Shape Analys is with the Delaunay Triangulation

 Nina $\mathfrak{A m e n t a}$ University of California at DavisShape Analysis with the De laurluy Triangulation Delone Nina Amenta University of California at Davis

Shape of a Point Set

Surface Reconstruction

Input: Samples
 from object

surface.

Output: Polygonal
model.

Point Set Capture

Point Grey Bumble bee

Cyberware model 15

Applic ations

Levoy et al, Stanford
$\mathcal{D e}$ lsonet al, $\mathfrak{A M} \mathcal{N} \mathcal{H}$

Allen, Curless, Popovic, \mathcal{U} Wash.

Voronoi/Delaunay Structure

Voronoi ball ~
Voronoiverte χ ~
De launay simple x

Power Diagram

Weigfted Voronoi diagram. Input: Galls. Dis $t\left(x, 6 a(l)=\right.$ dis $t^{2}(x$, center $)$-radius ${ }^{2}$

Dual of regular triangulation.

Polytiedralcells, same algoritfms (lift to conve X full)

ALpha-sfapes

Weighted Delaunay (regular triangulation) edges dual to weighted Voronoi edges intersecting union of balls.

Alpha-sfapes

Ede Ls 6 runner, HEir Kpatrick, Seidel, 83
Edelsbrunner, 93: Alpha shape is fomotopy equivalent to union of Galls, close correspondence with union structure. Ede ls Grinner \&Muecke, 94:3D surface reconstruction.

Alpha-shape reconstruction

Tut small ball around each sample, compute afpha-shape.

Difficulty

> Ulsually no ide alchoice of radius.

Ball-pivoting

Bernardini et al, IBM

Fixed-radius ball "rolling" over points selects subset of alpha-shape.

Me dial $\mathcal{A x}$ is

Medial axis is set of points with more than one closest surface point.

3D Medial $\mathcal{A x}$ is

Medial axis of a surface forms a dualsurface.

Me dial $\mathcal{A x}$ is

Maximal ball avoiding surface is a medial ball.

Every solid is a union of balls !

Relation to Voronoi

Voronoi balls approximate medial balls.

For dense surface samples in 2 2 , all Voronoivertices lie near medial axis.

Ognie wicz, 92

Convergence

In 2D, set of
Voronoivertices converges to the medial axis as sampling density increases.

Discrete unions of balls

Voronoi 6 alls approximate the object and its complement.

2D Curve Reconstruction

Blue De launay
edges reconstruct the curve, pink triangulate interior/exterior.

Many algorithms, with proofs, for coloring edges.

2D Me dial Reconstruction

Pink approximate medial axis.

By nerve theorem, approximation is
fomotopy
equivalent to object and its complement.

3D Voronoi/De launay

Voronoi cells are conve x polyfe dra.

Voronoi 6 alls pass through 4 samples.

De launay
tetrahedra.

Sliver tetrafiedra

In 3D, some Voronoivertices are not ne ar me dial axis ...

Sliver tetrahedra

... even when samples are arbitrarily dense.

Interior Voronoi 6afls

Poles

Interior polar balls

Subset of Voronoi vertices, the poles, approximate medial axis.

Amenta \&Bern, 98 "Crust" papers

Poles

For dense surface samples, Voronoicells are:

- long and skinny,
- perpendicular to surface,
- with ends near the medial axis.

Poles

Poles are Voronoi vertices at opposite ends.

To find: farthest Voronoi vertex from sample, farthest on opposite side.

Sampling Requirement

E-sample: distance from any surface point to nearest sample is at most small constant ε times distance to medial axis. Note: surface has to be smooth.

Sampling Requirement

Intuition: dense sampling where curvature is figh or near features.

Large balls tangent

Any large ball (with
respect to distance to me dial axis) touching sample s has to be nearly tangent to the surface at s.

Specifically

Given an e-sample from a surface \mathcal{F} :

Angle between normal to \mathcal{F} at sample s and vector from s to either pole $=$ $O(\varepsilon)$

Results

Look for algorithms where...
Input: ع-sample from surface \mathcal{G}
Output: PL-surface,

- near G, converges
- normals near G, converge
- PL manifold
- frome omorpfic to G

Formal $\mathfrak{A l g o r i t f m s ~}$

Amenta and Bern, crust
Amenta, Choi, Dey and Leekha, co-cone Boissonnat and Cazals, naturalneighbor Amenta, Choi and Kolluri, power crust

Co-cone

Estimate normals, choose candidate triangles with good normals at each vertex.

Extract manifold from candidates.

Co-cone

Works well on clean data from a closed surface.

Amenta, Choi, Dey, Leekha 2000

Co-cone extensions

Dey \& Giesen, undersampling errors.

Dey \& Goswami, hole - filling.

Dey, Giesen \& Fuds on, divide and conquer for large data.

Power Crust

Amenta, Choi and Kolluri, 01

Idea: Approximate object as union of balls, compute polygonalsurface from balls.

Power Crust

Start with all poles.

Power Crust

Compute polygonal decomposition using power diagram.

Power Crust

Label power diagram cells inside or outside object (skipping details).

Inside cells form polynedral solid.

Power Crust

Boundary of solid gives output surface.

Connect inner poles with adjacent power diagram cells for approximate medial axis.
wy

Medial axis approximation

Dey \&Zfao, 02 Voronoi diagram far from surface.

Medial axis approximation

Me dial axis of union of balls = lowe r dimensional parts of alpha shape + intersection with Voronoi diagram of union vertices.

$\mathcal{A t t a l i} \& \mathcal{M o n t a n v e r t , 9 7 , \mathcal { A } \& \mathcal { K O l C u r i } 0 1}$

Distance function

Giesen and Iofn, 0 1, 02

Distance from nearest sample.

Distance function

Consdier uphill flow... Ide a: interior is part that flows to interior maxima.

Distance function

Compute flow combinatorially using
De launay/Voronoi

Max and (some) saddle points.

Distance functionstructure

Critical points where dual De launay and Voronoifaces intersect.

Distance functionstructure

Critical points where dual De launay and Voronoifaces intersect.
\mathcal{N} (ot all pairs are critical

Wrap

Ede Ls 6 runner - (95), Wrap, to appear...

Running time

$\mathfrak{A l l} O\left(n^{2}\right)$ because of comple xity of $3 \mathcal{D}$
De launay triangulation. Practically, Delaunay is bottleneck.

Avoid Delaunay:
Bernardiniet al. ball-pivoting.
Funke \&Ramos, $01 O$ ($n \lg n$) reconstruction algorithm, using wellse parated pair decomposition.

Tomorrow

Maybe Delaunay is OXP
Comple xity of Delaunay triangulations of surface points

Computational is sues

