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PREFACE

These notes contain the material of lectures given

at Rice University, Houston, Texas, during two months

in the spring of 1969.

In the first two chapters finite dimensional sub-

algebras O of the Lie algebra Rat V of rational functions

on a vector space V are considered. In particular the

group of automorphisms of O is investigated and a

connection with groups of birational functions is given.

The algebraic construction generalizes to arbitrary-

fields (of characteristic £ 2 and 3) the groups of

biholomorphic mappings of bounded symmetric domains,

and thereby generalizes the domains themselves . Detailed

information about these algebraic groups, their Lie

algebras, and the associated Killing forms, is obtained.

The reader should compare the results with the

examples given in chapter I, §5, and in chapter III.

In chapter IV and V the algebraic method is used

for an explicit construction of bounded symmetric domains

which covers all domains of this type.

The methods used in these notes are quite elementary

For completeness the proofs of well-known results on

linear Lie groups are included.

I wish to express my thanks to my friend H. L.

Resnikoff for his continuous interest and his valuable

discussions and suggestions. I am also grateful for

Nancy Singleton's excellent preparation of the notes.

Munchen, June 15, 1969
M. KOECHER
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Chapter I

LIE ALGEBRAS OF RATIONAL FUNCTIONS

Let K be an infinite field of characteristic differ-

ent from 2 and 3 and let V be a vector space over K

of finite dimension n > 0. If R is an extension ring

of K, the tensor product R ® V (over K) is called the

scalar extension of V by R.

§1. The Lie algebra Rat V -

1. Let t, ,..., T be algebraically independent

elements of an extension field of K and let

K :
= K(Tp...,t ) be the field of rational functions

in T
i>--->

r
n
with coefficients in K. For an arbitrary

vector space E over K, denote by E' the scalar extension

of E by K'. Choosing a basis b-, } . . ,b of V we obtain

the element

X = T b, + • ' • + T bII n n

of V . Let e
i'

m '
• > em be a basis of the vector space

E over K; then the elements f of E ' have a unique repre-

sentation as

f - f , e, + • • • + f e , f . e K\11 mm j
'
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a

and we write f = f(x). We call f a rational function

of x, moreover, f is called a polynomial or a homo -

geneous polynomial of degree r if the f
.

' s have these

respective properties. Writing the f.'s as reduced

quotients of polynomials, the least common multiple 5 r

of their denominators is uniquely determined (up to a

constant factor) and it is called the denominator of f.

Let cp = cp (x) be a polynomial of K' and let

a = ou b, + • • • + a b be an element of a scalar11 n n

extension of V- Then cp(a) is defined by replacing the

t.'s in cp (x) by the a.'s. More generally if 5^ is the

denominator of a rational function f e E' and if we

call Dom f = [a; aeV, 6^(a) f 0} the domain of f, then

f(a) is defined for a e Dom f. One says that f(a) is

obtained from f (x) by the specialization x -* a and one

writes f(a) = f(x)|

I

x -> a

2.- An element f e V' is called a generic element

of V, if cp(f(x)) = 0, cp 6 K', implies cp = 0. Hence f

is generic if and only if the coefficients of f with

respect to a basis of V are algebraically independent

over K. In particular, x is a generic element of V.

Finitely many elements of V' are called generically

independent if all coefficients with respect to a

basis of V are algebraically independent.

Let g e E-, f e V' and let -^ be the denominator

of g. We say that g and f are composable if 5 (f(x))

7^ 0, i.e., if we can specialize x * f(x) in g. If g
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and f are composable then g(f(x)) is again an element

of E' which is denoted by g°f. Denote by I the

polynomial Ix = x.

Let P(V) be the set of rational functions f e V'

for which there exists a rational function f e v' such

that f and f as well as f and f are composable and such

that f°f = fof = I holds. Hence any element f o_f P(V)

is a generic element of V and therefore, we can

specialize x -> f (x) in an arbitrary rational function.

Moreover, f(V) turns out to be a group with respect

to the product (f,g) -* f°g- The elements of P(V) are

called birational functions .

For u 6 V and a rational function g e E' the

differential operator A is given by

A
x s(x) :

=
dT §(x + Tu >

T -> O

The map u -> A g(x) of V into E' is linear, hence it

can be extended to an arbitrary scalar extension of V-

Furthermore, let f e V' and suppose that g and f

are composable. Then we have the chain rule

A^(g°f)(x) = A^
(x)

g(f(x)) where w : = A^f(x)

Each f e V' induces an endomorphism —r-*

—

<- of V' via

5f (x) . _ Au cl s—r-5,—*- u :
= A f(x).

dx x v '

If in addition g belongs to V', then the chain rule

becomes
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a(gof)(x) = ag(f(x)) af(x)
3x 3f (x) 3x

3- For rational functions h^k e V', we define a

product h*k by

(h.k)(x) := t£& h(x) - ^Elk(x).

The map (h,k) -» h*k of v'xv' into V' is K-bilinear.

Hence V' as a vector space over K together with the

product h- k becomes a (non-associative) algebra. Using

the associator (h,k,,l) = (h*k)»l - h*(k«l), we obtain

(h,k,l)(x) - A^
(x)

(h.k)(x) - A^
k,1) (x) h(x)

. A
i(x) 3hixl k(x) _ ahixi A

i(x)
k(x)

x 3x v ' Bx x v '

= A
U

A
V

h(x),
X X v ' '

where after the differentiation we put u = i(x) and

v = k(x). Since the last term is symmetric in u and

v, we get

(1.1) (h,k,l) = (h,l,k) for h,k,l e v'.

Algebras satisfying this condition are called right

symmetric .

Denote by Rat V the algebra over K with vector

space V' and the product [h,k] := h* k - k«h. Obviously

Rat V is anti-commutative. The identity

[[h,k],l] + [[k,l],h] + [[l,h],k]

= (h,k,l)+(k,l,h) + (l,h,k)-(k,h, !)-(!, k,h)-(h,l,k)
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shows that Rat V _is a Lie algebra over K.

4. Denote by Pol V the subset of Rat V of all

polynomials in x. Hence Pol V is a subalgebra of Rat V.

Let $ , r = 0,1/2,...., be the subspace of Pol V of all

homogeneous polynomials of degree r; then we get a

direct sum decomposition

Pol V =
<Pr

•

r>o

Setting *p_, = we obtain

(1-2) tVV C
'r+s-l

for r,s - 0,1,2,...
.

From (1.2) it follows that $ = V, ?-, and T> + T5, arev 7 o 1 o 1

subalgebras of Pol V. But

o l I

is not closed under the Lie product.

^t contains the function Ix = x. For he? the
1 r

Euler differential equation A h(x) = r h(x) shows that

[h,I](x) = ^ h(x) - h(x) = (r-l)h(x). Hence

(1-3) [h,I] = (r-l)h for h e ^.

Let h = h + h, + • •
• , h e T , be an element of Pol V

o 1 r r

that commutes with I and all a € *C = V. We obtainro

(r-l)h = and A
a

h (x) = for a <e V.

Because of the linearity we can replace a by x and

obtain (r-l)h = rh =0 and consequently h =0 for
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all r. Hence only commutes with I and all a e V. In

particular, any subalgebra of Pol V that contains I and

all constant polynomials has center 0.

Denote by End V the ring of endomorphisms of the

vector space V. Since an element T of End V can be

extended to an endomorphism of any scalar extension of

V, the linear function Tx belongs to $-, . Conversely

each element of "P-,
has this form. In keeping with the

notation f = f(x) for f e Rat V, we also write T

instead of Tx and I instead of Ix = x. From the context

it will be clear whether we mean the endomorphism or

the corresponding linear function. Calculating [T,S](x)

= (TS-ST)x for S,T e $, we see that the product in the

subalgebra 'P-, of Pol V corresponds with the commutator

product of the endomorphisms.

Without proof we mention that Pol V is a simple

algebra if and only if the ground field has characteris-

tic zero.

Let L be an extension field of K and suppose that

x is generic over L. Then for the scalar extension we

have

L®Rat V 5 Rat(L®V) and LSPol V = Pol(LSV).
K K K K

5. Denote by IP (V) the set of f t Rat V for which

the scalar rational function

deti^Sl
dx

is not the zero function. For h e Rat V and f e P (V)
o
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we define a function h by

(1-4) h
f
(x) :-

(-^f^
1

)
h(f(x)),

provided h and f are composable. Obviously h belongs

to Rat V- In the notation of 3 we have

(1.5) f.h
f = h°f.

Suppose that h and f as well as k and f are com-

posable; then [hjk] and f are composable too, and we get

(1.6) [h
f
,k

f
]

= [h,k]
f

.

For the proof we use (1.5) and (hof)«k = (h«k)°f in

the following calculation:

(f,h
f
,k

f
) = (f.h

f
)-k

f
- f- (h

f
-k

f
)

= (hof)'k f - f'(h
f
-k

f
) = (h-k)of - f-(h

f
-k

f
)

= f- (h-k)
f

- f- (h
f
-k

f
).

Formula (1-1) shows that the left side is symmetric

in h and kj hence we get f«[h,k] = f • [h ,k ] and (1.6)

is proved.

Each h e Pol V is composable with each f e P (V).

From (1.6) it follows that h • h is a homomorph i

s

m of

the Lie algebra Pol V into Rat V.

The group P(V) of birational functions is a subset

of P (V). Hence h is defined for h e Rat V and
o

f e P(V). The chain rule implies h s = (h )
8 for

f;g c P(V). Hence h -> h is a linear bijection of
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Rat V onto itself. Moreover h = h for all h e Rat V

implies f = 1, therefore P(V) acts effectively on Rat V.

Again from (1.6) it follows that h -* h is_ ari automor -

phism of the Lie Algebra Rat V for each f e P(V).

Setting v
f
(h) : = h^ we obtain an automorphism V-

of Rat V- Furthermore the map

(1.7) v : P(V) -» Aut Rat V, f -> v
f ,

is a_ monomorphism of the group P(V) into the auto -

morphism group of Rat V-

6. We now construct two special types of auto-

morphisms of Rat V. Denote by GL(V) the group of

bijective endomorphisms of V. For W e GL(V) we have

the linear function Wx that is birational. Hence

GL(V) can be considered as a subgroup of P(V). We

get

(1.8) (v
w
h)(x) = (h

W
)(x) = W h(W

-1
x), W e GL(V).

For b e V we define the polynomial t, by

t
b
(x) = x + b.

From t ot = t, ,
it follows that t, belongs to P(V) and

that (t
b ) = t_

b
holds. From the definitions it

follows that

(1-9) W°t
b

- twb°W for W e GL(V), b e V.

As an abbreviation set
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t ,

(1.10) T
b

:= 7 , hence (Y
b
h)(x) = (h ) (x) = h(x-b)

Again Y, is an automorphism of Rat V. Formula (1.9)

yields

(1.11) V
w

Y
b

= Y
wb

vw , W 6 GL(V), b e V,

and we have

(1.12) Y, Y = Y, , for b,c e V.v ' be b+c

§2. Binary Lie algebras -

1. Suppose that the ground field K has a charac-

teristic different from 2 and 3- The elements of f = f

+ T}, + ^o are written as

q = a + T + p, a € V, T e $-, , p e %•

Here p is a homogeneous polynomial of degree 2. Hence

there exists a bilinear symmetric mapping p : VxV * V

and a linear map a -> S^ of V into End V such thatr a

(2.1) p(x) - p(x,x), A^ p(x) = 2p(x,a), p(x,a) = S^ x,

holds for a e V-

Let 2 be a subspace of 'P-, and V be a subspace of

?« satisfying the following conditions

(B. 1) % is a subalgebra of TS,

,

(B.2) [V,V] c I,

(B.3) [2,V] c V,
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(B.4) [V,V] = 0,

(B.5) I e X.

Forming the subspace a=V+I+Vof Pol V and using

(1.2) we see, that (B. 1) to (B.4) mean that O is a sub-

algebra of the Lie algebra Pol V. We call O a binary

Lie algebra if in addition (B.5) is satisfied. Using

(2.1) we get [p J
,a](x) = 2 p(x,a) = 2 S P x and hence

(B.2) is equivalent to

(B.2') S p e X for a e V and p e V.

From §1.4 we know that a_ binary Lie algebra has center

0. Let L be an extension field of K and suppose that

x is generic over L. Then L^O turns out to be a binary

Lie algebra of Pol (L®&)

.

2. Let O be a binary Lie algebra and let

$ : O ^ Rat V be a homomorphism of the Lie algebras.

Hence a -> $a is a linear map of V into the vector space

Rat V. Therefore there exists a linear transformation

H
$
(x) of V' that is rational in x such that

(2.2) ($a)(x) = H
$
(x)a for a e V.

The homomorphism § : O -> Rat V is called essential if

the determinant of the endomorphism H*(x) is not the

zero function.

THEOREM 2.1 . Let O be a binary Lie algebra and

let I : O -> Rat V be a homomorphism of the Lie algebras .
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Then $ is essential if and only if there exists

f e P (V) such that $q = q for q e O.

Proof : If there is an f e P (V) such that

fq = q , then let q = a e V and in view of (2.2)

we have

-1

M*> - {^r1

Conversely, let $ : O ^ Rat V be an essential

homomorphism of the Lie algebras and let H
$
(x) be its

associated linear transformation. Set F = F(x)

= [Hx(x)] . Due to the linearity of $, we can write

(i) $q = F~ [a+b +c ], where q = a + T + p.

T -> b„ and p ^* c are linear mappings of X and V,

respectively, into Rat V.

For two elements q, and q 2
in we abbreviate

w. = $q . and write w. as in (i). In the notation of

1. 2 we obtain

w
2

($q
1
«$q

2
)(x) = (w

1
*w

2
)(x) = A

x
w-^x)

- -F
_1

[A
x
2 F(x)]w

1
(x) + F"

1
A^

2
[b

T
(x) + c

p
(x) ]

,

by using the fact that A
u
[F(x)]

_1
= -F

_1
[A
U

F(x)]F
_1

.

X X

It now follows that

(S[q
1
,q 2

])(x) = [$q
1
,$q

2 ] (x) = [w^w^Cx)

-1 /
w
?

w
l

= F (-[A/ F(x)] Wl + [A
x

L
F(x)]w

2
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+ A™
2

[bT (x)+c (x)] - A%b (x)+c (x)]\ .

Setting q. = a. e V, we find that [qpq 2
] =

and we then obtain

[A
c F(x)]u n

= [A F(x)]u for u. = F a..
L x V/J l x v / j 2 j j

As this expression is bilinear in u, and u~, this

equation is also valid in any scalar extension of V.

The above equation simplifies to

(ii) F«[qr q2 ] - (b^+c^).^ - (b^ c )• tqr

Now let q, = T e X and q 2
= a e V. As [q,,q 2

]
= Ta,

sfqi^qo] = F ~ Ta and $a = F ~ a
'

i<: follows tnat Ta

= b * (F a).. Since both sides of this equation are

K'-linear in a, we can replace a by an arbitrary

element of Rat V and the equation will remain valid.

We thus have

(iii) b
T
*h - T F h for T e X, h e Rat V.

As I e X we can substitute T = I and obtain

(iv) F(x) = i|!*l for f(x) := bjCx).

As the determinant of F = F(x) is not zero, f is an

element of P (V) . Now substitute q. = T. 6 X in

equation (ii)- Since [q^q^ = [T-^.T-] e X, we have

that $[q^,q 2
]

= F br ,, and using (iii) we obtain
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b
[Tr T

2
]

= b
T
1

'<F"S
2

>-b
T
2

' (rlb
T
1
)

= T
l
b
T
2

- T
2
b
Tl

'

Now for T, =1, L =T, ve get the relation

(v) b
T

= Tf for all T e X.

For q, = p e V, q« = a e V, we apply (2. 1) to

the calculation of [q-,,q ]
= 2 S, = 2 S • Using (v)

J_ Z 3 a.

and the fact from (B.2') that S e Z we get

%$[q
]
_,q 2

] - F"
1

b
g

- F"
1

S
a
f,

so that (ii) yields

2Sf = C'$a=c. (F
_1

a) .

a p p
v J

Now replace a by Fh in the above equation and obtain

(vi) 2 S—f - c »h for h e Rat V.Fh p

Finally., substitute q, =1, q« = p e V in (ii) and in

view of (1-3) and (iv), it follows that

-F$p = b T » §p - c • $1 and 2 c = c • (F f ).^ I
K p pp v/

A comparison with (v) yields

C
p

= S
f
f = P( f ' f >

=
P° f -

Taking this and (v) together, we get that the image of

q = a + T + p under $ is given by

(*q)(x) - [F(x)]"
1
[a+Tf(x)+p(f(x))] = (q

f
)(x).
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This completes the proof of the theorem.

3. For an essential homomorphism $ : £ * Rat V

there is an f e P (V) such that $q = q for q 6 O. We

define the rational function r. by

(2.3) , r.(x) := [H
$
(x)]

_1
(§I)(x).

Obviously r
$
depends only on the images §1 and $a, a e V.

Writing $q = q for q - I and for q = a e V we obtain

(*I)(x) = (^H^)"
1

£(x),

(*a)(x) =H |(x)a
= ^^)

_1

a.

Hence f = r, and
I

In particular the rational function f is uniquely

determined by $ . We say that f = r, belongs to the

essential homomorphism $

.

4. Let W e GL(V) and consider the automorphism

v„ of Rat V given by (1.8). It follows that v I = I

and the image v O is again a binary Lie algebra. More-

over the restriction of vT7 to is an essential homomor-
w

phism and W belongs to it.

For b i V we consider the automorphism Y, = v
b %

of Rat V given by (1. 10) . and we show that the restric -

tion of Y to _is_ a_n automorphism of the binary Lie
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algebra O. Because of (1. 12) it is enough to prove

Y.O c SX Writing q = a+T+p e O = V+I+V we obtain

from (1.10)

(Y
b
q)(x) = q(x-b) = [a-Tb+p (b) ] +[Tx-2p (x,b) ] +p (x) .

Hence we have only to show that 2p(x,b) = [p,b](x)

belongs to X. But this is a consequence of (B-2).

Furthermore the restriction of ¥, to O is an

essential homomorphism and t, belongs to it.

5. Later we will see that the essential automor-

phisms of O form a group. As a first step we prove

LEMMA 2.2 . Let O and O 7

be binary Lie algebras

and let

$ .: 0-> O', §': D' -> Rat V,

be essential homomorphisms such that r, and r , / are

composable . Then § '$
: 0-> Rat V is essential and

we have

r, / ,
~ r, o r« / •

Proof: Put f = r* and g = r, /• Since f and g are

composable, the chain rule shows that fog belongs to

P (V) too, and that h
f ° 8 = (h

f
)
8 holds for h e Pol V.

From Theorem 2. 1 we conclude

$'$q = (§q) g = (q
f

)
g = q

f ° 8 for q e O.
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Hence $'$ is essential and fog belongs to it.

The assumptions of the Lemma are certainly

satisfied if

r
$

e Pol V, r
§

/e Rat V or r
$
e Rat V, r

$
/
c-P(V).

In particular we get the

COROLLARY. If $ : O -> Rat V is essential and if

b.c e V then Y, $ Y is essential and t or.ot ,

b c -c i -b

belongs to it .

6. Let v e !pj- We define a linear transformation

Y of Rat V by
v J

(2.5) Y
v =Id + ad v + %(ad v)

2
,

where as usual the adjoint representation ad v is

given by (ad v)h = [v,h], h e Rat V. We know that

VW j W e GL(V), is an automorphism of r it V,. hence we

(2.6) VwYv
= Y

u
v
w for W . GL(V). v 6 ^ . u := r

y
v.

The restrictions of ad v, ^TT , Y, and Y to O
W b v

will be denoted with the same symbol if there is no

possibility of misunderstanding.

Furthermore we define a linear map B (x) of V into

Pol V by

(2.7) [B
v
(x)]a = (a-[v.a] + %[v, [v,a] ] ) (x)

= a - 2v(x,a) +2 v(x.v(x.a)) - v(a.v(x))
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for a e V. Then B (x) can be extended to any scalar

extension of V. One sees that B (x) is a polynomial

of highest degree 2 and one has B (0) = I. Hence

B (x) considered as a linear transformation of V
v

is invertible. The expression

(2.8) t
v
(x) := [Bv (x)]"

1
[x-v(x)] 3 v e ^

is a rational function. In particular t (0) is defined and

we have
at„(x)

V°> =
°- -ir = i.

x*o

Hence t lies in P (V).
v o v

THEOREM 2.3 . Let O = V + X + V be a binary Lie

algebra and let v e V. Then

St (x)
1

(a) t
v

€ P(V) and
^x

= [B
v
(x)]~\

(b) Y is an essential automorphism of O and t_

belongs to it ,

(c) t , = tot and Y ,
= Y Y for u £ V.v ' u+v u v u+v u v

(d) Wot = t oW, where u = v v.
v u W

Proof : (1) Using (B. 1) to (B.4) we see that

(ad v) £ = 0. Hence from (2.5) it follows that

Y q = (exp ad v)q for q e £
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holds. Since ad v is a derivation of £ the restriction

of exp ad v to turns out to be an automorphism of

O. Moreover for u e V we obtain [u,[v,q]] - [v,[u,q]]

= [q,[v,u]] = from (B.4). Therefore ad u and ad v

commute on O. Hence

I f = (exp ad u) (exp ad v) = exp ad(u+v) = Y .
•

(2) As an abbreviation write $ = Y . Then com-v / v

bining (2.2) and (2.7) we get

H
§
(x)a = (§a)(x) = a+[v,a](x) + h[v

,

[v,a] ] (x)

= B_
v
(x)a.

In particular Y is essential. Furthermore from (1-3)r v

we obtain [v^I] = v and $1 = I+v. Hence r, = t So

part (b) together with (2.4) implies the second state-

ment of part (a).

(3) The determinant of B (x) is a denominator of
-v

t (x) and t (0) = 0. B (0) = I. Hence t and t-v -u -v -v -u

are composable. Applying Lemma 2.2 we see that Y Y

is again essential and t ot belongs to it. From (1)-v -u

and (2) we obtain Y Y = Y , and the functionu v U+V

belonging to it equals t . Hence tot = tb b M -u-v -v -u -u-v

and part (c) is proved. In addition we see that t is

a birational function.

(4) Part (d) follows from (2.6).

In particular t_ ot - I for v e V. Using the

chain rule together with part (a) of the theorem we end
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up with

(2.9) B (x) B (t (x)) = I, v g V.
\ / v -v V

Finally from the definitions (2.7) and (2.8) we obtain

(2.10) B „(-x) = B (x), t (-x) = -t (x), v e V.
\ / -V v ' V -v v

Parts (a) and (d) of Theorem 2.3 yields

(2.11) W B (x) = B (Wx) W, v e V, W e GL(V), u = v v.

7. Any binary Lie algebra O = V + X + V gives rise

to a family of Jordan algebras defined on the vector

space V- We are going to prove

MEYBERG'S THEOREM. Let O = V + Z + V be a binary

Lie algebra and let veV. Then V together with the

bilinear product ab = [[a,v],b] turns out to be a

Jordan algebra .

Proof : As an abbreviation we write

[a,u,b] = [[a,u]jb], {u,a,v} = [[u,a],v] for a.beV, u^veV.

Since V and V are abelian subalgebras of O, both

triples are symmetric in the first and last entries.

In order to prove

(2.12) ia,u,{h,v,c}} - ib , v, U,u, c }

}

= [ [a,u,b },v,c } - [b, [u,a,v},c },

a,b,c e v, u , v e V,
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one puts T = [a,u] and uses the Jacobi identity. Ana-

logously we get

(2.12') [u,a, [v,b,w}} - {v,b,

[

u, a, w}

}

= {{u,a,v} ,b,w} - [v,{a,u,b},w],

a,b e V, u,v,w e V.

The left side of (2. 12) is skew- symmetric in (a,u)

and (b,v) ; hence

(2.13) { (a,u,b},v,c } - [b, [u, a, v} ,c } + [ [b , v,a },u, c }

- [a, [v,b,u},c] = 0.

Choosing a = b and u = v we get

(2.14) [b ,v,b} = {b,v
b
,b} where b

v
= {b,v,b}

and v, = [vjb.v].
b

In the same way from (2.12') it follows that

(2.14') iv
b
,b,v} = iv,b

v
,v}.

Using the product ab = [a, v,b} = [[a,v],b], we get

2
b - b . Now in (2. 13) we choose a = b and replaci

u by v, and v by v, • We then obtain

(2.15) 2{b, {v
b
,b,v},c} - c{b,v

b
,b} + {c,v

b?
b
2

},

2Next we set u = v and replace a by b in (2. 12)

:

2b
2
(bc)-2b(b 2

c) = 2b
3
c-2ib, iv.b

2
,v},c}.

Using (2.14'). we put (2.15) in this equation
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2b
2
(bc)-2b(b

2
c) = b

3
c-[c,v

b
,b

2
}.

2Finally put u = v and replace a by b and b by b

in (2.12):

b(b
2
c)-b

2
(bc) = b

3c-{b
2
,v

b
,c}.

2 2
This means 3[b (bc)-b(b c)] =0 and the theorem is

proved.

§3- A description of the essential homomorphisms .

1. Again let 0=V+I+Vbea binary Lie algebra

in Pol V and let $ : O^ Pol V be a linear map. Hence

we obtain a representation

(3-D $q = £ g^ where g^ e ^q °q 'v
v>o

as a finite sum. Here q ^ g
V

is a linear map of O

into $ . We write g = g + g™ + g whenever
V Q a. x p

q = a + T + peO. If $ : O^ Pol V is a homomorphism of

the Lie algebras then (1.2) implies

v+1

(3 ' 2) § [q,q'] 1 [8q'V ] ^ q ' q 6 °'

u=o

We obtain our first information about the homomorphisms

of binary Lie algebras in

LEMMA 3. 1 . Let O = V + I + V and C' = V + I '+ V

'

be binary Lie algebras in Pol V- Suppose that
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$ : £1 -> £i' is an epimorphism of the Lie algebras with

gT
= and such that a -» g is a bijection of V. Then

there exist W e GL(V) and v € V such that

$q = V
W ^v q for q £ O

and O' = v &

Proof: We define the linear transformation W of

V by Wa = g . Hence W is bijective and consequently

W € GL(V). We know from §1.6 that v is a homomorphism

of Pol V that maps binary Lie algebras onto binary Lie

algebras. Setting I* : = v $, Z" := v~ o', we obtain

a homomorphism § : O -» O* satisfying g T
= and

~o , ~v -1 v
g = a, where e = vTT g .&a 6q W &

q

Hence we may assume that $ : -> O' is a homomor-

phism satisfying g T
= and g = a, and we have to

prove O' = O and $ = Y for some v e V-r v

Substituting q = T e 2, q
' = a e V in (3- 2)

we get [q.q'] = Ta and

(3-3) g°
a
= gT

(g°) - ga (gT
)-

T = I yields a = g = g (a),, hence g T =1 and
a l 1

$1 = I + v, V € V'.

For q = a + T + peO we get [I,q] = a - p from (1.3).

Consequently i (a-p) = $[I,q] = [$I.$q] implies

(3-4) la = [$I.$a]. = [§I.$T], -§p = [II, |p].
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Together with (3-2) the first condition leads to

2 2

£ v g
V

a
= I [v,g^],

v=o v=o

We compare the homogeneous terms and get

1 2
ga

= [v,a], ga
= %[v, [v,a]] resp. [v, [v, [v,a] ] ]

= 0.

That means

3
$a = a + [v,a] + ^[v,[v,a]], (ad v) a =. for a e V.

In the same way the second condition of (3-4)

yields
2 2

Y (v-1)
§t

=
2, [v,gjf]

Again we compare the homogeneous terms and obtain

g^ " 0. gT
= [v,g

T
] and [v,g

T ]
= 0. Formula (3-3)

1 2
leads to gT

= T and hence gt = [v,T], [v,[v,T]] = 0.

This means

$T = T + [v,T], (ad v)
2
T = 0, for T e X.

Finally the third condition of (3-4) leads to

2 2

7 (v-2) g^ - y [v,g£].

v=o v=o

Hence g = g = and [vjg^] = 0. Substituting q = p e V,

q' = a e V and v = 1 in (3.2) we get
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1 r 2 Oi _ r 2 „-i

§[p,a]
=

[V §a ] " [gp'
a] -

From (B.2) we obtain [p,a] e Z and therefore g„ = T

2 2
yields [p,a] = [g .a]. This means p(x,a) = g (x,a)

2
and consequently g = p as well as [v,p] = 0. Hence

$p = Y p, [v,p] = 0, for p e V.

Summing up we have

(3-5) $q = [I + ad v + %(ad v)
2
]q, (ad v)

3
q = 0, q e £.

Because of v e V' we know from Theorem 2.3b that Y_ is

an automorphism of D'. Hence Y_ § : O -> turns out

to be a homomorphism,, but (3.5) leads to Y_ $q = q.

Therefore O' = O and i = Y q for q e O .

q v

2. As a first application we prove

THEOREM 3. 2 . Let $ : O -> O 1

be an isomorphism

of the binary Lie algebras satisfying *I = I. Then

there exists a W in GL(V) such that $q = v q for q e C
w

Proof : In the notation of (3. 1) we have g° = 0.

Moreover from $1=1 it follows that $a = §[I,a]

= [I.la] and (1.2) implies g = g =0. Hence a •* g°
a a a

is a bijection and we can apply Lemma 3.1. There is

a W <- GL(V) and v e V' such that $q = VT _ 7 q forM W v -

q c O. Substituting q = I we get v = and the

Theorem is proved.
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A second application leads to the following

main result on the automorphisms:

THEOREM 3.

3

- Let O and O' be binary Lie algebras

in Pol V. Then :

a) (i) I_f i : O -> O' is an essential isomorphism ,

then § can be written as

(3-6) $ = vy Y
b

?
v

* . where W € GL(V), b,c e V, v e V,

and £>' = v O.

(ii) The rational function r* belonging to $ is

birational and one has

(3.7) r, = (Wot, ot °t ) .

$ b v c

(iii) If there is a d e V in the domain of

definition of r z such that

(3. 8) r,(d) = _and det
Bx i 0,

x->d

then the statements are true for c = 0.

b) Each map of the form (3.6) turns out to be an

essential isomorphism of O onto O' = v O.

Proof : 1) Suppose first that the essential isomor-

phism $ satisfies the condition of (iii). From §2.4 we

know that ¥, is an essential automorphism of &'
3 hence

d
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algebras which is essential because of the Corollary

of Lemma 2.2 and f = r
$
ot

d
Delong s to *• From (3.8) we

get

f(0) = and Q = ^^±ax
is invertible.

xr^o

We write fq in the form (3- 1) and specialize x - in

lq = q , q = a + T + peO. Hence

< + H +
§p

=
(^ )(0) = ^" la

-

In particular g T
= and a -> g is a bijection. We

j_ a

apply Lemma 3- 1 and obtain

?q = V
y

?
vq

for q e O

and W e GL(V), v e. V- Hence $q = v ^
b

?
vq

and

r, = (W°t,°t ) ,. where b = W d according to (1.11)

So (iii) is proved.

2) Now let $ : O *• O 7

be an arbitrary essential

isomorphism. The Corollary of Lemma 2. 2 shows again

that $ = § y is essential and r~ = t -r, belongs to
-c i c §

b

it. We choose c,d t V such that d is in the domain

of definition of r? and that (3- 8) is satisfied for r^.

Part (i) of the proof yields (3-6) and (3.7).

3) Since the functions W. t, and t are birational
b v

we obtain the statement of part b) from Lemma 2.2 and

Theorem 2.1.

Using the definition of v
f

in \\.5 we obtain the
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COROLLARY . If. $ : O -» O' is an essential isomor -

phism , then there exists a (uniquely determined ) f e P(V)

such that $ = Vj-. Moreover f = W° t, °t °t in the
r b v c

notation of (3-6).

§4- The group of essential automorphisms .

1. Let 0=V+I+Vbea binary Lie algebra and

denote by T(O) the group of W e GL(V) satisfying v„£i = O.

Obviously, W e F(O) is equivalent to

vTTX = WXW
_1

= X and vIT v" = V.
w W

In particular, a- I, ^ a e K, belongs to T(O). One

can show that T(O) is a linear algebraic group defined

over K.

Denote by Aut O the subgroup of the automorphism

group Aut O of O that is generated by the automorphsims

(4.1) V for W 6 F(O), Y
b

for b e V, Y for v e V

(see §1.6 and Theorem 2.3).

THEOREM 4. 1 . Let O = V + X + V be a binary Lie

algebra . Then :

a) The set of essential automorphisms of O

coincides with the group Aut O, which is Zariski-open

in Aut O.

b) Each $ in Aut >c& can be written as
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$ = vT7 *. ? Y , where W e r(C), b,c e V, v e V,
W D V C

and the rational function belonging to § is given by

r, = (W°t, ot °t )~
.

$ b v c

c) i ->• r -i gives a monomorphism of Aut"0 into P(V).

Proof: The generators (4. 1) are essential auto-

morphisms of O and the rational functions belonging to

them are birational. Using Lemma 2.2 we see that Aut"C

consists only of essential automorphisms. Conversely,

each essential automorphism of O belongs to Aut"£>

because of Theorem 3. 3- Since an automorphism $ is

essential if and only if det H
$
(x) ^ (see §2.2), the

set of essential automorphisms turns out to be a

Zariski open subset of Aut O. So parts a) and b)

are proved.

From Lemma 2.2 we get r. '*
= r*° r s ' • Hence we

need only prove that $ -> r. is an injection. Consider

$ e Aut*0 such that r^ = I. From (2.4) it follows

that Hx (x) = I and consequently $1 = I. Applying Theor

3.2 we obtain I = VT1 for some W e GL(V). Hence r, = W

and W = I.

2. Sometimes it is useful to consider the image

(O) of Auf'O under the injection

(4.2) $ • r _-. . I € Aut"C.
§

L

i.e.. the set

em

1



I, §4 29

S(Q) = [r, ; $ e Aut*0}

Part c) of Theorem 4.1 shows that 2(D) is a subgroup of

P(V) and (4. 2) turns out to be an isomorphism of Aut'vO

onto H(O). Comparing $q = q for f - r
$

and the defini-

tion of v.p (see §1.5) we see

(4.3) v
f

= i"
1

» f = r
4

.

Hence

v : H(O) -» Aut Oj f -* v
f ,

is the inverse map to (4.2).

In case $ equals v , f, , or ? i the function r
$

belonging to $ equals W , ^v,)
= t

-h'
or ^v^

= t-v J

respectively. Hence the group H(O) is generated by the

birational mappings

(4.4) w e r(O), t
b

for beV, t for v e V.

Moreover from part b) of Theorem 4.1, we know that

each f in ^(O) can be written as

(4.5) f = W°t,°t °t where W £ T(&) , b,c e V, v e V-v b v c

Using the chain rule together with part a) of Theorem

2. 3 we get

(4.6) 2|&1 = w[B
v
(x+c)]

_1
.

As a first application we prove a lemma that is trivial
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in the case of characteristic zero.

LEMMA 4.2 . Let f and g be in S ( O) . Then d
f *

»
x '

= 8\x / if and only if there exists an element a e V
gx z

such that f = t og.
a °

Proof: We set h = fog and we obtain —5-*

—

*- = Ito ox

using the chain rule. Therefore it is enough to prove the

statement in the case g = I. Writing f = Wot ot ot weto b b v c

obtain W = B (x+c) from (4-6) . So x = -c leads to W = I

and to B (x) = I. From (2.7) we get v(x,a) = for a e V

and hence v = and f = t, , .

b+c

Clearly f - t.g implies M&1 = %^
3. ox ox

Remark . From (4-5) we obtain a decomposition

H(Q) = r(0)oEoEoE

where E = [t ;aeV} and E = [t ;veV} are abelian subgroups

of S(O). From (1.9) and part d) of Theorem 2.3 we get

r(0)o£ = E°T(0) as well as E(S)c ? = EoE(O). This de-

composition induces an equivalence relation on the set

V: For u,v e V we define u~v whenever t € r(0)cEot C E.
u v

In particular u~v and WeE(O) implies v u~v v.
W W

Moreover from (4.6)



I, §4 31

turns out to be a polynomial whenever f e 2(0). Denote

by Df the set of a e V such that uu
f
(a) f 0. Further-

more the chain rule yields

(4.7) wgof (x) = w
g
(f(x)) a)

f
(x) for f,g e H(O).

Writing f r
$

e H(O) the formulas (2.3) and (2.4)

lead to

f(x) = m&L (§D(x).

$1 belongs to O and consequently $1 is a polynomial.

Therefore we get: For f e H(O) we have D
f
c Dom f.

3- Note that a representation (4.5) is not unique.

But setting

H° = a°(0) - Cf ; f e H(o), uu
f(0) f 0},

we get the

THEOREM 4.

3

. Let O be a binary Lie algebra . Then

a) The elements of 2 (o) are exactly the functions

(4.8) f = Woyt , where W e r(0) J b e V, v e V,

and this representation is unique .

b) The image of H (O) under the map f -» v
f

is

Zariski-open in Aut"C

Proof : a) From B (0) = I and from (4. 6) we conclude

that any f given in (4.8) belongs to H (O). Conversely,
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let f e H°(0). Hence is in Dom f. Put d = f(0)

and use (4.7) for g = f~ in order to get uu (d) t 0.

Hence d is in Dom g. Choose $ e Aut*0 such that

f = (r
$

)

_1
= r x , i.e., g = r

§
. Hence d is in Dom r

$

and we get r
ffi
(d) = f~ (d) = as well as uu (d) ^ 0.

This is exactly the condition (3- 8), so Theorem 3-3

implies f = (r,)~ = W° t,° t , where W e GL(V), b e V

and v e V. Consequently W e F(O) and (4. 8) is proved.

Because of (1.9) and part c) of Theorem 2.3, to

prove uniqueness we need only consider the equation

Wot,°t = I. From t (0) = we get b = and then
b v v °

B (x) = W using (4.6). The definition (2.8) yields

x = Ix = x - v(x). Hence v = and W = I.

b) For f = r x , § e Aut"D, the equation (2.4)

leads to uu
f
(x) = det H

$
(x) and the proof is complete.

COROLLARY 1 - Let a e V and v e V. If det B (a) ^

then B (a) belongs to F(O).

Proof: We put f ~ t ° t and obtain x r (x) = det B (x+a)r v a f
/ v

from part a) of Theorem 2. 3- Hence uu-(0) ^ and conse-

quently f € 3 (O). Part a) of the theorem yields t °t
V 3.

= f = W°t°t for some W e T(C), b e V and u e V. The

equation (4.6) yields B (x+a) = B (x)W and x = leads

to B (a) = W e T(C). In view of (4.6) we obtain the

COROLLARY 2 . Suppose that a is in D
f

for some

af(x)
f e 3(0). Then

dx
belongs to r ( C)

x-^a
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§5- The case n = 1 .

As an illustration we consider the case that

V = K is the one dimensional vector space over K.

Hence the generic element x is an indeterminate over

K. Denote by 3DL the group of invertible two-by-two

matrices over K and set

*M<*> "^ »h«e M -
(y !)

e a»
2

.

Then M -» fM defines an epimorphism of 3JL onto 1P(K)

having the kernel (otl; f aeK} where I denotes the

unit matrix of SDL.

The Lie algebra Rat K is given by the vector space

K(x) of rational functions together with the product

[h,k] = h'k-hk'j where h' denotes the derivative of h.

The only subalgebras of Pol K that contain V = K are

K, {a+bx;a,beK} , and the binary Lie algebra

2
= *p = [q; q(x) = a+bx+cx ; a,b,c e K}.

In fact, O is (up to isomorphisms) the split three-

dimensional simple Lie algebra. We see that r(O)

coincides with the mulitplicative group of non-zero

elements of K.

A verification shows h e O whenever q e O and

f e P(K). Hence f ->• v
f
maps P(K) into Aut a We

observe further that each automorphism of O is essential.

According to Theorem 3-3 it follows that V : P(K) -> Aut O

is an isomorphism of the groups . In particular we
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get Aut*C = Aut O and H(o) = P(K) (see §4.2).

Finally let us consider the generators of the

group S(O) = P(K) according to §4.2. At first we have

Wx = wXj / w e K, and t (x) = x+a, a e K. In order

~ 2
to describe t where v(x) = bx . b e K, we observe

v

according to (2.7) and to (2.8)

B (x) = (1-bx)
2

and t (x) = x(l-bx)" 1
.

v V

Indeed we obtain the usual set of generators of P(K).
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Chapter II

THE CONCEPT OF SYMMETRIC LIE ALGEBRAS

§1. Symmetric Lie algebras .

1. A pair (O, ®) is called a symmetric Lie algebra if

(i) Q=V+2+V is a binary Lie algebra,

(ii) 9 is an automorphism of O of period 2 such

that ©V = V.

2From © = Id we get ©V = V • In order to prove

(1.1) 03: = X and ©I - - I

we put ©I = a + S + p • But [I,b] = b implies [a,@b] =

for beV and hence a = 0. From (I; 1.3) we get [I, ©I] =

- p and - ©p = ©[I, ©I] = [©1,1] = p yields p = 0. Next

©v = 9[v,I] = [©v,S] for veV leads to [S,b] = - b for

beV and hence to S = - I. Since I is in the center of

I we obtain 32 c Z from (I; 1.3). The elements of a

symmetric Lie algebra (£>,©) we write as q = a + T + ©b,

where a,b e V and Tel.

For a symmetric Lie algebra we are able to express

the automorphisms HL, of O by © and the automorphisms ¥, •

LEMMA 1.1 . For beV we have ¥«. = ©Y, ©.

Proof : From (I; 1.10) we observe that



36 II,

U

la = a, ¥,I = - b + I, where a,b 6 V.
b b

Consider the automorphism $ := ®¥@t® °^ ° ' Since

¥,-,, is the identity on V and since ¥
:

, I = I + 3b

holds, we observe

ia = a, $1 = - b + I.

In particular I is essential. In I, J2.3 we have seen

that an essential automorphism is uniquely determined

by the images $1 and §a for a e V. Hence $ = ¥,.

2. The automorphism 8 induces involutions,

i.e., involutorial anti-automorphisms, of the groups

F(G) and 2(D). First we show

LEMMA 1.2 . Let ( O, ©) be a symmetric Lie algebra .

Then there exists an involution W • W of ^(C) such

that

a) vTT © v „ = © for all We r (£).W W
-

b

)

F ( O) acts as a group of inner automorphisms

on the Lie algebra X. moreover

(WTW"
L

) = W*
_1

( T)W* for T < I and W e F(C).

Proof : Consider the automorphism § = ~c
T
c of C

w

Using v
w
I = I we get $1 = I. Hence I. Theorem 3-2.

can be applied- There is a W~ GL(V) such that

•tt
=

$ = v _ -,
• Since $ is an automorphism of C

W

we get W~
, P(C). Passing to the inverse we see that
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# #
V . 9 VTI s @ and consequently (W ) = W. The statement
W# W

b) follows by applying a) on the elements of X.

Nov/ we can extend the map W * W to the group

H(O) of birational mappings.

THEOREM 1.3 - Let (O, ©) be a symmetric Lie algebra .

#Then there exists an involution § -> $ ' of Aut^O and

f •* f of_ H ( D) , respectively , such that

a) §©$* = 9 for $ e Aut*D,

b) v
f
©v . = © and (v

f
)* = v „ for f e H(O).

Proof : Since V : H(O) -> Aut"£ is an isomorphism,

it is enough to prove part a). Let $ be in Aut"£, then

§ = vTT Y ?-, Y , where W e r(O), a,b,c e V, becauseWadbe N ' *

of part b) in I, Theorem 4. 1. Using Lemma 1. 1 we

observe that

©$© = @VTT Y 8 Y,© Y ©
W a b c

= v"^(©Y ©)Y,(@Y ©) e Aut*a
wf a b c

Hence $ * (®§0) turns out to be an involution of O.

# -1
Now the statement follows by setting $ = (®§0)

Using the theorem we calculate

(1.2) (V
h
)* = Y_^

b
and (t.) = t_

£b
for b e V.

3- Now we are going to prove some basic relations

and identities. Let (£, ©) be a symmetric Lie algebra,
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O = V + I + V. For a,b £ V we put

B(a,b) = B-(a,b) = B
@b

(a)<

Hence B(a,b) is a polynomial in a and b which is

defined for all a,b in any scalar extension of V,

because it is a polynomial of degree < 2 in a and in b

and because the characteristic of K is not 2. From

(I;2.10) we get B(-a,-b) = B(a,b).

From (I;2.8) it follows then that

t
@b

(x) = [B(x,b)]
-1

[x-(eb)(x)], b e v;

and part d) of I, Theorem 2.3, implies

W°t
0b

= t
Q

oWj where W e T(O) and c = W b.

From (I;4.5) we see that f e H(£t) can be written as

(1.3) f = W°t
a
°t

Qb
°t , where W € r(£t) and a,b,c € V.

Moreover (I;4. 6) yields

(1-4) m& = W[B(x+c,b)]
_1

.

This formula remains valid in any scalar extension for

which x is generic.

LEMMA 1.4 . Let a and b be in some scalar extension

L V of V. such that det B(a,b) £ 0. Then

a) B(a.b) 6 r(L--Q) and [B(a,b)]* - B(b.a).

b } *@b°
t
a

= W° t
c° Vd '

where w =
[
B (a

. b ) ]

-1
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c = a- (0b) (a), and d - t
@

(b)

c) B(x+a,b) - B(x,t
@a

(b)) B(a,b).

d) B(Wa,b) = WB(a,W*b)W for W e r(L®0).

Proof : It suffices to prove the lemma in the case

that a,b are generically independent elements of some

scalar extension Lg>V and that x is still generic over L.

We put f = t,-,, t and obtain ov(x) = det B(x+a,b)

from (1-4) and part a) of I, Theorem 2.3- Hence

^f(O) f and consequently f e H (L5JO). Part a) of

I, Theorem 4.3, yields

(1-5) L<>t = w° t »Lv ' ®b a c ®d

for some W e F(LSO) and c,d e L®V. Passing from f to

f we obtain

(1. 6) t rs Ot . = t ,0t Q OW*.
v ' -@a -b -d -0c

Using (1-4) twice we conclude

(1.7) B(x+a,b)W = B(x,d), W #B(x-b,-a) = B(W#x,-c).

Choosing x = we obtain

W = [B(a,b)]
_1

and W* = [B(b,a)]
_1

.

So part a) is proved. Substituting x = in (1.6)

and using (I;2.10) we get d = t -, (b). Moreover x =

in (1.5) leads to Wc = t , (a), i.e., c = a-(~b)(a)

according to (I;2.8). So part b) is proved. Now part
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c) follows from (1.7).

In order to prove part d) we apply (I;2.11)

and get B(Wa,b)W = WB(a,c) where u = ®b, v = ©c and

-1 #
u = vTTv. Hence c = 9vI7 &b = v „b = W b.

According to (1.4) and part a) of the lemma,

E e H(O) the en<

r(KVs) and we have

for f 6 H(O) the endomorphism —r^—*- belongs to

m) (

Sf(x) l \

I ^ uJ
=

f

5f(x)

x-> a v x— a
for a € Dom f.

§2. The group 5(Q, Q) .

1. Again let (&,©) be a symmetric Lie algebra,

= V + X + V, and let f -* f* be the involution of

S(C) induced by © according to Theorem 1.3- We consider

the group

3(0,0) = [f;fe3(0), f*°f=l} = [f,fe3(o), v
f
©=2v

f
}.

Clearly f -> f ' maps this group onto itself. Further-

more, let

r(o,e) = H(oJ ®)nr(o) = [w;Wer(o), w #
w=i}.

Next we define the subset

D(£,©) = [a;aeV, there exists WeT(O) such that B(a . -a)=W
i
W}

of V. Clearly belongs to it and a e 0(0,?) implies

Wa -. D(T;, !

) for W r(C, S) because of part d) of
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Lemma 1.4. For a e D(£t, ®) we choose W o e T(O) (not
3.

canonically) such that

B(a,-a) = wf W .

a a

Obviously W is uniquely determined up to a left-

factor out of r(O,0). We may choose W = I, W = W .

Moreover, a e Dom t ,-, for a £ D(&, ®). Hence the' -8a v j /

element

a = W
a

t_
@a

(a), a e D(a,0),

of V can be defined. Finally we put

s = t~°W B tfl , a e D(O,0),
a a a @a N '

'

and we obtain an element of the subset a (O) of H(O).

Clearly, -a e Dom s so s (-a) = and s (0) = a. More-
3. 3 3.

over, -s (x) = s (-x).
' a v ' -a v '

2. We show that f e H(0,©)nH°(o) is equivalent

to f = W°s where W e r(O,0) and a e D(0, e).
a —"~"~-^—

According to I, Theorem 4.3, part a), the elements

of a (D) are exactly the functions

f = Wot,°L for a,b e V and W e r(O)
b e)a

Using (1-2) we observe

f*"
1 - »H.Ln .

©b a

Hence f of = I is equivalent to
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(2.1) W#w°V^a =
^bot

a-

Using (1.4) we get

(2.2) B(x,a) - B(x+a,b)W
#
W.

Conversely suppose that (2.2) is satisfied. Hence

M^M . „H [B(rtjb)] -i . w[B(x , a)]
-i . 2|i*l

#-1
and I, Lemma 4.2, yields f = t of for some c e V.> > j c

~ #-1 ~ ~
Therefore f - tm of = tfl °t °f and we get tr,

= t
©c ©c c & 9c -c

from which we obtain c = 0. Hence (2.2) is equivalent

to f*of = i, f = Wotuotn •— b @a

In particular,

s = UoW oL
o "WotoL , b = W"

1
a = t - (a) ,

a a a (sa a b ca a --a

belongs to H (£l,@) whenever

B(x,a) = B(x+a,t__ (a))B(a,-a)

holds. But we get this identity by replacing a by -a,

b by a and x by x+a in part c) of Lemma 1.4. So we

proved s e 3 (C, 9)0-° (£)

.

Now in the notation above let f be in ~ (£.,?)

.

Substituting x = -a in (2.2) we get a t D(£. -) and

doing the same in (2.1) we get W*W(b+t r (-a)) = 0,

i.e., b = t_
@a (a) = W~ a. Using (I; 1.9) we observe

that f - W
1
°s

a
. W

x
e T(O). But we know already that

. <-. 4
s
a

satisfies s
a

o s
a

= I, so W-, e T(C, ?).
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3- Suppose that x and y are generically indepen-

dent elements of a scalar extension of V. Let G be

the group of f e H(O) satisfying the differential

equation

(2.3) B(f(x),-f(y)) = ^1 B (x,-y) (-^-j
#

.

We prove first , that s e G for a 6 D(0, @).

For the proof we rewrite part c) of Lemma 1.4

as follows

(2.4) B(t
a
(x),y) = B(x,t@

a
(y))B(a,y)

Applying the involution * and interchanging x and y

we get

(2.4') B(t@ (x),y) = [B(x,a)]
_1

B(x,t
a (y))

Because of 2 we have

s = UoW Ota = S'
x

= t„^W ff °t
a a a ^a a Ud a i

and hence using (2.4)

B(s
a
(x),-s

a (y))
= B(s

a
(x),-s

a

_1
(y))

= B(W
a
ot

3a
(x),W

a

_1
t_

a
(-y))W

aQ(y)

where Q(y) does not depend on x. Now part d) of Lemma

1.4 and (2.4') yields

,(s
a
(x),-s

a (y))
= W

a
B(t

@a (x),t_a (-y))Q(y)
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= W
a
[B(x,a)]

-1
B(x,-y)Q(y)

Using f = s
Q
we have

B(f(x),-f(y)) = 2|Jfel B(x,-y)Q(y).

Applying # and interchanging x and y we get

B(f(x) J -f(y))= [Q(x)]* B (x,-y)(^i)' .

Specializing x ^> -a we have f (0) = 0,

(Mfel) -vf-M)]-1 .**- 1

N ' x-> - a

# #-1
and therefore we obtain I = [Q(y)] B(a,y)W and

this means that Q(y) = PffiM * Hence s e G.
a

4. As in 1,54.2, we denote by Df the set of

a e V such that uu
f
(a) ^ 0; we know D

f
c Dom f. We

introduce now the condition

(A) D(0,©)nD
f

+ for all f e H(O),

which is certainly satisfied, if D(0, ®) meets all the

Zarski-open subsets of V.

THEOREM 2.1 . Let (£, 8) be a symmetric Lie algebra

Q = V + £ + V, and suppose that (A) is satisfied . Then

for f e H ( O) the following conditions are equivalent :

a) f*°f = I, i. e. , f e E(£J,©).
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b) B(f(x),-f(y)) « .3§Jfel B(x ,_ y) (l|IlI)
#

s

where x and y are generically independent .

c) f = W°s os, , where W e I*(0,8) and a,b 6 D(D,@)
3 D

In this case f = W e r(O,0) if and only if

e D
f

and f (0) = 0.

COROLLARY . If f e H(0,@)nH°(D) then f = Wo s

where W e r(£l,©) and a e D(0, ©) and this representation

is unique.

Proof : a) => c) : Let f of = I, then by (A) there

- 1 #exists a e D(£t,®)fiD.e« Forming g = f°s_ we get g'°g = I

because of 2 and e D • Applying 2 we have g = Wo s, ,

where W e r(0, ®) and b e D (£>,©). So c) is proved.

b) =» c): Again by (A) there exists a e D(O,0)riD
f

.

Specializing x»a and y^a in (2. 3) we get

B(f(a),-f(a)) = W B(a,-a)W# , W = -^1

Hence b = -f(a) e D(£, ©). Forming g = s, of we see that

g satisfies (2.3) because of 3 and g(a) = 0. Specializ-

ing x—a and y^a in (2.3) we get a e D(0,®) and

h = go s = s,c f o s satisfies h(0) = and (2.3).

Specializing y-'O in (2.3) we see that —r^

—

*- does not

depend on x. Hence h = t W by I, Lemma 4.2, and

h(0) = yields h = W- Again (2.3) leads to W « r(S,®),
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So c) and in addition the last statement of the

theorem are proved.

The conclusions c) =» b) and b) =» a) follow from

2 and 3-

§3- Constructions of symmetric Lie algebras .

1. A bilinear map (a,b) -» aob of VxV into End V is

called a pairing of V. Let X = X be the subspace of End V

spanned by a^b for all a,b e V. The symmetric bilinear

form a = a Q of V is given by

• a(a,b) = trace (anb+bna).

We call a the trace form of the pairing n. Suppose

that

(P. 1) a is non degenerate.

Then by T* we denote the adjoint endomorphism of

T e End V with respect to j. Denote by [T,S] = TS - ST

the commutator product in End V. We assume that in

addition the following conditions hold:

(P. 2) (anb)c = (cab) a for a,b, c £ V.

(P. 3) [T.aab] = Tanb - aQT*b for a,b 6 V and T 6 X

(P. 4) (acb)* = bna for a,b t V.
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From (P. 3) we observe that X turns out to be a Lie

algebra of endomorphisms of V, for which T -> -T*

is an automorphism of period 2. According to (P-4)

we get a(a,b) = 2 trace adt>.

Using (P- 2) and (P-4) we observe that a((anb)c,,d)

= a((cnb)a,d) = a(a, (bnc)d) = o((cQd)a J b). Hence by

linear extension of

az (T,S)
- a(Tc,d) = a(Sa,b) for T=anb, S=cnd,

we may define the symmetric bilinear form a~ of X, which

is also non degenerate. A verification shows that a~

is an associative bilinear form of X satisfying

(3.1) az (T*,S)
= cx (T,S*) for T,S e X.

LEMMA 3.1 . The identity I belongs to X and

trace T = %a^(TM) for T e X.

Proof : Since ct~ is a non degenerate bilinear form

of the vector space X, to the linear form trace T

there corresponds J e X such that trace T = a~.(T,J).

From trace T* = trace T together with (3- 1) we observe

J* = J. For T = ad) it follows that

a(a,b) = trace (aQb+baa) = a^CJ^aob+bna) = 2a(Ja,b).

Hence 2J = I e X.

2. Let Xjy,z be generically independent elements

of some scalar extension of V. We define endomorphisms
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P(x,y) and P(x) of a suitable scalar extension by

(3.2) P(x,y)z = %(xDz)y and P(x) = P(x,x), respectively.

Because of (P. 2) the endomorphism P(x,y) is symmetric

and linear in x and y. Moreover

P(x+y) = P(x) + 2P(x,y) + P(y).

Let a e V be such that P(x)a = 0, hence (xoa)x =

and by linearizing we get (xDa)y = and hence

boa = for all b e V. By (P. 4) we observe aob =

and consequently a(a,b) = for all b e V. So we

proved that

(3-3) P(x)a = 0, a £ V.. implies a = 0.

Note that nevertheless the determinant of P(x) can be

the zero function.

Replacing a by x and b by y in (P. 3) and applying

the result on x we get T(xDy)x- (xny )Tx = (Txny)x- (xnT*y)x

and consequently

(3.4) 2P(x,Tx) = TP(x)+P(x)T* for T e X.

By using (P. 2) and (P. 4) in scalar extensions of

V we observe that

-(P(x)a,b) = r((xna )x,b) = j(x, (aPx)b) = j(x, (bax)a)

= j((xnb)x,a) = -(a.P(x)b)

and consequently P(x) is self-adjoint with respect to -.
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3- Next we consider for a given pairing

: VXV -* End V the direct sum of vector spaces

q = 2 = £ © V © V
D

and we write the elements of S as u = T©a©b where T e 2

and a,b e V. By

(3.5) 3U (X ) = -a + Tx + P(x)b

we obtain a linear injection u -> q of Q into the sub-

space y = \+\+^2 of Po1 V- We aSain identify 2 with

the space [Tx;t e I] of linear functions and put

V = Vn = {P(x)b;beV}.

Hence the image of Q under the map u •» q is given by

0=0 - V + 2 + V.

It follows from (3- 3) that b -> P(x)b is a linear

bisection of V onto V.

THEOREM 3-2 . Suppose that the pairing a : VxV -> End V

satisfies the conditions (P. 1) to (P. 4). Then O = Oq

turns out to be a binary Lie algebra , for which in

addition Z = [V,V] holds .

Proof : We have to prove that the conditions

(B. 1) to (B.5) of I, §2,1, are fulfilled. (B. 1) is

clear because 2 is a Lie algebra of endomorphisms of V.

(B.5) follows from Lemma 3.1. Let p(x) = P(x)b and
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q(x) ~ P(x)c be elements of V. For a e V we observe

that

[p,a](x) = 2p(x,a) = 2P(x,a)b - 2(anb)x,

hence [p,a] = aDb e Z and (B.2) is proved.

For T € X we obtain

[p,T](x) = 2p(x,Tx)-Tp(x) = [2P(x,Tx)-TP(x)]b = P(x)T*b

by using (3.4). Hence [p,T] e V and (B. 3) is proved.

Finally we have

fc[p,q](x) = p(x,q(x))-q(x,p(x)) = P(x, P(x)c )b-P(x,, P(x)b) c

We apply (P. 3) for T = and on a and obtain

2P(a,P(a)b)d-P(a,P(a)d)b = P(a)P(b J d)a.

Since the right side is symmetric in b^d we observe

3P(a,P(a)b)d = 3P(a,P(a)d)b. Hence [p,q] = and the

theorem is proved.

We apply Meyberg's Theorem (I, §2.7) to this case.

For v(x) = -P(x)c we obtain [[a,v],b] = 2[P(x,a)c,b]

= 2P(a,b)c = (adc)b and hence we have

THEOREM 3. 3 - Suppose that the pairing

d : VxV -* End V satisfies the conditions (P. 1) to (P. 4).

Then for any given c e V the product (a,b) -> P(a,b)c

defines a Jordan algebra in V.

Using the bisection u * q of 2 onto Q we lift

the product of Q to Q. Hence 2 turns out to be a Lie
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algebra with respect to product u = [u-,,u~] = T©a©b,

u. = T.©a.@b., that is given by1111 & y

(3.6)

T = [T,,T
2 ] + a

1
ab

2
" a

2
Db

i>

a = T-
L
a
2

- T
2
ap b = Tp^l - T'/b

2

Algebras of this type are considered in [ 8 ] in a more

general set-up.

4. For the given pairing : VxV -> End V we write

r if and only if

r = T
D

= r(0
Q). Remember that W e GL(V) belongs to

WXW_I = X and v TTV = V
W

(see I, §4-1).

LEMMA 3-4 . Let W be in GL(V). Then the following

conditions are equivalent :

a) We ?,

b) P(Wx) = WP(x)W*.

c) W(a^b)W
_1

= Wa-W""
L
b.

Proof : First of all, W -. 7 is equivalent to

W(a=b)W
_1

e X and WP(W
_1

x)b = P(x)Wb

for a,b a V, when W is some endomorphism of V. The

second condition means WP(x) = P(Wx)W and this is

equivalent to
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(3.7) W(aDb)W~ - WaOUTb for a,b e V.

Hence (3.7) is equivalent to W e T. Going over to the

trace in (3-7) we get a(a,b) = cr(Wa,Wb) and consequently

W = W* .

5. We define a bisection 8 of O = 3 by setting

(®q)(x) = -b-T*x-P(x)a where q(x) = a+Tx+P(x)b.

2 ~
Hence ® = Id and ©V = V, ®2 = 2. A verification shows

that ® is an automorphism of the Lie algebra and

(Q,®) turns out to be a symmetric Lie algebra . In

particular one has

©T = -T*, [a,@b] = aob.

Again we write q = a + T + ©b for the elements in C

The symmetric Lie algebra (£>,©) induces an

involution W -* W of F according to Lemma 1.2. In

order to prove

W# = W'

we apply V ®V „ = © to a e V and observe that
W

- 1 #
WP(W x)W a = P(x)a. Hence the statement follows

from Lemma 3.4.

Using the abbreviation given in §1.3 we are goinj

to prove

(3.8) B(a.b) = B,,(a) = I + acb + P(a)P(b).



II, §3 53

We put T = [8b,a] = -anb and get

[®b,[®b,a]] = [3b, T] = ®[b,®T] = ®[T*,b] = ®(T*b)

where T*b = -(baa)b = -2P(b)a. Using the definition

(I;2.7) we observe that [B
@b

(x)]a = a+(aDb)x+P(x)P(b)a

= [I-bcnb+P(x)P(b)]a, hence (3-8) is proved.

From Lemma 1.4 we obtain

B(a,b) e T if det B(a,b) ±

and hence Lemma 3.4 yields

(3.9) P(B(a,b)x) = B(a,b)P(x)B(b,a) , a,b e V-

In part c) of Lemma 1.4 we compare the terms that

are of degree two in x and observe that P(x)P(b)

= P(x)P(t = (b))B(a,b) whenever det B(a,b) + 0. Now

(3.3) leads to

P(y) = P(t
0a

(y))B(a,y).

But from the definition (I;2.8) and (3-9) it follows

that

P(y+P(y)a) = B(y,a)P(y)

and again comparing the terms of highest degree in y

we end up with

(3.10) P(P(a)y) = P(a)P(y)P(a).

Hence our method is powerful enough to prove non-trivial

identities about the pairings.
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6. We generalize 8 by setting

® = 0v = v Q, whenever JeT and J* = J.

Using the abbreviation

T
J = J T*J, T £ End V,

we have more explicitely

(3.11) @jq = J
_1

b - T
J + ®(Ja), where q = a+T+@b e O

Again 2 is an automorphism of period two satisfying

V = V. Hence for any J e T, J* = J, the pair (O, £ )

is a symmetric Lie algebra . Using I, Theorem 3-2,,

one can easily show that these are the only automor-

phisms of O which lead to a symmetric Lie algebra.

Note that T * -T is an automorphism of the Lie

algebra X. By the same argument that we used in 5,

one shows that the involution of T induced by 0,

# J
is given by W = W .

'4. Killing forms ,

1. Let © be a Lie algebra over K. Denote by

ad u the adjoint representation. For a linear trans-

formation A of © mapping a subspace b of © into itself

we denote by A
b

the restriction of A to b. Let

(u,vL = trace (ad u) (ad v)

denote the Killing; form of © •



II, §4 55

Suppose that there is a direct sum decomposition

© = q + b, [ct,a] c a, [o,b] c b, [b,b] c Q .

Then we prove first

LEMMA 4.

1

. a) The subspaces a and b are ortho -

gonal with respect to the Killing form of ®.

b) For g = a + b, aea, beb,, one has

2 2
(g,g) @

= <a,a>
Q
+ trace (ad a)

b
+ 2 trace (ad b)

b
-

Proof : a) From (ad a) (ad b)a c b and (ad a) (ad b)b

c a it follows that <a,b) = trace (ad a) (ad b) = 0.

b) For ge@ put (ad_jjg) (a+b) = [g,a] and (ad_g)(a+b)

= [g,b]. Hence ad g = ad,g + ad_g. A verification

yields

(4.1) (ad a)
2

= (ad+a)
2+(ad_a) 2

,

(ad b)
2

= (ad+b)(ad_b)+(ad_b)(ad+b).

2
Since fed.a) is zero on b and equals the square of

2
the adjoint representation on o we get trace (ad.a)

2= (a, a) . Moreover, (ad_a) is zero on a and equals

2 2 2
(ad a), on b, hence trace (ad a) = trace (ad a),

.

So we obtain the statement for g = a using (4.1).

2Again from (4. 1) we obtain trace (ad b)

= 2 trace (ad ,b) (ad_b) . But (ad, b) (ad_b) is zero on

2
a and equals (ad b). on b. Hence the lemma is proved.
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2. Now let Q : VxV • End V be again a pairing

satisfying the conditions (P-l) to (P. 4) and let a

be its trace form. We consider the Lie algebra

O = O = V + X + V together with the involution ®.

Let cw be the associative bilinear form of X given

in §3.1- For q = a
v
+ T

v
+ ®b

v
e O we put

a (q 1
,q 2 ) = (^(TpTg) + a(a

1
,b

2
) + aCa^b^.

Clearly a is a symmetric non degenerate bilinear

form of O and a verification shows that an is an

associative bilinear form for O.

LEMMA 4.

2

. The Killing form of the Lie algebra

£ is non degenerate and coincides with j_. In addition

we have

(T,T)j + 2 trace T
2

- ^(T.T) where TeX .

Proof : We apply Lemma 4. 1 to the case © = C,

q = X, b = V+V. Applying

[T,®b] = ®[©T,b] = ®[-T*,b] - -®(T*b)

we calculate for c,d e V

(ad T) (c+@d) = [T,Tc-8(T*b)] = T
2
c + 9(T*

2
b).

Hence

trace (ad T)y+^ - trace (T
2
+T*2 ) = 2 trace T

2
.

Furthermore we have for T = and-c^b
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(ad(a-f^b))
2
(c-HBd) = [a+€b, [a,@d]+[©b,c ] ]

= [a+6b,T]

- -Ta+@T*b = +(aDb)c-(aad)a-H5(-(bnc)b+(bDa)d)

and consequently

2
trace [ad(a+t3b)] ,~ = trace (aab+bna) = a(a,b).

Summing up we get

<q,q> = (T,!)^ + 2 trace T
2 + 2a(a,b) where q = a+T+©b.

Since the Killing form of a Lie algebra is associative^

we obtain an associative bilinear form X by setting

Uqpq 2 )
= ^p^o ~ ao^i jq2^' But x Cq

x ^ q 2 )
= x(t

1
,t

2 )

implies X(T,aoD ) = X(T, [a,8b]) = X(Ta,3b) = 0. So

X = and the lemma is proved.

3. In order to give a sufficient condition for

£ = Cl to be simple we prove first

LEMMA 4-3. A subset ^ of O is an ideal of O

if and only if

v + z + ev, ,o o 1

where V and V. are subspaces of V, X an ideal of X
o 1 c o

such that

XV c V, I V c V , X*V cvp [V,0V ] ex
v v o o o 1 v J o

holds for v = 1,2.

Proof : Let 3 be an ideal of C and let

q = a + T + r
~-b c

. 3- We observe [I,q] - a-Qb e 3

and [I,[I,q]] = a+Vb f 3- Hence T, a and b belong
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to 3 and we have 3 = V
Q
+ X

Q
+ ®Vr A verification

leads now to the conditions listed in the lemma.

THEOREM 4-4 - If 2 acts irreducibly on V then O

is a simple Lie algebra .

Proof : Let 3 be an ideal of . Then 3 = ^ +z +
®^i

according to Lemma 4-3 and we have £V c V . Hence the

V 's are invariant under X. By assumption the only

invariant subspaces of V are and V itself.

The case V = or V-, =0 yields X =0 and hence
o 1 J o

[V,®V ]
= 0. For a € V and b e V we obtain anb =

and hence a(a,b) = 0. That means that V = or

V, = implies V = V, = and hence 3=0.

In the case V = V, = V we get [V,®V] c Z and
o 1 ° o

hence 3 = a-

4- According to the criterion of Killing-Cartan

in case of characteristic zero, any pairing gives

rise to a semi -simple Lie algebra.

As a further application of the lemma we prove

LEMMA 4.5 . An endomorphism T _of V belongs to X

if and only if

2P(Tx,x) = TP(x) + P(x)T*.

Compairing this result with Lemma 3-4 we see that 2

coincides with the Lie algebra belonging to the linear
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algebraic group T = T .

Proof : Because of (3-4) it is enough to consider

a T satisfying the condition above. By linearization

we get [T,aOb] = TaQb - aoT*b and hence [T,X] c Z. On

the other hand for v(x) = P(x)a we get [v,T](x)

= 2P(Tx,x)a - TP(x)a = P(x)T*a e V. Therefore

[T.O] c o and hence q -» [T,q] turns out to be a

derivation of O. But a Lie algebra with non degenerate

Killing form has only inner derivations (see N.Jacobson,

Lie algebras,, page 74). Hence [T,q] = [q ,q] for

some q e 0. Since a binary Lie algebra has center

we end up with T = q and hence T e X.

§5- A characterization of symmetric Lie algebras.

Essential parts of the following results are due

to K. Meyberg and U. Hirzebruch.

1. Let ® be a finite dimensional Lie algebra

over a field K of characteristic different from 2 and

3- Suppose there exists a direct sum decomposition

= i) + q + b

as vector spaces having the composition rules

(1) [t),t,] - t, = [»,&], [$,b] c a, [^b] c b,

[a, a] = [b..b] = 0.
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The elements of ® are in an obvious notation written

as u = h+a+b. Suppose further

(2) The Killing form (u,v) of © is non degenerate.

(3) There exists an automorphism t of © of period 2

satisfying

Tt) = t)
,

TQ = b, Tb = Q.

If a^ pairing : VxV -> End V satisfies the

conditions (P. 1) jto (P. 4) of §3.1, then O = O
q

= V+X+V

together with the automorphism t = defined in §3-5

satisfies the conditions (1) to (3) for fc> = X, a = V

and b = V (see Theorem 3-2 and Lemma 4.2).

2- Suppose now that ® satisfies the conditions

(1) to (3). We are going to prove some propositions:

PROPOSITION 1 . There exists h in the center of b,- o

such that

[h ,a] = a and [h ,b] = -b
o o

for aea, beb

Proof : Using (1), a verification shows that the

map h+a+b -> a-b is a derivation of @. Because of (2)

any derivation of © is inner (see N. Jacobsen [ 6 ],

page 74), hence there exists u e © such that [u ,u]
o L o J

= a-b for u = h+a+b e @. Hence
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[h ,h] =0, a = [h ,a]+[a ,h], -b = [h ,b]+[b ,h].L o o o o o

We observe a = b =0 and the proposition is proved.

PROPOSITION 2 . Let u. = h.+a.+b. e 0. Then
= x ill

one has

(UpiO = (h
1
,h

2
)+<a

1
,b

2
)+<a

2
,b

1
>

and the following implications

<b,a> = =» b = <a,b> = =* a = 0,

[h,a] = =* h - 0, [h,b] = =» h = 0,

where heb,, aea, beb.

Proof : Using Proposition 1, we observe that

(h,a) = (h, [h ,a]> = ([h,h ],a) = and similarly

(h,b) = 0. Furthermore <a-,,a
?

) =
< [h ,aJ,aJ

= -(a,,[h ,a„]> = -(a,,a^), hence (a^aJ = and

similarly we obtain (b,jb«) = 0. So the Killing form

of @ has the form indicated in the statement. From (2)

we obtain the first two implications. Finally suppose

[h,o] = 0. Then = <[h,o],b> = <a,[h,b]> and

[h,b] = 0. Similarly, [h,b] = implies [h,o] = 0.

Next [h,t>] = [h,[a,b]] = [[h,o],b] + [a,[h,b]] =

and h is in the center of ©. But © is centerless

because of (2).

3- Next we put V = a and we write now the elements

of ©as h+a+"b, where he*) and a,b i V. Setting
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a(a,b) = <a, Tb>, a,b e V

we obtain a symmetric bilinear form of V because of

<0u,,0u
?

) = (u-.,u„). By Proposition 2, a is non

degenerate -

For helj we define an endomorphism TV of V by

T, a = [h,a] , a e V.
n

By Proposition 2, h -» T, is a linear injection of ^

into End V. Moreover, a pairing : VxV -» End V is

given by

aDb = Tr , I where a,b e V.

PROPOSITION 3 - The pairing : VxV > End V

satisfies the conditions (P.l) to (P. 4) of §3-1

and a is its trace form - Furthermore , h -* T, defines

an isomorphism of the Lie algebra t) onto the Lie

algebra Z associated with the pairing -

Proof : Since V = q is an abelian subalgebra of @

we observe (P. 2). Then using Lemma 4-1 we have for

a,b e V

<a,Tb> = 2 trace [ad(a+-b) ]?,« .

By a verification, the right side equals trace (anb+bca)

Hence 3 is the Lrace form of the pairing and (P. 1)

is proved. For (P-4) we have
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j(Th
a,Tb) = <[h,a],Tb> = -<a,[h,Tb]>

= -<a,T[Th,b]> = -a(a,T
Th

,b)

and consequently

h Th

Hence (P-4) is satisfied, too. From the definition

of T, we observe
h

T
[h,k]

= tW' h ' k e *

Finally, using the Jacobi identity we get

[T
h
,adb] = [\,T [aJh] ]

= T [hAa}jh]]

= [h,a]nb + an[Th,b]

= T, anb - anijb.
h h

Hence (P. 3) is valid, too.

4. We construct the binary Lie algebra

C
n

= V + 2 + V associated with the pairing : VxV -

End V, where V = ©V and where ® is the automorphism

of £X_ defined in §3. 5- Hence

h + a + Tb -» a + Tu + ©b
h

turns out to be a linear bijection of © onto O .

Now a verification shows that this map is a homomor-

phism of the Lie algebras. Summing up we have
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THEOREM 5-1 - If the Lie algebra @ satisfies the

conditions (1) to (3), then <g is isomorphic to a

symmetric Lie algebra O , where the pairing satisfies

the conditions (P. 1) to,(P-4), and vice versa .

5. For example let Z be a bounded symmetric

domain in a complex vector space. (See S. Helgason

[ 3 ], Chapter VIII, §7.

)

Denote by G the group of biholomorphic mappings

of Z onto itself and denote by ® the complexif ication

of the Lie algebra of G- Then ® considered as a

Lie algebra over R satisfies the conditions (1) to (3).

Hence we get

THEOREM ,5.2 . If Z is a bounded symmetric domain

then @ considered as a real Lie algebra is isomorphic

to a symmetric Lie algebra £ = £l.
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Chapter III

EXAMPLES

§1. Symmetric and skew- symmetric matrices .

1. Let 2K be the vector space over K that consists

of all r by r matrices with entries in K. For e = ±1

denote by V = V the subspace of ae^ such that a = ea,

where a stands for the transpose of a. Hence the

dimension of V equals %r(r+e). Furthermore let GL(r.,K)

be the group of invertible matrices of 2(1 and let e

be the unit matrix of ^ •

r

For ueDOi we define an endomorphism T of V by
r r u J

T x = u x+xu. Hence u -> T is a linear injection of
u u J

2H into End V. Note that this is not true in the case
r

e = -1 and r = 2. A verification shows

(1.1) [T ,T ]
= T

r
> for u,v e fl» .

u v LujVj r

PROPOSITION 1. For ueSQl one has trace T
- r u

= (r+e)trace u.

Proof : Define a linear form X of 301 by X(u)

= trace T • Hence X.(uv) = X(vu) because of (1.1).

Since the bilinear form of IR that is given by

(u,v) -* trace(uv) is non degenerate, there exists an

element ae!Dl such that X(u) = trace (au) and we get

trace(auv) = trace(avu) = trace(uav). Hence au = ua

for ue3J! and consequently a = ae where acK. So we get
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trace T = a trace u. For u = e we find trace T
u

= 2 -dim V and trace e - r, hence a = r+e

.

PROPOSITION 2 . The set {T ;ue2K } of linear transforma -

tions of V acts irreducibly on V.

Proof : We have to show that and V are the only

subspaces of V that are mapped into itself under the

maps x -* u x+xu for ue3JI . Let u be the matrix with 1

at the first entry of the diagonal and zero elsewhere.

Then x- (u x+xu) is obtained from x by replacing the

first row and first column (except the first diagonal

element) by zeros. Now an induction argument completes

the proof.

PROPOSITION -3 - The vector space SCR is spanned by

elements of the form ab where a^b e V.

Proof : Let e = 1. Since 3JI is spanned by the

matrices that have non-zero entries only at the inter-

sections of two rows and the corresponding two columns

it suffices to prove the proposition for 2 by 2 matrices.

But in this case the statement follows from

u 3\ foe y\ [1 0[ , j3

Y 5/ W \0 1

In the case e = -1 a similar argument shows that

it is enough to prove the statement for three by three

matrices, for which again one uses a verification.

There is another type of endomorphisms of V given
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by elements of 3D? . For ue2S define W byJ r r u J

W x = u xu, xeV.

A verification yields

(1.2) W W = W for u,v e 332 .
v u v uv r

1—hp
PROPOSITION 4. For ueDJi one has det W = ±(det u) .

= r u

Proof : Since the field K is infinite it suffices

to prove the statement for u e GL(r^K). But both sides

are (up to a sign) multiplicative, so it is enough to

prove it for a set of generators of the group GL(r,K).

Using the standard generators of GL(r,K) the proof can

be completed.

2. Suppose now that the characteristic of K does

not divide r+e . We define a pairing : VxV -* End V by

(anb)c = ab c + cb a, a,b,c e V-

Let X be the subspace of End V spanned by aob for

a,b 6 V. Clearly the elements of 2 are the endomor-

phism T V7here u is in the vector space spanned by

ab = -ab for a,b e V. Hence by Proposition 3 we get

x = It ;uei« }.
u r

By Proposition 1 the trace form of the pairing o

is given by
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^ (a,b) = (r+e) trace (ab ) for a,b e V.

Hence a is non degenerate and T = T ru xi

Because of the associativity of the matrix product

and the commutativity of the trace of a matrix, one

verifies then that the pairing : VxV -* End V satisfies

our conditions of II, §3.1- We obtain

(1.3) P(a)b = ab
t
a for a,b e V.

and the associated binary Lie algebra O = O consists

of the elements

(1.4) q(x) = a+u x+xu+xb x where a,b e V and ueiOt .

Here the generic element x of V can be chosen as a

matrix x = (t;.), t.. = eT. ., where the T..'s (i<i

if e = 1 and i<j if e = -1) are algebraically indepen-

dent over K. According to II, Theorem 4.4, and to

Proposition 2 the Lie algebra is simple. Clearly

the dimension of O over K equals r(2r+e).

P(a) is an endomorphism of V provided aeV. Com-

paring (1-3) and the definition of W we observe P(a)

= eW , aeV. Hence using Proposition 4 we obtain
3.

(1.5) det P(a) = ±(det a)
r+€

.

Let the automorphism 8 of be defined as in II,

•

3-5-

Hence we get

H@ (x) = -P(x)
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(see I, §2. 2) and from (1.5) it follows that ® is

essential if and only if e = 1 (r>l) or e = -1 (r>3 even)

For u e GL(r,K) we consider the endomorphism W

of V (see 1). It follows from Proposition 4 that W= u

belongs to GL(V). A verification shows that the

adjoint of W with respect to the trace form a equals

W t
- Hence we obtain P(W x) = W P(x)W and according

u

to II, Lemma 3-4, we get

Wu e r(O) for u 6 GL(r,K).

3- We consider now the group H(JO) of birational

functions. From (II;3.8) we know B(a,b) = I+anb+P(a)P(b)

and hence we have

(1.6) B(a,b)c = (e+ab t )c(e+b t
a) where a,b,c e V.

and B(a,b) equals W for u = e+b a. Furthermore

using II, §1.3, we observe

(1.7) £
eb

(x) = X ( e+Gbx )

-1 = (e+exb)
-1

x.

In order to describe the group 3(0) we define a 2r

by 2r matrix Q by

-ee

and we denote by Q = Q . the group of 2r by 2r matrixes

M satisfying the condition

(1. 8) MtQM = Q.



70 III,§1

Note that Mt eQ whenever MeQ. Writing

/. b\

M - , where a,b,c,d are rxr matrices,,
\c d)

a verification shows that MeQ is equivalent to

(1.9) a
C
c = ec^, b

t
d = €d

C
b, a

td-ec t
b = e.

From (1.8) it follows that the inverse of M is given

by M = -eQM
1

^., hence

»-'(*', -f)
\-ec a /

Next let Q* denote the set of MeQ such that the

rminants of cx+d and of -ec x+a ai

polynomials in x. Hence we can define

determinants of cx+d and of -ec x+a are not the zero

-1 a b

fM (x) = (ax+b)(cx+d)
L
where M = e Q*.

From (1.9) we observe

(1.10) [fM
(x)] C

= e.fM(x) and —~~ = Wu where u=(cx+d) \

Moreover, for N = M the function f^ is also defined

and one verifies f , ,o f ,, = f ,,o f., = I. Hence f,, belongs toM N N M M &

the group P(V) of birational functions . A verification

yields now f^p fM = f„ M where M, and M~ are in Q*.

According to (1.4) we write the elements of O as

q(x) = q-. + q2X + xq2 + xq„x where q-,,q^ e V and q ?t -0i .
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In the notation of (I; 1.4) we obtain

(1. 11) q = u q-,11 + u q 2
v + ev q~u + ev q^v, f = f ,

where u = cx+d and v = ax+b. From (1. 10) one concludes

that q is in D whenever qeO. Since the same is true

for f instead of f, the map q -> q is a bijection of

D According to I, §1.5, we obtain an automorphism

v
r of fl whenever f = f„, MeQ*. One concludes from
f — — M *

(1. 11) or from I, Theorem 2. 1, that v~ is essential .

Then from I,§4. 2, it follows that f belongs to the group

3(D). So we proved fM € 3(D) whenever MeQ*.

4. Let MeQ* and suppose that fM equals an element

W in r(O). We get ax+b = (Wx) (cx+d) and this is equival-

ent to b = 0, (Wx)d = ax, (Wx)(cx) = 0. Then from

(1.9) it follows a d = e and hence Wx = axa as well

as c = 0. So for MeQ* we see that fM e F(D) is

equivalent to

/«* o \

M =
I J for some u e GL(r,K).
\0 u"

1

/

i.e., to fM = W Denote by T (D) the subgroup of

r(D) consisting of the elements W where u e GL(r,K).

Hence f„ e r(D) implies f„ € T (D). Finally denote by

3*(D) the subgroup of 3(D) consisting of the functions

f e 3(D) such that

3f(x)
ax

€ r (D)

x>d
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whenever d is in the domain of definition of f. From

(1. 10) we obtain that fM e -*(£) whenever Me^*. Writing

f = Wo t o tn, o t where W £ r(O), a,b,c e V
a "ib c

(see I, §4. 2) we obtain

^I^^WtBCx+cb)]" 1

from (I;4-6). In view of (1.6) we see that f belongs

to H*(o) if and only if W e F (O). Using (1.7) we

observe

K ° \W if M = J.
u"

1
•

fw = S t. if M =

t™ if M
CD

\0 e

/e 0^

\
e:b e

,

and in each case M belongs to Q*. Hence for f s 3*(0)

there exists a M G* such that f = flr .

M

Summing up we proved:

(i) The elements of * (Z) are exactly the functions

(ii)

f N , where M/F".
M

Q * is a subgroup of Q and M - f defines an

epimorphism of the groups having the kernel

la(g °); j& a.K}.

(iii) ']" can be generated by the matrici
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u
fc

u"
1

where u e GL(r,K) and a,b e V-

(iv) Each element in S(O) can be written as Wo

f

M

where W e T(O) and MeQ*. Here W can be

chosen in a given set of representatives of

r(O) modulo r (O).

5- We consider now the case e = 1. Then the

group Q coincides with the symplectic group Sp(r,K).

One can show that in this case Q
-

* equals Q. One has

only to prove that det(cx+d) is not the zero polynomial

a b
whenever M = ( ,) e Q. Since c can be replaced by

ucv and d by udv where u,v e GL(r^K) one can choose

c in a normal form and then det(cx+d) ^ follows from

(1.9). For more details see C. L . Siegel [15] .

PROPOSITION 5 - For W e T(O) there exists aeK and

u e GL(r,K) such that W = a-W •
v u

Proof : Assume first that K is algebraically

closed. Since any invertible symmetric matrix a can

be written as a = u u, u e GL(r.,K), it suffices to

prove the statement for W e r(Q) such that We = e.

Let e., i = \,2,... } x, be the diagonal matrices having

non zero elements only at the i row. Then given a

2
symmetric matrix a satisfying a = a f there exists

u e GL(r,K) such that u au = e, + • •
• + e for some s
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and such that u u = e. Hence we may assume that

We. = e. for i = \,2,...,r. Now a verification yields

W = I and we proved that W e T(O) implies W = W for

some u e GL(r,,K).

If K is an arbitrary field and if W e r(£t) we

apply the previous result to the algebraic closure K

of K and obtain an r by r matrix u with entries in K

such that Wa = u au for all symmetric matrices a

with entries in K. An observation yields u = 3v

where (3eK and v has entries in K. But W maps V onto

2
itself hence a = |3 eK.

From Proposition 5 and from (iv) it follows now

that S(O) consists of the elements a-

f

M where f aeK

and M e Sp(rjK). Furthermore from (iii) we obtain the

usual set of generators of Sp(r,K).

In particular we see that the Lie algebra C is

of type C
r

-

For e = -1 one can show that is a Lie algebra

of type D •

§2. The rectangular matrices .

1. Let V be the vector space of r by s matrices

with entries in K and suppose r>s. Hence the dimension

of V equals rs. We assume that the characteristic of

K does not divide r+s. Let HI be the vector space

of pairs (u,v) such that ue3J! , veKI and trace u

= trace v.
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For (u,v) e 2R we define an endomorphism T

of V by T x = ux-hcv. A verification shows thatJ U, V

T x = for all x implies u = ae and v = -ae for
u, v

some aeK. Hence a- r = -a- s and we obtain a = 0.

The map x -* T x of 331 into End V consequently is ar u,v rs n J

linear injection.

PROPOSITION 1 . For (u,v) e 5K one has- x
' rs

trace T = (r+s) trace u = (r+s) trace v-
u,v

Proof : We consider the linear transformation

x -* ux, ueJR , of V. Writing x = (x-,j-..,x ) where the

x.'s are vectors we get ux = (ux,,... ,ux ) and hence

s- trace u is the trace of this linear transformation.

A similar argument shows that r- trace v is the trace

of the transformation x -> xv, veffl .

PROPOSITION 2 . The set [T ;(u,v) e EDI 3 of- u,v rs —
linear transformations of V acts irreducibly on V.

Proof

:

Similar to the proof of Proposition 1

in §1.

PROPOSITION 3 - The vector space SK is spanned by

elements of the form (ab , b a) where a.b e V.

Proof: First of all, trace ab = trace b a. In

the case s = 1 we get 30i ^
= f(u, trace u) ;ue9Jt } and the

proposition follows from the fact that 2U is spanned by-

matrices of the form ab where a,b are r by 1 matrices.
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In the case s>2 again it is enough to show the

statement for r = s = 2. But one gets this by a

verification.

V by

For ue9JJ , ve3K we define an endomorphism W of
r s u,v

W x = uxv, xeV.
u, v

A verification yields

(2. 1) W W . = W . for a,u e S» and b,v e 5R .v/ u,v a,b ua,bv r s

Similarly to the proof of Proposition 4 in § 1 we obtain

PROPOSITION 4 . For ue3B and veUl one has

det W = ±(det u)
s
(det v)

r
.

u,v

2. We define a pairing : VXV -> End V by

(anb)c = ab c + cb a, a^b^c e V-

Let £ be the subspace of End V spanned by anb for

a,b e V. The elements of X are the endomorphisms

T where (u,v) is spanned by (ab ,b a) for a,b e V.

Hence by Proposition 3 we get

X = [T ;(u,v) e DOR }.
u, v rs

By Proposition 1 the trace form of the pairing is

given by

c(a,b) = (r+s)trace ab for a,b e V
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and consequently a is non degenerate. Moreover (T ) + T
' u , v

A verification shows that the pairing satisfies

the conditions of II, §3.1- We obtain again

(2.2) P(a)b = ab
fc

a for a,b e V

and the associated binary Lie algebra O consists of the

elements

(2.3) q(x) = a + ux + xv + xbSc where a,beV, (u,v)e^
rs

.

The generic element x can be chosen as an r by s matrix

having algebraically independent entries. According

to II, Theorem 4.4, and to Proposition 2 the Lie

algebra O is simple. The dimension of equals

(r+s)
2
-l.

Let & be the automorphism of O defined as in

II, §3. 5- We get H
Q
(x) = -P(x) and from (2-2) it

follows that 9 is essential if and only if r = s.

For u e GL(r,K) and v € GL(s,K) we consider the

endomorphism W (see 1) of V. From Proposition 4

it follows that W belongs to GL(V). The adiointu,v & J

of W with respect to the trace form a equals
u, v K M

W t t
and we obtain

u , v

W e r(O) for u e GL(r,K) and v e GL(s,K)
u, v v

according to II, Lemma 3.4. Now (2.1) shows that

(u,v) -» W is a homomorphism of the group

GL(r,K)xGL(s,K) into T(Q) having the kernel
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[(ae.^e); f aeK}.

PROPOSITION 5 - For W £ T(O) there exists

u 6 GL(r,K),, v e GL(s,K) such that W = Wu .

Proof: Let a. be the i column vector of aeV-
l

Writing'

we obtain

[Wa] . = £ w. .b. , w. . e S ,

[W*b] •
= E w^.b.

1 j Ji J

and a verification shows that W e T(O) is equivalent

to

(2,4)
k ^ p

w
jk

a
k

a
J
WU =

k^
W
i^

a
k

a
l
w
jk

where a-.,---,a are arbitrary columns. In particular

we get

„ „t t _ t
w.i a a w., - w., a a w.,jk lk lk jk

for arbitrary column a. For a given i there is a k

such that w M ^ 0. Hence w.. =a..u.. a., e K, u. e UK
ik ij ij i- ij - i r

Replacing W by WW for suitable v e GL(s,,K) we may

assume that a.. = 6.. holds. Now (2-4) yields u. = u

for all i and the proposition is proved.

3- In order to describe the group H(£}) we obtain

from (II;3.8)
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(2.5) B(a,b)c - (e+ab
t
)c (e+t^a) where a,b,c e V

and B(a,b) equals W for u = e+ab , v = e+b a.v M u,v

Using II, §1.3, we observe

(2.6) £
@b

(x) = x(e+b t
x)"

1 = (e-hcb
t )" 1

x.

We write the elements of GL(r+s,K) as

/a b\

M = where a e 3K , b,c e V, del
,c

t
d

r s

Since the s by r+s matrix (c ,d) has maximal rank, the

determinant of c x+d is not the zero polynomial. Hence

for M e GL(r+s,K) we have the rational function

fM (x) = (ax+b)(c tx+d)"
1

.

A verification yields fM° fN
=

fimu for M, N s GL(r+s,K)

and we obtain a homomorphism M * fM of GL(r+s,K) into

the group P(V) of birational functions and its kernel

consists of the diagonal matrices. In particular we

get

f
M

=
<

u \

W if M = , , ueGL(r,K), veGL(s,K)
v"

1u, v

if M =
, aeV,

if M =[ , beV.
ib e

But the group GL(r+s,K) is generated by the matrices we
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listed above and we obtain

H(O) = [fM ; M € GL(r+s,K)}.

Hence O is a Lie algebra of type A . .

§3- Jordan pairings -

1. Let V be a vector space over the field K of

characteristic different from 2 and 3 and let 31 be a

Jordan algebra defined in V with unit element e.

Denote the left multiplication by L, i. e. , ab = L(a)b,

and suppose that its trace form given by

(ab) -» trace L(ab)

is non degenerate - Hence 2J is separable and in

particular semi-simple (for details about Jordan

algebras see [ 2 ])-

We define a pairing : VxV -* End V by setting

(3-1) anb = 2L(ab) + 2[L(a),L(b)] where a,b-.V.

Then the trace form of this pairing is given by

(3-2) j(a,b) = 4 trace L(ab)

and hence it is non degenerate. Moreover j turns out

to be an associative bilinear form of the algebra 3'.

The adjoint of T c End V with respect to r is denoted

by T" • In particular we have L"(a) = L(a).
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It is known and easy to prove (see [ 8 ] and [ 10]

)

that the pairing (3- 1) satisfies besides (P. 1) also

the conditions (P. 2) to (P. 4) of II, §3.1. We call such

a pairing a Jordan pairing of the first kind - The

examples given in § 1 are Jordan pairings of the first

kind provided e=lore=-l and r>3 is even.

2From (anb)a = 4a(ab)-2a b we conclude that the

endomorphism P(a) defined by (II; 3- 2) coincides with

the quadratic representation of the Jordan algebra 91.

Hence T=r coincides with the structure group F(2J)

of 91 because of II, Lemma 3-4.

The results of II, §3 show that any Jordan pairing

of the first kind leads to a binary Lie algebra £l. = O

such that (D , 3) is a symmetric Lie algebra. From

the definition of ® in §3.5 we observe

H@(x) = -P(x)

(see I, §2. 2). Thus det H
@
(x) ± because of P(e) = I

and hence ® is essential.

2. Since % is essential, there exists a birational

2function i in 3 (£L.) such that 3 = V .. Here 3 = Id
9J -J

implies joj = I and because of I, §2. 3, the function j

is given by

j(x) = -[H3(x)]
_1

(8l)(x) = -[P(x)]
_1

x = -x"
1

,

where x stands for the inverse of x in some scalar

extension of the Jordan algebra "I.
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We are able to express the birational functions

tat, by J and the translations t, where beV.

LEMMA 3-1 - Suppose that : VxV -* End V is a

Jordan pairing of the first kind . Then for beV one has

t
@b

= J°t_b
oj and B(x,b) = P(x)P(x +b).

Proof : We know from II, Lemma 1.1, that ¥
@

, = ®Y,®

holds. Moreover the birational functions belonging to

¥, or L, are t_, or t_au , respectively. Hence we get

t_Q, = (~j )° t_, ° (-j ) and this proves the first formula.

The second formula now follows from part a) of II,

Theorem 2.3, together with —r— = -[P(x)]

As a conseuqence we see that the group H(£\ ) is

generated by the functions W, t and j where W e F(D )
3. JJ

= r(<U) and aeV. In particular, H(D ) coincides with

the group S(?I) considered in [11]. For more results

see also H. Braun [ 1 ] and [12].

3- Let : VXV * End V be an arbitrary pairing

satisfying the conditions (P. 1) to (P. 4) of II, §3.1.

Denote by (O
n ,3) the induced symmetric Lie algebra.

Let dcV and denote by 21, the algebra defined on the

vector space V by the product (a,b) -> P(a,b)d. We

know from II, Theorem 3-3, that 21 is a Jordan algebra .

Denote by L
d

and P
d

the left multiplication and the

quadratic representation of >v
, respectively. Thus
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L
d
(a) = ^and.

We are going to prove

(3.3) P
d
(a) = P(a)P(d).

Indeed, we apply (P. 3) for T = cdb on c and obtain

(anb)(cQb)c - (cOb)(aOb)c = [(cnb)anb]c - [cn(bna)b]c.

Hence it follows that

I^O^CcOc) - I^(c) = l£(c) - P(c)P(b).

Since the square of c in % equals L, (c)c we get

P
b
(c) = P(c)P(b) and (3-3) is proved.

4. Two pairings and ' of V are said to be

isomorphic if the associated binary Lie algebras

and O are isomorphic under an isomorphism $ : Z -* z'

that satisfies $1 = I. According to I, Theorem 3-2,

the two pairings are isomorphic if and only if there

exists a W e GL(V) such that Z' = vTT 0.W

THEOREM 3-2 . Let a be a pairing of V satisfying

the conditions (P. 1) to (P. 4) of §3-1 and let (Z, 3)

be the associated symmetric Lie algebra . Then the

following statements are equivalent :

a) I. is essential .

b) det P(x) + 0.

c) There exists deV such that 31 , has a unit

element.
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d) The pairing Q is isomorphic to a Jordan pairing

of the first kind .

Proof : From the definition of ® it follows that

H
@
(x) = -P(x)

holds. Hence a) and b) are equivalent (see I, §2. 2).

But b) implies the existence of deV such that det P(d)

^ 0. Hence det P
d
(d) + from (3-3). Hence the equi-

valence of b) and c) follows from [ 2 ], chapter IV,

Theorem 2.7.

It suffices to show that c) implies d) . Choose

deV such that 91, has a unit element c. Consider the
d

binary Lie algebra £}' = v„0 where W = P(c). The

algebra O can be considered as a binary Lie algebra

defined by a pairing ' of V such that the endomorphism

P' is given by

P'(x) = WP(W
_1

x)

and ©
' = v turns out to be the corresponding

automorphism of O'. We obtain I = P,(c) = P(c)P(d)

and using (II;3-10) we observe

P'(c) = WP(W
_1

c) = P(c)[P(c)]
_1

= I.

Hence we may assume that there is ceV such that P(c) = I.

Using (3.3) we end up with P(a) = P (a). Using [ 2 ],

chapter IV, Theorem 2.5, we know that the square e of

c in 91 is the unit element of V
Q and
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P(e) = P (c
2

) = [P (c)]
2

= I. We write 9J = 91 and

obtain a Jordan algebra 91 with unit element such that

P is the quadratic representation of 91. Thus the pair-

ing a is given by (3. 1) and the trace form of 9J is

non degenerate because of (3-2).

5. Next we are going to define the Jordan

pairings of the second kind. We start again with a

Jordan algebra 21 in V with unit element and an auto-

morphism a ^ a' of II of period 2. Suppose again that

the trace form of 21 is non degenerate.

The automorphism a -* a ' of 91 induces a direct

sum decomposition

91 = 21, + 9J_ where 21 = [a ;ae9J, a ' = ±a }.

Here 91, is a subalgebra of 91, 21 _ f and one has

9I+
?I_ c 9J_, 9I_9J_ C a

Moreover we conclude a (a', b') = c(a,b) for a,b e 91.

Hence %, turns out to be orthogonal to 9J_ with respect

to a and the restrictions of a to 21, and 2l_ are

non degenerate.

The bilinear form of 21, given by u > a(e,u) is

normal . Hence 21, is non degenerate and consequently

semi-simple (see [ 2 ], chapter I, §8 and §9).

We define a pairing ' of 91_ by

(3.4) (an'b)c = 2 (ab)c + 2a(bc) - 2b(ac) where a,b,ce2I
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Clearly ao'b e End 9I_ and ao'b is the restriction of

aDb given by (3.1) to 9J_. Let Z' be the vector space

spanned by an'b where a,b e 3I_.

If A is a linear transformation of 9J then we

denote by A its restriction to 91,. Hence the trace

form a' of the pairing ' is given by

(3.5) rr'(a,b) = trace(aa'b +bo'a) = 4 trace L_(ab)

where a^b e 91_

.

PROPOSITION . There exists an element d in the

center of 91 , such that a ' (a ., b ) = a(da,b) where a,b e 91 _

.

Proof : Let u,v e 91, and set \(u,v) = 4 trace L_(uv)

Then X is a symmetric bilinear form of 91,. Using the

basic identities about Jordan algebras one observes

that X is associative. But the restriction of a to

91, is associative and non degenerate. Hence there

exists d in the center of 91, such that X(u,v) = j(du,v)

because of Theorem 6.4 in [ 2 ], chapter I. Now we

obtain from (3.5)

o'(a,b) = X(e^ab) = a(d,ab) = a(da,b)

where a^b e flJ.

LEMMA 3-3 - Suppose that the trace form of 9! and

the bilinear form a ' are non degenerate . Then the

pairing ' given by (3-4) satisfies the conditions (P. 1)

to (P. 4) of II, §3.1.
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Proof : Clearly, we have to prove only (P. 3)

and (P. 4). We write the condition (P. 3) for the pair-

ing (3- 1) where T = uov, T vQu. Choosing all

elements in 21 _ we obtain

[ud'vj an'b] = T'ao'b - aa 'Sb where T'=un'v, S=vn'U}

and in a similar way

[ba'a, vd'u] = bn'T'a - Sbn'a.

Taking the trace we get ?'(T'a,b) = a'(a,Sb). Hence

S equals the adjoint of T' with respect to a' and

consequently (P. 3) and (P. 4) hold.

We call D a Jordan pairing of the second kind .

The examples given in § 1 for e = -1 and in §2 for

r>s are Jordan pairings of the second kind.

§4. The two exceptional cases .

I. Let E be a Cayley algebra over K and suppose

that the characteristic of K is different from 2 and

3- Thus E is alternative and there exists a non

degenerate bilinear form u and a linear form X of S

such that

2
a = 2\(a)a - u(a,a)e for a e E,

where e is the unit element of S and X(a) = u(a,e),

X(e) = lj holds (for details see [2 ], chapter VII, §4)

The map a -' a' = 2\(a)e-a defines an involution of E
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and one has

a(b'c) + b(a'c) = 2u(a,b)e.

The dimension of E over K equals 8.

Denote by S~(E) the vector space of 3 by 3 matrices

1
a
3

a
2

a a a, , a. e K, a. e E.
3 2 1 i l

a
2

a
l

a
3

If ab means the usual matrix product, &a(E) becomes a

central simple Jordan algebra over K with respect to

the product ao b = i;(ab+ba), a so-called exceptional

algebra (for d.etails see [2 ], chapter VII, §6).

Associated with the Jordan algebra &o(E) we

obtain a Jordan pairing of the first kind

: »„(E)xSo(E) -• End §o(E). The binary Lie algebra

£ = £ is an exceptional Lie algebra of type E (see

[8 ])•

2. Let e, be the (absolute primitive) idempotent

that is given by a, =1 and zero elsewhere. Using

at = [a;aa^(S), e,:a = va

}

for v = 0.%,1 we obtain the Peirce decomposition

3
K o k 1
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which is a direct sum of vector spaces. The map a -> a*

which changes the sign of the component in 2Ii is an

automorphism of the Jordan algebra 31 and the eigenspaces

are

31 ,
= 31 + 31, , 31 =31!

+ o 1 - %

Set V = £_©£_ and write the elements of V as a = a,©a
?

.

We define a pairing of V by

[(anb)c]
1

= [2\s(a
l
,b

l
)+\J.(a

2
,b

2
)]c

l
+ [2\i(c

l
,b

1
)+\s(c

2
,b

2
)]a

1

- 2u(a
1
,c

1
)b

1
+%[c2(b

2
a
1
)+a2(b

2
c
1
)-b2(a

2
c
1
+c

2
a
1
)] ,

[(aDb)c]
2

= [u(a 1J b
1
)+2n(a

2
,b

2
)]c

2
+[u(c

1
,b-

L
)+2n(c

2
,b

2
)]a

2

- 2u(a
2
,c

2
)b

2
+%[ (a

2
b
1
)c^+(c

2
b
1
)a

;

[-(a
2
c
1
+c

2
a
1
)b-[].

Using the injection

a

cp : V -> ©
3
(S), cp(a

1
©a

2 )

1
a
2

we see that cp (V) equals 31 = 9J,. Furthermore a verifi-

cation shows that

%p((aob)c) = [cp(a)cp(b)]cp(c) + cp (a) [cp(b)cp(c) ]

- cp(b)[cp(a)cp(c)]
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holds. Hence the image of the pairing of V under cp

coincides with the pairing of 2J_ given in (3-5).

An observation shows that the trace form of n

is given by

a(a,b) - 48[n(a
1
,b

1
)-Hi(a

2
,b

2
)].

Hence a is non degenerate. According to Lemma 3.

3

we obtain a pairing : VxV -> End V of the second

kind. Denote by O = O the associated binary Lie

algebra. One can show (see K. Meyberg [13]) that O is

a Lie algebra of type E
fi

.
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Chapter IV

APPLICATIONS TO BOUNDED SYMMETRIC DOMAINS

§ 1. Some elementary results on real

linear algebraic groups -

1. For an arbitrary finite dimensional vector

space V over P we denote by V = C 5? V its complexifi-
°

F
F

°

cation and by V the space V considered as vector
ID

space over R. Note that V and V are the same sets.

R
The elements of V (and of V ) are written as u = a + ib

R
where a.b £ V • The vector spaces V , V and V are

o r o

equipped with the natural topologies. Let D ^ be an

open subset of V and let f : D -* V ' (V ' being a vector

space over C) be a map. Then f is called holomorphic

if in the representation

m

f (z,b..+ • • • + z b ) = 7 f, (z, , • • • ,7. )b/x
1 1 n n L k x 1 n 7 k

k=l

(bi , • • • , b and b-,' , . . . ,b ' being a basis of V and V '

)

K
1 n 1 m &

the functions f, are holomorphic in the complex

variables z-, , . . . ,z
1 n

Note that the multiplication by i and the conjuga-
"D

tion u -» u = a - ib belong to End V . For A.B £ End V
o

the endomorphism A + iB of V is given by

(A+iB)(a+ib) := (Aa-Bb) + i(Ba+Ab). Conversely for any
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W e End V there exists A,B e End V
Q

such that

W = A + iB. For W e End V denote by W* the induced

1R

endomorphism of V . Moreover, if 8 is a subset of

End V we denote S
R = [W ; WeS}. Clearly W - W defines

p
a monomorphism of the ring End V into End V". For

W e End V we define W by Wu = Wu where u e V . Clearly

?- w
R

.

P
An arbitrary endomorphism T of V can be written

as T(a+ib) = (Aa+Bb) + i(Ca-H)b) where A,B,C,D e End V .

We obtain

(1.1) trace T = trace A + trace D.

IP

The endomorphism T of V is C-linear if and only if

D = A and C = -B, i.e., if T = W" for some W e End V.

Furthermore T- commutes with the conjugation u -> u

if and only if B = C = 0. Note that in both cases

the conditions are linear equations over P. From (1.1)

we observe

(1.2) trace (A+iB)
F

= 2 trace A, where A,B € End V .

ID

For a subset S of End V denote by Sj_ the set of

elements of S that are C-linear. Hence there is a

subset U of End V such that S^, = Jt
R

.

p
For an endomorphism T of V , V or V we define

o

the exponential by

CO

exp T := Y \ T
m

.

m.
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Hence we obtain a map exp of the endomorphism space

into the corresponding general linear group. For

T e End V we have exp(T ) = (exp T) '.. Note that the

exponential map is bijective in a neighborhood of zero.

2. Let 3 be a hermitian positive definite form

of V. The adjoint of T e End V with respect to 3 is

denoted by T . An element T of End V is called unitary

(with respect to 0) if T T = I and hermitian (with

respect to 0) if T = T. Moreover we call T positive

definite (with respect to p) and we write T > if

T = T and P(Tu,u) > for =f= ueV. For a subset S of

End V we write S
P = IT

3
; TeS}.

It is well known that the exponential map maps

the hermitian endomorphisms of V bijectively onto the

positive definite endomorphisms of V.

ID

3- A subgroup Q of GL(V ) is called a real linear

algebraic group if there exists a non-empty set p of

polynomials in an endomorphism variable of V" having

real coefficients such that W e GL(V" ) belongs to Q.

if and only if rr(W) = for all rr e p. Note that any

P.real linear algebraic group is closed in GL(V ), hence

it is a real Lie group. The subgroup Q v
is again a

real linear algebraic group and there is a subgroup H

of GL(V) such that Q Vc
= U . A subgroup H of GL(V) is

called a real linear algebraic group if 9 has the

corresponding property.
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Let Q be a closed subgroup of GL(V"). Because

of the following lemma we call

(1.3) Lie Q := [T; T e End V
P
\ exp ?T e Q for § e R]

the Lie algebra of Q.

LEMMA 1.1 . If Q is a closed subgroup of GL(V')

P
then Lie Q is a Lie algebra of endomorphisms of V

J

.

Proof : We use the formulas

(exp ?T)(exp ?S) = expU(T+S) + 0{%
2
)},

(exp §T)
_1

(exp cS)
-1

(exp IT) (exp 5 S) = exp{§
2
[T,S] +0(: 3

)

}

For a given % e F and positive integer m we replace

5 by ?m and raise the first formula to the power m

2
and the second to the power m . Then the limit m -> =°

yields T + S e Lie Q and [T,S] e Lie Q.

Remark . Suppose that H is a closed subgroup of

F
GL(V) and let T e Lie U . Hence exp ?T and consequently

T itself is C-linear. We obtain Lie W
P

= (Lie H)
R

where

(1.4) Lie M := [S ; S £ End V, exp SS e tt for | e r).

Note that Lie M can be considered as a Lie algebra

over C.

4. Let P be a hermitian positive definite form

of V. For a closed subgroup H of GL(V) the condition
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8 R
U = H implies (Lie W) = Lie H. The group of unitary-

elements of GL(V) clearly is a real linear algebraic

group ; its Lie algebra consists of the T in End V
o

such that T = -T. Moreover, this group is compact.

LEMMA 1.2 . Let 3 be a hermitian positive definite

form of V and let & be a real linear algebraic subgroup

of GL(V) satisfying ti® = U. Then

a) the unitary elements of it form a maximal compact

subgroup K o_f H that is again a real linear

algebraic group .

b) Each element of W can be uniquely written as

UP where U e K, P = exp T > 0, T
3 = T e Lie U.

c) If_ W € Wj W > 0, then there exists a uniquely
\, \, i- 2

determined W 2
e U such that W 2 > and (W 2

) = W

Proof : Each W e GL(V) can be uniquely written as

W = UP where U is unitary and P > 0. Hence P = exp T

where T^ = T and we obtain WW = P = exp 2T- From

3 2
H - H it follows that P belongs to U.

Consider the curve W(?) := exp 2§T, § e R, in

GL(V). For any polynomial rr we obtain a finite sum,

<W(S)) = Y a
r

em

by using the "minimal decomposition" of the (semi-simple)

endomorphism T. Now let p be a set of polynomials that

defines the real linear algebraic group U. For integer
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a

k we have W(k) = P
2k

c U and hence -(W(k)) = for

rr € to and all k. Hence a = " for all ra and we obtainr m

W(§) e U. This means T e Lie U and U e ». So part

b) is proved.

2
In order to prove part c) we write W = P where

P > and W = exp T, T e Lie ti, according to part b).

Since the positive definite square root is unique we

get P = exp \T e U.

For part a) let K ' be a compact subgroup of U

such that K c k'. Let W 6 k'; hence part b) implies

W = UP where U e K and P > 0, P e Jt. The proof of

part a) will be complete if we show that P e U
1

, P > 0,

implies P = I.

K ' being a compact subgroup of H means that K'

is compact irt GL(V). By a known result there exists

a hermitian positive definite form y of V such that

Y(Wu,Wu) = y(u,u) for u e V and W e K ' . Writing

Y(u,v) = 3(Bu,v) we obtain B > and W^BW = B. Choose

2
C > such that B = C and put W = P, D = CPC Hence

2 2
D = B and therefore D = B which means P = I. So the

lemma is proved.

5. Again let M be a real linear algebraic subgroup

of GL(V) and suppose that 3 is a hermitian positive

definite form of V such that A
p = &. Hence (Lie H)

D

= Lie H and T i: -T is an automorphism of the real

Lie algebra Lie M. We set
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a = [A; A e Lie U, A = -A},

b = (B; B e Lie Jt, B = B}

and we obtain a direct sum decomposition

Lie M = a + b, [a, a] c q, [o,b] c b, [b,b] c a.

Again let K be the maximal ; o t
-.nct subgroup of M

consisting of the unitary elements of tt. Hence we

obtain

W = X-exp b , Lie K = o.

Finally we prove

LEMMA 1.3 - The restriction of the Killing form

of Lie M _to a o_r b is negative semi-definite or positive

semi-definite, respectively .

Proof : For S,T e Lie H we put y(S,T) := trace ST •

From trace T = trace T it follows that y is hermitian

positive definite on the vector space Lie H (considered

as a vector space over C) . A verification yields

v([ad T]S
L
.S ) = Y(Sr [ad T ]S

2
)- Hence for the

v R
adjoint with respect to y we observe (ad T) = ad T

and

vT,T
3

',

Lie u
= trace (ad T) (ad T) Y > 0,

which completes the proof.

6. Let W be in End V . Then the extension of W- o
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to V is an endomorphism of V and we will identify End V

with the sub-ring [W; W e End V, W = W} of End V. Hence

for subgroups Q of GL(V ) we have the notion of a real

linear algebraic group. Suppose that a is a symmetric

positive definite bilinear form of V Denote ther o

extension of it to V also by a. Then (u,v) -> a.(u,,v)

defines a hermitian positive definite form of V-

Clearly our results are valid for a real linear

algebraic subgroup Q of GL(V ) and the endomorphisms

of Lie Q as well as the decompositions in Lemma 1.2

can be chosen as endomorphisms of V •r o

§2. The group T(Q) .

1. Let V be a finite dimensional vector space

over R. We suppose that : V XV -* End V is a" o o o

pairing satisfying the conditions (P. 1) to (P-4) of

IIj§3.1j such that its trace form a is positive= Q C

definite .

Denote by X the Lie algebra spanned by aob where

a,b t V . The adjoint of T e End V with respect too J o r

is denoted by T*. Furthermore let P (a) be the
o J o

endomorphism induced by a according to (II;3.2).

Using the identification of "generic elements" of

V with "vector variables" we consider the Lie algebra

Rat V
q

of rational functions in the real variable x of

V • Denote the binary Lie algebra associated with the
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pairing by O , i.e..

O = V +1 + V where V = IP (x)b;beV }.
o o o o o o o

2. Now let V be the complexification of V • By

linearity the pairing of V extends to a pairing

D : vxv * End V having the trace form c- A verification

shows

(2.1) -(a+ib,c+id) = 7
o
(a,c)-a

o
(b,d)+i[c

o
(a,d)+a

o
(b,c)],

hence a coincides with the extension of 3 to V. In
o

particular, a is a non degenerate bilinear form of V,

and (u,v) -» a(u,v) defines a hermitian positive definite

form of V.

Clearly the vector space (over C) spanned by uDv,

where u,v 6 V, coincides with the complexif ication X of

I . Again the adjoint of T e End V with respect to a

is denoted by T* • Hence we have (A+iB)" = A* + iB*

where A,B e End V • By linearity the pairing

: VxV > End V satisfies the conditions (P. 1) to_

(P. 4), too. Moreover, let P(u), ueV, be the endomor-

phism of V induced by the pairing. Then for a*-.

V

the restriction of P(a) to V equals P (a) and we have
o M o

P(a+ib) = P(a) - P(b) + 2iP(a,b), a,b e V

In particular P(u) = P(u) for u f V.

We choose a complex variable z of V and consider

the Lie algebra Rat V of rational functions in z. By
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construction all functions in Rat V are holomorphic in

z. Denote the binary Lie algebra associated with the

pairing of V by £L, i.e.;

a. = V + X + V where V = [P(z)u;ueV}.

Note that £L is not the complexif ication of s but £^

can be considered as the holomorphization of O in ther o

following, sense: Let 2 be any subspace of Rat V •& o o

Then the holomorphization 2.,. of 2 is obtained by the
c « o

complexif ication 2 of 2 and by replacing the real

variable x by z.

3. There is a third pairing induced by the

1R

original one. Let V be the space V considered as

vector space over P. Then the pairing o of V can be

IP i

considered as a pairing of V having the trace form r

Using (1-2) we obtain

(2.2) a (a+ib..c+id) - 2[o (a.c) - o (b..d)]

= 2 Re -(a+ib,c+id).

R ID

Again o is non degenerate and (u,v) -* a' (UjV) defines

a symmetric positive definite bilinear form of V . The

n
vector space (over R) spanned by uov where u.v e V

F Fcoincides with X . Denote the adjoint of T e End V"

R 1T

with respect to a by T . For T = A+iB e End V where

A,B ' End V we have the induced endomorphism T of V'

(see §1.1) and it follows that (T" ) = (T*) . In the
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F
notation we will not distinguish between T and T" if

there is no possibility of misunderstanding.

1R 1R 1R

Hence by linearity the pairing : V xV -* End V

satisfies the conditions (P. 1) to (P. 4). The induced

endomorphism P (u) coincides with P(u) considered as an

R 1R

endomorphism of V . Note that the endomorphisms of Z

are C-linear.

Let x,y be real variables of V • We consider theJ o
1R

Lie algebra Rat V of rational functions in x and y.

Setting z = x + iy we get a complex variable of V and

IP IP

(Rat V) is a subspace of Rat V . The Cauchy-Riemann

differential equations show that it is in fact a sub-

algebra.

Denote the binary Lie algebra associated with the

IP

pairing o of V by Q, i.e.,

0= V
R + £

R + V
F

' = (qv )
R

.

Note that O is a real Lie algebra, but the product is

C-linear, so O can be considered as a complex Lie

algebra.

4. Next we consider the groups T associated with

the pairings. According to II, Lemma 3-4, we have first

r(0 ) = [W; W e GL(V ), P(Wx) = W P(x) W*

}

and second

:(C.J = [W; W t GL(V), P(Wz) = W P(z) w*}
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We observe that T(0 ) is the subgroup of T(%) consist-

ing of the W's such that W = W. Finally we get

r(D) = [W; W £ GL(V
F
), P(Wz) = W P(z) W

f
}.

R IR

Using the injection W * W of GL(V) into GL(V' ) we

obtain as the image of r(£^) the subgroup

r*(0) = [W
R

; W 6 GL(V), P(Wz) = W P(z) W*}

of T(O) of the C-linear elements (see §1.1). Hence

IP
[r(Qj,)] = r

>If
(D). Using the identification mentioned

above we also write r(Q.,,) = T. (O). Furthermore from

P(u) = P(u) it follows that the conjugation J given by

Jz := z

belongs to r(Q) and one has J = J. For a C-linear

endomorphism W the endomorphism W = JWJ is C-linear,

too. Hence W and W* belong to r^(£i) whenever W e r,_(0).

LEMMA 2.1 . The Lie algebra of 1^(0) coincides with

X
R

.

Proof: An element S e End V belongs to 2 if

and only if there is a T e X such that S = T
J

. Accord-

ing to IIj Lemma 4-5, it suffices to prove that

(2.3) 2 P(Tz,z) = T P(z) + P(z) T*

for T e End V is equivalent to exp ? T t IXQ^) for

5eF, i.e., to T 6 Lie r(£k). We put
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W - W(§) = exp :T,

Q = Q(§) = P(Wz) - W P(z) W*

and denote the derivative with respect to I by '.

One gets W' = WT = TW and

Q' = 2P(w'z,Wz) - W' P(z) W* - W P(z) W'-.

If T e Lie "(O*) then Q(§) = and hence Q'(0) = 0,

so (2.3) holds. Conversely suppose (2.3)- We have Q*

= Q and hence Q '* = Q'. But

Q' = 2P(TWz,Wz) - TWP(z)W* - WP(z)W*T* = TQ - Q*T*

yields Q '* = -Q
' and hence Q' = 0. One observes Q(?)

= Q(0) = and consequently W e Y(%) > so T e Lie P^).

TD ID

5. Clearly T* e X ' whenever T e 2 . Hence T -v -T*

jR

becomes an automorphism of the Lie algebra X and we

have the induced direct sum decomposition as vector

spaces over P.:

(2.4) x
r

= b + i . d = [D; D 2~\ D* = -D],

I = [L; LpX
F

, L* = L).

Using II, Lemma 4.1, we see that b and I are orthogonal

with respect to the Killing form ',

, ) of I . We put

K = i.W; W f r*(£) . W*W = 1}

and we see that K is a real linear algebraic subgroup
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of GL(V
R
).

LEMMA 2.2 . The group K is maximal compact in r^(£)

having b as a Lie algebra . Any element of ^(O) has a

unique representation as U- exp L where U e K and Lei.

Moreover one has

(2.5) <D,D> < 0, <L,L) > for Deb and Lei

.

Proof : Defining g by p(Ujv) = o(u,v) we obtain a

hermitian positive definite form of V. For W e GL(V)

the adjoint W with respect to P equals W*. Let

U = {W; W e r(Q
fe
) J W*W = I). Then K = »

R
and Ji

3 = U.

So we are able to apply Lemma 1.2 and Lemma 1.3 from

which the statements follow.

§3. The group Aut(0, ® ).

1. We apply now our results of chapter I and II

to the binary Lie algebra

O = V
R + £ R + V

P c (Rat V)
R

(see §2.3). According to II, §3. 5, there is an auto-

morphism 6 of O of period two given by

(3.1) (Sq)(z) :- - b - T*z - P(z)a

where q(z) = a + Tz + P(z)b e O,

and (O, ®) is a symmetric Lie algebra in the sense of

II, §1.1. Again we write the elements of Das
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q = a + T + ®b where a,b e V and Tel. In particular

we have

@T = _ t* anci [ a ,Hb] = aab.

Note that ® is C- linear. From II, §3- 5, we know that

the involution W -*• W of T(O) induced by 9 (see II,

f
Lemma 1.2) is given by W . Hence for W 6 F., (O) we

obtain W* = W* e r*(°)- As in II^U-3, we set

B(a,b) = B^(a,b) = Bg
b
(a)

and we obtain from (II;3-8)

(3.2) B(a,b) = I + aab + P(a)P(b).

Hence from II, §1.3., we observe

(3-3) t@b (z) = [B(z,b)]
_1

(z+P(z)b) where b e V.

From II, §1.3, it follows that

Wot., = t °W where c - W*
_1

b, b e V, W e F,,(0).
9b ;c *

Using (3.2) and [P(a)]* = P(a) we get [B(a,b)]* = B(b,a)

and II, Lemma 1.4, yields

(3.4) B(a.b) e r*(£) whenever det B(a,b) £ 0.

the function t , is holomorphic in its domain of defini-

tion because it is rational in z. Clearly the same is

true for t , a V. From (I;4.5) we see that the ele-

ments of ( C) are exactly the functions
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(3-5) W°t °t
s
,ot where W e F(O) and a } b,c e V.

R
Let § be a subset of Rat V • Then in comformity with

the previous notations let &^ be the set of functions

in S which are holomorphic in its domain of definition.

Henc e the subgroup S . ( O) of_ 3 ( O) consists of the

elements (3-5) where now W e T^CO). Applying (I;4.5)

to £L instead of O we observe

3*(0) = H(^).

LEMMA 3.1 . Suppose § = v
f

for some f e H(£).

Then f belongs to -^(O) if and only if § i_s C- linear.

Proof : If f e a^(O) then V
f

e Aut £L and $ is

C-linear. Conversely, let $ be C-linear. We write

f = g , g = Wo t ot.,ot where We r(£f) and a,b,c e V.b & a @b c v

Hence §q = q
g for q e O and from (I; 1.4) it follows

that the inverse of the Jacobian of g, B(z+c,b) W ,

is C-linear. Therefore W is C-linear and g e Hj,(£>).

2. We apply now II, Lemma 4.2, to O. Since the
ID

trace form is given by a , the Killing form of O is

ID ro

given by (o ) „. But a' is non degenerate and hence

(a )» is non degenerate, too. Hence by the criterion

of Killing-Cartan, O is a semi-simple Lie algebra .

Furthermore, II, Lemma 4.2, yields

(qr q 2
> - (TV T

2 ) R
+ 2 trace T^

+ r
F

( ai ,b
2

) + cv
R
(a

2
,b

1 )
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where q, = a, + T, + @b, and where the trace is taken

over Z .

R
Next we use the decomposition X — b + 1 introduc-

ed in §2.5. For Deb, Lei we have, according to (1.2),

clearly trace DL = 2 trace Re DL where trace meansJ o o

the trace over V . But Re DL = Re DL = - Re D* L*
o

together with trace Re D* L* = trace Re DL imply

trace DL = 0. Hence we obtain

(3.6) <qi>q 2 ^a
= (D

l'
D
2

N
t.+I

+2 trace D
i
D
2

R
+ <L

1
,L

2
> D+I

+ 2 trace L^L
2

+ a (a^tO

+ n
J (a^b^),

where T, = D. + L, .

k k k

R —
3- Using the conjugation J of V given by Jz = z

we introduce two more automorphisms 3, and ®_ of O by

(see II, §3..6). According to (II;3-10) we have the

explicit definition

(3.7) S q = ± b - T* ± 9a where q = a + T + 0b e a

Again (C 3.) and (C, 3 ) are symmetric Lie algebras and

one verifies that B, 8, and s commute by pairs. Further-

more one sets
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Note that ® is C-linear but 6, is not •

o ±

The involutions of I*(0) induced by ©+ or 8_

coincide and are given by W * W* (see II, §3- 6).

LEMMA 3-2 . The symmetric bilinear form g of O

given by

is positive definite on O.

Proof : From the definition of the Killing form

follows <§q, , $q~> o =
(q-i , qo > o for each automorphism i

of Q. Hence 3 is symmetric. Using (3.6) we obtain

8_(D+L) = D-L and from (3-7) it follows

<q; _q> o = <D ^ D > b +i
" 2 trace °d*

B/ —\ B,, r><L,L>
b+I

- 2 trace LL* - a (a, a) - a (b,h),

where q = a + (D+L) + 0b e O. Here we have trace DD* >

and trace LL* > 0. Moreover, the definition (2.2)

yields a (a,a) > for aeV. Hence (2.5) implies

<q,®_q) < for qeC Since the Killing form of £k is

non degenerate, the same is true for the bilinear form

P and we end up with (3(q,q) > for £ qeO.

4. For Y e Aut O we set

Aut(D, Y) := U; $ e Aut O, $Y = Y§}.

Clearly Aut O and Aut(0,Y) are real linear algebraic
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groups in GL(O). The Lie algebra of Aut O coincides

with the Lie algebra of all derivations of O . But O is

semi -simple and hence

Lie Aut O = [ad p; peO}.

Moreover, ad p e Lie Aut(0, Y) is equivalent to exp 5 ad p

= Y-exp z ad p-Y = exp ?[Y-ad p-Y ] and since exp

is bijective in a neighborhood of zero, we obtain the

equivalent condition Y-ad p = ad p-Y, i.e., Y[p,q]

= [Pj^q] for qeO. This means [Yp,q] = [p,q] for qeD

and since O is centerless (see II, §2.1) we obtain Yp = p.

Hence

(3.8) Lie Aut(0,Y) = tad p; peO, Yp = p}

5= [p; peC, Yp = p}.

The adjoint of $ £ Aut O with respect to g is

given by

(3.9) $
P = ®_

$~ 1
9_ •

Hence $ * i maps Aut O as well as Aut(0, 3.) and

Aut(0, 3 ) onto themselves (because 8, and 3_ commute).

Since the Killing form of a Lie algebra is associa-

tive we observe

(3.10) (ad p)
3 = - ad 3_p = - ©_-ad p-3_ •

We write $ > if $ = $ and if $ is positive definite

with respect to 3 (see §1-4). As an abbreviation, set
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hJ(O) := a°(o) n 3^(0)

where 3°(0) is defined as in "L, §4. 3- Now we are able

to prove

THEOREM 3
;
3 • a) Aut(0,©_) is a maximal compact

subgroup of Aut O.

b) Each element in Aut O can be uniquely written

as Y$ where Y € Aut(£t, ® ) and where

$ = $ = exp ad p > 0, peO, 3_p = - p.

c) I_f § e Aut O and $ > then $ is essential and

C- linear . Furthermore there exists f e »j.(0) such that

$ = v
f

.

Proof : We apply Lemma 1.2 to it = Aut O. In

view of (3.9) the unitary elements of Aut O are exactly

the elements of Aut(0, @_), so we already proved part

a).

Moreover, we have a unique representation Y$ of

the elements of Aut C where Y e Aut (O, <3 ) and $

= exp ad p, peO, such that (ad p) = ad p. Hence

9_p = - p and part b) is proved.

Finally let $ e Aut D, $ > 0. Hence p($q,q) >

for ^ qeO. Choose q = aeV and put $a = b + T + ;c

where b,c e V and T e X R ; Clearly b = (§a) (0) = Aa

where A = H*(0) in the notation (I;2.2). We observe

@_a = - ©a and (3.6) yields
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($a,a) = -(lajQ^a)^ = <$a,0a) o

R
(b,a) = ,

P
(Aa,a)

From Lemma 3.2 we conclude that det FL (0) f 0. In

particular, $ is essential. According to I, Theorem 2.1,

there exists an feH(O) such that §q=q . But § = exp ad p

is C-linear and hence fe3^(d) because of Lemma 3-1. From

(^i)"
1

=Hj(2 )

we obtain it

f
(0) = det H

§
(0) $ (see I,'}4.3) and

f e 3 (O). Using the result for $

end up with $ = V- where f € H.,. (O)

LEMMA 3-4 . Suppose $ = v
f

for some f e 3*(0)
p

Then $ = $ if and only if

f = t °W°t,
3
-, where ceV and W* = W e T... (O).

Proof : In view of I, Theorem 4.3, we write

f = t °W°t -j where c , d e V and W e T. (D). Hence
c id "

§ = Y VTT 3 Y , ©
c W d

because of II, Lemma 1.1, and I, Theorem 2.3b). Usinj;

(3-9) we see that i = $ is equivalent to $ i_$ = Q_,

hence to K = S §- '3 where §-,=¥, v T Y vTT
1 1 1 d -J c W

= ! . - V „,. As an equivalent condition we get
d-c - Jw

-1 ..,_ s „ r
-1 j "I

y
-JW

r

c-d " '
f

d-c
7
-(JW)

T
" 's(d-c) -(JW) f



112 IV, §3

because of II, Lemma 1.1 and Lemma 1.2. In terms of

the rational functions belonging to it we have

(JW)
-1

ot
d _r (jw)

f
= c@(d.F)

.

But this is equivalent to d = c and JW = (JW) = W^J,

i.e. , W* = W.

THEOREM 3.5. Let I be in Aut C. Then the follow-

ing two conditions are equivalent :

a) §
P = $ > 0.

b) There exists W e r^(£i) and ceV such that

$ = v
f
and f = t

c
°W°t - and W* = W > 0.

Proof : In view of Lemma 3-4 we know that § = $

is equivalent to $ = v
f
where f = t °W°t

fl
- and

W* = W e i;,
f
(0). We obtain

V.c = Y yTT Y -
f c W ©c

and

(Y )° = ® Y ® = ® v T Y v T ® = ® Y- © = Y~-
c' -c -J -c -J c 8c

because of (3-9). Hence

$ = V. = Y VTT (Y )
P

f c W v c y

and $ > means vIT > 0. From vTT > it follows
w w

p(vy
a,a) = -{Wa,e_a> = -

F
(Wa,a) >

for ^ aeV. Hence W > 0. Conversely let W > 0. Then
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W - U
2
where U* - U > and v

y
= v^v^ > 0.

(4. The groups Aut(Q, ©,) and (J.

1. Next we consider the group Aut(0,

6

1 ,) and its

subgroup

rn := Aut(Q, 3+) n Aut(D^_).

As in §2.5 we denote by K the group of unitary elements

of ^(O), i.e., K = (U; U e I*(D), U*U - I}- Moreover

let tn and X be the identity component of ft and K.

Hence Lie K = b.
o

THEOREM 4.1 . a) tn is a maximal compact subgroup

of Aut(D, 9.) and its Lie algebra is given by ad b.

Moreover , for De b we have

(exp ad D)q = v q where W = exp DeK and qeO,

The map v : K -> ft is an isomorphism of the groups .

b) Each element in Aut(C, 3.) can be uniquely

written as ¥$ where Y elTi and # e Aut(D, ©,) such that

(4.1) 5 = § = exp ad p > 0, p = a + 3a, aeV.

c

)

Each element in the identity component of

Au t

(

Z, 8 1
) is essential , C

-

linear and it can be uniquely

written as v..$ where IKK and $ e Aut(D, »),) satisfying

(4.1).
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Proof : We apply Lemma 1.2 to ti = Aut(0, 3.) and

we use the bilinear form 3 of Lemma 3-2. The unique

representation together with Theorem 3-3 shows that tU

is a maximal compact subgroup of Aut(0, ®.) and the

elements of Aut(0, ©,) have a representation Y$ where

YetTi and § = exp ad p, ©_p = -p. But ad p e Lie Aut(0, ®+)

yields © ,p = p because of (3-8). Hence p = a + ©a

where aeV. So part b) is proved.

The Lie algebra of fu consists of the elements of

the form ad p where © ,p = p. Hence p = Del). For

Deb and q = a+T + ®beOwe observe

CO

(exp ad D)q = Y ~r [D
m
a + (ad D)

m
T + ©(D^b)}

m=o

because of (ad D)(@b) = [D,®b] = ©[©D,b] = ©(Db). From

(ad D)
m
T - V (-l)

k
(£) D

m_k
T D

k

k=o

it follows that

(exp ad D)q = Wa + WTW~ + ®(Wb) where W - exp DeK .

o

Using W*W = I we obtain W = W* and consequently

exp ad D = v . Hence part a) is proved because

exp ad D, Deb, generates the identity component

m of m.
o

According to part b) the identity component of
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Aut(0, £,) consists of the elements vIT $ where UeK and+ U o

$ satisfies (4.1). In particular v is essential and

C-linear. According to part c) of Theorem 3-3 the

same is true for §.

2. Let Q = Q a
be the set of f e H(D) such that

vf
is in the identity component of Aut(0, 0,). Accord-

ing to the parts c) of Theorem 3-3 and Theorem 4.1,

Q is a group of birational functions contained in

-jl(C) and Q is isomorphic to the identity component

of Aut(£t, 0,). Using Theorem 3-5 we see that the ele -

ments of Q are exactly the functions Uog, where UeK

and where

(4.2) g = t oWo t„- where W e T.(£), ceV
\ / & c 8c *

such that W* = W >

and v ,

=
, v .

g + + g

Furthermore , the representation of the elements of Q

as U= g is unique .

We prove that in (4.2) the condition v 3, = 0, vf —
g + +

g

can be replaced by

(4.3) g°(-D°g - -I.

Indeed, it suffices to show that for I = v , $ = $
g

(see Theorem 3.5) the condition v 0, = ©. v is
g + + g

equivalent to (4-3). But this follows from (3.9) and
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©_ = &+ v_
]
..

3- We define the subalgebras + and C_ of by

D
±

= [p; peQ, 9^ = p}.

We know from (3.8) that

(4.4) Lie Aut(O,0
±) =

±
.

Using the isomorphism f -* V_ of Q onto the

identity component of Aut(0,3,) we may consider rj

as a Lie group. Then its Lie algebra will be isomorphic

to the Lie algebra of Aut(0, ®, ) and (4.4) yields

Lie Q - 0_+•

Next we prove

THEOREM 4.2 . The complexif ications of + and D_

are isomorphic to Q, considered as complex Lie algebras

Proof: We write the complexification of O , e = ±.

2
as O + iD where the sum is direct and where i = -1.

e J e J

Define a map

cp : O —s- O +j O

by

cp(q) 2-(q+@
€
q) - J[J(q-3_q)] where qea

From iq = i® q we obtain cp(q) e + JO and :p(iq)

= jcp(q). Furthermore, cp is injective and P-linear.
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For arbitrary q-i^q^ 6 Owe set q = q. + iq~ and we get

cp(q) = q, + jq^- Hence cp becomes a bijection. A

verification shows that cp is a homomorphism of the Lie

algebras.

Since O is semi-simple we obtain

COROLLARY 1 . Q is a (connected) semi-simple Lie

£roup_.

From part a) of Theorem 3-3 together with (4.4)

we get the

COROLLARY 2 . Aut(D, ®_) is a semi-simple compact

Lie group .

§5. The bounded symmetric domain Z .

1. We use now the results of II., hi, about the

symmetric Lie algebra (O,®.). In terms of B(a,b) the

endomorphism corresponding to S, is given by

B+ (a,b)
= B- b

(a) = B(a,b) where a,b e V

because of £,b = £b.

The involution of T(O) induced by % is given by

the adjoint W of W with respect to j (see §2.4 and

13.1). Hence the involution r(O) induced by 0, is

—

f

, f
given by W . For W e f*(0) we have W = W*j where \

stands for the adjoint of W with respect to -

.
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Rewriting the definitions of II, §2, for ®+ instead

of 3 we obtain

H0M+) = [f; feH(o), v
f + = 3+ v

f
},

r(o,«)+) = [w; wer(o), w
f
w = i},

D(D, ©+) = [c; ceV, there exists W e T(0)

such that B(c,-c) = W W}.

Note that B has to be replaced by B,. Clearly

v
f

e Aut(a, ®.) for f e H(D, ®+ ) and the subgroup of

r(0J ©,) of the C-linear elements equals K (see §2.5).

We know from II, §2.1, that K maps D(Q,®,) onto itself.

From (3-2) we see that B(a,-a) is hermitian with

respect to the hermitian positive definite form of V

that is given by (u,v) -> ?(u,v). Again we write A >

if the endomorphism A of V is hermitian positive

definite.

PROPOSITION 1 . D(B,®+) equals [c; ceV, B(c,-c) > 0},

being an open subset of V, and the condition (A) o_f II,

§2. 5 j is satisfied . Moreover , to c e D(0, ©,) there

_ 2
exists a unique B > such that B(c,-c) = (B ) , B e 1^(0)

In particular, II, Theorem 2.1, can be applied.

Proof : Let c e D(0,®+). Hence B(c,-c) = WW for

some W e r(O). But B(c,-c) is C-linear and therefore

(2.2) yields
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2a(B(c,-c)u,u) = cj

F
(W

f
Wu,u) = ^

F
(Wu,Wu) >

of + ueV. Hence B(c,-c) > 0.

Conversely let B(c,-c) > for some ceV. Hence

B(c,-c) e r^(O) because of (3-4) and part c) of Lemma
x.

1.2 shows that B := [B(c,-c)] 2 belongs to r*(D). In

_ 2
particular B(c,-c) = (B ) and c € D(D,@,). Hence

D(0, ©.) is open in the natural topology of V and the

condition (A) is fulfilled.

2- Denote by Z = Z the connected component of

D(0, ©,) that contains zero. Hence Z equals the

connected component of [z; det 3(z,-z) ^ 0} that

contains zero. In particular,, Z is open in the natural

topology of V- Clearly, z * z as well as z -* Uz,

U e K , maps Z onto itself,
o r

We define

(5.1) gc
:= t

c
°B

c
°t

g
- for c e D(0,©+).

Clearly g belongs to 3^(D).

Let Q be the group of birational functions as

defined in §4.2. Let D be a non empty open subset of

V. A mapping f : D -> D is called biholomorphic if f

is bijective and if f as well as the inverse mapping

f is holomorphic in D. The domain D is called

symmetric if

(i) the group of biholomorphic mappings of D

onto itself acts transitively on D,
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(ii) there exists deD and a biholomorphic map f

of D such that d is an isolated fixed point

of f and f ° f = I.

THEOREM A

.

a) Z is a bounded symmetric domain in V.

b) The elements of Q are exactly the birational

functions f = U°g where U e X and c e Z. Moreover,ac

this representation of f is unique .

c) Each feQ is holomorphic in Z and Q acts on

Z via QxZ * Z, (f,z) -> f(z), as a transitive group of

biholomorphic mappings .

d) The isotropic subgroup of Q with respect to

zero equals X , i.e. , f (0) = for feQ is equivalent

to f = U e X •— o

3- The proof is divided into several propositions.

If X is a topological space then we write cp~f for cp, \|i e X

provided there is a continuous curve in X connecting

cp and \Ju

PROPOSITION 2. Let c be in Z. Then

a) gc
e Q and g^ = g_ c ,

b) B c = c - P(c)c.
c v

Proof : As in II, §2, we define (now in a canonical

way)
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c = B ot -r(c) , s = t~°B °t -. c e D(D, ©,).
c -3c c c c Wc +

Note s (0) = c. Let c be in Z. Then V-, f=s
r commutes

with ®, because of II., Theorem 2.1 (notice, that

B has to be replaced by B
,
) . But c ~0 implies B ~I,

c~0 and s ~I. Hence s eG.
c c *

In part b) of II, Theorem 2.1, we choose f = s ,

x = y = and obtain

B(cVc) = (B
c )

2
= B(c,-c~).

Hence ceZ and B~ = B ,
c c

We define f = s ~os and we obtain an element of G.
-c c ^

From s (0) = c and s,(-b) = follows f(0) = 0. Using

the chain rule and (I;4-6) we see that the Jacobian of

f at the point equals I. Hence uu
f (0) f and the

last statement in II, Theorem 2.1, yields f e T(0, ®,

)

and consequently f — I. So we proved s = s_~.

Since s c*} we may apply (4.2). Hence there exists

deV, UeK and W e T, (O) such that
o

s = Uot,oWot - where W* = W > 0.
c d 6d

The uniqueness result of I, Theorem 4.3, yields d = c

and thus we have t~oB = U°t,°W = tTTJ UW- It follows
c c d Ud

c = Ud and B = UW. Here U is hermitian and B as well
c c

as W is positive definite. Hence the uniqueness of

Lemma 1.2 yields U = I and W = B . So c = c andJ c

s
=

g •

c c
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PROPOSITION 3 - a) Each element f in Q can be

uniquely written as f = Uo g where UeK and ceZ. More -

over f (0) = is equivalent to c = 0, i. e.
, to f = UeK .

b) For feQ we have Z c D
f ( see I, §4. 2) and z -» f(z)

maps Z biholomorphically onto itself .

Proof: The corollary of II, Theorem 2.1, shows

that feQ can be uniquely written as f = Uo s where

U e r(O,0.) and c e D(O,0+). But f~I yields f
_1

(0)~0

and hence c~0. So c belongs to Z and s equals g in

view of the proof of Proposition 2. From f(0) =

follows Uc = and hence c = 0. So part a) is proved.

Let feQ and beZ. Then f°gh belongs to CJ and part

a) yields h = U°g for some UeK and ceZ. It follows
' J °c o

that

\(z) = «J

f (gb
(z)) id (z)

^c

according to (I;4.7). Since Q is contained in =*(&)

we have ull(0) f 0. Hence b = gb (0) e D
f

. Thus f is

holomorphic in Z and f(b) = h(0) = Uc belongs to Z.

So z ^ f(z) maps Z into itself. Since f is birational

it is biholomorphic

.

PROPOSITION 4 . Z is a bounded symmetric domain

and

Z £ [z; zeV, I-P(z)P(z) > 0}

c [z; zeV, 21 - zal > 0}.
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Proof: Let ceZ and set g = g . From Theorem 3.5

follows v > (with respect to the bilinear form 3)

and hence 3(q^,q) > for £ qeO. Choose q = a + (tb

where a,b e V and set q
8 = a, + T-, + %-.. Thus

p(qg ,q) - <a
x
+ T

L
+ ®bj_,b + ®a)

= a (a-^a) + a (b,^)

according to §3.2. A verification leads to

a
±

= (q
g )(0) = B^[a - P(c)b],

and from +q
g = 9+ v q = v ©+ q = (®+q)

g it follows

that

b\ = (3+q
S )(0) = (®+q)

S (0) = B^(b - P(c)a).

Hence choosing a = P(c)b we get a, = and

< g(q
g
,q) = ^(b^B'^b) if b t

where Q = I - P(c)P(c"). In particular, det Q, t ^-

ceZ. But Q is hermitian and ..xc

is connected we - with Q for c-Z. So thexc

first \ r ^usion is proved.

Next for ceZ we have

< B(c,-c) = I - cnc + P(c)P(c) < 21 - cac

and the second inclusion holds. Taking the trace in

21 - c-c > we obtain 2- dim V > -(c,c). Thus Z is

bounded.
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Since f(0) runs through all of Z if feQ (see

Proposition 3a), Q induces a transitive group of biholo-

morphic mappings of Z and the symmetry z * -z is

contained in Q. Hence Z is a symmetric domain.

Putting the propositions together we complete

the proof of Theorem A.

4- As a generalization of the representation of a

complex number in polar coordinates we give a theorem,

for which the proof is based on an idea of U. Hirzebruch

[4]. Introducing the condition

(*) If x,y e V such that xoy + yOx = and

a(Lx,Lx) > a(Ly,Ly) for all Lei, L* = L,

then y = .

we have

HIRZEBRUCH 's Theorem . Suppose that the pairing, a of

V satisfies in addition the condition (*) . Then to
o v

each weV there exists U in the identity component

K of K such that Uw belongs to V •

o — a o

It is not known whether or not the condition (*) is

a consequence of our assumptions on the pairing of V .

We will see later, that (*) holds whenever Q is a

Jordan pairing of the first kind.

Proof : Since K is a compact group there exists

z = x + iy in the orbit K w such that
o
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a(y,y) < o(Im Uw, Im Uw) for all U e K •

According to Lemma 2.2 the Lie algebra of X equals b.

Hence U = exp D, Deb, belongs to K . We obtain

< 2a(y,Im Dz) + a(y,Im D
2
z) + o(Im Dz,Im Dz) + ••

Replacing D by otD, < aeP, we get a(y,Im Dz) > and

hence

2
a(y,Im Dz) = and a(y,Im D z) + a(Im Dz,Im Dz) >

for all Deb. Choosing D = iL where L = L e X we

obtain

2
a(y,Lx) = and ct(Lx,Lx) > cr(y,L y) = a(Ly„Ly).

We choose L = anb + boa where a.b e V and the first
o

conditions imply xt=iy + ydx 0. Hence y = follows

from (*) •

5. Let D be an arbitrary bounded symmetric domain

in a complex vector space V and denote by Q the group

of biholomorphic mappings of D onto itself. The complex-

ification of the real Lie algebra of Q is denoted by @.

We have seen in II, Theorem 5.2, that there exists a

pairing of the vector space V satisfying the conditions

(P.l) to (P. 4) such that @ is isomorphic to the binary

Lie algebra associated with the pairing.

THEOREM B - If D is a bounded symmetric domain in

a complex vector V space then there exists a real form
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V of V and a pairing of_ V satisfying the conditions

of §2.1 such that D is linearly equivalent to the

domain Z •

We give a sketch of the proof • From S- Helgason [ 3 ],

chapter VIII, §7, it follows that there is a real form

V of V such that the restriction of the pairing to

V satisfies the conditions in §2.1. Furthermore, let
o =

O be the binary Lie algebra associated with the pairing

of V then the coniugation T coincides with 3 and the

bounded domain Z is linearly equivalent to D.

§6. The Bergman kernel of Z .

1. Let D be a domain in V and put D = {z;zeD}.

Denote by Bih D the group of all biholomorphic mappings

of D onto itself. A function p : DxD -*• C is called a

Bergman kernel of D if

(i) p(f(z),f(w))-det 2f|2l -det ^2i = P (z,w)

holds for z,w e D and f e Bih D,

(ii) p(z,z) > for z e D and d(z,w) = p(w,z").

We need the following theorem due to St. Bergman.

THEOREM 6.1 . If D is a bounded domain in V then

there exists a Bergman kernel of D

.
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For a proof see S. Helgason [ 3 ], Chapter VIII, §3-

COROLLARY • Suppose that the function § : DxD -> C

satisfies the condition (i) for all f in a transitive

subgroup of Bih D as well as (ii) • Then each Bergman

kernel of D equals y§ where y is a positive constant -

Proof: Let p be a Bergman kernel of D and put

T) = l/p. Then r\(£ (z) , f (w) ) = rj(z,w) for z,weD and all f in

the given transitive subgroup of Bih D. Hence r\

does not depend on z. But r|(z,w) = ri(w,z) shows that

Ti is constant.

2- Now let Z = Z n be the bounded symmetric domain

given by the pairing D of V Since the subgroup Q of

Bih D is contained in H(0, 6.) (see §5.1) we conclude

(6.1) B(f(z),^f(wT) =^B(Z) -i) (rW1)

for feQ from II, Theorem 2.1. Notice that B has to be

replaced by B, (see §5.1). We define the holomorphic

function C : DXD -> C by

(6.2) C(zjw) = det B(z,-w) for ZjW e Z-

From B(z,w) = B(w,z") we conclude G(z.,w) = C(w,z).

Furthermore, since B(z,-z)
J(

zeZ, is hermitian positive

definite we obtain £(z,z) > 0. Hence the function £

satisfies (ii) and (i) for feG- Hence the Corollary of
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Theorem 6.1 yields

THEOREM 6.2 . Each Bergman kernel of Z equals yC"

where y is positive constant .

Since Z is bounded the function C(z,w) is bounded

for z,w e Z. Hence we obtain the

COROLLARY . Each Bergman kernel of Z is bounded

away from zero .

For bounded symmetric domains this result is due to

H. L. Resnikoff [14]. We are going to prove

LEMMA 6-3. Let z,w e Z and a,b e V- Then

(6.3) 4 A-.log C(z,w) = - oCfBCz^-w)]"
1

a,b),

and (6.1) holds for all f in Bih Z

Proof: Note first that

A
z

cp(z) = A- cp(z)

holds whenever cp is holomorphic in z. Hence the left

side of (6-3) defines a hermitian form X of V. Since
z j w

(a,b) -> o(a,b) defines a hermitian positive definite

form of V there exists an endomorphism Q(z,w) of V that

is hermitian and rational in z,w such that

X
z,w

(a
' b) = " ^(Q(z,w)a,b)
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Since the condition (i) holds for p = £ we obtain

^Q(f(z),f^))^ - Q(z,w)

for f e Bih Z because of the chain rule. Hence the

function

R(z,w) := B(z,-w) Q(z,w)

satisfies

(6.4) R(f(z),f(w")) = l||5i r( Zj w) p||2l for feQ

because of (6.1).

From the definition of Q we observe -X ~(a.,b) =

trace aob = a(a,b) . Hence Q(z.,0) = I and (6-4) yields

R(f(z) J fT0T) = I for feQ.

Since Q acts transitively on Z we conclude R(z,w) = I

and the lemma is proved

.

3- Denote by k' the subgroup of X consisting of

the transformations W which map Z onto itself (see §2.5)

Clearly, the connected component K of K is a normal

subgroup of K ' of finite index.

THEOREM 6.4 - The group Bih Z of biholomorphic

mappings of Z onto itself consists exactly of the

functions Uo g where UeK ' and ceZ and this representa -

tion is unique - The index [Bih Z : Q ] = [X ' : K ] is

finite

.
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Proof : Let f be a holomorphic map of Z onto itself.

We choose g , ceZ, such that the function h = f o g satis-

fies h(0) =0. By Lemma 6-3 the condition (6.1) holds

for h. Substituting w = we see that ^ z
< is constant.

Hence h(z) - Uz where U e GL(V) . But again (6.1) yields

U U = I and hence UeX '

.

As a consequence we see that the Lie algebras of

Bih Z and of Q coincide. Using (4.5) we obtain the

COROLLARY • The real Lie algebra of Bih Z is iso -

morphic to the subalgebra O, = [p; peD, ®_jp = p} of £).

In a similar way we observe

THEOREM 6

5

• Let and ' be two pairings of V

that satisfy the , conditions of §2-1 and let Z and Z

'

be the corresponding bounded symmetric domains • Then

the following statements are equivalent :

a) There exists a biholomorphic map f : Z -» Z '
•

b) There exists a W e GL(V) such that Z' = WZ

.

c

)

The pairings and n ' are isomorphic ( in the

sense of III, §3-4).
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Chapter V

AN EXPLICIT DESCRIPTION OF THE BOUNDED SYMMETRIC DOMAINS

§1. Formal real Jordan algebras .

1. Let 31 be a finite dimensional semi-simple

Jordan algebra over R. Hence 21 contains a unit ele-

ment e and its trace form (a,b) -> trace L(ab) is non-

degenerate (see III, §3, and [2], chapter XI). We

obtain a pairing o of the vector space 21 by

aDb := 2(L(ab) + [L(a),L(b)])

that is a Jordan pairing of the first kind (see III, §3)

•

Using [ ], chapter XI, Satz 3-4, we see that the pairing

has a positive definite trace form

a (a,b) = 4 trace L(ab)

2 2
if and only if 21 is formal real, i.e., if a + b =0

implies a = b = 0.

Suppose now that 21 is formal real . We know from

III, §3-1, that the endomorphism P(a) associated with

the pairing coincides with the quadratic representation

of 21 , i.e.,
o '

P(a) := 2L
2
(a) - L(a

2
)

.

For aeSI the exponential exp a is given by
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exp a
L m.

and one has

P(exp a) = exp 2 L(a)

(see [2], chapter XI, Satz 2.2). Since z
q

is an

associative bilinear form of 31 , the endomorphism L(a)

is self adjoint with respect to a • Furthermore the

group r equals the structure group r(3i ) of 31 .

2. Let

= 21 +1 +31, = [P(x)b; beSi },
o o o o o

L v/'

be the binary Lie algebra associated with the pairing O

of the vector space V =34 (see IV, §2.1). We knowK o o =

from III, §3-1, that the automorphism © of O is

essential and III, Lemma 3-1, shows that 3 (£ ) is

generated by the birational functions

W, t and j where W € T(3J ), ae3J ,

' a J v o o

and where j is given by j (x) = -x . As mentioned in

III, §3, the group "(O ) coincides with the group S(SJ )

considered in [ ]_]_] .

In the notation of I, §4.2, we have the

THEOREM 1.1. Each automorphism of £ is essential___________ e

and
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v : H(O
q ) * Aut O

q
, f * 7fJ

defines an isomorphism of the groups

For a proof see [12]

•

3- Let Y = Y(2I ) be the domain of positivity

given by the formal real Jordan algebra 21 . According

to [ 2 ]) chapter XI, Satz 3-6 and Satz 3-7, we have the

descriptions

Y = exp 81 = [a; ae2I , L(a) > 0}

2
and the closure of Y equals [a ; ae2I J. Furthermore, Y

is an open convex cone and equals the connected com-

ponent of the set [z, ze^l, det P(z) ^ 0} containing e.

Denote by M = U (51 ) the group of W € r(2I ) = r(0 ) such

that a -> Wa maps Y onto itself. Then M acts transitively

on Y and the index of it in r(2I ) is finite.v o

4. Denote by SI the complexification of the formal

real Jordan algebra 21 . Hence 21 is a semi-simple complex

Jordan algebra. Let

H = H(9J ) = 91 + iY = [z; ze2I, Im z e Y],
o o

then H is a domain in the complex vector space 21. It

is known (see U. Hirzebruch [4 ], [ 7 ]) that the subgroup

of S(0 ) generated by W, t„ and i where WeW, ae2l . acts— v o u u a J o

as a transitive group of biholomorphic mappings on H

.

In particular, for f in this subgroup one has H <= Dom f
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and z * f(z) maps H onto itself.

p
The real pairing induces a pairing of 21 (see

IV, §2-3) and we obtain the binary Lie algebra

D = 2J
F + £

F + JJ
R

, 9J
F

= (P(z)b; be2J
P
}.

Again the group 3(d) is generated by the birational

functions

W, t and j where W e r(O) , ae'i,
a

and 5(0 ) becomes a subgroup of S(O). The pairing

induces a bounded symmetric domain Z = Z in 91 accord-

ing to IV, §5-2, and to Theorem A. Using the element

p of Hj^O) given by

p(z) = (z-ie)(z+ie) = e - 2i(z+ie) ,

i.e., p = t o2iIojot. , we are going to prove

THEOREM 1.2 . The function p maps H biholomorphi -

cally onto the bounded symmetric domain Z

.

Proof: Let z be in H. Hence z+ie e H and p is

holomorphic in H because j is holomorphic in H. A

verification yields

p (w) = i(e+w)(e-w) = - ie + 2i(e-w)~

provided e-w is invertible in 21 . Thus the imaginary

part is given by

Im p (w) = - e + (e-w)~ + (e-w)~ .
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We use the well-known formulas

L(a
_1

) = L(a)[P(a)]
_1

= [P(a)

]

_1
L(a)

,

P(a
_1 +b _1

) = [P(a)]"
1
P(a+b)[P(b)]~

1

where a,b e 3J are invertible. Writing a = e-w, b = e-w

we obtain

P(e-a'
1
-b"

1
) = I - 2L(a"

1
+b"

1
) + PCa^+b" 1

)

= [P(a)]'
1
[P(a)P(b) - 2L(a)P(b) - 2P(a)L(b)

+ P(a+b)][P(b)]
_1

provided a and b are invertible. A verification yields

now

P(Im p
_1

(w)) = [P(e-w)]
_1

[I - wcw + P(w)P(w) ] [P(e-w)

]

~ 1

provided e-w is invertible.

Denote the image of H under p by Z . Clearly e-w

is invertible whenever weZ- Thus weZ if and only if

Im p (w) lies in Y, i.e., lies in the connected

component of the set [y; ye?I , det P(y) f 0} containing

e. Hence w is in Z if and only if w is in the

connected component of the set [w; weM, det B(w,-w) ^ 0}

containing zero which equals Z.

5- We are going to give some more descriptions

of the bounded symmetric domain Z that is associated

with a Jordan pairing of the first kind induced by a

formal real Jordan algebra. First we have
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THEOREM 1.3 To each we 21 there exists U in the

identity component K of K such that Uw belongs to

the closure Y of Y.

Proof : We apply Hirzebruch's Theorem and we have

to show that the condition (*) in IV, § 5.4, holds.

From xDy + yOx = 4L(xy) we get xy = . Choosing

2 2
L = L(y) the second condition in (*) yields o (y ,y )

= and hence y = because 21 is formal real. HenceJ o

there exists UeK such that Uw belongs to 21 • Let
o & o

= 1\ V X
v

e F 'Uw =

V

be the minimal decomposition of Uw (see [ 2 ] , chapter

XI, §3) where the c 's form a complete orthogonal

system of idempotents of 21 . We choose cp e F such
±cp v

that e X > and set
v

-I
lcp

e
v

c
v

Thus q is invertible and q = q . Clearly P(q) e K
o

and P(q)Uw has a minimal decomposition with non-negative

eigenvalues. Hence P(q)Uw belongs to Y.

In view of Theorem 1.2 we may apply Theorem 12

in [ 7 ], chapter VII. We use the orderings ">" and

">" of 21 which are given by

a > b » a-beY, a> b » a-beY.
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THEOREM 1.4 - For ze^I the following conditions

are equivalent :

a) zeZ,

b) z = Ur where UeK and re21 such that e > r > 0,' o o

c) I - P(z)P(z) > 0,

d) 21 - zDz > 0.

Note that part c) and d) state a sharper result than that

given in Proposition 4 in IV, §5.

Here A > means that the endomorphism A is

positive definite with respect to the hermitian form

(u,v) -> a
Q
(u,v) •

Proof : As an abbreviation set

Q 1
(z) = B(z,-z), Q2

(z) = I - P(z)P(z), Q3
(z) = 21 - zDz.

Hence

U Qk
(z) U* = Qk

(Uz) where Ueh and k = 1,2,3-

In view of Theorem 1.3 it suffices to prove the equival-

ence of the conditions a) to d) for z = rtil such that' ' o

r>0 . We obtain

Q 1
(r) = P(e-r)

2
, Q 2

(r) = I - P(r
2
), Q3

(r) = 2L(e-r2 )

.

Let

r=Y)v c , < \ e R,
V V V

V
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be the minimal decomposition of r. From the definition

2
of Z it follows that reZ is equivalent to e-r >

(see 3) and hence to e > r . Using [ 2 ], chapter VIII,

Satz 1.3, we see that Qo(r ) > is equivalent to 1 > ^
for all v and hence to e > r . But Qo(r) > means

2
e-r > 0, too.

§2. The classification of the bounded

symmetric domains .

1. Let 3fl be the space of rxs complex matrices
— r , s

and denote by e the rxr unit matrix. Cartan's classifi-

cation shows that each irreducible bounded symmetric

domain is linearly equivalent either to a domain in

the following list

nota:

Cartan

;ion

Helgason domain dim
c

I
r, s

A III {z; zeW -t
z z <e

s'
rs

II
r

D III [z; zelDl
r r , z^z < e

r , z =-z}
r(r-l)

2

III
r

C I [z; zeffl!
' r,r'

-t
z z < e

r?
z =z}

r(r+l)
2

IV
r

BD I

(q=2)
[z ; zee , z

c
z < ^(l+lz^l

2
) < 1} r

or to an exceptional domain of type E^- or E
7

of dimension

16 or 27 respectively.
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Each of these domains can be obtained as a domain

Z_ (see IV, §5.2) where n is some pairing of a real

vector space satisfying the conditions of IV, §2.1.

For a real vector space V let V be its complexification

Type I : Let V be the real vector space of rxs
jl r,s o F

matrices with real entries. As pointed out in III,

§2.1, we obtain a pairing D of V by

(anb)c = ab c + cb a

having

a (a,b) = (r+s) trace ab

as trace form. Clearly, a is positive definite and

therefore the pairing satisfies our conditions.

According to (III; 2. 5) the endomorphism B(a,b)

is given by

t tB(a,b)c = (e+ab )c(e+b a) where a,b,c e V,

and Proposition 4 in III, §2, shows that det B(a,-a) ^

is equivalent to

det(e-ai"t ) £ and det(e-a t
a) f 0.

Using

le \ [e - a
fc
a o\ e 6\

M _r M = Mc M where M =

\0 e - aa c
\ e la ej

we see that the last two conditions are equivalent. Hence
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the domain Z n associated with our pairing coincides

with the set of z ' s such that det(e-z z) J* and hence

with the domain listed under I .

Type II and III : For e = ± 1 denote by V" the;r r r o

vector space of rxr real matrices a satisfying a = ea.

According to III, §lj we obtain a pairing o of V^ by

(aDb)c = ab c + cb a

having

a (a.b) = (r+e) trace ab
o

as trace form. Again a is positive definite and theo o

pairing satisfies our conditions. From (III; 1.6) we

conclude that the domain Z Q associated with the pairing

coincides with -the domain listed under II provided
r r

e = -1 or listed under III provided e = 1.
r r

2. We use now our results of §1. Let 2J be a
= o

formal real Jordan algebra of dimension n and let

be the induced Jordan pairing of the first kind, i.e.,

aab = 2(L(ab) + [L(a) ,L(b) ]
)

.

We know from §1.1 that its trace form is positive

definite. In the following list we write all simple

formal real Jordan algebras (in the notation of [ 2 ]

,

chapter XI, §5) and the type of the domain Z Q associat-

ed with the pairing:
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21
o

[X,u,e] & (R)
r

6r
(C) 6 («/ )r v 4

S3

3
(S

g )

type IV
n

III
r

Xr,r II2r
E
7

Hence all irreducible bounded symmetric domains except

the domain of type E,- are constructed by a pairing.

3- Finally we show that the domain of type

E, is also covered by our construction. According

to III, §4.2., let S = S
ft

be the Cayley division algebra

over F and put V = S©&. Then there is a pairing

of V having the trace form
o &

a (a,b) = 48[u(a,,b,) + u(a
2
,b

2 ), a = a,®a
2

, b = b,©b>
2
eV

Since the bilinear form u of S is positive definite

we see that a is positive definite, too. Hence the
o r

pairing satisfies our conditions . According to a

recent result of K. Meyberg [ 13] the Lie algebra O = O

is of type Er • The Lie algebra of the group of biholo-

morphic mappings of the associated domain Z is isomorphic

to O, (see the Corollary of IV, Theorem 6.5) and hence

of type Er (see IV, Theorem 4.2).

Summing up we see that all bounded symmetric

domains are linearly equivalent to a domain Z where

the pairing is a Jordan pairing of first or second

kind satisfying the conditions of IV , 2 2.1.

FINIS
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INDEX OF

NOTATIONS

Sets

:

Mappings etc .

:

Aut(0, ®) page 108 B (x)
V

9

Aut"0 27 B(a,b) 52

Bih D 126 H
$
(x) 10

Dom f 2 h
f

7

D
f

31 v, vfJ vw 8

D(Q,0) 40 fc
b

8

* - % 115 t
V

17

Lie Q 94 r
§
(x) 14

Pol V 5 ^x 3

tP(V) 3 Y
b

9

P (v)
o v 6

V 16

T =
<Po

+ ?
1
+ T

2
5 w

f
(x) 30

Rat V 4 W# 36

z = z D 119 w
11

100

r(o) 27 s*,f* 37

r(oJ@ ) 40 w
R

92

r*(£) 102 Sf(x)
3

H(Q) 28
Sx

H-(O,0) 40

3°(D) 31

3*(^) 106
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