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Summary;

In this note, we generalize some of the results pertaining to the phenomenon
of common knowledge. An event is common knowledge if each agent knows it, each
knows that the others know it, etc. We define a class of procedures whereby
agents take actions based on private information, and make further inferences
from their observations of the actions of other agents. We are able to characterize
the information thus revealed and obtain general versions of theorems to the effect
that agents cannot agree to disagree, and will not make trades based solely on
differences in information.





Learning to Agree

I. Introduction

In this paper we explore some of the inplicatiocs of the idea of

"common knowledge" and define a general model whereby agents can make

inferences about the knowledge held by other agents on the basis of

actions those agents are publicly observed to take. The intuitive data

of common knowledge is that an event is known to all (each agent can

tell whether or not it has occurred) , and each agent knows that every

other agent knows this, each agent knows that every other agent knows

that every other agent knows this, etc. etc. The discussion of the

phenomenon of common knowledge began with the publication by Aumann (Al)

of a resxilt which holds that, if two agents form conditional probability

assessments of the likelihood of a given event, and if these assessments

are common knowledge, then it is not possible for the assessments to differ,

Milgrom (Ml) then gave a formal characterization of common knowledge that

expressed Aumann* s definition in Axiomatic terms, Geanakopolous and

Polemarchakis (G&P) extended the collection of events to which the

appelation "common knowledge" could be applied by defining an explicit

communications mechanism whereby agents exchange conditional probability

assessments about the likelihood of a given event, revise their private

beliefs in the light of these disclosures, and continue until a sort of

steady state is reached at which there is no further revision. Another

sort of communications mechanism was defined by Milgrom and Stokey (M&S)

in the context of a market with uncertainty and risk-averse agents; the

I am indebted to Franco is e Schoumaker and Al Roth for helpful discussions.
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Information exchanged constituted a set of feasible and conditionally

individually rational trades, and the result was the no-trade point;

risk-averse agents V7ill not make trades solely on the basis of differ-

ences in information.

What we shall do in this paper is to present simple definitions of

the idea of common knowledge consistent with a general model of a comr-

munications process. With the aid of this model, we shall be able to

reproduce the existing results and obtain some extensions of them. In

fact, it will turn out that we can characterize any such model in terms

of the common-knowledge partition on the states of nature that charac-

terizes equilibrium. Another advantage is that we shall be able to ex-

tend the notion that agents cannot "agree to disagree" to a more general

context, and relax some of the stringent assumptions necessary for that

result

.

The plan of the paper is as follows: in Section II we record for

posterity in its most general form, the story of the "adulterous couples"

which speakers on the topic are fond of reciting, but which has never

appeared in print, to our knowledge. In Section III we present the

model of information, define the general communication mechanism, and

describe its equilibria. In Section IV we give the main results and

indicate how they relate to the literature. Section V contains some

examples and lists some open problems that are currently being explored,

II. The Adulterous Couples

This is a story whose origins are unclear, but one that clearly

demonstrates the principle of common knowledge. It belongs to a class

of stories usually couched in tenns of people with marks on their fore-
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heads trying to determine something about their own mark, but the pre-

sent version has slightly more intrinsic interest, if not plausibility.

The story goes as follows: in a certain country, the rule is that

any wife who can prove that her husband is committing adultery must brand

him on the forehead with the letter "A". Moreover, it is common know-

ledge that no wife knows whether or not her husband is unfaithful, but

that each wife knows how many of the other husbands are. In other words,

if there are no couples, and k of the husbands are unfaithful, each wife

knows (and is known to know ...) that either k or k-1 of the n-1 other

husbands are cheating. However, since no wife knows the truth about

her own husband, matters continue in this wise without any branding of

husbands. Continue, that is, until a travelling moralist, excessively

concerned with other people's business, happens to visit the country.

Outraged by the immorality he detects, he calls a meeting which is

attended by the wives, at which he announces "there are at least m

unfaithful husbands" (where m _< k _< n) . As long as m < k, this comes

as no news to anyone, so that everyone believes the moralist, and nothing

much appears to change. Disgruntled, our latter-day Muggeridge leaves

in a huff. For a while nothing happens, and matters go on as usual,

st
However, on the k-m+1— day all the guilty husbands are branded!

We shall illustrate the process of deduction for two cases:

n=k=Tiri-l=2; and n=k=m+2=3, from which it should be clear how one proceeds

in the general case, (The case n=4, m=l is worked out as an application

of our model in Section V below,) It should also be clear from this

exposition that nothing like the entire infinite regress of 'I knows

that II knows that I knows that II knows that .,,' involved in common
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knowledge is required to make this work: I am indebted to Al Roth for

this obseirvation.

In the case n=k=TD+l=2, wife 1 reasons as follows: "I know that

husband 2 is an adulteror, since he is involved with me, but I do not

know whether my own husband is. However, I know that wife 2 does know

this. Therefore, if ny husband is faithful, then wife 2 will conclude

from the moralist's announcement that it is her own husband who is the

cheat. Therefore, if my husband is faithful, husband 2 will be branded

tomorrow." Wife 2 reasons similarly, of course, and so neither husband

gets branded on the first night. However, each wife then learns the

truth from the inaction of the other and on day 2 both husbands come

home to find the iron hot and waiting.

The case n=k=m+2=3 is slightly more complicated. We illustrate

only wife I's chain of reasoning. "If my husband is faithful, then

wife 2 will know this. This means that wife 2 will observe that one

other husband is unfaithful, although she may not know which one. She

will then suppose that, if her husband (husband 2) is faithful, then

one of either wife 3 or myself will observe no adulteries. That one

of us will brand our husband tonight." Each of the other wives reasons

similarly, so there is no branding on the first night. On the second

day, when wife 2 observed that neither husband 1 nor husband 3 has

been branded, then she should go home and brand her own husband,

according to wife I's reasoning . When she does not, and the third day

dawns with no branded husbands, all the chains of reasoning based on

the supposition by wife 1 that her husband is innocent collapse, and

each infers the awful truth.
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Obvlously, what is important in this class of examples is that each

person knows enough about what the other ones know to be able to inter-

pret what they do. This is the inqjortance of common knowledge, and the

reason why it is not enough merely for each person merely to know what

information about the true state the other people know. In other words,

it is necessary that wife 2 knows that wife 3 knows that wife 1 knows

whether 0, 1, or 2 of husbands 2 and 3 is unfaithful, so that wife 1 can

form an accurate appraisal of wife 2*s assessment of wife 3's actions.

In the following section, we present a model wherein these notions can

be given precise definition and their implications explored.

III. The Model

We begin with a measureable space (0,3) where 3 is a a-field of

subsets of fi. This space constitutes the states of nature . For precise

definitions of these and other measvire- theoretic concepts, the reader is

referred to any standard textbook on measure theory, such as Halmos (H)

,

We are also given a finite set N = {l,..,,n} of agents. Each agent i

is endowed with a measiireable partition P on the states of nature, and

with a prior u > which is a probability measure on the space (12,3).

We shall interpret these objects as follows: if the state ueO occurs,

agent i is told only that one of the states in that element of P that

contains lu has occurred, but not which one. We shall denote this

collection of states by P (oo) and refer to it as agent i's private

Information . An event is any member of Be6, and each agent possesses

a prior belief as to the likelihood of this event given by p (B).

After the true state has been chosen, and the agent has received his

private information, he can form a posterior belief as to the likelihood
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of B's occurrence, given by q (B;u)) = !"" '-'"/•'
« this is easily seen to

be a simple conditional probability. Before we describe the model any

further, we must define some operations on partitions. In keeping with the

above notation, if R is any partition of £2, and if wefi is any state, we shall

denote by R((») that element of R that contains u. Now suppose that R and S

are two different partitions* We say that R is finer than S (S is coarser

than R) iff every set in S is a union of sets in R. We write this relation

ROS. Given any partition R we define the field generated by R , F(R), to

be the collection of all sets which are unions of sets in R, together with

the empty set. For ftill generality, we note that we can define F(S) for any

collection of sets S by taking the closure of S under coiqilementation and

unions and intersections, together with the empty set. Given any two parti-

tions R and S we define two new partitions

:

i) their meet R/\ S = {Beg: BeF(R) and BeF(S)} - this is the parti-

tion consisting of sets that can be 'detected' using either R or S; the

finest common coarsening of R and S; and

ii) their .join R V S = {Beg: B = B^ ^ ^2* *^^® B^eF(R), B^eFCS)} -

this is the collection of sets that can be detected using both R and S

together; the coarsest common refinement of R and S.

We should note that, as we have defined them, neither the meet nor the

join is really a partition, but is actually the field generated by some

partition. We shall refer to these two objects interchangeably, when no

confusion will result.

Returning now to the general model, we define two partitions that sum-

marize everyone's infoirmation:
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M = A P is the meet , and J = V P Is the join
ieN leN

Clearly, MCJ, M is the set of events that everyone can detect acting

Indepedently > while J is the set of events that can be detected if agents

pool their information. One further assumption that we shall make is

that the join consists of non-null events. In other words, if BeJ,

and B ?4 0, then y (B) > 0, for all i.

We now turn to the definition of common knowledge.

Definition : Let AeB, and coEfi, A is said to be common knowledge at o) ,

if AQM((ij); in other words, if every agent knows whether or not A has

occurred when the true state is w, and every agent knows that every

other agent knows whether A has occurred, ... Implicit in this is the

assumption that the partitions themselves are common knowledge. The

event A is said to be common knowledge iff it is common knowledge at oj

for every oieA; in other words, iff AeF(M),

Remarks ; We shall later be concerned with the difference between an

event which is common knowledge in some states and an event which is

common knowledge. Here we present a simple example. Suppose that there

are two agents and four states of the world, and that the partitions

1 2
are given by: P = (s-s^) (s,s, ) ; P = (s, ) (s-s-) (s , ) . Consider

the event (s-s, ) : if the true state is s,, then both agents will know

that (s-s,) has occurred, but if the true state is s-, only agent 1

will know that (s,s,) has occurred. Another point we should make at this

juncture is that we are also assuming that the priors p are common

knowledge. In most of the work to date, it has been asstxmed both that

they are common knowledge and that they are the same. We shall see to
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what extent the assumption of eqvial priors is necessary in what follows.

Avunann discusses the assumption, and mentions that Harsayi (H2) has

defended it on the grounds that the only reason for agents to form

different priors is that they have been given different information at

some point in the past, and that the supposedly different priors are in

fact different posteriors derived from identical priors. While it is

difficult to fault this argument if we accept a sufficiently broad con-

cept of information, such a notion of information puts a great deal of

strain on the assumption that the partitions are common knowledge.

Therefore, while we shall sometimes use the assunqjtion that agents have

identical priors, some of our results are independent of this assinnption,

and we do not wish to prejudice the issue.

We now define a process by which agents can commimicate with each

other, albeit in what may be a fairly indirect fashion. Let us add to

the structvire above another piece of common knowledge. For each agent

i, we shall define an action rule f : 3-*-Z , where Z is some space

of actions. The procedure we have in mind can be loosely described as

follows: in the beginning, each agent is given some private information

P (oj) about the true state uefl, and takes the appropriate action f (P (to)),

whose value becomes common knowledge, along with the actions of the other

agents. On the next day, each person forms a new assessemnt as to the

true state of the world based on private information and the information

revealed by the other agents. Along with this assessment goes an assess-

ment as to what the other agents beliefs on the second round can be, since

each agent goes through the same process of revision. Thus, on day 2

agent i will have some subset of P (w) which is consistent with private
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Information and public observation. Also, conditional on any state in

this set, i will be able to work out what j believes, what j believes k

believes, and so on. Fortunately, we shall be able to obtain simple

expressions of these statements. On this second day, each agent takes

the action appropriate to its current information, and the process con-

tinues xintil an equilibrixan is reached.

Formally, we wish to concern ourselves with the following objects;

actions f taken by agent i at stage t, and sets of states H (f , ...f.)

consistent with a seqiience of actions. These objects are defined induc-

tively as follows:

fj_(a)) = [f^iu,) f°(a))], where fj(a)) = f^(P^(aj))

^l^^l) = {oj'efi: f^Co)') = f^}

f2((o) = [f\(i^)y...,^(<^)]» where f^((u) = f^Cui) = f^(H^(f^(a))) /I P'^Co)))

H^(f^,...,f^) = {a>'eHj._^(fj._^,...,f^): f^(a)') = f^}

f,.(a)) = [fJCw) f^(oo)], where fj(u)) = f'^(H^_^(') /O P^(aj)), and the

argument of H , has bee suppressed for brevity.

The reader can convince him/herself that what we have described is

just what we said in words above, and that it is indeed the best that

can be done. The events in the sets H are a matter of public record,

and therefore constitute a sort of common knowlege belief about the true

state. To find any agent's private belief about the true state at time

t it suffices to form P (oj) O H . Agent i can do this for itself with
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no trouble, and can therefore take the appropriate action at each stage.

Agent i can also form P-^(a)')n H for all co'eP (uj) D H ; this is the

set of possible t— round beliefs of agent j, according to agent i's

best information. In the same way, we can derive agent i's assessment

of what j thinks that k thinks, and so on. We now define an equilibrium.

Definition ; an inference eguilibriimi consists of an integer T, a sequence

of actions f^,...f„, and a subset H of fi, with the property that

H_, = H (f , ,,,f-) = H . (f - , , . , ,f. ) .

In other words, an inference equilibrium, or IE, is a situation

where no further revision of information takes place. It is immediate

that for all k,H^_^^ = H , and f^j. = f-j,; so that this is truly an

equilibrium. We should also point out that everything in the model is

a deterministic function of the trxie state o), so that we can also define

the inference equilibrium at oj to be just the common-knowledge belief

to which the system converges given that the true state is w. This

belief will be denoted H(a)).

IV. Results

In this section we present several results pertinent to the model

of the previous section.

Theorem I ; (existance) for an oiefi, there exists a unique inference

equilibrum.

Proof: it is trivial to observe that, for any t,H ^^CT^t* ^° that the

map H is a contraction. Since it is also single-valued (as long as the

i V
f are), it must hae a unique fixed point. QED
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Theorem II ; (convergence) for any wefi, if M(a)) /H P is finite for each i,

the inference equilibritnn is achieved in a finite number of steps,

bounded above by

Z #(M(u))nP^)
ieN

Proof: obvious; we merely remark that what we mean by )?(M(aj)/l P ) is the

number of elements of P (not the number of states belonging to these

elements) that belong to M(a)), and that the definition of M(u)) assures

us that any element of P that intersects M((i)) is contained in M(aj)

for each i and la.

Theorem III ; H constitutes a partition of fi.

Proof: suppose to the contrary that there exist distinct states oj and

oj' such that

H(a3) ?f H(a))n H(a)') ^

Now consider as well the sequences f = f^,,.,,f„ and f = fJ,...,f' of

actions that establish these inference equilibria. First, suppose that

f^ jt f » By definition of H- and the fact that f. is the value of f^

on a member of a partition, we can see that f^ j^ fJ iiq)lies

IL (f^) r\ H- (f ') = 0, Therefore, we must have f- ~ f
-I

• Now suppose

that we have f^ = f' for all 1 < t < s, but that f j^ f. Therefore,
t t — *

s s
*

we have Hg-l^^s-l' •*• '^1^ " ^s-l^^s-1' * ••»^P' ^°" ^^^^ agent's

partition P restricts to a partition of H ,, so that f j^ f implies
S^X s s

H (f ,f f )/1 H (f',f ,...,f ) = 0. It will be noted that

we made use of f = f ' in writing this last equation, since it would

not be true otherwise. At any rate, this provides the inductive step

and proves the theorem. QED
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Remark ; this is the most important theorem so far, and justifies the

construction of our general model, since the inference partition H thus

obtained is characteristic of the commimications rule f , and provides

a method by which various structures can be compared as to the degree

to which information gets revealed as well as which agents obtain which

information. It also considerably simplifies the construction and

analysis of examples, which we shall address in the next section. How-

ever, before we proceed to the specific examples, we shall prove some

other properties that are of interest in certain special cases.

Definition ; a collection of action rules f = f^ f^ is symmetric

iff f = f for all i. An action rule is union-consistent if, for any

disjoint sets B,C£g, we have:

f(B) =f(C) implies f(B) = f (B U C) = f(C)

Examples of union consistent rules include: conditional probabilities

for fixed events or collections of events; conditional expectations of

random variables; and actions which maximize conditional expectations of

functions of random variables. In short, these examples cover most of

the concrete applications of communication procedures that have been

proposed to date.

Theorem IV ; (the impossibility of agreeing to disagree) : If f is a

symmetric and union-consistent action rule, and H is the inference

partition corresponding to f , then for every loefi, f (P (a))ll H(a))) =

f (P^ (to) O H(a))). In other words, at an inference equilibrium,

all agents will take exactly the same actions.
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Proof: By definition of an IE, for each ieN, and each lo'eH(co), we must have

f(P^((u) n H(aj)) = f(P^(u)')ri H(u))). If this were not true, then further

inference would be possible. However, by the union condition it follows

that:

f(H(a))) = f(P^(a))n H(aj))

since H(oj) is just the intersection of sets of the form P (o)')/! H(a)),

over oj'eH(aj), all of which lead to the same action. This condition is

independent of i, so the theorem is proven. QED

Another question we might ask is what sort of events are common

knowledge at an inference equilibrium? Now, it is certainly going to

be the case that the inference partition is (weakly) finer than M and

(weakly) coarser than J, but the esact ranking of H will depend on f

.

However, from the definition of common knowledge, we can provide a super-

ficial answer to the above question. At the inference equilibrium, the

information possessed by each agent is represented by P (01)/^ H(a)).

In other words, an agent in a model such as ours can look forward to

having the partition P V H. The events which are common knowledge at

IE are those belonging to the field generated by the meet of these "final"

partitions:

Proposition V ; Aeg is common knowledge at the inference equilibrium

iff AeF(M yH).

Proof: by definition, A is common knowledge iff AeF(/\ (P N/H)) =

. ieN
F((/^P ) v/H) = F(m\/H). QED

ieN
Another question we can ask is whether there is a simple expression for

H in terms of P and f . For example, if f = constant all i, we have H = M,
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while if r (B) = B (or some sufficient statistic), we obtain H = J.

While we have no simple expression, we can observe the following:

H^ = V(f^)"'''(F'-), H, = V'(F^)"-'-(/\/ H ), etc. From this expression,
ieN ieN

we can obtain characterizations of H in various special cases and also

derive some conditions under which we get full revelation: H = J,

However, those are topics for a subsequent paper.

V. Examples

In this section, we list some of the examples that have been used

in the literattire. Perhaps the most important, at least historically,

is the action rule specified by Aumann and G&P:

p(p^((o)nB)
'^^^'

P(P^(.))

where p is the common prior of all the agents. This action rule is

symmetric and union-consistent, so the theorems of those two papers are

special cases of our theorems I, II, and IV above, for the case where

there are only two agents. Another example is that used by Milgrom and

Stokey, where the action TuLe is specified for the whole economy. They

do not actually specify an action rule in terms of what an agent knows,

but one can infer an action rule from their notion of what is common

knowledge at an equilibrium. In essence, they have their agents submit

a vector of net trades that is chosen from a set of feasible n-tuples

of net trades that are individually-rational conditional on each agent's

private information. One can also imagine somewhat more involved formu-

lations of action rules for economic situations; examples have been

described by Aumann (A2) , Jordan (J), Cave (C) and Radner (R) . A common

thread in all of these models is that agents make some trades that maximize
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condltional expected utility based on their private information. The

results of these trades (which may be in the form of clearing prices,

clearing prices and final allocations, etc.) are then made common

knowledge, information is revised and the process repeats. The endpoint

of these adjustment procedures is a situation where no further informa-

tion is conveyed; this means that the final allocation is both ex ante

and ex post efficient; it constitutes a rational expectation equilibrium

relative to the information structure which gives each agent the parti-

tion P V H» Much of the literature on rational expectations, trading

with differential information, etc. can be understood in this context.

One final class of examples is found in the literature on repeated games

of incomplete information, where explicit learning processes are a re-

sult of equilibrium behavior.

We conclude the discvission of examples by working out the tale of

the adulterous couples for the case n=4, m=l, all values of k. In this

case, we can represent the state of nature as w = (h^ jh-.h^jh, ), where

if husband 1 is innocent

1 if husband 1 Is an adulterer

It will be convenient to introduce a more condensed notation for the

states and we shall represent them as the numbers of which the original

states were binary representations, viz;

aj(h^,h2,h2,h^) = 8h^ + Ah^ + 2h2 + h^

The action rule in terms of the original state space is;

. B (brand) iff h. = 1 for all oieS

f^(S) = ^

N (not brand) otherwise
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In what follows, we shall mark the states where the indicated player is

to take action B with an asterisk. The information structure is as

follows: we indicate the fc— element of agent i's partition by P,

i
^l 4

1 (0,8*) (1.2,4,9*,10*,12*)

2 (0,4*) (1,2,5*,6*,8,12*)

3 (0,2*) (1,3*, 4, 6*, 8,10*)

4 (0,1*) (2, 3*, 4,5*, 8,9*)

4 ^
(3,5,6,11*,13*,14*) (7,15*)

(3, 7*, 9,10, 13*, 14*) (11,15*)

(5, 7*, 9,11*, 12,14*) (13,15*)

(6,7*,10,11*,12,13*) (14,15*)

At the present tine, M = f2 (the coarse partition, and J = [{0},.. .,{15}]

the fine partition, H = M and we are in inference equilibrium. Now

suppose that we add the following piece of common knowledge: the true

state is not (0,0,0,0). The information partitions remain the same,

except that pj = (8) , pj = (4) , PJ = (2) , and P^ = (1) . It is therefore

obvious that if the true state is a menber of {1,2,4,8}, H(u) = {co}, and

convergence is immediate (takes one 'day'). In fact, we have that, for

example, w = 1 implies f^(a)) = N,N,N,B; and H(a)) = H^(N,N,N,B) = {1}.

For any other states, we have f, (to) = N,N,N,N, so that H. (N,N,N,N) =

(3,5,6,7,9,10,11,12,13,14,15). We can show what happens in each of

these states in the following table, where we have shown the true state,

the second-round beliefs of each agent in each state, and the second-

round actions of the agents.



-17-

state 1 P-'-(a)) H^ P^(a)) H^ P^((d) H^ P^(w) H^ f

3 (3,5,6,11,13,14) (3,7,9,10,13,14) (3,6,10)* (3,5,9)* NNB:

5 (3,5,6,11,13,14) (5,6,12)* (5,7,9,11,12,14) (3,5,9)* NBN
6 (3,5,6,11,13,14) (5,6,12)* (3,6,10)* (6,7,10,11,12,13) NBB
7 (7,15) (3,7,9,10,13,14) (5,7,9,11,12,14) (6,7,10,11,12,13) NNN
9 (9,10,12)* (3,7,9,10,13,14) (5,7,9,11,12,14) (3,5,9)* BM

10 (9,10,12)* (3,7,9,10,13,14) (3,6,10)* (6,7,10,11,12,13) BNB

11 (3,5,6,11,13,14) (11,15) (5,7,9,11,12,14) (6,7,10,11,12,13) NNN
12 (9,10,12)* (5,6,12)* (5,7,9,11,12,14) (6,7,10,11,12,13) BBN
13 (3,5,6,11,13,14) (3,7,9,10,13,14) (13,15) (6,7,10,11,12,13) NNN
14 (3,5,6,11,13,14) (3,7,9,10,13,14) (5,7,9,11,12,14) (14,15) ms.

{

15 (7,15) (11,15) (13,15) (14,15) NNN

Therefore, the states that get discovered after the second roxmd are

(3,5,6,9,10,12), so for those states to, we have H(tu) = {cu}. For the

others, w^re F- = NNNN, the new common knowledge belief is given by

H2((NNNN),(NNNN)) = (7,11,13,14,15). We can draw the same kind of ;

table to represent the outcomes on the third round for each of these
i

states: i

state P"'"(a)) H^ P^(a)) H2 P^(aj) H3 P^(a)) H^ f

7

11
13
14
15

(7,15)
(11,13,14)*
(11,13,14)*
(11,13,14)*
(7,15)

(7,13,14)*
(11.15)
(7,13,14)*
(7,13,14)*
(11.15)

(7,11,14)*
(7,11,14)*
(13,15)
(7,11,14)*
(13,15)

(7,11,13)*
(7.11,13)*
(7,11,13)*
(14,15)

(14,15)

NB6B
BNBB
BBNB
BBBN
NNNN

Thus all the information is revealed after the third round, although it

may take until the fourth day for the parties to take appropriate action

in case the true state were 15. It is therefore obvioxis that H = J =

the fine partition, and that this way of dealing with the adulterous

couples story is much clearer and easier to generalize than the verbal

approach adopted in Section II above.

There remain several open questions in regard to these mechanisms,

in addition to those already raised. For example, if we relax the
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condition of Identical priors, the Aumann/G&P action rule is no longer

symmetric; though it is indeed union-consistent. In that case, one can

easily modify the results of Theorem IV, but much of its intuitive appeal

is lost; it becomes possible for people to agree to disagree. It would

be interesting to investigate the effect of different priors on the

other union^consistent rules mentioned after the definition. Another

line of inquiry is to investigate what the interdependence is between

event A about which the Aumann/G&P agents communicate and the degree of

revelation. In particular, if we allow agents to communicate about some

collection of events, it seems likely that we could improve the perfor-

mance of the mechanism. An obvious example is having agents communicate

their conditional probabilities on all the events in J: this leads to

convergence to H = J in one round. Another question left unanswered is

whether certain classes of events remain in the middle range between

common knowledge at ai, and common knowledge when we move to IE. In

particular, does the G&P rxile imply that we converge to siutations where

the target event becomes common knowledge? The answer is probably no,

but the pursuit may turn up some interesting results. So would the

analysis of strategic behavior in these models.
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