators

available in "S" [Becker, Chambers and Wilks (1988)] installed on a Sun SPARCstation

10. The smoothing spline score estimator was Ng's (1991) Fortran version adapted for

""S". It is obvious from Figure 3 that any departure from the Gaussian distribution can

be easily detected from the plots.

To study the finite sample properties of our score function based x^ test and the

moment based LM test of Jarque and Bera (1987), we perform a small scale Monte

Carlo study. The LM test was shown in Jarque and Bera (1987) to possess very

good power as compared to the skewness measure test y/bi, the Kurtosis measure



test 62, D'Agostino's (1971) D* test, Pearson, D'Agostino and Bowman's (1977) R
test, Shapiro and Wilk's (1965) W test, and Shapiro and Francia's (1972) W test

against the various alternatives distributions investigated. As a result, we use it as

our bench mark to evaluate the performance of our x^ test. The null distribution

here is the standard normal distribution and the alternatives are Gamma (2,1), Beta

(3,2), Student's t (5) and Tukey's A distribution with A = 5.2. All distributions are

standardized to have zero mean and variance twenty-five. Our x^ test is obtained by

running the following regression

i>{xi) = To + liXi + 722;,-^ + -js^i^ + 74a:,'* + IsXi^ + 76X,^ + €,-

and testing for //q : 72 = 73 = 74 = 75 = 76 = 0. The x^ test statistic is then given by

{RSSr - RSS) D 2 . u
RSS/{N - 7) ^ '^^ ""^'^ ^'

where RSSr is the restricted residual sum of squares obtained from regressing 0(x,) on

the intercept and x, alone, RSS is the residual sum of squares of the whole regression

and N is the sample size. The LM test is given by

LM = N
6 24

Under the nuU hypothesis of normality, LM is asymptotically distributed as a X2-

The estimated sizes and powers of the LM and x^ test in 1000 Monte Carlo repli-

cations are reported in Table 1. The standard errors of the estimated probabilities

are no greater than \/.25/1000 = .016. The sample sizes considered are 25, 50, 100

and 250. The performances of the x test from regressing the ^'(^^t) on some higher

order polynomials of x, were also investigated. The results are similar so we choose

not to report those here. Under the Gaussian distribution, the estimated probabilities

of Type I error are computed from the true x^ critical points.

From Table 1, we can see that the estimated Type I errors of the x^ test are much

closer than the LM test to the nominal value of .10 for all sample sizes. The LM test

under estimated the sizes of the test in all the sample sizes we investigated.

To make a valid power comparison, we size adjust the power under all alternative

distributions. The empirical significance level we use is 10%. At the smaller sample

sizes of N=25 and 50, the LM test has higher powers than the x^ test under Gamma
(2,1), Log (0,1) and t(5). The discrepancies, however, become less prominent as the

sample size increases. This is due to the fact that the score functions of both Log (0,1)

and Gamma (1,2) are approximately linear in the high density regions as can be seen

from Figure 2. More observations in the tails will be needed to facilitate estimation

of the score functions that are distinguishable from the linear Gaussian score. The

situation is similar in the Student's t(5). However, an even bigger sample size will

probably be needed for some realizations in the tails to discern the estimated score

function of the Student's t from that of the Gaussian. As expected, the x^ test has

some power for A(5.2) and this increases rapidly with the sample size. The x^ test also

performs better for Beta (3,2) alternative. The LM test has powers even lower than

its sizes for the Tukey's A alternative in all sample sizes.



Table 1: Estimated Powers for 1000 Replications (Empirical size = .10)

Sample Sizes Distributions LM x'

Gaussian .044 .126

Beta (3,2) .063 .213

iV = 25 Gamma (2,1) .700 .625

t(5) .352 .163

Log (0,1) .962 .795

A(5.2) .09 .152

Gaussian .059 .111

Beta (3,2) .154 .370

N = 50 Gamma (2,1) .944 .872

t (5) .517 .260

Log(0,l) 1.00 .927

A(5.2) .061 .334

Gaussian .067 .099

Beta (3,2) .433 .548

N = 100 Gamma (2,1) .998 .990

t (5) .699 .347

Log(0,l) 1.00 1.00

A(5.2) .019 .641

Gaussian .085 .091

Beta (3,2) .980 .901

A^ = 250 Gamma (2,1) 1.00 1.00

t(5) .933 .701

Log(0,l) 1.00 1.00

A(5.2) .011 .980



Based on our examples and simulation results, we conclude that the estimated score

function is informative in performing exploratory data analysis. It also allows us to

formulate a formal large sample test for normality that possesses reasonable size and

good power properties under finite sample situations.
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